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Abstract 
 
Cognitive control arises whenever a prepotent and often automatic response needs to be 
overcome by another response. Control is usually effortful and relies on monitoring 
processes that detect when control is needed and/or when it failed. Control is one of the 
most important aspects of human behavior in everyday life and is a critical component of 
executive function.  In a series of three empirical chapters, I present results from invasive 
single-neuron recordings from the frontal cortex of neurosurgical human patients while 
they perform tasks requiring cognitive control. I show that a substantial proportion of 
neurons in the pre-supplementary motor area (pre-SMA), and in the dorsal anterior 
cingulate cortex (dACC), signal response errors shortly after they occurred, but well before 
onset of feedback. Here I demonstrate that these error neurons signal self-detected errors 
and that they were separate from neurons signaling conflict. The response of error neurons 
correlated trial-by-trial with the simultaneously recorded intracranial error-related 
negativity (iERN), thereby establishing a single-neuron correlate of this important scalp 
potential. iERN-error neuron synchrony in dACC, but not pre-SMA, predicted whether 
post-error slowing, which is a measure of control, occurred or not. Spike-field coherence 
between action potentials and local field potentials in specific frequency bands, and latency 
differences between the different brain regions, suggest a mechanistic model whereby 
information relevant to control is passed between sectors of the medial frontal cortex. 
Multiplexing of different ex-post monitoring signals by individual neurons further 
documents that control relies on multiple sources of information, which can be dynamically 
routed in the brain depending on task demands.  These findings provide the most complete 
set of single-neuron data on how errors and conflict signals at the single neuron level 
contribute to cognitive controls in humans.  They provide a first-single neuron correlate of 
an extensively utilized scalp EEG potential. Together, this work provides a strong 
complement to investigations of this topic using fMRI in humans, and using 
electrophysiology in monkeys, and suggests specific future directions. 
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Chapter 1. Introduction 
 
1.1 General introduction 
 
 In this section, I will present a general background and some concepts that I will 
use to interpret the findings in the later part of the thesis. These concepts are intuitive, but 
they are at best very crude conceptual models of the plethora of neural mechanisms at 
work; they nevertheless provide a general readership with a starting point.  
 
1.1.1 The malleable spectrum of automaticity 
 

Learning is one of the most fundamental aspects of human life. Through learning, 
we acquire a diverse set of skills. Some skills have become so well-practiced that we can 
perform them with little attention and without worrying about intrusions from distraction. 
Some skills, however, remain difficult and require greater amount of mental effort to 
perform. One important example for the former is reading. Reading is a higher cognitive 
function that is incredibly complex (Friederici, 2017). Our brain needs to take in visual 
patterns of lines and dots that consist of letters, bind the low-level perceptual 
representations together in meaningful ways, and map these to memorized semantic 
representations; all of these processes happen within hundreds of milliseconds. In some 
cases, even if the exact spelling of a word is wrong, we can read it without noticing it is 
misspelled as long as it appears in the context of a sentence. By contrast, mental arithmetic 
tasks such as multiplying two numbers that are greater than 50 generally remain difficult 
and costly both in time and in mental effort even when the skill has been practiced since in 
grade school.  

The distinction between these two intuitively different kinds of skills – like reading 
vs. doing complex arithmetic – has a long history in cognitive psychology that has 
attempted to map it onto a dichotomy of cognitive processing.  Some of the earliest 
formalisms in cognitive psychology labeled the distinction “automatic” versus “controlled” 
(Schneider and Shiffrin, 1977, Shiffrin and Schneider, 1977) with a host of additional 
attributes that have been added over the years (Table 1).  Not all of these come together as 
a package all of the time, and it is doubtful that there really are two clean “systems” of this 
kind in the brain in any strong sense.  Nonetheless, they serve to characterize different 
types of processing and to introduce the topic of my thesis: given multiple (at least these 
two) types of processing, how does the brain prioritize one over the other? This is a large 
question whose answers range from winner-take-all mechanisms to arbitration between 
goal-directed and habit-based decision-making. The specific focus of my thesis is on the 
situation where an automatic process interferes with a deliberate process: the topic of 
cognitive control. 

Tasks that are more deliberate are susceptible to interference from automatic 
responses. When we need to perform these deliberate tasks in order to achieve certain goals, 
we rely on cognitive control to protect against the interference from more automatic 
behaviors. In addition, when we are faced with a novel environment with a new set of goals 
to achieve, in which the learned skills may no longer apply in the new settings, our brain 
needs to engage cognitive control to adapt to the new cognitive demands and guard the 
learning process against intrusions of prior learned responses. Cognitive control is thus 
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essential for functioning in nonstationary environments, and a key component of flexible, 
adaptive behavior.  It is interesting to note that, across a number of tasks, cognitive control 
seems to correlate with brain volume.  Animals with larger brains (specifically, logarithmic 
endocranial volume) perform better on tasks requiring cognitive control (MacLean et al., 
2014).  In vertebrates, cognitive control has long been linked to functions of the prefrontal 
cortex (Fuster, 2015, Passingham and Wise, 2012), which is the brain region on which my 
thesis will focus. 

 
System 1 System 2 
Automatic Controlled 
Heuristic Systematic 

Fast Slow 
Effortless Effortful 

Non-conscious Conscious 
Emotional Rational 

Implicit Explicit 
Reflexive Reflective 
Intuitive Analytic 
Parallel Serial 

 
Table 1.1 Representative attributes of System I and System II categories. 
 
1.1.2 Action monitoring  
 

In the pursuit of a goal, the intrusion of automatic responses can often lead to 
reduced quality of the performed action, and in some cases a total failure in performing the 
goal-required actions at all. It is thus indispensable for the brain to develop mechanisms to 
monitor the quality and outcomes of actions during goal-directed behaviors. Monitoring of 
outcomes can be achieved in two ways depending on the source of information utilized: 
whether it is internal or external to the subject. When actions required by the goals have 
not been previously learned, the agent relies heavily on external feedback information 
provided by the environment. This external feedback specifies the outcome of the actions. 
However, when these goal-directed actions have become very well learned after adequate 
exposure to the environment, the agent generates predictions of the outcomes and can thus 
rely on his or her internal models of the environment to monitor the actions and action 
outcomes. The internal model that the agent develops through interaction with the 
environment can generate predictions of actions and their outcomes, and a prediction error 
can thus be computed when the agent commits the action. 

As mentioned above, another important aspect of performing goal-directed actions 
is the interference from automatic responses. The logic for monitoring action difficulty is 
simple: interference experienced when performing an action can provide crucial 
information for optimizing ongoing or subsequent actions. If an executed action is 
compromised by a concurrently activated automatic response such that it is performed with 
reduced quality and/or efficiency, it is important to engage cognitive control to optimize 
the next attempt at similar actions. This type of action monitoring differs fundamentally 
from the case of error monitoring: while errors can be determined externally (via explicit 
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sensory feedback or reward manipulations), difficulty can only be determined internally 
and is thus an entirely subjective measure. This self-monitoring of actions is one typical 
type of metacognition. Metacognition, first used to label higher-level cognition by 
American psychologist John Flavell, is the ability to monitor and control internal cognitive 
processes. Self-monitoring of action outcome and action difficulty, which require access 
to ongoing action production and decision-making processes that occur covertly, qualifies 
as metacognition (Yeung and Summerfield, 2012, Metcalfe, 2008, Smith et al., 2003). In 
this thesis, I investigate the neural basis of both outcome (Chapter 2) and difficulty 
(Chapter 4) monitoring. 

 
1.1.3 From monitoring to control 
 

One of the most important consequences of monitoring an action and its outcomes 
is the subsequent optimization of similar actions, or reward probability in the future 
(Ullsperger et al., 2014). Cognitive control here refers to a diverse set of neural mechanisms 
that are sufficient and necessary for behavioral optimization (Botvinick et al., 2001, 
Ullsperger et al., 2014, Ridderinkhof et al., 2004). One fascinating aspect about cognitive 
control is that it can be applied to a huge variety of cognitive processes and is general-
purpose in that sense. Yet it is also to some extent domain-specific: cognitive control can 
be improved in one task, but this improvement does not necessarily transfer to another task.  

 
Figure 1.1 Schematic showing how different processes of the behavioral control feedback loop are related 
to each other. Adapted from (Ullsperger et al., 2014).  
 
 

 In the human psychology literature, the two most studied behavioral signatures that 
are thought to reflect cognitive control are post-error slowing (PES) and conflict adaptation 
effect. In post-error slowing, the subject delays the action on the next trial after making an 
error. The conflict adaptation effect, first described by (Gratton et al., 1992), refers to the 
fact that subjects tend to speed up on a trial where interference is experienced if it followed 
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another trial with interference. Both behavioral signatures are an interaction effect between 
reaction times on current and previous trials. The conflict adaptation effect is taken as a 
signature of engagement of cognitive control: the conflict level in the stimuli is kept 
constant since both trials in question use stimuli that should cause interference, but 
cognitive control is engaged by the first interfering trial and continues on to resolve the 
interference on the next trial faster. The most straightforward explanation for the PES effect 
is that the occurrence of errors recruits cognitive control to slow down the motor system in 
service of responding with more caution and therefore higher accuracy in the next attempt. 
However, such singular accounts of PES as an adaptive behavior have been disputed. 
Studies has found that there are maladaptive components to PES: it includes an orienting 
response (Notebaert et al., 2009), as well as a reduction in sensitivity to sensory information 
(Purcell and Kiani, 2016).  

The above brief introduction thus suggests specific components whereby intended 
actions are represented, the consequences of actions are monitored to check that they 
correspond to intentions, and control mechanisms can be engaged to optimize or correct 
actions as needed.  This general scheme is based on a long history of first-principles 
reasoning, on engineering considerations in artificial systems, and on observations in 
biological systems.  I turn next to the latter, and to the different types of tasks that have 
been used here. 

 
1.2 Behavioral paradigms commonly used to study action monitoring and control 
 
In this section, I will introduce the classical behavioral paradigms used to study 
performance monitoring and cognitive control in humans and animals. This by no means 
is an exhaustive review of all the existing tasks; the purpose here is to provide an inventory 
of the most common ones, including the ones I have used in my dissertation work. 
 
1.2.1 Stroop task 
 
 The Stroop task is perhaps the most widely used task of all in humans. It is a 
cognitive behavioral task widely used to study attention and interference. This task is 
named after John Ridley Stroop, who systematically designed the task in its current form 
and analyzed the effect that was subsequently named after him (see below).  Stroop was 
interested in understanding the interference between conflicting processes (MacLeod, 
1991, Stroop, 1935). Since then, the Stroop effect has become one of the most studied 
behavioral effects in cognitive psychology.  
 Many variants of the Stroop task have been developed. In a typical modern version 
of the task, subjects are shown words whose meaning corresponds to colors, one by one. 
The font color that the word is printed in can be congruent or incongruent with its meaning.  
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Figure 1.1 Typical stimuli for the Stroop task 
The task instruction can be “name the color” or “name the word”. When the instruction is to “name the color”, 
reaction times are longer on word-color incongruent trials than on word-color congruent trials. Sources: 
study.com.  
 
The subject is explicitly instructed to name the font color. The Stroop interference effect 
refers to the finding that subjects respond significantly slower on a word-color incongruent 
trial (e.g., ‘green’ written in red ink) than on a word-color congruent trial (e.g., ‘green’ 
written in green ink). In fact, the Stroop effect is one of the most reliable behavioral effects 
derived from psychometric tests(MacLeod, 1991).  Over the years, it has found widespread 
application also in clinical settings. Given its robustness, it is perplexing that the detailed 
neural correlates of the Stroop effect remain largely unknown to this date.  
 
1.2.2 Wisconsin card sorting task (WCST) 
 
 This task is also a very popular task among psychologists and clinicians and used 
to assess the functional integrity of the prefrontal cortex (Anderson et al., 1991, Gold et al., 
1997, Glascher et al., 2012). It requires cognitive control, among many other cognitive 
processes such as working memory. The subject is instructed to match the card he or she 
has with one of the cards presented as possible choices. The symbols on the card have 
several properties, such as the shape, color, and quantity of a certain symbol, that each can 
be used to match. The rule for matching is not explicitly told to the subject; the subject is 
required to infer the rule by the feedback (often in the form of reinforcement). Successful 
performance of the task requires suppression of the previously rewarded rule in favor of an 
alternative rule, based on outcome history. This is different from the Stroop task where the 
response rule (which is to name the color) is constant.  
 
1.2.2 Simon task  
 

In the Simon task (Simon and Wolf, 1963), subjects respond to a visual stimulus 
(typically, a colored square or letter) by making a keypress or squeezing response on the 
left or right (stimulus identity-response mapping is pre-defined by the experimenter). The 
visual stimulus can appear either to the left or to the right of the central fixation mark.  
Although the stimulus location is irrelevant to the task, its spatial location (left or right) 
interferes with the task (mapping left or right button press to stimulus identity). The Simon 
effect describes the effect that subjects respond slower and make more errors when the 
stimulus appears on the location incongruent with the response.  Like the Stroop task, the 
Simon task is a simple reaction-time interference task in which an automatic and prepotent 
visual-motor response interferes with a controlled response determined by task 
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instructions. What differs from the Stroop task is that the prepotent response here is to 
respond to the sensory stimuli by the side they appear instead of reading a word.  
 
1.2.3 Flanker task 
 

Developed by Eriksen et al (Eriksen and Eriksen, 1974), the task can be performed 
with minimal instruction and does not involve word reading, similar to the Simon task. 
Here, the task is to report the direction of a target arrow when it is flanked by several arrows 
pointing to the direction that is either congruent of incongruent with the central target. 
Here, the flanker effect is evident when the central and flanker arrow directions do not 
match: subjects take more time to name the direction and make more errors. Here, the 
stimulus-response mapping is matched in terms of level of training between trials with or 
with interference: there is no inherent bias to press the left or right key. The flanker effect 
demonstrates that interference need not only exist between a prepotent and a controlled 
response, but also can manifest itself as a competition for attention.  

 
 

Figure 1.2 Typical stimuli for the Eriksen flanker task 
 

1.2.4 Multi-source interference task (MSIT) 
 
 The multi-source interference task (Bush and Shin, 2006), as its name suggests, 
combines two sources of interference in one stimulus: identity and position interference. 
The stimulus used in each trial is an array of three integer numbers (drawn from 0 to 3). 
Two of the numbers are the same while one is different (target); the goal is to name the 
target number by pressing the corresponding key on the response keypad.  For instance, 
the sequence “1 1 2” would have the number “2” as the target, since it is different from the 
others.  However, the serial position of the numeral interferes with the stimulus-response 
mapping: “2” is the third in the sequence, triggering an automatic interference mapping to 
the third button, when in fact the second button is the correct one.  Here, the stimuli can be 
grouped into four categories according to the patterns of interference: 1) zero interference 
(e.g., ‘1 0 0’); 2) identity interference only (e.g., ‘1 2 2’; the distractor ‘2’ is a member in 
the response options, but the position of the target number in the array is congruent with 
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the answer key position); 3) position-interference only (e.g., ‘0 1 0’; the distractor ‘0’ is 
not a member in the response options, but the position of the target number is incongruent 
with its identity); and 4) dual interference (e.g., ‘2 1 2’ or ‘2 2 1’; presence of the distractor 
and the position of keypress is incongruent with the target position in the array). The 
presence of two types of interference provides a valuable opportunity to investigate 
whether there might be common or separate representations of cognitive interference in the 
human brain.  
 
1.2.5 Value-based decision-making tasks 
 
 Although not typically considered in the cognitive control framework, value-based 
decision-making tasks have yielded insights into the validity of cognitive control as a 
general theoretical framework (Rangel and Hare, 2010, Hare et al., 2011). When learned 
values between possible options are very different, a choice can be made very easily with 
relatively strong confidence. However, when the learned values are close to each other, it 
becomes difficult to commit to a choice. Although the internal representation of choice 
values is stochastic and it is thus  not possible that two options are of exactly the same 
values, the constraint that decisions need to be made within finite time probably requires a 
separate mechanism to hasten the choice in difficult cases. Cognitive control can be such a 
mechanism: when the decision difficulty is detected, cognitive control can be recruited to 
make an arbitration.  

Many of the decision-making tasks with rewards, however, are motivated by 
existing theories in economics, ecology, and reinforcement learning and are designed to 
test specific hypotheses informed by these models. One important assumption is that 
decision is binary and sequential; it is made between a current and an alternative offer 
sequentially, instead of between many options all at the same time. Risks must be taken 
into consideration in the decision-making. This putative sequential nature also admits time 
preference as a risk factor, which is broadly considered in economic models. Building on 
top of this assumption is the binary meta-decision to forgo current decisions and search for 
alternatives, or stay with the current decisions. Given that choice value learning is 
indispensable for decision-making, this meta-decision can also be extended to include 
learning and cost components, and be framed as a decision to engage with model-free or 
model-based learning.  

Given the success of these models in capturing the ethology of humans and animals, 
it is argued that specialized neural correlates of certain model assumption or parameters 
should exist. More specifically, neural correlates of risks (volatility), intertemporal choice, 
explore-exploit trade-off, and arbitration between model-free and model-based learning, 
among many other assumptions and parameters, should exist. Many tasks are thus 
developed to search for these variables. For example, motivated by optimal foraging theory 
in ecology, foraging tasks (see below) are designed to search for neural correlates of 
foraging choices. The assumption for such tasks is that the meta-decision to explore a new 
food patch or exploit the current patch is so important for the animal’s survival that the 
brain should develop dedicated neural mechanisms for the required computations. It 
remains a topic of debate whether or how cognitive control can provide more parsimony 
in explaining findings derived from these tasks.   
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These value-based decision-making tasks usually involve learning the values of 
various behavioral options, followed by a subsequent decision-making component. The 
choice options are arranged to fall into two types: the current default that has been chosen 
before with rewarding outcomes, and novel options with more risky outcomes. Subjects 
need to make a metacognitive decision whether to stick with their past rewarded choice 
options (‘exploit’), or switch to new ones (‘explore’). In general, the explore-exploit 
decision is based on two factors: devaluation in the currently rewarding option due to 
exploitation and risks associated with exploitation and exploration. The risks can come in 
the form of inherent uncertainty of a probabilistic reward source, or in the form of 
uncertainties in time, as the rewards only available after the decision to explore is made. In 
the foraging task, the subject first learns the values of a set of stimuli, and then engages in 
an explore-exploit choice task. In order to capture the cost incurred by the animal for 
leaving the default patch in a natural setting, the subject must forgo certain amount of the 
earned reward in order to explore. After deciding to exploit or explore, the subject choses 
between a pair of two options of different learned action-values that have different reward 
probabilities, revealed only after the engage or search choice has been made.  
 
1.2.6 Response inhibition tasks 
 

One frequently used task in the non-human primate (NHP) literature to study 
performance monitoring and cognitive control is the stop signal task (Logan and Cowan, 
1984, Ito et al., 2003, Stuphorn et al., 2000). In this task, the macaque is trained to respond 
to the ‘Go’ cue by making a saccade (left or right). In a subset of trials, a ‘Stop’ signal 
appears with variable delays after the ‘Go’ cue, and the macaque should respond to the 
‘Stop’ signal by withholding saccades. The difficulty of the trial can be parametrically 
adjusted by adjusting the ‘Stop’ signal delay (SSD): the longer the SSD, the more difficult 
it is for the macaque to cancel a prepared saccade (becoming impossible once the saccade 
is being made). One key benefit of using the stop signal task is that the error rate can be 
well controlled by adjusting the SSD, thus boosting the sample size for statistical analyses. 
Several aspects of cognitive control can be investigated using this task: errors are defined 
as the monkey’s failure to stop and conflicts are defined as interference between the 
‘stopping’ process and the ‘go’ process.  

 
1.2.7 Response or rule switching tasks  
 

This type of task usually involves the learning of multiple stimulus-response 
mapping rules and a switching between rules designated by the experimenter. The rule 
switch is communicated either explicitly via a sensory stimulus cue, or implicitly via a 
change in primary reinforcement.  

One classic response-switching task is the pro-saccade/anti-saccade task. In the 
pro-saccade task, the subject is required to make a saccade to the target when it appears in 
either left or right side of the central fixation mark. In the anti-saccade task, the subject 
needs to saccade to the opposite side to the side where the target appears. In the anti-
saccade task, saccades are significantly slower and there is a significant increase in error 
rate. This task is similar to the Simon task in the sense that it also involves a pre-potent 
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response, which is to attend and respond to the appearance of sensory stimuli, and 
successful performance requires the suppression of this response.  

In a task using implicit rule switching developed by Shima and colleagues (Shima 
and Tanji, 1998), the monkey learns to either push or turn a mechanical joystick in response 
to a visual trigger. After rewarding a series of pushing or turning movements, the 
experimenter reduces the reward, signaling the ‘rule’ switching to the monkey. After 
receiving the reduced reward, the monkey then voluntarily tries the other movement to 
increase possible reward. This incentive-based task switching thus shares features with 
explore/exploit switching in reward-based decision-making tasks more generally. 

In a task using explicit rule switching developed by Isoda and colleagues (Isoda 
and Hikosaka, 2007), the monkey needs to make a saccade to either the right or the left 
depending on the color of the central cue. After a series of rewarded saccades to the same 
direction, the cue switches color to indicate a rule change. The error rate on the switch trial 
is 50%, and the reaction times are slower after successful cued-switching, a signature of 
interference. The Go/No-Go task is only slightly different from Isoda’s task in that the cued 
responses are permitting and inhibiting a certain motor response, instead of making a left 
or right saccade.  

The animal analogue of the Wisconsin Card Sorting Task (‘WCST’) shares some 
features of the rule-switching task, but with subtle differences (Mansouri et al., 2007). In 
the WCST, the monkey is trained to match the central target stimulus with one of the three 
flanking stimuli by either color or by shape. The matching rule switches between color 
matching and shape matching by the experimenter (conditional on the monkey’s 
performance), unbeknownst to the monkey; the monkey has to infer which matching rule 
is in effect by outcome feedback. Here, there are two situations that differ in the patterns 
of interference: 1) high interference, when the flanking items contain two stimuli that each 
match with the central target in one of the dimensions (e.g. target is a blue square, one 
flanking stimulus is a red square and another stimulus is a blue circle); 2) low interference, 
when only one stimulus in the flanking items matches both of the color or shape dimension 
of the target stimulus. Since the matching rule is not revealed explicitly to the monkey, the 
two possible matching rules are in competition and the monkey has to resolve the conflicts 
between rules to select matching stimuli.  
 
1.2.8 Commonalities among tasks  
 

One common theme across the cognitive control tasks documented is situations 
where one needs to override learned responses in favor of a response that is appropriate 
given the current behavioral context. In the case of the Stroop task, one needs to override 
the pre-potent response of reading the word stimulus in order to name its font color. In the 
Simon task, the pre-potent response is pressing the button when the visual stimulus appears 
on the same side of the button; to achieve the goal in the incongruent trial one needs to 
override this tendency and press the button on the opposite side. In the Eriksen flanker task, 
the pre-potent response is to attend and respond to the flanking arrows by pressing the key 
that corresponds to the flanking arrow direction; one needs to suppress this tendency to be 
able to select the appropriate response (pressing the key that indicates the central arrow 
direction). In the MSIT task, the pre-potent responses are pressing the button that 
corresponds to the flanking numbers and/or one that corresponds to the position in the array 
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where the target appears; these two pre-potent responses can map to the same or different 
motor output. The appropriate response requires the subject to override these pre-potent 
responses to report the identity of the target number. In the saccade countermanding task, 
the pre-potent response is to make a saccade when the ‘Go’ stimulus appear; the 
appropriate response is to suppress this pre-potent response so that it does not occur after 
the ‘Stop’ signal occurs. In tasks that involve rule or response switching, the reaction times 
are slower on the switch trials, similar to those in the Stroop task. The pre-potent response 
is specified by the previous response rule, and the appropriate response is to override the 
pre-potent action option in favor of the alternative response. In the WCST task, the pre-
potent response is to select the stimulus according to the rule before rule switching, whereas 
the appropriate response is to inhibit and select a stimulus that matches with the target 
under the current rule. 
 
1.3 Physiological analyses of performance monitoring and control 
 
In this section, I will describe the basic physiological findings in human and animal studies 
concerning cognitive control; however, detailed interpretation and how different models 
were validated or invalidated by the findings listed here will be discussed in the following 
section (see ‘Existing models’). 
 
1.3.1 Human studies 
 
1.3.1.1 Error-related negativity and feedback-related negativity 
 
 A groundbreaking step taken towards understanding the human performance 
monitoring system was the discovery of an event-related scalp potential (ERP) named the 
‘error-related negativity’ (ERN) (Gehring et al., 1993, Falkenstein et al., 1991). This signal 
is recorded using non-invasive EEG placed on the subject’s scalp and accompanies the 
subject’s erroneous action. The ERN provides the first measurable neural indices of the 
covert performance-monitoring process in humans. This opens up the possibility of 
connecting the complex behavioral signatures of performance monitoring with the 
dynamics of the ERN both in healthy subjects and in subjects with psychiatric disorders 
that are thought to feature abnormal monitoring and control (Olvet and Hajcak, 2008). The 
discovery of ERN led researchers to investigate whether the same signal also occurs when 
an error is specified externally by an explicit feedback. A signal with dynamics similar to 
that of ERN was discovered and named the feedback-related negativity (FRN). Such 
signals could be recorded in tasks where outcome is revealed after subjects make their 
choice, such as in a gamble that involves random pay off (Gehring and Willoughby, 2002), 
or estimating a time interval (Miltner et al., 1997). Notably, FRN have very similar 
distribution across scalp EEG electrodes to that of ERN (Potts et al., 2011). Several studies 
have aimed to infer the neural source of the ERN and FRN in the brain (Herrmann et al., 
2004, Dehaene et al., 1994, Gehring et al., 2013, Ullsperger et al., 2014). Although the 
problem of inferring source locations using only scalp EEG topography and head shape is 
inherently an ill-posed one, this approach finds that placing two dipoles in the brain, in the 
dorsal anterior cingulate cortex (dACC) and the pre-supplementary motor area (pre-SMA), 
can explain a majority of the variance in the scalp ERN data (Dehaene et al., 1994, 
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Herrmann et al., 2004).  These two brain regions are the ones that will be the focus of my 
thesis. 
  
1.3.1.2 Functional magnetic resonance imaging studies 
 
 The invention of functional magnetic resonance imaging (fMRI) in the mid-1990s 
has fundamentally revolutionized the field of cognitive neuroscience, and greatly advanced 
the understanding of the human performance monitoring system as well. fMRI monitors 
the level of oxygenation of hemoglobin (blood-oxygen-level dependent signal, or ‘BOLD’ 
signal) in the brain. When neurons are active, they consume energy and oxygen and recruit 
a hemodynamic response as a result, allowing indirect monitoring of the neural signals.  
Interestingly, since the BOLD-fMRI signal reflects the metabolic requirements of 
electrophysiological processing, the BOLD signal in fact mostly reflects synaptic activity 
and correlates better with field potentials than with single-unit action potentials (Logothetis 
and Wandell, 2004).   

