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ABSTRACT

In recent years, increasing attention has been given to fluid-structure
interaction problems in turbomachines. The present research focuses on just
one such fluid-structure interaction problem, namely the role played by fluid
forces in determining the rotordynamic stability and characteristics of a
centrifugal pump. While the geometry of the impeller shroud/pump casing
annulus varies considerably, previous studies indicate that the contributions
from the leakage flow can be of the same order as the contributions from the
nonuniform pressure acting on the impeller discharge. Thus, the emphasis of
this study is to investigate the contributions to the rotordynamic forces from
the discharge-to-suction leakage flows between the front shroud of the
rotating impeller and the stationary pump casing. An experiment was
designed to measure the rotordynamic shroud forces due to simulated leakage
flows for different parameters such as flow rate, shroud clearance, face-seal
clearance and eccentricity. The data demonstrates substantial rotordynamic
effects and a destabilizing tangential force for small positive whirl ratios; this
force decreased with increasing flow rate. The rotordynamic forces appear to
be inversely proportional to the clearance and change significantly with the
flow rate. Two sets of data taken at different eccentricities yielded quite similar
nondimensional rotordynamic forces indicating that the experiments lie

within the linear regime of eccentricity.

Like earlier measurements of the total fluid induced rotordynamic forces
on impellers [Chamieh et al. (1985), Jery et al. (1985), Adkins et al. (1988)], the
forces measured in these experiments scaled with the square of the rotor
speed. The functional dependence on the ratio of whirl frequency to rotating
frequency (termed the whirl ratio) is very similar to that measured in
experiments and similar to that predicted by the theoretical work of Childs.
Childs' bulk flow model yielded some unusual results including peaks in the
rotordynamic forces at particular positive whirl ratios, a phenomenon which
Childs tentatively described as a ‘"resonance" of the leakage flow. This
unexpected phenomenon developed at small positive whirl ratios when the

inlet swirl velocity ratio exceeded about 0.5. Childs points out that a typical
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swirl velocity: ratio at inlet (pump discharge) would be about 0.5 and may not
therefore be large enough for the resonance to be manifest. To explore
whether this effect occurs, an inlet guide vane was constructed which
introduced a known amount of swirl into the flow upstream of the leakage flow
inlet. A detailed comparison of model predictions with the present
experimental program is presented. The experimental results showed no
evidence of the "resonances”, even at much larger swirl inlet velocities than
explored by Childs.
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NOMENCLATURE
rotordynamic matrix, normalized by prw?Ry3L
depth of inlet guide vane
width of impeller discharge

rotordynamic damping coefficients, normalized by
proRy2L

exit-seal pressure loss coefficient
hydrodynamic forces, normalized by prwZR,3Le/Ry

lateral forces on the rotating shroud in the

stationary laboratory frame, normalized by
prw2R73Le/Ry

steady hydrodynamic forces, normalized by prw2R33L

unsteady hydrodynamic forces, normalized by
prnwRy3LE/RY

lateral forces in the rotating dynamometer frame,

normalized by pxm2R23L8/R2

shroud clearance between rotor and casing -

nondimensionalized shroud clearance between rotor

and casing

seal clearance

Vo1
V1

rotordynamic stiffness coefficients, normalized by
pT02R72L



P(L)

r,0

Ug(L)

Ug
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axial length of the shroud

meridional length of the shroud

rotordynamic inertial coefficients, normalized by
prR22L

pressure in the Iieakage path

nondimensionalized pressure in the leakage path

exit pressure for the leakage flow

supply pressure for the leakage flow

pressure at the annulus of the leakage exit

volume flow rate

polar coordinate system

shroud radius

nondimensionalized shroud radius

Reynolds number based on tip speed, ®R22/v

Reynolds number based on meridional velocity,
2 H Ug

v

meridional coordinate defined along the leakage path

time

bulk

exit

bulk

oR 5.

leakage velocity at the annulus of the leakage

leakage velocity, normalized by inlet tip speed



ug

x(t)

y(t)

As,Ar

Ml

bulk flow tangential velocity

bulk flow tangential velocity, normalized by inlet tip

speed wR,.

instantancous displacement in the x direction,

normalized by Rg,

instantaneous displacement in the y direction,

normalized by Ry
axial coordinate
time

swirl  turning angle

mean inlet swirl or ratio of inlet fluid tangential

velocity to rotor velocity.

offset or distance between the center of the whirl

orbit and the ccnter of the stationary casing.

eccentricity or radius of the whirl motion.

friction factors which account for the shear stresses
dynamic viscosity of the fluid

inlet loss coefficient, typically 0.1

density of the fluid

flow cocfficient, Q/2rR722H®

rotor frequency

whirl  frequency



- xi -

Subscripts

0 steady or time averaged component
1 leakage flow discharge (pump inlet)
2 | leakage flow inlet (pump outlet)

n normal to the whirl orbit

t tangential to the whirl orbit

X along the x axis

y along the y axis

Superscripts

* dimensional quantity

0 denotes zeroth order perturbation variable

1 denotes first order perturbation variable
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Figure 1.1. Schematic of the fluid-induced radial forces acting on an impeller
whirling in a circular orbit. Fx* and Fy* represent the instantaneous forces
in the stationary laboratory frame. Fp* and Fi* are the forces normal and

tangential to the whirl orbit where Q is the whirl frequency.

Figure 1.2. Schematic of the fluid-induced radial forces acting on an impeller
whirling in a circular orbit. Fy*(1),Fp*(t) represent the instantaneous forces

in the rotating dynamometer frame. Fp* and F¢* are the forces normal and

tangential to the whirl orbit where Q is the whirl frequency.

Figure 1.3. Schematic showing the impeller/volute arrangement for the
experiments of Jery (1986) and Adkins (1986).

Figure 1.4. Dimensionless normal and tangential forces, Fp and Fi, as a
function of whirl ratio from Jery (1986) for a typical centrifugal
impeller/volute combination (Impeller X and Volute A at 1000 rpm and a flow
coefficient @ =0.092) are shown by squares. The dummy Impeller S results

with an externally imposed pressure rise are shown by x.

Figure 1.5. Comparison of the dimensionless normal and tangential forces
according to Adkins (1986) theory (solid lines) with the experimental values
for Impeller X at ¢ = 0.092.

Figure 1.6. Theoretical predictions from Childs (1986) on the Fp and F;
resulting from the conventional leakage path geometry used in the tests of
Bolleter et al. (1985). Results are shown for three different inlet swirl velocity
conditions in which that swirl velocity is assumed to be 0.5 , 0.6, and 0.7 of the

shroud inlet rotating velocity.

Figure 1.7 Qualitative schematic of some fluid-induced forces.which result

from various effects.
Figure 2.1. Schematic of the Rotor Test Facility (RFTF).

Figure 2.2 Layout of the leakage flow test apparatus for installation in the
RFTF. (Zhuang [1989]).
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Figure 2.3 Schematic of the whirling shroud, R is the center of the rotating
shroud, W is the center of the whirl orbit along which R travels and also the
center of the stationary casing, WR = € is the eccentricity.

Figure 2.4 Schematic of the whirling shroud with offset, where S is the
center of the stationary casing and WS = 9§ is the offset.

Figure 2.5 Description of the inlet swirl geometry.

Figure 2.6 Installation of the inlet swirl vane in the leakage flow test

apparatus.

Figure 3.1 Dimensionless normal and tangential forces at zero whirl
frequency, Fp(O) and Fi(0), as a function of the dimensionless shroud
clearance, H/Rp for an eccentricity € = 0.096 cm, zero flow rate and two
rotating speeds as indicated. Results obtained from pressure measurements and

direct measurements with the force balance are both shown (Zhuang [1989]).

Figure 3.2 Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.0254 cm, a clearance H = 0.140 cm, offset & = O and various flow rates as

follows: O {/sec, 0.631 f/sec, 1.262 £/sec, 1.892 {/sec.

Figure 3.3 Dimensionless steady forces at 500 RPM, an eccentricity
€ =0.0254 cm, a clearance H = 0.140 cm, offset & = O and various flow rates as

follows: O {#/sec, 0.631 f/sec, 1.262 {/sec, 1.892 {/sec.

Figure 3.4 Dimensionless steady forces at 2000 RPM, an eccentricity
€ =0.0254cm, a clearance H = 0.140 cm, offset 8 = O and various flow rates as

follows: O {#/sec, 0.631 #/sec, 1.262 {/sec.

Figure 3.5 Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.118cm, a clearance H = 0.140 cm, offset 8 = O and various flow rates as

follows: 0 £/sec, 0.631 {¢/sec, 1.262 {f/sec, 1.892 {/sec. The seal clearance is
0.0508cm.

Figure 3.6 Dimensionless steady forces at 500 RPM, an eccentricity
€ =0.118 cm, a clearance H = 0.140 cm, offset 8 = O and various flow rates as

follows: 0 £/sec, 0.631 {€/sec, 1.262 {/sec, 1.892 {/sec.
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Figure 3.7 Dimensionless steady forces at 2000 RPM, an eccentricity
€ =0.118 cm, a clearance H = 0.140 cm, offset & = O and various flow rates as

follows: 0 #/sec, 0.631 #/sec, 1.262 {/sec.

Figure 3.8. Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.0254 cm, a clearance H = 0.424 cm, offset & = O and various flow rates as

follows: 0 {¢/sec, 0.631 ¢/sec, 1.262 {f/sec, 1.892 {/sec.

Figure 3.9 Dimensionless steady forces at 500 RPM, an eccentricity
€ =0.118 cm, a clearance H = 0.424 cm, offset & = O and various flow rates as

follows: 0.631 £/sec, 1.892 {¢/sec, 3.154 {/sec.

Figure 3.10 Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.118 cm, a clearance H = 0.212 cm, offset 8 = O and various flow rates as

follows: 0 f/sec, 0.631 f/sec, 1.262 {/sec, 1.892 {/sec.

Figure 3.11 Dimensionless steady forces at 1000 RPM, an eccentricity € = 0.118

cm, a clearance H = 0.424 cm, offset 8 = O and various flow rates as follows:

1.262 f/sec, 2.524 {/sec, 3.154 {/sec.

Figure 3.12 Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.118 cm, a clearance H = 0.140 c¢m, offset 8 = O and various flow rates as
follows: 0.631 £/sec, 1.262 {/sec, 1.892 {/sec. The seal clearance is tightened to
0.0254cm.

Figure 3.13 Dimensionless steady forces at 1000 RPM, an eccentricity
€ =0.118cm, a clearance H = 0.140 cm, offset 8 = O and various flow rates as

follows: 0 ¢/sec, 0.631 {/sec, 1.262 {/sec, 1.892 {¢/sec. The seal clearance is
widened to 0.1016c¢cm.

Figure 3.14 Dimensionless steady forces with inlet swirl at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset & = O and various flow
rates (and inlet swirl ratios) as follows: 0.315 {/sec (I'=0.5), 0.631 {/sec (I'=1.0),
1.262 {/sec (I'=2.0), 1.892 {¢/sec (I'=3.0). The inlet swirl changes as the flow

coefficient changes.
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Figure 3.15 Dimensionless steady forces as a function of the flow coefficient
at 1000 RPM, an eccentricity € = 0.118 cm, a clearance H = 0.140 c¢m, offset & = O

and a seal clearance of 0.051 cm.

Figure 3.16 Pressure distribution along the shroud for different whirl
positions at 1000 RPM, a flow of 10 GPM, an eccentricity € =0.0254 cm, a
clearance H = 0.140 cm, offset 8 = O and a seal clearance of 0.051 cm. The
measurements are from each set of pressure taps along the meridional

direction and are 120° apart.

Figure 3.17 Pressure distribution along the shroud for different whirl
positions at 1000 RPM, a flow of 20 GPM, an eccentricity € =0.0254 cm, a
clearance H = 0.140 cm, offset 8 = O and a seal clearance of 0.051 cm. The
measurements are from each set of pressure taps along the meridional

direction and are 120° apart.

Figure 3.18 Pressure distribution along the shroud for different whirl
positions at 1000 RPM, a flow of 30 GPM, an eccentricity € =0.0254 cm, a
clearance H = 0.140 cm, offset 8 = O and a seal clearance of 0.051 cm. The
measurements are from each set of pressure taps along the meridional

direction and are 120° apart.

Figure 4.1 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset d = O and various

flow rates as follows: O £/sec, 0.631 f/sec, 1.262 {¢/sec, 1.892 {/sec.

Figure 4.2 Dimensionless normal and tangential forces at 500 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset 8 = O and various

flow rates as follows: O {/fsec, 0.631 £/sec, 1.262 {f/sec, 1.892 f/sec.

Figure 4.3 Dimensionless normal and tangential forces at 2000 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset 8 = O and various

flow rates as follows: O {#fsec, 0.631 £fsec, 1.262 {/sec.

Figure 4.4 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset 8 = O and various flow

rates as follows: 0 £/sec, 0.631 {¢/sec, 1.262 {/sec, 1.892 {/sec.
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Figure 4.5 Dimensionless normal and tangential forces at 500 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset & = O and various flow

rates as follows: 0 #/sec, 0.631 {/sec, 1.262 £/sec, 1.892 {¢/sec.

Figure 4.6 Dimensionless normal and tangential forces at 2000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset 6 = O and various flow

rates as follows: 0 #/sec, 0.631 {/sec, 1.262 {/sec.

Figure 4.7. Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.424 cm, offset 8 = O and various

flow rates as follows: 0 #/sec, 0.631 Z/sec, 1.262 {/sec, 1.892 {/sec.

Figure 4.8 Dimensionless normal and tangential forces at 500 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.424 cm, offset 8 = O and various flow

rates as follows: 0.631 #/sec, 1.892 {/sec, 3.154 {/sec.

Figure 4.9 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.212 cm, offset 8 = O and various flow

rates as follows: 0 #/sec, 0.631 {¢/sec, 1.262 f/sec, 1.892 {/sec.

Figure 4.10 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.424 cm, offset 8 = O and various flow

rates as follows: 1.262 f/sec, 2.524 {/sec, 3.154 {¢/sec.

Figure 4.11 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset 8 = O and various flow

rates as follows: 0.631 {f/sec, 1.262 ¥£/sec, 1.892 ¥{/sec. The seal clearance is
tightened to 0.0254cm.

Figure 4.12 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 c¢m, offset 6 = O and various flow

rates as follows: 0 f#fsec, 0.631 {#/sec, 1.262 {¢/sec, 1.892 {¢/sec. The seal clearance

is widened to 0.1016cm.
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Figure 4.13 Dimensionless normal and tangential forces with inlet swirl at
1000 RPM, an eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset d = O
and various flow rates (and inlet swirl ratios) as follows: 0.315 {#/sec (I'=0.5),
0.631 {fsec (I'=1.0), 1.262 f/sec (I'=2.0), 1.892 {¢/sec (I'=3.0). The inlet swirl

changes as the flow coefficient changes.

Figure 4.14 Comparison of the dimensionless normal and tangential forces
with and without inlet swirl at 1000 RPM, an eccentricity € = 0.118 cm, a
clearance H = 0.140 cm, offset & = O and a flow rate of 0.631 ¢/sec. The inlet swirl

isI'=1.0

Figure 4.15 Comparison of the dimensionless normal and tangential forces
with and without inlet swirl at 1000 RPM, an eccentricity € = 0.118 cm, a
clearance H = 0.140 c¢m, offset & = O and a flow rate of 1.262 {/sec. The inlet swirl

isT'=2.0

Figure 4.16 Comparison of the dimensionless normal and tangential forces
with (eccentricity € = 0.118 cm) and without (eccentricity € = 0.0254 cm) inlet
swirl at 1000 RPM, a clearance H = 0.140 cm, offset 8 = O and a flow rate of

0.631 ¢/sec. The inlet swirl is I'=1.0

Figure 4.17 Comparison of the dimensionless normal and tangential forces
with (eccentricity € = (0.118 cm) and without (eccentricity € = 0.0254 cm) inlet
swirl at 1000 RPM, a clearance H = 0.140 cm, offset & = O and a flow rate of

1.262 ¢/sec. The inlet swirl is I'=2.0

Figure 4.18 Dimensionless normal and tangential forces for two different
experimental conditions with the same flow coefficient at an eccentricity

€ =0.0254 cm, a clearance H = 0.140 cm, offset & = O and flow rates as follows:

0.631 {¢/sec at 1000 RPM, and 1.262 {/sec at 2000 RPM.

Figure 4.19 Dimensionless normal and tangential forces for two different

experimental conditions with the same flow coefficient at an eccentricity
€ =0.0254 cm, a clearance H = 0.140 cm, offset 8 = O and flow rates as follows:

0.631 £/sec at 500 RPM, and 1.262 ¥¢/sec at 1000 RPM.
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Figure 5.1 Dimensionless direct and cross-coupled stiffness, damping and

added mass as functions of the flow coefficient.

Figure 5.2 Rotordynamic coefficients for different shaft speeds as a function

of flow coefficient for an eccentricity of 0.0254 cm.

Figure 5.3 Rotordynamic coefficients for different shaft speeds as a function

of flow coefficient for an eccentricity of 0.118 cm.

Figure 5.4 Rotordynamic coefficients showing the effect of eccentricity as a
function of flow coefficient for 1000 RPM.

Figure 5.5 Rotordynamic coefficients showing the effect of eccentricity as a
function of flow coefficient for 2000 RPM.

Figure 5.6 Rotordynamic coefficients showing the effect of eccentricity as a
function of flow coefficient for 500 RPM.

Figure 5.7 Rotordynamic coefficients showing the effect of shroud clearance

as a function of flow coefficient for 1000 RPM and an eccentricity of 0.118 cm.

Figure 5.8 Rotordynamic coefficients showing the effect of seal clearance as

a function of flow coefficient for 1000 RPM and an eccentricity of 0.118 cm.

Figure 5.9 Rotordynamic coefficients showing the effect of inlet swirl as a

function of flow coefficient for 1000 RPM and for an eccentricity of 0.118 cm.

Figure 5.10 Whirl Ratio for an eccentricity € = 0.118 cm, a clearance H = 0.140
cm, offset & = O and various speeds as a function of flow coefficient.

Figure 5.11 Whirl Ratio for an eccentricity € = 0.0254 cm, a clearance

H=0.140 cm, offset 8 = O and various speeds as a function of flow coefficient.

Figure 5.12 Whirl Ratio for an eccentricity € = 0.118 cm, 1000 RPM, offset

8 =0 and various clearances as a function of flow coefficient.

Figure 5.13 Whirl Ratio for an eccentricity € = 0.118 cm, 1000 RPM, clearance
H=0.140 cm, offset & = O and various seal clearances as a function of flow

coefficient.
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Figure 5.14 Whirl Ratio with and without the inlet swirl vane for an
eccentricity € = 0.118 cm, 1000 RPM, clearance H=0.140 cm, offset & = O as a

function of flow coefficient.
Figure 6.1 Illustration of the variables for the numerical calculation.

Figure 6.2 Numerical predictions of the pressure distribution along the
shroud for different inlet swirl ratios, compared with the experimental
observation for 1000RPM, a clearance of 0.0424cm, and a flow of 10 GPM.

Figure 6.3 Numerical predictions of the pressure distribution along the
shroud for different inlet swirl ratios, compared with the experimental
observation for 1000RPM, a clearance of 0.0424cm, and a flow of 30 GPM.

Figure 6.4 Close-up of seal geometry.

Figure 7.1 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: inlet swirl, I'=0, seal
clearance = 0.5 mm, 1000 RPM, 20 GPM, and a clearance, H=1.4 cm. Results are
shown for two models of the shroud geometry. The solid line is obtained with
the detailed seal geometry included in the calculation, (Cde=-0.3). The dashed
line is obtained with the partial geometry and the seal is approximated by the

exit loss coefficient alone, (Cde=10).

Figure 7.2 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: inlet swirl, I'=0, seal
clearance = 0.5 mm, 1000 RPM, 20 GPM, and a clearance, H=4.24cm. Results are
shown for two models of the shroud geometry. The solid line is obtained with
the detailed seal geometry included in the calculation, (Cde=-0.2). The dashed
line is obtained with the partial geometry and the seal is approximated by the
exit loss coefficient alone, Cde=109.
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Figure 7.3 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: inlet swirl, T'=0,
seal clearance = 0.5 mm, 1000 RPM, 20 GPM, H=4.24cm. Both curves show the
results for the detailed seal geometry included in calculation. The solid line is
with Cde from the calculation, Cge=-0.2. The dashed line uses the loss
coefficient from the partial geometry in which the seal is approximated by the

exit loss coefficient alone, Cde=109. .

Figure 7.4 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: inlet swirl, T'=0,
seal clearance = 0.5 mm, 1000 RPM, 20 GPM, H=4.24cm. The solid line is obtained
with the detailed seal geometry included in the calculation, using Cde from the
partial geometry without the seal, Cde=109. The dashed line is obtained with the
partial geometry and the seal is approximated by the exit loss coefficient alone,
Cde=109.

Figure 7.5 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: inlet swirl, I'=0, seal
clearance= 0.5 mm, 1000 RPM, 20 GPM. All the curves are obtained with the seal
approximated by the exit loss coefficient alone. The solid line is for the

clearance, H=4.24 cm, Cde=109. The other curves are for the clearance,

H=1.4cm and two different total pressure drops.

Figure 7.6 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: seal clearance= 0.5 mm,
1000 RPM, 20 GPM, clearance, H=4.24cm and three different inlet swirl ratios, 0,
0.5, and 0.8.

Figure 7.7 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, seal clearance= 0.5
mm, 1000 RPM, 20 GPM. The solid line is for a clearance, H=4.24 cm and the

dotted line is for a clearance, H=1.4 cm.

Figure 7.8 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: seal clearance= 0.5 mm,
1000 RPM, 20 GPM H=1.4 cm and three different inlet swirl ratios, 0, 0.5, and 0.8.



- XX1 -

Figure 7.9 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: seal clearance= 0.5 mm,
1000 RPM, 10 GPM H=1.4 cm and three different inlet swirl ratios, 0, 0.5, and 0.8.

Figure 7.10 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: TI'=0,
seal clearance= 0.5 mm, 1000 RPM, H=1.4 mm and different flowrates at
10 GPM and 20 GPM.

Figure 7.11 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, seal clearance=
0.5 mm, 1000 RPM, H=1.4 mm and different flowrates at 10 GPM and 20 GPM.

Figure 7.12 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.8, seal clearance=
0.5 mm, 1000 RPM, H=1.4 cm and different flowrates at 10 GPM and 20 GPM.

Figure 7.13 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, seal clearance= 0.25
mm, 1000 RPM, H=1.4 cm and different flowrates at 10, 20 and 30 GPM.

Figure 7.14 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, seal clearance= 1.0
mm, 1000 RPM, H=1.4 cm and different flowrates at 10, 20 and 30 GPM.

Figure 7.15 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: T'=0.5, 10 GPM, 1000 RPM,

H=1.4cm and three different seal clearances, 0.25, 0.50, and 1.00mm.

Figure 7.16 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, 20 GPM, 1000 RPM,

H=1.4 mm and three different seal clearances, 0.25, 0.50, and 1.00mm.

Figure 7.17 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: seal clearance= 0.5 mm,
1000 RPM, 30 GPM H=4.24cm and three different inlet swirl ratios, I'=0, 0.5, and
0.8.
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Figure 7.18 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: seal clearance=0.5 mm,
1000 RPM, 10 GPM H=4.24cm and three different inlet swirl ratios, I'=0, 0.5, and
0.8.

