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ABSTRACT

Nervous systems sense, communicate, compute, and actuate movement using dis-
tributed components with trade-offs in speed, accuracy, sparsity, noise, and satura-
tion. Nevertheless, the resulting control can achieve remarkably fast, accurate, and
robust performance due to a highly effective layered control architecture. However,
this architecture has received little attention from the existing research. This is in
part because of the lack of theory that connects speed-accuracy trade-offs (SATs) in
the components neurophysiology with system-level sensorimotor control and char-
acterizes the overall system performance when different layers (planning vs. reflex
layer) act work jointly. In thesis, we present a theoretical framework that provides
a synthetic perspective of both levels and layers. We then use this framework to
clarify the properties of effective layered architectures and explain why there exists
extreme diversity across layers (planning vs. reflex layers) and within levels (senso-
rimotor versus neural/muscle hardware levels). The framework characterizes how
the sensorimotor SATs are constrained by the component SATs of neurons commu-
nicating with spikes and their sensory and muscle endpoints, in both stochastic and
deterministic models. The theoretical predictions are also verified using driving
experiments. Our results lead to a novel concept, termed “diversity sweet spots
(DSSs)”: the appropriate diversity in the properties of neurons and muscles across
layers and within levels help create systems that are both fast and accurate despite
being built from components that are individually slow or inaccurate. At the compo-
nent level, this concept explains why there are extreme heterogeneities in the neural
or muscle composition. At the system level, DSSs explain the benefits of layering to
allow extreme heterogeneities in speed and accuracy in different sensorimotor loops.
Similar issues and properties also extend down to the cellular level in biology and
outward to our most advanced network technologies from smart grid to the Internet
of Things. We present our initial step in expanding our framework to that area and
widely-open area of research for future direction.
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C h a p t e r 1

INTRODUCTION

Over the next decade, wewill witness the development of a hyper-connectedworld in
which infrastructure, devices, and vehicles are integrated seamlessly into the Internet
of Things (IoT). The IoT will interconnect hundreds of millions of heterogeneous
devices, each capable of sensing, computing, actuating, and communicating. Such
networks of intelligent devices have great potential to bring greater convenience and
comfort to society; at the same time, the complexity of controlling and coordinating
so many smart devices raises daunting challenges. How can we sense events fast
and accurately over a network of devices with potential communication delays and
errors? How canwe control networked systems efficiently using devices with limited
computation and actuation capabilities? How can we ensure the robustness and
safety of the system in case of compromised devices from cyber-attacks? Addressing
these challenges has been the main motivation for my research. Interestingly, these
challenges are analogous to those faced by biological systems: despite using physical
components that are noisy, distributed, delayed, quantized, etc., biological systems
are remarkably robust in control and homeostasis.

Human sensorimotor control can achieve extremely robust performance in complex,
uncertain environments, despite being implemented in systems that are distributed,
sparse, quantized, delayed, and saturated. For example, Fitts’ Law predicts that, in
many forms of reaching (e.g. eye gaze, hand, mouse), the time required for reaching
quickly to a target of width W at a distance D scales as log2(2D/W ) [60, 202]. The
logarithmic relation between the reaching time and target width allows faster speed
to be achieved with a small decrement in accuracy. In another example of riding
a mountain bike down a twisting, bumpy trail, though a trade-off exists between
traveling fast and accurately following the trail, a human can often stay on the trail
without crashing. On the other hand, the speed-accuracy tradeoffs (SATs) of the
hardware implementing control can be much more severe. Improving either speed
or accuracy in nerve signaling or muscle actuation requires profligate biological
resources [185]; as a consequence, only a few types of nerves and muscles are built
to be both fast and accurate [140]. Such apparent discrepancy between the speed-
accuracy tradeoffs in sensorimotor control and neurophysiology poses the question:
how nature de-constrains neurophysiological hardware constraints in sensorimotor
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control?

We hypothesize that effective layered control architectures are the critical enablers
for achieving such remarkable speed and accuracy in sensorimotor control using
nerves or muscles with severe SATs (see [49] and reference therein for explanations
on architectures). Biological systems have layered control architectures distributed
acrossmultiple levels, with spinal reflexes at the first level, andmanywell-engineered
technological systems are naturally layered. The effectiveness of layered architec-
tures can be observed in many sensorimotor control tasks. One example is the
reaction to stepping on a thumbtack with bare feet. Our reaction is mainly con-
trolled by three diverse feedback loops [16]: upon sensing, the foot is first lifted
up by a fast reflexive control loop involving the spinal cord, then a control loop
involving the vestibular system works on balancing our body, and finally a slow loop
involving the higher cortical decisions determines the next action. These loops have
diverse speeds: the reflexive loop acts in a spinal arc, taking action generated by the
spinal cord within tens of milliseconds, before the vestibular and cortical loops even
sense the event hundreds of milliseconds to seconds later [52, 101]. They also have
diverse capabilities to convey information: the first loop only needs to transmit bi-
nary information about whether to lift up the foot, but the second and third loops can
provide increasingly complex instructions. By appropriately layering these loops,
we can achieve a fast and accurate system response despite using parts that are not.

Another example of effective layered architectures is the control loops involving
riding a mountain bike down a twisting, bumpy trail. Vision is used to obtain
an advanced warning on future uncertainties in the trail ahead when planning a
route. Even large variations/disturbances in the trail can be navigated with small
error provided there is enough advanced warning relative to the speed of the bike.
At the same time, the bumps in the path, the bike, and the rider’s body dynamics
are handled by a separate reflex layer that is entirely unconscious and reacts with
unavoidable delays. Without a quick reaction, even small disturbances can result
in catastrophically large errors and crashes. With enough advanced warning and
resources, we can be almost perfectly robust, and, at the opposite extremewith delays
and uncertain dynamics, nearly infinitely fragile. An effective layered architecture
allows the sensorimotor control to achieve the former while avoiding the latter.

Similar laws and architectures extend downward to the cellular level and outward to
our most advanced technologies. Though based on entirely different components,
such systems face similar constraints and tradeoffs (laws) in dimensions such as effi-
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ciency, robustness, security, speed, flexibility, and evolvability. And the successful
design of such systems shares remarkable universals in architecture, including the
use of layering and diversity for managing these tradeoffs effectively.

Despite the importance of understanding successful architectures, the study of archi-
tectures have traditionally been the among the areas of engineering least guided by
theory, and there is nothing remotely resembling a ‘science’ of system architecture.
Moreover, we have little understanding of whatmakes an architecture effective of our
brain. Understanding effective layered architectures requires connecting component
constraints and trade-offs to the resulting hard limits on sensorimotor performance
from a multilayer perspective. However, the component SATs in neural signaling
[153, 154, 185, 210] and the system SATs in sensorimotor control [60, 135, 191, 192]
have been studied separately mainly because there are few theoretical tools that can
integrate both levels.

In this thesis, we develop a mathematical theory that characterizes how the com-
ponent speed-accuracy constraints and trade-offs impact SATs at the system level.
Using this theory, we show that diversity between layers and within layers can be
exploited to achieve both fast and accurate performance despite being implemented
using slow or inaccurate hardware. We call these synergies “diversity sweet spots”.
At the component level, this concept explains why there are extreme heterogeneities
in the characteristics of neural components [146, 153, 154]. At the system level,
DSSs explain the benefits of extreme heterogeneities in speed and accuracy in dif-
ferent sensorimotor loops [97, 110].1

1.1 Contribution of this thesis
Fundamental theory: To understand the fundamental limitations in control under
communication constraints, we characterize the preformation limitations and control
algorithms for systems that are delayed, quantized, and sampled, distributed, and/or
saturated. We show closed-form performance bounds, including analytic bounds for
a general class of nonlinear system under directed information constraints, which had
previously remained open due to the technical complexity of tracking the dynamic
evolution of probability density functions. For safety-critical systems, we create
a state estimator with a provable estimation error bound, the first to have H∞

1Throughout this thesis, we refer to "layers" when discussing different architectural parts (e.g.
planning layer, reflex layer) and "levels" when referring to different levels of abstraction (e.g. neural
hardware level, sensorimotor control level).
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resilience.2 When applied to human sensorimotor control or biomolecular control
within a single cell, these theories empower us to integrate the previous findings
from the system and component levels and to obtain a holistic understanding of both
levels.

Insights into biological systems:
We study the speed-accuracy tradeoffs (SATs), which are ubiquitous in both neu-
rophysiology and sensorimotor control. We clarify how the component SATs in
spiking neuron communication and their sensory and muscle endpoints constrain
the system SATs using both theory and experiments. The manual to set up our exper-
imental platform and the code can be found here [112]. Moreover, we characterize
how the structural constraints of biomolecular control impose fundamental limits in
cell homeostasis. These results suggest that optimal layering creates “diversity sweet
spots” (DSSs). DSSs show that diversity between layers (planning versus reflexive
layers) and within levels (nerves and muscles) can be exploited to achieve fast and
accurate performance using slow or inaccurate hardware. This notion explains why
there is extreme heterogeneity in nerve and muscle compositions. Moreover, DSSs
also show that diverse nerves/muscles lead to the logarithmic SATs, as experimen-
tally observed in Fitts’ Law. This provides a new perspective on the long history
of Fitts’ Law study in Human-Computer Interaction by establishing a connection
between the Fitts’ Law and existing muscle diversity.

Scalable algorithms for technological systems:
Many modern schedulers in smart grids and computing systems can dynamically
adjust their service capacity to match the incoming workload. At the same time,
however, unpredictability and instability in service capacity often incur undesirable
operational and infrastructural costs. Using a deterministic framework, we develop
scalable distributed scheduling policies with performance guarantees by establish-
ing a connection between the scheduling algorithms and the utility maximization
problem. In a stochastic framework, we derive the optimal solution for a deadline
scheduling problem that maximizes service capacity predictability, stability, or both,
subject to combinations of strict/soft demand/deadline requirements. Exact solu-
tions for these problems were previously unknown owing to the difficulty of dealing
with the discreteness in the state. When tested on the Caltech and Google electric

2If the estimation error is 2-norm bounded given 2-norm bounded disturbance and sparse un-
bounded sensory attacks, we say that the system isH∞ resilient.
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vehicle charging testbed, the costs of the proposed algorithms perform equally well
with the optimal offline algorithm formore than 80% of days and noworse than exist-
ing centralized online algorithms. We also show an interesting connection between
the resulting optimal algorithms and the optimal offline algorithm (YDS algorithm)
[205], which may help inspire the transformation of other offline algorithms into
online distributed algorithms.

Rethinking the fundamentals (outreach):
Despite the broad applicability of control theory for many practical problems, the
impact of control theory is largely stunted by its technical accessibility. To lower the
learning barriers of the theory, we are rethinking its fundamentals [48]. Specifically,
we reproduce the basic results of control theory using high school-levelmathematics.
We have implemented the simplified theory in Caltech’s control course curriculum
and also taught it to the high school student who then helped conduct our experi-
ments.

1.2 Related work
Control and information theory
Control under communication constraints has been extensively studied. The com-
prehensive surveys [5, 9, 54, 138] cover important issues in the field of networked
control. The necessary and sufficient data rate through the feedback loop in order
to achieve system stability in linear stochastic control is studied in [137, 189, 207].
The optimal controller structure, separation principles, performance bounds are
studied in [13, 31, 63, 93, 174, 175, 188, 190, 208]. Some of the important re-
sults include separation principle between the controller design and communication
protocols [58, 65, 190], and the relation between optimal cost and the causal rate-
distortion function [25, 32, 45, 72, 93, 159].

Relevant to control information-theoretic quantities include mutual information [39,
190], anytime capacity [163], and directed information [124, 188], among others.
In the classical setting of information theory, the source and channel codes can
be designed separately without loss of optimality in the limit of infinite coding
delay [171]. However, if the allowable delay is limited, as is the case in zero-delay
coding for control, then separating the design of source and channel can perform
strictly worse compared with designing them jointly [88].
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1.3 Control and security
For the secure estimation problem in static systems, robust estimators are extensively
studied in the literature. Common robust estimators include the M-estimator, L-
estimator, and R-estimator [81, 87, 123], and they are used to account for sensor
integrity attacks in [130]. For the secure estimation problem in dynamical systems,
robust control provides tools to deal with noise in estimation and control [40, 47].
Although robust control typically assumes that system disturbances are bounded or
followwell-defined distributions, such assumptionsmay not be valid for sensor faults
caused by intelligent attackers [41, 130]. Fault detection and isolation (FDI) also
provide methods for identifying and pinpointing faults in sensors [33, 70, 84, 195].
One common approach of FDI for linear dynamical systems under sensor integrity
attacks is to construct residuals that take non-zero values only in the presence of
faults (see [152] and references therein). The generation of such residuals is possible
only when a fault is separable from normal disturbances and modeling uncertainties,
which requires certain kinds of system observability.

When attackers can change themeasurements of a limited number of sensors in large-
scale systems, sensor attacks can be modeled as sparse but unbounded disturbances.
For sparse sensor integrity attacks, recent literature has studied the fundamental
limitation and achievable performance to identify the attacks and estimate the system
states. Fawzi et al. show that if ρ sensors are compromised, then 2ρ-observability
(i.e. the system remains observable after removing any set of 2ρ sensors) is necessary
to guarantee perfect attack identification and accurate state estimation for noiseless
systems [56]. The authors further propose to solve a `0 problem to achieve accurate
state estimation under the assumption of 2ρ-observability. This work is generalized
to noisy systems by Pajic et al. [148, 149]. Shoukry et al. propose to use a
Satisfiability Modulo Theory (SMT) solver to harness the complexity in secure
estimation [173]. However, the worst case complexity for the `0 optimization and
that of the SMT solver are combinatorial. Moreover, these estimators also have
delays, which may cause performance degradation when used for real-time control.
To transform the problem into a convex program, Fawzi et al. and Mo et al. propose
to use optimization based methods [56, 129]. To address the estimation delays,
various Luenberger-like observers are proposed [38, 118, 129, 139, 172, 173]. It is
worth noticing that the estimators proposed in [38, 118, 129, 148, 149, 172, 173]
require the assumption of 2ρ-observability or stronger to guarantee accurate attack
identification and secure state estimation.
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1.4 Optimal control and scheduling
There is an extensive literature that studies the design and analysis of deadline
scheduling algorithms (see [7, 26, 90, 182] and references therein). Examples of
classic scheduling algorithms include Earliest Deadline First [17, 80, 94, 132, 150,
151] and Least Laxity First [80], among others [104, 156]. Beyond these classic
algorithms, more modern algorithms simultaneously perform admission control and
service rate control to exploit the flexibility arising from soft demand or deadline
requirements, e.g. [30, 121, 157].

The trade-offs between service quality and costs associated with variability have
become a focus only recently [21, 44, 57], motivated by applications such as cloud
computing and power distribution systems. In the context of cloud computing,
algorithms have been proposed to control the variability of power usage in data
centers using deferrable jobs (see [2, 3, 37, 68, 69, 95, 109, 115, 133, 193, 197, 211]
and references therein). In the context of power distribution systems, algorithms
have been designed to control the variability of energy supply using deferrable loads
(see [18, 34, 66, 143, 186] and references therein).

Interesting optimality results have been obtained in some limited settings, such as
deterministic worst-case settings [11, 205], single server systems [17, 150, 151],
and/or heavy traffic settings [74, 105]. For example, in heavy traffic settings, the dy-
namic behavior of discrete queueing systems can be approximated by a continuous-
state process involving Brownian motion, for which there exist established tools
to optimize [74, 105]. On the other hand, optimizing queueing systems without
continuous-state approximations remains to be a hard problem. Particularly, the
problem of designing optimal algorithms that minimize service capacity variability
while achieving high service quality has remained open. Solving this problem is a
challenging task due to the heterogeneity of jobs (diversity in demands and dead-
lines) and the size of the state and decision space (of possible configurations on
existing job profiles and the set of feasible scheduling policies).

The existing EV charging algorithms can be categorized into either offline or online.
The offline algorithms require complete information on all EVs to decide on the
charging rates [35, 66, 119, 160, 186, 187]. However, information on future EV
arrivals may not be available or very costly to obtain, which motivates online
algorithms [29, 36, 67, 75, 92, 169, 184, 186, 186, 206, 206]. The performance of
the online algorithm is generally analyzed for the worst-case [36, 92] or average-case
[67, 206]. Other desirable properties of charging algorithms are low complexity
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in computation and memory usage, which can be achieved by sorting or bisection
basedmethods, such as earliest-deadline-first, least-laxity-first [182],Whittle’s index
policy [200, 206], among others.

Themulti-processor deadline scheduling problem [43, 46, 111] considers the schedul-
ing of jobs on multiple processors. We can view the EV charging problem as a
deadline scheduling problem by considering chargers as processors, and EVs with
certain energy demand as jobs. Resource augmentation is a prominent analysis
framework [82, 83, 86, 155] for analyzing the performance of online algorithms for
multi-processor scheduling, we apply this framework to the EV charging problem.
The main difference is that in our setting the power limit is time-varying, the max-
imum rates are heterogeneous, and the power limit may not necessarily be integer
multiplication of the maximum rate.

1.5 Preliminary
In this section, we summarize the existing control theory and its notation used in
this thesis.

Notations
For a continuous time process {X (t)}t∈R+ , abbreviated as X (t), we use the notations
XT , {X (t) : t ≤ T }, XT− , {X (t) : t < T }, and X t1

t2
, {X (t) : t1 ≤ t ≤ t2}. The

expected value and the variance of X (t) at time t are denoted by E[X (t)],Var[X (t)]
respectively; stationary mean and variance are denoted by

E[X] , lim
t→∞
E[X (t)], (1.1)

Var[X] , lim
t→∞

Var[X (t)], (1.2)

provided that the said limits exist. For a discrete time process {X[k]}k∈Z+ , abbrevi-
ated as X[k], we use the notations X n , {X[k] : k ≤ n} and X k1

k2
, {X[k] : k1 ≤ t ≤

k2}. The stationary mean and variance are defined analogously to (1.1) and (1.2).

Systems and norms
A discrete-time linear time-invariant (LTI) system can be written in the form

x(t + 1) = Ax(t) + Bw(t), y(t) = Cx(t) + Dw(t), (1.3)
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with the initial condition x(0) = 0, system state x(t) ∈ Rn, system input w(t) ∈ Rl ,
and system output y(t) ∈ Rm. The transfer matrix of the system is

G =


A B

C D


.

The transfer function of the system is Ĝ(z) = B(zI − A)−1C + D. For `p system
input and `q system output, the system norm (namely, induced norm) is given by

‖G‖p→q , sup
‖w‖p,0

‖y‖q

‖w‖p
. (1.4)

In particular, the induced-norms for (p, q) = (2, 2), (2,∞), (∞,∞) are given byH∞,
H2, and L1 norms, respectively. These induced-norms are bounded when A is
strictly stable (i.e. all the eigenvalues of A is in the open unit circle). See [40, 47]
for further details.

In particular, the induced-norms for (p, q) = (2, 2), (2,∞), (∞,∞) are respectively
H∞,H2, and L1 norms, which are defined as

‖G‖2→∞ = ‖G‖2 =
∫ π

−π
tr (Ĝ(eiθ )ĜT (e−iθ ))dθ/2π (1.5)

‖G‖2→2 = ‖G‖∞ = ess sup
eiθ

σmaxĜ(eiθ ) (1.6)

‖G‖∞→∞ = ‖G‖1 = max
1≤i≤n

l∑
j=1

∞∑
t=0
|hi j (t) |, (1.7)

where hi j is the impulse response from w j (t) to yi (t). These induced-norms are
bounded when A is strictly stable (i.e. all the eigenvalues of A is in the open unit
circle). See [40] for further details.

Quantizers
A quantizer partitions the input space into disjoint sets, and maps each set onto its
representative point. We considers uniform quantizers.

Definition 1.5.1. An uniform quantizer with L ∈ Nn level and saturation X ∈ Rn
+ is

a mapping QLx,X : x ∈ Rn → y ∈ Rn defined as following: for X < ∞,

yi =




−Xi +
Xi

Li
if xi ∈

[
−∞,−Xi + 2 Xi

Li

)
−Xi + 3 Xi

Li
if xi ∈

[
− Xi + 2 Xi

Li
,−Xi + 4 Xi

Li

)
...

Xi −
Xi

Li
if xi ∈

[
Xi − 2 Xi

Li
,∞

]

,
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and for X = ∞, Q·,∞ is a identify map, i.e. x = Q·,∞ x.

This type of uniform quantizer QLx,X has a useful property that greatly simplifies
the analysis: if |xi | ≤ Xi, then |xi − QLx,X xi | ≤ Xi/Li . Let invdiag(L) denote an
n × n square matrix

invdiag(L)i j =




L−1
i i = j

0 i , j .

This property has an alternative expression:

if |x | ≥+ X , then |x − y | ≥+ invdiag(L)X .

Estimators
To construct a linear state estimator with bounded estimation errors, the LTI system
(1.3) is required to be detectable, i.e. there exist some matrix K such that A + KC

is stable. Given the matrix K such that A+ KC is strictly stable, we can construct a
linear estimator

x̂(t + 1) = Ax̂(t) − K (y(t) − Cx̂(t)), x̂(0) = 0. (1.8)

We define its estimation error e and residual vector r as

e(t) , x(t) − x̂(t), r (t) , y(t) − Cx̂(t),

respectively. The signals e and r satisfy the following dynamics

e(t + 1) = (A + KC)e(t) + (B + K D)w(t), e(0) = 0

r (t) = Ce(t) + Dw(t).

Thus, the LTI system from w to e, E(K ), and the LTI system from w to r , F (K ),
are respectively given by

E(K ) =


A + KC B + K D

I 0


(1.9)

F (K ) =


A + KC B + K D

C D


. (1.10)

Because A + KC is strictly stable, both E(K ) and F (K ) have bounded induced-
norms. The induced-norms upper-bound the values of ‖e‖q and ‖r ‖q as follows.

Lemma 1.5.1. If ‖w‖p ≤ 1, then the estimation error e and residual vector r satisfy

‖e‖q ≤ ‖E(K )‖p→q, ‖r ‖q ≤ ‖F (K )‖p→q. (1.11)
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C h a p t e r 2

COMPONENT SPEED-ACCURACY TRADEOFFS (SATS) IN
NEUROPHYSIOLOGY

There exist trade-offs between neural signaling speed and accuracy arising from the
fixed spatial andmetabolic cost to build andmaintain nerves ormuscles. Specifically,
nerves with the same cross-sectional area can either contain many small axons or a
few large axons (Fig. 2.1b), which inevitably leads to SATs in neural signaling [153,
154, 185]. The specific forms of SATs depend on how the nerves encode information
(e.g. spike-based, rate-based, and spike-interval-based encoding). In this section,
we derive the SATs for nerve signaling and muscle actuation.

2.1 Spike-based nerve signaling
In a spike-based encoding scheme, information is encoded in the presence or ab-
sence of a spike within each time interval, analogous to digital packet-switching
networks [164, 180]. This encoding method requires spikes to be generated with
sufficient timing accuracy, which has been experimentally verified in many types
of neurons [61, 122]. To quantify the bundle of axons in certain nerves that can
sometimes have complex size distributions, we can classify axons into m distinct
types, where each type corresponds to axons of identical size. We index each type
by k ∈ {1, 2, · · · ,m} and model type k axons as a communication channel with
signaling delay Tk and signaling rate Rk (e.g. the total amount of information in bits
that can be transmitted per unit time). Let nk, ρk, sk denote the number, radius, and
total space used by type k axons, respectively. When the signaling is precise and
noiseless, a type k axon with achievable firing rate φk can transmit

Cs = φk (2.1)

bits of information per unit time. For sufficiently large myelinated axons, the
propagation speed 1/Tk and firing rate φk of action potentials are both approximately
proportional to the axon radius ρk [185]:

Tk = α/ρk φk = βρk, (2.2)

where α and β are proportionality constants. Moreover, the space andmetabolic cost
of nerves is proportional to their volume [185], and given a fixed nerve length, these
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(a) Cartoon diagram showing how nerve size and number trade-offs result in its signaling
SATs. The region above the dashed line represents the achievable speed and accuracy given
a fixed total cross-sectional area, which is proportional to λ.

(b) Cartoon diagram showing how nerve size and number trade-offs result in its signaling
SATs. The region above the dashed line represents the achievable speed and accuracy given
a fixed total cross-sectional area, which is proportional to λ.

Figure 2.1: Component-level speed-accuracy trade-off (SAT) in nerves [142].
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costs are proportional to the nerve’s total cross-sectional area s. These properties
lead to

Rk = λkTk (2.3)
m∑

k=1
λk = λ, (2.4)

where λk = sk β/πα > 0 is a constant associated with the total resource use
(i.e. space available to build the axons). A special case of (2.3) is when all
axons have the same size. In such cases, we can model the bundle of axons as a
single communication channel with signaling delay Ts = Tk and signaling delay
R =

∑m
i=1 Rk satisfying

R = λTs, (2.5)

where λ = sβ/πα.

2.2 Rate-based encoding
In rate-based encoding scheme, the information is encoded in the rate of spiking
instead of individual spikes [183]. We can model this process as a Poisson-type
communication channel whose input is the spike rate γ(t) and the output is the spike
timing M (t). We assume that the spike timing is a non-homogeneous Poisson point
process with rate (intensity) γ = {γ(t) ≥ 0 : t ∈ R+}, denoted by Pt (γ).1 The
communication channel is then given by

M (t) = Pt (γ), (2.7)

where the spike rate is bounded by

γ(t) ≤ φ t ∈ R+, (2.8)

for some φ > 0. The information capacity of communication channel (2.8) is defined
to be

Cr = sup lim
T→∞

1
T

I (γT ; MT ). (2.9)

1The process Pt (γ) has the transition probability

P[Pt+h (γ) − Pt (γ) = n] =
1
n!
Λ(t, h)ne−Λ, (2.6)

where Λ(t, h) is the time integral of rate γ, i.e. Λ(t, h) ,
∫ t+h

t
γ(t)dt.
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where the supremum is taken over all distributions of the input process Pγ(t) satis-
fying (2.8). Kabanov has shown in [42] that Cr is upper-bounded by

Cr =
(φ + 1)1+φ−1

2
−

(
1 +

1
φ

)
log(φ + 1) (2.10)

So for sufficiently large φ,

Cr → φ/2 as φ→ ∞. (2.11)

Replacing (2.1) with (2.11) in the argument of (2.2)–(2.4), for the case of diverse
axons, we obtain

Rk = λ
′
kTk (2.12)

m∑
k=1

λ′k = λ
′, (2.13)

where λ′ = sβ/2πα > 0. Similarly, for the case of uniform axons, we have

R = λ′T (2.14)

for the case of uniform axons, where

λ′ = sβ/2πα > 0. (2.15)

Remark 2.2.1. There are a few alternative assumptions, which lead to different
tradeoffs. For example, with an additional constraint in the input mean, i.e. E[γ] =
n, the capacity equals n log(φ/n) [42]. When the constraints are on the input mean
and variance, i.e. E[γ] = n and Var[γ] = σ2, the information capacity equals
n log(σ2/n2) [108].

2.3 Spike-interval-based nerve signaling
Alternatively, the information can also be encoded in the inter-arrival durations. One
possible model for this type of neural signaling process is to use an Exponential-type
communication channel, i.e.

Mi = γi + vi, i ∈ N, (2.16)

where the sequence γi (≥ 0) is the channel input, and the sequence Mi is the channel
output, the sequence vi is the error in spike timing (spike timing jitter). The spike
timing error vi is generated from i.i.d. exponential distribution with

E[vi] = b, Var[vi] = b2. (2.17)
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Wemodel vi as an exponential random variable because spike intervals are observed
to be close to exponential or Gamma distribution [176]. We assume that the input
sequence is below the achievable spike rate φ, i.e.

n∑
i=1

γi/n ≤ 1/φ. (2.18)

The capacity of the communication channel from input γ(t) and output M (t) is
defined as

Cd = sup lim
n→∞

1
n

I (γn; Mn), (2.19)

where the supremum is taken over all distributions Pγ of the input process {γi}i∈N+

satisfying (2.17). In [196], Verdu showed that

Cd = log
(
1 +

1
bφ

)
(2.20)

We consider two different assumptions: when E[vi] = b is inversely proportional to
the axon cross-sectional area, and when Var[vi] = b2 is inversely proportional the
axon membrane area. In the former case, we have

b =
1

r ρ
(2.21)

for some proportionality constant r > 0. Substituting (2.21) into (2.20), we obtain

Cd = log
(
1 +
√

rπ
β

)
. (2.22)

By the same argument with Section 2.1, for the case of diverse axons, we obtain

Rk = nkφkCd (2.23)

=
sk β

πρk
log

(
1 +
√

rπ
β

)
(2.24)

= λTs, (2.25)

where λ′′k = λ log
(
1 +

√
rπ
β

)
. For the case of uniform axons, we have

R = λTs, (2.26)

where λ′′k = λ log
(
1 +

√
rπ
β

)
. In the latter case, we have

b2 =
1

2r ρπ
(2.27)
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for some proportionality constant r > 0. Substituting (2.27) into (2.20), we obtain

Cd = log
(
1 +
√

rπρ
φ

)
(2.28)

for some constraint γ > 0. By the same argument with Section 2.1, for the case of
diverse axons, we obtain

Rk = nkφkCd (2.29)

=
sk β

πρk
log *.

,
1 +

√
rπTs

αβ2
+/
-

(2.30)

= λTs log *.
,
1 +

√
rπTs

αβ2
+/
-
, (2.31)

where λ′′k =
sk β
πα . For the case of uniform axons, we have

R = λTs log *.
,
1 +

√
rπTs

αβ2
+/
-
. (2.32)

2.4 Summary of nerve signaling SATs
Rate-based encodingwas believed to be themost standard encoding schemes because
it was unclear if spikes can be generated with enough timing precision to carry
information in individual spikes. However, there is growing evidence that nerves are
able to use encoding schemes that requires high spike timing precision [183]: nerves
are capable of spikingwith highly precise timing [19, 61, 122]; and a few experiments
also observe that spike timing carries behaviorally relevant information [19, 180].
The SATswederive support this viewby showing that spike-based encoding or spike-
interval-based encoding allows more information to be transmitted per spike than
rate-based encoding given a fixed maximum spike rate φ. However, interestingly,
the SATs under all three types encodings may have qualitatively similar SATs: under
certain assumptions, the achievable data rate is roughly proportional to delay.

2.5 Muscle actuation SATs
The actuation components, muscle, also have tradeoffs in terms of the reaction speed,
accuracy in strength level, strength, and ease of fatigue. Moreover, most muscles
carry diverse muscle fibers, e.g. striated muscles typically have both large fast
twitch fibers and many more smaller slow twitch muscles (Fig. 2.2a). In particular,
its SATs can be modeled using a simplified muscle model that includes m motor
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Bits per spike SATs
Spike-based 1 R = λT
Rate-based 1/2 R = (λ/2)T
Spike-interval-based log

(
1 +
√

rπ/β
)

R = λ log
(
1 +
√

rπ/β
)

Ts

Table 2.1: Efficiency of different neural signaling schemes. The SATs can take
different forms than above, depending on the assumptions. See Section 2.1-2.3 for
the assumptions made.

units, indexed by i ∈ {1, 2, · · · ,m}, each associated with a reaction speed and a
strength. We use Fi to denote its strength and assume without loss of generality that
F1 ≤ F2 ≤ · · · ≤ Fm. According to Henneman’s size principle [78], motor units in
the spinal cord are recruited in ascending order of Fi, so a muscle (at non-transient
time) can only generate m + 1 discrete strength levels:

n∑
i=1

Fi, n ∈ {0, 1, · · · ,m}. (2.33)

Given a fixed length, the maximum strength of a muscle ` =
∑m

i=1 Fi is known to be
proportional to its cross-sectional area [71]. This implies that, given a fixed space to
build a muscle, its maximum strength does not depend on the specific composition
of motor units. Constrained on the maximum strength, a muscle can be built from
many motor units with small strengths or a few motor units with large strengths. In
the former case, the muscle has better resolution but slow reaction speed, while in
the latter case, the muscle has fast reaction speed but coarser resolution. This SAT
can be quantified using the following formula (see Fig. 2.2b):

ȧi (t) = α f p
i (t)(1 − ai (t)) − βai (t)

aq
i (t) = ci (t),

(2.34)

where α = 1, β = 1, p = 1, q = 3 are fixed constants [23]. If a motor unit is recruited
at time t = 0, then its strength ci (t) rises according to (2.34) with

fi (t) = 1(t)/((1/Fi)1/q − 1), (2.35)

where 1(t) is a unit step function. Similarly, when a recruited motor unit is released
at time t = τ, its contraction rate falls according to (2.34) with

fi (t) = 1(−t + τ)/((1/Fi)1/q − 1). (2.36)

From (2.34), the reaction speed of a muscle is an increasing function of Fi, and the
time required for a muscle to reach to ci (t) = Fi from ci (0) = 0 is decreasing in
Fi. Thus, better resolution (having small Fi) can only be achieved with decreased
reaction speed.
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(a) Diagram showing the speed-accuracy trade-offs (SAT) in muscles. Different types of
muscle fibers and their resulting actuation SATs. The one with a smaller diameter and darker
color (due to larger amounts of myoglobin, numerous mitochondria, and extensive capillary
blood supply) are the oxidative fibers, and the other is the glycolytic fibers. Oxidative fibers
are slower but more accurate, whereas glycolytic fibers are faster but less accurate.

(b) Forces generated by different types of motor units. The total force of a sum of many
small motor units versus one large motor unit, generated from (2.34).

Figure 2.2: Muscle speed-accuracy trade-offs
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C h a p t e r 3

SYSTEM SPEED-ACCURACY TRADEOFFS (SATS):
FUNDAMENTAL LIMITS

An example of effective layered control architectures is the oculomotor system that
stabilizes the eye on a moving target while you are bouncing down a trail (Fig. 5.7).
Neurons in the visual cortex responding to target motion on the retina drive the
actuators to pursue the target after a delay of 100 milliseconds. In contrast, fast head
motions are compensated by control systems in the brainstem in the millisecond
range. Together, they allow you to maintain fixation on a distant moving target
despite severe bumps. In trail following (Fig. 5.9), higher-level cortical control
systems in the cortex and basal ganglia provide advanced warning for planning
actions to avoid trees and other obstacles. This is accompanied by a fast feedback
system in the spinal cord that maintains steady tracking.

To study how these control systems are coordinated, we will introduce a task in
which the subjects aim to follow desired trajectory in the presence of uncertainty
and noise. The diagram of the control architectures used in the task is shown in
Fig. 5.1 for reaching, Fig. 5.7 for visual tracking, and Fig. 5.9 for tracking a trail.
We define the error dynamics x(t) from the system evolution of the rider or eye
movement that must track a reference trail or trajectory with small error despite
uncertainty:

x(t + 1) = ax(t) + w(t) + u(t), (3.1)

which relates the future error x(t + 1) with the previous error x(t), the uncertainty
w(t) (trajectory changes, bumps, trail changes, etc.), and the control action u(t).
The control action u(t) is generated using a feedback controller, which uses sensing
components such as eyes, muscle sensors, and the inner ear; communication com-
ponents such as nerves; computing components such as the cortex in the central
nervous system; and actuation components such as eye and arm muscles. Here, Ts

captures the signaling delay in feedback due to the latency in nerve signaling, and
Ti captures other internal delays in the feedback loop. The advanced warning of the
uncertaintyTa models situations such as when vision informs the rider about the trail
ahead by Ta time steps (a form of advanced warning, which depends on the rider’s
speed and the trail’s features), and when the muscle tone changes before an expected
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Parameter Description
x(t) Error at time step t
K Controller
Ts ≥ 0 Signaling delay
Ti ≥ 0 Internal delay
T = Ts + Ti Total delay
Tt Time to reach target
R Information rate (bits per unit time)
λ Cost associated with the resource use

Table S1: Parameters in the basic model.

perturbation [20, 125]. We additionally assume that the feedback loop has limited
data rate R, which accounts for the limitations in nerve signaling. In this chapter,
we derive the hardware tradeoffs for system (3.1) with delay only, quantization only,
and both delay and quantization.

3.1 The impact of delay
We consider the system (error) dynamics (3.1) with zero initial condition, i.e. x(0) =
0. The controller K generates the control action u(t) using the full information on
the histories of the state, disturbance, and control input with delay Tu ≥ 0, i.e.

u(t + Tu) = K (x(0 : t),w(0 : t − 1), u(0 : t + Tu − 1)). (3.2)

The sensorimotor control in risk-aware setting motivates the use of L1 optimal
control, and as such, our goal is to solve the following robust control problem:

inf
K

sup
‖w‖∞≤1

‖x‖∞ (3.3)

subject to (3.1) and (3.2). This problem admits a simple and intuitive solution. In
particular, the optimal cost is given by

inf
K

sup
‖w‖∞≤1

‖x‖∞ =
Tu∑
i=0
|ai |. (3.4)

This optimal cost is achieved by the control policy

u(t) = −aTu+1w(t − 1 − Tu). (3.5)

To prove (3.4) and (3.5), we first first derive a lower bound for the optimal cost, and
we then find a controller that achieves the lower bound. The lower bound is obtained
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by noticing that the delay Tu in the control loop introduces an initial uncontrollable
window in the closed loop response of the system. So we have

max
‖w‖∞≤1

‖x‖∞ ≥ max
‖w‖∞≤1

|x(Tu + 1) |

≥ max
‖w‖∞≤1

|aTuw(0) + aTu−1w(1) + · · · + w(Tu) |

=
∑Tu

i=0 |a
i |.

This lower bound can also be realized by the control policy (3.5), which yields the
following closed loop behavior

x(t + 1) = aTuw(t − Tu) + aTu−1w(t − Tu + 1) + · · · + w(t).

From (3.1), we observe that the worst-case disturbance is

w(t − Tu) = sign(aTu )

w(t − Tu + 1) = sign(aTu−1)
...

w(t) = 1,

which attains the optimal cost in (3.4).

3.2 The impact of quantization
Quantization is the process of converting a continuous signal to a discrete one. It can
arise in many biological systems where sensing, computation, and actuation com-
ponents are not co-located. We consider the error dynamics (3.1) and a quantized
controller

u(t) = K (x(0 : t),w(0 : t − 1), u(0 : t − 1)). (3.6)

We also assume zero initial condition, i.e. x(0) = 0. The desired control action u(t)
is generated using full information on the histories of state, disturbance, and control
input, but the feedback loop can only transmit R bits of information per unit time.
In all of what follows, we assume that the data rate is above the minimum stabilizing
rate, i.e. R > log2 |a | [138]. This problem also admits an analytic formula

inf
K

sup
‖w‖∞≤1

‖x‖∞ =
1

2R − |a |
+ 1, (3.7)

which can be attained by the control policy

u(t) = Q̄R,Ψ(−ax(t)), (3.8)
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where Ψ = 2R |a |/(2R − |a |), and the map QR,Ψ is defined to be a uniform quantizer
of rate R on domain [−Ψ,Ψ].

