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Abstract 
 
 

This dissertation describes studies of activation of neuronal ion channels and evaluating new 

ligands to modulate this process. In chapter two, we expanded the binding model of cytisine to 

the α4β2 nicotinic acetylcholine receptor. We also determined how C(10)-modification of 

cytisine impacts the key binding interactions between cytisine and its binding site. To achieve 

this, we used non-canonical amino acid mutagenesis to probe the electrostatic binding 

interactions of a novel series of C(10)-cytisine derivatives. In order to perform similar studies in 

the α3β4 nAChR subtype, we describe the heterologous expression of mouse and human α3β4 

nAChRs in Xenopus Laevis oocytes in appendix one. Chapter three describes the development 

and functional evaluation of a novel series of pyrrolidinoindolines for agonism and modulation 

of the GABAA receptor. Additionally, we performed mutagenesis studies to identify the binding 

site of these novel ligands. Appendix two describes a different screen for activation or 

modulation of GABAA receptors using a set of phenolic compounds implicated in Autism 

Spectrum Disorder. Chapter four shifts focus to voltage-gated ion channels: in this chapter, the 

ultimate goal was to photochemically control the activation of VGSCs and make progress 

towards developing a RubpyC17-based photoswitch that could be used in an artificial retina. To 

this end, we determined the functional effects of several ruthenium bipyridine analogs on 

voltage-gated sodium and potassium channels.  
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Chapter 1 

 

General introduction 

 

1.1 Neuronal communication 

The brain is an exceptionally complex organ. It contains over one hundred billion 

neurons that each can form ten thousand connections with other neurons, resulting in a total 

of a 1,000 trillion synaptic connections. Communication between two neurons is conducted 

by electrochemical impulses called action potentials.1 An action potential is propagated down 

the axon of a nerve cell to the synapse, which is the contact point between two neurons 

(Figure 1.1A). When an electrical signal reaches the synapse, vesicles filled with small-

molecules, called neurotransmitters, will fuse to the cell membrane and release these 

neurotransmitters in the space between two neurons, the synaptic cleft (Figure 1.1B). The 

neurotransmitters diffuse across the synaptic cleft and bind to proteins, receptors, located on 

the membrane of the neighboring neuron. Upon binding, these proteins undergo a 

conformational change that allows ions to flow across the membrane, which can either 

promote or inhibit the propagation of an action potential in this neighboring neuron (Figure 

1.1C). This process is called synaptic transmission, and its regulation is crucial for various 

important processes such as sensory perception, muscle control, memory, and conscious 

thought. When parts of this signaling process fail or become defective, devastating diseases 

can arise. We aim to create a better understanding of the chemical component of synaptic 

transmission; neurotransmitter binding and receptor activation. 

Among the various proteins involved in synaptic transmission are ion channels, which 

are integral membrane proteins that control the flow of ions into or out the cell. Some ion 

channels are constitutively open,2 but many are gated. For those, channel opening can occur 



 2 

upon small-molecule binding,3,4 a mechanical stimulus,5 or a change in local membrane 

potential.6 Besides classification by way of activation, these proteins are often further 

categorized by their structures, functional characteristics such as ion selectivity, and, for those 

activated by small molecules, by their ligand. This thesis provides studies, which focus on 

pentameric ligand-gated ion channels and voltage-gated ion channels. 

 

Figure 1.1 | Neuronal communication through synaptic transmission. (A) A schematic view of 

two neurons making contact at the synapse. The path of the action potential is highlighted in red. (B) 

The synapse, where vesicles fuse to the cell membrane and release neurotransmitters in the synaptic 

cleft. Neurotransmitters flow across and bind to receptors on the membrane of the neighboring 

neuron. (C) Upon binding of a neurotransmitter, ion channels will undergo a conformational change 

allowing ions to flow across the membrane. Figure adapted from Marotta 2015.7 

 

1.2 Pentameric ligand-gated ion channels 

Pentameric ligand-gated ion channels (pLGICs), also known as Cys-loop receptors, 

are a family of transmembrane ion channels which allow ions, such as Na+, K+, Ca2+, or Cl-, 

to cross the cell membrane upon binding of a small-molecule, i.e. a neurotransmitter. This 

protein family comprises both excitatory and inhibitory receptors. The excitatory receptors are 

cation-selective channels, consisting of nicotinic acetylcholine receptors (nAChR)8  and type 3 
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serotonin (5HT-3) receptors9, and allow for signal propagation. The inhibitory receptors are 

anion-selective channels, consisting of glycine receptors (GlyRs),10 type A γ-aminobutyric acid 

receptors (GABAAR),11 and glutamate-gated chloride channels (GluCl),12 which allow for 

signal termination.  

pLGICs share the same overall architecture, consisting of five homologous or identical 

subunits that self-arrange around an ion-conducting pore (Figure 1.2B and C).13 A single 

subunit contains three major domains (Figure 1.2A). First, a large extracellular domain (ECD) 

comprised of a series of β-sheets and loops. Second, a transmembrane domain (TMD) 

consisting of four transmembrane α-helices (M1-M4), of which M2 lines the pore. Third, an 

intracellular domain that mostly consists of the M3-M4 loop and is highly variable among 

subunits.14 The ligand binding site lies at the interface of two subunits in the extracellular 

domain (yellow box in Figure 1.2B, C). 

 

Figure 1.2 | Structural characteristics of pentameric ligand-gated ion channels. (A) One pLGIC 

subunit with the following structural features highlighted: the four transmembrane helices (M1-M4), 

N-terminus and C-terminus, the Cys-loop that gives this family its name, and the A-, B- and C-loops 

that line the binding pocket. (B) Side view of the α4β2 nAChR pentamer with the binding site located 
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at two subunit interfaces in the ECD highlighted in yellow. (C) Extracellular view of the protein looking 

into the pore with binding pockets highlighted in yellow. (PDB ID: 5kxi) 

 

Until 2001, researchers used mutagenesis and biochemistry experiments to acquire all 

information regarding receptor composition and the binding site.15 The first reported crystal 

structure appeared in 2001 for an Acetylcholine Binding protein (AChBP), which is a soluble 

protein with high structural homology to the extracellular domain of nAChRs.16,17 Since then, 

several high-resolution structures of full-length eukaryotic receptors have been reported, 

among which are the human α4β2 nAChR18 and the human α1β2γ2 GABAA receptor.19 

Numerous mutagenesis studies of many pLGICs combined with structural data have enabled 

us to rationalize trends in ligand selectivity based on noncovalent binding interactions.20 Of 

the pLGIC family, this dissertation focuses on nAChRs and GABAARs. 

1.2.1 Nicotinic acetylcholine receptors 

Nicotinic acetylcholine receptors (nAChRs) are composed of combinations of five 

subunits, the α1–10, β1–β5, γ, δ and ε subunits.21 Various combinations of subunits are present 

in both the central nervous system (CNS) and peripheral nervous system (PNS) (Figure 1.3). 

The α1, β1, γ, δ and ε subunits form the fetal and muscle type receptors, whereas neuronal 

subtypes consist of either five identical subunits (α7, α8, α9) or they are heteromers consisting 

of combinations of α2- α6 or α10 and β2-β4 subunits.22 The α4β2 and α7 subtypes are the 

most abundant in the brain.22,23 The next most prevalent is the α3β4 subtype, which has been 

historically thought to only be expressed in the autonomic ganglia.24 Each subtype is localized 

differently in the CNS and demonstrates distinct pharmacology. The endogenous ligand for 

nAChRs is acetylcholine, but most neuronal subtypes are also activated by nicotine, which is 

the psychoactive component in tobacco (Figure 1.4D).25 nAChRs have been implicated as 
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targets for various neural diseases, such as nicotine addiction, epilepsy, Alzheimer’s disease 

and neuromuscular diseases.23,26–31 

 

Figure 1.3 | A sample of the various nAChR subtypes in the CNS. 

 

These receptors have been studied for many years, and drug discovery efforts have 

rendered several therapeutics, such as varenicline (Chantix) and cytisine (Tabex) that mainly 

target the α4β2 subtype (Figure 1.4D), and galantamine (Razadyne) to target the α7 

subtype.32–38 Although these agonists have higher affinities for these specific subtypes over 

others, they still bind to other subtypes to some extent. Gastrointestinal side-effects of 

varenicline and nicotine are commonly observed,39 which could be a result of these off-target 

effects. Besides the diversity in subtypes, heteromeric receptors, such as α4β2 and α3β4, can 

assemble in multiple stoichiometries. The α4β2 subtype can arrange as (α4)3(β2)2, which we 

refer to as A3B2, or (α4)2(β2)3, which we refer to as A2B3 (Figure 1.3).40,41 Developing agonists 

that distinguish between neuronal subtypes or stoichiometries remains challenging. Therefore, 

a better understanding of agonist binding in the various subtypes and stoichiometries is 

essential. 
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Figure 1.4 | The agonist binding site of the nAChR and four known agonists. (A) The structure 

of the α4β2 nAChR with the agonist binding site at two subunit interfaces highlighted (PDB ID: 5kxi). 

(B) A closer look at the agonist binding site with the aromatic residues lining the pocket highlighted. 

(C) A schematic view of the binding model for nicotine. (D) Chemical structures of four agonists to 

the nAChR: acetylcholine, nicotine, varenicline, and cytisine.  

 

In α4β2 the agonist binding site lies at the interface of the primary α face and the 

complementary β2 face (Figure 1.4A,B). The site is formed by six loops (A, B, and C from 

the primary face, and D, E, and F from the complementary face) that contribute five aromatic 

residues, called the aromatic box.16,42 These aromatic residues, three tyrosines (TyrA, TyrC1, 

TyrC2) and two tryptophans (TrpB, TrpD), are highly conserved across all pLGICs (Figure 

1.4B).43 Previous studies by our group have established a binding model for nicotine and other 

agonists to several nAChR subtypes (Figure 1.4).20,44,45 For nicotine at the α4β2 subtype three 

key binding interactions were identified:  a cation-π interaction to W154 in loop B (TrpB), a 

hydrogen bond to the backbone carbonyl of TrpB, and a hydrogen bond to L119 in Loop E 

(LeuE) of the complementary subunit (Figure 1.4C).45,46 Although, generally these three 

interactions have been observed for nAChR agonists across different subtypes, it is possible 
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to discern agonist-specific and subtype-specific differences. For example, the cation-π 

interaction is sometimes formed to a different aromatic residue of the five in the binding 

pocket, and not every agonist makes both hydrogen bonds.47 In chapter two, we expand on 

the binding model of cytisine for the α4β2 subtype. Moreover, we determine changes in 

energetic contributions of these binding interactions as a result of substitution at the pyridone 

ring of cytisine. 

1.2.2 γ-aminobutyric acid type A receptors 

Another pLGIC central to this work is the anion-selective GABAA receptor. For this 

receptor, a total of 19 homologous subunits exist that can assemble in at least 30 different 

subtypes in vivo.48 The predominant isoform in the human brain is the α1β2γ2 subtype. Some 

types, including the α1β2γ2, are predominantly expressed at the post-synaptic termini and 

mediate phasic inhibition, while others are located at extrasynaptic sites and mediate tonic 

inhibition.48–50 Dysfunction of this receptor results in anxiety disorders, epilepsy and 

neurodevelopmental disorders, including Autism Spectrum Disorders (ASD).51–53  

Receptor activation occurs upon binding of GABA to the agonist binding site, also 

referred to as the orthosteric site, which lies in the ECD at the β+/α- subunit interfaces 

(Figure 1.5B).11 This contrasts the nAChRs, where the agonist binding site is located at the 

α+/β- subunit interfaces (Figure 1.4A). Additional binding of other ligands to several 

allosteric sites on the pentameric complex can modulate this activation, and several of these 

are highlighted in Figure 1.5A and B.54 Positive allosteric modulators (PAMs) potentiate the 

evoked response by an agonist, while negative allosteric modulators (NAMs) inhibit that 

response.55,56 Researchers have also found allosteric agonists that are able to activate the 

receptors via allosteric sites. Some of these contain PAM properties as well and are so-called 

ago-PAMs.55 
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Figure 1.5 | Structure of the GABAAR and its known ligand binding sites. (A) Side view of the 

α1β2γ2 GABAAR structure with the orthosteric (black) and several allosteric binding sites highlighted 

(sites in ECD in purple, sites in TMD in red) (PDB ID: 6D6T). (B) Extracellular view of the α1β2γ2 

GABAAR structure looking down the ion-conducting pore. 

 

Over the years many modulators of GABAA receptors have been identified and several 

positive allosteric modulators are widely used to treat anxiety disorders, such as Alprazolam 

(Xanax), Diazepam (Valium), and Flurazepam (Dalmane).55,57,58 These three modulators are 

structurally similar (benzodiazepines) and bind to the same site on the receptor located in the 

ECD at the α+/γ- subunit interfaces (BZ-site, Figure 1.5A,B). The PAM CGS 9895 has been 

found to bind at a third allosteric site in the ECD, located at the respective site at the α+/β- 

subunit interface (Figure 1.5B).59,60 The TMD also hosts several allosteric sites. Anesthetics, 

such as propofol, etomidate and pentobarbital, and neurosteroids all have been observed to 

modulate the GABAA receptors through interaction with the TMD (Figure 1.5A).61–67 

Propofol and etomidate bind at the β+/α- subunit interfaces at the top of M1 and M3,61–63,68,69 

while pentobarbital binds at the respective site at the α+/β- subunit interfaces (Figure 1.5A).65 

Recent X-ray crystal structures revealed the binding sites for the potentiating neurosteroid 
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tetrahydro-deoxycorticosterone (THDOC) to be intersubunit at the bottom of M3-M1-M4 

and the inhibitory neurosteroid pregnenolone sulfate to be intrasubunit between M3 and M4 

(Figure 1.5A).70 A cryo-EM structure confirmed the binding site of picrotoxin in the pore at 

the bottom of the TM2 helices.71 

Although GABAA receptor modulators have proven great therapeutic benefit, adverse 

effects remain a problem. Additionally, elucidating functions of individual subtypes is crucial 

for a better understanding of GABAAR’s role in health and disease. Therefore, recent efforts 

have focused on finding subtype selective modulators. In chapter three, we describe the 

functional evaluation of a series pyrrolidinoindolines as novel positive allosteric modulators 

for the GABAAR. 

1.3 Voltage-gated ion channels 

PLGICS are important for the decision whether an incoming signal will propagate to 

the next neuron. However, the large fluctuations in membrane potential during an action 

potential are created by voltage-gated ion channels (VGICs). VGICs are a large family that 

include voltage-gated sodium channels (Nav or VGSCs), potassium channels (VGKCs) and 

calcium channels.72 When the sum of excitatory and inhibitory signals resulting from pLGICs 

reach a threshold depolarization of the membrane, voltage-gated sodium channels will initiate 

the next action potential by creating an even larger depolarization of the membrane towards 

+30 mV (Figure 1.6). VGKCs open slower than VGSCs and their opening results in an 

outward flow of potassium ions resulting in repolarization of the membrane. At the same time 

VGSCs close and are temporarily unable to be activated. Upon hyperpolarization of the 

membrane, VGKCs close and the membrane returns to its resting potential around -60mV. 

After this refractory period VGSCs return to the closed state and a new action potential can 
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be initiated. In this dissertation, we focused on modulating activation of both VGSCs and 

VGKCs using small molecules.  

 

Figure 1.6 | The different stages of an action potential.  

 

1.3.1 Voltage-gated sodium channels 

VGSCs are activated by a depolarization of the cell membrane. Conventionally, a 

eukaryotic Nav channel is a large complex of one single  subunit (260 kDa) and one or more 

smaller,  subunits (33-36 kDa) (Figure 1.7A,B).72,73 Although the  subunit alone contains 

the sodium conducting pore and the gating domain, it requires heterodimerization with one 

or more  subunits to reconstitute the full native properties.74 Nine  subunits (Nav 1.1-1.9) 

and five  subunits (1-4, 1B) have been identified so far.74 Studies have associated mutations 

in genes encoding these VGSC subunits with a variety of disorders affecting skeletal muscle 

contraction, heart rhythm, and nervous system function, such as myotonia, Brugada 

syndrome, and congenital epilepsy.75 
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Figure 1.7 | Structure of a voltage-gated sodium channel. (A) Side view of the structure of the 

Navα1.7-β1-β2 complex (PDB ID: 6J8G). The α subunit is shown in grey, the β1 subunit is shown in 

teal, and the β2 subunit is shown in orange. VSDs are indicated. (B) Extracellular view of the Navα1.7-

β1-β2 complex. (C) Structural topology of the eukaryotic Nav channel  and  subunits. The center 

peptide chain is a generalized depiction of an  subunit containing four homologous domains, each 

comprising six helical segments referred to as S1-S6. 

 

Different from pLGICs, the Nav  subunit consists of one long peptide chain that 

contains four homologous domains (designated DI through DIV) and assembles in a 

pseudotetrameric structure (Figure 1.7).76 Each domain comprises six helical segments (S): 

S1-S4 form voltage sensor domains (VSD, total of four per α subunit) and the four S5-S6 
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segments make up the sodium-conducting pore (Figure 1.7C).77 These two functional 

domains are physically separated and have been shown to be able to function 

independently.78,79 Both N- and C-termini lie on the intracellular side of the membrane. The 

connecting loop between DIII and DIV, containing a hydrophobic IFM motif, has been 

shown to play a crucial part in the inactivation of the channel.80 Recently, mutations in the DI 

S6 have also shown to remove fast inactivation.81,82  

 

 

Figure 1.8 | Structure of the voltage-sensing domain. 

The transmembrane helices are colored from blue to red (S1-

S4). Amino acids of the extracellular and intracellular negative 

charge cluster (ENC and INC) are highlighted as red minus 

signs, and positive gating charge arginine residues (R1-R4) are 

highlighted in blue. The hydrophobic constriction site (HCS) 

is designated in green. 

 

 

The most unique feature of VGICs is the voltage sensing domain. S4 is called the 

voltage sensor and contains four conserved arginine residues (R1-4) (Figure 1.8). Researchers 

have proposed that S4 bears the gating charges that drive voltage-dependent activation.83,84 

The ‘helical-screw’ model suggests that the positive gating charges of the conserved arginines 

are neutralized in their TM positions by interacting with negatively charged amino acid side 

chains in S1 and S3 and the negative membrane potential exerts an electrostatic force to pull 

the gating charges inward toward the cytosol (Figure 1.8). Depolarization releases these gating 

charges, allowing S4 to move outward along a spiral pathway, while the gating charges move 

outward exchanging ion pair partners along the way. This voltage sensor movement causes 

conformational changes that result in pore opening.83,84 Strong support for this model has 

emerged over the years from various studies attempting to test aspects of it.85–93 Several animal 
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toxins exert their disturbing effects by interfering with the voltage sensing domains of 

VGSCs.94–96 In chapter four, we describe progress towards light-induced modulation of 

VGSCs by evaluating the effects of ruthenium diamine photoswitches on VGSC function. 

1.3.2 Voltage-gated potassium channels 

 Voltage-gated potassium channels (VGKCs) control the frequency and shape of the 

action potential waveform, the secretion of hormones and neurotransmitters, and cell 

membrane potential.98 Eight α subunits (Kv1.1-1.8) and two β subunits (Kv2.1-2.2) have been 

identified. VGKCs are different from VGSCs as they are comprised of four identical subunits. 

Each subunit consists of six transmembrane regions, a short intracellular C-terminus and a 

long intracellular N-terminus. Similar to VGSCs, helix S1-S4 make up the voltage-sensing 

domain, while S5 and S6 form the ion-conducting pore.99–101 In chapter four, we used the 

Drosophila Shaker K+ channel (SH) to determine differences in functional effects of ruthenium 

bipyridine complexes on different VGIC subtypes. 

 

1.4 Tools for systematic analysis of ion channel function 

1.4.1 Non-canonical amino acid mutagenesis 

Site-directed mutagenesis has proven very useful for biochemists to probe for 

functionally relevant residues in proteins. However, the twenty canonical amino acids are a 

fairly restrictive toolset to probe the complex structures of proteins and their interactions. 

Expansion of the genetic code has dramatically increased this toolset and has enabled the 

incorporation of many non-canonical amino acids into ion channels.20,102 The introduction of 

subtle structural changes has identified critical noncovalent interactions and conformational 

requirements.45,103  
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Figure 1.9 | Non-canonical amino acid mutagenesis via nonsense suppression. (A) Non-

canonical amino acid mutagenesis via nonsense suppression using chemically acylated tRNA. (B) Full 

length aminoacyl suppressor tRNA is prepared by chemically appending a non-canonical amino acid 

to dCA, which is then enzymatically ligated to 74mer tRNA. 

 

These non-canonical amino acids can be incorporated into proteins using a method 

called in vivo nonsense suppression (Figure 1.9). First, the gene encoding the protein of interest 

is modified by mutating the codon at the desired site to a stop codon. Second, after chemically 

synthesizing the desired non-canonical amino acid, this residue is chemically appended to 

dCA, followed by enzymatic ligation to 74mer tRNA carrying the appropriate anti-codon 

(Figure 1.9B).20,104,105 Normally, the nonsense codon would cause premature termination of 
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translation resulting in truncated protein. However, when suppressor tRNA bearing the 

corresponding anticodon is present, the native polymerase will recognize the suppressor tRNA 

and stop codon as a match and produce full length protein containing the non-canonical amino 

acid. It is crucial that the tRNA is orthogonal to the host system to avoid charging the tRNA 

by endogenous aminoacyl tRNA synthetases.20,104,105 Chemical acylation of the amino acid to 

the tRNA allows for great flexibility in functionalities to be incorporated. 

1.4.2 Electrophysiology 

To determine the effects of both canonical and non-canonical amino acid mutagenesis 

on receptor function, we used two-electrode voltage clamp (TEVC). In TEVC, the cell is 

impaled with two microelectrodes: one measures the membrane potential, while the other 

injects current to maintain the membrane potential at a constant, preset potential (Figure 

1.11A).106 Upon agonist application to the cell, ion channels will open and the membrane 

potential changes as a result of the ion flow in or out of the cell. The current injected through 

the current electrode is therefore a direct measure of the sum of currents through all ion 

channels at the membrane. Electrophysiology assays require only a small amount of protein 

for signal responses (microAmpères), which makes it an extremely useful tool to measure 

influences of subtle perturbations on receptor function.107 

A commonly used heterologous expression system to study ion channels is the oocyte 

from Xenopus laevis (African clawed frog). This vertebrate cell is a classic expression system for 

functional evaluation of ion channels using TEVC, because of its size and robust expression 

of eukaryotic proteins.108 Proteins are expressed by microinjecting the mRNA coding for the 

desired protein into the cell, followed by an incubation period of 24-48 hours, during which 

the (mutant) protein is translated, assembled and transported to the cell membrane.104,109 The 

microinjection delivery method makes this approach quite amenable for the nonsense 
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suppression approach described earlier. For in vivo nonsense suppression, both mRNA and 

the chemically acylated tRNA are readily co-injected in Xenopus laevis oocytes (Figure 1.10). 

 

Figure 1.10 | In vivo nonsense suppression using a Xenopus laevis oocyte. 

 

Different aspects of ion channel function may be evaluated using various 

electrophysiological assays. For all studies in this dissertation regarding pLGICs, the main 

goals were to assess functional effects of mutants and determine potency changes among 

substituted ligands. For activation of pLGICs the following events are considered: the 

cooperative binding of one or more agonists (binding) allows the receptor to undergo 

conformational changes towards an ion-permeable state (gating). The introduction of mutants 

or application of ligands may influence the energetics of agonist binding or gating, which 

results in a change in sensitivity of the pLGIC to its agonist.110 Generally, researchers assume 

that mutations near the agonist binding site influence only the binding event, while those close 

to the pore are thought to mostly influence the gating event.45 To measure these effects, we 
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performed dose-response experiments of which a typical protocol is shown in Figure 1.11B. 

Upon application of increasing agonist doses, the binding equilibrium is shifted towards the 

open state. At high doses, saturation is reached and current responses level off. Peak currents 

are normalized to the maximal response and plotted against the logarithm of the respective 

agonist concentrations. We then fit these data to the Hill equation: 

𝐼([𝐴]) =  
𝐼𝑚𝑎𝑥

1 + (
𝐸𝐶50

[𝐴]
)𝑛𝐻

 

Where I is the whole cell current, [A] is the agonist concentration, Imax is the maximal current 

response, EC50 is the agonist concentration eliciting a half-maximal response, and nH is the 

Hill coefficient (Figure 1.11C). The shift in EC50 compared to wild type is used as a readout 

for the magnitude of the energetic perturbation caused by the mutations or ligand substitution, 

where log(fold shift in EC50) varies roughly with the ΔΔG value. 

A different electrophysiology assay that renders information on receptor properties is 

a voltage jump experiment. For nAChRs described in chapter two, this assay is used to verify 

receptor stoichiometry. The two α4β2 stoichiometries demonstrate distinct behaviors at 

positive membrane potentials.45 Upon nAChR activation, the negative membrane potential 

drives ion flow into the cell. Ion channel opening at positive potentials results in an outward 

current of ions. However, the α4β2 A2B3 stoichiometry prevents this outward flow at positive 

potentials, which we refer to as inward rectification (Figure 1.11D). Since we control the 

membrane potential in TEVC, we can change the membrane potential quickly to positive 

potentials upon receptor activation to measure the extent of inward rectification (Figure 

1.11E). This allows us to distinguish between α4β2 stoichiometries. 
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Figure 1.11 | Functional characterization of ion channels using two-electrode voltage clamp 

(TEVC). (A) Schematic presentation of the TEVC set up using a Xenopus laevis oocyte. (B) Dose-

response protocol: current waveforms in response to agonist. Application of increasing doses of 

agonists results in increasing current responses. (C) Dose-response relationships illustrating wild type 

(black), gain of function (blue), loss of function (red) variants. (D) I-V plot of a voltage jump 

experiment on a pLGIC. At negative potentials, the I-V relationship is linear (blue). At positive 

potentials, this trend can either continue (green) or be inhibited (red). This phenomenon of current 

inhibition at positive potentials is called inward rectification. (E) Voltage jump protocol. Although this 

protocol differs slightly when used for pLGIC or VGICs, the concept is the same: the holding potential 

of the membrane is varied on a millisecond timescale and the currents for each voltage step are 

recorded. For voltage jump experiments on pLGICs, the voltage jump is executed upon agonist 

application. (F) G-V plot resulting from a voltage jump experiment on VGSCs. Sodium conductances 

were calculated from peak currents, membrane potential and the reversal potential. 

 

  Besides pLGIC characterization, we also used voltage jump experiments to determine 

activation characteristics of VGICs in chapter four. As depolarization of the membrane 

activates VGICs, a typical experiment involves varying the membrane potential in 5 mV 
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depolarization steps to obtain a current-voltage plot for VGKCs and a conductance-voltage 

plot for VGSCs. We determine sodium conductances (GNa) from peak currents using the 

equation: 

𝐺𝑁𝑎(𝑉𝑚) =  
𝐼𝑁𝑎

(𝑉𝑚 − 𝑉𝑟𝑒𝑣)
 

where GNa is the sodium conductance, INa is the peak current at a that depolarization step, Vm 

is the membrane potential, and Vrev is the reversal potential calculated for each individual cell. 

The reversal potential is the membrane potential at which the driving force for an inward 

sodium current – i.e. the concentration gradient of sodium ions – is equal to the electrical 

potential. We normalized individual conductance curves (G-V) to the maximum conductance 

amplitude per cell and fitted using the Boltzmann distribution equation: 

𝐺(𝑉𝑚) =  
𝐺𝑚𝑎𝑥

1 + 𝑒
𝑉−𝑉𝑜.5

𝑘

 

where G is the normalized sodium conductance, Vm is the membrane potential of that 

depolarization step, V0.5 is the half-activation potential, and k is the slope. V0.5 represents the 

membrane potential at which half of the channel population is activated, which we used as a 

measure for the voltage-dependence of activation (Figure 1.11F). 

1.4.3 Double-mutant cycle analysis 

In addition to evaluating the effect of a single perturbation caused by a mutation or 

substitution of the ligand, we wish to determine if this single perturbation affects a specific 

interaction. To achieve this, we perform a double-mutant cycle analysis, which provides a 

quantitative measurement of the energetic coupling, or lack thereof, between two mutations. 

