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ABSTRACT

The majority of this thesis is dedicated to certain nonlocal aspects of conformal field
theories (CFTs). Two main directions are the study of CFTs on a particular globally-
nontrivial spacetime, and the study of particular nonlocal observables in CFTs.

The first aspect concerns with the study of CFTs on a spacetime with imaginary
periodic time, equivalent to the study of static properties of a CFT at finite temper-
ature. We introduce bootstrap techniques for determining finite-temperature data of
CFTs, and make predictions for the 2+1-dimensional O(N) model at large N and the
2+1-dimensional Ising model.

The second aspect is the study of light-ray operators in CFTs — operators that are
supported on light-like trajectories. We propose the “stringy equivalence principle,”
stating that coincident gravitational shocks commute, as a generalization of the strong
equivalence principle of Einstein’s General Relativity that must hold in all consistent
theories of gravity. Analyzing properties of light-ray operators dual to gravitational
shocks, we prove the stringy equivalence principle for holographic CFTs dual to grav-
ity in Anti-de Sitter (AdS) spacetimes. We place stringent constraints on effective
theories of gravity. We also derive an operator product expansion (OPE) for light-ray
operators in CFT, by which two light-ray operators on the same light-sheet can be ex-
panded as a sum of single light-ray operators. Light-ray operators model detectors —
such as calorimeters. We use the light-ray OPE to compute event shape observables
suitable for conformal collider physics in 3+1-dimensional N = 4 super-Yang-Mills
Theory.

An additional part of this thesis determines the low energy vacua of two-dimensional
maximal super-Yang-Mills theory, which describes the dynamics of stacks of D-strings
in Type IIB string theory. By computing an invariant of the renormalization group
(RG) flow from high to low energy — a modified thermal partition function named
the refined elliptic genus — we prove the existence of multiple vacua, and identify
the superconformal field theories capturing their dynamics. The vacua correspond to
bound states of (p, q)-strings in Type IIB string theory. Our computation serves as a
check of the strong-weak S-duality of the Type IIB string.
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“The goal that led him on was not impossible, though it was clearly supernatural: He
wanted to dream a man. He wanted to dream him completely, in painstaking detail,
and impose him upon reality. This magical objective had come to fill his entire soul; if
someone had asked him his own name, or inquired into any feature of his life till then,
he would not have been able to answer. The uninhabited and crumbling temple suited
him, for it was a minimum of visible world; so did the proximity of the woodcutters,
for they saw to his frugal needs. The rice and fruit of their tribute were nourishment
enough for his body, which was consecrated to the sole task of sleeping and dreaming.”

“In the birdless dawn, the sorcerer watched the concentric holocaust close in upon the
walls. For a moment he thought of taking refuge in the water, but then realized that
death would be a crown upon his age and absolve him from his labors. He walked into
the tatters of flame, but they did not bite his flesh—they caressed him, bathed him
without heat and without combustion. With relief, with humiliation, with terror, he
realized that he, too, was but appearance, that another man was dreaming him.”

—from “The Circular Ruins” by Jorge Luis Borges
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C h a p t e r 1

INTRODUCTION

A crowning jewel of theoretical achievement would be to find the theory that describes
the fundamental laws of nature of our universe in their entirety. A closely related
achievement would be to explain why this theory is the correct one. Indeed, there
doesn’t seem to be a single self-consistent theory of physics, but many. For example,
it is possible to conceive of an electron twice as massive, or a gravitational force half
as strong. The known parameters of our universe — such as the masses of particles
and the strengths of interactions — are set to very specific values. To understand why
our universe is the particular theory that it is, we must understand where it stands
in relation to other theories of physics. Perhaps, in a dream scenario, by ruling out
theories of physics we can discover our universe. Therefore, it is the theorist’s task
to explore the space of theories, and tell us not just what, but also where the theory
of our universe is.

The other goal of a theorist is to solve the discovered theories. Although finding and
solving theories go hand in hand, solving — meaning computing all observables of
a theory — requires further ingenuity. Luckily, there are many organizing principles
that help us with both daunting quests.

One of the deepest insights of physics is that the description of a physical system is
in terms of an effective theory capturing the dynamics of the fundamental degrees of
freedom appropriate to the given scale. Let’s take our universe as an example. At
the distances characteristic of everyday life, the relevant forces are gravitation and
electromagnetism. As we probe smaller distance scales, we observe the rich dynamics
of the subatomic scale, and beyond. Yet, when we describe the macroscopic world,
we don’t need to worry about the details of the microscopic, only about the behavior
of the collective degrees of freedom. The same is true for subsystems of our universe.
Everyday materials can be modeled by theories of physics of their own; for example,
everyday ferromagnets could be modeled by the Ising model. Of course, these models
arise from the underlying fundamental laws, but the description of the system — once
determined — can stand on its own within the range of scales it is valid.

The theories that describe our universe at all observed scales are General Relativity
and the Standard Model. General Relativity is the effective theory that describes
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the gravitational interaction. The Standard Model is a particular local, relativis-
tic (Lorentz-invariant) Quantum Field Theory (QFT) that describes the known mi-
croscopic particles and their interactions, including electrodynamics as well as the
subatomic weak interaction and strong interaction. Together, they are valid in a
staggering range of scales, from the galactic to the subatomic. However, they are not
valid at arbitrarily small distances. We are yet to find the ultimate theory of nature,
valid at the smallest scales, which reproduces General Relativity and the Standard
Model at larger distances.

How then are the theories describing different scales related? The resolution is that
the very theory that describes a physical system dynamically evolves as one zooms
out to larger distance scales. Degrees of freedom are averaged out, and new degrees of
freedom emerge from their collective behavior — sometimes radically. The evolution
of a theory as the scale is changed is governed by the Renormalization Group (RG)
flow. RG flow dictates how the parameters gi of a theory — such as the masses and
the strengths of forces — change as the scale changes. Given an energy scale E ∼ µ

— which corresponds to a distance scale ∼ 1/µ — RG flow determines the rate of
change of the parameters gi according to a set of equations,

µ
∂gi
∂µ

= βi(gj). (1.1)

The RG flow evolution stops only once it reaches a theory that is scale-invariant,
one for which the parameters no longer depend on the scale. There are generically
three scenarios. One possibility is that every degree of freedom is washed out, and
one is left with just the vacuum. A second, less trivial possibility is that all masses
and couplings vanish, and the remaining degrees of freedom freely propagate without
interactions. At extremely large distances, our universe falls under this scenario.
The third, nontrivial possibility is that one is left with an interacting theory that is
scale-invariant.

A scale-invariant, Lorentz-invariant, local QFT often enhances to a Conformal Field
Theory (CFT). CFTs are invariant under a larger group of symmetries, called confor-
mal transformations, which include scale and Lorentz transformations. The interest-
ing CFTs are the nontrivial, interacting ones arising from the third scenario above.1

Conformal invariance has profound consequences. Due to their enhanced symmetries,
CFTs are much simpler to describe than their generic QFT counterparts, and they
give us a handle on QFTs. Virtually every computation of a quantity in a QFT

1The first two scenarios are also CFTs, in a trivial sense.
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treats it as a perturbation of a CFT: the classical treatment of a Lagrangian is a
perturbation around a free CFT. Astonishingly, CFTs can be defined nonperturba-
tively, without the use of a Lagrangian. Moreover, the abstract space of all QFT —
the theory space — parametrized by all possible parameters gi, is organized by RG
flow lines that start and end at CFTs, stringing together QFTs at different scales in
between.2 In this sense, CFTs are the building blocks of the space of QFTs. In order
to navigate the space of theories, we must chart its constellation of CFTs.

CFTs are ubiquitous. They make their presence in many areas of theoretical physics,
from the phenomenological to the mathematical, describing many interesting phys-
ical phenomena on their own. Starting from the most practical and down-to-earth
application, CFTs describe universality classes of critical systems, i.e. of continuous
(second-order) phase transitions. Euclidean CFTs describe statistical critical systems,
where the phase transition is achieved by tuning extrinsic parameters such as tem-
perature and pressure. Examples include the critical point in the liquid-vapor phase
transition of substances — including water! — and the ferromagnetic/paramagnetic
phase transition, both described by the same 3d Ising CFT [1, 2], and the super-
fluid transition in 4He described by the 3d O(2) model [3]. Lorentzian CFTs describe
quantum critical systems at zero temperature, which are quantum mechanical systems
where the phase transition is achieved by tuning the microscopic parameters gi of the
system. An example is the 2+1d O(2) model description of thin-film superconducting
phase transitions [4, 5].

Perhaps the most revolutionary application is to gravity. At first sight, QFT is
not a valid description of quantum gravity. The spacetime on which the QFT lives
is assumed to be static. However, certain CFTs with large numbers of degrees of
freedom also describe gravitational theories in Anti-de Sitter (AdS) spacetime in
one dimension higher, via the holographic AdS/CFT duality [6, 7]. In fact, CFTs
provide our best understanding of quantum gravity: with fewer degrees of freedom,
quantum effects begin to emerge. More generally, CFTs are also central in string
and M-theory, which are candidate theories of quantum gravity. The worldsheet
theory of a string is conformal, and many interesting CFTs arise from the low-energy
dynamics of stacks of branes in string and M-theory. It is almost impossible not to
mention the celebrated four-dimensional N = 4 super Yang-Mills (SYM) theory. The
N = 4 SYM is a superconformal theory with many merits. It has a weakly-coupled
Lagrangian description, which makes it easier to study. It arises from string theory as

2The high-energy starting point is not always a CFT. It might not even be a QFT as there could
be flow lines coming from string or M-theory. Still, it is a useful paradigm in many circumstances.
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the worldvolume theory of a stack of D3-branes. The AdS/CFT correspondence was
first discovered with N = 4 SYM as an exact equivalent to string theory on AdS5×S5.
It is also a supersymmetric cousin of quantum chromodynamics (QCD), the theory
of quarks and gluons, therefore a prudent candidate for developing techniques to
study QCD. Another highlight is the six-dimensional N = (2, 0) superconformal
theory describing the low-energy dynamics of M5-branes. This theory does not have
any known Lagrangian description, but can be used to engineer a vast number of
interesting QFTs in lower dimensions.

CFTs are the central focus of this thesis. We will be interested in multiple aspects
of theirs; from computing their observables, to discovering their internal structure,
and even to constraining theories of gravity using their properties. We now turn to
a review of some salient aspects of CFTs, highlighting the directions of interest that
this thesis will explore. We then follow up with a summary of the contents of this
thesis.

1.1 New and Old Frontiers in Conformal Field Theories

Let us expand on the statement of symmetry in a QFT. A Lorentz-invariant QFT
is one which is invariant under spacetime translations, rotations, and boosts. In d-
dimensional Minkowski spacetime, rotations and boosts form the Lorentz group O(d−
1, 1), and together with translations they form the Poincaré group Rd−1,1oO(d−1, 1),
which is the group of isometries of Minkowski space. In a Euclidean QFT, we instead
have the group of isometries Rd o O(d).

For a uniform treatment, let G be the group of spacetime symmetries of a QFT.
Invariance means that the states of the QFT, as well as the operators acting on
those states, transform in representations of G. The QFT associates a Hilbert space
of states H to each spatial (codimension-one) slice. The Hilbert space is a unitary
representation of the universal cover G̃ of the group G,

π : G̃→ U(H). (1.2)

Since G is typically a Lie group, there is an associated representation of the Lie
algebra of G, g,

dπ : g→ End(H). (1.3)

This representation maps the generators of g to self-adjoint (Hermitian) operators on
H. In particular, the generator of translations normal to the spatial slice is mapped
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to the Hamiltonian H of the QFT quantized normal to the slice. For example, in a
Lorentz-invariant theory on Minkowski space quantized on a spatial slice, the Hamil-
tonian is the representation of the generator of time translations perpendicular to the
slice, dπ(i∂t). The requirement of energy positivity in a Lorentzian theory translates
to a positive semi-definite Hamiltonian. The Hilbert space also contains a vacuum
state |Ω〉, which we typically take to be unique.3 The vacuum state is invariant under
the symmetries G̃,

π(G̃)|Ω〉 = |Ω〉 (1.4)

More generally, we can decompose the Hilbert space into irreducible representations
of G̃, which provide a convenient labeling of the states of the theory. For a QFT
invariant under the Poincaré group, the irreducible representations are labeled by the
mass m and the spin J . Unitarity requires that m ≥ 0.

If a QFT is also scale invariant, scale transformations (also called dilatations) com-
bine with the Poincaré group and often enhance to the larger group of conformal
transformations. QFTs for which the group G of spacetime symmetries includes the
conformal group are CFTs. In Lorentzian signature in d dimensions, the conformal
group is SO(d, 2), and in Euclidean signature it is SO(d+ 1, 1). The Hilbert space is
therefore a representation of the relevant conformal group. We can label the states
by the irreducible representations of the conformal group. These representations are
partially labeled by a scaling dimension ∆ and a spin J .4 The scaling dimension ∆ is
the eigenvalue of dilatations of the state, where once again unitarity requires ∆ ≥ 0.

In d = 2 dimensions, scale-invariant QFTs enhance to a much stronger form of in-
variance. The spacetime symmetries of a 2d CFT are generated by the Virasoro
algebra, which is an infinite dimensional algebra that includes the conformal algebra.
Therefore, the study of 2d CFTs is quite different than in higher dimensions. In our
discussion of CFTs below, we will focus on d > 2 dimensions.

The usual paradigm of CFT is to focus on the properties of local operators. Local
operators are insertions O(x) supported at a point x of the underlying spacetime
manifoldM the CFT is considered on. The simplest (and very physical) choices of

3It is possible to have multiple vacua; they correspond to different superselection sectors. In that
case, one can study the excitations around a given vacuum, and the analysis proceeds identically.
The “dynamics” of multiple vacua in the absence of excitations is captured by Topological Quantum
Field Theory (TQFT).

4More generally, the representation is labeled by (∆, ρ) where ρ is an irreducible representation
of the Euclidean group SO(d) or Lorentzian group SO(d− 1, 1). The representation ρ itself can be
labeled by (J, λ), where J is the spin and λ is an SO(d− 2) representation.



6

M are flat ones, either Euclidean Rd or Lorentzian Rd−1,1, depending on the dynamics
one chooses to study. The correlation functions of insertions of local operators on the
underlying manifold

〈O1(x1) · · · On(xn)〉M (1.5)

comprise the relevant local observables of the CFT onM. Typically, the treatment
of local operators in CFT is given in Euclidean space, and is extended to Minkowski
space by Wick rotation via the Osterwalder-Shrader theorem. We will review some
relevant aspects of local operators in Euclidean signature.

In Euclidean signature, it is convenient to quantize a CFT radially on spherical slices
Sd−1. The Hamiltonian of this quantization is given by the dilatation operator D
which is the representation of the generator of radial rescaling, i.e. the normal deriva-
tive to the sphere. The eigenvalues of D are the scaling dimensions ∆.

Given a local insertion O(x) one can surround it with a sphere Sd−1. The insertion
of O(x) produces a state in the Hilbert space of the sphere HSd−1 ,

O(x)|Ω〉 = |O(x)〉. (1.6)

This can be understood as the state produced by performing the Euclidean path
integral inside the sphere with the operator O(x) inserted [1]. Likewise, the vacuum
state

|Ω〉 ∈ HSd−1 (1.7)

can be viewed as the state produced by the path integral with nothing inserted inside
the sphere. In axiomatic QFT, the existence of the vacuum state and of the operators
defining the map (1.6) is taken as axioms, among others [8]. We take them to exist
in any quantization of the theory, regardless of the availability of the path integral.

One of the beautiful properties of CFTs is the existence of an inverse to the map (1.6)
known as the state-operator correspondence. We can use conformal symmetry to take
an arbitrary state |ψ〉 ∈ HSd−1 and decompose it into dilatation eigenstates,

|ψ〉 =
∑
O

ψO|O〉. (1.8)

Recall that in a unitary CFT, the generator of dilatations D is Hermitian, there-
fore diagonalizable, so such a decomposition is permissible. Then, we identify each
eigenstate as one created by a local operator inserted at the center of the sphere

|O〉 ≡ O(0)|Ω〉. (1.9)
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This naturally associates a dilatation eigenvalue to each local operator, which we can
write as

[D,O] = ∆OO ⇔ D|O〉 = ∆O|O〉. (1.10)

More generally, we can decompose a state |ψ〉 into components along the irreducible
representations of the conformal group appearing in the decomposition of HSd−1 .
Accordingly, each local operator is labeled by an irreducible representation of the
conformal group.5 We can further collect each irreducible representation into a pri-
mary, and its descendants given by the spacetime derivatives of the primary. As a
result, we only need to focus on primary operators, as all of their descendants are
related by symmetry.

The state-operator correspondence guarantees the existence of an operator product
expansion (OPE). Given an insertion of two local primary operators, we can consider
the resulting state in the Hilbert state of a sphere surrounding them. So long as no
other insertions are present inside the sphere, the resulting state is

O1(x1)O2(x2)|Ω〉. (1.11)

Using conformal symmetry, we can decompose this state into states created by single
insertions of local operators

O1(x1)O2(x2)|Ω〉 =
∑
O

c12O(x1 − x2)O(x2)|Ω〉. (1.12)

The expansion is controlled by the separation |x1 − x2|, and converges faster when
the separation is small. We can further collect the states into primaries and their
descendants. Finally, we lift the equation on the states to an operator equation via
the state-operator correspondence, resulting in the OPE

O1(x1)O2(x2) =
∑
k

f12kC12k(x1, x2, ∂2)Ok(x2), (1.13)

where each operator Oi is a conformal primary. The coefficients fijk are called the
OPE coefficients. They are the dynamical data. The differential operator Cijk is kine-
matical; it has a fixed form and serves to collect the contributions of the descendants
of each primary Ok. As the derivation shows, the OPE converges when acting on the
vacuum.

