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C h a p t e r  1  

LIVING CELLS AS A NEXT-GENERATION THERAPEUTIC 

MODALITY 

1.1: The Necessity of Novel Therapeutic Platforms 

The difficulty of treating diseases at the molecular scale has driven a great deal of innovation, 

and a corresponding increase in complexity, in the structure of therapeutic agents1. Initially, 

drugs consisted of small molecules which were isolated from natural sources2. 

Industrialization brought about a revolution in the capabilities of organic synthesis, leading 

to the creation of natural products from non-natural precursors, the derivatization of these 

molecules into novel chemical species, and the discovery of new medicinal chemicals3. The 

advent of high throughput screening brought about yet another method of developing small 

molecules into therapeutic entities, enabling diverse sets of synthetic chemicals to be rapidly 

examined for their ability to display potentially beneficial activities4. As the field of 

molecular biology developed, rational drug design became a viable proposition. Overall, the 

pharmaceutical industry has been largely dominated by small molecule drugs to date5. 

Despite the enormous success of small molecules at treating disease, a stubborn set of 

diseases remains refractory to treatment. Illnesses such as multi-drug resistant infections6, 

many viral infections7–9, neurodegenerative disorders such as dementias and motor 

impairments10–13, and chemotherapeutic-unresponsive cancers14 remain incurable and only 

partially treatable with conventional small molecule methods. These failings often stem from 

the fundamental structural properties of small organic molecules: their lack of size inherently 
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results in a relatively small contact area with their therapeutic targets, and their simplicity 

precludes them from executing logical computations such as sensing their environments and 

converting signals from their surroundings into structural rearrangements and altered modes 

of action15,16. The size of small molecule drugs limits their targets to those containing 

“druggable pockets,” or molecular crevices which are able to maximize topological 

interactions with the contact surface of the drug molecule, and not all disease-driving 

molecules contain such sites. Furthermore, the lack of environmental sensing results in 

biological activity both “on target” (at the site of disease) and “off target” (in healthy tissue), 

resulting in side effects which are often dose-limiting17,18. 

To address the limitations in the specificity of small molecule drugs, new targeting systems 

are under constant development. Most notably, lipid-based drug carriers such as micelles and 

liposomes can overcome some of the targeting challenges associated with bare small 

molecules. In the context of cancer, the larger size of liposomes renders them susceptible to 

the Enhanced Permeability and Retention (EPR) effect, resulting in preferential deposition 

in the tumor via escape from the local abnormal and leaky vasculature19. This effect can be 

augmented by decorating the lipid coat with molecular targeting moieties, thereby enhancing 

drug deposition within specific environments20. Using environmentally-labile chemical 

linkages such as pH-cleavable bonds, these targeting agents can even induce transcytosis into 

physiological compartments that are traditionally difficult for therapeutic agents to access21. 

While nanoparticle-based drug delivery shows great promise, the method is not a panacea. 

Ultimately the small molecule payload cannot, upon delivery, discriminate between diseased 

vs. healthy tissue, and the ultimate therapeutic potency depends on the biological activity of 

the drug rather than of the carrier, thereby limiting molecular targets to those within the 
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druggable repertoire. Additionally, EPR-directed accumulation in tumors, while significant, 

leads to on-target delivery slightly in excess of off-target deposition in vital organs22. 

Furthermore, single-target guidance of the nanoparticles is often insufficient for disease 

discrimination, although more complex targeting strategies are in development23,24. Finally, 

the chemical simplicity of lipid membranes limits the variety of behaviors that these 

nanoparticles and drug carriers can display relative to more complicated, dynamic, and 

energy-driven systems, and these behaviors are often responsive to broad biological effects 

such as pH rather than the subtle molecular differences that can differentiate diseased tissue 

from an off-target, healthy environment.  