Historically, mutant cycle analyses have probed coupling between two amino acids in a 

protein,111 but our group has found the methodology also quite useful when one mutation is 

to the protein and the other is to the ligand.44,112 In a double-mutant cycle analysis four values 
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are obtained, the EC50 of the wild type, the EC50 values of the two single mutations, and the 

EC50 value of the collective double mutant. If the two mutations are not functionally coupled, 

that is if they are independent of one another, the product of the wild type EC50 and double 

mutant EC50 will be identical to the product of the single mutants (additive) (Figure 1.12). If 

the products are significantly distinct (nonadditive), then the two mutations are functionally 

coupled and thought to interact in a cooperative way. The extent to which the two 

perturbations are additive or nonadditive is expressed by the coupling constant Ω, which can 

be converted into coupling energy using the equation ∆∆G = RTln(Ω). We deem two 

perturbations to be functionally coupled when the ∆∆G value is greater than 0.4 kcal/mol. 

 

Figure 1.12 | Double-mutant cycle analysis. (A) Schematic depiction of a double-mutant cycle 

analysis. (B) Equations used to calculate the coupling constant Ω and ΔΔG values, where R is the ideal 

gas constant and T the temperature (25˚C) 

 

1.5 Summary of dissertation work 

 The central theme of this dissertation is to study activation of ion channels and 

evaluating new ligands to modulate this process. We combined non-canonical amino acid 

mutagenesis with the design of small molecule ligands to probe receptor activation. The first 

two chapters and first two appendices focus on evaluating function of two pLGICs using 

novel agonists and modulators, while chapter four shifts focus to evaluating molecules for 
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modulation of voltage-gated ion channels. All studies used the heterologous model system 

Xenopus laevis. 

In chapter two, we expanded the binding model of cytisine to the α4β2 nAChR. We 

determined how the key binding interactions between cytisine and the binding site of α4β2 

nAChR are impacted by C(10)-modification of cytisine. To achieve this, we used two-electrode 

voltage-clamp electrophysiology and non-canonical amino acid mutagenesis to probe the 

electrostatic binding interactions of a novel series of C(10)-cytisine derivatives. In order to 

perform similar studies in the α3β4 nAChR subtype, we describe the heterologous expression 

of mouse and human α3β4 nAChRs in Xenopous laevis oocytes in appendix one. We determined 

mRNA injection ratios to obtain pure populations of the two receptor stoichiometries, and 

we determined a method to readily distinguish expression of either stoichiometry. These 

studies make progress toward elucidating subtype specific binding profiles. 

Chapter three describes the development and functional evaluation of a novel series 

of pyrrolidinoindolines for agonism and modulation of the GABAA receptor. We also 

performed mutagenesis studies to identify the binding site of these novel ligands. Appendix 2 

describes a different screen for activation or modulation of GABAA receptors using a set of 

phenolic compounds implicated in autism spectrum disorder.  

Chapter four shifts focus to voltage-gated ion channels. In this chapter, the ultimate 

goal was to photochemically control the activation of VGSCs and make progress towards 

developing a RubpyC17-based photoswitch that could be used in an artificial retina. To this 

end, we determined the functional effects of several ruthenium bipyridine analogs on VGSCs 

and VGKCs. 
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Lastly, appendix three describes an improved synthetic route to 4,5,6,7-tetrafluoro-

tryptophan that we employed for the incorporation of this non-canonical amino acid in 

chapter two. 
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Chapter 2 

 

Probing Binding Interactions of a Novel Series C(10)-Cytisine 

Derivatives to the α4β2 Nicotinic Acetylcholine Receptor* 

 

2.1 Abstract 

Nicotinic acetylcholine receptors (nAChR) are crucial for communication between 

synapses in the central nervous system. As such, they are also implicated in several 

neuropsychiatric and addictive diseases. Previous studies have established a binding model for 

several agonists to several nAChR subtypes. Here, we expand the binding model of cytisine to 

the α4β2 nAChR. We determined how the key binding interactions between cytisine and the 

binding site of α4β2 nAChR are impacted by C(10)-modification of cytisine. To achieve this, 

we used two-electrode voltage-clamp electrophysiology and non-canonical amino acid 

mutagenesis to probe the agonist binding interactions of a novel series of C(10)-cytisine 

derivatives. In contrast to the well-studied agonists nicotine and acetylcholine, cytisine and the 

C(10)-derivatives studied here make an additional cation-π interaction to TyrC2. Surprisingly, 

double mutant-cycle analyses revealed that all C(10)-derivatives make a stronger cation-π 

interaction to TyrC2 than cytisine, whereas the hydrogen bond to LeuE in the complementary 

subunit is generally diminished relative to that for cytisine. This study suggests a model for 

how cytisine derivatives substituted at C(10) (as well as C(9)/C(10)) adjust their binding 

orientation in response to pyridone ring-substitution. 

2.2 Introduction 

 Nicotinic acetylcholine receptors (nAChRs) have been studied for their role in 

synaptic transmission and consequently their involvement in neural disorders such as 

                                                 
* The work described in this chapter was done in collaboration with Dr. Hugo Rego Campello, Prof. Timothy 
Gallagher, and Prof. Henry A. Lester. 
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nicotine addiction, epilepsy, and Parkinson’s disease.1,2 Tobacco use causes more than 7 

million deaths per year worldwide, and smoking is the leading cause of preventable death 

(WHO 2017). In addition, smoking costs the United States nearly $170 billion in direct 

medical care for adults each year (Federal Trade Commission 2016). Nicotine’s behavioral 

effects result from its interaction with nAChRs.3 Various studies have linked polymorphisms 

in nAChR genes to risk of tobacco and alcohol dependence and established that nicotine 

functions as an intracellular chaperone of nAChRs.4 However, developing new treatments 

for these targets remains challenging, as the various subtypes of nAChRs are structurally 

similar, and the mechanism of receptor activation, and how this may or may not vary with 

subtype, is still not completely understood. 

nAChRs are pentameric ligand-gated ion channels and part of the Cys-loop receptor 

family. Neuronal nAChRs are composed of five subunits, forming heteromers of α2-α11 and 

β2-β4, or α-only homomers5,6 Various combinations of subunits and stoichiometries exist, but 

the most abundant in the brain is the α4β2 nAChR, the high affinity nicotine receptor, 

assembling into both (α4)2(β2)3 and (α4)3(β2)2 stoichiometries (for simplicity, we refer to these 

as A2B3 and A3B2, respectively).7,8 Both stoichiometries are functional and have distinct 

biophysical properties. Changes in subunit stoichiometry are linked to both nicotine addiction 

and autosomal dominant nocturnal frontal lobe epilepsy.9 Therefore, gaining a better 

understanding of differential agonist effects on these two stoichiometries of the α4β2 nAChR 

is desired. 

Previous studies have established a binding model for nicotine and other agonists to 

several nAChR subtypes (Figure 1).10–12 For the α4β2 subtype three key binding interactions 

were identified:  a cation-π interaction to W154 in loop B (TrpB), a hydrogen bond to the 

backbone carbonyl of TrpB, and a hydrogen bond to L119 in Loop E (LeuE) of the 
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complementary subunit. It has been shown that the cation-π interaction is sometimes formed 

to a different aromatic residue of the five in the binding pocket; such is the case for 

acetylcholine and epibatidine in the α7 receptor, where this interaction is to TyrA instead of 

the more common TrpB.13 Not all agonists make both hydrogen bonds. For example, as would 

be expected for a quaternary ammonium ion, acetylcholine does not make the hydrogen bond 

to the backbone carbonyl of TrpB. 

 

Figure 2.1 | Agonist binding site at the α4β2 nAChR. (A) Side view of the crystal structure of 

human α4β2 receptor nAChR (PDB: 5KXI), α4 subunit in teal, β2 subunit in grey. The agonist binding 

site at the α4/β2-interface is indicated with a square. (B) Closer look at the binding pocket. Crystal 

structure shown here is AChBP with cytisine bound (PDB: 4BQT). Functionally relevant residues 

probed in this study are highlighted: TrpB (purple), LeuE (green) (Ile in AChBP), TyrC2 (blue). (C) 

Schematic view of ligand-binding interactions of cytisine; cation-π interactions in purple and blue, 

hydrogen bonds in green and red. 
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In addition to these structure-function studies, drug discovery efforts targeting 

nAChRs have produced many compounds with differential efficacy. The partial agonist (-)-

cytisine, marketed as Tabex®, has been available in Eastern Europe for smoking cessation for 

many years.14–22 Various cytisine derivatives have been developed, including functionalization 

at the piperidine ring,23–28 and at the pyridone ring.29–33 In addition, cytisine played a role in the 

development of varenicline, marketed as Chantix® for smoking cessation.34 Cytisine also 

shows a novel subtype selectivity, in that it is a partial agonist for the A3B2 nAChR, but does 

not activate A2B3, where it is effectively a competitive antagonist. Interestingly, the three 

binding interactions exhibit distinct binding strengths for cytisine in the two stoichiometries 

of α4β2.35 The cation-π interaction to TrpB is comparable in both A2B3 and A3B2, but the 

hydrogen bonds appear to have differential strengths; in A2B3 the hydrogen bond to LeuE is 

stronger, whereas in A3B2 the hydrogen bond to the backbone carbonyl of TrpB is more 

pronounced. More recent studies suggest that in A3B2 cytisine not only binds at the canonical 

binding site at the α+/β- interface, but also at the α/α-interface.36  

Several variants on the cytisine structure did not maintain the ability to activate 

nAChRs. Functionalization at C(10) alone has not yet been studied extensively, but is of 

interest as substituents at this site are positioned to interact with the complementary subunit 

in the binding pocket; this region of the binding pocket has been proposed to be most effective 

in creating subtype selectivity. Recent advances in synthetic strategies have made several C(10)-

modified cytisine derivatives readily available,37,38 including some with enhanced selectivity for 

α4β2 over α3β4 and α7.32,33,39 More recently, direct C-H functionalization of cytisine itself has 

increased both the accessibility and range of C(10)-variants that are available, and these can 

now be synthesized (for the first time) in enantiomerically pure form.39 
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In the present study, we set out to determine how C(10)-modification of cytisine, as 

well as a series of C(9), C(10)-disubstituted variants, impact the key binding interactions 

between cytisine and the binding site of α4β2 nAChR. To achieve this goal, we used two-

electrode voltage-clamp electrophysiology and non-canonical amino acid mutagenesis to 

probe the agonist binding interactions of a novel series of cytisine derivatives. In contrast to 

the well-studied agonists nicotine and acetylcholine, cytisine and the C(10)-derivatives make a 

second cation-π interaction to TyrC2. Double-mutant cycle analyses revealed that this cation-

π interaction to TyrC2 is the binding parameter most strongly impacted by pyridone ring-

substitution, with the hydrogen bond to LeuE in the complementary subunit (and associated 

with the pyridone C=O as the H-bond acceptor) being second in impact. Interestingly, 

pyridone substitution generally enhances the TyrC2 cation-π interaction but diminishes the 

LeuE hydrogen bond. 

2.3 Results and discussion 

2.3.1 Cytisine and its C(10) derivatives all make a dual cation-π interaction in nAChR α4β2 

Previous studies have shown that three interactions dictate the binding of agonists 

such as acetylcholine and nicotine to the α4β2 receptor: a cation-π interaction with TrpB, a 

hydrogen bond to the backbone carbonyl of TrpB, and a hydrogen bond to backbone NH of 

LeuE. More recently, our group has shown that, in addition to the cation-π interaction with 

TrpB, secondary ammonium agonists, such as metanicotine, TC299423, varenicline, and 

nornicotine make a second cation-π interaction at TyrC2 in α4β2 (Figure 2.1).40 The common 

structural feature that distinguishes these agonists from acetylcholine and nicotine (pKa 7.9) 

is a protonated secondary amine. Cytisine also contains a protonated secondary amine (pKa 

7.8),21 and we therefore hypothesized that this secondary cation-π interaction could be similarly 

relevant for cytisine binding to α4β2. 
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 To test for a cation-π interaction at TyrC2, we conducted nonsense-suppression-based 

fluorination studies. In these experiments, the codon for Y202 was mutated to a TAG stop 

codon. In vitro transcribed mutant mRNA was injected into Xenopus laevis oocytes alongside 

bioorthogonal tRNACUA that has been chemically coupled to a non-canonical amino acid. To 

probe for the cation-π interaction, Y202 was replaced by a series of residues with electron 

withdrawing groups on the aromatic side chain to weaken the interaction. Historically, a series 

of fluorinated phenylalanines (FnPhe) have been used to probe Tyr residues, as directly 

fluorinating tyrosine causes the phenol group to deprotonate at physiological pH. Electrostatic 

potential calculations show that as n increases to 3 (F3Phe), the negative electrostatic 

component of the aromatic ring has been completely removed, greatly weakening a cation-π 

interaction. If a cation-π interaction is functionally relevant for binding, weakening the 

interaction is accompanied by a right-shifted EC50. Concentration-response curves were 

determined using two-electrode voltage clamp electrophysiology. So-called fluorination plots 

show the relationship of EC50 to the calculated gas-phase cation-π interaction strength. 

Typically, when a cation-π interaction is present, a linear correlation is observed. 

Substituting TyrC2 in A3B2 for fluorinated phenylalanines (F2-Phe, F3-Phe) produced 

substantial EC50 shifts for cytisine as compared to Phe, but the observed trend was not so 

linear as we expected (Figure 2.2, Table 2.1). Mutating Tyr (wild type) to Phe gives a 5.1 fold 

loss of function, larger than usual, suggesting that the C(4) hydroxyl might be important. The 

fold shift for F1-Phe is smaller than expected (3.2 fold), which could be explained by the 

fluorine rescuing the need for steric bulk at the 4-position that is lacking at Phe. Lack of steric 

bulk at the 4-position in F2-Phe yields a larger loss of function than expected (106 fold) based 

on electrostatics alone. To investigate whether the C(4) hydroxyl of TyrC2 forms a hydrogen 

bond, we also tested OMe-Tyr and Me-Phe. Both mutants have EC50 values closer to wild 
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type than Phe, with respective fold shifts of 3.5 and 2.8, suggesting that steric effects at the 

C(4) position play a role. To further confirm the idea of a cation-π interaction, we tested Br-

Phe and CN-Phe (Figure 2.2, Table 2.1). These residues are isosteric, but CN-Phe is much 

more deactivating than Br-Phe. Their respective fold shifts in EC50, 26 and 2.3, support the 

argument for a cation-π interaction. 

 

Figure 2.2 | Fluorination plot for cytisine at TyrC2 in the Α3B2 stoichiometry. (A) Fluorination 

plot showing Fn-Phe series in blue (R2=0.80), Fn-Ome-Tyr series in red (R2=0.92), and CN-Phe and 

Br-Phe in green. The x-axis is the calculated binding energy between Na+ and each side chain in the 

gas phase.41 The y-axis is the log fold shift in EC50. (B) Fluorinated amino acids used in this experiment. 

R= H unless explicitly stated. 

 

Table 2.1 | Cytisine EC50 values for non-canonical amino acids at TyrC2 in A3B2. 

Residue EC50 (μM) nH   Fold shift N |Imax|(μA) 

Tyr 0.0013 ± 0.00002 1.9 ± 0.05 1.0 12 0.22-26.8 

Phe 0.0066 ± 0.00014 1.4 ± 0.04 5.1 13 0.064-21.7 

4-F1-Phe 0.0042 ± 0.00015 1.6 ± 0.08 3.2 13 0.34-20.0 

3,5-F2-Phe 0.138 ± 0.014 1.2 ± 0.04 106 14 0.29-9.5 

3,4,5-F3-Phe 0.160 ± 0.0063 1.1 ± 0.05 123 13 0.44-8.0 

4-Br-Phe 0.0031 ± 0.00007 1.7 ± 0.06 2.3 14 0.09-8.3 
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4-CN-Phe 0.034 ± 0.0009 1.3 ± 0.04 26 16 0.14-13.8 

4-Me-Phe 0.0037 ± 0.0002 1.6 ± 0.10 2.8 14 0.08-15.0 

4-OMe-Tyr 0.0045 ± 0.0001 1.4 ± 0.04 3.5 15 0.60-27.0 

3-F1-4-OMe-Tyr 0.077 ± 0.002 1.3 ± 0.04 59 16 2.01-8.9 

3,5-F2-4-OMe-Tyr 1.11 ± 0.048 0.95 ± 0.04 852 11 0.16-3.7 

2,3,5,6-F4-4-OMe-
Tyr 

41.8 ± 2.7 1.1 ± 0.07 32154 9 0.03-0.20 

 

In an effort to obtain a more detailed fluorination plot for cytisine, we tested a 

fluorinated 4-OMe-Tyr series (Fn-4-OMe-Tyr). This series shows that having a constant 

substituent at C(4) yields a clear linear trend, further corroborating the cation-π interaction 

(Figure 2.2, Table 2.1). To confirm that this interaction is present in both α4β2 

stoichiometries, TyrC2 in A2B3 was also substituted with the fluorinated phenylalanine series 

(Phe, F1Phe, F2-Phe, F3-Phe). The fluorination plot for A2B3 resembled that observed for 

A3B2 (Figure 2.3, Table 2.2). Thus, cytisine continues the trend that agonists containing a 

protonated secondary amine make dual cation-π interactions. 
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Figure 2.3 | Fluorination plot for cytisine at TyrC2 in the A2B3 stoichiometry. (A) Fluorination 

plot showing Fn-Phe series in blue (R2=0.77). The x-axis is the calculated binding energy between a 

sodium ion and each side chain in the gas phase.41 The y-axis is the log fold shift in EC50. 

 

Table 2.2 | Cytisine EC50 values for non-canonical amino acids at TyrC2 in A2B3. 

Residue EC50 (μM) nH   Fold shift 

to WT 

Fold shift 

to Phe 

N |Imax|(μA) 

Tyr 0.0056 ± 0.0001 1.4 ± 0.04 1.0 

 

13 0.11-1.90 

Phe 0.012 ± 0.0003 1.4 ± 0.05 2.1 1.0 18 0.054-0.84 

4-F1-Phe 0.014 ± 0.0005 1.4 ± 0.07 2.5 1.2 16 0.022-0.54 

3,5-F2-Phe 0.337 ± 0.023 1.3 ± 0.10 60 28 8 0.009-0.10 

3,4,5-F3-

Phe 

0.202 ± 0.009 1.3 ± 0.07 36 17 13 0.034-0.30 

 

All substituted cytisines show a substantial loss of function for F3-Phe relative to Phe 

at TyrC2 (Table 2.11). This confirms that all the compounds studied here make a dual cation-

π interaction in the α4β2 nAChR.  

2.3.2 Impact of cytisine C(10)-modification on EC50 and efficacy 

Identifying the second cation-π interaction to TyrC2 expanded the binding model for 

cytisine, and consequently added to the list of agonists exhibiting this new binding pattern. 

Previous work has shown that there is variation in the standard binding model, including the 

lack of a backbone hydrogen bond to TrpB for acetylcholine, and the absence of a functionally 

important LeuE hydrogen bond for varenicline.35 We hypothesized that making subtle, 

systematic changes to the cytisine structure would allow us to manipulate the individual 

binding interactions more precisely than simply comparing more structurally diverse agonists. 

The C(9) and C(10) positions are shown in Figure 2.4B, and C(10)-substitution would more 

directly impact on the electronic properties of the pyridone carbonyl and the resulting LeuE 

interaction. Based on structural studies of the Acetylcholine binding protein (AChBP) 
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functionalization at C(10) is expected to interact with the complementary subunit in the 

binding pocket and could provide relevant information on subtype selectivity. Indeed, in 

binding affinity studies some of these compounds have enhanced selectivity for α4β2 over 

α3β4 and α7.39 We therefore selected a series of C(10)-modified cytisine derivatives to test our 

hypothesis. As described in Figure 2.4, we will refer to monosubstituted cytisine derivatives 

by the new substituent, which is always at C(10). Disubstituted compounds contain a Br at 

C(9) along with a C(10) substituent. 
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Figure 2.4 | Dose-response curves of cytisine derivatives in the two stoichiometries of α4β2. 

(A) Dose-response curves of cytisine derivatives in A3B2. (B) Dose-response curves of cytisine 

derivatives in A2B3. Inset in B shows the structure of cytisine with C(9) and C(10) highlighted. All 

single substituents correspond to R1 at the C(10)-position, for which R2=H. C(9) and C(10) 

disubstituted variants have R2 = Br. Note that the dose-response curve for 11 (Br/NHMe) in A3B2 is 

presented here with a monophasic fit, but values in Table 2 reflect EC50 and Hill coefficients obtained 

through a biphasic fit. 

 

Table 2.3 |EC50 values for cytisine derivatives at WT A3B2.  

Ligand EC50 (nM) nH Fold shift N Efficacy |Imax|(μA) 

1 Cytisine 1.3 ± 0.019 1.9 ± 0.05 1.0 12 0.73 0.22-26.8 

2 F 1.5 ± 0.07 1.9 ± 0.05 1.2 13 0.62 1.47-35.1 

3 Me 2.5 ± 0.16 1.8 ± 0.04 1.9 13 0.67 0.37-47.2 

4 OMe 22 ± 1.3 1.4 ± 0.04 17 13 0.84 0.45-31.6 

5 CF3 22 ± 0.08 1.1 ± 0.03 17 13 0.71 1.46-58.9 

10 NHMe 25 ± 67 1.5 ± 0.18 19 10 0.74 6.61-51.9 
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  530 ± 160 1.3 ± 0.40     

11 Br/ NHMe 60 ± 42 1.3 ± 0.16 46 12 0.84 0.89-30.4 

  3296 ± 0.04 3.0 ± 0.10     

6 Et 3.3 ± 0.06 1.7 ± 0.04 2.5 16 0.51 1.08-35.7 

7 Br/ Et 0.49 ± 0.1 2.2 ± 0.10 0.4 8 0.46 0.76-6.75 

8 NH2 8.6 ± 0.2 1.4 ± 0.04 6.6 9 0.28 0.52-37.3 

9 Br/ NH2 0.39 ± 0.01 2.1 ± 0.12 0.3 14 0.25 0.68-22.9 

 

Table 2.4 | EC50 values for cytisine derivatives at WT A2B3. 

Ligand EC50 (nM) nH Fold shift N Efficacy |Imax| (μA) 

1 Cytisine 5.6 ± 0.12 1.4 ± 0.04 1.0 13 0.05 0.1 – 2.1  

2 F 7.1 ± 0.14 1.4 ± 0.03 1.3 14 0.10 0.4 – 16.4 

3 Me 13 ± 0.23 1.4 ± 0.03 2.3 12 0.16 0.5 – 8.7 

4 OMe 76 ± 1.8 1.4 ± 0.04 14 13 0.08 0.3 – 1.0 

5 CF3 102 ± 2.6 1.3 ± 0.04 18 14 0.06 0.9 – 5.1 

10 NHMe 260 ± 4.2 1.1 ± 0.02 44 12 0.19 1.1 – 4.5 

11 Br/ NHMe 225 ± 6.0 1.2 ± 0.03 37 13 0.29 0.35 - 2.2 

6 Et 24 ± 0.50 1.2 ± 0.03 4.3 16 0.16 0.34 -3.9 

7 Br/ Et 1.2 ± 0.021 2.3 ± 0.08 0.21 14 0.33 0.86 – 8.6 

8 NH2 30 ± 0.77 1.2 ± 0.03 5.4 16 0.18 0.40 - 3.7 

9 Br/ NH2 1.3 ± 0.022 1.9 ± 0.05 0.23 23 0.29 0.83 – 5.4 

 

 Figure 2.4 presents the concentration-response curves of all derivatives. Agonist 

activity was determined in both (A2B3 and A3B2) stoichiometries of α4β2 and in α7. The 

potency for α7 was much lower (>100 μM, Figure 2.5, Table 2.5) than for α4β2 (<1 μM), so 

further experiments were focused on the two stoichiometries of α4β2 only. Various 

substitutions were included in this series, including groups with differing steric and electronic 

influences. We hypothesized that a C(10) electron withdrawing or electron donating group 

would modulate the hydrogen bond acceptor capacity of the pyridone carbonyl. These effects 

could potentially give opposing EC50 fold shifts. However, all cytisine derivatives with just a 
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single substitution (at C(10)) demonstrated decreased potency for both α4β2 subtypes (Figure 

2.4, Table 2.3, Table 2.4). The smallest shifts in EC50 relative to cytisine were observed for 2 

(R1=F) and 3 (R1=Me), 1.2 and 2.0-fold in A3B2 respectively (Figure 2.4A). The largest shifts 

in EC50 were observed for 4 (R1=OMe) and 10 (R1=NHMe), 16 and 42-fold in A3B2, 

respectively. Similar trends were seen in the A2B3 stoichiometry (Figure 2.4B). Efficacy of 

all derivatives was higher than cytisine in A2B3, but comparable to cytisine in A3B2. Recall 

that the parent cytisine is effectively inactive at A2B3, and so it appears that any C(10) 

substituent renders cytisine viable in this less  active stoichiometry. 

 

Figure 2.5 | Dose-response curves of cytisine derivatives to the α7 nAChR. The cytisine structure 

indicated the position of the substituent at C(10). The EC50 of 10 (R1=NHMe) was too far right-shifted 

to record a full dose-response curve. 

 

Table 2.5 | EC50 values for cytisine derivatives at WT α7. ND: not determined. 

Ligand EC50 (μM) nH   Fold shift N Efficacy |Imax|(μA) 

1 Cytisine 40.2 ± 1.3 1.5 ± 0.07 1.0 11 ND 0.86-14.0 

2 F 111 ± 1.9 3.1 ± 0.2 2.8 6 ND 0.05-5.6 
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5 CF3 105 ± 4.3 2.4 ± 0.2 2.6 7 0.16 0.22-4.1 

4 OMe 327 ± 7.7 2.8 ± 0.2 8.1 8 0.37 0.37-17.5 

3 Me 388 ± 14 2.7 ± 0.2 9.7 7 0.35 0.42-11.4 

 

Given the observed EC50 shifts, we speculated that the decreased potency is actually 

correlated with increasing size of the substituent, rather than with electronic contribution of 

this group. To probe this, we tested a series of four additional derivatives with increasing steric 

bulk, but without substantially different electrostatic effects: 6 (R1=Et), 12 (R1=C(Me)CH2), 

13 (R1=CH(Me)2), 14 (R1=C(Me)3). EC50 values for these compounds were increasingly right 

shifted with increasing size (Figure 2.6, Table 2.6). 

 

Figure 2.6 | Investigation of steric effects on C(10)-substitution in A3B2. (A) Dose-response 

curves for C(10)-derivatives with increased steric bulk. Cytisine derivatives used in this series; 3 (Me), 

6 (Et), 12 (C(Me)=CH2), 13 (CH(Me)2), 14 (C(Me)3). 
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Table 2.6 | EC50 values for cytisine derivatives, sterics series, at WT A3B2. Volume of ligand 

was calculated after equilibrium geometry optimization using HF-6-31** in vacuum. 

Ligand EC50 (nM) nH 

 

Fold 
shift 

N Effi-
acy 

|Imax| 
(μA) 

Volume 
(Å3) 

1 cytisine 1.3 ± 0.019 1.9 ± 0.05 1.0 12 0.73 0.22-27 198.21 

3 Me 2.5 ± 0.16 1.8 ± 0.04 1.9 13 0.67 0.37-47 216.33 

6 Et 3.3 ± 0.059 1.7 ± 0.04 2.5 16 0.51 1.1-36 234.29 

12 C(Me)=CH2 56 ± 1.7 1.5 ± 0.06 44 12 0.14 0.28-5.8 248.52 

13 CH(Me)2 53 ± 1.5 1.4 ± 0.03 42 17 0.06 0.055-4.0 252.31 

14 C(Me)3 45 ± 0.51 2.0 ± 0.04 35 10 0.67 1.0-24 269.51 

 

Addition of a bromine at the C(9) position (in addition to a C(10)-residue) results in a 

left-shifted EC50 when the C(10)-substituent is an NH2 or Et group (Figure 2.4). Introducing 

a bromine at C(9) did not produce the same increase in potency when the C(10)-substituent is 

NHMe (10). In an attempt to explain this difference in activity we performed HF 6-31G** 

calculations on both structures. Ligand 7 (Br/Et) and 11 (Br/NHMe) are isosteric, and the 

electrostatic potentials of the carbonyl and amine are similar as well (Table 2.7). 

