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ABSTRACT

The III-V semiconductors are a broad class of technologically important mate-
rials which have seen immense research interest in academia and industry due
to their electronic, optoelectronic, and photovoltaic properties. In particular,
GaN and the III-nitride family of wide bandgap semiconductors have emerged
as promising candidates for the next generation of high-efficiency power elec-
tronics and light-emitting devices. Their device operation and macroscopic
properties are governed by the dynamics of charge carriers and their micro-
scopic scattering processes. Near room temperature, the carriers are scattered
by lattice vibrations (phonons) at ultrafast timescales of order fs−ps. Mi-
croscopic understanding of carrier dynamics is challenging due to both the
ultrafast time scale at play and to the presence of defects, interfaces, and
impurities affecting transport and spectroscopy measurements. Typical the-
oretical treatments of carrier dynamics and light emission employ empirical
models to interpret and fit experimental results. Over the last few years, so-
called first-principles (or “ab initio”) methods to accurately compute ultrafast
carrier dynamics, transport, and light emission have seen a rapid rise. These
approaches do not employ parameters from experiments, and using only the
structure of the material as input, together with quantum mechanics and con-
densed matter theory, are enabling accurate predictions of carrier dynamics in
a wide range of materials and are shedding light on microscopic details such as
which electronic states, phonon modes and dissipative processes are responsi-
ble for the observed charge transport and light emission properties.

Here, we present first-principles calculations of different aspects of ultrafast
carrier dynamics and light emission in III-V semiconductors of technological
relevance, focusing on GaN, a key material for solid-state light emission tech-
nology. We first present a study of the ultrafast nonequilibrium dynamics
of excited (so-called "hot") carriers in GaN, with a focus on electron-phonon
scattering and the nanometer scale transport of carriers in GaN light emit-
ting devices (LEDs). Using cutting-edge first-principles methods developed in
this work, we find an asymmetry between the time scale of hot electron and
hole thermalization which provides a possible explanation on a major open
problem in the efficiency and energy losses of GaN LEDs. We then develop
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and apply a new rigorous first-principles approach for computing light emis-
sion and the radiative recombination lifetimes in bulk crystals, nanomaterials
and isolated systems. Our approach is based on the Bethe-Salpeter equation
(BSE), and it accurately includes excitons, namely electron-hole states bound
by the Coulomb interaction that play a key role in light-matter interactions.
Using this method, we carry out benchmark calculations of radiative lifetimes
in GaAs and GaN. In GaN, our computed radiative lifetimes are in excel-
lent agreement with experiment (within a factor of two), and our calculations
further highlight the importance of including excitonic effects and spin-orbit
coupling to obtain accurate radiative. We also employ a model to account for
exciton thermal dissociation at high temperature, finding excellent agreement
with spectroscopic measurements. Lastly, we discuss ongoing work on comput-
ing the intrinsic (phonon-limited) mobility in bulk GaN from first principles,
focusing on efforts to include piezoelectric electron-phonon interactions, which
are important for acoustic phonon modes in GaN. We compute the electron and
hole mobilities in GaN and obtain excellent agreement with experiment. Our
calculations shed light on which phonon modes scatter the carriers, providing
new microscopic insight into charge carrier dynamics in GaN and related III-V
semiconductors.
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C h a p t e r 1

INTRODUCTION

1.1 III-V and III-Nitride Semiconductor Materials and Devices

The last few decades have seen a rising global need for the development and
commercialization of technologies which can convert and harness energy effi-
ciently. The looming crisis of depleting fossil fuel resources, the necessity of
reducing greenhouse gas emissions to combat climate change, and the fierce
economic incentive for reducing costs have been a driving engine for innovation
in renewable energy and related materials technology. Over the course of the
last few decades, binary compound semiconductors composed of a group III
and group V element, also known as III-V semiconductors, have seen intense
research interest both in academia and in industry due to their broad and
versatile electronic and optical properties. The III-V semiconductors are at
the basis of technologies with profound societal impact, including the laser,
solid-state lighting, and efficient solar cells. While this class of compounds
encompasses a broad range of materials, much of the work has focused on
a more restricted family of III-V semiconductors, including GaAs, GaP, and
InP, among others. It was not until recently that the III-nitride semiconductors
(GaN, InN, AlN) have become the subject of intense research. In particular,
GaN and its alloys (e.g., GaxAl1−xN and GaxIn1−xN) exhibit a wide direct
band gap that can be tuned by alloying from sub-visible to UV energies. The
III-nitrides also posses strong chemical bonds and high melting tempertures
which makes them well suited for high temperature operation and high power
electronics and optoelectronics [1].

Consequently, GaN and other III-nitride materials are prime candidates for
next-generation optoelectronic and energy devices. GaN appears as a strong
candidate to replace Si in wide band gap power electronics for use in smart
electric grids which can efficiently convert and transmit solar and wind power,
and for motor drives in future clean electric vehicles [2, 3]. Most notably, GaN
has emerged as one of the key materials for efficient solid-state light emitting
technology following the invention of GaN-based blue and green light-emitting
diodes (LED) in 1995 [4], whose scientific and technological merits were rec-
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ognized with the 2014 Nobel Prize for Physics.

The reason for this recognition is not hard to see. Before GaN, the only
available high-luminosity LEDs available emitted in the red part of the visible
spectrum. The advent of GaN-based ultraviolet, blue, and green emitters al-
lows, in conjunction with phosphors to down-convert light to red and yellow,
for generation of light with a wide range of wavelengths. Semiconductors able
to generate light with a broad spectrum are highly desirable for efficiently pro-
ducing white light [5]. White-light sources based on LEDs have yet to realize
their full potential for positively impacting energy consumption, the environ-
ment, and the health of individuals. In year 2009, roughly twenty two percent
of the energy generated by the United States was used for lighting applications
[5]. It is estimated that if all conventional white-light sources were converted
to the more energy-efficient LED technology, energy consumption could be
reduced by approximately 1 petawatt-hour per year. This amount of energy is
equivalent to roughly 230 500-MW coal power plants, which collectively gen-
erate 200 million tons of greenhouse gas emissions and can potentially save
∼ $100B annually [6]. This estimate does not even take into account the
health benefits and impacts of numerous other applications of LED technol-
ogy considered outside of conventional lighting, such as in displays, agriculture,
automotive lighting, and many more. Needless to say, there is massive inter-
est in improving the cost-efficiency of LEDs, as widespread utilization of the
technology has large potential positive impact.

1.2 GaN LEDs and their Charge Carrier Dynamics

At its core, the operation of an LED is quite simple. Generation of light in
a semiconducting material like GaN is possible by injecting electrons into the
conduction band of the material and providing unfilled electronic states (so-
called “holes”) in the lower-energy valence band; the electrons can lose energy
by filling the hole states, producing a photon with energy corresponding to
the energy gap between the valence and conduction states, which is roughly
3.45 eV in GaN, corresponding to the near ultraviolet. An LED consists of
three stacked layers of materials. The bottom and top layers provide, respec-
tively, a high concentration of electrons and holes. An example of top and
bottom layers are n-type GaN doped with Si and and a p-type GaN doped
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with Mg. These materials sandwich an active layer consisting of alternating
larger and smaller band gap materials (such as GaN and InGaN, respectively)
with a nanometer scale thickness, creating a series of quantum wells that spa-
tially trap electrons and holes, allowing them to recombine and produce light.
This electron-hole recombination in small volumes of a semiconductor is much
more efficient than conventional light emission in an incandescent light bulb,
which relies on black body radiation from heating [5–7]. A schematic of an
LED device structure and the basis of its operation is shown in Fig. 1.1 in the
middle and right panels. Multiple factors affect the efficiency and thus ulti-
mately the cost of an LED, such as conversion efficiency of phosphors, internal
reflection of photons at interfaces of materials with air, and degradation over
time from generated heat. However, the consensus is that the key figure of
merit is the quantum efficiency (QE) of the device, defined as the number of
photons produced per electron-hole pair injected. A significant portion of LED
research in academia and industry is aimed at improving the QE by ensuring
that more electrons and holes become trapped in the quantum wells, and that
a greater fraction of those recombinations are radiative, namely that light (as
opposed to heat) is emitted as a result of the electron-hole recombination [5, 6].

Macroscopic properties such as the QE of an LED are intimately tied to the
dynamics of the charge carriers (electrons and holes) in the active layer semi-
conductor and the microscopic processes that govern them. As such, gaining
a complete understanding of these processes is crucial from a device design
perspective. Material properties and parameters essential to device perfor-
mance and efficiency, such as quantities describing carrier transport and re-
combination, in bulk GaN are not completely understood. Furthermore, there
are critically important open problems in device design, which have their ori-
gins in carrier dynamics. One such mystery is the LED efficiency droop, the
phenomenon in which the QE appears to decrease when operating the LED
at higher currents [8]. Efficiency droop is a major roadblock for solid-state
lighting because high operating currents are key to lowering the initial price
barrier [6]. However, the microscopic origin of efficiency droop, among other
open problems, are under debated [8, 9].

Microscopic understanding of carrier dynamics is challenging to obtain be-
cause carrier dynamics are regulated by ultrafast carrier scattering processes
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Figure 1.1: Schematic of carrier dynamics in a GaN-based LED. Left:
Schematic GaN bandstructure and ultrafast relaxation of hot electrons and
holes via electron-phonon scattering. Middle: Schematic band diagram of an
LED active layer quantum well structure and carrier dynamics within, where
the vertical dimension represents energy, and horizontal represents spatial co-
ordinate along the active layer. The shaded regions represent the band gaps of
the alternating materials. Electrons and holes enter the active region, lose ex-
cess energy via scattering with phonons, become spatially confined, and then
recombine to produce light. Right: Schematic of an LED device. Reproduced
with permission from Ref. [7].

that occur over femtosecond to picosecond timescales [10]. These processes in-
clude scattering with phonons, impurities, interfaces, and other carriers, and
govern properties such as the carrier mobility, relaxation times, and mean free
paths [11–13]. In particular, the electron-phonon (e-ph) interaction, namely
the coupling between carriers and atomic lattice vibrations, plays a domi-
nant role on transport near room temperature in relatively pure materials [13,
14]. It is also the dominant mechanism regulating the rate of energy loss (or
“cooling”) of excited carriers within a few eV of the band edges, a scenario of
relevance for carriers injected at LED heterojunctions. The excited (so-called
“hot”) carriers rapidly lose their excess energy with respect to the band edges
at a rate on the order of femtoseconds, dissipating heat by phonon emission
through e-ph coupling, as shown in the left and middle panels of Fig. 1.1.

Once relaxed to the band edges, the carriers recombine to emit light, a process
that occurs over longer timescales of pico- to nanoseconds [12]. Prior to re-
combination, carriers form electron-hole pairs bound by the screened Coulomb
interaction. These bound electron-hole pairs are known as excitons, which can
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be seen as neutral quasiparticale excitations with their own wavefunctions and
energy spectrum distinct from those of the electron and hole. Excitons are key
in the radiative processes of a semiconductor, which can be seen as exciton re-
combination events resulting in photon emission [15]. The radiative processes
compete with non-radiative recombination channels, such as defect-induced
recombination and Auger scattering, which are a source of energy inefficiency
in LED devices as they result in heat generation [12, 16, 17].

Experimentally determining intrinsic properties and parameters of ultrafast
dynamics can be challenging. For example, there is a wide range of ultrafast
spectroscopy techniques, and their results in GaN samples prepared in differ-
ent laboratories exhibit a wide range of values. The time scale of hot electron
cooling has been measured by several authors without a clear consensus, while
the difficulty of growing high quality p-doped samples of GaN has limited
measurements of hot hole cooling times (see Chapter 2). Similarly, the intrin-
sic rate of exciton radiative recombination can be investigated with a range
of techniques. Transient photoluminescence (PL) is perhaps the most widely
used method to measure radiative lifetimes, but the apparent decay rate of the
PL can be the result of multiple competing processes, including exciton trap-
ping at defects and exciton-phonon scattering, rather than an intrinsic exciton
recombination rate. Excitons can also dissociate at high temperature, making
the observed time-dependent PL signal even more challenging to interpret [16]
(see Chapter 4).

Typical theoretical treatments for predicting carrier dynamics and light emis-
sion employ empirical models to interpret and qualitatively reproduce exper-
imental observations. Among other limitations, they make assumptions on
the nature of certain interaction, and neglect others altogether. For example,
in polar materials like III-V and III-nitride semiconductors, empirical models
for the e-ph interaction assume the polar longitudinal optical phonon mode
dominates the phonon scattering processes [18], neglecting the contribution of
other modes in carrier relaxation. Similarly, theoretical approaches for radia-
tive recombination, especially in bulk materials, treat electrons and holes as
independent, without taking into account the Coulomb interaction between
them and the formation of excitons [12, 19].



6

1.3 First-Principles Computational Methods

To overcome the limitations of experiment and empirical theoretical treat-
ments, a substantial field has formed focused on the application and devel-
opment of computational techniques to compute materials properties starting
from first principles, or “ab initio”. These methods employ quantum mechan-
ics and use only the material’s atomic crystal structure as input. The resulting
calculations are free of fitted parameters, but typically require substantial com-
putational resources, specialized codes and numerical technique, and a steep
learning curve. Powerful methods for computing ultrafast dynamics and light
emission in materials from first principles have been developed in the last few
years. Much of the work in the Bernardi group is focused on the develop-
ment, advancement, and application of these techniques. There are countless
resources introducing the first-principles methods employed in this work and
a detailed discussion is beyond the scope of this thesis. We will breifly outline
some of the methods used in this work and provide resources for further read-
ing. The relevant computational details will be discussed in connection with
each result presented in the following chapters.

First-principles calculations are typically rooted in the formalism known as
density functional theory (DFT), in which Schrodinger’s equation is recast
in terms of a functional of a single quantity, the charge density, to compute
ground-state properties of a many-body system. In Kohn-Sham (KS) DFT,
the intractable many-electron Schrodinger equation is replaced with a more
practical set of independent particle equations where all many-body effects
are contained in the exchange-correlation functional, which is not known ex-
actly but for which approximations can be constructed. A variety of widely
used “flavors” of DFT, or approximate exchange-correlation functionals, are
available, and a choice must be made balancing accuracy and computational
cost. The calculations in this work employ either the local density approxima-
tion (LDA) or the general gradient approximation (GGA). By self-consistently
solving the system of independent particle equations and minimizing the KS
energy with respect to the density, one can obtain ground state properties such
as equilibrium crystal structure, mechanical properties, and most notably the
ground state single-particle approximate electronic wavefunctions and band
structure. Further information on DFT theory and its technical and practical
aspects can be found in Refs. [20–23].



7

Lattice dynamical properties, including the latice vibrations (and their quanta,
the phonons) can be obtained using density functional perturbation theory
(DFPT), via the linear response of the DFT energy with respect to lattice
perturbations [24]. When implemented in the plane-wave pseudopotential
method, DFPT offers many advantages over other methods (such as finite-
displacement) for computing phonons in crystalline solids, including calcula-
tion of phonon perturbation potentials (the effect of the phonon on the crystal
lattice potential seen by electrons) and phonon energies and eigenvectors at
arbitrary wavevector in the Brillouin zone using just a single unit cell of the
material in the calculation. The perturbation potentials from DFPT can be
combined with the electronic wavefunctions from DFT to obtain e-ph matrix
elements encoding the coupling of different electronic states due to phonons
[13, 25].

The e-ph matrix elements form the basic building blocks for calculating a
host of many-body phenomena, including phonon and electron self-energies,
temperature renormalization of the electronic bandstructure, and carrier life-
times. Carrier e-ph scattering rates can then obtained within the framework
of many-body perturbation theory as the imaginary part of the lowest order
electron self-energy, which is equivalent to Fermi’s golden rule [13, 14]. The
carrier scattering rates and e-ph coupling elements can be used within the
framework of the Boltzmann transport equation (BTE), a semiclassical ap-
proach for computing the flow of electron and phonon occupations in phase
space. The BTE in its most general form is a complicated set of partial differen-
tial equations coupling electron and phonon dynamics. However, with certain
approximations and simplifications, it can be made numerically tractable to
obtain transport properties from first principles, such as carrier mobilities and
real-time dynamics of excited carriers, as is done in this work [13, 14]. As we
discuss in the following chapters, while tractable, these calculations are chal-
lenging and computationally expensive as they require advanced interpolation
and Brillouin zone sampling techniques to efficiently integrate up to 109 e-ph
coupling elements.

To obtain first-principles excited state properties such as optical spectra and
excitonic states, one must go beyond the ground-state formalism of DFT.
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While different options exist depending on the nature of the system, for solid-
state materials the GW-Bethe-Salpeter equation (GW-BSE) framework is widely
employed [26, 27]. The GW method is a practical approach for computing
the electron self-energy within many-body perturbation theory from the one-
particle Green’s function [14]. In this work, it is mainly used to correct the
DFT exchange-correlation interactions and obtain accurate electronic band-
structures. For optical properties and electron-hole excitations, techniques
beyond the one-particle Green’s function are needed. Starting from the two-
body Green’s function one can construct a two-particle BSE Hamiltonian that
includes electron-hole interactions, and solve the resulting eigenvalue problem
in the electron-hole transition basis. This approach provides accurate exci-
ton wavefunctions and energies. One limitation is that fully diagonalizing the
BSE Hamiltonian can be an extremely challenging computational task, as the
size of the matrix depends on the number of electron-hole transition pairs at
each sampled k-point in reciprocal space. Iterative methods that avoid full
matrix diagonalization are much faster and can be used to obtain accurate
optical spectra without explicitly computing the exciton wavefunctions [28].
Radiative properties such as exciton radiative recombination lifetimes can be
computed using Fermi’s golden rule, however these do require the exciton wave-
functions [29]. While less challenging for lower-dimensional (0D, 1D, and 2D)
systems in which fewer k-points are needed to sample the Brillouin zone, fully
solving the BSE for bulk III-V semiconductors, requires sampling transitions
on fine k-point grids near the direct gap in the three-dimensional reciprocal
space, resulting in very large BSE matrices.

1.4 Thesis Outline

The research presented in this thesis focuses on investigating ultrafast carrier
dynamics and light emission using first principles computational methods in
GaN and related III-V semiconductors.

Chapter 2 discusses a study of ultrafast hot carrier dynamics in GaN from
first principles, with a focus on e-ph scattering and the cooling and nanoscale
dynamics of hot carriers. We find that e-ph scattering is significantly faster for
holes compared to electrons, and that for hot carriers with an initial 0.5−1 eV
excess energy, holes take a significantly shorter time (∼0.1 ps) to relax to the
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band edge compared to electrons, which take ∼1 ps. The asymmetry in the
hot carrier dynamics is shown to originate from the valence band degeneracy,
the heavier effective mass of holes compared to electrons, and the details of
the coupling to different phonon modes in the valence and conduction bands.
We show that the slow cooling of hot electrons and their long ballistic mean
free paths (over 3 nm) are a possible cause of efficiency droop in GaN light
emitting diodes. Taken together, the work sheds light on the ultrafast dy-
namics of hot carriers in GaN and the nanoscale origin of efficiency droop.
Details on the cutting-edge computational methods employed to investigate
e-ph scattering and dynamics are discussed in the Methods section (Section
2.6). These include adding a long-range correction to the e-ph interactions to
account for longitudinal optical modes in polar materials, and an implementa-
tion of a numerical real-time solver for the BTE to simulate electron dynamics.

