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Abstract 

This investigation treats the problem of the scattering of a 

Rayleigh wave by the edge of a thin layer which covers half the surface 

of an elastic half-space. The interaction between the layer and the 

half-space is described approximately by means of a model in which 

the effect of the layer is represented by a pair of boundary conditions 

at the surface of the half-space. Two parameters- one representing 

mass and the other, stiffness- are found to characterize the layer. 

The incident Rayleigh wave impinges normally upon the plated region 

from the unplated side. 

In the case where the mass of the layer vanishes, the problem 

is solved exactly using Fourier transforms and the Wiener-Hop£ 

technique, and numerical results are obtained for the amplitudes of 

the reflected and transmitted surface waves. In the more general 

case of a layer possessing both mass and stiffness, a perturbation 

procedure leads to a sequence of problems, each of which may be 

solved using Fourier transforms. The zeroth- and first-order 

problems are solved and the resulting approximate reflection and 

transmission coefficients are evaluated numerically for various ratios 

of layer mass to stiffness. 
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Introduction 

The present work is concerned with the scattering of an 

elastic surface wave by the edge of a thin surface layer. 

The principal motivation for studying the relation between 

elastic surface waves and thin surface films comes from the field of 

microwave signal processing. Electromagnetic waves may be con-

verted to elastic waves in solids, and vice versa, by means of piezo-

electric transducers. Operations such as delaying and filtering of 

signals may be performed on the elastic waves by suitably designed 

devices [ 1] 
1

. The advantage of carrying out such operations in the 

elastic- rather than the electromagnetic- medium comes about 

primarily from the fact that the phase velocities of elastic waves are 

typically five orders of magnitude smaller than those of electro-

magnetic waves [ 2]. Thus, for example, the length of delay line 

required for a given delay is smaller, by this ratio of phase veloc-

ities, for an elastic wave than for an electromagnetic wave . 

Elastic surface waves prove to be more advantageous than 

body waves because of their accessibility. Thus, for example, sur-

face wave delay lines may be built with numerous taps along the way, 

providing incrementally varying delays. 

The surface of an elastic solid acts in a sense as a waveguide, 

i.e. , energy once transferred into surface waves tends to remain in 

fields concentrated near the surface. For purposes of microwave 

Reference [ 1] provides a general survey of the design and function 
of various surface wave signal processing devices. 
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signal processing it is also desirable to confine- or guide- elastic 

fields laterally . The basic premise in designing "surface waveguides" 

is that a strip of the surface on which the characteristic surface wave 

velocity is lower than that of the surrounding s will tend to g uide sur-

face waves along its length. This is sometimes implemented by 

depositing a thin layer of a heavy, soft material on the surface in the 

form of a strip. The thin layer ''loads" the substrate, creating a 

zone in which the surface wave velocity is lower than that in the 

unplated region. Conversely, on a surface fully plated with a li ght, 

stiff material except for a strip that is left unplated, the strip again 

acts as a guide since the surface wave velocity is hi g her in the coated 

. [ 2] 1. reg1on 

Straight surface waveguides of the type described above have 

been analyzed by Tiers ten [ 3], who represents the effect of the sur-

face layer by a boundary condition at the surface of an isotropic 

substrate. He derives from his model an equation for the velocity of 

the "straight-crested" (i.e., plane strain) surface waves character-

istic of the plated re gion. He then appeals to a concept introduced by 

Knowles [4] to demonstrate the e x istence- in the same plated 

re gion- of a more general class of surface waves referred to as 

" variable-crested" surface waves. The full field in the substrate is 

synthesized approx imately from the variable- ere sted surface waves 

characteristic of the plated and unplated re g ions, by a ppl ying an 

a pprox imate m a tchin g condition at the boundary betwe en the re gions, 

!Reference [2] provides a fuller discussion of these, as w ell as other 
techniques for g uiding surface wav es. 
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and by requiring the surface waves outside the strip to decay exponen

tially along the surface away from the strip. This leads to an approxi

mate dispersion relation for the guide, i.e. , an equation relating the 

frequency and velocity of disturbances propagating along the guide. 

Tiers ten and Davis [ 5] have extended this analysis to the case of a 

curved surface waveguide. 

Freund [6] has treated a structure similar to that treated in 

[3] using a more exact approach. The surface of the guiding strip 

considered in [6] is assumed to be traction-free, while the surface 

outside the guide is assumed to be free of shear stress and to suffer 

no vertical displacement. The scattering of a single straight-crested 

surface wave incident on the edge of a semi-infinite guide at arbi

trary angle is solved exactly. An approximation to the dispersion 

relation for a guide of finite width is obtained by superposing incident 

and reflected straight-crested surface waves and neglecting at one 

edge of the guide the body waves generated at the other edge. Fossum 

and Freund [7] have obtained and solved the dispersion equation for 

the guide by an independent method based on an integral equation, and 

thereby have validated Freund's original approach. 

Apart from the problem solved by Freund in [6] as an inter

mediate step in his analysis, there are no known exact solutions for 

scattering of an elastic surface wave by the edge of a surface layer. 

Approximate solutions employing juxtaposition of straight-crested 

surface wave modes have been obtained by Li et al [8] and McGarr 

and Alsop [ 9]. 
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In contrast, exact solutions do exist for the scattering of cer

tain types of electromagnetic surface waves. Of particular interest 

is the work of Kay [10], who considers the scattering of an electro

magnetic surface wave by a discontinuity in a property of the surface 

known as normal impedance. An exact solution is obtained by using 

the Wiener-Hop£ technique. The problem is closely analogous to the 

present one, and in fact has served as a "proving ground" for some of 

the techniques employed here. 

To complete this brief summary of related literature, note 

should be taken of the study of Koiter [ 11] of the static problem of 

load transfer from a stringer into a plate. The problem is one of 

generalized plane stress, but is essentially identical to that of a 

half- space in plane strain, half of whose surface is plated with a thin 

layer, with a static line load acting on the edge of the layer and paral

lel to the surface. The effect on the substrate of the stiffness of the 

layer is modeled in precisely the same manner as in the present 

analysis. 

Although the present consideration of the scattering of a sur

face wave by a thin layer was motivated by the signal-processing 

applications discussed above, the results of the analysis may also be 

of interest in connection with seismology. 

This study begins in Section 1 with a review of pure surface 

waves in half-spaces with the surface either fully traction-free or 

fully covered with a thin layer. In Section 2 the central problem is 

formulated- that for the scattering of a Rayleigh wave normally 
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incident on the edge of a semi-infinite layer. In Section 3 the problem 

is solved exactly for a thin massless layer, and in Section 4 it is 

solved by a perturbation process for a very thin layer possessing both 

mass and stiffness. 
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l. Pure Surface Waves 

For the purposes of this study, a pure surface wave is a solu-

tion of the elastodynamic equations of motion in a half- space which 

propagates in a direction parallel to the surface and decays exponen-

tially with depth. Such waves can exist in a half space with the sur-

face either fully traction-free or fully covered by a layer of a differ-

ent elastic material. In this section the properties of pure surface 

waves are reviewed, with emphasis upon a method of approximating 

the effect of a surface layer in the case where the layer is thin. It is 

necessary to understand these waves before the problem correspond-

ing to the scattering of a surface wave can be formulated. 

Consider a half- space occupied by an elastic, isotropic, homo-

geneous solid with Lame parameters A. and ~ and density p, covered 

by a layer of thickness 2h' of a different material with Lam~ param-

eters A.' and ~' and density p'. A coordinate system is established 

as shown in Fig. 1, with a y- axis running out of the plane of the 

paper. The displacements in the x-, y-, and z-directions in the 

half-space are denoted by U, V, and W respectively, and in their 

fullest generality are functions of x, y, z, and time t. The case of 

plane strain is assumed, so that all displacements are independent of 

y, and V = 0. Further, the time dependence is assumed to be har-

monic with 

-iwt 
U(x, z, t) = u(x, z)e , 

w >0 .l ( l. 1) 
-iwt 

W(x, z, t) = w(x, z)e , 
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A.',fJ', p' 
0 

A.,IJ.,p 

z 

Figure 1. Coordinates for a Half-Space 
Covered by a Thin Layer. 

X 
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For convenience, the amplitudes u, w will henceforth be referred to 

as displacements. Since actual, physical displacements must be 

real, those corresponding to the present problem are either the real 

or imaginary parts of the quantities appearing in (1. 1). 

Under the foregoing assumptions the elastodynamic equations 

of motion will be satisfied if the displacements are related to the two

dimensional Lame' potentials iii (x, z), 'Y(x, z) by
1 

u(x, z) 
( l. 2) 

w(x, z) 

and if the potentials satisfy the reduced wave equations 

2 2 
'V iji +kd iji = 0 ' 

,..,2,u+k2w = 0 0 
V I S I , - 00 <X< 00 , Z;;:: , 

where 

( l. 3) 

The potentials iJi and '¥ are referred to respectively as the dilatation 

and shear potentials; the speeds cd and cs are respectively the dila-

tation- and shear-wave speeds. 

2 
The stresses are related to the potentials by the formulas 

1see[l2] 
2For convenience, the quantities appearing in (1. 4) are referred to as 
stresses; the actual, physical stresses are either the real or imagi
nary parts of these quantities multiplied by exp[-iwt}. 
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2 2 8
2 

8 2 '¥ 
0 = 11 [ (2kd-k +2-2 ) iJi -2~ ], 

XX S 8X uxuz 

8
2

iJi 2 8 2 
0xz = 1J[2n--a- (k +2-) '¥], 

uxuz s 8z2 

0 
zz 

( l. 4) 

The pure surface waves of interest here are solutions of (1. 3) 

which decay exponentially with z and satisfy appropriate conditions at 

z = 0. Such solutions take the form 

iJi(x, z) = Ae -nd(k)z±ikx, 

'" ( ) _ AP. -n (k)z±ikx r x, z - 1-'e s , ( l. 5) 

where 

n (k) = Jk2 -k2 ' k>k , p = d, s, 
p p' p 

and where A, (3, and the wave number k are constants yet to be deter-

mined. 

