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ABSTRACT

Despite serving analogous functions, the mechanical designs conceived by human
engineering and those that result from natural evolution often possess fundamentally
differing properties. This thesis explores the use of principles that stem from nat-
ural evolution to improve the performance of engineered mechanisms, focusing on
systems whose role is to interact with a fluid environment. Two different principles
are considered: the use of compliance, abundant in nature’s structures, and the use
of flapping propulsion, prevalent among nature’s swimmers.

The first part of this thesis is dedicated to investigating the physics that govern the
behavior of an inverted-flag energy harvester; an unactuated flexible cantilever plate
that is clamped at its trailing edge and submerged in a flow. The resonance between
solid motion and fluid forcing generates large-amplitude unsteady deformations of
the structure that may be used for energy harvesting purposes. The effect of the
flag’s aspect ratio on its stability is first evaluated. Flags of very small aspect
ratio are demonstrated to undergo a saddle-node bifurcation instead of a divergence
instability. The angle of attack of the flag is then modified to reveal the existence of
dynamical regimes additional to those present at zero angle of attack. A side-by-side
flag configuration is finally explored, highlighting the presence of an energetically
favorable symmetric flapping mode among other coupled dynamics.

The second part of this thesis delves into the analysis of underwater flapping pro-
pellers and the optimization of their three-dimensional motion to generate desired
maneuvering forces, with the objective of obtaining an appendage for use in au-
tonomous underwater vehicles that can perform both fast maneuvering and efficient
propulsion. An experimental optimization procedure is employed to obtain the most
efficient trajectory that generates a specified side force. The effect of increasing the
fin’s aspect ratio is examined, and a highly efficient trajectory, that makes use of
high three-dimensionality and rotation angles, is obtained for a fin of AR=4. The
use of a flexible fin is then analyzed and shown to be detrimental to the maneuvering
efficiency of the system.
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PREFACE

“Natural and human technologies differ extensively and pervasively. We
build dry and stiff structures; nature mostly makes hers wet and flexible.
We build of metals; nature never does. Our hinges mainly slide; hers
mostly bend. We do wonders with wheels and rotary motion; nature
makes fully competent boats, aircraft and terrestrial vehicles that lack
them entirely.”

— Steven Vogel, Cat’s Paws and Catapults

As has been eloquently highlighted by Vogel, the mechanical and structural designs
conceived by human engineering and those that result from natural evolution pos-
sess, more often than not, fundamentally differing properties. Throughout millions
of years of evolution, nature has selected exceptionally efficient tools for an equally
extraordinary diversity of requirements; a natural equivalent can be found for almost
every human necessity. The aim of this thesis is to explore the use of principles
that stem from natural evolution to enhance the performance of engineered mecha-
nisms, focusing on systems whose role is to interact with a fluid environment. The
contrast between bio-inspired and bio-mimetic approaches should be emphasized;
the purpose of this work is not to merely replicate nature’s mechanisms, nor are
they considered as an optimized unimprovable solution. Rather, its intent is to com-
bine principles from nature’s operation with an engineering foundation to ideate an
overall improved design.

Among the differences between natural and human designs, perhaps the most re-
markable lies in the disparate use of materials. Engineers commonly employ metals
and other stiff constituents, which are difficult to deform and simpler to design.
Nature, on the other hand, tends to fashion more flexible materials, using the added
complexity to its advantage. Flexibility plays an important role in practically every
natural design and is the primary driving principle in countless of its mechanisms.
The effect of compliance on a structure is particularly notable when it is subjected to
fluid forces from its environment. The aero- and hydrodynamic forces that act on a
body submerged in a fluid are dependent both on the body’s shape and its motion. In
the case of a flexible structure both of these properties are a function of its deforma-
tion, which is, in turn, dependent on the fluid forces that are exerted on the structure.
This interdependence results in coupled physics between solid deformation and fluid
mechanics, which can no longer be considered separately. The field concerned with
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the study of this coupled behavior is aptly called the field of solid-fluid interactions,
and will be the subject of Part I of this thesis. The interactions between solid and
fluid add a level of complexity that may be detrimental to the mechanical system,
increasing the number of possible failure modes of the structure. They also provide,
however, additional degrees of freedom to tinker with that may be exploited to our
advantage with careful design. Inspired by the flutter of leaves in the wind, Part I
of this thesis is dedicated to the analysis of an inverted flag, a flexible cantilevered
plate clamped at its trailing edge that is unactuated but subjected to a uniform flow.
The resonance between solid motion and fluid forcing generates large amplitude
unsteady deformations that may be used for energy harvesting purposes.

Part II of this thesis draws inspiration from a different natural design. Due to the
suitability of metallic components and electromagnetic motors, engineered pro-
pellers for aquatic locomotion generally make use of continuous rotational motions.
Nature, however, generates propulsive forces through flapping, paddling and jetting.
Flapping propulsion is achieved through periodic motions of a plate-type propeller
and commonly entails the coupling of lift and thrust forces. This coupling results
in complex physics, but eliminates the need of multiple force-generating surfaces.
Based on the caudal fin of fish, Part II of this thesis aims to combine both flapping
propulsion and the large, although not continuous, rotations of human propellers.
A fin capable of generating rotations in three degrees of freedom is proposed as a
combined propulsive and maneuvering system for use in autonomous underwater
vehicles. The analysis delves into the optimization of the three-dimensional motion
to be followed by the fin in order to generate desired maneuvering forces.

In accordance with these two distinct topics, this thesis is divided into two indepen-
dent parts, with this preface serving as a reminder of the underlying encompassing
topic and the origin of the principles at hand.



Part I

Inverted Flags
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C h a p t e r 1

INTRODUCTION

The past decades have seen enormous advances in the fields of microelectronics,
micro mechanics and wireless communications. With these advances have emerged
a new array of low-power devices that function in hard-to-reach locations; examples
are remote sensors and monitors, medical implants and wireless actuators. Due
to the difficulty of accessing these devices’ location, introducing power cables is
impractical and periodically replacing their batteries poses significant challenges.
A strong emphasis has been put into the development of systems that can harvest
small amounts of energy from on-site natural resources (Elvin and Erturk, 2013;
Lee et al., 2015; Mateu and Moll, 2005; Paradiso and Starner, 2005; Park and Chou,
2006; Weimer et al., 2006). These systems would allow the devices’ continuous
operation without the need of accessing their location. A promising line of work is
the exploitation of ambient vibrations to generate strains in a piezoelectric material,
which can, in turn, convert these strains into electric energy (Ahmed et al., 2017; Liu
et al., 2018; Priya, 2007; Sodano et al., 2004). In many cases, a reliable source of
vibrations is a surrounding flow. Since the early work of Allen and Smits (2001) and
Taylor et al. (2001), substantial amounts of research have focused on the flapping
motion of flags as a source of vibration for piezoelectric energy harvesters.

The study of the solid-fluid interactions that develop when a flag is immersed in a
uniformwind dates back to the work of Rayleigh (1878). Although many theoretical
analyses shortly followed, the first experimental investigation of a flapping flag was
performed by Taneda (1968). The problem was revisited by Zhang et al. (2000),
and many more studies— theoretical, numerical and experimental — have emerged
in recent years. Comprehensive reviews of the recent developments can be found
at Yu et al. (2019), Shelley and Zhang (2011), Eloy et al. (2008) and Païdoussis
(1998). The dynamics of a flag immersed in a uniform flow can be divided into three
separate regimes. At low flow speeds, the flag remains at rest and aligned with the
flow in what has been denominated the stretched-straight state. In this state, a thin
vortex street of alternating signs trails the flag’s trailing edge. At a critical velocity,
the stability of the stretched-straight mode is lost through flutter and the flag enters
a periodic flapping mode. In this regime, the vortex sheet that is shed is comprised
of vortices of a single sign, with the sign alternating each half stroke of the flag.
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A bi-stable region has been reported, where both stretched-straight and periodic
flapping regimes co-exist. As wind speed is further increased the power spectrum
of the flag’s motion becomes broadband and the flag enters a chaotic flapping mode.

Because the bending stiffness of piezoelectric panels is substantially larger than
that of a cloth flag, the piezoelectric flag is analogous to a cantilever plate, and the
critical velocity at which the flappingmotion is onset is relatively high. One common
remedy to this problem is the placement of an upstream bluff body whose vortex
street induces vibrations on the flag (Taylor et al., 2001). In Kim et al. (2013) we
followed a different approach and proposed an alternate configuration, the inverted
flag, where the leading edge of the cantilever is free to move and the trailing edge
is clamped. This configuration is unstable at low flow velocities, making it a good
candidate for piezoelectric energy harvesters. Additionally, the maximum flapping
amplitude of the inverted flag is approximately 1.7 times its length, which is several
times higher than the maximum flapping amplitude reported for regular flags. The
higher amplitudes impose significantly higher strains on the piezoelectric material,
which may increase up to ten times the energy harvesting efficiency of the system
(Gurugubelli and Jaiman, 2015).

The inverted flag presents three main dynamical regimes as a function of free stream
velocity. They are represented in figure 1.1, where each image has been obtained by
superimposing snapshots of the flag’s motion. At low velocities, the flag undergoes
small amplitude oscillations around the undeflected position in the denominated
straight regime. During these oscillations the flow remains attached (Goza et al.,
2018; Gurugubelli and Jaiman, 2015). As the flow speed is increased, it reaches
a critical value at which the flag becomes unstable, undergoing a large amplitude
flapping motion. The shedding frequency of vortex structures is correlated to this
flapping motion, with a variety of vortex patterns occurring for different velocities
(Goza et al., 2018; Gurugubelli and Jaiman, 2015; Kim et al., 2013; Ryu et al.,
2015; Shoele and Mittal, 2016). If the wind speed is further increased, the inverted
flag enters the deflected regime, where it oscillates with small amplitude around a
high deflection equilibrium. Bi-stable regions are present both in the transition from
straight to flapping and from flapping to deflected regimes.

In addition to these three main regimes, Sader et al. (2016a) reported the existence of
a chaotic mode, where the flag flaps aperiodically with a broad frequency spectrum,
between the periodic flapping and deflected regimes. Numerical studies, which
correspond to low Reynolds number flows, have reported additional dynamical
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Increasing flow speed

Straight Flapping Deflected

Figure 1.1: Superimposed images of the motion of the inverted flag for the three
main dynamical regimes. The flow is left to right and the flags are clamped at their
trailing edge.

modes. Ryu et al. (2015) observed the existence of both a small-deflection steady
state and a small-deflection small-amplitude flapping regime at flow speeds between
those corresponding to the straight and large amplitude flapping regimes. Similar
observations have been made by Gurugubelli and Jaiman (2015) and Goza et al.
(2018). Gurugubelli and Jaiman (2015) additionally observed a flipped flapping
regime at wind speeds higher than those of the deflected regime. In this mode, that
has also been observed by Shoele and Mittal (2016) and Tang et al. (2015), the flag
bends 180° such that the leading edge is parallel to the flow, recovering a motion
similar to that of the conventional flag. Overall, the regimes of motion that have
been reported for the inverted flag are, ordered from lowest to highest corresponding
flow velocity: straight, small-deflection steady, small-deflection small-amplitude
flapping, large amplitude flapping, chaotic, deflected and flipped flapping.

In an attempt to understand the onset of the large amplitude flapping motion, several
studies have investigated the loss of stability of the straight regime. While the
existence of a divergence instability was hinted by Kim et al. (2013), Gurugubelli
and Jaiman (2015) was the first to numerically demonstrate its presence. Sader
et al. (2016a) theoretically corroborated the loss of stability of the straight regime
through divergence, and provided a simplified analytic formula that reasonably
predicts the onset of flapping for inverted flags of aspect ratios higher than 1.
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Using a scaling analysis, Sader et al. (2016a) further proved that the flag’s flapping
motion constitutes a vortex induced vibration. Goza et al. (2018) associated this
classic vortex induced vibration with the 2P vortex shedding mode, and linked
the appearance of additional shedding modes at higher flow velocities with the
breakdown of the VIV and appearance of chaos. The cessation of flapping has
received comparably little attention, and is not yet fully understood. Goza et al.
(2018) suggested the mechanism behind this transition to be a disruption of lock-on
caused by the increased disparity between natural and shedding frequencies of the
flag. While the transition velocity from straight to flapping regimes is independent
of mass ratio, as defined in Section 1.2, the transition velocity from flapping to
deflected regimes decreases as the fluid loading, and therefore damping, increases
(Kim et al., 2013), consistent with the lock-off theory.

The results summarized in this section have been obtained for flags with relatively
heavy fluid loading; a distinction should be made for flags with light fluid loading.
Although these flags still present a flapping mode, this motion does not constitute a
vortex induced vibration (Goza et al., 2018). Due to the small thickness of the flag,
however, inverted flags are subject to heavy fluid loading for all practical cases.

1.1 Objectives
Ashas been highlighted above, since itwas first introduced inKimet al. (2013), many
advances have beenmade towards the understanding of the inverted flag’smechanics.
However, several aspects that are fundamental for its full characterization are yet
to be investigated. The objective of this thesis is to address the most salient of
these topics. In many cases, the field has evolved in parallel to the development
of this work; recent advances have been addressed in the concluding section of
each chapter. This study is predominantly experimental, with some theory being
presented to complement the results. Part I of this thesis is organized as follows

• The remainder of Chapter 1 is dedicated to clarifying relevant parameters and
definitions and describing the experimental setup employed.

• Chapter 2 researches the dynamics of inverted flags in the limit of very small
aspect ratio, which are markedly different to those of the large-aspect-ratio
case.

• Chapter 3 addresses the dynamics of inverted flags that are placed at moderate
angles of attack to the flow and the modified behavior that arises as this angle
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Figure 1.2: Side and top view of the inverted flag with parameters employed to
characterize (a) dimensions (H, L and h), (b) angle of attack, α, and (c) deflection,
Φ, and amplitude, A

is increased.

• Chapter 4 delves into the behavior of two inverted flags when they are placed
in a side-by-side configuration and the interactions and coupling that ensue.

• Chapter 5 concludes the investigation on inverted flags and highlights the most
imperative avenues for future work.

1.2 Parameters and definitions
The mathematical description of the inverted flag presented in the literature closely
follows that developed for the more general case of an elastic plate with arbi-
trary boundary conditions (Argentina and Mahadevan, 2005; Kornecki et al., 1976).
Accordingly, similar variables and parameters have been introduced to define the
inverted flag’s behavior. The nomenclature used throughout this thesis is presented
hereafter.

The flag’s dimensions — length, L, width, H, and thickness, h — have been repre-
sented in figure 1.2a. The non-dimensional parameters that determine the behavior
of the inverted flag are the angle of attack, α, the non-dimensional velocity, κ, the
mass ratio, µ, the aspect ratio, AR, and the Reynolds number, Re. The angle of
attack, α, corresponds to the fixed angle of the trailing-edge clamp with respect to
the free-stream velocity and is represented in figure 1.2b. The remaining parameters
are defined as follows

κ =
ρ f U2L3

D
, µ =

ρsh
ρ f L

, AR =
H
L
, Re =

ρUL
µ f

,

where U is the free-stream velocity, ρ f is the density of the fluid, D the flexural
stiffness of the flag (D = Eh3/(12(1 − ν2)) with ν the Poisson ratio), ρs the density
of the flag and µ f the viscosity of the fluid. The non-dimensional velocity, κ,
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represents the ratio of fluid inertial to solid elastic forces, while the Reynolds
number, Re, corresponds to the ratio of fluid inertial to fluid viscous forces. The
mass ratio, µ, on the other hand, is representative of the relative mass of the flag to
that of the fluid it displaces.

The resulting flag’s motion is characterized throughout this text using two main pa-
rameters, the flag’s deflection angle, Φ, and the Strouhal number, St. The deflection
angle, Φ, is represented in figure 1.2c and corresponds to the instantaneous angle
between the line that joins the flag’s leading and trailing edges and the free-stream
velocity. Its use differs from previous studies such as Kim et al. (2013) that utilize
the amplitude of motion (A, figure 1.2c) as the defining parameter. The choice stems
from the non-injectivity of the amplitude of motion: for a given amplitude there
are two possible flag positions, one with Φ < 90 and one with Φ > 90. Because a
flag can deform under different modes, the deflection angle is not strictly injective
either. However, it was experimentally observed that for a given flag at specified flow
conditions each deflection angle corresponds to a unique flag position. Variables
derived from this parameter, such as the angular amplitude ∆Φ = Φmax − Φmin and
the mean deflection angle, Φ̄, will be employed occasionally. The Strouhal number
is defined as follows

St =
f A′

U

where f is the frequency of oscillation and U the free-stream velocity. The cross
section A’ is calculated as the maximum between Amax − Amin and |Amax |, where
Amax is the maximum amplitude, Amin the minimum amplitude and the clamping
point is located at A=0. This amplitude corresponds to the cross-flow distance
between the shed vortices.

The value of the Reynolds number varies between 103 and 105 in the experiments
presented. The characteristic features of the inverted-flag dynamics and vortex wake
have been shown to be fairly insensitive to Reynolds number for Re > 100 (Shoele
and Mittal, 2016; Tang et al., 2015). For these large Re, the characteristic curves
of the flag’s motion collapse when represented as a function of κ, independently of
flag dimensions, showing that variations with free-stream velocity are a result of
the changing behavior with κ and not a Reynolds number effect. For this reason,
the effect of Reynolds number has not been analyzed in this study. Similarly, all
experiments were performed in air, and although the mass ratio varied due to the
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varying flag dimensions its order of magnitude was always O(1). Because such
small variations in µ have a negligible effect on the flag’s dynamics, the effect of
the varying mass ratio has not been considered in this study.

1.3 Experimental setup
The experimental measurements of inverted flags presented in this thesis were
performed in an open-loop gust-and-shear wind tunnel constructed at Caltech. A
photograph of the experimental setup can be viewed in figure 1.3. The tunnel,
similar in design to that of Johnson and Jacob (2009), generates the flow through
an array of 10 × 10 small computer fans. Each row of fans can be controlled
individually, allowing for the generation of shear flows, and the fast response of the
small fans further allows for the generation of gusts. In this thesis, however, the
only flow employed was a uniform steady flow. The tunnel is capable of generating
flow speeds between 2.2m/s and 8.5m/s. The variation in the generated free-stream
velocity across the tunnel’s cross section, caused by the multiplicity of fans, is under
2.7%.

The turbulence intensity at different flow speeds, measured using a hotwire system,
is shown in figure 1.4. These intensities are significantly higher than those present in
traditional wind tunnels and result in large perturbations to the flag. It is particularly
important to consider these perturbations when performing stability analyses; corre-
sponding remarks have been made in the relevant sections of chapters 2 and 3. The
control of the individual computer fans is achieved using a pulse-width-modulated
signal, resulting in an overshoot of the fan velocity before the steady state is reached.
The measurements presented in this manuscript correspond to steady state results—
a stabilizing period of at least 30 s was allowed between tunnel velocity modification
and recording of data. It is important to note that the inverted flag’s motion presents
bi-stable regions for certain ranges of the flow velocity. Due to the overshoot when
modifying the tunnel’s flow velocity, the presence of these regions must be assessed
in this setup by modifying the initial conditions of the flag.

