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ABSTRACT 

For the past century, the mechanism for many infectious diseases has been linked to a 

single pathogen (per Koch’s postulates); however, with the recent expanding 

characterization of the microbiome, it is now known that changes 

in the abundance and composition of species in the human microbiome, and the persistence 

of these altered microbiome states, can also be associated with disease. There is therefore 

a critical need to expand our understanding of the mechanisms that cause a stable healthy 

microbiome to shift into an alternate, stable disease state. Some of these microbiome 

disease states even paradoxically persist in seemingly unfavorable conditions, e.g., the 

proliferation of oxygen-sensitive microbes (anaerobes) in oxygen-exposed environments 

as seen in wound infections, periodontal disease and small intestinal bacterial 

overgrowth. In Chapter I, we use a combination of genome-scale modeling, reactor 

microbiology, transcriptomics, and control theory to reveal 

a potential mechanism for shifts and persistence of microbiome states: multi-stability and 

hysteresis (MSH). In our results, MSH explains how short-term, reversible changes in 

oxygen and carbohydrate nutrient levels lead to the persistent, essentially irreversible 

overgrowth of oxygen-sensitive microbiota. We find that MSH extends beyond the 

population level and is observed at the level of metabolism, suggesting that MSH is a 

general mechanism that can describe aerobe–anaerobe states in the microbiome.  

Chapter II details a method for rapidly detecting the susceptibility and resistance of 

Neisseria gonorrhoeae to the antibiotic ciprofloxacin. Antimicrobial-resistant Neisseria 

gonorrhoeae is an urgent public-health threat, with continued worldwide incidents of 

infection and rising resistance to antimicrobials. Traditional culture-based methods for 

antibiotic susceptibility testing are unacceptably slow (1–2 days), resulting in the use of 

broad-spectrum antibiotics and the further development and spread of resistance. Critically 

needed is a rapid antibiotic susceptibility test (AST) that can guide treatment at the point-

of-care. In our approach, we explore the use of RNA signatures, which are among the first 

cellular responses to drug exposure, as an indicator of antibiotic susceptibility. Using RNA 

sequencing, we identified antibiotic-responsive transcripts. Significant shifts (>4-fold 
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change) in transcript levels occurred within 5 minutes of antibiotic exposure. We 

designed assays for responsive transcripts with the highest abundances and fold changes, 

and validated gene expression using digital PCR. Using the top two markers (porB and 

rpmB), we correctly determined the antibiotic susceptibility and resistance of 49 clinical 

isolates after 10-min exposure to ciprofloxacin. RNA signatures are therefore promising as 

an approach on which to build rapid AST devices for N. gonorrhoeae at the point-of-care, 

which is critical for disease management, surveillance, and antibiotic stewardship efforts. 
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C h a p t e r  1  

Metabolic Bi-stability and Hysteresis in a Model Microbiome Community 

 

Abstract: 

Changes in the species composition of the human microbiome are associated with a broad 

range of diseases, but elucidating causal mechanisms has been challenging. Some 

microbiome disease states persist in seemingly unfavorable conditions, e.g., the proliferation 

of aerobe–anaerobe communities in oxygen-exposed environments in wounds or small 

intestinal bacterial overgrowth. Using two microbes relevant to the human microbiome, we 

combine genome-scale mathematical modeling, bioreactor experiments, transcriptomics, and 

control theory to show that multi-stability and hysteresis (MSH) is a mechanism that can 

describe shifts to a resilient aerobe–anaerobe community. We examine the impact of 

changing oxygen and nutrient regimes and identify factors, including changes in metabolism 

and gene expression, that lead to MSH. Where MSH explains microbiome shifts, it can 

profoundly improve our conceptual understanding of these paradoxically persistent disease 

states, and thereby facilitate effective interventions. 
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Introduction 

Many infectious diseases can be linked to a single pathogen (Koch’s postulate); however, 

recent evidence shows that changes in the species composition and abundance of the human 

microbiome can also be associated with health and disease (1-3). Understanding the 

mechanisms that cause compositional shifts in healthy microbiomes, which otherwise can 

be remarkably stable, is challenging due to the inherent complexity of these ecosystems. A 

perplexing feature of some of these disturbed ecosystems is the persistence of a new 

microbiome state, even in seemingly unfavorable conditions. For example, in small 

intestinal bacterial overgrowth (SIBO), strict anaerobes that are typically found only in the 

colon become prominent in the small intestine and, paradoxically, persist in this 

oxygenated environment. Similarly, in periodontal diseases (4) and in wound infections, 

anaerobes proliferate in oxygen-exposed environments.  

One potential mechanism to explain microbiome shifts and their persistence is multi-stability 

(5, 6), the concept that several steady states can exist for an identical set of system parameters. 

Multi-stable systems have been described in the context of ecosystems (7-10), and gene-

regulatory networks (11-13). Now, with the expanding characterization of the microbiome, 

there are signs that multi-stability may also exist in these communities (14-20). For example, 

compositional changes in gut microbiota are implicated in inflammatory bowel disease (21) 

and obesity (22). Bimodal species abundance (i.e., when a microbial species is present at 

either high or low levels) has been interpreted as multi-stability (23); however, as discussed 

by Gonze et al., bimodality is insufficient to prove multi-stability (5, 24). Some multi-stable 

systems can additionally exhibit hysteresis, where in response to a perturbation, a system 

gets “stuck” in a new steady state and the former state cannot be regained by simply reversing 

the perturbation (5). The presence of hysteresis could be hypothesized from studies of the 

microbiome (25). For example, antibiotic exposures can change the microbiome 

composition, and have lasting effects even after removal of the antibiotic (26, 27).  However, 

it has not been rigorously tested whether multi-stability and hysteresis (MSH) can arise in a 

microbiome-relevant community and by what mechanism.   
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Here, we investigate MSH in a minimally “complex” two-species system to represent the 

paradoxical aerobe–anaerobe microbiome communities that persist in oxygen-exposed 

environments. We used two organisms prevalent in SIBO (28): the anaerobe Bacteroides 

thetaiotaomicron (Bt) that breaks down complex carbohydrates (e.g. dextran) into simple 

sugars and short chain fatty acids (29), and the facultative anaerobe (aerobe) Klebsiella 

pneumoniae (Kp) capable of consuming oxygen, simple sugars and short chain fatty acids 

(30). 

Results and Discussions 

To simulate how the interplay between environmental perturbations and inter-species 

metabolic interactions could lead to multi-stability, we first built a mathematical model. We 

used the dynamic multi-species metabolic modeling (DMMM) framework (31) to model a 

community of Kp and Bt in a continuously stirred tank reactor (CSTR) (Fig. 1.1A) with 

continuous input flows of dextran minimal media, glucose, and oxygen. The DMMM 

framework uses dynamic flux balance analysis (dFBA) (32), which allows us to capture 

temporal changes in intracellular flux rates (using the genome-scale metabolic model for 

each species), extracellular metabolite concentrations, and species concentrations. 

Next, to computationally test whether a nutrient perturbation could lead to a change in 

community state, we altered glucose input concentrations (Fig. 1.2A), while keeping constant 

all other system parameters, including oxygen input and dextran input. The model predicted 

that for glucose concentrations of 0.25–3 mM in the input feed (at a constant flow rate 0.7 

mL/min for all conditions), the output state consisted solely of Kp, which we refer to as the 

Kp-only state (Fig. 1.1B). Stoichiometrically, at these glucose concentrations oxygen was 

not completely consumed, thus the environment was unfavorable for Bt growth. However, 

when we increased glucose input concentration to 3.25 mM, we observed a shift to a new 

steady state (Fig. 1.2A). At this “tipping point,” the environment became sufficiently 

anaerobic to support the growth of Bt. We refer to this second distinct steady state as the Kp–

Bt (aerobe–anaerobe) state (Fig. 1.1C). In the Kp–Bt state, Kp uses all of the available oxygen 

to oxidize both glucose and the simple sugars generated from the metabolism of dextran by 
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Bt, resulting in anaerobic conditions. Surprisingly, this Kp–Bt state persisted even when we 

systematically reversed the input of glucose below 3.25 mM, even to 0 mM. Thus, this 

system shows hysteresis and bi-stability: under identical input conditions of glucose and 

oxygen, the system can be in either of the two possible states. We then identified tipping 

points for population shifts in response to input oxygen variations—with glucose kept 

constant (Fig. 1.2B). We found that we could return the system to the Kp-only state by 

increasing oxygen levels, a state switch that was not possible by manipulating glucose 

concentration alone. Finally, we simulated changes in both glucose and oxygen levels and 

characterized the landscape of bi-stability and mono-stability in the model microbial 

community (Fig. 1.2C). These simulation results illustrate that even a minimal model of 

microbiome with co-dependence (33) can demonstrate dramatic MSH.  

We next tested these computational predictions experimentally in a CSTR, and further 

explored the metabolic factors behind the dynamics of this aerobe–anaerobe community. We 

varied glucose concentrations and measured the steady state output composition of the 

microbial community by qPCR. Oxygen was introduced into the reactor by aeration at 3.4% 

of the gas feed (50 mL/min total gas feed) and kept constant for all conditions. For each 

steady-state condition, we collected three CSTR samples separated by at least one residence 

time.  

As predicted by the mathematical models, we observed both bi-stability and hysteresis (Fig. 

1.3A) experimentally. At 0.25 mM, 1 mM, and 2 mM glucose concentrations, the steady-

state community consisted only of Kp; Bt was washed out under these conditions (Fig. 1.3B). 

