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ABSTRACT

This thesis is concerned with the separation of a two-dimension-
al turbulent boundary layer caused by a forward facing step. The two
major flow regimes considered here are in the realms of supersonic
flow and incompressible flow in a channel.

For the cése of supersonic turbulent boundary layer separation,
a series of experiments were conducted. The upstream pressure field
for step sizes in the range from 5% to 150% of the local boundary layer
thickness was determined and correlated with ''large' step data. The
separated shear layer was found to be approaching a constant pressure
and self-similar flow in a distance of around 6-10 initial boundary layer
thicknesses. Fluctuation measurements were conducted near the simi-
lar flow region. In addition, the low-frequency unsteady behavior asso-
ciated withthe separation phenomenon was examined and is presumed to be
caused by a standing wave acoustic in the subsonic separated region.

For the incompressible flow over a step in a channel, an in-
viscid model utilizing free streamline theory and based on experimen-
tal observations was constructed and solved with the aim of predicting
the upstream flow field. Although the solution is not in '"closed form"
(two experimental parameters are required) it does show that the far
upstream pressure field is predominately fixed by the flow geometry as
opposed to viscous effects such as the Reynolds number or step height-
to-boundary layer thickness ratio. Close to the step these effects do,
however, become important and are unaccounted for here. The effect
of finite blockage ratic (step height-to-channel height ratio) is shown

to be substantial for quite modest values (greater than 2%). The precise
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values of the two experimental parameters are not required for accu-

rate prediction of the upstream influence.
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I.1 Introduction

One of the major areas of present-day research in the fluid
mechanics of compressible turbulent boundary layers is that flow
regime where there is a strong interaction between the boundary
layer and the outer inviscid portion of the flow. The term strong
interaction is taken here to mean that the outer flow cannot be com-
puted, even to lowest order, by neglect of the turbulent boundary
layer. A typical example of this type of interaction is afforded by
the separation of the boundary layer caused either by convex surfaces
such as exist at the base region of a body or due to an adverse pres-
sure gradient caused by an impinging shock wave or surface mounted
obstacle.

The usual situation encountered by the engineer in the design
of structures in contact with supersonic flows is how to predict or
prevent separation due to its generally adverse effects. For instance,
at high angles of attack, airfoils tend to ''stall' which markedly af-
fects their lift and drag characteristics. Also, in overexpanded
rocket nozzles the turbulent boundary layer can separate resulting
in uncontrolled thrust vectoring. ‘The effects of separation need not
always be adverse as evidenced by the use of spoilers or injected
streams for controlled thrust vectoring and the applications of fluidic
devices which depend to some extent on separation for their success.

In any situation where sepération might occur, the designer
would like to be able to pre‘dic‘c its océlxl‘r're'hce ané \its effects such as
extent of the region é.nd the changéé in éurfaée pressures and heat

[

transfer rates so as to more efficiently design his product.
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The subject of this paper, the separation of a supersonic
turbulent boundary layer caused by a forward facing step, has re-
ceived much attention over the past 15 years or so. The reason for
this is because it has been shown that details near the separation
point and within the separated region are relatively independent of
the mechanism which causes it; this result is sometimes referred to
as the "free-interaction" hypothesis.(l) Thus the flow field over the
geometrically simple forward facing step is very much like that
caused by, say, impinging shock waves or other wall mounted
obstacles.

This subject has been extensively investigated for many years
with particular attention paid to wall pressure distributions andphoto-
graphic coverage of the flow field starting with the work of Chapman,
Kuehn, and Larson(l) and continues to the present day. It is not the
purpose of this thesis to give a detailed account of all this work inas-

)

much as this has already been completed, (35 and furthermore, the
scaling parameters of the length of the interaction and pressure dis-
tribution are empirically well known from the recent review article
by Zukoski.(lé) In light of all this existing data, the question of what
else can be learned from additional experiments naturally arises.

To begin with, the correlation of existing data in step induced
separation has really only been done for step sizes at least 50% larger
than the local undisturbed boundary layer thickness. Although some
data for step sizes smaller than this does exist, it was felt that fur-

ther experimental work would supplement this data and might permit

the extension of the previously mentioned scaling parameters to the



smaller step size interaction.

The nonsteady pressure field associated with turbulent bound-
ary layer separation has become more important in recent years be-
cause of the fact that structures are operated in flows with quite high
dynamic pressures. This unsteady behavior was recognized many
years ago,(l’ 3) but not until recent times have any quantitative meas-
urements been conducted. The recent interest in noise problems,
both radiated away from flight vehicles and transmitted through to
their interiors, has intensified research in this area along with the
possibilities of structural fatigue failure.

To date, the existing experimental data in this regard has been

aimed mostly at the measurement of fluctuating pressure levels(13’ 14)

and some measurement of the correlation distances and Spectra.(IS)
The usefulness of this data is restricted, however, because the mech-
anism which causes these high fluctuating pressure levels is not well
understood (typically, the R.M.S. pressureina separatedlayeris 10to 20
times that of a flat plate R. M. S pressure leve1(13)). One reason for
this lack of understanding is that the effect of Mach number alone has
been investigated, but as yet the effect of step height (or equivalently
the length of the separated region) has not been studied. Thus, it was
felt that an investigation of the effect of step height at a constant Mach
number might provide the clue to the unsteady mechanism.
The third area of interest regarding supersonic turbulent

boundary layer separation that has not received much attention is the

detailed characteristics of the shear layer as to the development of

both the velocity profile and the turbulent energy distribution. More
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specifically, it was desired to assess the effect of the recirculating
or reversed flow region on the development of the separated shear
layer to a similarity type of behavior which was suspected first from
the observed linear growth rates as seen in Schlieren photographs.

This is not an academic point, however, in lightof the attempts
to describe the turbulent separation problem from a theoretical stand-

(21, 23)

point. One feature of some of these solutions is that in some

fashion the concept of similarity in the mean shear flow is used either

(21)

directly as in the equivalent jet hypothesis, or indirectly as in
some of the integral methods. Thus it becomes important to deter-
mine first whether or not the separated shear layer ever becomes
similar, and in the event that it does, to determine the extent of the
transition distance for similarity to be achieved.

The purpose of this paper is to report on experimental inves-
tigations on the three aforementioned areas related to the separation
of a supersonic turbulent boundary-layer caused by a forward facing
step. Recapitulating, these areas are the wall pressure distribution
for step sizes smaller than the local undisturbed boundary layer thick-

| ness, the measurement of the unsteady behavior associated with this
phenomena leading to a model for the mechanism which causes it, and

the approach of the separated shear layer to a conical or similar flow

behavior.
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I.2 General Description of Experiments

I.2.1 Wind Tunnel Facilities

The experiments reported herein were all conducted in the
Supersonic Wind Tunnel of the Graduate Aeronautical Laboratories,
California Institute of Technology (GALCIT). The test section for
this tunnel is 2 inches high by 23 inches wide and operates at a nomi-
nal free stream Mach number of 2. 6. All experiments were carried
out with stagnation conditions of 74.2 c¢cm Hg (£ 0.5 cm) tqtal pressure
and 78°F (+ 3°F) total temperature. The boundary layers on the
tunnel \&all and in the test section varied in thickness from about
0.15 inch to 0.23 inch depending on the distance from the throat, and
they were tripped upstream of the throat to ensure that they would be
turbulent. Verification that the boundary layers were turbulent was
obtained from velocity profiles and from hot-wire fluctuation meas-
urements.

The wind tunnel was run in a closed cycle mode with all air
passed through a dryer of activated alumina to remove moisture
which was reactivated after each day. Despite these efforts low
humidity air could not be obtained, the lowest dew point reading being
around 14°F as measured in the plenum chamber. Because of the
moisture in the air, a condensation shock was always observed (by
means of a Schlieren system) vin the expanding portion of the nozzle
and could be measured by means of static pressure orifices located
in the nozzle. This condensation shock altered the stagnation condi-
tions for the test section to a total pressure of about 64 cm Hg, a

total temperature of around 80°F, and test section Mach No. of
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2.46 £ 0.03. All test results reported here were obtained with a dew
point of 14°F (+ 4°F) although no marked changes in flow field could
be detected when runs were made at higher dew points (30°F to 45°F)
other than a higher static pressure level in the test section (up from
4.0 cm Hg. to 4.3 cm Hg. ) and a slight reduction in test section
Mach number.

Fluctuation measurements in free stream (to be described in
Section I.4.5.3)showed that the tunnel free stream conditions are very
steady and fluctuations in free stream are most likely due to very
weak pr~essure waves radiated by the turbulent boundary layer although
special precautions to damp upstream fluctuations in the plenum
chamber were not made. Total temperature fluctuations were meas-
ured at 0. 08% R. M.S. which is extremely low and in fact may be
lower than can be accurately determined from the hot-wire set. The
total temperature fluctuations are most likely due to variations caused
by motion of the condensation shock. Mass flow per unit area fluctu-
ations in the free stream were measured to be about 0. 4%.

Heat transfer effects were considered negligible since the
total temperature and wall temperatures were within 9°F of each other
over operating periods of several hours as determined in an independ-

ent investigation by Sigal. (2)

Total temperature measurements were
not made in this series of experiments.
1.2.2 Models
The models employed in these tests were a series of forward

facing normal steps ranging in thickness from 0. 010 inch to 0. 32

inch. All steps smaller than 0. 18 inch spanned the width of the tunnel
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and all steps were attached to the test section by means of two espe-
cially constructed bolts with very thin heads to reduce interference
effects. For the larger steps (greater than 0. 08 inch) reliefs were
provided in the step to accomodate the bolt heads. The three largest
steps (0.18, 0.24, and 0.32 inches) were 2 inches wide and were run
both with and without splitter plates (see Figure I-1) to eliminate side-
wall boundary layer interactions as much as possible. To prevent
leakage under the step, vacuum grease was applied to the step bottom
surface to seal the crack between step and wall.

The test section itself was constructed from a 1.2 inch thick
aluminum block and 64 static pressure orifices were drilled in it over
a distance of 3 inches along the centerline of the tunnel and at several
locations in the transverse direction (for drawing and detail see Fig-
ure I-1). Mounting holes for the steps were provided at several loca-
tions so that the steps could be placed to avoid the impingement of
various waves in the tunnel.

After operation of the tunnel for a period of about one hour an
oil film could be seen quite clearly on the sidewalls and also a bead of
0il near the separation point. The straightness ofthis oil bead was used
to determine the uniformity of the flow. Generally, for the smaller
steps (less than 0.18 inch) this oil line looked very straight over the
middle half of the tunnel. Near the side walls interaction with the
sidewall boundary layers could be seen but seemed to have little effect
on the resultant flow. For larger steps (0.18 inch and larger) signifi-
cant departures from two-dimensionality could be seen. It was for

this reason that the splitter plates were constructed and their use
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eliminated this three-dimensionality for the 0. 18 inch step and the
0.24 inch step. The situation for the 0. 32 inch step was even more
aggravated and as a result only restricted data for this step is pre-
sented here. Moreover, with the 0. 32 inch step the tunnel was very
difficult to start and the resultant flow was visually unsteady and
appeared on the verge of choking the tunnel.

1.2.3 Instrumentation

I.2.3.1 Pitot Tube and Static Pressure Tube

The Pitot probe and static pressure probe used in these ex-
periments are shown in Figure I-2. The Pitot tube tip was construc-
ted from 0. 065 inch o. d. stainless steel tubing with a tip flattened
and ground to 0. 008 inch by 0. 08 inch wide with an opening of approx-
imately 0. 004 inch. The rather sharp bends shown were fabricated
to facilitate readings in front of the step. The tip was also bent up
about 10° from the horizontal to account for the fact that the flow
angle behind the shock wave was of this order. Measurements made
with this probe and several others gave identical results.

The static pressure tube was fabricated from 0. 043 inch o.d.
stainless steel tubing with the tip sealed and sharpened to a cone of
approximately 8° semi-vertex angle. Four 0. 014 inch holes were
drilled through the probe about 10 probe diameters from the end of
the conical section. The static pressure probe was also inclined at
about 12° from horizontal as with the Pitot tube. Stiffeners construc-
ted from brass were soldered to the probe to eliminate vibration
problems. An independent investigation by Igawa(26) showed that the

effect of angle of attack for this probe was less than that of several
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other designs considered. The angle of attack effect on the measured
static pressure for this probe is shown in Figure I-2 along with a
drawing of the probe.

The Pitot pressure and/or static pressure were measured using

a Statham pressure transducer (PA-208TC-50084; 0-10 psia) which
had a linear calibration. The probe position was determined from a
40-turn Helipot (Model E). The electrical outputs from both the
pressure transducer and the Helipot were connected directly to a
Mosely X-Y recorder and the drive rate of the probe was slow enough
to eliminate pressure lags in the system. Due to the previously men-
tioned oil film, an electrical device for determining probe contact
with the wall proved to be erratic but it was found that this could
be determined visually to within £0. 005 inch by observing
the probe and its reflection off of the test section surface.

1.2.3.2. Wall Static Pressures

Wall static pressures were measured by means of a series of
64 static pressure taps drilled into the test section as shown in
Figure I-1. The pressure taps were mostly 0. 014 inch diameter
for 0. 030 inch depth where the hole opened up to 0. 042 inch diameter.
A series of 0. 006 inch diameter pressure taps were also drilled in a
small area. These pressures were measured by means of a mercury
manometer which permitted a reading of + 0. 05 cm Hg. For the free -
stream static pressure level in the test section this corresponds to
an error of less than 2%.

I1.2.3.3. Hot-Wire Instrumentation

The hot-wire probes employed in these tests were originally
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fabricated by Fernandez(7) and were altered to suit the needs of the
present experiment. To the probes were soldered 0. 0001 inch Plat-
ix;um, 104 Rhodium wires (manufactured by the Sigmund Cohn Corp.).
The hot-wires generally were about 0. 005 inch long resulting in a
length to diameter ratio of about 50, several tests were conducted
with 0. 012 inch long wires to insure against end effect errors.

In the original set of experiments even longer wires were used
(up to 0. 025 inch), however with these it was noticed that a resonant
oscillation occurred in the output spectrum and was always in the
frequency band of interest (1-320 KC). These oscillations were most
likely due to a phenomenon known as "strain—gaging,”(S) i.e. changes
in wire resistance due to a fluctuating strain in the wire itself. This
would give quite large errors in the measurement of total mean-
square voltage output especially in regions of low signal as in the
free stream. Standard methods of damping this vibration suggested

(9, 10)

by other authors could not be exploited because of the small
length of wires used. The only other alternative then was to decrease
the wire length which in turn increases the natural frequency of vibra-
tion. For the lengths of wire employed here, no noticeable oscillation
occurred in the frequency band 1-500 KC.

The electronic instrumentation consisted of a Shapiro-Edwards
constant current hot-wire anemometer set and has been described
previously by Behrens.(ll) Briefly, the hot-wire set consists of; a
constant current supply capable of wire currents from 0 to 100 ma.

and steady within 19 over eight hour periods, a bridge circuit for

measuring the resistance of the wire plus lead cable accurate to
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within 0. 01 ohm, an amplifier capable of a zero frequency gain of up
to 52, 000 and includes a separate compensating amplifier that corrects

(28)

for the attenuation of higher frequencies, a 5:1 turninputtransformer
that permits a five fold gain in signal and has low noise, and finally

a square wave generator that enables the hot-wire time constant to

be measured and is valuable in calibration.

Auxilliary equipment used in conjunction with the hot-wire set
included a Hewlett-Packard Oscilloscope, Model 120B, a Panoramic
Ultra Sonic Wave Analyzer, a Ballantine True RMS Meter, a Hewlett-
Packard Wave Analyzer, Model SB-76Z, a Philco Ford Intermittency
Meter, Model ADP-11,a Tektronix split beam oscilloscope (Type 549),
and a Monsanto frequency counter, Model 100A .

An exterior circuit was constructed and attached to the hot-
wire set in order to measure the wire current and voltage drop across
the lead line and wire. The current was determined by the voltage
drop across a 10 ohm (1/204) resistor and was measured by a Fair-
child integrating digital voltmeter. Model 7100, along with the voltage
drop across the lead line. The measurement of current was made to
within 0. 01 ma. (less than 0. 19 and voltage drop to within 0.1 mv.
(less than 149). This method was favored over using the bridge circuit
because of convenience and a smaller effect on the circuit.

When it was desired to make quantitative fluctuation measure-
ments it was learned that the hot-wire amplifier had not beenaccurately
calibrated as to gain and frequency response. This
was accomplished and the amplifier characteristics are shown in

Figures I-29 and I-30.
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The total mean square voltage was usually measured by means
of a thermocouple circuit included in the hot-wire set or by employing
the R. M. S. meter and was uncorrected for frequency response. The
error introduced by this procedure should be small inasmuch as most
of the fluctuation energy is in the range 0-300 KC and the frequency
response is down only 30% at this frequency. The output from the
thermocouple circuit was connected directly to a Mosely X-Y plotter

along with probe position from the 40-turn Helipot.
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I.3 Data Reduction Procedures and Experimental Difficulties

1.3.1 Pitot Probe and Static Pressure Probe Measurements

Pitot tube data was reduced using the meésured static pressure
and the Rayleigh Pitot tube formula to calculate the resultant Mach
number distribution. Corrections for Pitot tube angle of attack and '
local turbulence were not accounted for inasmuch as the error intro-
duced from these effects is probably as large as that from Reynolds
number effects and calibration limits on the pressure transducer.
These Mach number profiles were then used to compute velocity pro-
files using the assumption that the shear flow is iso-energetic, i.e.
the total temperature is constant throughout the whole flow field. Since
both the tunnel and plenum were at room temperature this assumption
is reasonable, although measurements were not made to verify this.

Integral prdperties could not be computed from the velocity
profiles because detailed measurements in the recirculating region
were not possible since the dynamic pressure is low and the turbulence
level is quite high. For this reason also, the streamlines for the outer
portion of the fldw were computed by identifying a streamline in the in-

(27)

viscid flow (using oblique shock relations ) and integrating the local
mass flux distribution, pu/peue , toward the wall.