In the 1980s, antibody-based therapeutics were introduced to the clinic25. Unlike traditional 

drugs, antibodies are large, complicated, and multifunctional molecules which can overcome 

some of the key disadvantages of small compounds. Antibodies contain a relatively large and 

genetically designable binding surface suitable for targeting non-cleft-like molecular 

surfaces, thereby greatly expanding the array of druggable protein targets26. Furthermore, in 

addition to simple binding and inhibition of molecular machinery, antibodies can interact 

with the host immune system by way of phenomena such as antibody-dependent cytotoxicity 

(ADCC), thereby increasing therapeutic potency beyond that conferred intrinsically by 

binding of the molecule to its target27. Due in large part to these expanded capabilities, 

antibodies have become a prominent portion of the modern therapeutic arsenal28. However, 

antibody-based therapies have their own limitations. Despite their favorable 

pharmacokinetics relative to small molecule drugs, antibody half-life is still measured on the 

order of days29, which typically necessitates multiple expensive and uncomfortable infusion 

procedures30. Additionally, the large size of antibodies prohibits passive diffusion across the 
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cell membrane and endocytosis into the target cell typically depends on prior binding to an 

extracellular receptor31, which precludes targeting of cytoplasmic antigens. The large size of 

antibodies also inhibits their transport from the blood to the diseased tissue29. Furthermore, 

the specificity of antibodies for a single molecular target can preclude them from being able 

to sufficiently distinguish healthy cells from diseased tissue, which often requires multiple 

markers32–34. Finally, the difficulty in controlling the therapeutic potency of antibodies in situ 

often leads to adverse effects related to runaway effects, particularly in biologics targeting 

the immune system35.  

The high complexity of extant therapeutic challenges has led to a concomitant increase in the 

complexity of the therapeutic agents engineered to treat them. Viruses represent a new class 

of such drugs, with a complexity exceeding even that of antibodies and nanoparticles36. 

Viruses consist of genetic material encapsulated by a protein, and sometimes lipid, shell. 

These biological particles are decorated with surface receptors that enable the complicated 

and coordinated molecular behavior required for efficient entry into the target cell. In the 

intracellular environment, the virus can act on targets in the cytoplasm or in the nucleus, and 

can alter cell function via transcriptional programs. Some types of viruses are even capable 

of integrating into the cell’s genome, thereby enabling permanent modification of the cell’s 

functionality. While viral therapy remains a novel research area, some clinical successes have 

already been achieved, culminating in the 2012 EMA approval of Glybera37 and the 2017 

FDA endorsement of Luxturna38. The relatively high complexity of viruses enables them to 

display some of the most desirable characteristics in therapeutic agents, such as precision 

targeting based on the molecular environment39 and a broad and controllable range of 

biological activities40. However, as a natural environmental agent, viruses must combat the 
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intrinsic immunological defenses of the human body41. Not only does immunity severely 

limit the efficacy of viral therapy, it can also lead to significant and sometimes fatal toxicity 

by generating massive immune reactions at therapeutically-relevant doses42. While viruses 

remain an exciting therapeutic platform for treating some types of diseases, the fact that viral 

administration intrinsically renders the therapy at odds with the host immune system 

fundamentally limits the efficacy and persistence of this approach43. 

The past two decades have seen enormous progress in the development of technologies to 

engineer and control living cells. Many cell types, both microbial and animal, can be 

genetically altered and reprogrammed to execute arbitrary biological functions. Such 

engineered cells have found a variety of applications, ranging from the efficient production 

of biofuels to the manufacture of precursors for clothing44 and other materials45. Such cells 

can also be used to produce both small molecule46 and large molecule47 therapeutic agents. 

Bioengineering and biotechnology have emerged as major industries within the United States 

and other developed nations, with one report estimating conservatively that in 2012 these 

sectors represented over 2% of the US GDP48. A particularly exciting area of application for 

engineered cells, whose leading edge is just now entering the clinic, is the engineering of live 

cells for direct therapeutic applications49. 

Cells offer a host of advantages over other therapeutic modalities. Their enormous 

complexity provides a plethora of biological “knobs” to tune – cells can be engineered to 

preferentially replicate under specific and multiparametric environmental stimuli, enabling 

the sensing of complex heuristics to differentiate between diseased and healthy tissue50. Cells 

can also persist for much longer than non-biological entities51,52, and autologous cell grafts 
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do not compete with the host immune system for survival as is the case for viral therapeutics. 

Additionally, cells can proliferate at the site of disease53–55, which can amplify therapeutics 

effects while also decreasing the required dosage for administration, thus reducing cost and 

potential off-target spread. Finally, cells can employ a suite of biological programs to 

interface with the local environment, interacting with the local immune system and 

augmenting56 or ameliorating57 inflammation as required by the given therapeutic context. 

