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Abstract 

This thesis examines the behavior of a granular material sheared in a gap between 

two moving boundaries. In fluid mechanics, this type of flow is known as a Couette 

flow. Two different kinds of granular Couette flows were studied. First, gravity-free 

flow between two infinite plates moving in opposite directions was investigated using 

computer simulations. Second, flow between a stationary outer cylinder and an inner 

rotating cylinder was studied using both experiments and computer simulations. 

Two-dimensional discrete element computer simulations of infinite planar Couette 

flows were used to study the rheology, energy dissipation, and other flow properties 

in flows of particles of uniform size for three different gap widths. The energy dis­

sipation rate was measured and a thermal analysis was conducted to determine the 

thermodynamic temperature rise and heat flux of such flows. Given a constant wall 

velocity, all of the properties in flows of identical particles were found to depend on the 

value of the solid fraction at the walls, which in turn depended on both the average 

solid fraction and the gap width. When the average solid fraction reached a critical 

threshold, the amount of work done on the flow drastically increased, increasing the 

average strain rate, granular temperature, wall stresses, and energy dissipation in the 

flow. This solid fraction threshold occurred after the center region of the flow had 

reached a dense limit and any further increase in solid fraction necessarily occurred in 

the wall regions. Various results from computer simulations were found to compare 

reasonably well with past results derived using kinetic theory. 

Mixing and other flow properties were also investigated in planar Couette flows 

of two different particle sizes, as functions of the size ratio and solid fraction ratio of 

the two species. Larger particles were found to migrate away from the regions of high 

fluctuation energy near the two moving boundaries in all cases. Mixture flows were 

found to behave very similarly to flows of mono-sized particles at high ratios of the 

solid fraction of small to large particles. As the solid fraction ratio decreased and the 

number of large particles increased, results deviated from the corresponding flow of 
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identical particles. Flows with large size ratios of large to small particles deviated the 

most from the result of mono-sized particles, because stresses and energy dissipation 

rates are both mass-dependent. 

The second type of Couette flow, between two concentric cylinders, was inves­

tigated in a horizontal orientation (with the axis of rotation perpendicular to the 

direction of gravity) and in a vertical orientation (with the axis parallel to the direc­

tion of gravity), using both experiments and computer simulations. In the horizontal 

geometry, high-speed imaging was used to calculate experimental mean and fluctua­

tion velocity profiles that were compared to results from three-dimensional discrete 

element simulations. Segregation of binary particle mixtures was also investigated 

in this geometry. Segregation in this flow was driven by a percolation mechanism 

acting at the free surface, causing large particles to migrate to the top. Computer 

simulations compared well qualitatively with experiments, successfully predicting the 

velocity profiles and the segregation pattern at the surface. When compared quanti­

tatively, however, fluctuation velocities in the simulations were considerably greater 

than those found in the experiment, and the radial segregation observed in experi­

ments did not occur to the same extent in simulations. 

The vertically-oriented cylindrical Couette flow experiment was used to measure 

the shear stress on the outer cylinder wall as a function of different variables. The 

shear stress was found to be independent of the inner cylinder rotation rate, because 

the material was unconfined and allowed to dilate. The measured stress showed a 

linear dependence on the height of material in the apparatus, indicating a hydrostatic 

variation of the normal stress. The shear stress also varied significantly with the ratio 

of the gap width to the particle diameter. 
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Chapter 

Introduction 

1.1 Motivation 

A granular material is a collection of many discrete solid particles. Granular materials 

interest researchers because of their dual nature. Depending on the situation, a 

granular material may behave as a fluid (taking the shape of its container) or a solid 

(resisting shearing stresses as in a sandpile). In a granular flow, momentum and 

energy transfer occur primarily through inter-particle collisions, and the effect of any 

interstitial fluid is secondary in influence. 

Examples of granular flows are commonly found m both nature and industry. 

In nature, landslides, soil liquefaction, formation of planetary rings, erosion, river 

sedimentation, ice flow, and sand dune formation are such examples. In industry, 

granular flows can be found in the mixing and transport of pharmaceutical powders 

and pellets, foodstuffs, detergents, coal, and other mining products. It has been es­

timated that in the chemical industry, one half of the products and at least three 

quarters of the raw materials are in granular form [Nedderman, 1992]. Because gran­

ular materials are used so often in industrial processes, there is great incentive to 

improve their handling to increase efficiency and decrease cost by an understanding 

of the mechanics of granular media. However, most industries use empiricism and 

past experience to guide their use of granular materials. 
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Most applications of granular material flows involve shearing the material. The 

granular materials in landslides, conveyors, chutes, hoppers, and mixers are all shear­

ing in some manner. Thus, from a practical point of view, the investigation of shear 

flows is desirable. 

All granular flows are naturally highly dissipative. Frictional and inelastic col­

lisions between grains dissipate energy at a high rate that can lead to undesirably 

high temperatures in temperature-sensitive materials such as foodstuffs, medicines, 

or toner used in laser printers. The energy supplied to a granular flow, through vibra­

tion, gravity, or shearing is rapidly dissipated into heat. Thus, work must constantly 

be done on the system to maintain a granular flow. Measuring the shear stress at the 

moving boundary of a shear flow yields information about the energy requirements 

of the flow. The investigation of both energy dissipation and shear stresses helps the 

understanding of many industrial applications and processes. 

In addition to the investigation of energy dissipation and shear stresses, mixing 

m flows of particles of two different sizes is also studied in this work. Industrial 

processes rarely utilize particles that are perfectly uniform in size. Often they may 

involve mixtures of particles of different sizes, shapes and densities. Segregation of the 

different components of a particle mixture is commonly observed in such applications. 

For this reason, segregation is an important and popular area of research within the 

field of granular flow. 

The present research investigates two kinds of shear flows: planar Couette flows 

with no gravity, and cylindrical Couette flows with gravity. The first, a Couette flow 

between two infinite plates, is the most simple bounded shear flow, making it a popular 

area of study [Campbell, 1993; Campbell and Brennen, 1985; Kim, 1995; Rosato and 

Kim, 1994; Savage and Dai, 1993]. The second flow investigated, a cylindrical Couette 

flow under gravity, is industrially more relevant and realistic, although significantly 

more complex. 
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1.2 Background 

Granular materials have been the subject of scientific research for over a century. 

Reynolds studied granular shear flows in 1885, discovering that a packed bed of par­

ticles must dilate to undergo shear because the individual layers of particles must 

have the room to pass over each other [Reynolds, 1885]. This phenomenon is now 

known as Reynolds's Principle of Dilatancy. Bagnold [1954] conducted one of the first 

modern studies in granular flow, an experiment on a suspension of neutrally buoy­

ant solid spheres in a Newtonian fluid (water and a glycerine-water-alcohol mixture) 

in a Couette device. The suspension was placed between an outer rotating vertical 

cylinder and an inner stationary cylinder, and the normal and shear stresses were 

measured at the walls. Bagnold first characterized three regimes of suspension flows, 

quantified by what is now known as the Bagnold number: 

p d2 >. 112 (du/dy) 
Ba= P · (1.1) 

µ 

In this expression, Pp is the granular material density, d is the particle diameter, µ is 

the interstitial fluid viscosity, ). is the linear concentration, and (du/ dy) is the velocity 

gradient. The linear concentration, >., is defined as the ratio of the particle diameter to 

the mean free dispersion distance. The velocity gradient, or strain rate, is proportional 

to the rotation rate of the outer cylinder. At low Bagnold numbers (Ba < 40), the 

suspension was in the slow-shearing, macro-viscous regime in which the interstitial 

fluid played a large role in the dynamics. At very high Bagnold numbers (Ba> 450) 

the suspension was in a grain-inertia, or rapid flow regime, where the stress T on the 

walls had no dependence on fluid properties: 

(1.2) 



4 

This quadratic dependence on the rate of strain is different from the behavior of 

a Newtonian fluid, in which the shear stress is linearly proportional to the strain 

rate. Furthermore, Bagnold found that in the rapid regime, the shear stresses were 

proportional to the normal stresses. At intermediate Bagnold numbers, the suspension 

was in a transitional regime between the two extremes. 

Dry granular flows can also be classified into three basic regimes [Campbell, 1990; 

Savage, 1984]. A quasi-static regime describes granular flow with low rates of de­

formation, characterized by long-lasting frictional contacts between particles. Soil 

mechanics theories based on plasticity models have been used to describe granular 

behavior in this regime. At the other extreme, a rapid granular flow is analogous to 

Bagnold's grain-inertia regime, in which particle collisions are instantaneous and the 

mean free path between collisions is large. Most industrial and natural granular flows 

exist in a third, transitional regime between these two extremes, however. 

Theory intended to describe granular flows in the rapid regime has been developed 

using ideas from the kinetic theory of dense gases. Ogawa [1978] first introduced the 

analogy between particles in a granular material flow and individual molecules making 

up a dense gas. Along with this analogy came the concept of a granular temperature. 

Just as the thermodynamic temperature plays an important role in dense gas kinetic 

theory, the granular temperature is a crucial variable in theories of granular materials 

derived from kinetic theory. The granular temperature is the specific fluctuation 

kinetic energy of the flow, usually defined as the average of the fluctuation velocities: 

1 
T = 3 (u'u' + v'v' + w'w'), (1.3) 

where u' = u - (u), and u, v, and w are the particle velocities in the three principal 

directions. Brackets denote an ensemble average. 

Jenkins and Savage [1983] first introduced constitutive relations for granular ma­

terials based on dense gas kinetic theory. Much of the theory for rapid granular flows 

has since been developed on the basis of that work. Lun et al. [1984] derived consti-



5 

tutive laws for smooth spherical particles. Jenkins and Richman [1985] proposed a 

theory for rough, inelastic disks and spheres. Rough spherical particles have also been 

treated by Lun and Savage [1987] and Lun [1991]. Flows of binary mixtures have been 

studied through kinetic theory approaches as well. Jenkins and Mancini developed 

balance laws and constitutive relations for binary mixtures of slightly inelastic smooth 

disks [1987] and spheres [1989], while Farrell et al. [1986] developed kinetic theory for 

binary mixtures of smooth, inelastic spheres. The boundaries of rapid granular flows 

have also been investigated utilizing kinetic theory. Jenkins and Richman [1986], 

Richman and Chou [1988], and Richman [1988] have considered boundary conditions 

for smooth disks against a "bumpy" boundary formed by attaching halves of disks 

along a wall. Jenkins [1992] and Jenkins and Louge [1997] developed boundary condi­

tions for a fiat, frictional wall in three dimensions. Hanes et al. [1988] apply previous 

theories to the flow of identical disks driven by bumpy boundaries in the dense limit. 

Because these granular flow theories are derived from the kinetic theory of gases, 

several limiting assumptions are made: particles are round, collisions between them 

are instantaneous and binary, the coefficient of restitution is constant, and the ran­

dom motion of particles is independently distributed [Campbell, 1990]. Computer 

simulations provide a valuable tool because one can match these ideal assumptions 

for theory validation as well as attempt to model more realistic flows to which the 

theory cannot be applied. Although several types of computer simulations have been 

used to study granular materials in the past (such as Monte Carlo methods), the 

most popular types of simulations are discrete element simulations. These simula­

tions are derived from molecular dynamics simulations, and are deterministic, rather 

than statistical. Discrete element simulations model each individual particle in a 

flow and track its trajectory over time. Different forces on the particles can be mod­

eled (such as fluid drag, electrostatic forces, and gravity) as well as different particle 

sizes and shapes. Cundall and Strack [1979] first developed this method for studying 

geophysical applications. 
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Discrete element simulations have been used in the past to investigate many types 

and geometries of granular flows [Campbell, 1982; Drake and Walton, 1995; Wass­

gren, 1997]. In the area of shear flows, both simple shear flows and bounded flows 

between infinite plates have been investigated using simulations. A simple shear flow 

is an infinite shear flow simulated through the use of periodic boundaries in all three 

directions and the imposition of a constant velocity gradient in one direction. A pe­

riodic boundary allows a particle to cross the boundary and reappear at the opposite 

boundary with the same velocity and position. Many researchers have used discrete 

element methods to study two- and three-dimensional simple shear flows of particles, 

including Campbell [1986; 1989], Campbell and Gong [1986], Lun and Bent [1994], 

and Walton and Braun [1986a; 1986b]. Couette flows of particles sheared between 

two infinite plates with various boundary conditions have been studied using the dis­

crete element method as well [Campbell, 1993; Campbell and Brennen, 1985; Kim, 

1995; Lun, 1996; Rosato and Kim, 1994; Savage and Dai, 1993]. The Couette flow 

simulations in this research have also been used to study segregation of particles of 

two different sizes. Previous simulation work on segregation has been conducted for 

various geometries, including rotary kilns [Cleary et al., 1998], vibrating beds [Gallas 

et al., 1996], and chute flows [Hirshfeld and Rapaport, 1997]. 

Previous experiments in shearing of granular materials have focused largely on 

annular shear cells, in which the granular material is placed between two stationary 

concentric cylinders and rotating upper and lower plates [Savage and Sayed, 1984; 

Hanes and Inman, 1985; Craig et al., 1986; Miller et al., 1996]. There have also been 

several experimental studies on cylindrical Couette flows of dry granular materials, 

however. Buggisch and Loffelmann [1989] studied the self-diffusion of axially-oriented 

rods in a concentric cylinder Couette flow experiment. More recently, both Elliot 

et al. [1998] and Veje et al. [1999] have performed experiments on two-dimensional 

Couette flows of beads and disks, respectively. Vertically-oriented three-dimensional 

Couette flow experiments similar to those described in Chapters 4-6 have been per-



7 

formed by Tardos et al. [1998], who investigated stresses in a fluidized powder in a 

vertical Couette device, and Khosropour et al. [1997], who studied the size segregation 

of glass beads in a vertical Couette device. Segregation in other geometries has been 

a popular subject of experimental research as well. Segregation of particle mixtures 

has been studied experimentally in hoppers [Arteaga and Tiiziin, 1990], horizontally 

rotating cylinders [Nakagawa, 1994], and inclined chutes [Savage and Lun, 1988]. 

Additional background information on granular material flows can be found in 

comprehensive review articles of the subject by Campbell [1990] and Savage [1984]. 

1.3 Overview of thesis 

The goal of the research in this thesis is to investigate the mechanics of granular 

material sheared between two solid boundaries. Part of the motivation for this work 

is the system of toner and carrier particles used in electrophotography. Thus, the 

research has focused largely on flows of two different sizes of particles and on studying 

the rheology, energy dissipation, and mixing in these flows. Both experiments and 

simulations have been used to conduct this research. 

Chapter 2 describes the discrete element simulations used to study various Couette 

flows. Chapter 3 presents results and discussion of computer simulations of Couette 

flows between two solid infinite plates moving in opposite directions. Results for 

the wall stresses and energy dissipation are presented, along with a heat transfer 

analysis of the temperature rise that may result from the energy dissipation into heat. 

Both flows of same-sized particles and mixtures of two different sizes of particles are 

analyzed for various solid fractions, solid fraction ratios, and size ratios. The results 

have also been compared with theoretical predictions derived by previous researchers. 

Chapter 4 describes the experimental apparatus and measurement methods used 

to study cylindrical Couette flows. Chapter 5 presents experimental measurements 

of mean and fluctuation velocities performed using high-speed imaging techniques. 
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Results from three-dimensional computer simulations are compared with experimental 

results for both same-size particle flows and mixtures of two particle sizes. In mixture 

flows, the segregation of the two sizes is also observed and discussed. 

Chapter 6 presents experimental results of wall shear stresses on the outer, sta­

tionary wall of the Couette cell. The dependence of the shear stress on the strain 

rate, height of materiai, and gap width is investigated. Chapter 7 summarizes the 

results of the research performed. 
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Chapter 2 

Computer Simulations 

Computer simulations have been shown to be a valuable tool for studying granular 

flows in the past [Campbell, 1993; Campbell and Brennen, 1985; Drake and Wal­

ton, 1995; Hunt, 1997; Savage and Dai, 1993; Walton and Braun, 1986a; Wassgren, 

1997]. Because of the difficulty in making non-intrusive measurements in granular 

flow experiments, computer simulations are often the only means to provide some 

types of flow information. Discrete element computer simulations track each indi­

vidual particle in a flow, providing information on its position and velocity at every 

timestep. Furthermore, every particle collision is modeled individually so that the 

energy dissipated during a contact can be determined directly. 

The computer simulations used in this work are two-dimensional and three-di­

mensional soft particle discrete element simulations. The forces on each particle are 

calculated and Newton's second law is integrated to find the acceleration, velocity, 

and position of each particle at each timestep. The forces on each particle consist 

of normal and tangential contact forces, gravity forces, and/ or electrostatic forces, 

depending on the application. A summary of the current simulation is provided in 

this chapter, and additional details can be found in the thesis by Wassgren [1997]. 
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~ Tangential contact 
Normal contact 

Figure 2.1 Spring-dashpot contact model. 

2.1 Particle forces 

Discrete element simulations can be used to model many different forces acting on the 

particles. In the current work, the simulations model contact forces, gravity forces, 

and inter-particle electrostatic forces. It is assumed that interstitial fluid forces and 

cohesive forces, both significant in the flows of fine particles, are negligible. 

2 .1.1 Contact forces 

When two particles (or a particle and a solid boundary) come into contact, they are 

allowed to overlap slightly (see figure 2 .1). The timestep of the simulation is chosen 

so that this overlap does not exceed one percent of a particle diameter. In the current 

simulations, all the particles are round. Collisions between perfectly round particles 

are simple to detect and allow for an efficient simulation. Solid boundaries in the 

simulations are fiat (not with particles glued to them) and rigid; they have a coefficient 

of friction associated with them as well. In the current shear flow simulations, either 

one or both boundaries move in order to drive the flow. 

Two different normal contact models were used during the course of this work, 

and are described in this section. The first model, used for all of the simulations 

of Chapter 3 and most of the simulations in Chapter 5, is the linear spring and 
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dashpot normal contact model, adapted from Cundall and Strack [1979], and also 

used by Wassgren [1997]. The second is the partially-latching spring model from 

Walton [1986a; 1995]. Only one tangential model (a linear spring and frictional 

slider) has been used. These models are described in detail later in this section. 

A contact between two round particles is detected when the distance between two 

particle centers is less than the sum of their radii. That is, the overlap between the 

two circular or spherical particles i and j is determined as follows: 

.6. = (r· + r·) - Ix· - x·I > o i J J i - ' 
(2.1) 

where xi and Xj are the positions of the two particles in space. The overlap between 

a particle and a solid boundary is similarly detected when the distance between them 

is less than the particle radius. If the overlap .6. is positive, then the two bodies are 

in contact. In this case of .6. > 0, normal and tangential contact forces are calculated. 

First contact model: linear spring and dashpot 

The normal contacts are modeled by a linear spring and dashpot so that 

(2.2) 

where Fn represents the normal force on the contact, and kn and Vn are the normal 

spring constant and damping coefficient respectively. .6. is the overlap between the 

two contacting surfaces. The damping coefficient is calculated based on a chosen coef­

ficient of restitution and multiplies the relative normal velocity of the two contacting 

surfaces, 6xn. Tangential contacts are modeled by a linear spring and frictional slider. 

The tangential force is first calculated from the spring-displacement law, 

Fs,spring = -ks6s, (2.3) 
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where ks is the tangential spring constant and Os is the tangential displacement be­

tween the initial contact points. Then the friction force is calculated using a friction 

coefficient µ: 

Fs,friction = µFn- (2.4) 

The force used in the simulation is the lesser of these two forces. If the friction force 

is lower, then it is assumed that the surfaces are slipping against each other. If the 

spring force is lower, then it is assumed that the two surfaces are "sticking" and there 

is no energy dissipation. This calculation occurs at each time step of the contact, and 

each contact usually lasts 40 to 50 time steps. Thus, during a single collision, both 

sticking and slipping may occur at the contact point. 

Second contact model: partially latching spring 

In this model, which is used for comparison with the spring/dashpot model in certain 

three-dimensional simulations in Chapter 5, the normal contact force is calculated 

slightly differently. The normal force between two overlapping surfaces is 

(2.5) 

while the spring is loading, and 

(2.6) 

for unloading. Thus, there are two different normal spring constants in this model, 

and they are related by the coefficient of restitution as follows: 

(2.7) 
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.6.. is the overlap of the two surfaces, and .6..0 is the value of .6.. at which the unloading 

curve goes to zero. If the expression (.6.. - .6..0 ) is negative, the force is equal to zero; 

that is, no tensile forces are allowed. The tangential model is the same as described 

above for the first model. 

2.1.2 Gravitational forces 

Some simulations in this research include the effect of gravity. In these cases, the 

gravitational force on each particle is given by: 

F9ravity = mg (2.8) 

where m is the particle mass and g is the acceleration due to gravity. This force acts 

in the direction of gravity for the given simulation. 

2.1.3 Electrostatic charge forces 

Some simulations of binary mixtures include the effect of electrostatic charging be­

tween particles. These simulations are intended to model carrier/toner flows in elec­

trophotographic devices, such as photocopiers and high-speed laser printers. It is 

necessary to make several approximations to simulate this flow, however. The first 

assumption made is that the charge on each particle is constant. Thus, the actual 

charging process is not modeled, and neither is the transfer of charge from one particle 

to another during contact. The second assumption is that the electrostatic charge is 

uniformly distributed on the surface of the circular particles. A third assumption is 

that the particles are perfectly spherical. 