Using fMRI, several studies (Kerns et al., 2004, MacDonald et al., 2000, Carter et 
al., 1998, Botvinick et al., 1999, Ullsperger and von Cramon, 2001) have been able to 
confirm the involvement of dACC and pre-SMA in performance monitoring and cognitive 
control, but the interpretation of these BOLD signals have been a topic of intense debate. 
One historical difficulty has been that, unless the studies are very carefully designed, 
activation in particular of the dACC can be seen across very many different kinds of tasks. 
Equally problematic is a large bias in the publication literature that favors the dACC, 
among other regions cf. (Behrens et al., 2013), particularly the pre-SMA.  

The basic finding is that there is BOLD activation in these areas on error trials, as 
well as on correct trials that have interference (Carter et al., 1998, Ullsperger and von 
Cramon, 2001, Kerns et al., 2004, MacDonald et al., 2000, Botvinick et al., 1999). A neural 
signature of the conflict adaptation effect has been identified in these pioneering studies: 
the BOLD activation in dACC is lower on a trial with conflict if it follows another conflict 
trial, than when it follows a non-conflict trial (Botvinick et al., 1999, Kerns et al., 2004). 
By contrast, dorsal lateral prefrontal cortex (dLPFC) has increased BOLD activation on a 
post-conflict conflict trial. The authors interpret this pattern of activation as dACC 
detecting conflict and recruiting dLPFC to implement cognitive control on the subsequent 
trial (see the section of ‘Existing models’). One interesting study proposes that dACC 
monitors not conflict per se, but a likelihood of making errors. In this study, dACC was 
shown to be activated by a cue predicting the likelihood of error in the response inhibition 
task after training. Since the cue itself did not contain conflicting information, this was 
taken as evidence that dACC represented error likelihood and learned such association 
between action and outcome. Since on conflict trials, the likelihood of making an error is 
high as evident by the higher error rate, this study suggested that conflict signals could in 
fact be error likelihood signal.   

One advantage of fMRI is its ability to localize the signal within certain brain 
regions, and when combined with simultaneous EEG recording this can provide relatively 
accurate temporal and anatomical information about cognitive processes. One study has 
used simultaneous fMRI-EEG recordings to study error processing and finds that one ICA 
component of the error-related EEG is correlated with the fRMI BOLD signal within dACC 
on a trial-by-trial basis. This is the first study that provided experimental evidence that the 
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ERN is tied to local activity within dACC. However, since the relation between single 
neuron activity and EEG and fMRI activity remains an open question, the exact meaning 
of this correlation remains to be investigated. One component of my thesis work below will 
make some direct comparisons between scalp-ERN, intracranial ERN in the dACC and 
pre-SMA, and single-unit responses in these brain regions to provide further insight into 
the standard scalp ERN. 

 
1.3.1.3 Human intracranial studies 
 

In recent years, technical advances together with clinical-research collaborations 
have made invasive electrophysiological recordings in humans possible (Fried et al., 2014, 
Engel et al., 2005), allowing the study of human cognitive functions at an unprecedented 
level of anatomical and temporal specificity. These studies are always carried out in a 
clinical setting. In this thesis, all work was carried out with patients with drug-intractable 
epilepsy. Patients are candidates for epilepsy surgery who undergo temporary surgical 
implantation of depth electrodes to further localize their seizures. During this time, it is 
possible to record, for research purposes, intracranial EEG and in some rare instances 
single neuron activity invasively from human brains. Dictated by its clinical nature, the 
electrode locations are dictated by clinical need alone. This technique doe thus not have 
whole-brain coverage like non-invasive techniques (fMRI, EEG, MEG). Experiments are 
performed in a hospital environment, which presents additional challenges in terms of 
experimental control. Also, due to their epilepsy, patients might have impaired cognitive 
function. All of these factors should be taken into account when interpreting results from 
intracranial studies. However, with proper control experiments in normal subjects, these 
studies can contribute greatly to the field of cognitive sciences and provide mechanistic 
understanding of human brain function not possible to achieve otherwise.  

In the field of human performance monitoring, the intracranial approach so far has 
not been taken as frequently as in the field of memory studies, partly because of the rarity 
of patients that require electrode placement in the related brain regions. However, key 
insights have been yielded with just this handful of studies. One study (Bonini et al., 2014) 
investigated the neural signals of overt and covert errors using intracranial EEG recordings 
and EMG recordings and found that both SMA and the rostral part of dACC generated 
error-related ERPs (unlike the ERN, the polarity of the ERP is in fact positive, but this 
could be due to different electrode referencing layout and the electromagnetic properties 
of the tissue). This study reports that the error-related ERP occurs first in SMA and then in 
dACC, a finding that I confirm and further follow-up at the single-neuron level in this 
thesis.  

Another key study (Sheth et al., 2012) reports conflict-sensitive single neurons in 
the human dACC. Patients who participated in this study underwent surgical ablation of 
dACC for the treatment of drug-intractable obsessive-compulsive disorder (OCD). These 
patients offered a rare opportunity to record single-neuron activity directly from dACC and 
monitor behavioral changes before and after the acute dACC lesion. The patients 
performed the MSIT task inside the operation room and exhibited typical behavioral 
slowing and conflict adaptation effects; both their RT and neuronal spiking patterns 
correlated with the three levels of interference the authors defined. This was the first 
evidence that single neurons within dACC carry a signature of conflict. However, the fact 
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that the data in this study is obtained from patients with severe dACC dysfunction 
complicates the interpretation. Another problem with this study lies in the analysis method. 
Since conflict signals, according to the conflict monitoring theory, should have a stimulus-
locked onset, this study rightly investigated the neural data aligned to this task event. 
However, there is inherent difficulty associated with this alignment: RTs differ greatly 
between the three interference levels. This poses a problem given that many neurons in 
dACC and pre-SMA had response-locked spiking patterns. For example, there are many 
neurons that keep spiking until an action is committed, at which point its spike rates are 
reduced significantly. For such neurons, a binning approach that is aligned to the stimulus 
onset will create spurious interference effect for the trivial reasons that spike rates differ 
significantly before and after an action and the RT differ between interference levels. 

In summary, human intracranial studies have provided valuable insights on 
performance monitoring in humans. Evidence for a hierarchical error-monitoring system 
in MFC is strong. Conflict signals exist at the single neuron level in dACC, but failure to 
control for RT effects complicates the interpretation of such signals. Thus, further 
investigation using human single-unit recording is necessary to characterize the 
performance  

 
1.3.1.3 Response inhibition literature 
 
 One large topic in the cognitive control literature is concerned with the 
implementation of cognitive control through response inhibition (Aron et al., 2016). The 
behavioral paradigm typically used is the stop signal task, where the subject is required to 
cancel a prepared action when an external ‘stop’ signal (usually auditory) comes on. The 
‘reaction time’ to stop the action, which is the stop signal reaction time (SSRT), is inferred 
by a racing model with a ‘Go’ process racing against a ‘Stop’ process.  Here, a cortical 
network has been identified that consists of right inferior frontal gyrus (rIFG) and right 
pre-SMA; this cortical network appears to command braking on ongoing actions, while the 
basal ganglia, specifically the subthalamic nucleus, implement the braking. Consistent with 
this framework, studies have found that BOLD activation in rIFG and STN was correlated 
with shorter SSRT, suggesting that subjects who were better at stopping actions had 
stronger activation in these stopping brain regions. Another study found that activity in the 
same network was correlated with the amount of conflict-induced slowing. Consistent with 
this braking network another group found that the white matter integrity between pre-SMA 
and the basal ganglia is correlated with the extent of the post-error slowing.  
 
1.3.1.4 Lesion studies  
 

Lesion studies provides a valuable tool to understand the causal roles of brain 
regions in the performance monitoring and cognitive control. Contrary to what has been 
suggested by the fMRI literature, studies have found that lesions in dACC do not comprise 
the Stroop performance (Stuss et al., 2001, Vendrell et al., 1995, Fellows and Farah, 2005). 
In a voxel-based lesion mapping study using a large sample of lesion patients, Stroop 
performance degradation is most associated with the restricted regions of the dLPFC, but 
not dACC (Glascher et al., 2012). Interestingly, one study even shows that patients with 
dACC lesions showed normal behavioral adjustments, such as the post-error slowing.  
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However, in the human intracranial single unit study mentioned above (Sheth et al., 2012), 
acute ablation of dACC impairs conflict adaption effects while leaving the conflict effects 
on RT intact. These studies seem to suggest that the role of dACC in performance 
monitoring could be more complex than just monitoring response conflicts. Some 
researchers, based on these lesion studies in humans and lesion/physiological studies in 
animal, argues that dLPFC instead of dACC monitors conflicts (Mansouri et al., 2007).  

 
1.3.1.5 Functional manipulations 
 
 Non-invasive stimulation techniques have provided researchers with powerful tools 
to causally manipulate activity in the MFC and test for changes in the performance 
monitoring. One study uses transcranial direct-current stimulation (tDCS) to alter 
performance monitoring while the subjects perform a stop signal task and shows that the 
performance improves or deteriorates depending on the direction of current applied. 
Interestingly, the effect of stimulation modulates external feedback instead response-
outcome processing. Several studies that use intracranial microstimulation of human pre-
SMA have produced hesitation and alter manual and vocal responses in complex way, 
suggesting this brain region is capable of exerting inhibitory control. However, a direct 
demonstration of micro-stimulation induced alteration in performance monitoring has not 
been achieved.  
 
1.3.2 Animal studies 
 
 Studies in nonhuman animals provide vastly improved access in 
electrophysiological investigations, with superior anatomical and temporal specificity that 
is often necessary to interrogate rapid decision-making processes. Using the saccade-
countermanding task, Schall and colleagues have extensively characterized the macaque 
performance monitoring systems (Godlove et al., 2011, Stuphorn and Schall, 2006, Ito et 
al., 2003, Stuphorn et al., 2000, Emeric et al., 2008, Emeric et al., 2010). They found 
neurons that reported the macaque’s failure to cancel a prepared saccade. These neurons 
increased their spike rates immediately after the stop-signal reaction time (SSRT), the 
inferred point in time where the ‘stopping’ process culminated, but before the reward 
feedback was revealed. These neurons were found in both dACC and supplementary eye 
fields (SEF), but with significance difference in latency: error neurons in dACC are 
activated later than those in SEF. The leading role of SEF in error monitoring holds true 
also at the level of local field potential (LFP). As discussed before, an important variable 
in these cognitive control tasks is the requirement to override a pre-potent response. The 
same studies also document neurons that carry a signature of interference by comparing 
successful ‘stop’ trials with ‘go’ trials, but this signature only existed in the SEF but not in 
dACC. A key feature of the error signal as well as the conflict signal identified in these 
studies is that they appear after the SSRT but before the reward feedback. Importantly, the 
fact that this conflict signal occurred after SSRT, the inferred point of successful stopping, 
makes it a qualitatively different signal from the conflict signal in humans, which occurred 
shortly after stimulus onset (Sheth et al., 2012). The average latency of the response is 
~200 milliseconds, too long to result from a comparison with the efferent copy signal. 
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Given this, the authors conclude that these signals represent an internal monitoring 
mechanism of performance.  
 Given that conflict signals were found in humans and that animals are often faced 
with conflicting demands just like humans, the same signals should also be found in 
animals. However, the search for conflict signals in macaque dACC has not yielded 
convincing evidence that such signals exist. One study rigorously tested this idea by 
training the monkey to perform an antisaccade task, an eye-movement analogue of the 
Simon task (Nakamura et al., 2005). The authors noted that a signature of conflict does 
exist: the spike rates of certain SEF neurons were modulated by conflicts, but this 
modulation depended on the side where the visual stimulus appears. A pure conflict-
signaling neuron should signal conflict no matter where the conflict-inducing visual 
stimulus appears, so the authors concluded that these neurons do not yet represent conflicts 
as such. This is in contrast to the aforementioned SEF conflict neuron documented by 
Schall and colleagues (Stuphorn et al., 2000). The authors suggest that the conflict neurons 
reported by Schall et al. did carry task-related information to some extent, but that the trial 
condition contrast used to select these neurons is confounded by the level of attention 
division. Importantly, on the population level, these SEF neurons that carry lateralized 
conflict information do summate to give elevated spike rates on the conflict trials. The 
authors propose that this summation of co-activated neurons could contribute to the 
apparent BOLD conflict signals reported in the human literature. In dACC, consistent with 
Schall et al. (Ito et al., 2003), the authors failed to find any signature of conflict either at 
the single neuron level or at the population level. One study claimed to find neurons in 
dACC that were sensitive to task conflict, but not action conflict.  
 Could the absence of conflict signals in dACC and in more dorsal parts of the 
medial frontal cortex (MFC) result from idiosyncrasies of the behavioral task designs? 
Could it be that the tasks used are not able to elicit conflict at the higher cognitive level 
and therefore fail to activate the MFC? One study (Ebitz and Platt, 2015) attempted to 
induce different kinds of conflicts by modifying the response inhibition task. Macaques 
were instructed to saccade to a visual target while suppressing a pre-potent response to 
saccade to a macaque face stimulus flashed briefly in the middle of the trial; the face 
stimulus could appear at a side of the central target that was either congruent or incongruent 
with the target saccade direction. The authors distinguished task conflict from action 
conflict: the former was the intrusion of a distractor (on both congruent and incongruent 
trials) while the latter was a competition between simultaneously activated action plans (on 
incongruent trials only). Referring to this definition, they found that dACC neurons 
reported task conflict but not action conflict, and that the pupil size was correlated with the 
levels of task conflict and dACC neuronal spike rates on the previous trial. However, the 
interpretation could be complicated by the fact that the task-conflict signal occurred after 
200ms when most saccades concluded, and the significantly different saccade latencies 
were not controlled for across conditions. To challenge the macaque with interference at a 
higher level than response competition, one study (Mansouri et al., 2007) thus used the 
aforementioned WCST task. Here the conflict is conceptualized as the competition 
between two sets of matching rules as described above. The authors found that neurons in 
dLPFC, but not in dACC, decreased their spike rates on trials where there was competition 
between the matching rules. There were also neurons that increased their spike rates on the 
high-conflict trials, data that the authors did not include in the original paper. In addition, 
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they also found neurons in dLPFC that tracked the level of rule conflicts on the immediately 
preceding trials, although the spike rate modulation appeared to be a persistent activity that 
started already before the onset of stimuli array. In this study, when the animal have dACC 
lesions, it performed the same way as the control intact animals did; only lesions in dLPFC 
compromised the conflict-induced behavioral adjustments. Thus, the authors made the 
strong claim that it was dLPFC but not dACC that detected conflict and implemented 
cognitive control. However, this claim seems to be at odds with a large literature 
documenting conflict signals in human dACC, and species difference could not be ruled 
out.   

Studies that are traditionally concerned with reward-processing and motor 
planning/control can also be broadly analyzed in the framework of cognitive control. Here, 
the action outcomes, resulting from rules specified externally by the experimenter, are 
communicated to the animal via reward manipulations or explicit visual cues. The 
switching of a rule can signal the need to recruit cognitive control as the animal needs to 
explore new rules to maximize rewards. One study (Shima and Tanji, 1998) found that the 
dACC is causally involved in the exploration of alternative action (although in this study 
there are only two actions in the response set): dACC neurons encode the identity of actions 
that the animal was planning to switch to, triggered by a reduction of rewards, and ablation 
of dACC impairs the animal’s ability to switch. In a similar vein, another study (Kennerley 
et al., 2006) finds that control animal’s performance reaches asymptotic level. By contrast, 
when the animal’s dACC is lesioned, it can still respond to reduction/omission of rewards 
(‘error’) by switching to an alternative action in the response set, suggesting that error 
detection is not destroyed by dACC lesion, but the animal’s performance never reaches 
asymptotic level. Lesion animals also cannot match probability of reward by biasing their 
responses. The authors interpret this as evidence that dACC is crucial for integrating the 
reinforcement history to guide current action selection.  
 In summary, there is robust evidence that both dACC and more dorsal regions 
(supplementary eye field and pre-SMA) are sensitive to outcomes. Evidence for task-
general conflict signals is weak; they mostly were manifested as a modulation on task-
specific responses. By contrast, the role of dACC in reward outcome-based action selection 
is established. The task design difference and species difference could play a role in the 
discrepancies between macaque and human literature on conflict monitoring.  
 
1.4 Theoretical accounts of dACC functions 
 

Given the importance of dACC and its implications in a great variety of tasks, 
theoretical models were developed to try to provide a unifying framework that integrates 
all of the functions assigned to dACC. The detailed mechanism of how cognitive control 
is recruited by dACC and even the mechanisms of implementing cognitive control, 
however, have not been the main focus of these theoretical models. Many of the 
aforementioned tasks support (or were even designed to test) somewhat different 
theoretical accounts of dACC functions.  

 
1.4.1 Conflict monitoring theory 
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 In a pioneering connectionist model of the Stroop task, Cohen et al. put forward the 
idea that automaticity lies on a continuum and is malleable through learning (Cohen et al., 
1990). In this model, the Stroop effect is explained as a competition between a more 
automatic word-reading response and a less automatic color-naming response. But the 
competition exists because the two pathways, one for word reading and one for color 
naming, map to common sets of behavioral outputs and therefore the co-activation of these 
two pathways (on an incongruent trial) leads to interference and slower activation for the 
motor units to reach their required response threshold.  
 The conflict monitoring theory is built upon these early models and has two main 
components. The first component argues that a primary function of dACC is to monitor 
conflicts, or ‘crosstalk interference’, between cognitive processes. Drawing on insights 
gained from information theoretic analyses of parallel processing systems, the theory aims 
to provide a theoretical framework for human cognitive processing, which is parallel in 
nature. Simply put, if two different tasks simultaneously require processing of the relevant 
stimuli in shared pathways, they will interfere with each other; the dACC generates a signal 
reflecting this processing, with magnitude commensurate with the level of interference. Of 
course, different tasks might share pathways at different points in the processing pipelines, 
but conflict is nevertheless triggered by external stimuli, and conflict timing is thus a 
function of stimulus onset. In the original formulation of the theory, the conflict signal is a 
domain-general index of the interference within neural pathways and thus does not depend 
on the peculiarities of the task (e.g. spatial location of the conflict-inducing stimulus). The 
theory proposes that dACC serves as a centralized conflict detector with the 
aforementioned properties. 

The first key experimental evidence that supported the theory was the finding of 
higher BOLD activations in dACC on correct incongruent trials and on error trials. Since 
the ERN literature has proposed that dACC is a primary generator of the ERN, the fMRI 
findings suggest that there could be common mechanisms behind error and conflict 
monitoring. A connectionist modeling study aimed to integrate findings on ERN and the 
conflict signal reported in fMRI studies (Botvinick et al., 2001). In this study, conflict was 
defined as the product of activation values from two simultaneously active units. A unit is 
thought to signal conflict if its activation is a function of this product. Error was modeled 
as conflict between ongoing residual stimulus processing and the committed error 
response. With this assumption, the dynamics of the ERN can be produced in the activation 
profile of conflict-sensitive units in this network(Yeung et al., 2004).  

 
1.4.2 Expected value of control (EVC) theory 
 
 This theory is an extension and improvement of the conflict monitoring theory, as 
it extents the range of scenarios where cognitive control is recruited: conflict is just one of 
the signal that dACC monitors, among many other, such as errors, negative feedback, 
difficulty, pain, etc. The EVC theory proposes that the primary function of dACC is to 
decide which and how much control is to be exerted (Shenhav et al., 2013). As in conflict 
monitoring theory, the key feature is a separation between the decision to engage control 
and the actual implementation of control. dACC is thought to be responsible for the former 
while dLFPC is responsible for the latter. In this theory, the dACC learns the EVC using 
both positive and negative outcome, the time-discounted EVC from the past, and the cost 
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of control (which is a function of the control signal itself). It then specifies the identity as 
well as the intensity of control (e.g. which task to perform, or which choice to make) based 
on the current EVC.  This theory anchors well to several key experimental findings. First, 
the chosen and alternative value signals in dACC is taken to be evidence that support the 
role of dACC in maintaining EVC for each possible control signals and determine which 
of the choices these values correspond to can lead to maximal expected rewards. Second, 
the prediction error signals prominent in dACC are taken as evidence for the EVC updating 
process (similar to the temporal difference algorithm in reinforcement learning). Third, the 
fact that dACC maintains information about past outcomes and intertemporal choice is 
captured by recursive incorporation of time-discounted EVC. Fourth, the incorporation of 
cost in the EVC speaks to the findings where subjects learns the cognitive efforts needed 
and tends to avoids tasks with higher learned efforts if given the choice. This powerful 
framework is able to explain a wide variety of experimental findings and provide specific 
testable predictions.  
 
1.4.3 Action-outcome predictor 
 
 An elegant model (Alexander and Brown, 2011) argues that the major function of 
dACC can be as simple as learning action – outcome associations and making predictions 
of action outcomes. The theory was built upon a previous fMRI findings that dACC 
responded to cues indicating error likelihood (Brown and Braver, 2005). The model 
generalizes the standard reinforcement learning algorithms and uses temporal difference 
learning law, but differs from reinforcement learning in several important ways. The model 
does not learn stimulus-response mapping, but instead learns the response-outcome 
mappings, and keeps a separate prediction error for each possible outcomes (instead of one 
scalar prediction error as in a standard framework). The prediction error here refers 
specifically to a mismatch between the predicted outcome and the actual outcome, instead 
of a mismatch between the predicted value and actual value of a stimulus. Models 
implemented according to this theory have successfully reproduced a wide range of 
experimental findings, such as activity profile of ERN and error-signaling neurons, and the 
sensitivity to volatility of reinforcement contingencies.  
 
1.5 Motivation and open questions 
 
 Over the past twenty years, consensus has been reached that cognitive control is a 
useful and powerful framework to conceptualize the mechanisms required to enable 
deliberate goal pursuit, or even more broadly, volitional behavior. There is converging 
evidence that frontal regions (MFC and dLPFC), parietal regions, and the basal ganglia are 
involved in cognitive control. There is a wealth of behavioral and neuroscience data in both 
humans and animals supporting these broad conclusions. Several elegant theoretical 
frameworks attempt to tie together these findings and to provide normative models.  
However, key open questions remain, in large part because the precision and resolution of 
measures available, especially in humans, has so far been insufficient to provide detailed 
causal mechanisms. Here I sketch the open questions that motivate the studies I carried out. 
More detailed motivation and background related to these open questions will be provided 
in the relevant chapters that follow.  
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 What is the relation between error signals at different scales? In humans, error 
signals reported so far are all at the macroscopic level: it involves the bulk activity of many 
neurons. ERN is an event-related potential and reflects the summation of synaptic activity 
from a large number of pyramidal neurons in the cortex. Error-related BOLD activation 
also reflects the activity of a large number of neurons. However, the relationship between 
these macroscopic signals and spiking activity of neurons at the microscopic level is 
unclear. This open question was the motivation for Chapter 2 (c.f. Figure 2.6a). 
 On a single neuron level, can performance monitoring or cognitive control signals 
be represented by a temporal code? It is well established that neurons not only carry 
information by modulating their spike rates (rate code), but also by modulating the precise 
timings of each spike. Given that oscillatory activity are prominent and ubiquitous in the 
brain, it can serve as a reference frame for spike timings. The phase relationship between 
spikes and brain oscillations might code information about cognitive processes and might 
be relevant for coding information about action monitoring and control. This open question 
was the motivation for Chapter 3. 
 Could performance monitoring or cognitive control signals be represented by a 
population code? Neurons does not function alone; its activity is related and constrained 
by its neighboring neurons. The joint activity pattern between neurons could carry 
information important for cognitive control. As mentioned above, MFC, especially dACC, 
subserves a variety of functions important for controlling behavior in the service of a goal. 
This complex nature of goal-directed behavior requires that the neuronal population in 
these brain regions needs to code multiple pieces of information at the same time. This 
open question was the motivation for Chapter 4. 
 How is cognitive control implemented? In addition, what would be possible neural 
network architecture that enable cognitive control? Existing studies have provided with 
several possibilities: 1) adjustments of the parameters of the sensory evidence 
accumulation (e.g. the decision threshold); 2) increase of attention; 3) inhibition of specific 
motor responses; 4) broad and unspecific adjustment of motor cortex excitability. These 
accounts can all be broadly categorized as diffusion-to-bound gating mechanisms. 
However, the difficulty with these accounts is that cognitive control seem to be task-
specific (does not generalize easily to other tasks) but at the same time general-purpose (it 
can be applied to many different scenario), yet these accounts lack this flexibility. After 
all, we do not miraculously become better at driving when we practice Stroop task more. 
Many of the theories mentioned above also point to the dLFPC as the primary locus that 
implements cognitive control. It is thus implied that a centralized ‘controller’, situated in 
dLPFC, can exert control through all the means mentioned above. However, there is 
convincing evidence that it is rIFG-pre-SMA-basal ganglia network that is shown to be 
associated with response inhibition, but not dLPFC. What other kinds of cognitive control 
does dLFPC implement? 

Given the apparent specificity of cognitive control, how is any centralized 
controller able to specify the parameters for a certain task-relevant neural pathways out of 
so many other pathways? The specificity of cognitive control implies that cortex might be 
organized in such a way that decentralized control is readily installed in the circuit motifs. 
The central controller then needs only to broadcast a general alert and the decentralized 
control units can be evoked in a pathway-specific manner. However, the ultimate question 
remains of who controls the centralized controller, or the dLPFC? The study of cognitive 
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control might shed light on general principles of controlling complex networked dynamical 
systems.  
 What is the relation between learning and cognitive control? From experimental 
findings, cognitive control seems to have a broad range of time constants. Within trial, 
cognitive control can rapidly suppress goal-incompatible actions, leading to covert errors 
(no overt execution, but partial activation of incorrect response); in a stop task, it can be 
engaged to inhibit a response rapidly. However, cognitive control can also be engaged 
across trials: the post-error slowing occur seconds after an error is made (on the next trial) 
and many of the trial-by-trial RT adaptation effect also occurs on the scale of seconds. It 
could be that at different time scales there are completely different mechanisms for 
implementing control. For example, for the longer across-trial control, a finite state 
machine implemented by recurrent network can be used, whereas for short timescale 
control, possible mechanisms could be adjustment of evidence accumulation process via a 
change in local excitatory and inhibitory balance. However, could cognitive control involve 
structural changes such as synaptic plasticity just as proposed in the existing theory of 
learning?  
 All of these questions require data with resolution that matches with the timescale 
of a single spike to answer. I will thus try to tackle some of these questions with human 
intracranial single-neuron recordings, taking advantage the superior temporal and spatial 
specificity required by the nature of these problems.  
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Chapter 2. Single-neuron Correlates of Error Monitoring and Post-
error Adjustments in Human Medial Frontal Cortex 
 
The following chapter is adapted from Fu et al., 2018 and modified according to the 
format of Caltech Thesis. 
Fu et al., Single-neuron Correlates of Error Monitoring and Post-error Adjustments in 
Human Medial Frontal Cortex, Neuron (2018), 
https://doi.org/10.1016/j.neuron.2018.11.016 
 
2.1 Abstract 
 
Humans can self-monitor errors without explicit feedback, resulting in behavioral 
adjustments on subsequent trials such as post-error slowing (PES). The error-related 
negativity (ERN) is a well-established macroscopic scalp EEG correlate of error self-
monitoring, but its neural origins and relationship to PES remain unknown. We recorded 
in the frontal cortex of patients performing a Stroop task and found neurons that track self-
monitored errors and error history in dorsal anterior cingulate cortex (dACC) and pre-
supplementary motor area (pre-SMA). Both the intracranial ERN (iERN) and error neuron 
responses appeared first in pre-SMA, and ~50ms later in dACC. Error neuron responses 
were correlated with iERN amplitude on individual trials. In dACC, such error neuron-
iERN synchrony and responses of error-history neurons predicted the magnitude of PES. 
These data reveal a human single-neuron correlate of the ERN and suggest that dACC 
synthesizes error information to recruit behavioral control through coordinated neural 
activity. 
 