Now assume that the layer covering the half- space is thin 

enough that the displacements within the layer can be taken approxi-

mately as independent of z. By virtue of the requirement that dis-

placements be continous across the interface between the layer and 

the half-space, the displacements in the layer must then coincide with 

those in the half-space at z = 0. 

Consider the forces acting on a differential element of the layer 

of unit width in the y-direction and of length dx, as shown in Fig. 2. 

Upon neglecting all internal stress resultants in the layer except those 

due to simple stretching, the balance of momentum in the x- and z-

directions requires 
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-,dxr-
.,+ ___ 2_h_'cr_n_ D 2h '( (J n + : (J p_ dx) 

Zh' ... X ----~~X X 

t 

! 
.. cr (x, O)dx xz 

cr (x, O) dx 
zz 

z 

Figure 2. Differential Element of 
The Surface Layer . 

X 
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oa 1 

2h l J. ( ) 1 I 2 a-+a x,O +2hpw u(x,O)=O,l ux xz 

a (x, 0) + 2h 1p\iw(x, 0) = 0, 
zz 

( l. 6) 

where a; is the axial stress in the layer. The stresses a (x, 0) and 
xz 

a (x, O) are those exerted by the substrate on the layer. The axial zz 

stress a; is related to the displacement u(x, 0) by 

I( ) -4 I( A
1
+U

1
) ou(x, 0) 

~ x - u X~2u' ox 

Substitution of ( l. 7) into ( l. 6) yields 

where 

2 -o u(x 0) 
a (x, O) +uN i +uMu(x, O) = 0, 
xz ox 

a (x, 0) +uMw(x, 0) = 0, 
zz 

8h l I 11+ I 2hlpiW2 
N -~ ( fl. bl ) M- =~-...;,;._., 

- u "-'+2u' ' - u 

( 1. 8) 

Note that N and M are measures of the layer's stiffness and mass, 

respectively. 

Equations (1. 8) may be thought of as boundary conditions to be 

satisfied by the fields in the substrate. Note that in the absence of a 

covering layer , M = N = 0 and ( 1. 8) reduce to the boundary conditions 

appropriate to a traction-free surface. Tiers ten [3] deduced ( l. 8) 

from a more general development in which Mindlin's plate equations 

[ 13] were taken as a starting point
2

. He argued that for thin plates 

1 This relationship is deriv ed from the three -dimensional stress- strain 
law under the assumption of plane strain in the y-direction and vanish
ing of normal stress in the z-direction. 
2 Achenbach and Keshava [ 14] used a similar approach which included 
the effects of axial stretching, bending, shear, and rotatory inertia in 
the layer. 
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all terms except those involving axial stretching and inertial reaction 

are negligible. 

Substitution of the potentials (l. 5) into (l. 2) and (l. 4), and 

thence into the boundary conditions (l. 8), yields a pair of homage-

neous, linear, algebraic equations in A and A!3. The condition for 

the existence of a non-trivial solution is that the determinant of the 

coefficient matrix vanish. This is 

R(k)- Nk
2

k
2

n (k) + M[k
2
[n (k) + nd(k)] 

s s s s 

2 2 2 2 
+Nk [k - ns(k)nd(k)]}+M [ns(k)nd(k)- k } = 0 ( l. 9) 

where 

2 2 2 2 
R(k) = (2k - k ) - 4k n (k)nd(k) 

s s 
(l. 10) 

Each value of k satisfying ( 1. 9) determines an elastic surface 

wave through ( l. 5), provided k>k (note that k > kd' provided A> 0 
s s 

and ~ > 0 - see ( l. 3)) and provided !3 has the now common value re-

quired by either of the boundary conditions (1.8) . If the time depen-

dence is restored in the potentials (l. 5), their x- and t-dependence, 

and hence that of all field quantities, is of the form 

±ikx- i wt ±ik(x :ret) 
e = e (l. 11) 

where c=w / k. Thus the surface wave ( l. 5), while decaying exponen-

tially with z, propagates unchanged in form with speed c in the 

positiv e or negative x -direction according to whether the positive or 

negative sign is used in ( l. ll ). 

If the surface layer thickness 2h' vanishes, M=N=O, the sur-

face becomes traction-free, and (l. 9) reduces to 
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R(k) = 0 . ( l. l 2) 

Equation (l. 12) determines the propagation speed of Rayleigh waves, 

an extensive discussion of which may be found on pp. 307- 309 of 

Love's text [15]. Achenbach, on p. 190 of [16], proves that there is 

only one root of (l. 12) greater than ks. This root is denoted by kR 

and referred to as the Rayleigh root or the Rayleigh wavenumber. If 

(l. 12) is multiplied by w -
4 

the resulting equation for cR = w/kR, and 

hence cR itself, is independent of w. The Rayleigh wave is thus said 

to be non-dispersive, i.e., its propagation speed cR is independent of 

frequency w. 

In the more general case Eq. (l. 9) may have one or two 

roots [3]. The smaller one, which will be denoted kT and referred 

to as the extended Rayleigh root, reduces continuously to kR as M and 

N go to zero, while the other root goes to infinity in this limit. If 

N ~ 0 or M f:. 0, the speed corresponding to the extended Rayleigh root 

is frequency-dependent, so the presence of the layer results in sur-

face waves which are dispersive. 

A special case of interest is that of a massless layer, for which, 

by (1.8), M=O, and (1.9) reduces to 

>:< 2 2 
R {k) = R(k) - Nk k n {k) = 0 

s s 
(l. 13) 

It is shown in Appendix A that this equation also has but one admissi-

ble root. This root is less than kR' reduces continuously to kR as 

N .... 0, and corresponds to a dispersive surface wave which propagates 

faster than a Rayleigh wave but slower than a shear wave. This is 
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in keeping with the intuitive expectation that a stiffening layer would 

increase the characteristic surface wave speed. 

It must be noted that if the sole objective of the present paper 

were a study of pure surface waves, it would not be necessary to make 

any simplifying, approximative assumptions regarding the dis place

ments in the layer . Rather, the layer could be treated as a second 

elastic continuum, and exact solutions to the field equations in both 

the layer and the substrate could be obtained, subject to the appropri

ate continuity conditions at the interface, boundary conditions at the 

traction-free surface, and decay conditions in the substrate. Auld 

summarizes this topic on pp. 97 - 103 of [ 17]; Ewing, Jardetzky, and 

Press discuss it on pp. 189 - 223 of [ 18]. Tiers ten [ 3] compares the 

solutions of the exact dispersion equation with those of (1. 9), conclud

ing that the results agree extremely well for layers less than about 

one sixth of a wavelength thick, and reasonably well up to about half a 

wavelength. The reason the exact analysis is not used here is that it 

does not allow the effect of the layer to be fully specified by a simple 

pair of boundary conditions such as (1. 8). The treatment of the effects 

of the layer through simple boundary conditions is essential to the 

tractability of the scattering problem which is the main objective of 

this work. 
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2. Formulation of the Problem 

An elastic, isotropic, homogeneous solid occupies the half-

space -ro<x, y<oo, z~O . A thin layer covers and is bonded to the 

surface z = 0, -ro<y<ro, x>O, as shown in Fig. 3. Notations for 

coordinates, material properties, and field quantities are exactly as 

in the previous section. The assumptions of plane strain and harmonic 

-iwt 
time dependence of the form e are maintained, so that the problem 

may be formulated in terms of the time-independent Lam~ potentials 

<t> (x, z), 'f(x, z). The reduced wave equations governing these paten-

tials are (1. 3), the displacement-potential relations are (1. 2), and 

the stress-potential relations are (1. 4). The boundary conditions for 

the unplated surface are 

a (x, 0) = 0 

-oo<x <O .1 
zz ( 2. 1) 

a (x, O) = 0 
xz 

and for the plated surface, in accordance with the assumptions and 

results of the previous section, 

a (x, 0) + f..LMw(x, O) = 
zz 

0 , 1 
a2

u(x 0) 
a (x, 0) + f..LN z' + f..LMu(x, 0) = 0 , O<x<ro . 
xz ox 

(2. 2) 

The potentials 4>, 'f are required to be twice-continuously 

differentiable in the interior of the half-space. The quantities appear-

ing in the boundary conditions (2. 1), (2. 2) are required to be continu-

ous up to the respectively appropriate segment of the boundary, ex -

cepting the origin x = z = 0 . Certain further conditions, which will be 

explicitly specified in the next section, are required to be satisfied by 
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AI I I , ~ , p 

0 

/..,~,p 

z 

Figure 3. Coordinates for a Half-Space Covered 
by a Semi-Infinite Thin Layer. 

X 



-17-

various field quantities as the origin is approached, these conditions 

having the effect of ruling out point loads and higher-order singulari-

ties at the origin. 

The potentials <ii, '¥ are required to be of the form 

<ii (x, z) = A 0cpR + (x, z)H( -x) + ArcpR- (x, z)H( -x) 

+AtcpT+(x, z)H(x) +cp(x, z), 

'i'(x, z) = A 0 1jTR+(x, z)H(-x) + ArljiR- (x, z)H(-x) 

+ AtljTT+(x, z)H(x) + ljl(x, z) . 

