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Abstract

Real equations of the form g(z,A) = 0 are shown to have a complex extension
G(u,A) = 0, defined on the complex Banach space B @ 7IB. At a singular point of
the real equation this extension has solution branches corresponding to both the
real and imaginary roots of the Algebraic Bifurcation Equations (ABE’s).

We solve the ABE’s at simple quadratic folds, quadratic bifurcation points,
and cubic bifurcation points, and show that these are complex bifurcation points.
We also show that at a Hopf bifurcation point of the real equation there are two
families of complex periodic orbits, parametrized by three real parameters.

By taking sections of solutions of complex equations with two real parameters,
we show that complex branches may connect disjoint solution branches of the real
equation. These complex branches provide a simple and practical means of locating
disjoint branches of real solutions.

Finally, we show how algorithms for computing real solutions may be modified
to compute complex solutions. We use such an algorithm to find solutions of

several example problems, and locate two sets of disjoint real branches.
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I. Introduction

Let (zg, Ag) be a singular point of a real, nonlinear functional equation
g(z,A) =0,

where

z € B, a real Banach space
AeR
g:BxR—-B
and g has k > 2 continuous derivatives in IB x RR.

That is, a solution g(zo, Ao) = 0 at which the Fréchet derivative 92 = gz (z0, o) is
singular, and has finite dimensional nullspaces. The number of solutions in a small
neighborhood of the singular point is governed by the number of real roots of the
Algebraic Bifurcation Equations ( the ABE’s ). For each isolated real solution
there is a distinct half branch of solutions (z(s),A(s)), s > 0, that passes through
the singular point. See, for example, Decker and Keller (2).

If the definition of ¢ is extended to u in the complex Banach space B ¢ 1B,
the nonreal roots of the ABE’s must be considered as well. For each isolated
nonreal root there is a distinct half branch of nonreal solutions. We call this
Complex Bifurcation. Figure 1 shows the complex branchs for three types of
singular points. Notice that the simple quadratic fold, which is not a bifurcation

point, is a complez bifurcation point.



Figure la. Complex Branches at a Simple Quadratic Fold
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Figure 1b. Complex Branches at a Simple Quadratic Bifurcation

Figure lc. Complex Branches at a Simple Cubic Bifurcation
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In chapter II we rigorously define the complex extension G(u,A), of a real
equation. Using an Implicit Function Theorem for mappings of a complex Banach
space, we then discuss the behavior of solutions near a regular solution. We are
also able to prove a global result, that if G is analytic, and is real for real u, the
complex solutions must occur in conjugate pairs, by using the Schwartz Reflection
Principle.

In chapter III we prove the existence of complex bifurcation at several simple
singular points, using a technique based on a Lyapunov-Schmidt decomposition
and the Implicit Function Theorem. We present results for the three bifurcation
points shown in Figure 1.

In the first section of chapter IV, we show that it is possible for complex
branches to connect two disjoint solution branches of the real equation. We do this
by considering sections of solutions of equations with two real parameters. These
complex connections provide a practical means of locating disjoint real branches.
No knowledge of the existence of the branches is required, and no random searching
is necessary.

In the second section of chapter IV, we show that complex bifurcation occurs
at Hopf bifurcation points on a real branch of solutions. Complex periodic orbits
exist for parameter values above and below the bifurcation point, and two three-
parameter families of complex orbits bifurcate.

Chapter IV discusses how to compute complex solution branches numerically.
We have modified Keller’s pseudo arc-length continuation algorithm (10}, and used
it to compute the solutions of the examples in chapter VI. We also discuss how to
write the complex equation as a pair of real equations, so that existing algorithms
can be used.

Finally, in chapter VI, we present several examples that exhibit the various

properties of complex bifurcation. We include a problem from Fluid Mechanics,
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the flow between rotating coaxial disks, that has several real branches of solutions
that are connected by complex isolas. We also compute the complex surfaces

associated with the Cusp, Swallowtail, and Butterfly catastrophes.



II. Complex Bifurcation

We consider equations of the general form:

(1) g(z,4) =0,

where z is an element of a real Banach space B, A is a real parameter and ¢ is a
C*° mapping of B x R — B. These equations have two general types of solutions:
regular solutions, at which the Fréchet derivative g, is nonsingular, and singular
solutions, where g, is singular.

At a regular solution the Implicit Function Theorem can be used to show
that a unique smooth arc of solutions of the form (z(A),A) must pass through
the regular solution. At a singular solution several solution arcs may touch®*.
The number of arcs, and the type of contact, is determined by a set of algebraic
equations called the Algebraic Bifurcation Equations, or the ABE’s. Each isolated
real root of the ABE’s determines a smooth arc of solutions that passes through
the singular point. Since the ABE’s are algebraic equations, they may also have
isolated solutions which are complex. If the definition of equation (1) is extended to
include points in the complex Banach space B @ /B, the complex roots determine
complex arcs of solutions through the singular point. When complex solution arcs

exist, we call the singular point a Complex Bifurcation point.

* Other types of solutions, such as surfaces of solutions, may also exist at sin-

gular points.
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Instead of solving equation (1), we propose to solve its complex extension,
G(u,A) = 0. In addition to the solutions of (1), the extension has complex solution
branches. We have found that these complex solutions can be used to locate
solution branches of (1) that are otherwise difficult to find.

In the following section we define this complex extension G, and summarize
some of the properties of B @ :1B. We then prove a useful global result, that
complex solutions of the extension occur in conjugate pairs. The final section of
this chapter shows that regular solutions of G = 0 lie on smooth arcs, and that
if the regular solution is real, the arc it lies on must be real. We also show that
a single real solution that lies on a complex arc cannot be a regular solution. It

must be a singular solution.

The Complex Extension of a Real Equation

We begin by defining the complex Banach space B @ ¢B as
BeB={u|u=z+1y, z,y< B}
If B has the norm || - |5, B @ ¢B can be given the norm
lwllspis=lolls+ 1yl
Each element of B @ :B has a complex conjugate %, defined as

T=z—1y.



i,

*

It also has an adjoint, or dual u*. The adjoint satisfies Re(u*u) = || u 12, s0 u

must be

vw=z -yt

A linear mapping A, from B & :B into itself, can be written
Au = (a + 1b)(z + 1y),

where @ and b are linear mappings from B into B. Using the vector notation for

elements of B @ /B, we will sometimes write A as a matrix,
w320
b a Y
The adjoint of A is the linear mapping A* such that for every u,v € B @ 1B
(v'Au = (A"v")u.
In terms of the adjoints of @ and b, A™ is

A" =a" +1b".

A nonlinear mapping G(u, A) from (IB @ :B) x R into B & /B can be written

G(u,A) = f(z,y,A) +1h(z,y, A),
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where f and h are nonlinear mappings of (B x B) x R into B. The Fréchet

derivative, Gy (u, }), is the bounded linear mapping, if one exists, for which

. | G(u+v,A) — G(u, A) + Gul(u, Ao || _
ui‘lfﬂo{ ol } =9

As a consequence og the fact that this limit is independant of the way || v ||— 0,

the analog of the Cauchy-Riemann equations,
fe=hy and fy, = —hg,

must hold. By analogy with complex analysis, we say that G(u,A) is analytic if

and only if it has a Fréchet derivative at each point in (B @ ¢BB) x R.

We can now define the complex extension of a real mapping. Let g(z, ) be a
C* mapping of B x R into B. The complex extension of ¢ is the analytic mapping
G(u, A) such that

Gz +10,X) = g(z,A) +10.

The mappings f and h must therefore satisfy

(20’) f(z,0,A) = g(z, A)

(2b) and h(z,0,A) = 0.

This complex extension is not a typical analytic mapping. Since it is real
for real values of u, it satisfies the analog of the Schwartz reflection principle for

functions of a complex variable. This can be shown by considering the mapping
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G(, A), which must also be analytic. Since G(z + 10, ) and G{z +10, A) are both
equal to g(z, ) + 10 at points u = z + 10, the identity principle, which Henrici (6)

proves for mappings of complex Banach spaces, says that for every u in B @ 1B
G(@,A) = G(u,A).

The identity principle is proved using the difference of G(u, A) and G(@, A), which
is also an analytic mapping. At points ug = zo + ¢0 the Taylor expansion of the
difference must be zero at all points u = zo + ez + 10, for € small. This means
that all terms in the expansion must be zero, and so the difference is zero in a
neighborhood of ug. By repeating this argument, using points in the neighborhood,
it can be shown that the difference must be zero everywhere.

If we now consider a solution G(ug,Ao) = 0, we have
G(,A) = f(zo, —yo, Ao) — th(Z0, —Yo0, do) = 0.
If we take the conjugate, then
G(%, ) = f(zo, —Yo, Ao) + th(zo, ~yo,Ao) = 0.

The conjugate of a solution of the complex extension of a real equation is therefore

also a solution.

Regular Solutions of the Complex Extension

In this section we define a regular solution of the complex extension of a real

equation, and determine the properties of the solution arc passing through it.
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Definition: A regular solution of the complez extension G{u,A) = 0, 15 a
point (uo, o) € (B ®iB) x R at which G(ug, Ao) = 0 and the Fréchet derivative

Gu(uo,Ag) ts nonsingular. B

Let (o, Ao) be a regular solution of the real equation g(z,A) = 0. The Fréchet

derivative of the complex extension at (zo + 20, Ag) is

Gu(.’zo + ZO, /\0) = fI(.’Eo,O, )\0) -+ ZO

= gI(IO’ /\0)

Therefore, a regular solution of g(z,A) = 0 is also a regular solution of G(u,A) = 0.

