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Abstract

Subband coding as a lossy data compression technique was first introduced for speech coding. It
has been demonstrated to be a very competitive coding method for general audio signals as well as
images. Subband coding has been incorporated in various popular coding standards. Essential to
the implementation of subband coding is an M -channel filter bank that partitions the input signal
into M subbands. In the context of 1D (one-dimensional) filter bank design, the CMFB (cosine
modulated filter bank) is well-known for design and implementation efficiency. All the filters in the
filter bank are cosine modulated versions of a prototype filter. As a result the cost of design as well
as complexity is reduced dramatically by a factor of M. In this thesis we study the design of CMFB
in 1D case and 2D (two-dimensional) case.

In previous works on 1D CMFB, the filters in the filter bank do not have linear phase, which is
considered an important feature in image coding applications. The design of cosine modulated filter
banks with linear-phase filters is the first topic to be presented in this thesis. Design examples will
be given to show that filter banks with filters having good frequency selectivity can be obtained in
spite of the linear phase constraint.

For the design of 2D cosine modulated filter banks, the simplest approach is to cascade 1D filter
banks in the form of a tree. This type of 2D filter banks are referred to as separable. The frequency
support of the filters in a separable filter bank are restricted to rectangular shapes. Nonseparable
filter banks allow more flexible partitions of the frequency plane and achieve better performance.
Almost all the existing design techniques for 2D nonseparable filter banks are developed exclusively
for the two-channel case. We will consider two types of 2D M-channel nonseparable filter banks,
the two-parallelogram type and the four-parallelogram type. These are respectively the classes of
filter banks in which the passbands of the filters consist of two and four parallelograms. In these
designs additional cosine modulated constraints will be incorporated for design and implementation

economy.
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Chapter 1

Introduction

Filter banks for the application of subband coding of speech were introduced in the 1970s. Since
then, studies on filter banks, subband coding and in general the potential applications have been
booming. Today it is one of the most effective lossy data compression techniques. It has been
used in various popular standards, e.g., MPEG (motion picture expert group) and NTSC (National

Television Standard Comimittee).

To
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Fig. 1.1. The M -channel uniform filter bank.

The essential instrument in the implementation of subband coding is the M-channel filter bank
as shown in Fig. 1.1. The input signal z(n) is first split into subbands using a set of M analysis
filters Hy(z), with typical frequency stacking as shown in Fig. 1.2. The subband signals z;(n) are
then processed for storage, or transmission, depending on the underlying application. Typically,
quantizers are inserted in the subbands and bits are allocated among zx(n) to meet a target bit
rate. Bit allocation is conducted judiciously such that the recombined signal Z(n) bears a closer
resemblance (perceptually and quantitatively) to the input z(n) than direct quantization of z(n)
for the same bit rate. Equivalently, subband coders are able to achieve the same perceptual or
quantitative quality with a lower bit rate.

There are several reasons why subband coding has been enjoying so much popularity recently. A
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Fig. 1.2. The typical stacking of an M-channel uniform filter bank.

distinctive property of subband coding is that it is in good accordance with the hurman visual system
and the auditory system. For example, by repeatedly spitting the lower subband of a two-channel
filter bank (Fig. 1.1 with M = 2) we obtain the so-called octave-band filter bank as shown in 1.3(a).
This yields an overall frequency partition as shown 1.3(b) and these octave bands better capture
the logarithmic feature of the human hearing system. A subband coder allows direct control over
information in different frequency bands and allows natural incorporation of perception models, e.g.,
the masking pattern of hearing. It is understood that the ability of ears to detect noise is affected
by the presence of another sound in the same spectral and temporal localities; this phenomenon
is called masking [3]. Subband bit allocation can be adjusted accordingly to take advantage of
masking. Perceptual subband coding has been widely used in psychoacoustic andio coders such as
MUSICAM (Masking-pattern Universal Subband Integrated Coding and Multiplexing), and AC-2
system developed by Dolby. MUSICAM is later adopted in the the audio layers of MPEG-1 as well
as MPEG-2; AC-2 is proposed to be used in a new system of NTSC for HDTV (High Definition
Television) services [78]. Similar masking patterns exist in human visual system. Based on the
framework of subband coding, visual perception criteria have also been integrated into image or
video coder designs [68, 80].

While VQ (Vector Quantization) requires data training, code book design, and code book storage
and table lookup at the decoder, signal independent filter bank design works very well in general.
The whole subband coder operates like an open loop system. As a initial step, the filter bank can
be obtained through one of the standard design techniques. (Today even the design step is not
necessary; filter coefficients of the filters in the filter banks have been widely tabulated for various
numbers of channels.) The only signal dependent element is bit allocation, which can be done easily
by computing the subband variances. The implementation of a subband coder, the encoder as well
as the decoder requires little storage memory. Moreover the subband coding scheme lends itself well
to the incorporation of other compression techniques. For example DPCM (Differential Pulse Coded
Modulation) quantizers are often inserted in the subbands instead of simple uniform quantizers to
improve the performance [109]. The use of VQ in the subbands (subband VQ) has also been studied
[14].

Subband coders also offer the well-known multiresolution feature [58, 98, 106], which provides a

natural framework for progressive transmission. A quick display of the compressed image at low
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Fig. 1.3. The octave-band filter bank: (a) tree structure; (b) frequency stacking.

resolution is possible without decoding the whole image. Renditions of progressively better quality
can be then displayed with more added resolution at the viewers’ choice. This property is very useful
in the application of telebrowsing and also in applications where displays of varying resolutions are
desired, e.g., printers and monitors [32]. Fig. 1.4 shows an example of displaying a subband coded
test image at three resolutions. The original test image (Fig. 1.4(a)) is of size 512 by 512, with
each pixel represented by 8 bits. The subband coded test image (using the algorithm by Said and
Pearlman [82]) has a bit rate of 0.5 bit/pixel and the reconstructed image is shown in Fig. 1.4(d).
Fig. 1.4(b) and (c) are obtained by reconstructing from part of the compressed image; the bit rates
for these two cases are respectively .05 bit/pixel and .2 bit/pixel.

Subband coders are also useful for images coding in facsimile transmission [63]. Facsimile are black
and white documents. When gray-level images are transmitted, they are usually first processed using
halftoning technique to give gray-level renditions. Neuhoff and Pappas proposed that, instead of
pre-transmission halftoning, gray-level images be subband coded, transmitted and decoded at the
receiver end followed by halftoning process. It has been demonstrated that such halftone renditions
are indistinguishable or almost indistinguishable from those without the subband coding stage while
a significantly lower transmission rate can be achieved, especially when the output device has a high
resolution (e.g. a 600 dpi printer).

Besides data compression, filter banks also find applications in telecommunications such as trans-

multiplexing and message encryption. An important problem in digital telephone network is the
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Fig. 1.4. Multiresolution displays: Test image (a) and reconstructed images at (b)
0.05 bit/pixel (c) 0.2 bit/pixel and (d) 0.5 bit/pixel.
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conversion of signal formats from TDM (Time-Division Multiplexed) to FDM (Frequency-Division
Multiplexed). This is called transmultiplexing [5]. A connection between this and filter bank theory
was established by Vetterli {103, 104]. This observation prompts the realization of cross-talk free
channels with full bandwidth utilization [37]. In the transmission of voice signals, the messages are
sometimes encrypted to ensure privacy. By using a filter bank, a signal is first split into subbands
followed by permutation and re-combination for transmission. This can prevent eavesdropping dur-
ing transmission [16]. In addition, applications of filter banks as convolvers [100, 69] and equalizers

(44, 45] have also been studied.

1.1 Developments of Filter Bank Design Techniques

1.1.1 Design of One-Dimensional Filter Banks

The introduction of subband coding has stirred up widespread interest in different approaches to
the design of filter banks. In the absence of quantizers in the subbands a filter bank in general
introduces two types of error: aliasing error and distortion error. When a filter bank is alias-free,
it is an LTT system. If, in addition, the filter bank is also distortion-free, in this case the output is
a replica of the input and the filter bank has perfect reconstruction. If these two conditions are only
approximately satisfied, we say the system has approximate reconstruction.

The design techniques of filter banks have gradually evolved over time; some techniques are in the
general context while some are driven by specific applications. Generally speaking, these advances
have taken the course of proceeding to perfect reconstruction from approximation reconstruction case
and to M-channel from two-channel case. Two-channel filter banks with approximate reconstruction
were proposed in [17] for speech coding. Perfect reconstruction for two-channel case is achieved in
[86]. Filter banks with more than two channels can be obtained by cascading two-channel filter
banks in the form of a tree. However for large number of channels (e.g., 32, which is now a popular
number used for audio coding) such cascades often introduce undesired huge amount of delay. The
development of M-channel filter banks is driven by theoretical as well as practical interests. An
M-channel filter bank with approximate reconstruction is designed in [79]. The advance to perfect
reconstruction case is made independently by Vetterli [104] and Vaidyanathan [94, 95]. In particular
in [94], the paraunitary systems, a subclass of perfect reconstruction filter banks, are parameterized.
The introduction of the paraunitary (also called orthogonal or orthonormal) class turns out to be
a very important step in filter bank theory and design. It leads to a series of further developments
and also helps to simplify the filter bank design problem. Nevertheless the problem of designing
M-channel filter banks is still not a simple one; the design problem becomes much simplified in
cosine modulated setup, which will be elaborated in the subsequent discussion.

In the developments of filter bank theory and design, various systems and deign techniques have
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been proposed: For removing blocking effects that often appear in transform image coding, the
LOT (Lapped Orthogonal Transform) and its efficient implementation are developed. The LOT
systems are paraunitary; the biorthogonal (non-paraunitary) extension of LOT, which is called the
BOLT (BiOrthogonal Lapped Transform), is given in [101]. For removing ringing effect that occurs
around edges, time varying (spatially varying) filter banks are proposed [29, 26, 71, 88]. Also for the
application of image coding, it is important for the filters to have linear phase. Two-channel filter
banks with linear-phase filters are designed in [28] and a factorization approach to the design of linear
phase M-channel paraunitary filter bank is given in [89]. For efficient filter bank implementation,
the cosine modulated filter banks (CMFB) are developed [79]. To improve the stopband attenuation
of the filters for audio coding, NPR (Near Perfect Reconstruction) CMFB are designed [65, 90]. Also
for a given input statistics and a given orthogonal filter bank, optimum pre- and post filters can
be inserted to improve the SNR, (signal to noise ratio) {19]. Signal dependent optimum orthogonal
subband coder designs are considered in [93, 92, 99].

Recently, some techniques are developed to improve the perceptual and quantitative quality of
subband coded signals: For better time-frequency analysis, signal dependent tree structured filter
banks are considered in [76]. For a given input the tree is grown on a rate distortion sense to achieve
a higher SNR. By exploiting subband correlations and taking into consideration that the quantized
bit stream will be entropy coded, Shapiro introduced the embedded zero-tree wavelet (EZW) algorithm
[84]. EZW enables the signal to be efficiently coded and leads to better results subjectively compared
to the conventional SNR based bit allocation followed by separate entropy coding of each subband.
The coding efficiency and coding performance are further improved by Said and Perlman [81, 82].
These new subband coding schemes have brought subband coding to a even more competitive level

with other coding methods.

Cosine Modulated Filter Banks

In the contexts of filter bank design as well as implementation, the most notable is the class
of the cosine modulated filter banks (CMFB). The CMFB is well-known for its low design cost
and implementation efficiency. All the analysis filters are cosine modulated versions of a prototype
filter, hence the name CMFB. The design of the filter bank involves only the prototype. Of even
greater importance is that the complexity of the analysis (or synthesis) bank is comparable to that
of the prototype plus a low-complexity DCT matrix. The CMFB technique dramatically reduces
the implementation cost approximately by a factor of M.

An M-channel CMFB is typically obtained by starting from a 2M channel uniform DFT filter
bank (Fig. 1.5), [98]. Each filter in the DFT filter bank is a shifted version of a lowpass prototype
P(w) (Fig. 1.5) with bandwidth /M, which is half the total bandwidth of each filter in the desired
M-channel system. The filters in the DFT filter bank are then shifted by 7/2M and paired to obtain
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real-coefficient analysis filters (Fig. 1.2) of the M channel CMFB. Each analysis filter has total band-
width 27 /M, which is two times that of the prototype. In almost all the designs the synthesis filters
are the time reversed version of the analysis filters and hence have the same magnitude responses.
Two types of cosine modulated filter banks have been developed, pseudo QMF systems (approx-
imate reconstruction) [66, 79, 12] and later paraunitary systems (perfect reconstruction implied)
[74, 60, 37].

P

L X X \N--- -

w/2M O n/2M ®

Fig. 1.5. A 2M-channel DFT filter bank with P denoting the prototype filter.

Design examples have demonstrated that perfect reconstruction (or approximate reconstruction)
and very good filter responses can be achieved simultaneously. Due to the efficiency of CMFB,
virtually all the subband audio coders now in use are cosine modulated based, including the afore-
mentioned MUSICAM (for MPEG-1 and MPEG-2), and the AC-2 systems. For example, the MUSI-
CAM system uses a 32-channel CMFB with perceptually-tuned quantization in the subbands. The
prototype is a lowpass filter with length 512 and stopband attenuation about 100 dB. For CD quality
that is indistinguishable from the original recording, a typical compression ratio of this system is
between 4 and 6.

However in these CMFB designs (approximate or perfect reconstruction) the individual filters
do not have linear phase, which is an important property in image processing [42]. It is a necessary
feature, in some cases, e.g., when symmetric extension technique is used in subband coding. (Sym-
metric extension technique is a method that can effectively remove boundary effect in image coding
[87].) In this thesis we will design CMFB with linear phase analysis and synthesis filters. This is
especially important because there has been an general (false) impression that this is theoretically
impossible. The linear phase CMFB continues to enjoy all the advantages of traditional CMFB such
as design and implementation efficiency. Examples will be given to show that very good CMFB
designs can be obtained in spite of linear phase constraints. A brief overview of linear phase CMFB

is given in Sec. 1.2.1 and a more complete treatment is given in Sec. 3.
1.1.2 Design of Two-Dimensional Filter Banks

Basic Building Blocks. Two of the basic building blocks in a multirate system of any dimension are
the decimator | M and the expander + M. In 1D systems, the M-fold decimator keeps only the

samples that are multiples of M. In 2D systems, the decimator M is a 2 x 2 nonsingular integer
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matrix. The decimation matrix | M keeps those samples that are on the lattice generated by M.

The lattice generated by an integer matrix M is the set of integer vectors of the form

Md, for some 2 x 1 integer vector d .

?

For example, let M be a diagonal matrix

My 0
M=| ' . (L.1)

0 M,
Then the lattice is a rectangular lattice; an example with M; = 2 and My = 1 is shown in
Fig. 1.6(a), where dots denote integer vectors and black dots denote the vectors on the lattice.
When M is a diagonal matrix, the decimation or expansion operation can be performed in each

dimension separately. For a non diagonal example, consider the so-called quincunx matrix

1 1
-1 1

M=

The corresponding lattice is shown in Fig. 1.6(b); this is called the quincunx lattice. The output of

the decimator M contains only the samples on the lattice of M.

(a) (b)

Fig. 1.6. (a) A rectangular lattice and (b) the quincunx lattice.

In a 2D multirate system the filters are two-dimensional. The simplest way to obtain a 2D
filter is by cascading two 1D filters. For example suppose we are given two 1D lowpass filters with
bandwidths 27 /M; and 27/M,. By cascading these two filters (Fig. 1.7(a)), we obtain a 2D filter
F(wp,w;) with rectangular support (Fig. 1.7(b)). This type of filters are called separable. Let the
1D filters be FIR with filter lengths N; and Ny, then the 2D filter F(wp,w;) has N1 N, coefficients
and a rectangular time-domain support. In this case F{wg,w: ), as implemented in Fig. 1.7(a), allows
filtering process to be done in each dimension separately; the computational complexity per output

sample is proportional to N7 + N,. Furthermore if G(w) and H{w) are decimation filters for | M;
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and | My, the 2D filter is a decimation filter for the diagonal M in (1.1). We can see that when M
is not diagonal, we will need to use a nonseparable decimation filter. For a nonseparable filter with

N2 coefficients, the complexity per output sample is in general proportional to N2.

(a) —® H(wy) M= Glo) e (b)

Fig. 1.7. (a) Separable 2D filters as a cascade of two 1D filters; (b) a separable filter.

Clearly separable decimation and filtering is much easier in concept and implementation. However
in some applications it is necessary to use nonseparable operations. Such applications include the
conversion between interlaced signals, used in television and video, and progressive signals, used
in movies. For interlaced signals, the samples are located on the quincunx lattice whereas for
the progressive signals the samples are on rectangular lattices. The conversion between these two

requires nonseparable decimation, expansion and nonseparable filters.

Separable Filter Banks

In a 1D M-channel filter bank, the analysis filters typically have bandwidth 27 /M and the
outputs allow M-fold decimation without creating too much aliasing (aliasing due to the non-ideal
roll off in the transition bands are canceled in the synthesis bank). That is to say, each analysis filter
is close to a decimation filter for | M. It is argued that such a setup is necessary for good filter bank
designs [52] and the same principle applies to the 2D case. In a manner similar to cascading two
1D lowpass filters in two directions to obtain separable filters, we can cascade two 1D filter banks
in the form of a tree structure to obtain a 2D filter bank, e.g, the four-channel tree structured filter
bank shown in Fig. 1.8. In these tree-structured filter banks, the decimation matrix M is diagonal
and data is processed in each dimension separately. This type of systems is referred to as separable.
This is the most popular and simplest way to design 2D filter banks; almost all the 2D subband
coders used in practice are based on separable filter banks [110, 59].

For a D-dimensional separable filter bank, design cost is equivalent to D times that of 1D filter
banks; complexity of design and implementation grows linearly with the number of dimensions. In
this case, the supports of the analysis and synthesis filter are D-dimensional rectangles. For 2D
separable two-channel systems, the support configuration will be as in Fig. 1.9(a) or Fig. 1.9(b)
when the analysis and synthesis filters have real coefficients. (The analysis and the synthesis filters

typically have the same supports; only the supports of the analysis filters are shown.) The tree
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Fig. 1.8. Tree structured filter bank. Splitting of the kth subband.

structure cascade of these two systems yields the four-channel filter bank shown in Fig. 1.9(c).

(n,m) (n,m) (%)
3] 2 |3
1l o |1
31 2 |3
(-n,—m) (-x,—T) (-m,~m)
(a) (b) (c)

Fig. 1.9. (a) and (b): Two types of two-channel separable filter banks. {(c) A four-
channel separable filter bank obtained as a tree structure of the systems in
(a) and (b).

Nonseparable Filter Banks

For the more general case of nonseparable filter banks, the supports of the analysis and synthesis
filters could have a variety of shapes, e.g., parallelepipeds that are not rectangles. The support
configuration can be tailored according to the underlying application and gives better coding per-
formance. For example, it is known that the human eyes are less sensitive to high frequency error,
especially error at a 45 degree orientation [61]. The two-channel diamond filter bank (configuration
as shown in Fig. 1.10) facilitates the incorporation of visual masking model much better than the
two-channel separable systems in Fig. 1.9(a) or Fig. 1.9(b). This has been demonstrated by vari-
ous researchers, e.g., [1, 10]. In directional subband coding applications [4, 41], where directional
sensitivity of the filters is important, the use of quadrant filter banks (Fig. 1.10(b)), filter banks
with fan filters (Fig. 1.10(c)), or parallelogram filter banks (Fig. 1.10(d)), are preferred to separable
filter banks. None of these support configurations, diamond, quadrant, fan or parallelogram, can
be achieved by separable filter banks. Although nonseparable filter banks offer more ﬂéxibility and

usually provide better performance, in most cases their design is considerably more difficult than
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separable filter banks. The implementation complexity of nonseparable filter banks is usually also

higher.

(m,1) (m,m)

(®,m)

(-r,—m) (-m,—m) (—m,~m) (—n,—7)
(a) (b) (c) (d)
Fig. 1.10. Support configurations of (a) diamond filter bank, (b) quadrant filter bank,
(c) fan filter bank and (d) parallelogram filter bank.

Research in the area of MD (multidimensional) filter banks started in 1980s. Some of the earliest
contributions were due to Vetterli [102], and Woods and O’Neil [109]. The idea of lattice decimation
and expansion is an indispensable aspect of MD multirate systems. An introduction to MD sampling
and signal processing can be found in [21]. A more detailed treatment is given in [98]. The theoretical
aspects of MD systems are studied in [7]. An excellent tutorial of MD filter banks is given in
[108]. Reviews of fundamentals of MD filter banks can be found in [96, 10] and also Chapter 12
of [98]. Results on the commutativity of MD decimators and expanders have been reported in
[38, 33, 9, 22, 25]. The Multidimensional Chinese Remainder Theorem for the application of MD
FFT is explored in [46]. The relation between filter banks and discrete wavelet transform has been

extended to the MD case [13, 39].

Previous Results on the Design of Nonseparable Filter Banks

In the past most of the design techniques for 2D filter banks were for two-channel case (Fig. 1.1
with | det M| = 2). In particular, the diamond filter bank (Fig. 1.10(a)), first introduced by Vetterli
[102], is of special interest in some image coding applications. There is also some interest in the filter
bank with quadrant filters as shown in Fig. 1.10(b), [4, 41, 91]. Recently, using 1D to 2D mapping,
designs of the diamond filter bank with efficient structures have been reported [35, 70].

For more than two channels case, 2D nonseparable filter banks are considerably more difficult
to design than 1D filter banks, various 1D to 2D transformations have been proposed for designing
suboptimal 2D filter banks without actually optimizing 2D filters. Two types of transformation
have been proposed: In [97], the so-called unimodular transformation is developed. By use of the
unimodular transformation, we can convert a 2D separable filter bank to a nonseparable one. The
supports of the resulting analysis filters consists of 4 parallelograms Fig. 1.11; the nonseparable filter

banks thus obtained constitute a subclass of four-parallelogram filter banks. Another transformation
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of 1D filter banks to 2D filter banks is studied by Kalker and Shah [33]. Although in this transfor-
mation perfect reconstruction is preserved, characteristics of 1D filters are not faithfully translated.
Even if the 1D analysis filters have good stopband attenuation, the 2D analysis and synthesis filters
resulting from the transformation may not look like filters at all and subband splitting holds the
key to successful subband coding. In [85], a design of nonseparable filter banks is proposed. In this
design good filters can be obtained, but the filter bank has perfect reconstruction only for the class

of inputs whose frequency supports fall within a certain hexagon.

Ao

Fig. 1.11. Typical support of a four-parallelogram filter.

On the other hand it has been observed that filter banks with certain support configurations can
not have filters with good frequency selectivity. A configuration of this nature is called nonpermissible
and should be avoided if good filters are desired [11]. The 1D and 2D DFT filter banks are known
to be such nonpermissible examples. The notion of permissibility is particularly crucial in designing

2D filter banks. We will discuss this detail in Chapter 4.

2D CMFB and 2D Parallelogram Filter Banks

The success with 1D CMFB motivates us to approach the design of 2D filter bank using cosine
modulated concept. The reasons are twofold. First, for a given a support configuration the usual
direct design approaches do not work as well as 1D case because of the huge number of parameters to
be optimized. The cosine modulation constraint greatly simplifies the problem. Secondly, since 2D
processing usually involves massive amount of data, implementation efficiency becomes an important
factor in filter bank designs, especially in the nonseparable case. The low complexity advantage of
CMFB clearly stands out among all the other possible constructions.

In Chapter 4 and 5 of this thesis we will construct and design 2D CMFB. As parallelograms can
form a tiling of the 2D plane, we will use a prototype filter of parallelogram support. Two types of
2D CMFB will be considered: two-parallelogram (Two-P) type and four-parallelogram (Four-P) type.
In Two-P CMFB, each analysis filter consists of two copies of the prototype and the support is the
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union of two parallelograms (Fig. 1.12(a)). Similarly in Four-P each analysis filter consists of four
copies of the prototype and the support is the union of four parallelograms (Fig. 1.11). Clearly the
Two-P and Four-P CMFB are subclasses of Two-P and Four-P filter banks. As a first step towards the
design of 2D filter banks, we will identify the necessary ingredients for successful filter bank design
and then study in detail such requirements for the classes of Two-P and Four-P filter banks. We will
take a pictorial approach to the general understanding of 2D filter banks based on the experiences
with 1D filter bank designs. The Tiwo-P and Four-P filter banks are then analyzed by exploiting the
concept of permissibility. Finally using this analysis, we design the Two-P CMFB (Chapter 4) and

Four-P CMFB (Chapter 5). A brief discussion of these two systems are given in the next section.