( 2. 3) 

In Eq. (2. 3), cpR±, ljiR±, cpT+, and ljiT+ are normalized potentials 

representing positive- and negative -traveling Rayleigh waves and the 

positive-traveling extended Rayleigh wave corresponding to the layer, 

and are given by 

where 

= -nd(kR)z ± 2kRx ,1, = ±~ -n (kR)z±ikRx 
cpR± e , "'R± ~"R e s , 

i3R = 2ikR ns (kR) ' 

2 2 
2kT-ks -~Mnd(kT) 

f3T = 2ikTns (kT)-i~MkT 

(2. 4) 

The constant A
0 

is given, the constants Ar and At are unknown, 

H(x) is the unit step function, and cp and 1jT are required to satisfy the 

radiation conditions 

ik r 
e s 

ljl(x, z)""'G( 8 ) J? , 
( 2. 5) 
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t 2 2 1 -1 
uniformly in 8 for 0S:8$1T . Here r:::: 'Vx +z , 8 ::::Tan (z /x), as r-+oo, 

F(8) and G(8) are unknown functions of 8, and the symbol "rv" 

denotes asymptotic equality in the usual sense. 

The motivation behind (2. 4) will be discus sed presently, but 

first a matrix notation will be introduced which not only simplifies 

some of the subsequent manipulations, but consolidates the fundamen-

tal concepts of the analysis. Twice-underlined letters will denote 

2 x 2 matrices of partial differential operators, and underlined letters 

will denote column vectors with two components, the first of which is 

a dilatational potential, and the second, the corresponding shear 

potential. Thus the reduced wave equations ( l. 3) become 

where 

L:::: 

L iJi:::: 0 
-

~ :::: lip (x, z) 

'!'(x, z) 

The boundary conditions (2. l) and (2. 2) become 

where 

R iJi :::: 0, z :::: 0, -oo<x<O, 
=-- -

(R + N~ + MT )_! :::: 0 , z :::: 0 , 0 <x<oo , 

R:::: 

0 0 
S:::: 

03 a3 -
2 ax az 

a2 
2-axaz 

a 
T:::: 
- a a 

( 2. 6) 

( 2. 7) 



-19-

The required form of the solution (2. 3) becomes 

where 

.P_R±= 

(2. 8) 

ikTx e , 

l
cp(x, z)l , 
~(x,z) 

and where cp(x, z) and ~(x, z) must satisfy the radiation conditions 

(2. 5). 

Now it can be seen that in the assumed form (2. 8) each of the 

first three terms represents a surface wave propagating in either the 

positive or negative x-direction and existing only for either positive or 

negative x. The first term is the incident wave and has amplitude 

A 0 . The remaining terms taken together constitute the scattered 

wave and propagate outward from the origin. These terms are 

referred to respectively as the reflected wave, the transmitted wave, 

and the radiated wave; the ratios Ar/ A
0 

and A/ A
0 

are referred to 

respectively as the reflection and transmission coefficients. 

Note that the radiated wave must contain discontinuities across 

x = 0 which cancel those due to the surface wave terms of (2. 7), so as 

to render the full field !_ twice-continuously differentiable. Morgan 

and Karp [19] have solved an electromagnetic problem involving sur-

face waves by using a similar representation, in which the full field 
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is separated into various parts, some representing surface waves, 

one representing a radiated wave, and all possessing discontinuities. 
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3. Solution for a Massless Layer 

It is now assumed that the layer's density p' vanishes. 

According to (1. 8), this causes M to vanish. Under this condition the 

governing differential equations (2. 6) remain the same, but the bound-

ary conditions (2. 7) reduce to 

R! = Q, z = 0, -oo<x<O, 

(R + NS)ili = 0, z = 0, O<x<oo = ::::::::~- - .} (3. 1) 

The assumed form (2. 8) and the radiation conditions (2. 5) remain, but 

the wave number kT appearing in (2. 8) is now a root of the simplified 

form (1. 13) of the more general dispersion relation (1. 9). 

The order conditions at the origin are taken as 

0 (x,O)=O(l), 
xz 

80 (x, 0) + 
xz -pl ox = O(x ) as x ..... 0 , p1 <1 , (3. 2) 

The solution to the problem specified by (2. 6), (3. 1), (2. 8), 

(2. 5) and (3. 2) will be obtained in closed form in this section. 

It is convenient to define a new function ~(x, z) by 

A 

,!(x, z) = A
0

cpR+(x, z) +~(x, z) . (3. 3) 

Recall that A
0 

is the amplitude of the incident Rayleigh wave. Thus 
A 

for x<O, 2 comprises the scattered wave, while for x> 0 it consists 

of the scattered wave minus a positive-traveling Rayleigh wave of 
A 

amplitude A
0

. In either case, .:£. consists only of outwardly-propagat-

ing waves. 
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A 

The differential equations governing T_ are obtained by substi-

tuting (3. 3) into (2. 6), and by noting that, according to (1. 3) and (2. 6), 

L T_R + = Q. This yields 
A 

L T_ = Q , -co <x <co , z:?: 0 • (3. 4) 

A 

The boundary conditions for cp are obtained by substituting (3. 3) into 

(3. 1), and by noting that, according to (1. 8), (1. 2), (1. 4) and (2. 7), 

R cpR+ = Q. This yields 
A 

R T_ = Q , z = 0 , -co <x <co , 

A AONik;kR {0} ik X 
(R + N~)5£ = 2 e R , z = 0 , 
- - 1 

O<x<oo, l (3. 5) 

where use has been made of the definition of S in (2. 7) and that of 

13R in (2. 4). 

This problem will be solved with the aid of a Fourier trans-

form on x. Let f(x) be a complex-valued, absolutely integrable func-

tion of the real variable x which satisfies 

(3. 6) 

for some positive constants K, o and x
0

. The exponential Fourier 

transform of f(x) is defined by 

co "' J -ix.x [ } f (x.) = f(x)e dx, - o <Irn x. <o , (3. 7) 
-co 

and the inversion formula is 

co 
1 J"' i~x f(x) = 

2
1T f (x.)e · drt, -co<x<co . (3. 8) 

-co 

When considered as a function of the complex variable x., the 
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transform f(x.) is analytic in the domain - o <hn [x.} <o (see [ 20], 

p. 338). 

It is clear from (2. 8) that for fixed z the potentials P, '1' will 

not satisfy the decay condition (3. 6) for any o>O, as long as the wave 

numbers kR'· kT, ks and kd are real. However, application of the 

Wiener-Hop£ technique (which will be explained presently) requires 

that the transforms be analytic in strips of the complex x.-plane such 

as that defined in (3. 7). The difficulty is resolved by temporarily 

assuming that the frequency w has a small, positive, imaginary part, 

while all propagation speeds remain real. This is a standard artifice; 

it is discussed, for example, on p. 28 of [ 21 ]. After the solution is 

obtained, the imaginary part of w will be taken to vanish. 

Now since ~ is required to contain only outwardly propagating 

waves, the assumption that hn fw} > 0 (and consequently that 

hn[kQ'} >0, Q' = d, s, T, R) renders i exponentially decaying in lxl as 

required by (3. 6), with decay constant 6 satisfying O<o<hn[kd} 

(c£. (3. 3), (2. 8), (2. 5)). 

Formal application of the transform (3. 7) to the differential 

equations (2. 6) yields 

(3. 10) 2'">:' 
a 'l'(x., z)- 2( );;( ) 

2
- n x. r x., z = 

oz s 
0 , - o <hn [ x.} <6, 

where 

1 2 21 
n =Vx. -k 

s s 
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The functions ns (x.) and nd(x.) are rendered single-valued in the entire 

rt-plane and analytic in the strip -o<Irn[rt}<o by taking branch cuts 

as shown in Fig. 4, and by requiring ns (rt) and nd(x.) to approach 

+oo as x. ..... oo along the positive real x.-axis. The solutions of (3. 10) 

are then 

~(x., z) = A(rt)e -nd(x.)z + A'(x.)end(x.)z, l 
r ( 1{ ' z ) = B ( 1{. ) e - n s ( 1{. ) z + B I ( 1{.) ens ( 1{. ) z ' - 0 <Irn [ 1{. } < 0 ' 

(3. 11) 

where A(x.), A'(x.), B(x.), and B'(x.) are unknown functions of x.. How-

ever, the coefficients A'(rt) and B'(x.) must vanish; otherwise the 

transforms would grow exponentially with lx.l for z>O, and the inver-

sion integrals (3. 8) would not converge. This leaves 

'i::' 
~(x.,z) 

~(x., z) = A(rt)e -nd(rt)z, I 
= B (x.) e-ns ( x.) z , - 6 <lrn [ x.} < o . 

(3. 12) 

The boundary condition (3. 5), when written in component form, 

becomes 
2 2 .... 

( 2k
2

- k
2 

+ 2-
8-)cr + 2~ = o, z = o, -oo<x<oo, 

d s az2 axaz (3. l3a) 

(3. 13 b) 

(3. 13c) 

Note that (3. 13a), which refers to the normal stress at the surface, 

holds for all values of x at z = 0. This circumstance arises from the 
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Figure 4. Complex :Jt-Plane. 
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fact that the mass of the layer is neglected at present, so that M = 0 1n 

(2. 2). In contrast, the conditions (3. 13b, c), which relate to the 

normal tractions at z = 0, take different forms according as x<O or 

x> 0. The fact that only one of the boundary conditions changes form 

at x = 0 makes possible the application of the Wiener-Hop£ procedure 

in its simplest form. 

It is now convenient to define functions f(x) and g(x) on (0, co) 

and (-co, 0), respectively, by setting 

(3. 14) 

Apart from a factor ~. f(x) and g(x) are the unknown values of 0 and 
xz 

2 2 
0 +~No u/Elx under the layer z = 0, O<x<oo, and on the free sur

xz 

face -oo<x < O, z = 0, respectively. 

