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ABSTRACT 

Liquid water once flowed on Mars and altered the crust. Aqueous minerals and salts record 

a rich history of aqueous processes and environmental changes. In this dissertation, I 

developed and applied innovative analytical and statistical methods to large spectral datasets 

to better characterize aqueous alteration on Mars. The Mars Science Laboratory (MSL) 

Curiosity rover is investigating the sedimentary sequence at Gale crater recording a 

potentially global transition from clay-enriched to sulfate-enriched rocks. Volatile elements 

like H and Cl are important for investigating aqueous processes, but are difficult to quantify 

in the large ChemCam laser-induced breakdown spectroscopy (LIBS) dataset. In the first 

part of this dissertation, I measured aqueously altered samples with LIBS in the laboratory 

under Mars-relevant conditions to develop analytical methods for application to ChemCam. 

The Murray formation, the lowest exposed strata of the sedimentary sequence, contains 2.6 

± 2.1 wt. % H2O. Carriers of H enrichment including clays, opal, Mg-sulfates, Ca-sulfates, 

hydrous Mn-oxides, akageneite, and jarosite are identified. Variability in the H content of 

the Murray formation records multiple aqueous alteration events as well as potential 

increases in salinity in the Gale crater lake. In the fourth chapter, I measured chlorine in Gale 

crater using multiple MSL instruments. Cl-enrichments correlated with increased Na2O are 

detected in the bedrock, in nodular textures, and at vein margins, indicating halite. The 

scattered, isolated occurrences of chlorides are consistent with late groundwater reworking 

and remobilization. Halite is concentrated in particular members of the Murray formation; 

the chlorides may have been emplaced as primary deposits in these members, consistent with 

varying salinity in the past lakewaters. In the second part of this dissertation, I adapted and 

applied semi-automated statistical methods called factor analysis and target transformation 

to the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) dataset to 

systematically search for hematite in stratified, candidate sedimentary outcrops. Few 

outcrops containing hematite are found and no obvious analogs to terrestrial iron formations 

are identified. Future studies will search for hematite in other geologic settings as well as 

other Fe-bearing phases such as Fe-phyllosilicates and Fe-sulfates to better characterize 

aqueous processes on Mars. 
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1 
C h a p t e r  1  

INTRODUCTION 

1. Martian aqueous history  

Liquid water once flowed on Mars. The discovery of “canals” on Mars by Percival Lowell 

(Lowell, 1906) first drew comparisons to our own watery world. While the “canals” were 

later refuted, Mariner 9 imagery in the 1970s raised evidence for water-carved surfaces. 

Although liquid water is unstable at the surface at present due to a thin (6 mbar) CO2 

atmosphere, morphological features suggest surface waters may have been stable and 

pervasive earlier in Mars’ history. Outflow channels (e.g., Baker, 1974; Masursky et al., 

1977), valley networks (e.g., Carr, 1995; Hynek et al., 2010), open and closed basin lakes 

(e.g., Fassett and Head, 2008; Goudge et al., 2012), and widespread sedimentary deposits 

(e.g., Malin and Edgett, 2000; Squyres and Knoll, 2005) have been discovered, providing 

geomorphic evidence of past aqueous activity primarily during the late Noachian to early 

Hesperian in age with the exception of the Hesperian outflow channels (Fassett and Head, 

2011).  

Thermal infrared (TIR) and visible near-infrared (VNIR) orbital spectroscopic studies have 

informed our understanding of the composition of Mars and provided complementary 

evidence for pervasive waters. The martian crust is primarily basaltic (e.g., Christensen et 

al., 2000) and igneous minerals such as olivine and pyroxenes have been mapped globally 

(e.g., Koeppen and Hamilton, 2008; Mustard et al., 2005). Exposures of the ancient Noachian 

crust contain clay minerals such as Fe/Mg phyllosilicates (e.g., Poulet et al., 2005; Mustard 

et al., 2008), indicating pervasive aqueous alteration processes at neutral to alkaline pH. 

Chloride, carbonate, and sulfate salts have been mapped globally, and detailed, localized 

studies have provided evidence for late Noachian – early Hesperian paleolakes (e.g., Murchie 

et al., 2009) and playas (e.g., Wray et al., 2010). Assemblages of iron and aluminum sulfates 

mostly in Hesperian terrains potentially suggest at least a local transition to more acidic 



 

 

2 
waters (e.g., Bibring et al., 2007). Amazonian terrains show little evidence for aqueous 

alteration (Ehlmann and Edwards, 2014), reflecting a transition to a drier climate on Mars.   

2. A case study: Gale crater 

Orbital observations of Gale crater identified a sequence of nontronite, hematite, and sulfate-

bearing sedimentary rocks in the central 5-km mound called Mount Sharp (Milliken et al., 

2010; Fraeman et al., 2013). Gale formed in the Hesperian (Thomson et al., 2011) and 

provides an excellent field site to study the globally observed transition from clay-rich to 

sulfate-rich sediments in stratigraphy (Grotzinger et al., 2012). The Mars Science Laboratory 

(MSL) Curiosity rover landed in Gale crater in 2012 and has mostly examined rocks formed 

in a fluvio-lacustrine environment, including both fluvial/alluvial deposits and laminated 

mudstones from subaqueous deposition (Grotzinger et al., 2015; Grotzinger et al., 2015). The 

rover’s toolkit includes CheMin, a powder X-ray diffraction (XRD) instrument, and SAM 

(Sample Analysis at Mars), a gas chromatograph and mass spectrometer, for measuring 

drilled rock samples (Grotzinger et al., 2012). So far, before even reaching the sulfate unit 

observed from orbit, CheMin and SAM have measured both oxidized (sulfate, nitrate, 

oxychlorine) and reduced (sulfides, organics) phases along with mineralogies suggesting 

acidic (e.g., Fe-sulfate) and alkaline (e.g., phyllosilicates) conditions (e.g., Bish et al., 2013, 

Blake et al., 2013; Ming et al., 2014; Rampe et al., 2017). These observations imply the 

occurrence of multiple aqueous events with varying chemistry over time.    

3. Identifying aqueous alteration using large spectral datasets   

The sedimentary record preserved at Gale crater provides an opportunity to examine 

variations in the chemistry of martian waters, and thereby past environments. In order to use 

the sedimentary rocks at Gale to inform our understanding of the past climate, we need to be 

able to differentiate between primary depositional and later post-depositional phases. In 

particular, salts like chlorides and sulfates can provide key constraints on fluid chemistry, 

but can be the product of primary processes (e.g., precipitation from saline fluids at a lake 

margin) or diagenesis (e.g., groundwater upwelling, aquifer processes). CheMin and SAM 
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can aid our understanding by measuring mineralogy and chemistry, but are limited to a 

relatively small number of drill targets that are somewhat sporadically sampled due to 

operational challenges. Geochemical changes can happen over spatial scales of micrometers: 

recognizing and carefully recording these differences is important for understanding the 

prevalence of aqueous alteration at Gale.  

ChemCam is a remote sensing survey instrument onboard Curiosity which provides a large 

(>19,000 measurements to date) spectral dataset for measuring elemental chemistry. Laser-

induced breakdown spectroscopy (LIBS) provides a new fine-scale (350-550 micron 

diameter) perspective, removes dust contribution, and allows remote geochemical analysis. 

This is the first use of LIBS for a planetary mission and analytical methods must be 

developed to fully utilize this dataset, particularly to quantify minor elements. Volatile 

elements like H, C, Cl, and S have few, weak but measurable LIBS emission lines and require 

laboratory characterization under Mars-relevant conditions because LIBS is very sensitive to 

environmental conditions. In this thesis, I developed analytical tools for measuring volatile 

elements in the large ChemCam dataset. I investigated the capabilities of ChemCam for 

probing signatures of aqueous alteration at Gale. How capable is ChemCam at accurately 

measuring volatile element abundance? Is ChemCam sensitive to variations in aqueous 

alteration? Furthermore, by detecting H and key elements found in salts (Cl, C, S), we can 

use ChemCam to measure what primary and secondary aqueous minerals are present in Gale 

crater. What can we learn about the chemistry of past water(s)? What paleoenvironments 

were present in Gale?  

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument provides 

another large (>35,000 full resolution images) spectral dataset valuable for identifying 

aqueous alteration, but at a global scale. Phyllosilicates, sulfates, and other minerals have 

been mapped using VNIR spectroscopy. The (relatively) high resolution of CRISM (~18 

m/pixel) enables characterization of the geologic context as well. The infrared wavelength 

dataset of CRISM has been studied extensively, but the visible wavelength dataset is 

underutilized in comparison and may provide new information on Fe mineralogy. The 
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challenge is systematically searching for specific mineral endmembers in the large and often 

noisy (due to imperfect calibration and atmospheric correction) dataset. The global-scale 

acidification that may have occurred during the Hesperian is poorly understood but one 

proposed mechanism is increasing acidity associated with the formation of iron oxides 

(Bibring et al., 2006; Hurowitz et al., 2010). The martian crust is basaltic and Fe-rich; if past 

waters were capable of dissolving and transporting iron, what phases were favored? Did iron 

oxides form in sedimentary deposits analogous to terrestrial iron formations? Or were other 

Fe-bearing phases such as Fe-phyllosilicates or Fe-sulfates favored? Characterizing iron-

bearing sedimentary deposits on Mars may provide new insight into environmental 

conditions preserved in the martian rock record and potentially help understand proposed 

global-scale acidification.  

4. Thesis contents  

In this thesis, I addressed the challenges put forth above by developing and applying new 

statistical and analytical methods for interpreting large spectral datasets. In the first part, 

Chapters 2-4, I developed new analytical methods for the MSL ChemCam instrument and 

applied them to detect aqueous alteration and salts. In the second part, Chapter 5, I adapted 

and applied a statistical method called factor analysis and target transformation to the CRISM 

visible data to search for hematite in candidate sedimentary, stratified outcrops.  

Here, I summarize the key points of each chapter: 

In Chapter 2, I analyzed laboratory LIBS measurements of powderized pellets of mixtures 

of basalts and hydrated minerals as well as natural altered samples under martian (6 mbar 

CO2) conditions. I also obtained a complementary thermogravimetric analysis dataset for 

independently measuring H content. I evaluated multiple calibration and normalization 

methods to determine H content form the hydrogen-alpha LIBS emission line. O 778 and C 

248 nm normalizations have the lowest scatter for the lab set, best correct for varying distance 

to target, and successfully determine H for martian rocks. The observed non-linear 
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calibrations for high H samples and physical matrix effects which change the H peak for 

natural vs. pelletized samples warrant further study.  

In Chapter 3, I applied the analytical methods developed for H in Chapter 2 to the martian 

ChemCam dataset. The Murray formation contains on average 2.6 ± 2.1 wt. % H2O, 

consistent with measurements using the SAM and DAN instruments. The LIBS measured H 

content varies in specific members of the Murray, Hartmann’s Valley, Pettegrove Point, and 

Jura, and H shows a dependence on grain size. The presence of high-H phases including 

hydrated silica, hydrated Mg-sulfates, hydrous Mn-oxides, and akageneite are inferred, and 

provide further evidence for extensive water-rock interaction in the Murray formation as well 

as saline fluids, either primary or diagenetic.  

In Chapter 4, I applied analytical LIBS methods to systematically measure Cl in the 

ChemCam dataset. ChemCam, APXS, CheMin, and SAM data are used to make the case for 

scattered, isolated deposits of chloride salts in the Murray formation. The isolated Cl 

enrichments occur in bedrock, in nodular textures, and at calcium sulfate vein margins, and 

are correlated with enriched Na, indicating halite. The scattered, isolated occurrences of 

chlorides are consistent with late groundwater reworking and remobilization of original 

deposits. Because chlorides are found in particular members of the Murray formation, the 

chlorides may have been emplaced as small-scale primary deposits in these members, 

consistent with varying salinity in the waters in which the Murray formation was deposited.  

In Chapter 5, I adapted and applied a semi-automated statistical technique called factor 

analysis and target transformation to the CRISM visible data to search for hematite in 

candidate sedimentary, stratified outcrops with the goal of testing the hypothesis that iron 

formation analogs formed on early Mars. The survey methods work well, but hematite is 

only detected in 3% of the images surveyed, suggesting hematite is rare in this geologic 

setting on Mars. We confirm previous detections of hematite in Mawrth Vallis, Iani Chaos, 

and Meridiani Planum and first identify hematite in Nili Fossae. The deposits discovered do 

not seem analogous to terrestrial iron formations. Other Fe-bearing phases may have been 



 

 

6 
favored, and future studies using our methods can search for other Fe-phyllosilicates and 

Fe-sulfates in addition to searching for hematite in other geologic settings.   

Finally, in Chapter 6, I summarized my results, discussed their implications, and commented 

on some outstanding questions and challenges raised by this thesis. 
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• O 778 and C 248 nm norms have the lowest scatter for the lab set, best correct for 
distance and successfully determine H for martian rocks 

• Non-linear calibrations for high H samples and differences in H between rocks, 
when natural vs. pelletized, warrant further study  
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Abstract  

The Mars Science Laboratory rover, Curiosity, is equipped with ChemCam, a laser-induced 

breakdown spectroscopy (LIBS) instrument, to determine the elemental composition of 

nearby targets quickly and remotely. We use a laboratory sample set including prepared 

mixtures of basalt with systematic variation in hydrated mineral content and compositionally 

well-characterized, altered basaltic volcanic rocks to measure hydrogen by characterizing the 

H-alpha emission line in LIBS spectra under Martian environmental conditions. The H 

contents of all samples were independently measured using thermogravimetric analysis. We 

found that H peak area increases with weight percent H for our laboratory mixtures with 

basaltic matrices. The increase is linear with weight percent H in the mixtures with 

structurally bound H up to about 1.25 wt.% H and then steepens for higher H-content 

samples, a nonlinear trend not previously reported but potentially important for 

characterizing high water content materials. To compensate for instrument, environmental, 

and target matrix-related effects on quantification of H content from the LIBS signal, we 

examined multiple normalization methods. The best performing methods utilize O 778- and 

C 248-nm emission lines. The methods return comparable results when applied to ChemCam 

data of H-bearing materials on Mars. The calibration and normalization methods tested here 

will aid in investigations of H by LIBS on Mars with ChemCam and SuperCam. Further 

laboratory work will aid quantification across different physical matrices and heterogeneous 

textures because of differences we observed in H in pelletized and natural rock samples of 

the same composition.  

1. Introduction  

Laser-induced breakdown spectroscopy (LIBS) provides chemical information by collecting 

light emitted by excited atoms, ions, and simple molecules in the plasma generated by laser 

vaporization of a sample. The ChemCam instrument on the Curiosity rover uses LIBS to 

determine geochemical composition and can detect the presence of light elements including 

hydrogen. ChemCam fires a pulsed laser beam at a rock or soil target and ablates a 350- to 

550-µm diameter area (Maurice et al., 2012; Wiens et al., 2012). The emission spectrum from 
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the plasma is recorded by the ChemCam spectrometers over the 240- to 840-nm 

wavelength range and used to derive elemental compositions (Wiens et al., 2013).  

The Curiosity rover is investigating sedimentary rocks that are part of Aeolus Mons, 

informally known as Mount Sharp, an interior 5-km tall mound within 154-km diameter Gale 

crater. Hydrogen is a crucial element for Curiosity’s characterization of past aqueous 

environments with liquid water and assessment of habitability. On Mars, water and OH can 

occur adsorbed on surfaces or in hydrated or hydroxylated minerals, including amorphous 

phases (Ehlmann & Edwards, 2014). Curiosity employs the Dynamic Albedo of Neutrons 

(DAN) instrument to assess hydrogen content in the near subsurface (decimeter scale) over 

a few meter-scale footprint beneath the rover (Mitrofanov et al., 2012). The Sample Analysis 

at Mars (SAM) instrument can detect H2O and H2 released from solid samples upon heating, 

using the combination of a quadrupole mass spectrometer, a tunable laser spectrometer, and 

a gas chromatograph to obtain chemical and isotopic compositions of volatiles released 

(Mahaffy et al., 2012). The Alpha Particle X-ray spectrometer can determine when light 

“missing” elements are present but cannot determine hydrogen content directly (Campbell et 

al., 2012). The CheMin instrument can identify crystalline minerals that host hydrogen in 

their structure (Blake et al., 2012). ChemCam is the only instrument that is both sensitive to 

hydrogen content and can simultaneously characterize the sample geochemistry at a 

submillimeter scale. In addition, ChemCam is a remote sensing instrument, so 

reconnaissance data are acquired daily and the immediate results can serve to motivate 

follow-up detailed analyses with the rover payload.  

Determining the degree and style of aqueous alteration of rock units, including the presence 

of specific hydrated salts and hydrated silicates, is an important geochemical task for 

Curiosity and can be aided by analysis of hydrogen with ChemCam data. For example, the 

water or OH content of basaltic sedimentary materials is a key indicator of the extent to which 

they interacted with liquid water. ChemCam has demonstrated the ability to recognize 

hydrated mineral phases and use them for determining environmental conditions. Analysis 

of calcium sulfate veins in Yellowknife Bay sedimentary deposits with ChemCam identified 
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H emission supporting hydrated forms of the salt (Nachon et al., 2014; Schröder et al., 

2015) that later were determined to be bassanite (Rapin et al., 2016). In addition, H has been 

detected and characterized in dust and soils (Meslin et al., 2013; Schröder et al., 2014). 

Schröder et al. (2015) extended this work to drill tailings and rocks, making the first steps 

toward relative quantification of hydrogen with ChemCam while showing the dependence 

of the analysis on target type with higher intensities in the tailings than the rocks.  

The abundances of major elements and some trace elements in ChemCam data are being 

quantified by univariate and multivariate modeling of database reference samples and 

calibration targets on board the rover (Maurice et al., 2016, and references therein). The 

detection of hydrogen by the 656.5 nm (wavelengths in vacuum will be used throughout this 

paper) LIBS emission line (H-alpha) is straightforward. Hydrogen has been detected in most 

of the targets observed by ChemCam (Schröder et al., 2015). Lab work has shown 

quantifying hydrogen content from this single line is a challenge (Sobron et al., 2012). A 

second H emission line at 486.13 nm is located at the edge of the ChemCam visible and near-

infrared (VNIR) detector where sensitivity is too low for quantitative analysis (Schröder et 

al., 2015). Recent results from Rapin et al. (2016) have characterized the LIBS H emission 

for calcium sulfates, while Rapin et al. (2017a) studied H emission for a set of pelletized 

basalts, fluorhydroxyapatites, hydroxyapatites, opals, and sulfates using a ChemCam model 

LIBS instrument but did not measure any natural rock samples. A first absolute quantification 

was then proposed by Rapin et al. (2017a) that only considered a linear calibration curve.  

The goal of this project is to qualitatively and quantitatively examine how hydrogen emission 

varies with composition and to develop calibration curves based on laboratory data, acquired 

under simulated Martian conditions, which may later be modified and employed to analyze 

ChemCam and SuperCam (Wiens et al., 2017) LIBS data from Mars. We utilize prepared 

mixtures of basalt with varying quantities of Mars-relevant hydrated minerals as well as 

compositionally well-characterized natural, altered basaltic rocks. Some of our samples 

contain structural H2O or structural OH, and their H2O contents and release temperatures 

were independently determined using thermogravimetric analysis (TGA). Our work builds 
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on previous studies by Rapin et al. (2017a) and others by introducing new measurements 

to study the quantification of hydrogen within a basaltic matrix for a larger set of Mars-

relevant hydrated materials, important for characterizing chemical matrix effects. We test a 

variety of normalization techniques for LIBS H to develop a calibration based on our sample 

set. Our study examines whether the calibration curves remain linear at high weight percent 

H. We also present LIBS results for a set of natural rocks, which have not been studied in 

previous laboratory studies, to begin characterization of physical matrix effects related to 

grain size, sample roughness, and cohesion. We test our methods by applying to ChemCam 

data to identify the range of hydration of sulfate veins and estimate the hydration of the 

Martian bedrock at Gale crater.  

2. Samples and Methods 

2.1 Samples 

To characterize LIBS H emission, we created a sample set including both prepared mixtures 

of basalt with Mars-relevant minerals in varied proportions and compositionally well-

characterized altered volcanics (Table 1).  

2.1.1 Mixtures 

The wide variety of materials we have chosen for our mixtures are Mars-relevant phases, 

either previously detected on the Martian surface or plausibly present, based on what is 

known about Martian geochemical environments. In contrast to most terrestrial sediments, 

Mars sediments contain a significant fraction of primary igneous minerals (e.g., Morris et al., 

2016; Rampe et al., 2017; Vaniman et al., 2013), so mixtures of hydrous and igneous 

minerals are clearly relevant for Mars.  

Production of synthetic mixtures has a number of advantages. First, it allows us to 

systematically increase the proportion of hydrated material to investigate H peak increase in 

basaltic material, controlling precisely the relative change from sample to sample. Second, 

chemical matrix effects in LIBS data mean that line emission strength is sensitive not only  
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Table 1. List of all samples and mixtures. 