The last two assumptions allow for the treatment of the particles as spherical 

shells of uniform charge. Two shells with a uniform charge densities CJi and CJj and 

radii ri and rj exert the same force on each other as two point charges with strength 

qi and qj placed at their centers, where qi = 47rrTCJi· The above assumption allows 
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for a relatively simple implementation of the rather complex problem of electrostatic 

charging in granular flows. In the carrier /toner system, although the carrier par­

ticles are usually spherical, toner particles are certainly not; that is, the center of 

charge does not coincide with the center of mass. In the real flow, surface charges 

migrate and dipoles may be created. All of these effects are ignored in the present 

context. Nevertheless, despite the simplistic nature of the implementation of charge, 

the simulations are able to capture some qualitative behavior of the real system. 

Following from the assumption of each particle behaving as a spherical shell of 

uniform charge, a single point charge is placed in the center of each particle. The force 

on a particle due to the charge on every other particle within a specified distance is 

calculated in the simulation. The force interaction between each pair of point charges 

is calculated based on Coulomb's law: 

(2.9) 

where qi and qj are the magnitudes of the charges on particles i and j respectively, 

lxj - Xi I is the distance between the particle centers, and Eo is the permittivity of free 

space. a is a polarization correction and depends on the dielectric constant, _§__. The 
EQ 

value for a used in the simulations is 1.9, obtained from xerography literature [Eklund 

et al., 1994]. 

Coulomb's law does not hold as stated above if both point charges are moving. 

Although the particles are moving, they move an insignificant amount during one 

timestep. The electrostatic forces between particles are calculated every time the 

fastest particle in the flow has moved one-tenth of a small particle diameter; it is 

assumed that this motion is small enough so that Coulomb's law still applies. Thus, 

the simulation makes the fourth assumption that the system is quasi-static, so that 

Coulomb's law can be utilized. 
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2.2 Equations of motion 

The vector sum of the forces discussed above is determined for each particle in the 

simulation. Using this total force, Newton's second law is used to find the particle 

acceleration, x: 

mi! = Ftatal = Fcantacts + Fcharge + Fgravity (2.10) 

I if = r x Fcontacts' (2.11) 

where Fcontacts is the sum of all the contact forces on the particle. If no other particles 

or boundaries are in contact with the particle, the contact force is zero. Similarly, if 

there is no electrostatic charging or gravity in the simulation, those terms are zero 

as well. Both gravitational and electrostatic forces act on the center of the particle, 

but tangential contact forces act on the particle surface. Therefore, the angular 

acceleration if is related to the torque exerted on the particle by contact forces. I 

is the particle moment of inertia, and r is the vector connecting the particle center 

to the point of contact. The moment of inertia is given by I = ~mr2 in all the 

current simulations, so that even in two-dimensional simulations, the particles act as 

spheres constricted to move in two dimensions. The particle mass is similarly given 

by m = ~1Tr3 . 

The velocities and positions of the particles are determined by integrating the 

equations of motion in time numerically: 

. . .. 
Xn = Xn-1 + Xn~t 

. . .. 
~ = ifn-1 + ifn~t 

~ = ~-1 + ifn~t 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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where n is the present timestep. The first order integration allows for the conservation 

of energy at every timestep, which is necessary to calculate the amount dissipated. 

2.3 Determination of contact parameters 

The parameters used in the contact model are the spring constants kn, kn1 , kn2 , 

and ks, the dashpot coefficient, vn, and the timestep, .6..t. The method used for the 

calculation of kn, ks, and Vn is identical to that of Wassgren [1997] and is explained in 

further detail in that work. The calculation of .6..t is slightly different and is explained 

later in this section. 

The normal spring constant for the spring/dashpot contact model, kn, and the 

loading spring constant in the latching-spring model, kn1 , are equal and determined 

in the same manner. They are calculated based on the maximum allowable overlap 

between surfaces during a collision, .6..max, which is set by the user. The spring 

constants also depend on the maximum relative velocity of the two bodies (either two 

particles or a particle and a boundary), 6xn,max, their masses, mi and mj, and the 

coefficient of restitution, e. 

From the damped linear spring model (see Wassgren [1997]), one can determine 

the necessary spring constant for a given maximum allowable overlap: 

kn1 = ~ = ( (c5xn,max)) 
2 

(exp (arctan(-7r /lne))) 
2 

m* m* .6..max 7f /lne 
(2.16) 

where m* = mimj/(mi+mj) is the equivalent mass of the two bodies. All boundaries 

in the given simulations are rigid, so that their masses tend to infinity; thus, the 

equivalent mass m* of a particle/boundary collision is equal to the mass of the particle. 

Maintaining a constant value of kn/m* in a simulation of particle mixtures results 

in the following result: when a small particle collides with another small particle, 

a different spring constant is used than when a small particle collides with a large 

particle; similarly for large particles. Thus, the spring constant is not a property of a 
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particular particle, but of the collision it is undergoing. 

In the partially-latching spring model, the second normal spring constant, kn2 , is 

calculated using the coefficient of restitution, e, for the particular collision: 

m* 

knl 1 
m* e2 · 

(2.17) 

For the spring-dashpot model, the dashpot coefficient, vn, is determined from the 

above variables as well as the coefficient of restitution, e, as follows: 

1 + ( 7r /lne) 2 
(2.18) 

Cundall and Strack [1979] suggest the use of a tangential spring constant such that 

2 ks - < - < 1 3 - kn -
(2.19) 

based on previous analytical models of tangential contacts. The current simulations 

utilize ks = kn and .6.max = 0.01. 

Finally, the timestep of the simulation is set to be a small fraction (in the current 

work, either 1/ 40 or 1/50) of the duration of a typical collision. The collision time, 

T, depends on kn/m* as follows: 

(2.20) 

2.4 Calculation of energy dissipation 

Using the spring-dashpot contact model described above, the amount of energy dissi­

pated in each collision is calculated directly. The energy dissipated in the inelasticity 
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of the contact is equal to the dissipation in the dashpot of the normal contact model: 

(2.21) 

where D.Ei is the energy dissipated in the dashpot in one time step, and D.t is the 

timestep. The energy dissipated in the tangential portion of the contact is equal to 

the tangential force multiplied by the distance the contact slips: 

(2.22) 

This quantity is only valid when the contact is slipping, so that Fs = Fs,frictian, as 

described in section 2.1.1. The total energy dissipated in a contact in one timestep is 

D.E = D.Ei + D.Et. 

2.5 Implementation 

The simulation code is written in C and a version of it is included in the Appendix 

of Wassgren's thesis [1997]. The most computationally intensive part of running a 

discrete element simulation is checking particles for contacts. Two methods have been 

used to make this process as efficient as possible. The first is the use of a grid of cells 

in the domain of the simulation. The second is the use of nearest neighbor lists for 

each particle. 

The use of cells in the simulation is explained in detail by Wassgren [1997]. A cell 

is a data structure associated with a certain integer location in the domain x, y, and 

z ( z is only necessary if the simulation is three-dimensional). Each cell is the first 

element of a double-linked list of the particles that exist within that cell. Similarly, 

each particle also keeps an account of what cell it is in, based on the location of its 

center in the grid. Thus, knowing the cell of a given particle, the cells surrounding 

that cell can be checked for particles that are close to the given particle. Each cell is 
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(a) (b) 

Figure 2.2 Particle with surrounding cells, for a small particle (a) 
and a large particle with large to small particle diameter ratio 
of ten (b). The shaded cells are those being checked for small 
particle neighbors. For simplicity in the algorithm, some cells, 
located inside the large particle, are checked unecessarily. 

a cube (or a square, in two dimensions) that is slightly larger than one small particle 

diameter on each side. The cell lists are updated every timestep. When it is necessary 

for a large particle to check its neighboring cells, all the cells surrounding it in a frame 

are checked for small particles close to it, as shown in figure 2.2(b). The large particles 

check for small particles in this manner; usually there are relatively few large particles 

so that each large particle checks every other large particle without the use of cells. 

The cell-checking method greatly increases the efficiency of the simulation. 

The second method for improving efficiency is the use of nearest neighbor lists. Let 

the current particle of interest be labeled particle i. Once the cell-checking method 

provides the particles close to particle i, the distance between each candidate (call it 

particle j) and particle i is found. If this distance is smaller than a predetermined 

maximum distance Dmax, then particle j is added to particle i's nearest neighbor 

list. Thus, the length of each side of each cell is equal to dsmall + Dmax, or one small 

particle diameter plus the maximum distance a particle will travel before rechecking 

for neighbors. At each timestep, the fastest particle is found and the distance it 
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traveled in that timestep is calculated. The distance the fastest particle has traveled 

is tracked at every timestep, and when the total distance reaches Dmax, the neighbors 

are reevaluated. That is, the cells are rechecked for neighbors as soon as the fastest 

particle has traveled a distance Dmax, which is usually set to be from 10 to 40% of a 

small particle diameter. At every timestep, only the neighbor lists for each particle 

are checked for contacts, saving calculation time. 

In simulations with electrostatic charge most of the computer time is used calcu­

lating the electrostatic charge forces between particles. In these simulations, the cells 

are used to calculate the forces due to particles up to only ten cells away from each 

particle. Simulations using this approximation were found to give the same results as 

those that calculated the full force field. Because the flows are dense, however, the 

simulations with charge are still significantly slower than those without. A second 

time-saving approximation is made in these simulations: the electrostatic portion of 

the particle forces is only updated whenever the fastest particle has moved 10% of a 

small particle diameter, not at every timestep. This procedure saves a considerable 

amount of time because the timestep is often very small due to the contact param­

eters (one collision takes 50 timesteps to occur). Even the fastest particles move 

negligible amounts in only one timestep. By allowing the electrostatic charge force to 

be updated only when a distance criterion is reached, the simulation becomes more 

efficient. 

A summary of the simulation is shown in figure 2.3. 
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Read input data and initialize simulation 

Compile nearest-neighbor lists 
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Sum up forces 

Integrate equations of motion 
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Time to 
Yes recompile No 

neighbor lists? 

Figure 2.3 Flow chart describing computer simulation. 
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Chapter 3 

Simulations of Planar Couette Flows 

Simulations of a gravity-free Couette flow were conducted using the two-dimensional 

discrete element simulations described in Chapter 2, with the linear spring and dash­

pot contact model. Particles in these simulations are in a channel between two infinite, 

solid, flat bounding walls a fixed distance h apart, that move with velocities ±U /2 

in opposite directions. The upper wall travels to the right and the lower wall to the 

left. The right and left boundaries of the domain are periodic, so that a particle 

exiting on the right enters on the left with the same velocity and vertical position. 

Periodic boundaries enable the simulation of an infinite domain using a finite number 

of particles. Simulations were conducted for both mono-sized particle flows and for 

flows of binary mixtures of particles at various diameter ratios </J. Table 3.1 shows the 

geometric and contact parameters utilized for these simulations. The solid fraction 

of the flow is defined as the total area occupied by particles divided by the area of 

the domain. The single-sized particle flows have solid fractions varying from 0.45 to 

0.8 in increments of 0.05. Mixture flows were conducted at varying solid fraction ra­

tios of small to large particles (R = Vsmazi/Vzarge) for a constant overall solid fraction 

of 0. 75. The particle density is 1280 kg/m3 , the approximate density of toner, for 

all particles. The friction coefficient for inter-particle and particle-wall collisions, µ, 

is 0.5. This value of the friction coefficient was chosen so that it was a reasonable 

value physically while still being high enough to show a large amount of frictional 
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I parameter 1> = 1 1> = 2 1>= 5 1> = 10 
strain rate U/h 25os- 1 25os- 1 250s-1 25os-1 

width w/d 50 75 75 100 
height h/d 10, 20, 40 40 40 40 
solid fraction v 0.45-0.8 0.75 0.75 0.75 
solid fraction ratio R - 0.5-5 0.4-5 0.5-5 
coefficient of restitution 

I (particle/ particle) 
ep 0.8 

I 
0.8 0.8 0.8 

coefficient of restitution ew 0.8 0.8 0.8 0.8 
(particle/ wall) 
coefficient of friction µp 0.5 0.5 0.5 0.5 
(particle/ particle) 
coefficient of friction /J,w 0.5 0.5 0.5 0.5 
(particle/wall) 
number of particles N 290-2037 1425-2520 880-2394 1326-3006 
number of large particles Nz 0 120-475 19-80 

Table 3.1 Values of various parameters in planar Couette flow 
simulations for various size ratios, ¢. 

6-26 

dissipation. Another reason for a relatively high friction coefficient is that because 

the walls are flat, the friction between walls and particles is the only force driving 

the flow; a friction coefficient of 0.5 is high enough to achieve a steady Couette flow 

with significant shearing at the wall. The coefficient of restitution for all collisions, 

ew = ep, is 0.8. This value of the coefficient of restitution in the normal direction is 

chosen based on a typical value used by previous researchers [Savage and Dai, 1993; 

Campbell, 1993] and is reasonable for a number of materials. 

Each particle is simulated as a sphere constricted to move in only two dimensions. 

Thus, each particle has the mass and moment of inertia of a sphere, not a rod. 

All simulations began with the initial condition of randomly placed particles with 

small random velocities. Simulations were run until the kinetic energy in the system 

became approximately constant. After this steady-state was reached, measurements 

were made over many time steps and averaged in time and over the length of the 

domain to gather data about the simulation. 
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In many dense simulations of mixtures the velocity profile was not fully symmetric 

even after the kinetic energy in the flow was constant. The velocity profile was not 

centered at zero, and hence there was a net momentum flux in one direction. After 

many time steps, the net momentum flux often changed directions or diminished, but 

this phenomenon could not readily be explained. Even when special care was taken 

so that the initial density distribution was uniform and the particles were given a zero 

initial velocity, the flow exhibited these unsteady effects. Average velocities in the 

flows, which should have been zero due to symmetry about the centerline, reached up 

to 4% of the wall velocity U in some cases. Similar effects were observed by Savage 

and Dai [1993] in dense, bounded shear flows of identical particles as well, although 

for the current flows they were more prominent in the simulations of mixtures. This 

behavior is likely due to the periodic boundaries used in the simulations. If, at some 

point in the flow, there is a strong collision with one of the moving walls, there will be 

an instantaneous momentum flux in one direction. Due to the periodic boundaries, 

the particles will continue to move in that direction beyond the boundaries because 

they re-enter the flow with the same velocity. The motion is not hampered by other 

particles further down the channel. This effect is probably the result of the small size 

of the domain in the x direction in comparison with the size of the large particles in 

the flow. A large particle may feel its own effect on the flow through the periodic 

boundaries. This is also more likely to occur in dense flows in which the particles 

may travel in one direction like a solid block. 

3 .1 Monosize particle flows 

3.1.1 Flow measurements 

Local measurements of flow properties are made by averaging across horizontal strips 

in the domain. The height of each strip is slightly larger than one small particle 

diameter (ranging from l.Oldsmall to about l.05dsmalz). Averages are weighted by 
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Figure 3.2 Velocity, solid fraction, and granular temperature pro­
files for Couette flow of same-size particles with overall v = 0.65 
and h/d = 20. 

area and the fraction of the quantity attributed to a strip is equal to the fraction 

of the area of the particle in the strip. After reaching steady-state, quantities are 

averaged over a period of approximately 4 x 106 to 1.5 x 107 time steps, or at least 15 

wall cycles (the time necessary for one wall to travel the width of the domain). The 

number of time samples in each average is at least 60, but usually greater. 

Figures 3.1, 3.2, and 3.3 show typical velocity, solid fraction, and granular tern-
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Figure 3.3 Velocity, solid fraction, and granular temperature pro­
files for Couette flow of same-size particles with overall v = 0.65 
and h/d = 40. 

perature profiles for a same-size particle flow at v = 0.65 and three different h/d 

ratios. Granular temperature is a term used for the fluctuation kinetic energy per 

unit mass of the flow; it is analogous to thermodynamic temperature in the kinetic 

theory of gases. The rotational and translational granular temperatures are defined 

in two dimensions as follows: 

1 

2\u'u' + v'v') (3.1) 

~ (~) (w'w'), (3.2) 

where u denotes the velocity component of a particle in the direction parallel to 

the walls, v is the velocity component in the direction perpendicular to the walls, 

and w is the angular velocity. The fluctuating velocities, u', v', and w', are defined 

as the difference between the particle velocity and the average local velocity. The 

moment of inertia and mass of each particle are denoted as I and m respectively. 

The brackets, (), denote an area average for the particular bin. Similar qualitative 

results have been seen in previous studies of bounded Couette flows [Campbell and 

Brennen, 1985; Campbell, 1993; Savage and Dai, 1993]. 
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Figure 3.4 Slip velocity and the average translational tempera­
ture as a function of solid fraction for various height to particle 
diameter ratios in mono-sized flows. 

The profiles for the flow with h/ d = 10 are markedly different from those with 

h/d = 40. The velocity gradient is very small when h/d = 40, whereas it is much 

larger when h/d = 10. The solid fraction for the larger wall separation is lower at 

the walls and higher in the center when compared with the flow with a smaller wall 

separation. The geometry of the flow with h/d = 40 allows the particles to concentrate 

more heavily in the center, leaving the wall regions with a lower concentration. The 

difference in granular temperature from the wall region to the center of the channel 

is also much greater for the flow with the larger wall separation. 

Slip velocities have previously been shown [Rosato and Kim, 1994; Savage and 

Dai, 1993] to decrease with increasing solid fraction, and the same is true for the 

current system, (figure 3.4(a)). The slip velocity is defined as the difference between 

the relative wall velocity, U, and the relative velocity between particles one radius 

from the top wall and one radius away from the bottom wall, Uw = u(h - 0.5d) -

u(0.5d). The filled symbols in figure 3.4 are results from simulations at the two 
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largest concentrations (v = 0. 75 and 0.8) that were conducted with a 5% deviation 

in particle size. At the highest solid fraction of 0.8, a hexagonal crystalline structure 

was formed in the center of the channel at all values of h/ d, which can be avoided by 

imposing a small variation in particle size. The values obtained for the slip velocities 

and granular temperatures for these cases are shown for comparison with those for 

identical particles. 

For h/ d = 40, except the most concentrated flows, the boundary slip velocities 

are over 90% of the wall velocity. In flows with h/ d = 20, only the lowest few solid 

fractions have slip velocities that high, and all of the flows with h / d = 10 slip have 

lower slip velocities, between 60 and 70%. In all the shear flows the boundary layer 

against the wall is only a few particles thick and therefore the particles are able to 

avoid this region when the channel is wide by moving closer to the center. In the 

flows with h/ d = 40, it is observed that most particles migrate to the center of the 

channel and few remain in contact with the wall in the steady state. In flows with 

a narrower distance between the boundaries, the influence of the wall is felt further 

into the center of the channel, and the particles are not able to avoid the boundary 

layer. The slip velocity, therefore, is lower in flows with lower ratios of h / d. 

The slip velocity dictates the actual strain rate in the flow. Thus, although the 

imposed strain rate (U / h) is constant for all flows, the actual average strain rate 

increases as the slip velocity decreases. The average strain rate is defined as 

u(h - 0.5d) - u(0.5d) 
h-d 

h-d 

(3.3) 

(3.4) 

that is, using the difference between the velocities one particle radius away from 

the wall. The average granular temperature of the system also increases with solid 

fraction (figure 3.4(b)), due to the increase in energy transferred from the moving 

walls into the flow. 
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Figure 3.5 Solid fraction at the wall (evaluated within one par­
ticle diameter of the wall) as a function of the average solid 
fraction. 

Figures 3.4(a) and (b) illustrate the existence of a threshold in solid fraction 

above which the energy in the flow increases rapidly. For flows with h/d = 10, all 

solid fractions show lower slip velocities and high granular temperatures. Flows with 

h/d = 20, however, have very high slip and low temperatures until an average solid 

fraction of roughly 0.55, after which the slip velocity begins to decrease and the 

temperature rapidly increases. For flows with h/ d = 40, this threshold solid fraction 

is between 0.7 and 0.75. The threshold solid fraction occurs when the particles in the 

center regions reach a limit of dense packing so that any additional particles must 

contribute to the concentration near the walls. 

Figure 3.5 illustrates that for h/ d = 10 the wall solid fraction increases approxi­

mately linearly with the average solid fraction. At h/ d = 20, the wall solid fraction 

is lower than at h/d = 10 and increases more rapidly at higher overall solid fractions. 

The flow at h / d = 40 has a low wall solid fraction that suddenly increases above an 
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average solid fraction of 0. 7, the same solid fraction at which the large decrease in slip 

velocity is observed. For reference, a dashed line with a slope of one shows the result 

for a constant solid fraction, as in a simple shear flow of infinite width. The results 

for h/d = 10 correspond the closest with a simple shear flow, because the gradient 

in solid fraction across the gap is the smallest. These results suggest that the wall 

solid fraction governs the dynamics of the flow and the transition from a high-siip, 

low-temperature flow to a lower-slip, high-temperature regime. From figure 3.5 it can 

be inferred that the transitional wall solid fraction is between 0.25 and 0.30. Thus, all 

of the results at h/ d = 10 are above this critical value, and transitions occur between 

average solid fractions of 0.55 and 0.6 for h/d = 20 and between 0.7 and 0.75 for 

h / d = 40. The results of this study clearly indicate that the ratio of the gap width 

to the particle diameter, h / d, affects the basic behavior of the flow to a great extent 

due to variations in the wall solid fraction. The effect of the gap width on a the flow 

properties of a gravity-free Couette flow has not been studied in the past. 