5Technically, the Wightman axioms assume that operators transform in representations of the
group of spacetime symmetries G̃, from which it follows that the Hilbert space is a representation
of G̃. For pedagogy, we started with the Hilbert space.
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Multiple insertions of local operators can be reduced to single insertions by repeated
application of the OPE (1.13). Therefore the local data of a CFT consists of the
spectrum of local primary operatorsOi, i.e. a set of irreducible representations (∆i, ρi)

of the conformal group, together with the set of their OPE coefficients fijk. It is
believed that this is the defining data of a CFT.6

1.1.1 The Conformal Bootstrap

The primary goal of the conformal bootstrap program is to solve for the local data of
a CFT by treating it as an abstract axiomatic system defined as a solution to certain
consistency conditions. The consistency conditions come about from studying the
OPE within four-point functions of local operators on flat-space,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉Rd . (1.14)

Inside the correlator, the OPE (1.13) can be performed in different ways. For example,
we can bring the operators O1 and O2 close to each other and take their OPE. Term
by term, this OPE projects the correlator (1.14) into states organized by primaries
O exchanged between O1O2 and O3O4. Alternatively, we could start by taking the
OPE of O1 and O4, obtaining a different sum for the correlator. Of course, the two
sums must equal each other. This leads to the crossing equation,

∑
O

1

2

O

4

3

=
∑
O′

1

2

O′

4

3

. (1.15)

In terms of the OPE coefficients, we can write the crossing equation as∑
O

f12Of34O†G
1234
O (x1, x2, x3, x4) =

∑
O

f14O′f32O′†G
1432
O′ (x1, x4, x3, x2). (1.16)

The functions Gijkl
O depend only on the representations of the operators, and are

called conformal blocks ; they are the kinematical factors resulting from summing up
the contributions of a primary O and its descendants to the four-point function (1.14).
The expansions on the left- and right-hand side of (1.15) or (1.16) are called the s-
and t-channel conformal block expansions, respectively.

Crossing equations impose highly nontrivial constraints on the spectrum and OPE
coefficients of a CFT [9, 10]. Specifying CFTs by solving the crossing equations is

6Up to possible choice of nonlocal data.
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the conformal bootstrap. In a unitary theory, the OPE coefficients fijk are real.
Consequently, when the external operators O1,2,3,4 are identical, the coefficients in
the expansion (1.16) are manifestly positive. By employing numerical algorithms
that utilize this positivity, rigorous bounds have been placed on the space of allowed
CFTs, ruling out large parts of the parameter space. Moreover, data of certain CFTs
lying close to the boundary of the allowed region have been computed to record
precision, such as the 3d Ising model and the O(N) models to name a few. For a
comprehensive review, the reader is recommended to consult [11].

Solving the crossing equations analytically has proven to be a very difficult problem.
Nevertheless, in recent years, much progress has been made on this front. One advent
was the development of large-spin perturbation theory, which systematically solves
the crossing equations in the limit of large spin of the exchanged operators [12–24].
The crucial observation is that CFT operators with large spin behave like free fields.
By viewing them as perturbations of generalized free theory, large-spin perturbation
theory provides a handle on interacting nonperturbative CFTs.

In a groundbreaking work [25], Caron-Huot derived an inversion formula for the
crossing equation. The inversion formula solidified large-spin perturbation theory
on firm footing, and opened up new horizons. Caron-Huot’s inversion formula is
achieved by going to Lorentzian signature and studying the analyticity properties of
the correlator

〈O1(x1)O2(x2)O3(x3)O4(x4)〉Rd−1,1 . (1.17)

Let us briefly describe some aspects of the formula.

For simplicity, let’s restrict to scalar external operators. In Euclidean signature, one
can extract terms in the s-channel expansion proportional to a given conformal block
using orthogonality properties of conformal blocks under a certain integral pairing.
This relation comes from performing harmonic analysis on the Euclidean conformal
group SO(d+ 1, 1). Schematically, one defines the function (see also [26])

C(∆, J) =

∫
ddx1 · · · ddx4 〈Ω|O1(x1)O2(x2)O3(x3)O4(x4)|Ω〉Ψd−∆,J(x1, x2, x3, x4)

(1.18)

The functions Ψ∆,J are called partial waves ; they are certain linear combinations of
conformal blocks that are single-valued in the positions xi of the operators. Via the
orthogonality of partial waves, the integral in (1.18) projects onto the contribution
Ψ∆,J of a primary O∆,J in the s-channel OPE of the correlator. The function C(∆, J)
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is a meromorphic function of ∆ containing the s-channel OPE data of the correla-
tor (1.17). Explicitly, for each nonnegative integer J , C(∆, J) has poles in ∆ = ∆O

at the dimensions of the local operators O∆O,J appearing in the s-channel OPE. The
residues at these poles are given by the products of OPE coefficients f12Of34O† .

So far, the integral (1.18) is an identity of the s-channel expansion, and impractical for
relating the s- and t-channel expansions. The goal is to obtain an inversion formula
for the s-channel OPE data C(∆, J) which is dominated by the t-channel expansion.
To achieve this, the contour of the integral pairing in (1.18) is deformed to Lorentzian
signature. The resulting Lorentzian inversion formula expresses C(∆, J) in terms of
an integral over the “double-discontinuity” of the correlator (1.17),

C(∆, J) ∝
∫
ddx1 · · · ddx4 〈Ω|[O1(x1),O4(x4)][O3(x3),O2(x2)]|Ω〉

× G̃J+d−1,∆−d+1(x1, x2, x3, x4) . (1.19)

The integration is against a suitable conformal block G̃J+d−1,∆−d+1 of the exchange
of a conformal primary with dimension J +d−1 and spin ∆−d+ 1. This Lorentzian
inversion formula very efficiently decomposes a given term in the t-channel OPE into
the s-channel.

An important observation is that the right-hand side of (1.19) is manifestly analytic
in spin J . The poles of C(∆, J) lie on analytic Regge trajectories

∆ = ∆i(J) (1.20)

which pass through the local operators. Thereby the spectrum and OPE coefficients of
local operators lie on complex curves parametrized by spin. This analyticity of CFT
data points out a seeming dichotomy. In a unitary CFT, local operators are only
allowed to be in non-negative (half-) integer spin representations. This can be seen
as follows: by the state-operator correspondence, local operators must correspond to
positive-energy states in a unitary theory. The positive energy representations of (the
universal cover of) the Lorentzian conformal group S̃O(d, 2) are classified [27], and in
particular, they exclude continuous spin representations. This raises the natural ques-
tion: what are the continuous-spin objects in a CFT that have the OPE coefficients
that analytically continue those of the local operators? Can the operators of a CFT
be analytically continued in spin? In a beautiful paper [28], Kravchuk and Simmons-
Duffin answered this question by analytically continuing certain nonlocal transforms
of local operators to continuous (complex) spin. These continuous-spin light-ray oper-
ators, Oi,J , are nonlocal observables constructed from two local operators, O1 and O2.
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They are naturally associated to light-rays in the Lorentzian spacetime on which the
CFT lives. The label i denotes a Regge trajectory (1.20). Kravchuk and Simmons-
Duffin showed that the Lorentzian inversion formula of Caron-Huot [25] computes the
matrix elements of light-ray operators,

〈Ω|O4Oi,JO3|Ω〉 ∝ − Res
∆=∆i(J)

C(∆, J). (1.21)

They also generalized the Lorentzian inversion formula to arbitrary representations
of the external operators O1,2,3,4.

1.1.2 Nonlocal Directions in CFTs

Determining the spectrum of local operators and their OPE coefficients of any non-
trivial strongly-interacting CFT in more than two spacetime dimensions is still an
open question. Such an incredible feat might be sufficient to define said CFT fully,
and will certainly allow computation of arbitrary correlation functions of local op-
erators on flat-space. However, a CFT is richer still. A complete and satisfactory
description of any QFT must include a treatment of the QFT placed on arbitrary
spacetime manifoldsM. As long as the QFT is well-defined on a given manifold, its
description should compute the associated observables — such as correlation functions
of local operators inserted on the manifold,

〈O1 . . .On〉M . (1.22)

A potential future goal for the conformal bootstrap is to develop methods to predict
observables of CFTs on more general spacetime manifolds. This is not a purely
academic pursuit either. One of the most practical and physical questions one could
ask regarding a QFT is how it behaves at finite (nonzero) temperature. Studying a
Lorentzian QFT at finite temperature is equivalent to considering the time direction
to be imaginary and periodically identified, changing the topology of spacetime to
that of a circle times space, S1 × Rd−1. In the context of a CFT, even if the local
data is known entirely, it is still a nontrivial task to compute observables at finite
temperature, such as correlation functions

〈O1 . . .On〉S1×Rd−1 . (1.23)

For a quantum critical system in the real world, observables measured in lab will
necessarily be at finite temperature, as we cannot cool a sample to absolute zero tem-
perature. Therefore, near the relevant quantum phase transition of the system, the
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description is in terms of the Lorentzian CFT at finite temperature. Thus, computing
finite-temperature CFT correlators (1.23) is important for real world applications.

Furthermore, in QFT there are nonlocal observables. It is known in many examples
of QFT that two theories can have identical local observables, but differ in their
spectrum of nonlocal observables [29, 30]. Novel knowledge could be attained from
the properties of nonlocal observables in CFTs. Certain facts, even if determined
by the local data, could be manifest in the dynamics of nonlocal observables, whilst
obscured locally. For example, the features and diagnostics of causality in a gravity
theory are more readily captured by gravitational shocks, which are nonlocal objects.
In AdS/CFT, gravitational shocks are holographically dual to light-ray operators.
What new features of CFTs could be captured by studying light-ray operators?

Finally, a CFT is more than just a blackbox that inputs a manifold and computes
correlation functions on it. There is a beautiful underlying structure. Much is to be
learned about both physics and mathematics by uncovering the secrets of CFTs. All
of these aspects motivate the content of this thesis, which we now turn to summarize.

1.2 Summary of this Thesis

This thesis can be roughly viewed as consisting of three parts. The first two parts
extend the study of CFTs. The first part studies CFTs on nontrivial manifolds, and
the second part studies nonlocal operators in CFTs. The third part studies a family
of supersymmetric QFTs arising in string theory.

In the first part consisting of chapters 2 and 3, we take a novel step in the direction
of bootstrapping CFTs on nontrivial manifolds by initiating the bootstrap of CFTs
at finite temperature. Utilizing the machinery we develop, we make predictions for
the thermal data of the 3d Ising CFT.

In the second part consisting of chapters 4 and 5, we study light-ray operators in CFTs.
Light-ray operators reveal beautiful analytic structures within CFTs. In chapter 4,
we use their properties to constrain gravitational theories, and CFTs in general. In
chapter 5, we derive an OPE for light-ray operators, and use it to compute certain
correlators of light-ray operators called “event shapes” in N = 4 SYM.

The third part is in a somewhat separate vein. In chapter 6, we examine the behavior
of a certain family of 1+1-dimensional theories describing the internal dynamics of
D-strings as they flow from high-energy gauge theory descriptions to their low-energy
vacua. An interesting connection is the existence of multiple vacua in a given theory
in this family, some of which are massive and some of which are CFTs.
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1.2.1 A hot new direction for the conformal bootstrap

In chapters 2 and 3, we study CFTs at finite temperature T = 1/β. Studying the equi-
librium properties of a Lorentzian CFT at finite temperature corresponds to studying
it on the simplest nontrivial space, S1

β × Rd−1, where S1
β is a circle of circumference

β. For brevity, we denote correlators on S1
β × Rd−1 by 〈. . .〉β.

In a CFT in d > 2 dimensions, scale invariance prevents local operators from having
nonzero expectation values, 〈O〉 = 0.7 The circumference of the circle, β, introduces
a scale, explicitly breaking scale-invariance. As a result, local primary operators
are allowed to have expectation values at finite temperature, which are determined
by a single coefficient. These one-point functions are the new, thermal data of the
theory: they measure the response of the CFT to finite temperature. For example,
the thermal expectation value of the stress-energy tensor, 〈T 〉β, gives the free energy
density of the system.

In chapter 2, we introduce novel methods to bootstrap for the finite-temperature data
of a CFT. The thermal bootstrap problem is defined by the Kubo-Martin-Schwinger
(KMS) condition of thermal correlators as the “thermal crossing equation.” Denoting
the coordinate on the thermal circle S1

β as τ , the KMS condition requires that the
thermal two-point functions of scalars, 〈φφ〉β, satisfies

〈φ(τ)φ(0)〉β = 〈φ(β − τ)φ(0)〉β. (1.24)

The OPE (1.13) is still valid at separation less than the size of the circle β. The
OPE could therefore be employed to compute CFT n-point correlation functions at
finite temperature in terms of one-point functions in the small separation limit. In
particular, we can use the OPE to write an expansion for each side of the KMS
equation (1.24). Pictorially, the resulting crossing equation could be represented as

∑
O

τ

φ

φ

O
=
∑
O

β − τ
φ

φ
O

.
(1.25)

The two OPE channels correspond to bringing the operators close to each other on
one side of the thermal circle before fusing them, or the other. The data appearing
on either side are the same thermal one-point functions 〈O〉β of the local operators O

7Except for the unit operator, 1, whose expectation value, 〈1〉, is the partition function.
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appearing in the φ×φ OPE. As with the vacuum crossing equation (1.15) constraining
the OPE data, the thermal crossing equation places strong constraints on the thermal
one-point functions. Unlike the OPE coefficients, there are no positivity conditions
on the thermal one-point functions. Therefore, purely numerical approaches to the
thermal bootstrap are unfeasible. Instead, we develop analytic techniques.

We derive a Lorentzian thermal inversion formula for 〈φφ〉β, which decomposes the
two-point function into its constituent one-point functions 〈O〉β appearing in the
OPE O ∈ φ × φ. The thermal inversion formula involves an analytic continuation
of the spatial separation of the scalars to a timelike direction, justifying the name
Lorentzian. As an application, we use our inversion formula to compute thermal one-
point functions of higher-spin currents in mean field theory (MFT) and the 3d O(N)

model at infinite N .

The thermal inversion formula, like the OPE inversion formula [25], accomplishes two
powerful tasks. Firstly, it explicitly demonstrates that the thermal one-point functions
are analytic in the spin J of the operators. This parallels the fact that the spectrum
and the usual vacuum OPE data of a CFT is analytic in J [25, 28]. Indeed, thermal
data are organized into the residues of a meromorphic function a(∆, J), similar to
the function C(∆, J) in (1.19) encoding the OPE data. The poles of a(∆, J) align
with the Regge trajectories (1.20). Secondly, it provides a concrete map between the
terms in the two OPEs related by the KMS condition. We compute this map in the
limit where the scalars approach each others lightcone, and develop a perturbation
theory of the thermal data in inverse large spin.

As with the local data, the large-spin perturbation theory of thermal data is a powerful
tool. It provides a handle for studying strongly-interacting theories. In chapter
3, we demonstrate its power by applying our techniques to the 2+1d Ising CFT,
and bootstrap the thermal expectation values of a large part of the spectrum. Our
predictions, computed from first principles, are in good agreement with Monte-Carlo
simulations.

1.2.2 A stringy equivalence principle

Chapter 4 explores constraints on gravity from gravitational shocks. The strong
equivalence principle states that objects follow geodesics regardless of their polar-
izations or internal composition. The strong equivalence principle holds in Einstein
gravity, but is violated by non-minimal (higher-derivative) gravitational couplings in
its modifications, such as Gauss-Bonnet gravity. Since Einstein gravity is not a the-
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ory of quantum gravity, it must arise as the low-energy description of a high-energy
theory of gravity, such as string theory. Invariably, one expects that higher-derivative
gravitational couplings are present at intermediate energy scales. Therefore, a natural
question is, what is the principle that should generalize the equivalence principle at
high energies, and reproduce it at low energies?

One consequence of the strong equivalence principle is the observation that propaga-
tion of probe particles through consecutive coincident gravitational shocks is indepen-
dent of the order of the shocks. However, in the presence of non-minimal couplings,
probe particles experience “gravitational birefringence” as they pass through a shock,
scattering differently depending on their polarizations. This causes the ordering of
the shocks to matter. Curiously, coincident shocks do commute in string theory, due
to cancellations from stringy states. In chapter 4, we argue that consistency at high
energies requires coincident gravitational shocks to commute, and claim that this
“stringy equivalence principle” is the sought-for generalization of the strong equiva-
lence principle.

In turn, the commutation of gravitational shocks imposes nontrivial constraints on
low-energy effective theories. In particular, non-minimal gravitational couplings are
excluded unless they are accompanied by extra degrees of freedom. As non-minimal
gravitational couplings lead to non-commuting shocks, their effects must be canceled
by the gravitational couplings of the extra degrees of freedom. In flat space, the
cancellation is encoded in the vanishing of a certain “superconvergence sum rule.”

In AdS, gravitational shocks are holographically dual to the so-called averaged null
energy (ANEC) operators, which are light-ray operators constructed by null integrals
of the stress tensor. In lightcone coordinates ds2 = −du dv+ d~y2, an ANEC operator
on the null plane u = 0 is

E(~y) =

∫ ∞
−∞

dv Tvv(u = 0, v, ~y). (1.26)

We refer to this particular null integral as a light-transform. The commutativity of
coincident gravitational shocks is therefore equivalent to whether ANEC operators
placed on the same null plane commute, that is[∫ ∞

−∞
dv1 Tvv(u = 0, v1, ~y1),

∫ ∞
−∞

dv2 Tvv(u = 0, v2, ~y2)

]
= 0 . (1.27)

We prove that ANEC operators commute in any unitary CFT. This provides a strong,
nonperturbative proof of the stringy equivalence principle in the holographic setting.
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We also determine the conditions under which light-ray operators constructed from
more general operators commute. By inserting (1.27) inside a pair of probe states, and
projecting onto a complete set of states between the two ANEC operators, one obtains
the analogs of superconvergence sum rules in CFTs. These are nonperturbative sum
rules that constrain the CFT couplings, thereby constraining low-energy effective
theories of gravity for holographic CFTs.