Figure 7.19 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0, seal clearance = 0.5
mm, 1000 RPM, H=4.24cm and three different flowrates, 10, 20, and 30 GPM.

Figure 7.20 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.5, seal clearance = 0.5
mm, 1000 RPM, H=4.24cm and three different flowrates, 10, 20, and 30 GPM.

Figure 7.21 Numerical predictions of the normal and tangential forces, as a
function of whirl ratio for the following conditions: I'=0.8, seal clearance= 0.5
mm, 1000 RPM, H=4.24cm and three different flowrates, 10, 20, and 30 GPM.

Figure 7.22 Comparison of the normal and tangential forces, as a function of
whirl ratio from the numerical predictions for different inlet swirl ratios, '=0,
0.5, and 0.8 with the experimental results for the following conditions:
seal clearance= 0.5 mm, 1000 RPM, a flow rate of 1.262 /{/sec, a clearance
H=4.24cm and an eccentricity £€=0.0254 cm.

Figure 7.23 Comparison of the normal and tangential forces, as a function of
whirl ratio from the numerical predictions for different inlet swirl ratios, I'=0,
0.5, and 0.8 with the experimental results for the following conditions:
seal clearance= 0.5 mm, 1000 RPM, a flow rate of 0.631 {/sec, a clearance
H=1.40cm and an eccentricity £€=0.118 cm.

Figure 7.24 Comparison of the normal and tangential forces, as a function of
whirl ratio from the numerical predictions for different inlet swirl ratios, I'=0,
0.5, and 0.8 with the experimental results for the following conditions:
seal clearance= 0.5 mm, 1000 RPM, a flow rate of 1.262 {/sec, a clearance

H=1.40cm and an eccentricity €=0.118 ¢m.

Figure 7.25 Comparison of the normal and tangential forces, as a function of
whirl ratio from the numerical predictions for an inlet swirl ratio I'=0.5 with
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the experimental results for the following conditions: different flow rates

(0.631 {/sec, 1.262 {/sec, 1.892 {/sec), a seal clearance= 0.25 mm, 1000 RPM, a
clearance H=4.24cm and an eccentricity £€=0.0254 cm.

Figure 7.26 Comparison of the normal and tangential forces, as a function of
whirl ratio from the numerical predictions for an inlet swirl ratio '=0.5 with

the experimental results for the following conditions: different flow rates
(0.631 {/sec, 1.262 {ffsec, 1.892 {[/sec), a seal clearance= 1.0 mm, 1000 RPM, a
clearance H=4.24cm and an eccentricity €=0.118 cm.

Figure A.1 Sketch of the pump used for the leakage flow.
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CHAPTER ONE

INTRODUCTION

1.1 Background

In turbomachinery, the trend toward higher speeds and higher power
densities has led to an increase in the number and variety of fluid-structure
interaction problems in pumps, compressors, turbines and other machines.
Fundamentally this occurs because the typical fluid forces scale like the
square of the speed and thus become increasingly important relative to the
structural strength. This becomes particularly acute in rocket engine
turbopumps where demands to minimize the turbopump mass may also lead to
reductions in the structural strength. Consequently, it is natural for designers
and manufacturers to be concerned with the fluid induced rotordynamic
forces on impellers in turbomachines, specifically centrifugal pumps.
Knowledge of the steady and unsteady forces and the associated rotordynamic
coefficients is required to effectively model the rotordynamics of high speed
turbopumps such as the High Pressure Oxygen Turbopump(HPOTP) and the
High Pressure Fuel Turbopump(HPFTP) of the Space Shuttle Main Engine
(SSME).

1.2 Literature survey

The forces that act on a rotating impeller can be divided into two
categories: those that arise from the mechanical components of the pump and
those that are a result of the working fluid. This thesis is concerned with the
latter. It has been recognized for some time that asymmetries in the flow
through an impeller can cause significant radial loads (Iverson et al, 1960;
Chamieh et al.,, 1985). The forces result in a deflection of the center line of the
rotor. As a result asymmetrical variations of pressure in the working fluid
become apparent especially where the radial clearances are small. However,
the fluid-induced rotordynamic forces and force matrices have not been

investigated until recently. The interaction of the impeller and the working
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fluid induce forces on the rotor. These induced forces cause self-excited whirl
where the axis of rotation moves along a trajectory eccentric to the
undeflected position. When designing turbomachinery it is important to be

able to predict these fluid induced forces.

Rotordynamic forces imposed on a centrifugal pump by the fluid flow
through it were first measured by Domm and Hergt (1970), Hergt and Krieger
(1969-70), Chamieh et al. (1985) and Jery et al. (1985). In the Rotor Force Test
Facility (RFTF) at Caltech (Jery et al., 1985; Adkins et al., 1988; Franz et al., 1989)
known whirl motions over a full range of frequencies (subsynchronous,
supersynchronous as well as reverse whirl) are superimposed on the normal
motion of an impeller. The wunsteady forces imposed by the fluid on the
impeller are then measured by means of a six-component dynamic force
balance onto which the impellers are directly mounted (Jery et al., 1986).
These measurements are processed to find not only the steady forces due to

volute asymmetry, but also the unsteady rotordynamic forces and matrices.
1.3 Research objective

This research focuses on a fluid-structure interaction problem, namely the
role played by fluid forces in determining the rotordynamic stability and
characteristics of a turbopump. More specifically, the emphasis of this study is
to investigate the contributions to the rotordynamic forces from the fluid flow
through centrifugal pump impellers and the discharge-to-suction leakage
flows external to the impeller. The leakage flow occurs between the front
shroud of the rotating impeller and the stationary pump casing. The objective
of this research was to evaluate the fluid induced forces acting on the shroud
of an impeller of a centrifugal pump due to the leakage flow. The thesis begins
with a description of experimental facility. This will be followed by an analysis
of the mnature of these leakage flow contributions, which involved

measurements of forces and pressures.
1.4 Notation

The hydrodynamic force on a rotating shroud or impeller (see figure 1.1)
which is whirling can be expressed in the stationary laboratory frame in

linear form as:
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F*x(t)j| [F*ole . [x*(t):}
[F*y(t) “LE oy M (1.1

The first term on the right hand side represents the radial force in the
absence of whirl motion. So F*ox’ F*oy are the steady, time-averaged forces in
a stationary frame which result from flow asymmeiries in the volute or in the
inlet duct. The steady radial forces are discussed in detail elsewhere (Iversen et
al. [1960], Domm and Hergt [1970], Chamich [1983], Chamieh et al. [1985], Adkins
[1985]). The matrix [A*] is the rotordynamic matrix which operates on the
instantaneous displacement [x*] of the rotor center. The x* and y* coordinates
are nondimensionalized by the leakage inlet radius, Rp. Note that [A*] will in
general be a function not only of the mean flow conditions and pump
geometry but also of the frequency of whirl, Q. If outside the linear range, it
may also be a function of the amplitude of the whirl motion, €. At small, linear

amplitudes [A*] should be independent of € and presented as a function of the

whirl ratio Q/w where © is the impeller rotation frequency. In the case of a
circular whirl orbit x*= Ecos Qt, y* = Esin Qt.

F*x(t):l {F*ox] £ Q [x*(t)]
[F*ym “LF*y AL (2

The forces normal and tangential to the imposed circular whirl orbit are

related to the matrix elements as follows:

1
Fn*(v) = 2 (A%xx + A*yy)g
1
F' () = 5 (-Axy + A"yx)E (1.3)

The reader is referred to Jery et al (1985) and Franz et al. (1989) for details. In
the analysis which follows, the above equations will be expressed in
nondimensional terms. The wunsteady forces, Fn* and Ft*, are
nondimensionalized by prw2R23b26/Ry and [A*] by prw2R23by, where p is the
fluid density and bp,Rp are respectively the width and radius of the impeller

discharge.) If [A] is to be rotationally invariant, then
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Axx = Ayy =Fn
Axy = -Ayx = Ft (14)

Zhuang (1989) also found the hydrodynamic force matrices for the present
experiment to be skew-symmetric and virtually all of the experimental results

confirm the fact that the matrix [A] is rotationally invariant for these flows.

The forces Fi(t) and Fp(t) are detected in the rotating frame by the

dynamometer (Franz(1990)) and are related to the forces in the laboratory

frame (sece figure 1.2) as follows:

Fx(t) = - Fi(t) sin ot - F2(1) cos ot

Fy(t) = F1(1) cos et - Fa(t) sin ot (1.5)

Combining equations (1.2) and (1.5) yields
- F1(1) sin ot - F2(t) cos ot = Fyx + Axx cos Qt + Axy sin Qt
F1(1) cos wt - Fa(t) sin ot = Foy + Ayx cos Qt + Ayy sin Qt

(1.6)

The components of the steady force are obtained by averaging over time. In
the present experiment, this involves taking a long record of data and

ensemble averaging over this period:

T
Fox(t)z‘%_[{- F1(t) sin ot - F2(t) cos wt}dt
0

T
J.{Fl(t) cos ot - Fo(t) sin wt}dt (1.7
0

3 [

Foy(t) =
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The elements of the hydrodynamic force matrix are obtained by the
following manipulations. To obtain Axx(t) and Ayx(t), equation (1.6) is

multiplied by cos Qt and then averaged over time:

T

Axx(t) = J{ F1(t) sin ot cos Qt - F(t) cos ot cos Qt}dt
O

r-an\)

=3 (0o

f- 1:2‘ {F1(t) sin (0-Q)t + F2(t) sin (0+Q)t

)

Fa(t) cos (0-Q)t + Fa(1) cos (w+Q)t}dt

T
Ayx(1) = % I{Fl(t) cos ot cos Qt - Fa(t) sin wt cos Qt}dt
0
T
2 (1
f‘ 5 {F1(t) cos (w—-Q)t + F1(t) cos (0+Q)t
F2(t) sin (@+Q)t - Fa(t) sin (0-Q)t}dt

To obtain Axy(t) and Ayy(t), equation 1.6 is multiplied by sin Qt and then
averaged over time:

T
Axy(t)=%J{- F1(t) sin ot sin Qt - F2(t) cos ot sin Qt}dt
0
T
2 1
=T f— ) {F1 (t) cos (w-Q)t - F1(1) cos (0+Q)t

0
+ Fa(1) sin (0+Q)t - F2(t) sin (0-Q)t}dt

T

Ayy(D) =%J{F1(t) cos ot sin Qt - Fa(t) sin ot sin Qt}dt
0
T

J

0
+F2(1) cos (w+Q)t - Fa(t) cos (0-Q)t}dt

{F1(t) sin (0+Q)t - Fy(1) sin (0-Q)t

[N Lo

2
T

(1.8)
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Conventionally, rotordynamicists represent the force matrix by sub-

dividing into components which depend on the orbit position (x,y), the orbit

velocity (3(,5/) and the orbit acceleration (')i,')'l). In other words, a simple

stiffness, damping and mass model for the fluid forces is used.

[Fx FOX rn (x B} (x X
kFy)z(Foy)- K] ] [CT |- ™I (1.9)
\/ \y

where the matrices [M], [C], [K] are the hydrodynamically-induced mass,
damping and stiffness matrices. Although measurements indicate that the
force elements may depart from this quadratic form, it is convenient for
analytical purposes to evaluate [M], [C], [K], by fitting quadratics to the

experimental data.
Axx = - Kxx - (Q/0) Cxy + (Q%/0?) Mxx
-Axy = - Kxy + (Q/0) Cxx + (Q2%/w?) Mxy
Ayx = - Kyx - (Q/0) Cyy + (Q%/0?) Myx
Ayy= - Kyy + (Q/0) Cyx + (Q%0?) Myy (1.10)

It is experimentally shown that the hydrodynamic matrix is skew
symmetric. Skew-symmetry is also a result of the rotational-invariance of the

matrix [A]. Thus, the coefficients simplify as follows:
Kxx =Kyy =K
Kxy = -Kyx = -k
-Cxx=Cyy=-C
Cxy = Cxy=c
Mxx =Myy =M

Mxyz'Myxz'm (111)
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The present experimental results will be presented in terms of the so-called
"direct” coefficients K, C and M and the so-called "cross-coupled" coefficients
k, ¢ and m. Finally note that the normal and tangential forces are related to the

rotordynamic coefficients by:

Fn=-K-@Q/o)c+ Q%) M

Fi =k - (Q/0) C+ (Q%0?) m (1.12)
1.5 Experimental Background

Typical experimental measurements of the dimensionless normal and
tangential forces, Fn and Ft, (Fn*,Ft* nondimensionalized by pnm2R23b28/R2,

where p is the fluid density and bj,Rp are respectively the width and radius of
the impeller discharge) from the work of Jery (1986) are shown in figure 1.4,
These particular results are for a typical five-bladed centrifugal pump
impeller made by Byron-Jackson for a specific speed of 0.57 (referred to as
Impeller X) and installed in a well-matched spiral volute in the manner shown
in figure 1.3 (for more detail see Jery (1986)). One of the most significant
features of these results is the range of positive whirl ratios within which the
tangential force is positive and therefore potentially destabilizing
rotordynamically. A positive normal force is directed outward and would tend

to increase the displacement of the impeller.

Moreover, the work of Jery et al. (1985) and Adkins et al. (1988) on
centrifugal pump impellers demonstrated that there are two sources for these
fluid-induced forces. By shortening the front shroud of the casing, both the
steady and the unsteady forces on the impeller were reduced, as was, the
region of destabilizing whirl. Adkins (1986) made steady pressure
measurements at two axial locations on the stationary casing facing the
rotating impeller shroud. It was recognized that contributions to the
rotordynamic forces could arise not only from azimuthally nonuniform
pressures in the discharge flow acting on the impeller discharge area but also
from similar nonuniform pressures acting on the exterior of the impeller
front shroud as a result of the leakage flow passing between this shroud and

the pump casing. Consequently, Jery (1986) also made measurements using a
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solid "impeller" (Impeller S) with the same exterior profile as Impeller X. The
leakage flow was simulated by a remote auxiliary pump which generated the
same discharge to inlet pressure differences as occurred with Impeller X
operating at a given flow coefficient. The normal and tangential forces
obtained are included in figure 1.4. If one assumes that the solid impeller
experiences the same leakage flow contributions to Fp, F; as Impeller X but
does not experience the main throughflow contributions, the tentative
conclusion could be drawn that the leakage flow contribution to the normal
force was about 70% of the total and the contribution to the tangential force
was about 30% of the total. This tentative conclusion indicating the substantial
contribution of the leakage flow to rotordynamic forces motivated the present

study.

Adkins et al. (1988) demonstrated both analytically and experimentally that
the leakage flow from the discharge through the gap outside the impeller
shroud to the inlet was responsible for significant nonuniformity in the
pressure acting on the exterior of the shroud and that this contributed to both
the radial forces and rotordynamic matrices. Parallel to the experimental
investigation, a fluid mechanical model of the complicated unsteady
throughflow generated when a rotating impeller whirls was developed by
Adkins (1986). It is quasi-one-dimensional and requires only the geometry of
the impeller and volute and the impeller/volute performance curve. The
model allowed evaluation of the pressure perturbations in the impeller
discharge which compared well with the experimental measurements of these
perturbations. It therefore permitted evaluation of the contribution to the
rotordynamic forces from these pressure perturbations and typical results for
a limited range of whirl ratios are presented in figure 1.5 along with
experimental measurements of the total Fp, Fi under the same conditions. The
conclusions are crudely consistent with the early remarks; the pressures in
the main discharge flow contribute about one half of the rotordynamic forces.
To confirm this Adkins (1986) made pressure perturbation measurements in
both the main discharge and the leakage flow. These allowed evaluation of the
rotordynamic stiffness, namely the rotordynamic forces at zero whirl ratio,
Fn(0) and Fi(0) as can be seen from equation (1.14). Experimental results of

Adkins (1986), showed that the fluid in the annular gap region was
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responsible for a hydrodynamic stiffness given by
-1.6 0.3
[K]=(-o.3 -1.6) (1.13)

The following hydrodynamic stiffness is from Chamieh’s (1983) direct

measurements of the  total hydrodynamic stiffness on the same impeller.
-2.0 0.9
Kl=R-0.9 -2.0) (1.14)

When the above hydrodynamic stiffness in equation (1.15) is compared to
Chamieh’s (1983) direct measurements of the total hydrodynamic stiffness
given in equation (1.16), it can be seen that the contribution to the gap is

significant

The above-mentioned experiments suggested fractional contributions
similar to those in Jery's work, namely that the leakage flow component of
Fn(0) was about 80% while the component of Fi(0) was more than 30%.
Adkins (1986) also concluded that changes in the geometry of the leakage
pathway resulted in significant changes in these rotordynamic contributions.
The measurements of Adkins (1986) were for a large annular gap. Arndt and
Franz (1986) and Franz et al. (1986) made measurements without the enlarged
annular region and demonstrated that the large shroud clearances reduce the
rotordynamic forces. Since the geometry used in these tests was n‘ot typical of
that in prototype pumps it was also concluded that further work on the
rotordynamic characteristics of leakage flows was clearly indicated and this

led to the fabrication of the experiment described in this thesis.

There are several other indications which suggest the importance of
leakage flows to the fluid-induced rotordynamic forces. It is striking that the
total rotordynamic forces measured by Bolleter et al. (1987) from Sulzer
Brothers, Ltd., for a conventional centrifugal pump configuration are about
twice the magnitude of those measured by Jery (1986) or Adkins (1986) at
Caltech. Both test programs used a radial face seal to minimize the forces
which  would be developed by the wear-ring seals. So the measured
hydrodynamic forces are due to a combination of the impeller-volute and the

impeller-shroud interaction. It now seems sensible to suggest that this
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difference is due to the fact that the clearance in Bolleter's leakage flow

annulus is substantially smaller than in the experiments of Jery and Adkins.

The force generated by fluid in the annular seals separating the high
pressure discharge of the pump from the low pressure inlet has been explored
by Childs (1983b) and Black (1969). They basically extended the analysis of
Lomakin (1958) for seals. When it became apparent that leakage flows could
contribute significantly to the rotordynamics of a pump, Childs (1989) adapted
the bulk-flow model which was developed for the analysis of fluid-induced
forces in seals (Childs [1983a,b]) to evaluate the rotordynamic forces, Fn and Ft,
due to these leakage flows. The model was applied to several pump geometries;
typical results for the conventional centrifugal pump configuration tested by
Bolleter et al. (1987) are shown in figure 1.6. The results have been scaled to
conform with the nondimensionalization used in this research. Data is shown
for three different inlet swirl velocity conditions in which the swirl velocity
is assumed to be 0.5, 0.6 or 0.7 of the impeller tip speed. Note that Childs (1989)
presents qualitatively similar results for quite a different leakage flow path

geometry.

Several general conclusions may be drawn from Childs work. First the
magnitude and overall form of the model predictions are consistent with the
experimental data. In particular, the model also predicts positive,
rotordynamically destabilizing tangential forces over a range of positive
whirl ratios. Moreover, Childs' theory yielded some unusual results including
peaks in the rotordynamic forces at particular positive whirl ratios, a
phenomenon which Childs tentatively described as a ‘"resonance" of the
leakage flow. This unexpected phenomenon develops at small positive whirl
ratios when the inlet swirl velocity ratio exceeds about 0.5. It remains to be
seen whether such "resonances” occur in practice. Childs (1986) points out
that a typical swirl velocity ratio at inlet (pump discharge) would be about 0.5
and may not therefore be large enough for the resonance to be manifest.
There have been reports that SSME impellers fitted with anti-swirl vanes in
the leakage flow annulus have had noticeably different rotordynamic
characteristics (Childs et al. [1990a,b]). It is clear that a detailed comparison of
model predictions with experimental measurement remains to be made and is

one of the purposes of the present program.
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1.6 Fluid force effects

In this section, some general fluid induced rotordynamic effects will be

reviewed. Further discussion on this subject can be found in Vance (1988).

A variation of the clearance between the blade tip and the the housing can
induce tip forces (Alford [1965]). The Alford effect describes the force which
results from a circumferential variation of blade tip clearance. The lift of the
blade increases because the gap decreases and this results in a force in a

direction opposite to the rotation of the pump, as follows:
Fn =0

2Kll

Fi=-————
P77 npR202

(1.15)

where K" is a constant. This is a constant force and would be stabilizing for
positive whirl and destabilizing for negative whirl. Vance (1982) performed
experimental measurements to verify Alford's force in axial-flow machinery
and showed a linear variation with the rotor eccentricity. The form of these
forces support the nondimensionalization in the present research. It should be

noted that the Alford force neglects any swirl or viscous effects.

A variation in the speed of the blades can induce blade forces.
Thompson (1978) estimates the tangential force as proportional to the speed of

the tangential blade tip speed.

ZKHIQ
. S L 1.16
t TpR202 ( )

151}

where K™ is a constant. Note that this force is always stabilizing.

The operation of a bearing is typically associated with an eccentricity. The
fluid velocity is increased where the clearance is reduced and this gives rise to
a normal force which is proportional to the speed, namely:

2K Q

Fh=""——"7"Q0-— 1.17
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where K' is a constant. This is a restoring force and occurs when the flow is
dominated by viscous effects. In seals, the axial length to radius is small. So,
this would be a predominant effect. Lomakin (1958) originally recognized the
significance of the forces arising in the seal gaps of hydraulic high pressure

machines.

An added mass effect occurs when the blade tip approaches the casing. This
results in a force which is proportional to (Q - ®)2 as follows:

Fp =
"7 rpR20 ®

This inertia effect or Bernoulli effect competes with the Lomakin (1958) effect.

Brennen (1976) investigated Couette flow in an annulus of gap width H,
surrounding a whirling cylinder and obtained asymptotic solutions for
various Reynolds number regimes. A summary of the findings will be given
here because it is possible to consider the present experiment as Couette flow

in an annulus surrounding a cone.