For the measurement of static pressure, some interpretation
of a typical traverse like that of Figure I-9 is necessary in order to
explain the various interference problems. From the geometry of the
static pressure probe (Figure I-2), it is seen that the measuring

orifices are located about 0.5 inch from the tip. As mentioned earlier,

the probe was aligned with the separated flow to within 1°. During the
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traverse, the tip of the probe would intersect the shock wave when
sufficiently far from the wall, and this interaction would cause an
abnormal reading of static pressure, This region of the traverse is
indicated in the figure,

Upon bringing the probe closer to the edge of the shear layer, an
increase in indicated static pressure above the mean level of about 0.3
cm Hg. was observed, This same phenomena was observed by Igawa(Z())
in a separate investigation as the probe approached a flat plate boundary
layer, Discussion of this matter has led to the explanation that the weék
compression wave from the tip was reflecting off of the turbulent inter-
face and impinging on the orifice area, | Rough geometrical construction
has verified this behavior. Once the probe is immersed in the shear
layer, the above described behavior disappears and the pressure level
appears relatively constant. The fact that the static pressure as
measured by the probe was about 5% lower than the wall static pressure
was attributed to probe error inasmuch as this particular probe was not
‘calibrated in a known free stream. In any event, the effect of this on
the velocity profiles is very slight except quite near the wall where the
Pitot tube data is suspect because of angle-of-attack errors,

I.3.2 Hot-Wire Measurements
I.3.2.1 Qualitative Studies
For qualitative measurement of fluctuations the hot-wires

were always operated at rather high currents (25-35 ma.). From the
physical characteristics of the flow field and the wire the maximum
allowable current was on the order of 42 ma. and this was incidentally

verified with several of the longer wires, i.e. at currents of around
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40-45 ma. the wires '"burned out' or failed structurally due to high
temperature. For shorter wires this never occurred because of the
high energy loss to the probe tips. The reason why such high current
levels were used even for qualitative measurement is that it was
suspected that fluctuations in mass flow per unit area would be more
intense than fluctuations in total temperature and a "hot'" wire is
relatively more sensitive to mass flow fluctuations than a ''cold" wire.
At zero current the wire is operating essentially as a recovery factor
probe and is relatively insensitive to velocity and density fluctuations.
As the wire temperature is increased through increased current, the
sensitivity to mass flow fluctuations increases to around 40% of the
sensitivity to total temperature fluctuations at around 35 ma.

It is also of interest to note that the qualitative data measured
with the hot-wire was taken with a rather long wire (4/d ~ 200) and
the ''strain gaging' behavior noted earlier was readily apparent in the

(8)

spectra in the same manner as depicted by Demetriades. Because
of the fact that measurements of the fluctuation modes (i. e. velocity,
density, total temperature, etc.) was desired, considerably shorter
wires (4/d ~ 50-100) were employed in subsequent tests. Although
this did in fact remove strong hot-wire oscillations from the frequency
range of interest (1-500 KC) it was at the expense of a lower signal-
to-noise ratio. It is felt that the wires used with 4/d ~0O(50) are
really too short for this reason and also because end-losses (heat
conduction to wire supports) appreciably affect the operation of the

hot-wire and the resultant data reduction. Several measurements of

fluctuations with a hot-wire of 4/d ~125 were reduced and the change
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in final results was well within experimental scatter, however the
various overheats of wire temperature were much easier to set and
calculate due to the reduction in end losses.

When making measurements of the shock motion frequency, a
square wave type of signal was found from the hot-wire when it was
placed within the limits of motion as shown in the upper drawing of
Figure I-15. Direct measurement of this signal was not possible be-
cause the freestream noise levels triggered the counter and gave
abnormally high readings. To filter out the noise, yet keep the square
wave character of the signal, the Philco-Ford Intermittency meter
was employed. By observing both the original hot-wire signal and
the intermittency meter output on a dual beam storage scope the meter
trigger level could be adjusted so that the meter outputwas considered
"most representative'' of the original signal. A typical intermittency
meter output is shown in the lower drawing of Figure I-15 and is
plotted in the same time scale as the original hot-wire signal. Since
this was a subjective measurement it was repeated several times as
a qualitative check and also other people were asked to go through this
procedure as a final check. The intermittency meter output was then
fed to a frequency counter for the measurement of the square wave
frequency. The results of this were fairly consistent and are believed
to be within 10%.

For determining the oscillation mode of the shock two hot-wire
probes were employed, the second inserted through a sidewall and
supported by an existing traversing mechanism which was modified

to be compatible with the supersonic tunnel. The probe holder was
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cantilevered from the traverse mechanism a distance of about one
foot and because of this stiffness problems were encountered. This
was overcome to some degree by jamming the probe holder against
the traverse mechanism and repeatable measurements could be made.

This second'probe could be moved in the 'y' and ''z'' directions
(see Figure I-1) and the shock position determined by observing the
"square-wave' type of signal. The first probe could be moved in the
""x and y'" directions and the shock location determined similarly. The
correlation measurements of shock position were computed by meas-~
uring the mean square values of each of the signals plus the sum and
difference of the two signals (which could easily be done at the
input of the hot wirev amplifier ). The correlation coefficient was

then defined by

, el(X’Z) ez(x+x', z+z')
R(x"y") =
/ 2e 2
Vo1 ©2
2 2
(e +e,)” - (e, -e,)
- 1 2» 172 (I-1)
2 2
4 e e,

where x', z' are the distances between the two probes in the plane

of the shock wave. This method of measuring correlation coefficients
is not optimum for low correlations because, as can be seen from
equation I-1, the differences of two large numbers are being taken
and the relative error in these becomes appreciable when considered
in size to the small remainder. A direct reading correlation meter
was unavailable and the above procedure was the only one that could

be used.
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I. 3. 2. 2 Quantitative Hot-wire Studies

When it was desired to use the hot-wire as a means of making
unsteady measurements in velocity, density, etc. it was first neces-
sary to relate the voltage output of the amplifier to the various fluc-
tuating quantities in the flow field. This is accomplished by first
determining the response of an ideal (massless) hot-wire to each of
the various modes of fluctuation. These response characteristics
are termed sensitivity coefficients and have been evaluated by a

(9), (10)

number of authors for wires of infinite length.

Since relatively short wires were employed in these tests,
the effect of heat conduction to the wire supports had to be considered
in the derivation of the sensitivity coefficients. This has recently

(12)

been completed for subsonic and supersonic flows by Behrens and
since it is as yet unpublished and because the importance of accounting
for finite length has previously been neglected, an abridged derivationb
of the hot-wire response characteristics is given in Appendix I-A.

Full credit for this must be given to Dr. Behrens and the contribu-
tion by the present author is in the area of having checked the results
and applied the calculated formulae to a real physical situation.

The sensitivity coefficients as derived in Appendix I-A are
shown to be functionsofthe local mean flow conditions and the wire oper-
ating current. The former is evaluated by knowledge of the local

ud

= pue 1
T i where Hop 18 the

fluid viscosity at the stagnation temperature) both of which are cal-

Mach number and Reynolds number (Re

culated from the Pitot pressure and static pressure measurements

and employing relatively simple formula using NACA Report 11356(27)
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The wire operating current, in addition to appearing explicitly in the
sensitivity coefficients, also appears implicitly through the wire
overheat parameter :Fm' A method for computing :Fm'from knowledge
of the wire current i, adiabatic (zero current) wire resistance, Raw’
and slope of the wire resistance, Rw vs. Joule heating (iZRW) wire
calibration is also given in Appendix I-A.

Since it is not possible to measure the output of a fictitious
ideal wire as derived in Appendix I-A but instead only the hot-wire
amplifier output can be measured, it is necessary to relate these
two quantities. This is accomplished in Appendix I-B and is subject
to the assumption that (Z'rrfMt)2>> 1 where f is the frequency of fluc-
tuation and l\/It is the hot wire time constant. This assumption is
quite reasonable for frequencies greater than 2-3 Kc and is also em-
ployed in the derivation of the sensitivity coefficients.

In order to separate the modes of fluctuation the hot-wire

response equation as derived in Appendix I-A is used

| R H i t
e, = --Sp p —Su u' + STT T (I-2)
where ei' is the response of an ideal (massless) hot-wire, SP, Su’
and ST are the sensitivity coefficients to density, velocity, and total
T

temperature fluctuations respectively and p', u' and TT’ are the fluc-

tuations in density, velocity, and total temperature normalized by
their local mean values. In practice, it is not advantageous to make
instantaneous measurements of the fluctuating quantities as in equa-
tion I-2 but rather the statistical properties such as mean-square

values are more desirable. In squaring and time averaging equation
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I-2, six unknown quantities then result such as the mean-square
values of density, velocity, and total temperature and the three cor-
relations between each of these. These could be separated by oper-
ating at a minimum of six different wire currents which in turn would
give six different sets of sensitivity coefficients and the resultant
simultaneous equations solved. In order to reduce the amount of
labor in this measurement, however, several assumptions were
employed.

For the inviscid flow fluctuation measurements, both ahead
of and behind the separation shock wave, the Mach number is fairly
high. Because of this, the sensitivity coefficients to density and
velocity fluctuations are approximately equal (at M = 1. 95 for
example these two differed by only 5% ). Thus the mean square hot-

wire equation I-2 may be written taking Sn.l% Spw Su as

2 2 2 ~ o~ 2
i - 1 . . 1 -
e, /ST =T - 2r TTmR T + r m (I-3)

0%(r)

i

where r is the sensitivity ratio= S_, /S
m TT
Ter and m are the root-mean square fluctuations to total tem-

perature and mass flow per unit area, respectively,

and RrhT is the correlation coefficient of mass flow and total
T

Y
temperature fluctuation = m T /(TTm)(- 1$RmTTS1).

The measurements by the hot-wire then gives the value of ei'Z and

the two sensitivity coefficients ST and Sma A '"fluctuation dia-

— T
gram”(g) or a plot of %/ei’ /Srl% vs r was constructed and the
T
values of TT'Z , m' Z, and RrhT determined from a best-fit hyper-

(9)

bola in the manner after Kov&dsznay.
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For the measurements within the shear layer the procedure
used above is no longer applicable since the local Mach number can

be well below the free stiream values. The standard assumption(S’ 25)

used to reduce the data is that the pressure fluctuations
within the shear layer are negligible compared to those in density and
local static temperature. This is entirely equivalent to assuming
that variations in vorticity and entropy are much greater than the
potential variations caused by pressure waves. To rewrite the

hot-wire response so as to explicitly display the pressure fluctua-

tions is a relatively simple derivation(lz) which results in
e =S w+Ss o'+S o (I-4)
i u o 0
where o'= As/Cp (entropy fluctuation)
™ = Ap/vp (pressure fluctuation)
and
s Z(al-l)
Sy = a St S
1 T
S =5 +—s5
o a; TT
(I-5)
v-1
S = —5_ -S
m a; TT p
_ y-1 .2
a; = 1+ > M

With the assumption that the pressure variations are negligible or,

2 %2 2S O,2

more precisely, that S: ' << S , then equation I-4

becomes upon squaring and time averaging

e.'2/s% =%+ 2 r*BERGu+ 22 (1-6)
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where r¥ = S>‘</S
u 0

=54 /0 u
Ry T/

o and 1 are the root-mean-square fluctuations in entropy
and velocity
It is also easily shown that the other fluctuating quantities are

related too', u', and 7' by

l_l_ i 1 1
Tp' = o {o"+ (yv-1)m" + 2(a;-1)u }
o =g (I-7)
T =g+ (y-1)nu'

Hence, with pressure disturbances neglected, the quantities o' and u'
are tantamount to density and vorticity fluctuations respectively.
Moreover, the root mean square values of the quantities given in

equation I-7 are related to 0‘2, u'Z, and Rgu by easily derived formu-

lae. The level of pressure fluctuations can be estimated from known
experimental data and its neglect checked after data reduction.

For the particular test conducted here, a series of only three
wire currents were used mainly due to a lack of time. This quite
naturally makes the curve fitting of a hyperbola to the fluctuation
diagram obtained from equation I-6 rather difficult. The data did
suggest that the correlation coefficient, Ro'u’ was very near to a
value of -1. The plausibility of this was verified through the meas-
urements of Demetriades(S) (RO_ = -0.9) and Laufer and Vrebalo-

U
(30)

vich (RGuz -1). This was then taken as an assumption and the
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data reduced from straight line curve fits to the fluctuation diagram.
The total temperature and mass flow fluctuations were then computed

from

4
i

L% - 2(a,-1)% |

1 1

(I-8)

m = [6‘ + ":‘L ]
which are commensurate with equations I-7 and the above stated

assumptions.
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I.4 Experimental Results

I.4.1 Resultant Flow Fields

Schlieren photographs were taken generally during most tests
to first get a crude idea of the flow field characteristics. A pictorial
representation of the flow over the 0. 24 inch step is shown in Figure
I1-3 and is a compilation of Schlieren photographs, Pitot tube measure-
ments, and hot-wire traverses. Also shown is the wall pressure
distribution for this flow field. This step was taken as representative
of all steps tested and the differences for these cases will be discussed
as the need arises. The general features of the flow as illustrated by
the 0.24 inch step will first be discussed.

As the flow approaches the step face from upstream the slow
moving fluid particles in the boundary layer do not possess enough
momentum to negotiate the necessary pressure rise to go over the
step. As a result of this, these slow moving fluid particles begin to
decelerate and thus cause a deflection of the streamlines in the super-
sonic portion of the boundary layer which generates a series of closely
spaced compression wavelets originating near the wall and which
coalesce into the separation shock outside of the boundary layer. The
deflection of the streamlines as they pass through the compression
waves and shock wave amounts to about 12° to 13°. The low momen-
tum fluid in the boundary layer gains the necessary energy to pass
through this region of steep pressure rise by a complicated mixing
process with the faster moving fluid particles, thus the slow moving
particles also undergo a deflection of 12° to 13° and the boundary

layer separates from the wall. The length of this region from the
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start of interaction to the separation point is around two initial bound-
ary layer thicknesses.

The wall pressure level in this region increases rapidly
from the start of interaction up to about the separation point where
the pressure rise tends to level off as illustrated in the pressure dis-
tribution shown in Figure I-3. Having separated, the shear flow con-
tinues downstream at about the same inclination of 12° to 13° thus
passing over a roughly triangular shaped region of low energy fluid
which is termed the recirculating region or separation bubble. By
virtue of the turning angle of the shear flow this recirculating region
is around four step heights in length and is comprised of fluid parti-
cles that become entrained in the lower portion of the shear layer,
impinge on the step face, and are returned along the wall in front of
the step in a direction opposite to the main flow until they again be-
come entrained. The reversed flow velocity in the recirculating re-

(13,16) o

gion is on the order of 40% of the external flow velocity.
static wall pressure in this region increases from the separation point
slightly to a first peak at around two step heights from the step face
and is known as the plateau pressure. The static pressure nearer to
the step remains close to this plateau pressure value until very close
to the step face where another sharp rise is encountered.

After passing over the separation bubble, the shear flow and
external flow turns back parallel to the original flow direction begin-
ning at the corner of the step. This results in an expansion fan which

originates near the step corner and radiates outward into the inviscid .

flow until it interacts with the separation shock wave.
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The outer edge of the shear layer in the separated region
makes an angle of about 16° to 17° with the original flow direction
and thus the shear layer grows at an angle of around 3° to 4°. The
streamlines in the shear layer are closely aligned with those in the
inviscid region including the dividing streamline.

For the upstream Mach number tested here (MO a~ 2.46) the
inviscid flow behind the shock wave is still supersonic at a’t;out
Me = 1. 95 and the static pressure jump associated with the shock
wave agrees closely with the aforementioned plateau pressure. The
dividing streamline was found to be slightly supersonic over most of
the separation bubble at around a Mach number of 1.10.

The above flow field description is generally applicable to
step sizes greater than or equal to the initial boundary layer thick-
ness, 60, and agrees quite well with the basic flow features and
scaling parameters as described by Zu.koski.1

For the smaller step sizes (h/60 & 1), the extent of the inviscid
flow between the separation shock and the expansion wave decreases
until the interaction between these two occurs within the boundary
layer at around a step height of 50% of the initial boundary layer thick-
ness. Until this point is reached, however, the strength of the shock
wave remains constant and the plateau pressure decreases somewhat
due to the shortening of the mixing region along the dividing stream-
line.

For step heights less than 50% of the initial boundary layer
thickness the flow can no longer be divided into the two areas discussed

above as these tend to overlap. The general features such as the shock
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wave, separation bubble, and expansion fan described above still can
be observed even for steps as small as 5% of the initial boundary layer
thickness.

Pitot tube surveys were conducted at various stations in the
flat-plate boundary layer ahead of the interaction and within the
separated region for the larger step sizes in order to determine the
velocity profiles. A typical Pitot tube survey is shown in Figure I-8
for the separated region and the particular flow field characteristics
such as the shock wave and shear layer are easily discerned and indi-
cated in the figure. Surveys at other flow stations exhibit a similar
behavior except for the initial interaction region. These Pitot tube
profiles were not shown, however, because they are adequately repre-
sented by surveys conducted by Bogdonoff.(3)

Static pressure surveys were also conducted at the various
stations with a representative traverse shown in Figure I-9. The
interpretation of this traverse is given in detail in Section I. 3.1 of
this thesis.

For the qualitative measurement of turbulence intensity hot-
wire traverses were also conducted at various stations in the sepa-
rated region for the larger steps. Again, these traverses were all
‘similar in character once downstream of the initial interaction region
and a representative output is shown in Figure I-11 where the charac-
teristics of the flow field are again distinct and indicated in the figure.
The local shear layer thickness was determined from these hot-wire
traces by employing the slope-intercept method as indicated on

Figure I-11. The results obtained by the method were in good
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agreement with the thickness as estimated from the velocity profiles.

For the typical Pitot tube traverse shown in Figure I-8 note
that the shock wave is not detected as a sudden jump but rather as a
rapid transition from the upstream level to that behind the shock
wave. This is also apparent in the Pitot surveys conducted by
}éogdonoff.w) This behavior had previously been accounted for by
assuming there is an interaction between the separation shock wave
and the bow shock in front of the Pitot tube. With the preliminary
hot-wire surveys this same phenomenonwas also observed as shown
in Figure I-11 and again the transition from upstream to downstream
is spread over approximately the same region. Furthermore, when
the hot-wire was placed in this area and the output observed on an
oscilloscope, a distinct square wave behavior was seen and is depicted
in the upper drawing of Figure I-15. The only interpretation that can
explain this is that the shock wave is oscillating about its mean posi-
tion and the square wave is the result of the abrupt changes in heat
transfer to the fluid ahead of and behind the shock. This square wave
signal was observed with all steps tested and with several different
hot-wire probes.

When the separation shock was observed in the Schlieren
system it appeared as a blurred region of approximately the same
width as described above. A series of spark Schlieren pictures
(about 5 Wsec duration) were taken to see if the above motion could
be detected visually. These gave essentially the same appearance
as with the continuous Schlieren observations. Thus, it appears as

though the shock wave motion is not correlated across the width of
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the tunnel. Detailed measurements of the shock motion are presented
in Section I. 4. 5.

I.4.2 Wall Pressure Measurements

A wealth of experimental data is available for the mean wall
pressure distributions in front of forward facing steps for step heights
greater than or equal to the initial boundary layer thickness. The
majority of this work has been reviewed recently by Zukoski.(lé)
However, it was felt that for step sizes less than a boundary layer
thickness that the existing wall pressure data should be supplemented
and the effect of step height in certain scaling parameters determined.

The mean wall pressure data for a series of forward facing
steps ranging in height from 0. 0l inch (h/éiO ~0. 048) to 0. 32 inch
(}1/60 ~ 1.5) were measured and are presented in Figure I-4 where
the fractional change in wall pressure, 1—5—(; = —IE;O—O, is plotted against
distance from the step face. The uniformity of the pressure data in
the spanwise direction, although not’ shown, was quite good except near
the start of the interaction region where the pressure gradients are
steep. This spanwise uniformity was usually within about 5% of the
mean level and considerable improvement was observed when splitter
plates were employed.