The test section of the wind tunnel has a length of 1.9m and a square cross section of
1.2m × 1.2m. The largest flag tested had dimensions of 0.2m × 0.4m, resulting in a
maximum blockage ratio of 4.7%. No blockage effects were observed in any of the
tests performed. The flags were clamped at their trailing edge using two aluminum
bars of dimensions 12mm × 6mm × 1.2m. For the study presented in Chapter 4,
where a side-by-side flag arrangement is analyzed, two sets of clamping bars were
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Figure 1.4: Turbulence intensity of the fan array wind tunnel for varying wind
speeds

positioned side-by-side and on a rail, such that the distance between flags could be
varied. The clamping bars are positioned vertically in the test section to minimize
the effect of gravity on the flag dynamics. The deformation of the flag was observed
to be two-dimensional in the horizontal plane for the majority of test cases, with the
lowest aspect ratio flags being the exception. A discussion of the twisting and the
effect of gravity on these flags is presented in Section 2.2. In order to set the desired
flag angle of attack, the clamping bars were attached to a hinge that allows rotation
around the vertical axis. It is equipped with a dial that shows angles in two-degree
increments, resulting in an error in the angle of attack of ±1°.
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Test Flag number Dimensions (mm) AR µ
Length Width Thickness

Aspect
ratio

1 300 10 0.76 0.033 2.49
2 300 20 0.76 0.067 2.49
3 300 30 0.76 0.1 2.49
4 300 40 0.76 0.13 2.49
5 195 195 0.51 1 2.55
6 195 97.5 0.51 0.5 2.55

Angle of
attack

7 82 410 0.25 5 3.03
8 160 320 0.51 2 3.11
9 180 360 0.51 2 2.76
10 190 380 0.51 2 2.62
11 200 400 0.51 2 2.49

Coupling

12 100 150 0.25 1.5 2.48
13 85 150 0.25 1.76 2.93
14 90 150 0.25 1.67 2.76
15 93 150 0.25 1.61 2.68
16 95 150 0.25 1.58 2.62
17 98 150 0.25 1.53 2.54
18 102 150 0.25 1.47 2.44
19 105 150 0.25 1.73 2.37
20 107 150 0.25 1.4 2.33
21 110 150 0.25 1.36 2.26
22 115 150 0.25 1.3 2.16

Table 1.1: Numbering, dimensions and properties of the inverted flags tested

Themotion of the flagswas filmed using a high-speed camera (Imperx IPX-VGA210-
L or Dantec Dynamics Nanosense MKIII) located above the test section. Images
were acquired at frame rates between 20 frames per second and 100 frames per
second in sets between 200 and 8,100 frames long. The position of the top edge
of the flag, marked with white paint, was tracked in the acquired frames using a
MATLAB script. The minimum edge to clamp distance in the acquired images is
of 60 pixels and the tracking script was observed to detect the flag edge within four
pixels, resulting in errors in the measurement of φ smaller than 4°. The dominant
frequency of motion of the flag can be subsequently determined making use of
the fast Fourier transform of the deflection angle’s time series. Measurements of
the local deflection angle at the plate’s free end were required for a comparison
with theoretical results in Chapter 2. They were obtained by fitting a third-order
polynomial to the deflected flag shape over the last 20% of the flag length.
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The flags consisted of polycarbonate plates with a density of ρs = 1200kg/m3,
Young’s modulus of E = 2.41GPa and Poisson ratio of ν = 0.38. A small initial
curvature of up to 5° was present in the plates due to fabrication and material
defects. This curvature was measured experimentally by clamping the flags in the
wind tunnel and acquiring images with the fan array turned off. It corresponds to a
single mode of deformation; the flags were observed to present similar curvatures
in both streamwise and cross-stream directions. Viscoelastic effects in the flag’s
deformation were only observed for the smallest aspect ratio flags, analyzed in
Chapter 2. No time dependence was observed in the deflected stable equilibrium
shapes of these flags, confirming that any viscoelastic properties exert a weak effect.
Each of the flags used has been assigned a flag number to facilitate identification
throughout this text. They are presented, together with their dimensions, aspect
ratio and mass ratio, in table 1.1.
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C h a p t e r 2

STABILITY OF SLENDER INVERTED FLAGS

John E Sader, Cecilia Huertas-Cerdeira, and Morteza Gharib. Stability of slender
inverted flags and rods in a uniform steady flow. Journal of Fluid Mechanics
809:873–894,2016.

The main findings highlighted in Chapter 1 correspond to inverted flags of relatively
high aspect ratios (AR>1). Above that threshold, the general features of the flag’s
behavior are consistent independently of this parameter. Variations with aspect
ratio have been reported, however, in the values of the critical velocities, as well
as the amplitudes and frequencies of flapping. Preliminary experimental results by
Cossé et al. (2014) and a more detailed follow-up in Sader et al. (2016a) indicated
that the critical value of the non-dimensional velocity, κ, at which the flag enters
the flapping regime increases as aspect ratio is decreased, while the value of κ at
which the flapping motion disappears remains constant for all aspect ratios. Similar
results were numerically obtained at Re=200 by Tang et al. (2009), who observed,
nonetheless, a small variation in the values of κ at which flapping ceases. Tang et al.
(2015) reported an approximately constant overall maximum flapping amplitude,
A, although the velocity at which higher aspect ratios reached this value was lower,
showing a wider maximum-amplitude plateau. A substantial decrease in Strouhal
number was additionally reported as aspect ratio decreased.

As was highlighted in Chapter 1, the onset of flapping of high-aspect-ratio inverted
flags is caused by a divergence instability. Sader et al. (2016a) presented a theoretical
analysis that is able to predict the onset of flapping for flags of aspect ratio AR>1.
Their model followed the steady version of the theory developed by Kornecki et al.
(1976) which considers two-dimensional, inviscid, incompressible flow combined
with the equilibrium equation of an elastic plate and the corresponding boundary
conditions. The divergence velocity is then computed making use of the Rayleigh
quotient. The analytic formula, valid for varying aspect ratios, was obtained by
correcting this infinite aspect ratio value with a factor of 1 + 2

AR , as derived from
Prandtl’s lifting line theorymaking the assumption of a negligibleGlauert coefficient
(Anderson Jr, 2010; Glauert, 1983). The formula obtained reasonable agreement
with experiments for aspect ratios up to 1. Formally, Prandtl’s lifting line theory
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is an asymptotic formula for high aspect ratios. It is generally considered to hold
closely for AR>4 (Bollay, 1939), with vortex lattice methods being used for AR>1.
At smaller aspect ratios the edge vortices produce non-linear effects that cannot be
captured by this linear theory. The formula obtained by Sader et al. (2016a) strongly
overpredicts the transition velocity of inverted flags of these small aspect ratios,
consistent with a vortex lift mechanism that enhances the lift on the flag, therefore
reducing the critical velocity.

The objective of this chapter is to characterize the behavior of slender inverted flags
(AR<1). It is important to note that the experimental results by Cossé et al. (2014)
and Sader et al. (2016a) established the existence of a flapping regime for AR>0.2
only. Under that threshold, the flag transitions directly from oscillating around a
small deflection position to oscillating around a large deflection equilibrium. Conse-
quently, the theoretical analysis presented in Section 2.1, developed by collaborators
at the University of Melbourne for the limit of AR→ 0, addresses the existence and
stability of steady state equilibria only. The experiments presented in Section 2.2,
give further insights into the effect of a finite, but small, aspect ratio and the system’s
dynamics.

2.1 Theory
A theoretical framework for the stability of inverted flags in the limit of zero aspect
ratiowas developed by Prof. John Sader and is summarized below. Amore extensive
description can be found in Sader et al. (2016b). The theory is based on the result
by Bollay (1939), who considered the effect of edge vortices that trail at an angle
to the free-stream velocity, obtaining a non-linear theory for the lift of flat plates of
AR<1. In the limit of zero aspect ratio, the normal force coefficient becomes

CN = 2π sin2 α (2.1)

with α the angle of attack of the plate. The equilibrium equation for a beam
undergoing large-deformation pure bending (Landau and Lifshitz, 1970) is given by

EI
d2θ(s∗)

ds2
∗
= −n(s∗) ·

∫ L

s∗
F(l∗) dl∗, (2.2)

where θ(s∗) is the local rotation angle of the beam, s∗ (and the equivalent integration
variable l∗) is the dimensional arc-length along the beam (s∗ = 0 at the clamped
end) as defined in figure 2.1. E is the Young’s modulus of the beam, I is its areal
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Figure 2.1: Definition of local rotation angle of the beam, θ(s), and arc-length along
the beam, s.

moment of inertia, F is the local applied force per unit length and n is the local unit
normal to the beam’s axis at position l∗. Equation (2.2) satisfies the required zero
force condition at the free end of the cantilever(s∗ = L).

Combining equations 2.1 and 2.2, the equilibrium equation for the slender inverted
flag becomes

d2θ

ds2 = −κ
′
∫ 1

s
|sin θ(l)| sin θ(l) cos(θ(s) − θ(l)) dl, (2.3)

where the dimensionless arc-length, s ≡ s∗/L (and l ≡ l∗/L), is now used. The
dimensionless velocity κ′ is the beam equivalent of κ as defined in Section 1.2,
where the flexural rigidity has been substituted by that of a beam of rectangular
cross section D′ = Eh3/12. The absolute value in the right-hand side is included
to account for the inherent symmetry in the flag’s deflection. The corresponding
boundary conditions are

θ(0) = dθ
ds

����
s=1
= 0, (2.4)

Equation 2.3 can be solved numerically, using a finite difference discretization
combined with a shooting method, where the angle at the free end of the cantilever,
θend = θ(1), is adjusted to match the required clamp condition, θclamp = θ(0) = 0
(Luhar and Nepf, 2011). The obtained results are represented in figure 2.2 and show
the existence of a saddle-node bifurcation, in contrast to the divergence instability
present in the large-aspect-ratio case. The variable employed is θend , which is
equivalent but not equal to the deflection angle, θ. For small values of κ′, a single
solution to equation 2.3 exists. It corresponds to the zero deflection equilibrium
(θend = θclamp = 0). As κ′ is increased, a second solution, corresponding to the
deflected equilibrium θend = 66.7°, appears and further divides into two distinct
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Figure 2.2: Theoretical bifurcation diagram of the inverted flag’s free end angle
θend vs. normalized flow speed κ′ in the limit AR → 0. Solid curves correspond
to stable equilibria, dashed curves correspond to unstable equilibria. Only positive
angles are shown – negative angles have symmetric behavior.

equilibria for higher values of κ′. The critical κ′ atwhich this saddle-node bifurcation
occurs is κ′crit = 9.205. The stability of these equilibria can be deduced from the
fact that the aerodynamic force does not present a linear term (equation 2.1), and
therefore the zero-deflection equilibrium must necessarily be linearly stable.

The results in figure 2.2 have been obtained using a steady aerodynamic force
and do not account for the unsteadiness of the separated flow. Inverted flags of
AR<0.2 do not present large-amplitude flapping, and therefore, as will be shown
experimentally in Section 2.2, the unsteady effects are limited to generating small
amplitude oscillations around the equilibria. In order to gain some intuition on the
system’s stability and dynamics, a simplified rigid flag model, that reduces the flag
motion to a single degree of freedom, can be employed. The equation of motion of
a rigid beam that is mounted on a torsional spring at its trailing edge is given by

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ θ̄ − κ̄

��sin θ̄
�� sin θ̄ = F(θ̄, t), (2.5)

where θ̄ is the beam’s rotation angle, κ̄ is analogous to the non-dimensional flow
speed and accounts for the spring’s constant, Q is the quality factor, t is scaled time
and F(θ̄, t) is an unspecified external applied force due to the unsteady hydrodynamic
force arising from vortex shedding and any turbulence in the impinging flow. The
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potential energy of the steady system (third and fourth terms) can be calculated and
provides insight into the competing elastic and steady aerodynamic forces. It is
given by

V(θ̄) = 1
2
θ̄2 − κ̄

2

����θ̄ − 1
2

sin 2θ̄
���� , (2.6)

and is plotted in figure 2.3. In this figure, the stationary points correspond to
equilibrium solutions and agree with the bifurcation diagram presented in figure
2.2. For small values of κ̄, the zero deflection equilibrium is solely present. As κ̄ is
increased a saddle-node bifurcation occurs and an unstable (potential maximum) and
stable (potential minimum) equilibria appear. This simplified model notably shows
the basins of attraction of the equilibria. At κ̄ slightly above the bifurcation velocity,
the potential well of the stable deflected equilibrium is shallow and the energy
required to reach the unstable equilibrium from it is small; any small perturbation
will lead the flag back to the stable zero-deflection equilibrium. In contrast, at
high values of κ̄ the potential well of the deflected equilibrium is steep and the
energy required to exit the zero-deflection equilibrium is small; perturbations will
lead the flag towards the deflected equilibrium. This explains why, despite the zero-
deflection equilibrium being always stable, all experimental investigations up to date
have reported that increasing wind speed results in the flag transitioning from the
zero-deflection state to the deflected state. The intermittency inherent to low aspect
ratio inverted flags is further analyzed in Section 2.2.

The normalized velocity κ′ at which inverted flags in the AR → 0 limit undergo
a saddle-node bifurcation can be translated to the large aspect ratio variable κ as
follows

κsmall = 9.205(1 − ν2) (2.7)

with ν the Poisson ratio of the flag. The theory presented by Sader et al. (2016a) for
the AR→∞ limit predicted a divergence instability at a value of

κ = κlarge

(
1 +

2L
H

)
(2.8)

where
κlarge = 1.85. (2.9)
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Figure 2.3: Potential energy function, V(θ̄), of the rigid beam model system for
κ̄ = 0, 1.2, 1.38, 1.48, π/2, 1.7, 1.8 (increasing from center outwards); saddle-node
bifurcation occurs at κ̄ = 1.38. Both positive and negative angles are given.

These two equations for the asymptotic limits can be combined using a Padé ap-
proximant to obtain a formula that can predict the end of the straight regime for flags
of all aspect ratios

κ ≈ κlarge
κsmall +

(
κsmall − κlarge

) H
2L

κlarge +
(
κsmall − κlarge

) H
2L

, (2.10)

Because the zero-deflection regime of the low aspect ratio limit is always stable, and
the flag only deflects as its basin of attraction becomes sufficiently small, formula
2.10 should be taken as a lower bound. It is plotted, together with both asymptotic
theories and experimental results by Sader et al. (2016a) in figure 2.4 and shows
good agreement throughout.

The possible existence of multiple equilibria, as predicted theoretically in this sec-
tion, was explored experimentally. These measurements aim to test for the presence
of these equilibria, as well as give insight into the flag’s dynamics and the behavior
of flags of small but finite aspect ratios.

2.2 Results
Multiple equilibrium states of the flag
The new measurements verify the existence of multiple equilibrium states, as pre-
dicted theoretically in Section 2.1. This theory does not, however, account for
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Figure 2.4: Comparison of measurements and theoretical predictions for the critical
normalized flow speed at bifurcation, as a function of aspect ratio, H/L. Equa-
tion (2.8) [upper curve, large aspect ratio solution], (2.7) [horizontal line, small
aspect ratio solution] and (2.10) [lower curve, globally valid Padé approximant].

dynamic effects, which modify the behavior of the flag. For the smallest aspect
ratios, H/L < 0.2, the flag was experimentally observed to oscillate with small am-
plitude around the stable equilibrium positions. In those cases, the deflected stable
equilibrium position, presented in figure 2.5, was measured by taking the average
of a 30 s time series. Large-amplitude flapping occurs for aspect ratios H/L > 0.2
(Sader et al., 2016a). In these cases, the flag was damped to observe a deflected
equilibrium; this was achieved by lightly touching the flag with a thin rigid pole.

Existence of an unstable deflected equilibrium was assessed as follows. The initial
position of the flag was adjusted by quasi-statically pushing it from the stable
deflected equilibrium position towards the zero-deflection position using a thin and
rigid pole. Presence of an unstable deflected equilibrium must then lead to rapid
and unassisted movement of the flag from the deflected initial condition towards the
zero-deflection equilibrium. The deflected shape of the sheet at the time of loss of
contact with the pole is taken to be the unstable deflected equilibrium.

Figure 2.5 shows the measured angle of the cantilevered sheet’s free end at the stable
and unstable deflected equilibria. Measurements from several flags of varying small
aspect ratios are presented, together with the theoretical predictions of Section 2.1.
As the aspect ratio is reduced (left-to-right and top-to-bottom in figure 2.5), both the
measured critical bifurcation flow speed κ′small and the free end angle θend increase,
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Figure 2.5: Measured free end angle, θend, at the stable (•) and unstable (◦) deflected
equilibria for aspect ratios of (a) H/L = 0.13, (b) H/L = 0.10, (c) H/L = 0.067,
(d) H/L = 0.033. Theoretical prediction using the H/L → 0 asymptotic theory
of Section 2.1 is given for stable (upper solid curve) and unstable (dashed curve)
equilibria. Zero-deflection equilibrium position is shown for reference (horizontal
solid line).

shifting towards the theoretical (H/L → 0) curve of Section 2.1. While there
are some differences, even at the smaller aspect ratios, the measurements clearly
approach the theoretical asymptotic solution as H/L is reduced.

Interestingly, the measurements reported in figure 2.5 systematically underestimate
the H/L → 0 asymptotic theory. This may be due, in part, to twisting of the flag
which is observed to always occur when the flag deflects from its zero-deflection
equilibrium. This twisting deformation is shown in figure 2.6 and exhibits a com-
mensurate downward displacement of the flag. Large deformation of elastic beams
inevitably results in coupling between bending and torsion, if the load or beam is
not perfectly symmetric about the beam’s major axis (Landau and Lifshitz, 1970).
Strikingly, every inverted flag studied here deforms in precisely the same manner
— with the free end deflecting vertically downward in the gravity direction —
demonstrating that gravity provides a symmetry break. When the flags are deflected
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sideways by applying a horizontal force with a stiff thin pole and the bank of fans
are turned off, i.e., no flow, the large amplitude twisting shown in figure 2.6 is not
observed, suggesting that the initial break in symmetry is small. The resulting small
twist, however, appears sufficient to modify the aerodynamics of the flag such that
an additional torsional aerodynamic force is generated, resulting in a large twisting
deformation. This coupled bending/twisting deformation is expected to reduce the
drag experienced by the inverted flag because the flag now presents an angled face
to the incoming flow. Such drag reduction reduces the maximum deflection angle of
the inverted flag for a given flow speed, consistent with the observations reported in
figure 2.5. While non-linear coupling between bending and twisting under a gravita-
tional load can be calculated, this complexity detracts from the principal aim of this
study which is to describe the dominant stability mechanisms of slender inverted
flags. The experimental angles reported in figure 2.5 are measured by observing
the flag from above, and as such, they correspond to the projection of the deflection
angle on the horizontal plane.

Bollay’s 1939 calculations indicate that the normal force experienced by a rigid and
flat blade of small but finite aspect ratio contains a term proportional to sin2 θ and
one proportional to sin 2θ. As such, a small but measurable linear lift component is
expected, which may contribute to the observed differences between measurement
and theory in figure 2.5. This mechanism acts in addition to the reduction in
drag due to twisting, and its presence and strength are explored using independent
measurements in Section 2.2.

Measurements by Sader et al. (2016a) found no evidence for the existence of the
multiple equilibria reported in figure 2.5. However, their study focused primarily
on flags of large aspect ratio, H/L. It is therefore important to determine the
aspect ratio at which the multiple equilibria emerge. A systematic experimental
investigation using the present setup reveals that these multiple equilibria occur
only for H/L < 1.7. Figure 2.7 gives the measured bifurcation diagram, i.e., the
stable and unstable equilibrium end angles, θend, as a function of the normalized
flow speed, κ′, for several aspect ratios, H/L, in this range.

The linear component of the hydrodynamic force described above, i.e., the sin 2θ
term, is expected to increase in strength with increasing aspect ratio. Unlike the
limiting case of H/L → 0 where the zero-deflection equilibrium is always linearly
stable, this additional linear component will cause the zero-deflection equilibrium of
finite aspect ratio flags to become linearly unstable at finite flow speed. This behavior
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Figure 2.6: Photograph of slender inverted flag showing the combined flexural
bending and twisting at large flow speeds, under the influence of gravitational and
hydrodynamic loading; H/L = 0.033, κ′ = 16.6. The bank of computer fans is
visible with the flow direction out of the page. The flag is deflected strongly to the
right relative to the flow direction, exhibiting a twist about its major axis together
with commensurate bending in both the horizontal and vertical directions. The
supporting aluminum bar is oriented in the vertical direction.

is evident in figure 2.7, where the unstable deflected equilibrium branch (dashed
curves) crosses the zero axis, causing the zero-deflection equilibrium to become
linearly unstable. The critical κ′-value at which this crossing occurs decreases as
H/L is increased, as would be expected for an increasing linear component of the
normal force. Indeed, this observed decrease in the unstable equilibrium’s free end
angle θend at bifurcation, with increasing H/L (see figure 2.7), is consistent with
the large aspect ratio theory of Sader et al. (2016a): for large H/L, the deflected
unstable equilibrium does not exist and a divergence instability of the zero-deflection
equilibrium occurs.