Chapters 3 and 4 focus on method development and calculation of exciton ra-
diative recombination and light emission in bulk III-V semiconductors. Light
absorption (including excitonic effects) has been studied extensively using first-
principles calculations, but methods for computing radiative recombination
and light emission are still under development, and a rigorous approach for
excitonic radiative recombination in bulk materials has not existed until now.
In Chapter 3 we show a unified first-principles approach for computing exci-
ton radiative recombination based on the BSE method in materials ranging
from bulk crystals to nanostructures and molecules. We derive the rate of
exciton radiative recombination in bulk crystals, isolated systems, and in one-
and two-dimensional materials, using Fermi’s golden rule within the BSE ap-
proach, including thermal and dimensionality effects. We present benchmark
calculations of radiative lifetimes in a GaAs crystal. Our work provides a gen-
eral method for studying exciton recombination and light emission in bulk,
nanostructured and molecular materials from first principles.

In Chapter 4 the BSE-based formalism presented in the previous chapter is
extended to anisotropic bulk materials and applied to GaN for the first time.
We present first principles calculations of radiative lifetimes in bulk GaN as
a function of temperature, and obtain results in very good agreement with
experiment. We discuss the importance of including spin-orbit coupling and
excitonic effects for obtaining accurate intrinsic radiative lifetimes in GaN. We
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also discuss a model for accounting for thermal exciton dissociation, and com-
pare its results to temperature-dependent spectroscopic measurements. Com-
bined with the work presented in Chapter 3, our results provide an approach
for computing exciton dynamics and radiative properties in bulk anisotropic
materials, including key materials for LED technology such as the wurtzite
III-nitrides.

In Chapter 5, we return to e-ph scattering and carrier transport and dis-
cuss ongoing work on computing the carrier mobility in bulk GaN from first
principles. Using a combination of the BTE within the relaxation-time ap-
proximation and first-principles temperature- and state-dependent scattering
rates, we compute mobilities for temperatures between 200-500 K for both
electrons and holes. We compare our in-plane mobilities with previous Hall
mobility experiments and find very good agreement. However, we focus on
the proper inclusion of piezoelectric e-ph interactions in the interpolation of
the e-ph coupling elements, a technical challenge that has not yet been tackled
but that is of prime importance for studying charge transport in piezoelectric
materials, such as GaN. Ongoing efforts to include the piezoelectric interac-
tions and improve the related interpolation of the e-ph matrix elements are
discussed..
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C h a p t e r 2

ULTRAFAST HOT CARRIER DYNAMICS IN GALLIUM
NITRIDE AND THE IMPACT ON LED EFFICIENCY DROOP

The content of this chapter is taken from the following published work:

1V. A. Jhalani, J.-J. Zhou, and M. Bernardi, “Ultrafast hot carrier dynamics
in GaN and its impact on the efficiency droop”, Nano Lett. 17, 5012–5019
(2017).

2.1 Introduction

As we established above, wurtzite GaN has emerged as a promising mate-
rial whose technological benefits are driving intense research in industry and
academia. Yet, material properties essential for device performance and en-
ergy efficiency are not completely understood in GaN and remain the subject
of debate. Carrier transport and ultrafast dynamics are regulated by a range
of scattering processes; among these the electron-phonon (e-ph) interactions
[1, 2] play a dominant role on transport and dynamics near room temperature
in relatively pure materials. Furthemore, it also regulates the energy loss (or
“cooling”) of excited carriers injected at heterojunctions, a scenario of rele-
vance in GaN light emitting diodes. Hot carriers (HCs) are also central in
degradation and current leakage in GaN transistors for power electronics [3,
4], and set the operational basis for hot electron transistors [5].

Microscopic understanding of HC dynamics is challenging in GaN since ex-
perimental results are modulated by defects and interfaces, and are typically
interpreted with empirical models [6–12]. For example, hot electron cooling
times measured by different groups range over two orders of magnitude [6, 8–
13], and reports of hot hole dynamics are scarce [7]. Previous first-principles
calculations on GaN have focused on Auger recombination [14, 15] and its role
as a possible cause of efficiency droop, though other mechanisms have been
proposed [16], including HC effects and electron leakage. These processes have
seen less extensive theoretical treatment compared to Auger recombination,
leaving simplified models to guide device design.

https://doi.org/10.1021/acs.nanolett.7b02212
https://doi.org/10.1021/acs.nanolett.7b02212
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Prior to this work, we developed first-principles calculations of carrier dy-
namics [2] that can obtain carrier mobility [17, 18], ultrafast dynamics [19–
22], HC relaxation times [19, 20] and ballistic mean free paths [19, 21] in ex-
cellent agreement with experiment. These approaches are free of empirical
parameters and use the structure of the material as the only input. In par-
ticular, we recently developed a method [18] to accurately compute the e-ph
relaxation times (RTs), namely the average time between e-ph collisions, in
polar materials, as is needed for GaN. These approaches are extended in this
work to investigate HC dynamics in GaN from first principles.

Here, we compute the e-ph RTs over a wide energy range, and study the
cooling of HCs by numerically solving the time-dependent electron Boltzmann
transport equation (BTE). Both the RTs and the simulated ultrafast dynam-
ics reveal a large asymmetry between the hot electron and hole dynamics,
with hot holes relaxing to the band edges significantly faster than hot elec-
trons. The origin of this asymmetry, the role of different phonon modes and
the limitations and failure of phenomenological models are analyzed in detail.
We additionally find significantly longer mean free paths (MFPs) for electrons
compared to holes, with implications for GaN devices. We show that the slow
cooling rate of hot electrons can lead to inefficient light emission at high cur-
rent, thus demonstrating that the nanoscale dynamics of HCs play a key role
in LED efficiency droop.

2.2 Electron-Phonon Scattering in GaN

In polar materials like GaN, empirical models typically assume that polar opti-
cal phonons − and in particular, the longitudinal optical (LO) mode in GaN −
dominate carrier scattering due to their long-range interactions with carriers.
The empirical Fröhlich model [23] for the LO mode predicts an e-ph coupling
matrix element gF (q) = i/q[(e2~ω0ε

−1
ph )/(2V )]1/2, where V is the volume, q

is the magnitude of the phonon wavevector q, ~ω0 the LO phonon energy,
and ε−1

ph = ε−1
∞ − ε−1

0 the phonon contribution to the dielectric screening, with
ε∞ and ε0 the high- and low-frequency dielectric constants, respectively. The
intra-valley e-ph scattering rate Γk (where k is the electron crystal momen-
tum) due to the empirical Fröhlich coupling gF can be obtained analytically
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for carriers in a spherical parabolic band with effective mass m∗ and energy
Ek = ~2k2/2m∗ [1, 24]:

Γk = τ−1
0

(
Ek

~ω0

)− 1
2

[
N0 sinh−1

(
Ek

~ω0

)1
2

+ (N0 + 1) sinh−1

(
Ek

~ω0

− 1

)1
2

]
(2.1)

where N0 is the Bose-Einstein occupation factor for LO phonons and τ−1
0 =

ε−1
p [(e2ω0)/(2π~)] · [m∗/(2~ω0)]1/2 is the inverse Fröhlich time. In this work,
the rate in Eq. 2.1 is used to compare the widely employed Fröhlich empirical
model with our first-principles results.

Following an approach we recently developed [18], we combine density func-
tional theory (DFT) [25], density functional perturbation theory (DFPT) [26]
and ab initio Fröhlich [27] calculations to compute the short- and long-range
contributions to the e-ph coupling matrix elements, which are then interpo-
lated on fine Brillouin zone (BZ) grids to converge the e-ph scattering rates
Γnk for each electronic band n and crystal momentum k (see Computational
Methods, Section 2.6). For the polar LO mode scattering, our ab initio Fröh-
lich calculations [27] differ in important ways from the empirical Fröhlich
model as they include Born effective charges and anisotropic dielectric tensors,
both computed with DFPT, and account for the electronic bandstructure and
phonon dispersions (see Section 2.6). Here and in the following, the carrier
excess energies are defined as the energy above the conduction band minimum
(CBM) for the electrons, and the energy below the valence band maximum
(VBM) for the holes.

The scattering rates and their inverse, the e-ph RTs τnk = Γ−1
nk , contain

rich microscopic information on the carrier dynamics. The bandstructure near
the band edges, a schematic for which is given for reference in the inset of
Fig. 2.1A, crucially determines the e-ph scattering rates. While the conduc-
tion band exhibits a single parabolic valley at Γ, the valence band edge consists
of a light-hole and two heavy-hole bands with anisotropic effective masses and
degeneracy along the Γ−A direction. Fig. 2.1A shows our computed e-ph scat-
tering rates of electrons and holes with energies within 5 eV of the band edges.
Both the total scattering rate contributed by all phonons and the LO mode
contribution alone are shown; the empirical Fröhlich rate of Eq. 2.1, computed
using parameters from the literature [28, 29], is also given for comparison. The
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Figure 2.1: First-principles e-ph scattering rates and relaxation times.
(A) e-ph scattering rates in GaN at 300 K, for electrons and holes with energies
within 5 eV of the band edges. Both the LO contribution and the total rate
due to all phonon modes are shown. The red lines are the empirical Fröhlich
scattering rates (see Eq. 2.1). A schematic of the bandstructure of GaN near
the band edges is shown in the inset. (B) The e-ph relaxation times, defined
as the inverse of the total scattering rates in (A). The zero of the energy axis
is the valence band maximum, and the band gap is shown as a shaded area.
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full mode-resolved scattering rates are shown in Fig. 2.5 of the Supplementary
Materials (Section 2.7). For both electrons and holes, the scattering rate in
Fig. 2.1A is very small within an LO phonon energy (~ω0≈ 100 meV) of the
band edges, since the dominant process in this energy range is LO phonon ab-
sorption. The scattering rate increases rapidly up to ∼150 meV excess energy
due to an increase in the phase space for LO phonon emission above ~ω0. The
trend at low energy in the conduction band is consistent with the conventional
picture, with LO mode emission dominating intra-valley scattering in the con-
duction valley at Γ, roughly up to 2 eV above the CBM. At higher energy in
the conduction band, the total and LO mode electron scattering rates differ
substantially due to inter-band scattering mediated by all phonon modes in
roughly equal measure (see Fig. 2.5).

In the valence band, due to the presence of multiple bands at Γ, both intra-
valley and inter-valley small-q transitions are possible within ∼1 eV of the
VBM, thus resulting in a higher LO scattering rate (by roughly a factor of
two) than in the conduction band within 1 eV of the CBM. The LO contri-
bution becomes roughly constant at hole excess energies greater than ∼0.2
eV. Different from the conduction band where LO phonon emission is the
only active process, the total scattering rate keeps increasing for holes with
excess energy above 0.2 eV due to intra-valley and inter-valley scattering con-
tributed, in roughly equal measure, by all acoustic and optical phonon modes
(see Fig. 2.5). Within 2 eV of the band edges, the DOS in the valence band is
greater than in the conduction band due to the presence of multiple valence
bands and to the higher effective masses of holes compared to electrons. These
effects result in scattering from phonon modes other than the LO becoming
important at lower excess energies in the valence band due to a greater phase
space for large-q scattering. Overall, the stronger LO polar and non-polar
contributions in the valence band result in significantly higher scattering rates
for holes compared to electrons within 2 eV of the band edges. This asymme-
try has important consequences for carrier dynamics.

The empirical Fröhlich model shows two major limitations in reproducing the
first-principles trends (see Fig. 2.1A). The empirical and first-principles rates
exhibit opposite trends at excess energies greater than ∼150 meV. For ener-
gies where the LO phonon emission rate is roughly constant, the discrepancy
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of the empirical Fröhlich rate is as large as 30−50% for both electrons and
holes. Note that first-principles calculations include all phonon modes on the
same footing at all energies, while empirical e-ph calculations would account
for modes other than the LO through mode-specific empirical deformation po-
tentials [24]. Traditionally employed empirical models are thus inadequate to
compute the e-ph scattering rates due to all phonon modes over a wide energy
range, as is done here, and the first-principles approach is necessary.

As a consequence of the scattering rate asymmetry, the computed e-ph RTs
(see Fig. 2.1B) of holes are overall significantly shorter than the RTs of elec-
trons. Within 2 eV of the band edges, the electron RTs range between 10−50
fs, while the hole RTs are of order 3−20 fs. The electron RT above the thresh-
old for LO phonon emission in the conduction band is ∼12 fs, in very good
agreement with the LO phonon emission time of 16 fs recently measured for
electrons by Suntrup et al. [13]. The detailed energy dependence of the RTs
and scattering rates reported here is valuable for GaN device design.

2.3 Origin of the Carrier Relaxation Asymmetry in GaN

We address the question of whether the asymmetry between the electron and
hole scattering rates found here is a mere consequence of the heavier effec-
tive mass of holes compared to electrons in GaN. In doing so, we develop an
intuition for the origin of this asymmetry by analyzing separately the polar
and non-polar e-ph scattering contributions. As noted above, the two sources
of e-ph scattering are the long-range interaction from the LO polar mode
and the short-range interactions from all other non-polar phonons. Because
e-ph processes are determined by the e-ph coupling strength and the phase
space available for scattering (see Section 2.6, Eq. 2.3), the non-polar scatter-
ing rate Γ(NP) approximately follows the same energy trend as the electronic
DOS, D(E), multiplied by an average e-ph coupling strength 〈g2〉, so that
Γ(NP)(E)∝〈g2〉D(E). On the other hand, due to the long-range electrostatic
nature of the polar interaction, the strength of LO coupling is insensitive to
the specific electronic states involved in the scattering process. The LO mode
polar coupling behaves as |gLO(q)|2∼ 1/q2 at small phonon wavevector q, re-
sulting in much stronger LO scattering for small-q transitions. Due to this
particular phonon wavevector dependence, the scattering rate Γ(P) due to the
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Figure 2.2: Origin of the scattering rate asymmetry. Ratio of the Bril-
louin zone averaged e-ph scattering rates of holes (Γh) to those of electrons (Γe)
as a function of carrier excess energy. The zeros of the excess energy are the
conduction and valence band edges for electrons and holes, respectively. The
data points are computed using rates due to polar LO phonons (green), non-
polar phonons (red), and all phonon modes (blue). The dashed lines indicate
the ratios (m∗h/m
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e)

1/2 and (m∗hDOS/m
∗
e)

3/2 discussed in the text.

polar LO mode approaches the band edge with a constant trend in energy, as
opposed to being proportional to the DOS as in the non-polar case. In the
empirical Fröhlich formula (see Eq. 2.1), the polar scattering rate behaves as
a simple function of the effective mass, Γ(P) ∝ (m∗)1/2.

To quantify the scattering rate asymmetry, we compute in Fig. 2.2 the ra-
tio of the BZ averaged scattering rate of holes (Γh) to that of electrons (Γe).
The ratio Γh/Γe is shown for the average total, polar and non-polar scattering
rates as a function of excess energy. For the LO polar contribution, the ratio
closely matches the result expected based on the empirical Fröhlich model (see
Eq. 2.1), namely, Γ

(P)
h /Γ

(P)
e ≈ (m∗h/m

∗
e)

1/2, where m∗h is the experimental hole
effective mass [28]. The agreement between the empirical and ab initio ratios
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of LO mode scattering rates indicates that the heavier hole effective mass is
the main source of the LO polar scattering asymmetry, and that the empir-
ical and ab initio treatments roughly factor out in the polar scattering rate
ratio when a single m∗h value is employed as a proxy of the multiple hole bands.

Since the non-polar scattering rate is proportional to the DOS, the ratio be-
tween the ab initio non-polar scattering rates is compared in Fig. 2.2 with a
heuristic DOS ratio. Since the DOS of a parabolic band is proportional to
(m∗)3/2 [30], we expect that the ratio of the non-polar scattering rates at low
energy is approximately Γ

(NP)
h /Γ

(NP)
e ≈(m∗hDOS/m

∗
e)

3/2, wherem∗hDOS is the hole
DOS effective mass [29]. The ab initio and DOS-based empirical non-polar ra-
tios are in reasonable agreement. However, the inaccuracy of approximating
multiple valence bands with a single DOS effective mass for holes, combined
with the stronger average e-ph coupling strength for electrons (see Fig. 2.6 and
Section 2.7A in the Supplementary Materials), both push the ratio below the
heuristic prediction, with an energy-dependent discrepancy. Therefore, the
ratio between the non-polar scattering rates cannot be accurately estimated
without detailed knowledge of the bandstructure and e-ph coupling strengths.

Finally, since the total scattering rate is determined by the sum of the po-
lar and non-polar contributions, the ratio between the total scattering rates of
holes and electrons cannot be estimated by a simple heuristic model based on
the effective masses. The average ab initio ratio between the total scattering
rates found here is Γh/Γe ≈ 3 within 1 eV of the band edges, and is brack-
eted by the non-polar and polar ratios. Detailed first-principles calculations,
as employed here, are necessary to quantify this asymmetry in the scattering
rates.

2.4 Real-time Hot Carrier Dynamics.

Simulating the HC dynamics in real time further highlights the different be-
havior of electrons and holes in GaN. To this end, we carry out numerical
simulations of the dynamics of hot electron and hole populations injected in
GaN with a range of initial excess energies. To represent the injected carri-
ers, we employ narrow Gaussians distributions centered at the initial excess
energy, and solve the electron BTE [1] in real time fully ab initio [2], using
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Figure 2.3: Ultrafast dynamics of hot carriers in GaN. Hot electrons
(blue) and holes (red) are injected with a 1 eV excess energy with respect to
the band edges, as modeled by creating initial Gaussian carrier distributions
with a small energy width. The occupations fnk for electrons and 1 − fnk
for holes are shown at various times in the square panels along the A−Γ−M
line of the Brillouin zone, with the point size proportional to the logarithm
of the occupations. Left of each occupation panel we plot the average carrier
concentrations (in arbitrary units) as a function of energy. The fluctuations
in the electron concentration are indicated with an arrow in the 75 fs and 100
fs frames, along with their spacing of ~ω0 ≈ 100 meV.

first-principles e-ph matrix elements, bandstructures and phonon dispersions
(see Section 2.6). The carrier occupations are time-stepped using a 4th-order
Runge-Kutta algorithm, while the phonon occupations are kept at 300 K, so
that hot phonon effects are neglected.

Fig. 2.3 shows the time evolution of the electron and hole populations af-
ter injection with a 1 eV initial excess energy. At each time step, we analyze
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both the carrier occupations (fnk for electrons and 1−fnk for holes) along the
A−Γ−M line of the BZ and the carrier concentrations as a function of energy,
f(E), obtained by integrating the occupations at each energy over the BZ (see
Section 2.6). Following HC generation, the electron and hole distributions
broaden in energy and approach a Fermi-Dirac-like shape as they shift toward
lower excess energies, eventually reaching the band edges. Both electrons and
holes ultimately thermalize to a 300 K Fermi-Dirac distribution in equilibrium
with the phonons, thus reaching the correct long-time limit for our simulations.

