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ABSTRACT

Power system reliability is a crucial component in the development of sustainable in-
frastructure. Because of the intricate interactions among power system components,
it is often difficult tomake general inferences on how the transmission network topol-
ogy impacts performance of the grid in different scenarios. This complexity poses
significant challenges for researches in the modeling, control, and management of
power systems.

In this work, we develop a theory that aims to address this challenge from both
the fast-timescale and steady state aspects of power grids. Our analysis builds
upon the transmission network Laplacian matrix, and reveals new properties of
this well-studied concept in spectral graph theory that are specifically tailored to
the power system context. A common theme of this work is the representation
of certain physical quantities in terms of graphical structures, which allows us
to establish algebraic results on power grid performance using purely topological
information. This view is particularly powerful and often leads to surprisingly simple
characterizations of complicated system behaviors. Depending on the timescale of
the underlying problem, our results can be roughly categorized into the study of
frequency regulation and the study of cascading failures.

Fast-timescale: Frequency Regulation. We first study how the transmission network
impacts power system robustness against disturbances in transient phase. Towards
this goal, we develop a framework based on the Laplacian spectrum that captures
the interplay among network topology, system inertia, and generator/load damping.
This framework shows that the impact of network topology in frequency regula-
tion can be quantified through the network Laplacian eigenvalues, and that such
eigenvalues fully determine the grid robustness against low frequency perturba-
tions. Moreover, we can explicitly decompose the frequency signal along scaled
Laplacian eigenvectors when damping-inertia ratios are uniform across the buses.
The insights revealed by this framework explain why load-side participation in fre-
quency regulation not only makes the system respond faster, but also helps lower
the system nadir after a disturbance, providing useful guidelines in the controller
design. We simulate an improved controller reverse engineered from our results on
the IEEE 39-bus New England interconnection system, and illustrate its robustness
against high frequency oscillations compared to both the conventional droop control
and a recent controller design.
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We then switch to a more combinatorial problem that seeks to characterize the
controllability and observability of the power system in frequency regulation if only
a subset of buses are equipped with controllers/sensors. Our results show that the
controllability/observability of the system depends on two orthogonal conditions:
(a) intrinsic structure of the system graph, and (b) algebraic coverage of buses
with controllers/sensors. Condition (a) encodes information on graph symmetry
and is shown to hold for almost all practical systems. Condition (b) captures how
buses interact with each other through the network and can be verified using the
eigenvectors of the graph Laplacian matrix. Based on this characterization, the
optimal placement of controllers and sensors in the network can be formulated as
a set cover problem. We demonstrate how our results identify the critical buses in
real systems using a simulation in the IEEE 39-bus New England interconnection
test system. In particular, for this testbed a single well chosen bus is capable of
providing full controllability and observability.

Steady State: Cascading Failures. Cascading failures in power systems exhibit non-
monotonic, non-local propagation patternswhichmake the analysis andmitigation of
failures difficult. By studying the transmission network Laplacian matrix, we reveal
two useful structures that make the analysis of this complex evolutionmore tractable:
(a) In contrast to the lack of monotonicity in the physical system, there is a rich
collection of monotonicity we can explore in the spectrum of the Laplacian matrix.
This allows us to systematically design topological measures that are monotonic
over the cascading event. (b) Power redistribution patterns are closely related to
the distribution of different types of trees in the power network topology. Such
graphical interpretation captures the Kirchhoff’s Law in a precise way and naturally
suggests that we can eliminate long-distance propagation of system disturbances by
forming a tree-partition.

We then show that the tree-partition of transmission networks provides a precise
analytical characterization of line failure localizability. Specifically, when a non-
bridge line is tripped, the impact of this failure only propagates within well-defined
components, whichwe refer to as cells, of the tree-partition defined by the bridges. In
contrast, when a bridge line is tripped, the impact of this failure propagates globally
across the network, affecting the power flow on all remaining transmission lines.
This characterization suggests that it is possible to improve the system robustness by
switching off certain transmission lines, so as to create more, smaller components
in the tree-partition; thus spatially localizing line failures and making the grid less
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vulnerable to large-scale outages. We illustrate this approach using the IEEE118-bus
test system and demonstrate that switching off a negligible portion of transmission
lines allows the impact of line failures to be significantly more localized without
substantial changes in line congestion.

Unified Controller on Tree-partitions. Combining our results from both the fast-
timescale and steady state behaviors of power grids, we propose a distributed control
strategy that offers strong guarantees in both the mitigation and localization of
cascading failures in power systems. This control strategy leverages a new controller
design known as Unified Controller (UC) from frequency regulation literature, and
revolves around the powerful properties that emergewhen themanagement areas that
UC operates over form a tree-partition. After an initial failure, the proposed strategy
always prevents successive failures from happening, and regulates the system to
the desired steady state where the impact of initial failures are localized as much as
possible. For extreme failures that cannot be localized, the proposed framework has a
configurable design that progressively involves and coordinates across more control
areas for failure mitigation and, as a last resort, imposes minimal load shedding. We
compare the proposed control framework with the classical Automatic Generation
Control (AGC) on the IEEE 118-bus test system. Simulation results show that our
novel control greatly improves the system robustness in terms of the N − 1 security
standard, and localizes the impact of initial failures in majority of the load profiles
that are examined. Moreover, the proposed framework incurs significantly less load
loss, if any, compared to AGC, in all of our case studies.
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C h a p t e r 1

INTRODUCTION

Power system reliability is a crucial component in the development of sustainable
infrastructure. Recent blackouts, especially the 2003 and 2012 blackouts in North-
western U.S. [1] and India [2], demonstrated the devastating economic impact a grid
failure can cause. In even worse cases, such as where facilities like hospitals are
involved, blackouts pose direct threat to people’s health and lives. Because of the
intricate interactions among power system components, it is often difficult to make
general inferences on how the transmission network topology impacts the robustness
of power grids in different scenarios. Component outages, for instance, may cascade
and propagate in a very complicated, non-localmanner [9, 27, 35], exhibiting distinct
patterns for different networks [62]. This complexity poses significant challenges
for researches in the modeling, control, and management of power systems.

In this work, we develop a theory that aims to address this challenge from both
the fast-timescale and steady state aspects of power grids. Our analysis builds
upon the transmission network Laplacian matrix, and reveals new properties of
this well-studied concept in spectral graph theory that are specifically tailored to
the power system context. A common theme of this work is the representation
of certain physical quantities in terms of graphical structures, which allows us
to establish algebraic results on power grid performance using purely topological
information. This view is particularly powerful and often leads to surprisingly simple
characterizations of complicated system behaviors. Depending on the timescale of
the underlying problem, our results can be roughly categorized into the study of
frequency regulation and the study of cascading failures.

1.1 Fast-Timescale: Frequency Regulation
Frequency regulation balances the power generation and consumption in an elec-
trical power network. Such control is governed by the swing dynamics and is
traditionally implemented in generators through droop control, Automatic Genera-
tion Control, and Economic Dispatch [82, 83]. It has been widely realized that the
increasing level of renewable penetration makes it harder to stabilize the system due
to higher generation volatility and lower aggregate inertia. One popular approach
to maintaining system stability in this new era is to integrate load-side participation
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[4, 15, 17, 30, 38, 47, 48, 55, 61, 70], which not only helps stabilize the system
in a more responsive and scalable fashion, but also improves the system transient
behavior [81–83].

Related Work
With the goal of fully harnessing the benefits of load-side controllers, there has
emerged a large body of work devoted to understanding how different system pa-
rameters and controller designs impact the grid transient performance. For instance,
iDroop is proposed in [42] to improve dynamic performance of the power system
through controlling power electronics or loads. Such controllers, however, can
sometimes make the power system dynamics more sophisticated and uncertain, and
hence make it harder to obtain a stability guarantee [53]. In [56], methods to de-
termine the optimal placement of virtual inertia in power grids to accommodate
loss of system stability are proposed and studied. There has also been work on
characterizing the synchronization cost of the swing dynamics [21, 28, 51, 54, 68]
that explicitly computes the responseH2 norm in terms of system damping, inertia,
resistive loss, line failures, etc. In certain cases, classical metrics studied in power
engineering, such as nadir and maximum rate of change of frequency, can also be
analytically derived [51].

Compared to the aforementioned system parameters, the role of transmission net-
work topology on the transient stability of swing dynamics is less well understood.
Indeed, it is usually hard to infer how a change to the network topology affects
overall grid behavior and performance without detailed simulation and computa-
tion. For example, one can argue that the connectivity in the grid helps average the
power demand imbalance over the network, and therefore higher connectivity should
enhance system stability. On the other hand, one can also argue that higher con-
nectivity means faster propagation of disturbances over the network, which should
therefore decrease system stability. Both arguments seem plausible but they lead
to (apparently) opposite conclusions (a corollary of our results in Section 3.2 will
clarify this paradox). In fact, even the notion “connectivity” itself seems vague and
is open to different interpretations.

Robustness against Disturbances
Our first goal is to clarify how exactly the transmission network topology is related to
the system robustness against disturbances in transient phase. Such relation is often
subtle and the insights developed from different types of applications do not always
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Figure 1.1: An example illustrating how a micro-grid is connected to the main grid.

agree with each other. For instance, having redundant transmission lines is believed
to be a crucial part in maintaining the N −1 security of power grids [8, 12, 34], since
such lines allow the power to flow through alternative paths if certain components
are tripped from the system. In contrast, micro-grids are designed to be connected
to major power systems via a single connection, as shown in Figure 1.1, which is
considered to be helpful in isolating the micro-grid from the disruptions that occur
in the main grid. It is natural to ask whether there is a way to reconcile the insights
we gain from both scenarios and devise a common principle that applies in all cases.

Towards this goal, we develop a framework based on the transmission network
Laplacian spectrum that captures the interplay among network topology, system
inertia, and generator/load damping. It shows that the impact of network topology
in frequency regulation can be quantified through the networkLaplacian eigenvalues,
and that such eigenvalues fully determine the grid robustness against low frequency
perturbations. Moreover, we can explicitly decompose the frequency signal along
scaled Laplacian eigenvectors when damping-inertia ratios are uniform across the
buses. The insights revealed by this framework explain why load-side participation
in frequency regulation not only makes the system respond faster, but also helps
lower the system nadir after a perturbing event, providing useful guidelines in the
controller design. We simulate an improved controller reverse engineered from our
results on the IEEE 39-bus New England interconnection system, and illustrate its
robustness against high frequency oscillations compared to both the conventional
droop control and a recent controller design.
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Figure 1.2: An example network with symmetry.

Controllability under Limited Controller Coverage
A second question we are interested in answering pertains the controllability and
observability of power systems in frequency regulation when only a subset of buses
are equipped with controllers and sensors. Indeed, it is almost always assumed
in recent frequency regulation literature [25, 36, 37, 43, 65, 72, 73, 81, 82] that
every bus in the transmission network comes with a controllable injection and
proper sensors, which is not realistic for structure preserving models in power
systems. For example, feasible placements of controllable loads such as electric
vehicle charging stations [79] and aggregated households [70] are typically limited
to certain geographical areas, and the penetration of such controllable loads takes
investment and time. Moreover, the enormous amount of sensing devices needed
for full load-side participation in a large scale network can be very costly [50, 79].

When only a subset of buses are controllable, it is less clear howmuch controllability
we have over the system. As a motivating example, let us consider the highly
symmetric network shown in Figure 1.2, where nodes 1, 2, and 3 are assumed to
have the same load, damping, inertia, initial phase etc., and assume we can only
control the node with label G. Then because of symmetry, no matter how we alter
the mechanical power injection at node G, the power flows on all transmission lines
would be the same, and therefore the system cannot be controllable. This, of course,
is a highly contrived example; nevertheless, it is a manifestation of an intrinsic
network property that leads to a loss of controllability.

More specifically, we show that the controllability/observability of the system de-
pends on two orthogonal conditions: (a) intrinsic structure of the system graph, and
(b) algebraic coverage of buses with controllers/sensors. Condition (a) encodes in-
formation on graph symmetry and is shown to hold for almost all practical systems.
Condition (b) captures how buses interact with each other through the network and
can be verified using the eigenvectors of the graph Laplacian matrix. Based on this
characterization, the optimal placement of controllers and sensors in the network
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Figure 1.3: The sequence of events, indexed by the circled numbers, that led to the
Western US blackout in 1996. Adopted from [35].

can be formulated as a set cover problem. We demonstrate how our results identify
the critical buses in real systems using a simulation in the IEEE 39-bus New England
interconnection test system. In particular, for this testbed, a single well chosen bus
is capable of providing full controllability and observability.

1.2 Steady State: Cascading Failures
Cascading failures in power systems propagate non-locally, making their analysis
and mitigation difficult. This fact is illustrated by the sequence of events leading to
the 1996Western US blackout (summarized in Figure 1.3) [35], in which successive
failures happened hundreds of kilometers away from each other (e.g., from stage
3 to stage 4 and from stage 7 to stage 8 ). Non-local propagation makes it
particularly challenging to design distributed controllers that reliably prevent and
mitigate cascades in power systems. In fact, such control is widely considered
impossible, even when centralized coordination is available [12, 34].

Related Work
Current industry practice formitigating cascading failuresmostly relies on simulation-
based contingency analysis, which focuses on a small set ofmost likely initial failures
[7]. Moreover, the size of the contingency set which is tested (and thus the level of
security guaranteed) is often constrained by computational power, undermining its
effectiveness in view of the enormous number of components in power networks.
After a blackout event, a detailed study typically leads to a redesign of such con-
tingency sets, potentially together with physical network upgrades and revision of
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system management policies and regulations [34].

The limitations of current practice have motivated a large body of literature to study
and characterize analytical properties of cascading failures in power systems. This
literature can be roughly categorized as follows: (a) applying Monte-Carlo methods
to analytical models that account for the steady state power redistribution using
DC [5, 9, 18, 78] or AC [49, 58, 63] flow models; (b) studying pure topological
models built upon simplifying assumptions on the propagation dynamics (e.g.,
failures propagate to adjacent lines with high probability) and inferring component
failure propagation patterns from graph-theoretic properties [16, 23, 39]; and (c)
investigating simplified or statistical cascading failure dynamics [26, 35, 57, 74].

In each of these approaches, it is often difficult to make general inferences about fail-
ure patterns. For example, power flow over a specific branch can increase, decrease,
and even reverse direction as cascading failure unfolds [45]. The failure of a line
can cause another line that is arbitrarily far away to be tripped [9]. Load shedding
instead of mitigating the cascading failure, can actually increase the congestion on
certain lines [13].

Failure Localization
Our first goal in this context is to devise structural properties of the cascading
process. By studying the transmission network Laplacian matrix, we reveal two
useful structures that make the analysis of this complex evolution more tractable:
(a) In contrast to the lack of monotonicity in the physical system, there is a rich
collection of monotonicity we can explore in the spectrum of the Laplacian matrix.
This allows us to systematically design topological measures that are monotonic
over the cascading event. (b) Power redistribution patterns are closely related to the
distribution of different types of trees in the power network topology. Such graphical
interpretation captures the Kirchhoff’s Law in a precise way, and naturally suggests
that we can eliminate long-distance propagation of system disturbances by forming
a tree-partition.

We then show that the tree-partition of transmission networks provides a precise
analytical characterization of line failure localizability. Specifically, when a non-
bridge line is tripped, the impact of this failure only propagates within well-defined
components, whichwe refer to as cells, of the tree-partition defined by the bridges. In
contrast, when a bridge line is tripped, the impact of this failure propagates globally
across the network, affecting the power flow on all remaining transmission lines.
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This characterization suggests that it is possible to improve the system robustness by
switching off certain transmission lines, so as to create more, smaller components
in the tree-partition; thus spatially localizing line failures and making the grid less
vulnerable to large-scale outages. We illustrate this approach using the IEEE118-bus
test system and demonstrate that switching off a negligible portion of transmission
lines allows the impact of line failures to be significantly more localized without
substantial changes in line congestion.

1.3 Unified Controller over Tree-partitions: Guaranteed Outage Mitigation
Despite all its promising properties, tree-partition alone does not yield a fully satis-
factory solution formitigating and localizing failures, due to twomain reasons: First,
reducing redundancy to create a tree-partition may lead to single-point vulnerabili-
ties, the failure of which has a global impact on the whole system and can potentially
cause significant load loss. Second, information on unfolding cascading failures is
not fed back into relevant controllers that could adjust the network topology (and
in particular its tree-partition). Therefore, after an initial failure is triggered, the
tree-partition based strategy only guarantees that any successive failure will occur
in the same region as the initial failure, but does not prevent or stop successive
failures. To overcome these drawbacks, there is a need for new control designs that
can “close the loop” and respond actively and promptly to different failures.

Towards this goal, we combine our results from both the fast-timescale and steady
state behaviors of power grids and propose a distributed control strategy that offers
strong guarantees in both the mitigation and localization of cascading failures in
power systems. This control strategy leverages a new controller design known as
Unified Controller (UC) from frequency regulation literature, and revolves around
the powerful properties that emerge when the management areas that UC operates
over form a tree-partition. After an initial failure, the proposed strategy always
prevents successive failures from happening, and regulates the system to the desired
steady state where the impact of initial failures are localized asmuch as possible. For
extreme failures that cannot be localized, the proposed framework has a configurable
design that progressively involves and coordinates across more control areas for
failure mitigation and, as a last resort, imposes minimal load shedding. We compare
the proposed control framework with the classical Automatic Generation Control
(AGC) on the IEEE 118-bus test system. Simulation results show that our novel
control greatly improves the system robustness in terms of the N − 1 security
standard, and localizes the impact of initial failures in majority of the load profiles
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that are examined. Moreover, the proposed framework incurs significantly less load
loss, if any, compared to AGC, in all of our case studies.
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C h a p t e r 2

PRELIMINARIES: NETWORK TOPOLOGY AND POWER
FLOWS

In this chapter, we present the main power grid model considered throughout the
thesis and establish its basic properties that will be used in later chapters. We also
explain how our model is related to the Laplacianmatrix of the transmission network
and derive a new representation of DC power flow equations in terms of graph
structures. In different applications, ourmodel often needs to be augmented properly
by adding elements specific to the problem under study, and such augmentation will
be presented in the relevant chapters.

2.1 Power Grid and Swing Dynamics
Our studies revolve around both the fast-timescale aspect and the steady state behav-
iors of power grids. Although the systemmodel takes different forms when we focus
on different problems, these formulations are inherently connected and represent the
same physical subject from different angles. In this section, we introduce the lin-
earized swing dynamics which describe the power system behavior in fast-timescale,
and explain the frequency synchronization structure of its equilibrium points.

We use the graph G = (N , E) to model the power transmission network, where
N = {1, . . . , n} is the set of buses and E ⊂ N × N denotes the set of transmission
lines. The terms bus/node/vertex and link/line/edge are used interchangeably. An
edge in E is denoted either as e or (i, j). We further assign an arbitrary orientation
over E so that if (i, j) ∈ E then ( j, i) < E. Let n = |N | ,m = |E | be the number of
buses and transmission lines, respectively. The (node-edge) incidence matrix of G
is a n × m matrix C defined as

Cie =




1 if node i is the source of e

−1 if node i is the target of e

0 otherwise.

The swing dynamics of power grids operate on the order of seconds and capture
how generators react to disturbances by adjusting their rotating frequencies. The
main control goal for a power system in this timescale is to minimize the system



10

deviation from the last specified operating point. Such operating points often come
from slow-timescale (on the order of ten minutes to an hour) optimization known
as Economic Dispatch [8], and can be considered as unchanged when we focus on
fast-timescale dynamics. It is thus natural to consider the system deviations when
describing the system behaviors in this timescale. We take this approach here and
refer interested readers to classical literatures (such as [8, 40]) for more details on
other forms of swing dynamics and discussions therein.

We now describe the relevant physical quantities. For each bus j ∈ N , denote its
bus voltage phase angle deviation as θ j , its frequency deviation as ω j and its total
injection deviation as p j . The deviation p j consists of a controllable part, denoted
as d j , and a uncontrollable part, denoted as r j . The controllable part d j represents
mechanical power injection adjustment if j is a generator bus, and represents the
aggregate change in controllable load if j is a load bus. Depending on the specific
controller design, the value of d j is often limited to an interval [d j, d j] because of
constraints like generator ratings or ramping constraints. The uncontrollable part r j

captures consumer load change or failure of infrastructure devices such as generator
units. The inertia and damping constants of the bus j are denoted as Mj > 0 and
D j ≥ 0 respectively. If j is a load bus, the sensitivity constant for frequency-
sensitive load is also included in D j (see [82]). For each transmission line e ∈ E, we
use fe to denote its branch flow deviation and denote the line susceptance as Be. In
practical operations, the flow deviation fe is also constrained to an interval [ f

e
, f e]

because of line ratings. When fe falls out of this interval, the line e overheats„
which over time can lead to line failure if no proper actions are taken.

With these notations, which are summarized in Table 2.1, the linearized swing
dynamics are given by:

Mjω̇ j = r j − d j − D jω j −
∑
e∈E

Cje fe, j ∈ N (2.1a)

ḟi j = Bi j (ωi − ω j ), (i, j) ∈ E . (2.1b)

When the bus phase angles are relevant, we often extend (2.1) by adding

θ̇ j = ω j, j ∈ N . (2.2)

The dynamics (2.1a) can be interpreted as the counterpart of Newton’s Second
Law in power systems, which says the generator rotating acceleration at bus j is
proportional to the sum of power imbalance at j. The dynamics (2.1b) are essentially
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θ := (θ j, j ∈ N ) bus voltage angle deviations
ω := (ω j, j ∈ N ) bus frequency deviations
p := (p j, j ∈ N ) total injection deviations
r := (r j, j ∈ N ) uncontrollable injection deviations

d := (d j, j ∈ N )
mechanical power injection adjustment for gen-
erator buses; controllable load adjustment for
load buses

d j, d j, j ∈ N
upper and lower limits for the adjustable injec-
tion d j

D jω j, j ∈ N deviation of frequency-sensitive injections
f := ( fe, e ∈ E) branch flow deviations
f e, f

e
, e ∈ E upper and lower limits for branch flowdeviations

C ∈ R|N |×|E|
incidence matrix of G: Cje = 1 if j is the source
of e, Cje = −1 if j is the destination of e, and
Cje = 0 otherwise

B := diag(Be, e ∈ E)
branch flow linearization coefficients that de-
pend on nominal state voltage magnitudes and
reference phase angles

Table 2.1: Variables associatedwith buses and transmission lines in swing dynamics.

the linearized Ohm’s Law applied to complex power phasors:

fi j = Bi j (θi − θ j ), (i, j) ∈ E . (2.3)

See [81, 82] for a more detailed justification and derivation of this dynamics.

Definition 2.1.1. A state x∗ := (θ∗, ω∗, d∗, f ∗) ∈ R3n+m is said to be an equilibrium
of (2.1) (and (2.2) when phase angles are relevant) if the right hand sides of (2.1)
are zero at x∗.

Note that the x∗ here contains θ∗, which only shows up in (2.2) but not in (2.1). The
main reason for separating (2.2) from (2.1) is that the phase angles are usually of
less concern in many problems we study so our results often pertain to the dynamics
(2.1) only. Yet occasionally we also need to refer to the bus phase angles in the
discussions, and thus we include θ∗ as part of x∗. We emphasize that the right hand
sides of (2.2) are not required to be zero at x∗, since the system (2.1) can converge
to a state where the frequency deviations are nonzero.
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Remark 2.1.2. The d j’s in (2.1a) usually depend on the system states and may
evolve by themselves in accordance with certain controller specific dynamics. The
equilibrium defined above refers to the closed-loop equilibrium. It is thus possible
to engineer the equilibrium of (2.1) by adopting different controller designs for d j ,
which in turn can impact various system performance such as robustness against
disturbances (see Chapter 3); controllability and observability (see Chapter 4);
failure localization (see Chapter 6); and outage mitigation (see Chapter 7), etc.

By (2.1b), at an equilibrium x∗ = (θ∗, ω∗, d∗, f ∗) of (2.1), the frequencies synchro-
nize among buses that are connected to each other:

ω∗i = ω
∗
j, (i, j) ∈ E .

Therefore, as long as the graphG is connected, the whole grid attains a synchronized
frequency, denoted as ω∗, across all buses. We can then sum (2.1a) over all buses
j ∈ N to obtain

0 =
∑
j∈N

*
,
r j − d∗j − D jω

∗
−

∑
e∈E

Cje f ∗e +
-

=
∑
j∈N

(
r j − d∗j

)
− ω∗

∑
j∈N

D j −
∑
e∈E

fe

∑
j∈N

Cje

=
∑
j∈N

(
r j − d∗j

)
− ω∗

∑
j∈N

D j,

where the last equation is because for e = (i, j), Cie = 1, Cje = −1 and Cke = 0 for
all other k. As a result, we know

ω∗ =

∑
j∈N

(
r j − d∗j

)
∑

j∈N D j
. (2.4)

In other words, at any equilibrium of (2.1), the synchronized frequency is propor-
tional to the aggregate injection imbalance.

2.2 DC Power Flow
Practical power grids are usually equipped with frequency regulation controllers
(such as the conventional Automatic Generation Control [8]) that aim to balance
the power generation and consumption. For such systems, when the dynamics (2.1)
converges to an equilibrium x∗ = (θ∗, ω∗, d∗, f ∗), the aggregate injection imbalance∑

j (r j − d∗j ) is zero. By (2.4), we then know ω∗ = 0. This plugged into (2.1a)



13

together with the linearized Ohm’s law (2.3) implies that




p∗j =
∑

e∈E Cje f ∗e , j ∈ N

f ∗i j = Bi j
(
θ∗i − θ

∗
j

)
, (i, j) ∈ E,

where p∗j = r j − d∗j . Dropping the stars from our notations and rewriting the above
equation in matrix form, we then obtain the DC power flow equations:




p = C f

f = BCTθ.
(2.5)

The DC power flow equations determines steady state branch flows and phase angles
from the injection p. Given a fixed p, the solutions to (2.5) are unique in f but
generally not unique in θ, since the phase angles θ can be shifted by a constant value
in each connected component of G.

2.3 Laplacian Matrix
The DC power flow equations (2.5) imply that

p = CBCTθ.

That is, the steady state phase angle θ is related to the steady state injection p via
the matrix CBCT . This matrix is known as the Laplacian matrix of G and plays
a central role in all of our analysis in later chapters. We denote L = CBCT and
present below some of its basic properties.

For any v ∈ Rn, it is easy to see that

vT Lv =
∑

(i, j)∈E

Bi j (vi − v j )2 ≥ 0. (2.6)

This leads to the following well-known result:

Lemma 2.3.1. L is positive semidefinite and hence diagonalizable.

Moreover, equation (2.6) attains equality if and only if vi = v j for any (i, j) ∈ E.
Thus the eigenspace of L corresponding to 0, which is equivalently the kernel of L,
consists of vectors that take the same value on each of the connected component of
G. In particular, we can recover the following well-known result:

Lemma 2.3.2. If G is connected, then the kernel of L is span (1), the set of vectors
with uniform entries.
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This result tells us that the Laplacian matrix L for a connected graph has rank n− 1,
and hence contains a submatrix of size (n − 1) × (n − 1) that is invertible. A less
obvious result, known as the Kirchhoff’sMatrix Tree Theorem, states that the matrix
obtained by removing the last row and the last column from L, which we denote as
L, is such a matrix (see [19] for more details):

Proposition 2.3.3. For a connected graph G, the determinant of L is given by

det(L) =
∑
E∈T

∏
e∈E

Be,

where T is the set of spanning trees on G.

In particular, since the set of spanning trees T is non-empty for a connected graph
and Be > 0 for all e, we know that det(L) , 0 and hence L is invertible. The matrix
L can be interpreted as the part of L after removing a reference bus (often known as
the slack bus) from the system.

Define A :=
(
L
)−1

. From the definition of A, it is not surprising that the elements
of the matrix A encode information on the topology of G and thus carry graphical
meanings. As we show in Section 2.4, all elements of A are in fact closely related
to the tree distributions of G, and suggest how the DC power flow equations (2.5)
can be represented via the graph structure of G.

Remark 2.3.4. In certain applications, it is natural to assign weights to buses in G
too. Denoting the weight for bus j as W j , and putting W = diag(W j, j ∈ N ), we
can define a scaled version of the Laplacian matrix given as

L̃ := W−1/2LW−1/2.

Such scaled Laplacianmatrix appears in Chapters 3 and 4, and all results mentioned
in this chapter for L can be generalized to L̃.