Details of the pressure distributions near the step face for
the larger step sizes is not shown for clarity and because all were
very similar to that shown for the 0. 18 inch step.

The pressure distribution for the 0. 32 inch step, both with

and without splitter plates, is shown only for comparative purposes

because of the non-uniformity of the entire flow field as discussed
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previously.

For the larger step sizes, say 0.12'" <h < 0.32" ,thelocation
of the separation pressure ratio, Aps/ Py~ 0. 93,(16) is in good agree-
ment with known correlations. For steps smaller than this, significant
departures fromthis value are evident, which incidentally corresponds
to the disappearance of a plateau pressure region.

I. 4.3 Velocity Profiles and Qualitative Hot-wire Measurements

In several of the theoretical attempts to treat the separation
of supersonic turbulent boundary layers various assumptions regard-
ing the character of the shear layer are made such as the "'equivalent

(21)

Moreover, there is presently some
(23)

jet" hypothesis of Paynter.
interest in treating the separation problem by moment methods
which utilize several integral properties of the flow (e.g. displacement
thickness and momentum thickness, among others) and one way of
approximating these is to employ certain classes of similarity solu-~
tions.

In both of these cases, there is some question of their validity
near the interaction region where the boundary layer undergoes the
transition to a separated shear flow. In addition, it was not clear
that as the separated shear layer moved far downstream of the inter-
action region whether the influence of the wall and the recirculating
flow could prevent the approach to a similar type flow (similarity
is implicit in the "equivalent jet' hypothesis). Thus, because of these
doubts, detailed surveys of the separated shear layer by means of

the Pitot tube and the hot-wire anemometer were conducted.
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The approaching boundary layer velocity profile is presented
in Figure I-7 where the velocity ratio u/ue is plotted against distance
from the wall. The boundary layer thickness in the test section area
is taken as 0. 21 inch and the momentum thickness calculated from the
velocity profile is about 0. 014 inch. The two characteristic Reynolds

numbers for the initial boundary layer are then

Re, =~ 4.35x 104
0 (1-9)

Re. ~ 2.4 x 10°

%

(using the relations given in NACA Report 1135(27)

)

In the separated flow region the velocity profiles for the 0. 24
inch step are shown in Figure I-10 where the velocity ratio u./ue is
plotted against y/6 and & is the local shear layer thickness measured
from the wall and determined from the hot-wire measurements as
mentioned earlier. These profiles are shown for five stations down-
stream of the beginning of interaction as measured in initial boundary
layer thicknesses. Also included in Figure I-10 is the approximate
dividing streamline velocity. Velocity profiles for stations closer
to the beginning of interaction than 2. 67 boundary layer thicknesses
are not presented because accurate data on the local static pressure
X=X

could not be ascertained. The last two survey stations ( 5 = 4. 90
0

and 5.64) are shown only partially because the step prevented probing

closer to the wall. Likewise, velocity measurements in the reversed
flow regime were not measured due to the difficulties discussed pre-
viously. The velocity at the outer edge of the shear layer, u,, was

constant to within 1% for each of the stations shown.
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Also, for the separated shear layer, profiles of the turbulence
intensity were taken for the 0.24 inch step by use of the hot-wire
anemometer and are shown in Figure I-12. The hot-wire output is
normalized by a reference oufput (equal in this case to the maximum
output value) and is shown for four stations downstream of the inter-
action and also for the approaching boundary layer and plotted against
the fraction of layer thickness y/6 (the local value of § was determined
from these and other hot-wire profiles). Again the profiles do not
extend to the wall because of the presence of the step.

Spectral measurements of the hot-wire signal for several
stations were also made at the peak signal location and are shown
in Figure I-14. The individual spectra were normalized in a
manner that more clearly illustrates the differences at the low fre-
quency end of the spectrum. It was reasoned that in the short space
from separation to the step face the smaller or dissipative eddy scale
would not change markedly whereas the larger eddies are the most
effective in changing the gross behavior of the shear flow, e.g. the
velocity profile. Moreover, the unsteady phenomena associated with
the separation bubble itself (see Section I.4.5) is at low frequency
(less than 12 KC) and thus has very little effect on the higher frequency
components. The normalization itself was conducted by equating the
energy levels in the 1 KC band width centered at 200 KC for each of
the spectra. This procedure, while admittedly arbitrary, does illus-
trate the differences between the unseparated flow and the separated

(8)

flow better than other arbitrary methods.
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The spectra shown in Figure I-14 are uncorrected for ampli-
fier response but do include compensation for the real wire attenuation
('th ermal lag). As can be seen from the amplifier characteristics
shown in Figure I-29, the neglect of amplifier attenuation has little or
no effect for frequencies lower than 100 KC which is where essentially
all of the spectral changes occur.

I.4.4 Shear Layer Fluctuation Measurement

Since it was suspected that the shear layer was in some sense
approaching similarity (see Section I.5.2) it was decided to utilize
the capabilities of the hot-wire anemometer to measure the fluctua-
tions in density, velocity, mass flux, and total temperature near the
similar region. This was done in order to make more meaningful the
qualitative studies presented earlier and to see if any significant
differences existed between the separated shear layer and other tur-
bulent flows such as a flat plate boundary layer.

Fluctuation measurements were conducted at only one stream-
wise station in the separated shear layer. This station was 5.6
initial boundary layer thicknesses downstream of the start of inter-
action and was, for this step size (0.24 inch) and initial boundary
layer thickness (0.21 inch), the closest station to an equilibrium sim-
ilar flow as determined in Section I.5. 2.

The data taken in this series of tests was reduced in accord-
ance with the assumptions and derivations outlined in Section I.3.2. 2.
In order to more clearly establish the magnitude of the hot-wire
properties defined in that section the measured adiabatic wire resis-

tance and the slope of the measured wire resistance vs. wire Joule
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heating are shown in the upper drawing of Figure I-19. The changes
in measured adiabatic wire resistance and the above mentioned slope
are due to the variations in Nusselt number and recovery factor
across the shear layer.

Also shown in Figure I-19 is the variation in several of the
sensitivity coefficients across the shear layer for one of the three
mean wire currents employed. As can easily be seen, the magnitudes
of the various coefficients are rather low because of the very short
wires used; the total temperature sensitivity coefficient is only 32. 4
mv. per 100%level of fluctuation and decreases’ some 40% through the
shéar layer.

The root-mean-square fluctuation magnitudes of the stream-
wise velocity and local static temperature are shown in Figure I-20
plotted, as before, against the fraction of the local shear layer thick-
ness. These static temperature fluctuations are rather high reaching
a2 maximum value of 12. 1% within the layer. The velocity fluctuations,
on the other hand, are considerably lower reaching a maximum of some
5% within the layer and appear to be increasing as the wall is ap-
proached. The root-mean-square magnitudes of the fluctuations in
total temperature and mass flow per unit area shown in Figure I-21
were calculated from the above by using equations I-8. It should be
recalled that the wire response to pressure fluctuations was assumed
negligible and that the correlation coefficientvbetween static tempera-
ture and streamwise velocity fluctuations was assumed to be -1 as

justified in Section I.3.2. 2,
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The assumption regarding the neglect of pressure fluctuations

can be checked at this point using the R. M.S. pressure coefficient

4)

~

fluctuation (tfp = _P ) of around 2.5% as found by Coe<1 within

1 2
2 Po%0
the separated region over a wide range of Mach number (1.5 QMOS;Z.S).

The ideal hot-wire response is given approximately by (cf. Eq. I-4 )

[

Zi=[s§ 6’2_zsosu6’3+sia‘2+s:%‘z+---] (1-10)
The term representing the pressure wave response only becomes
appreciable near the wall and at the measuring position nearest the
wall the four terms shown within the bracket had values of 2."'14(mv)2,
0. 88(mv)2', 0. O9(mv)2, and O. OO8(mv)2. Thus, the neglect of the
wire response to pressure waves is indeed justifiable.

Spectra of the hot-wire signals were taken at three locations
in the profile for each of the three operating currents used. Near
the outer edge of the layer the spectral signal was very erratic which
is not unexpected because of the intermittent character of the flow.
The remaining two positions where spectra were taken, one near the
maximum signal location and the other near the inner edge (y/&~ 0. 6),
did not differ much in character for a given operating condition. The
spectra for the three wire currents (overheats) are displayed in
Figure I-22 where the fluctuation intensity as a function of frequency
is plotted in arbitrary units but without the normalization employed
previously. These spectra are also corrected for amplifier attenu-
ation which was very small except at the high frequencies where the
signal is small thus giving confidence to the mean square measure-

ments that were uncorrected for amplifier attenuation.
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These spectra could again be reduced by modes since the
sensitivity coefficients are independent of frequency (see Appendix I-4),
but this was not done because of the scant amount of data taken

(8)

{(Demetriades, for example, used a series of eleven wire currents
to spectrally separate the modes). It should be noticed from the
three spectra taken that not only does the signal level increase with
wire current but also the shapes of the three spectra are different,

(25)

especially in the lower frequencies as was found by Kistler for a
supersonic flat plate boundary layer. As mentioned earlier, a '"'cold"
wire is responsive mainly to total temperature variations, thus the
lowest current setting is close in shape to the total temperature
spectra. For the higher current setting the hot-wire becomes more
responsive to mass-flow fluctuations. Thus, qualitatively, the
spectra of mass-flow fluctuations increases as the frequency decreases
as opposed to total tefnperature spectra which has a peak near 25-50
KC.

The slight "bump'' in the spectra near a frequency of 60 KC
shown in Figure I-22 is an example of the ''strain gaging' phenomena
alluded to previously. In this particular case the effect of this bump
on the mean square signal is entirely negligible. In the data taken in
the qualitative hot wire measurements a much more pronounced bump
was present in the spectra in the range 240 KC to 320 KC (not shown
in Figure I-14). The magnitude of this was as high as the turbulence
signal itself although the energy contained in this (area under spectral

curve) was at most 20% of the turbulent signal energy.
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1.4.5 Shock Motion Studies

One of the most interesting observations made during the hot-
wire surveys was that the separation shock wave was not fixed with
respect to the step but rather oscillated over a small region about its
mean position. The output signal of the hot-wire when placed within
the shock motion limits closely resembled a square wave, the top and
bottom of which correspond to the shock wave being either upstream
or downstream of the wire position. A typical example of this output
is shown in the upper drawing of Figure I-15 which was traceddirectly
from an oscilloscope photograph.

The detection of shock motion by means of a hot-wire was first

(9)

reported by Kovasznay for the case of the leading edge shock from
a flat plate. The observation and measurement of the motion of the
shock caused by turbulent boundary layer separation in front of a

(13)

forward facing step was originally due to Kistler who utilized

wall pressure fluctuation data. Although limited in scope, Kistler

did find that the origin of the shock oscillated about its mean position
with a characteristic frequency and over a range of about one boundary
layer thickness. Wall pressure spectral measurements conducted in

(15)

the separated region by Speaker and Ailman show several distinct

oscillation frequencies, but the reasons for this oscillation were not given.
With the square-wave behavior of the hot-wire signal when

placed in the limits of shock motion it was felt that the effect of the

step size on the unsteady behavior could be assessed more easily than

by conducting wall pressure fluctuation measurements.
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Before presenting the measurements of the shock-motion it
should be shown that this motion inmostpart was not due to some upstream
influence, but was in fact a result of the separated shear layer with
its attendant subsonic cavity. These upstream causes, if they did
exist, would be due to some unsteadiness in the tunnel free stream or
to the displacement of the shock origin by large eddies in the approach-
ing boundary layer.

The free stream fluctuation measurements obtained in the
course of these experiments were shown to be very small in magni-
tude and the result primarily of the radiated noise from the turbulent
boundary layer. In order to insure that the shock motion was not
caused by free-stream fluctuations two auxilliary experiments were
conducted; the first was the frequency measurement of the oscillation
of one of the weak compression waves in the tunnel which emerged
from the opposite wall; and the second was the frequency and ampli-
tude measurement of an oblique shock of about the same strength as
the separation shock and was produced by a wedge placed in the free
stream. Both of these frequencies were in the range 11-12 KC and
were checked several times using the procedure described in Section
I.3.2.1. This value was higher than the frequency measurements
made on the separated shock waves and furthermore the separated
shock frequency was found to be dependent upon the step height which
further excludes the free stream fluctuation influence.

The influence of the approaching boundary layer can be shown
negligible by the following argument: if the displacement of the shock

wave were in fact caused by thé 'largest eddies within the boundary
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layer, then the characteristic frequency associated with this would be
on the order of U’/4 where U’ is the propagation velocity of these
eddies (U’ ~ 0.6 ue(lz) ) and [/ 1is the characteristic length of the
eddies (4 is of the order of a boundary layer thickness). Thus, this
characteristic frequency is about 0.6 ue/60 and for the conditions of
this experiment has a value of 110 KC which is an order of magnitude
greater than the measured frequency of shock motion. Thus it is safe
to disregard both upstream fluctuations as the direct cause of the
shock motion.

I.4.5.1 Amplitude of Shock Motion

The amplitude of shock motion was the easiest of the unsteady
characteristics to measure requiring only traverses through the shock
and recording the mean square hot-wire output. This was done for
four step heights ranging from 0. 08" to 0. 32" (or h/60 ~ 0.38 to 1.52)
and it was first observed that for each step the amplitude of motion
was very close to being independent of position along the shock wave
(a slight increase in amplitude was observed very near the edge of the
boundary layer which is due to the fact that the compression waves
from the separation had not yet coalesced into a well defined shock).
The immediate conclusion from this measurementis that the shock
motion is not "hinged' at the separation point but rather it moves
either as a plane surface or with waves propagated along the shock wave.

Typical mean square hot-wire output traverses through the
shock wave for two step sizes are shown in Figure I1-23 where the out-
put is plotted as a function of distance normal to the shock wave mean

position. Note that the shock motion is over a limited range of less
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than 0. 06 inch and that the amplitude varies with the step height. Also
plotted in these figures is the probability that the shock wave, at any
given time, is located upstream of the position y’and is denoted by
P(y‘). This probability distribution was computed from the mean

square output data from

2, 12
E‘Y/E = 4P(y) [1-P(y)] (1-10)

which is easily derived by considering the wire output as a square
wave with the duration of the upper segment being P(y) (the period is
taken as 1) and computing the resultant mean square value.

The variation of shock amplitude (as determined by a slope-
intercept method to the computed P(y) curve) with step height is shown
in Figure 1-24. Also included in this figure is the amplitude measure-
ment for the shock wave caused by 13° wedge placed in the free stream.
As explained earlier, the data for the 0. 32 inch step is considered
questionable andis shownby''?'. From this figure, it appears that the
amplitude of shock motion increases more or less linearly with step
height up to a step height of around 0. 16 inches where the amplitude
becomes relatively independent of step height as depicted by the curve -
drawn on the figure.

I.4.5.2 Frequency of ShockOscillation

Utilizing the square wave behavior of the hot-wire output the
oscillation frequencies of the separation shock waves were measured
in the manner described in Section 1. 3. 2. 1. This was done for four
step sizes ranging from 0. 08 inch to 0. 32 inch.

The oscillation frequency as measured several times was not
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a constant value as may or may not be expected, but rather was spread
over a frequency band about a peak or mean value. Because of this,
the frequency was measured over one second intervals many times and
the results plotted in histogram form as depicted for the 0. 24 inch
step in Figure I-25. The low number of measurements is because the
data had to be recorded manually but nevertheless a distinct peak
occurred in the histogram for each step size.

During the data reduction of these frequency measurements, it
was noticed that the peak frequency was very nearly inversely propor-
tional to the step height. This being the case, one possible cause of
the shock motion is an acoustic oscillation in the reversed flow sub-
sonic cavity. This acoustic oscillation would, if valid, require that
the resonant frequency be inversely proportional to the cavity length
and proportional to the acoustic propagation Speea. Since the reversed
flow velocity in the separation bubble is quite low (M< 0.2(3)) the acoustic
propagation speed is then close to the speed of sound at the stagnation
temperature, a- If a Strouhal number, or reduced frequency, is
defined then by £ = fL/a,T where L is the cavity length, and the data
plotted in this form for the various step sizes as is done in Figure
I-26, it is seen to be remarkably constant at a value of 0. 256 except
for the 0. 32 inch step data (indicated by a "? ') which is believed erro-
neous because of the tunnel choking problems mentioned earlier.

1.4.5.3 Free Stream Fluctuation Measurements

An attempt to get more definitive information concerning the
shock motion was made by making inviscid flow fluctuation measure -

ments ahead of and behind the separation shock wave. The reasoning



42
behind this was that because of the shock motion, the levels of fluctua-
tion in both total temperature and mass flux would increase downstream
of the shock. The total temperature fluctuations would then be directly
related to the R. M.S. shock velocity (the variations in mass flux would
also, but to a lesser degree, because of the noise radiated from the
separated shear layer). Unfortunately, this experiment was not en-
tirely successful from a spectral viewpoint mainly because of the low
signal levels. In spite of this, these measurements did provide a
check on the previous shock frequency and amplitude measurements,
and also were invaluable in formulating a model for the unsteady be-
havior.

In the course of this experiment, the free stream fluctuations
were measured and the data points were plotted on a fluctuation dia-
gram as outlined in Section 1. 3. 2. 2 and are shown in Figure I1-16. The
fluctuation levels determined in this manner give values of 0. 084 for
R. M. S. total temperature fluctuations and 0. 55% for R. M.S. mass
flux variations with approximately zero correlation between the two.

For the inviscid flow fluctuations behind the separation shock
caused by the 0. 08 inch step, the data was taken and is shown in
Figure I-17 again in fluctuation diagram form. It should be noted
that two sets of measurements are presented here for two different
wire lengths and the comparison between the two is very good. From
a least squares curve fit to this data the R. M.S. total temperature
fluctuations were 0.41% and the R. M.S. mass flux variations were

1.66% with a correlation coefficient of 0. 73.
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These levels correspond very well to those that would be com-
puted from the measurements of the shock motion amplitude and fre-
quency and utilizing simple unsteady oblique shock relations. The
R.M.S. variations from the calculation gives 0. 45% for total temper -
ature and 3. 6% for mass flux with a correlation coefficient of 1. The
difference in mass flux variations and correlation coefficients is most
likely due to pressure waves radiated from and through the separated
shear layer.

In addition to the levels of fluctuation, the spectra of the hot-
wire signal behind the 0. 08 inch step shock wave was also measured
and is shown in Figure I-18. The frequency for this figure is normal-
ized by the value fo which is the mean oscillation frequency determined
from the shock motion measurements (fo = 0.256 aT/L). As can easily
be seen, distinct peaks in the spectrumoccur inthe neighborhood of
f/fo =1 and f/f0 a 3. Also plotted in Figure I-18 is the spectra of the
wall pressure fluctuations just downstream of separation as determined

by Speaker and Ailman(IS)

and the correspondence between these is
quite good especially considering that these were taken at different
free stream Mach numbers. This also indicates how the shock motion
is related to the motion within the separated region. It should be men-
tioned that the curve representing the data of Speaker and Ailman(IS)
more closely approximates the actual data taken by them than the
smoothed curve they used to fit the data.
I.4.5.4 Shape of the Shock Motion

In view of the fact that the sepai‘ation shock wave was found to

oscillate about its average position, some information regarding
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the manner in which it moved was desired to explain the blurred
appearance even in spark Schlieren photographs. This blurring could
be due either to warping of the shock surface in a direction transverse
to the flow or due to waves possibly propagated from the separation
region and along the shock surface in the streamwise direction. This
could only be done in a statistical sense, however, and thus the meas-
urement of the shock wave motion correlation was done by utilizing two
hot-wire probes and computing the correlation between the two raw
square-wave signals in the manner outlined in Section I. 3.2. 1.