We find that while holes reach the band edges and cool in ∼80 fs, electrons
are still far from equilibrium at the same time. Electron cooling is roughly
five times slower, with electrons relaxing to the band edges in ∼200 fs after
injection, and fully thermalizing to the 300 K equilibrium distribution in 400
fs. Interestingly, the dominant LO phonon emission for electrons results in
distribution fluctuations at energies spaced apart by ~ω0 ≈ 100 meV. These
“wiggles” in the distributions are seen most clearly for electrons in the 75 fs
and 100 fs panels in Fig. 2.3. The same simulation carried out for an initial
carrier excess energy of 0.5 eV (see Fig. 2.7 in Section 2.7) shows even more
pronounced fluctuations in the electron population. The asymmetry found
here in the time scale for hot electron and hole cooling has not been reported
previously, and is distinct from the transport asymmetry [16] due to the dif-
ferent effective masses and mobilities of electrons and holes.

Comparing our real-time dynamics with experiments is not straightforward,
and should be done keeping in mind that our results pertain to the low carrier
concentration regime. Several ultrafast pump-probe experiments have been
carried out in GaN, but due to the high HC concentrations reached in some
of these measurements, hot phonon effects become relevant as the emitted
phonons re-excite the carriers, thus slowing down HC cooling compared to
the low carrier concentration regime studied here. For example, Ye et al. [6]
measured hot electron cooling in n-doped GaN. They concluded that LO emis-
sion is the dominant mechanism for hot electron cooling, consistent with our
findings. They extracted a 0.2 ps LO emission time from their measurements,
and observed that this value is significantly longer than the ∼10 fs empirical
Fröhlich RT; this discrepancy is attributed in their work to hot phonon effects
resulting from the high carrier density. In a subsequent work, the same au-
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thors measured the cooling of hot holes in p-doped GaN [7]. They found that
the hot hole data is difficult to fit with an LO phonon emission model because
of the complexity of the valence band. We argue that the reason for this dis-
crepancy, as shown in our work, is the significant scattering by phonon modes
other than the LO in the valence band, even at low excess energy. While dif-
ferences in the electron and hole dynamics are not discussed by Ye et al. [7],
note that in their work the details of the early time evolution cannot be seen
due to the 100 fs duration of the pump pulse, which sets the time resolution of
the measurement. Our data provides evidence for an asymmetry between the
electron and hole cooling times and mechanisms, which should be observable
in new experiments with ∼10 fs resolution.
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Figure 2.4: Role of hot carriers in efficiency droop. (A) Mean free paths,
computed using calculated band velocities and e-ph relaxation times, along two
crystal directions in GaN. The c-axis direction is labeled as [0001] and the in-
plane direction as [1000]. For holes, the lower mean free path branch is due to
the heavy-hole (hh) band, and the upper branch to the light-hole (lh) bands.
The zero of the energy axis is the valence band maximum, and the band gap
is shown with a shaded area. (B)-(C) Schematic band diagram of the active
region of a InGaN/GaN LED. Shown are the stacked quantum wells, both
without and with a driving electric field, in (B) and (C) respectively. The
valence and conduction band offsets, ∆Ev and ∆Ec, are also indicated.
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2.5 Role of Hot Carriers in LED Efficiency Droop.

We analyze the role of HCs in GaN LED devices. GaN and III-nitride LEDs
are bipolar devices that emit light as a result of the recombination of elec-
trons and holes in quantum well (QW) active layers [31, 32]. A key figure of
merit in LEDs is the external quantum efficiency (EQE), defined as the ratio
of generated photons per electron-hole pair introduced at the contacts. One of
the main barriers toward commercialization of GaN LEDs is efficiency droop,
a decay of the EQE at high driving current. Almost all GaN LEDs exhibit
a maximum EQE at low current densities, with the EQE rapidly decreasing
above the optimal current [16].

In a typical GaN LED design [31], electrons and holes are injected at the
opposite ends of an active region that contains multiple InGaN QWs and has
the bandstructure shown schematically in Fig. 2.4B. The multi-QW active re-
gion typically consists of up to 10 periods of a ∼3 nm thick InxGa1−xN QW
followed by an undoped ∼10 nm GaN spacer [16], a structure designed to max-
imize carrier confinement and recombination in the light emitting InGaN QWs.
Due to the band offsets at the GaN/InGaN interface, electrons and holes are
hot when injected into the QW, and need to cool to the band edges to emit
light efficiently. The excess energy of the HCs at injection in the QW depends
on the band offsets ∆Ec for electrons and ∆Ev for holes (see Fig. 2.4B), which
are typically of order 0.5 eV for InGaN/GaN devices.

Carriers injected into the active region scatter with phonons, and after sev-
eral phonon emission events lose enough energy to be confined in the QW by
the band offset potential, following which the carriers cool to the QW band
edges and recombine to emit light. The e-ph mean free paths (MFPs) Lnk
characterize the average length traveled between phonon emission events by
carriers moving in the direction k̂ in band n (here, the top valence bands for
holes and bottom conduction band for electrons). The MFPs are obtained
here as Lnk = vnkτnk, using Wannier-interpolated band velocities vnk [33, 34]
and the e-ph relaxation times τnk given in Fig. 2.1B. Fig. 2.4A shows the
computed e-ph MFPs for carriers moving along the c-axis [0001] and in-plane
[1000] directions in GaN, for energies within 1 eV of the band edges, which are
typical for carrier injection in GaN LEDs. The slow hot electron cooling via
LO emission results in relatively long electron MFPs ranging from 10 nm near
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the CBM to 3 nm between 0.25−1 eV above the CBM. For comparison, the
hole MFPs are much shorter, ∼3 nm close to the VBM and only 0.5 nm for the
heavy-hole and 1.5 nm for the light-hole bands between 0.25−1 eV below the
VBM. Note that these MFPs are lower bounds that pertain to the low carrier
concentration regime, and that hot phonon effects can increase these values at
high carrier concentration, especially for electrons where the only active e-ph
scattering mechanism is LO phonon emission.

Since the typical QW thickness is ∼3 nm, the longer electron MFPs indi-
cate that electrons need to cross on average several QWs before cooling to
the band edge, while holes can cool effectively within a single QW. A fact
relevant for droop is that as the current is increased, the driving electric field
increases and further tilts the band edges in the active region, resulting in the
tilted staircase potential shown in Fig. 2.4C. For typical LEDs operated at
droop regime currents, using the devices in Ref. [35] as an example, the driv-
ing voltage is roughly 5 V. Assuming that ∼3 V fall over a roughly 150 nm
thick undoped active region, the resulting active region electric field is of order
2×105 V/cm. For electrons losing an LO phonon energy of ∼100 meV as they
travel a 3 nm MFP length, the cooling rate is of order 100 meV over 3 nm, and
thus roughly 3 × 105 eV/cm. Droop thus occurs in a regime where the band
tilting and the electron cooling rate are comparable, so that electrons cannot
cool effectively against the tilted band edges. In this scenario, electrons that
do not cool in the QW are swept by the electric field into the next QW, until
a fraction of electrons leaks out of the active region without recombining ra-
diatively, leading to a decreased EQE at high current as observed in efficiency
droop. Our analysis highlights that HC cooling, and in particular the slow LO
phonon emission rate of hot electrons occurring over lengths comparable with
the QW thickness, can be an important factor determining efficiency droop.

The mitigation of droop seen experimentally by increasing the QW thick-
ness [36] and number of QWs in the active region [35] is consistent with our
findings. In our model of hot electron leakage, increasing the QW thickness
or the total active region thickness will improve HC cooling and decrease the
probability of electrons overflying the QWs, thus increasing the EQE. Interest-
ingly, the above reports attribute the droop mitigation primarily to reduced
Auger recombination rather than HC effects. While Auger processes may play
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a role in droop, experimental evidence for Auger recombination in GaN LEDs
is still scarce [16, 37]. Auger processes, if present with a high enough rate,
would need to coexist with the e-ph scattering processes studied here, which
are relevant at all carrier concentrations. Most notably, it has been found
that the mechanism responsible for droop increases in strength at lower tem-
peratures [38]. This behavior is in contrast with Auger scattering, since the
dominant phonon-assisted Auger processes [15] would lead to stronger droop
at higher temperatures. Note instead that e-ph scattering increases with in-
creasing temperatures, so that lower temperatures are associated with longer
hot carrier MFPs. Our model thus predicts that lower temperatures lead to
longer electron MFPs and thus increased electron leakage and efficiency droop,
consistent with experiment. The temperature dependence clearly suggests that
e-ph scattering plays a key role in the efficiency droop.

Several authors have discussed HC effects and QW overfly as a potential source
of droop [16, 39], showing that the use of electron blocking layers to stop carrier
leakage and staircase injectors to lower carrier excess energy can drastically
mitigate droop. Our first-principles calculations of e-ph scattering, HC cooling
and MFPs provide a quantitative basis for understanding such HC effects. We
conclude that the different cooling rates of hot electrons and holes found here,
together with the longer electron MFPs compared to holes, can play an im-
portant role in GaN LEDs efficiency droop and deserve further experimental
investigation.

In summary, we apply first-principles calculations to shed light on the micro-
scopic HC dynamics in GaN, providing details beyond the reach of previously
employed theoretical and experimental methods. Our key findings include a
significant difference in hot hole and electron scattering and cooling, the ori-
gin of this asymmetry, and the non-negligible role of scattering mechanisms
besides the polar LO mode for holes. A model is presented to explain droop
as a consequence of hot electron cooling. Our results can be employed to in-
clude HC dynamics in GaN device scale modeling, which typically neglects
HC effects. Future work will extend our calculations to InGaN and AlGaN.
Taken together, our computational approach advances the design of GaN de-
vices, and enables the engineering of novel lighting materials with microscopic
insight.
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2.6 Computational Methods

We carry out ab initio calculations on GaN in the wurtzite structure with
relaxed lattice parameters of a=3.17Å and c=5.16Å. The ground-state elec-
tronic structure is computed using the Quantum Espresso code [40] within
the local density approximation (LDA) [41] of DFT. We employ a plane-wave
kinetic energy cutoff of 80 Ry and scalar-relativistic norm-conserving pseu-
dopotentials [42] for both Ga and N. The pseudopotential of Ga includes a
non-linear core correction [43] to account for the effect of the shallow 3d core
states. The ground-state charge density is obtained using a 12×12×12 k-point
grid, following which a non-self-consistent calculation is employed to obtain
the Kohn-Sham eigenvalues and wavefunctions on an 8×8×8 k-point grid. We
construct maximally localized Wannier functions (WFs) [44] using the Wan-
nier90 code [45]. The Kohn-Sham wavefunctions are first projected onto four
sp3 orbitals on each Ga and N atom, for a total of 16 wannierized bands. The
WF spread is then minimized, and the relevant energy windows [44] are ad-
justed until the interpolated bandstructure can smoothly reproduce the LDA
result within ∼10 meV throughout the BZ. The LDA eigenvalues are then
corrected using the GW [46] quasiparticle energies of GaN computed in Ref.
[47], by extracting an average energy dependent self-energy that is employed
to apply a scissor shift of the conduction band minimum and a linear energy
stretch of the valence and conduction band energies. Using the GW-corrected
eigenvalues together with the WFs, interpolated GW quasiparticle energies
with quality comparable to those in Ref. [47] are obtained, and employed in
all calculations described below. The WF projected DOS in Fig. 2.6 of the
Supplementary Materials (Section 2.7) is computed by projecting the Kohn-
Sham wavefunctions |ψnk〉 onto the WFs localized on the Ga and N atoms,
respectively, using

∑
nk,α∈{Ga, N} 〈ψnk|α〉 〈α|ψnk〉 δ(E − Enk).

Electron-phonon Scattering Calculations

We use density functional perturbation theory (DFPT) [26] to compute lattice
dynamical properties and e-ph matrix elements gnn′ν(k,q) [2] on coarse 8×8×8

k-point and 4×4×4 q-point grids in the BZ. Here and in the following, the e-ph
matrix elements [2] describe an electron in Bloch state |nk〉, with quasiparticle
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energy Enk, that scatters into the state |n′k + q〉 with quasiparticle energy
En′k+q, due to a phonon with branch index ν, wavevector q and frequency
ωνq. The electron and phonon energies and the e-ph matrix elements are then
interpolated on significantly finer grids using WFs [48]. Wannier interpolation
of the matrix elements relies on the spatial localization of the e-ph interaction.
In polar materials like GaN, however, the interaction of an electron with an
LO phonon diverges as ∼1/q as predicted by the Fröhlich model [23, 27]. This
singularity for q → 0 results from the long-range field generated by the LO
mode and is incompatible with Wannier interpolation. To overcome this issue,
the e-ph matrix elements are separated into short- (S) and long-range (L) parts
[27], gnn′ν(k,q) = gSnn′ν(k,q) + gLnn′ν(k,q), where gS is computed by Wannier
interpolation and gL is evaluated using an analytical ab initio Fröhlich e-ph
coupling based on the Vogl model [49]:

gLnn′ν(k,q) = i
4π

Ω

e2

4πε0

∑
κ

(
~

2ωνqNMκ

) 1
2 ∑
G 6=−q

(q + G) · Z∗κ · eκν(q)

(q + G) · ε∞ · (q + G)

× 〈Ψn′k+q|ei(q+G)·(r−τκ)|Ψnk〉 ,
(2.2)

where G is a reciprocal lattice vector, Ω is the volume of the unit cell, N is the
number of points in the q-grid, ε∞ is the high-frequency permittivity, andMκ,
τκ, and Z∗κ are the mass, position, and Born effective charge tensor of atom κ

in the unit cell, respectively, and eκν(q) is a vibrational eigenmode normalized
in the unit cell. Note that we neglected a quadrupole moment contribution
to polar phonon scattering due to the piezoelectric interaction [18, 49]; we
have verified that this approximation has a negligible effect on the hot carrier
dynamics. However, we found that it does play a non-negligible role in the
carrier mobility, as discussed in Chapter 5.

The e-ph scattering rate Γnk for an electronic state with band n and crys-
tal momentum k is obtained from the imaginary part of the lowest-order e-ph
self-energy, using [1, 2]:

Γnk =
2π

~
∑
n′qν

|gnn′ν(k,q)|2×

[(Nνq + 1− fn′k+q) δ(Enk − ~ωνq − En′k+q)

+ (Nνq + fn′k+q) δ(Enk + ~ωνq − En′k+q)],

(2.3)

where Enk and ~ωνq are the electron quasiparticle and phonon energies, re-
spectively, and fnk and Nνq the corresponding equilibrium occupations at 300
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K. The scattering rate due to a given phonon mode is obtained by restricting
the sum in Eq. 2.3 to the corresponding phonon branch index ν. Using an
approach we recently developed [18], we compute and converge the scattering
rate in Eq. (2.3) with an in-house developed code that can carry out, among
other tasks, e-ph calculations analogous to the EPW code [50]. We split |g|2
in Eq. (2.3) into the long-range part |gL|2 and the remainder (|g|2−|gL|2), and
separately compute and converge Γnk for these two contributions, which are
then added up to obtain the total scattering rate. This approach leads to a
dramatic speed-up compared to converging Eq. (2.3) with |g|2 = |gS + gL|2 di-
rectly [18]. The scattering rate is computed for k points on a fine 100×100×100

grid in the BZ, using Gaussian broadening with a small parameter of 8 meV
to approximate the δ function in Eq. (2.3). For each k point, we converge
the long-range contribution with 106 random q points sampled from a Cauchy
distribution [18], and the remainder contribution with 105 random q points
from a uniform distribution. Convergence of all quantities is carefully verified.

Real-time Carrier Dynamics Simulations

We simulate HC cooling due to e-ph scattering in bulk GaN in the absence of
external fields. The initial HC distribution is modeled with a narrow Gaussian
centered at the initial HC energy. Separate calculations are carried out for
electrons and holes, and for the two values of initial excess energy studied here
(0.5 eV and 1 eV). The time evolution of the carrier distributions is obtained
by solving the BTE [1, 2]:

∂fnk(t)

∂t
=− 2π

~
∑
n′qν

|gnn′ν(k,q)|2[δ(Enk−~ωνq−En′k+q)Fem(t)

+ δ(Enk + ~ωνq − En′k+q)Fabs(t)],

(2.4)

where fnk(t) is the time-dependent electron distribution, the e-ph matrix ele-
ments gnn′ν(k,q) are computed in the ground state, and the phonon emission
(Fem) and absorption (Fabs) terms are computed at each time step as [2]:

Fabs = fnk(1− fn′k+q)Nνq − fn′k+q(1− fnk)(Nνq + 1)

Fem = fnk(1− fn′k+q)(Nνq + 1)− fn′k+q(1− fnk)Nνq.
(2.5)

Phonon-phonon scattering and the change in phonon occupations are neglected
in our simulations, where we fix Nνq to the equilibrium phonon occupations at
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300 K. This approximation is justified in the low carrier concentration limit,
in which hot phonon effects are negligible. We solve Eq. (2.4) numerically
using the 4th-order Runge-Kutta method with a time step of 1 fs, using uni-
form fine grids of up to 100×100×100 k- and q-points in the BZ. The BZ
averaged energy-dependent carrier populations f̄(E, t) at energy E used in
Fig. 2.3 are obtained as f̄(E, t) =

∑
nk fnk(t)δ(εnk − E) via tetrahedron inte-

gration. We developed an efficient scheme to speed up the solution of the BTE,
to be detailed elsewhere, which combines MPI and OpenMP parallelizations
to repeatedly compute the e-ph matrix elements and converge the scattering
integral at each time step.
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2.7 Supplementary Material
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Figure 2.5: Phonon mode-resolved electron-phonon scattering rates.
(A) e-ph scattering rates due to each of the 12 phonon modes in a unit cell of
GaN at 300 K, shown for electrons and holes with energies within 5 eV of the
band edges. Except for mode 12, which is the LO mode, all other modes have
similar values of the scattering rate at each energy. The zero of the energy
axis is the valence band maximum, and the shaded area is the band gap. For
illustration purposes, modes are labeled according to increasing frequency at
each q-point, and thus according to their branch index, as color coded in panel
(B). (B) Phonon dispersions along high-symmetry lines, showing the phonon
branch labeling used in (A).
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Section 2.7A. Origin of the stronger e-ph coupling for electrons com-
pared to holes.