2.4 Graphical Interpretation of the Laplacian Inverse
In this section, we explain how the elements of the matrix A as defined in Section
2.3 are related to the tree distributions of the power network G and demonstrate
how this relation reveals new perspectives on some well-studied quantities in power
system analysis.



15

Figure 2.1: An example element inT (N1,N2), where circles correspond to elements
inN1 and squares correspond to elements inN2. The two spanning trees containing
N1 and N2 are highlighted as solid lines.

Spectral Representation
Recall from Proposition 2.3.3 that we know det(A) is determined by the spanning
trees of G. This is an example of how the tree structure of G is related to certain
algebraic properties of the matrix A. We now present a finer-grained result that
explicitly represents elements of A using the tree structure of G. To do so, more
notations are in order. Given a subset E of E, we use TE to denote the set of
spanning trees of G with edges from E, which can be empty if E is too small. For
two subsets N1,N2 of N (that do not need to be disjoint), we define T (N1,N2) to
be the set of spanning forests of G consisting of exactly two trees that contain N1

and N2 respectively. See Figure 2.1 for an illustration of T (N1,N2). Given a set E

of edges, we write
χ(E) :=

∏
e∈E

Be.

Then the celebrated All Minors Matrix Tree Theorem [19] applied to the matrix L

implies:

Proposition 2.4.1. The determinant of the matrix obtained by deleting the i-th row
and j-th column of L, denoted as L

i j , is given by

det
(
L

i j
)
= (−1)i+ j

∑
E∈T ({i, j},{n})

χ(E).

This result leads to the following graphical interpretation of the elements of A:

Proposition 2.4.2. For any i, j ∈ N such that i, j , n, we have

Ai j =

∑
E∈T ({i, j},{n}) χ(E)∑

E∈TE χ(E)
.
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Proof. Put A j to be the j-th column of A. Note that L A j = e j , where e j ∈ R
n−1

is the vector with 1 as its j-th component and 0 otherwise. Therefore by Cramer’s
rule, we have

Ai j =

det
(
L

i
j

)
det

(
L
) , (2.7)

where L
i
j is the matrix obtained by replacing the i-th column of L by e j . Now by

Proposition 2.4.1, we have

det
(
L

i
j

)
= (−1)i+ j det

(
L

i j
)
=

∑
E∈T ({i, j},{n})

χ(E)

and by the Kirchhoff’s Matrix Tree Theorem

det
(
L
)
=

∑
E∈TE

χ(E).

The desired result then follows.

In (2.7), the denominator is a common normalizer among all entries of Ai j , and the
numerator is only related to the set T ({i, j} , {n}). In other words, Ai j is proportional
to the (weighted) number of trees that connect i to j, and can be interpreted as the
“connection strength” between the buses i and j in G. Moreover, since the matrix
A fully determines the branch flow f from the system injection p, Proposition
2.4.2 tells us that power redistribution under DC power flow equations (2.5) can
be described using the distribution of different types of trees in the transmission
network. In particular, we can deduce analytical properties of DC power flows using
purely graphical structures. As an example, the following corollary is an interesting
implication of Proposition 2.4.2.

Corollary 2.4.3. For all i, j ∈ N such that i, j , n, we have

Ai j ≥ 0,

where the equality holds if and only if every path from i to j contains n.

Proof. Since χ(E) ≥ 0 for all E, we clearly have Ai j ≥ 0 and equality holds if and
only if the set T ({i, j} , {n}) is empty.

If every path from i to j contains n, then since any tree containing {i, j} induces a
path from i to j, we know this tree also contains n. As a result, T ({i, j} , {n}) = ∅.
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Conversely, if T ({i, j} , {n}) = ∅, then any path from i to j must contain n, since for
any path from i to j not passing n, we can iteratively add edges that do not have n as
an endpoint to obtain a spanning tree over the nodes set N\ {n}. This tree together
with the node n itself is an element of T ({i, j} , {n}).

We thus have shown that T ({i, j} , {n}) is empty if and only if every path from i to
j contains n. This completes the proof.

Generation Shift Sensitivity Factor
Given a pair of buses i, j and an edge e = (w, z), if we shift an injection of amount
∆p from i to j, the branch flow on e will change accordingly based on the DC power
flow equations (2.5). Denote this change as ∆ fe. The ratio

Di j,e :=
∆ fe

∆p

is known as the generation shift sensitivity factor between the pair of buses i, j and
the edge e [76]. When ẽ := (i, j) ∈ E is an edge of the power network, we also write
Di j,e as Dẽ,e. Under DC power flow (2.5), Di j,e is fully determined by the matrix A,
and can be computed as (see [76]):

Di j,e = Aiw + A j z − Aiz − A jw .

This formula together with Proposition 2.4.2 implies the following result:

Corollary 2.4.4. For i, j ∈ N , e = (w, z) ∈ N such that i, j,w, z , n, we have

Di j,e =
1∑

E∈TE χ(E)

( ∑
E∈T ({i,w},{ j,z})

χ(E) −
∑

E∈T ({i,z},{ j,w})

χ(E)
)
.

See Section 2.5 for its proof.

Despite the complexity of this formula, it carries clear graphical meaning as we now
explain. In this formula, the sum is over the spanning forests T ({i,w} , { j, z}) and
T ({i, z} , { j,w}). Each element in T ({i,w} , { j, z}), as illustrated in Figure 2.2, spec-
ifies a way to connect i to w and j to z through disjoint trees, and captures a possible
path for i, j to “spread” impact to (w, z). Similarly, elements in T ({i, z} , { j,w})
captures possible paths for i, j to “spread” impact to (z,w), which counting orien-
tation, contributes negatively. Therefore, Corollary 2.4.4 tells us that the impact
of shifting generations from i to j propagates to the edge e = (w, z) through all
possible spanning trees that connect the endpoints i, j,w, z, counting orientation.
The relative strength of the positive and negative impacts determines the sign of
Di j,e.
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Figure 2.2: An example element in T ({i,w} , { j, z}). The spanning trees containing
{i,w} and { j, z} are highlighted as solid lines.

Effective Reactance
The Laplacian matrix L appears in circuit analysis as the admittance matrix (with
a different weight), which explicitly relates the voltage and current vector in an
electrical network [29]. In particular, given a network of resistors, it is shown in
[29] that the effective resistance between two nodes i and j can be computed as

Ri j := L†ii + L†j j − L†i j − L†ji, (2.8)

where L† is the Penrose-Moore pseudoinverse of L. Following a similar calculation,
we can show that (2.8) also gives the effective reactance between the buses i and j

in a power system. That is, assuming we connect the buses i and j to an external
probing circuit, when there is no other injection in the network, the power flow fi j

(from the external circuit) into bus i and out of bus j (into the external circuit) is
given as

fi j =
θi − θ j

Ri j
.

Therefore the network can be equivalently reduced to a single line with reactance
Ri j . If (i, j) ∈ E, denoting Xi j := 1/Bi j to be the reactance of (i, j), then physical
intuition suggests that

Ri j < Xi j,

as connections from the network should only decrease the overall reactance. We
now show that Xi j − Ri j also carries graphical meaning, proving its nonnegativity
rigorously. To do so, we need the following relation between L† and A, which is
proved in Section 2.5.

Lemma 2.4.5. For (i, j) ∈ E such that i, j , n, we have

L†ii + L†j j − L†i j − L†ji = Aii + A j j − Ai j − A ji .
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In other words, we can replace the L†’s in the equation (2.8) by the matrix A, which
allows us to apply Proposition 2.4.2 to obtain the following result:

Corollary 2.4.6. For (i, j) ∈ E such that i, j , n, we have

Xi j − Ri j = Xi j ·

∑
E∈TE\{(i, j) } χ(E)∑

E∈TE χ(E)
.

In particular, we always have Xi j ≥ Ri j , and the inequality is strict if the graph after
removing (i, j) is connected.

Proof. By taking w = i, z = j in Corollary 2.4.4 and applying Lemma 2.4.5, we see
that

Ri j = Aii + A j j − 2Ai j =

∑
E∈T ({i},{ j}) χ(E)∑

E∈TE χ(E)
.

For each forest in T ({i} , { j}), we can add the edge (i, j) to form a spanning tree
passing through (i, j). Conversely, each spanning tree passing through (i, j) pro-
duces a forest in T ({i} , { j}) after removing the edge (i, j). This, by the definition
of χ(E), implies ∑

E∈T ({i},{ j})

χ(E) = Xi j

∑
E∈T ′

χ(E),

where T ′ denotes the set of all spanning trees passing through (i, j). As a result,

Xi j − Ri j = Xi j ·

∑
E∈TE χ(E) −

∑
E∈T ′ χ(E)∑

E∈TE χ(E)

= Xi j ·

∑
E∈TE\{(i, j) } χ(E)∑

E∈TE χ(E)
.

FromCorollary 2.4.6, we see that for an edge (i, j), the reduction ratio of its reactance
coming from the network is precisely the (weighted) portion of spanning trees not
passing through (i, j) among all spanning trees. Thus more connections from the
network leads to more reduction in the effective reactance on (i, j), which agrees
with our physical intuition.

We remark that this reactance reduction ratio is closely related to the spanning tree
centrality measure [69]. Indeed, from the very definition of spanning tree centrality,
we have ∑

E∈TE\{(i, j) } χ(E)∑
E∈TE χ(E)

+ c(i, j) = 1,
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where c(i, j) denotes the spanning tree centrality of (i, j). As a result

Ri j = Xi jc(i, j),

or in other words, in a power redistribution setting, the spanning tree centrality of a
transmission line precisely captures the ratio between its effective reactance Ri j and
its physical line reactance Xi j .

2.5 Proofs
Proof of Corollary 2.4.4
By Proposition 2.4.2, we see that

*.
,

∑
E∈TE

χ(E)+/
-

(
Aiw + A j z − Aiz − A jw

)
=

∑
E∈T ({i,w},{n})

χ(E) +
∑

E∈T ({ j,z},{n})

χ(E)

−
∑

E∈T ({ j,w},{n})

χ(E) −
∑

E∈T ({i,z},{n})

χ(E). (2.9)

We can decompose the set T ({i,w} , {n}) based on the tree that the bus j belongs
to. This leads to the identity

T ({i,w} , {n}) = T ({i, j,w} , {n}) t T ({i,w} , { j, n}),

where t means disjoint union. Similarly we also have

T ({ j, z} , {n}) = T ({i, j, z} , {n}) t T ({ j, z} , {i, n}),

T ({i, z} , {n}) = T ({i, j, z} , {n}) t T ({i, z} , { j, n}),

T ({ j,w} , {n}) = T ({i, j,w} , {n}) t T ({ j,w} , {i, n}).

Plugging the above decompositions to (2.9) and canceling the common terms, we
see

*.
,

∑
E∈TE

χ(E)+/
-

(
Aiw + A j z − Aiz − A jw

)
=

∑
E∈T ({i,w},{ j,n})

χ(E) +
∑

E∈T ({ j,z},{i,n})

χ(E)

−
∑

E∈T ({ j,w},{i,n})

χ(E) −
∑

E∈T ({i,z},{ j,n})

χ(E). (2.10)
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Again we have the following set of identities

T ({i,w} , { j, n}) = T ({i,w} , { j, z, n}) t T ({i,w, z} , { j, n}),

T ({ j, z} , {i, n}) = T ({ j, z} , {i,w, n}) t T ({ j,w, z} , {i, n}),

T ({ j,w} , {i, n}) = T ({ j,w} , {i, z, n}) t T ({ j,w, z} , {i, n}),

T ({i, z} , { j, n}) = T ({i, z} , { j,w, n}) t T ({i,w, z} , { j, n}).

Plugging to (2.10) and canceling common terms, we see

*.
,

∑
E∈TE

χ(E)+/
-

(
Aiw + A j z − Aiz − A jw

)
=

∑
E∈T ({i,w},{ j,z,n})

χ(E) +
∑

E∈T ({ j,z},{i,w,n})

χ(E)

−
∑

E∈T ({ j,w},{i,z,n})

χ(E) −
∑

E∈T ({i,z},{ j,w,n})

χ(E)

=
∑

E∈T ({i,w},{ j,z})

χ(E) −
∑

E∈T ({ j,w},{i,z})

χ(E),

where the last equality follows from

T ({i,w} , { j, z}) = T ({i,w} , { j, z, n}) t T ({ j, z} , {i,w, n})

and
T ({ j,w} , {i, z}) = T ({ j,w} , {i, z, n}) t T ({i, z} , { j,w, n} .

This completes the proof.

Proof of Lemma 2.4.5
To prove this result, we derive explicit formulae for the branch flow vector f in
terms of the power injection p. From p = Lθ we know that whenever this equation
is solvable, the solution θ is unique after quotienting away the kernel of L given as
span (1). Noting this is also the kernel of CT , we see that f = BCTθ is uniquely
determined. Towards the goal of an explicit formula, we can proceed in two ways:
The first way relies on the fact that L†p always gives a feasible θ, and therefore

f = BCT L†p. (2.11)

The second way is to set the phase angle at the slack bus to zero, which implies that

θ = (L)−1p = Ap,
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where θ and p are the vector of non-slack bus phase angles and injections. Denote
as C the matrix obtained from C by removing the row corresponding to the slack
bus. We then have

f = BC
T
θ = BC

T
Ap. (2.12)

Now let i, j ∈ N with neither i nor j being the slack bus. Under the injection
pi = −p j = 1, by equating the branch flow fi j computed from (2.11) and (2.12), we
obtain that

L†ii + L†j j − L†i j − L†ji = Aii + A j j − Ai j − A ji .
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C h a p t e r 3

SPECTRAL DECOMPOSITION AND FREQUENCY
REGULATION

In this chapter, we focus on the fast-timescale aspect of power grids and study
how the system robustness against injection disturbances in transient state is related
to the transmission network topology. Our approach relies on the decomposition
of system response trajectory under the swing dynamics along scaled Laplacian
spectrum, and captures the interplay among network topology, system inertia, and
generator and load damping. The major results of this chapter can be summarized
as follows: (a) We show that whether the system oscillates or not is determined by
how strong the damping normalized by inertia is compared to network connectivity
in the “corresponding” direction. (b) We prove that the power grid robustness
against low frequency disturbance is mostly determined by network connectivity,
while its robustness against high frequency disturbance is mostly determined by
system inertia. (c) We demonstrate that although increasing system damping helps
suppress disturbances, such benefits are mostly in the medium frequency band. (d)
We devise a quantitative explanation for why load-side participation helps improve
system behavior in the transient state, and demonstrate how our results suggest an
improved controller design that can suppress input noise much more effectively.

To establish these results, we first show in Section 3.2 that the system response of
swing dynamics can be decomposed along scaled Laplacian eigenvectors, in both the
time and Laplace domain. Later in Section 3.3, we discuss how our results should be
interpreted in a practical system; and in particular show that the transmission network
topology determines the system robustness against low-frequency disturbances. In
Section 3.4, we explain the benefits of load-side controllers using our framework
and present a new controller that is specifically tailored to suppress high frequency
oscillations. We then present a case study on the IEEE 39-bus New England
interconnection testbed that confirms our analytical results.
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3.1 System Model
Recall the linearized swing dynamics we introduced in Section 2.1 that describe the
fast-timescale responses of a power system:

Mjω̇ j = r j − d j − D jω j −
∑
e∈E

Cje fe, j ∈ N (3.1a)

ḟi j = Bi j (ωi − ω j ), (i, j) ∈ E . (3.1b)

Using x to denote the system state x = [ω; f ], and putting M = diag(Mj, j ∈ N ),
D = diag(D j, j ∈ N ), B = diag(Be, e ∈ E), we can rewrite the system dynamics
(3.1) in the state-space form

ẋ =


−M−1D −M−1C

BCT 0


x +



M−1

0


p. (3.2)

The matrix

A :=


−M−1D −M−1C

BCT 0


is referred to as the system matrix in this chapter (note that A does not represent
the inverse of a submatrix of L here). The system (3.2) can be interpreted as a
multi-input-multi-output linear system with input p and output x. We emphasize
that the variables x = [ω; f ] denote deviations from their nominal values so that
x(t) = 0 means the system is in its nominal state at time t.

In this chapter, we use a scaled version of the Laplacian matrix of G defined by
L̃ = M−1/2LM−1/2, which is explicitly given by

L̃i j =




−
Bi j√
MiMj

i , j, (i, j) ∈ E or ( j, i) ∈ E

1
Mi

∑
j: j∈N (i) Bi j i = j

0 otherwise.

To simplify the notations, we drop the tilde and use L to denote the scaled Laplacian
henceforth (in this chapter). Similar to the non-scaled version, the scaled Laplacian
L is also positive semidefinite and thus diagonalizable. We denote its eigenvalues
and corresponding orthonormal eigenvectors as 0 = λ1 < λ2 ≤ · · · ≤ λn and
v1, v2, · · · , vn. When the matrix L has repeated eigenvalues, for each repeated
eigenvalue λi with multiplicity mi, the corresponding eigenspace of L always has
dimension mi, hence an orthonormal basis consisting of eigenvectors of L exists
(yet such bases are not unique). We assume one of the possible orthonormal bases
is chosen and fixed throughout the chapter.
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The eigenvalues of L measure the graph connectivity from an algebraic perspective,
and larger Laplacian eigenvalues suggest stronger connectivity. To make such
discussions more concrete, we define a partial order � over the set of all weighted
graphs with vertex set N as follows: For two weighted graphs G1 = (N , E1) and
G2 = (N , E2), we say G1 � G2 if E1 ⊂ E2, and for any e ∈ E1, the weight of e in G1

is no larger than that in G2. It is routine to check that � defines a partial order.1 A
more interesting result is that the mapping from a graph to its Laplacian eigenvalues
preserves this order.

Lemma 3.1.1. Let L1 and L2 be the (scaled) Laplacian matrices of two weighted
graphs G1 and G2 with G1 � G2. Let 0 = λ1

1 ≤ λ
1
2 ≤ · · · ≤ λ

1
n and 0 = λ2

1 ≤ λ
2
2 ≤

· · · ≤ λ2
n be the eigenvalues of L1 and L2 respectively. Then

λ1
i ≤ λ

2
i , i = 1, 2, . . . , n.

Proof. This result follows from the fact that L2 − L1 is positive semidefinite, which
is easy to check from our definition of �.

In fact, we can devise better estimates on the relative orders of the eigenvalues λ j
i .

See Chapter 6 for more discussions and results therein. Throughout this chapter,
whenever we compare two graphs in terms of their connectivity, we always refer to
the partial order �.

To make the analysis tractable, we further assume that the inertia and damping of
the buses are proportional to its power ratings. That is, we assume there is a baseline
inertia µ and damping δ such that for each generator j with power rating Fj , we
have Mj = Fj µ and D j = Fjδ. This is a natural setting, as machines with high
ratings are typically “heavy” and have more significant impact on the overall system
dynamics. See [21, 51] for more details. Under such assumptions, the ratios D j/Mj

are independent of j, and therefore M−1D = γIn where γ = δ/µ > 0.

We will study both the transmission network Laplacian matrix L and Laplace do-
main properties of (3.2). To clear potential confusion, we agree that whenever the
adjective Laplacian is used, we refer to quantities related to the Laplacian matrix
L, while whenever the noun Laplace is used, we refer to notions about the Laplace
transform

L {s(t)} (τ) :=
∫ ∞

0
s(t)e−τt dt

1We emphasize that this is not a complete order over all graphs. That is, not any pair of graphs
with the same number of vertices are comparable through this order.
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or notions defined in the Laplace domain.

3.2 Characterization of System Response
In this section, we give a complete characterization of the system response of (3.2)
based on spectral decomposition in both time and Laplace domain.

Stability under Zero Input
We first determine the modes of the system (3.2). That is, we compute the eigenval-
ues of the system matrix A. Such eigenvalues indicate whether the system is stable,
and if it is, how fast the system converges to an equilibrium state.

Theorem 3.2.1. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of L with
corresponding orthonormal eigenvectors v1, v2, . . . , vn. Then:

1. 0 is an eigenvalue of A of multiplicity m−n+1, where m is the number of lines.
The corresponding eigenvectors are of the form [0; f ] with f ∈ kernel(C);

2. −γ is a simple eigenvalue of A with
[
M−1/2v1; 0

]
as a corresponding eigen-

vector;

3. For i = 2, 3, . . . , n, φi,± =
−γ±
√
γ2−4λi
2 are eigenvalues of A. For any such φi,±,

an eigenvector is given by
[
M−1/2vi; φ−1

i,±BCT M−1/2vi
]
.

The proof of this Theorem is presented in Section 3.7. When m − n + 1 = 0 or
equivalently when the network is a tree, item 1 of Theorem 3.2.1 is understood to
mean that the system matrix A does not have 0 as an eigenvalue.

Assuming γ2−4λi , 0 for all i, we get 2n−1 nonzero eigenvalues of A from item 2
and item 3 of Theorem 3.2.1, counting multiplicity, which together with the m−n+1
multiplicity from item 1 gives m+n eigenvalues as well as m+n linearly independent
eigenvectors. Therefore we know A is always diagonalizable over the complex field
C, provided critical damping, that is γ2 − 4λi = 0 for some i, does not occur. We
assume this is the case in all the following derivations. When critical damping does
occur, our results can be generalized using the standard Jordan decomposition.

Theorem 3.2.1 explicitly reveals the impact of the transmission network connectivity
as captured by its Laplacian eigenvalues on the system (3.2) and tells us that the
system mode shape is closely related to the corresponding Laplacian eigenvectors.
In particular, we note that the real parts of φi,± are nonpositive, from which we
deduce the following corollary:
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Corollary 3.2.2. The system (3.2) is marginally stable, with marginal stable states
of the form [0; f ] with f ∈ kernel(C). Therefore the system (3.2) is asymptotically
stable on a tree.

The kernel ofC corresponds to the set of branchflowvectors f such that
∑

j∈N (i) f̃i j =

0 for all i ∈ N , where

f̃i j :=



fi j, (i, j) ∈ E

− f ji, ( j, i) ∈ E .

They can be interpreted as flows that are balanced at all the buses (e.g., circulation
flows on a loop) for which each bus i is neither a source node (

∑
j∈N (i) f̃i j > 0) nor

a sink node (
∑

j∈N (i) f̃i j < 0). This corollary tells us that the only possible signals
that can persist in (3.2) are the balanced branch flows. Of course, such marginally
stable flows cannot exist in a real system because of losses in transmission lines (in
which case our network dynamics (3.1b) is no longer accurate). Even if we take the
simplified model (3.2), as long as the initial system branch flow does not belong to
kernel(C), the system (3.2) under zero input p = 0 converges to the nominal state.

System Response to Step Input
Next we determine the system response to a step function. More precisely, we define
p(t) := r (t) − d(t) as the input function and compute the frequency trajectory ω(t)
with p(t) as input to (3.2), assuming p(t) takes constant value p over time. The com-
ponents p j can be different over j. We put p =

∑
i p̂i M1/2vi to be the decomposition

of p along the scaled Lapalacian eigenvectors (note that the decomposition scaling
M1/2vi is different from the scaling M−1/2vi in the following theorem statement).

Theorem 3.2.3. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of L with
corresponding orthonormal eigenvectors v1, v2, . . . , vn. Assume:

1. The system (3.2) is initially at the nominal state x(0) = 0

2. γ2 − 4λi , 0 for all i.

Then

ω(t) =
n∑

i=1

p̂i√
γ2 − 4λi

(
eφi,+t − eφi,−t

)
M−1/2vi, (3.3)

where

φi,+ :=
−γ +

√
γ2 − 4λi

2
φi,− :=

−γ −
√
γ2 − 4λi

2
.
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See Section 3.7 for its proof.

We remark that all conditions in this theorem are for presentation simplicity and the
frequency trajectory (3.3) can be generalized by adding correction terms to the case
where neither condition is imposed. We opt not to doing so here as these terms lead
to more tedious notations without revealing any new insights.

This result tells us that the frequency trajectory of (3.2) can be decomposed along
scaled eigenvectors of the Laplacian matrix L. Moreover, we note that all φi,± have
negative real parts except φ1,+ = 0. Therefore the only term in (3.3) that persists is
the term involving φ1,+ given as:

p̂1√
γ2 − 4λ1

eφ1,+t M−1/2v1 =
p̂1
γ

M−1/2v1.

Thus under the input p = r − d, the ω(t) signal converges to the steady state
p̂1
γ M−1/2v1 exponentially fast. This allows us to recover the following result using a
new argument.

Corollary 3.2.4. Under step input p, the system (3.2) converges to a steady state
with synchronized frequencies ωi = ω j =: ω. Moreover, ω = 0 if and only if the
power injection is balanced

∑
i∈N pi = 0.

Proof. It is easy to show

v1 =
M1/2√∑

j∈N Mj

1n.

By Theorem 3.2.3, we know the steady state of (3.2) is (p̂1/γ)M−1/2v1, which then
has all entries equal to the same value

p̂1

γ
√∑

j∈N Mj

.

Therefore ωi = ω j =: ω for all i, j ∈ N . From p =
∑

i p̂i M1/2vi we see p̂1 =

(M−1/2p)Tv1 = pT M−1/2v1, and thus∑
i∈N

pi = pT1n =

√∑
j∈N

Mj pT M−1/2v1 =

√∑
j∈N

Mj p̂1

= γ
*.
,

∑
j∈N

Mj
+/
-
ω =

*.
,

∑
j∈N

D j
+/
-
ω.

Hence ω = 0 if and only if
∑

i∈N pi = 0.



29

Spectral Transfer Functions for Arbitrary Input
It is also informative to look at the system behavior of (3.2) from the Laplace do-
main. Instead of analyzing transfer functions from any input to any output as in
the classical multi-input-multi-output system analysis, we take a slightly different
approach such that the Laplacian matrix spectral information is preserved. More
precisely, for a time-variant injection signal p(t), we first decompose it into the spec-
tral representation p(t) =

∑n
i=1 p̂i (t)M1/2vi. Now p̂i (t) is a real-valued signal, and

thus assuming enough regularity, we can rewrite p̂i (t) as the integral of exponential
signals eτt through inverse Laplace transform. It can be shown that when the input
to system (3.2) takes the form p(t) = eτt M1/2vi, the steady state frequency trajectory
ω(t) is given by Hi (τ)eτt M−1/2vi, where Hi (τ) is a complex-valued function of τ
specifying the system gain and phase shift. We refer to the function Hi (τ) as the
i-th spectral transfer function. Compared to classical transfer functions, the spec-
tral version does not capture the relationship between any input-output pair, but in
contrast captures the behavior of system (3.2) from a network perspective. Once the
spectral transfer functions are known, we can compute the steady state trajectories
for general input signal p(t) through the following synthesis formula:

ω(t) =
n∑

i=1
L−1 {Hi (τ)L {p̂i (t)} (τ)} M−1/2vi .

Theorem 3.2.5. For each i, assuming γ2−4λi , 0, the i-th spectral transfer function
is given by

Hi (τ) =
τ

τ2 + γτ + λi
.

The proof of this result is presented in Section 3.7. We remark that a similar
formula also shows up in [51] as the representative machine transfer function for
swing dynamics.

3.3 Interpretations
In this section, we present a collection of intuition that can be devised from the
results in Section 3.2. They are useful for making general inferences as well as for
the controller design in Section 3.4.
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Network Connectivity and System Stabilization
We first clarify how the network connectivity affects the system stability. Towards
this goal, we rewrite (3.3) as

ω(t) =
n∑

i=1
p̂iω̂

i (t)M−1/2vi .

The signal ω̂i (t) captures the response of system (3.2) along M−1/2vi to a step
function input. By Theorem 3.2.1, we see that whether the system oscillates or not
is determined by the signs of γ2 − 4λi. For λi such that γ2 − 4λi > 0, we have

ω̂i (t) =
1√

γ2 − 4λi

(
eφi,+t − eφi,−t

)
with φi,± ≤ 0. Thus the system is over-damped along M−1/2vi, and deviations
along M−1/2vi exponentially fade away without oscillation. The slower-decaying
exponential has a decaying rate determined by φi,+, which is a decreasing function
in λi. Thus a larger λi implies faster decay. Intuitively, this tells us that when the
system damping is strong with respect to its inertia, adding connectivity helps move
more disturbances to the damping component so that disturbances can be absorbed
sooner.

For γ such that γ2 − 4λi < 0, we have

ω̂i (t) =
2√

4λi − γ2
e−

γ
2 t sin *

,

√
4λi − γ2

2
t+
-
.