Sample  Chemical Formula Number of 
samples or 
mixtures 

Sample 
Origin 

Sample 
Source  

Years 
measured 
(20XX) 

Mixture 
Number1 

K1919 Basalt 1 Near USGS 
BHVO-1 
locality in 
Kilauea, 
Hawaii 

Caltech 
collection 

13, 14, 15  

GBW07105 
(GBW) 

Basalt 1 NRCCRM, 
China 

Brammer 14, 17  

Iceland 
basalts  

 

rock compositions in 
Ehlmann et al., 2012 

6 samples Hvalfjordur 
and 
Berfjordur, 
Iceland 

Ehlmann et 
al., 2012 

13, 15  

San Carlos 
basanites 

rock compositions in 
Hadnott et al., 2017 

7 samples San Carlos, 
AZ 

Hadnott et al., 
2017 

13, 15  

Ca Chloride CaCl2 6 – K1919 Synthetic, 
reagent grade 

J.T. Baker 13 5 

Na Chloride NaCl 6 – K1919 
and GBW 

Synthetic, 
reagent grade 

Macron 
Chemicals 

13, 14, 17 1, 14 

Calcite (Ca 
Carbonate) 

CaCO3 6 – K1919  Minas, Nuevo 
Leon, Mexico 

Ward’s 13 2 

Magnesite 
(Mg 
Carbonate) 

MgCO3 7– K1919 unknown Ward’s 14, 17 7 

Gypsum CaSO4 · 2H2O 6 – K1919 
and GBW 

Fremont 
County, 
Colorado 

Ward’s 13, 14, 17 3, 13 



 

 

17 
Fe (III) 
Sulfate 

Fe2(SO4)3 7– K1919 Synthetic, 
reagent grade 

Carolina 
Chemical 

14, 17 10 

Mg Sulfate MgSO4 7– K1919 Synthetic, 
reagent grade 

Macron 
Chemicals 

14, 17 8 

Na Sulfate Na2SO4 7– K1919 Synthetic, 
reagent grade 

Carolina 
Chemical 

14, 17 11 

Quartz SiO2 6 – K1919 NW end of 
Saline Valley, 
CA 

Caltech 
mineral 
collection 

13 4 

Opal SiO2 · nH2O 7– K1919 Colton, San 
Bernadino 
Co., CA 

Caltech 
mineral 
collection 

14, 17 12 

Hematite Fe2O3 6– K1919 Joan 
Monlevade, 
Minas Gerias, 
Brazil 

Caltech 
mineral 
collection 

13 6 

NAu-1 (Ca,Na,K)1.05(Si6.98Al1.02) 
(Al0.29Fe3.68Mg0.04)O20(OH)4 

7– K1919 South 
Australia 

Keeling et al., 
2000 

15 15 

NAu-2 (Ca,Na,K)0.72(Si7.55Al0.45) 
(Fe3.83Mg0.05)O20(OH)4 

7– K1919 South 
Australia 

Keeling et al., 
2000 

15 16 

Alunite (with 
clay mineral 
impurities) 

KAl3(SO4)2(OH)6 7– K1919 Utah Ward’s 14, 17 9 

Brucite Mg(OH)2 7– K1919 Gabbs, NV Caltech 
mineral 
collection 

15 17 

Epidote Ca2Fe2.25Al0.75(SiO4)3(OH) 7– K1919 Rockbridge 
CO., VA 

Caltech 
mineral 
collection 

15 20 
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Muscovite KAl2(AlSi3O10)(F,OH)2 7– K1919 Upson 

County, GA 
Caltech 
mineral 
collection 

15 18 

Serpentine ((Mg,Fe)3Si2O5(OH)4 7– K1919 Hoboken, NJ Caltech 
mineral 
collection 

15 19 

1Labeling key for our supplementary dataset available online and for the LANL calibration 

dataset used for the ChemCam data available on the PDS.  

to H content but can also vary due to the total elemental composition of the sample (e.g., 

Clegg et al., 2009), especially for H (Schröder et al., 2015, and references therein). At the 

same time, the limited set of chemical matrices and measurement conditions that ChemCam 

could encounter on Mars may help to reduce the complexity of their effects. Characterization 

of the H peak within basaltic matrices is thus most relevant for measurements of the Martian 

surface, which is mostly basaltic.  

Mixture samples were produced from reagent grade chemicals or natural mineral samples 

that were already well characterized by chemical and mineralogical measurements (Table 1). 

All endmembers were mixed with K1919, a moderate-alkali (2.27 ± 0.01 wt.% Na2O and 

0.52 ± 0.01 wt.% K2O) Hawaiian basalt chosen for its low hydration. In addition, for a subset 

of endmembers, mixtures were produced with GBW07105, a higher-alkali basalt (3.32 ± 

0.01 wt.% Na2O and 2.24 ± 0.01 wt.% K2O) from the Brammer Standard Company. The 

other minerals chosen included a variety of salts, oxides, and phyllosilicates detected on 

Mars, some of which are hydrated or hydroxylated. The hydrated and hydroxylated minerals 

are expected to cause an increase in H line intensity with increasing concentration. The 

hydroxylated samples (e.g., brucite and epidote) are also important because their hydration 

is stable in spite of depressurization down to Martian pressures in a chamber. The nominally 

anhydrous materials (e.g., quartz and calcite) provide a check that H line intensity decreases 

with increasing concentration of anhydrous minerals in the mixture, thus allowing us to 

clearly define the limit of detection of the instrument.  
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The natural samples were first ground using a jaw crusher to produce submillimeter 

particles. All samples, both the reagent grade chemicals and the natural samples, were then 

run through a shatterbox for a few minutes to produce powders with grain sizes of <250 µm 

for 85–90% of the particles (Anderson et al., 2017). This, importantly, is less than the spot 

size of the laser (≥350 µm). While some grain clumps or individual grains larger than the 

spot size of the laser existed within powders, we found no sporadic behavior in the shot-to-

shot trends with depth that would indicate the laser sampling individual grains rather than a 

well-mixed powder. After preparation of the powders, we mixed the mineral samples at 

concentrations of 5, 10, 30, 50, and 70 wt.% with a basalt powder. Based on the shot-to-shot 

and spot-to-spot LIBS data collected from the mixtures, the powders were well mixed. Table 

1 lists the set of mixtures we prepared. For some mixtures, we additionally prepared a mixture 

at 0.5 wt.% (where seven mixtures are listed in Table 1). Mixed samples were then pressed 

into pellets at 25 tons of pressure at room temperature.  

2.1.2 Rock Samples 

In addition to laboratory mixtures, we also measured a set of natural samples including 

previously characterized altered basalts from Iceland (Ehlmann et al., 2012) and altered 

basanites from San Carlos, AZ (Hadnott et al., 2017). LIBS measurements were taken of 

both powdered materials, which were pressed into pellets (prepared using the same methods 

as described in section 2.1.1) and small rock chips. The Iceland samples were formed in near-

neutral pH, by surface and groundwater alteration of basalt lava flows (Ehlmann et al., 2012). 

The samples show a range of alteration, including filled veins and fractures. Samples from 

Hvalfjordur include hvalfj011 and hvalfj017, which sample friable rock at the contact 

between two lava flows; hvalfj025, which samples basaltic rock with celadonite- and silica-

filled vesicles; hvalfj054, which samples zeolitized basaltic rock with filled vesicles; and 

icel009, which samples a massive basaltic outcrop. Both hvalfj011 and hvalfj054 have high-

H zeolite inclusions that may have been included in the pelletized samples. The suite of 

alkaline basalts from San Carlos, AZ, exhibit different extents of alteration and represent 

weathering of alkaline basaltic rocks in an oxidative, semiarid environment (Hadnott et al., 
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2017). The samples vary from SanC-J, the least altered basalt with bright green olivine 

xenoliths, to SanC-A, a highly altered red-brown basalt with reddish olivine xenoliths. SanC-

K is a relatively pristine basalt, SanC-F is a relatively pristine basalt with a gypsum coating, 

SanC-B is intermediately altered, SanC-C is intermediately altered with red-brown xenoliths, 

and SanC-I is a highly altered red-brown basalt.  

2.2 LIBS Measurements 

LIBS spectra were collected using the Los Alamos National Laboratory (LANL) ChemCam-

analog instrument described in detail by Clegg et al. (2017). The engineering model (EM) 

mast unit contains the laser, telescope, and remote micro imager (RMI). It is in an enclosure 

cooled to 4 °C and is connected by a fiber to the optical demultiplexer, spectrometers, and 

data processing unit in the body unit outside of the enclosure. The samples are placed into a 

vacuum chamber, which in less than 1 hr is evacuated and then filled with 7 ± 0.2-mbar CO2 

to simulate Mars-like conditions at room temperature. Samples collected in 2013, 2015, and 

2017 were measured at a laser-to-sample distance of 1.6 m while samples measured in 2014 

were measured at 3.0 m. The distance difference was a result of the setup of the measurement 

system at the time and was not an intended experimental variable. Distance corrections were 

applied during data processing to account for the change in viewing geometry (Clegg et al., 

2017; Wiens et al., 2013). The laser operates at 3 Hz with an energy of 14 mJ per pulse. The 

samples were measured with 50 consecutive laser pulses at each of five different locations 

across the surface to collect a total of 250 spectra per sample. Emission collected by the 

instrument’s telescope was measured using three detectors across the following wavelength 

ranges: ultraviolet (UV; 240–340 nm), visible (VIS; 380–470 nm), and VNIR (490–850 nm).  

We applied standard ChemCam ground data-processing techniques (Clegg et al., 2017; 

Wiens et al., 2013) to all LIBS spectra collected at LANL. This processing produces so-

called clean, calibrated spectra files and includes the following correction steps: (1) 

subtraction of the background (measured spectrum with no laser pulse), (2) denoising, (3) 

continuum removal, (4) wavelength calibration, and (5) application of the instrument 

response function. The first five laser shots are excluded from analysis due to potential 
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surface effects, the same standard number removed from ChemCam data from Mars. For 

analysis of H in the lab, removal of the first shots is especially important because the first 

shot has high H intensity due to a water surface layer (Kurniawan et al., 2014; Meslin et al., 

2013). To minimize the influence of random single shot outlier variation, the median 

spectrum rather than the average spectrum was computed from the remaining 45 shots from 

each of the five spots, that is, utilizing 225 spectra.  

2.3 Peak Fitting and Normalization of Spectra 

The H peak height is not an accurate direct measure of the H emission because of interference 

from the adjacent C peak at 658 nm and broadening of the H emission line. For this reason, 

we fit the local 652- to 662-nm spectral region to measure the H emission using peak area. 

Figure 1 shows an example laboratory spectrum (both before and after continuum removal) 

including the local H region along with other spectral regions used for normalization. We 

use a Levenberg-Marquardt least squares minimization algorithm to fit two pseudo-Voigt 

peaks and a linear continuum. The approximate Voigt function, a fractional combination of 

a Gaussian profile (expected from pure Doppler broadening) and a Lorentzian profile 

(expected from collisional broadening), better fits the shape of the peaks than the Lorentzian 

function typically used. There are a total of nine free parameters in this peak fitting routine 

(linear continuum slope and intercept, peak height [2], full width at half maximum [FWHM; 

2], center location [2], and the fraction Gaussian versus Lorentzian, which is assumed to be 

the same for both peaks), which is approximately 5 times less than the number of data points 

in the local H peak spectral region being fit. Additionally, Fe peaks are present in this region 

at 654.8 and 659.4 nm (Rapin et al., 2017a). We only fit these peaks with six additional 

parameters when necessary for the highest Fe-containing mixtures: the Fe sulfate and Fe 

oxide. We estimate the error in calculation of peak area by using the standard deviation of 

the peak area computed from the five separate spot measurements on a given sample.  

We tested six methods for normalizing the hydrogen peak area to compensate for variability 

in the instrument (such as the laser energy and focus), experimental conditions (such as 

distance to the target and atmospheric pressure), and target properties (such as the physical  
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Figure 1. Spectrum of K1919 basalt and gypsum mixture at 50 wt.%. (a) Entire spectrum 

before (gray) and after (black) continuum removal across the three detectors (UV, VIS, and 

VNIR). (b) Example model fit to the data for the C (I) peak at 247.9 nm. The final model 

(shown in red) is a combination of a local linear continuum (black dashed line) and 2 Voigt 

peaks (green and black solid lines). (c) Spectrum of H-alpha (I) peak at 656.5 nm and C (II) 

peak at 658.0 nm. (d) Spectrum of O (I) peak at 777.6 nm. UV = ultraviolet; VIS = visible; 

VNIR = visible and near-infrared.  

and chemical matrix). By normalizing we mean dividing the hydrogen peak area by a proxy 

measured on the same spectrum, for instance the area of another peak. The first three 

normalization methods rely on using the peak areas of other elements assuming that they will 

reflect changes in the experimental parameters. The first method normalizes to the area of 

the C 658-nm peak (actually a mixture of two peaks—C II at 658.0 nm and C II at 658.5 nm 
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forming a single peak in ChemCam spectra as described by Schröder et al., 2018) from 

Martian atmospheric CO2. This peak is fit simultaneously with the H peak at 656.5 nm, which 

is a neutral peak, in the initial analysis and could behave differently than the ionic C 658-nm 

peaks (Schröder et al., 2015). We also test normalization to the C I peak at 248 nm, fit 

separately from the H peak (also using a Voigt function), which is one of the normalization 

methods preferred by Rapin et al. (2016) and Rapin et al. (2017a). A potential complication 

of this method is that the C 248-nm peak is measured on a different detector than the H peak 

and detector behavior variability would not be corrected for. The third method normalizes to 

the oxygen peak at 778 nm, a triplet of neutral atomic emission peaks, which results from 

oxygen in atmospheric species and the target (Gasnault et al., 2012). The O peak area is also 

fit with a Voigt function. Another method tested is that previously used by Schröder et al. 

(2015), normalization to the continuum emission in the spectral region near the H peak, 

which results from Bremsstrahlung radiation and the broad tails of strong emission lines from 

other elements. This technique requires independent data processing, following all the 

processing steps normally required to generate the clean, calibrated spectra processed files 

except for continuum removal. Then, the continuum emission is estimated using the value of 

a nearby peak-free spectral region, here taken to be 660.0 nm. We also tested two standard 

ChemCam normalization methods called Norm 1 and Norm 3. Norm 1 normalizes the 

spectrum by the total spectral intensity across all detectors, and Norm 3 normalizes the 

spectrum by the spectral intensity of the VNIR detector only, which is the detector for the H-

alpha line, both after continuum subtraction. These two techniques depend on the emission 

lines and, therefore, elements present in the sample, so can be impacted by variations in 

composition.  

2.4 Independent Characterization  

Additional powders of the same sample endmembers and a subset of the mixtures (10 and 

50 wt.% samples) were independently characterized by Activation Laboratories Ltd. 

(Actlabs) using flux-fusion inductively coupled plasma optical emission spectroscopy for the 
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major oxides, instrumental neutron activation analysis for Cl, and infrared spectroscopy 

for C and S to verify the endmember composition and the accurate production of the 

mixtures.  

The H (or H2O) content of a given mineral must be measured and cannot be determined from 

stoichiometry because samples can contain adsorbed and structural H2O or OH such that 

even nominally anhydrous minerals often contain measurable amounts of hydrogen. The 

amount of H2O incorporated depends on both pressure and temperature, which makes 

determining hydration challenging, particularly under different environmental conditions. 

TGA was used to independently characterize the hydrogen content of all samples by 

measuring the weight percent H2O released upon heating. The release temperature of water 

serves as a proxy for how easy or difficult samples are to dehydrate upon exposure to low 

pressures, as in the Mars chamber used for LIBS measurements. TGA measurements were 

performed using a Perkin-Elmer STA 6000 instrument. Samples were heated in air to 900 

°C at a rate of 10 °C/min while monitoring weight change. Samples were then held at 900 

°C for 1 hr to ensure all H2O was removed, again, while monitoring weight change.  

We estimated the total weight percent H2O for each of our samples by calculating the weight 

percent lost over the temperatures where water is removed as described by Földvári (2011). 

First, adsorbed and nonstructural H2O are removed at temperatures typically below 150 °C 

as evidenced by the weight percent loss of our samples below 150 °C (first column of Table 

2), a temperature chosen as a reference similar to previous studies (e.g., Földvári, 2011; 

Vaniman & Chipera, 2006). At higher temperatures, generally near 500 °C, structural H2O 

is lost. Besides the exceptions listed next, we calculated the total H2O content of our samples 

using the sample’s total weight lost over the entire TGA temperature range plus the additional 

1 hr of heating at 900 °C. The exceptions to this are (1) SO4 is released from the Fe sulfate, 

Na sulfate, and alunite samples at temperatures above 600 °C, so weight percent H2O for 

these minerals was calculated using temperatures below 600 °C. (2) Weight percent H2O for 

NaCl was calculated from the weight lost below 150 °C because halite does not hydrate under 

nonzero humidity and should only have small amounts of adsorbed water present. Any  
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Table 2. Thermogravimetric analysis (TGA) results. Cumulative weight percent lost in 

the <150˚C, <400˚C, and <900˚C temperature ranges. Error in TGA measurements is ± 0.015 

wt. %. See text (Section 2.4) for details of the computation of H2O wt. % for each phase. H 

wt. % is computed from stoichiometry from H2O wt. %.   

Sample Loss below 
150˚C (wt. %) 

Loss below 
400˚C (wt. %) 

Loss below 
900˚C (wt. %) 

H2O (wt. %) H (wt. %) 

Ca Chloride 4.82 29.76 30.75 30.75 3.44 

Na Chloride 0 0 4.08 0 0 

Ca Carbonate 0.02 0.08 43.48 0.08 0.01 

Mg Carbonate 0.59 0.89 53.29 0.89 0.10 

Alunite 1.24 2.74 9.67 7.94 0.89 

Gypsum 2.97 20.71 20.9 20.9 2.34 

Fe Sulfate 8.09 27.17 69.64 27.46 3.07 

Mg Sulfate 2.19 15.65 16.58 16.79 1.88 

Na Sulfate 0 0 0.09 0 0 

NAu-1 6.26 9.92 14.86 14.86 1.66 

NAu-2 6.98 9.46 13.55 13.55 1.52 

Quartz 0 0 0 0 0 

Opal 1 0.98 2.33 3.83 3.83 0.43 

Opal 2 0.7 2.04 3.6 3.6 0.40 

Opal avg. 0.84 2.18 3.72 3.72 0.42 

Brucite 0.33 3.49 30.88 30.88 3.46 

Epidote 0.11 0.36 0.61 0.76 0.09 
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Hematite 0.08 0.51 0.6 0.6 0.07 

Muscovite 0.44 1.2 4.14 5.26 0.59 

Serpentine 1.27 2.58 10.28 10.28 1.15 

hvalfj011 1 1.72 2.75 3.41 3.48 0.39 

hvalfj011 2 1.52 2.54 3.18 3.28 0.37 

hvalfj011 avg. 1.62 2.64 3.3 3.38 0.38 

hvalfj017 4.89 7.67 9.55 9.55 1.07 

hvalfj025 1 0.41 0.56 0.46 0.71 0.08 

hvalfj025 2 0.57 1.01 0.83 1.22 0.14 

hvalfj025 avg. 0.49 0.78 0.64 0.97 0.11 

hvalfj054 1 2.57 5.93 7.22 7.23 0.81 

hvalfj054 2 1.87 5.2 6.14 6.14 0.69 

hvalfj054 avg. 2.22 5.57 6.68 6.69 0.75 

icel009 1 0.54 0.75 0.86 1.01 0.11 

icel009 2 1.52 2.52 2.89 2.96 0.33 

icel009 avg. 1.03 1.64 1.88 1.98 0.22 

K1919 1 0.03 0.11 0.12 0.12 0.01 

K1919 2 0.02 0.11 0.12 0.12 0.01 

K1919 avg. 0.02 0.11 0.12 0.12 0.01 

GBW07105 1 0.83 2.94 3.3 3.5 0.39 

GBW07105 2 0.82 2.94 3.29 3.49 0.39 
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GBW07105 3 0.84 2.98 3.32 3.53 0.40 

GBW07105 4 0.7 2.84 3.19 3.4 0.38 

GBW07105 avg. 0.8 2.93 3.27 3.48 0.39 

 

weight percent change above 150 °C is due to melting (at 800 °C) and evaporation of the 

sample. On the other hand, our Ca chloride sample is nominally anhydrous but readily 

hydrates under nonzero humidity, so the entire temperature range is used. (3) For the 

nominally anhydrous carbonate minerals, the high temperature weight loss is due to CO2 

being burned from the sample, so weight percent H2O was calculated using loss below 400 

°C. (4) For some of the basalt samples, the minimum weight often did not occur at the highest 

temperature reached (900 °C). Instead, the basalt samples sometimes reached a weight 

percent minimum at slightly lower temperatures. This difference (<0.5 wt.%) is likely a 

minor calibration issue with the instrument at highest temperatures rather than a real weight 

percent gain at high temperatures. Therefore, we calculated the weight percent H2O for the 

basalt samples using the minimum value of the TGA curve.  

We estimated the precision of the TGA measurements by repeat measurements of a few 

endmembers (the K1919, GBW07105, hvalfj011, hvalfj054, and icel009 basalts and the opal 

sample). While most of the samples are very consistent across runs with repeat measurements 

having standard deviations of 0.05–0.26 wt.%, two of the natural basalt samples (icel009 and 

hvalfj054) showed variation of ~1 wt.%, perhaps indicating aliquot variation for these 

samples. Ultimately, the accuracy of the TGA measurements for use in determining H 

content is limited by potential water loss during pump down to vacuum (see section 3.2).  

2.5 ChemCam Data 

ChemCam spectra are collected by Curiosity using a very similar LIBS instrument to the 

LANL analog instrument used for our study. Typical ChemCam observations on a given 

point collect 30 shots at 3 Hz. When we average laser pulse spectra obtained at a single 
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observation point, the first five shots are ignored due to potential contributions from 

surface materials like dust or thin coatings. We fit the ChemCam spectra using the same 

procedures as the laboratory data with an additional constraint on the FWHM of 0.9 nm, a 

physically reasonable upper limit determined based on the largest H FWHM observed in the 

laboratory data. We also apply the Earth-to-Mars correction as described by Clegg et al. 