As discussed in the main text, the non-polar scattering rate Γ(NP) approxi-
mately follows the same energy trend as the electronic DOS, D(E), multiplied
by an average e-ph coupling strength 〈g2〉, so that Γ(NP)(E)∝〈g2〉D(E). The
non-polar scattering rate and the DOS are shown in Fig. 2.6A. We find a
stronger average e-ph coupling for electrons compared to holes, as seen by the
greater ratio of the scattering rate to the DOS for electrons, which is more
clearly visible in Fig. 2.6A at excess energies higher than 2 eV. Since the e-
ph coupling strength |g|2 is related to the overlap of initial and final states
with roughly the same energy, we attribute this difference in the e-ph cou-
pling strength to the different orbital characters in the valence and conduction
bands. We quantify the wavefunction overlap by computing the Wannier func-
tion (WF) projected DOS (see Section 2.6), shown in Fig. 2.6B, and the spatial
spread of the WFs centered on the N and Ga atoms, visualized in Fig. 2.6C.
We find that the valence band character is dominated by WFs centered on
N atoms with a spread of ∼0.7 Å2, while the conduction band character is
dominated by WFs centered on Ga atoms with a spread of ∼1.7 Å2. The fact
that the WFs on Ga are more extended than those on N makes them more
sensitive to local potential perturbations due to ionic displacements, resulting
in the stronger e-ph coupling seen in the conduction band. Note that this
difference in spatial extent is related to the polar nature of GaN, suggesting
that the stronger short-range e-ph coupling in the conduction band is likely
present in other polar compounds.
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Figure 2.6: Origin of the stronger electron-phonon coupling for elec-
trons compared to holes. (A) e-ph scattering rates due to all non-polar
phonon modes. The electronic DOS is also shown. Note the higher scattering
rate to DOS ratio (and thus the higher average e-ph coupling) in the con-
duction band. (B) Wannier functions (WFs) projected and total DOS. The
projected DOS for WFs centered on N and Ga atoms are shown with blue and
red filled curves, respectively. The total DOS, shown in black, is the sum of
the two. In panels (A) and (B), the zero of the energy axis is the valence band
maximum, and the band gap is shown as a shaded area. (C) Example WFs on
N and on Ga are visualized, where the spread Ω of each WF is also indicated.

Valence Band Conduction Band

Figure 2.7: Simulated hot carrier dynamics for 0.5 eV initial excess
energy. Holes (left) and electrons (right) are injected with a 0.5 eV excess
energy with respect to the band edges, as modeled by creating initial Gaussian
carrier distributions with a small energy width. The average carrier concentra-
tions as a function of energy for electrons and holes are shown at various times.
The asymmetry between the cooling times of holes (50 fs) and electrons (over
250 fs) is clearly visible, and so are the wiggles in the electron distributions,
which are spaced apart by ~ω0 ≈ 100 meV, as discussed in the main text.
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C h a p t e r 3

AB INITIO CALCULATIONS OF EXCITON RADIATIVE
LIFETIMES IN BULK CRYSTALS, NANOSTRUCTURES,

AND MOLECULES

The content of this chapter is taken from the following work:

1H.-Y. Chen, V. A. Jhalani, M. Palummo, and M. Bernardi, “Ab initio cal-
culations of exciton radiative lifetimes in bulk crystals, nanostructures and
molecules”, Submitted. arXiv preprint arXiv:1901.08747 (2019).

3.1 Introduction

Recall that excitons are neutral excitations consisting of an electron-hole pair
bound by the Coulomb interaction. In bulk metals, where the Coulomb inter-
action is screened by the conduction electrons, electron-hole pairs can be re-
garded as effectively non-interacting, and thus excitons do not form. However,
in semiconductors and insulators, and particularly in molecular and nanos-
tructured materials, where electron-hole interactions are weakly screened, ex-
citonic effects dominate the low-energy absorption spectrum and the radiative
processes [1]. Excitons play a key role in regulating carrier dynamics and light
emission processes in materials [2–5]. Yet, calculations of radiative lifetimes
typically employ simplified empirical models that can only qualitatively ex-
plain or fit the experimental data [6–8], or are carried out in the independent-
particle picture [9–11], neglecting excitons altogether. Over the last few years,
first-principles approaches have become a new tool for accurately predicting
exciton radiative lifetimes and light emission [12–14].

These approaches employ the ab initio Bethe-Salpeter equation (BSE) [15, 16]
as a starting point to compute the exciton radiative lifetimes. A calculation
of this kind was first proposed by Spataru et al. [12] to compute the radia-
tive lifetimes in a one-dimensional (1D) system (carbon nanotubes). Recently,
members of our group formulated the theory of exciton recombination and
radiative lifetimes in two-dimensional (2D) materials [13, 14], where deriving
the radiative lifetimes is more challenging, and computing and diagonalizing
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the BSE Hamiltonian is more computationally expensive compared to the 1D
case. This approach has enabled accurate predictions of the radiative life-
times, as well as their temperature dependence and anisotropy, in novel 2D
semiconductors [13, 14]. However, for the main light emitters of technological
interest, including bulk crystals such as the III-V semiconductors (where the
calculation is even more challenging than in 2D), molecules, single quantum
emitters, quantum dots and other zero-dimensional (0D) systems, an ab initio
approach for computing exciton recombination and the associated radiative
lifetimes has not yet been rigorously derived.

In this work, we present a unified formulation of exciton radiative lifetimes
in bulk crystals, 2D and 1D materials, and 0D isolated systems. The bulk and
0D cases are derived here from scratch, while the 2D and 1D cases, for which
previous derivations exist, are briefly reviewed. As a validation, we further
apply our approach to compute the radiative lifetimes in a GaAs crystal and
in several gas phase organic molecules. Our work presents a broadly applica-
ble approach to study light emission in materials, providing both the relevant
equations and an ab initio workflow for computing radiative lifetimes in ma-
terials ranging from bulk crystals to nanostructures and molecules.

The chapter is organized as follows. In Sec. 3.2 we briefly review the ab initio
BSE approach and derive the second quantization of light in materials. In
Sec. 3.3 we present a general approach for computing exciton radiative life-
times using Fermi’s golden rule, and derive the radiative rate as a function
of temperature for different cases, including bulk, 2D, 1D and 0D systems,
each in a separate subsection. In Sec. 3.4 we present numerical calculations of
radiative lifetimes in a GaAs crystal and in gas-phase organic molecules. We
summarize the results and discuss future research in Sec. 3.5.

3.2 Theoretical Framework

In this section, we briefly review the ab initio BSE approach [15, 16] for study-
ing excitons from first principles and derive the second quantization of light
in anisotropic materials.
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Excitons and the Bethe-Salpeter Equation

An exciton state can be represented in the so-called “transition space” using
pairs of electron-hole states as a basis. In a periodic system, these states are
Bloch wavefunctions characterized by the band index and crystal momentum.
Within the Tamm-Dancoff approximation, which ignores antiresonant transi-
tion terms [17], an exciton state S with center-of-mass momentum Q can be
written as a superposition of electron-hole states,

|SQ〉 =
∑
vck

ASQvck|vk〉h|ck + Q〉e , (3.1)

where v labels the valence and c the conduction bands, k is the electron crys-
tal momentum, and the subscripts e and h denote electron and hole states,
respectively. The expansion coefficients ASQvck can be obtained by solving the
BSE, which is shown diagrammatically in Fig. 3.1 and can be written as [15]

L(12; 1′2′) = L0(12; 1′2′) + L0(14̄; 1′3̄)K(3̄5̄; 4̄6̄)L(6̄2; 5̄2′), (3.2)

where we use numbers for spacetime coordinates, i.e., 1 = (r1, t1), and the
overlines denote dummy integration variables. Here, L(12; 1′2′) is the exciton
correlation function and L0(12; 1′2′) = G1(1, 2′)G1(2, 1′) its non-interacting
counterpart, with G1 the one-body Green’s function. The key ingredient in
the BSE is the kernel K(3̄5̄; 4̄6̄), which encodes the interaction between the
electron and hole. Within the GW approximation, it can be written as

K(35; 46) = −iδ(3, 4)δ(5−, 6)vc(3, 6) + iδ(3, 6)δ(4, 5)W (3+, 4), (3.3)

where the first term is the exchange and the second the screened Coulomb
interaction.

In the transition basis defined in Eq. (3.1), solving the BSE reduces to the
eigenvalue problem [16]

(Eck+Q − Evk)ASQvck +
∑
v′c′k′

Kvck,v′c′k′A
SQ
v′c′k′ = ES(Q)ASQvck (3.4)

where Eck+Q and Evk are the electron and hole quasiparticle energies, and the
kernel Kvck,v′c′k′ can be written in the electron-hole basis as [16]:

Kvck,v′c′k′ = iψvk (4̄)ψ∗ck+Q (3̄)K (3̄5̄, 4̄6̄)ψ∗v′k′ (5̄)ψc′k′+Q (6̄) , (3.5)

where ψc(v)k are conduction (valence) single-electron Bloch wavefunctions. In
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Figure 3.1: The Bethe-Salpeter equation in its Dyson form, shown using Feyn-
man diagrams. For details, see Ref. [15].

practice, the ab initio BSE is solved by constructing the kernel (typically from
the static RPA dielectric function) and diagonalizing Eq. (3.4) with a linear
algebra package. Several codes implement this workflow, including Yambo

[18], Abinit [19] and BerkeleyGW [20].

Quantization of Light in Anisotropic Materials

To derive the radiative lifetime in bulk crystals with general symmetry, we
present the non-relativistic theory of second quantization of light in bulk ma-
terials. The theory for isotropic bulk materials is presented in Ref. [21], and
extended here to anisotropic bulk materials. We write the dielectric tensor in
diagonal form, εr = diag(εx, εy, εz), and work in a generalized Coulomb gauge
in which ∇ · (ε0εrE) = 0. The equation of motion for the vector potential A

becomes

− µ0ε0εr
∂2A

∂2t
= ∇× (∇×A) = ∇(∇ ·A)−∇2A , (3.6)

using which we can construct the Lagrangian

L =
1

2

∫
dr

[
ε0Ȧ

T (r)εrȦ(r)− (∇×A)2

µ0

]
. (3.7)

Since the conjugate momentum is Π(r) = ε0εrȦ(r), the Hamiltonian reads

H =

∫
dr ΠȦ− L =

1

2

∫
dr

[
ΠTε−1

r Π

ε0
+

(∇×A)2

µ0

]
. (3.8)

We can recover the Hamiltonian for the classical electromagnetic field in vac-
uum by setting εr = I. To define creation and annihilation operators for
second quantization, we solve Eq. (3.6) and obtain

A =
∑
λq

√
~

2V ωλqε0

(
âλqeλqe

i(q·r+ωλqt) + h. c.
)
, (3.9)
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where h. c. stands for Hermitian conjugate, and the photon frequencies ωλq and
polarization vectors eλq (where λ labels the mode, and q the photon wavevec-
tor) are obtained by solving Eq. (A.15) in Appendix A, with the polarization
vectors satisfying the generalized orthogonality condition [22]

e†λqεreλ′q = δλ,λ′ . (3.10)

This equation, together with Eq. (A.15) in Appendix A, provide the pho-
ton frequencies and polarization vectors needed to compute the radiative life-
time in bulk crystals. Using these results, the electromagnetic field Hamilto-
nian in Eq. (3.8) can be converted to the standard quantum oscillator form,
H =

∑
λq ~ωλq

(
â†λqâλq + 1/2

)
. Additional details are provided in Appendix

A.

3.3 Exciton Radiative Lifetimes

General theory

We use the minimal coupling Hamiltonian to describe the interaction between
electrons and photons, Hint = − e

m
A · p, where p is the momentum operator

and A the vector potential in second quantized form (here and below, e and
m are the electron charge and mass, respectively, and we use SI units) [23].
The radiative recombination rate at zero temperature for an exciton in state
S with center-of-mass momentum Q can be written using Fermi’s golden rule
as

γS(Q) =
2π

~
∑
λq

|〈G, 1λq|Hint|SQ, 0〉|2 δ (ES(Q)− ~ωλq)

=
πe2

ε0m2V

∑
λq

1

ωλq
|eλq · pS(Q)|2 δ (ES(Q)− ~ωλq) ,

(3.11)

where the initial state |SQ, 0〉 consists of an exciton and zero photons, and
the final state |G, 1λq〉 is the electronic ground state plus one emitted photon
with polarization λ and wavevector q; V is the volume of the system. The
summation runs over the two photon polarizations and all possible wavevec-
tors q of the emitted photon, which has energy ~ωλq, while the delta function
imposes energy conservation. The transition dipole pS(Q) = 〈G|p|SQ〉 is in
general a vector with complex-valued components (in 2D and 1D systems, the
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only nonzero components are those in the plane or line containing the mate-
rial, respectively). In practice, we use the velocity operator and compute the
transition dipole as pS(Q) = (−im/~)〈G|[x, HKS]|SQ〉 to correctly include the
nonlocal part of the Kohn-Sham Hamiltonian, HKS [24]. For light emission,
the values of Q compatible with energy conservation are very small. For this
reason, we approximate the dipole of an exciton |SQ〉 as pS(Q) ≈ pS(0) by
solving, as is standard, the BSE at Q = 0.

The radiative lifetime at finite temperature T for a given exciton state S

can be computed by assuming that the exciton momentum Q has a thermal
equilibrium distribution, which is a good approximation when (as is common)
the thermalization process is much faster than radiative recombination [25].
We can thus write the radiative rate of the exciton state S as the thermal
average

〈γS〉(T ) =

∫
dQ e−ES(Q)/kBT γS(Q)∫

dQ e−ES(Q)/kBT
. (3.12)

The radiative lifetime is defined as the inverse of the radiative rate, 〈τS〉 =

〈γS〉−1. We employ an isotropic effective mass approximation for the exciton
dispersion,

ES(Q) = ES(0) +
~2Q2

2MS

, (3.13)

where the exciton mass MS is approximated as the sum of the electron and
hole effective masses, MS = m∗e + m∗h. Note that the exciton dispersion and
effective mass tensor can also be computed (rather than assumed) by solving
the BSE with a finite exciton momentum [26, 27]; this is particularly impor-
tant in those cases in which a non-parabolic exciton dispersion is expected.
For example, Cudazzo et al. [28] have shown that in 2D materials, the exci-
ton dispersion can be either linear or parabolic, depending on the character
of the exciton wavefunction at finite Q, and Qiu et al. [27] have shown that
of the two lowest-energy bright excitons in MoS2, one has a linear and the
other a parabolic dispersion. Here we focus on computing the radiative life-
time for excitons with a parabolic dispersion. For completeness, we leave the
discussion on these cases to Appendix E while focusing on parabolic dispersion
in the main text. In the following, we will assume that the exciton mass is
large enough for us to set in the delta functions ES(Q)−~ωλQ ≈ ES(0)−~ωλQ.

When only the lowest-energy bright exciton contributes to the photolumi-
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nescence, Eq. (3.12) is a good approximation for the radiative rate. When
multiple exciton states are occupied, an additional average is needed to in-
clude the contributions from all occupied exciton states. Assuming that the
exciton states are occupied according to a thermal equilibrium distribution,
the effective radiative rate one expects to observe experimentally is:

〈γ(T )〉eff =

∑
S〈γS〉e−ES(0)/kBT∑
S e
−ES(0)/kBT

. (3.14)

Below, we derive the exciton radiative recombination rate as a function of
temperature in materials with different dimensionality. The key quantities
employed in the derivations, including the coordinates, the exciton momentum
Q and transition dipole pS, and the photon polarization vectors eλq, are shown
schematically in Fig. 3.2 for each case discussed below. The equations for the
bulk and 0D cases are derived here from scratch, while the 2D and 1D cases,
which have been previously investigated, are reviewed briefly for completeness.

Bulk (3D) materials

We consider a non-magnetic and non-absorbing1 anisotropic bulk crystal, in
which the static (zero-frequency) dielectric tensor can be written as

εr = diag(εx, εy, εz). (3.15)

In crystals with cubic, tetragonal, orthorhombic and hexagonal symmetry, we
orient the crystallographic axes along the {x, y, z} cartesian directions, and
in the uniaxial (tetragonal and hexagonal) cases we additionally orient the
principal axis along the z direction. In crystal classes with lower symmetry,
including monoclinic and triclinic, we orient the principal axes (i.e., the eigen-
vectors of εr) along the cartesian directions. With these choices, our treatment
is general and can account for any crystal symmetry [29]. The photon energy
in such an anisotropic material is modified according to the dielectric ten-
sor. For a given photon wavevector q = (qx, qy, qz), there are two propagating
modes as solutions to Maxwell’s equations; they correspond to the two photon
polarizations [21], and their frequencies ω±q are the solutions of Eq. (A.15) in

1For the sake of studying light emission, this assumption has negligible effects as it
amounts to neglecting re-absorption or other dynamical processes of the emitted photons.
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Figure 3.2: Schematic of the exciton and photon quantities employed
in this work. Each panel corresponds to a different dimensionality. (a) Bulk
(three-dimensional) anisotropic material, in which momentum conservation
requires q = Q, and the photon polarizations are nondegenerate and specified
by the solution of the Maxwell equations (see Eq. (A.15) in Appendix A). (b)
Two-dimensional material, in which the exciton transition dipole pS lies in the
xy plane containing the material, and the in-plane projection of the emitted
photon wavevector equals the exciton momentum, namely Q = (q · Q̂)Q̂. (c)
One-dimensional material, where both the exciton momentum and transition
dipole lie along the material direction z, and momentum conservation imposes
Q = q · ẑ. (d) Isolated (zero-dimensional) system, with no constraints on the
exciton momentum, photon wavevector and transition dipoles. In all cases,
when the two photon polarizations are degenerate, the polarization vectors eλq
are chosen as in-plane (IP) and out-of-plane (OOP), where the IP component
is in the xy plane and the OOP in the q− ẑ plane.

Appendix A:

ω2
±q =

−
(
q̄2x
εx

+
q̄2y
εy

+ q̄2z
εz

)
± ω̃2

q

2µ0ε0
, (3.16)

with

ω̃2
q =

√√√√(∑
α

q̄2
α

εα

)2

− 4q2
∑
α

q2
αεα

εxεyεz
, (3.17)
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where α denotes the cartesian coordinates {x, y, z}, and q̄2
α = q2

α − q2. The
corresponding polarization vectors for the two modes are

e±q =
1

Λq


qx(ω

2
±q µ0ε0εx − q2)

qy(ω
2
±q µ0ε0εy − q2)

qz(ω
2
±q µ0ε0εz − q2)

 (3.18)

up to a normalization constant Λq; for details, see Appendix A. This solution
applies to photons propagating in anisotropic materials with εx 6= εy 6= εz. For
materials with axial or cubic symmetry, in which, respectively, two or three
of the diagonal components of the macroscopic dielectric tensor are equal, the
frequencies and polarization vectors have simpler expressions, which can be
derived from the general case discussed here.

For an exciton in state |SQ〉 with momentum Q = (Qx, Qy, Qz), we obtain the
radiative recombination rate by applying Fermi’s Golden rule (see Eq. (3.11)).
Momentum conservation fixes the emitted photon wavevector to q = Q (see
Fig. 3.2(a)), and the summation over λ adds together the contributions from
the ω±q solutions. As mentioned before, we approximate the transition dipole
by evaluating it at Q = 0,

〈G|p|S(Q)〉 ≈ 〈G|p|S(0)〉 = pSxx̂ + pSyŷ + pSz ˆmathbfz, (3.19)

with complex components pSα. Using these results, the exciton radiative re-
combination rate at zero temperature becomes

γ3DS (Q) =
πe2

ε0m2V

∑
λ=±

∣∣∣∣∣∑
α

pSα qα(ω2
λQµ0ε0εα − q2)

Λq

∣∣∣∣∣
2
δ (ES(Q)− ~ωλQ)

ωλQ
.