1.2.3 An OPE for light-ray operators

Chapter 5 concerns with the algebraic aspects of light-ray operators in CFTs. So
much mileage has been gained by exploiting the OPE of local operators. It is natural
to ask whether light-ray operators also have an OPE. In chapter 5, we once again
study light-ray operators constructed from null integrals of local operators. We derive
a nonperturbative OPE for such light-ray operators placed on the same null plane.
The light-ray-light-ray OPE is an expansion in small transverse separation, |~y1− ~y2|,
of the light-ray operators. Given light-transformed local operators O1 and O2, of
spins J1 and J2, it takes the schematic form∫ ∞

−∞
dv1O1v...v(0, v1, ~y1)

∫ ∞
−∞

dv2O2v...v(0, v2, ~y2)

= πi
∑
i

C∆i−1(~y1, ~y2, ∂~y2)Oi,J=J1+J2−1(~y2). (1.28)

The differential operators C∆ are of the same form as the one appearing in the OPE
of local operators (1.13), albeit in d− 2 dimensions, and with certain restrictions on
which representations are allowed. Its appearance can be understood as follows; the
light-ray operators are pointlike on the transverse space, for which the Lorentz group
SO(d− 1, 1) of the CFT is the conformal group. The objects appearing in the OPE
are the light-ray operators Oi,J of [28], at fixed spin J = J1 + J2 − 1. The label i
enumerates Regge trajectories. The Oi,J are the same light-ray operators that analyt-
ically continue the local spectrum, and the matrix elements of which are computed by
the Lorentzian inversion formula [25, 28]. However, their spin is evaluated at a value
for which there is no corresponding local operator that could construct it. Therefore
the OPE is in terms of intrinsically non-local operators. Nevertheless, the resulting
OPE is convergent.

The light-ray-light-ray OPE can be used to compute important physical observables
called “event shapes” in CFTs [31]. Event shapes are correlators of light-ray operators
sandwiched between two states. The states are the past and future of the event one
is interested in, and the light-ray operators are inserted infinitely far away to model
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detectors. For example, the ANEC operator (1.26) models an energy detector that
measures the energy deposited over time at a particular transverse position at infinity.
The transverse position at infinity is better thought of as the direction on the celestial
sphere that a lightlike signal propagates towards — with the coordinates ~y identified
as the stereographic coordinates of the celestial sphere. The light-ray OPE can be
used to compute event shapes in an expansion in the separation of the detectors.
Using the d − 2 dimensional conformal symmetry of the OPE, we derive “celestial
blocks” that capture the contributions of an individual light-ray operator, Oi,J , in the
OPE to the event shape. We demonstrate the power of our approach by computing
the energy correlator — event shape of two ANEC operators — in a certain state
in N = 4 SYM theory. We are able to reproduce previous results in both weak and
strong coupling, and also make new predictions for the small-angle limit at 4 loops.

1.2.4 Tracking a strongly coupled theory from high to low energies, and
string duality

In chapter 6, we take a somewhat different direction. Instead of studying a CFT, we
study the fate of an interesting QFT under RG flow from high energy to low energy
CFTs. The theory of interest is the two dimensional maximally supersymmetric
Yang-Mills theory (MSYM2). With gauge group U(N), MSYM2 is the gauge theory
that describes the worldsheet dynamics of a stack of N D-strings in Type IIB string
theory. The strong-weak S-duality of Type IIB string theory predicts that the strong-
coupling limit of the D-strings are the fundamental Type IIB string. We provide a
very strong check of this duality by computing a certain invariant of the RG flow,
namely a refined elliptic genus, at both high- and candidate low-energy descriptions,
and matching them. The elliptic genus is a particular thermal partition function,
which only counts supersymmetry-protected (BPS) states. We show that the high-
energy gauge theory has a vacuum corresponding to the worldsheet theory of a stack
of N free fundamental strings, described by a symmetric-orbifold sigma model CFT
into the transverse target space, SymNR8. Moreover, S-duality also predicts the
existence of bounds states of fundamental strings and D-strings, the so-called (p, q)-
strings. Accordingly, MSYM2 should have multiple vacua corresponding to each of
these bounds states. Indeed, by a careful analysis of the nonperturbative sectors of
the theory, we show that the elliptic genus correctly captures all of these vacua, and
determines their dynamics.
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C h a p t e r 2

THE CONFORMAL BOOTSTRAP AT FINITE TEMPERATURE

1L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter, and D. Simmons-Duffin, “The
Conformal Bootstrap at Finite Temperature”, Journal of High Energy Physics 10,
070 (2018) 10.1007/JHEP10(2018)070, arXiv:1802.10266 [hep-th].

2.1 Introduction

One of the basic operations in quantum field theory (QFT) is dimensional reduction
on a circle. When we interpret the circle as Euclidean time (and impose appropriate
boundary conditions) this corresponds to studying a QFT at nonzero temperature
T = 1/β, where β is the length of the circle.1 When we interpret the circle as a
spatial direction, this is Kaluza-Klein compactification.

In this work, we use bootstrap techniques to study conformal field theories (CFTs)
on S1×Rd−1, focusing mostly on d > 2. This setting is important for several reasons.
Firstly, quantum critical points always have nonzero temperature in the laboratory,
so it is crucial to compute observables in this regime to make contact with experi-
ment.2 More abstractly, S1×Rd−1 is perhaps the simplest manifold not conformally-
equivalent to Rd (when d > 2). This poses an important challenge for bootstrap
techniques. Ideally, any nonperturbative solution of a QFT should describe its ob-
servables on arbitrary manifolds.3 Finally, in the context of holography [6, 7, 37],
finite-temperature CFTs are dual to AdS black holes, and we obtain valuable infor-
mation about both by translating between them.

CFT correlators on S1 ×Rd−1 are a limit of correlators on S1 × Sd−1, where we take
the radius of the Sd−1 to be much larger than the length of the S1. An advantage
of this point of view is that states on Sd−1 are understood in principle via the state-

1This notion of temperature is distinct from the temperature of a classical statistical theory that
one tunes to reach a critical point. The latter is simply a relevant coupling in the effective action.
For example, the critical O(2) model deformed by a relevant singlet describes an XY magnet (a
3-dimensional classical theory) away from criticality. However, the critical O(2) model compactified
on a circle describes the nonzero temperature physics of the quantum critical point separating the
superfluid and insulating phases of a thin film (a (2+1)-dimensional quantum theory) [4, 5, 32, 33].

2Note that we must analytically continue Euclidean correlators on S1×Rd−1 to describe real-time
correlators of a Lorentzian theory at finite temperature.

3At least when the theory on that manifold makes sense. See appendix A.4 for a discussion of
subtleties that can arise in compactification on S1 and other manifolds. See [34–36] for previous
work on the bootstrap in d > 2 on nontrivial manifolds.
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operator correspondence. However, this limit is difficult to take in practice. Current
bootstrap techniques work best at small twist τ = ∆−J ∼ O(1). However, the above
limit requires knowledge of the spectrum and OPE coefficients at large dimension ∆,
which is usually out of reach. We would like an alternative approach that more
directly constrains finite-temperature observables. We would also like an approach
that could work for other compactifications, for instance, on the torus T d.

In [38], El-Showk and Papadodimas identified an interesting crossing equation for a
two-point function on S1

β ×Rd−1 (here β denotes the length of the S1). Because this
geometry is conformally flat, one can compute two-point functions using the operator
product expansion (OPE), assuming the points are sufficiently close together. The
new data entering this computation are thermal one-point functions. For example,
the one-point function of a scalar operator is

〈O〉β ≡ 〈O〉S1
β×Rd−1 =

bO
β∆O

= bOT
∆O . (2.1)

The β dependence of 〈O〉β is fixed by the scale symmetry, but the coefficient bO is not
fixed by symmetry. The OPE gives an expression for a thermal two-point function
that can be schematically written as:

g(τ) ≡ 〈φ(τ)φ(0)〉S1
β×Rd−1 ∼

1

|τ |2∆φ

∑
O∈φ×φ

fφφObO
cO

∣∣∣∣ τβ
∣∣∣∣∆O , (2.2)

where fφφO is the OPE coefficient of O, ∆O is the scaling dimension of O, and cO

is the two-point coefficient of O in the vacuum.4 For simplicity, we have taken the
operators to be separated only in the circle direction with distance τ . (In section 2.2
we study more general kinematics.) The KMS condition for the two-point function
of identical bosonic operators separated only along Euclidean time reads

g(τ) = g(β − τ). (2.3)

El-Showk and Papadodimas noted that (2.2) does not manifestly satisfy (2.3). Im-
posing the KMS condition therefore gives a nontrivial “thermal crossing equation.”
This constrains the bO’s in terms of the other data of the CFT, namely the OPE coef-
ficients fφφO and dimensions ∆O. Via the limit S1×Sd−1 → S1×Rd−1, this equation
can be understood as a consequence of the usual crossing symmetry for four-point
functions where we sum over some of the “external” operators.

4It is conventional to normalize cO to 1. However, some operators like the stress tensor have
their own canonical normalization coming from Ward identities.
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As we explain in section 2.2, the one-point coefficients bO, together with the usual
CFT data fijk, ∆i, determine all finite-temperature correlators. Thus, our focus will
be on computing thermal one-point coefficients using nonperturbative methods. We
should note however that many interesting finite-temperature observables, like e.g.
the thermal mass (discussed in section 2.2.3), are difficult to extract from thermal
one-point functions. Such observables are an even more challenging target for the
future.

The thermal crossing equation is problematic for numerical bootstrap techniques be-
cause the expansion (2.2) has coefficients fφφObO/cO that are not sign-definite. Sign-
definiteness is crucial for the linear programming-based method of [39] and its gen-
eralizations [40–43]. In this sense, the thermal bootstrap is similar to the boundary
bootstrap [44–46], defect bootstrap [47–51], and four-point bootstrap in non-unitary
CFTs [52, 53]. Our strategy will be to develop analytical approaches to the thermal
crossing equation, with the hope of eventually applying them (perhaps in conjunc-
tion with numerics) to CFTs whose spectrum and OPE coefficients are relatively
well-understood, like e.g. the 3d Ising model [20, 41, 43, 54–56].5 We should note
that most of our methods will apply with any choice of boundary conditions around
the circle (perhaps with slight modifications). Although our focus will be on finite-
temperature, one could also study supersymmetric compactifications, or compactifi-
cations with more general chemical potentials.

A general and powerful analytic bootstrap technique that can be applied to our
problem is large-spin perturbation theory [13–17, 20, 23]. Large-spin perturbation
theory was recently reformulated by Caron-Huot in terms of a Lorentzian inversion
formula [25] (inspired by a classic formula of Froissart and Gribov in the context
of S-matrix theory [57, 58]). Caron-Huot’s formula expresses OPE coefficients and
dimensions in terms of an integral of a four-point function in a Lorentzian regime.
Inserting the OPE expansion in the t-channel into the inversion formula, one obtains
a systematic large-spin expansion for s-channel data. This process can be iterated to
obtain further information about the solution to crossing symmetry [20, 24, 59–65].

In section 2.3, we derive a Lorentzian inversion formula for thermal one-point func-
tions as an integral of a thermal-two point function. The integral is over an interesting
Regge-like Lorentzian regime that is more natural from the point of view of Kaluza-
Klein compactification than finite-temperature physics. Our formula is very close to
the Froissart-Gribov S-matrix formula, and in fact our derivation is almost identical.

5Our methods share many similarities with the recent defect bootstrap analysis in [51].
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However, our result relies on some (well-motivated) assumptions about analyticity
properties and asymptotics of thermal two-point functions that we discuss further
in sections 2.3.4 and 2.3.5. Our formula shows that thermal one-point functions in
conformal field theory are also analytic in spin, in the same way as OPE coefficients
and operator dimensions.

In sections 2.4 and 2.5, we apply our inversion formula in some examples, including
Mean Field Theory and the critical O(N) model in d = 3 at large N . We also discuss
some aspects of thermal correlators in general large-N theories, especially holographic
CFTs with a large gap to single-trace higher-spin operators. For the O(N) model,
by studying the two-point function 〈φiφi〉β we derive the thermal one-point functions
bO for all single-trace operators O. This includes the singlet higher-spin currents,
J` ∼ φi∂

`φi, where ` is a positive even integer. The result, which to our knowledge is
new for ` > 2, can be found in (2.104)-(2.106) and is reproduced here:

bJ`√
cJ`

=

√
N2`+1`

`!

∑̀
n=0

2n

n!

(`− n+ 1)n
(2`− n+ 1)n

mn
thLi`+1−n(e−mth). (2.4)

where mth β = 2 log
(

1+
√

5
2

)
is the thermal mass of the critical O(N) model to leading

order in 1/N . We have normalized bJ` by the square root of the norm of J`. Inter-
estingly, this result exhibits uniform transcendentality of weight `+ 1, a feature that
would be worth understanding more deeply. For ` = 2, the case of the stress tensor,
the result matches that of Sachdev [66]. We also derive sums of thermal coefficients
for scalar composite operators with dimension ∆ = 2, 4, 6, . . . .

Together with the thermal mass, these higher-spin one-point functions have an inter-
esting interpretation in the context of the holographic duality of the critical O(N)

model to Vasiliev higher-spin gravity in AdS4 (see e.g. [67–69]). In particular, they
determine the complete set of higher-spin charges of the putative black hole solution
dual to the CFT state at finite temperature. Thus, we now have the full set of higher-
spin gauge-invariant data necessary to check, or perhaps even construct, a candidate
solution in the bulk.

In section 2.6, we use our inversion formula to develop large-spin perturbation theory
for thermal one-point functions. This allows us to study the thermal data of arbitrary,
strongly-interacting CFTs. Crucially, thermal two-point functions have different OPE
channels with overlapping regimes of validity. Inverting terms in one channel to
the other relates thermal coefficients of operators in the theory in nontrivial ways:
one-point functions determine terms in the large-spin expansion of other one-point
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functions. These relations can be posed to formulate an analytic bootstrap problem
for the thermal data. The required calculations are similar to (but simpler than)
those that arise in the context of vacuum four-point functions. For example, the one-
point functions of low-twist operators at large spin are dominated by an analog of
the double-lightcone limit, and one is interested in the discontinuity of the correlator
(as opposed to the “double discontinuity” [25]) in this limit. In fact, we see that the
large-spin perturbation theory of spectral and OPE data and of thermal data are
intimately tied together.

As an example, we find a universal contribution to one-point functions of “double-
twist” operators [φφ]0,J

6 [12–14], proportional to the free-energy density,

b[φφ]0,J ∼
c[φφ]0,J

fφφ[φφ]0,J

2J+1
(
1 + 1

2
γ′(J)

)
Γ(1 + J + 1

2
γ(J))

×

[
Γ(∆φ + J + 1

2
γ(J))

Γ(∆φ)

−
(
fd vol(Sd−1)∆φ

4

cfree

cT

)
Γ(∆φ − d−2

2
+ J + 1

2
γ(J))

Γ(∆φ − d−2
2

)
+ . . .

]
. (2.5)

Here, f = F/T d < 0, where F is the free energy density, cT is the stress-tensor two-
point coefficient, cfree is cT for a free boson, and γ(J) is the anomalous dimension
of [φφ]0,J . The OPE coefficients fφφ[φφ]0(J) and anomalous dimensions γ(J) can be
computed using the lightcone bootstrap for vacuum four-point functions [13–17, 20,
23, 25].7 Our precise result is that the two sides of (2.5) match to all orders in an
expansion in 1/J . (Our inversion formula also produces nonperturbative corrections
in J .) The leading term in brackets is due to the unit operator. The stress tensor
contribution is the second term in brackets, and it falls off like 1/J

d−2
2 relative to

the leading term. The dots represent similar contributions from other operators O
that are suppressed by 1/J

τO
2 where τO = ∆O − JO is the twist of O. In particular,

the stress tensor gives the next large-J correction after the unit operator if it is the
lowest-twist operator in the φ× φ OPE (other than the unit operator).

Also in section 2.6, we discuss subtleties associated with sums over infinite families
of operators, and how crossing symmetry of four-point functions is embedded in the
thermal crossing equations. As an example, we apply our large-spin technology to
the 3d Ising model. We conclude with discussion and comments on future directions

6The operators [φφ]0,J have twist τ = ∆−J = 2∆φ+γ(J), where γ(J) is an anomalous dimension
that vanishes as J →∞. They can be thought of schematically as [φφ]0,J = φ∂µ1 · · · ∂µJφ.

7Note that [13] uses the convention cO = (− 1
2 )JO .
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in section 2.7. In appendix A.1, we pursue the independent direction of studying the
partition function on S1

β × Sd−1, give a rough estimate of bT in the 3d Ising model
from the β → 0 limit, and discuss further aspects of this limit in appendix A.2. The
next appendices further elaborate on technical details in the main text.

2.2 CFTs at nonzero temperature

2.2.1 Low-point functions and the OPE

Any CFT correlation function on Rd can be computed using the operator product
expansion (OPE). Beginning with an n-point function 〈O1 · · · On〉, we recursively use
the OPE to reduce it to a sum of 1-point functions, for example

〈O1 · · · On〉 =
∑
k1

C12k1〈Ok1O3 · · · On〉

=
∑
k1

· · ·
∑
kn−1

C12k1Ck13k2 · · ·Ckn−2nkn−1〈Okn−1〉. (2.6)

Here the Cijk are differential operators, and we have suppressed the position depen-
dence of the Oi for brevity. Each time we apply the OPE we must find a pair of
operators Oi,Oj and a sphere surrounding them such that all other operators lie out-
side this sphere. This is always possible for generic configurations of points in Rd.
Finally, by translation invariance and dimensional analysis,8 one-point functions on
Rd are given by

〈O〉Rd =

1 if O = 1,

0 otherwise.
(2.7)

The same procedure works on any conformally-flat manifold Md, but with two ad-
ditional complications. Firstly, non-unit operators can have nonzero one-point func-
tions. Secondly, depending on the configuration of operator insertions, it may not
always be possible to perform the OPE. More specifically, to compute Oi × Oj, we
must find a sphere containing only Oi and Oj whose interior is flat (possibly after
performing a Weyl transformation). However, the geometry of Md may make this
impossible.

In this work, we study CFTs on the manifoldMβ = S1
β × Rd−1. We use coordinates

x = (τ,x) on S1
β × Rd−1, where τ is periodic τ ∼ τ + β. One-point functions onMβ

are constrained by symmetries as follows. To begin, translation-invariance implies
8Here, we assume unitarity, which implies that only the unit operator has scaling dimension 0.
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that descendant operators have vanishing one-point functions:

〈P µO(x)〉β = ∂µ〈O(x)〉β = ∂µ〈O(0)〉β = 0. (2.8)

(The notation 〈· · ·〉β denotes a correlator on Mβ.) Thus, let us consider a primary
operator O with dimension ∆ and SO(d) representation ρ.