Similarly, (3.7) and (3.8) can be proved by first lower-bounding the optimal cost and
then find a controller that achieves the bound. A lower bound can be obtained using
the problem of estimating w(τ) at time t:

H (t, τ) = inf
Q

sup
|w(τ) |≤1

|w(τ) − ŵ(τ) | (3.9)

s.t. ŵ(τ) = Q(w(τ)) (3.10)

Q is a quantizer with data rate (t − τ)R. (3.11)

Because w(τ) can take any values in the interval [−1, 1], and the output of Q(w(τ))
can take at most 2(t−τ)R discrete values, the estimation error is lower-bounded by
H (t, τ) ≥ 2−(t−τ)R. On the other hand, the above lower bound can also be attained
using a uniform quantizer on domain [−1, 1]. It then follows that

H (t, τ) =



2−(t−τ)R t ≥ τ + 1

1 t < τ + 1.
(3.12)

The problem H (t, τ) can be used to lower-bound the value of |x(t + 1) |. The state
can be decomposed into terms due to past disturbance and a term due to past control
action:

x(t + 1) = atw(0) + at−1w(1) + · · · + w(t) +U′(t), (3.13)

whereU (t) =
∑t
τ=0 aτu(t − τ). We define an auxiliary state x′ and its control action

U′ as follows:

x′(t + 1) = atw(0) + at−1w(1) + · · · + w(t) +U (t) (3.14)

U′(t) = −(atŵ(0) + at−1ŵ(1) + · · · + ŵ(t)), (3.15)

where ŵ(τ) is the optimal solution of the estimation problem H (t, τ). The worst-
case absolute value of x′(t + 1) can be easily computed as

sup
‖w‖∞≤1

|x′(t + 1) | (3.16)

= sup
‖w‖∞≤1

|at (w(0) − ŵ(0)) + at−1(w(1) − ŵ(1)) + · · · + (w(t) − ŵ(t)) | (3.17)

= sup
‖w‖∞≤1

|at (w(0) − ŵ(0)) | + |at−1(w(1) − ŵ(1)) | + · · · + |w(t) − ŵ(t) | (3.18)

= |at |H (t, 0) + |at−1 |H (t, 1) + · · · + H (t, t) (3.19)

=
1 − ( |a |/2R)t+1

1 − |a |/2R . (3.20)
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This value monotonically increases as time t grows. Under the assumption R >

log2 |a |, we have

lim
t→∞

1 − (a/2R)t

1 − (a/2R)
=

2R

2R − |a |
, (3.21)

where the convergence of the infinite series is due to the assumption on minimum
stabilizing data rate, i.e. |a |/2R < 1. Meanwhile, the disturbance w(τ) can take any
values from [−1, 1], and at most 2(t−τ)R bits of information can be used to transmit
the information on w(τ) during the time interval [τ, t]. Therefore, the control action
U (t) for x(t + 1) cannot perform better than U′(t) for x′(t + 1), i.e.

sup
‖w‖∞≤1

|x(t + 1) | ≥ sup
‖w‖∞≤1

|x′(t + 1) |. (3.22)

Combining (3.16)–(3.22), we obtain the following lower bound on the achievable
cost:

sup
‖w‖∞≤1

‖x‖∞ ≥ lim
t→∞

sup
‖w‖∞≤1

|x(t + 1) | ≥ lim
t→∞

sup
‖w‖∞≤1

|x′(t + 1) | =
2R

2R − |a |
. (3.23)

Next, we show that the control policy (3.8) achieves the optimal cost (3.7). Let u∗(t)
be the input to the quantizer, and xq(t + 1) = Q̄R,Ψ(u∗(t)) − u(t) be the quantization
error. Observe that x(t) = w(t − 1) + xq(t). Using mathematical induction, it can
be shown that there exists a control and communication policy that achieves

sup
‖w‖∞≤1

‖xq‖∞ ≤
|a |

2R − |a |
. (3.24)

Condition in (3.24) holds at time t = 0. Now we assume that condition in (3.24)
holds at time t. It then follows that

|u∗(t) | = | − ax(t) | = | − a(xq(t) + w(t − 1)) | ≤
2R |a |

2R − |a |
= Ψ. (3.25)

Since the quantizer output Q̄R,Ψ(u(t)) can take at most 2R discrete values, the value
of xq(t + 1) can be bounded by

|xq(t + 1) | = |Q̄R,Ψ(u∗(t)) − u∗(t) | (3.26)

≤ 2−R
Ψ (3.27)

=
|a |

2R − |a |
. (3.28)

Thus, condition (3.24) also holds at time t + 1, and this finishes the proof of (3.24).
Combining (3.23) with (3.24) yields

sup
‖w‖∞≤1

‖x‖∞ = sup
‖w‖∞≤1

‖xq + w‖∞ ≤
|a |

2R − |a |
+ 1.
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3.3 The impact of delay and quantization in reaching tasks
The above analysis tool can be used to study the fundamental limits in a reaching
task and derive a formula similar to Fitts’ law [60]. We model this setting by error
dynamics (3.1) with w(t) = dδ(t) in (3.1), where d ∈ [−D, D] is the distance
between the initial position and the target position, and δ(t) is the Kronecker delta
function, which is defined as follows: δ(t) = 1 if t = 0, and δ(t) = 0 otherwise.
The error is controlled by a delayed and quantized controller:

u(t + T ) = K (x(0 : t),w(0 : t − 1), u(0 : t + T − 1)) (3.29)

where x(t) ∈ R is the system state, u(t) ∈ R is the control action, and w(t) ∈ R is
the disturbance. We also assume zero initial condition, i.e. x(0) = 0. The desired
control action u(t) is then generated by the controller K , which can transmit R bits
per unit time with a delay of T , using full information on the histories of the state,
disturbance and control input. The setting of Reaching tasks described in Section
B.1 in the main text can be recovered by setting T := Ts +Ti −Ta. The reaching time
Tent can be formally defined as

Tent = inf{t : |x(t) | ≤ W/2 for any |w | ≤ D}. (3.30)

Similar to the case in Section 3.2, we define the problem of estimating w(0) at time
t as follows:

H (t, 0) = inf
Q

sup
|w(0) |≤D

|w(0) − ŵ(0) | (3.31)

s.t. ŵ(0) = Q(w(0)) (3.32)

Q is a quantizer with data rate (t − T )R. (3.33)

The value of H (t, 0) can be computed to be

H (t, 0) =
1

2(t−T )R D. (3.34)

The minimum worst-case reaching time is lower-bounded by

Tent ≥ min{t : H (t, 0) ≤ W } (3.35)

≥ T + R−1 log2

(
2D
W

)
. (3.36)



25

3.4 The impact of delay and quantization in driving tasks
We consider the system dynamics (3.1) with delayed and quantized controller

u(t + Tu) = K (x(0 : t),w(0 : t + Ta − 1), u(0 : t + Tu − 1)), (3.37)

where x(t) ∈ R is the system state, u(t) ∈ R is the control action, and w(t) ∈ R is
the disturbance. We also assume zero initial condition, i.e. x(0) = 0. The controller
K receives advanced warning on disturbance Ta ahead of time.The desired control
action u(t) is then generated by the controller K using full information on the
histories of the state, disturbance and control input. The actual control action is
delayed by Tu and quantized by R with data rate R, where R is minimum stabilizing,
i.e. R > log2 |a |. This problem also admits a simple and intuitive solution. In
particular, the optimal cost is given by

min
K

max
‖w‖∞≤1

‖x‖∞ =




T∑
i=0
|ai | + |aT+1 |

(
2R − |a |

)−1
if T > 0

(
2R − |a |

)−1
if T ≤ 0,

(3.38)

where T := Tu − Ta is the net delay from the disturbance to the control action.
The optimal cost only depends on Tu − Ta but not individual values of Tu and Ta

because systems with constant Tu −Ta = T can all be reduced to systems with either
(Ta,Tu) = (−T, 0) for T ≤ 0 or (Ta,Tu) = (0,T ) for T > 0. Therefore, the proof for
optimal cost and optimal control policy in the case of T < 0 is given in (3.8). On
the other hand, the optimal control policy for T > 0 is

xq(t) = u(t − 1) − u∗(t − 1)

u∗(t) = −aT+1w(t − T − 1) − axq(t)

u(t) = Q̄R,Ψ(u∗(t)),

(3.39)

where Ψ = 2R |aT+1 |/(2R − |a |).

Similar to previous cases, we prove (3.38) and (3.39) by first deriving a lower bound
of the optimal cost and then finding a control achieving the lower bound. To obtain
the lower bound, we decompose the state x(t) into the term due to delayed control
xd (t) and the term due to quantized control xq(t) as follows:

x(t) = xd (t) + xq(t). (3.40)

Because this information about the disturbance w(t − T : t) is not available to the
controller when generating the control signal u(t), its effect on x(t + 1) cannot be



26

controlled. It then follows that the effects of w(t − T : t) on x(t + 1) is

xd (t + 1) = aTw(t − T ) + aT−1w(t − T + 1) + · · · + w(t). (3.41)

Given the term xd (t + 1), we can then define

xq(t + 1) = x(t + 1) − xd (t + 1), (3.42)

which is a function of w(0 : t −T − 1) and u(0 : t), but not xd (t + 1). Here, disjoint
subsets of the disturbance affect the term due to delay xd (t + 1) and the term due
to quantization xq(t + 1), and the value of xd (t + 1) is not impacted by the chosen
control policy. Therefore, the optimal cost can also be decomposed into

inf
K

sup
‖w‖∞≤1

‖x‖∞ = sup
‖w‖∞≤1

‖xd ‖∞ + inf
K

sup
‖w‖∞≤1

‖xq‖∞, (3.43)

where the infima on both sides are subject to the system dynamics (3.1). From
(3.41), the first term satisfies

sup
‖w‖∞≤1

‖xd ‖∞ =

T∑
i=0
|ai |. (3.44)

We will show below that the second term satisfies

inf
K

sup
‖w‖∞≤1

‖xq‖∞ ≥
|aT |

2R − |a |
. (3.45)

Similar to the case in Section 3.2, we define the problem of estimating w(0) at time
t as follows:

H (t, τ) = inf
Q

sup
|w(τ) |≤1

|w(τ) − ŵ(τ) |

s.t. ŵ(τ) = Q(w(τ))

Q is a quantizer with data rate (t − T − τ)R.

(3.46)

Now we use the estimation problem H (t, τ) to lower-bound the value of |xq(t + 1) |.
The term xq(t + 1) can also be decomposed into

xq(t + 1) = atw(0) + at−1w(1) + · · · + aT+1w(t − T − 1) +U (t), (3.47)

where U (t) =
∑t−T
τ=0 aτu(t − T − τ). We define an auxiliary state x′ and its control

action U′ as follows:

x′q(t + 1) = atw(0) + at−1w(1) + · · · + aT+1w(t − T − 1) +U (t) (3.48)

U′(t) = −(atŵ(0) + at−1ŵ(1) + · · · + aT+1ŵ(t − T − 1)), (3.49)
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where ŵ(τ) is the optimal solution of the estimation problem H (t, τ). The worst-
case absolute value of x′q(t + 1) can be bounded by

sup
‖w‖∞≤1

|x′q(t + 1) |

= sup
‖w‖∞≤1

|at (w(0) − ŵ(0)) | + |at−1(w(1) − ŵ(1)) | + · · · (3.50)

+ |aT+1(w(t − T − 1) − ŵ(t − T − 1)) | (3.51)

=|at |H (t, 0) + |at−1 |H (t, 1) + · · · + |aT+1 |H (t, t − T − 1) (3.52)

=
|aT+1 |

2R

1 − (|a |/2R)t−T

1 − (|a |/2R)
. (3.53)

From the same argument with Section 3.2, the control action U (t) for xq(t + 1)
cannot perform better than U′(t) for x′q(t + 1), i.e.

sup
‖w‖∞≤1

|xq(t + 1) | ≥ sup
‖w‖∞≤1

|x′q(t + 1) |. (3.54)

The lower-bound on sup‖w‖∞≤1 |x
′
q(t + 1) | monotonically increases as time t grows.

Taking t → ∞, we obtain that

sup
‖w‖∞≤1

‖xq‖∞ ≥ lim
t→∞

sup
‖w‖∞≤1

|xq(t + 1) | (3.55)

≥ lim
t→∞

sup
‖w‖∞≤1

|x′q(t + 1) | (3.56)

≥
|aT+1 |

2R − |a |
, (3.57)

where the infinite series in (3.57) converges because the data rate is assumed to be
minimum stabilizing, i.e. |a |/2R < 1. Combining (3.44) and (3.45), we obtain the
following lower bound on the optimal cost

‖x‖∞ ≥
T∑

i=1
|ai−1 | +

|aT+1 |

2R − |a |
. (3.58)

Next, we find a control policy that achieves the lower bound (3.38). We follow the
same procedure with Section 3.2 to show that the controller (3.39) achieves

sup
‖w‖∞≤1

|xq(t) | ≤
|aT+1 |

2R − |a |
. (3.59)

Condition in (3.59) holds for t = 0. Now we assume that condition in (3.59) holds
for time t. It then follows that

|u∗(t − T ) | = | − axq(t) − aT+1w(t − T − 1) | ≤ |aT+1 |

(
1 +

|a |
2R − |a |

)
= Ψ.

(3.60)
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It then follows that the value of xq(t + 1) is bounded by

|xq(t + 1) | =
|aT+1 |

2R − |a |
. (3.61)

Thus, condition (3.59) holds at time t + 1. Combining (3.44) and (3.59) yields

max
‖w‖∞≤1

‖x‖∞ ≤
T∑

i=0
|ai | +

|aT+1 |

2R − |a |
.

3.5 Impact of layering diversity on system SATs
We consider the layered system with two feedback loops

x(t + 1) = ax(t) + u(t) + w(t) + r (t − Ta)

u(t) = uL (t) + uH (t)

uL (t) = L(x(0 : t),w(0 : t − 1))

uH (t) = H (x(0 : t), r (0 : t − 1))).

(3.62)

The disturbance is now composed of two terms: a component r (t − Ta) that is
observed with advance warning Ta ≥ 0 and a component w(t) that can be observed
only through its impact on systemperformance. We assume that the two disturbances
are bounded by

‖r ‖∞ ≤ 1, ‖w‖∞ ≤ δ. (3.63)

The control action is generated by two nominally independent feedback loops, each
having their own sensing, computation, and communication components. Both
feedback loops, L,H act through a motor nerve pathway with data rates RL, RH and
delays TL,TH , respectively. The optimal cost in worst-case `∞ norm of this problem
is

in f
H ,L

sup
‖w‖∞≤δ,‖r ‖∞≤1

‖x‖∞ =



TL∑
i=0
|ai | +

|aTL+1 |

2RL − |a |



δ +

1
2RH − |a |

. (3.64)

To begin, we decompose (3.62) into

xL (t + 1) = axL (t) + uL (t) + w(t), xL (0) = 0

uL (t) = L(x(0 : t),w(0 : t − 1))
(3.65)

and
xH (t + 1) = axH (t) + uH (t) + r (t − Ta), xH (0) = 0

uH (t) = H (x(0 : t), r (0 : t − 1)).
(3.66)
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From linearity, the state of (3.62) is the sum of the two sub-systems’ states, i.e.

x(t) = xL (t) + xH (t). (3.67)

Because the disturbances that steer the dynamics of xL (t) and xH (t) are disjoint,
the optimal cost can also be decomposed into

inf
L,H

sup
‖w‖∞≤1

‖x‖∞ = inf
L

sup
‖w‖∞≤1

‖xL ‖∞ + inf
H

sup
‖w‖∞≤1

‖xH ‖∞ (3.68)

=



TL∑
i=0
|ai | +

|aTL+1 |

2RL − |a |



δ +

1
2RH − |a |

. (3.69)

In the last equality, we applied the results from Section 3.5 on both sub-systems.

3.6 Impact of axonal diversity on system SATs
We consider the system dynamics (3.1) with the feedback controller K of the form

[s1(t), s2(t), · · · , sm(t)] = Kt (x(0 : t),w(0 : t + Ta), s(0 : t − 1)) (3.70)

u(t) =
m∑

i=1
Qt,i (si (t − Ti − Tc)), (3.71)

where x(t) ∈ R is the state, w(t) ∈ R is the disturbance, u(t) ∈ R is the control
action. We assume that the disturbance is ∞-norm bound and, without loss of
generality, ‖w‖∞ ≤ 1.

Recall from (3.46) that H (t, τ) is defined to be the problem of estimating w(τ) at
time t. Its worst-case estimation error can be computed by

H (t, τ) =
1

2R (h) , (3.72)

where R : Z+ → R+ is defined to be

R (h) :=
m∑

i=1
max{0, h − Ti − Tc + Ta}Ri . (3.73)

Adapting same procedure with Section 3.4, we obtain that the worst-case error is
bounded by

min
K

max
‖w‖∞≤1

‖x‖∞ ≥
∞∑

h=1
|ah−1 |

1
2R (h) , (3.74)

yielding Formula [19].
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Next, we construct a control policy that achieves the equality of (6.2). To begin,
without loss of generality, we assume that T1 < T2 < · · · < Tm and Ri > 0 for
i ∈ {1, 2, · · · ,m}. We define the following terms recursively.

ŵ(t, i, τ) =0 for t − τ ≤ T1

ŵ(t, i + 1|τ) =Q̄Ri+1,`t−τ,i+1 (w(τ) − ŵ(t, i |τ)) + ŵ(t, i |τ)

for i ∈ {1, 2, · · · , k − 1} and T1 < t − τ ≤ Tk+1

ŵ(t + 1, 1|τ) =Q̄R1,`t−τ+1,1 (w(τ) − ŵ(t, i |τ)) + ŵ(t,m |τ)

for i = k,

(3.75)

where ` is recursively defined by

`T1,1 = 1 (3.76)

`t−τ,i+1 = `t−τ,i/2−Ri for i ∈ {1, 2, · · · , k} if T1 < t − τ ≤ Tk+1 (3.77)

`t−τ+1,1 = `t−τ,i/2−Ri for i = k if T1 < t − τ ≤ Tk+1. (3.78)

We define the scaled estimation errors to be

e(t, i |τ) = at−τ (w(t) − ŵ(t, i |τ)). (3.79)

Let Qt,i = Q̄Ri,Ψt,i be a uniform quantizer with the quantization interval [−Ψt,i,Ψt,i]
defined from

Ψt,i =

t∑
τ=0

∑
i:t−τ>Ti

`t−τ,i+1. (3.80)

We consider the control policy

u(t) = Qt,i
*.
,

t∑
τ=0

∑
i:t−τ>Ti

e(t, i |τ)+/
-
, (3.81)

where Qt,i is a uniform quantizer on domain x. Let us define the the quantization
error xq(t) to be the sum of the errors from all quantizers Qt,i, i = {1, 2, · · · ,m}, and
the remaining errors in x(t) to be the delay error xd (t). Observe that the delay error
and the quantization error can be computed as follows:

xd (t + 1) = aTiw(t − Ti) + aTi−1w(t − Ti + 1) + · · · + w(t) (3.82)

xq(t + 1) = u(t) −
t∑

τ=0

∑
i:t−τ>Ti

e(t, i |τ). (3.83)
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Moreover, it can be shown that they are respectively bounded by

E[xd (t + 1)] ≤
T1∑

h=1
|ah−1 |/2R (h) (3.84)

E[xq(t + 1)] ≤
∞∑

h=T1+1
|ah−1 |/2R (h) . (3.85)

Therefore, the control policy (3.81) achieves the equality of (6.2).
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C h a p t e r 4

SYSTEM SPEED-ACCURACY TRADEOFFS (SATS):
ACHIEVABLE PERFORMANCE AND OPTIMAL

CONTROLLERS

In the design of cyber-physical systems, it is essential to account for a broad range of
uncertainties such as disturbances due to environmental changes and control errors
due to delays and quantizations in feedback loops. Two approaches are typically used
to handle uncertainties: deterministic or stochastic. In the deterministic approach,
uncertain input or parameters are assumed to be in an uncertainty set, and the
design goal is to optimize the worst-case performance over the uncertainty set. In
the stochastic approach, uncertain input or parameter is assumed to have a certain
distribution, and the design goal is to optimize the average performance. It is
obvious that the applicability of each approach depends on the characterization of
uncertainty. However, it is not clear which approach incurs less complexity in time
and space (i.e., memory). In this chapter, we investigate some of the related issues
in controller design for linear systems with delay and quantization.

Specifically, we consider a linear dynamical system with delay and rate con-
strained communications between the observer and the controller; see Fig. 4.1
for a schematic. Previous work [138, 140] takes the deterministic approach of `∞
control, i.e. to design an optimal controller that minimizes the worst-case infinity-
norm of the system output under infinity-norm bounded disturbances. The resulting
controller uses static memoryless quantizers and therefore has low time and space
complexity. However, the efficacy of this approach partly depends on how “tight”
the uncertainty set is in covering all possible disturbances, and the assumption
of bounded uncertainty set will necessarily leave out large disturbance that may
occasionally occur.

In contrast, this chapter, we take a stochastic approach that can better handle (occa-
sional) large disturbances and study the linear-quadratic (LQ) control problem with
costs (i.e., performance) in both the state and the control action. Building upon
controller design methods for the quantized system [12], we design a controller for
the delayed and quantized system. We further derive a lower bound on the optimal
performance and compare the performance of the proposed LQ controller against



33

it. The comparison shows that the LQ controller can reject large disturbance while
achieving near-optimal performance. However, the LQ controller needs to store the
whole distribution of the system state, which incurs a much higher time and space
complexity than the optimal `∞ controller.

The above optimal/near-optimal controllers based on the two approaches have differ-
ent advantages and limitations regarding robustness to uncertainty and complexity
in time and space. An interesting question that arises from these differences is
if it is possible to design a controller that has the advantages of both the above
controllers. In this chapter, we take a hybrid approach to create such a controller.
Specifically, we assume that the typical disturbance is relatively small and covered
by a bounded set, while the large disturbance (outside of the bounded set) is rare
event that has a (tail) Gaussian distribution. Under this assumption, we construct a
hybrid controller that interpolates between the `∞ controller and the LQ controller.
Using both theoretical bounds and numerical examples, we show that the hybrid
controller can achieve a sweet spot in the robustness-complexity tradeoff, i.e. reject
occasional large disturbance while operating with low complexity most of the time.

Related work
There is a large literature on the topics studied in this chapter. Here we briefly
review only those that are directly relevant. Applications of the model studied in
this chapter range from cyber-physical systems [5, 9, 54, 138, 168, 209] to neuro-
science [140] and cell biology [108, 141, 194]. Motivated by these applications,
there exists a large literature on control under communication constraints, based on
either the deterministic approach or the stochastic approach. For the former, sta-
bility conditions are known for a broad class of linear systems with quantization or
data rate constraints [136, 203], and optimal controllers for systems with delay and
quantization are given in [138, 140]. For the latter, stability conditions are known
for linear systems with quantization or data rate constraints [137, 189, 207], and
performance bounds are given in [13, 31, 58, 63, 65, 93, 174, 175, 188, 190, 208].
The relation between the optimal cost and the causal rate-distortion function is
studied in [25, 32, 45, 72, 93, 159]. The information-theoretic quantities used to
model communication constraints include mutual information [39, 190], anytime
capacity [163], and directed information [124, 188], among others. The optimal
controllers are studied for quantized systems [12]. In contrast, in this chapter, we
study optimal controller design for delayed and quantized systems, and further, we
take a hybrid deterministic-stochastic approach.
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4.1 System model
Consider a feedback dynamical system with delay and rate constrained communi-
cations between the observer and the controller. The plant follows the discrete-time
dynamics:

xt+1 = Axt + ut + wt, (4.1)

where xt ∈ R is the state, wt ∈ R is the disturbance, and ut ∈ R is the control action
at time t. Without loss of generality, assume the initial condition x0 = 0 and wt = 0
for t < 0.

The communication channel between the observer and the controller is characterized
by delay d and bandwidth R, with R > log2 |A| to ensure stability [137]. Associated
with the observer is an encoder that at time t is defined by a mapping Et from the
available information It = {{xτ}τ=0,...,t, {wτ}τ=0,...,t−1} to a proper codeword st , i.e.

st = Et (It ) ∈ S, (4.2)

where the set S of codewords has cardinality of at most 2R. Associated with
the controller is an decoder that at time t recovers the information on state and
disturbance upon the received (delayed) information Jt−d = {sτ}τ=0,...,t−d , based on
which the controller will decide the control action ut . The encoder and controller
can be jointly defined by a mapping Dt :

ut = Dt (Jt−d) ∈ R. (4.3)

We may loosely refer to Dt as decoder, controller or decoder-encoder, whichever is
more convenient in the relevant context.

Let K := {(E0, D0), (E1, D1), · · · , (Et, Dt ), · · · }, which we also broadly call the
controller, and denote by K (R, d) the space of such controllers with delay d and
bandwidth R. The design goal for the controller is to achieve a good performance
(small state deviation under disturbance) with small control effort (small actuation,
small computation time, and low memory usage), which can be quantified in terms
of ‖x‖, ‖u‖ for certain norm ‖ · ‖ and by the functional form of (Et, Dt ).

4.2 The `∞ controller
In this section, we summarize the existing robust control theory for the `∞ system
with delay and quantization [138, 140], where the design objective is to minimize
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maxw ‖x‖∞. For disturbance with bounded support ‖w‖∞ ≤ L and stabilizing
bandwidth R > log2 |A|, the optimal performance is given by:

max
‖w‖∞≤L

‖x‖∞ =



d∑
i=0
|Ai | +

|Ad+1 |

(2R − |A|)−1




L. (4.4)

LetΨ(L) :=
{
|Ad+2 |(2R − |A|)−1 + |Ad+1 |

}
L. The optimal performance is achieved

by the `∞ controller as shown in Algorithm 1. In Algorithm 1, Q` : R→ SR denotes
a uniform quantizer of rate R (i.e., with 2R levels) over the interval [−`, `], and
|SR | = 2R.

Algorithm 1 The `∞ controller.

Encoder: qt = Q
−1
Ψ(L) (st−d−1) − u∗t−1

zt = Adwt−d−1 + qt

u∗t = −Azt

st−d = QΨ(L) (u∗t )

Decoder: ut = Q
−1
Ψ(L) (st−d)

The advantage of this controller is that it requires little computation and storage:
the encoder only needs to store the last codeword and perform minimum com-
putation, and the decoder is static and memoryless. In addition, this controller
requires minimum actuation effort when |A| ≥ 1: the stabilizing control law that
minimizes max‖w‖∞≤1 ‖u‖∞ is identical to the above control law, which minimizes
max‖w‖∞≤1 ‖x‖∞. However, the low complexity of the `∞ controller does not come
for free. For a disturbance with unbounded support, the fixed quantizer in Algorithm
1 is not stabilizing because there is always a nonzero probability that the quantizer
saturates. In next section, we will consider the LQ controller that can better handle
large disturbance.

4.3 The linear quadratic controller
In this section, we study the robust control problem for the linear quadratic (LQ)
system with delay and quantization. The disturbance wt, t ≥ 0 is assumed to be
i.i.d. Gaussian with zero mean and variance σ2, i.e., wt

i.i.d.
∼ N (0, σ2) for t ≥ 0.

The control objective is to minimize an average cost subject to the plant dynamics
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(4.1):1
minimize
K∈K (R,d)

lim
t→∞
E[x′t Pxt + u′tQut], (4.5)

where P ≥ 0 and Q ≥ 0 balance the cost of state deviation and control action. The
following result gives a lower bound on the theoretically opimal LQ cost.

Theorem 4.3.1. The optimal performance of the robust control problem (4.5) is
bounded below as follows:

lim
t→∞
E[x′t Pxt + u′tQut]

≥ P
d−1∑
i=0

A2iσ2 + P?A2dσ2 + G?A2d σ2

22R − A2 , (4.6)

where P? and G? are the unique solution to the equations:

P? = A′
[
P? + P − P?(Q + P?)−1P?

]
A,

G? = A′P?A + P − P?.
(4.7)

The first and second terms in the lower bound (4.6), P
∑d−1

i=0 A2iσ2 + P?A2dσ2, are
due to delay in control action, while the third term G?A2d σ2

22R−A2 is mainly due to
limited data rate. The lower bound is derived using the following lemma, which
characterizes the structure of the optimal controller to (4.5) and holds generally for
multiple-input-multiple-output (MIMO) systems.

We first describe a result that will be used later.

Lemma 4.3.1 ([93, 190]). Consider a scalar Gauss-Markov sequence {yt } satisfying

yt+1 = Ayt + vt, y0 = 0, (4.8)

where A ∈ R, yt ∈ R, and vt
i.i.d.
∼ N (0, σ2). Assume that at each time t, only

R(> log2 |A|) bits of information about yt can be transmitted to st ∈ S, where
|S | = 2R and st is a function of (yt, st−1). Let ŷt be an estimate of yt using only the
information of st . Then, the following inequality holds:

lim
t→∞

1
N
E



N∑
t=1

(yt − ŷt )2

≥

σ2

22R − A2 . (4.9)

1In this section, we consider the scalar system (4.1), except for Lemma 4.3.2 which is for the
vector system (4.27). But notice that we treat a scalar as a vector or matrix (of dimension one) in
many equations.
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With Lemmas 4.3.2 and 4.3.1, we are ready to prove Theorem 4.3.1.

Proof. (Theorem 4.3.1) By (4.39),

lim
t→∞
E[x′t Pxt + u′tQut] (4.10)

= lim
N→∞

1
N
E


x′N PxN +

N−1∑
t=0

x′t Pxt + u′tQut


(4.11)

= lim
N→∞

1
N
E[J1] (4.12)

= lim
N→∞

1
N
E[Jd (s0)] (4.13)

= lim
N→∞

1
N
E

[
E

[
ẑd Pd ẑd |s0

]
+ αd (s0)

]
(4.14)

= lim
N→∞

1
N
E

[
αd (s0)

]
. (4.15)

With a slight abuse of notation, we use J1 without the conditioning of the sequence
st because it is purely determined from the initial condition.

Next we observe that E[αt] satisfies the relation

E[αk (sk−d)] (4.16)

= E[E[αk+1(sk−d+1) + e′k Pek + w
′
k−d (Ad)′Pk+1 Adwk−d (4.17)

+ z̃′k (A′Pk+1 A + P) z̃′k − z̃′k+1Pk+1 z̃k+1 |sk−d]] (4.18)

= E[αk+1(sk−d+1)] + E[e′k Pek + w
′
k−d (Ad)′Pk+1 Adwk−d (4.19)

+ z̃′k (A′Pk+1 A + P) z̃′k − z̃′k+1Pk+1 z̃k+1] (4.20)

= E[αN (sN−d)] +
N−1∑
τ=k

E[e′τPeτ + w′τ−d (Ad)′Pτ+1 Adwτ−d (4.21)

+ z̃′τ (A′Pτ+1 A + P) z̃′τ − z̃′τ+1Pτ+1 z̃τ+1]. (4.22)

Because the system is controllable, the Riccati difference (4.7) has a unique solution
P?, and limN→∞ Pk = P?. Therefore, we have

lim
N→∞

1
N

N−1∑
τ=d

E[w′τ−d (Ad)′Pτ+1 Adwτ−d] = P?A2dσ2 (4.23)

and

lim
N→∞

1
N

N−1∑
τ=d

E[z̃′t (A′Pk+1 A + P − Pk+1) z̃t] (4.24)

= lim
N→∞

1
N

N−1∑
t=1
E[z̃′t (A′P?A + P − P?) z̃t]. (4.25)
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Combining (4.16)–(4.22) and (4.23)–(4.25), we obtain that

lim
N→∞

1
N
E[αd (s0)]

= P(1 + A2 + A4 + · · · + A2(d−1))σ2 + P?A2dσ2

+ lim
N→∞

1
N

N−1∑
t=1
E[z̃′t (A′Pk+1 A + P − Pk+1) z̃t]

= P
d−1∑
i=0

A2iσ2 + P?A2dσ2

+ lim
N→∞

1
N

N−1∑
t=1
E[z̃′t (A′P?A + P − P?) z̃t].

When xt ∈ R, from Lemma 4.3.1, the second term is lower bounded by

E[( z̄t − E[z̄t | s̄t−d])′G?( z̄t − E[z̄t | s̄t−d])] ≥ G?A2d σ2

22R − A2 . (4.26)

Therefore, we have obtained (4.28). �

Lemma 4.3.2. Consider a MIMO system

xt+1 = Axt + But + wt (4.27)

with xt ∈ R
m, ut ∈ R

n, wt ∈ R
m and wt

i.i.d
∼ N (0, Σ) with covariance matrix Σ � 0,

and the corresponding robust control problem

min
K∈K (R,d)

lim
N→∞

E

x′N PxN +

N−1∑
t=0

(
x′t Pxt + u′tQut

)
(4.28)

with P � 0,Q � 0. Given any encoding scheme {Et }, the optimal decoder-controller
Dt has the following structure:

ut = Lt E[zt |st−d], (4.29)

where zt is defined by the recursion

zt+1 = Azt + Adwt−d + Btut, z0 = 0, (4.30)

and
Lt = −(Q + B′Pt+1B)−1B′Pt+1 A, (4.31)

with Pt defined by the recursion

PN = P,

Pt = A′
[
Pt+1 + P − Pt+1B(Q + B′Pt+1B)−1B′Pt+1

]
A.

(4.32)
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Next, we present the steps to prove Lemma 4.3.2. Define

et = wt−1 + Awt−2 + · · · + Ad−1wt−d, (4.33)

zt = xt − et, (4.34)

where et captures the component in the state xt that results from the disturbance
wt−1

t−d and cannot be mitigated due to the delay in control, while zt depends on the
information of wt−d−1

0 and the control action in response to it. Obviously, zt and et

are independent. Moreover, E[et] = 0, and zt satisfies (4.30), restated below:

zt+1 = Azt + Adwt−d + But, z0 = 0.

In order to decompose the effects of control action and disturbance, we define z̄t to
be the state zt that would be generated at time t when the system (4.27) has zero
control ut ≡ 0. Setting ut = 0 in the above equation, we obtain

z̄t+1 = Az̄t + Adwt−d, z̄0 = 0. (4.35)

Recall that {st } is the codewords generated by {zt }. We introduce an auxiliary
encoder

f (s̄t−d | z̄t, s̄t−d−1) = f (st−d | z̄t, st−d−1) (4.36)

to generate another sequence of codewords { s̄t }.

Lemma 4.3.3. The following relation holds:

zt − E[zt |st−d] = z̄t − E[z̄t | s̄t−d].

Proof. (Lemma 4.3.3) We first use mathematical induction to show

f (st−d, z̄t ) = f (s̄t−d, z̄t ). (4.37)

Obviously, (4.37) holds at t = 0. If (4.37) holds until t, then (4.37) also holds for
t + 1 because

f (s̄t−d+1, z̄t+1)

= f (s̄t−d, z̄t ) f ( z̄t+1 | s̄t−d, z̄t ) f (s̄t−d+1 | s̄t−d, z̄t+1)

= f (st−d, z̄t ) f ( z̄t+1 |st−d, z̄t ) f (st−d+1 |st−d, z̄t+1)

= f (st−d+1, z̄t+1),
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where the second equality is due to construction (4.36), the induction hypothesis
(4.37), and the fact that f ( z̄t+1 | s̄t−d, z̄t ) = f ( z̄t+1 | z̄t ) = f ( z̄t+1 |st−d, z̄t ). By (4.37),
we obtain

E[zt |st−d] = E[z̄t +

t∑
k=1

Ak−1But−k |st−d]

= E[z̄t |st−d] +
t∑

k=1
Ak−1But−k

= E[z̄t | s̄t−d] +
t∑

k=1
Ak−1But−k,

and thus

zt − E[zt |st−d]

=z̄t +

t∑
k=1

Ak−1But−k − *
,
E[z̄t | s̄t−d] +

t∑
k=1

Ak−1But−k+
-

=z̄t − E[z̄t | s̄t−d].

�

Lemma 4.3.3 implies that we can negate all the effect of the control action to obtain
z̄t . Intuitively, this is because ut

0 is generated from st−d . This separation allows us
to prove Lemma 4.3.2.

Proof. (Lemma 4.3.2) Consider the cost-to-go:

Jt (st−d) = E

x′N PxN +

N−1∑
τ=t

x′τPxτ + u′τQuτ
���s

t−d


(4.38)

for any k < N and JN = E[x′N PxN ]. We use mathematical induction to show the
following properties:

(i) The optimal cost-to-go satisfies

Jt (st−d) = E
[
ẑ′t Pt ẑt |st−d

]
+ αt (st−d), (4.39)

where ẑt = E[zt |st−d] and αt (st−d) is a function of st−d whose expected value
does not depend on the choice of control action, i.e.

E
[
αt (st−d)

]
= E

[
αt (s̄t−d)

]
. (4.40)



41

(ii) The optimal controller admits the form (4.29).

At t = N , the cost-to-go satisfies

JN = E[x′N PxN |sN−d]

= E[( ẑN + z̃N + eN )′P( ẑN + z̃N + eN ) |sN−d]

= E[ẑ′N PẑN |sN−d] + E[z̃′N Pz̃N |sN−d] + E[e′N PeN ],

where z̃t := zt− ẑt , and the last equality holds because eN , ẑN and z̃N are uncorrelated
and eN is independent of sN−d . By Lemma 4.3.3, E[z̃′N Pz̃N |sN−d] does not depend
on the choice of control action. Letting αN = E[z̃′N Pz̃N |sN−d] + E[e′N PN eN ] yields
(4.39) for t = N .

Assume now that (4.39) holds for t = k + 1. The optimal cost-to-go at time t = k

can be derived as follows:

Jk (sk−d)

= minukE[x′k Pxk + u′kQuk + Jk+1 |sk−d] (4.41)

= minukE[x′k Pxk + u′kQuk

+ E
[
ẑ′k+1Pk+1 ẑk+1 |sk−d+1

]
+ αk+1 |sk−d]

= minukE[ẑ′k (P + A′Pk+1 A) ẑk + u′k (Q + B′Pk+1B)uk

+ u′k B′Pk+1 Aẑk + ẑ′k A′Pk+1Buk |sk−d] (4.42)

+ E[e′k Pek + ŵ
′
k Pk+1ŵk + z̃′k Pz̃k |sk−d]

+ E[αk+1(sk−d+1) |sk−d],

where ŵk = E[Adwk−d + Az̃k |sk−d+1], and by induction hypothesis the second
equality holds. By Lemma 4.3.3 and induction hypothesis, e′k Pek + ŵ′k Pk+1ŵk +

z̃′k Pz̃k does not depend on the control action ut . Therefore, we can just consider
minimizing the first term (4.42). The control action that minimizes this term is
given by (4.29), i.e.

uk = −(Q + B′Pk+1B)−1B′Pk+1 A ẑk, (4.43)

where

Pk = A′
[
Pk+1 + P − Pk+1B(Q + B′Pk+1B)−1B′Pk+1

]
A.

Substituting this control action uk into Jk , we obtain the optimal cost-to-go

Jk (sk−d) = E
[
ẑ′k Pk ẑk |sk−d

]
+ αk (sk−d) (4.44)
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with

αk (sk−d) = E[e′k Pek + ŵ
′
k Pk+1ŵk + z̃′k Pz̃k + αk+1��sk−d]

= E[e′k Pek + z̃′t A′Pk+1 Az̃t + w
′
t−d (Ad)′Pk+1 Adwt−d

− z̃′t+1Pk+1 z̃t+1 + z̃′k Pz̃k + αk+1(sk−d+1) |sk−d], (4.45)

where the second equality is obtained as follows. Given sk−d , the random variable
ŵk is the estimate of Adwk−d + Az̃k given sk−d+1, and the random variable z̃k+1 is
the resulting estimation error, i.e.

ŵk + z̃′k+1 = Adwk−d + Az̃k . (4.46)

Therefore, the weighted covariance of the estimation target equals the sum of the
weighted estimation error covariance and the weighted estimation covariance

E[(Adwk−d + Az̃k )′Pk+1(Adwk−d + Az̃k ) |sk−d]

= E[z̃′k+1 z̃k+1 |sk−d] + E[ŵ′k Pk+1ŵk |sk−d].

Combining above with

E[(Adwk−d + Az̃k )′Pk+1(Adwk−d + Az̃k ) |sk−d]

= E[z̃′t A′Pk+1 Az̃t + w
′
k−d (Ad)′Pk+1 Adwk−d |sk−d]

yields (4.45). By Lemma 4.3.3 and the induction hypothesis E[αk+1 |sk−d] =
E[αk+1 | s̄k−d], αk does not depend on the choice of control action. So, (4.39)
holds for t = k. �

From the proof of lemma, we can observe that, given any encoder, the optimal
decoder are essentially the optimal LQ controller for the sequence ẑt , which evolves
according to the dynamics

ẑt+1 = Aẑt + But + ŵt . (4.47)

In other words, the optimal decoder are the certainty equivalent controller for the
sequence zt , the estimation target of ẑt . When there is no delay in the control action,
i.e. d = 0, then this optimal decoder reduces to the certainty equivalent controller
for xt , as is given by [190].

Notice that Lemma 4.3.2 does not specify what an optimal encoder is. Also, seen
from the proof of Theorem 4.3.1, the first two terms in the lower bound (4.6) of
the optimal performance are tight for any delay d if the decoder-controller has the
structure (4.29).
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Remark 4.3.1 (Certainty equivalence). The definition of certainty equivalence and
its extension to quantized systems are given in [13, 190]. The optimal controller
structure in Lemma 4.3.2 is an extension of certainty equivalence to systems with
delay and quantization. The auxiliary sequence {zt } and Lemma 4.3.2 together
allow us to bound the objective value by studying an estimation problem of a Gauss-
Markov source and an LQ control problem of a fully observed system. The sequence
{zt } also plays an important role in Section 4.4.

Based on the optimal decoder-controller structure characterized in Lemma 4.3.2,
we propose a controller, referred to as the LQ controller, in Algorithm 2. The
encoder and decoder in Algorithm 2 use an adaptive quantizer generated by the
Lloyd algorithm [12, 51, 116] and estimate zt using recursive Bayesian estimation.
The encoder computes the prior density function2

f (zt |st−d−1) =
∫ ∞

−∞

f (zt, zt−1 |st−d−1)dzt−1 (4.48)

=

∫ ∞

−∞

f (zt |zt−1, st−d−1) f (zt−1 |st−d−1)dzt−1,

where f (zt |zt−1, st−d−1) can be computed by

f (zt |zt−1, st−d−1) = f (zt |zt−1)

= f (Azt−1 + Adwt−d−1 + ut−1 |zt−1).

Then, f (zt |st−d−1) is used to run the Lloyd algorithm [12, 51, 116] to find a quantizer
Qt that maps zt to st . Given the received codeword st−d at the decoder, the update
process computes the posterior density function

f (zt |st−d) =
f (zt, st−d |st−d−1)

f (st−d |st−d−1)
(4.49)

=
f (zt |st−d−1) f (st−d |zt, st−d−1)

f (st−d |st−d−1)

∝ f (zt |st−d−1) f (st−d |zt, st−d−1),

where f (zt |st−d−1) is the prior density function computed in (4.48), and f (st−d |zt, st−d−1)
is determined by the quantizer Qt . Finally, f (zt |st−d) is used to generate an estimate
of zt as follows:

ẑt = E[zt |st−d] =
∫ ∞

−∞

zt f (zt |st−d)dzt . (4.50)
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Algorithm 2 The LQ controller
Initialize:

1. Compute f (zd |s0) = N (0, σ2).

2. Set zd = 0, u0 = 0.

Encoder: At time t, the encoder performs the following procedures:

1. Update the auxiliary variable (4.30).

2. Generate the prior density function by (4.48).

3. Run the Lloyd algorithm to obtain Qt .

4. Send the codeword st = Qt (zt ) to the decoder.

5. Generate the posterior density function by (4.49).

Decoder: At time t, the decoder receives the codeword st−d that was generated d
sampling intervals before, and performs the following procedures:

1. Compute the prior density function by (4.48).

2. Run the Lloyd algorithm to recover Qt .

3. Use the delayed codeword st−d to generate the posterior density function by
(4.49).

4. Calculate the estimate ẑt of zt by (4.50).

5. Compute the control action:

ut = −(Q + P∗)−1P∗A ẑt . (4.51)

The proposed LQ controller may not be optimal, but can be shown to achieve
near optimal performance by comparing with the lower bound (4.6) of the optimal
performance. As mentioned in the above, the first two terms of the lower bound are
tight for any delay d if the decoder-controller has the structure (4.29), which is the
case for the LQ controller. Thus, the performance gap to the lower bound reduces
mostly to the difference between the achievable (zt − ẑt )G∗(zt − ẑt ) and the lower
bound of E[(zt − ẑt )G∗(zt − ẑt )].

2With a slight abuse of notation, we use f (x |y) to denote both the probability density function
of a random variable x conditioned on another random variable y and the function that is computed
by the controller to approximate the actual density function.
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Compared with the the `∞ controller that can only handle bounded disturbance, the
Gaussian distribution has infinite support, i.e. the LQ controller can handle large
disturbance. However, the LQ controller is demanding in both computation and
memory, due to the use of an adaptive quantizer that is necessary for stabilizing an
unstable system if the disturbance has an infinite support [136].

4.4 A hybrid controller
Wehave seen from the previous sections that the `∞ controller has low time and space
complexity but can only handle bounded disturbance, while the LQ controller can
reject arbitrarily large disturbance but incursmuch higher time and space complexity.
An interesting question that arises from these differences is if it is possible to design
a controller that has the advantages of both controllers. In this section, we take a
hybrid approach to design such a controller.

Specifically, we assume that the typical disturbance is relatively small and covered
by a bounded set, while the large disturbance (outside of the bounded set) is a rare
event that has a (tail) Gaussian distribution. Under this assumption, we construct a
hybrid controller that interpolates between the `∞ controller and the LQ controller.
Using both theoretical bounds and numerical simulations, we show that the hybrid
controller can achieve a sweet spot in the robustnes-complexity tradeoff, i.e. reject
occasional large disturbance while operate with low complexity most of the time.

We consider the setting when the LQ cost function has no control cost, i.e. Q = 0
in (4.5). This condition yields the optimal LQ controller

ut = −Aẑt (4.52)

to replace (4.51) in Algorithm 2. This simplification allows the `∞ and LQ con-
trollers to be considered in an unified framework.

