MISCELLANEOUS CRYSTAL STRUCTURES

Figure 1. Structure of [LFe₃F(PhPz)₃Fe(MeCN)][OTf], obtained via recrystallization of [LFe₃F(PhPz)₃Fe][OTf] in MeCN/Et₂O vapor diffusion.

Figure 2. Structure of [LFe₃F(PhPz)₃Fe(MeCN)][OTf]₂, obtained via recrystallization of [LFe₃F(PhPz)₃Fe][OTf]₂ in MeCN/Et₂O vapor diffusion.

Figure 3. Structure of $[LM_3F(PhPz)_3M][OTf]$, from $LZn_3(OTf)_3$ and $Fe(N(SiMe_3)_2)_2$. The occupancies of the metals are similar at each site: ~130% Fe and ~105% Zn. This is rationalized as Fe scrambling to each position in the cluster.

Figure 4. Structure of $LLi_3Fe(PhPz)_2$ (tentative assignment), obtained as a decomposition product of $[NEt_4][Fe_4N_2Cl_{10}]$ (Bennett, et al. *J. Am. Chem. Soc.* **127**, 12378), KPhPz, and LLi_3 in THF. The Et₂O soluble product is pink, and gives this structure.

Figure 5. Structure of [(LFe₃O(Pz)₃Mn)₂O][OTf]₂, obtained from decomposition of [LFe₃O(Pz)₃Mn(OH)][OTf].

Figure 6. Structure of [LFe₃O(Pz)₃Mn(OMe)][OTf], obtained from addition of methanol solution of sodium methoxide to . [LFe₃O(Pz)₃Mn][OTf]₂.

Figure 7. Structure of LMn₃O(PzNHtBu)₃Mn(OH), obtained from the same synthetic route as LFe₃O(PzNHtBu)₃Fe(OH), starting from LMn₃OTf₃ and Mn(OTf)₂ • 2 MeCN.

Figure 8. Structure of [LMn₃O(PzNHtBu)₃Mn(OH)][OTf], obtained from oxidation of LMn₃O(PzNHtBu)₃Mn(OH) with [Fc][OTf].

Figure 9. Structure of $[LFe_3O(Pz)_3Fe(MeCN)][OTf]$, obtained from recrystallization of $[LFe_3O(Pz)_3Fe][OTf]$ by MeCN/Et2O vapor diffusion.

Figure 10. Structure of [LFe₃O(Pz)₃Fe(NO)][OTf]₂, obtained from addition of one equivalent NO gas to [LFe₃O(Pz)₃Fe][OTf]₂.

Figure 11. Structure of $[(LFe_3O(Pz)_3FeO)_2FeCl_2]$ (tentative assignment), obtained from addition of one equivalent $[NBu_4][IO_4]$ to $[LFe_3O(Pz)_3FeCl][OTf]$ in THF.

Figure 12. Structure of $[LFe_3O(Pz)_3Fe(NHAr/Cl)][OTf]$ (Ar = 3,5-CF₃-Ph; ~6:4 amide to chloride), obtained from partial decomposition of the reaction product between $[LFe_3O(Pz)_3Fe][OTf]$ and ArN₃.

Figure 13. Structure of [LFe₃F(Pz)₃Fe(MeCN)][OT'f], obtained by recrystallization of [LFe₃F(Pz)₃Fe][OTf] in MeCN/Et₂O vapor diffusion.

Figure 14. Structure of LMn₃(OTf)₃, obtained by an analogous synthesis to that of LFe₃(OTf)₃ (LFe₃(OAc)₃ and 10 equivalents Me₃SiOTf; Arnett, et al. *J. Am. Chem. Soc.* **140**, 5569).

Figure 15. Structure of $[LMn_3O(Pz)_3Mn(OAc)][OTf]$, obtained by an analogous synthesis to that of $[LFe_3O(Pz)_3Fe(OAc)][OTf]$.

Figure 16. Structure of $[LMn_3O(Pz)_3Mn][OTf]_2$, obtained by an analogous synthesis to that of $[LFe_3O(Pz)_3Fe][OTf]_2$.

Figure 17. Structure of [LFe₃O(iPrPz)₃Mn][OTf]₂, obtained by addition of KiPrPz, PhIO, and Mn(OTf)₂ • 2 MeCN to LFe₃(OTf)₃.

Figure 18. Structure of $[LFe_3O(iPrPz)_3Mn][OTf]$, obtained by reduction of $[LFe_3O(iPrPz)_3Mn][OTf]_2$ with $CoCp_2$.

Figure 19. Structure of [LFe₃O(iPrPz)₃K][OTf], obtained by addition of KiPrPz, PhIO, and Fe(OTf)₂ to LFe₃(OTf)₃. Full metalation of Fe was not observed by NMR, and this byproduct was crystalized out instead of the desired compound.

Figure 20. Structure of $[LFe_3O(iPrPz)_3Fe][OTf]_2$, obtained by addition of KiPrPz, PhIO, and $Fe(OTf)_2 \cdot 2$ MeCN to $LFe_3(OTf)_3$. Full metalation of Fe was observed with this reagent by NMR.

Figure 21. Structures of a mixture of $[LFe_3O(iPrPz)_3Mn(OH)][OTf]$ and $[LFe_3O(iPrPz)_2(OiPrPz)Mn][OTf]$ (roughly 50:50; tentative assignments), obtained by addition of (2-tert-butyl-sulfonyl)-iodosylbenzene to $[LFe_3O(iPrPz)_3Mn][OTf]$.