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ABSTRACT 

Synthetic biology is rapidly contributing to the field of therapeutic development to create 

increasingly potent agents for the treatment of a variety of diseases. These living “designer 

therapeutics” are capable of integrating multiple sensory inputs into decision making 

processes to unleash an array of powerful signaling and effector responses. Included in the 

great therapeutic potential of these agents, however, is a cognate risk of severe toxicity 

resulting from runaway on-target or erroneously induced off-target activity. The ability to 

remotely control engineered therapeutic cells after deployment into patient tissue would 

drastically reduce the potential dangers of such interventions. However, among existing 

biological control methods, systemic chemical administration typically lacks the spatial 

precision needed to modulate activity at specific anatomical locations, while optical 

approaches suffer from poor light penetration into biological tissue. On the other hand, 

temperature can be controlled both globally and locally — at depth — using technologies 

such as focused ultrasound, infrared light and magnetic particle hyperthermia. In addition, 

body temperature can serve as an indicator of the patient’s condition. Overall, temperature is 

a versatile signal which can provide a handle to actuate a biological response for the control 

of therapeutic agents. 

 

In this thesis, a tunable and modular system is developed to respond to thermal perturbations 

in cellular environments and affect a biological response. At the core of this system is a pair 

of single-component thermosensing proteins whose dimerization is strongly and sharply 

coupled to their thermal environment. These domains are first utilized in their native context 

as negative regulators of transcription in prokaryotes, wherein they are integrated into genetic 

circuits to control expression of reporter genes. These gene circuits show strong and sharp 

thermal activation and can be utilized in multiplex to affect higher order logical operations. 

Cells imbued with these circuits demonstrate transcriptional activation upon global thermal 

elevation within the host animal within which they reside (fever) or upon a spatiotemporally 

localized temperature shift imparted by focused ultrasound hyperthermia. In subsequent 

work, one of these bioswitches is introduced into mammalian cells where it functions as a 

modular Protein-Protein Interaction (PPI) domain, conferring temperature-dependent protein 

localization.  

 

The work conducted in this thesis demonstrates the feasibility of utilizing temperature as a 

stimulus for biological activity. This technology can be harnessed to regulate therapeutically 

relevant processes in bacterial and mammalian cells such as transcriptional regulation and 

protein localization, and potentially broader protein function. The thermal bioswitches 

described herein could be utilized to engineer an array of research tools and biological 

therapies with actuation driven by spatiotemporally precise noninvasively applied stimuli or 

by real-time sensing of host conditions. 
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