The geometry S1 × Rd−1 is clearly invariant under SO(d − 1). It also has a discrete
symmetry under which τ ↔ −τ . In general, our CFT may not be parity-invariant,
so to get a symmetry of the theory, we should accompany τ ↔ −τ with a reflection
in one of the Rd−1 directions. This combines with SO(d − 1) to give the symmetry
group O(d− 1) ⊂ SO(d), where a reflection in O(d− 1) also flips the sign of τ .9 For
〈O〉β to be nonzero, the restriction of ρ under O(d − 1) ⊂ SO(d) must contain the
trivial representation

Res
SO(d)
O(d−1)ρ ⊃ 1. (2.9)

This implies that ρ must be a symmetric traceless tensor (STT), with even spin J .
Finally, the one-point function of a spin-J operator O is fixed by symmetry and
dimensional analysis, up to a single dimensionless coefficient bO:

〈Oµ1···µJ (x)〉β =
bO
β∆

(eµ1 · · · eµJ − traces). (2.10)

Here, eµ is the unit vector in the τ -direction. Here and in what follows, we are
implicitly normalizing our correlators by the partition function, Z(β).

We will find it convenient to study two-point functions, which encode the bO’s via the
OPE.10 Note that, unlike in Rd, two-point functions of non-identical operators may
be nonvanishing onMβ. However, for simplicity, we focus on two-point functions of
identical operators,

g(τ,x) = 〈φ(x)φ(0)〉β. (2.11)

The OPE is valid whenever both operators lie within a sphere whose interior is flat.
In our case, the largest such sphere has diameter β: it wraps entirely around the S1

and is tangent to itself (figure 2.1). The condition for both x and 0 to lie within such
a sphere is

|x| =
√
τ 2 + x2 < β, (OPE convergence). (2.12)

9In a parity-invariant theory, the rotational symmetry group would be O(d − 1) × Z2, and we
would have the restriction that only parity-even operators could have nonzero one-point functions.

10For previous discussions of the OPE for CFT two-point functions at finite temperature, see [32,
70].
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φ φ

Figure 2.1: The OPE on S1
β × Rd−1 is valid if the two operators lie inside a sphere.

The largest possible sphere has diameter β, wrapping entirely around the S1 such
that it is tangent to itself. Here, we illustrate such a sphere (blue) in d = 2.

Assuming |x| < β, we can use the OPE to obtain

g(τ,x) =
∑
O∈φ×φ

fφφO
cO
|x|∆−2∆φ−Jxµ1 · · ·xµJ 〈Oµ1···µJ (0)〉β. (2.13)

Here, cO is the coefficient in the two-point function of O,

〈Oµ1···µJ (x)Oν1···νJ (0)〉 = cO
I

(µ1

(ν1
· · · IµJ )

νJ ) − traces
x2∆O

, Iµν (x) = δµν −
2xνx

µ

x2
, (2.14)

and fφφO is the three-point coefficient

〈φ(x1)φ(x2)Oµ1···µJ (x3)〉 = fφφO
Zµ1 · · ·ZµJ − traces

x
2∆φ−∆O
12 x∆O

23 x
∆O
13

, Zµ =
xµ13

x2
13

− xµ23

x2
23

. (2.15)

We often normalize O so that cO = 1. Note that because descendants have vanish-
ing one-point functions, we need only the leading (non-derivative) term in the OPE
for each multiplet. Plugging (2.10) into (2.13), the index contraction is given by a
Gegenbauer polynomial,11

|x|−J(xµ1 · · ·xµJ )(eµ1 · · · eµJ − traces) =
J !

2J(ν)J
C

(ν)
J (η), (2.16)

where ν = d−2
2
, (a)n = Γ(a+n)

Γ(a)
is the Pochhammer symbol, and η = τ

|x| . Thus, we
obtain

g(τ,x) =
∑
O∈φ×φ

aO
β∆

C
(ν)
J (η)|x|∆−2∆φ , where

aO ≡
fφφObO
cO

J !

2J(ν)J
. (2.17)

We can think of |x|∆−2∆φC
(ν)
J (η) as a two-point conformal block on S1 × Rd−1.12

11When the operators in the two-point function have spin, the appropriate generalization of the
Gegenbauer polynomial is described in [71].

12Note that aO is independent of the normalization of O. We sometimes quote values for the com-
bination bO/

√
cO, which changes sign under a redefinition O → −O. We usually fix this ambiguity

by choosing a sign for some OPE coefficient fφφO involving O.
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2.2.1.1 Free energy density

One of the most important thermal one-point coefficients is bT , associated to the
stress tensor T µν . This is related to the free energy density of the thermal CFT as
follows. From (2.10), the energy density is given by13

E(β) = −〈T 00〉β = −
(

1− 1

d

)
bTT

d > 0 . (2.18)

In particular, note that bT must be negative, by positivity of energy. By dimensional
analysis, the free energy density F must take the form F = fT d, where f is a
dimensionless quantity. Using the thermodynamic relations F = E − TS = E +

TdF/dT , we find

f =
bT
d
< 0. (2.19)

The Ward identity fixes

fφφT = − d

d− 1

∆φ

Sd
, Sd = vol(Sd−1) =

2πd/2

Γ(d/2)
. (2.20)

Consequently, the coefficient of T in the thermal block expansion of 〈φφ〉β (2.17) is

aT = −fSd
2∆φ

d− 2

cfree

cT
, (2.21)

where cfree = d
d−1

1
S2
d
is stress tensor two-point coefficient for the free boson in d-

dimensions [72]. For a single free (real) scalar, bT = −2dζ(d)/Sd, as can be checked
by computing its free energy

F = fT d = T

∫
dd−1k

(2π)d−1
log[1− exp(−β|k|)] = − 2

Sd
ζ(d)T d . (2.22)

For the convenience of the reader, we now collect some known results for bT in various
theories.

1. For the free scalar in three dimensions, we have bfreeT = −6ζ(3)/(4π) ≈ −0.57394.

2. For the O(N) model in three dimensions at leading order in 1/N , bT = 4N/5×
bfreeT ≈ −0.45915N [66, 73]. We will derive this from our inversion formula in
section 2.5.1.

13The minus sign is because we are using conventions appropriate for Euclidean field theory.
When Wick rotating from Euclidean to Lorentzian signature, it is conventional to include factors
of i in the 0 components of tensor operators. This ensures that they go from tensors of SO(d) in
Euclidean signature to tensors of SO(d − 1, 1) in Lorentzian signature. For the stress tensor, this
means T 00

Lorentzian = i2T 00
Euclidean, so the expectation value of T 00

Lorentzian is positive as it should be,
see e.g. [1].
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3. In the Monte Carlo literature, the quantity f is known as the “Casimir Ampli-
tude.” For the Ising model, Monte Carlo results give f ≈ −0.153 [74–76], with
numerical errors in the third digit. This translates to bIsing

T ≈ −0.459. Note that
bIsing
T is remarkably close to the value of bT/N for the O(N) model at large N .14

2.2.1.2 Two dimensions

In d = 2, S1
β ×R is conformal to the plane, so thermal correlators on the cylinder are

determined by symmetry. All one-point functions vanish except for those of operators
living in the Virasoro vacuum module:

〈O〉S1
β×R = 0 ∀ O /∈ {1, T µν , :T µνT ρσ : , . . .} . (2.23)

Likewise, two-point functions on S1
β×R are determined via a conformal transformation

as

〈Oi(z, z)Oj(0, 0)〉S1
β×R =

(
β

π
sinh

(
πz

β

))−2hO (β
π

sinh

(
πz

β

))−2hO

δij. (2.24)

Unlike in d > 2, two-point functions of distinct operators vanish. It follows from Vira-
soro symmetry and (2.23) that the right-hand side of (2.24) is the two-point Virasoro
× Virasoro vacuum block on the cylinder. By expanding (2.24) — or using formulae
of section 2.3.2.2 — one may extract the (weighted) sum of one-point coefficients aO
of all Virasoro descendants at a given level above the vacuum. These are, of course,
determined by the action of the Schwarzian derivative [77–79].

2.2.1.3 From the sphere to the plane

Thermal correlation functions are also naturally computed on S1
β × Sd−1

L , owing to
the role of spherical slicing in the state-operator correspondence. Due to the presence
of the Sd−1 curvature radius L, these thermal correlators are less constrained by
conformal invariance than their counterparts on S1

β×Rd−1. However, they must obey
the flat space limit

lim
L→∞
〈O1 · · · On〉S1

β×S
d−1
L

= 〈O1 · · · On〉S1
β×Rd−1 . (2.25)

One-point functions are fixed by dimensional analysis and spherical symmetry to take
the form

〈Oµ1···µJ (x)〉S1
β×S

d−1
L

=
bOfO( β

L
)

β∆
(eµ1 · · · eµJ − traces), (2.26)

14We estimate bIsing
T using the known part of the spectrum of the 3d Ising model in appendix A.1.
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where fO( β
L

) is a function that is not determined by conformal symmetry; it obeys the
boundary condition fO(0) = 1. On the other hand, employing radial quantization,

〈Oµ1···µJ (x)〉S1
β×S

d−1
L

=
1

Z(β)

∑
O′

e−β∆O′ 〈O′|Oµ1···µJ (x)|O′〉, (2.27)

where the sum runs over all local operators O′ (not just primaries) and Z(β) =∑
O′ e

−β∆O′ is the partition function. It is useful to introduce one-point thermal
conformal blocks on the sphere via

〈Oµ1···µJ (x)〉S1
β×S

d−1
L

=
1

Z(β)

∑
Primary O′

fOO′O′F (hO, hO;hO′ , hO′ |β)(eµ1 · · · eµJ − traces), (2.28)

where F (hO, hO;hO′ , hO′|β) captures all contributions of the conformal family of O′

to 〈Oµ1···µJ (x)〉S1
β×S

d−1
L

. We have set L = 1, and introduced the left- and right-moving
conformal weights

hO =
∆O − J

2
, hO =

∆O + J

2
, (2.29)

and likewise for O′. These blocks were recently computed in any d, for scalar O and
scalar O′, in [80]. Two-point functions may also be written using the OPE and a sum
over states, although we refrain from showing the details here.

Consistency of (2.28) with the flat space limit (2.10) can in principle be established
by taking β → 0, which involves contributions from all high-energy states. We discuss
further details of this limit and thermal blocks on S1 × Sd−1 in appendix A.2. The
general lesson is that exact computation of 〈O〉S1

β×Rd−1 by passage from S1
β × Sd−1

L

is challenging. Perhaps the simplest observable to compute using these methods is
bT , and we explore this possibility in appendix A.1 with the free boson and 3d Ising
model as examples. The rest of this paper is devoted to developing new methods
directly on S1

β × Rd−1.

2.2.2 The KMS condition and crossing

Let us now review the derivation of the KMS condition. Consider a thermal two-point
function in Euclidean time 〈A(τ)B(0)〉β, and let us assume τ > 0. This is given by

〈A(τ)B(0)〉β = Tr(e−βHeτHA(0)e−τHB(0)) = Tr(e−(β−τ)HA(0)e−τHB(0)), (2.30)

where H is the Hamiltonian. Note that convergence of the exponential factor e−τH

requires τ > 0 and convergence of the exponential factor e−(β−τ)H requires τ < β.
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Thus, the above expression defines the thermal two-point function for τ ∈ (0, β).
From cyclicity of the trace, one immediately finds that

〈A(τ)B(0)〉β = 〈B(β − τ)A(0)〉β. (2.31)

This is the KMS condition.

Taking A(τ) = φ(τ,x), B(0) = φ(0, 0) and τ = β/2 + τ̃ , with τ̃ ∈
[
−β

2
, β

2

]
we get

g(β/2 + τ̃ ,x) = g(β/2− τ̃ ,−x). (2.32)

By SO(d − 1)-invariance, the correlator depends only on |x|, so is invariant under
x→ −x. Thus, we can further conclude that

g(β/2 + τ̃ ,x) = g(β/2− τ̃ ,x). (2.33)

The fact that the scalar thermal two-point function is even in x is built into the
conformal block decomposition (2.17). Another approach to understand (2.33) is
to note that Euclidean thermal correlators are computed by a path integral on the
geometry S1

β ×Rd−1, and then (2.33) is evident from the O(d− 1) symmetries of the
geometry discussed in section 2.2.1.

Note that the thermal conformal block decomposition (2.17) can be constrained by
the KMS condition (2.33) due to the lack of manifest periodicity for the thermal
conformal block, in a similar way in which the four-point functions conformal blocks
are not manifestly crossing-symmetric. This constraint is well-defined within the OPE
radius of convergence, whenever both β/2 + τ̃ , and β/2− τ̃ ∈ [0, β] (2.12). Thus, in
analogy to the crossing equation for vacuum four-point functions, we will interpret
(2.33) as a constraint equation for all the thermal coefficients aO appearing in (2.17).
This observation was made in [38]. The analog of expanding four-point functions
around the crossing-symmetric point z = z = 1/2 is, using the reflection property
(2.33), to enforce that

∂n+m

∂τn∂m|x|
g(τ,x)

∣∣∣
τ=β

2
,x=0

= 0 for odd n and even m . (2.34)

This philosophy extends naturally to thermal n-point functions, which are expectation
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values of Euclidean time-ordered products15

〈A1(τ1) · · ·An(τn)〉β = Tr(e−βHT{A1(τ1) · · ·An(τn)})

= Tr(e−βHA1(τ1) · · ·An(τn))θ(Re(τ1 − τ2)) · · · θ(Re(τn−1 − τn))

+ permutations. (2.35)

The above representation of the correlator is valid if Re(τ1 − τn) ≤ β. If τn is the
earliest time, then a similar manipulation to (2.30) using cyclicity of the trace implies

〈A1(τ1) · · ·An(τn)〉β = 〈An(τn + β)A1(τ1) · · ·An−1(τn−1)〉β
= 〈A1(τ1) · · ·An−1(τn−1)An(τn + β)〉β. (2.36)

(In the second line we used that operators trivially commute inside the time-ordering
symbol.) It follows that the thermal expectation value of a Euclidean time-ordered
product is periodic in each of the τi (since we can decrease τi until it becomes the
earliest time and then apply (2.36)). This is again obvious from the geometry. We
may regard these periodicity conditions as crossing equations. In this work, we focus
on the case n = 2. (See [81] for recent study of KMS conditions for n-point functions.)

While the KMS condition imposes constraints on the aO, there is an immediate ob-
stacle to an efficient bootstrap: the OPE expansion (2.17) is linear in the OPE coeffi-
cients, nor must the aO be sign-definite. Thus, the resulting expression lacks manifest
positivity. This is more analogous to the bootstrap in the presence of a conformal
boundary or defect, rather than the vacuum four-point function bootstrap [51]. To
proceed, we need to develop some complementary tools; this will be the content of
section 2.3.

2.2.3 Away from the OPE regime

The OPE representation (2.17) comes from interpreting the two-point function g(τ,x)

in radial quantization around a point in S1
β×Rd−1. As discussed in section 2.2.1, this

representation is only valid when the points satisfy |x| < β. Other ways of quantizing
the theory give other representations with their own regimes of validity (possibly
overlapping).

15Note that time ordering is the only sensible ordering when operators are at different Euclidean
times (i.e. “imaginary” times, although here it corresponds to real τ). This is because if the operators
weren’t ordered appropriately, the exponential factors e−(τi−τj)H would be divergent. By contrast,
if some operators are at the same Euclidean time, but different Lorentzian (“real”) times, we can
consider different orderings among those operators, and these orderings correspond to different
analytic continuations of the Euclidean correlator. For example, in real time thermal physics (where
τi = iti with ti ∈ R), one can study arbitrary orderings of the operators.
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Perhaps the most familiar way to study thermal correlators is to quantize the theory
on Rd−1-slices, where S1 is interpreted as a Euclidean time direction. This quan-
tization leads to expressions for thermal correlation functions like (2.30). It is also
the most natural choice from the point of view of the limit S1 × Sd−1 → S1 × Rd−1

discussed in section 2.2.1.3.

Another way of quantizing the theory (that will prove useful in the next section) is
to choose a direction in Rd−1, say x1, as the time direction. States then live on slices
with geometry S1 ×Rd−2. This quantization is natural if we imagine a Kaluza-Klein
compactification of a d-dimensional QFT on a spatial S1. In the compactified theory,
the momentum generator around the S1, which we call PKK, becomes a global U(1)

symmetry with a discrete spectrum. The Hamiltonian HKK generates translations in
x1. Explicitly, the generators are given by

PKK =

∫ β

0

dτ

∫ ∞
−∞

dx2 · · · dxd−1
(
−iT 10(τ,x)

)
,

HKK =

∫ β

0

dτ

∫ ∞
−∞

dx2 · · · dxd−1

(
−T 11(τ,x)− bT

d

1

βd

)
, (2.37)

where the factor of −i in PKK and the minus sign in HKK come from Wick rotation
as discussed in footnote 13. Because the charges are conserved, we can evaluate them
at any value of x1. In HKK, we have chosen to subtract off the vacuum energy by
hand so that it annihilates the vacuum on S1 × Rd−2.16

In our two-point function g(τ,x), we can use SO(d−1)-invariance to set x = (x1, 0, . . . , 0)

with x1 > 0. Interpreting the correlator in KK quantization, we obtain

g(τ, x1) = 〈0|φ(0)e−HKKx
1+iτPKKφ(0)|0〉, (2.38)

where |0〉 is the ground-state on S1×Rd−2. Note that HKK is Hermitian and bounded
from below, so the factor e−HKKx

1 leads to exponential suppression. We discuss the
regime of validity of (2.38) in section 2.3.4.