The transverse correlation measurement was done for three
step sizes (each with splitter plates attached) and the results are indi-
cated in the left hand drawing of Figure I-27 where the correlation co- '
efficient R(0, Z ', 0) is plotted as a function of the distance between
probes in the spanwise direction Z’. The results indicate that the
form of the oscillation is relatively independent of step size and that
the motion of the shock is more or less random in the spanwise direc-
tion with a correlation coefficient that decreases approximately expo-
nentially with probe separation, i.e. R(0, Z’, 0) ~ e % ’/a’ where a~ 0.2
inch. Since the wind tunnel is 2 1/2 inches wide, this explains why the
shock wave appears as a blurred region in Schlieren photographs and
also why motion of the shock cannot be detected by high speed motion
pictures. It is not known how the correlation distance of about 0. 2
inch would change if the Mach number or boundary layer thickness
were changed other than that this distance of about one boundary layer

thickness is of the same order as found by Speaker and Ailman for

spanwise pressure fluctuation correlations at MO ~ 3.5.
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The streamwise correlation coefficient was measured for only
one step size and is shown in the right hand drawing of Figure I-27
where the correlation coefficient R(x', 0. 36 inch; 0) is plotted as a
function of the probe separation distance in the streamwise direction
along the shock wave, x' (note that the probes are separated by 0. 36
inch in the transverse direction in order to eliminate interference
problems). The results of this measurement indicate that the length
of the waves propagating along the shock in the streamwise direction

are very long — at least much greater than the scale of the experiment.
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I.5 Discussion of Results

I.5.1 Mean Wall Pressures
Before discussing the results of the data obtained here it is

useful first to briefly consider several features of the pressure distri-
butions for flows over 1a.rge steps in order to more clearly display the
effect of step size. In addition to the length scales of the flow men-
tioned in Section I. 4. 1 which are known to be independent of Mach
number,(lé) it is also well known that for fully developed turbulent
boundary layers the flow field is virtually indepen-

dent of Reynolds number(16) (for the range 104 < Re6 < 106). The

0
plateau pressure ratio as defined in Section I. 4.1 has been determined

by Zukoski(lé) to be adequately represented by
—e— &~ 0.55 M (I-11)

where Ap is the difference between the plateau pressure, Pp and the
initial static pressure ahead of the interaction, Py and MO is the free
stream Mach number (Plateau pressures up to 5% higher than those

(17)

predicted by the above expression have been reported by Hahn, who

employed step heights on the order of 4 to 8 initial boundary layer
thickness). The steep pressure rise at the start of the interaction
has also been shown to scale with the initial boundary layer thickness

(16)

and the rate of increase in pressure in this region is given by,

op ~ _P -
== ~ 0.5 (1-12)

where 60 is the initial undisturbed boundary layer thickness. Using

equation I-11 to explicitly display the Mach number dependence on
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pressure gradient, equation I-12 becomes

8(aplpg)
EIeS 50" ~ 0.275 M,

'max

(I-13)

Bear in mind that the results presented above were ascertained for
step heights greater than the initial boundary layer thickness and it
was desired to determine experimentally the dependence of step height
on the above expressions.

The wall pressure distributions for a series of step sizes from
0. 01 inch thick to 0. 32 inch thick (or for 0. 048 < h/6O < 1.52) were
measured and are shown in Figure I-4. There are several general
features that are immediately apparent from this drawing; first, the
absolute extent of the pressure field in front of the step increases with
the step ‘height as expected; second, the appearance of a plateau pres-
sure, as such, is not visible for step sizes less than 0. 08 inch but
rather rises monotonically to a peak pressure at the step face; third,
the peak pressure, or plateau pressure for the larger steps, increases
with step size becoming asymptotic to a maximum value which is very
close to the value predicted by equation I-10; and fourth, the initial
pressure rise appears to have a slope which is more or less indepen-
dent of the step size.

The appearance of a plateau pressure for steps larger than
0. 08 inch also coincided with the appearance of an inviscid flow region
between the separation shock wave and the expansion fan caused by the
turning of flow at the step corner whereas for smaller step sizes the
interaction of these two occurred within the boundary layer. More-

over, the length of the separation zone for large step sizes (4.1 step
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. (16), . .
heights ) gives a constant separation pressure for steps greater
than 0. 12 inch that is in good agreement with the value suggested by
Zukoski(lé) at this Mach number. This implies that the length scale
for the separation zone given above is valid for steps as small as, say,
50% of the initial boundary layer. This is roughly the same as is im-

(3), (5)

plied by other measurements at different Mach numbers but
sufficient data is not available to generalize this result to all Mach
numbers.

The value of the peak pressure, or plateau pressure, may be
shown from a dimensional analysis to be a function only of Mach num-
ber and step height-to-boundary layer thickness ratio if Reynolds num-
ber effects are ignored. It was felt that equation I-11 might adequate-
1y account for the Mach number dependence for, as mentioned earlier,
as h/60 becomes much larger than unity the effect of step height on

plateau pressure becomes negligible. This would imply then that the

plateau pressure rise might be given by

Ap .
5—(; (MO, h/60) ~ 0.55 Mg - F(h/éo) . (I-14)
With this in mind, the plateau-pressure ratio normalized by the quan-

tity 0. 55 M, was plotted against h/6O for the data taken here and is

shown in Figure I-5. The results of investigations by Bogdonoff(3)’ ()
at free stream Mach numbers of 3. 85 and 3. 0 along with some unpub-

(18)

lished data by Czarnecki at Mach numbers of 1. 61 and 3.0 are also
shown. Within experimental scatter, the results of this plot are seen
to be fairly independent of Mach number. Thus, the assumption of

equation I-14 for the plateau pressure is verified experimentally and
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the dependence on h/é0 is determined. This relation is certainly not
valid for extremely small steps, say h/(SO 0. 05, where undoubtedly
Reynolds number effects become important, but should give consistent
results for steps larger than this.

The initial pressure rise associated with flow over a normal
staep appears to be independent of step size and agrees quite well with
the maximum slope as predicted in equation I-11. Also see Figure
I-6; here the data for several step sizes has been replotted against
the variable (xo—x)/éS0 where X is the start of the interaction.
Furthermore, the pressure distribution for a 13° wedge mounted on
the wall (which somewhat models the flow over the separation bubble)
is also plotted on this figure and it agrees closely with the other data.
Note; this wedge angle did not separate the flow which is in agreement
with the incipient separation data in front of compression corne rs.(zo)

It should be mentioned that the observation that the initial pres-
sure gradient is independent of step height is in agreement with the

(18)

unpublished data of Czarnecki

(3),(3)

but contradictory to the findings of
Bogdonoff, et. al. The latter data shows a steep rise in maxi-
mum pressure gradient as the step height to boundary layer thickness
ratio is reduced; in fact, for h/6O ~ 0.5, the maximum pressure gra-
dient data of Bogdonoff is twice that for h/éO > 1. This level of in-
crease was certainly not observed here over the range of h/60 tested
(0. 05 &h/&o <1.52).

In Section I. 4.5 it was shown that the separation shock wave

and also the separation point oscillate about their mean positions with

an amplitude that depends upon the step size. Furthermore, this
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amplitude of motion decreases with step size for }1/60 < 1 and this
might explain the increase in maximum pressure gradient with de-
creasing step size. As a first approximation, consider the pressure
rise to be a ramp with slope given by equation I-13 and compute the
mean pressure gradient for the case where the ramp oscillates over
an amplitude a < 60. Under these assumptions no change in mean
maximum pressure gradient from equation I-13 is noticed. From the
shock motion measurements the amplitude of motion is shown to be at
most 0. 05 inch which is less than 605 For unsymmetrical instantane-
ous pressure rises some slight change in slope would result, but for
the situation considered here would be smaller than could probably be
measured. This description verifies the data obtained here for the
maximum pressure gradient. For Bogdonoff's data it can only be
guessed that for some unknown reason the shock motion amplitude
in his experiments was different than that given here, but since no
measurements are available, this cannot be checked.

In summary, the mean wall pressure distributions reported
here have led to the following conclusions:

(16)

I. The scaling laws presented by Zukoski for the geometry
of the separated region are valid down to h/<SO ~ 0. 5;
2. for h/6, <0.5, the pressure plateau disappears and the
wall pressure increases monotonically as the step face is approached;
3. the normalized plateau pressure (or peak pressure for
h/f)0 € 0.5) is shown to be a function of Mach number and h/60 where

the dependence in Mach number is given by Zukoski(lé) and the de-

pendence on h/6O determined here; and
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4. the maximum pressure gradient at the start of the inter-

action was found to be relatively independent of h/60.
I.5.2 The Approach to a Similar Flow

One of the main reasons for obtaining the velocity profiles and
fluctuation profiles in the separated region (aside from the fact that,
to the author's knowledge, the latter has not been previously measured)
was to either confirm or deny the suspicion from Schlieren photographs
that the separated shear layer was, in some sense, approaching a
similar flow. That is, whether the flow properties of the shear layer
begin to scale linearly with distance along the surface. One might
expect that for very small initial boundary layer thicknesses, or
1'1/6O - o¢, that the flow properties downstream of the separation point
might be similar since there is no characteristic length scale for the
flow (recall that the flow is independent of Reynolds number and that
the step height just determines the separation point relative to the
step face location). In other words, the velocity profiles instead of
being a function of both x and y could be represented as a function of
y/L(x-—xO) where L(x) is some measure of the layer width. This is
commonly done for solutions to laminar boundary layers, turbulent
jets, mixing layers, etc.

On the other hand, a finite boundary layer would require some
transition distance in order to relax to a similar type of behavior and
it seems plausible that this distance would, in some sense, scale
with a measure of the initial boundary layer (possibly layer thickness

or momentum thickness among many other choices).
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If the above argument is logically consistent, then three
questions naturally arise. First, does a finite separating boundary
layer become in fact similar? And, if it does become similar, what
is the length of the transition distance and what is the proper simi-
larity variable represented above by L(x—xo).

As a first crude answer to two of the questions posed above,
consider the plateau pressure ratio as a function of h/60 as presented
in Figure I-5 where it is shown that for h/iiO # 2, the plateau pressure
is a constant for a given approaching Mach number. Assuming that the
plateau pressure is in some manner related to the dynamic pressure
along the dividing streamline (3 p* u*z), then the above implies that
the dividing streamline velocity becomes constant for h/éO 2 2. Simi-
larity solutions for, say, a mixing layer(24) also exhibit this behavior
in that the dividing streamline velocity is a constant. From this corre-
lation and the linear growth rates observed in Schlieren photographs
it appears then that similarity is achieved. Moreover, using the ex-
perimental fact that the separation bubble is about 4.2 step heights in

length(l6)

along with the above value of h/60 ~ 2 gives a value of about
8.5 boundary layer thicknesses as the approximate transition length to
a similar flow. This result is independent of Mach number when the

transition distance is measured in boundary layer thicknesses (the use
of the initial displacement thickness, 6*, or momentum thickness, 8,

to measure the transition length would not exhibit this behavior, since
both 6*/6 and 6/6 are functions of Mach number). The above calcula-

tion, of course, relies on two rather weak assumptions and as such

only serves as an indication of the approach to similarity and the
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transition distance. More definitive information was hoped for from
the velocity profile measurements.

Unfortunately, due to the limitation on maximum step size for
this tunnel, the velocity profile data obtained here was not as fruitful
as was desired. The 0. 24 inch step, for which detailed velocity meas-
urements were taken, only permitted profiles up to 5.6 60 downstream
of the start of interaction. These profiles, as shown in Figure I-10,
do however indicate that the shear layer is perhaps becoming similar
although what one might call excellent correlation is not displayed in
the profiles. This is probably due to the fact that the local shear layer
thickness, 6, is used as the similarity variable rather than some other
choice which might take into account the initial boundary layer. More
will be said about this later in this section.

The dividing streamline velocity as depicted in Figure I-10
does appear to be approaching a constant value of around 0. 7 u, in a
transition distance somewhat around 6 60 which is in good agreement
with the plateau pressure scaling result. This value for the dividing

(

streamline velocity is quite close to the value Korst 24) determines
theoretically for a compressible turbulent mixing layer at constant
pressure (11* = 0.65). It is not clear whether the difference between
these is due to measurement error or to the fact that the mixing layer
solution is not an adequate model for the reversed flow region. Theo-
retical solutions for turbulent separated flow have not yet been obtained
to compare the effect of the wall and finite reversed flow velocity.

Prior to conducting these experiments, it was felt by the author

that the details of a separated shear layer would be qualitatively
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like those of, say, an injected boundary layer. This was founded on
the close correspondence between the integral properties calculated
for each of these flows (this result was established by the author in
some preliminary unpublished solutions to the turbulent equivalent of
the Falkner-Skan equation). To check this suspicion experimentally,
the data for mas sive injection into a turbulent boundary layer(é) was
examined and one remarkable difference was found; the dividing stream-
line velocity ratio for injected boundary layer is very close to 0.5 -
much lower than the value of 0. 7 determined for the separated shear
layer here. This is probably due to the fact that again in the injected
boundary layer there is no reversed flow region. Thus, it appears
that these two flows are not alike in details such as the actual velocity
distribution. It was noted, however, that 5-10 initial boundary layer
thicknesses were required for the injected boundary layer to approach
a similar flow behavior which is in good agreement with the distance
determined for the separated shear layer.

With regard to this question of the similarity variable, L(x—xo),
it was noticed by the author that the velocity profile data, at least for
the outer portion of the shear layer, say u/ue #0. 3, collapse Yregfna.r‘k._

D

ably well onto a single curve if plotted against the variable 75
D

where 6D is the distance from the wall to the dividing streamline.

This is pure speculation, however, and the length of the shear layer
in this test was not great enough to either prove or disprove this hy-
pothesis. Recent theoretical attempts at solutions utilizing integral

(22)

moment methods also employ a similarity variable much like that

hinted at here. Specifically, this other choice is a modified momentum
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thickness where the integrand is as in the usual case, but the lower
limit of integration is the zero velocity line rather than the usual
choice of the wall. Again, because of the step interference problem
with the probes, this quantity cannot be estimated accurately to verify
the hypothesis.

The more common similarity variable employed in other in-
vestigations such as this is the local momentum thickness 8(x). It is
easily shown that for a separating boundary layer this is an improper
choice because a simple control volume analysis, with wall shear
stresses neglected, gives the result that the momentum thickness of

the separated layer is related to the initial momentum thickness by

PoYo *® Ye
=-—————2—{90+60(1—a-(-)—)} (I-15)
e e
]
where 0 is the momentum thickness, § is the displacement thickness,
{ )0 refers to the edge or initial conditions ahead of the interaction,

and ( )e refers to the edge conditions behind the separation shock

wave (ue is velocity parallel to wall). This equation was first derived

(21)

by Paynter and also independently by the author in the simpler

form shown. Thus if the edge velocity is a constant (as verified exper-

imentally), then 62 would be a constant (note, 92 will actually de-
daé

_2.
dx

wall friction coefficient, C

crease with x since A Cf/Z and in the reverse flow region the

P is negative). Quite obviously, the sepa-

rated layer is growing more or less linearly with x and thus, the
similarity variable should be linear in x. This incidentally points out

another difference between this flow and the injected boundary layer

p_ Vv
where _(_i__Q = W W constant.

dx Pe Ue
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Up to this point, the test for similarity has been made from the
observations of two gross features, namely the plateau pressure and
the mean velocity profiles. Conversely, the question of similarity
could just as well be tested by considering the fine scale behavior as
exhibited by the variation in the level of turbulent energy across the
layer. This is more or less equivalent to the mean square hot-wire
output which was presented in Section I. 4. 3.

Since the length of the transition to similarity is somewhere
around eight boundary layer thicknesses and the hot-wire traces are
only taken in the range 3.66 < XO(;X < 5.6, true similarity should not

0
be shown, but the approach to similarity might be indicated as with the

velocity profile data. As is evident from the profiles of fluctuation

- intensity shown in Figure I-12, the separated shear is again shown
undergoing a redevelopment as it proceeds downstream from the start
of interaction and it appears that possibly the outer portion of the layer
(y/8 2 0.7) becomes independent of x faster than the inner portion.
Again, the normalization parameter, 6, is not the best choice for
indicating similarity as discussed previously in this section.

The fluctuation intensity along the dividing streamline is also
displayed in Figure I-12 and it appears as though this may also be
approaching a constant value of around 62% of the maximum fluctuation
inteasity. This does not mean that the turbulent energy of the flow
along the dividing streamline is 62% of the maximum level because the
sensitivity of the hot-wire to fluctuations varies across the layer.

However, for a given wire current the sensitivity is a function only of
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the local Mach number* which is becoming a constant along the dividing
streamline. Again, it is apparent that it takes more than 5.650 for the
fluctuation intensity to become constant which is in agreement with the
velocity profile estimate.

As mentioned earlier, there is the suspicion that the shear
layer thickness 6 used to normalize the distance from the wall is not
the proper choice due to residual effects of the finite undisturbed
boundary layer. Since two independent measurements were made the
parameter y/6 can then be eliminated by cross-plotting the data from
Figures I-10 and I-12. The resultant graph is shown in Figure I-13
where the fluctuation intensity is plotted as function of velocity ratio
and distance from start of interaction. Plotted in this manner, the
approach to similarity is more noticeable than in previbus forms even
though the various curves are not markedly different. For instance,
for the high speed portion of the layer, say u/ue # 0.5, the develop-
ment of the layer as it progresses downstream is easily seen and the
two most downstream stations are almost identical in these coordi-
nates. This is a definite indication of similarity occurring in a tran-
sition distance of closer to 5.5 boundary layers and further exhibits
the weakness of the assumed similarity parameter 6. Unfortunately,
this method does not indicate a better choice and the determination of
a better similarity parameter must await future work.

The quélitative hot-wire spectral data displayed in Figure I-14,

although it does indicate a definite difference with regard to attached

The Reynolds number Re, = _p_}_)._i
T gT

only a function of the Mach number.

for a constant pressure flow is
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and separated flows, is inconclusive as far as showing an approach to
similarity other than that all separated spectra are very much alike in
appearance.

In summary, the following points regarding the question of a
similar flow have been indicated from the data discussed this far.

1. The separated shear layer does appear to be approach-

ing a similar type of flow especially in the high speed
region of the shear layer (u/ue 2 0.5).

2. The transition distance from the start of interaction

to approximately a similar flow is around 8-10 initial
boundary layer thicknesses.