(3.20)

Next, we specialize our discussion to cubic or isotropic materials with a dielec-
tric constant ε, i.e., with dielectric tensor εr = diag(ε, ε, ε). Radiative lifetime
calculations for an anisotropic bulk crystal will be presented in Chapter 4.
Due to symmetry, in the cubic or isotropic case the two modes in Eq. (3.16)
become degenerate, with polarization vectors perpendicular to each other and
to the direction of photon propagation. Following a convention we recently
used in the 2D case [14], we orient one of the two polarization vectors to lie
in the xy plane, and call this vector “in-plane” (IP). The other polarization



47

vector then has a nonzero z component, and is called “out-of-plane” (OOP).
These two polarization vectors can be written in spherical coordinates as

IP : e1q =
1√
ε
(− sinϕ, cosϕ, 0)

OOP : e2q =
1√
ε
(− cos θ cosϕ,− cos θ sinϕ, sin θ), (3.21)

where θ is the polar and ϕ the azimuth angle of the photon wavevector q [see
Fig. 3.2(a)]. Substituting in Eq. (3.20), we obtain the radiative rate at zero
temperature for cubic or isotropic bulk materials (see Appendix B):

γ3D, iso
S (Q) =

πe2

ε0m2V cQ
√
ε

{∣∣∣∣pSxQy − pSyQx

Qxy

∣∣∣∣2
IP

+

∣∣∣∣QxpSx +QypSy
Qxy

Qz

Q
− pSz

Qxy

Q

∣∣∣∣2
OOP

}
δ

(
ES(Q)− ~cQ√

ε

)
. (3.22)

Compared to previous semi-classical formula [30] and the formula presented in
a recent work [31] which inappropriately follows method for the single-walled
carbon nanotubes, Eq. (3.22) correctly includes the full direction momentum
conservation during radiative emission in extensive bulk.

The radiative recombination rate of a given exciton state S at temperature
T , for isotropic bulk crystals under the assumption that the exciton momen-
tum has a thermal equilibrium distribution, is obtained using Eq. (3.12) as
(see Appendix B)

〈γ3D, iso
S 〉(T ) =

8
√
πε e2 ~ p2

S

3ε0m2V ES(0)2

(
ES(0)2

2MSc2kBT

)3/2

, (3.23)

where the exciton energy ES(0) and the transition dipole pS (and p2
S = |pS|2)

are obtained by solving the BSE. The T−3/2 temperature dependence of the
radiative rate (and thus, the T 3/2 temperature dependence of the radiative
lifetime) is consistent with previous semiempirical theoretical treatments [30]
and with low-temperature experimental data [32].

For bulk crystals with a low exciton binding energy (< 0.1 eV), additional
thermal effects include exciton dissociation and equilibration with free carriers
[25]. This topic has been studied extensively experimentally; the net effect of
the coexistence between excitons and carriers is an increase in the radiative
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lifetime, which can be important near room temperature and can cause the ra-
diative lifetime to deviate significantly from the T 3/2 trend [32]. Such coupled
exciton-carrier dynamics can be treated with kinetic models, as in Chapter 4,
but is still beyond the reach of first-principles calculations.

Two-dimensional materials

Novel 2D semiconductors, such as transition metal dichalcogenides and related
layered materials, exhibit unique optical properties and strongly bound exci-
tons that govern their light absorption and emission [33]. We have recently
proposed a first-principles approach to compute the radiative lifetime in such
2D materials, as well as its angular and polarization dependence, which gives
rise to anisotropic light emission [13, 14]. In our approach, exciton recombi-
nation is still described using the Fermi Golden rule in Eq. (3.11). However,
due to the lower dimensionality, the transition dipole is restricted to the 2D
plane containing the material:

pS = pSxx̂ + pSyŷ, (3.24)

with complex components pSx and pSy. Furthermore, since translation symme-
try applies only in the plane containing the material, momentum conservation
is imposed on the in-plane projection of the emitted photon wavevector, using
(q · Q̂)Q̂ = Q [see Fig. 3.2(b)]. Unlike the bulk case, photons are emitted into
the vacuum surrounding the 2D material (unless a substrate is present), and
thus the emitted photons exhibit two degenerate polarizations. Following the
same convention as in the isotropic bulk case, the IP and OOP polarizations
are chosen as in Eq. (3.21) with ε = 1. Upon integrating over all final pho-
ton states, we obtain the radiative recombination rate of an exciton S with
momentum Q in a 2D material at zero temperature [14]:

γ2DS (Q) = γ2DS (0) ·
(

ES(0)√
E2
S(Q)− ~2c2Q2

)
×{∣∣∣∣−pSxpS sinϕ+

pSy
pS

cosϕ

∣∣∣∣2
IP

+
ES(Q)2 − ~2c2Q2

ES(Q)2

∣∣∣∣pSxpS cosϕ+
pSy
pS

sinϕ

∣∣∣∣2
OOP

}
(3.25)

where γ2D
S (0) =

e2p2S
ε0m2cAES(0)

is the recombination rate for Q = 0 and A is the
area of the system in the xy plane. Note that due to momentum conservation
there is an upper limit of Q0 to the momentum of an exciton that can recom-
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bine radiatively; this limit occurs when a photon is emitted in the plane of the
material, in which case ES(Q) = ~cQ0. Excitons with momentum Q > Q0

cannot emit a photon, and their radiative recombination rate vanishes since
energy and momentum cannot be simultaneously conserved upon photon emis-
sion.

At finite temperature T , the exciton radiative lifetime can be computed by
assuming, similar to the bulk case, a parabolic exciton dispersion ES(Q) =

ES(0)+ ~2Q2

2MS
, where MS is an in-plane isotropic exciton effective mass. Taking

the thermal average in Eq. (3.12) of the 2D radiative rate in Eq. (3.25), we
obtain the radiative lifetime [13]

〈τ 2DS 〉(T ) = γ2DS (0)−1 × 3

4

(
2MSc

2kBT

ES(0)2

)
. (3.26)

A similar formula for radiative lifetime was presented earlier in Ref. [28]. How-
ever, the used prefactor is not correct for 2D dimensionality. Eq. (3.26) then
corrects this point and was applied in our recent work [13], giving temperature
dependent radiative lifetimes in excellent agreement (within 5−10 %) with ex-
perimental results obtained by transient photoluminescence.

One-dimensional materials

Excitons have been studied extensively in 1D materials, and first-principles
calculations of exciton radiative lifetimes have been employed to investigate
light emission in single-walled carbon nanotubes [12, 34]. Since defects and
intertube interactions broaden and wash out the exciton spectrum, measuring
exciton lifetimes is challenging in carbon nanotubes, and ab initio calculations
have provided key microscopic insight into exciton recombination in carbon
nanotubes [12].

In a 1D material, such as a nanotube or nanowire, the dimensionality con-
strains the exciton transition dipole to the direction of the material, which
we take to be the z direction. The transition dipole can then be written as
pS = pSzẑ, and momentum conservation along the z axis imposes a condition
on the emitted photon wavevector, q · ẑ = Q, for the recombination of an
exciton with momentum Q [see Fig. 3.2(c)]. Using Fermi’s Golden rule in
Eq. (3.11), the exciton decay rate in a 1D material at zero temperature can
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be written as [12]:

γ1DS (Q) = γ1DS (0) · ES(Q)2 − ~2c2Q2

ES(Q)2
, (3.27)

where γ1DS (0) =
e2p2Sz

ε0m2~c2Lz and Lz is the length of the system along the z

direction. The radiative recombination rate decreases monotonically with Q,
and is zero when Q0 = ES(Q0)/~c. Similar to the 2D case, Q = Q0 is an upper
limit to the exciton momentum for radiative recombination, and excitons with
Q > Q0 cannot recombine radiatively and emit light.
The finite temperature radiative rate is computed using the thermal average
in Eq. (3.12). Assuming a parabolic exciton dispersion, the exciton radiative
lifetime in a 1D material reads

〈τ 1DS 〉(T ) = γ1DS (0)−1 × 3

4

(√
2πMSkBT

ES(0)/c

)
. (3.28)

Using this equation, Spataru et al. obtained radiative lifetimes in carbon nan-
otubes in good agreement with experiment [12].

Atoms, molecules, and other isolated (0D) systems

We refer to an atom, molecule, quantum dot or other isolated light emitter as
a 0D system [see Fig. 3.2(d)]. The approach presented here applies to both
these isolated emitters and to atoms, ions or other single quantum emitters
embedded in an isotropic material. Since there is no translation symmetry, the
crystal momentum can be taken to be zero and ignored, and we keep only one
quantum number to denote the discrete energy levels. Using these conventions,
we write the exciton wavefunction in the Tamm-Dancoff approximation as

|S〉 =
∑
vc

ASvc|v〉h|c〉e (3.29)

where v and c are quantum numbers associated with occupied and unoccupied
orbitals, respectively. In general, when there are no symmetry constraints,
the transition dipole is a complex vector, as in Eq. (3.19). When the system
is embedded in an isotropic material with dielectric constant ε (for the 0D
system in vacuum, one should set ε = 1), Fermi’s Golden rule gives the exciton
recombination rate at zero temperature (see Appendix D):

γ0DS =

√
εe2p2

SES
3πε0m2c3~2

. (3.30)
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In CGS units, in which ε0 = 1/4π, we recover the known result γ0DS ∝ 4/3 p2
SES

for the radiative rate of an isolated emitter or a defect embedded in a crys-
tal [35], which is also known as the Einstein A coefficient, showing a conver-
gence between semi-classical and quantum mechanics treatments. While the
photon is second quantized in our formalism, we reproduce the same formula
in [35] where the radiation is treated as electromagnetic wave. Due to the ab-
sence of crystal momentum for an isolated emitter, all the excitons satisfying
the selection rules with nonzero transition dipole can undergo an optical tran-
sition and emit a photon. At finite temperature, since there is no momentum,
we take a thermal average only over different exciton states [using Eq. (3.14)],
and obtain for the effective radiative recombination rate:

〈γ0D(T )〉eff =

√
εe2

3πε0m2c3~2

∑
S p

2
SESe

−ES/kBT∑
S e
−ES/kBT

. (3.31)

3.4 Numerical Calculations

To our knowledge, there are no examples in the literature of ab initio calcula-
tions of radiative lifetimes in bulk crystals and 0D isolated systems within the
BSE framework. We apply our approach to compute from first principles the
exciton radiative lifetimes in a bulk isotropic crystal of GaAs and in several
small organic molecules in the gas phase.

To compute the radiative lifetimes, we first carry out density functional theory
(DFT) calculations with the Quantum Espresso code [36], using normcon-
serving pseudopotentials [37] and a plane-wave basis set. We then carry out
GW-BSE calculations with the Yambo code [18], and compute the radiative
lifetimes by post-processing the BSE results.

For GaAs, we perform DFT calculations on the relaxed zincblende structure,
employing the PBEsol exchange-correlation functional [38]. We use fully rel-
ativistic normconserving pseudopotentials generated with Pseudo Dojo [39],
and include spin-orbit coupling in all calculations. The BSE is solved on a
30 × 30 × 30 k-point grid with a rigid scissor shift applied to the DFT band
structure to match the experimental band gap [40]. We use a 6 Ry cutoff
for the statically screened Coulomb interaction and the highest four valence
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Figure 3.3: Computed radiative lifetimes in a GaAs crystal. Shown as
a function of temperature up to 50 K. The lifetimes are obtained using the
thermal average in Eq. (3.14). The inset shows the excitons contributing to
the thermal average along with their individual lifetimes at 10 K. In the inset,
the zero of the energy axis is taken to be the lowest exciton energy.

bands and lowest two conduction bands to converge the low-energy excitons.
In the radiative lifetime calculations, for higher accuracy we use experimental
values for the static dielectric constant and effective masses [40, 41]. Due to
the light electron mass, which leads to a steep conduction band valley, fully
converging the radiative lifetimes in GaAs requires very fine Brillouin zone
grids with prohibitive computational cost. We estimate that the 30× 30× 30

k-point grid employed here in the BSE calculation allows us to converge the
radiative lifetime within a factor of five of its fully converged result with an
ideal infinitely dense BZ grid.

The computed radiative lifetimes in GaAs as a function of temperature are
shown in Fig. 3.3. They are obtained as the thermal average in Eq. (3.14) of
the BSE exciton radiative rates for a bulk isotropic crystal in Eq. (3.23). The



53

inset of Fig. 3.3 shows the low-energy excitons contributing to this thermal
average; the lowest five excitons are dark and associated with spin-forbidden
transitions, and the three bright excitons at a slightly higher energy also con-
tribute to the average. The dark states increase the average radiative lifetime
by an order of magnitude compared to the average lifetime of the bright exci-
tons alone.

The computed BSE radiative lifetimes are of order 1−50 ps below 50 K, and
exhibit the T 3/2 trend expected for bulk crystals at low temperature [32]. Com-
paring these results with experiment is not simple. In GaAs, the radiative
processes are known to be affected by the coupling of excitons with phonons
and free electron-hole pairs, resulting in an intricate nonequilibrium dynamics
that is still the subject of debate [42–44]. The interaction with phonons is par-
ticularly important in GaAs, where exciton-phonon scattering is thought to
provide the momentum needed by excitons to transition toward the radiative
region [42, 43]. For this reason, the photoluminescence decay is expected to
be much slower than the intrinsic exciton radiative lifetimes computed here.
Consistent with this view, the measured photoluminescence decay times are a
few ns at low temperatures [42–44], while our computed radiative lifetimes are
a few ps in the same temperature range. This result confirms that the long
lifetimes observed in GaAs by measuring the photoluminescence decay are
the result of nonequilibrium exciton dynamics rather than an intrinsic exciton
lifetime. Future work will investigate the coupled nonequilibrium dynamics of
excitons and phonons, which will enable quantitative comparisons with pho-
toluminescence data.

We additionally computed the radiative lifetimes in four small organic molecules
− fluorobenzene, ethylene, thiophene and toluene. The computed radiative
lifetimes, which are discussed in detail in Ref. [45], are within a factor of
∼2 of the measured values, and thus in excellent agreement with experiment.
This result shows that the theoretical framework presented in this thesis can be
adapted to investigating light emission at localized defects or ions and dopants,
a topic of current interest for light emission and quantum technologies.
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3.5 Conclusions

In summary, we present a general approach based on DFT and the ab initio
BSE method to compute the radiative lifetimes in bulk crystals, 2D and 1D
materials, and in 0D or isolated systems such as a molecule, quantum dot or
single quantum emitter. Our radiative lifetime calculations are in practice a
simple post-processing of BSE results that only adds a small computational
overhead. The temperature dependence of the exciton radiative lifetime at
low temperature is predicted to be proportional to T 3/2 in bulk, T in 2D and
T 1/2 in 1D materials. The bulk crystal treatment is applied to an important
III-V semiconductor − a GaAs crystal − where our computed intrinsic radia-
tive lifetimes are shorter than the values measured by photoluminescence, but
consistent with their interpretation in terms of nonequilibrium dynamics of
excitons coupled to phonons and free carriers. Our work provides a framework
for predicting the intrinsic exciton radiative lifetimes in materials with any
dimensionality. Since the BSE is considered a gold standard for computing
optical absorption and excitons [46], it is expected to also provide accurate
results for radiative processes and light emission. These calculations can pro-
vide a benchmark for materials in which extrinsic effects due to impurities
or interfaces dominate the ultrafast dynamics, such as layered semiconduct-
ing devices. They can also guide the interpretation of ultrafast spectroscopy
measurements and the discovery of new quantum and solid-state emitters with
long radiative lifetimes.
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C h a p t e r 4

FIRST-PRINCIPLES EXCITON RADIATIVE LIFETIMES IN
GALLIUM NITRIDE

The content of this chapter is taken from the following work:

1V. A. Jhalani, H.-Y. Chen, M. Palummo, and M. Bernardi, “First-principles
exciton radiative lifetimes in bulk GaN”, Submitted. (2019).

4.1 Introduction

The ultrafast recombination dynamics play a key role in determining the ra-
diative properties of GaN and GaN-based light emitting devices. Even though
the exciton binding energy is rather weak in GaN (of order 10 meV), it is well
known that accurately computing the absorption spectrum in GaN and other
III-V semiconductors requires taking into account excitonic effects. One ex-
pects that predicting light emission properties and radiative lifetime similarly
requires taking into account the bound states of electron-hole pairs (i.e., the
excitons) rather than just studying the recombination of independent electron-
hole pairs. A complete understanding of the microscopic processes regulating
exciton dynamics and their intrinsic radiative lifetimes is necessary to guide
the design of devices. Spectroscopically determined exciton radiative proper-
ties are the subject of debate, due to both differences in experimental setups
and type of experiments employed and because sample purity and quality af-
fect the competing non-radiative processes that determine exciton dynamics
[1]. As such, there is a strong need for accurate, intrinsic calculations of exci-
tonic and radiative properties in GaN and related III-nitride materials, which
can be used as benchmark for interpreting photoluminescence measurements
and can guide microscopic understanding and device design.

First-principles calculations of radiative rates in bulk materials, including
GaN, have existed for decades, but they typically neglect key factors like
electron-hole interactions, the material anisotropy, the dynamical screening,
or temperature dependence dictated by dimensionality [2, 3]. These elements
are especially important when considering a material like GaN in which the
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screening of the Coulomb interaction is relatively weak. In Chapter 3 we have
developed a framework for computing radiative lifetimes in isotropic bulk ma-
terials for the first time. However, since GaN and related III-nitrides have a
hexagonal wurtzite structure, their properties are anisotropic; the material is
isotropic in the hexagonal basal plane, but the properties along c-axis direction
are different. As a result, the approach presented in Chapter 3 for computing
radiative lifetimes in isotropic material needs to be extended to uniaxial ma-
terials, namely in-plane isotropic materials, as with GaN.

Here, we extend to a material with hexagonal symmetry the approach for com-
puting excitonic radiative recombination rates presented in Chapter 3, and
derive the equation for the temperature dependent radiative lifetime within
the ab initio BSE framework for the case of a uniaxial bulk crystal. We
apply this scheme to wurtzite GaN, computing excitonic radiative lifetimes
from first principles in a uniaxial bulk material for the first time. Our com-
puted radiative lifetimes are in very good agreement (within a factor of two)
with experiment. We also analyze the radiative lifetimes at low temperature
regime where the intrinsic radiative lifetime dominates in experimental data
and where the importance of including spin-orbit coupling (SOC) is essential
to obtaining accurate intrinsic radiative lifetimes; a surprising result given
that SOC is weak in GaN. We also investigate the high temperature regime in
which the thermal equilibrium between bound excitons and free carriers raises
the lifetimes significantly from the intrinsic value in experimental results. We
develop a thermal exciton dissociation model to include exciton dissociation
in our calculations and validate it against experimental results.

