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The main findings highlighted in Chapter 1 correspond to inverted flags of relatively
high aspect ratios (AR>1). Above that threshold, the general features of the flag’s
behavior are consistent independently of this parameter. Variations with aspect
ratio have been reported, however, in the values of the critical velocities, as well
as the amplitudes and frequencies of flapping. Preliminary experimental results by
Cossé et al. (2014) and a more detailed follow-up in Sader et al. (2016a) indicated
that the critical value of the non-dimensional velocity, κ, at which the flag enters
the flapping regime increases as aspect ratio is decreased, while the value of κ at
which the flapping motion disappears remains constant for all aspect ratios. Similar
results were numerically obtained at Re=200 by Tang et al. (2009), who observed,
nonetheless, a small variation in the values of κ at which flapping ceases. Tang et al.
(2015) reported an approximately constant overall maximum flapping amplitude,
A, although the velocity at which higher aspect ratios reached this value was lower,
showing a wider maximum-amplitude plateau. A substantial decrease in Strouhal
number was additionally reported as aspect ratio decreased.

As was highlighted in Chapter 1, the onset of flapping of high-aspect-ratio inverted
flags is caused by a divergence instability. Sader et al. (2016a) presented a theoretical
analysis that is able to predict the onset of flapping for flags of aspect ratio AR>1.
Their model followed the steady version of the theory developed by Kornecki et al.
(1976) which considers two-dimensional, inviscid, incompressible flow combined
with the equilibrium equation of an elastic plate and the corresponding boundary
conditions. The divergence velocity is then computed making use of the Rayleigh
quotient. The analytic formula, valid for varying aspect ratios, was obtained by
correcting this infinite aspect ratio value with a factor of 1 + 2

AR , as derived from
Prandtl’s lifting line theorymaking the assumption of a negligibleGlauert coefficient
(Anderson Jr, 2010; Glauert, 1983). The formula obtained reasonable agreement
with experiments for aspect ratios up to 1. Formally, Prandtl’s lifting line theory
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is an asymptotic formula for high aspect ratios. It is generally considered to hold
closely for AR>4 (Bollay, 1939), with vortex lattice methods being used for AR>1.
At smaller aspect ratios the edge vortices produce non-linear effects that cannot be
captured by this linear theory. The formula obtained by Sader et al. (2016a) strongly
overpredicts the transition velocity of inverted flags of these small aspect ratios,
consistent with a vortex lift mechanism that enhances the lift on the flag, therefore
reducing the critical velocity.

The objective of this chapter is to characterize the behavior of slender inverted flags
(AR<1). It is important to note that the experimental results by Cossé et al. (2014)
and Sader et al. (2016a) established the existence of a flapping regime for AR>0.2
only. Under that threshold, the flag transitions directly from oscillating around a
small deflection position to oscillating around a large deflection equilibrium. Conse-
quently, the theoretical analysis presented in Section 2.1, developed by collaborators
at the University of Melbourne for the limit of AR→ 0, addresses the existence and
stability of steady state equilibria only. The experiments presented in Section 2.2,
give further insights into the effect of a finite, but small, aspect ratio and the system’s
dynamics.

2.1 Theory
A theoretical framework for the stability of inverted flags in the limit of zero aspect
ratiowas developed by Prof. John Sader and is summarized below. Amore extensive
description can be found in Sader et al. (2016b). The theory is based on the result
by Bollay (1939), who considered the effect of edge vortices that trail at an angle
to the free-stream velocity, obtaining a non-linear theory for the lift of flat plates of
AR<1. In the limit of zero aspect ratio, the normal force coefficient becomes

CN = 2π sin2 α (2.1)

with α the angle of attack of the plate. The equilibrium equation for a beam
undergoing large-deformation pure bending (Landau and Lifshitz, 1970) is given by

