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C h a p t e r 1

INTRODUCTION

The past decades have seen enormous advances in the fields of microelectronics,
micro mechanics and wireless communications. With these advances have emerged
a new array of low-power devices that function in hard-to-reach locations; examples
are remote sensors and monitors, medical implants and wireless actuators. Due
to the difficulty of accessing these devices’ location, introducing power cables is
impractical and periodically replacing their batteries poses significant challenges.
A strong emphasis has been put into the development of systems that can harvest
small amounts of energy from on-site natural resources (Elvin and Erturk, 2013;
Lee et al., 2015; Mateu and Moll, 2005; Paradiso and Starner, 2005; Park and Chou,
2006; Weimer et al., 2006). These systems would allow the devices’ continuous
operation without the need of accessing their location. A promising line of work is
the exploitation of ambient vibrations to generate strains in a piezoelectric material,
which can, in turn, convert these strains into electric energy (Ahmed et al., 2017; Liu
et al., 2018; Priya, 2007; Sodano et al., 2004). In many cases, a reliable source of
vibrations is a surrounding flow. Since the early work of Allen and Smits (2001) and
Taylor et al. (2001), substantial amounts of research have focused on the flapping
motion of flags as a source of vibration for piezoelectric energy harvesters.

The study of the solid-fluid interactions that develop when a flag is immersed in a
uniformwind dates back to the work of Rayleigh (1878). Although many theoretical
analyses shortly followed, the first experimental investigation of a flapping flag was
performed by Taneda (1968). The problem was revisited by Zhang et al. (2000),
and many more studies— theoretical, numerical and experimental — have emerged
in recent years. Comprehensive reviews of the recent developments can be found
at Yu et al. (2019), Shelley and Zhang (2011), Eloy et al. (2008) and Païdoussis
(1998). The dynamics of a flag immersed in a uniform flow can be divided into three
separate regimes. At low flow speeds, the flag remains at rest and aligned with the
flow in what has been denominated the stretched-straight state. In this state, a thin
vortex street of alternating signs trails the flag’s trailing edge. At a critical velocity,
the stability of the stretched-straight mode is lost through flutter and the flag enters
a periodic flapping mode. In this regime, the vortex sheet that is shed is comprised
of vortices of a single sign, with the sign alternating each half stroke of the flag.
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A bi-stable region has been reported, where both stretched-straight and periodic
flapping regimes co-exist. As wind speed is further increased the power spectrum
of the flag’s motion becomes broadband and the flag enters a chaotic flapping mode.

Because the bending stiffness of piezoelectric panels is substantially larger than
that of a cloth flag, the piezoelectric flag is analogous to a cantilever plate, and the
critical velocity at which the flappingmotion is onset is relatively high. One common
remedy to this problem is the placement of an upstream bluff body whose vortex
street induces vibrations on the flag (Taylor et al., 2001). In Kim et al. (2013) we
followed a different approach and proposed an alternate configuration, the inverted
flag, where the leading edge of the cantilever is free to move and the trailing edge
is clamped. This configuration is unstable at low flow velocities, making it a good
candidate for piezoelectric energy harvesters. Additionally, the maximum flapping
amplitude of the inverted flag is approximately 1.7 times its length, which is several
times higher than the maximum flapping amplitude reported for regular flags. The
higher amplitudes impose significantly higher strains on the piezoelectric material,
which may increase up to ten times the energy harvesting efficiency of the system
(Gurugubelli and Jaiman, 2015).

The inverted flag presents three main dynamical regimes as a function of free stream
velocity. They are represented in figure 1.1, where each image has been obtained by
superimposing snapshots of the flag’s motion. At low velocities, the flag undergoes
small amplitude oscillations around the undeflected position in the denominated
straight regime. During these oscillations the flow remains attached (Goza et al.,
2018; Gurugubelli and Jaiman, 2015). As the flow speed is increased, it reaches
a critical value at which the flag becomes unstable, undergoing a large amplitude
flapping motion. The shedding frequency of vortex structures is correlated to this
flapping motion, with a variety of vortex patterns occurring for different velocities
(Goza et al., 2018; Gurugubelli and Jaiman, 2015; Kim et al., 2013; Ryu et al.,
2015; Shoele and Mittal, 2016). If the wind speed is further increased, the inverted
flag enters the deflected regime, where it oscillates with small amplitude around a
high deflection equilibrium. Bi-stable regions are present both in the transition from
straight to flapping and from flapping to deflected regimes.