The tremendous range of possibilities afforded by engineering cells for therapeutic 

applications has led to a great deal of pre-clinical and translational investigation, and the first 

wave of cell-based therapies has entered the clinic58. 

1.2: Microbial Therapeutic Agents 

Bacteria were the first living cells to be utilized in a clinical setting. The idea of cell-based 

therapy is often attributed to Dr. William Coley, an American surgeon who, in the late 

nineteenth century, recognized that cancer patients suffering from infection occasionally 

displayed spontaneous tumor regression59. Coley began injecting his patients with Erisypelas 

(now formally known as Streptococcus pyogenes) and observed some degree of therapeutic 

efficacy60, although insufficient recordkeeping has rendered his results difficult to reproduce 

or justify as a modern therapeutic intervention. Additionally, Coley’s use of non-engineered 

pathogenic bacteria was associated with the expected adverse effects of microbial infections 

such as sepsis and upon the development of X-ray radiation therapy and improvement of 

surgical techniques in the early twentieth century, Coley’s method of treatment fell out of 

favor in the medical community61,62. 
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An increased understanding of bacteriology and bioengineering has led to a resurgence in 

microbial therapeutics. Discovery of bacterial strains with restricted pathogenicity has 

enabled safe administration in the clinical setting, with some forms of microbes often 

purchased and consumed over the counter63. These naturally occurring bacteria have 

applications in the treatment of some disorders, particularly those of the gastrointestinal 

tract64–66. Some probiotic strains of bacteria, particularly E. coli Nissle 191767 and L. lactis 

NK3468, have demonstrated anti-cancer activity in addition their conventional role in the GI 

tract.   

Microbes are a versatile biological platform for modification and engineering. Decades of 

experience in bioengineering has resulted in the robust ability to engineer many strains of 

bacteria by the introduction of foreign nucleic acids, either by way of extrachromosomal 

DNA molecules (e.g. plasmids) or via chromosomal editing (such as via Lambda Red 

recombination)69–71. The expanded ability to manipulate and program microbial cells with 

novel functions has resulted in the design of strains that can sense disease states and either 

report their presence72,73 or treat them in situ63,74.  Such facile control over bacterial genetics 

has generated a great deal of interest in the scope of potential applications for microbial 

therapies75,76. 

One of the main limitations of conventional therapeutic molecules is the challenge of targeted 

delivery. After injection or ingestion, the drug molecule forms a concentration gradient away 

from the site of administration, often resulting in relatively low dosage to the disease site 

while maintaining an elevated level in circulation and at potential off-target tissues. Microbes 

can be utilized as in situ “micropharmacies” to directly synthesize therapeutic agents within 
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a diseased tissue67,77–79. By injecting microbes that directly home to the site of disease, the 

drug of interest can be locally produced, thereby maintaining the highest concentration at the 

target site and diluting at distal, healthy organs80. This method of drug delivery can mitigate 

the toxicity observed in the systemic administration of highly bioactive molecules, as has 

been limiting for IL-2 therapy for cancer81. 

Microbes can also be utilized to directly destroy diseased tissue, a behavior which has been 

of particular interest in cancer therapy. The majority of research into this targeting behavior 

has focused on the ability of microbes such as Salmonella82,83 and Clostridium84 to traffic to 

tumors and colonize them.  Obligate anaerobic bacteria such as Clostridium85 and 

Bifidobacterium86 suffer toxicity from oxygen exposure and are thus restricted to surviving 

in the hypoxic cores of poorly vascularized tumors. In contrast, facultative anaerobes such 

as E. coli87, Salmonella88, and Listeria89 are able to tolerate the presence of oxygen. These 

microbes can display preferential tumor accumulation by active chemotaxis to necrotic and 

nutrient-rich regions90,91, engineered auxotrophy for necrosis-associated molecules92 and by 

growth restriction to immune-privileged regions such as the tumor microenvironment93. 