The proposed hybrid controller has two modes: normal mode that runs the `∞
controller (Algorithm 1) and acute mode that runs the LQ controller (Algorithm 2).
We now explain the switching policy between the `∞ and LQ controllers using a
bridging variable zt and a design parameter L. Notice that the sequences {zt } in the
`∞ and LQ controllers have identical role (storing the sum of the quantization error
from past control action and the scaled disturbance Adwt−d−1), and thus can serve
as a bridging variable to connect the two controllers. Re-define the sequence {qt } as

qt+1 = Aqt + ut + Ad+1wt−d−1 (4.53)
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withwt = 0 for t < 0. The definition (4.53) does not rely on the particular realization
of the controller, so qt is well-defined in both Algorithms 1 and 2. Using qt , zt can
be written as

zt = Adwt−d−1 + qt (4.54)

with the zt = 0 for t ≤ d. Thus, zt in Algorithm 2 satisfies

zt+1 = Azt + Adwt−d + ut

= Adwt−d + Aqt + ut + Ad+1wt−d−1

= Adwt−d + qt+1, (4.55)

where the first equality follows form (4.30), the second equality from (4.54), and the
third equality from (4.53). Therefore, zt takes the same value in both Algorithms
1 and 2. The proposed controller sets a threshold on the absolute value of zt to
determine whether the `∞ controller or the LQ controller should be used.

Let the design parameter L ∈ R be the size of the disturbance up to which the
controller stays in normal mode, i.e. normal mode when ‖w‖∞ ≤ L. Since
‖wt−d−1

0 ‖∞ ≤ L implies |zt | ≤ Ψ(L)/A, equivalently |zt | > Ψ(L)/A implies |wτ | ≥
L for some τ ≤ t − d − 1. Thus, the condition

|zt | > Ψ(L)/A (4.56)

is a sufficient condition for ‖wt−d−1
0 ‖∞ > L. We use this sufficient condition to

define the switching policy as follows:

mode =



‘normal′ |zt | ≤ Ψ(L)/A,

‘acute′ |zt | > Ψ(L)/A.
(4.57)

The proposed hybrid controller is described in Algorithm 3.

The design parameter L impacts the system performance and controller complexity,
and there exists a tradeoff between the two. We will next discuss its choice and the
resulting performance and complexity tradeoff.

4.5 Performance analysis of the proposed hybrid controller
In this section, we analyze the behavior of the hybrid controller using the switching
time from normal to acute mode and the recovery time from acute to normal mode.
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Algorithm 3 The hybrid controller
Initialize: mode ← ‘normal′

Ψ(L) ← {|Ad+2 |(2R − |A|)−1 + |Ad+1 |}L
for t ∈ N do
if mode = ‘acute’ then
Perform the LQ controller (Algorithm 2)
if |zt | ≤ Ψ(L)/A then

mode ← ‘normal′

end if
else if mode = ‘normal’ then
Perform the `∞ controller (Algorithm 1)
if |zt | > Ψ(L)/A then

mode ← ‘acute′

end if
end if

end for

We denote the set of times at which the controller switches from normal to acute
mode as

Ts = {t ∈ N : |zt | > Ψ(L)/A & |zt−1 | ≤ Ψ(L)/A},

and the set of time at which the controller switches from acute to normal mode as

Tr = {t ∈ N : |zt | ≤ Ψ(L)/A & |zt−1 | > Ψ(L)/A}.

Let tr ∈ {0}∪Tr be the beginning of a normal mode, the switching time Ts is defined
as

LTs (tr ) = min{t > tr : |zt | > Ψ(L)/A} − tr . (4.58)

Let ts ∈ Ts be the beginning of an acute mode, the recovery time Tr is similarly
defined as

LTr (ts) = min{t > ts : |zt | ≤ Ψ(L)/A} − ts . (4.59)

Long switching time and short recovery time imply that the controller stays in normal
mode most of the time, and thus requires less computation and memory. Therefore,
the controller complexity can be roughly characterized by the time of operating in
acute mode.

Let a random variable w be drawn from the same distribution with the disturbance
wt , i.e. w,wt

i.i.d.
∼ N (0, σ). The following result characterizes the relation between

the design parameter L and the expected switching time E[Ts (tr )].
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Theorem 4.5.1. Define a mappng T̂s : R→ R+

T̂s (tr ) =



d + P( |w | > L)−1 tr = 0,

P( |w | > L)−1 tr ∈ Tr .

The expected switching time Ts (tr ) is lower bounded by

E[Ts (tr )] ≥ T̂s (tr ), (4.60)

and the lower bound becomes tight as the bandwidth R→ ∞.

The proof of Theorem 4.5.1 uses the concept of majorization to approximate the
switching time by geometric distribution. Theorem 4.5.1 suggests that the expected
switching time can be approximated by E[Ts (tr )] ≈ T̂s (tr ).

Proof. (Theorem 4.5.1) We first prove the lower bound for τ = 0. Let {Ek } be the
event that the controller switches at time k, i.e.

REk = {|zt | ≤ Ψ(L)/A for all t < k and |zk | > Ψ(L)/A}. (4.61)

Notice that {Ek } a sequence of a mutually exclusive set of events, and that P(Ek ) = 0
for k ≤ d (since zt = 0 for t ≤ d by definition). Let {Fk } be the event that the
disturbance first exceeds L in amplitude at time k, i.e.

Fk = {|wt | ≤ L for all t < k and |wk | > L}. (4.62)

The sequence {Ek } is a mutually exclusive set of events, and limτ→∞
∑τ

i=0 P(Ei) = 1.
Same holds for {Fk }, i.e. limτ→∞

∑τ
i=0 P(Fi) = 1. From ∪i≥k Ei ⊂ ∪i≥k Fi, we obtain

∞∑
i=k−d−1

P(Fi) ≤
∞∑

i=k

P(Ei) (4.63)
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for any k ∈ N. Using (4.63), the expected switching time can be bounded below by

E[Ts (τ)] =
∞∑

k=0
k P(Ek )

=

∞∑
k=0

k P(Ek ) −
∞∑

k=0
k P(Ek+d) +

∞∑
k=0

k P(Ek+d)

= d +
∞∑

k=0
k P(Ek+d)

= d +
∞∑

k=1

∞∑
i=k

P(Ei+d)

≥ d +
∞∑

k=1

∞∑
i=k

P(Fi−1)

= d +
∞∑

k=1
k P(Fk−1)

= d +
∞∑

k=1
k

(
1 − P(|w | > L)

) k−1P( |w | > L)

= d + P( |w | > L)−1,

where the last equality can be interpreted as computing the mean of a geometric
distribution with failure probability P(|w | > L).

Next, notice that |zt | ≤ Ψ(L)/A and |wt−d | ≤ L implies |zt+1 | ≤ Ψ(L)/A. Thus, we
can apply the argument in τ = 0 to obtain the lower bound for τ ∈ T :

E[Ts (τ)] ≤ P(|w | > L)−1.

Next, we prove the convergence for τ = 0, i.e. E[Ts (0)]
R→∞
→ d+P( |w | > L)−1. Since

d+
∑∞

k=1
∑∞

i=k P(Ei+d) ≥ d+
∑∞

k=1
∑∞

i=k P(Fi−1) is the only inequality from the above
analysis, it is suffice to show that ���

∑∞
k=1

∑∞
i=k P(Ei+d) −

∑∞
k=1

∑∞
i=k P(Fi−1)��� → 0.

By ‖q‖∞
R→∞
→ 0 and zt → Adwt−d−1, P(Ft−d−1) → P(Et ). This implies that

������

∞∑
i=k−1

P(Fi−1) −
∞∑

i=k

P(Ei+d)
������

=

������
*
,
1 −

k−2∑
i=0
P(Fi)+

-
− *

,
1 −

k−1∑
i=0
P(Ei+d)+

-

������
→ 0 as R→ ∞
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holds for any k ∈ N. Since both
∑∞

k=1
∑∞

i=k P(Ei+d) and
∑∞

k=1
∑∞

i=k P(Fi−1) are
bounded, for any ε > 0 there exits a sufficiently large T such that τ > T implies

∞∑
k=τ

∞∑
i=k

P(Ei+d) ≤ ε/4 and
∞∑

k=τ

∞∑
i=k

P(Fi−1) ≤ ε/4,

and sufficiently large R̄ such that R > R̄ implies

τ∑
k=1

∞∑
i=k

P(Ei+d) ≤ ε/4 and
τ∑

k=1

∞∑
i=k

P(Fi−1) ≤ ε/4,

which jointly yields

������

∞∑
k=1

∞∑
i=k

P(Ei+d) −
∞∑

k=1

∞∑
i=k

P(Fi−1)
������
≤ ε . (4.64)

The case for τ ∈ T follows the same argument and is omitted here. �

Similarly, the expected recovery time Tr (·) can be approximated by

E[Tr (·)] ≈ T̂r = P( |w | ≤ L)−1. (4.65)

Recall from (4.55) that the evolution of zt follows zt+1 = Adwt−d + qt+1 where qt+1

is a function of zt . Assuming the quantizer (defined from the encoder and decoder)
is near-optimal, a large zts at the beginning of the an acute mode is approximately
reduced by rate |A|2−R per unit time and by |Aτ |2−τR after τ times. Thus, for
sufficiently large |A|2−R, the term Adwt−d in (4.55) dominates. In this situation,
observing a small disturbance, i.e. |wt−d | ≤ L, is enough to lessen the value of
zt below Ψ(L)/A. This explains why the recovery time can be approximated by a
geometric distribution with success probability P(|wt | ≤ L).

Fig. 4.1 shows a comparison between the empirical value of the expected switching
time Ts (0) and the theoretical approximation T̂s (0) and between the empirical value
of the expected recovery time Tr (·) and the theoretical approximation T̂r . We see
that the approximation becomes tight when the bandwidth R is large enough.

4.6 Tradeoffs between performance versus complexity
We now take a look at the performance of the proposed controllers (Algorithms 1-3)
under the mixed disturbance:

wt = vt + rt (4.66)
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Figure 4.1: The accuracy of the theoretical approximations (4.60) of the switching
time and (4.65) of the recovery time for a system with A = 1 and d = 1. The
empirical values of Ts and Tr are first generated by averaging 100 trials for different
values of L ∈ [0.1, 2] and R ∈ {1, 2, · · · , 9}. Then, the approximation errors |Ts− T̂s |

and |Tr − T̂r | are averaged over all L, and their mean values are plotted for different
values of R.

with vt
i.i.d.
∼ N (0, σ2

v ) and ‖r ‖∞ ≤ 1. We use this type of structured disturbance
to model the common situation where the system experiences bounded disturbance
most of the time and large disturbance occasionally (i.e. with small probability).

For a feedback system with perfect communications, the optimal `∞ controller and
LQ controller for the scalar system (4.1) are identical when the control cost is not
considered. However, with communication constraints, the optimal `∞ controller
and LQ controller are radically different, and themixed disturbance poses significant
challenge in encoding/decoding strategies as the system state can be defined neither
in a worst-case framework nor in a stochastic framework.

The `∞ controller cannot stabilize such systems because there is a non-zero prob-
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Figure 4.2: The switching and recovery times as a function of L for a system with
A = 1, d = 1, and R = 6. The averages over 100 trials are plotted for the empirical
values.

ability for the fixed quantizer to saturate. The performance of the LQ controller
and the proposed hybrid controller is compared in Fig. 4.4. The LQ controller has
degraded performance when there exists an additional disturbance r that cannot
be well-defined using probability density function. However, the proposed hybrid
controller consistently achieves robust performance under such disturbance. By
exploiting the additional dimension in the controller design space, the right in-
egration of stochastic (LQ) and worst-case (`∞) enables a robust controller under
communication constraints.

The above theoretical approximations suggest that, for sufficiently large bandwidth
(|A|2−R � 1), a greater L implies larger switching time (from Ts (tr ) ≈ T̂s (tr ) =
P( |wt | > L)−1) and smaller recovery time (from Tr (ts) ≈ T̂r (ts) = P( |wt | ≤ L)−1).
This can be empirically verified; see, e.g., Fig. 4.2. Since the switching (recovery)
time is an increasing (decreasing) function of L, the complexity of the hybrid
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Figure 4.3: The tradeoff between complexity (as implied by the switching time and
the recovery time) and performance (as represented by the worst-case `∞ cost in
normal mode) for a system with A = 1 and (d, R) = {(1, 1), (2, 2), (3, 3)}.

controller decreases as L increases.

One the other hand, the decrease in controller complexity comes with cost of de-
graded performance because a larger L also implies a coarser quantizer in Algorithm
1 (and thus larger quantization error). Specifically, in normal mode,

|xt | ≤ *
,

d∑
i=0
|Ai | + |Ad+1 |(2R − |A|)−1+

-
L. (4.67)

So, the worst-case `∞ cost in normal model is an increasing function of L, and
a smaller L leads to better performance. This tradeoff between performance and
complexity is as shown in Fig. 4.3. It is noteworthy that a significant increase
(decrease) in switching (recovery) time can be achieved with small performance
degradation (notice that the vertical axes are in log-scale).
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Figure 4.4: Performance of the hybrid controller. The figure on the top shows
the tradeoff between the normal mode performance (in the `∞ cost) and the
approximated acute mode ratio T̂s/(T̂r + T̂s) for a system with A = 1 and
(d, R) = {(1, 1), (2, 2), (3, 3)}. The figure on the bottom shows the performance
(in the LQ cost) for a system with A = 1, d = 1, R = 3 and under the mixed
disturbance with different variances σ2

v . The averaged LQ costs for 100 trials are
plotted.

In summary, we have considered robust control design for linear systems with de-
layed and rate constrained communications between the observer and the controller.
We first take a stochastic approach and propose an LQ controller that can handle
arbitrarily large disturbance but has large complexity in time and space. This is
different from the `∞ control (a deterministic approach) that previous work have
shown to have low time/space complexity but can only handle bounded disturbance.
The differences in robustness and complexity of the LQ and `∞ controllers motivate
the design of a hybrid controller that interpolates between the `∞ and LQ controllers.
Using both theoretical bounds and numerical examples, we show that the hybrid
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controller can achieve a sweet spot in the robustness-complexity tradeoff, i.e. reject
occasional large disturbance while operating with low complexity most of the time.
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C h a p t e r 5

CONNECTING THE COMPONENT AND SYSTEM SATS IN
SENSORIMOTOR CONTROL

In this chapter, we build upon the results of Chapter 2 and Chapter 3 to study how
the hardware SATs impact the system SATs for different types of sensorimotor tasks.
We first consider reaching tasks in two different regimens: when nerve signaling is
the bottle neck (Section 5.1), and when muscle actuation is the bottleneck (Section
5.2). Then, we study riding a mountain bike (Section 5.4) and visual tracking of a
moving object (Section 5.5).

5.1 Reaching tasks with bottleneck in nerve signaling
In a reaching task, the subjects’ goal is to move their hand or cursor to a target as
rapidly and accurately as possible. The control loop involved in a reaching task is
shown in Fig. 5.1. There exist tradeoffs between the reaching speed and accuracy,
where the speed of reaching is quantified by the reaching time Tr (i.e. time taken to
reach the target area), and the accuracy is quantified by the radius of the target W .
Such tradeoffs have been extensively studied in the context of Fitts’ law [60], which
states that the reaching time follows

Tr = p + q log2(2D/W ), (5.1)

where D is the distance of the target, p and q are fixed constants, and

F = log2(2D/W ) (5.2)

is the Fitts’ index of difficulty. It shall be noted that the logarithmic relation between
D/W and Tr allows faster speed to be achieved with a small decrement in accuracy.

Next, we show how the reaching speed and accuracy is achieved despite slow or
inaccurate hardware when nerve signaling is the bottleneck in control. We model
this setting using the feedback control system in Section 3.3, in which the controller
is assumed to have delay T and data rate R. From Section 3.3, the reaching time Tr

is lower-bounded as follows:

sup
|d |≤D

Tr ≥ T + F/R, (5.3)
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which recovers Fitts’ law. Interestingly, the lower bound decomposes into two terms:
the first term T is only a function of the total delay and thus can be considered as
the delay cost; the second term F/R is only a function of the signaling rate and thus
can be considered as the rate cost. Intuitively, this formula can be seen as follows:
identifying a target of width W in the area [−D, D] requires F bits of information,
and transmitting F bits of information requires F/R time steps with additional T

time steps of (transmission) delay in the feedback loop.

By combining the component-level SATs in (2.5) and the system-level SATs in
(5.3), we can predict how the SATs in neural signaling impact sensorimotor control
in Fig. 5.2a. Fig. 5.2 suggest that axon compositions that minimize either the
signaling delay or the rate alone suffer from large delay or rate costs, rendering the
system suboptimal. Conversely, the minimum reaching time is achieved when both
the signaling delay and rate are chosen to be moderate levels, leading to a minimum
delay plus rate costs.

From Fig. 5.2a, we observe that the signaling delay Ts affects the reaching time Tr in
a linear manner, and the delay cost of Tr increases as Ts grow. On the other hand, the
signaling rate R affects Tr in an inversely proportional manner, and the rate cost of
Tr decreases as Ts ∝ R grow. Thus, Tr takes a minimum value when both the delay
cost and rate cost are controlled to a moderate level. This theoretical prediction is
then verified using reaching experiments. During the experiments, the subjects are
asked to control a steering wheel with added delays, quantization, and both, and
their reaching times for each case are shown in Fig. 5.2b (see Section 5.3 for the
experimental setting).

5.2 Reaching tasks with bottleneck in muscle actuation
Formula (5.3) assumes that the SATs in nerve signaling are the bottleneck in the
reaching task. Although this assumption is valid for certain eyemovements or small-
distance reaching, in many other types of reaching tasks, muscle actuation SATs is
the major limiting factors in the reaching SATs. To understand how the muscle
SATs impact the reaching SATs, we model the sensorimotor system by (3.1) with
limited muscle actuation SATs. The muscle SATs is obtained from (2.34) for cases
with either uniform or diverse motor units. We compare these two cases and their
resulting reaching SATs in Fig. 5.3a. It can be observed that muscles of uniform
motor units give rise to a linear SAT, which is not consistent with the logarithmic
form of Fitts’ law. On the contrary, a bundle of motor units with diverse sizes yields
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Figure 5.1: Block diagram of the sensorimotor control model that simulates the
reaching task. Each box is a component in the model that communicates (vision),
computes (controller), or actuates (muscles) with potentially limited speed and
accuracy.

a DSS alike Fitts’ formula, in which fast reaching can be performed accurately.

We confirmed the benefit of diversity using reaching experiments. In the experi-
ments, subjects were asked to move to a target of fixed width as fast as possible
under two settings: using uniform speed or diverse speeds (see Section 5.3 for the
experimental setting). Fig. 5.3b compares their reaching SATs when only one level
of speed was allowed versus when two levels of speed were allowed versus. The
performance under diverse speed largely outperforms that under uniform speed.
Moreover, a uniform speed gave rise to a linear SAT which is not consistent with
the logarithmic form of Fitts’ law, while the flexibility to use diverse speeds yielded
a DSS like Fitts’ law, in which fast reaching can be performed accurately. Although
the logarithmic form of Fitts’ law has been confirmed in many experiments and
explained using various models (see [59, 76, 96, 120, 202] and references therein),
our results reveal that Fitts’ law arises from DSSs, in which the hardware diversity is
key for achieving fast and accurate performance using slow or inaccurate hardware.
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(a) Theoretical SAT in reaching. Theoretical SATs in the reaching task. The delay cost
(blue line), rate cost (red line), and the total cost (dashed black line) in (5.3) are shown with
varying component SAT T = (R − 1)/8.

(b) Empirical SAT in reaching. Data obtained from 4 subjects who performed the task over
a range of time delays and quantization rate errors ((See Fig. S1 for data from individual
subjects). The blue line shows the performance with added actuation delay T ; the red line
shows the performance with added quantization with the rate R; and the black line shows
the performance with added delay and quantization subject to the SAT T = (R − 1)/8. The
shaded region around the lines is standard errors.

Figure 5.2: Reaching SATs imposed by nerve signaling SATs.



60

This relation of DSSs and logarithmic laws potentially provide new insights into
other logarithmic laws observed.

5.3 Reaching experiments: materials and methods
Weverified the theory using reaching task experiments (Fig. 5.4). Subjects are asked
to steer a wheel to reach and stay in the gray zone (target) as quickly as possible.
The target randomly appears on one side of the screen with varying center positions
across trials. We externally constrained the delay and date rate of the feedback loop
by manipulating the gray zone in Fig. 5.4b.

Setting for Fig. 5.2b. To test the effect of having a delay and limited data rate in
the feedback loop, we conducted two types of experiments: 1) reaching with added
delay, and 2) reaching with added data rate limitation. In 1) reaching with added
delay, the visual display was delayed for 1, 1/8, · · · , 5/8 seconds. To be noted, this
delay did not influence subjects motion execution, and subjects even did not notice
the visual delay. In 2) reaching with added data rate limitation, we added the data
rate of 1, 2, 3 and 6 bits per Tinterval (Tinterval = 350ms). For example, in the setting
of R = 1, the initial width of gray zone is W = Wscreen/21, where Wscreen is the
width of screen (Wscreen = 20 for our test). After a time interval of Tinterval , a new
data package arrives and the width of the gray zone reduces to W = Wscreen/22.
We repeat this procedure until W = Wscreen/26. We tested 50 trials for each setting
and measured the reaching time. The subject-specific internal delay was estimated
for each subject by the minimal time to reach the target area with no external delay
and with the maximum rate (mean = 1.17s, ste = 0.06). The internal delay was
subtracted for the following analysis. Plots of the mean movement time from a
representative subject are shown in Fig. 5.2b , and the average of all four subjects is
shown in Fig. 5.5b.

Setting for Fig. 5.3b. To test the effects of diverse muscles on system performance
with experiment, we considered two types of muscles: uniform muscle with a
uniform actuation speed V0 = 2.5, and diverse muscles realized by two actuation
speeds V0 = 2.5 and V1 = 5. We set the target distance to be D = 12 and varied the
target width W . The performance from both cases is compared in Fig. 5.3b.

5.4 Tracking tasks
In a driving task, the subjects’ goal is to follow desired trajectory in the presence of
uncertainty and noise. We define the error dynamics x(t) from the system evolution
of the rider or eye movement that must track a reference trail or trajectory with small
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(a) Theoretical DSSs in reaching. The SAT is compared for systems implemented by a
muscle with uniform or diverse motor units.

(b) Empirical DSSs in reaching. The plot shows the performance of a subject who performed
the reaching task with uniform or diverse speeds, which is designed to mimic the case of
uniform or diverse muscles, respectively.

Figure 5.3: Diversity Sweet Spots (DSSs) in reaching.
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(a) Photo of a subject performing the reaching task.

(b) Monitor display of the reaching task.

Figure 5.4: The experimental setting of the reaching task. The green line indicates
the player’s position and the gray zone is the desired position. The subjects’ goal is
to steer the wheel to reach and stay in the gray zone as fast as possible.
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(a) An example of error dynamics measured in an experiment. The error x(t) is defined as
the difference between the player’s position and the mid-point of the desired position.

(b) Empirical SAT in the reaching task. The blue line shows the error in a delayed system
with perfect communication for varyingT ; the red line shows the error in a quantized system
with no delay but varying information rate R; and the black line shows the error in a delayed
and quantized system with the component SAT T = (R − 1)/8.

Figure 5.5: Additional experimental results



64

error despite unseen bumps/disturbances. We model the setting by the system in
Section 3.4. The worst-case error max‖w‖∞≤1 ‖x‖∞ is lower-bounded by

max(0,T + 1) +
(
2R − 1

)−1
, (5.4)

where T := Ts + Ti − Ta is the total delay from the disturbance to the control action,
and R is the data rate. The worst-case framework models risk-averse sensorimotor
behaviors, such as riding a mountain bike on a cliff/trail, in which staying on the cliff
is necessary for survival even in the presence of the worst possible uncertainty [134,
166, 167, 201]. Alternatively, we can also consider the average-case framework,
which models risk-neutral sensorimotor behaviors, such as riding a mountain bike
across a broad field, in which there is no fatal risk of leaving the field [185]. In this
case, the mean squared error limn→∞(1/n)

∑n
t=1 E[x(t)2] is lower-bounded by

max(0,T + 1) +
(
22R − 1

)−1
. (5.5)

The proof of (5.5) and the performance bound for a more general case of a , 1
are given in Section 4.3. The performance bounds in both settings ((5.4)–(5.5)) are
qualitatively similar: both bounds decompose into two terms. The shared first term,
max(0,T + 1), is only a function of the total delay and thus can be considered as the
cost due to delay. The second terms, (2R − 1)−1 and (22R − 1)−1, are only functions
of the signaling rate and can be considered as the cost due to rate limits.

By combining the component SATs in (2.5) and the system SATs in (5.4), we can
predict the influence of the neural signaling constraints on sensorimotor control,
shown in Fig. 5.6b. The prediction is also verified using driving game experiments
(see Materials and Methods for more details). The subjects played the driving game
under three different cases: with added delay, with added quantization, and with
added delay and quantization. Their trajectories are measured for each case, and
the errors are computed and shown in Fig. 5.6B. In both theory and experiment,
increasing delay in the feedback loop rises the delay errors, while increasing rate
leads to a large decrease in the rate errors. The errors for the cases of added
delayed and quantization also sum up to the error in the case of added delay and
quantization, as predicted by the theory. From Fig. 5.6, we see that delays can cause
small disturbances to escalate into larger errors [106], and the familiar notion that
bits are powerful in the context of control. Furthermore, the minimum reaching
time or the minimum error is achieved when the deleterious effects of the signaling
delay and inaccuracy are both controlled within a moderate range. Consequently,
constrained by component SAT (2.5), the optimal axon composition is achieved
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at a sweet spot of intermediate levels of signaling delay and rate. Conversely,
minimizing either the signaling delay or the rate leads to suboptimal performance,
suggesting the importance of studying neurophysiology and sensorimotor control
from a holistic perspective.

5.5 Visual tracking of a moving object
In this section, we study the effective layered architecture of the oculomotor system.
The oculomotor system has two major feedback loops: a VOR feedback loop that
compensates for head motion, and a visual feedback loop through the visual cortex
that tracks a moving object (Fig. 5.7). From a control perspective, an important
difference of the two loops is their levels of advanced warning. VOR feedback
reacts after head moves, while the visual environment is highly correlated over
time and is thus predictable. We refer to the regime of VOR feedback as delayed
reaction, in which Ti − Ta > 0, and the uncertainty w(t) becomes accessible to
the controller after w(t) affects the error dynamics. We refer to the regime of
visual feedback advanced planning in which Ta − T1 ≥ 0, and the uncertainty
w(t) becomes accessible to the controller before w(t) affects the error dynamics.
These two regimes are qualitatively different in their optimal choice of Ts and R for
achieving optimal robust performance, as shown in Fig. 5.8 and summarized below.

(i) Delayed reaction: When the net delay Ti − Ta > 0 is large or the system is
unstable (|a | > 1), the total error can be much larger than the size of the uncertainty
‖w‖∞ and goes to infinity as Ti → ∞. This large error amplification is consistent
with the all-too-familiar observation that even a small bump on a trail can cause a
cyclist to lose control of the bike and crash. As Ti (> 0) increases, the delay error
increasingly dominates the total error. Since the delay error largely contributes to
the total error, the total error is minimized when Ts is set to be small in return for
small R. Therefore, a feedback loop in this regime performs better when it is built
from a few large axons. Interestingly, the flat optimal delay/rate within the delayed
reaction regime suggests that optimal performance can be achieved using one type
of nerve composition for a broad range of advanced warnings. This property is
beneficial because the net delay (defined from advanced warning) differs across
different sensorimotor tasks.

(ii) Advanced planning: When the net warning Ta − Ts > 0 is large, the total error
approaches zero as R→ ∞. This large disturbance attenuation is consistent with the
observation that a cyclist can avoid obstacles given enough time to plan a response,
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e.g. route a path around them or brace against their impact. Given sufficiently large
advanced warning Ta, the rate error increasingly dominates the total error because
the growth in Ts incurs no additional delay error. Since the rate error contributes
largely to the total error, the total error is minimized when the signaling rate R is set
to be large at the expense of large signaling delay Ts. Therefore, a feedback loop in
this regime performs better when it is built from many small axons.

This optimal nerve signaling speed or accuracy is also qualitatively consistent with
the anatomy of the human oculomotor system (Fig. 2.1a). The vestibular nerve,
which transmits motion information from the inner ear to the vestibular nucleus
in the brainstem, has 20, 000 axons with mean diameter 3 µm and coefficient of
variation 0.4 µm. In contrast, the optic nerve carrying visual signals from the
retina has approximately 1 million axons with mean diameter 0.6 µm and coefficient
of variation 0.5 µm, significantly smaller but more numerous and with greater
variability [185]. As a consequence, the visual feedback is slower (approximately
100 ms delay) but more accurate than the VOR feedback (approximately 10 ms
delay) [19]. This diversity in control performance can also be observed in two
simple tests: moving one’s hand left and right across the visual field with increasing
frequency while holding the head still (Test 1); and shaking the head back and forth
(in a ’no’ pattern) at increasing frequency while holding the hand still (Test 2). In
Test 1, the hand starts to blur at around 1-2 Hertz due to delays in tracking. In
Test 2, blurring due to the inability to compensate for fast head motion occurs at a
much higher frequency. This difference illustrates that the visual cortex feedback
responsible for Test 1 (object tracking) has lower levels of tolerable delays than
the VOR feedback responsible for Test 2 (head motion compensation). However,
though slower, the visual cortex feedback is more accurate than the VOR feedback.
This explains why standing on one leg with closed eyes is more difficult than with
eyes open.

5.6 Riding a mountain bike to follow a trail
We simulate the task of riding a mountain bike using the driving game experiments.
The control system associated with the task is shown in Fig. 5.9. Specifically, the
error dynamics is given by

x(t + 1) = ax(t) + uL (t) + uH (t) + w(t) + r (t − Ta), (5.6)

where w(t) captures the disturbance due to trail bumps and r (t) captures the cur-
vature of the desired trajectory. There are two major feedback loops that act to
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control the error x(t): a reflex feedback loop that compensates for bumps, and a
planning feedback loop that determines which trajectory to follow. These feedback
controllers can be written as

uh(t) = H (r (0 : t − Th + Ta), u(0 : t − 1))

u` (t) = L(w(0 : t − T` − Tc), u(0 : t − 1))

u(t) = Qm(Q` (u` (0 : t)),Qh(uh(0 : t))).

(5.7)

Here H is a high-layer planner and L is a lower-layer disturbance compensator. The
object position r (t) is accessible to the controller with advanced warning Ta, which
models the predictability of the object’s motion.

The accuracy constraint of each controller is modeled by quantizers Q`/Qh with
signaling rates R`/Rh. The commands fromboth controllers are put into action by the
cyclist’s muscles, the accuracy of which is modeled by a quantizerQm with signaling
rate Rm. Let R̄` and R̄h be defined by T̄` := T` + Tc, R̄` := min(R`, Rm), T̄h :=
Th − Ta, and R̄h := min(Rh, Rm). In our driving task experiments where a = 1 with
sufficiently large advanced warning Ta, the state-deviation sup‖w‖∞≤ε,‖r ‖∞≤1 ‖x‖∞
achievable by the controller (5.7) is lower-bounded by{

T̄` +
1

2R̄` − 1

}
δ +

1
2Rh − 1

. (5.8)

Intuitively, this result follows from the decomposition of the problem described
in (5.8) into two independent sub-problems, one for each of the feedback loops
involving H and L. (See the Supplementary Information for a more general case of
a , 1.)

To confirm the errors from each loop sum up to be the the total error, we designed
three types of driving experiments: with bump only, with trail only, and with both
bump and trail. The sum of errors from the bump-only and trail-only showed no
significant difference when compared to that of both-bump-and-trail (paired t-test,
t=0.21, p=0.83). The experimental results are shown in Fig 5.10. The results
confirm that the two feedback loops can be analyzed separately.1 These results,
together with those of Fig. 5.6, validate (5.8).

The separation of (5.8) into the individual errors caused by two sub-systems allow
us to analyze the optimal nerve compositions of the two feedback loops as follows.
The reflex feedback typically operates in the regime of delayed reaction, as reflexes

1Such separation of different feedback loops is common in many processes, e.g. [91].



68

often sense bumps only after the bike has hit them. The planning feedback typically
works in the regime of advanced planning, as the bike’s trajectory can often be seen
in advance. Similar to the case of the oculomotor system, the reflex feedback has
better performance when it is designed to have a small signaling delay at the expense
of a low signaling rate; in contrast, the planning feedback is constructed to have a
large signaling rate at the expense of a large signaling delay [126, 161].

5.7 Driving experiments: materials and methods
We developed a driving game platform that simulates riding a mountain bike [112].
The platform is cheap to build and easy to implement. The code and man-
ual to build our platform are distributed in https://github.com/Doyle-Lab/
WheelConhttps://github.com/Doyle-Lab/WheelCon.

In the experiments, subjects look at a PC monitor and steer a wheel to follow the
desired trajectory (Fig 5.6b. The trajectory has a constant velocity for each segment
but abruptly switched between right and left segments.

Setting for Fig 5.6b. The effects of delay or quantization were studied by inserting
additional delay or quantizer between the wheel (control input) and the actual
position (target of control). The delays were set to be −4,−3, · · · , 2 sampling
intervals, respectively, where each sampling interval is 16.67 ms. Here, negative
delays are realized by added advance warning in vision input, while the positive
delays by adding an external delay in actuation. The signaling rates of the quantizer
were set to be 1, 2, ..., 7 bits per unit time. Each set of parameters lasted for 30
seconds before switching to a new set of parameters. Within the 30 seconds, we
removed the first 10 seconds from the performance measure in order to eliminate
the switching and learning effects. Before each experiment, subjects were trained
until their performance stabilized. Plots of the mean squared error between the road
(the desired position) and the current position of the player are shown in Fig. 5.6b.
Additionally, we tested SAT for the deterministic settings with the component-level
SAT T = (R − 5)/20, shown in Fig 5.12.

Setting for Fig 5.6b. To study how the high-layer planning and the low-layer
disturbance rejection combines, we studied the setting involving bump and trail
changes. We studied three settings: with bump disturbance, with trail changes,
and both. In last setting, we generated the bump disturbance and trail changes
independently. The bumps were generated by pushing the steering wheel at a
constant torque of 0.5 second. Our experimental results are shown in Fig. 5.10.
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(a) Theoretical SATs in the tracking (driving) task. The delay error (blue), rate error (red),
and the total error (black) in (5.5) are shown with varying component SAT T = (R − 5)/15.

(b) Empirical SATs in the tracking (driving) task. The blue line shows the error in a
delayed system with perfect communication varying only T ; the red line shows the error in
a quantized system with no delay but varying signaling rate R; and the black line shows the
error in a delayed and quantized system with the component SAT T = (R − 5)/15. Also see
Fig. 5.12 for the deterministic setting.

Figure 5.6: System SATs in sensorimotor control
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Figure 5.7: Cartoon diagram of two major feedback loops involved in the eye
movement: visual cortex feedback and vestibular-ocular reflex (VOR) feedback.
Objects are tracked using the slow visual cortex feedback, while head motion is
compensated for by the much faster VOR feedback.
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Figure 5.8: Delayed reaction vs. advanced planning. Comparison between the
regime of advanced warning and that of delayed reaction. The top figure shows
the minimum total error (5.4) (the delay error plus the rate error) given a fixed
resource level λ. The bottom figure shows the optimal signaling delay Ts, total
delay T = Ts + Ti − Ta, and rate R = λTs for varying net delay Ti − Ta. In both
figures, the horizontal axes denote the net delay Ti − Ta ≥ 0 or the net warning
Ta − Ti > 0.



72

Figure 5.9: Block diagram of the basic sensorimotor control model for our experi-
ment that simulates riding a mountain bike. Each box is designated by its function:
sensing and communication (e.g. vision, muscle spindle sensor, vestibulo-ocular
reflex), actuation (muscle), and computation (higher-layer planning and tracking
and lower-layer reflexes and reactions). Depending on the hardware details, they
may be quantized (discrete valued), have time delays, experience saturation, and be
subject to noise. The trail ahead can be seen in advance, but the bumps and other
disturbances are unanticipated.
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Figure 5.10: The experimental results bump and trail task: (a) the error dynamics
from bump only task, trail only task, both task; (b) absolute error; (c) infinity norm
error. One dot denotes the infinity norm error in 2 seconds.
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(a) Photo of a subject performing the driving task.

(b) Monitor display of the driving task.

Figure 5.11: The experimental setting of the driving task.
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Figure 5.12: Empirical SAT in the driving game for the deterministic setting in
(3.4). The blue line shows the error in a warned/delayed system with perfect com-
munication for varying advanced warning/delay in vision (T = −0.8,−0.6, · · · , 0.4
second); the red line shows the error in a quantized system with no delay but varying
information rate (R = 1, 2, · · · , 7 bits); and the black line shows the error in a delayed
and quantized system with the component SAT T = (R − 5)/20.
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C h a p t e r 6

DIVERSITY SWEET SPOTS (DSSS)

Human sensorimotor control is remarkably fast and accurate despite being imple-
mented using slow or inaccurate components [62, 97, 110, 135, 185, 191]. For
example, from Section 5.1, Fitts’ Law predicts that, in many forms of reaching (e.g.
eye gaze, hand, mouse), the time required for reaching quickly to a target of widthW

at a distance D scales as log2(2D/W ) [60, 202]. The logarithmic relation between
the reaching time and target width allows faster speed to be achieved with a small
decrement in accuracy. On the other hand, from Chapter 2, we can observe that
the speed-accuracy tradeoffs (SATs) of the hardware implementing control can be
much more severe. Improving either speed or accuracy in nerve signaling or muscle
actuation requires profligate biological resources [185]; as a consequence, only a
few types of nerves and muscles are built to be both fast and accurate (Fig. 2.1a.
In this chapter, we build upon the theory presented in Section 5 to study how na-
ture de-constrains neurophysiological hardware constraints in sensorimotor control.
These results show that diversity between hardware components can be exploited to
achieve both fast and accurate control performance despite being implemented using
slow or inaccurate hardware. Such “diversity sweet spots” (DSSs) are ubiquitous in
biology and technology, and are arguably the central benefit of layered architectures.
DSSs explain why large heterogeneities exist in biological components and also sys-
tematize how systems engineers routinely create fast and accurate technologies from
imperfect hardware.

6.1 DSSs in reaching tasks
Section 5.1 characterized the SATs for the reaching task whose bottleneck lies in
nerve signaling. In particular, subject to the nerve SAT (2.5), the minimum reaching
time is achieved at

T =
√

F/λ, R =
√
λF . (6.1)

The optimal T and R is increasing/decreasing in F because as the index of difficulty
F increases (the reaching task requires more accuracy), the data rate limit gains
greater impact on the reaching time, and thus fast reaching times are achieved with
increased data rate R at the expense of increased delay T . The dependencies of
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optimal nerve signaling speed and accuracy (T, R) on F suggests that their diversity
allows better performance in reaching tasks of a broad range of difficulties.

The benefit of diversity is more apparent for other types of reaching, whose bot-
tleneck lies in muscle actuation. Here, there exist an inevitable tradeoffs between
reducing reaching time and achieving better accuracy. This is because better ac-
curacy can only be attained by small motor units in a muscle, which are capable
of performing finer control but can only produce limited force. If a muscle only
contains uniformly sized motor units, the accuracy requirement severely constrains
its motor units’ size. On the contrary, if a muscle is allowed to contain motor units
of diverse size, the accuracy constraints only require the existence of some small
motor units, which can be used together with large motor units.

The difference of resulting system SATs for the uniform or diverse motor units is
shown in Fig. 5.3a. Muscles composed of uniform motor units give rise to a SAT
with slow decrement in reaching time as the require width (accuracy constraints) are
relaxed. This slow decrement is not consistent with sharp decrement observed in the
Fitts’ law. On the contrary, a bundle of motor units with diverse sizes yields allows
a sharp decrement in reaching time with small increment in width. We name this
Diversity Sweet Spots, i.e. the right diversity enables fast and accurate performance
to be achieved using slow or inaccurate hardware.

6.2 DSSs in visual tracking of a moving object
DSSs can also be observed in the layered architectures used in different types of
sensorimotor control, such as the control of eye movements [97, 110], and decision
making in general [85]. Take an example of our visual system, involving diverse
control layers. Fig. 6.2 compares the errorswhen the object tracking and headmotion
compensation are performed by a single layer (with same speed and accuracy) and
when they are performed using two layers with diverse speed and accuracy. The
systems with diverse layers allow for the visual systems react to head motion quickly
and collect accurate visual information. This is consistent with how the visual
system are built. The oculomotor system has a layer with vestibulo-ocular reflex
that performs fast but inaccurate negative feedback control to stabilizes images on
the retina to rapid head movements. This layer works in concert with another layer
that performs smooth pursuit, a slow but accurate cortical system for tracking slowly
moving visual objects. These two layers jointly create a virtual eye controller that
is both fast and accurate.
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(a) The reaching distance and reaching time with grid searching the contraction time with
from 0.75 to 14.75 seconds with 0.50 increments.

(b) Zoomed plot of (a). The reaching distance and reaching time, when the the first MU
contracts for 1.25 seconds or 1.75 seconds, and the second MU contracts with [0.75 : 0.50 :
3.25] seconds.

Figure 6.1: Explanation for the benefits from diverse muscles. Assuming two types
of muscles with resources (total force), the uniform muscle have two motor units
with the same force (F1 = F2 = 0.5), whereas the diverse muscles have two MUs
with different forces (F1 = 0.85, F2 = 0.15).
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Figure 6.2: The benefit of nerve diversity between layers. The top figure shows the
minimum error (5.8) for the case when the higher-layer and lower-layer controllers
are allowed to have diverse signaling delays and rates and otherwise (i.e. R` = Rh
and T` = Th). We term the former the diverse case and the latter the uniform case.
The higher-layer controller can better exploit the advanced warning to minimize
errors in the diverse case than in the uniform case. The bottom figure shows the
resulting optimal delays and rates for the diverse case. System parameters are set to
be R` = 0.1Ts, Rh = 0.1Th, and Ti = 10.
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6.3 DSSs in riding a mountain bike
The study of oculomotor system reveals that nerves with appropriate diversity allows
for the visual systems react to head motion quickly and collect accurate visual
information. This kind of diversity sweet spot (DSS) can be observed repeatedly
in sensorimotor control such as the architectures used for riding a mountain bike.
Fig. 6.2 compares cases of diverse layers with different speed and accuracy. It
suggests that diverse layers allow for the overall system to exploit advanced warning
in order to reduce errors. Specifically, having diverse layers improves system
SATs, which in turn allows for a reduced total error: another example of DSSs:
diverse layers jointly achieve both fast and accurate sensorimotor control despite the
slowness or inaccuracy of individual layers.