H, H5\ Ao, (m,m)
H, -
H; H,
AN H.
3
3 - H, u,
0
H, P‘_’
0 H,
H Ho : i
H 4 H3 1 H3
H,
i1 Hy i
2 H2

(-m,~) A\

(a) (b)

Fig. 1.12. (a) Typical support of a two-parallelogram filter; (b) support configuration
of a typical two-parallelogram filter bank.

1.2 Outline and Overview

Outline. A brief review of multidimensional multirate systems and fundamentals of integer matrices
pertaining to our discussion are provided in chapter 2. The linear phase cosine modulated filter
banks is presented in chapter 3. Chapters 4 and 5 are devoted respectively to two-parallelogram

filter banks and four-parallelogram filter banks.

1.2.1 Linear Phase Cosine Modulated Filter Banks (Chapter 3)

‘We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which

each analysis and synthesis filter has linear phase. The system can be designed to have either the
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approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR
system). In the PR case, the system is a paraunitary filter bank.

Asin earlier work on cosine modulated systemns, all the analysis filters come from a FIR prototype
filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total
bandwidth of 2w /M rather than /M in the range —7 < w < 7 (where 2M is the number of channels
in our notation). While this implies that these subbands undergo severe aliasing upon decimation
by 2M (which is the decimation ratio in a maximally decimated system), perfect reconstruction
is nevertheless possible. Moreover, in the context of subband coding where the subband signals
are quantized (often heavily) we show that considerable coding gain is obtainable in spite of this
aliasing. Furthermore a simple interpretation is possible in terms of the complex (hypothetical)
analytic signal corresponding to each bandpass subband, and it is shown that this analytic signal
does not undergo severe aliasing upon decimation by 2M.

The coding gain of the new system is comparable to that of a traditional M-channel system
(rather than a 2M-channel system). This is primarily because there are typically two bandpass filters
with the same passband support. Correspondingly, the cost of the system (in terms of complexity of
implementation) is also comparable to that of an M-channel system. We also demonstrate that very
good attenuation characteristics can be obtained with the new system. Prototype filter coefficients

are tabulated for various number of channels and various levels of stopband attenuation.

1.2.2 Two-P Filter Banks (Chapter 4)

In the construction of 2D filter banks, we have more flexibility in terms of possible configurations.
Even if we impose the condition that all the analysis filters have real coefficients and have only
two passbands, it is possible to have more than one configuration for a filter bank with decimation
matrix M. Various shapes can be used for the passbands of the individual filters, e.g., triangles [31]
and parallelograms [47, 48]. In Chapter 4, we study the two-parallelogram (Two-P) filter banks, the
class of 2D filter banks in which the support of each analysis and synthesis filter is the union of two
parallelograms (Fig. 1.12(a)). A typical two-parallelogram filter bank has support configuration as
shown in Fig. 1.12(b). This is a natural 2D generalization of the 1D support configuration in Fig. 1.2.
For a two-parallelogram filter bank with decimation matrix M as in Fig. 1.1, we will present the
conditions such that the configuration allows good filter design. As the geometry of a Two-P filter
is of a more intricate nature than 1D bandpass filters, a finer classification of permissibility will be

considered.

T'wo-Parallelogram CMFB. For a filter bank decimation matrix M, non-diagonal in general, we
start from a uniform 2D DFT filter bank with twice the number of channels. All the filters in

the DFT filter bank are shifted versions of a prototype filter, which has a parallelogram support,
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nonseparable in general. The filters in the DFT filter bank are shifted and then paired to obtain real-
coefficient analysis filters. Each analysis filter consists of two copies of a real-coefficient prototype
(cosine modulated version of the prototype) and is a Two-P filter. The synthesis filters have the
same spectral supports as the corresponding analysis filters. For a given decimation matrix, we
will construct all the possible configurations and study their permissibility. For those satisfying the
principle of permissibility, we further constrain the prototype to ensure perfect reconstruction of the
two-parallelogram CMFB.

We can conceive that in the more general case of 2D filter banks the individual filters can have
any even number of parallelograms. In Chapter 5, we will study the four-parallelogram (Four-P)
Silter banks [48], the 2D filter banks in which the supports of the analysis filters consist of four

parallelograms.

1.2.3 Four-P Filter Banks (Chapter 5)

The most commonly used 2D filter banks are separable filter banks, which can be obtained by
cascading two 1D filter banks in the form of a tree. The supports of the analysis and synthesis filters
in the separable systems are unions of four rectangles, e.g., the four-channel filter bank shown in
Fig. 1.9(c). The natural nonseparable generalization of such supports are those that are unions of
four parallelograms (Fig. 1.11). In Chapter 5, we study four parallelogram filter banks, the class
of two-dimensional filter banks in which the supports of the analysis and synthesis filters consist
of four parallelograms. For a given a decimation matrix there could be more than one possible
configuration (the collection of passbands of the analysis filters). Various types of configuration
will be constructed for four-parallelogram filter banks. Based on the concept of permissibility,
conditions on the configurations will be derived such that good design of analysis and synthesis
filters are possible. We will see that there is only one category of these filter banks other than some
special cases. The configurations of four-parallelogram filter banks in this category can always be
achieved by designing filter banks of low design cost.

Note that two-parallelogram filter banks are fundamentally different from 2D separable filter
banks obtained from 1D filter banks. But four-parallelogram filter banks will reduce to separable

2D filter bank in special cases.



Chapter 2

A Review of Multidimensional Multirate Systems

The idea of lattice decimation and expansion is crucial for the development of MD (multidimensional)
multirate signal processing; integer matrices play an important role in the understanding of MD
multirate systems. We will first provide a summary of fundamentals of integer matrices that are
relevant to our discussion and then give reviews of MD multirate systems and filter banks. Review

on integer matrices and multirate systems can be also found in [10, 96, 98, 108].

2.1 Fundamentals of Integer Matrices
1. Unimodular matrix. An integer matrix U is unimodular if |det U] = 1.
2. Notations FPD(M) and SPD(M). Let M be a D x D nonsingular integer matrix. The
fundamental parallelepiped FPD(M) generate by M is defined as
FPD(M) = {Mx, x € [0,1)"}.

The symmetric parallelepiped SPD(M) of M is defined as

SPD(M) = {Mx, x € [-1,1)P}.

3. Notations N (M) and |M|. The notation N (M) is defined as the set of integer vectors in
FPD(M). The number of elements in /(M) can be shown to be equal to | det M|, which will
be denoted by |M|. In 1D case D =1, and N(M) = {0,1,...,M —1}.

4. Duvision theorem for integer vectors. Let M be a D x D matrix and n be a D x 1 integer vector

n. We can express n as

n=ng+ Mk, whereny € N(M).
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Moreover, ng and k are unique. This relation is denoted by

n = ng mod M.

5. Lattices. The lattice generated by an integer matrix M, denoted by LAT(M), is the set of

integer vectors of the form

Mn, where n is an integer vector .

6. Cosets. Using division theorem for integer vectors, we can group all the integer vectors into |M|
sets, called cosets. All the vectors in the same cosets have the same remainder when taking

modulo M. When two vectors n and m are in the same coset, we will use the notation

g

7. The Smith form. A D x D integer matrix M can always be factorized as

M =UAYV,

where U and V are unimodular integer matrices and A is a diagonal integer matrix,

A O ... 0

0 A ... 0
A=

0 0 ... Ap-1

Furthermore, we can always ensure that the diagonal elements \; are positive integers and A;;

divides Aj41,s+1. In this case, A is unique and is called the Smith form of M.

2.2 Basics of MD Multirate Systems

Fourier transform and Z-transform. Consider a D dimensional signal z(n), where n is a D x 1 integer
column vector. The Fourier transformation and Z-transform of z(n) will be denoted respectively by
X(w) and X(z); they will be distinguished by the given argument, w for Fourier transform and z

for Z-transform. The Fourier transform of z(n) is defined as

Xw)= 3 z(me"m,

nezZD
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T
where w is a D x 1 vector with w = (wo Wi wD_l) and ZP is the set of all D x 1
integer vectors. The notations X (w) and X (wp,w;,... ,wp—1) will be used interchangeably. The

Z-transform of z(n), where it converges, is given by

X(z) = Z z(n)z™",

nezP
where z = (Zo 21 ...z D_J) T A vector raised to a vector power, as in z~™ above, gives a scalar
quantity defined as
T n np T
-1
2" =25%2" Lz, B= (no n ... nD_l) .

Basic Building Blocks: Decimators and Expanders

For a decimator | M (Fig. 2.1(a)), the input z(n) and the output y(n) are related by

y(n) = z(Mn).
In the frequency domain, the relation is
1
Y(w) = ™ > XM T(w - 27Kk)).
keN (MT)
When M is a unimodular matrix, i.e., |M| = 1, the output data rate remains the same. The

decimator simply rearranges the input data.

Given an expander T M (Fig. 2.1(b)), the input z(n) and the output y(n) are related by

z(M~'n), ne€ LAT(M)
y(n) =
0, otherwise .

In the frequency domain, the relation is
Y(w) = X(MTw).
Their Z-transforms are related by Y (z) = X (zM), where zM is defined as
M = (sz zZ7 L sz-l)T,

with m; denoting the ith column of M.

Decimation followed by expansion. Consider the concatenation of the M-fold decimator and M-fold
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x(m) y(m) x(m) y(m)
(a) —YM —  (5) —-AM [
z(n) y(n)

(¢) —=WM[—BAM —p

Fig. 2.1. (a) The decimator | M, (b) the expander 1+ M and (c) the decimator follow
by expander.

expander in Fig. 2.1(c). The input z(n) and the output y(n) are related by

z(n), n€ LAT(M)
y(n) =
0, otherwise .

In the frequency domain, the relation becomes

Y(w) = ™ > X(w-2rM k).

KEN (MT)
The output Y (w) contains X (w) and |M| — 1 shifted versions X (w — 2rM~Tk) (images of X (w)).
If M is unimodular, we have y(n) = z(n).

Noble identities. Fig. 2.2 shows two useful multirate identities for multidimensional systems. These

allow the movement of multirate building blocks across transfer functions under some conditions.

— (™) Y M oYM [ f(z) [

Y
I

—»= [(z) =AM [ =AM (M)

i

Fig. 2.2. Noble identities for multidimensional decimators and expanders.

Polyphase Decomposition
For a given integer matrix M, we can divide all the integer vectors into |M] cosets. Thus given

a sequence z(n), we can identify |M)| sequences.

ei(n) = z(Mn +n;), n; € N(M).

The signals e;(n) are called the type I polyphase components of z(n). Each polyphase component
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contains the samples of z(n) that are in the same coset. These |M]| polyphase components can be
obtained from z(n) as shown in Fig. 2.3. Define y;(n) to be the expanded version of e;(n), i.e.,
yi(n) = e;(n)sm. Then the signal z(n) can be synthesized from the type I polyphase components
by z(n) = ZL?OI—I yi(n + n;) as illustrated in Fig. 2.3.

The type II polyphase components of z(n) are defined as

ri(n) = z(Mn — n;), n; € N(M).

x(n)
z7 P YM»em) PAM» 2™

z—nl — +M">el(n) — +M—) an

[ ]
LR N
o0

x(n)
L 2™y M ey (n) 3] A M [P —¢——>

Fig. 2.3. Polyphase decomposition of a signal z(n).

Special Filters

o Nyquist(M) filters. A filter H(w) with impulse response h(n) is called Nyquist(M) if A{Mn)

has only one nonzero coefficient. In 1D case, if M = 2, H(z) is called a halfband filter.

o Linear and zero-phase filters. A filter H(w) is said to have linear phase if
Hw)= ce—jkT“’HR(w),

where k is a constant vector, ¢ is a scalar (possibly complex) constant and Hgi(w) is a real

function. A linear phase filter H(w) is called zero-phase if H(w) is a real function. It can be

shown that a filter has zero phase if and only if

h(n) = A*(—n).



22
2.3 Multidimensional Filter Banks

Consider the MD filter bank in Fig. 2.4. Let N(M7T) = {k; }ll\:/{)[_l and the vector kg = 0. The
output X (w) is given by
M| -1
Xw) =TwXw)+ > Aw)X(w-2rM k),
i=1
where T'(w) is the distortion function and A;(w) is the aliasing transfer function. The distortion

function T'(w) is defined as

| M-t
T(w) = ‘]M—i 2;0 Hyp (w) Fin (w).

The aliasing transfer function A;(w) is defined as

[M]—1
Aiw) === > Hp(w-2tM k) Fpn(w).

The MD filter bank is free from aliasing if A;(w) =0, fori=1,2,---,|M|~ 1. In this case, the filter
bank is an LTI (Linear Time Invariant) system. The filter bank has perfect reconstruction if it is free
from aliasing and the distortion function 7T'(w) is a delay. In this case, X (w) is a scaled and delayed
version of X (w). As in 1D filter banks, the perfect reconstruction condition can be interpreted in

terms of the polyphase matrices.

Ol Hw -y M [efAM [ R L
Hw) H=YM [ AM [ Fo)
R e e T e e L

Fig. 2.4. A |M|-channel multidimensional filter bank.

Polyphase Matrices and Paraunitary Filter Banks
Using type I polyphase decomposition for the analysis filters and type 11 decomposition for the
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synthesis filters, we have

Ho@)= 3 EniMTw)e™ ™™, m=0,1,...,|M -1,
n; EN' (M)

Fa@)= Y RimMTw)e ™, m=0,1,..., /M| -1
n; EN' (M)

The |M| x |M| matrices E(w) and R(w) with [E(w)]m: = Epi(w) and [R{(w)]m,; = Rm,i(w) are
respectively called the polyphase matrices for the analysis bank and the synthesis bank. Polyphase
implementation of the filter bank is shown in Fig. 2.5(a), which can be efficiently implemented as in

Fig. 2.5(b) using noble identities. The MD filter bank has perfect reconstruction if
R(w)E(w) =1
The filter bank is paraunitary (or orthonormal) if E(w) is a unitary matrix for all w, i.e.,
Ef(w)E(w) =1, for all w.

Perfect reconstruction is trivially satisfied by choosing R(w) = Ef(w). In this case, the synthesis

filters are given by F,,(w) = H} (w) or fp(n) = A% (—n).
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Fig. 2.5. Representation of the analysis and synthesis banks in terms of the polyphase matrices.



Chapter 3

Linear Phase Cosine Modulated Filter Banks

3.1 Introduction

The M -channel maximally decimated cosine modulated filter bank shown in Fig. 1.1 has been studied
extensively in the past {18, 86, 104, 94, 98]. When the system in Fig. 1.1 is alias free, it is an LTI
system with transfer function T'(z), as indicated in Fig. 1.1. T'(z) will be called the distortion
function or the overall response in the following discussion.

The system in Fig. 1.1 is said to be a cosine modulated filter bank if all analysis and synthesis
filters are generated by cosine or sine modulation of one or two prototype filters. Cosine modulated
filter banks are well known for their design cost saving and implementation saving. Two types
of cosine modulated filter banks have been developed: pseudo QMF systems [66, 79, 12, 62, 15]
and perfect reconstruction systems [73, 37, 74, 60, 64, 24]. Unlike a PR system, a pseudo QMF
filter bank is only approximately alias free and has approximate reconstruction property (and the

approximation improves with filter order).

3.1.1 Previous Work

In [12], Chu mentioned three approaches for designing cosine modulated filter banks with approxi-
mate aliasing cancelation. The first one involves designing two prototype filters. The implementation
cost for the analysis bank is that of two prototype filters plus cosine and sine modulation. The second
method, similar to the one proposed earlier by Rothweiler [79], requires only one prototype filter. Its
distortion T'(z) has linear phase and approximately flat magnitude response, but individual analysis
and synthesis filters do not have linear phase, which is important for image coding applications.
The third method, given in [12], needs also only one prototype filter. With this method all the
analysis and synthesis filters have linear phase, but the resulting |T(e“)| has a peak or a null at

zero frequency and at =.
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Recently, some cosine modulated maximally decimated systems with perfect reconstruction prop-
erty have been proposed [73, 37, 74, 60, 64, 24]. In [73], the individual filters in the filter bank have
linear phase but the length of the prototype can not be larger than the number of channels. Al-
though the length of the prototype in [37, 74, 60, 64, 24] is not as restricted, the individual analysis
and synthesis filters do not have linear phase even if the prototypes have linear phase. In [89],
some techniques for characterizing and designing paraunitary linear phase filter banks have been
developed, but these are not cosine modulated.

In general, the following results are typically desired in a filter bank:

[

. Cancelation of aliasing errors: Exact or approximate alias cancelation is desired.

2. Distortion function: T'(z) is exactly or nearly a delay. In particular the magnitude response

|T'(e?*)| is required to be flat.

3. Cosine modulation: All filters must be cosine modulated versions of a prototype. In this case,
only the design of the prototype filter is needed. Besides the implementation cost is only that
of the prototype filter plus one DCT matrix working at a decimated rate. For instance, in an
M -channel maximally decimated filter bank, the DCT matrix computation is performed after

M fold decimators. Design cost and implementation cost are significantly reduced.

4. Linear phase property of analysis and synthesis filters: These are desired in image coding appli-
cations, when the subbands are heavily quantized. (The nonlinearity of phase of individual

filters leads to some artifacts in the reconstructed image.)

5. Filter length: If the filters are restricted to be short, they can not have very good attenuation.

So the length of the filters should be allowed to be large.

In this chapter, we will show how to achieve all of these properties. (While this work was under
preparation, we learnt from Dr. Fliege of Hamburg University that he has developed similar results.

See [23] for more details.)

3.1.2 The New System

We propose a novel way to design a cosine modulated filter bank with perfect reconstruction or
approximate reconstruction. The set up of this new filter bank is shown in Fig. 3.1. It has 2M
channels and is maximally decimated. Every analysis and synthesis filter in this system is some
cosine modulated version of the same prototype filter. In the approximate reconstruction case, the
new filter bank can be designed to be almost alias free. Its overall response, T(z), has approximately
flat magnitude response and linear phase. In the PR case aliasing is canceled exactly and T(z) is

merely a delay. In both systems, every analysis and synthesis filter has linear phase property.
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Fig. 3.1. The new set up for derivation of the cosine modulated maximally decimated filter bank.

We would like to regard this filter bank as a connection of two subsystems. The first subsystem
has M + 1 channels and the second subsystem has M — 1 channels. Fig. 3.2(a) and (b) show,
respectively, the magnitude response sketches of analysis filters in the two subsystems. Notice that
the second subsystem does not have filters covering zero frequency or m while the first subsystem
does. The synthesis filters are time-reversed versions of analysis filters, and therefore have identical

magnitude responses.

. /\/Fhﬁ”’“)(—\

- —~(M-Dn/M -za/M 0 =a/M (M-Dn/M =

Hy, H/ HY Hy
o o\ L L\

- —(M-)n/M —n/M 0 =n/M (M-n/M 7t ®

Fig. 3.2. Magnitude responses of the cosine modulated analysis bank filters: (a) the
first subsystem; (b) the second subsystem.

In a conventional N-channel maximally decimated cosine modulated PR or approximately PR
system, all filters have the same total bandwidth 27 /N (including positive and negative frequency)
and the same height in passband. Their pass-bands do not overlap significantly. When the subband
signals are decimated by NN, there is no severe aliasing. Aliasing is caused only by the non-ideal
nature of the bandpass filters, which have a finite stopband attenuation and nonzero transition
bandwidth.

The new system, however, is unusual. As shown in Fig. 3.2(a), Hi(z) and H(z) have the same
spectral supports and total bandwidth 27 /M, i.e., two times wider than they are in the traditional

case while Hy(z) and Hjz(z) have total bandwidth only 7/M. Also Hy(z) and Hys(z) have v/2 times
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the height of other filters. In each channel serious aliasing occurs. However, since there is spectral
overlapping of the filters in the first and second subsystems, we are able to cancel this aliasing.
Cancelation of these aliasing components is possible by judiciously choosing the parameters. The
supports of the analysis filters are similar to those given in [73]. In addition, perfect reconstruction is
possible with this scheme by imposing certain conditions on polyphase components of the prototype
filter.

Furthermore, in conventional N-channel filter banks, each subband signal represents the input
signal in that particular subband. In the presence of quantizers in the subbands, bits are allocated
based on subband energy. We will explain in Sec. 3.5 that the 2M-channel cosine modulated filter
bank can be interpreted as a modified DFT filter bank. As a result, the subband signals retain
the usual meaning and can still be quantized in the usual manner although some filters in the new
system have twice the bandwidth of a filter in a typical M-channel filter bank. Detailed discussion is
given in Sec. 3.5. An image coding example is included to demonstrate the usefulness of the system.

Although this is a 2M-channel system, we will show that design cost and implementation cost
are equivalent to that of a conventional M-channel maximally decimated cosine modulated filter

bank. The coding gain performance is also close to that of an M-channel system.

3.1.3 Chapter Outline and Chapter Specific Notations

This chapter is organized as follows: In Sec. 3.2, we introduce the new maximally decimated linear
phase cosine modulated filter bank with approximate reconstruction property. The prototype filter is
further constrained in Sec. 3.3 to achieve perfect reconstruction. Necessary and sufficient conditions
for PR with this scheme will be given therein. Efficient implementation of this new filter bank is
presented in Sec. 3.4. Coding gain and optimal bit allocation of the new system will be discussed

in Sec. 3.5. Numerical examples and tables of prototype filter coefficients are given in Sec. 3.6.
Chapter Specific Notations

1. Boldfaced quantities are used to represent matrices. The notations AT, A* and AT represent
the transpose, conjugate and transpose-conjugate of A. The ‘tilde’ notation is defined as

follows: A(z) = At(1/z7).

2. Matrix J; denotes a k x k reversal matrix with

J
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3. The delay chain e(2) is the vector

e(z)=[12z71.. ;~WM-INT

4. The unit-pulse, denoted as §(n), is defined according to

1 n=0,
d(n) =

0 otherwise.

5. The value of the function, [z], is the smallest integer greater or equal to z and the value of

the function, [z], is the largest integer less or equal to z.

3.2 Linear Phase Cosine Modulated Filter Banks with Ap-
proximate Reconstruction

In this section we introduce a new maximally decimated linear phase cosine modulated filter bank
with approximate reconstruction property. The system is nearly alias free. Aliasing errors decrease
as the stopband attenuation of the prototype increases. The distortion function T'(z) has linear
phase and approximately flat magnitude response. Every analysis and synthesis filter comes from
modulation of the same prototype filter. Furthermore all of them have linear phase.

Consider the 2M-channel maximally decimated filter bank shown in Fig. 3.1. Suppose prototype
filter Py(z) is of order N and linear-phase. Let

Uk(z) = Po(z W), 3.1)

where Wapr = e~7"/M _ In all equations to follow unsubscripted W stands for W s unless otherwise
indicated. Magnitude responses of Py(z) and Uy (z) are shown in Fig. 3.3. As we can observe from
Fig. 3.3, |Uk(e?)] is a shift of |Py(e?)| by km/M. For Hy(z) to be a cosine modulation of Py(z),
we can choose

Hi(z) = arUi(z) + aU—p(2),

for some a;. Taking a hint from paraunitary perfect reconstruction filter banks, let us constrain

Fie(z) = 2"®Hy(2),  Fl(z) = 2 % H}(2), (3.2)
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for some ig. We will show that the choice
Hi(z) = 2 M(a}Us(z) + aff U_i(2)), k=1,2,...,M —1,

for the second set of filters will yield approximate reconstruction for appropriate choice of aj, to be

determined later. To keep F} (z) causal, we will take io = M + N in (3.2).

ULED 1PEDN UL(ED)

[ [N [

—km/ M 0 kn/M ®

Fig. 3.3. Magnitude responses of Py(z) and Uy(z).

Summarizing, the filters to be considered in our system will have the form:

Hi(z) = apUr(z) + afU—_i(2), k=0,1,...., M,

Hi(z) = z‘M(a;ch(z) + apU_g(2)), k=1,2,...,M -1, 3.3)
Fi(z) = 2= WM (), k=0,1,.... M,

Fl(z) = 2~ (N+M H1 (2), k=1,2,...,M—1.

We now show that with proper design of Py(z) and appropriate choices of ag, aj, this filter bank
has the following four properties. (1) |7'(e?“)| is approximately flat. (2) 7(z) has linear phase. (3)

The system is nearly alias free. (4) Every analysis and synthesis filter has linear phase.