While some destruction of diseased tissue is inherently caused by the colonization and 

replication of these microbes, this activity can be enhanced by augmenting bacteria with non-

natural payloads94. Microbes have been engineered to deliver bacterial toxins95, pro-

apoptotic factors96–98,  cytokines99,100, chemokines101, anti-antiogenesis agents102, tumor-

specific siRNA103,104, plasmid DNA bearing tumor-suppressive genes105, pro-drug 

converting enzymes106,107, and antibodies108. Additionally, the foreign surface markers of 

microbes can render them potent immune adjuvants109,110, and delivering novel 

immunogenic proteins can further enhance the inflammatory response stimulated by these 
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agents111. Arming microbes with disease-related peptides, proteins, or nucleic acids can 

prime the host immune system to recognize antigens which it would otherwise tolerate, an 

application of interest for inducing recognition of tumor-associated self-antigens that are 

frequently protected by immunological tolerance112–116.  

Attenuation of bacterial strains can also result in growth restriction to diseased tissue which 

can be harnessed in a clinical setting117. In the early 1900s, researchers at the Pasteur Institute 

searched for avirulent strains of Bacillus for use as vaccination strains against 

Mycobacterium tuberculosis, the causative agent of tuberculosis infection. By passaging a 

slightly attenuated strain on glycerine potato medium, the scientists generated a sufficiently 

avirulent line of Bacillus for use as a vaccine, and this became the strain utilized in the well-

accepted BCG vaccination for tuberculosis118. In the 1970s this strain was found to promote 

tumor regression in non-muscle-invasive bladder cancer (NMIBC) patients, and intravesical 

administration of live BCG is now a standard treatment for this disease119. The mechanism 

of BCG homing and therapeutic activity against bladder tumors is not fully determined, 

although recent research has suggested a model in which the microbe binds to the carcinoma 

surface120 and becomes internalized via micropinocytosis121 stimulating a host immune 

response122, a process which may be accelerated in cells mutated in the PTEN tumor 

suppressor123. Biosimilar strains have subsequently been developed, and expanded 

therapeutic applications such as treatment of colorectal cancer are under investigation. The 

strategy of virulence attenuation has since resulted in the development of the therapeutic 

bacterial strains Salmonella VNP20009124, AR-192, and ΔppGpp125, Clostridium Novyi 

NT126, and others promising variants including a derivative of S. pyogenes, the bacterium 

that launched the field of microbial therapeutics127. 
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Progress in bacterial therapy has been hindered by several factors. First, the fact that microbes 

are immunologically foreign objects in a patient’s body renders them subject to immune 

reaction and as such, the dosages are restricted to minimize the severity of potential immune 

reactions128. Even BCG therapy, despite its clinical approval, must be prematurely terminated 

in a small number of patients due to toxicity129. Additionally, while some specific disorders 

such as NMIBC possess cognate bacteria which display strong replicative preference for the 

diseased tissue, many bacterial therapies are reliant on more general environmental cues for 

targeting. Such signals include hypoxia and the metabolic profile within the tumor core. 

Some other compartments within the body such as the bone marrow can share some of these 

molecular heuristics130 and induce off-target colonization and therapeutic activity. Even in 

experiments demonstrating successful targeting of a disease site, a substantial concentration 

of bacteria can accumulate in healthy organs such as the spleen and liver131. Finally, there 

have been notable failures of pre-clinically successful therapeutic strategies failing to 

translate from animal models into human trials132, and most positive effects observed in 

humans have been non-curative133–137. In the most notable failed trial, a patient injected with 

an engineered Listeria strain to vaccinate against HPV-positive oropharyngeal cancer 

suffered systemic listeriosis, resulting in the halt of the trial138. The modest success of 

translating efficacious microbial interventions from animal models to the clinic suggests that 

a significant amount of research and development must be undertaken to augment the 

potency of microbial therapeutics while restricting their action to sites of disease.  

1.3: Mammalian Therapeutic Agents 
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The first implementation of mammalian cells as therapeutic agents in human patients was 

arguably in 1818, when the British physician James Blundell performed a blood transfusion 

to treat hemorrhage139. In the early 1900s, preliminary molecular research enabled physicians 

to segregate patients according to blood type, thereby establishing the paradigm of antigen 

matching in cell transplantation140,141. The 1950s saw another type of transplantation enter 

medical acceptance: that of stem cells142. Using this newly discovered, non-terminally 

differentiated cell type, physicians could rebuild the hematopoietic system in cancer patients 

who received high doses of chemotherapy. Both RBC transfusions and HSC transplantations 

have revolutionized aspects of healthcare and are enduring components of the modern 

medical industry.  