EI
d2θ(s∗)

ds2
∗
= −n(s∗) ·

∫ L

s∗
F(l∗) dl∗, (2.2)

where θ(s∗) is the local rotation angle of the beam, s∗ (and the equivalent integration
variable l∗) is the dimensional arc-length along the beam (s∗ = 0 at the clamped
end) as defined in figure 2.1. E is the Young’s modulus of the beam, I is its areal
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Figure 2.1: Definition of local rotation angle of the beam, θ(s), and arc-length along
the beam, s.

moment of inertia, F is the local applied force per unit length and n is the local unit
normal to the beam’s axis at position l∗. Equation (2.2) satisfies the required zero
force condition at the free end of the cantilever(s∗ = L).

Combining equations 2.1 and 2.2, the equilibrium equation for the slender inverted
flag becomes

d2θ

ds2 = −κ
′
∫ 1

s
|sin θ(l)| sin θ(l) cos(θ(s) − θ(l)) dl, (2.3)

where the dimensionless arc-length, s ≡ s∗/L (and l ≡ l∗/L), is now used. The
dimensionless velocity κ′ is the beam equivalent of κ as defined in Section 1.2,
where the flexural rigidity has been substituted by that of a beam of rectangular
cross section D′ = Eh3/12. The absolute value in the right-hand side is included
to account for the inherent symmetry in the flag’s deflection. The corresponding
boundary conditions are

θ(0) = dθ
ds

����
s=1
= 0, (2.4)

Equation 2.3 can be solved numerically, using a finite difference discretization
combined with a shooting method, where the angle at the free end of the cantilever,
θend = θ(1), is adjusted to match the required clamp condition, θclamp = θ(0) = 0
(Luhar and Nepf, 2011). The obtained results are represented in figure 2.2 and show
the existence of a saddle-node bifurcation, in contrast to the divergence instability
present in the large-aspect-ratio case. The variable employed is θend , which is
equivalent but not equal to the deflection angle, θ. For small values of κ′, a single
solution to equation 2.3 exists. It corresponds to the zero deflection equilibrium
(θend = θclamp = 0). As κ′ is increased, a second solution, corresponding to the
deflected equilibrium θend = 66.7°, appears and further divides into two distinct
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Figure 2.2: Theoretical bifurcation diagram of the inverted flag’s free end angle
θend vs. normalized flow speed κ′ in the limit AR → 0. Solid curves correspond
to stable equilibria, dashed curves correspond to unstable equilibria. Only positive
angles are shown – negative angles have symmetric behavior.

equilibria for higher values of κ′. The critical κ′ atwhich this saddle-node bifurcation
occurs is κ′crit = 9.205. The stability of these equilibria can be deduced from the
fact that the aerodynamic force does not present a linear term (equation 2.1), and
therefore the zero-deflection equilibrium must necessarily be linearly stable.

The results in figure 2.2 have been obtained using a steady aerodynamic force
and do not account for the unsteadiness of the separated flow. Inverted flags of
AR<0.2 do not present large-amplitude flapping, and therefore, as will be shown
experimentally in Section 2.2, the unsteady effects are limited to generating small
amplitude oscillations around the equilibria. In order to gain some intuition on the
system’s stability and dynamics, a simplified rigid flag model, that reduces the flag
motion to a single degree of freedom, can be employed. The equation of motion of
a rigid beam that is mounted on a torsional spring at its trailing edge is given by

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ θ̄ − κ̄

��sin θ̄
�� sin θ̄ = F(θ̄, t), (2.5)

where θ̄ is the beam’s rotation angle, κ̄ is analogous to the non-dimensional flow
speed and accounts for the spring’s constant, Q is the quality factor, t is scaled time
and F(θ̄, t) is an unspecified external applied force due to the unsteady hydrodynamic
force arising from vortex shedding and any turbulence in the impinging flow. The
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potential energy of the steady system (third and fourth terms) can be calculated and
provides insight into the competing elastic and steady aerodynamic forces. It is
given by