Thus the system is under-damped along M−1/2vi and oscillations do occur. We also
note that larger values of λi lead to oscillations of higher frequency. This intuitively
can be interpreted as the following: When the system damping is not strong enough
compared to its inertia, adding connectivity causes the unabsorbed oscillations to
propagate throughout the network faster, thus bringing disturbances to the already
over-burdened damping components and making the system oscillate in a higher
frequency.

We thus see that Theorem 3.2.1 and Theorem 3.2.3 precisely clarify our seemingly
contradictory intuition on whether connectivity is beneficial to stabilization – it
depends on how strong the system is damped compared to its inertia, i.e., how fast
the system can dissipate energy.



31

Robustness to Disturbance
The impact of different system parameters in the Laplace domain can be understood
from the spectral transfer functions Hi. Recall by Theorem 3.2.5 that for a signal of
the form p(t) = eτtvi, the steady state output signal of (3.2) is

ωi (t; τ) =
τeτt

τ2 + γτ + λi
M−1vi .

In particular, if we focus on the j-th component of ωi (t), which corresponds to the
frequency trajectory of bus j, we have

ωi, j (t; τ) =
τvi, jeτt

Mjτ2 + D jτ + λi Mj
.

Under the proportional rating assumption mentioned in Section 3.1, one can show
that λi Mj = λi, where λi is the i-th Laplacian eigenvalue when the “heaviest”
generator is normalized to have unit inertia max j∈N Mj = 1 and can be interpreted
as the pure topological part in the Laplacian eigenvalues λi. This allows us to
compute

���ωi, j (jσ)��� =
|σ |√

M2
j σ

4 + (D2
j − 2λi Mj )σ2 + λ

2
i

(3.4)

and conclude the following (See Figure 3.1 for an illustration):

1. For high frequency signals, the gain can be approximated by ���ωi, j (jσ)��� ≈
1

Mjσ

and therefore the key parameter to suppress such disturbance is the rotational
inertia Mj ;

2. For low frequency signals, the gain approximates to ���ωi, j (jσ)��� ≈
σ

λi
and hence

low frequency disturbances are mostly suppressed by the network topology;

3. For any fixed frequency σ, ���ωi, j (jσ)��� is decreasing in D j . This means that
a larger damping leads to smaller gains for all frequencies. Such decrease,
however, is negligible for very large or very small σ, and therefore increasing
D j mostly helps the system suppress oscillations in the medium frequency
band.

This tells us that a system with large µ value is generally more robust against
measurement noise, as such noise is usually of high frequency. Further, it shows that
in order to suppress fluctuations with high frequency (say from renewable sources),
the only effective way is to increase the inertia constant µ. Adding damping level δ
or connectivity λi, although helpful, would be much less fruitful.
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Figure 3.1: Illustration of the gain |ωi, j (jσ) | as a function of σ.

Impact of Damping
As a by-product of our study, we can also examine how the system damping impacts
the system performance. Towards this goal, we study two common metrics for
ω̂i (t): (a) settling time, which is the time it takes ω̂i (t) to get within a certain range2
around the steady state; and (b) nadir, which is defined to be the sup norm of ω̂i (t).
Table 3.1 summarizes the formulae3 for these metrics, and one can show using basic
calculus that both the settling time and nadir are decreasing functions of γ, and thus
decreasing in the damping constants D j (provided that the inertia constants Mj are
fixed).

This result, of course, does not generalize to ω(t) in a straightforward way because
of the possibility of negative p̂i. Instead of focusing on ω(t) for a specific p(t),
we can look at all possible ω(t) and generalize our previous interpretations to the
worst-case performance metric. To be concrete, let us take nadir as an example. By

2The range is specified as [ω∗i − c, ω∗i + c], where ω∗ is the equilibrium state and c is a constant.
3We define ∆i =

���γ
2 − 4λi ��� to simplify the formulae. The settling time formula is an upper

bound as finding its exact value requires solving transcendental equations, which is generally hard.
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Case Settling Time Nadir

γ2 > 4λi
1

γ−
√
∆i

ln
(

1
4c2∆i

)
1√
∆i

[ (
γ+
√
∆i

γ−
√
∆i

) −γ+√∆i
2
√
∆i −

(
γ+
√
∆i

γ−
√
∆i

) −γ−√∆i
2
√
∆i

]

γ2 < 4λi
1
γ ln

(
4

c2∆i

)
2√
∆i

exp
(
−

2πγ
√
∆i

)
Table 3.1: Systemperformance in terms of networkLaplacian eigenvalues, generator
inertia, and damping (γ := δ/µ,∆i := |γ − 4λi |).

(3.3), we see the nadir of frequency trajectory at bus j satisfies

ω j (t)
∞ ≤ M−1/2

j

n∑
i=1
| p̂i |

vi, jω̂
i (t)∞

≤ M−1/2
j

√√ n∑
i=1
| p̂i |

2

√√ n∑
i=1

vi, jω̂i (t)
2
∞

= M−1/2
j

M−1/2p2

√√ n∑
i=1

vi, jω̂i (t)
2
∞

=: M−1/2
j

M−1/2p2
‖ω‖w∞ .

It is easy to see that all the inequalities above can attain equalities. Therefore,
among all input p with scaled unit energy M−1/2p2

= 1, the worst possible nadir
is M−1/2

j ‖ω‖w∞, which is a decreasing function of δ from our previous discussions.

This worst-case nadir is a system level metric that is independent of the input.
Although this metric does not predict the exact nadir for any specific input, it
does reveal to what extent the system can tolerate disturbances of certain energy,
which is a property that is intrinsic to the system itself. Moreover, for secure and
robust operation of the grid, we need to make sure that the worst-case nadir is
well-controlled. A similar argument can be also applied to the settling time for
ω j (t).

System Tradeoffs
When choosing system control parameters, there are usually tradeoffs among dif-
ferent performance goals, and we must balance different aspects to obtain a good
design. A key tradeoff of this type revealed in our previous discussions is the tradeoff
between having small network intrinsic frequency and improving system robustness
against low frequency disturbance.

More specifically, it is easy to show that ���ωi, j (jσ)��� is maximized at σ∗i, j =
√

λi
Mj
.
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In other words, σ∗i, j can be interpreted as an intrinsic frequency of the network
and oscillations around σ∗i, j are amplified at bus j through the transmission system.
Typically high frequency oscillations should be suppressed, and thuswewant smaller
σ∗i, j , which in turn leads to smaller connectivity λi. On the other hand, we have
shown that in order for the system (3.2) to be robust against low frequency noise
(such as periodic load oscillations within a day), the transmission network should
be designed with as large connectivity λi as possible. As a result, we cannot make
the system (3.2) have small intrinsic frequency and be robust against low frequency
noise at the same time.

3.4 Controller Design for Load-Side Participation
In this section, we discuss two implications of our results in Section 3.3 to load-side
controller design.

Benefits of Load-side Participation
We adopt the controller design from [82] as an example to explain the benefits of
load-side participation. We assume the system deviation is small so that the capacity
bounds of load side controllers are not binding. In this setting, the control law of
[82] simplifies to

d j = Kpω j, (3.5)

which when plugged into (3.2) can be absorbed into the damping term D jω j . There-
fore, the integration of controller (3.5) effectively increases the systemdamping level.
Based on our discussions in Section 3.3, we conclude that load-side participation
decreases both the settling time and nadir of (3.2). This means that with load-side
participation, the system (3.2) is more responsive and its nadir under a disturbance
is also better controlled.

Such benefits have been observed and confirmed in a series of work [43, 80–83]
in their simulations. With our framework it is possible to analytically derive such
results and quantify how beneficial the load-side integration can be when we use a
certain system gain Kp. Moreover, it is observed in [80] that load-side participation
also helps maintain system stability when the generator output fluctuates. Using our
characterization in the Laplace domain, we see that such benefit comes from the
improved system ability in suppressing oscillations of medium band frequency.
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Proportional-Derivative (PD) Controller
Despite the many benefits of load-side controllers we have explained so far, one
component stillmissing in (3.5) is that they only affect the systemdamping but cannot
increase the system inertia. As mentioned in Section 3.3, the system inertia is the
key parameter affecting the system robustness against high frequency oscillations.
Nevertheless, a quick look at (3.2) suggests that in order to have a larger Mj , it
suffices to add a derivative term in (3.5), which can be implemented through power
electronics or invertors [42]:

d j = Kpω j + Kdω̇ j . (3.6)

Although it is a natural idea to generalize proportional controllers to PD controllers
for performance tuning, we see that the need of this derivative term can actually be
reversed engineered from our characterizations. Moreover, our framework reveals
how the parameters Kp and Kd affect the system performance precisely, allowing us
to optimize such gains subject to different design goals.

Using derivative terms in controller design is often problematic in practice due to
the amplified noise in its measurement. However, we know from Section 3.3 that
neither adding damping nor increasing network connectivity is particularly effective
in suppressing disturbances in the high frequency regime. Thus in order to improve
the grid stability under high frequency fluctuations, having certain components
of the network that are able to measure the signal derivatives either explicitly or
implicitly to provide the necessary inertia is inevitable.

3.5 Case Studies
In this section, we simulate the controller design (3.6) over the IEEE 39-bus New
England interconnection system as shown in Figure 3.2, and compare its perfor-
mance to that of (3.5) and the conventional droop control. There are 10 generators
and 29 load nodes in the system, and we take the system parameters from the
Matpower Simulation Package [85]. In contrast to our theoretical analysis, the sim-
ulation data does not satisfy the proportional rating assumption in Section 3.1. The
droop control is implemented as the D jω j term for generator buses and is deacti-
vated for simulations with the controllers (3.5) and (3.6). We assume all the buses
(including the generator buses) have load-side participation enabled and pick the
controller gains Kp and Kd heterogeneously in proportional to the bus damping D j .
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Figure 3.2: Line diagram of the IEEE 39-bus interconnection testbed.

Robustness against Measurement Noise
We first look at the controller performances against measurement noise. Towards
this goal, we add a white Gaussian measurement noise of power −20 dBW to the
frequency sensor at bus 30 and observe its frequency trajectory, which is shown
in Figure 3.3. We can see that the controller (3.5) is less prone to measurement
noise compared to the conventional droop control, because it increases the system
damping level and therefore helps suppress the medium frequency part of the noise.
However, its benefit in suppressing high frequency noise is limited, as one can see
from its performance gap as compared with the controller (3.6). To more clearly
see this distinction, we replace the measurement noise at bus 30 with the signal
0.2 sin(10πt) p.u. that contains only high frequency component and observe its
trajectory. The result is shown in Figure 3.4. In this case, we see that controller
(3.5) performs nearly the same as the conventional droop control, while the system
under the improved controller (3.6) exhibits much smaller oscillation.

Wind Power Data
Next, we look at the performance of the controllers under real wind power generation
data from [77]. We choose bus 30 to be the wind generator, whose output follows
the profile given in [77] and look at the frequency trajectory at bus 36. The two
buses are specifically chosen to be geographically far away so that the simulation
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Figure 3.3: Frequency trajectory at bus 30 when we add white Gaussian measure-
ment noise of −20 dBW.

Figure 3.4: Frequency trajectory at bus 30 when we add a signal following the sine
curve 0.2 sin(10πt) p.u.
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Figure 3.5: Frequency trajectory at bus 36 under wind power output at bus 30.

results reflect end user perception of such renewable penetration. The simulation
result is shown in Figure 3.5. As one can see, compared to controller (3.5), the
improved controller (3.6) incurs smaller frequency deviation at almost all times, and
the resulting trajectory is smoother. This is because (3.6) filters away high frequency
fluctuations in the generator profile. We expect such benefit to be more significant
when the system aggregate load fluctuates more frequently because of increasing
renewable penetration.

3.6 Conclusion
In this chapter, we proposed a framework that captures the interplay between trans-
mission network topology and other system parameters. It leads to precise char-
acterizations of how certain control parameters affect the system performance, and
allows us to make general inferences without extensive simulation. We quantified
the benefits of load-side participation within this framework, and explained how we
can improve the controller design so that the system is more robust against high
frequency oscillations.
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3.7 Proofs
Proof of Theorem 3.2.1
By Schur complement, we can compute the characteristic polynomial of A as

det(A − t I)

= det(−t Im) det
(
−γIn − t In −

1
t

M−1CBCT
)

= det(−t Im) det
(
M−1/2

)
det

(
M1/2

)
× det

(
M1/2(−γIn − t In −

1
t

M−1CBCT )M−1/2
)

= (−1)m+ntm−n det
(
L + (γt + t2)In

)
.

All the above algebra is understood to be over the polynomial field generated from
R[t], and thus we do not need to assume t , 0.

The term tm−n contributes m − n multiplicity to the eigenvalue 0 (in the case G is a
tree, or equivalently m = n − 1, this is understood to mean that tm−n = t−1 cancels
one multiplicity of 0). Let us now tackle the factor det

(
L + (γt + t2)In

)
. It is easy

to see that det
(
L + (γt + t2)In

)
= 0 if and only if

t2 + γt + λ = 0

for some eigenvalue λ of L. Therefore the roots of det
(
L + (γt + t2)In

)
are given

as

φ =
−γ ±

√
γ2 − 4λ
2

(3.7)

with λ traversing all eigenvalues of L. Among these roots, 0 appears exactly once,
coming from the zero eigenvalue of L. Thus, altogether we know the eigenvalue of
A consists of 0 with multiplicity m − n + 1 and non-zero roots of the form given by
(3.7).

Next we determine the eigenvectors of the system matrix A. Let φ , 0 be an
eigenvalue corresponding to an eigenvector [ω; f ]. Then we have

−γω − M−1C f = φω (3.8a)

BCTω = φ f . (3.8b)

Substituting (3.8b) to (3.8a) and multipliying M1/2 on both sides, we see that

LM1/2ω = −(φ2 + γφ)M1/2ω,
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or in other words, M1/2ω is an eigenvector of L affording −(φ2 + γφ) = λ. For any
such ω, the corresponding f by (3.8b) is given by f = φ−1BCTω. Moreover, we
see that φ = −γ is a simple eigenvalue of A as the corresponding λ = 0 is a simple
eigenvalue of L. Note that

B1/2CT M−1/2v1


2
= vT

1 Lv1 = 0

implies BCT M−1/2v1 = 0, and therefore we see that
[
M−1/2v1;−

1
γ

BCT M−1/2v1

]
=

[
M−1/2v1; 0

]

is an eigenvector of A affording φ = −γ.

For φ = 0, from (3.8b) we have ω = cIn for some c. Plugging back to (3.8a), we
have

cIn = −
1
γ

M−1C f

and therefore c1T MIn = 0, which implies c = 0. This then implies f ∈ kernel(C)
and ω = 0. Therefore the eigenvectors corresponding to φ = 0 are given by [0; f ]
with f ∈ kernel(C), which by dimension theorem has dimension m − rank(C) =
m − n + 1.

Proof of Theorem 3.2.3
Recall we have shown in Section 3.2 that A is diagonalizable over the complex field
C, provided critical damping does not occur. Let A = QΛQ−1 be an eigenvalue
decomposition of A. Then we have eAt = QeΛtQ−1 for any t ∈ R. Now the solution
to the system (4.1) with a constant input p and nominal initial state is given as

x(t) =
∫ t

0
*
,
eA(t−τ)



M−1p

0


+
-

dτ = Q
∫ t

0
eΛ(t−τ)dτQ−1



M−1p

0


.

Write Λ in block diagonal form as

Λ =



0 0
0 Φ


,

where Φ collect all nonzero eigenvalues of A. By Theorem 3.2.1, we can compute
(3.9) to

x(t) = Q
∫ t

0



(t − τ)Im−n+1 0
0 eΦ(t−τ)


dτQ−1



M−1p

0



= Q


t2

2 Im−n+1 0
0 Φ−1(eΦt − I2n−1)


Q−1



M−1p

0


. (3.9)
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Consider an eigen-pair (λi, vi) of L. For i = 1, we have λ1 = 0 and therefore by
Theorem 3.2.1, we see

[
M−1/2v1; 0

]
is an eigenvector of A affording −γ. For i ≥ 2,

we know

φi,+ :=
−γ +

√
γ2 − 4λi

2
φi,− :=

−γ −
√
γ2 − 4λi

2
are eigenvalues of Awith corresponding eigenvectors [M−1/2vi; φ−1

i,±BCT M−1/2vi] =:
zi,±. This allows us to decompose



M−1/2vi

0


=

√
γ2 − 4λi − γ

2
√
γ2 − 4λi



M−1/2vi

φ−1
i,+BCT M−1/2vi



+

√
γ2 − 4λi + γ

2
√
γ2 − 4λi



M−1/2vi

φ−1
i,−BCT M−1/2vi


=: λi,+zi,+ + λi,−zi,−,

which then implies



M−1p

0


=

n∑
i=1

p̂i



M−1/2vi

0



= p̂1



M−1/2v1

0


+

n∑
i=2

λi,+ p̂i zi,+ +

n∑
i=2

λi,− p̂i zi,−.

We emphasize that the input to system (3.2) is p, and [M−1p; 0] is the signal obtained
by multiplying the input scaling matrix [M−1; 0] to p. By linearity, we can compute
(3.9) as

x(t) = −
p̂1
γ

e−γt


M−1/2v1

0


+

n∑
i=2

λi,+ p̂i

φi,+
eφi,+t zi,+

+

n∑
i=2

λi,− p̂i

φi,−
eφi,−t zi,− +

p̂1
γ



M−1/2v1

0



−

n∑
i=2

λi,+ p̂i

φi,+
zi,+ −

n∑
i=2

λi,− p̂i

φi,−
zi,−.

One can check by direct computation that for i ≥ 2,

λi,+

φi,+
+
λi,−

φi,−
= 0.

Therefore, when restricting to the ω part in x, we have

M1/2ω(t) =
p̂1
γ
v1 −

p̂1
γ

e−γtv1 +

n∑
i=2

λi,+ p̂i

φi,+
eφi,+tvi +

n∑
i=2

λi,− p̂i

φi,−
eφi,−tvi .
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This, together with the fact

λi,±

φi,±
= ±

1√
γ2 − 4λi

and the observation that

p̂1
γ
v1 −

p̂1
γ

e−γtv1 =
p̂1√

γ2 − 4λ1

(
eφ1,+t − eφ1,−t

)
v1

completes the proof.

Proof of Theorem 3.2.5
First consider i ≥ 2. From the proof of Theorem 3.2.3, we know



M−1/2vi

0


= λi,+zi,+ + λi,−zi,−. (3.10)

This, together with the calculation in (3.9), implies that for input signal of the form
pi (t)M1/2vi, the system response of (3.2) is given as

x(t) = λi,+

∫ t

0
eφi,+(t−τ′) pi (τ′)dτ′zi,+ + λi,−

∫ t

0
eφi,−(t−τ′) pi (τ′)dτ′zi,−.

For pi (t) = eτt , we then have

x(t) =
λi,+

τ − φi,+

(
eτt − eφi,+t

)
zi,+ +

λi,−

τ − φi,−

(
eτt − eφi,−t

)
zi,−

and therefore when restricting to the frequency trajectory, we have

M1/2ω(t) =
λi,+(τ − φi,−) + λi,−(τ − φi,+)
τ2 − (φi,+ + φi,−)τ + φi,+φi,−

eτtvi −

(
λi,+eφi,+t

τ − φi,+
+
λi,−eφi,−t

τ − φi,−

)
vi .

Noting λi,+ + λi,− = 1, λi,+φi,− + λi,−φi,+ = 0, φi,+ + φi,− = −γ and φi,+φi,− = λi,
and dropping transient terms, we see

ω(t) =
τ

τ2 + γτ + λi
eτt M−1/2vi .

For i = 1, we do not need to decompose the signal as in (3.10), and a similar
calculation leads to

ω(t) =
eτt M−1/2v1
τ + γ

=
τ

τ2 + γτ + λ1
eτt M−1/2v1,

where the last equality is because λ1 = 0.
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C h a p t e r 4

CONTROLLABILITY AND OBSERVABILITY UNDER
LIMITED CONTROLLER AND SENSOR COVERAGE

In this chapter, we switch our focus to a more combinatorial problem on the tran-
sient state of swing dynamics that aims to determine when the system is control-
lable/observable if we can only install controllers/sensors at a subset of the buses.
We show that the controllability/observability of the swing dynamics in this setting
is precisely characterized by two conditions: (a) intrinsic topological properties of
the transmission network; and (b) algebraic coverage, which we define in Section
4.2, of buses with controllers/sensors. Condition (a) encodes information on graph
symmetry, and is shown to hold for almost all practical systems. Condition (b) cap-
tures how buses interact with each other through the network, and can be verified
using the eigenvectors of the graph Laplacian matrix.

The formal conditions we devise on the controllability of swing dynamics is pre-
sented in Section 4.2, and we explain the practical interpretations of these conditions
in Section 4.3. The parallel results in system observability are given in Section 4.4.
We present two applications of our characterizations in Section 4.5. The first ap-
plication is more analytical, which reduces the problem of optimal placement for
controllers and sensors to a set cover problem. The second application is an eval-
uation in the IEEE 39-bus New England interconnection test system, showing how
a single well chosen critical bus based on our theory is capable of regulating the
frequency of the whole grid.

4.1 System Model
In this section, we present the system model studied in this chapter, which is an
extension of the swing dynamics (2.1) to include the limited coverage of controllers
and sensors.

More specifically, we introduce three sets of buses as follows, and augment (2.1) to
explicitly reflect how these sets impact the system dynamics.

1. Controllers. We assume that only a subset of the buses is equipped with
controllers, which is captured by the corresponding d j’s. The set of buses
with controllers is denoted asU .
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2. Frequency Sensitive Component. We assume that only a subset of buses has
components that are sensitive to local frequency deviations. The injections
from such components are captured by the corresponding D jω j’s. We do not
allow direct control to such loads, and denote the set of buses with frequency
sensitive loads as F .

3. Sensor. We assume that only a subset of buses are equipped with components
thatmeasure the local frequency deviationω j . The set of such buses is denoted
as S.

With these notations, the swing dynamics (2.1) can be written as

Mjω̇ j = r j − 1U ( j)d j − 1F ( j)D jω j −
∑
e∈E

Cje fe, j ∈ N

ḟi j = Bi j (ωi − ω j ), (i, j) ∈ E,

and the system state is observed through

y j = 1S ( j)ω j, j ∈ N ,

where 1U, 1F , 1S are the indicator functions of the subscript sets, e.g.,

1U ( j) =



1, j ∈ U

0, otherwise.

Now using x to denote the system state x = [ω; f ], and putting F,U, S, M , D and B

to be the diagonal matrices with 1F ( j), 1U ( j), 1S ( j), Mj , D j and Bi j as diagonal
entries respectively, we can rewrite the system dynamics in the state-space form

ẋ = Ax −


M−1U

0


d +



M−1

0


r (4.1a)

y =
[
S 0

]
x, (4.1b)

where

A =


−M−1FD −M−1C

BCT 0


and is referred to as the system matrix of (4.1) in the sequel.

In this chapter, we need the scaled graphLaplacianmatrix defined as L̃ = M−1/2LM−1/2,
which is more explicitly given by

L̃i j =




−
Bi j√
MiMj

i , j, (i, j) ∈ E or ( j, i) ∈ E

1
Mi

∑
j: j∈N (i) Bi j i = j

0 otherwise,
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where N (i) is the set of neighbors of i. To simplify the notations, we drop the
tilde and use L to denote the scaled Laplacian L̃ henceforth in this chapter. Let
0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of L, and put V := {v1, v2, · · · , vn}

to be an orthonormal set of its eigenvectors with vs affording λs. The notation
N = {1, 2, . . . , n} is abused to also denote the index set of V . Whether N denotes
the set of buses or denotes an index set for V will be clear from the context. The
following property of the spectrum of L is particularly useful in this chapter:

Definition 4.1.1. The matrix L is said to have a simple spectrum if all the eigen-
values of L are distinct.

Throughout the analysis, we make the following assumption:

Sensitive Load: Frequency sensitive components only exist at buses with con-
trollers. That is, we assume F ⊂ U .

4.2 Controllability
In this section, we analyze the state-space dynamics given in (4.1) and characterize
its controllability using the spectrum of the scaled Laplacian matrix L.

Before presenting our characterization, we first clarify what we mean by the con-
trollability of (4.1). The classical definition of controllability requires the whole
state space Rn+m to be reachable from any initial point. This is too strong and is not
suitable for our purpose. Indeed, from the branch flow dynamics

ḟ = BCTω

we see that
B−1 (

f (t) − f (0)
)
=

∫ t

0
CTω(s)ds ∈ range(CT ).

If we assume the system is in the nominal state at time t = 0, that is x(0) =
[ω(0); f (0)] = 0, then we know B−1 f (t) ∈ range(CT ) for any t. In other words,
the scaled branch flow vector is confined in the range of CT because of the system
physics. This motivates the following definition:

Definition 4.2.1. The dynamics (4.1) is said to be P-controllable or controllable
in power system sense if for any t > 0, initial state x(0) = [ω(0); f (0)] and target
state x(t) = [ω(t); f (t)] satisfying

B−1 (
f (t) − f (0)

)
∈ range(CT )
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there exists a control u such that

x(t) = φ(x(0), u, t),

where φ(x(0), u, t) is the system state at time t given initial state x(0) and control
input u.

Our first result generalizes the classical Kalman criteria for controllability test-
ing to the context of P-controllability. It shows that to determine the system P-
controllability, it suffices to form the controllability matrix with the scaled Laplacian
matrix L (instead of the full system matrix A), and we can ignore the drift term r

(even when it is time-variant) in (4.1a).

Proposition 4.2.2. The dynamics (4.1) is P-controllable if and only if the matrix

W =
[
M−1/2U −LM−1/2U · · · (−L)n−1M−1/2U

]

has full row rank.

The proof of this proposition is presented in Section 4.7. This result tells us that to
decide the P-controllability of (4.1) amounts to computing the rank of W . Recall
that 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of L, and {v1, v2, . . . , vn} is
an orthonormal set of corresponding eigenvectors. Let Q be the matrix with v j’s
as columns and let Λ be the diagonal matrix with λ j’s as diagonal entries, i.e.,
L = QΛQT . We introduce the concept of algebraic coverage.

Definition 4.2.3. With all previous notations, the algebraic coverage of a bus
j ∈ N , denoted as cov( j), is defined to be the set

cov( j) :=
{
s ∈ N : vs, j , 0

}
,

where vs, j is the j-th entry of vs.

Now we are ready to give our characterization for the P-controllability of (4.1).

Theorem 4.2.4. With all the previous notations, the dynamics (4.1) is P-controllable
if and only if

1. The scaled Laplacian matrix L has a simple spectrum; and



47

2. The algebraic coverage from controllers is full:

N =
⋃
j∈U

cov( j). (4.2)

Proof. Recall U is the diagonal matrix encoding the placement of controllers. Let
V be the Vandermonde matrix

V =



1 −λ1 λ2
1 · · · (−λ1)n−1

1 −λ2 λ2
2 · · · (−λ2)n−1

...
...

...
. . .

...

1 −λn λ2
n · · · (−λn)n−1



and
u j = QT M−1/2Uj, ∀ j ∈ N ,

where Uj is the j-th column of U.

Since Q is orthogonal, we know (−L)k = Q(−Λ)kQT , and as a result,

W = Q
[
QT M−1/2U · · · (−Λ)n−1QT M−1/2U

]
. (4.3)

For any integer p, q, we denote as r (p, q) the unique number r ∈ {1, 2, · · · , q} such
that p = qk + r for some integer k. Define a permutation matrix Π ∈ Rn2×n2 given
by

Πi j =




1 j = (r (i, n) − 1)n + b(i − 1)/nc + 1

0 otherwise,

Intuitively, multiplying Π on the right hand side of W collects columns correspond-
ing to each u j together. With such notations, we have

[
QT M−1/2U · · · (−Λ)n−1QT M−1/2U

]
Π

=
[
diag(u1) · · · diag(un)

]
(In ⊗ V ), (4.4)

where ⊗ means the tensor multiplication and (4.4) can be checked by directly
comparing each component. Noting both Q and Π are invertible, from (4.3) we
know the rank of W is the same as the rank of (4.4). Therefore, by Proposition 4.2.2
we see the dynamics (4.1) is P-controllable if and only if (4.4) has full rank. It is
well-known that the determinant of the Vandermonde matrix V is given by

det(V ) =
∏
i< j

[
(−λi) − (−λ j )

]
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and therefore V is invertible if and only if the tuple (λs : s ∈ N ) has distinct entries.
Also it is easy to see that In ⊗ V has full rank if and only if V has full rank; thus
In ⊗ V is invertible if and only if L has simple spectrum.