2.2 Introduction 
 
 A fundamental feature of behavior is the ability to optimize performance based on 
outcomes (Ullsperger et al., 2014). In humans, performance failure can be monitored not 
only by explicit external feedback, but also through self-monitoring in the absence of such 
feedback. Successful detection of errors then initiates behavioral adjustments on various 
timescales. These include within-trial adjustment such as on-line error avoidance (leading 
to ‘covert errors’) (Bonini et al., 2014) and immediate correction of the response (Rabbitt, 
1966), next-trial adjustment that requires cognitive control such as delaying an impending 
action (Laming, 1979, Ridderinkhof et al., 2004, Ullsperger et al., 2014), as well as more 
deliberate adjustments that span several trials to maximize potential rewards (Frank et al., 
2005, Quilodran et al., 2008, Shima and Tanji, 1998).  

Previous work on identifying the neural substrates for the different components of 
this behavioral feedback-control loop has revealed that the medial frontal cortex (MFC), 
which includes the dorsal anterior cingulate cortex (dACC, sometimes also referred to as 
anterior mid-cingulate cortex (Vogt et al., 2003)) and the pre-supplementary motor area 
(pre-SMA), serves a critical role for both self-monitoring and control of actions (Ullsperger 
et al., 2014). While self-monitored errors are robustly signaled by the error-related 
negativity (ERN) (Gehring et al., 1993, Burle et al., 2008, Godlove et al., 2011, Falkenstein 
et al., 1991), no single-neuron correlates of this process have yet been reported in humans.  

https://doi.org/10.1016/j.neuron.2018.11.016
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A second large topic concerns the changes in cognitive control that ensue either as 
a consequence of ongoing prediction of action outcomes, or subsequent to having detected 
an outcome such as an error. The MFC is also crucially involved in these processes (Kolling 
et al., 2016, Rushworth and Behrens, 2008, Kerns et al., 2004, Behrens et al., 2007, Brown 
and Braver, 2005, Shenhav et al., 2013, Sheth et al., 2012, Alexander and Brown, 2011). 
Such control mechanisms can either trigger switching to a different action based on 
estimated action values, or influence the production of an action, such as delaying an action 
or adjusting the force with which an action is executed (Gehring et al., 1993, Ullsperger et 
al., 2014). As an example for the former, MFC neurons encode plans to switch to the 
alternative action triggered by a reduction of reward (Shima and Tanji, 1998, Williams et 
al., 2004, Kennerley et al., 2006). Similarly, MFC neurons signal the need to switch 
saccade directions in response to an externally cued rule change (Isoda and Hikosaka, 
2007). Lesioning or pharmacological manipulation of the MFC disrupt such reward history 
dependent action selection (Shima and Tanji, 1998, Kennerley et al., 2006), illustrating a 
critical role for the MFC in explore-exploit decisions.  

Less is known about the MFC’s involvement in control of action production 
triggered by monitored outcomes (mentioned above as the second type of behavioral 
adjustments). In the case of  externally cued response inhibition, electrical stimulation of 
the supplementary eye field or pre-SMA has been shown to delay saccades in service of 
avoiding errors (Stuphorn and Schall, 2006, Isoda and Hikosaka, 2007). These studies 
provide crucial causal evidence that MFC can influence action production, but the neuronal 
mechanisms that bridge monitoring to such control and the possible roles of other brain 
regions in this process remain unclear. Self-monitored errors, on the other hand, have a 
typical behavioral consequence: they can delay successive actions, a phenomenon known 
as the post-error slowing (‘PES’) (Ullsperger et al., 2014). Functional imaging studies have 
revealed the complex neural mechanism that may underlie PES with MFC being the central 
node of this control network. In this framework, the need for PES is signaled by MFC after 
detection of an error. PES involves inhibitory activity in the cortico-subthalamic pathways 
(Danielmeier et al., 2011, Aron and Poldrack, 2006, Aron et al., 2007), as well as 
adaptations in motor cortex (Danielmeier et al., 2011) and sensory processing and 
integration regions (Purcell and Kiani, 2016, Ullsperger and Danielmeier, 2016, King et 
al., 2010). This argument is principally supported by the finding that BOLD activation in 
dACC is correlated with the magnitude of PES (Kerns et al., 2004). In addition, in rodents, 
pharmacological inactivation of MFC abolishes PES (Narayanan et al., 2013).  

A natural hypothesis thus links the detection of self-generated errors, as reflected 
in the ERN, with changes in cognitive control, as exhibited behaviorally in PES, predicting 
that the two measures should be correlated. However, several EEG studies have failed to 
find a significant relationship between PES and ERN (Gehring and Fencsik, 2001, 
Nieuwenhuis et al., 2001, Hajcak et al., 2003).  Curiously, while BOLD activity in MFC 
predicts PES, the ERN does not. Based on these discrepancies in the literature, we tested a 
more detailed mechanistic hypothesis that might reconcile them. The ERN is thought to be 
produced by the summation of postsynaptic potentials within MFC and may thus, in part, 
reflect inputs to this region (Holroyd and Coles, 2002, Luck, 2014).  One possibility 
explaining the aforementioned discrepancies is that the inputs to the MFC that produce the 
ERN only carry information about error monitoring, but not about the engagement of 
control. The computations within MFC that underlie cognitive control, while not reflected 
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in the ERN, might instead be evident in oscillatory components in the local field potential 
(LFP) (Siegel et al., 2012, Pesaran et al., 2018) or in correlations between spike rates of 
neurons and the LFP (Nir et al., 2007). Such correlated neuronal activity could also explain 
why BOLD signals are associated with PES (Niessing et al., 2005). This model predicts 
that spike rates and iEEG power within MFC would be correlated with the strength of PES, 
even though the ERN is not. 

  
2.3 Results 
 
2.3.1 Task and behavior 
 

Subjects performed a color-naming Stroop task, which required subjects to name 
the color of words while ignoring their semantic meaning (Fig. 2.1a). RTs were longer on 
word-color incongruent trials than word-color congruent trials (the “Stroop effect”; 224.9 
± 19.2 ms difference, mean ± s.e.m. across sessions, F (1, 84) = 116.6, p < 0.001, mixed-
effects one-way ANOVA). Subjects responded incorrectly (‘error trials’) in 7.2 ± 0.5 % (± 
s.e.m) of all trials. On correct trials that follow an error (‘EC’ trials), responses were 
significantly slower than on correct trials that follow another correct trial (‘CC’ trials) (Fig. 
2.1b, amount of PES: 64.3 ± 11.0 ms, mean ± s.e.m. across sessions, mixed-effect one-way 
ANOVA, F (1,184) = 23.4, p < 0.001). To quantify PES for individual trials in the analysis 
below, we used sequences of 'CCEC' trials (‘C’ represents correct trials, ‘E’ represents 
error trials, see Methods; median single-trial PES = 33ms, p = 0.0016, z = 3.154; signed 
rank test). 

 
 

Figure 2.1 Task, behavior, and electrode localization  
(a) Task structure.  
(b) Behavior. Each dot represents the mean RT of ‘EC’ or ‘CC’ trials of a session.   
(c) Recording locations, projected onto the x=5 mm slice. Each dot represents the location of a micro-wire 
bundle in a patient.  
See also Figure S1. 
 
2.3.2 Single-neuron correlates of error self-monitoring  
 
 We isolated 1171 single units from dACC (n = 618) and pre-SMA (n = 553) across 
29 patients (Fig. 2.11c, Table S1; see also Fig. S1a-c and Fig. S1d-i). Some neurons were 
in sessions with fewer than seven error trials and thus were excluded from the analyses that 
involve errors (number of neurons included in dACC is n=399; in pre-SMA is n=431). 
Error neurons were identified using a Poisson regression model. Spike rates in a one-
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second epoch starting immediately after the action (button press), but before feedback, 
were regressed against trial labels (‘error’ or ‘correct’) and RTs. 34% (n = 134) of dACC 
and 46% (n = 198) of pre-SMA neurons signaled errors (see Fig. 2.2a-d, Fig. 2.3a, Fig. 
2.3b-c, Fig. S2c-d and Table S2). We classified error neurons based on whether they had 
higher (“Type I”, error > correct, n = 99 and 118 in dACC and pre-SMA, respectively; see 
Fig. 2.2a,c and Fig. 2.3b,c, left) or  lower (“Type II”, error < correct, n = 35 and 80 in 
dACC and pre-SMA, respectively, Fig. 2.2b,d and Fig. 2.3b,c, right) spike rates for error 
than correct trials. The responses of error neurons on individual trials differed reliably 
between error and correct trials as evaluated using receiver operating characteristic (ROC) 
analysis (see methods and Fig. 2.3f): Area-under-the-curve (AUC) values were, on average, 
0.61 and 0.60 for dACC and pre-SMA, respectively (significantly greater than 0.5 with p 
< 10-10, t(133) = 12.86 and p < 10-10, t(197) = 18.5, respectively; t-test). AUC values of 
error neurons did not differ significantly between dACC and pre-SMA (Fig. 2.3f; p = 0.52, 
t(330) = 0.64, t-test).  
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Figure 2.2 Examples of error and error-integrating neurons 
(a-d) Error neurons (e-f) Error-integrating neurons. (a-f) Raster (top) and mean spike rates (bottom) aligned 
at stimulus onset (left) and button press (right; ‘BP’) for (a-d); aligned to previous-trial button press (left) 
and to current-trial stimulus onset (right) for (e-f). Trials are sorted by RT (black line overlaying raster 
plots) and trial types (color; from top to bottom, error, correct incongruent, correct congruent for (a-d); 
‘EC’ and ‘CC’ trials for (e-f)). Solid gray bars, time points for alignments. Broken gray bars, onset of 
feedback. Insets show the waveforms associated with each neuron and the corresponding scale bars. 
 

 
 

Figure 2.3 Temporal profile of error and error-integrating neurons  
(a) Percentage of significant error and error-integrating neurons in dACC and pre-SMA. Gray bar is null 
distribution (mean and 95% confidence interval).  
(b) Average standardized spike rates for all dACC error neurons, aligned at button press (t=0, gray bar). 
Broken bars, 1s after button press. Shading is ± s.e.m. across neurons. 
(c) Same as (b), but for pre-SMA error neurons.  
(d) Average standardized spike rates as a function of time for dACC error-integrating neurons, aligned at 
preceding-trial button press (left) or current-trial stimulus onset (right).  
(e) Same as (d) but for the pre-SMA.   
(f) ROC analysis. Error signal can be reliably decoded at the single-trial level (Type I and Type II error 
neurons pooled). 
(g) Statistics for (b-c). Error neurons distinguished between error and correct trials more strongly after 
button press compared to after onset of feedback. Shown are cross-validated partial correlation coefficients 
across all error neurons (Type I and II pooled). Each data point represents the mean effect size across all 
error neurons in one cross-validation run.  
(h) Statistics for (d-e). ROC analysis of the response of error-integrating neurons in three different time 
windows. The spike rates of error-integrating neurons differentiated between ‘EC’ and ‘CC’ trials in the 
current-trial peri-stimulus time window (blue; [-500 500]ms relative to stimulus onset) significantly better 
than those in the preceding-trial post-feedback period in differentiating between error and correct trials. 
Error bars, ± s.e.m. across neurons. Broken horizontal lines, the 97.5th percentile of the null distribution. 
‘*’, ‘**’, and ‘***’ mark statistical comparisons with p value <0.05, ≤0.01, or ≤0.001, respectively. ‘n.s’ 
marks not significant (p>0.05). BP=button press. 
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 The majority of errors (67%) occurred on incongruent trials. Spike rates of error 
neurons on the error trials (within the post-action epoch; Fig. S2a) did not correlate with 
RT (Fig. S3a-b; for Type I error neurons, p > 0.4, t(98) = 0.86 in dACC, p > 0.5, t(117) = 
-0.41 in pre-SMA; for Type II error neurons, p > 0.5, t(34) = -0.54 in dACC and p > 0.5, 
t(79) = -0.63 in pre-SMA; t-test) and did not distinguish significantly between congruent 
and incongruent errors (Fig. S4a,c, see Fig. S4b,d for statistics). We thus pooled congruent 
and incongruent error trials in all subsequent analyses. Unlike the responses of error 
neurons, RTs were significantly longer on incongruent compared to congruent error trials 
(Fig. S4g; p < 0.001, t(57) = 4.03, paired t-test), arguing that errors were not due to lapses 
in stimulus processing.  
 While the neuronal error signal persisted into the post-feedback epoch (which 
appeared 1 sec after button press; Fig. 2.1a and Fig. S2a), the maximal spike rate 
modulation for both types of error neurons occurred before onset of feedback (Fig. 2.3b,c). 
An out-of-sample analysis of effect sizes (see Methods) confirmed this impression: spike 
rates of error neurons in the epoch between action and feedback onset carried significantly 
more information about the occurrence of an error than those in the post-feedback epoch 
(Fig. 2.3g; p < 10-10, t(199) = 98.3 in dACC, p < 10-10, t(199) = 288.2 in pre-SMA, paired 
t test). Thus, feedback onset did not reactivate error or terminate their ongoing response on 
error trials (Fig. 2.3b,c). In summary, error neurons were action-triggered and encoded the 
detection of a mismatch between the intended action and the actual action performed. 
 
2.3.3 Error-integrating neurons 
 
 We hypothesized that MFC neurons signal information about the history of self-
monitored outcomes (Shima and Tanji, 1998, Kennerley et al., 2006). We identified a 
significant proportion of MFC neurons (see Fig. 2.3a; n = 46, 11.5% in the dACC; n = 58, 
13.5% in pre-SMA, p < 0.001 for both areas, permutation test; also see Table S2) whose 
spike rates signaled whether the response in the preceding trial was an error or not (Fig. 
2.2e-f, Fig. 2.3a, Fig. S2c-d). Response patterns of these ‘error-integrating’ neurons 
differed between dACC and pre-SMA: whereas dACC neurons (Fig. 2.3d) showed a peri-
stimulus onset spike rate increase on trials that followed an error, responses in pre-SMA 
were characterized by an extended decrease starting in the pre-stimulus baseline period 
(Fig. 2.3e).  
 We next tested whether this response pattern was the result of error signals 
persisting from the preceding error trial, in which case the error-integrating neurons would 
also be classified as error neurons. While there was some overlap between the two 
categories (overlap: n= 12 and 20 for dACC and pre-SMA), many error-integrating neurons 
were not also error neurons (non-overlap: n= 34 and n=38 for dACC and pre-SMA, 
respectively). The time course of the population activity of all error-integrating neurons 
confirmed this: while these neurons did signal errors to some degree during the post-action 
epoch (definition see Fig. S2) on the preceding trial (Fig. 2.3h, orange; mean AUC for 
dACC 0.59±0.01, for pre-SMA 0.63±0.01; p < 0.05 versus chance for both areas, 
permutation tests), this error signal was attenuated after feedback (Fig. 2.3h, green; mean 
AUC for dACC 0.59±0.01, for pre-SMA 0.57±0.01), reinforced before stimulus onset, then 
continued on to after the stimulus onset on the next correct trial (Fig. 2.3h, blue; mean AUC 
for dACC 0.65±0.01, for pre-SMA 0.62±0.01; blue vs green, p < 0.001, z = 4.74 in dACC 
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and p < 0.001, z = 4.72 in pre-SMA, rank sum test). In summary, we found error-integrating 
neurons carried a sustained error signal that was reinforced around stimulus onset on the 
subsequent trial, consistent with a putative role in post-error behavioral control. 
 
2.3.4 Relationship between error and conflict neurons, and a signature of control 
 
 Response conflict is thought to be the stimulus-evoked competition between a pre-
potent but task-irrelevant response (reading the word) and a task-relevant response (the ink 
color) (Botvinick et al., 2001, Shenhav et al., 2013). In this framework, error signals are 
generated by conflict between the committed erroneous response and continuing 
development of the correct response. This implies that error neurons should not only signal 
errors, but also signal conflict as soon as it arises following stimulus onset. Here, we tested 
this hypothesis. We found that, as a group, the spike rates of error neurons within the post-
stimulus epoch ([0 500]ms relative to stimulus onset; Fig. S2a) did not distinguish 
significantly between incongruent and congruent stimuli (Fig. S3c-d; see legend for 
statistics). For the second analysis, we first identified conflict neurons in both dACC (Fig. 
S3e; p = 0.03, n = 41, 6.7% of recorded neurons for Type I and p < 0.001, n = 43, 7% of 
recorded neurons for Type II; permutation tests) and pre-SMA (p < 0.001, n = 54, 10%, 
Type I only; permutation test), confirming earlier work (Sheth et al., 2012, Ebitz and Platt, 
2015). These neurons changed their spike rates to signal conflict, with the signal 
culminating ~500ms after stimulus onset (Fig. S3f). The majority of error neurons were 
not conflict neurons (81% of error neurons in dACC and 87% of error neurons in pre-SMA 
were not conflict neurons) and vice-versa (Table S3). The number of neurons qualified as 
both error and conflict neurons was not significantly greater than what was expected if 
these two categories were independent (Fisher’s exact test for association, see Table S3). 
Also, error neurons are significantly more common in MFC relative to conflict neurons 
(28% vs 12%, p< 0.001, χ2(1) = 93.64, Chi-squared test). Thus, the substrates for error 
monitoring and conflict detection are largely separate at the neuronal level.  
 According to the model mentioned above, on an incongruent and correct trial, 
conflict arises accompanying stimulus onset and recruits cognitive control, which in turns 
resolves the conflict and results in a correct response. Neural activity reflecting conflict 
detection and the state of cognitive control are thus intermingled. To separate them, we 
compared spike rates within the post-stimulus epoch between error incongruent and correct 
incongruent trials for the previously identified groups of neurons. We found that, at the 
group level, only Type II error neurons in dACC (Fig. S3g) as well as conflict neurons in 
both dACC (Fig. S3j,k) and pre-SMA (Fig. S3l) carry a signature of control state according 
to this metric (See legend for statistics). We also confirmed these results by a multi-level 
Poisson regression model where the RT effect is controlled, with qualitatively similar 
results (data not shown). None of the other types of neurons changed their spike rates 
significantly to reflect the control state (p = 0.41, z = 0.82 for Type I error neuron in dACC; 
p = 0.87, z value = 0.16 for Type I error neuron and p = 0.26, z = -1.12 for Type II error 
neuron in pre-SMA; p = 0.17, z = -1.37 for error-integrating neurons in dACC, p = 0.24,  z 
= -1.16 for error integrating neurons in pre-SMA; signed rank test). Notably, the Type I 
error neurons and error-integrating neurons in both dACC and pre-SMA did not carry this 
signature of control state, consistent with a more specialized role in monitoring and control, 
respectively.  
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2.3.5 Waveforms of error neurons and error-integrating neurons 
 
 We quantified the duration of the extracellular waveforms of neurons (‘trough-to-
peak time’) to differentiate between putative cell types (Bartho et al., 2004, Mitchell et al., 
2007, Rutishauser et al., 2015). The distribution of spike duration is significantly bimodal 
in both dACC and pre-SMA (Fig. S5a,e; p < 0.001 for both areas, Hartigan’s dip test). 80% 
of neurons had broad waveforms (trough-to-peak time greater than 0.5ms), a feature 
indicative of putative pyramidal cells (Mitchell et al., 2007). Comparing the proportion of 
putative pyramidal and inhibitory neurons within each category with the overall population 
revealed that most error and error-integrating neurons are putatively excitatory (Fig. S5 
legend for statistics).  
 
2.3.6 Error neurons signal errors earlier in pre-SMA than in dACC 
 
 We next sought the point in time when error information first became available in 
each brain region. We first estimated the differential onset latency (the first point in time 
when the spike rates significantly differentiated between two conditions, see Methods), 
which showed that the error signal in pre-SMA occurred significantly earlier than in dACC 
by 55ms (Fig. 2.4a,b; median dACC latency, 165ms; median pre-SMA latency, 110ms; p 
= 0.002 and z = 3.05,  rank sum test). A putative downstream readout (here a decoder), 
however, only has access to the response of an error neuron on a single trial. We used a 
Poisson-based method to detect, for each trial, the point of time the spike rate of a given 
error neuron departed significantly from the baseline (Type I only; see Methods for details). 
This analysis revealed that the error signal appeared first in pre-SMA 52ms after button 
press (Fig. 2.4c; p = 0.0025, z = 3.02, rank sum test), followed by the response in the dACC 
60ms later (median difference). Repeating this analysis restricting to simultaneously 
recorded error neurons revealed quantitatively similar results (p = 0.002 and z = 2.89; one-
tailed rank sum tests).  
 

 
 

Figure 2.4 Error neurons in pre-SMA respond earlier than error neurons in dACC 
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(a) Temporal profile of error information carried by the error neuronal population (Type I and II pooled), 
aligned at button press (gray bar) and sorted by the onset latencies of error information (green dots). Each 
row represents one error neuron in dACC (upper) or pre-SMA (middle). White crosses mark the medians of 
onset latencies. Bottom plot shows the average likelihood ratio normalized by the peak value (solid line, 
dACC; broken lines, pre-SMA). 
(b) CDF of differential latencies (see Methods for details) are shown for error neurons.  
(c) CDF of single-trial onset latencies for error neurons.  
CDF=cumulative distribution function. 
 
2.3.7 Error-related negativity 
 
 Simultaneously with single neurons, we recorded the intracranial EEG (iEEG) 
using low-impedance macro contacts in both dACC and pre-SMA (see Table S1 and Fig. 
S1a). Following an erroneous button press, the iEEG revealed a prominent intracranial 
error-related negativity (iERN) visible on single trials in both dACC and pre-SMA (Fig. 
2.5a-c, Fig. S6a-b). We also repeated the same task with scalp EEG in control subjects (see 
Methods) and found that the scalp ERN (Fig. S6c,d) had waveforms similar to the iERN, 
but with 5-10 times samller amplitude (Compare Fig. 5c and Fig. S6c). The extracted iERN 
amplitude values significantly distinguished error from correct trials (see Methods for 
details; Fig. 2.5d; median AUC for dACC electrodes is 0.59, p<10-10, z=7.72; median AUC 
for pre-SMA electrodes is 0.67, p<10-10, z=7.78; signed rank test). 
 

 
 
 
Figure 2.5 Intracranial error-related negativity (iERN)  
(a) Example single-trial event-related potentials recorded from dACC, sorted by RT (RT increases from top 
to bottom rows) and trial types. t=0 is button press. Thin vertical bar marks 100ms after button press. 
(b) Average of data shown in (a) grouped by trial types (colors; red for error, blue for correct), aligned at 
button press (t = 0, thick vertical gray bar). Inset, distribution of iERN latencies for the same data. Thin 
vertical bar marks 100ms after button press. 
(c) Mean iERN amplitudes over all electrodes placed in dACC (green) and pre-SMA (brown). Red vertical 
bars show the median values.  
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(d) iERN amplitudes differ significantly between correct and error trials, evaluated using ROC analysis (see 
main text for details). Red vertical bars show the mean values.  
(e) Spectral signature of the error signal. Power spectrum is aligned at button press (t = 0; averaged across n 
= 42 sessions). The region of power increase visibly splits into two frequency bands (2-5Hz and 5-10Hz). 
See Fig. S6e-f for statistics. 
(f) Trial-by-trial correlation between iERN amplitude and slow-theta (2-5Hz; top) and (5-10Hz; bottom) 
power for the example session shown in (a,b). 
(g) Comparison of iERN latency across all sessions. The iERN peak occurred significantly earlier in the 
pre-SMA compared to the dACC.  
(h) Trial-by-trial correlation of iERN latency (upper) and iERN amplitude (lower) between pairs of iERNs 
recorded simultaneously in dACC and pre-SMA. For both, the correlation coefficients have a mean 
significantly greater than zero. Red vertical bars show the mean values. 
 
 Time-frequency analyses revealed that iEEG power increased following button 
press in two frequency bands: 2-5Hz (‘slow theta’) and 5-10Hz (‘theta’) on both error and 
correct trials (Fig. 2.5e), with a significantly stronger increase on error trials (Fig. S6e-f; 
see legend for statistics). Previous studies have demonstrated that volume conduction from 
the hippocampus can account for theta oscillations in neocortex (Sirota et al., 2008, 
Gerbrandt et al., 1978). For this reason, we next repeated the same analysis for 
simultaneously recorded hippocampal iEEG. This revealed that although there were 
significant differences between error and correct trials, the differences were of opposite 
sign (Fig. S6e-f; see legend for statistics), suggesting that the signals we reported in MFC 
are not volume conducted from the hippocampus.  
 Power increase in both bands (averaged within [-0.5, +0.5]s around button press) 
was correlated with the iERN peak amplitude on the same trial (Fig. 2.5f shows this 
relationship for the data in Fig. 2.5a,b; Fig. S6g,h shows population summary; for theta-
iERN correlation, mean correlation = 0.33, p < 10-10, t(78) = 12.15 in dACC and mean 
correlation = 0.41, p < 10-10, t(79) = 16.52 in pre-SMA; for slow theta-iERN correlation, 
mean correlation= 0.44, p < 10-10, t(78) = 19.2; mean correlation =  0.48, p < 10-10, t(79) = 
19.4 in pre-SMA; mean-versus-zero comparisons, t-test). The ERN is thought to contain a 
combination of phase-locked theta-frequency band activity and non-phase-locked theta-
frequency band power increases (Yeung et al., 2007, Trujillo and Allen, 2007, Wang et al., 
2005, Luu et al., 2004). Induced theta power (Fig. S6i) alone in the same time-frequency 
region-of-interest was also significantly correlated with iERN amplitude (Fig. S6j-k; see 
legend for statistics). 
 Consistent with the spiking activity of error neurons reported above, the iERN 
amplitude, theta and slow theta power also did not differ significantly between congruent 
and incongruent errors (Fig. S4e,f; see legend for statistics). Although the iERN in dACC 
and pre-SMA had similar waveforms, their peak latency differed: the iERN occurred on 
average 40ms earlier in pre-SMA than in dACC (Fig. 2.5g; For a comparison with spike 
latency, see Fig. S6n; median dACC latency is 140ms, median pre-SMA latency is 100ms; 
p <10-10, z = 13.04, rank sum test; this effect held even after equalizing amplitudes across 
areas, p <10-10, z = 10.5, rank sum test). We also investigated the difference as well as 
correlation in latency and amplitude between pairs of simultaneously recorded iERNs. The 
distribution of these latency difference values between the iERN pairs have a significantly 
non-zero median (Fig. S6l; median = 18ms; p < 0.001, z =19.27, rank sum test), further 
confirming the leading role of pre-SMA. This latency difference also provides evidence 
against the hypothesis that the iERN is volume conducted because this would result in 



 42 

simultaneous onset (Logothetis et al., 2007). Similarly, the amplitude difference between 
iERN pairs was significantly positive (Fig. S6m; median = 11 µV; p < 0.001, z = 20.14, 
rank sum test). In addition, both the latency and amplitudes of pairs are significantly 
correlated (Fig. 2.5h; mean correlation coefficient for latency correlation is 0.27 and for 
amplitude correlation is 0.44; p < 0.001, t (77) = 6.81 for latency correlation and p < 0.001, 
t (77) = 0.29 for amplitude correlation, t test). Together, this data shows that the iERN is 
accompanied by theta and slow theta activity in MFC, and that the iERNs appeared earlier 
and with larger amplitude in pre-SMA.  
   