3. From the dividing streamline velocity measurement

it appears that the high speed region of the shear
layer might be adequately represented by a semi-
infinite half jet model. The velocity profile measure-
ments were not comprehensive enough to verify this
point, however.

4. The compressible mixing on the low speed side of the

shear layer appears to be inherently different from
that of injected boundary layers.

With regard to the small scale of the experiments and the
conclusions drawn from them regarding a similar behavior, a certain
degree of criticism is justifiable. In spite of this, the indications
presented here point the way to future studies regarding the similarity

of turbulent supersonic separated flows in general.
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I1.5.3 A Model for the Unsteady Separation Behavior
The relatively low frequency unsteadiness associated with the
separation process, detected here by the shock wave motion and by

Kistler(l3)

from wall pressure measurements, becomes important
when one considers the unsteady aerodynamic forces that can be ex-
erted on a surface as a result of this. Measurements conducted near
the separation point show that the R. M. S. pressure coefficient fluctu-

ation can be quite high (upwards of 4 . waever, two other im-
portant pieces of information regarding these fluctuations have not
been explained previously to the author's satisfaction, namely the
characteristic frequency of the motion and the extent of the region
over which these fluctuations are correlated. The latter is necessary
in order to make estimates of the unsteady forces exerted on the sur-
face of an aerodynamic structure and the former is important in order
to evaluate the response of this structure to these unsteady forces,
i.e., the frequency response.

Quite naturally, it would be an enormous task to test experi-
mentally all geometrical shapes over a wide range of Mach number
and Reynolds number to determine these characteristics. A much
more efficient procedure is to find out what causes the unsteady be-
havior and from this and some experimental data formulate a model
with which one could predict the magnitude and frequencies
of the unsteady forces.

The fluctuating wall pressure in front of a forward facing step
has, over the past five years, received some attention and a typical

example of the R.M.S. pressure distribution is shown in Figure 1-28
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(from Speaker and Ailman(IS)). This R.M.S. wall pressure distri-
bution can be separated into two distinct regions; the first is the rather
sharp peak about 4.1 step heights from the step face” and is due to the
motion of the separation point about its mean position; the second is
the roughly constant fluctuating pressure level under the separated
shear layer which previously has been attributed to the turbulence
activity in the separated layer.(l3) The separated portion has been
most extensively treated by Speaker and Ailman(ls) who conducted
spectral and R. M. S. pressure measurements in this region at a free
stream Mach number of 3.5 and correlated their data with the work of

Coe(l4) and Kistler. (13)

The separation point motion was first ob-
served by Kistler(l3) and was measured in this thesis via the separa-
tion shock motion in sufficient detail so that a model for the low fre-
quency unsteadiness could be formulated.

One of the more important results of this investigation was the
observation that the unsteady behavior of separation was most likely
due to acoustic oscillations within the separated flow region. This was
first noticed when it was found that the frequency of motion of the shock
wave (which is caused by motion of the separation point) varied in-
versely with the step size. This is shown in Figure I-26 where the

reduced frequency of the motion, or the Strouhal number = -g'——ji—, is

T
seen to be nearly independent of the step height-to-boundary layer

thickness ratio. As mentioned in Section I.4.5 the reduced frequency

The length of the separated region for the experiments of Speaker
and Ailmﬁ%)is some 50%longer than the scaling law given here and by
Zukoski. The nominal value of 4.1 step heights given above occurs
at 6.5 step heights in front of the step for this data only.
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has a value of 0.256 and, within experimental error, is quite close to
a value of 0.25and is interpreted as a standing 1/4 cycle acoustic wave
present in the subsonic cavity. By analogy, this is equivalent to
the fundamental mode of vibration of, say, an open ended organ pipe
with the open end corresponding to the separation point.

Note also that this variation in shock frequency with stepheight
eliminates the probability of a resonant acoustic wave existing in the
cavity that propagates transverse to the mean flow direction, i.e.
reflecting off of the sidewalls of the wind tunnel.

An acoustic mode of oscillation was first considered by
Kis‘cler(13) but rejected because he did not detect a strong low-
frequency energy concentration within the separated region. The

(

experiments by Speaker and Ailman 15) do show several strong energy
concentrations and with the evidence cited herein, it was necessary
to verify the measurements conducted here before formulating a model.
The spectral measurements conducted in the inviscid flow
region behind the separation shock wave as shown in Figure I-18 con-
firmed the shock oscillation freguemcy measurement.
The appearance of a weak signal near the reduced frequency value of
f/fO = 3 was additional evidence that the acoustic wave model is valid
since the next mode of oscillation for this model is at three times the
fundamental mode.
To show that the shock motion was indeed coupled to the motion
of the separation point, the spectra of the wall pressure fluctuations

(15)

immediately downstream of the separation point were also plotted .

on Figure I1-18. The correspondence between these is remarkable in
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light of the fact that the two experiments were conducted at different
Mach numbers and different h/§. This, and the second peak in the
spectra at f/fO = 3, is further indication of an acoustic mode of oscil-
lation.

At this point, the author must apologize for the use of the crude
organ pipe analogy to model the standing wave pattern within the sepa-
rated region. Admittedly, one cannot expect too much from the com-
parison of a one-dimensional model to the very complicated acoustic
vibration of even a simple triangular shaped area which, even with the
simplest of boundary conditions, has not yet been theoretically solved
to the author's knowledge. The comparison seems even more remote
when the problems of reflection and refraction of acoustic waves by
the turbulent shear layer are considered. The fact that the one-
dimensional model can explain some of the gross features of the
oscillation such as the resonant frequencies does justify its use if
only for conceptual purposes. It is believed that the complications
mentioned above, along with the turbulent noise, are the reason why
the peaks in the spectra shown in Figure I~18 are rather broad and of
low magnitude compared to sharp, high peaks for tuned oscillator
spectra.

The acoustic model hypothesized above also explains qualita-
tively the shape of the majority of the R. M.S. pressure distribution
shown in Figure I-28. The first initial peak near the separation
point (x/h = 6.5) is due to the oscillation of the steep pressure gradient
region and its general shape can be estimated from assuming

p(x/h, t) &~ p(x/h)+ Aldp/d(x/h)].cos wt where A is the amplitude of the
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the motion and @ is its frequency. Computing the R. M. S. pressure

level from this gives

T (x) « A P (1-16)
P M

0
in the vicinity of the separation point. For the separated region, the
pressure fluctuations are caused by noise radiated from the shear
layer and transmitted through the subsonic region and superposed
upon the low amplitude standing 1/4 cycle acoustic wave for which the
pressure envelope is a 1/4 cycle sine wave increasing from the level
at separation to a maximum at the step face.

Near the step face, x/h < 2, this model as described so far,
fails to account for the steeper rise in pressure fluctuation level as
indicatedin Figure I-28. In considering this, the wall pressure spectra
in this region shows a distinct peak at f/fO ~12 (see Figure 1-28). This
peak is not related to a longitudinal standing wave because it corre-
sponds roughly to the 11th or 13th harmonic and one would not expect
this harmonic to receive a disproportionate amount of energy when
little or no energy is apparent in the 5th, 7th, or 9th harmonics. It
was then realized that another standing wave oscillation parallel to the
step face could also be excited for which the characteristic length
would be the step height as opposed to cavity length. Cbmputing the
Strouhal number, g—b—, ’for this peak frequency gives a value very close
to 0.50 which correzponds toa 1/2 cycle standing wave. This, again
by analogy, is equivalent to the fundamental mode of vibration of a

closed orgon pipe and seems intuitively correct since one would expect

the shear layer to act somewhat like a reflector to acoustic waves in
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the vertical direction.

This distinct peak due to a vertical standing wave is also appar-
ent in the spectra taken in region 3 (2 < x/h < 4.5) although at a slight-
ly higher frequency due to the decreased height of the cavity. Depend-
ing on the phase shift between these two separate modes of oscillation
(parallel and perpendicular to the wall) and their relative frequencies,
the pressure waves from each of these can be either additive or sub-
tractive. This might account for the slight dip in R. M. S. pressure
near x/h ~ 2 and the gradual rise in R. M.S. pressure as the step face
is neared.

Concerning the representative spectra of wall pressure fluctua-
tions given in Figure I-28, the shift in the fundamental longitudinal
mode frequency in regions 1 and 3 to a value of some 60% of the pre-
dicted value (which is verified in regions 2 and 4) is inexplicable atthe
present time.

Since the unsteady behavior associated with separation and the
subsonicrcavi’cy has been shown to be the result of acoustic oscillations,
the question arises as to what is the driving mechanism that supplies
the energy that is lost due to viscous forces and the possible trans-
mission of energy through the shear layer with resultant radiation into

(32) This source must be a broad band distribution

the supersonic flow.
of energy since various frequencies are excited depending on oscilla-
tion mode and step size. The only source of broad band energy avail-
able is the turbulent energy in the approaching boundary layer and

separated shear layer, but it is not clear whether this energy enters

the cavity at the separation point, the reattachment point, or over the
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length of the separated region. It is speculated that the reattachment
point is important with regard to this point in view of the relatively
high amount of energy contained in the standing acoustic wave parallel .
to the step face which is quite localized in extent and does not cause
any observable motion of the separation point.

Having asserted the acoustic wave model from data taken for
forward facing steps, the question of the existence and prediction of
this phenomenon for other geometries such as separation caused by
ramps or shock waves, or more generally any flow field that contains
a subsonic cavity adjacent to a supersonic flow, naturally arises.

With regard to separation caused by ramps, to the author's
knowledge the only fluctuation data involving a large separated region
is that by Coe(l4) who measured p for turbulent boundary layer separa-
tion in front of a 45° ramp. From his preliminary data it is evident
that the R. M.S. pressure distribution is very much like that for a
forward facing step and because of this, the same acoustic oscillation
described before is believed present.

For both shock induced separation and rearward facing step

15)

separation the data of Speaker and Aihrna,n‘1 is used since it contains

some spectral measurements. For the shock separation, the spectra
show two distinctpeaks one of whichis close to 5—13‘— = 0.5usinga very crude
estimate for the length of cavity, I.. This is intuifively correct from the

model standpoint inasmuchas both separationand reattachment canmove
to some extent. For the rearward facing step data, the spectra show

distinct peaks near% = 0.5 and 1. 0 which correspond to vertical

standing waves at the step face, and a diffuse peak near % ~ 0.25
T
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which corresponds to a longitudinal standing wave. The acoustic
modes for each of these cases is not as well defined as for the for-
ward facing step case due to the high energy loss through the down-
stream reattachment point.

It might be worthwhile at this point to mention that an oscilla-
tion caused by a modulation of the mass stored in the separated cavity
and variations in the mass influx rate at the reattachment point was
considered by the author at one time. Using a very simple model for
this mechanism, it was seen that small perturbations were stable and
that the motion was strongly overdamped which would rule out the
oscillating behavior observed. A mechanism of this type was consi-

(34)

dered by Trilling with regard to laminar boundary layer separation
due to an impinging shock wave.

It is also interesting to note that the acoustic phenomenon
described here is analogous to the flow over rectangular cut-outs in

(19)

aerodynamic surfaces except for the fact that cocherent acoustic
waves have never been detected visually in the inviscid flow region or
in the separated cavity. This last point was another reason why

(13) The measure-

acoustic oscillations were previously discounted.
ments conducted here with regard to the shape of the shock surface
show that the shock motion is not correlated over the span of i;hé
tunnel which implies that any acoustic waves radiated through the
separated shear layer are also not correlated across the span of the

tunnel. This is why these acoustic waves cannot be detected by con-

ventional visual means.
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1.6 Conclusions

(1) The static wall pressure distributions in front of a
fo’rward facing step in supersonic turbulent flow were obtained and
the effect of step height to boundary layer thickness ratio determined
insofar as the plateau pressure and maximum pressure gradient are
concerned.

(2) The approach to a self-similar flow has been established
from velocity profile data and use of the hot-wire anemometer. The
relaxationdistance to a self-similar flow is estimated to be in the
range of 5.5 to 9 initial boundary layer thicknesses and is apparently
independent of Mach number.

(3) Measurements of the fluctuating quant)ities within the
separated shear layer near the self-similar region were obtained
and are shown to be about a factor of two greater than a flat-plate
boundary layer at the same edge Mach number.

(4) The low frequency unsteadiness associated with the
finite length separated region was studied by observations of the
separation shock motion and an acoustic‘model is proposed that pre-
dicts the resonant frequencies and distribution of fluctuating wall
pressures to some degree. This model isused to interpret the wall °
pressure spectral measurements conducted at a different Mach number
and Reynolds number.

(5) The use of relatively short hot-wires (4/d ~ 100) has been
shown feasible in light of a theoretical discussion that accounts for

effects of end losses.
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In light of the results of the experiments reported here the

following related experimental investigations are suggested;

1) 2 more thorough investigation of the question of a
similar flow for the separated shear layer. This
requires a step size much greater than the local
boundary Iayer, say, h/60 ~ 10;

2) an investigation of the flow field in the separated
region concentrating on both the mean velocity dis-
tribution and the fluctuating velocity distribution.
The means by which this should be accomplished is
unclear, but the usé of the hot-wire anemometer as
a mean flow instrument could be exploited with some
effort;

3) a thorough investigation of the effects of both Mach
number and step height on the unsteady behavior for
forward facing steps and other geometries such as

ramps and backward facing steps.
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APPENDIX I-A

Derivation of Finite Hot-Wire Response Equation

and Sensitivity Coefficients

This appendix is essentially an abridged version of a derivation
first completed by Behrens.(lz) It is included in this thesis mainly for
completeness and to display the necessary parameters that must be
measured in order to reduce the actual data into its final form. The
paper by Behrens is as yet unpublished but should be forthcoming soon
and should be consulted for many of the details omitted.

I-A.1 Derivation of Finite Hot-Wire Equations

Consider a wire of length 4 and diameter d immersed in a
compressible fluid moving at velocity u(t) normal to the axis of the
wire. The stagnation temperature of the fluid is at TT(t), and the vis-
cosity and thermal conductivity at the stagnation condition are denoted
by M and kT respectively. The wire is attached to massive supports
at x = + 4/2 and a current i(t) is passing through the wire. Assuming

also that the convective heat transfer to the fluid from the wire is given

by

4 = hA(T -nTp) (IA. 1)
where h is the heat transfer coefficient and 1 is the recovery factor of
an infinitely long cylinder normal to the mean flow, the differential

equation for the local wire temperature, TW(X, t), is derived from the

energy equation which results in

wdz 8TW — 2 ot
pWCW(T ) EYE +wdh(TW-nTT)=1 Tt kw 2 (LA-2)
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together with the boundary conditions

Tw(i 4/2,t) = T
9T (IA. 3)
and - (0.t) =0 .
xX

The second of the boundary conditions arises from the assumption that
the wire length is small compared to the scale of inhomogeneities in
the fluid and is thus a symmetry condition.

Define a Nusselt number, NuT = i—l——(—i , and non-dimensionalize
T

the wire temperature, x coordinate, and time according to the following

format;
TW - M TT
T = — ;
nTp
%
x = 2x/4 ; and (IA. 4)
4%
= ———1:——2 t = t/K
Pww

It is also known that the wire resistance per unit length, o varies

approximately linearly with temperature(lz) so that
W

r = r, 1+ ar(TW-Tr)] (IA.5)

where r and T are constant reference quantities. With the above,

equations IA. 2 and IA. 3 become;

0T NuT kT L% Ty kw BZT

T T B Tz 2 w2
ot K ™ K K (W) ox

—— 2 (IA. 6)

Nu_. k MTe-nTH) ir L

LT L T L (l4e MT-T, )]

% 0T T F r

T T T
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with boundary conditions

* —_
T(+1l, t) = Te
(IA. 7)
8T 0,8%) = o ,
ox

where the barred () quantities are constants. To aid in the solution
to equation IA. 6, all quantities will be assumed to fluctuate about a
mean value and that the fluctuation is small compared to the mean val-

ue along with being sinusoidal in time, e. g.

2,
[
h_].—\
%
. ¥
o+
N
ti
Z
=
H
oy
o}
Z
D~
V-)’-
£
ot
1

— * it
Tp(t)) = Trg [1 + T’T e ] (IA. 8)
%
_ ¢ iwt
kp(t) = K, [1+n'rTe ]
— ’ ic.ut>=<
p,T(t ) = Mo [l+mTTe :]
it) = i—[l+ilelwt ]
donk,
where n = — ~ 0. 885 for air @300°K
Q/IIET
m = __T ~ 0.765 for air @300°K
dQ/IZTT

Substituting equations IA. 8 into IA. 6 and separating the re-
sulting equation by order of magnitude gives first the equation for the

mean temperature distribution



K, og2r T T o
kT(i’//d) dx ™ kT T}TTTrkT
(IA. 9)
with boundary conditions
T(il) = "I'S
dr o) = o ;
dx"
and secondly the unsteady wire temperature distribution
1 r o k 2 4
[Nu —mir+ifu]T'-_W , S
k kT('Md) dx
L , ) 2i roa —i_zr
= -LNu Nu,.+k_ ) ————— i :]'T +2—-—-————-——— [1+a (T}T -T )]
T T T N Tk,
T T
— 7 7
+ Nug, (T + 1) (IA. 10)

with boundary conditions

T(£1) = 0
7
dx

I-A.2 Steady State Solution and Mean Measurable Quantities

With regard to the mean temperature equation (IA. 9) the solu-
tion is easily found. However, in practice the quantity that is directly

measured is the total wire resistance which is given by,
A2

R = r (x)dx . (IA.11)

Using equations IA.5 and IA. 8, equation IA. 11l is equivalent to
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_ o arRrﬁTT Lo s
R_ = R [1+a_(n TT—Tr)]Jr————-—-—z——-——————le(x )dx . (IA.12)

The mean wire temperature given by the integral in equation IA.12 is

computed by Behrens(lz) to be

T = %f T(x)dx =S -%)mtanhy_“_ (IA. 13)
| s Yo
where; a = k_/k (.@/d)2
’ W T
-2
. 1 rra/
b = NuT - —
TTkT
—2
. 1 rr -
c = —— [1+a/r(n TT—Tr)]
T TT]TT
a = b/a

It will be shown that the quantity Fm is necessary for evaluation
of the sensitivity coefficients derived from the unsteady equation. In
theory, Tm could be computed directly from equation IA. 13, however,
this is quite difficult in practice because of a lack of confidence in the
evaluation of the wire support temperature factor, Tor and the wire
unit reference resistance for a very small length of wire. Further-
more, the quantity that is directly measured is the total wire resist-
ance and it would be advantageous to evaluate ?m using known accu-
rate quantities. The hint for accomplishing this was provided from an
experimental observation; as mentioned in the text of this thesis, the
measured total wire resistance, ﬁm’ is a linear function of the Joule

heating in the wire, i Rm, i.e.