3.1.2 Wall stresses 

The stress within a granular flow can be separated into a collisional and a streaming 

component [Campbell, 1993]. The collisional component is the result of momen­

tum transferred in particle collisions and the streaming component is related to the 

momentum transported by the motion of the particles themselves. The sum of the 

stresses can be measured at the bounding walls. The collisional forces are averaged 

over time and over the length of the boundary to give average stresses in both normal 

and tangential directions. Due to the two-dimensional nature of the simulations, the 

stresses presented are actually forces per unit length of boundary, not per unit area. 

Figure 3.6 shows the stresses on the boundary as functions of simulation time for a 

flow of mono-sized particles. A steady state is reached very quickly, but the stresses 

continue to show large fluctuations about the mean value. 

Figure 3.7 presents the average normal and shear stress on the bounding walls for 
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Figure 3.6 Time variation of the normal (Tyy) and shear (Txy) 
stresses at the solid boundaries for a flow of monodisperse par­
ticles with an overall solid fraction of 0.75 and hjd = 20. 
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Figure 3.8 Normal and shear stresses at the boundaries as func­
tions of overall solid fraction in same-size particle Couette flows. 
Stresses are non-dimensionalized by the actual average strain 
rate and compared with the kinetic theory of Jenkins and Rich­
man [1985] for a simple shear flow. 

;;; 

0.8 

flows of same-size particles as a function of solid fraction. The stresses were averaged 

over time and the standard deviation of the fluctuations has been plotted as an error 

bar in the figure. Both stresses increase with solid fraction, due to the increase in 

collision rate with concentration. Flows with h / d = 40 show lower stresses at low 

solid fractions than flows with smaller heights, due to the lower collision rate at the 

walls and high slip velocities shown earlier. The solid fraction at which the flows 

with higher h/ d ratios approach the results for h/ d = 10 varies, illustrating that the 

stresses increase along with the granular temperature at a critical solid fraction that 

depends on h/d. The critical value for h/d = 20 is above 0.55, and the value for 

h/d = 40 is even higher, above 0.7. 

To explore the relationship between the actual strain rate and the stresses, the 

shear and normal stresses are shown in figure 3.8 non-dimensionalized by the actual 

strain rate (du/dy)av (as defined in equation 3.4) instead of U/h. These results 
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Figure 3.9 Ratio of shear to normal stress at the boundaries as 
a function of overall solid fraction in same-size particle Couette 
flows. 

illustrate that the stresses for all three gap widths collapse fairly well onto the same 

curve. The theory from Jenkins and Richman [1985] for identical rough disks in 

the limit of nearly elastic, slightly rough particles (f3 ':::'. -1, e c::::'. 1) was used to 

compare with the present simulation results. The coefficient /3 characterizes inter­

particle surface roughness, and ranges from -1 to + 1, with f3 = -1 corresponding 

to perfectly smooth disks. The relationship between the stresses and the total solid 

fraction was derived by solving the translational energy equation for a simple shear 

flow with no gradients in granular temperature. Although this is not the case in the 

current simulations, the curves are plotted simply for comparison, for two different 

values of {3. The expressions plotted are: 

Tyy 

m(du/dy) 2 

(1 + 2vg0 ) [ (~ + 1) vg0 + ~ + 2 J 

8g0 ( '"~1:~) + 2(1 - e)) 
(3.5) 
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m(du/dy) 2 

[ ] 

3/2 

fo (~ + 1) v90 + ~ + 2 

8~ ( i.i1;!) + 2(1 - e)) 1/2 

(3.6) 

where /1, = 41 /md2 = 1/2 for disks, e is the coefficient of restitution, and 90 is the 

radial distribution function for disks, evaluated at the contact point, suggested by 

Jenkins and Richman: 

16- 7v 
90 = 16(1 - v) 2 · 

(3.7) 

This expression was derived from the equation of state of Henderson [1975],which 

may not be strictly valid at the high solid fractions shown, but it is nevertheless 

used here for comparison with the simulations. Qualitative agreement between the 

simulation results is fairly good, although the theory generally under-predicts the 

stresses. Agreement is best for the simulations with the smallest gap width, h/ d = 10, 

because they have smaller gradients in temperature and solid fraction and most closely 

resemble a simple shear flow. 

The ratio of the shear stress to the normal stress decreases with increasing solid 

fraction (figure 3.9). For h/d = 20 and h/d = 40 and at low solid fractions, when the 

slip velocity is over 90%, the ratio is equal to the surface friction coefficient of the 

simulation, which is set at 0.5. For all three gap widths, the stress ratio decreases 

with increasing solid fraction. A similar decrease in the stress ratio at high solid 

fractions has previously been observed both in simple shear flows [Campbell, 1989; 

Lun and Bent, 1994] and Couette flows [Campbell and Brennen, 1985; Campbell, 

1986; Rosato and Kim, 1994]. Campbell and Brennen [1985] explained the decrease 

in the stress ratio of the collisional components of the stress near the shearable limit 

by the formation of an internal microstructure. At large solid fractions, the particles 

were observed to form a layered microstructure that resulted in preferred angles of 

collision. The layers become more tightly packed and the effect more pronounced 
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with an increase in density. The preferred collision angles result in a decrease of the 

shear stress with solid fraction. The ratio of the streaming components of the stresses 

decreased even more dramatically with solid fraction in that study, resulting in a 

decrease in the overall stress ratio with solid fraction. The kinetic theory does not 

predict any such decrease in stress ratio because it does not account for the layering 

and microstructure observed in dense flows. 

The mono-sized particle simulations with a solid fraction of 0.8 show different 

behavior for both trends in overall stresses and stress ratios. The stresses decrease 

slightly for this solid fraction and the stress ratio increases slightly. These particular 

simulations are examples of the unrealistic locking of the particles in the center of 

the channel mentioned earlier. Results for the two simulations that had a 5% devia­

tion in particle size are also plotted in figures 3. 7 and 3.9. While the results for the 

monodisperse and the 5% dispersed system are very similar for the solid fraction of 

0. 75, they differ significantly for the solid fraction of 0.8. This result illustrates that 

at a solid fraction of 0.8 the monodisperse system behaves in a manner that is unre­

alistic due to the single-size distribution of the particles and the two-dimensionality 

of the simulation. The results for the highest solid fraction of 0.8 are omitted from 

figure 3.8. This locking of the particles into a crystalline structure would not occur in 

a real flow because granular materials in both industry and nature always have some 

imperfections in the grain size or shape. 

3.1.3 Energy dissipation and heat transfer 

Discrete element computer simulations are ideally suited for the calculation of energy 

dissipation in the flow. This calculated dissipation can be compared with previous 

theoretical models for the dissipation. Analytical expressions for the dissipation term 

in the energy equation for granular materials have been derived using kinetic theory 

for many cases, including flows of smooth and rough identical particles [Jenkins and 

Richman, 1985; Lun, 1991; Lun and Savage, 1987; Lun et al., 1984]. The analy-
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sis by Jenkins and Richman [1985] most closely resembles the flows in the current 

simulations, modeling rough two-dimensional inelastic particles. 

Jenkins and Richman [1985] derive dissipation terms from kinetic theory for the 

loss of both translational and rotational energy (referred to as -xaa and -x33 in 

their work, but referred to here as It and Ir) due to inter-particle collisions. These 

terms contain an unknown coefficient of roughness, (3, which ranges from 1 to -1, 

characterizing disks ranging from perfectly rough (conserving all energy due to tan­

gential rebound) to perfectly smooth. The simplification of the general relations for 

slightly rough and nearly elastic particles (/3 -:::: -1, e -:::: 1) is as follows: 

rt 

Ir 

where 

8 mv
2 (Tt) 112 

---go -
7f d 7f 

4I 
md2 . 

(3.8) 

(3.9) 

The translational and rotational granular temperatures are defined in equations 3.1 

and 3.2. The factor of 4 in the last term of the rotational dissipation is due to a 

difference in the definition of Tr; in the original work it is a factor of 2. 

If equations 3.8 and 3.9 are simplified for smooth disks (the case of f3 = -1), 

the expression for /r (3.9 becomes zero, since perfectly smooth disks will have no 

rotational (frictional) dissipation; there will only be dissipation due to the inelasticity 

of collisions. Substituting f3 = -1 into expression 3.8 for /t, a simpler expression for 
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the overall dissipation I = It of smooth disks is: 

32mv
2 (Tt) 3

/
2 

I = d3 go ( 1 - e) -; (3.10) 

This equation can be simply derived from the product of the number density, n, 

the collision rate, and the energy lost in each collision. The two-dimensional collision 

rate is the inverse of the collision interval, tc, which is, from kinetic theory [Hunt, 

1997]: 

(3.11) 

The energy lost in each collision can be expressed in terms of the granular temperature 

and a coefficient of restitution: 

1 )2 6.E = 2m(l - e Tt. (3.12) 

Using the relations n = 4v/rrd2 and (1 - e) 2
,....., 2(1 - e) (fore'.:::::' 1), equation 3.10 is 

obtained using this simple product. 

Returning to the more complex expressions of equations 3.8 and 3.9 for the more 

general case of (3 not equal to -1, the sum of the two dissipation terms, Ir and It, 

can be calculated. This sum is equal to the total dissipation rate due to particle­

particle collisions. The theoretical dissipation terms are evaluated at (3 = 0 and -0.5 

for comparison with simulation results. Figure 3.10 shows simulation results for 

dissipation rate per unit area, 1, as a function of position in the flow for one example 

of a monodisperse flow. The curves shown for the kinetic theory are for I= lt+ln as 

defined in equations 3.8 and 3.9. These expressions from Jenkins and Richman [1985] 

are functions of local solid fraction and granular temperature; the solid fractions and 

temperatures used in the calculation are those measured by the simulation. The 

dissipation rate is high near the walls, where the granular temperature and strain 
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Figure 3.10 Energy dissipation rate as a function of vertical posi­
tion for Couette flow of same-size particles with overall v = 0. 75 
and hjd = 20. 

rate are high as well. Figure 3.11 shows the mean dissipation rate per unit area 

for flows with h/ d = 20 compared with the kinetic theory results for two different 

values of the roughness coefficient {3. The theoretical results do not show a smooth 

curve because they are evaluated at the same points as the simulations and for the 

granular temperatures from the simulation results. Figure 3.12 shows the same results 

for simulations run with h/d = 10, h/d = 20, and h/d = 40 for comparison. The 

dissipation rate rises with solid fraction for all h / d due to higher particle collision 

rates, but the behavior at low solid fractions depends greatly on the domain height. 

The high slip velocity at low solid fractions and large h/ d shows that only a very 

small fraction of the energy is transmitted into the flow; most is dissipated at the 

walls. Thus, the energy within the flow is lower and the energy dissipation rate inside 

the flow is also smaller than for flows with smaller h/ d. 
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Figure 3.11 Energy dissipation rate per unit area as a function 
of overall solid fraction for Couette flow of same-size particles 
with h/d = 20, for simulations and theory. 

In addition to the energy dissipation rate inside the flow, the energy dissipation 

rate at the walls due to particle-wall collisions was calculated in the simulations. The 

rate of dissipation at the walls, r w, is compared to the rate of work done by the 

walls, W, to determine the amount of work done on the flow inside the boundaries. 

The fraction of the work that is dissipated at the boundaries, r w/W, shown in fig­

ure 3.13(a), decreases with overall solid fraction. Figure 3.13(b) shows the rate of 

work done by the boundaries as a function of solid fraction for same-size flows. The 

high dissipation rate at low solid fractions for all h/ d is consistent with the high slip 

velocity as shown in figure 3.4(a). The rate of work done by the walls is equal to the 

total shear force on the wall (the shear stress multiplied by the length of the wall) 

multiplied by the wall velocity. The rate of work done is necessarily equal to the total 

energy dissipation rate in the flow at a steady-state. All of the simulations plotted 
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Figure 3.12 Energy dissipation rate per unit area calculated from 
computer simulations for same-size particles with various hf d. 

use the same wall velocity and length, so that the rate of work done is proportional 

to the shear stress at the wall (shown in figure 3.7(b)). 

Although the interstitial gas (air, in this instance) can generally be neglected in 

the analysis of the dynamics of the flow, it cannot be neglected in the heat transfer. 

In order to translate the dissipation rates computed in the simulations into actual 

thermodynamic temperature changes, a heat transfer analysis is performed on both 

phases of the system. An energy equation can be solved using the total energy 

dissipation calculated in the simulations as a heat source to obtain thermodynamic 

temperature profiles in same-size flows. The general energy equation with a heat 

source term is expressed as: 

(3.13) 
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Figure 3.13 Energy dissipation and work done by the solid 
boundaries as functions of solid fraction for same-size particle 
flows for various h/d. The legend on the right serves for both 
graphs. 

where T is the thermodynamic temperature, and D() / Dt is the material, or total 

derivative. The relation vpPcP + (1 - v)PairCair ~pep was used in the above equation, 

where Pp and Cp are the density and heat capacity of the particles, and Pair and Cair 

are the corresponding values for air. Because this equation is three-dimensional, / 

represents the total energy dissipation rate per unit volume (due to both friction and 

inelasticity of collisions), both within the flow and at the walls. The two-dimensional 

dissipation rate calculated in the simulation is converted to three dimensions by con­

sidering the flow as a monolayer of particles constrained to move within the plane. 

The depth of this monolayer is one particle diameter, so the dissipation per unit 

volume is calculated based on this depth. 

The total conductivity, ktot, is defined as in Natarajan and Hunt [1998], as the 

sum of the molecular conductivity, kmc, and the streaming conductivity, kkt· The 

effective molecular conductivity used in the analysis is that proposed by Gelperin 
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and Einstein [1971]: 

kmc V ( l - ~:) 
-=1+ . 
kg ~g + 0.28(1 _ v)0.63(k9 /kp)-o.1s 

p 

(3.14) 

In the above expression, kg and kp are the conductivities of the gas and solid phases 

respectively. The expression for a streaming conductivity, kkt, was derived using gas 

kinetic theory by Hsiau and Hunt [1993] in three dimensions, and later extended to 

two dimensions by Hunt [1997] using similar methods: 

7r3/2p c dT1;2 
k - pp t 

kt -
32go(v) 

(3.15) 

This expression assumes perfectly smooth particles, and thus only uses the transla­

tional granular temperature term. This streaming conductivity is the conductivity 

due to energy transfer by particle motion from hotter to colder regions. The kinetic 

theory-derived expression for kkt above also assumes a low particle Biot number for a 

lumped mass analysis and a small ratio of the time between collisions to the thermal 

time constant of the particles; it applies to flows of same-size particles only. 

A similar conductivity exists to account for the local variations in the fluid ve­

locity, which enhance the energy transport when a temperature gradient exists. In a 

packed bed of stationary particles, this enhanced thermal transport is modeled using 

a dispersion conductivity, which is approximated as kd = C PJCJUfd, where C is a 

constant, PJ and c1 are the density and thermal heat capacity of the interstitial fluid, 

u1 is the average velocity, and dis a particle diameter [Hunt, 1990]. Considering this 

scaling for the dispersion conductivity of a fluid in a packed bed, this contribution to 

the overall conductivity of the granular system has been neglected in the current anal­

ysis, because the density and thermal heat capacity of air are small when compared 

with those of the solid particles. 

Wang et al. [1989] have shown that particle rotation does not affect heat transfer 
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at low particle rotational Peclet numbers, where Pe= w(d/2) 2 /(kp/ppcp)· The flow 

conditions in the current work have Pe < 1, justifying the assumption that rotation 

does not affect the conductivity of the system significantly. 

For two-dimensional steady-state flow with periodic boundaries (i.e., no gradi­

ents in the x direction) and no mean velocity in the vertical (y) direction, the non­

dimensional energy equation reduces to 

d ( d8) dy ktat(Y) dy = -1(y). (3.16) 

The non-dimensional thermodynamic temperature is defined as 8 = '[.;-1~, where To 

is the temperature at y = h. The total conductivity can be determined from equa­

tions 3.14 and 3.15 using the solid fraction and granular temperature profiles obtained 

from the simulations. Likewise, the non-dimensionalized dissipation term r is also 

known from the simulations, and equation 3.16 can be solved by integrating directly 

for the thermodynamic temperature profile. The dissipation rate, solid fraction, and 

granular temperature calculated in the simulations are averaged over the width of 

each bin, that is they are only known at discrete points. The bins are chosen to 

be one particle diameter wide in order to provide a sensible average for a continuum 

analysis. The two boundary conditions consist of an adiabatic wall condition at y = 0 

and a fixed temperature at the upper wall y = h: 

d81 Qhly=O = ktot d = Q 
y y=O 

81 = o. y=h 

The solution in this case is: 

8(y) = [ kty) ([ 'Y(Y')dy') dy -[ k(~') (t 7(y")dy") dy', 

(3.17) 

(3.18) 

(3.19) 

which is integrated numerically to give 8(y). Figure 3.14(a) shows the dimension-
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Figure 3.14 Non-dimensional thermodynamic temperature (8) 
and heat flux ( qh) profiles for same-size flows of various overall 
solid fractions. The conductivity ratio is kp/ kg = 23. 

less thermodynamic temperature as a function of the vertical distance in the flow for 

various solid fractions at a constant conductivity ratio, kp/ kg = 23, which is approxi­

mately that found in the flow of toner in a high-speed laser printer. The temperature 

increases with solid fraction due to the higher dissipation rate of denser flows. The 

heat flux is also plotted in this figure, showing that it is equal to zero at the adiabatic 

wall. 

The slope of the temperature profile does not approach zero near the adiabatic 

wall due to the finite size of the bins over which the integration and properties are 

calculated (bins are approximately one particle diameter in width). The finite value 

of the heat flux one bin away from the wall results in a finite value of the derivative 

of the temperature near the wall as well. Decreasing the size of the bins will not 

alleviate this issue because of the heat generated at the wall itself, which causes a 

non-zero value of the heat flux at any finite distance from the wall. The relatively 

large bin size does not affect results away from the two walls, where there are smaller 



45 

* V=0.80 

101 D V=0.75 
0 v=0.70 
0 V=0.65 
+ v=0.60 

100 * D 
A v=0.55 

* v=0.50 D x 

0 * f> V=0.45 I D 
0 ~ 

CD -I 0 ~ II\ 10 0 ill 
0 0 0 

0 0 
+ 

+ 0 

10-2 + 0 
0 + 0 0 + + + 

A 
x A 
f> x A 

10-3 
f> 

I> 
A 

A 
i A A 

rs. rs. ts 

100 101 102 
k /k 

p g 

Figure 3.15 Non-dimensional adiabatic wall temperature as a 
function of the conductivity ratio, kp/k9 , for same-size flows 
of varying overall solid fractions. 

gradients in heat flux and the curves are smooth. 

Figure 3.15 presents the maximum temperature, which occurs at the adiabatic 

wall (y = 0), as a function of the conductivity ratio of particles to gas. The gas con­

ductivity is constant while the conductivity ratio varies. The molecular conductivity 

term dominates in all the cases, so increasing the conductivity ratio increases the total 

conductivity. Higher conductivities decrease the maximum temperature obtained in 

the flow as the heat generated is conducted through the flow at a higher rate. 

3.1.4 Kinetic theory solution 

The constitutive laws of Jenkins and Richman [1985] for slightly rough and nearly 

elastic disks have been applied to the conservation equations to solve for the solid 

fraction, velocity, and granular temperature profiles in the flow. In the conservation 
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Figure 3.16 Coordinate frame for application of conservation 
equations. 

equations below, p = vpp is equal to the bulk density, u is the mean velocity, and 

T is the translational granular temperature. The conservation of mass, momentum, 

and fluctuation energy equations for a two-dimensional flow are generally expressed 

below, following the similar analysis of Hanes et al. [1988]: 

• Conservation of mass: 

Dp " _, -+pv·u=O 
Dt ' 

where D() / Dt is the material, or total derivative. 

• Conservation of linear momentum: 

Du .... 
P- = -V' ·P+pF 

Dt ' 

where P is the total pressure tensor and F is the specific body force. 

• Conservation of fluctuation energy: 

DT .... 
p Dt = - V' · Q - tr (P · V' ii) - 1, 

(3.20) 

(3.21) 

(3.22) 

where Q is the fluctuation energy flux and r is the rate of dissipation in inelastic 

collisions (referred to earlier in this chapter as rt)· 
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Several assumptions are now made. The definition of the geometry is given in 

figure 3.16. There are no body forces, and the flow is one-dimensional in the x 

direction. Periodic boundaries in x mean that there are no gradients in the flow 

direction. The flow is steady, so that there are no time derivatives either. The mean 

velocity in the transverse direction, v, is zero, and the mean velocity in the flow 

direction, u, is a function of y only. In this special case, the conservation of mass is 

identically satisfied, and the two momentum equations give the result that the shear 

and normal stresses are constants, Sand N. 