Inviscid high Re:

212 g
Fn=“‘( ) +72 1( "Ka)( = Xbp)

Fi=0 (1.19)

where K, Kp are the relative tangential speeds near the inner and outer

cylinders respectively.
Laminar mean flow

Very low Reynolds number :
9R’ Q
Fp = AH5 @ 0)_ 1)

6R3 o ‘
Fi= fems @ .- 1) (1.20)
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where the Reynolds number is defined based on the gap width as follows:

®RH

Re = (1.21)

v

the above equations are valid for very low Re < (H/R)3. For slightly higher Re,
such that (H/R)3 < Re < (H/R) then the following equations apply:

Low Reynolds number :

F 16v2 2y
n= (OZHR ( (D.— )
. 128Hv3 29 1 2
T 55 1.
t 3R4(D3 ( ® ) ( )

A schematic of these forces is shown qualitatively in figure 1.7. It is
important to understand whether the flow is dominated by viscous effects or
inertia effects. As can be seen, each contribution has a different result on the
induced forces. These effects which induce forces on an impeller play an
important role, as it is important to understand how these forces acting on the

rotor will either dampen or amplify the whirl motion.
1.7 Summary

The current knowledge of the forces which act on a rotating impeller has
been the subject of this chapter. This thesis is specifically concerned with the
shroud forces which result from the discharge-to-suction leakage flows in a
centrifugal impeller. In the next chapter, the experimental method for

obtaining these fluid forces will be discussed.
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Figure 1.1. Schematic of the fluid-induced radial forces acting on an impeller
whirling in a circular orbit. Fx* and Fy* represent the instantaneous forces
in the stationary laboratory frame. Fp* and F¢* are the forces normal and

tangential to the whirl orbit where Q is the whirl frequency.
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Figure 1.2. Schematic of the fluid-induced radial forces acting on an impeller
whirling in a circular orbit. Fil*(t),FZ*(t) represent the instantaneous forces

in the rotating dynamometer frame. Fp* and F¢* are the forces normal and

tangential to the whirl orbit where Q is the whirl frequency.
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impeller/volute combination (Impeller X and Volute A at 1000 rpm and a flow
coefficient @ =0.092) are shown by squares. The dummy Impeller S results

with an externally imposed pressure rise are shown by x.
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conditions in which that swirl velocity is assumed to be 0.5 , 0.6, and 0.7 of the

shroud inlet rotating velocity.
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CHAPTER 2

LEAKAGE FLOW TEST APPARATUS

2.1 Rotor force test facility

A detailed description of the test facility, can be found in many of the
references (Chamieh [1983], Adkins [1986], Jery [1986], Arndt [1988],
Franz [1989]), so only a brief description will be given here. The experiments
were conducted in the Rotor Force Test Facility (RFTF) shown in figure 2.1,
which was constructed to study fluid induced forces due to imposed whirl
motions. It is an experiment in forced vibration in that the rotor is forced to
move in a circular whirl orbit of prescribed frequency and amplitude
(eccentricity). A schematic of the installation in the RFTF is shown in Figure
2.2. Briefly, the RFTF consists of a cast housing which was designed to hold
different impeller/volute (diffuser) configurations in the closed recirculating
loop. The overall system can be regulated by an airbag and a heat exchanger
maintains constant water temperature. The experimental objective was to
impose well controlled rotations and whirl motions on a very stiff
impeller/shaft system and to measure directly the resulting force on the
impeller. This is accomplished by the eccentric drive mechanism which
superposes a circular orbit on the basic rotation. A rotating shroud is mounted
on a spindle attached to the rotating force balance (Jery et al. [1985], Franz et
al. [1989]), which measures the forces directly on ihe shroud. The four-post
design of this rotating dynamometer involved nine strain-gage bridges which
measure all six force components on the impeller and is discussed in detail by
Jery (1986). The output of the bridges is amplified by a rack of Vishay Model
2310 signal conditioning amplifiers. These amplifiers are connected to a data
taker which stored the force measurements as a series of voltages on a desk top
computer. The relationship between the strains and the forces were found by
static calibration tests. Existing software exists for most of the stages from
taking the data to processing the data and performing the mathematical
manipulations described in section 1. The rotating dynamometer permits

measurements of the rotordynamic force matrix due to the shroud fluid forces.
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Closed loop controls for the main motor and for the whirl motor synchronized
the orientation and position of the dynamometer with the data acquisition
system. The orientation and location of the impeller along its orbit was
imparted to the data acquisition system. The data acquisition system sampled
128 points per bridge per cycle and typically 256 cycles of data were taken to
average the data. Each cycle corresponds to an integral number of revolutions
of the whirl motor. A frequency multiplier/divider was used to provide

command signals.
2.2 Experimental apparatus

The experimental apparatus sketched in figures 2.2 and 2.3 was designed
and constructed to simulate the leakage flow along the shroud from the
impeller discharge to the impeller inlet (Zhuang [1989], Guinzburg et al.
[1990], Guinzburg et al. [1992]). The clearance between the rotating shroud
and the stationary casing can be varied by both axial and radial adjustment of
the stationary casing. For the present experiment, the initial geometric
configuration consists of a straight annular gap inclined at an angle of 45° to
the axis of rotation. The schematic in figure 2.3 shows the clearance in the
centered position when the centers of the shroud and the casing both
coincide. The magnitude of the clearance can be adjusted by moving the
stationary shroud axially by as much as 7mm. In figure 2.4, the concept of an
offset is illustrated. Although no offsets were used in this research, the
possibility existed of moving the stationary shroud in the radial direction by as
much as 7 mm. The allowable offset (to avoid rubbing between the stationary
shroud and rotating shroud) depends on the clearance and the eccentricity,
since the rotating shroud moves along a circular orbit with a radius of the
eccentricity. In order to model losses in the flow, an adjustable face seal ring
was used to give a clearance of up to 7mm (refer to figure 2.2). The face seal
clearance in this experiment permits the pressure drop to be adjusted
separately from the flow. In an impeller, there are two seals for the following
purposes: either to reduce the leakage flow along the front surface of the
impeller or to reduce the leakage from the inlet back along the shaft to the
previous inlet. The flow through the leakage path is generated by an auxiliary
pump (Flotec F2P4-1062 pump) and is described in detail elsewhere

(Andrews[1988]); a schematic of the loop in which it was installed is included
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in appendix A.

The selection of the flow rates through the leakage path (sece appendix A)
was based on performance characteristics of a typical centrifugal pump. For
the centrifugal pumps examined by Sherzer (1924), the internal leakage was
determined to be 6% of the capacity of the pump. However, larger values could
be expected for clearance increases due to wear. So, this order of magnitude of
leakage was considered for the present experiments. The flow coefficient of a
centrifugal pump is usually on the order of ¢ = 0.15. So a leakage flow rate of
10 GPM would correspond to approximately 7% of the flow rate through a
centrifugal pump with the dimensions of the present experiment. This sample

calculation is given in appendix A.

Both the main motor and the whirl motor are driven through position and
velocity feedback systems which are coupled to a data acquisition system
which records the position in both rotation cycles at which radial force
measurements are taken. Descriptions of the force balance, data processing
and other details are contained in Jery (1986), Franz (1989). The main
rotational motion is driven by a 20hp DC main motor through the main pump
shaft and the shroud can be driven at speeds up to 3500 RPM. A 2hp DC whirl
motor produces the eccentric motion. A circular whirl motion with a
frequency up to 1800 RPM can be superimposed on the basic rotation. The
eccentric drive mechanism permits testing with the amplitude of the whirl
motion or eccentricity, € adjustable from 0.000 cm. to 0.152 c¢cm (0.060 in). In
these experiments two eccentricities were used, one with a radius of 0.0254cm
and the other 0.118cm. The distance from the center of the whirl orbit to the
center of the casing, termed the fixed offset, & is also variable. So concentric
and nonconcentric circular whirl orbits could be investigated. However, in
the present experiments there was no offset, so the center of the shroud

rotates about the center of the casing.
2.3 Inlet guide-vane

As was mentioned previously, the inlet tangential velocity to the leakage
path was shown by Childs (1989) to have an effect on the rotordynamic forces.

Consequently, the effect of inlet swirl was investigated by installing an inlet
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guide vane that was used to introduce swirl in the direction of shaft rotation at
the leakage flow inlet. This was accomplished by constraining the flow in a

logarithmic spiral channel.

The fluid was assumed to be constrained to flow along the installed vane,
which is shown schematically in figure 2.5. Assuming conservation of

circulation and a continuity relation, it is possible to relate the turning angle,
o, with the inlet swirl, I' as follows:

_Q_ 1 1
B2omR,20 tan o

(2.1)

More explanation of how this equation was arrived at can be found in
appendix B. This expression assumes that the flow dk‘ischarging from the inlet
swirl vane is parallel with that vane. However, this was not confirmed by
measurement of the inlet swirl. It is also important to note that the inlet swirl

could not be varied arbitrarily as it depends on the leakage flow rate.
Recalling that the flow coefficient, ¢, is given by,

¢ = Q27TR2H® (2.2)
it follows that,
r__H (2.3)
¢ B Tan o

Therefore the only way to vary the inlet swirl ratio independently of the flow
coefficient would be to vary the depth of the inlet guide vane, B or the turning

angle, . Varying the clearance between the shroud and the stationary casing

is clearly not an option as this factor introduces its own effects on the results.

Based on the above simple geometry and continuity considerations, the
tumning angle was chosen to be 2°. This allowed a range of swirl ratios, defined
as the ratio of the inlet tangential velocity to the rotor velocity. Thus, as the
leakage flow rate and therefore tangential velocity was increased, the swirl
ratio could be increased for a fixed rotor speed. Various views of the device are
shown in figure 2.6. Note that the flow may only enter the spiral guide because

the back of the plate is sealed by foam rubber to prevent undirected flow from
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entering the leakage path.

2.4 Calibration of the rotating dynamometer

The basic design features and fabrication of the rotating dynamometer are
discussed by Jery (1986). Briefly the dynamometer is instrumented with strain
gages which form wheatstone bridges. This section will be limited to the
procedure involved with the calibration of the dynamometer. Greater detail
can be found in Jery (1986), Franz (1989) and Zhuang (1989). The purpose of
the calibration was to produce a six-by six calibration matrix, [B], which
includes all possible dynamometer reactions. The six-component force vector,
[F], can then be obtained from the measured bridge output voltages by use of
the relation [F]=[B] [V], where [V] is the six-component voltage vector. The
matrix vector [B] is simply the inverse of the matrix of slopes, [S], in which an
element Sjj, represents the output, Vi of bridge i under a unit load of the force
component Fj. The slopes are determined by six individual force loadings, one
for each generalized force component. The slopes have been recently checked
for the lateral forces by Zhuang (1989) and typical calibration curves are
presented therein. Due to the dynamic nature of the primary forces to be
measured, the above static calibration was supplemented by testing the
dynamic characteristics of the dynamometer (Zhuang [1989]). By rotating the
main shaft in air without whirl motion, the weight of the shroud will be
sensed by the dynamometer as a periodic lateral force. The magnitude and
phase of this force was evaluated by Zhuang[1989] up to speeds of 3000 RPM
and remained unchanged. A lateral impulse load was applied to the rotating
shroud. The natural frequency of the dynamometer (200 Hz) with the rotating
shroud mounted was the outcome of this test and was found to be much higher
than the shaft frequencies planned for the present experiment. Because of the
success of the dynamic tests, the static calibration matrices were sufficient to

process the dynamic measurements.
2.5 Pressure measurement

In addition to steady radial forces and rotordynamic forces which are
obtained from the force balance measurements, arrays of pressure taps are

located on the surface of the stationary casing. Static pressure manometer taps
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were placed along meridians in the leakage flow passage at three different
circumferential locations, spaced equally apart. Along each meridional
direction, there was a set of ten equally spaced taps. The meridional directions
are 120° apart. At the inlet of the leakage path there are nine taps, which
includes the three from the set along the meridians, equally spaced along the
circumferance. In addition, two sets of pressure taps (six for each set) were
placed 90° apart so that high frequency (250kHz) and good resolution
piezoelectric dynamic pressure transducers could be installed. They are flush-
mounted and a seal box protects them from contact with water. The installation
of the taps is shown in figure 2.2. The rotating shroud was positioned at
various offsets which enabled steady pressure measurements to be made. The
zero whirl frequency rotordynamic forces were evaluated by integration of
the measured pressure differences. Zhuang (1989) compared these results with

the force balance measurements from the same experiments.
2.6 Experimental method

The investigation of the radial forces and rotordynamic matrices was
conducted for a wide range of flow, shroud clearance, eccentricity, face seal
clearance, shaft rotating speed, and whirl rotating speed. A matrix of the tests
can be found in appendix C. The results from these experiments will be
presented nondimensionally by dividing the forces by pmw2R23L€/R,. This
differs from the factor used to nondimensionalize the impeller forces
presented earlier in that the axial length, L of the leakage flow passage
(figure 2.3) has replaced by, the impeller discharge width. In most pumps L
and by are comparable and hence, to evaluate the significance of the results,
the dimensionless data from the leakage flow tests may be directly compared

with that from the impeller tests.

The measured forces include forces associated with the weight and the
buoyancy of the rotor. To extract the fluid-induced forces at a given whirl
ratio and operating condition, two identical tests must be performed. One with

the rotor operating in air (a "dry" run) and another operating in water (a

" "

wet" run.) Thus each data point resulted from the following subtraction:
{"wet" run - "dry" run.). The dry runs account for the force of gravity and the

centrifugal force on the impeller. The buoyancy force is also subtracted, so
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that only the fluid induced rotordynamic forces are left.
Therefore, the experimental measurements include:

(i) the overall radial forces and rotordynamic matrices acting on the

rotating shroud measured using the force balance.

(ii)  the steady and unsteady pressure profiles in the leakage path.
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CHAPTER 3

PRELIMINARY RESULTS

3.1 Force measurements with no whirl.

Preliminary results from this experimental apparatus were obtained for
zero whirl frequency using static offsets (Zhuang [1989]). Typical results for
zero flow rate and a particular offset are presented in figure 3.1 which
illustrates a number of general features in the data. Note first that the data at
rotating speeds of 1000 rpm and 1500 rpm are in good agreement which
provides some evidence that the Reynolds number effects are not too
significant. Secondly the forces calculated from the measured pressure
distributions in the lecakage annulus agree well with those measured directly
with the force balance. This confirms the fact that the forces arise from the
pressure variations in the leakage flow and not from the viscous shear stresses
or the stresses on the other surfaces of the rotating shroud. Finally, figure 3.1
clearly demonstrates that the forces are a strong function of the clearance, H;

indeed the dependence is close to inverse proportionality.
3.2 Steady force measurements with whirl

The steady forces Fgx and Foy are temporal and spatial averages of the
lateral forces sensed by the dynamometer. Hence they should be independent
of the whirl ratio. This is evident from the steady forces for the entire matrix
of experiments shown in figures 3.2-3.14. As mentioned in chapter 2, to extract
the fluid-induced forces, the graphs are the result after subtracting the
weight and the buoyancy. The nondimensional magnitudes of the steady forces
are small compared to the nondimensionalized unsteady forces, however this is
deceiving because they are not dimensionalized in the same way as Fp and Fy

(which are nondimensionalized by the eccentricity ratio also).l Perhaps an

1 Thus the steady forces need to be multiplied by 79 for the larger eccentricity
and 369 for the smaller eccentricity in order to compare them to the unsteady
forces.
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indication of the magnitude of these forces is to compare the steady forces to
those for an impeller housed in a volute. For example for Impeller X housed in
Volute A, Jery (1986) obtained forces on the order of 28.5 N for shut-off, 3 N for
a flow coefficient of 0.092 (the design point), and -7 N for a flow coefficient of
0.0132. Clearly the further from the design point that the pump is operated at,
the stronger are the distortions. The conclusion which can be made is that the
steady forces for the shroud! are not significant compared with those arising
from an entire impeller. In the idealized case where the rotating shroud is
perfectly centered, the steady forces would be zero. Nevertheless, the steady
forces occur due to an offset or other minor asymmetry which would result
from the way in which the apparatus is assembled. It is interesting to note that
as a general trend the steady forces increase as the leakage flow increases. The
nondimensional forces decrease with increasing rotational speeds, indicating
that there is a steady force independent of rotational speed (since they are
nondimensionalized by rotational speed.) The rotational speed does not affect
the steady forces. This is noted by comparing figures 3.2, 3.3, 3.4 (which were

obtained for an eccentricity of 0.0254 c¢m) or figures 3.5, 3.6, 3.7 (which were
obtained for an eccentricity of 0.118 cm). The magnitude of Fyx is the same

irrespective of the eccentricity. The magnitude of Foy increases slightly with

eccentricity, as demonstrated by figures 3.2, 3.5 or 3.3, 3.6 or 3.4, 3.7. The effect
of decreasing the clearance is to increase the forces, which is shown by
figures 3.5, 3.10 and 3.11 or figures 3.6,3.9. Comparison of figure 3.5 with 3.12
and 3.13 shows no effect of seal clearance on the steady forces. The general
conclusion which can be made from the above discussion is that the steady
forces for leakage flows is clearly not significant. The results are summarised
in figure 3.15, which presents the steady forces as a function of flow-

coefficient.
3.3 Pressure measurcments

The pressure in the annular gap is measured from the taps located on the
surface of the stationary shroud. (see section 2.4). These pressure taps were
connected to a bank of 36 manometers. Two additional manometers were used to

measure the downstream pressure and the pressure on the wall of the pump

1 In the present graphs for 1000 RPM, unity corresponds to 1392 N.
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housing. As was seen in figure 3.1, the steady pressure measurements from the
manometers could yield only steady radial forces and stiffness matrices [K],

because of the limited frequency response of the water manometers.

Figures 3.16-3.18 show typical pressure distributions along the meridional
direction of the rotating shroud. The horizontal axis is normalized by the
shroud length and begins at the leakage inlet. Pressure distributions along the
shroud were obtained for different whirl positions at 1000 RPM, an
eccentricity € =0.0254 cm, a clearance H = 0.140 cm, an offset 8 = O and a seal
clearance of 0.051 cm. The measurements are from each set of pressure taps
along the meridional direction and are 120° apart. The pressure is normalized
by the dynamic head at the inlet to the leakage path, pv22. Figures 3.16, 3.17,
and 3.18 were obtained for flows of 10 GPM, 20 GPM, and 30 GPM respectively.
The variation in the pressure distribution of each meridional set can be
expained as follows. For a particular circumferential location, the clearance
between the stationary shroud and the rotating shroud varies. Thus the
pressure taps sense different pressure drops due to a different clearance. It
can be seen in the last figure of each series, that when the pressures from the
each whirl position are averaged, the results are similar in magnitude. Use of

these distributions will be made later in the discussion of a theoretical model.

Unsteady pressure measurements (using the PCB piezoelectric pressure
transducers) were taken synchronously with the force measurements. The
signals from the piezoelectric transducers were sampled on a 16 channel data
acquisition system similar to the one which was wused for the force
measurements. For each revolution of the shroud, 1024 data points were taken.
Since 4 transducers were available, this enabled them to be sampled at 256
points/channel/cycle. In order to average, 256 cycles of data were taken. Both
instantaneous and ensemble averaged data were stored. The average' is
obtained for measurements made at identical orientations of the rotating
shroud. The transducers were split among the two sets of pressure taps, placed
90° apart (see figure 2.2).The objective was to look for eddy cells or other
unsteady flow patterns. The motivation for this study is from the work on disk-
friction flow by Stafford et al. (1975). In that work, the disc/wall diameter ratio

was an important parameter which would produce pulsating flow at a



- 37 -

particular disc/wall diameter ratio. The pulse frequency was in the range of To

1 . T
oy of the shaft frequency. The spectra that were obtained for each individual

transducer showed no frequencies different from the whirl frequencies. (It is
known that these frequencies are associated with the rotordynamic forces.)

Thus, it was not thought useful to cross-correlate the pressure signals.
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Figure 3.6 Dimensionless steady forces at 500 RPM, an eccentricity
€ = 0.118 cm, aclearance H = 0.140 cm, offset & = O and various flow rates as
follows: 0 £/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 3.7 Dimensionless steady forces at 2000 RPM, an eccentricity
€ = 0.118 cm, aclearance H = 0.140 cm, offset § = O and various flow rates as
follows: 0 £/sec, 0.631 £/sec, 1.262 £/sec.
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Figure 3.8. Dimensionless steady forces at 1000 RPM, an eccentricity
€ = 0.0254 cm, aclearance H = 0.424 cm, offset & = O and various flow rates as
follows: 0 £/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 3.9 Dimensionless steady forces at S00 RPM, an eccentricity
€ = 0.118 cm, aclearance H = 0.424 cm, offset d = O and various flow rates as
follows: 0.631 £/sec, 1.892 £/sec, 3.154 £/sec.
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Figure 3.10 Dimensionless steady forces at 1000 RPM, an eccentricity
€ = 0.118 cm, aclearance H = 0.212 cm, offset 8 = O and various flow rates as
follows: 0 £/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 3.11 Dimensionless steady forces at 1000 RPM, an eccentricity
€=0.118 cm, a clearance H = 0.424 cm, offset § = O and various flow rates as
follows: 1.262 £/sec, 2.524 £/sec, 3.154 £/sec.
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Figure 3.12 Dimensionless steady forces at 1000 RPM, an eccentricity

X

0.078
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0.234

€ = 0.118 cm, aclearance H = 0.140 cm, offset § = O and various flow rates as
follows: 0.631 £/sec, 1.262 ¢/sec, 1.892 £/sec. The seal clearance is tightened

10 0.0254cm.
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Figure 3.13 Dimensionless steady forces at 1000 RPM, an eccentricity
€ = 0.118 cm, aclearance H = 0.140 cm, offset & = O and various flow rates as

follows: 0 £/sec, 0.631 £/sec, 1.2624/sec, 1.892 ¢/sec. The seal clearance is
widened to 0.1016cm.
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Figure 3.14 Dimensionless steady forces with inlet swirl at 1000 RPM, an
eccentricity € = 0.118 c¢m, a clearance H = 0.140 cm, offset & = O and various
flow rates (and inlet swirl ratios) as follows: 0.315 £/sec (I'=0.5), 0.631 £/sec
(I'=1.0), 1.262 £/sec (I'=2.0), 1.892 ¢/sec (I'=3.0).
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Figure 3.15 Dimensionless steady forces as a function of the flow coefficient
at 1000 RPM, an eccentricity £ = 0.118 cm, a clearance H = 0.140 cm, offset & = O
and a seal clearance of 0.051 cm.
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Figure 3.18 Pressure distribution along the shroud for different whirl
positions at 1000 RPM, a flow of 30 GPM, an eccentricity € =0.0254 cm, a
clearance H = 0.140 cm, offset 8 = O and a seal clearance of 0.051 cm. The

measurements are from each set of pressure taps along the meridional
direction and are 120° apart.




- 56 -
CHAPTER 4

EXPERIMENTAL RESULTS FOR ROTORDYNAMIC FORCES

4.1 Force measurements with whirl

In this chapter, the rotordynamic results from the force balance
measurements will be described. Recall that the normal force is in .the
direction normal to the whirl orbit and the tangential force is in the direction
of eccentric motion. The unsteady forces Fp and Fy will be presented as
functions of the whirl ratio or ratio of whirl frequency, Q to rotating

frequency, ®. Other dimensionless parameters are the flow coefficient, ¢ (=
Q/2n®wR2H, where Q is the leakage flow rate); the shroud clearance ratio, H/R3;

the eccentricity ratio, €/R2; the Reynolds number based on the leakage

velocity Q/2mRav; and the Reynolds number based on tip speed ®WR22/v, where v

is the kinematic viscosity of the liquid.
4.2 General effects

The results are presented for different rotating speeds of 500, 1000, 2000
RPM, for different leakage flow rates (zero to 50 GPM), three different
clearances, H, and two eccentricities, €. The data is first presented for inlet
swirl velocity ratios which are close to zero. Subsequent tests explore the

effect of this parameter by installation of an inlet guide vane.

Note that the general form and magnitude of the data shown in figures 4.1
through 4.13 is very similar to that obtained for impellers by Jery (1986) and
Adkins (1986) and to that from Childs' model in the absence of the "resonance.”
The parabolic shape of the normal force may be attributed to the added mass of
the fluid. From the experiments performed, the tangential force is positive for

small - positive whirl ratios and thus destabilizing.

Figure 4.1 shows the components of the generalized hydrodynamic force
matrix that result when the impeller whirls in an eccentric orbit of 0.0254cm,
at 1000 RPM, and a clearance of 0.140 cm. Figures 4.2 and 4.3 are for the same
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conditions as figure 4.1 except that the rotor speeds are 500 RPM and 2000 RPM
respectively. Earlier, Jery (1986) showed that the nondimensionalized
unsteady forces were independent of the rotor speed. Clearly, this comparison
must be made by examining like flow coefficients. The trends with flow
coefficient will be investigated further in chapter 5. However, it is already
evident from these three figures that the features of these results are very

similar.