V(θ̄) = 1
2
θ̄2 − κ̄

2

����θ̄ − 1
2

sin 2θ̄
���� , (2.6)

and is plotted in figure 2.3. In this figure, the stationary points correspond to
equilibrium solutions and agree with the bifurcation diagram presented in figure
2.2. For small values of κ̄, the zero deflection equilibrium is solely present. As κ̄ is
increased a saddle-node bifurcation occurs and an unstable (potential maximum) and
stable (potential minimum) equilibria appear. This simplified model notably shows
the basins of attraction of the equilibria. At κ̄ slightly above the bifurcation velocity,
the potential well of the stable deflected equilibrium is shallow and the energy
required to reach the unstable equilibrium from it is small; any small perturbation
will lead the flag back to the stable zero-deflection equilibrium. In contrast, at
high values of κ̄ the potential well of the deflected equilibrium is steep and the
energy required to exit the zero-deflection equilibrium is small; perturbations will
lead the flag towards the deflected equilibrium. This explains why, despite the zero-
deflection equilibrium being always stable, all experimental investigations up to date
have reported that increasing wind speed results in the flag transitioning from the
zero-deflection state to the deflected state. The intermittency inherent to low aspect
ratio inverted flags is further analyzed in Section 2.2.

The normalized velocity κ′ at which inverted flags in the AR → 0 limit undergo
a saddle-node bifurcation can be translated to the large aspect ratio variable κ as
follows

κsmall = 9.205(1 − ν2) (2.7)

with ν the Poisson ratio of the flag. The theory presented by Sader et al. (2016a) for
the AR→∞ limit predicted a divergence instability at a value of

κ = κlarge

(
1 +

2L
H

)
(2.8)

where
κlarge = 1.85. (2.9)
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Figure 2.3: Potential energy function, V(θ̄), of the rigid beam model system for
κ̄ = 0, 1.2, 1.38, 1.48, π/2, 1.7, 1.8 (increasing from center outwards); saddle-node
bifurcation occurs at κ̄ = 1.38. Both positive and negative angles are given.

These two equations for the asymptotic limits can be combined using a Padé ap-
proximant to obtain a formula that can predict the end of the straight regime for flags
of all aspect ratios

κ ≈ κlarge
κsmall +

(
κsmall − κlarge

) H
2L

κlarge +
(
κsmall − κlarge

) H
2L

, (2.10)

Because the zero-deflection regime of the low aspect ratio limit is always stable, and
the flag only deflects as its basin of attraction becomes sufficiently small, formula
2.10 should be taken as a lower bound. It is plotted, together with both asymptotic
theories and experimental results by Sader et al. (2016a) in figure 2.4 and shows
good agreement throughout.

The possible existence of multiple equilibria, as predicted theoretically in this sec-
tion, was explored experimentally. These measurements aim to test for the presence
of these equilibria, as well as give insight into the flag’s dynamics and the behavior
of flags of small but finite aspect ratios.

2.2 Results
Multiple equilibrium states of the flag
The new measurements verify the existence of multiple equilibrium states, as pre-
dicted theoretically in Section 2.1. This theory does not, however, account for
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Figure 2.4: Comparison of measurements and theoretical predictions for the critical
normalized flow speed at bifurcation, as a function of aspect ratio, H/L. Equa-
tion (2.8) [upper curve, large aspect ratio solution], (2.7) [horizontal line, small
aspect ratio solution] and (2.10) [lower curve, globally valid Padé approximant].

dynamic effects, which modify the behavior of the flag. For the smallest aspect
ratios, H/L < 0.2, the flag was experimentally observed to oscillate with small am-
plitude around the stable equilibrium positions. In those cases, the deflected stable
equilibrium position, presented in figure 2.5, was measured by taking the average
of a 30 s time series. Large-amplitude flapping occurs for aspect ratios H/L > 0.2
(Sader et al., 2016a). In these cases, the flag was damped to observe a deflected
equilibrium; this was achieved by lightly touching the flag with a thin rigid pole.