(2017) to account for differences in sensitivity between the LANL laboratory and ChemCam 

instruments. Targets are generally 2.2 to 7 m from the instrument with most at about 3 m 

(Maurice et al., 2016). ChemCam collects images of the targets in complement to the LIBS 

spectra using the RMI. We have visually classified individual ChemCam points using the 

RMI images up to sol 1815 in order to identify where veins have been targeted for 

comparison with the results of Rapin et al. (2016; 69 points) and where ChemCam has shot 

smooth bedrock (2,098 points) for calculation of its H content.  

3. Results 

3.1 Thermogravimetric Analysis  

TGA analysis shows our samples contain between 0 and 31 wt.% H2O or 0 and 3.5 wt.% H 

(Figure 2; Table 2). The minerals with structural H in metal-OH bonds lost H2O at high 

temperatures (≥400 °C). Other minerals lost weight at stepped temperatures. CaCl2 tends to 

be hygroscopic and shows dehydration at 200 °C. In contrast, NaCl lost weight only through 

melting and evaporation of Cl (Figure 2a). The carbonate minerals (Figure 2b) we measured 

lost CO2 at high temperature (>700 °C) in the general reaction XCO3 ➔ XO + CO2. 

Additionally, a small amount of adsorbed or loosely bound water was released at low 

temperatures (<200 °C) from the Mg carbonate (Figure 2b). While nominally anhydrous, the 

Mg and Fe sulfates hydrate readily under nonzero humidity. For these and for gypsum, 

dehydration occurs at temperatures well below 400 °C while SO3 is released above 650 °C 

(Figure 2c). Figure 2d shows TGA results for a variety of Mars-relevant silicates and oxides, 

some of which are hydrated. For the nontronite samples, NAu-1 and NAu-2, endothermic 

dehydration occurs between 100 and 200 °C and dehydroxylation occurs between 400 and 

500 °C (Ding & Frost, 2002; Földvári, 2011). Opal was measured twice using TGA, and the  
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Figure 2. Thermogravimetric analysis for (a) chlorides; (b) carbonates; (c) sulfates; (d) silica, 

hydrated silica, and nontronite standards; (e) hematite and minerals, which, based on 

stoichiometry, are only hydroxylated; and (f) basalts and rock samples.  

weight percent loss trends are very similar between samples. Opal dehydrates by losing H2O 

from its structure continuously up to approximately 700 °C. As expected, the quartz sample 

is not hydrated and does not lose any appreciable weight in the 100–900 °C range. Most 

hydroxylated materials did not dehydrate until 400 °C, although alunite and serpentine show 

evidence for continual slow dehydration over the temperature range, suggesting some H2O 

or impurities (Figure 2e). Hematite, as expected, had no loss. Finally, the basaltic 

endmembers used in this experiment (K1919, 0.1 wt.% H2O; GBW07105, 3.5 wt.% H2O) 

and natural samples from Iceland measured with TGA show loss over a wider range of 

temperatures (from the start of heating to 700 °C; Figure 2f). The most altered and smectite 

Temperature (ºC) Time (h)

W
e
ig

h
t 

Pe
rc

e
n

t 

Temperature (ºC) Time (h)

a.

b.

c.

d.

e.

f.

5



 

 

30 
rich sample (79 wt.% smectite), hvalfj017, has the highest weight percent loss. Loss for 

the Iceland natural samples was assumed to be in the form of H2O as other volatile-bearing 

minerals were not detected in X-ray diffraction (Ehlmann et al., 2012).  

 

Figure 3. Laser-induced breakdown spectroscopy spectra of all laboratory mixtures showing 

the local H peak region from 652 to 662 nm including the H (I) peak at 656.5 nm and the C 

(II) peak at 658 nm. Colors indicate weight percent of listed endmember from 0% for pure 

basalt (black) to 100% pure mineral endmember (red).  
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3.2 LIBS H Peak Versus H Content 

The C peak at 658 nm due to the CO2 atmosphere in the sample chamber is clearly visible in 

all mixtures near the H peak (Figure 3). The laboratory mixtures that show an increasing H 

peak with weight percent endmember are gypsum (mixed with both K1919 and GBW07105 

basalts), Ca chloride, Mg sulfate, alunite, Fe (III) sulfate, opal, NAu-1, NAu-2, brucite, 

muscovite, serpentine, Mg carbonate, and epidote. No appreciable change is observed for Na 

chloride, Ca carbonate, quartz, hematite, and Na sulfate. In some cases, decreasing H was 

observed with increasing weight percent endmember in question. For example, the NaCl with 

GBW07105 mixture shows decreasing H because the basalt is more hydrated than halite. 

Adjacent to the H peak in the 100 wt. % hematite sample, there is a strong emission line at 

~655 nm. This Fe emission line is only observed in the highest FeO weight percent samples 

of the basalt-hematite and basalt-Fe-sulfate mixtures. This peak is fit for the hematite and Fe 

sulfate mixtures but may not be fully accounted for in the case of Fe sulfate (Figure 4).  

We used the methods described in section 2.2 to peak-fit all the mixtures that showed 

increasing H emission with weight percent endmember. Then, we compared peak area H 

with weight percent H determined using TGA. H peak area (or signal) increases with H 

weight percent for all the mixtures, though the curve shape and slope differ by mixture 

(Figure 4). We fit three different trend lines to the observed signal by minimizing the 

modified χ2 calculated using the equation: 	"# = 	 (&'()#
*&#+*,#(-&-,)#

; where M is the model value and 

σx and σy are the errors on x (weight percent H) and y (LIBS H signal), respectively. The 

modified χ2 allows us to take into account error both in our fit LIBS signal (described in 

section 2.3) as well as error in our TGA measured weight percent H values. The error in 

weight percent H due to the precision of our TGA measurements is relatively small as we 

discuss in section 2.4, but the error due to accuracy is larger. One effect that may influence 

the trends shown in Figure 4 and cause scatter in the data is loss of water after placement in 

the chamber  
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Figure 4. Hydrogen emission peak area versus weight percent hydrogen for full temperature 

range for all samples, as reported in Table 2, for the (a) full weight percent range and (b) the 

low weight percent range. The black dashed line is a linear fit to all the samples; the turquoise 

line is a linear fit to samples with H wt. % < 1.25%; and the magenta is a second-order 

polynomial fit to all samples. RMSECV values (calculation described in section 3.2) are 

included for comparison between normalizations. Error bars are computed using methods 

described in section 2.2. For the continuum normalization, the best linear fit (black) and 

polynomial fit (magenta) trend lines overlap. Trend line coefficients are included in Table 

A1. RMSECV = root-mean-square error cross-validation.  

 

a. b.
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for measurement. Because our samples are pumped down to vacuum and then set to 7-

mbar CO2, our samples almost certainly lost H2O before LIBS measurement during pump 

down. We take the weight percent loss below 150 °C as a proxy for the potential amount of 

adsorbed or loosely bound water lost in the vacuum chamber during the LIBS measurement 

process (Milliken & Mustard, 2005; Vaniman & Chipera, 2006). We use this quantity, 

column 2 of Table 2, as σx, the accuracy in our TGA measurements.  

H peak area increases versus weight percent for all six normalizations (Figure 4). 

Examination of the best linear fit to all mixtures and basalt samples (black dashed line; Figure 

4) shows that above 1.25 wt.% H, the increase in LIBS H signal is not clearly linear, 

particularly for the C 658- and O 778-nm normalizations. We also fit a second-order 

polynomial function (ax2 + bx + c) to the data (shown in magenta) to describe this increase. 

Mixtures containing less than ~1.25 wt.% H mostly follow a linear relationship, so we also 

show a separate linear fit to all measurements below 1.25 wt.% H (shown in turquoise). The 

coefficients for all the fit trend lines are included in Table A1. Alunite has a clearly distinctive 

trend, diverging from the linear fits even at low weight percent H. The sulfates like Fe and 

Mg sulfate tend to fall above the fit trend line even for some lower weight percent H mixtures. 

For Fe sulfate the higher H peak area than expected from the TGA results is likely due to 

interference from the Fe peaks adjacent to the fitted H peak, as evidenced by a small shift in 

the H peak center location. Observed differences between sample suites in the normalized 

area versus weight percent H are similar across normalizations.  

To test the goodness of fit to the three models (linear, low weight percent linear, and second-

order polynomial), we calculated the root-mean-square error (RMSE) of cross-validation 

(RMSECV), which leaves out one data point to estimate how well the model built on the rest 

of the data set performs for unknown cases. We used the equation 

.(/012 = 	3∑ (&5 − &78 )#9
5:;

9  
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where y is the measured values of LIBS H signal, by is the LIBS H signal estimated by 

cross-validation (where the value for each object i is estimated using a model that was built 

using a set of objects that does not include object i), and n is the total number of data points. 

RMSECV values were normalized by the median value of the data set because the LIBS H 

values differ by orders of magnitude across the different normalizations. Normalization to O 

778 nm, C 248 nm, and the continuum visually produce the least scatter in the data and 

produce the lowest RMSECV values for the full-range linear model (Figure 4). Nonetheless, 

the fits clearly show that the relationship between peak area and weight percent H2O is not 

linear for the full sample suite over the 0–3.5 wt.% H range examined. The polynomial model 

performs better for the higher weight percent H samples and produces low RMSECV values 

for norm1 and norm3. Calculation of the x axis as mole percent H instead of weight percent 

H does not affect this finding (Figure A2).  

Scatter is introduced into our measurements due to loss of H2O before LIBS measurement in 

the vacuum chamber. Consequently, we next consider only a subset of the mixtures that have 

structurally bound H (brucite, epidote, muscovite, nontronite, and serpentine; Figure 5). 

These samples also released some H at low temperatures in our TGA experiments, so we 

compare LIBS H peak area with the weight percent H calculated from weight loss above 150 

°C because nonstructural H2O should be lost by this temperature (Milliken & Mustard, 2005; 

Vaniman & Chipera, 2006), although we still consider our x axis error bars as the TGA 

weight percent lost below 150 °C. For all normalizations, LIBS H emission increases 

monotonically with weight percent H. Scatter from the linear trend lines for these fits (Table 

A1) is considerably lower than for the full sample set for all normalizations (Figures 4 and 

5). However, the trend still significantly steepens for high H contents, wt.% H > 1.25 wt.%, 

in the brucite mixture.  

We quantify the uncertainty in our ability to predict weight percent H from the LIBS H signal 

by measuring the scatter from our fit linear trends. The RMSE for the fit lines for the O 778 

nm and C 248 nm normalizations for the Figure 5 samples are, respectively, ±0.42 and ±0.43 
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wt.% H for the full linear fit, ±0.24 and ±0.18 wt.% H for the linear fit of samples with 

<1.25 wt.% H, and ±0.31 and ±0.30 wt.% H for the polynomial fit.  

 

Figure 5. Hydrogen emission peak area versus weight percent hydrogen, for the full weight 

percent range (a) and low weight percent range (b), when calculated only from water 

temperatures >150 °C, for a subset of the sample data from Figure 4, including only those 

samples that have bound OH. The black dashed line is a linear fit to all the samples; the 

turquoise line is a linear fit to samples with H wt.% < 1.25%; and the magenta is a second-

order polynomial fit to all samples. Trend line coefficients are included in Table A1. 

RMSECV = root-mean-square error cross-validation.  

 

a. b.
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Our ability to detect the LIBS H signal is limited by interference due to the adjacent C 

peak and Fe peak. We can use our lowest weight percent H samples where H emission is 

observed to estimate the detection limit as done by Rapin et al. (2017a). Samples with weight 

percent H over ~0.9 wt.% H2O visually exhibit an inflection at 656.5 nm such as the Mg 

carbonate and epidote endmembers (Figure A1). In some instances, an asymmetry of the C 

658-nm peak is observed, which may be indicative of H at even lower abundances, for 

example, Ca carbonate. Samples with approximately 0 wt.% H2O like Na chloride exhibit 

the smallest amount of asymmetry in the C 658-nm peak. We can also calculate the detection 

limit using the standard equation LOD = 2sm, where s is the standard deviation of the 

measurements for our lowest concentration samples and m is the slope of the fit trend line. 

Using our low concentration calibration curves in Figure 5, we find a detection limit of 0.10 

wt.% H for the C 248-nm normalization and 0.04 wt.% H for the O 778-nm normalization. 

This equates to 0.4–0.9 wt.% H2O, which is similar to value where the peak visually becomes 

apparent as described above.  

3.3 Shot-to-Shot Behavior  

The peak intensity of H typically decreases with increasing laser shots (Figure 6; as also seen 

by Rapin et al., 2017a). After the first shot with high H, there is a systematic, slow decrease 

in intensity with shot number. The 50, 70, and 100 wt.% brucite mixtures are exceptions and 

show relatively constant, high H intensity across all shot numbers (Figure 6b).  

We expect the lab chamber to remain at constant pCO2, but because laser-target coupling can 

vary with target texture and composition, C and O emission may not necessarily remain 

constant. Empirically, we have found that emission of the C peak at 658 nm, the C peak at 

248 nm, and the O peak at 778 nm all decrease steadily with shot number like H (Figure 6; 

Figure A3). In contrast, the continuum level adjacent to the H peak increases with shot 

number across all sample locations. Nevertheless, division by any of these still results in 

monotonic H peak area increase with weight percent H (Figures 4 and 5).  
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Figure 6. Variation in H, C (II) 658-nm, C (I) 656-nm, and O (I) 778-nm peak areas and 

continuum emission nearby H (660 nm) with shot number for a low-moderate weight percent 

H mixture (NAu-2) and a high weight percent H mixture (brucite). Each 50 shots is a different 

location on the sample and colors indicate increasing weight percent NAu-2 or brucite.  

 

 

 

A. NAu-2 B. Brucite
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Figure 7. Variation in the increase in laser-induced breakdown spectroscopy H signal versus 

weight percent H for different ranges in shot number: 5–10 (red), 11–20 (yellow), 21–30 

(green), 31–40 (blue), and 41–50 (black). Under all normalizations, the H signal decreases 

with increasing shot number.  
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Figure 8. Top: Ca emission line (318.025 nm) variation with shot number in gypsum 

mixture. Bottom: Si emission line (188.242 nm) trends with depth for muscovite mixture. Ca 

increases and Si decreases with increasing shot number: 5–10 (red), 11–20 (yellow), 21–30 

(green), 31–40 (blue), and 41–50 (black).  

The range of shot numbers used to calculate the LIBS H signal impacts the calibration curves 

across all normalizations (Figure 7). The signal decreases with increasing shot number 

leading to lower slopes with shot number for the mixture sets shown: gypsum and muscovite. 

Similarly, most major element lines like Si show decreasing intensity with shot number 

although Ca lines in the gypsum mixture increase in intensity with shot number (Figure 8).  

3.4 LIBS H Line in Natural Samples  

H peaks are not prominent for the powdered and pelletized San Carlos and Iceland samples 

but, generally, asymmetry of the C emission line indicates a hydrogen contribution from 

aqueous alteration that is highest for the most-altered samples (Figure 9). Among the San 

Carlos samples, the least altered (SanC-J) shows only a broad shoulder to the C peak at 658 

nm indicative of low H whereas even minimally altered samples like SanC-B (<10% clay 

Shots  5-10 11-20   21-30   31-40   41-50

Gypsum 2013
Gypsum 2014

Muscovite
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mineral) show an H peak (Figure 9a). The sedimentary sample, SanC-S, has the highest H 

peak. In the Iceland samples (Figure 9b), the existence of the H peak suggests 

hydration/hydroxylation of the basaltic rock. The samples hvalfj054 and hvalfj017 have the 

highest H peak, consistent with their having the highest hydrous mineral content (Ehlmann 

et al., 2012), though the difference with other samples is small.  

 

Figure 9. Laser-induced breakdown spectroscopy spectra normalized to the height of the C 

peak at 658 nm of all pressed pellet natural rock samples measured from San Carlos (a) and 

Iceland (b).  

Interestingly, all the corresponding rock chips from the Iceland natural samples show a 

change in H peak shape relative to the powdered pellets, and the H emission peak is typically 

higher for the rock chip spectra than for the powdered pellet spectrum. As expected, some 

rock chips show more variation in H peak area across the different spots on the target, for 

A

B
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example, hvalfj054, which has zeolite-filled vesicles (larger than the spot size of the laser 

spot size; Figure 10).  

 

Figure 10. Physical matrix comparison. Laser-induced breakdown spectroscopy spectra 

normalized to the height of the C peak at 658 nm of pelletized (all five spots on the pellet 

were averaged) and rock chip samples from Iceland.  

Normalized H line area versus weight percent H (lost above 150 °C) was also calculated for 

the natural rock chips and powders and compared to the linear fit from Figure 5 (Figure 11). 

Because these natural samples contain smectite clays, mixtures of the nontronite samples 

(NAu-1 and NAu-2) and basalt are also shown for comparison. The rock chip samples do 

not fall on a linear trend and show large scatter, but the pelletized samples generally follow 

the nontronite samples in the normalized data. Both basalts measured in the second batch of 
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samples, GBW07105 and K1919, do not fall near the linear fit (see section 4.1 for 

discussion). The O 778-nm, C 248-nm, and continuum normalizations provide the best match 

between the natural samples and H linear fit calibration lines.  

3.5 Use of Calibrations to Determine H in ChemCam Spectra from Mars 

We examine the sensitivity of interpretations of ChemCam LIBS spectra to the different 

calibration approaches. One example important to interpreting Mars data is measurement of 

the hydration state of various salts, which have been reported based on orbital data and found 

in situ by rover missions. We use the Figure 5 calibration lines (Table A1) for each of the 

normalizations from our work to predict the H peak values for bassanite (CaSO4 • 0.5 H2O) 

and gypsum (CaSO4 • 2 H2O) on Mars and then compare these to the H signal observed for 

veins up to sol 1248 (same sample set examined by Rapin et al., 2016). Under all 

normalizations, the distribution of the ChemCam LIBS data normalized is closer to bassanite 

and would more likely be predicted to be this mineral using all of the normalizations. In 

particular, normalization to C 248 nm, O 778 nm, and Norm 3 all agree well on bassanite 

composition. The normalized H signal predicted for gyp- sum falls outside of the observed 

ChemCam vein distribution for all calibration approaches except C 658 nm and Norm 1, and 

for these calibrations the mean of the measured distribution falls between bassanite and 

gypsum.  

We also use our data to examine the water content of Martian rocks, specifically the Murray 

formation, a fine- grained, thinly laminated mudstone facies, which is the lowermost strata 

of the Mount Sharp group. We analyzed the RMI images by eye to exclude rough targets, 

those where ChemCam shot loose sediment (sand and dust), and diagenetic features that may 

have a different H signal. We also exclude points with bad focus and low major-element 

totals (<87%). In total, we included 229 ChemCam targets in our analysis from sols 766– 

1815. Using the C 248-nm normalization, the range in H content for the middle 50% of the 

data is 2.0– 4.1 wt.% H2O with a median of 3.0 wt.% H2O. The O 778-nm normalization 

predicts a median value of 2.3 wt.% H2O with the middle 50% ranging from 1.3 to 3.3 wt.% 

H2O. These values are consistent with the total oxide percentages derived from ChemCam,  
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Figure 11. Hydrogen emission peak area versus weight percent hydrogen (calculated from 

temperatures >150 °C) for the basalt samples and the nontronite mixtures. Rock chip 

measurements are shown with open symbols, and pelletized samples are shown with solid 

symbols. A linear fit to the solid points (pelletized samples and nontronite mixtures) is shown 

here in black with RMSECV. The green dashed line is the best linear fit to all the samples in 

Figure 5 for comparison. The x axis error bars are >0.2 wt.% H and were removed for clarity. 

Trend line coefficients are included in Table A1. RMSECV = root-mean-square error cross-

validation. 

5

Pelletized samples

Rock chips
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which have a median of 97.0 wt.% for the bedrock points we considered. When we take 

the weight percent H2O calculated from our calibrations and add it to the ChemCam derived 

total oxide percentage, we get a median total of 99.6 wt.% for the O 778-nm calibration and 

100.2 wt.% for the C 248-nm calibration. Some low water content samples (8 with the C 

248-nm normalization and 17 with the O 778-nm normalization) plot with less than 0 wt.% 

H2O because our laboratory calibration did not require the y intercept to be 0. A small number 

of high outliers include individual points predicting up to 25% H2O, which may target high 

H compositions. 

4. Discussion 

4.1 Normalized H Peak Area Calibration Curves 

The use of H calibration standards that do not lose water under vacuum was key in our study 

(see Figure 4 versus Figure 5). By using our TGA measurements to correct the weight percent 

H to account for the loss of nonstructural H2O in the vacuum chamber before LIBS 

measurement, we correct for some of the scatter due to uncertainty in sample water retention. 

This highlights the importance of stability of H for future investigators of H emission line 

calibration. Future studies might consider producing glasses of controlled OH contents or 

including a balance within the vacuum chamber to monitor the sample directly.  

All normalizations show similar behavior—a monotonic increase of H peak area with 

increasing sample H weight percent—and perform better than nonnormalized H peak area, 

evaluated by computed RMSECV (Figure 5). The continuum, C 248-nm, and O 778-nm 

normalizations produce the lowest RMSECV values for the three fit trends (Figures 5), 

similar to the results of Rapin et al. (2017a) who preferred C 248 nm. C 658 nm also has 

scatter that is nearly as low but is likely complicated by the interference from the H peak of 

interest, while whole spectra Norm 1 and Norm 3 may be affected by variation in sample 

composition causing variation in line area unrelated to anything affecting or proportional to 

the H signal.  



 

 

45 
We favor normalization to C 248 nm and O 778 nm due to the shot profile behavior of 

these peaks. As discussed in section 3.3, these individual peaks decrease in intensity with 

shot number like the H peak. The continuum intensity and single or total detector intensity 

(Anderson et al., 2017) increase with shot number or are simply variable, which can increase 

variation of the hydrogen signal after normalization (as also shown by Rapin et al., 2017a). 