In the x-direction: 

0 

In the y-direction: 

0 

dPxy 
dy 

constant S. 

dPyy 
---

dy 

constant N. 

The energy equation (3.22) reduces to: 

dQ du 
--S-+1=0, 
dy dy 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

where Q Qy, as Qx is zero. The constitutive laws of Jenkins and Richman [1985] 

can now be substituted into the above simplified energy equation. First, the energy 

flux and shear stress are expressed in terms of the conductivity, k, and the viscosity, 
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µ: 

Q=kdT 
dy 

(3.28) 

S =µdu_ 
dy 

(3.29) 

Then, µ, k, N, and / are expressed generally in terms of the translational granular 

temperature, T. 

µ MVT (3.30) 

k qVT (3.31) 

N f T (3.32) 

I ~T3/2 (3.33) 

where l\!l, q, f, and ~ are all functions of solid fraction v, which is in turn a function 

of y. Now, 

T N/f (3.34) 

MVN 
(3.35) µ 

v1 

k 
qVN 

(3.36) 
v1 

The energy equation becomes a non-linear ordinary differential equation for the solid 

fraction v(y) by substituting the above constitutive laws into equation 3.27. 

v" = (A 2L - ~f) - (!" + q' - ~ !') (v') 2 

M qf' qj' f' q 2 f ' 
(3.37) 

where A = S / N is a constant, and ()' represents a first derivative with respect to v 

except for v', which is a derivative with respect to y. The definitions of the functions 
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f, M, q, and~ as functions of v are as follows [Jenkins and Richman, 1985]: 

p PpV (3.38) 

G vgo (3.39) 

16- 7v 
(3.40) 90 16(1 - v2) 

f 
4mv 

p(l + 2G) = 7rd2 (1 + 2G) (3.41) 

q - -+- G+-+6 mv [ ( 8 9) 2 ] 
dft 7r 2 G 

(3.42) 

M ~ [(~+1)G+2-+2] 2dft 7r G 
(3.43) 

~ 16mv G ( A;(l + /)) ( ) ) 
--3 +21-e 
d37r2 (1 +A;) 

(3.44) 

41 
(3.45) A; 

7rd2 

The assumption that the particle mass m is equal to Pp 7rd2 / 4 (for disks) is utilized in 

the above expression for f (v). This assumption is appropriate for the theory, but in 

the simulations the mass is evaluated for spheres, not disks. In the above equations, d 

is the particle diameter, e the coefficient of restitution, and /) the roughness coefficient, 

discussed earlier in this chapter. 

To solve equation 3.37, a value for the constant ). = S/N must be specified from 

boundary conditions. To compare the results with the current simulations, the value 

of the stress ratio at the wall from the simulation has been used. Two boundary 

conditions in v must also be specified: 

v'(y = 0) 
rh/2 

Jo v(y)dy 

0 (3.46) 

(3.47) 

where v is the average solid fraction in the flow. To satisfy the second boundary 

condition, the value v(y = 0) is guessed and the numerical equation iterated until 
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Figure 3.17 Velocity, solid fraction, and granular temperature 
profiles for Couette flow with an average solid fraction of 0.6 and 
h/d = 10 and f3 = 0. Results from the computer simulations 
are compared with theoretical results. 

the average solid fraction is correct within a tolerance of 1 %. A 4th order Runge­

Kutta scheme was used to solve for the solid fraction in the channel as a function of 

y. The velocity profile and granular temperature profiles can also be found from the 

expressions for the shear stress and the normal stress: 

du 

dy 

T 

S SVJ 
µ MVN 
N/f. 

(3.48) 

(3.49) 

The boundary condition of u(y = 0) = 0, necessary for symmetry, was used to 

integrate the velocity gradient. The value of the stresses, S and N, must be specified 

to use the above expressions. In this work, the values have been taken from the 

computer simulations. 

Figures 3.17 and 3.18 show the theoretical results along with the results from 

computer simulations for an average solid fraction of 0.6 and gap widths of 10 and 

20 particle diameters, respectively. Although the theoretical velocity profiles appear 

linear for these two cases, this is not the case in general. Theoretical predictions have 
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Figure 3.18 Velocity, solid fraction, and granular temperature 
profiles for Couette flow with an average solid fraction of 0.6 and 
h/d = 20 and /3 = 0. Results from the computer simulations 
are compared with theoretical results. 

0.4 

the same general profile shapes, and in the case of h/ d = 10, show good quantitative 

comparison with both velocities and solid fractions. In the case of h/ d = 20 and 

for the temperature profile for h/d = 10, however, the agreement is not as good. 

The theoretical profiles generally have lower gradients in all three variables than the 

simulations. This is probably the reason that they match better for the narrower gap 

width, since for this width the gradients in temperature, velocity, and solid fraction 

are smaller than for the wider gaps. The theoretical results utilize the assumption 

that collisions are nearly elastic and nearly frictionless, which is not accurate for the 

current simulations; this is most probably the reason for the disagreement between 

the two. 

3.2 Binary mixture flows 

Computer simulations of gravity-free Couette flow have also been conducted with 

flows of particles of two different sizes. Unlike the flows of identical particles, the 

overall solid fraction is maintained constant (v = 0. 75) for all the flows discussed in 
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Figure 3.19 Snapshot of simulation: ¢ = 10 and R = 5. 

Figure 3.20 Snapshot of simulation: ¢ = 10 and R = 0.5. 

this section. The gap width is also constant at h/ dsmall = 40 for all binary mixture 

flows. The ratio of solid fractions of small to large particles (R) and the size ratio of 

large to small particles ( ¢i) are varied to study their effect on the flow. The results 

obtained have been compared to the flows of monodisperse particles. Figure 3.19 

shows a snapshot of a flow with a high value of R = 5 and ¢i = 10. Figure 3.20 

shows the same flow conditions with a much lower value of R = 0.5, illustrating the 

difference that the solid fraction ratio of small to large particles, R, makes in a flow 

with a given overall solid fraction. 
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Figure 3.21 Velocity, solid fraction, and granular temperature 
profiles for Couette flow of mixture with overall v = 0. 75, </> = 

10, and R = 1. 

3.2.1 Flow measurements 

6 

Figure 3.21 shows velocity, solid fraction, and granular temperature profiles for a 

binary mixture with a diameter ratio of 10. The solid fraction profiles for the large 

and small particles are shown separately along with the overall solid fraction. These 

profiles illustrate the high-shear zones nearest the walls, which correspond to low 

solid fractions and high granular temperatures. Solid fractions of both components 

decrease in the high-shear regions near the boundaries; solid fractions of large particles 

in flows with large diameter ratios (such as that shown in figure 3.21) are zero in those 

regions. The solid fraction profiles for this fl.ow also illustrate the layering of large 

particles that often occurs in flows in which geometry constrains the positions of the 

large particles. In flows with relatively high solid fractions of large particles and 

diameter ratios of five or ten, the large particles are forced to form horizontal layers 

in the fl.ow. This layering is discussed further in the mixing section of this chapter. 

Slip velocities for mixture flows are presented in figure 3.22(a) as a function of 

solid fraction ratio for various diameter ratios. The slip velocity decreases with solid 

fraction ratio for all the flows, due to an increase in the effective solid fraction of small 
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Figure 3.22 Slip velocity and the solid fraction at the wall as 
a function of solid fraction ratio of small to large particles in 
mixture flows. The dashed line represents the result for a mono­
sized flow with the same overall solid fraction of 0. 75 and the 
same h/d of 40. 

6 

particles. When there are more small particles in the flow, the solid fraction at the 

wall is slightly higher, as shown in figure 3.22(b). The average granular temperature, 

shown in figure 3.23, decreases with solid fraction ratio. 

When analyzing binary mixture flows using the kinetic theory of dense gases, 

previous researchers have used the assumption of the equipartition of energy between 

the species [Farrell et al., 1986; Hsiau and Hunt, 1996]: 

(3.50) 

The fluctuation kinetic energy is assumed to be constant for each species i in order 

to relate the two species' translational granular temperatures Tt,i· To evaluate the 

accuracy of this assumption, the ratio of the two kinetic energies has been calculated 

and is shown in figure 3.24. The ratio is greater than one for all the size ratios in the 
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Figure 3.25 Number of large particles per unit area at various 
solid fraction ratios, R: ¢ = 10. 

current study, illustrating the inaccuracy of the equipartition of energy assumption 

for these flows. It is, however, more accurate as the size ratio of the two species 

decreases. 

3.2.2 Mixing 

To illustrate the migration of large particles away from the wall regions for different 

solid fraction ratios, an analysis of the large particle positions was performed. Fig­

ures 3.25, 3.26, and 3.27 show the number of large particle centers per unit area as a 

function of height. Because the center of a particle cannot be closer than one radius 

from the wall, this region has a zero number density. The profiles for the size ratio of 

10 (figure 3.25) show that as the solid fraction ratio R = Vsmalz/vlarge increases, the 

low number density regions near the walls become wider due to the larger freedom 
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Figure 3.26 Number of large particles per unit area: </> = 5. 

of motion of the few large particles. However, for low values of R, the motion of 

the large particles is constrained and they are forced towards the walls. The number 

density profiles of the large particles with <P = 5 (figure 3.26) show a similar trend. 

For both <P = 10 and <P = 5, at high large-particle solid fractions (low values of R), 

the large particles form layers beginning at the solid boundaries. Figure 3.27 shows 

the same analysis for the simulations with a size ratio of only 2. This figure shows 

that the area near the wall with zero number density is only slightly wider than one 

radius; there is little migration of particles in these flows. 

The snapshots of the mixture flows shown earlier in figures 3.19 and 3.20 illustrate 

the above behavior as well. Figure 3.19 (with the fewest large particles and highest 

value of R) shows that the large particles move freely in the central region of low 

shear, while avoiding the narrow regions nearest the walls. Figure 3.20 shows a flow 

with the lowest value of R; here, the large particles clearly form three distinct layers 
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Figure 3.27 Number of large particles per unit area: <P = 2. 

and are forced closer to the wall region. 

3.2.3 Wall stresses 

Figure 3.28 shows the stresses on the boundaries of a mixture flow as functions of 

time. The stress fluctuations are more uneven and larger in mixture flows than in 

mono-size flows (figure 3. 6). Large spikes in the stresses usually indicate a collision 

of a large particle with the boundary or a squeezing of a small particle between a 

boundary and a large particle. The irregular occurrence of these events causes the 

larger fluctuations in the flows of mixtures. Average stresses in mixture flows are 

shown as functions of solid fraction ratio in figure 3.29. The solid fraction for all the 

flows is 0. 75, and the stress level for the same-size flow at that solid fraction is shown 

as a dashed line for comparison. At low solid fraction ratios, both shear and normal 

stresses increase with diameter ratio </> and decrease with an increase in the solid 
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Figure 3.28 Normal and shear stresses as functions of time for 
mixture flow with ¢ = 5 and R = 2. The average stresses were 
found by taking the mean of the values after tU / h = 60. 

fraction of small particles. The force exerted in a collision is proportional to the mass 

of the impacting particle; thus, larger particles increase the average stress. The stress 

also increases with the number of larger particles present in the flow; an increase in 

large particle number increases the likelihood of a collision of a large particle with the 

wall. At high solid fraction ratios the large particles do not generally collide with the 

walls, so that the stresses for simulations with few large particles are nearly identical 

to those for the same-size particle flow. 

Figure 3.30 presents the wall stresses non-dimensionalized by the actual average 

strain rate, along with the value of the stresses predicted for a simple shear flow of 

smooth disks from Jenkins and Mancini's [1987] analysis. The theoretical expressions 

for the shear and normal stresses are derived using the constitutive laws of Jenkins and 

Mancini [1987] in the balance equation for the case of simple shear (constant granular 

temperature, solid fraction, and strain rate in the domain), just as was done for the 

same-size particles. The expressions have been simplified for a constant coefficient of 
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Figure 3.29 Normal and shear stresses at the boundaries as func­
tions of solid fraction ratio in mixtures, for various diameter 
ratios. The error bars show the standard deviation of the fluc­
tuations in time. The dashed line corresponds with results for 
the mono-sized flow with the same overall solid fraction and 
h/d = 40. 

restitution (which was the case in the simulations) and are shown below as functions 

of solid fraction ratio R and size ratio cf>. The mass ratio has been assumed to be ¢2
, 

for disks, and small particles are denoted by A and large by B. 

v R<f; +l 8KAB KBB 4KAB 2</J 
[ 

( 2 ) ] [ ( 2 ) 1/2 l 
1f¢;2(R+l) + KAA + ~ + 1/2 KAA + 1+¢ 1+¢2 + KBB 

mA(du/dy) 2 
2(1- e) [K + 8v'2KAB (1+¢2)1/2 + KBB] 

AA (1+¢)3 ¢2 ¢4 

(3.51) 

[ 

1/2 l 3/2 4KAB 2¢2 
KAA + 1+</J ( 1+¢2) + KBB 

(3.52) 

[ 

1/2 ] 1/2 
2 !Jf(l _ e) K + sv12KAB ( 1+¢

2
) + KBB v II AA (1+¢)3 ¢2 ¢4 
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Figure 3.30 Normal and shear stresses at the boundaries as func­
tions of solid fraction ratio in mixtures, for various diameter ra­
tios. The continuous lines show the kinetic theory predictions 
for a binary mixture of smooth disks in a simple shear flow 
[Jenkins and Mancini, 1987]. 
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The theory captures the qualitative behavior but greatly under-predicts the simu­

lation data. The most likely reason for this is that in the theoretical expression the 
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Figure 3.31 Ratio of shear to normal stress at the boundaries as 
a function of solid fraction ratio in mixtures, for various size 
ratios. Predictions for a simple shear flow of smooth binary 
mixtures of disks [Jenkins and Mancini, 1987] are shown as well. 

mass ratio of the particles is the square of the size ratio (for disks), while in the 

simulations the mass ratio is equal to the cube of the size ratio. The theoretical 

comparison also only applies for smooth particles, while the simulations use rough 

particles. Additionally, just as with the theoretical comparison for same-size flows, 

the theory applies to a simple shear flow with no gradients in temperature and a 

constant velocity gradient. The ratio of shear to normal stresses is also compared to 

the theoretical prediction in figure 3.31. Just as was the case for the flows of identical 

particles, the stress ratio is not predicted correctly in the theory because its behavior 

is dictated by the collision angle distribution, as will be explained in the next few 

paragraphs. 

Figure 3.32 shows the ratio of shear to normal stress on the wall as a function 

of solid fraction ratio. For flows with ef> = 2 the stress ratio is roughly constant and 

close to that for same-size flows. Flows with diameter ratios of 5 and 10 exhibit low 
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Figure 3.32 Ratio of shear to normal stress at the boundaries as 
a function of solid fraction ratio in mixtures, for various size 
ratios. The value for the mono-size flow with the same overall 
solid fraction of 0.75 and h/d = 40 is shown as a dashed line. 

shear to normal stress ratios at low solid fraction ratios of small to large particles. 

The explanation for the lower shear stresses in flows with many large particles and 

high size ratios lies in the angular distribution of particle-particle collisions. 

One can define a collision angle distribution function n(e) as the number of colli­

sions occurring at a given !J.e divided by the total number of collisions. The collision 

angle, e, is defined in figure 3.33, and !J.() is the angular region used for averaging col­

lisions in the simulation. In the current work the region from -Jr /2 to Jr /2 is divided 

into 15 regions, so that !J.() = Jr /15. 

Figure 3.34 shows the collision distribution for a mixture flow with a diameter ratio 

of 5 at two different solid fraction ratios of small to large particles. The distribution 

for the flow with a small solid fraction ratio is much flatter than that for the high 

solid fraction ratio. In any shear flow, the collision angle distribution is expected 
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(a) (b) 

Figure 3.35 Diagram of positive (a) and negative (b) collision 
angles. Arrows indicate trajectory after collision. 

to be larger between 0 and 7r /2, corresponding to collisions occurring in the upper 

left and lower right quadrants of the particles [Campbell and Brennen, 1985]. The 

difference between the collision distribution function and its mean value quantifies 

the flatness or steepness of the distribution. The integral of this difference over the 

region of positive collision angles illustrates the extent to which collisions statistically 

occur in the positive e region over the negative. 

7r /2 

IN= I)n(e) - navg) (3.59) 
{i=O 

Here the integral, IN, is based on the summation of the difference between the 

value of n(e) in each bin tJ.e and the average. The average value, navg, is the value 

that corresponds to no preferential angle and an even collision distribution. The 

summation IN shows how frequently collisions occur at a positive angle. 

Figure 3.35 shows two collisions with different collision angles. The collision on 

the left is occurring at 0 < e < 7r /2 and contributing to a positive shear stress at 

the wall, due to a high relative tangential velocity with the wall after the collision. 

The collision on the right is occurring at -7r /2 < e < 0 and will have a lower post­

collisional relative tangential velocity with the wall, and therefore a small shear stress. 
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Figure 3.36 Integral of positive half of the collision distribution 
function as a function of solid fraction ratio for various diameter 
ratios. 

The normal stress at the wall is not affected by the wall collision angle. 

Figure 3.36 shows that the collision distribution is much flatter for flows with size 

ratios of 5 or 10 and low solid fraction ratios of small to large particles. These flatter 

collision distribution functions result in smaller shear stresses, and therefore, lower 

shear to normal stress ratios in these flows. The flows with a diameter ratio of two 

do not exhibit a decrease in stress ratio or a flattening of the collision distribution 

function. 

Flows with many large particles and high size ratios show a smaller velocity gra­

dient in the center of the flow. In these flows with many large particles, the large 

particles inhibit the shearing of the small particles surrounding them, since the small 

particles are forced to move with the same velocity as the large particle. This small 

velocity gradient reduces the effect of the shear flow on the collision angle distribu­

tion. Particles in the central region of the flow behave as a plug without high relative 
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Figure 3.37 Energy dissipation rate as a function of position for 
a Couette flow of a particle mixture. Overall v = 0. 75, ¢ = 10, 
and R= 1. 

velocities; therefore, the distribution of collisions is more even than in flows with 

large velocity gradients. Flows with few large particles or with a size ratio of only 

two, however, have larger velocity gradients in the center region of the flow, leading 

to larger preferences in the collision distribution and higher stress ratios. 

3.2.4 Energy dissipation and heat transfer 

Energy dissipation calculations were conducted for the flows of binary mixtures in 

the same manner described in section 3.1.3 for flows of particles of the same size. 

Although kinetic theory derivations for binary flows do exist [Farrell et al., 1986; 

Jenkins and Mancini, 1987; Jenkins and Mancini, 1989), all assume perfectly smooth 

particles and have not been applied to this flow. 

Figure 3.37 shows results similar to those for same-size particle flows for the dissi-
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Figure 3.38 Energy dissipation rate as a function of solid fraction 
ratio for Couette flow of mixtures. Overall v = 0. 75. 

pation rate as a function of vertical position in mixtures; dissipation increases in the 

high granular temperature and high strain rate regions near the walls. Figure 3.38 

shows the dissipation rate as a function of solid fraction ratio, R = Vsmau/vzarge, for 

various diameter ratios. This figure exhibits a trend of lower dissipation rates with 

higher solid fraction ratios. Thus, for a constant overall solid fraction, when there 

are more large particles in the flow, the dissipation is greater than when there are 

relatively few. The trend becomes more apparent at the larger diameter ratios. Col­

lisions of large particles with small particles or with each other dissipate more energy 

than collisions between two small particles. This phenomenon is explained by the 

proportionality of the kinetic energy decrease to the mass of the colliding bodies if 

the coefficient of restitution is held constant, which it is in this case. The mass ratio 

of large to small particles is proportional to the cube of the diameter ratio, so the 

flows with larger diameter ratios show more dissipation. At the highest solid fraction 
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Figure 3.39 Ratio of energy dissipation rate at wall to rate of 
work done by walls as a function of solid fraction ratio for mix-
ture flows with overall v = 0. 75. 

ratio, for all three size ratios, the dissipation rate approaches the limit of that for the 

same-size flow with the same overall solid fraction, which is plotted as a dotted line. 

Figure 3.39 shows that the fraction of work dissipated in a mixture at the boundaries 

increases slightly with solid fraction ratio. The dotted line shows the value of this 

ratio for same-size flows with the same overall solid fraction. Only flows with many 

large particles exhibit a ratio lower than that for the mono-sized system. Figure 3.40 

presents the rate of work done as a function of solid fraction ratio for binary mixtures, 

non-dimensionalized by the same quantity for a same-size flow. The results indicate 

that the work done by the walls in a mixture is generally higher than that done in 

a flow of single-size particles at the same solid fraction. At high diameter ratios and 

large numbers of large particles, the work done is almost 35 times that of the flow of 

one particle size at v = 0.75 and h/d = 40. 