Next, it can be checked that the nonzero rows of
[
diag(u1) diag(u2) · · · diag(un)

]
(4.5)

are independent because their nonzero entries appear in “orthogonal” positions.
Therefore, (4.5) has full row rank if and only if all the rows have nonzero entries, or
in other words,

N =
⋃
j∈N

supp(u j ),

where supp(u j ) is the support of u j .

From u j = QT M−1/2Uj we can compute

u j,s =




vs, j√
Mj

j ∈ U

0 j < U,

from which we see

supp(u j ) =



{
s ∈ N : vs, j , 0

}
j ∈ U

∅ j < U .

But this implies⋃
j∈N

supp(u j ) =
⋃
j∈U

{
s ∈ N : vs, j , 0

}
=

⋃
j∈U

cov( j).

As a result, (4.4) has full rank if and only if L has simple spectrum and (4.2). This
completes the proof.

4.3 Interpretations
The characterization given in Theorem 4.2.4 is purely algebraic. In this section we
explain the practical meanings of our controllability criteria.

L has a Simple Spectrum Almost Surely
Recall our mention in the introductory chapter that for the graph in Figure 1.2,
the system (4.1) cannot be controllable because of the network symmetry. It turns
out that L having a simple spectrum roughly means that the associated graph has
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few symmetries, and that this condition can be interpreted as a general criterion of
whether the network topology is too symmetric that it loses controllability. Indeed, it
is proven in [3] that if L has a simple spectrum, then any nontrivial automorphism of
G has order two1. This specifically rules out star graphs with more than three nodes
and symmetric weights (that is Mj’s are the same for all i ∈ N , and Be’s are the
same for all e ∈ E), including the graph in Figure 1.2, from having simple spectra.
As another example, it can be shown that the Laplacian matrices associated with
line graphs (under arbitrary B and M), which intuitively have only one symmetry,
always have simple spectra [14]. For more results relating properties of the graph
automorphism group to the spectrum of L, we refer the readers to [3, 14, 20].

This condition is much less restrictive than one would expect. In fact, one can check
that the associated L matrix for all test cases coming with the Matpower 6.0 package
[85] (including almost all IEEE and RTE testbeds) has simple spectra. We now
establish a density result to explain such abundance of practical systems with simple
spectra.

Consider a fixed transmission network G = (N , E) with line susceptance matrix B

and inertia matrix M . Let
Ω =

∏
e∈E

(−Be,∞)

be the space of feasible perturbations to B (so that we have positive line suscep-
tances). We add a randomperturbationω ∈ Ω drawn according to certain probability
measure µ to the line susceptances, which can come from either measurement noise
or manufacturing error, and consider the resulting scaled Laplacian matrix

L(ω) = M−1/2C(B + diag(ω))CT M−1/2.

The following result shows that for a large family of perturbation distributions, L(ω)
has simple spectrum almost surely.

Proposition 4.3.1. Let Lm be the Lebesgue measure over Rm. Assume the proba-
bility measure µ : Ω→ [0, 1] is absolutely continuous with respect to Lm. Let

E := {ω ∈ Ω : L(ω) has simple spectrum} .

Then µ (E) = 1.
1The result in [3] requires the assumption M = Im. One can, however, prove similar results for

general M by assigning Mj as node weights and requiring an automorphism to preserve both line
and node weights.
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The proof of this result is presented in Section 4.7. Note by the Radon-Nikodym
Theorem [60], a probability measure is absolutely continuous with respect to the
Lebesgue measure if and only if it affords a probability density function. Thus, for
almost all practical probabilitymodels of such perturbation (e.g., truncatedGaussian
noise with arbitrary covariance; bounded uniform distribution; truncated Laplace
distribution), L(ω) has a simple spectrum almost surely. Similar perturbation results
on M also hold.

Therefore, under mild assumptions on perturbations to the system parameters, the
L matrix associated with a practical system almost always has a simple spectrum.

The Algebraic Coverage of Controllers should be Full
Intuitively, the algebraic coverage of a bus j reflects the set of eigenvectors of L

(which are usually interpreted as the spectrum of the network graph G in spectral
graph theory) that bus j can “interact” with. When the algebraic coverage of con-
trollable buses is full, the control signals can interact with the entire spectrum of the
network, and thus are able to drive the system to any state. As an illustration of this
intuitive meaning of the algebraic coverage, we present an alternative interpretation
for entries in the pseudo-inverse of L, and demonstrate that such interpretation is
natural in certain scenarios. Fix two buses i, j ∈ N . For each s ∈ N , we put
κs

i j = vs, jvs,k , which can be interpreted as the “mutual influence” between i and j

through the spectrum s. We have κs
i j , 0 if and only if s ∈ cov(i) ∩ cov( j); and

when this holds, s lies in the common coverage of i and j, and thus is a “bridging”
spectrum. Recall that L = QΛQT and therefore L† = QΛ†QT , which then implies

L†i j =
∑

s∈cov(i)∩cov( j),s,1

κs
i j

λs
.

In other words, L†i j can be interpreted as the weighted average of “mutual influence”
between i and j over all “bridging” spectra.

4.4 Observability
In this section, we present our characterization of the observability of (4.1). The
development in this section is parallel to Section 4.2, and thus we omit all proofs.

As in the case of controllability, the classical definition of observability is too strong.
A more suitable notion of observability in our applications is given as follows:

Definition 4.4.1. The dynamics (4.1) is said to be P-observable or observable in
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power system sense if for any t > 0, an initial state x(0) = [ω(0); f (0)] such that

B−1 (
f (t) − f (0)

)
∈ range(CT )

can be uniquely determined from the system input d(s) and output y(s) over 0 <

s ≤ t.

We can then give our characterization for the P-observability as follows:

Theorem 4.4.2. The dynamics (4.1) is P-observable if and only if

1. The scaled Laplacian matrix L has simple spectrum; and

2. The algebraic coverage from sensors is full:

N =
⋃
j∈S

cov( j).

The second item in this criteria for observability again confirms our intuition that
algebraic coverage encodes information on how buses interact with each other
through the network.

4.5 Applications
In this section, we present two applications of our results. The first application
is on the optimal placement of controllable loads/sensors so that controllabil-
ity/observability of (4.1) is achieved. We show that this problem can be reduced to
a set cover problem. The second application is over the IEEE 39-bus New England
interconnection test system, where we demonstrate that a single critical bus chosen
based on our theory is capable of regulating the frequency of the whole grid.

Optimal Placement of Controllers and Sensors
Given a power transmission network G, if the associated L matrix does not have
a simple spectrum, then by Theorem 4.2.4 and Theorem 4.4.2, such intrinsic de-
ficiency of G forbids the dynamics (4.1) from being controllable/observable, no
matter how many controllers or sensors we install. Fortunately, as Proposition 4.3.1
suggests, such deficiency usually does not occur for practical systems.

Now assume G has a simple spectrum. By Theorem 4.2.4, the dynamics (4.1)
is P-controllable if and only if the union of algebraic coverage from controllable
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buses is full. Therefore the problem of choosing the minimum set of buses to place
controllers such that (4.1) is P-controllable can be formulated as

min
J

|J | (4.6a)

s.t.
⋃
j∈J

cov( j) = N . (4.6b)

This is an instance of the well-studied set cover problem, one of Karp’s 21 NP-
complete problems [22]. Although Theorem 4.2.4 does not completely resolve
(4.6), it shows that approximation algorithms devised for set cover problems can be
readily applied to our setting to obtain placements with good quality.

A similar argument applied to the P-observability of (4.1) leads to the same opti-
mization problem as (4.6). Therefore we are led to the following corollary, which is
intuitive but non-trivial without Theorem 4.2.4 and Theorem 4.4.2.

Corollary 4.5.1. For the dynamics (4.1), the collection of optimal placement sets of
controllers and the collection of optimal placement sets of sensors are the same.

This result tells us that, in practice, we should always install sensors at the buses
with controllers, and vice versa.

Secondary Frequency Regulation with a Single Bus
We now demonstrate how our results can identify critical buses for controllability by
evaluating the IEEE 39-bus New England interconnection test system, as shown in
Figure 3.2. There are 10 generators and 29 load nodes in the system, and in contrast
to our linearized model for theoretical study, the simulation adopts more realistic
nonlinear dynamics.

One can check that the L matrix associated with this network has a simple spectrum
(which is as expected according to Proposition 4.3.1), and that bus 35 has full
algebraic coverage, i.e., all the eigenvectors vs of L have nonzero entry at position
35. Therefore, Theorem 4.2.4 implies that even if we can only inject control at bus
35, the system is still P-controllable. Thus, we should be able to drive the whole
system back to the nominal state after arbitrary disturbance. In order to verify this,
we add a step increase of 1 pu to the generation at bus 30, and compare the system
evolution with or without control at bus 35. In contrast to the standard control
associated with the controllability Gramian, the control we adopt here utilizes only
local frequency deviation. Details about the control scheme design can be found in
[52]. The simulation results are shown in Figure 4.1.
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(a) With control. (b) Without control.

Figure 4.1: Comparison of the system evolution with and without control at bus 35
after adding a step increase of 1 pu to the generation at bus 30.

As one can see from the figure, despite the geographical distance between the
disturbance and the controllable node, the control scheme successfully drives the
grid back to nominal state within 5 seconds. In contrast, when no control is posed,
the bus frequencies still stabilize because of governor dynamics, but not to the
nominal state. Moreover, the stabilization process takes considerably longer time.
Such difference demonstrates that with a single bus 35 chosen based on our theory,
frequency regulation over the grid can be achieved.

4.6 Conclusion
In this chapter, we developed full characterizations of the impact of limited con-
trollers/sensors coverage over the controllability/observability for the swing dynam-
ics. We presented two applications of our theoretical results: (a) an analytical
application which reduces the problem of optimal placement of controllable loads
and sensors to a set cover problem; (b) an evaluation over the IEEE 39-bus New
England interconnection test system where secondary frequency control over the
whole network can be achieved by a single critical bus chosen based on our theory.

4.7 Proofs
Proof of Proposition 4.2.2
Consider the vector space Z := Rn × range(BCT ) ⊂ Rn+m. Then from the definition
we see that (4.1) is P-controllable if and only if the affine space

Z + [0; P(0)] = Z + x(0)
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is reachable from x(0) (the equality is because [ω(0); 0] ∈ Z). Denote the set of
Lebesgue integrable functions from [0, t] to Rn as I[0,t]. Now for any control input
d ∈ I[0,t], the solution to (4.1a) is given by

x(t) = −
∫ t

0
e(t−s) A



M−1U

0


d(s)ds

+

∫ t

0
e(t−s) A



M−1

0


r (s)ds + et Ax(0). (4.7)

We will show Proposition 4.2.2 by inspecting each term in (4.7).

Lemma 4.7.1. Let

R1 :=



∫ t

0
e(t−s)A



M−1U

0


d(s)ds : d ∈ I[0,t]




be the set of possible values of the first term in (4.7). Then R1 is a subspace of Z

and R1 = Z if and only if

W = [M−1/2U,−LM−1/2U, · · · , (−L)n−1M−1/2U]

has full row rank.

Proof. Since the set of buses with frequency sensitive components is contained in
the set of buses with controllable loads, we can absorb the D jω j term into d j for all
j ∈ F without affecting the system controllability. Therefore we can assume F = 0
in (4.1). Now, by induction we can compute A(2k) to be



M−1/2(−L)k M1/2 0
0 (−BCT M−1C)k



and compute A(2k+1) to be



0 −M−1C(−BCT M−1C)k

BCT M−1/2(−L)k M1/2 0


.

Put B̃ := [M−1U; 0]. It is a classical result that R1 is the same as the range of the
controllability matrix of (4.1) given as

W̃ ′ =
[
B̃ AB̃ · · · An+m−1B̃

]
.

Let
W̃ =

[
B̃ AB̃ · · · A2(n+m−1) B̃

]
.
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Then, by the Cayley-Hamilton Theorem, we see that range(W̃ ′) = range(W̃ ). Mul-
tiplying B̃ to the powers of A and discarding the zero columns, we see the range of
W̃ is equal to the range of



M̃Ũ 0 −M̃LŨ · · · 0
0 BCT M̃Ũ 0 · · · BCT M̃ (−L)n+m−1Ũ


, (4.8)

where M̃ := M−1/2 and Ũ := M−1/2U. Since BCT is a common factor for the last
m rows, we see the range of (4.8), and thus R1, is a subspace of Z .

One can check that the dimension of Z is 2n − 1. Since R1 is a subspace of Z , we
know R1 = Z if and only if the rank of (4.8) is 2n − 1. Now define

W ′ = [Ũ,−LŨ, L2Ũ, · · · , (−L)n+m−1Ũ].

Since both M̃ and B are invertible, it is easy to see that the rank of (4.8) is given
by rank(W ′) + rank(CTW ′). Moreover, from rank(W ′) ≤ n and rank(CTW ′) ≤
rank(CT ) ≤ n − 1, we know the matrix in (4.8) has rank 2n − 1 if and only if

rank(W ′) = n, rank(CTW ′) = n − 1.

Noting rank(CTW ′) = n − 1 is equivalent to having rank(W ′) = n, we thus see
rank(W̃ ) = 2n − 1 if and only if rank(W ′) = n. Finally by the Cayley-Hamilton
Theorem, the range of W ′ is the same as the range of

W = [Ũ,−LŨ, L2Ũ, · · · , (−L)n−1Ũ].

In other words, we have shown that R1 = Z if and only if W has full row rank, and
the desired result thus follows.

Lemma 4.7.2. For arbitrary r ∈ I[0,t], we have∫ t

0
e(t−s) A



M−1

0


r (s)ds ∈ Z .

Proof. The proof is similar to the part where we show R1 ⊂ Z in Lemma 4.7.1 and
we omit the details here.

Lemma 4.7.3. For arbitrary x(0) ∈ Rn+m, we have

et Ax(0) − x(0) ∈ Z .
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Proof. It is easy to check that the convergence radius of g(x) :=
∑∞

i=1
xi−1

i! is infinite
and thus the matrix series

g(A) :=
∞∑

i=1

Ai−1

i!

converges and is well-defined. Now note

et A − I =
∞∑

i=1

Ai

i!
= Ag(A),

thus et Ax(0) − x(0) = Ag(A)x(0) ∈ range(A). It is easy to check range(A) ⊂ Z ,
which then implies et Ax(0) − x(0) ∈ Z .

Now put

R :=
{
φ(x(0), d, t) : d ∈ I[0,t]

}
to be the set of reachable states from x(0) according to (4.7). From the above
lemmas, we see that for any control d, we have

φ(x(0), d, t) − x(0) ∈ Z

and therefore R − x(0) ⊂ Z . Moreover, since∫ t

0
e(t−s)A



M−1

0


Pm(s)ds + et Ax(0) − x(0) ∈ Z,

we know R − x(0) = Z if and only if R1 = Z , which in turn is equivalent to W

having full row rank. As a result, we see (4.1) is P-controllable if and only if W has
full row rank.

Proof of Proposition 4.3.1
Fix a network G and the associated B, M matrices. For any ω ∈ Ω, let

χ(t;ω) := det
(
M−1/2C(B + diag(ω))CT M−1/2 − t I

)
be the characteristic polynomial of the perturbed Laplacian matrix L(ω) and let
disc(ω) := disc

(
χ(t;ω)

)
be the discriminant of χ. Recall disc(ω) is a polynomial

in the coefficients of χ and therefore is a polynomial of the entries in ω. Moreover,
disc(ω) = 0 if and only if χ has multiple roots, or equivalently L(ω) does not have
a simple spectrum. Put

E :=
{
ω ∈ Ω : L(ω) has a simple spectrum

}
.

We then have E = Ω\ disc−1(0).
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Lemma 4.7.4. The polynomial disc(ω) is not identically zero.

Proof. To show disc(ω) is not identically zero, it suffices to show that we can
find ω ∈ Ω such that disc(ω) , 0, which is equivalent to the existence of a link
susceptance matrix B0 such that L0 := M−1/2CB0CT M−1/2 has a simple spectrum.
We use mathematical induction to prove the existence of such B0. To facilitate the
discussion, for any subgraph G′ = (N ′, E′) of G with line susceptance matrix B′,
we refer to the matrix

L′ = M′−1/2C′B′(C′)T M′−1/2

as the Laplacian matrix of G′, where M′ is the submatrix of M corresponding to the
nodes in N ′, and C′ is the incidence matrix of G′.

First we pick a random link e1 in E and assign arbitrary susceptance to e1. The
subgraph G1 generated by e1 has only one connected component (which is formed
by e1 itself), and therefore the Laplacian matrix L1 of G1 has one zero eigenvalue
and one nonzero eigenvalue, which are distinct.

Next, consider any subgraph Gk = (Nk, Ek ) of G with k < m many links and let
ek = (ik, jk ) ∈ E\Ek be a link of G not in Gk yet at least one of ik and jk is in
Nk . Assume Gk has a simple spectrum. We claim that by choosing the susceptance
for ek properly, the graph Gk+1 obtained by adjoining ek (and possibly one of the
vertices ik, jk) to Gk still has a simple spectrum. Indeed, for the case where both ik

and jk are in Nk , we know the Laplacian matrix Lk+1 for Gk+1 is given as

Lk+1 = Lk + *
,
−

Bik jk√
Mik Mjk

(Eik jk + E jk ik ) +
Bik jk

Mik
Eik ik +

Bik jk

Mjk
E jk jk

+
-

=: Lk + ∆Lk, (4.9)

where for any i, j, Ei j is the matrix with 1 at the intersection of i-th row and j-th
column and 0 otherwise. Let δk be the minimum gap between the eigenvalues of
Lk . Choose Bik jk small enough so that the spectral norm of ∆Lk is less than δk/2.
Then, by Weyl’s inequality we know that each eigenvalue of Lk is perturbed by at
most δk/2 from adding ∆Lk . As a result, the eigenvalues of Lk+1 are still distinct.

If ik is not in Nk , then Lk+1 = Lk + ∆Lk , where Lk is the matrix obtained from
Lk by appending a row and a column of zeros, and ∆Lk is the same as in (4.9). It
is easy to see that Lk and Lk share the same nonzero eigenvalues, and Lk has two
zero eigenvalues. Similar to the previous case, by choosing Bik jk small enough,
we can ensure that the distinct nonzero eigenvalues of Lk after perturbation of ∆Lk
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are still distinct and nonzero. Note that Lk+1 has only one zero eigenvalue, thus by
choosing Bik jk even smaller if necessary, the new nonzero eigenvalue coming from
the perturbation of ∆Lk can be made arbitrarily small, and thus distinct from other
eigenvalues. We have thus justified our claim.

Now, by induction we see that we can always pick the line susceptances properly so
that the resulting L has a simple spectrum. This completes the proof.

It is well-known from algebraic geometry that the root set of a polynomial which
is not identically zero has Lebesgue measure zero [31]. In particular, for the
polynomial disc(ω) which is not identically zero, we have Lm

(
disc−1(0)

)
= 0.

Since µ is absolutely continuous with respect to Lm, we see µ
(
disc−1(0)

)
= 0 or

equivalently, L has a simple spectrum with probability 1 as E = Ω\ disc−1(0).
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C h a p t e r 5

MONOTONICITY IN CASCADING FAILURES AND
TREE-PARTITIONS

Starting with this chapter, we switch our focus to the steady state aspect of power
grids, and study how we can improve the system robustness against cascading fail-
ures. In this chapter, we study a generic cascading failure process in power system,
and show that the Laplacian matrix of the transmission network captures two useful
structures in this context: (a) In contrast to the lack of monotonicity in the physical
domain, there is a rich collection of monotonicity we can explore in the spectrum
of the Laplacian matrix. This allows us to systematically design topological mea-
sures that are monotonic over the cascading event. (b) Power redistribution patterns
are closely related to the distribution of different types of trees in the power net-
work topology. Such graphical interpretations capture the Kirchhoff’s Law in a
precise way using topological properties, and do not rely on any assumptions or
simplifications on the failures propagation dynamics.

In Section 5.2, we study the evolution of Laplacian matrix eigenvalues as the cascad-
ing failure unfolds, and demonstrate how properties of such eigenvalue dynamics
suggest monotonicity in physical power flows. Later in Section 5.3, we present
the key result that relates the power redistribution to graphical structures as given
in Theorem 5.3.1, which states that the distribution of different types of trees in
the transmission network fully determines the power redistribution patterns after
a transmission line is tripped. The new characterization reveals a Simple Loop
Criteria that fully determines whether the failure of one line can impact another
line.

Our graphical interpretations of power redistribution naturally suggests that we
can eliminate long-distance propagation of system disturbances by forming a tree-
partition, which we define in Section 5.4, of the transmission network. We discuss
the uniqueness of tree-partitions for a general network, and show that the “finest”
tree-partition can be computed in linear time. In Section 5.5, we demonstrate how the
transmission network tree-partition localizes the impacts of line failure to the region
in which the failure happens. The rigorous proof of such localization properties
and how the proven properties can be leveraged to provide analytical guarantees for
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failure mitigation are presented in Chapter 6 and Chapter 7, respectively.

5.1 System Model
In this section, we present our cascading failure model and introduce the line outage
distribution factor that is extensively used in the following chapters.

Given a power network, we describe the cascading failure process by keeping track
of the set of failed lines at different stages, which is indexed by N := {1, 2, · · · , N }.
Each stage n ∈ N corresponds to a topology G(n) := (N , E\B(n)), where B(n) is
the set of all tripped lines at stage n and is naturally nested:

B(n) ⊂ B(n + 1), ∀n ∈ N.

We denote the Laplacian matrix of G(n) by L(n). Within each stage n, the power
flow redistributes over the network described by G(n) according to the DC power
flow model (2.5). After the system stabilizes, if all the branch flows are below the
corresponding line ratings, then the new operating point is secure and the cascade
stops. Otherwise, let F (n) be the subset of lines whose branch flows exceed
the corresponding line ratings. The lines in F (n) are tripped in stage n, i.e.,
B(n + 1) = B(n) ∪ F (n). This process repeats for stage n + 1 and so on.

Next, we focus on a fixed stage n ∈ N, and describe how the failure of a line
impacts the branch flows on remaining lines. To simplify the notation, we drop
the stage index n from symbols like G(n) and simply write them as G. Given a
network G = (N , E), when a line e is tripped from G, if the newly formed graph
G′ := (N , E\ {e}) is still connected, then it is a well-known result (see [76], for
instance) that the branch flow change on a line ê is given as

∆ f ê = fe × Keê,

where Keê is the line outage distribution factor [76] from e to ê. This distribution
factor is independent of the original power injection p and can be computed from
the matrices B and C [76].

If the new graph G′ is disconnected, then it is possible that the original injection
p is no longer balanced in the connected components of G′. Thus, to compute the
new power flow, a certain power balance rule R needs to be applied. Several such
rules have been proposed and evaluated in the literature based on load shedding or
generator response [9, 11, 13, 62]. We do not specialize with respect to any such
rule, and instead opt to identify the key properties of these rules that allow our
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results to hold. With this more abstract approach, we can characterize the power
flow redistribution under a broad class of power balance rules.

5.2 Monotonicity in Cascading Failures
In this section, we present our results for monotonicity in cascading failure pro-
cesses. Our characterization is related to known monotonicity results and suggests
a systematic way to define monotonic topological metrics over a failure event.

Our approach focuses on the Laplacian spectrum of the system. In contrast to the
lack of monotonicity in the physical system, when we look at the process from this
spectral perspective, there is a rich set of monotonicity one can explore. They are
built upon the following fundamental monotonicity result:

Theorem 5.2.1. Let λ1(n) ≤ λ2(n) ≤ · · · ≤ λn(n) be the eigenvalues of L(n).
Then λi (n) is a decreasing function in n for each i. Moreover, for each stage n, as
long as new lines are tripped at n, there exists i such that the decrease is strict:

λi (n + 1) < λi (n).

The Laplacian eigenvalues encode information on how well the graph is connected
and how fast information can propagate in the network (see [24], for example).
Therefore, this result shows that as the cascading failure process unfolds there is
a decreasing level on the network connectivity and its “mixing ability”. Although
Theorem 5.2.1 is only related to the network topology evolution, we demonstrate in
Corollary 5.2.6 that by applying such monotonicity properly it is possible to devise
monotonic properties that are directly related to the power flow dynamics.

To prove Theorem 5.2.1, we first derive an eigenvalue interlacing result for generic
weighted Laplacian matrices. Its special case, in which the graph is unweighted and
only a single line is removed, is known in the literature [32].

Proposition 5.2.2. Let G be a weighted graph with positive line weights {we}, and
let H be a subgraph of G obtained by removing exactly s edges from G. Denote
λ1 ≤ λ2 ≤ . . . ≤ λn and µ1 ≤ µ2 ≤ . . . ≤ µn to be the eigenvalues of LG and LH ,
respectively. Then for any k = 1, 2, . . . , n, we have

µk ≤ λk (5.1)

and for k = s + 1, s + 2, . . . , n, we have

λk−s ≤ µk . (5.2)
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The proof of this proposition is presented in Section 5.7. As an immediate corollary,
we can deduce the following well-known result for s = 1:

Corollary 5.2.3. With previous notations, whenH is obtained by removing a single
edge from G, we have

µ1 ≤ λ1 ≤ µ2 ≤ · · · ≤ λn−1 ≤ µn ≤ λn.

We now apply Proposition 5.2.2 to the transmission network Laplacian matrices
G(n). Note that in a cascading process described by the graph sequence {G(n)}n∈N,
G(n+1) is obtained from G(n) by removing the tripped lines F (n) incurred during
stage n; therefore, we know that the functions λi (n) as defined in Theorem 5.2.1 are
monotonically decreasing. To finish the proof of Theorem 5.2.1, it thus suffices to
show that for each stage n we can always find an i such that the decrease is strict.

Proof of Theorem 5.2.1. This is immediate after noting∑
i

λi (n + 1) = tr(L(n + 1)) =
∑

e∈E (n+1)

Be

<
∑

e∈E (n)

Be = tr(L(n))

=
∑

i

λi (n),

where the inequality is strict because there are lines tripped at time n.

Such monotonicity of Laplacian eigenvalues suggests that all metrics measuring the
system from its spectrum should be monotonic as well. The most general result we
can conclude along this line is the following:

Corollary 5.2.4. Let |||·||| be a unitarily-invariant norm on the set of n× n matrices.
Then |||L(n) ||| is a decreasing function of n.

Proof. This is an immediate result from the bijective correspondence between uni-
tarily invariant norms on n × n matrices and symmetric gauge functions applied to
the matrix singular values [10], because symmetric gauge functions are monotone
in the vector components.

Examples of unitarily-invariant norms include the spectral norm, nuclear norm,
Frobenious norm, Schatten p-norms, and Ky-Fan k-norms, etc., each of which
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suggests a different way to measure the system monotonicity. For example, the
monotonicity in nuclear norm recovers the fact that the sum of all link reactances
decreases in a cascading failure process.

It is well-known from singular value decomposition that the nonzero eigenvalues
of L†(n) are given as 1/λi (n), with the same corresponding eigenvectors as L(n).
Therefore, Theorem 5.2.1 implies that the nonzero eigenvalues of L†(n) are mono-
tonically increasing. It is tempting to conclude from this fact that vT L†(n)v is
monotonically increasing for a fixed v ∈ Rn, but the situation becomes tricky after
we notice that the eigenvectors of L(n) also evolve with n. Fortunately, we can still
prove such monotonicity with careful algebra.

Proposition 5.2.5. For any v ∈ Rn, the function V (n) := vT L†(n)v is increasing in
the stage index n.

Proof. Without loss of generality, let us assume there is only a single edge e = (i, j)
tripped at stage n. The general case follows by tripping the lines one by one.

Under this assumption, by direct computation we have

L(n + 1) = L(n) − BeCeCT
e ,

where Ce is the column of C corresponding to e. It is shown in [6] that this rank
one perturbation translates in its Moore-Penrose pseudoinverse to the equation

L†(n + 1) = L†(n) +
1

Xi j − Ri j
L†(n)CeCT

e L†(n), (5.3)

where Ri j is the effective reactance between bus i and j defined in Section 2.4.4.
Recall by Corollary 2.4.6 we always have Xi j − Ri j > 0 for directly connected i and
j (as long as after removing e the network is still connected), we thus see the second
term in (5.3) is positive semidefinite. The monotonicity of V (n) then follows.