Rm Ram + k(i Rm) (IA. 14)

[}
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where ﬁam is the adiabatic wire resistance and k is the slope of the

_ﬁm vS. '12 ﬁ’m line. This equation is easily solved for the fractional

change in wire resistance as,

& Rm ﬁm‘Ram kiz
am am 1 -ki

Now from equation IA. 12 it can be shown that '

AR R__/R
m

= T + ) (IA.16)
m am = o "—'T
am r ' °T
and that _
= 1 Ram —
T T — R - 1+ozr(’1“r - N TT} (IA.17)
@ M TT r

All quantities on the right-hand-sides of equations IA. 15, IA.16, and

IA.17 are either known (@_ & T_), measured (k, R , R, T or
r r am r

o)
can be calculated (n - see later). Thus, Fm can be calculated from
the most accurate measurable quantities.

In the event that the quantities Ts’ rr, etc. can be accurately
measured, then from measurement of f{am and _Iim the local Nusselt
number NTJT and local recovery factor m can be evaluated which can
be utilized to determine the local mean flow quantities. For details

of this procedure one should consult the forthcoming paper by Behrens.

I. A.3 Approximate Solution to the Unsteady Response Equation

It is advantageous in considering the fluctuating temperature
equation to rewrite it using the definitions given after equation IA. 13,

whence equation IA. 10 becomes

dZT ’ (sh )’E’—X*

=C +C2
dx Yo

(b +iw)r -a (IA.107)

k2 1



- d r C .\t C ’
where Cl = 2(1+E-)c1 +NuTi£1~n-g)T -ENuT%—ﬂ]
C E(T_E)[Zdi’-mm’ +n¢’ﬂ
2 b T\ WY T |

d = Nu., -b

with  T/(21)=0
a0y = 0
dx
This equation can be solved for 7 '(x*) exactly but because of its com-
plexity its application is difficult. Several approximations can be used
to simplify equation IA. 10’ which in turn simplify the expression for
’

T'. The first of these is the realization that for the wires employed

K@ has a value of about 1. 6f

il

in this experiment, the quantity w
where f is the fluctuation frequency in kilocycles, whereas the value
of "a'' is less than 0.51 for wire length-to-diameter ratios greater
than 50. Furthermore, the quantity ''b' is at most equal to local

Nus selt number Nu,, which has a value in the neighborhood of 1. 4.

T

Thus, for frequencies greater than, say, 3 KC we can neglect both

"3 and "b" in comparison to the quantity w. Physically, the neglect
2
of the term a ——;2— is equivalent to assuming that for high frequencies
dx
the wire responds as would an infinite length wire. Using these as-

sumptions the solution to equation IA. 10 "is then approximately

b3
e x (IA. 18)
Yo

L— ¢, %
iw TI(x )aﬁCl +C

Integrating this over the length of the wire to get the measured wire

temperature fluctuation in the same spirit as with the mean wire
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temperature and using the values of Cl and CZ and the value of
tanh Yo
Yo

from equation IA. 13 gives;

/ < oyl ’

[(1-n7T )7) -7 _Nul +n] (IA.19)

m T m T m T

where i’ has been taken identically equal to zero in C, and C,.
Up to this point, the response of a real wire has been consid-
ered whereas the sensitivity coefficients or voltage generated by the

fluctuation of specified quantity (for example, p, u, or T are com-

T)
puted for an ideal or massless wire. This is done because of the
"thermal lag'' or attenuation of high frequency signals due to the wire
mass.

Digressing a moment to consider the responses of a real wire
and an iaeal wire both of infinite length, it can be shown from a formu-
lation similar to that given above that the ratio of the respective wire

temperature fluctuations is

/

?0 S S , (IA. 20)

Ti,oo 1+1i w/b

T

(28)

This is the well known relation that displays the attenuation of high
frequency signals due to the mass of the real wire and also defines

the infinite wire time constant

= 1/b . (IA. 21)

Returning to the hot-wire of finite length, assume that the
attenuation due to the real wire can be expressed in the same form as

equation IA. 20, i.e.
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’

LES I ———-1:——: . (IA.21)
1+ M, w

T

/
T,
i, m
It is shown by Behrens, using the approximation that I\_—/_I,C w >> 1, that
the actual hot-wire time constant is given by
-

_tanh)ao_ 2

M, ~ M (1 )F(E-—,oz) . (IA. 22)
1

t t, oo YE_

The particular form of the function F(CZ/CI’ «) shown in equation
IA. 22 is unimportant for the purposes here except to display the fact
that it depends explicitly on the relative amplitudes of the fluctuating
quantities through the term CZ/CI‘ An apparent discrepancy has been
revealed now because in order to calculate the sensitivity coefficients
the fluctuating quantities are required, whereas the fluctuating quanti-
ties cannot be computed without knowledge of the actual wire time
constant. This would imply a lengthy iterative method of data reduc-
tion. For the moment, however, this will be disregarded and the deri-
vation will proceed as though Mt could be evaluated in some unpre-
scribed manner.

If the frequency of oscillation is high enough so that both
I\_/Lc w>> 1 and I\7It w>>Db in equations IA.19 and IA. 21 respectively,
then these two equations can be combined to give the response of an
ideal (massless) wire of finite length

4 M, Nu,. k

’ _ t T T - ‘¢ - ’ ’
,m ~ o e a? LA-nT ) mp- T Nup #n° ] (IA.21)

ww

where the value of 1\—/It has been replaced by the identity of M, =K I\7£t.
The voltage fluctuations of the ideal wire are the desired result of this

derivation and these are related to ’ri' m through Ohm's law

3
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e. = i1R_ . . (IA. 22)

Utilizing the fact that RW :

¥

= Rr[1+ar(Ti, m-Tr)], it is easily shown

that the voltage and temperature variations are related by

_ - —— 14
e, = la Rr n TT ’Ti, m (IA. 23)

Combining this with equation IA. 21 gives finally as the response of the

ideal (massless) wire

4ie_R_NT. Nu- Kk
;o rr T T T — 7 e
e, = Mt d?‘ 1 -n 'rm) T~ TmNuT

+n']  (IA. 24)

°w w
To calculate the desired sensitivity coefficients it remains to

relate the quantities 7., , Nul,, and n’ to the desired set of fluctuating

T
quantities. This will be done shortly, but first it is obvious from
equation IA. 24 that all sensitivity coefficients will be proportional
to the, as yet unknown, quantity Mt. To resolve the apparent dis-
crepancy associated with this, utilize the relation between the output
of the hot-wire amplifier, E’(f), and the ideal wire voltage which is

derived in Appendix I-B ofthis thesis under essentially the same restric-

tions as were used in the derivation of equation IA. 24, thus

’ t ’ ' -
e. < <—-——>E (IA. 25)
1 MA
where M | is the time constant of the compensating amplifier. Com-

A
paring equations IA. 24 with IA. 25 it is seen that each is multiplied by

the quantity Mt' Hence equating the right-hand sides, the unknown

quantity, M, cancels out of the equation which makes its determina-

ti

tion unnecessary! Thus, if we define a revised ideal voltage
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M
e?f' =e/ <i\_/1—é'>’ equations IA. 24 and IA. 25 combine to yield finally

T
¥ = cl(l-nT_ )l -7 _ Nul+m'] (IA. 26)
i m’ T m T ’
. Lo 4TR, o AT Nagp ko M,
wiere = 2
p_c_d

IA.4 Transformation of Hot-Wire Response to Display Physical

Fluctuations

It is desired now to modify equation IA. 26 into a form which

displays the physical fluctuating quantities, say, u', p', and Tr}, as

opposed to Nu,, and n’. To do this it is first necessary to mention

4
T
(12 —
that Behrens‘l“) has shown that both the Nusselt number, NuT and

the recovery factor, m, are functions only of the Mach number and

the Reynolds number, Re_, = pud , and that the implicit relations

T L’LT

given for these have been computed numerically and are shown in

Figures I-31 and I-32. Using the above functional dependence, the

7

guantities Nu ., and n' are then given by

T
.y ) BZnNuT Rel + aﬁanuT o
v 7 80nRe., T "o M
’ 80nn , 8 , (IA.27)
" T TnRe Rep + 5w M
where
AReT 7 ’ ’
ReT = ReT = p +u -m TT
‘ _ AM _ ’ 1
M = Vi = al(u -5 TT) (IA. 28)
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Combining equations IA. 26 through IA. 28 and taking the coefficients

7

of the quantities —u/, - ', and T as defining the sensitivity coeffi-
q p T g Y

cients so that

e* = —Suu'—Sp p’ + S, ’T,;, (IA. 29)
T

gives after some algebra

- & e
Su = ¢ 8(@/1ReT) [Tm(Q/nNuT)‘-F/nﬂ]
S C<—-—-§-mm fa, 2 >[7r’ @n Nu_.)-onn ] (IA. 30)
o 80rRe) ' “130n M)/ - m T :
/ ) 1 8 -
STT = C{“"m ) \ma(ﬁmReT) T2 amM))ﬁm(%N“T)'@”m}
and again _ R
o - 41RrarnTT uTkTMA
B 2
pW CW d

All the quantities in the above equations are known or meas-
94nNu
ured and the four terms like ——=——= are evaluated numerically from
BWnReT

the implicit relations Nu ReT, M) and n(R M). Physically, the

7l e
sensitivity coefficients are equivalent to the R. M. S. voltage output
of an ideal wire due to a 1004 R. M. S. fluctuation in the subscripted
quantity. Note also that these coefficients are constants for a given
mean flow situation and operating point and as such are independent
of the frequency of the disturbance. Thus, these can also be used to

spectrally separate the modes of fluctuation if the spectra of the

output voltage is measured.
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APPENDIX I-B

Relation Between Ideal (Massless) Hot-Wire Output

and Amplifier Output

In Appendix I-A the response of an ideal hot-wire (that is with
zero mass but identical resistance and thermal conductivity) to the
various modes of fluctuation was derived. Naturally, this output
cannot be measured since such an ideal wire does not exist. The only
measurable quantity is the actual output which is usually of very small
magnitude (in these experiments the R. M. S. wire voltage was some-
thing less than 100 pa. ) and also is not representative of the flow field
fluctuations because of the thermal lag phenomena caused by the finite
wire mass. It is assumed in Appendix I-A that the relation between
the actual output and the ideal output is given by

e! ()

/ — 1
°wire!!) = T +i(2m { M) (IB.1)

which is easily derivable from equations IA. 21 and IA. 22, and Mt is
the hot-wire time constant and is derived in Appendix I-A. Note that
not only is the real signal attenuated but also there is a phase shift
in the real signal that approaches 90° for high frequencies.

The function of the hot-wire amplifier is to not only amplify
the actual wire voltage but also to compensate for the above described
attenuation (the means by which this is accomplished is given in (28) ).
The actual wire time constant, Mt’ is approximated by the standard

(28)

method of a square wave current injection. For long wires where
end effects are negligible this is usually very close to Mt’ but some

difference can be expected for the short wires (£/d ~O(50)) employed
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in these tests; moreover, this measurement was very subjective and
in regions of high turbulence was not repeatable to within 20% or so.

To account for this, let the time constant setting of the compensating
amplifier be denoted by MA'
From the calibration of both the amplifier and the compensating

amplifier the relation between the output of the amplifying system,

K '(f) and the actual wire output is then

E'(f) = G, A(f) C(f) e’ (£) (IB. 2)

0 wire

where GO is the ''zero frequency'' gain of the amplifier, A(f) is the
amplifier attenuation (see Figure I-29) and C(f) is the response of the
compensating amplifier (see Figure I-30). The function C(f) is shown
from the calibration to be adequately represented by

1+ (zwaA)2 :
C(f) = . 1B. 3)
)

L+ (2mfM,/K

where K is the ''ceiling-to-floor ratio' and has a value of about 420
for the particular set used. Ignoring the phase shift represented in

equation IB.1 and combining equations IB. 1 through IB. 3 gives
2 13
2
> /1+(21rfMA/K) (IB. 4)

L+(2m £ M)

1+(2mfM )

A

The typical value of M, was around 0.1 msec and assuming

A

that this is of the same order as Mt’ then for frequencies greater

than, say, 3 KC, 1 << (2= fMA)Z, (2w fl\/It)'2 and equation IB-4 becomes

M ) E/(f)

GO Al(f

2
) /1 +(2mEM, /) (IB. 5)

A

which is the desired relation.
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In most situations, it is usual to compute the total mean square
fluctuation rather than the spectral distribution which is a very time
consuming measurement. Indeed, the mean square voltage PE_'? could

be computed from the spectral distribution but it is much easier to

2 ' . .
measure E’” directly. The question then naturally arises as to the

error involved in representing the quantity ei'2 by the approximation

— M 2 ©
eilz ~ e;% = Mt ) -—%f £% (f)as (IB. 6)
A Gy~ 0

rather than the expression

© 7
o/e (..__ zj Ez [L+(2mEM, /) 214t . (IB.7)

Obviously, the error involved depends upon the actual distri-

bution of E'z (f) but it shouldn't be too bad since E'z(f) falls off rather
[l+(2waA/K}

rapidly for > Ue/é ~ 116 KC and the corrective factor 5

A (D)
is unity up to around this value. To evaluate the error, however, the

ratio e /e was computed for each of the spectra shown in Figure
I-22. The maximum value of this ratio was 1.12 and occurred in the

highest current level.
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PART II. A MODEL FOR INCOMPRESSIBLE
FLOW IN A CHANNEL
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List of Symbols - Part II
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A blockage ratio, =h/H

p fluid density (constant) T -stepface angle parameter -
see Fig. II-12

) velocity potential

v stream function

subscrigts

c conditions on cavity or separated region on top of step
0 upstream infinity conditions

s upstream separated region conditions

2 downstream infinity conditions

superscripts

* . . .
dimensional quantity
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II.1 Introduction

The problem considered in this part of this thesis, that of the
two-dimensional incompressible flow of a turbulent boundary layer
over a normal step mounted in a channel, was first conceived during
a series of experiments conducted on this subject by Dr. E. E. Zukoski,
Lt. Robert Stevenson, and the author. The results of this experiment
and preliminary results of the solution presented here are reported

(36) and a sketch of the flow field and wall

in the thesis by Stevenson
pressure distribution for a typical situation is shown in Figure II-1.
The difference between the supersonic flow over a normal
step considered in Part I of this thesis and the incompressible ana-
logue presented here is exemplified mainly by the finite upstream
influence of the supersonic flows whereas for subsonic flows the
region of upstream influence is infinite. Moreover, the appearance
of the separation shock wave in the supersonic flow situation gives
rise to a relation between the flow angle and static pressure does not
exist for the subsonic case. It is also known experimentally that the
scale of the supersonic interaction region is affected mostly by the
geometry. For subsonic flows it was thought that the characteristic
length scale ofthe upstreaminfluence was the boundarylayer thickneséqfl’@)
Another of the difficulties associated with incompressible
turbulent boundary layer separation is that the location of the actual
separation point is markedly affected by the local pressure distribu-

tion as pointed out by Stratford(37) and Townsend. (38) Of course this
pressure distribution is not known a priori since it depends to some

extent on the interaction between the boundary layer and the inviscid
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flow in addition to the step itself, the blockage of the channel by the
step, and the turbulent wake observed on top of the step.

One of the major impressions resulting from the experiments
by S’tevensor(lg)é)was that the wall pressure distribution ahead of the
separated region appeared to be influenced only by geometric param-
eters rather than a strong interaction between the boundary layer and
the inviscid flow. Also it appeared that the viscous forces within the
boundary layer contributed only significantly to the pressure within the
separated region ahead of the step and that this region possibly could be
accounted for by a suitable inviscid model. Thus, if the wake region
could also be approximated by an inviscid model, the whole flow field
could then be computed analytically. This solution could then be
utilized to assess the effects of finite channel height on the pressure
distribution ahead of the step location which hitherto has usually been
neglected.

The purpose then of this portion of this thesis is to construct
and solve an approximate inviscid model that can be used to predict
the upstream wall pressure field and accounts for the influence of
the separated region ahead of the step, the wake region on top of the
step, and the finite blockage ratio of the channel. Obviously, all the
viscous effects cannot be accounted for by this model and it is ex-
pected that in certain regions of the flow (e.g., near the separation
point) the solution will fail to give accurate information. The solutions
presented here are to be compared to experiment to verify the ade-

quacy of the flow model.
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Before developing the model described above it is first advan-
tageous to consider previous theoretical solutions for this particular
flow field. The major difficulty in formulating the flow field is, as
stated, in modeling the separation region and the wake region. The

39)

first attempt at this was completed by Lighthill( who utilized free
streamline theory, i.e., constant pressure and hence constant velocity
along the dividing streamline to account for both the separated region
and the wake region. His model consisted of a normal flat plate in an
infinite flow field with a forward protruding plate along which separa-
tion occurred. To get a unique solution the velocity ratio between the
separated region and the leading edge of the protruding plate was
assumed as known. Moreover, the dividing streamline which forms
the separated region and downstream cavity did not reattach on the

step face as is observed experimentally.

(40)

Barrows extended Townsend's method to include wedge
shaped o.bstacles mounted in a finite channel. Again, he utilizes the
same assumption as Lighthill to get a unique solution and was similarly
interested in the determination of the separation point location. The
comparison between the measured and predicted wall pressures in
front of the separated region leaves much to be desired since the pre-
diction of the separation point is off by a factor of 2.

Taulbee(41) considered an alternate approach to the solution
of flow over a normal step. His major assumption is that the vorticity
is conserved along streamlines throughout the flow including the bound-

ary layer which ultimately gives a non-linear Poisson equation in an

"L''-shaped region which he then solved numerically. The comparison
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of experimental data and his theoretical solution is quite good but
requires a detailed knowledge and some obscure assumptions concern-
ing the distribution of vorticity in the approaching boundary layer and
in the separated region. No attempt was made to account for the in-
fluence of the wake, or variable channel height.

Because of the poor experimental agreement of the Lighthill-
Barrows theory and the detailed boundary layer assumption and lengthy
relaxation solution required by Taulbee, it was felt that perhaps

another attempt at modeling the flow was justifiable.
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1I.2 TFactors Considered in the Construction of the Flow Model

In considering the flow field as sketched in Figure II-1, it is
seen that several parameters can be used to characterize the flow.
These include the geometry (step height and channel height), the
boundary layer thickness or some other measure of the boundary layer,
and the fluid properties (such as density and viscosity). These dimen-
sional variables can be collected into several sets of dimensionless
variables of which the following represents one possible set;

1. The ratio of step height to channel height (h/H), termed

‘here the blockage ratio;
2. the ratio of step height to boundary layer thickness (h/$§)
where 6§ is the undisturbed boundary layer thickness at
the step face location; and
940

3. the Reynolds number (p - ) .