Intermittent dynamics at moderate flow speeds
The rigid sheet model described by equation (2.5) does not explicitly account for
the effects of nonlinear damping or unsteady hydrodynamic forces, such as those
produced by vortex shedding and turbulence in the flow; these are lumped into
the unspecified forcing term F(θ̄, t). Therefore, it does not completely model the
dynamics of the inverted flag. However, (2.5) does prove useful in gaining a
qualitative understanding of the inverted flag’s stability and dynamics. For small
values of κ̄, the secondary potential well at finite θ̄ (corresponding to the stable
deflected equilibrium) is shallow; see figure 2.3. This suggests that residence at
this minimum is energetically unfavorable and small fluctuations in the flow will
drive the flag away from the stable deflected equilibrium. This behavior is now
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Figure 2.7: Measured free end angle, θend, of inverted flags at their stable (•)
and unstable (◦) deflected equilibria as a function of the normalized flow speed,
κ′. Measurements shown for flags of aspect ratios of H/L = 0.033 (blue circle),
H/L = 0.50 (red square) and H/L = 1.0 (green triangle). To guide the eye, fit
curves to these measured data points are provided for each aspect ratio. Theoretical
prediction is given for the limiting case of H/L → 0 (solid black curves: stable
equilibria; dashed black curve: unstable equilibrium). Undeflected shape (zero
angle) is the horizontal black line.

investigated experimentally.

Figure 2.8(a) shows the variation in time of the non-dimensional displacement of
the flag’s free end, A/L, for κ′ = 9.2. This flow speed is just above the bifurcation
point where the two deflected equilibria emerge in measurements. Initially, the flag
fluctuates around the zero-deflection equilibrium. Using a thin and rigid pole, the
flag is pushed (dashed red curve) to the stable deflected equilibrium position where
it is released. The flag then resides at that position for finite time (≈ 25 s) until it
abruptly, and of its own accord, falls back into the zero-deflection position. This
observation is consistent with the energetic picture in figure 2.3 where fluctuations
in the flow are expected to result in intermittent dynamics.

As κ̄ is increased in the model system, its deflected energy minimum depresses
below the zero-deflection energy minimum; see figure 2.3. Physically, this lets
small fluctuations drive the flag from the zero-deflection equilibrium towards the
more energetically favorable deflected equilibrium. A measurement under this
scenario is shown in figure 2.8(b), corresponding to a normalized flow speed of
κ′ = 14.3. The flag, initially oscillating around the deflected equilibrium, is forced
(dashed red curve) with the thin pole to the zero-deflection position where it is
again released. The flag then resides briefly (≈ 3 s) at the zero-deflection position
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before returning suddenly and unaided to the deflected equilibrium position. The
above-reported intermittency is expected to depend on fluctuations due to unsteady
vortex shedding and on the level of turbulence in the impinging flow, with increased
movement between multiple equilibrium states as the turbulence level is raised.

As mentioned above, the flag exhibits oscillations about both the zero-deflection
(A/L = 0) and deflected (A/L > 0) equilibria in these measurements. The deflected
equilibrium’s oscillation amplitude is different in figures 2.8(a) and (b), with larger
oscillations occurring at the lower flow speed (in figure 2.8(a)). This is expected
because the energy minimum at the deflected equilibrium is shallower at the lower
flow speed, as discussed above, allowing time-dependent fluctuations in the flow to
more strongly perturb the sheet from this equilibrium position. The zero-deflection
equilibrium exhibits reversed behavior, with larger oscillations being observed at the
higher flow speed in figure 2.8(b). This is again explained by the energy landscape
in figure 2.3, as the zero-deflection equilibrium’s energy minimum is shallower at
higher flow speeds— behavior opposite to that of the deflected equilibrium’s energy
minimum. Therefore, the observed oscillation amplitudes of the zero-deflection and
deflected equilibria are entirely consistent with their intermittent dynamics discussed
above.

Presence of a linear hydrodynamic lift force at finite aspect ratio
We now examine whether a linear lift force indeed exists for inverted flags of small
but finite aspect ratio, as suggested by the results of Section 2.2. This is achieved
by performing independent measurements of the natural resonant frequency of the
inverted flags at their zero-deflection equilibrium positions, as a function of aspect
ratio.

When a slender inverted flag is placed at its zero-deflection equilibrium at finite
flow speed, it is observed to resonate with small amplitude; see figure 2.8. For
such small amplitudes, the quadratic (fourth) term on the left hand side of the rigid
sheet model system (2.5) — which holds formally in the limit H/L → 0 — is
small relative to the linear (third) term, provided κ̄ is not large. The equation of
motion for a damped harmonic resonator is then recovered. This equation depends
on κ̄ only through variations in the normalized damping coefficient, 1/Q, and the
external applied (hydrodynamic) force, F(θ̄, t). These variations can both generally
be considered small for small oscillation amplitudes. The resonant frequency of the
flag is therefore weakly dependent on κ̄ in this zero-aspect-ratio limit.
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Figure 2.8: Measured dimensionless free end displacement A/L of an inverted flag
as a function of time, for normalized flow speeds of (a) κ′ = 9.2 and (b) κ′ = 14.3.
Aspect ratio H/L = 0.067. The flag is shifted to a different equilibrium using a thin
rigid pole (red dashed curve) and then released.

For small but finite aspect ratio (H/L � 1), however, the hydrodynamic force on the
rigid sheet includes a linear term, as discussed above (Bollay, 1939). In addition to
the non-linear lift specified by Eq. (2.1) for a rigid slender blade, a linear normal lift
force coefficient per unit length of the form CN = 2c sin θ cos θ arises, as discussed
in Section 2.2. Here, c = 0 in the zero aspect ratio limit (H/L → 0) and is an
increasing function of aspect ratio. Equation (2.5) thus takes the modified form,

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ θ̄ − cκ̄ sin θ̄ cos θ̄ − κ̄

��sin θ̄
�� sin θ̄ = F(θ̄, t). (2.11)

For small oscillations around the zero-deflection equilibrium, this equation can be
linearized to give

d2θ̄

dt2 +
1
Q

dθ̄
dt
+ (1 − cκ̄)θ̄ = F(θ̄, t). (2.12)

This shows that the resonant frequency of the rigid sheet system (and an inverted
flag) of small but finite aspect ratio, H/L, varies as a function of the square root of
1 − cκ̄ and Q, which is weakly dependent on κ̄. Since c increases with increasing
aspect ratio, larger aspect ratio sheets are expected to display a more significant
reduction in their resonant frequency with increasing κ̄.
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Figure 2.9: Natural frequency of oscillation of the zero-deflection equilibrium for
inverted flags with aspect ratios of H/L = 0.033 (◦), H/L = 0.067 (4), H/L = 0.10
(�) and H/L = 0.13 (�). Linear fits to each data set are provided (dashed lines).

Figure 2.9 gives the measured oscillation frequency of the zero-deflection equilib-
rium for several flags, as a function of the normalized flow speed κ′ and aspect
ratio H/L. Although the dependence on κ′ is not necessarily linear, a linear fit is
provided to facilitate comparison. The measured rates of decrease in frequency are
−0.15, −0.12, −0.10 and −0.075 Hz for aspect ratios of H/L = 0.13, 0.10, 0.067
and 0.033, respectively. This verifies the above physical picture: a linear lift force
exists for finite aspect ratio and its magnitude increases with increasing aspect ratio.

A significant reduction in frequency as flow speed increases is observed even for
the smallest aspect ratio of H/L = 0.033. This indicates that linear lift affects the
flag’s dynamics at this small aspect ratio. This finding is consistent with figure 2.7,
where a difference is always observed between the H/L → 0 theory of Section 2.1
and measurements at finite aspect ratio — even for the smallest aspect ratio of
H/L = 0.033. As discussed, this mechanism acts in addition to twisting of the flag
due to the combined effects of gravity and hydrodynamic loading, which leads to a
reduction in deflection.

2.3 Conclusions
This chapter has addressed the behavior of slender (AR<1) inverted flags. Their
stability has been shown to be remarkably different from that of their high aspect
ratio counterpart. While the latter exhibits a divergence instability as flow speed
increases, the undeformed state of an infinitely slender inverted flag is always locally
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stable. A saddle-node bifurcation emerges at finite flow speed, giving rise to two
equilibrium states, with the more strongly deflected one being stable and the weakly
deflected one unstable. The unstable equilibrium defines the boundary of the basin
of attraction for the undeflected flag, which vanishes in the limit of high flow speed.
The slender inverted-flag theory can be combined with that for large aspect ratio
(Sader et al., 2016a), to yield a single formula for stability of the zero-deflection
equilibrium, (2.10), that is valid for all aspect ratios.

Experimental measurements of inverted flags were performed and compared to
theory, confirming he existence of multiple stable and unstable equilibria and the
presence of intermittent dynamics. The experiments saw a significant twisting
deformation that modified the position of the equilibria, as well as oscillations
around the equilibrium positions. The presence of a saddle-node bifurcation was
observed for aspect ratios up to 1.7. Inverted flags of small but finite aspect ratio
were shown to present a combination of characteristics of both linear and quadratic
fluid force dynamics.

The behavior of inverted flags of small but finite aspect ratios has been addressed
in detail in a follow-up theoretical investigation by Tavallaeinejad et al. (2018),
who solved the beam equation in combination with the full potential flow theory of
Bollay (1939) (without taking the AR→ 0 limit) using a Hamiltonian framework.
Their results show good agreement with the experimental measurements reported
in Section 2.2. Interestingly, they studied the effect of a small non-zero initial
curvature of the plate, which is applicable to all experimental measurements, and
highlighted that the zero deflection equilibrium of those plates becomes unstable at
finite velocity even for the AR→ 0 limit.
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C h a p t e r 3

EFFECT OF ANGLE-OF-ATTACK ON THE DYNAMICS OF AN
INVERTED FLAG

Laboratory and numerical studies have highlighted the potential of exploiting the
flapping motion of inverted flags for energy harvesting purposes (Kim et al., 2013;
Ryu et al., 2015; Shoele and Mittal, 2016; Silva-Leon et al., 2019). Field real-
izations of the inverted flag energy harvester, however, have shown that frequent
changes in flow direction, characteristic of atmospheric winds, result in reduced
harvesting performance (Orrego et al., 2017). Changes in flow direction correspond
to variations in the angle of attack of the undeflected flag, which modify its flap-
ping dynamics. This undeflected angle of attack is equal to the angle between the
clamping direction of the trailing edge and the direction of the flow and will be
referred to as angle of attack for simplicity throughout this text, despite the fact
that the instantaneous angle of attack of the flag changes constantly as it deflects.
The dynamics of the inverted flag are very susceptible to changes in this angle, as
can be deduced from the very different behaviors in the 90- and 180-degree limits.
When the flow impinges perpendicularly to the plate, the plate behaves as a bluff
body and the main force acting on it is drag, together with any unsteady forces that
may arise. These forces can produce large bending deformations that often result
in a more streamlined shape, reducing in turn the drag force that the flow exerts on
the plate (Vogel, 1994). This phenomenon, named reconfiguration, has been widely
studied and is commonly seen in vegetation, preventing breakage and uprooting
among other things (De Langre, 2008). Conversely, in the case of a regular flag the
flow remains attached and the force that acts perpendicularly to the plate, which is
responsible for its bending, is due to lift. The resulting deflection of the plate can
subsequently generate flow detachment and unsteady forces. Initially straight, the
flag becomes unstable at flow speeds higher than a critical value that is a function
of the flag’s mass and flexibility (Shelley and Zhang, 2011).

Although these two limit cases have been studied thoroughly, very little information
is known about the behavior of cantilever plates at intermediate angles of attack.
Preliminary wind tunnel tests have been performed by Cossé et al. (2014) on an
inverted flag of aspect ratio 2 at angles of attack of 0, 10 and 20 degrees. At finite α,
the flag presented a gradual increase in the amplitude ofmotion as κwas increased, as
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opposed to the zero angle-of-attack case where the flag presents an abrupt increase
in amplitude at a single value of κ. The critical κ at which the flag transitioned
from the flapping to the deflected regime was found to be different for the three
angles. Additionally, the flag at an angle of 20 degrees showed smaller maximum
flapping amplitudes than those at smaller angles. This has been corroborated by
brief computational studies by Shoele and Mittal (2016) and Tang et al. (2015),
who observed the maximum flapping amplitude to decrease abruptly for angles
larger than 15 degrees. Interestingly, Tavallaeinejad et al. (2018) studied the related
problem of the presence of a small initial zero-stress deflection on the behavior of a
small aspect ratio inverted flag clamped at zero degrees. The initial deflection causes
the subcritical pitchfork bifurcation to be substituted by a saddle-node bifurcation.
This results in the existence of a small deflection steady equilibrium.

While these results highlight some basic changes in the flag’s dynamics, the literature
lacks a more thorough characterization of the inverted flag’s behavior at moderate
angles of attack. The purpose of this study is to fully characterize the dynamics of an
inverted flag for angles of attack between 0° and 28°, as well as to generate a more
comprehensive experimental dataset of the phenomenon. Angles up to 28° have
been considered because, as will be shown, the large-amplitude flapping regime
disappears beyond that value for a plate of large aspect ratio. The main analysis is
performed on a flag of aspect ratio 5 (flag 7, table 1.3). A flag of aspect ratio 2 (flag
8, table 1.3) is subsequently investigated to account for the variability of the results
with aspect ratio. Additional measurements on flags of AR=2 and varying mass
ratios were performed, but due to limitations in tunnel wind speed and dimensions
the variation in µ is quite small. No significant changes were observed in the flag
behavior with these small changes in mass ratio and, therefore, no detailed analysis
of those flags is presented. Because experimental results on the inverted flag are
limited in the literature and the problem has been used in the past as a benchmark
for the validation of numerical codes, the obtained data is included in Appendix A
as a reference.

3.1 Results
Behavior at zero angle of attack
The results obtained at zero angle of attack are consistent with the existing literature,
with the three main dynamical regimes being clearly visible (Kim et al., 2013).
Figure 3.1a shows the maximum, minimum and average deflection angle, Φ, for
an inverted flag of AR=5 as a function of the square root of the non-dimensional
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Figure 3.1: Behavior of an inverted flag at zero angle of attack. Maximum (◦),
minimum (◦) and mean (•) deflection angle, Φ, for a flag of (a) AR=5 and µ = 3.03,
(c) AR=2 and µ = 3.11 and (d) AR=2 and µ = 2.62. (b) Frequency of motion of
the flag of AR=5 and µ = 3.03.

velocity, κ1/2. At low flow speeds, the flag remains undeflected, undergoing a small
amplitude oscillation. As wind speed is increased, it enters the flapping regime,
exhibiting a symmetric large-amplitude flapping motion. For the highest values of
κ, the flag flexes to the side, oscillating with relatively small amplitude around the
deflected position.

As detailed in chapters 1 and 2, the transition from straight to flapping regimes
has been proven numerically (Gurugubelli and Jaiman, 2015) and theoretically
(Sader et al., 2016a) to be caused by a divergence instability of the zero deflection
equilibrium. Figure 3.1b constitutes experimental proof of the existence of this
divergence. It displays the frequency of motion of the flag examined in figure 3.1a
as a function of non-dimensional wind speed. In the case of the small amplitude
oscillations around the zero-deflection equilibrium characteristic of the straight
regime, this frequency can be considered to be equal to the flag’s natural frequency.
In the presence of a divergence instability, the effective stiffness of the flag should
asymptote to zero, with the natural frequency thus following the same trend. This is
an argument equivalent to that used in Section 2.2. The trend can be clearly observed
in figure 3.1b. The value of the oscillation frequency at κ1/2 = 1.724 is equal to
f = 0.1Hz, indicating the proximity of the divergence point. This experimental
value of the divergence velocity has been marked with a solid line in figures 3.1a
and 3.1b. The theoretical value obtained using formula (2.10), κ1/2 = 1.584, is in
reasonable agreement and is represented for reference with a dashed line.
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Figure 3.2: Time trace of the deflection angle for an inverted flag of AR=5 in the
vicinity of its divergence instability ( κ1/2 = 1.724, f = 0.01Hz).

As opposed to the results presented in previous experimental studies (Cossé et al.,
2014; Huertas-Cerdeira et al., 2018; Kim et al., 2013), the amplitude of motion
in figure 3.1a does not increase abruptly after the divergence instability. This
discrepancy in post-bifurcation behavior is most likely due to small experimental
differences, such as variations in the initial curvature of the flag and states of pre-
stress that dampen the flag’s motion and reduce its flapping amplitude for the lower
velocities. To demonstrate that the discrepancy in post-critical behavior is neither
caused by variations in aspect ratio or by variations in mass ratio with respect to
the results of Kim et al. (2013), Huertas-Cerdeira et al. (2018) and Cossé et al.
(2014), the maximum, minimum and average deflection angles for flags of µ = 3.11
and µ = 2.62 and AR=2 are presented in figures 3.1c and 3.1d, respectively. The
experimental divergence velocity, κ1/2 = 1.795, and theoretical divergence velocity,
κ1/2 = 1.807, of these flags are almost identical and are represented with a dashed
line. Figure 3.1c exhibits a discontinuous jump in amplitude of motion after the
divergence, while 3.1d exhibits a gradual increase. Because both flags correspond
to the same aspect ratio, the differing behaviors cannot be caused by aspect ratio
effects. Additionally, the mass ratio of all three flags is very similar, with the flag
of AR=5 (figure 3.1a, µ = 3.03) possessing a mass ratio that is closer to that of
the flag presenting an abrupt transition (figure 3.1c, µ = 3.11) than to that of the
flag presenting a smooth transition (figure 3.1d, µ = 2.62). It is therefore extremely
unlikely that the discrepancy is caused by a mass ratio effect.

It is interesting to note that the amplitude of motion of the flag increases visibly
as it approaches the divergence point from the lower velocities (figure 3.1a). This
increase does not constitute an increase in oscillation amplitude but rather an increase
in perturbation amplitude. As the divergence velocity is approached, the effective
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stiffness of the flag becomes lower, and therefore any perturbation will generate
larger amplitude deviations. This is demonstrated in figure 3.2, where the time
history of the deflection angle at κ1/2 = 1.724, corresponding to the measured
velocity closest to the divergence, is plotted. The underlying small-amplitude low-
frequencymotion is visible. Superimposed are a number of peaks that correspond to
the deviations caused by perturbations. They do not possess an inherent frequency
and result in broadband noise in the FFT of the signal.

Behavior at finite angle of attack for AR=5
The experimental results obtained for an inverted flag of AR=5 at finite angles
of attack are presented in figures 3.3, 3.4, 3.5 and 3.6. Figure 3.3 displays the
maximum, minimum and average deflection angle as a function of non-dimensional
velocity. Each subfigure corresponds to a different angle of attack, in 2° increments.
The value of these angles is specified in the top left corner of each subfigure. Figure
3.4 follows a similar organization and shows the values of the amplitude A’, which,
as specified in Section 1.2, is calculated as the maximum between Amax − Amin

and |Amax | and corresponds to the maximum cross-sectional area of the flag or
distance between shed vortices. This parameter offers a reasonable comparison
with the amplitude, A, employed in many existing studies, while adding information
about the vortex street that is shed. Figure 3.5 shows, in a similar manner, the
dimensional dominant frequency of the flag’s motion, while figure 3.6 shows the
Strouhal number St = f A′/U. The frequencies in these last two cases are calculated
as the peak of the FFT of the deflection angle’s time history. Data is presented only
for velocities at which the FFT presented a clear peak. In certain cases, two distinct
peaks are present; the largest peak was taken as the dominant frequency. Because
the amplitude of these peaks is similar, small changes result in the switching of
the dominant peak. This is reflected as a jump in the represented frequency. An
example are the last four points of figure 3.5 at α = 6°, whose FFTs are represented
in the last four plots of figure 3.7.