Since the data of figures 4.1 and 4.4 were obtained under conditions which
were the same except for the magnitude of the eccentricity, €, it is reassuring
to note the similarity between the two sets of data. Evidently these experiments
lie within the linear regime of small eccentricities (note that the assumption
of linearity was implicit in equation 1.1). Figures 4.5 and 4.6 are for the same
conditions as figure 4.4 except that the rotor speeds are 500 RPM and 2000 RPM
respectively. Thus, figure 4.5 and figure 4.2 also, only differ in the magnitude
of the eccentricity. In a similar way, figure 4.6 and figure 4.3 only differ in
the magnitude of the eccentricity. Consequently, it was possible to validify that
the experiments were conducted in the linear regime of eccentricity for the
three rotor speeds. Another reason for this apparent duplication of data is that
this allows a wider range of flow coefficients to be investigated further in

chapter 5.

Nguyen and Nelson (1988) developed a solution procedure for annular secals
with what they term eccentricity of the seal. In the present research, this is
termed the offset & of the rotor, though it can also be viewed as an eccentricity
at zero whirl frequency. They compared the results to the experimental data of
Falco et al. (1984). The most important results of this study were that for small
offsets (8/H<0.3), no effect was discerned on the rotordynamic coefficients. At
larger offsets, the cross-coupled stiffness, k, and direct damping, C, increased
with offset. The ratio of these two, k/C, is called the whirl ratio which provides
a measure of the stabilizing effect on the rotor. In the present research there
was zero offset; however, earlier work of Zhuang (1989) investigated the effect
of an offset of the rotor which purely rotates about its own center (no whirl).
- In that work, the hydrodynamic forces were also found to increase
nonlinearly with eccentricity. Two explanations for this apparent discrepancy

can be given. Firstly, the clearance ratio, H/R was much larger than that used
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in the present work where the experiments were shown to be in the linear
regime of eccentricity. In addition, the forces for the larger clearance are

smaller, so the variation with eccentricity is within the range of scatter.

It should also be noted that the forces are strong functions of both the
leakage flow rate and the clearance, H. In the case represented by figure 4.7
the combination of small eccentricity and large clearance led to forces whose
magnitudes were rather small and hence the larger scatter in the data
presented in that figure. This is true for figure 4.8 where a small rotor speed
and large clearance lead to small forces. Data was taken for this case so that a

greater range of flow rates could be investigated in chapter 5.

In the figures which have been presented thus far, the effect of flow rate
on the normal force is clearer than its effect on the tangential force. Clearly
the Bernoulli effect (described in chapter 1) on the normal force increases
with increasing flow at both positive and negative whirl ratios. It would also
appear that the positive tangential forces at small positive whirl ratios are
smallest at the highest flow rate and therefore increasing the flow is
marginally stabilizing. The effect of increasing shroud clearance can be seen
by comparing figures 4.4, 4.9, 4.10. The data of figure 4.9 was taken under the
same conditions as the data of figure 4.4, namely 1000 RPM and an eccentricity
of 0.118cm, but at a larger clearance of 0.212 cm. Figure 4.10 is for an even
larger clearance of 0.424 cm. Thus, the effect of the clearance is much larger
and it seems that all the forces are roughly inversely proportional to the
clearance, H. Qualitatively, this can be explained as follows. For the same
eccentricity and two different clearances, the smaller clearance generates
larger perturbations in the flow which accentuate the acceleration in the

fluid and increase the pressure differences.

From the point of view of rotordynamics, the unsteady tangential force Fyis
usually of greater importance than the normal force, F,. A tangential force in
the direction of whirl motion will encourage the motion and is therefore
destabilizing. There exists such a region for subsynchronous whirl, where Ft
is positive at small positive whirl ratios. For negative whirl ratios, the force is
positive and therefore stabilizing. It should be noted that the Fyis complicated

and changes sign more than once for the no flow case. This is particularly
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noticeable in figures 4.7 and 4.8, however it should also be noted that these
experiments were taken under conditions which produced small forces and
therefore large scatter. Similar behavior has been observed by Jery et al.
(1985) on a centrifugal pump. The nondimensional force coefficients
presented by Childs (1986) also show unexpected negative troughs in the radial
force coefficients and positive peaks in the taﬁgential force coefficients,

which Childs describes as "resonance” of the leakage flow.

It is interesting to compare the magnitudes of the forces with previous
results obtained for a real centrifugal impeller in the same facility. The data
for Franz et al. (1989) on a Byron Jackson centrifugal pump was obtained with

an eccentricity of 1.25 mm which is significantly larger than the present
value of 0.254mm. Thus, it is appropriate to compare the "stiffnesses" Fp™*/e

and Fy*/e. At zero whirl ratio the present data for the clearances of 1.40 mm

(and 4.24mm), yields values of 2.8 KN/m (and 0.46 KN/m) and 7.6 KN/m (and
1.88 KN/m) respectively compared to 6.8 KN/m and 2.28 KN/m for the data of
Franz et al. (1989). Though the geometries of the leakage pathways are quite
different this still suggests that the contribution of the shfoud leakage flow to

the rotordynamic forces may be substantial.

Adkins and Brennen (1988) attempted to separately evaluate the
rotordynamic forces on the discharge and on the shroud of a centrifugal
pump. Chamieh et al. (1985) had earlier measured the total rotordynamic force
on a particular impeller/volute combination and obtained values of 6.0 KN/m
and 2.7 KN/m for Fp*/e and F;*/e at zero whirl ratio. Adkins and Brennen
(1988) substantially increased the size of the gap external to the shroud for
this impeller/volute combination and obtained altered values of 4.8 KN/m and
0.9 KN/m for Fp*/e and Fi*/e. This reduction implied a significant
contribution from the shroud forces. Although the difference between the two
leakage flow measurements is of the same order of magnitude as the present

results, the geometries of the leakage flows are quite different.
4.3 Seal clearance effects

It is important to account for the effect of changing seal clearance such as

would occur as a result of wear. To model these losses, an adjustable seal ring
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was used (figure 2.2). The measurements presented thus far in figures 4.1
through 4.10 were for a face seal clearance of 0.051 cm. The effect of changing
seal clearance is presented in figures 4.11 and figure 4.12, obtained with seal
clearances of 0.1016cm and 0.0254cm respectively. Except for the seal
clearance these measurements are taken under the same conditions as the
measurement of figure 4.4. The smaller seal clearance exhibits a larger normal
force and the tangential force is smaller, which therefore decreases the range
of destabilization. In other words, the range of positive whirl ratios for which
the tangential force is positive is decreased. While the results of Jery et al.
(1985) on a centrifugal pump did not show any influence of the seal clearance,
it should be noted that in that experiment there were several contributions. It
is therefore reasonable to assume that the effect of the seal was perhaps small

compared with the other effects.
4.4 Inlet swirl effects

In this section, the effects of inlet swirl velocity will be examined. In the
absence of an inlet swirl vane, the swirl added to the leakage path by the
incoming jet from the inlet pipe to the large cast iron test-section will be
estimated as follows. The angular velocity with which the incoming jet sets the
bulk of the fluid in motion is obtained purely from considerations of the
location of the incoming jet with respect to the position of the shroud and was
found to be at most one tenth that of the shaft speed for a shaft speed of
1000RPM and a leakage flow of 10 GPM. This ratio, the ratio of the tangential
velocity of the incoming fluid to the rotor velocity, is of course the inlet swirl
ratio and is clearly not a substantial quantity. Since one of the goals of this
rescarch was to investigate the effect of swirl on the results, an inlet guide
vane was placed to add swirl to the inlet of the leakage path. The geometry of

this vane is described in section 2.2.

Figure 4.13 shows data taken for a wide range of swirl conditions. This set
can be compared with the data obtained for figure 4.4. Note that increasing the

flow coefficient in figure 4.13 also increases the swirl ratio.

Figure 4.14 compares data without swirl at a flow coefficient of ¢ = 0.078 to

data with swirl (I'=1.0). Figure 4.15 shows the data at a higher flow coefficient
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of ¢ = 0.156 and since the same inlet guide vane was used, the swirl ratio in this
set is higher (I'=2.0). From both figure 4.14 and 4.15, it can be seen that the
effect of swirl is to increase the tangential force and hence to increase the
range of whirl ratios for which there is a potentially destabilizing force. Swirl
also seems to increase the normal force at positive whirl. Figure 4.13 shows the
tangential force decreasing as the flow coefficient increases. However, it
should be noted that the flow coefficient is coupled to the swirl; therefore the
swirl increases with the flow coefficient. For the normal force, an increase
occurs with increased flow coefficient and hence swirl. So for the tangential
force, the effects of flow and swirl seem to act in competition, while for the
normal force the two effects act in competition at least for positive whirl
ratios. Clearly it would be interesting to examine the case where flow is
increasing and the swirl is fixed. This would require construction of additional

inlet guides.

Figure 4.16 shows the same effect as 4.14, while figure 4.17 is similar to
figure 4.15. The latter figures are taken at a lower eccentricity. If there is
whirl induced resonance, then definite peaks are expected. However, none of

the figures demonstrated this effect.

In the following section, the Reynolds number effect is investigated by
looking at the results as a function of the flow coefficient. Figures 4.18 and
4.19 begin this process by looking at different experimental conditions for the
same flow coefficient. In the earlier work of Zhuang (1989), the normal and
tangential forces were seen to decrease slightly as the Reynolds number
Rem=mR22/V increased. Those experiments were performed for no flow
conditions. In both examples presented in figures 4.18 and 4.19, wherein the
flow coefficient is kept constant, the results do not change substantially as
Re, increases. In figure 4.18, the higher Reynolds number case does show
higher forces for both the tangential and normal force. However, for the
higher flow coefficient (figure 4.19), no clear conclusion can be made
regarding the tangential force. The results of Jery (1986) on a centrifugal
pump were not affected by the Reynolds number. However, the clearance
between the front shroud of the impeller and the casing in that experiment
was large. In the present experiment, since the clearance is small, viscous

effects are expected to occur.
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Figure 4.1 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset 8§ = O and various
flow rates as follows: O £/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 4.2 Dimensionless normal and tangential forces at 500 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset 8 = O and various
flow rates as follows: O {/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 4.3 Dimensionless normal and tangential forces at 2000 RPM, an
eccentricity € = 0.0254 cm, a clearance H = 0.140 cm, offset & = O and various
flow rates as follows: O £/sec, 0.631 £/sec, 1.262 £/sec.
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Figure 4.4 Dimensionless normal and tangential forces at 1000 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset & = O and various
flow rates as follows: 0 £/sec, 0.631 £/sec, 1.262 £/sec, 1.892 £/sec.
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Figure 4.5 Dimensionless normal and tangential forces at SO0 RPM, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset 8 = O and various
flow rates as follows: 0 £/sec, 0.631 &/sec, 1.262 £/sec, 1.892 £/sec.
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eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset d = O and various
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eccentricity € = 0.0254 cm, a clearance H = 0.424 cm, offset & = O and various
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Figure 4.11 Dimensionless normal and tangential forces at 1000 rpm, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset & = O and various

flow rates as follows: 0.631 £/sec, 1.262 £/sec, 1.892 £/sec. The seal clearance
is tightened to 0.0254cm.
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Figure 4.12 Dimensionless normal and tangential forces at 1000 rpm, an
eccentricity € = 0.118 cm, a clearance H = 0.140 cm, offset 8 = O and various
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clearance is widened 10 0.1016c¢cm.
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Figure 4.13 Dimensionless normal and tangential forces with inlet swirl at
1000 RPM, an eccentricity €= 0.118 ¢m, a clearance H = 0.140 c¢m, offset 0 = 0 and

various flow rates (and inlet swirl ratios) as follows: 0.315 £/sec (['=0.5), 0.6314/sec
(I'=1.0), 1.262 £/sec (I'=2.0), 1.892 £/sec (I'=3.0).
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CHAPTER 5

ROTORDYNAMIC COEFFICIENTS

As was mentioned in the introduction, it is standard practice to express the
matrix elements of [A] in powers of Q/w. Though the functional dependence of
Fn on the whirl ratio is not necessarily quadratic, nor is F¢ linear, it is
nevertheless of value to the rotordynamicists to fit the data of the figures from

chapter 4 to the following expressions:
Q2 0 |
Fn=M(G) -c(y)-K (5.1)
Fi=-C(3) +x (5.2)

where M, C, ¢, K, k are the dimensionless direct added mass (M), direct damping
(C), cross-coupled damping (c), direct stiffness (K) and cross-coupled stiffness
(k). The cross-coupled added mass (m) has been omitted for simplicity, since it
is not a significant term. From a stability point of view, the tangential force is
most interesting; a positive cross-coupled stiffness is destabilizing because it
drives the forward orbital motion of the rotor. Positive direct damping and
negative cross-coupled stiffness are stabilizing because they oppose orbital
motion. Another important parameter is the ratio k/C as it indicates the region
of stability. At whirl ratios above this, the tangential force will act in the
direction opposite to the whirl motion and is therefore stabilizing. Table 5.1
lists these rotordynamic coefficients which are obtained by curve fitting the
data of figures 4.1 through 4.13.

5.1 Experiments without inlet swirl

The data of Table 5.1 is presented in graphical form in figure 5.1 for a wide
range of conditions where the dimensionless rotordynamic coefficients are
plotted against the flow coefficient, ¢. Various effects such as speed,
eccentricity, seal clearance and swirl will be examined separately but they are
shown together in figure 5.1 in order that the global effect on each coefficient
with increasing leakage flow can be seen. A large negative stiffness results in
a positive normal force which would tend to increase the radius of the orbital

motion; increasing the leakage flow increases this force. On the other hand, a
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positive cross-coupled stiffness is destabilizing because it drives the forward
orbital motion of the rotor so as to encourage whirl but the leakage flow is
stabilizing in that the tangential force decreases with leakage flow. Direct
damping decreases slightly with flow and would therefore be less stabilizing
since the tangential force increases. Below a flow coefficient of 0.7, direct
damping is negative $o it would seem to encourage whirl. At higher flow rates,
direct damping begins to increase, which would decrease the tangential force.
However, these flow rates are larger leakage flow rates than would occur in
real pumps. The cross-coupled damping decreases slightly and the added mass
term increases with flow, thus contributing to a larger normal force. In other
words, inertial motion would discourage orbital motion of the impeller but
drive the impeller in the direction of displacement. It is interesting to note
that at higher flow rates, the trend of the added mass also changes. A
convenient measure of the stability is the ratio of cross-coupled stiffness to
direct damping, which would estimate the whirl ratio at which the force would

no longer be destabilizing.

The results in figure 5.2 and 5.3 were obtained for a range of shaft speeds
from 500 RPM to 2000 RPM and are seen to be independent of speed. Figure 5.2
was obtained with an eccentricity of 0.0254cm and a clearance of 0.140 cm,
while figure 5.3 was obtained with the same clearance but a higher
eccentricity of 0.118cm. All the other quantities were kept the same, so that the
only variable left to be examined is speed. The similarity of the results

obtained for the two eccentricities can be clearly seen.

Figures 5.4, 5.5 and 5.6 isolate the effect of eccentricity at different speeds:
1000, 2000, and 500 RPM respectively. Each graph shows two sets of data (two
different eccentricities) at a given shaft speed and a clearance of 0.140 cm.
Even when the shroud clearance is of the same order of magnitude as “the
eccentricity, the results are still in the linear regime. This set of three graphs
shows that the magnitude of the eccentricity has no effect on the normalized

rotordynamic coefficients.

The effect on the rotordynamic coefficients of the clearance between the
rotating shroud and the stationary casing is next investigated in figure 5.7.
The results are shown for 1000 RPM and three clearances: 0.140, 0.212, and
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0.424 cm. At the largest clearance, the results are shown for both
eccentricities and it can be seen that there is a wider range of scatter in the
data. At the other two clearances, the results are shown at the larger
eccentricity. The stiffness acts to increase the normal force as the clearance is
decreased, which would drive the motion into a larger orbit. The cross-coupled
stiffness increases so that the tangential force becomes more destabilizing.
The direct damping increases as the clearance decreases, so it acis in
competition with k. Rotordynamically speaking, a smaller force is generated

with a larger clearance and is clearly demonstrated in figure 5.7.

The effect of increasing the seal clearance is examined in figure 5.8. In
practice such a change could occur as a result of wear. The direct stiffness
increases and the direct damping decreases, which is in competition with the
effect of the cross-coupled damping, so as to decrease the normal force. The
tangential force increases as a result of an increase in the cross-coupled
stiffness, but the effect of the direct damping is not clear. So it would seem that
wear of the seal is rotordynamically destabilizing. The effect of wear on the
cross-coupled stiffness presented by Scharrer et al. (1991) is in agreement
with the above results, however the direct stiffness decreases with wear in

contrast with th¢ above results.

The added masses listed in Table 5.1 could be compared with theoretical
values derived as follows. The potential flow added mass for a fluid-filled
annulus between two circular cylinders (inner and outer radii denoted by a, b
respectively) is p7cLa2b2/(b2 - a2) where L is the axial length (Brennen
[1976]); this assumes no axial velocities which could relieve the pressures
caused by acceleration of the inner cylinder. If this expression is integrated
over the length of the leakage annulus shown in figure 2.3, it leads to an added

mass given by

R2
M = 0.160 o (5.3)

or 3.53 for H = 0.424 cm and 0.71 for H = 0.140 cm. The fact that the actual values
are about 40% of these may reflect the relief allowed by non-zero axial
velocity. It is however interesting to note that the above result correctly

models the functional dependence on H exhibited by the experimental data.
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5.2 Experiments with prescribed inlet swirl

The inlet circumferential velocity was controlled by using the inlet guide
vane, which is described in chapter 2. The device allowed known swirl to be
added to the inlet ﬂqw. In other words, the leakage flow now has a tangential
velocity component at the inlet. Figure 5.9 compares results obtained with the
inlet guide vane in place, with data obtained without it and therefore no pre
rotation of the inlet fluid. However, the inlet circumferential velocity could
not be varied arbitrarily as it depends on the flow rate and given guide depth.
Thus as the flow increases, the swirl increases as well, since only one device
was used in these tests. Neither the direct stiffness nor the direct damping
change substantially with the addition of swirl. However, the cross-coupled
damping and hence the magnitude of the normal force increase with the
addition of swirl. The cross-coupled stiffness and therefore the tangential
force also increase. So the addition of swirl to the flow is destabilizing. The test
results of Childs et al. (1990a,b) also demonstrated the favorable influence that
a swirl brake has in reducing the seal destabilizing forces. Benckert and
Wachter (1980) originally showed that a swirl brake, which reduces the inlet
tangential velocity, would also reduce the cross-coupled stiffn=ss. In earlier
experiments on smooth seals by Childs et al. (1988), the direct damping was
shown to be relatively insensitive to changes in inlet swirl, while the cross-
coupled stiffness was shown to increase with swirl. The only result which is
different is for the direct stiffness smooth seals, which shows a slight increase

with swirl.
5.3 Rotordynamic stability

A convenient measure of the stability is the ratio of the cross-coupled
coefficient, k to the direct damping coefficient, C. This provides an estimate of
the whirl ratio at which the force would no longer be destabilizing. For
circular synchronous orbits, it provides a ratio between the destabilizing force
due to k and the stabilizing force due to C. Thus, reducing k/C improves the

stability of the rotor system.

The role of the whirl ratio, k/C, was illustrated by Crandall (1982), who took

the Sommerfeld bearing model and applied a dynamic analysis to the whirling



-85 -
stability of an unloaded bearing. For a joumali rotating with velocity Q, the
equilibrium position will be a displacement & at right angles to the load. The
solution for a journal whirling with velocity Q about a circle of radius €
centered on the equilibrium position which is offset a distance & from the
bearing center, varies as follows. For 8/H < 0.5, the neutral stability point
(Q/@)¢pig is 0.5. As 6/H approaches 1.0, (Q/®)..j; approaches 1/3. The heuristic
proposal of Crandall (1982) agrees with the above stability analysis for 8/H <
0.5, but (Q/®)ci; is predicted smaller for 8/H approaching 1. While the present
experiment involves a different geometry from the bearing model, the whirl

ratio, k/C is of the same order of magnitude.

The results of Childs et al. (1988) show the influence of the inlet tangential
velocity on the whirl ratio. The results for the smooth seal are more applicable
for comparison than those of the labyrinth and honeycomb seals. In the
former, as the circumferential velocity ratio increases from negative to
positive, the whirl ratio increases correspondingly. It is interesting to see that
when the swirl is small, a change in swirl (0 to 0.3) dramatically affects the
whirl ratio (0 to 1.) However, when the swirl changes from 0.3 to 0.8, then the
whirl frequency does not change substantially (1. to 1.1). For negative swirl (0

to -0.8), the whirl ratio also does not change as rapidly (0 to -0.3).

In the present experiments, it was shown earlier that the rotordynamic
coefficients did not change with RPM. So it is not surprising that the whirl
ratio is also independent of RPM. This is shown in figures 5.10 and 5.11 for the
two eccentricities. In these figures no swirl is added to the inlet. However, the
inlet tangential velocity of the bulk flow will clearly decrease as the flow
increases. As the flow increases, the whirl ratio decreases. This trend agrees
with Childs et al. (1988) wherein the whirl ratio decreases as the swirl
decreases. Figure 5.12 shows that as the clearance is decrecased for a given
flow, the whirl ratio increases. The results of Hawkins and Childs (1988) also
show that small clearance seals are more stable than the larger clearance
seals. The effect of opening up the seal clearance is illustrated in figure 5.13.

Here the larger seal clearance decreases the whirl ratio.