The behavior of the correlator at large x1 (with fixed τ) is determined by the mass
gap of the compactified theory, i.e. the smallest nonzero eigenvalue of HKK which we
call mth (the “thermal mass”). By dimensional analysis, mth is a constant times 1/β.
It is a folk-theorem that dimensional reduction on a circle with thermal boundary

16Note that the d−1-dimensional vacuum energy density, equivalently the Casimir energy density
of the CFT on a circle, is simply bT

d
1

βd−1 = βF . In particular, it is negative since bT is negative by
the discussion in section 2.2.1.1.
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conditions produces a massive theory, i.e. mth > 0.17 Assuming this folk-theorem is
true, the correlator approaches a factorized form exponentially quickly at large |x|

g(τ,x) ∼ 〈φ〉2β +O(e−mth|x|). (2.39)

Like the KMS condition, the decay (2.39) is not at all obvious from the OPE. In free
theories, supersymmetric compactifications, or in the presence of nontrivial chemical
potentials, we could have mgap = 0 and the behavior of the long-distance correlator
would be different.

Finally, let us note that the representation (2.38) does not use the full (d − 1)-
dimensional Poincare invariance of the compactified theory. To do so, we insert
a complete set of states and classify them according to their (d − 1)-dimensional
invariant mass and KK momentum. This leads to a version of the Källén-Lehmann
spectral representation

g(τ,x) =
∞∑

n=−∞

einτ
∫ ∞

0

dm2ρn(m2)GF (x,m2), (2.40)

where n is the KK momentum and GF (x,m2) is the Feynman propagator in (d− 1)-
dimensions. The decomposition (2.40) comes from going to momentum space in the
compact direction, and then applying the usual Källén-Lehmann representation in
each momentum sector, yielding a density of states ρn(m2) for each n. For real τ,x,
the expression (2.40) is valid whenever |x| > 0, so it has an overlapping regime of
validity with the OPE. It would be interesting to study the equality of these two
representations.

2.3 A Lorentzian inversion formula

Inversion formulas provide an efficient way to study the operator content of vacuum
four-point functions in flat space. The starting point is an expansion of the four-point
function in a complete set of single-valued conformal partial waves, which are solutions
to the conformal Casimir equations on Rd. This basis is natural because physical four-
point functions are single-valued in Euclidean space. The expansion also follows on
general grounds from the Plancherel theorem for the conformal group SO(d + 1, 1)

[82]. One may then invert the expansion using orthogonality and completeness, to
extract the exchanged operator data from integrals of the four-point function.

In [25], Caron-Huot derived a remarkable inversion formula for four-point functions
that involves an integral in Lorentzian signature.18 In this section, we will derive a

17We thank Zohar Komargodski for discussions on this point.
18See [26] for another derivation.
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Lorentzian inversion formula for thermal two-point functions. However, our formula
will not have a similarly clean group-theoretic interpretation as in the case of four-
point functions. The reason is that C(ν)

J (η)|x|∆−2∆φ , the two-point thermal blocks
on S1

β × Rd−1, are not a complete set of solutions to a differential equation (for any
choices of (∆, J)), simply because they are not single-valued functions on Rd−1×S1.19

Still, we will make progress without a completeness relation by focusing on the OPE
limit and writing a formula that picks out the data in this limit.

2.3.1 Euclidean inversion

In analogy with the conformal partial wave expansion for four-point functions, we
complexify ∆, and write the thermal block expansion (2.17) as a spectral integral:

g(τ,x) =
∞∑
J=0

∮ −ε+i∞
−ε−i∞

d∆

2πi
a(∆, J)C

(ν)
J (η)|x|∆−2∆φ . (2.41)

For simplicity, we set β = 1 for the remainder of the paper. The full dependence
on β can be restored by dimensional analysis. The function a(∆, J) should have
simple poles at the physical operator dimensions, with residues proportional to the
coefficients aO,

a(∆, J) ∼ − aO
∆−∆O

. (2.42)

We also require that a(∆, J) not grow exponentially in the right ∆-half-plane. When
|x| < 1, we can close the ∆ contour to the right to encircle the poles clockwise (hence
the minus sign in (2.42)) and recover the usual thermal conformal block decomposi-
tion. The position of the ∆ contour is arbitrary as long as the integral converges. We
have chosen it to lie to the left of all physical poles, including the one from the unit
operator.

It is simple to write an inversion formula that produces a(∆, J) from g(τ,x), by
integrating against a Gegenbauer polynomial to pick out the contribution from spin
J , and then Laplace transform in |x| to pick out poles in ∆,

a(∆, J) =
1

NJ

∫
|x|<1

ddxC
(ν)
J (η)|x|2∆φ−∆−dg(τ,x). (2.43)

This choice of a(∆, J) is not unique, since we only demand that it have poles and
residues consistent with (2.42). To obtain the correct poles in ∆, it suffices to integrate

19One can restrict to a disc |x| < r and introduce boundary conditions at |x| = r to obtain a
completeness relation. However, such boundary conditions are not satisfied by physical two-point
functions. Alternatively, one can lift two-point functions to the universal cover of Rd−1 × S1 and
study completeness relations on this space.
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x over any neighborhood of the origin. We call (2.43) a “Euclidean inversion formula”
because it involves an integral over Euclidean space. For simplicity, we have chosen
to integrate over a circle with radius 1.20 The factor NJ is defined by∫

Sd−1

dΩC
(ν)
J (η)C

(ν)
J ′ (η) = NJδJJ ′ , (2.44)

where

NJ =
41−νπν+ 3

2 Γ(J + 2ν)

J !(J + ν)Γ(ν)2Γ(ν + 1
2
)
, ν =

d− 2

2
. (2.45)

This standard normalization of the Gegenbauer polynomial is unfortunately singular
when d = 2, so we will treat that as a special case.

2.3.2 Continuing to Lorentzian signature

The angular dependence of a two-point block on S1
β × Rd−1 is precisely the same as

the angular dependence of a partial wave in a 2→ 2 scattering amplitude — both are
given by Gegenbauer polynomials. In the case of amplitudes, the Froissart-Gribov
formula [57, 58] expresses partial wave coefficients as an integral of the amplitude
over a Lorentzian regime of momenta. A standard derivation of the Froissart-Gribov
formula (see e.g. [25, 51, 83]) carries over essentially unchanged to our case, where
it gives a(∆, J) as an integral over a Lorentzian region in position space. Note that
the Lorentzian region we find does not correspond to the usual real time dynamics at
finite temperature (where τ gets complexified). Instead, one of the components of x
gets complexified and plays the role of Lorentzian time.

2.3.2.1 Kinematics

Before giving the derivation, let us discuss the Lorentzian region that will appear in
our formula. Using SO(d − 1) invariance, we can restrict x to a line and denote the
coordinate along this line as xE. Let us introduce coordinates

z = τ + ixE, z = τ − ixE. (2.46)

It will also be useful to introduce polar coordinates r and w = eiθ such that

z = rw, z = rw−1. (2.47)

20We would like to ensure that poles in a(∆, J) correspond only to operators in the OPE. To
do this, we can restrict the range of integration to be |x| < r for some r < 1, so that the integral
remains strictly inside the regime of convergence of the OPE. The only singularity in this region is
the OPE singularity, and this is the only place poles can come from. We have written r = 1 for
simplicity, but a careful reader can imagine r = 1− ε for positive ε.
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Figure 2.2: Lightlike trajectories moving in the xL direction and around the thermal
circle. One trajectory is z = 0 and the other is z = 0. Poles in the Lorentzian
inversion formula come from the neighborhood of these trajectories.

In Euclidean signature, w lies on the unit circle and represents the angle of the two
operators relative to the τ -direction, and z, z are complex conjugates of each other.

We will continue to Lorentzian signature by Wick-rotating xE = −ixL, so that z, z
become independent real variables. In particular, the direction τ along the thermal
circle remains Euclidean and retains the periodicity τ ∼ τ + β, and w is real. This
configuration is best interpreted in terms of a Lorentzian theory, one of whose spatial
directions has been compactified on S1. It is not the Lorentzian kinematics usually
considered in thermal field theory, where one considers complex τ . Instead, xL plays
the role of time. Poles in a(∆, J) corresponding to physical one-point functions will
come from the regime z ∼ 0 or z ∼ 0, where one of the operators is following a
lightlike trajectory around the thermal circle. These lightlike trajectories are depicted
in figure 2.2.

The regime of small or large w will play an important role in what follows. In the
limit of r fixed and w →∞, say, we have τ → xL and xL →∞. Given the periodicity
τ ∼ τ+β, the separation between the operators approaches a lightlike-trajectory along
the cylinder at asymptotically large xL. In terms of (z, z), this limit corresponds to
z → ∞, z → 0 with zz fixed. This limit of large boost (w → 0 or w → ∞) is
analogous to the Regge limit in flat space.

2.3.2.2 The inversion formula in d = 2

Let us first present the derivation in d = 2, where it is particularly simple. As
noted in section 2.2.1.2, thermal two-point functions in d = 2 are related by a Weyl
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transformation to flat-space two-point functions, so this analysis is not necessary.
However, the discussion in this subsection will generalize to higher dimensions.

In two dimensions, Gegenbauer polynomials are given by21

cos(Jθ) =
1

2
(wJ + w−J). (2.48)

With this normalization, we have NJ = π. Viewed as a cylinder two-point block, the
first term comes from the exchange of a vacuum Virasoro descendant having weights
(h, h) and spin J = h−h. The second term comes from the exchange of the conjugate
state having weights (h, h) and spin −J . The Euclidean inversion formula becomes

a(∆, J) =
1

π

∫ 1

0

dr

r
r2∆φ−∆

∮
dw

iw

1

2
(wJ + w−J)g(z = rw, z = rw−1), (2.49)

where the w-contour is along the unit circle as pictured in figure 2.3a. Note that J
must be an integer in (2.49) in order for the integrand to be single-valued along the
contour.

Now, the crucial claim is that g(z = rw, z = rw−1) satisfies the following properties
as a function of w:

• It is analytic in the w plane away from the cuts (−∞,−1/r), (−r, 0) (0, r), and
(1/r,∞).

• Its growth at large w is bounded by a polynomial wJ0 for some constant J0.
Similarly, by symmetry under w → w−1, the growth at small w is bounded by
w−J0 .

We discuss these properties in the next section. For now, let us assume them and
proceed with the derivation.

By analogy with the Froissart-Gribov formula, we now deform the w contour away
from the unit circle. We must do this separately for the two terms wJ and w−J . The
term wJ dies as w → 0. Assuming J > J0, we can deform the contour towards zero
for that term to obtain the contour 2.3b. Similarly, the term w−J dies as w →∞, so
we can deform the contour towards infinity for that term to obtain the contour 2.3c
(again assuming J > J0).

21We are considering only external scalars, which have h = h. Equation (2.24) explicitly shows
that the correlator is symmetric under the interchange of z and z, which gives the symmetry of
the block under the exchange of J and −J . For spinning thermal correlators, a chirally-asymmetric
block should be used.
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1 / rr-r-1 / r

w

(a) Initial integration contour |w| = 1.

(b) The deformed contour for terms
that behave as wJ .

(c) The deformed contour for terms
that behave as w−J .

Figure 2.3: Contour manipulations for the inversion formula in the w plane. In (a)
we show the original contour which lies along the circle |w| = 1. For the wJ terms in
(2.49), we deform the contour as in (b), and for the w−J terms in (2.49), we deform
the contour as in (c).

Let us focus on the w−J term, where we deform the contour towards infinity. By our
analyticity assumption, we first encounter a branch cut at w = r−1, or equivalently
z = 1 (we comment on the contribution of the z = −1 branch-cut shortly). We thus
obtain an integral of the discontinuity of the two-point function g(z, z) across this
cut,∮

dw

iw
w−Jg(z = rw, z = rw−1) ⊃

∫ ∞
w=r−1

dww−J−1Disc[g(z = rw, z = rw−1)],

(2.50)

where

Disc[g(z, z)] ≡ 1

i
(g(z + iε, z)− g(z − iε, z)) . (2.51)

Here, we have assumed that J > J0, so we can drop the arcs at infinity in figure 2.3c. If
instead J ≤ J0, we must keep the contribution from these arcs. The arc contributions
are the analogs of finite subtractions in the case of dispersion relations for amplitudes.

Because g(z, z) = g(−z,−z), the branch cut from (−∞,−1/r) contributes the same
as the cut from (1/r,∞), up to a factor of (−1)J . Finally, because of symmetry under
w → w−1, the contribution from deforming the contour for wJ towards the origin is
the same as the contribution from deforming the contour for w−J towards infinity,
giving an overall factor of 2.
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Putting everything back in (2.49), we obtain

a(∆, J) = (1 + (−1)J)
1

π

∫ 1

0

dr

r
r2∆φ−∆

∫ ∞
w=r−1

w−J−1Disc[g(z, z)]

+ θ(J0 − J)aarcs(∆, J)

= (1 + (−1)J)
1

2π

∫ ∞
1

dz

z

∫ 1

0

dz

z
z∆φ−hz∆φ−hDisc[g(z, z)]

+ θ(J0 − J)aarcs(∆, J) , (2.52)

where

h =
∆− J

2
and h =

∆ + J

2
. (2.53)

We have explicitly indicated the presence of non-trivial contributions from the arcs
when J ≤ J0. These are given by the large w region of (2.49). Their detailed form
depends on the correlator in question. We will see some explicit examples in the next
section.

2.3.2.3 The inversion formula in d > 2

To perform the same derivation in d > 2 dimensions, we must find the higher-
dimensional analog of the decomposition cos(Jθ) = 1

2
(wJ + w−J). The role of wJ

will be played by the solution to the Gegenbauer differential equation that vanishes
as w → 0 (for positive J). This is given by22

FJ(w) = wJ+d−2
2F1

(
J + d− 2,

d

2
− 1, J +

d

2
, w2

)
. (2.54)

The Gegenbauer differential equation is symmetric under w → w−1 (because the
equation depends only on cos(θ) = 1

2
(w + w−1)), so the solution that vanishes as

w →∞ is FJ(w−1).

Because the Gegenbauer differential equation is second-order, the two functions FJ(w±1)

span the space of solutions. In particular, a Gegenbauer polynomial can be expressed
as a linear combination

C
(ν)
J

(
1

2
(w + w−1)

)
=

Γ(J + d− 2)

Γ(d
2
− 1)Γ(J + d

2
)

(
FJ(w−1)eiπ

d−2
2 + FJ(w)e−iπ

d−2
2

)
, (2.55)

for Im(w) > 0. The above representation is correct for w in the upper half-plane.
Because FJ(w) has cuts along (−∞,−1] and [1,∞) and FJ(w−1) has cuts along

22The function FJ is proportional to BJ defined in [26] and QJ defined in [83]. In d = 3, it is
proportional to a Legendre Q-function.
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[−1, 1], the representation is different when w is in the lower half-plane (the phases
in front of the two terms swap). Note that when w = eiθ is on the unit circle, the two
terms are complex-conjugates of each other, so their sum is real.

Plugging this representation of the Gegenbauer polynomial into the Euclidean inver-
sion formula (2.43), we can run the same contour argument as in d = 2. The measure
contributes an extra factor of (z − z)2ν , but otherwise the derivation is essentially
unchanged. We find

a(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ ∞
1

dz

z
(zz)∆φ−∆

2
−ν(z − z)2νFJ

(√
z

z

)
Disc[g(z, z)]

+ θ(J0 − J)aarcs(∆, J), (2.56)

where

KJ ≡
Γ(J + 1)Γ(ν)

4πΓ(J + ν)
. (2.57)

It is easy to check that this agrees with (2.52) in d = 2 after accounting for the proper
normalization of the d = 2 Gegenbauer polynomials.

2.3.3 Comments on the Lorentzian formula

Like the Froissart-Gribov formula, our Lorentzian inversion formula (3.7) has the
interesting property that it can be analytically continued in spin J . As explained e.g.
in [25], analyticity in spin is a consequence of polynomial boundedness in the w →∞
limit — specifically our assumption that the correlator does not grow faster than
w±J0 . Because each partial wave with nonzero spin grows in this limit, boundedness
is only possible if there is a delicate balance, due to analyticity, between each partial
wave with J > J0. This state of affairs is precisely analogous to the Regge limit of
vacuum four-point functions.

The integral (3.7) is over a Lorentzian regime of the two-point function. We will see
shortly that poles in ∆ come from the region z ∼ 0 where the factor z∆φ−∆

2
−ν is

singular. The residues are then determined by a one-dimensional integral over z. In
other words, the locus that contributes to CFT one-point functions is τ ∼ xL (cf.
(2.46)), which is a lightlike trajectory moving around the thermal circle while moving
forward in “time” xL. This trajectory is pictured in figure 2.2.

The fact that physical data comes from an integral over z with z ∼ 0 is also true in
Caron-Huot’s Lorentzian inversion formula for four-point functions. However, in that
case, the integral remains entirely within the regime of convergence of both the s and
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t-channel OPEs. An important difference in our case is that the z-integral extends
outside the regime of convergence of any OPE. In our conventions, the s-channel OPE
is an expansion around z = z = 0 and the t-channel OPE is an expansion around
z = z = 1. Their regimes of convergence are:

s-channel OPE: |z|, |z| < 1,

t-channel OPE: |1− z|, |1− z| < 1. (2.58)

Our integral is within the regime of convergence of the t-channel OPE for 1 ≤ z < 2.
But for z > 2, it exits this regime. Thus, we can only obtain partial information
about a(∆, J) from the t-channel OPE expansion alone. However, as we will see in
more detail in section 2.6, corrections coming from the region z > 2 are exponentially
suppressed in J .

Another interesting similarity between our inversion formula and Caron-Huot’s is the
significance of a double lightcone limit. We will see in section 2.6 that a systematic
expansion for thermal one-point functions in 1/J requires understanding the thermal
two-point function in the regime z ∼ 0, z ∼ 1. This corresponds to a physical
configuration where the second operator is approaching the first intersection of light
rays from the first operator that wrap halfway around the thermal circle. In the
context of four-point functions, the same regime z ∼ 0, z ∼ 1 corresponds to all
four operators approaching the corners of the square (z, z) ∈ [0, 1], and is dubbed
the “double lightcone” limit.23 Because our limit plays a similar role in large-spin
perturbation theory, we will adopt the same terminology.