This dimensionless analysis implies that the pressure field
that results from the flow over the step would depend upon not only the
non-dimensional position but also on each of the dimensionless groups

presented above, i.e.,

P - Py
Cp(Z/h) = —}i————z = fcn (Z/h,h/H, h/(S, Re6) (II"I)
2 pqo
In order to determine this dependence in the parameters several recent

experimental investigations (36, 41, 42, 43) were studied to determine

which of these groups had the most marked effect on the flow field and

which could be correlated with some other more computationally use-

ful parameters.
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With regard to the Reynolds number effect, it has been ob-
(42)

served that the form drag of bluff bodies immersed in turbulent
boundary layers is sensibly independent of Reynolds number provided
the Reynolds number is greater than several thousand and h/6 is
greater than about 0. 7. Similarly, the Reynolds number effect on
the wall pressure distribution upstream of the step is very smal.l(Bé)
provided the previous restrictions are observed. Thus, for the model

considered here, the dependence of the flow field on Reynolds number

will be neglected.
(43)

It has also been found experimentally that the variation in

total pressure (p + 3p qz) along a streamline upstream of the step is
sensibly the same as the variation in an undisturbed boundary layer
except very close to the wall. This verifies the assumption employed

(37)

in the separation analysis presented by Stratford and can be used

heretoaccount for the interaction between the boundary layer and the
inviscid flow except for the region close to the wall which itself is very

(43)

thin compared to, say, the initial boundary layer thickness. Since

the length scale employed here is the step height which in turn is
larger than the boundary layer, this viscous dominated region close
to the wall will be neglected upstream of the separation point.

The separated region ahead of the step has been assumed

(37, 38)

previously to be a region of stagnant fluid and hence at constant

pressure. The plausibility of this is supported somewhat by experi-
mental investigations both from data on the wall and along the step

(36, 42, 43)
ce.

fa In view of this, it appears feasible to use the free-

streamline approximation for the separated region in the same manner
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(39)

as Lighthill. It remains, however, to relate the velocity along the
dividing streamline (or equivalently, the separation pressure coef-
ficient Cps) to the non-dimensional variables h/H, h/§, Reé.

Because the pressure within the separated region is the result
of a complicated mixing process between the high speed external flow
and the low speed recirculating flow, the influence of the blockage
ratio h/H on the separated pressure coefficient, Cps’ would seem
negligible. At best, this might change the length of the mixing region
but this appears small as long as the blockage ratio h/H is much less
than one.(36) The influence of the Reynolds number has already been
shown small if fully turbulent flow is considered and if h/6 » 0. 7.
Thus, the separated region pressure coefficient is assumed to be a
function of only the parameter h/6. To display this dependence in
graphical form, the values of Cps (h/8) from several experiments have
been plotted in Figure II-2. The data points show some scatter, es-
pecially in the range 0 £ h/6 <1, which may reflect both Reynolds
number effects and blockage ratio effects. For h/8§ > 1, the data
scatter is less pronounced and seem to indicate Cps = 0.5 %.05 as
h/6 = oo.

Thus, with the assumption that Cps = Cps (h/6), the effect of
the parameter h/& on the flow field can be replaced by the more com-
putationally useful parameter Cps in view of the free-streamline
approximation to the separated region.

At this point, it might be well to examine some of the conse-
quences of the free-streamline approximation to the separation

bubble. The first of these is that the separation point is a bifurcation
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in the dividing streamline and thus the separation angle is 0°. In vis-
cous flow, in terms of the actual local properties at the separation

point, the separation angle is given by;

dT dp._ -
W WJ (I1-2)

wand),, = 3/ cop

dT dp
where dxw is the wall shear stress gradient at separation and —E):—V

is the wall pressure gradient. This formula is originally due to
Oswatatich and was brought to the author's attention by Roshko.(44)
Utilizing the measurements of TW(X) and pw(x) obtained by Bradshaw
and Galea,(43) equation II-2 predicts a separation angle of something
less than 4°. Other things being equal, for instance the bulk of the
dividing streamline location, the calculated length of the separation
region is expected to be slightly longer than the actual length.

The second consequence of the free streamline approximation

dC
is that —£ will be discontinuous at separation and furthermore, will

dx

be infinite just upstream of the theoretical separation point. Although'
the pressure gradient observed experimentally upstream of separation
is large there is a sharp drop just prior to the actual separation point
(see for example Figure 9 of Ref. 43). It is expected then that the
theoretical solution will be in error near the actual separation point,
but should give good results elsewhere in the flow.

The behavior of the wake on top of the step is the last factor
which is anticipated to have a marked effect on the entire flow field

because the approaching upstream flow ''sees' an effectively larger

step because of the separation bubble on top of the step.
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It was thought at one time that the flow field downstream of
the separated region on top of the step might be likened to the in-
compressible flow over a rearward facing step. If this were the
case, the relation between the minimum pressure coefficient, Cpc’
(analogous to the base pressure for backward facing step) and the
maximum wake pressure coefficient, C 2 could be estimated from

(48

the correlation scheme of Roshko and Lau ) who deduced (in the

present notation)

C ., ~ 0.35+0.65C (I1-3)
p2 pc

(36)

The experimental data from Stevenson for flow over a normal step
was compared to this relation and the comparison was rather poor.

In particular, effects due to blockage ratio, h/H, and step height-to-
boundary layer thickness ratio, h/6, were significant. This was un-
fortunate because, as will be seen, only two parameters, CpS and
h/H, would have been necessary to completely determine the solution
using the wake model to be presented here. It was decided then to
use a wake Width parameter h'/h (or equivalently sz using Ber-
noulli's theorem) as a third input parameter. To do this, however,

requires some means of estimating the wake width from the param-

eters h/H, h/§, and Re

5
The values of the wake width parameter h'/h were taken from

Stevenson(36) and are shown in Table II-1 for various values of h/H,

h/6, and Re;. Disregarding the values for h/H = 0. 05, it is apparent

that h'/h has an almost constant value of 1.23 (within % 5%) in spite of

the fact that h/§ changes by a factor of 4, h/H changes by a factor of 2,
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and R66 changes by a factor of 2. 4. Admittedly, these changes in

h/H and Re, are not large but no consistent change in h'/h can be

6
correlated to any of the parameters. The comparatively high value

of h'!/h at a blockage ratio of 0. 05 is an anomaly which is inexplicable
in view of the other data. Some justification for the independence of
h'/h on the parameters h/8, and Reg is given by Good and J’oubert<42)
for flow over a bluff plate. For lack of additional information with
regard to the wake of the step, the value of h'/h will be taken constant
at the value of 1.23.

For the mathematical model of the wake region on top of the
step, a form of cavity or free-streamline approach was decided upon
due to its relative mathematical simplicity. The first model treated
was an infinite constant pressure wake but preliminary calculations
using this wake model (and the separation model discussed previously)
failed to give good upstream comparison to experiment except when
the region on top of the step actually was, in fact, a cavity(36) (this
solution can be shown to be a special case of the solution presented
here). To improve the situation for the flow as shown in Figure
II-1, the 'dissipation wake'' model was then chosen because it ap-
peared to give at least qualitative agreement to the downstream
pressure distribution and because it has been used with some success
previously.(46’ 47 This wake model gives a constant pressure cavity
for some distance behind the step to a '"reattachment' point where
the pressure recovers asymptotically to a far downstream value much

like that depicted in Figure II-1. This far-downstream-value is, of

course, that value computed from the wake parameter, h'/h and
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h/H by

2

p B h'! n.”
sz(h/H,h My =1- (1 -3 %) (I1-4)

This step completes the modeling of the flow field and the
complete mathematical model is shown in the physical plane sketch
(or z = x + iy plane where i =,/-1)in Figure II-3. In summary, the
flow approaches from the far left (x = -c0, or Point I) with velocity

qg and pressure p. The dividing streamline, ¥ = 0, separates from

the wall at z* = -s +i0 (point A) and continues along the line AB with

constant velocity, = 1 , 0< Cps < 1, and reattaches on the

— -C
=1 ps

3
step face at z = 0+ ir (point B). The dividing streamline continues

b
along the step face BA where it separates at the step corner z = 0 + ih
ok
(point C) and where the velocity is in the y -direction. It then curves

downstream forming the constant pressure cavity with a constant
q *
. 4 cq s 0 g 4
velocity — =,1-C , C < 0, until it ''reattaches'"at z = x5 + ih
4, pc’ pc R
(point D) and proceeds downstream parallel to the original flow direc-
9
tion along DE where the velocity asymptotically approaches a—z- =4/ l-Cp ,
‘ -2 0
%1— —}% < 0. The upper wall of the channel is straight

and the total fluid flux contained in the channel is qOH.

Cop=1-(-

It must be mentioned at this point that the modeling of the flow
described here is essentially the same as in the Townsend-Barrows
theories with the exception of the wake region. What distinguishes the
physics of the upstream model presented here from that by Barrows
is the elimination of the finite protruding flat plate necessary in his
solution for uniqueness. This artifice in the manner employed by
Barrows essentially implies that the separation pressure coefficient

is a function of the blockage ratio alone. As described above, this is
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not the situation observed for turbulent boundary layer flows and even
appears doubtful for laminar boundary layer flows. The theory pre-
sented here allows both the parameters h/H and Cps to be selected
independently and thus is more applicable to real flow field situations.

The problem to be solved thgn is to determine the complex
potential f*(z*;h/H, h/6, h'/h) = + i\l/* from which the velocity and
pressure fields can be computed. Prior to embarking upon this it is
first advantageous to select Cps’ Cpc’ and sz as input parameters
instead of the parameters h/H, h/§, and h'/h for computational ease
since the free-streamline approximations are related to the former
set. The values of h/H and h'/h are then computed from the solution
and h/6 is determined from Cps using Figure II-2.

It is also useful to non-dimensionalize all velocities by the

separation bubble velocity, dg> and to define

j=qyla, k=q_/q, and L =q,/q, . (II-5)

Clearly, the values j, k, and f are relatedto C__, C_, and C
ps pc pe

through

_ 2 _ 2,.2 _ 2,.2
sz—l—l/J,Cpc—l—k/J,andC =1-27/;% . (I1-6)

12

Clearly, the following relation between j, k, and 4 also holds;

k242321 (I1-7)

: T ¥
The hodograph plane or w = REA i Yy o-9 e 16p1ane is shown
EE R g

in Figure II-4a where the physical flow shown in Figure II-3 maps into

the 4th quadrant of the w-plane. The other three quadrants of the
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x

w-plane have been constructed from fqz(w) = (\;) (where { ) defines

complex conjugate) and reflection about the Y. zxis., 1If we also non-
S

5
dimensionalize the complex potential f by qOH then the values of the
5%
!
non-dimensional stream function ¥ = qVH are indicated in the figure
0

as are the corresponding points in the z* and w-planes.
To facilitate in the solution to be described later the w-plane
is mapped into the complex (-plane by the transformation
¢ = Logw = Log(aﬂ-) - 8 (II-8)
s
and is shown in Figure II-4b. Again, the values of the stream function
v are shown as are the corresponding points in the z and { planes.

For convenience the quantities a, b, and ¢ have been defined by
a = Log j, b = Log &, c = Logk . (I1-9)

One implicit assumption employed in the construction of the
hodograph plane is that the flow angle in the physical plane (z-plane)
is never less than zero. This fact is only pertinent for the flow on
the top of the step and is tantamount to assuming that the wake height -
is the same as the cavity bubble. This eliminates the use of this model
for flows such as over a bluff plate where the effective wake width,
h’ can be less than the obstacle height, h, but the complications of
considering this case make the solution much more difficult. These
types of flows, and those over arbitrary shaped bodies, can be handled
by a method analogous to that presented by Wu et. al.(47) which, in
the general case, leads to non-linear integral equations for the

solution.
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Barring this one restriction then, the problem at hand is to
evaluate the complex potential £((;a, b, ¢) which satisfies the boundary
conditions on IM {f} as shown in Figure II-43 and to derive the trans-

formation back to the physical plane.
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II.3 The Complex Potential £({;a, b, ¢) and Transformation to the

Physical Plane

One straightforward technique of determining the complex
potential £({;a, b, ¢) = @ + iV that satisfies the boundary conditions on
Vv as depicted in Figure II-4b is by superposition of an infinite number
of sources and sinks of strength Q= 2 located at

(2nc £ a, mm) {(sources)

(I1-10)

(2nc £b, mm) (sinks)
where m,n = ... -2, =1, 0, 1, 2 ...

Upon doing this, however, it is clear that the {-plane will be
covered with a series of rectangles identical to the 'unit cell" shown.
Thus, one can conclude that the function f(C;a, b, ¢) is doubly-periodic,
i.e., periodic in the real direction with period 2w, and periodic in the
imaginary direction with period iw. Functions which exhibit this be-
havior, and are single valued, are termed Elliptic Functions (see
Whittaker and Watson, ref. 49). The complex potential f({;a, b, c) is
not single valued, however, due to the branch cuts from (= £a + i0

to (= £b+ i0. If we instead consider the function G({) =e" £(©)

, then
these branch cuts are eliminated and G({) is both single-valued and
doubly periodic and hence is an elliptic function which has zeroes at

{ =4a + 10 and poles at { = +b + 10. It is known(49)

that this Elliptic
function can be written as the product and quotient of the quasi doubly-
periodic Theta functions of the first kind, z?l(z,q) where z is the argu-
ment and g = eiwa/wl (wz/wl is the ratio of the imaginary and real
periods). Taking f(0;a, b, ¢) = 0, the resultant expression for the

complex potential £((;a, b, c¢) is then found to be



2, mh w({-a) m({+a)
fCim by o) = Liog |tz Y AT 99 G 9)
@, b, ¢) = 2 -
(IT-11)
where q = exp(—"n'z/Zc)
© |
and 9z q =22 (-1)" ™) sinzni1) z

It remains now to complete the solution by deriving the trans-
formation to the physical plane (z-plane). To accomplish this, use

the fact that

—y S u-iv=ge " =q_w() (I1-12)
dz
* ¢ 90
Non-dimensionalizing f with qyH and z with H and using j = T
S
allows equation II-12 to be written as
=) =i o6 af
dz = —1td) df(€) =j e Te .dC . (I1-13)

This equation can be integrated along any path in the (-plane
that does not cross the branch cuts. If point (C) is taken as the start

of this path then equation II-13 integrates to

¢
z(C) - ih _ I e ¢4 4¢ (II-14)

where from equation II-11 the derivative g—é— may be evaluated.
Carrying out this procedure and inserting it in equation II-14 results

in the expression

z({)-iA(a, b, c)

] = Z(Ca) + Z(G-a) - Z(Gb) -~ Z((;-b) (II-15)




(4 (I1-16)

where Z((;a) =

Thus, the transformation to the physical or z-plane is com-
plete requiring only quadratures of the type shown in equation II-16.
The evaluation of this integral is facilitated by employing the infinite

series formulations for 291’(@/?91((;) as (49);

3, (C, @) ©  2n
1 _ g Sin 2n (
sCa etk T w-17

Even using this expression, the evaluation of equation II-16 is rather
long and not as straightforward as it might seem due principally to
convergence problems. Because of the length, only one representa-
tive integration will be presented here and is shown in Appendix II-A.
The derivation shown in AppendixII-A is actually more generalthan the
solution presented here in that it accounts for a wedge shaped obstacle
rather than a normal step. Results are shown for the normal step
alone because the availability of the experimental evidence allows

the two parameters CpS and h’/h to be evaluated in a realistic manner.
The numerical evaluation of the formulae derived in Appendix II-A is
straightforward.

The locations of the various points in the flow field (e.g., the
separation point) along with the wall prés sure distributions upstream
of separation and in the downstream portion of the wake have been
computed and are presented in Section II-4.

The velocity at any point within the flow can be determined by

using the relations z(({) (equation II-15) and ( = log(q/qs) -1 6. This
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is not presented here except along the upstream wall and in the wake
where the pressure coefficient, Cp, has been evaluated from q_/Us.
It is worthwhile at this point to mention that at one time it
was thought more advantageous to integrate equation II-14 by parts
first which results in an alternate expression for the transformation

to the z-plane

¢

Z .‘i>\ - e"g f(g) - _if(c - llr..) + e_tf@)dt . (II“IS}
] k 2 in
C - =
2

The evaluation of this expression requires numerical integra-
tion which is expensive because of the iterative method to determine

C (C > C 5,
pc< psl pa

tions are obtained in infinite series form which can be rapidly evalu-

h/H). With the present formulation, however, solu-

ated on a high-speed computer at a considerably less expense. In
addition the closed form solution permitted a verification of the math-
ematics by comparison to an independent solution of a special case of

the present formulation.
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I1I.4 Results
II.4.1 Downstream Cavity Shape and the Evaluation of h/H
Carrying out the quadrature indicated in equation II-16 along
the path C 2 D or { = C - i{ -g— -mn), 0=n= -TZT—, gives the parametric equa~
tions for the constant pressure cavity on top of the step (this solution

is shown in some detail in Appendix II-A). The result of this inte-

gration is

00
x (n) 4
< = —‘L - n o T : _ l R
T~ 7k 21( D™ g_ () 8_{j, 4) [Sinn@2nn- = s nSin 207 ]
- oo
i, 4 - 1o
Z_C(_T_].) -1 -j%—+ FF]E Z_ (1-)" gn(k) Sn(),jl; [&}sn&SZnnqLZ-ﬂ- Sin nSin 2nm ]
H n=1
for 0<n < w/2 (I1-19)
an
where; g (k) =
n 1P
2n .2n 2n .2n
. . 2 ,@ _z z . -1
s, 0= S X ) (11-20)
4n”-1 (43)

and the fact that the wake width, h', is given
by H/H = 1- j/4 has been used.

Evaluating equation II-19 at n = 0 and N = w/2 respectively gives that

GO
) 43 .
A= h/HG K =1 - §/0+ S n3{(-1)n g, (k) S (5, 4)
PP ' (I1-21)
Xc/h T ATk nzrjlgna{) Sn(J’ £)

The series representation for h/H is absolutely convergent for
all values of 4/k < 1(or sz < Cpc). The representation for xc/h is
absolutely convergent only if £/k < 1 and is divergent for 4/k = 1. Both

of these are reasonable in the light of physical reasoning since, as
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, one would expect the wake model to approach the "'open

sz Cpc
wake' formulation where the ''reattachment point' moves to down-

stream infinity.
As a check on this solution consider the case where there is

<7 0 and let j, k, £~

no separated region in front of the step, i.e., ¢
42
V. The product

q
in such a manner that j/k = AL U, 4/k=-— =
q. e
gn(k) S (j, 4) then can be shown to be
g_(k)S_(, 1) = (V2" - u??) 22 (1r-22)
4n- -1
Utilizing the identity
oo
1+2 (-1)" XZ“—%— - (X Cxtanlx (II-23)
n=1 4n" -1
in the expression for h/H(equation II-21) it can be shown that
_ b LY-U _2Uf, Lol Lytanly)
A= = 7 - (V- _V.)tan vV - (U- U)tan U
(1I1-24)
as q_ ” 0
(47)

This checks an independent derivation by Wu
II. 4. 2 Reattachment and Separation Locations
Integrating equation II-16 from point ""C'' to point "B' (i.e

¢ -im/2to {=0 - in/2) gives as the reattachment point location

C=c-i
(0]
oD -1 DT b, o) (11-25)
n=1
where
n (55)
T (a, b, c) == y (n'rf)Z sin 2T 210 nﬂ(i;‘—) (I1-26)
and q = exp{—w /2¢c}
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This expression is absolutely convergent for all ¢ > 0 which is satis-
fiedifC_ > 0and C_ < 0.
e pc
Now integrating equation II-16 from B towards A or along
'lT

the line { = 0 - i{( 5 =M ), 0<m<mw/2 gives the parametric equations

for the separation region:

(e ¢

x (M) : o &, KS (G, 4
= :-)%Tl{f mb) - L, b) - 25 (-1)* 2D
n=1 k
[ % % m Sin2nn - Sinn Cosznn]}
oo .
v o a5y (k)S_(, 4)
_r 2j _ ) 0 °n n
E TR T 2P - fpina) - 220 (-] Zn
n=1 k
[1-(wn 0 2nm - —Z%Sinnsm 2nn ]} (I1-27)
(0<n <w/2)
where
_ 1 whao + Sin n
fn, @) = § log {FRE T n} lish &
(I1-28)
fz(n, a) = —tan-l{Sinha’ —l--—————}‘ Sinha
Sinh a+y n
and gn(k) and S_ﬂ(j, L) are as shown in equation II-20.
Setting n = w/2 gives as the separation point location
: 2 : (k)S_G, 4)
R I L2 P P L2 J____ J*+L ’
R - m%zl 71" 1L_l+42 Zn
(I11-29)

which is absolutely convergent for all 4< kz.