2.3.8 Linking spikes, iERN, and behavior 
 
 To gain insights into the processes that contribute to the iERN, we began by 
correlating its amplitude with the spike rates of error neurons. We used a multi-level linear 
model in which iERN amplitude was the dependent variable, and RT and spike rates were 
fixed effects. We then tested whether this model explained the data significantly better than 
a null model (see Methods). Here, the null model has the iERN amplitude as the dependent 
variable, and only RT as the fixed effect (and all the random effects remained the same as 
before). Note that only error trials were included in this analysis. The spike rates of Type I 
error neurons significantly co-varied with the iERN amplitude recorded in the same brain 
region in a trial-by-trial fashion (Fig. 2.6a, p = 0.01 for dACC error neurons, p < 0.001 for 
pre-SMA error neurons; cluster-based permutation test for the time course, details see 
Methods). This effect was evident at the single-cell level: each error neuron’s mean spike 
rate was greatest on trials with the largest iERN amplitude (Fig. 2.6b). This correlation 
began around action onset (button press), peaked ~400ms after erroneous actions with a 
maximal likelihood ratio of 7.9 for dACC and 15.4 for pre-SMA, and occurred earlier in 
pre-SMA compared to dACC (Fig. 2.6a). This is consistent with the shorter iERN latencies 
in pre-SMA reported above (Fig. 2.5g). This effect held when we used spike counts within 
the post-action epoch ([0 1]s after button press; Fig. S7a; p = 0.008, χ2(1) = 6.56 in dACC 
and p = 0.012, χ2(1) = 5.81 in pre-SMA). We found no significant correlation between 
iERN amplitude and spike rates of Type II error neurons (Fig. S7b; spike counts within [0 
1]s after button press were used in the GLM; p = 0.19, χ2(1) = 1.64 in dACC, p = 0.07, χ2(1) 
= 3.36 in pre-SMA, likelihood ratio test) or non-error neurons (p > 0.1, cluster-based 
permutation test).  
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Figure 2.6 The iERN amplitude is correlated with error neuron spike rate and RT 
(a) iERN amplitude correlated significantly with the spike rates of error neurons (Type I). The likelihood 
ratio peaked around ~400ms after button press. t=0 is button press. Grey shading delineates the extent of 
the significant cluster as determined by a cluster-based permutation test. Note that the significant cluster 
started earlier in pre-SMA.  
(b) Illustration of the relationship between iERN amplitude and spike rates of the error neurons (Type I). 
Color code: red for error trials with largest ERN (iERN larger than the 80th percentile), orange for error 
trials with smallest ERN (iERN smaller than the 20th percentile). t=0 marks button press. Solid bar marks 
button press; dotted bar marks feedback onset.  
(c) iERN amplitude correlated significantly with RT. Bar plots represent values of regression coefficient for 
the fixed effect of RT in a mixed effect model. Error bars represent 95% confidence intervals (see 
Methods). 
(d) Illustration of the relationship between RT and iERN amplitude (data from one session). iERN 
amplitudes were larger when the corresponding RTs were short (red; RTs shorter than the median) than 
when RTs were long (purple; RTs longer than the median). Thick vertical bar marks button press; thin 
vertical bar marks 100ms after button press. See panel c for statistics. 
‘*’, ‘**’, and ‘***’ mark statistical comparisons with p value ≤ 0.05, ≤ 0.01, or ≤ 0.001, respectively.  
 
 Does the same relationship hold on correct trials? To answer this question, we first 
extracted the positive peaks on the correct trials as informed by the average event-related 
potential (ERP) shape (Fig. 2.5b, see Methods). We then constructed a similar multi-level 
model but with evoked potentials on the correct trial (‘CP’) as the response variable, and 
spike rates of error neurons and RT on the same trial as fixed effects. We found no 
significant correlation between the evoked potential amplitude and spike rates of error 
neurons on correct trials (Fig. S7c; p = 0.34. χ2(1) = 0.92 for Type I error neurons and p = 
0.74, χ2(1) = 0.11 for Type II error neurons in dACC; p = 0.88, χ2(1) = 0.023 for Type I 
error neurons and p = 74, χ2(1) = 0.11 for Type II error neurons in pre-SMA). The 
relationship between spiking activity and amplitude of evoked potential is thus specific to 
error neurons.   
 Each trial was characterized not only by whether an error occurred (indexed by 
error neurons) but also by its RT, which likely index the degree of cognitive control 
recruited as well as prediction of outcomes. Notably, RT and error neuron spike rates are 
internal variables indicative of different processes, as they were uncorrelated (Fig. S3a,b). 
We thus next investigated whether iERN amplitude might be correlated with RT using the 
same multi-level linear model approach (Fig. 2.6c). We found that larger iERN amplitudes 
were associated with shorter RTs in both dACC and pre-SMA (Fig. 2.6d shows this effect 
of RT on the iERN amplitude; Fig. 2.6c provides statistics; The significance of this RT 
effect was evaluated by a likelihood ratio test: For dACC, χ2(1) = 14.61, p = 0.0001; For 
pre-SMA, χ2(1) = 5.325, p = 0.021). This negative correlation was significant after 
controlling for stimulus congruence, which by itself would have resulted in RT differences 
(See Fig. S4g for RT comparisons for error trials; for dACC, χ2(1) = 9.54, p = 0.002; for 
pre-SMA, χ2(1) = 4.83, p = 0.028). Thus, the faster an error was made, the larger the iERN 
amplitude was on that trial. Together, these data revealed two distinct components of the 
iERN: one that is positively correlated with error neuron spike rate (action outcome 
information) and one that is negatively correlated with RT, putatively action-outcome 
prediction error (Alexander and Brown, 2011). 
 
2.3.9 Neural signatures of PES in dACC 
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 We next sought to determine which aspects of the performance monitoring circuitry 
interface with the control processes that result in PES. Note that previous efforts to 
correlate the magnitude of error monitoring signals measured using scalp EEG to PES have 
yielded contradictory results (Gehring and Fencsik, 2001, Debener et al., 2005, 
Nieuwenhuis et al., 2001, Hajcak et al., 2003). The evoked potential likely reflects synaptic 
inputs to a brain region. If so, this synaptic input would then subsequently cause the local 
responses we measure as spiking activity of neurons in the same region. Given this, we 
investigate the hypothesis that the ERN itself does not predict PES, but that the ensuing 
relationship between the ERN and the activity of error neurons does.  
 We first tested whether the amplitude of the iERN is indicative of PES. Error trials 
were separated into two groups (for each session): one that leads to PES larger than the 
median value, and the other that leads to PES smaller than the median value. We then 
assessed whether the iERN amplitude differed between these two groups (quantified by the 
‘large-small PES’ index, zero equals no difference, see Methods). Consistent with some 
previous EEG studies (Gehring and Fencsik, 2001, Nieuwenhuis et al., 2001, Hajcak et al., 
2003), we did not find a significant relationship between iERN amplitude and PES (Fig. 
2.7a).  
 

 
 

Figure 2.7 Error neuron-iERN synchrony during errors predicts engagement of control 
(a) iERN amplitude did not predict PES significantly. Mean values of the PES index (see Methods) for 
iERN amplitudes were not significantly different from zero.  Blue bars denote mean values; black bars 
denote zero.   
(b) The correlation between iERN amplitude and error neuron spike rates (as a function of time; quantified 
as the likelihood ratio in model comparison; see Methods) predicted the extent of post-error slowing (PES) 
in the dACC. t=0 is button press. Grey shading delineates the extent of the significant cluster as determined 
by a cluster-based permutation test (p < 0.05). The same analysis in the pre-SMA did not yield a 
statistically significant relationship.  
(c) The spike rates of error-integrating neurons in dACC around the time of stimulus onset predicted PES.  
 ‘*’, ‘**’, and ‘***’ mark statistical comparisons with p value ≤ 0.05, ≤ 0.01, or ≤ 0.001, respectively. Error 
bars represent ± s.e.m across cells.  
 
 We next investigated whether neural synchrony would predict PES. Here we 
assessed neural synchrony by the extent to which spike rates of an error neuron co-vary 
with the amplitude of the iERN (Nir et al., 2007). This correlation measure could also 
indicate the efficacy of iERN inputs in driving the local neuronal error signal that is 
important for control recruitment. We used a multilevel model (see Methods) to assess 
whether there was a significant interaction between spike rate of error neurons and the 
large-small PES categorical variable in predicting iERN amplitude trial-by-trial. This 
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revealed that in dACC, the stronger the iERN- spike rate correlation around the time an 
error was committed, the larger was the subsequent PES (Fig. 2.7b; the maximal likelihood 
ratio is 13.9; p = 0.015 obtained by cluster-based permutation test. See Methods for details; 
the same analysis with Type II error neurons in dACC and both types of error neurons in 
pre-SMA did not yield a statistically significant relationship, see Fig. S7d,e). Note that 
while the strength of the correlation between the iERN and error neuron firing rate (in 
dACC) was thus predictive of PES, both underlying variables themselves were not (‘large-
small PES’ index. p > 0.5, z = 0.46 for iERN and p > 0.5, z = -0.17 for spike rate within [0 
1]s post button-press, signed rank test; See also Fig. 2.7a). 
 Error-integrating neurons in dACC signaled whether an error was committed in the 
previous trial by increasing their spike rates around stimulus onset. This pattern suggests 
that these neurons could be involved in implementing PES. To investigate this, we tested 
the relationship between spike rates of error-integrating neurons and PES (see Methods). 
Spike rates of dACC error-integrating neurons around the time of stimulus onset in post-
error trials were significantly predictive of the size of PES (Fig. 2.7c; maximal likelihood 
ratio is 18.3; p < 0.001, cluster-based permutation test; as shown in Fig. 2.3d). This effect 
also holds if we used the spike counts within the peri-stimulus epoch ([-500 500]ms relative 
to the stimulus onset; Fig. S7f; p < 0.001, χ2(1) = 15.76, likelihood ratio test). We found no 
significant relationship between their spike rates and the levels of PES for pre-SMA error 
integrating neurons (Fig. S7f; p = 0.07, χ2(1) = 3.31, likelihood ratio test). We thus found 
two aspects of error monitoring that were predictive of the extent to which control was 
engaged (all in dACC only): iERN-error neuron spike rate coupling, and spike rates of 
error-integrating neurons. These two signals occurred at different points in time, suggesting 
that they are involved in bridging monitoring and corrective control. 
 
2.4 Discussion 
 

Here we provide direct recordings of single neurons in the human MFC that signal 
errors that are detected endogenously, before external feedback was presented and without 
the presence of an additional sensory signal to indicate task set (such as a stop signal). Error 
neurons were largely distinct from neurons signaling conflict shortly following stimulus 
onset, arguing that the representation of conflict detection and error monitoring in MFC 
are largely distinct. Conflict neurons were also modulated by the state of control: their 
activity differed between error incongruent and correct incongruent trials. This was not the 
case for Type I error neurons nor for error-integrating neurons, highlighting their putative 
roles in monitoring and actively mediating control, respectively. It remains an open 
question whether the error neurons that signal self-monitoring are functionally distinct 
from neurons that monitor external feedback, reward manipulations, or prediction errors 
that have been described in detail in macaques (Ito et al., 2003, Stuphorn et al., 2000, 
Scangos et al., 2013, Matsumoto et al., 2007, Matsumoto et al., 2003, Amiez et al., 2006, 
Ebitz and Platt, 2015, Hayden et al., 2011).  

Despite evidence that the ERN (Gehring et al., 1993, Bonini et al., 2014, Brazdil et 
al., 2005, Godlove et al., 2011, Emeric et al., 2008, Falkenstein et al., 1991) originates from 
within dACC and/or pre-SMA (Dehaene et al., 1994, Debener et al., 2005), its relationship 
with neuronal spiking activity has not been clear. Our report shows that error neuron 
responses predict the amplitude of the iERN in both of these areas. Further, we showed 
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that the iERNs recorded in pre-SMA 1) occurred earlier, 2) had larger amplitude, 3) were 
correlated in both amplitude and latency on a trial-by-trial basis with iERNs recorded 
simultaneously in dACC. These results are consistent with earlier studies (Bonini et al., 
2014, Emeric et al., 2010). Our findings argue that both dACC and pre-SMA contribute to 
the ERN, but at different points in time.  

This pattern of findings is consistent with two interpretations. One interpretation is 
that pre-SMA and dACC both receive inputs carrying error information in parallel, but pre-
SMA receives the information earlier than dACC. This scenario is consistent with an 
influential computational account where synchronized disinhibition of dACC pyramidal 
cells by dopaminergic projections generates the iERN in dACC (Holroyd and Coles, 2002), 
and suggest that in pre-SMA similar disinhibition can also occur, but at earlier points of 
time. But a second possible interpretation is that pre-SMA provides error-related signals as 
an input to dACC, an interpretation which is consistent with a previous report where error-
related evoked potentials in pre-SMA andSMA strictly precede those in the rostral 
cingulate zone (Bonini et al., 2014). Such a feedforward architecture could interpose 
additional relays as error signals are communicated indirectly from pre-SMA to dACC, for 
instance through the basal ganglia (Nachev et al., 2008, Jahanshahi et al., 2015). Future 
experiments utilizing causal manipulations will be necessary to probe the role of this 
putative feedforward connection in error processing.  

Strong coupling between LFP components (here measured by the iERN) and spike 
rates is well documented in sensory cortices, where the coupling is often driven in part by 
common sensory inputs [but see (Kayser et al., 2004)]. However, in brain areas removed 
from direct sensory inputs, such as the hippocampus and inferior temporal cortex, these 
two measures of neural activity diverge and encode information independently (Kreiman 
et al., 2006, Ekstrom et al., 2007, Ekstrom, 2010). The strong and transient ERN-spike rate 
coupling in MFC reported we found is thus notable, because it shows that such 
phenomenon can occur in brain areas whose primary functions are not sensory information 
processing. Evoked potentials such as the ERN are thought to reflect spatial summation of 
large numbers of postsynaptic potentials that synchronize to a substantial degree.  Previous 
work has demonstrated that variation in LFP – spike rate coupling strength is 
commensurate with the level of synchronization between two neurons within a local 
population (Nir et al., 2007) and that the LFP can serve as an index of local information 
content carried by neurons (Kreiman et al., 2006). The correlation between iERN amplitude 
and spike rates of error neurons we find here is likely a reflection of the neuronal 
synchronization that underlies the detection and representation of self-generated errors, 
and/or more effective transmission of error information from other brain structures to the 
MFC. Notably, this relationship was specific to error trials: we found no significant 
correlation between similar deflections in the intracranial LFP during correct trials. It is 
thus likely the case that a separate group of neurons (which we did not describe here) 
receives the synaptic inputs that are synchronized during correct trials.  

PES is one of the most studied consequences of error detection. PES is thought to 
be jointly produced by two types of cognitive control processes. One type is concerned 
with sensory information processing, reflected in the up- and down-regulation of task-
relevant and task-irrelevant sensory areas (Danielmeier et al., 2011, King et al., 2010), as 
well as adjustments to the parameters of parietal sensory integration processes (Purcell and 
Kiani, 2016). The second type is concerned with engagement of response inhibition by 
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error monitoring by MFC. BOLD activity within MFC is correlated with activity in task-
related visual and motor areas, as well as the size of PES (Danielmeier et al., 2011, Kerns 
et al., 2004). Inactivation and lesioning of MFC abolishes PES (Narayanan et al., 2013, 
Kennerley et al., 2006), and individual differences in the white matter integrity of 
inhibitory networks that include pre-SMA (Aron and Poldrack, 2006, Aron et al., 2007, 
Jahanshahi et al., 2015) are correlated with the size of PES (Danielmeier et al., 2011). 
Although these studies unequivocally demonstrate the involvement of MFC in PES, they 
do not provide insight into how MFC neurons communicate error signals to the control 
processes that mediate PES. Here, we show that neuronal synchronization may provide a 
basis for recruiting control by MFC. We find that the strength of the correlation between 
iERN amplitude and the spike rates of error neurons is predictive of PES in dACC (but not 
pre-SMA). This suggests that the more synchronized the dACC error neurons are with 
neighboring neuronal population during errors, the larger the ensuing PES is. Given that 
neuronal synchronization can potentially represent information with high fidelity 
(Rutishauser et al., 2010, Wong et al., 2016) and thus have stronger impact on downstream 
targets (Siegel et al., 2012), our finding suggests that neuronal synchronization may 
underlie dACC-mediated PES.   

Our results suggest that coordinated neural activity can serve as a substrate for 
information routing that enables the performance-monitoring system to communicate the 
need for behavioral control to other brain regions, including those that maintain flexible 
goal information, such as the lateral prefrontal cortex and the frontal polar cortex (Koechlin 
and Hyafil, 2007, Tsujimoto et al., 2010, Mansouri et al., 2017, Voytek et al., 2015). The 
present study offers new insights into the mechanisms of ERN generation and provides 
potential neural targets for validating the use of the ERN as an endophenotype for 
psychiatric illness (Olvet and Hajcak, 2008).  
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2.5 Supplementary materials  
 
2.5.1 Supplementary figures 
 

 
 

Figure S1 Recording electrode, example post-operative structural MRIs and spike sorting quality. 
Related to Figure 1-2.  
(a) The hybrid macro-micro electrode used. Individual neurons are recorded using high-impedance 
microwires (red arrow; diameter 40μ, impedance 400-600kΩ). Field potentials are recorded from the low-
impedance (<2kΩ) macro-contact most adjacent to the micro-wires (blue).   
(b,c) Example axial T1 MRI scans of recording locations used in pre-SMA (b) and dACC (c). Red and blue 
arrowheads indicate tips of microwires and the macro contacts used, respectively. 
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(d-i) Spike sorting quality. Metrics quantifying the individual clusters that we used as putative single-units. 
(d) Histogram of proportion of inter-spike intervals (ISIs) shorter than 3ms. Most of our recorded clusters 
had less than 0.5% of their ISIs smaller than 3ms. (e) Isolation distance of all units for which this metric 
was defined (median 21.5). (f) Histogram of mean spike rates. (g) Histogram of coefficient-of-variation 
(CV2) values of all units. (h) Histogram of the signal to noise ratio (SNR) of the mean waveform peak 
computed for each unit. (i) Pairwise distance between all possible pairs, calculated using the projection test 
(see methods), of units on all wires with at least one cluster isolated. Distance is in unit of standard 
deviation after normalizing the data such that the distribution of waveforms around their mean is equal to 
one. 
 

 
 

Figure S2. Summary of epochs of interest, neuronal categories and distribution of neuronal 
categories separately for each session. Related to Figures 2-3. 
(a) Epochs used to analyze spiking activity. Thick lines indicate the extent of the time windows. Length of 
each analysis epoch is indicated in brackets on the right. 
(b) Summary of neuronal categories identified in dACC and pre-SMA. The second level lists all neuronal 
types and the time window (brackets) in which we identified more neurons than expected by chance. The 
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third level lists all sub-types (Type I or II) which were identified at levels higher than expected by chance. 
The contrasts listed refer to the spike rates during the trial types mentioned (e.g. ‘error > correct’ means 
spike rates in the error trials were larger than those in the correct trials for this particular type of neurons). 
(c-d) Percentage of significant neurons identified in dACC (c) and pre-SMA (d) that qualified as error or 
error-integrating neurons across recording sessions. Error bars represent ± s.e.m across sessions, solid and 
broken horizontal lines, the mean and the 97.5th percentile of the null distribution of the number of neurons 
expected by chance as estimated using permutation tests.  
 ‘***’ marks groups of neurons which were observed more than expected by chance with p values ≤ 0.001.   
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Figure S3. Signatures of conflict and control. Related to Figure 3. 
(a) Correlation between RT and the spike rate of Type I error neurons identified in dACC (top) and pre-
SMA (bottom) on the same error trials. There was no significant correlation (p > 0.04, t(98) = 0.86, t-test) 
in either area. 
(b) Same as in (a) but for Type II error neurons. There was no significant correlation (p > 0.05, t(117) = -
0.41, t-test) in either area. 
(c) Spike rate of Type I error neurons did not differentiate significantly between correct congruent and 
incongruent trials in both dACC (upper; p = 0.92, z value = 0.1) and pre-SMA (lower; p = 0.18, z value = 
1.33). Each data point shown is one neuron. Spike rates were quantified within a bin of 500ms size starting 
at stimulus onset and normalized by the baseline spike rates ([-700ms -200ms] relative to stimulus onset). 
Blue horizontal bars represent median values of the population.  
(d) Same as in (c) but for Type II error neurons. Spike rate of Type II error neurons did not differentiate 
significantly between correct congruent and incongruent trials in both dACC (upper; p = 0.61, z value = 
0.51) and pre-SMA (lower; p = 0.91, z value =0.12). 
(e) Number of conflict neurons identified in dACC (green) and pre-SMA (brown). For the definition of 
Type I and II, see Methods. In dACC, both Type I and Type II conflict neurons have significantly greater 
number than that is expected by chance (p = 0.03 for Type I, p < 0.001 for Type II conflict neurons, 
permutation test). Gray bar shows the mean value of the empirical null distribution. Error bar shows the 
95th percentile of the empirical null distribution. 
(f) Average spike rates as a function of time for Type I conflict neurons (top), Type II conflict neurons 
(middle) in dACC and conflict neurons in pre-SMA (bottom). The spike rates were normalized by the 
baseline ([-700ms -200ms] relative to stimulus onset). Gray bar marks the onset of stimulus.  
(g) Signature of control. Average spike rates as a function of time (left) and within the post-stimulus epoch 
([0 500ms] relative to stimulus onset) of Type II error neurons in dACC for error incongruent vs. correct 
incongruent trials. The spike rates within the post-stimulus epoch differentiated error incongruent and 
correct incongruent trials significantly (p = 0.0062, z value = -2.74, Wilcoxon’s signed rank test). Spike 
rates were normalized by the baseline ([-700ms -200ms] relative to stimulus onset). Gray bar marks the 
onset of stimulus. Blue bars on the scatter represents median of the population.  
(h) Same as in (g) but for Type II error neurons in pre-SMA. The spike rates within the post-stimulus epoch 
did not differentiate error incongruent and correct incongruent trials significantly (p = 0.26, z value = -
1.12). 
(i) Same as in (g) but for Type I error neurons in dACC (left; p = 0.41, z value = 0.82, Wilcoxon’s signed 
rank test) and pre-SMA (right; p = 0.26, z value = -1.12). 
(j) Same as in (g) but for Type I conflict neurons in dACC. The spike rates within the post-stimulus epoch 
differentiated error incongruent and correct incongruent trials significantly (p = 0.006, z value = -2.75). 
(k) Same as in (g) but for Type II conflict neurons in dACC. The spike rates within the post-stimulus epoch 
differentiated error incongruent and correct incongruent trials significantly (p < 0.001, z value = 3.54). 
(l) Same as in (g) but for conflict neurons in pre-SMA. The spike rates within the post-stimulus epoch 
differentiated error incongruent and correct incongruent trials significantly (p = 0.034, z value = -2.12). 
(c,f) Orange represent correct incongruent trials and blue represents correct congruent trials. 
(g-l) Orange represents correct incongruent trials and magenta represents error incongruent trials. 
‘*’, ‘**’, ‘***’ mark groups of neurons which were observed in proportions different then in the overall 
population with p values ≤ 0.05, ≤ 0.01 and ≤ 0.001   respectively (for a-b, t-test; for c,g-l, Wilcoxon’s 
signed rank test). ‘n.s’ marks not significant (p > 0.05). 
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Figure S4. Response of error neurons and the iERN did not differ by error types (congruent 
error/incongruent error). Related to Figure 3 and 5. 
(a) Average spike rates as a function of time for error neurons (Type I and II) in the dACC, normalized by 
the baseline. Right, Type I error neurons; Left, Type II error neurons. Response is aligned at button press 
(right). Trials are grouped by congruence (colors; magenta for error incongruent trials and orange for error 
congruent trials).  
(b) Single-neuron ROC analysis of error neurons (both Type I and II) in dACC. The ability of spike rates in 
the post-button press time window ([0 1]s relative to button press) to differentiate error incongruent and 
error congruent trials each from correct trials did not differ significantly  (AUC values computed from 
differentiating between correct/congruent error, between correct/incongruent error, 0.59±0.02 vs. 0.58 
±0.02 in dACC, 0.54±0.02 vs. 0.53±0.02 in pre-SMA; p > 0.5 for both areas, Wilcoxon rank sum test).  
(c) Same as in (a), but for pre-SMA.  
(d) Same as in (b), but for pre-SMA. 
(e,f) iERN did not differ between incongruent and congruent errors (iERN amplitude comparisons: p = 0.8, 
z = 0.25 for dACC, p = 0.93, z =-0.09 for pre-SMA, signed rank test. Theta power comparisons: p = 0.72, z 
= -0.35 for dACC, p = 0.93, z = -0.09 for pre-SMA, signed rank test; Slow theta power comparisons; p = 
0.49, z = -0.68 for dACC, p = 0.19, z = -1.3 for pre-SMA, signed rank test). Shown are the ERN amplitudes 
(e), theta and slow-theta power (f) for dACC and pre-SMA. Color code, same as in (a-d). Each dot shows 
one session, horizontal line shows the mean.  
(g) The Stroop effect was significant on error trials. Average reaction times in the error incongruent trials 
were significantly longer than in the error congruent trials (p < 0.001, sign rank test). Errors thus did not 
occur due to an absence of conflict processing.  
‘***’ mark statistical comparison with p value ≤ 0.001. ‘n.s’ marks not significant (p > 0.05). 
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Figure S5. Waveform analyses of error and error-integrating neurons. Related to Figure 2. 
(a-h) Distribution of trough-to-peak time (left), trough-to-peak time as a function of spike rates (middle) for 
each recorded neuron of a given group (described below). The rightmost plot shows the average spike 
waveforms of all neurons in the group, colored either blue or red depending on whether their trough-to-
peak time was longer (blue) or shorter (red) than 0.5ms. 
(a) All recorded neurons in dACC. The trough-to-peak distribution is significantly bimodal (p < 0.001).  
(b) All Type I error neurons in dACC. The distribution of trough-to-peak time is not significantly different 
from unimodal (p = 0.05).  
(c) All Type II error neurons in dACC. The distribution of trough-to-peak time is not significantly different 
from unimodal (p = 0.55).  
(d) All error-integrating neurons in dACC. The distribution of trough-to-peak time is not significantly 
different from unimodal (p = 0.16).  
(e) All recorded neurons in pre-SMA. The distribution of trough-to-peak time is significantly bimodal (p < 
0.001).  
(f) All Type I error neurons in pre-SMA. The distribution of trough-to-peak time is significantly bimodal (p 
= 0.004). 