Conformational analysis indicates that for 10 (NHMe) and 11 (Br/NHMe) the C(10)-

substituent stays in the plane of the pyridone ring in the lowest energy conformer, presumably 

to facilitate conjugation of the nitrogen lone pair with the ring. In contrast, for both 6 (Et) and 

7 (Br/Et) the C(10)-substituent is positioned close to perpendicular to the ring (Figure 2.7) 

in what is presumably a steric effect. We speculate that having the C(10)-substituent 

perpendicular to the ring contributes to the gain in potency that is seen for 7 (Br/Et) and 9 

(Br/NH2) relative to 6 (Et)  and 8 (NH2). Since the C(10) substituent in 11 (Br/NHMe) is less 

likely to adopt this conformation, this could prevent favorable repositioning of the ligand 

resulting in a similar EC50 as NHMe-cytisine. LogP and LogD do not yield any correlation 

with the EC50 fold shifts (Figure 2.8). 
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Table 2.7 | Calculated electrostatic potentials of carbonyl and amine in cytisine derivatives, as 

well as the total volume of the ligand. 

Ligand 
 

Carbonyl (kcal/mol) Amine (kcal/mol) Volume (Å3) 

5 CF3 
 

8.35 170.61 229.67 

2 F 
 

4.59 169.97 202.59 

1 cytisine 
 

2.85 167.89 198.21 

3 Me 
 

0.94 166.11 216.33 

6 Et 
 

0.44 165.84 234.29 

12 C(Me)=CH2  0.35 165.97 248.52 

13 CH(Me)2 
 

0.11 165.61 252.31 

4 OMe 
 

0.03 165.60 224.91 

14 C(Me)3 
 

0.03 165.21 269.51 

7 Br/ Et 
 

-2.11 168.01 252.59 

8 NH2 
 

-3.63 164.70 208.15 

9 Br/ NH2 
 

-5.85 166.89 226.00 

10 NHMe 

 
-5.86 164.14 228.16 

11 Br/NHMe 

 
-8.12 165.54 246.29 

 

 

Figure 2.7 | Conformational analysis of cytisine derivatives with NHMe and Et-substituents 

at C(10). Lowest energy conformers of 6 (R1=Et) and 7 (Br/Et) have the C(10)-substituent 

perpendicular to the pyridone ring, while 10 (R1=NHMe) and 11 (Br/NHMe) have the substituent in 

the plane of the pyridone ring. 
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Figure 2.8 | EC50 fold shifts of C(10) derivatives plotted as a function of logD7.5. (A) Values for 

A3B2 stoichiometry and (B) values for A2B3 stoichiometry. 

 

2.3.3 Differential impacts of cytisine C(10)-modification on individual binding interactions 

As a global measure of receptor activation, EC50 can be influenced by a number of 

receptor-independent physico-chemical properties, such as agonist solubility and 

hydrophobicity. Subtype selectivity, however, is more likely to arise via ligand interactions with 

side-chain or backbone moieties, and it is those we wish to evaluate. To probe these 

interactions, we employed strategies based on non-canonical amino acid incorporation 

(Figure 2.9) as described previously.35 To probe the TrpB cation-π interaction, we replaced 

W154 by F4-Trp.42 To test hydrogen bonding to the backbone carbonyl of this residue, we 

substitute the i + 1 residue, T155, with its α-hydroxy analogue, Tah (threonine, α-hydroxy).11,43 

To test the hydrogen bond to LeuE in the β2 subunit, L119 is replaced by Lah (Leucine, α-

hydroxy).10 To probe the TyrC2 cation-π interaction, we replaced Y202 with F3-Phe. To 

quantify the functional effect of a mutant, we calculate the EC50 fold shift, which is EC50 for 

the mutant receptor divided by wild type recovery response (i.e., producing wild type receptor 
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by incorporating the wild type residue by nonsense suppression). We typically consider an 

EC50 fold shift larger than 2 as meaningful. All EC50 fold shifts observed for the four binding 

interactions are larger than 2, suggesting that all derivatives make all four binding interactions. 

 

Figure 2.9 | Strategy to selectively probe electrostatic interactions contributing to binding of 

the ligand. (A) To probe backbone hydrogen bonds, α-hydroxy acids are incorporated resulting in the 

loss of hydrogen bond donor (backbone NH) and weakened hydrogen bond acceptor (backbone 

carbonyl). (B) To probe cation-π interactions Trp and Tyr are substituted by a series of fluorinated 

derivatives. (C) Non-canonical amino acids used in this study; α-hydroxy acid of Thr (Tah), α-hydroxy 

acid of Leu (Lah), F4-Trp, F3-Phe. 

 

 To study how cytisine modification has impacted the binding interactions relative to 

cytisine we have employed double-mutant cycle analyses. Typically, mutant cycle analyses have 

probed coupling between two amino acids in a protein,44 but we have found the methodology 
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useful when one mutation is to the protein and the other is to the ligand.10,40 Here, we 

performed a similar analysis to determine if the four known binding interactions are more or 

less important for the binding of the C(10) and C(9), C(10)-substituted cytisines and to 

quantify this effect in terms of free energy. In this mutant cycle analysis, the first mutant is the 

incorporation of a non-canonical amino acid, either F4-Trp, Tah, Lah or F3-Phe, probing for 

one of the four key binding interactions. The second ‘mutant’ is a cytisine analogue, one of 

the C(10)-modified cytisines; a representative analysis is based on ligand (5) presented in 

Figure 2.10. The extent to which the two perturbations are additive or nonadditive is 

expressed by the coupling constant Ω, which can be converted into coupling energy using the 

equation ∆∆G = RTln(Ω). Functional coupling between the two perturbations is observed 

when ∆∆G is non-zero. In the present system a positive ∆∆G means that the protein mutation 

causes a larger loss of function for the new agonist than is observed for cytisine (or the 

increased potency of the new agonist is smaller than cytisine). This finding suggests the binding 

interaction being probed is stronger/more important for binding of the new agonist than for 

the binding of cytisine. When the ∆∆G value is negative, as in the case of the interaction 

illustrated in Figure 2.10, the protein mutation causes a smaller loss of function for the new 

agonist than for cytisine (or the gain of function by the new agonist is larger). This observation 

suggests the probed interaction is weaker/less important for the new agonist. We generally 

consider a coupling of at least 2-fold to be meaningful, which corresponds to |∆∆G|> 0.4 

kcal/mol. 
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Figure 2.10 | Double-mutant cycle analysis. Ligand 5 (CF3) is used as an example. EC50 I reflects 

the response of cytisine (1) with the wild-type amino acid. EC50 II and EC50 III both reflect one 

perturbation; cytisine derivative 5 (R1=CF3) with wild-type residue and cytisine with the non-canonical 

amino acid (Lah) respectively. EC50 IV corresponds to the “double mutant” where the response is 

measured for the (5) with the non-canonical amino acid present. The impact of substitution in terms 

of energy is calculated using the equation ΔΔG = RTln(Ω).  

 

Before considering specific compounds, it is useful to examine general trends across 

the series. Even with simple substituents, many features of a molecule can change. By 

inspecting the total series, one can discern more general features. This is aided by the 

presentation in Figure 2.11. The ΔΔG values observed here range from -1.62 to 1.27 kcal/mol. 

Recall that we are looking at the differences in contributions of individual binding interactions 



 48 

to the binding of C(10) and C(9)C(10)-substituted cytisine variants relative to cytisine, so there 

are some quite meaningful variations. To be clear, all cytisine derivatives still engage in the 

specific interaction being probed, but our focus is on how the magnitudes of those interactions 

differ from the same interaction with cytisine itself. 

 

Figure 2.11 | The energetic contributions of cytisine substitution on the individual binding 

interactions expressed as ΔΔG values. Values are calculated using the equations in Figure 5. A 

positive ∆∆G suggests the protein mutation causes a larger loss of function for the new agonist than 
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cytisine. This suggests the binding interaction being probed is stronger/more important for binding of 

the new agonist than for the binding of cytisine to the receptor. When the ∆∆G value is negative, the 

protein mutation causes a smaller loss of function for the new agonist than cytisine. This suggests the 

probed interaction is weaker/less important for the new agonist. We generally consider a coupling of 

at least 2-fold to be meaningful, which corresponds to |∆∆G|> 0.4 kcal/mol. 

 

Similar trends appear for the two α4β2 stoichiometries, although the effects are 

generally stronger for the A3B2 arrangement. This is seen by the larger fraction of coupling 

energies that rise of above the |∆∆G|>0.4 kcal/mol threshold, color-coded in blue. The 

cation-π interaction to TyrC2 generally appears to be of greater importance in the C(10)-

derivatives than for cytisine, in that meaningful, positive coupling energies are observed in 

both stoichiometries for almost all agonist-receptor pairings. The C(10)-fluoro and methyl 

ligands 2 and 3 are exceptions here. The cation-π interaction to TrpB is generally less perturbed 

by substitution, especially, again, in the A2B3 stoichiometry, which is readily seen via the color 

coding in Figure 2.11.  

Considering the two hydrogen bonding interactions probed, the hydrogen bond to 

LeuE (which involves the pyridone C=O as an acceptor) is generally weakened by C(10) 

substitution, and again the effect is largest in the A3B2 stoichiometry; this is most pronounced 

in the C(9) and C(10)-disubstituted ligands 7, 9 and 11. As with the cation-π interaction to 

TrpB, the hydrogen bond to the TrpB carbonyl is less influenced by pyridone ring-

substitution. 

These global patterns suggest a model for the overall effect that C(10) substitution has 

on ligand binding. Interactions with TrpB, both the cation-π interaction and the backbone 

hydrogen bond, are not strongly perturbed. This is consistent with the essential role that this 

protein residue plays in receptor function. Interestingly, the hydrogen bond to LeuE is more 

frequently weakened, while the cation-π interaction to TyrC2 is strengthened. This suggests 
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that a C(10) substituent leads to repositioning of the ligand (relative to the key protein 

residues), away from LeuE (weakening the H-bond in this region) and toward TyrC2 

(strengthening the cation-π interaction), an adjustment that that is depicted in Figure 2.12. 

 

Figure 2.12 | Proposed model based on results in this study. Repositioning of the ligand in a way 

such that it is closer to TyrC2 and further away from LeuE supports the general trends observed in 

this study. The R1 and R2 moieties are at positions C(10) and C(9), respectively. Generally speaking, 

the cation-π interaction with TyrC2 was enhanced, the hydrogen bond with LeuE was diminished, and 

the two interactions to TrpB appear to be less impacted. 

 

The largest right shifted EC50 values for the wild type receptor were observed for 10 

(NHMe) and 11 (Br/NHMe) (Figure 2.4). For 10 (NHMe) the cation-π to TrpB was weakened 

and for 11 (Br/NHMe) the hydrogen bond to LeuE was weakened relative to cytisine, but the 

cation-π to TyrC2 was stronger for both (Figure 2.11). Surprising are the effects seen for 6 

(Et) and 7 (Br/Et) (Figure 2.11). Ligand 6 (Et) shows decreased potency compared to cytisine, 

while 7 (Br/Et) shows increased potency. However, the ΔΔG values of three individual 

binding interactions are positive for 6 (Et), while these are negative for 7 (Br/Et), suggesting 

stronger interactions in 6 (Et) than 7 (Br/Et) in both stoichiometries. Based on wild-type EC50 

fold shift alone, one might have expected the opposite.  

A similar trend is seen for 8 (NH2) and 9 (Br/NH2); ΔΔG values for ligand 9 are 

consistently more negative. It is unclear what causes this effect. It is possible that other, yet 
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undiscovered, electrostatic interactions are present in the binding pocket, or that new 

interactions are present for 9 (Br/NH2) and 7 (Br/Et) only. Also, contributions of 

hydrophobic forces (likely to be significant for a Br residue) play a role in agonist binding but 

are not included in this analysis.  

Phe EC50 values sometimes deviate substantially from the wild-type response (Tyr) 

(Table 2.11 and 2.15). Some Phe EC50 values are much lower (5 (CF3): 0.1-fold), some are 

higher (8 (NH2) 3-fold). This suggests that the hydroxyl of TyrC2 affects binding more for 

these two compounds than for cytisine. We note again that such a prominent role for the OH 

of TyrC2 has not typically been observed in other studies. 
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Table 2.8 | EC50 and nH values for nonsense-suppression experiments at W154 in A3B2. 

Ligand Residue EC50 (nM) nH   Fold shift N |Imax| (μA) 

1 Cytisine Trp 1.236 ± 0.024 2.2 ± 0.08 

 

21 0.082 – 4.0 

  F4-Trp 13.81 ± 0.81 1.1 ± 0.07 116 10 0.075 – 0.15 

10 NHMe Trp 41 ± 55 1.4 ± 0.19  12 1.5 – 16 

   1282 ± 121 1.7 ± 0.58    

  F4-Trp 1047 ± 51 1.1 ± 0.06 26 14 0.080 – 0.70 

5 CF3 Trp 19.25 ± 0.72 1.4 ± 0.07  10 0.055 – 6.05 

  F4-Trp 782.7 ± 82 0.91 ± 0.08 41 10 0.087 – 0.54 

4 OMe Trp 15.19 ± 0.39 1.9 ± 0.08  17 0.18 – 8.8 

  F4-Trp 762.9 ± 61 0.99 ± 0.07 51 10 0.021 – 0.23 

2 F Trp 1.608 ± 0.039 2.1 ± 0.10  11 0.22 – 7.3 

  F4-Trp 151.8 ± 7.9 1.1 ± 0.05 96 11 0.069 – 0.64 

3 Me Trp 3.298 ± 0.086 1.8 ± 0.07  17 0.056 – 6.6 

  F4-Trp 138.1 ± 8.1 1.1 ± 0.07 46 10 0.087 – 0.56 

6 Et Trp 2.684 ± 0.078 1.7 ± 0.08  12 0.051 – 15 

  F4-Trp 458.2 ± 12 1.0 ± 0.03 170 11 0.063 – 0.58 

8 NH2 Trp 8.455 ± 0.46 1.5 ± 0.10  13 0.16 – 15 

  F4-Trp 546.6 ± 72 1.0 ± 0.13 65 9 0.033 – 0.78 

14 C(Me)3 Trp 44.12 ± 1.1 1.7 ± 0.06  15 1.9 – 29 

  F4-Trp 2681 ± 120 1.3 ± 0.07 61 12 0.072 – 0.75 

9 Br/NH2 Trp 0.6481 ± 0.042 1.9 ± 0.21  11 0.78 – 14 

  F4-Trp 21.12 ± 0.98 1.0 ± 0.05 33 11 0.063 – 0.97 

7 Br/Et Trp 0.4148 ± 0.023 2.4 ± 0.28  9 1.3 – 17 

  F4-Trp 14.25 ± 0.55 1.1 ± 0.05 34 12 0.077 – 1.9 

11 Br/NHMe Trp 31.19 ± 24 1.4 ± 0.12  12 0.89 – 25 

   2558 ± 138 2.2 ± 1.41    

  F4-Trp 1891 ± 94 1.2 ± 0.07 61 13 0.074 – 0.22 
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Table 2.9 | EC50 and nH values for nonsense-suppression experiments at T155 in A3B2. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Thr 1.7 ± 0.030 1.7 ± 0.05 

 

12 0.26 - 12 

  Tah 46 ± 1.1 1.2 ± 0.03 27 12 0.30 - 13 

10 NHMe Thr 40 ± 78 1.7 ± 0.44  14 0.26 – 17 

   772 ± 291 0.84 ± 0.15    

  Tah 998 ± 33 1.4 ± 0.06 25 11 0.28 - 14 

5 CF3 Thr 23 ± 0.75 1.3 ± 0.05  10 0.15 – 16 

  Tah 1436 ± 39 1.4 ± 0.04 62 12 0.059 – 8.3 

4 OMe Thr 20 ± 0.35 1.5 ± 0.04  10 0.59 – 9.6 

  Tah 434 ± 15 1.3 ± 0.05 22 10 0.015 – 9.3 

2 F Thr 1.8 ± 0.029 1.5 ± 0.03  12 0.72 – 7.0 

  Tah 60 ± 1.7 1.2 ± 0.03 33 12 0.28 - 13 

3 Me Thr 3.4 ± 0.088 1.5 ± 0.06  13 0.098 – 8.2 

  Tah 104 ± 3.2 1.3 ± 0.05 31 14 0.042 - 14 

6 Et Thr 3.1 ± 0.10 1.4 ± 0.06  12 0.086 – 7.3 

  Tah 174 ± 4.4 1.2 ± 0.03 56 12 0.46 - 11 

8 NH2 Thr 13 ± 0.37 1.3 ± 0.04  13 0.15 – 7.6 

  Tah 223 ± 4.0 1.2 ± 0.02 17 12 2.4 - 15 

14 C(Me)3 Thr 43 ± 0.98 1.9 ± 0.07  21 0.30 – 15 

  Tah 1074 ± 14 1.4 ± 0.02 25 11 0.16 – 8.7 

9 Br/NH2 Thr 0.40 ± 0.0089 2.2 ± 0.10  13 0.031 – 6.0 

  Tah 3.7 ± 0.084 1.4 ± 0.04 9.3 13 0.45 – 17 

7 Br/Et Thr 0.50 ± 0.016 2.0 ± 0.12  12 0.30 – 7.7 

  Tah 5.6 ± 0.13 1.3 ± 0.03 11 11 1.6 – 20 

11 Br/NHMe Thr 38 ± 47 1.3 ± 0.13  20 0.13 – 34 

   3358 ± 145 1.4 ± 0.43    

  Tah 965 ± 31 1.3 ± 0.05 25 10 0.97 - 12 
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Table 2.10 | EC50 and nH values for nonsense-suppression experiments at L119 in A3B2. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Leu 1.2 ± 0.023 1.9 ± 0.06 
 

13 0.069 – 2.8 

  Lah 38 ± 0.92 1.1 ± 0.03 32 15 0.67 - 23 

10 NHMe Leu 41 ± 91 1.5 ± 0.28  11 0.064 – 1.1 

   1259 ± 152 1.1 ± 0.35    

  Lah 1334 ± 20 1.5 ± 0.03 33 13 0.13 – 5.5 

5 CF3 Leu 17 ± 0.66 1.2 ± 0.06  10 0.012 – 1.3 

  Lah 250 ± 4.6 1.1 ± 0.02 15 12 0.030 – 7.6 

4 OMe Leu 18 ± 0.34 1.6 ± 0.05  11 0.057 – 1.0 

  Lah 532 ± 13 1.2 ± 0.03 30 12 0.10 – 7.4 

2 F Leu 2.0 ± 0.029 2.0 ± 0.05  14 0.057 – 0.90 

  Lah 36 ± 0.55 1.2 ± 0.02 18 14 0.53 – 7.9 

3 Me Leu 2.8 ± 0.074 1.8 ± 0.07  11 0.11 – 1.0 

  Lah 126 ± 2.6 1.1 ± 0.02 45 11 0.050 – 2.7 

6 Et Leu 4.5 ± 0.24 1.2 ± 0.07  11 0.075 – 1.4 

  Lah 79 ± 3.1 1.2 ± 0.05 18 12 0.31 – 4.9 

8 NH2 Leu 9.5 ± 0.19 1.4 ± 0.03  15 0.48 – 16 

  Lah 233 ± 4.1 1.2 ± 0.02 25 14 0.077 – 49 

14 C(Me)3 Leu 49 ± 0.86 1.8 ± 0.05  16 0.14 – 11 

  Lah 952 ± 17 1.4 ± 0.03 19 16 0.79 - 33 

9 Br/NH2 Leu 0.41 ± 0.0068 2.2 ± 0.07  12 0.32 – 5.2 

  Lah 2.4 ± 0.043 1.6 ± 0.04 5.9 11 1.1 – 28 

7 Br/Et Leu 0.40 ± 0.020 1.4 ± 0.10  13 0.055 – 0.47 

  Lah 1.0 ± 0.047 1.6 ± 0.10 2.5 12 0.20 – 7.1 

11 Br/NHMe Leu 37 ± 48 1.4 ± 0.23  13 0.32 – 11 

   2917 ± 127 1.6 ± 0.70    

  Lah 410 ± 11 1.2 ± 0.03 11 14 10 - 46 
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Table 2.11 | EC50 and nH values for nonsense-suppression experiments at Y202 in A3B2. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Phe 6.647 ± 0.14 1.4 ± 0.04 

 

13 0.064 – 22 

  F3-Phe 160.4 ± 6.3 1.1 ± 0.05 24 13 0.44 – 8.0 

10 NHMe Phe 53 ± 71 1.3 ± 0.25  18 0.10 – 12 

   5724 ± 69 1.4 ± 0.34    

  F3-Phe 5255 ± 298 1.0 ± 0.06 99 15 0.025 – 2.9 

5 CF3 Phe 6.906 ± 0.78 0.78 ± 0.06  12 0.64 – 8.6 

  F3-Phe 456.8 ± 38 1.17 ± 0.11 66 12 0.14 – 0.83 

4 OMe Phe 27.85 ± 4.4 0.71 ± 0.10  14 0.25 – 6.3 

  F3-Phe 1481 ± 124 0.76 ± 0.05 53 16 0.17 – 0.83 

2 F Phe 10.22 ± 0.69 0.78 ± 0.04  15 0.31 – 8.9 

  F3-Phe 185.4 ± 10 0.88 ± 0.04 18 16 0.21 – 1.1 

3 Me Phe 14.12 ± 1.1 0.76 ± 0.05  14 0.16 – 7.5 

  F3-Phe 138.2 ± 8.4 1.0 ± 0.06 9.8 13 0.059 – 0.50 

6 Et Phe 2.31 ± 0.077 1.9 ± 0.11  14 0.040 – 3.3 

  F3-Phe 157 ± 6.9 1.3 ± 0.07 68 10 0.15 – 1.3 

8 NH2 Phe 35.97 ± 1.1 1.4 ± 0.05  14 0.50 – 8.5 

  F3-Phe 2174 ± 67 1.2 ± 0.04 60 11 0.088 – 5.7 

14 C(Me)3 Phe 158.7 ± 12 0.96 ± 0.07  12 0.064 – 0.67 

  F3-Phe 6032 ± 589 1.0 ± 0.09 38 9 0.017 – 0.32 

9 Br/NH2 Phe 0.6849 ± 0.018 2.5 ± 0.15  11 0.043 – 7.7 

  F3-Phe 29.96 ± 0.84 1.1 ± 0.03 44 6 0.30 – 2.4 

7 Br/Et Phe 0.4146 ± 0.020 2.6 ± 0.28  15 0.053 – 7.6 

  F3-Phe 12.59 ± 1.3 0.73 ± 0.06 30 9 0.10 – 10 

11 Br/NHMe Phe 3.0 ± 42 1.6 ± 0.24  17 0.081 – 13 

   264 ± 111 1.2 ± 0.41    

  F3-Phe 276.3 ± 52 1.0 ± 0.10 92 16 0.49 – 5.4 

   8878 ± 102 2.7 ± 1.7    
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Table 2.12 | EC50 and nH values for nonsense-suppression experiments at W154 in A2B3. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Trp 4.0 ± 0.21 1.3 ± 0.09 

 

15 0.053 – 1.1 

  F4-Trp 97 ± 3.5 0.97 ± 0.03 23 9 0.057 – 0.17 

10 NHMe Trp 150 ± 5.9 1.2 ± 0.05  13 0.16 – 4.3 

  F4-Trp 1798 ± 58 1.2 ± 0.04 12 14 0.088 – 1.1 

5 CF3 Trp 70 ± 2.2 1.2 ± 0.05  14 0.18 – 4.5 

  F4-Trp 1110 ± 38 1.3 ± 0.05 16 10 0.14 – 0.75 

4 OMe Trp 43 ± 2.2 1.5 ± 0.10  14 0.10 – 2.6 

  F4-Trp 711 ± 25 1.2 ± 0.05 17 10 0.054 – 0.41 

2 F Trp 7.7 ± 0.27 1.6 ± 0.08  14 0.13 – 2.1 

  F4-Trp 195 ± 7.9 1.1 ± 0.05 25 13 0.051 – 0.22 

3 Me Trp 6.3 ± 0.22 1.6 ± 0.08  12 0.24 – 2.1 

  F4-Trp 151 ± 6.8 1.2 ± 0.06 24 11 0.023 – 0.26 

6 Et Trp 16 ± 0.55 1.6 ± 0.08  14 0.072 – 0.79 

  F4-Trp 380 ± 32 1.1 ± 0.10 24 11 0.011 – 0.84 

8 NH2 Trp 33 ± 1.2 1.3 ± 0.06  16 0.28 - 6.2 

  F4-Trp 587 ± 20 1.0 ± 0.03 18 9 0.023 – 0.85 

14 C(Me)3 Trp 142 ± 5.9 1.4 ± 0.07  11 0.088 – 2.3 

  F4-Trp 6153 ± 553 1.2 ± 0.13 43 17 0.015 – 1.2 

9 Br/NH2 Trp 1.9 ± 0.11 1.8 ± 0.19  12 0.15 - 11 

  F4-Trp 19 ± 0.80 1.1 ± 0.05 10 12 0.14 – 1.2 

7 Br/Et Trp 0.86 ± 0.024 2.9 ± 0.20  10 0.33 – 1.4 

  F4-Trp 15.9 ± 0.74 1.1 ± 0.05 18 6 0.060 – 0.25 

11 Br/NHMe Trp 138 ± 3.9 1.2 ± 0.04  11 0.21 – 3.2 

  F4-Trp 3038 ± 194 1.2 ± 0.08 22 18 0.017 – 0.19 
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Table 2.13 | EC50 and nH values for nonsense-suppression experiments at T155 in A2B3. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Thr 7.2 ± 0.18 1.4 ± 0.04 

 

12 0.19 – 0.56 

  Tah 128 ± 2.5 1.2 ± 0.02 18 10 0.024 – 0.43 

10 NHMe Thr 175 ± 3.3 1.33 ± 0.03  13 0.048 – 0.49 

  Tah 2759 ± 52 1.4 ± 0.03 16 12 0.23 – 2.3 

5 CF3 Thr 106 ± 1.6 1.3 ± 0.02  11 0.12 – 0.48 

  Tah 3664 ± 47 1.4 ± 0.02 35 11 0.23 – 1.9 

4 OMe Thr 85 ± 1.8 1.3 ± 0.03  13 0.050 – 0.61 

  Tah 1406 ± 23 1.3 ± 0.03 17 10 0.20 – 0.7.8 

2 F Thr 5.5 ± 0.15 1.3 ± 0.04  9 0.020 – 0.43 

  Tah 171 ± 2.5 1.2 ± 0.02 31 11 0.023 – 1.8 

3 Me Thr 11 ± 0.24 1.4 ± 0.04  7 0.043 – 0.68 

  Tah 329 ± 4.1 1.3 ± 0.02 30 19 0.38 – 2.5 

6 Et Thr 15 ± 0.20 1.5 ± 0.03  15 0.031 – 0.59 

  Tah 680 ± 12 1.3 ± 0.03 45 14 0.11 – 0.94 

8 NH2 Thr 42 ± 0.55 1.2 ± 0.02  12 0.056 – 0.87 

  Tah 849 ± 11 1.2 ± 0.02 20 13 0.053 – 0.47 

14 C(Me)3 Thr 230 ± 5.4 1.3 ± 0.03  14 0.093 – 0.42 

  Tah 2035 ± 54.56 1.2 ± 0.03 8.8 15 0.052 – 1.6 

9 Br/NH2 Thr 1.4 ± 0.032 1.8 ± 0.07  14 0.099 – 1.8 

  Tah 16 ± 0.17 1.3 ± 0.02 11 15 0.12 – 1.2 

7 Br/Et Thr 0.89 ± 0.019 2.4 ± 0.11  14 0.20 – 1.6 

  Tah 18 ± 0.37 1.3 ± 0.03 20 15 0.23 – 3.3 

11 Br/NHMe Thr 187 ± 3.0 1.2 ± 0.02  13 0.22 – 0.94 

  Tah 2328 ± 37 1.3 ± 0.02 12 15 0.20 – 2.7 
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Table 2.14 | EC50 and nH values for nonsense-suppression experiments at L119 in A2B3. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Leu 4.923 ± 0.096 1.3 ± 0.03 

 

11 0.078 – 1.3 

  Lah 191.9 ± 5.1 1.0 ± 0.02 39 12 0.081 – 0.11 

10 NHMe Leu 155.6 ± 6.7 1.0 ± 0.04  7 0.21 – 1.9 

  Lah 3783 ± 76 1.4 ± 0.04 24 11 0.079 – 1.0 

5 CF3 Leu 57.05 ± 1.3 1.3 ± 0.03  14 0.16 – 3.0 

  Lah 990.4 ± 20 1.4 ± 0.03 17 12 0.59 – 3.7 

4 OMe Leu 64.82 ± 1.9 1.2 ± 0.04  10 0.043 – 0.31 

  Lah 2052 ± 30 1.2 ± 0.02 32 13 0.036 – 3.1 

2 F Leu 5.235 ± 0.13 1.5 ± 0.05  11 0.031 – 0.47 

  Lah 168 ± 3.4 1.3 ± 0.03 32 10 0.064 – 0.63 

3 Me Leu 8.688 ± 0.29 1.3 ± 0.05  11 0.11 – 2.0 

  Lah 461.8 ± 8.3 1.3 ± 0.03 53 11 0.43 – 3.5 

6 Et Leu 18.33 ± 0.40 1.4 ± 0.04  11 0.097 – 1.1 

  Lah 628 ± 13 1.3 ± 0.03 34 9 0.43 – 1.6 

8 NH2 Leu 43.03 ± 0.85 1.1 ± 0.02  15 0.3 – 2.4 

  Lah 2246 ± 39 1.2 ± 0.02 52 14 0.044 – 8.2 

14 C(Me)3 Leu 155.4 ± 3.9 1.3 ± 0.04  12 0.030 – 0.29 

  Lah 5281 ± 91 1.3 ± 0.03 34 15 0.11 – 0.95 

9 Br/NH2 Leu 1.479 ± 0.024 1.9 ± 0.05  14 0.59 – 3.1 

  Lah 31.27 ± 0.97 1.2 ± 0.04 21 15 0.24 – 20 

7 Br/Et Leu 0.8675 ± 0.018 2.0 ± 0.07  16 0.17 – 2.2 

  Lah 8.113 ± 0.22 1.4 ± 0.05 9.4 11 0.96 – 4.6 

11 Br/NHMe Leu 160.3 ± 4.6 1.3 ± 0.04  12 0.080 – 0.81 

  Lah 2975 ± 41 1.2 ± 0.02 19 15 0.12 – 2.7 
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Table 2.15 | EC50 and nH values for nonsense-suppression experiments at Y202 in A2B3. 