Existence of an unstable deflected equilibrium was assessed as follows. The initial
position of the flag was adjusted by quasi-statically pushing it from the stable
deflected equilibrium position towards the zero-deflection position using a thin and
rigid pole. Presence of an unstable deflected equilibrium must then lead to rapid
and unassisted movement of the flag from the deflected initial condition towards the
zero-deflection equilibrium. The deflected shape of the sheet at the time of loss of
contact with the pole is taken to be the unstable deflected equilibrium.

Figure 2.5 shows the measured angle of the cantilevered sheet’s free end at the stable
and unstable deflected equilibria. Measurements from several flags of varying small
aspect ratios are presented, together with the theoretical predictions of Section 2.1.
As the aspect ratio is reduced (left-to-right and top-to-bottom in figure 2.5), both the
measured critical bifurcation flow speed κ′small and the free end angle θend increase,
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Figure 2.5: Measured free end angle, θend, at the stable (•) and unstable (◦) deflected
equilibria for aspect ratios of (a) H/L = 0.13, (b) H/L = 0.10, (c) H/L = 0.067,
(d) H/L = 0.033. Theoretical prediction using the H/L → 0 asymptotic theory
of Section 2.1 is given for stable (upper solid curve) and unstable (dashed curve)
equilibria. Zero-deflection equilibrium position is shown for reference (horizontal
solid line).

shifting towards the theoretical (H/L → 0) curve of Section 2.1. While there
are some differences, even at the smaller aspect ratios, the measurements clearly
approach the theoretical asymptotic solution as H/L is reduced.

Interestingly, the measurements reported in figure 2.5 systematically underestimate
the H/L → 0 asymptotic theory. This may be due, in part, to twisting of the flag
which is observed to always occur when the flag deflects from its zero-deflection
equilibrium. This twisting deformation is shown in figure 2.6 and exhibits a com-
mensurate downward displacement of the flag. Large deformation of elastic beams
inevitably results in coupling between bending and torsion, if the load or beam is
not perfectly symmetric about the beam’s major axis (Landau and Lifshitz, 1970).
Strikingly, every inverted flag studied here deforms in precisely the same manner
— with the free end deflecting vertically downward in the gravity direction —
demonstrating that gravity provides a symmetry break. When the flags are deflected
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sideways by applying a horizontal force with a stiff thin pole and the bank of fans
are turned off, i.e., no flow, the large amplitude twisting shown in figure 2.6 is not
observed, suggesting that the initial break in symmetry is small. The resulting small
twist, however, appears sufficient to modify the aerodynamics of the flag such that
an additional torsional aerodynamic force is generated, resulting in a large twisting
deformation. This coupled bending/twisting deformation is expected to reduce the
drag experienced by the inverted flag because the flag now presents an angled face
to the incoming flow. Such drag reduction reduces the maximum deflection angle of
the inverted flag for a given flow speed, consistent with the observations reported in
figure 2.5. While non-linear coupling between bending and twisting under a gravita-
tional load can be calculated, this complexity detracts from the principal aim of this
study which is to describe the dominant stability mechanisms of slender inverted
flags. The experimental angles reported in figure 2.5 are measured by observing
the flag from above, and as such, they correspond to the projection of the deflection
angle on the horizontal plane.

Bollay’s 1939 calculations indicate that the normal force experienced by a rigid and
flat blade of small but finite aspect ratio contains a term proportional to sin2 θ and
one proportional to sin 2θ. As such, a small but measurable linear lift component is
expected, which may contribute to the observed differences between measurement
and theory in figure 2.5. This mechanism acts in addition to the reduction in
drag due to twisting, and its presence and strength are explored using independent
measurements in Section 2.2.