In the mid-1990s, Steven Rosenberg’s group at the NIH demonstrated that immune cells 

could also be used in a therapeutic context143. Reasoning that T-cells activated within the 

tumor environment could be expected to attack the surrounding malignancy, Rosenberg and 

colleagues isolated T-cells from the tumors of melanoma patients, expanded them ex vivo, 

and then reinfused them in large numbers back into the patient of origin. These artificially 

selected T-cells resulted in regression of the melanoma, thereby establishing cell-mediated 

adoptive immunotherapy as a viable therapeutic strategy. Autologous immunotherapy was 

subsequently utilized for dendritic cells as well. In 2010, the US FDA approved Sipuleucel-

T, a blood product generated by treating peripheral blood mononuclear cells with a fusion 

protein consisting of GM-CSF to enrich dendritic cells and Prostatic Acid Phosphatase, a 

common prostate cancer antigen, to generate cognate antigens144. Other artificially 

stimulated dendritic cells generated via exposure to tumor-derived peptides, nucleic acids, or 

raw lysates are currently in late stage clinical trials145.  
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The advent of reliable genetic modification of mammalian cells revolutionized the field by 

expanding the scope of accessible biological functions and providing novel strategies to 

control their activation146. Gene delivery into mammalian cells via chemical (cationic and 

polycationic complexes)147,148, physical (electroporation or mechanoporation)149,150, and 

biological (viral)36 mechanisms, as well as precision gene editing via customized proteins 

and biomolecular complexes such as Zinc Finger Nucleases, TALENs, and CRISPR-Cas9151, 

enables unprecedented control over cell function and fate. Aided by the 1970s revolution in 

recombinant DNA technology, which enabled facile manipulation of DNA sequences, gene 

delivery technologies offered a host of potential therapeutic modalities. A landmark 

experiment in 1980 demonstrated safe ex vivo transfer of recombinant plasmid DNA into 

human bone marrow cells followed by reinfusion into the patients of origin152. Although this 

study failed to demonstrate clinical efficacy and was roundly criticized as premature within 

the scientific and medical communities, it also opened the door for later studies of gene 

therapies. 

One of the first technological beneficiaries of recombinant DNA technology was viral gene 

therapy, which can repair defective patient cells or introduce therapeutic functionality into 

host cells de novo40. Viruses had been explored (largely unsuccessfully) as therapeutic agents 

in their wild type context, but the ability to edit their genomes and utilize them to deliver 

arbitrary genes of interest garnered a great deal of scientific and public attention152. This 

ambition led to the use of recombinant viruses in clinical trials, with the first attempt aiming 

to correct X-SCID, a deficiency in immune cell maturation, in a batch of pediatric patients 

at the turn of the millennium153,154. While the field of gene therapy encountered significant 

turbulence during its inception36, more recent research has yielded promising results and 
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several clinical approvals. The first viral gene therapy was approved in China to treat head- 

and neck squamous cell cancer in 2003155 and another therapeutic adenovirus was brought 

to this market in 2005156. 2012 saw the landmark EMA approval of Glybera157, an adeno-

associated virus carrying lipoprotein lipase to correct a hereditary deficiency in this 

enzyme158.  The first viral gene therapy approved in the U.S. was Luxturna, an AAV carrying 

a transgene to restore retinoid cycle function in a subset of retinal dystrophy patients, in 

201738. A large array of clinical trials for in vivo and ex vivo gene therapies for a variety of 

diseases is currently ongoing (reviewed by Dunbar et al40). Genetically engineered viruses 

have also garnered significant attention for oncolytic therapy via the wide array of alterations 

that bias viral replication to preferentially occur in tumor cells159, with Amgen’s Imlygic 

being the first to receive FDA approval in 2015158. 

In the past two decades, the use of genetic engineering to modify human cells for therapeutic 

efficacy has become a focus of significant research interest. Cells can also be extracted from 

a patient, genetically modified ex vivo, and subsequently reintroduced into the host160. The 

main advantage of this therapeutic approach is that the cells can be manipulated under 

controlled conditions, evaluated for quality, and then reinfused as a pre-modified product. 