The energy equation used for same-size particle flows can also be applied here 
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Figure 3.40 Rate of work done by moving boundaries as a func­
tion of solid fraction ratio for mixture flows with overall v = 

0. 75. The work is normalized by the value of the work done in 
a flow with a diameter ratio of one and the same solid fraction. 

for binary mixtures in the same form (equation 3.16). However, the kinetic theory­

derived expression for the kinetic, or streaming, conductivity, kkt, does not apply for 

mixture flows. In the same-size flow calculations, however, this streaming term only 

accounts for at most 33 of the total conductivity used in the calculation; the molecular 

conductivity, kmc, is far larger at all solid fractions. Therefore, the analysis is followed 

in the same manner as in the same-size flows, with the exception of neglecting the 

contribution of the streaming conductivity, kkt, so that ktot = kmc· The resulting 

adiabatic wall temperature, 8 = (T - To)/(U2 /cp), is shown in figure 3.41 as a 

function of solid fraction ratio for various size ratios. The temperature follows the 

same trend as the dissipation rate in these flows; flows with many large particles 

dissipate more energy, resulting in a higher thermodynamic temperature. 
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Figure 3.41 Non-dimensional adiabatic wall temperature as a 
function of solid fraction ratio for various diameter ratios in 
mixture flows, for kp/k9 = 23. 

3.2.5 Simulations including electrostatic charge effects 

In many granular flows of small particles and powders, other inter-particle surface 

forces become extremely important to the flow dynamics. In an effort to model 

the effect of one common force that is found in many industrial flows, electrostatic 

charging between particles has been added to the discrete element simulations. The 

purpose of these specific simulations is to understand shear flows of carrier particles 

and toner particles in high-speed photocopiers and laser printers. Carrier particles are 

often five to ten times larger than toner particles and are used to ease the handling 

of the small toner particles. While being mixed with carrier particles, toner particles 

accumulate an opposite charge to that of the carriers, allowing them to be attracted 

to the larger carrier beads. 

To model this interaction, binary mixture simulations were conducted in the same 
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Figure 3.42 Snapshot of flow for a simulation with electrostatic 
charge and¢= 10, R = 0.5, h/dsmall = 40, and overall v = 0.75. 

plane geometry as those described earlier without charge (that is, v = 0. 75 and 

h / dsmall = 40), with the only difference being the addition of a point charge at 

each particle's center. The large and small particles are oppositely charged so that 

the net charge in the domain is zero. Thus, the relative magnitude of the charges 

depends on the solid fraction ratio of the two species. The charge placed in each 

small particle is 6.7 x 10-16 Coulombs. This value is one-tenth of that of an average 

toner particle [Eklund et al., 1994], and was chosen so that it would be large enough 

to attract particles to each other but small enough to avoid large overlapping of the 

simulation particles. 

Figures 3.42 and 3.43 are snapshots of flows with charged particles at two dif­

ferent solid fraction ratios. The small particles form layers around each of the large 

particles as well as a layer against the solid boundaries. Although the boundaries are 

uncharged, the small particles are repelled from the other small particles with like 

charge in the flow and adhere to the walls. The normal force against the walls is large 

enough for the layer of small particles to travel at the same speed as the moving wall. 

The number of layers around each large particle increases with the solid fraction ratio, 
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Figure 3.43 Snapshot of flow for a simulation with electrostatic 
charge and¢= 10, R = 2.5, h/dsmall = 40, and overall v = 0.75. 

because as the number of large particles decreases, the charge on each large particle 

increases to maintain a net charge of zero in the flow. As the charge on each large 

particle increases, the force between large and small particles also increases, allowing 

more layers of small particles to be attracted to a single large particle. 

Figure 3.44 shows the velocity, solid fraction, and granular temperature profiles 

of simulation shown in figure 3.42. The velocity profile shows that the mean velocity 

in the flow is zero and only the particle layer against the wall is moving at the speed 

of the wall. The rest of the particles are not shearing and do not feel the effect of 

the walls. The solid fraction profiles in figure 3.44(b) show that the large particles 

in this flow form three distinct layers. The small particle solid fraction shows a large 

jump nearest the boundaries (at y / dsmall = -20 and 20), corresponding to the layers 

against the wall observable in the snapshot in figure 3.42. 

Simulations with charge were run for one diameter ratio, </> = 10, and three solid 

fraction ratios, R = 0.5, 1, and 2.5. Wall stresses were measured just as in the 

uncharged mixtures, and the results are presented in figure 3.45 along with the results 

of the uncharged simulations (repeated from figure 3.29). Simulations with charge 

show that the wall stresses increase significantly as a function of the solid fraction 
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ratio of small to large particles, R. This behavior differs from that of the uncharged 

system, whose wall stresses decrease with solid fraction ratio. The increased stresses in 

the charged simulations are caused by the additional layers of small particles against 

the wall, as well as the closer proximity of the large particles to the walls, as seen in 

figure 3.43. 

The simulations performed with electrostatic charge illustrate the usefulness of 

the discrete element method for modeling flows with complex interaction forces. The 

geometry of these specific simulations was not ideal because when charge was added, 

the particles hovered in the channel, with minimal wall contact. There was almost no 

velocity gradient in the channel and no flow resulted. Future simulations for modeling 

of charged flows should include gravity as well, forcing the particles to contact their 

boundaries and be sheared. Qualitatively, however, the simulated flow resembles flows 

of toner and carrier particles, in that the large carrier particles become surrounded 

with smaller particles adhering to them due to the charge attraction. The simulation 

behavior confirms that discrete element simulations can be used to model flows with 

electrostatic charging, and at least qualitative similarity can be achieved even with 

the extremely simple model implemented here. 
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Chapter 4 

Experiment 

A cylindrical Couette flow apparatus has been devised to perform experiments on 

granular shear flows. Both flows of particles of the same size as well as flows of 

mixtures of two different particle sizes are studied experimentally. Several different 

kinds of measurements are made in the apparatus, including shear stress measure­

ments and velocity measurements. In this chapter, the experimental instrumentation, 

measurement methods, and apparatus are described. 

4.1 Apparatus 

The experimental apparatus illustrated in figure 4.1 consists of two concentric alu­

minum cylinders whose surfaces are coated with grade 40 (3M extra coarse) sand­

paper. The inner cylinder is attached to a shaft that is rotated by a motor, while 

the outer cylinder remains stationary. Spherical glass beads with diameters of 3, 4, 

6, or 8 mm are sheared between the inner rotating cylinder and the outer stationary 

cylinder. 

Figure 4.1 illustrates the experiment in its horizontal orientation, with the shaft 

perpendicular to gravity. The entire apparatus can also be rotated ninety degrees so 

that the cylinder is oriented vertically, parallel to the direction of gravity. The outer 

cylinder has an inner diameter of 20±0.1 cm. Three inner cylinders with varying 
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Figure 4.1 Experimental apparatus. 

diameters (8, 12, and 14±0.1 cm) have been constructed and are interchangeable, 

allowing the width of the gap between the cylinders to vary between 6, 4, and 3 

cm. The length of the cylinders is 31. 75±0.5 cm. The glass window and clear 'lucite 

support on one end of the cylinders allows for visual observation of the flow within the 

apparatus. High-speed video can be taken through this window in order to digitally 

track the particles inside. Figure 4.2 is a photograph of the apparatus. 

Table 4.1 catalogs the equipment used for the experiment. The DC motor driv­

ing the inner cylinder was able to run at variable speeds up to 46 RPM ( 4.8 radi­

ans/second), with a maximum torque of 37 N-m (330 in-lbs) and a gear ratio of 41.2:1. 

An optical encoder attached to the motor determined the exact rotational speed of 

the inner cylinder. The rotational speed was displayed digitally as the experiment 

ran so that the rotation rate of the inner cylinder could be set with an accuracy of 

±0.01 rad/s at any time. 
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Figure 4.2 Photograph of horizontally oriented experimental ap­
paratus with the smallest of the three inner cylinders. The other 
two cylinders can be seen in the background, standing vertically. 

4.2 Measurement techniques 

Various experimental measurements, including shear stress, particle velocities, and 

mass fraction were made using the apparatus and equipment described above. 

4.2.1 Shear stress on outer cylinder 

One of the initial goals of the experimental work was to measure the shear stress on 

the cylinders as a function of various parameters, including rotational speed, particle 

size, and fill level. The shear stress on the outer cylinder was measured in the following 

manner. The outer cylinder is decoupled from the inner cylinder and free to rotate 

separately. It has an aluminum arm attached to one side that rests on a load cell 
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I Equipment I Manufacturer I Model I Specifications 

90V DC GearMotor Bison 011-348-7041 ±HP, 37 N-m torque 
Variable-speed drive Minarik MM23001C 
Optical encoder Minarik PK21-30-5V 30 pulses per rev. 
Rate indicator Red Lion CUB50000 Counter and display 

for encoder output 
Power supply Red Lion APS For CUB5 & PK21 
Load cell Sensotec , .. 1 1 .("'\~ 11 

10 max. 10aa: Lu rns. 
Universal inline Sensotec 008-0295-00 For load cell 
transducer amplifier 
Data acquisition card RC Electronics lMHz samp. rate 
High-speed video camera RedLake 500 f/s 
Imaging board EPIX PIXCI-SV3 Rev. 3.0 
Imaging PC software EPIX XCIP 

Table 4.1 List of equipment used in experiments. 

when the experiment is running. The load cell measures the force necessary to keep 

the outer cylinder from rotating when there is a granular material between the two 

cylinders. Because the total torque is constant, and independent of the radial distance 

at which it is measured, this force measurement can be used to calculate the torque 

on the system. The torque is then used to calculate the shear stress, or the tangential 

force per unit area on the outer cylinder. Specifically, 

Torque 

TrB, outer 

( F measured) ( Rload cell) = ( Fouter cylinder) (Router) 

Fouter ( F measured) ( Rtoad cell) 

Surf ace Area (Router) (Surf ace Area) ' 

( 4.1) 

(4.2) 

where the torque is equal to the force measured on the load cell (Fmeasured) multiplied 

by the radial distance between the center of the cylinders and the load cell (Rzoad cell)· 

Fouter is the corresponding force on the inner surface of the outer cylinder, and Router is 

the radial distance from the cylinder center to the inner surface of the outer cylinder. 

The appropriate surface area is the portion of the outer cylinder area that is covered 

by beads. This is equal to 27r RouterL when the cylinder is in the vertical orientation, 
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where L is the fill level of the beads in the cylinder. The shear stress on the outer 

cylinder is represented as TrB,outer· The contribution to the torque of the shear stress 

on the aluminum base of the outer cylinder is neglected in this analysis. The base 

area is significantly smaller than that of the barrel, especially at large fill heights, and 

the coefficient of friction of the glass beads on aluminum is presumed to be very low. 

The load cell signal was amplified using the Universal In-Line Amplifier (see ta­

ble 4.1) so that the output signal ranged between zero and five volts. The output 

voltage was read by one channel on the RC Electronics data acquisition card. The 

resolution of the data acquisition was ± 5 m V, which translates to ± 0.11 N in the 

force. The load cell and amplifier system was calibrated using a shunt calibration ac­

cording to the manufacturer's instructions. To verify this calibration, tests were done 

by placing known weights on the load cell and determining the output signal. This 

method was much less accurate than the shunt calibration because it was difficult to 

place the large weights on the small surface of the load cell, and was only used to 

confirm the calibration. 

The amplified signal from the load cell was read by a data acquisition system run 

on a PC with an Intel 386 processor. The sampling period used for the majority of 

measurements was either 1 or 2 ms. This high sampling rate was used to capture 

the large fluctuations in the stress measurements accurately, with 5 to 10 samples 

per period of the highest frequency fluctuations. Samples were taken continuously 

for 32 seconds, and the resulting signal was averaged over this period. Before each 

set of runs, the load cell was allowed to warm up for at least 10 minutes and the 

outgoing signal was zeroed by adjusting the amplifier. Data was acquired for 32 

seconds at this approximate zero. The average of this signal (usually less than 5 m V) 

was then subtracted from the subsequent set of data. Data acquisition began after 

the experiment was running at the desired rotation rate for at least three rotations. 
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4.2.2 High-speed imaging analysis 

High-speed video of the flow was taken through the glass window at the front of the 

experiment. A high-speed digital black and white video camera was used at a framing 

rate of either 125 or 250 frames per second. High-speed video was digitized using an 

EPIX digitizing card in a Pentium Pro 200 MHz PC running the Windows NT oper­

ating system. A commercial software package provided by the card manufacturer was 

used with the card to digitize video images. A particle tracking algorithm provided 

with the software was used to track features (usually light reflected off individual 

glass beads) of the flow from one frame to the next. 

To determine the particle angular velocity as a function of radial position, video 

was taken of one section of the front of the cylinder, for example, of a square region 

at the very bottom covering an angular arc of perhaps 20 degrees. Great care was 

taken to ensure that the light source was sufficiently far from the front of the ap­

paratus and oriented in such a way that each light reflection spot traveled with its 

corresponding particle. After being digitized, the contrast of the image was enhanced 

so that all pixels above a particular gray level became white, and the others black. 

This threshold level was different for each video and depended on the lighting of a 

particular experimental run. The image was converted to a series of white spots on 

a field of black, each corresponding to the light reflection off a particle surface. The 

computer program then tracked each spot from one frame to the next, marking its 

position in each of the two frames. The framing rate of the video was chosen so that 

each particle moved a fraction of one particle diameter in one frame, and the analysis 

could be performed on each particle without confusing the locations of two separate 

particles. A program was written to repeat this process over a sequence of several 

hundred frames. The ( x, y) location of the center of each light reflection at each of two 

consecutive frames was converted into a location in (R, e) coordinates. The velocity 

of each particle in the R and (} directions was then determined as a function of radial 

location, R. 
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Bead mixture 

Cardboard ring 

Figure 4.3 Diagram illustrating placement of cardboard bottom 
in the experiment to shorten the length. The dyed bead mixture 
was placed in the front region near the glass window. 

In the flow of a mixture of particles of two different sizes, it was necessary to 

make measurements of each type of particle separately. To accomplish this, the 

smaller particles were first dyed black. High-speed video was taken of the experiment 

running, but only the reflections off of the undyed larger particles were tracked by 

the software. Velocity measurements were made using the procedure outlined above. 

In addition to determining particle velocities, the same data could be analyzed to 

find the number of large particles as a function of radial location. The number of 

light reflections at any given radial location was divided by the total number of light 

reflections appearing in a particular run. This normalization was necessary due to 

differences in lighting that may have occurred between runs. To perform the same 

analysis on the smaller particles, the larger ones were dyed black and the process was 

repeated. The experiments with the dyed particles were performed with a cardboard 

separator in the apparatus, shortening the effective length of the experiment (see 

figure 4.3), thus requiring fewer dyed particles. It addition, the shallower depth 

(usually only 5-7 cm) corresponded more closely with the geometry of the three­

dimensional computer simulations with which data was compared. 
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4.2.3 Bulk measurements of mass fraction 

Another type of measurement performed on the experiment was a bulk measurement 

of the mass fraction of each type of particle in a particle mixture of two different sizes. 

Using the experiment in its horizontal orientation with the false bottom cardboard 

ring (see figure 4.3), the experiment was run for between 10 and 20 minutes. The 

apparatus was then carefully rotated 90 degrees to its upright position and the win­

dow removed to gain access to the bead mixture. Eight aluminum separators were 

inserted into the mixture at 45 degree intervals, separating the circular region into 

eight sectors. The particles were removed from each sector, separated, and weighed 

(with an accuracy of ±1 gram, or roughly 2%). This procedure yielded measurements 

of the mass fraction of each kind of particle as a function of angular location. 
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Chapter 5 

Cylindrical Couette Flow: Experiments 

and Simulations 

This chapter contains results from experiments and computer simulations and pro­

vides comparisons between the two for the same conditions. Comparisons between 

computer simulations and experiments are extremely important for validation of the 

simulation models. In flows of identical particles, mean velocities and velocity fluctu-

ations are measured. In binary mixtures, segregation of the two mixture components 

is investigated using both experiments and simulations. 

5.1 Single size particle flows 

This section presents velocity profiles and fluctuation velocities from experiments and 

three-dimensional simulations of cylindrical Couette flow for identical particles. 

Much of current granular flow theory is derived from the analogy between particles 

in a granular material and individual molecules in a dense gas. Thus, the temperature 

of a gas is analogous to the fluctuation velocity of the granular particles. Experimental 

measurements of both components of the fluctuation velocity have previously been 

made by Drake [1991] and Natarajan, Hunt and Taylor [1995] in inclined chute flows 

and vertical channel flows, respectively. 
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Experiments m two-dimensional cylindrical Couette flows have also been con­

ducted recently. Elliot, Ahmadi, and K vasnak [1998] conducted rapid Couette flow 

experiments on spherical glass particles 12 mm in diameter confined in a monolayer. 

The particles were placed between inner and outer walls that rotated in opposite 

directions and were roughened by the attachment of toothed rubber belting. The 

axis of rotation was vertical, parallel to the direction of gravity. Video imaging very 

similar to that used in the current experiments was used to measure solid fractions, 

velocities, and fluctuation velocities in the two-dimensional system. Average solid 

fractions in this study were low (less than 30% in three dimensions) and strain rates 

in the material were between 6 and 16 s-1 , higher than in the current experiments. 

Veje, Howell and Behringer [1999] recently conducted experiments on photoelastic 

disks resting on a smooth surface and being slowly sheared between a rotating inner 

wheel and an outer stationary ring, each coated with plastic "teeth." The inner cylin­

der rotated with a period of between 100 and 2000 seconds, significantly more slowly 

than in the current experiments. The initial dilation of the material was investigated 

as well as packing density profiles, mean velocity profiles and spin profiles for different 

rotation rates and packing fractions. 

Because of the difficulty in making experimental measurements in granular flows, 

computer simulations are often used in their study. The research presented in this 

chapter offers direct quantitative comparison of results from experiments and com­

puter simulations. 

The experiment described in the prev10us chapter was used to study flows of 

particles of the same size. Two different sizes of spherical glass beads ( 6 mm and 4 

mm in diameter) were used in the apparatus. In addition, two different sizes of the 

rotating inner cylinder were used: the largest inner cylinder, with a diameter of 14 

cm, and the medium inner cylinder, with a diameter of 12 cm. The outer cylinder, 

with an inside diameter of 20 cm, was stationary while the inner cylinder rotated at 

various speeds up to approximately 45 RPM. Both shearing surfaces were covered 
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Figure 5.1 Cross-section of top region of vertically-oriented ex­
periment, illustrating the original and final free surface loca­
tions. 

with sandpaper for roughness. This section discusses the mean particle velocities and 

fluctuation velocities determined through the use of high-speed imaging. The imaging 

method is described in Chapter 4. 

5.1.1 Vertical orientation: experiments 

When the experiment is vertically oriented, with the cylinder axis parallel to the 

direction of gravity, the viewing window is at the top. The free surface of the glass 

beads is a few centimeters away from the glass window. Velocities for the vertical 

experiments were determined for the particles at the free surface only; it is not clear 

how these velocities might differ from those within the flow. The flow is observed to 

have a vortical nature; that is, while the inner cylinder rotates, the free surface is not 

level, but rather it slopes down toward the inner cylinder (see figure 5.1). 

Due to this unevenness in the free surface where the video was taken, the radial 

component of the particle velocities was not zero, because particles were continually 
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Figure 5.2 Experimental velocity profiles at various strain rates 
for vertical orientation with largest inner cylinder and 6 mm 
beads (h/d = 5). 

rolling down the inclined surface toward the inner cylinder. Khosropour et al. [1997] 

performed similar experiments in a vertically-oriented Couette flow apparatus, and 

observed the velocity of one large particle in a flow of smaller beads. A convection 

pattern was observed in which a thin (a few small particle diameters) layer of beads 

near the inner cylinder traveled downwards. The observations of that experiment are 

similar to those of this experiment, although it was not possible to make quantitative 

observations of the phenomenon in the current apparatus. However, an observer of 

the current vertical experiments would clearly see particles rolling down the inclined 

free surface and a net motion toward the inner cylinder. 

The slanting of the free surface made measurements of velocities at the surface 

difficult, because the camera did not observe a level plane. Nevertheless, measure­

ments were made of flows with the largest inner cylinder and 4 mm and 6 mm beads 

(hf Rinner= 0.43, with h/d = 5 and h/d = 7.5). Mean particle velocity profiles in the 
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Figure 5.3 Experimental velocity profiles at various strain rates 
for vertical orientation with largest inner cylinder and 4 mm 
beads (h/d = 7.5). 

flow direction (ve) and the transverse direction (vr) are shown in figures 5.2 and 5.3. 

Experiments were performed at five different rotation rates, specified by the strain 

rate, Vwau/ h. The mean velocity of the particles in each averaging bin (roughly one 

particle diameter in width) is calculated by comparing consecutive frames of high­

speed video (see Chapter 4). The velocity is plotted in figures 5.2 and 5.3 as a function 

of the radial location, which is normalized by the particle diameter d. The position 

R/d = 0 corresponds to the location of the inner rotating cylinder, and R/d = 5 or 

7.5 corresponds to the stationary outer cylinder surface. The velocity at each loca­

tion has been normalized by the velocity of the moving inner cylinder surface ( Vwall). 

The particle velocities collapse fairly well when normalized by the wall velocity in 

this manner. Therefore, the shape of the velocity profile is independent of the ve­

locity of the inner wall, and the velocity of the particles is linearly proportional to 

the wall velocity. Measurements of the mean radial velocity component show that 
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5 

the radial velocity is slightly negative, due to the avalanching of particles toward the 

inner cylinder. 