Measurements by Sader et al. (2016a) found no evidence for the existence of the
multiple equilibria reported in figure 2.5. However, their study focused primarily
on flags of large aspect ratio, H/L. It is therefore important to determine the
aspect ratio at which the multiple equilibria emerge. A systematic experimental
investigation using the present setup reveals that these multiple equilibria occur
only for H/L < 1.7. Figure 2.7 gives the measured bifurcation diagram, i.e., the
stable and unstable equilibrium end angles, θend, as a function of the normalized
flow speed, κ′, for several aspect ratios, H/L, in this range.

The linear component of the hydrodynamic force described above, i.e., the sin 2θ
term, is expected to increase in strength with increasing aspect ratio. Unlike the
limiting case of H/L → 0 where the zero-deflection equilibrium is always linearly
stable, this additional linear component will cause the zero-deflection equilibrium of
finite aspect ratio flags to become linearly unstable at finite flow speed. This behavior
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Figure 2.6: Photograph of slender inverted flag showing the combined flexural
bending and twisting at large flow speeds, under the influence of gravitational and
hydrodynamic loading; H/L = 0.033, κ′ = 16.6. The bank of computer fans is
visible with the flow direction out of the page. The flag is deflected strongly to the
right relative to the flow direction, exhibiting a twist about its major axis together
with commensurate bending in both the horizontal and vertical directions. The
supporting aluminum bar is oriented in the vertical direction.

is evident in figure 2.7, where the unstable deflected equilibrium branch (dashed
curves) crosses the zero axis, causing the zero-deflection equilibrium to become
linearly unstable. The critical κ′-value at which this crossing occurs decreases as
H/L is increased, as would be expected for an increasing linear component of the
normal force. Indeed, this observed decrease in the unstable equilibrium’s free end
angle θend at bifurcation, with increasing H/L (see figure 2.7), is consistent with
the large aspect ratio theory of Sader et al. (2016a): for large H/L, the deflected
unstable equilibrium does not exist and a divergence instability of the zero-deflection
equilibrium occurs.

Intermittent dynamics at moderate flow speeds
The rigid sheet model described by equation (2.5) does not explicitly account for
the effects of nonlinear damping or unsteady hydrodynamic forces, such as those
produced by vortex shedding and turbulence in the flow; these are lumped into
the unspecified forcing term F(θ̄, t). Therefore, it does not completely model the
dynamics of the inverted flag. However, (2.5) does prove useful in gaining a
qualitative understanding of the inverted flag’s stability and dynamics. For small
values of κ̄, the secondary potential well at finite θ̄ (corresponding to the stable
deflected equilibrium) is shallow; see figure 2.3. This suggests that residence at
this minimum is energetically unfavorable and small fluctuations in the flow will
drive the flag away from the stable deflected equilibrium. This behavior is now
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Figure 2.7: Measured free end angle, θend, of inverted flags at their stable (•)
and unstable (◦) deflected equilibria as a function of the normalized flow speed,
κ′. Measurements shown for flags of aspect ratios of H/L = 0.033 (blue circle),
H/L = 0.50 (red square) and H/L = 1.0 (green triangle). To guide the eye, fit
curves to these measured data points are provided for each aspect ratio. Theoretical
prediction is given for the limiting case of H/L → 0 (solid black curves: stable
equilibria; dashed black curve: unstable equilibrium). Undeflected shape (zero
angle) is the horizontal black line.

investigated experimentally.

Figure 2.8(a) shows the variation in time of the non-dimensional displacement of
the flag’s free end, A/L, for κ′ = 9.2. This flow speed is just above the bifurcation
point where the two deflected equilibria emerge in measurements. Initially, the flag
fluctuates around the zero-deflection equilibrium. Using a thin and rigid pole, the
flag is pushed (dashed red curve) to the stable deflected equilibrium position where
it is released. The flag then resides at that position for finite time (≈ 25 s) until it
abruptly, and of its own accord, falls back into the zero-deflection position. This
observation is consistent with the energetic picture in figure 2.3 where fluctuations
in the flow are expected to result in intermittent dynamics.