2.3.4 Analyticity in the w-plane

To complete our derivation, we must justify the assumptions stated in section 2.3.2.3,
namely analyticity of the two-point function in w outside the cuts pictured in fig-
ure 2.3, and polynomial boundedness in w. First note that convergence of the s-
channel OPE guarantees analyticity in the annulus

r < |w| < r−1. (2.59)

Convergence of the OPE around z, z = 1 and z, z = −1 additionally guarantees
analyticity in more complicated regions around w = ±1 (figure 2.4).

23This is to be distinguished from the specialized terminology of [16], where “double lightcone”
limit means fixed z

1−z .
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Figure 2.4: For fixed r ∈ (0, 1), the s-channel OPE (expansion around z = z = 0)
implies that the thermal two-point function g(z, z) is analytic in an annulus in the w
plane between radii r and 1/r (shaded blue). The t-channel OPE (expansion around
z = z = 1), together with symmetry under w ↔ −w, implies analyticity in the
red-shaded regions, except for cuts running along (−∞,−1/r), (−r, 0), (0, r), (1/r,∞)
(indicated with zig-zags). In this section, we argue for analyticity everywhere in the
upper and lower half planes.

To argue for analyticity in an even larger region, we will use the KK representation
discussed in section 2.2.3,

g(τ, xE) = 〈Ψ|e−xEHKK+iτPKK|Ψ〉 = 〈Ψ|e
i
2

(HKK+PKK)z− i
2

(HKK−PKK)z|Ψ〉, (2.60)

where

|Ψ〉 = φ(0)|0〉S1×Rd−2 . (2.61)

Here, we have quantized the Euclidean theory on spatial slices with geometry S1 ×
Rd−2. The Hamiltonian HKK generates translations in the noncompact direction
parameterized by xE, while PKK generates translations in τ (the periodic direction).
In this way of quantizing the theory, both HKK and PKK are Hermitian.

We first claim that g(τ, xE) is bounded whenever Im(z) > 0 and Im(z) < 0. Our goal
will be to relate a general configuration with Im(z) > 0 and Im(z) < 0 to a standard
configuration where we know that the correlator is bounded. We begin by splitting
the exponential into a positive Hermitian operator V and a unitary operator U ,

e
i
2

(HKK+PKK)z− i
2

(HKK−PKK)z = V 1/2UV 1/2

V = e−
1
2

(HKK+PKK) Im(z)+ 1
2

(HKK−PKK) Im(z),

U = e
i
2

(HKK+PKK) Re(z)− i
2

(HKK−PKK) Re(z). (2.62)
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The Cauchy-Schwartz inequality implies

|g(τ, xE)| = |〈Ψ|V 1/2UV 1/2|Ψ〉| ≤ 〈Ψ|V 1/2V 1/2|Ψ〉1/2〈Ψ|V 1/2U †UV 1/2|Ψ〉1/2

= 〈Ψ|V |Ψ〉. (2.63)

This essentially allows us to assume that z, z are pure imaginary.

Next, we claim that HKK ± PKK are bounded from below by a constant. To argue
this, first let us forget about periodicity and consider a theory in Rd. Then we have
H ± P > 0 as a simple consequence of positivity of energy. (If either H ± P had
a negative eigenvalue, Lorentz invariance would imply the existence of a state with
negative energy.)

Now consider the case where τ is periodic. The spectrum of PKK is quantized, with
eigenvalues given by Kaluza-Klein (KK) momenta n ∈ Z. In general, energies of
excitations with KK-momentum n are different from energies of excitations in Rd with
|p| = n. (For example, in the n = 0 sector, the lowest nonzero eigenvalue of HKK is
the thermal mass mth, while the Hamiltonian in Rd is gapless at zero momentum.) In
particular, it is not obvious whether HKK ± PKK are positive operators. Positivity of
HKK±PKK does not follow immediately from positivity of energy because there is no
Lorentz boost relating HKK and PKK. However, for sufficiently large |n|, periodicity
of the τ direction becomes unimportant, and the spectrum of HKK approaches the
flat-space spectrum. Thus, we expect HKK ± PKK are bounded from below for all n
by some n-independent constant λ.24 This is the key claim in this section, and we
have not established it rigorously. However, we believe it is a physically reasonable
assumption.

Thus, let us pick λ such that HKK ± PKK > λ, and let ζ = min(Im(z),− Im(z)). We
have

〈Ψ|V |Ψ〉 = 〈Ψ|e−
1
2

(HKK+PKK) Im(z)+ 1
2

(HKK−PKK) Im(z)|Ψ〉

≤ 〈Ψ|e−
1
2

(HKK+PKK)ζ− 1
2

(HKK−PKK)ζ |Ψ〉 × e−
λ
2

(Im(z)−ζ)−λ
2

(− Im(z)−ζ)

= g(0, ζ) e−
λ
2

(Im(z)−ζ)−λ
2

(− Im(z)−ζ). (2.64)

To summarize,

|g(τ, xE)| ≤ g(0, ζ) e−
λ
2

(Im(z)−ζ)−λ
2

(− Im(z)−ζ). (2.65)

24Note that λ is not the same thing as the thermal mass. The thermal mass is a lower bound on
the nonzero eigenvalues of HKK in the n = 0 sector, whereas λ is a lower bound on all eigenvalues of
HKK±PKK across all sectors. Note also that it’s not necessary for λ to be positive for the remainder
of the argument in this section to work.
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The correlator g(0, ζ) is simply a Euclidean correlator at nonzero |x| and time τ = 0.
This is a nonsingular configuration, so the right-hand side is bounded.

Finally, note that this derivation did not actually depend on φ(0) being primary.
Thus, it applies to all correlators of descendants of φ, so all derivatives of g(τ,x)

are bounded as well. It follows that g(τ,x) is analytic if ζ > 0, i.e. Im(z) > 0 and
Im(z) < 0. These conditions hold for w in the upper half-plane. Symmetry under
w → −w then implies that g(τ, xE) is analytic in the lower w-half-plane as well.

2.3.5 Behavior at large w

Our derivation of the Lorentzian inversion formula relies on the assumption that
g(z, z) grows no faster than wJ0 at large w (anywhere in the upper half plane) and
fixed r, for some fixed J0. We have not been able to prove this claim or establish a
rigorous upper bound on J0 (analogous to the bound on chaos for thermal four-point
functions [84]). In this section, we discuss the claim in more detail.

First, one can check explicitly that thermal two-point functions in d = 2, given in
(2.23), are exponentially damped at large w. Thus, our inversion formula implies
analyticity in spin for all J ≥ 0 in 2d. This is perhaps unsurprising given that only
members of the Virasoro multiplet of the identity get thermal expectation values, and
such operators lie on simple trajectories as a function of J .

For d > 2, we might hope to determine J0 by studying perturbative examples. How-
ever, we should be aware that naïve perturbative expansions may not commute with
the large-w limit. For example, in the critical O(N) model at leading order in N (see
section 2.5.1), we find J0 = 0. However, at each order in 1/N the correlator may
grow more quickly.25 It would be very interesting to set up a perturbative analysis
specially adapted to the large-w limit, perhaps analogous to [86].

Let us guess the behavior of the two-point function at large w by studying two in-
teresting physical regimes. Firstly, consider w = iW with W large and real. This
corresponds to a Lorentzian two-point function at finite temperature, in the limit
where both operators are highly boosted.26 In the absence of the thermal bath, such
a correlator would be independent of W because a boost is a symmetry. The corre-

25Precisely this phenomenon happens for the Regge limit of four-point functions in large-N the-
ories. One can show on general grounds that the four-point function is bounded in the Regge limit
[84]. However, each order in 1/N contributes faster and faster growth in the Regge limit. In holo-
graphic theories, this fact is related to the necessity of regularization and renormalization in the
bulk effective theory [85].

26We thank Juan Maldacena for suggesting we consider this regime.
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lator can, roughly speaking, be interpreted as the amplitude for excitations created
by the first operator to be absorbed by the second. There is no clear reason why this
amplitude should be enhanced by the thermal bath, and thus we expect the correlator
to grow no faster than W 0 in this regime. In fact, we might expect that the thermal
bath destroys correlations between the operators, so the correlator actually decays at
large W .27

Another interesting physical regime is w = (1 + iε)W with W large and real (i.e. w
on top of one of the cuts in figure 2.4). This is the configuration that appears in
the Lorentzian inversion formula. It corresponds to one of the operators moving on
a nearly lightlike trajectory around the thermal circle, with one of the noncompact
directions as increasing Lorentzian time xL (figure 2.2). A physical picture is that
the first operator creates excitations that move around the thermal circle. They
repeatedly collide at xL = β/2, β, 3β/2, . . . . Finally, some of them are absorbed by
the second operator. We expect each collision to reduce the amplitude for excitations
to reach the second operator. Thus, we conjecture that the correlator grows no faster
than W 0 in this regime as well. If the collisions have a large inelastic component, the
correlator should decay at large W .

These arguments are far from rigorous. It would be nice to understand — either
from examples or a general argument — what the nonperturbative behavior of the
two-point function can be in the entire upper half-plane at large w.

2.4 Applications I: Mean Field Theory

In this and the next section, we will perform some checks of the inversion formula, de-
rive some new results and demonstrate its mechanics. We begin here with application
to mean field theory.

In MFT, the operators appearing in the φ × φ OPE for some scalar primary φ are
the unit operator and double-twist operators of schematic form

[φφ]n,` = φ∂µ1 . . . ∂µ`∂2nφ − (traces) , (2.66)

where ` is even, with dimensions ∆n,` = 2∆φ + 2n + `. Note that the free theory is
the MFT with ∆φ = ν, where the [φφ]0,` are identified with spin-` currents J`. The

27We have checked that a boundary thermal two-point function computed in AdS4 using the
geodesic approximation decays at large W .
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thermal two-point function can be computed by using the method of images,

g(z, z) =
∞∑

m=−∞

1

((m− z)(m− z))∆φ
. (2.67)

Using this, we will perform a brute-force expansion of the two-point functions into
thermal conformal blocks and compare that with the thermal one-point coefficients
generated by the inversion formula.

Expanding the thermal two-point function

We start by explicitly expanding the thermal two-point function without using the
inversion formula in order to provide a non-trivial check for the entire methodology.
Going back to the x and τ coordinates, we can write each term in (2.67) as28

1

((τ +m)2 + x2)∆φ
=
∞∑
j=0

(−1)jC
(∆φ)
j (η)sgn(m)j

|x|j

|m|2∆φ+j
, (2.68)

where sgn(m) = m
|m| and η = τ

|x| . Thus, the two-point function is

g(τ,x) =
1

|x|2∆φ
+
∞∑
j=0

(−1)j

(∑
m6=0

sgn(m)j

|m|2∆φ+j

)
C

(∆φ)
j (η)|x|j

=
1

|x|2∆φ
+
∑

j=0,2,...

2ζ(2∆φ + j)C
(∆φ)
j (η)|x|j , (2.69)

where ζ(s) is the Riemann ζ-function. The Gegenbauer polynomials C(∆φ)
j (η) have

an expansion in terms of the correct Gegenbauer polynomials C(ν)
j (η) appearing in

section 2.2 for the thermal OPE on S1
β × Rd−1,

C
(∆φ)
j (η) =

∑
`=j,j−2,...,jmod 2

(`+ ν)(∆φ) j+`
2

(∆φ − ν) j−`
2(

j−`
2

)
!(ν) j+`+2

2

C
(ν)
` (η), (2.70)

where (a)n = Γ(a+n)
Γ(a)

is the Pochhammer symbol. Plugging this into (2.69), and
replacing j = 2n+ `, we get

g(τ,x) =
1

|x|2∆φ
+
∞∑
n=0

∑
`=0,2,...

2ζ(2∆φ + 2n+ `)(`+ ν)(∆φ)`+n(∆φ − ν)n
n!(ν)`+n+1

C
(ν)
` (η)|x|2n+` .

(2.71)
28Here, we use the identity 1

(1−2xy+y2)α =
∑∞
j=0 C

(α)
j (x)yn.
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This has precisely the form of the thermal conformal block decomposition given by
(2.17), with support only on the unit operator and double-twist operators (2.66),
whose one-point functions are given by

a1 = 1 , (2.72)

a[φφ]n,` = 2ζ(2∆φ + 2n+ `)
(`+ ν)(∆φ)`+n(∆φ − ν)n

n!(ν)`+n+1

.

In the free theory where ∆φ = ν, the spin-` currents J` ≡ [φφ]0,` have

aJ` = 2ζ(d− 2 + `) , (2.73)

Note that when d = 3, the coefficient aJ0 is divergent. This is because the zero mode
is badly behaved under dimensional reduction to d = 2, which is related to the fact
that the free boson in d = 2 with noncompact target space is pathological.

We can now compare the above results to those predicted by the inversion formula,
starting with the case d = 2 where the Gegenbauer polynomials take a simpler form.

Inversion in d = 2 MFT

As required in the inversion formula (3.7), we should be looking at discontinuities
across the real z axis for each term in (2.67),

Disc

[
1

((m− z)(m− z))∆φ

]
= 2 sin(π∆φ)

1

(m− z)∆φ(z −m)∆φ
θ(z −m) . (2.74)

Plugging (2.74) into the d = 2 inversion formula (2.52), we find

a(∆, `) =
(1 + (−1)`)

2π
2 sin(π∆φ)

∞∑
m=1

∫ 1

0

dz
z∆φ−h−1

(m− z)∆φ

∫ ∞
m

dz
z∆φ−h−1

(z −m)∆φ
. (2.75)

The z and z integrals in (2.75) are∫ 1

0

dz
z∆φ−h−1

(m− z)∆φ
=
∞∑
n=0

Γ(∆φ + n)

Γ(n+ 1)Γ(∆φ)

1

m∆φ+n

1

∆φ + n− h
, (2.76)

and ∫ ∞
m

dz
z∆φ−h−1

(z −m)∆φ
=

Γ(1−∆φ)Γ(h)

Γ(h−∆φ + 1)

1

mh
, (2.77)

respectively. As expected, (2.76) has poles at h = ∆φ + n, corresponding to MFT
operators (2.66). Computing the residues of each pole, we find

a(∆, `) =
∞∑
n=0

−1

∆− (2∆φ + 2n+ `)

×
(

2(1 + (−1)`)Γ(∆φ + n)Γ(∆φ + n+ `)

Γ(n+ 1)Γ(∆φ)2Γ(n+ `+ 1)
ζ(2∆φ + 2n+ `)

)
. (2.78)



47

Note that we get an extra factor of two when we write the pole in h as a pole in
∆. The thermal one-point function is minus the residue of the pole in ∆. Thus, the
thermal coefficient for double-twist operators of even spin can be read off as,

a[φφ]n,` = 4ζ(2∆φ + `+ 2n)
(∆φ)n+`(∆φ)n
n!Γ(n+ `+ 1)

, (2.79)

which is in agreement with (2.72) when ν = 0.

Inversion in d > 2 MFT

While in d = 2 one can obtain the contribution of all double-twist families through
simple integral manipulations, the d > 2 case will require a more careful series of
approximations to get the residues corresponding to each family’s pole.

Plugging in the discontinuity (2.74) into the inversion formula (3.7), we are left to
compute∫ 1

0

dz

z

∫ ∞
m

dz

z
(zz)∆φ−∆

2
−ν(z − z)2νFJ

(√
z

z

)
1

(m− z)∆φ(z −m)∆φ
. (2.80)

Again, poles for double-twist operators (2.66) come from the region of integration
near z ∼ 0. So we are free to rescale z → zz and set the integration range for z back
to [0, 1], since we will obtain the same pole location with the same residue. By also
rescaling z → mz, we find

m−∆

∫ 1

0

dz

z

∫ ∞
1

dz

z
(z2z)∆φ−∆

2
−νz2ν(1− z)2νFJ

(√
z
) 1

(1− zz)∆φ(z − 1)∆φ
. (2.81)

The z integral can be done explicitly, leaving the z integral

m−∆ Γ(1−∆φ)Γ(∆−∆φ)

Γ(1 + ∆− 2∆φ)

×
∫ 1

0

dz

z
z∆φ−∆

2
−ν(1− z)2ν

2F1(∆φ,−∆ + 2∆φ, 1−∆ + ∆φ, z)FJ

(√
z
)
. (2.82)

We can now expand in z and get a series of poles.

Let us focus on the first sets of poles in the integrand of (2.82) corresponding to the
[φφ]0,` and [φφ]1,` operators,

z∆φ−∆
2
−ν(1− z)2ν

2F1(∆φ,−∆ + 2∆φ, 1−∆ + ∆φ, z)FJ

(√
z
)

∼ z
J−∆

2
+∆φ

(
1 + z

(
∆φ(∆− 2∆φ)

∆−∆φ − 1
− (J + 2)ν

J + ν + 1

)
+ . . .

)
. (2.83)
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Multiplying this by the factor (1 + (−1)J)2 sin(π∆φ)KJ , left out in (2.80) for clarity,
gives the full contribution of these poles to a(∆, J). The first term gives a pole at
h = ∆φ of the form

a(∆, J) ⊃ (1 + (−1)J)2 sin(π∆φ)KJ

∞∑
m=1

1

m∆

Γ(1−∆φ)Γ(∆−∆φ)

Γ(∆− 2∆φ + 1)

1

∆φ − h

= (1 + (−1)J)ζ(2∆φ + J)
Γ(J + ∆φ)Γ(ν)

Γ(∆φ)Γ(J + ν)

−1

∆− (2∆φ + J)
, (2.84)

where we’ve set ∆ = 2∆φ + J in the last step to obtain the correct value of the
residue. This agrees with (2.72) at n = 0. The order z term in (2.83) gives

a(∆, J) ⊃ (1 + (−1)J)ζ(2∆φ + 2 + J)
(J + ν)(∆φ)J+1(∆φ − ν)

(ν)J+2

−1

∆− J − (2∆φ + 2)
.

(2.85)

This agrees with (2.72) at n = 1.

Note that the unit operator pole was absent in the above manipulations. This is
resolved by the presence of the “arc terms” in the Lorentzian inversion formula,
aarcs(∆, J), which we have neglected here. In the limit |w| → ∞, the MFT correlator
is simply given by lim|w|→∞ g(r, w) = 1/r2∆φ . The contribution of the contours given
by (2.50) precisely yields a pole corresponding to the unit operator at J = 0 ,∆ = 0

with residue equal to 1. We will witness a more intricate balance between the arc
and non-arc contributions when studying the O(N) vector model in the subsection
below.