In the recent study of a two-dimensional vertical Couette fl.ow by Elliot et al. [1998], 

velocity profiles were found to be generally linear with R/ d, unlike those of the current 

study. In that study, both inner and outer walls were moving, and, additionally, the 

surface roughness was probably greater than that of the current experiments (they 

used toothed rubber belting). In addition, although the profiles were generally the 

same at various strain rates, the slip velocity at the outer wall decreased with in­

creasing strain rate, a phenomenon not observed in the current study. The mean 

velocity profiles in the similar two-dimensional study of photoelastic disks by Veje et 

al. [1999] resemble the current profiles more closely, because only the inner cylinder 

is rotating, just as in the current work. In that work, the gap width is approximately 

15 particle diameters in width, and the velocity profile levels off near zero at around 
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Figure 5.5 Experimental profiles for the two measurable compo­
nents of fluctuating velocity at various strain rates with largest 
inner cylinder and 4 mm beads (h/d = 7.5); vertical orientation. 

8 

R/ d = 7 for all rotation rates. At the lower velocities near the outer cylinder, the 

non-dimensional velocities were not rate invariant. In that work, the authors suggest 

that the breakdown in rate invariance is caused by fluctuations in the packing pro­

files during shorter times, and that rate independence might be observed if data were 

obtained over much longer times. As in the work of Elliot et al. [1998], the boundary 

conditions of the work of Veje et al. [1999] are also very different from the ones in the 

current study. 

Fluctuation velocities were also measured for the flow described above. The flue-

tuation velocity of a particle is calculated by subtracting the mean velocity of its 

averaging bin from its velocity. The average fluctuation velocity in each bin is calcu­

lated by squaring each particle's fluctuation velocity, averaging this quantity over all 
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the particles in the particular bin over time, and taking its square root: 

lv'I = J (( v - (v) )2). (5.1) 

Figures 5.4(a) and (b) show the fluctuation velocities in the flow direction, v~, and 

trans,rerse direction, v~, as functions of radial distance. Because the fluctuation "'"Ve-

locity is related to the standard deviation of the mean velocity, any errors in velocity 

measurement are attributed to fluctuations in the velocity. Such errors are due to a 

particle not being tracked correctly from one frame to the next and being attributed 

a false velocity far from the mean. Because the error is not systematic and is not 

directional, it will cancel to zero in the mean velocity measurements. In the fluc­

tuation measurements, however, these errors will be considered fluctuations in the 

mean and contribute to the quantity plotted in figures 5.4 and 5.5. Unfortunately, it 

is not possible to separate the fluctuation velocity from the standard deviation due 

to error in the measurement. However, there is clearly a component of this quantity 

that does scale with velocity, indicating that the measurement of fluctuations is not 

overwhelmed by the error. The magnitudes of the fluctuation velocities in both di­

rections increase closer to the inner cylinder, where there is a higher mean velocity 

gradient. Experiments by Natarajan et al. [1995] in vertical chutes also showed a 

larger transverse fluctuation velocity near the regions of higher strain rate, although 

the fluctuation velocity in the flow direction was generally constant. Measurements 

of fluctuation velocities in the work of Elliot et al. [1998] are nearly constant across 

the gap, but in that work the velocity profile was generally linear, with no large 

differences in the velocity gradient. 

5.1.2 Horizontal orientation: experiments 

Measurements using high-speed imaging are more accurate and easier to make when 

the experiment is horizontally oriented. The particles in this orientation are flush 
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Figure 5.6 Experimental velocity profiles at various strain rates 
for horizontal orientation with largest inner cylinder and 6 mm 
beads (h/d = 5). 

with the surface of the glass, so the video camera can focus on the plane of the 

foremost particles. It is not clear from the experiments how particle velocities at 

the glass window differ from the velocities within the cylinder. In this orientation, 

measurements have been made using two different inner cylinder sizes (14 cm and 12 

cm diameters) and two different sizes of glass beads ( 4 mm and 6 mm diameters). All 

measurements presented here were taken from video of the bottom of the experiment, 

nearest the floor and 180 degrees from the free surface, over an angle of approximately 

twenty degrees. 

Figures 5.6~5.9 show the mean velocity in both the flow direction (ve) and the 

transverse direction ( Vr) as a function of non-dimensional radial position, R/ d, for 

various strain rates, Vwazz/ h. Each figure represents data for a different value of h/ d, 

based on varying both the gap width, h, and the particle diameter, d. In all four 

cases, the flow velocities scale with the wall velocity and the normalization collapses 
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Figure 5. 7 Experimental velocity profiles at various strain rates 
for horizontal orientation with largest inner cylinder and 4 mm 
beads (h/d = 7.5). 

the profiles for all the strain rates onto one curve. This result indicates, just as in the 

case of the vertically-oriented experiment, that the particle velocity scales linearly 

with the velocity of the inner cylinder. The mean radial velocities are very close to 

zero in all cases, as would be expected in a Couette flow. 

The velocity of the particles adjacent to the inner cylinder (at R/d = 0) ranges 

from about 0.25vwall to 0.35vwalli indicating that there is significant slip at the inner 

wall, from 65 to 753. The velocity near the outer stationary cylinder is very close 

to zero in all cases except that of h/ d = 5. It was visually observed that in this case 

of h/ d = 5 the particles adjacent to the outer cylinder were not stationary; rather 

there was slip occurring at that cylinder as well. For the other experimental runs, the 

particle layer adjacent to the outside cylinder was not moving perceptibly. Figures 5.8 

and 5.9, corresponding to the runs with the middle inner cylinder and a gap width 

h of 4 cm, show that there are several particle layers near the outer wall that have 
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Figure 5.8 Experimental velocity profiles at various strain rates 
for horizontal orientation with middle inner cylinder and 6 mm 
beads (h/d = 6.67). Each strain rate was repeated. 

zero velocity. The number of non-shearing layers of particles does not seem to be a 

function of h/d alone. For the run with h = 3 cm (hf Rinner= 0.43) and h/d = 7.5, 

there are two stationary layers near R = h. When h = 4 cm (h/ Rinner = 0.67) and 

h/ d = 6.67, however, there are three stationary layers of particles. Thus, a larger gap 

width h results in a smaller region of shearing near the inner cylinder, regardless of 

the ratio h/d. At a given h, however, the number of non-shearing particle layers does 

depend on h/ d, with larger values producing more stationary layers. 

Ideally, h / d would be the only variable in this Couette flow of particles, but the 

results show a dependence on h/ Rinner as well. If it were possible to keep h/ Rinner 

very small, the only variable would be h/d. However, in this experiment the value of 

h/ Rinner is either 0.43 or 0.67, both of order one. The mean velocity profiles illustrate 

that both h/ d and h/ Rinner are significant variables in the system. 

The fluctuation velocities in both the flow direction ( 0) and the direction per-
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Figure 5.9 Experimental velocity profiles at various strain rates 
for horizontal orientation with middle inner cylinder and 4 mm 
beads (h/d = 10). The run with the strain rate of 4.5 was 
repeated. 

pendicular to the mean flow (R) were also measured in the horizontally oriented 

experiment. The definition of the fluctuation velocity is given in equation 5.1. The 

results for these measurements are shown in figures 5.10~5.13 for each of the four 

values of h/ d. Each plot shows the fluctuation velocities for several different wall 

velocities, normalized by the wall velocity. The fluctuation velocities increase near 

the inner cylinder, where the flow is more agitated. The normalization collapses the 

results into bands, but there is still some scatter. This scatter is attributed to some 

error in the automated measurement technique, as explained in section 5.1.1 for the 

vertically-oriented experiment. Several of the experiments were repeated to illustrate 

the repeatability and quantify the scatter in the measurements. 

In conclusion, results from the horizontally oriented experiments with particles of 

the same size show that average velocities scale linearly with the wall velocity. In 

addition, measurement of fluctuation velocities show that they increase in the region 
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Figure 5.10 Experimental profiles for the two measurable compo­
nents of fluctuating velocity at various strain rates with largest 
inner cylinder and 6 mm beads (h/d = 5). 
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Figure 5.12 Experimental profiles for the two measurable compo­
nents of fluctuating velocity at various strain rates with middle 
inner cylinder and 6 mm beads (h/d = 6.67). 
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of higher shear near the inner wall. This result has also been shown experimentally for 

transverse fluctuation velocities in a vertical chute [Natarajan et al., 1995]. In all of 

the current experiments, the fluctuation velocities in the flow direction ( B) are higher 

than those in the transverse, or perpendicular (R), direction. This anisotropy in the 

fluctuation velocities was also observed in certain regions by Elliot et al. [1998] in 

two-dimensional vertical Couette flows and by Natarajan et al. [1995] in the vertical 

chute experiments. 

5.1.3 Horizontal orientation: computer simulations 

Discrete element computer simulations, described in Chapter 2, were performed for 

comparison with experimental velocity and fluctuation velocity profiles. The simula­

tions are three-dimensional and include contact forces and gravity forces. The normal 

contact force is modeled using the spring/dashpot contact model for almost all the 

simulations. The latched spring method is used in one simulation for comparison (see 

section 2.1.l for description of contact models). The dimensions of the inner and 

outer cylinders in the simulations are identical to those of the experiment. The depth 

of the simulations, however, is only five particle diameters. The number of particles 

in the simulation is chosen so that the size of the free surface region is similar to 

that observed in the experiment. The front and rear walls of the simulations are flat 

surfaces with a coefficient of friction µw of 0.1. In the experiment, the front surface is 

glass and the rear aluminum, so that a low friction coefficient is expected. The inner 

and outer cylinders of the simulation have a wall friction coefficient of µw = 0.7, to 

model the rough sandpaper. The inter-particle friction coefficient is chosen to be µP 

= 0.3, to model the interaction of glass on glass. Smooth glass particles would be 

expected to have a lower friction coefficient than 0.3, but the particles used in the 

experiment develop roughnesses and are not perfectly circular; in the simulation, the 

higher coefficient of friction is chosen to incorporate these effects. The coefficient of 

restitution of collisions between particles, eP, is 0.9 for most simulations, except one 
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for which eP = 0. 7 for comparison. The coefficient of restitution of particle collisions 

with all walls is ew = 0.7. The density of the particles is approximately the density 

of glass, 2500 kg/m3 . 

The particles were arranged in an initial random position with a small random 

velocity within the cylinder and allowed to settle under gravity. Each simulation was 

run for three seconds and properties were averaged for the last 1.5 seconds, once they 

had achieved a constant kinetic energy; samples were taken at a rate of either 50 or 

100 samples per second. Average velocity profiles and fluctuation velocity profiles 

were calculated by averaging values in strips of about one particle diameter. All the 

results in this section are calculated at the bottom section of the circle, over an arc 

of 45° furthest from the free surface. The profiles are calculated at the front surface 

of the simulations; that is, only particles whose center is at z < 0. 75d are included 

in the averages. This is done so that the measurements are as close as possible to 

the experimental velocities, which are measured at the glass window. The strain 

rates ( Vwau/ h) for the simulations are lls-1 for the runs modeling the largest inner 

cylinder (h/d = 5 and h/d = 7.5), and 7s-1 for those with the middle inner cylinder 

(h/d = 6.67 and h/d = 10). These are highest strain rates that the experiment 

was able to run, and the corresponding experimental results shown are taken from 

experiments run at approximately those strain rates. 

Figure 5.14 shows the velocity profiles for two different simulations run under 

identical conditions, except that one uses the latched spring model and the other the 

spring/dashpot model. The latched spring model describes the physics of a normal 

collision more accurately than the spring/dashpot model, and it was thought that 

it might compare more favorably with experimental results. This does not seem to 

be the case, as the velocity profiles of the two contact models are nearly identical. 

The results from the corresponding experiment with h/ d = 7.5 are also shown in 

figure 5.14, and show that the simulation results compare favorably those from ex­

periments. Figure 5.15 presents the results from the two contact models along with 
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Figure 5.14 Comparison of experimental velocity profiles with 
simulations using two different normal contact models; h/d = 
7.5. 

those from experiments for the fluctuation velocities in the flow direction (a) and the 

transverse direction (b). The simulations in this case both overpredict the fluctuation 

velocities from the experiments. It is not clear why the simulations do not model the 

correct fluctuation velocities. 

Figures 5.16 and 5.17 present results from simulations and experiments at h/d = 5. 

The simulations were both run with the spring/dashpot contact model and identical 

conditions except for the particle-particle coefficient of restitution, which was 0.9 for 

the first simulation and 0.7 for the second simulation. This coefficient of restitution 

comparison was made to determine whether the fluctuation velocities would match 

experiments more accurately at this lower value of eP = 0. 7. The results show that 

although the simulation average velocity profiles match experiments relatively well, 

the fluctuation velocities do not. Just as in the case for h/ d = 7.5, the simulation 

fluctuation velocities are significantly higher than those measured in experiments; the 
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Figure 5.15 Comparison of experimental fluctuation velocity pro­
files with simulations using two different normal contact models; 
h/d = 7.5. 

lower coefficient of restitution does not seem to make a difference in this case. 

I 
8 

Figures 5.18 and 5.20 present the average velocity profiles from simulations and 

experiments for h/d = 6.67 and h/d = 10 respectively. Figures 5.19 and 5.21 show 

the results for the fluctuation velocity profiles. These simulations were both run with 

the spring/dashpot contact model and the particle coefficient of restitution of 0.9. 

Just as in the other two examples with the largest inner cylinder, the fluctuation 

velocities from the simulations are significantly higher than those in the experiments. 

In addition, it is clear that as h/ d increases, the velocity profiles do not match very 

well either (this is especially true in figure 5.20). The average velocity profile from 

the simulation has a much steeper slope near the inner wall than that of the exper­

iment. The actual velocity at the wall is also somewhat lower in the simulations for 

many cases. Perhaps these discrepancies could be attributed to the simplistic contact 

models used by the simulations or the inaccuracy of the contact parameters chosen. 
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Figure 5.16 Comparison of experimental velocity profiles with 
simulations using two different particle-particle coefficients of 
restitution ep with the spring/dashpot contact model; h/d = 5. 

Much of the general flow behavior is reflected by the simulation results, however. 

For example, the general shape of both the average velocities and the fluctuating 

velocities is accurate. The increasing value of the fluctuation velocities near the inner 

rotating wall is observed in both simulations and experiments. In addition, the radial 

fluctuation velocity is generally lower than the angular fluctuation velocity in both. 

Therefore, although the simulations do not make accurate quantitative predictions, 

qualitative agreement is very good. 

5.2 Mixtures 

Experiments and high-speed imaging analysis were also conducted for flows of mix­

tures of particles of two different sizes. These mixtures were one-to-one by mass 

mixtures of 4 mm and 6 mm particles. Segregation was not studied in the vertically-
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Figure 5.17 Comparison of experimental fluctuation velocity pro­
files with simulations using two different particle-particle coef­
ficients of restitution; h/d = 5. 
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Figure 5.18 Comparison of experimental velocity profiles with 
simulations for h/d = 6.67. 
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spring/ dash pot contact model. 



0.4 

0.3 

'@ 

.J -:;a, 0.2 

0.1 

00 

-e-

.... --_.._ 
•, 

.,., 
, .. -

2 4 6 
Rid 

(a) Flow (8) direction 

105 

simulation 
experiment 

8 

0.3 

-e- simulation 
experiment 

(b) Perpendicular (R) direction 

Figure 5.21 Comparison of experimental fluctuation velocity pro­
files with simulations for h/d = 10. 

oriented experiment. Previous work has been conducted in the area of vertical seg­

regation of Couette flows, however, in a recent study by Khosropour et al. [1997]. 

In that study, experiments of a vertically-oriented Couette flow similar in geometry 

to the current experiment were conducted using a single large particle (2 or 3 mm) 

placed in the bottom of the apparatus. The apparatus was then filled with smaller (1 

mm) particles. The location of the larger particle was traced over time and its rising 

velocity was measured. A convection pattern was observed in which a layer of parti­

cles traveled downward at the inner cylinder wall, while the rest of the flow traveled 

upward at a slower velocity. After migrating upwards, the large particle remained at 

the free surface near the moving inner cylinder. It followed the convection pattern up 

to the free surface but was then unable to travel down along the inner cylinder due 

to its larger size. This sort of segregation pattern was not investigated specifically in 

the current experimental apparatus, but it was observed that after running for long 

periods of time in the vertical orientation, only large particles could be seen at the 
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free surface of the flow that initially contained a mixture of two particle sizes. 

The current experiments on mixture flows were conducted in the horizontal ori­

entation, so that any segregation of the large and small particles could be observed 

through the glass window at the front. Three-dimensional computer simulations of 

the same flow as in the experiment were conducted using the discrete element sim­

ulations described in Chapter 2. Both normal contact models (the spring/ dash pot 

model as well as the latched spring model) were used to provide comparisons between 

each model and the experimental data. 

5.2.1 Experiments 

The experiment was run in its horizontal orientation with the false bottom described 

in Chapter 4 (see figure 4.3), so that the effective depth of the flow was only 5-7 cm. 

The front region of the experiment between the cardboard and the glass window was 

filled with a mixture of equal masses of 4 mm and 6 mm spherical glass beads. Two 

different sizes of the inner cylinder were used: the largest cylinder, with a diameter of 

14 cm, and the medium cylinder, with a diameter of 12 cm. These correspond with 

a gap width, h/ dsmall, of 7.5 and 10 respectively. The velocity of the inner cylinder 

was approximately 18 cm/s, corresponding to a strain rate of Vwall/ h = 6s-1 for the 

runs with the large inner cylinder, and 27.5 cm/s (vwazz/h ~ 6.9s-1 ) for the runs with 

the medium-sized inner cylinder. 

5.2.2 Three-dimensional computer simulations 

Three-dimensional discrete element simulations (described in Chapter 2) were used 

in conjunction with experiments to study the segregation pattern in the horizontally 

oriented cylindrical Couette flow. Interstitial gas forces are not accounted for in the 

simulations. Khosropour et al. [1997] conducted experiments on segregating Couette 

flows in a vacuum as well as in air and concluded that the absence of air did not 

change the results; thus, it is assumed that the error associated with the absence of 
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interstitial air in the current computer simulations is negligible. 

The flows simulated are shear flows with gravity in the same geometry as the 

experimental flows. The main difference is that the depth of the simulations is only 5 

large particle diameters. The experimental apparatus, even with the cardboard false 

bottom, is approximately 5 to 7 cm, or 8 to 12 large diameters long. All the other 

dimensions (cylinder diameters and particle diameters) are the same as those of the 

experiment. As in the same-size simulations, the number of particles in the simula­

tions was chosen so that the free surface looked similar to that of the experiments. 

The inner and outer cylinders have a coefficient of wall friction, µw = 0. 7, to drive 

the flow, while the inter-particle friction coefficient, µP, is 0.3. The front and rear 

boundaries are flat walls with a coefficient of friction of 0.1. The coefficient of restitu­

tion of inter-particle collisions is eP = 0.9, and the coefficient of restitution of all wall 

collisions (including those against the front and rear walls) is ew = 0. 7. The density 

of the particles in the simulation is also approximately that of glass, 2500 kg/m3
. The 

nominal strain rate in the simulation, Vwau/h, is lls-1 when h/dsmall = 7.5 and 7s-1 

when h/dsmall = 10. These rates were chosen to coincide with the maximum shear 

rate possible in the experimental apparatus, although the experiments were actually 

performed at strain rates of 6s-1 and 6.9s-1 , respectively. The overall solid fraction 

in three dimensions, v, defined as the ratio of particle volume to total volume, is 0.52, 

although it is much higher in most regions of the flow, since there is some empty space 

allowed at the top of the cylinder. As in the experiments, equal masses of large and 

small spherical particles are placed in the simulated container, and their diameter 

ratio is 1.5. 

Just as was the case with the same-size particle simulations described in sec­

tion 5.1.3, all simulations begin with the initial condition of randomly placed particles 

with small random velocities. They are allowed to settle under gravity and reach a 

steady state while the inner cylinder rotates. A steady state for the flow is generally 

defined as the state for which the kinetic energy is roughly constant. In the case 
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of mixture flows, however, segregation is a time-dependent process and it is more 

difficult to determine the steady-state condition. The steady state in the current 

work was determined by plotting the standard deviation of the concentration ratio 

of large to small particles at different angular locations against time. The simulation 

with h/dsmall = 7.5 and the spring/dashpot contact model was run for 45 seconds of 

simulation time. The standard deviation of the angular number density profile was 

roughly constant after 20 seconds elapsed. Radial velocity profiles and number dis­

tributions were averaged between 30 and 35 seconds and compared with the averages 

taken between 40 and 45 seconds, with no differences between the two results. The 

simulation with h/ dsmall = 7.5 that utilized the latched spring contact model was run 

for a total of 35 seconds, and the properties were averaged for the last five seconds at 

a sampling rate of 20 times per second. The simulation with h/ dsmall = 10 was only 

run with the spring/ dash pot contact model. It ran for 40 seconds, and properties 

were averaged for the last 2.5 seconds of the run. Generally, the result at a typical 

location represents the condition in an average of between 200 and 1000 particles. 

5.2.3 Results and comparisons 

Measurements in both computer simulations and experiments have been made at 

three angular locations of the flow. A snapshot of a mixture simulation running with 

h/ dsmall = 7.5 after 20 seconds is shown in figure 5.22, along with the three measure­

ment locations, referred to as "left," "bottom," and "right." Angular velocity profiles 

and number density profiles are measured and compared at these three locations. 