In addition to these three main regimes, Sader et al. (2016a) reported the existence of
a chaotic mode, where the flag flaps aperiodically with a broad frequency spectrum,
between the periodic flapping and deflected regimes. Numerical studies, which
correspond to low Reynolds number flows, have reported additional dynamical
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Figure 1.1: Superimposed images of the motion of the inverted flag for the three
main dynamical regimes. The flow is left to right and the flags are clamped at their
trailing edge.

modes. Ryu et al. (2015) observed the existence of both a small-deflection steady
state and a small-deflection small-amplitude flapping regime at flow speeds between
those corresponding to the straight and large amplitude flapping regimes. Similar
observations have been made by Gurugubelli and Jaiman (2015) and Goza et al.
(2018). Gurugubelli and Jaiman (2015) additionally observed a flipped flapping
regime at wind speeds higher than those of the deflected regime. In this mode, that
has also been observed by Shoele and Mittal (2016) and Tang et al. (2015), the flag
bends 180° such that the leading edge is parallel to the flow, recovering a motion
similar to that of the conventional flag. Overall, the regimes of motion that have
been reported for the inverted flag are, ordered from lowest to highest corresponding
flow velocity: straight, small-deflection steady, small-deflection small-amplitude
flapping, large amplitude flapping, chaotic, deflected and flipped flapping.

In an attempt to understand the onset of the large amplitude flapping motion, several
studies have investigated the loss of stability of the straight regime. While the
existence of a divergence instability was hinted by Kim et al. (2013), Gurugubelli
and Jaiman (2015) was the first to numerically demonstrate its presence. Sader
et al. (2016a) theoretically corroborated the loss of stability of the straight regime
through divergence, and provided a simplified analytic formula that reasonably
predicts the onset of flapping for inverted flags of aspect ratios higher than 1.
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Using a scaling analysis, Sader et al. (2016a) further proved that the flag’s flapping
motion constitutes a vortex induced vibration. Goza et al. (2018) associated this
classic vortex induced vibration with the 2P vortex shedding mode, and linked
the appearance of additional shedding modes at higher flow velocities with the
breakdown of the VIV and appearance of chaos. The cessation of flapping has
received comparably little attention, and is not yet fully understood. Goza et al.
(2018) suggested the mechanism behind this transition to be a disruption of lock-on
caused by the increased disparity between natural and shedding frequencies of the
flag. While the transition velocity from straight to flapping regimes is independent
of mass ratio, as defined in Section 1.2, the transition velocity from flapping to
deflected regimes decreases as the fluid loading, and therefore damping, increases
(Kim et al., 2013), consistent with the lock-off theory.

The results summarized in this section have been obtained for flags with relatively
heavy fluid loading; a distinction should be made for flags with light fluid loading.
Although these flags still present a flapping mode, this motion does not constitute a
vortex induced vibration (Goza et al., 2018). Due to the small thickness of the flag,
however, inverted flags are subject to heavy fluid loading for all practical cases.

1.1 Objectives
Ashas been highlighted above, since itwas first introduced inKimet al. (2013), many
advances have beenmade towards the understanding of the inverted flag’smechanics.
However, several aspects that are fundamental for its full characterization are yet
to be investigated. The objective of this thesis is to address the most salient of
these topics. In many cases, the field has evolved in parallel to the development
of this work; recent advances have been addressed in the concluding section of
each chapter. This study is predominantly experimental, with some theory being
presented to complement the results. Part I of this thesis is organized as follows

• The remainder of Chapter 1 is dedicated to clarifying relevant parameters and
definitions and describing the experimental setup employed.

• Chapter 2 researches the dynamics of inverted flags in the limit of very small
aspect ratio, which are markedly different to those of the large-aspect-ratio
case.

• Chapter 3 addresses the dynamics of inverted flags that are placed at moderate
angles of attack to the flow and the modified behavior that arises as this angle
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Figure 1.2: Side and top view of the inverted flag with parameters employed to
characterize (a) dimensions (H, L and h), (b) angle of attack, α, and (c) deflection,
Φ, and amplitude, A

is increased.

• Chapter 4 delves into the behavior of two inverted flags when they are placed
in a side-by-side configuration and the interactions and coupling that ensue.

• Chapter 5 concludes the investigation on inverted flags and highlights the most
imperative avenues for future work.

1.2 Parameters and definitions
The mathematical description of the inverted flag presented in the literature closely
follows that developed for the more general case of an elastic plate with arbi-
trary boundary conditions (Argentina and Mahadevan, 2005; Kornecki et al., 1976).
Accordingly, similar variables and parameters have been introduced to define the
inverted flag’s behavior. The nomenclature used throughout this thesis is presented
hereafter.