The characteristics of the AR=5 flag’s dynamics at these moderate angles of attack
will be analyzed in the following sections. The case of the flag at an angle of attack
α = 6° will be used as an example throughout, with similar general characteristics
being present for all angles. The evolution of the flag’s behavior with angle of attack
will then be discussed in Section 3.1.
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Figure 3.3: Maximum (◦), minimum (◦) and mean (•) deflection angle, Φ, for an inverted flag of AR=5 and µ = 3.03 as a function of
non-dimensional flow velocity, κ, and angle of attack, α
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Deformed regime

As is expected, inverted flags clamped at finite angles of attack do not present
a straight regime. For small values of κ, these flags undergo a small-amplitude
oscillation around a small-deformation deflected equilibrium (figure 3.3). This
regime will be denominated deformed in this text to make a distinction from the
larger-deformation deflected regime. It is similar to the biased regime, that has
been reported under several denominations in computational studies at zero angle
of attack (Goza et al., 2018; Gurugubelli and Jaiman, 2015; Ryu et al., 2015) but
is absent in the experimental literature. The lack of experimental observations may
be due, however, to the difficulty of experimentally distinguishing between strictly
zero and very small deflections as well as to the presence of small initial plate
curvatures. The fundamental difference between deformed and straight regimes lies
in the response to flow velocity of the equilibrium position around which the flag
oscillates. In the case of the deformed regime, the deflection of this equilibrium
increases with κ, remaining constant at Φ = 0° for all κ in the case of the straight
regime. While inverted flags clamped at α = 0° transition from straight to deformed
modes at a finite flow velocity (Gurugubelli and Jaiman, 2015; Ryu et al., 2015),
flags at an angle of attack are inherently deformed for all flow speeds.

Although the dynamics of the inverted flag in the deformed regime are similar for all
angles of attack, i.e., small oscillations around the deflected position (figure 3.3), the
flow behavior exhibits significant changes. For small angles of attack (α . 10) and
low wind speeds, the deflection of the flag is small, and the flow remains attached.
As wind speed is increased the deflection increases accordingly, reaching a critical
value at which the flow separates. For the larger angles of attack (α & 12), the flow
is separated for all wind speeds within the studied range. Flow separation results in
modified lift and drag forces on the flag, modifying the equilibrium position around
which the flag oscillates. The unsteadiness of the deflected flow, however, does not
present a frequency similar to the natural frequency of the flag, and no large flapping
is induced. The flow velocity, κ, at which the flow separates can be identified in
figure 3.5. The small oscillations present in the deformed regime are caused by
the flow unsteadiness from both turbulence and vortex shedding and occur at the
effective natural frequency of the flag. This natural frequency is dependent on the
damping produced by the flow. Because the aerodynamic forces are modified when
flow separation occurs, the effective natural frequency, and consequently oscillation
frequency, should present an abrupt change at the separation velocities. This jump
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can, effectively, be observed in figure 3.5 for α = 2° − 10° at low values of κ. The
maximum deflection angle of the flag’s oscillation for the flow speeds at which this
jump occurs, κsep, is Φ = 8.8°, 9.8°, 13.0°, 12.4° and 15.1° at the angles of attack
α = 2°, 4°, 6°, 8° and 10°, respectively. These deflection angles are within the
range expected for separation to occur. Variations in the separation deflection angle
for different angles of attack may be caused by several factors, including the varying
flow velocity and corresponding turbulence intensity at separation, the varying flag
geometry resulting from the differing angle of attack and deformation mode shape,
and experimental errors in both deflection angle and non-dimensional flow velocity.

The presence of a divergence instability, associated to the cessation of the straight
regime, is no longer observed at finite angle of attack. As can be corroborated in
figure 3.5, no decay to f = 0 of the oscillation frequency occurs. Instead, as κ is
increased the amplitude of the flag oscillations begins to grow, and a large amplitude
flapping motion develops. The nature of this flapping motion is analyzed in Section
3.1.

Flapping regime

The lack of a divergence instability and the gradual increase of the flag’s oscillation
amplitude pose a challenge in defining a critical transition velocity, κlower , from
deformed to flapping regimes. The method proposed by Cossé et al. (2014) defines
κlower as the speed at which the flag reaches an amplitude ofmotion that is a specified
fraction of themaximumflapping amplitude. The selection of this fraction, however,
is arbitrary, and variations in fraction result in significant changes in the value of the
critical velocity. An alternate approach, based on the FFT of the flag’s deflection
angle, is suggested here. As an example, the FFTs of the motion of a flag at α = 6°
and varying κ are shown in figure 3.7. The difference between flapping motions,
where the FFT shows a crisp peak, and motions with no resonance, where the FFT
appears noisy even if a peak is present, is distinguishable by eye. The flapping
regime is therefore defined as the range of wind speeds at which these FFTs present
a crisp peak. In order to mathematically define this region, a bi-Gaussian function
is fitted to each FFT, normalized such that its maximum value is equal to one, and
the sum of squares error (SSE) is calculated

SSE =
n∑
1
(yi − ψ( fi))2 (3.1)
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Figure 3.7: Power spectra of the inverted flag’s motion for α = 6° and varying flow
velocities. The velocities highlighted in blue correspond to the beginning and end
of the upper branch large amplitude flapping motion. The velocities highlighted
with a bold frame correspond to the flapping regime as defined by equation (3.2).

where n is the number of points in the FFT, yi is the value of the FFT at the
frequency fi and ψ( fi) is the value of the fit at fi. The SSE provides a measure of
the dispersion of the function around the fit, which in this case is correlated to the
dispersion or "noisiness" of the FFT. The value of the SSE obtained for the fits in
the α = 6° case is plotted in figure 3.8a. The SSE displays a low-value plateau at the
flapping velocities, with its value increasing in the deformed and deflected regimes.
Consequently, the flapping regime has been defined as the range of κ at which

SSE
(

FFT
max(FFT)

)
< 1 (3.2)

The FFTs corresponding to the flapping regime, as defined by equation (3.2), have
been identified with a bold frame in figure 3.7. The limits of this flapping region
are marked with black vertical lines in figure 3.8b, that illustrates the maximum,
minimum and average deflection angle for the motion of the α = 6° flag. While the
transition from deformed to flapping regimes is smooth, the transition from flapping
to deflected regimes is well defined and corresponds to an abrupt decrease in the
amplitude of motion. The limits defined by equation (3.2) capture this transition and
the overall flapping region reasonably well. A single data point is present in figure
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Figure 3.8: Definition of the flapping region for an inverted flag at α = 6° (a) SSE for
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angle, Φ, with limiting flow velocities for the flapping region (black lines) and (c)
Strouhal number with limiting flow velocities for the flapping region (black line)

3.8b that shows a large-amplitude motion and is located beyond the limit established
for the flapping range. This point corresponds to a bi-stable region, where both
flapping and deflected motions are possible. This region will be studied in more
detail in Section 3.1. The disparity in figure 3.8b is not coincidental; it stems from
utilizing different data sets for the calculation of the SSE and the deflection angle
and highlights the slight mobility of the defined upper critical velocity κupper . It
is important to note that the threshold specified in equation (3.2) is relevant for
the data employed in this chapter, but may need to be adjusted for different data
sets depending on the noise level, frame rate employed and total number of frames
acquired. It is, however, not arbitrary, unlike the maximum-amplitude fraction
employed by Cossé et al. (2014), and is chosen such as to separate the existing
plateau. Alternative approaches to identifying this flapping region are certainly
possible, and a more rigorous approach may be developed as our knowledge of the
underlying physics expands. The outlined procedure produces, however, reasonable
results with the available data and large discrepancies should not be expected when
utilizing alternative criteria.

The existence of twodistinct regionswithin the flapping regime is easily recognizable
from figure 3.8b and figure 3.8c, which displays the Strouhal number of the flag’s
motion for the same α = 6° flag. The first region will be denominated lower branch
and is present between κ

1/2
lower < κ1/2 < 2 in figures 3.8b and 3.8c. The second
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region, which will be denominated upper branch, lies between 2 < κ1/2 < κ
1/2
upper .

The two regions are separated by an abrupt shift in amplitude and Strouhal number.

The upper branch corresponds to the large-amplitude flappingmotion present at zero
angle of attack and thoroughly described in the inverted-flag literature. It possesses
all of the traits characteristic of a vortex-induced vibration, as established by Sader
et al. (2016a). The peak Strouhal number occurs at κ1/2 = 2 and is between St=0.19–
0.18 for angles up to α ≈ 15°, decreasing rapidly for larger angles of attack (figure
3.6). These values are characteristic of lock-on inVIVs, marking the synchronization
of vortex shedding, oscillation frequency and natural frequency. In this upper branch
the angular deflection,∆Φ, increaseswith flow speed, but the amplitudeA’ is roughly
constant as a result of the problem’s geometry (figure 3.4), with increased deflections
resulting in the flag bending backwards. The frequency decreases slightly as flow
speed is increased, as is characteristic of vortex-induced vibrations in heavy fluid
loading. As a result the Strouhal number decreases practically linearly as wind
speed is increased, until the shedding frequency reaches values disparate enough
from the flag’s natural frequency that the lock-on is lost (Goza et al., 2018).

The lower branch, on the other hand, exhibits notably different features. The
Strouhal numberswithin this branch vary betweenSt=0.02 andSt=0.13. They showa
significant increase as flow speed is raised as a result of the comparably rapid increase
in amplitude. Neither of these characteristics are indicative of a vortex-induced
vibration. A different resonant phenomenon must therefore be the underlying cause
of the large-amplitude flapping motion. The FFTs of the flag’s motion for velocities
in the deformed regime, leading to the appearance of the lower branch, are visible
in figure 3.7 for the α = 6° case. They present a single peak that increases in
amplitude as the critical velocity κlower is approached. For the highest angles of
attack (α > 20), two peaks are present (not pictured here), however, they do not
approach each other, with a single peak increasing in amplitude as the lower branch
is neared. The lack of a second coalescing peak makes the presence of a coupled-
mode flutter instability unlikely. Additionally, it is interesting to note the behavior of
the minimum deflection angle throughout the velocity range corresponding to this
branch (figures 3.8b and 3.3). At the lower velocities, the minimum deflection is
positive, albeit small, and the flag does not surpass the zero deflection position. For
the larger velocities, on the other hand, the minimum deflection reaches relatively
large negative values. As an example, the highest and lowest minimum deflections
at α = 6° are Φ = 3° and Φ = −50°, respectively. It therefore seems reasonable
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to assume that the shedding of vorticity and resulting wake are qualitatively very
different for different velocities within the lower-branch range. This would eliminate
the synchronization between the flag’s natural frequency and the frequency of the
unsteady fluid forcing as a probable driving mechanism. These observations point
in the direction of a single-mode galloping instability. Figure 3.9a shows the lower
critical velocity at which the lower branch develops (green triangle) together with
the separation velocity (black triangle) for all angles of attack. It demonstrates that
at the emergence of the lower branch the inverted flag always sees separated flow and
thus the quasi-steady forcing on the flag is non-linear. It is therefore possible that
the lower branch is the result of a stall-flutter mechanism. Further investigations,
however, are necessary to unequivocally characterize the nature of this instability.
It should be highlighted that the flags at high angles of attack (α > 16) present a
discontinuity in flapping amplitude and frequency at a constant value of κ1/2 ≈ 1.5,
which may indicative of a transition to a different driving mechanism within the
lower branch.

Deflected regime

The fluid damping on an inverted flag that is flapping within the upper branch grows
with increasing flow speed, reducing the flag’s effective natural frequency. When
the value of this natural frequency is disparate enough from the vortex shedding
frequency, the flag’s motion ceases to lock-on to the vortex shedding frequency
and the large-amplitude flapping motion disappears, giving rise to the deflected
regime. This lock-off occurs at St ' 0.08 for the smallest angles of attack (α 6 4)
and at St ' 0.11 for the larger angles (figure 3.6). Between flapping and deflected
regimes, a bi-stable region, where either regime is possible, was observed. In certain
cases, the position of the flag was either flapping or deflected depending on initial
conditions, while in other cases the flag switched randomly from one mode to the
other, resulting in the chaotic regime that has been reported for inverted flags at zero
angle of attack (Goza et al., 2018; Sader et al., 2016a). This bi-stable region was
only observed to exist at small angles of attack α . 8° and occurred for a narrow
band of flow velocities.

The critical velocity, κupper , at which the flag enters the deflected regime, decreases
with angle of attack (figure 3.3). An interesting observation was made by Cossé
(2014): independently of angle of attack, the inverted flag shows a similar shape
at the emergence of the deflected regime. This is quantitatively corroborated in
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α (°) Φ̄de f (°)
0 48.5
2 44.8
4 46.0
6 44.8
8 46.6

α (°) Φ̄de f (°)
10 46.6
12 46.2
14 46.8
16 45.3
18 47.7

α (°) Φ̄de f (°)
20 48.5
22 47.9
24 47.3
26 47.1

Mean 46.7 ± 1.2

Table 3.1: Mean deformation angle of the inverted flag at the emergence of the
deflected regime

the present measurements. Table 3.1 shows the average deflection angle, Φ̄ at the
wind speed at which the flag first enters the deflected regime. The value of this
average deflection is virtually constant, with an average of Φ̄ = 46.7° and a standard
deviation of σ = 1.2°. No trend is visible within these small variations.

The velocity, κde f at which the flapping regime ends is plotted in figure 3.9a to-
gether with the velocity at which the synchronized motion ceases, κupper , as defined
by equation (3.2). In this case both velocities correspond to the same dataset, elim-
inating any disparities due to the bi-stable nature of the flag in this region. For most
angles of attack, both velocities coincide; within the region α = 15° − 20° synchro-
nization is lost before the flag enters the deflected regime. This is reminiscent of
the result obtained by Goza et al. (2018), who reported large-amplitude flapping
without classical VIV for the highest velocities within the flapping range for the
zero angle-of-attack case. Interestingly, the FFT of the flag’s motion (figure 3.7)
transitions from presenting a single dominant peak in the deformed and flapping
regimes to presenting two clear peaks in the deflected regime. The frequency of the
second peak, however, is too low to correspond to the vortex shedding frequency,
but may correspond to subharmonics of the unsteady fluid forces.

Evolution with angle of attack

The threemain dynamical regimes present in themotion of inverted flags atmoderate
angles of attack (deformed, flapping and deflected) have been analyzed in detail in
the previous sections. Figure 3.9a displays the range of flow velocities at which each
regime occurs for the different angles of attack, with κlower (green triangle) marking
the transition from deformed to flapping regime and κde f (black rhombus) marking
the transition from flapping to deflected regime.

For angles of attack up to α = 14° the lower critical velocity decreases practically
linearly as α is increased. Between 14° < α < 22° this velocity remains mostly
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Figure 3.9: Critical non-dimensional flow velocities as a function of angle of attack
(a) Separation velocity, κsep (∇), beginning of resonance, as defined by equation
(3.2), and flapping regime, κupper (4), end of resonance, κlower (�), and deflection
velocity, κde f (^). (b) Beginning of upper branch (VIV) flapping (◦) and deflection
velocity (^) with linear fits.

constant to subsequently rapidly increase for angles α > 22°. This variation in trend
may be caused by changes in the underlying mechanisms behind the flapping motion
for varying angles of attack. Further understanding of these underlyingmechanisms,
however, is required to clarify this behavior. The deflection velocity, κde f , decreases
with angle of attack, most likely due to the increased flow damping exerted when
flags are at larger angles to the flow. This decrease is surprisingly linear with angle
of attack. Even more surprisingly, the velocity at which the flag enters the upper
branch of the flapping regime (VIV) is constant for all α, at a value of κ1/2 = 2.

The flow velocities at which the upper-branch vortex induced vibration is initiated
and terminated are plotted in figure 3.9b, together with linear fits to the data.
Because the starting velocity is constant and the ending velocity decreases with
angle, at a specific angle of attack both velocities become equal and the upper-
branch disappears. The value of this angle, calculated utilizing the linear fits, is
α = 26.8° for the flag studied. Effectively, at angles larger than this value, such
as α = 28° represented in figures 3.3, 3.4, 3.5 and 3.6, this motion is no longer
present. The lower-branch flapping motion is present at angles beyond this value,
but not significantly higher. For α ≈ 28° the lower and upper critical velocities
meet, and the flapping regime ceases to exist overall (figure 3.9a). At these angles
the deformed and deflected regimes merge into a single common regime, where the
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flag flexes with continuously increasing deflection angle and oscillates with small
amplitude around this position.

At any given free-stream velocity within the upper branch, the angular amplitude of
motion of the flag remains approximately constant with angle of attack for angles
α 6 14°, with the amplitude decreasing rapidly for angles beyond that value (figure
3.3). This result is in agreement with the threshold obtained by Shoele and Mittal
(2016), who observed the amplitude of motion to notably decline for angles beyond
α = 15°. Because the maximum angular amplitude occurs at the highest flow
velocity before deflection and the value of this velocity decreases with angle of
attack, the overall maximum angular amplitude decreases with angle of attack for all
angles. The Strouhal number follows a similar trend, diminishing rapidly for angles
beyond α = 14° (figure 3.6). The energy harvesting performance of the inverted
flag is therefore severely limited beyond this value, both due to the decrease in the
flapping amplitude and the decrease in range of velocities at which flapping occurs.

Behavior at finite angle of attack for AR=2
The experimental measurements performed in Section 3.1 for an inverted flag of
aspect ratio AR=5 were reproduced for a flag of AR=2. The results are presented
here, with the objective of highlighting themost prominent differences. The obtained
data is presented in a similar manner: the maximum, minimum and mean deflection
angle, Φ, is shown in figure 3.10, the cross section amplitude, A’ , in figure 3.11,
the frequency, f, in figure 3.12 and the Strouhal number, St, in figure 3.12. The
corresponding values for the AR=5 flag are included for comparison in these figures.

The three main dynamical regimes present in the motion of the flag of AR=5
(deformed, flapping and deflected) can be recognized in the motion of the AR=2
flag. At low flow velocities, the flag oscillates around a small deflection equilibrium.
In this case, the power spectra of the motion present two clear peaks, that may be
indicative of the effect of the second length scale (height, H). These two frequencies
are visible, for example, at the lower velocities of the α = 2° case in figure 3.12,
where the jump between two frequency levels corresponds to the switching of the
dominant peak. The flow detachment velocity is no longer visible at small angles of
attack, which suggests lower detachment velocities that are not within the evaluated
range. The transition to the flapping regime occurs in a similar manner to the higher
aspect ratio case, with the lower of the two frequency peaks growing in amplitude
and no coalescence of peaks being observed.
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The behavior of the flag in the flapping regime presents notable differences, with
the existence of two distinct branches being no longer evident at most angles of
attack. An abrupt increase in amplitude of motion and Strouhal number is present
for the lower angles of attack (α 6 6), but no longer occurs at the flow speed at
which the St value is maximum (figures 3.10 and 3.13). The Strouhal number
slightly increases to then decrease linearly within the upper branch, with the flow
velocity at which the Strouhal peaks being surprisingly equal for both aspect ratios
(κ1/2 ≈ 2). For higher α, however, all variables vary smoothly within the flapping
regime, eliminating the distinction between the two branches. The absence of a
marked upper branch results in lower amplitudes in the flapping motion for α > 8°,
with the difference in minimum deflection angle being particularly significant. The
discrepancy initially occurs at the lower flow velocities exclusively, but extends to the
full range for α > 14°. The lowered amplitude of motion results in lower Strouhal
numbers, making the underlying mechanism behind the flag’s motion uncertain.
Further investigation of this motion is necessary to clarify the flag’s behavior and
may reveal the existence of different branches that cannot be distinguished in the
current data. The flag of AR=5 presented an additional discontinuity at a flow
velocity of κ1/2 ≈ 1.5 for angles α > 16. Remarkably, this discontinuity is present
at the same threshold and flow velocity in the AR=2 case.