The dissolved-oxygen measurements (Fig. 1.3C) confirmed that oxygen was not limiting 

under the selected parameter conditions, resulting in an aerobic environment unsuitable for 

Bt growth. As in the simulations, at 5 mM glucose, a new distinct steady state was reached 

where Bt grew in the presence of Kp. Although there was continuous oxygen flux into the 

reactor, the concentration of dissolved oxygen measured in the reactor was near zero. Next, 

to test for hysteresis, we reduced the glucose input back down to 2 mM, 1 mM, 0.25 mM, 

and 0 mM and found that the aerobe–anaerobe state persisted. The persistence of the Kp–Bt 
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state (instead of a return to the Kp-only state), confirmed hysteresis and verified that this 

microbial community is a bi-stable system.  

The CSTR results demonstrate metabolic coupling between bacterial species with respect to 

carbon and oxygen. At sample point 8, there is no glucose input to the reactor, yet Kp 

continued to grow, therefore Kp was completely dependent on Bt for its carbon supply. At 

sample point 4, Bt started to grow, despite the continuous oxygen input, therefore Bt was 

dependent on removal of oxygen by Kp. At sample points 7 (0.25 mM glucose) and 8 (0 mM 

glucose), Bt continued to grow, despite dissolved-oxygen measurements indicating oxygen 

concentrations above the tolerance for Bt growth (Fig. 1.3C). This observation differed 

slightly from the model, suggesting that there may be additional biological factors beyond 

metabolic coupling and stoichiometric balance that can affect bi-stability. Imaging revealed 

that in the Kp–Bt state, bacterial aggregates were larger at lower glucose concentrations. 

Furthermore, fluorescent in situ hybridization (FISH) showed these aggregates contained 

both Kp and Bt (fig. S1.1). We hypothesize that co-aggregation provides microenvironments 

more favorable for Bt growth by further facilitating metabolic coupling between the two 

species, as observed in biofilms (4).  

Gene-expression analysis of CSTR samples revealed that bi-stability also occurs at the 

transcriptome level in both the community and in individual species. Principal component 

analysis (PCA) of the community-level gene expression data showed that samples clustered 

based on the steady state (Kp-only vs. Kp–Bt) from which they were collected (Fig. 1.4A). 

Strong clustering at the community level is expected because Bt is absent from the Kp-only 

state. However, when we evaluated the gene-expression profile of Kp (Fig. 1.4B), which is 

present in all steady state conditions, we also found clustering based on the state of the 

community.  

To further evaluate the proposed metabolic mechanism responsible for MSH (Fig. 1.1B,C), 

we compared metabolic regulation in Kp in the Kp–Bt state and the Kp-only state. We used 

a method from the Neilsen lab (34) to collect topological information from the genome-scale 

metabolic models and combine it with gene-expression data to identify reporter metabolites 
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that maximally differ between the two states. Among the top reporter metabolites were 

pyruvate, phosphoenolpyruvate, glucose, and glucose-6-phosphate (table S1.3), suggesting 

that the phosphotransferase system (PTS), which is involved in sugar transport, is 

upregulated in the Kp–only state relative to the Kp-Bt state (Fig. 1.4C–D). In the Kp–Bt state, 

genes involved in the alpha-glucoside linked substrates were upregulated (Fig. 1.4E), 

suggesting that Kp obtains some of its carbon source from oligosaccharides. These 

oligosaccharides are released into the environment by Bt through the breakdown of dextran 

by dextranase, an extracellular endohydrolase (35). Bt utilizes these oligosaccharides by 

hydrolyzing them using glucan-1,3-alpha-glucosidases. As expected, both dextranase (dexA) 

and glucan-1,3-alpha-glucosidase (gaa) were found to be highly expressed in Bt in the Kp–

Bt state (Fig. 1.4E).  

Our analysis (Fig. 1.4F) also suggested an upregulation of acetate utilization by Kp in the 

Kp–Bt state as inferred from the upregulation of acetate permease and acetyl-coenzyme A 

synthetase. Additionally, Kp genes involved in lactate utilization were upregulated in the Kp–

Bt state. Upon oxygen exposure, Bt is known to produce lactate (36). Bi-stability of gene 

expression extended to the anaerobic metabolic pathway for propanediol utilization (Fig. 

1.4G), which results in formation of metabolic micro-compartments (37). We thus infer that 

a subpopulation of Kp was undergoing anaerobic metabolism in samples 4 and 5 (of the Kp–

Bt state), where the dissolved oxygen concentrations in the reactor were lowest (Fig. 1.3C).  

Overall, these results were consistent with the basic mechanism for MSH (Figure 1B–C) and 

reveal that MSH extends to the expression of genes and pathways involved in metabolic 

coupling between the species. 

In this work, we used genome-scale mathematical modeling, bioreactor experiments, 

transcriptomics, and control theory in a model microbiome to show that MSH is a 

mechanism that can describe shifts and persistence of a model microbiome aerobe–

anaerobe community under seemingly paradoxical conditions (e.g., oxygen-exposed 

environments). Identifying and interpreting MSH in human microbiomes and microbiome-

associated diseases would require carefully designed longitudinal measurements and 
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models that take into account the full complexity of microbiomes, their spatial structure, 

and host responses.  If MSH is found, it would have profound conceptual impact.  To 

understand and control microbial communities without MSH, one currently relies on a 

well-established conceptual connection between correlation, causation, and control.  

Consider points S1-S3 (Fig. 1.3). The levels of Kp correlate with the input glucose 

concentration—from a known input glucose concentration, one can infer a steady-state Kp 

concentration and vice versa. Input glucose concentration is the causal factor and therefore 

it can be used to control the steady-state levels of Kp. If MSH is identified in microbiomes, 

it would break this familiar conceptual connection between causation and correlation. 

Consider the region of hysteresis (points S1-S3 and S5-S7, Fig. 1.3). The observed steady-

state levels of Kp no longer correlate with the input glucose concentration.  At 2 mM input 

glucose, the system could be in either the Kp-only state S3 or the Kp–Bt state S5.  At 

~650x106 CFU/mL of Kp, the input glucose levels could be either 0.25 mM or 2 mM.  

Although there is no correlation, input glucose concentration remains the causal factor.  

Furthermore, under MSH, establishing causation is insufficient for achieving control: 

although input glucose concentration is the causal factor responsible for changes in the 

community state, it cannot be used to fully control the community (i.e. one cannot use 

changes in glucose inputs to revert the Kp–Bt state back to the Kp-only state).  Alternative 

control strategies (e.g. changes in oxygen levels or disruption of metabolic coupling), 

derived from appropriate models, would need to be deployed under MSH. Therefore, 

recognizing whether and when MSH exists in human microbiomes and human diseases 

will be critical for interpreting correlation and causation, and for designing therapeutic 

control strategies that can steer microbial communities to desirable states. 
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Fig. 1.1 A multi-stable model system consisting of Klebsiella pneumoniae (Kp), a 

facultative anaerobe, and Bacteroides thetaiotaomicron (Bt), an anaerobe, that is 

relevant to the human gut microbiome. (A) Dynamic equations describing the model 

system can be solved with dynamic flux-balance analysis utilizing each species’ genome-

scale metabolic model. (B) In the Kp-only state, Bt does not grow and Kp utilizes external 

sugars and short chain fatty acids. (C) In the Kp–Bt state, Bt can grow and break down 

complex polysaccharides into simple sugars and short chain fatty acids, which Kp can utilize 

to maintain reduced oxygen levels favorable for Bt growth.  
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Fig. 1.2. Simulations illustrating bi-stability and hysteresis in the microbial community 

with respect to environmental perturbations. Cell concentrations as a factor of (A) 

glucose-concentration variations in the input feed under constant input oxygen flow rate, and 

(B) input oxygen flow variations under constant glucose concentrations in the input feed. 

Each point represents the steady-state concentration for the given species in the community 

after a 50-h simulation. (C) Regions of stability as a function of glucose concentrations in 

the input feed and oxygen flow rates into the reactor. In regions of bi-stability (circles), the 

community can exist in either a Kp-only state or a Kp–Bt (aerobe–anaerobe) state under the 

same conditions. In regions of mono-stability (triangles), the community can only exist in 

either a Kp-only or a Kp–Bt state.  
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Fig. 1.3. Bi-stability and hysteresis of K. pneumoniae (Kp) and B. thetaiotaomicron (Bt) 

community in a CSTR. (A) Total cell concentrations collected at the eight different steady 

state sample points (S1–S8) from the CSTR measured by qPCR. (B) Cell concentrations for 

each individual species in the community measured by qPCR. (C) pH and dissolved-oxygen 

concentrations measured in the CSTR for each sample point. Error bars are S.D. of three 

replicates collected (separated by >1 residence time) from the CSTR for each of the eight 

steady-state glucose conditions.  
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Fig. 1.4. Gene-expression analysis of CSTR steady-state samples. (A) PCA of the 

community transcriptome; each dot represents the combined transcriptome of K. pneumoniae 

(Kp) and B. thetaiotaomicron (Bt) for each sample (S1-S8). (B) PCA of the Kp transcriptome. 