4.2 Theory and Methods

Theoretical Framework

The BSE framework we employ for computing radiative lifetimes from first
principles is discussed in detail in Chapter 3, including the derivation for the
bulk isotropic case. Here, we briefly review the approach and specific details
relevant to a bulk anisotropic system. Similar to our discussion above, we apply
the Tamm-Dancoff approximation and represent an exciton as a superposition
of non-interacting electron-hole states as in Eq. (3.1). The radiative recombi-
nation rate for an exciton at zero temperature is given by Fermi’s golden rule,
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which we derive for the minimal electron-photon coupling Hamiltonian after
second-quantizing the photons in a dielectric medium using Eq (3.11). As be-
fore, since the values of Q compatible with energy conservation for light emis-
sion are small, we approximate the dipole of an exciton |SQ〉 as pS(Q) ≈ pS(0)

by solving the BSE at Q = 0, as is standard. We still assume that the exciton
momentum Q is in a thermal distribution, and thus that the radiative rate
of an exciton S at finite temperature T is given by the thermal average in
Eq. (3.12).

We then employ a 3D anisotropic effective mass approximation for the ex-
citon dispersion,

ES(Q) = ES(0) +
~2

2

(
Q2
x +Q2

y

Mxy

+
Q2
z

Mz

)
, (4.1)

where the Mxy and Mz are the in-plane and out-of-plane exciton masses, re-
spectively. As before, in the following we assume that the exciton mass is large
enough to use the approximation ES(Q)− ~ωλq ≈ ES(0)− ~ωλq in the delta
functions of Eq. (3.11).

As is the case for wurtzite-GaN, we consider an anisotropic bulk crystal in
which the static dielectric tensor can be written as

εr = diag(εxy, εxy, εz). (4.2)

In the following, we orient the principal crystal axis along the z direction. For
a given photon wavevector q = (qx, qy, qz), there are two propagating modes as
solutions to Maxwell’s equations, each corresponding to one of the two photon
polarizations [4]. Their frequencies are obtained by solving the equation of
motion obtained from second quantizing Maxwell’s equation in the dielectric
material (see the derivation in Chapter 3). The two solutions for the uniaxial
case are:

ωIP

c
=

√
q2

εxy
, eIP =

1
√
εxy

(
qy
qxy

,− qy
qxy

, 0

)
(4.3)

and
ωOOP

c
=

√
εxyq2

xy + εzq2
z

εxyεz
(4.4)
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with

eOOP =  qx
qxy

√√√√ 1/εxy(
1 +

εxyq2xy
εzq2z

) , qy
qxy

√√√√ 1/εxy(
1 +

εxyq2xy
εzq2z

) ,−√√√√ 1/εz(
1 + εzq2z

εxyq2xy

)
 (4.5)

where c is the speed of light and we use the shorthand notation q2
xy = q2

x + q2
y.

We call the first solution the “in-plane” (IP) mode since its polarization vector
sits in the xy-plane. Given that the plane is isotropic, this solution is identical
to the IP mode for the 2D and isotropic 3D cases in Ref. [5] and Chapter 3.
We call the second solution the “out-of-plane” (OOP) mode, which sees the
anisotropy of the material and has a more complicated expression than the
isotropic case.

For an exciton |SQ〉 with momentum Q = (Qx, Qy, Qz) we obtain the radiative
rate by substituting the two photon polarization solutions and their respective
frequencies [see Eqs. (4.3) - (4.5)] into Eq. (3.11). As in the bulk isotropic case,
momentum conservation fixes the emitted photon wavector to q = Q, and the
summation over λ adds together the contributions from the IP and OOP so-
lutions. As mentioned earlier, we approximate the transition dipole at Q = 0

and expand it into complex components, pS(Q) ≈ pS(0) = pSxx̂+pSyŷ+pSzẑ.
Using these results, we obtain the radiative rate at zero temperature for a uni-
axial bulk material:

γ3D,aniso
S (Q) =

πe2

ε0m2V
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cQ
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(4.6)

where Q2
xy = Q2

x + Q2
y. The radiative recombination rate of an exciton S at

finite temperature T in a uniaxial bulk crystal is then obtained by performing
the thermal average in Eq. (3.12) using the effective mass approximation of
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Eq. (4.1). We obtain (see Appendix C):

〈
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〉
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2 3
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xyMzc2kBT

)3/2

(4.7)

where the exciton energies ES(0) and the transition dipole components pSα
are obtained by solving the BSE. The exciton masses Mxy and Mz are ap-
proximated as the sum of the corresponding electron and hole effective masses
i.e., Mz = m∗ez +m∗hz . In GaN, we find from the BSE that the lowest exciton
states are composed of transitions from the two heavy hole bands. We thus
approximate the hole mass as the average of the two heavy hole masses, which
we estimate from the GW quasiparticle band structure dispersion (see Com-
putational Details in Sec. 4.2). By setting εz = εxy and Mxy = Mz, one can
recover the radiative rate for the bulk isotropic case in Eq. (3.23). Notably,
we obtain again the T−3/2 temperature dependence of the radiative rate (and
therefore the T 3/2 dependence of the radiative lifetime) that is expected for a
thermal exciton distribution in a bulk material (obtained in Chapter 3), con-
sistent with previous semiempirical theoretical treatments [6].

Note also that Eq. (4.7) is a good approximation for the radiative rate when
only the lowest-energy bright excitons contribute to the photoluminescence.
We again take the additional thermal everage given in Eq. (3.14) to take into
account that multiple exciton states are occupied, including dark states with
small transition dipoles, as is the case in GaN.

Computational Details

We carry out ab initio calculations on a GaN unit cell in the wurtzite structure
with relaxed lattice parameters. The ground state properties and electronic
wavefunctions are calculated using density functional theory (DFT) with the
Quantum ESPRESSO code [7]. For excitonic and optical properties, we
start with DFT within the generalized gradient approximation [8]. Fully rel-
ativistic norm-conserving pseudopotentials [9, 10] generated by Pseudo Dojo
[11] are employed, in which the shells treated as valence are the 3s, 3p, 3d, 4s,
and 4f for Ga and the 2s and 2p for N. A non-linear core correction (NLCC)
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[12] is included for all remaining core shells for both atoms. Using the Yambo
code [13], the BSE is solved on a 24 × 24 × 18 k-point grid after applying a
scissor shift and stretch of the DFT eigenvalues to obtain quasiparticle ener-
gies consistent with GW (see below). We use a 6 Ry cutoff for the screened
Coulomb interactions and the highest 6 valence bands and lowest 4 conduction
bands to converge the low-energy exciton energies and transition dipoles.

The static dielectric tensor is computed using Yambo within the independent
particle approximation on the same grid as the BSE. We converge the exciton
binding energy by computing it with various k-point grids from 12 × 12 × 9

to 24 × 24 × 18 and extrapolating it to a vanishingly small k-point distance
(i.e., to an an infinitely dense grid) [14]. We find a converged binding energy of
19.7 meV, in excellent agreement with the experimental value of 20.4 meV [15].

For the quasiparticle band structure, to obtain scissor and stretch parameters
and effective masses, we start with DFT within the local-density approxima-
tion [16] and employ scalar-relativistic norm-conserving pseudopotentials for
both Ga and N. The 4s and 4p shells are treated as valence for Ga, and the
2s and 2p for N. The NLCC is included to account for the 3d core states in
Ga. The GW self-energy is computed using the Yambo code, and employed to
correct the LDA quasiparticle energies. Consistent with previous works [17],
we employ the “one-shot” G0W0 approximation [18], a plasmon-pole model for
the dielectric function in the self-energy, a 25 Ry cutoff energy for the dielec-
tric matrix, 300 empty bands, and a 14× 14× 10 k-point grid.

4.3 Results

We compute the radiative lifetimes in bulk wurtzite GaN using the thermal av-
erage in Eq. (3.14) of the exciton radiative rate for a uniaxial bulk anisotropic
crystal given in Eq. (4.7). We first focus our discussion on the radiative life-
times in the low temperature regime, where comparison with experimental
data is straightforward. Our computed radiative lifetimes as a function of
temperature from 50 to 150 K are shown in Fig. 4.1 along with experimental
photoluminescence (PL) measurements from Ref. [19]. In this temperature
range, our first-principles radiative lifetimes, with SOC included, are of order
200-900 ps and are in very good agreement (within a factor of two) with the
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Figure 4.1: Low temperature GaN radiative lifetime. Comparison of our
computed radiative lifetimes (blue) against experimental results from Ref. [19]
(green) in a bulk wurtzite GaN crystal as a function of temperature up to
150 K. The lifetimes are obtained using the thermal average in Eq. (3.14) of
excitonic radiative rates as given by Eq. (4.7) with SOC included. The black
dashed lines represent the T 3/2 trend expected in the low temperature regime
for both set of lifetimes.

experimental results. Our computed results additionally exhibit the T 3/2 trend
expected for bulk crystals at low temperature as predicted by our theoretical
treatment and observed in the experimental results.

As seen in Fig. 4.2, including SOC when computing the excitonic states
increases the radiative lifetimes by a factor of 2− 3 and significantly improves
the agreement with experimental results. Though SOC is weak in GaN − the
induced splitting at the Γ-point is roughly 5 meV in our calculations − its in-
clusion is crucial for obtaining accurate excitonic states. The inset in Fig. 4.2
shows the individual radiative lifetimes and relative energies of the low-energy
excitons contributing to the thermal average, for both the cases where SOC
is included and neglected in the BSE. Without SOC, the exciton structure
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Figure 4.2: Effect of including SOC in calculations of radiative life-
time in GaN. Comparison of computed radiative lifetimes in a bulk wurtzite
GaN crystal as a function of temperature for when the BSE is solved with
SOC neglected (orange) and included (blue). The inset shows the excitons
contributing to the thermal average along with their individual lifetimes at
100 K, with (blue) and without (orange) SOC. In the inset, the zero of the
energy axis is taken to be the lowest exciton energy for each case.

consists of three bright excitons, two of which are degenerate. The lifetimes
of all three exciton states are roughly identical, and their value determines
the radiative lifetime for the calculation without SOC. The inclusion of SOC
splits each exciton into four new states by doubling the number of valence
and conduction states that compose the electron-hole pair basis states of the
exciton. Some of these new states, which have lifetimes up to 7 − 11 orders
of magnitude longer than the excitons found without SOC, are dark states
due to spin-forbidden transitions. When included in the thermal averge, these
dark states increase the radiative lifetime compared to the average lifetime of
the bright excitons alone. Therefore, the inclusion of SOC reveals important
low-energy dark states in the excitonic spectrum that need to be taken into
account in order to obtain an accurate radiative lifetime, even when SOC is
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weak per se, as in GaN.

At higher temperature, the excitons may dissociate into free electrons and
holes, which mainly recombine non-radiatively via defects in GaN, giving rise
to a lower radiative recombination rate [19, 20]. This effect is observed as an
increase in the radiative lifetime as a function of temperature at a rate greater
than the intrinsic T 3/2 trend at temperatures above 100− 150 K. To account
for the interactions between excitons and free carriers, since the radiative rate
is much longer than the thermalization rate, we assume that bound excitons
and free carriers are in thermal equilibrium and the carrier densities are given
by the mass-action law [21]

nenh
nx

=
[n0 + δn]δp

δnx
= n∗(T ), (4.8)

where ne, nh, and nx are the free electron, hole, and exciton densities, re-
spectively. n0 is the background free electron density, and δn, δp, and δnx

are the excited (e.g. via optical pump) electron, hole, and exciton densities,
respectively. Here, n∗(T ) is given by

n∗(T ) = 2

(
mredkBT

2π~2

)3/2

e−Eb/kBT , (4.9)

where mred = mhme/(mh + me) is the reduced mass of the exciton and Eb is
the exciton binding energy.

Typically, the optically pumped excited electrons and hole densities, which
are of order 1013 cm−3 [1], are much smaller than the sample donor concen-
trations, which are of order 1016 cm−3. We assume that the extrinsic carrier
concentration introduced by the donors dominates over the intrinsic electron
density [19, 22]. Thus, since δn ∼ δp << n0, we have from Eq. 4.8 that
δn/δnx = n∗(T )/n0. Assuming that the relative probabilities of recombina-
tion for free carriers and excitons are proportional to their respective densities,
Pcarrier/Pexciton = δn/δnx, and using Pcarrier + Pexciton = 1, we can obtain the
probabilities for excitonic and free carrier recombination. The measured ra-
diative rate will be a weighted average of the rates of the two recombination
processes: Γrad = ΓcarrierPcarrier + ΓexcitonPexciton. We assume that Γcarrier van-
ishes because carriers recombine entirely via non-radiative channels, such as
defect trapping, which is justified by the reported low quantum efficiencies
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Figure 4.3: Radiative lifetimes above 100 K with exciton dissociation
included. Our computed intrinsic excitonic radiative lifetimes (blue) and
predicted lifetimes including exciton dissociation (orange) in bulk GaN as a
function of temperature up to 300 K, compared with experimental data. The
orange curve corresponds to Γ−1

rad in Eq. (4.10) and is obtained by correcting
for thermal exciton dissociation in the intrinsic lifetimes (including SOC). The
green and red curves are taken from Refs. [19] and [22], respectively.

seen experimentally near room temperature [19]. The measured radiative rate
Γrad at high temperatures becomes the intrinsic excitonic recombination rate,
Γexciton, suppressed by the probability that an electron-hole pair is in a bound
exciton state (as opposed to a pair of free carriers):

Γrad = ΓexcitonPexciton =
Γexciton

1 + n∗(T )
n0

(4.10)

Using this result, we obtain the predicted measured radiative lifetime by
correcting the excitonic radiative lifetimes computed with SOC. For the mass-
action law in Eq. (4.9), we use our ab initio computed effective mass parame-
ters and converged exciton binding energy (see Computational Details in Sec.
4.2). Since the background carrier density n0 depends on the doping level of
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the specific experimental sample, we use a typical value of 2.5 × 1016 cm−3,
taken from Ref. [19].

In Fig. 4.3 we show our computed intrinsic excitonic lifetime and the predicted
measured lifetime as a function of temperature up to 300 K. We compare our
lifetimes to PL measurements from from Refs. [19] and [22]. We find that
when thermal dissociation is included, the radiative lifetimes are in excellent
agreement with experiment even at temperatures above 150 K, where the ex-
perimental data deviates from the intrinsic exciton T 3/2 trend. This result
confirms that the increase of the lifetime seen experimentally at higher tem-
peratures in GaN is due to thermal dissociation of bound excitons into free
carriers. We note that our radiative lifetimes deviate from the intrinsic trend
at a lower temperature than they do in the experimental data. One possible
cause may be a slight inaccuracy in our computed exciton binding energy −
since its value is only 20 meV, accurately computing it is a challenge for the
BSE approach. A deviation in the binding energy by ∼ 10 meV, namely the
typical accuracy for the BSE, can change the temperature at which dissociation
effects become important by as much as 50 K.

4.4 Conclusions

We present an extension of an approach based on DFT plus the ab initio BSE
method to compute the radiative lifetime in an anisotropic uniaxial bulk crystal
as a function of temperature. We apply this approach to GaN, computing ra-
diative lifetimes entirely from first principles in a uniaxial bulk material within
this framework for the first time. Our results exhibit the T 3/2 trend expected
for intrinsic excitonic radiative lifetimes in a bulk material, and we find excel-
lent agreement with experimental measurements of intrinsic radiative lifetimes
in GaN at low temperatures. We show the importance of including SOC for
obtaining accurate exciton energies and transition dipoles, including the dark
states, which are critical for obtaining accurate intrinsic radiative lifetimes.
By accounting for thermal exciton dissociation, we obtain excellent agreement
with experiment at high temperatures, where the interplay between excitons
and carriers dominates over the intrinsic exciton dynamics. Future work will
extend these calculations to study confinement effects on excitons and radia-
tive lifetimes in GaN quantum wells, including the effect of confinement along
different crystal axes, which can be done by modifying the exciton dispersion
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equations. Our work adds to our general framework presented in Chapter
3, enabling predictions of intrinsic excitonic radiative lifetimes in an impor-
tant class of materials for light emission and LED devices − in our case, the
wurtzite III-nitrides. Our work also shows that these calculations can provide
a benchmark for intrinsic radiative lifetimes as well as guide the interpreta-
tion of ultrafast spectroscopy measurements in light emitting materials where
extrinsic effects, such as defects, play a role in the ultrafast carrier dynamics.
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C h a p t e r 5

INTRINSIC CARRIER MOBILITIES AND PIEZOELECTRIC
ELECTRON-PHONON INTERACTIONS IN GALLIUM

NITRIDE FROM FIRST PRINCIPLES

The content of this chapter is taken from the following work:

1V. A. Jhalani, J.-J. Zhou, and M. Bernardi, “Intrinsic carrier mobilities in
GaN from first principles”, In Preparation.

5.1 Introduction

Similar to hot carrier dynamics (discussed in detail in Chapter 2), charge
carrier transport plays a key role in III-V semiconductor’s electronic, opto-
electronic, and photovoltaic device operations. Unlike hot carriers, which can
have energies of up to a few eV from the band edges, charge transport at room
temperature and at low fields is determined by carriers with energies within
roughly 100 meV of the gap [1]. Understanding charge transport in GaN
and predicting both the intrinsic (phonon-limited) mobility and the specific
electron-phonon (e-ph) scattering mechanisms that regulate transport is criti-
cal for designing optoelectronic devices. However, in a similar vein as intrinsic
radiative lifetimes, extracting intrinsic transport properties from experiment
is non-trivial, as questions often arise related to the role of doping, impurities,
and defects when interpreting transport measurements due to the challenges
of fabricating pure samples of GaN.

Similar to hot carrier dynamics, carrier mobilities in GaN are typically inves-
tigated with semi-empirical models of the underlying scattering mechanisms,
including defect scattering and different e-ph scattering processes [2–5]. This
places ab initio computational approaches in a unique position to advance un-
derstanding of carrier transport, by computing the carrier scattering processes
from first principles. Recently, calculations of carrier mobility employing ab
initio band structures and phonon dispersions in similar wide bandgap polar
semiconductors have been reported; however, these still rely on semi-empirical
expressions for e-ph scattering or assumptions on the relative importance of
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specific phonon modes [6–8]. In particular, as discussed in Chapter 2, the
complexity of the valence band bandstructure and hole scattering in GaN has
eluded capture by semi-empirical models and thus greatly limited microscopic
understanding of hole transport, which is of particular relevance for GaN-based
bipolar devices and LEDs [9]. One major challenge in computing transport
in polar materials are long-range e-ph interactions, such as the Frölich in-
teraction [10], namely the coupling between electrons and polar longitudinal
optical (LO) phonons. The e-ph scattering due to LO modes is known to be a
dominant scattering mechanism in polar semiconductors like GaN [1], but un-
til recently it had yet to be properly treated in ab initio transport calculations.