While the O 778-nm peak is caused both by breakdown of atmospheric CO2 and the sample 

bulk O content, O 778-nm normalization is not greatly biased by changes in the sample O 

content because the majority of variation in the O 778-nm peak is due to variations in the 

measurement conditions such the atmospheric constituents and pressure (Gasnault et al., 

2012). In addition, O 778 nm is another neutral emission line with similar excitation energy 

to H (H Ek = 10.2 eV; O Ek = 10.7 eV). The similar excitation energies could make this 

normalization less sensitive to matrix effects (Lazic & De Ninno, 2017). For this reason and 

from the experimental results in Figure 12 with samples acquired under different 

experimental conditions, the O 778-nm normalization may be the simplest to produce quality 

results.  

Normalization to C 248 nm was slightly favored in the results of Rapin et al. (2017a). One 

reason for the slight difference from this study may result from the three different instruments 

located on Mars, in Toulouse, and at LANL. The latter instrument was used for this study, 

and it consists of an EM mast unit with a newly built body unit. Rapin et al. (2016) and Rapin 

et al. (2017a) used the Toulouse instrument for their laboratory studies, and it consists of an 

engineering qualification model (EQM) mast unit and an EM body unit. A change to the 

mast unit that was made between the EM and the EQM affects the quality of the lower portion 

of the UV spectral range, where the C 248-nm line resides. Specifically, the LANL EM mast 

unit contains a laser dichroic mirror that is of inferior quality to that used in the EQM and 

flight model, resulting in instrument sensitivity at 248 nm that is a factor of 60% worse. This 

dichroic, positioned at the center of the primary mirror of the Schmidt-Cassegrain telescope, 

is responsible for reflecting the laser light to project it to the rest of the tele- scope and out to 

the target and also for transmitting the returned plasma light to the optical fiber and 

spectrometers (Maurice et al., 2012). This degraded UV sensitivity in the LANL instrument  
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Figure 12. Ratios of peak areas taken from the same sample at different times as a function 

of weight percent H to show the effect of normalization on changes in experimental 

conditions. The triangles are the ratio of batch 1 (September 2013) laser-induced breakdown 

spectroscopy measurements to batch 2 (September 2014) measurements. The circles are the 

ratio of batch 4 (January 2017) measurements to batch 2 (September 2014) measurements. 

The average and standard deviation of the hydrogen values are shown in the upper right 

corner.  
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is significant enough to affect the signal-to-noise ratio at 248 nm and could explain the 

slight preference in our work for the 778-nm O line over the 248-nm C line for normalization.  

While all normalizations provide similar results for the relatively low hydration data 

examined here, our work also shows that the increase in normalized LIBS H signal with 

weight percent H may not be linear at high weight percent H. This effect was not observed 

in the smaller sample set considered by Rapin et al. (2017a) which covered a similar range 

(0–50 wt.% H2O) but is apparent in our data (Figure 5). A linear relationship was not an a 

priori assumption of our study. Emission line intensity is expected to increase proportional 

to the number of emitting atoms, that is, their mole fraction. We also tested whether the 

measured H signal increases linearly for mole fraction H by calculating based on 

stoichiometry the mole fraction H for three of our mixtures: brucite and K1919, gypsum and 

K1919, and gypsum and GBW07105, using the independent lab-derived chemistry of the 

basaltic endmembers (Figure A2). The gypsum points are complicated by probable water 

loss during chamber pump down (see section 3.2), but the brucite, even considered alone, 

markedly departs from linearity as a function of mole fraction H too. Some of the other 

nonlinear trends seen in Figure 4, like those for Fe sulfate, could be accounted for by the 

influence of the adjacent Fe peak, which may not fully be accounted for in peak fitting. On 

the other hand, alunite and Mg sulfate (and Fe sulfate) also show a nonlinear increase with 

weight percent, in a way that would only be accentuated if our estimates for their H content 

are overestimates (due to loss during chamber pump down). Our hypothesis is that the 

nonlinearities at high H contents are due to chemical matrix effects because the addition of 

the hydrated material at high levels changes the average makeup of the sample. Nonlinearity 

could affect our ability to predict weight percent H for very hydrated ChemCam (or 

SuperCam) targets on Mars. This is an important regime that requires further study, including 

more high H samples to extend and improve the calibration at >~1.25 wt.% H or >~11 wt.% 

H2O. Multivariate methods may be required.  

Finally, our study highlights two additional factors that affect H peak calibration curves but 

are not yet completely understood. First, the range of shot numbers used will very clearly 
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affect the calibration curve (Figure 7). The higher the shot number, the shallower the 

calibration curve. This may be due to dehydration of the sample by the laser or due to simple 

cavity effects (Rapin et al., 2017b). Regardless, the implication for Martian data is clear: 

Calibration curves should only be used for the same shot number range they were initially 

determined with. Second, the distance to the target impacts the observed H signal. 

Normalizations to O 778 nm and C 248 nm best correct for distance and other differences in 

experimental conditions as seen in Figure 4 where the 100% gypsum samples plot closest 

together and in Figure 12, which shows the ratio of the LIBS H values for the same samples 

measured at different distances and in different batches. But there is scatter in all 

normalizations for distance that indicate the effect of distance to target too could benefit from 

further laboratory analysis. 

4.2 Physical Matrix Effects and Pellets Versus Natural Rocks 

Rapin et al. (2017a) considered pressed pellets of lab mixtures, and here we also include 

natural samples, including rock chips to observe some of the complicating physical matrix 

effects and the challenges associated with measuring changes in LIBS H emission. Changes 

in grain size, cohesion, and sample rough- ness impact the shape of the H peak and the 

strength of H emission (Rauschenbach et al., 2008). Schröder et al. (2015) and Meslin et al. 

(2013) describe ChemCam measurements showing generally higher H emission from 

unconsolidated soil targets than from rock targets, which can be interpreted as a result of 

physical matrix effects. Figure 10 shows our comparison of rock chip and pressed pellet 

spectra for four of the Iceland samples. Both samples are fine grained, hard, coherent. Some 

variation in H peak height can be explained by obvious contributions from individual 

hydrated grains, such as the zeolite inclusions targeted in the hvalfj054 sample. However, 

peak shape also changes for pressed pellet versus natural rock for all samples, including the 

relatively homogeneous samples like icel009 and hvalfj017 (Figure 10). The pressed pellet 

spectra have H peaks with smaller FWHM than the rock chip spectra. The other peaks like 

the C peak at 658 nm do not change shape with pellet versus rock. It is difficult to understand 

the cause of the larger FWHM for the rock chip samples as they have both more cohesion 
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and larger sample roughness than the pressed pellets. The differences in FWHM are 

possibly caused by the documented Stark Effect for H (Kandel, 2009), which causes 

broadening of spectral lines.  

The H calibration we have developed using the subset of pressed pellet mixtures (Figure 5, 

shown in green in Figure 11) mostly works for the natural pressed pellet samples and natural 

rock sample chips after normalization. The normalizations that performed well for the 

pelletized mixtures, normalization to C 248 nm, O 778 nm, and the continuum, also perform 

well for the pelletized natural samples. These normalizations bring the signal levels for the 

pelletized natural samples to levels comparable to the pelletized nontronite-basalt mixtures 

of similar water content. In these cases, the pelletized natural samples (shown with solid 

symbols) fall very close to the previous calibration trends shown in green, and the trend fit 

to the samples shown in Figure 11 is very similar. The rock chips (shown with open symbols) 

have higher variance in the measured LIBS H peak area because the targets are no longer 

homogenous at the LIBS spot scale of ~350 µm. Generally, we see an increasing trend in H 

peak area with weight percent H measured by TGA for all the rock chip samples for all 

normalizations (Figure 11). The normalizations that produce the most similar linear trends to 

the mixture pressed pellets again are the C 248-nm, O 778-nm, and the continuum 

normalizations. However, the C 658-nm normalization technique gives a normalized LIBS 

H signal that is the same within error for all four rock chip samples measured, suggesting 

that this normalization is not good for these rock chips. Collectively, the data suggest that the 

H content can be derived from LIBS measurements of natural samples for materials with 

similar matrices and physical textures. In the case of more chemically and physically 

homogeneous samples, like hvalfj017 and icel009-010, we expected the pellet trends to 

match the rock chip data more closely as we do see for the O 778-nm and C 248-nm 

normalizations within the uncertainties described in section 3.2. The shape differences in the 

H emission line and differences in derived H peak for pellet versus natural rock for the more 

heterogeneous natural samples suggest future work on rocks is needed to fully characterize 

texture or physical matrix effects.  
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Figure 13. Boxplot of normalized H signal observed for ChemCam Ca sulfate vein points 

up to sol 1248. For comparison, we show the Figure 5 low range linear model predicted 

normalized H values for bassanite (6.2 wt.% H2O, green) and polynomial model predicted 

values for gypsum (20.9 wt.% H2O, magenta). The uncertainties, calculated using root-mean-

square error as described in section 3.2, are represented as the shaded regions. The box 

extends from the lower to upper quartile values of the data, with a line at the median. The 

whiskers extend from the box to show the range of the data. Outlier points are defined as 

above or below 1.5 times the interquartile range from the median.  

4.3 Application to ChemCam and Future Applications 

The ultimate goal of this work is to enable better ChemCam measurements of H on the 

Martian surface. Outside of Rapin et al. (2017a), other previous works such as Schröder et 

al. (2015) only present the detection of H and qualitative assessments of the amount of H 
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present. Our application of the presented methods to ChemCam measurements of bedrock 

and Ca sulfate veins is only the second quantitative assessment of H using ChemCam and a 

first step showing the degree of uncertainty involved in applying this technique to identify 

specific mineral phases. As described in section 3.2, the amount of scatter in our laboratory 

data from the fit linear trend can be used to predict our level of certainty in ChemCam 

measurements.  

Analysis of the sulfate veins in the Mars ChemCam data show that the choice of 

normalization does not change the phase we identify when distinguishing mineral hydration 

state when the phases are relatively pure in veins (Figure 13). The  

 

Figure 14. Boxplots of (a) C 248-nm and (b) O 778-nm normalized H signal observed for 

ChemCam Murray bedrock points (soils, veins, and clearly diagenetic textures removed) 

measured sols 766–1815. The box extends from the lower to upper quartile values of the 

data, with a line at the median. The whiskers extend from the box to show the range of the 

data. Outlier points are defined as above or below 1.5 times the interquartile range from the 

median.  
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interpretation of bassanite (versus gypsum) is robust in all normalizations. The few weight 

percent H2O variability in the Martian data from different veins is comparable to the weight 

percent differences when applying different calibrations from the lab to Mars data. Direct 

comparison of sample hydration across targets with similar surface properties (cohesion, 

surface roughness, and grain size) is possible with normalization. For this reason, we 

compare the H values observed for homogeneous, smooth Murray bedrock targets and show 

most observation points have small amounts of water, <7.0 wt.% H2O (Figure 14), 

comparable to the altered Icelandic basalts. The absolute water content of a rock is slightly 

affected by the choice of the normalization method (Figure 14), with the mean value for 

Murray bedrock ranging from 2.3 to 3.0 wt.% H2O depending on the normalization method 

used. These ranges are similar to measurements by the SAM instrument of several drilled 

samples (0.9 ± 0.3 to 2.5 ± 1.6 wt.% H2O; Sutter et al., 2017) and measurements of the drier 

top layer by the DAN instrument (0.5 to 2.0 wt.% WEH; Mitrofanov & Litvak, 2015). The 

high outlier points are isolated occurrences of high weight percent H2O in visibly unaltered 

Murray bedrock, which could represent mixing with hydrated Ca sulfate or phyllosilicates 

phases. Overall, these data indicate that the water content of samples can be successfully 

estimated using normalized univariate analyses of H peak area in ChemCam data.  

Ultimately, this laboratory study better informs both future ChemCam studies of hydration 

as well as future SuperCam studies. The SuperCam instrument, part of the Mars 2020 

mission, will have improved spectral resolution in the VNIR range, which will aid in 

distinguishing the H and C 658-nm emission lines as well as the Fe 654.8-nm and 659.4-nm 

lines. SuperCam’s temporally gated intensifier will also aid in distinguishing between peaks 

as well as boosting signal, and its infrared spectroscopy and Raman subsystem will also help 

to decipher the possible contributors to the LIBS H signal (Wiens et al., 2017).  

5. Conclusions 

This study builds upon previous work by Rapin et al. (2017a) and others by measuring a 

wider variety of H-bearing materials, important for characterizing chemical and physical 

matrix effects and evaluating different normalizations for H determination on Mars. We 
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prepared a sample set including both mixtures of minerals with known, systematic 

variation in hydrated mineral content and compositionally well- characterized altered 

volcanic rocks. TGA measurements allowed us to independently measure sample hydration. 

We find that: 

• Loss of sample water during chamber pump down to low pressure is a significant 

experimental effect that must be accounted for in any study involving 

hydrated/hydroxylated materials under Mars temperatures and pressures. It was 

successfully mitigated here by considering only water lost at temperatures >150 °C 

and by emphasizing analyses of hydroxylated species, which are more stable, when 

constructing calibration curves with LIBS hydrogen peak area and weight percent 

H.  

• Emission from H (I) 656.5 nm increases monotonically with both weight percent 

and mole fraction H for all the prepared mixtures except for opal and the natural 

altered basalts, where there is variance at low H weight percent.  

• The H peak area increases linearly with weight percent H in the laboratory mixtures 

with structurally bound H for weight percent H up to about 1.25 wt.% H and then 

steepens for higher H-content samples, a potential nonlinear trend not noted by 

previous studies but important for correct characterization of high water content 

materials on Mars.  

• The uncertainty in our ability to predict weight percent H from the LIBS H signal 

using the fit lines for the O 778-nm and C 248-nm normalizations ranged between 

±0.18 and 0.43 wt.% H. We calculate and observe visually a limit of detection of 

0.4–0.9 wt.% H2O for the C 248-nm and O 778-nm normalizations.  

• Normalization to C 248 nm and O 778 nm are favored because they have lowest 

RMSECV trends and best correct for distance and other experimental effects in the 

laboratory data. C (I) 248 nm was favored by Rapin et al. (2017a); we slightly prefer 
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normalization to O (I) 778 nm because it is a neutral emission line on the same 

(VNIR) detector as H. When applied to ChemCam data on Mars both perform 

similarly and predict and variation in results depending on normalization method 

used is typically <0.1 wt.% H.  

• Comparison of sample hydration across different physical matrices is challenging 

because sample properties like surface roughness, cohesion, and grain size impact 

LIBS measurements of H. The natural samples we measured as both rock chips and 

pressed pellets document the effects of physical matrix on H emission, especially on 

the H peak shape even though these samples are all hard, coherent, and fine grained. 

While the pelletized samples have H emission comparable to the measured 

nontronite samples, the rock chips show considerable, nonsystematic scatter relative 

to the best linear fit from our mixtures that is not obviously solely due to 

compositional variation. Future work is needed to characterize these physical matrix 

effects for natural rocks.  

These results are applicable to both MSL ChemCam and the Mars 2020 SuperCam 

instrument. While quantitative measurements of H in Martian samples are challenging due 

to matrix effects, qualitative comparison of H across targets with similar surface properties 

is possible and provides reasonable estimates of the weight percent H2O in the Martian 

bedrock independently measured by the SAM and DAN instruments. This allows us to track 

changes in bedrock hydration throughout Curiosity’s traverse.  

Appendix 

Additional information supporting the main text is provided here. Spectra of samples with 

low wt. % H showing the detection limit are included in Figure A1. The effect of using mol 

fraction H versus wt. % H on the linearity of normalized calibration curves is shown in Figure 

A2. Figure A3 shows the normalization quantities, or denominators, used in Figure 4. The 

fit coefficients for the linear and polynomial trend lines shown in Figures 4, 5, and 12 are 

included in Table A1.  
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Table A1. Coefficients for the Linear (ax + b) and Polynomial (ax2 + bx + c) trend lines 

shown in Figures 4, 5, and 12. 

 

Figure A1. Comparison of samples with low measured weight percent H for determination 

of the H peak detection limit including Na chloride (0 wt.% H), Ca carbonate (0.01 wt.% H). 

Mg carbonate (0.1 wt.% H), and epidote (0.09 wt.% H).  
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Figure A2. Calculated H peak area, unnormalized and for all normalization methods, shown 

as a function of (a) the theoretical mole fraction H (calculated from mineral stoichiometry) 

or (b) the actual measured weight percent H from thermogravimetric analysis. The best linear 

fit to the brucite mixture is shown with a black dashed line along with the R2 value.  

Gypsum+K1919
Gypsum+GBW
Brucite



 

 

57 

 

Figure A3. Hydrogen emission peak area versus weight percent H as shown in Table 2 for 

all samples. For all normalizations in Figure 4, we plot the denominator values that represent 

the value we are normalizing the first plot by.  
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Abstract  

The Murray formation, a smectite clay-bearing sequence of heterolithic mudstones and 

sandstones recording fluvial deltaic and lake deposits, comprises the lowest exposed strata 

of the 5-km tall sedimentary mound at the center of Gale crater known as Mt. Sharp. The 

ChemCam instrument onboard the Mars Science Laboratory (MSL) Curiosity rover has 

measured the chemical composition of >4500 Murray formation bedrock points, allowing 

statistical measurement of changes in composition with stratigraphy. Recent laboratory 

calibrations have improved ChemCam measurements of H, an important element for 

identifying syndepositional and later diagenetic water-rock interactions. Here, we report 

2.3-3.1 wt. % H2O in most Murray formation bedrock targets, similar to previous 

measurements using the DAN and SAM instruments. Additionally, we identify specific 

stratigraphic intervals with high H phases that contain opal, hydrated Mg-sulfates, Mn-

enriched units, and akageneite and observe trends in the H signal with grain size. 

Variability in the ChemCam-observed hydrogen content of rocks points to a rich history of 
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water-rock interaction at Gale crater, including changes in water chemistry during 

Murray formation deposition and multiple later groundwater episodes.  

1. Introduction   

The Mars Science Laboratory (MSL) Curiosity rover is investigating the sedimentary 

stratigraphy of Gale crater’s Mt. Sharp, which formed ~3.8-3.6 Ga ago and contains a 

sequence of clay-, hematite-, silica-, and sulfate-bearing units identified from orbit 

(Milliken et al., 2010; Fraeman et al., 2016). Mt. Sharp’s lowermost strata are composed 

of fine-grained, thinly laminated mudstones, as well as heterolithic mudstones and 

sandstones, which are interpreted to record fluvial deltaic and lake deposits (Grotzinger et 

al., 2015; Hurowitz et al., 2017) and are collectively called the Murray formation; these are 

the focus of our study. Prior work has reported variation in the chemical index of alteration 

(CAI; Mangold et al., 2019), mineralogy (Rampe et al., 2017), and the crystal chemistry of 

clay minerals as the rover traversed the Murray formation. Changes in bulk hydrogen 

present as water or OH in basaltic sedimentary materials and specific hydrated phases aid 

the determination of the degree of water-rock interaction, the style of aqueous alteration of 

rock units, and markers of past environments. 

Curiosity measures the H content of samples with four instruments: DAN, SAM, CheMin, 

and ChemCam. The Dynamic Albedo of Neutrons (DAN) instrument assesses hydrogen 

content in the near subsurface (decimeter scale) over a few meter-scale footprint beneath 

the rover (Mitrofanov et al., 2012). For mission sols 201-753, DAN measurements of water 

equivalent hydrogen (WEH) ranged from 0.0 wt. % to 15.3 wt. % (Tate et al., 2017). More 

recently, DAN measured on average 1.6 ± 1.1 WEH from sols 753-1292 (Tate et al., 2019). 

The Sample Analysis at Mars (SAM) instrument detects H2O and H2 released from solid 

samples upon heating (Mahaffy et al., 2012) and measured 0.9 ± 0.3 – 2.5 ± 1.6 wt % H2O 

for the first two eolian and nine sedimentary rock samples measured by Curiosity. CheMin 

identified crystalline minerals that host hydrogen in their structure (Blake et al., 2012) and 

has quantified jarosite, gypsum, bassanite, opal, and phyllosilicate abundances (e.g., 
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Rampe et al., 2017) including clay mineral abundances up to ~28 wt. % (Bristow et al., 

2018). 

The ChemCam instrument is sensitive to hydrogen content and characterizes sample 

geochemistry at submillimeter scale with a large dataset (> 19,000 locations measured to 

date). ChemCam has been previously used to detect hydrogen in dust, soils, and rocks in 

Gale crater (Meslin et al., 2013; Schröder et al., 2015). Schröder et al. (2015) made the first 

steps towards quantification of H with ChemCam and since then more quantitative work 

has been applied. After the initial detection of H in calcium sulfate veins (Nachon et al., 

2014; Schröder et al., 2015), Rapin et al. (2016) determined the presence of bassanite. 

ChemCam studies have identified opal at Marias Pass (Rapin et al., 2018) and hydrated 

Mg-sulfates at Sutton Island (Rapin et al., 2019; submitted).  

Here, we applied the recent improved laboratory calibrations of H by Rapin et al. (2017a) 

and Thomas et al. (2018) to quantify the bulk H content of the Murray formation bedrock. 

We searched for quantitative trends in bulk rock H with stratigraphic level, formation 

member, and grain size. We examined the relationship to units identified from orbit and 

detected with other instruments. We cataloged the specific instances of H-enriched units 

and identify the high-H phases present that indicate changes in depositional environment 

or style of diagenesis.   