The whirl ratio from the results of Bolleter et al. (1989) gives surprisingly

different results from the present research. For the total impeller, the ratio is
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1.4; for the contribution from the seal alone the ratio is 0.85 and for the
difference between these contributions, the ratio is 2.26. From the above
discussion, it can be seen that the range for the results of the present
experiments is smaller (-0.12 to 0.45). The discrepancies can be traced to the
cross-coupled stiffness and the direct damping, which are both a lot larger in

Bolleter et al. (1989) than in the present experiments.
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and

Table 5.1. Dimensionless direct and cross-coupled stiffness, damping
added mass as functions of the flow coefficient.
Cross- Cross- Direct
Direct Coupled Direct Coupled Added
Stiffness Stiffness Damping Damping Mass
K k C c M
RPM = 1000 H=10.140cm € = 0.0254 cm Seal = 0.0508 cm
Flow = 0¢/sec -0.19 0.51 - 2.18 1.60 2.15
0.631 £/sec -1.99 095 2.10 3.85 3.15
1.262 £/sec -2.46 0.52 1.55 4.00 4.46
1.892 £/sec -3.33 0.33 1.49 3.33 4.71
RPM = 1000 H=0424cm € =0.0254 cm Seal = 0.0508 cm
Flow = 01¢/sec -0.048 0.071 0.45 0.91 1.66
0.631 ¢/sec -0.299 0.167 0.43 1.60 1.75
1.262 £/sec -0.330 0.093 0.32 1.50 1.61
1.892 ¢/sec -0.312 -0.053 0.43 1.35 1.55
RPM = 1000 H=0.140cm € =0.118 cm Seal = 0.0508 ¢cm
Flow = 0¢/sec -0.17 0.42 2.17 1.64 2.20
0.631 £/sec -1.81 0.85 1.95 3.59 3.10
1.262 ¢/sec -2.77 0.62 1.90 4.20 4.19
1.892 £/sec -4.36 0.39 2.25 3.79 4.72
RPM = 1000 H=0213cm € =0.118 cm Seal = 0.0508 cm
Flow = 0¢/sec -0.277 0.371 1.071 1.445 1.694
0.631 ¢/sec -0.987 0.327 1.057 2.589 2.043
1.262 ¢/sec -1.218 0.087 0.958 2.881 2.779
1892 ¢/sec -1.354 -0.015 0.824 2.369 3.043
RPM = 1000 H=0424cm € =0.118 cm Seal = 0.0508 cm
Flow = 1.267 ¢/sec -0.305 0.006 0.328 1.555 1.586
2524 {/sec -0.274 -0.069 0.371 1.060 1.367
3.155 ¢/sec -0.281 -0.079 0.440 0.857 1.236
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Cross- Cross- Direct
Direct Coupled Direct Coupled Added
Stiffness Stiffness Damping Damping Mass
K k C c M

RPM =2000 H=0.140cm € = 0.0254 cm Seal = 0.0508 ¢cm
Flow = 0¢/sec -0.250 0.430 2.220 1.470 1.680
0.631 £/sec -1.360 0.890 2.180 2.800 1.890
1.262 ¢/sec -1.900 0.740 2.240 3950 3.200

RPM =2000 H=0.140 cm € =0.118 cm Seal = 0.0508 cm
Flow = 0.631 £/sec  -1.053 0.998 1.975 2.686 2.210
1.262 £/sec -1.618 0.891 2.024 3.328 3.033

RPM =500 H=0.140cm € =0.0254 cm Seal = 0.0508 cm
Flow = 0¢/sec -0.180 0.530 2.350 1.840 2.190
0.631 ¢/sec -2.830 0.470 1.610 4.210 4.260
1.262 £/sec -6.220 0.120 1.920 3.650 4.790
1.892 ¢/sec -12.160 0.028 3.650 1.260 3.660

RPM =500 H=0424cm € =0.118 cm Seal = 0.0508 cm
Flow = 0.631 £/sec -0.305 0.006 0.328 1.555 1.586
1.892 £/sec -0.274 0.069 0.371 1.060 1.367
3.155 ¢/sec -0.281 0.079 0.440 0.857 1.236

RPM =500 H=0.140cm € =0.118 cm Seal = 0.0508 cm
Flow = 0¢/sec -0.148 0.520 2.350 1.796 2.331
0.631 £/sec -3.231 0.920 1.610 4.020 3.909
1.262 £/sec -7.190 0.301 1.920 2.930 3.115
1.892 £/sec -14.072 0.361 3.650 2.037 3.738
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Cross- Cross- Direct
Direct Coupled Direct Coupled Added
Stiffness Stiffness Damping Damping Mass
K k C c M
RPM = 1000 H=0.140cm £ =0.118cm Seal = 0.1016 cm
Flow = 04/sec -0.220 0.564 1.559 1.398 1.944
0.631 £/sec -0.987 0.950 1.671 2.316 2.352
1.262 ¢/sec -1.569 0.864 1.604 3.077 3.132
1.892 ¢/sec -0.236 0.773 2.053 2.657 3.097
RPM = 1000 H=0.140cm € =0.118 cm Seal = 0.0254 cm
Flow = 0.631 £/sec -2.248 0.586 1.758 4.257 3.521
1.262 £/sec -3.021 0.372 1.696 4.672 4.660
1.892 ¢/sec -4.229 -0.031 1.707 3.963 4.876
PRESCRIBED INLET SWIRL
RPM = 1000 H=0.140cm € =0.118 cm Seal = 0.0508 cm
Flow = 0.315 ¢/sec -1.239 1.482 2.364 3.364 2.991
0.631 £/sec -1.752 1.567 2.447 4.034 3.343
1.262 £/sec -3.204 1.585 2.530 5.373 4.294
1.893 ¢/sec -5.831 1.439 3.002 6.153 4.679
2524 £/sec -8.267 1.510 3.548 6.491 4.689
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Figure 5.1 Dimensionless direct and cross-coupled stiffness, damping and
added mass as functions of the flow coefficient.
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Figure 5.2 Rotordynamic coefficients for different shaft speeds as a function
of flow coefficient for an eccentricity of 0.0254 cm.
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Figure 5.3 Rotordynamic coefficients for different shaft speeds as a
function of flow coefficient for an eccentricity of 0.118 cm.
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Figure 5.7 Rotordynamic coefficients showing the effect of shroud
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Figure 5.8 Rotordynamic coefficients showing the effect of seal clearance as
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Figure 5.9 Rotordynamic coefficients showing the effect of inlet swirl as a
function of flow coefficient for 1000 RPM and for an eccentricity of 0.118 cm.
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CHAPTER 6

THEORETICAL MODEL

6.1 Description of a theoretical model

This section describes a theoretical model for flow between a whirling
shroud and a static casing. A numerical simulation was done by applying
Childs (1989) theory to the present experimental conditions. Several
modifications have been incorporated in the present work and convergent
results have been achieved. It should be noted that the results are sensitive to
inlet conditions, so appropriate boundary conditions are needed. The way in
which the inlet conditions change the results and the sensitivity of the results

to the geometry will be discussed.

The prediction by Childs (1989) of the rotordynamic forces uses a bulk flow
model for the leakage flow between the impeller shroud and the pump housing
based on the meridional momentum, circumferential momentum and
continuity equations. The bulk flow model neglects any variation in dependent
variables across the fluid. Figure 6.1 is an illustration of the parameters for
the theoretical problem. The clearance or leakage path is assumed to be

circumferentially symmetric in the wundisplaced position. The bulk-flow
velocity and pressure components, (Ug,Ug,P) are calculated as a function of the

coordinates, (R,0,S) and time, (t). The velocities are normalized by the inlet

rotor tip speed and the lengths are normalized by the length of the shroud, as

follows:
Ug
s = oR~
Ug
6= wRp
P
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The governing equations are solved by a perturbation expansion which

includes only terms which are linear in the eccentricity ratio, € and neglects
terms which are quadratic or of higher order. Because of the eccentricity, the

shaft rotation generates a rotating pressure field. Changes in the velocity and
pressure, (ug,ug,p) that are due to changes in the clearance, h(s,0,t) are

represented by the following expansions.
h = h0 + ghl

ug = us0 + €usl

p=p0+ gpl ' (6.2)

The geometry is described by the axial location z(s), the radial location r(s),
and the clearance h(s) as functions of the meridional coordinate, s. In the
numerical procedure, the first derivatives of these functions are calculated
using forward differences and the last node point is assumed to have the same

derivative as the previous node.

Substitution of the expanded variables given by equation (6.2) into the
governing equations yields a set of zeroth and first order equations. The zeroth

order equations describe the flow through the centered impeller and are
solved for (uSO, ueo, po) as described in the next section. The solution of the

first order equations for ugl(s), uel(s), pl(s) is described in section 6.

6.2 Zeroth order solutions

The continuity equation can be solved exactly for uso(s), since r(s) and

h0(s) are known and is given by:
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0
USO(S)= USO(O)A—Q)' h_.LO_l

r(s) n0(s) (6.3)

Since it is needed in later calculations, the derivative for the axial flow

velocity is also calculated at each node, using

(6.4)

du®  ofLdr, 1.dn0)
ds ~ 7Y | rds T L0 ds

The meridional momentum and circumferential momentum equations
which are used to solve for the velocity ueo(s), and the pressure pO(s) are as

follows:
0 ( 0)2 A +A 0
dp” e dr (ArfAs 1 dh% 1.dr (w0y2 (6.5)
ds = r ds 2 R0 ds r ds S ’
dug®  uglg, [Mr(ue’- EL;r) +hsugll
=Ll (6.6)

ds =~ r ds 2

where the wall shear stresses on the fluid are modeled following Hirs’ (1972)
approach.  The turbulent flow is treated by considering only the bulk-flow
relative to a surface or wall and the corresponding shear stress at that surface
or wall. The theory is characterized by an empirical power law function which
relates the wall shear stress and the Reynolds number, which is defined in
terms of the bulk flow velocity relative to the wall at which the shear stress is
exerted. This definition is expressed nondimensionally as a friction factor at

the stator and the rotor as follows:

ms+1

As=ns # Re ™ [1+(ug? /ug0)2?] 2

mr+1

L L
Ar=nr ”ﬁaRc M 11+[(ug? - ﬁ;r)/uso]z] 2

2 H U
e=— (6.7)

v
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The subscripts r and s refer to parameters relating to the different stresses
due to the rotor and stator respectively. The parameters (ns,ms) and (nr,mr)
are empirical coefficients which account for different surface roughness on
the stator and rotor respectively. As in Childs (1989), both walls were assumed

smooth; for the present calculation, the following values were assumed:
nr=ns=0.079
and
mr=ms=-0.25.

These values are similar to those obtained by Yamada (1960) from
measurements of the flow between rotating cylinders. It should be noted that
these parameters depend weakly on the roughness of the surface, inertia
effects, type of flow (flow under influence of pressure gradient or due to

sliding of a surface or combination of flows).

Childs's model has been programmed so that predictions of the
rotordynamic coefficients can be compared with experimental results. A
fourth order Runge-Kutta scheme is used to numerically integrate the

ordinary differential equations (6.5) and (6.6) from s=0 to s=1. The integration
requires two initial conditions to solve for ugy(s) and pg(s).

The nondimensional tangential velocity u90(0) describes the amount of

swirl that the flow in the volute at the exit of the impeller would deliver to the
leakage path. Most of the physical experiments in this research had zero inlet
swirl and as already mentioned, no "resonances". It will be shown in the next
chapter that to model the average flow in the path between the stationary
casing and the rotating shroud, only one value for the inlet swirl does not
display "resonances”". It will also be shown that for the present calculations
this ratio will depend on parameters such as the shroud clearance and the

flowrate.
6.3 Description of loss coefficients

The analytical model incorporates various loss coefficients which will be
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discussed in this section. The losses at the inlet are accounted for by an inlet
loss coefficient §. Therefore the zeroth order pressure, pO(O), is expressed

nondimensionally as:
0 = 1 0,2
pY(0) = ps - 5 (1+8) (ug”)7(0) (6.8)

where the supply pressure, ps for the leakage flow along the impeller face is

just the discharge pressure of the impeller.

In many pumps, a wear ring seal at the leakage flow exit provides a
restriction so losses are incurred by the flow as it passes through the seal.
Here this is modeled by the exit loss coefficient Cde. When this is used in the
zeroth order solution, the mass flow rate can be related to the pressure drop
across the complete leakage flow. Thus, Childs defines the exit loss coefficient

in terms of nondimensional variables as:

pL) - p
Cde =7 < (6.9)
5 us? (L)
where the pressure at the exit of the leakage flow, Pe, is just the inlet pressure

to the impeller.

Since the losses can have a substantial effect on the radial and tangential
forces, it is important to consider appropriate values for Cde. If there were no

exit losses, the Bernoulli’s equation would yield:
1 2
pe = p(L) + 5 us“(L) (6.10)

which would give Cde = -1. In practice the exit pressure recovery is not
complete and the exit pressure is somewhat lower than given by Bernoulli’s
equation. At the other extreme, if the jet dynamic head is completely lost then
the exit pressure would just be the pressure in the annulus at the exit of the
leakage path; hence Cde would be zero.

Another estimate of the losses for the wear-ring seal can be obtained by
modeling the flow using the exact geometry of the seal, as shown in figure 6.4.

Further assumptions need to be made along the leakage path, in the vicinity of
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the seal. If there are no entrance losses to the seal, Bernoulli’s equation can be
applied between station 1 at the end of the leakage path, and station 2 at the

entrance to the seal:
1 5 1 5
P1+ 5 u“ =p2t 5 W (6.11)

and continuity gives
A
u2=u2;\_s (6.12)

where the leakage area, A=2TURH, where R is the radius at the inlet to the seal,
H is the leakage path clearance and the seal area , Ag=2TTRGHg, where R is the
radius of the seal, Hg is the seal clearance.

If frictional losses along the seal can be ignored, Bernoulli’s equation can

be applied between station 2 and station 3.

1
Pyt u22 =p3+ 5 u32 (6.13)
and from continuity along the seal:
(6.14)

ujz =up =ulx;

Combining the above equations leads to a relation between station 1 and

station 3 in figure 6.4
In the region of the seal exit, two extreme cases will be considered. If the

velocity head at the seal exit is recovered then Bernoulli’s equation can be

applied.
1 2
Pe=P3+ 5 U3 (6.15)
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On the other hand if the jet dynamic head is completely lost at the exit so
that Pe=pP3, and finally the equation can be written as

1(7AN
plme:f(@:) -1)u12 (6.16)

Comparison of the above equation with equation 6.9 leads to an estimate of Cde

which models the losses incurred as a result of the seal.

Cde=((XA's')2-l) | (6.17)

Applying the present experimental configuration to the above equation,
with R=44 mm and Rg=35 mm, results in the following table of values of Cqe for

different shroud clearances, H and seal clearances, Hg.

Table 6.1 Values for Cde for different H and Hg.

H
0.1397 cm 0.2134 cm 0.4242 cm
0.025 cm 47 111 449
Hs 0.050 cm 11 27 109
0.100 cm 2 6 27

It is interesting to observe the range of coefficients in the above table. By

comparison, the Sulzer geometry used in the calculations made by Childs,
(R=118 mm, Rg=118-0.36 mm, H=5.8 mm, Hg=0.36 mm) would result in a value of

Cge=259.

It can be seen from the foregoing analysis that the various geometry
configurations will give rise to a wide range of values for Cde, the exit loss
coefficient. If it were possible to model the geometry of the seal exactly, then
the exit loss coefficient would be less important, since it would emerge from
the calculation. This point will be made in the chapter which discusses the

numerical results.
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6.4 Pressure distribution

As part of the experimental procedure, some of the data included pressure
distributions obtained experimentally from the water manometers. (See
section 3.3). So it would seem reasonable to compare them to the numerically
generated pressure distributions. Two such comparisons are shown in figures
6.2 and 6.3 for two different flow coefficients. The meridional distance is
normalized by the shroud length and begins at the leakage inlet. The
pressures are normalized by the dynamic head at the leakage inlet and - are
expressed relative to the leakage inlet pressure. The numerical results are
shown for three different inlet swirl values. For the experimental results, only
distributions along the inclined part of the shroud are shown, as the pressure
taps do not extend into the area surrounding the seal. The bumps in the
numerical curves represent the pressure distribution along the seal, which
has a smaller clearance than the shroud clearance. The three different
experimental results are from the three sets of pressure taps which are
arranged circumferentially 120° apart. The first thing to note is that the
variation in pressure of the experimental results due to a different
circumferential location is much smaller compared to the variation in the
numerical results due to a different inlet swirl value. Clearly, the choice of
inlet swirl is an important parameter in order to model the experiment. One of
the motivations would be to check what value of inlet swirl results in the
theoretical distribution being closest in magnitude to the experimental
pressure distribution. For the higher flowrate shown in figure 6.3, it would
appear that an inlet swirl of I'=0 results in the magnitude of the numerical
pressure distribution being closest to the experimental pressure distribution.
This is not too surprising as the inlet swirl vane was not in place (the
implication is that the inlet swirl is zero) for the experiments corresponding
to the pressure distributions which are shown. In figure 6.3, the pressure drop
predicted by an inlet swirl of zero is closer in magnitude to the experimental
results. However, an inlet swirl of 0.5 predicts the distribution in pressure
near the inlet of the leakage path. The numerical results are based on a bulk-
flow model. Thus, it would seem reasonable to take as the flow velocity, the
average of the velocity of the two shroud surfaces. This would be an inlet swirl

of 0.5. (recall that the definitionof the swirl is the tangential velocity
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normalized by the rotor velocity.) The only difference between the two figures
is the flowrate. Thus it would seem that at higher flowrates, it is not correct to
average the velocities of the surfaces at the inlet, as the flow dampens out the

effect of swirl.
6.5 Perturbation analysis

Once a solution to the zeroth order equations has been obtained, the
calculation proceeds to the solution of the first order equations. These

cquations are functions of all the variables (s,0,1).

The 6 dependency is eliminated by assuming a simple sinusoidal variation:
ugl=ugl; cos 6 +ugl sin @

ugl=ugl, cos 8 +uglg sin 6
pl=pl; cos 8 +plg sin 6 (6.18)

In other words, the higher order perturbations like sin n6, cos no, n>1 are

neglected. When the relations in (6.18) are substituted into the first order
partial differential equations for usl,u91 and p1 and the coefficients of cos ©

and sin 6 are equated, six equations result. Alternatively, complex variables

can be introduced to express the above variables as complex functions of (s,t).
ugl=uglc+juglg
ug'=uglc+jugly
pl=plc+iplg (6.19)

Thus the equations result in three complex differential equations for g_sl(s,t)’
g_el(s,t), and p_l(s,t). The time dependency, t is eliminated from the differential

equations, by assuming a harmonic perturbation in time, as follows:
usl(s,m)=ig 1 (s) i€t
ugl(s.)=ugl(s) el

pl(s,1)=pl(s) elQt (6.20)
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So the partial differential equations are now reduced to three

ordinary differential equations for ixsl(s), bgl(s), and bl(s) as follows.

d ‘-lsl ﬁsl g1
d—s uQ1 + [A] {191 =[£82
. . g3
pl pl
(ldr, 1.dn0 oT 0
r ds = {0 ds T
A Azg Agg +jI'T o1
[A]= ug ugo ! rugd
ldr 1 dho0

ITdz
¢+ Jo ds
o |2 Ao ds
gi L us0 s

where,

¢t @z 1 dn0ds
" hO0 dSZ-hO ds ds

and the rest of the variables are explained in appendix C.

complex

(6.21)

6.22)

(6.23)

(6.24)
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6.6 First order solutions

The solution of the first order equations requires three boundary

conditions. The following conditions were assumed.
1) The entrance perturbation velocity is zero.

gl =0 (6.25)

2) The expression for the entrance loss coefficient results in the following
relation between pl(0) and ilsl(O).

pL(0) = - (1+8) ug1(0) (6.26)

3) The expression for the exit loss coefficient results in the following relation
between pl(1) and hsl(l).

p1(1) = Cde ugO(1)ug1(1) (6.27)

There is no indication that these boundary conditions are physically
reasonable assumptions. They all follow from the original boundary conditions
which assume a constant relation for these unsteady flows. This may not be
true in practice, as there may be oscillations in the flow before it enters the
leakage path. It is suggested that in particular, the value of the first boundary
condition be varied to see its effect on the rotordynamic forces. The other two
boundary conditions result from assumptions about the loss at the inlet and the
exit of the leakage flows, so the same comments apply as noted for the first
boundary condition. In all cases, the actual losses in the unsteady flow may

well be complex and frequency dependent.

Note that two of the above conditions apply at the entrance, s=0 and one at
the exit, s=1. The problem is converted to an initial value problem in the
following way. The exit condition is ignored temporarily and is replaced by an
assumed initial condition imposed on bsl(O). From the second boundary

condition pl(0) can then be calculated and hence all three perturbation
variables are defined at s=0. The differential equations are then integrated to
s=1 using a fourth order Runge-Kutta scheme. At this point, the exit value,

pl(1), must be checked against the prescribed boundary condition. A new or
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improved value for hsl(O) is then evaluated using Newton’s method as follows.
Suppose the initial guess for ﬁsl(O) is o; then the improved value o, is

obtained from

* f (&)
a’ =o-
f* (o)

(6.28)

where f(a) is the function to be minimized, in this case the boundary

condition at the exit.
f(a)=pl(1) - Cde u0(1)ugl(1) (6.29)

df(a)

The derivative da is not known explicitly. Therefore the following

approximation was used:

a=(ay,an) (6.30)
Aa1=0.01a (6.31)
Aap=0.01ap (6.32)

df(e) f(aj+Aaq,ap)-f(ag,ap) f(ag1,ap+Aag)-f(ay,an)
da Aa] *) Aap

j (6.33)
When the function was minimized to the desired accuracy, the first order
velocity and pressure profiles were then calculated. For later purposes, the

real and imaginary components of ﬁsl,ixel,i)l are defined as follows:

Gt | (fre+ifrs

igl |=|f2c+i f25 (6.34)
-1 ] \$3ctif3s

P

Finally, the normal and tangential forces were calculated by integrating
the first order profiles for each whirl ratio. The resulting nondimensional

normal and tangential forces are:



- 114 -

1
2
Ry (Usy dz dr
FnzH_z(mR2) f[f?’c ds T fic g5 Bs1 - f15 Beil
0

dr dzdr

+ [f2¢ g Bs2 - f25 B2 - 4 45 Bs3]

Us, :
Ry S dz dr
Ft=ﬁ£[—_mR2) f[f3s ds’ f1sgg Bs1 - f1c Be1l

0
dr dzdr

+ [f2s‘d—s‘ Bgo - fo¢ By - '&—Sa*S‘Be:;] (6.35)

where the new coefficients, Bgy, Bgy, etc. are defined in appendix C.
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Figure 6.1 Illustration of the variables for the numerical calculation.
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Figure 6.2 Numerical predictions of the pressure distribution along the
shroud for different inlet swirl ratios, compared with the experimental
observation for 1000RPM, a clearance of 0.0424cm, and a flow of 10 GPM.
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CHAPTER 7

NUMERICAL RESULTS

7.1 Validation of numerical procedure.

The theory of the previous section was implemented in a numerical
procedure and the results of that effort are presented in this section (a listing
of the program is given in appendix F). The solutions were tested for
convergence by running the program with different numbers of nodes
(coordinates). When the program was run with either 100 or 200 nodes, the
results for the forces were indistinguishable. This is acceptable since the first
order part of the calculation in fact uses half as many nodes as for the zeroth
order .calculation. (This implies that 50 and 100 coordinates are used for the
force calculation.) With convergence established, the effect of other variables
pertinent to the physical model were explored. Various initial conditions such
as the definition of the geometry of the leakage flow path, Cq., and & are
thought to affect the results. The effect of these parameters on the numerical

results will be discussed in this chapter.
7.2 Analytical solution for turbulent annular seals

A check on the validity of the program was made by comparing the
numerical results to the analytic expressions derived for the dynamic
coefficients of annular seals by Childs (1983b). An annular seal would
correspond to a leakage flow in which the rotating shroud was cylindrical and
the clearance was constant along its length. The "short-bearing" solution for
an annular seal assumes that the first order tangential velocity, ulg can be
neglected and yields the following results for the rotordynamic coefficients

when the inlet swirl ratio is 0.5.
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<o 2 (e

L
Ho~ (7.1)

where the constants are defined as follows:

& = inlet pressure loss coefficient = 0.1 from Yamada (1962)

U
_ =8
¢ WR

2HUg
Re =

A%

m= -0.25 from Yamada (1962)

n = 0.079 from Yamada (1962)

m (m+1)/2
A{ =nRe {l-&- L }
49?2

L
lz =“I:I"7\.1
5
Ho=5A22 ps
1
H1=227 {Hs+Aalg (U5 +)/2)
1
Hy=2Ay (Mg + 5
Ha = (1+702)/(1+402)

Hs= (1+48)/2 (1+€+14My)

In the above analysis, the following dimensionless parameters have an
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important effect on the reults: L/R, H/R, ¢. The results of the preceding

analysis will be compared with the numerical results for the following

parameters, which are taken from the example given in Childs (1983a):

®=3600 RPM
p=1000 kg/m3
AP= 3.44 x 106 Pa

H/R=0.025
R=0.0762 m

H=1.905 x 104 m

Tables 7.1 Specific parameters for different length ratios

L/R 0.2 0.5 1.0
L (m) 0.01524 0.03048 0.06096
) 1.536 1.009 0.679

Tables 7.2a-c compares the following three solutions in nondimensional form.
a) Finite length seal solutions from Childs (1983a).
b) Finite length seal solutions of the present numerical analysis.

c) Short seal solutions from Childs (1983b), using the equations listed above.
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a b c
L/R
=0.2
K 235.6 237.83 248.84
k 53.28 70.64 64.53
C 106.6 143.82 129.06
C 5.75 2.39 10.93
M 5.75 2.43 10.93
L/R
=0.5
K 111.70 114.60 134.06
k 130.00 135.79 158.34
C 260.00 273.17 316.68
c 33.59 29.34 49.52
33.62 29.41 49.52
L/R
=1.0
K 24.7 29.07 39.71
k 238.0 234.00 363.21
C 477.4 470.50 729.6
C 102.5 96.89 165.38
M 102.6 96.86 165.47

The agreement between the results in columns (a) and (b) of table 7.2 is
encouraging as this shows that the program used in the present discussion
obtains similar results to that obtained by Childs (1983a). The differences
shown in column (c) are discussed further by Childs (1983b), but briefly they
result from neglecting the first order tangential velocity in the analysis. For
the seal model, it is clear that the results are not sensitive to the first order
tangential velocity. However, it is expected that the rotating shroud in the
present experiment will be sensitive to this velocity, as the centrifugal

acceleration terms become important in the inclined leakage path.
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7.3 Exit flow models.