The presence of a chaotic regime was also observed in the motion of the AR=2 flag,
occurring at a larger range of flow velocities than the higher aspect ratio case. The
data points corresponding to the chaotic region have been highlighted in black in
figure 3.10. The velocity at which the flapping regime ceases to be present follows a
linear trend with angle of attack, with, however, a more pronounced slope, that may
be a result of variations in flow damping with aspect ratio. In this AR=2 case, the
disappearance of the upper branch is associated to the decreasing deflection velocity,
and therefore cannot be calculated in a similar manner. The full flapping motion,
however, is practically non-existent at an angle of attack of α = 28°.

An angle of attack of α = 30° was investigated in addition to those present in
figures 3.10–3.13 and is presented in figure 3.14. Interestingly, a new resonant
motion is clearly present. At the lower flow velocities, the power spectra of the
motion show the existence of two peaks, which approximate each other as the large-
amplitude motion is onset. This suggests the presence of a coupled-mode flutter
mechanism. The nature of this motion is therefore distinct from that of the flapping
motion analyzed throughout this chapter, and lies beyond the scope of this text. It
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Figure 3.14: Behavior of an inverted flag of AR=2 at α = 30°. Maximum (^),
minimum (^) and mean (•) deflection angle, Φ, (b) maximum cross-section, A’, (c)
frequency of motion, f, and (d) Strouhal number, St

highlights, however, the variety of phenomena that may arise at angles of attack
intermediate to the typically studied α = 0°, 90° and 180°, that may be of interest
in future investigations.

3.2 Conclusions
This chapter has analyzed the effect of moderate angles of attack on the dynamics of
an inverted flag. A flag of AR=5 was first investigated and showed results consistent
with the existing literature at zero-angle-of attack, where the presence of a divergence
instability was established experimentally for the first time. Three distinct dynamical
regimes were identified at finite angles of attack: deformed, flapping and deflected.
These correspond to small oscillations around a small deflection equilibrium, large-
amplitude oscillations and small oscillations around a large deflection equilibrium,
respectively. A new method that determines regions of resonance based on the
power spectra of the motion was proposed as a means of identifying the initiation
and cessation velocities of the flapping regime.

Unlike in the zero angle-of-attack case, the deformed state does not lose its stability
through divergence. Instead, it was hypothesized that a galloping type instability
gives rise to what has been denominated the lower branch of the flapping regime.
At a constant non-dimensional flow velocity κ1/2 = 2 a second distinct branch
within the flapping regime develops. This upper branch corresponds to the large-
amplitude flapping motion that has been observed for the inverted flag at zero angle
of attack and has been determined to be a vortex-induced vibration. As flow speed
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is increased, the flag transitions to the deflected regime. The velocity at which this
transition occurs decreases linearly with angle of attack, while the velocity at which
the upper branch flapping is onset remains constant. This results in both velocities
coinciding at an angle of attack of α = 26.8°, beyond which the upper flapping
branch ceases to exist. The entirety of the flapping motion further disappears at
angles beyond α ≈ 28°.

A subsequent set of tests was performed on a flag of aspect ratio AR=2 and revealed
contrasting dynamics. Although the three main dynamic regimes are still present,
the distinction between lower and upper flapping branches is no longer evident. As
a result, the angular amplitude of motion in the flapping regime is fairly decreased
for angles of attack above α = 8°.
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C h a p t e r 4

COUPLED DYNAMICS OF TWO SIDE-BY-SIDE INVERTED
FLAGS

Cecilia Huertas-Cerdeira, Boyu Fan, and Morteza Gharib. Coupled motion of two
side-by-side inverted flags. Journal of Fluids and Structures 46:527–535,2018.

While chapters 2 and 3 aim to improve our understanding of the dynamics of a single
inverted flag, energy harvesting devices do not typically consist of an isolated flag,
but of an array of them. Understanding the interaction between flags is essential to
predicting the energy harvesting performance of the system. Indeed, arrangement
optimization is a full field of study in the development of traditional turbine wind
farms (Samorani, 2013). It is particularly relevant, however, in turbines that rely on
vortex dynamics to function, such as the inverted flag, because vortex wakes can
interact strongly when in proximity.

The canonical problem studied in the fields of vortex shedding and vortex induced
vibrations is that of a circular cylinder (for a review, see Williamson and Govardhan
(2004)). The interaction betweenmultiple cylinders placed in different arrangements
has been reported extensively in the literature. In particular, interesting wake
dynamics have been shown to arisewhen two fixed stationary cylinders are immersed
side-by-side in a flow (Zdravkovich (2003) and references therein). Depending on
the separation between them, they have been shown to generate either a single vortex
street, two wakes of different widths that present a bi-stable gap flow, two equal and
synchronized wakes or two completely uncoupled wakes. In the case of cylinders
that are flexible or allowed to move the coupling of the wakes can result in the
coupling of the motion of the cylinders (Huera-Huarte and Gharib, 2011; Liu et al.,
2001; Zdravkovich, 1985; Zhou et al., 2001).

Similarly, two conventional flags placed side-by-side in a flow have been shown to
interact. Zhang et al. (2000) experimentally studied the motion of two side-by-side
filaments immersed in a soap film and observed both an in-phase flapping mode
for small flag separations and an anti-phase flapping mode for larger flag distances.
The anti-phase mode was observed to oscillate with frequencies 35% higher than
those of the in-phase mode. As the distance was further increased, the interaction
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weakened and the flags moved independently. Analogous results were obtained in
numerical simulations by Zhu and Peskin (2003) and Farnell et al. (2004). Farnell
et al. (2004), Si-Ying et al. (2013) and Sun et al. (2016) observed, in addition to
the in-phase and out of phase modes, the existence of a transition mode where the
frequencies of both motions co-exist. A different transition mode was reported by
Jia et al. (2007), who observed a region where in-phase and out-of phase flapping
alternate randomly. In addition to two equal filaments, Jia et al. (2007) studied the
motion of two side-by-side filaments whose length varied by a factor of two and
observed synchronization with a scattering of the phase around the 0 and π values.

These interactionswith neighboringflags and their vortex streets can cause variations
in the forces experienced by the flags. Many natural organisms exploit the vortex
street of neighboring bodies to enhance their performance; an example is schooling
fish. Changes in position and phase between the swimming motion of adjacent
fish can drastically change the effect of schooling (Weihs, 1973). Inspired by this
behavior, optimal arrangements of vertical axis wind turbines have been shown to
increase energy extraction inwind farms (Whittlesey et al., 2010). Dong et al. (2016)
showed that placing two flags side-by-side can produce increased energy extraction
efficiency in a potential energy harvesting mechanism. It is expected that inverted
flags will show a similar behavior, and placing several flags in close proximity may
enhance their energy harvesting capabilities.

In this chapter, the coupling of the motion of two inverted flags in a side-by-side
arrangement is investigated experimentally. Because the amplitudes of oscillation
of the inverted flag vary greatly between the different regimes of motion (straight,
flapping and deflected), the effective cross-sectional area of the flag undergoes
significant changes between them. This causes the synchronization in the motion of
the flags to occur at very different flag separations for the different regimes. In this
study we have focused on distances at which the flags never collide (1.7 < T/L <

5.4), which are pertinent to the coupling of the vortex induced vibrations of the flags
in the flapping and deflected regimes. Here, T corresponds to the cross-flow distance
between flags and L the flag length (figure 4.1). The non-dimensional parameter T̃

will be used throughout this chapter and is defined by

T̃ =
T
L

The flags will be labeled left flag and right flag, corresponding to their position
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Figure 4.1: Top view of the side-by-side inverted flag arrangement and parameters
employed for its characterization.

when the observer is located downstream of the flags and looking upstream, as
represented in figure 4.1. The first series of experiments was conducted with two
flags that had equal height (H, out of the paper) and length, L (flag 12 in table 1.3).
In the second series, the height of both flags, H, and the length of one of the flags,
L0, were maintained constant, while the length of the second flag, L, was varied
(flags 13 - 22 in table 1.3).

4.1 Results
Flags of equal dimensions
The three main dynamic regimes present in the motion of a single flag (straight,
flapping and deflected) as well as the chaotic motion described by Sader et al.
(2016a) persist in the two flag system. For the distances T̃ considered in this study
and at low flow speeds (straight regime, figure 4.2a), the flags oscillate with small
amplitude relative to the flag separation and no coupling occurs. As the wind speed
is increased, the flag motion reaches angular amplitudes greater than 10 degrees,
giving rise to periodic vortex shedding and flapping (Sader et al., 2016a). The lower
critical wind speed, κlower , at which the flapping motion is onset was not observed
to vary with the presence of the second flag. This is consistent with the onset of
flapping occurring through an initial divergence instability that is dependent on the
aerodynamic lift coefficient at small angles (Sader et al., 2016a). It is to be expected,
however, that variations in the critical wind speed as well as synchronization in the
straight regime will occur at flag separations smaller than those considered in this
study.

In the flapping regime (figure 4.2b) the flags interact strongly. An increase in the
angular amplitude of flapping of up to 36%was observed for the two-flag systemwith



57

(a) (b) (c) (d)

= 2.66 = 9.25 = 14.61 = 14.61κ κ κ κ

Figure 4.2: Stroboscopic progressions of the motion of the two-flag system showing
the (a) straight regime, (b) flapping regime, (c) deflected regime in the outside-
deflected configuration and (d) deflected regime in the inside-deflected configuration

respect to the single flag. Figure 4.3 shows the peak-to-peak amplitude of motion,
averaged between the right and left flags, for varying separation distances. As the
distance between flags is increased the gain in amplitude becomes less prominent,
saturating at the single flag value for T̃ > 3.2. This increase in amplitude is
asymmetrical; as is evident from the stroboscopic progressions in figure 4.2b, the
flags sweep a larger angle towards the interior (center) of the system. Small increases
in frequency, up to 13%, were also observed at the smallest separations for the initial
stages of the flapping regime. Increases both in the amplitude and frequency of
flapping suggest that the energy available for harvesting in the two flag system is
higher than that of the single flag.

Five different modes of flapping are present in the side-by-side inverted flag system.
The angle φ of both flags as a function of time and the corresponding phase diagrams
have been plotted in figure 4.4 for each of the modes. The phase diagrams have
been colored to represent time: initially the curve is red and turns into blue as time
advances. The modes include both an anti-phase regime (figure 4.4a) , where the
flags flap symmetrically, and an in-phase regime (figure 4.4b), where the flags flap
anti-symmetrically. Staggered flapping, where the phase between flags is constant
and between 0 and π, can also occur (figure 4.4c). In the alternating mode (figure
4.4d) the flags switch intermittently between two or more of the in-phase, anti-phase
and staggered motions. This mode differs from the decoupled mode (figure 4.4e),
where no coupling occurs, in the fact that the flags spend significantly more time
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Figure 4.3: Peak-to-peak angular amplitude of motion, ∆φ, in the flapping regime
for a single flag (×) and two flags separated by T̃ = 2(�) , T̃ = 2.4(4) and T̃ = 2.8(◦).
Represented values are the average of left and right flags.

in-phase, anti-phase and staggered than they do transitioning between the motions.

Because two identical flags have equal flapping frequency, they may appear to be
flapping in-phase, anti-phase or staggered even if they are not interacting with each
other. Therefore, in-phase, anti-phase or staggeredmodes have only been considered
herewhen they constitute a steady state after starting from a different initial condition
(see, for example, the phase diagram of staggeredmode in figure 4.4c). In the current
experiments, small variations in initial curvature, dimensions and angle of attack
caused the frequencies of the right and left flags to differ, and therefore the phase
between flags was observed to constantly change in the decoupled mode (figure
4.4e).

The relationship between wind speed, flag separation and flapping mode is sum-
marized in figure 4.5. For small separations (T̃ < 3.5), the flags were observed to
flap mainly in the anti-phase mode. For the same range of velocities an in-phase
motion can also occur. However, the anti-phase mode is energetically favorable
and any staggered initial conditions or perturbations in the in-phase mode will lead
to anti-phase flapping. As the distance between flags is increased, the range of
velocities for which this predominantly anti-phase flapping is present decreases,
giving rise to the staggered, in-phase and alternating modes. These appear for the
higher wind speeds in the flapping range, while the anti-phase mode remains for
the lower velocities. The distribution of staggered, in-phase and alternating modes
for the different wind speeds and separation distances is not clearly defined. This
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Figure 4.4: Time history of the angle φ for the left flag (solid line) and right flag
(dashed line) on the left and phase diagram on the right for (a) anti-phase, (b) in-
phase, (c) staggered (d) alternating and (e) decoupled modes. Phase diagrams have
been colored to represent time, with the curve being initially red and shifting to blue
as time advances
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Figure 4.5: Flapping modes as a function of the dimensionless wind speed,
√
κ and

flag separation, T̃ : (×) decoupled, (◦) anti-phase, (4) in-phase, (�) staggered and
(�) alternating. Not all possible modes are represented in this figure.

suggests that as the anti-phase flapping becomes less energetically favorable several
modes are possible, with different initial conditions giving rise to different modes
and perturbations causing the flags to switch from one mode to the other. At a
distance of T̃ = 5, the predominantly anti-phase flapping fully disappears. Finally,
for large separation distances and high wind speeds the flags enter the decoupled
regime, flapping uncoupled.

As wind speed is increased, the chaotic regime emerges. No synchronization was
observed between the flags in this regime (see figure 4.6a). For wind speeds over a
critical value the flags enter the deflected regime. No clear variations in the critical
transition speed from the flapping to the deflected regimes have been observed for
the two-flag system with respect to a single flag. For flow speeds immediately
over the transition speed the flags deflect towards the outside region, independently
of the initial condition (as depicted in figure 4.2c). The oscillating motion of the
flags around this outside deflected position is independent, and therefore the flags
only interact with each other at the initial stages, when they repel and force the
outside deflected position. As flow speed is increased, however, the high fluid
damping prevents the flags from changing side and inside (figure 4.2d), outside
and asymmetric (one flag inside and one outside) deflected states are possible
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Figure 4.6: Time history of the angle φ for the left flag (solid line) and right flag
(dashed line) on the left and phase diagram on the right for (a) chaotic, (b) inside-
deflected in-phase and (c) inside-deflected decoupled. Phase diagrams have been
colored to represent time, with the curve being initially red and shifting to blue as
time advances. For the deflected states (b) and (c) the average has been subtracted.

depending on the initial conditions. There is, again, no coupling between outside or
asymmetrically deflected flags. However, inside-deflected flags can synchronize in-
phase when considering oscillations around the deflected equilibrium (figure 4.6b).
As speed is further increased synchronization ceases (figure 4.6c).

Flags with different lengths
Flags that are equal in size have the same vortex shedding frequency, allowing for
synchronization of the vortex streets and therefore of the motion of the flags. For
flags of different lengths, on the other hand, the vortex shedding frequencies will
not be equal. If these frequencies are sufficiently close, the vortex streets can still
lock and synchronization will occur. Synchronization will cease, however, for flags
that have significantly different lengths and therefore vortex shedding and natural
frequencies. To study the effect of the relative length of the flags, a number of tests
were performed in which the left flag was kept at a constant length, L0 = 0.1 m,
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Figure 4.7: Flapping modes as a function of the dimensionless wind speed, √κ0
and the flag length ratio, (L/L0): (×) decoupled, (◦) anti-phase, (4) in-phase, (�)
staggered and (�) alternating. The distance between flags is constant (T/L0 = 2.4).
Lines represent the critical value of √κ0 at which a single flag of length L0 (dashed)
and L (solid) enter the flapping regime.

while the length of the right flag, L, was varied. The distance between flags was
maintained constant at T/L0 = 2.4. The results are plotted in figure 4.7, where
the length used for the dimensionless variable κ0 is that of the left constant flag
(L0 = 0.1 m).

For flags of the same length the results are equal to those reported in Section 4.1.
The flags synchronize anti-phase for most of the velocities in the flapping range,
although staggeredmodes are also present. As L is decreased, the range of velocities
at which the flags synchronize decreases; at L

L0
≤ 0.85 synchronization ceases to

occur. Simultaneously, the anti-phase mode becomes less predominant, with the
staggered mode being more prevalent. Similarly, as L is increased from the L

L0
= 1

value, the range of wind speeds at which the flags synchronize decreases and the
anti-phase mode vanishes in favor of in-phase and staggered motions.

Because the variations in aspect ratio are small, the critical value of κ at which both
flags enter the flapping regime is approximately equal. Due to the difference in
length, however, this corresponds to different values of the dimensional wind speed,
meaning that there is a range of wind speeds at which the longer flag is in the flapping



63

(a) (b)

= 2.94= 4.17 00
κ κ

(c)

= 2.940
κ

Figure 4.8: Stroboscopic progressions of themotion of two inverted flags of different
lengths at a constant separation T/L0 = 2.4. , showing (a) the long flag inducing
a flapping motion on the short flag (L/L0 = 0.9), (b) the long flag inducing an
oscillating motion on the short flag (L/L0 = 1.05) and (c) the long flag flapping
and the short flag oscillating uncoupled (L/L0 = 1.15). The flag of constant length
L0 = 0.1 m is depicted at the bottom.

regime while the shorter one is in the straight regime. To identify these regions,
the lines corresponding to the critical dimensionless velocity κ0 = κlower for each
of the flags, as given by equation (2.15) in Sader et al. (2016b), have been plotted
in figure 4.7. The dashed line corresponds to the critical κ for the flag of constant
length L0, while the solid line corresponds to that of the flag of varying length
L. The equation slightly overestimates the value of κlower that was experimentally
observed, including the case of a single flag, presumably due to small variations in
flow uniformity and initial curvature.

For L
L0
< 1, the flag of length L0 reaches its flapping range at lower flow speeds than

the flag of length L. As is evident in figure 4.7, despite the fact that the flag of length
L is under its critical κ, synchronization, mostly in an anti-phase mode, still occurs.
The flag of length L was observed to flap in these conditions (figure 4.8a), implying
that the motion and resulting vortex street of the longer flag is inducing a flapping
motion in the shorter flag. For the opposite case, L

L0
> 1, a similar behavior was

observed: synchronization occurs for wind speeds at which the flag of length L has
reached its flapping regime but that of length L0 has not. In this case, however, the
shorter flag does not flap, but oscillates with small amplitude (figure 4.8b). These
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oscillations are in phase with the flapping motion of the longer flag and are larger
than the oscillations that occur when the flags move uncoupled (figure 4.8c). This
leads to the conclusion that it is the flow displaced by the flapping flag that impinges
on the short flag and causes it to deflect. These two different behaviors (induced
flapping and induced oscillations) in a seemingly symmetric problem arise because
the distance between flags was maintained at a constant value and, therefore, the
relative distance T/L is different in the two cases, with the flags being effectively
closer in the L

L0
> 1 case.

4.2 Conclusions
This study has experimentally investigated the interaction between two inverted flags
that are placed side-by-side in a uniform flow and the resulting coupled motion in the
flapping and deflected regimes. It is relevant to the analysis of natural phenomena,
such as leaves flapping in the wind, where multiple flags are generally present, as
well as to the design of energy harvesting mechanisms, where the arrangement of
multiple flags could be exploited to increase energy extraction.

Flags that were placed side-by-side saw an increase in flapping angular amplitude of
up to 36% and an increase in frequency of up to 13% with respect to the motion of
a single flag. Five different coupled modes of motion were observed in the flapping
regime: in-phase, anti-phase, staggered, alternating and decoupled. The anti-phase
mode is energetically favorable and predominant for small separations and low wind
speeds, while the remaining modes appear for larger separations and high wind
speeds. Inside, outside and asymmetric configurations are present in the deflected
regime, with the inside configuration being the only one that presents a coupled
in-phase motion.

