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ABSTRACT

Nervous systems sense, communicate, compute, and actuate movement using dis-
tributed components with trade-offs in speed, accuracy, sparsity, noise, and satura-
tion. Nevertheless, the resulting control can achieve remarkably fast, accurate, and
robust performance due to a highly effective layered control architecture. However,
this architecture has received little attention from the existing research. This is in
part because of the lack of theory that connects speed-accuracy trade-offs (SATs) in
the components neurophysiology with system-level sensorimotor control and char-
acterizes the overall system performance when different layers (planning vs. reflex
layer) act work jointly. In thesis, we present a theoretical framework that provides
a synthetic perspective of both levels and layers. We then use this framework to
clarify the properties of effective layered architectures and explain why there exists
extreme diversity across layers (planning vs. reflex layers) and within levels (senso-
rimotor versus neural/muscle hardware levels). The framework characterizes how
the sensorimotor SATs are constrained by the component SATs of neurons commu-
nicating with spikes and their sensory and muscle endpoints, in both stochastic and
deterministic models. The theoretical predictions are also verified using driving
experiments. Our results lead to a novel concept, termed “diversity sweet spots
(DSSs)”: the appropriate diversity in the properties of neurons and muscles across
layers and within levels help create systems that are both fast and accurate despite
being built from components that are individually slow or inaccurate. At the compo-
nent level, this concept explains why there are extreme heterogeneities in the neural
or muscle composition. At the system level, DSSs explain the benefits of layering to
allow extreme heterogeneities in speed and accuracy in different sensorimotor loops.
Similar issues and properties also extend down to the cellular level in biology and
outward to our most advanced network technologies from smart grid to the Internet
of Things. We present our initial step in expanding our framework to that area and

widely-open area of research for future direction.



[1]

(2]

(3]

[4]

[5]

[6]

[7]

PUBLISHED CONTENT AND CONTRIBUTIONS

John C. Doyle, Yorie Nakahira, Yoke Peng Leong, Emily Jenson, Adam Dai,
Dimitar Ho, and Nikolai Matni. Teaching control theory in high school. In 2016
IEEE 55th Conference on Decision and Control (CDC), pages 5925-5949.
IEEE, 2016. doi: 10.1109/CDC.2016.7799181. URL https://ieeexplore.
ieee.org/document/7799181.

Y.N. proposed the mathematical methods used in chapter 2.

Yorie Nakahira. Lq vs. { in controller design for systems with delay and quan-
tization. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pages 2382-2389. IEEE, 2016. doi: 10.1109/CDC.2016.7798619. URL
https://ieeexplore.ieee.org/abstract/document/7798619.

Y.N. proposed the algorithms and performed the analysis.

Yorie Nakahira and Yilin Mo. Attack-resilient />, ho, and {; state esti-
mator. IEEE Transactions on Automatic Control, 63(12):4353-4360, 2018.
doi: 10.1109/TAC.2018.2819686. URL https://ieeexplore.ieee.org/
abstract/document/8325450.

Y.N. performed the theoretical and empirical analysis.

Yorie Nakahira and Seungil You. A linear programming framework for net-
worked control system design. [FAC-PapersOnLine, 48(22):34-39, 2015.
doi: 10.1016/j.ifacol.2015.10.303. URL https://www.sciencedirect.
com/science/article/pii/S2405896315021941.

Y.N. proposed the algorithm, analyzed its performance, and performed the
simulation.

Yorie Nakahira, Quanying Liu, Natalie Bernat, Terry Sejnowski, and
John C. Doyle. Theoretical foundations for layered architectures and speed-
accuracy tradeoffs in sensorimotor control. Accepted to American con-
trol conference 2019. URL http://users.cms.caltech.edu/~ynakahir/
ACC2019theory.pdf.

Y.N. identified the question being studied and developed the theory.

Yorie Nakahira, Niangjun Chen, Lijun Chen, and Steven H Low. Smoothed
least-laxity-first algorithm for electric vehicle charging. In Proceedings of
the 8th International Conference on Future Energy Systems, pages 242-251.
ACM, 2017. doi: 10.1145/3077839.3077864. URL https://dl.acm.org/
citation.cfm?id=3077864.

Y.N. proposed the algorithms and performed the theoretical analysis.

Yorie Nakahira, Andres Ferragut, and Adam Wierman. Minimal-variance
distributed deadline scheduling in a stationary environment. SIGMETRICS
Perform. Eval. Rev., 46(3):56—61, January 2019. ISSN 0163-5999. doi:



vi

10.1145/3308897.3308925. URL https://dl.acm.org/citation.cfm?

id=3308925.
Y.N. proposed the optimization techniques and the proposed algorithms and

conducted the experiments.



vii

TABLE OF CONTENTS
Acknowledgements . . . . . . ... Lo iii
Abstract . . . . . . . iv
Published Content and Contributions . . . . . . .. ... ... ... ..... v
Bibliography . . . . . . . . ... v
Tableof Contents . . . . . . . . . . .. . . vii
Chapter 1: Introduction. . . . . . . .. .. .. ... 1
1.1 Contribution of this thesis . . . . . . ... .. ... ... ... .. 3
1.2 Relatedwork . . . . ... ... ... 5
1.3 Control and security . . . . . . . . . . . ... ... . 6
1.4 Optimal control and scheduling . . . ... ... ... ........ 7
1.5 Preliminary . . . . . . .. .. ..o 8
Chapter 2: Component speed-accuracy tradeoffs (SATs) in neurophysiology . 11
2.1 Spike-based nerve signaling . . . . . ... ... ... ... ... .. 11
2.2 Rate-basedencoding . . . . ... ... ... ... ... ... .. 13
2.3 Spike-interval-based nerve signaling . . . ... ... .. ... ... 14
2.4 Summary of nerve signaling SATs . . . . . .. ... ... ... ... 16
2.5 Muscle actuation SATs . . . . . . . .. ... oo 16
Chapter 3: System speed-accuracy tradeoffs (SATs): fundamental limits . . . 19
3.1 Theimpactofdelay . .. ... ... ... ... ... ........ 20
3.2 The impact of quantization . . . . . . . ... ... ... ... ..., 21
3.3 The impact of delay and quantization in reaching tasks . . . . . . . . 24
3.4 The impact of delay and quantization in driving tasks . . . . . . . .. 25
3.5 Impact of layering diversity on system SATs . . . .. ... ... .. 28
3.6 Impact of axonal diversity on system SATs . . ... ... ... ... 29
Chapter 4: System speed-accuracy tradeofts (SATs): achievable performance
and optimal controllers . . . . . . ... ... ... L . 32
4.1 Systemmodel . .. ... ... .. 34
42 Thelscontroller. . . . . . . . . .. .. 34
4.3 The linear quadratic controller . . . . . . . . ... ... ... .... 35
44 Ahybridcontroller . . . . . . .. ... . ... ... ... 45
4.5 Performance analysis of the proposed hybrid controller . . . . . . . . 46
4.6 Tradeoffs between performance versus complexity . . . . .. .. .. 50
Chapter 5: Connecting the component and system SATS in sensorimotor control 56
5.1 Reaching tasks with bottleneck in nerve signaling . . . . . ... ... 56
5.2 Reaching tasks with bottleneck in muscle actuation . . . . . . . . .. 57
5.3 Reaching experiments: materials and methods . . . . .. ... ... 60
54 Trackingtasks . . . . . . ... . 60
5.5 Visual tracking of a moving object . . . . . ... ... ... 65