In the experiments, both the inlet pressure and the exit pressure are
known quantities from the pressure gages upsiream and downstream of the
shroud respectively. Therefore, an attempt to reproduce the experimental
conditions numerically can be made by computing the pressure distribution
along the leakage path, starting with the measured inlet pressure.
Specifically, the downstream pressure tap is the pressure downstream of the
seal exit. Thus, for a given set of experimental conditions, an estimate of the

exit loss coefficient, Cdge could be obtained by comparing the pressure

computed at the end of the seal and the measured exit pressure.

As described in section 6.3, the exit seal could be analytically modeled in
two different ways. Table 7.3 lists the coordinates, that were used to describe
the detailed geometry of the seal in the case in which the shroud clearance
was 0.140 cm and the face seal clearance was 0.050 c¢m (referred to later as
"detailed geometry”). For the method in which the seal is approximated by the
exit loss coefficient exclusively, only the first two coordinates are used

(referred to later as "partial geometry”).

Table 7.3 Geometry of the leakage flow path (dimensions in m)

S Z R H
0 0.024 0.094 0.0014
0.0645 0.070 0.048 0.0014
0.0665 0.071 0.047 0.0005
0.0755 0.071 0.038 0.0005

The effect of these two approximations of the seal is shown in figure 7.1.
The curves were obtained by imposing the same pressure drop in both cases
and resulted in two different estimates of Cge. When the detailed geometry is

used, the expected loss coefficient should be close to zero. Computing the loss
coefficient yields Cge=-0.3. This negative loss coefficient implies that the
theoretical pressure distribution decreases below the measured exit pressure

by 3 psi. This unreasonable result can be explained by inaccuracies of the
order of 1 psi in each of the pressure gages. For F, inclusion of the seal

geometry (Cgqe=-0.3) increases the stiffness of the system, as the curve is
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shifted down when compared with the data set obtained with the partial

geometry in which the seal is modeled by the exit loss coefficient exclusively
(Cge=10). It is encouraging to note that this number is the same order of

magnitude (Cge=11), as that obtained by calculation by assuming that the jet

dynamic head is completely lost at the exit (details of this model were discussed
earlier in chapter 6). The effect on Ft of including the detailed seal geometry

in the calculation, is to increase the damping.

In figure 7.2, the results which arise from the two different geometrical
models of the seal are shown for a larger clearance. The magnitude of Cqe
obtained through computation for the partial geometry is 109, which compares
remarkably well to the theoretical estimate (described earlier) of 109 for this
case. The value for Cde is calculated to be -0.2, when the detailed geometry is
used. As observed in figure 7.1, the effects which are obtained by using the
two different geometries of damping on the tangential force and stiffness on
the normal force can also be observed in figure 7.2, although to a different
degree. Note, also that the magnitude of the force is much smaller for the

larger clearance. This point will be discussed later.

The differences observed in figure 7.2 for Fp and Fi might be attributed to
the different geometrical descriptions for the two cases. However, each case
also uses a different loss coefficient. Therefore figure 7.3 shows the effect of
Cde, by imposing the large Cde obtained for the partial geometry case on the
detailed geometry case. The results show that a large change in Cde results in a

small change in the rotordynamic forces.

The effect of the geometry on Fp and Ft is explored further in Figure 7.4 by
imposing the same value of Cde obtained for the geometry without the seal also
on the geometry which includes the seal. Note that this would result in the two
cases having different total pressure drops. The curves obtained for the two
different geometries are similar in shape for Fp and Fy, however, inclusion of
the seal amplifies the instabilities or "peaks”. Thus, judging from the results
presented in figure 7.4 and figure 7.3, the results are more sensitive to the
geometry than to the value of the loss-coefficient. Clearly, the effect of Cge on

the magnitude of the forces is negligible.
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7.4 General observations from the numerical results

In figure 7.4, the relationship between the shroud clearance and the
magnitude of the rotordynamic forces is shown. Note that the forces seem to be
inversely proportional to the clearance. The two dotted curves are for
different values of Cge obtained with the small shroud clearance. Notice ihat at
the smaller clearance, the curves are relatively smooth, possibly because the
flow is constrained to reach equilibrium more rapidly after entering the

leakage flow passage.

In the discussion which follows, the entire seal geometry will be used to
calculate the forces. The conditions that are examined are chosen to match
those of the present experiment where possible. The total pressure drop, Cd, is
obtained from the pressure gages at the inlet and exit of the leakage path. This
in turn allows the loss coefficient, Cde to be calculated as mentioned above. The
inlet loss-coefficient has a negligible effect on the forces, nevertheless the
same loss coefficient of 0.1 that was used by Childs (1983) was used for the

following numerical results.

In figure 7.6, the effect of inlet swirl or tangential velocity ratio is
examined for the larger shroud clearance. The curves with incoming swirl
values different from 0.5 show “resonances” or “peaks”, which might be
attributed to the fact that the incoming flow is not matched to the flow in the

gap region.

In figure 7.7, the effect of clearance is examined again for conditions
similar to those obtained for in figure 7.5 but with a swirl ratio of 0.5. The
inverse relationship between the shroud clearance and the magnitude of the
rotordynamic forces is also observed when the inlet flow has swirl. At this
ratio of swirl velocity, both clearances result in smooth curves, possibly due to

the fact that the inlet flow matches the average flow in the leakage path.

Variation with the inlet swirl velocity is shown in figure 7.8 for the
smaller clearance. Note that at inlet swirl ratios different from 0.5, the curves
show “resonances”. In figure 7.9, the same results are shown for a lower flow

rate. The “resonance” is more pronounced for the curve with no inlet swirl.
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This may be caused by the fact that at the lower flow rates, the damping of the

swirl velocity is reduced.

Figures 7.10, 7.11, 7.12 examine the effect of flow for different swirl ratios.
For all the ratios shown, the normal force exhibits a decrease with flow except
in the neighborhood of the "resonances". This is contrary to experimental
observations, where flow is seen to increase the normal force. The effect of
flow on the tangential force for no swirl (figure 7.10) is similar to
experimental results. In both cases, the flow is stabilizing thereby decreasing
the tangential force. For swirl ratios of 0.5 (figure 7.11) and 0.8 (figure 7.12),
the effect is the same as in the experiments except near the “resonances”.
There is definitely an inconsistency between experimental and numerical

results on what the effect of the leakage flow has on the forces.

The conditions which are obtained in figure 7.11, for a swirl ratio of 0.5 are
presented in figures 7.13 and 7.14 for different seal clearances. The results
obtained in figure 7.13 are obtained with a tighter seal clearance than the
reults obtained in figure 7.11. As in figure 7.11, the trends with flow on the
rotordynamic forces are also inconsistent with the experimental results. It is
interesting to note that the case with the tighter seal clearance yields curves
which do not show the resonances of the previous figures. Results with a

widened seal clearance are shown in figure 7.14

Figure 7.15 presents the effect of seal clearance for a flow rate of 10 GPM
and figure 7.16 shows the same effect at 20 GPM. The two flow rates do not
exhibit the same trend with the seal clearance. For the lower flowrate shown
in figure 7.15, the tangential force wvaries ‘inversely with the seal clearance.
For positive whirl ratios, the normal force actually decreases with decreasing
flow. At the larger flowrate shown in figure 7.16, the trends seem haphazard
with seal clearance and certainly do not agree with figure 7.15. Therefore, it is

not possible to predict a trend with seal clearance.

The effect of the swirl ratio is examined for a larger clearance in figures
7.17 at 30 GPM and 7.18 at 10 GPM. Together with figure 7.6 at 20 GPM, they
make up a set. As was the case with the smaller clearance examined in figures

7.9 and 7.10, the swirl ratio at which peaks do not appear seems to be at 0.5. The
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manifestation of the peaks is a strong function of the flow coefficient. What
this means is that for the swirl ratios different from 0.5, at the lower flow
rates, the peaks appear more pronounced. This fact can be observed in figures
7.19, 7.20, and 7.21 which present results for swirl ratios of O, 0.5, and 0.8

respectively.

One method of solution of the problem would be to split it up into parts.
From the initial figures 7.1 through 7.5, it would appear that the contribution
from the seal portion is significant. So the perturbations from the flow along
the seal could be calculated by using the exit parameters from the shroud exit.
In this manner, discontinuities at the seal transition could be avoided and loss
coefficients could be ignored. The effect of varying the seal clearance was
shown in figures 7.13 through 7.16. It might be expected that as the seal
clearance was opened up, the forces would approach those that were obtained
with only the partial geometry description. Since this was not found, clearly

something is missing from the model.

7.5 Assessment of numerical predictions by comparison with experimental

results.

One of the major discrepancies between the experimental results and the
numerical results was that no peaks were observed for the range of prescribed
inlet swirl ratios for the experiments. The swirl velocity at the inlet in the
experiment was not measured, so it is possible that the flow adjusted itself to
the mean flow rather fast and in fact is not given as simply as by equation 2.1.
Nevertheless, it should be noted that even at the largest inlet swirl ratio of 4.0,

no “resonances” were obtained for the experiments.

Figure 7.22 shows experimental results obtained with an eccentricity of
0.0254 cm, flow of 20 GPM (¢= 0.052), 1000 RPM, clearance of 0.424 c¢cm and no
swirl. The numerical results are shown for three values of swirl, including no
swirl. Although, there is a peak at 0.4 for F{, the forces obtained
experimentally are small at this large clearance and there is therefore scatter.
The magnitudes of the two differently obtained results agree most when no
swirl is an input. It is interesting to note that there is also a peak in the
numerical results at this same whirl ratio, but is concave up. The Fp data is
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smooth and most closely matched by I' = 0 at higher positive whirl ratios. For

negative whirl, all the swirl values give about the same results.

Figure 7.23 shows experimental results obtained with an eccentricity of
0.118 cm, a flow of 10 GPM (¢ = 0.078), a speed of 1000 RPM, a clearance of
0.140 cm and no inlet swirl. The numerical results are shown for three values
of inlet swirl, including no swirl. Both the Fp and the F; experimental curves
ares smooth. For positive large whirl ratios, the solution obtained for the
numerical results with I' = 0 gives the best agreement in magnitude with the
experimental results, but for large negative whirl, the results obtained with
I'=0.8 is closer to the experimental results in magnitude and for small whirl,

agreement with I" = 0.5 is closer in magnitude.

Figure 7.24 shows experimental results obtained with an eccentricity of
0.118 cm, a flow of 20 GPM (¢) = 0.156), a speed of 1000 RPM, a clearance of
0.140 cm and no inlet swirl. The numerical results are shown for three values
of inlet swirl, including no swirl. Both the Fp and the F; experimental curves

ares smooth. As with the previous figures, agreement in magnitude is obtained
with the numerical solution for I' = 0. However, at whirl ratios of 0.5 and

higher, the numerical solution for I' = 0.8 presents a closer agreement in

magnitude to the experimental results. It should be noted that it is with the

whirl ratios of 0.5 that no peaks are obtained in the numerical results.

Figures 7.24 and 7.25 show experimental results obtained with an
eccentricity of 0.118 cm, a range of flows, a speed of 1000 RPM, a clearance of
0.140 cm and no inlet swirl. The numerical results are shown for an inlet swirl
of 0.5. Figures 7.24 is for a seal clearance of 0.0025 cm and 7.25 is for a seal
clearance of 0.0lcm. As mentioned in the previous section, the trend with flow
coefficient is opposite for the numerical reults, compared with the
experimental results. It is still encouraging to note that the magnitudes of the

forces agree.

While agreement in magnitude is achieved for the zero swirl ratio case, it is
the ratio of 0.5 which presents no peaks in the results. This is one of the
problems with using the bulk flow model. Clearly, the flow enters the leakage

flow inlet area with no swirl in the experimental apparatus, but the bulk flow
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model expects the flow to average between the velocity at the stationary wall

and the velocity at the rotating shroud immediately.
7.6 Summary

It would appear that the general trends in the magnitudes of the shroud
forces are adequately predicted by the numerical model. In particular the
inverse proportionality effect of the shroud clearance is predicted. However,
as far as describing the particular trends for varying flow coefficient, seal
clearance or inlet swirl, the numerical results do not agree with the
experimental results. Childs suggested that the "resonance" effect of the
leakage flow developed when the swirl velocity ratio at inlet exceeded 0.5.
However, the present numerical simulation shows that “"resonance"” occurs
bellow 0.5 as well. It would thus appear that the model is perhaps valid for only

one value of inlet swirl, where the "resonance"” does not occur.
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Figure 7.1 Numerical predictions of the norr%/lmand tangential forces, as a function of
whirl ratio for the following conditions: inlet swirl, T'=0, seal clearance = 0.5 mm, 1000
RPM, 20 GPM, and a clearance, H=1.4 cm. Results are shown for two models of the shroud
geometry. The solid line is obtained with the detailed seal geometry included in the
calculation, (Cge=-0.3). The dashed line is obtained with the partial geometry and the seal
is approximated by the exit loss coefficient alone, (Cge=10).
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Figure 7.2 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: inlet swirl, I'=0, seal clearance = 0.5 mm, 1000
RPM, 20 GPM, and a clearance, H=4.24cm. Results are shown for two models of the shroud
geometry. The solid line is obtained with the detailed seal geometry included in the
calculation, (Cge=-0.2). The dashed line is obtained with the partial geometry and the seal
is approximated by the exit loss coefficient alone, Cde=109.
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Figure 7.3 Numerical predictions of the nor%lmand tangential forces, as a function of
whirl ratio for the following conditions: inlet swirl, I'=0, seal clearance = 0.5 mm, 1000
RPM, 20 GPM, H=4.24cm. Both curves show the results for the detailed seal geometry
included in calculation. The solid line is with Cge from the calculation, Cge=-0.2. The
dashed line uses the loss coefficient from the partial geometry in which the seal is
approximated by the exit loss coefficient alone, Cde=109.
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Figure 7.4 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: inlet swirl, I'=0, seal clearance = 0.5 mm, 1000

RPM, 20 GPM, H=4.24cm. The solid line is obtained with the detailed seal geometry
included in the calculation, using Cde from the partial geometry without the seal,
Cde=109. The dashed line is obtained with the partial geometry and the seal is
approximated by the exit loss coefficient alone, Cde=109.
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Figure 7.5 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: inlet swirl, I'=0, seal clearance= (.5 mm,
1000 RPM, 20 GPM. All the curves are obtained with the seal approximated by the exit
loss coefficient alone. The solid line is for the clearance, H=4.24 cm, Cde=109. The other
curves are for the clearance, H=1.4 cm and two different total pressure drops.
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Figure 7.6 Numerical predictions of the normal and tangential forces, as a function of
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clearance, H=4.24cm and three different inlet swirl ratios, 0, 0.5, and 0.8.
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Figure 7.7 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: T'=0.5, seal clearance= 0.5 mm, 1000 RPM, 20
GPM. The solid line is for a clearance, H=4.24cm and the dotted line is for a clearance,
H=1.4cm.
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Figure 7.8 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: seal clearance= 0.5 mm, 1000 RPM, 20 GPM
H=1.4 cm and three different inlet swirl ratios, 0, 0.5, and 0.8.
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Figure 7.9 Numerical predictions of the normal and tangential forces, as a function of

whirl ratio for the following conditions: seal clearance= 0.5 mm, 1000 RPM, 10 GPM
H=1.4 cm and three different inlet swirl ratios, 0, 0.5, and 0.8.
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Figure 7.10 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: =0, seal clearance= 0.5 mm, 1000 RPM,
H=1.4cm and different flowrates at 10 GPM and 20 GPM.
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Figure 7.11 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, seal clearance= 0.5 mm, 1000 RPM,
H=1.4cm and different flowrates at 10 GPM and 20 GPM.
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Figure 7.12 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.8, seal clearance= 0.5 mm, 1000 RPM,
H=1.4cm and different flowrates at 10 GPM and 20 GPM.
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Figure 7.13 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, seal clearance= 0.25 mm, 1000 RPM,
H=1.4cm and different flowrates at 10, 20 and 30 GPM.
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Figure 7.14 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, seal clearance= 1.0 mm, 1000 RPM,
H=1.4cm and different flowrates at 10, 20 and 30 GPM.
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Figure 7.15 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, 10 GPM, 1000 RPM, H=14 cm and three
different seal clearances, 0.25, 0.50, and 1.00mm.
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Figure 7.16 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, 20 GPM, 1000 RPM, H=1.4 cm and three
different seal clearances, 0.25, 0.50, and 1.00mm.



- 146 -

51" T T l
~. £=x
. Seal = 0.5 mm
4 |- 1000 RPM -
.. 30 GPM
A ",. H=424cm
Y . .

-1.0 -0.5 0.0 0.5 1.0
Q/w

Figure 7.17 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: seal clearance= 0.5 mm, 1000 RPM, 30 GPM
H=4.24cm and three different inlet swirl ratios, I'=0, 0.5, and 0.8.
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Figure 7.18 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: seal clearance=0.5 mm, 1000 RPM, 10 GPM
H=4.24cm and three different inlet swirl ratios, I'=0, 0.5, and 0.8.
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Figure 7.19 Numerical predictions of the

normal and tangential forces, as a function of
whirl ratio for the following conditions: T'=0, seal clearance
H=4.24cm and three different flowrates, 10, 20, and 30 GPM.
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Figure 7.20 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.5, seal clearance = 0.5 mm, 1000 RPM,
H=4.24cm and three different flowrates, 10, 20, and 30 GPM.
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Figure 7.21 Numerical predictions of the normal and tangential forces, as a function of
whirl ratio for the following conditions: I'=0.8, seal clearance= 0.5 mm, 1000 RPM,
H=4.24cm and three different flowrates, 10, 20, and 30 GPM.
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Figure 7.22 Comparison of the normal and tangential forces, as a function of whirl ratio
from the numerical predictions for different inlet swirl ratios, '=0, 0.5, and 0.8 with the
experimental results for the following conditions: seal clearance= 0.5 mm, 1000 RPM, a

flow rate of 1.262 ¢/sec, a clearance H=4.24cm and

an eccentricity €=0.0254 cm.
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Figure 7.23 Comparison of the normal and tangential forces, as a function of whirl ratio
from the numerical predictions for different inlet swirl ratios, I'=0, 0.5, and 0.8 with the
experimental results for the following conditions: seal clearance= 0.5 mm, 1000 RPM, a
flow rate of 0.631 ¢/sec, a clearance H=1.40cm and an eccentricity €=0.118 cm.
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Figure 7.24 Comparison of the normal and tangential forces, as a function of whirl ratio
from the numerical predictions for different inlet swirl ratios, I'=0, 0.5, and 0.8 with the
experimental results for the following conditions: seal clearance= 0.5 mm, 1000 RPM, a
flow rate of 1.262 ¢/sec, a clearance H=1.40cm and an eccentricity £=0.118 cm.
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Figure 7.25 Comparison of the normal and tangential forces, as a function of whirl ratio
from the numerical predictions for an inlet swirl ratio I'=0.5 with the experimental

results for the following conditions:

£=0.0254 cm.

different flow rates (0.631 #/sec, 1.262 f/sec, 1.892

{/sec), a seal clearance= 0.25 mm, 1000 RPM, a clearance H=4.24cm and an eccentricity
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Figure 7.26 Comparison of the normal and tangential forces, as a function of whirl ratio
from the numerical predictions for an inlet swirl ratio I'=0.5 with the experimental
results for the following conditions: different flow rates (0.631 ¢/sec, 1.262 {/sec, 1.892
f/sec), a seal clearance= 1.0 mm, 1000 RPM, a clearance H=4.24cm and an eccentricity
£€=0.118 cm.
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CHAPTER 8

CONCLUSIONS

Measurements of the steady and unsteady fluid forces that are due to the
discharge-to-suction leakage flows around pump impellers were made using a
rotating dynamometer on which the shroud was directly mounted. The
objective was to study the behavior of the hydrodynamically-induced force-
matrix [A] for different operating conditions. A review of the existing
experimental and analytical results shows that the discharge-to-suction
leakage flows in centrifugal pumps can contribute substantially to the fluid-
induced rotordynamic forces for that turbomachine. While the geometry of
the impeller shroud/pump casing annulus varies considerably in previous
studies [Chamieh et al. (1985), Jery et al. (1985), Adkins et al. (1988)] the
indications are that the contributions from the leakage flow can be of the
same order as those acting on the impeller discharge. This motivated the
current experimental study of leakage flows between the shroud and the

stationary casing of a centrifugal pump and their rotordynamic effects.

Experimental results for simulated leakage flows of rather simple geometry
are presented for different whirl frequencies, eccentricities, clearances and
flow rates. As with previous results for impellers, the forces scaled with the
square of the rotor speed. The functional dependence on whirl frequency to
rotating frequency ratio (termed the whirl ratio) is very similar to that
measured in experiments and to that predicted in the theoretical work of
Childs. Two sets of results taken at different eccentricities yield quite similar
nondimensional rotordynamic forces indicating that the experiments
probably lie within the linear regime. The dimensionless forces are found to
be functions not only of the whirl ratio but also of the flow rate and of the
clearance. A region of forward whirl for which the average tangential force
is destabilizing, was found. This region decreased with the flow coefficient.
While the dependence on flow rate is not simple, it would appear that the
dimensionless rotordynamic forces are roughly inversely proportional to the

clearance. The change with the discharge resistance was slightly more
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complicated. Reverse whirl was found to be fairly stable.