(C) The most differentially regulated pathway between the Kp-only and the Kp–Bt states is 

the phosphotransferase system (PTS); the grey box indicates the upregulated gene; white 
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boxes are downregulated. (D) PTS genes downregulated in the Kp–Bt state. Solid lines 

represent the Kp-only state and dashed lines represent the Kp–Bt state. (E) Gene expression, 

in transcripts per million (TPM), of oligosaccharide uptake in Kp and dextran metabolism to 

oligosaccharides in Bt for each steady-state sample point. (F) Expression of genes involved 

in acetate and lactate utilization in Kp, and acetate and lactate production in Bt for each CSTR 

sample. (G) Expression of the propanediol-utilization pathway in Kp. (E–G) Unshaded 

regions are the Kp-only state; the gray shaded region is the Kp–Bt state. 
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Supplementary Materials 

Materials and Methods 

Model development 

For the computational simulations, we used the dynamic multispecies metabolic modeling 

(DMMM) framework (31), which is an extension of dynamic flux balance analysis applied 

to microbial communities. The system is described as a continuous stirred tank reactor 

(CSTR) with the following mathematical formulation:  

!"
!#
= 𝐹&' − 𝐹)*#                                                         (1) 
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!#
= 𝜇&𝑋& −

/012+,
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                                                      (2) 
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/,839::;

4 </01234
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!30=>?:8
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)@ABC'𝑋& + 𝐾E𝑎(𝑆∗ − 𝑆)@ABC')& 	                               (4)	

Here, V, is the volume of the reactor, 𝑋& is the biomass (g/L) of the ith microbial species. 𝑆6 

is the concentration (mM) of the jth metabolite, 𝐹&' is the rate of flow (L/h) into the reactor, 

𝐹)*# is the rate of flow (L/h) out of the reactor, 𝑆KCC!
6  is the concentration of the jth metabolite 

in the feed stream, 𝜇& (h-1) is the growth rate of the ith microbial species, and 𝑣&
6 is the 

metabolic flux of the jth substrate in the ith microbial species. The set of differential equations 

are solved using the following analytical approximation: 

𝑉K = 𝑉M	 + (𝐹&' − 𝐹)*#)∆𝑇  (5) 
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At the beginning of every time step (∆𝑇), the parameters 𝜇& and 𝑣&

6 are calculated using flux 
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balance analysis (FBA) from genome-scale models and fed back into equations (5) and (6). 

This process is repeated for all time intervals in the simulated time period. Genome-scale 

metabolic models are used to establish genotype-phenotype relationships and capture the 

metabolic capabilities of each model organism. We used the published iYL1228 model of 

Klebsiella pneumoniae (Kp) MGH 78578 (30) and the published iAH991 model of 

Bacteroides thetaiotaomicron (Bt) VPI 5482 (29).  A pathway for dextran uptake and 

hydrolysis to glucose was added to the iAH991 model. The pathway lumps hydrolysis of 

dextran to glucose into a single reaction. In this lumped reaction, we assume that 50% of the 

glucose produced from dextran by Bt can be released into the environment for shared use. 

For the purpose of the simulations, dextran is assumed to be 100 glucose units. The genome-

scale models are solved by flux balance analysis (FBA) (38) at each time point:  

max 𝑐W𝑣^	 (8)	

									𝑠. 𝑡.		𝐴&𝑣^ = 0	

									𝑣&,de < 𝑣^ < 	𝑣&,*e	

where c is the cost vector, 𝑣 is the vector of fluxes, and A is the matrix of mass balance 

stoichiometries. The uptake fluxes are bounded by Michaelis–Menten kinetics: 

𝑣&,*e
6 = 𝑣&

6,gh@ 34

ijk34
                                                     (9) 

The values for 𝑣&
6,gh@ and 𝐾g for some of the metabolites in the model were estimated 

from batch experiments. Batch culture experiments were carried out in a 96-well flat-

bottom plate. Overnight cultures were grown anaerobically in minimal medium. Either 

0.5% w/v dextran or 0.5% w/v glucose were diluted 1:20 (for Bt) and 1:100 (for Kp), and 

outgrown to mid-log phase. The cultures were then pelleted and re-suspended at OD 1 (for 

Bt) and OD 0.1 (for Kp) in carbon-free minimal medium. We added 10 µL of cells to 200 

µL of minimal medium containing various concentrations (0.125 – 0.5% w/v) of the carbon 

source. The plate was incubated at 37 °C and OD600 measured every 10 min. For batch 

cultures, Monod growth kinetics was assumed:  
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Growth data from replicate wells of multiple concentrations of carbon source were fitted 

simultaneously using Bayesian parameter estimation implemented with Markov chain 

Monte Carlo (MCMC). Individual growth curves were allowed to have distinct initial cell 

concentrations and background values, with other parameters held constant. The fitted 

parameters are presented in Table S1 and Fig S1. For all other metabolites captured in the 

differential equations, the Km and vmax values are assumed to be the same (vmax of 10 

mmol/gCDW⋅h and Km of 0.01 mM), based on literature for Escherichia coli (39, 40). 

Values for parameters and initial conditions used in the model are presented in Table S2. 

Initial conditions are chosen to represent experimental setup, whereby we first establish a 

steady state for Kp in the CSTR before inoculating Bt. Therefore, in the models we start 

with a higher concentration of Kp than Bt. The initial conditions for Kp in the reactor is 

arbitrarily chosen to be the experimentally measured mono-culture steady concentration of 

Kp at an input glucose concentration of 0.25 mM. The initial conditions for Bt in the reactor 

is 0.0015 g/L, which is equivalent to addition of 1 mL of OD 1 Bt into the reactor, as done 

experimentally. For most steady state conditions, glucose is limiting and therefore the 

initial conditions for glucose concentration in the reactor is chosen to be 0mM.  

To computationally identify the regions of stability with respect to glucose and oxygen 

(Fig. 2C and Fig. S3), we varied oxygen input flow rates at constant input glucose 

concentration for each glucose condition examined. We evaluated 11 glucose conditions 

ranging from 1 mM to 6 mM. For each given glucose input concentration, we started with 

oxygen at an input flow rate of 6 mL/min and ran the simulation for 50 h to ensure the 

system reached a steady state. We then decreased the oxygen input by 0.5 mL/min intervals 

down to 0.5 mL/min, for each oxygen condition, ensuring the system reached a steady state 

(we refer to the 6mL/min - 0.5mL/min oxygen variations for a given constant glucose input 

concentration as the “forward simulations”).  The concentration of oxygen input at which 
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Bt starts to grow is identified as the “tipping point” to the mono-stable Kp–Bt state. After 

running the 0.5mL/min oxygen simulation we increased the concentration back to 6 

mL/min at intervals of 0.5 mL/min (we refer to the 0.5 mL/min - 6 mL/min oxygen 

variations as the “reverse simulations”). The concentration of oxygen at which Bt can no 

longer grow and gets washed out is identified as “tipping point” to the mono-stable Kp-

only state. The region between these two tipping points to the mono-stable Kp–Bt state in 

the forward simulations and the mono-stable Kp-only state in the reverse simulations is 

identified as the region of bi-stability. The colors in Fig. S3 represent the steady state 

concentration of Kp in the “reverse simulations” divided by the steady state concentration 

of Kp in the “forward simulations.” In regions of mono-stability, the concentration of Kp 

is similar in both the “forward” and “reverse simulations”, and therefore has a value of 

approximately 1.  

Continuous culture of K. pneumoniae and B. thetaiotaomicron 

Continuous culture experiments were carried out in a 500 mL bioreactor (Mini-bio Applikon 

Biotechnology, Delft, Netherlands) with a total culture volume of 200 mL. Minimal media 

(3.85 g/L KH2PO4, 12.48 g/L K2HPO4, 1.125 g/L (NH4)2SO4, 1X MMS (20X MMS: 17.6 

g/L NaCl, 0.4 g/L CaCl2, 0.4 g/L MgCl2×6H2O, 0.2 g/L MnCl2×4H2O, 0.2 g/L 

CoCl2×6H2O), 10 mL/L Wolfe’s mineral solution(41), 10 mL/L Wolfe’s vitamin 

solution(41), 4.17 µM FeSO4×7H20, 0.25 mM cysteine, 1 µM menadione, 2 µM resazurin, 

1 g/L dextran (Sigma D5376, avg. mol. wt 1.5e6-2e6) and glucose at varying concentrations) 

was purged with 100% N2, stored under anaerobic conditions prior to use, and maintained 

under N2  during operation of CSTR. The bioreactor was aerated with 50 mL/min total gas 

(1.7 mL/min O2, 5 mL/min CO2, and balance of N2), and agitated with two six-bladed 

Rushton turbines operated at 750 rpm. Temperature was maintained at 37°C, and a residence 

time of 5 h (40 ml/h flowrate) was used for all experiments. Dissolved oxygen, pH, and 

biomass were monitored throughout. For initial inoculation of Kp, 1 mL of OD 1 culture was 

injected through the septum, and grown in batch culture until stationary phase (indicated by 

levelling of the biomass reading and increase of dissolved oxygen levels) before beginning 
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continuous culture. For each steady-state condition, three samples separated by at least one 

residence time were collected. For introduction of Bt, a log phase (OD 0.6-0.8) anaerobic 

culture grown in minimal media with 0.5% dextran and 2mM cysteine was pelleted (5 min 

at 3500 g) and washed twice using dextran/glucose-free anaerobic minimal media. Cells were 

carbon-starved at 37 °C for 30 min, washed (once), and re-suspended in dextran/glucose-free 

minimal media to OD 1. We used 1 mL of this Bt cell suspension for inoculation into the 

reactor and a sample was collected immediately after inoculation. A subsequent sample was 

collected for quantification after at least 2 residence times had passed. In the Kp-only state 

conditions (0.25 mM, 1 mM, 2 mM glucose), Bt is washed out, as described in the results 

section. To ensure reproducibility of a washout for these conditions, the Bt inoculation and 

sample collection process was repeated a total of three times. In Kp–Bt state conditions (5 

mM, 2 mM, 1 mM, 0.25 mM, and 0 mM glucose), where Bt growth persisted, re-inoculation 

of Bt was no longer necessary for each new glucose steady state condition; three samples 

separated by at least one residence time were collected for each steady state condition. To 

collect samples, ~0.5 mL of culture was removed from the bioreactor in a 3 mL luer-lock 

syringe and discarded before collection of 1.5–2 mL culture. Supernatant from 700 µL of the 

collected sample was stored at -80 °C for SCFA analysis, a 50 µL sub-sample was treated 

with DNAse (2.5 µL of NEB DNase I 2000 u/mL per 50 µL) for subsequent DNA extraction, 

and two 250 µL aliquots were used for extraction of RNA.  