Formal application of the transform (3. 7) to (3. 13) and {3. 14), 

followed by use of (3. 12), yields 

(2x. 
2

- k
2

)A(x.) - 2ix.n (x.) B(x.) = 0, 
s s 

2 2 -
- 2ix.n (x.)A(x.)- {2x. - k )B(x.) = F (x.), 

s s 

(3 . 15) 
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(X) 

I -htx F- (x.) = f(x)e dx, 

0 

0 

G+(f(.) = Jg(x)e-ix.xdx. 
-(X) 

(3. 16) 

The functions f(x) and g(x) as defined by (3. 14) are exponen-

tially decaying for large positive and negative x, repsectively, with 

- + decay constant 6 . Moreover, since F (x.) and G (x.) are half-range 

transforms of f(x) and g(x), F- (x.) and G+ (x.) are analytic functions 

of x. on the half-planes Imfx.} < 6 and Im[x.} > -6, respectively (see 

p. 12of[21]). - + The superscripts on F (x.) and G (x.) are thus seen 

to be suggestive of the half-planes on which the functions are respec-

tively analytic. 

After A(x.) and B(x.) are eliminated from (3. 15) there remains 

the single equation 

where 

R(x.) 

* 2 2 R (x.) = R(x.) - Nk x. n (x.) 
s s 

(3. 17a) 

(3 . 17b) 

It is important to note that the domain of v alidity of (3 . 17a) is the 

strip -6 <Im [ x.} <6. 

Now define D(f(.) by 

D(x.) = 
2(k;- k~)R* (x.) 

2 ' Nk n (x.)R(x.) 
s s 

- 6 <Im[x.}<6 . (3 . 18) 
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It is shown in Appendix B that D(x.) admits the representation 

where 

D(x.) = D- (x.) 
D+(x.) 

OO'FiO 

= exp{--1-. J Log[D(ct)]da} -o<Im[x.}<o 
2TT1 • J: Q'-1{ ' 

-<Xl=fl u 

(3 . 19) 

and that D+(x.) and D-(x.), by trivial analytic continuations, have the 

scune domains of analyticity as G + (x.) and F- (x.), respectively. In 

view of (3 . 18) and (3 . 19), Eq. (3 . 17a) may be rewritten as 

2 - - -Nk n (x.) D (x.)F (x.) 
s s 

The functions n±(x.) are rendered single
s 

valued in the entire complex x.-plane and analytic in the strip 

- o< Im[x.} < 6 by taking branch cut!:! as shown in Fig. 4, and by re

quiring both n+(x.) and n-(x.) to approach too as x.-oo along the posi-
s s 

tive real axis. Note that the superscripts have the scune meanings as 

above. 

Equation (3. 20) is said to be of Wiener-Hop£ type . The method 

used to solve it is referred to as the Wiener-Hop£ technique, and is 

outlined on p. 3 7 of [ 21 ]. Define functions H±(x.) by 
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,Im[K}<6, 

(3. 21) 

The function H+(K), by a trivial analytic continuation, is analytic for 

Im[K}>-6, while H-(K) is similarly analytic for Im[K1<6. Accord-

ing to {3. 20), there is a common strip of analyticity in which 

{3.22) 

It follows that there is an entire function H(K) such that 

(3. 23) 

+ Now it will be proved that both H- (K) and H (K) tend to zero as 

IKI-+oo in the appropriate half-plane. The order conditions {3. 2) imply 

the existence of positive constants L and E: such that 

Ia {x, O)I<L 
xz 

, O<x==::E:, 

(3. 24) 
Ela (x, 0) 
I x:x I <Lx -pl ' 0 <x::::E: ' 

The exponential decay resulting from the complex frequency, together 

with the assumed continuity of the solution, imply the existence of a 

constant K> 0 such that 
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I I -ox a (x, O) < Ke , E:~x<oo, xz 

(3.25) 
8a (x, 0) l'. 

I 
xz I -vx Clx <Ke , E:~x<oo, 

2 

Ia (x,O)+~Na u(x,O)I<Keox -oo<x~-E:. 
xz 2 ' 8x 

Substitution of (1. 2) and (1. 4) into (3. 14), thence the result into (3. 16), 

yields 
(X) - I -i~x ~F (~) = a (x, O)e dx, 

xz 
(3. 26a) 

0 

0 2 . 
~G+ (~) = I [a xz (x, 0) + ~N 8 u(~, 0) J e -l~xdx • 

-oo 8x 
(3. 26 b) 

One integration of (3. 26a) by parts, followed by use of (3. 24) and 

(3. 25), leads to the following asymptotic estimates for F-(~) and 

G+(~): 
a (x, o) . loo 1 oor aa (x, o) . 

I IIF-(~)1 = xz l~X + xz -l~Xdx 
~ - i~ e o+ i~ oi 8x e 

0 

(3. 27) 

= 0( ~~-l) as l~l .... oo, Im[~}<o, 
0 -8 

I~G+ (~)I ~ I L lxrp2 dx + IKe oxdx 

-E: -(X) 
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It is proved in Appendix B that 

ID+(~)I .... l as 1~1-+oo, Imf~}> -6,} 

ID-(~)1-+1 as 1~1-+oo, Imf~}<6. 

Use of (3. 27) and (3. 28) in (3. 21) yields 

H- ( ~) .... 0 as 1~ 1-+ oo , Im [ ~ } < 6 , 

+ 
H (~)-+0 as 1~1-+oo, Im[~}>-6. 

(3. 28) 

Therefore (3. 23) and a trivial extension of Liouville's theorem (p. 125 

of [22]) imply that 

H(~) = 0 . (3. 29) 

+ In view of (3. 29), (3. 23), and (3. 21), F-(~) and G (~) are 

given by 

rm[~}<6, 

(3. 30) 

Im[~}>- 6. 

Substitution from (3. 30) into (3. 15) yields three equations in A(~) and 

B(~). Any one of these may be considered as redundant and the re-

maining two solved for A(~) and B(~) to give 

A(~) = (3.3la) 

(3. 3lb) 
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B(1-t) = (3.3lc) 

The alternate forms are obtained by using (3. 18) and (3.19). 

yields 

Application of the Fourier inversion formula (3. 8) to (3. 12) 

00 

cp(x, z) = 2~ J A(1-t)e -nd(1-t)z + i1-txd1-t, 
-00 

00 

~ (x, z) = 2~ J B(1-t)e -ns (1-t)z + i1{xd1-t 
-00 

(3. 32) 

as formal candidates for a solution to the original problem for cp, ~. 

Several steps are now necessary to prove that the functions 

cp, $ appearing in (3. 32) are properly defined and actually satisfy 

(3. 4) and (3. 5). These steps are left to Appendix C. It is also proved 

there that the asymptotic forms of F-(1-t) and G+(1-t) as j1-tj ... oo are in 

fact as specified in (3. 27). 

In order to demonstrate that (3. 32) contain the surface waves 

required by (2. 8), the integrals in (3. 32) must be regarded as complex 

contour integrals along the real 1-t-axis in the complex 1-t-plane (see 

Fig. 4). The singularities in the integrands in (3. 32) are due to the 

various singularities of D+(1-t) and D- (1-t), the branch points of n (1-t) 
s 

and nd(1-t), and the simple zeros of the denominators associated with 

A(1-t) and B(x). It is shown in Appendix B that D + (1-t) has branch 
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points at -ks and -kd' no zeros, and a simple pole at -kT' while 

D- (x.) has branch points at ks and kd, no zeros, and a simple pole at 

* By inspection of (3. 17b) it is seen that R(x.) and R (x.) have 

branch points at ± ks and ± kd' and it is proved in Appendix A that 

their only zeros are located at ± kR and ± kT, respectively. Hence 

the singularities of the integrands in (3. 32) are branch points at ± k 
s 

and ± kd' and simple poles at ± kR and ± kT. These are shown in 

Fig. 4 . That they are not on the real axis is due to the assumed small, 

positive, imaginary part of w. The branch cuts are taken as shown 

in Fig . 4. The segments of these cuts between the branch points and 

the imaginary axis will lie along the real axis in the limit as Im [w} ..... 0. 

Now consider an integration around the closed contour formed by 

the quarter-circular arcs of radius R and the appropriate segments 

of the branch-line contour and the real axis, as shown in Fig. 4. If 

the integrals over the quarter-circular arcs vanish in the limit as 

R ..... oo, then by Cauchy 1 s theorem the integral over the real axis may 

be replaced by that over the branch-line contour plus the contribution 

from the residues at the poles kT and kR. It can easily be shown 

that this is in fact the case when x>O. The residues are evaluated 

using (3. 3la, c) and (3 . 32). With the aid of (3. 17b) and (3. 3) it is 

seen that the contribution due to the pole at kR is equal to the inci

dent wave AO~R+(x, z) but for its sign. Thus substitution of the 

result of the contour shift into (3 . 3) yields 
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<.P (x, z) = AtcpT+(x, z) + cp(x, z), l 
'Y(x, z) = AtiJ!T+(x, z) + IJ!(x, z), x>O, 

A = 
t 

,r,. I 

R'' (kT) 

cp(x, z) 

IJ!(x,z) 

= 

= 

= 

-·-, 
dR~-

dtt 1{ = k 
T 

2~ J A(tt)e -nd(tt)z + ittxdtt' 

x>OJ 
B+ 

_1_ J B( ) -n (tt)z + ittxd 
2rr tt e s tt ' 

B+ 

(3. 33) 

(3. 3 4) 

(3. 3 5) 

and where B+ denotes the branch-line contour in the upper half-plane 

(see Fig. 4). The full field is thus seen to have the required form 

(2. 8) for x> 0, with At as the amplitude of the transmitted wave, pro

vided cp and 1J! satisfy the radiation conditions (2. 5). That they do may 

be proved by analyzing the asymptotic behavior for large Jx
2

+z
21 

of 

the integrals in (3. 35). When z = 0, such an analysis may be carried 

out with the aid of Watson's lemma, and when z f: 0, by the saddle 

point method. 