A regular solution was defined so that we: can use the Implicit Function The-
orem. The Implicit Function Theorem says that if the Fréchet derivative is non-
singular, G(u, ) = 0 implicitly defines u as a function of A. This version is stated

and proved in Nirenberg (14):

The Implicit Function Theorem: Let P be a Banach space and F(p,q) be a
mapping of an open set U C P x R into P. Assume that F is k > 1 times
continuously differentiable in U. Suppose (po,q0) € U and F(po,qo0) = 0. Then
if Fy(po,qo) ts an isomorphism of P onto R: for some sufficiently small r > 0
there ezists a ball Br(q0) = {q ||l ¢ — g0 ||< 7} and a unique k-times continuously
differentiable mapping w : B.(qo) — P such that w(qe) = po and F(w(q),q) = 0.

Since B @ /B is a Banach space, the Implicit Function Theorem can be applied
to regular solutions of complex mappings. Therefore we have the result that at
a regular solution of the complex extension, there is a unique mapping u(A) :
R — B & (B that defines a smooth arc of solutions (u(A), A) on which the regular

solution lies.
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If G is the complex extension of a real mapping the mapping u(2) is real if

the regular point is real. The mapping u(A) is the limit of the iteration

Gu(uo,/\o)u"+1(>\) = Gu(uO,Ao) [u"(x\) - G(un()\),)\)] y

where u®(A) = ug. If ug = zo + 10, the Fréchet derivative of G(u,A) is

Gu(u(),AO) - fz(anO’)\O) + z-hic(anO’ AO)

Since h(zo,0, A) is identically zero, Gy (ug, Ag) must be real. By induction, if u™(})
is real, G(u™(A), ) is real, therefore u™*!(A) must be real. This means that the
limit w(A) must be real.

Suppose now that (u(A), A) is an arc of solutions containing a single real point,
(up,Ao). If

u(A) = =(A) + iy(),

and y(A) # O unless A = A, then (ug,Ap) cannot be a regular solution. If it is
regular, it must lie on a real branch. In addition, (¥(A),A) must also be an arc
of solutions. There must therefore be at least two branches of solutions passing
through (ug, Ag), so it must be a bifurcation point.

We have shown that regular solutions of the complex extension behave in
the same way that regular solutions of the real equation do. There can be no
complex bifurcation at a regular solution of either the real equation or its complex
extension. In the next chapter, we show that complex bifurcation does occur at

several types of singular solutions.
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11I. Complex Bifurcation at Simple Singular Solutions

In this chapter we prove that complex bifurcation occurs at a number of simple
singular solutions of the complex extension of a real equation. We do this by a
Lyapunov-Schmidt decomposition. This reduces the equation to a single complex
scalar equation in one complex variable and the parameter A. We solve this by
making a change of variables and using the Implicit Function Theorem.

For the real equation a simple singular solution is a solution where the Fréchet
derivative has one-dimensional null spaces. In the following section we define a
simple singular solution of the complex extension in a similar way, and we de-
scribe the Lyapunov-Schmidt decomposition. We also show that a simple singular
solution of the complex extension is in some ways like a singular solution of the
real equation where the Fréchet derivative has two-dimensional null spaces. In
addition we prove a Lemma about the singularity of a certain linear operator that
will appear later. The final section of this chapter present bifurcation theorems
for three types of simple singular solutions of the compelx extension. We prove
each for a general simple singular solution, then for the special case of a simple

singular solution of the real equation.



Simple Singular Solutions of the Complex Extension of a Real Equation

Definition: A Simple Singular Solution of a complezr equation G(u,A) =0 s
a solution (ug,Ao) at which the Fréchet derivative G2 = Gu(uo,Ao) 1s singular

with dim(N(G2)) = dim(N (G%)) = 1

and Range(GY) closed. B

The bifurcation theorems that we present in the final sections of this chapter
use the Lyapunov-Schmidt decomposi;cion, which we describe here. There are two
ways of using it. We first consider doing a decomposition of the complex extension.

Let (ug,Ao) be a solution of the complex extension G(u,A) = 0 of the real
equation g(z,A) = 0. Suppose that the Fréchet derivative G = G, (uog, o) is
singular, and is a Fredholm operator of index 0. That is

dim(N(G%)) = dim(N(GY)) = d < o0

and Range(GY) closed.

Then B & :IB can be split into
B & B = N(G),) ® Range(Gy)

or B®:B = N(G)") ® Range(Gy).
Furthermore, the mapping G /Range(GU*) is nonsingular. Let {gbj}‘li be a basis for
N(Gﬂ), and {wj‘}‘li be a basis for N(GS*). By the Fredholm Alternative Theorem

Range(G}) = {u e BB | u=0, 1<j<d}

and Range(Gy ) ={u € B®iB |u"¢; =0, 1<j<d}.
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The Lyapunov-Schmidt decomposition begins by splitting the domain of G
into N(Gy) ® Range(G}). Let {E]-}Cli be complex scalars, and n € Range(GY*),
then every element v in B @ 1B can be written as u = ug + chi ¢, +n, for some
{5,-}?. If we also split the Range of G into N(G}) ® Range(G.) we have that
G(u,A) =0 if and only if

d
(3a) $i¥;Gluo+ Y& +n,A) =0 1<j<d,
1

d
(3b) (1= 8;¥;)G(uo+ > _ &, +n,4) =0.
1

1

The Fréchet derivative of (3b6) with respect to n, at {£;} = 0, n = 0 is precisely
G?Y /Range(GY"), so it is nonsingular. By the Implicit Function Theorem there
is a mapping n(§,A) : C*x R — Range(GY*) such that (3b) is satisfied. The

remaining equations (3a) are

d
W Gluo + ) &5 +n(EN),)) =01 <5 <d,
1

and are called the bifurcation equations.

The second way of using the Lyapunov-Schmidt decomposition is to write an
equivalent real system for the complex extension and do a decomposition of the

real system. Recall that we can write G(u, A) as
G(u,A) = f(z,y,A) +1h(z,y, A),

where f and h: (B x B) x R — B.
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If we replace G(u,A) = 0 by the equivalent real system

(i =) =

the Fréchet derivative Gy (uo, Ao) is

fz(Z0,v0,X0)  fy(Zo,v0,0)
(5) Gu(uo, Ao) =
he(zo,Y0,A0) hy(zo,y0,A0)

If the bases of the null spaces of G2 and G are written in terms of their real and

imaginary parts

¢; = ¢; +1d;,  ¢5,¢7€B

and ¢]:¢;+1¢‘;a ;aw;EIBa ].SJSd,

then for every j,

fod5 + fJds =0

0 041 _
and h,¢% + hy¢; = 0.
The Cauchy-Riemann equations imply that

0 r 04t _
hyci)]» + hIqu =0

and had} + hyd; = 0.

The null vectors of G, satisfy similar equations. The Fréchet derivative of (4) and

its adjoint therefore have 2d-dimensional null spaces with the bases

¢T, __d)i_ wr-« -1/1".* ‘
{<¢j>< ¢;J>} e {<¢;)< by )} teise
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In this sense, at a simple singular point, the Fréchet derivative of the complex
extension can be thought of as having two-dimensional null spaces. This is signif-
icant because if the rest of the decomposition is done for the real system (4), the
bifurcation equations correspond to those of a multiple bifurcation point instead

of a simple bifurcation point.

Complex bifurcation theory can therefore be done in two ways. If the com-
plex extension is considered as a complex equation, and the Lyanpunov-Schmidt
decomposition is done using the complex null vectors {¢;} and {1#;}, the complex

theory is exactly the same as the real theory, except that complex roots of the

ABE’s must be allowed.

If, on the other hand, the complex extension is treated as the equivalent pair
of real equations (4), a simple bifurcation point of the real equation becomes a

multiple bifurcation point of the complex extension.

We prefer the first approach. In the final sections of this chapter we illustrate
how the second approach is used in proving a bifurcation theorem for a simple
quadratic fold of the real equation. However, we use the first approach for the rest

of the proofs.

There remains one more thing to do before we proceed to the bifurcation
theorems. When we use the Implicit Function Theorem to solve the bifurcation
equations, we must verify that a certain type of linear operator is nonsingular. We

therefore present the following Lemma.
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Lemma (1): If A is a linear operator of the form

al9) = aq + br
r)  \ %+ cq+2dr

A:CxR—-CxR
where a,b,c, and g € C
and, d,r € R,

then A 1s nonsingular if and only if

dla|® — Re(bac) # 0.

Proof-

We rewrite A as a 3 x 3 matrix. Let

a=ag +1ag
b=bgr + b
c=cgp +1c

and q = qr + 1q5.

Then, A (g) = <8> if and only if

arqr — arqr +brr =0
arqr +arqr +brr =0
and 2(chR+chI) + 2dr = 0.
This is a matrix equation
ag —a; bg qr

a; ap by qr | =0.
2cg  2¢; 2d r
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A is nonsingular if and only if the determinant of this system is zero. That is if

2(d|al® — Re(bac)) # 0. ®

We can now proceed to show that complex bifurcation occurs at three types

of simple singular solutions: simple quadratic folds; simple quadratic bifurcation

points; and simple cubic bifurcation points.
As a matter of notation, in the following section, the null spaces of GY and

G2* at a simple singular solution of a complex equation will be

N(GY) = span(¢)

and N(GS*) = span(y"),

where ¢ € B@:B, and v € B" :B".
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Simple Quadratic Folds

For the real equation a simple quadratic fold, or limit point, is not a bifur-
cation point. In this section we show that simple quadratic folds are complex
bifurcation points. We first define a simple quadratic fold of the complex exten-
sion, and show that there are two branches of solutiosn that touch at the fold. We

then show that a complex branch of solutions exists at a simple quadratic fold of

the real equation.
Definition: A Simple Quadratic Fold is a simple singular solution, (uo, Ao),
of a complex equation G(u,\) =0, at which
TGS £ 0

and, VG, 00 #0. B

Theorem - Bifurcation at a Simple Quadratic Fold: Let (uo, Ag) be a simple
quadratic fold of the complex equation G(u,A) = 0. In a small netghborhood of
(wo, o), there are ezactly two branches of solutions. These solution branches have

the local expansions '
ui(s) ~ ug + se "/ 2g 4 0(s?)