 54 

(g) All Type II error neurons in pre-SMA. The distribution of trough-to-peak time is significantly bimodal 
(p = 0.32). 
(h) All error-integrating neurons in pre-SMA. The distribution of trough-to-peak time is significantly 
bimodal (p = 0.005). 
(i) Proportions of putative pyramidal neurons (trough-to-peak time > 0.5ms) and interneurons (trough-to-
peak time < 0.5ms) in dACC. Type I error neurons and error-integrating neurons have a significantly lower 
proportion of putative inhibitory neurons than the rest of the dACC population (15% and 7% vs 25% in the 
overall population, p = 0.05, odds ratio = 1.81 and p = 0.0074, odds ratio = 4.41, respectively; Fisher’s exact 
test).  
(j) Same as in (i) but for pre-SMA. Only the Type II error neurons had a significantly lower proportion of 
putative inhibitory neurons than the rest of the pre-SMA population (12% vs 26% in the overall population, 
p = 0.0034, odds ratio = 2.58, Fisher’s exact test). 
 
‘*’, ‘**’ mark groups of neurons which were observed in proportions different then in the overall 
population with p values ≤ 0.05, ≤ 0.01, respectively (Hartigan’s dip test). ‘n.s’ marks not significant (p > 
0.05).  
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Figure S6. Stimulus-onset aligned intracranial event-related responses, statistics for time-frequency 
analysis of iERN, and scalp ERN control. Related to Figure 5. 
(a) The same example single-trial event-related potential data as shown in Fig. 5a, but aligned at stimulus 
onset (t=0). The trials were sorted by reaction time (black lines; RT increases from top to bottom) and trial 
types (upper: error trials, lower: correct trials).  Color bar represents ERP amplitude. Note the prominent 
ERP activities following button press (black line) as well as shortly after stimulus onset (blue). Gray bar 
represents stimulus onset. 



 56 

(b) Average of data shown in (a) by trial types (colors; red for error, green for correct), aligned at stimulus 
onset (t = 0). Note that the sensory-evoked potential did not differ between trial types. Gray bar represents 
stimulus onset. 
(c-d) Scalp-EEG recordings of non-surgical control subjects (N = 12) performing the same task reproduced 
the classical error-related negativity (ERN) and response-locked theta power (Compare with Fig. 5a-b).  
(c) ERN (negative peak following button press, red) is significantly larger in amplitude in error compared 
to in correct trials (blue, t (11) = 4.53, p < 0.001). Gray bar represents button press. 
(d) Theta power as a function of time. Error-related theta power (red) is significantly larger compared to in 
correct trials (green) after button press (t (11) = 6.47, p < 0.001). Gray bar represents button press. 
(e) Power in the 2-5Hz band (0 to 500ms following button press) increased significantly more in error trials 
than in correct trials in both dACC (p < 10-5, z value = 6.17) and pre-SMA (p < 10-5, z value = 7.3). By 
contrast, hippocampal theta power also differed, but these differences were of opposite sign (p = 0.01, z = -
2.55 for theta power, p = 0.01, z = -2.56 for slow theta power). Each dot shows one session, horizontal bar 
shows mean.  
(f) Same as in (e) but for power in the 5-10Hz band. 
(g) Mean Pearson’s correlation coefficients between iERN amplitude and slow theta (2-5Hz) power are 
significantly larger than zero over all electrodes in dACC (mean correlation= 0.44, p < 10-10, t(78) = 19.2) 
and pre-SMA (mean correlation =  0.48, p < 10-10, t(79) = 19.4, t(79) = 11.52, t-test versus 0) Red vertical 
bars show population means. 
(h) Same as in (g) but for correlations between iERN amplitude and theta (5-10Hz) power in dACC (mean 
correlation = 0.25, p < 10-10, t(78) = 9.7) and pre-SMA (mean correlation = 0.33, p < 10-10, t(79) = 11.52, t-
test versus 0). 
(i) Induced theta power, calculated after subtracting the ERP for each condition separately. Spectrograms 
shown are averaged across all sessions, see panel h for single-session statistics. 
(j) Induced power was significantly correlated with the iERN amplitude in the slow theta (2-5Hz) band in 
both dACC (mean correlation = 0.21, p < 10-10, t(78) = 8.41) and pre-SMA (mean correlation = 0.24, p < 
10-10, t(79) = 9.02, t-test versus 0) in pre-SMA.   
(k) Induced power was significantly correlated with the iERN amplitude in the theta (5-10Hz) band in both 
dACC (mean correlation = 0.25, p < 10-10, t(78) = 9.7) and pre-SMA (mean correlation = 0.33, p < 10-10, 
t(79) = 11.52).  
(l) Latency difference between pairs of iERNs recorded simultaneously in dACC and pre-SMA. The 
median latency difference of 18ms is significantly different from zero (p < 10-5, z value = 19.27, 
Wilcoxon’s signed rank test).  
(m) Amplitude difference between pairs of iERNs recorded simultaneously in dACC and pre-SMA. The 
median latency difference of 11 µV is significantly different from zero (p < 10-5, z value = 20.14, 
Wilcoxon’s signed rank test). 
(n) Comparisons of spike latencies and iERN latencies (replotting of data shown in main figure on different 
scale).  
‘*’, ‘**’, ‘***’ mark statistical significance for p ≤ 0.05, ≤ 0.01 and ≤ 0.001 respectively. 
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Figure S7. Regression coefficients of GLM models. Related to Figure 6-7. 
(a) Regression coefficients for the fixed effect of spike rates (within [0 1s] after button press). The iERN 
amplitude was significantly correlated with spike of Type I error neurons in both dACC (p = 0.008, 
likelihood ratio = 6.56, likelihood ratio test) and pre-SMA (p = 0.012, likelihood ratio = 5.81, likelihood 
ratio test).  
(b) Same as in (a) but for Type II error neurons. The iERN amplitude did not correlate significantly with 
spike rates (within [0 1s] after button press) in either dACC (p = 0.19, likelihood ratio = 1.64) nor pre-SMA 
(p = 0.07, likelihood ratio = 3.36, likelihood ratio test) 
(c) Regression coefficients for the fixed effect of spike rates (within [0 1s] after button press). The CP 
(‘correct potential’) was not correlated with the spike rates of any types of error neurons in either dACC 
(for Type I error neurons, p = 0.34, likelihood ratio = 0.92; for Type II error neurons, p = 0.74, likelihood 
ratio = 0.11, likelihood ratio tests) or pre-SMA (for Type I error neurons, p = 0.88, likelihood ratio = 0.023; 
for Type II error neurons, p = 0.48, likelihood ratio = 0.49, likelihood ratio test). 
(d) Regression coefficients of the interaction term between the spike rate (within [0 1s] after button press) 
of the Type I error neurons and PES levels. The correlation between iERN amplitude and the spike rates of 
the Type I error neurons in dACC was stronger when PES was larger (p = 0.009, likelihood ratio = 6.56, 
likelihood ratio test). The same relationship did not hold significantly for Type I error neurons in pre-SMA 
(p = 0.5, likelihood ratio = 0.44, likelihood ratio test). 
(e) Same as in (d) but for Type II error neurons. The strength of correlation between iERN amplitude and 
the spike rates of the Type II error neurons did not vary significantly between PES levels in either dACC (p 
= 0.67, likelihood ratio = 0.18, likelihood ratio test) or pre-SMA (p = 0.48, likelihood ratio = 0.5, likelihood 
ratio test).  
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(f) Regression coefficients of the fixed effect of PES levels. The spike rates of the error-integrating neurons 
were strongly correlated with PES in dACC (p < 0.001, likelihood ratio = 15.76, likelihood ratio test), but 
only marginally so in pre-SMA (p = 0.07, likelihood ratio = 3.31, likelihood ratio test).  
Error bars represent 95% confidence interval obtained from parametric bootstrapping. ‘*’, ‘**’, ‘***’ mark 
statistical significance with p values ≤ 0.05, ≤ 0.01 and ≤ 0.001 respectively using the likelihood ratio test. 
‘n.s’ marks not significant (p > 0.05).  
 
2.5.2 Supplementary Tables 
 
Table S1. Subjects recorded. Related to Figure 1. 
 
List of all subjects recorded.  

ID Sex Age  Epi Diagnosis Macro 
recording 
performed 

Sessions performed 

H11 M 16 right lateral frontal N 2 
H14 M 31 Bilateral indep. temporal N 2 
H16 F 34 right frontal N 2 
H17 M 19 left inferior frontal N 3 
H18 M 40 Right temporal N 1 
H19 M 34 Left frontal N 1 
H21 M 20 Not localized N 2 
H28 M 23 Right mesial temporal N 1 
H31 M 30 Right temporal N 1 
H41 M 19 Right posterior temporal N 1 
H42 M 29 Not localized N 1 
H49 F 54 Right amygdala and hippocampus N 2 
C24 F 47 Not localized N 2 
C25 F 36 Bilateral indep. Temporal N 2 
C26 F 56 Right temporal N 1 
C27 M 45 Left temporal N 1 
C29 M 19 Left temporal neocortical N 4 
C31 M 31 Left temporal neocortical N 3 
C32 M 19 Not localized N 1 
C33 F 44 Right temporal N 4 
C34 M 70 Bilateral temporal N 5 
C35 M 63 Left temporal neocortical Y 6 
C36 M 45 Right Hippocampus Y 6 
C37 F 33 Right Hippocampus Y 11 
C39 M 26 Right insula Y 6 
C40 M 25 Right motor cortex Y 4 
C42 F 25 Not localized Y 5 
C47 M 33 Right mesial temporal Y 2 
C48 F 32 Left medial temporal Y 1 

 
Table S2. Percentage and average spike rate of neurons. Related to Figures 2-3. 
Summary of percentages and average spike rates (±s.d.) of neuronal categories. Neurons 
of the types marked as “NA” were found not more than expected by chance.  

dACC Error neurons Error-integrating 
neurons 

Types I II I II 
Spike rate  
(Hz, ±s.d) 

2.61±2.8 3.24±2.2 2.77±2.1 NA 
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Percentage 
(%) 

24.8 8.8 11.9 NA 

 
pre-SMA Error neurons Error-integrating 

neurons 

Types I II I II 
Spike rate  
(Hz, ±s.d) 

2.47±2.3 3.6±3.3 NA 3.47±3.6 

Percentage 
(%) 

27.4 18.6 NA 13.6 

 
 
2.6 Experimental Methods and Subject Details 
 
Depth electrode subjects. 29 patients (see Table S1 for age and gender) who were 
evaluated for possible surgical treatment of epilepsy using implantation of depth electrodes 
volunteered for the study and gave written informed consent. We only included patients 
with well-isolated single-neuron activity on at least one electrode in the areas of interest.  
 
 
Scalp EEG subjects. 12 naïve non-surgical control subjects participated (seven females).  
All participants gave informed consent, and the protocol was approved by the Caltech 
Institutional Review Board. A BioSemi Active2 system collected EEG data and laptop 
event triggers at 1024 Hz. Electrode montages were in Biosemi’s standard 64 or 128 
channel cap arrays, with additional electrodes for right eye vertical EOG.   
 
Method Details 
Task. Subjects performed a speeded version of the classical color-word Stroop task. In 
each trial, the stimulus was chosen randomly to be one of the three words (red, green and 
blue) printed in either red, green, or blue color (see Fig. 1a). Subjects were instructed to 
indicate the color the word was printed in as quickly as possible (ignoring the meaning of 
the word) by pressing one of the three buttons on an external response box (RB-740, Cedrus 
Corp., San Pedro, CA). The stimulus was replaced with a blank screen immediately after 
the button press. One second after button press, subjects were given one of three types of 
feedback: correct, incorrect, or “too slow”. An adaptive staircase procedure was used to 
establish a reaction time threshold such that 10-15% of trials were rated as “too slow” 
regardless of the accuracy of the response. Correct trials with ‘too slow’ feedback were not 
considered as error trials. This dynamic threshold was implemented to encourage faster 
responses. The inter-trial interval varied randomly from 1-1.5s. The task was administered 
in blocks of 90 trials, 30-40% of which were incongruent (randomly intermixed). Patients 
performed 3 – 6 blocks in a session. Trials with RT larger than three standard deviations 
above the mean were excluded for all analyses. The task was implemented using the 
Psychophysics Toolbox (Brainard, 1997). Scalp EEG participants performed the same task 
as described above (350 trials total). 
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Electrophysiology. We recorded from up to 4 electrodes in each subject (bilateral dACC 
and pre-SMA), each with eight high-impedance microwires at the medial end and eight 
low-impedance macro-contacts along the shaft (Fig. S1a; AdTech Medical Inc.). Here, we 
used only the most medial macro contact (which is located within the dACC or the pre-
SMA) and all microwires. We recorded the broadband 0.1Hz-9kHz continuous 
extracellular signal with a sampling rate of 32-40kHz from each microwire and with a 
sampling rate of 2kHz from each macro-contact (ATLAS, Neuralynx Inc., Bozman, MT). 
One microwire on each electrode served as a local reference (bi-polar recording).  
 
 
Electrode localization. For each patient, two structural MRI scans were obtained: one 
before and one after implantation. Electrodes were localized based on these scans in each 
individual patient. Only electrodes that could be clearly localized to the dACC (cingulate 
gyrus or cingulate sulcus; for patients with a paracingulate sulcus, electrodes were assigned 
to the dACC if they were within the paracingulate sulcus or superior cingulate gyrus or the 
pre-SMA (superior frontal gyrus) were included. We also merged the subject-specific MRI 
onto an Atlas brain, which was used only for visualization purposes (all localization was 
based on individual MRIs without using an Atlas). We described the analysis pipeline for 
transforming the post-implantation MRI into the same space as a MNI152-based atlas as 
in a previous study(Minxha et al., 2017).    
 
 
Spike detection and sorting. We filtered the raw signal with a zero-phase lag filter in the 
300-3000Hz band. Spikes were detected and sorted using a template-matching algorithm 
(Rutishauser et al., 2006). We carefully evaluated isolation quality of units and analyzed 
only well-isolated single units. We used the following criteria (see Fig. S1d-i): i) 
percentage of ISIs smaller than 3ms, ii) SNR of the waveform, calculated as the ratio of 
the peak amplitude of the mean waveform of each cluster and the standard deviation of the 
noise, iii) the pairwise projection distance as provided by the projection test (Pouzat et al., 
2002) between all pairs of neurons isolated on the same wire, iv) the modified coefficient 
of variation of variability in the ISI (CV2), and v)  the isolation distance (Schmitzer-Torbert 
et al., 2005, Harris et al., 2000), which we computed as previously defined (Rutishauser et 
al., 2006). Channels with inter-ictal epileptic events were excluded. All research protocols 
were approved by the institutional review boards of Cedars-Sinai Medical Center, 
Huntington Memorial Hospital and the California Institute of Technology. 
 
 
Quantification and Statistical Analysis 
Behavioral analyses. We constructed a mixed-effect one-way ANOVA model with nested 
design to test for the Stroop effect. We entered reaction time (RT) as the response variable, 
the stimulus type (‘congruent’ or incongruent’) as the fixed effect and session numbers 
nested within subject ID as a random effect. To test for post-error slowing (PES) effects, 
we used two complementary approaches. First, we constructed a mixed-effect one-way 
ANOVA model with nested design, with RT as the response variable, the previous outcome 
and current trial stimulus type (‘congruent’ or ‘incongruent’) as the fixed effects and the 
session numbers nested within subject ID as the random effect. For this model, we also 
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included an interaction term between the two fixed effects. Second, we identified 
quadruplets of trials that formed a ‘CCEC’ sequence (‘C’, correct trial. ‘E’, error trial) and 
the stimulus types (congruent or incongruent) were matched for the second and fourth trial 
within this sequence. This ensured that the PES measure was not confounded by the Stroop 
effect. For each quadruplet, we then defined the trial-by-trial PES as the difference in RT 
between the fourth and the second trial in this sequence. We then compared the mean of 
the trial-by-trial PES extracted this way with zero using a t-test to confirm the statistical 
significance of PES. This PES measure was used for subsequent iERN amplitude-error 
neuron spike rates correlation analyses and spike-field coherence analyses. This method 
restricted the post-correct trials to a subset that directly preceded the post-error trials to 
avoid confounding factors due to non-specific RT slowing, a caveat previously described 
(Dutilh et al., 2012).  
 
 
Selection of neurons. We only considered neurons that had a mean spike rate > 0.5 Hz. 
We sought neurons whose spike rate differed significantly between trial types of interest 
in two epochs that were defined with respect to stimulus onset or action onset (button 
press): (i) neurons signaling errors (‘error neurons’), (ii) neurons signaling preceding trial 
accuracy (‘error-integrating neurons’), (iii) neurons signaling conflicts (‘conflict neurons’). 
We fit a generalized linear model (GLM) to each neuron (using matlab function 
“fitglm.m”) and then evaluated whether the model explained significant variance to 
determine whether a neuron was selective or not for a variable of interest. We entered the 
spike count in the epoch of interest as the response variable. We entered two predictor 
variables: i) a dummy variable coding for either trial outcome or previous trial outcome, 
and, ii) RT (to control for RT effect). A neuron was significantly selective for the outcome 
predictor variable if the p value for the first predictor was below 0.05 (p value as returned 
from the fitglm function). The epoch of interest for the error neurons was a 1 sec epoch 
starting immediately after button press (‘post-action epoch’ or ‘postBP epoch’, see Fig. 
S2a), comparing between error and correct trials. Only sessions with at least 7 error trials 
were considered for selecting error neurons, a minimum number of errors that has been 
demonstrated to be sufficient for stable error signals (Olvet and Hajcak, 2009). The epoch 
of interest for error-integrating neurons was -0.5 to 0.5s (1s length) centered on stimulus 
onset (‘peri-stimulus epoch’, see Fig. S2a), comparing between EC and CC trials. The 
epoch of interest for conflict neurons was 0 to 0.5s after stimulus onset (‘post-stimulus 
epoch’, see Fig. S2a), comparing between correct congruent and correct incongruent trials.  
 Each group of neurons was further divided into two sub-categories according to the 
sign of the spike rate difference (the sign of the regression coefficient of the outcome 
variable predictor; Type I and II, respectively; Fig. S2b). To estimate chance levels of this 
selection procedure, we repeated the selection procedure (two-tailed bootstrap) 1000 times 
after randomly permuting the labels to estimate a null distribution (see Fig. 3a; for conflict 
neurons, see Fig. S3e). We only analyzed groups of neurons with a size larger than expected 
by chance (p < 0.05).  
 Single-neuron and group-averaged post-stimulus time histograms (PSTHs) were 
constructed using non-overlapping bins of 200ms width. PSTH plots were not smoothened 
and data points were plotted with respect to the center of the bin. Before averaging across 
neurons, spike rates for each neuron were standardized by subtracting the mean and 
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dividing with the standard deviation of the baseline (-0.7 to -0.2s relative to the stimulus 
onset).   
 
 
Single-neuron ROC analysis. For each neuron, a receiver-operating characteristic (ROC) 
curve was constructed based on the spike rate in the time windows of interest. The ROC 
was parametrized by a threshold that varied from the lowest to the highest spike rates in 25 
linearly-spaced steps. For each threshold, trials were classified as ‘label 1’ or ‘label 2’ 
according to whether the spike rate in a given trial was higher or lower than this threshold. 
True positive rates (‘TPR’) and false positive rates (‘FPR’) were then derived by comparing 
the assigned labels with the true labels for each threshold. The area under the curve (AUC) 
of the ROC was used as a summary metric. In order to aggregate AUCs from different 
neurons, we always assigned the trial type with higher spike rates in the ROI to ‘label 1’. 
We estimated the AUC values expected by chance by a permutation test.  

For the error neurons (Both Type I and Type II, Fig. 3f), we computed AUC values 
using error- and correct-trial spike rates in the post-action epoch (0-1s relative to button 
press). For the error-integrating neurons, we computed AUC values for the spike rates 
estimated from the following three epochs: (i) 0-1s relative to feedback onset (error vs 
correct) in the preceding trials, (ii) -0.5-0.5s relative to stimulus onset (‘peri-stimulus 
epoch’) in the current trials (EC vs. CC) and (iii) 0-1s after button press in the current trials 
(‘postBP epoch’; error vs correct).  

 
Temporal profile of neuronal response. We used a sliding-window GLM to quantify the 
temporal profile of information conveyed by neuronal spike rates of a single neuron about 
trial outcome (error vs. correct; Fig. 4a). We first used a ±200ms bin moved across the 
spike train on each trial in successive 10ms steps. For each of these bins, we entered the 
spike count as the response variable and the trial outcome (error or correct) as one predictor 
variable, and RT as another predictor variable. This is because spike rates of the neurons 
in both dACC and pre-SMA can carry a component that covariates with reaction time (RT) 
and the effect of trial outcome on spike rates can be isolated after regressing out the RT 
effect in this principled way. For each bin-wise GLM model, the effect size of the trial 
outcome was quantified by a likelihood ratio, derived from a likelihood ratio test 
comparing the full model with null model (full model minus the trial outcome predictor). 
We used the time course of the likelihood ratio to estimate for each neuron the point of 
time at which it first differentiated between trial outcomes (error vs correct; Fig. 4b). These 
differential latencies were determined as the first point of time at which the effect size was 
significant by the likelihood ratio test (p < 0.05) for a consecutive 15 time steps (i.e 150 
ms). 

We used a cross-validated partial correlation analyses to determine the time 
window (post-action vs. post-feedback) in which a population of neurons conveyed the 
most information about error (Fig. 3g). Here, a Spearman’s partial correlation coefficient 
was computed by correlating the spike rates of error neurons in the postBP epoch, and the 
trial outcome dummy variable (error coded as 1, correct coded as 0), while controlling for 
RT on the same trial. Statistical comparisons between group averages of partial correlation 
coefficients in different time windows were made using Wilcoxon’s rank sum test. 
However, the group averages in the same time window used to previously select neurons 
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is biased towards larger values. Here, we circumvented this problem by using cross 
validation to assure that the group averages were computed from out-of-sample data not 
used for selection. For this, we performed 200 runs of cross validation. In each run, we 
randomly subsampled 80% trials for selecting neurons and used the remaining 20% of trials 
to compute the partial correlation coefficients between spike rates and the relevant trial 
variable (levels of stimulus congruence or outcomes).  

 
Single-trial spike train latency. We estimated the onset latency in individual trials using 
Poisson spike-train analysis (Fig. 4c). This method detects points of time at which the 
observed inter-spike intervals (ISI) deviate significantly from that assumed by a constant-
rate Poisson process. This is achieved by maximizing a Poisson surprise index (Hanes et 
al., 1995). We used the average spike rate of each neuron as the baseline rate of the 
underlying Poisson process. Since the error signal is related to action completion, we 
required that the detected bursts of spikes ended after the action was completed to exclude 
activation unrelated to button press. We included spikes in a window 300-2000ms after 
stimulus onset. The statistical threshold for detecting an onset was p < 0.01. Repeating the 
same procedure with a threshold of p < 0.001 did not affect our conclusions.  
 
Single-trial iERN amplitude and latency extraction. We determined the amplitude and 
latency of the iERN on individual trials using the following algorithm. First, for each 
electrode we determined the peak position of the average iERN waveform within a time 
window of [-50 200]ms relative to button press. We then defined a time window of 200ms 
centered on the peak of the average iERN as the region of interest for single-trial 
estimation. For each trial, we used ‘findpeak’ (MATLAB) to identify all local negative 
peaks within this time window and then picked the local peak closest to the peak position 
of the averaged iERN. This approach determines the contribution of each single trial to the 
average iERN. Since the timing of the iERN is well understood and known (from the 
average), the negative peak closest in time has the highest likelihood of being the true 
single-trial iERN signal. The point of time (relative to button press) and voltage value of 
this negative-going peak was then used as the single-trial iERN latency and amplitude. In 
Fig. 7a, we assessed whether iERN amplitudes differed between PES levels using a PES 
modulation index computed from the iERN amplitudes. For this, we first separate the error 
trials into two groups: one that leads to PES values larger than the median value, and one 
that leads to PES values smaller than the median value (of this experimental session). We 
then compute the mean iERN amplitude across these two groups of error trials separately. 
The PES modulation index is equal to the difference of these two mean values divided by 
their sum.  
 
Single-trial CP amplitude and latency extraction. We determined the amplitude and 
latency of the CP on individual trials using the following algorithm. First, for each 
electrode we determined the peak position of the average iERN waveform within a time 
window of [-50 200]ms relative to button press. We then defined a time window of 200ms 
centered on this average CP peak position as the region of interest for single-trial 
estimation. For each trial, we used ‘findpeak’ (MATLAB) to identify all local positive 
peaks within this time window and then picked the local peak closest to the peak position 



 64 

of the averaged CP. The point of time and voltage value of this positive-going peak was 
then used as the single-trial CP latency and amplitude. 
 
ROC analysis of iERN amplitude. For each electrode, a receiver-operating characteristic 
(ROC) curve was constructed based on the voltage values extracted by the iERN extraction 
algorithm (see above) on error and correct trials (but not CP values that are extracted by a 
different algorithm). The ROC was parametrized by a threshold that varied from the lowest 
to the highest voltage values in 25 linearly-spaced steps. For each threshold, trials were 
classified as ‘label 1’ or ‘label 2’ according to whether the voltage value on a given trial 
was higher or lower than this threshold. True positive rates (‘TPR’) and false positive rates 
(‘FPR’) were then derived by comparing the assigned labels with the true labels for each 
threshold. The area-under-the-curve (AUC) of the ROC was used as a summary metric and 
characterizes how well the iERN amplitude on a given trial is indicative of whether the 
response was correct or incorrect.  
 