6.4 Axon size diversity creates DSSs
Analogously, diversity within a layer also helps deconstrain the componenet SATs.
To see it, we extend our framework to capture the effects of diversity in neural
composition on performance. For systems with |a | = 1 and diverse axons, the
state-deviation max‖w‖∞≤1 ‖x‖∞ is lower-bounded by

∞∑
h=1

1
2R (h) , (6.2)

where the function R : Z+ → R+ is defined to be

R (h) :=
m∑

i=1
max{0, h − Ti − Tc + Ta}Ri . (6.3)

The proof of (6.2) and a more general formula of a , 1 are given in the Supple-
mentary Information. For example, at m = 2, the error lower bound is reduced
to

T1 +
1 − 2−R1(T2−T1)

2R1 − 1
+

1
2R1(T2−T1)

1
2R1+R2 − 1

. (6.4)

In Fig. 6.3A, we see that systems with diverse nerves have an improved SAT com-
pared with systems with uniform nerves. These results suggest that a system made
of nerves that are not uniformly fast and accurate, but rather are diverse in com-
position, can achieve performance as though they were indeed uniformly fast and
accurate. This phenomenon is another example of diversity sweet spots (DSSs)
and helps explain why the distributions of axon diameters within nerves are highly
diverse, especially those involved in sensorimotor control like the optic, vestibular,
and sciatic nerves [153, 154].
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(a) The benefit of diversity between levels. We set λ = 0.1 and Ti − Ta = 0. The delay
error and rate error are defined to be the sum of the delay errors in both the higher-layer and
lower-layer and that of the rate errors in both layers, respectively.

(b) The benefit of diversity within a level. The figure shows that diversity in axons enables
the system to achieve better SAT in sensorimotor control. We use m = 1 for uniform nerves
and m = 2 for diverse nerves, and we set λ = 0.1 and Ti −Ta = 0. We define the delay error
to be T1 in (6.4), i.e. the errors caused before the first spike arrives, and the rate error to be
the remaining terms.

Figure 6.3: Diversity sweet spots between layers and levels.
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6.5 Rethinking other systems from the perspective of DSSs
To understand how such nerves can collectively achieve remarkably robust sensori-
motor control, we develop a theoretical framework that characterizes howcomponent
SATs in nerve signaling translates to system SATs in sensorimotor control (Fig. 5.6).
The results suggest that a highly effective layered control architecture with the right
diversity enables fast and accurate performance to be achieved using slow or inac-
curate hardware (Fig. 6.3), which we name Diversity Sweet Spots. DSSs may reveal
a general design principles for distributed control in brains and other biological sys-
tems and inspire the design of large-scale technological systems to achieve fast and
accurate performance with slow or inaccurate subsystems. Below, we list examples
of systems, illustrated in Fig 6.4-6.5, that can benefit from the idea of DSSs.

Learning. There are many sensorimotor learning tasks that exploit DSSs. Consider
learning to shoot a baseball. At the beginning of the learning, most people use a
highly deliberate process that predicts the paths of the trajectory and shoots carefully.
As people get more experience, they learn to push down a certain part of the process
into reflex. The planning layer, which is intensively used in the beginning, is
capable of adapting to new tasks flexibly slowly. The reflex/reaction layer, which
is increasingly used as the learning process proceeds, is capable of produce pre-
determined reaction fast. Sensorimotor learning can be considered as the process to
decompose to a task into different layers, with different speed and accuracy, so that
the task can be performed fast and accurately (Fig 6.4a).

Immune response. Our immune system also exploits DSSs to perform fast and
targeted immune response. There are tradeoffs between reacting fast to infection
versus producing a response that is targeted toward the specific types of infection.
To mitigate the deleterious effects due to the speed and accuracy limitations, when
infection occurs, our immune system produces a fast general response, followed by
a sequence of slower but more targeted responses [1, 177]. The combination of
fast general response and slow targeted responses improves the overall impact of
immune response, thereby increasing our probability of survival (Fig. 6.4b).

Logrithmic laws. Although the logarithmic form of Fitts’ law has been tested in
many experiments and explained using various models (see [59, 76, 96, 120, 202]
and references therein), our results elucidate its relation with DSSs to clarify the
benefit of muscles diversity in Fig. 2.2a. Beyond Fitts’ law, the perspectives of
DSSs potentially provide new insights into many logarithmic forms observed in
other systems (Fig. 6.4c). These laws include the Weber-Fechner Law, a log relation
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between the physical change in a stimulus and the perceived change in human
perception; the Ricco Law for visual target detection for unresolved targets; the
Accot-Zhai Law for steering, a generalization of Fitts’ Law for 2D environments;
the spacing effect of Ebbinghaus for long-term recall from memory; and the Hick-
Hyman law for the logarithmic increase in the time it takes to make a decision as
the number of choices increases.

Transportation. Diversity sweet spots can be observed in transportation as well.
Let us first consider a simple transportation model: traveling by walking, driving,
or flying. No single transportation system can rapidly take you from a one point on
the earth to another. But a combination of airplanes that rapidly take you from one
city to another, and ground transportation, which can take you more slowly from
one part of a city to another, and walking, which can take you even more slowly
from one point to another, can together achieve fast and accurate transport. More
specifically, we can study the transportation system using the following model. We
index these means of transportation by i = 1, 2, 3 respectively and use si to denote
their speed and ei to denote their resolution. As walking is typically slower than
driving, and driving is slower and flying, it can be assumed that s1 < s2 < s3.
Meanwhile, as flights can only land on airports, cars can only stop at parking lots,
and a walker can stop at almost anywhere, it can be assumed that e1 < e2 < e3. Let
TE (D) be the time to travel distance D with tolerable error E, where E is assumed
to satisfy E � D and E ≥ r1. When the traveler is only allowed to use a single
means of transportation, the relation between the traveling timeTE (D) and accuracy
constraint E follows:

TE (D) =




D/s1 +O(1) if r1 ≤ E ≤ r2

D/s2 +O(1) if r2 ≤ E ≤ r3

D/s3 +O(1) if r3 ≤ E,

(6.5)

where O(1) represents the terms that do not scale with D as D → ∞. On the other
hand, when the traveler is allowed to combine three means of transportation, the
traveling time T and resolution E is given by

T = D/s3 +O(1). (6.6)

This suggests that, as D → ∞, the flexibility to combine walking, driving, and flying
enables the traveling time to scale according to the fastest means of transportation
(Fig. 6.5a).

Power system.
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DSSs can also be observed in the power system. The power system combines a
planning layer that decides the best operating levels of the plants with a disturbance-
rejection layer that makes a local adjustment to maintain stability. The planning
layer typically solves Optimal Power Flow (OPF) problem to determine the best
operating levels of the plants that meet demands with small operation cost. The
disturbance-rejection layer uses various control processes such as frequency control
to continuously monitor the demands and control the frequency at each generating
station. The OPF problem has larger flexibility to decide the operating levels of
the whole system, but it is slow to respond due to aggregation, communication, or
computation delays. In contrast, local controllers can respond faster, but they may
not be able to change the operating levels of the whole system. Combing both allows
for the power system to achieve speed and flexibility at the same time (Fig. 6.5b).

Cloud versus edge computing. DSSs can also be observed in the Internet of Things
applications, which use cloud and edge computers to decide the control action. The
cloud computer is able to perform heavy computation andmake an optimal decision,
but the control process requires the time for aggregating and sensor information
and communicating control decisions across the network. On the other hand, the
edge computers are able to respond to their nearby local sensors, but they may
only be able to compute limited tasks and find suboptimal control actions without
global information. Although each controller has its own limitations, an appropriate
combination of both can potentially help overcome the limitations of both controllers
(Fig 6.5c).
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(a) DSS in sensorimotor learning

(b) DSS in immune response

(c) DSS in logarithmic laws

Figure 6.4: DSS in biology



86

(a) DSS in transportation

(b) DSS in the power system

(c) DSS in cloud versus edge computing

Figure 6.5: DSS in technological systems
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C h a p t e r 7

REVISITING SATS IN LARGE-SCALE SYSTEMS: SCALABLE
ALGORITHM

Networked control systems are becoming increasingly ubiquitous, as seen in appli-
cations such as vehicle platooning, smart grid, and software defined networking,
among others. Their distributed nature creates various challenges both in design
and implementation. Common elements in these systems include information shar-
ing constraints, quantization, time-varying delays, and sampling. Currently, few
existing frameworks incorporate every one of these components.

Distributed control literature focuses on systems with information sharing con-
straints. [162] found that quadratically invariant information constraints produce a
convex formulation of optimal control problem. Various controller synthesis meth-
ods for linear systems extended from their work can be found in Table S1. However,
this approach cannot account for band-limited communication channels between
sensor and actuator. Naively implementing a distributed controller in the presence
of band-limited channels does not guarantee stability.

Another existing body of work considers control under band-limited channels and
time-varying delays. Among others, [53, 64, 77, 144] considered stability and
performance for a system with nonlinearity arising from saturation, quantization,
and time-varying delay. As seen in [79, 138], it is most common to construct an
invariant set of the state trajectory by Lyapunov-Krasovskii method. Similar lines of
research by [6], [113] combine distributed consensus with sampling, quantization,
or delay. These methods, dealing with delay and band-limited channels, nonetheless
cannot account for complex information sharing constraints.

Our proposed framework resolves the apparent discrepancy between these two bod-
ies of work. We offer design tools for systems with both information sharing
constraints and band-limited channels. Additionally, we show how to guarantee sta-
bility and performance by linear programming without using Lyapunov-Krasovskii
method which uses semidefinite programming. This reformulation largely reduces
computation complexity and enhances scalability. The intuition behind the proof
technique used in this chapter can be found in [140], which shows the analytical
formula of system performance as a function of channel capacity.
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We describe the problem formulation in Section 7.1. The design process – controller
synthesis and channel design – is in Section 7.2. We present the feasibility condition
of the propose program in Section 7.3.

Table S1: List of controller synthesis literature.

Centralized L1 optimal (linear programming)
[40]
Distributed
[99, 100]
[107, 170]
Totally distributed (localized)
[198, 199]

7.1 System model
In this section, we present the system model and the motivation behind the model.
We consider a system of the form:

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + Du(t),

y(t) = C2x(t),

(7.1)

where the state x(t) ∈ Rn, the sensor measurement y(t) ∈ Rm, the disturbance
w(t) ∈ Rl , and the control action u(t) ∈ Rp. The output y(t) is sent to the controller
through a communication channel every T seconds. This channel is a uniform
quantizer defined by the mapping QLy,Y : Rm → Rm from definition 1.5.1.1 Let
y[k] be the channel output, i.e.

y[k] , QLy,Y y(tk ) (7.2)

for k ∈ N and tk , kT . Here we denote the raw measurement by y(tk ) and the
quantized measurement by y[k].

The controller K̂ =
∑∞

i=1
1
zi K[i] is a strictly proper linear time-invariant system, and

the desired control action u?[k] is computed from

u?[k] =
k∑

i=1
K[i]y[k − i]. (7.3)

1An equivalent view is that the output y(t) is quantized and sent through a lossless channel.
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The desired control actionu?[k] is sent to the actuators using another communication
channel QLu,U : Rp → Rp.2 The control command received by the actuators at time
t = tk is

u[k] , QLu,Uu?[k]. (7.4)

The control action is executed with time-varying delay dk ∈ [0, h] where h < T .
Thus, the actual control action is

u(t) =



u[k − 1] t ∈ [tk, tk + dk ),

u[k] t ∈ [tk + dk, tk+1).

Additionally, we make the following assumptions:

A. The controller satisfies K̂ ∈ Sc, where Sc is a subspace of 1
zRH∞ specifying

the information sharing pattern (see remark 1).

B. The pair (A,C) is observable. Equivalently, the pair (eAT,C) is observable.

C. The disturbance satisfies ‖w‖∞ ≤ 1.

D. The initial condition of the system is x(0) = 0.

E. The delay upper bound h is known to the system designer. However, the
controller does not have access to the actual value of dk .

Given the hardware limitation parametrized by (Lu, Ly, h), our goal is to design a
stabilizing control law defined by the triple (K,QLu,U,QLy,Y ) such that

sup
‖w‖∞≤1

‖z‖∞ ≤ ν. (7.5)

Remark 7.1.1. The information sharing constraints are expressed as K̂ ∈ Sc with

Sc =



1
zτ11R

1
zτ12R · · ·

1
zτ21R

1
zτ22R

...
. . .



, where R is the space of proper real rational transfer

matrices and τi j ∈ N. Roughly speaking, the information sharing constraints Sc

specify the delay larger than the sampling time T , whereas the time-varying delay
dk specifies delay smaller than the sampling time.

2For generality, we have considered the case where there are two communication channels –
one between the sensor and the controller and another between the controller and the actuators. The
design and analysis techniques can be tailored straightforwardly to systems with only one channel.
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A motivating example
In the large-scale systems, each node or agent may not be able to access the current
state of the whole system when deciding its control action. Moreover, many of
these systems such as underwater vehicle networks or low power sensor networks
have limited communication between different nodes/agents that is subject to errors
arising from quantization, saturation, and delay. We show below an illustrative
example where the design problem can be formulated in the form presented in
Section 7.1.

Consider a systemwhere a group of n unmanned vehicles, indexed by i = 1, 2, · · · , n,
follow a leader. Every T seconds, the first vehicle senses its distance to the leader,
the i-th vehicle senses its distance to the (i − 1)-th, and so on. The system has
a “discrete” controller acting on its continuous dynamics: the position/velocity
pi/vi of each vehicle i satisfies mi v̇i (t) = Fi (t), ṗi = vi with mi the mass and
Fi is the force (the equivalent control action). A naive design without utilizing
communications between the vehicles – the first vehicle following the leader and
the i-th vehicle following the i − 1-th vehicle – would have limited performance;
e.g., the distance between the n-th vehicle and the leader can be large as the first
vehicle takes more than T second to sense the leader and reflect on its movement,
the second vehicle takes more than 2T seconds, and so on, a phenomenon known
as string instability. In contrast, if one adds communications between neighboring
vehicles, the n-th vehicle can follow the leader as quickly as it can communicate,
achieving faster response. Let the state and control action of the dynamical system be
defined by x =

[
v1 − v?, p1 − p?, v2 − v1, p2 − p1, · · ·

]T
, u =

[
F1, F2, · · ·

]T

where (p?, v?) is the leader’s position/velocity. The information sharing structure
considered in, e.g., [98] corresponds to the case where the i-th vehicle at time t

has the ‘perfect’ information of Ii (t) = {pi (t) − pi−1(t), pi−1(t − T ) − pi−2(t −
T ), pi+1(t − T ) − pi (t − T ), · · · }. On the other hand, when the communications are
constrained, the i-th vehicle may not have the perfect information, with errors arising
from quantization and saturation. Moreover, the transmission speed may vary with
the environmental condition and the distances between the vehicles, leading to
time-varying delay as captured in Assumption E.

7.2 The proposed controller design method
In this section, we present a method to design a stabilizing controller and commu-
nication policy for system 7.1. The communication channel and actuation delay
render the overall system nonlinear, and thus a controller stabilizing the discretized
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system is not enough to guarantee stability. We first reframe the overall system into
linear and nonlinear dynamics, where a linear distributed controller can be designed
to act on the linear dynamics (section 7.2). Then, we design the communication
channel in a way that nonlinear dynamics is constrained in an invariant set, by which
method we guarantee BIBO stability (section 7.3).

Discretization
We start with the following result that constructs a discrete-time linear system upon
which we can design a discrete controller.

Lemma 7.2.1. Define the discrete-time sequences

x[k] , x(tk ),

w[k] , eAT
∫ tk+1

tk
e−A(τ−tk ) B1w(τ)dτ,

eu[k] , eAT
∫ tk+dk

tk
e−A(τ−tk ) B2(u[k − 1] − u?[k])dτ

+ eAT
∫ tk+1

tk+dk

e−A(τ−tk ) B2(u[k] − u?[k])dτ,

ey[k] , y[k] − y(tk ),

for k ∈ N and tk = kT . Let Ā , eAT , B̄1 ,
∫ T

0
���e
−A(τ−T ) B1

��� dτ, and B̄2 ,

eAT
∫ T

0 e−AτB2dτ. Then, the discrete-time system satisfies

x[k + 1] = Āx[k] + w[k] + B̄2u?[k] + eu[k],

y[k] = C2x[k] + ey[k],

|w[k]| ≤+ B̄11l,

(7.6)

with 1l ∈ R
l the vector of all entires being 1.

Proof. By (7.1), we have

x[k + 1] = x(tk+1)

= eAT x(tk ) + eAT
∫ tk+1

tk
e−A(τ−tk ) B1w(τ) +

+ eAT
∫ tk+1

tk
e−A(τ−tk ) B2u(τ)dτ

= Āx[k] + w[k] + eAT
∫ tk+1

tk
e−A(τ−tk ) B2u(τ)dτ.
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The last term

eAT
∫ tk+1

tk
e−A(τ−tk ) B2u(τ)dτ

= eAT
∫ tk+1

tk
eA(τ−tk ) B2

(
u?[k] + u(τ) − u?[k]

)
dτ

= B̄2u?[k] + eu[k].

This yields x[k + 1] = Āx[k] + w[k] + B̄2u?[k] + eu[k]. The equation y[k] =
C2x[k] + ey[k] is immediate from definition. Further, by Assumption C, we can
bound

|w[k]| ≤+
(∫ T

0

���e
−A(τ−T ) B1

��� dτ
)
1l = B̄11l .

�

Lemma 7.2.1 suggests that the nonlinearity from communication and delay can be
absorbed into the terms (eu, ey). We can design a discrete controller on the linear
system:

G =



Ā B̄1 B̄2

C1 0 D

C2 0 0.



=



G11 G12

G21 G22


.

Various controller synthesis methods for the linear system of this form have been
proposed in literature, some of which are listed in table S1. Suppose for now that
we have obtained a stabilizing controller:

K̂ =
∞∑

i=1

1
zi R[i], (7.7)

where K̂ is a strictly stable proper transfer matrix. The relation between the se-
quences (w, eu, ey) and (x, u) admits an explicit formula as stated in the next result.

Lemma 7.2.2. If K̂ is a strictly proper stabilizing controller for Ĝ, the input se-
quences (êu, êy, ŵ) and output sequences ( ŷ, û?) satisfy the linear relation:



x̂

û?


=



R̂ N̂ R̂

M̂ Q̂ M̂





êu

êy
ŵ



,
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where
R̂ , (zI − A − B̄2K̂C2)−1

N̂ , R̂B̄2K̂

M̂ , K̂C2 R̂

Q̂ , K̂ + K̂C2 R̂B̄2K̂ .

(7.8)

Proof. Since K̂ is a stabilizing controller for Ĝ, the term zI−A− B̄K̂C2 is invertible.
Combining (7.6) and (7.7), we have

(zI − A) x̂ = ŵ + B̄2û? + êu

ŷ = C2 x̂ + êy (7.9)

û? = K̂ ŷ,

from which we obtain (7.8) after simple transformation. �

Next we design a communication channel that constraints the error dynamics inside
an invariant set to obtain stability of the overall system. Let (Lu, Ly, h) from Section
7.1 be fixed parameters representing the capacity and delay of the communication
channel, K̂ be the stabilizing controller obtained in Section 7.2, and Ψ1,Ψ1, pw be
the following matrices:

Ψ1(h) = sup
d∈[0,h]

���

∫ h

0
e−A(τ−T ) B2dτ���

Ψ2(h) = sup
d∈[0,h]

���

∫ T

d
e−A(τ−T ) B2dτ���

pw =
∫ T

0

���e
−A(τ−T ) B1

��� dτ1l,

(7.10)

where the supremum is taken element-wisely. Wedesign the communication channel
using the following linear program, denoted by PLu,Ly,h:

minimize
U,Y,pu,py

0

subject to U ≥+ 0,Y ≥+ 0 (7.11)

U = |M|e.w.
(
pu + pw

)
+ |Q|e.w.py (7.12)

Y = |C2R|e.w.(pu + pw) + |C2N|e.w.py (7.13)

pu = (2Ψ1(h) + Ψ2(h)invdiag(Lu)) U (7.14)

py = invdiag(Ly) Y . (7.15)
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7.3 Feasibility analysis of the program
Next, we consider issues related to the feasibility of the proposed linear program.
If the program is not feasible for a given hardware constraint parametrized by
(Lu, Ly, h), then we need to enhance communication by increasing Lu, Ly and/or to
reduce delay by decreasing h. The next theorem states that the proposed program
is asymptotically feasible. We mean by ’asymptotically feasible’ that enhanced
communication or reduced delay will eventually lead to feasibility.

Theorem 7.3.1. Given stabilizing controller K, there exists L̄u ∈ N
p, L̄y ∈ N

m and
h̄ ∈ R+ such that the program PLu,Ly,h is feasible for all Lu ≥+ L̄u, Ly ≥+ L̄y, h ≥ h̄.

Proof. Let

E =



|M|e.w. |Q|e.w.
|C2R|e.w. |C2N|e.w.



×



2Ψ1 + Ψ2 diag(Lu)−1 0
0 diag

(
Ly

)−1


,

where the second matrix is being used to map U,Y to pu, py. By eliminating pu, py
in PLu,Ly,h, we have

(I − E)


U

Y


≥+



|M|e.w.
|C2R|e.w.


pw . (7.16)

Recall the definition ofΨ1 = supd∈[0,h]
���
∫ d

0 eAτB2dτ���. Then it is clear thatΨ1 is non-

increasing in h, lim
h→0
Ψ1 = 0. In addition, lim

Lu→∞
diag(Lu)−1) = 0, lim

Ly→∞
diag

(
Ly

)−1
) =

0. Therefore fromcontinuity of all the spectral radius ρ(E), there exist L̄u ∈ N
p, L̄y ∈

Nm and h̄ ∈ R+ such that for all Lu ≥+ L̄u, Ly ≥+ L̄y, h ≥ h̄, the spectral radius of
E, ρ(E) < 1. This is because E → 0 as Lu, Ly → ∞ and h → 0.

If ρ(E) < 1, then (I − E) is invertible, and (I − E)−1 =
∑∞

n=0 En. Therefore there
exists (Ū, Ȳ ) such that



Ū

Ȳ


=

∞∑
n=0

En


|M|e.w.
|C2R|e.w.


pw .

Since all the elements in E are positive,

Ū ≥+ 0, Ȳ ≥+ 0.

Since this Ū, Ȳ satisfies the inequality (7.16) with equality, we can conclude that
this is a feasible solution of the linear program PLu,Ly,h. �
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Here we also present two immediate consequences of theorem 7.3.1. The first
corollary equivalent condition for the feasiblity of PLu,Ly,h, and the second corollary
states that the program PLu,Ly,h is also asymptotically feasible.

Corollary 7.3.1. (Feasibility Condition) The program PLu,Ly,h is feasible if and only
if the spectral radius of E is strictly less than 1.

Corollary 7.3.2. Given stabilizing controller K, there exist L̄u ∈ N
p, L̄y ∈ N

m and
h̄ ∈ R+ such that the program PLu,Ly,h is feasible for all Lu ≥+ L̄u, Ly ≥+ L̄y, h ≥ h̄.

Stability analysis of the obtained controller
Definition 7.3.1. Consider a sequence e defined by e[k + 1] = Fk (e[0 :k],w[0 :k])
where {Fk }k∈N is a sequence of mapping and w ∈ S is the input to the mapping. If
for all k ∈ N, following statement holds: for any w ∈ S,

∀i ≤ k − 1, e[i] ∈ E implies e[k] ∈ E,

then E is an invariant set of e.

Theorem 7.3.2. If the program PLu,Ly,h is feasible with solution (U,Y ), then under
the control law (K̂,QLu,U,QLy,Y ), the set

E = {(eu, ey) : eu ∈ R
p, ey ∈ Rm, |eu | ≥+ pu, |ey | ≥+ py}

is an invariant set for the sequences eu and ey.

Proof. Let (U,Y ) be the solution of the program PLu,Ly,h. Assume for any j ≤ k−1,
eu[ j] ≤ pu and ey[ j] ≤ py. We will show below that eu[k] ≤ pu and ey[k] ≤ py.
Firstly, from (7.6), |w( j) | ≤+ pw for any j ∈ N. Secondly, we bound the value of
u∗[ j], j ≤ k, as follows:

|u∗[ j]| =
�������

j−1∑
i=0

M[ j − i](eu[i] + w[i]) +Q[ j − i]ey[i]
�������

(7.17)

≥+

j−1∑
i=0

��M[ j − i]��
(��eu[i]�� + ��w[i]��

)
+ ��Q[ j − i]����ey[i]��

≥+ |M|e.w.(pu + pw) + |Q|e.w.py = U . (7.18)
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Line (7.17) is from (7.8), and line (7.18) is from the assumption∀ j ≤ k−1, |eu[ j]| ≤
pu, |ey[ j]| ≤ py and (7.12). Using the property (1.8), we obtain

���u[k] − u∗[k]��� =
���u
∗[k] − QLu,Uu∗[k]��� ≤ invdiag(Lu)U .

Now we are ready to bound eu[k].

|eu[k]| =
�����

∫ tk+dk

tk
e−A(τ−tk−T ) B2dτ

(
u[k − 1] − u∗[k]

)
+

∫ tk+1

tk+dk

e−A(τ−tk−T ) B2dτ
(
u[k] − u∗[k]

) �����
(7.19)

≥+

�����

∫ tk+dk

tk
e−A(τ−tk−T ) B2dτ

�����

[��u[k − 1]�� + ��u∗[k]��
]

+
�����

∫ tk+1

tk+dk

e−A(τ−tk−T ) B2dτ
�����
���u[k] − u∗[k]���

≥+2Ψ1(h)U + Ψ2(h)invdiag(Lu)U = pu (7.20)

The equality (7.19) is from (7.6). Notice |u∗[ j]| ≤ U implies |u[ j]| ≤ U . We obtain
the inequality (7.20) is from (7.10) and (7.19). Similarly, combining y(tk ) = C2x[k],
(7.8) and (7.13) to have

|y(tk ) | =
������

k−1∑
i=0

C2R[k − i](eu[i] + w[i]) + C2N[k − i]ey[i]
������

≥+ |C2R|e.w.(pu + pw) + |C2N|e.w.py = Y (7.21)

Combining the property (1.8) with (7.15) to have

|ey[k]| = ���y(tk ) − QLy,Y y(tk )��� ≥+ invdiag(Ly)Y = py (7.22)

Therefore, the set E is an invariant set of eu, ey. �

Corollary 7.3.3. If the linear program PLu,Ly,h is feasible with solution (U,Y ),
then under the control law (K̂,QLu,U,QLy,Y ), both the state x and the ouput z are
bounded.

Proof. From Theorem 7.3.3 and initial condition x(0) = 0 (assumption D), we
obtain ‖eu‖∞ ≤ pu, ‖ey‖∞ ≤ py. Since K̂ is a stabilizing controller for Ĝ, the
transfer matrices R̂, N̂, M̂, Q̂ from (7.8) are stable. From x̂ = R̂êu + N̂ êy + R̂w, û =

M̂êu + Q̂êy + M̂w, we obtain that the sequences x and u are bounded. Therefore,
the output sequence z is also bounded. �
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7.4 Performance analysis of the obtained controller
Next, we bound the sub-optimality gap of the system performance. Recall from
(7.5) that our goal is to achieve sup‖w‖∞≤1 ‖z‖∞ ≤ ν. Let νp be the value of
sup‖w‖∞≤1 ‖z‖∞ when the distributed controller K̂ from (7.7) is used with perfect
communication and no delay, i.e. y[k] = y(tk ), u∗[k] = u[k] and h = 0. Let
νc = ν − νp, the performance criteria (7.5) is equivalent with

sup
w
‖z(t)‖∞ ≤ νp + νc.

Intuitively, νc captures the performance degradation due to information sharing
constraints, and νc due to unreliable communication. We assume νc > 0.

Theorem 7.4.1. Let

ru , |C1 |
{
2Ψ1(h) |M|e.w + Ψ1(T )

(
invdiag(Lu) + I

)
|M|e.w

+ |eAρR|e.w.
}
+ |C2M|e.w.

ry , |C1 |
{
2Ψ1(h) |Q|e.w + Ψ1(T )

(
invdiag(Lu) + I

)
|Q|e.w

)
|

+ |eAρN|e.w.
}
+ |C2Q|e.w (7.23)

rw , |C1 |
{
2Ψ1(h) + Ψ1(T )

(
invdiag(Lu) + I

)}
|M|e.w.

If the linear program QLu,Ly,h:

minimize
U,Y,pu,py

0

subject to (7.11) − (7.15)

max{rupu + rypy + rwpw} ≤ νp (7.24)

is feasible, then the overall performance is bounded by

sup
w
‖z‖∞ ≤ νp + νc. (7.25)

In above theorem, the constraint (7.11) − (7.15) is same with the program PLu,Ly,h,
and it guarantees system stability. The additional constraint (7.24) is used for system
performance.

Proof. In order to bound the value νc, we decompose the discrete state x[k] into
two terms: the term due to the disturbance xp, and the term due to unreliable
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communication xc, i.e.

xp[k] ,
k∑

i=0
R[k − i]w[i] xc[k] , x[k] − xp[k].

The controller output u[k] also admits the decomposition:

up[k] ,
k∑

i=0
M[k − i]w[i] uc[k] , u∗[k] − up[k].

The continuous counterparts of the four terms can be defined as follows: for any
ρ ∈ [0,T ), let

xp(tk + ρ) , eAρxp[k] +
∫ tk+ρ

tk
e−A(τ−tk−T ) B1w(τ)dτ

+

∫ tk+ρ

tk
eA(τ−tk−T ) B2up[k]dτ

xc(tk + ρ) , eAρxc[k]

+

∫ tk+ρ

tk
e−A(τ−tk−T ) B2(u(τ) − up[k])dτ

up(tk + ρ) , up[k]

uc(tk + ρ) , u(tk + ρ) − up[k].

This formulation satisfies x(t) = xp(t) + xc(t) and u(t) = up(t) + uc(t). Now we
use these terms to separately bound system output:

sup
w
‖z(t)‖∞ ≤ sup

w
‖C1xp(t) + Dup(t)‖∞

+ sup
w
‖C1xc(t)‖∞ + sup

w
‖Duc(t)‖∞.

First, notice that when the system has perfect communication and no actuation delay,
the term xp, up remains same while the term xc, uc becomes zero. Thus, the first
term on the right hand side of (7.26) is supw ‖C1xp(t) + Dup(t)‖∞ = νp. Next, we
bound the second term of (7.26) as follows:

|xc(tk + ρ) | ≤+ Ψ1(min(ρ, h))���u[k − 1] − up[k]���
+ Ψ1(T )���u[k] − up[k]��� +

���e
Aρxc[k]��� .

We have

Ψ1(min(ρ, h))���u[k − 1] − up[k]���
≤+Ψ1(h)

(��u[k − 1]�� + ��up[k]��
)

≤+2Ψ1(h)U,



99

where the first inequality is because each element of Ψ1(h) is an increasing function
of h, the second inequality comes from |u| ≤+ U, ��up�� ≤+ U (see proof of Theorem
7.3.3).

Ψ1(T ) ���u[k] − up[k]���
≤+ Ψ1(T )

( ��u[k] − u∗[k]�� + |uc[k]|
)

≤+ Ψ1(T )
(
invdiag(Lu) + I

)
U

���e
Aρxc[k]��� ≤+ |e

AρR|e.w.pu + |eAρN|e.w.py .

Combining above, we obtain

|C1xc(tk + ρ) | ≤+ |C1 |
{
|eAρR|e.w.pu + |eAρN|e.w.py

+ 2Ψ1(h)U + Ψ1(T )
(
invdiag(Lu) + I

)
U

}
.

In a similar manner, we bound the third term of (7.26) by

|C2uc[k]| ≤+ |C2M|e.w.pu + |C2Q|e.wpy .

Therefore, from definition (7.23),

sup
w
‖C1xc(t)‖∞ + sup

w
‖Duc(t)‖∞ ≤+ rupu + rypy + rwpw,

which combining with (7.24) yields supw ‖z‖∞ ≤ νp +max{rupu + rypy + rwpw} ≤

νp + νc. �
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C h a p t e r 8

APPLICATION TO SECURITY

Fault tolerance in Cyber-physical Systems (CPSs) is of great importance [27, 28,
41, 158, 179]. For example, in the power system, false data injection can introduce
errors in state estimation and provide financial gains for attackers [114, 165, 204]. In
flights, autonomous vehicles, and the Internet of Things, manipulations in software
and sensing can cause human injury and economic damage [55, 127, 145].

Motivated by these security issues, in this chapter, we consider the fundamen-
tal limitation and achievable performance to achieve fault-tolerant estimation. By
fault-tolerant estimation, we refer to achieving bounded estimation errors. Com-
paredwith fault identification, fault-tolerant estimation requires relaxed assumptions
and accounts for potentially non-detectable and non-identifiable attacks in noisy sys-
tems. We prove that a necessary condition to achieve fault-tolerant estimation under
ρ compromised sensors is that the system is 2ρ-detectable (the system needs to
remain detectable after removing any set of 2ρ sensors). This necessary condi-
tion suggests that, if a system has many stable modes, then the number of sensors
required to achieve fault-tolerant estimation is much smaller than that to achieve
fault identification. Conversely, we propose a secure state estimator that guarantees
bounded estimation error under the assumption of 2ρ-detectability. The proposed
state estimator is inspired by robust control and FDI: that is, it consists of the local
Luenberger estimators, the local residual detectors, and a global fusion process.
A preliminary version of this chapter was presented at the 2015 IEEE Conference
on Decision and Control, deriving the worst-case estimation errors in the `1 sys-
tem [139]. This chapter extends the result of [139] to the H2 system and the H∞
system. To the best of our knowledge, our chapter is the first to show that a mixture
of two-norm bounded and sparse-unbounded input can produce two-norm bounded
output. Finally, numerical examples show that the proposed state estimator has
relatively low estimation errors among existing algorithms and average computation
time for systems with a sufficiently small number of compromised sensors.
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8.1 System model
We study the secure state estimation problem in the presence of sensor attacks.
Consider the discrete-time LTI system:

x(t + 1) = Ax(t) + Bw(t), x(0) = 0

y(t) = Cx(t) + Dw(t) + a(t),
(8.1)

where x(t) ∈ Rn is the system state, w(t) ∈ Rl is the input disturbance, y(t) ∈ Rm

is the output measurement, and a(t) ∈ Rm is the bias injected by the adversary (we
call a(t) the attack). The time indices t ∈ Z+ are non-negative integers and start
from zero. Without loss of generality, we assume that the disturbance matrix B

has full row rank (otherwise we can perform the Kalman decomposition and work
on the controllable space of (A, B)). Each sensor is indexed by i ∈ {1, · · · ,m}
and produces measurement yi (t), which jointly comprises the measurement vector
y(t) = [y1(t), . . . , ym(t)]T . Sensor i is said to be compromised if ai (t) , 0 at some
time t ∈ Z+ and is said to be benign otherwise. The maximum number of sensors
that the attacker can compromise is ρ, i.e.

‖a‖0 ≤ ρ. (8.2)

If a(t) satisfies (8.2), then we say that it is ρ-sparse. Let S , {1, . . . ,m} denote the
set of all sensors, C ⊂ S denote the set of compromised sensors, and B , S\C
denote the set of benign sensors. The set C is assumed to be unknown.1 A causal
state estimator is an infinite sequence of functions { f t }, where f t is a mapping from
all output measurements to a state estimate:

x̂(t) = f t (y(0 : t − 1)). (8.3)

The estimation error of (8.3) is defined as the difference between the system state
and the state estimate:2

e(t) , x(t) − x̂(t). (8.4)

We consider the input containing a mixture of a p-norm bounded disturbance and a
ρ-sparse attack and study the following worst-case estimation error in q-norm:

sup
‖w‖p≤1, ‖a‖0≤ρ

‖e‖q, (8.5)

1Take the setting of [147] for example. When the system is noisy, the optimization problem
minxt ∈Rn ‖[y(t)T , · · · , y(t + n − 1)T ]T − Oxt ‖ (O is the observability matrix) may not give correct
set of compromised sensors {i : ∃t, ai (t) , 0}.

2Although abbreviate it as e(t), the estimation error is also a function of disturbance w, attack
a, and the estimator { f t }.
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where

(p, q) = (2, 2), (2,∞), (∞,∞). (8.6)

We consider (8.5) instead of attack isolation because the attack on a noisy system
may not be correctable in the sense defined in [56, 147].

Definition 8.1.1. An causal state estimator { f t } is said to be ε-resilient to attack
if its worst-case estimation error satisfies sup‖w‖p≤1, ‖a‖0≤ρ ‖e‖q < ε , where ε is a
positive and finite scalar.

When the estimator is ε-resilient for some finite ε > 0, then we say the state
estimator is resilient to attack. The goal of this chapter is to study the design
problem of a resilient state estimator { f t }. Towards that end, we first show a
fundamental limitation for the existence of a resilient estimator (Section 8.2), and
we then propose a resilient estimator (Section 8.3) and analyze the estimation errors
(Section 8.4).

Definition 8.1.2 (Projection map). Let ei be the ith canonical basis vector of the
space Rm and I = {i1, . . . , im′} ⊆ S be an index set with carnality m′(≤ m). We
define the projection map PI : Rm → Rm′ as

PI =
[
ei1 . . . eim′

]T
∈ Rm′×m. (8.7)

Using PI in (8.7), the measurements of the set of sensors I ⊂ S can be written as

yI (t) , PI y(t) ∈ Rm′ .

Similarly, the measurement matrix and the sensor noise matrix corresponding to the
set of sensors I can be respectively written as

CI , PIC, DI , PID.

8.2 Necessary condition for resilience to attack
In this section, we give a fundamental limitation for achieving bounded worst-case
estimation errors.

Definition 8.2.1. The system (8.1) is said to be χ-detectable if (A,CK ) is detectable
for any set of sensors K ⊂ S with cardinality |K | = m − χ.

Theorem 8.2.1. If system (8.1) is not 2ρ-detectable, then there is no state estimator
{ f t } that is ε-resilient to attack for any finite ε > 0.
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Theorem 8.2.1 implies that the following (denote as Condition A) is necessary for
the existence of a resilient state estimator:

A. The system (8.1) is 2ρ-detectable.

An intermediate step in the proof of Theorem 8.2.1 is to consider the following
condition (denote as Condition B).

B. There exist two states (x, x′), two disturbances (w,w′), and two attacks (a, a′)
such that all of the followings are satisfied:

a) both (x,w, a) and (x′,w′, a′) satisfies the dynamics (8.1) and assump-
tions ‖a‖0 ≤ r , and ‖w‖p ≤ 1

b) y(t) = y(t)′ at all time t ∈ N

c) the difference between the two states is unbounded, i.e. ‖x − x′‖q = ∞.

Lemma 8.2.1. If (A,CK ) is not detectable for some set K ⊂ S with |K | = m − 2r ,
then Condition B holds.

Proof. (Lemma 8.2.1) We first prove that an undetectable (A,CK ) implies that the
linear transformation Ot : Rn → Rt(m−2r) defined by

Ot =



CK
CK A

CK A2

...

CK At−1


has a non-trivial kernel (Step 1). Form the kernel space of Ot , we then find two
states (x, x′) that satisfy condition B (Step 2).

Step 1: If (A,CK ) is not detectable for some set of sensors K , then at least one of
the following conditions holds.

(i) For some z ∈ R, abs(z) ≥ 1 and v ∈ Rn, Av = zv and Cv = 0.

(i) For some complex conjugate pairs z, z̄ ∈ C, abs(z) = abs( z̄) ≥ 1 and v, v̄ ∈

Cn, Av = zv, Av̄ = z̄v̄, Cv = 0, and Cv̄ = 0 .
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Condition (i) implies that

Otv = 0, t ∈ N (8.8)

and Condition (i) implies that

Ot (v + v̄) = 0, t ∈ N. (8.9)

Step2: We construct two dynamics with the same measurement. There exists two
disjoint sets of sensors K1,K2 that satisfy |K1 | = |K2 | = r , K1 ∩ K2 ∩ K = ∅, and
K ∪ K1 ∪ K2 = S. Consider first when condition (i) holds. Since B has full-rank,
there exists an impulse disturbance w(0) that produces

x(1) = v,

w(t) = 0, t ≥ 1

ai (t) =



−Ci x(t) i ∈ K1

0 Otherwise

(8.10)

and

x′(1) = 0

w′(t) = 0, t ≥ 1

a′i (t) =



Ci x(t) i ∈ K2

0 Otherwise,

(8.11)

where Ci denotes the i-th row of sensing matrix C. Using (8.8), we can show that
measurement y(t) under (8.10) and y′(t) under (8.11) are identical. However, the
state under (8.10) is x(t) = ztv, the state under (8.10) is x′(t) = 0, and thus their
difference ‖x − x′‖q is unbounded. Consider next when condition (ii) holds. There
exists an impulse disturbance w(0) that achieves x(1) = v + v̄, so let x(1) = v + v̄

replace x(1) in (8.10). Similarly, we can derive from (8.9) that measurements y(t)
and y′(t) are identical, but x(t) = ztv + z̄k v̄ and x′(t) = 0, yielding unbounded
‖x − x′‖q. Since at least (i) or (ii) holds, we have proved Condition B.

�

Lemma8.2.2. If Condition E holds, then a resilient estimator cannot be constructed.

Proof (Lemma 8.2.2). Let x̂ be the state estimation of any estimator when measure-
ment y = y′ is observed. From the the triangle inequality, the estimation error



105

e = x − x̂ under (x,w, a, y) and error e′ = x′ − x̂ under (x′,w′, a′, y′) satisfies

‖x − x′‖q ≤ ‖e‖q + ‖e′‖q (8.12)

This suggests that either ‖e‖q or ‖e′‖q are unbounded. Because

sup
‖w‖p≤1, ‖a‖0≤r

‖e‖q ≥ max{‖e‖q, ‖e′‖q}, (8.13)

no estimator can achieve bounded worst-case estimation error. �

Proof (Theorem 8.2.1). From Lemma 8.2.1, if (A,CK ) being not detectable for
some set K ⊂ S with |K | = m − 2r , then Condition B holds. However, due to
Lemma 8.2.2, Condition B implies that no resilient estimator can be constructed. �

8.3 The proposed estimator
Assuming condition A, we now propose a resilient state estimator. The proposed
estimator constitutes two procedures: 1) local estimation and 2) global fusion. The
local estimators are defined by groups of m − ρ sensors for all combinations

V , {I ⊂ S : |I | = m − ρ}.

The number of such groups (local estimators) is |V | = *
,

m

ρ
+
-
. Each local estimator I

generates a state estimation x̂I separately based on the measurements of its sensors
yI . In the global fusion process, the state estimate x̂ is generated using the estimates
from all local estimators I ∈ V . With slight overlap of notation, we use I ∈ V to
refer to a set of sensors as well as to the estimator that uses these sensors. Next, we
outline these procedures and formally state the estimator in Algorithm 1.

Local estimations
From Assumption A, for any set of sensors I ∈ V , there exists a matrix KI ∈

R(m−ρ)×n such that A + KICI is strictly stable (has all eigenvectors in the open
unit circle).3 Using this matrix KI , we construct a local estimator that only uses
measurements from the set of sensors I to produce a local state estimate x̂I:4

x̂I (t + 1) = Ax̂I (t) − KI (yI (t) − CI x̂I (t)) (8.14)

3One way to find the matrix K is via the Riccati equation, i.e. KI = PCT
I

(CIPCT
I
+ DIDT

I
)−1,

where P is unique stabilizing solution of the discrete-time algebraic Riccati equation P = A(P −
PCT
I

(CIPCT
I
+ DIDT

I
)−1CIP) AT + BBT . Sufficient conditions the existence of solution P is that

(A,CI ) is detectable and (A, BBT ) is detectable.
4 We use superscript notations for original vectors and matrices (e.g. KI and xI , respectively)

and subscript for vectors and matrices projected by (8.7) (e.g. yI and CI , respectively).
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with the initial condition x̂I (0) = 0. The estimation error and residual vector of
(8.14) is respectively defined as

eI (t) , x(t) − x̂I (t) (8.15)

rI (t) , yI (t) − CI x̂I (t). (8.16)

The LTI system from w to eI is EI (KI ) defined in (1.9), whereas the LTI system
from w to rI is GI (KI ) defined in (1.10).