1
A1(s) ~ Ao — 57’32 + 0(53),

and 1
ug(s) ~ ug + ise "% 2 + O(s?)

1
Az(s) ~ Ao + 57’32 + 0(s%),
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where

re'® w*Gﬁufgb
29*GY
Proof -
The proof proceeds by doing a Lyapunov-Schmidt decomposition on the com-
plez equation ( this is the first approach ). The Implicit Function Theorem is then

used to solve the bifurcation equations.

Let
u=1up+&p+n
where n € Range(GY")
and e C.

Using the Lyapunov-Schmidt decomposition, we have that G = 0 if and only if

(6a) $v"Gluo + £¢ +1,4) =0

(6b) and (I - " )G (uo + £+ n,A) = 0.

The Fréchet derivative of (66) with respect to n is G /Range(GY*) and is nonsin-
gular. So, by the Implicit Function Theorem there is a unique mapping n(&, ) :
C x R — Range(G2*) such that 7(0, o) = 0 and equation (6b) is satisfied. Using

this mapping 7, equation (6a) is satisfied if and only if
$"Gluo + €6+ n(€,1),A) = 0.

This is a single complex scalar equation in the complex variable £ and the real
parameter A, and is called the bifurcation equation.
The Fréchet derivative of the bifurcation equation with respect to & is iden-

tically zero, so the Implicit Function Theorem cannot be used directly. Instead,
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we introduce a new parameter ¢ € R, and look for mappings of the form {(e) and
A(€) that satisfy the bifurcation equations. Taking the derivative of the bifurcation
equation, we see that
Y*G{A(0) = 0.
Since ¥*GY # 0 by assumption, A must be zero. We therefore let
u=1ug+ P +n
and A= Ao+ %ezg,

and scale G by 1/€? to eliminate the zero Fréchet derivative.

Let

2y Gluo + €€d + n(efd, Ao + 3€%¢), Ao + 5€%¢) € #0
F(&¢i€) = V* GO, dPE% + 200G e=0
€2 -1

We have chosen F(£,¢;0) so that F' is continuous at € = 0. The Fréchet deriative
of F with respect to ¢ and ¢ is now not identically zero at ¢ = 0. If we can find ¢
and ¢ so that F(&,¢;0) = 0 and the Fréchet derivative F¢ (&, ¢;0) is nonsingular,
we can use the Implicit Function Theorem to find {(€) and ¢(¢) that satusfy the
bifurcation equation.

We first solve F(£,¢;0) = 0, the Limit Point Algebraic Bifurcation Equations
( LPABE’s ), and verify that these solutions have nonsingular Fréchet derivatives.

The LPABE’s are
VG dPE? + 2" Gh¢ =0

and €)° = 1.
Keeping in mind that ¢ € C, ¢ € R, and that re'™* = "G, 6¢/¢¥"GY, the only
solutions of the LPABE’s are:

1
El = € r_ala, gl = _T;
I U
€= 1e7 2" ¢ =7y
£ = —¢&y, 3 = C1;

and £y = — &2, ¢4 = G2.
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The Fréchet derivative of F at € = 0, Fi¢ ) (&, n;0), satisties

ot *Ggu / GO
Fie.o)(6,5:0)(¢,¢") = (w goe8’ 2 20" Gls )

By Lemma (1) the Fréchet derivative is therefore nonsingular if and only if Re (M(w* G
0. Since |£| = 1 at each root of the LPABE’s, and ¥*GS and ¢¥* G, #¢ are nonzero
by assumption, the Fréchet derivatives at all of the roots are nonsingular. The
Implicit Function Theorem then guarantees the existance of two distinct pairs of

mappings,

(€1(€),61(e))

and (€2(€), 2(e)),
that satisfy F(&,¢;€e) = 0. Since F has the symmetry

F(&,¢e) = F(=§,¢—¢€),

roots 3 and 4 of the LPABE’s are not distinct from roots 1 and 2.

There are therefore exactly two solutions of G = 0 for small €:

w1(€) = uo + €61 ()9 + n(céa(e),do + e (6))

1
/\1(6) = AQ -+ ‘éfzgl(ﬁ)

and,
u2(€) = o + €€a(€) + n(cbale), ho + 5252 ()
)\2(6) = Ao + -;—625‘2(6). |

Figure 2 illustrates these solution branches near a simple quadratic fold.
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B &:B

Complex

Figure 2. Complex Bifurcation at a Simple Quadratic Fold
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We now turn to the special case of a simple quadratic fold (zg,Aq) of the
real equation g(z,A) = 0. We take this opportunity to illustrate how complex
bifurcation theory is done when the complex extension is replaced by an equivalent
pair of real equations (this is what we called the second approach). For these
singular solutions the null vector ¢ and ¥* are both real, as are the derivatives of
G.

Theorem - Bifurcation at a Simple Quadratic Fold of the Real Equation: Let
(a:o,-)\o), be a simple quadratic fold of the real equation g(z,A) = 0, whose complex
extension is the equation G(u,A) = 0. The point (uo,A) = (2o +10, Ao) ts a simple
quadratic fold of the complezx extension. In a small neighborhood of (ug, Ao), there
are exactly two branches of solutions, one real, and one complezr, of G = 0. The

real branch has the local expansion

ui(s) ~ uo + s¢ + O(s?)

1 3
A1(s) ~ Ao — 57‘32 +0(s%)
and the complex branch has the local expansion

us(s) ~ uo + 1s¢ + O(s?)

1
Az(s) ~ Ao + 57‘32 + 0(s?)

where,

R e

| €R.

Proof -

For this proof we first replace G(u,A) = 0 by a pair of real equations. Recall

that

Gz +1y, A) = f((z.y). A) + th((z,y), A)
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where f and ¢ : (B x B) x R — B. We consider the real system
_{ fU=y),2) )
k(:E, Y, A) - (h((:c,y), )\) > - 0’
where k : (B x B) x R — (BB x B). Then
k((IO7O)aAO) = 07

and k?z,y) has two-dimensional null spaces. These null spaces have the bases
¢ 0 Uk 0
(5)-(3)r weae(5)- (3

r=2xo+a+

Let,

and y=03+né¢,

where o,
(a,8) € Range(k(; )

and &,n e R.
Using the Lyapunov-Schmidt decomposition we split I3 « B. Therefore k& = 0 if
and only if
fj) (67, 0)k((z0 + €6 + ayng +B),A) =0

35) (0, Yk((zo + Eb+ o,np +3),A) =0

=
=
P NN

m = (5) 0= () 0wk -+ ans £ 9N =0

The Fréchet derivative of (7¢) with respect to (e, /) is k(, ,)/Range(k(; ) and
is nonsingular. So, by the Implicit Function Theorem there is a unique pair of

mappings a(&,n,A) and A(£,n,A) which map CIx R — Range(lc(();’y)) such that
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(0,0,)) = 5(0,0,)) = 0 and equation (7c) is satisfied. Using these mappings,
equation (7a) and (7b) are
W f((zo + &b + a(€,m,7),n¢ + B(&,m,4)),A) =0

and P h((zo + € + a&,n, A),né + B(€,m, 1)), ) = 0.
These are a pair of complex scalar equations in the complex variables £ and 7,
and the real parameter A. They are exactly the same as the bifurcation equations
obtained in the previous theorem, except that the complex equation has been
replaced by a pair of real equations.

The Fréchet derivative of these equations with respect to the variables £ and
n is identically zero, so we cannot use the Implicit Function Theorem directly. We
introduce the parameter ¢ € R, and look for mappings £(€), n(e), and A(e) that

satisfy the bifurcation equations. The derivatives of these mappings must satisfy
Y fIA=0
and gb*hg;\ =0.

Recalling equations (2ab) from chapter I, we see that 1A% = 0 and that "G =

w‘ff # 0. Therefore, X must be zero. We let,

1
T =20+ €6 + afeg, en, Ao + S €%)
1
y=end+Beg,en, Ao + Se¥s)
1.
and /\:)\o+§ezg‘,
and scale the bifurcation equations by 1/€* to eliminate the zero derivative.
Let
(g; “fl{zo + €9 + a,eng + B), /\0+?eg) ¢ 40
SU h((zo + e€o+ oy end + B), Ao + 5e%)
F(&n,¢ie) = (1!1 fae®BE? — b~ ddn® + 2¢° ff?)
1 29 hy,ddEn
C
€

+[nl* -1
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We have defined F(£,n,¢;0) so F is continuous at € = 0. Notice that equations
(2) imply that f2, = hY, = g%, and that f§ = g5.

The equations F = 0 are the Algebraic Bifurcation Equations:

P g2, 00(E% — n?) + 29 gl¢ = O

297 go, dpén =0
£ + nf* =

There are four solutions

l/fgngw
-1 -0
€1 m $1 Swrg i
§&2=0 n2 =1 $2 = ¢2i$x¢¢

and,

The Fréchet derivative of F is

Fena(émig) = ¢ gmcﬁcbn 29" gm¢¢£ 0

26" 2n* 0

This is a real matrix, and is singular if and only if

— (20" g% (49 02, 00) (141" — Inl*) =
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Since *g? = p*GY # 0, and v*g° b = *G%, ¢4 # 0 by assumption, the
Fréchet derivative at each of these roots is nonsingular. The Implicit Function

Theorem therefore guarantees the existance of two distinct triples of mappings

(61(€),m1(e), Ar(e))

and,

(€2(€),m2(€), A2(€))

that satisfy the bifurcation equations. Since F' has the symmetry

F(f,n,§) - F(—f,—"?,§)

roots 3 and 4 are not distinct from roots 1 and 2. We have therefore shown that

there are exactly two distinct solutions of £ = 0 for small e:
1
T1(€) = 7o + €&1(€) + afeéy(€), en(€), Ao + §€2§1(€))

1(6) = ems(e) + Bledu(e),emi(e), o + 5 ¥ (0)
Mle) = o+ 5e%ai(e)

and,

zo(€) = zo + €&2(€) + afela(e), enale), Ao + %ezgz(e))
va(e) = ens(6) + Ble€a () enale), do + 562 ())
AAQ:AO+%JQ@»

Since u = z + 1y, this means that there are exactly two solutions

ui(€) = z1(€) + 1yy (€)
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and,

ug(€) = zo(€) + 1y2(€)

of G =0.