In simulations, the measurements are made at each location over an arc of 45°. In 

experiments, the arc over which the measurements are made is usually between 15 

and 30°. 
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Figure 5.22 View of front of computer simulation with the three 
measurement locations. The larger particles are shaded, and the 
arrow illustrates the direction of rotation of the inner cylinder. 
Only particles whose centers are at a depth of< ld are shown 
at their full size, so that there are some gaps and some overlaps 
in the snapshot. 

Velocity profiles 

Figures 5.23, 5.24, and 5.25 show the velocity of each kind of particle in the angular 

direction, ve, normalized by the velocity of the inner cylinder, Vwall, for experiments 

and simulations with h/dsmall = 7.5. Experiments performed at different cylinder 

rotation rates with identical particles show that the velocity of the particles scales 

with the wall velocity in this manner (see section 5.1). The normalized velocity 

is plotted as a function of the radial coordinate normalized by the small particle 
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Figure 5.23 Velocity profiles for h/dsmall = 7.5 at the left. 
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Figure 5.24 Velocity profiles for h/dsmall = 7.5 at the bottom. 
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Figure 5.26 Velocity profiles for h/dsmall = 10 at the left. 
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Figure 5.27 Velocity profiles for h/dsmall = 10 at the bottom. 
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Figure 5.28 Velocity profiles for h/dsmall = 10 at the right. 
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diameter (which is 4 mm in this case). The position R/ dsmall = 0 corresponds to 

the inner moving cylinder, while R/d = 7.5 corresponds to the outer, stationary 

cylinder. The corresponding plots for h/dsmall = 10 are shown in figures 5.26, 5.27, 

and 5.28. The plots on the right side of each figure show the simulation results; these 

represent averages at the front surface of the simulations to correspond with the glass 

window of the experiment. The velocity profiles show no significant difference between 

the velocities of the two different kinds of particles except very near the inner wall, 

where smaller particles often have higher velocities. The experimental and simulation 

profiles agree very well for most cases. Results of simulations performed with the 

latched spring model are shown in filled symbols. The velocity profiles do not show 

a significant dependence on the contact model. 

Number density profiles 

To determine angular as well as radial separation of large and small particles, mea­

surements of number density of each kind of particle were made at each of three 

locations around the circle, as shown in figure 5.22. Due to changes in lighting among 

different experimental runs, the total number of particles counted using the digitizing 

method was not constant. It was thus necessary to normalize the number of particles 

of each type counted at a given radial location by the total number of particles of that 

size counted. To compare the number of large and small particles at each location, a 

quantity N has been defined as follows: 

and, for the large particles, 

nsmall 

N nsmall,tot 
small= ------.,,n,--­

n.sm,all + large 

nsmall,tot nlarge,tot 

nzarge 

N nzarge,tot 
large = -----n-­

nsm.all + large 

nsmall,tot nzarge,tot 

(5.2) 

(5.3) 
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Figure 5.29 Results for h/dsmall = 7.5 at the left side of the circle. 
The filled symbols represent simulations using the latched spring 
contact model. 
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Using this formulation, Nsmall + Nzarge = 1 at every radial location. Figures 5.29, 

5.30 and 5.31 show the results for both experiments and simulations of the same flow 

as a function of radial position R/dsmall, for h/dsmall = 7.5. Although more simple 

and accurate results are possible using the computer simulations, the same quantity 

has been plotted for comparison. Figures 5.29(a), 5.30(a) and 5.31(a) illustrate the 

pattern of segregation observed visually in the experiment. At all locations, large 

particles are concentrated heavily around the outer, stationary cylinder, while small 

particles are concentrated around the inner cylinder. But the ratio of the two kinds 

of particles in the central region varies depending on angular location. Toward the 

left side of the circle, there are more large particles in the flow, while on the right 

side there are more small particles. Thus, the radial segregation from the inner to the 

outer cylinder depends upon angular position as well. Although some segregation is 

observed in the simulations (notably in 5.29(b)), significantly more radial segregation 

is observed in the experiment. Again, results for both the spring/dashpot contact 
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Figure 5.32 Results for h / dsmall = 10 at the left of the circle. 

Figure 5.33 Results for h/dsmall = 10 at the bottom of the circle. 
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Figure 5.34 Results for h/dsmall = 10 at the right of the circle. 

model and the latched spring model are shown for comparison in 5.29(b), 5.30(b), 

and 5.31 (b), but neither contact model captures the degree of radial segregation seen 

in the experiments. Figures 5.32, 5.33, and 5.34 show the same results for the middle 

inner cylinder (h/dsmall = 10). Experimental results on the left side of each figure 

show that there is a radial segregation pattern that changes with location around 

the circle. Large particles still tend to concentrate near the outer wall, while small 

particles concentrate in the center region. Nearest the inner wall, for the bottom and 

the left parts of the circle, there is a more even mixture of sizes. Like the results 

for the smaller gap width, the simulations do not show a significant amount of radial 

segregation. 

Angular dependence of number density 

To quantify the angular dependence of the number density, measurements of the mass 

of the large and small particles at eight different angular locations were made. In the 

experiment, eight aluminum separators were inserted into the granular material after 
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Figure 5.35 The fraction of each kind of particle as a function 
of angular location for both simulations and experiments with 
h/dsmall = 7.5. The angle e is measured clockwise from the top, 
so that e = 0 corresponds to the top and e = 90 is on the right. 
Results are for simulation run with a spring/ dashpot contact 
model. 

the experiment had run for at least ten minutes and the amount of beads of each size 

in each sector were weighed (see section 4.2.3 for measurement method details). The 

same measurements were made in the computer simulations and experiments for the 

two different gap widths, h/ dsmall = 7.5 and 10. These measurements are made for 

the bulk material in the system, not just at the glass window. 

Figures 5.35, 5.36, and 5.37 show the mass fraction of small particles and large 

particles at each of eight angular locations in the flow. The figures show that the 

fraction of large particles is highest in the upper left of the circle. This result can 

be also be observed in figure 5.22, where the larger shaded particles are clustered 

on the left side of the free surface. The large particles segregate in the agitated 

free surface region, rising to the top. This gravitationally induced segregation is 
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Figure 5.36 The fraction of each kind of particle as a function 
of angular location for both simulations and experiments with 
h/dsmall = 7.5. This simulation was run with the latched spring 
contact model. 

similar to that observed previously in chute flows [Savage and Lun, 1988; Hirshfeld 

and Rapaport, 1997] and vertically vibrating flows [Gallas et al., 1996]. In the more 

agitated region near the top of the circle, smaller particles have a higher probability 

of falling through an opening between other particles. Thus, there is a net flux of 

small particles downward toward the inner cylinder, while the larger particles are 

pushed up to the surface. A more complete discussion of this process can be found 

in the work of Savage and Lun [1988] in chute flows. In the case of the horizontal 

Couette experiment, however, the mean motion to the left pushes the large particles 

to the left side of the free surface region, introducing an asymmetry in the general 

flow. This asymmetry can be seen in figures 5.35 - 5.37; if the flow were symmetric 

then the mass fraction graph would also be symmetric about the 180° mark. 

In the simulations (results are shown in the open symbols), the mass fraction 
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Figure 5.37 The fraction of each kind of particle as a function 
of angular location for both simulations and experiments with 
h/dsmall = 10.0. 

measurements were made at the last sample taken of the simulation run. Simulations 

show the same qualitative behavior as experiments, and the results for h/ dsmall = 7.5 

agree quantitatively as well (figures 5.35 and 5.36). As with the previous results, the 

choice of contact model does not seem to influence the results. In the simulations 

with h/ dsmall = 10, however, segregation in the simulations is significantly less than 

that in the experiment. 

5.2.4 Discussion 

In this horizontally oriented Couette flow, particle segregation originates at the free 

surface of the flow, in the top area of the circle. In this area a high degree of particle 

agitation causes larger particles to migrate to the top of the free surface, just as has 

been observed by previous researchers in chute flows [Savage and Lun, 1988; Hirshfeld 
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and Rapaport, 1997] and vertically vibrating flows [Gallas et al., 1996]. The upper 

portion of the cylinder, near the free surface, behaves very much like an inclined chute 

flow described and explained by Savage and Lun [1988]. Once the large particles are 

at the top, they stay close to the outer cylinder as they move left around the circle 

with the bulk flow. This radial segregation can be seen in the experimental results 

of figures 5.29-5.34(a). As the large particles travel around the circle to the bottom, 

some migrate to the faster-moving region closer to the inner cylinder and quickly 

travel around back to the top. Others remain near the outer boundary, traveling 

around at a slower pace. Thus, the number of layers of large particles adjacent to the 

outer surface changes with angular position. 

The current study also illustrates the degree of effectiveness of computer simu­

lations when studying segregating flows. The simulations in this study capture the 

qualitative aspects of the segregation but not the extent to which the flow segregates. 

Radial number density profiles show much less segregation in the simulated flow than 

the experiment. Angular measurements of mass fraction also illustrate that the flow 

in computer simulations with h/ d = 10 does not segregate as much as the experimen­

tal flow, although in simulations with a smaller gap width the simulations predict the 

angular segregation very well. In a recent investigation, Cleary et al. [1998] conclude 

that computer simulations capture the qualitative aspects of mixing and segregation 

but that quantitative measurements, such as the mixing rate, show a large sensitivity 

to parameters such as the particle coefficient of restitution and coefficient of friction. 

Similarly, the disagreement between the current simulations and experiments is prob­

ably due to a sensitivity of segregation to the particle and wall surface properties. In 

addition, although the implementation of a more physically accurate normal contact 

model did not alter results, perhaps the use of a more accurate tangential model 

would show better agreement with experiments. 
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Chapter 6 

Wall Stresses in Cylindrical Couette Flow 

One important goal of the research involving experimental Couette flows of granular 

materials is the measurement of the shear stress at the boundary. The measurement of 

shear stresses is valuable in discovering the work and energy input necessary to drive a 

particle mixer or shearing apparatus. Previous studies [Miller et al., 1996; Hanes and 

Inman, 1985; Savage and Sayed, 1984; Tardos et al., 1998] have made experimental 

measurements of the stresses on the walls of sheared granular material in various 

geometries. Savage and Sayed [1984], Hanes and Inman [1985], and Miller et al. [1996] 

all made experimental measurements of the shear stress in a conventional annular 

shear cell apparatus. Miller et al. [1996] studied the fluctuations of the normal stress 

measured by a pressure transducer flush-mounted on the floor of a shear cell with an 

upper rotating disk and stationary sides and bottom disk. Savage and Sayed [1984] 

and Hanes and Inman [1985] both studied the dependence of wall shear stress on 

the rate of strain in the material at a constant solid fraction. Tardos et al. [1998] 

performed experiments in a vertically-oriented cylindrical Couette apparatus similar 

to that of the current study. The material used in that study consisted of fluidized 

or partially fluidized small (::::; 530 µm) particles. 

In the current work, the shear stress on the outer stationary cylinder wall of the 

experiment was measured (see Chapter 4 for method and instrumentation). Shear 

stresses were measured in both the vertical and horizontal experimental orientations, 



123 

and as functions of strain rate, fill level, and gap width. 

6 .1 Vertical orientation 

This section describes shear stress measurements for the apparatus in its vertical 

orientation, with the central axis of the cylinders oriented parallel to the direction 

of gravity and perpendicular to the floor. The experiment was placed on a 122 

cmx 122 cm wooden platform 40 cm off the floor for all of the vertical runs. For each 

experimental run, a known weight of particles was placed in the apparatus. In these 

experiments, glass beads with diameters of 3 mm, 4 mm, 6 mm, and 8 mm were 

used, along with all three sizes of inner cylinders. The beads were weighed prior to 

being poured in with an accuracy of± 0.1 lbs = ± 0.44 Newtons. The height of the 

material in the apparatus was measured to calculate the surface area covered by the 

beads; this is the area on which the shear force was acting. The height of the beads 

was measured with an accuracy of± 0.5 cm. 

6.1.1 Shear stress as a function of time 

Figure 6.1 shows the reading of the load cell for a typical vertical run, illustrating the 

large fluctuations of the signal with time. This data was taken with 35.6 N (8 lbs) of 

6 mm glass beads in the apparatus, with the largest inner cylinder (14 cm diameter, 

resulting in a 3 cm gap) rotating at 45.4 RPM. Data was taken for 32 seconds at 

500 Hz to capture the high-frequency fluctuations observed. Figure 6.2 shows the 

same data over a period of only 0.3 seconds. The circles are the actual sampled 

points, confirming that the high-frequency fluctuations are resolved adequately by 

the data acquisition system. Large fluctuations over a similar frequency range were 

also observed by Miller et al. [1996] in measurements of the normal stress in an annular 

shear cell, different in geometry from that of the current study. In the current study, 

the standard deviation of the time fluctuations increases both with strain rate and 
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Figure 6.1 Force on the load cell as a function of time for an 
experiment with 8 lbs of 6 mm beads over a period of 32 seconds. 
Sampling rate is 500 Hz. 

with the magnitude of the stress. 

The power spectrum of the same data shown in figure 6.1 is presented in figure 6.3, 

indicating several distinct peaks. The wooden platform on which the experiment 

rests vibrates while the experiment is running, probably contributing to the force 

fluctuations. There are distinct peaks at 120 Hz and 240 Hz, which are most likely 

harmonics of electrical noise at 60 Hz. The other frequencies are not distinct enough 

to attribute to specific causes. The spectrum does not visibly change with a change 

in the rotation rate of the inner cylinder. 

6.1.2 Shear stress as a function of strain rate 

The force signal is averaged over the 32-second acquisition period and the average 

value of the shear stress is calculated using the surface area of the outer cylinder 
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Figure 6.2 Force on the load cell as a function of time; this is 
the same data as in figure 6.1 but only showing 0.3 seconds 
of data. The circles indicate sample points, the line simply 
connects these points. 

covered by beads, as explained in section 4.2.l. It is assumed that the shear stress 

on the base of the cylinder is negligible. The shear stress is plotted as a function 

of rotation rate for each experiment. For each experimental run, data is taken at 

increasing rotation rates until the maximum is reached. The experiment is stopped 

and data is then taken at decreasing rotation rates from the maximum down to zero. 

Thus, at each rotation rate there are two averages taken. Figures 6.4, 6.5, and 

6.6 show the results of the time-averaged stresses as a function of the strain rate 

for experimental vertical runs with the largest inner cylinder (diameter = 14 cm; 

h/ Rinner = 0.43) and bead diameters of 3 mm, 4 mm, and 6 mm respectively. Stress 

measurements were also made with bead diameters from 3 to 8 mm for the other 

two inner cylinders (diameters of 12 cm and 8 cm, respectively), and are shown as 

functions of strain rate in figures 6. 7-6.14. 
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Figure 6.3 Power density spectrum of the force on the load cell 
during a vertical experiment. 

The strain rate is defined as the wall velocity divided by the gap width, h: 

St · t Vwall flRinner rain ra e = -- = ------
h Router - Rinner ' 

(6.1) 

where fl is the rotational velocity of the inner cylinder. Because the maximum rota­

tional velocity of the motor is a constant, the maximum possible strain rate achieved 

in the apparatus depends on the radius of the inner cylinder. The maximum strain 

rate for the smallest cylinder is just 3.1 s-1 , while for the largest cylinder it is 11 s-1 . 

Velocity profiles of these flows (see Chapter 5) confirm that the velocity of the beads 

is linearly proportional to the wall velocity, so that the strain rate defined above is 

proportional to the actual rate of strain in the material. The shear stress measure­

ments at various strain rates show that the stress is independent of the strain rate 

in the material. At very low rotation rates the shear stress decreases slightly with 
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Figure 6.4 Shear stress (averaged over time) as a function of 
strain rate for 3 mm glass beads in a 3 cm gap between cylinders 
(h/d = 10). 

rotation rate, but for most it shows no dependence. 

The explanation for the independence of shear stress on strain rate lies in two 

key factors: the classification of the flow regime and the dilation of the material 

undergoing shear. Dry granular shear flows have been classified into three basic 

regimes [Campbell, 1990; Savage, 1984]. A quasi-static regime occurs when the grains 

in the material are in frictional contact for a long time. At the other extreme, a rapid 

granular flow occurs when the energy in the flow is high, the strain rate is high, 

and collisions are almost instantaneous. The third, transitional regime, consists of 

flows between the two extremes. Quasi-static flows exhibit stresses that are rate­

independent, such as those observed in the current research. Rapid flows exhibit 

stresses that vary with the square of the strain rate. Transitional flows have both rate­

dependent and rate-independent components. The flow in the current experimental 

Couette apparatus is visually observed as exhibiting enduring, frictional contacts 
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Figure 6.5 Shear stress (averaged over time) as a function of 
strain rate for 4 mm glass beads in a 3 cm gap between cylinders 
(h/d = 7.5). 

between particles, and is clearly either a quasi-static or transitional flow. 

However, even a rapid flow does not show a rate-dependent stress component if 

it is unconfined. According to Savage [1984], in dry flows, the shear stress is always 

proportional to the normal stress confining the material. If this normal stress is con­

stant as the strain rate is varied, then the shear stress is also constant. For example, 

Bridgwater's experiments in an annular shear cell showed only a slight strain rate 

dependence of the shear stress even at high strain rates [Bridgwater, 1972]. Savage 

attributes this behavior to the fact that the shear cell had a constant normal force 

applied to the top disk, so that the material could expand vertically, decreasing the 

solid fraction within the apparatus. This explanation also applies to the experiments 

by Tardos et al. [1998], in which no strain rate dependence was observed in the vertical 

Couette cylinder when no normal force was applied and the material could expand. 

Both Bagnold's experiments of Couette flows of suspensions [Bagnold, 1954] and 
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Figure 6.6 Shear stress (averaged over time) as a function of 
strain rate for 6 mm glass beads in a 3 cm gap between cylinders 
(h/d = 5). 

similar later experiments on suspensions by Savage and McKeown [1983] showed a 

quadratic dependence of shear stress on the rate of strain when the suspensions were 

in the rapid, or grain inertia, regime. Later experiments of dry granular materials 

in annular shear cells in which the solid fraction was maintained constant [Savage 

and Sayed, 1984; Hanes and Inman, 1985] showed a quadratic dependence of the 

shear stress on the rate of strain as well. In the current experiments of this study, 

the material in the Couette cell is unconfined from above and allowed to dilate, 

similarly to the material in the study by Tardos et al. [1998]. Thus, the dilation of 

the material, if it can take place, most likely accounts for the independence of the 

shear stress on the strain rate. In addition, the material is not in the rapid regime. 

From visual observation of the current experiment, it is determined that particles 

experience enduring contacts with other particles and walls, indicating that the shear 

flow is actually in the quasi-static regime described by Savage [1984]. Therefore, even 
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Figure 6. 7 Shear stress (averaged over time) as a function of 
strain rate for 3 mm glass beads in a 4 cm gap between cylinders 
(h/d = 13.3). 

if the material is confined from above and the solid fraction kept constant, the stresses 

may not depend on the strain rate as they do for rapid flows. 

6.1.3 Shear stress as a function of height 

The level of fill ( L) of each experimental run was calculated based on the weight of 

the material inside the apparatus. The actual height of the material was difficult to 

measure because it changed during the course of the experimental runs. In addition, 

the free surface of the beads was not level, but slightly sloping due to centrifugal 

force effects: the height was lower near the inner cylinder and higher near the outer 

cylinder. The difference in the height at the two cylinders did not exceed 2 centimeters 

at the highest rotation rate, so its effect on the pressure distribution within has been 

neglected. The height of the beads at the highest fill level used for each bead size 

was measured with a ruler at the end of a run, and the heights for the lower fill 
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Figure 6.8 Shear stress (averaged over time) as a function of 
strain rate for 4 mm glass beads in a 4 cm gap between cylinders 
(h/d = 10). 

levels were calculated based on this total fill level and the known weight of the beads 

used in each. That is, the data for L/Lmax = 0.25 was for 17.8 N (4 lbs) of beads, 

and the height was assumed to be one quarter of the height measured for 71.2 N 

(16 lbs) of beads. Therefore, the assumption was made that the packing did not 

change, possibly introducing some error into the measurements. The error in this 

measurement is estimated to be on the order of± 0.5 cm. 

The Janssen equation [Shamlou, 1988; Nedderman, 1992] predicts the normal 

stress in the z direction (see figure 6.15) of a stationary granular material that has 

been poured into a container: 

pgh [ ( 2Kµz)] Tzz(z) = µK 1 - exp --h- (6.2) 

where 
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Figure 6.9 Shear stress (averaged over time) as a function of 
strain rate for 6 mm glass beads in a 4 cm gap between cylinders 
(h/d = 6.67). 

p = v Pp is the bulk density of the material 

g is the acceleration due to gravity 

h is the distance between the two cylinders, or gap width, in the current exper­

imental geometry 

µ = Tre / Trr is the friction coefficient 

K = Trr/Tzz, also referred to as the Janssen constant [Shamlou, 1988] 

z is the vertical distance measured from the free surface (see figure 6.15). 

As z increases, the exponential term approaches zero and the stress becomes constant. 