When x < O, a similar procedure applied in the lower half of the 

tt-plane leads to the result 

x<O ,] 
(3. 3 6) 
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2 2 + + 
AOkR (ks- kd)D (kR)ns (- kR) 

n: (kR)D- (- kR)R'(- kR) 

= dRI d){ , 
1-t =- kR 

cp(x, z} = 2~ I A(7-t)e -nd(ft)z + iftxdft, 

B 

~ (x, z) = 2~ I B(7-t)e -ns (7-t)z + i){xdft, 

B_ 

(3. 37) 

x<OJ 
(3. 38) 

and where B denotes the branch-line contour in the lower half-plane. 

Thus the full field has the required form for x<O, with A as the 
r 

amplitude of the reflected wave. 

Note that the functions cp(x, z), ~(x, z) as defined by (3. 35) and 

(3. 38) are discontinuous across x = 0, z> 0, but the full field .! is 

twice-continuously differentiable in the interior of the half-space. 

Also note that had (3. 32} been derived formally without 

recourse to the assumption of complex frequency, the inversion con-

tour would appear to pass directly through the poles and branch points 

(since they would now lie on the real 7-t-axis), and it would be neces-

sary to appeal to some other argument to determine whether this 

contour should be conside red as passing above, below, or through 

these singularities. The assumption of complex frequency, in addi-

tion to providing the overlapping domains of analyticity required for 

the Wiener-Hop£ analysis, serves in effect to resolve this dilemma. 

Having served its purpose, it may now be discarded. 
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It is now desired to obtain numerical values for the reflection 

and transmission coefficients Ar I A
0

, A/ A
0

. All quantities in (3. 34) 

and (3. 37) can be evaluated straightforwardly except for the functions 

+ -
D and D . It is proved in Appendix B that 

(3. 39) 

so for the purpose of determining Ar/ A
0 

and At/ A
0 

from (3. 34) and 

(3. 37), it is only necessary to compute D+(kR) and D+(kT). This is 

done by a numerical integration, the details of which are explained in 

Appendix B. After rewriting (3. 34) and (3. 37) in dimensionless form 

it is seen that the coefficients Ar I A
0

, At/ A
0 

are functions only of 

the dimensionless layer parameter Nk and Poisson's ratio v. The 
s 

dependence on Nk of the transmission and reflection coefficients is 
s 

shown for v= 1/4 in Fig. 5. The coefficients Ar/A 0 and At/A0 are 

complex, but for the range of Nk shown the imaginary parts never 
s 

exceed 0. 4o/o of the corresponding real part. A complex coefficient 

simply signifies a wave whose phase is shifted with respect to the 

incident wave. 

A check of these numerical results may be obtained by com-

puting, from (3. 34) and (3. 37), the asymptotic forms of Ar/A0 and 

A/ A
0 

as N-+ 0. The wave number kT is a function of N defined 

im pli c i tl y by ( 1. 1 3 ) : 

This equation may be differentiated with respect to N, yielding 
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from {3. 42a) 
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Figure 5. Transmission and Reflection Coefficients 
For the Case of a Massless Layer. 
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Upon setting N=O, and noting from (1.13) and (1.12) that kT(O) =kR' 

there results 

Thus 

It is proved in Appendix B that for k>k 
s 

Applicationof(3. 39)-(3. 41) to (3. 34) and (3. 37) yields 

At = A 0 + o ( 1 ) , 

(3. 40) 

(3. 41) 

(3. 42a) 

(3. 42b) 

The first terms of (3 . 42a) and (3. 42b) are plotted in Fig . 5 and it is 

clear that they do agree with the numerical computation with increas-

ing accuracy as N-+ 0. Equation (3. 42a) expresses nothing more than 

the fact that the amplitude of the transmitted wave approaches that of 

the incident wave in the l imit of vanishing layer thickness . 
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4. Approximate Solution for a Very Thin Layer 

It is now assumed that the layer is thin enough, when com-

pared with the wavelength of any of the characteristic surface or body 

waves, that the layer parameters M and N, defined by (1. 8), may be 

taken as perturbation parameters in a sense to be described pres-

ently. 

so that 

Let a constant ex be defined by 

p I W 2 ( A/ + 2 ') 
a = ""V X'+ ~t; , 

M=aN. 

( 4. 1) 

(4. 2) 

The perturbation process consists of allowing the layer thickness 

2 h' to grow from zero to some small, non-zero value while holding 

ex fixed. Thus, in view of (1. 8), (4. 1), and (4. 2), the problem may 

be expressed in terms of the single perturbation parameter N. 

The differential equation (2. 6) for _!(x, z) remains. By using 

(4. 2), the boundary conditions (2 . 7) may be rewritten as 

~! =.Q., z = 0, -oo<x<O, } 

[ R + N (~ + aT )1 ! = .Q , z = 0 , 0 <x <oo 
(4. 3) 

- - -

The assumed form (2. 8) also remains appropriate, with the wave 

number kT a root of ( 1. 9), but now it is assumed that the amplitudes 

Ar' At appearing in (2. 8) may be represented by 

A = A(O)+N A(l)+ o(N) 
r r r ' } 

A= A(O)+NA(l)+o(N) as N ..... O, 
t t t 

(4. 4) 
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and that the radiated wave cp may be expressed as 

:£(x,z) = :e_(O)(x,z)+Ncp(l)(x,z)+o(N) as N-oO (4. 5) 

Each term on the right of (4. 5) is assumed separately to satisfy the 

radiation condition (2. 5). 

The remainder of this section is concerned with the determi-

. (m) (m) 
nahon of Ar , At , m = 0, 1 The first step is to derive the equa-

tions governing ~(O) and .:r_(l). By substitution of (2. 8) into (2. 6) and 

(4. 3), there results the following problem for 2£.: 

L ~ = Q , z > 0 , - ro <x <ro , x ~ 0 } 

R :£ = 0 , z = 0 , - ro <x <0 , ' 

{ R + N (g + a T) } ~ = 0 , z = 0 , 0 <x <ro . 

( 4. 6) 

The requirement that ! be twice-continuously differentiable, when 

applied to (2. 8), leads to the jump conditions 

[T]- Ao'£R+ (0, z)- ArTRJO, z) + AtTTt (0, z) = 0,} 

[2£, x] - 1kRAO.:P_R+(O, z) + 1kRAr cpR- (0, z) (4. 7) 

+ ikTAt~T+(O, z) = Q, O<z<ro, 

where 

J + -[cp = :£(0 , z)- :£(0 , z) . 

When (4. 2) is substituted into ( 1. 9), there results an equation 

which defines kT implicitly as a function of N. By differentiating 

this equation with respect to N and setting N = 0, it follows that 



-41-

Equation (4. 8), and the fact that kT = kR when N = 0, lead to 

kT = kR + Nk~l)+o(N) as N-+0. (4. 9) 

The quantity ~T+(O, z), defined by (2. 8), may similarly be 

expanded in a power series in N, resulting in 

cpT+(O,z) =.:f:R+(O,z)+N~~l(O,z)+o(N) as N-+0, (4. 10) 

where 

N=O 

Now (4. 4), (4. 5), (4. 9), and (4. 10) are substituted into (4. 6) 

and (4. 7), and the coefficients of the zeroth and first powers of N in 

each equation are separately set equal to zero, to yield 

L~(O)=Q, z> 0, -oo<x<oo, X;{: 0; 

R ~(0) = Q, z = 0, -oo<x<oo, X F 0; 

(0) (0) (O) _ 
[~ ] - Ao.:f:R+(O, z)- Ar cpR- (0, z) +At ~R+(O, z)- Q, (4. ll) 
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L ~ ( 1 
) = Q , z > 0 , - oo <x <oo , x f. 0 ; 

R~( 1 )=..Q., z=O, -oo<x<O; 

R ~ ( 1 
) = - (~ + a T) ~ ( 0 ) , z = 0 , 0 <x <oo ; 

[ r()( 1)J -A( 1)cp (O z)+A( 1)cp (O )+A(O)cp( 1)(0 ) =_0, 
::t:. r - R- ' t -R + ' z t - T + ' z 

[cp(l)]+ik A(l)cp (O z)+ik A(l)cp (0 z) 
-'x R r -R- ' R t -R+ ' 

+ ik A(O)cp(l) (0 z)+ik(l)A(O)r() (0 z) = 0 z>O 
R t -T+ ' T t .!:.Rt ' -' · 

( 4. 12) 

In order to solve (4. 11), it is convenient to define an auxil

iary function ~(O) by 

cP(O) = cp(O)- A cp H(x) +A (O)cp H( -x) + A(O)cp H(x) 
- - 0-R+ r -R- t -R+ ( 4. 13) 

When (4. 13) is substituted into (4. 11), the equations governing cP(O) 

are found to be 

A(O) 
L ~ = Q, z>O, -oo<x<oo, } 

R ~(O) = 0, z = 0, -oo<x<oo, 

[cP(O)J = [cP(,O)J = 0, z>O. 
- -X -

(4. 14) 

In particular, note that the differential equation for cP(O) holds 

throughout the interior of the half- space. From (4. 13) it is seen that 

~(O) is everywhere outwardly propagating. This fact together with 

(4. 14) implies that T(O ) = Q. Thus, from (4. 13), 

cp(O) = (A -A (O)) cp H(x)- A (O)cp H( -x) 
- 0 t -R+ r -R-

( 4. 15) 

But since ~(O) is a radiated wave, it cannot contain any surface 

waves, so from (4. 15), 
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A (O) = A A (O} - 0 } t 0' r - ' 

(0) 
T_ (x, z) = 0 . 

( 4. 16) 

Equations (4. 16) simply express the fact that in the limit as the 

layer vanishes, the full field ! consists only of a positive-traveling 

Rayleigh wave of amplitude A
0

. 