To show that the solution branch (uj, A1) is real requires writing the con-
tracting map of the Implicit Function Theorem , as we did in chapter II when we
showed that a real regular solution lies on a real solution branch. It is not difficult
to show that yi1(¢) = 0. B

The fact that a complex branch bifurcates at a simple quadratic fold of the
real equation proves to be very useful. We will show in chapter V that in many

cases a second fold is present, and that this complex branch connects the two folds.



-30-

B $:B
7
7
Ve
/7
// Complex
/

/

‘
/
/
\
\

\

\

AN
Real \\
N
N
N
.

Figure 3. Complex Bifurcation at a Real Simple Quadratic Fold




-31-

Simple Quadratic Bifurcation

The next type of simple singular solution that we consider is the simple
quadratic bifurcation point. The quantity ¥*GY is zero, and the tangent (1, )\) is
no longer vertical. For the real equation there are two possible behaviors, either
two real branches intersect at the bifurcation point, or there are no real solutions
in the neighborhood of the bifurcation point. We show that in the second case
two complex branches of the complex extension intersect at a real solution.

Definition - Stmple Quadratic Bifurcation Point: A Simple Quadratic Bifurca-
tion Point is a simple singular point, (uo, Ao), of the complex extension G(u, A) = 0

of a real equation g(z,A) =0, at which

P*GY =0

A=Y Gy, b0 #0

and,
D? = B* — AC # 0.
Where,
B =9 G én8 + 9 G
C =P Gyuunins + 20" Goani + 9GS,
and,

(I-¢9*)GonS +(I -9y )Gl =0.1



Theorem - Bifurcation at a Simple Quadratic Bifurcation Point: Let (uo, Ao)

be a simple quadratic bifurcation point of the complex extension G(u,A) =0. In

a small neighborhood of (uo,Xo), there are ezactly two branches of solutions of

G = 0. These two branches have local expansions

]
u1(s) ~ uo + § — =g + O(s?)
1+ (64|
Ar(s) ~ Ao + + 0O(s?)
1 [6, )"
and,
uz(8) ~up + s - ¢ + O(s?)
1+16_|°
Xa(s) ~ ho + —= + O(s?)
1+]6_|°
Where,
-B+D
b, = ——r
N A
5 = -B-D
A

Proof -
We use a Lyapunov-Schmidt decomposition of the complex extension. Let
u=ug+ & +n
where n € Range(GL")

and ¢eC.
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Accordingly, G = 0 if and only if

(7a) ¢ Guo + £ +1n,A) =0

(7b) and (I — ¢ )Glug + €p+n,A) =0.

The Fréchet derivative of equation (7b) with respect to n is G5 /Range(G}"), and
so is nonsingular. By the Implicit Function Theorem there is a unique, k-times
continuously differentiable mapping n(&, A) such that (0, Ag) = 0, and equation

(7b) is satisfied.

Using this mapping 7, (7a) is

WG(UO + £¢ + n(fa)‘)7)‘) =0

and is called the bifurcation equation. In order to use the Implicit Function
Theorem , we introduce the parameter ¢, and look for mappings of the form
¢(€) and A(e) that satisfy the bifurcation equation. Taking the derivative of the
bifurcation equation, we see that the derivatives of both ¢ and A with respect to

¢ may be non zero. We therefore let

u=1ug+ £+

and A= Ag + €,

and scale g by 1/€% to eliminate the zero derivatives. Let

!

!

. t/)"G(UD+E£¢+T}(Ef¢,/\o+6§'),/\o+£§') € #0
?ll)“fﬂu(él¢+n‘is‘)(£¢+n‘§g)+2¢*G§(g¢+ngg)g+¢xg%“ c=0
P +lsl -1

F(&,¢r€)
2z



—~34—

We have defined F(¢,¢;0) so that F' is continuous at ¢ =" 0. We first solve
F(&,n;¢€) = 0, the Quadratic Algebraic Bifurcation Equations ( QABE’s ), then

verify that these solutions have nonsingular Fréchet derivative.The QABE’s are

A€ +2Béc+Cet =0

€12+ 1g* = 1.
Keeping in mind that ¢ € C and ¢ € R, the only solutions of the LPABE’s are

—B+4+D

—

= AB —3 1 = -
,/1+I‘A+ ‘ 1+I_BA+D’
~B-D
1
§2 = AB — ¢z = = >
1+ | =222 1+ | =222
€3 =—-¢€1, G3=-6
and Ea=—E&, 4= —¢.
The Fréchet derivative of ' at ¢ = 0 is
2AEE + 2B ¢ + 2B + 2C¢¢!
Fe ’ 70 ” = - T
s»§(£ § )(E §) < §€I+€’€+2§§/

which, by Lemma (1), is nonsingular il and only if

2¢[2A¢ + 2B¢|* — Re((2BE +2C¢)(2A€ + 2B¢)€) # 0.

If £ and ¢ are roots of the QABE’s, this is equivalent to

¢|DJ? # 0.
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So, since ¢ is nonzero at every root, and D is nonzero by assumption, the Préchet
derivative at each of the roots is nonsingular. The Implicit Function Theorem

guarantees the existence of two distinct pairs of mappings

(&1(e)s 1 (€))

and

(€2(€)s s2(e))

that satisfy F(&,¢;€) = 0. Since F' has the symmetry

roots 3 and 4 of the LPABE’s are not distinct from roots 1 and 2.
We have therefore shown that there are exactly two solutions of g = 0 for

small €:

ui(€) = uo + €£1(€)p + n(e€i(e)s Ao + €ci{€))
M(e) = Ao + €1 (e)

and,

up(€) = wo + €&2(€)@ + nlefale), Ao + €62(€))

Aa(€) = Ao + €g2(e).
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At a simple quadratic bifurcation point, or transerse bifurcation point, of the
real equation, the null vectors ¢ and v¢* are real, as are the derivatives of G. If the
quantity B? — AC is positive, there are two real branches of solutions that pass
through the bifurcation point. If B%Z — AC < 0, the real equation has only a single
real solution, an isola center, with no other solutions nearby. We show that when
B? — AC < 0, the complex extension has two complex solution branches that pass
through the real bifurcation point.

Theorem - Bifurcation at a Simple Quadratic Bifurcation Point of a Real
Equation: Let zo,\p), be a simple quadratic bifurcation point of a real equation
g(z,A) = 0. In a small neighborhood of (zo+10, o), there are ezactly two branches
of solutions (uy(s), A1(s)), and (uz(s), A2(s)) of G(u,A) = 0, the complez extension
of g. If B* — AC > 0 both of these branches are real, if B* — AC < 0, both are

complex. The branches have local expansions

u1(s) ~ up + §————esp + O(s?)

and,

Where,

>
+
l

Proof -
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The proof is almost identical to the proof of the previous theorem. To show
that both solution branches are real when B* — AC > 0, we note that the mapping
n(€,A) can be shown to be real when ¢ is real by writing the contracting mapping
of the Implicit Function Theorem . The scaled bifurcation equatons are therefore
real when ¢ is real, and the same argument shows that when the roots (&1,¢1)
and (&g,¢2) of the ABE’s are real, the mappings (u1(s),A1(s)), and (uz(s), A2(s))
must also be real. &

Figure 5 illustrates the two case D? > 0 and D? < 0. The complex branches
in the second case make it feasible to locate isola centers of the real equation

without resorting to solving the large systems of equations that define the center.
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Simple Cubic Bifurcation

The last type of simple singular solution that we consider is the simple cubic
bifurcation point, sometimes called a pitchfork, or transcritical bifurcation point.
The proof proceeds exactly as for simple quadratic bifurcation, except that one
of the roots of the QABE’s is singular. We avoid this difficulty by rescaling the
bifurcation equations.

Definition - Simple Cubic Bifurcation Point: A Simple Cubic Bifurcation
Point is a simple singular solution (ug, Ag), of the complez extension G(u,A) =0
of a real equation g(z,A) =0 at which

% G§ =0
A=Y Gy,09 =0
D?*=B% - AC #0
b =1 Gy déd + 3% Gl enge #0
and c =6y GUb+ 61" GO ony # 0.
Where,
B = Guudnl + ¥ Gi¢
C =9 Guning + 20" GoanS + ¥ Gy
(I = ¢ )Gauns + (I - ¢97)G3 =0

and (I - ¢97)Gonge + (I — " )Goydd = 0. W
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Theorem - Bifurcation at a Stmple Cubic Bifurcation Point: Let (uo,Ao) be
a simple cubic bifurcation point of the complex equation G(u,A) = 0. In a small
neighborhood of (ug, Ao) there are exactly three branches of solutions of G(u, ) = 0.

These branches have the local expansions

Kol
u1{s) ~ uo —s———g———/___ii___c—; + O(s?)
V1+ i35l
Al(S) ~ /\0 + s +O(82)
c 2
1+ |55

uz(s) ~ ug + se7* ¢ + O(s?)

1
Az(8) ~ Ag — ETS2 + 0(53)

and,
uz(s) ~ uq + 1se "' 3¢ + O(s?)
1, .
/\3(3) ~ Ap + 57’8 + O(Su),

Where,
X" b
re'* = -,
c

Proof -

We begin just as in the simple quadratic bifurcation theorem. A Lyapunov-

Schmidt decomposition is done for the complex equation, and the bifurcation

equations

W Glug + €6+ n(E,4),A) =0
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are obtained. We scale @, u and ) in the same way as for quadratic bifurcation,

u=uo + €€ + n(€&, Ao + )

A= )\0 + €¢,
and,
F(&c5€) =
29 Guo + €68 + n(€€d, Ao + €5), Ao + ) €70
WG (66 +n30) (€0 +n3s) + 207 GR(ES +mRe)s + Y TGRas6 € =0

€% +fgl =1

F has been defined so that it is continuous at € = 0. Letting ¢ — 0, we obtain the
QABE’S
AE* 4+ Béc+C* =0

€2+ 1¢]® = 1.