Our recently developed workflow [11, 12] combining density functional per-
turbation theory (DFPT) [13], Wannier interpolation [14] and a generalized
first-principles Frölich vertex [12] allows the calculation of accurate e-ph ma-
trix elements on very fine grids in the Brillouin Zone (BZ) entirely from first
principles in polar materials like GaN. This approach does not rely on empiri-
cal or analytical expressions of carrier scattering and treats all phonon modes
on equal footing, enabling accurate calculations of relaxation times (RTs) and
hot carrier dynamics in GaN, as we have shown above (see Chapter 2 and
Ref. [15]). To investigate charge transport from first principles, the Boltz-
mann transport equation (BTE) within the relaxation time approximation
(RTA) can be used to compute the conductivity and carrier mobility using ab
initio e-ph scattering processes [16]. However, different from hot carriers, the
calculation of phonon-limited carrier mobilities have the additional require-
ment of very fine BZ grids to converge the RTs at the low carrier energies
that contribute to the mobility. Recently, we have developed a scheme that
enables efficient calculation of large number of e-ph matrix elements, as is
needed to converge the RTs and mobilities in polar materials in the presence
of the Frölich interaction. Our group has recently applied this approach to
GaAs, for which we computed electron mobilities in excellent agreement with
experiment and provided detailed understanding of the contributions of differ-
ent phonon modes to scattering electrons and controlling their mobility. [17].

Unlike GaAs, the III-nitrides have an additional polar phonon scattering mech-
anism, known as the piezoelectric (PZ) interaction, which can occur in materi-
als that lack inversion symmetry [1, 16]. The PZ interaction couples electrons
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with electric fields generated by strain induced by polar acoustic phonons.
Both the transverse (TA) and longitudinal (LA) acoustic modes, depending on
the phonon wavevector, can give rise to PZ scattering, which results from the
quadrupole term in the e-ph interaction Hamiltonian [18, 19]. Unfortunately,
the generalized first-principles Frölich coupling [12] neglects the quadrupole
and higher order terms, resulting in an overestimation of the e-ph coupling
strength when applied to acoustic modes. Though weak compared to the po-
lar LO mode, the PZ interaction is important for accurately computing carrier
scattering from acoustic modes and the mobility in PZ materials.

In this chapter, we discuss ongoing efforts to extend the methodology above
to include PZ e-ph interactions derived from macroscopic theory in the in-
terpolation scheme for obtaining accurate e-ph RTs at energies relevant for
carrier mobility in GaN. Using a combination of the RTA-BTE and ab initio
temperature- and state-dependent RTs, we compute electron and hole mobil-
ities in wurtzite GaN at temperatures between 200-500 K. We compare our
in-plane mobilities with Hall mobility experiments, obtaining very good agree-
ment. Our calculations can also shed light on which phonon modes scatter
electrons and holes more strongly in GaN as a function of temperature.

5.2 Computational Methods

We carry out density functional theory (DFT) ground state electronic struc-
ture calculations on GaN in the wurtzite structure with relaxed lattice para-
maters of a = 3.17 Å and c = 5.16 Å, using the local density approximation
(LDA) [20] and a plane wave basis with the Quantum Espresso code [21].
We employ a plane-wave kinetic energy cutoff of 80 Ry and scalar-relativistic
norm-conserving pseudopotentials [22]. The pseudopotential of Ga includes
a non-linear core correction [23] to account for the shallow 3d core states.
Similar to the methodology of Sec. 2.6, we use DFPT [13] to compute lattice
dynamical properties, such as phonon modes and dispersions, and the e-ph
matrix elements [24] gnmν(k,q), on coarse 8 × 8 × 8 k-point and 4 × 4 × 4

q-point BZ grids. The matrix elements are obtained at an arbitrary pair of k-
and q-points by summing together the short-range part gSnmν(k,q), obtained
by Wannier interpolation [14], and the long-range part gLnmν(k,q), computed
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using the generalized Fröhlich vertex method of Ref. [12], which we implement
independently [see Eq. (2.2)].

The band- and k-dependent e-ph scattering rate Γnk, which is the inverse
of the RT, τ−1

nk = Γnk, is computed from the imaginary part of the lowest or-
der e-ph self-energy [24], which was given earlier in Eq. (2.3). We compute the
scattering rates with out in-house developed Perturbo code. We carefully con-
verged the e-ph scattering rates using an approach we developed in Ref. [17].
We compute the scattering rates on a 200×200×200 k-point grid for electrons
and a 100 × 100 × 100 k-point BZ grid for holes, using an 8 meV Gaussian
broadening to approximate the δ functions. For each k point, and for both
electrons and holes, the long-range contribution to the scattering rate was con-
verged with 2 × 106 Cauchy-distributed q points. The remaining scattering
rate contribution was converged with 1×105 and 2×105 uniformly distributed
q points for electrons and holes, respectively.

The electrical conductivity tensor σ at temperature T is computed with the
RTA-BTE [16] and is given by:

σαβ(T ) = e2

∫ +∞

−∞
dE (−∂f/∂E) Σαβ(E, T ). (5.1)

where f is the Fermi-Dirac distribution at temperature T , and Σαβ(E, T ) is
the transport distribution function (TDF):

Σαβ(E, T ) =
2

Vuc

∑
nk

τnk(T )vαnkv
β
nkδ(E − εnk), (5.2)

computed here using a tetrahedron integration method [25] with the ab ini-
tio relaxation times τnk and interpolated [26, 27] band velocities vnk; Vuc is
the unit cell volume. The mobility is then obtained as µ = σ/ne, where n
is the intrinsic carrier concentration. An important consequence of Eqs. (5.1)
and (5.2) is that the factors of −∂f/∂E and vnk in the integrand restrict
the non-negligible contributions to the conductivity to be from carriers within
εnk < 100 meV of the band edges.

Fig. 5.1 shows the computed e-ph scattering rates using the standard Wan-
nier interpolation plus Fröhlich correction scheme for both electrons and holes
with energies within 0.2 eV of the band edges. The total scattering rate as
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Figure 5.1: E-ph scattering rates in GaN without piezoelectric in-
teraction. Electron (left) and hole (right) e-ph scattering rates as a function
of carrier energy relative to the band edges, computed prior to adding piezo-
electric interactions. Total carrier scattering rates are shown together with
contributions from the LA, TA, and LO modes.

well as the contribution from the LO, LA, and TA phonon modes are shown.
Below 0.1 eV, which corresponds to the LO phonon energy, the LO scattering
rate is greatly suppressed due to LO phonon absorption being the only allowed
scattering process. On the other hand, at this energy there is a large phase
space for scattering with acoustic modes. Surprisingly, we find that for both
electrons and holes the total scattering rate, and therefore the mobility, are
not dominated by LO scattering. For electrons, LA and TA scattering pro-
vide a roughly equal contribution at energies between ∼10− 90 meV, whereas
for holes both the LA and TA scattering rates are significantly higher than
LO below ∼90 meV. These results contradict the conventional wisdom of e-ph
scattering in wurtzite III-nitrides, which assumes that LO scattering is domi-
nant in III-V semiconductors due to their polar nature.

We verify the quality of the interpolation of the e-ph matrix elements by
comparing the matrix elements interpolated from DFPT results on a coarse
grid with those computed directly from DFPT The direct DFPT matrix el-
ements can be used as a benchmark since they correctly capture long-range
interactions, including the Fröhlich, PZ, and higher order terms [13]. Follow-
ing Ref. [11], we define the deformation potential as a quantity proportional
to the absolute value of the e-ph matrix element:

Dν
nm(k,q) =

√
2Mucωqν

~
|gnmν(k,q)| , (5.3)
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where Muc is the mass of the unit cell. In the case of several initial and/or
final electronic bands, the total deformation potential is defined as

Dν
tot(k,q) =

√∑
nm

(Dν
nm(k,q))2 (5.4)

In the following, we focus on comparing the interpolated and direct DFPT
deformation potential Dν

tot(k = Γ,q), where the electron initial state is fixed
to the Γ point, the phonon crystal momentum q is varied along theM−Γ−A
path, and the initial and final electronic bands are the two lowest conduction
bands.

Fig. 5.2 shows deformation potentials comparing the accuracy of different
approaches for including long-range e-ph matrix elements in the interpola-
tion scheme. Notably, there are branches associated with acoustic modes with
long-range interactions that are overestimated by the Fröhlich coupling, as can
be seen by the blue points for branches approaching Γ from both the A andM
directions. Furthermore, as shown by the purple points in Fig. 5.2, when one
neglects the Fröhlich correction for all modes except the LO and only uses the
short-range Wannier basis for interpolation, Dν

tot vanishes as q→ 0 instead of
approaching a finite value as in the DFPT results (black circles). The specific
q→ 0 behavior seen in the DFPT results is due to the PZ interaction, which
is missing in the Wannier plus Fröhlich correction interpolation scheme.

The PZ e-ph interaction is a long-range coupling between electrons and
acoustic modes present in crystals without inversion symmetry, and to leading
order it can be expressed as a quadrupole type interaction [19]. Developing a
first-principles method to compute the quadrupole term and the PZ interaction
is significantly more challenging than computing the Fröhlich interaction. One
reason is that the microscopic PZ theory requires the calculation of quadrupole
moment tensors for the ions, analogous to the Born effective charges for the
dipole moments [18, 19]. While theoretically straightforward to obtain [19], the
quadrupole moments are challenging to calculate in practice as they require
computing q-dependent Born charges, and are beyond state-of-the-art compu-
tational methods. However, for acoustic modes in the long-range (q→ 0) limit
where the lattice distortion corresponds to a uniform strain of the unit cell,
the quadrupole term can be replaced with a macroscopic description that can
potentially offer great improvement over neglecting the interaction altogether.
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Figure 5.2: Effect of piezoelectric correction on the interpolated e-ph
matrix elements. Mode-resolved deformation potentials as a function of q
along high-symmetry lines comparing e-ph matrix elements computed from:
DFPT benchmarks (black circles), Wannier interpolation and the generalized
Fröhlich interaction applied to all modes (blue), Wannier interpolation and
the Fröhlich interaction applied only to the LO mode (purple), and Wannier
interpolation, Fröhlich interaction applied to LO only, and a PZ correction
(green).

In this limit, the PZ coupling matrix elements can be expressed in terms of the
piezoelectric constants, which relate strain to induced polarization and can be
obtained from first principles within DFPT [28], using [16, 19]:

Mν(q) =
4πe

q · ε0 · qqαeα,βγqγξβ(ν,q)

[
~

2Mucωνq

] 1
2

(5.5)

where q = (qx, qy, qz) is the phonon wavevector, eα,βγ are the components of
the piezoelectric tensor, and ξβ(ν,q) is a cartesian component of a vibrational
eigenmode of a phonon normalized in the unit cell; summation over repeated
indices is implied. We compute the piezoelectric tensors ab initio using the
Abinit code [29] from a charge density computed on a 18 × 18 × 18 k-point
grid with an 80 Ry plane-wave cutoff.
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We implement the PZ interaction by including the correction in Eq. (5.5) to
the short-range acoustic mode matrix elements from Wannier interpolation.
Technically, there are two components to the perturbation potential from a
PZ mode [30]: the first term is from the internal strain of the atoms affecting
the polarization and is proportional to the Born effective charges, and the sec-
ond is the effect of the unit cell strain on the electronic structure, known as
the clamped-ion term. The former is included in the Fröhlich coupling while
the latter is not. The two terms have nearly equal but opposite contributions,
corresponding to the previously mentioned cancellation of the dipole but not
the quadrupole term in the PZ interaction. We elect to implement the PZ cor-
rection by using the total PZ tensor constants (summing both terms), which
allows us to restrict the Fröhlich correction to the LO mode only. Lastly,
one limitation is that in principle Eq. (5.5) is valid only in the q → 0 limit,
where the vibrational eigenmodes are real-valued and correspond to a uniform
translation of the ions. In contrast, in our work we deal with the q 6= 0 case
by using the complex eigenmodes obtained from DFPT and therefore obtain
complex PZ coupling elements, similar to the Fröhlich case.

The green points in Fig. 5.2 show the results for the PZ correction. It is
seen that by adding the complex coupling element of Eq. (5.5) to the interpo-
lation scheme, we greatly improve the deformation potential for the LA mode
with wavevector q along the Γ− A direction (TA modes are not piezoelectric
along this direction), which was overestimated with the Fröhlich correction
and underestimated without it. While the result is not as good as for the
M − Γ direction (where only the TA modes are piezoelectric), our results are
promising because we obtain much better agreement near q = 0 compared to
when only the Fröhlich correction is considered. We are corrently working to
understand why the correction does not work as well for the in-plane phonon
wavevectors. We believe that the Fourier transformation from reciprocal to
Wannier space may be partially responsible for the discrepancy, resulting in
the oscillations away from the DFPT points seen in Fig. 5.2 when the PZ cou-
pling element is incuded. We are currently testing this and other hypotheses
to improve the description of the PZ interactions.
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Figure 5.3: Carrier mobilities in GaN as a function of temperature.
In-plane [1000] electron (left) and hole (right) mobilities in bulk GaN between
200-500 K. The electron experimental values, taken from Refs. [4, 31, 32], and
holes values, from Refs. [33–35], are from van der Pauw Hall measurements
and are compared to our ab initio results with and without the piezoelectric
correction included (orange and blue, respectively).

5.3 Results

We now compute mobilities using RTs obtained from Eq. (2.3) in the RTA-
BTE approximation given in Eqs. (5.1)-(5.2). We use both the typical Wannier
plus Fröhlich interpolation scheme and the improved scheme including the PZ
correction. Fig. 5.3 shows the in-plane [1000] component of our computed
electron (left) and hole (right) mobilities using both interpolation methods
along with experimental van der Pauw Hall mobility measurements of Refs.
[4, 31–35] between 200-500 K. In these plots, the blue curve corresponds to
using the original interpolation scheme which, for reference, produced the blue
deformation potential in Fig. 5.2. The orange curve corresponds to restricting
the Fröhlich correction to the LO mode and including the acoustic PZ cor-
rection of Eq. (5.5) in the interpolation scheme, corresponding to the green
curve of Fig. 5.2. As expected, in both cases we see that the improved scheme
increases the phonon-limited mobility, since the improvements resolved the
overestimation of the coupling of non-longitudinal optical modes and polar
acoustic modes to electrons. This results in reduced carrier scattering from
TO and acoustic modes, and thus increased RTs and mobility. Notably, the
change in the mobility is much more significant for holes. This is due to the
greater number of inter-valley scattering channels and wider parabolic band
dispersions in the valence band. By contrast, electrons have only a single,
narrower, parabolic conduction band. This is further reflected by the fact that
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in Fig. 5.1, the total electron scattering rate is only a factor of two greater
than the LO rate, while for holes the discrepancy between the LO and total
scattering rate is roughly an order of magnitude. Thus, by reducing the small-
q coupling constants of acoustic modes with the improved scheme, the total
scattering rate in holes is diminished to a much greater extent, as a significant
proportion came from non-LO modes in the sub-100 meV energy range.

When comparing to experimental results, in both cases we find good agreement
between our ab initio phonon-limited mobilities and the highest mobilities
measured in samples with low doping concentrations (∼1015 cm−3 for n-type
[4] and ∼1016−1017 cm−3 for p-type [33, 34]). These correspond to the highest
crystal quality samples, which guarantees that in the temperature range inves-
tigated here e-ph scattering dominates carrier transport. Notably, we find that
the significant increase in mobility for holes using the improved scheme places
it slightly above the experimental results. These trends are highly promising
since our calculated intrinsic phonon-limited mobilities should correspond to
an upper bound for the measurable mobility in pristine GaN samples, given
that in any experimental sample there will always be additional scattering
mechanisms from defects and interfaces.

5.4 Conclusion

Here, we have presented ab initio calculations of intrinsic phonon-limited
carrier mobility in wurtzite GaN. By analyzing the deformation potentials,
we found limitations in the interpolation scheme used as part of the typical
workflow for state-of-the-art calculations to compute e-ph scattering rates and
phonon-limited transport. We discussed our new method for interpolating the
e-ph matrix elements while including a PZ correction in lieu of the challenging
quadrupole moment of the e-ph interaction. We compute mobilities using our
ab initio methodology without any empirical parameters, and find excellent
agreement with experiment, which improves significantly when using our in-
terpolation scheme. While the effort to improve PZ correction is still under
way, these results are very promising for the calculation of intrinsic transport
properties in polar wurtzite III-nitrides. In the future, these calculations will
provide microscopic insight into various aspects of transport in III-nitride crys-
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tals, including the transport properties of holes, the scattering mechanisms at
play, and differences in transport along different crystal directions, all of which
are important for bipolar GaN-based devices.
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C h a p t e r 6

SUMMARY AND FUTURE DIRECTIONS

In summary, we present research that focuses on the investigation of ultra-
fast carrier dynamics, light emission, and charge carrier transport using first-
principles methods in GaN and related III-V semiconductors. In Chapter 2 we
apply novel workflows for the efficient calculation of electron-phonon matrix
elements to compute scattering rates and relaxation dynamics of hot carri-
ers in GaN. These calculations provide details beyond the reach of previously
employed theoretical and experimental methods, shedding light on the signifi-
cant asymmetry in hot hole and electron scattering and thermalization rates,
the origin of this asymmetry, and the non-negligible role of phonon scatter-
ing mechanisms besides the polar LO mode for holes. The microsopic insight
gained by these calculations is also used to develop a model that can explain
experimental observations of LED efficiency droop as a consequence of hot
carrier cooling.

In Chapter 3 we present a general approach based on DFT and the first-
principles BSE method to compute radiative lifetimes in bulk crystals, 2D, 1D
materials and 0D isolated quantum light emitters with excitonic effects and
thermal effects included. We present numerical results in GaAs, computing ra-
diative lifetimes of excitons in a bulk material from first principles for the first
time. Our results help interpret the unexpectedly long experimental photolu-
minescent decay times observed in GaAs by different groups and confirm these
effects are not due to the intrinsic lifetimes but possibly nonequillibrium exci-
ton dynamics. This approach in practice is a straightforward post-processing
of transition dipole elements computed from the BSE and this is broadly ap-
plicable to a range of technologically relevant light emitters beyond bulk III-V
semiconductors.

In Chapter 4 we extend the approach of Chapter 3 to uniaxial bulk crystals
and apply it to wurtzite GaN. We present radiative lifetimes computed from
first-principles in a uniaxial bulk crystal for the first time. Our results match
the expected temperature trend for intrinsic lifetimes, and we find excellent
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agreement with experimental measurements of intrinsic radiative lifetimes in
GaN at low temperatures. We show the importance of including spin-orbit
coupling for including dark exciton states and obtaining accurate intrinsic
radiative lifetimes. Additionally, we obtain excellent agreement with experi-
mental results at high temperature by accounting for the thermal dissociation
of excitons into free carriers.