 Ligand Residue EC50 (nM) nH   Fold shift N |Imax| 

1 Cytisine Phe 12.01 ± 0.35 1.4 ± 0.05 

 

18 0.076 – 0.84 

  F3-Phe 201.9 ± 9.2 1.3 ± 0.07 17 13 0.034 – 0.30 

10 NHMe Phe 106.2 ± 5.7 1.3 ± 0.08  11 0.064 – 0.31 

  F3-Phe 7995 ± 606 1.1 ± 0.08 75 12 0.022 – 0193 

5 CF3 Phe 6.174 ± 0.17 1.5 ± 0.05  16 0.045 – 0.24 

  F3-Phe 718.5 ± 53 1.2 ± 0.10 116 14 0.008 – 0.040 

4 OMe Phe 41.9 ± 3.2 1.4 ± 0.14  10 0.017 – 0.086 

  F3-Phe 1375 ± 101 1.4 ± 0.13 33 11 0.010 – 0.19 

2 F Phe 7.883 ± 0.53 1.2 ± 0.09  12 0.036 – 0.16 

  F3-Phe 195.1 ± 12 1.4 ± 0.11 25 12 0.015 – 0.022 

3 Me Phe 8.589 ± 0.30 1.2 ± 0.05  12 0.036 – 0.30 

  F3-Phe 245.9 ± 28 1.0 ± 0.13 29 11 0.007 – 0.032 

6 Et Phe 7.851 ± 1.4 1.0 ± 0.14  9 0.017 – 0.072 

  F3-Phe 580.4 ± 51 1.1 ± 0.11 74 9 0.006 – 0.17 

8 NH2 Phe 85.26 ± 3.4 1.4 ± 0.07  5 0.054 – 0.136 

  F3-Phe 4039 ± 231 1.3 ± 0.10 48 10 0.010 – 0.096 

14 C(Me)3 Phe 297.6 ± 19 1.5 ± 0.14  11 0.014 – 0.13 

  F3-Phe 5008 ± 878 1.4 ± 0.33 17 6 0.005 – 0.017 

9 Br/NH2 Phe 2.09 ± 0.10 1.6 ± 0.12  10 0.064 – 1.6 

  F3-Phe 96.34 ± 6.2 1.0 ± 0.07 48 6 0.16 – 0.89 

7 Br/Et Phe 1.346 ± 0.042 2.1 ± 0.13  13 0.082 – 0.34 

  F3-Phe 25.84 ± 1.5 1.1 ± 0.07 20 13 0.025 – 0.27 

11 Br/NHMe Phe 10.29 ± 0.46 1.4 ± 0.08  10 0.21 -0.98 

  F3-Phe 557.5 ± 27 1.3 ± 0.07 54 11 0.023 – 0.16 
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2.4 Conclusions 

In this study, we used two-electrode voltage-clamp electrophysiology and non-

canonical amino acid mutagenesis to probe the agonist binding interactions of a novel series 

of cytisine derivatives in the α4β2 nAChR. In contrast to the well-studied agonists nicotine 

and acetylcholine, cytisine and the C(10)-substituted cytisine derivatives studied here make a 

second cation-π interaction to TyrC2. Surprisingly, double-mutant cycle analyses revealed that 

all C(10)-derivatives make a stronger cation-π interaction to TyrC2 than cytisine, whereas the 

hydrogen bond to LeuE in the complementary subunit is generally diminished. The results 

suggest a model for how cytisine derivatives adjust their binding orientation within the binding 

site of α4β2 nAChR in response to pyridone substitution. 

2.5 Experimental procedures 

Molecular biology 

Circular DNA of rat nAChR α4 and β2 subunits were in a pGEMhe plasmid (wild 

type expression) and a pAMV plasmid (non-canonical amino acid expression). Site-directed 

mutagenesis was performed using the QuickChange protocol (Agilent Stratagene). cDNA in 

pGEMhe was linearized with restriction enzyme SbfI, whereas cDNA in pAMV was linearized 

with NotI (New England Biolabs). Purified linear DNA (Qiaquick PCR Purification kit, 

Qiagen) was then transcribed in vitro using the T7 mMessage Machine kit (Ambion). The 

resulting mRNA was isolated using the RNeasy RNA purification kit (Qiagen) and quantified 

by UV-vis spectroscopy (NanoDrop 2000, ThermoFisher Scientific). cDNA and mRNA were 

stored at -20˚C and -80˚C respectively. 

 For non-canonical amino acid incorporation, the residue of interest was mutated to 

the amber (UAG) stop codon (sites in the α4 subunit) or the opal (UGA) stop codon (sites in 
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the β2 subunit). 74-nucleotide THG73 tRNA (for UAG) and 74-nucleotide TQOpS’ tRNA 

(for UGA) were prepared by in vitro transcription from a DNA oligonucleotide template, 

modified to prevent nontemplated nucleotide addition, using the MEGAshortscript T7 kit 

(Ambion).45 74-mer tRNA was isolated using Chroma Spin DEPC-H2O columns (Clontech). 

Hydroxy or amino acid-dCA conjugates were enzymatically ligated to truncated 74-nucleotide 

TQOpS’ tRNA (Lah) or THG73 tRNA (all other non-canonical residues) as described 

previously.46,47 tRNA amino acid or tRNA-hydroxy acid products were confirmed by matrix-

assisted laser desorption ionization time-of-flight mass spectrometry on a 3-hydroxypicolinic 

acid matrix. Deprotection of the nitroveratryloxycarbonyl group on the tRNA amino acids 

was carried out by photolysis for 3 min using a 365 nm LED (M365LP1, 1150 mW, mounted 

LED, Thorlabs) immediately prior to injection. 

For all experiments, EC50 values were obtained using a hypersensitive mutation in the 

α4 subunit (L9’A). Previous studies report that cytisine is only slightly active at the wild type 

A2B3 stoichiometry.48 However, using the α4L9’A mutation, we find that cytisine does activate 

the A2B3 stoichiometry.35,36 Besides increasing efficacy, the mutation also yields left shifted 

EC50 values for both stoichiometries as compared to true wild type, which allows one to probe 

effects of other mutations or cytisine derivatives. Lastly, the pore mutation results in different 

rectification between the two stoichiometries; this difference can be determined via-voltage 

jump experiments to verify which receptor stoichiometry is being observed.11 For 

convenience, what is referred to as wild type receptor is assumed to have the L9’A mutation 

in the α4 subunit. 
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Oocyte preparation and injection 

Xenopus laevis oocytes (stage V-VI) were harvested and injected with RNAs according to 

previously described protocols.46 Oocytes were injected with 50-75 nl mRNA in nuclease-free 

water. Post injection, oocytes were incubated at 18˚C in ND96 solution (96 mM NaCl, 2mM 

KCl, 1mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5) supplemented with 0.05 mg/ml 

gentamycin (Sigma), 2.5 mM sodium pyruvate (Acros Organics), and 0.67 mM theophylline 

(Sigma). 

For expression of wild-type α4β2 receptors, α4L9’A and β2 mRNA were mixed in 1:3 

or 10:1 ratio by mass to obtain the A2B3 and A3B2 stoichiometry, respectively. Each cell was 

injected with 25 ng mRNA in a single injection and incubated for 24 h before recording. 

For non-canonical amino acid incorporation into the α subunit, α4L9’A and β2 mRNA 

were mixed in a 3:1 ratio for expression of A2B3 and a 100:1 ratio by mass for expression of 

A3B2 receptors. One exception to this was the incorporation of Phe and F3-Phe into the α-

subunit, where a ratio of 150:1 was used for expression of A3B2. For non-canonical amino 

acid incorporation into the β-subunit, α4L9’A and β2 mRNA were mixed in a 1:40 ratio for 

expression of A2B3 and a 10:1 ratio by mass for expression of A3B2 receptors. mRNA 

mixtures and deprotected tRNA were mixed in a 1:1 volume ratio prior to injection. In cases 

where 24 h incubation resulted in responses too low for systematic study, a second injection 

of mRNA and tRNA was performed and cells were incubated for a total of 48 h before 

recording.  

The reliability of the non-canonical amino acid incorporation was confirmed through 

read-through/reaminoacylation experiments as previously described.35 Briefly, the fidelity of 

non-canonical amino acid incorporation was confirmed at each site by a wild-type recovery 
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experiment in which the tRNA was charged with the wild-type residue. If the wild-type 

recovery yielded concentration-response relations resembling wild type, desired incorporation 

for the non-canonical residue was assumed also. As a negative control, unacylated 76-mer 

tRNA with mRNA was injected alongside the mutant and wild-type recovery conditions. 

Negligible current from the unacylated 76-mer injection confirmed the lack of undesirable 

reaminoacylation events. 

Chemical preparation 

Cytisine and all cytisine derivatives were synthesized by Hugo Rego Campello, Ph.D. 

at the University of Bristol, UK. 

Whole-cell electrophysiology 

All electrophysiological recordings were performed using the OpusXpress 6000A 

(Axon Instruments) in two-electrode voltage clamp mode at ambient temperature (20-25˚C). 

Oocytes were impaled with borosilicate glass pipettes filled with 3 M KCl (R = 0.3-3.0 MΩ) 

and clamped at a holding potential of -60 mV. Ca2+ free ND96 solution was used as running 

buffer. Agonists were prepared in in Ca2+ free ND96 and 1 mL was applied over 15 s followed 

by a 2 min washout with buffer at a rate of 3 mL min-1 (chamber volume, 500 μL). For 

Br/NH2-cytisine and Br/Et-cytisine, which cause slower deactivation, the washout duration 

post agonist application was extended to 5 min. Dose-response measurements were performed 

using a series of ~2-fold concentration steps, spanning multiple orders of magnitude, for a 

total of 8-24 doses. Data for each mutant and agonist combination were obtained from at least 

two different batches of oocytes. Efficacy experiments involved testing of two to three 

maximally activating acetylcholine concentrations, followed by the maximally activating 

concentration of the test compound of interest, followed by two doses of acetylcholine. Data 
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were sampled at 50 Hz. We performed voltage-jump experiments to verify receptor 

stoichiometry of wild-type and mutant receptors as described previously.11  

Data analysis 

Two-electrode voltage-clamp traces were processed in Clampfit 10.3 (Axon 

Instruments). Raw traces were filtered using a low pass Gaussian filter at 5 Hz, followed by a 

subtraction of the average baseline current preceding agonist application. Normalized peak 

currents were averaged and fit to the Hill equation, Inorm = 1/(1 + (EC50/[agonist]nH) in Prism 

8 (GraphPad Software, Inc.), where Inorm is the normalized peak current at a given agonist 

concentration, EC50 is the agonist concentration that elicits a half-maximum response, and nH 

is the Hill coefficient. Peak currents were normalized to the maximum current observed for 

that cell. Some compounds showed a biphasic dose-response relation; these data were fitted 

to a biphasic dose-response equation, Inorm = 1*frac/(1 + 10((logEC50_1-log[agonist])*nH1))+1*(1-frac)/(1 

+ 10((logEC50_2-log[agonist])*nH2)), where EC50_1 and EC50_2 correspond to nH1 and nH2, 

respectively. The efficacy of compounds was measured as Imax of the compound divided by 

the Imax of acetylcholine. Unless otherwise stated, EC50 and nH data are shown as mean ± 

standard error of the mean (SEM). Coupling energies for double-mutant cycles were calculated 

using the equation: ΔΔG = -R*T*ln((EC50 WT-cyt*EC50 mut-ligand)/ (EC50 WT-ligand*EC50 mut-cyt)), where 

R is the gas constant, T is temperature, cyt is cytisine, mut denotes mutant, and ligand refers 

to the various cytisine derivatives used in this study. The value for T used here was 298 K. 

Geometry and electrostatics calculation were performed in Spartan. LogD values were 

calculated by Justin A. Hilf, Ph.D. using ACD/Percepta Platform, Advanced Chemistry 

Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2019. 

 Compounds 10 (NHMe) and 11 (Br/NHMe) exhibit a biphasic response in A3B2, 

representing two distinct binding sites: binding at the α/β-interface and at the α/α-interface. 
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For the purpose of calculating fold shifts and to make comparisons with other derivatives, we 

solely used the first EC50, assuming the binding site at the α/β-interface is always the highest 

affinity one. 
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Chapter 3 

 

Development of a Novel Series Positive Allosteric Modulators  

of the GABAA Receptor* 

 

3.1 Abstract 

γ-aminobutyric acid type A (GABAA) receptors are key mediators of central inhibitory 

neurotransmission and have been implicated in several disorders of the central nervous system 

(CNS). Several positive allosteric modulators of this receptor provide great therapeutic 

benefits to patients. However, adverse effects remain a challenge. Subtype selective targeting 

of GABAA receptors could mitigate this problem. Additionally, the identification of subtype 

selective ligands could aid in the elucidation of subtype specific functions in the brain. In this 

chapter, we describe the development and functional evaluation of a novel series of 

pyrrolidinoindolines for agonism and modulation of the GABAA receptor. Additionally, we 

performed mutagenesis to identify the binding site of these ligands. We found that substitution 

at the C(5) position for an halogen, such as Br or I, greatly increased the PAM potency relative 

to the parent ligand, while substitutions at other positions generally decreased potency. 

Mutagenesis studies suggest that the binding site is lies in the transmembrane domain. 

3.2 Introduction 

γ-aminobutyric acid type A (GABAA) receptors are key mediators of central inhibitory 

neurotransmission, and as such these receptors have been drug targets for numerous CNS 

disorders.1–6 The GABAA receptor is an anion-selective, pentameric ligand-gated ion channel 

that is part of the larger Cys-loop receptor family. A functional receptor results from the 

assembly of five homologous subunits. A total of 19 homologous subunits exist, that can 

                                                 
* The work described in this chapter was done in collaboration with Katie Chan, Dr. Justin Su, and Prof. Sarah 
Reisman. 
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assemble in at least 30 different subtypes in vivo.7 Some types, among which the α1β2γ2, are 

predominantly expressed at the post-synaptic termini and mediated phasic inhibition, while 

others are located at extrasynaptic sites and mediate tonic inhibition.7–9 The large diversity of 

subtypes and differential localization in the brain emphasize their importance, but also form a 

challenge as current GABAAR therapeutics modulate a broad range of subtypes, which can 

result in adverse effects. 

Each GABAA subunit consists of an N-terminal extracellular domain (ECD), a 

transmembrane domain (TMD) that comprises four transmembrane α-helices (M1-M4), an 

extracellular M2-M3 loop and C-terminus, and an intracellular domain composed of the M3-

M4 loop.10–12 Receptor activation occurs upon binding of an agonist to the orthosteric site, 

which is located in the ECD at the β+/α- subunit interfaces. This activation can be modulated 

by additional binding of other ligands to several allosteric sites on the pentameric complex.13 

Positive allosteric modulators (PAMs) potentiate the evoked response by an agonist, while 

negative allosteric modulators (NAMs) inhibit that response.14,15 Allosteric agonists that are 

able to activate the receptors via allosteric sites have also been found. Some of these contain 

PAM properties as well and are so-called ago-PAMs.14 Over the years various modulators of 

GABAA receptors have been identified and several positive allosteric modulators are widely 

used to treat anxiety and panic disorders, such as Alprazolam (Xanax), Diazepam (Valium), 

and Flurazepam (Dalmane) (Figure 3.1).14–16 

Although GABAA receptor modulators have proven great therapeutic benefit, adverse 

effects remain a problem. Additionally, elucidating functions of individual subtypes is crucial 

for a better understanding of GABAAR’s role in health and disease. Therefore, recent efforts 

have been focused on finding subtype selective modulators. Various novel modulators have 

been derived from the α+/β- interface binding PAM CGS 9895 (Figure 3.1).17,18 For example, 
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a series of pyrazolopyridinones by Blackaby et al. showed increased selectivity for α3β3γ2 over 

α1β3γ2.19 Two different series of pyrazoloquinolinones exhibited selectivity for α6β3γ2 and 

β1- containing receptors respectively.20,21  

 

Figure 3.1 | Chemical structures of a few positive allosteric modulators of the GABAA receptor. 

 

When reviewing the chemical structures of these recent efforts, a structurally similar 

compound, Physostigmine, comes to mind. Physostigmine (Figure 3.2), also known as eserine 

or Antilirium, is a reversible acetylcholinesterase inhibitor.22 This enzyme is responsible for 

the breakdown of acetylcholine, so inhibition results in the prolonged activity of this 

neurotransmitter and thus indirectly stimulates nicotinic acetylcholine receptors. It has been 

used to treat glaucoma and delayed gastric emptying.23,24 It was also explored as a potential 

therapy for Alzheimer’s disease, but failed to show convincing therapeutic benefit in clinical 

trials. In addition, it has been found to potentiate and inhibit nicotinic acetylcholine receptors 

as well.25–28 To our knowledge, no reports have been published of physostigmine activity at 

GABAA receptors. 
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Preliminary screen of novel physostigmine derivatives for Cys-loop receptor activity 

In a previous study, Dr. Kristina Daeffler and Dr. Christopher Marotta screened five 

physostigmine derivatives (Figure 3.2), synthesized by Dr. Lindsey Repka and Dr. Alex 

Maolanon, against seven LGICs: α7 (T6’S) nAChR, the A3B2 α4(L9’A)β2 nAChR, muscle-

type nAChR, the α1β2γ2 GABAA receptor, the 5-HT3A receptor, glycine receptor and the 

GluR2 receptor.29,30 Most compounds exhibited inhibition with different potencies for the 

nAChRs and no activity at the other channels tested. Surprisingly, compound AMAO-1-86 

was identified as a weak partial agonist and a PAM for the α1β2γ2 GABAA receptor (Table 

3.1). No agonism and diminished PAM activity was observed for the α1β2 GABAA receptor 

(Table 3.1). Further studies were performed to characterize the inhibition of nAChRs by 

AMAO-1. IC50 curves and voltage-jump experiments suggested inhibition through channel 

blocking. Even though no GABAA receptor activity has been previously reported for 

physostigmine, AMAO-1-86 appears to selectively potentiate α1β2γ2 GABAA receptors over 

other Cys-loop receptors. 

 

 

Figure 3.2 | Chemical structures of the first generation physostigmine derivatives. These 

molecules were synthesized by Dr. Lindsey Repka and Alex Maolanon. Adapted from Marotta, C.B. 

2015.30 
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Table 3.1 | Functional effects of the compounds in Figure 3.1 on Cys-loop receptors. Relative 

modulation of the current response as a result of co-application of endogenous agonist EC50 dose and 

20-40 μM of compound. Adapted from Marotta, C.B. 2015.30 

Receptor AMAO-1 AMAO-1-71 AMAO-1-86 AMAO-1-98 AMAO-1-100 

Muscle (9’) -21 ± 1 -29 ± 3 -53 ± 3 -7 ± 3 -81 ± 6 

A3B2 α4(L9’A)β2 -28 ± 2 -47 ± 4 -29 ± 6 -11 ± 2 -44 ± 2 

Α7 (T6’S) -62 ± 4 -68 ± 7 -92 ± 4 -57 ± 10 -96 ± 3 

5-HT3A -3 ± 2 -23 ± 4 -3 ± 5 3 ± 12 -11 ± 8 

αβγ GABAA -27 ± 4 -27 ± 11 52 ± 10 -27 ± 21 10 ± 5 

αβ GABAA   16 ± 2   

GluR2 -6 ± 1 0 ± 2 -9 ± 6 -11 ± 5 -12 ± 5 

Glycine -6 -9 ± 9 3 ± 7 18 ± 10 -16 ± 6 

 

In this chapter, we expand on these previous, preliminary studies and present the 

biological evaluation of a novel series physostigmine derivatives as potential positive allosteric 

modulators of the GABAA receptor. All of the compounds were tested for agonism and 

allosteric modulation properties at the α1β2γ2 GABAA receptor via two electrode voltage 

clamp experiments. Additionally, we performed mutagenesis studies to identify the binding 

site of these ligands. 

3.3 Results and discussion 

3.3.1 Characterization of the PAM 163 at the α1β2γ2 GABAA receptor 

Based on the selective PAM profile of AMAO-1-86 among Cys-loop receptors, we 

decided to further characterize this ligand. The data obtained in Table 3.2 is based on racemic 

mixtures of the designated compounds, so we first set out to determine if both enantiomers 

were active at the α1β2γ2 GABAA receptor. For convenience, AMAO-1-86 is from here 

onwards referred to as 163 and its enantiomers as (-)-163-1 and (+)-163-2. Katie Chan from 

the Reisman group at Caltech synthesized a new batch of racemic 163 and purified the two 
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enantiomers. In addition, a new derivative was synthesized with an OMe substituent on the 

phenyl ring, para to the bicycle N (159). All four compounds were tested for agonism and 

modulation at the α1β2γ2 GABAA receptor as shown in Figure 3.3. 

 

Figure 3.3 | Functional effects of 163 and 159 on the α1β2γ2 GABAA receptor. A) Wave forms of 

the α1β2γ2 current responses from a GABA only dose and co-application with racemic 163 or 159. 

For clarity, only one GABA response is shown here. B) Relative modulation of a GABA EC50 dose as 

a result of co-application with ligands of interest at a 40 μΜ concentration. 

 

To assess functional effects, we used a similar protocol as previously described by 

Marotta et al.30 Briefly, the current responses of three identical GABA concentration were 

recorded, followed by a dose of the test-ligand at 40 μM. After a 30 s incubation period, a test 

dose was applied containing both GABA and the test-ligand. Finally, two doses of GABA 

were applied. The first test dose evaluates agonism properties, the second dose tests for 

modulation of the GABA response, which can be potentiating or inhibiting. The first three 
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GABA doses aim to establish a baseline of the GABA response at that concentration, and the 

purpose of the last two GABA doses is to verify proper functioning of the receptor post 

modulation and control for independent rise in current amplitude. 

The racemic mixture of 163 showed less potent PAM properties (17 ± 4.0%) than was 

observed in the previous study. This could be a result of a different purification method or 

preparation of the stock solution. In order to account for solvent effects, a control experiment 

was executed containing 0.08% of DMSO. In addition, we performed a GABA only control 

to assess the inherent variability of the current responses. Of the two 163 enantiomers, only 

for (+)-163-2 has potentiation been observed with a mean of 16 ± 4.1%. For ligand 159, no 

agonism (not shown) nor modulation effects were observed (Figure 3.3, Table 3.2, Figure 

3.9). 

 

Table. 3.2 | Relative modulation of GABA EC50 responses in WT GABAA receptors. Values are 

expressed as mean ± SEM. 

Subtype Ligand Relative modulation of GABA EC50 (%) N |I| (μA) 

α1β2γ2 GABA only -0.3 ± 1.6 20 0.5 – 7.7 

α1β2γ2 0.08% DMSO -5.5 ± 2.2 8 1.3 - 32.6 

α1β2γ2 159 -2.9 ± 1.6 14 0.8 – 10.8 

α1β2γ2 163-racemic 17 ± 4.0 14 0.1 – 9.9 

α1β2γ2 (-)-163-1 -3.7 ± 3.7 19 0.3 – 10.1 

α1β2γ2 (+)-163-2 16 ± 4.1 14 3.7 – 14.2 

α1β2 163-racemic 28 ± 5.2 10 0.8 – 9.3 

α1β2 (-)-163-1 9.2 ± 1.1 11 0.3 – 2.3 

α1β2 (+)-163-2 17 ± 2.6 13 0.4 – 3.3 

 

 Preliminary data in Table 3.1 showed decreased potentiating effects for the α1β2 

GABAA receptor. To further elucidate enantiomeric effects for this subtype, we performed 

the same experiment for this subtype using the new batch of racemic 163 and the separate 

enantiomers. For the racemic mixture a mean potentiation of 28 ± 5.2% was observed (Figure 

3.4). Surprisingly, both enantiomers showed potentiation for this subtype: (-)163-1 9.2 ± 1.1% 
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and 163-2 17 ± 2.6%. These results indicate that the γ2 subunit is not required for the 

potentiating effects of 163. Thus, the binding site of this PAM is likely located on either the α 

or β subunit or at the interface of these two subunits. 

  

Figure 3.4 | Functional effects of 163 on the α1β2 GABAA receptor. A) Wave forms of the α1β2 

current responses from a GABA only dose and co-application with (-)-163-1 or (+)-163-2. For clarity, 

only one GABA response is shown here. B) Relative modulation of a GABA EC50 dose as a result of 

co-application with ligands of interest at a 40 μΜ concentration. 

 

The amplitude of potentiation is dependent on several factors, among which are both 

the PAM concentration and the GABA concentration at which we tested the modulation. 

Next, we determined the effect of 40 μΜ racemic 163 on the GABA EC50 (ΔEC50(163-rac)) at 

the α1β2γ2 receptor. The observed 163-induced shift in GABA EC50 is 12.8 μM as shown in 

Figure 3.5A. This shift is comparable to the induced shift seen for this subtype by the 

benzodiazepine Triazolam, 16-50 μΜ.31 Moreover, we wanted to determine the potency of 
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163 itself. Well-studied modulators, such as flurazepam and zolpidem, have EC50s in the 

nanomolar range, 272 nM and 335 nM respectively.32  The PAM tested here, (+)-163-2, 

appears to be less potent with an EC50 of 112 μΜ when co-applied with GABA EC5, as shown 

in Figure 3.5B. 

 

Figure 3.5 | Functional characterization of 163 at the α1β2γ2 GABAA receptor. A) PAM-induced 

shift in GABA EC50. PAM concentration used here was 40 μΜ of racemic 163. B) PAM EC50 when 

co-applied with GABA EC5 doses. 

 

Table 3.3 | EC50 values of 163, GABA, and GABA co-application with 163.  

Subtype Compound EC50 (μM) nH  N | Imax | (μA) 

α1β2γ2 (+)-163-2 112 ± 4.9 2.6 ± 0.27 16 0.91 - 20.2 

α1β2γ2 GABA 22.7 ± 0.45 1.3 ± 0.03 40 1.69 - -9.77  

α1β2γ2 GABA + 163 rac 9.89 ± 0.48 1.7 ± 0.13 22 6.12 - 16.30 

 

The potentiation experiments in Figure 3.3 and 3.4 provided valuable information 

regarding the general behavior of the compounds, that is whether it potentiates or inhibits the 

GABA response. As we have now established that it as a PAM, further potentiation 

experiments use the GABA EC10-15 instead of EC50. Using the EC10-15 allows for a larger 

potentiation window than EC50, which enables the detection of more subtle differences 

between mutants or derivatives. Figure 3.5A and Table 3.4 illustrate this difference in 
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modulation potency. For the α1β2γ2 subtype, racemic 163 causes a 62% potentiation of the 

GABA EC10 response, while at the GABA EC50 this is only 17%, about a 3.6-fold increase. 