Keeping in mind that £ € C and ¢ € R, and that we have assumed that A = O,the

only solutions of the QABE’s are

£ | 1
& = ——=28— 5 1= ——“———C—Z
V1415 L+ |35]
52 = Ciﬁ, 2 = 0
and €3 = —& ¢3 = —¢1.

Where,

0< 8 < 2.

The Fréchet derivative of ¥ at ¢ = 0 is

i

Fle,o(£,6;0)(€,¢")

(2B£_’g +2B&¢ + 2C§g’>
€8+ &' + 2¢¢’
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which, by Lemma (1), is nonsingular if and only if
2¢|2B¢|* — Re((2B€ + 2C¢)2B¢€) # 0.
If € and ¢ are roots of the QABE’s, this is equivalent to
¢|D|* # 0.

So, since ¢ is nonzero for roots 1 and 3, and zero for root 2, and D is nonzero by
assumption, roots 1 and 3 are isolated and root 2 is not. The Implicit Function

Theorem guarantees the existence of one pair of mappings

(El (E)a gl(f))

that satisfiess F(€,¢;¢) = 0. Because F' has the symmetry
F(E,g‘,f) = F(_ga -3 _E)

root 3 is not distinct from root 1.

The nonisolated root (root 2), corresponds to a pair of branches that are
tangent at (uq,Aq), and have A = 0. To find these branches, we rescale the
bifurction equations. Let

S Gluo + €€d + n(ed, Ao + 3€%¢), Ao + 5€%) € #0

F'(&,¢€) = bed + ck¢ e=0

€% 1
We have defined F'(¢,¢;0) so that F’ is continuous at € = 0.

We first solve F’/(¢,n;¢) = 0, the Cubic Algebraic Bifurcation Equations

( CABE’s), then check that these solutions have nonsingular Fréchet derivative.
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The CABE’s are

be2 +¢cée =0
€% + [¢I* = 1.
Keeping in mind that £ € C and ¢ € R, the only solutions of the QABE’s are
gE=e7'5, =7
Er=de'E, =7
€3 = —¢&1, 3 =1
£q4 = — &2, $4 =¢2
& =0, ¢s =1
and & = &s, $6 = —¢5-

The Fréchet derivative of F’ at ¢ =0 is

1 1o 36E%¢ + ¢l + c&d’

which, by Lemma (1), is nonsingular if and only if
Re((c€)(30€7 + c¢)€) # 0.

If ¢ and ¢ are roots of the QABE’s, this is equivalent to

€*ebe” # 0.

So, since & is nonzero for roots 1 to 4, and zero for roots 5 and 6, and b and ¢ are
nonzero by assumption, roots 1 to 4 are isolated and roots 5 and 6 are not. The

Implicit Function Theorem guarantees the existence of two pairs of mappings

(€2(€), ¢2(e))
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and,

(€a(e)ss3(e))

that satisfy F'(&,¢;€) = 0. Since F’ has the symmetry
F’(&’ <3 E) - F’(_Es ¢ —E)s

roots 3 and 4 are not distinct from roots 1 and 2.
The nonisolated roots (roots 5 and 6) of the QABE’s correspond to the
branches we found using the mapping F,but are parametrized by €® instead of

¢. We have therefore shown that there are exactly three solutions for small ¢:
ul(E) = Ug + 651(6)(}5 + U(E€1 (6), )\0 -+ Eg“l(E))

/\1(6) = Ag + eg’l(e)

’U,2(E) = ug + Ef2(€)¢ + ﬂ(EéQ(E),AQ + %623‘2(6))
Aa(e) = Ag + %8@(5)

and,

uale) = o + ol + mleEs(e) do + Sein(e))

1
Ag(é) = }\0 + ‘2‘62§3(€).
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At a simple cubic bifurcation point of a real equation g(:x:, X) = ( the complex
extension has a bifurcation point that is very similar to the superposition of a
simple quadratic fold and one branch of a simple quadratic bifurcation. Once
again, the null vectors are real, as are the derivatives of G.

Theorem - Bifurcation at a Real Simple Cubic Bifurcation Point: Let (zo, Ag)
be a simple cubic bifurcation point of a real equation g(z,A) = 0. In a small
neighborhood of (zo + 10, Ao), there are ezactly two real branches of solutions, and
one complez branch, of the complex extension G(u, A) = 0. The real branches have

the local expansions

<
uy(8) ~uo — s 18 =+ O(s?)
1+ |5
1 2
Al(S)Nko—%S 2+O(S)
2B

The complex branch has the expansion
uz(s) ~ uo + ise”"/2¢ + O(s?)

1
As(s) ~ Ao + §r32 + 0(s%)

where,

Proof -
The proof is the same as the proof of the previous Theorem, except that when
the Implicit Function Theorem is used for root 1 of the QABE’s, and root 1 of the

CABE’s, the contracting mapping used in the Implicit Function Theorem is used

to show that u,(s) and uz(s) are real. ®
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Tn the next chapter we show that pairs of real quadaratic folds can exist that
are connected by a complex branch of solutions. This makes complex bifurcation
useful when solving real equations numerically, since it reduces the number of
initial solutions that are required. We also discuss complex Hopf bifurcation. We
show that two three-parameter families of complex periodic solutions are present

at a Hopf bifurcation point.
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IV. Extensions

In the first half of this chapter we present the result that makes complex
bifurcation useful for numerical calculation, i.e. , that complex branches can
connect real solution branches that are otherwise disjoint. We begin by considering
equations with two real parameters, and use an analysis like that of Jepson and
Spence (8) to show that sections of the solutions of these equations can have pairs
of simple quadratic folds that are connected by complex solution branches. Most
physical problems have two or more parameters, and we have reason to believe

that such pairs of folds are common in these problems.

In the second half of this chapter we briefly discuss complex Hopf bifurcation,
or the bifuration of periodic orbits from a branch of steady states. We show that
two three-parameter families of complex periodic orbits can exist, whereas only a

single one-parameter family of real periodic orbits exists.

Equations with Two Real Parameters

In this section we consider complex equations, like those discussed in chapters
II and III, but which depend on two real parameters, A and 7. If the Fréchet

derivative Gy (uo, Ao, 7o) at a solution G(ug, Ag, 7o) = O is nonsingular, the Implicit
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Function Theorem can be used to find a solution surface (u(},7),X,7). If G is the
complex extension of a real equation, and the solution (uo,Ao,70) is real, the
surface must be real. This can be shown quite easily by writing the contracting
map used in the Implicit Function Theorem .

If (uo,A0,70) is not a regular point, various methods have been developed
to find solutions. Computationally, the most attractive is to compute paths of
singular points. This avoids the problems that arise in computing a surface, yet
yields enough information to determine the surface’s topology. Jepson and Spence

(8) suggest using the extended system
A
(8) F(v,7) = | Gulu,(A, 7))o | =0,

where v = (u, ¢, ), and I* is an approximation to the null vector of G (u, (A, 7).

Suppose that (uo, Ao, 7o) is a simple quadratic fold of G for fixed 7, that is

(9a) oGS # 0

(96) Y5 Gaudodo # 0,
(9¢) N(G?) = span(¢o)
(9d) N(GY) = span(ig).

Jepson and Spence show that the Fréchet derivative of equation (8),

GY 0 GY
Fy((u0,%0,20)s70) = | GSudo Gu GUy¢0 |,
0 = 0

is nonsingular if and only if conditions (9) hold. This means that a regular solution

of the extended system is a simple quadratic fold of G when 7 is fixed. The Implicit
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Function Theorem guarantees that a simpla quadratic fold lies on a smooth path
of quadratic folds.
Jepson and Spence go on to show that a simple quadratic bifurcation point,

at which
YV Guudd # 0

PGy =0
and, VG, # 0,
is a simple quadratic fold on the path of folds. Figures 8 and 9 show the two
types of these folds, elliptic and hyperbolic. At an elliptic fold, the quantity D,
which determines whether the quadratic bifurcation has real or complex branches,
is negative. At a hyperbolic fold D is positive.

We can use these folds to show that disjoint real branches can be connected
by complex branches. We fix 7, and consider how solutions of G(u, A, 7o) depend
on 7o. If (uo,Ao,70) is a hyperbolic fold of the real equation, then the solutions
at 7, consist of two intersecting real branches. As 7 is increased, these branches
break apart into two disjoint branches with no singular solutions. See Figure 10.

If 7 is decreased past 7o, the intersecting branches break apart the other way,
and form a pair of simple quadratic folds, connected by a complex isola. See
Figure 11. This complex isola provides a means of computing both disjoint real
solution branches numerically, without knowing that a second branch exists. Most
algorithms for computing solution branches numerically require an initial solution
on each disconnected component of solutions. Finding these initial solutions often
involves searching large spaces. By modifying the algorithm to also compute the
complex solution branches, the number of real solution branches in each component
increases. This reduces the time spent searching for initial solutions. The complex
isola is not just a phenomena of perturbed bifurcation, it must exist for 7 up to

the next singular point on the path of folds. We have found disjoint real branches
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Figure 8. An Elliptic Fold of a Two Parameter Equation
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Figure 9. A Hyperbolic Fold of a Two Parameter Equation
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that are connected by a complex branch that are quite far apart. See the examples
in chapter VI.