Coupling was observed to occur between flags that had different lengths. However,
the range of velocities at which coupling occurred was observed to diminish as
the difference in flag lengths increased, with no coupling occurring for differences
larger than 15%. Interestingly, the longer flag was observed to induce flapping on
the shorter flag when the latter was outside of its flapping range.

A posterior experimental and theoretical analysis has been performed by Kim and
Kim (2019) on side-by-side inverted flags at flag distances smaller than those pre-
sented in this chapter, complementing these results. For those distances and in the
straight regime, Kim and Kim (2019) found that the gap flow pushes the flags to an
out-of-phase outwards deflected equilibrium. This causes the flags to lose stability



65

at wind speed values lower than those of a single flag, with the critical wind speed
increasingmonotonically as the flag distance increases. At wind speeds between this
lower critical value and the critical wind speed of a single inverted flag the flapping
amplitude was, however, significantly smaller. In addition to the modes introduced
here, Kim and Kim (2019) showed the existence of a static attached mode, where
the leading edge of both flags is in contact.

An additional computational study of the side-by-side inverted-flag configuration
has been implemented by Ryu et al. (2018). Their results show similar modes of
motion as described above. Notably, when initialized in an in-phase mode, the flag
motion remained in phase for a much wider range of parameters than found in this
work. This may be explained by the much lower level of the perturbations present
in the numerical framework compared to the experiments, that results in the flag not
being perturbed away from the less energetically favorable in-phase mode. Finally,
an interesting computational investigation of inverted flags in tandem and staggered
configurations is presented in Huang et al. (2018). The readers are referred to the
text for further information and details.
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C h a p t e r 5

CONCLUDING REMARKS AND FUTURE WORK

The inverted-flag configuration was first proposed as a performance-improving al-
ternative to the conventional flag used in piezoelectric energy harvesters. Other
applications have emerged, however, as their study has provided further insights
into the configuration. An example is the use of inverted flags as vortex generators
to enhance the heat transfer in heat exchangers (Chen et al., 2018; Li et al., 2019;
Park et al., 2016; Yu et al., 2018). The study of inverted flags has, additionally, been
found to be relevant to the understanding of natural phenomena such as the flutter of
leaves in the wind (Fan et al., In press; Zhou et al., 2019), which possess a clamped-
free configuration and present varying angles to the flow. The emergence of these
applications has generated an increased interest in the inverted-flag configuration,
resulting in the development of an extensive literature. The behavior and mechanics
of the inverted flag are, nevertheless, not yet fully understood.

The first part of this thesis has researched aspects of the inverted flag’smechanics that
are essential to its characterization and had been previously unexplored. Chapter 2
was devoted to inverted flags of very low aspect ratio, which were shown to undergo
a saddle-node bifurcation instead of a divergence instability followed by a vortex
induced vibration. Chapter 3 focused on the effect of a moderate angle of attack
on the dynamics of the flag. Regimes analogous to those existent at zero angle of
attack were shown to be present, with the flapping regime being divided into two
distinct branches. Chapter 4 delved into the interaction between two inverted flags
that are placed in a side-by-side arrangement and highlighted the presence of an
energetically favorable symmetric flapping mode among other coupled dynamics.

Several outstanding topics have, however, not been addressed in the current work,
which has additionally raised numerous new questions, many of which remain
unanswered. Some of these topics are highlighted here. A detailed description of
the added mass and flow damping experienced by the flag will undoubtedly aid in
the prediction of the lock-off of the flapping regime, as well as the development of
a more rigorous theoretical framework for the flag’s dynamics. This is, however,
an arduous task; many related studies have been performed on vortex induced
vibrations of different geometries without a complete answer being available to
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date. An additional phenomenon that has been only lightly investigated is the
vortex formation on the flag’s leading edge and the process by which the initial
transients give rise to the resulting limit cycle oscillations. The identification of
parameters that result in optimal vortex formation may, moreover, be useful in the
design and dimensioning of the piezoelectric energy harvesters. In relation to natural
phenomena, the use of non-uniform flexibility and porosity in the flag will deliver
a more faithful description of leaf-like structures. Its use may also be conductive to
increased performance in engineering applications.

The most prominent deficit in the existing literature is the lack of experimental
flow visualizations of the fluid surrounding the inverted flag. Up to date, only two
such analyses, both of which were performed in water, have been reported. The
corresponding flags had an unspecified aspect ratio and µ = 4 − 6 10−3 (Kim et al.,
2013), and AR=3 and µ = 7 10−3 (Yu et al., 2017) and were placed at zero angle of
attack. The observation of the vortex dynamics and quantitative analysis of the flow
for flags of different aspect ratios, angles of attack and arrangements would provide
significant insights into the topics presented in this thesis. In particular, the vortex
formation and scale behind flags of low aspect ratios would provide a rationale for
the lack of flapping in very low aspect ratio flags. The wake patterns and shedding
timing would aid in elucidating the mechanics behind the lower branch of the
flapping regime, as well as clarifying the distinction between branches in the AR=2
case. They may be additionally valuable to interpreting the transitions occurring
at the marked κ1/2 = 1.5 and κ1/2 = 2 velocities as well as the emergence of the
chaotic and deflected regimes. The observation of vortex shedding modes would
be particularly relevant in the case of coupled flags, were each coupled dynamical
mode is expected to be associated to a different wake pattern.

Overall, the inverted-flag configuration examined throughout this text has been
shown to possess striking dynamical characteristics and constitutes an outstanding
representation of the complexity of coupled solid-fluid interactions. Although many
advances have beenmade in recent years, its behavior is yet to be fully explained, with
the continued investigation of the inverted flag configuration remaining a promising
line for future work.
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C h a p t e r 6

INTRODUCTION

Autonomous underwater vehicles (AUVs) have received recent attention as a means
of performing underwater missions that are unattainable by a human operator due
to accessibility constraints, hazardous conditions or operational cost. They have
become useful tools for many applications, such as deep water exploration and sur-
veying, ocean sensing, maintenance of offshore oil installations and wind turbines,
spill inspection and military operations (Griffiths, 2002; Roper et al., 2011). Be-
cause they function in such extreme environments, AUVs necessitate state-of-the-art
capabilities. Their propulsion mechanisms must be highly efficient in order to reach
long ranges with the limited available power. They are often imposed strict noise
constraints to prevent being detected or perturbing their surroundings and require
rapid maneuverability to operate in reduced spaces and avoid impact from foreign
objects.

The vast majority of existing aquatic vehicles employs traditional screw propellers,
which have been optimized for decades to reach propulsive efficiencies up to 70%
(Carlton, 2007; Fish, 2013). The propulsion mechanism is currently responsible,
however, for the majority of the radiated noise, with much of this noise being
caused by cavitation (Carlton, 2007; Fish, 2013). The past decade has seen a
rise in the development of bio-inspired propellers, that constitute great candidates
for AUV propulsion. Due to their lower velocities, bio-inspired propellers do not
generally present cavitation and naturally radiate much lower levels of noise, with
their signature being, additionally, harder to identify (Carlton, 2007; Fish, 2013).
The propulsive efficiency of swimming animals has been reported to reach values of
up to 90% (Fish, 1998; Rohr and Fish, 2004). While existing fish-inspired propellers
are far from that value (Techet, 2008; Triantafyllou et al., 2000; Wen et al., 2013)
they have the potential to approach it if optimally designed and may result in higher
efficiencies than those attainable by screw propellers.

From a biological standpoint, the swimming locomotion of fish is typically classified
into two main types according to the body part employed to generate the force:
body and caudal fin (BCF) propulsion and median and paired fin (MPF) propulsion
(Sfakiotakis et al., 1999). BCF propulsion functions by generating a lateral wave that
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travels backwards through the animal’s body and caudal fin and can be subdivided
into separate modes according to the portion of the body that sees a significant
wave amplitude. The highest propulsive efficiencies are achieved by thunniform
swimmers, that possess a fairly rigid body and present significant lateral motions
at the caudal fin and peduncle only. Fish that are more flexible or utilize MPF
propulsion are less efficient cruisers but greatly surpass thunniform swimmers in
maneuverability Webb (1984); Weihs (1973).

From an engineering perspective the underwater propulsion mechanisms of animals
can be classified according to the fluid forces they are based on: drag, lift or ac-
celeration reaction (Fish, 2013; Sfakiotakis et al., 1999). Drag-based propulsion
generally involves two strokes. In the power stroke the appendage is bluff and gen-
erates a large pressure drag, while in the recovery stroke it streamlines to return
to its initial position with minimum forces. Drag forces are generated by paddling
animals and some types of MPF swimmers and can be utilized for precise maneu-
vering. Acceleration reaction forces correspond to the added mass effect and are
present in jetting propulsion and undulatory swimming. Lift forces are generated
by the relatively stiff caudal fins of thunniform swimmers and cetaceans and result
in the highest propulsive efficiency of the three types.

Due to this high cruising efficiency, lift-based caudal-fin propulsion is a particularly
promising line of research. As has been hinted in the previous paragraphs, there is,
however, a trade-off between long-range propulsive efficiency and maneuverability
(Fish, 2002). AUV bodies are typically comprised of rigid cylindrical vessels,
because these are resistant to compression at high pressures and compatible with
modular construction (Roper et al., 2011). A rigid AUV that is propelled by a lift-
based flapping propeller attached to its rear end will possess limited maneuverability
if no additional surfaces or mechanisms are present. To overcome this limitation,
multiple studies have proposed the use of flexible bodies (Marchese et al., 2014;
Su et al., 2014). The focus of this work, however, is the improvement of the
maneuverability of AUVs that must maintain a rigid body due to payload limitations.
The maneuvering performance of a caudal-fin propeller that can perform large
rotations in all three degrees of freedom is investigated, with the prospect that these
complex 3D motions will allow to obtain a highly efficient and highly maneuverable
single-fin flapping propeller for AUV use.
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6.1 Objectives
A fin that is capable of rotation in all three degrees of freedom can follow an infinite
number of different trajectories in its motion. The aim of this study is to obtain the
best trajectory that generates a specified desired maneuvering force. The number
of possible motions can be reduced by considering a family of trajectories that are
defined by a finite number of parameters. In this work ten different degrees of
freedom will be considered. Because this number is quite large, sweeping over all
combinations of parameters is not viable. Employing an optimization algorithm
largely reduces the number of tests that need to be performed in order to find an
optimum. This optimization has been performed making use of the experimental
setup developed by Martin and Gharib (2018). The optimal trajectories obtained for
fins of varying properties will be analyzed in the following chapters. Part II of this
thesis is organized as follows

• The remainder of Chapter 6 is dedicated to describing the optimization process
and experimental setup

• Chapter 7 investigates the optimal trajectory for fins of high aspect ratio

• Chapter 8 examines the effect of adding flexibility to the fin on the optimal
trajectory

• Chapter 9 concludes Part II and highlights the most promising directions for
future research

6.2 Optimization procedure
Several existing studies have explored the optimization of propeller properties and
motion to obtain maximum propulsive force, efficiency, energy, velocity or lift force
both in bio-inspired and screw propellers, as well as in flapping wings (Berman
and Wang, 2007; Clark et al., 2012; De Margerie et al., 2007; Kato and Liu, 2003;
Martin and Gharib, 2018; Milano and Gharib, 2005; Rakotomamonjy et al., 2007;
Tuncer and Kaya, 2005). Due to the ease of interfacing, most of these studies
were performed computationally, where the evaluation of fitness in each step of
the optimization algorithm was assessed through numerical methods. Because
fully resolved simulations are expensive for such a large number of evaluations,
these studies are limited to optimizing simplified models and a small number of
parameters at lowReynolds numbers. Experimental assessment of the fitness of each
optimization step eliminates these limitations, albeit adding a level of complexity
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Figure 6.1: Flow chart of optimization process

(Kato and Liu, 2003; Martin and Gharib, 2018; Milano and Gharib, 2005). This
experimental assessment is the approach employed in this work, which utilizes the
experimental setup developed by Martin and Gharib (2018).

The optimization procedure is described in figure 6.1. Fin trajectories are parametrized
employing several variables, including those presented in figure 6.2. Once the op-
timization algorithm is initialized, it outputs a trajectory whose fitness, as defined
in equation 6.2, needs to be assessed. The trajectory is performed utilizing the
experimental setup illustrated in figure 6.3 and the forces generated are measured.
The fitness is then computed using this data and fed back to the optimization algo-
rithm. If the optimization has converged, the optimal trajectory is output. If it has
not converged, the algorithm performs a step in the optimization and outputs a new
trajectory whose fitness needs to be assessed. The process is then repeated until and
optimum is obtained.

The optimization method selected to perform this procedure is the covariance ma-
trix adaptation evolution strategy (CMAES), which belongs to the broader category
of evolution strategies. It is a stochastic method for black-box optimization capa-
ble of handling complex non-convex, non-smooth, noisy problems (Hansen, 2006;
Hansen and Ostermeier, 2001). Evolution strategies have been successfully em-
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ployed in many scenarios, including the optimization of fin properties and trajectory
of De Margerie et al. (2007); Milano and Gharib (2005); Plucinski et al. (2007) and
Clark et al. (2012).

Fin kinematics
The family of trajectories considered is periodic and can be parametrized with
the use of ten different variables inspired by the motion of fish fins and insect
wings. Their full mathematical description can be found in Martin and Gharib
(2018) andMartin (2018). Figure 6.2a illustrates a multiview projection of the three
dimensional motion of the fin, with the top portion illustrating the view from the
back of the AUV and the bottom portion illustrating the top view. The edge of the fin
is highlighted in black, with its center marked with a circle. The trajectory followed
by this center point is shown as a black dashed line. To improve the visibility
of the figures, the trajectories will be represented throughout this text as the two-
dimensional projection, viewed from the back of the AUV, of the path followed by
this centerpoint and the position of this highlighted edge. Two such diagrams can be
viewed in figures 6.2b and c. The three-dimensionality of these trajectories, evident
in the bottom portion of figure 6.2a, should, however, not be overlooked.

Figures 6.2b and c present some of the trajectory’s defining parameters. Trajectories
can be classified in two main types: figure-eight (figure 6.2b) or ellipse (figure6.2c).
The stroke amplitude, φ, represents the maximum angular amplitude of motion of
the centerpoint. The deviation angle, ψ, characterizes the thickness of its trajectory.
The rotation angle determines the rotation of the wing along its z axis, as defined
in figure 6.3b. The phase between this rotation and the motion of the centerpoint
can also be modified, and is represented by β. The rotation does not necessarily
occur at a constant rate, but can be accelerated at the edges of the trajectory. This
acceleration is quantified by the rotation acceleration, Kv, that is a measure of the
squareness of the rotation signal . The velocity of the centerpoint of the fin can
be increased in certain sections of its trajectory, as represented in figure 6.2c. The
section to be accelerated is specified by the speed-up code, S, while the speed-up
value determines the relative speed of this section with respect to the remaining
ones. The camber, λ, represents the asymmetry of the trajectory. Trajectories can,
additionally, be performed at varying frequencies, f . The maximum and minimum
values for each variable are presented in table 6.1, together with their convergence
criteria. The limits on the variables are set according to the physical limitations of
the experimental setup.
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Figure 6.2: Description of fin kinematics. (a) Three-dimensional representation of
the fin’s motion. Back view is on top and top view is on bottom. The edge of
the fin and its centerpoint are marked in black. The trajectory of the centerpoint
is represented by a dashed line. The projection of the edge, centerpoint and its
trajectory are used for the two-dimensional representations. (b) Definition of Stroke
angle, φ, deviation angle, ψ, and rotation angle, χ. (c) Definition of camber, λ, and
speed-up, γ.

Fitness
The objective of the optimization procedure is to obtain the best trajectory that
generates a specified maneuvering force, which has been considered here to be a
side force, i.e., a force in the x’-y’ plane as defined in figure 6.3a, with x’-y’-z’ being
the laboratory reference frame. The target value of the force has been set to

Ftarget = 17mN

which is attainable with the fin geometry and experimental setup employed (Martin
and Gharib, 2018). The variable to be minimized is therefore
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Parameter Symbol Min. value Max. value Conv. criterion

Type — Figure-eight Ellipse Same type
Stroke angle φ 20° 40° 3°

Deviation angle ψ 0° 20° 3°
Rotation angle χ −70° 70° 3°
Rotation phase β 0 2π 0.4

Rotation acceleration Kv 0 1 0.2
Speed-up code S 0 4 1
Speed-up value γ 1 1.3 0.1

Camber λ 0 1 0.2
Frequency f 0.15 Hz 0.2 Hz 0.01 Hz

Table 6.1: Trajectory parameters, with corresponding range and convergence crite-
ria.

w =
|F − Ftarget |

Ftarget

The best trajectory has been defined as the trajectory whichmaximizes the efficiency

η =
(F̄2

x′ + F̄2
y′)1/2

|Fx |
(6.1)

where x’ and y’ correspond to the laboratory reference frame and x to the wing
reference frame (figure 6.3). This is a geometrical efficiency and represents the
proportion of the normal forces generated by the fin that are oriented in the desired
direction. It does not make any considerations with respect to the power necessary
to generate the trajectory or output by the motion. Because maneuvering only
occurs for small time intervals in comparison with cruising and the motion of the
vehicle should be fast and well defined at those instants, it is more critical for the
system to be able to perform motions in the desired direction exclusively than to
do so utilizing little power. The defined efficiency responds to that need. These
two objectives (closeness to target force and maximum efficiency) are combined to
generate a fitness function given by

f it = 0.8 w + 0.2 |1 − η | (6.2)
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Figure 6.3: (a) Experimental setup, with laboratory frame axis (b) Fins tested with
fin reference frame axis. From top to bottom AR=1, AR=4 (rigid) and AR=4
(flexible).

The value of this fitness is to be minimized in the optimization. Because it is more
imperative for the force to approach the specified value than to do so efficiently,
the proximity to the target force has been weighted more heavily in the fitness
function. Martin and Gharib (2018) performed a sensitivity study that considered
small variation in the weighting of both components, and concluded that these
variations did not significantly impact the optimal trajectory obtained.

Experimental setup
A photograph of the experimental setup can be viewed in figure 6.3a. The motions
are performed by a spherical parallel manipulator (SPM), which is an actuated
spherical joint that can perform any three-dimensional rotation within a 50° cone
(Sudki et al., 2013). The manipulator is set over an oil tank of dimensions 41cm ×
50cm × 150cm. The oil (Chevron Superla White Oil #5) has a density of ρ =
835kg/m3 and a viscosity of ν = 1.6×10−5m2s−1. The resulting Reynolds numbers,
based on the fin length, L f inm and average tip velocity, Utip, vary between Re =

L f inUtip/ν=270 – 900. The dimensions of the fins tested are presented in figure
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6.3. The top fin was employed in the study of Martin and Gharib (2018) and has an
aspect ratio of AR=1. The middle (rigid) and bottom (flexible) fins are employed
in the current study and correspond to an aspect ratio of AR=4. All three fins have
an equal surface area to allow for a direct comparison. The rigid portion of the fins
(black) is 3D printed and the flexible portion (transparent) is cut from polycarbonate
plates of density ρs = 1200kg/m3, Young’s modulus E = 2.41GPa and Poisson
ratio ν = 0.38 and varying thickness.

The forces exerted on the plate are measured using a six-axis force transducer (ATI
Nano17) located at the center of rotation of the system. They are sampled at 250 Hz
and the weight of the fin, taking buoyancy into account, is subtracted from the data
in post-processing. Three trials, consisting of at least ten cycles each, are performed
for each trajectory. The first three cycles are eliminated to avoid the analysis of
initial transients. The data is then averaged to obtain the mean forces at each instant
of a single cycle.