2. Methods  

The ChemCam instrument uses Laser-Induced Breakdown Spectroscopy (LIBS) to 

measure the elemental composition of fine-scale (350-550 micron diameter) points < 7 m 

from the rover (Wiens et al., 2012; Maurice et al., 2012). While major element 

compositions are calculated for all points using multivariate techniques (Clegg et al., 2017; 

Anderson et al., 2017), volatile elements like H are detectable but difficult to quantify with 

this method given relatively few, weak emission lines and physical and chemical matrix 

effects. We apply standard ChemCam data processing techniques followed by the peak 

fitting and normalization techniques described in detail by Thomas et al. (2018) to report 
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the normalized H 656.5 nm peak area. We normalized by dividing by the O 778 nm peak 

area, an emission line also on the VNIR detector which has recently been shown to be less 

sensitive to sample matrix (Schröder et al., 2019). 

To minimize the impact of physical matrix effects caused by varying surface properties, 

we limited our study to bedrock targets with no clear cracks or varying surface geometries 

which may cause artificial enhancement in the H signal from surface roughness (Rapin et 

al., 2017b). The first five shots were excluded from analysis due to potential dust and 

surface effects. We visually inspected accompanying co-located context Remote Micro-

Imager (RMI) and MastCam images to classify all ChemCam data points as soil, bedrock, 

float rock, or diagenetic (vein or nodule).  

 

Figure 1. Comparison of MAHLI measured grain size to Gini index approximated grain 

size. For each MAHLI grain size category, the average Gini score is shown along with the 

standard deviation (error bar). 
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Target grain size may impact the LIBS H signal, so, for ChemCam targets up to sol 1816, 

we compare our measurements to the Gini index mean score, a composition-based grain-

size proxy that uses point-to-point chemical variabilities in ChemCam data (Rivera-

Hernández et al., 2019). Using the Gini index to approximate grain size is subject to errors 

inherent to the technique, such as incorrect, low Gini scores for coarse grained, 

homogeneous targets. We tested the accuracy of the Gini index by comparing grain size 

estimates made using the Gini index to measurements from MAHLI (Mars Hand Lens 

Imager) images for 24 targets located at the base of the Murray formation that have been 

studied with both methods (Figure 1). On average, the Gini index correctly predicted the 

MAHLI measured grain size range. There is significant variation in the Gini index mean 

score for coarser grained targets, likely due to differences in the techniques used, but the 

Gini index can be used as a rough proxy for target grain size.  

3. Results  

3.1 Statistics  

From sol 766 to 2339 of the mission, ChemCam targeted Murray formation bedrock with 

4758 observation points, or 627 targets. The median normalized H peak area observed is 

0.05 (Figure 2), which corresponds to 2.2 wt. % H2O using our laboratory calibration 

(Thomas et al., 2018). The middle 50% of the data, or the interquartile range, is 0.04-0.06 

(2.3-3.1 wt. % H2O). ChemCam observed 292 outlier points with normalized peak areas > 

0.08 or > 5.9 wt. % H2O, and anomalously high H signals up to 18 wt. % H2O. 36 

observation points (0.7%) have reported water contents less than 0 wt. % H2O because our 

laboratory calibration did not require the y-intercept to be zero.  

The median ChemCam H signal is similar, regardless of Murray formation member (Figure 

2). However, the mean H signal varies significantly between some of the members of the 

Murray formation: Hartmann’s Valley, Pettegrove Point, and Jura members (Table 1). 

Hartmann’s Valley shows lower hydrogen (mean ± standard deviation: 1.9±1.5 wt. % 

H2O), in spite of the fact it is coarser (Figure 3), which typically correlates with higher 
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hydrogen peaks for the same H content (Rapin et al., 2017b). The Vera Rubin ridge 

members of Pettegrove Point (2.2±1.5 wt. % H2O) and Jura (2.9±2.3 wt. % H2O) have 

higher hydrogen than units observed before the Vera Rubin ridge.  

 

Figure 2. Boxplots showing the distribution of normalized H peak areas for (a) all Murray 

formation bedrock measurements, (b) each member of the Murray formation, and (c) each 

Gini index categorized grain size class. The members are: Pahrump Hills (PH), Hartmann’s 

Valley (HV), Karasburg (K), Sutton Island (SI), Blunts Point (BP), Pettegrove Point (PP), 

and Jura (J). The grain size classes are: coarse silt and smaller (GS1), silt to fine sand 

(GS2), fine to medium sand (GS3), and medium to coarse sand (GS4). The box extends 

from the lower to upper quartile values of the data, with a line at the median. The whiskers 

extend from the box to show the range of the data. Outlier points are defined as above or 

below 1.5 times the interquartile range from the median.  
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  PH HV K SI BP PP J 

PH   0.006 0.460 0.445 0.453 0.129 0.053 
HV     1.12E-06 2.85E-07 3.30E-05 1.55E-02 4.48E-11 
K       0.942 0.888 8.60E-06 0.035 
SI         0.882 1.14E-07 0.016 
BP           1.69E-03 0.179 
PP             1.11E-16 
J               

Table 1. A t-test was used to determine if there is a significant difference between the 

means of the normalized H peak areas for the different members of the Murray formation: 

Pahrump Hills (PH), Hartmann’s Valley (HV), Karasburg (K), Sutton Island (SI), Blunts 

Point (BP), Pettegrove Point (PP), and Jura (J). Two-tailed p-values (testing the alternative 

hypothesis that µA ≠ µB) are reported. P-values passing 95% confidence are highlighted. 

  GS1 GS2 GS3 GS4 
GS1   2.91E-05 4.44E-16 3.38E-11 
GS2     8.06E-09 2.43E-07 
GS3       0.2203 
GS4         

Table 2. A t-test was used to determine if there is a significant difference between the 

means of the normalized H peak areas for the different grain size categories: coarse silt or 

smaller (GS1), silt to fine sand (GS2), fine to medium sand (GS3), and medium to coarse 

sand (GS4). Two-tailed p-values (testing the alternative hypothesis that µA ≠ µB) are 

reported. P-values passing 95% confidence are highlighted. 

Sutton Island, Blunts Point, Pettegrove Point, and Jura have the most outlier high H values. 

The number of outlier high H points likely contributes to the higher H means observed for 

the Pettegrove Point and Jura members. Most of the high H targets occur at the Sutton 

Island/Blunts Point transition as well as the top of the Jura member. Individual observation 

points skew to high H values in the Pahrump Hills and Pettegrove Point members but the 

bedrock targets’ averaged H stays closer to the Murray formation average value (Figure 3).  
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Figure 3. (a) The Gale crater stratigraphic column (MSL Sed-Strat Working Group) with 

drill sites marked as solid black points and (b-c) the normalized H peak area versus 

elevation for all ChemCam measured Murray formation bedrock targets. The smaller 

points are individual point observations and the larger points are target-averaged. Colors 

in (b) indicate Gini index approximated grain size classes, when available (from Rivera-

Hernández et al., 2019). Colors in (c) indicate composition.  

The ChemCam H signal varies significantly for bedrock of varying grain sizes as measured 

by the Gini index (Figure 2; Table 2). The finest grain size category measured, coarse silt 

or smaller, has a median normalized H peak area of 0.047 or 2.0 wt. % H2O and the coarsest 

grain size category, medium to coarse sand, has a median normalized H peak area of 0.059 

or 3.3 wt. % H2O. Coarser grain size targets also have larger variance in normalized H peak 

area; the distributions for fine to medium sand and medium to coarse sand are skewed to 
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high H values. Because of the smaller number of targets measured in these larger grain 

size categories, there is not a significant statistical difference between them (Table 2).  

3.2 Chemistry 

The majority of bedrock points targeted by ChemCam have major oxide compositions 

within the standard compositional range of the Murray formation (Figure 4). Where 

chemical composition varies to higher SiO2, MgO, FeOT, and CaO, higher normalized H 

peak areas are sometimes observed. In particular, there is a clear correlation between H 

and MgO content, particularly in coarser grained targets. We also tested for correlation 

between ChemCam H signal and major oxide composition for high H (> 1 sigma) targets 

using Principal Components Analysis (PCA; Figure 5). The first two principal components 

show a correlation between H, MgO, and FeOT. There is also a weak correlation between 

H and CaO as well as a potential correlation between H and TiO2 in the third principal 

component. The H and TiO2 correlation is suspect due to known ChemCam TiO2 

calibration issues (Frydenvang et al., 2017). 

A number of Murray formation bedrock observations such as Wallace_ccam (Figure 6a) 

contain high SiO2 (up to 70 wt. % SiO2) and high H at the base of the Murray formation in 

Pahrump Hills (Figure 3). These targets are located at the contact between the Murray 

formation and the overlying Stimson formation in the Marias Pass region. The high SiO2 

targets contain on average 3.5 wt. % H2O, or 0.06 normalized H peak area, and have grain 

sizes ranging from silt to medium sand.  

Murray formation bedrock targets with high MgO are observed in the Sutton Island 

member at the transition with the Blunts Point member (Figure 3). ChemCam 

measurements of these targets show both high MgO (up to 19 wt. % MgO) and high H 

(normalized H peak area on average 0.11; 8.8 wt. % H2O). Complementary ChemCam 

studies have identified S in these targets, suggestive of hydrated Mg-sulfates (Rapin et al.,  
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Figure 4. Normalized H peak area, or wt. % H2O, versus ChemCam major oxides for all 

Murray formation bedrock observation points. Colors indicate grain size as measured by 

the Gini index when available. Vertical dashed line signifies 3-sigma high H outliers. 

Shaded regions are typical Murray bedrock compositions defined by the ChemCam team.  

 

2019; submitted). These Mg and H enriched observation points are most commonly 

observed in planar exposures of eroded bedrock (Figure 6b). In addition to the hydrated 

Mg-sulfates, Mg enrichments occur in planar sandstones (Figure 6c) at the Sutton 

Island/Blunts Point transition in the Newport Ledge region associated with enriched FeOT 

(Figure 3), Mn, and P (Meslin et al., 2018; Gasda et al., 2018; Gasda et al., 2019; Lanza et 

al., 2019). H is also enriched in these targets on average at 0.09 normalized H peak area or 

6.5 wt. % H2O.  
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Figure 5. Principal Components Analysis of Murray formation bedrock observation points 

containing high H (> 1 sigma) chemical composition. Colors indicate grain size as 

measured by the Gini index. The arrows are the original major oxide and H data axes, 

projected into the eigenvector space. The arrow lengths represent amount of variance 

explained by each dimension. 

The most frequently enriched major oxide in Murray formation bedrock is CaO (Figure 4). 

CaO- and H-rich points are scattered throughout the Murray in all members (Figure 3). Ca-

sulfate veins, predominately bassanite in composition, are prevalent in the Murray 

formation (e.g., Rapin et al., 2016), but CaO is also enriched as a pore-filling cement 

(Newsom et al., 2017). Bedrock targets such as Spectacle Island (Figure 6d) showing no 

clear point-to-point physical heterogeneities can have CaO enrichments up to ~30 wt. % 

CaO. On average, CaO-enriched targets (>10 wt. % CaO) do not have highly enriched H 

(average normalized H peak area 0.06; 3.3 wt. % H2O). A few Ca-sulfate cemented targets, 

such as Spectacle Island, have higher H up to ~10 wt. % H2O, but most Ca-sulfate cemented 

targets have H signals similar to typical bedrock (Figure 4).  
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Figure 6. Mastcam mosaics and RMI images of high normalized H peak area targets: 

(a) opal measured at Marias Pass, (b) hydrated Mg-sulfates at Norwood Cove, (c) H-rich 

Mn-oxides at Newport Ledge, (d) hydrated Ca-sulfate cement at Heron Island, and (e) 

akageneite at Rock Hall. 

At the highest elevation Vera Rubin ridge drill location in the Jura member, Rock Hall, 

both the target-averaged H signal increases (Figure 3) and the number of elevated H points 

increases. The bedrock also has a greater roughness at Rock Hall (Figure 6e), potentially 

increasing the H signal. Associated with elevated H at Rock Hall, ChemCam measures 

enriched FeOT (Figure 3) and Cl is observed sporadically in a few observation points near 

the detection limit (~3 wt. % Cl; Thomas et al., in revision). H- and CaO-rich targets are 

common in this area (Figure 3). 

4. Discussion  

4.1 Uncertainties 

ChemCam H peak area values have associated uncertainties from fitting the normalized 

spectra with an automated routine. In our laboratory characterization of H, we measured 

homogeneous powderized pellets at five different point locations, and found the standard 

deviation of the normalized (to O 778 nm) peak area was typically 0.01 (Thomas et al., 

2018). In addition, we quantified the uncertainty in our ability to predict weight percent H 

from LIBS H peak areas by measuring the scatter from our fit linear trends. For the O 778 

nm normalization and for samples with less than 1.25 wt. % H, we found uncertainties of 

± 0.24 wt. % H or ± 2.1 wt. % H2O (Thomas et al., 2018). This uncertainty in predicting 

water content is high, but averaging the prediction for multiple (5-10) observation points 

on a single ChemCam target in a typical raster, the uncertainty decreases to ± 0.8 wt. % 

H2O.  

Target roughness is known to artificially increase the measured LIBS H signal (Rapin et 

al., 2017). While our initial image classification of ChemCam targets was intended to 



 

 

77 
remove points potentially impacted by strange surface geometries (cracks, pits, etc.), 

over 19,000 points were individually classified by eye and some scatter in the H signal 

observed is likely due to roughness effects missed by the visual classification. H signals 

averaged by target are likely less influenced by roughness effects which might impact 1-2 

random points, so overall H trends are more trustworthy than individual point observations. 

On a larger scale, all targets measured at Rock Hall have rough surfaces and the H signal 

may be artificially increased.  

Grain size is suspected to similarly impact the LIBS H signal (Thomas et al., 2018) 

although laboratory studies have not yet confirmed this physical matrix effect. While the 

Gini index may not be a perfect measure of bedrock grain size (see discussion in §2), we 

can use it to perform a test for correlation between LIBS H signal and grain size. There is 

only a weak correlation (R2 = 0.23) between the Gini index mean score and normalized H 

peak area, but the distributions of different grain size categories differ significantly (Figure 

2, Table 2). Future laboratory studies of samples with controlled, varying grain sizes are 

necessary to quantify how grain size physical matrix effects impact measurement of H and 

other volatile elements.  

4.2 Comparison to other instruments  

The average water content of the Murray formation measured with ChemCam (average ± 

standard deviation: 2.6 ± 2.1 wt. % H2O) is consistent with measurements by other MSL 

instruments. DAN has measured 4.2 ± 0.51 WEH (water equivalent hydrogen; Gabriel et 

al., 2018) in the Sebina region of the Murray formation (lower Sutton Island member) 

where ChemCam measures only 2.1 ± 1.2 wt. % H2O. From sol 753-1292 of the mission, 

DAN measured on average 1.6 ± 1.1 WEH (Tate et al., 2019) and ChemCam measured 2.3 

± 2.0 wt. % H2O. DAN and ChemCam sample very different depths; ChemCam samples 

the upper ~microns of the surface while DAN measures the upper ~0.5 m of material. The 

scales of the instruments are also very different - ~100s of microns versus ~few meters – 

so discrepancies in measured H content between DAN and ChemCam are expected. In 

particular, minerals like Ca-sulfates at the surface dehydrate under normal Gale crater 
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environmental conditions (Vaniman et al., 2018), so higher H measured at depth with 

DAN due to surface dehydration is likely. Additionally, ChemCam and DAN are not 

measuring the same exact targets or regions; H may vary within a region.  

For Murray formation targets up to the Sutton Island member, the SAM instrument 

measured at minimum 1.1 ± 0.6 wt. % H2O at Telegraph Peak and at maximum 2.5 ± 1.6 

wt. % H2O at Mojave (Sutter et al., 2017). Our ChemCam measurements fall within this 

range of values. Our survey covers the entire Murray formation to sol 2339 while SAM is 

limited by drill sampling, making comparison limited to only the 10 drill targets in the 

Murray formation.  

4.3 Carriers of enrichment    

ChemCam cannot measure mineralogy, so we are limited to inferences based on chemical 

composition and comparison to CheMin for drilled targets. Up to ~28 wt. % clay minerals 

have been detected in Murry formation drilled targets (Bristow et al., 2018). Phyllosilicate 

interlayer water (the lower temperature 100-300 C release observed by SAM) and bound 

OH (the higher temperature 650-800 C release observed by SAM) likely contribute to 

ChemCam measured H in the Murray formation (Sutter et al., 2017). Jarosite has been 

detected by CheMin in Confidence Hills, Mojave, and Telegraph Peak (Rampe et al., 

2017). In addition, CheMin has measured X-ray amorphous phases in all drilled samples. 

Phases such as poorly crystalline aluminosilicate or amorphous silicate (opal-A) and 

nanophase oxyhydroxides (e.g., ferrihydrite) could contribute to our measured bulk H 

(Sutter et al., 2017).  

ChemCam-detected differences in average H between different members of the Murray 

formation could be due to variation in physical properties for mudstones vs. sandstones 

such as roughness and grain size but also could represent changes in the chemistry of 

depositional waters or later diagenetic fluids. Here, we discuss potential carriers of 

enrichment for the ChemCam observed variability in H signal in stratigraphic order.  
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MSL Curiosity observed the contact between the Murray and Stimson formations at 

Marias Pass. In this region, clear alteration halos were observed crosscutting the 

Murray/Stimson contact (Frydenvang et al., 2017). The diagenetic halos are very SiO2 rich 

(up to ~90 wt. % SiO2) and contain elevated H consistent with opal (Rapin et al., 2018). 

Nearby Murray bedrock targets part of our survey are also silica and H enriched (Figure 

6a). The opal likely formed from multiple diagenetic fluid events and possibly represents 

extensive late water-rock interaction (Frydenvang et al., 2017; Rapin et al., 2018). 

Leaching of Mg, Al, Mn, Fe, Ni, and Zn along with enrichment of Si and S are reported by 

APXS and are consistent with infiltration of subsurface fluids, initially acidic and later 

alkaline, propagating along fractures crosscutting the Stimson/Murray contact (Yen et al., 

2017). The enrichment of Si and H even in visibly unaltered nearby bedrock observed by 

this study supports pervasive aqueous alteration in the area.  

The transition from Sutton Island, composed of heterolithic mudstones and sandstones and 

interpreted as forming in a marginal lake setting, to Blunts Point, primarily finely-

laminated mudstones interpreted as forming in a suspension/fall-out lacustrine setting, has 

both elevated bulk (target-averaged) H and outlier high H targets. In the Norwood Cove 

region, high H is associated with elevated Mg. Rapin et al. (2019; submitted) have reported 

S in these Mg- and H-rich targets in a relatively thin (<10 m) stratigraphic interval in planar 

exposures of erosion-resistant rocks. Early diagenetic precipitation from a concentrated, 

saline brine created by evaporation is the favored formation pathway for these hydrated 

Mg-sulfates (Rapin et al., 2019; submitted).  

The entire Murray formation (Figure 3) is often variably enriched in Ca-sulfate in the 

bedrock. While the bedrock Ca-sulfate cement on average is not H-rich according to our 

measurements, a few targets such as Spectacle_Island have higher H more consistent with 

bassanite composition. Our observations of varying H signals in Ca-enriched targets are 

consistent with CheMin measurements of gypsum, bassanite, and anhydrite occurring 

together in Gale sedimentary rocks (Vaniman et al., 2018). The observed frequency of 

hydrated Ca-sulfate cements in the Murray implies extensive S-rich groundwater 
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alteration. The observed frequency of hydrated Ca-sulfate cements in the Murray implies 

extensive S-rich groundwater alteration and, in some instances, primary deposition (Rapin 

et al., 2019; submitted). 

The Newport Ledge area is also at the transition from the Sutton Island to Blunts Point 

member. Newport Ledge sandstones have on average 4.6 wt. % MnOT in dark-toned rocks 

and 1.5 wt. % MnOT in light-toned rocks compared to 0.5 wt. % MnOT on average in Sutton 

Island and Blunts Point (Gasda et al., 2019). FeOT and MgO are also enriched in some 

targets (Figure 3). These targets, such as Mount_Gilboa (Figure 6c), are H-rich and contain 

on average 6.6 ± 3.8 wt. % H2O. Variable P is detected in Newport Ledge targets (Meslin 

et al., 2018). The most likely carrier phase is hydrous Mn-oxides and Fe-oxides with 

adsorped phosphates (Kawashima et al., 1986). Hydrous Mn-oxides and Fe-oxides suggest 

oxidizing, aqueous conditions either during primary sediment deposition within the lake 

and/or in groundwaters post lithification (Lanza et al., 2019). The deposits at Newport 

Ledge may be due to changes in water depth or shifting shoreline locations (Lanza et al., 

2019).  

At the Rock Hall drill site, at the top of the Vera Rubin ridge in the Jura member, ChemCam 

observations indicate a substantial increase in bedrock H content (5.5 ± 3.4 wt. % H2O) as 

well as many high H targets. Some of this increase may be artificial; targets at Rock Hall 

are rougher (on the ~mm to cm scale) than typical Murray bedrock. ChemCam observes 

enriched FeOT correlated with high H at Rock Hall (Figure 3). CheMin has detected ~7 wt. 

% akageneite, a chlorine bearing iron hydroxide, and ~1 wt. % jarosite, an Fe-containing 

sulfate (Morris et al., 2019). This CheMin analysis along with our observed FeOT/H 

correlation suggest akageneite and jarosite may be the H carrier phases. Rock Hall is quite 

different from other Vera Rubin ridge drill targets; akaganeite is present at levels higher 

than hematite and more jarosite is present. SAM also observes nitrates and oxychlorine 

(Rampe et al., 2019 MSL team meeting) suggesting the Rock Hall area experienced 

interaction with later saline fluids. While our measurements of H at Rock Hall are subject 

to higher uncertainty due to physical matrix effects, SAM and CheMin observations 
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confirm Rock Hall is different from other Vera Rubin ridge areas and some of the 

observed H increase is likely real.  