We have shown that complex bifurcation occurs at simple quadratic folds,
so there should be a complex branch of folds near an elliptic or hyperbolic fold.
The tangent vector at such a fold was shown to be %¢ times the null vector of
the Fréchet derivative. At a simple quadratic bifurcation point in A, the Fréchet

derivative of F' has the null vector

—%d?o + ¢1
"o
-[*i(: <l150 + ¢

b

where

A = 3G dodo
B = %G dodo + w5 Go o
Go¢; = -GY

B
and Gogr = —(Goydod1 + Gurdo — XG?Lud’OqSO)'

Since the A component is nonzero, the complex path of folds must have complex
parameter A. In many problems there is no distinction between the parameters 7
and ), so that it is rather artificial for A to be complex while 7 is not. Complex
paths of folds may however be a useful technique for locating disjoint paths of real

folds.



—56—

BB

Figure 10. A Section of a Hyperbolic Fold for 7 < 7,
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B o:B

Figure 11. A Section of a Hyperbolic Fold for 7 > 7,
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Complex Hopf Bifurcation

The following example from Jepson (7) demonstrates most of the features of

complex Hopf bifurcation:

w [ A1 LA uw?+ovu?) [0
v/, -1 A v wo+vd) T \O0/)°
This has the steady state solution u(A) = 0. At A = 0 the Fréchet derivative has

the pair of eigenvalues +7, and (0,0) is a Hopf bifurcation point. In this example

we are able to find exact periodic solutions. They are

(u) Y <cosh(6)sz’n(t +7) + tsinh(8)cos(t + 7’))

cosh(f)cos(t + ) — isinh(8)sin(t + 1)

where 7 determines the point on the solution at ¢ = 0, and § is an undetermined
real constant. For real Hopf bifurcation, # must be zero.

Figure 12 shows what these solutions look like. There is a steady state branch
of solutions, u()\) = 0; a set of real periodic orbits, parametrized by A, which exist
for A > 0, and have period 27; and two sheets of complex periodic orbits, 6 # 0,
which are parametrized be X and 8. These complex orbits exist for all A, and also
have period 2.

In order to show how these complex orbits arise, we briefly sketch the proof

of Hopf bifurcation, and show how the complex orbits arise.
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Figure 12. Complex Hopf Bifurcation
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Hopf bifurcation concerns solutions of the time dependent problem

ut — G(u,A) =0,
(15)
u periodic.

Suppose that this equation has a steady state solution branch of real solutions
(uf(A), ), and that on this branch, the Fréchet derivative of G, G, has a pair of
complex eigenvalues (a = ¢3). A Hopf bifurcation point (uo, Ao) is a point on the
steady state branch at which the real part of such a pair goes through zero with
nonzero imaginary part. In order to study the bifurcation, a new parameter ¢ is

introduced. The solution u is scaled by € and the equation by 1/e. Let

_ iGN +ev, ) e#0
F(”’A’E):{Gu((uf((x),x) ) e=0.

Then (15) is equivalent to
vi — F(v,A,¢) =0,

v periodic,

or,at e =0,

v periodic.

If the period of u is p, we define the scaled time variable 7 = pt, and so have the

equation

(16) vy — pGu(uI(x\),/\)v =0
v(1) —v(0) =0

Let
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and ¢()) and n(X) be the elgenfunctions of A(x\) and A*(x\) corresponding to the
eigenvalues a()) +¢4(A). That is

ANEQ) = (a(A) +8(A)E(N),
A" (N)n™(A) = («(A) +18(A))n"(H),
(a(A) = iB(N)E(N),

and AN (A) = (ald) — BT ().

>
Rl
fax
Rt
I

The null vectors ¢ and n can be normalized so that

n¢=1
and 7 =1
It can also be easily shown that
né=
and n*€ =0.
Equation (16) has the solution
A = /\0,
p = 27 /B(Ao),

v(r) = ePoAeTy(0),
and v(0) = a& + bé,

for some a,be C.

The constants a and b are determined by introducing the conditions

P v(0) =1

and P A(Ao)v(0) =0,
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where * is an element of the nullspace of A*(Xo). Therefore

P = 01n + 027,

for some complex scalars 6; and 8;. In real Hopf bifurcation, ¥* must be real, so
9, = 8,. We only require that |8;|° + 621> = 1, and that 6:0; # 0. This means
that there are three degrees of freedom in choosing ¢ for complex Hopf bifurcation,

but only one for the real case. The constants a and b are determined by

<i5(i;)01 —iﬁ?§0)02> (Z) - <(l))

If 9,85 # 0, this system is nonsingular, and has solutions a = 1/26, and b = 1/20,.

The Fréchet derivative of equation (13) at this solution is

[ePodo — I]  Aou(0) wx(1)
p* 0 0 1,
* A° 0 0
where vy (7) satisfles
vy = poAovx = poAorv

and vy = 0.

Therefore,
.
va(r) = poep“A( T/ {e“p"AUSAgep“A“sv(O)}ds,
0

and so,

0

va(1) = palax +1B))€ + pb(ax —18x)E — a(ePoA” — )€y — b(e? — I)E,.

The Fréchet derivative can be shown to be nonsingular at this solution, by using

Keller’s Basic Lemma (10).
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Lemma: Let X be o Banach space, and 4 a linear operator mapping X xR* =

X x R?, of the form
A B

where
A: X > X, B:R? - X,

c*: X — R?, D:R? - R%
(i) If A is nonsingular then A is nonsingular if and only if

(D — C*A~!B) is nonsingular.

(i1) If A is singular and
dimN (A) = codim Range(A4) = 2,
then A is nonsingular if and only if

(co) dim Range(B)= 2, (c1) Range(B)NRange(A)= 0,
(c2) dim Range(C*) = 2, (c3) N(A)NN(C™)

0.

(vi) If A is singular and
dimN (A) = codim Range(4) > 2

then A is singular. B

Since dim(N(e”“AU — I)) = 2, case (ii) of this Lemma applies. We first show

that (cy) holds, i.e. , that dim(Range(({#",¢"A°})) = 2.

b\ _ bin* + 0,7
Ra“ge((w*Af’)) = Range <iﬂ(/\o)91n‘ - m(xo)azﬁ*>

_ 9 0 n-
= Range (w(Al)ol iﬂ()\?))%) <77’>

= Range((n* 77)).
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Since 7 and 77 are indepenclen{',, dim(Range({{@/;*,z”AD})) =9

Now, to show that (cz) holds, let u be an element of N(C*). Then

in"u+027"u=0

and zﬂ(@ln*u - Hzﬁ*u) = 0.

If neither 8, or 8, is zero, this is equivalent to
n"u=0 and 7
Now, N(A4) = span(¢, €), so if u € N(A),
u =€+ 726

If u is also in N{C*),

nu=yn €+ E="1n =0

Tu=maé+yné=nné=0.

fi

therefore, N(A4) N N(C*) = 0.

Condition (¢co) is that dim(Range(Aqv(0),vx(1))) = 2. Recall that

Aov(0) = iBp(aé — bE),

and va(1) = poaky € + pobkr € — aCoy — bCo&,,
where kx = ay +106(A),
and Co = ePodo — T,

Condition (co) holds if and only if Aqv(0) and vyx(1) are independant. Let

u = 71 Agv(0) + v2vx(1).
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Then we show that u = 0 implies that 41 = 42 = 0. The equation u =0 is

a(iBory1 + povzknr)€ + b(—iBov1 + povaka)€ — 72C0(aéx + bé,) = 0.

We multiply on the left by n* and 7*, recalling that n*Co = 0 and 7" Cp = 0. We

obtain the two conditions

a(iBo1 + Pov2ka) = 0,

and b(—iﬂo’)’l -+ po")’zk}) = 0.

Nonzero ; and ~y; exist if the determinant

iBoabpo(ky + Kx) # 0.

Now ab = 1/48,8, # 0, so if oy # O, the determinant is nonzero, and so both ~v;
and ~, must be zero. Aou(0) and vy (1) are therefore independant, so (co) holds.

Condition (¢;) is shown to hold in a similar way. The condition is that
Range(Aqv(0),vx(1)) N Range(e?**" — I) = 0.

For an element u to be in the range of eP*4v — I it must satisfy

n u =0,

and 7 u = 0.

A general element of Range(Aqv(0),vx(1)) can be written as.

U = ’yle’U(O) + ’)’2’0/\(1),
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so for u to be in both sets, we get a pair of conditions exactly like those obtained

above i.e. )
a(iBoy1 + povaka) = 0,

and b(—iBo1 + PoY2®A) = O.

Both ~; and o must therefore be zero, and so (cy) holds.

We have shown that the Fréchet derivative of F is nonsingular. There-
fore, by the Implicit Function Theorem , a set of smooth mappings of the form
(v(€), p(€), A(€)) exist that solve F = 0. Such a set exists for each choice of #, and
8, for which 8,85 # 0.

In this chapter we have shown that pairs of simple quadratic folds can be
joined by complex branches of solutions. The existence of these complex connec-
tions improves the preformance of numerical algorithms for computing solutions
of real equations. Fewer initial solutions are required to compute a given set of
solutions. In the next chapter we present one numerical algorithm, and suggest

ways that it can be modified to compute complex solutions.
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V. Computing Complex Solutions Numerically

We have shown that complex bifurcation occurs at several types of simple
singular solutions, and that complex branches can connect pairs of real simple
quadratic folds. In this chapter we present two ways of using existing algorithms

to compute complex solutions numerically.

Several effiecient algorithms exist for computing solutions of real equation, for
example Euler-Newton continuation, and pseudo arc-length continuation. There
are two main ways to use these real algorithms. We can use complex arithmatic,
and modify the algorithm to solve the complex equation, or we can replace the com-
plex equation by an equivalent pair of real equations. Both approaches have their
drawbacks. Using an equivalent system of real equations requires no changes to
the basic algorithm, but all bifurcation points become multiple bifurcation points,
so some care must be used when switching branches. Computing solutions of the
complex equation requires changing the basic algorithm, but it makes switching
branches simpler, and makes the coding of the Fréchet derivatives trivial. Which
method is best depends strongly on how easily changes can be made to a given

code.