The effect of swirl is to increase the tangential force thereby also
increasing the range of whirl ratios for which there is a potentially
destabilizing force. Thus reducing the swirl to the flow would be stabilizing. As
for the normal force; swirl seems to decrease the force at positive whirl. The
effects of swirl are in contrast to the effects of increasing the leakage flow,
which causes a decrease in the normal force and an increase in the tangential
force. Clearly it would be interesting to examine the case where flow is
increased while the swirl remains fixed. This would however, require the

construction of additional inlet guides.

The experimental results which included the addition of swirl to the inlet
flow agreed surprisingly well with the magnitudes of the results that were
predicted by a numerical model based on the analysis of Childs (1989). The
shroud clearance effect on the rotordynamic forces was found to be the same
in both methods. However, for the other parameters such as the seal clearance
or the flow coefficient, the two methods did not agree with each other in
predicting a trend. Finally, the experiments showed none of the "resonances"

predicted by the bulk flow models proposed by Childs.
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Figure A.1 Sketch of the pump used for the leakage flow.
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APPENDIX A: Leakage flow estimate calculation and flow loop

A typical head coefficient for an impeller is on the order of 0.4 and the

corresponding flow coefficient is 0.14:
¢t = UC/(DRZ =0.14
where Uo =Q. /A, A=nR;2

Atypical ratio of the leakage flow QL to the flow through the impeller Q¢ is
about 7% and this gives a value of 10 GPM for the leakage flow.

APPENDIX B: Swirl ratio calculation
The following equations are defined:
I' = Ug/wR,
¢ = Ug/oR,

Assuming that the fluid will be constrained to flow along the guide vane, the

turning angle of the vane is related to the fluid velocities as follows:

Tan a=Ugr/Ur
H
Ur=5 Us

Ur="Ug

Q_ 1 1
=
B 2TR52m tan o

Q__1 1 Q1 1
BymR,20 1 BIRPM® 0427

Tan o0 =
To yield a wide range of swirl ratios, for low flow coefficients, the turning
angle was chosen to be 2°, and the width of the vane » B was chosen to be
0.3175 cm.
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APPENDIX C: Description of the first order parameters

Perturbation Coefficients

A=A (1-m9)+A (1 -mpJud,/2h,

__2ueo dr

T g5 T (mr+ DB, + A @s+1)BTuge /2

Agg=

Ay = dc;lso L2 +mnA+(2+mgAgus, (1+mDAf(Ugo— )+ (1+ms)Ag Biug,
s 2 . 2

2A19 =Uso[(1—mD)(Ug = r)Ap+ (1-m S)ugy Asl/hy

2A29=Uso(7\:r +7»s) +7&r(mr+ 1)(U00— ) Bo+ls(m5+1)ueoﬁl+ 29-;9 g%

2A39 =A (Ugs-r)mr-(1 +mr)By(Ugy—r) /Usol+AsUg [ms—(1+ms) B,Ugo /Usal
Bo= (Ugo—1) / Ugol +[(Ugy=r) / Uge] %)
By =Ugo/ Usoll +(Ugy/Ugo)’]
T.¢ Perturbation Coefficients
B~ %;‘»r(l+mr)(ueo— O)[1- B,(Ugo- 1)/ Uso] / 2
Baz = HAc [uso + 1+ mr)(ugo— 1B 1/2
By, = —}le, mr(Ugy,—)Us /2 h,

T.s Perturbation Coefficients

Bs = -E—A,[Q +mr)use—(1+mr) B (uy ~r))/2

By, = %—-Kt(l +mr)BUso/ 2

Bg3= %X,mruszomho
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APPENDIX D: Matrix of test runs

Name € (cfn) H (cm) RPM f/sec | Hg (cm) I
(BOOC - 0.0254 0.424 1000 0 0.050 0
0BOAC 0.631
0BOBC 1.262
0BOCC 1.892
0BOOA 0.140 0
OBOAA 0.631
0BOBA 1.262
0BOCA 1.892
0GO0OA 2000 0
0GOAA 0.631
0GOBA 1.262
0F00A 500 0
OF0AA 0.631
OF0BA 1.262
OFOCA 1.892
1B10A 0.118 0.140 1000 0
1IB1AA 0.631
1B1BA 1.262
1B1CA 1.892
1BIGA 2.524
1B1HA 3.154
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Name € (cm) H (cm) RPM  {f/sec Hg (cm) "
1G10A 0.118  0.140 2000 0 0.050 0.
1G1AA 0.631

1G1BA 1.262

1F10A 500 0

1F1AA 0.631

1F1BA 1.262

1F1CA 1.892

1B10B 0.212 1000 0.

1B1AB 0.631

1B1BB 1.262

1BICB 1.892

1BIBC 0.424 1.262

1B1GC 2.524

1BIHC 3.155

1F1AC 500 0.631

1F1CC 1.892

1F1HC 3.154

2B20A 0.140 0. 0.100
2B2AA 0.631

2B2BA 1.262

2B2CA 1.892

3B3AA 0.631  0.0250
3B3BA 1.262

3B3CA 1.892
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Name € (cm) H (cm) RPM f/sec  Hg (cm) r
TBTFA. 0.315 0.0500 0.5
TBTAA 0.631 1.0
TBTBA 1.262 2.0
TBTCA 1.892 3.0
TBTGA 2.524 4.0
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APPENDIX E: Nondimensional quantities

¢=Q/21TR2H@= = H—%ﬁ x0.427
Table of ¢ for 10 GPM
RPM
H(cm) 500 1000 2000
0.140 0.155 0.078 0.039
0.212 0.101 0.051 0.025
0.424 0.051 0.026 0.013

Table of @ for 1000 RPM

GPM
H(cm) 10 20 30
0.140 0.078 0.156 0.234
0.212 0.051 0.102 0.153
0.424 0.026 0.052 0.078

Table of Re, = oR22/v

RPM 500 1000 2000
Reg, 462 000 925 000 1 851 000
2 H Ug
Table of Re¢ =
A
GPM 10 20 30

Reg 2136 4272 6408
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APPENDIX F: Program listing

program bet

this program models the equations in the paper by Childs.

implicit none

integer nmax
parameter (nmax=500) 'number of points

Cc if more than 21 whirl points will be used then the number of files opened
C must be changed

integer i, 3, k,intf, icount
integer nwhirl, nw !number of increments for whirl
integer nc,nn !number of coordinates

'number of increments for geometry

integer nwc !counter to print whirl output
integer iwcount, iunit !counter to open or not files

real

real
real
real
real

real
real
real
real
real

real
real
real
real
real
real
real
real
real
real

real
real
real
real
real

real

wcount

flag,wflag
alpha,b,cde,cd,ci,ds,hh,gpm,pi,ps,pe,q,ri,vi,xsi
eps, g0, bigt

Ipm, bomeg, someq, £

s0,r0,h0,zi
dh0ds, drds, dzds
d2rds,d2zds
us0,ut0,p0

nu, ro

rmag, ang

flc, f2¢, £3¢

fls,£2s,£3s

rlinel,rline2,rline

rl,r2,r3,rc4

tlinel,tline2,tline

tl,t2,t3,t4

frsum,frsuml,frsumZ,frsum3,frsum4
ftsum,ftsuml,ftsumZ,ftsum3,ftsum4

norm !normalisation as exp

1,1s

ns,nr,ms,mr

nsone,nrone,msone, mrone
raO(nmax),las(nmax),lar(nmax),betaO(nmax),betal(nmax)
btl(nmax),bt2(nmax),bt3(nmax),bsl(nmax),sz(nmax),bs3(nmax)

s(nmax),r(nmax),h(nmax),z(nmax)
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:d(nmax),rdd(nmax},hd(nmax},éa(nmax),zdd(nmax)

real cs(nmax), r{nmax),ch(nmax), cz (nmax)

real c:d(nmax),crdd(nmax),chd(nmax),czd(nmax),czdd(nmax)

real frg(nmax), ftg(nmax)

real fn(nmax), ft (nmax)

real frqint(4,nmax),ftqint(é,nmax)

seal y(3,nmax), ydot (3,nmax)

real z0(3),zdot (3) !y(l)=usO,y(2)=ut0,y(3)=p0,ydot=dy/ds

real fc(3,nmax),£fs(3,nmax)

real pusO(nmax),putO(nmax),ppO(nmax),pusOd(nmax),putOd(nmax),pPOd(nmax)
z 'dummy variables to pass in sub-prog.

complex yl1(3,nmax),yldot (3, nmax)

complex z1(3),zldot(3) !yl(l)=utl,yl(2)=p1,yl(3)=usl,yldot=dyl/ds

complex dumyl(3,nmax),dumyldot(3,nmax),dumzl(3),dumzldot(3)

complex dum, duml, dum2, fduml, fdum2, pfdum

complex x3j

complex g(3),aa(3,3)

real bet0,betl

real utl,sr,ss,zz

real alt,a2t,al3t,als,a2s,als

real gamma, £1,£2,£3,g0

character filea*10, fileb*10, filec*10, char*l, bog*l,filch*4

character cdeg=*l

¢ the following is on the

assumption of only 21 whirl points

character
character
character
character

filed(21)*10,
fileh (21)*10, filei(21)*10,
filek*10, filel*10

filem(21)*10, filen(21)*10,

filee(21)*10, filef(21)*10,

file3(21)*10

fileg(21) *10

fileo(21)*10

character filep(21)*10, fileq(21)*10, filer(21)*10

character dumf(21)*10,anum(21) *2

ccmmon b, vi

common /step/ds

common /geom/ z,zd, zdd, r, rd, rdd, h, hd

zommon /pass/ pus0, put0, pp0, pus0d, put0d, ppld

common /all/ alpha,l,1ls,ri,ci,bigt,eps,q0

common /freq/bomeg, someq, £ !f=bomeg/someg,bomeg=whirlfreq,
! someg=rotorfreqg

coemmon /fric/ ns,nr,ms,mr

common /frione/ nsone,nrone,msone,mrone

common /xnu/ nu

read (*,1) filch

format (a4)

read (*,2) char

format (al)

read (*,2) cdeq

anum(l)='01"
anum(2)=’02’
anum(3)=/ 03/
anum(4)="04"
anum(5) =705’
anum({6)='06"
anum(7)=/077
anum(8)='08"
anum(9)=’ 09/
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anum(10) =’

anum(ll)="11"
anum(12)=/12"
anum(13) =’ 13"

anum(l4)y=’14"
anum{15)=*15"
anum(l6)="16"
anum{(17)=’'17"
anum(1l8)='18"
anum{19)="19".
anum(20) =/ 20’
anum(2l)=/21"

print *,‘enter the number of impeller coordinates’
accept *, nc

print *,’enter the number of increments for the geometry data’
accept *, nn

print *,‘’enter the number of increments for whirl’
print *,’'must be a multiple of 20
print *,720,40 etc’

accept *, nw

nwhirl=nw+1l
nwc=nw/20.

open (unit=2,file=char//’zero.out’,type=‘'new’)
write(2,*)’number of increments =’,nn
write(2, *)'whirl increments =‘,nw

open (unit=5,file=char//’'coord.out’, type='new’)

call open (char//’rcoord.out’,15)

call open (char//’zcoord.out’,25)

call open (char//’hcoord.out’,35)
write (5, *) 'number of coordinates =’,nc
write(5, *)/number of increments =’,nn

list of symbols used in this program

print *,’enter angle in deg’

accept *, alpha

write(2,*)’angle =',alpha
alpha=alpha*acos(~1.)/180. tangle of the cone

print *,’read v, q or b’/
read (*,2)bog
if(bog.eq.’'q’)goto 127
if(bog.eqg.’ b’ )goto 327

print *,’enter inlet veloc, vif
accept *,vi
write(2,*)'vi= /,vi

go to 227
327 continue
print *,’enter the helical ratio, b’
accept *,b 'helical ratio

write(2,*)’b= /,b
go to 227
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print *,’flowrate in gpm‘
accept *, Qg 'volumetric flowrate
write (2, *)’'g=',qg, ' GPM’/
3=g*3.85e-3/60.

continue

print ~,’calculate(c) or give(g) cde’
write (2, *) ' cdeg=‘, cdeq

print *,’enter cde’
accept *, cde "leakage path discharge cceffizient
write (2, *) ' cde=’, cde

print *,‘enter cd’

print *,’if to be calculated, enter 0
accept *, cd
write(2,*) ' cd=’,cd

print *,‘enter c¢i in meters’

accept *,ci !inlet leakage depth=4.24e-3m (0.167in)

write(2,*)’ci=’,ci
ds=1./nn 'path variable increment,s

print *,’enter epsilon, eps’
accept *,eps
write(2, *)'eps=‘,eps

print *,’enter leakage depth, h’
accept *,hh
write (2, *)'h=’,hh

i 'loop variable
las, lar ‘shroud, housing fricr:zon factors

print =*,’enter 1f
accept *,1
write(2,*) 1=",1

print *,’enter 1ls’
accept *,ls

write(2,*)’'1ls=’,1ls

print *,’enter coefficient,ms’

accept *,ms 'empirical coefficients for the surface

write(2,*)’'ms=/,ms
print *,’enter coefficient,mr’
accept *,mr ! roughness
write (2, *) 'mr=‘,mr
print *,’enter ccefficient,ns’
accept*,ns
write (2, *)‘ns=‘,ns
print *,’enter ccefficient,nr’
accept*,nr
write(2,*)'nr=‘,nr

print *,’enter coefficient,msone’

accept *,msone ‘empirical coefficients for the surface

write (2, *) ‘msoneone=’, msone
print *,‘’enter coefficient,mrone’
accept *,mrone ! roughness
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write(Z,*)'mrone=’,irone
srint *,’enter coefficient,nsone’

accept*, nsone

write (2, *) 'nsone=’,nsone
print *,’enter coefficient,nrone’

accept*, nrone

write(2, *) ‘nrone=’,nrone

orint *,’enter nu, viscosity’
accept*, nu
write(2,*)’nu=’,nu

1

[

acos(-1.)

0

print *,’enter supply pressure for the leakage flow in Pa, ps’
accept*, ps
write(2, *)'ps=’,ps

print *,’enter exit pressure for the leakage flow in Pa, pe’
accept*, pe
write(z, *) 'pe=’,pe

crint *,’enter coefficient, g0’

accept *,q0 !constant for the displ.
write (2, *)'g0=',q0
print *,‘enter inlet radius’ 'inlet leakage radius in m

accept*, ri
write(2,*)’/ri=/, ri

print *,’enter density, ro’
accept*, ro

write(2,*)’ro=’,ro

print *,’enter rpm’

accept *,rpm !speed of the shaft
write(2,*)‘ rpm=’, rpm

someg=rpm*pi/30.

«9=(0.,1.)

print *,’enter xsif

accept *,xsi 'inlet loss coefficient
write(2,*)’xsi=’, xsi

initial conditions and geometry of the problem

if(bog.eq.’b’)goto 27
if(bog.eq.’v’)goto 57

vi=q/ (2*ri*pi*ci) 'q is given
b=vi/ (someg*ri)

write (2,*)’vi=’,vi

write (2, *)’'b=',b

goto 72

continue 'vi is given
b=vi/ (someg*ri)

write(2, *)’'b=’,b

go to 72

continue

vi=someg*ri*b ! b is given
write (2,*)’vi=’, vi

g=2*pi*ri*ci*vi

write (2,*)'g=',qgq

continue

bigt=1ls/vi 'characteristic time thru impeller
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accept *, vy(2,1)
v(3,1)=ps/ro/vi*=2-({1.+xsi) /2.

if(cd.ne.0)goto 929

cd=2* (ps-pe)/ro/vi**2

write (2,%*)‘zd=’,cd
329 continue

open (unit=1,file=filch//’ .dat’, type=’'06ld’)
do 999 i=1,nc
read (1,*)cs(i),cz(i),cr(i),ch(i)
999 continue
cleose (unit=1)

do 998 i=1,nc-1
czd(i)=(cz (i+1l)~-cz(i))/(cs(i+l)-cs(i))

czdd(i)=0.

crd(i)=(cr(i+l)-cr(i))/(cs(i+l)=-cs(i))

crdd (i)=0.

chd(i)=(ch(i+l)~-ch(i))/(cs(i+l)=-cs(i))
998 continue

czd(nc)=czd{nc-1)
crd(nc)=crd(nc-1)
chd(nc)=chd(nc-1)

do 997 i=1l,nc
cs{i)=cs(i)/1ls
cz(i)=cz (i) /1
cr{i)=cr(i)/ri
ch(i)=ch(i)/ci
czd(i)=czd(i)*ls/1
czdd (i) =0.
crd(i)=crd(i)*ls/ri
crdd(i)=0.
chd{(i)=chd (i) *ls/ci
997 continue

s{l)=cs (1)
z{(l)y=cz (1)
r(l)y=cr(l)
h(l)y=ch(l)

icount=1 'leoop 1,nc

do 911 i=1,nn=*2

s{itl)y=ds*(i)/2.

zd(i)=czd(icount)

zdd (i) =czdd (icount)

rd (i) =crd(icount)

rdd (i) =crdd(icount)

hd(i)=chd{icount)

if(cs(icount+l) .le.s(i+l))icount=icount+1
z(i+1)=cz(icount)+czd(icount)*(s(i+l)~cs(icounc))
r(i+l)=cr(iccunt)+crd(icount)*(s(i+1)-cs(icount))

h(i+l)=cn(icount)+chd(icount)*(s(i+1)—cs(icount))

write(S,*)i,icount,s(i),z(i),zd(i),r(i),rd(i),h(i),hd(i)
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call xyout (15,5 (i), r(i))

call xyout (25,s(1),z(i))

call xyout(35,s(i),n(i)) 7
911 zontinue

zd(2*nn+1) =czd(nc)

zdd (2*nn+1)=czdd (nc)

rd(2*nn+1l) =crd(nc)

rdd (2*nn+1) =crdd(ng)

nd(2*nn+1) =chd (nc)

write(S,*)i,icounc,s(i),z(i),zd(i),r(i),rd(i),h(i),hd(i)

call xyout (15,s(i), (1))

call xyout (25,s{i),z (1))

call xyour (35,s(i),h (1))

close (unit=5)

call close (15)

call close (25)

call close (35)

call open (char//'usQ.plt’,1)
call open (char//'utQ.plt’,3)
call open (char//‘pO.plt’, 4)

write(2,511)
511 format(lx,/,t4,'s’,:15,'y(l)’,t26,'y(2)’,t37,’y(3)’,:48,’ydot(1)’
1 c59,’ydot(2)’,t70,’ydot(3)’,/,tlS,’u—s’,t26,’u—theta’,t37,’p')

c start iteration s=0: the inlet of the impeller flow.
c zeroth order solutions
c NOTE THERE ARE TWICE AS MANY GEOMETRY POINTS AS VEL,PRESS POINTS

do 10 i=1,nn
y(l,1)=1./(r(2*%i-1)*h(2%i~1))
do 111 k=1,3
z0 (k) =y (k, 1)
111 continue
s0=s (2*i-1)
call deriv0(s0, z0, zdot)
do 222 k=1,3
ydot (k, 1) =zdot (k)
222 continue
33 write(Z,SlO)s(Z*i-l),y(l,i),y(Z,i),y(3,i),ydot(l,i),ydot(Z,i)
c ,ydot(3,1)
510 format(1x, 7ell.4)
call xyout(l,s(2*i-1),y(1,1))
call xyout(3,s(2*i-1),y(2,1i))
call xyout(4,s(2*i-1),y(3,1))

call rk4(z0,zdot,3,s0,ds, z0,deriv0)
do 333 k=1,3
yvi{k,i+1)=2z0 (k)
333 continue

usO=y (1, 1)
ut0=y(2,1)

ra0(i)=2*h(2*i-1)*ci*y (1, i) *vi/nu
las(i)=ns*ra0(i)**msone*(l.+(y(2,i)/b/y(l,i))**2)**((msone+l.)/2.)

lar(i)=(l.+((y(2.i)-r(2*i—l))/b/y(l,i))**2)**((mrone+l.)/2.)
lar(i)=nrone*ra0 (i) **mrone*lar (i)
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betaO(i)=(utO~:(2‘i*l))/(<b*’2*us0)*(1+((utO—r(Z*i-l))/(b*usD))**2H
betal(i)=ut0/b**2/(usO*(l+<utO/b/usO)**2))

btl(i)=lar (i) *(l+mrone)
btl(i)=btl(i)*(utO—:(Z*i—l))*(1-beta0(i)*(utO—r(Z*i—l))/usO)/(Z.*b)
bt2(i)=lar(i)*(usO+(l+mrone)*(utO—r(Z*i—l))*betaO(i))/(2.*b)
bt3(i)=lar(i)*mrone=(utO-r(i))*us0/ (2*b*h (2%i-1))

bsl(i)=larci)*((2.+mrone)*usO—(l.+mrone)*betaO(i)*(utO—r(Z*i—l)))/Z.
sz(i)=lar(i)*(l.+mrone)*beta0(i)*usO/Z.
bs3(i)=lar(i)*mrone*usO**2/(2.*h(2*i-lﬂ

10 continue
do 1111 k=1,3
z0 (k) =y (k, i)
1111 continue

sO0=s(2*i~1).
call deriv0(s0, z0, zdot)
do 2222 k=i,3
vdot (k, 1) =zdot (k)
2222 continue
write(Z,SlO)s(Z*i—l),y(l,i),y(Z,i),y(3,i),ydot(1,i),ydot(2,i)
c ,ydot(3,1)
call xyout(l,s(2%i-1),y(1,1i))
call xyout(3,s(2*i-1),y(2,4i})
call xyout(4,s(2*i-1),y(3,1))
if (cdeqg.ne.’c’)goto 17
cdet(y(3,nn+l)*ro*vi**Z—pe)/(:o*(y(l,nn+l)*vi)**2/2)
write (2, *)cde
17 continue
call close (1)
close (unit=2)
call close (3)
call close (4)

do 1009 i=1,nn+l
pusO(i)=y (1, 1)
putl(i)=y (2, 1)
pp0(i)=y (3, 1)
pusOd (i) =ydot (1, i)
put0d (i) =ydot (2, i}
ppld (i) =ydot (3, 1)
1009 continue

c##################*######################################################*#######
do 458 i=1,21
filed(i)=char//'one’//anum(i)//’ .out’

cé filee(i)=char//'usm’//anum(i)//’.plt’
c7 filef(i)=char//’utm’//anum(i)//'.plt’
c8 fileg(i)=char//’pm’//anum(i)//’.plt'
c10 fileh(i)=char//’usa’//anum(i)//’.plt’
cll filei(i)=char//’uta’//anum(i)//'.plt'
cl2 filej(i)=char//'pa'//anum(i)//'.plt’

dumf (i) =char//‘dumm’ //anum(i) //’ .out’

filem(i)=char//’usr’//anum(i)//’.plt’
filen(i)=char//’utr’//anum(i)//’.plt'
fileo(i)=char//’pr’//anum(i)//'.plt’
filep(i)=char//'usi’//anum(i)//’.plt'
fileq(i)=char//'uti’//anum(i)//’.plt'
filer(i)=char//’pi’//anum(i)//’.plt’
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<58 czntinue

ilek=char//'frq.glz’
ilel=char//’'frg.pizc’

M otn

open (unit=13,file=filek,type=’'new’)

open (unit=14,file=filel, type=’new’)
filek=char//'fn.plit’
filel=char//' £t .plic’

open (unit=53,file=filek,type=’'new’)
open (unit=54,file=filel,type='new’)

call open (char//'frqgl.plt’,21)
call open (char//’'frg2.plt’,22)
call open (char//’frg3.plt’,23)
call open (char//’'frgd.plt’,24)
call open (char//'ftgl.plt’,25)
call open (char//'ftqg2.plt’,26)
call open (char//’ftg3.plt’,2

call open {(char//'/ftgd.plt’,:Z

first order solutions

this involves solving a boundary value problem. convert +o an intial
value problem by selecting an initial value and solving to satisfy the
given boundary value.