II.4. 3. Wall Pressure Distribution Upstream of Separation
Integrating equation II-16 along the path A-I gives the wall

pressure coefficient distribution upstream of the separated region as



x(C )+ S 1 8 ; n
P~ rer (G C ] T (e b o)
{1-e‘§[%§%§4~(§i)s 934]} (II-30)
where q = exp{-m /2c}
C)=a+ *1log(l-C 0<C <C
g D s log( ) ps .
£.(C_;a)=C Zwafp (”nfgfﬁ €
2)=Csc m— o —_Eg———
P c Cth I% - ctATECP (1.& )2
C Z2c 2¢ P

The infinite series in equation II-30 can be shown to be abso-
lutely convergent for all ¢ > 0 (or if Cpc < 0 and Cps > 0). The

function f3(Cp;b) is convergent for 0 st < Cps’ the function f_(C ;a)

3( o)
is logarithemically singular as Cp = 0. Thus sincex ~ - log(CP) as
Cp =0, the pressure coefficient decays exponentially as x—-00. A
closed form representation for the integral appearing in f3(Cp;oz)
could not be found and was evaluated numerically.
II. 4.4 Wake Pressure Recovery
Integrating equation II-16 along D = E gives as the pressure

distribution on top of the step as

*(C)-xg 1
< = [f4(Cp;b) - f4(Cp;a)] +

h - 2ch (II. 32)
(e8]

 nmE

8 s n [ & 1S h\as HTTF]}
+mi1<_q) Tn(a, b,c)*Ll e iu;; = (nw)Sln =

E=.

where
= (c-3) -~ - < =
2(C,) = (c-a) - Flog(1-C) G <C_<C_, s
5 o ¢ P tan T )2c ac 22
£,(C_sa) = Cs chf 2mp 2 75 (Cp) =3
‘C ot TE et T2Cp) (1 T )2
c 72c 2¢c P
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The remarks after the formulation of the pressure distribution in
front of separation are applicable here except both f4(Cp;b) and
f4_(Cp;a) are convergent as Cp - sz.
II. 4.5 Extension to Other Flow Models
The equations II-19 through II-33 inclusive, have been derived
using the flow model described in Section II. 3. The theory presented
is not limited to this model alone, however, by considering various
limiting cases of the parameters a, b, and ¢ (or j, k, 4;
1.  Flow models without the forward separated region are
obtained by letting q =0 with qo/qC = U and qz/qC =V
as indicated in Section II. 4. 1;
2. Flow models with infinite constant pressure cavities
downstream are obtained by setting d, = q, {or equi-
valently k = Lor ¢ = b);
3. Infinite flow fields (no channel wall) are obtained by
setting 4, = 9, (or equivalently, j = Lor a = b);
4. Flow fields without separation on top of the step are
obtained by letting sz =1 - (1 —h/H)‘2 and Cpc = -00
(orj = (1-h/H)4 and k —o0).
The solutions obtained from the limiting cases indicated above are in
some cases solvable by alternate methods and as such can be used to
check the results presented here as was done in Section II. 4. 1. The
solutions so obtained are not presented here explicitly because they

are presented elsewhere or are quite complicated.
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II.5 Evaluation of Results and Comparison with Experiment

The infinite series solutions for the geometry and wall pressure
distributions presented in the previous section were evaluated numeri-
cally on an I. B. M. 360/75 digital computer. This utilized a straight-
forward computer program written by the author for this purpose.
Since it was desired to use known or estimated values of Cps’ sz, and
%(Cps’ CpZ;Cpc)

equation II-21 was inverted numerically to determine the proper choice

h/H as input parameters, the relation for as given in
of'C o Having effected this, the remaining relations were evaluated by
simply summing the indicated series or using a standard integration
subroutine. Generally speaking, the complete sclution was computed

in a matter of two seconds of computer time.

The wall pressure distribution upstream of the step face was
one of the main objectives of this investigation. To this effect, the
solution obtained here was compared against the solutions for other
flow models and is shown in Figure II-5 along with an experimentally
measured wall pressure.(36) These other flow models were computed
{rom known solutions (Model A) or from various limiting cases of the
theory presented here (Models B and C).

It is evident from Figure II-5 that models A and B, which do
not account for the upstream separated region, underestimate the mag-
nitude and extent of the upstream influence in addition to being grossly
in error in the separated region. Conversely, Model C which models
the upstream separated region and models the wake region with an in-

finite and constant pressure cavity, overestimates the upstream influ-

ence. The model proposed herein (Model D) shows excellent agreement
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with the measured data especially in the far field. The poor agreement

near the separation point (C__ = 0.4) was anticipated as mentioned

ps
ea'rlier.

The theoretical solutions to Model D were then compared with
experimental data taken for a series of step sizes in a constant height
channel and are shown in Figure II-6. The abscissa for this graph is
given directly in inches rather than step heights to more easily distin-
guish between the five cases shown. The input values of Cps and sz
were taken directly from the experimental data and agree closely with
the values predicted by the methods discussed in Section II. 2.

The comparison between theory and experiment as shown in
Figure II-6 is seen to be adequate in the "far-field" for all step sizes.
For the larger step sizes, the theoretical wall pressure distribution
is seen to be in excellent agreement with experiment up to a pressure
coefficient near 0.28. For step sizes less than the undisturbed bound-
ary layer thickness (h <1'") significant departures are noted when the
pressure gradient increases rapidly. The important fact to be realized
from the above comparison is that the flow model predicts the up-
stream flow field very well especially for h/6 ? 2. Admittedly, the
pressure distribution near the separation point is in error or has been
discussed and to account for this would require either a viscous solu-
tion or some form of inviscid rotational solution.

In Figure II-7 the upstream wall pressure is shown for the flows
over a step both with cavitation and without cavitation. These are in
turn compared with the experimental data for each of these situations.

As can be seen, the model accounts for the effect of the downstream
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flow field in addition to giving good quantitative agreement in the far
field wall pressure.

The pressure distribution downstream of the step is shown in
(36)

Figure II-8 along with the corresponding experimental data for one

specific case. The model obviously gives a lower base pressure, Cpc’
than observed and also a faster recovery to the downstream pressure
level, sz. This behavior is typical of the comparison at other values
of the input parameters. It should be noted, however, that the theo-
retical curve shown is actually the pressure distribution along the
theoretical dividing streamline rather than along the actual dividing
streamline and is probably closer to the theoretical curve because of
the pressure gradients caused by streamline curvature and a finite
recirculating velocity in the separated region on top of the step.

In Figure II-9 the theoretical dividing streamline shapes for
both non-cavitating and cavitating flows are shown along with the ex-
perimental observation(gé) (from photographs of air or dye injected
upstream of the step). The comparison for cavitating flow is consider-
ably better than that for the non-cavitating flow. It should be remem-
bered that it is not the purpose of the wake model to match the dividing.
streamline but to approximate the displacement effect of the wake. In
the case of the non-cavitating flow, the far downstream displacement
thickness of the wake is used as an input parameter to the solution and
because of this the theoretical dividing streamline location is set. For
the cavitating flow, on the other hand, the displacement thickness is

primarily due to the cavity alone rather than to the viscous effects and

thus good agreement between theory and experiment is expected.
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With the good agreement between theory and experiment insofar
as the upstream wall pressure distribution is concerned, the effect
of the blockage ratio can now be assessed. In order to illustrate this
clearly, the values of Cps and h'/h were held constant at values of 0.50
and 1. 23 respectively and the remaining parameter, h/H, varied be-
tween the limits of 1/5 and 1/10, 000. The results of these calculations
are shown in Figure II-10 where the pressure coefficient is depicted
as a function of distance from the step face (in step heights). It is
immediately apparent that the finite blockage ratio effects are not
negligible as is occasionally assumed. For example, the distance to
where the pressure coefficient is e_l of the separated region value,
C};}S,differs by a factor of two for a blockage ratio of 20%and an infi-
nitely high channel. For smaller values of the pressure coefficient
this behavior is even more pronounced. It should also be noted that
this blockage ratio effect is most predominant in the far field (say
x/h <-4) which is where the theory and experiment are in best agree-
ment.

Also shown in Figure II-101is the effect of slight
changes in the wake width parameter, h’/h, for the 10% blockage
ratio flow field. The indicated limits of h'/h represent’ the upper and
lower bounds of the experimentally observed values(36) (see also Table
II-1). As can be seen, the effect of small changes in h'/h is slight and .
hence a nominal choice of this parameter gives a fairly accurate rep-
resentation of the upstream wall pressure field.

Also indicated in Figure II-10 is the effect of blockage ratio in

the length of the separated region (normalized by the value at h/H = 0)
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and the distance to the stepface reattachment point, r/h. Both of these
quantities are shown to be sensibly independent of blockage ratio for
values less than, savy, 5% This indicates roughly that the finite channel
height may have little effect on the geometry of the actual separated
region which, by the reasoning discussed in Section II. 2, implies the
value of Cps is insensitive to the blockage ratio.

Comparing the predicted separation distance with experiment
shows it to be about a factor of 2 too high. Similarly, the distance to
the stepface reattachment point is also too high; values of about 0. 6h
are observed whereas 0. 9h is predicted theoretically. Despite this
poor agreement it is felt that the effect of blockage ratio on the actual
values may be indicated by the curves shown in Figure II-10. No
experimental data is available to confirm this, however.

The downstream pressure field for the cases computed in
Figure II-10 is not shown because these are all very much like the
situation depicted in Figure II-8.

The upstream wall pressure distribution has been shown pre-
dictable for a given blockage ratio h/H, a reasonable estimate of the
wake width h’/h, and knowledge of the value of the separated region
pressure coefficient. In order to increase the usefulness of the theory
it would be advantageous that the precise value of Cps not be required
inasmuch as the details of the boundary layer may not be known. To
accent this point, the parameter Cps was varied while holding the
blockage ratio and wake width parameter constant. The results of this
calculation are shown in Figure II-11 for Cps = 0.5, 0.425, and 0. 38

(this corresponds to h/& » 1.5) and it is seen that upstream of the
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separation region, say x/h < -4, the three pressure distributions are
almost identical. Again, this region is where the theory is in good
agreement with experiment. Close to the theoretical separation point,
where the three cases deviate from one another significantly is where
the theory fails to give adequate information at any rate. Thus, it
appears that in addition to a reasonable estimate of the wake width,
h'/h, a reasonable estimate of the value of Cps is sufficient to deter-
mine the far upstream influence at a given blockage ratio. This
finding, that the far field pressure distribution is predominantly
affected by the geometry and not the boundary layer, was first deter-
mined experimentally and is verified theoretically here.

The insensitivity of upstream effects to the parameter h/6 is

(43) and Taulbee. (41)

in contradiction to the findings of both Bradshaw
Bradshaw, in reaching the conclusion that the dominant scale for the
upstream pressure field was 6, neglected completely the effects of
blockage ratio which for his experiment was as high as 23% Taulbee,
on the other hand, conducted experiments in an open jet to simulate an
infinite flow field. Undoubtedly, blockage effects can also become

significant even with the free surface effect. To show this theoreti-

cally would necessitate a solution including the additional free surface.



-151-

II.6 Conclusions

An inviscid flow model employing elements of free-streamline
theory has been constructed on physical grounds to approximate the in-
compressible flow over a normal step in a channel.

The solution to this model depends on two experimentally eval-
uated parameters; the separated region pressure coefficient, CDS; and
the effective displacement effect of the downstream wake, h'/h. Far
more dominant in determining the upstream flow field is the geometry
of the step and channel given by the parameter h/H. The comparison
between theory and experiment for the upstream pressure field is seen
to be quite good, especially for step sizes greater than two local un-
disturbed boundary layer thicknesses. Close to the separated region

upstream of the step boundary layer effects are significant and are un-

accounted for here except in a gross manner.
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h h -4 h'
= 5 Regx10 e
2 7.5 1.21
0.2 4 7.5 1.23
4 1.2 1.22
1.54 5.0 1.27
0.1 1.39 8.6 1.20
2 7.5 1.25
2 1.2 1.21
0. 05 1 7.5 1.46
1 1.2 1.30
(36)

Note: Data taken from Stevenson

TABLE II-1. Effective Wake Widths from Experiment
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APPENDIX II-A

EXTENSION OF THEORY TO WEDGE SHAPED
STEPS AND TYPICAL TRANSFORMATION
TO THE PHYSICAL PLANE

This appendix is included to show the solution to the more
géneral situation of flow over a wedge shaped obstacle as shown in
Figure II-12. Moreover, included is an example of the mathematical
manipulations necessary for the transformation to the z-plane.

For the case of flow over a wedge as depicted in Figure II-12
let the wedge angle be given by EZZT— The ( Em(q/qs) - i9 plane is also
shown in Figure II-12 and is identical to the (-plane shown in Figure

I1-4 except that the lines BC and B'C’are at -if= - lgw and léTf res

sp‘ectivelyg The derivation of the complex potential f((a, b, c) =@ +ivy
is the same as given in Section II. 3 with the exception that the param-

eter g in the Theta Function argument is defined as

q = exp(-—=) | (IIA. 1)

Similarly, the transformation to the physical or z-plane is the

same as indicated in equations II-14, II-15, and II-16 with the excep -

tion that the lower limit of integration is replaced by c¢ - 11;“ _.‘ These

equations will be shown here written in a notation necessary for this

more general case being considered.

2 ()2
; S = Z(C;a)tZ(C;-a)-Z(C;b)-Z (G -b) (IIA. 2)
where
. > 8/[L T-a), q]
7.(C ;) .—_:.Z.LJ‘ o6 1l 2c ac (IIA. 3)
C Vil 291 [%—%(C—a),q:} '

<=7
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% I .
z, = A[Cot —112— +i] ,
¥ (C, q) o)
B Cot(+ 42, —q——-— Sin2nC, and (I1. A4)
7-91 (Q: CI) - l-q
- WZI‘
9 = exp (— Zc)

As a typical example of the evaluation of the terms Z(( «)shown
in equation ITA. 3, consider the integration along the path from C to D
or (= CH(8-L1)for 0 < g <Ir

The first problem encountered in simply evaluating equation
IIA. 3 by means of equation IIA 4 is that the series shown is only con-
vergent in the interval 8 < ﬂzg . The path of integration chosen is for
0-<8< fz_w_ which with the above requires ¢ < w. This is rather restric-
tive since we will want to determine ¢ from inverting the relation
T = fcn(a, b, ¢) as indicated in the text. Moreover, for numerical
evaluation, many terms of the series might be required to assure
accurate convergence. Thus, it is advantageous to transform the
expression for 191' (Q;q)/z?l(g;q) using the relations given in reference 49.
After some algebra, it can be shown that

frow ' B+izw , «
#lag (€-a)/a] 2 oria , 2¢ P30T/

1
r)Ur T e “—“@—“‘ (I1A. 5)
291 [21::" (Q"‘a)/QJ ' w I [ +iw J |
. 2c
where : q' = e I 1/k2/r, and
8(C;q) o n .
300 (=117 .. .
293(€’q) - 4112:1 l_an Slnzng . (IIA())

The infinite series shown in equation IIA.6 is convergent for,
1
|IM C|<trq 2 which, using the above definitions, is tantamount to

a, b<Tec. This is more in line with the flow model definitions. Thus,
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substituting equations IIA. 6 and IIA 5 into equation IIA. 3 gives;

il
2 @ n Zn/l"
) ) B 8e (-1) 2no
Z(8;@) + Z.(8;-a) = F(8) + = nz)_l 4n/r bsh =R
X i-e'le{ls néﬁﬁ+ Zn@}]/ LR 1 . (IIA. 7)
As was done in the text, define
an/F
gn(k) = m 5 and
on /T [ 2n 2n (I1A. 8)
- n 2n/T i \ T 1\ T
S (G, 4) = —atm— 4 1-(4— - (AT
o ! 4n2/I‘2-1 4 > J>

Utilizing these relations along with equation IIA. 7 in equation IIA. 2

gives finally;

z;zc - 8W;Fn/2 95 95, 1,\[1- -i6] 322 zne zne}]
x (tsh 222 - o 220 (1A 9)
Evaluating this for 6 = %T—r» (i. e. point ""D'') gives;
8.0}
r=d=1-d 2 sinG- T (-1 g, (K]S, (, 4
(IIA. 10)

< (o:0]
2 = Cot T+ A % g (x)S, (, z)[ )P T

These formulae give, upon setting I'=1 for a normal step, the same
equations as derived in the text. Again, the proper value of k can be
determined for the given input parameters, h/H, Cps’ sz(or equiva-
lently, A, a, ¢c) as was discussed in the text.

Integrating along the other paths in the {-plane as was done in

the text gives the following results;
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1. step face reattachment point location

*B ™ 8 r oo
T T n
T = Ctn-—z— - ok Tn{;l Tn [k'(‘l) ]
- 0 (IIA.11)
B _ 8 . Im L
+ =1 -—chk Sin= nZ:l T [k-(-1)" ]
where
' (=5)
= q C 3 n___Tr e E_:‘_T_ - .
Tn = 5 Thn 2 Sin e {a+b) Sin e (b-a) ;
I-q (—é—) 1

2. separation streamline

il'w
2 2 { b)-f. (8- ; ) - .
=3- e £, (6b) fz(e,a) + 1 [fl(e,a) fl(B,b)]

z(G)-—zB

1 8

n
m

[en]
A

0 <

-1)" . -iB-il .. 2n 2n
—Zn lk———7—2 T g, (kIS (s k)E-e [z—ﬁSlnwr 9+C&S—T 9:]]}
I
> (ITA. 12)

. lsh o +Sin6
Where; fl (@;01) = Sinb + %Q‘Bha log {m

f,(6;a) = l—(}BG—Sinhatan_l{Sinha__—____l “Coée }
Sinh a+{xb

Setting 0 = 32]: it the above gives the separation point z, =x, + io ;

A A

3. wall pressure distribution upstream of separation and pressure
recovery in wake. i
These are identical to the formula given in the text (equations
II-30 through II-33, inclusive) except for using the new
definition of the parameter q as given in equation ITA. 1.

The limiting forms given in Section II. 4. 5 for the extension to

other flow models are also valid for the equations derived here.
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