The first section of this chapter describes pseudo arc-length continuation,
which is presented in Keller (10). In the following sections we describe how this
algorithm can be used to compute complex solutions. Using Euler-Newton contin-

uation is simpler, and the necessary changes should be obvious from our discussion
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of pseudo arc-length continuation.

Pseudo Arc-Length Continuation

Let g(z,A) = 0 be a real equation. Pseudo arc-length continuation computes
solutions of this equation of the form (z(s),A(s)), where s is an approximate
arc-length. If a solution (z(so),A(s0)), and the tangent to the solution branch
(2(s0), A(s0)) are known, all of the solutions that are connected to (zo,Ao) can be

computed.

If s were true arc-length, a point on the solution curve would satisfy
g(z(s),A(s)) = O
and () 17 + M) = 1.
The pseudo arc-length approximation replaces one tangent by the tangent at so,

and the other by the secant between s and so. A solution branch parametrized by

pseudo-arc-length satisfies

(12a) | g(z(s),A(s)) = 0
(12b) and N(z(s),A(s)) =0,
where,

N(z(s),A(s)) = £5 (2(s) — 2(s0)) + Ao(A(s) = Als0)) = (s = 50)-

This has a simple geometric interpretation, shown in Figure 12. The solution at s

is required to lie on the intersection of the solution curve and a hyperplane



(uu 3 /\0 )

-'/'/(u(s), A(s))

initlal guess

tangent

Figure 12. Pseudo Arc-Length Continuation
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perpendicular to the tangent at s, and at a distance s—So from (2o, Ag). Using this
parametrization, the steepness of the solution curve does not effect the convergence
of the algorithm.

For a given stepsize s — so, solutions of equation (12) are calculated by New-

ton’s method, which is

(13a) Tni1(s) = zn(s) + Azp

(13b) Ap1(8) = An(s) + AX,

(13¢) (5 2) (88) = (%),

The stepsize s — so is usually chosen so that it is as large as possible, while still
producing an initial guess that is close enough that Newton’s method converges.
Perozzi (15) discusses several methods for choosing an optimal step size.

Equation (13¢) may be solved by a variety of techniques, but in many problems
g has some structure that can be exploited to speed the solution of linear systems
involving ¢g;. The elements N, and g, destroy this structure. Keller therefore
suggests that a block elimination algorithm be used. This requires that a system
wifh gz be solved for two right hand sides.

The block elimination proceeds as follows. If g, is nonsingular, let

(9a) gzv = g

(9b) and gz2 = —4¢.

Then we must have that

Az =z—AX-v,

and therefore,
(-=Ngz — N)

AN\ = "=
(Ny — Ngv)
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Keller has shown in (3) that near singular points of g this Newton iteration
still converges. If (s — so) is large enough that a singular point lies between sp and
s, the iteration simply converges to a solution on the other side of the singular
point. This means, however, that some means of detecting singular points must
be included in the algorithm. Some measure of the singularity of g, is usually
monitored as a function of s. Some possiblities are the sign of the determinant of
gz, and its condition number. On most branches through simple singular points
the determinant changes sign at the singular point, and the condition number has

an extrema.

Once the solution at s is found to a given accuracy, the tangent must be

calculated. If s were true arc-length, the tangent would satisfy

and 1z )? 1A =1

The pseudo arc-length approximation is

(15a) gzz'+g,\/'\:0

(156)  and (2(s) — 2(s0))T(s) + (Als) = A(sa))A(s)) = s = so.

These equations have the same block structure as (13c). In fact, if the last factor-
ization of ¢, is saved, finding the tangent only requires two backsolves.

At a bifurcation point equations (15) are singular, and so the tangents must
be found by some other means. Keller (10) suggests several methods, including

searching parallel to the known solution branch, and calculating and solving the
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algebraic bifurcation equations. Once the solutions of the ABE’s are known, lo-
cal expansions, like those in chapter III, can be used to find an initial guess for
Newton’s method.

The overall organization of the algorithm is fairly simple. Given an initial
solution, tangent, and a step size, new points on the solution branch are calculated
using Newton’s method. After each step the step size is adjusted so that it remains
nearly optimal. When a singular point is detected, it is located accurately by
bisection, or some other search strategy. The tangents at the singular point are
then estimated, and together with the singular point, are used as initial solutions

for the algorithm.

Using the Real Algorithm to Compute Complex Solutions

Let G(u, ) = 0 be a complex equation. Recall that G can be written in the

form

G(z + 1y, A) = f(z,y,A) + th(z,y,A),

where f and h are mappings of (B x B) x R — B. The complex equation is

equivalent to the real system

f(z,y,A) =0

h(z,y,A) =0.

Using pseudo arc-length continuation, Newton’s method is

(16a) Tny1(s) = z,(s) + Az,



(16b) yn+1(3) = yn(s) + Ay,
(166) >\n+1(5) = )‘n(s) + AA,
fz: fy f)\ Az f
(16d) hy hy h Ay = - h ,
N? N; N§ " A " NT o
where

£ (2(s) — 2(s0)) + 92 (4(s) — y(s0)) + Ao(A(s) = A(s0)) — (s = s0)-

If the block elimination algorithm is used to solve (16d), the linear system that
must be solved is twice as large as for the real equation. Furthermore, unless the
variables 7 and y are interlaced, or the block elimination algorithm is modified,
the structure of G, is destroyed.

At a simple singular solution, where G has a one-dimensional null spaces,
the real system has two-dimensional null spaces, as we showed in chapter IIL
This means that simple bifurcation points of the complex equation are multiple
bifurcation points of the real system. Most codes do not include routines to handle
multiple bifurcation point, as the possibility exists for the bifurcation of surfaces of
solutions. Some special purpose code must therefore be written to switch branches

at bifurcation points, or it must be done by hand.

A Complex Algorithm

The alternative to solving the equivalent real system is to modify the al-

gorithm to solve the complex equation directly. Most of the required changes
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involve using complex arithematic to calculate G and it’s derivatives. The pseudo
arc-length conditions and the block elimination algorithm, however, require other
modifications.

The pseudo arc-length algorithm is based on essentially geometrical argu-
ments, and the geometry of the complex solution branches has not changed. We
have shown that they are still smooth arcs, and that the arcs are unique near
regular points. In order to use the pseudo arc-length condition, it is necessary
only to replace the real inner products by the appropriate complex inner product.

The resulting pseudo arc-length constraint is

N<(u(s), A(s)) = Re[ig(u(s) — u(so)) +Ao(A(s) = A(so)) = (s = s0)] = O.

The block elimination algorithm, which assumes that the linear system is a matrix

equation, must also be modified. We again let

(17a) Gyv =G,
(17b) and Guz = —G.
Which implies that

Au=2z— AN v,

and therefore Re(N5 - AN — Nyv-AX — Nyz— N°) =0.
And so, since AAX is real,

Re(—Niz — N)
Re(N§ — Név)
(18b) and Au=2z—AX-v.

(18a) AN =
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Notice that the linear systems in equation (17) still retain any structure of G.,. If
the linear equation solver is modified to use complex arithematic, the operation
count remains the same as for the real equation, except that complex multiplica-
tions are counted.

In order to detect singular points, it was suggested that either the condition
number, or the sign of the determinant of G be monitored as a function of s.
For a complex branch the condition number still has an extrema at a singular
point, but if the sign of the determinant is used some further modifications are
necessary. The determinant on a complex branch is a complex quantity, and if
the sign is interpreted as the unit in the direction of the determinant, a change of
sign is equivalent to the angle between succesive vectors (Re(det), Im(det)) being
greater than 180°.

The overall strategy of the algorithm is unchanged. Solution branches are
computed until a singular point is detected. There, each tangent is used as an
initial solution, and all of the bifurcating branches are computed. However, the
number of bifurcating branches is always greater than in the real case.

A well designed code would use the real algorithm, and real arithematic when
computing real branches of the complex equation, since we have shown that they
remain real. When a complex bifurcation point is identified, the code would switch
to the complex algorithm to compute the complex branch.

We have used this algorithm to compute the solutions of the examples in the
next chapter. The extra work required to compute the complex solutions is far
outweighed by the ability to locate disjoint solutions of the real equation without

random searching.
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V1. Examples

In this final chapter we apply the numerical techniques of the previous chap-
ter to several example problems. The first is from Keller (10), and was used to
demonstrate the pseudo arc-length algorithm. It has a trivial branch of real so-
lutions, with alternate simple quadratic and simple cubic bifurcation points. Its
solutions also include several simple quadratic folds.

The second set of examples are the elementary catastrophes from Catastrophe
Theory. These are topological models for the solutions of the bifurcation equations,
and they may be complex. By taking sections of these catastrophes, we can very
simply determine the topology of the complex solution branches at the simple
singular points in chapter III. The catastrophes are useful because we can also
determine which of the higher order simple singular points are complex bifurcation
points.

Our final example shows how complex solutions can be used to locate real
solution branches. We consider the axially symmetric flow between a pair of
infinite rotating disks. By calculating complex flows, we have been able to find

two real branches that are disjoint from our initial solution.
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A Nonlinear Two Point Boundary Value Problem

The following example was presented in (10) as a demonstration of the pseudo
arc-length continuation algorithm. Its solutions have all of the singular points

discussed in chapter III. The problem is to solve the two point boundary value

problem
Ugr + f(z,u;A) =0
G= U(O) =0 )
u(l) =0
where

and p(z) =z~ Z 2t —22°.

i=1
Note that the polynomial p(z) given in (10) does not match the figure in (10).
This is the correct polynomial for that figure.