The network tension [41] at stage n is defined to be H (n) = f (n)T X (n) f (n), which
measures the aggregate load of the network and is shown to be an increasing function
of n in [41]. We now show this is a special case of our result.

Corollary 5.2.6. H (n) is an increasing function in n.
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Proof. We can calculate that (for notation simplicity, we drop the stage index n)

f T X f = pT L†CBX BCT L†p

= pT L†LL†p

= pT L†p.

By Proposition 5.2.5 we then know H (n) is monotonically increasing.

The equation (5.3) not only shows the monotonicity of H (n), but also implies that
the increment of H (n) at each n is inversely proportional to the amount of reactance
reduction of (i, j) from the network at time n.

5.3 Line Outage Redistribution Factor
As we discussed in Section 5.1, when a line e is tripped from a power network G,
the line outage distribution factor Keê captures the ratio between the branch flow
change over line ê with respect to the original branch flow on e before it is tripped.
Writing e = (i, j), ê = (w, z) with i, j,w, z ∈ N not being the slack bus, the constant
Keê can be computed as [76]

Keê =
Xe

Xê
·

Aiw + A j z − A jw − Aiz

Xe − (Aii + A j j − Ai j − A ji)
,

where A = (L)−1 is the inverse of the transmission network Laplacian matrix after
removing the slack bus (as defined in Chapter 2). This formula only holds if
the graph G′ := (N , E\ {e}) is connected, as otherwise its denominator is 0 by
Corollary 2.4.6. Edges in G whose removal disconnects G into multiple connected
components are known as bridges in the literature. We discuss this concept and its
relationship to tree-partitions in more detail in Section 5.4.

Graphical Interpretation
Recall from Proposition 2.4.1 we know that elements of A are related to the distri-
butions of different types of trees in the transmission network G. We now follow
the same approach and derive the following new formula for Keê:

Theorem 5.3.1. Let e = (i, j), ê = (w, z) be edges with i, j,w, z , n such that
G′ := (N , E\ {e}) is connected. Then Keê is given by

Bê ×

∑
E∈T ({i,w},{ j,z}) χ(E) −

∑
E∈T ({i,z},{ j,w}) χ(E)∑

E∈TE\{(i, j) } χ(E)
. (5.4)
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Figure 5.1: A ring network with clockwise orientation. Edge e1 can only spread
“negative” impacts to other lines.

Proof. This result follows from dividing the equation in Corollary 2.4.4 by the
equation in Corollary 2.4.6.

Similar to our discussion in Section 2.4 on generation shift sensitivity factors, each
term in (5.4) also carries clear graphical meanings, as we now explain:

1. The numerator of (5.4) states that the impact of tripping e propagates to ê

through all possible trees that connect e to ê, counting orientation;

2. The denominator of (5.4) sums over all spanning trees of G that do not pass
through e = (i, j), and each tree of this type specifies an alternative path that
power can flow through if (i, j) is tripped. When there are more trees of this
type, the network has better ability in “absorbing” the impact of (i, j) being
tripped, and the denominator of (5.4) precisely captures this effect by saying
that the impact of e being tripped to other lines is inversely proportional to
the sum of all alternative tree paths in the network;

3. The Bê constant in (5.4) captures the intuition that lines with larger reactance
tend to be more robust against failures of other lines.

This graphical interpretation of (5.4) allows us to make general inferences on Keê

using only knowledge from the network topology. For example, in the ring network
shown in Figure 5.1, by inspecting the graph we conclude that

Ke1es < 0, s = 2, 3, 4, 5, 6,

as e1 can only spread “negative” impacts to other lines (the positive term in (5.4)
vanishes).
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As an application of Theorem 5.3.1, we recover the following result from [41],
whose original proof is much longer.

Corollary 5.3.2. For adjacent lines e = (i, j) and ê = (i, k) with i, j, k , n, we have

Keê ≥ 0.

Proof. For such e and ê, the negative term in the numerator of (5.4) is over the
empty set and thus equals to 0.

Simple Loop Criteria
The formula (5.4) shows that the spanning forests

T ({i,w} , { j, z}) and T ({i, z} , { j,w})

fully determine if Keê is zero or not. In other words, whether tripping e has any
impact on ê depends on whether they can be connected via trees in G. We now
establish an equivalent criteria that is easier to verify from the graph.

If Keê , 0, then (5.4) implies that at least one of spanning forests set T ({i,w} , { j, z})
and T ({i, z} , { j,w}) is nonempty. Without loss of generality, let us assume

T ({i,w} , { j, z}) , ∅.

For any element in T ({i,w} , { j, z}) (see Figure 2.2), the tree containing {i,w}
induces a path from i to w, and the tree containing { j, z} induces a path from j to
z. By adjoining the edges e = (i, j) and ê = (w, z) to these two paths, we obtain a
simple loop1 containing both e and ê. As a result, Keê , 0 implies that we can find
a simple loop in G which contains both e and ê.

The converse, unfortunately, in general does not hold because of certain systems
with high symmetry. That is, there exist pathological systems where a simple loop
containing e and ê exists, yet Keê = 0. Nevertheless, for such systems, by perturbing
the line susceptances Be with an arbitrarily small noise (similar to Section 4.3),
we can “break” the symmetry and show that Keê , 0 almost surely. The detailed
technical treatments for this perturbation analysis are presented in Chapter 6.

The following proposition formally summarizes the discussions above2:
1A loop is simple if it visits each vertex at most once.
2We name this criteria the Simple Loop Criteria for two reasons: (a) The criteria is related to

simple loops in G; (b) This is a loop criteria that is simple.
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Figure 5.2: The construction of GP from P.

Proposition 5.3.3 (Simple Loop Criteria). For e = (i, j), ê = (w, z) ∈ E with
i, j,w, z , n such that G′ := (N , E\ {e}) is connected, we have Keê , 0 “if” and
only if there exists a simple loop in G that contains both e and ê.

The “if” part of Proposition 5.3.3 should be interpreted as a probability one event
under proper perturbations (see Chapter 6 for more details). This proposition shows
that a simple loop containing e and ê must exist if tripping e can possibly cause a
successive failure of ê since otherwise the branch flow on ê is not impacted at all. As
a result, by forming smaller management regions that are connected in a loop-free
manner in the transmission network, we can prevent long-distance propagation of
line failures. This motivates us to propose and study the tree-partition of a power
grid, which we present in the next section.

5.4 Tree-partitions of Power Grids
In this section, we define the tree-partition motivated by the Simple Loop Criteria
from the last section, discuss its uniqueness, and show that the “finest” tree-partition
of a general graph can be computed in linear time.

For a power network G = (N , E), a collection P = {N1,N2, · · · ,Nk } of subsets of
N is said to form a partition of G if Ni ∩ Nj = ∅ for i , j and ∪k

i=1Ni = N . For
any partition, we can define a reduced multi-graph GP from G as follows. First, we
reduce each subset Ni to a super node (see Figure 5.2). The collection of all super
nodes forms the node set for GP . Second, we add an undirected edge connecting the
super nodes Ni and Nj for each pair of ni, n j ∈ N with the property that ni ∈ Ni,
n j ∈ Nj and ni and n j are connected in G. Note that multiple edges are added
when multiple pairs of such ni, n j exist. Unlike the graph G to which we assign an
arbitrary orientation (and thus is a directed graph), the reduced multi-graph GP is
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undirected.

Definition 5.4.1. A partition P = {N1,N2, · · · ,Nk } of G is said to be a tree-
partition if the reduced graph GP forms a tree. When this holds, the sets Ni are
called the regions of P. An edge e = (w, z) with both endpoints insideNi is said to
be within Ni. If e is not within Ni for any i, then we say e forms a bridge3.

Tree-partitions of a power network G are generally not unique. For instance, one
can always collapse G into a single region with the partition P0 = {N }, which is a
trivial tree-partition of G. This in particular yields a different tree-partition for the
graph shown in Figure 5.2. Nevertheless, if we require the tree-partition to be as
“fine” as possible, such a partition is unique.

More concretely, given a graph G, we define a partial order � over the set of
all tree-partitions of G (which is nonempty as it always contains the trivial parti-
tion P0) as follows: For two tree-partitions P1 =

{
N 1

1 ,N
1
2 , · · · ,N

1
k1

}
and P2 ={

N 2
1 ,N

2
2 , · · · ,N

2
k2

}
, we say P1 is finer than P2, denoted as P1 � P2, if for any

i = 1, 2, . . . , k1, there exists some j (i) ∈ {1, 2, . . . , k2} such that N 1
i ⊂ N

2
j (i). That

is, P1 is finer than P2 if each region in P1 is contained in some region in P2 (see
Figure 5.3). It is routine to check that � defines a partial order over all possible
tree-partitions of G.

Definition 5.4.2. A tree-partition P of G is said to be irreducible if P is maximal
with respect to the partial order �.

In other words, an irreducible tree-partition P of G is a partition that cannot be
reduced to a finer tree-partition.

Proposition 5.4.3. For any graph G, there exists a unique irreducible tree-partition.

See Section 5.7 for a proof.

We remark that our proof of Proposition 5.4.3 not only shows that the irreducible
tree-partition of G is unique, but also implies that the problem of computing this
unique irreducible tree-partition reduces to finding all bridges of G. As a result,
we can adapt Tarjan’s bridge-finding algorithm [66] to devise an algorithm that

3We remark that our definition of bridges agrees with the classical definition of bridges in graph
theory (i.e., the removal of any such edge disconnects the original graph) in the sense that if the
tree-partition P is irreducible (see Definition 5.4.2 later) any bridge defined in our sense is a bridge
in the classical sense, and vice versa.
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Figure 5.3: An illustration of the partial order � over tree-partitions. The partition
P1 =

{
N 1

1 ,N
2
2 ,N

1
3 ,N

1
4

}
is finer than P2 =

{
N 2

1 ,N
2
2

}
.

computes the irreducible tree-partition of G in O(n + m) time. This is summarized
in Algorithm 1. Interested readers are referred to the proof of Proposition 5.4.3 in
Section 5.7 for more details on the algorithm.

Algorithm 1 Irreducible Tree Partition Finding Algorithm
1: Execute Tarjan’s bridge-finding algorithm [66] on G = (N , E) to compute the

set of bridges Eb.
2: Remove edges in Eb from E to form the partitioned graph (N , E\Eb).
3: Breadth-first search on the partitioned graph (N , E\Eb) to compute its set of

connected components P := {C1,C2, . . . ,Ck }. Return P.

5.5 Guaranteed Localization
In Section 5.4, we formally defined the tree-partitions of a power grid that are
motivated by the Simple Loop Criteria from Proposition 5.3.3. In this section, we
demonstrate with a small stylized example that tree-partitions help localize impacts
of a line failure in power systems. Moreover, such failure localization does not
necessarily come with increased line congestion if the tree-partition is properly
chosen.

Failure Localization
Consider the double-ring network in Figure 5.4(a), which contains exactly one
generator and one load bus (indicated by G and L, respectively). The original power
flow on this network is also shown in Figure 5.4(a). As a comparison, we consider
the left ring and the right ring as two separate regions, and switch off the upper
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(a) (b)

Figure 5.4: (a) A double-ring network. G is the generator bus and L is the load bus.
Arrows represent the original power flow. (b) The new network after removing an
edge. Arrows represent the new power flow.

tie-line to form a tree-partition. This new network and the redistributed power flow
are shown in Figure 5.4(b).

It is easy to check that in Figure 5.4(a), there is a simple loop containing any pair of
edges. By the Simple Loop Criteria we know that the impact of tripping any single
line in this topology is global; that is, all the other branch flows are changed almost
surely. Thus every other line is subject to potential successive failures. In fact, if we
are allowed to adversarially choose the injection (over all buses) and line capacities,
one can show that for any pair of edges e, ê in Figure 5.4(a) there exists a scenario
where the failure of e triggers the failure of ê.

In contrast, for the graph in Figure 5.4(b), there are only two possible simple loops
given by the left and right ring, respectively. With the Simple Loop Criteria, we
then see that the line failures inside each of these rings do not impact branch flows
in the other. In other words, line failures are localized within their own region in
Figure 5.4(b).

Such localization, however, only applies in one stage insofar as further failures may
involve bridges in the graph, to which the Simple Loop Criteria no longer applies.
In fact, as we show in Chapter 6, tripping a bridge always has a global impact under
mild assumptions, and therefore failures may still propagate from one ring to the
other after multiple steps. Another drawback of the topology in Figure 5.4(b) is
the single-point vulnerability at the newly created bridge, whose failure disconnects
the system into two islands. Nevertheless, by adopting a new control approach for
fast-timescale frequency regulation, we can overcome this drawback (we present
this new approach in Chapter 7).
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Congestion Reduction
It is reasonable to expect that switching off lines to form a tree-partitionmay increase
the stress on the remaining lines and, in this way, worsen the network congestion.
In fact, one may expect that improved system robustness obtained by switching off
lines always comes at the price of increased congestion levels. We now show that
this is not necessarily the case, and demonstrate that if the lines to switch off are
selected properly, it is possible to improve the system robustness and reduce the
congestion simultaneously.

Indeed, by comparing the power flows in Figure 5.4(a) and (b), we see that forming a
proper tree-partition as in Figure 5.4(b) can potentially remove the circulating flows
and hence reduce the overall network congestion. In fact, for this specific example,
the tree-partition as shown in Figure 5.4(b) minimizes the sum of absolute branch
flows over all possible topologies on this network where G and L are connected.

More concretely, let

C :=
{
G′ = (N , E′) : G and L are connected in G′

}
be the collection of all topologies over N (which do not need to be a sub-graph of
Figure 5.4(a)) such that G is connected to L. Let p′ be the injection as shown in
Figure 5.4(a), that is, p′G = d, p′L = −d for some d > 0, and p′j = 0 for other buses.
For each G′ = (N , E′) ∈ C, define the metric

Ψ(G′) :=
∑
e∈E ′

�� f ′e�� ,

where f ′e is the branch flow on e under the injection p′. Then we have:

Proposition 5.5.1. The graph in Figure 5.4(b) minimizes the sum of absolute branch
flow Ψ(·) over C.

Proof. For any G′ = (N , E′) ∈ C, because of the conservation constraints in DC
power flow equations (2.5), the injection p′ and the branch flow f ′ can be considered
as a single “flow” (see [75] for the rigorous definition of such “flow”) from G to
L with volume d. Thus, by the Max-Flow-Min-Cut Theorem we know for any cut
over edges E ⊂ E′, ∑

e∈E

| fe | ≥ d,

and therefore Ψ(G′) ≥ d. For the graph shown in Figure 5.4(b), the sum of absolute
branch flow is exactly d. The desired result then follows.
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In other words, not only does this properly formed tree-partition help reduce the
system congestion, it in fact achieves the best possible reduction in terms of Ψ(·).
We revisit this phenomenon with case studies on more practical IEEE test systems
in Chapter 6.

5.6 Conclusion
In this chapter, we studied the monotonicity and structural properties of power
redistribution in a cascading failure process. We demonstrated that there is a rich
collection of monotonicity one can explore in the Laplacian spectrum, and that
the distributions of different types of trees in the transmission network determine
possible patterns in power redistribution after a line failure. Our results motivate
a novel approach via tree-partitions of the network to localize the impact of line
failures. Moreover, switching off lines to create a tree-partition does not necessarily
worsen the system congestion level if these lines are chosen properly.

5.7 Proofs
Proof of Proposition 5.2.2
Let the set of removed edges be

R1 := {(i1, j1), . . . , (is, js)}

and denote the eigenvectors of LG and LH by v1, v2, . . . , vn and w1,w2, . . . ,wn

respectively. To prove the inequality (5.1), we define

V1 := span ({v1, v2, . . . , vk })

and
W1 := span ({wk,wk+1, . . . ,wn}) .

Then dim(V1) = k, dim(W1) = n − k + 1, which implies dim(V1 ∩W1) > 0 and
therefore we can find β ∈ V1 ∩W1. Without loss of generality, we can choose β
such that ‖ β‖2 = βT β = 1. By the Courant-Fisher-Weyl variational formula, we
then know

µk = min
v∈W1

vT LH v
vTv

≤
βT LH β
βT β

=
∑

(i, j)∈E\R1

wi j (βi − β j )2

≤
∑

(i, j)∈E

wi j (βi − β j )2 =
βT LG β
βT β

≤ max
v∈V1

vT LGv
vTv

= λk .
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To prove the inequality (5.2), define the vector spaces

R2 :=
{
x ∈ Rn : xiτ = x jτ, τ = 1, 2, . . . , s

}

V2 := span ({vk−s, vk−s+1, . . . , vn})

and
W2 := span ({w1,w2, . . . ,wk }) .

Then dim(R2) ≥ n − s, dim(V2) = n − k + s + 1, dim(W2) = k. Therefore,

dim(V2 ∩W2) = dim(V2) + dim(W2) − dim(V2 +W2)

≥ n − k + s + 1 + k − n = s + 1,

and thus dim(R2∩V2∩W2) > 0. So we can find γ ∈ R2∩V2∩W2, and without loss
of generality, we can assume ‖γ‖2 = γTγ = 1. Then again the Courant-Fisher-Weyl
variational formula implies

λk−s = min
v∈V2

vT LGv
vTv

≤
γT LGγ
γTγ

=
∑

(i, j)∈E

wi j (γi − γ j )2

=
∑

(i, j)∈E\R2

wi j (γi − γ j )2 (5.5)

=
γT LH γ
γTγ

≤ max
v∈V1

vT LH v
vTv

= µk,

where (5.5) is because γ ∈ R2.

Proof of Proposition 5.4.3
For G = (N , E), let Eb be the set of edges that all spanning trees of G pass
through. In other words, Eb is the set of all bridges in classical graph theory. Let
Gb = (N , E\Eb) denote the graph obtained from G by removing all edges in Eb,
and let P∗ = {C1,C2, · · · ,Ck } be its connected components, where k = |Eb | + 1.
We claim P∗ is a irreducible tree-partition of G.

First we show that the reduced graph GP∗ is a tree. Assume not, then there is a loop
in GP∗ . Without loss of generality, let us assume the loop is (C1,C2, · · · ,Cl )
for some 2 ≤ l ≤ k. Then, by the way we form GP∗ there exist vertices
nt

1, n
s
1, n

t
2, n

s
2, n

t
3, · · · , n

t
l, n

s
l such that:

1. For each i, the vertices ns
i , n

t
i ∈ Ci;



74

2. For each i, the edge ei,i+l1 := (ns
i , n

t
i+l1) ∈ E, where +l denotes the addition

modulo l.

For any i, since Ci is connected, we can find a path Pi from nt
i to ns

i . It is then clear
that the concatenated path(

P1, e1,2, P2, e2,3 . . . el−1,l, Pl, el,1
)

forms a loop in the original graph G. As a result, not all spanning trees pass through
e1,2 and thus e1,2 < Eb, which leads to a contradiction.

Next we show P∗ is irreducible. To do so, we prove that P∗ is finer than any
tree-partition P := {N1,N2, · · · ,Nk ′} of G. Consider a region in P∗, say C1. Since
both P∗ and P are partitions of G, there must be some region in P, say N1, such
that C1 ∩ N1 , ∅. We claim C1 ⊂ N1. Otherwise, there exists another region in P,
sayN2, such that C1 ∩N2 , ∅. Pick n1 ∈ C1 ∩N1 and n2 ∈ C1 ∩N2. Then n1 , n2

because N1 ∩ N2 = ∅. Now since n1, n2 ∈ C1, and C1 does not contain any bridge
(in classical graph theory sense), by Menger’s Theorem [46], there exists a cycle
(which is not necessarily simple) in C1 containing both n1 and n2. By collapsing
adjacent vertices in this cycle that belong to common regions, we can find regions
N 1

l1
,N 1

l2
, · · · ,N 1

lp1
,N 2

l1
,N 2

l2
, · · · ,N 2

lp2
so that the path from n1 to n2 in this cycle is

given by (
P1

1, e
1
1,l1, P

1
l1, e

1
l1,l2, · · · , e

1
lp1,2

, P1
2

)
and the path from n2 to n1 in this cycle is given by(

P2
2, e

2
2,l1, P

2
l1, e

2
l1,l2, · · · , e

2
lp2,1

, P2
1

)
,

where e1
i, j, e

2
i, j are edges with source vertices in Ni and target vertices in Nj and

P1
i , P

2
i are paths contained in Ni. As a result, we see(

N1,N
1
l1, · · · ,N

1
lp1
,N2,N

2
l1, · · · ,N

2
lp2

)
forms a loop in GP . This implies P is not a tree-partition, contradicting our
assumption.

We thus have shown that P∗ is a irreducible tree-partition of G. Moreover, for any
other irreducible tree-partition P, the above proof shows that

P∗ � P .

Since P is irreducible and thus maximal with respect to �, we see P = P∗. In other
words, any irreducible tree-partition of G must coincide with P∗. This completes
our proof.
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C h a p t e r 6

FAILURE LOCALIZATION VIA TREE-PARTITIONS

In Chapter 5, we established the spectral representation of power redistribution
that captures the Kirchhoff’s Law in terms of tree distributions of the transmission
network. This new representation motivated the tree-partition of power systems that
can prevent the impact of failure from long-distance propagation.

In this chapter, we continue our study along this thread and prove that the tree-
partition proposed in the last chapter provides a precise analytical characterization
of line failure localizability, and that the tree-partition encodes rich information on
how line failures can cascade. In Section 6.1, we focus on the single line failure
case and present our formal characterization of localizability in Theorem 6.1.1,
which summarizes the technical results in Sections 6.2 and 6.3. In particular, in
Section 6.2, we characterize the power redistribution after the tripping of a non-
bridge line and show that the impact of such failures only propagates within well-
defined components, which we refer to as cells, inside the tree-partition regions.
In Section 6.3, we consider the failure of bridge lines and prove that in normal
operating conditions such failures propagate globally across the network and impact
the power flow on all transmission lines. Later in Section 6.4, we extend the results
from Theorem 6.1.1 to the case of multiple line failures, and show that non-bridge
failures stay within the original cell until a bridge fails.

The characterization we provide in Theorem 6.1.1 yields many interesting insights
for the planning and management of power systems and, further, suggests a new
approach for mitigating the impact of cascading failures. Specifically, our charac-
terization highlights that switching off certain transmission lines can lead to more,
smaller regions/cells which localize line failures, thus making the grid less vulner-
able to line outages. In Section 6.5, we illustrate this approach using the IEEE
118-bus test system. We demonstrate that switching off only a negligible portion of
transmission lines can lead to significantly better control of cascading failures. Fur-
ther, we highlight that this happens without significant increases in line congestion
across the network.
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Figure 6.1: Non-zero entries of the Keê matrix (as represented by the dark blocks)
for a graph with tree-partition {N1,N2, · · · ,Nk } and bridge set Eb. The small blocks
represent cells inside the regions.

6.1 Single Line Failure
In this section we state our main analytical result in the single line failure case. It
summarizes the technical results in the two sections that follow.

Our result applies in contexts where the system is operating under normal conditions,
i.e., when the following two assumptions are satisfied: (a) the injection is island-
free (see Definition 6.3.1 for a formal definition); and (b) the grid is participating
with respect to its power balance rule (see Definition 6.3.3 for a formal definition).
Moreover, to address certain pathological cases, we add a perturbation drawn from
certain probability measure µ to the line susceptances and assume µ is absolutely
continuous with respect to the Lebesgue measure Lm on Rm (see Section 6.3).

Theorem 6.1.1. For a power network operating under normal conditions, Keê , 0
“if” and only if:

1. e, ê are within a common tree-partition region and e, ê belong to the same
cell; or

2. e is a bridge.

The “if” part in the statement above should be interpreted as almost surely in µ (see
Definition 6.2.4). This result highlights that, for a practical system, the tree-partition
encodes rich information on how the failure of a line propagates through the network.
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We emphasize that: (a) the condition that µ is absolutely continuous with respect
to Lm is satisfied by almost all practical probability models for such perturbations
(see Section 6.2); and (b) the conditions that the injection is island-free and the
grid is participating are satisfied in typical operating scenarios (see Section 6.3).
Therefore, the conditions posed in Theorem 6.1.1 are satisfied in practical settings.

Figure 6.1 shows how the tree-partition is linked to the sparsity of the Keê matrix
through Theorem 6.1.1. It suggests that, compared to a full mesh transmission
network consisting of single region/cell, it can be beneficial to switch off certain
lines so that more regions/cells are created and the impact of a line failure is
localized within the cell in which the failure occurs. We study this network planning
and design opportunity in Section 6.5.

In the next two sections we prove Theorem 6.1.1. We first characterize the power
redistribution after the tripping of a non-bridge line in Section 6.2, and then consider
the failure of bridge lines in Section 6.3. Later in Section 6.4, we generalize our
single line failure characterization to the case of multi-line failures.

6.2 Non-Bridge Failures are Localizable
In this section, we characterize the power flow redistribution under the DC model
when a non-bridge line is tripped and show that such failures are localized by the
tree-partition regions. More specifically, we study how the tripping of a line e ∈ E

impacts the branch flow on a different edge ê ∈ E. Recall our mention in Section
5.1 that when e is not a bridge, the power flow change on ê due to tripping e is given
by

∆ f ê = Keê × fe.

The impact of the line failure of e can thus be characterized by the line outage
distribution factor Keê.

Impact across Regions
To start with, we consider the case where ê does not belong to the same region as e;
that is, ê either belongs to a different region or ê is a bridge.

Proposition 6.2.1. Consider a power network G with a tree-partition

P := {N1,N2, · · · ,Nk } .

Let e, ê ∈ E be two different edges such that e is not a bridge. Then,

Keê = 0
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for any ê that is not in the same the region containing e.

Proof. If ê is a bridge, then since no simple loop can contain a bridge, we know that
Keê = 0 from the Simple Loop Criteria (Proposition 5.3.3).

If ê is not a bridge, without loss of generality, assume e is withinN1 and ê is within
N2. Since P is a tree-partition, we know that any path starting from a node in N1

and ending at a node inN2 must pass through all bridges in the path fromN1 toN2

in the reduced graph GP . As a result, any loop containing both e and ê must pass
through these bridges at least twice, and thus is not simple. By the Simple Loop
Criteria, we then know that Keê = 0.

This result implies that, when a non-bridge line e fails, any line ê not in the same
tree-partition region as e will not be affected, regardless of whether ê is a bridge or
not. In other words, non-bridge failures cannot propagate through the boundaries
formed by the tree-partition regions of G. This is a formal proof of the intuition
that, under DC power flow model (which assumes zero line loss), the power flow on
a bridge between two regions in a tree-partition depends only on the net generation-
load imbalances in these regions, and therefore a line failure within a region will
not change the flow on this bridge or line flows in the other region.

Impact within Regions
It is reasonable, based on physical intuition, to expect that the converse to the above
result is also true. That is, if e, ê belong to a common region (and thus e is not a
bridge), we would expect Keê , 0. This, however, is not always the case for two
reasons: (a) some vertices within a tree-partition region may “block” simple loops
containing e and ê; and (b) the graph G may be too symmetric. We elaborate on
these two scenarios separately in the following two subsections.

(a) Block Decomposition

To illustrate the issue described above, we use the following example to demon-
strate that certain vertices within a tree-partition region may “block” simple loops
containing e and ê from being formed.

Example 1. Consider a butterfly network shown in Figure 6.2(a) and pick e = (i, j)
and ê = (w, z) from the butterfly wings. It is not hard to see that any loop containing
e and ê must pass through the body vertex c at least twice, and hence is not a simple
loop. From the Simple Loop Criteria, we see that Keê = 0.
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(a) (b)

Figure 6.2: (a) A butterfly network. (b) The block decomposition of the butterfly
network into cells C1 and C2.

The issue with Example 1 is that the butterfly graph is not 2-connected. In other
words, it is possible that the removal of a single vertex (in this case the body vertex
c) can disconnect the original graph. We refer to such a vertex as a cut vertex,
following graph-theoretic convention. From Example 1, we see that cut vertices
may “block” simple loops from being formed.

Fortunately, we can precisely capture such an effect by decomposing each tree-
partition region further through the classical block decomposition [33]. Recall
that the block decomposition of a graph is a partition of its edges such that each
partitioned component is 2-connected. See Figure 6.2(b) for an illustration. We
refer to such components as cells to reflect the fact that they are smaller parts within
a tree-partition region. Note that two different cells within a tree-partition region
may share a common vertex, as the block decomposition is over graph edges. The
block decomposition of a graph always exists and can be found in linear time [67].

Lemma 6.2.2. Consider a power network G and let e, ê be two distinct edges within
the same tree-partition region but across different cells. Then Keê = 0.