In this analysis, the normal stress on the outer cylinder wall, Trn is proportional to 

Tzz by the Janssen constant K. The shear stress, Tre, is then proportional to Trr by 

the friction coefficient µ, so that it too becomes constant at large depths of fill. 
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Figure 6.10 Shear stress as a function of strain rate for 8 mm 
glass beads in a 4 cm gap between cylinders (h/d = 5). 

Figure 6.11 Shear stress as a function of strain rate for 3 mm 
glass beads in a 6 cm gap between cylinders (h/d = 20). 
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Figure 6.15 Coordinate frame of cylinder. 
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Figure 6.16 Average shear stress as a function of the material fill 
level L for the largest inner cylinder, with h = 3 cm. 

In a stationary poured material the normal stress approaches a constant value 

because the shear stress on the walls, Trzi supports some of the weight of the material. 

Arching in the granular material transfers force from the center to the side walls, 

leading to a non-hydrostatic stress distribution. In a sheared material, however, 

arches are broken and the sides do not support the load as they do in a stationary 

material. Therefore, in a flowing granular material, all of the weight of the material 

is supported by the material below it, not the side walls. The results of the current 

stress measurements confirm that the stresses show a hydrostatic dependence on the 

fill level. 

In figures 6.16, 6.17, and 6.18, the average of the shear stress on the outer cylinder 

over all rotation rates has been plotted as a function of pgL for each of the three inner 

cylinders, showing a linear dependence on the fill level. The dashed lines are linear 

fits to the data. Some of the linear fits do not pass through the origin, however. This 
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Figure 6.17 Average shear stress as a function of the material fill 
level L for the middle inner cylinder, with h = 4 cm. 

is probably due to experimental error associated with the stress on the cylinder base, 

centrifugal forces, and error in fill height measurements, especially at lower heights. 

Tardos et al. [1998] measured the shear stress at two different fill levels and also found 

a hydrostatic dependence. 

If centrifugal forces are ignored, that is, if v~ / R < < g (which is shown to be a 

good assumption in the following section), the normal stresses 122 and Trr have no 

dependence on the radial coordinate, R. If the material below supports all of the 

weight of the material above it, then the normal stresses Tzz and Trr are hydrostatic: 

Tzz pgz 

KTzz = Kpgz, 

(6.3) 

(6.4) 

where K is a constant, p = vpp is the bulk density, and g is the gravitational accel-
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Figure 6.18 Average shear stress as a function of the material fill 
level L for the smallest inner cylinder, with h = 6 cm. 

eration. The average normai stress at a fill height L is: 

l 1L 1 1"rr(L) = L 
0 

Kpgzdz = 2,KpgL. (6.5) 

The total torque exerted by the motor on the system, M, is not a function of R. The 

torque is related to the shear stress at any radius R and fill height L as follows: 

(6.6) 

where 2n RL is the area over which the stress acts. The condition that the torque 

is not a function of R requires that the shear stress, Tre, must be a function of R so 

that Tre rv 1 / R2
. Because the shear stress in a granular material is also proportional 
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to the normal stress, it must have the form 

1 (c2

) Tre = 2µKpgL R2 , (6.7) 

where µ is the tangent of the wall friction angle and C is an unknown constant with 

units of length. Thus, the ratio of the shear stress to the normal stress is necessarily 

a function of the radial position: 

µC2 
R2 . (6.8) 

If it is determined that the stress ratio at the outer cylinder is equal to µ, then the 

constant can be evaluated as C = Router. In this section, all the shear stresses plotted 

are evaluated at the outer cylinder. The slope calculated for the best-fit line to the 

graphs of Tre vs. pgL is equal to (1/2)µK(C 2 
/ R~uter)· 

In their similar study of shear stresses in a concentric cylinder Couette device, 

Tardos et al. [1998] made the assumption that the curvature of the apparatus is 

negligible and treated the shear stress as a constant, not a function of R. They 

evaluated it at the inner cylinder radius, and determined that the stress ratio is equal 

to sin¢, where ¢> is the internal angle of friction. The accuracy of this assumption lies 

in the ratio of the squares of the inner and outer radii of the device, (Router/ Rinner )2. 

In the experiments by Tardos et al., this value is 1.2. In the current experiments, 

however, the value ranges from 1.4 to 2.5, so that the assumption of a planar flow 

would be far from accurate. In the analysis of Tardos et al., the two normal stresses 

are assumed to be equal as well, so that K = 1. 
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6.1.4 Shear stress as a function of the gap width to diameter 

ratio 

The different data in figures 6.16~6.18 represent experiments with different values of 

the ratio of the gap width to the particle diameter, h/ d. The slope of each line is 

different, illustrating that the stresses have a large dependence on this ratio. Savage 

and Sayed [1984] also found a dependence of stresses on h/ d at small h in their 

experiments in an annular shear cell. At values of h/d ranging from 6.85 to 7.84, 

and for a constant solid fraction of material, the stresses varied in some instances 

by almost one order of magnitude. This inconsistency in stress measurements was 

attributed to finite-particle-size effects. That is, even for very small changes in the 

gap width, h, the stress changed due to the different layering and packing of the 

material in the gap. If the gap spacing is such that the particles are allowed to form 

layers that can easily move relative to each other, the shear stresses are lower than 

if the particles lock together and there is a jamming effect. The dependence of the 

shear stresses measured in the current experiments on the ratio h / d is also probably 

caused by differences in particle packing at different h/ d. 

Figure 6.19 is a plot of the slope of the linear fit to each set of data as a function 

of the ratio h/ d. The different symbols correspond to the three different sizes of 

inner cylinder used. The error bars correspond to the maximum percentage error 

calculated based on the measurement errors in the length, the gap width, the weight 

of the material, and the error due to the resolution of the data acquisition system. 

This total error is estimated to be approximately 11 %. It does not account for the 

error due to a variation in bead roughness and sandpaper roughness, which can be 

significant. This source of error is discussed further in this section. 

Figure 6.19 illustrates that the shear stresses not only depend on the gap width to 

particle size ratio, h/d, but also on the radius of the inner cylinder used. Figure 6.19 

shows a complex dependence of the stresses on h/ d at low values of this parameter. At 

the largest gap widths, the stresses become independent of h/ d, showing similar values 
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Figure 6.19 Experimental results for Tro/ pgL as a function of gap 
width to bead diameter ratio, h/d. 

at h/ d = 15 and 20. The results shown in the figure suggest that there is no clear 

functional relationship between the stress and h/ d, but rather that the magnitude 

depends on the specific layering of the particles, as was suggested by Savage and 

Sayed [1984]. Several other factors can contribute to the lack of a clear functional 

relationship between h/ d and the shear stresses. The first is the ratio of the gap width 

to the inner cylinder radius, h/ Rinner· In an ideal Couette flow, this parameter is as 

small as possible, but in the current experimental apparatus it ranges from 0.43 to 

1.5 for the three inner cylinders. Shear stresses may have an additional dependence 

on this parameter as well as on h/ d. Another factor that may result in different 

measurements for different bead diameters is the roughness of the sandpaper when 

compared with the size of the beads. Even at the same ratio of h/ d, the sandpaper 

is not as effectively rough when shearing 8 mm beads as compared with 3 mm beads. 

During the course of the experiments, very large slip was observed between the inner 
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cylinder and the 8 mm beads when compared to smaller beads. 

Two possible sources of error in the above results warrant discussion. The first 

is the possible contribution of centrifugal forces to the stress on the outer wall. At 

the low velocities used in the experiment, this contribution is negligible. The largest 

rotational velocity of the motor is 4.8 radians/second. The radius of the largest 

cylinder is 7 cm, so the largest velocity of the inner wall is 33.4 cm/s. From the 

vertical orientation velocity profiles shown in section 5.1.1, it is clear that the fastest 

particles in the system, adjacent to the moving surface, travel at less than half the 

wall velocity, or about 16 cm/s at most. Their centripetal acceleration is: 

v5 (16)2cm2 /s2 
2 ac = R = = 37cm/s , 

7cm 
(6.9) 

or about 4% of the gravitational acceleration. This is the largest contribution of 

centripetal effects possible in the current experimental apparatus. The contribution 

increases with the strain rate, but the figures of shear stress against strain rate (6.6-

6.13) do not indicate any increase in the shear stress at the higher strain rates, further 

illustrating that the centripetal effects are not large enough to affect the results. 

The second possible source of error is much more likely to have affected the current 

results. While the experiment is running, the roughness of the particles themselves 

increases, while the roughness of the sandpaper coating the solid surfaces probably 

decreases. It was not possible to perform all experiments with particles that were 

equally rough. Figure 6.20 shows the large discrepancy between shear stress results 

for used rough particles versus new smooth particles in the identical configuration. 

The data shown in figure 6.19 was gathered from experiments in which the particles 

were relatively smooth and new. Even in experiments using new particles, however, 

the particles became rougher during the course of the experimental runs; glass dust 

was usually observed at the end of an experiment, indicating that the particles were 

being ground. When the fill level was increased and new particles were added, the 

new ones were usually smoother than the particles below that had already undergone 
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Figure 6.20 Comparison of shear stress as a function of fill level 
for h/d = 13.3 for rough and smooth particles. 

one set of experiments. Estimating the amount of error that the roughness of the 

particles and walls introduces to the results is difficult. The rough beads used in the 

results shown in figure 6.20 were more rough than any used in actual experiments; 

therefore, figure 6.20 represents the largest error possible in these experiments due to 

particle roughness effects. The slope Tre/ pgL measured with smooth particles can be 

significantly lower than that measured with rough particles, as figure 6.20 illustrates. 

Rougher particles have an increased friction angle </>, leading to a higher shear stress 

at a given normal stress level. 

6.2 Horizontal orientation 

Results for the horizontally oriented experiment are similar to those for the vertical 

orientation. There are similarly large time fluctuations of the measured stress, and 
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Figure 6.21 Force on the load cell as a function of time. This 
data is for a horizontally oriented experimental run with the 
largest inner cylinder and 15 pounds of 6 mm glass beads. 

there is no dependence of shear stress on strain rate. Again, this can be attributed to 

the free surface existing at the top of the flow, allowing for the dilation of the granular 

material. Experiments in the horizontal orientation were only conducted when the 

apparatus was almost full, so there was no study of the dependence of shear stress on 

fill level. 

Figure 6.21 shows data for a horizontal experimental run with 67 N (15 lbs) of 6 

mm glass beads and a gap width of 3 cm between cylinders. The sample rate is 1000 

Hz, and the rotation rate is 43. 7 RPM. All of the horizontal runs were performed off 

the platform, on the floor of the laboratory on top of carpeting, to reduce the noise 

in the signal. 

Figure 6.22 represents the power density spectrum of the horizontal run. As in 

the vertical run of figure 6.3, there are distinct electrical noise frequencies at 120 Hz, 
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Figure 6.22 Power density spectrum of the force on the load cell 
during a horizontal experiment without using the wooden plat­
form. 

240 Hz and 360 Hz. There is significantly less noise than the spectrum for the vertical 

run, which was performed on the wooden platform, especially in the lower frequencies. 

The higher sampling rate also reveals other peaks at higher frequencies; it is not clear 

to what cause they should be attributed. Figure 6.23 represents a typical result for 

a horizontally oriented experimental run. The shear stress has been measured for 

various rotation rates, first sweeping up to the fastest rate and then decreasing the 

rate back to zero. The example shown in figure 6.23 is an experiment run with the 

largest inner cylinder (Rinner=7 cm, h=3 cm), and 71 N (16 lbs) of 6 mm glass beads. 

As in the vertically-oriented experimental runs, the shear stress is not a function of 

the strain rate, for the same reasons. The flow is not rapid, and, in addition, the 

material is allowed to dilate due to the free surface at the top of the experiment. 



146 

200 
0 0 

0 
0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 0 0 El~ 0 0 0 0 0 (j 

0 0 0 0 0 0 0 

150 0 

50 

2 4 6 8 10 12 
v waJlh (l/s) 

Figure 6.23 Shear stress on outer cylinder as a function of the 
strain rate measured during an experiment in the horizontal 
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0.43) with 4 mm beads so that h/d = 7.5. 
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Chapter 7 

Conclusions 

This chapter summarizes the conclusions of this research on Couette flows of granular 

materials. A summary of the current results is followed by a general summation of 

some of the unifying findings and a discussion of possible future investigations in this 

area. 

7.1 Summary of results 

7 .1.1 Planar Couette flows 

Simulations of particles between two infinite solid walls moving in opposite directions 

show that the flow exhibits two distinct regions with different properties. The region 

closest to the moving walls has a low particle concentration, high velocity gradient, 

and high granular temperature, corresponding to a large amount of fluctuation energy. 

The width of this region does not depend on the size of the gap between the walls, and 

is approximately three particle diameters wide in all flows. The width of the second 

region, in the center of the channel, does depend on the gap width, and the flow in 

this region has a high solid fraction, lower velocity gradient, and lower granular tem­

perature. The walls in this planar Couette flow act as temperature sources, providing 

all the energy to the flow. As particles collide with the moving walls, the fluctuating 
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component of their velocity increases, resulting in a high granular temperature near 

the wall. As subsequent collisions occur between the high-energy particles nearest the 

walls and the slower particles away from the walls, fluctuation energy is conducted 

into the channel. Because collisions are inelastic, however, the fluctuation energy 

continually decreases as one moves away from the wall region, reaching a minimum 

in the center of the channel. Mixtures of two particle sizes have not previously been 

studied in a planar Couette geometry. In this research it was found that larger par­

ticles favor the central, low-temperature region. The arrangement of large particles 

in the gap also depends on the number of large particles: when there are many large 

particles, they become spaced out and often form distinct layers. 

In flows of identical particles, average properties through the gap show a strong 

dependence on the overall solid fraction. The granular temperature, strain rate, and 

wall stresses increase with overall solid fraction, but also show a dependence on the 

ratio of the gap width to the particle diameter, h/d. This dependence of average 

properties on the width of the gap has not been studied previously in this type of 

flow, and is found to be significant. A sharp change in properties occurs at a threshold 

solid fraction that depends on h/ d. This threshold appears to occur when the solid 

fraction at the wall reaches approximately 0.25. The average (overall) solid fraction 

at which the wall solid fraction reaches the critical value depends on h/ d, because the 

particles are densely packed in the center of the flow; the wider the center region is, 

the higher the overall solid fraction must be to reach the critical wall solid fraction. 

In mixtures, stresses are close to the level for the corresponding flow of same-size 

particles when the mixture size ratio is low and the number of large particles is small. 

Stresses increase with both size ratio (due to the mass dependence of the stress) and 

with decreasing solid fraction ratio of small to large particles. 

Granular shear flows are highly dissipative, a property that often leads to un­

wanted heating during processing. The current research represents the first study of 

energy dissipation in a granular flow as a function of various flow parameters. Com-
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puter simulations were used to measure the amount of energy dissipated in a granular 

flow in both same-size flows and mixtures. Results show that the highest dissipation 

rates occur in the regions of high granular temperature nearest the walls, due to the 

large collision rate in those areas. In same-size particle flows, the dissipation rate 

and corresponding thermodynamic temperature increases with overall solid fraction, 

again, due to the increase in the collision rate. In mixtures, heat dissipation increases 

with the solid fraction of large particles as well as with the diameter ratio. 

The current simulation work in planar Couette flows has been compared to past 

theoretical results derived from kinetic theory, with generally good qualitative agree­

ment. Such comparisons provide a basis for validation of the theory under various 

conditions as well as a demonstration of the weaknesses of some kinetic theory as­

sumptions. Computer simulations are a valuable tool that can aid the development 

of theoretical constitutive models for granular flow. 

7.1.2 Cylindrical Couette flows 

A concentric cylinder Couette apparatus has been used to investigate shear stresses 

experimentally. In a rapid granular shear flow with a constant solid fraction, the 

shear stress is expected to increase quadratically with the rate of strain. The current 

experiments show no dependence of the shear stress on the strain rate at all, however. 

Both vertically and horizontally oriented experiments show that the shear stress is 

independent of strain rate because the existence of an unconfined free surface allows 

the material to dilate under shear. In addition, the flow exhibits enduring, frictional 

contacts, indicating that it is not in the rapid granular flow regime, but rather in 

either a quasi-static or transitional regime. 

Vertically-oriented experimental stress measurements yielded interesting and novel 

results concerning the dependence of shear stress on the material height and on the 

gap width. First, the stress in the material varies linearly with height. In this shear 

flow, the side walls are unable to support any portion of the weight of the granular 
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material, as they would in a stationary material. Thus, all of the weight of the 

particles is supported by the particles beneath them, resulting in a linear dependence 

of the stress on the height of material. 

Second, the shear stress also varies with the ratio of gap width to particle diameter 

( h/ d), a dependence that had not been previously investigated in this geometry. This 

dependence is not a clear functional relationship due to the many other variables 

affecting the results, such as the ratio of sandpaper roughnesses to the bead diameter 

and the ratio of the gap width to the inner cylinder diameter (h/ Rinner). Other errors 

could also have been introduced, due to differences in the bead roughness and the 

sandpaper roughness between experimental runs. The roughness of the beads and 

the sandpaper can have a large impact of the friction coefficient, and therefore on the 

ratio of shear to normal stresses. 

With the experimental apparatus horizontally oriented, both flows of one particle 

size and of mixtures were investigated. Velocity profiles from computer simulations 

and experiments indicate large velocity gradients near the rotating inner cylinder, 

with velocities near zero at the outer cylinder wall. Significant slip occurs at the 

inner wall for all cases; slip velocities range from 50 to 70% of the wall velocity. 

Fluctuation velocities are highest near the inner cylinder, where the flow is faster and 

more agitated. Fluctuations in the flow direction are larger than in the transverse 

direction. This anisotropy in fluctuation velocities has also been observed by previous 

researchers in granular flow experiments [Elliot et al., 1998; Natarajan et al., 1995]. 

Computer simulations show good agreement with experimental velocity profiles, but 

fluctuation velocities measured in the computer simulations are significantly higher 

than those of experiments. Two different normal contact models were used in the 

simulations, with no difference in the results. 

The segregation pattern of a mixture of particles of two different sizes was also 

investigated in the horizontal Couette apparatus. Segregation begins at the free 

surface with the larger particles rising to the top. These large particles are then 
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pushed counter-clockwise with the remainder of the flow and remain concentrated in 

the upper left region. The resulting angular concentration profile is thus asymmetric, 

with more large particles on the left than on the right. This angular segregation 

pattern occurs very similarly in computer simulations. In experiments, large particles 

remain near the outer cylinder as they flow, and radial segregation occurs as well. 

The number density of small particles is high near the inner cylinder, while large 

particles remain near the outer cylinder. The present computer simulations do not 

capture this effect accurately, however. 

7. 2 General issues 

The research presented in this thesis is the first to investigate several aspects of 

granular Couette flows. The effect of the ratio of the gap width to the particle 

diameter, h/ d, has not previously been studied in either the planar or the cylindrical 

flow geometry. In addition, although segregation is a common area of research, binary 

mixtures have not been investigated before in planar Couette flows. Two previous 

studies have investigated vertically-oriented cylindrical Couette flows [Khosropour et 

al., 1997; Tardos et al., 1998], but the horizontal orientation, which shows a geometric 

resemblance to industrially used screw mixers, has not been previously investigated at 

all. Lastly, although energy dissipation in granular material often leads to unwanted 

heating in industrial processes, this is the first study to quantify the heat produced 

during a typical flow. 

This work on Couette flows of particles has revealed two related and important 

aspects of granular flow that both influence the dynamics of such flow significantly. 

First, flow geometry plays a dominant role in all the flows studied. In planar Couette 

flows, the width of the gap between the shearing walls has a large influence on the 

stresses and energy dissipation of the flows. In mixtures, geometry dictates the po­

sition of the larger particles. When there are few large particles, they concentrate in 
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the center region, but when there are many they become more evenly spaced out and 

form distinct layers. The cylindrical Couette flows studied are also heavily influenced 

by geometry. Shear stresses vary greatly depending on the gap width between the 

concentric cylinders. Segregation in the horizontal experiment, although induced by 

a percolation mechanism near the free surface, is perpetuated in the rest of the flow 

through mechanisms dependent on geometry. 

Second, the boundary conditions, which are a specific aspect of the geometry, have 

a large impact on flow as well. In planar flows, the solid fraction at the boundary dic­

tates the amount of slip velocity, shear stress, strain rate, granular temperature, and 

energy dissipation. In experiments on cylindrical flows, the difficulty in controlling 

the friction between the particles and the boundaries results in very different shear 

stress measurements under similar conditions. 

Because both boundary conditions and geometry are found to have significant 

effects in granular flows, experimental results are often limited to one particular ap­

plication or geometry. The difficulty in controlling particle and boundary properties 

during the course of an experiment also leads to inconsistent results. These problems 

have led to an increased dependence on computer simulations for the investigation of 

particulate flows. This research has used both computer simulations and experiments 

to study cylindrical Couette flows and to make valuable quantitative comparisons 

between the two. 

The current results have shed light on certain features of granular Couette flows 

and have revealed other issues that merit further investigation. Experimental results 

show that the shear stress in a cylindrical Couette flow depends on the gap width, but 

the exact relationship between the two is as yet unknown. In addition, computer sim­

ulations agree quantitatively with experiments in some instances, but not in others. 

Quantitative comparisons between simulations and experiments in the future may 

shed light on whether computer simulations can indeed be used to predict realistic 

granular flows accurately. 
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