(1) Flatness of |[T'(eV)|

From [98], we know that the distortion function T'(z) of the 2M-channel system in Fig. 3.1

can be expressed as

M-—1

M
160 = g7 (L 1R+ ¥ i) (3.4

Assume that nonadjacent bands of Ug(2) do not overlap, i.e.,
U (7)Y Ur(e?“WH)| = 0, i =2,...,2M — 2. (3.5)

This assumption is reasonable if Fy(z) has stopband edge w, < 45 and large enough stopband

attenuation. In this case the distortion function becomes

T(e/) ~

Z—(N+M) ‘ o | |
i Haol|Uo(e?) + dlana PUns ()P

2M
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+ﬂ§WWHMWMWW+MmW®-

If we choose |ag| = |a}| =1,for k=1,...,M — 1 and
. (3.6)
ag = ap = —=, .
o M 7
then we have
‘ —(N+M QM1
T(e) ~ Z Uk (e7)? (3.7)

which can be designed to be nearly flat by optimizing over the filter coefficients of Py(z) [98].

(2) Linear Phase Property of T(z)

Using our constraint that the synthesis filters are time-reversed versions of the corresponding

analysis filters, the distortion function assumes the form

T(el) = TN+ 1 (Z |Hi ()] + Z lHk(e’“’)lz)

which shows that T'(z) has linear phase.

(3) Approximate Alias Cancelation

A 2M-channel maximally decimated filter bank as in Fig. 3.1 is alias free if all alias transfer

functions are zero. The alias transfer function of the ith alias component as defined in [98] is
1 M-1
Ai(z) = 53~ (Z Hy(zWH Fr(z) + ’; H; zW’)Fk(Z)> (3.8)

We say that the system in Fig. 3.1 is alias free if A;(z) = 0, fori = 1,2,...,2M — 1. With the

choice of analysis and synthesis filters in (3.3), we have

Ai(z) =
Enluhall <2U0(le)Uo(z) + 2Um (W) Uu(2) + ALY (2) + AP (2) + AP () + ALY (Z)) (3.9)

where

AD(2) = TSN+ WM UL W) i (2)
AP (z) = WU (V)
Agg)(z) = Ziw:l (ar® + ak —Mi)Uk(ZWi)ﬁ“k(z)
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AP () = T A+ WM (W) T ().

By appropriate choice of ag and aas and some relation between N and M, we will ensure that

A;(z) = 0. More specifically, if we choose

ap =1, @y = —/=1, k=1,2,...,M—1, (3.10)

and N = (2mo +1)M  for arbitrary integer my , (3.11)

and further constrain ap and aps as in (3.6), then we can verify that 4;(z) ~ 0 (to be verified
in Appendix A). The above values of a; and aj, are chosen for simplicity. A more generalized
formula can be derived. However, the more generalized expressions for a; and a;, do not

provide more flexibility in the design of the prototype. They will not be discussed.

(4) Linear Phase Property of Individual Analysis and Synthesis Filters

Having determined the parameters a; and aj,, we can write the impulse responses of the

analysis and synthesis filters,

he(n) = v/2po(n) cos($=kn), k=0or M,

hi(n) = 2po(n) cos(Fkn), k=1,...,M -1,

hi(n) = 2po(n — M) sin(Fk(n — M)), k=1,...,M -1, (3.12)
fe(n) = he(N + M — n), k=0,...,M,

fi(n) = hi,(N + M —n), k=1,...,M -1

By using the linear phase property of Py(z) and the constraint N = (2mg+ 1) M we can verify
that every filter above has linear phase. The number of symmetric filters and antisymmetric
filters agrees with the result from [89]; in a 2M-channel linear-phase paraunitary filter bank,

M analysis filters are required to be symmetric and the remaining M filters are antisymmetric.

Relation to a Paraunitary System

Having decided the values of a; and aj, in (3.3), we can obtain symbolic magnitude responses
of Hi(z) and Hj(z) as in Fig. 3.2. In our formulation, the synthesis filters are constrained to be
the time-reversed versions of corresponding analysis filters. Consequently, if the system in Fig. 3.1
is PR, then it is a paraunitary system. In a paraunitary system, every filter has the same energy,
ie., >, [fe(n)]? is a constant for all k. But the total bandwidth of Hy(z) and Hy(z) are only half
that of all other filters. In order to have about the same energy as the other filters, |Ho(e/*)| and

|Hp(e7¢)] have /2 times the heights of other filters. In the derivation of properties (1) and (3), we
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need Ho(z) and H(2) to have v/2 times the heights of other filters for aliasing cancelation and flat
|T(e3¥)|. This is consistent with the equal energy property of filters in paraunitary systems.

It can be verified that when the prototype filter is an ideal brick-wall filter, the system in Fig. 3.1
is indeed a PR system.

Design Cost

An objective function reflecting the non-flatness of |7'(e/)| in (3.7) and the stop attenuation of
Po(2) is [98]

n/M 9 *
s=a [ (IR + IR TP 1) o+ (1) |Po(e?) 2.
0 (w/2M)+e

The objective function can be minimized by using nonlinear optimization packages (e.g., [72]). The
optimization is the same as in the case of traditional M-channel cosine modulated filter banks [98].

Summarizing the results, we have shown that the system in Fig. 3.1 is a cosine modulated max-
imally decimated filter bank with approximate reconstruction property if the analysis and synthesis
filters are chosen as in (3.12), N = (2mo + 1)M and the linear-phase prototype Py(z) is properly
designed.

3.3 Linear Phase Cosine Modulated Filter Banks with Per-
fect Reconstruction

Cosine modulated PR filter banks were reported in [37, 74, 60]. In [37], perfect reconstruction
property is achieved by imposing some conditions on the polyphase components of the prototype
filter so that the resulting filter bank is paraunitary. We will do something similar on the 2A/-channel
system. We will show that the filter bank in Fig. 3.1 with analysis and synthesis filters as in (3.12)
is paraunitary and hence PR if the polyphase components of Fy(z) satisfy some conditions to be
derived in this section.

Let
2M—1

Po(z)= ) Ga(2®M)z7",

where G, (z) is the nth type 1 polyphase component of Py(z). Then
2M~1
Uk(z) = Y Gn(z*M)zmw—kn, (3.13)

n=0

Rewriting analysis filters in (3.3) in terms of polyphase components of Py(z) with ay, aj, and N as
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determined in Sec. 3.2, we obtain

Hi(z) = 2 2M 70 G (2°M) 2™ cos(& kn), k=0,1,..., M,

n=0

OM—1 y (3.14)
Hi(z) =2z"M 377 Gu(z*M)z7" sin( £ kn), k=1,2,..., M~ 1.

Define the following 2M-component vectors

Ho(z) Fy(z)
he)=| @ | g =| G
Hi(z) Fi(z)
H.IM—I(Z) Fiy_1(2)

Using (3.14) the vector h(z) can be written as

by — <1M+1 0 )(c AIC) g(z2M) 0 e(2)
0z MIy, S A.S 0 gi(22M) ] \z=Me(z) ]’ (3.15)

where g;(z) and A; are diagonal matrices with

[20(2)]sr = Gi(2), [g1(2)]ke = Grenm(2), k=0,1,...,M -1, (3.16)

[Ailee = (-1, k=0,1,..., M,

(3.17)
Aslge = (-1,  k=1,2,...,M —1.

And C and S are (M + 1) x M and (M — 1) x M matrices with

Clon = kmcos(Emn), m=0,....M, n=0,....M—-1,

€] » cos(Fymn) (3.18)

[Slmn = sin(Fmn), m=1,....M-1, n=0,...,M -1,
where

B 71-2— ifm=0,M,
fom =
1, otherwise .

We can rearrange {3.15) and obtain

h(z) = ( Cego(z*M) Alcgl(ZZM)) ( e(2) ) . (3.19)

27MALSg (22M)  Sgo(22M) 2 Me(z)
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The analysis bank has type I polyphase matrix [98] given by,

E(z) = _Cgo(z) A:Cgi(2) . (3.20)
27 As8gi(z)  Sgo(2)

Since the synthesis filters are time-reversed versions of corresponding analysis filters (3.3), we can

write f7(z) = 2~ (V+M)h(z). The synthesis bank has type 11 polyphase matrix given by,
R(z) = 2~ WM E(z). (3.21)

From [98] we know if R(2)E(z) = cz7"°I for some constant ¢ and nonnegative integer ng, then the

system in Fig. 3.1 is PR. By (3.20) and (3.21)

2NTMR(2)E(z) =
80(2)CTCgo(2) + 81(2)S” Se1(2) 80(2)CT A1 Cg1(z) + 281(2)ST A2 Sgo(z)

g1(2)CT A1 Cgo(2) + 27 Bo(2)ST A2Sg (2) 81(2)CT Cg1(2) + Bo(2)S"Sgo(z)

By exploiting the properties of C and S and using the same choice of N as in (3.11), we obtain the
following equation (Appendix B):

N4M
Z——R(2)E(z) =
- (2 O {0 o
go go + g1 g1 0
0 IM——I 0 IM—‘I
{2 0 _f{o 0
0 g1 g1 + 8o go
o IM_1 0 IM—l

(3.22)

In the above equation g;(z) is abbreviated by g; for convenience. The right hand side of (3.22) is

equal to 2l if and only if the following two conditions are true:

Condition 1: Go(2)Golz) = 1, and Gu(2)Gu(z) = 1. (3.23)
Condition 2:  G(2)Gy(2) + Gram(2)Grem(z) =2, fork=1,2,... .M —1. (3.24)

Summarizing, we have the following theorem.

Theorem 3.1 If the above two conditions are imposed on Gi(z), and furthermore the analysis and
synthesis filters are as in (3.12) with the order of the prototype filter chosen as in (3.11), then the
2M -channel mazimally decimated system in Fig. 3.1 has the following properties.
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1. It is a cosine modulated system.
2. It has perfect reconstruction, i.e., #(n) = cx(n — no).
3. Each of the 2M analysis and synthesis filters has linear phase.

4. The prototype filter Po(z) is Nyquist(2M) and Py(z)Py(z) is also Nyquist(2M ).

Remark on Theorem 3.1. In the theorem, we have constrained the order of the prototype IV to be
an odd multiple of M. It can be shown that the theorem can be extended to the case when N 4+ M

is even.

Nonzero Samples and Free Parameters of Py(z)

Although Py(z) is of order N, the number of free parameters in Py(z) is only about N/4 for
reasons to be explained below. Notice that with N = (2mg + 1)M the first M + 1 polyphase
components of Py(z) have order my and the last M — 1 polyphase components of Py(z) have order
mg — 1. Suppose that G(z) has impulse response gi(n). To satisfy (3.24), it can be verified that
gk(0) or gr(mp) must be zero for £ = 1,2,...,M — 1. From (3.23) we see that Go(z) and Gps(z)

7

are merely delays, i.e., of the form cz7"°. The nonzero samples and free parameters of Py(z) are

discussed in two cases: odd M and even M.

Case 1. M is odd: Both Gi(z) and Ggem(2), for k =1,2,..., M — 1 have my nonzero samples.
As a result, Py(z) has 2mo(M — 1) + 2 nonzero samples. Since Py(z) is linear-phase, the
polyphase components Gy (z) and Gy, for k = 1,2,..., M — 1 are time-reversed versions of
each other. So are Grrm(z) and Gopyp for k = 1,2,...,M — 1. These constraints reduce
the number of free parameters to about N/2. But G, (2) is also related to Gg(z) by (3.24).
The number of free parameters is again cut down by half. The number of free parameters for

Py(z) is only (M — 1)mg/2 = N/4.

Case 2. M is even: In this case, G (z) are constrained as in odd M case with G y(z) and G apt (2)
satisfying additional conditions. By (3.24), G M (z) and G 2 (z) form a power complementary
pair and they both have linear phase because Py(z)} is linear-phase. As a result, G M (z) and

Gam (z) are further constrained in the following,.

even myg: C~¥_A24 (2)Gu(z) =2, and Gapu(z) =0,

oddmo:  Gu(2) =0 and Gap(2)Gau(2) =2.

In the even M case Fp(z) has 2mo(M — 2) + 1 nonzero samples and free parameters -A/Lg:g-mo,

which is equal to the total number of parameters for M — 1 case and is also close to N/4. So when
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we increase the number of channels from 2(M — 1) to 2M (where M — 1 is odd), the number of free

parameters for FPy(z) does not increase.

Design Complexity
Since the system in this case is PR, it is sufficient to minimize the stopband energy of the
prototype filter under the two conditions in (3.23) and (3.24). This is similar to the case of traditional

M -channel cosine modulated filter banks [98].

3.4 Efficient Implementation of the Linear Phase Cosine Mod-
ulated Filter Bank

The implementation cost of a conventional M-channel maximally decimated cosine modulated filter
bank is that of the prototype filter plus one DCT matrix working at M-fold decimated rate [98]. We
will show that the proposed 2M -channel linear phase cosine modulated system in Fig. 3.1 has nearly
the same cost, i.e., number of computations per input sample is nearly the same. The implementation
proposed here can be applied to both the approximate PR case (Sec. 3.2) and the PR case (Sec.
3.3).

Define two M x 2M matrices

T.=(C AC)  ad To=(S A.S),

where C, 8, Ay, and A, are as defined in (3.17) and (3.18). From (3.15), we can draw Fig. 3.4, the
implementation of the 2M/-channel cosine modulated system. The input to T;, a(n), is partitioned

according to

Similarly, b(n), the input vector to T, is partitioned as

bl (TL)

b(n) =
b2 (TL)

The vectors a; (n), as(n), bi(n), and ba(n) are all of dimension M x 1. Their dependence on n
will be dropped for convenience. As indicated in Fig. 3.4 outputs of T; and T, are d; and dj,
respectively.

d; = Tia, and ds = Tsyb.
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They can also be expressed in terms of a;, ag, by and by as (Appendix C)

0 0 0 0
d1 =C a; + as | + \/—2_[3.2]0 r, d1 =8 b1 et bg y
0 Ju- 0 Ju-
M-—1 M1 (325)

where [az]p is the Oth element of as, and r is \/-AZZ the last column of C. From (3.25), we observe
that the major computation in T; is only the matrix C and the major computation in T» is the
matrix 8. Matrices C and S can be implemented by fast algorithms for DCT and DST matrices
[77]. But both computations are done after 2M-fold decimation, which is equivalent to computing
one matrix after M-fold decimation. That is the same as the case in a conventional M-channel
maximally decimated cosine modulated filter bank [98]. The implementation of synthesis bank is

similar.

yM - G 2 :

e 71 P |1, .
. . 1

VM [ G(2) 2 -

Zt 7t

: 2 — -

~ .
YP{VM MGQM‘—-I(Z) 2 : T d,

& Yol—»{ >

Fig. 3.4. Implementation of the 2M-channel system. Both 77 and 75 in the figure
are of dimension 2M by M.

Notice that quantization of filter coeflicients will not affect the relation that G (2) is the time-
reversed version of Gy—x(2), for k = 1,2,...,M — 1. Similarly for Gaopr—(2) and Gin(z), for
k=12,...,M — 1. We conclude that the linear phase property of the individual analysis and

synthesis filters is preserved in spite of filter coefficient quantization.

3.5 Subband Signals, Coding Gain, and Optimal Bit Alloca-
tion

In a traditional N-channel subband coding system, the output zx(n) of the kth analysis filter has
total bandwidth 27 /N in [—7,7) and is decimated by N. This decimation does not cause aliasing

except for the reason that the analysis filters are not ideal bandlimiting functions and cannot have
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infinitely sharp roll-off. This aliasing created due to practical limitations of filters is canceled by the
choice of synthesis filters.

In the 2M-channel maximally decimated system of Fig. 3.1, however, the situation is very un-
usual. Each analysis filter has a total bandwidth of 27 /M in [, 7) [except Ho(z) and Hp(z)] and
yet its output is decimated by 2M. This means there will be severe aliasing even if the filters were
ideal bandpass filters. Even this aliasing is cancelled by appropriate choice of synthesis filters, as
already proved in the preceding sections in this chapter.

In the context of subband quantization and coding, one wonders how this system would perform:
with such severe aliasing in the subbands, would it still be possible to obtain the usual coding gain
advantage? That is, would it still be possible to exploit the energy distribution of the original input
signal z(n) in the usual way? In short, does the proposed filter bank scheme make sense as a subband

coder? We now look deeper into this important aspect.

3.5.1 An Interpretation of the Subband Signals

To explain this, consider the filter bank in Fig. 3.1. Suppose z(n) is the input. Let zx(n) and z},(n)
denote the outputs of Hy(z) and H(z) respectively, as in Fig. 3.5(a). With the filters constructed

as in (3.12), we obtain

Xi(2) = X (2) (Uk(2) + U—i(2)), k=0,1,...,M (3.26)
X4(2) = 27 MX (2) (—jU(2) + §U—-k(2)), k=1,2,...,M—1, (3.27)

where j = /—1. With (3.26) and (3.27), we get the following expression
20" MX(2)Up(2) = 27 MXy(2) + j Xi(2), k=1,...,M —1. (3.28)

If we take a real signal 2(n) as the input of the complex coefficient filter 22~ Uy, (z), then the output
is the right hand side of (3.28). The output represents the energy of z(n) in the Ug(z) subband
(Fig. 3.3). From (3.28), we observe that the output of 2Ug(z) has real part z;(n) and imaginary
part zj(n + M). Fig. 3.5(b) illustrates this relation.

Thus, except for delays and scale factors, the signals z¢(n) and x,(n) can be interpreted as the
real and imaginary parts of the one-sided (hypothetical) complex subband signal y(n) (which is
analogous to the analytic signal of zx(n) [75]). So zx(n) and z}(n + M) together retain the usual
meaning of subband signals. From the fact that Hg(z) and H}(z) have the same spectral occupancy
(Fig. 3.2) we see that the energies of x1(n) and z}(n) are essentially the same. These in turn are
proportional to the energy of the hypothetical complex subband signal yg(n). The decimation of

zr(n) and z(n) by 2M is equivalent to decimating y;(n) by 2M. Because yi(n) has bandwidth
k
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x(n)

z.(n)

i (n)

%(n)

(b)  a(nm)

% (n+M)

Fig. 3.5. An interpretation of xx(n) and zi,(n + M), for k=1,2,...,M — 1.

27 /2M, the decimation of yi(n) by 2M does not lead to severe aliasing other than due to usual filter
non ideality. So even though the decimation of the subband signals in Fig. 3.1 creates severe aliasing,
it still makes sense to quantize and encode the decimated signals based on the energy distributions
of the undecimated signals. In Sec. 3.6, we provide an image coding example (Example 3.2), which
shows that subband quantization and reconstruction work in the usual way. We now proceed to give

the quantitative details.

3.5.2 Coding Gain

In Sec. 3.3 the type I polyphase matrix of the analysis bank is constrained to be paraunitary, i.e.,
E(z)E(z) = c2~™I, so that the system in Fig. 3.1 is PR. The resulting new cosine modulated filter
bank with perfect reconstruction falls into the category of paraunitary filter banks. The coding gain
and optimal bit allocation for paraunitary systems can be found in [100].

Suppose that the real input signal z(n) has power spectral density S;,(w) and variance o2. Let

o2, be the variance of z;(n) and Uik be the variance of z}.(n).

1 2 . .
ng ~or A Spa(w)|Hi (7)) dw (3:29)
27
o2, = Sz (W) Hp (e7) 2 dw (3.30)
Ty 2r o T k

A 2M-channel paraunitary filter bank in Fig. 3.1, has coding gain G2 [100],

0.2

L (3.31)

M M-1 o \1/2M
(M=o o3, ITx=3 ”i;c)

Goy =
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Assume that the prototype filter Fy(z) has large enough stopband attenuation and Ui (z) and U_g(2)
do not overlap in passbands, i.e., |Uy(e/*)U_g(e?)| = 0 (see Fig. 3.3). From (3.29) and (3.30), we

have

Eq. (3.31) then becomes

which is closer to the coding gain of M-channel rather than 2M -channel paraunitary systems.

3.5.3 Optimal Bit Allocation

In a conventional M-channel filter bank with quantizers in the subbands, bits are allocated according
to the energy of subband signals [98]. Let Zi(n) and Z,(n) be decimated signals of z¢(n) and z},(n).

Since decimators do not change signal variances, we have G'z =02 and 02, =02 . Allocating bits
k k

according to a%k and Uﬂ is equivalent to allocating bits according to 0;k and Um;z , which represent
the energy of the the subband signals. So the idea of optimal bit allocation in this 2M-channel
system is the same as the conventional case.

In the approximate PR case, if we ignore the residual aliasing and reconstruction errors, we can

use the above formula for coding gain and optimal bit allocation.

3.6 Numerical Examples and Tables of Prototype Filter Co-
efficients

We now present two design examples. This will be followed by tables of prototype filter coefficients
for the PR case.

All of them are obtained by using nonlinear optimization programs in [72].

Example 3.1. Approximately PR system with M = 7, i.e., fourteen channels. The prototype filter
has order N = 49, stopband attenuation 39 dB and stopband edge w,; = 0.133%. Fig. 3.6(a) and
(b) show, respectively, magnitude responses of the first set of analysis filters and the second set
of analysis filters. (In Fig. 3.6(a) magnitude responses are all normalized with maximum value of

0 dB.) Fig. 3.6(c) is a plot of aliasing error \/ Zz 2M =1 [A;(ed@)]2. Aliasing error is suppressed

satisfactorily; worst peak aliasing error is very small, only about 0.0013. We can see from Fig. 3.6(d)

that the amplitude distortion function is approximately flat with peak amplitude distortion 0.02.
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Fig. 3.6. Example 3.1. Approximate PR system: (a) Normalized magnitude re-
sponses of the first set of analysis filter; (b) magnitude responses of the sec-
ond set of analysis filters; (c) plot of aliasing error ( Y27/~ |As(e7)]?) 2,
(d) plot of amplitude distortion function, M|T (e/)].
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Example 3.2. Image coding. For this, a two-dimensional separable filter bank is used, which is
based on the one-dimensional example above. We apply the separable filter bank on the 512 x 512
picture “Lenna.” The original image with 8 bits/pixel is shown in Fig. 3.7(a). Bit allocation and
entropy coding are performed in the subbands. The reconstructed image shown in Fig. 3.7(b) has a

subband bit rate of 0.35 bit/pixel. The peak signal to noise ratio (PSNR) is 35.5 dB.

peak-to-peak value of the original image)?

PSNR 2 10l0g,o ¢ SE ,

where MSE is the mean square error of the reconstructed image. We notice that the reconstruction
quality is very good and shows no artifacts due to the excess passband width discussed at the

beginning of Sec. 3.5.

Example 3.3. PR systemwith M = 19, i.e., thirty eight channels. The prototype Fy(z) in this example
is of order 133. Following the discussion in Sec. 3.3, the number of nonzero samples of Py(z) is 110.
It has stopband attenuation 40 dB and stopband edge w, 0.067. Fig. 3.8 (a)-(b) show, respectively,
normalized magnitude responses of the first set of analysis filters and the second set of analysis
filters.

In both of these examples, the analysis filters have linear phase by construction, so we have not
shown the phase responses. In the second example the system has PR property by construction so

we have not shown any aliasing error or the magnitude response of the distortion function.

Tables of Prototype Filter Coefficients for Perfect Reconstruction

We list two groups of filter banks. Only the coeflicients of the prototype filters pg(n) are listed.
The filters in the first group are of order N = 3M (where the meaning of M is the same as in
Fig. 3.1) . The filters in the second group has order N = 7M. The prototype filters are linear-phase;
only the first half of the coefficients are shown. From the coefficients of the prototype Py(z) we can

find the coefficients of all analysis and synthesis filters using (3.12).

1. Filters with order 3M. Prototype filter coefficients pg(n) are listed in Table 3.1. Filters in this
group have stopband attenuation A, =~ 25 dB.

2. Filters with order TM. Prototype filter coefficients pp(n) are listed in Table 3.2. Filters in this
group have A, ~ 40 dB.