Proof. Let e be within the cell Ce and ê be within the cell Cê. It is a classical
result that any path originating from a vertex within Ce to a vertex within Cê must
pass through a common cut vertex in Ce [33]. As a result, it is impossible to find a
simple loop containing both e and ê. By the Simple Loop Criteria, we then know
Keê = 0.
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(b) Symmetry

Next, we demonstrate that graph symmetry1 may also block the propagation of
failures. Again, we illustrate the issue with a simple example.

Example 2. Consider the complete graph on n vertices and pick e = (i, j) and
ê = (w, z) such that e and ê do not share any common endpoints. Assume the
line susceptances are all 1. By symmetry, it is easy to see that there is a bijective
correspondence between T

(
{i,w} , { j, z}

)
and T

(
{i, z} , { j,w}

)
, and thus∑

E∈T ({i,w},{ j,z})

χ(E) −
∑

E∈T ({i,z},{ j,w})

χ(E) = 0.

By Theorem 5.3.1, we then have Keê = 0.

A complete graph is 2-connected and thus forms a cell. Example 2 shows that
even if the two edges e, ê are within the same cell, when the graph G is rich in
symmetries, it is still possible that a failure of e does not impact ê. Nevertheless,
this issue is not critical as such symmetry almost never happens in practical systems
because of heterogeneity in line susceptances. In fact, even if the system is originally
symmetric, an infinitesimal change on the line susceptances is enough to break the
symmetry, as we now show.

More formally, we adopt a form of perturbation analysis on the line susceptances
similar to our discussions in Section 4.3. That is, instead of requiring the line
susceptance to be fixed values Be, we add a random perturbation ω = (ωe : e ∈ E)
drawn from a probability measure µ. Such perturbations can come from manufac-
turing error or measurement noise. The perturbed system2 shares the same topology
(and thus tree-partition) as the original system, yet admits perturbed susceptances
B + ω. The randomness of ω implies the factor Keê is now a random variable. Let
Lm be the Lebesgue measure on Rm. Recall that µ is absolutely continuous with
respect to Lm if for any measurable set S such that Lm(S) = 0, we have µ(S) = 0.

Proposition 6.2.3. Consider a power network G under perturbation µ and let e, ê

be two distinct edges within the same cell. If µ is absolutely continuous with respect
to Lm, then

µ (Keê , 0) = 1.
1By symmetry, we refer to graph automorphisms. The exact meaning of symmetry, however, is

not important for our purpose.
2We assume the perturbation ensures Be + ωe > 0 for any e ∈ E so that the new susceptance is

physically meaningful.
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See Section 6.7 for a proof.

Note that, by the Radon-Nikodym theorem [60], the probability measure µ is abso-
lutely continuous with respect to Lm if and only if it affords a probability density
function. In other words, there are no requirements on either the power or the
correlation of the perturbation for Proposition 6.2.3 to apply. The only necessary
condition is that the measure µ cannot contain Dirac masses. As a result, we see
that for almost all practical probability models of such perturbation (e.g., truncated
Gaussian noise with arbitrary covariance; bounded uniform distribution; truncated
Laplace distribution), Keê , 0 for e, ê within the same cell almost surely, no matter
how small the perturbation is.

This perturbation approach is also useful for our results in the following sections.
When we take this approach, our result often constitutes two directions: (a) an “only
if” direction that should be interpreted as normal; and (b) an “if” direction that holds
almost surely in µ. To simplify the presentation, we henceforth fix a perturbation µ
that is absolutely continuous with respect to Lm, and define the following:

Definition 6.2.4. For two predicates p and q, we say that p “if” and only if q when
both of the following hold:

p⇒ q, q ⇒ µ(p) = 1.

We say the “if” is in µ-sense when we need to emphasize that the “if” direction only
holds almost surely in µ.

6.3 Bridge Failures Propagate
The remaining case necessary to prove Theorem 6.1.1 is a characterization of the
power flow redistribution when a bridge is tripped. Here, we show that such failures
generally propagate through the entire network.

Extended Keê and Island-free Grid
Recall that, when e is not a bridge, the branch flow change on ê due to tripping e is
given by

∆ f ê = Keê × fe. (6.1)

When e is a bridge, tripping e disconnects the power grid into two islands, and the
power in each connected component may not be balanced. Such power imbalance
can be resolved by a power balance rule R (see [9, 11, 13] for examples of such
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rules), which together with the DCmodel uniquely determines the new branch flows
(and thus the branch flow change ∆ f ê). For the purpose of unified notation, we
extend the definition of Keê through (6.1) to the case where e is a bridge. Besides
being related to the A := (L)−1 matrix, the extended Keê factor also depends on the
power injection p and the power balance rule R.

This Keê, of course, is only well-defined if fe , 0. Since when fe = 0 we clearly
have ∆ f ê = 0 for all the remaining lines, we will focus on the case fe , 0 in this
section. Indeed, power networks without micro-grids typically operate in “island-
free mode”, as islanding (i.e., isolating a part of the grid power flow from the rest
of the network) poses a safety hazard to utility maintainence and repair personnel
and potentially leads to damage of the infrastructure [59]. Formally we define the
concept of island-free as follows:

Definition 6.3.1. For a power network G, an injection p is said to be island-free if
under the injection p, the branch flow f in G satisfies fe , 0 for any bridge e.

Intuitively, island-free means that no part of the grid balances its own power. For a
island-free grid, any bridge carries nonzero branch flow, and thus the extended Keê

is always well-defined.

Participating Bus
Consider an island D := (ND, ED ) created from removing the bridge e, and let u

be the endpoint of e that belongs toD. Tripping e from the grid effectively changes
the injection at u by fe, and the balancing rule R distributes such imbalance to a set
of participating buses from D so that the total power imbalance fe is canceled out.
The rules studied in the literature [9, 11, 13, 62] are typically linear in the sense
that, for any participating bus j, the injection adjustment ∆p j dictated by the rule
R is linear in fe. Denote the set of participating buses of R in D as NR and let
nr = |NR |. The rule R can then be interpreted as a linear transformation from R to
Rnr given by

R (M) =
(
α j M : j ∈ NR

)
,

where α j are positive constants that sum to 1 (so that power balance is achieved
after applying R). Different rules correspond to different choices of participating
buses and the constants α j’s. For instance, if the imbalance is uniformly absorbed
by the generators as in [9, 62], we haveNR to be the set of generators and α j = 1/G,
where G is the number of generators in D. As another example, if the imbalance is
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regulated through Automatic Generation Control (AGC), then we haveNR to be the
set of controllable generators and α j to be the normalized generator participation
factors.

Denote the injection adjustment over all buses in D by ∆pD , which comes from
tripping e (that effectively changes the injection at u by fe) and also from the power
balancing by R. That is (∆pD ) j , 0 only for the participating buses or if j = u. Let
C be the matrix obtained from C by removing the slack bus, and A be the inverse of
L (see Chapter 2 for more details on these notations). Then the branch flow changes
on the remaining lines in D are given by

∆ fD = BDC
T
DAD∆pD,

where the matrices with subscript D refer to their submatrices corresponding to
buses or lines in D. We now determine when (∆ fD )ê = 0 for a remaining line
ê ∈ ED , which in turn characterizes whether the extended Keê is zero or not.

Proposition 6.3.2. For ê ∈ ED , we have ∆ f ê , 0 “if” and only if ∃ j ∈ NR such
that there is a path in D from u to j containing ê.

The “if” part in this result is in µ-sense as discussed in Section 6.2. See Section 6.7
for a proof.

Proposition 6.3.2 shows that the positions of participating buses in D play an
important role in distributing power imbalance across the network. In particular,
the power balancing rule R changes the branch flow for every edge that lies in a
possible path from the failure point u to the set of participating buses. As a result,
if ê is a bridge that connects two islands D1 and D2 in D, then assuming u ∈ D1,
we see that ∆ f ê , 0 “if” and only if D2 contains a participating bus since a path
from u to any node in D2 must pass through ê. If ê is not a bridge, then we can
devise a simple sufficient condition on ∆ f ê , 0 using participating regions, defined
as follows:

Definition 6.3.3. For a power grid G with tree-partition P = {N1,N2, · · · ,Nk }

operating under power balance rule R, a region Ni with block decomposition{
Ci

1, C
i
2, · · · , C

i
mi

}
is said to be a participating region if NR ∩ Ci

j contains a non-
cut-vertex for j = 1, 2, . . . ,mi. The grid G is said to be a participating grid ifNi is
participating for i = 1, 2, . . . , k.
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A typical power grid does not contain single-point vulnerabilities such as cut vertices,
which often suggests that the tree-partition regions consist of single cells. In this
case, a region is a participating region if there exists at least one bus in this region
that participates in power balancing and is not the endpoint of a bridge, which
is often satisfied. It is thus reasonable to assume most tree-partition regions are
participating regions and hence most grids are participating. For instance, if all
generators participate in AGC, and load-side participation is implemented at all
load buses, then every bus in the network is a participating bus, and hence the grid
is clearly participating.

Lemma 6.3.4. If Ni is a participating region, then for any ê ∈ Ni,

µ(∆ f ê , 0) = 1.

Proof. Let C be the cell that contains ê. SinceNi is a participating region, we know
there exists a bus within C, say n1, that participates in power balance and is not a
cut vertex. Recall that any path from u to C must go through a common cut vertex
in C [33], say ne. Now by adding an edge between ne and n1 (if it does not exist
originally), the resulting cell C′ is still 2-connected. Thus there exists a simple loop
in C′ that contains the edge (ne, n1) and ê = (w, z), which implies we can find two
disjoint paths P1 and P2 connecting the endpoints of these two edges. Without loss
of generality, assume P1 connects ne to w and P2 connects n1 to z. By concatenating
the path from u to ne, we can extend P1 to a path P̃1 from u tow, which is still disjoint
from P2. Now, by adjoining ê to P̃1 and P2, we can construct a path from u to n1

that passes through ê. By Proposition 6.3.2, we then know µ(∆ f ê , 0) = 1.

Given the above, we now state our main result for bridge failures.

Proposition 6.3.5. Consider a participating power network G with island-free in-
jection p . If e is a bridge of G, then for any ê , e, we have

µ(Keê , 0) = 1.

Proof. If ê is a bridge, denote the two connected components of D after removing
ê as D1 and D2, and without loss of generality assume D1 is originally connected
to e in G. It is easy to see that the branch flow change on ê is given by

∆ f ê =
∑
j∈D2

(∆pD ) j , 0,
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where the last , is because the grid is participating and thus all tree-partition regions
in D2 would adjust their aggregate injections (in the same “direction”, as α j’s are
positive).

If ê is not a bridge, then Lemma 6.3.4 implies µ(∆ f ê , 0) = 1.

6.4 Generalization to Multi-line Failure
In this section, we generalize our results in previous sections to the case where
multiple lines fail simultaneously. That is, we characterize the branch flow changes
of remaining lines after a set E of lines are tripped from the system.

Non-cut Failure
Similar to the single-line failure case, the impact of tripping a set of lines propagates
differently depending on whether the new graph G′ := (N , E\E) obtained from
tripping E is connected. This motivates us to revisit the following definition that is
well-known in graph theory literature.

Definition 6.4.1. A set E is said to be a cut set of G if the graph G′ obtained by
removing E from G is not connected, or a non-cut set if it is not a cut set.

In this subsection, we focus on the case where E is a non-cut set. Given the linear DC
model (2.5) for power distribution, it is reasonable to conjecture that the impact of
tripping a set of lines simultaneously is the linear sum of the impacts from tripping
lines in this set separately. This, however, is not always true. For instance, given
three edges e1, e2, ê, if we trip e1, e2 simultaneously, then the branch flow change in
ê is (see [71], for instance)

∆ f ê =
Ke1 ê

(
fe1 + Ke2e1 fe2

)
1 − Ke1e2 Ke2e1

+
Ke2 ê

(
fe2 + Ke1e2 fe1

)
1 − Ke1e2 Ke2e1

, (6.2)

which is different from the direct linear sum

Ke1 ê fe1 + Ke2 ê fe2 .

More generally, given a non-cut set E of edges, it is known that [71]

∆ f = BC
T

ACE (I − BECT
E ACE )−1 fE, (6.3)

where fE := ( fe : e ∈ E), CE and BE are the submatrices of the incidence
matrix C and the susceptance matrix B corresponding to E. Putting f̃E := (I −

BECT
E ACE )−1 fE , for an edge ê, we then know from (6.3) that ∆ f ê is linear in f̃E:

∆ f ê = Bê ·
∑
e∈E

Dê,e f̃e, (6.4)
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where Dê,e is the generation shift sensitivity factor between ê and e as discussed in
Chapter 2.

The formula (6.4) suggests that tripping E simultaneously from G can be interpreted
as consisting of two steps: (a) first, the original flow fE mixes to a vector of flow
change f̃E according to f̃E = (I−BECT

E ACE )−1 fE , which captures the non-linearity
as illustrated in (6.2); and (b) second, the mixed flow change f̃E propagates linearly
to the remaining edges via (6.4). It is easy to see that Dê,e , 0 if and only if Kêe = 0,
and thus we can apply Theorem 6.1.1 to determine which terms in (6.4) vanish.
In other words, the characterization of step (b) follows directly from our results in
Section 6.2 regarding single line failures.

We are then left to characterize how f̃E is related to fE in step (a). Towards this goal,
we collect edges in E based on the cells they belong to andwrite E = E1∪E2∪· · ·∪Ek

as its cell decomposition. That is, Ei ⊂ Ci for some cell Ci in G, and Ci ∩ Cj = ∅

if i , j. This decomposition is well-defined since a non-cut set E does not contain
any bridge and thus any edge in E must belong to a certain cell.

Proposition 6.4.2. Let E = E1 ∪ E2 ∪ · · · ∪ Ek be its cell decomposition and
put mi = |Ei |. Then with proper permutation of rows and columns, the matrix
(I − BECT

E ACE )−1 is of the form:



H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · Hk



,

where Hi ∈ R
mi×mi for i = 1, 2, · · · , k. Moreover, under a perturbation µ on line

susceptances that is absolutely continuous with respect to Lm, Hi consists of strictly
nonzero values almost surely:

µ((Hi)e1e2 , 0) = 1, e1, e2 = 1, 2, · · · ,mi .

The proof of this result is presented in Section 6.7. It shows that for ẽ ∈ Ei, f ẽ

depends exactly on and only on the values of fe for e ∈ Ei, in the sense that, changing
fe almost surely changes f ẽ for ẽ in the same cell yet has no impact at all for edges
in other cells.

Given E = E1 ∪ E2 ∪ · · · ∪ Ek where Ei ⊂ Ci, denote the branch flow change when
we trip Ei simultaneously from the grid as ∆ f Ei . Proposition 6.4.2 shows that the
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original flow fE mixes within the corresponding cells, which together with (6.4)
implies that

∆ f Ei = Bê ·
∑
e∈Ei

Dê,e f̃Ei = BC
T

ACEi f̃Ei

and therefore,

∆ f = BC
T

ACE f̃E =

k∑
i=1

BC
T

ACEi f̃Ei =

k∑
i=1

∆ f Ei .

In other words, the impact of tripping E simultaneously from the grid is the same as
the aggregate impacts of tripping Ei separately from the grid, which forms a clear
contrast to the non-linearity demonstrated by (6.2). Further, for a fixed cell, say C1,
the impact of tripping E1 from the grid precisely consists of two steps: (a) fE1 mixes
within E1 into a flow change f̃E1; and (b) then the impact of f̃E1 propagates to every
edge in C1 almost surely.

Formally, the above discussions can be summarized as the following theorem (its
proof is presented in Section 6.7):

Theorem 6.4.3. Let K E
eê be the (ê, e)-th entry of BC

T
ACE (I − BECT

E ACE )−1. Then

K E
eê , 0

“if” and only if e and ê are within the same cell.

This result generalizes the non-bridge failure case of Theorem 6.1.1, and shows that
such failures are localized within the corresponding cells (in one stage). Note that,
unlike the single-line failure case where Keê , 0 automatically implies f ê , 0, this
is not the case when E consists of multiple lines because the impacts from different
line failures can potentially cancel each other. Nevertheless, it can be shown that
under mild conditions on the topology of G, by adding a perturbation to the system
injection p, such canceling almost never happens.

Cut Failure
Next we consider the case where E forms a cut set and thus the formula (6.3) no
longer applies (the matrix I − BECT

E ACE is not invertible in this case). The removal
of E disconnects G into multiple islands that are potentially power imbalanced,
and the power balancing rule R needs to be applied to cancel out such imbalances.
For the purpose of presentation, let us focus on one island D thus created and
denote its injection adjustment from R by ∆pD . This adjustment ∆pD has non-zero
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components only at participating buses or buses that are endpoints of some edge in
E (bridge flows are “absorbed” to its endpoints in D).

Given the fixed islandD, put BD,CD, to be the sub-matrices of B,C corresponding
to buses and edges in this island, respectively, and let ED be the set of edges in
E that have both endpoints within this island. Note that ED is a non-cut set of
D since otherwise tripping E would disconnect D to multiple islands. Define
LD to be the Laplacian matrix of D before ED is tripped and also with a certain
slack bus in D removed, and let AD := (LD )−1. Put K ED := BDC

T
DADCED (I −

BEDCT
ED

ADCED )−1 to be the matrix from (6.3) with all the matrices replaced with
their counterparts in this island. With all these notations, we characterize how ∆ f

is related to ∆pD , K ED and ED .

From (6.4), we know that when multiple lines are tripped from the grid simultane-
ously, the aggregate impact in general is different from the linear sum of tripping
the lines separately. The impact from the balancing rule R, though, turns out to be
separable from the rest, as we now show.

Proposition 6.4.4. Given the injection adjustment ∆pD and original flow fED on
ED , we have

∆ fD = BDC
T
D ÃD∆pD + K ED fED, (6.5)

where ÃD is the pseudo-inverse of the Laplacian matrix of D after ED is tripped.

Proof. Denote the original injection over D by pD ; then after tripping E the new
injection on D is pD + ∆pD . Therefore, the new power flow is given by

f̃D = BDCT
D ÃD (pD + ∆pD ).

Since BDCT
D

ÃDpD is simply the power flow on D after ED is tripped under the
original injection pD , we see that

BDCT
D ÃDpD = fD + K ED fED .

The desired result then follows.

The first term in (6.5) captures the impact of power imbalance, and is characterized
by our discussions in Section 6.3. The second term in (6.5) reduces to the non-cut
set case since ED is a non-cut set of D. We thus see that a cut set failure impacts
the branch flow on remaining lines in two independent ways: (a) via participating
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buses to distribute the power imbalances; and (b) via cells to mix and propagate
original flows on the tripped lines. The formula (6.5) precisely captures the impact
propagation through these two ways, which are fully characterized by our results in
previous sections.

Localization Horizon
In this section, we summarize the results in the multi-line failure case and show
that tree-partition localizes the impact of line failures until the grid is disconnected
into multiple islands. More formally, given a cascading failure process described
by B(n), n ∈ N , define

T := min {n ∈ N : F (n) is a cut set of G(n)}

to be the first stage where the grid is disconnected to multiple islands. Without loss
of generality, assume the initial failure B(1) contains only one edge that belongs to
a cell C. Then we know that:

Proposition 6.4.5. For any n ≤ T, we have

F (n) ⊂ C.

In other words, in a cascading failure process, the only way that a non-bridge failure
can propagate to edges outside the cell that the original failure belongs to is to have
the grid disconnected into multiple islands at a certain point of the cascades.

6.5 Case Studies
Our findings highlight a new approach for improving the robustness of the network.
More specifically, Theorem 6.1.1 and the discussions in Section 6.2 suggest that it is
possible to localize failure propagation by switching off certain transmission lines.
This creates more, smaller areas where failure cascades can be contained. In this
section, we consider the IEEE 118-bus test system to illustrate this approach.

Influence Graph
In our experiments, the system parameters are taken from the Matpower Simulation
Package [85], and we plot the influence graphs among the transmission lines to
demonstrate how a line failure propagates in this network3. More specifically, in the

3The original IEEE 118-bus network has some trivial “dangling” bridges that we remove (col-
lapsing their injections to the nearest bus) to obtain a more transparent influence graph.
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(a) Original influence graph.

(b) The influence graph after switching off e1, e2 and e3. The black dashed line indicates the failure
propagation boundary defined by the tree-partition. The vertices c1 and c2 are cut vertices.

Figure 6.3: Influence graphs on the IEEE118-bus network before and after switching
off lines e1, e2 and e3. Blue edges represent physical transmission lines and grey
edges represent connections in the influence graph.
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(a) (b)

Figure 6.4: (a) Histogram of the normalized branch flow changes. (b) Cumulative
distribution function of the positive normalized branch flow changes. Note that the
curve intercepts the y-axis since 52.59% of the branch flows decrease.

influence graph we plot, two edges e and ê are connected if the impact of tripping e

on ê is not negligible (we use |Keê | ≥ 0.005 as a threshold). In Figure 6.3(a), we plot
the influence graph of the original network. It can be seen that this influence graph
is very dense and connects many edges that are topologically far away, showing the
non-local propagation of line failures within this network.

Next, we switch off three edges (indicated as e1, e2 and e3 in Figure 6.3(b)) to
obtain a new topology that has a bridge and whose tree-partition now consists of
two regions of comparable size. The new influence graph is shown in Figure 6.3(b).
One can see that, compared to the original influence graph in Figure 6.3(a), the new
influence graph is much less dense, and in particular, there are no edges connecting
transmission lines that belong to different tree-partition regions. We also note that
the network in Figure 6.3(b) contains two cut vertices (indicated by c1 and c2 in the
figure, with c2 being created when we switch off the lines). It can be checked that
line failures are “blocked” by these cut vertices, which verifies our results in Section
6.2.

Congestion Management
It is also of interest to see how the network congestion is impacted by switching off
these lines. To do so, we collect statistics on the difference between the branch flows
in Figure 6.3(b) and those in 6.3(a). In Figure 6.4(a), we plot the histogram of such
branch flow differences normalized by the original branch flow in Figure 6.3(a). It
shows that roughly half (the exact percentage is 47.41%) of the transmission lines
have higher congestion yet the majority of these branch flow increases are negligible.
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To more clearly see how much the congestion worsens on these lines, we plot the
cumulative distribution function of the normalized positive branch flow changes,
which is shown in Figure 6.4(b). One can see from the figure that 90% of the branch
flows increase by no more than 10%.

6.6 Conclusion
In this chapter, we provided a precise analytical characterization of line failure
localizability in power systems. We demonstrated that the tree-partition of the
transmission network graph encodes rich information on the regions that a line
failure can impact. Further, using a case study on the IEEE 118-bus test network, we
showed that switching off certain transmission lines can improve the grid robustness
against line failures without significantly increasing line congestion.

6.7 Proofs
Proof of Proposition 6.2.3
Let C be the cell that e and ê belong to and write e = (i, j) and ê = (w, z). Consider
the polynomial in line susceptances (Be : e ∈ E) defined as

f (B) :=
∑

E∈T ({i,w},{ j,z})
χ(E) −

∑
E∈T ({i,z},{ j,w})

χ(E).

We claim that f is not identically zero.

First, let C be a simple cycle in C that contains both e and ê. Such a cycle always
exists as C is 2-connected by construction, and it is a classical result that any pair
of edges are contained in a simple cycle for 2-connected graphs [33]. Therefore, we
can find two disjoint paths P1 and P2 connecting the endpoints of e and ê. Without
loss of generality, assume P1 connects i to w and P2 connects j to z. By iteratively
adding edges from G to P1 and P2, we can extend P1 and P2 to a spanning forest
of G consisting of exactly two trees. Moreover, the tree extended from P1 contains
{i,w} and the tree extended from P2 contains { j, z}. We thus have constructed an
element of T

(
{i,w} , { j, z}

)
. Denote this element by E0.

Second, we show that

T
(
{i,w} , { j, z}

)
∩ T

(
{i, z} , { j,w}

)
= ∅.

Indeed, consider an element E1 from T
(
{i,w} , { j, z}

)
, which consists of two trees

T1 andT2 withT1 containing {i,w} andT2 containing { j, z}. If E1 ∈ T
(
{i, z} , { j,w}

)
,
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Figure 6.5: The localized graph GN1 . Nt is the imaginary bus containing e andN1,i’s
are remaining imaginary buses. The power adjustments from the power balance rule
R are shown near each participating bus in reaction to a power loss of M .

then T1 must also contain z. However, this implies z ∈ T1 ∩ T2, and thus T1 and T2
are not disjoint, contradicting the definition of T

(
{i,w} , { j, z}

)
.

As a result, we see that the element E0 constructed in our first step contributes a term
to

∑
E∈T ({i,w},{ j,z}) χ(E) but not to

∑
E∈T ({i,z},{ j,w}) χ(E). Therefore f (B) contains

non-vanishing terms and is not identically zero.

It is well-known from algebraic geometry that the root set of a polynomial which is
not identically zero has Lebesgue measure zero [31]. That is, we have

µ
(

f (B + ω) = 0
)
= Lm

(
f (B + ω) = 0

)
= 0,

where the first equality is because µ is absolutely continuous with respect to Lm (it
is clear that the root set of the polynomial f is measurable since f is continuous).

Finally, by Theorem 5.3.1 we know Keê = 0 if and only if f (B + ω) = 0. This then
implies that

µ(Keê , 0) = 1 − µ(Keê = 0) = 1 − µ
(

f (B + ω) = 0
)
= 1

and completes our proof.

Proof of Proposition 6.3.2
Bymerging two tree-partition regions if necessary, we can assume ê belongs to a cer-
tain tree-partition region, sayN1. Let n1, n2, · · · , nl be the set of participating buses
in N1. By collapsing all regions other than N1, we can define a “localized” graph
GN1 centered around N1 as shown in Figure 6.5, with the following constructions:
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(a) For each bridge b incident to N1, we create an imaginary bus that aggregates
all injections inside all tree-partition regions that can be reached by N1 through b

before e is tripped, and this imaginary bus is connected toN1 via the corresponding
bridge b. (b) If e is not directly incident toN1, then e must connect two regions that
are collapsed to a common imaginary bus, sayNt . If e is incident toN1 and its end
point in N1 is w, then we let Nt be an additional imaginary bus that is connected to
w to mimic the edge e (that is, before e is tripped this imaginary bus Nt supplies
power fe towards w and after e is tripped, Nt loses all its injection; moreover, the
edge connecting Nt to ne has susceptance Be). Denote other imaginary buses as
N1,1,N1,2, · · · ,N1,q.

Without loss of generality, let us assume because of the tripping of e, the aggregate
power in D is in shortage of M := fe. Then the enforcement of the power balance
rule R would increase the power injection at each participating bus in D, which
translates to the power adjustment as demonstrated in Figure 6.5. Specifically, the
injection atNt would drop by αNt M as the power flow from e is lost (the drop is gen-
erally not M unless e is directly incident toN1); the injections atN1,1,N1,2, · · · ,N1,q

increase by αN1,i M; and injections at the participating buses n1, n2, · · · , nl in N1

increase by αni M . In other words, by rebalancing power according to the rule R,
we effectively shift the injections from Nt to N1,1,N1,2, · · · ,N1,q and n1, n2, · · · , nl .

Let the set of edges in GN1 be E1. PickNt to be the slack bus in this localized graph
GN1 and define an index set

I :=
{
N1,1,N1,2, · · · ,N1,q, n1, n2, · · · , nl

}
.

Write ê = (w, z). For any i ∈ I, let gi (B) be the following polynomial in line
susceptances (Be : e ∈ E1):∑

E∈TE1 ({i,w},{Nt,z})

χ(E) −
∑

E∈TE1 ({i,z},{Nt,w})

χ(E),

where TE1 (N1,N2) is the set of spanning forests of GN1 consisting of exactly two
trees that contain N1 and N2 respectively. By our graphical representation of the
generation shift sensitivity factor defined in Chapter 2, the branch flow change on ê

coming from the power shift from Nt with amount αi M towards i is given by

∆ f i
ê = αi M ×

gi (E)∑
E∈TE1

χ(E)
,

where TE1 denotes the set of all spanning trees of GN1 . Put

g(B) :=
∑
i∈I

αig
i (B).
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By linearity, we know
∆ f ê = M ×

g(B)∑
E∈TE1

χ(E)
.