Two cell types, hematopoeietic stem cells (HSCs) and leukocytes (particularly T-cells), have 

been of particular interest in this context40. HSCs are progenitor cells found in the bone 

marrow and are able to differentiate into adult blood cells of virtually any type. HSCs had 

previously found application in the context of allogenic transplantation of unmodified patient 

cells for treatment of chemotherapy-associated lymphodepletion161. T-cells are the main 

immune cell subtype involved in the adaptive cytotoxic response. By virtue of their unique 

T-Cell Receptor (TCR), which is randomized and selected during T-cell development, they 
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are able to recognize unique antigens presented on the Major Histocompatibility Complex 

(MHC) of potential target cells and selectively kill or otherwise direct an immune response 

against these specific targets162. The serial killing behavior of this cell type renders it ideal 

for applications such as cancer therapy in which cell ablation, rather than reprogramming, is 

required to treat the disease. 

New advances in gene editing have enabled ex vivo modification of HSCs from patients with 

genetic defects in blood cell function such as β-Thalassemia, Sickle cell anemia, Adenosine 

deaminase deficiency (ADA), and several others40. After genetic reprogramming, these cells 

are reinfused into the patient and migrate back to the bone marrow, where they subsequently 

serve as progenitors to functionally repaired blood cell progeny163. Addition or replacement 

of mutant alleles in the HSCs has resulted in several successful clinical trials as well as the 

2016 EU approval of Strimvelis for ADA. 

Immunotherapies have also benefitted tremendously from advances in gene delivery. 

Following the pioneering work of the Rosenberg group in the 1990s on expanding tumor-

specific lymphocytes, the past decade has seen a great deal of interest in the ex vivo genetic 

modification of T-cells and other lymphocytes for improved efficacy against cancer164–166. 

One of the first instances of ex vivo genetic engineering was the modification of T-cells with 

a genetic tracer for evaluation of their biodistribution following infusion into a patient167. A 

great deal of subsequent work has aimed to augment T-cell function for the treatment of 

cancers. A seminal paper by Eshhar and colleagues described genetic retargeting of T-cells 

toward native (non-MHC-presented) surface antigens by a hybrid protein consisting of an 

extracellular single-chain antibody domain for recognition of novel antigens and an 
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intracellular domain from the CD3ζ chain of the TCR for activation of the T-cell effector 

functions168. The extracellular domain in this design is modular and this fundamental 

architecture, now known as the Chimeric Antigen Receptor (CAR) has since been optimized 

and retargeted against the B-cell antigen CD19 for treatment of B-lineage blood cancers, 

culminating in the 2018 FDA approvals of Yescarta and Kymriah, the first CAR-T 

therapies58. 

Despite the immense progress which has been made in the genetic conversion of patient cells 

into therapeutic agents, significant challenges in the field remain. For direct viral gene 

delivery into patients, immunotoxicity and genotoxicity are the two key concerns. Viruses 

can elicit a strong immune response which can inhibit therapeutic efficacy by vector 

inactivation41,169. This immune reaction can also destroy virally modified cells by directing 

T-cell responses against viral capsid proteins or therapeutic transgenes presented by the 

MHC molecules of the genetically modified cells, thereby blunting the therapeutic effect170. 

Finally, the immune response may amplify from a local to a systemic phenomenon, driving 

signal transduction cascades that result in life-threatening systemic inflammation. Such a 

runaway immune response was famously responsible for the death of Jesse Gelsinger, a 

patient enrolled in an adenoviral gene therapy trial for Ornithine Transcarbamylase 

Deficiency171. This tragedy not only killed the patient, but also brought significant public and 

regulatory scrutiny toward the field, highlighting the safety concerns of these approaches. 

Another highly publicized mishap in the history of gene therapy occurred in one of the 

earliest clinical trials against SCID-X1. While the initial results of the intervention were 

highly promising, with immune functionality partially restored in the majority of subjects172, 

several of the enrolled patients subsequently developed leukemia173,174. This result 
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underscores the potential for viral integration-induced genotoxicity, in which the process of 

viral insertion can disrupt the innate cellular machinery responsible for regulation of cell 

division, leading to malignant transformation. Similarly, a potential pitfall of stem cell-based 

therapy is the uncontrolled proliferation of undifferentiated cells, or teratocarcinoma175. 