As κ̄ is increased in the model system, its deflected energy minimum depresses
below the zero-deflection energy minimum; see figure 2.3. Physically, this lets
small fluctuations drive the flag from the zero-deflection equilibrium towards the
more energetically favorable deflected equilibrium. A measurement under this
scenario is shown in figure 2.8(b), corresponding to a normalized flow speed of
κ′ = 14.3. The flag, initially oscillating around the deflected equilibrium, is forced
(dashed red curve) with the thin pole to the zero-deflection position where it is
again released. The flag then resides briefly (≈ 3 s) at the zero-deflection position
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before returning suddenly and unaided to the deflected equilibrium position. The
above-reported intermittency is expected to depend on fluctuations due to unsteady
vortex shedding and on the level of turbulence in the impinging flow, with increased
movement between multiple equilibrium states as the turbulence level is raised.

As mentioned above, the flag exhibits oscillations about both the zero-deflection
(A/L = 0) and deflected (A/L > 0) equilibria in these measurements. The deflected
equilibrium’s oscillation amplitude is different in figures 2.8(a) and (b), with larger
oscillations occurring at the lower flow speed (in figure 2.8(a)). This is expected
because the energy minimum at the deflected equilibrium is shallower at the lower
flow speed, as discussed above, allowing time-dependent fluctuations in the flow to
more strongly perturb the sheet from this equilibrium position. The zero-deflection
equilibrium exhibits reversed behavior, with larger oscillations being observed at the
higher flow speed in figure 2.8(b). This is again explained by the energy landscape
in figure 2.3, as the zero-deflection equilibrium’s energy minimum is shallower at
higher flow speeds— behavior opposite to that of the deflected equilibrium’s energy
minimum. Therefore, the observed oscillation amplitudes of the zero-deflection and
deflected equilibria are entirely consistent with their intermittent dynamics discussed
above.

Presence of a linear hydrodynamic lift force at finite aspect ratio
We now examine whether a linear lift force indeed exists for inverted flags of small
but finite aspect ratio, as suggested by the results of Section 2.2. This is achieved
by performing independent measurements of the natural resonant frequency of the
inverted flags at their zero-deflection equilibrium positions, as a function of aspect
ratio.

When a slender inverted flag is placed at its zero-deflection equilibrium at finite
flow speed, it is observed to resonate with small amplitude; see figure 2.8. For
such small amplitudes, the quadratic (fourth) term on the left hand side of the rigid
sheet model system (2.5) — which holds formally in the limit H/L → 0 — is
small relative to the linear (third) term, provided κ̄ is not large. The equation of
motion for a damped harmonic resonator is then recovered. This equation depends
on κ̄ only through variations in the normalized damping coefficient, 1/Q, and the
external applied (hydrodynamic) force, F(θ̄, t). These variations can both generally
be considered small for small oscillation amplitudes. The resonant frequency of the
flag is therefore weakly dependent on κ̄ in this zero-aspect-ratio limit.
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Figure 2.8: Measured dimensionless free end displacement A/L of an inverted flag
as a function of time, for normalized flow speeds of (a) κ′ = 9.2 and (b) κ′ = 14.3.
Aspect ratio H/L = 0.067. The flag is shifted to a different equilibrium using a thin
rigid pole (red dashed curve) and then released.

For small but finite aspect ratio (H/L � 1), however, the hydrodynamic force on the
rigid sheet includes a linear term, as discussed above (Bollay, 1939). In addition to
the non-linear lift specified by Eq. (2.1) for a rigid slender blade, a linear normal lift
force coefficient per unit length of the form CN = 2c sin θ cos θ arises, as discussed
in Section 2.2. Here, c = 0 in the zero aspect ratio limit (H/L → 0) and is an
increasing function of aspect ratio. Equation (2.5) thus takes the modified form,

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ θ̄ − cκ̄ sin θ̄ cos θ̄ − κ̄