If g(B) , 0, then we can find at least one i such that TE1 ({i,w} , {Nt, z}) or
TE1

(
{ j, z} , {Nt,w}

)
is nonempty. Without loss of generality, assume

TE1 ({i,w} , {Nt, z})

is nonempty. Any element in TE1 ({i,w} , {Nt, z}) contains two trees containing {i,w}
and {Nt, z} respectively, and thus induces one path from w to i and another path
from Nt to z. By adjoining (w, z) to these two paths, we can create a path from i to
Nt that contains ê. It is easy to see that this path induces a path in the original graph
G between u and a certain participating bus j. Therefore, ∆ f ê , 0 only if ∃ j ∈ NR
such that there is a path in D from u to a participating bus j containing ê.

On the other hand, if there is a path P inD from u to a participating bus j containing
ê, we claim g(B) is not identically zero. Indeed, by a similar argument to the proof
of Proposition 6.2.3, we know that for any i, j ∈ I (including the case i = j), the
following is true:

TE1 ({i,w} , {Nt, z}) ∩ TE1

(
{ j, z} , {Nt,w}

)
= ∅.

As a result, a term in gi (B) with positive coefficient is never canceled by a term
in g j (B) with negative coefficient, and vice versa. Therefore, to show g(B) is not
identically zero, it suffices to show at least one term of gi (B) is not identically zero.

To do so, note that by removing ê from P, we can create a path from u to one
endpoint of ê, say w, and another path from z to j. This implies that in the localized
graph Figure 6.5 we have a path from Nt to w and another path from z to some
i ∈ I. By iteratively adding edges, these two paths can be extended to an element
in TE1

(
{ j, z} , {Nt,w}

)
, which contributes to a term of gi (B) that is not identically

zero.

Again by the classical algebraic geometry result asserting the root set of any poly-
nomial that is not identically zero has Lebesgue measure zero [31], and because of
the absolute continuity of µ, we know

µ
(
∆ f ê = 0

)
= Lm

(
g(B + ω) = 0

)
= 0

and thus
µ

(
∆ f ê , 0

)
= 1.

This completes our proof.
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Proof of Proposition 6.4.2
Let LE := CT

E ACE . First we claim that if ei ∈ Ei, e j ∈ E j and i , j, then LE
eie j = 0.

To see this, note that
LE

eie j = Dei,e j,

where Dei,e j is the generation shift sensitivity factor between ei and e j (see Chapter
2). It is easy to see that Dei,e j = 0 if and only if Keie j = 0. In particular, if ei and e j

are in different cells, then Dei,e j = 0. The claim is then proved.

Note that both I and BE are diagonal matrices. As a result, by permuting the edges
according to the cells they belong to, we know that I − BE LE is in the following
block-diagonal form:



J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jk



,

where Ji ∈ R
mi×mi for i = 1, 2, · · · , k. Moreover, Ji is invertible since I − BE LE is

invertible (see [64] for instance). This in particular implies that (I − BE LE )−1 is of
the form



H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · Hk



,

where Hi ∈ R
mi×mi for i = 1, 2, · · · , k.

Next we consider H1 and fix e1, e2 ∈ {1, 2, · · · ,mi}. Then

(H1)e1e2 =
det(Je1,e2

1 )
det(J1)

,

where Je1,e2
1 is the matrix obtained from J1 by replacing the e1-th column with a

vector with value 1 at e2-th component and 0 otherwise. Put J′1 to be the submatrix
of J1 obtained by removing the e1-th column and e2-th row from J1. Then

det(Je1,e2
1 ) = (−1)e1+e2 det(J′1).

The entries of J′1 are of the form 1 − Bei Dei,ei or Bei Dei,e j . Recall from Corollary
2.4.4 that for any pair of edges ei = (u, v), e j = (w, z), we have

Dei,e j =
1∑

E∈TE χ(E)
*.
,

∑
E∈T ({u,w},{v,z})

χ(E) −
∑

E∈T ({u,z},{v,w})

χ(E)+/
-
.
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Since all edges in E1 are within the same cell, Dei,e j is not identically zero for any
ei, e j ∈ E1 (including the case ei = e j). We now show that det(J′1) is a polynomial
in B that is not identically zero. To do so, we first prove the following lemmas:

Lemma 6.7.1. If ei , e j are two different edges, then any term in the numerator of
Bei Dei,e j does not contain Be j .

Proof. The numerator of Bei Dei,e j is given by the difference of

Buv

∑
E∈T ({u,w},{v,z})

χ(E)

and
Buv

∑
E∈T ({u,z},{v,w})

χ(E).

When ei , e j , for each element of E ∈ T ({u,w} , {v, z}), adding ei = (u, v) to E

induces a spanning tree of G that passes through ei = (u, v) but not e j = (w, z),
and dE (u,w) < dE (v,w), where dE (·, ·) means the distance in terms of minimum
number of hops in E. Conversely, for any spanning tree of G that passes through
ei = (u, v) but not e j = (w, z), and dE (u,w) < dE (v,w), removing ei induces an
element of E ∈ T ({u,w} , {v, z}).

A similar argument also applies to T ({u, z} , {v,w}). Therefore the denominator of
Bei Dei,e j is exactly given as ∑

E∈Tei,−ej

sign(E) χ(E), (6.6)

where Tei,−e j is the set of spanning trees of G that pass through ei = (u, v) but not
e j = (w, z), and

sign(E) :=



1, dE (u,w) < dE (v,w)

−1, dE (u,w) ≥ dE (v,w).

In particular, Be j does not appear in any of these terms.

Lemma 6.7.2. If ei = e j , then the numerator of Bei Dei,e j is∑
E∈Tei

χ(E),

where Tei consists of all spanning trees of G that pass through ei.
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Proof. When ei = e j , Dei,e j reduces to the effective reactance of ei, and the result
follows directly from Corollary 2.4.6.

Lemma 6.7.3. Let g1, g2, · · · , gl1 and h1, h2, · · · , hl2 be functions in B of the form
Bei Dei,e j with ei, e j ∈ C1. Assume the e j’s for gk are different over k = 1, 2, · · · , l1,
and the e j’ for hk are different over k = 1, 2, · · · , l2. Let q1 be the number of gk’s
with ei = e j , and q2 be the number of hk’s with ei = e j . If q1 , q2, then for any
fixed a1, a2 , 0, the following function

f (B) := a1

l1∏
k=1

gk + a2

l2∏
k=1

hk

is not identically zero.

Proof. Without loss of generality, assume l1 ≤ l2 and q1 < q2. Put ζ (B) =∑
E∈TE χ(E), by collecting a common denominator, we then see that

f (B) =
a1ζ

(l2−l1) (B)g̃(B) + a2 h̃(B)
ζ l2 (B)

,

where g̃(B) and h̃(B) are homogeneous polynomials in B with order l1(n − 1) and
l2(n − 1), respectively.

Let α(g) := (e j : gk = Bei Dei,e j, ei , e j, k = 1, 2, · · · , l1) be the vector collecting
all edges e j corresponding to terms in gk’s with ei , e j , and define α(h) similarly.
Since q1 < q2, we can find an edge ẽ j in α(h) that is not in α(g). Without loss of
generality, say this specific h is hk̃ . By Lemma 6.7.1, we know that the numerator
of hk̃ does not contain Bẽ j . As a result, the order of Bẽ j is at most l2 − 1 in all terms
of h̃(B).

Now, we claim that ζ (l2−l1) (B)g̃(B) contains a term where Bẽ j is of order l2, which
is strictly larger than l2 − 1. This term cannot be canceled by any term from h̃(B),
and thus we know f (B) is not identically zero. To show this claim, note that by
expanding ζ (l2−l1) (B)g̃(B), we know each term in ζ (l2−l1) (B)g̃(B) is a product of
terms from the factors involved. Thus it suffices to pick a term that contains Bẽ j

from each of these factors.

First we consider the ζ factor. Since ζ sums over all spanning trees in G, and any
edge in G can be extended to a spanning tree of G by iteratively adding edges, we
know there exists at least one term in ζ that contains Bẽ j . We pick this term out for
every ζ in ζ (l2−l1) (B)g̃(B), which multiplies to a term in which Bẽ j has order l2− l1.



99

Next we consider gk’s with ei = e j . For such gk , since ei and ẽ j are within the same
cell, we can find a simple loop in this cell that contains both ei and ẽ j . Removing
an edge different from ei and ẽ j from this loop induces a path which, by iteratively
adding edges, can be extended to a spanning tree that passes through e j and ẽ j . This
tree is an element of Tei , and thus by Lemma 6.7.2 appears in the numerator of gk .
We pick this term for gk , which contains Bẽ j . Doing so for all gk’s of this type
contributes l1 − q1 order of Bẽ j .

Lastly, we consider gk’s with ei , e j . Since ei and ẽ j are within the same cell, we
can find a simple loop in this cell that contains both ei and ẽ j . If e j is also in this
loop, then we remove e j . Otherwise, remove an edge different from ei and ẽi. This
induces a path that contains ei and ẽ j but not e j . By iteratively adding edges other
than e j , we can extend this path into a spanning tree of G that contains ei and ẽ j but
not e j , which in particular is an element of Tei,−e j . By (6.6) we then know that this
tree appears in the numerator of gk . We pick this term for gk , which contains Bẽ j .
Doing so for all gk’s of this type contributes q1 order of Bẽ j .

In summary, we can find a term that contains Bẽ j in every factor of ζ (l2−l1) (B)g̃(B).
Multiplying all these terms together induces a term of ζ (l2−l1) (B)g̃(B) where Bẽ j is
of order l2. Our claim then follows, and this completes the proof.

Recall that
det(J′1) =

∑
σ∈Sm1

sgn(σ)
∏
e∈E1

(J′1)eσ(e), (6.7)

where Sm1 is the symmetric group of order m1 and sgn(σ) is the signature of σ.

Now, depending on whether e1 = e2, the matrix J′1 contains either m1 − 1 or m1 − 2
entries of the form 1 − Bẽi Dẽi,ẽ j . When there are m1 − 1 such entries, they must all
appear on the diagonal of J′1, and thus multiplying all these terms induces a term in
(6.7) that has the form

m1−1∏
k=1

Beik
Deik ,eik

.

All other terms in det(J′1) contain at least one factor of the form Bẽi Dẽi,ẽ j with
ẽi = ẽ j , and thus by Lemma 6.7.3, cannot cancel the above term. As a result, we
know that det(J′1) is not identically zero.

When there are m1 − 2 entries of the form 1 − Bẽi Dẽi,ẽ j in J′1, these entries must
appear on the diagonal of J′1. And thusmultiplying them together with the remaining
diagonal entry of J′1 induces a term in (6.7) that has exactly m1 − 1 factors of the
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form BẽDẽ,ẽ. Meanwhile, all other terms in det(J′1) contain at least two factors of
the form Bẽi Dẽi,ẽ j with ẽi , ẽ j , and thus by Lemma 6.7.3, cannot cancel the above
term. As a result, we know that det(J′1) is not identically zero.

In summary, we have shown that det(J′1) is a rational function that is not identically
zero. Therefore we see

µ(det(J′1) = 0) = Lm(det(J′1) = 0) = 0,

or equivalently (H1)e1e2 , 0 almost surely in µ. The desired result then follows.

Proof of Theorem 6.4.3
Without loss of generality, assume e ∈ E1. From Proposition 6.4.2, we see that the
e-th column of BC

T
ACE (I − BECT

E ACE )−1 is given by

BC
T

ACE1 (H1)e,

where (H1)e is the column of H1 corresponding to the edge e. As a result, we know

K E
eê = Bê ·

∑
e′∈E1

Dê,e′ (H1)e′e.

From the proof of Proposition 6.4.2, we can rewrite the above formula to

K E
eê =

∑
e′∈E1 BêDê,e′ det(Je′,e

1 )
det(J1)

, (6.8)

where Je′,e
1 is the matrix obtained from J1 by replacing the e′-th column with a

vector with value 1 at e-th component and 0 otherwise.

If ê < C1, then Dê,e′ = 0 for all e′ ∈ E1 by Theorem 6.1.1. Thus we know K E
eê = 0.

If ê ∈ C1, then we claim that the numerator of (6.8) is not identically zero. If the
claim is true, then

µ(K E
eê , 0) = Lm(K E

eê , 0) = 1

and this completes the proof. We now show the claim indeed holds.

First we consider the case ê < E1. In this case, note that the term in (6.8) corre-
sponding to e′ = e contains one term that has exactly m1 − 1 factors of the form
BẽDẽ,ẽ (ê , e′ for all e′ ∈ E1 in this case), while all other terms in the numerator
of (6.8) contains at most m1 − 2 factors of the form BẽDẽ,ẽ. From Lemma 6.7.3 we
then see that the numerator of (6.8) is not identically zero.
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Next we consider the case ê ∈ E1 but ê , e. In this case, among all terms of (6.8),
only the terms corresponding to e′ = ê and e′ = e contain one term that has exactly
m1 − 1 factors of the form BẽDẽ,ẽ, and these two terms are

BêDê,eBêDê,ê

∏
e′′,e,ê

Be′′De′′,e′′

and
BeDe,êBêDê,ê

∏
e′′,e,ê

Be′′De′′,e′′,

respectively, which do not cancel each other since ê , e. All other terms in the
numerator of (6.8) contain at most m1 − 2 factors of the form BẽDẽ,ẽ. From Lemma
6.7.3 we then see that the numerator of (6.8) is not identically zero.

Finally we consider the case ê = e. In this case, among all terms of (6.8), only the
term corresponding to e′ = e contains one term that has exactly m1 factors of the
form BẽDẽ,ẽ, while all other terms in the numerator of (6.8) contain at most m1 − 2
factors of the form BẽDẽ,ẽ. From Lemma 6.7.3 we then see that the numerator of
(6.8) is not identically zero.

Therefore the claim holds.
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C h a p t e r 7

REAL-TIME OUTAGE MITIGATION

In this chapter, we leverage our results on fast-timescale swing dynamics and the
localizability guarantees of tree-partitions to propose a distributed control strategy
that operates on the frequency regulation timescale and offers provable failure mit-
igation properties and localization guarantees. Our control scheme ensures that
failures do not propagate whenever there is a feasible way to avoid it (see Section
7.1 on the rigorous definition of such feasibility), and the impact of failures are
localized as much as possible in a manner configurable by the system operator.

We introduce the main idea of our control design in Section 7.3, whose failure
mitigation and localization guarantees are established by the technical results in
Sections 7.4 and 7.5. The key piece of our control builds upon the so-called Unified
Controller (UC), a novel design approach to frequency regulation [44, 82–84].
Our design revolves around the new and powerful properties that emerge when
the regions that UC manages form a tree-partition. More specifically, in Section
7.4 we characterize how UC responds to an initial failure when it operates over a
tree-partition, and prove that a non-critical failure is always mitigated and localized.
Later in Section 7.5, we discuss how the tree-partition enables the system operator
to explicitly specify the unfolding pattern of critical failures, and prove that UC can
be extended to detect such scenarios as part of its normal operation.

In Section 7.6, we compare the proposed control strategy with classical Automatic
Generation Control (AGC) using the IEEE 118-bus test system. We demonstrate
that by switching off only a small subset of transmission lines and adopting UC as
the fast timescale controller, one can significantly improve the system robustness to
failures in terms of the N − 1 security standard. Moreover, in a majority of the load
profiles that are examined, our control strategy further localizes the impact of initial
failures to the regions where they occur, leaving the operating points of all other
control areas unchanged. Lastly, we highlight that when load shedding is inevitable,
the proposed framework incurs significantly less load loss compared to AGC, in all
of our case studies.
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Figure 7.1: An illustration of the failure propagation model.

7.1 System Model
In this section, we extend the cascading failure model presented in Chapter 5 by
adding fast-timescale swing dynamics, and discuss how the cascading process con-
sidered in Chapter 5 can be considered as a special case of this model.

Failure Occurrence and Propagation
In full generality, the control strategy that we introduce later applies to both generator
failures and line failures. However, to simplify the presentation, in this chapter we
focus only on line failures as the generalization to bus failures is straightforward.1

Recall that we describe the cascading failure process by keeping track of the set
of failed lines B(n) over n ∈ {1, 2, · · · , N }. Instead of assuming that the power
flow redistributes according to the DC model (2.5), we now assume that the system
evolves according to the swing dynamics (2.1) and hence the equilibrium point is
related to the design of the controllable injection d j . Overloaded lines are tripped
at slower timescales than the dynamics (2.1) and the cascade stages reflect this
fact. Indeed, at each stage we assume that the system reaches the new steady state.
The crux of our failure propagation model lies in the interplay between such slow-
timescale line tripping process and the fast-timescale dynamics on system transient
behavior described by (2.1), as illustrated in Figure 7.1.

More specifically, for each stage n ∈ {1, 2, . . . , N }, the system evolves according to
the dynamics (2.1) on the topology G(n), and converges to an equilibrium point
x∗(n) = (θ∗(n), ω∗(n), d∗(n), f ∗(n)) that depends on G(n). If all the branch flows
f ∗(n) are below the corresponding line ratings at equilibrium, then x∗(n) is a secure
operating point and the cascade stops. Otherwise, let F (n) be the subset of lines
whose branch flows exceed the corresponding line ratings. The lines inF (n) operate

1Our results readily apply to cases where the failure of a generator or substation can be emulated
by the simultaneous failures of all the transmission lines connected to the corresponding bus.
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above their safety limits in steady state, so by the end of stage n they are overheated
and tripped; i.e., B(n + 1) = B(n) ∪ F (n). Line overloads during the transient
phase before the system converges to x∗(n) are considered to be tolerable because
the transient dynamics in (2.1) are not long enough to overheat a line [83] (lasting
only seconds to a few minutes). This process repeats for stage n + 1 and so on.

Recovering Previous Models
Our failure propagation model brings new perspectives to the commonly studied
models in the literature, and reveals interesting insights into how certain critical
limitations from previous work can be circumvented. In particular, the extra free-
dom in choosing d j in the fast timescale dynamics (2.1) allows us to design and
improve how the system reacts to line failures; thus achieving failure mitigation ob-
jectives directly using the well-known analytical tools from the frequency regulation
literature.

As a first example to demonstrate this new approach, we show that, by adopting the
classical droop control [8] as the dynamics for d j in our framework, the cascading
failure models from previous literature such as [62, 78] can be readily recovered.
Indeed, as shown in [83], the closed-loop equilibrium of (2.1) under droop control
is the unique2 optimal solution to the following optimization:

min
ω,d, f ,θ

∑
j∈N

d2
j

2K j
+

D jw
2
j

2
(7.1a)

s.t. r − d − Dω = C f (7.1b)

f − BCTθ = 0 (7.1c)

d j ≤ d ≤ d j, j ∈ N , (7.1d)

where K j’s are the generators’ participation factors [8]. By plugging (7.1c) into
(7.1b), it is routine to check that any feasible point x = (θ, ω, d, f ) of (7.1) satisfies∑

j r j =
∑

j (d j + D jω j ). As a result, the Cauchy-Schwarz inequality implies that( ∑
j∈N

r j

)2

=

[ ∑
j∈N

(
d j + D jω j

) ]2

≤
∑
j∈N

*
,

d2
j

2K j
+

D jω
2
j

2
+
-

∑
j∈N

(
2K j + 2D j

)
,

2Such uniqueness is up to a constant shift of all phase angles θ. See [83].
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and equality holds if and only if

d j =
K j∑

j

(
K j + D j

) ∑
j

r j, ω j =

∑
j r j∑

j

(
K j + D j

) . (7.2)

Therefore, if the control limits (7.1d) are not active, (7.2) is always satisfied at the
optimal point x∗ = (θ∗, ω∗, d∗, f ∗).

Now consider a line e being tripped from the transmission network G, and for
simplicity assume the control limits (7.1d) are not active. If e is a bridge, the
tripping of e results in two islands of G, say N1 and N2, and two optimization
problems (7.1) corresponding to N1 and N2 respectively. For l = 1, 2,

∑
j∈Nl

r j

represents the total power imbalance in Nl , and therefore (7.2) implies that droop
control adjusts the system injection so that the power imbalance is distributed to
all generators proportional to their participation factors in both N1 and N2. If e is
not a bridge, then

∑
j∈N r j = 0 and thus (7.2) implies the system operating point

remains unchanged. This control recovers exactly the failure propagation dynamics
in [62, 78]. Moreover, one can show that this still holds when (7.1d) is active with
a more involved analysis on the KKT conditions of (7.1).

We thus see that this droop control mechanism underlies some of the previous results
in the literature on cascading failures in power systems. In particular, this suggests
that, by using a different control design for d j , we can obtain different and potentially
better system behaviors after a line failure. For instance, it is shown in Chapter 6
that bridge failures under droop control have a global impact, while (as we outline in
Section 7.4) the impact of bridge failures can in fact be localized using UC. Our new
proposed control strategy leverages precisely this extra freedom in choosing the d j’s
to offer stronger guarantees in both failure mitigation and localization compared to
previous work.

Unified Controller (UC)
UC is a control approach recently proposed in the frequency regulation literature
[44, 82–84]. Compared to classical droop control or Automatic Generation Control
(AGC) [8], UC aims to achieve primary frequency control, secondary frequency con-
trol, and congestion management simultaneously at the frequency control timescale.

The key feature of UC that we use here is that the closed-loop equilibrium of (2.1)
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under UC solves the following optimization:

min
f ,d,θ

∑
j∈N

c j (d j ) (7.3a)

s.t. r − d − C f = 0 (7.3b)

f = BCTθ (7.3c)

EC f = 0 (7.3d)

f
e
≤ fe ≤ f e, e ∈ E (7.3e)

d j ≤ d j ≤ d j, j ∈ N , (7.3f)

where c j (·)’s are associated cost functions that penalize deviations from last optimal
dispatch point (and hence attain minimum at 0), (7.3b) guarantees power balance at
each bus, (7.3c) is the DC power flow equation, (7.3d) enforces zero area control
error [8], (7.3e) and (7.3f) are the flow and control limits. The matrix E encodes
control area information as follows: Given a partition PUC = {N1,N2, · · · ,Nk } of
G that specifies the control areas in secondary frequency control, E ∈ {0, 1} |P

UC |×|N |

is defined by El, j = 1 if bus j is in regionNl and El, j = 0 otherwise. An edge e ∈ E

is called a tie-line if its endpoints belong to different regions in PUC [8, 83]. As
a result, the l-th row of EC f = 0 ensures that the branch flow deviations on the
tie-lines connected to Nl sum to zero.

UC is designed so that its controller dynamics combined with the system dynamics
(2.1) form a variant of projected primal-dual algorithms to solve (7.3). It is shown in
[83, 84] that when the optimization problem (7.3) is feasible, undermild assumptions
UC is globally asymptotically stable and converges to an optimal point of (7.3). Such
an optimal point is unique (up to a constant shift of θ) if the cost functions c j (·)
are strictly convex. We refer readers to [83, 84] for its exact controller design and
analysis.

7.2 Connecting UC to Tree-partition
We have introduced two distinct partitions of a power network so far: the tree-
partition P tree and the control area partition PUC. In general, P tree and PUC can
be different. However, when they do coincide, the underlying power grid inherits
analytical properties fromboth tree-partition andUC,making the system particularly
robust against failures. Our proposed control strategy leverages this connection, as
we present inmore detail in Section 7.3, andwe henceforth assume thatP tree = PUC.
Under this assumption, the bridges and the tie-lines of the power network G also
coincide.
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Definition 7.2.1. Given a cascading failure process described by B(n), with n ∈
{1, 2, . . . , N }, the set B(1) is said to be its initial failure.

In a power system, it is reasonable to expect that different initial failures can have
different levels of impact on the rest of the network. For instance, the disconnection
of a single solar panel from the grid is unlikely to cause any disruption to the system
operation, while the failure of a transmission line that connects a major generator to
the grid may incur significant load shedding. We thus need to distinguish different
types of failures and ensure that the proposed control scheme reacts accordingly.

Definition 7.2.2. An initial failure B(1) is said to be critical if the UC optimization
(7.3) is infeasible over G(1) := (N , E\B(1)), or non-critical if it is not critical.

To formally state our localization result, we define the following concept to clarify
the precise meaning of a region being “local” with respect to an initial failure.

Definition 7.2.3. Given an initial failure B(1), we say that a tree-partition region
Nl is associated with B(1) if there exists an edge e = (i, j) ∈ B(1) such that either
i ∈ Nl or j ∈ Nl .

As we discuss in Section 7.3, our control strategy provides strong guarantees in
mitigation and localization for both non-critical and critical failures, in a way that
only the operation of the associated regions are adjusted whenever possible.

7.3 Proposed Control Strategy
Our control strategy revolves around the new and powerful properties of the power
system that emergewhen the control areas that UC operates over form a tree-partition
of the network. In this section, we outline how this strategy can be implemented, in
both the planning phase, during which a tree-partition structure of the control areas
should be created, and the operating phase, during which UC actively monitors and
reacts to line failures. Figure 7.2 illustrates the sequence of events after an initial
failure in the proposed control strategy.

Planning Phase: the Tree-partition of Control Areas
Power networks are often comprised of multiple control areas, each of which is
managed by an independent system operator (ISO). Although these areas exchange
power with each other as prescribed by economic dispatch, their operations are
relatively independent and it is desirable to ensure that system disturbances in one
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Figure 7.2: Flowchart of the events after an initial failure under the proposed control
strategy.

area do not have a significant impact on the other areas. This is usually achieved
via the zero area control error constraint in secondary frequency control [8], and is
enforced in UC with (7.3d). As we mentioned in Section 7.2, such control areas
typically do not form a tree-partition of the transmission network, since having
redundant lines is believed to be a crucial part in maintaining N − 1 security of the
power system [8, 12, 34].

In order to implement our control strategy, we propose to create a tree-partition
whose regions are precisely the control areas over which UC operates. This can
be done by switching off a subset of the tie-lines so that the reduced multi-graph
obtained from the control area partition forms a tree. The switching actions only
need to be carried out in the planning phase, as line failures that occur during the
operating phase do not affect the tree-partition already in place3. It is interesting
to note that, when the subset of lines to switch off is chosen carefully, this action
not only helps localize the impact of line failures, but can also improve the system
reliability in the N−1 security sense. This seemingly counter-intuitive phenomenon
is illustrated by our case studies in Section 7.6.

3In fact, in certain cases line failures lead to “finer” tree-partitions as more regions are potentially
created when lines are removed from service.
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Operating Phase: Extending the Unified Controller
Once a tree-partition is formed, the power network under UC operates as a closed-
loop system and responds to disturbances such as transmission line failure or loss of
generator/load in an autonomous manner. In normal conditions where the system
disturbances are insignificant, UC always drives the power network back to an
equilibrium point that can be interpreted as an optimal solution of (7.3). This is
the case, for instance, when non-critical failures (see Definition 7.2.2) happen, and
therefore such failures are always properly mitigated.

However, in extreme scenarios where a major disturbance (e.g., a critical failure)
affects the system, the optimization problem (7.3) that UC aims to solve can be
infeasible. In other words, it is physically impossible for UC to achieve all of
its control objectives after such a disturbance. This causes UC to be unstable
(see Proposition 7.5.1) and, further, leads to successive failures or even large scale
outages. As such, there is a need to extend the version of UC proposed in [83, 84]
with two features: (a) a critical failure detection component that monitors the system
states and ensures UC is aware of such extreme situation promptly when it happens;
and (b) a constraint lifting component that responds to critical failures by proactively
relaxing certain goals that UC tries to achieve, and ensures system stability can be
reached at minimal cost.

Our technical results in Section 7.5 suggest a way to implement both components as
part of the normal operation of UC. System operators can prioritize different control
areas by specifying the sequence of constraints to lift in response to extreme events.
This allows the non-associated regions to be progressively involved and coordinated
in a desired pattern when mitigating critical failures. We present and discuss some
potential schemes in Section 7.5.

Guaranteed Mitigation and Localization
As we show in detail in Sections 7.4 and 7.5, our control strategy provides strong
guarantees in mitigation and localization for both non-critical and critical failures.
More specifically, the proposed control strategy ensures that: (a) non-critical fail-
ures are always fully mitigated by the associated regions, and the operating points
for non-associated regions are not impacted at all; and (b) critical failures are guar-
anteed to be mitigated with certain constraints in (7.3) being lifted, in a progressive
manner specified by the system operator. Thus the proposed strategy always pre-
vents successive failures from happening, while localizing the impact of the initial
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failures as much as possible.

7.4 Localizing Non-critical Failures
In this section, we consider non-critical failures (as defined in Section 7.2), and
prove that such failures are always fully mitigated within the associated regions.