Notice that in Tables 3.1 and 3.2 every prototype filter starts with [25:1] zeros. The notation
[ ] and the notation | ] to be used later are defined in Sec. 3.1. Those zeros at the beginning
of the prototype filters are the result of optimization. As indicated in Sec. 3.3, gx(0) or gr(mo)
must be zero for k = 1,2,..., M — 1, where gx(n) is the kth polyphase component of po(n). After

optimization, we found that it is best to choose
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(b)

Fig. 3.7. Example 3.2. An image coding example with the linear phase subband
coder design in Example 3.1: (a) Image of “Lenna” with 8 bits/pixel; (b)
reconstructed version from subbands with PSNR 35.5 dB and the subband
bit rate 0.35 bit/pixel (bit allocation followed by entropy coding).
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dB

dB

Fig. 3.8. Example 3.3. Cosine modulated PR system: (a) Normalized magnitude
responses of the first set of analysis filters: (b) magnitude responses of the
second set of analysis filters.
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n M=7 M=8 M=9 M=11 M=13 M=15
0 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
1 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
2 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
3 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
4 1873M471E-02  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
5 35665461E-02  18383085E~02  1.3193124E-02  0.0000000E+00  0.0000000E+00  0.0000000E+00
6  5.6870395E-02  32800536E~02  2.2634022E-02  1.0140769E~02  0.0000000E+00  0.0000000E+00
7 7.8559943E-02  5.1283753E-02  34499846E-02  1.6130896E-02  8.2246300E-03  0.0000000E+00
8  95441530E-02  7.0416880E-02  4.7970428E-02  23511272E-02  1.2364566E-02  6.8684742E-03
9 1.0522026E-01  8.5364224E-02  6.1201399E-02  3.2084683E02  17353344E-02  9.8544667E-03
10 1.0950993E-01  93996206E~02  7.2042075E~02  4.126715TE-02  2.3139003E-02  1,3401593E—02
11 9.7873062E-02  7.9378732E~02  5.0105611E-02  2.9520914E-02  1.7506612E—02
12 9.9584507E-02  8.3530952E~02  5.7603527E—02  3.6116001E-02  2.2101899E-02
13 8.5540423E-02  6.3180042E~02  4.2403735E-02  2.7027928E-~02
14 6.6845827E-02  4.7872622E-02  3.2028343E-02
15 6.8999556E-02  5.2198363E-02  3.6784105E-02
16 7.0130659E-02  5.5323955E-02  4.0991781E-02
17 5.7402221E-02  4.4448081E~02
18 5.8679392E-02  4.7091898E~02
19 5.9401254E-02  4.8986318E~02
20 5.0264681E-02
21 5.1078668E~02
22 5.1565152E-02
n M=16 M=17 M=19 M=21 M=24
0 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
2 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
3 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
4 0.0000000E+00 0.0000000E+00 0.0000000E-+00 0.0000000E+00 0.0000000E+00
5 0.0000000E+00 0.0000000E+00 0.0000000E-+00 0.0000000E+00 0.0000000E+00
6 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
7 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
8 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
9 —7.0567914E-03 5.9379618E-03 0.0000000E+00 0.0000000E-+00 0.0000000E+00
10 ~9.9461336E-03 8.2342790E-03 5.1904905E-03 0.0000000E+00 0.0000000E+00
11 -1.3300380E-02 1.0910574E-02 6.97895T0E-03 4.6321577E-03 0.0000000E+00
12 -17161896E-02 1.3968583E-02 9.0403012E-03 6.0823399E-03 0.0000000E+00
13 -2.1408026E-02 1.7380301E-02 1.1381438E-02 7.7328479E-03 4.0860508E-03
14 -25932379E—02 2.1075551E-02 1.3993922E~02 9.5800298E-03 5.3841990E-03
15 -3.0482434E-02 2.4932616E-02 1.6846952E~02 1.1647991E~02 6.8056680E-03
16 -3.4808738E~02 2.8784655E-02 1.9880926E~02 1.3894873E~02 8.3809124E~03
17 -3.8653819E-02 3.2440869E-02 2.3005024E-02 1.6299068E~02 1.0060428E~02
18 -4.1842661E-02 3.5724832E-02 2.6102687E-02 1.8811663E~02 1.1857825E-02
19 -4.4328241E-02 3.8512137E-02 2.9045232E-02 2.1365729E-02 1.3719700E-02
20 —4.6138550E-02 4.0750965E-02 3.1715938E-02 2.3880869E-02 1.5641153E-02
21 -4.7396165E-02 4.2458746E-02 3.4020691E-02 2.6272669E-02 1.7568068E-02
22 -~4.8211730E-02 4.3700099E-02 3.5944399E-02 2.8464194E-02 1.9479842E-02
23 -4.8718561E-02 4.4562085E-02 3.7462398E-02 3.0397564E~02 2.1328626E~02
24 —4.9226990E-02 4.5133321E-02 3.8618922E-02 3.2041030E-02 2.3085849E-02
25 4.5492424E-02 3.9467884E~02 3.3389319E~02 2.4718467E-02
26 4.0068990E-02 3.4459233E-02 2.6200165E-02
27 4.0478047E~02 3.5282156E-02 2.7518646E-02
28 4.0746900E-02 3.5896473E-02 2.8657760E~02
29 3.6341565E-02 2.9625711E~02
30 3.6653041E~02 3.0418824E~02
31 3.6865287E~02 3.1059631E~02
32 3.1554290E-02
33 3.1931110E-02
34 3.2201293E-02
35 3.2391621E-02
3 3.2648321E-02

Table 3.1. The prototype filters with stopband attenuation about 25 dB and order 3M.
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n M=7 M=9 M=11 M=13 M=15 M=17
0 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
1 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
2 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
3 0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
4 -67978138E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
5  —6.7628301E-04 —5.1424337E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00
6 -4.0454551E-04 -5.5565799E-04 —4.1089306E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00
7 0.0000000E+00 —4.6574969E-04 -4.5550830E-04 -2.3753750E-04  0.0000000E+00  0.0000000E+00
8 —7.6992401E~04 -2.8685604E—04 —4.3325456E-04 -2.6818115E-04 ~3.3451450E-04  0.0000000E+00
9 —2.0355803E~03  0.0000000E+00 -3.4507558E-04 -2.6450508E-04 -3.6708079E-04 ~2.8913044E-04
10 -34812475E-03 -5.3310500E-04 -2.2815828E-04 -2.1799966E-04 -~3.7170523E-04  -3.1707660E—04
11 —4.3485166E-03 -1.1604803E~03  0.0000000E+00 ~1.3245846E-04 -3.4512883E-04 -3.2738333E~04
12 -4.1820964E-03 -2.0107373E~03 —4.4237113E-04  8.4582874E-05 -2.0116705E~04 -3.1725513E-04
13 -2.7657296E-03 -2.8242451E~03 -7.8013118E-04  0.0000000E+00 -2.2215026E~04  -2.8713764E~04
14 0.0000000E+00 -3.3206044E-03 —1.2085038E-03 -6.0356928E-05 ~1.5212153E-04  -2.4166190E~04
15  52636888E-03 -33414132E-03 —1.8618945E-03 -24826199E-04  0.0000000E+00  -1.8912721E~04
16 1.2587822E-02 -2.8254978E-03 -2.3635259E-03 -5.6044074E-04 —2.8745428E-04 -1.3245575E-04
17 2.2269310E-02 ~1.6758764E-03 -2.6749144E-03 -0.2668924E-04 —4.3298166E~04  0.0000000E+00
18 33964824E-02  0.0000000E+00 -2.7285117E-03 ~12837077E-03 —6.6823280E~04 -2.7298008E~04
19  4.6897783E-02  3.1145173E-03 -2.5050040E-03 -1.5795348E-03 ~0.6850692E-04 —3.7133376E~04
20 6.0046992E-02  7.0401227E—03 —1.9701690E-03 ~1.7616044E~03 —1.3016585E~03  ~5.3290996E—04
21 72291059E-02  1.2091438E-02 —10762419E-03 -1.8101016E-03 —1.6320878E-03 ~7.4432310E—04
22 82524184E-02  138236891E-02  0.0000000E+00  ~1.7319940E—03 —1.92430285-03  ~9.8761395E-04
23 B.98445TBE-02  2531565SE~02  2.0867021E-03 —1.5293427E~03 -212975476-03 -1.2421812E-03
24 0.3653468E-02  3.3037717E-02  4.4937327E~03 -1.1957418E—03 -2.2244700E~03 ~1.4866742E~03
25 4.1034799E~02  7.5104250E-03  -6.1052640E-06 -2.2049230E-03  -1.7003521E~03
26 4.8905760E~02  1.1152817E-02  0.0000000B+00  -2.0540988E—03 —1.8521292E~03
27 5.6230719E-02  1.5386557E-02 —4.3566146E-06 ~1.7561930E-03  -1.9280654E~03
28 6.2603026E-02  2.0128782E-02  2.2411346E-03  ~1.2950668E-03 -1.9291234E~03
29 6.76817T3E-02  2.5246480E-02  3.9316848E-03 —6.5704476E-04 18450335503
30 7.1207984E-02  3.0574428E-02  6.0659284E-03  0.0000000E+00  -1.6665926E~03
31 7.3014065E-02  3.5936126E~02  8.6644470E-03  1.2415753E-03  -1.3847337E~03
32 4.1144825E-02  1.1714005E-02  2.5241480E-03  -9.8984707E-04
33 4.6012297E~02  1.5171981E-02  4.0304805E-03  -4.7750042E-04
34 5.0354801E-02  1.8965488E-02  5.7642502E-03  0.0000000E+00
35 54018886E-02  2.3001951E-02  7.7213246E-03  9.8408793E-04
36 5.687624TE-02  2.7175943E-02  9.8902761E—03  1.9434730E-03
37 5.8833442E-02  3.1369115E-02  1.2251466E—02  3.0535983E~03
33 5.9828410E-02  3.5456422E-02  14779999E-02  4.3201697E~03
39 3.9209808E-02  1.7440394E-02  5.7435820E-03
40 4.2799312E-02  2.0188871E-02  7.3196175E-03
41 4.5808262E-02  2.2082202E-02  9.0401028E~03
02 4.8293471E-02  2.5774117E-02  1.0892218E~02
43 5.0100996E-02  2.8515837E-02  1.2860679E-02
44 S.1470204E-02  3.1157139E-02  14923002E-02
45 5.2114185E-02  3.3648561E-02  1.7055081E~02
46 3.5938006E-02  1.9227724E-~02
47 3.7987010E—02  2.1414194E-02
48 3.9752809E-02  2.3584936E~02
49 4.1203964E-02  2.5709521E-02
50 42314864E-02  2.7756975E-02
51 4.3066456E-02  2.9697395E-02
52 4.3445987E-02  3.1498132E-02
53 3.3135487E~02
54 3.4583767E~02
55 3.5822129E-02
56 3.6833357E-02
57 3.7603806E~02
58 3.8123431E-02
59 3.8385256E-02
(Part I)

Table 3.2. The prototype filters with stopband attenuation about 40 dB and order 7M.
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n M=19 M=21 n M=21
0 0.0000000E+00  0.0000000E+00 67  2.3981500E-02
1 0.0000000E+00  0.0000000E+00 68  2.9858101E~02
2 0.0000000E+00  0.0000000E+00 69 3.0597509E-02
3 0.0000000E+00  0.0000000E+00 70 3.1194316E-02
4 0.0000000E+00  0.0000000E+00 71 3.1644872E-02
5 0.0000000E+00  0.0000000E+00 72 3.1946621E-02
6 0.0000000E+00  0.0000000E+00 73 3.2097969E-02
7 0.0000000E+00  0.0000000E+00
8 0.0000000E+00  0.0000000E+00
9 0.0000000E+00  0.0000000E+00
10 ~1.6558991E~04  0.0000000E+00
1 ~1.8282560E-04  —1.5293333E—04
12 ~1.8876425E-04 ~1.7038287E-04
13 ~1.8011410E-04  ~1.8310268E-04
14 ~1.5469053E-04  ~1.8959924E-04
15 ~1.1192666E-04 ~1.8877979E~04
16 -5.4660475E-05  ~1.8021234E-04
17 5.5887284E-05 —1.6435662E-04
18 7.2636483E~05  —1.4248425E-04
19 0.0000000E+00  —1.1524764E-04
20 6.0126739E-05  ~7.4995432E-05
21 ~4.2543141E-05  0.0000000E+00
2 -9.0937729E-05  ~2.2376960E~04
23 ~2.3797256E-04  -2.7436140E-04
24 -4.1450247E-04  -3.4867946E~04
25 ~6.0520828E-04  —4.4487807E~04
26 ~7.9667202E-04  5.5593359E~04
27 -9.756965TE~04  —6.7403513E~04
28 ~1.1310135E~03  ~7.9140243E~04
29 ~1.2469601E~03  ~9.0085521E~04
30 ~1.3171386E~03  ~9.9611584E-04
3 ~1.3439718E-03  —1.0719078E—03
32 ~1.3251588E-03  ~1.1187296E-03
33 ~1.2590624E-03  ~1.1341471E~03
4 ~1.1446079E-03  -1.1219655E~03
35 ~9.7784165E-04  ~1.0812291E-03
36 ~44522150E-07  ~1.0113093E-03
37 -4.5714288E-04  ~9.1131257E-04
38 0.0000000B+00  ~7.7954597E~(4
39 3.7841191E-04  —-6.1328813E~04
40 ~3.3891647E~07 ~4.0962793E~04
41 1L.6268190E~03  —1.7489569E~04
4 2.4336049E~03  0.0000000E+00
43 3.3737325E-03  5.2184964E-04
4 44527167E-03  9.7517046E-04
45 5.6721796E-03  1.5008043E-03
46 7.0292544E-03  2.1100678E-03
47 8.5169971E-03  2.8112907E~03
48 1.0126429E-02  3.6108632E~03
49 1.1842074E~02  4.5131371E~03
50 1.3646013E-02  5.5200092E-03
51 15519257E~02  6.6306072E~03
52 1.7440829E-02  7.8411619E-03
53 1.9385151E-02  9.1458015E-03
54 2.1327708E-02  1.0534418E-02
55 2.3246652E-02  1.1994196E~02
56 2.5093044E-02  1.3511032E~02
57 2.6858275E-02  1.5068990E~02
58 2.8508104E-02  1.6650708E—02
59 3.0038678E~02  1.8237892E~02
60 3.1372740E~02  1.9811553E~02
61 3.2552236E-02  2.1353022E02
62 3.3546808E-02  2.2843957E~02
63 34349747E-02  24267602E~02
64 34955258E-02  2.5605235E-02
65 3.5360550E-02  2.6845376E~02
66 3.5563866E-02  2.7974363E~02

(Part II)

Table 3.2. The prototype filters with stopband attenuation about 40 dB and order 7M.
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go(n) =4 (n— ™55 ]),

gr(0) =0, k=1,2,... |#=2],

where the unit-impulse function §(n) is defined in Sec. 3.1. By linear-phase constraint of Fy(z), we

have

() = 30— |22 )

M+1
gr(mp) = 0, kz{

3 ] ooy M — 1.

Those zeros at the beginning of the prototype filters can not be removed without shifting the cosine
modulation in (3.12). To be consistent with (3.12), we keep the zeros in the tables. If the quantity
po(n) is directly used in (3.12) with no modifications, then the set of analysis and synthesis filters

have linear phase and give perfect reconstruction.

3.7 Concluding Remarks

In this chapter, we introduced a new class of maximally decimated cosine modulated systems, which

have the following properties:
1. Aliasing is canceled exactly or approximately as desired.

2. Amplitude distortion function can be designed to be flat by optimizing over prototype filter

coefficients.
3. Each analysis and synthesis filter in the filter bank has linear phase.

4. This new 2M-channel maximally decimated cosine modulated filter bank has the same design
cost and implementation cost as conventional M-channel maximally decimated cosine modu-
lated filter banks. Correspondingly, the coding gain is nearly identical to that of an M -channel

paraunitary system.

5. Perfect reconstruction is possible if polyphase components of the prototype filter satisfy the
two conditions given in Sec. 3.3. Linear phase property of each analysis and synthesis filter is

still preserved in this case.

Summarizing, we have developed a linear phase cosine modulated maximally decimated perfect
reconstruction system. Design examples show that very good attenuation characteristics can be

obtained as well.
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Appendix A.

The quantity Agl) (2) in (3.9) is zero if
1+ WM = 0or Up(zW)Ui(z) =0, fork =1,2,..., M — 1.

Since WM = —1 for odd i and by (3.5) we have Uy (zW%)Ui(2) ~ 0, for i # 1, so A (2) in (3.9)
is approximately 0. Also A§4)(z) = 0 for the same reason.

Similarly Agz)(z) is zero if
@i+ a WM = 0or Ui (zWH)Ug(2) =0, fork=1,2,...,M — 1.

The case when 7 is even and the case when i is odd are discussed separately.

1. iis even: From Fig. 3.9(a) we observe that only the term k = i/2 is the major nonzero part of

A;(z). By choosing a;, = 1 and a}, = —v/—1, k=1,..., M —1, it can be completely eliminated.
2. 2. i is odd: Consider two cases:

a) 1<i<2M - 1: By using (3.5) and (3.9), we have

AP (2) m 2U_is (WU iz (2) +2U_ 1 (WU (2). (3.32)

2

We can also observe the result in (3.32) from Fig. 3.9(b). Since FPy(z) has linear phase,
Py(e™) = e 7N P (w),

where Pgr(w) is a real-valued function. We can rewrite (3.32) in terms of Pr(w) as

2) () n 2(WN/2 —N/2 omi—1l mitl

).

If N = (2mg + 1)M for some positive integer mg, then (WN/2 £ W—N/2) = 0. In this
case A§2) (2)in (3.9) is approximately zero.

b) i=1o0r 2M —1: When i = 1, A%z)(z) has a major nonzero term, 2U_1(zW)l71(z), which
cancels the term 20Uy (zW)Up(2) in Eq. (3.9) with the same choice of N. Similarly for
1 =2M — 1.

The cancelation of Ag?’) (z) in (3.9) is similar to the cancelation of the Agz) (2).
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Fig. 3.9. Image copies of U_(z) due to decimation followed by expansion.

Appendix B. Proof of (3.11).

To derive (3.22), we need to prove the following properties of C and S:

If (3.33)-(3.36) are true, then (3.22) follows.

(3.33)

(3.34)

(3.35)

(3.36)

Matrix C is very similar to a (M +1) x (M +1) type I DCT matrix, C},_,, and S is very similar
to a (M —1) x (M —1) type I DST matrix, S§,_,. (Both C],,, and S}, , are documented in [77].)

CI;., and S%,_, have entries

[CJI\4+1]m" = KEmbny/ % Cos(ﬁm”)a 0<m,n< M,

S4_1lmn = 1/ F sin(Fmn), 1<mn<M-1

Several useful properties of C, +1 and S1,_, are stated in the following to help proving (3.33)-
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(3.36).
T
Chry1 Chror =Inga, (3.37)
T
Clrrr MClpy = Im, (3.38)
T
Sty St =Tn_1, (3.39)
T
St TASSL = Ty (3.40)

Proof of (3.33)-(3.36)

C and S are related to C4,,, and S};_, as

\/‘gcf\/]-}-l = (CF r) , S= (0 \/‘%’I—‘vaf—l) (3:41)

i 0
where r is the last column of /2 C/, gand = 2 with inverse
0 Iy
= v2 o
0 Iy

By (3.37), we have

M T M

5 Che1 Chrsr = S Imsr. (3.42)

and from (3.41) we have

(3.43)

T T TCT
‘A‘/[‘Cfv[qTC{wl: I'“c:Ccr r*cCtr .
2 N - r’Cr Ty

Comparing Eq. (3.42) and (3.43) gives us
r‘c’cr = —A;IM.

Relation (3.33) follows the above equation. Similarly for (3.35). Relations (3.34) and (3.36) can be

proved in a similar manner.



53
With (3.33)-(3.36), the right hand side of (3.22) can be written as

_ (2 o _ (o o _ {0 o (o o
go go + g1 g1 -2 (g1 go— 2 "o gl)
M 0 In_ 0 Iy 0 Jyp 0 Jya
21 _fo o . (o o _f[o o \\ (2 o
g1 go— 2 8o g1 go go + E1 g1
0 Ju 0 Jy— 0 IM—l/ 0 Iy

The dependence of g; on z is dropped for convenience. Notice that the off diagonal elements in the

above big matrix is 0 if and only if
Grant (2)Gpm—p(z) — 27 Gp(2)Gorr—k(2) =0,  k=1,...,M —1. (3.44)

Because the prototype filter Py(z) is of order N = (2m +1)M and has linear phase, Gy (z) is related
to Gar—x(2) and Gropr(2) is related to Goprp(2), for k=1,2,..., M — 1.

Gil(z) = Z_mOéM_k(z), Grim(z) = z—(movl)égM._k(Z) k=12...,M-1.

The above property makes Eq. (3.42) automatically satisfied.

Appendix C.

From the definitions of T; and T», we know
d; = Ca; + A;Cas, and  ds = Sb; + AsShy. (3.45)
Using the relations of (3.41) and (3.33)-(3.36), we can write
Ac(er r)=(cr r)dus and Ao 8§, ) =-Shoi (0 Juoi).

That gives us

0 o 0 o
AC=C +v2 (r 0) and  A.S= -8 . (3.46)
0 JM—-I 0 JM—I

Substituting (3.46) into (3.45), we obtain (3.25).



Chapter 4

Theory and Design of Two-Parallelogram Filter

Banks

4.1 Introduction

A one-dimensional (1D) M-channel filter bank (Fig. 1.1) usually has the frequency stacking as
shown in Fig. 1.2. The synthesis filters typically have the same passband regions as the corresponding
analysis filters. A figure like this showing the passband regions of the filters will be called the support
configuration of the filter bank. Filter banks with this type of configuration have been successfully
designed through many approaches. It is possible to have perfect reconstruction and good individual
analysis and synthesis filters (good frequency selectivity) at the same time. It turns out that the
support configuration shown in Fig. 1.2 has two features that are necessary for a successful filter
bank design. First, the support of each analysis filter does not overlap under modulo 27/M. Filters
with such a support are said to be AliasFree Supported with respect to M (AFS(M)). This means
that if the filters are ideal, then their outputs allow aliasfree M-fold decimation; that is, no aliasing
is created in the subbands. We say a configuration is AFS(A) if each analysis filter is AFS(M).
The second feature of the support configuration in Fig. 1.2 is a property called permissibility. It
is argued in [11] that with certain support configurations in a filter bank, a considerable amount
of aliasing will remain uncanceled if the individual filters have good attenuation. In this case, the
support configuration is called nonpermissible. The 1D uniform DFT filter bank [98] is known to be
an example of this nature. (The notion of configuration permissibility is more involved and will be
explained in greater detail in Sec. 4.2.) These two features are desirable for good filter bank design
of any dimensions.

Recently, there has been considerable interest in the design of two-dimensional (2D) maximally
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Fig. 4.1. A |MJ-channel maximally decimated filter bank, where |M| denotes the
absolute value of the determinant of M.

decimated filter banks (Fig. 4.1), [102, 109, 108, 98]. For example, perfect reconstruction is achieved
in [2] for a 2D two-channel FIR filter bank with diamond-shaped filters. In [33], transformations
are used to design higher dimensional filter banks from filter banks of lower dimensions. In [11],
several issues regarding design of multidimensional filter bank are treated. In particular, the con-
cept of support permissibility is introduced and discussed from a pictorial viewpoint. A study of
2D cosine modulated filter bank (CMFB) with rectangular-shaped but nonseparable prototype is
made in [8]. The prototype of this type of 2D CMFB has rectangular support but is allowed to
be nonseparable. Nonseparable prototype with separable modulation is studied in [40]. Also 2D
nonseparable orthonormal wavelets using local cosine or sine bases are obtained in {111, 112, 113].
A nonseparable generalization for 2D CMFB is considered in [30]. However, the support of the 2D
filter banks studied therein is nonpermissible in general.

In the construction of 2D filter banks, we have more variety in terms of possible configurations.
Even if we impose the condition that all the analysis filters have real coefficients and have only
two passbands, it is possible to have more than one configuration for a filter bank with decimation
matrix M. Various shapes can be used for the passbands of the individual filters, e.g., triangles [31]
and parallelograms [47]. In this chapter, we study the two-parallelogram (Two-P) filter banks, the
class of 2D filter banks in which the support of each analysis and synthesis filter is the union of two

parallelograms. Filters with this type of supports are called Two-P filters.

Two-Parallelogram Filter Banks. A typical Two-P filter bank has support configuration as shown
in Fig. 4.2. This is a natural 2D generalization of the frequency stacking in Fig. 1.2. For a Two-
P filter bank with decimation matrix M as in Fig. 4.1, we will study the conditions such that
the configuration is AFS(M). For this, we will derive the necessary and sufficient conditions such
that a Two-P support is AFS(M). For those AFS(M) configurations, we will further investigate
permissibility of the configurations.

In this context of 1D filter bank design, the cosine modulated filter banks are well-known for low
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Fig. 4.2. Typical configuration of a two-parallelogram filter bank.

design cost and low complexity. The implementation of Two-P filter banks using cosine modulated
filter banks yields similar advantage of economy. The Two-P CMFB will be constructed and designed

in this chapter.

Two-Parallelogram CMFB. In Two-P CMFB, each of the two parallelograms of the analysis filters
is a shifted version of a real-coefficient prototype, which has a parallelogram support and is in
general nonseparable. Each analysis filter is a cosine modulated version of the prototype and each
analysis filter consists of two copies of the prototype. The synthesis filters have the same spectral
supports as the corresponding analysis filters. The analysis bank will eventually be constrained to
be paraunitary; the analysis filter Hg(w) and the corresponding synthesis filter F(w) are related
by Fi(w) = H{(w). All the analysis and synthesis filters have real coefficients. We will present the
sufficient conditions such that cancelation of major aliasing (due to overlapping transition bands)
can be structurally enforced. Finally, having canceled the major aliasing, we constrain the prototype
to ensure perfect reconstruction of the Two-P CMFB.