5.6 Riding a mountain bike to follow atrail . . . . . . . ... ... ... 66



5.7 Driving experiments: materials and methods . . . . . ... ... .. 68
Chapter 6: Diversity sweet spots (DSSs) . . . . . . .. ... ... ... .. 76
6.1 DSSsinreachingtasks . . . . . ... ... ... ... ........ 76
6.2 DSSs in visual tracking of a moving object . . . . . ... ... ... 77
6.3 DSSsinriding a mountainbike . . . . ... ... ... .0 L. 80
6.4 Axonsize diversity creates DSSs . . . .. ..o 80
6.5 Rethinking other systems from the perspective of DSSs . . . . . .. 82
Chapter 7: Revisiting SATs in large-scale systems: scalable algorithm . . . . 87
7.1 Systemmodel . .. .. ... ... ... .. 88
7.2 The proposed controller design method . . . . . . . ... ... ... 90
7.3 Feasibility analysis of the program . . . . ... ... ... .. ... 94
7.4 Performance analysis of the obtained controller . . . . . . ... ... 97
Chapter 8: Applicationto Security . . . . . . . ... .. ... ... ..., 100
8.1 Systemmodel ... ... ... ... ... ... . ... 101
8.2 Necessary condition for resilience to attack . . . . . ... ... ... 102
8.3 The proposed estimator . . . . . . . ... ... 105
8.4 Resilience of the proposed estimator. . . . . . ... ... ... ... 107
8.5 Numericalexample . . . . . . . .. ... ... ... ... .. ... 117
Chapter 9: Application to scheduling I: reverse engineering existing schedul-
ingalgorithms . . . . . . . . ... . 120
9.1 Systemmodel . ... ... ... ... ... ... ... ..., 121
9.2 The proposed algorithm: smoothed least-laxity-first algorithm . . . . 123
9.3 Performance analysis . . . . . . . ... ... ... 128
9.4 Performance at Caltech electric vehicle charging testbed . . . . . . . 130
Chapter 10: Application in scheduling II: optimal distributed scheduling
algorithms . . . . . . . . ... 137
10.1 Systemmodel . . . ... ... .. oo 139
10.2 Maximizing predictability under stationary job arrivals . . . . . . . . 143
10.3 Performance degradation inherent to distributed algorithms . . . . . 153
10.4 Balancing predictability and stability under non-stationary job arrivals157
10.5 Balancing stability and predictability . . . ... ... ... ... .. 162
10.6 Performance at Caltech electrical vehicle charging testbed . . . . . . 166
Bibliography . . . . . . . .. 172
Appendix A: Additional proofs for section VIII . . . . . ... ... ... .. 189
A.l1 Additional proofs . . . . . . . . ... ... 189
A.2 Proof of Theorem 9.3.1 . . . . . ... ... ... .. ....... 191
A.3 Proof of Theorem9.3.2 . . . .. ... ... ... ... ....... 195
Appendix B: Additional proofs for section XII . . . . . . .. ... ... ... 197
B.1 Proof of Lemma 10.2.2 . . . . . ... ... ... ... ... ... 197
B.2 Proof of Proposition 10.2.1 . . . . . ... ... ... ... ... 200
B.3 Proof of Theorem 10.2.2 . . . . . . . . ... .. ... .. ...... 200
B.4 Proof of Theorem 10.2.3 . . . . . .. .. ... .. ... ... .... 202
B.5 Proof of Theorem 10.2.4 . . . . . . .. .. ... ... ... ..... 204
B.6 Proofof Lemma 10.3.2 . . . . . ... ... ... ... 207

B.7 Proof of Corollary 10.3.3 . . . . ... .. . ... ... ....... 209



B.8 Proof of Theorem 10.4.1.



Chapter 1

INTRODUCTION

Over the next decade, we will witness the development of a hyper-connected world in
which infrastructure, devices, and vehicles are integrated seamlessly into the Internet
of Things (IoT). The IoT will interconnect hundreds of millions of heterogeneous
devices, each capable of sensing, computing, actuating, and communicating. Such
networks of intelligent devices have great potential to bring greater convenience and
comfort to society; at the same time, the complexity of controlling and coordinating
so many smart devices raises daunting challenges. How can we sense events fast
and accurately over a network of devices with potential communication delays and
errors? How can we control networked systems efficiently using devices with limited
computation and actuation capabilities? How can we ensure the robustness and
safety of the system in case of compromised devices from cyber-attacks? Addressing
these challenges has been the main motivation for my research. Interestingly, these
challenges are analogous to those faced by biological systems: despite using physical
components that are noisy, distributed, delayed, quantized, etc., biological systems

are remarkably robust in control and homeostasis.

Human sensorimotor control can achieve extremely robust performance in complex,
uncertain environments, despite being implemented in systems that are distributed,
sparse, quantized, delayed, and saturated. For example, Fitts’ Law predicts that, in
many forms of reaching (e.g. eye gaze, hand, mouse), the time required for reaching
quickly to a target of width W at a distance D scales as log, (2D /W) [60, 202]. The
logarithmic relation between the reaching time and target width allows faster speed
to be achieved with a small decrement in accuracy. In another example of riding
a mountain bike down a twisting, bumpy trail, though a trade-off exists between
traveling fast and accurately following the trail, a human can often stay on the trail
without crashing. On the other hand, the speed-accuracy tradeoffs (SATs) of the
hardware implementing control can be much more severe. Improving either speed
or accuracy in nerve signaling or muscle actuation requires profligate biological
resources [185]; as a consequence, only a few types of nerves and muscles are built
to be both fast and accurate [140]. Such apparent discrepancy between the speed-
accuracy tradeoffs in sensorimotor control and neurophysiology poses the question:

how nature de-constrains neurophysiological hardware constraints in sensorimotor



control?