Quantification of bacterial abundance 

Chemostat culture samples were treated with NEB DNAse I (100 u/mL final concentration) 

for 10 min at 37°C immediately after collection. DNA was extracted using the ZyGEM 

prepGEM™ Bacteria kit (ZyGEM, Southampton, England) according to the manufacturer’s 

protocol. Samples were extracted in 100 uL total volume (20 µL culture sample and 80 µL 

of extraction mixture), incubated at 37 °C for 15 min, 75 °C for 5 min, 95 °C for 5 min, then 

cooled to 4 °C.  DNA was stabilized by adding 10X TE to a final concentration of 1X TE 

before storage at 4 °C. Extracted DNA was quantified by qPCR using the Eco Real-time 

PCR system (Illumina, San Diego, CA, USA). The components in the qPCR mix used in this 
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study were as follows: 1 µL of extracted DNA, 1X SsoFast™ EvaGreen Supermix (Bio-Rad 

Laboratories, Hercules, CA, USA), 500 nM forward primer, and 500 nM reverse primer. For 

detection of each bacterial species in the community primer sets specific to Bt (forward 

primer: 5′-GGAGTTTTACTTTGAATGGAC-3′; reverse primer: 5′-

CTGCCCTTTTACAATGGG-3’) and Kp (forward primer: 5′-

ATTTGAAGAGGTTGCAAACGAT-3′; reverse primer: 5′-

TTCACTCTGAAGTTTTCTTGTGTT-3′) were used. Quantification of cell concentrations 

were determined using DNA standards of single species prepared using 10X serial dilutions 

of log phase cultures extracted as above. Cell concentrations of standards were determined 

by hemocytometer. For conversion of OD and cell concentration to biomass concentration 

(gram cell dry weight/L), 100 mL of culture for each individual species incubated 

anaerobically at 37 °C was harvested and pellets were dried at 80°C for ~48 h before 

recording mass.  

RNA sequencing and analysis 

From the chemostat samples, a 250 µL aliquot was used for RNA extraction. The freshly 

collected chemostat sample was immediately placed into Qiagen RNAprotect Bacteria 

Reagent (Qiagen, Hilden, Germany) for RNA stabilization. RNA was extracted using the 

Enzymatic Lysis of Bacteria protocol of the Qiagen RNeasy Mini Kit and processed 

according to the manufacturer’s protocol. DNA digestion was performed during extraction 

using the Qiagen RNase-Free DNase Set. The quality of extracted RNA was measured using 

an Agilent 2200 TapeStation (Agilent, Santa Clara, CA, USA). Extracted RNA samples were 

prepared for sequencing using the NEBNext Ultra RNA Library Prep Kit for Illumina (New 

England Biolabs, Ipswitch, MA, USA) and the NEBNExt Multiplex Oligos for Illumina. 

Libraries were sequenced at 100 single base pair reads and a sequencing depth of 10 million 

reads on an Illumina HiSeq 2500 System (Illumina, San Diego, CA, USA) at the Millard and 

Muriel Jacobs Genetics and Genomics Laboratory, California Institute of Technology. Raw 

reads from the sequenced libraries were subjected to quality control to filter out low-quality 

reads and trim the adaptor sequences using Trimmomatic (v. 0.35). Reads that aligned to 



 

 23 

rRNA and tRNA of Bt and Kp were first removed, as those sequences contain overlapping 

reads between the two species. Each sample was then separately aligned to Bt VPI-5482 

(Genome accession number: GCA_000011065.1) and Kp MGH-78578 (Genome accession 

number: GCA_000016305.1) using Bowtie2 (v. 2.2.5) and quantified using the Subread 

package (v. 1.5.0-p1). Gene expression was defined in transcripts per million (TPM) for each 

species. 
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Fig. S1.1. Imaging of samples collected from the continuously stirred tank reactor 

experiments. (A) Total bacteria staining of each sample using DAPI (B) The species 

composition of aggregates using the GAM42a (green) and CFB560 probe (pink) for 

Gammaproteobacteria and Bacteroidetes, respectfully.  
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Fig. S1.2. Bayesian parameter fitting of K and vmax to experimental batch growth data 

for (A) Klebsiella pneumoniae on glucose (B) Bacteroides thetaiotaomicron on glucose, 

and (C) Bacteroides thetaiotaomicron on dextran. Two technical replicates were used for 

each concentration of substrate examined.   
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Fig. S1.3. A quantitative view of regions of stability as a function of glucose 

concentrations in the input feed and oxygen flow rates into the reactor. In regions of bi-

stability (circles), the community can exist in either a Kp-only state or a Kp–Bt (aerobe–

anaerobe) state under the same conditions. In regions of mono-stability (triangles), the 

community can only exist in either a Kp-only or a Kp–Bt state. Deviation from yellow 

indicates the increase of Kp concentration in the Kp–Bt state relative to the Kp-only state 

(e.g. concentration of Kp in Kp–Bt state divided by the concentration of Kp in the Kp-only 

state).  
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Table S1.1. Bayesian parameter estimation for K and vmax used in the Michaelis–

Menten equations to constrain nutrient uptake flux rates for flux balance analysis 

calculations.  

Species		 Carbon	Source	 K	(mM)	 Vmax	(mmol/gCDW⋅h)	
K.	pneumoniae	 Glucose	 0.00005	 26.1	
B.	thetaiotaomicron	 Glucose	 1.4	 10.9	
B.	thetaiotaomicron	 Dextran	 0.008	 0.08	
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Table S1.2. Values for the parameters used in the dynamic flux balance analysis 

simulations. 

	
Parameter	 Value	
Initial	glucose	concentration		 0	mM	
Initial	dextran	concentration		 0.06	mM	
Initial	oxygen	concentration		 S*	=	(

lmnop	qr	stuvwxpy
zupxt	stuvwxpy

)/(O2	fraction	in	air)	x	
(dissolved	oxygen	saturation)		
§ Input	oxygen	flow	rate	=	varies	
§ Total	flow	rate	=	50	mL/min	
§ Oxygen	fraction	in	air	=	0.2095	
§ Dissolved	 oxygen	 saturation	 (at	 37	 °C 

and 20 g/kg salinity)	=	0.189	mM	
	

Initial	concentration	of	all	other	metabolites	 0	mM	
Initial	K.	pneumoniae	concentration		 0.05	g/L	
Initial	B.	thetaiotaomicron	concentration	 0.0015	g/L	
Flow	rate	(into	and	out	of	the	reactor)	 0.04	L/h	
Volumetric	oxygen	transfer	coefficient	(Kla)	 47.4	h-1	

Volume	 0.2	L	
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Table S1.3. The top scoring 50 metabolites involved in the most regulated metabolic 

pathways, ordered by Z score value. This analysis was performed using gene 

expression data between samples S8 and S3.  

Metabolite	name	 Number	of	genes	 Number	of	reactions	 Z	score	

Pyruvate	 260	 57	 1063.96	

Phosphoenolpyruvate	 174	 25	 961.45	

H+	 2468	 859	 629.11	

ADP	 964	 247	 480.86	

ATP	 1158	 326	 399.89	

H2O	 1786	 523	 350.85	

CO2	 198	 78	 306.33	

Phosphate	 978	 259	 301.71	

D-Glucose	 54	 9	 257.35	

Malonyl-[acyl-carrier	protein]	 50	 16	 219.07	

D-Glucose	6-phosphate	 50	 13	 207.81	

H+	 726	 241	 198.26	

acyl	carrier	protein	 140	 51	 195.38	

D-Fructose	6-phosphate	 46	 16	 129.56	

D-Fructose	 26	 3	 109.83	

alpha,alpha-Trehalose	6-
phosphate	

18	 5	 105.50	

N-Acetyl-D-glucosamine	6-
phosphate	

20	 4	 95.97	

D-Glucosamine	6-phosphate	 18	 7	 88.31	

N-Acetyl-D-glucosamine	 22	 2	 87.79	

D-Mannose	6-phosphate	 14	 5	 82.90	

N-Acetyl-D-mannosamine	6-
phosphate	

12	 2	 81.25	

D-Glucose	 60	 20	 77.32	

D-Mannose	 18	 2	 75.20	

N-Acetyl-D-mannosamine	 18	 2	 75.20	

D-Glucosamine	 18	 2	 75.20	

Maltose	 18	 3	 73.60	

Maltose	 22	 7	 72.65	

Glyceraldehyde	3-phosphate	 46	 14	 70.02	

Trehalose	 20	 3	 69.47	

Acetaldehyde	 26	 12	 67.28	
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Maltohexaose	 26	 8	 65.21	

Maltopentaose	 24	 7	 59.01	

Formate	 24	 5	 56.09	

Sodium	 42	 16	 54.91	

D-Glucose	1-phosphate	 30	 10	 54.58	

Maltotetraose	 22	 6	 52.09	

N-acetylmuramate	6-
phosphate	

10	 2	 48.06	

Sodium	 50	 16	 48.02	

D-Galactose	 22	 6	 47.82	

D-Galactose	 20	 5	 46.58	

L-Serine	 42	 24	 45.97	

Acetate	 42	 17	 44.94	

L-Lactate	 8	 4	 44.93	

Glycerol	3-phosphate	 42	 15	 44.41	

S-Adenosyl-L-methionine	 46	 22	 43.02	

Ubiquinone-8	 106	 20	 41.72	

Maltose	6-phosphate	 8	 1	 41.35	

S-Adenosyl-L-homocysteine	 40	 19	 41.28	

Ubiquinol-8	 108	 21	 39.82	

Flavin	 adenine	 dinucleotide	
reduced	

28	 13	 39.73	
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C h a p t e r  2  

RNA Markers Enable Phenotypic Test of Antibiotic Susceptibility in 

Neisseria gonorrhoeae After 10 Minutes of Ciprofloxacin Exposure 
 

 

Abstract 

Antimicrobial-resistant Neisseria gonorrhoeae is an urgent public-health threat with 

continued worldwide incidents of infection and rising resistance to antimicrobials. 