Figure 13 shows the integral of the solution as a function of A. There are
bifurcation points on the solution branch T'1(A) = ¢(A) - z(1 — z) at An = nim?.
The first is a simple quadratic bifurcation, the second a simple cubic bifurcation,
and so on. The quadratic bifurcation points all have D? > 0, so there is no
complex bifurcation at these points. The cubic bifurcation points and the folds,
howeven, are complex bifurcation points. The branches that bifurcate from the

cubic bifurcation point are symmetric, and have the same integral, so appear as a

single branch.
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In addition to the complex branches which are associated with bifurcation
points on real branches, we have been able to find a pair of complex branches I';
and T3, that are disjoint from the real solutions. When the differential equation
is approximated by finite differences, an algebraic system is obtained. Bézout’s
Theorem, from Algebraic Geometry, says that if there is no common factor in this
set of equations, the number of complex solutions is 9™, where n is the number of
intervals on [0,1]. We have used 20 intervals to compute the solutions in Figure
13, so there should be 9%° complex solutions. Some of these are from bifurcation
points outside the range of A that we considered. We suspect, however, that most
of them are like I'; and I's, disjoint from the real solution branches. If a real initial
guess is used, these solutions will not be found. We found I'y and T'; by random
searching with a complex initial guess.

Notice that the number of solutions is constant away from A = 0. This
is due the algebraic nature of the difference equations. Even for non-algebraic
problems, however, the bifurcation equations are often locally algebraic. So, if the
solutions stay bounded, and the only types of singular points have locally algebraic
bifurcation equations, the number of the solutions will be independant of A, since
the number of solution branches at a bifurcation point is determined by algebraic

equations.
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Figure 13. Solutions of a Nonlinear Two Point Boundary Value Problem
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The Elementary Catastrophes

Many books have been written recently about Catastrophe Theory. See for
example (17), (1), and (16). A catastrophe is essentially a topological model for
solutions of the bifurcation equations. At a simple singular solution, if the ABE’s
are of order less than five, and if fewer than five parameters are involved, the
solutions of the bifurcation equations are topologically equivalent to the solutions

of one of the following equations

Fold Catastrophe u?4+ XA =0
Cusp Catastrophe wd+Au+Ar =0
Swallowtail Catastrophe w4+ Mul+du+ A3 =0

Butterfly Catastrophe w5 + Aju® + Azu? + Azu + Ag = 0.

The simple quadratic fold, for example, is equivalent to the Fold catastrophe.
Recall that the Limit Point Algebraic Bifurcation Equations are A2+ D¢=0. If
¢ is scaled by D/A, this becomes the Fold Catastrophe.

A simple quadratic fold is also equivalent to the Fold Catastrophe. Recall
that the Quadratic Algebraic Bifurcation Equations are A¢% + 2B&¢ + C¢? =0,
which are equivalent to

(A€ + B¢)* — D** =0,

where D = B? — AC. By letting u = A¢ + B¢, and A\; = —D?¢, this becomes the
Fold Catastrophe.
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The simple cubic bifurcation is the section Az = 0 of the Cusp Catastrophe.
Recall that the Cubic Algebraic Bifurcation Equations are bé3+cé¢ = 0. A simple
scaling transforms this to the Cusp Catastrophe.

Figures 14-17 show the real and complex surfaces of the four catastrophes
mentioned above. For the Swallowtail and the Butterfly we have fixed one or
more of the parameters in order to remain in three dimensions. The vertical axis

in all of these figures is Re(u) + Sm(u).
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Figure 14. The Fold Catastrophe
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Al

Figure 15. The Cusp Catastrophe
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‘Complex

AL S~

Figure 16. The Swallowtail Catastrophe, A; =1



—85—

Ay

Figure 17. The Butterfly Catastrophe, A; =1, A3 =1
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Flow Between Rotating Coaxial Disks

Our final example is the axially symmetric flow of a viscous fluid between
two infinite rotating disks. This flow has a similarity solution, which reduces the
problem from a three dimensional flow to finding two scalar functions of the axial
coordinate. There are two parameters involved, a Reynolds number R = Nod? /v,
and the ratio of the angular speeds of the disks ¥ = 1;/Qo, (See Figure 18 for
definitions of d, and (1o and Q). Keller and Szeto (12) and Fier (5) have used
continuation methods to find paths of simple quadratic folds of solutions. Figure
19 shows the projection of these folds on the (R,~) plane. Notice that there are

two butterfly catastrophes. The similarity solution is

1 z
Uz = mf(a)

_ 1 )2
ur = =507 ()
1 z
Ug = mrg(g)a

where

and fQ)y=f7(1)=0 g(1) = ~.
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Fot our example we have fived the geomatry (R = 780) and have investigated
how the flow depends on the speed of the disks 4. The branch on which we had
an initial guess (obtained from J. Fier) is detailed in Figure 20. There is some
reason to suspect that this branch is spurious. It exists for 30 intervals in the
axial direction, and the solutions seem smooth for most of the parameter range,
but Fier has been unable to locate it for meshes of 200 intervals.

We chose this branch because of the pair of elliptic and hyperbolic folds
shown in Figure 20. We showed in chapter IV that sections of a hyperbolic fold
have complex isola that connect real branches. This is indeed the case, as shown
in Figure 21. This shows how the quantity Re(x) + Sm(x) varies as a function
of v, where ¥ = fol(f +f ¢ g)dz. Notice that the elliptic fold causes the real
branches to close and form a real isola, and that another complex isola also exists.
Figures 22-34 show solutions along these branches. We used just one starting
solution, at ¥ = 1, and by following complex branches, found two real branches
that cannot be found by ordinary continuation. There are other ways to find these
branches, such as continuation in Reynolds number, and computing paths of folds.
Complex bifurcation, however, has the advantage that the disjoint branch can be
found without resorting to special techniques, and without prior knowledge of its
existance.

We have shown that real equations can be extended to equations with com-
plex solutions and real parameters. At bifurcation points, the complex equation
has solutions branches corresponding to both the real and complex roots of the Al-
gebraic Bifurcation Equations. These complex branches offer a practical means of
locating disjoint real solutions, since they can connect otherwise disjoint branches
of real solutions.

We have shown that existing algorithms can be modified very simply to cal-

culate complex solutions, and have used such an algorithm to compute solutions
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of a non-trivial problem from Fluid Mechanics.
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Figure 18. Flow between Rotating Disks




~90-

1.0

1 1 hd i
[falal [N alal Ialalal

Figure 19. Paths of Folds in the Flow between Rotating Disks
(from Fier (5))
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R = 780

Figure 20. A Specific Path of Folds
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Figure 21. Solutions at R = 780
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Rotating Cooxig! Disks

Rea! Part

Imagincry Port

r e Angular Velocity

Step# 1

Norm 0.904
Gamma 0. 8750

Axiagl Velocity

0. 727€+01

0. 150E+02

Figure 22. Solution on T,

0. 271E+01
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Rotating Cocxial Disks
Reo! Part Steof 25
Imaginary Part Norm -0 075
Gamma ~. 1170

r e Angular Velocity Axiagl Veiocity

|
i

0. 127E+02

\

Q. 268E£+02 0. 477E+01

Figure 23. Solution on T',
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Rotating Coaxial Disks

Real Part Step# 50
Imaginary Port Norm 0.036
Gomma - 1504

r e Angulor Velocity Axigl Veiocity

0

1428402

X
0. 299E+02 0.531E£+01

Figure 24. Solution on ',
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Rotating Coaxiocl Disks

Reol Part Step# 120

imagingry Part Noem  —-1.090
Gammag 0. 5795

r ¢« Radia! Velocity r e Anguliar Velocity Axiol Velocity
L
<:::::?i %
0.849£+0" 0. 177€+02 0. 317£+01

Figure 25. Solution on T,
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K Rotating Coaoxig! Disks

v

Rea! Part

Step# 160
imaginary Part Norm -0.224
Gommag =~. 2845
= ]
r ¢« Radial Velocily r » Anguiar Velocity Axigl Vetocity
T
3. 122E+02

0.2565+02

Figure 26. Solution on [,

0. 455€+01
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0

123€+02
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Figure 27. Solution on T,
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.

Ragl Port Step# 210

imaginary Part Norm -0. 654
Gamma - 5510
r o Radiol Velocity r e« Anquliar Velocity Axial Velocity

A} i
0. 883€+0 0. 185€E+0Q2 0 331£+01

Figure 28. Solution on I';
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Rototing Cooxiol Disks

Rec! Part Stepk 290

Norm -1 059

imaginary Part Comma - gras

r » Rodial Velocity r ¢ Anqulor Velocity Axial Velocity
.
N
0 621E+01 0.126E+02 0.231E+01

Figure 29. Solution on I,
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Rotaoting Coaxiol Disks

Reagt! Part Step# 250

Norm -~0.722
Gammag - 6237

Imaginary Part

r « Angulor Velocit Axial Veleocit
g Y Y

\

0. 777€+01

0.1615+02 0. 289£+01

Figure 30. Solution on I',
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Rotating Coaxiai Disks

Rea! Part Step# 330

Imagingry Part Norm -0.98%
Gammg -. 8922

r « Radial Velocity r = Anguiar Velocity Axial Velocity
\
0 §17E+01 G 12%5E+02 0. 229€+01

Figure 31. Solution on T,
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Rotating Coaxiagl Disks

Reai Part Stepp 410
imagingry Part Norm -1.255
Gamma - 9522
r ¢« Radial Velocity r e« Angular Velocity Axiat Veloc: ty
0.281E+02 - 0. 5728+02 0. 111£+232

Figure 32. Solution on T’
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Rotaling CToaxiz!l Jisks

|

Reg! Port Stepf 550
Imgginary Part Norm -0.537
Gamma

|
1

r » RFodioi Velocitly r e Angulor Velocity Axial Velocity

| I %

N

\\ﬁ/\/

A

A\

0 500£+01 0 948E+01 0. 175€+01

Figure 33. Solution on I's
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Rotating Coaxigl Disks

.
Reag! Part Step# 480
Imaginary Part Norm -1 280
Gamma
L e e
r o Rodial Velocity r ¢« Anqulgr Velocity Axial Veloc:ty

= < 7
~ J
.

;
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3. 510E+01 0. .977E+Q 0. 182E+01

Figure 34. Solution on Ig
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