We hypothesize that effective layered control architectures are the critical enablers
for achieving such remarkable speed and accuracy in sensorimotor control using
nerves or muscles with severe SATs (see [49] and reference therein for explanations
on architectures). Biological systems have layered control architectures distributed
across multiple levels, with spinal reflexes at the first level, and many well-engineered
technological systems are naturally layered. The effectiveness of layered architec-
tures can be observed in many sensorimotor control tasks. One example is the
reaction to stepping on a thumbtack with bare feet. Our reaction is mainly con-
trolled by three diverse feedback loops [16]: upon sensing, the foot is first lifted
up by a fast reflexive control loop involving the spinal cord, then a control loop
involving the vestibular system works on balancing our body, and finally a slow loop
involving the higher cortical decisions determines the next action. These loops have
diverse speeds: the reflexive loop acts in a spinal arc, taking action generated by the
spinal cord within tens of milliseconds, before the vestibular and cortical loops even
sense the event hundreds of milliseconds to seconds later [52, 101]. They also have
diverse capabilities to convey information: the first loop only needs to transmit bi-
nary information about whether to lift up the foot, but the second and third loops can
provide increasingly complex instructions. By appropriately layering these loops,

we can achieve a fast and accurate system response despite using parts that are not.

Another example of effective layered architectures is the control loops involving
riding a mountain bike down a twisting, bumpy trail. Vision is used to obtain
an advanced warning on future uncertainties in the trail ahead when planning a
route. Even large variations/disturbances in the trail can be navigated with small
error provided there is enough advanced warning relative to the speed of the bike.
At the same time, the bumps in the path, the bike, and the rider’s body dynamics
are handled by a separate reflex layer that is entirely unconscious and reacts with
unavoidable delays. Without a quick reaction, even small disturbances can result
in catastrophically large errors and crashes. With enough advanced warning and
resources, we can be almost perfectly robust, and, at the opposite extreme with delays
and uncertain dynamics, nearly infinitely fragile. An effective layered architecture

allows the sensorimotor control to achieve the former while avoiding the latter.

Similar laws and architectures extend downward to the cellular level and outward to
our most advanced technologies. Though based on entirely different components,

such systems face similar constraints and tradeoffs (laws) in dimensions such as effi-
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ciency, robustness, security, speed, flexibility, and evolvability. And the successful
design of such systems shares remarkable universals in architecture, including the

use of layering and diversity for managing these tradeoffs effectively.

Despite the importance of understanding successful architectures, the study of archi-
tectures have traditionally been the among the areas of engineering least guided by
theory, and there is nothing remotely resembling a ‘science’ of system architecture.
Moreover, we have little understanding of what makes an architecture effective of our
brain. Understanding effective layered architectures requires connecting component
constraints and trade-offs to the resulting hard limits on sensorimotor performance
from a multilayer perspective. However, the component SATs in neural signaling
[153, 154, 185, 210] and the system SATs in sensorimotor control [60, 135, 191, 192]
have been studied separately mainly because there are few theoretical tools that can

integrate both levels.

In this thesis, we develop a mathematical theory that characterizes how the com-
ponent speed-accuracy constraints and trade-offs impact SATs at the system level.
Using this theory, we show that diversity between layers and within layers can be
exploited to achieve both fast and accurate performance despite being implemented
using slow or inaccurate hardware. We call these synergies “diversity sweet spots’.
At the component level, this concept explains why there are extreme heterogeneities
in the characteristics of neural components [146, 153, 154]. At the system level,
DSSs explain the benefits of extreme heterogeneities in speed and accuracy in dif-

ferent sensorimotor loops [97, 110].!

1.1 Contribution of this thesis

Fundamental theory: To understand the fundamental limitations in control under
communication constraints, we characterize the preformation limitations and control
algorithms for systems that are delayed, quantized, and sampled, distributed, and/or
saturated. We show closed-form performance bounds, including analytic bounds for
a general class of nonlinear system under directed information constraints, which had
previously remained open due to the technical complexity of tracking the dynamic
evolution of probability density functions. For safety-critical systems, we create

a state estimator with a provable estimation error bound, the first to have H,,

'Throughout this thesis, we refer to "layers" when discussing different architectural parts (e.g.
planning layer, reflex layer) and "levels” when referring to different levels of abstraction (e.g. neural
hardware level, sensorimotor control level).
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resilience.? When applied to human sensorimotor control or biomolecular control
within a single cell, these theories empower us to integrate the previous findings
from the system and component levels and to obtain a holistic understanding of both

levels.

Insights into biological systems:

We study the speed-accuracy tradeoffs (SATs), which are ubiquitous in both neu-
rophysiology and sensorimotor control. We clarify how the component SATs in
spiking neuron communication and their sensory and muscle endpoints constrain
the system SATs using both theory and experiments. The manual to set up our exper-
imental platform and the code can be found here [112]. Moreover, we characterize
how the structural constraints of biomolecular control impose fundamental limits in
cell homeostasis. These results suggest that optimal layering creates “diversity sweet
spots” (DSSs). DSSs show that diversity between layers (planning versus reflexive
layers) and within levels (nerves and muscles) can be exploited to achieve fast and
accurate performance using slow or inaccurate hardware. This notion explains why
there is extreme heterogeneity in nerve and muscle compositions. Moreover, DSSs
also show that diverse nerves/muscles lead to the logarithmic SATs, as experimen-
tally observed in Fitts’ Law. This provides a new perspective on the long history
of Fitts’ Law study in Human-Computer Interaction by establishing a connection

between the Fitts’ Law and existing muscle diversity.

Scalable algorithms for technological systems:

Many modern schedulers in smart grids and computing systems can dynamically
adjust their service capacity to match the incoming workload. At the same time,
however, unpredictability and instability in service capacity often incur undesirable
operational and infrastructural costs. Using a deterministic framework, we develop
scalable distributed scheduling policies with performance guarantees by establish-
ing a connection between the scheduling algorithms and the utility maximization
problem. In a stochastic framework, we derive the optimal solution for a deadline
scheduling problem that maximizes service capacity predictability, stability, or both,
subject to combinations of strict/soft demand/deadline requirements. Exact solu-
tions for these problems were previously unknown owing to the difficulty of dealing

with the discreteness in the state. When tested on the Caltech and Google electric

2If the estimation error is 2-norm bounded given 2-norm bounded disturbance and sparse un-
bounded sensory attacks, we say that the system is H., resilient.
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vehicle charging testbed, the costs of the proposed algorithms perform equally well
with the optimal offline algorithm for more than 80% of days and no worse than exist-
ing centralized online algorithms. We also show an interesting connection between
the resulting optimal algorithms and the optimal offline algorithm (YDS algorithm)
[205], which may help inspire the transformation of other offline algorithms into

online distributed algorithms.