Time-frequency analysis of iEEG signal. We used the Hilbert transform to generate time-
frequency representations of the iEEG signal. The continuous raw signal (for the entire 
task) was first down-sampled from 2kHz to 500Hz and then filtered with fourth-order 
Butterworth filters centered at 28 linearly-spaced frequencies between 1.2 to 11.7Hz. We 
used ‘filtfilt.m’ (MATLAB) to ensure zero-phase distortion and then Hilbert-transformed 
the filtered data to obtain the corresponding instantaneous amplitude and phase values. 
Next, we segmented this signal into epochs with respect to time of stimulus onset or button-
press separately. Epochs with raw voltage amplitudes larger than 150uV were excluded 
(<1% of epochs were excluded). Power estimates for each frequency bins were generated 
by squaring the corresponding instantaneous amplitude, averaged across trials and then 
combined to form a time-frequency representation. For this, we equalized the trial number 
and RT across conditions. For normalization, time-frequency spectrograms were divided 
by the corresponding baseline power for each frequency band and log-transformed into 
decibels (dB). Baseline power was estimated by averaging across all trials in the pre-
stimulus epoch (-0.7s to -0.2s relative to stimulus onset). To test for a correlation between 
iERN amplitude and theta-band power, we computed the Spearman’s rank correlation 
coefficient for each session and tested the mean of correlation coefficients versus zero. To 
analyze induced power, we repeated above analyses after subtracting event-related 
potentials. For this, we first computed the event-related potentials and then subtracted these 
from each trial for each condition (error and correct trials) separately.  
 
Multi-level models. We constructed linear multi-level models (Aarts et al., 2014, Winter, 
2013) to test for relationships between RT, iERN amplitude, and error neuron spike rates. 
For all of the following analyses, we used only data from error trials. For Fig. 6a, in the 
bin-wise model we entered iERN amplitude as the response variable, spike counts in each 
±300ms bin (the center of the bin moved from -0.5s to 2s relative to button press in steps 
of 10ms) and RT as the fixed effects, session number as the random intercept and cell 
number nested within subject ID as the random slope for the effect of spike counts. For 
Fig. 6c, we entered iERN amplitude as the response variable, RT as the fixed effect, session 
number as the random intercept and session number nested within subject ID as the random 
slope for the effect of RT. For Fig. 7b, the model setup is the same as that in Fig. 6a except 
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that we added a dummy variable (‘PES levels’) indicating whether an error trial 
corresponds to larger (assigned “1”) or smaller (assigned “0”) PES than the median PES 
(of the session) and estimated it as the main effect and its interaction with the spike counts. 
For Fig. 7c, the bin-wise model has the spike rates of error-integrating neurons within each 
±300ms bin as the response variable, the PES level and RT as the fixed effects and session 
number nested within subject ID as the random slope for the effect of RT. For Fig. S7d, 
the spike counts of error neurons used in the models were all within the postBP epoch ([0 
1s] after button press). The statistical significance of all the models described above was 
evaluated by a model comparison approach(Winter, 2013). Using the likelihood ratio test, 
we derived the likelihood ratio by comparing the full model and a null model obtained from 
the full model by removing the effect of interest, leaving all the other fixed or random 
effects unchanged. The log likelihood ratio distributes asymptotically as a chi-squared 
distribution and a theoretical p-value can be computed. For Fig. 6a and 7b-c, we performed 
cluster-based permutation test to control for multiple comparison (Maris and Oostenveld, 
2007). To generate an empirical null distribution (1000 permutations) of likelihood ratio 
for each bin, we permuted the iERN amplitude data so that each iERN amplitude no longer 
matched with the spike rate data, while keeping the rest of the model unchanged. We then 
derived the likelihood ratio using the permuted data by the same model comparison 
approach. During each iteration, we thresholded the likelihood ratio at the value of 3.84 to 
identify connected clusters, and then computed the sum of likelihood ratio from each 
cluster and took the maximum of these sums as the test statistic. The true statistic for the 
cluster (computed using original un-permuted data) was finally compared with the 
empirical null distribution to derive a p-value.  
 
Scalp EEG – Analysis. Data were analyzed using Brainstorm 3 (Tadel et al., 2011).  Data 
was re-referenced to average, and then band-pass filtered between 1-16 Hz.  Eye-blinks 
were automatically marked and artifacts removed via peak detection in the VEOG and 
signal space projection algorithms.  Button-press events were added to the EEG record 
based on the stimulus onset triggers and precise reaction times recorded by the response 
box (RB-740, Cedrus Inc.). Trial epochs were baseline corrected by the mean potential 
from -0.7s to -0.2s relative to button-press. To balance correct and error trials in number 
and reaction time, each subject’s correct trials were subsampled by selecting the trials with 
the RTs most closely matching each error trials’ RTs. ERPs were calculated for each 
subjects’ error trials (ERN) and correct trials (CRN). ERN statistics were calculated by 
taking each subjects’ ERP peak negativity between -50ms to 200ms relative to the button 
press. ERN and CRN peaks were compared across subjects by paired t-test. The control 
subjects demonstrated a robust Stroop effect (65.2 ± 0.9ms, mean ± s.e.m. across sessions, 
F(1,11) = 54.07, p <10-10, mixed-effect one-way ANOVA with random effect) and post-
error slowing (69.0 ± 22.3ms, mean ± s.e.m. across sessions, F (1,32) = 7.3, p = 0.01) and 
made errors in 14.8 ± 1.3% of trials. During error, but not correct, trials the scalp EEG site 
Cz revealed an evoked potential analogous to the classical signature of error monitoring 
expected in this task: the error-related negativity (ERN) (Fig. S6c; mean peak amplitude -
50−200 ms relative to button press, paired t-test t (11) = 4.53, p < 0.001). The theta power 
in error trials is significantly stronger than in correct trials (Fig. S6d; [0 500]ms relative to 
button press, 2-10 Hz in frequency, paired t-test t(11) = 6.47, p < 0.001).  
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Waveform analyses. For each neuron, we extracted the trough-to-peak time as the duration 
between the first negative peak of the mean waveform (‘trough’) and the first positive peak 
after the trough (Rutishauser et al., 2015). The mean waveform is obtained by averaging 
all the waveforms assigned to a particular cluster. We normalized the mean waveforms by 
its maximal amplitude and inverted the waveforms that have the opposite polarity. We 
considered neurons with a trough-to-peak time < 0.5ms as ‘narrow-spiking’ neurons and 
those >0.5,s as 'broad-spiking' neurons.   
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Chapter 3. Spike-field coherence during performance monitoring and 
cognitive control 
 
3.1 Introduction 
 
 Cognitive control is flexible. Studies have found that it can be recruited rapidly to 
resolve conflicts, selectively direct attention to task-relevant stimuli, and inhibit a prepared 
response. Underlying these modulations of multiple cognitive process are mechanisms by 
which control can exert influence through functional connectivity between different brain 
regions, for instance, a strengthening of connectivity between prefrontal cortex and the 
dorsal anterior cingulate cortex (dACC) during conflict resolution. In hierarchical models 
of the Flanker task and the Stroop task, cognitive control is modelled as a selective 
strengthening of functional connectivity between the task-relevant processing units and 
output units (Cohen et al., 1990). These models are successful in reproducing the 
behavioral signatures of human performance well. These findings all highlight a central 
feature about cognitive control: flexible reconfiguration of information representation. 
What are the possible biophysical mechanisms that underlie such reconfiguration?   This 
question is important in light of my thesis, because psychological models based on 
behavioral data alone are non-unique: only actual data from the brain can really tell us how 
the brain solves the problem of communicating between multiple processes to implement 
cognitive control. 
 As proposed by Fries et al. (Fries et al., 2001, Fries, 2005), neuronal coherence is a 
major mechanism by which flexible reconfiguration of functional connectivity can occur. 
Neuronal groups have been shown to oscillate. In fact, a large part of the EEG literature is 
concerned with the analysis of oscillations in the EEG data during cognitive functions, and 
these oscillations are generated by coherent activity in the underlying neuronal populations. 
Oscillatory neuronal activity poses constraints on the likelihood of spike generation, as 
well as receptivity of synaptic inputs. These mechanisms have two implications. First, the 
oscillatory activity in the local neuronal populations can recruit and entrain a single neuron 
within the same area, forming activity ensembles. As a result, information originally 
represented by just one neuron is amplified and now is represented by an ensemble of 
neurons. In addition, this functional coupling is flexible in the sense that a neuron can still 
decouple from such an ensemble given sufficient external inputs. A physical analogy would 
be that a child gets on a swing and becomes ‘coupled’ with the swing, but he or she can at 
any time jump off the swing and becomes decoupled. Second, this oscillatory time window 
for receiving inputs essentially restrict neurons located remotely that can affect the activity 
of a given neuron to the subset that is coherently active with this particular neuron. It is 
possible that the two scenarios work in coordination: synaptic inputs from a certain brain 
region first act on local neuronal populations through the mechanism of coherence, and the 
local population also becomes more coherent through interactions among its constituent 
neurons during this process, amplifying the information carried by the external inputs.   
 Local field potentials, which are a summation of broad range of synaptic events and 
subthreshold neuronal activity (including possibly afterpotentials from spiking events), 
provide us with a measure of average activity in the local neuronal population. The 
oscillatory components of the LFP serve as a measure of the neuronal oscillation in a 
specific frequency band. Different frequency bands have been found to correlate with 
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different cognitive processes – and also differentially correlate with other common brain 
measures, such as BOLD fMRI (see General Discussion). To measure the extent to which 
a given neuron participates in activity ensembles that involve many neurons in the 
population, one can measure coherence between spikes of this particular neuron and the 
LFP generated within the local population, using a metric called the spike-field coherence 
(SFC). This metric is also useful in quantifying long-range communication using spikes 
from a given area and the LFP from another area.  
 We argue that SFC can serve as a mechanism whereby information crucial for 
cognitive control can be amplified. We specifically tested this hypothesis in the case of 
error monitoring: the more coherent a local population is within dACC and pre-SMA, the 
more control is achieved in the form of post-error slowing. In error monitoring, a well-
known signal is the error-related negativity (ERN), which is thought to represent inputs to 
both dACC and pre-SMA that originates from other brain regions (see Chapter 2). This 
makes error monitoring a very suitable setting to test the hypothesis of coherence as 
amplification mechanism by analyzing how SFC changes within the local population 
following the ERN. However, one caveat about studying coherence in the presence of 
event-related potential such as the ERN is that the ERN itself represents to a large extent 
phase-resetting of the LFP. Since computing SFC would require both LFP and spikes, a 
strong phase-resetting in the LFP would bias SFC values, reflecting not the coherence 
between spikes and LFP, but just LFP synchronization. There are multiple ways to tackle 
this confound. In the following presentation of some of the preliminary analyses I have 
done, I attempted to remove this phase-resetting confound by subtracting it from the LFP 
before SFC computation. However, this could in turn lead to a spurious ERP-like artifact. 
A better way to control for the confound would be to regress out ERN amplitude from SFC 
computed with the raw LFP, and analyze the residual. By analyzing how SFC changes over 
time, we aim to obtain a signature of how a local population of MFC neurons code error 
information as provided by the ERN (inputs), and then specify control based on this 
representation.  
 
 
3.2 Results 
 
3.2.1 Spike-field coherence signature of action outcome monitoring 
 
 To gain further insight into the mechanisms that generate the error signals encoded 
by error neurons, we analyzed local relationships between the LFP and spikes in MFC. 
Neurons can organize dynamically into assemblies to increase the information saliency, in 
order to transmit information efficiently to downstream targets (Riehle et al., 1997, Wong 
et al., 2016, Salinas and Sejnowski, 2001). Given the saliency of errors, we reasoned that 
neurons in the MFC might form such dynamic assemblies to effectively represent and 
transmit error information. We measured the extent of each neuron's participation in such 
an assembly using spike-field coherence (SFC), which quantifies the precision of spike 
timing of a given neuron relative to the phase of ongoing oscillatory activity in the LFP 
(Fries et al., 2001, Wong et al., 2016, Rutishauser et al., 2010). The following analysis is 
based on LFP recorded on the same microwire as each neuron.   
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 SFC between spikes of all recorded MFC neurons and the low frequency (< 4Hz) 
component of the LFP increased significantly following errors (Fig. 3.1a-c; p < 0.01 for all 
clusters; contours derived from the cluster-based permutation tests). This increase was 
accompanied by a simultaneous decrease in SFC to higher frequency 5-10 Hz LFP 
components (Fig. 3.1b,c; comparisons based on the ‘SFC modulation index’; see Eq. 1 in 
Methods; p < 0.01 for all clusters; contours derived from the cluster-based permutation 
tests). These patterns of changes in SFC were not seen during correct trials. The low-
frequency error-related SFC modulation emerged first in pre-SMA (Fig. 3.1b,c), consistent 
with a leading role of this brain region. This modulation of SFC was prominent at both the 
single neuron level (Fig. 3.1a shows examples) as well as at the population level in both 
brain regions for all recorded neurons (Fig. 3.1b,c) and error neurons alone (Fig. 3.2). 
Similar patterns of SFC modulation were also seen when considering error neurons alone 
(Fig. 3.2). In summary, neurons phase-locked to low frequency components of the LFP (< 
4Hz) only after errors, suggesting a mechanism whereby error neuron responses are 
generated through transient functional ensembles that are formed depending on action 
outcomes.  
 

 
 
 
Figure 3.1 Spike-field coherence during errors predicts engagement of control 
(a) Spike-trigger average (STA) and spike-field coherence (SFC) for four example neurons (red for error, 
green for correct). Thin lines, raw STA; thick lines, STA filtered with 2-5Hz fourth-ordered Butterworth 
band-pass filter. Note the prominent 2-5Hz oscillations in the error STA (red) and that the SFC captures this 
feature.  
(b) SFC modulation index (see Eq. 1 in methods) as a function of time and frequency averaged across all 
recorded dACC neurons (n= 256). Contour lines delineate significant clusters (p < 0.01) as determined by a 
cluster-based permutation test. During errors, there was an increase in SFC in the 2-5Hz frequency range 
with a simultaneous reduction in SFC in the higher (5-10Hz) frequency range. During correct trials, these 
same neurons increased SFC only in the higher 6-8Hz frequency band.  
(c) Same as (b), but for pre-SMA neurons (n = 392). During errors, there was an increase in SFC in the 2-
4Hz frequency range with a simultaneous reduction in SFC in the higher (5-10Hz) frequency range. During 
correct trials, these same neurons increased SFC only in the higher 3-6Hz frequency band. 
(d) Error signals alone did not predict the strength of PES. The PES modulation index is defined as the 
difference between errors that lead to more PES (upper 50% of PES) and those that lead to less PES (lower 
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50% of PES) divided by their sum (see Eq. 2 in methods). Here, the index was computed using iERN 
amplitude and spike rates of error neurons (Type I). All comparisons versus zero were not significant (p > 
0.1; t-test). 
(e) SFC predicts strength of behavioral control following errors as measured by post-error slowing (PES), 
for error neurons in pre-SMA. (left) Shown is the PES modulation index computed using SFC as a function 
of frequency (left; Type I and II error neurons pooled; 1 to 2s post-action). Grey shading delineates 
frequencies with a significant difference as determined by a cluster-based permutation test (p = 0.003). (right) 
Firing rates and power (as assessed by spike-triggered power, see methods) in the same time window and 
frequency range (1 to 2s post-action, 3-6 Hz, as determined from left side) did not predict the extent of PES 
(p > 0.1 for both comparisons, t-test versus 0). By contrast, the SFC was predictive (p < 0.001, t-test versus 
0; see also left side).  
 ‘*’, ‘**’, and ‘***’ mark statistical comparisons with p value ≤ 0.05, ≤ 0.01, or ≤ 0.001, respectively. Error 
bars represent ± s.e.m across cells. All data used in this figure were recorded using micro-electrodes.  
 
 
3.2.2 Spike-field coherence during errors predicts the extent of post-error slowing 
 
 Given the strong error-related modulation of the SFC, we next investigated whether 
the SFC might serve as a mechanism for engaging behavioral control processes. 
Specifically, we tested whether the strength of SFC on an error trial predicts the extent of 
slowing in the next trial (PES). We again partitioned error trials based on a median-split of 
the PES magnitude. We then compared whether neural signals differentiated between these 
two groups using the “more/less PES modulation index” (see Eq. 2 in Methods). We found 
that the error signals analyzed above (spike rates of error neurons in the 0-1s after the 
erroneous actions and iERN amplitude) did not predict the extent of post-error slowing 
(Fig. 3.2d; p > 0.1 for all comparisons versus zero using t-test). By contrast, the SFC was 
predictive: the strength of SFC computed using spikes emitted by pre-SMA error neurons 
during later part of error trials (1-2s after the erroneous actions) predicted the extent of 
reaction time slowing on the next trial (Fig. 3.2e; more vs. less PES, p = 0.003, significant 
frequency range was obtained by cluster-based permutation tests; significant after 
Bonferroni’s correction at the level of q = 0.0125). This effect was only significant for error 
neurons in pre-SMA (both Type I and Type II), but not for those in dACC or non-error 
neurons in either brain region (p > 0.05, cluster-based permutation tests). In addition, the 
SFC computed with spikes emitted by pre-SMA error neuron in the early part of error trials 
(0-1s after button press) was not predictive. This result suggests that engagement of 
behavioral control follows error detection. As a comparison, we also tested whether spike 
rates or LFP power in this later time window (thus the same data used to compute SFC that 
is predictive of PES) could also predict the extent of PES (see Methods for details). We 
found that these metrics were not predictive of PES (Fig. 3.2e, bar plots), highlighting the 
importance of spike timing of error neurons relative to ongoing oscillations in engaging 
behavioral control.  
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Figure 3.2 Spike-field coherence of error neurons 
(a) SFC modulation index (see Eq 1 methods) as a function of time and frequency for error neurons in the 
dACC (Type I and type II pooled; n= 74). Contour lines delineate significant clusters (p < 0.05) as determined 
by a cluster-based permutation test. During errors (left), there was an increase in SFC in the 2-5Hz frequency 
range with a simultaneous reduction in SFC in the higher (5-10Hz) frequency range. This pattern was not 
seen during correct trials (right).  
(c) Same as (b), but for pre-SMA error neurons (Type I and type II pooled; n = 163). Contour lines delineate 
significant clusters (p < 0.01) as determined by a cluster-based permutation test.  During errors, there was an 
increase in SFC in the 2-4Hz frequency range with a simultaneous reduction in SFC in the higher (5-10Hz) 
frequency range. During correct trials, these same neurons increased SFC only to the higher 3-6Hz frequency 
band. This pattern is consistent with using all the neurons in pre-SMA (Fig. 5b, right). 
 
 
3.3 Discussion 
 

Neurons in the MFC coordinated their activity not only transiently during iERN 
generation, but also in a more prolonged fashion as reflected by their phase-locking 
properties relative to the local LFP. Although errors were accompanied by a power increase 
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in both the 2-5Hz and 5-10Hz bands (Fig. 2.5e in Chapter 2), MFC neurons simultaneously 
increased their phase-locking to the former and reduce it to the latter band. A possible 
interpretation is that the MFC neurons disengage from functional ensembles that are active 
when there is no error, and transiently form different ensembles that operate at a low 
frequency mode to amplify and saliently represent information about errors. This low 
frequency band could thus serve as a channel for effectively broadcasting error information 
to distant regions, such as the prefrontal cortex (Zhou et al., 2016), sensory cortices, motor 
cortex (Danielmeier et al., 2011), response-inhibition network(Aron et al., 2007, Aron and 
Poldrack, 2006), parietal cortex (Purcell and Kiani, 2016, Zhou et al., 2016) and 
hippocampus (Ullsperger et al., 2014), to facilitate task-relevant information processing, 
motor control and learning (Fujisawa and Buzsaki, 2011).  

Our results highlight the importance of spike timing relative to neural oscillations 
in performance monitoring and suggest that SFC can serve as a substrate for information 
routing as the performance-monitoring system communicates with other brain regions that 
maintain flexible goal information. One candidate region for such communication is the 
lateral prefrontal cortex (LPFC) and/or the frontal polar cortex, which may be involved in 
error awareness and, together with MFC, jointly evaluate outcomes and determine future 
actions based on maintained goals (Kouneiher et al., 2009, Kerns et al., 2004, Voytek et 
al., 2015, Tang et al., 2016, Koechlin and Hyafil, 2007, Tsujimoto et al., 2010, Mansouri 
et al., 2017). An important avenue for future studies will be to examine the association 
between neural activity in the MFC and spikes in such distal regions that may receive 
information from the MFC. The present study offers new insights into the mechanisms of 
ERN generation and provides potential neural targets for developing closed-loop 
intervention strategies for psychiatric diseases with self-monitoring dysfunctions.  
 
3.3 Methods 
 

The data used in Chapter 2 were analyzed here with spike-field coherence. We used 
spike-field coherence to quantify the strength of phase-coupling between spikes of 
individual neurons and the local field potential (LFP) recorded from the same wire. We 
preprocessed the LFP data as follows. Since the LFP was recorded from the same 
microwires as the spiking activity, spurious correlations between spikes and the LFP could 
confound the results of phase coupling (Zanos et al., 2011). We therefore removed spikes 
using a Bayesian based method that replaces each spike with short snippets of data (1ms 
before and 2ms after the spike peak) with statistics similar to that of the LFP (Zanos et al., 
2011). This method successfully removes the effects of spiking activities on subsequent 
analyses performed in the lower frequency ranges (Zanos et al., 2011). The LFP was then 
band-pass filtered between 1 to 100Hz and down-sampled to 250 Hz for further analyses. 
Because coincidence between evoked potentials and spiking activity alone can potentially 
lead to a spurious increase in spike-field coherence, we computed the trial-averaged LFP 
from error and correct trials separately and then subtracted this average from each error 
and correct trial, respectively. The methods we used for computing the SFC has been 
described extensively in previous studies (Fries et al., 2001, Rutishauser et al., 2010). In 
brief, the SFC is computed as a ratio between the spectrum of the spike-triggered average 
(STA), normalized by the average power spectrum of the LFP segments used to compute 
the STA (‘spike-triggered power’ or ‘STP’), as a function of frequency. The STA was 
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constructed by extracting LFP segment of ±480ms centered on each spike, followed by 
averaging. The minimum number of spikes used was 15 for each bin/ROI. This data length 
provides a frequency resolution of approximately 1Hz before tapering. The power spectra 
were computed using the multi-taper method as implemented in the Chronux Toolbox 
(Bokil et al., 2010). The multi-taper method provides a particularly powerful method to 
estimate single-trial power spectra with a trade-off between variance and frequency 
resolution that can be easily controlled (Mitra and Pesaran, 1999). We used a time-
bandwidth product of TW = 4, resulting in a half-width of 4.2Hz as previously documented 
(Rutishauser et al., 2010). We equalized the number of spikes used across conditions for 
all SFC comparisons for each neuron. We computed the SFC modulation index for each 
condition (error and correct trials, respectively) (Fig. 3.1b,c,e) (Fries et al., 2001), which 
was defined as: 

Mconditionk,celli(t, f) =
SFCconditionk,celli(t, f)-SFCbaseline,celli(t, f)

SFCconditionk,celli(t, f) + SFCbaseline,celli(t, f)
(1) 

 
The SFC modulation index normalizes for numerical differences across cells that 

are due to different numbers of spikes used, because the same numerical difference affects 
both the nominator and the denominator equally and was thus divided out. The SFC was 
computed for center frequencies varying from 1.17Hz to 11.7Hz in steps of 0.4Hz. The 
baseline SFC was computed using spikes within -0.7s to -0.2s relative the stimulus onset 
and LFP data after removing the stimulus-locked evoked potential. To plot a time course 
of the SFC modulation index, we estimated its value using spikes in a moving window of 
±250ms, advancing from -500ms to 1.5s relative to button press in successive steps of 
50ms.  

We used a two-sided cluster-based permutation test (Maris and Oostenveld, 2007) 
to estimate the statistical significance of the SFC modulation index at a given point of time 
and frequency (Fig. 3.1b,c), or frequency alone when the region-of-interest in time was 
fixed (Fig. 7e). To estimate the threshold for statistical significance, we first performed the 
following procedure. We first randomly permuted the trial labels, partitioned the data into 
two groups and computed SFC as a function of time and frequency separately for each 
group. A t-value was then computed across cells, for each bin in time and frequency. This 
process was repeated 1000 times, generating 1000 t-values for every point of time and 
frequency. We then thresholded the t-values at the value of ±1.66 (two-sided) and clustered 
the connected sets of significant bins. This procedure was done separately for bins with 
negative and positive significant t-values. The sum of the t-values was then computed for 
each of the identified clusters. For each cell, the maximum across the absolute values of all 
the computed sums was taken as the test statistic. Finally, the same computation of t-values 
and clustering was performed using data with the original trial labels. The statistical 
significance of each cluster in the original data was determined by comparing the absolute 
values of the sum of t-values with the empirically estimated null distribution as described 
above.  