Variability in the average H content of the Murray formation as well as observations of 

specific H-enriched phases in intervals of the Murray formation suggest an history of 

multiple episodes of water-rock interaction. Disentangling changes in lakewater fluid 

chemistry from later diagenetic fluid events is difficult, but large-scale variation in bedrock 

H such as enrichment at the Sutton Island/Blunts Point transition may point to changes in 

the Gale crater paleoenvironment which produced more saline, oxidized lakewaters which 

precipitated hydrated sulfates and hydrous Mn-oxides. In the Sutton Island/Blunts Point 

transition case, this may be due to changing water depth or shoreline location (Lanza et al., 

2019). Both the Marias Pass and Rock Hall H variability is likely due to later groundwater 

episodes enriching H and silica or the oxidative dissolution of Fe (II) minerals.  

5. Conclusions  

We have quantified the ChemCam normalized H peak area for all Murray formation 

bedrock targets up to mission sol 2339 and found the Murray formation contains on average 

2.6 ± 2.1 wt. % H2O. While our measurement uncertainty of H in individual ChemCam 

observation points is high (± 2.1 wt. % H2O), the target-averaged uncertainty is lower (~ ± 

0.8 wt. % H2O). Roughness effects may artificially increase the H signal of some 

observation points, and future laboratory studies will measure the dependence of target 

grain size on the H signal. Many rough targets are measured at Rock Hall, potentially 

artificially increasing the measured H signal.  

ChemCam data reveal significant H enrichment in select intervals within the Murray 

formation that signify distinctive aqueous processes. While the target-averaged H signal 

remains constant for most of the Murray formation, the Hartmann’s Valley, Pettegrove 

Point, and Jura members show significant variation in H signal from the other members. 

Carriers of H enrichment in the Murray formation include clays, amorphous materials, and 

Ca-sulfates throughout. Enrichment in H at the Sutton Island/Blunts Point transition and 
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the presence of hydrated Mg-sulfates and Mn-oxides suggests changing lakewaters 

including increased salinity and changes in lakewater depth or shoreline location. Opal 

likely formed from extensive late-stage alteration at the Stimson/Murray contact at Marias 

Pass. Akaganeite and jarosite are potential carrier phases of the high H observed at Rock 

Hall, and complementary SAM and CheMin observations suggest Rock Hall bedrock 

experienced alteration by later saline fluids. Variability in the H signal may be evidence of 

changes in the depositional lakewaters or later diagenetic fluid events, which are difficult 

to disentangle. 
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Key Points: 

• Isolated Cl enrichments in bedrock, in nodular textures, and at calcium sulfate 
vein margins, correlated with Na, indicate halite  

• Mapping of Cl along the Curiosity traverse in Gale Crater indicates Cl 
enrichments are more common in select Murray formation members 

• The scattered, isolated occurrences of chlorides are consistent with late 
groundwater reworking and remobilization of original deposits 
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Abstract 

The Mars Science Laboratory Curiosity rover is traversing a sequence of stratified 

sedimentary rocks in Gale crater that contain varied aeolian, fluviodeltaic, and lake deposits, 

with phyllosilicates, iron oxides, and sulfate salts. Here, we report the chloride salt 

distribution along the rover traverse. Chlorine is detected at low levels (<3 wt.%) in soil and 

rock targets with multiple MSL instruments. Isolated fine-scale observations of high chlorine 

(up to ≥ 15 wt.% Cl), detected using the ChemCam instrument, are associated with elevated 

Na2O and interpreted as halite grains or cements in bedrock. Halite is also interpreted at the 

margins of veins and in nodular, altered textures. We have not detected halite in obvious 

evaporitic layers. Instead, its scattered distribution suggests that chlorides emplaced earlier 

in particular members of the Murray formation were remobilized and reprecipitated by later 

groundwaters within Murray formation mudstones and in diagenetic veins and nodules.  

1. Introduction 

Evaporite mineral assemblages record the physical and chemical characteristics of past 

environments and allow us to place constraints on the chemistry of surface and subsurface 

fluids. In terrestrial environments, soluble chloride salts are typically among the last minerals 

to precipitate out of saline brines, preceded by various carbonates and sulfates, and are 

predicted to precipitate from fluids derived from basaltic weathering on Mars (Tosca and 

McLennan, 2006). 

The Mars Odyssey Gamma Ray Spectrometer has mapped the global distribution of chlorine 

(Diez et al., 2009), and specific chloride-enriched deposits were discovered in hundreds of 

irregular depressions in ancient terrains of the southern martian highlands using the Mars 

Odyssey Thermal Emission Imaging System (Osterloo et al., 2010). These chlorides likely 

precipitated by evaporation from a ponded brine derived from groundwater upwelling and/or 

surface runoff. Chlorides can also form via efflorescence, the migration of saline fluids to 

the surface whereupon salts crystallize within sediment grains as thin crusts, as is thought to 

explain Cl-enriched veneers and surface rinds at Meridiani Planum (Knoll et al., 2008) and 
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Cl-enriched soils and rock rinds at Gusev crater (Gellert et al., 2004; Haskin et al., 2005; 

Ming et al., 2006) detected by the Alpha Particle X-ray Spectrometer (APXS) instruments 

on Opportunity and Spirit. Chlorine has been found in all martian soils and dust at ~0.5-1 

wt.% Cl (Yen et al., 2005; Berger et al., 2016; Cousin et al., 2017; Lasue et al., 2018). In situ 

soil studies have measured perchlorates (Hecht et al., 2009), and halite specifically has been 

detected in evaporitic mineral assemblages in the nakhlite meteorites (Bridges & Grady, 

2000).  

The Mars Science Laboratory (MSL) Curiosity rover is investigating the stratigraphy of Mt. 

Sharp, the mound of sedimentary rocks filling the center of 155-km Gale crater, which 

formed ~3.8-3.6 Ga ago. Most of Gale’s sedimentary rocks examined so far formed in a 

fluvio-lacustrine environment, including both fluvial/alluvial deposits and laminated 

mudstones from subaqueous deposition (Grotzinger et al., 2015; Hurowitz et al., 2017; 

Rivera-Hernández et al., 2019). Ca-sulfates containing boron (Gasda et al., 2017), Mg-

sulfates (Rapin et al., 2019; submitted), desiccation features (Stein et al., 2018), and clay 

chemistries (Bristow et al., 2018) reported in Gale suggest past episodes of lake drying or 

lake level drop. Orbital surveys have not detected chlorides within Gale, but they are found 

in the nearby watershed of Sharp crater (Ehlmann and Buz, 2015). The Dynamic Albedo of 

Neutrons instrument is sensitive to Cl (Litvak et al., 2016), and APXS observations have 

found on average 1.0-1.4 wt.% Cl and up to 3.3 wt. % Cl in Gale’s sedimentary rocks 

(O’Connell-Cooper et al., 2017). Localized Cl enrichments have been reported in association 

with diagenetic raised ridges at Yellowknife Bay (McLennan et al., 2014; Léveillé et al., 

2014) and halite has been reported in association with Ca-sulfate veins (Nachon et al., 2014; 

Forni et al., 2015) but chlorine has not previously been systematically mapped in Gale crater 

sediments nor has a model for the origin, genesis, and distribution of these compounds been 

discussed.  

In this paper we report the chlorine distribution in rocks and soils along Curiosity’s traverse, 

using multiple instruments, in particular focusing on observations that indicate small-scale 

enrichments in chloride salts, in order to inform our understanding of the depositional and 
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groundwater environments at Gale crater. We report on their ChemCam detections as a 

function of stratigraphic level and target type and draw on supporting information from 

CheMin and SAM to identify the type of chloride salt present and determine its formation 

mechanism.  

2. Methodology 

APXS data from the arm-mounted instrument, placed on or just above the surface of Mars, 

were used to determine bulk soil and rock Cl values over a spot size of 1.7-3 cm for 687 

observations (up to sol 2168), using the APXS standard calibration (Gellert, 2006). 

ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) data from the mast-mounted 

remote sensing instrument provided chemical analyses of >19,000 locations at fine-scale 

(350-550 µm diameter; Maurice et al., 2012) of targets typically 2-4 m away with Remote 

Micro-Imager (RMI) data for co-located context images (Wiens et al., 2012; Maurice et al., 

2012). Major element compositions are calculated using multivariate techniques (Clegg et 

al., 2017; R. Anderson et al., 2017) but the detection and quantification of minor elements 

like Cl is complicated by relatively few, weak emission lines, interference with emission 

lines from other elements, and physical and chemical matrix effects. Neither APXS or 

ChemCam can directly measure mineralogy and directly differentiate chlorides from 

perchlorates or chlorates, but can infer mineralogy using correlations between elements.  

Univariate analysis has been successfully applied to detect and quantify minor elements with 

ChemCam, e.g., Li, Mn, and H (e.g., Ollila et al., 2014; Lanza et al., 2014; Rapin et al., 

2017a; Payré et al., 2017; Thomas et al., 2018). We extended previous LIBS analyses of Cl 

in the laboratory (e.g., D. Anderson et al., 2017; Vogt et al., 2018) for analysis of ChemCam 

data. We apply standard ChemCam data pre-processing, removing the first five laser shots, 

which are contaminated by dust and subject to surface effects (as detailed in Wiens et al., 

2013). We use the Cl emission line at 837.8 nm that increases monotonically with Cl content 

regardless of cation (D. Anderson et al., 2017) rather than the molecular emission from CaCl 

which is complex and not easily used for direct quantification (Vogt et al., 2018). To quantify 
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Cl, we fit the local region (831-841 nm) using methods described by Thomas et al. (2018) 

and report the fit Cl peak area. Before fitting, we normalize the shot-averaged spectrum using 

the standard ChemCam Norm 3 method which divides the spectra by the total detector 

intensity (in the case of Cl 838 nm, the VNIR detector – one of three in the instrument). 

While Rapin et al. (2017) and Thomas et al. (2018) found normalization using C and O 

emission lines to work best in H quantification, D. Anderson et al. (2017) and additional lab 

measurement analyses done for this work indicate that Norm 3 provides the most linear 

calibrations with Cl concentration (see also Discussion §4.2).  

We constrained the ChemCam threshold of detection of Cl by three approaches. First, the 

threshold must be >0.03 wt.% Cl because no Cl peak is observed for the ChemCam 

calibration targets. The KGa-2 calibration target contains 0.03 wt.% Cl and the others have 

<0.01 wt.% Cl (Vaniman et al., 2012). Second, the threshold for loosely consolidated 

materials like soils must be <~1 wt.% Cl because a small Cl peak (peak area 0.83×10-4) is 

seen in the dust, measured by the first shot of ChemCam analyses (Lasue et al., 2018). APXS 

measures 0.79-1.35 wt.% Cl in the Gale dust (Berger et al., 2016). Because of potential 

physical matrix effects, this same threshold may not apply to bedrock observations (e.g., 

Rapin et al., 2017b; Thomas et al., 2018; and references therein). Third, the highest APXS 

Cl measurement in Gale is the bedrock target Stephen with 3.3 wt.% Cl, where ChemCam 

observes a small Cl peak (average Cl peak area 0.5×10-4) indicating a threshold <3.3 wt.% 

Cl in rock. This performance on Mars is similar to laboratory studies that estimate a detection 

threshold of 3-6 wt.% Cl (D. Anderson et al., 2017) and >3 wt.% Cl (Gaft et al., 2014).  

Through mission sol 2127, we examined all APXS data and all ChemCam spectra to identify 

targets containing Cl using the normalized Cl peak area. Then, using visual analysis of RMI 

and Mastcam images, we classified the targets as rock, soil, or diagenetic (veins or nodules) 

and localized them along the traverse and within Mt. Sharp geologic units (Figure 1). To 

estimate the grain size of ChemCam bedrock targets, we used the Gini index mean score, a 

composition-based grain-size proxy that uses point-to-point chemical variabilities in  
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Figure 1. (a-b) MSL traverse map showing the locations of ChemCam targets defined as Cl 

detections (Cl ≥ 2×10-4 normalized peak area; or ≥ three-sigma above the mean peak area) 

color-coded by target type. (c) Gini index values for bedrock three-sigma Cl detections 

(black) and weaker Cl peaks (gray), which represent different grain size categories. Gini 

index mean (central line) and standard deviation (shaded bars) are reported for each member 

of Murray formation. (d) Gale crater stratigraphic column (Fedo et al., 2017) with drill sites, 
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colored orange where no perchlorates are detected using SAM (Archer et al., 2019). 

CheMin detects halite at the Quela drill target (orange star) (Achilles, 2018). (e) APXS-

measured Cl wt. % for all targets (gray) and brushed (relatively dust-free) bedrock targets 

(black). (f) ChemCam normalized Cl peak area measurements. The lines show the moving 

average for the Murray bedrock (blue), Bradbury bedrock (green), and soil (black) points. 

Crosses indicate targets in common between APXS (e) and ChemCam (f). 

 

ChemCam data (Rivera-Hernández et al., 2019), excluding points on or near diagenetic 

features. 

3.  Results  

We observe Cl in all target types – soils, float rocks, bedrock, and diagenetic features (Figure 

1). In soils the ChemCam Cl peak area varies little along the traverse, consistent with data 

from APXS showing ~1 wt.% Cl (Figure 1d) (see also O’Connell-Cooper et al., 2017). Most 

soils have normalized Cl peak areas of ~1-2×10-4 (Figure 1e). Direct comparison of soil and 

rock Cl peak areas is complicated by physical matrix effects (e.g., Rapin et al., 2017b; 

Thomas et al., 2018; and references therein), so it is unlikely they represent the same wt.% 

Cl, but characterizing relative variation is a useful benchmark. The Cl peak area moving 

average of soils is roughly constant with elevation along the traverse and 3× higher than the 

average bedrock, regardless of formation. Most rock, vein, and nodule points do not have Cl 

peaks significantly above zero, indicating <~3 wt.% Cl. APXS results show brushed 

bedrocks on average have 0.4 wt. % more Cl than soils.  

Bedrock ChemCam Cl peak areas show much greater variability than soils. Average Cl peak 

area is higher (50%) in the Bradbury and Stimson formations than the Murray formation 

(Figure 1e), but in the Murray we observe more high Cl peak areas, three-sigma above the 

bedrock mean (≥ 2×10-4). Stimson and Bradbury points have Cl peak areas up to 4×10-4; 
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whereas Murray points have values up to 14×10-4. These very high Cl peak values occur 

in the Hartmann’s Valley, Sutton Island, and Blunts Point members.  

 

Figure 2. Mastcam (a, d, g) and RMI images (b, e, h) where Cl is detected including 

ChemCam spectra of the fit Cl peak at 838 nm (c, f, i). Circles indicate the raster point where 

Cl is observed. Example targets shown include: Sangwali, an isolated bedrock detection (a-

c); Muchinda, a nodular detection (d-f); and Gross_Aub, a vein-related detection (g-i). 

(Mastcam images: mcam07482, mcam07156, and mcam05881). 
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Figure 3. Normalized Cl peak area versus wt.% Na2O, CaO, and MgO from ChemCam 

MOC. The opacity indicates the significance of the Cl observation. Fully opaque data points 

are three-sigma Cl detections (≥ 2x10-4 Cl peak area). No correlation is seen for CaO and 

MgO. 
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The high ChemCam Cl observations (110 points) most frequently occur in isolated 

bedrock points (Figure 1e); i.e., a single point within a raster (covering ~3cm) contains a 

clear Cl peak (Figure 2c), but does not show textural or color differences compared to the 

nearby bedrock points without Cl (Figure 2ab). Other detections are vein-related, where Cl 

is most often detected at the edge of the Ca-sulfate vein and the nearby bedrock (Figure 2gh). 

In three cases Cl is seen in dark-toned inclusions in veins (L’Haridon et al., 2018), and in 

one case Cl is seen within a vein (target Third_White_Ash). We have also detected Cl in 

targets with nodular, resistant textures (Figure 2de). For the majority of targets (~50%), the 

Cl peak in shot-to-shot profiles stays constant, but for 10 Murray points, the Cl peak 

increased to a maximum in the middle of the shot profile indicating that an isolated Cl-rich 

grain or cement was measured.  

Comparing the Murray bedrock targets containing high Cl with the Gini index mean score 

(Rivera-Hernández et al., 2019) for each member of the Murray formation, we find that Cl 

detections occur more commonly in mudstones, siltstones, and fine sandstones relative to 

coarser grained rocks (Figure 1c). Cl detections in coarser sandstone occur at the Sutton 

Island and Blunts Point boundary. There are more rocks with high Cl higher stratigraphically, 

with units from the Sutton Point member onward having a greater number of high Cl points.   

We observe a positive correlation between normalized Cl peak area and wt.% Na2O (Figure 

3) and no apparent correlations between Cl peak area and wt.% CaO or MgO except for vein-

related targets where CaO enrichment is expected from mixing with the Ca-sulfate vein 

(Figure 3). The Na wt.%-Cl peak area correlation is most apparent for the Murray formation 

bedrock and vein-related detections. The correlation suggests sodium chloride (NaCl), 

chlorate (NaClO3), or perchlorate (NaClO4) composition. We do not observe a correlation 

between O and Cl, so Na-chlorate or -perchlorate may be less likely, although LIBS data 

may not be very sensitive to variation in target O content (e.g., Schröder et al., 2019). 

4. Discussion  

4.1 Mineralogy  
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In bedrock, Cl peak areas are typically lower than the ChemCam detection threshold of ~3 

wt.%, consistent with APXS brushed bedrock measurements showing on average 1.2 wt.% 

Cl (Figure 1d; O’Connell-Cooper et al, 2017). ChemCam observes considerable Cl variation 

to higher values in the Murray formation bedrock (Figure 1e). We interpret the bedrock high 

Cl to be due to sporadic occurrences of chloride grains and/or cements within the bedrock. 

There is not an obvious correlation with texture or morphology in bedrock; detections are 

scattered.  

The chloride is most likely NaCl, halite, based on the correlation between Cl and Na observed 

by ChemCam, and supporting data from CheMin and SAM. For the Quela drill target (star, 

Figure 1), where ChemCam measures a Cl peak in one point of the drill tailings (peak area 

8×10-4), CheMin reports 0.3 ± 0.1 wt.% bulk halite (Achilles, 2018). The Sample Analysis 

at Mars Evolved Gas Analyzer (SAM-EGA) measured O2 release below 600º C has been 

interpreted as perchlorate (Sutter et al., 2017). Starting at the Oudam drill target (sol 1364, 

elevation -4435 m), Cl observed by APXS is no longer interpreted as perchlorate/chlorate 

because the <600º C O2 release disappears (Figure 1c; Archer et al., 2019). Therefore, in the 

upper Murray, the Cl present measured by APXS is in the form of chlorides. 

4.2 Quantification of chlorine and halite  

ChemCam Cl peak area values have associated uncertainty from fitting the normalized 

spectra with an automated routine. The fit quadratic continuum sometimes cuts into the Cl 

peak which could cause underestimation of the area. Additionally, a nearby minor Ti 

emission line (838.5 nm) that we do not fit could occasionally cause Cl peak area 

overestimation. Based on the outputs from the Levenberg-Marquardt fit, the error in the fit 

Cl peak area, calculated by taking the square root of the diagonal elements of the covariance 

matrix, is <8%.  

To constrain how much Cl high ChemCam peak areas represent, we applied the data 

processing methodologies described in §2 to ChemCam lab model instrument measurements 

of Cl-bearing samples (described in D. Anderson et al., 2017; Thomas et al., 2018). We tested 
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normalization to the detector intensity and to C 248 nm, C 834 nm, and O 778 nm peak 

areas. Due to differences in experimental conditions, translating the laboratory calibrations 

to Mars requires an Earth-to-Mars correction (Clegg et al., 2017). Because of large, 

wavelength-dependent variability in the correction factor in the Cl wavelength region (831-

841 nm), multiplying the lab data by this correction produced considerable variability in 

spectral shape and a more complicated continuum. Therefore, we multiplied the fit 

normalized Cl peak area by the average Earth-to-Mars correction in the Cl wavelength 

region. All normalizations were tested and calibration curve fits were varied (linear, 

quadratic), resulting in a large range of 14.9-42.3 wt. % Cl for point 4 of the bedrock target 

named aegis_post_1612a, which has the highest fit Cl peak area. Given qualitative 

examination of the spectra in comparison to laboratory mixtures of halite and basalt and the 

reported wt.% total of major oxides from partial least squares (81.3 wt.% total) for this 

observation point, high Cl values, i.e., much greater than >20 wt.% Cl, are likely unrealistic. 

Future studies may refine the Cl quantification approach for Mars. As an additional 

constraint, assuming halite stoichiometry, using the ChemCam measured wt.% Na2O (14.7 

+/ 1.5 wt.%), and subtracting an assumed Murray bedrock component (2.3-3.1 wt.% Na2O), 

we predict 13.8 ± 2.2 wt.% Cl. This is on the lower end of the laboratory prediction. Thus, 

overall, the highest Cl point is estimated to result from ~15 wt. Cl or ~25 wt. % halite, 

possibly with additional Cl associated with other phases. 

4.3 Emplacement models and implications  

Because our highest Cl observation corresponds to ~25 wt.% halite in bedrock, we are not 

observing pure halite at the LIBS scale of 350-550 µm. Instead we are observing a mixture 

of bedrock and salt. For bedrock with chloride-filled pores, ~25 wt.% chloride at ChemCam 

LIBS scale might be expected. Porosities of 20-40% are typical for fine-grained sediments, 

though up to 80% porosity is possible for very fine, poorly consolidated mudstones (Fleury 

and Brosse, 2019). Because bedrock Cl detections are mostly in rocks with grainsizes less 

than the LIBS spot size, this implies either: (1) there are large grains of halite (diameter >~ 
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150 µm; larger than typical bedrock grainsize) that fill up >~ 25 area % of the LIBS spot 

or (2) halite is a cement that in certain portions of the rock occupies all or part of the pore 

space.   