Rethinking the fundamentals (outreach):

Despite the broad applicability of control theory for many practical problems, the
impact of control theory is largely stunted by its technical accessibility. To lower the
learning barriers of the theory, we are rethinking its fundamentals [48]. Specifically,
we reproduce the basic results of control theory using high school-level mathematics.
We have implemented the simplified theory in Caltech’s control course curriculum
and also taught it to the high school student who then helped conduct our experi-

ments.

1.2 Related work

Control and information theory

Control under communication constraints has been extensively studied. The com-
prehensive surveys [5, 9, 54, 138] cover important issues in the field of networked
control. The necessary and sufficient data rate through the feedback loop in order
to achieve system stability in linear stochastic control is studied in [137, 189, 207].
The optimal controller structure, separation principles, performance bounds are
studied in [13, 31, 63, 93, 174, 175, 188, 190, 208]. Some of the important re-
sults include separation principle between the controller design and communication

protocols [58, 65, 190], and the relation between optimal cost and the causal rate-
distortion function [25, 32, 45, 72, 93, 159].

Relevant to control information-theoretic quantities include mutual information [39,
190], anytime capacity [163], and directed information [124, 188], among others.
In the classical setting of information theory, the source and channel codes can
be designed separately without loss of optimality in the limit of infinite coding
delay [171]. However, if the allowable delay is limited, as is the case in zero-delay
coding for control, then separating the design of source and channel can perform

strictly worse compared with designing them jointly [88].



1.3 Control and security

For the secure estimation problem in static systems, robust estimators are extensively
studied in the literature. Common robust estimators include the M-estimator, L-
estimator, and R-estimator [81, 87, 123], and they are used to account for sensor
integrity attacks in [130]. For the secure estimation problem in dynamical systems,
robust control provides tools to deal with noise in estimation and control [40, 47].
Although robust control typically assumes that system disturbances are bounded or
follow well-defined distributions, such assumptions may not be valid for sensor faults
caused by intelligent attackers [41, 130]. Fault detection and isolation (FDI) also
provide methods for identifying and pinpointing faults in sensors [33, 70, 84, 195].
One common approach of FDI for linear dynamical systems under sensor integrity
attacks is to construct residuals that take non-zero values only in the presence of
faults (see [152] and references therein). The generation of such residuals is possible
only when a fault is separable from normal disturbances and modeling uncertainties,

which requires certain kinds of system observability.

When attackers can change the measurements of a limited number of sensors in large-
scale systems, sensor attacks can be modeled as sparse but unbounded disturbances.
For sparse sensor integrity attacks, recent literature has studied the fundamental
limitation and achievable performance to identify the attacks and estimate the system
states. Fawzi et al. show that if p sensors are compromised, then 2 p-observability
(i.e. the system remains observable after removing any set of 2 p sensors) is necessary
to guarantee perfect attack identification and accurate state estimation for noiseless
systems [56]. The authors further propose to solve a ¢y problem to achieve accurate
state estimation under the assumption of 2 p-observability. This work is generalized
to noisy systems by Pajic et al. [148, 149]. Shoukry et al. propose to use a
Satisfiability Modulo Theory (SMT) solver to harness the complexity in secure
estimation [173]. However, the worst case complexity for the £y optimization and
that of the SMT solver are combinatorial. Moreover, these estimators also have
delays, which may cause performance degradation when used for real-time control.
To transform the problem into a convex program, Fawzi et al. and Mo et al. propose
to use optimization based methods [56, 129]. To address the estimation delays,
various Luenberger-like observers are proposed [38, 118, 129, 139, 172, 173]. Itis
worth noticing that the estimators proposed in [38, 118, 129, 148, 149, 172, 173]
require the assumption of 2 p-observability or stronger to guarantee accurate attack

identification and secure state estimation.



1.4 Optimal control and scheduling

There is an extensive literature that studies the design and analysis of deadline
scheduling algorithms (see [7, 26, 90, 182] and references therein). Examples of
classic scheduling algorithms include Earliest Deadline First [17, 80, 94, 132, 150,
151] and Least Laxity First [80], among others [104, 156]. Beyond these classic
algorithms, more modern algorithms simultaneously perform admission control and
service rate control to exploit the flexibility arising from soft demand or deadline

requirements, e.g. [30, 121, 157].

The trade-offs between service quality and costs associated with variability have
become a focus only recently [21, 44, 57], motivated by applications such as cloud
computing and power distribution systems. In the context of cloud computing,
algorithms have been proposed to control the variability of power usage in data
centers using deferrable jobs (see [2, 3, 37, 68, 69, 95, 109, 115, 133, 193,197, 211]
and references therein). In the context of power distribution systems, algorithms
have been designed to control the variability of energy supply using deferrable loads
(see [18, 34, 66, 143, 186] and references therein).

Interesting optimality results have been obtained in some limited settings, such as
deterministic worst-case settings [11, 205], single server systems [17, 150, 151],
and/or heavy traffic settings [74, 105]. For example, in heavy traffic settings, the dy-
namic behavior of discrete queueing systems can be approximated by a continuous-
state process involving Brownian motion, for which there exist established tools
to optimize [74, 105]. On the other hand, optimizing queueing systems without
continuous-state approximations remains to be a hard problem. Particularly, the
problem of designing optimal algorithms that minimize service capacity variability
while achieving high service quality has remained open. Solving this problem is a
challenging task due to the heterogeneity of jobs (diversity in demands and dead-
lines) and the size of the state and decision space (of possible configurations on

existing job profiles and the set of feasible scheduling policies).

The existing EV charging algorithms can be categorized into either offline or online.
The offline algorithms require complete information on all EVs to decide on the
charging rates [35, 66, 119, 160, 186, 187]. However, information on future EV
arrivals may not be available or very costly to obtain, which motivates online
algorithms [29, 36, 67, 75, 92, 169, 184, 186, 186, 206, 206]. The performance of
the online algorithm is generally analyzed for the worst-case [36, 92] or average-case

[67, 206]. Other desirable properties of charging algorithms are low complexity
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in computation and memory usage, which can be achieved by sorting or bisection
based methods, such as earliest-deadline-first, least-laxity-first [182], Whittle’s index
policy [200, 206], among others.