Traditional culture-based methods for antibiotic susceptibility testing are unacceptably slow 

(1–2 days), resulting in the use of broad-spectrum antibiotics and the further development 

and spread of resistance. Critically needed is a rapid antibiotic susceptibility test (AST) that 

can guide treatment at the point-of-care. Rapid phenotypic approaches using quantification 

of DNA have been demonstrated for fast-growing organisms (e.g. E. coli) but are challenging 

for slower-growing pathogens such as N. gonorrhoeae. Here, we investigate the potential of 

RNA signatures to provide phenotypic responses to antibiotics in N. gonorrhoeae that are 

faster and greater in magnitude compared with DNA. Using RNA sequencing, we identified 

antibiotic-responsive transcripts. Significant shifts (>4-fold change) in transcript levels 

occurred within 5 min of antibiotic exposure. We designed assays for responsive transcripts 

with the highest abundances and fold changes, and validated gene expression using digital 

PCR. Using the top two markers (porB and rpmB) we correctly determined the antibiotic 

susceptibility and resistance of 49 clinical isolates after 10 min exposure to ciprofloxacin. 

RNA signatures are therefore promising as an approach on which to build rapid AST devices 

for N. gonorrhoeae at the point-of-care, which is critical for disease management, 

surveillance, and antibiotic stewardship efforts. 
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Introduction 

Neisseria gonorrhoeae is the second most common sexually transmitted bacterial infection 

in the United States, with about 460,000 cases reported in 2016, an 18.5% rise since 

2015Prevention1. Worldwide, it is estimated that about 78 million new N. gonorrhoeae 

infections occur annually2. N. gonorrhoeae infections can lead to heart and nervous system 

infections, infertility, ectopic pregnancies, newborn blindness, and increased risk for other 

sexually transmitted infections, including HIV3. The CDC has identified N. gonorrhoeae as 

one of the three most urgent drug-resistant bacterial threats3. N. gonorrhoeae has developed 

resistance to all of the most commonly used antibiotics (including penicillins, sulfonamides, 

tetracyclines, and fluoroquinolones) leaving only one last effective class of antibiotics, 

cephalosporins. However, there have even been worldwide reported cases of decreased 

susceptibility to the cephalosporin ceftriaxone4-8, and therefore an imminent threat of 

widespread untreatable N. gonorrhoeae. An important factor leading to the widespread 

development of antibiotic resistance is the liberal use and misuse of antibiotics. Critically 

needed is a rapid antibiotic susceptibility test (AST) that can guide treatment at the point-of-

care – both to provide correct treatment and to facilitate antibiotic stewardship.  

The gold standard for determining N. gonorrhoeae susceptibility to antibiotics is the culture-

based agar dilution test, which is unacceptably slow (1–2 days). More rapid genotypic 

approaches, involving detection of gene mutations, are available for a subset of antibiotics in 

N. gonorrhoeae9,10, but such approaches are inherently limiting, as they require knowledge 

of the mechanisms of resistance. Moreover, N. gonorrhoeae is naturally competent for 

transformation, and can take up gonococcal DNA from the environment and recombine it 

with its own genome, resulting in frequent gene mutations11,12. Given the high rate at which 

new resistance emerges, relying solely on genotypic methods is not an acceptable long-term 

solution. Phenotypic methods involving growth measurements have enabled faster ASTs that 

are independent of resistance mechanisms13-16. However, such growth-based methods are 

challenging for N. gonorrhoeae, which is slow-growing and fastidious17. Another phenotypic 

approach for antibiotic susceptibility testing is quantification of nucleic acids18,19. We have 
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previously demonstrated a rapid (30 min) phenotypic AST using quantification of DNA 

replication by digital PCR (dPCR) to assess the antibiotic susceptibility of Escherichia coli 

in clinical urine samples20. However, AST methods that quantify changes in DNA replication 

require a longer antibiotic-exposure step for slow-growing pathogens such as N. 

gonorrhoeae, which has a doubling time of about 60 min21, compared with the 20 min 

doubling time of E. coli22.  

A complementary approach to DNA quantification is measuring the pathogen’s RNA 

response to antibiotic exposure. Transcriptional responses are among the earliest cellular 

changes upon exposure to antibiotics23, far before phenotypic changes in growth can be 

observed. Quantifying changes in RNA signatures is therefore a particularly appealing 

approach for slow-growing organisms. RNA has previously been used to differentiate 

antibiotic susceptibility and resistance in organisms where the transcriptional response is well 

characterized24,25. More recently, RNA sequencing (RNA-Seq) has been used to measure the 

transcriptome response of Klebsiella pneumoniae and Acinetobacter baumanii to antibiotic 

exposure25. Although the N. gonorrhoeae transcriptome has been previously sequenced26,27, 

to our knowledge, no one has characterized the transcriptome response of N. gonorrhoeae to 

antibiotic exposure. Unlike most bacteria, N. gonorrhoeae lacks the classic transcriptional 

SOS response to DNA damage whereby DNA repair is induced and the cell cycle is 

arrested28,29. The SOS response promotes survival to certain antibiotic classes, such as the 

fluoroquinolones, which act by directly inhibiting DNA synthesis30. The recA or recA-like 

proteins are essential for the induction of the SOS response28. However, neither recA 

transcripts nor recA protein levels increase in N. gonorrhoeae upon exposure to DNA 

damaging agents31,32.  

In this work, we explore the transcriptome response of N. gonorrhoeae upon exposure to 

ciprofloxacin. Ciprofloxacin is a fluoroquinolone and functions by inhibiting the enzymes 

topoisomerase II (DNA gyrase) and topoisomerase IV, thereby inhibiting cell division33. 

Ciprofloxacin was chosen in this study to gain insight into transcriptional changes that occur 

upon DNA damage in an organism lacking the classic SOS response. Here, we address the 
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following questions: (1) How does the transcriptome of N. gonorrhoeae respond to 

ciprofloxacin exposure? (2) What is the shortest antibiotic exposure time at which we can 

still observe significant changes (>4-fold) in RNA expression? (3) Which transcripts provide 

the largest and most abundant fold-changes per cell, which is an important consideration for 

clinical samples that have low numbers of pathogens? (4) Will candidate markers respond 

consistently across a large pool of isolates with wide genetic variability?  

 

Results 

We used RNA-seq to study the transcriptome response of susceptible and resistant isolates 

of N. gonorrhoeae after 5, 10, and 15 min of ciprofloxacin exposure (Fig. 2.1). Each clinical 

isolate was initially split into two tubes, where one tube was exposed to the antibiotic (+) and 

the other served as the control with no antibiotic exposure (-). Samples were collected for 

RNA-seq prior to antibiotic exposure and every 5 min for 15 min. We calculated the fold 

change in gene expression between the control and treated samples – defined as the 

control:treated ratio (C:T ratio); genes that demonstrated significant fold-change differences 

between the susceptible and resistant isolates were identified as differentially expressed. To 

account for biological variability, three pairs of susceptible and resistant isolates were used 

in this study. Candidate markers were selected from the pool of differentially expressed genes 

and were validated using droplet dPCR (see Methods). 

Temporal shifts in global gene expression upon antibiotic exposure  

We observed global shifts in RNA expression in susceptible isolates in as early as 5 min after 

antibiotic exposure (Fig. 2.2a). The distribution of fold changes in gene expression levels 

(C:T ratios) indicated global shifts toward negative log2 fold-change values 

(downregulation). The magnitude of fold change at which most genes were distributed was 

approximately 2-fold. The tail of the distribution illustrates that a few genes responded to 

antibiotic exposure with changes as large as 6-fold within 5 min. Increasing the antibiotic 
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exposure time further shifted the distribution to larger negative log2 fold-change values. The 

transcriptional response in resistant isolates was tightly distributed around a fold-change 

value of 1 at every time point, indicating that the transcriptome of the resistant isolates did 

not respond significantly to antibiotic exposure (Fig. 2.2a).  

To identify genes that were differentially expressed between control and treated samples, we 

defined a threshold of significance (Fig. 2.2b). The threshold of significance took into 

account technical variability and was calculated from the C:T ratios at t = 0 min of all 

biological replicates that were sequenced (three susceptible and three resistant isolates). For 

each of the six gene expression datasets (one for each isolate), we plotted the -log2(C:T ratio) 

against the -log2(expression) for all genes and fit a negative exponential curve to the outer 

edge of each plot. We then averaged the curves from all six datasets and added a 90% 

confidence interval to the average curve by assuming a Gaussian fit for the error distribution, 

which we define as our threshold of significance. Genes with a -log2(C:T ratio) value above 

or below the upper and lower thresholds were identified as differentially expressed. 

Downregulated genes (fold changes below the significance threshold) appeared as early as 5 

min after antibiotic exposure (blue dots, Fig. 2.2b). Two upregulated genes (fold changes 

above the significance threshold) appeared after 10 min of exposure (orange dots, Fig. 2.2b). 

Selection of candidate markers that are consistent in response and abundant 

RNA expression in response to antibiotics can be heterogeneous among different isolates 

of the same species34; thus, it is important to select candidate markers from differentially 

expressed genes that respond consistently across isolates of N. gonorrhoeae. To identify 

these candidate markers, we exposed three different pairs of susceptible isolates (minimum 

inhibitory concentrations (MICs) <= 0.015mg/mL) and resistant isolates (MICs 2.0 

mg/mL, 4.0mg/mL, and 16.0mg/mL) to ciprofloxacin for 15 min and extracted RNA for 

sequencing (see workflow in Fig. 2.1). We found 181, 41, and 410 differentially expressed 

genes in susceptible isolates 1, 2, and 3, respectively (Fig. 2.3a). Among the differentially 

expressed genes, 38 genes responded consistently across the three pairs of susceptible and 

resistant isolates (i.e. responses overlapped in all three susceptible isolates, whereas all 
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three resistant isolates were non-responsive) (Supplementary Table S2.1 online). These 

genes spanned a variety of biochemical functions in the cell. We selected six candidate 

transcript markers for further analysis based on the following criteria: (1) high fold change; 

(2) high expression levels (>75 transcripts per million, TPM); and (3) representative of 

different biochemical pathways. The selected candidate markers were: porB (membrane 

protein), rpmB (ribosomal protein), tig (molecular chaperone), yebC (transcriptional 

regulator), pilB (pilus assembly ATPase), and cysK (cysteine synthase). The candidate 

marker with the highest abundance and largest fold change upon antibiotic exposure was 

porB, which is a membrane channel forming protein and the site of antibiotic influx into 

the cell35.  