Qualitative flow visualization was performed using small air bubbles, which are
particularly suited for vortex observation because they are driven into their low-
pressure core. The camera is placed below the oil tank (figure 6.3a) and the bubbles
are allowed to rise until those with smallest diameter reach the bottom of the fin, at
which time the images are acquired. A halogen light, shined through a small slit,
was employed to illuminate the tank. This results in a higher illumination at the fin
height, but bubbles at multiple heights are visible. The resulting images therefore
contain information for different planes, allowing to visualize the three-dimensional
structures but impeding quantitative two-dimensional measurements.
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C h a p t e r 7

OPTIMAL MANEUVERING TRAJECTORY FOR FINS OF
LARGE ASPECT RATIO

Nature’s swimmers have evolved to adapt to their surrounding environment and
mode of life. Chapter 6 has detailed the difference between large cruisers, who
have developed a lift-based locomotive mechanism that results in high propulsive
efficiency, and fish that dwell in reefs, who have evolved to use drag-based or
combined propulsion methods that result in lower propulsive forces but higher
maneuverability in the conditions they encounter. It should be clarified that these
drag-basedmechanisms result in highermaneuverability at low swimming velocities
only. As swimming speed is increased the fin and flow velocity approach each other,
and the force generated by the fin is largely reduced (Fish, 2013; Vogel, 1994). Fast
swimmers typically employ lift forces to maneuver, resulting, however, in larger
turning radii (Fish, 2002; Maddock et al., 1994).

Associated to these environmental and propulsive variations is a difference in body
and finmorphology (Webb, 1984). Fish with different modes of life possess different
sets of fins, with their shape varying according to their functionality. Low-aspect-
ratio oar-type fins are more suited for drag-based paddling (Blake, 1981), while high
aspect ratio fins generate lift forces more efficiently (Walker and Westneat, 2002).
This improved efficiency is analogous to the reduction of drag in high-aspect-ratio
wings and is a consequence of the reduction in the induced drag caused by the tip
vortices. For this reason, thunniform swimmers typically possess high-aspect-ratio,
lunate-shaped caudal fins (Lighthill, 1969; Sambilay Jr et al., 1990).

To achieve both highmaneuverability at lowvelocities and high efficiencyMartin and
Gharib (2018) employed the current experimental setup to explore the trajectory to
be followed by a fin of AR=1, which lies between those of cruisers and maneuvering
specialists and was considered a good compromise for a generalist design. They
performed two tests that searched for the most efficient trajectory to generate a
side force of F=17mN. The first test corresponded to a fully three-dimensional
trajectory. In the second test, the degrees of freedom were limited such that the
trajectory of the fin’s centerpoint was a straight line. The parameters of the optimal
trajectories that resulted are shown in table 7.1. The 2D projection of the trajectories
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is shown together with the resulting forces in figures 7.1 (fully 3D trajectory) and 7.2
(trajectory limited to a line). For each interval illustrated in these figures, the motion
of the fin starts at the point indicated with a diamond. To facilitate comparison,
the trajectories have been rotated such that the average force is aligned with the x’
direction. It must be noted that these figures have been extracted from Martin and
Gharib (2018) and the notation and orientation is not fully consistent with the one
employed in throughout the remaining of this text.

The trajectory that resulted from the fully three-dimensional optimization follows a
paddling strategy. In the upstroke (figure 7.1a) the fin is oriented as perpendicular
as possible to the x’ direction, while its motion aligns as much as possible with that
direction, generating a large drag force that is aligned with x’. In the downstroke
(figure 7.1b) the fin aligns with the x’ direction, minimizing the forces generated.
The trajectory that resulted from the limited optimization is shown in figure 7.2
and seems to follow a lift-generating strategy. The fin is oriented at an angle to
the direction of its motion, and the Fx′ force is positive during 82% of the cycle.
It is interesting to note that the efficiency of the trajectory that is limited to a line
(η = 0.413) is higher than the efficiency of the fully three-dimensional trajectory
(η = 364), despite it being a subset of the latter. This highlights one of the limitations
of this procedure: there is no guarantee that the optimum obtained will be a global
optimum. It will represent, nonetheless, a good general strategy that achieves the
desired force and constitutes an optimal configuration if considering small variations
around it.

The results of Martin and Gharib (2018) demonstrate the feasibility of an AUV
design that retains a rigid body and utilizes a caudal fin for both propulsion and
maneuvering. The low aspect ratio of the fin selected as a compromise in their study
will result, however, in reduced propulsive efficiency with respect to that achievable
by higher aspect ratios. The importance of the degrees of freedom of a fish fin in
its performance has been emphasized in the literature (Lauder and Drucker, 2004).
While it is unlikely that the three-degree-of-freedommechanism employed here will
significantly improve the propulsive efficiency with respect to fish locomotion, it
is probable that it could result in improved maneuverability. The approach of the
current study is, therefore, to retain nature’s thunniform design, and in particular
the high aspect ratio of the fin, for high cruising efficiency and explore the ability of
the mechanism to produce turning forces by performing motions that are, perhaps,
not available to fish due to more restrictive physical constraints. In this chapter,
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Figure 7.1: The forward stroke (a) and the backwards stroke (b) of the rotated optimal
trajectory for generating side-force. The diamond corresponds to the position of
the fin at the start of each stroke. The corresponding F∗x

′, F∗y′, F∗nx ′ and F∗nx ′
(c) show the instantaneous phase averaged forces over a single cycle as a function
of t∗. Extracted from Martin and Gharib (2018) DOI:10.1088/1748-3190/aaefa5
©IOP Publishing. Reproduced with permission. All rights reserved.

Figure 7.2: The upward stroke (a) and the downward stroke (b) of the rotated
optimal trajectory for generating side-force when the trajectory is limited to a line.
The diamond corresponds to the position of the fin at the start of each stroke.
The corresponding F∗x

′, F∗y′, F∗nx ′ and F∗nx ′ (c) show the instantaneous phase
averaged forces over a single cycle as a function of t∗.Extracted from Martin and
Gharib (2018) DOI:10.1088/1748-3190/aaefa5 ©IOP Publishing. Reproduced with
permission. All rights reserved.

the optimal trajectory for a fin of aspect ratio AR=4, which is in the lower limit
for the caudal fin of thunniform swimmers, will be analyzed, with the ambition of
converging on a design that is not only agile but also possesses propulsive efficiencies
close to those of nature.
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7.1 Results
Optimal trajectory for a fin of AR=4
The optimal trajectory, as defined by equation 6.1, followed by a fin of AR=4
to generate a side force of Ftarget = 17mN was searched using the optimization
procedure described in chapter 6. The resulting parameters are presented in table
7.1. The two-dimensional projection of the corresponding trajectory is illustrated in
figure 7.3. It is divided into four segments to avoid cluttering; their temporal order
is counterclockwise (I-IV). These do not correspond to equal time intervals but have
rather been divided according to separate characteristic maneuvers. For simplicity
of comparison, the trajectories have been rotated such that the resulting force is in the
x’ direction. This resulting force is plotted in figure 7.3b, together with the modulus
of the forces normal and tangential to the fin (in the x and y axis represented in figure
6.3b, respectively). The forces have been non-dimensionalized with the target force
F̃ = F/Ftarget , such that the integral of F̃x′ over a cycle is approximately equal
to one, and the time has been non-dimensionalized with the period of the motion
t̃ = t f . Figure 7.3c displays the normal velocities of the two edges of the fin (blue
and red, corresponding to blue and red points in figure 7.3a) and the centerpoint
(black), non-dimensionalized with the average tip velocity Utip over the period. The
intervals corresponding to each segment I-IV of the trajectory are marked by vertical
lines in this plot, as well as figure 7.3b. Unlike the trajectories obtained by Martin
and Gharib (2018) for a fin of AR=1, that corresponded to paddling and lift-based
mechanisms, the strategy and force generating mechanisms of the trajectory are
no longer evident. As will be clarified below, several different mechanisms are
combined within the single trajectory to generate the optimal strategy.

The first consideration that should be made in order to interpret the resulting tra-
jectory is related to the wing’s geometry. Wings of low aspect ratio will generate
large forces when rotated around their x and y axis, as shown in figure 6.3b. This
is a result of the fin and arm lengths being large compared to the other dimensions,
producing substantial velocities at the wing tip that will generate large forces. Ro-
tations around the z axis, on the other hand, will result in smaller velocities and
forces. In the case of a fin of large aspect ratio, however, the width of the fin is
also large, and rotations around its z axis will generate significant velocities at the
edges, resulting in considerable forces. A substantial portion of the forces produced
by the fin of AR=4 are generated by rotation around its z-axis. A fin that rotates
around its centerpoint, however, will generate no net force. In the optimal trajectory,
the motion of the centerpoint and the rotation around the fin’s z axis are combined
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Parameter Symbol AR=1 3D AR=1 Line AR=4 3D AR=4 Line

Type — Ellipse — Ellipse —
Stroke angle φ 27.9° 28.3° 36.0° 36°

Deviation angle ψ 15.7° 0° 19.9° 0°
Rotation angle χ 63° 44.1° −70° −48.5°
Rotation phase β 4.4 3.2 0 6.1

Rotation acceleration Kv 0.2 0.1 0.2 0.5
Speed-up code S 0 2 2 1
Speed-up value γ 1 1.2 1 1.2

Camber λ 0.1 0 0.4 0
Frequency f 0.19 Hz 0.19 Hz 0.19 Hz 0.2Hz

Force Fx′ 16.95mN 16.97mN 17.07mN 16.89mN
Efficiency η 0.364 0.413 0.829 0.555

Table 7.1: Parameters of optimal trajectories for rigid fins. Data for the fins of AR=1
has been extracted from Martin and Gharib (2018).

(a) (b)

(c)

I

II III

IV

I II III IV

x'

y'

I II III IV

Figure 7.3: (a) Optimal trajectory for a rigid fin of AR=4, where the sequence is
I-IV. (b) Resulting side force, Fx′, normal force and tangential force. (c) Normal
velocity of fin edges and centerpoint, with the colors corresponding to the points in
(a)
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to modify the overall center of rotation, that moves towards one of the fin’s edges.
This is evident in segments I and IV of the trajectory, illustrated in figure 7.3. It is
emphasized in figure 7.3c. During segment I of the trajectory, the velocity of the
red edge decreases to zero and plateaus at a low value, while the velocity of the
blue edge reaches its maximum. The fin rotates around the red edge, generating
forces that are oriented in the desired direction. In segment IV of the trajectory,
on the other hand, the fin rotates around the blue edge, generating forces that are
still in the desired direction. This two-step rotation allows the fin to undergo large
rotations around its z axis while always producing favorable forces. Segment III of
the trajectory represents the opposite case; the rotation around the fin’s z axis has
been combinedwith the curvature of the centerpoint’s trajectory such that practically
no normal force is generated by the rotation. The motion of the fin throughout the
different segments as well as the resulting fluid forces are described in detail in the
following paragraphs.

The mechanism responsible for the generation of momentum during the rotation
in segment I can be inferred from the geometry of the trajectory and the fin’s
velocity, shown in figures 7.3a and b, respectively. Because the angle swept is
large and the fin is oriented perpendicularly to its motion, the possible responsible
forces are either form drag or acceleration reaction. The velocity of the blue and
red edges is practically constant throughout a significant part of segment I, which
is inconsistent with an acceleration reaction being responsible for the large normal
force. Additionally, the velocity of the blue edge decreases rapidly in the second half,
which results in an added mass force in the negative x’ direction. The large positive
peak in Fx′ is therefore caused by a form drag force. This is further supported by the
observation that the peak force and maximum velocity coincide in time. As the fin
aligns its normal with the x’ direction, a larger proportion of the normal force is in
the desired direction, resulting in Fx′ and |Fn | overlapping at the end of this rotation.

Throughout segment II of the trajectory, the fin performs a rotation such that it is
positioned practically tangent to the trajectory of its centerpoint at all times, resulting
in a normal force that approaches zero (figure 7.3b). The tangential force, on the
other hand, sees a significant increase in this segment and is responsible for most of
the force in the x’ direction. Because the normal force is present in the denominator
of the efficiency (equation 6.1), the presence of a force in the x’ direction when the
normal force is small significantly increases the value of the efficiency. Surprisingly,
the tangential force is not caused by the friction drag generated by the motion of
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the plate, which produces a force in the negative x’ direction (figure 7.3). The
mechanism creating this positive tangential force is not evident, but may be related
to the fin’s inertia, the non-stagnant flow the fin encounters as a result of the previous
stroke and unsteady mechanisms involving the vortex dynamics, which are rich in
this motion. A visualization of the flow structures can be viewed in figure 7.4.

Segment III of the trajectory corresponds to a power stroke, with themain contributor
to the force in the x’ direction being the normal force. The motion of the fin is
practically perpendicular to the force generated, which indicates that it corresponds
to a lift mechanism. The value of the force follows a similar trend to that of the
velocity of the fin’s centerpoint, which is an indicator of a velocity-dependent force
such as lift. Flow visualization (figure 7.4) reveals a vortex forming at the fin’s
leading edge (blue edge), which is shed towards the end of the segment.

The beginning of segment IV is characterized by a decrease in the normal force
experienced by the fin, caused by the competing action of a drag force and an
acceleration reaction force. The clockwise rotation of the fin generates a drag force
that has a component in the positive x’ and negative y’ direction. Figure 7.3c,
shows, however, a deceleration in the motion of the centerpoint, combined with
a decrease in velocity of the blue edge that is followed by an acceleration in the
opposite direction and a small increase in the velocity of the red edge followed by a
deceleration. This overall deceleration results in an added mass that will generate
an opposing acceleration reaction force, in the negative x’ and positive y’ direction,
over most of the fin. As the fin crosses the horizontal position, the sign of the x’
component of the normal is reversed, resulting in a negative contribution to the Fx′

force. The subsequent acceleration of the wing in the opposite rotation direction
(deceleration of the red edge and acceleration of the blue edge) at the end of segment
IV causes the Fx′ force to return to the positive values. The added mass force is
dominant up to the time at which the velocity stagnates, which corresponds to the
initial stage of segment I. An inflection point can be observed in the curve of the
normal force at this point. The full cycle is then repeated to generate an overall force
in the Fx′ direction.

These observations provide an outline of the general characteristics of the fin’s
motion and the forces produced. They do not, however, account for more complex
unsteady fluid phenomena such as the shedding of vorticity and dynamics of the
vortices. Unsteady flow phenomena such as delayed stall and wake capture are
fundamental to the performance of insect flight (Dickinson et al., 1999), and are
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Figure 7.4: Flow visualization of the optimal trajectory obtained for a rigid fin of
AR=4. The edge of the fin is highlighted in red.
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likely to play an important role in this complex three dimensional fin motion.
Although these vortices are not the major providers of force, their presence does
alter the forces exerted on the fin and may be responsible for the optimality of the
trajectory over other similar trajectories. Due to the complexity of the trajectory,
a comprehensive and quantitative analysis of these effects would require three-
dimensional velocimetry, which is beyond the scope of this work. Qualitative flow
visualization has been performed, however, to highlight the general features of the
flow. Four images are presented in figure 7.4, each corresponding to the plate in one
of the four segments of its motion. In a similar manner to figure 7.3a, the temporal
evolution in this figure is counterclockwise.

A leading edge vortex (vortex A, figure 7.4 I) is formed during the large rotation of
segment I, where the leading edge corresponds to the blue edge in figure 7.3a. This
vortex detaches close to the end of the rotation and rolls over the fin’s upper surface.
It is shed over the opposite red edge of the fin at the beginning of segment II. A
high-velocity jet is generated in the negative x’ direction (figure 7.4 II). Its velocity
is imparted by the fin’s motion both in segment I and segment III of the trajectory.
After its detachment, vortex A moves in the negative x’ direction together with this
jet. A second vortex is formed in the proximity of the leading edge (blue edge)
at the beginning of segment II (vortex B, figure 7.4 II). It moves along the bottom
surface of the fin and is shed at the red trailing edge, continuing in a downwards
(negative y’) motion. A third vortex (vortex D, figure 7.4 III) starts forming at the
fin’s leading edge at the beginning of segment III and is shed at towards the end of
the segment. The shed vortex tube can be observed in figure 7.4 IV. It is interesting
to note that the motion of the fin in segment III induces a flow with velocity in the
positive y’ direction, which is encountered by the fin in its downward motion in
segment I and enhances the drag force produced. An additional leading edge vortex
(vortex C, figure 7.4 IV) is generated at the bottom surface leading edge (red edge)
of the fin during the rotation in segment IV. A second vortex, not pictured here, is
formed at the top surface at the end of this rotation. Both of these vortices are shed
at the red edge as the fin’s displacement direction shifts and move upwards (in the
positive y’ direction) as a vortex pair. Although a simplified description has been
provided, as is visible in these images the vortex dynamics of the motion are quite
complex, with components in all three dimensions and vorticity being generated in
the top and bottom edges of the fin in addition to the blue and red leading edges.
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Effect of three-dimensionality and large rotation
The benefits of employing a mechanism that allows for large rotations and three-
dimensional motion to generate maneuvering forces with a high aspect ratio fin
is now analyzed. The trajectory parameters that are characteristic of this type of
motion are the deviation angle, ψ, and the rotation angle, χ, as described in figure
6.2b. Due to physical constraints, the values of both of these variables are very
limited in the motions achievable by the caudal finds of thunniform swimmers. The
values of these parameters for the optimal trajectory can be found in table 7.1, while
the limits on these variables set for this optimization can be viewed in table 6.1.
Notably, both the deviation angle and the rotation angle of the optimal trajectory
are both at their maximum absolute values (ψ=20°, χ = −70°), which highlights
the importance of the parameters in performing efficient maneuvering motions and
explains the absence of such a trajectory in nature.

In order to further consider the effect of the trajectory’s three-dimensionality, the
optimization algorithm was employed to obtain the optimal trajectory that generates
a side force of Fx′ = 17mN considering only the family of trajectories whose
centerpointmotion is limited to a straight line. This is performed by setting the values
of the deviation angle and camber to zero. The parameters of the resulting optimal
trajectory are shown in table 7.1. The average force obtained approaches reasonably
well the target force. The efficiency of the trajectory is, however, significantly lower
than that of the fully three-dimensional case, being comparable to that obtained by
Martin and Gharib (2018) for a fin of AR=1.

The trajectory’s two-dimensional projection is shown in figure 7.5a, where the
starting point of the fin at each of the two segments is marked with a square.
The corresponding forces and velocities have been plotted in figures 7.5b and c,
respectively, in a similar manner to figure 7.3. The trajectory has been rotated such
that the average force is in the x’ direction. In a similar manner to a paddling
motion, the trajectory followed by the fin is divided into a power stroke (segment I)
and a recovery stroke (segment II). The majority of the favorable force is generated
during the power stoke, while the recovery stroke is limited to reducing the forces
generated.

Using a similar argument to that of the three-dimensional trajectory, the principal
mechanism responsible for the large normal force in the power stroke can be deter-
mined to be drag: while the plate is decelerating in the second half of the stroke, the
force is still in the positive x’ direction. It follows closely, additionally, the curve of
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Figure 7.5: (a) Optimal trajectory for a rigid fin of AR=4 when its centerpoint
motion is constrained to a line, where the initial position is marked by a square (b)
Resulting side force, Fx′, normal force and tangential force. (c) Normal velocity of
fin edges and centerpoint, with the colors corresponding to the points in (a)

the centerpoint velocity. In this constrained case, there is no possibility of combining
the centerpoint motion and fin rotation around its z axis to produce favorable large
drag-producing turns; although the velocity of the red edge decreases to zero, which
must always be the case, it does not remain at a low value. The forces in this stroke
are generated, in their majority, by the rotation around the fin’s y axis, as represented
in figure 6.3, and the parameters of the trajectory have converged accordingly to
maximize the force in this power stroke. The speed up value, γ = 1.2, is high, with
the speed code being S=1, which corresponds to a speed up in the power stroke.
This results in a peak force that is higher than that of the three-dimensional case.
The rotation acceleration, Kv = 0.5, is higher than in the three-dimensional case,
which results in the fin’s rotation being concentrated at the edges of the trajectory,
while only small rotations occur at the center. Notably, significant tangential forces
are present during the rotation of the fin at the edges of the trajectory and are re-
sponsible for a large proportion of the force in the x’ direction in those intervals.
The origin of this tangential force is not clearly distinguishable, but may be related
to inertial effects and vortex dynamics, which are known to be a significant factor
in the rotation at stroke reversal for insect flight (Dickinson et al., 1999). While the
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forces generated at stroke reversal of the optimal trajectory are favorable at the end
of the power stroke, they are detrimental at the end of the recovery stroke. During
the recovery stroke, the force in the x’ direction is small, with the majority of the
normal force being oriented in the y’ direction. The normal force in the recovery
stroke, in a similar manner to the power stroke, is mostly a result of form drag.