The multi-processor deadline scheduling problem [43,46, 111] considers the schedul-
ing of jobs on multiple processors. We can view the EV charging problem as a
deadline scheduling problem by considering chargers as processors, and EVs with
certain energy demand as jobs. Resource augmentation is a prominent analysis
framework [82, 83, 86, 155] for analyzing the performance of online algorithms for
multi-processor scheduling, we apply this framework to the EV charging problem.
The main difference is that in our setting the power limit is time-varying, the max-
imum rates are heterogeneous, and the power limit may not necessarily be integer

multiplication of the maximum rate.

1.5 Preliminary
In this section, we summarize the existing control theory and its notation used in
this thesis.

Notations

For a continuous time process { X (¢)};cr, , abbreviated as X (¢), we use the notations
X' 2(X(0): ¢t <TL XT" 2{X(#) :t <T),and X;! £ {X(t) : 1) <t < 1p}. The
expected value and the variance of X (¢) at time ¢ are denoted by E[X (¢)], Var[ X (¢)]

respectively; stationary mean and variance are denoted by

E[X] £ lim E[X (1], (1.1)
Var[X] = ;ILTO Var[ X (1)], (1.2)

provided that the said limits exist. For a discrete time process { X[k]}kez, , abbrevi-
ated as X[k], we use the notations X" = {X[k] : k < n}and X,fz' Z{X[k] kg <t <
ko}. The stationary mean and variance are defined analogously to (1.1) and (1.2).

Systems and norms

A discrete-time linear time-invariant (LTI) system can be written in the form

x(+1) =Ax(t) + Bw(?), y(t) = Cx(t) + Dw(t), (1.3)
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with the initial condition x(0) = 0, system state x(¢) € R", system input w(¢) € R,

and system output y(¢) € R”. The transfer matrix of the system is

A|B
C|D

The transfer function of the system is G(z) = B(zI - A)”'C + D. For ¢ p System

input and £, system output, the system norm (namely, induced norm) is given by

llyllg

IGllpsg = .
Iwip#0 [Wllp

(1.4)

In particular, the induced-norms for (p, g) = (2, 2), (2, o), (0, 00) are given by H.,
H,, and L] norms, respectively. These induced-norms are bounded when A is
strictly stable (i.e. all the eigenvalues of A is in the open unit circle). See [40, 47]

for further details.

In particular, the induced-norms for (p, g) = (2,2), (2, 00), (o0, o) are respectively

Hoo, H>, and L, norms, which are defined as

IGlla—e0 = IGll2 = f tr(G(e')G" (e7))d0/2n (1.5)
-
IGll2=2 = [|Glles = es8 sup omax G (™) (1.6)
eie

I
|hij ()], (1.7)

||G||oo—>oo = ”G”] = max Z

1<i<
S

M#

J

I
[}

where h;; is the impulse response from w;(#) to y;(t). These induced-norms are
bounded when A is strictly stable (i.e. all the eigenvalues of A is in the open unit
circle). See [40] for further details.

Quantizers
A quantizer partitions the input space into disjoint sets, and maps each set onto its

representative point. We considers uniform quantizers.

Definition 1.5.1. An uniform quantizer with L € N" level and saturation X € R’} is
a mapping Qr_x : x € R" — y € R" defined as following: for X < oo,
—X,~+)L(—f ifx,-e[—oo,—X,-+2)Li:)

y —Xi+3f—; ifx,-e [—Xi+2f—§,—Xi+4§—::)
l . D)

Xl'—)L(—:: l'fxl'G[Xi—Z)L(—::,OO]
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and for X = oo, Q. is a identify map, i.e. x = Q. x.

This type of uniform quantizer Qz x has a useful property that greatly simplifies
the analysis: if [x;| < X, then |x; — Qp_xx;| < X;/L;. Let invdiag(L) denote an
n X n square matrix
-1 ..
. . i 1=
invdiag(L);; =
0 I # .

This property has an alternative expression:

if |x|] >4 X, then |x — y| >, invdiag(L)X.

Estimators

To construct a linear state estimator with bounded estimation errors, the LTI system
(1.3) is required to be detectable, i.e. there exist some matrix K such that A + KC
is stable. Given the matrix K such that A + KC is strictly stable, we can construct a

linear estimator
X(t+1)=Ax(1t) - K(y(t) — Cx(1)), x(0) =0. (1.8)
We define its estimation error e and residual vector r as
e(t) = x(1) — X(1), r(t) = y(t) - Cx(),
respectively. The signals e and r satisfy the following dynamics

e(t+1)=(A+KQ)e(t)+ (B+ KD)w(r), e(0)=0
r(t) = Ce(t) + Dw(r).

Thus, the LTI system from w to e, E(K), and the LTI system from w to r, F(K),

are respectively given by

A+KC \ B+KD

E(K) = ‘ 0 (1.9)
A+KC \ B+KD

F(K) = ‘ ~ (1.10)

Because A + KC is strictly stable, both E(K) and F(K) have bounded induced-

norms. The induced-norms upper-bound the values of ||el|, and ||7||, as follows.

Lemma 1.5.1. If||wll, < 1, then the estimation error e and residual vector r satisfy

lelly < IEK) lp—qg, I7llg < I1F(K)llp—g- (1.11)
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Chapter 2

COMPONENT SPEED-ACCURACY TRADEOFEFES (SATS) IN
NEUROPHYSIOLOGY

There exist trade-offs between neural signaling speed and accuracy arising from the
fixed spatial and metabolic cost to build and maintain nerves or muscles. Specifically,
nerves with the same cross-sectional area can either contain many small axons or a
few large axons (Fig. 2.1b), which inevitably leads to SATs in neural signaling [153,
154, 185]. The specific forms of SATs depend on how the nerves encode information
(e.g. spike-based, rate-based, and spike-interval-based encoding). In this section,

we derive the SATs for nerve signaling and muscle actuation.