While this phenomenon has not been observed in humans, several rodent studies have 

demonstrated it to be a concerning possibility in such therapeutic approaches163,176.  

Cell-based T-cell therapy has also demonstrated significant dangers. Antigen-redirected T-

cells can mount a significant immunological response which, similar to the effect induced by 

high doses of viral genetic vectors, can prompt runaway and potentially fatal inflammatory 

reactions, which are termed Cytokine Release Syndrome (CRS)177. While modest CRS is an 

expected corollary to CAR-T therapy and in fact can serve as a biomarker of therapeutic 

efficacy, severe CRS has proven fatal in multiple cases178. Engineered T-cells can also 

demonstrate toxicity by erroneously attacking off-target tissues. This has occurred by way of 

“off-target, off tumor” toxicity in which the cells mistakenly recognize a healthy tissue 

antigen with structural similarity to the tumor antigen179, or via “on-target, off tumor” 

behavior in which the target antigen is found, contrary to prior expectation, to be expressed 

on healthy tissue as well as in the cancer cells180,181. Both modes of mis-targeting have 

resulted in fatal reactions during clinical trials. In a trial of an affinity-enhanced TCR against 

the MAGE-A3 melanoma antigen, a patient suffered fatal cardiac toxicity when the 

engineered T-cells recognized and attacked Titin, a protein expressed in striated muscle182. 

“On target, off tumor” attack has been more common, with several trials reporting deaths 

from this mode of toxicity180,183. Improving the safety of viral and mammalian cell-based 
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therapeutics without compromising therapeutic efficacy remains the primary challenge of the 

field. 

1.4: Common Challenges in Gene and Cell-Based Therapy 

While viral and nonviral gene therapy, engineered bacterial therapeutics, and cell-based 

therapies are disparate strategies with their own idiosyncratic challenges, several overarching 

themes unify the obstacles that must be overcome before these next-generation interventions 

become standard clinical practices. The tissue and organ specificity of next-generation 

therapeutics must be well controlled to ensure that only sites of disease are treated or 

modified. The complex, and in some cases self-renewing, nature of these therapies is 

correlated with a high degree of potency, the regulation of which is critical for ensuring 

patient health. In cases where the intervention proves deleterious, such as malignant 

expansion of engineered cells184 or life-threatening activity-related toxicity185, physicians 

must be able to robustly abort the therapy. Finally, the structural and manufacturing 

complexity of next generation therapies leads to high cost, and as such, the therapeutic 

designs should be controllable by ex vivo factors to avoid necessitating premature cessation 

of the treatment.  

The targeting specificity of genetic modification therapies is largely dictated by the method 

of transduction. While ex vivo editing of mammalian cells pre-selects against off-target 

genetic modification by physically separating the desired cells from the patient prior to 

modification186,  control of in vivo gene delivery specificity largely relies on the vector for 

editing. In some cases, differential viral tropism for specific tissues can bias entry and 

delivery, although natural viral tropism is rarely exclusive to single tissue types187,188. 
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Tropism can be modified via engineering of viral surface proteins, yielding vectors with 

altered infectivity profiles189. Utilization of tissue-specific promoters to drive expression of 

the genetic payload can further increase specificity of gene delivery190. As a whole, the cell-

type specificity of systemically administered genetic interventions is virtually never as 

precise as that of ex vivo engineered approaches due to the inability to pre-sort the target cell 

population prior to editing. Introducing methods to control the timing and location of gene 

delivery within the patient has the potential to vastly improve the safety and efficacy of such 

methods.  