 

Table 3.4 |Relative modulation of GABA EC50 and EC10 responses in α1β2γ2 GABAA receptors. 

Mutant [GABA] Relative modulation (%) N |I| (μA) 

α1β2γ2 WT EC50 17 ± 4.0 14 0.1 – 9.9 

α1β2γ2 WT EC10 62 ± 6.1 18 0.8 – 4.4 

 

3.3.2 Progress towards elucidating the binding site of the PAM 163 

 GABA activates the GABAA receptor through binding in the ECD at the interface of 

the β+/α- subunits. Besides this orthosteric site, several allosteric binding sites have been 

established, of which the most well-known is the benzodiazepine site (BZ-site) in the ECD at 

the α+/γ- interface.33,34 More recently observed is the binding site in the ECD at the α+/β- 

site for the ligand CGS9895.34–37 Most of these sites have been established by way of 

radioligand binding essays, photoaffinity labeling, or mutagenesis combined with a steric 

hindrance approach. In addition to binding sites in the ECD, several anesthetics and 

neurosteroids affect channel activity through binding in the TMD. Recent X-ray crystal 

structures and cryo-EM structures have shed light on the TM residues involved here.38,39  

 In order to determine the binding site for the PAM 163, we performed mutagenesis 

on residues that have previously been implicated in binding of known modulators. For the 

first screen we selected α1(H129R)33 and α1(Y209Q)35,40–42 to probe the BZ-site, β2(Q88C) to 

probe the α+/β- site,34 and triple mutant α1(S297I)β2(N289I)γ2(S319I) to probe for anesthetic 

sites in the TMD.35,43 All three ECD mutants were potentiated to a similar extend as the WT 

receptor (mean 62 ± 6.1%), however the triple TMD mutant was not affected by 163 at this 

concentration (mean 1.0 ± 3.0%) as shown in Figure 3.7 and Table 3.5. These results highly 

suggest that 163 does not assert its potentiating affects through binding at the interfaces at the 

ECD, but on one or more interfaces in the TMD. 
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Figure 3.6 | Structure of the human α1β2γ2 GABAA receptor with the probed residues 

highlighted. (Left) Side view of the receptor, (Right) extracellular view into the pore (PDB ID: 6D6T). 

Mutated residues are labeled and highlighted in pink. 

 

Table 3.5 | Relative modulation of GABA EC10 responses by racemic 163 in ECD mutant 

receptors. Values are expressed as mean ± SEM. 

Mutant Relative modulation of GABA EC10 (%) N |I| (μA) 

α1β2γ2 WT 62 ± 6.1 18 0.8 – 4.4 

α1(H129R)β2γ2 88 ± 8.1 11 0.1 – 0.7 

α1(Y209Q)β2γ2 86 ± 8.9 8 0.2 -1.5 

α1β2(Q88C)γ2 69 ± 5.8 10 0.1 – 3.7 

 

To further determine which interfaces are involved in binding in the TMD, we 

performed potentiation experiments for the single and double mutants of α1β2γ2, as well as 

the α1β2 subtype (Figure 3.7, Table 3.6). Analysis of the α1β2γ2 mutant responses suggests 

involvement of the β2 subunit in binding, as only the single and double mutant receptors that 

contain a mutation in the β2 subunit demonstrate greatly reduced potentiation. The 

potentiation in both single mutants in the α1 and γ2 subunits resembles that of the α1β2γ2 

WT receptor. Potentiation experiments in the α1β2 subtype were less conclusive. Great 

variability in potentiation was observed among experiments performed on different days. 
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Some mutants were tested on three different batches of oocytes, but no single population 

could be established. Factors that could have played a role are cell health and degradation of 

the ligand. Injecting mRNA to express the α1β2 subtype rendered more dying oocytes after 

24 hrs, than for the α1β2γ2 mutants. 

The β2(N289I) mutation is located in the TMD, close to the top of TM2, at β+/α- 

interface (Figure 3.6). This residue has been implicated in the binding of several anesthetics, 

such as Etomidate, Propofol, and Loreclezole.35,44  

 

Figure 3.7 | Relative modulation of GABA EC10-15 responses by racemic 163 in mutant 

receptors. Relative modulation was measured after co-application of GABA EC10-15 with 40 μM of 

racemic 163. 

 

 

α1
β2
γ2

 W
T

α1
(H

12
9R

)β
2γ

2

α1
(Y

20
9Q

)β
2γ

2

α1
β2

(Q
88

C
)γ

2

α1
(S

29
7I

)β
2(

N
28

9I
)γ

2(
S
31

9I
)

α1
(S

29
7I

)β
2γ

2

α1
β2

(N
28

9I
)γ

2

α1
β2
γ2

(S
31

9I
)

α1
(S

29
7I

)β
2(

N
28

9I
)γ

2(
S
31

9I
)

α1
β2

 W
T

α1
(S

29
7I

)β
2(

N
28

9I
)γ

2(
S
31

9I
)

α1
(S

29
7I

)β
2

α1
β2

(N
28

9I
)γ

2

-50

0

50

100

150

200

R
e
la

ti
v
e
 m

o
d

u
la

ti
o

n
 o

f 
E

C
1
0
-1

5
 G

A
B

A
 r

e
s
p

o
n

s
e
 (

%
)



 81 

Table 3.6 | Relative modulation of GABA EC10 responses by racemic 163 in TMD mutant 

receptors. Values are expressed as mean ± SEM. 

Mutant Relative modulation of GABA EC10-15 (%) N |I| (μA) 

α1β2γ2 WT 62 ± 6.1 18 0.8 – 4.4 

α1(S297I)β2(N289I)γ2(S319I) 1.1 ± 3.0 12 0.1 – 1.7 

α1(S297I)β2γ2 41 ± 3.7 12 0.1 – 2.4 

α1β2(N289I)γ2 9.7 ± 2.1 12 1.2 – 5.3 

α1β2γ2(S319I) 66 ± 4.7 10 0.2 – 0.5 

α1(S297I)β2(N289I)γ2 9.2 ± 2.0 12 0.4 – 2.5 

α1β2 WT  38 ± 4.7 9 0.1 – 1.9 

α1(S297I)β2(N289I) -3.3 ± 13 11 0.1 – 0.8 

α1(S297I)β2 16 ± 5.1 9 0.1 – 1.6 

α1β2(N289I) 24 ± 16 8 0.05 – 1.2 

 

We performed potentiation experiments by co-applying the 40 μM PAM with an EC10 

dose of GABA. To determine the EC10 values of the constructed mutant receptors, we 

determined the full concentration-response curves and found EC50 values corresponding to 

those reported in previous studies (Table 3.7).35,43  

 

Table 3.7 | GABA EC50 values of GABAA WT and mutant receptors. Individual TMD mutants 

of α1(S297I)β2(N289I)γ2(S319I) are referred to as M in the table. 

Mutant EC50 (μΜ) nH N |Imax|(μA) 

α1β2γ2 WT 22.7 ± 0.45 1.3 ± 0.03 40 1.7 - -9.8  

α1β2 WT 2.98 ± 0.07 1.5 ± 0.05 7 5.8 - 25 

α1(H129R)β2γ2 16.4 ± 0.47 1.7 ± 0.06 17 0.37 – 4.0 

α1(Y209Q)β2γ2 21.5 ± 0.81 1.6 ± 0.08 6 4.2 - 8.6 

α1β2(Q88C)γ2 26.6 ± 1.8 1.4 ± 0.11 6 0.9 – 8.0 

α1(S297I)β2(N289I)γ2(S319I) 0.527 ± 0.01 1.8 ± 0.05 13 3.5 – 6.4 

α1(S297I)β2γ2 0.737 ± 0.02 1.8 ± 0.08 19 1.1 - 25 

α1β2(N289I) 26.9 ± 0.59 1.8 ± 0.06 11 0.04 - 17 

α1β2γ2(S319I) 20.2 ± 0.65 1.7 ± 0.08 6 0.05 – 4.3 

α1(S297I)β2(N289I)γ2 1.04 ± 0.028 2.0 ± 0.09 11 0.4 - 19 

α1(S297I)β2 0.101 ± 0.0032 2.0 ± 0.11 8 0.5 – 4.3 

α1β2(N289I) 2.78 ± 0.075 1.4 ± 0.05 10 1.0 – 3.7 

α1(S297I)β2(N289I) 0.0568 ± 0.0022 2.2 ± 0.17 7 0.6 – 4.8 
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3.3.3 Optimization of allosteric modulation potency 

 In order to improve the potency of the PAM, we decided to design a novel series of 

derivatives and explore which positions permit substitutions while retaining or improving its 

PAM activity. First, we determined the absolute stereochemistry of the active enantiomer (+)-

163-2. Both stereocenters are (S) as shown in Figure 3.8. Based on the parent structure of 

(+)-163-2, we explored substitutions at C(3a), C(5), N(1), and the C(4) on the phenyl ring at 

C(8a) see Figure 3.8 for numbering and Figure 3.9 for the complete library of ligands. 

Generally, none of the derivatives demonstrated agonistic properties, except for (-)-51 and 

(+)-282 activated the receptor at very low efficacy. Note that reported values in this section 

represent the relative modulation of GABA EC10 responses.  

 

Figure 3.8 | Structural characterization of (+)-163-2. On the left, X-ray structure of (+)-163-2. On 

the right, schematic structure including numbering of atoms. 

 

 Most derivatives demonstrate a similar activity pattern for the two enantiomers as we 

have observed for 163. If the ligand shows any activity, the (S),(S) enantiomer is the active one 

of the two. One exception to this is ligand pair (-)-66 and (+)-67 (RC(8a)= 4-Br-phenyl), which 

both show substantial potentiation. It is worth noting that ligand (+)-286 and (-)-287 (RC(5)= 

morpholine), and (+)-50 and (-)-51 (RC(5)= I ) have flipped signs in optical rotation as 
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compared to all other derivatives. Figure 3.10 shows the potentiation of N(1) and C(3a) 

derivatives.  

 

Figure 3.9 | Novel series of physostigmine derivatives evaluated in this study. 
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Removal of the methyl group or addition of a Cbz-group at N(1) resulted in decreased 

potentiation, 41 ± 3% and 9.6 ± 5.2% respectively, relative to (+)-163-2 (125 ± 15%). 

Replacement of the hydroxyl at C(3a) appears to be permissive for fluorine (100 ± 11%.), but 

not to a methoxy-group (21 ± 3.0%). 

 

Figure 3.10 | Functional effects of C3a, N1, and C8a derivatives on the α1β2γ2 GABAA receptor. 

 

 These results combined with data from the preliminary data in Table 3.1 suggest that 

substitution on the pyrrolidine does not render increased potency relative to (+)-163-2. So 

next, we looked at substitution at C(5) at the indoline (Figure 3.11, Table 3.8). Introducing a 

methoxy- or morpholino-group drastically reduced the potentiation efficacy, 17 ± 3.2% and -

4.8 ± 1.8% respectively. Potentiation by ligand 59 (RC(5)= CF3) resembled that of (+)-163-2 at 

108 ± 9.5%. Surprisingly, introducing a halogen, Br or I, at C(5) greatly increased potentiation 

with a relative modulation of 213 ± 21% and 231 ± 24% respectively. These two ligands 
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appear to have the largest potentiation effects on the α1β2γ2 GABAA receptor at 40 μΜ of all 

derivatives we studied here.  

 

Figure 3.11 | Functional effects of C(5) derivatives on the α1β2γ2 GABAA receptor. 
 
 

Recall that 159 (RC(8a)= 4-OMe-Ph) did not exhibit any PAM properties, neither did 

(+)-285 (RC(5)= OMe). However, (+)-282 (RC(5)= Br) demonstrated increased PAM properties 

relative to (+)-163-2. Considering the spatial positioning of the Br at C(5), we asked the 

question whether a ligand with a 4-Br-Ph at C(8a) would also render PAM properties. If the 

binding pocket does not permit substitution at this position, perhaps the R,R enantiomer 

would be able to fit upside down where the Bromine occupies the same position as ligand (+)-

282. The electrostatic potential maps of (+)-163-2, (+)-282 and (-)-66 are depicted in Figure 

3.12. (-)-66 is shown with the 4-Br-Ph group on top to mimic the orientation of (+)-282, which 
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indeed resembles this structure. Placing the aromatic ring of the indoline in the same position 

renders the 4-Br-Ph group twisted (almost perpendicular) when compared to (+)-282. This 

could prevent binding in this orientation. Interestingly, both enantiomers demonstrated 

substantial potentiation of 155 ± 11% for (-)-66 and 98 ± 8.3% for (+)-65 (Figure 3.11). These 

results indicate that not only is the para-position of Ph at C(8a) permissive to Br, but it is 

probable that the R,R enantiomer is able to fit in the upside down orientation. All mean 

potentiation values are reported in Table 3.8. 

 

Figure 3.12 | Electrostatic potential surfaces of selected derivatives. Geometry optimization was 

performed using HF 6-31G**. Color scale red to blue ranges from -50 kcal/mol to +50 kcal/mol. 

 

Table 3.8 | Mean values of GABA EC10 modulation of the α1β2γ2 subtype by all derivatives. 

Ligand RC(3a) RN(1) RC(5) RC(8a) 

Relative 

modulation of 

GABA EC10 (%) 

N 
|Imax| 

(μA) 

163 

racemic 
OH Me H Ph 62 ± 6.1 18 0.8 – 4.4 

(-)-163-1 OH Me H Ph 11 ± 2.2 8 2.1 – 3.6 

(+)-163-2 OH Me H Ph 125 ± 15 12 0.5 – 6.0 

(-)-20 OH NH H Ph 1.8 ± 1.7 14 0.8 – 5.2 

(+)-21 OH NH H Ph 41 ± 3 15 0.2 – 11.2 
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(-)-264-2 OH Cbz H Ph 25 ± 4.1 14 0.06 – 7.8 

(+)-264-1 OH Cbz H Ph 9.6 ± 5.2 14 0.4 – 9.7 

(-)-226 OMe Me H Ph 24 ± 2.2 6 0.43-1.18 

(+)-227 OMe Me H Ph 21 ± 3.0 5 0.54-0.84 

(-)-22 F Me H Ph 27 ± 3 11 0.7 – 6.5 

(+)-23 F Me H Ph 100 ± 11 16 0.9 – 11.4 

(-)-284 OH Me OMe Ph 15 ± 4.6 13 0.9 – 4.2 

(+)-85 OH Me OMe Ph 17 ± 3.2 13 0.7 – 11.0 

(-)-87 OH Me Morpholine Ph 21 ± 2.9 11 1.2 – 4.9 

(+)-286 OH Me Morpholine Ph -4.8 ± 1.8 12 0.9 – 8.6 

(-)-58 OH Me CF3 Ph 1.3 ± 1.2 16 0.6 – 6.3 

(+)-59 OH Me CF3 Ph 108 ± 9.5 16 0.9 – 8.3 

(-)-281 OH Me Br Ph 31 ± 3.0 10 0.5 – 4.3 

(+)-282 OH Me Br Ph 213 ± 21 12 2.3 – 19.2 

(-)-51 OH Me I Ph 231 ± 24 16 2.2 – 6.2 

(+)-50 OH Me I Ph 35 ± 5.6 15 0.5 – 2.7 

159 

racemic  
OH Me H 4-OMe-Ph -2.9* ± 1.6 20 0.5 – 7.7 

(-)-66 OH Me H 4-Br-Ph 155 ± 11 13 0.63 – 6.8 

(+)-65 OH Me H 4-Br-Ph 98 ± 8.3 15 1.1 – 5.6 

* relative modulation of GABA EC50. 
 

3.4 Conclusions and future directions 

 In this study, we described the functional evaluation of a novel series of physostigmine 

derivatives at the α1β2γ2 GABAA receptor. First, we characterized our lead positive allosteric 

modulator 163, which has an EC50 of 112 μM and causes a 12.8 μΜ shift in GABA EC50. 

Second, we performed mutagenesis studies to elucidate the binding site of this PAM. We 

found that the TMD triple mutant α1(S297I)β2(N289I)γ2(S319I) lost complete sensitivity to 
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the racemic mixture of 163, while other ECD mutants displayed no change. This suggests that 

the binding site is located in the TMD at the top of TM2. 

Next, we explored substitution of 163 at various positions to achieve increased 

efficacy. Most ligands showed only PAM effects for the S,S enantiomer. The most potent 

PAMs were (+)-282 and (-)-51, which both contain a halogen at the C(5) position. 

Substitutions at the pyrrolidine generally resulted in loss of potency. One ligand demonstrated 

increased potentiation efficacy relative to the parent ligand 163 for both enantiomers. We 

suspect that the generally inactive enantiomer in this case might be able to fit into the binding 

pocket in an upside-down orientation due to its 4-Br-Ph substitution at C(8a).  

 Future studies could include additional mutagenesis studies to determine other 

residues involved in binding. Additional characterization of (-)-51 (RC(5)= I) would be valuable 

to determine its EC50, as well as potentiation studies using other GABAA receptor subtypes 

and Cys-loop receptors to determine its selectivity profile. 

3.5 Experimental procedures 

Molecular biology 

Circular DNA of human GABAA receptor α1, β2s and γ2s subunits were in a pGEMhe 

plasmid (wild type expression). For both β2s and γ2s only the short isoforms were used, 

however for convenience we refer to the subunits as β2 and γ2. Site-directed mutagenesis was 

performed using the QuickChange protocol (Agilent Stratagene). cDNA in pGEMhe was 

linearized with restriction enzyme NheI (for α1 and γ2 subunits), and Sph1 (for the β2 subunit) 

(New England Biolabs). Purified linear DNA (Qiaquick PCR Purification kit, Qiagen) was 

then transcribed in vitro using the T7 mMessage Machine kit (Ambion). The resulting mRNA 

was isolated using the RNeasy RNA purification kit (Qiagen) and quantified by UV-vis 
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spectroscopy (NanoDrop 2000, ThermoFisher Scientific). cDNA and mRNA were stored at 

-20˚C and -80˚C respectively. 

Oocyte preparation and mRNA injection 

Xenopus laevis oocytes (stage V-VI) were harvested and injected with mRNA according 

to previously described protocols.45 Oocytes were injected with 50-75 nl mRNA in nuclease-

free water. Post injection, oocytes were incubated at 18˚C in ND96 solution (96 mM NaCl, 

2mM KCl, 1mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5) supplemented with 0.05 

mg/ml gentamycin (Sigma), 2.5 mM sodium pyruvate (Acros Organics), and 0.67 mM 

theophylline (Sigma). 

 For expression of wild-type α1β2γ2 receptors, α1, β2, and γ2 mRNA were mixed in 

2:2:1 ratio by mass. For expression of wild-type α1β2 receptors, α1 and β2 mRNA were mixed 

in 1:1 ratio by mass. Each cell was injected with 5 ng or 15 ng mRNA in a single injection for 

the α1β2γ2 and α1β2, respectively. Oocytes were then incubated for 24 h before recording. 

Proper injection ratios for mutant receptors were determined after analysis of the dose-

response curve and optimized when necessary. All ECD mutant receptors were injected with 

a 2:2:1 ratio, as well as the triple TMD mutant. Injection ratios for the TMD mutants were as 

follows: αMβγ and αMβMγ: 2:2:1; αβMγ: 2:10:1; αβγM: 1:1:8; αMβ, αβM and αMβM: 1:1. 

Electrophysiology 

All electrophysiological recordings were performed using the OpusXpress 6000A 

(Axon Instruments) in two-electrode voltage clamp mode at ambient temperature (20-25˚C). 

Oocytes were impaled with borosilicate glass pipettes filled with 3 M KCl (R = 0.3-3.0 MΩ) 

and clamped at a holding potential of -60 mV. ND96 solution with Ca2+ was used as running 

buffer. GABA and test-ligand solutions were prepared in ND96 with Ca2+ and 1 mL was 
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applied over 15 s followed by a 5 min washout with buffer at a rate of 3 mL min-1 (chamber 

volume, 500 μL). Data for each condition were obtained from at least two different batches 

of oocytes. Data were sampled at 50 Hz. 

For potentiation experiments an adapted protocol previously described by Marotta 

2015 was used.30 The protocol is as follows: three identical GABA doses were applied, 

followed by a dose of the test-ligand at 40 μM. After a 30 s incubation period, a test dose was 

applied containing both GABA and the test-ligand. Finally, two doses of GABA were applied. 

The first test dose evaluates agonism properties, the second dose tests for modulation of the 

GABA response, which can be potentiating or inhibiting. The first three GABA doses aim to 

establish a baseline of the GABA response at that concentration, and the purpose of the last 

two GABA doses is to verify proper functioning of the receptor post modulation and control 

for independent rise in current amplitude. Dose-response measurements were performed 

using a series of ~2-fold concentration steps, spanning multiple orders of magnitude, for a 

total of 8-24 doses.  

Two-electrode voltage-clamp traces were processed in Clampfit 10.3 (Axon 

Instruments). Raw traces were filtered using a low pass Gaussian filter at 5 Hz, followed by a 

subtraction of the average baseline current preceding ligand application. For potentiation 

experiments the current responses from the five GABA doses were averaged (GABA only) 

and subtracting this from the response of the co-application dose (GABA + test-ligand) gave 

the calculated change in response. Multiplying this value with 100% rendered the relative 

modulation (inhibition/potentiation) of the GABA response by the test-ligand. Relative 

modulation is reported as the mean ± standard error of the mean (SEM). For the GABA 

concentration either the EC50 or EC10 was used as specified in the results section. For dose-

response experiments, normalized peak currents were averaged and fit to the Hill equation, 
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Inorm = 1/(1 + (EC50/[agonist]nH) in Prism 8 (GraphPad Software, Inc.), where Inorm is the 

normalized peak current at a given agonist concentration, EC50 is the agonist concentration 

that elicits a half-maximum response, and nH is the Hill coefficient. Peak currents were 

normalized to the maximum current observed for that cell. Unless otherwise stated, EC50 and 

nH data are shown as mean ± standard error of the mean (SEM). Geometry calculations were 

performed in Spartan 14 v1.1.9.  

Chemical synthesis and characterization 

Syntheses of the PAMs were performed by members of the Reisman group at Caltech. 

Compounds 163 and 159 were synthesized by Katie Chan, all other derivatives were 

synthesized by Dr. Justin Su. X-ray crystallography and analysis of the resulting data were 

performed by Dr. Julie Hofstra. 
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Chapter 4 

 

Study of Light-Induced Modulation of Voltage-Gated Sodium Channels 

using Ruthenium Diimine Photoswitches* 

 

4.1 Abstract 

Retinal degenerative diseases such as age-related macular degeneration (AMD) and 

retinitis pigmentosa (RP) result in the loss of photoreceptors in the retina, a major cause of 

blindness for which there are very few treatments and no cure. Finding a way to render these 

cells sensitive to light could potentially (partially) restore vision. Previous studies have shown 

that, upon irradiation with 488 nm light and in the presence of a reductant or oxidant, a 

Ruthenium bipyridine complex with a C17-tail (RubpyC17) can alter the membrane potential 

in both non-excitable and excitable cells. This observation suggests the viability of a 

molecularly driven artificial retina using RubpyC17 as a so-called photoswitch. The 

relationship between ruthenium-mediated electron transfer and the light-induced membrane 

depolarization process, potentially via channel modulation, is still poorly understood. To 

determine functional interactions between a series of Rubpy-complexes and voltage-gated ion 

channels, we have expressed these proteins in Xenopus laevis oocytes and performed two-

electrode voltage clamp to evaluate channel function. We found RubpyC17 to cause an 

increase in the activation potential for both voltage-gated sodium and potassium channels. 

From the derivatives tested, RuOleic acid demonstrated the most substantial effect: a right 

shift in V0.5 in both types of voltage-gated ion channels as well as a decrease in peak current 

for potassium channels. This decrease in peak current can be temporarily attenuated by 

irradiation of 455 nm light. 

                                                 
* This work was done in collaboration with the labs of Dr. Mark Humayun (USC), Prof. Robert Chow (USC), 
Prof. Harry Gray (Caltech), and Prof. Robert H. Grubbs (Caltech). 
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4.2 Introduction 

Retinal degenerative diseases such as age-related macular degeneration (AMD) and 

retinitis pigmentosa (RP) result in the loss of photoreceptors in the retina, a major cause of 

blindness for which there are very few treatments and no cure.1 Despite the loss of 

photoreceptors, a significant number of inner retinal ganglion cells (RGC) remain intact and 

are still able to transmit visual information to the brain. The only currently approved vision 

restoration treatment entails an implanted, prosthetic retinal ‘chip’ that electrically stimulates 

the remaining retinal neurons after loss of photoreceptors. In this way light-induced neural 

signaling to the visual cortex is (partially) restored. Alternative strategies have been proposed, 

including optogenetic or optopharmacological tools that would enable direct optical 

stimulation of the remaining neurons. However, the search for more elegant and less invasive 

methods continues. The main contributor for initiating an action potential in RGCs is the 

voltage-gated sodium channel isoform 1.6 (NaV 1.6).2 If these channels could be rendered light 

sensitive by introduction of an appropriate redox-active chemical species, visual function in 

otherwise degenerated retinas could potentially be (partially) restored. Recently, an 

azobenzene-based photoswitch has been reported to elicit photosensitivity in mice with 

degenerated retinal photoreceptors. However, the mechanism of photosensitization is not 

completely understood, although the authors found that it binds to a wide range of ion 

channels, and was not selective to neurons.3  

Voltage-gated sodium channels (VGSCs or Nav) are a family of polytopic 

transmembrane proteins that are activated by depolarization of the cell membrane. In excitable 

cells, opening of these channels initiates an action potential, making them crucial for electrical 

signaling between cells.4–6 VGSCs are part of the larger protein class of ion channels called 

voltage-gated ion channels (VGICs) that, among others, includes voltage-gated potassium 
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channels (VGKCs). The voltage-gated sodium channel family consists of several isoforms that 

are associated with various diseases such as epilepsy, cardiac arrhythmia, chronic pain, and 

insensitivity to pain.7,8 In 1952, Hodgkin and Huxley recorded the first currents attributed to 

NaV activity.9 Since then, various biophysical studies have been performed using a number of 

animal toxins that target this specific class of VGIC. However, much remains unknown about 

the mechanistic basis of channel function, and in particular voltage gating. New ways to probe 

and control channel function will be valuable to gain more insight into and develop treatments 

for dysfunction of this complex system. 

 

Figure 4.1 | Schematic representation of a VGSC. Structural topology of the eukaryotic Nav 

channel - and  subunits. The center peptide chain is a generalized depiction of an  subunit 

containing four homologous domains, each comprising six helical segments referred to as S1-S6. The 

 subunits all contain a characteristic V-shaped Ig loop and one transmembrane helix (except for 1B). 

β1 and β3 are structurally similar and contain an intracellular phosphorylation site, whereas β2 and β4 

do not. 