2.1 Spike-based nerve signaling

In a spike-based encoding scheme, information is encoded in the presence or ab-
sence of a spike within each time interval, analogous to digital packet-switching
networks [164, 180]. This encoding method requires spikes to be generated with
sufficient timing accuracy, which has been experimentally verified in many types
of neurons [61, 122]. To quantify the bundle of axons in certain nerves that can
sometimes have complex size distributions, we can classify axons into m distinct
types, where each type corresponds to axons of identical size. We index each type
by k € {1,2,---,m} and model type k axons as a communication channel with
signaling delay 7} and signaling rate Ry (e.g. the total amount of information in bits
that can be transmitted per unit time). Let ng, pk, sx denote the number, radius, and
total space used by type k axons, respectively. When the signaling is precise and

noiseless, a type k axon with achievable firing rate ¢; can transmit

Cs = ¢ 2.1)

bits of information per unit time. For sufficiently large myelinated axons, the
propagation speed 1/7T} and firing rate ¢ of action potentials are both approximately

proportional to the axon radius pj [185]:

T = a/px Sk = BPks (2.2)

where a and S are proportionality constants. Moreover, the space and metabolic cost

of nerves is proportional to their volume [185], and given a fixed nerve length, these
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(a) Cartoon diagram showing how nerve size and number trade-offs result in its signaling
SATs. The region above the dashed line represents the achievable speed and accuracy given
a fixed total cross-sectional area, which is proportional to A.
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(b) Cartoon diagram showing how nerve size and number trade-offs result in its signaling
SATs. The region above the dashed line represents the achievable speed and accuracy given
a fixed total cross-sectional area, which is proportional to A.

Figure 2.1: Component-level speed-accuracy trade-off (SAT) in nerves [142].
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costs are proportional to the nerve’s total cross-sectional area s. These properties
lead to

Re = L, Tx (2.3)
m

Z A= A, (2.4)
k=1

where A; = sgB/ma > 0 is a constant associated with the total resource use
(i.e. space available to build the axons). A special case of (2.3) is when all
axons have the same size. In such cases, we can model the bundle of axons as a
single communication channel with signaling delay 7y = T} and signaling delay
R = 3", Ry satisfying

R = AT, (2.5)
where A = sB/ra.

2.2 Rate-based encoding

In rate-based encoding scheme, the information is encoded in the rate of spiking
instead of individual spikes [183]. We can model this process as a Poisson-type
communication channel whose input is the spike rate y(¢) and the output is the spike
timing M (t). We assume that the spike timing is a non-homogeneous Poisson point
process with rate (intensity) y = {y(f) > 0 : t € R}, denoted by #;(y).! The

communication channel is then given by
M(t) = Pi(y), 2.7
where the spike rate is bounded by
v() < ¢ t eR,, (2.8)

for some ¢ > 0. The information capacity of communication channel (2.8) is defined
to be

1
Cy = sup lim ?I(yT; 176) (2.9)

I'The process P, (y) has the transition probability

1
PlPren(y) = Pi(y) = nl = S AL, hy"e™, (2.6)

t+h

where A(t, h) is the time integral of rate y, i.e. A(t, h) = ft y(t)dt.
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where the supremum is taken over all distributions of the input process $, ;) satis-

fying (2.8). Kabanov has shown in [42] that C, is upper-bounded by

1 1+¢7! 1
C,:u—(l+—)log(q’)+l) (2.10)
2 ¢
So for sufficiently large ¢,
C, — ¢/2as ¢ — oo. (2.11)

Replacing (2.1) with (2.11) in the argument of (2.2)—(2.4), for the case of diverse

axons, we obtain

Ry = /l;ch (2.12)
DA =4, (2.13)
k=1
where A’ = s8/2na > 0. Similarly, for the case of uniform axons, we have
R=2T (2.14)
for the case of uniform axons, where
A" =sB2ra > 0. (2.15)

Remark 2.2.1. There are a few alternative assumptions, which lead to different
tradeoffs. For example, with an additional constraint in the input mean, i.e. E[y] =
n, the capacity equals nlog(¢/n) [42]. When the constraints are on the input mean
and variance, i.e. E[y] = n and Var[y] = o2, the information capacity equals
nlog(o?/n?) [108].

2.3 Spike-interval-based nerve signaling
Alternatively, the information can also be encoded in the inter-arrival durations. One
possible model for this type of neural signaling process is to use an Exponential-type

communication channel, i.e.
M; = Yi + Vi, i €N, (216)

where the sequence y;(> 0) is the channel input, and the sequence M; is the channel
output, the sequence v; is the error in spike timing (spike timing jitter). The spike

timing error v; is generated from i.i.d. exponential distribution with

E[v;] = b, Var[v;] = b>. (2.17)
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We model v; as an exponential random variable because spike intervals are observed
to be close to exponential or Gamma distribution [176]. We assume that the input

sequence is below the achievable spike rate ¢, i.e.

yi/n < 1/¢. (2.18)
1

n

1

The capacity of the communication channel from input y(¢) and output M (¢) is
defined as

1
Cy = sup lim —I(y"; M"), (2.19)
n—oo n

where the supremum is taken over all distributions P, of the input process {y;}ien,
satisfying (2.17). In [196], Verdu showed that

Cys = log (1 + é) (2.20)
We consider two different assumptions: when E[v;] = b is inversely proportional to
the axon cross-sectional area, and when Var[v;] = b? is inversely proportional the
axon membrane area. In the former case, we have
€

rp

for some proportionality constant » > 0. Substituting (2.21) into (2.20), we obtain

Cq =log (1 + ﬁ) . (2.22)

B

By the same argument with Section 2.1, for the case of diverse axons, we obtain

b= (2.21)

R = ni¢rCy (2.23)
= SkB 1og (1 + ﬂ) (2.24)
Pk B
= ATy, (2.25)
where /1;; = Alog (1 + g) For the case of uniform axons, we have
R = AT;, (2.26)
where 4} = Alog (1 + %) In the latter case, we have
) 1
b = (2.27)

 2rpm
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for some proportionality constant 7 > 0. Substituting (2.27) into (2.20), we obtain

)

for some constraint y > 0. By the same argument with Section 2.1, for the case of

Cq =log (1 + (2.28)

diverse axons, we obtain

Rk = nkqﬁde (229)
T

- Mlog(l 4= ) (2.30)
TPk af?

[T,
:mlog(n r"ﬁ;), (2.31)
a

where /1;(’ = % For the case of uniform axons, we have

T
R=aT,log|1+ |2, (2.32)
a B?

2.4 Summary of nerve signaling SATs

Rate-based encoding was believed to be the most standard encoding schemes because
it was unclear if spikes can be generated with enough timing precision to carry
information in individual spikes. However, there is growing evidence that nerves are
able to use encoding schemes that requires high spike timing precision [183]: nerves
are capable of spiking with highly precise timing [19, 61, 122]; and a few experiments
also observe that spike timing carries behaviorally relevant information [19, 180].
The SATs we derive support this view by showing that spike-based encoding or spike-
interval-based encoding allows more information to be transmitted per spike than
rate-based encoding given a fixed maximum spike rate ¢. However, interestingly,
the SATs under all three types encodings may have qualitatively similar SATs: under

certain assumptions, the achievable data rate is roughly proportional to delay.