A high level of gene expression was one of our criteria for selection of candidate markers 

from the sequencing data. High expression of candidate markers is not only important for 

sensitivity and limits of detection, but is particularly important for clinical samples with 

low numbers of pathogen cells. One of the advantages of RNA compared with DNA as a 

nucleic acid marker is its natural abundance in the cell. Because the gene expression values 

obtained from sequencing are relative values, our next step was to quantify the absolute 

copies per cell for the candidate markers. In our quantification approach, we plated clinical 

isolate samples after 15 min of ciprofloxacin exposure to obtain cell numbers in colony 

forming units (CFU/mL). We designed primers for the candidate markers (see Methods 

and Supplementary Table S2) and measured their absolute concentration using dPCR. The 

concentrations were converted to per cell values using the cell counts from plating (Fig. 

2.3b). Additionally, we used the RNA sequencing data to obtain transcriptome-wide 

estimates of transcript copies per cell. In the sequencing approach, we added external RNA 

control consortium (ERCC) spike-ins to the lysis buffer step of the extraction protocol in 

order to capture any loss of RNA throughout the extraction steps. By linear regression, we 

captured the relationship between ERCC copies added to the samples and ERCC quantified 

by sequencing. Using the linear regression, we converted gene expression values from 

RNA sequencing (in TPM) to approximate copy numbers per cell (see Methods). The 

transcript copies per cell estimated for the candidate markers using the sequencing 
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approach were within the same order of magnitude as the absolute copies per cell measured 

by digital PCR (Fig. 2.3b). 

Validation of candidate markers by dPCR 

We next asked how the relative changes observed through RNA-seq compare with direct 

gene expression measurements by dPCR. We designed dPCR assays for candidate markers, 

which involved measuring the absolute expression of the candidate marker in both control 

and treated samples, and calculating the C:T ratio. In this assay, the 16S rRNA was also 

measured and used to normalize the C:T ratio of the candidate markers. In the three 

susceptible isolates that were sequenced we found that rRNA consistently showed the 

smallest fold change (<1.06) in response to ciprofloxacin compared with all other genes in 

N. gonorrhoeae. Therefore, to account for experimental variations in the antibiotic exposure 

and RNA extraction steps between control and treated samples, we used the 16S rRNA as an 

intracellular control for normalizing the C:T ratios (see Methods). We found that the C:T 

ratios measured by the dPCR assay agreed with the C:T ratios obtained through sequencing 

(Fig. 2.4), confirming that both approaches accurately capture the transcriptional response to 

antibiotic exposure.  

Validation of RNA markers across CDC isolates 

Finally, we asked whether candidate markers respond consistently across a large pool of 

isolates with genetic variability. We chose the two candidate markers with the highest 

abundances and fold changes (porB and rpmB) to determine the susceptibility of 49 clinical 

isolates, with a wide range of MIC values (Supplementary Table S3 online), from the N. 

gonorrhoeae panel of the Centers for Disease Control (CDC) Antimicrobial Resistance 

Isolate Bank. The MIC values were representative of the population-wide distribution values 

reported by the European Committee on Antimicrobial Susceptibility Testing36. We exposed 

each clinical isolate to ciprofloxacin for 10 min and measured the fold change in expression 

of the two candidate markers between the control and treated sample using dPCR (Fig. 2.5). 
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Both markers correctly classified all 49 CDC isolates, based on Clinical and Laboratory 

Standards Institute (CLSI) breakpoint values, as 9 susceptible and 40 resistant strains.  

 

Discussion 

In this work, we demonstrate that antibiotic-responsive transcripts can be used as suitable 

markers for a rapid phenotypic AST in N. gonorrhoeae. 

When characterizing the global transcriptional response of N. gonorrhoeae to antibiotic 

exposure, we observed a significant change in response in as early as 5 min. The nature of 

the response was a global downregulation in transcript levels. Among the candidate markers, 

all exhibited downregulation in response to ciprofloxacin. We specifically looked at gyrA 

and parC, which are known genotypic markers of resistance to ciprofloxacin, and differential 

expression was not observed. We also looked at the recA transcript because recA is one of 

the prominent genes in the SOS response, and as expected, because N. gonorrhoeae does not 

have a true SOS system28,29, we did not find recA levels to increase. Whereas recA is a 

specific cellular response to overcome DNA damage, the global downregulation that we 

observed suggests a general shift away from growth and cell proliferation. Among the 38 

candidate markers, 15 were ribosomal proteins (including one of the top markers, rpmB), 

which play a prominent role in assembly and function of the ribosomes and are essential for 

cell growth. Mutations in ribosomal proteins have been reported to confer resistance to 

different classes of antibiotics37. Another top marker identified in this study was porB, which 

is a membrane channel forming protein (porin) responsible for uptake of small nutrients and 

the site of antibiotic influx into the cell. The expression of porins is highly regulated in 

response to environmental stimuli38. Reducing permeability to decrease intracellular 

antibiotic concentration is a known mechanism for bacteria to confer antibiotic resistance37. 

The downregulation of porB observed in this study can be attributed to a halt in growth 

processes caused by ciprofloxacin damage and possibly an attempt to reduce influx of 

antibiotic.  
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A key aim of this study was to identify RNA markers that would yield a measurable response 

after only a short antibiotic exposure (<15 min) to ensure this approach can fit within the 

required timescale for a rapid AST. It is possible that longer exposure times could provide 

additional insight into the biological response of N. gonorrhoeae to ciprofloxacin, but this 

was not the focus of our study. Furthermore, the short exposure times potentially introduce 

a bias in selection of transcripts present at low abundances. For transcripts present at high 

abundance to display the same fold change as low abundance transcripts, a substantially 

higher number of mRNA molecules must be transcribed, which would require longer 

timescales. As an example, a 4-fold change from 1 to 4 transcripts requires 3 additional 

mRNA to be produced, whereas a 4-fold change from 20 to 80 requires 60 mRNA to be 

transcribed. This bias also holds true in downregulation, where mRNA continues to be 

transcribed in the control samples, whereas transcript levels drop in treated samples due to 

degradation of RNA, and/or a reduction in the rate of transcription. 

We identified candidate markers with consistent differential expression across three sets of 

susceptible and resistant pairs. Among the candidate markers, one of our criteria for selection 

was transcript abundance, which is of particular importance in clinical samples with low cell 

numbers. Furthermore, marker abundance affects measurement sensitivity and limits of 

detection, as has been previously demonstrated in AST methods based on quantification of 

DNA replication20. To measure the abundance of the candidate markers, we used both dPCR 

measurements and ERCC spike-ins for RNA sequencing to obtain approximate RNA 

copies/cell. Both methods yielded results within the same order of magnitude. To our 

knowledge, this is the first quantitative measurement of RNA abundance per cell in N. 

gonorrhoeae.  

We separately validated the performance of the two most abundant candidate markers, porB 

and rpmB, with 49 clinical isolates. Both markers were consistent in their ability to correctly 

determine susceptibility or resistance of all 49 clinical isolates. porB demonstrated C:T ratios 

between 2.5 to 7 and rpmB demonstrated C:T ratios between 2 and 6 after 10 min of antibiotic 

exposure in the nine susceptible clinical isolates. The large fold changes highlight the 
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significance of using RNA response as an AST marker compared with quantification of DNA 

replication. Our previous work using dPCR quantification of DNA replication demonstrated 

C:T ratios between 1.2 and 2.4 for 15 min of antibiotic exposure in E. coli20, which has a 

doubling time approximately 3 times shorter than N. gonorrhoeae.  

We performed an alignment search of porB against other prokaryotes and found it to be 

specific to the Neisseria genus. AST markers should be specific to the pathogen of interest 

because additional bacterial species are likely to be present in clinical samples. Additional 

experiments with mixtures of bacteria would be required to further confirm the specificity of 

the markers identified in this study. We additionally measured the 16s rRNA to normalize 

C:T ratios, which inherently enables pathogen identification as well. A combination of 

identification and susceptibility testing in a single integrated platform is important for correct 

and rapid diagnosis.  

This paper demonstrates that RNA markers can be used to determine antibiotic susceptibility 

of N. gonorrhoeae after short antibiotic exposure times, a requirement for a rapid phenotypic 

AST. N. gonorrhoeae is a fastidious slow-growing organism, presenting challenges to 

growth-based AST methods. Additional work will be needed to yield a clinic-ready, rapid 

RNA-based AST for N. gonorrhoeae. Additional background matrices of clinical samples, 

both urine and swab samples, that could possibly affect speed and sensitivity of an AST, 

must be further evaluated. Digital isothermal chemistries, such as digital loop-mediated 

isothermal amplification (dLAMP) should be considered to speed up quantification times 

relevant to point-of-care settings20. Follow-up studies should also examine the transcriptional 

response of N. gonorrhoeae to other classes of antibiotics and identify responsive RNA 

markers for class-specific antibiotics. Overall, as a first step, the work described here 

demonstrates the promise for a phenotypic RNA-based approach for a rapid AST of N. 

gonorrhoeae at the point-of-care, which is critically needed for disease management, 

surveillance, and antibiotic stewardship.  
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Methods 

Antibiotic exposure for RNA sequencing 

Antibiotic susceptible and resistant clinical isolates were obtained from the University of 

California, Los Angeles, Clinical Microbiology Laboratory. Isolates were plated from 

glycerol stocks onto Chocolate Agar plates and grown in static incubation overnight (37 °C, 

5% CO2). Cells were re-suspended in Hardy Fastidious Broth (HFB) and incubated for 45 

min (37 °C, 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were 

diluted (5X) into HFB. Each isolate culture was split into “treated” and “control” tubes. 