We first characterize how the system operating point shifts in response to such
failures. Recall that if an initial failure B(1) is non-critical, the UC optimization
(7.3) is feasible and thus the new system operating point

x∗(1) := (θ∗(1), ω∗(1), d∗(1), f ∗(1))

under UC control satisfies all the constraints in (7.3). In particular, none of the line
limits in (7.3e) is violated at x∗(1), i.e., x∗(1) is a secure operating point and the
cascade stops, namely F (1) = ∅.

Lemma 7.4.1. Given a non-critical initial failure B(1), the new operating point
x∗(1) prescribed by the UC satisfies f ∗e (1) = 0 for every bridge e.

The above lemma shows that, in addition to the zero area control error constraints en-
forced by (7.3d), when the control areas that UC operates over form a tree-partition,
UC further guarantees zero flow deviations on all tie-lines. This demonstrates how
a tree-partition enables UC to achieve a stronger performance guarantee compared
to its original form as proposed in [83, 84]. The following proposition is another
result of this type, which clarifies how tree-partition brings localization properties
to UC.

Proposition 7.4.2. Assume c j (·) is strictly convex and achieves its minimum at 0
for all j ∈ N . Given a non-critical initial failure B(1), if a tree-partition regionNl

is not associated with B(1), then d∗j (1) = 0 for all j ∈ Nl .

The core idea underlying the proof of this proposition is easy to explain: Lemma
7.4.1 implies that the tie-line flows, which are the only coupling among the regions,
are zero; thus the UC optimization (7.3) over different regions are totally “separated”
and hence, the operating points for non-associated regions should remain unchanged.
A rigorous proof is, however, more involved, requiring a technical result that relates
the solution space of CBCT to tree-partitions.
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Lemma 7.4.3. Let P tree = {N1,N2, · · · ,Nl } be a tree-partition of G and consider
a vector b ∈ R|N | such that b j = 0 for all j ∈ N1 and

∑
j∈Nk

b j = 0 for k , 1. Set

∂N1 := { j : j < N1, ∃i ∈ N1 s.t. (i, j) ∈ E or ( j, i) ∈ E}

and N 1 = N1 ∪ ∂N1. Then the linear system

CBCT x = b (7.4)

is solvable, and any solution x to (7.4) satisfies xi = x j for all i, j ∈ N 1.

The set ∂N1 defined above are the “boundary” buses of N1 in G and N 1 can be
interpreted as the closure of N1. It has a simple interpretation in the DC power
flow context. Think of b as bus injections and x as the phase angles. Suppose that
the injection at every node in N1 is zero and that the injections within every other
region Nk are balanced (i.e., sum to zero). Then Lemma 7.4.3 says that the phase
angles are the same at every node in N 1, i.e., the angle difference across every line
in or incident to N1 is zero. This result only holds if the underlying regions form a
tree-partition (its proof is presented in Section 7.8).

Proof sketch of Proposition 7.4.2. For the purpose of simplified notations, we drop
the stage index (1) from x∗ and denote x∗ = (θ∗, ω∗, d∗, f ∗). To streamline the
presentation, we only sketch the main ideas of the proof here, leaving the details to
Section 7.8.

First, we construct a different point x̃∗ from x∗ as follows: (a) replace d∗j with 0 for
all j ∈ Nl ; (b) replace f ∗e with 0 for e ∈ E that have both endpoints in Nl ; and (c)
replace θ∗ by a solution θ̃∗ obtained from solving DC power flow equations with
injections specified by d̃∗. Since c j (·) attains its minimum at 0, x̃∗ achieves at least
the same objective value (7.3a) as x∗. Thus x̃∗ must be an optimal point of (7.3),
provided it is feasible.

Second, as the core step in the whole proof, we apply Lemma 7.4.3 to all regions of
P tree separately, and show that θ̃∗ is consistent with the injections and branch flows
specified by x̃∗. This, together with routine checks, allows us to prove the feasibility
of the point x̃∗.

Finally, when the cost functions c j (·) are strictly convex, the optimal solution to
(7.3) is unique in d∗ and f ∗ (θ∗ is also unique up to a constant shift). We thus
conclude that x̃∗ = x∗ (up to a constant shift on θ). This completes the proof.
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This result reveals that, with the proposed control strategy, when the system con-
verges to an equilibrium after a non-critical failure, the injections and power flows in
the non-associated regions remain unchanged. In other words, our control scheme
guarantees that non-critical failures in a control area do not impact the operations of
other areas at all, achieving a stronger control area independence than that ensured
by the zero control error requirement.

Unlike the tree-partition only approach in Chapter 6, bridge failures in this proposed
control strategy are treated in exactly the same way as other lines, provided that
they are non-critical. Furthermore, the impact of such bridge failures is localized
to the associated regions. This contrast with the global impact of bridge failures in
Chapter 6 demonstrates again the benefits of connecting UC to tree-partitions.

7.5 Controlling Critical Failures
We now consider the case where the initial failure is critical. This may happen when
a major generator or transmission line is disconnected from the grid.

Unified Controller under Critical Failures
Since UC is a concept that emerged from the frequency regulation literature, the
underlying optimization (7.3) is always assumed to be feasible in existing studies
[44, 82–84]. As such, little is known about the behaviors of UC if this assumption is
violated, which is the case when a critical failure happens. We now derive a result
that closes this gap and characterizes the limiting behavior of UC in this setting.

In order to do so, we first need to formulate the exact controller dynamics of UC.
Unfortunately, there is no standard way to do so as multiple designs of UC have been
proposed in the literature [44, 82–84], each with its own strengths and weaknesses.
Nevertheless, all of the proposed controller designs are (approximately) projected
primal-dual algorithms to solve the underlying optimization (7.3), and satisfy the
following assumptions:

UC1 : For all j ∈ N , d j ≤ d j (t) ≤ d j is satisfied for all t. This is achieved either
via a projection operator that maps d j (t) to this interval, or by requiring the
cost function c j (·) to approach infinity near these boundaries.

UC2 : Dual variables are introduced for constraints (7.3b)-(7.3e) and maintained
throughout the operation. Denote these dual variables by λi for

i ∈
{
1, 2, · · · , |N | + 3 |E | + ���P

UC���
}
.
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UC3 : The primal variables f , θ and the dual variables λi are updated by a primal-
dual algorithm4 to solve (7.3).

Proposition 7.5.1. Assume UC1-UC3 hold. If (7.3) is infeasible, then there exists
a dual variable λi such that:

lim sup
t→∞

|λi (t) | = ∞.

This result implies that after a critical failure, UC cannot drive the system to a
proper and safe operating point. In fact, it always leads to instability in the system
(certain dual variables can take arbitrarily large values). This drawback, however,
when viewed from a different perspective, suggests a way to detect critical failures.
More specifically, since Proposition 7.5.1 guarantees certain dual variables will
become arbitrarily large in UC operation when (7.3) is infeasible, we can always set
a threshold for the dual variables and raise an infeasibility warning if some of them
exceed the corresponding thresholds. By doing so, critical failures can always be
detected, and this happens in a distributed fashion in parallel to the normal operation
of UC. Moreover, by setting tighter thresholds around the normal operating point,
such failures can be detected more promptly.

Of course, this method is subject to false alarms, since non-critical failures may also
cause relatively large dual variable values in transient state. There is an intrinsic
tradeoff on the level of the thresholds to be applied, in the following sense: A tighter
threshold allows critical failures to be detected more promptly, yet also leads to
a larger false alarm rate. In practice, these thresholds should be chosen carefully
by the operator in accordance to the specific system parameters and application
scenarios.

Constraint Lifting as a Remedy
In the event of a critical failure, it is physically impossible for UC to simultaneously
achieve all of its control objectives. Our discussion in the last subsection shows
that, if UC still operates following its normal dynamics, the system is subject to
instability and thus successive failures. In the worst case, this can lead to large scale
outages.

4Wedo not consider the specific variants of the standard primal-dual algorithms that are proposed
in different designs of UC, since the standard primal-dual algorithm is often a good approximation.
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We can prevent this from happening by lifting certain constraints from UC. Without
compromising the basic objective to stabilize the system, there are two ways to do
so:

• The zero area control error constraints (7.3d) between certain control areas
can be lifted. This in practice means the controller now gets more control
areas involved to mitigate the failure.

• Certain load shedding can be applied, which in (7.3) is reflected by enlarging
the range [d j, d j] for the corresponding load buses.

By iteratively lifting the two types of constraints above, one can guarantee the
feasibility of (7.3) and ensure that the system under the proposed control converges
to a stable point, which in particular is free from successive failures. This, however,
comes with the cost of potential load loss, and thus must be carried out properly. In
practice, the iterative relaxation procedure can follow predetermined rules specified
by the system operator to prioritize different objectives.

7.6 Case Studies
In this section, we evaluate the performance of the proposed control strategy on
the IEEE 118-bus test system, which comprises of two control areas (as shown in
Figure 7.3). The three dashed lines (15, 33), (19, 34), and (23, 24) are switched off
whenever a tree-partition needs to be formed, and the new topology is referred to as
the revised network.

N − 1 Security
We first evaluate the system robustness to failures in terms of the N − 1 security
standard, where single line failure scenarios are examined. Those failure scenarios
are created as follows: First, we generate 100 load injections by adding random
perturbations (up to 25% of the base value) to the nominal load profile from [85]
and then solve the DC OPF to obtain the corresponding generator operating points.
Second, we iterate over every transmission line in the IEEE 118-bus test system as
initial failures and simulate the cascading process thus triggered. This produces
about 18,000 scenarios.

We implement both the proposed control strategy and the classical AGC [8] on the
IEEE 118-bus testbed, and compare the average number of vulnerable lines across
all the single line failure scenarios that lead to either successive failures or load
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One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

System Description:

118 buses
186 branches
91 load sides
54 thermal units re

Region 1 Region 2

Figure 7.3: One line diagram of the IEEE 118-bus test system with two control
areas. Dashed blue lines are switched off when a tree-partition needs to be formed.

shedding when they are tripped. In order to illustrate the improvements of the
proposed control strategy in different levels of system congestion, we scale down
the transmission line capacities to α = 0.9, 0.8, 0.7 of the base values and collect
statistics on the number of vulnerable lines in all these settings.

Our results are summarized in Figure 7.4. It can be seen that the proposed control
incurs a far lower number of vulnerable lines in all cases compared to AGC, and this
difference is particularly prominent when the system is congested. We highlight that
this happens with the proposed control operating over the revised network, where
some of the tie-lines are switched off and hence certain capacity is removed from
the system. Moreover, the remaining tie-line (30, 38) in the revised network is never
vulnerable under the proposed control.

Loss of Load and Disruption to System Operation
We now look at the load loss rate, defined as the ratio between the total loss of
load with respect to the original total demand, of the system to evaluate how well
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Figure 7.4: Number of vulnerable lines with respect to different levels of system
congestion.

failures are mitigated in different settings. In this experiment, we scale down the
generator capacities by 35% and the line capacities by 30%, so that the system is
more susceptible to failures. In order to demonstrate how UC and tree-partition
impact the system performance separately, we look at four different settings:

• AGC on the original network;

• AGC on the revised network;

• UC on the original network; and

• UC on the revised network.

Figure 7.5 plots the complementary cumulative distribution (CCDF) of the load loss
rates across all of the failure scenarios in these settings.

As one can see from the figure, for both the original and revised networks, UC
significantly outperforms AGC. In particular, the largest load loss rate for UC is less
than 2% for both networks, while AGC can lead to loss rate up to 14% on the revised
network and 21% on the original network. This demonstrates the benefits of using
our control strategy to mitigate failures.

Although the performance of UC in terms of loss rate are roughly the same with
or without tree-partition, there is a drastic difference when we look at how well the
failure impacts are localized. In Figure 7.6, we plot the CCDF on the number of
generators whose operating points are adjusted in response to the initial failures. It
shows that the operation of much fewer generators is disrupted when the control
areas that UC operates over form a tree-partition. This confirms our intuition and
theoretical results about how a tree-partition structure helps localize failures.
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Figure 7.5: CCDF for load loss rate.
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Figure 7.6: CCDF for generator response.

7.7 Conclusion
In this chapter, we proposed a control strategy that combines the concepts of the
unified controller and the network tree-partition to mitigate and localize cascading
failures in power system. Our case studies on the IEEE 118-bus test system show
that the proposed control scheme greatly improves system robustness to cascading
failures as compared to classical AGC. In particular, this new control prevents
successive failures from happening while localizing the impacts of initial failures at
the same time. Moreover, when load shedding is inevitable, the proposed strategy
incurs significantly less load loss.

7.8 Proofs
Proof of Lemma 7.4.1
To simplify the notations, we drop the stage index (1) from x∗ and denote x∗ =

(θ∗, ω∗, d∗, f ∗). Given a bridge e = ( j1, j2) of G, removing e from G partitions G
into two connected components, say C1 and C2. Without loss of generality, assume
j1 ∈ C1 and j2 ∈ C2. For a region Nv from P, we say Nv is within C1 if for any
j ∈ Nv we have j ∈ C1. It is easy to check from the definition of tree-partitions that
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any region Nv from P is either within C1 or within C2, and e is the only edge in G
that has one endpoint in C1 and the other endpoint in C2.

Let P′ be the set of regions within C1 from P, and put 1P ′ ∈ {0, 1} |P | to be its
characteristic vector (that is, the l-th component of 1P ′ is 1 if Nl ∈ P

′ and 0
otherwise). Given two buses i and j, we denote i → j if (i, j) ∈ E and j → i if
( j, i) ∈ E. With such notations, from (7.3d), we have

0 = 1T
P ′

EC f ∗

=
∑

l:Nl∈P
′

∑
i∈Nl

*.
,

∑
j: j→i

f ∗ji −
∑
j:i→ j

f ∗i j
+/
-

=
∑

i:i∈C1

*.
,

∑
j: j→i

f ∗ji −
∑
j:i→ j

f ∗i j
+/
-

= f ∗e +
∑

i:i∈C1

*.
,

∑
j: j→i, j∈C1

f ∗ji −
∑

j:i→ j, j∈C1

f ∗i j
+/
-
, (7.5)

where (7.5) is because the only edge with one endpoint in C1 and the other endpoint
in C2 is e. Note that

∑
i:i∈C1

*.
,

∑
j: j→i, j∈C1

f ∗ji −
∑

j:i→ j, j∈C1

f ∗i j
+/
-

=
∑

(i, j)∈E1

(
f ∗i j − f ∗i j

)
= 0,

where E1 is the set of edges with both endpoints in C1. From (7.5), we see that
f ∗e = 0.

Since the bridge e is arbitrary, we have thus proved the desired result.

Proof of Proposition 7.4.2
We now prove the core step as mentioned in the main body of this chapter. Denote
x̃∗ = (θ̃∗, d̃∗, f̃ ∗). From the way that x̃∗ is constructed, the constraints (7.3d) are
easily seen to be satisfied. If we can show that f̃ ∗ = BCT θ̃∗, then since θ̃∗ is obtained
by solving the DC power flow equations from CBCT θ̃∗ = r − d̃∗, the constraints
(7.3b) and (7.3c) are also satisfied. Now we show that f̃ ∗ = BCT θ̃∗ indeed holds.

To do so, we first establish the following lemma:
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Lemma 7.8.1. For any tree-partition region Nz in P, we have∑
j∈Nz

(
r j − d∗j

)
=

∑
j∈Nz

(
r j − d̃∗j

)
= 0.

Proof. Let 1Nz ∈ R
|N | be the characteristic vector ofNz, that is, the j-th component

of 1Nz is 1 if j ∈ Nz and 0 otherwise. Summing (7.3b) over j ∈ Nz, we have:∑
j∈Nz

(
r j − d∗j

)
= 1T
Nz

C f = (EC f )z = 0,

where (EC f )z is the z-th row of EC f .

For Nz that is different from Nl , we have d̃∗j = d∗j for any j ∈ Nz by construction.
Thus for such Nz we also have ∑

j∈Nz

(
r j − d̃∗j

)
= 0.

For Nl , since Nl is not associated with B(1), we have r j = 0 for j ∈ Nl . Moreover,
by construction we also know that d̃∗j = 0 for j ∈ Nl . As a result∑

j∈Nl

(
r j − d̃∗j

)
= 0.

This completes the proof.

Now consider a region Nw that is different from Nl . In this case, we do not change
the injection from x∗ when constructing x̃∗, thus d∗j − d̃∗j = 0 for all j ∈ Nw. From
Lemma 7.8.1, we see that

∑
j∈Nz

(
d∗j − d̃∗j

)
= 0 for all z. Since d∗ and θ∗ conform

to the DC power flow equations, we have

CBCTθ∗ = r − d∗

and thus
CBCT

(
θ∗ − θ̃∗

)
= d̃∗ − d∗.

By Lemma 7.4.3, we then have θ∗j − θ̃
∗
j is a constant over N w, and thus

θ̃∗i − θ̃
∗
j = θ

∗
i − θ

∗
j

for all i, j ∈ N w. This in particular implies

f̃ ∗e = f ∗e = Be(θ∗i − θ
∗
j ) = Be(θ̃∗i − θ̃

∗
j )
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for all e = (i, j) such that i ∈ Nw or j ∈ Nw.

Next, let us consider the region Nl . In this region, we have d̃∗j = 0 by construction.
Moreover, sinceNl is not associated withB(1), we know r j = 0 for all j ∈ Nl . Thus
r j − d̃∗j = 0 for all j ∈ Nl . Further, from Lemma 7.8.1 we have

∑
j∈Nz

(
r j − d̃∗j

)
= 0

for all z. Thus by Lemma 7.4.3 and CBCT θ̃∗ = r − d̃∗, we know θ̃∗i = θ̃∗j for all
i, j ∈ N l . This implies that for any edge e = (i, j) within Nl , we have

f̃ ∗e = 0 = Be(θ̃∗i − θ̃
∗
j ).

As a result, we see that f̃ ∗e = Be(θ̃∗i − θ̃
∗
j ) holds for all e ∈ E. This completes the

proof.

Proof of Lemma 7.4.3
As we discussed in Chapter 2, the Laplacian matrix L := CBCT of a connected
graph G = (N , E) has rank n − 1, and Lx = b is solvable if and only if 1T b = 0,
where 1 is the vector with a proper dimension that consists of ones. Moreover, the
kernel of L is given by span(1).

If N1 is the only region in P, then b = 0 since b j = 0 for all j ∈ N1. We thus know
the solution space to Lx = b is exactly the kernel of L, and the desired result holds.

IfN1 is not the only region in P, then we can find a bus that does not belong toN1,
say bus z. Without loss of generality, assume the bus z ∈ Nk and corresponds to the
last row and column in L. Consider a solution x to Lx = b. Since the kernel of L

is span(1), we can without loss of generality assume that the last component of x is
0. Let L be the submatrix of L obtained by removing its last row and last column,
and similarly let x and b be the vectors obtained by removing the last component of
x and b, respectively. Then L is invertible (see Chapter 2), and we have

Lx = b.

Denote the matrix obtained by deleting the l-th row and i-th column of L by L
li,

then by Proposition 2.4.2 we have

det
(
L

li
)
= (−1)l+i

∑
E∈T ({l,i},{z})

χ(E), (7.6)

where χ(E) =
∏

e∈E Be and T ({l, i} , {z}) is the set of spanning forests of G that
consists of exactly two trees containing {l, i} and {z}, respectively. We refer readers
to Chapter 2 for a detailed discussion on how to interpret these notations.
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To state some useful results derived from (7.6), we introduce the following definition
of directly connected regions:

Definition 7.8.2. For a tree-partition P = {N1,N2, · · · ,Nk } of G, we say Nv and
Nw are directly connected without Nl if the path from Nv to Nw in GP does not
contain Nl .

The path fromNv toNw in the above definition is unique since GP forms a tree. As
an example, in Fig. 5.2, N1 and N2 are directly connected without N3, yet N2 and
N3 are not directly connected without N1.

In the following proofs we need to refer to paths in both the original graph G and
the reduced graph GP . To clear potential confusions, we agree to the following
terminologies: Given two sets of nodes Nv and Nw (that can be different from the
tree-partition regions inP) ofG, a path inG fromNv toNw refers to a path consisting
of nodes (and lines) from the original graph G whose starting node belongs to Nv

and ending node belongs to Nw. Given two tree-partition regions Nv and Nw, a
path in GP from Nv to Nw refers to a path consisting of nodes (and lines) from the
reduced graph GP whose starting node is Nv and ending node is Nw. Since there
is a natural correspondence between bridges in G and lines in GP , if a line e in GP
is contained in a path P in GP , we also say the corresponding bridge ẽ from G is
contained in P.

Lemma 7.8.3. Assume N2 and Nk are not directly connected without N1. If
l1, l2 ∈ N2 and i ∈ N 1, then

T ({l1, i} , {z}) = T ({l2, i} , {z}).

Proof. The path from N1 to Nk in GP contains a bridge in G that incidents to N1.
Denote this bridge as ẽ and let w be the endpoint of ẽ that is not in N1. Then it is
easy to check that w is a cut node that any path from N 1 to N2 in G must contain.

Since N2 and Nk are not directly connected without N1, the path from N2 to Nk

in GP passes through N1. In other words, any path in G from N2 to Nk must pass
through a certain node in N1, and thus contains a sub-path in G from N1 to Nk .
This implies that w is contained in any path in G from N2 to Nk .

Note that any tree containing i ∈ N 1 and l1 ∈ N2 induces a path in G from N 1 to
N2 and thus contains w. Further, any tree containing l2 ∈ N2 and z ∈ Nk induces a
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path from N2 to Nk in G, and thus also contains w. As a result, these two types of
trees always share a common node w and cannot be disjoint:

T ({l1, i} , {l2, z}) = ∅.

Similarly T ({l2, i} , {l1, z}) = ∅. Therefore

T ({l1, i} , {z}) = T ({l1, l2, i} , {z}) t T ({l1, i} , {l2, z})

= T ({l1, l2, i} , {z}) t T ({l2, i} , {l1, z})

= T ({l2, i} , {z}),

where t means disjoint union. The desired result then follows.

Lemma 7.8.4. AssumeN2 andNk are directly connected withoutN1. If l ∈ N2 and
i1, i2 ∈ N1, then

T ({l, i1} , {z}) = T ({l, i2} , {z}).

Proof. The path from N1 to Nk in GP (denoted as P1) contains a bridge in G that
incidents toN1. Denote this bridge as ẽ and let w be the endpoint of ẽ that does not
belong to N1. Then it is easy to check that w is a cut node that any path in G from
N 1 to Nk must pass through.

We claim that if N2 and Nk are directly connected without N1, then any path from
N 1 to N2 in G must also contain w. Indeed, suppose not, then the path from N1

to N2 in GP (denoted as P2) contains a bridge in G that incidents to N1, and this
bridge is different from ẽ. If P1 and P2 do not have any common super nodes, then
concatenating the two paths induces a path in GP fromN2 toNk that passes through
N1. In other words, the path fromN2 toNk in GP passes throughN1, contradicting
the assumption that N2 and Nk are directly connected without N1. Therefore, P1

and P2 share a common node, say N3. However, P1 and P2 induce two different
sub-paths in GP from N1 to N3, contradicting the assumption that GP forms a tree.
We thus have proved the claim.

Finally, note that any tree containing i1 ∈ N 1 and l ∈ N2 induces a path in G from
N 1 to N2 and thus contains w. Further, any tree containing i2 ∈ N 1 and z ∈ Nk

induces a path in G from N 1 to Nk and thus contains w. Therefore these two types
of trees always share a common node w and cannot be disjoint:

T ({l, i1} , {i2, z}) = ∅.
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Similarly T ({l, i2} , {i1, z}) = ∅. As a result,

T ({l, i1} , {z}) = T ({l, i1, i2} , {z}) t T ({l, i1} , {i2, z})

= T ({l, i1, i2} , {z})

= T ({l, i1, i2} , {z}) t T ({l, i2} , {i1, z})

= T ({l, i2} , {z}).

Now since bk = bk = 0 for all k ∈ N1, by Cramer’s rule, we have

xi = xi =

∑
l<N1 (−1)l+ibk det

(
L

li
)

det
(
L
) (7.7)

for all i.

Let P1 be set of the regions in P that are directly connected to Nk without N1 and
let P2 be the remaining regions. For a region Nl ∈ P1, let

χ(Nl ) :=
∑

E∈T ({l̃,i},{z})

χ(E),

where l̃ is an arbitrary bus in Nl . χ(Nl ) is well-defined by Lemma 7.8.3. This,
together with the assumption

∑
j∈Nl

b j = 0, then implies

∑
l∈Nl

(−1)l+ibl det
(
L

li
)
=

∑
l∈Nl

bl
*.
,

∑
E∈T ({l,i},{z})

χ(E)+/
-
=

∑
l∈Nl

bl χ(Nl )

= χ(Nl )
∑
l∈Nl

bl

= 0.

As a result∑
l<N1

(−1)l+ibl det
(
L

li
)
=

∑
Nl∈P1

∑
l∈Nl

(−1)l+ibl det
(
L

li
)
+

∑
Nl∈P2

∑
l∈Nl

(−1)l+ibl det
(
L

li
)

=
∑
Nl∈P2

∑
l∈Nl

(−1)l+ibl det
(
L

li
)

=
∑
Nl∈P2

∑
l∈Nl

bl
*.
,

∑
E∈T ({l,i},{z})

χ(E)+/
-
,

which by Lemma 7.8.4 takes the same value for all i ∈ N 1. In other words, the
equation (7.7) takes the same value for all i ∈ N 1. This completes the proof.
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Proof of Proposition 7.5.1
First, let us put x = [ f , d, θ] ∈ R2|N |+|E | to collect all the decision variables of the
UC optimization (7.3) and rewrite it to a more generic form:

min
d≤d≤d

c(d) (7.8a)

s.t. Ax ≤ g (7.8b)

Cx = h, (7.8c)

where A,C, g, h are matrices (vectors) of proper dimensions from the optimization
(7.3). Let λ1, λ2 be the corresponding dual variables to (7.8b) and (7.8c), respec-
tively, and put λ := [λ1; λ2] ([·; ·] here means matrix concatenation as a column),
we can then write the Lagrangian for (7.8) as

L(x, λ) = c(d) + λT
1 (Ax − g) + λT

2 (Cx − h).

Now by the assumption UC3, we know that:

λ̇1 = [Ax − g]+λ1
(7.9a)

λ̇2 = Cx − h, (7.9b)

where the projection operator [·]+λ1
is defined component-wise by

([x]+λ1
)i :=




xi if xi > 0 or λ1,i > 0

0 otherwise.
(7.10)

Consider two closed convex sets S1 = {x |Ax ≤ g,Cx = h} and S2 = {x |d ≤ d ≤ d}.
If the optimization (7.3) is infeasible, then S1 ∩ S2 = ∅, i.e., the sets S1 and
S2 are disjoint. As a result, there exists a hyperplane that separates S1 and S2:
∃p ∈ R2|N |+|E |, q ∈ R such that

pT x > q,∀x ∈ S1 and pT x ≤ q,∀x ∈ S2.

This then implies the system



Ax ≤ g

Cx = h

pT x ≤ q

is not solvable. By Farkas’ Lemma, we can then findw1,w2,w3 of proper dimensions
such that w1 ≥ 0,w3 ≥ 0, ATw1+CTw2+pw3 = 0, and gTw1+hTw2+qw3 = ε < 0.
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Define z = [w1;w2]. We then see that under the UC controller, we have for any t:

zT λ̇(t) = wT
1 [Ax(t) − g]+λ + w

T
2 (Cx(t) − h)

≥ wT
1 [Ax(t) − g]+λ + w

T
2 (Cx(t) − h) + w3(pT x(t) − q) (7.11a)

≥ wT
1 (Ax(t) − g) + wT

2 (Cx(t) − h) + w3(pT x(t) − q) (7.11b)

=
(
ATw1 + CTw2 + pw3

)
x(t) −

(
wT

1 g + w
T
2 h + w3q

)
= 0 − ε

> 0,

where (7.11a) comes fromw3 ≥ 0 and the assumption UC1, which ensures x(t) ∈ S2

and thus pT x(t) − q ≤ 0, and (7.11b) comes from w1 ≥ 0 and the fact that [x]+λ ≥ x

for all x (the inequality is component-wise).

As a result, we see that
zTλ(t) − zTλ(0) > −εt

and thus
lim
t→∞

zTλ(t) = ∞.

Finally, by noting

lim
t→∞

zTλ(t) ≤ wT
1 lim sup

t→∞
|λ1(t) | + |w2 |

T lim sup
t→∞

|λ2(t) | ,

the desired result follows.
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