2.5 Muscle actuation SATs

The actuation components, muscle, also have tradeoffs in terms of the reaction speed,
accuracy in strength level, strength, and ease of fatigue. Moreover, most muscles
carry diverse muscle fibers, e.g. striated muscles typically have both large fast
twitch fibers and many more smaller slow twitch muscles (Fig. 2.2a). In particular,

its SATs can be modeled using a simplified muscle model that includes m motor
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Bits per spike SATs
Spike-based 1 R=AT
Rate-based 1/2 R=/2)T

Spike-interval-based log (1 + \/ﬁ/ﬁ) R = Alog (1 + \/ﬁ/ﬁ) Ty

Table 2.1: Efficiency of different neural signaling schemes. The SATs can take
different forms than above, depending on the assumptions. See Section 2.1-2.3 for
the assumptions made.

units, indexed by i € {1,2,---,m}, each associated with a reaction speed and a
strength. We use F; to denote its strength and assume without loss of generality that
Fi < F, <--- < F,. According to Henneman’s size principle [78], motor units in
the spinal cord are recruited in ascending order of F;, so a muscle (at non-transient

time) can only generate m + 1 discrete strength levels:
D F, nef01,---,m). (2.33)
i=1

Given a fixed length, the maximum strength of a muscle £ = 37\ | F; is known to be
proportional to its cross-sectional area [71]. This implies that, given a fixed space to
build a muscle, its maximum strength does not depend on the specific composition
of motor units. Constrained on the maximum strength, a muscle can be built from
many motor units with small strengths or a few motor units with large strengths. In
the former case, the muscle has better resolution but slow reaction speed, while in
the latter case, the muscle has fast reaction speed but coarser resolution. This SAT

can be quantified using the following formula (see Fig. 2.2b):
ai(t) = aff (1 - ai(1) — Bai(r)
al(t) = ¢;(1),

where @ = 1, 8 = 1, p = 1, g = 3 are fixed constants [23]. If a motor unit is recruited

(2.34)

at time ¢ = 0, then its strength ¢;(¢) rises according to (2.34) with

fi() = 1)/ ((1/F)Y1 - 1), (2.35)

where 1(¢) is a unit step function. Similarly, when a recruited motor unit is released

at time ¢ = 7, its contraction rate falls according to (2.34) with

fit) = 1=t + ) /((1/F)'9 = 1). (2.36)

From (2.34), the reaction speed of a muscle is an increasing function of F;, and the
time required for a muscle to reach to ¢;j(t) = F; from ¢;(0) = 0 is decreasing in
F;. Thus, better resolution (having small F;) can only be achieved with decreased

reaction speed.



18

Slow

Slow-twitch oxidative fibers

Fast Fast-twitch glycolytic fibers -

Accurate Inaccurate

(a) Diagram showing the speed-accuracy trade-offs (SAT) in muscles. Different types of
muscle fibers and their resulting actuation SATs. The one with a smaller diameter and darker
color (due to larger amounts of myoglobin, numerous mitochondria, and extensive capillary
blood supply) are the oxidative fibers, and the other is the glycolytic fibers. Oxidative fibers
are slower but more accurate, whereas glycolytic fibers are faster but less accurate.
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(b) Forces generated by different types of motor units. The total force of a sum of many
small motor units versus one large motor unit, generated from (2.34).

Figure 2.2: Muscle speed-accuracy trade-offs
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Chapter 3

SYSTEM SPEED-ACCURACY TRADEOFEFES (SATS):
FUNDAMENTAL LIMITS

An example of effective layered control architectures is the oculomotor system that
stabilizes the eye on a moving target while you are bouncing down a trail (Fig. 5.7).
Neurons in the visual cortex responding to target motion on the retina drive the
actuators to pursue the target after a delay of 100 milliseconds. In contrast, fast head
motions are compensated by control systems in the brainstem in the millisecond
range. Together, they allow you to maintain fixation on a distant moving target
despite severe bumps. In trail following (Fig. 5.9), higher-level cortical control
systems in the cortex and basal ganglia provide advanced warning for planning
actions to avoid trees and other obstacles. This is accompanied by a fast feedback

system in the spinal cord that maintains steady tracking.

To study how these control systems are coordinated, we will introduce a task in
which the subjects aim to follow desired trajectory in the presence of uncertainty
and noise. The diagram of the control architectures used in the task is shown in
Fig. 5.1 for reaching, Fig. 5.7 for visual tracking, and Fig. 5.9 for tracking a trail.
We define the error dynamics x(¢) from the system evolution of the rider or eye
movement that must track a reference trail or trajectory with small error despite
uncertainty:

x(t+1)=ax(@)+w() +u(), 3.1

which relates the future error x(¢ + 1) with the previous error x(¢), the uncertainty
w(t) (trajectory changes, bumps, trail changes, etc.), and the control action u(z).
The control action u(¢) is generated using a feedback controller, which uses sensing
components such as eyes, muscle sensors, and the inner ear; communication com-
ponents such as nerves; computing components such as the cortex in the central
nervous system; and actuation components such as eye and arm muscles. Here, T
captures the signaling delay in feedback due to the latency in nerve signaling, and
T; captures other internal delays in the feedback loop. The advanced warning of the
uncertainty 7, models situations such as when vision informs the rider about the trail
ahead by 7, time steps (a form of advanced warning, which depends on the rider’s

speed and the trail’s features), and when the muscle tone changes before an expected
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Parameter Description

x(1) Error at time step ¢
K Controller

T, >0 Signaling delay
;>0 Internal delay

T =T,+T;, Total delay

T; Time to reach target

R Information rate (bits per unit time)
A Cost associated with the resource use

Table S1: Parameters in the basic model.

perturbation [20, 125]. We additionally assume that the feedback loop has limited
data rate R, which accounts for the limitations in nerve signaling. In this chapter,
we derive the hardware tradeoffs for system (3.1) with delay only, quantization only,

and both delay and quantization.