Ciprofloxacin was added to the “treated” tubes (final concentration of 0.5 µg/mL) and water 

was added to the “control” tubes; cultures were incubated (static; 37 °C, 5% CO2) for 15 min. 

During incubation, samples were collected for RNA sequencing at 5, 10, and 15 min (300 

µL aliquot of sample was mixed into 600 µL of Qiagen RNA Protect Reagent (Qiagen, 

Hilden, Germany) for immediate RNA stabilization). In addition, a sample was collected for 

RNA sequencing immediately before ciprofloxacin was added. To quantify CFU, the sample 

at t = 15 min was serially diluted (10x), plated on a Chocolate Agar plate, and incubated 

overnight (37 °C, 5% CO2). 

Antibiotic exposure for clinical isolates 

Antibiotic susceptible and resistant clinical isolates were obtained from the N. gonorrhoeae 

panel of the CDC Antimicrobial Resistance Isolate Bank. Isolates were plated from glycerol 

stocks onto Chocolate Agar plates and grown in static incubation overnight (37 °C, 5% CO2). 

Cells were re-suspended in pre-warmed HFB + 5 mM sodium bicarbonate and incubated for 

30 min (37 °C, 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were 

diluted (100X) into HFB + 5 mM sodium bicarbonate. Each isolate culture was split into 

treated (0.5 µg/mL final concentration of ciprofloxacin) and control (water instead of 

antibiotic) samples. Samples were incubated at 37 °C for 10 min on a static hot plate. A 90 

µL aliquot of each sample was placed into 180 µL of Qiagen RNA Protect Reagent for 

immediate RNA stabilization. A 5 µL aliquot of each sample was plated onto a Chocolate 



 

 42 

Agar plate and incubated overnight (37 °C, 5% CO2) as a control for the exposure 

experiments. If the expected growth phenotypes (i.e. resistant = growth; susceptible = no 

growth) were not observed for any single sample in the plating control, the exposure 

experiment was repeated for the set of samples. From the 50 total isolates available from the 

N. gonorrhoeae panel of the CDC Antimicrobial Resistance Isolate Bank, 49 were used in 

this study. One isolate was excluded from this study because we suspected that it had been 

contaminated; we did not detect porB primer amplification using qPCR.  

RNA sequencing and analysis 

RNA was extracted using the Enzymatic Lysis of Bacteria protocol of the Qiagen RNeasy 

Mini Kit and processed according to the manufacturer’s protocol. DNA digestion was 

performed during extraction using the Qiagen RNase-Free DNase Set. The quality of 

extracted RNA was measured using an Agilent 2200 TapeStation (Agilent, Santa Clara, CA, 

USA). Extracted RNA samples were prepared for sequencing using the NEBNext Ultra RNA 

Library Prep Kit for Illumina (New England Biolabs, Ipswitch, MA, USA) and the NEBNExt 

Multiplex Oligos for Illumina. Libraries were sequenced at 50 single base pair reads and a 

sequencing depth of 10 million reads on an Illumina HiSeq 2500 System (Illumina, San 

Diego, CA, USA) at the Millard and Muriel Jacobs Genetics and Genomics Laboratory, 

California Institute of Technology. Raw reads from the sequenced libraries were subjected 

to quality control to filter out low-quality reads and trim the adaptor sequences using 

Trimmomatic (version 0.35). The reads were aligned to the FA 1090 strain of N. gonorrhoeae 

(NCBI Reference Sequence: NC_002946.2) using Bowtie2 (version 2.2.5) and quantified 

using the Subread package (version 1.5.0-p1). A pseudocount of 1 was added to the gene 

quantification; gene expression was defined in transcripts per million (TPM).  
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Marker selection 

For each gene, we defined the C:T ratio as the gene expression (TPM) in the control sample 

divided by the gene expression (in TPM) in the treated sample. We plotted the -log2(C:T) 

against the -log2(expression in TPM) for all genes. To identify genes that were differentially 

expressed between control and treated samples, we defined a threshold of significance. The 

threshold of significance was calculated from the C:T ratios at t = 0 min for the biological 

replicates that were sequenced (three susceptible and three resistant isolates). For each of the 

six gene expression datasets (one for each isolate), we fit a negative exponential curve to the 

outer edge of each plot and then averaged the curves from all six datasets. Finally, we added 

a 90% confidence interval to the average curve by assuming a Gaussian fit for the error 

distribution, which is our threshold of significance. Genes with a -log2(C:T) value above or 

below the upper and lower thresholds were identified as differentially expressed. Genes that 

were differentially expressed consistently (either always above or always below the 

thresholds) among the three susceptible isolates and were not differentially expressed among 

the three resistant isolates were defined as candidate markers.  

Copies/cell measurements from sequencing 

To measure copies per cell using sequencing data, we added 2uL of (1/1000 dilution) ERCC 

RNA Spike-In Mix (Thermo Fisher Scientific, Waltham, MA, USA) to the lysis buffer in the 

RNeasy Mini Kit to each individual sample. We calculated the number of copies of each 

ERCC transcript in the sample, by accounting for dilution and multiplying by Avogadro's 

number (manufacturer’s concentrations were reported in attomoles/µL). We plotted the 

relationship between log2(ERCC copies added) against log2(gene expression in TPM) and 

performed a linear regression in the region of linearity. We used the linear regression to 

convert TPM values to total RNA copies in each sample. Finally, using the CFU measured 

for each sample from plating (described in the “Antibiotic exposure for RNA sequencing” 

section), the total RNA copies were converted to copies per cell.  
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Validation with droplet digital PCR (dPCR) 

Primers were designed for candidate markers using Primer-BLAST39 and primer alignments 

were verified using SnapGene. Expression of candidate markers was quantified using the 

Bio-Rad QX200 droplet dPCR system (Bio-Rad Laboratories, Hercules, CA, USA). The 

concentration of the components in the dPCR mix used in this study were as follows: 1× 

EvaGreen Droplet Generation Mix (Bio-Rad), 150U/mL WarmStart RTx Reverse 

Transcriptase, 800U/mL RiboGaurd RNase Inhibitor, 500 nM forward primer, and 500 nM 

reverse primer. The RNA extraction comprised 5% of the final volume in the dPCR mix. The 

remaining volume was nuclease-free water. For each isolate, candidate marker expression 

was quantified in the control and treated samples and the fold-change difference (C:T ratio) 

was calculated. To account for potential differences between the control and treated samples 

that could arise from experimental variability and extraction efficiency, we used ribosomal 

RNA (rRNA) as an internal control because from our sequencing data, we found that rRNA 

was not affected by antibiotic exposure in the time frame of this study. To normalize by 

rRNA, we quantified the 16S rRNA in the control and treated samples by dPCR and 

calculated an rRNA C:T ratio. We then divided the C:T ratio of each marker by the rRNA 

C:T ratio. All dPCR C:T ratios reported in this paper are the normalized C:T ratios.  

 

 

 

 

 

 

 



 

 45 

 
 

 
 
 

Figure 2.1. The workflow for selection and validation of RNA markers for 

phenotypic measurements of antibiotic susceptibility and resistance. Susceptible 

and resistant isolates of Neisseria gonorrhoeae are exposed to antibiotics (ABX) for 

5, 10, and 15 min. Samples are collected for RNA sequencing at time zero and every 

5 min thereafter. Genes demonstrating fold changes in expression (control:treated 

ratio (C:T ratio)) greater than the threshold of significance (gray line) are identified 

as differentially expressed (blue: downregulated and orange: upregulated). Candidate 

markers are selected from the pool of differentially expressed genes and validated by 

digital PCR. 
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Figure 2.2. Temporal shifts in global gene expression upon ciprofloxacin 

exposure in Neisseria gonorrhoeae. (a) The distribution of -log2(C:T ratios) for a 

susceptible isolate (Sus) and resistant isolate (Res) at 0, 5, 10, and 15 min. (b) The 

fold change in gene expression between control and treated samples (C:T ratio) 

versus expression in the control sample at 0, 5, 10, and 15 min for one susceptible 

isolate and one resistant isolate. Genes with C:T ratios above or below the 

significance threshold are identified as differentially expressed (blue: downregulated; 

orange: upregulated). Thresholds for statistical significance of fold change (gray 

lines) are determined by fitting a negative exponential curve (with 90% confidence 

interval) to the outer edge of the -log2 C:T ratios measured at time zero (see Methods).  
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Figure 2.3. Selection of candidate RNA markers for phenotypic antibiotic 

susceptibility testing in Neisseria gonorrhoeae and measurements of candidate 

marker abundances per cell (a) Genes that are differentially expressed (light blue) 

across three pairs of resistant and susceptible clinical isolates are identified as 

candidate markers (dark blue). Six candidate markers that span different biological 

functions were selected for validation (red). (b) Copies/cell values for the candidate 

markers are determined from RNA sequencing (red) and dPCR (gray) (see Methods). 