 

A eukaryotic VGSC is a large complex consisting of one single -subunit (260 kDa) 

and one or more smaller, auxiliary -subunits (33-36 kDa).11 Nine -subunits (Nav 1.1-1.9) and 

three -subunits (1-3) have been characterized so far.11 Although the -subunit alone 

contains the sodium-conducting pore and the gating domain, it requires heterodimerization 
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with one or more  subunits to reconstitute the channel’s full native properties. The -subunits 

modulate the kinetics and voltage-dependence of channel gating, including inactivation.8 The 

-subunit contains four homologous domains (D) that assemble in a pseudotetrameric 

structure (Figure 4.1).12 Each domain consists of six helical segments (S): S1-S4 constitute the 

voltage sensor domain (VSD, total of four), and the four S5-S6 make up one sodium-

conducting pore (Figure 4.1). The pore and four VSDs are physically separated by 

phospholipids of the cell membrane and have been shown to be able to function 

independently in other studies.13,14 Both N- and C-termini are located on the intracellular side 

of the membrane. Furthermore, the connecting loop between DIII and DIV, containing a 

hydrophobic IFM motif, has been shown to play a crucial part in the inactivation of the 

channel.4,15  

Based on several crystallographic and mutagenesis studies, four arginines in S4 (the 

voltage sensor) interact with negatively charged residues within the VSD.16–20 This led to the 

hypothesis that negative charges on the outer membrane leaflet could stabilize S4 in the 

upward position, and thus the activated conformation of the VSD. Several studies have 

investigated the effects of different membrane lipid compositions on potassium channel 

function and found that for channels reconstituted in neutral lipid membranes the voltage 

sensor became nonfunctional.21–24 Additionally, polyunsaturated fatty acids (PUFAs) have 

been found to interact with a variety of membrane proteins, including VGICs, either through 

direct allosteric modulation or by alteration of the physical properties of the surrounding 

membrane.23,25–30 Docosahexaenoic acid (DHA), an ω-3 PUFA, has been shown to shift the 

half-activation potential of VGKCs to the left, and upon substitution of the negatively charged 

carboxylate group for positively charged amino group, to the right.31,32 The effects were even 

more dramatic at higher pH, suggesting modulation of these channels could be biased by the 
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overall charge of the molecule. A similar study was performed by Dr. Kristina Daeffler in our 

group using linoleic acid (LOA), an ω-6 PUFA, who observed a similar leftward shift for 

Shaker IR potassium channels expressed in Xenopus laevis oocytes.33  

Expanding on these previous studies, we hypothesized that a light-absorbing 

ruthenium bipyridine complex linked to a fatty acid could have similar effects upon irradiation. 

The molecule tris(bipyridine)ruthenium(II) [Ru(bpy)3]
2+ has been extensively studied and is, 

by adjusting the bipyridine (bpy) ligands, greatly tunable for various biological purposes.34 

Remarkably, our collaborators showed that upon irradiation with 488-nm light and in the 

presence of a reductant or oxidant, a ruthenium bipyridine complex containing one C17-

saturated chain (RubpyC17) can alter the cell membrane potential in both excitable cells 

(mouse chromaffin cells) and non-excitable cells (INS, HEK293).35 For clarity, the authors did 

not express specific VGICs and solely focused on membrane depolarization. The ruthenium 

metal center of [Ru(bpy)3]
2+ can be excited with visible light (488 nm) (Figure 4.2) and the 

excited state can either be reduced or oxidized, resulting in a Ru(I) or Ru(III) species, 

respectively. Modification of the bipyridine ligands determines the reactivity of the 

photoexcited complex and thus enables us to tune the overall charge and reduction potential 

of the complex. Thus, the RubpyC17 is an excellent candidate for consideration as a 

photoswitch to light-control VGSCs.  

In this chapter, the ultimate goal was to photochemically control the activation of the 

VGSCs and thus make progress towards developing a RubpyC17-based photoswitch that 

could be used in an artificial retina. To this end, we determined the functional effects of 

RubpyC17 on VGSCs and VGKCs. To evaluate changes in ion channel function we expressed 

these proteins in Xenopus laevis oocytes and performed two-electrode voltage clamp (TEVC) 



 

 

100 

electrophysiology. Additionally, we used multiple RubpyC17 derivatives to establish whether 

we could bias any modulatory effects. 

 

Figure 4.2 | RubpyC17. (A) The chemical structure of RubpyC17 and (B) its absorbance/emission 

spectrum. Adapted from Rohan et al.35 (C) Depiction of experimental design. Structure of a VGSC is 

located in the membrane, RubpyC17 is thought to embed in the membrane through its C17 tail and 

create a local depolarization near the VSD of the channel or even directly modulate the VSD (PDB: 

3RVY). 

 

4.3 Results and discussion 

4.3.1 Optimization of TEVC protocol for Nav channels using the OpusXpress 

The OpusXpress is a medium-throughput instrument that allows for two-electrode 

voltage clamp experiments on eight cells at a time. This experimental set up is therefore often 

used for measuring the function of ligand-gated ion channels at a fast pace.36 Generally, such 
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channels reach a steady state and currents can be averaged over about 20-50-ms, which allows 

for accurate current recordings ranging from 0.2 A up to 10 A. In contrast, Nav channels 

demonstrate remarkably fast activation and inactivation, all within about a 10-ms timescale.37 

This poses challenges for our group’s conventional, experimental setup. Therefore, some 

degree of experimental optimization was first necessary.  

To accurately record Nav currents, an exceptionally fast clamp is necessary. To achieve 

this, several aspects of the model system had to be adjusted. 1) To minimize the capacitive 

transient and consequently allow a fast clamp, few channels on the membrane are desired that 

generate minimal amounts of current (max. ~5 A). Figure 4.3A is an example of an 

unsuccessful voltage clamp due to high ionic currents (-38 A). 2) The access resistance 

comprises the resistance of the cell membrane and the electrodes used. To minimize the access 

resistance, low-resistance electrodes are used (0-0.3 m compared to 1-4 m for ligand-gated 

ion channels). Figure 4.3B and C show wave forms obtained using either 1.5 m or 0.1 m 

electrodes, respectively. Figure 4.3B shows ringing in the wave form, which impairs accurate 

reading of the signal. 3) After several recordings the voltage wave forms obtained from the 

eight different head stages were compared and significant variability in voltage-clamp accuracy 

was observed. Some head stages consistently differed by 3 to 5 mV from the command 

voltage. For future experiments, it was then decided to use only one head stage to enhance 

reproducibility (1-2 mV error). 
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Figure 4.3 | Optimization of voltage clamping. Upper figure depicts the voltage wave form, lower 

figure depicts the corresponding wave form. Ionic sodium current is an inward current and therefore 

by convention a negative current. (A) Voltage clamp of cells showing ~33 A. (B) Voltage clamp of 

cells showing ~3 A, using 1.5-m glass electrodes are used. (C) Voltage clamp of cells expressing 

~3.7 A, using 0.1-m glass electrodes are used. (D) Similar expressing oocytes as in C, using 0.1 m 

glass electrodes and P/4 method subtraction. 

 

A commonly used method to eliminate or at least minimize the capacitive 

transient from the wave form is to apply a P/4 subtraction. This P/4 method involves an 

additional voltage jump event preceding the experiment’s protocol that is identical to that of 

the protocol, except that the holding potential is more negative and the voltage jumps are only 

one quarter of the amplitude of the command voltage steps.38,39 A schematic representation is 

shown in Figure 4.4. For example, in a desireable protocol the holding potential is -100 mV, 

and the membrane is depolarized with 10-mV increments up to 20 mV. The P/4 method 

would start at -170 mV with increments of 2.5-mV ending at -140 mV. Presumably, the 

channels will not open at these hyperpolarized potentials and the only current observed will 

be the capacitive current. The recorded capacitive currents during the P/4 procedure are then 

multiplied by four and subtracted from the actual wave forms, in order to correct for the 
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expected capacitive transients during the command voltage application. Unfortunately, when 

this method was applied to our experiments, the capacitive current was never completely 

eliminated, and in some cases disturbed the signal even more (Figure 4.3D). Several different 

settings for the P/N subtractions were applied, but none gave desirable results. We therefore 

decided not to employ the P/N method for future recordings on the OpusXpress. 

 

Figure 4.4 | Schematic representation of the P/4 method. Vh is the holding potential, Vn is the 

holding potential during P/4 procedure and P is the voltage jump/step. 

 

4.3.2 Expression of rat Nav 1.4  subunits and heteromers with 1 

As described earlier, no previous study has applied the OpusXpress to record VGSC 

currents. To confirm that our data represent wild type currents and kinetics, the next step was 

to express the wild type -subunit and the wild type --heteromer and compare our findings 

with previous studies. Although we are most interested in modulating Nav 1.6 channels, we 

decided to start by optimizing our experimental setup using Nav 1.4 channels, as previous 

studies have shown that Nav 1.4 is more readily expressed in Xenopus leavis oocytes. Figure 4.5 

shows typical wave forms of the Nav1.4  subunit alone (A) and responses from cells injected 

with mRNA for the  and  subunits in a 5:1 ratio (B). As we expected from previous studies, 

we observe a significant change in inactivation kinetics ( = 15 ms compared to 4 ms) when 

the  subunit is co-expressed. 

Vn 

Vh 

P/4 

P 
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Figure 4.5 | Representative wave forms of sodium channel currents. (A) Nav1.4  subunit only, 

(B) Nav1.4 -heteromer (injected mRNA in 5:1 ratio) and (C) Nav1.4IR, slow-inactivating mutant 

(F1304Q). 

 

Our goal is to photochemically control activation of the VGSCs. Therefore, we are 

most interested in parameters that determine activation kinetics and in particular creating a 

left-shift in the half-activation potential (V0.5). A left shift indicates that the channels are 

activated at a lower potential than the wild type response (channels will open earlier upon 

depolarization). The half-activation potential (V0.5) and the corresponding slope (k-factor) can 

be determined from a conductance versus membrane potential (G-V) plot. A typical 

experiment comprises depolarizing the membrane potential from -100 mV up to 20 mV and 

recording the resulting ionic current that is generated upon opening of the channels in 

response to the depolarization. Another diagnostic tool is the steady-state inactivation (SSI) 



 

 

105 

curve. This plot presents the current amplitude resulting from a test pulse at -20 mV (at which 

conductance should be maximal), as a function of a variable conditioning pulse given 

immediately before the test pulse. Effectively, this plot is a representation of what proportion 

of the channel population is inactivated by the prepulse. For example, if the test pulse only 

reveals a conductance that is 20% of the maximum conductance after a conditioning pulse at 

-50 mV, this means that 80% of the ion channels transitioned into the inactive state during 

the conditioning pulse. Changes in SSI parameters are thus a good indicator of stabilization of 

the activate state. A more stabilized open state will result into a right shift of the SSI. The 

protocols used to obtain the G-V and SSI plots are depicted in Figure 4.6A and B. For the 

G-V plot, the cells were subjected to step polarizations of 5-mV increments from -100 mV to 

0 mV (Figure 4.6A). Sodium conductances were determined from peak currents and plotted 

against the corresponding membrane potentials (Figure 4.6C: : black, -: blue). For the 

SSI plot, the cells were subjected to a test pulse at -20 mV after a conditioning pulse at varying 

depolarizations ranging from -100 mV to 20 mV. The normalized peak currents are plotted 

against the potentials of the conditioning pulses (Figure 4.6D; : black, : blue).  
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Figure 4.6 | Voltage jump protocols for G-V and SSI plots. Voltage-jump protocols for the G-V 

(A) and SSI plots (B). G-V (C) and steady state inactivation (D) Nav1.4  (black), Nav1.4  heteromer 

(blue) and Nav1.4 IR (green). Every fit represents one cell. 

 

The calculated parameters for both activation and inactivation of the -heteromer 

closely resemble those described previously by Pless et al.40  and Islas et al.41 (Table 1). The -

subunit alone rendered a similar V0.5 of activation as for , but a distinct k-factor and severely 

deviating values for the inactivation kinetics. This is also clear from Figure 4.6D, where only 

the -heteromer forms a good fit to the Boltzmann equation. Perhaps for the  only, the 

test pulse at -20 mV does not generate the maximum conductance (see G-V Figure 4.6C). A 

test pulse of -10 mV might yield better results. 
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Table 4.1 | Voltage dependence parameters of  and  channels. Values are shown as mean ± 

SEM. WT: wild type. 

rNav1.4 G-V   SSI   

Construct V0.5 (mV) k-factor N 
|Imax| 

(A) 
V0.5 (mV) k-factor N Ca2+ 

α -28 ± 2.0 5.3 ± 0.9 14 1.0-6.0 -98 ± 3.0 14 ± 1.6 9 - 

α -23 ± 3.7 3.4 ± 1.1 4 1.0-4.0 -89 ± 5.7 19 ± 0.6 3 + 

αβ1, 5:1 -32 ± 2.6 3.8 ± 0.9 3 4.0-5.0 -66 ± 2.0 4.0 ± 0.2 2 - 

αβ1, 5:1 -27 ± 1.9 3.5 ± 0.3 11 0.8-5.0 -56 ± 1.3 4.5 ± 0.5 11 + 

α(F1304Q) -27 ± 3.3 6.4 ± 1.1 9 1.5-5.5 -38 ± 16.8 18 ± 9.2 5 - 

α(F1304Q) -21 ± 0.19 5.0 ± 0.2 23 0.5-7.0 -40 ± 0.9 17 ± 3.9 2 + 

α(F1304Q) 

β1 5:1 
-25 ± 3.2 4.0 ± 0.3 9 1.4-4.0 -31 ± 0.9 6.5 ± 1.4 9 + 

                 

αβ1, 5:140  -26 ± 0.5 3.0 ± 0.1 - - -53 ± 0.5 5.7 ± 0.1 - + 

αβ1, 5:139  -33 ± 0.2 3.1 ± 0.1 - - -62 ± 0.3 4.7 ± 0.1 - - 

α39  -26 ± 0.5 1.8 ± 0.3 - - -55 ± 0.4 5 ± 0.3 - - 

 

At this point the most relevant information is observed in the first part of the wave 

form that exhibits the activation of the channels. To achieve better reproducibility, we made 

one point-mutation in the IFM motif in the intracellular loop connecting D3 and D4 at 

position F1304 that previously has been reported in rat Nav 1.2 (equivalent residue: F1203) to 

prolong inactivation significantly, but not affect voltage dependence of activation.42 

Comparison of inactivation of the mutant compared to wild type  subunit shows substantially 

slower inactivation (Figure 4.5C), but no significant change in activation dependence 

parameters (V0.5 = -28.3 mV ± 2.0 for  and -27.3 mV ± 3.3 for  F1304Q in ND96+ without 

Ca2+) (Table 4.1). Cell health and favorably small leak currents are better maintained in Ca2+ 

supplemented buffer, leading to improvements in data reproducibility. Therefore, subsequent 

experiments were performed using Ca2+-supplemented ND96. 

4.3.3 Functional effects of RubpyC17 on Nav1.4 channels 

To determine if RupbyC17 affects channel function in the absence of a sacrificial 

electron donor or acceptor, conductance curves were obtained from cells expressing Nav1.4 
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IR in the presence of RubpyC17. The voltage clamp protocol that was used for this experiment 

(Figure 4.7A) comprises four separate voltage ‘jump’ events. Each event consists of 

membrane potential changes starting at -100 mV up to +20 mV in increments of 5 mV. 

Briefly, the first event was performed in buffer without RubpyC17 and therefore 

serves as a reference. The second event occurred directly after application of RupbyC17 to the 

bath (“No light”). After 30-s of incubation, the oocyte was illuminated with a 470 nm LED 

for 30 s, directly followed by the third voltage-jump event while continuously illuminated for 

a total of 60 s (“470 nm light” in Figure 4.7, Table 4.2). The oocyte bath was then perfused 

for 1 min with- ND96 (no RubpyC17 present), followed by voltage jump event four. After an 

additional 4 min perfusion the fifth and last voltage jump occurred (“Post 5 min wash”). 

 To gain insight into the concentration dependence of the effects of RubpyC17 

application, this procedure was performed in the presence of a range of concentrations. 

Application of increasing concentrations of RubpyC17 (10 μM, 50 μM, 100 μM) resulted in a 

right-shifted G-V curve of 4 mV, 8 mV, and 9 mV respectively. This suggests that the channels 

required a greater degree of depolarization to open. Additional irradiation for 52 s with 470 

nm light increased that right shift to 5 mV, 11 mV, and 14 mV for 10 M, 50 M, and 100 

M respectively (Figure 4.7C). Perfusion with buffer for 5 min resulted in a slight recovery 

for 50 M, and complete recovery for 10 M. The k-factors did not substantially change under 

these conditions. From this experiment we concluded that at concentrations upwards of 10 

μM, RubpyC17 either directly or indirectly interacts with the Nav1.4 IR, resulting in an 

increased V0.5. Thus, the presence of RubpyC17 at concentrations over 10 μM appears to affect 

the channel in such a way that it favors the closed state. This effect appears to be irreversible 

at 100 M on this time scale. To minimize this effect, we decided to use 5 μM of RubpyC17 

for future experiments. 
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Figure 4.7 | Functional effects of RubpyC17 at various concentrations at Nav1.4 IR. (A) Typical 

voltage-jump protocol. Rectangles with lines are symbols for voltage-jump events, VG1: voltage-jump 

event 1, blue bar indicates irradiation with 470 nm light, circles: perfusion of recording chamber with 

ND96. Boxed texted underneath voltage jump events refer to labels used in B and C for the 

corresponding recordings. (B) G-V plot presenting the averaged, normalized conductance of oocytes 

upon irradiation with 470 nm light at indicated concentrations of RubpyC17 fitted to a Boltzmann 

equation. (C) Shift in V0.5 observed during different voltage jumps. A positive shift is an increase in 

V0.5 that corresponds to a right shift in the G-V plot. Labels correspond to events depicted in A. 

 

Table 4.2 | V0.5 and slope values for Nav1.4 IR in presence of different concentrations of 

RubpyC17. 

[RubpyC17] 

(μM) 
Time point V0.5 (mV) Slope ΔV0.5 |Imax| (μA) N 

0 - -21 ± 0.19 5.0 ± 0.2 0 0.5-7.0 23 

10 No light -17 ± 0.43 4.6 ± 0.4 4 1.0-4.0 4 

10 470 nm light -16 ± 0.42 4.5 ± 0.4 5 1.0-4.0 4 

10 Post 5 min wash -18 ± 0.55 5.1 ± 0.5 3 1.0-4.0 4 
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50 No light -13 ± 0.23 4.9 ± 0.2 8 0.6-2.5 3 

50 470 nm light -10 ± 0.49 4.9 ± 0.4 11 0.6-2.5 3 

50 Post 5 min wash -11 ± 0.81 5.1 ± 0.7 10 0.6-2.5 3 

100 No light -12 ± 0.23 4.8 ± 0.2 9 2.2-2.5 2 

100 470 nm light -6.7 ± 0.25 4.6 ± 0.2 14 2.2-2.5 2 

100 Post 5 min wash -4.6 ± 0.29 4.6 ± 0.2 16 2.2-2.5 2 

 

Next, we aimed to determine if we could influence the RubpyC17-induced V0.5 shift 

by adding a reductant or an oxidant. For this experiment, 2 mM ascorbic acid (AA), a 

reductant, was supplemented to the ND96 perfusion buffer throughout all voltage jumps. AA 

would serve as an electron donor to favor reduction of the Ru2+ complex upon light absorption 

to Ru1+ over oxidation to Ru3+. This change in charge of the complex upon irradiation with 

light might be expected to render a leftward shift in V0.5 resembling the effects seen previously 

for PUFAs. 

However, upon application of 5 M RubpyC17 and 2 mM ascorbic acid to the oocyte, 

a slight increase of 4 mV in V0.5 was observed (Figure 4.8, Table 4.3). Upon irradiation with 

470 nm light, the V0.5 shift increased to 9 mV and a substantial increase in the slope was 

observed. Although changes in the slope can sometimes indicate unstable clamping, these cells 

were properly clamped. The right shift in V0.5 persisted even 5 min after irradiation, which 

suggests an irreversible effect. It is unclear whether this effect is due to irradiation. Future 

experiments without irradiation could provide more insight. The presence of 2 mM AA alone 

resulted in a minor left shift in V0.5 (Table 4.3). 



 

 

111 

 

Figure 4.8 | Functional effects of RubpyC17 in presence of AA or FeCN at Nav1.4 IR (A) G-V 

plot of Nav1.4 IR channels with RubpyC17 and reductant (AA) (B) G-V plot of Nav1.4 IR channels 

with RubpyC17 and an oxidant (ferricyanide). Duration of irradiation with 470 nm light was ~60s.  

 

Table 4.3 | V0.5 and slope values for Nav1.4 IR in presence of RubpyC17 and AA or FeCN. 

Compound Time point V0.5 (mV) Slope ΔV0.5 |Imax| (μA) N 

-  -21 ± 0.19 5.0 ± 0.2 0 0.5-7.0 23 

AA  -23 ± 0.32 5.1 ± 0.3 -2 1.5-5.0 3 

AA Irradiated -24 ± 0.41 5.0 ± 0.4 -3 1.5-5.0 3 

AA 
Post 5 min 

washout 
-23 ± 0.34 5.1 ± 0.3 -2 1.5-5.0 3 

RubpyC17 + AA  -17 ± 0.99 7.8 ± 0.9 4 0.9-2.2 6 

RubpyC17 + AA Irradiated -12 ± 2.1 11 ± 1.6 9 0.9-2.2 6 

RubpyC17 + AA 
Post 5 min 

washout 

-

9.9 
± 2.2 11 ± 1.6 11 0.9-2.2 6 

FeCN  -20 ± 0.22 4.6 ± 0.19 1 0.5-3.0 5 

FeCN Irradiated -16 ± 0.20 5.2 ± 0.2 5 0.5-3.0 5 
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FeCN 
Post 5 min 

washout 
-22 ± 0.21 4.6 ± 0.2 -1 0.5-3.0 5 

RubpyC17 + 

FeCN 
 -17 ± 0.24 5.7 ± 0.2 4 0.5-1.5 6 

RubpyC17 + 

FeCN 
Irradiated 

-

7.6 
± 0.34 7.0 ± 0.3 13 0.5-1.5 6 

RubpyC17 + 

FeCN 

Post 5 min 

washout 
-15 ± 0.24 5.9 ± 0.2 6 0.5-1.5 6 

 

 

In contrast, we expected that adding ferricyanide (FeCN) would serve as an electron 

acceptor to favor the oxidation of the Ru2+ complex upon light absorption to Ru3+ over 

reduction to Ru1+. We might expect the change from Ru2+ to Ru3+ to produce a right shift of 

V0.5.  Indeed, the presence of ferricyanide and RubpyC17 upon irradiation rendered a 4-mV 

right shift in V0.5. Upon irradiation, V0.5 increased to 13 mV (Figure 4.8, Table 4.3). Unlike 

the sustained right shift observed with AA, the V0.5 shift decreased during washout to 6 mV. 

Thus, these observations indicate a reversible, light-induced right shift in V0.5 in the presence 

of ferricyanide. We conclude that on the timescale studied here, RubpyC17 remains associated 

with the membrane, as a small right shift persists even after 5 min of perfusion. Only in the 

presence of both RubpyC17 and ferricyanide have we observed  a reversible, light-induced 

shift in V0.5. As a control, we followed the same protocol with ferricyanide alone (no 

RubpyC17) and a minor right shift was observed only upon irradiation (Table 4.3). Note that 

for convenience the pre-irradiation and 5 min washout values for AA and FeCN only in Table 

4.3 are not shown in Figure 4.8. 

 

 

 

 



 

 

113 

4.3.4 Functional effects of a series of Rubpy derivatives on VGSCs and VGKCs 

 

Figure 4.9 | Series of RubpyC17 derivatives. The standard reduction potential of the RubpyC17 is 

adjusted by substituting the bipyridine ligands with either electron-donating groups (top left) or 

electron-withdrawing groups (top right). Additionally, Ru was substituted for Ir (below left) and the 

C17 tail was substituted for oleic acid (below right). 

 

In a different approach to gain more insight into the RubpyC17 effect on V0.5, four 

derivatives of RubpyC17, differing in substitutions and overall charge, were designed and 

synthesized. The synthesis of these compounds was performed by Melanie Pribisko-Yen in 

the Grubbs group at Caltech. The derivatives are shown in Figure 4.9. Incorporation of 
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electron-donating groups at the 4- and 4’-positions and the 5- and 5’-positions on the 2,2’-

bipyridine ligands will decrease the reduction potential of Ru3+/2+ up to about 100 mV. 

Electron-withdrawing groups at those positions would yield an increase to a similar extent 

(Figure 4.9). 41–43 Also, alkyl groups will increase the driving force of electron transfer, favoring 

oxidation of the excited state of RubpyC17 (Ru2+ to Ru3+). The electron-withdrawing 

carboxylic acid groups might serve another purpose besides providing a higher reduction 

potential. As previously discussed, negatively charged head groups of phospholipids in the 

lipid membrane are necessary for proper channel function.21,23 Since RubpyC17 is overall 

positively charged, this might negatively interfere with the necessary movements of the 

voltage-sensing domain for channel activation. RubpyC17 containing carboxylic acids on the 

bipyridine ligands could alleviate this issue by interacting favorably with the positively charged 

arginine residues in the voltage sensor. Furthermore, in one of the compounds the Ruthenium 

is replaced by Iridium, which results in a net charge of 1+, instead of 2+. The fourth 

compound contains the same Ruthenium complex as RubpyC17 with the substitution of the 

C17 tail with oleic acid. We hypothesized that a PUFA might yield improved membrane 

incorporation and potentially better localization around the ion channels.  

Two compounds were tested for membrane incorporation into oocytes using 

microcsopy. Oocytes were injected with either Nav1.4 IR or Shaker IR mRNA and incubated 

in ND96+ for 24 hours. Next, cells were incubated for 15-20 min with either 5 μΜ RubpyC17 

or 10 μΜ RuOleic acid in ND96+ and rinsed three times with fresh ND96+  prior to imaging. 

Oocytes were not fixed, but imaged while in low level of buffer to prevent movement. Oocytes 

were imaged at 488 nm (RubpyC17) or 455 nm (RuOleic acid). Both RubpyC17 and RuOleic 

acid showed luminescence at the cell membrane upon irradiation (Figure 4.10 center and 

right column) in cells overexpressing either Nav1.4 channels or Shaker potassium channels. 
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Oocytes incubated with ND96+ only did not show luminescence (Figure 4.10 left column). 

Despite the lack of additional co-localization experiments with plasma membrane markers, 

this obsveration suggests both compounds incorporate into the plasma membrane. The lack 

of additional puncta inside the cell could suggest that RubpyC17 does not accumulate in the 

cell and form aggregates, although further microscopy would be necessary to verify this. 

 

Figure 4.10 | Microscopy images of Xenopus laevis oocytes labeled with RubpyC17 and 

RuOleic acid. Oocytes were incubated in ND96 supplemented with 5 μΜ RubpyC17 or 10 μΜ 

RuOleic acid for 15-20 min prior to imaging. 

 

Next, we performed voltage clamp experiments described in Figure 4.7A to evaluate 

changes in activation potential of Nav1.4 IR channels by the new Rubpy derivatives. For this 

analysis we focused only on the voltage jump events upon irradiation, as other voltage jumps 

did not render large deviations from the reference. As shown in Figure 4.11A and Table 4.4, 

RubpyC17-TM and RubpyC17-COOH combined with 470 nm light have no effect on the V0.5 

of Nav1.4 IR channels. This results suggest that neither the standard reduction potential nor 

the overall charge of the complexes plays a large role in the effects seen for RubpyC17. 
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IrbpyC17 also did not show any shift. However, RuOleic acid resulted in a rightshifted V0.5 

(ΔV0.5 8 mV) upon irradiation with 470 nm light, resembling the response of RubpyC17, see 

Figure 4.11A and Table 4.4. We expected to see better membrane incorporation for RuOleic 

acid as the C17 tail now contains one unsaturated bond, however the V0.5 shift did not equal 

or exceed that of RubpyC17, which suggests less membrane incorporation.  

RubpyC17-COOH, IrbpyC17, and RuOleic acid were also tested in the presence of 

AA. The V0.5 values for RubpyC17-COOH and RuOleic acid  increased marginally relative to 

the V0.5 without AA. The combination of IrbpyC17 and AA, however, resulted in a slight 

leftward shift (ΔV0.5 -4 mV). We decided not to pursue any experiments with concentrations 

larger than 50 μM, since we find those to have a detrimental effect on cell health.  

 

Figure 4.11 | Functional effects of RubpyC17 derivatives on Nav1.4 IR channels. (A) G-V plot 

of RubpyC17 and derivatives. (B) G-V plot of RubpyC17-COOH, IrbpyC17, and RuOleic acid in 

combination with 2 mM AA. RubpyC17, -COOH, and –TM were irradiated with 470 nm light for 

~60s. IrbpyC17 and RuOleic acid were irradiated with 455 nm light for ~60s. All compounds were 

applied at a 50 μM concentration, except for RuOleic acid at 5 μM. 
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Table 4.4 | V0.5 and slope values for Nav1.4 IR in response to RubpyC17 derivatives. All 

compounds were applied at a 50 μM concentration, except for RuOleic acid at 5 μM. AA was applied 

at 2 mM. 