It is interesting to note that the rotation angle of this optimal trajectory, χ =
−48.5°, is still high in comparison to the rotations achievable by the caudal fins of
thunniform swimmers. It therefore constitutes an improvement with respect to the
traditional bio-mimetic maneuvering fin motions. Despite this fact, the efficiency is
significantly lower than that of the fully three-dimensional case.

7.2 Conclusions
The optimal trajectory that generates a side force of Fx′ = 17mN for a fin of aspect
ratioAR=4 has been obtained utilizing an experimental optimization procedure. The
optimum obtained possesses a high deviation angle (i.e., high three-dimensionality)
and high rotation angle, which are achievable by the current mechanism but not
by the caudal fin of fish due to mechanical constraints. This trajectory results in a
remarkably high efficiency, which is twice as large as the optimal trajectory obtained
by Martin and Gharib (2018) for a fin of AR=1.

The optimal trajectory uses the combination of four different maneuvers to generate
forces efficiently. In the first segment of the trajectory, the plate combines the motion
of its centerpoint with the rotation around its z axis to produce an overall rotation
that results in a high favorable drag force. In the second segment, the fin moves
practically tangentially to the trajectory of its centerpoint, reducing the normal force
but generating a tangential force with a component in the x’ direction. In the third
segment the fin employs a lift mechanism to generate a second high Fx′ peak. The
final fourth segment corresponds to a rotation, where the fin does not generate
significant favorable forces but decelerates to its initial position without producing
detrimental effects.

A second optimization, where the trajectory of the centerpoint was limited to a line,
was performed and a paddling-type strategy was recovered. The sharp decrease
in efficiency highlighted the importance of three-dimensionality in generating an
efficient turning maneuver for fins of high aspect ratio. Because the propulsive
efficiency of lift-based flapping propellers has been shown to be higher for fins of
large aspect ratio, the utilization of a mechanism that allows for these high rota-
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tions and high three-dimensionality in the fin’s motion, and can therefore generate
side forces efficiently for large aspect ratio fins, is a promising candidate for an
unmanned underwater vehicle that requires both high propulsive efficiency and high
maneuverability.
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C h a p t e r 8

EFFECT OF FIN FLEXIBILITY ON THE OPTIMAL
TRAJECTORY

The structure that reinforces the caudal fin of fish is generally comprised by a set of fin
rays, that can be bony or cartilaginous and support a softer collagenous membrane
(Lauder, 2000; Lingham-Soliar, 2005). Both the fin rays and the membrane are
compliant, with the Young’s modulus of bony rays being of the order of 1GPa and
that of the membrane of 0.3–1 MPa (Lauder and Madden, 2007). Flexibility is a
common feature in the propelling surfaces of most animals (Lucas et al., 2014) and
results in significant deformations occurring with the propeller motion. The effect
of flexibility on the propulsive characteristics of lift-producing caudal fins and wings
has been studied extensively, with variable results being reported.

Many of these studies have focused on the simplified problemof heaving and pitching
motions of airfoils. An experimental investigation by Prempraneerach et al. (2003)
reported an increase of up to 36% in efficiency with a small decrease in thrust
for airfoils with chordwise flexibility performing combined heaving and pitching
motions. Heathcote et al. (2008) observed an increase in both efficiency and thrust for
small values of spanwise flexibility in the heaving motion of a wing of AR=3, while
larger compliances resulted in detrimental effects. Simplified theoretical models
typically make use of flat plate geometries and inviscid fluid formulations. Katz and
Weihs (1978) analyzed the performance of a plate whose leading edge performed a
harmonic oscillation, and found increases of up to 20% in efficiencywhen chordwise
flexibility was introduced, with small decreases in thrust. More recent results of a
plate in pitching (Alben, 2008) and heaving (Michelin and Llewellyn Smith, 2009)
motion found a series of peaks at which the thrust production increased, with regions
where the chordwise flexibility produced higher efficiencies. Numerical studies
have reached similar conclusions. Liu and Bose (1997) observed a decrease in
propulsive efficiency with passive spanwise flexibility, but reported an increase with
carefully controlled flexibility, and Zhu (2007) reported an increase in efficiency
with chordwise flexibility, while spanwise flexibility was always detrimental when
considering motions in a heavy fluid. Overall, these studies have established the
benefits of utilizing propellers within specific optimal flexibility ranges. Deviations
from these optimal compliance values, however, commonly resulted in reduced
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performance.

The effect of compliance on the maneuverability of these fins has received, on
the other hand, little attention. Kim and Gharib (2011a) and Kim and Gharib
(2011b) investigated the thrust performance of flexible fins for drag-based paddling
propulsion, which provides some insight into the behavior of flexible fins performing
drag-based maneuvering. They reported a markedly different vortex formation
process for an impulsively translating flexible fin compared to that of rigid fins, both
flat and curved. These differences resulted in a smaller initial force peak for the
flexible fin, which was able, however, to maintain a larger force after this initial peak
due to slower vortex development.

These results have highlighted the potential of employing a compliant fin to improve
the thrust and propulsive efficiency of a lift-based flapping propeller. Because the
maneuvering capabilities of a fin are dependent on rapid, large forces the ability to
utilize such a fin for fast turning is yet to be determined. The objective of this chapter
is, therefore, to research the effect of fin flexibility in the optimal three-dimensional
trajectory that generates a maneuvering side force, with the view of a mechanism
that utilizes the same fin for propulsion and maneuvering purposes, such as the one
considered here.

8.1 Results
The optimal trajectory, as defined by equation 6.1, followed by a fin of AR=4 and
varying flexibility to generate a side force of Ftarget = 17mN was searched using
the optimization procedure described in Chapter 6. The fins had a rigid arm and
a flexible main surface made of polycarbonate (see figure 6.3b), with thicknesses
of h1 = 0.762 mm, h2 = 0.508 mm and h3 = 0.254 mm which constitute flexural
rigidities of D1 = 0.1 Pa m3, D2 = 0.03 Pa m3 and D3 = 0.004 Pa m3, respectively.
The parameters of the resulting optimal trajectories are presented in table 8.1,
together with those obtained for the rigid fin of Chapter 7. The similarity between
the trajectories is remarkable, and emphasizes the effectiveness of the identified
strategy. The four segments or maneuvers described in detail in Chapter 7 are
employed by all four fins. The flexible fins, however, were observed to deform in
their motion (figure 8.2), generating differences in the forces produced and their
direction. Due to this deformation, the position of the surface of flexible fins
cannot be easily obtained at every instant, requiring three-dimensional tracking of
the structure, which has not been performed in the current work. The motion of
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Parameter Symbol Rigid h=0.76mm h=0.51mm h=0.25mm

Type — Ellipse Ellipse Ellipse Ellipse
Stroke angle φ 36.0° 38.3° 33.5° 39.6°

Deviation angle ψ 19.9° 20° 20° 14.6°
Rotation angle χ −70° −70° −70° −70°
Rotation phase β 0 0 0 0.2

Rotation acceleration Kv 0.2 0 0.2 0.1
Speed-up code S 2 3 3 0
Speed-up value γ 1 1 1.1 1.2

Camber λ 0.4 0.4 0 0.3
Frequency f 0.19 Hz 0.18Hz 0.2Hz 0.2Hz

Force Fx′ 17.07mN 17.24mN 17.13mN 17.14mN
Efficiency η 0.829 0.739 0.700 0.605

Table 8.1: Parameters of optimal trajectories for flexible fins.

these fins disregarding their deformation is very similar to that represented in figure
7.3 for the rigid fin, and has therefore not been included here.

The force diagrams, on the other hand, see significant differences and are represented
in figure 8.1. For an approximate correspondence between instantaneous force and
fin motion the reader is referred to figure 7.3. In the case of a flexible plate, the
normal and tangential vectors vary along the plate’s surface and are dependent on its
deformation, which is not known a priori. The normal and tangential directions have
been defined in this chapter as the normal and tangential directions of a rigid fin with
the same rotation values as the flexible fin. Because the deformations are relatively
small, this approximation provides a good representation of the directionality of the
forces. A clarification should be made, however, about the efficiency. Since the
definition of efficiency includes the value of the normal force in the denominator, it
does not represent the exact same ratio for rigid and flexible plates. Due to the small
deflections the differences are small enough, however, that a reasonable comparison
may still be made.

The trajectory obtained for the stiffest of the flexible fins (h1 = 0.762 mm), is
almost identical to that obtained for the rigid fin. Although slight variations are
present in stroke angle, rotation acceleration and frequency, these are within the
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Figure 8.1: Forces generated during the optimal trajectory of the (a) rigid fin and
flexible fins of thickness (b)h=0.76mm (c)h=0.51mm and (d) h=0.25mm

convergence criteria established for the optimization (table 6.1). It is interesting to
note that, despite moving at a lower frequency and only small variations in stroke
angle, the trajectory for the flexible plate has converged to a slightly higher force
than that of the rigid plate. Because the target force has been set to Fx′ = 17mN ,
this does not imply that the rigid plate is not capable of generating such forces, but
it does highlight the ability of the flexible plate to produce high enough forces in
its motion. The efficiency of the trajectory obtained by the flexible fin, η = 0.74,
is, however, lower than that of the rigid plate η = 0.83, albeit moderately so. The
cause of this reduction in efficiency is visible in the force measurements presented
in figure 8.1, where figure 8.1(a) corresponds to the rigid fin and 8.1(b) to the least
flexible case. The curve of the Fx′ force is similar between both cases, with the peak
corresponding to segment III of the trajectory being slightly sharper in the flexible
fin to compensate for a slightly lower value in segment II. The normal force, on
the other hand, sees more significant variations. The flexible fin presents higher
normal force values both in section I and III of the trajectory. This implies that
the deflection of the plate causes a smaller proportion of the normal force to be in
the desired x’ direction during these two power motions. Because the averaged Fx′

force is approximately equal, the flexible fin will require the production of a higher
normal force, which results in a lower efficiency.
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The optimal trajectory corresponding to the fin of middle flexural rigidity (h2 =

0.508mm) produces a lower efficiency, η = 0.70, than that of both rigid and stiffer
flexible fins. In this case, however, the decay in efficiency is not produced in segments
I and III, with the proportion of the normal force that is directed in the x’ direction
being similar to that of the rigid plate (figure 8.1c). While most of the normal
force at the start of segment II is directed in the x’ direction, no surge in tangential
force occurs once the normal force decays. This may be due to the deformation
of the fin, that generates a curvature on its surface. This curvature modifies the
force direction and affects the formation and shedding of vortices, which play an
important role in the force generation during this segment. The lack of a tangential
force constitutes a detrimental effect on itself, because, as specified in Chapter 7,
a tangential force with an x’ component has a significant positive impact on the
efficiency. In addition to this reduced tangential force, the direction of the small
generated forces is detrimental, producing a net force in the negative x’ direction at
the end of segment II (starting approximately when the fin is located at the major
axis of the ellipse) and beginning of segment III. The decrease in both normal and
tangential forces in segment II of the trajectory is associated to the increase in the
trajectory’s frequency. Because the overall force must remain at 17mN , the forces in
the other segments, which are mostly drag-based, must increase. This is achieved by
utilizing a higher velocity. There is, in particular, a substantial increase in the peak
force produced in segment III, that may be additionally related to release of stored
strain energy in the deformed fin. Overall, the efficiency decrease is not sharp, and
the fin is capable of generating the required force. If such a degree of flexibility
is largely beneficial to the propulsive efficiency of the system, it may constitute a
reasonable compromise.

As the rigidity of the fin is decreased, the efficiency drops further, with the most
compliant fin presenting an efficiency of η = 0.61. At this h3 = 0.254 mm, the
values of the optimal parameters start to deviate substantially from those of the
rigid fin. Although the general strategy remains equal to that of the rigid case,
the forces generated are considerably disparate. A second peak in normal force,
directed along the x’ axis, appears after segment I of the trajectory and may be
produced by the release of strain energy accumulated during the power stroke of
segment I. Throughout, considerable tangential forces are generated, no doubt due
to the higher curvature of the deformed fin, that increases the cross-sectional surface
when the fin undergoes tangential motions and modifies the force direction when it
undergoes normal motions. An effect similar to that present in the fin of thickness
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Figure 8.2: Visualization of the fin deflection and flow patterns during the optimal
trajectory for a flexible fin of thickness h=0.25mm

h2 = 0.508mm is present, where Fx′ becomes negative in segment II. The length of
this negative interval, as well as the minimum force are largely increased. The peak
force generated in segment III increases commensurately, with the average force
being maintained at Fx′ = 17.14mN . Although this optimal trajectory is capable of
generating the desired force, the use of this higher flexibility generates larger forces
in undesired directions, which reduce the efficiency and may pose a complication
when performing maneuvering motions. Despite this larger decrease, the efficiency
of this trajectory is still significantly higher than that obtained for a rigid plate
when its centerpoint motion was limited to a line, evaluated in Chapter 7, further
emphasizing the critical importance of employing three-dimensional motions and
large rotations when attempting to generate side forces with a flexible fin.

Qualitative flow visualization was performed on the flexible fins, and showed a
similar vortex structure to that present in the optimal motion of the rigid fin. The
timing of vortex formation and shedding, as well as subsequent vortex dynamics
display variations. Images of the visualization for the most flexible fin (h3 =

0.254 mm) are presented in figure 8.2, where the deformation of the fin is also visible.
Despite presenting the smallest opposition of all three cases, the deformations of
this fin are still modest. The vortices present in these images are similar to those of
the rigid case. A leading edge vortex (vortex A) is generated during segment I and
is later shed over the fin’s trailing edge. A second leading edge vortex (vortex B) is
generated at the start of segment II. In this case, however, it detaches close to the
fin’s leading edge and does not follow a downwards motion. The markedly different
behavior of this vortex may be a significant contributor to the detrimental forces
generated in segment II of the flexible fin’s motion. A third large vortex (vortex D) is
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generated during segment III and is shed at the start of the large rotation in segment
IV. A final vortex (vortex C) is generated in this rotation and follows an upwards
motion after detachment. A similar high-velocity jet is generated and moves in the
negative x’ direction.

8.2 Conclusions
Flexible fins have been proven in the literature to improve the thrust performance
of flapping propellers for specific fin compliance values. The effect of adding a
degree of flexibility to the fin on the maneuvering performance of a three-degree
of rotation mechanism was investigated. The optimal trajectory for fins of three
different flexibilities was obtained, with all three cases being remarkably similar to
that of a rigid fin.

The flexible fins were capable of generating the target side force, Fx′, but did
so with lower efficiency than the rigid fin. While the stiffer fins saw a smaller
reduction in efficiency, the efficiency decreased as fin flexibility increased. It may,
therefore, be possible to find a compromise value of the fin compliance where
the propulsive efficiency is benefited from flexibility without largely reducing the
maneuvering efficiency. Reductions in the efficiency of the flexible plates are a
result of a combination of factors related to the deformation of the plate, including
the modification of the force directionality and value, modification of the vortex
formation processes and modification of the timing between fluid and fin dynamics.
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C h a p t e r 9

CONCLUDING REMARKS AND FUTURE WORK

Flapping propellers have received recent attention as a quiet and efficient alternative
to traditional screw propellers for use in AUVs. Part II of this thesis has focused on
the study of the maneuverability properties of a caudal-fin-type propeller that can
perform large rotations in all three degrees of freedom. Employing an experimental
optimization procedure, the parameters of the optimal trajectory that generates a
specified side force have been obtained, with optimality being defined as maximum
geometrical efficiency. Chapter 7 has considered the effect of aspect ratio on the
resulting optimal trajectory. A fin of AR=4, that corresponds to the efficient lift-
producing fins of thunniform swimmers, was considered. The resulting optimal
trajectory presented and efficiency double of that of the optimal trajectory for a
fin of AR=1 and is dependent on the use of high three-dimensionality and large
rotations, which explains its absence in nature. The effect of introducing a degree
of compliance on the fin’s performance was evaluated in Chapter 8 and shown to be
detrimental to themaneuverability efficiency, although the target force was achieved.

These results demonstrate the potential of employing a caudal-fin inspired propeller
for themaneuvering of AUVs. A considerable amount of research, however, remains
to be performed to fully characterize the performance of such amechanism. In terms
of the obtained results, a full understanding of the optimal trajectory would require
a quantitative measurement of the flow and vortex features employing techniques
such as 3D PIV, as well as the tracking of the fin deformation in the flexible case.
Because a global optimum is not guaranteed, it would be beneficial to perform
several repetitions of the optimization procedure with varying initial conditions.
This is especially the case for the flexible fins, whose optimization was initiated
at the optimal trajectory for the rigid fin. Although the strategy followed by the
rigid fin is extremely efficient, causing the fast convergence of the flexible fins, it
may be the case that a completely different strategy could result in an improved
performance in the flexible case. In addition to the aspect ratio, the morphology
of the fin has been proven to be an important factor in the performance of animal
locomotion; experiments that consider the effect of the fin’s shape will undoubtedly
yield interesting results.
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Several additional aspects related to the performance of the system when attached
to the underwater vehicle have not been considered. The current experiments have
been performed in an oil tank and correspond to the maneuverability of the AUV at
rest. In most cases, however, the vehicle will need to perform maneuvers when it
is in motion. The implementation of similar experiments in the presence of a co-
flow are therefore an important step towards the development of a fully functional
mechanism. In this direction, the interaction of the AUV body with the fin should be
considered, both in terms of the modifications it produces in the incoming flow and
its inertia and corresponding added mass when generating turns. Combining these
two steps, the final objective would be to test a full AUV that is free to move within
the tank. This final step is vital to the evaluation of the maneuvering performance,
because, even though the average force in the y’ direction is zero by definition,
the composition of rotations during the maneuver may still provoke a final overall
turn in an undesired direction. Considering a different measure of efficiency in the
performance of the optimization may also be conductive to a reduction of these
detrimental turns.

In conclusion, this research has shown the effectiveness of introducing high three-
dimensionality and high rotations in the maneuvering performance of a high-aspect-
ratio caudal-fin type propeller. Because high-aspect-ratio propellers are known to
result in higher propulsive efficiencies, the mechanism investigated in this work
shows promise as an efficient and quiet combined maneuvering and propulsive
system for AUV use, that eliminates the need for additional surfaces or mechanisms
and allows the utilization of a rigid main body.
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A p p e n d i x A

EXPERIMENTAL MEASUREMENTS OF INVERTED FLAGS OF
AR=2 AT MODERATE ANGLES OF ATTACK
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Figure A.1: Maximum (◦), minimum (◦) and mean (•) deflection angle, Φ, for an inverted flag of AR=2 and µ = 2.76 as a function of
non-dimensional flow velocity, κ, and angle of attack, α
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Figure A.2: Maximum cross section, A’, for an inverted flag of AR=2 and µ = 2.76 as a function of non-dimensional flow velocity, κ,
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Figure A.3: Frequency of motion, f, for an inverted flag of AR=2 and µ = 2.76 as a function of non-dimensional flow velocity, κ, and
angle of attack, α
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Figure A.6: Maximum cross section, A’, for an inverted flag of AR=2 and µ = 2.62 as a function of non-dimensional flow velocity, κ,
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Figure A.7: Frequency of motion, f, for an inverted flag of AR=2 and µ = 2.62 as a function of non-dimensional flow velocity, κ, and
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Figure A.10: Maximum cross section, A’, for an inverted flag of AR=2 and µ = 2.49 as a function of non-dimensional flow velocity, κ,
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Figure A.11: Frequency of motion, f, for an inverted flag of AR=2 and µ = 2.49 as a function of non-dimensional flow velocity, κ, and
angle of attack, α
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