For Fig. 3.1d,e, the error trials were split into two groups: ‘more PES’ represents 
error trials that lead to PES (for definition, see Behavioral analyses) that are greater than 
the median size of all trial-by-trial PES in a particular session, whereas ‘less PES’ 
represents error trials that lead to PES that are less than the median. The “more/less 
modulation index” for SFC (Fig. 7e, left) is computed as follows: 
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Mmore/less PES,celli(t, f) =
SFCmorePES,celli(t, f)-SFClessPES,celli(t, f)

SFCmorePES,celli(t, f) + SFClessPES,celli(t, f)
(2) 

To compute modulation indices in Fig. 3.1d,e, we used the same equation (Eq. 2) but 
replaced the SFC with either iERN amplitude or error neuron spike rates (0-1s relative to 
button press, the epoch we used to select error neurons as in Fig. 3.1d, or 1-2s relative to 
button press as in Fig. 3.1e), or spike-triggered spectrum (Fig. 3.1e) to compute the 
modulation index for these metrics.   
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Chapter 4 Ex-post Conflict Signals and Mixed Representations 
 
4.1 Introduction  
 
 Performance monitoring and cognitive control is indispensable for successful goal-
directed behaviors. These functions can be conceptualized as forming a closed-loop 
feedback control system, enabling the animal to improve upon performance based on 
external or internal feedback. Specifically, goal-directed action control can be recruited 
based on monitoring of either ex-ante or ex-post information. Examples of ex-ante 
information are action outcome prediction, interference between goal-relevant and goal-
irrelevant representations, which proactively influences an ongoing action and is thus 
available only before an action is committed. Ex-post information, on the other hand, is 
reactive in nature and can be signaled either by external sensory feedback or inferred from 
learned internal forward models. The ex-post monitoring signals discovered so far are all 
concerned with action outcomes, with signals representing gaining or losing of rewards 
and error detection (discussed in Chapter 2, (Fu et al., 2019)). Due to their timing, ex-post 
monitoring signals influence future performance of similar actions. It is well established 
that the medial frontal cortex subserves such monitoring functions and is crucially involved 
in specifying the identity and intensity of control signal under the constraints of control 
costs and risks. However, the neuronal mechanisms of how these functions are achieved 
remains unknown. Existing evidence comes largely from the field of functional imaging 
with known constrains on resolution. This presents a key challenge in resolving the ex-ante 
and ex-post signals: decisions normally occurs on a fast time scale and signals from before 
and after the motor output/decision could be intermingled when measured with insufficient 
temporal resolution. We sought to investigate this problem by recording directly single 
neuron activity from human MFC, which has the necessary high temporal resolution.  
 The ex-ante conflict-monitoring signal is supported by evidence from both 
neuroimaging studies (Botvinick et al., 2001) as well as from human single unit studies 
(Sheth et al., 2012) . This signal is thought to reflect competition between concurrently 
active representations of conflicting response options, and is thus greatly attenuated after 
successful execution of the goal-relevant action because in such case the competition is 
necessarily resolved. This signal is also hypothesized to influence next trial behavior as 
well. However, given the timing of this signal is strictly prior to the action, it is rather 
unclear how it can exert influence on action on the next trial that is separated in time by 
well over several hundred of milliseconds (a long period on the scale of neuronal spiking 
activity). Here, we show that a conflict signal, different from the ex-ante conflict signal, 
emerged after the action is concluded. An ex-post conflict signal offers a key advantage: it 
collapses the moment-to-moment conflict signal to a ‘summary metric’ of conflict 
experienced, and thus potentially allows the representation to be more efficient.  
 Another important aspect of the executed action is reaction time. Internal 
representation of reaction time could provide crucial input for positioning performance 
along the speed-accuracy trade-off axis. Since information about reaction time is only 
available after the action has concluded, any signals monitoring reaction time is necessarily 
ex post. We show that ex-post monitoring signals related to reaction time indeed exists in 
the human MFC at the single neuron level as well as population level, and they are carried 
by a population of neurons separated from the ex-post conflict-signaling neurons. We 
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additionally show that on a trial-by-trial basis, the MFC contained neuronal signals 
predictive of reaction time adjustment. We consider such signals as related to control 
mechanisms that help position the system on the speed-accuracy axis compatible with task 
demand.  

Neurons in the prefrontal cortex have been shown to code information in a 
multiplexing manner (Rigotti et al., 2013). The spike rates of these neurons depend on the 
specific combination of task variables such that a putative decoder downstream to these 
neurons, even if they operate linearly, can still decode the complete task configuration 
efficiently. Given these robust findings, we hypothesize that such a coding scheme could 
also be implemented in the performance monitoring system. When interference of various 
sources co-occur, such a high-dimensional representation is capable of conveying the 
whole profile of interference to other brain areas for control.  Even when a downstream 
neuronal decoder operates in a linear fashion, it can still read out what types of interference 
are experienced during action performance and implement the specific control mechanism 
as needed.  
 Cognitive conflict can occur in the competition between information from a variety 
of sources, which is evident from the variety of psychological tasks designed to isolate 
them. For example, in the Simon task interference is induced when a pre-potent propensity 
to match the spatial location of the key press response with the spatial location of stimulus 
and spatial needs to be suppressed. This is different from the type of interference induced 
by competition between the visually salient flanking arrows competing for attention in the 
Eriksen flanker task. In the Stroop task (Chapter 2), however, the interference by the word-
reading response on color naming could represent yet another type of interference. Are 
there overlap between MFC neurons signaling different types of interference? Are the 
population codes for conflict shared between different types of interference?  

In this study, we investigated this hypothesis using the multi-source interference 
task (MSIT), which was designed to integrate two sources of interference that are akin to 
the Simon and Flanker effect, respectively. MSIT has been used in many studies and has 
robustly yielded BOLD activation in the frontal-parietal attention network (Bush and Shin, 
2006), as well as single neuron signaling ex-ante conflict (Sheth et al., 2012). We recorded 
single neuron activity from the dorsal anterior cingulate cortex (dACC) and pre-
supplementary motor area (pre-SMA) from patients with drug-intractable epilepsy, while 
they performed the word-color Stroop task and the MSIT task. We found neurons that carry 
an ex-post conflict signal. Importantly, these neurons multiplexed the two types of 
interference in the MSIT task, reflected as a significant interaction effect between the 
interference types in a generalized linear model (GLM).  
 
4.2 Results 
 
4.2.1 Task and behavior 
 
 We performed re-analyses of the Stroop data (see Chapter 2 for details of patients 
and setup). Here we focused on seeking a single-trial behavioral signature of cognitive 
control.  The classical congruence sequence effect states that the mean RT of iI is 
significantly shorter than that of cI, and the mean RT of cC is significantly shorter than that 
of iC. The interpretation is that the when the preceding trial was an incongruent trial, 
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cognitive control was engaged and so the conflict induced by the incongruent stimulus on 
the current trial was reduced, resulting in faster RT as the conflict was resolved more 
quickly than the case where the preceding trial was a congruent trial. Similarly, when the 
preceding trial was an incongruent trial, cognitive control was engaged so the even though 
the current trial is congruent, it was re-positioned along the speed-accuracy tradeoff axis 
so its RT is slower. However, this behavioral effect does not offer a single-trial measure. 
One caveat is that in the Stroop task there are only three colors and thus altogether 9 unique 
stimuli, thus repetitions of stimuli could occur and reduced RT for a pair of trials can simply 
be due to familiarity. One additional caveat is that there can be general changes in attention 
across the block that complicate analyses of RT sequences. We thus sought a single-trial 
measure and made sure that trial sequences with repeated were excluded. We extracted two 
types of quadruplets of trials: ciiI and iccC trials. In this notation, “c” means congruent trial 
and “i” means incongruent trial. The capitalized letter denotes the current trial stimulus 
congruence and the rest of the letters denote stimulus congruence on the three preceding 
trials. The single-trial signature of control was taken as the difference between the fourth 
and the second trial in this quadruplet. We extracted these RT differences and plotted them 
in histograms. The mean of RT difference was -16ms (p = 0.017, one-tailed t-test given 
prior hypothesis), showing that the current trial generally has faster RT than the preceding 
trial with the same stimulus congruence. Thus, we were able to identify the single-trial 
signature of congruence sequence effect. 

Eleven subjects performed 41 sessions of the MSIT task (Fig. 4.1a). As in the 
previous three Chapters of this thesis, all of the subjects were patients with epilepsy, who 
had depth electrodes implanted in the brain for monitoring seizures prior to neurosurgery.  
In this task, three numbers in the set of [0,1,2,3] were printed on the screen; two were the 
same and the task was to detect the target number that was different (unique) from the other 
two. Subjects were instructed to indicate when they had found the target number by 
pressing one of the three keys on the response pad that were labelled with ‘1’, ‘2’ and ‘3’. 
‘0’ thus did not map to any key press. Two types of manipulation of interference were 
integrated in the task stimuli: visual distraction and spatial interference. The former was 
akin to the Flanker effect whereas the latter to the Simon effect. Visual distraction 
(henceforth abbreviated as ‘VD’) refers to the distracting effect of two task-irrelevant 
numbers. Since only non-zero numbers mapped to keys on the response pad, when they 
served as the distractors they created more distraction than when ‘0’ was used as the 
distractor. Spatial interference (henceforth abbreviated as ‘SI’) refers to the mismatch 
between serial key position and the identity of the target number. There were thus four 
types of trials, categorized according to whether there was visual distraction or spatial 
interference manipulation in the stimuli. We coded VD and SI with 0 (without the 
interference) and 1(with the interference), and referred to these four trial types as 
“VD0SI0” (e.g. “1 0 0”), “VD0SI1” (e.g. “0 2 0”), “VD1SI0” (e.g. “1 2 2”) and “VD1SI1” 
(e.g. “2 1 2”). 

Using a GLM in which log-transformed RT data were entered as single trials, we 
found that the main effects of VD and SI are both highly significant (p<10-10, t(7107) = 
17.2 for VD  and p < 10-10, t(7107) = 9.8 for SI), but the interaction effect between the 
two predictors was not (p = 0.73, t(7107) = 0.35). Although Figure 4.1 appears to show a 
non-linear interaction effect (yellow slope greater than blue slope), the slopes between two 
conditions did not differ significantly when tested again using a two-way ANOVA test (p 
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= 0.27, F(1) = 1.23). This suggests that the effects of two types of interference on RT was 
linearly additive (Fig. 4.1a). 

 

 
Figure 4.1 (a) Histogram of RT difference. Trial sequences extracted were “ciiI” and “iccC” trials. RT 
difference was computed by taking the difference between the fourth and the second trial in the trial 
sequences. We pooled the RT difference from these two trial types. Red vertical bar represents the mean of 
the distribution.  

 

 
 

Figure 4.2 (a) Task layout. Feedback screen is only displayed 1s after the response. (b) Average reaction 
time split by interference types. Each data points represent the mean RT of an interference condition. Blue 
represents trials with no visual distraction (distractors are ‘0’); yellow represents trials with visual distraction 
(distractors are non-zero numbers). The effects of two types of interference are additive. Error bars, s.e.m 
across sessions. (c) Electrode locations. 
 
4.2.2 Ex-post conflict signaling and RT signaling neurons in the Stroop task 
 

Previous studies in the macaque and human literature has suggested that the MFC 
contained signals related to conflict monitoring, reinforcement history and cognitive 
control. However, most of the human studies use indirect measures of neural activity (EEG 
and fMRI) and no studies so far validates the homology of cognitive control between 
human and non-human primate despite the substantial behavioral task/anatomical 
differences between the species. It thus remains unknown how these signals are related to 
neuronal dynamics in the human MFC.  
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In the Stroop data set, we isolated 433 neurons from dACC and 425 neurons from 
pre-SMA. We selected neurons using an ANOVA model with interaction. We entered 
spike rates in the post-action epoch (1s) as the response variable, and congruence level (‘0’ 
for congruent trials and ‘1’ for incongruent trials) and RT (log-transformed) as predictor 
variables. Neurons with p values less than 0.05 were selected. We found that in dACC, 54 
neurons (12.5%) were selected by a significant congruence effect, 87 neurons (20%) were 
selected by a significant RT effect and 38 neurons (8.8%) were selected by a significant 
congruence × RT interaction. In pre-SMA, 75 neurons (17.7%) were selected by a 
significant congruence effect, 103 neurons (24.2%) were selected by a significant RT effect 
and 39 neurons (9.2%) were selected by a significant congruence × RT interaction. To 
determine whether these number of neurons selected were significantly above chance, a 
permutation test was run to generate a null distribution of the number of neurons selected 
(Fig. 4.2 left: dACC, right: pre-SMA). The p values generated by the permutation test were 
all below 0.05. As is evidence from the single cell examples, the spike rate modulation 
were temporally restricted to after action execution, demonstrating the ex-post nature of 
the signals. There were neurons that signaled stimulus congruence exclusively, but their 
spike rates did not correlate with RT (Fig. 4.4). There were also neurons that signaled RT 
exclusively, but the correlation between spike rates and RT did not differ between 
congruent and incongruent trials (Fig. 4.5). Interestingly, a separate class of neurons exist: 
they signaled RT in a congruence-dependent way, as captured by the interaction effect 
between RT and stimulus congruence in the ANOVA model used to select them (Fig. 4.6).  

 
 
 

 

 
Figure 4.3 Permutation tests for univariate neuron selection 
Top row: dACC neurons; lower row: pre-SMA neurons. Here the red vertical bars represent the number of 
selected neurons by p-values from each predictors in the ANOVA. The histograms show the null 
distribution of the number of selected neurons using a permutation test.  
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Figure. 4.4 Example ex-post congruence signaling neurons. Raster plots showed data were aligned with 
stimulus onset (t = 0, left) and time of button presses (t = 0, right) and were sorted by RT (black lines). Here, 
the neuron on the left signaled stimulus congruence by having a higher spike rates on correct incongruent 
trials (yellow) than on correct congruent trials (blue). The neuron on the right had the reverse spike rate 
patterns. Red represents error trials. The spike rate modulation occurred after the button presses.  
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Figure 4.5 Example ex-post RT signaling neurons. Raster plots showed data were aligned with stimulus 
onset (t = 0, left) and time of button presses (t = 0, right) and were sorted by RT (black lines). Here, the 
neuron on the left signaled RT on a trial-by-trial basis: spike rates on both correct congruent (blue) and 
correct incongruent (yellow) trials decreased as RT increased. The neuron on the right had the reverse spike 
rate patterns. Red represents error trials. The spike rate modulation occurred after the button presses. 
 
 

           
 
Figure 4.6 Example ex-post congruence-RT interaction neurons. Raster plots showed data were aligned 
with stimulus onset (t = 0, left) and time of button presses (t = 0, right) and were sorted by RT (black lines). 
Here, the neuron on the left signaled RT but this depended on stimulus congruence. The spike rates 
increased on correct incongruent trials (yellow) but decreased as RT increased. The neuron on the right had 
the reverse spike rate patterns. Red represents error trials. The spike rate modulation occurred after the 
button presses. 
 
4.2.2 Ex-post conflict signaling neurons in the MSIT task 
 

In the MSIT data, we isolated in total 455 single units from dACC (n = 296) and 
pre-SMA (n= 343). Neurons that signaled conflicts ex-post were selected using a Poisson 
GLM. In this model, spike counts in the one-second epoch after button press were entered 
as the response variable. The main effects and the interaction effect of the VD and SI 
variable (‘0’ represents no interference, ‘1’ represents with interference), as well as the 
main effect of RT were included. In both dACC and pre-SMA, we found that significant 
proportion of neurons whose spike rates correlated with a non-linear interaction between 
VD and SI (n = 49 in dACC, n = 45 in pre-SMA), henceforth referred to as the VD-SI 
multiplexing neurons. These multiplexing neurons did not represent levels of interference 
by changing their spike rates monotonically. Instead, there was a diversity of coding 
patterns. Some neurons only coded VD in the presence of SC, whereas some did so in the 
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absence of SI (Fig. 4.7 a,c; p = 0.001 for the interaction effect). Some neurons coded SI 
only in the presence of VD, where as some did so in the absence of VD (Fig 4.7 b,d; p = 
0.001 for the interaction effect). Apart from these multiplexing neurons, we also found 
some neurons that coded only VD (n = 17 in dACC and n = 29 in pre-SMA) or only SI (n 
= 22 in dACC, n = in 35 in pre-SMA); they spike rates showed main effects of VD or SI, 
but no interaction effect between the two). By contrast, few neurons have spike rates that 
reflect VD and SI additively (n = 2 in dACC, n= 5 in pre-SMA). A third large category of 
neurons are the RT-signaling neurons, whose spike rates in the one second window after 
button press were correlated with RT on the same trial significantly (n = 55 in dACC, 
n=100 in pre-SMA). Note that while levels of conflict affect RT (see Fig 4.2), the response 
of the conflict cells discussed in this section cannot be explained by differences in RT 
because the regression model takes this variable in account as a nuisance variable. To 
summarize the coding behaviors of all recorded neurons, we computed modulation indices 
for VD and SI (see methods), which provided a continuous measure of how well spike rates 
indicated the presence of a certain type of interference (VD or SI). The VD-SI interaction 
effect, which referred to the situation where whether spike rates could report the presence 
of a certain interference type depended on the presence of the other type, was captured by 
the product of modulation indices (e.g. product of modulation index of VD when SI = 0 
and that of VD when SI = 1). For example, if for a certain neuron its spike rate difference 
between VD0 and VD1 switched sign between SI0 and SI1, namely, spike rates was greater 
on VD1SI0 than VD0SI0, but spike rates were greater on VD0SI1 than on VD1SI1, then 
the product of modulation would have a large negative value. This thus provided a way to 
characterize the interaction effect on a two-dimensional space. As is evident in Figure 4.8, 
neurons that multiplexed the two interference types fell on the diagonal and were separated 
from the rest of the population.  

 

   
Figure 4.7 Two example neurons that signal conflicts ex post  
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(a) An example neuron that demonstrates the VD-SI interaction effect. Upper panel shows the raster plot 
(each dot represents a single spike); lower panels shows average spike rates. Data are aligned to stimulus 
onset (left) and to button press (right). (b) A different example neuron, displayed in the same way as (a). (c) 
The spike count as a function of interference types for the neuron in (a). Here, the neuron distinguished VD 
types but only when SI = 1. (d) Same as in c, but for neuron in (b). The neuron distinguished VD types but 
only when SI = 0. 

 

 
Figure 4.8 Population summary of different neuronal types 
This plot shows the distribution of dACC (left) and pre-SMA (right) neurons on the 2-D product space of 
modulation indices. Neurons that showed significant effect (spike rates in 1s post button press epoch tested 
using a Poisson GLM, see Methods) were marked with colored markers. Neurons that showed significant 
non-linear VD-SI interaction effect (magenta) was concentrated on the diagonal.  
 
4.2.3 Population decoding of ex-post action monitoring signals 
 
 One key question regarding the ex-post monitoring signals is whether they 
constitute different signals from the ex-ante monitoring signals reported in previous 
literature, or just its continuation in time. We investigate this problem with the population 
decoding approach. We chose this method for two reasons. First, there is extensive 
literature on how information is encoded in the population dynamics and is not revealed by 
analyzing single neuron activity. Performance monitoring signals could also be embedded 
in population activity. Second, determining whether the ex-ante and ex-post monitoring 
signals are different using a single neuron approach would require analyzing the overlap 
neurons selected in these two epochs using univariate selection method (e.g. ANOVA). 
However, there can be overlap between the two subsets just by chance and it is unclear to 
what extent the overlap can reflect functional overlap in the neural circuitries, and whether 
these overlap neurons play any role in population representation of monitoring signals. If 
the ex-ante and ex-post monitoring signals are indeed separate, the population code 
representing each of these signals would be substantially different despite the fact that some 
neurons participated in both patterns.  

To test whether this is the case, we trained linear decoders using ex-post spike rates 
from MFC neurons to decode task variables. The task variables of interest are conflict 
levels on the current trial and previous trial (history effect), RT, and RT signature of 
cognitive control. If the ex-ante and ex-post signals were different signals, a decoder 
trained using ex-post spike rates would only generalize weakly across time and classify ex-
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ante data with significantly reduced accuracy. However, including all neurons as features 
would often causes the learning algorithm to overfit and thus reduces decoding 
performance, because many neurons do not contain information about the task variables to 
be decoded. Such decoders would not be able to generalize well to either testing data from 
the same epoch or from other epochs. To prove our point, we need to show that even the 
best the decoders constructed using data from one epoch (in this case, post-action epoch) 
would not generalize well to other epochs (pre-action epochs).   

Recursive feature elimination (RFE) algorithm provides a principled way to select 
the best features for decoding performance. This method uses the weights of support vector 
machines (SVM) as feature importance and iteratively eliminate features with the least 
importance, eventually arriving at a subset of features with the highest cross-validated 
accuracy. Note that this selection method is multivariate in nature and takes into account 
the mutual information between features, and thus selects neurons excluded by the 
univariate selection method documented in 4.2.2. In the following RFE analyses, we used 
the spike rates of neurons in the post-action epoch (1s) as features to build the decoder. The 
decoder performance was tested on independent test data from the same epoch (1s) or with 
data collected in a moving window that moved across the trial from -500ms to 2000ms 
relative to button press in steps of 10ms. This latter analysis allowed a clear visualization 
of how well this ex-post decoder generalized across various time points.  

We first used the RFE procedure to construct decoders that determined whether a 
given trial was correct congruent or correct incongruent. To control for the effect of RT on 
ex-post spike rates (described below), we sampled the trials so that the two conditions had 
comparable RTs. We focused first on the Stroop data. The maximal accuracy reached for 
determining stimulus congruence was 78.8% for dACC and 84% for pre-SMA. At the 
maximal accuracy, the dACC decoder incorporated 52 neurons with the highest rankings 
and the pre-SMA decoder 76 neurons with highest rankings as ranked by the RFE 
procedure. As is apparent from the temporal generalization plot (Fig. 4.9 middle), the 
decoding performance peaked only after, but not before, the execution of action (t = 0). In 
dACC, as more neurons that were ranked below the 52th-ranking neuron were included to 
build the decoder, the decoding performance considerably decayed. This suggested that the 
information about congruence was largely restricted to a limited set of ‘best’ neurons. By 
contrast, pre-SMA neurons all seem to carry congruence information to some extent, as 
this was evident from the slow decay after the peak performance was reached. Even if all 
pre-SMA neurons were included, the decoder still performed at more than 70% accuracy 
(Fig 4.9 left and middle panels). Since the RFE procedures was repeated for each fold of 
cross-validation (five folds in total), five lists of selected neurons were generated. To 
combine these lists, we computed the geometric means of rankings across the five folds for 
each neuron, and used this as its final ranking. We then selected the same number of 
neurons as determined earlier by the maximal cross-validated accuracy from this combined 
ranking list. A decoder was re-trained with these selected neurons and its decoding 
accuracy was compared against a null distribution generated by the permutation test to 
obtain a p-value (Fig. 4.9 right panels). The decoding performance of these selected 
neurons in distinguishing between correct congruent and correct incongruent trials were 
significantly above what was predicted by chance (p < 0.002, permutation tests) for both 
dACC and pre-SMA.  
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Figure 4.9 RFE-selected congruence decoders using neurons in dACC (top row) and pre-SMA (bottom 
row). First column of panels show the cross-validated accuracy as a function of neurons incorporated as 
features. The green vertical bars represent the feature ranking which, together with all features ranked above, 
constructed the decoder that reached the maximal cross-validated accuracy. Second column of panels show 
how decoders trained with data from the post-action epoch (1s) during each step of the RFE procedure 
generalized across time. The third columns show cross-validated accuracy for decoders trained using neurons 
consistently ranked best across cross-validation folds and the null distribution for decoding accuracy. The 
dotted lines represent the 2.5th and 97.5th percentiles of the null distribution. Error bars represent the standard 
error across cross-validation folds.  
 
 The neuronal population also contained significant information about reaction time 
(Fig. 4.10 and Fig. 4.11). To show this, we used RFE to construct decoders that determined 
median partitions of RTs, which was whether the RT of a particular trial was above or 
below the median RT (of the session). To control for the effects of previous trial and current 
trial stimulus congruence on current trial RT and spike rates, we analyzed cI (incongruent 
trials following a congruent trial) trials and cC (congruent trials following a congruent trial) 
trials separately. We also equalized the number of trials across cI and cC conditions. We 
tested the decoders within and across conditions. For example, we tested the RFE-selected 
decoders trained with cI data with cI hold-out data and also with cC data, and vice versa. 
In dACC (Fig. 4.10), the maximal accuracy reached for determining RT partitions on cI 
trials was 84.7% with 43 neurons selected, whereas the maximal accuracy reached for 
determining RT partitions on cC trials was 81.2% with 56 neurons selected. In pre-SMA 
(Fig. 4.11), the maximal accuracy reached for determining RT partitions on cI trials was 
89% with 32 neurons selected, whereas the maximal accuracy reached for determining RT 
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partitions on cC trials was 84.4% with 102 neurons selected. Interestingly, the decoders 
trained with cI data still performed above chance level when tested with cC data, and vice 
versa (Fig. 4.10 and 4.11 right), albeit with significantly reduced accuracy. This suggests 
that the RT information was largely consistent across congruence types and the population 
codes for RT information was similar between the two congruence types. This also likely 
reflected the fact that RT-congruence interaction neurons only took up small proportion of 
the RT-signaling neurons.  

 
 

 
 
 

Figure 4.10 RFE-selected s decoders for RT median partition on cI trials (top row) and cC trials 
(bottom row), using neurons in dACC. First column of panels show the cross-validated accuracy as a 
function of neurons incorporated as features. The green vertical bars represent the feature ranking which, 
together with all features ranked above, constructed the decoder that reached the maximal cross-validated 
accuracy. Second column of panels show how decoders trained with data from the post-action epoch (1s) 
during each step of the RFE procedure generalized across time. The third columns show cross-validated 
accuracy for decoders trained using neurons consistently ranked best across cross-validation folds, each 
tested with both the cI and cC data, and the null distribution for decoding accuracy. The dotted lines represent 
the 2.5th and 97.5th percentiles of the null distribution. Error bars represent the standard error across cross-
validation folds.  
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Figure 4.11 RFE-selected decoders for RT median partition on cI trials (top row) and cC trials (bottom 
row), using neurons in pre-SMA. First column of panels show the cross-validated accuracy as a function 
of neurons incorporated as features. The green vertical bars represent the feature ranking which, together 
with all features ranked above, constructed the decoder that reached the maximal cross-validated accuracy. 
Second column of panels show how decoders trained with data from the post-action epoch (1s) during each 
step of the RFE procedure generalized across time. The third columns show cross-validated accuracy for 
decoders trained using neurons consistently ranked best across cross-validation folds, each tested with both 
the cI and cC data, and the null distribution for decoding accuracy. The dotted lines represent the 2.5th and 
97.5th percentiles of the null distribution. Error bars represent the standard error across cross-validation folds.  
 
 We also showed that the MFC retained robust information about stimulus 
congruence on the previous trial (Fig. 4.12). Since spike rates on the current trial were 
sensitive to RT (as shown above), we equalized RT on the current trial across conditions. 
In dACC (Fig. 4.12 top row), the maximal accuracy reached for determining stimulus 
congruence on the previous trial was 76.4% with 51 neurons selected as features, whereas 
the maximal accuracy reached in pre-SMA (Fig. 4.12 bottom row) was 74.9% with 44 
neurons selected as features. It has been proposed that the MFC is responsible for learning 
the values of actions. The information about past stimulus congruence, which was related 
closely to the experienced action difficulty on the previous trial, could potentially provide 
useful input to computing the action values. 
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Figure 4.12 RFE-selected decoders for stimulus congruence on the previous trial, using neurons in 
dACC (top row) and pre-SMA (bottom row). First column of panels show the cross-validated accuracy as 
a function of neurons incorporated as features. The green vertical bars represent the feature ranking which, 
together with all features ranked above, constructed the decoder that reached the maximal cross-validated 
accuracy. Second column of panels show how decoders trained with data from the post-action epoch (1s) 
during each step of the RFE procedure generalized across time. The third columns show cross-validated 
accuracy for decoders trained using neurons consistently ranked best across cross-validation folds and the 
null distribution for decoding accuracy. The dotted lines represent the 2.5th and 97.5th percentiles of the null 
distribution. Error bars represent the standard error across cross-validation folds.  
 