We can conceive that in the more general case of 2D filter banks the individual filters can have any
even number of parallelograms. Particularly in the 2D separable filter bank obtained by cascading
1D filter banks, the support of each analysis filter consists of four rectangles. In chapter 5 [54],
we will study the four-parailelogram filter banks [48], the 2D filter banks in which the supports of
the analysis filters consist of four parallelograms. Note that Two-P filter banks are fundamentally
different from 2D separable filter banks obtained from 1D filter banks. But four-parallelogram filter

banks will reduce to separable 2D filter bank in special cases.

Chapter Outline and Chapter Specific Notations
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In Sec. 4.2, we explain perfect reconstruction of 1D filter banks from a pictorial viewpoint. This
illustration will supply the explanation why AFS(M) property and permissible configurations are
important for good design of analysis and synthesis filters. Sec. 4.3 is devoted to the study of Two-P
filter banks. For a successful design, the analysis filters should be AF8(M). Towards this end, we
derive the necessary and sufficient conditions such that a Two-P filter is AFS(M). Permissibility
of Two-P filter bank will also be studied. Using the results developed in Sec. 4.3, we construct
AFS(M) configurations for Two-P CMFB (Sec. 4.4). In Sec. 4.5, the analysis and synthesis filters
of Two-P CMFB are formulated. The necessary and sufficient condition for perfect reconstruction
Two-P CMFB is presented in Sec. 4.6. Efficient implementation and a design example of Two-P
CMFB are given in Sec. 4.7. Preliminary versions of this work have been presented at international
conferences [47, 51].

Notations in this chapter are as in [98]. The fundamentals of integer matrices and 2D multirate

systems are employed frequently in this chapter. A brief review can be found in Chapter 2.
Chapter Specific Notation

» Boldfaced lower case letters are used to represent vectors and boldfaced upper case letters
are reserved for matrices. The notations AT and AT represent the transpose and transpose-

conjugate of A.

T
e Vectors will also be used as subscript, eg. Pe(w). Ifk = (ko kl) , then Py(w) and
Plro ) (@) will be used interchangeably.

e The notation I} denotes a k x k identity matrix. The subscript & is omitted when the dimension

is clear from the context.

o If the support (passband) of a filter H(w) does not overlap under modulo 2rM~7, H(w) is
called aliasfree supported with respect to M (AFS(M)). If, in addition to being AFS(M),
H{(w) is also an ideal filter (H(w) is 1 in the passband and 0 otherwise), then the output of
H (w) allows aliasfree M-fold decimation [83, 10], and in this case H (w) is called an aliasfree(IM)
filter. A configuration is referred to as AFS(M) if all the analysis filters are AFS(M).

4.2 Basic Consideration of Filter Bank Design

In this section, we explain pictorially how perfect reconstruction is achieved for 1D filter banks.
The pictorial illustration will help us identify the roles of AFS(M) property and permissibility.
To explain why these two features are important, we will use the cosine modulated filter banks
as an example. An M-band CMFB is a special case of M-band filter banks. It usually has the
stacking in Fig. 1.2. The analysis and synthesis filters of CMFB satisfy some additional properties.
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In particular, they are the cosine modulated versions of a prototype filter. Although this property
has made alias cancelation in CMFB somewhat different from that in a usual filter bank, as the
discussion proceeds we will make observations for the more general filter banks. First we review two

1D sampling theorems and verify that the configuration in Fig. 1.2 is indeed AFS(M).

One-Dimensional Sampling Theorems. Recall the following two types of 1D ideal filter H (w) that
is known to be aliasfree(M).

Fact4.1. Suppose H(w) has bandwidth 27 /N as shown Fig. 4.3, then H(w) is aliasfree(M) if and
only if N > M. The 2D extension of this fact will be given in Sec. 4.3. To compare with 2D result
to be stated later, we define L = N/M. In this case, H(w) is aliasfree(M) if and only if L>1. =

H(w) o/ N
|

LA -

0 @, @

5]

Fig. 4.3. Bandlimited signal with bandwidth 27 /N.

Fact4.2. One-dimensional bandpass sampling theorem [67]. Suppose a 1D ideal filter H(w) has total
bandwidth 27 /M as shown in Fig. 4.4. Then H(w) is aliasfree(M) if and only if wy is a multiple of

w/M,ie., wo = kx/M, for some integer k. u
vy PO gy
- ]

Fig. 4.4. Bandlimited real sequence with total bandwidth 27 /M.

In practice, the filters are not ideal but only AFS(M). The band edges of the analysis filters in
Fig. 1.2 are multiples of 7/M; the analysis filters are AFS(M). So the configuration in Fig. 1.2 is
indeed AFS(M).

One-Dimensional Cosine Modulated Filter Banks (CMFB). Consider the M-channel filter bank in
Fig. 1.1. An M-channel CMFB (pseudo-QMF or perfect reconstruction) is typically obtained by
starting from a 2M-channel uniform DFT filter bank, [98]. Each filter in the DFT filter bank is a
shifted version of a lowpass prototype P(w) (Fig. 4.5(a)) with bandwidth 7/M, which is half the
total bandwidth of each filter in the desired M-channel system. The filters in the DFT filter bank
are then shifted by 7/2M and paired to obtain real-coefficient analysis filters as in Fig. 4.5(b) for
the M-channel CMFB. The shifts of the prototype are denoted by Py (w) in the figure. Each analysis
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filter has total bandwidth 27 /M, which is two times that of the prototype. In almost all the designs,
the synthesis filters are time-reversed versions of the corresponding analysis filters; the analysis and

synthesis filters have the same spectral support.

P
(2) — -
-n/2M 0 w2M ®©
Hy H, H Hyy
Py Par1) (Pp (Prrs)

(b) ’: ‘\ . o ". x’ 5 - » ." '~ >
T AM-DAM ~dM 0 wM (M-DoM =«

Fy F,
(Pisnp o)

(et DM kM WM (e DUM o
=] Tmages of P, B Lmages of Py 1,
kth subband

W — A [ S —
—(et DM~k M kM (DM o

(k+1)th subband
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~(k+2)WM (kDM (DM (k+2)TM

Fig. 4.5. One-dimensional cosine modulated filter bank: (a) The support of the pro-
totype filter P(w); (b) the support of the analysis filters Hy(w); each anal-
ysis filter has two parts, Py (w) and Pyp—1_p(w); (c) images of the analysis
filter Hy(w) that are adjacent to the synthesis filter F(w); (d) the major
aliasing in the kth subband and the (k + 1)th subband.

In the CMFB described above, as each analysis filter consists of two shifted copies of the pro-
totype, each of the two copies has M — 1 images due to decimation followed by expansion. Due
to AFS(M) property, the images of the analysis filters are adjacent to the support of the corre-
sponding synthesis filters but are not overlapping with the passbands of synthesis filters as shown
in Fig. 4.5(c). Thus, if the prototype filter is an ideal brick-wall filter, there is no aliasing and the
filter bank has perfect reconstruction. If the prototype filter is not ideal, those images that are
adjacent to the synthesis filter result in major aliasing (Fig. 4.5(d)) while those that are not adja-
cent to the synthesis filters will be attenuated to the stopband level of the prototype filter. In the
pseudo QMF CMFB, only the major aliasing errors are canceled and approximate alias cancelation
is attained. Approximate reconstruction is then achieved without sophisticated optimization of the
lowpass prototype. In the perfect reconstruction CMFB, the prototype is optimized under further
constraint (e.g., paraunitariness). The paraunitariness of the CMFB is guaranteed if the polyphase
components of the prototype filter satisfy some pairwise power complementary conditions [37]. In

both pseudo QMF and perfect reconstruction systems, the design of the whole filter bank is reduced
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to the optimization of the lowpass prototype filter. The complexity of the analysis bank is equal to

that of a prototype filter plus a DCT matrix.

Main Features of the Configuration in Fig. 1.2
From the preceding discussion, we observe that the support configuration in Fig. 1.2 has the fol-
lowing two features, which are necessary for designing a filter bank with good analysis and synthesis

filters.

1. AFS(M) property. Each analysis filter is AFS(M) and the configuration is AFS(M). This
means that if the filters are ideal, they are aliasfree(M) filters; no aliasing is created in the subbands
and the filter bank has perfect reconstruction. This feature is indispensable for the design of perfect
reconstruction filter banks. For a configuration that is not AFS(M ), severe aliasing will be created
in the subbands no matter how good the filters are. Without a AFS(M) configuration, a filter bank
can not have perfect reconstruction even if the analysis and synthesis filters are ideal brick-wall

filters.

2. Permissibility . From the discussion of CMFB, we see that major aliasing errors that contribute
to the same aliasing transfer function A;(w) (defined in Chapter 2) appear in pairs. For example,
around the frequency kw/M (Fig. 4.5(d)) both kth and (k + 1)th subbands have major aliasing
errors and it can be verified that these two aliasing errors contribute to the same aliasing transfer
function Ag(w). This is essential if alias cancelation is to take place in CMFB. For the more general
M-band filter banks, assume the filters are not ideal but have good frequency selectivity. If a certain
A;(w) has only one major aliasing term in a particular frequency region, this major aliasing can
not be canceled; perfect reconstruction is not possible. So if a perfect reconstruction filter bank has
good analysis and synthesis filters, it is necessary that in any frequency region there is more than
one major aliasing term contributing to the same aliasing transfer function A4;(w). A configuration
without this feature will be referred to as nonpermissible. Permissibility allows the possibility of
canceling major aliasing. If a filter bank has a nonpermissible configuration, the filters can not have
good stopband attenuation unless all the filters are ideal brick-wall filters. The one-dimensional

uniform DFT filter bank [98] is known to be an example of this nature.
Remarks on Permissibility

1. The issue of permissibility arises only when non ideal filters are considered. Also permissibility
is meaningful only when the underlying analysis and synthesis filters have frequency selectivity,
i.e., when the notion of passbands and stopbands still makes sense. For example, in delay
chain filter bank, the analysis and synthesis filters are allpass functions (Hy(z) = z=* and

Fr(z) = z*) and have no frequency selectivity. In this case, discussion of permissibility is
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meaningless.

2. To check the AFS(M) property of a configuration, we can individually examine each analysis
filter. But whether a configuration is permissible is determined jointly by all the analysis

filters.

3. Permissibility is only a necessary condition for good filter bank designs. It does not suggest

any constructive approach to design the filter banks.

4.3 Two-Parallelogram Filter Bank

In this section we study a subclass of 2D filter banks: the Two-P filter banks. This is the class of filter
banks in which the support of each analysis and synthesis filter is the union of two parallelograms.
Before designing any filter bank, we first study the support configuration and see if good analysis
and synthesis filters are possible. As a first step towards this, the analysis and synthesis filters
should be AFS(M) for a given decimation matrix M. This calls for a bandpass sampling theorem
for Two-P filters. For those AFS(M) configurations, we further investigate permissibility of the

configurations.

4.3.1 Sampling Theorems for One- and Two-Parallelogram Filters

A 2D filter H(w) with a frequency support that consists of k parallelograms is called a k-parallelogram
filter. By definition, H(w) is AFS(M) if the support of H(w) does not overlap under modulo
2rM~T. However, for one-parallelogram or Two-P filters, there is no existing simple testing rule as
those given in Fact 4.1 and Fact 4.2. The 2D equivalence of Fact 4.1 and Fact 4.2 will be given in this
subsection. Due to these 2D extensions, we can easily test AFS(M) property of one-parallelogram

or Two-Ps filters [50, 55, 56].

One-Parallelogram AFS(M) Filters

A result related to the multidimensional generalization of Fact 4.1 is as follows. Let H(w) be a
2D filter with support SPD(7M~T) or a shifted version of SPD(7M~T) for some integer matrix M.
When H(w) has such a support, H(w) is AFS(M) [98]. Now consider the more general case that
H(w) is a one-parallelogram filter with support SPD(mIN~") or a shifted version of SPD(xN~T).
The analysis of AFS(M) property of one-parallelogram filters is more intricate than that of 1D
one-passband case. Let us define

L2M™IN,

and denote the absolute value of the determinant of L by |L|. The condition [L| > 1 alone does not

imply AFS(M) property [108] and a stronger condition is called for. In particular, the lattice of
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LT has to satisfy one additional property. More precise statement is given in the theorem to follow.

Theorem 4.1. Let H(w) be a one-parallelogram signal with frequency support SPD(7#IN-7) or a
shifted version of SPD(mN~T), where N is possibly a non integer matrix. Then H(w) is AFS(M)
if and only if the matrix L defined as L = M™'N satisfies LAT(LT) N (~1,1)? = {0}. ]

This necessary and sufficient condition means that no vector in LAT(LT) is inside the square
(—1,1)? except the vector 0. For example, let

. 1 0
LT = , (4.1)

05 2
then LAT(L”) is as shown in Fig. 4.6; LAT(LT) has only one vector (the vector 0) inside the square
(~1,1)%. Notice that in 1D case, |L| > 1 if and only if LAT(LT) N (—~1,1) = {0}. However, this

relation does not hold in more than one dimensions.

1 T (10)
of | '0',0 05 2

Fig. 4.6. Lattice of L”.

Proof of Theorem 4.1. Recall that H(w) is AFS(M) if and only if the support of H(w) does not
overlap modulo 2rM~7T. So H(w) is AFS(M) if and only if, whenever k; # ky mod M7,

w1 —2rMTk; # ws ~ 27M Ty, Vwi,ws € SPD(xN-T).

Rearranging the above equation, we have w; — wy # 2aM~T(k; — ko). As wi,ws € SPD(xN-T),

w; can be expressed as w; = TN~Ty;, for some 2 x 1 vectors y; € [-1,1)2, i = 1,2. Hence
w; —wy =27N"Ty, for somey € (—-1,1)%
Using this expression, we have
y #L7(k; —ks), fork; # k, mod M7,
This is satisfied if and only if LAT(LT) N (~1,1)? = {0}. ]

This theorem can be generalized for D-dimensional signals. The above technique of the proof

can be carried out for signals of any dimensions.
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Bandpass Sampling Theorem for Two-Parallelogram Filters
Now consider the case that H(w) is a Two-P filter. The support of H(w) (Fig. 4.7) consists of

two parallelograms, each a shifted version of SPD(7IN~7). The two passbands can be described as
wo+ SPD(rN"T) and — wqo + SPD(xN-T).

Let M be an integer matrix with |M| = |N|/2. For H(w) to be AFS(M), the 1D bandpass sampling
theorem suggests that the two parallelograms in the support of H{(w) should be properly located. On
the other hand, the above sampling theorem for one-parallelogram signals indicates that in higher
dimensions the shape of the support also affects whether AFS(M) property is possible. Indeed, we
will see that whether H(w) is AFS(M) depends on the matrix N as well as the relative position of

the two parallelograms.

A

wo +SPD(ry 7) " va/2+SPD(0.51)
5 ®)
'\ —wq +SPD(INT)

Fig.4.7. (a) Support of a Two-P filter H(w); (b) support of H(w) with normalized axes.

(@)

S

Theorem 4.2. Let H(w) be a 2D filter and let the support of H(w) be the union of two parallel-
ograms, each a shifted version of SPD(7IN~7), the matrix N is possibly a non integer matrix. Let
M be an integer matrix with |M| = |N|/2. Then H(w) is AFS(M) if and only if the following two

conditions are satisfied.

1. Define L £ M™IN, then L7 has the form LT = I'U, where U is a unimodular matrix and T’

is of one of the following forms,

1 +p 2 0 2 +p 1 0
0o 2/ \+p 1) \o 1) \xp 2
b b 0O<p<l. (4.2)
(a) (b) (c) (d)

This is equivalent to saying that |L] = 2, LAT(LT) N (=1,1)? = {0} and L7 has one integer

row vector.

2. Let wg = 1N~ Ty, where yg is a 2 x 1 vector. Corresponding to the above four cases of L,
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Yo satisfies,

1 0
[y'g]l is odd [y()]g isodd yp= LTk + Yo = LTk + s
0 1

(a) (6) (c) (d)

for some integer vector k. (4.3)

For example, let L be as in (4.1). One can verify that the first element of any vector v € LAT(LT)
is an integer and L satisfies the first condition. Notice the first condition is not necessary in 1D
bandpass sampling theorem since I, = 2 in 1D case and LAT'(L) consists of integers only. As
indicated by the 1D bandpass sampling theorem in Fact. 4.2, in 1D case only the relative location

of the two passbands needs to be constrained.

Proof of Theorem 4.2. We first show that these two conditions are necessary.

Condition I is necessary. An equivalent necessary and sufficient condition for H(w) to be AFS(M)
is that, when H(w) is decimated and then expanded by M, there is no overlapping in the passbands
among H{(w) and the |M]| — 1 images. For convenience, we will discuss the decimated and expanded
version of H(w). When H(w) is decimated and then expanded by M, each of the |M| — 1 images is
a shifted version of H(w); each consists of two parallelograms. For convenience, we normalize the
frequency plane by 2rN~7; the new axes 1 and v, are the two entries of v = 2rN~Tw. After
normalization the support of H(w) appears as the union of two squares (Fig. 4.7(b)), denoted by S
and S’ with S = —yo/2 + SPD(0.5I) and S’ = yo/2 + SPD(0.51).

w Lo L1 o)

Fig. 4.8. Square tiling with (a) horizontal lines and (b) vertical lines.

As |N| = 2|M]|, this is maximal decimation. So H(w) and its |M| — 1 images fill the frequency
plane; the normalized plane is tiled by the squares of SPD(0.5I). In a square tiling, we can observe
at least one set of parallel lines (Fig. 4.8) and all the cells are bounded by these lines. For example in
the tiling of Fig. 4.8(a), we can observe one set of horizontal lines and all the squares are bounded by
the horizontal lines. An in Fig. 4.8(b), there is one set of vertical lines. So the images of passbands
S and S’ are confined to these horizontal or vertical lines. Suppose the images of S are located

at —yo/2 + ¢ for some vector c¢. Then [c]; must be an integer when the images are bounded by
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horizontal lines and [c]o must be an integer when the images are bounded by vertical lines. On the
other hand observe that the images of S are located at —yo/2 + LAT(LT)k, for some integer vector
k. To have the images of S located between the horizontal or vertical lines, L7 is necessarily of the
form

dy d X X
¢ o (4.4)

X X do d;

for some integers dy and dy, i.e., LT has one integer row.

Notice that if a Two-P filter with parallelogram prototype SPD(7N~T) is AFS(M), then a one-
parallelogram filter with support SPD(rN~T) is also AFS(M). For this, L must satisfy LAT(LT)N
(—=1,1)2. Combining this condition and the fact that |L| = 2, after some row operation we can
arrive at (4.2) from (4.4). Conversely, if L is of the forms in (4.2), then we can verify that |L] = 2,
LAT(LTYN(-1,1)? and L7 has one integer row vector. Corresponding to the four cases in 4.2, the
passband S and its images are as shown in Fig. 4.9(a)-(d) with p = 0.25. Fig. 4.9(e) shows that case
when L is as in (c) of Eq. (4.2) with p= 1.

(a) (b}

{d)

Fig. 4.9. Passband S and relative position to its images (darker shaded squares) for
various cases of LAT(L7)

Condition 2 is necessary. To satisfy the bandpass sampling theorem, the other passband §’ must
be located in one of the lighter shaded cells that are not occupied yet. In the first case (Fig. 4.9(a)),
the second passband can be located anywhere in the lighter shaded stripe; [yo]; is an odd integer.

In the third case (Fig. 4.9(c)), lighter shaded cells can be described as

1
~yo/2+ [ LTk + + SPD(0.5I), where k is an integer vector .
0
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When the passband S’ is in one of the lighter shaded cells

yo/2 = ~yo/2+ LTk +

Yo = LTk+
0

Similarly, we can verify that the second case and the fourth case.

Conversely, if L7 is of the form in (4.2) and yy is given as in (4.3), we can verify that the passbands

of H(w) and the images are properly interlaced and bandpass sampling theorem is satisfied.

Remarks

1. We would like to point out one necessary condition implied by Theorem 4.2. The vector yo has

at least one nonzero integer entry. The importance of this necessary condition will be observed

in the next remark.

. Continuous time maximal decimation. Let H() be the Fourier transform of a 2D continuous

time filter h(t). Suppose H(2) is an ideal filter and the support of H(£2) is the union of two
parallelograms, each a shifted version of SPD(7IN~7T) and the two parallelograms are separated
by 2aN"Tyg. The question is what are the conditions such that the output of H (2) can be
maximally decimated. The necessary and sufficient condition for this is that y, has at least
one nonzero integer entry. As long as H(2) satisfies this condition, we can always find M with
M| = |N|/2 such that H(2) is aliasfree(M). Therefore maximal aliasfree decimation of the
output of H(Q) depends entirely on the relative position of the two passbands. However, in
1D case the condition that y is a nonzero integer is not sufficient. The necessary and sufficient

condition in 1D case is that yo is an odd integer.

Properties of Two-Parallelogram Filters

In all cases of Fig. 4.9, we observe that S is adjacent to its own images. This is in general

true; it can be verified that S is necessarily adjacent to its own images when the bandpass sampling

theorem is satisfied. The type of adjacency is determined by LAT(LY). More specifically, we have

the following three cases.

1. Complete edge adjacency. When L is as in (a) or (b) of Eq. (4.2), S is adjacent to its images

on two edges; S and its images form a stripe pattern (Fig. 4.9(a)-(b)).

2. Fartial edge adjacency. When L is as in (c) or (d) of Eq. (4.2) with p # 1, S is partially edge

adjacent to its images (Fig. 4.9(c)-(d)).
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3. Vertex adjacency. When L is as in (c) or (d) of Eq. (4.2) with p = 1, LAT(LT) is quincunx
(Fig. 4.10). In this case, S is vertex adjacent to its images; S and its images form a check
pattern (Fig. 4.9(e)). Notice that this is very different from the 1D case. Recall in 1D case, no
passbands of the analysis filters are adjacent to their own images. This observation will help

us to study permissibility of Two-P filter banks.

Fig. 4.10. The quincunx lattice.

4.3.2 Permissibility of Two-Parallelogram Filter Banks

Now consider a Two-P filter bank. In the subbands, the images of the analysis filters will be at-
tenuated to the stopband level of the synthesis filter except those images that are adjacent to the
synthesis filters. Those adjacent images result in major aliasing if the individual filters are assumed
to have good frequency selectivity. In 2D case, there are several different types of adjacency, which
result in different types of major aliasing. As the notion of permissibility originates from uncance-
lable major aliasing, we have to consider a finer classification of permissibility. Consider the different
cases in Fig. 4.9. Suppose the shaded areas represent the images of S or S’. In all cases, one image
is adjacent to S and will result in different major aliasing. For example in Fig. 4.9(a)-(d) the image
results in edge aliasing, whereas in Fig. 4.9(e) the image results in vertex aliasing. For an alias
transfer function Ax(w), if in a certain frequency region there is only one particular major aliasing
term, then this major aliasing can not be canceled. In this case, when the uncancelable aliasing
is edge based or vertex based the support is called edge nonpermissible or vertex nonpermissible
respectively. We see that edge adjacency corresponds to band adjacency in 1D case (Fig. 4.5) while
vertex adjacency has no 1D correspondence. Comparing these two types of nonpermissibility, edge
based aliasing is in general much more serious than vertex based. The filter banks that do not have
any type of uncancelable major aliasing is called permissible. We will explain below that the Two-P
filter banks can have edge permissible but can not have both edge and vertex permissibility.

When the images of S are adjacent to S, major aliasing is created and this major aliasing is
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uncancelable. To explain this, suppose

T
asin (d) of Eq. (4.2). Asthe vector (1 p) € LAT(LT), one image of S will be separated from S by
T
(1 p) . This image is edge adjacent to S and creates major aliasing as in Fig. 4.11. The resulting

major aliasing contributes to the alias transfer function A g)(w) since (1 p)T = L7 (1 O)T.
In other subbands, the major aliasing errors that contribute to Aq,0)(w) are not in the the same
frequency region; this major aliasing is uncancelable. But from previous subsection, we know images
of § will always be adjacent to S. We conclude that Two-P filter banks are not permissible in general

under the assumption of good analysis and synthesis filters.

- image of §
uncancelable major aliasing

Fig. 4.11. Illustration of uncancelable major aliasing.

On the other hand in Fig. 4.9(e), we observe that images of S are only vertex adjacent to S. So
edge permissibility is possible. The Two-P cosine modulated filter banks that have edge permissibility

will be constructed in the next section.