In view of (4. 16), Eqs. (4. 12) become 

L 5£ ( 1) = Q , z > 0 , -co <x <co , x -/: 0 ; 

R T_( 1) = Q, z = 0 , -co <x<co , x -/: 0; 

(4. 17) 

The solution of (4. 17) is facilitated by the introduction of an 

auxiliary function ~( 1) defined by 

"(1) 
When (4. 18) is substituted into (4. 17), the equations for~ 

found to be 

A k(l) 
"( 1} _ 0 T { -ik x} 

R~ - ZkR R cpR+(O, z}e R H(-x) 

{ 
( 1) ik X} _ 

+ A 0 R _T.T+(O, z)e R H(x}, z- 0, -co<x<co, 

( 4. 18) 

are 

(4. 19a) 

(4. 19b) 
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(4. 19c) 

As in the case of .P_(O), the function p_(l) is smooth enough that the 

differential equation (4. 19a) holds throughout the interior of the half-

space. 

The right-hand sides of (4. 19a, b) may be simplified some-

what. Note that 

ik X 
3:T+(x, z) = 3:T+(O, z)e T 

= [ 3:R+ (0, z) + N .'£~~ (0, z) + O(N
2

)] e ikRx [1 +iNk¥ )x + O(N
2)J 

lr()(l) ik X . (1) J 2 
= cpR++N[!=-T+(O,z)e R +tkTx~R+ +O(N )asN ... O. (4.20) 

Since L ~T+(x, z) = Q, each term of the latter form of (4. 20), when 

operated upon by L, must vanish. Thus 

[ -11) ik x 1_ . (1) [ } 
L pT+(O, z)e R _- -1kT L xcpR+(x, z) ( 4. 21) 

From (1. 8), (1. 2), (1. 4), (2. 7), and (4. 2) it follows that 

( 4. 22) 

Substitution of (4. 20) into (4. 22) leads to 

2 
+ O(N ) = 0 as N ... 0 , z = 0 . ( 4. 23) 

Each term of ( 4. 23) must likewise vanish separately, so 

[ (1) ik x 1 . (1) [ } 
R :!:T+(O,z)e R =-1kT R x.:!:R+ -(.e_+aT).:!:R+' z=O (4. 24) 

The right-hand sides of (4. 21) and (4. 24) may be easily computed by 

using Leibnitz' rule, and by noting that L _TR+ = Q and that 
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R 5£R+ = Q at z = 0. The first term in the right-hand side of (4. 19b) 

may also be computed directly. These results are then incorporated 

into (4. 19) to yield 

(4. 25a) 

where 

( 4. 26) 

Equations (4. 25) may be solved with the aid of the Fourier 

transform (3. 7). It is once again assumed that the frequency w has a 

small, positive, imaginary part. The transform of (4. 25a) is then 

found to be 

"' 2 " (1) a cp (x., z) 2( )0:'(1)( ) 
2 - n x. cp x., z = 

oz s 

2A
0

kR k(.i.)e -nd(kR)z 

i(x.- kR) 

2AOkR k(.-i)f3Re-ns (kR)z 

i( x. - kR) 

z > O , -o<hn {x. }<6 , 

(4. 27) 

where 6 is a constant such that 0 < 6 < hn{kd}. The solution of the 

homo geneous v ersion of (4. 27) is given in (3. 11), and again A'(x.), 

B'( x. ) must v anish. The general solution of (4 . 27) is thus 
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2A
0

kR k~)e-nd(kR)z 

i(x.-kR)2(x.+kR) 

z > 0 ' - 6 <Im [ /{. } < 6 

( 4. 28) 

Application of the transform (3. 7) to the boundary conditions 

(4. 25b), followed by use of (4. 28), yields 

= ( 4. 2 9) 

This is a system of two simultaneous, linear equations in the two 

unknowns A(x.), B(x.). It possesses a unique solution provided the 

determinant of the coefficient matrix does not vanish. That determi-

nant is found to be -R(x.), where R(x.) is given by (3. l7b) and is 

known to vanish only at x. = ± kR. Since these points lie outside the 

domain of validity of (4. 29), A(x.) and B(x.) may be computed imme-

diately, and are 
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( 4. 3 Oa) 

(4.30b) 

Equation (4. 30a), for example, may now be used in the inversion 

formula 
00 

cP(l)(x, z) = 2~ J ~(7t)e-nd(rt)z_ 
-co 

which follows from (3. 8) and (4. 28). 

(4. 3 1) 

The singularities of the integrand in (4. 31) are branch points 

at ±kd' ±ks' and poles at ±kR. The contributions due to the residues 

at the poles represent, as in the previous section, the surface waves. 

For x> 0 the contour may be closed in the upper half-plane, as shown 

in Fig. 4, so in this case it is the pole at kR . which is of interest. 

Four separate terms appear - three due to A(rt) and the fourth 
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arising from the last term in (4. 31). The residue of each term may 

be computed separately. The first, third and fourth terms have 

double poles; the second, a simple pole. 

The double poles will lead to secular terms, i.e., terms con-

taining x or z as a factor. It will be seen, however, that none of 

these terms appears in the asymptotic expansion of ~(l)(x, z) as 

x -t±oo. This is necessary in order that the asymptotic expansion be 

valid; otherwise the representation of !( 1) (x, z) would not be uni-

formly valid in x and the asymptotic expansion could not be justified. 

In fact, it is this very requirement which necessitated the seemingly 

roundabout formulation employed in this section. 

From (4. 18), for x>O, 

(1) - A(l) (1) 
cp {x, z) - cp {x, z) - At cpR+(x, z) 

( 1 ) 
(1) ik X AOk:T 

-A0 cpT+(O,z)e R- 2k cpR+(x,z), x>O. (4.32) 
R 

When the four residue contributions from c$( 1) are combined with the 

latter three terms of (4. 32), there results 

where 

( 1) I 
A = t 

A 0R "(kR)k! { 2 J} 
___;:. _ __:::..::..._2-=- - kRn (kR) + et [ n (kR) + nd(kR) 
2[R'(k )] s s 

R 

( 4. 3 3) 

( 4. 3 4) 
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Note that the secular terms due to the double poles have been can-

celled by each other and by the third term on the right-hand side of 

(4. 32). Now since Cj)(l)(x, z) must obey the radiation condition (2. 5), 

it cannot contain any surface waves, so from (4. 33) it follows that 

(4.35) 

The coefficient A( 1 ) may be determined by a procedure analo
r 

gous to that described above, but with the integration contour closed 

in the lower half rt-plane. Because A(rt) has only a simple pole at 

rt = -kR' the computation is somewhat simpler. The final result is 

When (4. 16) and (4. 34)- (4. 36) are used in (4. 4), the trans-

mission and reflection coefficients may be computed to first order in 

N. The resulting approximations to the coefficients are shown in 

Fig. 6 for v = 1/4. 

If the layer is massless, M=O, a=O, and the results may be 

compared with those of the previous section. This is done in Fig. 5 

for v = 1 I 4, and there is seen to be good agreement as N .... 0. 
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Figure 6. Approx imate Transmis sian and Reflection 
Coefficients for a Very Thin Layer. 
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5. Conclusions and Comments 

The problem of the scattering of a Rayleigh wave by the edge 

of a thin surface layer is amenable to solution by the Wiener-Hop£ 

technique in the case where the density of the layer vanishes. The 

amplitudes of the reflected and transmitted surface waves computed 

by such an analysis are shown in Fig. 5 for v = 1 I 4. 

A perturbation process leads to an approximate solution for 

the case of a layer possessing both mass and stiffness. This analysis 

yields the transmission and reflection coefficients shown in Fig. 6, 

for v = 1/4. The results of the two analyses agree closely for very 

thin, massless layers. 

It is reasonable to ask whether the results of Section 3 might 

be extended to the case of a layer having mass, by treating the 

layer's mass parameter M as a perturbation parameter, while 

allowing the stiffness parameter N to remain arbitrary. Such a pro

cess leads to a sequence of problems, the zeroth order problem 

being precisely that solved in Section 3. This procedure has been 

attempted, but the computations required to obtain the first order 

solution were found to be of prohibitive complexity. Part of the diffi

culty arises from the fact that the zeroth-order solution, which is 

known only as a Fourier inversion integral, appears as a forcing 

function in the first-order problem. This necessitates the factoriza

tion, by the formal procedure used in Section 3, of quantities contain

ing the zeroth order solution. 
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.,, 
Appendix A - Roots of R ,,,{l-t) 

In this section the roots in a suitably cut complex plane of 

the function 

(Al) 

are located. 

It is assumed that w = 0, so that ks and kd are real. The 

branch cuts in the complex x.-plane are taken as shown in Fig. 7, 

except that the radii of the cuts in the vicinity of the origin is vanish-

ingly small. The functions ns(x.) and nd(x.) are then defined by 

requiring that they be positive for x.>ks. When ns(x.) and nd(x.) are 

p ontinued analytically throughout the cut 11.-plane, it can be seen that 

>!:: >::: ~:< f- (x.) is even in 11., i.e., R (11.) = R (-x.). Therefore it is only neces-

sary to consider the right half-plane Re[x.}:::: 0. 