The Sutton Island member of the Murray formation, where many potential chloride 

observations occur, is a package of heterolithic mudstones and sandstones likely deposited 

in lake and lake-margin environments dominated by suspension fallout with less common 

traction deposits (Fedo et al., 2018). Bedrock enrichments of >30 wt.% Ca and Mg sulfates 

in Sutton Island and Blunts Point suggest some of the beds may have formed in salty waters 

concentrated by evaporation (Rapin et al., 2019; submitted). Concretions and vertical and 

cross-cutting Ca-sulfate veins are common in the Sutton Island member and suggest late 

diagenesis (Fedo et al., 2018; Rapin et al., 2019; submitted). We find Cl associated with high 

Na2O at the boundaries of some of the Ca-sulfate veins observed in the Murray. 

Fluids on Mars produced by basaltic weathering are typically Cl-bearing and precipitate 

chloride salts during evaporation (Tosca and McLennan, 2006). In Gale crater, halite may 

have been emplaced initially as evaporitic salt layers, as mixed siliciclastic-salt beds from 

evapo-concentration of near-surface waters, or during later diagenetic processes. Gasda et al. 

(2017) suggests that successive layers of chloride, sulfate, and borate salts were emplaced 

occasionally during the deposition of Mt. Sharp. Large-scale and small-scale continuous beds 

of primary evaporite sequences have not been observed thus far by Curiosity, but sulfate 

layers remain to be explored (Milliken et al., 2010). As Mars transitioned to a drier climate, 

the Gale crater basin could have been analogous to a saline playa lake where acidic surface 

waters and alkaline groundwaters interacted to deposit clays and sulfates (Baldridge et al., 

2009). Alternatively, Gale could represent a perennial lake system, which experienced 

multiple wet-dry cycles where evaporite-enriched deposits formed between mudstone 

deposits at the surface or in the shallow subsurface (Eugster and Hardie, 1978). Another 

alternative is that the chlorides precipitated from Cl-rich brines during diagenetic processes 

with Cl derived from evaporation of fluids from thin layers now completely dissolved or 

layers yet-to-be encountered higher in the strata (e.g., Handford, 1991).  
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While it is difficult to determine the original halite emplacement mechanism with the 

available data, the occurrence of halite in particular fine-grained members of the Murray 

suggests Cl-rich brines were associated with these units specifically. Complementary lines 

of evidence such as desiccation features in the Murray (Stein et al., 2018), scattered thin beds 

enriched in sulfates (Rapin et al., 2019; submitted), as well as the heterolithic mudstones and 

sandstones observed in the Sutton Island member, suggest evaporation in a near-shore 

environment may have been the initial halite source. The concentration of initial small-scale 

primary deposits of chlorides to the Sutton Island and Blunts Point members of the Murray 

formations suggests a transition in the Gale crater paleoenvironment and constrains later Gale 

lake waters to be episodically saline. 

 

Figure 4. Potential emplacement scenario for chloride salts in the Murray formation. First, 

(a) halite (blue), Mg-sulfates (purple), and Ca-sulfates (red) enrichments form via 

evaporation of lake waters within siliclastics. Then, (b) sulfate-bearing groundwaters 

precipitate additional Ca-sulfates and mostly dissolve the halite, which reprecipitates as 

isolated grains or cements in the bedrock, in altered, nodular textures in the bedrock, and at 

the boundaries of Ca-sulfate veins (red). 
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Halite is highly soluble and one of the easiest salts to later mobilize. We see a small 

number of halite detections most often as isolated enrichment points in bedrock targets, 

associated with Ca-sulfate veins, or in nodular textures. Together, these observations are 

most consistent with reworking and remobilization by later groundwater (Figure 5). 

Following compaction and lithification of the Murray formation, late diagenetic fluids 

mobilized highly soluble salts like halite. The diagenetic fluids were likely SO4 rich as they 

readily mobilized halite, mobilized Mg-sulfate only to a limited degree (Rapin et al., 2019; 

submitted), and precipitated many Ca-sulfate veins. These late-stage fluids deposited Ca-

sulfates within fractures as well as chloride salts at vein margins. If the pressure from Ca-

sulfate precipitation forced fractures open as suggested by other analyses (Caswell and 

Milliken, 2017), halite would have precipitated last. Alternatively, the location on the edges 

of the fractures could also be consistent with a second fluid event after further fracturing 

between the bedrock and Ca-sulfate vein. The nodular textures containing halite clearly 

represent diagenetic emplacement but the scattered, isolated bedrock detections are either 

remnants of where halite was emplaced initially or pore space where salts precipitated from 

later diagenetic fluids. 

5. Conclusions 

We present the first systematic study of chlorine and models for its emplacement in Gale 

crater using MSL instruments. APXS measures Cl in bedrock and soils at 0.28-3.44 wt.% 

Cl. Cl is detected with the 838 nm peak in ChemCam targets. Cl peaks are found in most 

soils. Most bedrock, vein, and nodule targets have no Cl at the ChemCam detection limit of 

~3 wt.%, but sporadic occurrences of Cl are occasionally present in all these target types. For 

bedrock, the average Cl peak is higher in the Bradbury and Stimson formations than the 

Murray formation; however, the Murray contains isolated detections of high Cl (≥ 15 wt.% 

Cl). These correlate with high wt.% Na2O (~15 wt.%) and likely represent ~25 wt.% halite 

salt. CheMin detection of halite and SAM analyses, which indicate the presence of chlorides, 

corroborate halite. In addition to bedrock, halite is also detected in the Murray in nodular 

textures as well as at the outer boundaries of Ca-sulfate veins. Halite bedrock detections 
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occur in all stratigraphic intervals but the highest values are in the Sutton Island, Blunts 

Point, Pettegrove Point, and Jura members. Given the solubility of halite and sporadic nature 

of its detection, we are likely observing halite emplaced by later groundwater reworking and 

remobilization of initial deposits. The restriction of high Cl to specific members of the 

Murray formation may suggest initial small-scale primary deposits of chlorides, specific to 

these units, were locally remobilized by the fluids that precipitated Ca-sulfates. Primary 

evaporitic chloride layers have not been observed thus far, but the concentration of deposits 

in particular members suggests an interval of more saline depositional waters and changes in 

the Gale crater paleoenvironment. 
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Abstract 

Analogs to terrestrial iron formations are hypothesized to have formed at the martian surface 

by directly precipitating from the water column. Although previous studies have not found 

good analogs, a systematic survey of the higher resolution visible CRISM (Compact 

Reconnaissance Imaging Spectrometer for Mars) dataset has not yet been completed. We 

adapted and applied factor analysis and target transformation, a semi-automated technique, 

to search for hematite in Noachian- and Hesperian-aged stratified, candidate sedimentary 

outcrops previously identified. Only 3% of the images with stratified outcrops that we 

surveyed contain hematite. We confirm the presence of hematite in Mawrth Vallis, Iani 

Chaos and Meridiani Planum and report the detection of hematite in Nili Fossae. Given the 

geologic settings and mineral assemblages observed, all detections more likely precipitated 

from upwelling groundwaters or surface alteration fluids rather than in the water column. 

Therefore, analogs to terrestrial iron formations are not found on Mars, possibly due to 

differences between Earth and Mars in aqueous chemistry and availability. Future studies 
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using our methods can search for other Fe-phyllosilicates and Fe-sulfates and search for 

hematite in other geologic settings and locations.   

1. Introduction 

Iron phases in the sedimentary record, including oxides, oxyhydroxides, phyllosilicates, and 

sulfates, are useful for studying redox changes in aqueous geochemistry and atmospheric 

composition. On Earth, iron formations (> 15 wt. % Fe), iron-rich sedimentary rocks that 

formed primarily during the Archean Eon (~2.5-4 Ga), provide evidence for iron 

mobilization in a reducing atmosphere. The martian crust has a higher abundance of iron 

(~14 wt. %) than the Earth’s crust (~8 wt. %) (Taylor and McLennan, 2009), and it has been 

hypothesized that analogs for Precambrian terrestrial iron formations could have formed on 

early Mars if a CO2-rich, reducing atmosphere was present (Catling and Moore, 2003; King 

et al., 2004; King and McSween, 2005; Righter et al., 2008) and permitted transport of 

reduced iron, which subsequently oxidized (e.g., Bridges et al., 2008; Burns et al., 1993; 

Fallacaro and Calvin, 2006; Schaefer, 1996). 

Previously, iron oxides have been observed on Mars in sedimentary outcrops by orbital and 

landed missions; however, these are not analogous to primary iron oxides in terrestrial iron 

formations. Gray, specular hematite has been detected in Meridiani Planum, Aureum Chaos, 

Iani Chaos, Aram Chaos, and at other locations associated with the interior layered deposits 

throughout Valles Marineris using the Thermal Emission Spectrometer (TES) (Christensen 

et al., 2000; Christensen et al., 2001; Glotch and Christensen, 2005; Glotch and Rogers, 2007; 

Weitz et al., 2008; Weitz et al., 2012). Finer grained red hematite has been detected by 

CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and OMEGA 

(Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) in the Valles Marineris 

interior layered deposits, chaos regions, and areas around Meridiani Planum (Bibring et al., 

2007). Both of these types of deposits are associated with sulfates and are hypothesized to 

have formed through secondary diagenetic processes associated with regional groundwater 

upwelling (e.g., McLennan et al., 2005; Tosca and McLennan., 2006; Roach et al., 2010). In 

addition, hematite has been detected at Mawrth Vallis in association with Al-rich and 
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sometimes Fe/Mg phyllosilicate layers (Bishop et al., 2013; Wray et al., 2008) and may 

have formed from intense leaching processes. Gale crater provides an example where 

hematite detected in Mt. Sharp by orbital (Milliken et al., 2010; Fraeman et al., 2013) and in 

situ (Rampe et al., 2017) studies is hypothesized to be either a primary authigenic phase that 

precipitated from a redox stratified lake, a product of in situ oxidative weathering, or a 

secondary diagenetic product (Fraeman et al., 2013; 2016; Hurowitz et al., 2017; Rampe et 

al., 2017). Recent observations suggest that post-depositional processes, such as diagenesis 

and differential cementation were important in creating the topographic ridge and localizing 

the observed deep spectral absorptions.  

The paucity of primary iron oxide sedimentary deposit candidates on Mars could mean that 

the hypothesized iron formations (Burns et al., 1993) did not form on early Mars, and/or that 

other Fe-bearing phases such as Fe-phyllosilicates or Fe-sulfates were favored. Alternatively, 

this could be an observational bias. On Earth, iron formations are uncommon. Limited, small 

deposits on Mars may be difficult to detect even with high resolution orbital data. High 

resolution CRISM data has been useful for determining the global distributions of secondary 

minerals such as phyllosilicates and carbonates using the ~1-2.5 µm wavelength range, but 

the shorter (~0.5-0.9 µm) wavelengths have been underutilized in comparison. 

Here, we adapt and apply semi-automated survey methods in coordination with traditional 

CRISM analysis techniques to systematically search for the presence of hematite in a subset 

of stratified outcrops that are candidate sedimentary rocks (Stack, 2015). We identify 

hematite in 3% of the surveyed images in three regions of interest: Mawrth Vallis, Nili 

Fossae, and Iani Chaos and Meridiani Planum. We evaluate the performance of our methods, 

discuss potential emplacement mechanisms for the hematite discovered, and examine the 

implications for the lack of analogs to terrestrial iron formations.  

2. Survey Methods 

2.1 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 
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CRISM is a hyperspectral visible and near-infrared imaging spectrometer with 544 

spectral bands between ~0.4 and 4.0 µm (Murchie et al., 2007). CRISM observations are 

taken in several modes with different spectral and spatial resolutions. We used TRDR data 

products with reduced noise and striping characteristics (Seelos et al., 2011), taken in full-

resolution targeted (FRT) and full-resolution short (FRS) sampling modes with a spatial 

sampling of 15-19 m/pixels for this project.  

All CRISM data were atmospherically corrected using the “volcano scan” method as 

described by McGuire et al. (2009). The gas absorptions are removed using a scaled 

atmospheric transmission spectrum derived from an observation of Olympus Mons. Data are 

then converted to I/F, the ratio between the measured radiance and the solar irradiance 

divided by π steradians. Although the volcano scan correction greatly reduces the 

prominence of gas absorptions, residual absorptions may remain and the spectral effects of 

aerosols are not removed (Wiseman et al., 2010). 

Ferric oxides have four characteristic absorptions in the visible portion of the spectrum 

caused by electronic ligand field transitions and charge transfers. Due to differences in 

absorption center caused by differences in the crystal structure, hematite is distinguishable 

from other iron oxides. Particularly, the absorption at 860 nm allows hematite to be identified 

using the CRISM dataset. 

2.2 Factor Analysis and Target Transformation 

Factor analysis and target transformation methods (Malinowski, 1991) enable semi-

automated searches for a given spectral endmembers. These methods can be used to both 

identify the number of independent variable spectral components and test for the presence of 

individual endmembers from mixed spectral datasets. These methods have been extensively 

applied to laboratory and spacecraft thermal infrared (TIR) spectral data (Bandfield et al., 

2000; Christensen et al., 2000; Bandfield et al., 2002; Hamilton and Ruff, 2012; Glotch and 

Bandfield, 2006; Glotch and Rogers, 2013; Geminale et al., 2015). Recently, Thomas and 

Bandfield (2017) adapted factor analysis and target transformation for near infrared (NIR) 
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CRISM data, and Amador et al. (2018) applied their methods to perform a global search 

for minerals associated with serpentinization. 

We use mean-removed R-mode factor analysis, which uses a set of mixed spectra to derive 

a set of orthogonal eigenvectors and associated eigenvalues. The covariance-based data 

matrix factorization method used to transform the column-oriented data matrix (spectra) into 

eigenvectors and eigenvalues is described in depth by Malinowski (1991). The eigenvectors 

represent independent components present in the mixed data. These components do not 

individually or independently correspond to the data's physical components, such as 

endmember spectra. Eigenvalues indicate the variance of the data along the axis of the 

associated eigenvector. Because eigenvectors are defined by maximizing the variance along 

each axis in multidimensional data (as well as being orthogonal to the previous eigenvectors), 

each successive eigenvalue will be smaller than the previous one. The combined analysis of 

eigenvectors along with the associated eigenvalues provides a good indication of the number 

of independent components in a set of mixed spectra, and whether the eigenvectors represent 

real variation or spectral noise. Factor analysis differs from principal components analysis 

(PCA) as it is based on a generative model and focuses on the off-diagonal elements of the 

covariance matrix.  

For this work, we apply factor analysis to data from the short wavelength (S) detector of 

CRISM (0.4-1.0 µm). Every 3rd pixel of every 3rd row was used to calculate 20 eigenvectors. 

Previous work (Thomas and Bandfield, 2017; Amador et al., 2018) has shown 10-12 

eigenvectors are generally sufficient to represent all the independent components in a CRISM 

scene. Here, we choose a conservative number of eigenvectors (20) to capture all possible 

independent components which has the downside of potentially adding more spectral noise, 

present in higher eigenvectors.  

In practice, target transformation is a linear least-squares fit of the significant eigenvectors 

to an endmember test spectrum. The spectral endmember can be a laboratory spectrum, a 

spectrum from another image, or a series of synthetic spectral shapes. If the test spectrum 

can be closely matched, then it is confirmed as a possible endmember present in the system. 
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We test goodness of fit by calculating the spectral angle distance (SAD) between our test 

and modeled spectra and by evaluating the quality of the fit by eye. Due to known artifacts 

in the CRISM radiometric calibration at VNIR wavelengths less than 410 nm, between 644 

and 684 nm, and greater than 1023 nm (Murchie et al., 2009), these bands were removed 

from our SAD calculation. By visual inspection of the target transformation fits, we chose a 

cutoff of SAD < 0.045 as a threshold for detection. Modeled spectra with SAD values < 

0.045 match the key hematite absorptions (Section 2.1) well with varying noise 

contributions, while none of the spectra with greater SAD values matched well enough 

visually to be considered hematite detections. 

 

Figure 1. Global distribution of stratified, candidate sedimentary outcrops surveyed (points). 

The color bar indicates goodness of fit to a laboratory hematite endmember using target 

transformation. Lower SAD values are better fits, and SAD values below 0.045 (marked with 

stars) are considered candidate detections. Boxed areas are regions of interest shown in other 

figures: 1) Mawrth Vallis (Figure 3), 2) Iani Chaos and Meridiani Planum (Figure 4), and 3) 

Nili Fossae (Figure 5). 
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2.3 Candidate Sedimentary, Stratified Outcrops  

Stack et al. (2015) examined over 17,000 images collected by the High Resolution Imaging 

Science Experiment (HiRISE) camera within ± 60° latitude of the martian equator, and 

identified 5,324 HiRISE images containing 5,781 unique stratified rock outcrops in four 

geomorphic settings: (1) impact craters, (2) canyons, (3) channels, and (4) plains. For this 

study, we focus on stratified basin fill deposits of presumed sedimentary origin. We selected 

1,856 deposits because they appear to be topographically confined and include fills and 

mounds within craters, canyons, chasms, and channels. We do not include deposits 

categorized as viscous flow features (e.g., concentric crater fills, lobate debris aprons, or 

lineated valley fills) or stratified deposits associated with dissected mantle terrains that are 

likely periglacial in origin. We further narrow our search to only Noachian- and Hesperian-

aged terrains (Tanaka et al., 2014) to coincide with when iron formations formed on early 

Earth and because this is the time period when Mars may have lost most of its atmosphere 

and experienced climate change. Ultimately, we are left with 653 HiRISE images covered 

by 726 CRIMS FRT and FRS images targeting candidate sedimentary, stratified outcrops to 

survey in this study (Figure 1). 

3. Validation 

We applied factor analysis and target transformation to CRISM images with known 

detections of hematite to test the effectiveness of our methods for identifying the 

characteristic broad absorptions in the visible S detector data. The CRISM type locality 

detection of hematite is located in Valles Marineris (Roach et al., 2010; Viviano-Beck et al., 

2014). We found a good match to a laboratory hematite spectrum using target transformation 

(Figure 2). To test the sensitivity of our methods to the number of eigenvectors used in target 

transformation, we varied the number and found 10 eigenvectors were required to produce 

the fit shown. The technique confirms the presence of one of the previously identified broad 

exposures of hematite in Valles Marineris. 
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Figure 2. Target transformation modeled fits to a laboratory hematite endmember for a dusty 

image (FRT000069AF), an image of Gale crater’s hematite ridge (FRT00021C92), and an 

image of Valles Marineris hematite, the type locality (FRT0000B385). SAD values are listed 

in parenthesis. 

We also applied our methods to the previously identified exposures of hematite in Gale crater 

(Fraeman et al., 2013). We identified hematite, although more eigenvectors (20) are required 

than the previous example to produce a good fit (Figure 2). In both cases, there are some 

spikes, or noise, in the fit, but the characteristic absorptions, particularly the absorption at 

0.86 µm is fit well. The SAD for the modeled fit to hematite in Gale does not meet our 

established detection threshold, indicating it may be conservative and miss small outcrops 

such as Vera Rubin Ridge.  

Nanophase iron oxides in dust and crystalline iron oxides have similar spectral signatures. 

To test whether our methods were simply detecting the presence of martian dust, we applied 
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factor analysis to a CRISM image taken during a global dust storm. Target transformation 

returns a poor fit to the laboratory hematite endmember (Figure 2), indicating our technique 

is not sensitive to dust.  

Previously, Roach et al. (2010) identified diagenetic hematite and sulfate assemblages in 

Valles Marineris. To test the effectiveness of our methods in comparison to previous 

techniques, we applied factor analysis to 65 of the images surveyed by Roach et al. (2010). 

Of the 40 images meeting our criteria for a good fit to hematite, only 2 were previously 

marked as not containing hematite. Our techniques may be more sensitive to weak spectral 

signatures and mixtures than the previous survey, potentially explaining the discrepancy in 

results for 2 images. 3 of the 25 images that did not meet our success criteria were marked 

by Roach et al. (2010) as containing hematite. These false negatives are likely due to 

differences in sampling – we apply our methods to 1 in every 3 pixels in every 3 rows, so 

small exposures may be missed. This can be tested by follow-up analysis measuring the size 

of hematite exposures in the 3 images.  

4. Results 

4.1 Global Distribution 

For all 726 FRT and FRS CRISM images overlapping HiRISE images of candidate 

sedimentary, stratified outcrops (Figure 1), we quantified the goodness-of-fit to a laboratory 

hematite endmember spectrum using the SAD. Based on visual inspection of the target 

transformation fits, we chose a cutoff of SAD = 0.045. Modeled spectra with SAD < 0.045 

fit the laboratory spectrum well, particularly at the 0.86 µm absorption. Of the 726 images 

surveyed, 19 (3%) met our fit criteria and are candidate hematite detections (Figure 1; Table 

1). Below, we detail regions of interest which contain multiple candidate hematite detections. 

Because we find good modeled fits to hematite in multiple images within the same region, 

oftentimes overlapping, our detections are more confident. 
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Table 1. CRISM images surveyed with good modeled fits (SAD < 0.045) to laboratory 

hematite endmember. 