When the set I does not contain any compromised sensors, i.e. aI = 0, the residual
vector rI (t) is determined by disturbance w alone and is bounded by

‖rI ‖q ≤ ‖GI (KI )‖p→q. (8.17)

Condition (8.17) can only be violated when the setI contains compromised sensors,
so (8.17) is a necessary condition for all the sensors in set I to be benign. The local
estimator at time t uses the necessary condition (8.17) to determine the validity of
its estimate and label local estimator I to be invalid upon observing ‖rI (0 : t)‖q >
‖GI (KI )‖p→q.

Global fusion
From above, the set of valid local estimators I ∈ V (t) is characterized as

V (t) ,
{
I ∈ S : ‖rI (0 : t)‖q ≤ ‖GI (KI )‖p→q

}
. (8.18)

UsingV (t), we compute theglobal state estimate as follows: x̂(t) = [x̂1(t), x̂2(t), · · · , x̂n(t)],
where

x̂i (t) =




1
2

(
min
I∈V (t)

x̂Ii (t) + max
J∈V (t)

x̂Ji (t)
)

q = ∞

1
|V (t) |

∑
I(t)∈V (t)

x̂Ii (t) q = 2.
(8.19)
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Algorithm 4 The Proposed State Estimator
InitializeV (0) ←V and x̂I (0) ← 0,I ∈ V (0)
for t ∈ N do
for I ∈ V (t − 1) (Local Estimation) do
InitializeV (t) ← ∅
Determine x̂I (t) from (8.14) and rI (t) from (8.16)
if ‖rI (0 : t)‖q ≤ ‖GI (KI )‖p→q then
V (t) ← {V (t),I}

end if
end for
Obtain estimate x̂(t) from (8.19) (Global Fusion)

end for

8.4 Resilience of the proposed estimator
Previous works have shown that there exist estimators that can detect the attacks
and recover the exact state for noiseless systems if the system is 2ρ-observable [56,
Proposition 2][38, Theorem 1][172, Theorem 3.2]. In this section, we show that the
proposed estimator is resilient to attack when the system is 2ρ-detectable.

Theorem 8.4.1. The estimator in Algorithm 1 has a bounded estimation error. In
particular, the estimation error is upper-bounded by

max
I∈V
‖EI (KI )‖∞ + max

I,J∈V

√
1
2 log |V | DI,J2,2 if (p, q) = (2, 2)

max
I,J∈V

(
‖EI (KI )‖2 + 1

2D
I,J
2,∞

)
if (p, q) = (2,∞)

max
I,J∈V

(
‖EI (KI )‖1 + 1

2D
I,J
∞,∞

)
if (p, q) = (∞,∞).

In the above formula, the term DI,Jp,q is defined as

DI,Jp,q = α
I∩J
p,q (βI,I∩Jp,q + βJ ,I∩Jp,q )

αKp,q , inf
K :A+KCK strictly stable





A + KCK
[
I K

]

I 0



p→q

βI,Kp,q ,




−KI

PK ,I



p→q

‖rI (0 : T )‖p,

where PK ,I ∈ R|K |×|I| is the unique solution of PK = PK ,IPI , and ‖ · ‖p→q is an
induced norm on matrix.

An immediate consequence of Theorem 8.4.1 is that condition A is a necessary
and sufficient condition for the construction of a resilient state estimator, and that
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Algorithm 1 resilient to attack. The estimation error upper-bound in Theorem 8.4.1
decomposes into two terms: ‖EI (KI )‖p→q and the remaining. The first term
‖EI (KI )‖p→q characterize the error between a local estimator and the true state.
That is, if the local estimator I is used for a system with no attack (a ≡ 0), then its
estimation error is bounded by ‖EI (KI )‖p→q. The second term exists due to the
attack in an unknown set of sensors. When (p, q) = (2, 2), the error upper-bound
grows at the order o(

√
ρ log m) for m → ∞. Therefore, the error can be kept small

even for systems with large m. Moreover, it shall be noted that an increase in the
tolerable number of compromised sensors ρmay result in an increase in both terms,
thus increasing the worst-case estimation error sup‖w‖p≤1,‖a‖0=0 ‖e‖q.

Corollary 8.4.1. A necessary and sufficient condition for the existence of an ε-
resilient estimator for some finite ε > 0 is that (A,CK ) is detectable for any index
set K ⊂ S with cardinality m − 2ρ.

Corollary 8.4.2. Consider system (8.1) with ρ-sparse attack. The state estimator in
Algorithm 1 is ε-resilient to attack for some finite ε > 0.

The proof of Theorem 8.4.1 has two procedures: 1) bounding local estimation errors,
and 2) bounding global fusion errors. Specifically, from the triangular inequality, at
any time t ∈ Z+, the estimation error satisfies

‖e‖q =

(
x − x̂I

)
+

(
x̂I − x̂

)q

≤
x − x̂Iq

+
x̂I − x̂q

, (8.20)

where I ∈ B ⊂ V is a set that only contains benign sensors (denote I as the benign
estimator). The benign estimator I exists from assumption (8.2). The first term
‖x − x̂I ‖q can be bounded using Lemma 1.5.1 by

‖x − x̂I ‖q ≤ ‖EI (KI )‖p→q. (8.21)

Now it only remains to show that the second term is bounded.

To bound the second term, we first bound the difference between the estimates
of any two valid local estimators J1, J2 ∈ V (T ) up to time T ∈ Z+, which is
given in Lemma 8.4.1. We then use Lemma 8.4.1 to show that the difference
between the estimates of the benign estimator I ∈ V and the global estimator is
finite. This is shown in Lemma 8.4.3 for (p, q) = (2, 2) and in Lemma 8.4.8 for
(p, q) = (2,∞), (∞,∞). In these lemmas, each set of sensors inV are labeled into

J1,J2, · · · ,J|V | . (8.22)
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Lemma 8.4.1. Assume that Condition A holds. Let J1, J2 ∈ V (T ) be two sets of
sensors that are valid at time T . The divergence between the local estimator J1 and
J2 up to time T satisfies

‖ x̂J1 (0 : T ) − x̂J2 (0 : T )‖q ≤ D
J1,J2
p,q , (8.23)

where right hand side is finite, i.e. DJ1,J2
p,q < ∞ .

Proof (Lemma 8.4.1). Let J1, J2 ∈ V (T ). We first compute the dynamics of the
local estimates x̂Ji (t), i = 1, 2. From (8.14) and (8.16),

x̂Ji (t + 1) = Ax̂Ji (t) − KJirJi (t), x̂Ji (0) = 0

yJi (t) = CJi x̂
Ji (t) + rJi (t)

(8.24)

for t ≤ T . We define the sequences φJi (t) and ϕJi (t) by

φJi (t) , −KJirJi (t), ϕJi (t) , PK1,2,Jir
Ji (t),

where PK1,2,Ji ∈ R
|K1,2 |×|Ji | is the unique solution of PK1,2 = PK1,2,Ji PJi . Let

K1,2 = J1 ∩ J2 the intersection between the two sets J1,J2. As the measurements
from subsetK1,2 ⊂ Ji also satisfies yK1,2 (t) = CK1,2 x̂Ji (t)+PK1,2,Jir

Ji (t), combining
with (8.24) yields

x̂Ji (t + 1) = Ax̂Ji (t) +
[
I 0

] 

φJi (t)
ϕJi (t)


, x̂Ji (0) = 0

yK1,2 (t) = CK1,2 x̂Ji (t) +
[
0 I

] 

φJi (t)
ϕJi (t)


.

(8.25)

Now, let ∆(t) be the difference between the local estimator J1 and local estimator
J2, i.e.

∆(t) , x̂J1 (t) − x̂J2 (t). (8.26)

Subtracting the (8.25) for J1 from (8.25) for J2, we obtain the dynamics of ∆ as
follows:

∆(t + 1) = A∆(t) +
[
I 0

] 

φJ1 (t) − φJ2 (t)
ϕJ1 (t) − ϕJ2 (t)


, ∆(t) = 0,

0 = CK1,2∆(t) +
[
0 I

] 

φJ1 (t) − φJ2 (t)
ϕJ1 (t) − ϕJ2 (t)


.
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Because a valid set satisfies (8.18), the residual vectors of estimator Ji, i = 1, 2, are
bounded by ‖rJi (0 : T )‖q ≤ ‖GJi (KJi )‖p→q, which results in





φJi (0 : T )
ϕJi (0 : T )



p

≤





−KJi

PK1,2,Ji



p→p

‖rJi (0 : T )‖p

= βJi,J1∩J2
p,q . (8.27)

From the triangle inequality, we obtain





φJ1 (0 : T ) − φJ2 (0 : T )
ϕJ1 (0 : T ) − ϕJ2 (0 : T )



p

≤ βJ1,J1∩J2
p,q + βJ2,J1∩J2

p,q .

Substitute φJ1 − φJ2 for u in Lemma 8.4.2 and ∆(t) for x, and we obtain

‖ x̂J1 (0 : T ) − x̂J2 (0 : T )‖q ≤ α
J1∩J2
p,q (βJ1,J1∩J2

p,q + βJ1,J1∩J2
p,q ).

�

In the proof of Lemma 8.4.1, we use the following lemma.

Lemma 8.4.2. Consider system (1.3) where (A,C) is detectable and ‖w‖p ≤ 1. If
y(t) = 0 for all t = 0, 1, · · · ,T , then

‖x(0 : T )‖q ≤ inf
K :A+KC strictly stable

‖E(K )‖p→q, (8.28)

where E(K ) is given in (1.9).

Proof (Lemma 8.4.2). As (A,C) is detectable, A + KC is strictly stable for some
matrix K . For such stabilizing K , we can construct the state estimator (1.8). Since
y(0 : T ) = 0, the state estimator (1.8) produces zero estimate x̂(0 : T ) = 0. From
Lemma 1.5.1, we obtain

‖x(0 : T )‖q = ‖e(0 : T )‖q ≤ ‖E(K )‖p→q.

Taking infimum over all K such that A+ KC is strictly stable, we obtain (8.28). �

Lemma 8.4.3. If condition (8.23) holds for (p, q) = (2, 2) at all time T ∈ Z+, then
the divergence between the benign estimator I and the global estimator satisfies

‖ x̂I − x̂‖2 ≤ max
J1,J2∈V

√
1
2

log |V | DJ1,J2
p,q . (8.29)
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Define the following two optimization problems:

Pδ (n) := max
zk (i)≥0

n∑
i=1

(
1

n − i − 1

)2
*
,

n∑
k=i

zk (i)+
-

2

s.t.
k∑

i=0
(zk (i))2 ≤ δ, k = 1, 2, . . . , n

Dδ (n) := min
λi>0

n∑
i=1

λi

s.t.
j∑

i=1

1
λi
≤ ( j + 1)2, j = 1, 2, . . . , n.

With the slight abuse of notation, we will also denote Pδ (n), Dδ (n) as the optimal
solutions of the optimization problem Pδ (n), Dδ (n), respectively. We first show
that Pδ (N − 1) with

δ = max
J1,J2∈V

(
D
J1,J2
2,2

)2
(8.30)

is an upper-bound of ‖ x̂I− x̂‖2 (Lemma 8.4.4). The problemPδ (n) is then converted
into its dual problem Dδ (n), between which the duality gap is zero (Lemma 8.4.5).
The dual problem Dδ (n) admits an analytical solution that can be upper-bounded
by a simple formula (Lemma 8.4.7).

Lemma 8.4.4. If condition (8.23) holds for (p, q) = (2, 2), then the divergence
between the benign estimator I and the global estimator satisfies

‖ x̂I − x̂‖22 ≤ Pδ (N − 1), (8.31)

where N = |V | and δ = maxJ1,J2∈V

(
D
J1,J2
2,2

)2
.

Proof (Lemma 8.4.4). In order to relate the infinite sequence x̂I (t) − x̂(t) with the
finite-dimensional optimization problems Pδ (n), we first divide the infinite time
horizon into a finite sequence as below. Let Ti be the time the set Ii becomes invalid
and T0 = 0. Without loss of generality, we assume that

T1 ≤ T2 ≤ · · · ≤ TN−1 ≤ TN = ∞.

The relation TN = ∞ holds because IN is a valid from assumption (8.2). We call IN

the benign estimator. If Ti = ∞, then we define {xIi (t)}t∈Z+ as an infinite sequence
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of points in Rn. Otherwise, if Ti is finite, then we define {xIi (t)}t=0,...,Ti as a finite
sequence of length Ti + 1.

Recall that IN is the benign estimator. Let 4Ik (t) = x̂IN (t) − x̂Ik (t) denote the
difference between the benign estimator IN and other local estimator Ik . We first
define the following variable:

zk (i) = ‖4Ik (Ti + 1 : Ti+1)‖2,

where k = 1, · · · , N − 1 and i = 0, · · · , k.

Using zk (i), we can bound the estimation error between the local estimator IN and
the global estimator as follows:

‖ x̂IN − x̂‖22

=

∞∑
t=0
‖ x̂IN (t) − x̂(t)‖22

=

N−2∑
i=0

Ti+1∑
t=Ti+1


x̂IN (t) −

1
|V (t) |

N∑
j=i+1

x̂Ij (t)


2

2

=

N−2∑
i=0

Ti+1∑
t=Ti+1



1
N − i

N−1∑
k=i+1

(
x̂IN (t) − x̂Ik (t)

)

2

2

=

N−2∑
i=0

(
1

N − i

)2 

N−1∑
k=i+1

4Ik (Ti + 1 : Ti+1)


2

2

≤

N−2∑
i=0

(
1

N − i

)2
*
,

N−1∑
k=i+1

4
Ik (Ti + 1 : Ti+1)2

+
-

2

=

N−2∑
i=0

(
1

N − i

)2
*
,

N−1∑
k=i+1

zk (i)+
-

2

.

The sum of i and j counts only up to N − 1 since x̂(t) = x̂IN (t) for t > TN−1 + 1.
We also used Cauchy Schwarz inequality in the second to last line. Using the above
relation, ‖ x̂IN − x̂‖22 is upper-bounded by the optimal value of the following problem:

max
zk (i)≥0

N−2∑
i=0

(
1

N − i

)2
*
,

N−1∑
k=i+1

zk (i)+
-

2

s.t.
k∑

i=0
(zk (i))2 ≤ max

J1,J2∈V

(
D
J1,J2
2,2

)2
, k = 1, . . . , N − 1,

(8.32)
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which is the optimization problem Pδ (N − 1) with δ = maxJ1,J2∈V

(
D
J1,J2
2,2

)2
. �

Lemma 8.4.5. The problems Pδ (n), Dδ (n) have identical optimal values, i.e.
Pδ (n) = Dδ (n).

We use the following lemma to prove Lemma 8.4.5.

Lemma 8.4.6. The following two inequalities are equivalent

Λ = diag(λ1, λ2, · · · , λn) ≥ 11T (8.33)
n∑

i=1

1
λi
≤ 1, and λ j > 0, j = 1, . . . , n. (8.34)

Lemma 8.4.7. The solution of the problem Dδ (n) satisfies

Dδ (n) = δ



1
4
+

n∑
i=2

1
2i + 1



≤

1
2
δ log(n + 1). (8.35)

Proof (Lemma 8.4.5). Let v ∈ Rn(n−1)/2 be a vector that is composed of zi+1:n( j) =
{zi+1( j), zi+2( j), · · · , zn( j)} for all j = 0, 1, · · · , p, i.e.

v ,
[
z1:n(0), z2:n(1), · · · , zn(n)

]
.

Let the following matrices be defined as

X = vvT ≥ 0

F0 = diag *
,

1
22 , · · · ,

1n−11T
n−1

(n)2 ,
1n1T

n

(n + 1)2
+
-

(8.36)

Fi = diag
(
en,i, en−1,i, · · · , en−i+1,i, 0n−i, · · · , 01

)
,

where 1k is a k-dimensional vector with all elements being 1; ek, j is a k-dimensional
rowvectorwith j-th entry being 1 and other entries being 0; and 0k is a k-dimensional
rowvectorwith all elements being 0. Using SDP relaxation [117], the problemPδ (n)
can be converted into

P′δ (n) =max
X≥0

tr (F0X )

s.t. tr (Fi X ) ≤ δ, ∀i = 1, . . . , n.
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Therefore, Pδ (n) ≤ P′δ (n). This relaxation can be observed from the following
relations:

n−1∑
i=0

(
1

n − i + 1

)2
*
,

n∑
k=i+1

zk (i)+
-

2

= vT F0v = tr (F0vv
T )

k∑
i=0

(zk (i))2 = vT Fiv = tr (Fivv
T ).

We next show that the relaxation of the problem Pδ (n) to the semidefinite problem
P′δ (n) is also exact. Assume that Pδ (n) is feasible and bounded. Let X∗ = {x∗i j } be
the optimal solution of P′δ. Define X as

X =
[√

x∗11 . . .
√

x∗nn

]T [√
x∗11 . . .

√
x∗nn

]
.

From xii = x∗ii and (8.36), X satisfies the contraints

tr (Fi X ) = tr (Fi X∗) = δ. (8.37)

Furthermore, because X∗ is the optimal solution and xi j =
√

x∗ii x
∗
j j ≥ x∗i j (due to

X∗ ≥ 0),

tr (F0X∗) ≥ tr (F0X ) ≥ tr (F0X∗). (8.38)

Therefore, (8.37) and (8.38) shows that Pδ (n) = P′δ (n).

Next, we consider the following dual problem of P′δ (n):

D′δ (n) = min
λ

δ

n∑
i=1

λi (8.39)

s.t.
n∑

i=1
λiFi ≥ F0.

Because there exists an strictly positive definite matrix X > 0 such that tr (Fi X ) = δ
for all i = 1, 2, · · · , n, from Slater’s condition [22], strong duality holds between
P′δ (n) andD′δ (n). LetΛ1:i = diag(λ1, . . . , λi) ∈ Ri×i, and observe that

∑n
i=1 λiFi =

diag(Λ1:1,Λ1:2, . . . ,Λ1:n). Hence, the constraint
∑n

i=1 λiFi ≥ F0 is equivalent to

diag(λ1, . . . , λ j ) ≥
1

( j + 1)2 11T, ∀ j = 1, . . . , n,

⇐⇒

j∑
i=1

1
λi
≤ ( j + 1)2, λ j > 0, j = 1, . . . , n,

where the second line is due to Lemma 8.4.6. Therefore, the dual problem D′δ (n)
can be reformulated into Dδ (n). �
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Proof (Lemma 8.4.7). We first consider the case when n ≥ 2. Let us define an
auxiliary variable

sk =

k∑
i=1

δ

λi
, k = 1, · · · , n, (8.40)

where s0 = 0, and sk = 0 for k ≥ n + 1. Using the auxiliary variable sk , we rewrite
the optimization problem Dδ (n) as

min
n∑

i=1

1
si − si−1

s.t. si ≤ (i + 1)2, si−1 ≤ si, i = 1, . . . , n.

(8.41)

We define the Lagrangian L : Rn × Rn × Rn → R of the problem (8.41) as follows:

L(s, µ, η) =
n∑

i=1

1
si − si−1

+ µi (si − (i + 1)2) + ηi (si−1 − si).

Let (s∗, µ∗, η∗) be any optimal primal and dual variables, then (s∗, µ∗, η∗) satisfies
the Karush-Kuhn-Tucker (KKT) conditions. Solving the KKT conditions, we obtain
that

s∗i = (i + 1)2, i = 1, . . . , n

η∗i = 0, i = 1, . . . , n

µ∗i =




1
16 −

1
25 if i = 1

1
(2i+1)2 −

1
(2i+3)2 if i = 2, . . . , n − 1

1
(2n+1)2 if i = n.

To see this, observe that

1. s∗i − (i + 1)2 ≤ 0, µ∗i (s∗i − (i + 1)2) = 0, i = 1, . . . , n.

2. s∗i−1 − s∗i ≤ 0, η∗i (s∗i−1 − s∗i ) = 0, i = 1, . . . , n.

3. µ∗i ≥ 0, i = 1, . . . , n.

4. η∗i ≥ 0, i = 1, . . . , n.

5. dL(s∗, µ∗, η∗)/dsi = 0.
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Since the problem (8.41), which is equivalent with Dδ (n), is a convex problem, the
KKT conditions are sufficient for optimality [22]. Therefore, the optimal primal
and dual variables are (s∗, µ∗, η∗), which result in the optimal value

Dδ (n) =
1
4
+

n∑
i=2

1
2i + 1

. (8.42)

Next, we upper-bound the optimal cost D′δ (n). Since the function f (i) = (2i +

1)−1, i ≥ 1, is convex, from Jensen’s inequality, f (i) is upper-bounded by f (i) ≤
1
2
(

f (i − t/2) + f (i + t/2)
)
, for any t ∈ [0, 1]. Integrating this along t ∈ [0, 1], we

obtain that

f (i) ≤
1
2

∫ 1

t=0
f
(
i −

t
2

)
+ f

(
i +

t
2

)
dt

=
1
2

(log(i + 1) − log(i)).

Combining above bound with (8.42), we establish a lower-bound of the optimal
value

Dδ (n) = δ



1
4
+

n∑
i=1

1
2i + 1

−
1
3



≤

1
2
δ log(n + 1).

On the other hand, when n = 1, the optimal variable is λ∗1 = δ/4, which attains the
optimal value Dδ (1) = δ/4 ≤ log(2)/2 ≈ δ0.346574. �

Proof. Proof (Lemma 8.4.3) Applying Lemma 8.4.1 and Lemma 8.4.4, Lemma
8.4.5, and then Lemma 8.4.7 consecutively, we obtain

‖ x̂I − x̂‖22 ≤ Pδ = Dδ ≤
1
2

log(N ) max
J1,J2∈V

(
D
J1,J2
2,2

)2
.

�

Lemma 8.4.8. If condition (8.23) holds for (p, q) = (2,∞), (∞,∞) at all time
T ∈ Z+, then the divergence between the benign estimatorI and the global estimator
satisfies

‖ x̂I − x̂‖∞ ≤
1
2

max
J∈V

D
I,J
p,∞ . (8.43)

Lemma 8.4.8 is a trivial extension of the following Proposition. We omit its prove
due to space constraints.
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Proposition 8.4.1. Let z1, . . . , zl be real numbers. Define

z =
1
2

(
max

i
zi + J1ni zi

)
.

Then for any i, we have

|z − zi | ≤
1
2

max
j
|z j − zi |. (8.44)

Now we are ready to prove Theorem 8.4.1.

Proof. Theorem 8.4.1 Taking supremum over all t ∈ Z+ and maximizing over all
sensor sets I in Lemma 8.4.3, we obtain

sup
‖w‖2≤1
‖a‖0≤ρ

‖e‖2 ≤ max
I∈V
‖EI (KI )‖∞ + max

J1,J2∈V

√
1
2

log |V | DI,J2,2 .

Applying similar argument for the case of q = ∞, we obtain

‖e‖∞ ≤ max
I,J∈V

(
‖EI (KI )‖p→∞ +

1
2
D
I,J
p,∞

)
,

where p = 2,∞. �

8.5 Numerical example
In this section, we study the proposed estimator numerically and compare it with
existing algorithms from Shoukry et al. [173], Chong et al. [38], Pajic et al. [147],
and Lu et al. [118]. We tested the IEEE 14-Bus system, the Unmanned Ground
Vehicle (UGV), and the temperature monitor as follows.

(i) IEEE 14-Bus system [114, 173, 212]: The IEEE 14-Bus system is modeled
as the system (8.1) with A and C given in [212]. We additionally add process
noise and sensor noise by setting B =

[
I10 O10,35

]
and D =

[
O10,35 I35

]
.

(ii) Unmanned ground vehicle (UGV) [147, 173]: A UGV moving in a straight
line has the dynamics



ṗ

v̇


=



0 1
0 −b/m





ẋ

v̇


+



0
1/m


u +

[
I2 O2,3

]
w,

where p is the position, v is the velocity, u is the force input, w is the dis-
turbance, m is the mechanical mass, b is the translational friction coefficient,
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In is a n-dimensional identity matrix, and On,m is a m × n zero matrix. We
assume that the estimator can access the values of u. The UGV is equipped
with a sensor measuring x and two sensors measuring v, i.e.

y =



1 0
0 1
0 1





p

v


+

[
O3,2 I2

]
w.

The system parameters are the same as [173]: m = 0.8kg, b = 1, and sampling
interval Ts = 0.1s.

(iii) Temperature monitor [131]: The heat process in a plannar closed region
(z1, z2) ∈ [0, l] × [0, l] can be expressed by

Dialx
Dialt

= α *
,

Dial2x
Dialz2

1
+
Dial2x
Dialz2

2

+
-
, (8.45)

where α is the speed of the diffusion process; and x(z1, z2) is the temperature
at position (z1, z2) subject to the boundary conditions

Dialx
Dialz1

����t,0,z2
=
Dialx
Dialz1

����t,l,z2
=
Dialx
Dialz1

����t,z1,0
=
Dialx
Dialz1

����t,z1,l
= 0.

We discretize the region using a N × N grid and the continuous-time with
sampling interval Ts to model (8.45) into (8.1). We additionally add process
noise and sensor noise by setting w, B =

[
I9 O9,20

]
and D =

[
O9,20 I20

]
.

We set α = 0.1m2/s, l = 4m, and N = 5 as in [131].

The noise w is generated from a uniform distribution between [−1, 1]. The time
horizon is set to be T = 100. The number of compromised sensors is set to be 1; the
compromised sensor is randomly chosen among non-critical sensors (i.e. sensors
that can be removed without losing observability). The attack signal is drawn from
a Gaussian distribution with mean zero and variance 104 and 1. For the proposed
algorithm, we used (8.17) with (p, q) = (2, 2), (2,∞), and (∞,∞) simultaneously.
We ran each example for 100 times and recorded their average estimation errors
‖e‖2 and computation times. The code is written in Matlab (Windows) and runs on
an Intel Core i5-4690 Processor (4x3.50GHz/6MB L3 Cache). We summarize the
estimation errors and computation times in Table S1 and Table S2. Some entries
are left as NA (not applicable) because the system (ii) does not satisfy the linear
matrix inequality (LMI) assumption required by the algorithm proposed by [118].
The algorithms tested have different relative accuracies and computation times from
example to example. Among all examples tested, the proposed algorithm has
relatively low estimation errors and average computation times.
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Proposed [173] [38] [149] [118]
(i) 11.1573 17.2948 13.7927 48.9880 17.5957
(ii) 6.9108 4.7246 7.2937 22.0884 NA
(iii) 6.7833 7.9424 6.8902 8.5448 18.5803

Table S1: Estimation errors in two-norm ‖e(1 : 100)‖2 when the attack variance is
104.

Proposed [173] [38] [149] [118]
(i) 0.0062 0.0108 0.0045 0.0006 0.0345
(ii) 0.0001 0.0026 0.0002 0.0003 NA
(iii) 0.0023 0.0096 0.0020 0.0005 0.0048

Table S2: Average computation time in second for time horizon 100 when the attack
variance is 104.

Proposed [173] [38] [147] [118]
(i) 6.4653 9.6477 7.4754 9.8822 17.3752
(ii) 6.8500 4.6481 7.2884 23.3668 NA
(iii) 6.7060 8.0070 6.8144 8.6655 NA

Table S3: Estimation errors in two-norm, i.e. ‖e(1 : 100)‖2 when the attack variance
is 1.

Proposed [173] [38] [147] [118]
(i) 0.0062 0.0109 0.0046 0.0005 0.0325
(ii) 0.0001 0.0024 0.0002 0.0003 NA
(iii) 0.0023 0.0093 0.0020 0.0004 NA

Table S4: Average computation time in second for time horizon 100 when the attack
variance is 1.
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C h a p t e r 9

APPLICATION TO SCHEDULING I: REVERSE ENGINEERING
EXISTING SCHEDULING ALGORITHMS

The electrification of transportation provides a great opportunity for energy effi-
ciency and sustainability. There were over a million electric vehicles (EVs) world-
wide as of 2015 [4], and accelerated EV proliferation is expected for many years to
come. To charge a large number of EVs however presents a tremendous challenge,
in terms of both its impact on power grid and management complexity. While the
flexibility in charging time and rate can be exploited for coordinated EV charging to
control and mitigate the impact on the grid, its efficacy often depends on accurate
prediction of EV arrivals and energy demands as well as coordination across time
among different EVs. However, the accurate prediction is usually either impossible
or very costly (in data collection and computation), and the temporal coordination
among a large number of EVs may incur prohibitively large complexity. In view
of these limitations, in this chapter we investigate low-complexity EV charging that
does not require the prediction of EV arrivals/demands or the temporal coordination.

Specifically, we formulate EV charging as a feasibility problem that meets all EVs’
energy demands before departure under individual charging rate constraints and
total charging power constraint. We then propose an online algorithm, the smoothed
least-laxity-first (sLLF) algorithm, that decides on the current charging rates based
on only the information up to the current time. The laxity is defined as an EV’s
remaining time at the charging station minus the time needed to fully charge it
at the maximum rate, and can be seen as the feasibility margin for EV charging.
Without information on future EV arrivals, the sLLF algorithm makes best possible
decision by maximizing the minimum resulting laxity for the next time among the
EVs currently in the system.

As the sLLF algorithm does not take future EV arrivals into consideration, an
(offline) feasible EV charging instance may be (online) infeasible under sLLF.
We use the resource augmentation framework to study the sLLF algorithm, and
characterize the minimum amount of additional resources (total power supply and
charging rates) that will allow the algorithm to generate a feasible charging for
any offline feasible charging instances. We further carry out numerical experiments
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using real-world data, and show that sLLF has significantly higher rate of generating
feasible EV charging than several other common EV charging algorithms. This is
expected, as the sLLF algorithm tries to leave the largest feasibility margin, so it can
best accommodate arbitrary future EV arrivals.

9.1 System model
Consider a system with one charging station that serves a set of EVs, indexed by
i ∈ V = {1, 2, 3, · · · }. We use a discrete-time model where time is divided into
slots of equal sampling intervals, indexed by t ∈ T = {0, 1, 2, · · · ,T }. EV i arrives
at the charging station with an energy demand ei at time ai, and departs from the
station at time di.1 During its stay at the station, the EV is charged at a rate (or
power) of ri (t) ≥ 0, ai ≤ t < di. For convenience, we extend this definition of ri (t)
to the entire temporal domain. The notations are summarized in Table S1.

To account for limitations in the charger or battery of an EV, each EV i can only be
charged up to a peak rate r̄i, i.e.

ri (t) ≤ r̄i, t ∈ [ai, di), i ∈ V

ri (t) = 0, t < [ai, di), i ∈ V .
(9.1)

To account for limitations in the grid or power station, the charging station has a
(possibly time-varying) power limit P(t) such that2∑

i∈V

ri (t) ≤ P(t), t ∈ T . (9.2)

Furthermore, the power limit and maximum charging rates fall within the following
nominal ranges:

Pmin ≤ P(t) ≤ Pmax,

r̄min ≤ r̄i ≤ r̄max, i ∈ V .

Finally, every EV’s energy demands needs to be satisfied, i.e.3∑
t∈T

ri (t) = ei, i ∈ V . (9.3)

1Each EV leave at its departure time regardless of its charging conditions. This assumption
is applicable for most slow chargers including ACN [102]. Under this assumption, we do need
to explicitly model number of stations, as the speed of charging does not affect the availability of
chargers for incoming EVs.

2All EVs at the charing station can be simultaneously as long as the constraints (9.1)-(9.2) are
satisfied.

3The actual constraint in ACN is
∑

t∈T δri (t) = ei, i ∈ V , where δ (h) is the sojourn time of
sampling time intervals, ei has unit kWh, ri (t) has unit kW [102]. Since ri (t) can always be rescaled
according to δ, we set δ = 1 without loss of generality.
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Table S1: Notation

I EV charging problem instance
V set of EVs
Vt set of EVs remaining in the charging station at time t
T set of times
ei energy demand of EV i ∈ V

ei (t) remaining energy demand of EV i at time t ∈ T
ri (t) charging rate of EV i at time t
P(t) power limit of the charging station at time t
ai arrival time of EV i
di departure time of EV i

Next, we define anEVcharging problem instance as a quintupleI = {ai, di, ei, r̄i; P(t)}i∈V,t∈T .
The primary goal of EV charging is to satisfy every EV’s energy demands under the
above power supply and peak rate constraints.

Definition 9.1.1 (Feasible instance). An EV charging problem instance I is offline
feasible if there exist charging rates r = {ri (t) : i ∈ V, t ∈ T } that satisfy constraints
(9.1)-(9.3).

Constraints (9.1)-(9.3) are affine. Therefore, verifying the feasibility of an EV
charging instance is a linear program (LP) for which many efficient algorithms exist.

In practice, the energy demand and departure time of an EV are only informed
after its arrival.4 Consequently, the charging station must use an online algorithm
to determine an EV’s current charging rate ri (t) using only information up to the
current time t:

It = {ai, di, ei (τ), r̄i; P(τ)}i∈Vt,τ≤t, (9.4)

where ei (τ) = ei −
∑τ−1

t=0 ri (t) is the remaining energy demand of EV i at the
beginning of time slot τ.

Definition 9.1.2 (Online algorithm). An online algorithm is a sequence of functions
A = {At } where each function At : It → r (t) maps the information up to the
current time It to the current charging rates r (t) = {ri (t)}i∈Vt .

4In ACN, the energy demand and departure time of EV i is gathered from user inputs upon
arrival.
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Definition 9.1.3 (Feasibility of the algorithm). An (online) algorithm A is feasible
(online feasible) on instance I if it gives charging rates that satisfy constraints
(9.1)-(9.3).5

9.2 The proposed algorithm: smoothed least-laxity-first algorithm
Laxity and its properties
A measure for the flexibility (or urgency) in the charging of an EV is its remaining
time minus the minimum remaining time needed to fully charge it (time needed to
fully charge it at the maximum rate). We refer to this measure as laxity.

Definition 9.2.1 (Laxity). The laxity of an EV i ∈ V at time t ∈ T is defined as6

`i (t) =



[di − t]+ −
ei (t)

r̄i
, t ≥ ai,

+∞, t < ai,

where “[·]+” denotes the projection onto the set R+ of non-negative real numbers.

Proposition 9.2.1 (Feasibility condition). The algorithmA is feasible on an instance
I if and only if A gives charging rates that result in non-negative laxities for all
EVs, i.e.

`i (t) ≥ 0, i ∈ V, t ∈ T . (9.5)

Proof. (Proposition 9.2.1) Observe that feasibility is equivalent with the condition

ei (di) = 0, i ∈ V . (9.6)

Condition (9.5) implies that for any EV i ∈ V , `i (di) = −ei (di)/r̄i ≥ 0, which
yields ei (di) = 0. Next, notice that the laxity of EV i is monotonically decreasing
at t < di and constant at t ≥ di, i.e.

`i (t) = `i (t + 1) + 1 − ri (t)/r̄i ≥ `i (t + 1), t < di (9.7)

`i (t) = `i (t + 1) t ≥ di . (9.8)

Therefore, condition (9.6) implies that `i (t) ≥ 0 at any time t ∈ T . �

5The feasibility is defined for an instance I with respect to an online algorithm A, whereas
the offline feasibility is defined for an instance I. Offline feasibility is a necessary condition for an
instance I to be feasible with respect to algorithm A. An instance I can be online feasible with
respect to algorithm A but infeasible with respect to another algorithm A ′.

6 For convenience, laxity is defined on the whole temporal domain T .
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Proposition 9.2.1 suggests that the minimum laxity among all EVs can serve as a
measure of the distance from infeasibility. A naive approach—referred to as the least
laxity first (LLF) algorithm—is to chargeEVs starting from thosewith the least laxity
to those with the most laxity. However, the LLF algorithm may compromise the
feasibility of certain offline feasible instances (see Section 9.4) and cause excessive
preemptions and oscillations in the charging rate7, which may reduce the lifetime
of certain batteries (e.g., Li-ion) [92]. Alternatively, we consider maximizing
the minimum laxity among all EVs in order to maximize the feasibility margin,
maxr mini∈V `i (T ). Although its solutionmay be non-unique, for twice continuously
differentiable, strictly concave, and strictly increasing f , the following optimization
problem produces an unique solution that is also a solution of maxr mini∈V `i (T ) .8

Corollary 9.2.1 (Equivalent problem). Consider the optimization algorithm

max
r

∑
i∈V

r̄i f (`i (T )) s.t. (9.1), (9.2),
∑
t∈T

ri (t) = ei, i ∈ V, (9.9)

where f is strictly increasing. Algorithm (9.9) is feasible for any offline feasible
instance.

Proof (Corollary 9.2.1). From constraint
∑

t∈T ri (t) ≤ ei and f strictly increasing,
the objective function satisfies∑

i∈V

f (`i (T )) ≤
∑
i∈V

f (0).

If an instanceI is offline feasible, then there exists certain charging rates that achieve
`i (T ) = 0,∀i ∈ V , which yields

∑
i∈V f (`i (T )) =

∑
i∈V f (0). Since the laxity is

monotonically decreasing at any t ∈ T , such charging rates also satisfy condition
(9.5). From Proposition 9.2.1, condition (9.5) implies that algorithm (9.9) is feasible
on instance I. �

However, we cannot solve (9.9) because of the lack of future information of incoming
EVs. Instead, we replace (9.9) with the following online algorithm: at each time

7For example, consider a system of two EVs, where `1(0) = 1.25, `2(0) = 0.75 and r̄1 =
r̄2 = P(t) = 1, t ∈ T . EV 1 and EV 2 will be charged according to (r1(0), r2(0)) = (0, 1),
(`1(1), `2(1)) = (0.25, 0.75); (r1(1), r2(1)) = (1, 0), and so on. In this example, both EV switches
in-between charging and not charging.

8Additionally, we can show the problem (9.9) also has a fairness property.
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t ∈ T , given `i (t), i ∈ V , compute9

max
r (t)

∑
i∈Vt

r̄i f (`i (t + 1)) s.t. (9.1), (9.2), ri (t) ≤ ei (t), i ∈ Vt . (9.10)

The optimization problem (9.10) also maximizes the minimum laxity mini∈Vt `i (t +
1), and thusmaximizes the feasibilitymargin at time t.10 Next, we show the structure
of the optimal solution, which will be used to construct a scalable algorithm.

Proposition 9.2.2 (Valley-filling solution). Assume that f is strictly concave, strictly
increasing, and twice continuously differentiable. A solution to the optimization
problem (9.10) is

r∗i (t) = [r̄i (L(t) − `i (t) + 1)]min(r̄i,ei (t))
0 , i ∈ Vt, (9.11)

where [x]b
a denotes the projection of the scalar x on interval [a, b], and the value

L(t) satisfies ∑
i∈Vt

[r̄i (L(t) − `i (t) + 1)]min(r̄i,ei (t))
0

=
∑
i∈Vt

r∗i (t) = min *.
,
P(t),

∑
i∈Vt

min(r̄i, ei (t))+/
-
.

(9.12)

Proof. (Proposition 9.2.2)

From the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem
(9.10),

ri (t) ≥ 0 i ∈ Vt (9.13)

ri (t) ≤ min(ei (t), r̄i) i ∈ Vt (9.14)∑
i∈Vt

ri (t) ≤ P(t) i ∈ Vt (9.15)

f ′(li (t + 1)) + λ̄i − λi + v = 0 i ∈ Vt (9.16)

λi ≥ 0, λ̄i ≥ 0 i ∈ Vt (9.17)

λiri (t) = 0, λ̄i{ri (t) −min(ei (t), r̄i)} = 0 i ∈ Vt, (9.18)

where λi, λ̄i, v are the dual variables for constraints (9.13), (9.14), (9.15), respec-
tively. We consider threemutually exclusive cases: ri (t) = 0, ri (t) ∈ (0,min(ei (t), r̄i)),

9For more complex form of power limits, in optimization problems (9.9) and (9.10), the power
constraints (9.2) can be replaced by Ar (t) ≤e.w. P(t), for element-wise inequality and positive matrix
A. The Result in Corollary 9.2.1 also holds for Ar (t) ≤e.w. P(t).

10The solution of (9.10) is also unique.
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or ri (t) = min(ei (t), r̄i). When ri (t) = 0, λ̄i = 0 and

ri (t)/r̄i = f ′−1(−v) − li (t) + 1 − λi ≤ f ′−1(−v) − li (t) + 1, (9.19)

where the the inverse of f ′ exists since f ′ is strictly concave, strictly increasing, and
twice continuously differentiable. When ri (t) ∈ (0,min(ei (t), r̄i)), then from (9.18)
(complementary slackness), λ̄i = λi = 0. Substituting λ̄i = λi = 0 into (9.16), we
obtain

li (t) − 1 + ri (t)/r̄i = f ′−1(−v). (9.20)

When ri (t) = min(ei (t), r̄i), λi = 0 and

ri (t)/r̄i = f ′−1(−v) − li (t) + 1 + λ̂i ≥ f ′−1(−v) − li (t) + 1. (9.21)

Combining (9.19)-(9.21), we obtain

ri (t) = [r̄i ( f ′−1(−v) − li (t) + 1)]min(r̄i,ei (t))
0 . (9.22)

Because the same value of f ′−1(−v) is shared for all EVs at the charging station,
we can define an variable L(t) = f ′−1(−v). Since the optimal solution is attained at
the boundary

∑
i∈Vt

r∗i (t) = min
(
P(t),

∑
i∈Vt

min(r̄i, ei (t))
)
, we obtain the optimal

solution (9.11)-(9.12). �

Observe that for EV i ∈ Vt with r̄i ≤ ei (t), the charging rates (9.11) result in
`i (t + 1) = [L(t)]`i (t)

`i (t)−1. Hence, L(t) can be considered as a threshold of `i (t + 1),
below which the energy is charged to EV i. Since r∗i (t) in (9.11) is an increasing
function of L(t), a binary search can be used to find the threshold L(t) in (9.12).
Given L(t), the charging rates r∗i (t), i ∈ Vt is then determined using (9.11). We
formally state this procedure in Algorithm 5, and name it as the smoothed least-
laxity-first (sLLF) algorithm.