2.5 Applications II: Large N CFTs

Consider a CFT with large central charge cT ∼ N2 → ∞. In the OPE regime, we
may organize two-point functions on S1

β × Rd−1 by powers of 1/N . Let us use the
canonical normalization

〈OO〉Rd ∼ N0 , 〈O1O2O3〉Rd ∼
1

N
, . . . , (2.86)

where Oi are single-trace operators. Then the thermal scalar two-point function
g(τ,x) receives the following types of contributions, organized by powers of 1/N

appearing in the OPE coefficients:

g(τ,x) ≈

(
〈1〉β +

∑
n,`

〈[φφ]n,`〉β

)
+

1

N

( ∑
O∈φ×φ

〈O〉β

)

+
1

N2

∑
n,`

〈[φφ]n,`〉β +
∑
n,`

∑
[OiOj ]n,`∈φ×φ

〈[OiOj]n,`〉β

+O

(
1

N3

)
,

(2.87)



49

where we have again defined the double-trace composite operators [AB]n,`, of schematic
form

[AB]n,` = A∂2n∂µ1 . . . ∂µ`B − (traces). (2.88)

The first group of operators in (2.87) represents the two-point function of MFT, in
which the [φφ]n,` appear with the MFT OPE coefficients, which can be found in
[87]; the second group represents single-trace operators; the third group represents
double-trace operators, including the 1/N2 corrections to the MFT exchanges; and so
on. However, this way of organizing the contributions is not terribly useful because
the one-point functions themselves scale with positive powers of N . In particular, in
the normalization (2.86), one-point functions of n-trace operators exhibit the leading-
order scaling

〈[A1 . . . An]〉β ∼ Nn + . . . . (2.89)

This implies an infinite set of contributions to g(τ,x) at order N0, which poses an
obvious challenge to computing g(τ,x), in contrast to the familiar 1/N counting used
in vacuum four-point functions.

We now study the inversion formula in the critical O(N) vector model, and discuss
some features of its application to CFTs with weakly coupled holographic duals.

2.5.1 O(N) vector model at large N

The critical O(N) model at large N has been studied in detail before [66, 88, 89].
This theory has cT = Ncfree to leading order in 1/N . The main feature we will need
is the value of the thermal mass. In the O(N) model at large N , the thermal mass
is equal to the expectation value of the IR operator σ, which appears in the action
after applying a Hubbard-Stratanovich transformation to the φ4 coupling:

L =
1

2
(∂µφi)

2 +
1

2
σφiφi −

σ2

4λ
. (2.90)

The critical point is obtained by taking λ → ∞ as σ2 becomes irrelevant in the IR.
In appendix A.3, we review the derivation of the following result [89]:

〈σ〉β = m2
th = β−2

[
2 log

(
1 +
√

5

2

)]2

+O (1/N) . (2.91)

As we shall see later in this section, the above formula for the thermal mass is inti-
mately related to correctly reproducing the O(N) singlet spectrum from the inversion
formula.
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Let us enumerate the O(N) singlets of the critical O(N) model whose thermal ex-
pectation values we will compute (any non-singlet has vanishing thermal one-point
function). The “single-trace” singlets are the scalar σ, with ∆ = 2 +O(1/N), and the
higher-spin currents J`, with ` ∈ 2Z+ and ∆ = `+ 1 +O(1/N). In the φi × φi OPE,
one generates the larger family of operators29

` > 0 : [φiφi]n,` = φi∂
µ1 . . . ∂µ`∂2nφi where ∆n,` = 1 + 2n+ `+ γn,` . (2.92)

where the anomalous dimensions are suppressed as γn,` ∼ O(1/N). For n = 0, these
operators are the slightly-broken higher-spin currents,

J` ≡ [φiφi]0,` , where ∆` = `+ 1 +O(1/N). (2.93)

The families (2.93) do not analytically continue down to ` = 0; instead, σ plays the
role of φiφi in the IR. Accordingly, the most basic scalar operators are powers of σ,

` = 0 : σm , where ∆m = 2m+O(1/N) . (2.94)

In what follows, we will compute thermal one-point functions of J` and σm, and
exhibit the algorithm for computing the one-point functions of [φiφi]n,` for all (n, `).

As discussed below (2.87), the thermal coefficients aO in large N CFTs receive contri-
butions from an infinite set of operators in the φφ OPE, due to the opposite large N
scaling of OPE coefficients fφφO and thermal one-point functions bO. That discussion
was for single-trace operators φ, but the same scaling holds for the φi fields in the
O(N) model, i.e.30

fφiφiσm√
cσm

∼ O
(

1

Nm/2

)
,

bσm√
cσm
∼ O(Nm/2) , ⇒ aσm ∼ O(1),

fφiφi[φiφi]n,`√
c[φiφi]n,`

∼ O
(

1

N
n+1

2

)
,

b[φiφi]n,`√
c[φiφi]n,`

∼ O(N
n+1

2 ) ⇒ a[φiφi]n,` ∼ O(1), (2.95)

where in order to derive the second set of scalings, we have used the schematic operator
relation ∂2φi ∼ σφi. We emphasize that the computation of aσm and a[φiφi]n,` (which
we will show below) gives a window into arbitrarily high orders in 1/N perturbation
theory: for instance, to derive fφiφiσm would require going to (m − 1)th order in
large-N , which is intractable using standard perturbative methods.

29Note that, due to the equation motion for σ, schematically of the form ∂2φi ∼ σφi, the n > 0
families in (2.92) may be related to families involving both φi and σ. For instance, [φiσφi]0,` ≡
φi∂

µ1 . . . ∂µ`σφi,∼ [φiφi]1,`. There are still other families of primary singlet operators which are not
of this form. For instance, [φiσφi]n,k,` = φi∂

µ1 . . . ∂µ`(∂2nσ)∂2kφi, with ∆n,k,` = 1 + 2n+ 2k+ 2 + `.
Note that such operators are degenerate in h and h for different values of n and k and may have
degenerate dimensions with some n > 0 operators in (2.92); in the presence of degeneracies, the
inversion method as presented here yields linear combinations of thermal one-point functions.

30We assume canonical normalization for the operators φi and σ: 〈φi(x)φj(0)〉 = δij/|x| and
〈σ(x)σ(0)〉 = δij/|x|4.
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Thermal two-point function review

The propagator for the field φi in Fourier space is given by,

Gij(ωn,k) = 〈φiφj〉(ωn,k) =
δij

ω2
n + k2 + σ

=
δij

ω2
n + k2 +m2

th
. (2.96)

At the saddle-point, the non-zero expectation of σ thus acts like a mass term which
is absent when considering the MFT propagator considered in section 2.4. We can
now use the Gij(ωn,k) to express the propagator in position-space as31

Gij(τ,x) = δij

∞∑
n=−∞

∫
d2k

(2π)2

e−ik·x−iωnτ

ω2
n + k2 +m2

th

= δij

∞∑
m=−∞

1

[(m− z)(m− z)]1/2
e−mth[(m−z)(m−z)]1/2 . (2.98)

This is similar to the MFT propagator (2.67), but with an exponentially decaying
factor multiplying each term. While in the MFT study in section 2.4, each term in
(2.67) could be expanded in Gegenbauer polynomials, to our knowledge an expansion
for each term in (2.98) cannot be found in the literature. Thus, we will seek to find
it using the Lorentzian inversion formula.

Inversion I: Higher-spin currents

We now use the inversion formula (3.7) to recover the thermal one-point functions of
the currents J`, and give implicit results for the higher families [φiφi]n,` with n > 0.

First one has to understand the discontinuities along the axis Im z = 0 with Re z > 1

for each term in (2.98):

Disc
e−mth[(m−z)(m−z)]1/2

[(m− z)(m− z)]1/2
=

2 cos
(
mth [(z −m)(m− z)]1/2

)
[(z −m)(m− z)]1/2

θ(z −m) . (2.99)

31To derive this, we use the Poisson resummation formula to turn a sum over Matsubara frequen-
cies ωn = 2πn into a sum over shifts in τ :∑

n∈Z
f̃(ωn)e−iωnτ =

∫
dω
∑
n∈Z

δ(ω − ωn)f̃(ω)e−iωτ =

∫
dω

2π

∑
m∈Z

e−iω(τ−m)f̃(ω) =
∑
m∈Z

f(τ −m).

(2.97)

Here, f̃ is the Fourier transform of f . Thus, we can Fourier transform Gij(ω,k) (treating ω, k as
continuous), which gives the Yukawa potential e−mth|x|

|x| . Then we sum over integer shifts in τ to
obtain (2.98).
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We now apply the inversion formula (3.7) to get the contribution of each term in
(2.98). We focus on the integral, multiplying overall factors at the end. We also
denote the spin as `, rather than J . For terms with m ≥ 1 we find, following the
same approximation scheme as in section 2.4 for d > 2 MFT (see around (2.81)),

2

∫ 1

0

dz

z

∫ ∞
m

dz

z
(zz)−

∆
2 (z − z)F`

(√
z

z

)
cos
(
mth [(z −m)(m− z)]1/2

)
[(z −m)(m− z)]1/2

−−−−→
z→mzz
z→mz

2

m∆

∫ ∞
1

dz z−∆

∫ z

0

dz

z
z−

∆
2 (1− z)F`

(√
z
) cos

(
mthm [(z − 1)(1− zz)]1/2

)
[(z − 1)(1− zz)]1/2

.

(2.100)

Expanding the integrand in (2.100) at small z,

(1− z)F`(
√
z)

cos
(
mthm

√
(z − 1)(1− zz)

)
[(z − 1)(1− zz)]1/2

=
z
`+1

2

√
z − 1

(
cos
(
mthm

√
z − 1

)
+O(z)

)
. (2.101)

The z integral at leading order gives rise to the contribution of the first double twist
family with h = 1/2, via

∫ z
0
dz z−(∆−`−1)/2 = z

1
2
−h/(1

2
− h) with a pole at h = 1/2.

Plugging this into (2.100), we now perform the z-integral to extract the residue at
h = 1/2, which is found to be

Res
h= 1

2

(2.100) = −2
5
2
−∆
√
π

Γ(∆)
m

∆− 1
2

th m−
1
2K∆− 1

2
(mthm), (2.102)

where ∆ = 1 + ` and K∆− 1
2
is the modified Bessel function. The full result requires a

sum over m as in (2.98); performing this sum, and appending overall factors from the
inversion formula, we find that the thermal coefficient aJ` for the higher-spin currents
J` is

aJ` = (1 + (−1)`)
2−

1
2
−`(mth)

1
2

+`

Γ
(

1
2

+ `
) ∞∑

m=1

m−
1
2K 1

2
+`(mthm). (2.103)

This sum can be performed to yield the following result:

aJ` =
∑̀
n=0

2n+1

n!

(`− n+ 1)n
(2`− n+ 1)n

mn
thLi`+1−n(e−mth). (2.104)

We can translate this to a result for the thermal one-point function, bJ` , itself, using
known results in the literature for the OPE coefficients fφiφiJ` , together with our φi
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normalization in footnote 30. From e.g. [90], in d = 3 we have

fφiφiJ`√
cJ`

=
1√
N

Γ

(
`+

1

2

)√
2`+1

π`
. (2.105)

Using the relation (2.17) between aO and bO, we find

bJ`√
cJ`

=

√
N2`+1`

`!

∑̀
n=0

2n

n!

(`− n+ 1)n
(2`− n+ 1)n

mn
thLi`+1−n(e−mth), (2.106)

which is the ratio that is independent of the norm of J`.

This is an elegant result. The case ` = 2 corresponds to the stress tensor. In this
case, the sum may be further simplified to yield

aT =
8

5
ζ(3) . (2.107)

Using (2.21), we see that this agrees with a previous result of [66, 73]. For the higher-
spin currents ` > 2, we are not aware of previous results in the literature for the
thermal one-point functions, so (2.106) are new. Intriguingly, aJ` is a transcendental
function of uniform transcendental weight ` + 1, where we note that mth is itself of
transcendental weight one. It would be fascinating to understand this transcenden-
tality better.

As mentioned in the introduction, this result has implications for higher-spin black
hole solutions of Vasiliev higher-spin gravity in AdS4. The translation invariance of
thermal one-point functions means that (2.106) are proportional to the higher-spin
charges of the CFT at finite temperature. Together with the thermal mass mth ∼
〈σ〉β, these charges fully determine the “higher-spin hair” of the putative black hole
solution dual to the CFT thermal state with vanishing higher-spin chemical potentials.
This black hole has not yet been constructed, due to difficulties in interpreting and
solving Vasiliev’s equations. Our result provides a benchmark, both for any explicit
candidate black hole, and for a physical interpretation of proposed constructions of
higher-spin gauge-invariant charges (see e.g. [91–95]).

It is not much more difficult to derive the one-point functions of the n > 0 families
appearing in (2.92). One simply has to keep higher orders in z in (2.101): a term of
O(zn) gives a pole at h = 1

2
+ n, i.e. for spin-` operators with ∆ = 1 + `+ 2n.

Inversion II: Scalars

The above results are incomplete in the scalar sector, and present a small puzzle.
Note that our final expression (2.103) was actually valid all the way down to ` = 0,
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which would correspond to a scalar with dimension ∆ = 1, even though such an
operator is absent. The same would happen for the poles with higher n > 0, which
would seem to indicate the presence of spurious scalars with odd integer dimension
∆ ∈ 2Z+ − 1. Moreover, we did not recover the ∆ = 2m scalar poles corresponding
to σm exchanges, nor the unit operator. As we now show, these issues are remedied
by considering the arc contributions to the inversion formula.

Following the notation in section 2.3.2.2 where z = rw and z = rw−1, we are interested
in computing the w → eiφ∞ behavior for each term in the propagator (2.98). In this
limit, the only surviving term is given by the m = 0 term,

Gij(r, |w| → ∞) =
δij
r
e−mthr . (2.108)

The contribution of the integral correction to the inversion formula is given by (2.52).
When plugging in the asymptotic value of the propagator, this becomes

aarcs(∆, `) = 2K`(1 + (−1)`)

∫ 1

0

drr−∆

∮
dw

iw
lim
|w|→∞

[(
1

i
(w − w−1)

)2ν

(
F`(w)e−iπν + F`(w

−1)eiπν
) ]1

r
e−mthr . (2.109)

The integral over w in the limit in which |w| → ∞ is trivial and simply gives a factor
of 2π when ` = 0 and 0 when ` > 0. This indeed confirms that the thermal coefficients
quoted above for the currents with ` > 0 are correct. For ` = 0, we are left with an
integral over r:

aarcs(∆, 0) =

∫ 1

0

dr

r

−1−∆

e−mthr , (2.110)

where we note that the factor 4πK`(1 + (−1)`) = 2 in the case ` = 0. The poles in ∆

of a(∆, `) are independent of the upper bound of the integral. Changing the upper
bound of the integral to ∞, we find the extremely simple formula:

aarcs(∆, 0) = m∆
th Γ(−∆) . (2.111)

Since Γ(x) has poles at each negative integer value of x, we can express the function
a(∆, 0) around each m ∈ Z+ as

aarcs(∆, 0) ∼ 1

∆−m
(−1)m+1mm

th

Γ(m+ 1)
. (2.112)

These poles do two things. First, they cancel all spurious scalar poles of a(∆, 0) at
∆ ∈ 2Z+ − 1. Second, they give the correct poles for the actual scalar operators of
the theory, which have ∆ ∈ 2Z+, as well as the unit operator pole.
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Let us first analyze the case m = 0. This simply returns a thermal one-point function
of 1, corresponding to a correctly normalized unit operator.

Next we take m = 1. This pole at ∆ = 1 and ` = 0 should cancel the spurious scalar
pole of the previous analysis. From (2.104), we get

a(∆, 0) ∼ −2 log (1− e−mth)

∆− 1
. (2.113)

This only cancels aarcs(∆, 0) when

−2 log(1− e−mth) = mth. (2.114)

The solution of this equation is uniquely given by the saddle point value of the thermal
mass in (2.91)! Thus, a correct value for the thermal mass in (2.98) is what yields the
precise cancellation of the ∆ = 1 scalar contribution from the non-arc terms to the
thermal one-point function obtained via inversion. Alternatively, this may be viewed
as a novel derivation of mth. Likewise, the spurious scalar poles with ∆ = 3, 5, . . .

that would arise from n > 0 terms in (2.100) should cancel against the m = 3, 5, . . .

terms in (2.112).

Finally, by taking m = 2Z+ in (2.112), we find the residue

Res
∆=2m

aarcs(∆, 0) = − m2m
th

Γ(2m+ 1)
. (2.115)

This gives a linear combination of the aO coefficients for all scalar operators O of
dimension ∆ = 2m. For m = 2, there is only a single operator, σ2. For higher values
of m, there are possible degeneracies, as briefly discussed in footnote 29.

2.5.2 Holographic CFTs

We now make some comments on large N CFTs in the context of AdS/CFT.

A universal set of contributions to the OPE expansion (2.87) comes from the stress
tensor, Tµν , and its multi-traces, [T . . . T ], which necessarily appear in the φ×φ OPE
for any φ. In a CFT with a weakly coupled gravity dual, these terms represent the
purely gravitational interactions between the bulk field Φ, dual to φ, and the thermal
geometry. The form of these contributions is sensitive to the gap scale to single-trace
higher-spin operators (J > 2), ∆gap. We would like to understand how.

First, consider the case ∆gap � 1, where the bulk dual is general relativity plus small
corrections, coupled to low-spin matter [96–99]. In this case, the thermal state on S1

β×
Rd−1 is dual to an AdSd+1-Schwarzchild black brane geometry with inverse Hawking
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temperature β,32 and the stress tensor contributions in the OPE decomposition (2.87)
are dual to the exchange of arbitrary numbers of gravitons between Φ and the black
brane. In a heavy probe limit 1� ∆φ �MplLAdS, the connected two-point function
may be computed as the exponential of a geodesic length, 〈φ(x)φ(0)〉β ∼ e−∆φx. The
disconnected component of the correlator, ∼ 〈φ〉2β, is computed as an infall of each
particle into the black brane horizon.33 This disconnected contribution goes to a
constant plus e−mthx corrections, and thus becomes more important at sufficiently
long distances.