The number of roots in the right half-plane may be determined 

pY the principle of the argument (see pp. 271-272 of [22]). The 

f rinciple may be stated as follows: Let a function be analytic inside 

qnd on a closed contour C except for at most a finite number of 

poles inside C. Let f have no zeros on C and at most a finite 

number of zeros inside C. Then 

N - N 
0 . p 

(A2) 

where N
0 

is the number of zeros of f inside C, a zero of order 

m
0 

being counted m
0 

times, Np is the number of poles of f inside 

C, a pole of order m being counted m times, and 6C I argf(x.)] is p p -

the change in the argument of f(x.) as C is described in a positive 

sense. 
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The curve C is taken as shown in Fig. 7. It is clear by in-
,,, 

spection of (Al) that R
1

,(1-t) has no poles inside or on C, so (A2), 

;~ * when applied to R (11.), will give the number of zeros of R (71.) inside 
,,, >!< 

C, provided that R (71.) has no zeros on C. To prove that R'' (1-t) f: 0 

on C, each segment of C must be examined separately. The appro-

priate values of ns{71.) and nd(71.) for each segment of C are deter

mined by analytic continuation from the half-line Im.{11.} = 0, 

Re {11.} > k . 
s 

>!< 
These and the corresponding formulas for R (11.) are 

given in Table 1 in terms of s and 'f1, where 71. = S + i'f1. By referring 

to the table, the following facts are noted: On c
2 

and C7' 

Im.{R:<(71.)} =0 only at 'f1=0, where Re{R~(71.)} f:O. On c3 and c6' 

Irn{i'<(71.)} =0 only at s=O, where Re{R:<(71.)} f:O. On c
4 

and c
5

, 

s=k /JZ, where Irn{i'<(71.)} f:O. Hence 
s 

>:< 
Re {R (11.)} = 0 only at 

i:<(71.) 1= o on c
2

- cT 

i8 -1 
On c 1, ns(71.)"'nd(71.)"'re as r-+oo, where 8 =Tan (Tl/s), so 

from (Al), 

R~<(11.)"' [2 (rei8)2 _ k2] 2 _ 4 (rei8)2(rei8 )2 _ Nk2(rei8)2rei8 
s s 

2 3 3i8 
""'- Nk r e as r .... oo (A3) 

s 

* Thus R (x) f: 0 on C, so the principle of the argument may be applied. 

* One way to determine (l/2rr).6C[argR (11.)] is to plot the 

* * trajectory of R (11.) in the complex R -plane as 71. describes C in the 

complex 11.-plane, and then simply count the net number of times the 

origin is encircled in a counterclockwise direction. The complex 

~< 
R -plane is shown in Fig. 8. Point A, which corresponds to 71. = -ir, 

is taken as a starting point. Its image A' in the R'<-plane, by either 
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Re [K'<} 

A' 

-·-
Figure 8. Complex R''_Plane. 
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(A3) or Table Al, corresponds to i:'"'-iNk!r
3

. As c 1 is de

scribed, 8 increases by TT while r remains fixed, so by (A3), 

arg(R:') increases by 3TT while li:'l remains constant and large. As 

c
2 

is described, Re[R*} never vanishes since here Re[R:'(tt)} =R(tt), 

and R(tt) is known not to vanish on the imaginary axis (see p. 190 of 

[16]). Thus on c
2 

Re[R:'}>O and Im[R:'} ~ 0, equality holding only 

at T) = 0. 
~< ::{< 

On c
3

, Re[R }>0 and Im[R} s;O, equality holding only at 

s= O. On c4' Re[i:'} =0 only at 'S=ks/,f2', where Im[R"} < O. 

Otherwise Re[R:'}>O and Im[R:'}s;O, equalityholdingonlyat s=k. 
s 

,,, 

The images in the R'' -plane of the remaining segments c5, c6, and 

c7 are the complex conjugates of those of c4' c3, and c2, respec

tively. Upon returning to the starting point A' in the R:' -plane, the 

origin has been encircled once in a counterclockwise direction, so 

by the principle of the argument, there must be precisely one root 

>:< 
of R (tt) in the right half of the tt-plane, and it must be simple. 

,,, 

To locate this root, consider R'' (tt) for tt = s, ks:::;; S:::;; kR. Note 

from (Al) that i:'(k ) =k
4

> 0, and R*(kR) =- Nk
2

k
2
JkR2 -k

2 1

<0 
s s s r s 

,~ 2 2 
(since R (tt) = R(tt)- Nk tt n (tt) and R(kR) = 0). Hence the root, which 

s s 
~-

is denoted by kT, must lie in the interval (ks' kR). Since R"(tt) is 

even in tt, it has another root at - kT. 
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Appendix B - Factorization of D(~t); Properties and Evaluation 

+ -
of D (x) and D (~t). 

The function D(~t) is defined as 

D(~t) = (Bl) 

where 

R(~t) 
2 2 2 2 = (2~t - k ) - 4ft n (~t)nd(~t), 

s s 

;1,< 2 2 
R (~t) = R(~t) - Nk ~t n (~t), 

s s 

and where 6 is a constant such that 0 < 6<Irn[kd}. The functions 

ns (~t) and nd(~t) are rendered single-valued by taking branch cuts as 

shown in Fig. 4 and by requiring both to approach +co as It ... co along 

the positive real ~t-axis. 

~:< 
The functions R(~t) and R (~t) have the following asymptotic 

forms: 
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(B2) 

* R (7i.) 

-·-
Re [ 7i.} > 0. Since R(7i.) and R"' (7i.) are even functions of 7i., the esti-

1s substituted into (Bl) it is seen that 

The functions D+ (7i.) and D- (7i.) are formally defined as 

ro1=i6 

D±(7i.) = exp{- 2 1. I LogD(a)da}, -6<Im{7i.}<6 1 (B4) 
Til Q'-7{ 

-ro=Fio 

where, in view of (B3), Log D(a) is rendered single-valued by requir

ing it to approach 0 as lal-ro, -o::;;Im{a1::;;o, Re{a}>O. The function 

D(a) has branch points at ±ks and ±kd' simple poles at ±kR' and 

simple zeros at ±kT (see (Bl)). Since none of these points lies 
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within the strip -6~Imfc¥}~6, the function Log D(a) is analytic 

throughout the strip. Since D(Cl') is an even function of a, it must 

also be true that LogD(Q')-+0 as jaj .... co, -6~Imfa}~6, Re[Cl'}<O. In 

view of (B3) 

(BS) 

so the integral appearing in (B4) is convergent. 

Now by using (B4), 

co+i6 co -i6 

=ex {--1. I LogD(a)da+~J LogD(a)dQ'l 
P 2m a-ft Zn1 Q'-ft J 

-co+i6 -co- i6 

oo-i 6 -co+i6 

= exp{~( I + I ) Log _D(O') da 1 . 
2TI1 ·s:. +'J:. Q' ft j 

-CO-l u 00 lu 

(B6) 

The only singularity of the integrand in (B6) between the two infinite 

contours is a simple pole at a= ft. The two contours may be joined 

by two vertical segments of length 26 at Re[Cl'} =±co, and the residue 

theorem applied to the resulting closed contour to yield 

(B7) 

The "factorization" procedure exemplified by ( B4), (B 7) follows the 

method described by Noble (p. 15 of [21]). 

A theorem concerning the domain of analyticity of a function 

defined by an infinite integral (seep. 110 of 124]), when applied to 

+ (B4), leads to the result that D (ft) is analytic for Im[ftt>-6, and 

D- (ft) is analytic for Im [ ft} <6. 
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The singularities of the analytic continuation of D+ (tt) into 

the lower half-plane are determined by combining (B7) and (Bl) to 

yield 

Thus D + (tt) has a simple pole at - kT and branch points at - ks and 

-kd. Conversely, 

+ = D (tt) 

so the singularities of the analytic continuation of D- (tt) into the 

upper half-plane are a simple pole at kR and branch points at ks 

and kd. 

+ It is clear from (B4) that D (tt) and D- (tt) can have no zeros 

in their respective domains of analyticity. It also follows from ( B4) 

and the evenness of D(O') that 

oo+io oo-i6 

D-(-tt) = exp{- 2~iJ Lo~+~(O')dO'}= exp{ 2;iJ Lo~~;-O')dey} 
-oo+i6 -oo-i6 

oo -io 

= expfzl. J Log D(O')dO'} = 
- Til ){- 0' 

+ D ( tt) , Im { tt} >- 0 . 

-oo-io 

Now it is desired to show that D+(tt)-+1 as lttl-oo, Im {rt }>- o . 

If the integral appearing in (B4) for D+(tt) is defined as I(K), it is 

sufficient to show that I(tt)-->0 as lttl-oo, Im{tt}>-6. In view of (BS) 

and the continuity of Log D(O'), there exists a positive constant P 

such that ILogD(Cli)J<PIO'r
1

, -6~Im{0'}::;6. Therefore 
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S LogD(a)da = 
01-'){ 

-oo-io 
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00 

S Log D(a- io )da 
CY-iO-'K -oo 

00 00 

(B8) 

S da E J ~da==;:=~====:;::===:=====::=; 
~ P la-d la-io-Kj = IKI I 2+(...2._}2 /( 

9
)2+( o + . 9)2' 

- oo - ooV a I 'K I '1/ a - co s W s m 

where 9 = arg(K). It can be shown that the integral appearing in (B8) 

is O(Logi'KI) as IKI-+oo, Im[K)>-6, so I(K)=O(I'KI-
1

LogiKI)-+O and 

D+(K)-+1 as IKI ... oo, Im[K}>-6. 

The quantities D+(kR) and D+(kT) must be evaluated numeri-

cally in order to compute the reflection and transmission coefficients. 