4.4 Configuration of Two-Parallelogram Cosine Modulated

Filter Banks

In view of the construction procedure for 1D cosine modulated filter banks (CMFB) in Sec. 4.2 and
the discussion in previous section, there are three important issues to be addressed. First, for a given
filter bank with decimation matrix M as in Fig. 4.1 we ask how to obtain the analysis filters such
that the support configuration of the 2D CMFB is an extension of 1D version. The second issue
is the analysis and synthesis filters should be AFS(M) and the configuration should be AFS(M).
Moreover, as the supports of the analysis filters form a tiling of the frequency plane, the filter bank
has perfect reconstruction when the prototype filter is an ideal filter. For those that satisfy these

two criteria, we further consider support permissibility.

Issue 1. Support Configuration

The general setting of 1D M -channel CMFB can be summarized as follows.

1. Design a 2M -channel uniform DFT filter bank.
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2. Shift the filters in the DFT filter bank by #/2M and combine appropriate pairs of filters to

yield real-coefficient analysis filters.

We now translate these procedures to 2D case and construct the Two-P CMFB. To design a
Two-P CMFB with decimation matrix M, conceptually we start from a uniform DFT filter bank [98]
with decimation matrix N = ML, where L is an integer matrix (to be chosen appropriately) with

|L| = 2. For example,

7 -2 1 1 3 -1
let M = and L = , then N =
0 1 2 4 2 4

As |N| = 14, there are total 14 DFT filters as shown in Fig. 4.12. The DFT filters P;(w) are given
by
Pi(w) = Py(w — 27N7Tk;), k; € N(NT).

Each filter in the DFT filter bank is a shifted version of a prototype P(w), which has a parallelogram
support SPD(7IN~T). For a given M, the support of the prototype is different for different choice
of L. In 1D CMFB, we shift the filters by n/2M. But in 2D case, the shifts are vector-shifts and
we can shift the filters by

aN-T (1 o)T,wN'T (o 1)T, or tN~7T (1 I)T,

as shown in Fig. 4.13. Fig. 4.14(a)-(c) shows the results with respect to the three shifts. The filters

Qa,i(w), @B,i(w) and Q¢ ;(w) are given by

Qaiw) = Piw 22N (05 0)"),
Qni(w) = Plw—2N"T (0 05)"),
Qc,i(w) = Pi(w — 2rN~T (0.5 0.5) T).

For all the three cases, filters can be paired to obtain real-coefficient analysis filters. For example,
in Fig. 4.14(a), the filter coefficients of Q4,:(w) and Q' ;(w) are complex conjugates of each other.

The filters Q) 4,:(w) and @'y ;(w) can be paired to obtain the analysis filter H4 ;(w),
Hai(w) = Qai(w) + Q' s(w).

The corresponding synthesis filter is F4 ;(w) = Q7% ;(w) + Q;;"i(w). Similarly in Fig. 4.14(b) and
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P P
P,
P,
P,
F, PN
P 13 ¢ P l)l R wO
11
P Py
9
2] 5
(-7,-m)

Fig. 4.12. DFT filter bank with decimation matrix N.

(c), Hp,i(w) consists of @pi(w) and Q% ;(w), and He,;(w) consists of Q¢ i(w) and Qf ;(w). (The
subscripts A, B and C of the analysis and synthesis filters are only temporary and meant to distin-
guish the three cases in Fig. 4.14.) Each analysis filter consists of two parallelograms. So the CMFB
constructed this way is a subclass of Two-P filter banks. We observe that all three support configu-
rations are extension of the 1D version. The three configurations will be referred to as configuration
A, B, and C in the discussion to follow. From Fig. 4.14 it seems that configurations A and B are
very similar. Indeed as we will see in issue 2 and 3, properties derived for configurations A are also

true for configuration B except some minor modifications.

support of the prototype
Fig. 4.13. Three possible vector shifts.

Issue 2. AFS(M) Support Configuration

We now study the conditions such that configurations A, B and C are AFS(M). As M is fixed
and supports of the analysis filters in each configuration are already determined, Theorem 4.2 implies
that L will completely determine whether the the analysis filters are AFS(M) in the ideal case. In
configuration A, the two passbands of the analysis filters are separated by 2rN~7(2k + ( 1 ()) T),
for some integer vector k. By Theorem 4.2, the analysis filters are AFS(M) in ideal case in the

following two situations.
1. Choose L as in (b) of Eq. (4.2) for any 0 < p < 1.

2. Choose L as in (c) of Eq. (4.2) with p = 1, which yields quincunx LAT(LT) (Fig. 4.10).
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Fig. 4.14. Three possible support configurations of the Two-P cosine modulated filter
bank, (a) configuration A, (b) configuration B and (c) configuration C.

Similarly, in configurations B and C, the two passbands of the analysis filters are separated
respectively by 27N~ (2k + (0 1) T) and 27N~ (2k + (1 1) T). We can verify that configuration
B is AFS(M) if we choose L as in (a) of Eq. (4.2) for any 0 < p < 1 or we can choose L as in (c)
of Eq. (4.2) with p = 1, i.e., quincunx LAT (LT). Also configuration C is AFS(M) if we choose L
asin (a) or (b) of Eq. (4.2) forany 0 <p < 1.

Notice that in all three configurations, the analysis filters form a tiling of the frequency plane.
When the configurations are AFS(M), the filter bank has perfect reconstruction if the prototype is

an ideal filter.

Issue 3. Support Permissibility

According to the preceding analysis, each of the three support configurations is AFS(M) for
some L. However not all configurations are valid candidates in terms of support permissibility.
From the discussion of Two-P filters in Sec. 4.4, we know when L7 is as in (a) or (b) of Eq. (4.2),
one passband is edge adjacent to its own images, which leads to edge nonpermissibility. The 2D
CMFB studied in [30] usually has this type of nonpermissible support. From the consideration
of support permissibility, any configuration with L as in (a) or (b) of Eq. (4.2) is not suitable
for the development of 2D CMFB. As configuration C is AFS(M) only for these two types of L,
configurations C' will not be considered. Also configurations A and B with L as in (a) and (b) of
Eq. (4.2) will not be considered. To design a edge permissible Two-P CMFB, the only two possible
choices left are configuration A and B with quincunx LAT(L”). Indeed, we will explain below that

these two choices do lead to edge permissible Two-P CMFB.
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As we discussed in Sec. 4.4, for Two-P filters, each of the two passbands and its images form a
check pattern when LAT(LT) is quincunx (Fig. 4.9(e)). So each passband is edge adjacent to four
images of the other passband, which results in edge aliasing (Fig. 4.15). However, we can show that
these edge aliasing appear in pairs and the Two-P CMFB is edge permissible. To see this, consider
the ith subband in configuration A and only image (a), which is at the support of Q' ;(w). The
resulting edge aliasing is as shown in Fig. 4.15. On the other hand, four images of Q4 ;(w) will be
edge adjacent to @’y ;; one of the four images is at Q' ; and results in edge aliasing. It turns out
that these two edge aliasing errors contribute to the same alias transfer function. So edge aliasing
errors appear in pairs and configuration A is edge permissible. The situation for configuration B is

similar. In Sec. 4.6, we will discuss in details how those edge aliasing errors can cancel one another.

v
support of Qs
PP A9 edge aliasing due

to image (a)

Images of (Q,

Fig. 4.15. Tmages of Q4 ;{w) and their positions relative to Q;’{,i(w); four images of
Q4,i(w) are edge-adjacent to Q;;‘,i(w).

Although configurations A and B can be edge permissible, they are not vertex permissible.
For each analysis filter, images of one passband will be vertex adjacent to itself. The analysis in
previous section shows that the resulting vertex aliasing is uncancelable under the assumption of
good analysis and synthesis filters. Table 4.1 is a summary of the role of L to the AFS(M) properly
and permissibility of each configuration. We see that configuration C' is either violating sampling
criterion or edge nonpermissible. Configuration A or B can satisfy the sampling criterion and at
the same time is edge permissible if LAT (L) is quincunx (Fig. 4.10). These two cases are more
suitable for the construction of Two-P CMFB. In this case, the Two-P CMFB can have edge-based
permissibility but lacks vertex-based permissibility. This imposes limitation on the attenuation of

the individual filters in the Two-P CMFB.
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L (a) of Eq. (4.2)] (b) of Eq. (4.2)| (c) of Eq. (4.2)

configuration 0<p<l 0<p<sl p=1 (quincunx LAT(L" ))

A ] HE
B ] O n
C ] O |

L] satisfying the sampling criterion
| edge permissible

Table 4.1. The sampling criterion, edge permissibility and relation to the various cases
of L in Eq. (4.1) for configurations A, B and C.

4.5 Formulation of the Two-Parallelogram Cosine Modulated

Filter Banks

We have set up the framework of Two-P CMFB in Sec. 4.4. We have also derived two edge permissible
support configurations. In this section, we will consider all the design details. For a given 2D filter
bank with decimation matrix M, we start from a uniform DFT filter bank with twice the number of
channels. By shifting the DFT filters properly, we obtain two edge permissible configurations. We

then proceed to formulate the analysis and synthesis filters.

4.5.1 Configuration A and B

Consider the |M|-channel 2D filter bank with decimation matrix M in Fig. 4.1. We start from
a uniform DFT filter bank with decimation matrix N = ML, where L is an integer matrix with
|L| = 2 and quincunx LAT (L") (for edge permissibility). To be more specific about the formulation
of the DFT filter bank, let M be diagonalized as M = UApn Vi, where U and Vg are unimodular.
The matrix Ay is diagonal with diagonal elements [Amloo = Ao > 0 and [Am]1; = Ay > 0. For

simplicity, we choose
(10
L=Vy Vv,
0
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for some unimodular V such that LAT'(LT) is quincunx. Then the matrix IN given by N = ML

becomes
X O (1 0 AN O
N=U VM Vy V or N=U V. (4.5)
0 X\ 0 2 0 2X
-~ ~ ’ N, st
M L A

Clearly, [M| = AgA1, [L] = 2 and |N| = 2A¢ ;1. The prototype filter P{w) in the DFT filter bank
has a parallelogram support SPD(rIN~T). The DFT filters are shifted versions of the prototype by
27N~ Tk;, for k; € N(INT).

For referring convenience, we will adopt a particular ordering of N(NT). As VT A and N7 have
the same lattices, we will consider the ordering of N (VT A) for simplicity. The ordering is as follows.

T ko
Kigsror, =V , ko=0,1,..., -1k =0,1,...,2\; — 1. (4.6)
ky
Then N(VTA) = {ko,k1,...,knj—1}. Configurations A and B (Fig. 4.14) are obtained by shifting
the DFT filters. In particular, the complex filter underlying configurations 4 and B are

Qx(w) =P (w-2aN"T(k + 1),k € N(VTA),

T T
where 1 = (0,5 ()) for configuration 4 and 1 = (0 0,5) for configuration B. The vector

subscript of Qy(w) should be interpreted modulo N7

4.5.2 The Analysis and Synthesis Filters

To obtain real-coefficient analysis and synthesis filters, we need to combine two shifted copies of the
prototype P(w). Suppose the impulse response of Qk(w) is gi(n). Let k' be such that g (n) =
¢i(n). Pair Qx(w) and Qw (w), then the analysis filters of the form Qu(w) + Qw (w) have real

coefficients. The pairing procedure is formulated in the following property.

Proposition 4.1. The coefficients of Qk,,, s, (W) and Qx,, . o (w) are complex conjugates of
each other if mg, my, m1, and m} are related by
! / bo -T
mo +mg = by mod Ag, and m; +m; = b; mod 2);, where =-2V~'L

b (4.7)

Proof: The filter Qx(w) is a shift of the prototype P(w) by 2aN"T(k + 1). If Qu(w) is a
shift of the prototype P(w) by —27N~T(k + 1), gi(n) and g (n) are conjugates of each other. So
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Qu(w) + Qu (w) has real coefficients, if 2rN~T (k' + 1) = —27N~7(k + 1) mod 21, or equivalently
k+k' = -2l mod N7, (4.8)

Next, we would like to relate m and m' such that k., +k. = —21 mod NT. Let m = mo + dom;

and m' = mg + Ao, then

Mo m mg + m T
kn=V7T . ke =VT[ %], and therefore VT o1 ot
my m} my +mj
It follows that
Qhimgtming (@) + Qi y s (@)
have real coefficients if mg, mf, m1, and m} are related as in (4.7). n

If we combine conjugate pairs Qu(w) and Qxs(w) as described in Proposition 4.1, we get |M|

real-coefficient analysis filters.

Hm(w) = ka0+m1,\0 (QJ) + Qx,, (w)> Fm(w) = H:n(w)7 m=0,1,..., ‘Mt -1,

m0+m'1/\0

(4.9)

where mo = m mod Ao, my = b+ (m —mg)/Ao mod 2X;, and b = (b, + 1)/2. Values of m{ and m/
are given by (4.7). It can be verified that b = (b; + 1)/2 is an integer and the above enumeration of
the analysis filters is complete. It follows from (4.9) that the impulse response of the analysis filter
Hp(w) is

hm(n) = 2p(n) cos(27 Kpmo+mire + V' N"In), m=0,1,...,|M| - 1.

We have chosen Fp,(w) = H,(w) in the above formulation, as the system is eventually going to be

paraunitary. The impulse responses of the analysis and synthesis filters are related by
fe(n) = h(—n), where n is any 2 X 1 vector.

In a 1D CMFB, each analysis filter has two distinct shifts of the prototype filter. So the total
bandwidth of each individual filter is the same. For 2D filters, total bandwidth should be interpreted
as the total spectral occupancy. In the Tiwo-P CMFB, all analysis filters have the same size of spectral
occupancy. Every analysis filter consists of two distinct shifts of the prototype. This follows from

the quincunx property of LAT(LT) as we will show below.

Proposition 4.2. The analysis filters have equal size of spectral occupancy.

Proof: We only need to show that Qk(w) and Qy (w) are distinct filters whenever the coefficients
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of Qx(w) and Qw (w) are complex conjugate of each other. Suppose the contrary is true: the
coefficients of Qx(w) and Qy (w) are complex conjugate of each other but they are the same filter,
i.e., k =k'mod NT. By (4.8), we have

kT 91

As LAT(LT) is quincunx, 2k = 0 mod L”. Taking modulo L on both sides of the above equation,
we have 0 = —21. By the definition of 1, 21 = (1 o)T or (o 1) " S0 21 ¢ LAT(LT), which
leads to a contradiction. We conclude that when the coefficients of Qx(w) and Qu(w) are complex
conjugate of each other, Qx(w) and Qu (w) are not same and each analysis filter consists of two

distinct copies of the prototype. =

4.6 Perfect Reconstruction Two-Parallelogram Cosine Mod-

ulated Filter Banks

In this section, we first show how to cancel edge aliasing errors that arise in every subband. Then
we present the necessary and sufficient condition for perfect reconstruction of Two-P CMFB. In 1D
case, the CMFB has perfect reconstruction if and only if the polyphase components of the prototype
are pairwise power complementary [37]. We will see that similar necessary and sufficient conditions

can be derived for Two-P CMFB as well.

4.6.1 Cancelation of Edge Aliasing

In Sec. 4.4, we mention that in each subband (configuration A or B), one passband of each analysis
filter is edge adjacent to four images of the other passband. This results in serious edge aliasing. It
turns out that these edge aliasing errors from different subband can actually cancel with one another
if the prototype has linear phase and satisfies some minor condition. To be more specific, let the

impulse response of the prototype be p(n) and

p(n) = p(n, — n),for some integer vector n,. (4.10)

Proposition 4.3. Consider a Two-P CMFB with analysis and synthesis given as in (4.9). Let
LAT(LT) be quincunx. Then the followings are true.

1. Edge aliasing errors appear in pairs.
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2. Pairwise edge aliasing can cancel with each other if n, satisfies

0.5
n, =N mod N. 4.11)
0.5

3. The vector n, thus determined is an integer vector and n, has the form
T
N
n,=U (0 ,\1) .

This is a minor condition because it is always possible to shift the linear-phase prototype such
that (4.11) is satisfied.
Proof:

1. Consider the subband that has analysis filter Qy(w) + Qr (w). The aliasing terms due to edge

adjacency of @y, (w) and images of Qx(w) are

Qu +k, (W) (w), where k, € AS. (4.12)

1 -1 0 0
The Adjacency Set AS is given by AS & { ( ) , ( ) , ( ) , ( )} .
0 0 1 -1

These aliasing terms contribute respectively to the aliasing transfer function

AL—T(Qk'+21+ks) (w).

Now consider the subband that has analysis filter Qx—x,(w) + Qw+k,(w), one image of

Qr-x, (w) will be located at support of Qi (w) and results in aliasing error

Qi 1k, (W) Qw (w), (4.13)

which also contributes to Ap-z ok 4o11k,)(w). So the edge aliasing errors do occur in pairs.

2. Notice that the error in (4.13) is the conjugate of error in (4.12) and they cancel each other if

Qe (W)Qw 4k, (W) = —Qu (W) Qi ., (W), Yk, € AS.
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In what follows, we show that the above equation holds when n; is as in (4.11). By (4.10),

P(w) assumes the form P(w) = e~ " m:/2 P, (w), where P,(w) is a real-valued function. Let
P, x(w) = Pr(w — 27N~T(k + 1)),
then we can verify
Qe (@) Qi (@) + Qe (@) Qi sy, (@) = (7N 0e 4 =TSN b () P e, ().

. . . . . . - Tar—~1
In view of the above equation, the condition for alias cancelation is /2™ N1 — 1 vk, ¢
q 2 3

. o TN —1 —97kTN~1n. 1 - .
AS. Since e/ N7 ns — g=j2nk; N™'n. it is pecessary and sufficient that

y - 1 0
2Tk NI, -1, fork, = and k,; =
0 1
That is,
1 0 ) 1 )
27 Non,=2nd 47 , for some integer vector d.
0 1

T
Premultiplying both sides by %;N, we have ny, = Nd + N (O.S 0_5) , or equivalently

0.5
n, =N mod N.

0.5

T
. The vector n, is determined by ngy = UAV (0_5 0,5) mod N. As

10
LT =v7T Vit
0 2
L
LAT(LT) is the same as the lattice of L'. Let
v U Y 2v
v [P0 Vo) g [P 2
Vo V11 vor  2v11

T
The vector (Uoo Um) is on the lattice of LY, which is quincunx. Any vector ¢ on the
quincunx lattice has the property that [c]o + [c]; is even. This means that vgg + vg; is even;
voo and vo; are either both odd or both even. If vy and vg; are both even, then |V] is even,

which contradicts with the assumption that V is unimodular and has [V| = 1. So vgo and v,
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are both odd. This in turns implies that vip and v must be one odd, and one even (since
T T
[V =1). As aresult V (0_5 0.5) = (c(, c + 0.5) , for some integers ¢y and ¢;. Let

T T
c= (co Cl) ; then n,; = UA(c + (0 0.5) ) or equivalently

n, =NV +U (0 A)

T
Hence, we have nj Su (0 ,\1) , which is an integer vector. ]

4.6.2 Perfect Reconstruction Conditions

Let the prototype have the following polyphase representation,

P(w) = YN By(NTw)edm:, (4.14)
g

where  Npgengn, = U , no=0,1,...,A~1,n1=0,1,...,2); — 1, (4.15)
13}

where U is as given in (4.5). Then E;{(w) is the polyphase component of P{w) with respect to
n;. The paraunitariness of the Two-P CMFB can be translated into pairwise power complementary

conditions on E;(w).

Theorem 4.3. Necessary and sufficient conditions for paraunitariness. Consider the filter bank with
decimation matrix M in Fig. 4.1 and the choice of analysis and synthesis filters in (4.9). Let the
matrix N be given by N = ML, where LAT(L”) is quincunx. Also let the prototype be linear-phase
with p(n) = p(n; — n) and n, = N (0_5 0_5)T mod N. Then the Two-P CMFB is paraunitary

(i.e., the polyphase matrix is paraunitary) if and only if
E (w)Bi(w) + Bl 5o, (@) Eirxon, (W) =, (4.16)

where ¢ is some constant. [ ]

Proof of Theorem 4.3 is given in Appendix A.

Remark on Theorem 4.3. The condition in (4.16) is equivalent to saying that F;(w) and Eyy,», (w)

are power complementary in 2D sense. As explained in Sec. 4.5, the Two-P CMFB is of configuration
T T

A whenl= (0‘5 0) and configuration B when 1 = (0 0.5) . As the theorem is true regardless

of choice of 1, Theorem 4.3 holds for both configuration A and configuration B.
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4.6.3 Polyphase Components of the Prototype

In the 1D CMFB, the polyphase components of the prototype are related in pairs because of linear
phase constraint of the prototype. At the same times, there are also power complementary pairs
due to paraunitariness. Furthermore if half of the polyphase components are pairwise power com-
plementary, the other half, due to linear phase, are automatically pairwise power complementary as
derived in [37]. The situation is similar in the Two-P CMFB as we elaborate next.

According to (4.10), the impulse response of the prototype is p(n) = p(n; —n). So the vector n,
determines the pairwise relations of the polyphase components. More precisely, we will show that
the polyphase component are pairwise related by
—jet(d=V (e CI)T)E:6+)\UTL'1 (w), ng=-ngmod Xy, n;=2>A —n; mod 2\,

(4.17)

Engiaon, (W) = e

where d is a vector determined by n,, and the two quantities ¢y and ¢; are given by

0, if g = O, 0, if ny < )\1,
Cp = and ¢; =

1, otherwise, 1, otherwise.

T T
Proofof (4.17). Asng =N (0_5 0,5) mod N, we have n, = Nd+N (0_5 0,5) for some inte-
ger vector d. Using the linear phase property of P(w), we have P(w) = e=7¢" ns p (w). Substituting
in the polyphase representation of P(w) gives us

Ao—1 x=2A;—1 T —jwTU(ng ny)T
ZnO:O ny =0 En0+/\0n1(N w)e d (no m1)

Z)\O—l 201 —1 E*

T, \p—jwTNd ,—jwT U(-n) A;—n})7
ny=0 Lun| =0 né—}-z\on'l(N w)e € 0 Yo

The right hand side of the above equation is equal to

Ao—12XA1~1

z z * T ~jwTN(d-V~ ¢ ¢1)T)  —jwTUlcoro—n) 2c1 A1+ ~n))T
n6+)\on’1 (N W)e ) )6 0 B 1) .
ny=0 ni=0
So
T N T —jwTN@d-v~! T
Eno+/\0n1 (N w) - ;;,6'-}—/\071'1 (N w)e ™ ( (ea e)™)

T T

if (’ﬂo n1) = (C()/\o —nl 2eA; + A — ni) . This gives us the pairwise relations given in (4.17).
=

According to the statement of Theorem 4.3, we know the first half and the second half of the

polyphase components are power complementary in pairs. Combining these two different pairwise
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relations, we observe that if the following pairs
(Eno-%-/\om ("")a E1zo+(n1+/\1)/\o (w> ’ for 0 <o < l‘/\0/21 and 0 < ny < [r(Al + 1)/2.]’

are power complementary, then the others will be pairwise power complementary due to the linear
phase property of the prototype. Here the ceiling function [x] is defined as the smallest integer

greater than x.

Comment on the Nyquist Property of the Analysis Filters. As in the 1D case, we can define Nyquist
filters. A filter h(1n) is called a Nyquist(IN) filter if one polyphase component of h(m) is a delay.
From the previous discussion, we observe that while (Eg(w), Ex,x, (w)) is a power complementary
pair, these two polyphase components are also related because P(w) has linear phase. As a result,
Eo(w) and Ej,, (w) are merely delays. So the prototype is a Nyquist(N) filter. The analysis
filters are cosine modulated versions of the prototype. We conclude that the analysis filters are also

Nyquist(N) filter.

4.7 Implementation and Design Example of Two-Parallelogram

CMFB

Efficient Implementation of the Two-Parallelogram CMFB.

Efficient implementation is one of the reasons that cosine modulated filter banks attract a lot of
attention. In the 1D CMFB, the complexity of the analysis bank or the synthesis bank is that of the
prototype filter plus a DCT matrix. The DCT matrices are known to be low-complexity matrices.
We will show that there also exists efficient implementation for the Two-P CMFB. The cost of the
analysis bank or the synthesis bank is that of a prototype filter plus a matrix, which has elements
resembling that of a nonseparable 2D DCT matrix. Implementation of this DCT-like matrix can
be decomposed into 1D DCT matrices of smaller dimensions. Denote the complexity of a A-point
DCT by C(A), then the complexity of C is roughly 42\ C(Xo) + Ao C(2)A1), where Ag and \; are the
diagonal elements of Ang.