The spatial specificity of cell-based therapies is also of great interest, due largely in part to 

the aforementioned observations of off-tumor toxicity. With the exception of HSC 

engineering, where activity is usually restricted to its intended niche via the stem cells’ useful 

property of intrinsic homing and engraftment into the patient’s bone marrow after 

reinfusion161, cell-based therapies are largely limited by off-target adverse effects.  Bacterial 

homing and growth specificity are largely governed by the permissivity of the surrounding 

environment. Despite the wealth of available mechanisms to support bacterial proliferation 

in tumors, off-target colonization can occur in organs such as the spleen and liver, and in 

“tumor-like” niches such as the bone marrow. Additionally, some diseases for which cell-

based therapies would be beneficial do not have obvious environmental markers that would 

promote bacterial growth. In contrast to bacterial therapies, the spatial localization of cell-

based immunotherapies is mostly guided by the location of the target antigen191. Ligation of 

the antigen with the TCR or CAR results in strong pro-inflammatory signaling leading to 

local immune cell proliferation and recruitment. Unfortunately, this mechanism of spatial 

localization leaves therapies such as CAR-T vulnerable to off-target expression of antigens 
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or target antigen misrecognition, both of which can result in efficacy and toxicity in healthy 

tissues. As such, a great deal of work is being invested into improving molecular recognition 

using inhibitory receptors192, logic-gated receptor systems193, and even novel receptor 

platforms such as modular synthetic variants of the Notch receptor (SynNotch)194 which can 

be utilized to orthogonally modulate specific biological functions including expression of the 

primary antigen receptor.  

In some cases the administration of a therapy can go awry, leading to unpleasant or 

potentially fatal side effects that justify abortion of the therapy. The field of gene therapy has 

observed several such instances, such as the death of an adenoviral therapy patient due to 

severe and systemic inflammation171 and the onset of leukemia in pediatric SCID patients195. 

CAR-T based therapies have also resulted in patient deaths during clinical trials due to off-

target antigen recognition196. As such, the potency of next generation living therapeutics 

justifies engineered control strategies to enable abortion of the therapy at the whim of the 

administrating physician. Artificial control over the viability of the treatment can largely 

address this necessity. In bacterial therapy, auxotrophic strains which require continuous 

delivery of a nutrient for survival have been developed197. Additionally, kill switches which 

rely on detection of exogenous factors have been developed to inducibly halt bacterial growth 

or damage viability198. These methods can be utilized in combinatorial fashion for highly 

effective biocontainment199,200. For gene therapy and mammalian cell therapy, in which the 

modified cells are typically patient-derived, complex metabolic engineering is often not an 

option. Therefore, control of viability is typically enacted in kill switch fashion using 

inducible pro-drug-conversion enzymes such as HSV-tk201 or intrinsically lethal proteins 

such as iCasp9202. A key obstacle to auxotrophy and kill switch-mediated control systems is 
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mutation203. Introduction of a genetic system that damages viability exerts a strong selection 

pressure on cells, and leaky selection strategies enable populations of escape variants to grow 

out, thereby continuing the undesired biological activity. This phenomenon is more prevalent 

in the bacterial setting, in which polymerase fidelity is not as robust as in mammalian cells 

and where proliferation can thus occur rapidly.  

The relative expense of biological therapies in comparison to conventional drugs results in 

abortion of treatment being a last resort. Instead, exogenous modulation of therapeutic 

efficacy can be engineered to allow physicians to tune the potency of the intervention without 

necessitating complete elimination. A common strategy is the design of systems dependent 

on inducible gain of function. These include therapeutic genes which are natively transcribed 

at low levels but can be induced upon detection of an exogenous stimulus, such as engineered 

T-cells harboring a chimeric antigen receptor driven by a doxycyline-inducible promoter204 

and CAR-Ts in which receptor signaling is dependent on chemically-induced dimerization 

enabled by an infused drug205. While such systems are useful to prevent severe toxicity, the 

requirement for constant or repeated infusion of the inducer can render them unsuitable for 

long-term therapies, such as repair of genetic deficiencies. To address this issue, genetic state 

switches which can toggle in response to external stimuli are under investigation206.  

Gene therapies, bacterial cell-based therapies, and mammalian cell therapies are exciting and 

potentially revolutionary treatment modalities which may enable treatment of previously 

undruggable targets and diseases. The molecular complexity of these systems renders them 

highly engineerable and customizable, and also enables a high degree of therapeutic efficacy 

and specificity. Nevertheless, off-target activities and undesirable behaviors largely remain 
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to be addressed. The next generation of biological therapies will likely carry engineered 

therapeutic modules, possibly in multiplex, to enable precise control over biological 

behavior. The ability to exert novel biological programs, coupled with exogenous strategies 

to modulate of abort the intervention if needed, will render these “programmable” therapies 

a powerful tool in the armament of future physicians. 
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