3.1 The impact of delay
We consider the system (error) dynamics (3.1) with zero initial condition, i.e. x(0) =
0. The controller K generates the control action u(#) using the full information on

the histories of the state, disturbance, and control input with delay 7;, > 0, i.e.
ut+T,)=KxO:6),wO:t—1,u0:t+T,-1)). (3.2)

The sensorimotor control in risk-aware setting motivates the use of L; optimal

control, and as such, our goal is to solve the following robust control problem:

inf sup ||x|leo 3.3)
K wlleo<1

subject to (3.1) and (3.2). This problem admits a simple and intuitive solution. In

particular, the optimal cost is given by

Iwlleo<1

T,
inf sup |l :;w . (3.4)

This optimal cost is achieved by the control policy

u®t) = —a*'wit -1-T1,). (3.5)

To prove (3.4) and (3.5), we first first derive a lower bound for the optimal cost, and

we then find a controller that achieves the lower bound. The lower bound is obtained
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by noticing that the delay 7}, in the control loop introduces an initial uncontrollable
window in the closed loop response of the system. So we have

max ||x|le = max |x(T,+ 1)|

> max |a*w() +a 'w(l) + - + w(T))|
[wllo<1

= Tildl.
This lower bound can also be realized by the control policy (3.5), which yields the

following closed loop behavior
x(t+ 1) =alw(t —T) +a™ "Wt =T, + 1) + - + w(r).
From (3.1), we observe that the worst-case disturbance is

w(it-T,) = sign(aT“)

w(t —T, + 1) = sign(a’™™")

w(t) =1,
which attains the optimal cost in (3.4).

3.2 The impact of quantization
Quantization is the process of converting a continuous signal to a discrete one. It can
arise in many biological systems where sensing, computation, and actuation com-
ponents are not co-located. We consider the error dynamics (3.1) and a quantized
controller

ut) =KxO:6),wO:¢t—-1),u0:t-1)). (3.6)

We also assume zero initial condition, i.e. x(0) = 0. The desired control action u(t)
is generated using full information on the histories of state, disturbance, and control
input, but the feedback loop can only transmit R bits of information per unit time.
In all of what follows, we assume that the data rate is above the minimum stabilizing

rate, i.e. R > log, |a| [138]. This problem also admits an analytic formula

1
inf sup |[|x]|e = +1, (3.7)

K Jwllexl 2R — a|

which can be attained by the control policy

u(t) = Qrw(—ax(1)), (3.8)
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where ¥ = 2R|a|/(2R — |a|), and the map Qr v is defined to be a uniform quantizer
of rate R on domain [-¥, V].

Similarly, (3.7) and (3.8) can be proved by first lower-bounding the optimal cost and
then find a controller that achieves the bound. A lower bound can be obtained using

the problem of estimating w(t) at time #:

H(t,7) = inf sup |w(t) —w(1)| 3.9
2wl

s.t. Ww(t) = Q(w(1)) (3.10)

Q is a quantizer with data rate (t — 7)R. 3.11)

Because w(7) can take any values in the interval [—1, 1], and the output of Q(w(7))
can take at most 2¢~PR discrete values, the estimation error is lower-bounded by
H(t,7) > 2~@DR_On the other hand, the above lower bound can also be attained

using a uniform quantizer on domain [—1, 1]. It then follows that
27OR >4
H(t,7) = (3.12)
1 t<t+1.

The problem H(t, ) can be used to lower-bound the value of |x(¢# + 1)|. The state
can be decomposed into terms due to past disturbance and a term due to past control

action:
x(t+1) =aw()+ a’_lw(l) +-+w() + U (), (3.13)

where U () = Ztrzo a"u(t — 7). We define an auxiliary state x” and its control action

U’ as follows:
K+ D) =dwO)+ad ' wl) +--+w@) +U®) (3.14)
U'(t) = —(a'w(0) + at_lﬁ/(l) + -+ W(1)), (3.15)

where W(7) is the optimal solution of the estimation problem H (¢, 7). The worst-

case absolute value of x’(¢ + 1) can be easily computed as

Sup X' (t + 1) (3.16)
= ”ms_|1|1p<1 la' (w(0) = W(0)) +a' (w(1) = (1) + -+ (w(t) = (@) (3.17)
= | S|1|:op;1 la' (w(0) = w(O))| + la"~ (w(1) = w(I)| + -+ + [w(t) = w(@)| (3.18)
= |a’[ol-;(t, 0) + la "H(t 1) + -+ H(1,1) (3.19)

_ 1= (lal/2R)y*!
1 —|al/2R

(3.20)
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This value monotonically increases as time ¢ grows. Under the assumption R >
log, |al|, we have
1 — (a/2R) 2R
im = ,
= 1= (a/2R) ~ 2K —1al

where the convergence of the infinite series is due to the assumption on minimum

(3.21)

stabilizing data rate, i.e. |a|/ 2R < 1. Meanwhile, the disturbance w(7) can take any
values from [—1, 1], and at most 2~ bits of information can be used to transmit
the information on w(7) during the time interval [7, t]. Therefore, the control action
U(t) for x(t + 1) cannot perform better than U’ () for x'(t + 1), i.e.
sup |x(t+ 1) > sup [x'(z+1)]. (3.22)
Iwlleo<1 Iwlleo<1

Combining (3.16)—(3.22), we obtain the following lower bound on the achievable

cost:
R
sup ||xlle = lim sup |x(z+ 1)| > lim sup |x'(t+1)| = = (3.23)
Iwlle<1 129 |l <1 129 o<1 2% — |al

Next, we show that the control policy (3.8) achieves the optimal cost (3.7). Let u*(¢)
be the input to the quantizer, and x, (7 + 1) = 0 Ry (u* (1)) —u(t) be the quantization
error. Observe that x(r) = w(t — 1) + x4(¢). Using mathematical induction, it can
be shown that there exists a control and communication policy that achieves

Sup gl < sl
Wil <1 28 —al

Condition in (3.24) holds at time ¢ = 0. Now we assume that condition in (3.24)

holds at time ¢. It then follows that

(3.24)

2R
al_ _ g (3.25)

W' @) =1—-ax@®)| =|-alx,@)+w(—-1))| < m =

Since the quantizer output Q rw(u(t)) can take at most 2R discrete values, the value

of x,(t + 1) can be bounded by

lxg(t + 1) = |Qrw W () — u™ ()] (3.26)
<27 Ry (3.27)
_d
= SF (3.28)

Thus, condition (3.24) also holds at time ¢ + 1, and this finishes the proof of (3.24).
Combining (3.23) with (3.24) yields

lal

sup |Ixllo = sup [lxg + wlleo < + 1.

Iwlleo<1 IWlleo<1 2R _|a|
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3.3 The impact of delay and quantization in reaching tasks

The above analysis tool can be used to study the fundamental limits in a reaching
task and derive a formula similar to Fitts’ law [60]. We model this setting by error
dynamics (3.1) with w(¢) = ddé(¢) in (3.1), where d € [-D, D] is the distance
between the initial position and the target position, and ¢(¢) is the Kroneck