The flag’s dimensions — length, L, width, H, and thickness, h — have been repre-
sented in figure 1.2a. The non-dimensional parameters that determine the behavior
of the inverted flag are the angle of attack, α, the non-dimensional velocity, κ, the
mass ratio, µ, the aspect ratio, AR, and the Reynolds number, Re. The angle of
attack, α, corresponds to the fixed angle of the trailing-edge clamp with respect to
the free-stream velocity and is represented in figure 1.2b. The remaining parameters
are defined as follows

κ =
ρ f U2L3

D
, µ =

ρsh
ρ f L

, AR =
H
L
, Re =

ρUL
µ f

,

where U is the free-stream velocity, ρ f is the density of the fluid, D the flexural
stiffness of the flag (D = Eh3/(12(1 − ν2)) with ν the Poisson ratio), ρs the density
of the flag and µ f the viscosity of the fluid. The non-dimensional velocity, κ,
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represents the ratio of fluid inertial to solid elastic forces, while the Reynolds
number, Re, corresponds to the ratio of fluid inertial to fluid viscous forces. The
mass ratio, µ, on the other hand, is representative of the relative mass of the flag to
that of the fluid it displaces.

The resulting flag’s motion is characterized throughout this text using two main pa-
rameters, the flag’s deflection angle, Φ, and the Strouhal number, St. The deflection
angle, Φ, is represented in figure 1.2c and corresponds to the instantaneous angle
between the line that joins the flag’s leading and trailing edges and the free-stream
velocity. Its use differs from previous studies such as Kim et al. (2013) that utilize
the amplitude of motion (A, figure 1.2c) as the defining parameter. The choice stems
from the non-injectivity of the amplitude of motion: for a given amplitude there
are two possible flag positions, one with Φ < 90 and one with Φ > 90. Because a
flag can deform under different modes, the deflection angle is not strictly injective
either. However, it was experimentally observed that for a given flag at specified flow
conditions each deflection angle corresponds to a unique flag position. Variables
derived from this parameter, such as the angular amplitude ∆Φ = Φmax − Φmin and
the mean deflection angle, Φ̄, will be employed occasionally. The Strouhal number
is defined as follows

St =
f A′

U

where f is the frequency of oscillation and U the free-stream velocity. The cross
section A’ is calculated as the maximum between Amax − Amin and |Amax |, where
Amax is the maximum amplitude, Amin the minimum amplitude and the clamping
point is located at A=0. This amplitude corresponds to the cross-flow distance
between the shed vortices.

The value of the Reynolds number varies between 103 and 105 in the experiments
presented. The characteristic features of the inverted-flag dynamics and vortex wake
have been shown to be fairly insensitive to Reynolds number for Re > 100 (Shoele
and Mittal, 2016; Tang et al., 2015). For these large Re, the characteristic curves
of the flag’s motion collapse when represented as a function of κ, independently of
flag dimensions, showing that variations with free-stream velocity are a result of
the changing behavior with κ and not a Reynolds number effect. For this reason,
the effect of Reynolds number has not been analyzed in this study. Similarly, all
experiments were performed in air, and although the mass ratio varied due to the
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varying flag dimensions its order of magnitude was always O(1). Because such
small variations in µ have a negligible effect on the flag’s dynamics, the effect of
the varying mass ratio has not been considered in this study.

1.3 Experimental setup
The experimental measurements of inverted flags presented in this thesis were
performed in an open-loop gust-and-shear wind tunnel constructed at Caltech. A
photograph of the experimental setup can be viewed in figure 1.3. The tunnel,
similar in design to that of Johnson and Jacob (2009), generates the flow through
an array of 10 × 10 small computer fans. Each row of fans can be controlled
individually, allowing for the generation of shear flows, and the fast response of the
small fans further allows for the generation of gusts. In this thesis, however, the
only flow employed was a uniform steady flow. The tunnel is capable of generating
flow speeds between 2.2m/s and 8.5m/s. The variation in the generated free-stream
velocity across the tunnel’s cross section, caused by the multiplicity of fans, is under
2.7%.

The turbulence intensity at different flow speeds, measured using a hotwire system,
is shown in figure 1.4. These intensities are significantly higher than those present in
traditional wind tunnels and result in large perturbations to the flag. It is particularly
important to consider these perturbations when performing stability analyses; corre-
sponding remarks have been made in the relevant sections of chapters 2 and 3. The
control of the individual computer fans is achieved using a pulse-width-modulated
signal, resulting in an overshoot of the fan velocity before the steady state is reached.
The measurements presented in this manuscript correspond to steady state results—
a stabilizing period of at least 30 s was allowed between tunnel velocity modification
and recording of data. It is important to note that the inverted flag’s motion presents
bi-stable regions for certain ranges of the flow velocity. Due to the overshoot when
modifying the tunnel’s flow velocity, the presence of these regions must be assessed
in this setup by modifying the initial conditions of the flag.