In Chapter 5 we present first-principles calculations of intrinsic phonon-limited
carrier mobility in wurtzite GaN. We found limitations in the interpolation
scheme used as part of the typical workflow for state-of-the-art calculations
to compute electron-phonon scattering rates and phonon-limited transport.
We discuss a new method for interpolating electron-phonon matrix elements
while including a piezoelectric correction. We compute mobilities using our
first-principles methodology free of empirical parameters and find excellent
agreement with experiment, which improves significantly when using our im-
proved interpolation scheme. Further refinement and improvement upon this
interpolation scheme and the piezoelectric interaction are possible and ongoing.

Natural near-term extensions of the work presented here would focus on in-
vestigations of hot carrier dynamics, light emission, and transport in other
III-nitrides of relevance to LED technology; namely AlN, InN, and alloyed
compounds such as GaxAl1−xN and GaxIn1−xN. One challenge will be the
size of unit cells that accurately capture the structure of these alloys; some
promising work has already begun on employing special quasi-random super-
cells which mimic the correlations of random binary solutions in the hexagonal
close-packed structure using a minimal number of atoms [1]. These special
structures have been used to generate unit cells of GaxAl1−xN and GaxIn1−xN
alloys for x = 0.25, 0.5, and 0.75. The investigation of trends of hot carrier
relaxation times and radiative lifetimes in these alloys may provide insight
into ways GaN-based devices can be engineered such that electron leakage and
efficiency droop are mitigated. Furthermore, with an improved interpolation
scheme emplying piezoelectric interactions, investigations of transport proper-
ties of holes and differences in transport along different crystal directions in
different III-nitrides are possible, all of which are critical for bipolar GaN-based
devices like LEDs. By modifying the formulas, the radiative lifetimes formal-
ism in Chapter 3 can be extended to study confinement effects on excitons and
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radiative lifetimes in GaN and III-nitride quantum wells, including the effect
of confinement along different crystal axes. Macroscopic device scale proper-
ties such as carrier diffusion lengths in LEDs can then also be calculated by
combining electron-phonon mean free paths, real-time dynamics calculations,
and radiative lifetimes in in LEDs and other GaN-based devices, such as power
electronics [2, 3], opening a path to device-level simulations entire from first
principles.

Hot carrier dynamics, carrier transport, and light emission are also relevant to
a wide range of materials of technological relevance beyond III-nitrides and III-
V semiconductors, providing interesting long-term applications of this work.
LED technology has expanded significantly beyond GaN and III-V based tech-
nology, but the basic principle of injecting carriers into radiative recombination
centers to efficiently emit light applies. Calculations of hot carrier dynamics,
electron and hole transport properties, and intrinsic radiative lifetimes in or-
ganic molecules and polymers for OLED technology [4] can be of high interest.
Recently, LEDs have also been demonstrated using hybrid organic/inorganic
perovskites [5], a class of materials generating great interest as a photovoltaic
due to promising, but puzzling, transport and light emission/absorption prop-
erties. Properties such as unusually high mobilitiies in the presence of defects
and forgiving quantum efficiency at low crystal quality have been experimen-
tally observed but are poorly understood [6]. First-principles methods have
only recently begun to shed light on the mechanisms contributing to the intrin-
sic transport properties in perovskites [7], and extending the work presented
here to compute mobilities, hot carrier relaxation, and exciton lifetimes could
be of great interest. Beyond LEDs, in recent years a diverse set of solid-
state single-photon emitters (SPE) for quantum information applications have
emerged [8]. Currently in their early proof-of-concept stages, these SPEs have
been realized using emission centers around defects in systems of all dimen-
sionality, such as bulk crystals like diamond and SiC, 2D materials like BN
and transition metal dichalcogenides, 1D carbon nanotubes, as well as 0D III-
nitride and III-V quantum dots [8]. The framework developed in Chapter 3
could enable the investigation of intrinsic light emission properties of excitons
in SPEs of interest and aid the realization of scalable quantum information
processing technologies.
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A p p e n d i x A

SECOND QUANTIZATION OF LIGHT IN ANISOTROPIC
MATERIALS

Starting from Maxwell’s equations in a material:

∇ ·D = 0 ,
∂D

∂t
= ∇×H ; D = ε0εrE ,

∇ ·B = 0 , −∂B

∂t
= ∇× E ; B = µ0H , (A.1)

where ε0 is the vacuum permittivity and µ0 the vacuum susceptibility, we
define the vector potential A and the scalar potential Φ:

B = ∇×A, E = −∇Φ− ∂A

∂t
. (A.2)

We adopt a generalized Coulomb gauge, in which:

Φ = 0, ∇ · (ε0εrE) = 0 , (A.3)

and write the equation of motion for A as

− µ0ε0εr
∂2A

∂t2
= ∇× (∇×A) = ∇(∇ ·A)−∇2A. (A.4)

From Eq. (A.4), we construct the Lagrangian

L =
1

2

∫
dr

[
ε0E

T (r)εrE(r)− B(r)2

µ0

]
=

1

2

∫
dr

[
ε0Ȧ

T (r)εrȦ(r)− (∇×A)2

µ0

]
. (A.5)

The conjugate momentum of the vector potential is

Π(r) =
δL

δȦ(r)
= ε0εrȦ(r), (A.6)

and by performing a Legendre transformation, we write the Hamiltonian as

H =

∫
dr Π Ȧ− L =

1

2

∫
dr

[
ΠTε−1

r Π

ε0
+

(∇×A)2

µ0

]
. (A.7)

Note that the Hamiltonian for classical electromagnetic field in vacuum can
be recovered by setting εr = I.
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To define the creation and annihilation operators for second quantization, we
follow the standard procedure and expand the vector potential in terms of its
eigenmodes, which are labeled by the index λ:

A(r, t) =
∑
λ

qλfλ(r)eiωλt, (A.8)

where qλ are constants representing the amplitudes and fλ(r) satisfy

ω2
λµ0ε0εrfλ −∇× (∇× fλ) = 0. (A.9)

Since ωλ enters the equation as a square, both +ωλ and −ωλ can have the same
fλ solution. However, since the vector potential is always real, we need A† = A,
so that for each qλfλ(r)eiωλt in Eq. (A.8), there must exists a corresponding
term q′λf

′
λ(r)e−iωλt such that

q′λf
′
λ(r) = q∗λf

∗
λ(r). (A.10)

For convenience, we label this part of the solution as −λ:

q′λf
′
λ(r)e−iωλt = q−λf−λ(r)eiω−λt. (A.11)

To obtain an orthogonality condition for the solutions, we substitute fλ(r) =
√
εr
−1

√
µ0ε0

gλ(r) and get:

sω2
λgλ −

√
εr
−1

√
µ0ε0

∇×
(
∇×

√
εr
−1

√
µ0ε0

gλ

)
= 0. (A.12)

Now with ω2
λ as the eigenvalue, gλ are eigenfunctions of a Hermitian operator

and form an orthogonal solution set:∫
dr g†λ(r) · gλ′(r) =

∫
dr µ0ε0f

†
λ(r)εrfλ′(r) = δλ,λ′ . (A.13)

In the following, we take plane waves as our eigenmodes, and label them by
their polarization and momentum by substituting λ→ (λ,q), −λ→ (−λ,−q).
We also put

fλq(r) =
eλq√
µ0ε0

eiq·r. (A.14)

The equation of motion becomes

ω2
λqµ0ε0εreλq + q (q · eλq)− q2eλq = 0, (A.15)
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the orthogonality condition

e†λqεreλ′q = δλ,λ′ , (A.16)

and the relation connecting λ and −λ:

q∗λqe
∗
λq = q−λ,−qe−λ,−q. (A.17)

Then the vector potential can be written as

A(r, t) =
∑
λq

qλq
eλq√
µ0ε0

ei(q·r+ωλqt)

= c
∑
λ>0,q

qλqeλqe
i(q·r+ωλqt) + q∗λqe

∗
λqe
−i(q·r+ωλqt)

(A.18)

and the conjugate momentum becomes:

Π(r, t) = c
∑
λq

iqλqωλqε0εreλqe
i(q·r+ωλqt). (A.19)

The Hamiltonian can be written as:

H = ε0c
2V
∑
λq

ω2
λqq
∗
λqqλq

= ε0c
2V

∑
λ>0,q

ω2
λq(q∗λqqλq + qλqq

∗
λq), (A.20)

where V is the volume of the system. Finally, we can define creation and
annihilation operators for λ > 0:

âλq = c

√
2V ωλqε0

~
qλq,

[
âλq, â

†
λ′q′

]
= δq,q′δλ,λ′ (A.21)

using which the vector potential operator becomes:

A(r, t) =
∑
λq

√
~

2V ωλqε0

(
âλqeλqe

i(q·r+ωλqt) + h.c.
)

(A.22)

and the Hamiltonian:

H =
∑
λq

~ωλq
(
â†λqâλq +

1

2

)
. (A.23)
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A p p e n d i x B

DERIVATION OF THE RADIATIVE LIFETIME IN
ISOTROPIC 3D MATERIALS

We provide additional details for the derivation of the radiative recombination
rate in isotropic 3D materials, Eq. (3.23). In an isotropic bulk material with
dielectric constant ε, the photon vector potential is given by Eq. (3.9) with
frequency ωq = c |q|/√ε, and the IP and OOP polarization vectors are those in
Eq. (3.21). Due to momentum conservation, the summation over all possible
final photon wavevectors in Eq. (3.11) is restricted to q = Q. As a result, we
can write the radiative rate as

γ3D, iso
S (Q) =

πe2

ε0m2V cQ
√
ε

{
|−pSx sinϕ+ pSy cosϕ|2IP

+ |pSx cos θ cosϕ+ pSy cos θ sinϕ− pSz sin θ|2OOP

}
× δ

(
ES(Q)− ~cQ√

ε

)
. (B.1)

By setting cosϕ = Qx/Qxy, where Qxy is the projection of Q onto the xy plane,
and cos θ = Qz/Q, we obtain Eq. (3.22). To obtain the radiative rate at finite
temperature T , we plug Eq. (3.22) into Eq. (3.12) along with the parabolic
dispersion in Eq. (3.13). The denominator, due to lack of angular dependence,
reduces to a Gaussian integral of the kind

∫∞
0
dx x2 exp(−x2) =

√
π/4, and

gives ∫
dQxdQydQze

−ES(Q)/kBT

=

∫
dΩ

∫ ∞
0

dQQ2 e
−~2Q2

2MSkBT =

(
2πMSkBT

~2

)3/2

(B.2)

where dΩ = sin θdθdϕ is the differential solid angle, and we leave out the
factor e−ES(0)/kBT , which is present both in the numerator and denominator
and cancels out in the final result. For the numerator, we note that the exciton
parabolic dispersion can be approximated as flat within the light cone, so that
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we can put ES(Q) ≈ ES(0). As a result, we get∫
dQxdQydQz e

−ES(Q)/kBT γ3D, iso
S (Q) =

∫
dΩ

∫ ∞
0

dQ Q2e−ES(Q)/kBT γ3D, iso
S (Q)

≈ πe2

ε0m2V c
√
ε

∫
dΩ

∫
dQ Q

{
|−pSx sinϕ+ pSy cosϕ|2

+ |pSx cos θ cosϕ+ pSy cos θ sinϕ− pSz sin θ|2
}
δ

(
ES(0)− ~cQ√

ε

)
=

πe2

ε0m2V c
√
ε

∫
dϕ dθ sin θ

∫
dQ Q

{
|pSx|2 sin2 ϕ+ |pSy|2 cos2 ϕ

+ |pSx|2 cos2 θ cos2 ϕ+ |pSy|2 cos2 θ sin2 ϕ+ |pSz|2 sin2 θ
}
δ

(
ES(0)− ~cQ√

ε

)
=

8π2e2p2
S

3ε0m2V c
√
ε

∫
dQ Q · δ

(
ES(0)− ~cQ√

ε

)
=

8π2
√
εe2p2

SES(0)

3ε0~2c3m2V
. (B.3)

After dividing the numerator by the denominator, we obtain

〈γ3D, iso
S 〉(T ) =

8
√
πε e2 ~ p2

S

3 ε0m2V ES(0)2

(
ES(0)2

2MSc2kBT

)3/2

(B.4)

namely the finite temperature radiative lifetime in Eq. (3.23).
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A p p e n d i x C

DERIVATION OF THE RADIATIVE LIFETIME IN
ANISOTROPIC 3D MATERIALS

Here we provide the derivation of the radiative recombination rate in anisotropic
3D materials, given in Eq. (4.7). In the anisotropic case, the dielectric con-
stant is given by Eq. (4.2) and the photon polarizations and frequencies are
given by Eqs. (4.3) - (4.5). We obtain the radiative rate by substituting the
photon solutions into Eq. (3.11), and, as in the bulk isotropic case, momentum
conservation fixes the emitted photon wavector to q = Q, and the summation
over λ adds together the contributions from the IP and OOP solutions, re-
sulting in the radiative rate at zero temperature given in Eq. (4.6). To obtain
the radiative rate at finite temperature T , we plug Eq. (4.6) into Eq. (3.12)
with the dispersion relation in Eq. (4.1). Similar to the isotropic case, the
denominator is given by a Gaussian integral and gives

∫
dQxdQydQze

−~2
2

(
Q2
x+Q

2
y

Mxy
+
Q2
z

Mz

)
=

(
2π 3
√
M2

xyMzkBT

~2

)3/2

(C.1)

where we leave out the factor e−ES(0)/kBT , which is present both in the numer-
ator and denominator and cancels out in the final result. For the numerators
we again note that the exciton parabolic dispersion can be approximated as
flat within the light cone such that ES(Q) ≈ ES(0). As a result, the final
expression for the IP term in the numerator we have:

π2e2(p2
Sx + p2

Sy)ES(0)
√
εxy

ε0m2V c3~2

∫ 1

−1

d cos θexp
[
−
(

cos2 θ

2Mxy

+
sin2 θ

2Mz

)
εxyES(0)2

kBTc2

]
(C.2)

For the OOP term of the numberator, we define a change of variables:

kx =
√
εxyQx, ky =

√
εxyQy, kz =

√
εzQz (C.3)
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such that the delta function will be simplified into a form with only radius
dependence. Thus the integral becomes:

πe2

m2V

∫
k2dk sin θdθdφ

ε0εxy
√
εz

exp
[
ES(0) + ~2k2

(
εxy sin2 θ

2Mxy

+
εz cos2 θ

2Mz

)]
×
√
εxyεz

ck

∣∣∣∣∣(pSx cosφ+ pSy sinφ)

√
1/εxy

1 + tan2 θ
− pSz

√
1/εz

1 + cot2 θ

∣∣∣∣∣
2

OOP

δ

(
ES(0)− ~ck

√
εxyεz

)
(C.4)

The final analytic expression is:

π2e2ES(0)εz
√
εxy

ε0m2V c3~2

∫ 1

−1

d cos θ

[
p2
Sx + p2

Sy

εxy
cos2 θ +

2p2
Sz

εz
sin2 θ

]
× exp

[
−
(
εxy cos2 θ

2Mxy

+
εz sin2 θ

2Mz

)
εzεxyES(0)2

kBTc2

]
(C.5)

Eq. (C.2) and Eq. (C.5) both have the form of an error function which can be
computed numerically for a given temperature T . However, since ES(0)2 <<

kBTMSc
2, we can take the lowest order in T and thus obtain:

〈
γ3D,aniso
S

〉
(T ) =

√
πεxye

2~
[(

2εz
3εxy

+ 2
) (
p2
Sx + p2

Sy

)
+ 8

3
p2
Sz

]
ε0m2V ES(0)2

×
(

ES(0)2

2 3
√
M2

xyMzc2kBT

)3/2

(C.6)

This is the finite temperature radiative rate for an anisotropic bulk crystal in
Eq. (4.7).
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A p p e n d i x D

DERIVATION OF THE RADIATIVE LIFETIME IN 0D
SYSTEMS

We provide additional details for the derivation of the radiative recombination
rate in 0D systems, Eq. (3.30). As discussed above, in the 0D case there is no
constraint from momentum conservation on the emitted photon wavevector.
Therefore, we replace the summation in Eq. (3.11) by an integration over the
full momentum space and write

γ0DS =
πe2

ε0m2

∑
λ

∫
dΩ dq q2

(2π)3

|eλq · pS(Q)|2
ωλq

δ (ES − ~ωλq) (D.1)

which comes from rewriting the summation along each cartesian component
α as

∑
qα

=
∫
Lαdqα/2π, and LxLyLz = V . In the 0D case, we can apply the

photon quantization solutions used in the 3D case, so that λ = IP or OOP, and
eλq are in the form of Eq. (3.21) with ωλq = c|q|/√ε. Note that this approach
applies both to isolated emitters, such as quantum dots and molecules, as well
as to atoms, ions or other single quantum emitters embedded in an isotropic
material. Combining these results, we can write

γ0DS =
πe2

8ε0m2π3c
√
ε
×∫

dϕ dθ sin θ

∫
dq q

{
|−pSx sinϕ+ pSy cosϕ|2

+ |pSx cos θ cosϕ+ pSy cos θ sinϕ− pSz sin θ|2
}

×δ
(
ES −

~cq√
ε

)
(D.2)

and finally obtain Eq. (3.30),

γ0DS =

√
εe2p2

SES
3πε0m2c3~2

. (D.3)
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A p p e n d i x E

RADIATIVE LIFETIMES OF EXCITONS WITH
NON-ANALYTIC DISPERSIONS

In this section, we provide an additional discussion for exciton with non-
analytic dispersion:

ES(Q) = ES(0) +B|Q|. (E.1)

The radiative lifetimes at finite temperature in this case still follow Eq. (3.12).
When the lowest order dependence of temperature is considered, using different
exciton dispersion only changes the phase space integral, i.e. the denominator
in Eq. (3.12), compared to the derivation for parabolic dispersion. This integral
in different dimension can be summarized within a single formula, written as:

I(n) =

∫
dΩn

∫
dQQn−1 exp

[−BQ
kBT

]
(E.2)

where n is the dimension of the material and Ωn is the n−dimensional differ-
ential solid angle, while

I(n) =


8π(kBT/B)3 n = 3

2π(kBT/B)2 n = 2

2(kBT/B) n = 1

. (E.3)

As a result, we obtain the radiative lifetimes of excitons in isotropic 3-, 2- and
1-dimensional materials:

〈γnD,iso
S 〉non-ana(T ) =


π
√
εe2~p2S

3ε0m2V ES(0)2

(
BES(0)
ckB~T

)3

n = 3

γ2DS (0)× 2
3

(
BES(0)
ckB~T

)2

n = 2

γ1DS (0)× 2
3
BES(0)
ckB~T n = 1

. (E.4)

where γ2DS (0) and γ1DS (0) are intrinsic radiative rate in 2D and 1D system
respectively defined in the main text which are independent from the dispersion
relation. Compared to the lifetime of exciton with parabolic dispersion, the
lifetimes of exciton with non-analytic dispersion have stronger temperature
dependence. 〈γnD,iso

S 〉non-ana(T ) ∝ T n while 〈γnD,iso
S 〉parabolic(T ) ∝ T n/2.
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