��sin θ̄
�� sin θ̄ = F(θ̄, t). (2.11)

For small oscillations around the zero-deflection equilibrium, this equation can be
linearized to give

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ (1 − cκ̄)θ̄ = F(θ̄, t). (2.12)

This shows that the resonant frequency of the rigid sheet system (and an inverted
flag) of small but finite aspect ratio, H/L, varies as a function of the square root of
1 − cκ̄ and Q, which is weakly dependent on κ̄. Since c increases with increasing
aspect ratio, larger aspect ratio sheets are expected to display a more significant
reduction in their resonant frequency with increasing κ̄.
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Figure 2.9: Natural frequency of oscillation of the zero-deflection equilibrium for
inverted flags with aspect ratios of H/L = 0.033 (◦), H/L = 0.067 (4), H/L = 0.10
(�) and H/L = 0.13 (�). Linear fits to each data set are provided (dashed lines).

Figure 2.9 gives the measured oscillation frequency of the zero-deflection equilib-
rium for several flags, as a function of the normalized flow speed κ′ and aspect
ratio H/L. Although the dependence on κ′ is not necessarily linear, a linear fit is
provided to facilitate comparison. The measured rates of decrease in frequency are
−0.15, −0.12, −0.10 and −0.075 Hz for aspect ratios of H/L = 0.13, 0.10, 0.067
and 0.033, respectively. This verifies the above physical picture: a linear lift force
exists for finite aspect ratio and its magnitude increases with increasing aspect ratio.

A significant reduction in frequency as flow speed increases is observed even for
the smallest aspect ratio of H/L = 0.033. This indicates that linear lift affects the
flag’s dynamics at this small aspect ratio. This finding is consistent with figure 2.7,
where a difference is always observed between the H/L → 0 theory of Section 2.1
and measurements at finite aspect ratio — even for the smallest aspect ratio of
H/L = 0.033. As discussed, this mechanism acts in addition to twisting of the flag
due to the combined effects of gravity and hydrodynamic loading, which leads to a
reduction in deflection.

2.3 Conclusions
This chapter has addressed the behavior of slender (AR<1) inverted flags. Their
stability has been shown to be remarkably different from that of their high aspect
ratio counterpart. While the latter exhibits a divergence instability as flow speed
increases, the undeformed state of an infinitely slender inverted flag is always locally
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stable. A saddle-node bifurcation emerges at finite flow speed, giving rise to two
equilibrium states, with the more strongly deflected one being stable and the weakly
deflected one unstable. The unstable equilibrium defines the boundary of the basin
of attraction for the undeflected flag, which vanishes in the limit of high flow speed.
The slender inverted-flag theory can be combined with that for large aspect ratio
(Sader et al., 2016a), to yield a single formula for stability of the zero-deflection
equilibrium, (2.10), that is valid for all aspect ratios.

Experimental measurements of inverted flags were performed and compared to
theory, confirming he existence of multiple stable and unstable equilibria and the
presence of intermittent dynamics. The experiments saw a significant twisting
deformation that modified the position of the equilibria, as well as oscillations
around the equilibrium positions. The presence of a saddle-node bifurcation was
observed for aspect ratios up to 1.7. Inverted flags of small but finite aspect ratio
were shown to present a combination of characteristics of both linear and quadratic
fluid force dynamics.

The behavior of inverted flags of small but finite aspect ratios has been addressed
in detail in a follow-up theoretical investigation by Tavallaeinejad et al. (2018),
who solved the beam equation in combination with the full potential flow theory of
Bollay (1939) (without taking the AR→ 0 limit) using a Hamiltonian framework.
Their results show good agreement with the experimental measurements reported
in Section 2.2. Interestingly, they studied the effect of a small non-zero initial
curvature of the plate, which is applicable to all experimental measurements, and
highlighted that the zero deflection equilibrium of those plates becomes unstable at
finite velocity even for the AR→ 0 limit.