The integral I( K) appearing in (B4) for D + (K) may be evaluated by 

choosing branch cuts as shown in Fig. 9, closing the contour in the 

lower half-plane, and allowing Im[w} to vanish. Note that the zeros 

-·-
of R(a) and R"(a) give rise to logarithmic branch points at 

a= ±kR, ±kT. The integrals along the large quarter-circular arcs 

vanish as R .... oo, leaving only the integral along the branch-line con-

tour. This contour is subdivided into ten segments numbered sequen-

tially (see Fig. 9). The integral along each segment may be combined 

conveniently with that from the corresponding segment immediately 

across the branch cut, yielding 

oo-i o 

I( 'K) S Log D(a)d = 
- Q'-'){ Q' 

-oo-io 

(The contribution from the small semi-circles about the singularities 

vanishes). By using the appropriate complex values of the square 

roots and the logarithm, the following formulas may be derived: 
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Im{a} 

-k -k -k 
R T s 

Branch cuts 

1 10 

Figure 9. Complex 0'- Plane for Evaluation of D+ (1-t). 
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co [ 2 2 2 ~) 2 2'] 
I = 2iJTan-l (21] +l) -41] vrt+l 1] +Y d.1J , 
1+10 Nk 2 "+J 1]-Ht/k 0 sTJ 'Vr]~+l s 

( B lOa) 

(BlOb) 

(BlOc) 

where 

E(s) = 

I 4+? = 0, (BlOd) 

15+6 = -2ni LogG~: :). (B!Oe) 

- l 
where y = kd/ks and where -TT /2:5:Tan (u):5:TT /2, -co<u<co. The 

integrals (B lOa- e) have been evaluated numerically with tt = kR or 

tt = kT, then the results used in (B9) and (B4) to give the numerical 

+ + values of D .(kR) and D (kT). Note that since y depends only on 

Poisson's ratio v, D+(kR) and D+(kT) depend only on v and Nks. 

The asymptotic form of D+(kR) or D+(kT) as N-+0 is 

obtained by asymptotically evaluating (BlOa- e) as N .... 0. The 

results of this lengthy analysis are 
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_ . [2(1- Y
2)J 2 

Il+lO- TTlLog Nf!. - TT2 + O(N Lo g N), 

[
y+f!. /k J 

I 2 + 9 = -TT i Lo g f!. I k s + o (l ) , 
s 

[
l+f!./k J 

13 +8 = -TTiLog y+ f!. /ks + o(l), 
s 

When combined, the estimates (Bll) yield 

This is substituted into (B4) to yield 

N(k +f!.) .TT 
s -1-

----::::2- e 4 as N .... 0, k < f!. < oo 
2(1- y ) s 

(B 11) 
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Appendix C - Certain Aspects of the Solution in the 

Case of a Massless Layer. 

It will now be proved that the formal solution (3. 3 2) satisfies 

the differential equation (3. 4) for -ro<x<ro, z> 0. The steps will be 

carried out for cp; the procedure for ~ is completely analogous. 

Appeal is made to the following theorem (see p. 59 of ['24]): 

Suppose 

(a) there exists an e> 0 such that f(x, rt) and of/ox are continu-

ous for x - e<x<x + €, -K~ rt< K, for all K>O, 
0 0 

CX) 

(b) If(x, rt)drt is convergent for x - e<x<x + €, and 
0 0 -ro 

CX) 

(c) I ~fx d'~ 'f 1 f + " ts un1 orm y convergent or x - E:<x<x €. Then 
-en 

CX) 

d: I f(x,rt)drt = 
-<X> 

0 0 

x =x . 
0 

Let z = z > 0 and hold it fixed. Apply the above theorem to 
0 

the function 

f( ) A( ) -nd(rt)z + irtx 
x, rt = rt e o 

By (3. 31), (a) is satisfied for any e>O. From (3. 31) and (Cl), 

f(x, rt) = 0( !rt!-~ e-lrtlzo) uniformly in x, and f(x, rt) is bounded for 

-ro<rt<ro, so (b) is satisfied To verify (c), note that 

(C l) 

of/ox= O( I rtl-} e-lrtlzo) uniformly in X and that of/ox is bounded for 

-ro<rt<ro, so there exists a constant P such that 

CX) 

I ~dx ox 
-<X> 

CX) 

~ P J!rtl~ e-lrt I z 0 drt<ro, x - E:<x<x + € 
0 0 

-<X> 

(C2) 
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Thus by the M-test the integral is uniformly convergent and (c) is 

satisfied. Hence the theorem holds, and the differentiation with 

respect to x may be carried inside the integral for -co<x < co, z> 0. 

Due to the exponential factor in the integrand, the above process may 

be repeated for any number of subsequent derivatives with respect to 

x in the interior of the half-space. A similar procedure may be ap-

plied for derivatives with respect to z and for cross-derivatives. Thus 

derivatives of cp(x, z) of all orders exist in the interior of the half-

space and may be computed by formal differention inside the integrals. 

It may now be immediately verified that the differential 

equation (3. 4) is satisfied by taking derivatives inside the integrals 

in (3. 32). 

To prove that the derivatives of cp(x, z) are continuous, use 

is made of the following theorem (seep. 54 of [25]): 

If a function of g(x, z) has uniformly bounded partial deriva-

tives in a region R, then g(x, y) is continuous in R. 

To apply this to $(x, z), consider $(x, z) in any closed, 

bounded subdomain of the half- space -co<x < co, z> 0. The estimate 

(C2) proves that ocf>/ox is uniformly bounded, since the constant P 

must be independent of z (see (Cl)). 
0 

Correspondingly, o$/oz is 

uniformly bounded, so the conditions of the theorem are met on any 

closed, bounded subdomain of the half- space. 

The above argument proves that cr(x, z) is continuous; it may 

be repeated to prove that all derivatives of cp(x, z) are likewise con-

tinuous in the inte rior of the half-space . 
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The procedure for verifying the boundary condition will be 

illustrated for the condition 

o {x, 0) = 0 , x< 0 ; zz 
(C3) 

the procedure is analogous for the remaining boundary conditions. 

In light of the foregoing comments regarding interchange of differen-

tiation and integration in {3. 32), the formula for 0 {x, z) in the 
zz 

interior of the half-space may be derived from (l. 4), (3. 3), (3. 32) 

and (3. 3 1) as 

co 

o {x,z) = JE{rt)2irtn (rt)(2l-k2 )(e-ns(rt)z_e-nd(rt)1eirtxdrt, -co<x<ro, z>O 
zz s s 

-co (C4) 

where 

It is clear that o {x, z) as given in (C4) vanishes at z = 0, but it 
zz -

must be proved that o (x, z) is continuous un to z = 0. Fix zz =c_ 

x=x <0 and close the contour in the lower half rt-plane, giving 
0 

I 2 2 -n (rt)z -n (rt)z irtx 
o (x , z) = E(rt)2irtn (rt)(2rt -k )(e s -e d )e odrt 
zz 0 s s 

B-

where B_ is the branch-line contour in the lower half rt-plane 

(CS) 

(C6) 

(see Fig. 4). The residue term will be continuous by inspection so it 

remains to show that the integral in (C6) is continuous. The contri-

butions to this integral from all segments of B_ except the ones 

along the negative imaginary axis represent continuous functions of 



-69-

z since they are integrals along finite segments of a function contin-

uous in both z and ft. To prove continuity of the contributions from 

the infinite segments, first change the variable to ft =-iT), leaving 

two integrals in which T) runs from 0 to oo. The integrand in each 
~ 

will be O(T)2 eT)xo) uniformly in z as T)-+oo, so the integrals can 

easily be shown by the M-test to be uniformly convergent with respect 

to z for O<z<z , for any z >0. Now apply the following theorem 
0 0 

(see pp. 25-26 of [24]): 

If f(T), z) is continuous for O::;;T)::;;K, O::;;z:=;;z for all K> 0, and 
0 

the integral 
(X) 

F(z) = J f(T) ,z)dT) 

0 

converges uniformly with respect to z for O<z<z , then F(z) is a 
0 

continuous function of z in this interval, the continuity being one-

sided at the end-points. 

By letting f(T), z) equal either of the two integrands, F(z) 

then represents the contribution to a (x , z) from the respective 
zz 0 

segment of B_. The conditions of the theorem are met so these 

contributions are continuous ~ to z = 0. Thus a (x, z) is continuous 
zz 

up to z = 0 for x<O, the limit as z .... 0 may be taken inside the inte-

gral in (C4), and the boundary condition (C3) is satisfied. 

The functions G + (K) and F- (ft) are defined by (3. 26) and their 

asymptotic forms are obtained in (3. 27), provided that order condi-

tions (3. 2) hold as x .... 0 along the surface. It will now be shown 

that conditions (3. 2) hold for the solution given by (3. 3) and (3. 32). 
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When (3. 3) and (3. 32) are substituted into (1. 4) and the inte-

gration contour closed by large arcs in the upper half plane, there 

results 

a (x, 0) = 2rri[L: Residues J + r C(K)ei){Xd){' 
xz ~ 

B+ 

a a 
~I = 2rri[L: Residues]+ JiK C(K)eiKxdK, 

ox z=O 
B+ 

3 

(C7) 

where C(K) "'P 1Kr2 as IKI-+oo along B+, P is a constant, and the 

integrands are continuous along B+. The residue terms and the con-

tri butions to the integrals from all segments of B+ except those 

along the positive imaginary axis represent functions continuous up 

to x = 0. If the change of variable K =iT) is made in the portions of 

the branch line integrals along the imaginary axis, they take the 

forms (X) 

Jc(K)ei ){xd){ = I c '!< (T))e-T)Xd T) +O(l) as x-+0' 

B+ 0 
(X) 

JiKC(K)eiKxdK = 

B+ 

- J T) c':\ T)) e- T)X d T) + 0 ( 1 ) as x .... 0 , 

0 

~~ ):< -~ 
where C (T))"'P T) 2 as T)-+ oo. The inte gral in (C8a) is clearly 

(C8a) 

(C8b) 

bounded as x-+ 0. To analyze the integral in (C8b), the following 

extended Abel limit theorem may be used (see pp. 288-289 of [2 6] ): 

If y>- 1 and f(t)/AtY_,l as t ..... oo, then 

(X) 

s l+y Jf(t)e- stdt 

0 

Af( y+ l) 
+ .... 1 as s ... 0 . 
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When this is applied to (C8b) and the result substituted into (C7), it 

1,_ + 
follows that 00 I ox I = O{x- 2

) as x ..... 0 . 
x z z=O 

An analogous procedure may be used to verify that 

0 {x,O)+IJ.No u / ox = 0(1) as x-+0 . 2 21 -
xz z=O 
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