Compound V0.5  Slope ΔV0.5 |Imax| (μA) N 

- -21 ± 0.19 5.0 ± 0.2 0 0.5-7.0 23 

RubpyC17 -7.7 ± 0.72 5.4 ± 0.6 13 0.6-2.5 4 

RubpyC17-COOH -21 ± 0.30 5.0 ± 0.3 0 0.9-2.5 6 

RubpyC17-TM -22 ± 0.51 4.9 ± 0.4 -1 2.0-6.0 3 

IrbpyC17 -23 ± 1.02 4.6 ± 0.9 -2 0.6-1.3 5 

RuOleic acid -13 ± 0.41 5.8 ± 0.4 8 1.5-7.0 5 

RubpyC17-COOH + AA -18 ± 0.30 4.8 ± 0.3 3 2-3.5 4 

RubpyC17-TM + AA NR ±  NR ±     

IrbpyC17 + AA -25 ± 0.43 4.4 ± 0.4 -4 1.5-8 5 

RuOleic acid + AA -11 ± 0.55 6.4 ± 0.5 10 2.0-3.0 3 

 

Next, we set out to determine if these compounds affect VGKCs in a similar fashion. 

Therefore, we repeated the voltage jump experiments (Figure 4.7A) with Shaker IR potassium 

channels (SHIR) to determine changes in activation potential. The results are shown in Figure 

4.12 and Table 4.5. Similar to what was observed for Nav1.4, neither RubpyC17-COOH or 

IrbpyC17 caused a meaningful shift in V0.5. RubpyC17, at a 5 μM concentration, resulted in a 

28 mV ΔV0.5. This shift is much larger than what we previously observed for Nav1.4, which 

was 13 mV at 50 μM RubpyC17. We also tested these compounds and RuOleic acid in 

combination with AA. RubpyC17-COOH and IrbpyC17 demonstrated small V0.5 shifts, 

resembling those of Nav1.4 channels, while RubpyC17 and RuOleic acid in combination with 

AA show the biggests shifts, but not exceeding those seen without AA (Table 4.5). 
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Figure 4.12 | Functional effects of Rubpy derivatives on Shaker IR channels. (A) I-V plot of 

RubpyC17, RubpyC17-COOH, and IrbpyC17. (B) I-V plot of RubpyC17, RubpyC17-COOH, 

IrbpyC17, and RuOleic acid in combination with 2 mM AA. RubpyC17, -COOH, and –TM were 

irradiated with 470 nm light for ~60s. IrbpyC17 and RuOleic acid were irradiated with 455 nm light 

for ~60s. RubpyC17-COOH and IrbpyC17 were applied at a 50 μM concentration, and RubpyC17 

and RuOleic acid at 5 μM. 

 

Table 4.5 | V0.5 and slope values for Shaker IR in response to RubpyC17 derivatives. RubpyC17-

COOH and IrbpyC17 were applied at a 50 μM concentration, and RubpyC17 and RuOleic acid at 5 

μM. AA was applied at 2 mM. 

Compound V0.5 Slope ΔV0.5 |Imax| (μA) N 

- -5.4 ± 0.34 16 ± 0.3 0 1.0-18 32 

RubpyC17 23 ± 2.0 20 ± 1.9 28 9.0-18 4 

RubpyC17-COOH -3.1 ± 1.0 16 ± 0.9 2.3 2.5-15 4 

IrbpyC17 -8.4 ± 0.59 15 ± 0.5 -3 4.0-16 4 

RubpyC17 + AA 18 ± 1.1 16 ± 1.0 23 3.5-12 4 

RubpyC17-COOH + AA -9.5 ± 0.77 14 ± 0.7 -4.1 3.0-12 4 

IrbpyC17 + AA -2.4 ± 0.63 20 ± 0.6 3 8.0-12 4 

RuOleic acid and AA 9.4 ± 0.72 15 ± 0.7 17 1.0-4.0 5 
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As previously seen in Figure 4.7C and Figure 4.8A, the RubpyC17-induced rightward 

ΔV0.5 persists even after 5 min perfusion with buffer only. This was also the case for the 

RuOleic acid-induced shift. IrbpyC17, however, barely caused a shift upon irradiation after 60 

s incubation as seen in Figure 4.11 and 4.12, but a rightward shift did arise after the 5 min 

washout. These observations raised two questions: 1) is a longer incubation time needed to 

reach the maximum ΔV0.5 at the used concentration? and 2) does the Rubpy (or Irbpy) washout 

of the membrane eventually or is the consequent right shifted V0.5 irreversible? In order to 

answer these questions we performed the same voltage jump experiments with longer 

incubation times (5, 10, 15 min), and longer washout times (10, 15, 25 min) (Figure 4.13A). 

In previous experiments oocytes were incubated with in the Rubpy solution for about 1 min 

total, and the washout time was 5 min. Although we were able to record currents from oocytes 

at all these conditions, oocytes typically started dying during longer incubation (>10 min), and 

washout (>15 min) times. For these experiments we focused on RubpyC17 and IrbpyC17 

only, because both demonstrated persisting or increasing right shifts in V0.5 after 5 min 

washout. 

Figure 4.13B shows the V0.5 shifts recorded after various incubation durations, and 

Figure 4.13C shows those after increasing wash durations. For RubpyC17 recordings from 

Nav1.4 IR channels V0.5 shifts increased with longer incubation times (up to 35 mV), while 

those from SHIR channels were the same for 1 and 5 min (19 and 20 mV). IrbpyC17 

demonstrated a very small left shift after 1 min incubation, but a slight right shift after 5 min 

in both channel types. However, these shifts are too small to be meaningfully different (2.0 

and 3.7 mV). 

Regarding the extended washout times, no recovery in V0.5 appears to occur for Nav1.4 

channels as all three 10, 15 and 25 min durations provide a comparable shift of 30, 29, 33 mV 
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respectively. In contrast, IrbpyC17 does show a substantially lower shift after 15 min washout 

relative to a 5 min washout, suggesting reversible incorporation into the plasma membrane for 

IrbpyC17. 

 

Figure 4.13 | RubpyC17 and IrbpyC17 effects at various incubation and washout durations. (A) 

Experimental protocol from Figure 4.7A with incubation and washout moments highlighted. (B) Bar 

graph of measured ΔV0.5 values after irradiation with 470 nm light at various incubation durations. (C) 

Bar graph of measured ΔV0.5 values after various wash durations. During the wash step oocyte 

chambers are perfused with fresh ND96. A positive shift is an increase in V0.5 that corresponds to a 
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right shift in the G-V plot. All other aspects of the experiment protocol remain the same as previously 

described. RubpyC17 and IrbpyC17 were applied at a 5 μM and 50 μM concentration respectively. * 

indicates values not recorded. 

 

Table 4.6 | ΔV0.5 and slope values for Nav1.4 and Shaker IR in response to RubpyC17 and 

IrbpyC17 at various incubation and washout durations. RubpyC17 and IrbpyC17 were applied at 

a 5 μM and 50 μM concentration respectively. 

VGIC Compound Duration V0.5 Slope ΔV0.5 |Imax| (μA) N 

Nav1.4IR -  -21 ± 0.19 5.0 ± 0.2 0 0.5-7.0 23 

SHIR -  -5.4 ± 0.34 16 ± 0.3 0 1.0-18 32 

  Incubation         

Nav1.4IR RubpyC17 1 min 0.26 ± 2.5 11 ± 1.4 21 1.0-4.0 6 

Nav1.4IR RubpyC17 5 min 8.5 ± 2.2 8.8 ± 1.0 30 2.5-5.0 4 

Nav1.4IR RubpyC17 10 min 6.1 ± 1.7 8.3 ± 0.9 27 1.2-4.0 2 

Nav1.4IR RubpyC17 15 min 14 ± 3.7 8.1 ± 1.3 35 2.5-6.0 2 

Nav1.4IR IrbpyC17 1 min -22 ± 0.96 5.3 ± 0.8 -1.0 0.6-1.3 5 

Nav1.4IR IrbpyC17 5 min -19 ± 0.43 5.4 ± 0.4 2.0 1.4-3.0 4 

  Wash         

Nav1.4IR RubpyC17 5 min -2.2 ± 1.7 10 ± 1.1 19 1.0-4.0 6 

Nav1.4IR RubpyC17 10 min 8.8 ± 1.8 9.1 ± 0.8 30 4.0-5.0 4 

Nav1.4IR RubpyC17 15 min 8.0 ± 1.2 7.5 ± 0.6 29 2.5-5.0 3 

Nav1.4IR RubpyC17 25 min 12 ± 0.59 7.8 ± 0.2 33 3.5 1 

  Incubation         

SHIR RubpyC17 1 min 20 ± 1.5 19 ± 1.4 25 1.2-4.0 6 

SHIR RubpyC17 5 min 19 ± 1.4 15 ± 1.2 24 3.0-7.0 3 

SHIR IrbpyC17 1 min -7.7 ± 0.55 16 ± 0.5 -2.3 4.0-16 5 

SHIR IrbpyC17 5 min -1.7 ± 0.55 17 ± 0.5 3.7 3.0-5.0 5 

  Wash         

SHIR IrbpyC17 5 min 14 ± 1.6 23 ± 1.6 19 1.2-4.0 5 

SHIR IrbpyC17 15 min -3.4 ± 0.73 17 ± 0.7 2 3.0-8.0 5 

 

From the Rubpy derivatives studied here, the largest effects on V0.5 has still been 

observed for RubpyC17. To further investigate this, we performed voltage jump experiments, 

similar to those described earlier, after directly injecting RubpyC17 into the oocyte. We 

speculated that if RubpyC17 only incorporates into the outer leaflet of the plasma membrane, 

direct injection might give the opposite or no ΔV0.5 at all. If RubpyC17 does fully penetrate 

the membrane, it could interact with both the extracellular and intracellular faces of the ion 
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channels (Figure 4.14A). Direct injection would then likely result in a similar ΔV0.5 as observed 

earlier from incubating the oocyte in a RubpyC17 solution.  

 

Figure 4.14 | Functional effects after injection of RubpyC17 directly into oocytes expressing 

Nav1.4 IR. (A) Schematic view of RubpyC17 membrane flipping. (B) Bar graph of measured ΔV0.5 

values after irradiation with 470 nm light at various injection concentrations of RubpyC17. * indicates 

values not recorded. 

 

Oocytes were injected with 50 nL of a RubpyC17 solution in ND96 at various 

concentrations, 1, 5, 10, 100, and 200 μM. The negative control solution was supplemented 

with 0.08% DMSO, to control for trace amounts of DMSO in which the RubpyC17 stock 

solution was prepared. After 5 min or 1 hr incubation oocytes were subjected to the previously 

described voltage jump experiments (Figure 4.7A). The 5 min incubation at 1 μM resulted in 

a ΔV0.5 of -10 mV, but the control rendered a comparable shift. We reasoned that the oocytes 

need more time to recover post-injection, to adjust for the added volume and provide time to 

reseal the membrane from the puncture. Therefore, we extended the incubation time to 1 hr. 

Additionally, we continued the injections with higher concentrations of RubpyC17 to mimick 

the outside contreation used in previous experiments. A 50 nL injection of 100 μM and 200 
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μM should result in a intracellular concentration of 5 and 10 μM respectively. However, small 

shifts in V0.5 were observed as shown in Figure 4.14B and Table 4.7. The injection with the 

highest concentration (200 μM) only rendered a 3 mV right shift, which resembles the earlier 

observation of 5 mV in Figure 4.7. From these observations we conclude that RubpyC17 

fully incorporates into the membrane and is likely to interact with the channel from both the 

intracellular and extracellular side. 

 

Table 4.7 | ΔV0.5 and slope values for Nav1.4 in response to injected RubpyC17. 

[RubpyC17] Incubation 

time 

V0.5  Slope ΔV0.5 |Imax| (μA) N 

  -21 ± 0.19 5.0 ± 0.2 0 0.5-7.0 23 

0 5 min -33 ± 0.78 4.9 ± 0.7 -12 10-12 5 

1 μM 5 min -31 ± 0.39 4.0 ± 0.3 -10 5.0-7.0 3 

0 1 hr -23 ± 0.36 4.8 ± 0.3 -2 1.5-5.0 4 

5 μM 1 hr -25 ± 0.6 5.1 ± 0.5 -4 3.0-11 4 

10 μM 1 hr -23 ± 1.0 5.0 ± 0.9 -2 1.0-6.0 2 

100 μM 1 hr -20 ± 0.34 4.6 ± 0.29 1 1.4-5.0 4 

200 μM 1 hr -18 ± 0.88 3.7 ± 0.76 3 0.8-6.0 6 

 

Next, we decided to further explore the effects of RuOleic acid. Recall that the 

application of 5 μM RuOleic acid to both Nav1.4 channels and SHIR resulted in an irreversible 

right shift in V0.5 (Figure 4.11, 4.12, 4.13). After reanalyzing the current responses, we found 

that RuOleic acid also affects the maximum peak current for SHIR channels. This effect has 

not been observed for Nav1.4 channels. As shown in Figure 4.15A in the top waveform, 

application of RuOleic acid and AA cause a decrease in peak current (red) relative to the peak 

current recorded prior, and irradiation with 455 nm light increases the peak current. To test if 

this is due to the Rubpy-complex, we performed the voltage jump experiment with Oleic acid 

and AA as well. Oleic acid in combination with AA does yield a mild shift in V0.5 (2.4 mV) and 
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no change in peak current, as shown in Figure 4.15A bottom waveform and Table 4.8. This 

suggests that the peak current-effect is caused by the Ruthenium complex. 

 

Figure 4.15 | Functional effects of RuOleic acid and Oleic acid on SHIR channels. (A) Current 

waveforms of SHIR channels at +100 mV in presence of RuOleic acid and AA (top), and Oleic acid 

and AA (bottom). Recorded current prior to Rubpy application (black), recorded current after Rubpy 

application prior to irradiation (red), and recorded current after irradiation with 455 nm light (blue). 

(B) I-V plot of SHIR channels after prior to Rubpy application (black), after RuOleic + AA application 

and 455 nm light (green), Oleic acid + AA and 455 nm light (pink). All samples were irradiated with 

455 nm light for ~60s. 

 

Table 4.8 | V0.5 and slope values for Shaker IR in response to RuOleic acid with AA. RuOleic 

acid and Oleic acid at 5 μM, AA at 2 mM 

Compound V0.5 Slope ΔV0.5 |Imax| (μA) N 

- -7.1 ± 0.43 13.3 ± 0.40  1.0-4.0 5 

RuOleic acid and AA 9.6 ± 0.67 14.7 ± 0.60 17 1.0-4.0 5 

Oleic acid and AA -4.7 ± 0.61 15.6 ± 0.56 2.4 3.0-6.7 4 
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To determine if the light-dependent increase in peak current is reversible, we 

conducted a dark/light cycle experiment. This protocol resembles the one discussed in Figure 

4.7A, but includes an extended washout phase with four more voltage jump events and 

additional irradiation steps. First, we performed a control voltage jump (black) to create a 

baseline peak current per oocyte, which we followed by applying 5 μM RuOleic acid. After 5 

min incubation a voltage jump was performed (red), followed by 40s irradiation with 455 nm 

light and a third voltage jump (blue). From this point fresh buffer was perfused into the oocyte 

chamber (no RuOleic acid) and every 400s the cell was briefly irradiated with 455 nm light up 

to three times. In between irradiations a voltage jump was performed every 100s, while fresh 

buffer was perfused. 

We observed a gradual decrease (~17%) in peak current in the dark, but an increase 

(~5%) in current upon irradiation and any subsequent irradiation, as shown in Figure 4.16A 

and Table 4.9. As a control experiment we performed the same sequence of voltage jumps, 

without irradiation (Figure 4.16B). We observed a comparable decrease in peak current (13%) 

as shown in Figure 4.16A. The ‘irradiation step’ does not yield an increase, as expected, but 

we did observe a gradual increase in peak current (15%) upon perfusion with buffer. A small, 

but gradual current increase is often seen when recording currents on ion channels for 

extended periods of time. In the second control experiment no RuOleic acid was applied. 

Indeed, no decrease in peak current was observed after application of buffer, neither did the 

peak current increase upon irradiation with 455 nm light. Here also, a gradual increase in peak 

current (19%) was observed over the course of the experiment.  
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Figure 4.16 | RuOleic acid dark/light cycle experiment showing differential effects on peak 

currents of SHIR. (A) Relative change in peak current as a function of time. Reference voltage jump 

(“buffer”, black), application of 5 μM RuOleic acid (red), irradiation with 455 nm light (blue), voltage 

jump after oocyte chamber perfusion with ND96 (no RuOleic acid) (grey). (B) Control experiment 1, 

similar to the first ‘cycle’ in A except without 455 nm light irradiation. (C) Control experiment 2, similar 

to the first ‘cycle’ of the experiment in A, except without RuOleic acid application.  

 

Based on these results, we conclude that the RuOleic acid persists in the membrane 

and, in addition to a rightward shift in V0.5, causes a decrease in peak current. We can 

temporarily attenuate this decrease by irradiation with 455 nm light. 

 

Table 4.9 | Relative changes in SHIR peak current during RuOleic acid dark/light cycle 

experiment. Values are reported as mean ± SEM. 

Step Relative change in peak current (%) |Imax| (μA) N 

Buffer 0 ± 0 3.6-13 9 

RuOleic acid application -17 ± 0.83 3.1-9.9 9 

455 nm irradiation 5.3 ± 2.2 3.9-12 9 

60s wash -2.3 ± 2.6 3.5-11 9 

160s wash -8.6 ± 2 3.3-10 9 

260s wash -12 ± 2.1 3.2-9.7 9 

360s wash -15 ± 2.2 3.2-9.4 9 

455 nm irradiation (2) 0.38 ± 2.4 3.7-11 8 

60s wash -14 ± 2 3.2-9.9 7 

160s wash -18 ± 2.2 3.1-9.1 7 

260s wash -21 ± 2.1 3-8.8 7 

360s wash -22 ± 2.3 3-8.5 7 

455 nm irradiation (3) -7.0 ± 2.8 3.4-11 7 

60s wash -15 ± 2.5 3-11 7 

160s wash -18 ± 2.8 2.9-11 7 

260s wash -18 ± 3 2.9-11 7 

360s wash -22 ± 2.9 2.8-10 6 

455 nm irradiation (4) -3.8 ± 5.1 3.2-13 6 

Control 1 – No irradiation 

Buffer 0 ± 0 5.5-31 6 

RuOleic acid application -13 ± 3.3 4.5-27 6 

No 455 nm irradiation -14 ± 3.4 4.4-27 6 

60s wash -7.2 ± 4.9 4.6-29 6 

120s wash -4.0 ± 4.6 4.6-31 6 

180s wash -2.0 ± 5.3 4.7-32 6 

240s wash 0.83 ± 4.8 4.8-33 6 
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480s wash 2.3 ± 4.5 5-34 6 

No 455 nm irradiation (2) 2.3 ± 4.5 5-34 6 

Control 2 – No RuOleic acid application 

Buffer 0 ± 0 8.3-18 5 

No RuOleic acid application -2.8 ± 1.7 7.7-18 5 

455 nm irradiation -4.6 ± 1.9 7.6-18 5 

60s wash 4.4 ± 2.3 8.4-20 5 

120s wash 6.6 ± 3.4 8.5-20 5 

180s wash 9.4 ± 3.4 8.5-21 5 

240s wash 11 ± 3.7 8.6-22 5 

480s wash 15 ± 5.3 8.7-23 5 

455 nm irradiation (2) 19 ± 4.5 9.2-24 5 

 

4.4 Conclusions and future directions 

The ultimate goal of this study was to photochemically control the activation of the 

VGSCs and thus make progress towards developing a RubpyC17-based photoswitch that 

could be used in an artificial retina. To evaluate Rubpy-induced changes in ion channel 

function we expressed both Nav1.4 and SHIR channels in Xenopus laevis oocytes and performed 

two-electrode voltage clamp (TEVC). After optimization of TEVC protocols we were able to 

record currents from Nav1.4 channels with the OpusXpress, however not in the medium-

throughput fashion as one can with ligand-gated ion channels. We found that RubpyC17 

causes an increasing, irreversible rightward shift in V0.5 with increasing concentrations. 

Application of RubpyC17 in combination with either a reductant or oxidant also yields a right 

shift in V0.5 in Nav1.4 channels. Confocal imaging confirmed cell membrane incorporation of 

both RuOleic acid and RubpyC17. From the derivatives tested, only RuOleic acid 

demonstrated a meaningful function effect: a right shift in V0.5 in both Nav1.4 and SHIR 

channels as well as a decrease in peak current for SHIR channels. This decrease in peak current 

can be temporarily attenuated by irradiation of 455 nm light. Light alone does not alter the 



 

 

129 

peak current. Oleic acid alone does not yield a right shift in V0.5, nor a difference in maximum 

current response.  

Future studies could include subjecting -1-heteromers to RubpyC17. In Table 1 we 

have shown different inactivation kinetics for the heteromer and -subunit alone. Dependent 

upon the sites of specific interaction of RubpyC17 with the -subunit, modulation by the  

subunit could be altered by the ruthenium complex. Additionally, looking at the effects of 

RubpyC17 on other VGSC subtypes could provide more useful information, since any direct 

modulation could be subtype dependent.  

4.5 Experimental procedures 

Chemicals 

The compounds: RupbyC17, RubpyC17-TM, RubpyC17-COOH, IrbpyC17, and 

RuOleic acid were synthesized by Melanie Pribisko-Yen in the Grubbs Lab at Caltech. 

Ascorbic acid and potassium ferricyanide were commercially obtained (Sigma). 

Molecular biology 

The rat Nav1.4 gene was in a pBSTA plasmid. To obtain the inactivation resistant 

mutant, position F1304 was mutated by conventional site-directed mutagenesis to code for 

Glutamine (Gln). The Shaker IR gene, which contains a T449V mutation to limit C-type 

inactivation, was also in the pBSTA plasmid. Both constructs were a generous gift of the Ahern 

Lab at the University of Iowa. After DNA linearization with NotI, mRNA was transcribed 

using an mMessage mMachine T7 kit (Ambion) and purified using a RNeasy kit (Qiagen). 

Oocyte preparation and RNA injection 

Stage V-VI Xenopus laevis oocytes were harvested and injected with RNA as 

previously described. 32,34  Oocytes were stored in filtered ND96 solution supplemented with 

0.5% gentamicin: 96 mM NaCl, 2 mM KCl, 1 mM MgCl2*6H2O, 5 mM HEPES, pH 7.5. For 
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a typical experiment, oocytes were injected with 0.5 ng mRNA in a total volume of 50 L, 

followed by incubation at 18˚C for 24 hours to allow expression of the protein and transport 

to the membrane. 

Electrophysiology and light-stimulation 

Two-electrode voltage clamp experiments were performed using an OpusXpress 6000A 

(Axon Instruments). Voltage-clamped sodium currents were recorded using two glass 

microelectrodes with resistances between 0.1 and 0.3 M (backfilled with 3 M KCl). 

Recordings were performed at 18-20˚C in ND96 solution (see above). The recording chamber 

was automatically perfused with ND96 at a flow rate of 3 mL/min and the RupbyC17 

solutions were applied separately at a flow rate of 2 mL/min (chamber volume = 500 μL). 

Sodium currents were generated by step depolarizations from a holding potential of -100 mV 

to +20 mV, unless otherwise indicated. Only cells with minimal leak currents ( 0.1 A) were 

used. Data were digitized at 125 Hz and filtered at 5000 Hz. Light stimulation was performed 

using a 470 nm (M470L1, 625 mW, Thor Labs) or 455 nm (M455L3, 900 mW, ThorLabs) 

mounted LED at full intensity. 

Data analysis 

Current signals were analyzed using pClamp software version 10.2 (Axon Instruments) 

and data were further processed using Microsoft Excel v14.4.7, KaleidaGraph v4.5, and 

Graphpad Prism 8. Sodium conductances (GNa) were determined from peak tail currents 

generated by step depolarizations starting at -90 mV to +20 mV with 5 mV increments using 

the equation: 

𝐺𝑁𝑎 =
𝐼𝑁𝑎

(𝐸𝑚 − 𝐸𝑟𝑒𝑣)
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Where GNa is the sodium conductance, INa is current amplitude, Em is the membrane potential 

and Erev is the reversal potential calculated for each individual cell. The reversal potential was 

calculated by extrapolating a linear regression of the I-V trace starting from the maximal 

current amplitude upwards to higher depolarizations. Individual activation curves (G-V) were 

normalized to the maximum current amplitude per cell and then fitted using the Boltzmann 

distribution equation: 

𝐺𝑛𝑜𝑟𝑚 =
1

1 + 𝑒
𝑉−𝑉0.5

𝑘

 

where Gnorm is the normalized sodium conductance, Vm the membrane potential of that 

depolarization step, V0.5 is the membrane potential at which half of the channel population is 

activated (in the open conformation), k is the slope. Calculated parameters V0.5 and k from 

individual cells were averaged and are shown as mean  SEM. Current responses from 

Potassium channels were determined from step depolarizations from -80 mV to +100 mV. 

Current responses were then normalized to the maximum current amplitude per cell and fitted 

using the Boltzmann distribution equation. 

 Steady-state inactivation data were obtained using two pulses. First, a variable 

conditioning pulse was given (-120 mV to +20 mV, 500 ms duration), followed by a second 

‘test’ pulse to -20 mV of 15 ms duration. The current amplitude resulting from the second 

pulse was plotted as a function of the variable potential of the first conditioning pulse. These 

I-V curves were also fitted against the previously described Boltzmann distribution equation. 

Microscopy 

Live oocytes were imaged at room temperature on a Nikon Eclipse TE2000-U 

inverted microscope. 
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Appendix 1 

 

Heterologous Expression of Mouse and Human α3β4 Nicotinic 

Acetylcholine Receptors in Xenopus laevis Oocytes 

 

A1.1 Abstract 

The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is the predominant 

subtype in the autonomic ganglion, but is also the highest expressed subtype in the brain after 

α4β2 and α7. Nicotine decreases appetite,1 an event that has been strongly correlated with the 

activity of β4, and particularly α3β4 stimulation.2 In addition, α3β4 depolarizes brown adipose 

tissue (BAT) and increases lipolysis.3–5 Taken together, these results have made α3β4 a 

therapeutic target for obesity and type 2 diabetes.6 Additionally, most agonists developed for 

the α4β2 receptor also activate the α3β4 to some extent.7 For these reasons, it is crucial to 

determine the binding behaviors of agonists, such as cytisine and varenicline, at the α3β4 

binding site relative to other subtypes. In order to elucidate functionally-relevant interactions 

in this binding site, we need to first be able to robustly express this subtype in a heterologous 

system, such as Xenopus laevis oocytes. The α3β4 subtype has been found to assemble in two 

stoichiometries similar to the α4β2 receptor, giving rise to a potential binding site at the α3/α3-

interface. Thus, it is necessary to establish a way to readily verify receptor stoichiometry prior 

to further elucidation of binding site interactions.  

In this study, we set out to optimize expression of α3β4 nAChRs in Xenopus laevis 

oocytes to enable future binding site studies using noncanonical amino acid mutagenesis. We 

were able to record currents from both mouse and human α3β4 receptors. By varying mRNA 

injection ratios, we identified two populations likely corresponding to two stoichiometries. 

Besides distinctive acetylcholine (ACh) and cytisine EC50 values, we observed a difference in 

Zn2+ sensitivity between the two receptor populations.  
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A1.2 Results and discussion 

First, we started with the expression of mouse α3β4 receptors. It is known from 

previous studies that receptor stoichiometry can be biased by altering the mRNA injection 

ratio.8 So, we injected Xenopus laevis oocytes with α3β4 mRNA ratios ranging from 100:1 to 

1:30. Examples of current waveforms (α3β4 1:5) are shown in Figure A1.1A and resemble 

waveforms of α4β2 receptors. The resulting dose-response relationships and EC50 values are 

shown in Figure A1.1B and Table A1.1 respectively. Injection of the α3 or β4 subunits alone 

did not result in functional receptors. A previous study by Papke et al. reported a 79 μM 

acetylcholine EC50 for mouse α3β4 receptors injected in a 1:1 ratio.9 We found acetylcholine 

EC50 values ranging from 63.6 μM (1:5 injection ratio) to 243 μM (30:1 injection ratio), which 

are likely to correspond to the (α3)2(β4)3 and (α3)3(β4)2 stoichiometries. Biasing the injection 

ratios further in either direction resulted in lower expression. The previously reported value 

of 79 μM falls in between the values we observed and is likely the result of two mixed receptor 

populations. 
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Figure A1.1 | Acetylcholine dose-response relationships of mouse α3β4 at different α3:β4 

mRNA injection ratios. (A) Current waveforms of increasing doses of acetylcholine recorded from 

oocytes injected with a 1:5 α3β4 mRNA ratio. (B) Acetylcholine dose-response relationships of mouse 

α3β4 nAChRs at different α3β4 mRNA injection ratios. 