 Given that the aforementioned ex-post performance monitoring signals provided a 
basis for cognitive control, we investigated whether the MFC carried signatures of control. 
Specifically, we investigated whether there was any signals in the population activity that 
could predict the levels of RT adjustment. For this analysis, we partitioned the RT 
differences between pairs of consecutive incongruent trials or congruent trials by their 
median values respectively, and constructed decoders to determine which partition a 
particular trial belong to. We tested the decoders across conditions as well. In dACC, the 
maximal accuracy reached for determining the partitions of RT difference of iI pairs was 
74.1% with 15 neurons selected, whereas the maximal accuracy reached for determining 
the partitions of RT difference of cC pairs was 62.4% with 22 neurons selected. In pre-
SMA, the maximal accuracy reached for determining the partitions of RT difference of iI 
pairs was 84.9% with 21 neurons selected, whereas the maximal accuracy reached for 
determining the partitions of RT difference of cC pairs was 30% with 22 neurons selected. 
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Interestingly, the decoders constructed to decode the partitions of RT difference of cC pairs 
generalized to data of iI pairs in both dACC and pre-SMA. We further analyzed the 
decoding performance for a more accurate measure of RT adjustment, which is to compute 
the difference between trial 2 and 4 within a trial sequence of “iccC” or “ciiI” (see Section 
4.2.1). In such cases, the sample size was considerably smaller so that RT difference 
computed in “iccC” and “ciiI” were pooled to increase statistical power. Indeed, we were 
still able to select neurons that construct decoders that determined the partitions of RT 
difference in these trial sequences accurately (Fig. 4.15). The maximal accuracy reached 
for decoding this partition was 95.2% in dACC and 87.4% in pre-SMA, with 31 and 10 
neurons selected, respectively. The decoding accuracy was higher than determining the 
partitions of iI or cC RT difference, as these RT adjustment measures were less accurate 
because the stimulus congruence on trials preceding the pairs were not controlled. As is 
evident in the time course of testing accuracy, the signal was localized after the button 
press and thus was an ex-post monitoring signal. In summary, both dACC and pre-SMA 
contained signals that were predictive of the amount of cognitive control engaged after 
encountering an incongruent trial at the population level.  
 
 
 

 
 

 
 
 

Figure 4.13 RFE-selected decoders for median partitions of RT difference of iI pairs (top row) and cC 
pairs (bottom row), using neurons in dACC. First column of panels show the cross-validated accuracy as 
a function of neurons incorporated as features. The green vertical bars represent the feature ranking which, 
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together with all features ranked above, constructed the decoder that reached the maximal cross-validated 
accuracy. Second column of panels show how decoders trained with data from the post-action epoch (1s) 
during each step of the RFE procedure generalized across time. The third columns show cross-validated 
accuracy for decoders trained using neurons consistently ranked best across cross-validation folds, each 
tested with both the iI and cC data, and the null distribution for decoding accuracy. The dotted lines represent 
the 2.5th and 97.5th percentiles of the null distribution. Error bars represent the standard error across cross-
validation folds.  
 

 
 

 
 
 

Figure 4.14 RFE-selected decoders for median partitions of RT difference of iI pairs (top row) and cC 
pairs (bottom row), using neurons in pre-SMA. First column of panels show the cross-validated accuracy 
as a function of neurons incorporated as features. The green vertical bars represent the feature ranking which, 
together with all features ranked above, constructed the decoder that reached the maximal cross-validated 
accuracy. Second column of panels show how decoders trained with data from the post-action epoch (1s) 
during each step of the RFE procedure generalized across time. The third columns show cross-validated 
accuracy for decoders trained using neurons consistently ranked best across cross-validation folds, each 
tested with both the iI and cC data, and the null distribution for decoding accuracy. The dotted lines represent 
the 2.5th and 97.5th percentiles of the null distribution. Error bars represent the standard error across cross-
validation folds.  
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Figure 4.15 RFE-selected decoders for median partitions of RT difference of the fourth and second 
trials in the iccC and ciiI sequences using neurons in dACC (top row) and pre-SMA (bottom row). First 
column of panels show the cross-validated accuracy as a function of neurons incorporated as features. The 
green vertical bars represent the feature ranking which, together with all features ranked above, constructed 
the decoder that reached the maximal cross-validated accuracy. Second column of panels show how decoders 
trained with data from the post-action epoch (1s) during each step of the RFE procedure generalized across 
time. The third columns show cross-validated accuracy for decoders trained using neurons consistently 
ranked best across cross-validation folds and the null distribution for decoding accuracy. The dotted lines 
represent the 2.5th and 97.5th percentiles of the null distribution. Error bars represent the standard error across 
cross-validation folds.  
 

 
 
 

4.3 Discussion 
 

In this chapter, we focused on the performance monitoring signals on the correct 
trials (errors were discussed in Chapter 2). We confirmed the existence of ex-post conflict 
signals. Previously, studies using fMRI have reported conflict signals, but from these 
studies, it remains unknown when exactly these signals are present – i.e. before or after 
button press (Carter et al., 1998, MacDonald et al., 2000, Kerns et al., 2004). Here, we now 
show a group of neurons that carry signals after button press. The reported conflict signals 
in EEG appeared around 350ms after stimulus onset and thus was a correlate of ex-ante 
conflict monitoring (Yeung et al., 2004, Botvinick et al., 2004, Van Veen and Carter, 
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2002). Similarly, a previously published single-neuron correlate of conflicts in human 
dACC was analyzed as a stimulus-locked signal (Sheth et al., 2012) and was replicated in 
this thesis (Chapter 2). However, in the macaque literature, conflict-sensitive neurons were 
only found in the supplementary eye field and their timing was late: it occurred after the 
stop-signal reaction time, which was the inferred time of successful stopping of the prepare 
action (when the ‘stop’ and ‘go’ processes were modelled as a racing). Given these 
previous findings, our report of ex-post conflict signals identified a missing link between 
the human and animal literature. Using decoding, we showed that the population code for 
ex-ante and ex-post conflict was different and non-generalizable, suggesting that the ex-
post conflict signal was indeed a separate and independent monitoring signal with a late 
onset (after the action had been performed). Future work is needed to investigate whether 
the same or different neurons signal ex-post conflict signals in the Stroop and MSIT tasks. 

We found prominent ex-post RT monitoring signal. RT was considered an internal 
measure of experience conflict, as conflicts had strong effects on RT (Fig. 4.2b). However, 
RT was more than conflicts: it also contains components of many other cognitive 
processes, such as variability in muscle movements. We showed that on the population 
level, RT signals were robust and ex-post and was broadly carried by many neurons (as by 
the number of neurons selected using RFE). Interestingly, at the single neuron level, some 
neurons exhibited interaction effect between RT and stimulus congruence: their post-action 
spike rates correlated with RT but the correlation coefficients differed drastically between 
congruent and incongruent trials. One interpretation is that RT information is maintained 
for controlling the RT on the next trial according to specified speed-accuracy tradeoff, and 
since controlling RTs could involve different mechanisms depending on the conflict levels, 
these interaction neurons could reflect such difference. Future analyses are needed to reveal 
roles of these interaction neurons in specifying behavioral control and in population 
activity.  

 We additionally found that the neuronal population in both dACC and pre-SMA 
contained decodable information about stimulus congruence on the preceding trial. This is 
consistent with the hypothesis that these brain regions could make use of ex-post conflict 
neurons to update learned models and to specify future control (Shenhav et al., 2013). We 
also were able to reveal on the population level signatures of cognitive control, illustrating 
the central role of the MFC in bridging representations of past information with 
specification of future behavioral outputs. 
 
4.4 Methods 
 
Behavioral analyses. For the Stroop task data, we sought single-trial behavioral signature 
of cognitive control. We extracted trial sequences of “ciiI” and “iccC”. Trials with stimulus 
repetitions were excluded from this analysis. We took the difference between the fourth 
and the second trials in the trial sequences, and test the mean of this RT difference 
population against zero using a one-tailed t-test, as motivated by prior literature on 
congruence sequence effect. 
We constructed a mixed-effect linear regression to test the effects of different interference 
types on RT. For this model, we entered two fixed effects: visual distraction types (coded 
0 if no visual distraction, coded 1 if there is visual distraction) and spatial interference types 
(coded 0 if no spatial interference, coded 1 if there is spatial interference). We entered 
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reaction time (RT) as the response variable and session numbers nested within subject ID 
as the random effect. Additionally, we used another method to confirm the additive effects 
of interference types. We extracted mean RT for each combination of interference types 
(‘VD0SI0’,’VD1SI0’,’VD0SI1’,’VD1SI1’) for each subject and each session, and entered 
these data into a two-way ANOVA and tested for the interaction effect. 
 
Univariate selection of neurons. We only considered neurons that had a mean spike rate 
> 0.5 Hz. In the Stroop data, we sought neurons whose spike rate differed significantly 
between trial types of interest in the post-action epoch (1s after button press): (i) neurons 
whose spike rates differed between correct congruent and correct incongruent trials (ii) 
neurons whose spike rates correlated with RT (iii) neurons whose spike rates demonstrated 
interaction effect between RT and stimulus congruence. We analyzed the spike rates of 
each neuron using an ANOVA model. The spike rates were entered as the response 
variable, and RTs and a dummy variable coding for stimulus congruence (“1” for correct 
incongruent and “0” for correct congruent) as predictors. We also included the interaction 
term for the two predictors. Neurons were selected by the p-values from the F tests 
conducted for each predictors and the interaction effects. 
 
In the MSIT data, we sought neurons whose spike rate differed significantly between trial 
types of interest in the post-action epoch (1s after button press): (i) neurons that 
multiplexed two types of interference (ii) neurons that only coded for VD (iii) neurons that 
only coded for SI (iv) neurons that coded RT. We fit a generalized linear model (GLM) to 
each neuron (using matlab function “fitglm.m”) and then evaluated whether the model 
explained significant variance to determine whether a neuron was selective or not for a 
variable of interest. We entered the spike count in the epoch of interest as the response 
variable. We entered three predictor variables: (i) a dummy variable coding for VD (ii) a 
dummy variable coding for SI (iii) RT.  
 
Modulation index. We used the modulation index as a continuous measure of the effect of 
interference on the spike rate. The modulation index is defined as (here ‘int type’ stands 
for ‘interference type’): 
 

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2) =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1=1,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖  (𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2) − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1=0,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1=1,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖  (𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2) + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1=0,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2)
(1) 

Since there are two types of interference in the MSIT task, the modulation index for one 
type of interference is a function of the other type of interference, reflected in the equation. 
The product of modulation index is then defined as:  

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 0) ∗ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 1) 
Decoding analyses. We used a sliding-window decoding approach to analyze the 
population coding of previous trial and current trial stimulus congruence, current trial RT 
partitions and behavioral signatures of cognitive control.  We used a 500ms bin moved 
across the spike train on each trial in successive 25ms steps. We first equalized the number 
of trials across all sessions by drawing a random subset from the trial types/session that 
had more trials than the required number. The spike counts were extracted from each time 
bin across all recorded neurons from the equalized trial set and concatenated into a feature 
matrix (trial x neuron number). We then used this matrix as the feature matrix and trained 
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a SVM decoder using LIBSVM (Chang and Lin, 2011). To construct a train-test 
generalization time series, we constructed the decoders using data from one time point 
(post-action epoch), and tested the decoder’s performance across all the other time points 
over a trial to see if it generalized to these time points. For all of the decoding procedures 
described above, we resampled the trials 50 times so that all data collected were 
represented. To assess the significance of decoder performance, we permuted the trial 
labels 500 times. For each permutation, we ran the decoding procedure with resampling 50 
times and averaged the resulting decoding accuracy for the particular label permutation 
run. After this, we obtained 500 mean decoding accuracy values as the empirical null 
distribution. A p-value was obtained by comparing the true accuracy with this empirical 
distribution. The procedure for Recursive Feature Elimination (RFE) can be found in 
(Guyon et al., 2002). In short, on each iteration, a SVM decoder was trained, and the feature 
with smallest value of squared weights were eliminated. The features left were used to train 
a new decoder. The sequence with which features were eliminated served as the ranking of 
the feature impact for the decoding performance. To avoid overfitting, we performed 
fivefold cross-validation using RFE, where features (neurons) were selected using four of 
the five folds, and the decoding accuracy of the selected neurons were tested with the data 
in the left-out fold. 
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Chapter 5. Discussion and future directions 
 
5.1 Summary 
 

In this thesis, I have reported results from several related studies on human 
performance monitoring and cognitive control. I will first summarize the main findings. 
Chapter 2 of my thesis was concerned with error monitoring and the putative mechanisms 
for error-triggered cognitive control. Here I used one of the most common tasks, the Stroop 
task, a classic reaction-time interference task.  We found neurons that signaled self-
monitored errors in the absence of external feedback, in both dACC and pre-SMA, two key 
regions in the frontal cortex.  These neurons were by no means rare, constituting 30-40% 
or all recorded neurons in these brain regions.  Several types of errors were distinguished 
in terms of the information that they represented – some increased firing rates when errors 
were detected (“Type I”), some decreased firing rates (“Type II”), and some signaled 
information about whether an error had occurred on the preceding trial (“Error integrating 
neurons”).  Although there were also neurons signaling conflicts, in general error neurons 
did not also signal response conflict (that is, they failed to distinguish difficult, incongruent, 
trials from easier, congruent, trials). This is an important result, because a key theory of 
cognitive control predicts that the neurons signaling errors and conflict should be the same 
(Yeung et al., 2004). This, we found here, is not the case. Rather, these two representations 
were largely separate, an insight that could not have been derived by non-invasive means. 
Taken together, these results characterized several common populations of neurons that 
carry information about errors. 

Similarly, we found intracranial ERN responses (iERN) in both of these brain 
regions as well. These signals were recorded in the same patients, and on the same 
electrodes, but using low impedance contacts rather than the high impedance contacts from 
which we were able to isolate single units.  The two error signals, error neuron spiking and 
iERN, were correlated in magnitude. This correlation was specific to the signaling of 
errors: on correct trials, the same neuron’s spikes did not correlate with the amplitude of 
evoked potentials. These findings support a model whereby the iERN is generated locally 
by synaptic inputs to error neurons in both dACC and pre-SMA. Furthermore, this iERN 
amplitude – spike rate correlation was directly related to behavior: it predicted post-error 
slowing.  The greater the correlation between error neuron spikes and iERN, the slower the 
subject was to respond on the next trial after an error. This phenomena is commonly known 
as post-error slowing and is a key signature of cognitive control. This finding suggests a 
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mechanistic interpretation, according to which coherence between spikes and iERN is 
implementing greater cognitive control. This was a highly novel finding, and could not 
have been obtained with other measures like fMRI.  A final further mechanistic piece of 
evidence was that, following an error, both error neuron spikes, and the iERN, occurred 
with earlier latencies in the pre-SMA than in the dACC.  While considerably more work 
will be needed (see below), these unique findings from invasive human recordings for the 
first time suggest the beginning of a specific circuit, comprising pre-SMA, dACC and other 
regions yet to be determined, within which coordinated neural signals about errors engage 
control processes that influence subsequent behavioral adjustments. 

 
In Chapter 3, I probed these mechanisms further, using spike-field coherence (SFC) 

analyses. These provided additional information about this neuronal synchrony.  I found 
that neurons formed dynamic activity ensembles that communicated via the theta frequency 
band (5-10Hz) during baseline, but switched to the delta frequency band (2-5Hz) after an 
error.  In pre-SMA this delta-range SFC was predictive of post-error slowing.  These 
findings from Chapter 3 further support the interpretations from Chapter 2 that local 
coordination between field potentials and spikes were required to influence behavior.  The 
additional insight provided in Chapter 3 is that there appear to be specific frequency bands 
that broadcast specific information.  A major open question that I have not yet addressed 
here is SFC between different brain regions, which could eventually inform models of how 
information in one brain region is communicated to another. 

In Chapter 4, I turned to another commonly used cognitive control task, the multi-
source interference task (MSIT).  This has some advantages relative to the Stroop task, in 
particular it provides two different sources of conflict that can cause errors.  This allowed 
me to investigate conflicts and conflict-induced cognitive control in more detail. We found 
neurons in both dACC and pre-SMA that reported conflicts during the MSIT task ex post, 
that is after the button press. This is thus a monitoring signal. On a single cell level, these 
neurons showed interesting non-linear coding patterns that were manifested as an 
interaction effect between the two types of conflicts (visual distraction, and spatial 
interference). Interestingly, all four combinations of conflicts (with or without visual 
distraction and spatial interference) could be decoded from the neuronal population in both 
dACC and pre-SMA.  Interestingly, I found that the latency of responses in dACC was 
considerably shorter than in pre-SMA, contrary to the case of error monitoring.  It is 
interesting to note that both for error neurons on the Stroop task and for conflict neurons 
in the MSIT task, the latency differences between pre-SMA and dACC were substantially 
longer than a simple monosynaptic relay (about 50ms in the Stroop task, and over 100ms 
in the MSIT).  This suggests once again that spikes in one brain region are not simply 
relayed to the next, but that substantial local processing first needs to occur before 
information is broadcast to other regions by a population of neurons. 
 Our findings are largely consistent with existing models of behavioral control but 
for the first time provide mechanistic detail in the human brain that had been unavailable 
before. One popular model (Shenhav et al., 2013) suggests that dACC engages in learning 
the which processes to control (control identity) and how much control is to be specified 
(control intensity), by updating internal models with outcome information. Our findings 
that iERN – error neuron synchrony is predictive of the magnitude of cognitive control in 
dACC provides evidence the brain region indeed contained information for about 
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specifying the intensity of cognitive control. In addition, the timing of such synchrony 
(immediately after the erroneous response was made) suggests that it might reflect the 
updating process when dACC error neurons received inputs from other brain regions 
reflected in iERN. These findings suggest that neuronal coherence provides a candidate 
mechanism for how the computation that transforms error signals into control signals can 
be achieved in local neuronal populations, and then communicated to distal brain regions 
for actual control implementation. These findings add substantial mechanistic details to the 
normative model of behavioral control, which has classically been based on logic and 
behavioral data without insight into the neuronal implementations. The ex-post conflict 
signals found with the MSIT in both dACC and pre-SMA suggest that this framework can 
be extended also to conflict signals, which are again utilized to update an internal model 
for control specification.  
 
5.2 Limitations 
 
 There are a number of limitations to the results presented here.  While there are 
obvious strengths in the temporal and anatomical precision of recording single neurons, 
such recordings in humans face major restrictions imposed by the requirement to obtain 
them in a clinical setting.  The patients all have epilepsy, raising questions about the extent 
to which results obtained from their brains would generalize to healthy brains.  This 
question has been addressed in many studies, and the general consensus is that valid 
generalizations can be drawn, provided one takes care not to record from a seizure focus.  
In our analyses, we always checked whether recordings were from a region that was 
subsequently determined to be a seizure focus.  Also, the severity and age of onset of the 
epilepsy, and anatomical location of the seizure focus, vary considerably between patients. 
Thus, by basing our analyses on data obtained from a number of patients, we further ensure 
that the results would not be idiosyncratic to any one of them. 
 Further limitations of collecting data in a clinical setting are the limited time 
available for recordings, and the lack of flexibility in many of the parameters. Unlike 
similar recordings in monkeys, we are only able to record for perhaps an hour at most in 
any one session, and experiments regularly are interrupted if the patient becomes sleepy or 
has visitors.  Also unlike monkey experiments, we cannot move the electrodes, nor implant 
them where we would like.  This latter restriction no doubt introduces some sampling 
biases that are important to note. Another limitation is simply the number of neurons we 
recorded.  Multielectrode arrays will be needed to record from a greater number of neurons 
(see below). 
 Finally, it is important to note that electrophysiological recordings, like fMRI, are 
correlational in nature.  This means two things here.  First, it means we cannot conclude 
strong causal connections between our neuronal signals and behavior.  Even though errors, 
and behavioral slowing, are both correlated with electrophysiology, as I showed in the 
preceding Chapters, these associations are not necessarily causal.  They could reflect other 
processing that, in turn, has causal effects on both our neuronal responses and the 
behaviors.  Direct interventions would be required to determine that the association is in 
fact causal, very difficult to do in humans, but achievable with microstimulation or 
optogenetics in animals. 
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 A second respect in which the electrophysiological results here are correlational is 
more subtle.  What we, as experimenters, can decode from a neuron or a population of 
neurons need not be what downstream neurons decode. To really determine what 
information a neuron signals, simply recording from it is insufficient: we would need to 
simultaneously record from the neuron and its projection targets, and determine the 
Shannon information communicated between them.  This is also next to impossible in the 
human brain, and difficult even in the most precise animal models. 
 While these limitations highlight how little we truly know, they also point to some 
clear paths forward. 
  
5.3 Future Directions 

Findings in this thesis also open up the possibility of many exciting new directions 
of future research. We have found neuronal signals of error monitoring in both dACC and 
pre-SMA. One key question is what sets them apart. From the standpoint of energy 
expenditure, it would not make sense for the brain to represent an exact copy of the error 
signals in two brain regions; they must be doing something different. Notably, some hints 
of differences between the two brain regions already emerged in the findings reported here. 
Error signals occurred earlier in pre-SMA than in dACC by ~50ms, which is a huge latency 
difference considering the fact that the time it takes for synaptic transmission is just 2-3ms. 
Given that the iERN amplitude and latency in dACC and pre-SMA were correlated 
(Chapter 2), this pointed to a possible hierarchical organization between dACC and pre-
SMA in recruiting control based on errors.  

To test this hypothesis, one needs to find statistical evidence that such 
communication exists between the two regions. During my post-doc, I next plan investigate 
three things: 1) investigate simultaneously recorded neurons in dACC and pre-SMA to see 
if their spike trains have any systematic relationships, using for example, cross-correlation; 
2) investigate the coherence and Granger causality between LFPs in the two brain regions 
across multiple frequency bands; and 3) investigate spike field coherence between spikes 
in one region and LFP in another region.  These measures could provide crucial information 
about whether the two brain regions communicate and the direction and frequency channels 
of communication if it exists. Given the importance of dACC and pre-SMA in the literature 
of cognitive control and a lack of a model to make sense of the existing subtle differences, 
our results can potentially provide an answer or model of how these two regions coordinate 
in performance monitoring. It could be that if a specific communication channel between 
the dACC and pre-SMA is blocked, subsequent cognitive control could be affected. This 
putative hierarchical organization could ultimately be probed with causal manipulations in 
a systematic manner, although this would likely require experiments in animal models.  
Nonetheless, it is possible to experimentally disrupt processing through electrical 
stimulation, passing current through the very same electrodes from which we record.  One 
could thus stimulate one region and record the effect of stimulation in another area, while 
measuring how cognitive control changes as a result. Achieving a deeper understanding of 
how performance monitoring and model updating works could help shed light on 
developing possible treatments for dysfunctions that involve these processes.  An important 
translational goal could be targeted stimulation of the performance monitoring-cognitive 
control system to alleviate severe psychiatric disorders that have disorders of cognitive 
control, such as the obsessive-compulsive disorder, attention-deficit/hyperactivity 
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disorder, and schizophrenia. Indeed, for some of these, deep-brain stimulation is already 
being considered and piloted. 

Another most exciting future domain will be to link electrophysiological response 
properties (like our “Type I”, “Error integrating” definitions) to actual cellular properties.  
Are these excitatory projection neurons?  Inhibitory interneurons?  Neurons with a specific 
morphological or gene expression profile that could be manipulated selectively using 
optogenetics in animal models?  This level of cell-type specificity is of course extremely 
difficult to obtain in the human brain. Nonetheless, we obtained preliminary evidence from 
the trough-to-peak time that such a mapping might possible in our data. 

While optogenetics are unlikely to be applicable to humans anytime soon, electrical 
microstimulation is feasible, and has been applied with some success (for instance, in the 
work of Josef Parvizi at Stanford (Parvizi et al., 2013)).  In principle, one could examine 
effects on behavior resulting from focal microstimulation of the pre-SMA or dACC, 
although more spatially distributed manipulations may be required to produce an effect.   

This also brings up the future direction of massively parallel recordings with high-
density arrays.  Several designs are being considered whereby a much greater number of 
neurons can be recorded from multielectrode arrays. Also of interest are electrodes that 
provide lamina-specific recordings, so that one can make inferences about which cortical 
layer one is recording from. All of these are still very much under development and will 
require a close interplay between the technology and the justification of additional risks 
when implanted. 

Finally, there are future directions that would investigate cognitive control with 
truly multimodal methods.  It is quite possible to carry out fMRI in the very same patients 
in whom one obtains single-unit recordings. Typically, the fMRI is done prior to 
implantation, as this is more feasible, safer, and avoids the artifacts that are produced on 
the MRI due to the paramagnetic nature of the electrodes. The advantage of fMRI is that it 
provides a whole-brain field-of-view. Thus, one could identify putative target regions, 
which could then be subsequently implanted (of course, based on clinical criteria).  Such 
an approach has been used quite successfully in monkeys, for instance in studies of face 
processing. 

I will close with two final broad future directions.  One direction is to ask how 
cognitive control interacts with other cognitive processing. What perceptual processing 
needs to occur before an error can be detected?  Does the patient have to consciously 
recognize the error they made while holding the stimulus in working memory? To what 
extent is attention required?  How does the error detection happen as a decision process? 
Is there some kind of accumulation of sensory evidence?  These are questions about how 
the operational concepts of conflict, error detection, and control interact with the rest of 
cognition to produce behavior.  It may well be that conflicts and errors are actually not the 
primitives that the brain represents, but that they are assembled from other building blocks. 
 A related, second, question is one about engineering. Can the neurobiological study 
of cognitive control provide us with general principles for how control happens in complex 
system, and how it can be engineered? Over the past decade, our understanding of how 
humans flexibly control their own behaviors has undoubtedly deepened, as summarized in 
the Introduction of this thesis. On the other hand, we have also witnessed the great success 
of deep learning.  With some particular features, such as nonlinearity in the input-output 
relationship, hierarchy and proper learning rules, deep neural nets already provide us with 
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artificial systems that outperform humans in specialized domains of tasks.  However, in a 
sense, current deep neural networks (DNN) are still just expert modules, not yet a full 
behaving system. What happens if one DNN recognizes the face of a friend in a crowd, 
and another DNN recognizes a bear charging from another direction?  How is a decision 
made about how to behave with multiple inputs? The contrast between the flexible human 
brain and artificial neural networks that are specialized in one domain highlights one major 
missing feature: a control mechanism that organizes and arbitrates between the different 
expert systems in an intelligent way.  This is currently still far from being implemented in 
artificially intelligent systems. The human brain has many specialized modules, such as the 
visual cortex, that may function in some ways like artificial neural networks: they can 
extract expert representations of the external world. What makes it a brain is the ability to 
bind these systems together and make use of these representations to achieve goals and, 
when different systems are in conflict with each other, to arbitrate and resolve conflicts, 
while keeping the control mechanisms flexible and generalizable. I am not necessarily 
suggesting that some kind of “supervisory system” needs to be layered on top of these 
expert systems, as older schemes of cognitive control sometimes proposed (Norman and 
Shallice, 1983).   It is also possible that the multiple modules just compete with each other 
and achieve consensus, or winner-take-all, in a self-organizing manner. Studying the 
principles of how neurons communicate and how cognitive control is implemented and 
interacts with different expert systems at the neuronal level will help to reveal general 
principles that are potentially useful for creating the ultimate artificial autonomy. 
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