Using the polyphase representation of the prototype in (4.14), the analysis filters in (4.9) can be
rewritten as

INj-1

Hp(w) = Y 2E;(N"w - 2b)[Clmexp(—jwTn;), m=0,1,...,]M]| -1,
=0

where  [Clmi = c0s(2n(Kpmtsr, +b)'N7'ny), m=0,1,...,|M| -1, i=0,1,...,|N|-1.
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The above expression for the analysis filters gives rise to the efficient implementation in Fig. 4.16.
The matrix C is rectangular of dimension M| x |N|. The figure demonstrates that the complexity
of the 2D CMFB is that of the prototype plus C. The elements of C are those of a nonseparable
2D DCT.

7m0 WM |1 ¢ (To-2nb) || =

7o WM G (LT o-2rb) |

l_>. e‘jan Nt -] VM ——G‘N[ -1 (LT(o—an) -

Fig. 4.16. Efficient implementation of the analysis bank of the two-parallelogram co-
sine modulated filter bank. The matrix C is of dimension |M| by 2|M]|.

Decomposition and Complexity of C

We first define the The Kronecker product of two matrices A and B,

ao’oB PN a(),K_lB
AsB=| : . | (4.18)
i Ik ar—10B ... ar-1x-1B
LIXKL

The matrix C can be decomposed as (to be shown in Appendix B)
C=C;®Cy~858;®8Syg, (4.19)
where Cy, Sy are A9 X Ap matrices and C;, S; are A\; x 2A; matrices given by

[Cﬂ]kono = COS(%\%(I"O - 60/2)”‘0)7 [SO]kono = Sin(i_g(k() - b0/2)n0), 0 < ky,no < Ag,

[Cl]krﬂx = COS(')%(ICI + 0'5)n1)7 [Sl]klnl = Sin(",\%(kl + 0'5)”’1)7 0<k < >\1,0 <np < 2A5.

The implementation of C is closely related to that of Co, S, C; and S;. The matrices Cy, Sg, C1 and
S; have elements resembling that of DCT and DST matrices. The complexity of these four matrices
can be shown to be roughly C(Ao), C(Xo), $C(2X1) and $C(2A;1). Using the decomposition in (4.19),
we can further show that the complexity of the C matrix is roughly equal to 4X;C{Xg) + Mo C(2A1).
These properties of C, Cq,Sg, C; and S; will be verified in Appendix B.
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Example 4.1. Two-parallelogram CMFB.

7 -2 1 =2 70
Let M = =
0 1 0 1 0 1
1 0 i1 3 -1
Choose L = , then N =
0 2 1 2 2 4

With the above of choice of L, LAT(LT) is quincunx. If we choose configuration B, then 1 =
(0 ()_5) T. Fig. 4.2 shows the supports of the analysis filters. By Theorem 4.3, the Two-P CMFB has
perfect reconstruction if the polyphase components of the prototype satisfy the power complementary
condition given in (4.16). Fig. 4.17(a) shows the pairs of polyphase components that are power
complementary. As the prototype is linear-phase, the polyphase components are related in pairs.
Fig. 4.17(b) shows these pairwise relations. In the figures, we use the notation E};°(w) to denote
the polyphase component Epipn,a,(w). From the discussion for polyphase components in Sec.
4.6.3, if (Ei(w), Ei(w)), for i = 1,2,3, are power complementary pairs then (Ej(w), Ei(w)), for
i =4,5,6, are guaranteed to be power complementary pairs. We can optimize P(w) subject to only
the condition that E}(w) and Fi(w), for i = 1,2, 3, are power complementary. This condition can

be satisfied by using the 2D paraunitary lattice, [107].

El E, B} E, E} E] E}
(&) v0 *1 vz v;f ix v6
EI EI EI EI EI El

NB]Q(- Hmu - Qtij“

0 1 2 3 4 5 8 )
EE B E E E E E'E

H
S

3
El

A

6
EI

1

(o

_)_t‘.l
Lt

|

(®)

Fig. 19. Example 7.1. Two-parallelogram cosine
modulated filter bank. (a) Polyphase components
of P(w) that are pairwise power complementary.
(b) Polyphase components of P{w) that are related
due to linear phase of Plw).

Fig. 4.17. Example 4.1. Two-P cosine modulated filter bank; (a) Polyphase com-
ponents of P(w) that are pairwise power complementary; (b) polyphase
components of P(w) that are related due to linear phase of P(w).

Fig. 4.18 shows the support of impulse response of the prototype filter, p(n). The support of
p(n) resembles the shape of SPD{2N). Each solid dot represents a possibly non-zero coefficient of
p(n). In this optimization, each of the fourteen polyphase components has four coefficients. The
corresponding frequency response of the prototype is shown in Fig. 4.19. The stopband attenuation
of the prototype is 17 dB. The reason that the prototype can not have good attenuation is due to
the lack of vertex permissibility in Two-P filter banks (Sec. 4.3).
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o
A} Lol

5 (2%

Fig. 4.18. Example 4.1. Two-P cosine modulated filter bank. The impulse response
support of the prototype. Each solid dot represents a possibly non-zero
coefficient of the prototype. (Intersection points of the dashed lines are on
the lattice of N. Solid lines represent integers.)
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Fig. 4.19. Example 4.1. Two-parallelogram cosine modulated filter bank. The mag-
nitude response of the prototype with frequency normalized by 27.
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Concluding Remarks. In the application of subband coding, the support configuration of the
analysis filters on a large scale determines the coding performance of the filter bank. In this chapter
we have considered the class of Two-P filter bank. The passband of each analysis filter consists
of two parallelograms and the frequency plane is partitioned by parallelogram cells. (This type of
configurations also has the potential application of extracting directional information like edges.)

To facilitate the analysis, we introduced the notions of edge and vertex permissibility and ex-
plained that, although the former one is more important, both types of permissibility are necessary
for good filter bank design. As elaborated in Sec. 4.3, the Two-P filter banks can possess edge or
vertex permissibility but not both. As a consequence, the stopband attenuation of the filters in
Two-P perfect reconstruction filter banks can not be arbitrary large. Extensions of the discussions

of this chapter for the case of linear-phase filters can be found in [51].

Appendix A. Proof of Theorem 4.3

The proof will be done in three steps. In the first step, we formulate the polyphase matrix E(w) of the
analysis bank. As the 2D CMFB is paraunitary, the filter bank has perfect reconstruction if and only
if Ef(w)E(w) is an identity matrix except some scalar. In the second step, we simplify the product
Ef(w)E(w) as much as possible without using the linear phase property of the prototype P(w). As
elaborated in Sec. 4.6.3, the polyphase components of the prototype are related in pairs due to the
linear phase of P(w). In the final step we use those pairwise relations to show Ef(w)E(w) = Iimy
provided that E;(w) are pairwise power complementary as in (4.16).

Notations and preliminaries for Appendix A. For the convenience of derivation, we intro-

duce the following notations.

1. The matrix J; denotes a k X k reversal matrix with non-zero entries [J]nr—1-n = 1, for

n=0,1,...,k— 1.
2. The DFT matrix. The A x X\ DFT matrix W is given by [Wy|m, = W™, where Wy = ¢~727/X,

3. Two properties of the Kronecker product (defined in (4.18)) are relevant to our discussion.

(1) AeB)=A'eB!, and (2) (A ® B)(

Step 1: Polyphase matrix E(w) of the analysis bank.

Let gq{w) be a |N| x 1 vector g(w) = (Qko (W) Qi (w) ... Qk'm_l(“’))T and let h(w) be a
IM] x 1 vector h(w) = (Ho(w) Hi(w) ... H[Ml_l(w))T, where H;(w) is as given in (4.9). In
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view of the discussion in Sec. 4.5, we have

h(w) = Gq(w),
I Jy o J 0 0 J 0
where G = | 7% °° , J= bot1 ,
1] 1) I(/\1——b)/\o J(/\l—b) o J 0 Jng—by—1

where the values of b and by are as given in Sec. 4.5. We will first derive the matrix representation
of q(w) and therefore the matrix representation of h(w). From the expression of h(w) we can obtain
the polyphase matrix E{w) of the analysis bank.

Using the polyphase representation of the prototype P(w) in (4.14), we have

Ty Ao—1 2A1—1 _j2nk’ N~1n; ; T —iwT )
ka0+,\0m1 (w+27rN l) = Zio:ﬂ Zi]:() e] ma+igmy ig+Agiy Eio+/\0i1(N w)e Jw n’O"}"\Otl’

mg=0,1,...,/\0—1, my :0,1,...,2)\1——-1.

By the definition of Ky, 4 xgm, and ng,. i, given in (4.6) and (4.15), the term /2™ mo+romi N~ Rig 4204y

reduces to W moto W;;l""il, where W) = e™727/A_ Then
q(w + 27N"T1) = (W;\1 ® W;O) diag(Ey(NTw), . .. ,E;N'-l(NTw))eUA(w),

where diag(Ey(NTw),..., Ejnj-1(N"w)) is a |N| x |N| diagonal matrix with the ith diagonal en-
try Ei(NTw). The matrices Wy, and Wy, are respectively A\g X Ag and 2)\; x 2X\; DFT ma-
trices. The vector eya(w) is the 2D delay chain vector with respect to M (UA), eya(w) =
(e—ano e~wini e—“’Tn‘Ni-l)T, where n; is as given in (4.15). Since n; ) = n; +U(0 Ap)7,
for i =0,1,..., M| - 1, [eua(@)ixpm) = e~ U0 M) [eya (w)];. Let the 2D delay chain with

respect to UAwn be
T T T T
con(@) = (¢ o )
T iwTu© AT T T
then eya(w) = (eUAM(‘*’) e—Jw U0 Ay) eUAM(w)) . Then we have

Eo(M7Tw
h(w +27N-T) = G (W], oW oMW o euAy (W + 27N"TL),
2A1 Ao
E,(MTw)

« g , (4.20)
E(MT (w+2rN-T1))

where Go, Eg(w) and E(w) are |M]| x |M]| diagonal matrices with

[Golis = /271" N""n;
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[Eo(w))i = Ei(LTw), i=0,1,...,|M| - 1.

[E1(w)]is = e Vi OD By, (LTw),

The matrix E{(w) as indicated in (4.20) is the polyphase matrix of the analysis bank. The 2D CMFB
is paraunitary if and only if E(w) is paraunitary. For simplicity, we will prove the paraunitariness
of E(w + 27L~T1), ie., EN(w + 27rL THE(w + 27L77T1) = Iy

Step 2: Simplification of the product Ef (w + 27L~T)E(w + 27L~T1).

Ef(w + 2rL~T)E(w + 27L~T1)

Eo(w)
= GH(El(w) El(w) (Wa, ® Wy,)GTG(W], W) ) Go.
h iy - \E1(w)
1
By the definition of G, we can verify that the product GT G is
J: 0
GTG=In+ | " 2 J.
0 Jyn -
It can be shown that the DFT matrix W has the following property
J 0 i 0
Wil * Wi = rs,
0 J_. 0 Jxa
where T'y is a A x A diagonal matrices with [['x]g = €/2™/* k =0,1,..., A — 1. Using this relation
and the second property of Kronecker product, we have
1 0 1 0 b 5
G =Ijm + ® (o, ® 1")\‘30).
Jax, -1 0 Jy—

It follows that

Et(w + 2rL-T)E(w + 27L~71) = E}(w)Eo(w) + B} (w)E; (w) + GG (w)Go
~ 1 0 1 0 Eq(w)
where G(w) = (El(w) Ef b bo 0
ere (w) ( o(w) 1(w)) { (O J2/\1—1) ® (0 J,\g—l) } (I‘z,\1 ®F)\o) (El(w)

In the next step, G(w) will be shown to be equal to the IM] x |M/| zero matrix. Since both Eg(w)
and E;(w) are both diagonal, E(w + 2rL~T1) is paraunitary if and only if [Eg(w)};; and [Eq(w)]s
are power complementary. Or equivalently, (E;(w), Eitxon, (w)) is a power complementary pair in

2D sense.
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Step 3: Proofof@(w) =0.

As mentioned in Sec. 4.5, by is odd. So
[I‘gi\]k+/\1,k+)\1 = —[ng\]kky for k = 07 17 e 7)\1 -1

and hence

T35, © T letaors kirons = —[To5, T2 Lk, for k= 0,1,..., 20X — 1.

r o
Iy, I = :
2 ® F/\o (0 -F)
Eo(w) Eo(w)
b bo 0 -
( 2 P)\D) (El(w)) (—E1(w)) '

1 0 A B 1 0 0 0
Consider the partition = , then A = ,and B = .
0 Joyn, 1 B A 0 0 0 Jy-1

Let

We observe that

As a result,
G(w)rt
= E{w)(A 8 DEy(w) — E[(w)(A 8 J)E: () + Ef (w)(B © J)Eo(w) — B} (w)(B 9 J)E, (w),
Gi(w) Ga(w)
where

~ 1 0
J = .
(0 J)\O_l)

By the definition of A and Jo, we can verify that Gl(w) = 0 if

Ej(w)Eo(w) = E3 5, (w)Expa, (w),
E;o (w)E/\o—io (“’) = EZO—{-AO,\l (w)E/\o—i0+/\0/\1 (w)a 0 <o < Ao (4'21)

Similarly, Go(w) = 0 if

L Ty—1 T . . .
& VT ODTES e @) Ear—inae (@) = B 4, (@) Eor,—iy)re (@), 0 < i1 < A,
o Tv—1 T «
e’ Voo io+(i1+A1) Ao (w)E/\O‘iO+()\1“il)/\D (w> = Eio+i1)\0 (w)E/\O“iO+(2/\1'i1)/\0 (w)7

0<ip <Ag,0<iy < Ap. (4.22)

Eq. (4.21) and (4.22) can be verified by using the the relation of the polyphase components in (4.17).
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Appendix B. Decomposition and Complexity of the Matrix C

1. Decomposition of the matrix C. Substitute in
kko+/\ak1 - VT(kO kl)T: a'nd Dpg+Aony = VT(nO nl)Tp

we have

2 e
[Clko+rok,no+r0n1 = COS('):;(’% ~ bo/2)no + :\:(kl +0.5)n1),
or [C]k0+/\ok1,no+/\on1 = [Cl]kﬂu [CO}kono - [Sl}hm [So]konm
Then we have C=C; ® Cp — S1 ® Sy.

2. The complexity of the matrices Cy,Sp,C; and S;. The DCT and DST matrices are
categorized into four types in [77]. The matrix C; has the first A\; rows of a 2\; x 2); type
1I DCT. In some implementation methods, C; requires only half the computation of a 2,
point DCT. Likewise, S; is the upper half of a 2\; x 2X; type 1I DST and needs half the
complexity of a 2A; point DST. When b; is odd, Cy is a rearrangement of a type II DCT
matrix. Computation of Cy is equivalent to that of a Ao point DCT. Similarly, Sp can be
obtained by rearranging a type II DST matrix and the computation of Sy is equivalent to that
of a Ao point DST. However, when by is even, Cy and Sy become respectively rearrangement
of type 1 DCT and type I DST. Complexity of Cy and S¢ are comparable to that of a A\g + 1
point type I DCT and Ay — 1 point type I DST.

3. The complexity of the matrix C. The matrix C has two parts, namely C; ® Co and
S1® 8. We will look into details of computing C; ® Co. The implementation of S; ® Sg is

similar. Suppose the input of C is x, a |N| x 1 vector. Let
y = (C1 ® Cy) x,
a |M| x 1 vector. By the property of Kronecker product, we can also write C; ® Cq as
(C1 ®1Iy,) (Tan, ® Co).

The vector y can be obtained in two steps: (i) computation of Iy, ® Cy and (ii) computation

of Cy ® I,,. We analyze these two operations as follows.

T
(i) Partition x into 2A; vectors, each of size Ag, i.e., x = (xg xI .. X:ZT,\l-l) . Let

w = (Ioy, ® Cp)x
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be the output of the first step, then w = ((COXO)T (Coxy)T

T
(Coxz,\l—l)T) :
The computation of w requires 2X;C(\g)-

(ii) It can be verified that after some row exchanges and column exchanges C; ® Iy, assumes

the form Iy, ®C;. Namely, C;®I,, = P1(I,, C;)P2, where P; and P, are permutation

matrices. Partition Pow into Ag vectors, Pow = <wg’ Wf’

T
r . Each of
w
/\0—1)
w;s is a 2A; x 1 vector. Then,

Yy = Pl ((01W0)T (Clwl)T . (Clw,\o_l)T)T

As P; and P, are permutation matrices and require no computation, operation C; ® I,
can be completed with complexity %‘l(] (2A1).

So the computation needed for C; ® Co is 21 C(Ao) + 22 C(2);). The matrix S; ® S¢ has the
same complexity. This verifies that complexity of C is 4\ C(Ag) + A C(2A\1).



Chapter 5

Four-Parallelogram Filter Banks

5.1 Introduction

In Chapter 4, we studied two-dimensional two-parallelogram filter banks. This is the class of systems
in which the supports (passbands) of the analysis filters consist of two parallelograms, each a shifted
version of a parallelogram prototype. Fig. 5.1 (a) and (b) show respectively a parallelogram prototype
and the support (passband) of a typical analysis filter in a two parallelogram filter bank. The analysis
filters have real coefficients; the supports are symmetric with respect to the origin. Consider the
two-dimensional (2D) filter bank with decimation matrix M in Fig. 1.1. It is explained in [53] that
for successful design of the analysis and synthesis filters, it is necessary that the configuration of the
filter bank be AFS(M) and permissible. More specific description of these two properties are given
below.

Recall that a filter H(w) is called AliasFree Supported with respect to M (AFS(M)) if the support
of H(w) does not overlap under modulo 2rM~7. When H(w) is an ideal filter, the output of H (w)

Ao

(:\( SPD(m:T) o)
(O

Fig. 5.1. Two-parallelogram filter bank: (a) Parallelogram prototype and (b) typical
support of an analysis filter.
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Fig. 5.2. (a) Image of the kth analysis filter is edge adjacent to the kth synthesis
filter; (b) image of the kth analysis filter is vertex adjacent to the kth
synthesis filter.

would allow aliasfree M-fold decimation. When all the analysis filters are AFS(M), the configura-
tion is referred to as AFS(M). If a filter bank has a AFS(M) configuration then, in ideal case no
aliasing is created in the subbands and the filter bank has perfect reconstruction. In practice, the
non-ideal roll-off of the filter causes aliasing in the subband. When the analysis filters are decimated
and then expanded by M, each has [M| — 1 images, where the notation |[M| denotes the absolute
value of the determinant of M. All the images are attenuated to the stopband level of the synthesis
filters except those images that are adjacent to the passband of the synthesis filters. These adjacent
images result in different types of major aliasing depending on the type of adjacency involved. For
example, in Fig. 5.2(a) one image of the analysis filter Hy(w) is edge adjacent to the synthesis filter
Fi(w) and results in edge aliasing and similarly the image in Fig. 5.2(b) results in vertex aliasing. A
perfect reconstruction filter bank enjoys complete alias cancelation, so major aliasing of one subband
is canceled largely by major aliasing of other subbands. However, when the configurations are not
constructed properly, it is possible that some edge aliasing can not be canceled if the analysis and
synthesis filters have good frequency selectivity. Such configurations are called edge nonpermissible.
Similarly, if some vertex aliasing in a configuration are uncancelable when the filters have good
frequency selectivity, the configuration is called vertex nonpermissible. For the individual filters to
have good frequency selectivity, it is necessary that the configuration have permissibility [11, 31],
which includes edge and vertex permissibility [53]. In this case, the importance of edge permissibility
is much greater than vertex permissibility. Notice that permissibility is determined jointly by all the
analysis filters. To have a permissible configuration, the support of one analysis filter will affect the
choice of other filters.

Although the two-parallelogram filter banks can not possess both edge and vertex permissibility
in general, the two-parallelogram filter banks can have edge permissibility. Edge permissible two-
parallelogram cosine modulated filter banks are constructed and designed in [47, 53]. However,
lack of permissibility leads to limitation in the stopband attenuation of the individual filters in the

two-parallelogram cosine modulated filter banks.

Four-Parallelogram Filter Banks
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Fig. 5.3. Typical support of an analysis filter in a Four-P filter bank.

K(w,) —D'VAQ -
1 Go(wy) "»VAl {
K (o) =y Az

-
2 0
Kj(w,) -.’VAQ . Ay = (O 1}
Gy () =Y Ay (1 o)
Az = J
K(®,) *’VAQ L 0 2
~- level 1 e -t level 2 o

Fig. 5.4. A four-channel tree structured filter bank obtained by cascading two 1D
two-channel filter banks.

In this chapter, we study four parallelogram filter banks [48], the class of filter banks in which
the supports of the analysis filters consist of four parallelograms as shown in Fig. 5.3. The simplest
way to design four-parallelogram (Four-P) filter banks is by using separable filter banks [109]. A
separable 2D filter bank can be obtained by cascading two one-dimensional (1D) filter banks in a
tree structure. For example, the tree structured filter bank in Fig. 5.4 is obtained by using two
1D two-channel filter banks. The resulting 2D analysis and synthesis filters are products of two 1D
filters and are separable; the support of each analysis filter is the union of four rectangles (Fig. 5.5).
The 2D analysis and synthesis filters can have good frequency selectivity if the 1D filters have good
frequency selectivity. Therefore the separable 2D filter banks are both edge and vertex permissible.

In this chapter we will pursue edge and vertex permissibility for Four-P filter banks.
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Fig. 5.5. Separable filter bank. Typical support of an analysis filter.

To obtain a support configuration for Four-P filter bank, we first construct a parallelogram pro-
totype. Then we shift the parallelogram prototype properly and combine four shifted parallelograms
to obtain the support of each analysis filter. The synthesis filters have the same supports as the
corresponding analysis filters. As the support of each analysis filter consists of four shifted versions
of the parallelogram prototype, the area of the parallelogram prototype is one fourth the area of the
support of an analysis filter. In a |M|-channel filter bank, the area of an analysis filter support is
usually the same as SPD(xM~T), where SPD(-) is defined in Chapter 2. Let the parallelogram
prototype be SPD(7IN~T), where N = ML, for some integer matrix L with |L| = 4. Due to the in-
teger matrix constraint on L, the Four-P filter banks considered in this chapter are only a subclass of
Four-P filter banks. Since |N| = 4|M]|, the area of SPD(rN~T) is one fourth that of SPD(zM~T).
For a given decimation matrix M, the choice of L will determine the parallelogram prototype and
indirectly affect the supports of the analysis filters. Then we combine four shifted versions of the
parallelogram prototype to obtain the supports of the analysis filters.

For Four-P filter banks, there are a variety of possible configurations. For example, consider the
lowpass analysis filter Ho(w). Fig. 5.6 (a) and (b) show two of the possible supports for Ho(w).
The support of Hp(w) is different when the four parallelograms in the support of Hy(w) are glued
in different manners. Notice that in the two-parallelogram filter banks, the analysis filters have only
two passbands; when the filters have real coefficients, the location of one passband will determine
the location of the other passband. This is not true in the Four-P filter bank case as we can see
from Fig. 5.6. The preceding construction indicates that for a given decimation matrix M, the
support configuration is determined by the following two steps. Step one, choose L and hence the
parallelogram prototype. Step two, shift the parallelogram prototype properly and combine four
shifted copies to obtain the support for each analysis filter. We will construct various types of

configurations for the Four-P filter banks and discuss permissibility of these configurations.
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Ao e

Fig. 5.6. Two of the possible supports for the Oth analysis filter.

It turns out that permissibility is only possible for a special class of Four-P filter banks, the
simplistic Four-P filter banks. We will see that in permissible simplistic Four-P filter banks, the
decimation matrix M is necessarily of the form QA, where Q is an integer matrix with |Q] =1 or
2, and A is a diagonal integer matrix. This gives rise to the implementation of simplistic Four-P
filter banks of low design cost. In particular, when |Q| = 1 simplistic Four-P filter banks can be
implemented by using a separable filter bank with decimation matrix A followed by a so called
unimodular transformation [97]. When |Q| = 2, the desired configuration can be achieved by
concatenating a separable 2D filter banks with a 2D two-channel filter bank in the form of a tree.
In Chapter 4, we discuss cosine modulated implementation of two-parallelogram filter banks. For
Four-P filter banks, we will not do it because attractive implementation can be obtained with little

loss of generality as we will show.

Chapter Outline

All notations and conventions are precisely as in Chapter 4. The sections are organized as follows.
In Sec. 5.2, we will consider a special class of Four-P filter banks, the simplistic Four-P filter banks.
For a given decimation matrix M, we say a Four-P filter bank is simplistic if the support of the
lowpass analysis filter is the parallelogram SPD(7#M~7). The other filters in the simplistic filter
banks will be constructed such that the configuration of the filter bank is permissible. We will see
that, in this case the decimation matrix needs to be properly constrained. In Sec. 5.3, we make
connection between permissible simplistic Four-P filter banks to other existing filter banks. Via this
connection, permissible simplistic Four-P filter banks can be achieved by cascading filter banks of
low design cost. Other types of Four-P filter banks (other than the simplistic Four-P filter banks)

are studied in Sec. 5.4.
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Ao ()

parallelogram

prototype

support of the
lowpass
analysis filter

(—r,—m)

Fig. 5.7. Simplistic four-parallelogram filter bank. The parallelogram prototype
SPD(rN~T) and the support of the lowpass analysis filter SPD(7M~T).