 

Table A1.1 | EC50 and nH values for mouse α3β4 receptors at different α3:β4 mRNA injection 

ratios. Values are reported as mean ± SEM. 

Injection ratio                EC50 (μM) nH N |Imax| (μA) 

α3β4  1:30 83.2 ± 2.6 2.0 ± 0.12 16 2.6-9.6 

α3β4  1:5 63.6 ± 2.3 1.6 ± 0.09 8 9.6-22 

α3β4  1:3 78.6 ± 1.9 1.6 ± 0.06 12 12-30 

α3β4  1:1 161 ± 4.1 2.3 ± 0.11 12 3.4-14 

α3β4  3:1 201 ± 4.1 3.0 ± 0.13 13 2.1-7.1 

α3β4  30:1 243 ± 8.7 2.7 ± 0.24 11 0.13-0.32 

α3β4  100:1 237 ± 14 2.5 ± 0.32 3 0.10-0.13 

 

Being able to robustly express the mouse α3β4 receptor in oocytes provides confidence 

that the human subtype should express well also. We are most interested in receptor responses 

from human receptors, so we obtained the genes for the human α3β4 subtype and repeated 

the same experiment as described above. We injected Xenopus laevis oocytes with α3β4 mRNA 

ratios ranging from 100:1 to 1:30. The resulting dose-response relationships and EC50 values 

are shown in Figure A1.2 and Table A1.2 respectively. In a different study, Stokes et al. have 

reported acetylcholine EC50 values for the human α3β4 subtype either obtained through 

injection of monomeric mRNA (131 μM) and concatemeric mRNA (154 μM and 349 μM).7  

We observed acetylcholine EC50 values ranging from 32.3 μM (1:3 injection ratio) to 326 μM 

(30:1 injection ratio), which are likely to correspond to the (α3)2(β4)3 and (α3)3(β4)2 

stoichiometries. We measured a dramatic decrease in expression level for the 30:1 injection 

ratio. The 326 μM value for (α3)3(β4)2 is very close to the value reported by Stokes et al. from 

a α3β4 concatemer supplemented with α3 monomer mRNA. The EC50 value for the (α3)2(β4)3 

stoichiometry is almost 5-fold lower than Stokes et al. reported based on concatenated 
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subunits. This finding suggests that the Stokes-EC50 for (α3)2(β4)3 probably resulted from a 

mixed population of receptor stoichiometries. Recent studies on concatenated GABAA 

subunits emphasize that concatenated subunits are often flexible in their orientation and may 

therefore assemble with themselves or monomeric subunits in unexpected ways.10 Our results 

appear to support this claim. 

 

Figure A1.2 | Acetylcholine dose-response relationships of human α3β4 at different α3:β4 

mRNA injection ratios. 

 

Table A1.2 | EC50 and nH values for human α3β4 receptors at different α3:β4 mRNA injection 

ratios. 

Injection ratio                 EC50 (μM) nH N |Imax| (μA) 

α3β4  1:30 107 ± 5.1 1.5 ± 0.10 12 0.10-14 

α3β4  1:9 168 ± 5.8 1.6 ± 0.07 7 2.8-18 

α3β4  1:5 104 ± 4.1 2.3 ± 0.18 8 5.2-36 

α3β4  1:3 32.3 ± 2.4 1.9 ± 0.26 14 4.9-76 

α3β4  1:2 123 ± 7.3 1.8 ± 0.16 4 7.1-24 

α3β4  1:1 54.6 ± 2.8 2.2 ± 0.22 12 12-51 

α3β4  3:1 142 ± 5.6 2.1 ± 0.16 6 4.0-35 

α3β4  10:1 240 ± 12.7 2.4 ± 0.26 6 5.4-43 

α3β4  30:1 326 ± 9.4 2.5 ± 0.16 7 0.13-0.32 
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Next, we determined the cytisine dose-response relationships for the mouse and 

human α3β4 receptors at both stoichiometries as shown in Figure A1.3 and Table A1.3. 

Previously reported values for mouse α3β4 were 20 μM9 and 890 μM for human α3β4.7 

Concatenated subunits resulted in EC50s of 214 μM and 1750 μM for the (α3)2(β4)3 and 

(α3)3(β4)2 stoichiometries respectively. We observed a cytisine EC50 value for mouse (α3)2(β4)3 

of 20 μM, which corresponds to the previously reported value. For mouse (α3)3(β4)2 we 

measured an EC50 of 120 μM. For the human subtype we measured similar sensitivities for 

cytisine, 30.8 μM for (α3)2(β4)3 and 172 μM for (α3)3(β4)2. As discussed earlier for 

acetylcholine, the human subtype cytisine EC50s are distinct from those in earlier reports also. 

We should note that the dose-response curve for human α3β4 at 30:1 ratio did not completely 

turn over and recordings at higher concentrations are necessary for conclusive results. 

 

Figure A1.3 | Cytisine dose-response relationships of two stoichiometries of α3β4 from mouse 

and human. 

 

Table A1.3 | EC50 and nH values for mouse α3β4 receptors at different α3:β4 mRNA injection 

ratios. 
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Subtype                  Compound EC50 (μM) nH N |Imax| (μA) 

mα3β4 1:5 Cytisine 20.0 ± 0.76 1.4 ± 0.07 8 17 – 57 

mα3β4 30:1 Cytisine 120 ± 12 1.9 ± 0.76 4 0.24 – 0.49 

hα3β4 1:1 Cytisine 30.8 ± 1.3 1.6 ± 0.10 7 22-63 

hα3β4 30:1 Cytisine 172 ± 20 1.3 ± 0.15 8 0.60-5.8 

 

Lastly, we set out to establish an assay to readily verify receptor stoichiometry. Earlier 

work from Hsiao et al. has suggested differential zinc sensitivity among the two α3β4 receptor 

stoichiometries.11 We determined zinc dose-response relations for both human α3β4 

stoichiometries using increasing concentrations of ZnCl2 supplemented with an EC20 dose of 

acetylcholine. The results are shown in Figure A1.4 and the corresponding half-maximal 

potentiation and inhibition values are reported in Table A1.4. We observed a distinct response 

from the two stoichiometries of α3β4. The acetylcholine-induced current response of the 

(α3)3(β4)2 stoichiometry is inhibited by zinc with an IC50 of 436 μM. In contrast, current 

response of the (α3)2(β4)3 stoichiometry is potentiated at lower doses of zinc with an EC50 of 

316 μM, but inhibited at higher doses with an IC50 of 1000 μM.  

These results allow for a relatively straightforward way of verifying receptor 

stoichiometry. One can envision including two test doses to any experiment recording the 

response of acetylcholine EC20 and subsequently the response of a co-application of 

acetylcholine EC20 and 320 μM ZnCl2. An increased response from the second dose suggests 

the (α3)2(β4)3 stoichiometry and a decreased response suggests the (α3)3(β4)2 stoichiometry. 



 141 

 

Figure A1.4 | Two stoichiometries of human α3β4 receptors demonstrate differential Zn2+ 

sensitivity. Zinc dose-response relations were determined for both α3β4 stoichiometries using 

increasing concentrations of ZnCl2 supplemented with an EC20 dose of acetylcholine. 

 

Table A1.4 | EC50, IC50 and corresponding nH values for human α3β4 receptors at two different 

α3:β4 mRNA injection ratios. 

Subtype                  EC50 (μM) nH IC50 (μM) nH  N |Imax| (μA) 

α3β4  1:1 316 ± 2.0 1.4 ± 1.0 1000 ± 1.1 -1.5 ± 2.3 6 0.69–5.4 

α3β4  30:1 
      

436 ± 0.09 -1.6 ± 0.4 6 0.080-0.19 

 

A1.3 Experimental procedures 

Circular DNA of mouse nAChR α3 and β4 subunits were in a pcDNA vector provided 

by the Lester lab. The gene of the human nAChR α3 subunit variant 1 was ordered from IDT. 

The mouse and human genes of both the α3 and β4 subunits were subcloned in a pGEMhe 

plasmid for expression in Xenopus laevis. cDNA in pGEMhe was linearized with restriction 

enzyme SbfI (New England Biolabs). Purified linear DNA (Qiaquick PCR Purification kit, 

Qiagen) was then transcribed in vitro using the T7 mMessage Machine kit (Ambion). The 
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resulting mRNA was isolated using the RNeasy RNA purification kit (Qiagen) and quantified 

by UV-vis spectroscopy (NanoDrop 2000, ThermoFisher Scientific). cDNA and mRNA were 

stored at -20˚C and -80˚C respectively. 

Xenopus laevis oocytes (stage V-VI) were harvested and injected with RNAs according 

to previously described protocols.12 Oocytes were injected with 50 nl mRNA in nuclease-free 

water. Post injection, oocytes were incubated at 18˚C in ND96 solution (96 mM NaCl, 2mM 

KCl, 1mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5) supplemented with 0.05 mg/ml 

gentamycin (Sigma), 2.5 mM sodium pyruvate (Acros Organics), and 0.67 mM theophylline 

(Sigma). Each cell was injected with 20 ng mRNA in a single injection and incubated for 24 h 

before recording.  

All electrophysiological recordings were performed using the OpusXpress 6000A 

(Axon Instruments) in two-electrode voltage clamp mode at ambient temperature (20-25˚C). 

Oocytes were impaled with borosilicate glass pipettes filled with 3 M KCl (R = 0.3-3.0 MΩ) 

and clamped at a holding potential of -60 mV. Ca2+ free ND96 solution was used as running 

buffer for the first ACh dose-response experiment of mouse α3β4 receptors. All subsequent 

experiments have been performed in ND96 supplemented with Ca2+. Agonists were prepared 

in ND96 with Ca2+ and 1 mL was applied over 15 s followed by a 2 min washout with buffer 

at a rate of 3 mL min-1 (chamber volume, 500 μL). Dose-response measurements were 

performed using a series of ~2-fold concentration steps, spanning multiple orders of 

magnitude, for a total of 8-24 doses. Data were sampled at 50 Hz. 

Two-electrode voltage-clamp traces were processed in Clampfit 10.3 (Axon 

Instruments). Raw traces were filtered using a low pass Gaussian filter at 5 Hz, followed by a 

subtraction of the average baseline current preceding agonist application. Peak currents were 

normalized to the maximum current observed for that cell. Normalized peak currents were 
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averaged and fit to the Hill equation, I = 1/(1 + (EC50/[agonist])nH in Prism 8 (GraphPad 

Software, Inc.), where I is the normalized peak current at a given agonist concentration, EC50 

is the agonist concentration that elicits a half-maximum response, and nH is the Hill coefficient. 

The zinc sensitivity experiment showed some zinc concentrations may be exerting both 

potentiating and inhibiting effects. For these data we fitted the normalized peak currents to a 

more complex equation that combines stimulation and inhibition components, I = Imin + (Imax-

Imin){[1/(1 + (EC50/X)n] – [1/(1 + (IC50/X)m]}, where I is the normalized peak current at a 

given zinc concentration X; Imin is the minimal current, Imax is the maximal current; EC50 and 

IC50 are the zinc concentrations yielding half-maximal potentiation and inhibition, respectively; 

n and m are the Hill coefficients for potentiation and inhibition respectively. Unless otherwise 

stated, EC50, IC50 and nH data are shown as mean ± standard error of the mean (SEM). 
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Appendix 2 

 

Screening of Phenolic Compounds for Allosteric Modulation of the 

GABAA Receptor* 

 

A2.1 Abstract 

 Autism Spectrum Disorders (ASDs) are neurodevelopmental conditions characterized 

by social and behavioral impairments.1 They are also associated with gut impairment and 

changes in intestinal microbiota.1–4 Researchers in the Mazmanian group at Caltech have found 

that the serum of ASD mice contained 46 times the normal amount of the molecule 4-

ethylphenyl sulfate (4-EPS, shown in Figure A2.1), which is a gut microbial metabolite.5 This 

molecule is chemically similar to 4-methylphenol (4-MP), also known as p-cresol (Figure 

A2.1), of which elevated levels have been observed in the urine of children diagnosed with 

Autism Spectrum Disorder (ASD).6,7 Direct injection of 4-EPS into mice results in anxiety, 

which further supports the idea that this metabolite directly affects behavior. When ASD mice 

are treated with the bacterial strain B. fragilis, the blood levels of 4-EPS decrease, the 

assortment of bacterial species in the gut starts to resemble that of the control group, and mice 

appear to be less anxious. 

Accumulating data suggest that gut microbiota communicate with the central nervous 

system influencing brain function and behavior (microbiota-gut-brain axis), potentially 

through neural, endocrine and immune pathways.8 As discussed in earlier chapters, positive 

allosteric modulators for the GABAA receptor, such as benzodiazepines, have been used as 

anxiolytic drugs for years. Therefore, we hypothesized that 4-EPS exerts its anxiogenic effects 

via direct interaction with GABAA receptors. To test for agonism and modulation of GABAA 

                                                 
* This work has been performed in collaboration with Dr. Brittany Needham, Prof. Sarkis Mazmanian, Prof. 
Henry A. Lester, and Prof. Sarah Reisman. 
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receptors, we expressed both α1β2γ2 and α1β2 GABAA receptors in Xenopous laevis oocytes 

and measured ion channel function using two-electrode voltage clamp electrophysiology. 

Since 4-EPS is structurally similar to p-cresol, we included this molecule as well as the other 

closely related microbial metabolites 4-EP and 4-MPS. Chemical structures are shown in 

Figure A2.1. 

 

Figure A2.1 | Structures of small molecules screened in this study. 4-etylphenyl sulfate (4-EPS), 

4-ethylphenol (4-EP), 4-methylphenyl sulfate (4-MPS), and 4-methylphenol (4-MP/p-cresol). 

 

A2.2 Results and discussion 

To assess functional effects of 4-EPS and related metabolites, a similar protocol was 

used as previously described in Chapter 3. Briefly, the current responses of three identical 

GABA concentration were recorded, followed by a dose of the test-compound at 40 μM. After 

a 30 s incubation period, a test dose was applied containing both GABA and the test-ligand. 

Finally, two doses of GABA were applied. The first test dose evaluates agonism properties, 

the second dose tests for modulation of the GABA response, which can be potentiating or 

inhibiting. The first three GABA doses aim to establish a baseline of the GABA response at 

that concentration, and the purpose of the last two GABA doses is to verify proper 

functioning of the receptor post modulation and control for independent rise in current 

amplitude. 

 None of the four compounds tested here demonstrated activation of either the α1β2γ2 

or α1β2 receptor by its own (data not shown). When co-applied with a GABA EC50 we observe 
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different effects for the four compounds, as shown in Figure A2.2 and Table A2.1. Only 4-

EP shows a slight positive modulation of both GABAA subtypes of 16% and 26% respectively. 

In the α1β2 receptor, p-cresol shows a minor positive modulation of 9.7%. In contrast, 4-EPS 

demonstrates a slight inhibition of the GABA EC50 response in the α1β2 receptor of -6.7%. 

These effects are small, so we decided to repeat this experiment at a lower GABA 

concentration. 

 

Figure A2.2 | Modulation of GABA EC50 response of α1β2γ2 GABAA receptors by phenolic 

compounds. All compounds were applied at 40 μM concentration. 

 

Table A2.1 | Relative modulation of GABA EC50 α1β2γ2 GABAA receptors by phenolic 

compounds. All compounds were applied at 40 μM concentration. 

Subtype Ligand Relative modulation of GABA EC50 (%) N |Imax| (μA) 

α1β2γ2 GABA only 1.5 ± 2.0 7 4.4-10. 

α1β2γ2 4-EPS 0.33 ± 1.3 12 1.9-13 
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α1β2γ2 4-EP 16 ± 4.1 7 3.1-10 

α1β2γ2 4-MPS 3.9 ± 3.2 8 3.4-13 

α1β2γ2 4-MP 3.8 ± 1.3 8 3.6-18 

α1β2 4-EPS -6.7 ± 3.9 7 0.66-2.8 

α1β2 4-EP 26 ± 5.6 5 0.60-2.4 

α1β2 4-MPS -3.5 ± 2.4 7 0.81-3.3 

α1β2 4-MP 9.7 ± 2.9 5 2.2-3.4 

 

 The modulation effects of these compounds at 40 μM co-applied with GABA EC5, 

are shown in Figure A2.3 and Table A2.2. As expected, 4-EP shows a positive modulation 

in both subtypes, but with greater amplitudes (28% and 38%) than was observed at GABA 

EC50. In contrast to the results in Figure A2.2, 4-EPS also demonstrates positive modulation 

at both α1β2γ2 and α1β2 at 20% and 14% respectively. The two 4-methyl compounds do not 

show any functional effects.  

Overall, the functional effects we observed here are fairly small, but modulation of 

38% by 4-EP is still considerable. However, the concentration used here, 40 μM, is a factor 

10 higher than the concentration measured in ASD mice serum of (3 μM). Taken together, 

these results do not strongly suggest that the behavioral effects observed by Hsiao et al. are a 

result of direct modulation of GABAA receptors. Future studies could involve screening other 

GABAA subtypes or even other Cys-loop receptors such as the 5HT3-receptor, which also 

could play a role in the development of anxiety-like behavioral effects. 
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Figure A2.3 | Modulation of of GABA EC5 response of α1β2γ2 GABAA receptors by phenolic 

compounds. All compounds were applied at 40 μM concentration. 

 

Table A2.2 | Relative modulation of GABA EC5 α1β2γ2 GABAA receptors by phenolic 

compounds. All compounds were applied at 40 μM concentration. 

Subtype Ligand Relative modulation of GABA EC5 (%) N |Imax| (μA) 

α1β2γ2 4-EPS 20 ± 2.4 12 0.050-0.89 

α1β2γ2 4-EP 28 ± 2 16 0.050-1.0 

α1β2γ2 4-MPS 5.8 ± 1.7 10 0.080-0.72 

α1β2γ2 4-MP 4.5 ± 1.7 9 0.040-0.65 

α1β2 4-EPS 14 ± 2.7 9 0.060-0.83 

α1β2 4-EP 38 ± 2.7 9 0.060-0.88 

α1β2 4-MPS 1.2 ± 3 11 0.10-0.91 

α1β2 4-MP -1.6 ± 1.7 12 0.070-0.62 
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A2.3 Experimental procedures 

Circular DNA of human GABAA receptor α1, β2s and γ2s subunits were in a pGEMhe 

plasmid. For both β2s and γ2s only the short isoforms were used, however for convenience 

we refer to the subunits as β2 and γ2. cDNA in pGEMhe was linearized with restriction 

enzyme NheI (for α1 and γ2 subunits), and Sph1 (for the β2 subunit) (New England Biolabs). 

Purified linear DNA (Qiaquick PCR Purification kit, Qiagen) was then transcribed in vitro using 

the T7 mMessage Machine kit (Ambion). The resulting mRNA was isolated using the RNeasy 

RNA purification kit (Qiagen) and quantified by UV-vis spectroscopy (NanoDrop 2000, 

ThermoFisher Scientific). cDNA and mRNA were stored at -20˚C and -80˚C respectively. 

Xenopus laevis oocytes (stage V-VI) were harvested and injected with mRNA according 

to previously described protocols.9 Oocytes were injected with 50-75 nl mRNA in nuclease-

free water. Post injection, oocytes were incubated at 18˚C in ND96 solution (96 mM NaCl, 

2mM KCl, 1mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5) supplemented with 0.05 

mg/ml gentamycin (Sigma), 2.5 mM sodium pyruvate (Acros Organics), and 0.67 mM 

theophylline (Sigma). 

 For expression of α1β2γ2 receptors, α1, β2, and γ2 mRNA were mixed in 2:2:1 ratio 

by mass. For expression of α1β2 receptors, α1 and β2 mRNA were mixed in 1:1 ratio by mass. 

Each cell was injected with 5 ng or 15 ng mRNA in a single injection for the α1β2γ2 and α1β2 

respectively. Oocytes were then incubated for 24 h before recording. 

All electrophysiological recordings were performed using the OpusXpress 6000A 

(Axon Instruments) in two-electrode voltage clamp mode at ambient temperature (20-25˚C). 

Oocytes were impaled with borosilicate glass pipettes filled with 3 M KCl (R = 0.3-3.0 MΩ) 

and clamped at a holding potential of -60 mV. ND96 solution with Ca2+ was used as running 
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buffer. GABA and test-ligand solutions were prepared in ND96 with Ca2+ and 1 mL was 

applied over 15 s followed by a 5 min washout with buffer at a rate of 3 mL min-1 (chamber 

volume, 500 μL). Data for each condition were obtained from at least two different batches 

of oocytes. Data were sampled at 50 Hz. 

For potentiation experiments the potentiation protocol previously described in 

Chapter 3 was used. The protocol is as follows: three identical GABA doses were applied, 

followed by a dose of the test-ligand at 40 μM. After a 30 s incubation period, a test dose was 

applied containing both GABA and the test-ligand. Finally, two doses of GABA were applied. 

The first test dose evaluates agonism properties, the second dose tests for modulation of the 

GABA response, which can be potentiating or inhibiting. The first three GABA doses aim to 

establish a baseline of the GABA response at that concentration, while the purpose of the last 

two GABA doses is to verify proper functioning of the receptor post modulation and control 

for independent rise in current amplitude. 

Two-electrode voltage-clamp traces were processed in Clampfit 10.3 (Axon 

Instruments). Raw traces were filtered using a low pass Gaussian filter at 5 Hz, followed by a 

subtraction of the average baseline current preceding ligand application. The current responses 

from the five GABA doses were averaged (GABA only) and subtracting this from the 

response of the co-application dose (GABA + test-ligand) gave the calculated change in 

response. Multiplying this value by 100% rendered the relative modulation 

(inhibition/potentiation) of the GABA response by the test-ligand. Relative modulation is 

reported as the mean ± standard error of the mean (SEM). For the GABA concentrations 

either the EC50 or EC5 were used as specified in the results section. 

Syntheses of the four compounds were performed by members of the Reisman group 

at Caltech. 
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Appendix 3 

 

Revised Synthetic Route for the Preparation of  

the Non-Canonical Amino Acid 4,5,6,7-F4-Trp 

 

A3.1 Abstract 

 In chapter two, the use of non-canonical acids has been described to probe functional 

interactions in the α4β2 nAChR. To probe for a cation-π interaction with residue W154, 

4,5,6,7-tetrafluoro-tryptophan (4,5,6,7-F4-Trp) was used. This appendix describes a revised 

synthetic route to obtain the non-canonical amino acid 4,5,6,7-tetrafluoro-tryptophan starting 

from the 4,5,6,7-tetrafluoro-indole. 

A3.2 Results and discussion 

Scheme Α3.2.1 | Preparation of NVOC-protected 4,5,6,7-tetrafluoro-tryptophan. 

 

We performed all steps following the thesis of Wenge Zhong, including the synthesis 

of 4,5,6,7-tetrafluoro-indole (3 steps), except for the reduction of oxime 2 to obtain the amine 

3 (Scheme Α3.2.1).1 The reduction of 2 was first attempted using zinc dust and ammonium 

formate while refluxing in methanol overnight as described by Abiraj et al.,2 but no product 

formation was observed. Replacing ammonium formate with ammonium chloride did not 

yield the desired product 3 either. Performing the reduction of the oxime with zinc and acetic 
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acid3 was successful and produced amine 3. Nitroveratryloxycarbonyl (NVOC) protection, 

followed by ester hydrolysis yielded 4,5,6,7-tetrafluorotryptophan in 69% over three steps. 

A3.3 Experimental procedures 

Unless otherwise stated, reactions were carried out under ambient conditions in air. 

Commercially available reagents were obtained from Sigma Aldrich and used without further 

purification. Thin-layer chromatography with Sigma Aldrich silica gel coated plates with 

fluorescent indicator (0.25 mm) was used to monitor reactions. Silica gel chromatography was 

conducted as described by Still et al.,4 with silica gel purchased from Alfa Aesar (60 Å, 230-400 

mesh). NMR spectra were recorded on a Varian 500 MHz spectrometer. Resonances for NMR 

spectra are reported relative to Me4Si (δ 0.0). Syntheses are described below.  

Ethyl-3-bromo-2-(hydroxyimino)-propanoate (1) 

To a three-necked 250 mL flask was added 10 g (9.6 mL, 0.086 mol) of ethyl pyruvate. 

At 65˚C and under a constant flow of nitrogen, was added dropwise 5.3 mL (1.2 eq.) of 

bromine over 1 hour. (By-product HBr was taken away by nitrogen, which was passed through 

a 3N NaOH solution.) Two hours later, a golden liquid resulted and was dissolved in 65 mL 

dichloromethane (DCM). An 80 mL aqueous solution containing 14.1 g of hydroxylamine 

sulfate was added. The reaction was kept stirring vigorously overnight. The two layers were 

separated, and the aqueous layer was extracted with 30 mL of DCM twice. The organic layers 

were combined and dried over sodium sulfate. DCM was rotoevaporated off and the resulting 

oil was redissolved in a minimal amount of ethyl acetate. Hexane was added until the solution 

turned cloudy. Crystallization overnight yielded 5.5 g (31%) of pure product. 1H NMR (CDCl3) 

δ 9.92 (s, 1H), 4.38 (q, 2H), 4.26 (s, 2H), 1.39 (t, 3H). 
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4,5,6,7-tetrafluoro-tryptophan precursor (2) 

In a 100 mL flask, 0.42 g (2 mmol) of 1 and 0.95 g (5 mmol, 2.5 eq.) of 4,5,6,7-

tetrafluoro-indole were dissolved in 20 mL of dry DCM. To the solution, 0.34 g (3.2 mmol, 

1.6 eq.) of sodium carbonate was added. The reaction was kept stirring vigorously for 24 hours. 

DCM was rotoevaporated off. Residue was dissolved in ethyl acetate and washed with water 

twice. The aqueous layer was extracted with ethyl acetate twice. Combined organic layers were 

dried over magnesium sulfate.  After flash chromatography using methanol/DCM, 500 mg of 

product was isolated (1.6 mmol, 80%). 1H NMR (CD3CN) δ 9.93 (b, 1H), 9.76 (b, 1H), 7.04 

(s, 1H), 4.19 (q, 2H), 4.05 (s, 2H), 1.22 (t, 3H). 

4,5,6,7-tetrafluoro-tryptophan ethyl ester (3) 

In a 25 mL flask, 20 mg (0.06 mmol) of 2 was dissolved in 1 mL acetic acid. 16 mg 

(0.24 mmol, 4 eq.) of zinc dust was added and the reaction was stirred overnight at room 

temperature. After 24 hours, the reaction was filtered over celite and concentrated. Product 

was used in next step without purification. 

NVOC-4,5,6,7-tetrafluoro-tryptophan (4) 

In a 50 mL flask, 156 mg (0.51 mmol) of 3 was dissolved in 14 mL dioxane and 6 mL 

water. 57 mg (1.05 eq.) of sodium carbonate was added, as well as a solution of 149 mg (1.05 

eq.) NVOC-Cl dissolved in 10 mL dioxane. The reaction was stirred for 2 hours at room 

temperature and monitored with LCMS. The reaction was diluted with water and ethyl acetate 

and the mixture was extracted with ethyl acetate three times. The combined organic layers 

were dried over magnesium sulfate and ethyl acetate was rotoevaporated off. The resulting oil 

was dissolved in 15 mL dioxane and 4 mL water. 1.43 mL (1.53 mmol, 3 eq.) of sodium 

hydroxide solution (1N) was added. The reaction was stirred overnight at room temperature. 

The reaction mixture was heated and 0.5 mL of sodium hydroxide solution was added. After 
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3 hours, 1 M HCl was added and the mixture was diluted with ethyl acetate. After extractions 

with ethyl acetate, the solvent was rotoevaporated off. Flash chromatography using 

hexanes/ethyl acetate resulted in 182 mg (0.35 mmol, 69% over 3 steps) of product. 

1H NMR (DMSO-d6) δ 12.00 (s, 1H), 7.87 (dd, 1H), 7.69 (s, 1H), 7.32 (s, 1H), 7.11 (s, 1H), 

5.3 (q, 2H), 4.24 (m, 1H), 3.85 (s, 6H), 3.27 (m, 2H). 
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