Data is shown for one pair of susceptible (S2) and resistant (R2) isolates at 15 min of 

ciprofloxacin exposure. 
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Figure 2.4. Validation of the RNA sequencing approach using digital PCR 

(dPCR) with six candidate markers. Control:treated ratios (C:T ratios) determined 

by RNA sequencing (red) were validated against C:T ratios measured by dPCR 

(gray). The dPCR C:T ratios were normalized using ribosomal RNA (rRNA) by 

dividing the C:T ratio of the candidate marker by the C:T ratio of 16S rRNA. This 

normalization step is not required for sequencing data because sequencing depth 

normalizes the values (see Methods). Markers were validated using two susceptible 

(S1 and S2) and two resistant (R1 and R2) isolates at 15 min of ciprofloxacin 

exposure.  
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Figure 2.5. Antibiotic susceptibility testing of 49 clinical isolates using (a) porB 

and (b) rpmB as RNA AST markers. Antibiotic susceptibility of 49 clinical isolates 

(9 susceptible and 40 resistant) from the Neisseria gonorrhoeae panel of the CDC 

bacteria bank was determined using the “normalized” C:T ratios (C:T ratio of 

marker/C:T ratio of 16S rRNA). Clinical isolates were exposed to ciprofloxacin for 

10 min and the concentration of RNA markers was measured by digital PCR.  
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Supplementary Information 
 
Supplementary Table S2.1. List of candidate markers and their expression in transcripts per 

million (TPM) and copies per cell for susceptible isolate S2 and resistant isolate R2 after 15 

min of ciprofloxacin exposure. The genome used for alignment was N. gonorrhoeae FA1090 

(NCBI Reference Sequence: NC_002946.2). 
	 	 Susceptible	 (S2)	

Control	
Susceptible	 (S2)	
Treated	

Resistant	 (R2)	
Control	

Resistant	 (R2)	
Treated	

Locus	
Tag	

Gene	Description	 TPM	 copies/c
ell	

TPM	 copies/c
ell	

TPM	 copies/c
ell	

TPM	 copies/c
ell	

NGO03
40	

cysteine	synthase	A	
(cysK)	

894.1	 21.1	 505.
2	

8.9	 551.8	 16.3	 600.0	 20.0	

NGO18
37		

50S	 ribosomal	
protein	L4	(rplD)	

474.9	 10.8	 262.
2	

4.4	 403.6	 11.9	 425.4	 13.8	

NGO18
43		

elongation	 factor	 G	
(fusA)	

433.4	 9.8	 224.
9	

3.8	 432.9	 12.8	 503.5	 16.6	

NGO20
24		

50S	 ribosomal	
protein	L13	(rplM)	

415.0	 9.4	 213.
5	

3.6	 455.3	 13.5	 503.5	 16.6	

NGO18
45		

30S	 ribosomal	
protein	S12	(rpsL)	

563.1	 13.0	 286.
8	

4.9	 615.4	 18.2	 697.6	 23.5	

NGO16
77		

50S	 ribosomal	
protein	L27	(rpmA)	

410.7	 9.3	 192.
2	

3.2	 500.6	 14.8	 497.6	 16.4	

NGO18
44	

30S	 ribosomal	
protein	S7	

520.0	 11.9	 241.
3	

4.0	 520.1	 15.4	 651.6	 21.9	

NGO01
71		

50S	 ribosomal	
protein	L19	(rplS)	

379.2	 8.5	 175.
0	

2.9	 328.5	 9.7	 353.2	 11.3	

NGO18
34		

30S	 ribosomal	
protein	S19	(rpsS)	

330.0	 7.4	 152.
1	

2.5	 260.9	 7.7	 292.7	 9.2	

NGO01
72		

tRNA	 (guanine-N(1)-
)-methyltransferase	
(trmD)	

237.3	 5.2	 108.
8	

1.7	 208.8	 6.2	 224.6	 6.9	

NGO18
35	

50S	 ribosomal	
protein	L2	(rplB)	

392.5	 8.9	 179.
1	

2.9	 297.6	 8.8	 359.8	 11.5	

NGO16
73	

type	 IV	 pilus	
assembly	 protein	
(pilB)	

225.9	 4.9	 101.
5	

1.6	 199.3	 5.9	 214.9	 6.6	

NGO18
33		

50S	 ribosomal	
protein	L22	(rplV)	

343.8	 7.7	 147.
9	

2.4	 292.1	 8.6	 304.3	 9.6	

NGO21
73		

50S	 ribosomal	
protein	L32	(rpmF)	

407.5	 9.2	 173.
6	

2.9	 394.7	 11.7	 404.1	 13.1	

NGO06
04		

30S	 ribosomal	
protein	S1	(rpsA)	

437.9	 9.9	 185.
3	

3.1	 456.3	 13.5	 493.9	 16.2	

NGO00
16		

preprotein	
translocase	 subunit	
(secG)	

180.1	 3.9	 73.7	 1.1	 169.1	 5.0	 184.5	 5.6	

NGO21
74	

hypothetical	protein	 372.8	 8.4	 150.
2	

2.4	 368.3	 10.9	 361.6	 11.6	

NGO21
64		

GMP	 synthase	
(guaA)	

118.3	 2.5	 45.0	 0.7	 98.6	 2.9	 109.4	 3.2	

NGO16
76		

50S	 ribosomal	
protein	L21	(rplU)	

554.6	 12.8	 200.
4	

3.3	 555.2	 16.4	 587.7	 19.6	
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NGO16
79	

50S	 ribosomal	
protein	L33	(rpmG)	

283.8	 6.3	 101.
4	

1.6	 298.5	 8.8	 284.3	 8.9	

NGO16
58	

hypothetical	protein	 98.4	 2.1	 33.8	 0.5	 118.3	 3.5	 116.1	 3.4	

NGO14
40	

macrolide	 transport	
protein	MacA	

143.3	 3.1	 48.6	 0.7	 132.3	 3.9	 139.7	 4.2	

NGO01
74		

30S	 ribosomal	
protein	S16	(rpsP)	

315.2	 7.0	 101.
2	

1.6	 295.8	 8.7	 340.5	 10.9	

NGO01
73		

ribosome	
maturation	 factor	
RimM	(rimM)	

359.8	 8.1	 113.
5	

1.8	 316.8	 9.4	 318.8	 10.1	

NGO05
92	

trigger	factor	(tig)	 146.5	 3.1	 45.5	 0.7	 147.5	 4.3	 152.1	 4.6	

NGO16
80	

50S	 ribosomal	
protein	L28	(rpmB)	

452.8	 10.3	 130.
3	

2.1	 470.2	 13.9	 525.4	 17.3	

NGO06
20	

aspartate	alpha-
decarboxylase	

64.8	 1.3	 18.6	 0.3	 54.2	 1.6	 59.3	 1.7	

NGO16
59	

intracellular	
septation	protein	A	

62.2	 1.3	 17.8	 0.3	 63.6	 1.9	 70.7	 2.0	

NGO12
91	

transcriptional	
regulator	(yebC)	

64.1	 1.3	 18.0	 0.3	 79.9	 2.3	 77.9	 2.2	

NGO06
48	

membrane	protein	 56.4	 1.1	 15.3	 0.2	 47.6	 1.4	 45.2	 1.2	

NGO05
93		

ATP-dependent	 Clp	
protease	 proteolytic	
subunit	(clpP)	

60.2	 1.2	 16.0	 0.2	 73.6	 2.2	 75.9	 2.2	

NGO18
04		

(3R)-
hydroxymyristoyl-
ACP	 dehydratase	
(fabZ)	

91.0	 1.9	 24.0	 0.3	 74.6	 2.2	 73.5	 2.1	

NGO06
18	

membrane	protein	 81.4	 1.7	 20.1	 0.3	 66.8	 2.0	 70.2	 2.0	

NGO06
19	

2-dehydro-3-
deoxyphosphoocton
ate	aldolase	

61.1	 1.2	 15.1	 0.2	 51.1	 1.5	 62.6	 1.8	

NGO18
12	

major	outer	
membrane	protein	
(porB)	

1293.
2	

31.2	 293.
4	

5.0	 1459.
1	

43.3	 1587.
1	

57.1	

NGO18
90	

glutamate	
permease;	
sodium/glutamate	
symport	carrier	
protein	

35.0	 0.7	 7.5	 0.1	 40.3	 1.2	 48.9	 1.3	

NGO20
98	

diaminopimelate	
decarboxylase	

26.0	 0.5	 4.9	 0.1	 18.6	 0.5	 18.6	 0.5	

NGO21
00	

frataxin-like	protein	
(cyaY)	

20.4	 0.4	 3.6	 0.0	 14.0	 0.4	 18.1	 0.5	
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Supplementary Table S2.2. Primer sequences used for validation of candidate markers by 

digital PCR. 

 

	
Supplementary Table S2.3. Minimum inhibitory concentration (MIC) values for the 49 

Neisseria gonorrhoeae clinical isolates acquired from the CDC and FDA Antibiotic 

Resistance Isolate Bank1.  

 

                                                
1 CDC	and	FDA	Antibiotic	Resistance	Isolate	Bank.	Atlanta	(GA):	CDC.	(2018)	

Candidate	
Marker	

Gene	Name	 Forward	Primer	Sequence	 Reverse	Primer	Sequence	

porB	 major	outer	membrane	
porin	 GCTACGATTCTCCCGAATTTGCC	 CCGCCKACCAAACGGTGAAC	

rpmB	 50S	ribosomal	protein	L28	 TTGCCCAACTTGCAATCACG	 AGCACGCAAATCAGCCAATAC	
tig	 trigger	factor	 AAAGCCTTGGGTATTGCGG	 TGACCAAAGCAACCGGAAC	
yebC	 YebC/PmpR	family	

Transcriptional	Regulator	 GCTTTGGAAAAAGCAGCCG	 GGTTTTGTTGTCGGTCAGGC	
pilB	 Type	IV-A	pilus	assembly	

ATPase	 GACTTTTGCCGCTGCTTTG	 GCGCATTATTCGTGTGCAG	
cysK	 Cysteine	synthase	A	 GAGGCTTCCCCCGTATTGAG	 TTCAAAAGCCGCTTCGTTCG	
16S	rRNA	 16S	ribosomal	RNA	 ACTGCGTTCTGAACTGGGTG	 GGCGGTCAATTTCACGCG	

MIC		 Number	of	strains	 Susceptible	or	Resistant	
0.015	 8	 Susceptible	
0.03	 1	 Susceptible	
4	 1	 Resistant	
8	 6	 Resistant	
16	 33	 Resistant	