Algorithm 5 The Smoothed Least-Laxity-First (sLLF) Algorithm.
for t ∈ T do
Update set of EVsVt and laxities `i (t), i ∈ Vt
Obtain L(t) that solves (9.12) using bisection
Charge according to rates ri (t) in (9.11)

end for

The computational complexity of the sLLF algorithm is O(|Vt | + log(1/δ)), where
δ is the level of tolerable error. Lastly, we note that the sLLF algorithm has other
useful properties such as the least-laxity-first property and fairness.
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Lemma 9.2.1 (Least-laxity-first property). Under the sLLF algorithm, if there exist
two EVs i, j ∈ V such that

`i (t) ≤ ` j (t), (9.23)

`i (t + 1) > ` j (t + 1), (9.24)

then either one of the following holds:

t ≥ di & ri (t) = 0, (9.25)

t < di & t < d j & e j (t + 1) = 0 & ri (t) , 0. (9.26)

Proof. (Lemma 9.2.1) First notice that, by Definition 9.2.1, it satisfies the following
relation:

`i (t) − 1 ≤ `i (t + 1) ≤ `i (t), i ∈ V . (9.27)

First, consider the case ri (t) = 0. The evolution of `i satisfies

`i (t + 1) =



`i (t) − 1 t < di,

`i (t) t ≥ di .
(9.28)

Suppose that t < di, combining (9.23) and (9.27) gives

` j (t + 1) ≥ ` j (t) − 1 ≥ `i (t) − 1 = `i (t + 1),

which contradicts (9.24). Therefore, t ≥ di, and (9.25) follows.

Next, consider the case ri (t) , 0. Non-zero ri (t) implies t < di. If t < d j , (9.23)
and (9.24) jointly implies

r j (t)
r̄ j (t)

<
ri (t)
r̄i (t)

. (9.29)

Under the sLLF algorithm, (9.29) happens only when e j (t) = r j (t), which leads to
e j (t + 1) = 0. If t ≥ d j , then ` j (t + 1) = ` j (t) ≥ `i (t) ≥ `i (t + 1), which contradicts
(9.24). Therefore, (9.26) follows. �

Corollary 9.2.2 (Fairness). Given the past charging rate r t−1, the sLLF algorithm
finds a current charging rate r (t) that is both proportionally fair and max-min fair
respect to one-step ahead laxity. In other words, let `i (t + 1) be the one-step ahead
laxity under the sLLF algorithm and ˆ̀i (t + 1) be another laxity produced by a
charging rate satisfying the constraints of (9.10), and the following two conditions
hold:
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• weighted proportional fairness:∑
i∈Vt

r̄i
ˆ̀i (t + 1) − `i (t + 1)

`i (t + 1)
≤ 0 (9.30)

• max-min fairness: if ˆ̀i (t + 1) > `i (t + 1) for some EV i ∈ Vt , then there exits
EV j ∈ Vt such that

` j (t + 1) ≤ `i (t + 1), ˆ̀j (t + 1) < ` j (t + 1). (9.31)

For a charging instance I = {ai, di, ei, r̄i; P(t)}i∈V,t∈T that is not online feasible
under the sLLF algorithm, there are times when some EV has negative laxity.
Denote by t− the earliest among such times. Let F = {i ∈ At− : `i (t−) < 0} denote
the set of EVs arriving at the changing station by time t− that have negative laxity,
S1 = {i ∈ At− : `i (t−) ≥ 0 & di ≤ t−} the set of EVs with non-negative laxity that
depart by time t−, and S2 = {i ∈ At− : `i (t−) ≥ 0 & di > t−} the set of EVs with
non-negative laxity that remain at the charging station at time t−. The sets F , S1,
and S2 are mutually exclusive, and At− = F ∪ S1 ∪ S2.

9.3 Performance analysis
There are two extreme cases, r̄i → ∞, i ∈ V and P(t) → ∞, in which online
algorithms can be feasible for any offline feasible instances. When r̄i → ∞ i ∈ V ,
or equivalently P(t) ≤ mini∈Vt r̄i for all t ∈ T , the charging problem is identical to
the single processor preemptive scheduling problem where the processing capacity
is time-variant. For this case, the earliest-deadline-first (EDF) algorithm is feasible
for any offline feasible instances [182]. When P(t) → ∞, or equivalently P(t) ≥∑

i∈Vt
r̄i (t) for all t ∈ T , the sLLF algorithm is feasible for any offline feasible

instances. However, beyond the above two extreme cases, no online algorithm can
be feasible on all offline feasible instances [186]. The hardness of finding feasible
online algorithms motivates a quantitative measure to evaluate the likelihood of
an algorithm being feasible. Observe that if more resources (e.g., P(t), r̄i) are
allowed, an otherwise infeasible problem instance may become online feasible
under the online algorithm. We use this (minimum) additional resource to analyze
the performance of the sLLF algorithm, where either power P or both power P

and peak rate r̄i are augmented. The former allows more EVs to be charged
simultaneously, while the latter additionally allows EVs to be charged faster. As we
will demonstrate, these twoways of resource augmentation are qualitatively different
and provide complementary insights into the behavior of the sLLF algorithm.
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Power Augmentation
In the case of power augmentation, the online algorithm is allowed to use more
power than the offline algorithm, i.e. Pon(t) = (1 + ε )P(t), r̄on

i = r̄i.

Definition 9.3.1. [ε-power augmented instance] Given an EV charging instance
I = {ai, di, ei, r̄i; P(t)}i∈V,t∈T , we define its ε-power augmented instance as

{ai, di, ei, r̄i; (1 + ε )P(t)}i∈V,t∈T (9.32)

Definition 9.3.2. [ε-power feasibility] An online algorithmA is ε-power feasible if
A is feasible on the ε-power augmented instances Ip(ε ) generated from any offline
feasible instance I.11

Unfortunately, there is no ε-power feasible online algorithm for any finite ε > 0
[155].12 However, under a mild assumption, the ε-power feasibility condition can
be obtained for a finite ε . Assume that the energy demand of each EV is bounded
by X and that the inter-arrival time between consecutive arrivals is greater than N ,
i.e.

ei ≤ X, i ∈ V, (9.33)

|ai − a j | > N, i, j ∈ V . (9.34)

We can characterize the relation between N and the sufficient amount of resource
augmentation ε as follows.

Theorem 9.3.1. If conditions (9.33) and (9.34) hold, then the sLLF algorithm is
ε-power feasible with

ε =
Pmax
Pmin




logϕ *
,

√
5X

N Pmax
+

1
2

+
-
+ 2



− 1,

where ϕ = 1.61803 is the golden ratio.
11Alternatively, the (minimum) value of ε can also be interpreted as the constraints on instances

that are online feasible. That is, given the original resource P(t), r̄i (t), the algorithm is online feasible
for any instances I = {ai, di, ei, r̄i; P(t)/(1 + ε )}i∈V,t∈T that is offline feasible given the reduced
resource P(t)/(1 + ε ), r̄i (t). Large ε restricts possible instances, and are thus less likely to be online
infeasible.

12It is shown in [155] that the LLF algorithm is not ε-power feasible for any ε > 0 for uniform
processors and time-invariant number of processors. Since their setting is a special case of our
setting, the same results extend to our setting.
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In particular, for constant power limit P(t) = P, t ∈ T , if N ≥ X/P,13 then we can
further simplify the feasibility condition in Theorem 9.3.1.

Corollary 9.3.1. For constant power limit P(t) = P, t ∈ T , if N ≥ X/Pmax, then
the sLLF algorithm is 3-power feasible.

Power and rate augmentation
In the case of power and maximum charging rate augmentation, the online algorithm
is allowed to use more power and higher maximum rate than the offline algorithm:
Pon(t) = (1 + ε )P(t), r̄on

i = (1 + ε )r̄i.

Definition 9.3.3. [ε-augmented instance]Given anEVcharging instanceI{ai, di, ei, r̄i; P(t)}i∈V,t∈T ,
we define its ε augmented instance as

{ai, di, ei, (1 + ε )r̄i; (1 + ε )P(t)}i∈V,t∈T . (9.35)

Definition 9.3.4. [ε-feasibility] An online algorithmA is ε-feasible ifA is feasible
on the ε-augmented instances Ipr (ε ) generated from any offline feasible instance I.

Unlike the case of power augmentation, the sLLF algorithm is ε-feasible for a finite
value of ε > 0 without any assumptions of the arrival patterns.

Theorem 9.3.2. The sLLF algorithm is ε-feasible with

ε = max
i∈V

{
max

τ1,τ2∈[ai,di]

P(τ1)
P(τ2)

− max
τ∈[ai,di]

r̄i

P(τ)

}
.

As we demonstrate in the next section, actual EV instances in ACN and others
require smaller amount of resource augmentation than the worst-case upper bound
in practice.

9.4 Performance at Caltech electric vehicle charging testbed
In this section, we show the performance of the sLLF algorithm using trace-base
simulation on real EV datasets and compare it to that of several heuristic online EV
charging algorithms.

13If the inter-arrival time is N , and the power demand is X , the incoming energy demand per unit
time is X/N . Since the total power supply is Pmax per unit time, N should be at least X/P for offline
feasiblity. Therefore, X/P ≤ N is a mild assumption.
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Experimental setup
Our simulations use datasets from the ACN deployment (CAGarage) and Google’s
facilities in Mountain View (Google_mtv) and Sunnyvale (Google_svl). They in-
clude a total of 52,362 charging sessions over more than 4,000 charging days in 2016
at 104 locations. See Table S1 for a summary of the data. Each instance consists
of one day of charging. We can see that there is a large degree of variation in the
sojourn time and laxity of the vehicles in the instances.

For each instance, we compute the minimum power capacity in which the instance
is feasible by using offline an LP, i.e. we minimize P = P(t), subject to (9.1)-(9.3).
This corresponds to the minimum power supply in order for the instance to be
offline feasible. We use this minimum power supply to generate an offline instance,
and tested if the instance is feasible under online algorithms. Besides the sLLF
algorithm, we also implemented some common (online) scheduling algorithms:
earliest-deadline-first (EDF), least-laxity-first (LLF), equal share (ES), remaining
energy proportional (REP) [182], and an online linear program (OLP) [75]:

Earliest Deadline First (EDF) All EVs inVt are sorted by their deadlines di in an
increasing order. The available power P(t) is assigned to EVs in this order up
to min(r̄i, ei (t)).

Least laxity first algorithms (LLF) All EVs inVt are sorted by their laxities `i (t)
in an increasing order. The available power P(t) is assigned to EVs in this
order up to min(r̄i, ei (t)).

Equal Share (ES) The available power supply P(t) is divided equally to all con-
nected EVs able to charge more energy, each EV receives the minimum
between their fair share and their maximum charging rate. Repeat until either
P(t) power is supplied or no more EV can be charged further.

Remaining Energy Proportional (REP) The available power P(t) is divided to
EVs in proportion to their remaining energy demand ei (t). Each EV receives
the minimum between their proportional share and their maximum charging
rate. Repeat until either P(t) power is supplied or no more EV can be charged
further.

Online Linear Program (OLP) [75] At each time t, the charging rate ri (t) to EV
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i ∈ Vt is provided according to the solution of the following LP:

min
∑
i∈Vt

T∑
τ=t

τri (τ)

subject to
T∑
τ=t

ri (τ) = ei (t), ∀i ∈ Ut∑
i∈Uτ

ri (τ) ≤ P(τ), ∀τ = t, . . . ,T

0 ≤ ri (t) ≤ r̄i .

The constraints of the online LP to find a feasible schedule for all the currently
active EVs assuming no EV arrivals in the future, while objective function
encourages the charging station to charge EVs as early as possible.

Instances EV sojourn time (m) Laxity (m)
CAGarage 92 321(11, 720) 231 (0.1, 660)
Google_mtv 3793 149 (10, 720) 35 (0.001, 694)
Google_svl 246 152 (11, 720) 38 (0.02, 676)

Table S2: Statistics of the EV charging instances. Each entry is formated as average
(minimum, maximum), unit (m) denotes minutes.

Results without augmented resources
We first evaluate the success rate of the online algorithms without resource aug-
mentation. We define the success rate of an algorithm as the percentage of online
feasible instances under the algorithm. The sLLF algorithm achieves uniformly
high success rate for all datasets compared to other online algorithms considered.
The EDF, ES, and REP algorithms perform much worse in terms of finding feasible
schedules (Figure 9.1). This is not surprising as feasibility requires online algo-
rithms to jointly consider deadline, maximum charging rate, and remaining energy
of each EV. However, none of these (the EDF, ES and REP algorithms) consider all
three factors simultaneously. The low success rate of the LLF algorithm, despite its
similarity to the sLLF algorithm, suggests the importance of maximizing minimum
laxity (see Section 9.2).

Next, we study what characteristics of the instances affect the success rate. We find
that the minimum normalized laxity and the maximum ratio between EV sojourn
times have high correlations with the success rate. The maximum ratio between
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Figure 9.1: Success rates of finding feasible online schedule without resource
augmentation.

REP ES EDF LLF OLP sLLF
power 4.61 3.65 1.39 0.07 0.28 0.07

power and rate 4.61 3.24 0.54 0.05 0.28 0.05

Table S3: Minimum resource augmentation for online feasibility for all instances.
The LLF and sLLF algorithms have the smallest ε among algorithms considered.

EV sojourn times is defined as the maximum ratio between the longest and shortest
EV sojourn times in the instances. The minimum normalized laxity of an EV is
defined as the laxity divided by the EV sojourn times `i (ai)/(di−ai). Fig. 9.2 shows
that as the minimum normalized laxity increases, all algorithms considered have
improved success rates. Among these algorithms, the sLLF algorithm has one of
the highest success rate for all minimum normalized laxity. Fig. 9.2b shows that as
the maximum ratio between EV sojourn times increases, all algorithms considered
have decreased success rates. Among these algorithms, the sLLF algorithm is least
sensitive to the maximum ratio between EV sojourn times and maintains highest
success rate across all sojourn times. Although instances with urgent schedule
(small minimum normalized laxity) and large variety of EV sojourn times tend to
have lower success rate, the sLLF algorithm has the best performance in almost all
scenarios.
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(a)

(b)

Figure 9.2: Success rate of finding feasible online schedule without resource aug-
mentation.
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(a) ε-power augmentation

(b) ε-power and rate augmentation

Figure 9.3: Success rate of finding feasible online schedule under resource augmen-
tation.
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Results with augmented resources
While the sLLF algorithm has shown high success rate in finding feasible online
EV charging schedules without resource augmentation, we further analyze the per-
formance of online algorithms with resource augmentation in (a) power, and (b)
both power and rate. Fig. 9.3 shows that the sLLF and OLP algorithm have the
highest success rate of among other algorithms under various level of resource aug-
mentation. We can see that to achieve 95% success rate for the sLLF algorithm,
only 2% increase in resources is required. Table S3 shows that the minimum ε

resource augmentation required for each algorithm to achieve 100% feasibility for
all instances is smallest for the LLF and sLLF algorithms. Other algorithms (EDF,
ES, REP and OLP) require significantly larger augmentation compared to the sLLF
algorithm. While the OLP algorithm has high success rate without augmentation
(Fig. 9.1), it requires much more resource augmentation to achieve 100% success
rate (Table S3).

Conclusion
We have formulated EV charging as a feasibility problem that meets all EVs’ energy
demands before departure under charging rate constraints and total power constraint,
and proposed an online algorithm, the sLLF algorithm, that decides on the current
charging rates based on only the information up to the current time. We characterize
the performance of the sLLF algorithm analytically and numerically. Numerical
experiments with real-world data show that it has significantly higher rate of gen-
erating feasible EV charging than several other common EV charging algorithms.
By finding feasible EV charging schedules using only a small augmentation to the
absolute minimum resource needed for offline feasibility, our proposed algorithm
(sLLF) can significantly reduce infrastructural cost for EV charging facilities.
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C h a p t e r 10

APPLICATION IN SCHEDULING II: OPTIMAL DISTRIBUTED
SCHEDULING ALGORITHMS

Traditionally, the scheduling literature has assumed a static or fixed service capacity.
However, it is increasingly common for modern applications to have the ability to
dynamically adjust their service capacity in order to match the current demand.
For example, power distribution networks match the energy supply demand as it
changes over time and, when using cloud computing services, one can modify the
total computing capacity by changing the number of computing instances and their
speeds.

The ability to adapt service capacity dynamically gives rise to challenging new
design questions. In particular, how to enhance the predictability and stability of
service capacity is of great importance in such applications since peaks and fluctu-
ations often come with significant costs [26, 128, 181]. For example, the emerging
load from electric vehicle charging stations leads to new challenges in power distri-
bution networks. Specifically, maintaining stable power consumption is important
because fluctuations and large peaks in power use may strain the grid infrastructure
and result in a high peak charge for the station operators. The stations also prefer
predictable power consumption because purchasing power in real time is typically
more expensive than purchasing in advance. Cloud content providers also prefer
stable and predictable service capacity because on-demand contracts for compute
instances (e.g. Amazon EC2 and Microsoft Azure) are typically more expensive
than long-term contracts. Additionally, significant fluctuations in service capac-
ity induce unnecessary power consumption and infrastructure strain for computing
equipment.

Thus, in situations where service capacity can be dynamically adjusted, an important
design goal is to reduce the costs associated with unpredictability and instability
in the service capacity while maintaining a high quality of service, e.g. meeting
job deadlines and satisfying job demands. In this work, we study this problem by
minimizing the variance and mean square of the service capacity in systems where
jobs arrive with demand and deadline requests. Our model is motivated by power
distribution networks, where the size of jobs and (active) service capacity is small
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compared to the total energy resources available and where contracts often depend
on the mean and variance of service capacity, e.g. if a charging station participates
in the regulation market, then costs/payments rely explicitly on them [14, 178].

Because of the scale of the service systems considered, we focus on distributed
scheduling algorithms that use only local information about each job to decide the
service rate. For example in power distribution networks and cloud computing,
implementing centralized algorithms is likely to be prohibitively slow and costly
in large-scale service systems, i.e. we are unlikely to be able to access global
information about all jobs and servers in the system in real time when deciding the
service rate of individual jobs.

In this chapter, we adapt tools from optimization and control theory to characterize
in a broad range of settings the optimal distributed policies without any approxima-
tion. Further, we provide novel competitive-ratio-like bounds that describes the gap
between the performance of optimal distributed policies and the performance of opti-
mal centralized policies. Specifically, we identify the optimal distributed algorithms
under strict demand and deadline requirements (Theorem 10.2.1), soft demand re-
quirements (Theorem 10.2.2), soft deadline requirements (Theorem 10.2.3), and
soft demand and deadline requirements (Theorem 10.2.4) in settings with stationary
Poisson arrivals as well as non-stationary Poisson arrivals (Theorem 10.4.1 and
Corollary 10.4.1).

Our first results focus on stationary arrivals. While a considerable amount of work
has analyzed the variance of specific policies (see [57] and references therein), little
prior work characterizes the optimal policies. In the basic setting of strict service
requirements, we show that Exact Scheduling is the optimal distributed algorithm,
i.e. the distributed algorithm thatminimizes the stationary service capacity variance.
Exact Scheduling is a simple scalable algorithm that works by finishing jobs exactly
at their deadlines using a constant service rate [26, 57, 111]. Although it has received
considerable attention in the existing literature, its optimality conditions have been
unknown. In more general settings of soft service requirements, we propose novel
generalizations of Exact Scheduling, each of which minimizes a combination of
the service capacity variance, the expected penalties for unsatisfied demands, and
the expected penalties for deadline extensions. These optimal algorithms all have
closed-form expressions and use constant service rates with varying forms of rate
and admission control. Due to these properties, they are also easy to implement and
highly scalable.
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We also extend our results to the case of non-stationary Poisson job arrivals and
characterize the policies optimal when the objective is to minimize the time-average
of the service capacity variance, the penalties for unsatisfied demands, and the
penalties for deadline extensions. Additionally, we consider a more general class
of objective functions: the service capacity variance, the mean-squared service
capacity, and the weighted sum of the two. The resulting optimal algorithm has
a striking analogy to the YDS algorithm [205], which is an offline algorithm that
minimizes service capacity peaks in a related, deterministic worst-case version of the
problem. This connection suggests the opportunity to transform other deterministic
offline algorithms to stochastic online algorithms in related problems.

Given our focus on distributed algorithms, an important question is how these
distributed algorithms perform compared with the optimal centralized algorithm.
However, little work has been done to characterize the performance degradation
of distributed algorithms from centralized algorithms in terms of their achievable
service capacity variance. A major difficulty comes from that the optimal central-
ized algorithms are unknown. Leveraging tools from optimal control, we provide
closed-form formulas on the performance degradation due to using distributed al-
gorithms in the settings of both strict service requirements (Corollary 10.3.1 and
Corollary 10.3.3) and soft service requirements (Corollary 10.3.2). The resulting
bounds suggest that, when sojourn times are homogeneous, Exact Scheduling at-
tains the optimal trade-off between service capacity variance and total remaining
demand variance achievable by any centralized algorithms. Note that our proof
technique (Lemma 10.3.1) is novel in its use of optimal control and has the poten-
tial for providing competitive-ratio-like bounds for other scheduling policies. We
also compare distributed algorithms with centralized algorithms in our motivating
examples of electric vehicle charging. Our test in real Electric Vehicle Charging
Testbed [102] shows that the proposed optimal distributed algorithms also achieve
comparable performance with existing centralized algorithms in practice.

10.1 System model
The goal of this chapter is to characterize the online scheduling policies that min-
imize service capacity variance, mean square, and both subject to service quality
constraints for systems with the ability to dynamically adjust their service capac-
ity. We use a continuous time model, where t ∈ T = [0,T] denotes a point in
time and T ≥ 0 is the (potentially infinite) time horizon. Each job, indexed by
k ∈ V = {1, 2, · · · }, is characterized by an arrival time ak , a service demand σk , a
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sojourn time τk , a unit cost for unsatisfied demand δk , and a unit cost for deadline
extension ε k . Given the arrival time ak and the sojourn time τk , the deadline of job k

is defined to be ak + τk . Before we formulate the scheduler design problem, we first
introduce below the arrival profiles, the service profiles, and the design objectives.

Arrival profiles. Werepresent the set of jobs as amarked point process {(ak ;σk, τk, δk,

ε k )}k∈V in space T ×S×C, where the arrival times ak ∈ T are the set of points, and
the service requirements (σk, τk ) ∈ S and costs for unmet requirements (δk, ε k ) ∈ C

are the set of marks.1 We assume that the point process is an independently marked
Poisson point process, which is defined by an intensity function Ψ̃(a) on T and a
mark joint density measure fa (σ, τ)ga (δ)ha (ε ) on S ×C [7]. This also implies that
{(ak ;σk, τk )}k∈V is a Poisson point process on T × S with the intensity function
Ψ(a, σ, τ) = Ψ̃(a) fa (σ, τ). Intuitively, the intensity function is the average rate at
which jobs with service requirement (σ, τ) arrive at time a. When both Ψ̃(a) ≡ Ψ̃
and fa (σ, τ) ≡ f (σ, τ) do not depend on a, we say that the arrival distribution is
stationary . For a stationary arrival distribution, the intensity function of the Poisson
point process simplifies to Ψ f (σ, τ). We focus on stationary arrival processes in
Section 10.2 and then generalize our results to non-stationary arrivals in Section
10.4. Throughout, we assume that the service demand σ and the sojourn time τ has
finite first and secondmoments, S is bounded, and S ⊂ {(σ, τ) : τ ≥ σ and σ ≥ 0}.2

Service profiles. The service system works on each job k ∈ V with a service rate
rk (t), which is an integrable function of t. The service rate can take any non-negative
values that are smaller than the maximum rate r̄ , and without loss of generality, we
assume that r̄ = 1, i.e.

rk (t) ∈ [0, 1]. (10.1)

To meet the demand requirements, the service rate must satisfy∫ ∞

ak
rk (t)dt = σk, k ∈ V . (10.2)

To meet the deadline requirements, it also need to satisfy

rk (t) ≤ 1{ak ≤ t < ak + τk }, k ∈ V, . (10.3)

1Here, we use (a;σ, τ, δ, ε ) to denote the random variables and (ak ;σk, τk .δk, εk ) to denote one
realization of them in job k.

2 The condition τ ≥ σ constrains the service demand σ of a job to be no more than the amount
of service that can be provided within its sojourn time τ.
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where 1{A} denotes the indicator function for an event A.

The service rate also determines three important quantities associated with costs:
service capacity, the amount of unsatisfied demands, and the amount of deadline
extensions. The service capacity is the instantaneous resource consumption of the
system, given by

P(t) =
∑
k∈V

rk (t). (10.4)

We assume that P(t) has no upper bound, implying that there is always enough
capacity to serve the jobs. The total penalty for unmet demands of jobs with
deadline t is

U (t) =
∑

k∈V:ak+τk=t

δk (σk − σ̂k ), (10.5)

where σ̂k =
∫ ∞

ak
rk (t)dt is defined to be the unsatisfied demands of job k. The total

penalty for deadline extensions of jobs with deadline t is

W (t) =
∑

k∈V:ak+τk=t

ε k (τ̂k − τk ), (10.6)

where τ̂k = max{t − ak : rk (t) > 0} is defined to be the actual sojourn time of job k.

Design objectives. We consider designing online scheduling algorithms, which
decide the service rates in real-time without using the future job arrival information.
For scalability, we restrict our attention to distributed algorithms which only need
the local information about each job to decide its service rate. Examples of online
distributed algorithms are Immediate Scheduling, Delayed Schedule, and Exact
Scheduling (see Figure 10.1).

Our design objective is to reduce the variance and mean square in service capacity
for the settings with strict or soft service constraints. In the case of strict service
constraints, we consider the optimization problem

minimize
1
T

∫ T

0

(
Var(P(t)) + αE[P(t)]2

)
dt, (10.7)

where the first term quantify the service capacity predictability, the second term
quantify the service capacity stability. The coefficient α(≥ 0) balances the pre-
dictability and stability of P(t), and at (α, β) = (1, 1), the objective function reduces
to the time average of E[P(t)2]. In the case of soft service constraints, we consider
the optimization problem

minimize
1
T

∫ T

0

(
Var(P(t)) + E[U (t)] + E[W (t)]

)
dt, (10.8)
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where the unit cost of unmet demands δk and the unit cost of deadline extension
ε k implicitly balances the cost associated with service capacity variability and the
service quality in demand and deadline satisfaction.

tak

τk

σk

ak + τkak + σk

rk (t) = 1{ak ≤ t < ak + σk }

x(t)

Immediate Scheduling

tak

τk

σk

ak + τkak + σk

rk (t) = 1{ak + (τk − σk ) ≤ t < ak + τk }

x(t)

Delayed Scheduling

tak

τk

σk

ak + τkak + σk

rk (t) = σk

τk
1{ak ≤ t < ak + τk }

x(t)

Exact Scheduling

Figure 10.1: Examples of distributed scheduling algorithms. The solid black lines
represent the remaining demand x(t) at time t. Immediate Scheduling works by
serving jobs at full rate upon arrival. Delayed Scheduling works by serving at full
rate with a delay that is equal to its laxity a + τ − σ. Exact Scheduling works by
throttling service to a constant rate σ/τ so that all jobs are completed exactly at its
deadline.

Motivating examples. The general model we have defined is meant to give insight
into the design trade-offs that happen in applications with dynamic capacity, e.g.
electric vehicle charging, cloud content providers, and resource allocations in the
Internet of Things. Importantly, in this chapter we are not trying to model a specific
application, rather we are exploring design trade-offs using a simple, general model.

However, to highlight the connection to our motivating examples, consider first the
case of electric vehicle charging [102]. In this case, each job k ∈ V corresponds
to an electric vehicle with an arrival time ak , an energy demand σk , and a sojourn
time τk . At each time t, the charging station draws P(t) =

∑
k∈V rk (t) amount
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of power from the grid to provide each vehicle k with a charging rate of rk (t).
When doing so, stable resource usage is highly desirable because fluctuations and
large peaks in P(t) can strain the grid and results in a high peak charge for station
operators. Moreover, predictable resource usage is also important when purchasing
energy from the day-ahead market, whose price is lower and less volatile than that
of the real-time market. Note that our model assumes P(t) is unbounded and, thus,
corresponds to a setting where there are more charging stations than arriving cars.

In the case of cloud content providers, each job k ∈ V corresponds to a task
(requested to the cloud or data centers) with an arrival time ak , a work requirement
σk , and an allowable waiting time τk . The service system works on job k with speed
rk (t) using P(t) =

∑
k∈V rk (t) number of computers (or amount of power). Here

again, a good estimate of the future resource use enables the cloud users to reserve
resources through a long-term contract, whose price is lower and less volatile than
that of a short-term contract, suggesting the benefit of having a predictable resource
use. Note that our model considers the case where P(t) is unbounded and, thus, the
data center has enough capacity to avoid congestion, i.e. is in low utilization. Such
periods are common, since data centers often operate at utilizations as low as 10%
[73]. For future work, it is important to study how to manage congested periods by
considering an upper bound on P(t).

10.2 Maximizing predictability under stationary job arrivals
In this section, we characterize optimal distributed scheduling policies in a wide
range of objectives when job arrivals are stationary, starting with the simplest and
moving toward the most complex. To begin, we define each setting and pose the
scheduler design problems as constrained functional optimizations (Section 10.2).
Then, we focus on strict service requirements and show that Exact Scheduling
minimizes the stationary variance of the service capacity (Section 10.2). Relaxing
the demand requirements, we show that a variation of Exact Scheduling minimizes
the weighted sum of the stationary variance of service capacity and the penalty
for unsatisfied demand (Section 10.2). Relaxing the deadline requirements, we
show that a different variation of Exact Scheduling minimizes the weighted sum
of both the stationary variance of service capacity and the penalty for demand
extension (Section 10.2). Finally, we consider the case when both the demand
and deadline requirements are relaxed (Section 10.2) and show that the optimal
policy can be constructed from an integration of the above optimal policies. It
is interesting that all optimal algorithms admit closed-form expressions, which
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provide clear interpretations and insights regarding the optimal trade-offs between
reducing service capacity variability, satisfying the demands, andmeeting deadlines.
Moreover, they are also highly scalable and easy to implement.

Problem formulation
We study the settingswhen the arrival process is an independentlymarked stationary
Poisson point process,

Ψ(a, σ, τ) = Ψ f (σ, τ), a ∈ T , (σ, τ) ∈ S. (10.9)

Assuming the unit cost for unsatisfied demands δk and that for deadline extensions
ε k are homogeneous among different jobs, i.e. δk = δ, ε k = ε for any k ∈ V , we
consider distributed scheduling policies of the form

rk (t) = u(xk (t), yk (t)) ≥ 0, (10.10)

where u : Rp × R → Rp is a non-negative integrable function of the remaining
demand xk (t) and the remaining time yk (t) of job k. The policy is distributed in
the sense that service rate of a job is determined using only its own information.
We study policies of the form (10.10) assuming a situation where there is enough
capacity available to satisfy the demand, and so the focus is on determining the
optimal service rate for the jobs in a distributed manner.

Under any policy of the form (10.10), the process {(xk (t), yk (t)) : k ∈ V, ak ≤ t}

for remaining jobs in the system can be represented as a point process in a two-
dimensional space of remaining times and remaining demands. Moreover, the set of
jobs remaining in the system converges to a stationary distribution. This stationary
distribution is a Spatial Poisson Point Process with an intensity function λ(x, y)
satisfying3

0 =
∂

∂x
(λ(x, y)u(x, y)) +

∂

∂y
λ(x, y) + Ψ f (x, y). (10.11)

Because the remaining job distribution converges to a stationary distribution, P(t)
also converges to a stationary distribution. Moreover, its stationary mean E[P] is
determined only by the total service provided—given the total service, E[P] does
not depend on the specific form of the policy.

3We use (x, y) to denote the coordinate in the two dimensional space of remaining demands and
remaining times and (xk (t), yk (t)) to denote a point (job profile) in the space at time t.
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Proposition 10.2.1. Consider a service system with a stationary Poisson arrivals
with intensity measure Λ f (σ, τ) and a distributed scheduling policy of the form
(10.10). Let us define σ̂(σ, τ) to be total service provided for a job with demand σ
and a sojourn time τ receives. The stationary mean of P(t) is given by

E[P(t)] = ΨE[σ̂(σ, τ)]. (10.12)

We present a proof of Proposition 10.2.1 in Appendix B.2. Alternatively, it can
also be seen from classical queueing results such as Little’s Law and the Brumelle’s
formula [8, Chapter 3, eq. (3.2.1)].

Among policies (10.10) with the same stationary mean (10.12), we consider mini-
mizing the variance of P(t) under strict service constraints, soft demand constraints,
soft deadline constraints, and soft demand and deadline constraints. In the case of
strict demand constraints, we consider the following optimization problem:

minimize
u:(10.1)(10.2)(10.3)(10.10)(10.11)

Var(P), (10.13)

where the optimization variable taken over the set of distributed policies (10.10)
subject to the service rate constraints (10.1), the demand constraints (10.2), and the
deadline constraints (10.3). Here, Var(P) is a functional of u and λ(σ, τ), where
λ(σ, τ) satisfies from (10.11).

In the case of soft demand constraints, we relax the demand constraints (10.2) into
paying penalty δk = δ for each unit of unsatisfied demands and consider balancing
the service capacity variance and the penalties due to unsatisfied demands:

minimize
u:(10.1)(10.3)(10.10)(10.11)

Var(P) + E[U]. (10.14)

In the case of soft deadline constraints, we relax the deadline constraints (10.3) into
paying penality ε for each unit of deadlines extensions and consider balancing the
service capacity variance and the penalties due to deadline extensions:

minimize
u:(10.1)(10.2)(10.10)(10.11)

Var(P) + E[W ]. (10.15)

In the case of soft demand and deadline constraints, we relax both the demand and
deadline requirements (10.2) and (10.3) into paying δ for each unit of unsatisfied
demands and ε for each unit of deadline extensions. We consider balancing the
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service capacity variance and the penalties due to unsatisfied demands and deadline
extensions:

minimize
u:(10.1)(10.10)(10.11)

Var(P) + E[U] + E[W ]. (10.16)

Finally, we consider the most general setting, when the penalties for unsatisfied
demands and deadlines are heterogeneous among jobs. To account for this hetero-
geneity, we consider distributed scheduling policies of the form

rk (t) = ū(xk (t), yk (t), δk, ε k ) ≥ 0. (10.17)

Under any policy of the form (10.17), the remaining job profiles in the system
{(xk (t), yk (t), δk, ε k ) : k ∈ V, ak ≤ t} can be represented as a point process in
the 4-dimensional space of remaining times, remaining demands, unit costs for
unsatisfied demand, and unit costs for deadline extension. This point process
converges to a stationary Spatial Poisson Point Process with an intensity function
λ(x, y, δ, ε ) satisfying

0 =
∂

∂x
(λ(x, y, δ, ε )ū(x, y, δ, ε )) +

∂

∂y
λ(x, y, δ, ε ) + Ψ f (x, y)g(δ)h(ε ). (10.18)

This leads to the following optimization problem:

minimize
ū:(10.1)(10.18)

Var(P(t)) + E [U (t)] + E [W (t)] . (10.19)

Strict demand and deadline requirements
We first consider the case of strict service requirements and show a closed-form
characterization of the optimal algorithm that minimizes the stationary variance
Var(P). To do so, it is worth noticing that peaks in service rate amplifies the
uncertainties in the future arrivals, which in turn produces large variance in P(t) =∑

k rk (t) =
∑

k u(xk (t), yk (t)). This observation suggests that having a flat service
rate may achieve small variance. One such policy is Exact Scheduling,

u(x, y) =



x
y
, if y > 0,

0, otherwise.
(10.20)

whichworks byfinishing each jobs exactly at its deadline using a constant service rate
(Figure 10.2). It is also highly scalable because it is distributed and asynchronous,
and it does not require much computation or memory use. Although existing
literature has analyzed its performance in various settings [26, 57, 103, 111], no
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Figure 10.2: Exact scheduling depicted in the space of remaining demand x and
remaining time y.

work has shown its optimality conditions. In this section, we show that Exact
Scheduling minimizes the stationary service capacity variance under strict demand
and deadline constraints.

Theorem 10.2.1. Exact Scheduling (10.20) is the optimal solution of (10.13) and
achieves the optimal value4

Var(P) = ΨE
[
σ2

τ

]
. (10.21)

Theorem 10.2.1 shows the achievable performance improvement by controlling
the service capacity using distributed algorithms. If no control is applied, then
rk (t) = 1{t ∈ [ak, ak + σk )}, and the stationary mean and variance of P(t) is
E(P) = Var(P) = ΛE[σ]. By performing a distributed service capacity control, the
stationary variance can be reduced by

ΛE

[
σ(τ − σ)

τ

]
∈

[
0,ΛE[σ]

]
(10.22)

where τ − σ is a slack time (the amount of time left at job completion if a job is
served at its maximum service rate).

Next, we present the proof of Theorem 10.2.1. To circumvent the complex con-
straints of (10.13), we first provide a lower bound on its optimal solution by relaxing
the class of control policies into

rk (t) = v(σk, τk, yk (t)) k ∈ V, (10.23)
4Observe that Λ is the cumulative arrival rate.
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and solve the optimization problem

minimize
v:(10.1)(10.2)(10.3)(10.23)

Var(P). (10.24)

Because the constraint set of (10.13) is contained in the constraint set of (10.24), the
optimal value of (10.24) lower-bounds that of (10.13). Therefore, to prove Theorem
10.2.1, it suffices to show that the optimal solution of (10.24) (given in the next
lemma) is also achievable by a control policy of the form (10.10).

Lemma 10.2.1. The optimal solution of (10.24) is

v(σ, τ, y) =
σ

τ
1{y > 0}, (10.25)

and it yields the optimal value

Var(P(t)) = E
[
σ2

τ

]
. (10.26)

To show Lemma 10.2.1, we use the following property of the system: since the
control policy only depends on the job parameters, and jobs are served in parallel,
the system behaves as an infinite server queue with Poisson arrivals. Therefore the
system averages can be computed by integrating along the average trajectory along
each job [7].5 In particular, the following relation holds.

Lemma 10.2.2. The mean and variance of P(t) under the policy (10.23) are given
by

E[P] =
∫

(σ,τ)∈S

∫ τ

0
v(σ, τ, y)Λ f (σ, τ)dydσdτ (10.27)

Var(P) =
∫

(σ,τ)∈S

∫ τ

0
v(σ, τ, y)2

Λ f (σ, τ)dydσdτ. (10.28)

Lemma 10.2.2 can be obtained from the Campbell’s theorem (see Section B.1).
Now we are ready to prove Lemma 10.2.1.

Proof. (Lemma 10.2.1) The demand constraints (10.2) and the deadline constraints
(10.3) leads to ∫ τ

0
v(σ, τ, y)dy = σ, (σ, τ) ∈ S. (10.29)

5This is a restatement of Brumelle’s formula [24] from queueing theory for the case of an infinite
server system with time-varying rates.



149

The objective function (10.24) satisfies

Var(P) =
∫

(σ,τ)∈S

∫ τ

0
v(σ, τ, y)2

Λ f (σ, τ)dydσdτ (10.30)

=

∫
(σ,τ)∈S

{∫ τ

0
v(σ, τ, y)2dy

}
Λ f (σ, τ)dσdτ (10.31)

≥

∫
(σ,τ)∈S

{
σ2

τ

}
Λ f (σ, τ)dσdτ. (10.32)

Here, equality (10.30) is due to Lemma 10.2.2. Inequality (10.32) is due to (10.29)
and the Holder’s inequality, i.e. for any fixed (σ, τ),(∫ τ

0
v(σ, τ, y)2dy

)1/2 (∫ τ

0
1dy

)1/2
≥

∫ τ

0
v(σ, τ, y)dy = σ, (10.33)

where v(σ, τ, y) ≥ 0. Alternatively, it can be verified that (10.32) can be attained
with equality when v equals (10.25). Therefore, (10.25) is the optimal solution of
(10.24).

�

Now, we can prove Theorem 10.2.1 using Lemma 10.2.1.

Proof. (Theorem 10.2.1) Recall that the optimal solution of (10.24) is the policy
(10.25). Under the policy (10.25), the ratio between its remaining demand x(a + t)
and remaining time y(a+t) are constant for any t ∈ [a, a+τ]. Therefore, (10.25) can
be realized using policies of the form (10.20): Exact Scheduling (10.20). Because
the optimal value of (10.24) is a lower bound on that of (10.13), Exact Scheduling
is optimal for (10.13). �

Soft demand requirements
The previous section shows the optimal algorithm under strict service requirements.
In this section, we relax the assumption of strict service requirements and charac-
terize the optimal algorithm under soft demand constraints. Specifically, the system
needs to pay the penalty δ for each unit of unsatisfied demands. The resultant optimal
algorithm is a variation of Exact Scheduling with an additional rate upper-bound:

u(x, y) =




x
y
, if

x
y
≤
δ

2
and y > 0,

δ

2
, if

x
y
>
δ

2
and y > 0,

0, otherwise.

(10.34)
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This policy essentially sets a threshold δ/2 on the ratio σ/τ: jobs with the ratio
above this threshold is served at a constant rate δ/2 until its deadline; jobs with the
ratio below this threshold is served according to Exact Scheduling. In other words,
a job k receives its full service demand only if σk ≤ δ τk/2. The policy (10.34)
is extremely simple, and thus similar algorithms may be widely used in practice.
However, to the best of our knowledge, their optimality conditions and the optimal
thresholds on rate have not been discussed in the existing literature.

Theorem 10.2.2. The policy (10.34) is the optimal solution of (10.14) and achieves
the optimal value

Var(P) + E[δU] = E
[
σ2

τ
1
{
σ

τ
≤
δ

2

}
+ δ

(
σ −

δτ

4

)
1
{
σ

τ
>
δ

2

}]
Λ. (10.35)

Theorem 10.2.2 shows the performance improvement gained by relaxing the demand
requirements. If the system is allowed to not satisfy some demand requests, then
the cost (objective value of (10.14)) can be reduced from Var(P) = E

[
σ2/τ

]
to

(10.35).

Soft deadline requirements
The previous section shows the optimal algorithm under soft demand requirements.
In this section, we relax the deadline requirements instead and characterize the
optimal distributed algorithm. Specifically, the system needs to pay penalty ε for
each unit of deadline extensions. The resultant optimal algorithm is another variation
of Exact Scheduling and deadline extension:

u(x, y) =



x
y

if
x
y
≤
√
ε and y > 0

√
ε 1{x > 0} otherwise.

(10.36)

Similarly to (10.34), this policy essentially sets a threshold
√
ε on the ratioσ/τ: jobs

with the ratio above this threshold is served according to Equal Service of rate
√
ε

until it finishes, jobs with the ratio below this threshold is served according to Exact
Scheduling. In other words, the deadline of job k is extended only if σk >

√
ετk .

Theorem 10.2.3. The policy (10.36) is the optimal solution of (10.15) and achieves
the optimal value

Var(P) + E[εW ] = E
[
σ2

τ
1
{
σ

τ
≤
√
ε
}
+

(
2
√
εσ − ετ

)
1
{
σ

τ
>
√
ε
}]
Λ. (10.37)
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Theorem 10.2.3 shows the performance improvement by relaxing the deadline re-
quirements. If all deadline must be satisfied, then Var(P) = E

[
σ2/τ

]
is the min-

imum stationary variance achievable. If deadline extensions are allowed, then the
cost can be further reduced to (10.37), and

√
ε strikes the optimal balance between

minimizing service capacity variance and penalties for deadline extension. Interest-
ingly, the optimal algorithm admits a closed-form solution, despite that scheduling
problems with tardiness can sometimes be NP-hard [10, 50].