5.2 The Simplistic Four-Parallelogram Filter Banks

Consider the filter bank with decimation matrix M in Fig. 1.1. In this section, we consider simplistic
Four-P filter banks, a special type of Four-P filter banks that are completely characterized by the
support of the lowpass analysis filter Hg(w). A Four-P filter bank with decimation matrix M is
called simplistic if the support of Hy(w) is SPD(wM~T). Recall that in a separable filter bank
with diagonal decimation matrix A, the support of the lowpass analysis filter is SPD(ﬂ'A“T). So,
the lowpass analysis filter in simplistic filter banks is the natural nonseparable generalization of the
lowpass analysis filter in a separable filter bank.

We can verify that in simplistic filter banks, the matrix L is

The matrix N that determines the parallelogram prototype SPD(7IN~7) is N = 2M. For example,

8 -5 8 -5
let M = , then N = 2
-4 5 -4 5
The parallelogram prototype SPD(rIN~T) and the support of the lowpass analysis filter SPD(xM~T)

are as shown in Fig. 5.7.

Frequency Normalization. All the frequency planes in previous figures are shown with wg and w;

as two axes, e.g., Fig. 5.7. For the convenience of illustration, we will use a new set of axes. On the
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-
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Fig. 5.8. The simplistic four-parallelogram filter bank. The support of the lowpass analysis filter.

new frequency plane, the parallelogram prototype would appear the same for any chosen N. More

specifically, we will normalize the frequency plane by 2rN~T; we define

v = o = ——l—NT “o
v 2 wi

and use vy and v; as the two axes. On the normalized frequency plane, the parallelogram prototype
will always appear as the square SPD(0.51) (Fig. 5.8). In the simplistic filter bank case, the support
of Ho(w) becomes SPD(I) as shown in Fig. 5.8. In Fig. 5.8 the notation Sy, x,) denotes the square

ko +0.5
ki +0.5

SPD(0.5I) +

where the vector subscript of S should be interpreted modulo N7. The support of Hy(w) is the
union of the four squares

80,0, S(~1,0sS(0,—1), and S(_1 _1).

Notice that to have real-coefficient filters, whenever S, &,) belongs to a certain analysis filter,
S(—ko—1,—k;—1) must be part of the same analysis filter. We will call (S(kok1)» S(—ko—1,—k1~1)) @

conjugate pair. The support of each analysis filter consists of two conjugate pairs.

Necessary Condition for Permissibility. So far, only the support of the lowpass analysis filter is
determined. As permissibility is jointly determined by all the analysis filters, the supports of the

analysis filters in other subbands have to be constrained properly. We would like to construct the
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other filters such that the configuration has edge and vertex permissibility at the same time. With

this premise, we can derive the following necessary condition.

Proposition 5.1. 1f a simplistic Four-P filter bank is permissible, the supports of the other analysis

filters H,, (w) must contain

the conjugate pair (S(kg ky)sS(—ko—1,—k:—1)) » and the conjugate pair (S(=ko—1,k1) S(ko,—k1—1)) -
(5.1)

Corollary 5.1. The condition in Proposition 5.1 in terms implies decimation matrix M is restricted

to the following form.
M = QA, (5.2)

where Q is an integer matrix with |Q| =1 or 2 and A is a diagonal integer matrix. [

Proposition 5.1 and Corollary 5.1 will be shown in Sec. 5.2.1 and 5.2.2 respectively.

5.2.1 Edge and Vertex Permissible Simplistic Four-Parallelogram Filter
Banks

Recall that the M-fold decimated and expanded version of Hy(w) contains |M| copies, which are
shifted copies of Hg{w) by
27M~Tm, m ¢ ¥(MT).

With axes normalization, the images of passband Sy are at
Sktom, mENMT), m#0. (5.3)

Fig. 5.9 illustrates the locations of the images of Sk. The images of Sk are neither edge adjacent nor
vertex adjacent to Sk. It follows from (5.3) that a particular Sy is occupied by an image of Sy if
%(n — k) is an integer vector. Furthermore, the aliasing resulting from the image at S, contributes
to the aliasing transfer function Ay, i (w) (see Chapter 2 for the definition of aliasing transfer
functions). In the equations to follow, the vector subscript n of S, should be interpreted modulo
N7 while the vector subscript k of Ay (w) should be interpreted modulo M7,

From Fig. 5.9, we see that three images of Sy will be at S(_3 o), S(0,—2) and S(_y ) as shown
in Fig. 5.10. The images at S(_2,), S(o,—2) are edge adjacent to Ho(w) and result in edge aliasing

while the image at S(_, _s) is vertex adjacent to Ho(w) and results in vertex aliasing. We discuss
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Fig. 5.9. The location of the images of S.

1
Pl D(D)
S1,0) | S00)
L
0 1 Vo

St-2-1) | Ste1-1) | St-1)

Se1,-2)

Fig. 5.10. The simplistic four-parallelogram filter bank. The image of S(g,g)-

respectively the cancelation of aliasing on account of the three images mentioned above. We will
argue that due to the presence of the images at S(_» o) and S, _2), the supports of two other analysis

filters will become determined.

1. The image at S(_50): From Fig. 5.9, we see that this image is edge adjacent to S(_; o). The
aliasing term contributes to the aliasing transfer function A(_; g)(w). Let the support of the
analysis filter H;(w) contain S(_jqy. Then, this is the only subband that can provide an
aliasing term to cancel the aliasing error in the first subband. To be able to contribute to
the aliasing transfer function A(_; g)(w), the support of H;(w) must contain S(; o). As the
analysis filters have real coefficients, the support of H;(w) must contain the conjugate pairs
(81,0, S(~2,-1)) and (S(—20),5@,-1)) (Fig. 5.8). Summarizing, the support of H;(w) is the
union of

S(1,0)sS(=2,~1)> S(=2,0), and S1 1y,

as shown in Fig. 5.11.
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1
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Sea-1) | St-1-1) | So-1)

;&—2,—2)’ Se19) | S0

Fig. 5.11. The second and third analysis filters in the simplistic four-parallelogram filter bank.

2. The image at Sy, —»): Similarly to the previous case, this image is edge adjacent to S(0,~1) and
creates an aliasing term that contributes to the aliasing transfer function Aq,—1)(w). Let the
support of the analysis filter Ha(w) contain S(p _2). To be able to cancel the edge aliasing
error in the Oth subband, the support of Hs(w) must also contain S(0,1)- As the analysis filters

are real-coefficient, the support of Hs(w) is the union of
S0,1),S(~1,~2),S(0,~2), and S(_1 1),

as shown in Fig. 5.11.

3. The image at S(_» _»): This image is vertex adjacent to S(_; _1y. This will result in aliasing
error that contributes to A_; _;y(w). Similarly, it is necessary that S(—2,-2) and S(_; 1)
are parts of the same analysis filter. As the analysis filters are real-coefficient, S(—2,~2) and

S(-1,—1) always belong to the same analysis filter.

We can verify that the cancelation of aliasing caused by the images of S _;), S(=1,0yand S(_; _y)
require the same choice of support for the second and third subbands. Repeating the same argument,
we conclude that for the purpose of alias cancelation or support permissibility the analysis filters
are necessarily of the form in (5.1).

In a typical 1D M-channel filter bank, each analysis filter has total bandwidth 27x/M. In 2D
case, total bandwidth should be interpreted as total area of spectral occupancy. When the filters
are not constructed properly, some filters would have less area than the others. The following result

shows that this situation can be avoided.

Proposition 5.2. When the supports of the analysis filters are chosen according to (5.1), all analysis filters
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have the same area of spectral occupancy. [

Proof. We only need to show that the four squares are distinct under modulo N7. For this we
will show that Sig, r,) is not the same as the other three terms in (5.1). Suppose that S(ko, k) and

S(—ko—1,k;) are identical for some ko and k;. Then

k —ky—1
1= mod N7,
Ky ky

T T
which implies (2/60 +1 0) = 0 mod N7, ie, <2k0 +1 0) is on the lattice of NT. But

T
N7 = 2M7 and (2k0 +1 0) can not be a vector of LAT(N7). So S(,.,) and S(—ko—1,k) are
distinct Vko, k1. In a similar manner, we can show that S, ,) and S, — k1—1) are distinct and also

that Sk, ,x,) and S(_gy—1,~k,—1) are distinct Vko, k;. ]

5.2.2 Proof of Corollary 5.1

We first show that support permissibility will imply the matrix K given by

K=M"7T (1 01) M7 (5.4)

is an integer matrix, which in turns will give us (5.2).

By (5.1), the analysis filter that contains the pair (S, &,), S(—ko—1,~k1—1)) should also contain

(S(—ko—l,k1)7 S(koy—'kr‘l))'

k k ko — K
Suppose 1 =] mod N7, then 7% ) =0 mod NT. (5.5)
k1 ki ki — ki

The conjugate pair (S(kg,£,)» S(~ko—1,—k;~1)) should be the same as the pair (S(k(’),k’l)y Sk —1,—k,=1))-
It follows that (S(—k—1,k1), S(ko,—k:1—1)) i the same as the pair (5(-k{)—1,k;)7 Sty ~k;—1))- With
N = 2M, we can verify that [~ko — 1,k:1]7 # [k}, —k} — 1]7 mod N7, for all ks and k;. So we have

S(—-ko——l,kl) = S(-k’o—l,k’l) and hence

"] =0 mod NT. (5.6)
by — k)

Combining (5.5) and (5.6), we have AgNTd = 0 mod N7, Vd € 22, where Ag is as defined in
T T
(5.4) and Z? is the set of all 2 x 1 integer vectors. Let dy = (1 0) and d; = (0 1) , then
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AoNT (do d1) =NT (ko kl), for some integer vectors kg and k;. If we define K = (ko k1),
then K is a 2 x 2 integer matrix. Since <d0 dl) is the 2 x 2 identity matrix and N = 2M, we
have AgM?T = MTK and we conclude that K = M~TAyMY7 is an integer matrix. In fact, as
IM~TA,MT| = 1, K is unimodular.

Let the decimation matrix M have Smith form M = U,A,V, where [A,]g0 = 5 and [A;]11 = af

(see Chapter 2 for the definition of the Smith form of integer matrices).

Ugo Vot Upo¥11 + V10Vo1 209111
Let VI =

2
—=UooV10 —VooV11 — V10Vo1
24

, then K = | V7|
Vio Y11

The matrix K is unimodular if a divides 2vgovie.

(1) « is odd: Suppose a = ajag, then a; divides vgg and as divides v1p. So

voo/a1  vio/oa a; O
M=U, Jo) s
QaVp1 QU1 0
Q A

where the matrix Q has |Q| = 1.

(ii) a is even: Suppose a = 2a;ag, a; divides vgp and ay divides vip. Then

M=U, 10 voo/a1  viofan 3 a; O 7
0 2 Qo1 Q1U11 0 a9
Q A

where Q has |Q| = 2. Notice that in the special case of two-channel 2D filter bank, o = 2 and

8 =1, the matrix K is always unimodular and (5.6) is satisfied. n

Example 5.1. Decimation matrix M not satisfying (5.2). This example illustrates that some edge

aliasing errors will remain uncanceled when (5.1) is not satisfied. Consider the decimation matrix

1 1
-1 2

M =

which is not of the form in (5.2) and hence the analysis filters can not be of the form in (5.1). The

supports of the analysis filters consist of four parallelograms, each a shifted version of SPD(rN—7),
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Fig. 5.12. Example 5.1. (a) Support of the Oth analysis filter; (b) pertaining to the
illustration of alias cancelation.

where
1 1

-1 2

N=2

The support of the lowpass analysis filter Hy(w) is as shown in Fig. 5.12(a). With axis normalization
the support of Hy(w) becomes SPD(I) as shown in Fig. 5.12(b). We have labeled all the cells in
Fig. 5.12(b) by @ and @}, with (Qk, Q},) denoting a conjugate pair. As [N| = 12, there are total 6
conjugate pairs (Q¢,@}), for k=0,1,...,5.

The lowpass filter Hy(w) contains the pair (Qo, Q) and the pair(Q:, Q). The two images of
Qo are at Q3 and Qj. The image at (5 is edge adjacent to Q). To cancel the aliasing from this
image, it is necessary that the analysis filter contain both Q% and Q.. Let this analysis filter be
H;(w), then H;(w) consists of the pairs (@2, @5) and the pair (@3, Q%). In this case, the two pairs
left for the last analysis filter Hy(w) are (Q4, Q}) and (Qs, Q%). However, the image of Qq at @/,
is edge adjacent to 1 and results in edge based aliasing error. Cancelation of this aliasing requires
that @} and Q5 belong to the same analysis filter, i.e. (Q2, @%) and (Q4, Q) belong to the same
analysis filter. As the support of Hy(w) consists of (Q4, Q) and (Qs, QL), this aliasing cannot be

canceled.

5.3 Design of the Simplistic Four-Parallelogram Filter Banks

The results presented in the previous section show that for permissibility of simplistic Four-P filter

banks, the decimation matrix M has the special form M = QA, where Q is an integer matrix with
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Fig. 5.13. A cascade of a unimodular decimator Q and a unimodular expander Q.

|Q| = 1or 2 and A is a diagonal integer matrix. As a result, the support described in (5.1) can
always be obtained by cascading systems of low design cost. In particular, when the matrix Q has
|Q| = 1, the support configurations can be obtained by designing two 1D perfect reconstruction
filter banks and performing a unimodular transformation [97]. When the matrix Q has |Q| = 2,
the desired configuration can be achieved by concatenating a separable 2D filter banks with a 2D
two-channel filter bank in the form of a tree structure. We now explain both of these in greater

detail.

Casel,|Q| =1

Consider a 2D |M|-channel perfect reconstruction filter bank obtained by cascading two 1D filter
banks using tree structure. The first level and second level of the tree are 1D filter banks with [A]go
channels and [A];;. The overall system, having decimation matrix A, will be denoted by FBa.
Let the analysis and synthesis filters of 7B be defined as G, (w) and T, (w) respectively. Then
the support of Gy, (w) is the union of four rectangles of SPD(r$A™"). Recall that a unimodular
decimator or a unimodular expander only permutes the input and the cascade of a unimodular
decimator Q followed by a unimodular expander Q is an identity system Fig. 5.13. Now if we insert
a unimodular decimator Q before FBa and insert a unimodular expander Q after FBa, the new
system (Fig. 5.14(a)) remains a perfect reconstruction system. This is equivalent to inserting a
decimator Q before each analysis filter and an expander Q after each synthesis filter (Fig. 5.14(b)).
We can redraw Fig. 5.14(b) as Fig. 5.14(c). Denote the new filter bank with decimation matrix
M = QA by FBw, which will be called the unimodular transformation of B by Q. The analysis
and synthesis filters of FBy are Gy, (QTw) and T3 (QTw). Observe that the support of Gy, (QTw)
is the union of four shifted copies of SPD(r3Q~TA™"). One can verify that the filter bank FBum

with analysis filters H,,(w) and synthesis filters F,,, (w) given by
Hp(w) = Gm(QTw),  Fu(w) = Tn(QTw), (5.7)

is a simplistic Four-P filter bank. This result is identical to those found earlier in [97].

Example 5.2. Simplistic Four-P filter banks. Consider a 20-channel filter bank with decimation
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Fig. 5.14. Pertaining to the illustration of the unimodular transformation.

matrix

which can be factorized as

The matrix M has the form in case 1 of (5.1). Design a separable filter bank by concatenating a
1D four-channmel filter bank and a 1D five-channel filter bank. Using the substitution in (5.7), the
new nonseparable filter bank has the desired configuration as described in (5.1). The parallelogram
prototype is as shown in Fig. 5.7. Fig. 5.15(a) shows the support configuration of the the analysis

filters. Fig. 5.15(b) shows the magnitude response of the lowpass analysis filter.

Case2, |Q| =2

Consider a tree structured filter bank with two levels in Fig. 5.16. The first level of the tree is
a two-channel filter bank with decimation matrix Q. The lowpass analysis filter of the two-channel
system has support SPD(nQ~T). For the second level of the tree, we use a separable |A]-channel
filter bank (FBa) that is obtained by cascading two 1D filter banks of [A]gy channels and [A]11
channels in the form of a tree. Then the overall filter bank has the desired configuration of Four-P

filter banks.

Example5.3. Simplistic Four-P filter banks. Consider a 8-channel Four-P filter bank with decimation

matrix
1 1 2 0
M =
-1 1 0 2
N,
Q A

The matrix M has the form in case 2 of (5.1). We can obtain a Four-P filter bank by using a tree
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0.5

(b) 0"

Fig. 5.15. Example 5.2. Simplistic Four-P filter bank: (a) Spectral support of the
analysis filters and (b) the magnitude response of the lowpass analysis filter
with frequency normalized by 2.

Gylw)

YQ

FBa

Gz (w)

Bt

Y Q

B

FBx

=

Fig. 5.16. A two-level tree structured filter bank. The first level is a two-dimensional
two-channel filter bank with decimation matrix Q and the second level is
a two-dimensional separable filter bank with decimation matrix A.
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Fig. 5.17. Example 5.3. The simplistic four-parallelogram filter bank: (a) The two-
channel diamond filter bank; (b) the supports of the analysis filters in a four-
channel separable filter bank (with the support of the kth filter denoted by
k); (c) the supports of the eight analysis filters in the overall system (with
the support of the kth analysis filter denoted by k).

structure filter bank with two levels (Fig. 5.16). For the first level of the tree, we use the diamond

filter bank [102, 2]. The diamond filter bank is a two-channel system with decimation matrix

1 1
-1 1

The supports of the analysis filters in the diamond filter bank are as shown in Fig. 5.17(a). For the
second level, we use a separable system with decimation matrix A = 2I, (Fig. 5.17(b)), which can
be obtained as a tree structure of two 1D two-channel filter banks. Then the resulting analysis filters
of the Four-P filter banks have supports as shown Fig. 5.17(c). Each analysis filter H,, (w) consists

of Four-Ps. We can verify that the four squares in each analysis filter are located as in (5.1).

Remark on Cosine Modulated Implementation. Cosine modulated filter banks enjoy the advantages
of low design cost and low complexity. This motivates us to consider cosine modulated implementa-
tion for Four-P filters. In the first case |Q| = 1, if the two 1D filter banks are cosine modulated, then
the resulting 2D nonseparable filter bank will also be cosine modulated. In the second case |Q| = 2,
even if the two systems are cosine modulated, the tree structured system is not cosine modulated in

general. However, in both cases the overall systems have the desired configurations.
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Fig. 5.18. Possible lattices of integer matrix L?, where L has |L| = 4.

5.4 Other Possible Four-Parallelogram Filter Banks

In the simplistic Four-P filter banks, we have constrained L to be 2I, and the support of lowpass
filter Ho(w) to be a parallelogram of twice the size of the prototype parallelogram. However, for the
more general Four-P filter banks, the only requirement is that each filter contains four parallelograms
of identical shapes. The matrix L can be any integer matrix with |L| = 4. As L is an integer matrix
and |L| = 4, there are 7 possible LAT(LT) as shown in Fig. 5.18(a)-(g). Also the support of the
lowpass analysis filter is not necessarily a parallelogram as in simplistic Four-P filter banks. Several
possible supports of the first analysis filter are given in Fig. 5.19. In all cases of Fig. 5.19, the support
of Ho(w) consists of four connected parallelograms. In fact, any one of the four parallelograms is
edge adjacent or vertex adjacent to another parallelogram. One can verify that Fig. 5.19 is also a
complete list of connected supports for Ho(w) that has AFS(M) property. This follows from the
fact that L is an integer matrix.

Suppose we choose L to be an integer matrix and choose the support of Ho(w) from one of the
choices in Fig. 5.19. In this case, it can be verified that the filter bank can not possess both edge
and vertex permissibility, except for the class of simplistic Four-P filter banks in Sec. 5.2 and some
special cases. We have not been able to analyze these special cases in a unified manner. However,
exhaustive case study shows that in these special cases, the decimation matrix M is rather restricted

and the determinant of M can not be arbitrarily large. We will look at one such example.

Example 5.4. Permissible but not simplistic Four-P filter bank. Consider the filter bank in Fig. 1.1.

Let the decimation matrix be
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Fig. 5.19. Possible supports of the lowpass analysis filter.
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support of the Oth analysis filter

Fig. 5.20. Example 5.4. The support configuration of a permissible four-parallelogram
filter bank that is not simplistic.

As |M| = 4, the filter bank has 4 channels. If we choose

the lattice of LT is as shown in Fig. 5.18(b). In this case, the matrix N = 4I. We choose the
configuration for the four analysis filters as in Fig. 5.20. Observe that the support of Hp{w) is as in
Fig. 5.19(c). The four passbands of Hy(w) are labeled as Sk q, Sk.p, Sk, and Sg 4, for k =0,1,2,3.
When decimated and expanded by M, each passband has 3 images. These images result in edge and
vertex aliasing. However, we will show that these edge and vertex aliasing errors appear in pairs
and the configuration in Fig. 5.20 is edge and vertex permissible. Towards this end, we will verify
following. Whenever there is edge or vertex aliasing error induced by Sy, in a certain frequency
region, we can find a similar edge or vertex aliasing error in another subband.

When the Oth analysis filter is decimated and then expanded by M, the three images of Sp,
are at Sg , + LTk, for k € N(M7) and k # 0 mod M7. One can verify that the three images are
actually at S, S14, and Ss 4 as shown in Fig. 5.21(a). In what follows, we discuss the aliasing

errors induced by these three images.

(1) Image of So,q at Sz,.. This image is edge adjacent to Sp . and results in edge aliasing. As Sp,
and Sy . are separated by (0 —Q)T =LT (1 —1>T, this edge aliasing term contributes to
aliasing transfer function A(_; ;)(w). Observe that in the second subband, passband Sy , has
one image at Sy . (Fig. 5.21(b)), which is edge adjacent to Ss . and create edge aliasing similar

to that in the Oth subband.

(2) Image of So,, at S1,4. This image is edge adjacent to Spq (Fig. 5.21(a)) and results in edge
aliasing that contributes to A(; ¢y(w). In the first subband, passband S; , has one image at
So,q (Fig. 5.21(c)). This image is edge adjacent to S; 4 and a similar edge aliasing contributing

to Ay 0)(w) is created. On the other hand, the image of Sp , at S; ¢ is also vertex adjacent to
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Fig. 5.21. Example 5.4. (a) Images of Sy ,, (b) images of S 4, (c) images of S 4, (d)
images of S; ., and (e) images of Ss ,.
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So,s and results in vertex aliasing (Fig. 5.21(a)). But we see that one image of S . is at So

(Fig. 5.21(d)) and creates aliasing similar to the vertex aliasing in the 0th subband.

(3) Image of So . at Sz . This image is vertex adjacent to S (Fig. 5.21(a)) and results in vertex
aliasing that contributes to Ao 1)(w). We see that in the third subband, passband Ss, has
one image at Sp; (Fig. 5.21(e)). As this image is vertex adjacent to Sz, it results in vertex

aliasing similar to that in the Oth subband.

In a similar manner, we can analyze the edge and vertex aliasing caused by the other passbands
of Ho{w) and also the major aliasing in the other three subbands. One can show that in this example

edge and vertex aliasing always appear in pairs and the configuration in Fig. 5.20 is permissible.

Concluding Remarks

The construction procedure of the configurations for the Four-P filter banks suggests that the
configurations vary with the following two factors, (1) the choice of integer matrix L and (2) the
location of the four parallelograms in the support of each analysis filter. By changing these two
factors, we can obtain various types of configurations. We have investigated permissibility for all
those types of configuration in which the support of Hyp(w) is connected. In this case, the study
shows that if such Four-Ps filter banks can possess both edge permissibility and vertex permissibility,
then the decimation matrix M is not arbitrary. In particular, M is either of the form QA for some
integer matrix Q with |Q] = 1 or 2 and some diagonal matrix A (Eq. (5.2)) or M is limited to some
special cases (elaborated in Sec. 5.4). In the former event, Four-P filter banks can be obtained by
designing separable systems and (when |Q| = 2) 2D two-channel filter banks.

In our construction of the parallelogram prototype, we constrain L to be an integer matrix. It is
possible that a non integer matrix L will provide more flexibility in the design of Four-P filter banks.

Research in this regard is still open.
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