OO0 0O O

icount=1

do 81 intf=1,nwhirl,1 'begin loop for whirl ratio
wecount=real (intf-1)/nwc
iwcount=int (intf-1)/nwc
iunit=iwcount+1l
if (wcount.eq. iwcount)wflag =1
if (wflag.ne.l)goto 267
open (unit=5,file=filed(iunit),:ype=’new’)

<6 open (unit=$6,file=filee(iunit),type='new’)

=7 open (unit=7,file=filef(iunit),type=‘new’)

c8 open (unit=8,file=fileg(iunit),type=’new')
10 open (unit=lO,file=fileh(iunit),type=’new’)

open (unit=11, file=filei(iunit),type='new’)
open (unit=12,file=filej(iunit),type='new’)

a0 O
b

N

open (unit=9,file=dumf(iunit),type=’new’)

call open (filem(iunit),15)
call open (filen(iunit),16)
call open (fileo(iunit),17)
call open (filep(iunit),18)
call open (fileqg(iunit),19)
call open (filer(iunit),20)
267 continue
f=((real(intf)~-1.)*2./nw=~1.)

¢ THE FIRST ORDER EQ USE HALF AS MANY POINTS AS FOR ZEROTH: SO 1/4 OF GEOM
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

< given boundary conditions for the first order set of equations
v1(2,1)=cmplx(0,0) 11)

]

dummy initial conditions
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duml=cmplx(1l.,1.2000)

'this is done before the wn

¢ loop and the next whirl ratio uses the previous whirl’s final value of dum:

¢}

aa0a0o06o0a0

95

91

93

101

512

continue
dum2=(xj)**(icounc)*(.99-.05/(icount)**.5)*duml

y1(1l,1)=duml 'assume an extra b.c.
yl(3,l)=—(l+xsi)*y(l,l)*yl(l,l) 'follows frem b.c. 2)
v1(3,1)=-(1+xsi)*yi(1,1) 'follows fram b.c.

‘error in Child’s paper

dumyl (1, 1) =dum2
dumyl(3,l)=-(l+xsi)*y(l,l)*dumyl(l,l)

select dum such that:
fdum=yl(3,nn/2+1)~cde*y(l,nn+l)*yl(l,nn/2+1)=0 =f (dum)
use non-linear equation solver eg. Newton’s method
next dum=dum~-f (dum) /£’ (dum)

Since f’ (dum) is not known, will calculate:
df/ddum=(f(dum)—f(0.95*dum))/(.OS*dum)

de 101 i=1,nn/2
do 91 k=1,3
20(k)=y(k,2*%i-1)
zdot (k) =ydot (k,2*i-1)
zl(k)=yl(k,1i)
dumzl (k) =dumyl (k, i)
continue

s0=s(4*1-3)

call derivl(s0,zl, zldot)

50=s5(4*i-3)

call derivl (s0,dumzl, dumzldot)
do 92 k=1,3
yldot (k, i) =zldot (k)
dumyldot (k, i) =dumzldot (k)
continue

s0=s5(4*i-3)
call rk4im<zl,zldot,3,sO,ds*2,zl,derivl)
s0=s(4*i-3)
call rk4im(dumzl,dumzldot,3,sO,ds*2,dumzl,derivl)
do 93 k=1,3
y1l(k,i+1)=21 (k)
dumyl (k, i+1) =dumzl (k)
continue
continue

fduml=y1(3,nn/2+1)-cde*y(l,nn+l)*yl(l,nn/2+l)
fdum2=dumyl(3,nn/2+l)~cde*y(l,nn+l)*dumyl(l,nn/2+l)
pfdum=(fduml-fdum2) / (duml-dum2)
write(9,*)icount,duml,fduml,pfdum

if((cabs(fduml)/cabs(yl(B,nn/2+l))).lt.l.e—Z)goto 512
icount=icount+l

if(icount.gt.100)goto 512

use a relaxation factor

duml=duml-.9*fduml/pfdum

goto 95

continue
if (wflag.ne.l)goto 219
write (5, *) "icount=‘, icount

!write,store final values



write (5,*) ’dum=’,Jduml

write (5,*) ' fdum=', fduml

write (5, x) ff=' £, intf=', incE

do 399 i=i,nn/2+1

wTite(5,310)s(4%1i-3),y1(1,4),y1(2, L) (Y103, 20, yidot (1,4, yldor (2, i) ,
c  yldot (3,1i)

399 continue

218 continue
icount=1
£lag=0

do 397 i=1,nn/2+1
do 16 k=1,3
fc(k,i)=real(yl(k,i))/(qO/eps)
fs(k,i)=aimag<yl(k,i))/(qO/eps)
16 continue

if (wflag.ne. l)goto 699

call xyout (l5,s(4*i-3),fc(l,1i))
call xyoutr(16,s(4*i-3),fc(2,4))
call xyout(17,s(4*i-3),fc(3,1))
call xyout (18,s(4*i-3),fs (1, 1))
call xyoutr(19,s(4*i~3),fs(2,1i))
call xyout (20,s(4*1i-3), £s(3,1))

rmag=sqrt((real(yl(l,i)))**2+(aimag(yl(l,i)))**2)

o1 write (6, *)s (i), rmag !mag of y1(1,4i)
rmag=sqrt((real(yl(Z,i)))**2+(aimaq(yl(2,i)))**2)

c7 write (7, *)s (i), rmag v !mag of y1(2,1i)
:mag=sqrt((real(yl(B,i)))**2+(aimag(yl(3,i)))**2)

c8 write (8, *)s (1), rmag : 'mag of y1(3,1i)

if(real(yl(1,1)) .ne.Q) goto 531

if(aimag(yl(1,i)).ge.0) then

ang=90

else

ang=-90

endif

goto 532

ang=180./pi*atan(aimag(yl(l,i))/real(yl(l,i)))

zontinue

write (10, *)s (i), ang ! phase of vi1(1,1i)
if(real(yl(2,1i)) .ne.0.) goto 541

if (aimag(yl(2,1i)).ge.0.) then

ang=90

else

ang=-90

endif
goto 542
41 ang-lBO./pi*atan(aimag(yl(2,i))/real(yl(Z,i)))
42 continue

Wwrite(ll,*)s(i),ang ! phase of yi1(2,i)

[SS W]
LA I

¢}
s
o on

o n

if(real(y1(3,1i)).ne.0.) goto 531
if(aimag(y1(3,1i)).ge.0.) then
ang=90
else
ang=-930
endif
goto 552
ang=180./pi*atan(aimag(yl(3,1))/real(yl(3,i)))
continue
write (12, *)s(i),ang ! phase of y1(3,1i)

o wn
[,S I

9]
e
N G on
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589 continue
397 continue
if (wflag.ne.l)goto 2686
close (unit=5)

cb close (unit=6)
<7 close (unit=7)
=8 close (unit=8)

close (unit=9)
close (unit=10)
close (unit=11l)
close (unit=12)
call close (195)
call close (16)
call close (17)
call close (18)
call close (19)
call close (20)
wflag=0
266 continue
c Rotordynamic coefficients for displacement peturbations
< integrate using trap rule,well sort of
frsum=0.
frsuml=0.
frsum2=0.
frsum3=0.
frsum4=0.

bt

O 0 G
b bt
N O

ftsum=0.

ftsumli=0.
fLtsum2=0.
ftsum3=0.
ftsumd=0.

do 79 i=1,nn/2+1
usO=y (1,2*i~1)
utO=y (2,2*1i-1)

s0=s (4*i~3)

zi=z (4%i-3)
dzds=zd (4*1i-3)
d2zds=zdd (4*i~3)
rQ=r (4*i-3)
drds=rd (4*i-3)
d2rds=rdd (4*i-3)
h0=h (4*i-3)
dh0ds=hd (4*1-3)

rla(fc(l,i)*ri/ls*drds*bsl(2*i-1)-fs(1,i)*btl(Z*i—l))*r(Z*i-l)
r2=(fc(2,1i) *ri/ls*drds*bs2 (i) -£s (2, i) *bt2(2*%i-1)) *r (2*i-1)
r3=(fc(3,1i)*1/1ls*dzds) *r(2*i-1)

r4=(-(l*ri/ls**2) *dzds*drds*bs3 (2*i-1))*r(2*i-1)
rline=ri+r2+r3+r4

tl=(fs(l,i)*ri/ls*drds*bsl(Z*i—l)+fc(l,i)*btl(Z*i—l))*r(Z*i—l)
t2=(£fs(2, 1) *ri/ls*drds*bs2 (2*i-1)+fc(2,1) *bt2 (2*1-1)) *r(2*i-1)
t3=(£fs(3,1)*1/1ls*dzds) *r(2*i-1)
td=(-(1/1ls) *dzds*bs3 (2%i-1)) *r(2*i-1)

tline=tl+t2+t3+t4

if(i.eq.l.or.i.eq. (nn+l))goto 18
rline=rline*2.
rl=rl*2,



r2=r2*2, - 183 -
r3=r3x*2.

r4=r4*2
tline=tlinex2.
tl=tl*2.

E2=g2%2

t3=r3*2.

td=g4*2

continue
frsum=frsum+rline
frsuml=frsuml+rl
frsuml=frsuml2+r2
frsum3=frsum3+r3
frsum4=frsumd+r4

ftsum=ftsum+tline
ftsuml=ftsumi+tl
frsum2=ftsum2+t2
ftsum3=ftsum3+t3
ftsumd4=£ftsum4+t 4

continue lintegrate
twice ds, because ds is step for zeroth
frg(intf)=-pi/cd*ls/1*(2*ds)/2.*frsum
frgint (1, incf)==pi/cd*1ls/1*(2*ds) /2 .*frsuml
frqint (2, intf)=-pi/cd*ls/1*(2*ds) /2. *frsum?
frqint (3, intf)=-pi/cd*ls/1l*(2*ds)/2.*frsum3
frgint (4, intf)=-pi/cd*1ls/1*(2*ds)/2.*frsumd

ftq(intf)=-pi/cd*ls/1* (2*ds) /2. *ftsum

ftqint (1, intf)=-pi/cd*ls/1* (2*ds) /2. *ftsuml
frgint (2, intf)=-pi/cd*ls/1*(2*%ds) /2. *ftsum?
tginec (3, intf)=-pi/cd*1s/1* (2*ds) /2. *ftsum3
ftgint (4, intf)=-pi/cd*1ls/1* (2*ds) /2. *ftsumd

write (13,348)f, frg(intf)

call =zyout (21, £, frgint(l, intf))
call xyout (22, £, frgint (2, intf))
call zyout (23, f, frqint (3, intf))
call zyout(24,f, frgint (4, intf))

write (14,348)f, frq(intf)

call xyout (25, f, ftgint (1, intf))
call xyout(26,f,ftgint (2, intf))
call xyout (27, f, ftgint (3, intf))
call xyout (28, £, ftqint (4, intf))

norm= (cd*q*q) / (4*pi**3*ri**3*someg**2*ci**3)
fn{intf)=frg(intf) *norm
fr(intf)=frqg(intf) *norm
write (53,348)f,fn(intf)
write (54,348)f, ft(intf)

format (lx, £5.2, 1lel3.4)

continue 'end loop for whirl ratio

close (UNIT=9)
close (UNIT=13)
close (UNIT=14)
close (UNIT=53)
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close (UNIT=54)
call close (21)
call close (22)
call close (23)
call close (24)
call close (29%5)
call close (26)
call close (27)
call close (28)
call close (29)
stop

end

subroutine sigma(sr, ss, s0)
implicit none

integer i
real ds

real alpha,b
real ci

real ri,vi

real s0,r0,h0,zi
real d2rds,d2zds
real dhOds,drds,dzds

real nu,ra0,ro
real ss,sr
real bigt

real l,ls,las,lar,ns,nr,ms,mr

real y(3)
real usOd,utOd,pOd,dusOd,dutOd,ded
real z(SOO),zd(SOO),zdd(SOO),r(SOO),rd(SOO),rdd(SOO),h(

common b, vi

common /all/ alpha,l,ls,ri,ci
common /fric/ ns,nr,ms,mr
common /step/ds

common /geom/ z,zd, zdd, r, rd, rdd, h, hd

common /zeroth/ usOd,utOd,pOd,dusOd,dutOd,ded

~——

common /xnu/ nu

i=(80/ds)*2.+1.
zi=z (1)
dzds=zd (i)
d2zds=2dd (i)
rO=r (i)
drds=rd (i)
d2rds=rdd (i)
hO=h (1)
dhOds=hd (1)

y (1) =us0d
y(2)=ut0d
y{(3)=p0d

ra0=2*h0*ci*y(1l) *vi/nu
las=ns*ra0**ms*(l+(y(2)/b/y(l))**2)**((ms*1.)/2.)

500), hd (500)



Q

QO

9]

lar=nr*ra0**mr*(l+((y
$s=(1ls/h0/ci)*las
sr=(ls/h0/ci)*lar
return

end
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(2)-:0)/b/y(l))**2)**((mr*l.)/2.)

subroutine deriv0 (s, y, ydor)

implicit none

integer i

real ds

real b,alpha,ci,ri
real s,r,h0, zi

real dhOds,drds,dzds
real d2rds,d2zds

real y(3),ydot(3)
real 1s,1
real sr,ss

real usOd,utOd,pOd,dusOd,dutOd,ded
real z(SOO),zd(SOO),zdd(SOO),rr(SOO),rd(SOO),rdd(SOO),h(SOO),hd(SOO)

common /step/ds

common /geom/ z,zd,zdd,rr,rd,rdd,h,hd
common /zeroth/ usOd,utOd,pOd,dusOd,dutOd,ded

common b

commen /all/ alpha,l,1ls,ri,ci

s is automatiy updated by the main program

i=(s/ds)*2.+1,
zi=z (i)
dzds=zd (1)
d2zds=zdd (i)
r=rr(i)
drds=rd (i)
d2rds=rdd (i)
hO=h (1)
dh0ds=hd (i)

us0d=Y (1)
ut0d=Y (2)
p0d=Y (3)

call sigma(sz,ss, s)
ydot (1) =dus0/ds

ydot(1)=~y(l)*(dhOds/h0+drds/r)

ydot (2) =dut0/ds

ydot(2)=—(y(2)/r*drds+(sr'(y(2)-r)+ss*y(2))/2.)

ydot (3) =dp/ds

ydot (3) =drds/r* (y(2) /b) **2
ydot(3)=ydot(3)-((sr+ss)/2.~dh0ds/h0-drds/r)*y(l)**Z

return
end

SUBROUTINE RK4 (Y, DYDX,N
implicit none

integer nmax

PARAMETER (NMAX=3)

«X,H,YOUT,DERIVS)
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integer i,n
real h,hh,h6,xn,x

real Y(N),DYDX(N),YCUT(N)

real YT(Nmax),DYT(NmaX),:YM(Nmax)

HH=H*( .5

H6=H/6.

XH=X+HH

DO 11 1=1,N
YT(I)=Y(I)+HH*DYDX(I)

CONTINUE

CALL DERIVS (XH, YT,DYT)

DO 12 I=1,N
YT(I)=Y(I)+HH*DYT(I)

CONTINUE

CALL DERIVS(XH,YT,DYM)

DO 13 I=1,N
YT(I)=Y(I)+H*DYM(I)
DYM(I)=DYT(I)+DYM(I)

CONTINUE

CALL DERIVS(X+H, YT,DYT)

DO 14 1=1,N

YOUT(I)=Y(I)*H6'(DYDX(I)*DYT(I)+2.*DYM(I))

CONTINUE
RETURN
END

subroutine sigone(sr,ss, s0)
implicit none

integer i
real ds

real alpha,b
real ci

real ri,vi

real s0,r0,h0,zi
real dhOds,drds, dzds
real d2rds,d2zds

real nu,ra0, ro
real ss,sr
real bigt

real l,ls,las,lar,ns,nr,ms,mz

real y(3)
real usOd,utOd,pOd,dusOd,dutOd,ded

real z(SOO),zd(500),zdd(SOO),r(SOO),rd(SOO),rdd(SOO),h(SOO),hd(SOO)

common /step/ds

common /geom/ z,zd,zdd,r,:d,rdd,h,hd

common /zeroth/ usOd,utOd,pOd,dusOd,dutOd,ded

common b, vi
common /all/ alpha,l,ls,ri,ci
common /frione/ ns,nr,ms, mr

common /xnu/ nu

i=(s0/ds)*2.+1.
zi=2z (i)

'friction for first order
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zd (1)

d2zds=zdd (1)
rO=r (i)

drds=

rd (1)

d2rds=rdd (1)
hO=h (i}
dhOds=nhd (1)

y(1l)=us0d

y(2)=
v{3)=

utQd
pld

raQ=2*h0*ci*y (1) *vi/nu
las=ns*ra0**ms*(l+<y(2)/b/y(1))**2)**((ms+l.)/2.)
lar=nr'ra0**mr*(l+((y(2)—r0)/b/y(l))**2)**((mr+l.)/2.)
ss=(1ls/h0/ci)*las

sr=(ls/h0/ci)*lar

return

end

subroutine derivl(s,yl,yldot)
implicit none

integer i
integer k, j

real
real

real
real
real

real
real
real
real
real
real
real
real
real

ds
alpha,b,ri,ci

s,r,h0,z
dh0ds, drds, dzds
d2rds,d2zds

usQ,ut0,p0
bomeg,someg,f,bigt,eps,qo

v {(3),ydot (3)
ls,l,las,lar,ns,nr,ms,mr,nsone,nrone,msone,mrone
Sr,ss
betaO,betal,bsl,sz,bs3,btl,bt2,bt3
als,a2s,a3s,alt,a2t, a3t
gamma, £1,£2, £3, g0

lag

complex y1(3),yldot(3)
complex a(3,3),g(3)
complex x3j

real
real
real

usOd,utOd,pOd,dusOd,dutOd,ded
pusO(SOO),pucO(SOO),pPO(SOO),pusOd(SOO),putOd(SOO),pPOd(SOO)
pz(SOO),zd(SOO),zdd(SOO),pr(SOO),:d(SOO),rdd(SOO),h(SOO),hd(SOO)

common /step/ds
common /geom/ pz,zd, zdd, pr, rd, rdd, h, hd
common /zeroth/ usO,utO,pO,dusOd,dutOd,ded

common /frione/ nsone,nrone,msone, mrone
common /freq/bomeg, someq, £ !f=bomeg/someg,bomeg=whirlfreq,

! someg=rotorfreq

common b
common /all/ alpha,l,ls,ri,ci,bigt,eps,qQ

common /pass/ pusO,putO,ppO,pusOd,putOd,ppOd
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x3=(0.,21.) - 188 -
s is automatically updated by the main program
i=(s/ds)y=2 . +1,

Z=pz (i)

dzds=zd (i)

d2zds=zdd (i)

r=pr(i)

drds=rd (i)

d2rds=rdd (i)

nO=h (i)

dh0ds=hd (i)’

usO=pus0((i+1)/2)
utO=putQ ((i+1)/2)
pO=pp0 ( (i+1) /2)
ydot(l)=pu50d((i+l)/2)
ydot (2) =put0d((i+1)/2)
ydot (3) =pp0d( (i+1)/2)

perturbation coefficients
call sigone(sr, ss, s)

beta0=(ut0—r)/((b**2*usO)*(l+((utO-r)/(b*usO))**Z))
betal=ut0/b**2/(uso*(l+(ut0/b/usO)**2))
als=(ss*(l.-msone)+sr'(l.-mrone))*usO**2/(2.*hO)
a25=-2.*utO/r*drds/b**2+(sr*(mrone+l.)*beta0+ss*(msone+l.)*betal)*usO/Z
a3$=ydot(l)+((2.+mrone)*sr+(2.+msone)*ss)*usO/Z.
a35=a35—((1.+mrone)*sr*betaO*(utO—r)+(l.+msone)*ss*betal*utO)/Z.

alt=usO*((1.—mrone)*(utO-r)*sr+(l,—msone)*utO*ss+2.*utO/r*drds)/hO/Z.
a2t=usO*(sr+ss)+sr*(mrone+l.)*(utO—r)*betaO+2.*usO/r*drds
a2t=(a2t+ss*(msone+l)*utO*betal)/Z. =
a3t=sr*(ut0—r)*(mrone-(l.+mrone)*betaO*(utO~r)/usO)
33t=(a3t+ss*ut0*(msone-(l.+msone)*betal*utO/usO))/Z.

gamma=someg* (f-ut0/r)
g0=(l**2/ci/ls)*z*dzds+(ri**2/ci/ls)*r*drds
fl=l**2/ci/ls*(dzds**2+z*d22ds)+ri**2/ci/ls*(drds**2+r*d2rds)
f2=(usO/hO)*(dZst‘l./hO*dhOds*dzds)
f3=u30/h0*(fl—gO/hO*dhOds)
g(l)=l/ls*(f2+xj*gamma*bigt/ho*dzds)
g(2)=1/1s*(-alt/usQ) *dzds
g(3)=l/ls*(—als'dzds-y(l)*f2~xj*usO*gamma*bigt/hO*dzds)
a(l,1)=(1./r*drds+l/h0*dh0ds)

a(1,2)=-xj'someg*bigt/r

a(l,3)=0.

a(2,1l)=a3t/us0

a(2,2)=(a2t+xj*gamma*bigt)/usO
a(2,3)=-xj*b/r/uso*(ls/ri)
a(3,l)=a35-uso*a(1,1)+xj*gamma*bigt
a(3,2)=a25+xj*someg*bigt*u50/r !'change
a(3,3)=0.

continue

do 11 k=1,3
yldot(k)=q0/eps*g(k)

do 22 j=1,3
yldot(k)=y1dot(k)-a(k,j)*yl(j)
continue

continue
yldot(3)=yldot(3)~u50*y1dot(l)
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return - 189 -

end

SUBROUT INE RK4im<Y,DYDX,N,X,H,YOUT,DERIVS)
implicit none
integer nmax

PARAMETER (NMAX=3)

integer i,n
real h,hh, h6,x, xh
real flag

complex Y (N),DYDX(N), YOUT (N)
complex YT(Nmax),DYT(Nmax),DYM(Nmax)
HH=H*(Q .5

H6=H/6.

XH=X+HH

DO 11 I=1,N
YT(I)=Y(I)+HH*DYDX (I}

CONTINUE

CALL DERIVS(XH, YT,DYT)

DO 12 I=1,N
YT(I)=Y(I)+HH*DYT(I)

CONTINUE

CALL DERIVS(XH, YT, DYM)

DO 13 1=1,N
YT(I)=Y(I)+H*DYM(I)
DYM(I)=DYT(I)+DYM(I)

CONTINUE

CALL DERIVS(X+H, YT,DYT)

DO 14 I1=1,N
YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2.*DYM(I))

CONTINUE

RETURN

END