Soft demand and deadline requirements
The previous sections show the optimal algorithms under soft demand requirements
and soft deadline requirements. In this section, we relax both demand and deadline
requirements and characterize the optimal distributed algorithm. Specifically, the
system needs to pay penalty δ for each unit of unsatisfied demands and penalty ε
for each unit of deadline extensions. This setting recovers all previous settings as
special cases.6

Recall from previous sections that, under soft demand requirements, the optimal pol-
icy uses a constant service rate and reject partial demand requests only ifσ/τ > δ/2.
Meanwhile, under soft deadline requirements, the optimal policy uses a constant
service rate and extends the deadline only if σ/τ >

√
ε . These two special cases

motivate as to combine the policies (10.20), (10.36), and (10.34) as follows:

u(x, y) =




x
y

if y > 0 and
x
y
≤ min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x
y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x > 0} otherwise

, (10.38)

The policy uses three strategies depending on different regimes of job states and
penalties: high penalties regime, low demand penalty regime, and low deadline
penalty regime. These regimes are illustrated in Figure 10.3 as the white, light gray,
and dark gray regions, respectively.

• High penalties regime. When min(δ/2,
√
ε ) > σ/τ, it is less costly to satisfy

the service requirements than paying penalties for unsatisfied demands or
deadlines. So, the best strategy is to satisfy both demands and deadlines
optimally using Exact Scheduling (10.20).

6For sufficiently large δ, this setting recovers the case of strict demand requirements. For
sufficiently large ε , this setting recovers the case of strict deadline requirements. For sufficiently
large δ and ε , this setting recovers the case of strict demand and deadline requirements.
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• Low demand penalty regime. When δ/2 ≤
√
ε , the penalties for unsatisfied

demands is smaller than that of deadline extensions, so the best strategy is to
meet all deadlines optimally with potentially unsatisfied demands using the
policy (10.34).

• Low deadline penalty regime. When δ/2 >
√
ε , the penalties for deadline

extension is smaller than that of unsatisfied demands, so the best strategy is to
satisfy demands optimally with potential deadline extensions using the policy
(10.36).

From above, the policy (10.38) generalizes the optimal algorithms in Section 10.2-
10.2, and we term it Generalized Exact Scheduling. The following theorem states
its optimality condition.

Theorem 10.2.4. The policy (10.38) is the optimal solution of (10.16) and achieves
the optimal value

Var(P) + E[δU] + E[εW ] = (10.39)

E

[
σ2

τ
1
{
σ

τ
≤ min

{
δ

2
,
√
ε

}}
+ δ

(
σ −

δτ

4

)
1
{
σ

τ
>
δ

2
≥
√
ε

}
+

(
2
√
εσ − ετ

)
1
{
σ

τ
>
√
ε >

δ

2

} ]
Λ.

Theorem 10.2.4 shows when one should extend the deadline to satisfy the demand
or let the job depart at its deadline with unsatisfied demands. Moreover, General-
ized Exact Scheduling is also optimal for a more general problem (10.19), when
the unit costs for unsatisfied demands and deadline extensions are allowed to be
heterogeneous.

Corollary 10.2.1. The optimal solution of (10.19) is

ū(x, y, δ, ε ) =




x
y

if y > 0 and
x
y
≤ min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x
y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x > 0} otherwise

. (10.40)

The proof of Corollary 10.2.1 is an immediate consequence of Theorem 10.2.4.
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Figure 10.3: The decision space of the optimal policy for (10.16). For job profiles
with a service demand σ, a sojourn time τ, and costs (δ, ε ), the optimal policy
performs either one of the following using constant service rates: satisfy both
demands and deadlines (white region), meet deadlines with unsatisfied demand
(dark gray region), or satisfy the demand by extending the deadline (light gray
region).

10.3 Performance degradation inherent to distributed algorithms
Given our focus on distributed algorithms, it is important to understand how much
performance degradation is incurred in comparison to centralized algorithms. In this
section, we characterize this performance degradation at stationarity. Specifically,
we first provide the upper bounds on the performance degradation (Section 10.3).
We present the proof of the upper bound, which are potentially useful for analyzing
other policies (Section 10.3).

Theoretical performance
In this section, we compare the performance of distributed policies and that of
centralized policies. To this end, we first define centralized (online) policies and
then bound their achievable performance. Centralized policies are the class of
algorithms of the form

rk (t) = w(k, t, At ), ∀k ∈ V, (10.41)
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where At = {(ak, σk, τk, yk (t)) : ak ≤ t} is the set that contains the information of
jobs arriving before t, and w(k, t.·) is a deterministic mapping from At to a service
rate rk (t).

Lemma 10.3.1. Under any centralized policy of the form (10.41), the stationary
variance of P(t) is lower-bounded by

Var(P) ≥
Λ2E[σ2]2

4Var(X )
, (10.42)

where X (t) is the total remaining demands of jobs arriving before t, and Var(X ) is
the stationary variance of X (t).

Lemma 10.3.1 characterizes the tradeoff between achieving a small variance of X (t)
and achieving a small variance of P(t). Plugging in Exact Scheduling’s stationary
variance of X ,

Var(X ) = ΛE
[
1
3
σ2τ

]
, (10.43)

we obtain a competitive-ratio like bound for Exact Scheduling (10.20).

Corollary 10.3.1. Let Var(P) be the stationary variance of P(t) that is attained
by Exact Scheduling (10.20). Let Var(P∗) be the minimum stationary variance
attainable by any centralized algorithm (10.41) with the same level of Var(X ) as
Exact Scheduling. Then, the following condition holds:

Var(P) ≤
E[σ2/τ]E[σ2τ]
E[σ2]2 Var(P∗), (10.44)

where the expectations on the right hand side are taken over the arrival distribution.

Corollary 10.3.1 bounds the ratio of Var(P), achievable by Exact Scheduling (the
optimal distributed algorithm), and Var(P∗), achievable by any centralized algo-
rithms. When the sojourn time τ is a deterministic random variable, (10.44) reduces
to Var(P) ≤ Var(P∗), implying that distributed algorithms can perform equally well
compared to the centralized algorithms of the same Var(X ). One such case is when
both demands and sojourn times are deterministic, and the service demand of each
job equals its sojourn time (here, the arrival time is still random). In this case, due
to the rate limit (10.1), the demand constraints (10.2), and the deadline constraints
(10.3), both the optimal centralized policy and the optimal distributed policy are
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identical, i.e. rk (t) = 1{t ∈ [ak, ak+τk )}. In the setting of soft service requirements,
Generalized Exact Scheduling attains

Var(X ) =E
[
σ2τ

3
1
{
σ

τ
≤ min

{
δ

2
,
√
ε

}}]
Λ (10.45)

+ E

[(
δ2τ3

12
−

1
2
δστ2 + σ2τ

)
1
{
σ

τ
>
δ

2
≥
√
ε

}
+

(
σ3

3
√
ε

)
1
{
σ

τ
>
√
ε >

δ

2

}]
Λ.

Combining above and Lemma 10.3.1, we obtain the following corollary.

Corollary 10.3.2. Let Var(P) be the stationary variance of P(t) that is attained
by Generalized Exact Scheduling (10.38) . Let Var(P∗) be the minimum stationary
variance attainable by any centralized algorithm of the form (10.41) with the same
level of Var(X ) as Generalized Exact Scheduling. Then, the following condition
holds:

Var(P) ≤
αβ

E[σ2]2 Var(P∗), (10.46)

where

α = E

[
σ2

τ
1
{
σ

τ
≤ min

{
δ

2
,
√
ε

}}
+ δ

(
√
ε −

δτ

4

)
1
{
σ

τ
>
δ

2
≥
√
ε

}
+

(
2
√
εσ − ετ

)
1
{
σ

τ
>
√
ε >

δ

2

} ]

β = E

[
σ2τ

3
1
{
σ

τ
≤ min

{
δ

2
,
√
ε

}}
+

(
δ2τ3
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−

1
2
δστ2 + σ2τ

)
1
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σ

τ
>
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2
≥
√
ε

}
+
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σ3

3
√
ε

)
1
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τ
>
√
ε >

δ
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} ]
.

Corollary 10.3.2 bounds the ratio of Var(P) achievable by Generalized Exact
Scheduling (the optimal distributed algorithm) to Var(P∗) achievable by any cen-
tralized algorithms. Here, the optimal distributed algorithm is subject to soft service
constraints (10.2)–(10.3), while the optimal centralized algorithm is subject to the
same Var(X ) with Generalized Exact Scheduling.

Corollary 10.3.3. Let Var(P) be the stationary variance of P(t) attained by Exact
Scheduling (10.20). Let Var(P†) be the optimal performance among the centralized
scheduling policies that satisfy the demand and deadline constraints (10.2)–(10.3).
Then, the following condition holds:

Var(P) ≤
1

12
ΛE[σ2]2E

[
σ2τ

]

E[τσ2] + ΛE [τσ]2 Var(P†). (10.47)
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Corollary 10.3.3 bounds the ratio of Var(P) achievable by the optimal distributed
algorithm to Var(P∗) achievable by any centralized algorithms. Here, both the
optimal distributed algorithm and the optimal centralized algorithm are subject to
strict service constraints (10.2)–(10.3). The bound (10.47) may not be tight because
the relationship between Var(X ) and the service constraints are hard to characterize
precisely.

Proof of Lemma 10.3.1
Let

Var(X ) ≤ D (10.48)

for some D > 0. We consider the following problem:

Qon = minimize
w:(10.48)

lim
T→∞

1
T

∫ T

0
Var(P(t))dt,

where the optimization is taken over all centralized policies of the form (10.41).
The Lagrangian of Qon is

L(w; r) = lim
T→∞

1
T

∫ T

0
Var(P(t)) + γ(Var(X (t)) − D)dt, (10.49)

where γ ≥ 0 is the Lagrangian multiplier associated with the constraint (10.48).
Due to

inf
w

L(w; γ) ≤ Qon ≤ Var(P), (10.50)

we can derive a lower bound of Var(P) via solving infw L(w; γ) as follows.

Lemma 10.3.2. The minimum value of L(w; r) is

Var(P(t)) + γ(Var(X (t)) − D) =
√
γΛE[σ2] − γD, (10.51)

which is achieved by

P(t) =
√
γ(X (t) − X̄ (t)) + P̄. (10.52)

Lemma 10.3.2 is proven in Appendix B.6. FromLemma 10.3.2, the optimal solution
of (10.50) attains

Var(P(t)) + γVar(X (t)) = 2γVar(X (t)). (10.53)
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Combining (10.48), (10.51), and (10.53) leads to

Var(X (t)) =
1

2√γ
ΛE[σ2]. (10.54)

Since X (t) also satisfies the constraint (10.48), the Lagrangian multiplier γ is lower-
bounded by

1
2D
ΛE[σ2] ≤

√
γ. (10.55)

Therefore, we obtain

Var(P(t)) ≥ inf
w

L(u; γ) (10.56)

≥

√
γ

2
ΛE[σ2] (10.57)

≥
1

4D
Λ

2E[σ2]2. (10.58)

where (10.56) is due to (10.50); (10.57) is due to (10.51) and (10.52); and (10.58)
is due to (10.55).

10.4 Balancing predictability and stability under non-stationary job arrivals
Building upon the results of stationary job arrivals, we consider a more general
setting of non-stationary job arrivals in this section. The non-stationary setting is
particularly appealing for practical applications since dynamic capacitymanagement
is crucial when the workload is not stationary. In contrast to the stationary setting,
there exists a trade-off between maximizing the stability and predictability of the
service capacity in the non-stationary setting. We characterize such tradeoffs and
the Pareto-optimal distributed algorithm that balances stability and predictability.
Below, we first formally define the notion of Pareto-optimality, which recovers
maximum predictability and maximum stability as two special cases (Section 10.4).
Then, at one extreme case of maximizing predictability, we show that Generalized
Exact Scheduling is the optimal algorithm (Section 10.4). At the other extreme
case of maximizing stability, we characterize the optimal algorithm and notice an
interesting connection to the well-known YDS algorithm [205], which is optimal
in a related, deterministic worst-case setting. Generalizing the two extreme cases,
we describe the Pareto-optimal algorithm that balances predictability and stability
(Section 10.5).

Problem formulation
In this section, we relax our previous stationary assumptions on the arrival process.
We assume that the arrival distribution is a non-stationary independently marked
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Poisson process with the intensity function Ψ̃(a) and a mark joint density measure
fa (σ, τ)ga (δ)ha (ε ) (see Section 10.1). To cope with the non-stationary arrivals,
we allow the scheduling policies to change over time as follows:

rk (t) = u(ak, xk (t), yk (t)) ≥ 0 k ∈ V (10.59)

rk (t) = ū(ak, xk (t), yk (t), δk, ε k ) ≥ 0 k ∈ V (10.60)

rk (t) = v(ak, σk, τk, yk (t)) ≥ 0 k ∈ V, (10.61)

The policies of the form (10.59), (10.60), and (10.61) are all online and distributed
in the sense that the service rate of job k only depends on the information of itself.

We seek to design policies that balance three important performance criteria: the
quality of service, the service capacity variance associated with the predictability,
and its mean square associated with the stability. In the most basic settings involving
the first two criteria, we consider

minimize
u:(10.1)(10.2)(10.3)(10.59)

lim
T→∞

1
T

∫ T

0
Var(P(t))dt (10.62)

minimize
ū:(10.1)(10.60)

lim
T→∞

1
T

∫ T

0

(
Var(P(t)) + E[U (t)] + E[W (t)]

)
dt. (10.63)

In a more advanced settings involving all three criteria, we consider

minimize
v:(10.2)(10.3)(10.61)

lim
T→∞

1
T

∫ T

0
αE[P(t)]2 + βVar(P(t))dt, (10.64)

which includes an important special case of maximizing stability via

minimize
v:(10.2)(10.3)(10.61)

lim
T→∞

1
T

∫ T

0
E[P(t)]2dt. (10.65)

One can formulate other optimization problems by combining (10.62)–(10.65).
Although those problems are beyond the scope of this chapter, our techniques can
be used to analyze these problems as well.

Maximizing predictability
In this section, we show the optimal algorithms that balance the service quality and
service capacity variance. Recall from Section 10.2 that Var(P(t)) is minimized
at a flat service rate because peaks in service rate amplifies the uncertainties of
the future arrivals to cause large Var(P(t)). In fact, this intuition holds beyond
stationary arrivals, and so does the optimal algorithm.
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Theorem 10.4.1. The optimal solution of (10.62) is Exact Scheduling, defined by

u(a, x, y) =



x
y

y > 0

0 otherwise
. (10.66)

The proof of Theorem 10.4.1 is given in Appendix B.8. Moreover, Generalized
Exact Scheduling is also optimal under soft demand and deadline constraints.

Corollary 10.4.1. The optimal solution of (10.63) is

ū(a, x, y, δ, ε ) =




x
y

if y > 0 and
x
y
≤ min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x
y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x > 0} otherwise

, (10.67)

As the unit costs for unmet demands and deadlines (δk, ε k ) increase, Corollary 10.4.1
recovers Theorem 10.4.1 as a special case. When the job arrivals are stationary,
Corollary 10.4.1 recovers Corollary 10.2.1 as a special case.

Maximizing stability
In this section, we show the optimal algorithms that minimizes mean squared service
capacity. Let us first understand why Exact Scheduling is not optimal by considering
an example instance shown in Figure 10.4. In this instance, the arrival rate increases
over time, and Exact Scheduling is likely to incur a substantial cost in later time.
Meanwhile, an ideal algorithm should account for the increment in future arrivals
by serving previous jobs more aggressively than Exact Scheduling. We formalize
this intuition below.

Corollary 10.4.2. The optimal solution of (10.65) has the following properties: for
each job profiles (a, σ, τ) ∈ (T , S),

(i) E[P(h)] takes a constant value for any time h at which v(a, σ, τ, a+τ−h) > 0,

(ii) E[P(h′)] ≥ E[P(h)] for any time h′ ∈ [a, a+τ] at which v(a, σ, τ, a+τ−h′) =
0.

Corollary 10.4.2 is a special case of Theorem 10.5.1 in the next section. Intuitively,
condition (i) avoids oscillations in E[P(h)], while condition (ii) evens up the service
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(a) The behavior of Exact Scheduling. If the arrival rate is higher at a later time, Exact
Scheduling is likely to incur a substantial cost at the later time.

(b) Ideal behavior. The service rate of job 1 is increased to account for potentially large
arrivals in the future.

Figure 10.4: This example demonstrates why Exact Scheduling does not maximize
stability.
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capacity over time. In the example, condition (i) forces P(t) to be constant during
the time intervals [t1, t2] and [t2, t3] because fluctuations of E[P(h)] during these
intervals compromise stability. Condition (ii) constrains E[P(h′)] ≥ E[P(h)] for
any h ∈ [t1, t2), h′ ∈ [t2, t3) because, during the uncrowded time [t1, t2], job 1 does
not need to be served beyond an extent required to account for the crowded time
[t2, t3]. Consequently, the resulting service capacity has less fluctuations (Figure
10.4b).

The optimal policy in Corollary 10.4.2 also has an interesting similarity to the YDS
algorithm, the centralized offline algorithm that minimizes CPU energy [11, 205].
Specifically, the YDS algorithm is the solution of

minimize
r≥0:(10.2)(10.3)

1
T

T∑
t=0

P(t)α (10.68)

where α > 1 is some constant. The optimal solution of (10.68) satisfies the following
conditions: for any job k ∈ V ,

(iii) P(h) takes a constant value at any time h at which rk (h) > 0,

(iv) P(h′) ≥ P(h) for any time h′ ∈ [ak, ak + τk] at which rk (h′) = 0.

When we replace E[P(t)] with P(t) and u with r , condition (i)–(ii) in Corollary
10.4.2 become condition (iii)–(iv) above. This relationship allows us to adapt the
computational tool of the YDS algorithm to find the optimal distributed policy in
our setting.

Algorithm 6 finds the optimal distributed policy that maximizes stability. Let
V (t1, t2) = {(a, σ, τ) : a ≥ t1, a + τ ≤ t2, (σ, τ) ∈ S} be the set of job profiles that
have an arrive time after t1 and a deadline before t2. When (a, σ, τ) ∈ V (t1, t2), we
say that jobs with (a, σ, τ) present in the interval [t1, t2]. Let w(t1, t2) denote the
expected cumulative demand of jobs satisfyingV (t1, t2), i.e.

w(t1, t2) =
∫

a≥t1

∫
(σ,τ)∈S,a+τ≤t2

σΨ(a, σ, τ)dσdτda. (10.69)

Intuitively, w(t1, t2) is the minimum expected demand that must be supplied during
a time interval [t1, t2] to satisfy the demand requirements. We further define the
intensity of an interval [t1, t2] as

I (t1, t2) =
w(t1, t2)
t2 − t1

. (10.70)
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The algorithm finds the service rate v∗(a, σ, τ, y) in descending order of the intensity
I (t1, t2) in which a job present. Specifically, it iterates the following procedures.
After initialization (line 1), the maximum intensity interval [t1, t2] is computed (line
4). Jobs present in this interval are served in ascending order of their deadlines
subject to

E[P(h)] =
I (t1, t2)
t2 − t1

h ∈ [t1, t2). (10.71)

As jobs not present inV (t1, t2) are assigned zero service capacity during [t1, t2], the
maximum service rates of jobs present inV (t1, t2)c are set to be zero during [t1, t2]
(line 6). Because jobs in V (t1, t2) are already scheduled, before the next iteration,
they are removed from the arrival statistics Ψ(a, σ, τ) as if the arrival probability of
jobs present in V (t1, t2) is zero (line 7). Using the modified arrival statistics, the
algorithm repeats the same process of finding a new maximum intensity interval,
computing the service rates of jobs present during this interval, and modifying
job statistics. We can observe that Algorithm 1 also minimizes maxt∈T E[P(t)].
Because the interval [t1, t2] found by the first iteration is the most intensive interval
of an instance, the value of maxt∈T E[P(t)] cannot be smaller than what is required
to schedule jobs present inV (t1, t2) in the first iteration.

Algorithm 6Computing he optimal distributed policy that maximizes stability. The
input of the algorithm is Ψ(a, σ, τ), and the output of the algorithm is v∗(a, σ, τ, y).

Initialize v̄(a, σ, τ, y) ← ∞
while Ψ(a, σ, τ) > 0 for some (a, σ, τ) do
Identify the maximum intensity interval [t1, t2] by solve maxt1,t2 I (t1, t2)
Compute v∗(a, σ, τ, y) for job profilesV (t1, t2) s.t. (10.71) and v∗(a, σ, τ, y) ≤
v̄(a, σ, τ, y)

end while
for (a, σ, τ) < V (t1, t2) do
Set v̄(a, σ, τ, y) ← 0 for any a + τ − y ∈ [t1, t2]
Set Ψ(a, σ, τ) ← 0

end for

10.5 Balancing stability and predictability
Previous sections show the optimal policy of maximum predictability and that of
maximum stability. Beyond the two special cases, however, balancing stability and
predictability is a much more complex problem, and it is too ambitious to seek a
purely analytic solution. In this section, we characterize the the Pareto-optimality
condition for the distributed algorithm that balances predictability and stability.
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Recall that, with regard to maximizing predictability, it is favorable to have a fixed
service rate rk (t) over time. Meanwhile, with regard to maximizing stability, it is
desirable to have a fixed service capacity E[P(t)] over time. These special cases
provide us with the intuition that the evenness of rk (t) and E[P(t)] may be used to
balance predictability and stability. This intuition can be formalized in the following
theorem.

Theorem 10.5.1. The optimal solution of (10.64) has the following properties: for
each job profiles (a, σ, τ) ∈ (T , S),

(i) αE[P(h)] + βv(a, σ, τ, a + τ − h) takes a constant value for any time h at
which v(a, σ, τ, a + τ − h) > 0,

(ii) αE[P(h′)] ≥ αE[P(h)]+ βv(a, σ, τ, a + τ − h) for any time h′ ∈ [a, a + τ] at
which v(a, σ, τ, a + τ − h′) = 0.

When α = 0, Theorem 10.5.1 essentially states that Exact Scheduling maximizes
predictability. This is because condition (ii) cannot happen when α = 0, so the
optimality condition reduces to the casewhen v(a, σ, τ, y) is constant at all y ∈ [0, τ].
When β = 0, Theorem 10.5.1 recovers Corollary 10.4.2. Next, we overview the
proof of Theorem 10.5.1.

Proof. (Theorem 10.5.1) From Lemma 10.2.2, the objective function of (10.65) is
equivalent to∫ T

0
αE[P(t)]2 + βVar(P(t))dt (10.72)

= α

∫ T

0

{∫
(σ,τ)∈S

∫ τ

y=0
v(t + y − τ, σ, τ, y)Ψ(t + y − τ, σ, τ)dydσdτ

}2
dt

+ β

∫ T

0

∫
(σ,τ)∈S

∫ τ

y=0
v(t + y − τ, σ, τ, y)2

Ψ(t + y − τ, σ, τ)dydσdτdt

Moreover, the constraints of (10.64) are equivalent to∫ τ

y=0
v(a, σ, τ, y)dy = σ, (σ, τ) ∈ S, a ∈ T (10.73)

v(a, σ, τ, y) ≥ 0, (σ, τ) ∈ S, a ∈ T , y ∈ [0, τ]. (10.74)
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The Lagrangian associated with problem (10.65) is

L(v; µ, ν) =α
∫ T

0

{∫
(σ,τ)∈S

∫ τ

y=0
v(t + y − τ, σ, τ, y)Ψ(t + y − τ, σ, τ)dydσdτ

}2
dt

+ β

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0
v(a, σ, τ, y)2

Ψ(a, σ, τ)dadydσdτ

−

∫ T

a=0

∫
(σ,τ)∈S

µ(σ, τ, a)
∫ τ

y=0
v(y, σ, τ, a)dydσdτda

−

∫ T

a=0

∫
(σ,τ)∈S

∫ τ

y=0
ν(a, σ, τ, y)v(y, σ, τ, a)dydσdτda,

where µ(σ, τ, a) is theLagrangemultiplier associatedwith (10.73), and ν(a, σ, τ, y) ≥
0 is the Lagrange multiplier associated with (10.74). We can alternatively consider
L : U → R as a functional defined on the function space U of policies. Let U f ⊂ U

be the space of feasible scheduling policies, i.e.

U f = {v : v satisfies (10.73)&(10.74)}. (10.75)

Now we consider perturbing v′ using the original v as

v′ = v + ελ (10.76)

where ελ satisfies the constraint v′ ∈ U f .

Let G : (T ,U) → R be the following functional:

G(t; v) = E[P(t)] =
∫

(σ,τ)∈S

∫ t

a=t−τ
v(σ, τ, a, y)Ψ(a, σ, τ)dadσdτ. (10.77)
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The difference in Lagrangian can be written as

L(v′; µ, ν) − L(v; µ, ν) (10.78)

=α

∫ T

0
2 G(t; u)

{∫
(σ,τ)∈S

∫ t

a=t−τ
ελ(a, σ, τ, y)Ψ(a, σ, τ)dadσdτ

}
dt (10.79)

+ β

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0
2ελ(a, σ, τ, y)v(a, σ, τ, y)Ψ(a, σ, τ)dadydσdτ

−

∫
(σ,τ)∈S

∫ T

a=0
µ(σ, τ, a)

∫ τ

y=0
ελ(a, σ, τ, y)dydadσdτ

−

∫ τ

y=0
ν(σ, τ, a, y)ελ(σ, τ, a, y)dydadσdτ +O(ε2)

=α

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0
2εG(t; u)λ(a, σ, τ, y)Ψ(a, e, τ)dadydσdτ (10.80)

+ β

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0
2ελ(a, σ, τ, y)v(a, σ, τ, y)Ψ(a, σ, τ)dadydσdτ

−

∫
(σ,τ)∈S

∫ T

a=0

∫ τ

y=0
ε (µ(σ, τ, a)λ(a, σ, τ, y) + ν(σ, τ, a, y)λ(σ, τ, a, y))dydadσdτ

+O(ε2) (10.81)

=ε

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

{
2(αG(t; u) + βv(a, σ, τ, y))Ψ(a, σ, τ) − µ(σ, τ, a)

− ν(σ, τ, a, y)
}
λ(a, σ, τ, y)dadydσdτ +O(ε2), (10.82)

where (10.80) is obtained using integration by substitution. For a functional L to
be stationary at some v ∈ U f , the first term should be zero for any λ(a, σ, τ, y)
satisfying the constraint v′ ∈ U f . From (10.82), the stationary point of L satisfies

αE[P(t)] + βv(a, σ, τ, a + τ − h1) = αG(t; u) + βv(a, σ, τ, a + τ − h1) (10.83)

=
µ(σ, τ, a) + ν(σ, τ, a, y)

2Ψ(a, σ, τ)
(10.84)

for any y ∈ [0, τ], (σ, τ) ∈ S, a ∈ T . Since the optimal solution of (10.65) is a
stationary point of L, (10.83) is the necessary condition for optimality:

(i) For any job profiles (a, σ, τ), if the service rate is strictly positive at h1, h2

such that h1 , h1 and h1, h1 ∈ [a, a + τ], then

v(a − h1 + τ, σ, τ, a) = v(a − h2 + τ, σ, τ, a) = 0. (10.85)
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Combining (10.83) and (10.85) leads to

αE[P(h1)] + βv(a, σ, τ, a + τ − h1) (10.86)

=
µ(σ, τ, a)

2Ψ(a, σ, τ)
(10.87)

= αE[P(h2)] + βv(a, σ, τ, a + τ − h2). (10.88)

(ii) For any job profiles (a, σ, τ), if its service rate is strictly positive at h ∈

[a, a + τ] and zero at h′ ∈ [a, a + τ], then

αE[P(h)] + βv(a, σ, τ, a + τ − h1) =
µ(σ, τ, a)

2Ψ(a, σ, τ)
(10.89)

≤
µ(σ, τ, a) + ν(σ, τ, a, y)

2Ψ(a, σ, τ)
(10.90)

= αE[P(h′)]. (10.91)

�

10.6 Performance at Caltech electrical vehicle charging testbed
To further evaluate the performance of distributed algorithms, we compare their
performance with existing scheduling algorithms in the Caltech Electric Vehicle
Charging Testbed [102]. We employ a trace-driven simulation on a total of 92
charging instances in the testbed. Each instance contains a set of requested jobs
within a day, whose statistics are summarized in Table S1. Using these instances,
we compare the following algorithms.

Distributed algorithms:

• Generalized Exact Scheduling (10.38), which recovers Exact Scheduling
(10.20) under strict service requirements, the policy (10.34) under soft de-
mands, and the policy (10.36) under soft deadlines.

• Immediate Scheduling, i.e. rk (t) = 1{xk (t) > 0}.

• Equal Service, which offers a homogeneous service rate to all unfinished
jobs. Under strict service requirements, it serves jobs with positive laxity at a
homogeneous service rate cES and jobs with zero laxity at its maximum rate,
i.e. rk (t) = cES1{(x/r̄k ) − y > 0 and x > 0} + 1{(x/r̄k ) − y ≤ 0 and x > 0}.
Under soft demand constraints, it serves jobs at a homogeneous service rate
c′ES before its deadline, i.e. rk (t) = c′ES1{xk (t) > 0}. Under soft deadline
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constraints, it serves jobs at a homogeneous service rate until its completion,
i.e. rk (t) = c′′ES1{xk (t) > 0}. Here, the parameters cES, c′ES, c

′′
ES are chosen to

be the optimal offline values.7

Centralized algorithms:

• Earliest Deadline First (EDF), which allocates a fixed capacity pEDF to jobs in
ascending order of their deadlines. Under soft demand constraints, jobs are
served until their deadline. Under soft deadline constraints, jobs are served
until completion.

• Least Laxity First (LLF), which allocates a fixed capacity pLLF to jobs in
ascending order of their laxity.8 Under soft demand constraints, jobs are
served until their deadlines. Under soft deadline constraints, jobs are served
until completion.

• Fair Sharing (FS), which equally distributes a fixed capacity among jobs. Un-
der soft demand constraints, jobs are served until their deadlines according
to rk (t) = min{pFS/n(t), r̄k }1{yk (t) > 0}, where n(t) the is number of unfin-
ished jobs at time t. Under soft deadline constraints, jobs are served to their
completion according to rk (t) = min{p′FS/n(t), r̄k }1{xk (t) > 0}. Here pFS
and p′FS are chosen to be the optimal offline values.9

In the case of strict demand and deadline constraints, Figure 10.5 shows that Exact
Scheduling has significant performance gains compared to other algorithms that
can guarantee demand and deadline satisfaction (Immediate Scheduling and Equal
Service). Although we show the optimality of Exact Scheduling under Poisson
arrivals, Figure 10.5 suggests that Exact Scheduling can also perform better than
other distributed algorithms in settings with non-Poisson arrivals.

In the case of soft demand constraints, Figure 10.7 (a) shows the average cost of
an instance for each algorithm as a function of the unit penalty for unsatisfied
demands δ. As δ grows, all algorithms inevitably suffer from increased costs as
well. However, the cost of Generalized Exact Scheduling plateau out at relatively

7Since the offline optimal parameters is unknown in practice, the obtained performance in this
chapter is optimistic.

8The laxity of job k at time t is defined to be yk (t) − xk (t).
9The offline optimal parameters can be unknown in an online setting.



168

(a) Job profiles

Demand Sojourn time Rate limit
σk (kW × m) τk (m) r̄k (kW)

Mean 5.1 · 102 4.5 · 103 6.37
Variance 3.1 · 105 7.7 · 106 12.7

(b) Instance profiles

Total demand Time horizon Number of jobs∑
k∈V ek (kW × m) T (m) |V |

Mean 8.4 · 103 6.5 · 102 14.2
Variance 2.0 · 107 1.4 · 104 48.2

Table S1: Statistics of the EV charging instances at Caltech testbed.

small δ, which results in lower cost compared with other algorithms. Figure 10.7 (b)
suggests that the quick plateau is achieved by a highly adaptive reduction in the total
amount of unsatisfied demands: it is among the algorithms with the largest amount
of unmet demands at small δ and, at the same time, the ones with the smallest
amount of unmet demands at large ε . This property suggests the importance of
systematically optimizing and adjusting the level of unmet demands.

In the case of soft deadline constraints, Figure 10.6 (a) shows that Generalized
Exact Scheduling achieves lower cost than other distributed algorithms. It also has
a comparable performance with the centralized algorithms when the unit penalty
for unsatisfied deadline ε is large. Figure 10.6 (b) suggests that such performance
is achieved by drastically reducing the total amount of unsatisfied deadline as ε
increases.

Generalized Exact Scheduling demonstrates the power of systematically optimizing
service capacity to find the right balance between service capacity variance and the
penalties for unsatisfied demands or deadlines. The resulting performance is not
surprising because existing algorithms are not designed or optimized for dynamic
service capacity, and existing algorithms do not have a systematic way to optimally
trade-off service capacity variance and unmet demands or deadlines.

Conclusion
As it becomes more common for service systems to have a dynamic capacity that
instantaneously adapts to demand, the goal of providing a high quality of service
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Figure 10.5: Performance comparison of algorithms under strict demand constraints.
The ratio of each algorithm’s empirical variance to the offline optimal algorithm’s
empirical variance is averaged over all scheduling instances. The parameters cES
are set to be the offline optimal.9

(e.g. meeting deadlines) while minimizing the variance of service capacity has
received increasing attention. While there exists an extensive literature analyzing
existing algorithms, little analytic results were known for the optimal policies in
such settings. In this chapter, we characterize the optimal policies in many common
scenarios, stationary and non-stationary arrivals, strict or soft demands, with or
without deadline extensions, and a variety of objective functions.

The results highlight that novel generalizations of Exact Scheduling are optimal un-
der both stationary and non-stationary Poisson arrival processes. For more complex
objective functions, more complex policies turn out to be optimal, specifically a
novel variation of the YDS algorithm. This connection and the proof of optimality
highlight new bridges between the stochastic and worst-case scheduling commu-
nities will be interesting to explore in future work. In addition to characterizing
optimal distributed policies, our results also bound the gap between the performance
of distributed policies and centralized policies – showing that distributed policies
can nearly match the performance of centralized policies.

Typically, the analysis of scheduling policies for non-stationary settings with dead-
lines has been done using asymptotic regimes, e.g. heavy-traffic regimes; however,
the techniqueswe develop in this chapter do not require passing into these asymptotic
regimes. Thus, in addition to the results we have proven, our techniques are also an
important contribution. We hope they these techniques will inspire the discovery of
other optimality results in the context of deadline scheduling in the coming years.
app-
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(a) Average total costs (10.15) for varying ε .

(b) Average of the total deadline extension in an instance for varying ε .

Figure 10.6: Performance of algorithms under soft deadline constraints.9
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(a) Average total costs (10.14) for varying δ.

(b) Average of the total unsatisfied demands in an instance for varying δ.

Figure 10.7: Performance of algorithms under soft demand constraints. The param-
eters c′ES, pEDF, pLLF, and pFS are set to be the offline optimal ones.9
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A p p e n d i x A

ADDITIONAL PROOFS FOR SECTION VIII

A.1 Additional proofs
We first introduce some notation that will be used later. Denote by At = {i ∈ V :
ai ≤ t} the set of EVs that have arrived by time t, Dt = {i ∈ At : di ≤ t or ei (t) = 0}
the set of EVs that have either departed or finished charging by time t, Vt = {i ∈

At : ai ≤ t < di} the set of EVs remaining in the charging station at time t, and
Ut = {i ∈ Vt : ei (t) > 0} the set of EVs with unfulfilled energy demand at the
beginning of time slot t, where we reload the notation and use ei (t) to denote the
remaining energy demand of EV i at the beginning of time slot t. In addition, denote
by A[t1,t2] = {i ∈ V : ai ∈ [t1, t2]} the set of EVs that arrive during time interval
[t1, t2], t1, t2 ∈ T . See Table S1 for a summary of notation.

Denote the total energy supply to EVs in set S ⊆ V during the interval [t1, t2] under
the (feasible) offline algorithm by

Ψ
∗
[t1:t2](S;I) :=

∑
i∈S

t2∑
τ=t1

ri (τ),

and the total energy supply to EVs in set S ⊆ V during the interval [t1, t2] under
the ε-power augmentation (or ε-augmentation) by

Ψ
ε
[t1:t2](S;I) :=

∑
i∈S

t2∑
τ=t1

ri (τ).

We use superscript ∗ to indicate variables under an (feasible) offline algorithm with
original power limit P(t) and maximum charging rates r̄i, and use superscript ε to
indicate variables under the augmented resources.

Lemma A.1.1. When the sLLF algorithm is used on instance I, for any EV i ∈ S2

and j ∈ F , their laxities satisfy

`i (t) > ` j (t), t ∈ [max(ai, a j ), t−]. (A.1)

Proof (Lemma A.1.1). By the construction ofS2, relation (A.1) holds at time t = t−.
By Lemma 9.2.1, a necessary condition for the inequality in (A.1) to flip at some
time t + 1 ≤ t− is for (9.26) to hold for EV i. We show below that this condition
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Table S1: Additional Notation

At set of EVs arriving by time t
A[t1,t2] set of EVs arriving during interval [t1, t2]

Dt set of EVs either departed or finished by time t
Vt set of EVs at the charging station at time t
Ut set of EVs unfinished charging at time t

Ψ[t1:t2](S;I) total energy supplied to the set of EVs S
during the interval [t1, t2] under instance I

Ψε[t1:t2](S;I) total energy supplied to S during [t1, t2]
under instance I with ε augmented resources

cannot hold for any EV in F or S1. For EVs in F , condition e j (t + 1) = 0 in (9.26)
cannot happen because negative laxity at some time implies the energy demand will
not be fulfilled. For EVs in S1, (A.1) holds only after e j (t + 1) = 0 when they have
energy demand fulfilled at time t + 1. Consequently, condition (A.1) holds for all
t ∈ [max(ai, a j ), t−]. �

Notice that the sLLF algorithm prioritizes EVs with smaller laxity so the presence
of EVs with strictly greater laxity will not impact the charging of the EVs with
smaller laxity. Let Ṽ = F ∪ S1, and use it to define another instance that does not
contain the EVs in S2: Ĩ = {ai, di, ei, r̄i; P(t)}i∈Ṽ,t∈T . The following Corollary can
be obtained as a consequence of Lemma A.1.1.

Corollary A.1.1. Regardless of the actual instance being I or Ĩ, the EVs in F̃ are
charged in exactly the same way under the sLLF algorithm by time t−.

Let I be an EV charging instances that are offline feasible. Consider using the sLLF
algorithm with the ε augmented resources (either power augmentation Pon(t) =
εP(t), or power and rate augmentation Pon(t) = εP(t), r̄on

i (t) = r̄i (t)). Now, the
above result from previous section, we derive a condition for the sLLF algorithm
being infeasible on some online feasible instance, which holds for both power
augmentation and power and rate augmentation.

Since the EVs in S1 are fully charged by time t− under both the sLLF algorithm and
the offline algorithm, we have

Ψ
ε
[0:t−](S1;I) = Ψ∗[0:t−](S1;I), (A.2)
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where S1, F are the sets defined above under the sLLF algorithm using augmented
resources. Notice that `i (t) ≥ 0, ∀t ∈ T is a necessary condition for EV i to be
feasible. Thus, for EV i ∈ F , the offline algorithm must maintain `i (t−) ≥ 0. Given
that laxity `i (t) is strictly decreasing in the remaining energy demand ei (t), the total
energy fulfilled by t− under the offline algorithm must be strictly greater than that
with the sLLF algorithm, i.e.

Ψ
ε
[0:t−]({i};I) < Ψ∗[0:t−]({i};I), i ∈ F (A.3)

from which

Ψ
ε
[0:t−](F ;I) < Ψ∗[0:t−](F ;I). (A.4)

Recall that Ṽ = V\S2. Combining (A.2) and (A.4), we have

Ψ
ε
[0:t−](Ṽ;I) < Ψ∗[0:t−](Ṽ;I). (A.5)

Corollary A.1.1 implies

Ψ
ε
[0:t−](i;I) = Ψε[0:t−](i; Ĩ), i ∈ Ṽ, (A.6)

Ψ
ε
[0:t−](Ṽ;I) = Ψε[0:t−](Ṽ; Ĩ). (A.7)

Further, since the charging instance I is offline feasible, its sub-instance Ĩ is offline
feasible too. Similar to equations (A.2)-(A.5), we can show that

Ψ
ε
[0:t−](S1; Ĩ) = Ψ

∗
[0:t−](S1; Ĩ), (A.8)

Ψ
ε
[0:t−]({i}; Ĩ) < Ψ

∗
[0:t−]({i}; Ĩ), i ∈ F , (A.9)

Ψ
ε
[0:t−](F ; Ĩ) < Ψ

∗
[0:t−](F ; Ĩ), (A.10)

Ψ
ε
[0:t−](Ṽ; Ĩ) < Ψ

∗
[0:t−](Ṽ; Ĩ). (A.11)

A.2 Proof of Theorem 9.3.1
Consider the use of the sLLF algorithm on an offline feasible instance I =
{ai, di, ei, r̄i; P(t)}i∈V,t∈T under ε-power augmented resources. Let

n = (1 + ε )
Pmin
Pmax

. (A.12)

For m ≤ n, we define the earliest time to charge at a power greater than mPmax for
the rest of the time until t− as

tm = min



t ∈ T :
∑
j∈Vt

min(r̄ j, e j (τ)) ≥ mPmax, τ ∈ [t, t−]


. (A.13)
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Let Tm = [tm−1, tm) and T̂m = [tm, t−] and denote their lengths by |Tm | and |T̂m |.

We first present a lemma that is used in the proof of Theorem 9.3.1.

Lemma A.2.1. For any integer i ≤ n − 1, the following two relations hold:

Ψ
∗
[0:ti](ATi ; Ĩ) − Ψε[0:ti](ATi ; Ĩ) > Pmax |T̂i+1 |, (A.14)

|Ti | > |T̂i+1 |. (A.15)

Proof (Lemma A.2.1). On one hand, from definition (A.13),∑
j∈V(ti−1)−1

min(r̄ j, e j (ti−1 − 1)) < (i − 1)Pmax.