Image ID 
Region of 
Interest Longitude Latitude 

Lab Hematite 
SAD 

FRT0000C034 Iani Chaos 341.54 -4.03 0.0204 
FRS0002FE20 Nili Fossae 72.61 20.44 0.0260 
FRT0001C5D7 Iani Chaos 341.4 -4.16 0.0311 
FRS00036F7A Mawrth Vallis 339.97 23.66 0.0326 
FRT00009971 Nili Fossae 74.49 22.14 0.0333 
FRT00021696 Mawrth Vallis 339.93 23.4 0.0339 
FRT0002105D Mawrth Vallis 340.89 24.56 0.0347 
FRS0002C8E9 Nili Fossae 72.62 20.39 0.0351 
FRT0000A600 Mawrth Vallis 341.03 24.13 0.0360 
FRT00021C5A Nili Fossae 74.24 21.8 0.0362 
FRT0001A3CE Nili Fossae 72.61 20.31 0.0363 
FRS000365B5 Mawrth Vallis 340.09 23.53 0.0370 
FRT0001DF23 Mawrth Vallis 339.87 23.5 0.0373 
FRT00017946 Meridiani Planum 358.92 3.68 0.0384 
FRT0001E089 Mawrth Vallis 339.87 23.55 0.0407 
FRT0002409A Meridiani Planum 358.81 3.74 0.0420 
FRS00031342 Meridiani Planum 8.31 1.73 0.0420 
FRT0001903B Mawrth Vallis 339.9 23.43 0.0424 
FRT0000B710 Meridiani Planum 358.91 3.67 0.0431 

 

4.2 Mawrth Vallis  

The Mawrth Vallis region has the highest concentration of images with good target 

transformation identifications for hematite. In the region, 8 of the 13 CRISM images 

surveyed meet our detection threshold (Figure 3). Most are located in the layered floor 

deposits of Oyama crater. The target transformation matches confirm previous detections of 

iron oxides in the region. Based on analysis of index maps, hematite occurs within the Al-

rich and sometimes the Fe/Mg rich phyllosilicate layers (Bishop et al., 2013; McKeown et 
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al., 2009; Wray et al., 2008). Modeled target transformation fits are good, particularly 

matching the 0.86 µm absorption center well (Figure 3). 

 

Figure 3. Mawrth Vallis region of interest with images searched shown in red and images 

meeting the detection threshold (SAD < 0.045) shown in blue. The base map is THEMIS 

Day IR with MOLA color. An example hematite target transformation fit from the region 

(indicated with the star) is plotted and an index map of the 0.53 µm band depth, sensitive to 

fine-grained crystalline hematite, is shown. 

4.3 Iani Chaos and Meridiani Planum Adjacent  

Many candidate sedimentary, stratified outcrops are located in and near craters surrounding 

Meridiani Planum, where coarse-grained (> ~5-10 µm diameter particles) gray (specular) 

hematite has been mapped previously using TES (Figure 4; Christensen et al., 2000). In 

addition, a few candidate outcrops are located in the nearby chaos terrains, particularly Iani 

Chaos. In comparison to the Mawrth Vallis region, few (7 out of 62) CRISM images are 
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identified as candidate hematite detections. The 7 potential hematite detections occur 

together in three locations where CRISM images overlap. Good modeled fits to hematite in 

overlapping CRISM images add confidence to the detection. In particular, the best hematite 

fits (Figure 4) globally of our survey (lowest SAD values of ~0.02) occur in the Iani Chaos 

region where hematite has been reported previously in a sulfate-bearing unit (Glotch and 

Rogers, 2007). 

 

Figure 4. Iani Chaos and Meridiani Planum region of interest with images searched shown 

in red and images meeting the detection threshold (SAD < 0.045) shown in blue. The base 

map is MOLA shaded relief with TES hematite abundance (Bandfield, 2002) shown in color. 

The TES identified Meridiani Planum hematite is outlined. An example target transformation 

modeled fit to hematite from Iani Chaos is plotted.   

4.4 Nili Fossae 

In the Nili Fossae region (Figure 5), hematite has not been reported previously using 

CRISM/OMEGA or TES. We find good modeled fits to laboratory hematite in 5 of the 27 

CRISM images we surveyed in the region. Hematite occurs in irregular patches in kaolinite 

layers above Fe/Mg-smectite layers (Figure 5; Ehlmann et al., 2009). We have confirmed 

our candidate hematite detections in Nili Fossae using traditional ratio methods (Figure 5). 
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Hematite does not occur extensively in Nili Fossae; rather it seems to be associated with 

regions where kaolinite has been previously identified (Ehlmann et al., 2009).  

 

Figure 5. Nili Fossae region of interest with images searched shown in red and images 

meeting the detection threshold (SAD < 0.045) shown in blue. The base map is THEMIS 

Day IR with MOLA color. (a) Spectral index map for CRISM FRT0009971 with BD0860 

in red showing hematite, BD2210 in green showing Al-rich phyllosilicates, and BD2290 in 

blue showing Fe/Mg phyllosilicates over CTX imagery. (b) Target transformation modeled 

fit to hematite for CRISM FRT0002FE20 and ratioed spectrum from the same image 

confirming the presence of hematite with an independent technique.   
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5. Discussion 

5.1 Evaluation of Methods  

We present the first application of factor analysis and target transformation techniques to the 

CRISM S dataset. The characteristic absorptions used to identify iron oxides in the visible 

wavelengths are broad, and were thought to be more difficult to fit using target 

transformation than the narrow absorptions typical of the near infrared (Thomas and 

Bandfield, 2017; Amador et al., 2018). We have found that the sensitivity of factor analysis 

and target transformation to the wavelength of the center of absorption outweighs the 

challenges associated with broader absorptions. Regardless of the endmember used as a “test 

spectrum” in target transformation, the modeled fit will have absorptions with wavelength 

centers true to the dataset (Amador et al., 2018). For our survey, this proved valuable for 

identifying hematite using the absorption centered at 860 nm, which is unique to hematite 

amongst the ferric oxides.  

Our methods successfully confirmed the presence of hematite in locations found by previous 

studies using independent methods in most cases. Additionally, in Nili Fossae, where 

hematite was newly identified in this study, we are able to confirm the presence of hematite 

using traditional ratio techniques for CRISM analysis. Because we are able to identify 

hematite using traditional methods and map it using CRISM parameter maps, we do not face 

the challenge of being unable to identify the location of the phase in the CRISM image (e.g., 

Amador et al., 2018).  

Based on our comparison to a subsample of the results of a survey of hematite in Valles 

Marineris (Roach et al., 2010), we find a small false negative rate (7%; 3/41) which is likely 

due to small exposures of hematite missed by our sampling approach of taking one in every 

three pixels in every three rows. This can be tested by follow-up analysis measuring the size 

of hematite exposures in the 3 images. Based on our comparison to Roach et al. (2010), we 

also find a small false positive rate (8%; 2/24). We believe that this discrepancy with previous 
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work may actually be due to the more quantitative rather than qualitative nature of our 

methods which may find deposits previously overlooked by traditional surveys. 

5.2 Regions of Interest 

We have identified hematite in candidate sedimentary, stratified outcrops in three regions of 

interest: nearby Meridiani Planum and Iani Chaos, Mawrth Vallis, and Nili Fossae. Orbital 

mapping using the TES instrument previously detected coarse-grained (> ~5-10 µm diameter 

particles) gray (specular) hematite in Meridiani Planum and Iani Chaos (Christensen et al., 

2000; Glotch and Rogers, 2007). Later work using OMEGA and CRISM showed finer 

grained (~10 nm to ~5 µm) red hematite is also present in the chaos regions and areas around 

Meridiani (Bibring et al., 2007). Detailed studies of the geologic settings of the chaos regions, 

Meridiani, and Valles Marineris interior layered deposits led to the idea that hematite was 

deposited by secondary diagenetic processes associated with regional groundwater upwelling 

(e.g., Roach et al., 2010). In situ observations by Opportunity at Meridiani Planum provided 

evidence for the upwelling of near-neutral Fe2+-rich, SO4
2--bearing groundwaters for which 

oxidation to Fe3+ at the surface provided excess H+, reduced the pH, and precipitated hematite 

and jarosite (Squyres et al., 2004; McLennan et al., 2005; Tosca and McLennan, 2006; 

Hurowtiz et al., 2010). The hematite we observe in candidate sedimentary, stratified outcrops 

in Iani Chaos and nearby Meridiani Planum likely formed via the same groundwater 

upwelling mechanism. 

 Hematite has been previously detected using CRISM and OMEGA at Mawrth Vallis within 

Al-rich and sometimes the underlying Fe/Mg phyllosilicate layers (Wray et al., 2008; 

McKeown et al., 2009; Bishop et al., 2013). Mawrth Vallis experienced a complex aqueous 

history, and the hematite seen may record later diagenetic processes such as intense leaching 

(Greenberger et al., 2012). Hematite in terrestrial iron formations may also be the product of 

processes such as leaching of the Fe-rich rock. The Nili Fossae region also records a history 

of multiple aqueous events. In parts of the region (Figure 5), kaolinite-bearing materials are 

observed overlying Fe/Mg smectite-bearing materials. We observe hematite in irregular 

patches in kaolinite-rich layers with these outcrops, suggestive of a similar aqueous history 
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to Mawrth Vallis. Unlike Mawrth Vallis, hematite is not observed in the Fe/Mg 

phyllosilicate unit. We observe hematite in patchy deposits in the alunite-bearing layers 

rather than clear primary layers, so we hypothesize that the Nili Fossae hematite precipitated 

from weathering at or near the surface. 

5.3 Global Distribution and Implications 

Only 3% (19/726) of the stratified, candidate sedimentary outcrops we surveyed contain 

hematite. We identified hematite in three regions of interest: (1) Iani Chaos and nearby 

Meridiani Planum, (2) Mawrth Vallis, and (3) Nili Fossae, the only location newly reported 

by this work. It is difficult to distinguish emplacement mechanism from orbit. The hematite-

containing outcrops identified by this survey do not correspond to sedimentary basins, and 

emplacement mechanisms such as groundwater upwelling and surface alteration or 

weathering seem more likely than direct precipitation from a water column at the surface, 

the sedimentary terrestrial iron formation analog. Therefore, our survey suggests the null 

result that analogs to iron formations either (1) did not form on early Mars, (2) remain 

undetectable with available data and methods, or (3) have been buried, altered, and/or 

destroyed. The third scenario is unlikely; hundreds of sedimentary outcrops on Mars were 

deposited during similar times as the terrestrial iron formations and burial and/or alteration 

of all of them is improbable. It is possible that analogs to terrestrial iron formations remain 

below our spatial resolution. At best, nominal CRISM resolution is 18 m/pixel, and a 

confident hematite detection using traditional methods or factor analysis and target 

transformation requires many (~tens) of pixels. If iron formation analogs are present only in 

a few thin layers of the stratified outcrop, they could be missed by the available data and 

methods.  

If the first alternative is true, then despite the negative outcome, our survey provides a 

significant result refuting a previous hypothesis (Bridges et al., 2008; Burns et al., 1993; 

Fallacaro and Calvin, 2006; Schaefer, 1996) and implying an oxidized atmosphere on early 

Mars. In particular, the lack of martian iron formations, present on Earth, suggests differences 

in water chemistry and availability between Earth and Mars which should be explored 
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further. The presence of valley networks on Mars indicates atmosphere thick enough to 

support surficial liquid waters (Fassett and Head, 2011). The paucity of primary iron oxide 

sedimentary deposit could mean that other Fe-bearing phases such as Fe-phyllosilicates or 

Fe-sulfates were favored. Future semi-automated studies using our methods will test this 

theory. Additionally, we only searched for hematite in one specific geologic setting 

(stratified, candidate sedimentary outcrops). Future CRISM image surveys may find 

hematite elsewhere and help resolve outstanding questions related to iron formations on early 

Mars. 

6. Conclusions 

Terrestrial iron formations record a period when Earth’s atmosphere was reducing and Fe 

(II) was precipitated directly out of the water column. Primary deposits of hematite, which 

may be oxidized analogs to terrestrial iron formations, are hypothesized to have formed on 

early Mars, were not observed by previous studies. We utilize the highest available resolution 

spectral dataset, CRISM, to systematically search stratified, candidate sedimentary outcrops 

for the presence of hematite. In this paper, we present the first application of factor analysis 

and target transformation techniques to the visible/near-infrared CRISM S detector dataset. 

Our methods work successfully to confirm previous detections of hematite and do not 

misidentify hematite where it is not present (e.g., dusty images, comparison to previous 

Valles Marineris survey results). We find hematite in 3% of the images searched, all within 

Mawrth Vallis, Meridiani Planum and Iani Chaos, and Nili Fossae. Hematite has been 

studied in Meridiani from orbit and in situ with Opportunity, and found to have been 

emplaced by upwelling groundwaters. Iani Chaos has also been previously studied and 

hematite in chaos terrains and Valles Marineris interior layered deposits are also thought to 

result from regional groundwater upwelling. In Mawrth Vallis and Nili Fossae, hematite is 

associated with Al-phyllosilicates overlying Fe/Mg smectites. Hematite found at both 

locations may have precipitated from diagenetic fluids and leaching processes.  

Our survey has uncovered no obvious analogs to terrestrial iron formation in martian 

sedimentary, stratified outcrops. We may be missing exposures of hematite by focusing on 



 

 

130 
stratified, candidate sedimentary outcrops, so future work should map the distribution of 

hematite in all geologic settings globally. Our results point to differences in water availability 

and aqueous geochemistry between early Earth and Mars. Other phases such as Fe-sulfates 

and Fe-phyllosilicates may have been favored over Fe-oxides and can be searched for by 

future studies using factor analysis and target transformation.  
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C h a p t e r  6  

SUMMARY, IMPLICATIONS, AND OUTSTANDING QUESTIONS 
 
 
1. Methodologies for large spectral datasets  

In this thesis, I developed new H LIBS analysis techniques for application to MSL ChemCam 

data. I also contributed to a laboratory study developing analytical methods for Cl, C, and S 

(Anderson et al., 2017). We measured the volatile content of powderized pellets containing 

mixtures of basalts and salts and hydrated minerals using LIBS and independent analysis 

techniques. Additionally, we studied aqueous alteration in a suite of samples from Iceland 

and San Carlos. Measuring H was not straightforward in the natural samples and 

foreshadowed future challenges with the martian ChemCam data. In particular physical 

matrix effects greatly impact measurement of volatile elements like H and Cl. Roughness, 

grain size, and sample cohesion all impact the expression of the H peak, including peak 

height, shape, and width. On Mars, soils contain much higher H and Cl peaks than bedrock 

targets, but we have shown this may not be due to large differences in sample volatile content; 

rather it is more likely due to the expression of the peaks in the LIBS data. The implication 

is that targets on Mars must be carefully sorted by physical properties (i.e., only comparing 

soil targets with other soil targets, etc.) before analysis. In the future, laboratory studies 

should measure and quantify the impact of physical matrix effects. How does target grain 

size impact the LIBS volatile peaks? This is an important question that can be answered in 

the lab. C remains a challenging element to measure with LIBS, but will be important for 

measuring carbonates at Jezero using Mars 2020 SuperCam. We characterized LIBS C and 

O peaks for normalization, and found disentangling C and O from the atmosphere and the 

sample to be challenging. Recent work by Schröder et al. (2019) has since worked more on 

this challenge, characterizing the emission properties of C and O for normalization 

applications, but more experiments are necessary to develop analytical methods to robustly 

quantify sample C and O content.  
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Additionally, I adapted and applied semi-automated statistical methods to search for 

specific minerals in the large, noisy CRISM dataset. Factor analysis and target transformation 

methods have previously worked well to fit narrow VNIR absorptions (Thomas and 

Bandfield, 2017), but it was uncertain whether the same methods would work for the broad 

absorptions of the visible. Our search for hematite shows these methods can be used to model 

broad absorptions. The CRISM S dataset is subject to less detector noise than the CRISM L 

dataset and is useful for mapping igneous minerals such as olivine and pyroxene as well as 

Fe-mineralogy such as hematite. Are any global, spectral trends present in the visible 

wavelengths? Can any new insight be gained from higher-resolution global mapping of 

igneous minerals? Future global studies enabled by factor analysis and target transformation 

methods may reveal new discoveries regarding the composition of Mars.  

2. Gale crater’s environmental history 

I tested the robustness of the analytical methods developed in the laboratory by applying 

them to the martian ChemCam data to study H and Cl. I measured H in the Murray formation 

bedrock. This analysis required careful, visual inspection of every ChemCam target and 

observation point to eliminate points hitting soils, diagenetic features (veins, nodules, etc.), 

and “roughness” features (cracks, pits, etc.). Even with this screening, individual observation 

points with high H peaks not correlated with increases in any major or minor element are 

present, suggesting there is not a carrier phase and the H increase may be due to physical 

matrix effects. While individual ChemCam observation points may be skewed to artificially 

high values, the average water content of the Murray formation I measured is comparable to 

measurements using SAM and DAN. This result implies the “statistical” strength of 

ChemCam; individual point measurements are subject to high uncertainty, but ChemCam is 

useful for measuring bulk geochemistry. As such, we can track variability in the bulk H 

content of the Murray formation bedrock. H is significantly elevated in two intervals: the 

Sutton Island/Blunts Point transition and the top of the Jura (or the Vera Rubin Ridge) at 

Rock Hall. High H is correlated with elevated MgO, CaO, and FeOT. At the Sutton 

Island/Blunts Point transition, there were no accompanying drill samples, so we cannot be 
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confident of the high-H phases present. Hydrated Mg-sulfates (Rapin et al., 2019; 

submitted) and hydrous Mn-oxides (Meslin et al., 2018; Kawashima et al., 1986) have been 

suggested as the H carriers. If these phases are primary, both imply Curiosity measured an 

interval characterized by increased salinity, potentially due to changes in water depth or 

shoreline location (Lanza et al., 2019). Bulk (target-averaged) H is anomalously high at the 

Rock Hall drill site. Akaganeite and jarosite are both measured by CheMin (Rampe et al., in 

prep) and are consistent with ChemCam measurements of elevated FeOT and H. Here, saline 

fluids likely altered the bedrock.  

I also applied analytic LIBS methods developed for measuring Cl to report the distribution 

of chloride salts at Gale crater. The scattered, isolated occurrences of chlorides are consistent 

with late groundwater reworking and remobilization of original deposits. The chlorides are 

constrained to a limited stratigraphic interval, implying increased salinity in depositional 

waters. 

One of the motivating challenges I raised was disentangling primary from post depositional 

fluids to inform our understanding of past environments at Gale: as seen from our H and Cl 

studies, this is an ongoing challenge. Our work identifying multiple intervals of elevated H 

implies a rich history of water-rock interaction at Gale. We have not yet reached the sulfate-

enriched unit, so a we have yet to characterize the potentially global transition from clay-

enriched to sulfate-enriched units. What can we learn about the chemistry of past water(s)? 

What information will the transition record about past environments at Gale? 

3. The fate of Fe and aqueous alteration on Mars 

I have applied semi-automated statistical methods (Thomas and Bandfield, 2017) to the 

visible CRISM dataset to search for hematite in stratified, candidate sedimentary outcrops 

(Stack, 2015). Our survey returned very little evidence of hematite in these outcrops; only 

3% of the images surveyed contain hematite and most occurrences are in previously mapped 

deposits. Our work implies that hematite has not been missed previously due to the 

underutilization of the CRISM visible wavelengths; rather, crystalline ferric oxides may be 
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rare on Mars. Where hematite occurs, it is associated with sulfates or alunite and Fe/Mg 

phyllosilicates. Secondary diagenetic processes associated with regional groundwater 

upwelling likely formed the hematite associated with sulfates at Meridiani Planum, in the 

Chaos terrains, and in the Valles Marineris interior layered deposits (e.g., Christensen et al., 

2000; Roach et al., 2010; Hurowitz et al., 2010; McLennan et al., 2005; Tosca and 

McLennan, 2006). At Mawrth Vallis, hematite is dominantly associated with Al-rich and 

sometimes Fe/Mg-rich phyllosilicate layers (e.g., Bishop et al., 2013; Wray et al., 2008) and 

likely formed from intense leaching of the area. I reported a new detection of hematite in Nili 

Fossae. Hematite is variably expressed in outcrops containing kaolinite above Fe/Mg 

phyllosilicates. These assemblages resemble Mawrth Vallis and suggest a similar history of 

aqueous alteration. The paucity of primary iron oxide sedimentary deposits revealed by our 

survey could mean that other Fe-bearing phases such as Fe-phyllosilicates or Fe-sulfates 

were favored. Future semi-automated studies using our methods will test this theory. We 

searched for hematite only in candidate sedimentary, stratified outcrops (representing ~20% 

of the available CRISM images). In the future, a global search of all CRISM images may 

find hematite in other geologic settings and help resolve outstanding questions related to iron 

formations on early Mars.   

4. Synthesis  

The work presented in this thesis points to the prevalence of groundwater aqueous alteration 

on Mars. In Gale crater, as evidenced by the ChemCam-measured distribution of H and Cl, 

groundwater altered the Murray formation in multiple episodes of varying aqueous 

chemistries. Furthermore, deposits of hematite observed globally with CRISM were most 

likely emplaced by aqueous alteration events. The aqueous record of Mars remains difficult 

to interpret with the available datasets and due to the overprint of groundwater reworking. 

To decipher the evolution of Mars’ climate and waters, orbital mineralogical data at even 

higher resolution is necessary to constrain the timing of aqueous mineral formation and its 

relationship to other geologic events. Additionally, detailed studies of micro-scale textures 

and mineralogy, provided by sample return, will better address ambiguities in the formation 
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of aqueous minerals and help separate primary from secondary phases. Future missions 

such as Mars 2020 including sample return may provide crucial fine-scale detail necessary 

to decipher the evolution of Mars’ climate and aqueous history.  
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