The test section of the wind tunnel has a length of 1.9m and a square cross section of
1.2m × 1.2m. The largest flag tested had dimensions of 0.2m × 0.4m, resulting in a
maximum blockage ratio of 4.7%. No blockage effects were observed in any of the
tests performed. The flags were clamped at their trailing edge using two aluminum
bars of dimensions 12mm × 6mm × 1.2m. For the study presented in Chapter 4,
where a side-by-side flag arrangement is analyzed, two sets of clamping bars were
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Figure 1.3: Experimental setup from (a) end of test section and (b) side of test
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Figure 1.4: Turbulence intensity of the fan array wind tunnel for varying wind
speeds

positioned side-by-side and on a rail, such that the distance between flags could be
varied. The clamping bars are positioned vertically in the test section to minimize
the effect of gravity on the flag dynamics. The deformation of the flag was observed
to be two-dimensional in the horizontal plane for the majority of test cases, with the
lowest aspect ratio flags being the exception. A discussion of the twisting and the
effect of gravity on these flags is presented in Section 2.2. In order to set the desired
flag angle of attack, the clamping bars were attached to a hinge that allows rotation
around the vertical axis. It is equipped with a dial that shows angles in two-degree
increments, resulting in an error in the angle of attack of ±1°.
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Test Flag number Dimensions (mm) AR µ
Length Width Thickness

Aspect
ratio

1 300 10 0.76 0.033 2.49
2 300 20 0.76 0.067 2.49
3 300 30 0.76 0.1 2.49
4 300 40 0.76 0.13 2.49
5 195 195 0.51 1 2.55
6 195 97.5 0.51 0.5 2.55

Angle of
attack

7 82 410 0.25 5 3.03
8 160 320 0.51 2 3.11
9 180 360 0.51 2 2.76
10 190 380 0.51 2 2.62
11 200 400 0.51 2 2.49

Coupling

12 100 150 0.25 1.5 2.48
13 85 150 0.25 1.76 2.93
14 90 150 0.25 1.67 2.76
15 93 150 0.25 1.61 2.68
16 95 150 0.25 1.58 2.62
17 98 150 0.25 1.53 2.54
18 102 150 0.25 1.47 2.44
19 105 150 0.25 1.73 2.37
20 107 150 0.25 1.4 2.33
21 110 150 0.25 1.36 2.26
22 115 150 0.25 1.3 2.16

Table 1.1: Numbering, dimensions and properties of the inverted flags tested

Themotion of the flagswas filmed using a high-speed camera (Imperx IPX-VGA210-
L or Dantec Dynamics Nanosense MKIII) located above the test section. Images
were acquired at frame rates between 20 frames per second and 100 frames per
second in sets between 200 and 8,100 frames long. The position of the top edge
of the flag, marked with white paint, was tracked in the acquired frames using a
MATLAB script. The minimum edge to clamp distance in the acquired images is
of 60 pixels and the tracking script was observed to detect the flag edge within four
pixels, resulting in errors in the measurement of φ smaller than 4°. The dominant
frequency of motion of the flag can be subsequently determined making use of
the fast Fourier transform of the deflection angle’s time series. Measurements of
the local deflection angle at the plate’s free end were required for a comparison
with theoretical results in Chapter 2. They were obtained by fitting a third-order
polynomial to the deflected flag shape over the last 20% of the flag length.
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The flags consisted of polycarbonate plates with a density of ρs = 1200kg/m3,
Young’s modulus of E = 2.41GPa and Poisson ratio of ν = 0.38. A small initial
curvature of up to 5° was present in the plates due to fabrication and material
defects. This curvature was measured experimentally by clamping the flags in the
wind tunnel and acquiring images with the fan array turned off. It corresponds to a
single mode of deformation; the flags were observed to present similar curvatures
in both streamwise and cross-stream directions. Viscoelastic effects in the flag’s
deformation were only observed for the smallest aspect ratio flags, analyzed in
Chapter 2. No time dependence was observed in the deflected stable equilibrium
shapes of these flags, confirming that any viscoelastic properties exert a weak effect.
Each of the flags used has been assigned a flag number to facilitate identification
throughout this text. They are presented, together with their dimensions, aspect
ratio and mass ratio, in table 1.1.