This implies that the EVs that have arrived before ti−1 are charged at a total power of
at most (i − 1)Pmax at ti−1 and after. On the other hand, from definition (A.13), the
total power supply is at least iPmax during the interval Ti+1 = [ti, ti+1]. Therefore,
the total charing power to the EVs that arrive after ti−1 is at least Pmax during Ti+1.
Since the offline algorithm can only use a power of at most Pmax, for the EVs that
arrive after ti−1 we obtain

Ψ
∗
[0;ti+1](AT̂i−1

; Ĩ) − Ψε[0;ti+1](AT̂i−1
; Ĩ)

< Ψ∗[0;ti](AT̂i−1
; Ĩ) − Ψε[0;ti](AT̂i−1

; Ĩ).
(A.16)

The same argument can be applied to the interval T̂i+1 = [ti+1, t−]. From definition
(A.13), the total charging power is at least (i+1)Pmax during T̂i+1. Therefore, during
T̂i+1, the total charing power to the EVs that arrive after ti−1 is at least 2Pmax. Since
the offline algorithm can only use a power of at most Pmax, the total energy supply to
EVs in T̂i−1 under the augmented resources is greater than that without augmented
resources, i.e.

0 < Ψ∗[0;t−](AT̂i−1
; Ĩ) − Ψε[0;t−](AT̂i−1

; Ĩ)

< Ψ∗[0;ti+1](AT̂i−1
; Ĩ) − Ψε[0;ti+1](AT̂i−1

; Ĩ) − Pmax |T̂i+1 |.
(A.17)

Combining (A.16)-(A.17), we have

Ψ
∗
[0;ti](AT̂i−1

; Ĩ) − Ψε[0;ti](AT̂i−1
; Ĩ) > Pmax |T̂i+1 |. (A.18)

Since the set ATi is identical to the subset of AT̂i−1
that contains only the EVs that

have arrived by ti,

Ψ
∗
[0;ti](ATi ; Ĩ) − Ψε[0;ti](ATi ; Ĩ)

= Ψ∗[0;ti](AT̂i−1
; Ĩ) − Ψε[0;ti](AT̂i−1

; Ĩ).
(A.19)
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Combining (A.18) and (A.19) leads to relation (A.14).

Finally, as all EVs in ATi arrives after ti−1, during Ti the offline algorithm can charge
a total energy of at most |Ti |Pmax, we obtain

Ψ
∗
[0:ti](ATi ; Ĩ) − Ψε[0:ti](ATi ; Ĩ) ≤ |Ti |Pmax,

which together with (A.14) leads to (A.15). �

Proof. (Theorem 9.3.1)

Suppose that there exists an offline feasible instance I = {ai, di, ei, r̄i; P(t)}i∈V,t∈T
such that the sLLF algorithm is not feasible with ε-power augmented resources.
Then, fromSectionA.1, there exists another offline feasible instance Ĩ = {ai, di, ei, r̄i;
P(t)}i∈Ṽ,t∈T such that

Ψ
ε
[0:t−]({i}; Ĩ) < Ψ∗[0:t−]({i}; Ĩ), i ∈ V . (A.20)

When m = 1, we obtain
∑

j∈Vt1−1 min(r̄ j, e j (t1 − 1)) < Pmax. Let S = {i ∈ AT1 :
ei (t1) > 0} ⊂ AT1 denote the set of EVs that arrive during T1 and have not yet been
fully charged by t1. Because the number of EVs is upper bounded by Pmax/r̄min

(from (A.13)), and the EVs in AT1\S are all fully charged,

Pmax |T̂2 | ≤ Ψ
∗
[0:t−](AT1; Ĩ) − Ψε[0:t−](AT1; Ĩ)

= Ψ∗[0:t−](S; Ĩ) − Ψε[0:t−](S; Ĩ)

≤ X Pmax/r̄min.

This leads to

|T̂2 | <
X

r̄min
. (A.21)

At time t < tm−1, we have∑
j∈Vtm−1−1

min(r̄ j, e j (tm−1 − 1)) < (m − 1)Pmax,

which implies that there are at most (m − 1)Pmax/r̄min EVs with unfulfilled energy
demand by time t f . Meanwhile, at time t ≥ tm, we have∑

j∈Vtm

min(r̄ j, e j (tm)) ≥ mPmax,
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which implies that there are at least mPmax/r̄max EVswith unfulfilled energy demand
during Tm−1. Therefore, the number of EVs that arrive during [tm−1, tm] is greater
than the following:

mPmax
r̄max

−
(m − 1)Pmax

r̄min
≥

Pmax
r̄min

. (A.22)

Since the inter-arrival periods of EVs are at least N , the length of T̂m−1 satisfies

|T̂m−1 | ≥
PmaxN

r̄min
. (A.23)

Now, consider the following recursion:

|T̂2 | = |T̂3 | + |T3 |

≥ |T̂3 | + |T̂4 | ≥ 2|T̂4 | + |T̂5 |

≥ 3|T̂5 | + 2|T̂6 | ≥ 5|T̂6 | + 3|T̂7 |

≥ · · · ≥ f k−2 |T̂m−1 | + f k−3 |T̂m |,

where f k is the Fibonacci sequence defined by f1 = 1, f2 = 1 and f k = f k−1 + f k−2

for k ≥ 3. From the above, we have

|T̂2 | > fm−2 |T̂m−1 |.

Combining equations (A.21)-(A.23) gives

X
r̄min

> |T2 | > fm−2 |T̂m−1 | > fm−2
PmaxN

r̄min
. (A.24)

From m ≤ n for n defined in (A.12), we obtain
⌊
(1 + ε )

Pmin
Pmax

⌋
− 2 = m − 2

= logϕ

(
√

5 fn−2 +
1
2

)
< logϕ *

,

√
5X

N Pmax
+

1
2

+
-
,

which gives (1 + ε )Pmin/Pmax < logϕ
(√

5X/N Pmax + 1/2
)
+ 2.

�

Corollary 9.3.1. Suppose there exists an offline feasible instance I that is not feasi-
ble under the sLLF algorithmwith 3-power augmentation. Using the same argument
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of the proof for Theorem 9.3.1, we obtain inequality (A.24). However, from as-
sumption

f1
PmaxN

r̄min
≤

X
r̄min

,

which contradicts (A.24). �

A.3 Proof of Theorem 9.3.2

Proof (Theorem 9.3.1). Suppose that there exists an instanceI = {ai, di, ei, r̄i;P(t)}i∈V,t∈T
such that the sLLF algorithm is not feasible with ε-augmented resources. We then
have (A.11), repeated here for convenience:

Ψ
ε
[0:t−](Ṽ; Ĩ) < Ψ∗[0:t−](Ṽ; Ĩ)

for another instance Ĩ = {ai, di, ei, r̄i; P(t)}i∈Ṽ,t∈T .

Let S(Ṽ ) be the set of EVs in the instance Ĩ that receive strictly less energy
under the online algorithm than under the offline algorithm by some time t at which
Ψε[0:t](Ṽ; Ĩ) < Ψ∗[0:t](Ṽ; Ĩ):

S(Ṽ ) =
{
i ∈ Ṽ : ∃t ∈ T s.t. Ψε[0:t]({i}; Ĩ) < Ψ∗[0:t]({i}; Ĩ)

& Ψε[0:t](Ṽ; Ĩ) < Ψ∗[0:t](Ṽ; Ĩ)
}
.

In view of (A.11), S(Ṽ ) , ∅. Consider EV j = arg mini∈S(Ṽ ) ai that arrives the
earliest among those in S(Ṽ ). There exists a time t ∈ [a j, d j] such that

Ψ
ε
[0:t]({ j}; Ĩ) < Ψ∗[0:t]({ j}; Ĩ), (A.25)

Ψ
ε
[0:t](Ṽ; Ĩ) < Ψ∗[0:t](Ṽ; Ĩ). (A.26)

Notice thatΨε[0:a j−1](Ṽ; Ĩ) < Ψ∗[0:a j−1](Ṽ; Ĩ) can only happenwhen there is another
EV in S(Ṽ ) that arrives before EV j, which however contradicts the definitions of
S(Ṽ ) and j. So,

Ψ
ε
[0:a j−1](Ṽ; Ĩ) ≥ Ψ∗[0:a j−1](Ṽ; Ĩ),

which implies

Ψ
ε
[a j :t](Ṽ; Ĩ) < Ψ∗[a j :t](Ṽ; Ĩ). (A.27)

Now, let us take a look at the energy demand fulfilled during the interval [a j, t] under
the sLLF algorithm with ε-augmented resources. Define the overloaded times

To =




t ∈ [a j, t] :
∑
i∈Ṽ

ri (t) = (1 + ε )P(t)
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and underloaded times

Tu =




t ∈ [a j, t] :
∑
i∈Ṽ

ri (t) < (1 + ε )P(t)


,

we have |To | + |Tu | = t + 1 − a j . The total energy demand fulfilled during the
overloaded period is lower bounded by |To |(1+ε ) minτ∈[a j,d j ] P(τ), while that during
the underloaded period is at least |Tu |(1+ε )r̄ j . Hence, the total and individual energy
demands fulfilled during [a j, t] are lower bounded by

(1 + ε )
(
|Tu |r̄ j + |To | min

τ∈[a j,d j ]
P(τ)

)
≤ Ψε[a j :t](Ṽ; Ĩ), (A.28)

(1 + ε ) |Tu |r̄ j ≤ Ψ
ε
[a j :t]({ j}; Ĩ). (A.29)

Next, let us take a look at the energy demand fulfilled during the interval [a j, t + 1]
by the offline algorithm without resource augmentation. The total energy fulfilled
is upper bounded by

Ψ
∗
[a j :t](Ṽ; Ĩ) ≤ (t + 1 − a j ) max

τ∈[a j,d j ]
P(τ), (A.30)

and the energy fulfilled to EV j is upper bounded by

Ψ
∗
a j :t ( j) ≤ (t + 1 − a j )r̄ j . (A.31)

By equations (A.25), (A.29) and (A.31), we have

|Tu |(1 + ε ) < (t − a j + 1). (A.32)

By equations (A.27) (A.28) and (A.30), we have

(1 + ε )( |Tu |r̄ j + |To | min
τ∈[a j,d j ]

P(τ))

< (t + 1 − a j ) max
τ∈[a j,d j ]

P(τ).

Combining (A.32) becomes

(|Tu | + |To |)(1 + ε ) min
τ∈[a j,d j ]

P(τ)

< (t − a j + 1)( max
τ∈[a j,d j ]

P(τ) + min
τ∈[a j,d j ]

P(τ) − r̄ j ).

Notice that |To | + |Tu | = t + 1 − a j , the above inequality leads to

ε < max
τ1,τ2∈[a j,d j ]

P(τ1)
P(τ2)

−min
i∈V

max
τ∈[ai,di]

r̄i

P(τ)
.

�
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A p p e n d i x B

ADDITIONAL PROOFS FOR SECTION XII

B.1 Proof of Lemma 10.2.2
In this section, we present results that are useful for proving our main theorems.
First, we restate one part of the Campbell’s theorem, which is relevant to our proofs.

Theorem B.1.1 (Campbell [89]). Consider a Poisson point process {xk ∈ R
d }k

with intensity measure Λ : Rd → R+. Let g : Rd → R be a measurable function
satisfying ∫

Rd
min( |g(x) |, 1)Λ(x)dx ≤ ∞. (B.1)

Then, the random sum

G =
∑

k

g(x) (B.2)

is absolutely convergent with probability one and satisfies

E[G] =
∫
Rd

g(x)Λ(x)dx (B.3)

Var(G) =
∫
Rd

g(x)2
Λ(x)dx. (B.4)

Throughout, we consider a scheduling policy (10.23), which is defined by a function
v : S × R→ R+ as follows:

rk (t) = v(σk, τk, yk (t)) k ∈ V . (B.5)

The function v satisfies∫
(σ,τ)∈S

∫
R+

min(|v(σ, τ, a + τ − t) |, 1)Λ f (σ, τ)dadσdτ (B.6)

=

∫
(σ,τ)∈S

∫
R+

min(|v(σ, τ, a + τ − t) |, 1)Λ f (σ, τ)dadσdτ (B.7)

=

∫
(σ,τ)∈S

∫
R
v(σ, τ, y)dyΛ f (σ, τ)dσdτ (B.8)

≤ Λ

∫
(σ,τ)∈S

e f (σ, τ)dσdτ (B.9)

= E[e]Λ ≤ ∞. (B.10)
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The inequality in (B.9) holds because
∫ ∞

ak
rk (t)dt =

∫ ∞
ak

v(σk, τk, ak+τk−t)dt ≤ σk .
Combining (B.6)–(B.9) and Theorem B.1.1, we obtain

E[P(t)] =
∫

(σ,τ)∈S

∫ τ

0
v(σ, τ, y)Λ f (σ, τ)dydσdτ (B.11)

Var(P(t)) =
∫

(σ,τ)∈S

∫ τ

0
v(σ, τ, y)2

Λ f (σ, τ)dydσdτ, (B.12)

which yields Lemma 10.2.2.

Below we explain the intuitions behind Lemma 10.2.2. Consider a discretized space
of S × R and define disjoint sets Ahi j for h, i, j ∈ Q such that

Ahi j = {(σ, τ, a) : σ̄h < σ ≤ σ̄h+1, τ̄i < τ ≤ τ̄i+1, ā j < a ≤ ā j+1}. (B.13)

Here, we assume a uniform discretization of internal δ, so σ̄h = hδ, τ̄i = hδ, and
ā j = jδ. Let N (Ahi j ) denote the number of jobs satisfying (σk, τk, ak ) ∈ Ahi j . From
[7, Definition 1.1.1], N (Ahi j ) is a scalar Poisson random variable, and N (Ahi j ) and
N (Ah′i′ j ′) are independent if (h, i, j) , (h′, i′, j′). Similarly, we also approximate v
using some function vδ (h, i, j) that only depends on (h, i, j) and satisfies

lim
δ→0

vδ = v. (B.14)

Let us define

Pδ (t) =
∑
h,i, j

∑
k∈Ahij

vδ (h, i, j). (B.15)

The function vδ is constructed so that it approximates v to an arbitrary precision.
So we can also expect the mean and variance of Pδ (t) to approximate P(t) to an
arbitrary precision.

E[P(t)] = lim
δ→∞
E[Pδ (t)] (B.16)

Var(P(t)) = lim
δ→∞

Var(Pδ (t)). (B.17)

The proof of (B.16) and (B.17) is fairly technical and is beyond the scope of this
chapter. However, given (B.16) and (B.17), we can intuitively see (B.116) and
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(B.117) by taking δ → 0 in Pδ (t):

lim
δ→∞
E[Pδ (t)] = lim

δ→∞
E



∑
h,i, j

∑
k∈Ahij

vδ (h, i, j)


(B.18)

= lim
δ→∞

∑
h,i, j

vδ (h, i, j)E[N (Ahi j )] (B.19)

= lim
δ→∞

∑
h,i, j

vδ (h, i, j)
∫

Ahij

Λ f (σ, τ)dydσdτ (B.20)

=

∫
(σ,τ)∈S

∫ τ

0
lim
δ→∞

vδ (h, i, j)Λ f (σ, τ)dydσdτ (B.21)

=

∫
(σ,τ)∈S

∫ τ

0
v(σ, τ, y)Λ f (σ, τ)dydσdτ. (B.22)

The variance of Pδ (t) as δ → 0 can be computed by

lim
δ→∞

Var(Pδ (t)) (B.23)

= lim
δ→∞
E



*.
,

∑
h,i, j

∑
k∈Ahij

vδ (h, i, j) − E


∑
h,i, j

∑
k∈Ahij

vδ (h, i, j)


+/
-

2
(B.24)

= lim
δ→∞
E



*.
,

∑
h,i, j

vδ (h, i, j)
{
N (Ahi j ) − E[N (Ahi j )]

}+/
-

2
(B.25)

= lim
δ→∞

∑
h,i, j

E
[(
vδ (h, i, j)

{
N (Ahi j ) − E[N (Ahi j )]

})2]
(B.26)

= lim
δ→∞

∑
h,i, j

[
vδ (h, i, j)2E

[(
N (Ahi j ) − E[N (Ahi j )]

)2] ]
(B.27)

= lim
δ→∞

∑
h,i, j


vδ (h, i, j)2

∫
Ahij

Λ f (σ, τ)dydσdτ


(B.28)

=

∫
(σ,τ)∈S

∫ τ

0
lim
δ→∞

vδ (h, i, j)2
Λ f (σ, τ)dydσdτ (B.29)

=

∫
(σ,τ)∈S

∫ τ

0
v(σ, τ, y)2

Λ f (σ, τ)dydσdτ. (B.30)

Here, (B.26) holds because N (Ahi j ) − E[N (Ahi j )] has mean zero, and N (Ahi j ) and
N (Ah′i′ j ′), (h, i, j) , (h′, i′, j′), are independent.
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B.2 Proof of Proposition 10.2.1
We observe that∫ ∞

−∞

∫ ∞

0

∂

dy
λ(x, y)xdxdy =

∫ ∞

0
x
{∫ ∞

−∞

∂

dy
λ(x, y)dy

}
dx (B.31)

= −

∫ ∞

0
x lim

L→∞
λ(x, L)dx (B.32)

= −ΨE[σ − σ̂(σ, τ)], (B.33)

where (B.31) holds because bounded S implies that λ(x,∞) = 0. Therefore, the
stationary mean of the service capacity satisfies

E[P(t)] = E


∑
k∈V

u(xk (t), yk (t))


(B.34)

=

∫ ∞

−∞

∫ ∞

0
λ(x, y)u(x, y)dxdy (B.35)

= −

∫ ∞

−∞

∫ ∞

0

d
dx

(
λ(x, y)u(x, y)

)
xdxdy (B.36)

=

∫ ∞

−∞

∫ ∞

0

(
∂

dy
λ(x, y) + Λ f (x, y)

)
xdxdy (B.37)

= −ΨE[σ − σ̂(σ, τ)] + ΨE[σ] (B.38)

= ΨE[σ̂(σ, τ)]. (B.39)

Here, (B.36) is due to Integration by Parts, (B.37) is due to (10.11), (B.38) is due to
(B.31)–(B.33).

B.3 Proof of Theorem 10.2.2
Since the constraints of (10.14) is hard to solve, we first consider providing a lower
bound on its optimal solution. Again, we consider the class of control policies
representable by (10.23) and the optimization problem

minimize
v:(10.1)(10.3)(10.23)

Var(P) + E[U]. (B.40)

Because the constraint set of (B.40) contains that of (10.14), the optimal value
of (B.40) lower-bounds that of (10.14). Therefore, to prove Theorem 10.2.2, it
suffices to solve (B.40) (in the next lemma) and observe that its optimal solution is
representable by a control policy of the form (10.10).

Lemma B.3.1. The optimal solution of (B.40) is

v(σ, τ, y) = min
{
δ

2
,
σ

τ

}
1 {y > 0} , (B.41)

and it achieves the optimal value (10.35).
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Proof. First, we derive an analytical formula forE[U] as a function of the scheduling
policy v. A job with a service demand σ and a sojourn time τ receives the following
amount of service at its deadline:

σ̂(σ, τ) =
∫ τ

0
v(σ, τ, y)dy, (B.42)

resulting in an unsatisfied demand σ − σ̂(σ, τ). Additionally, σ̂(σ, τ) satisfies

0 ≤ σ̂(σ, τ) ≤ σ, ∀(σ, τ) ∈ S. (B.43)

Consequently, the stationary mean of U satisfies

E[U] = lim
t→∞
E



∑
k∈V:dk=t

(σk − σ̂(σk, τk ))


(B.44)

=

∫
(σ,τ)∈S

(σ − σ̂(σ, τ))Λ f (σ, τ)dσdτ. (B.45)

Then, we use (B.45) to rewrite (B.40) as follows:

inf
v:(10.1)(10.3)(10.23)

Var(P) + E[U] (B.46)

= inf
σ̂:(B.43)

[
inf

v:(10.1)(10.3)(10.23)
Var(P) + δ

∫
(σ,τ)∈S

(σ − σ̂(σ, τ))Λ f (σ, τ)dσdτ
]

(B.47)

= inf
σ̂:(B.43)

[{
inf

v:(10.1)(10.3)(10.23)
Var(P)

}
+ δ

∫
(σ,τ)∈S

(σ − σ̂(σ, τ))Λ f (σ, τ)dσdτ
]
.

(B.48)

Equality (B.48) holds because, constrained on σ̂(σ, τ) =
∫ τ

0 v(σ, y, τ)dy for some
fixed σ̂, the second term of (B.47) is not a function of v. From Lemma 10.2.1, the
first term of (B.48) admits the closed-form expression

inf
v:(10.1)(10.3)(10.23)

Var(P) =
∫

(σ,s)∈S

σ̂′(σ, τ)2

τ
Λ f (σ, τ)dσdτ, (B.49)

which is attained by

v(σ, τ, y) =
σ̂

τ
. (B.50)

Substituting (B.49) into (B.48) yields

inf
σ̂:(B.43)

∫
(σ,τ)∈S

{
σ̂′(σ, τ)2

τ
+ δ(σ − σ̂′(σ, τ))

}
Λ f (σ, τ)dσdτ, (B.51)
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where the optimization variable is now σ̂′ instead of v. To derive a closed-form
solution of (B.40), we can minimize the integrand of (B.51) point-wisely. By doing
so, we observe that, for each (σ, τ) ∈ S, a necessary and sufficient condition for
optimality is

σ̂(σ, τ) = arg inf
σ̂:(B.43)

σ̂(σ, τ)2

τ
+ δ(σ − σ̂(σ, τ)) =

{
δτ

2
, σ

}
. (B.52)

Combining (B.50) and (B.52), we obtain that (B.41) is the optimal solution of
(B.40). Substituting (B.41) into (B.51) gives its optimal value (10.35).

�

Given Lemma B.3.1, Theorem 10.2.2 can be derived as follows. It can be verified
that (B.41) can be realized using (10.34). This implies that the optimal solution of
(B.40) lies within the constraint set of (10.14). Because the cost attained by (B.41)
is a lower bound on the optimal value of (10.14), the optimal solution of (10.14) is
(B.41).

B.4 Proof of Theorem 10.2.3
Since the constraints of (10.15) is hard to solve, we first consider providing a lower
bound on its optimal solution. Again, we consider the class of control policies
representable by (10.23) and the optimization problem

minimize
v:(10.1)(10.2)(10.23)

Var(P) + E[W ]. (B.53)

Because the optimal value of (B.53) lower-bounds that of (10.14), to prove Theorem
10.2.3, we can solve (B.53) (in the next lemma) and observe that its optimal solution
is representable by a control policy of the form (10.10).

Lemma B.4.1. The optimal solution of (B.53) is

v(σ, τ, y) =




σ

τ
1{y > 0} if

σ

τ
≤
√
ε

√
ε 1

{
y > τ −

σ
√
ε

}
otherwise

(B.54)

and it achieves the optimal value (10.37).

Proof. With a slight abuse of notation, let τ̂(σ, τ) ≥ τ denote the actual sojourn
time for jobs having a service demand σ and a sojourn time τ. Then, the stationary
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mean of W satisfies

E[W ] = ε
∫

(σ,τ)∈S
(τ̂(σ, τ) − τ)Λ f (σ, τ)dσdτ. (B.55)

The optimization problem (B.53) can then be written into

inf
v:(10.1)(10.2)(10.23)

Var(P) + E[εW ] (B.56)

= inf
τ̂≥τ

[ {
inf

v:(10.1)(10.2)(10.23)
Var(P)

}
(B.57)

+ ε

∫
(σ,τ)∈S

(τ̂(σ, τ) − τ)Λ f (σ, τ)dσdτ
]

(B.58)

= inf
τ̂≥τ

∫
(σ,τ)∈S

{
σ2

τ̂
+ ε (τ̂(σ, τ) − τ)

}
Λ f (σ, τ)dσdτ, (B.59)

where infv:(10.1)(10.2)(10.23) Var(P) in (B.57) is attained by

v(σ, τ, y) =
σ

τ̂(σ, τ)
. (B.60)

The optimal choice of deadline extensions τ̂?(σ, τ) is the point-wise maximum of
the integrand of (B.59), i.e.

τ̂?(σ, τ) = arg inf
σ̂:(B.43)

σ2

τ̂
+ ε (τ̂(σ, τ) − τ) =

{
σ
√
ε
, τ

}
. (B.61)

Combining (B.60) and (B.61), we obtain (B.54) as the closed-form solution of
(B.53).

�

Given Lemma B.4.1, we are now ready to prove Theorem 10.2.3.

Proof. (Theorem 10.2.3)

Recall that the optimal value of (B.53) lower-bounds that of (10.15). Therefore, if
there is a policy of the form (10.10) that produces identical service rates to (B.54), it
is also optimal for (10.15). Next, we show that the policy (10.36) satisfies the above
description.

Given any job k ∈ V with σ ≤ τ
√
ε , both (10.10) and (B.54) produce the service

rates rk (t) = σk/τk if t ∈ [ak, ak+τk] and rk (t) = 0 otherwise. Given any job k ∈ V

with σ <
√
ετ, (10.10) produces the service rates rk (t) =

√
ε if t ∈ [ak, ak +σ/

√
ε ]
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and rk (t) = 0 otherwise. Observe that under the policy (B.54), for any y(t) > 0, we
have

x(t)
y(t)
−
σ

τ
=
σ −
√
ε (t − a)

τ − (t − a)
−
σ

τ
≥

(−
√
ε + 1)(t − a)
τ − (t − a)

≥
(−σ/τ + 1)(t − a)

τ − (t − a)
≥ 0,

(B.62)

where the third inequality is due to−
√
ε ≥ σ/τ. Thus, the policy (B.54) also produce

the service rates rk (t) =
√
ε if t ∈ [ak, ak + σ/

√
ε ] and rk (t) = 0 otherwise.

�

B.5 Proof of Theorem 10.2.4
We first consider providing a lower bound of (10.16) by solving the optimization
problem

minimize
v:(10.1)(10.23)

Var(P) + E[U] + E[W ]. (B.63)

The solution of (B.63) is given in the next lemma, which is also a feasible policy
for the constraint set of (10.16).

Lemma B.5.1. The optimal solution of (B.63) is

v(σ, τ, y) =




σ

τ
1 {y > 0} if

σ

τ
≤ min

{
δ

2
,
√
ε

}
δ

2
1 {y > 0} if

σ

τ
>
δ

2
and

δ

2
≤
√
ε

√
ε1

{
y > τ −

σ
√
ε

}
otherwise

. (B.64)

and it achieves the optimal value (10.39).

Proof. Let σ̂(σ, τ) denote the actual service supply for jobs having a service demand
σ and a sojourn time τ, and let τ̂(σ, τ) denote the actual sojourn time for such jobs.
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The optimization problem (B.63) can be written into

inf
v:(10.1)(10.23)

Var(P(t)) + E[δU] + E[εW ] (B.65)

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

[
inf

v:(10.1)(10.23)
Var(P) +

∫
(σ,τ)∈S

{δ(σ − σ̂(σ, τ)) + ε (τ̂(σ, τ) − τ)}Λ f (σ, τ)dσdτ
]

(B.66)

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

∫
(σ,τ)∈S

[
σ̂(σ, τ)2

τ̂(σ, τ)
+ δ(σ − σ̂(σ, τ)) + ε (τ̂(σ, τ) − τ)

]
Λ f (σ, τ)dσdτ

(B.67)

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

∫
(σ,τ)∈S

C(σ, τ̂)Λ f (σ, τ)dσdτ, (B.68)

where C(σ, τ̂) is defined to be

C(σ, τ̂) :=
σ̂(σ, τ)2

τ̂(σ, τ)
+ δ(σ − σ̂(σ, τ)) + ε (τ̂(σ, τ) − τ) (B.69)

=




σ2

τ
if τ̂ = τ and

σ

τ
≤
δ

2

δ

(
σ −

δτ

4

)
if τ̂ = τ and

σ

τ
>
δ

2
σ2

τ̂
+ ε (τ̂ − τ) if τ̂ > τ and

σ

τ̂
≤
δ

2

δ

(
σ −

δτ̂

4

)
+ ε (τ̂ − τ) if τ̂ > τ and

σ

τ̂
>
δ

2

. (B.70)

Relation (B.67) holds because infv:(10.1)(10.23) Var(P) is attained by

v(σ, τ, y) =
σ̂(σ, τ)
τ̂(σ, τ)

. (B.71)

The optimal σ̂∗(σ, τ) and τ̂∗(σ, τ) is the point-wise maximum of the integrand of
(B.67).

To derive a closed form expression for σ̂∗(σ, τ) and τ̂∗(σ, τ), we first show that in
the case of δ2/4 ≤ ε , we have τ̂∗(σ, τ) = τ. Suppose not and τ̂(σ, τ) = τ̂ ≥ τ.
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Then, if σ ≤ δτ/2, we have

C(τ̂) − C(τ) =
σ2

τ̂
+ ε (τ̂ − τ) −

σ2

τ
(B.72)

= (τ̂ − τ)
(
ε −

σ2

ττ̂

)
(B.73)

≥ (τ̂ − τ)


ε −

(
δτ

2

)2 1
ττ̂




(B.74)

≥ (τ̂ − τ)
{
ε −

δ2

4

}
(B.75)

≥ 0, (B.76)

where (B.74) is due to σ ≤ δτ/2; (B.75) is due to τ̂ > τ; and (B.76) is due to
δ2/4 ≤ ε . When σ ∈ (δτ/2, δτ̂/2], we have

C(τ̂) − C(τ) =
σ2

τ̂
+ ε (τ̂ − τ) − δ

(
σ −

δτ

4

)
(B.77)

≥ ε (τ̂ − τ) +
(
δτ

2

)2 1
τ̂
− δ

δτ̂

2
+
δ2τ̂

4
(B.78)

≥ ε (τ̂ − τ) +
1
2
δ2(τ − τ̂) (B.79)

= (τ̂ − τ)
{
ε −

δ2

4

}
(B.80)

≥ 0, (B.81)

where (B.78) is due to σ ≤ δτ/2; (B.79) is due to τ̂ > τ; and (B.81) is due to
δ2/4 ≤ ε . When σ > δτ̂/2, we have

C(τ̂) − C(τ) = δ
(
σ −

δτ̂

4

)
+ ε (τ̂ − τ) − δ

(
σ −

δτ

4

)
(B.82)

= (τ̂ − τ)
(
ε −

δ2

4

)
(B.83)

≥ 0, (B.84)

where (B.84) is due to δ2/4 ≤ ε . Since (B.76), (B.81), and (B.84) contradict with
the supposition that τ̂(σ, τ) = τ̂ > τ is optimal, we have τ̂∗(σ, τ) = τ. Then,
given τ̂∗(σ, τ) = τ, the optimal σ̂∗(σ, τ) follows from Lemma B.3.1. In a similar
manner, we can show that, in the case of δ2/4 > ε , the optimal service supply is
σ̂∗(σ, τ) = σ. Then, given σ̂∗(σ, τ) = σ, the optimal τ∗(σ, τ) follows fromLemma
B.4.1. Finally, combining above, we obtain (B.64) as the closed-form solution of
(B.63).
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�

Theorem 10.2.4 is an immediate consequence of Lemma B.5.1. To see it, recall that
the optimal value of (B.63) lower-bounds that of (10.16). Moreover, a policy of the
form (10.10) can produce identical service rates to (B.64), so it is also optimal for
(10.16).

B.6 Proof of Lemma 10.3.2
To solve infw L(w; γ), we first observe that

inf
w

L(w; γ) = inf
w

lim
T→∞

1
T

∫ T

0
Var(P(t)) + γ(Var(X (t)) − D)dt (B.85)

≥ inf
w

lim
T→∞

inf
w

1
T

∫ T

0
E[(P(t) − P̄)2 + γ((X (t) − X̄ )2 − D)]dt (B.86)

= lim
T→∞

inf
w

1
T

∫ T

0
E[(P(t) − P̄)2 + γ((X (t) − X̄ )2 − D)]dt, (B.87)

where P̄ and X̄ are the stationary variance of P(t) and X (t) respectively. Now
we consider representing the integral of (B.87) as the sum of E[(P(tn) − P̄)2 +

γ(X (tn) − X̄ )2 at discrete points in time, where {tn} have a fixed sampling interval
h = tn+1 − tn,∀n ∈ Z+. So, the dynamics of X (tn) satisfies

X (tn+1) = X (tn) + A(tn, h) − hP(tn), (B.88)

where u is assumed to be constant during each sampling intervals. Then, (B.87)
satisfies

lim
T→∞

inf
w

1
T

∫ T

0
E[(P(t) − P̄)2 + γ((X (t) − X̄ )2 − D)]dt (B.89)

= lim
T→∞

inf
w

lim
h→0

1
T

Lh,dT/he (u; r)h − γD (B.90)

= lim
T→∞

lim
h→0

inf
w

1
T

Lh,dT/he (u; r)h − γD, (B.91)

where Lh,N (u; γ) is defined by

Lh,N (u; γ) :=E
[
γ(X (tN ) − X̄ )2

]
+

N−1∑
k=0
E

[
(P(tk ) − P̄)2 + γ(X (tk ) − X̄ )2

]
.

To solve (B.91), we first consider the cost-to-go Jn(X (tn)) for some h > 0 and
N ∈ Z+, i.e.

Jn(X (tn)) :=E
[
γ(X (tN ) − X̄ )2

]
+

N−1∑
k=n

E
[
(P(tk ) − P̄)2 + γ(X (tk ) − X̄ )2

]
.

(B.92)
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Using mathematical induction, we show below that, at the optimal solution w∗, the
cost-to-go takes the form

Jn(X (tn)) = E[pn(X (tn) − X̄ )2 +

N−1∑
k=n

E[pk+1(A(tn, h) − Ā)2], (B.93)

where {pk } satisfyes the Riccati difference equation

pk = pk+1 −
h2p2

k+1
h2pk+1 + 1

+ γ, pN = γ. (B.94)

First, condition (B.93) holds for n = N . Second, if condition (B.93) holds for n + 1,
then

Jn(X (tn)) = inf
P(tn,h)

E[(P(tn) − P̄)2 + γ(X (tn) − X̄ )2 + Jn+1(X (tn+1))] (B.95)

= inf
P(tn,h)

E[(P(tn) − P̄)2+

γ(X (tn) − X̄ )2 + pn+1(X (tn) + (A(tn, h) − Ā) − h(P(tn) − P̄))2],
(B.96)

where Āh are the stationarymean of A(tn, h), and Āh = hP̄ fromBrumelle’s formula.
Expanding the last quadratic term in (B.95) and applying E[(A(t, h)− Ā)X (tn)] = 0,
(B.95) can be written into

Jn(X (tn)) =(pn+1 + γ)(X (tn) − X̄ )2 +

N∑
k=n

pk+1E(A(tk, h) − Ā)2]

+ inf
P(tn)
{(1 + h2pn+1)(P(tn, h) − P̄h)2 − 2hγpn+1(X (tn) − X̄ )(P(tn) − P̄)].

(B.97)

The minimum value of (B.97) is attained by

P(tn, h) − P̄h =
hpn

1 + h2pn
(X (tn) − X̄ ), (B.98)

and the optimal cost-to-go becomes (B.93), where pn is defined by (B.94). As
N → ∞, pk converges to a unique positive scalar

p := lim
N→∞

pk =
h2γ + h

√
γ
√

h2γ + 4
2h2 , (B.99)

which is also a fixed point of (B.94) [15]. Taking the limit of N → ∞ and h → 0
for (B.98) and (B.99), the infimum of (B.91) is attained by

P(t) − P̄ =
√
γ (X (t) − X̄ ). (B.100)



209

From (B.92), we obtain

Var(P(t)) + γVar(X (t)) = pE[(A(tk, h) − Ā)2] (B.101)

= phΛE[σ2
0] (B.102)

=
√
γΛE[σ2

0]. (B.103)

B.7 Proof of Corollary 10.3.3
For any time interval h > 0, X (t) satisfies the following dynamics:

X (t + h) = X (t) + A(t, h) − P(t, h), (B.104)

where A(t, h) is the arriving demands during the time interval [t, t + h], and P(t, h)
is the amount of service during this interval, i.e.

A(t, h) :=
∑

i s.t. ak∈[t,t+h)

σk, (B.105)

P(t, h) :=
∫ t+h

t
P(τ)dτ. (B.106)

From the demand requirement (10.2), X (t) is bounded from above by

X (t) =
∑
k∈At

σk −

∫
t≤τ

P(t)dt (B.107)

≤
∑
k∈At

σk −
∑
i∈Dt

σk (B.108)

≤
∑

k∈At\Dt

σk, (B.109)

where Dt = {k ∈ V : dk ≤ t} is the set of jobs that departs by time t. From (B.109)
and X (t) ≥ 0, the variance of X (t) is upper-bounded by

Var(X (t)) ≤ E[X (t)2] (B.110)

≤ E



*.
,

∑
k∈At\Dt

σk
+/
-

2
(B.111)

= Var *.
,

∑
k∈At\Dt

σk
+/
-
+ E



∑
k∈At\Dt

σk



2

(B.112)

=

∫
(σ,τ)∈S

τσ2
Λ f (σ, τ)dσdτ +

(∫
(σ,τ)∈S

τσΨ(σ, τ)dσdτ
)2

(B.113)

= ΛE
(
τσ2

)
+ (ΛE [τσ])2 (B.114)

Applying D = ΛE
(
τσ2

)
+ (ΛE [τσ])2 to Lemma 10.3.1, we obtain (10.47).
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B.8 Proof of Theorem 10.4.1.
To prove Theorem 10.4.1, it suffices to derive the optimal solution of a relaxation of
(10.62) and observe that the resultant optimal solution lies in the constraint set of
(10.62).

Lemma B.8.1. Exact Scheduling v(a, σ, τ, y) = (σ/τ)1{y > 0} is the optimal
solution of

minimize
v:(10.2)(10.3)(10.61)

∫ T

0
Var(P(t))dt. (B.115)

The proof of Lemma B.8.1 uses the following lemma.

Lemma B.8.2. The mean and variance of P(t) under the policy (10.61) is given by

E[P(t)] =
∫

(σ,τ)∈S

∫ τ

0
v(t + y − τ, σ, τ, y)Λ(t + y − τ, σ, τ)dydσdτ (B.116)

Var(P(t)) =
∫

(σ,τ)∈S

∫ τ

0
v(t + y − τ, σ, τ, y)2

Λ(t + y − τ, σ, τ)dydσdτ,

(B.117)

The proof of Lemma B.8.2 is a trivial extension of that of Lemma 10.2.2 (see
Appendix B.1). Now we are ready to prove Lemma B.8.1.

Proof. (Lemma B.8.1)

From Lemma B.8.2, the objective function of (B.115) satisfies∫ T

0
Var(P(t))dt

=

∫ T

0

∫
(σ,τ)∈S

∫ τ

y=0
v(t + y − τ, σ, τ, y)2

Ψ(t + y − τ, σ, τ)dydσdτdt (B.118)

=

∫
(σ,τ)∈S

{∫ τ

y=0

∫ T

0
v(t + y − τ, σ, τ, y)2

Ψ(t + y − τ, σ, τ)dtdy
}

dσdτ.

(B.119)

Moreover, the constraints of (B.115) can be rewritten into∫ τ

y=0
v(a, σ, τ, y)dy = σ a ∈ T , (σ, τ) ∈ S (B.120)

0 ≤ v(a, σ, τ, y) ≤ 1 a ∈ T , (σ, τ) ∈ S, y ∈ [0, τ]. (B.121)
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For any (σ, τ) ∈ S, the optimal solution of (B.115) is attained at the minimum of
the following optimization problem:

minimize
v:(B.120)(B.121)

∫ τ

y=0

∫ T

t=0
v(t + y − τ, σ, τ, y)2

Ψ(t + y − τ, σ, τ)dtdy. (B.122)

From integration by substitution, the objection function of (B.122) satisfies∫ τ

y=0

∫ T

t=0
v(t + y − τ, σ, τ, y)2

Ψ(t + y − τ, σ, τ)dtdy (B.123)

=

∫ τ

y=0

∫ T+y−τ

a=y−τ
v(a, σ, τ, y)2

Ψ(a, σ, τ)dady (B.124)

=

∫ τ

y=0

∫ T

a=0
v(a, σ, τ, y)2

Ψ(a, σ, τ)dady, (B.125)

where the last equality is due to the assumption that Ψ(a, σ, τ) = 0 if a < [0,T − τ].
The Lagrangian of (B.122) is

L(v; µ, ν) =∫ τ

y=0

∫ T+y−τ

a=y−τ
v(a, σ, τ, y)2

Ψ(a, σ, τ)dady −
∫ T

a=0
µσ,τ (a)

∫ τ

y=0
v(a, σ, τ, y)dyda

(B.126)∫ T

a=0

∫ τ

y=0
(ν̄σ,τ (a, y) − νσ,τ (a, y))v(a, σ, τ, y)dyda, (B.127)

where µσ,τ (a) is theLagrangemultiplier associatedwith constraint (B.120); νσ,τ (a, y) ≥
0 is the Lagrange multiplier associated with the constraint v(a, σ, τ, y) ≥ 0, and
νσ,τ (a, y) is the Lagrange multiplier associated with the constraint v̄(a, σ, τ, y) ≤ 1.
A necessary condition for v∗ to be the optimal scheduling policy is that L(v; µ, ν) is
stationary at v = v∗. After some tedious manipulation, the stationary condition can
be computed as follows:

v∗(a, σ, τ, y) =
µσ,τ (a) + νσ,τ (a, y) − ν̄σ,τ (a, y)

Ψ(a, σ, τ)
. (B.128)

We observe that νσ,τ (a, y) = 0 when v∗(a, σ, τ, y) > 0. Combining this condition
with (B.120) and (B.121) leads to

µσ,τ (a) − ν̄σ,τ (a, y)
Ψ(a, σ, τ)

> 0. (B.129)

We first suppose v∗(a, σ, τ, y) = 0 at some y ∈ [0, τ), then for that y,

v∗(a, σ, τ, y) = 0 =
µσ,τ (a) − ν̄σ,τ (a, y)
Ψ(a, σ, τ)

+
νσ,τ (a, y)

Ψ(a, σ, τ)
>
µσ,τ (a) − ν̄σ,τ (a, y)
Ψ(a, σ, τ)

.

(B.130)
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This is a contradiction, so v∗(a, σ, τ, y) , 0 at all y ∈ [0, τ). We then suppose that
v∗(a, σ, τ, y1) < v∗(a, σ, τ, y2) = 1 for some y1, y2 ∈ [0, τ). Then

v∗(a, σ, τ, y1) =
µσ,τ (a)
Ψ(a, σ, τ)

>
µσ,τ (a) − ν̄σ,τ (a, y)
Ψ(a, σ, τ)

= v∗(a, σ, τ, y2). (B.131)

This is also a contradiction, so v∗(a, σ, τ, y1) takes a constant value at all y ∈ [0, τ).
Therefore, the optimal solution of (B.115) is Exact Scheduling. �

Next we consider the optimization problem (10.62). From the proof of Lemma
B.8.1, we can observe that the optimal solution of (10.62) is also the point-wise
minimum of∫ T

a=0

∫
R+

∫
R+

{∫ τ

y=0
v(a, σ, τ, y)2 + δv(a, σ, τ, y)dy + ε (τ̂(a, σ, τ) − τ)

}
Ψ(a, σ, τ) f (δ) f (ε )dδdεda. (B.132)

This observation yields Theorem 10.4.1.