It is instructive to examine the classic case of strongly coupled N = 4 super-Yang-
Mills (SYM), with SU(4)R symmetry. The single-trace scalar spectrum consists of
the Lagrangian operator, as well as the 1/2-BPS operators Op with p = 2, 3, 4, . . .,
which live in the [0, p, 0] representation of SU(4)R and have conformal dimensions
∆ = p. The R-symmetry constrains the thermal two-point functions 〈OpOp〉β to take
the form

〈Op(x)Op(0)〉β = 〈Op(x)Op(0)〉MFT
β + (stress tensor terms). (2.116)

That is, in the OPE decomposition of 〈OpOp〉β for any p, the stress tensor terms
are the only terms besides the MFT contributions at leading order in 1/N . This
follows from the absence of R-singlets in the single-trace spectrum besides the iden-
tity operator, the Lagrangian operator and the stress tensor, and the fact that the
Lagrangian carries charge under a emergent U(1)Y bonus symmetry [102]. The stress
tensor contribution, aT , exhibits a famous dependence on the ’t Hooft coupling λ

[103],
aT |λ→∞
aT |λ→0

=
bT |λ→∞
bT |λ→0

=
3

4
. (2.117)

In relating aT to bT , we have used that fOpOpTµν and CT are λ-independent.

In more general theories with large ∆gap and a sparse spectrum of light operators,
there can be single-trace global symmetry singlets, so contributions from operators
other than the stress tensor to the scalar two-point function g(τ,x) are possible. As
∆gap decreases, there are different possible sources of ∆gap corrections to thermal
correlation functions. First, the low-spin OPE data receive power-law corrections in

32At infinite spatial volume, thermal AdS is thermodynamically disfavored.
33This interaction requires a nonzero cubic coupling between two gravitons and Φ; this is forbidden

at the two-derivative level, but may appear at the four-derivative level in the form of a φC2
µνρσ

coupling, where Cµνρσ is the Weyl tensor (see e.g. [100] for an application). Such couplings are,
however, suppressed by the mass scale of higher-spin particles in the bulk [99] and, in more general
theories of gravity, by universal bounds [99, 101].
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∆gap. This includes the OPE coefficients of double-trace operators (see [104] for an
N = 4 example). In addition, there are e−∆gap corrections due to new contributions
of massive string states with ∆ ∼ ∆gap. At finite ∆gap, there are many possible
behaviors.

Finally, note that if instead we examine thermal two-point functions of the stress
tensor, 〈TµνTρσ〉β, the effects of large ∆gap are more visible. For instance, 〈TµνTρσTλη〉
and 〈TµνTρσO〉 couplings scale with inverse powers of ∆gap [96–99], thus suppressing
various possible contributions to 〈TµνTρσ〉β in the OPE limit. For many reasons, it
would be interesting to extend the methods discussed herein to the case of spinning
external operators, and to Tµν in particular; this would allow us to study the purely
gravitational physics of the thermal geometry in AdS, without the need for a probe
scalar field.

2.6 Large-spin perturbation theory

So far, our discussion of thermal two- and one-point functions has been in theories
where we have enough analytic control to explicitly compute the thermal two-point
functions, which we can invert to obtain one-point functions. How can we analyze
theories for which we don’t have any direct method of computing two- or one-point
functions, such as the 3d Ising CFT? Inspired by studies of CFT four-point functions
in Minkowski space, we use the inversion formula to set up a bootstrap algorithm for
the thermal data in any CFT. The inversion formula takes in the two-point function,
and returns its decomposition in the s-channel OPE. Crucially, any presentation of
the two-point function could be inserted into the inversion formula, and its inversion
would yield how the given presentation is related to the s-channel data. Here, we will
invert the t-channel OPE to the s-channel data. This relates the one-point functions
of operators in the theory in a highly non-trivial fashion. By iterating these relations,
we solve the thermal bootstrap in an all-orders asymptotic expansion in large spin,
J .

We can make explicit use of our tools in the 3d Ising model. As in MFT and the
O(N) model, low-twist operators can be arranged into double-twist families with
relatively small anomalous dimensions. By combining our analytic tools with previous
results from the four-point function bootstrap, we will estimate the thermal one-point
functions of the operators in the lowest-twist family, [σσ]0, as a function of bε and bT .
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2.6.1 Leading double-twist thermal coefficients

Let’s study the two-point function of identical scalars

g(z, z) = 〈φ(z, z)φ(0, 0)〉β , (2.118)

in some CFT at finite temperature. We want to understand the “contributions” to
the thermal coefficients of operators in the [φφ]0 family, a[φφ]0,J , from other thermal
data of the theory. Our starting point is the t-channel OPE (z ∼ z ∼ 1),

g(z, z) =
∑
O∈φ×φ

aO((1− z)(1− z))
∆O

2
−∆φC

(ν)
`O

(
1

2

(√
1− z
1− z

+

√
1− z
1− z

))
, (2.119)

which we will systematically invert to the s-channel data a(∆, J). Expanding the
Gegenbauer polynomials yields a power series in 1− z and 1− z:

g(z, z) =
∑
O∈φ×φ

aO

`O∑
k=0

Γ(`O − k + ν)Γ(k + ν)

Γ(`O − k + 1)Γ(k + 1)

1

Γ(ν)2
(1− z)hO−∆φ+k(1− z)hO−∆φ−k.

(2.120)

For future convenience, let’s define the coefficients

pk(`O) ≡ Γ(`O − k + ν)Γ(k + ν)

Γ(`O − k + 1)Γ(k + 1)

1

Γ(ν)2
. (2.121)

Massaging the inversion formula (3.7), we rewrite it as a series in z and z,

a(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ ∞
1

dz

z

∞∑
m=0

qm(J)z∆φ−h−mz∆φ−h+mDisc[g(z, z)] ,

(2.122)

with coefficients

qm(J) ≡ (−1)m
(J + 2m)

J

(J)m(−m+ ν + 1)m
m!(J + ν + 1)m

. (2.123)

Let’s suppose we are considering J large enough so that the contributions of the arcs
in (3.7) vanish.

Before inverting the t-channel OPE into a(∆, J), let’s analyze a few key features of
the inversion formula:

• First, as discussed previously, recall that poles of a(∆, J), associated with phys-
ical operators, come from the region near z = 0. A term like za in the expansion
around z = 0 inverts to terms of the form∫ 1

0

dz

z
z∆φ−h+mza =

1

∆φ + a+m− h
, (2.124)
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and gives poles at h = ∆φ + a + m. Such poles represent infinite families of
operators with unbounded spin J and scaling dimensions ∆ = 2∆φ+2a+2m+J .
Of course, in interacting CFTs, operators should have anomalous dimensions.
We discuss the effects that shift the locations of these naïve poles to their correct
values in section 2.6.2.3.

• Next, let’s imagine a term of the form za(1 − z)c in g(z, z) expanded around
the double-lightcone limit (z = 0 and z = 1), and invert it. The z integral
determines the residue of the poles in (2.124) as a function of h (recall that
h = h+ J). Typical z integrals are of the form∫ ∞

1

dz

z
z∆φ−h−mDisc[(1− z)c]. (2.125)

The discontinuity is Disc[(1− z)c] = 2 sin(−πc)(z − 1)c, so the integral gives

2 sin(−πc)Γ(1 + c)Γ(h+m−∆φ − c)
Γ(h+m−∆φ + 1)

. (2.126)

Note that this is naturally a term in a large-h expansion, since

Γ(h+m−∆φ − c)
Γ(h+m−∆φ + 1)

=
1

h
c+1 +O

(
1

h
c+2

)
. (2.127)

Thus, we see that terms in the double-lightcone expansion of g(z, z) correspond
to power law corrections in 1/h, or equivalently in 1/J , to the thermal coeffi-
cients of families of operators (in the s-channel).

• As highlighted in section 2.3.3, the t-channel OPE in (2.120) is valid for the
range 0 ≤ z, z ≤ 2. Thus, we are only justified in integrating the t-channel
OPE between 1 ≤ z ≤ 2 for the z integral. In general, we don’t have an
expression for g(z, z) that is valid in the region 0 ≤ z ≤ 1 and z > 2. Luckily,
for the integrands of interest, the z integral in the range z > 2 is exponentially
suppressed in large h, schematically as∫ ∞

2

dz

z
z∆φ−h−mf(z) ∼ 2−h . (2.128)

Therefore, we can work with the t-channel OPE, integrate it in the region of
its validity (from z = 1 to 2), and obtain an all-orders expansion in 1/h, with
undetermined exponentially-suppressed corrections.
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Now that we have oriented ourselves, let’s calculate the contributions to a(∆, J) from
a single primary operator O ∈ φ× φ in the t-channel OPE in its full glory. We take
the terms in the t-channel OPE corresponding to O, and invert them to the s-channel
via the inversion formula. We use a(O)(∆, J) to denote the contribution to a(∆, J)

from the inversion of the contribution of O in the t-channel. Then we find

a(O)(∆, J) ≈ (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ zmax

1

dz

z

∞∑
m=0

qm(J)z∆φ−h−mz∆φ−h+m

×Disc

[
aO

`O∑
k=0

pk(`O)(1− z)hO−∆φ+k(1− z)hO−∆φ−k

]

= aO(1 + (−1)J)KJ

∞∑
m=0

`O∑
k=0

qm(J)pk(`O)

× Γ(1 + hO −∆φ − k)Γ(∆φ +m− h)

Γ(hO − h+ 1− k +m)
2πShO−∆φ+k,∆φ−m(h) .

(2.129)

In general, we will think of a(∆, J) as a sum of such a(O)(∆, J), up to some finite spin
`max, plus contributions from sums over infinite families of operators with unbounded
spin, so

a(∆, J) ⊃
∑

O∈φ×φ, `<`max

a(O)(∆, J) . (2.130)

The reasoning behind separating out the sums to infinite spin will become apparent
in section 2.6.2. We have defined the function

Sc,∆(h) =
sin(−πc)

π

∫ zmax

1

dz

z
z∆−h(z − 1)c

=
1

Γ(−c)
Γ(h−∆− c)
Γ(h−∆ + 1)

− 1

Γ(−c)Γ(1 + c)
B1/zmax(h−∆− c, 1 + c) . (2.131)

Here B1/zmax(h−∆−c, 1+c) is the incomplete beta function, which decays as z−hmax at
large h. We have left zmax generic, but for all practical purposes we will take zmax = 2

in our applications.

The factors Γ(∆φ + m − h) in the numerator in (3.19) give poles at h = ∆φ + n for
n ∈ Z≥0. Naïvely, these are the poles corresponding to the [φφ]n families, at the naïve
dimensions ∆ = 2∆φ + 2n+ J , without anomalous dimensions. However, the correct
a(∆, J) has poles in ∆ at the exact dimensions, including anomalous dimensions, so
our naïve poles are shifted to their correct values,

1

∆φ + n− h
→ 1

∆φ + n+ δn(h)− h
. (2.132)
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This has a subtle, but important effect on the thermal coefficients. When one takes
the residue, there is an extra factor dh/dJ that depends on the derivative of δn(h),
since

Res
∆=2∆φ+2n+J+2δn(h)

1

∆φ + n+ δn(h)− h
= −2

1

1− δ′n(h)
= −2

dh

dJ
, (2.133)

as opposed to

Res
∆=2∆φ+2n+J

1

∆φ + n− h
= −2. (2.134)

Note that dh/dJ = 1 when anomalous dimensions vanish. In section 2.6.2.3, we will
provide a consistency check that the poles are indeed shifted to their correct locations.
In our discussion of sums over families below, we include dh

dJ
for two reasons: firstly,

it greatly simplifies the analysis of the asymptotics of such sums; secondly, we have
in mind a situation where the anomalous dimensions δn(h) are known through other
means (e.g. the vacuum four-point function bootstrap), and we would like to use that
information in the thermal bootstrap.

Finally, evaluating the residues of a(O)(∆, J) at the [φφ]n poles, we get the contribu-
tion of O to the thermal coefficients of the [φφ]n family,

a
(O)
[φφ]n

(J) = − Res
∆=2∆φ+2n+J

a(O)(∆, J)

= aO(1 + (−1)J)4πKJ
dh

dJ

n∑
r=0

`O∑
k=0

qr(J)pk(`O)(−1)n−r

×
(
hO −∆φ − k

n− r

)
ShO−∆φ+k,∆φ−r(h). (2.135)

Note that h is implicitly defined as a function of J by h = ∆φ + n + δ(h) + J . As
we have emphasized above, properties of using the OPE with the inversion formula,
these contributions are naturally organized as power-law corrections in large h. The
function Sc,∆(h) behaves as

Sc,∆(h) =
1

Γ(−c)
1

h
c+1 +O

(
1

h
c+2

)
(2.136)

at large h, and cm(J) behaves as a constant to leading order in 1/h. So a given term
in (3.21) starts at order h−(hO−∆φ+k+1). Thus, we see that the contribution of an
operator O in the t-channel behaves at a rate controlled by its twist. Concretely, the
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leading contributions in 1/h are given by the k = 0 term of the sum in (3.21),

a
(O)
[φφ]n

(J) = aO(1 + (−1)J)
KJ

K`O

dh

dJ

n∑
r=0

qr(J)(−1)n−r
(
hO −∆φ

n− r

)
ShO−∆φ,∆φ−r(h).

(2.137)

For the leading double-twist family [φφ]0, this further simplifies to

a
(O)
[φφ]0

(J) = aO(1 + (−1)J)
KJ

K`O

dh

dJ
ShO−∆φ,∆φ

(h)

∼ aO(1 + (−1)J)
KJ

K`O

1

h
hO−∆φ+1

+ . . . . (2.138)

In writing the last line, we have assumed that δ[φφ]0(h) grows slower than h as h→∞.

To help understand the examples that follow, let us introduce a diagrammatic lan-
guage that helps keep track of terms in large-spin perturbation theory of thermal
data. Our diagrams can be thought of as analogs of the four-point function large-spin
diagrams for the thermal case. We do not have a rigorous definition of these diagrams
or a complete set of rules for using them. Nevertheless, they will help organize the
discussion.34

For example, we can understand the fact that O ∈ φ×φ in the t-channel OPE inverts
to give contributions to a[φφ]n proportional to aO via the diagrams in figure 2.5. Let’s
start with the t-channel diagram in figure 2.5a. We should read this diagram from
left to right as two φ operators approach each other on one side of the thermal circle
(corresponding to the t-channel), and fuse into O, which in turn gets an expectation
value. The diagram illustrates that this process should be proportional to the three-
point coefficient fφφO and to the one-point function bO, which is indeed the case by
the definition of aO.

Now, let’s relate this process to the s-channel. The diagrammatic rule relating the s-
and t-channels is given by taking the two external operators to the other side of the
thermal circle around opposite sides. This converts the process in figure 2.5a to the
process in figure 2.5b. Reading the resulting process from right to left, we interpret it
as two external φ’s fusing into operators in the [φφ]n families, which get expectation
values proportional to aO.

34Large-spin diagrams for four-point functions can be understood as physical processes in the
massive 2d effective theory defined in [12]. It would be nice to develop a similar understanding of
the diagrams here. For now, our diagrams are simply mnemonic devices.



63

φ

φ

O

(a) t-channel

φ

φ

O

(b) s-channel

Figure 2.5: An illustration of the relation between s- and t-channels in the 〈φφ〉β
correlator. The two channels are related by moving the external operators around
the thermal circle (gray). A single term in the t-channel OPE O ∈ φ × φ inverts
to the sum over the [φφ]n families in the s-channel. Alternatively, the sum over the
[φφ]n families in the s-channel reproduces the O term in the t-channel.

Summarizing, we reiterate that the thermal coefficients of families of operators are
organized into large-spin expansions, with the operators O in the OPE contributing
perturbatively at order determined by their twist. Since the unit operator has the
lowest twist in any unitary theory, it gives the leading contribution for large-spin
members of double-twist families. A second important contribution comes from the
stress tensor O = Tµν , which gives a universal contribution proportional to the free
energy density. These two universal contributions were written in (2.5) in the intro-
duction. Furthermore, we also see that the contribution of a given O is linear in its
one-point function. This greatly simplifies perturbatively solving for the one-point
functions, especially when one considers the corrections from sums of families, which
we shall explore below.

2.6.2 Contributions of double-twist families: resumming, asymptotics,
and other families

We have seen that inverting any single operatorO in the φ×φOPE gives contributions
to the one-point functions of the [φφ]n families, and only these families. But many
other operators appear in the φ × φ OPE, and the inversion formula must pick up
their existence. How can we extract their one-point functions from 〈φφ〉β?

As seen in section 2.6.1, any finite number of terms in the t-channel OPE have “reg-
ular” z expansions around z ∼ 0, with integer z powers obtained from the Taylor
series of some collection of terms of the form (1 − z)c. Inverting such terms will
only give poles at h = ∆φ + n, which thus correspond to the [φφ]n families. So, to
obtain the necessary poles at other locations, we need to find terms in the t-channel
expansion that behave as zc with c /∈ Z≥0 near z ∼ 0. Such terms invert to poles
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at h = ∆φ + c + n, and correspond to different families determined by c. We will
call such terms “singular,” in analogy with the Casimir-singular definition of [12, 20].
Singular terms are characterized by having discontinuity around z ∼ 0, which means
they would be picked up by the Lorentzian inversion formula that takes the two-point
function and inverts it to the t-channel. The only way we can obtain singular terms is
from tails of the infinite sums of families in the t-channel OPE, which, when summed
up, will have different z behavior compared to any finite number of terms. A related
motivation for understanding this problem is to compute the contributions of the
[φφ]n families to their own one-point functions.

We will now explain how to systematically compute the contributions of double-twist
families to the one-point functions of operators that appear in the φ × φ OPE. To
begin, let’s focus on the contribution from summing the tail of the particular double-
twist family [φφ]0. Once again, we start with the t-channel OPE expansion, which
we now try to understand in the double-lightcone limit (z, z) ∼ (1, 0).

Let {O} be a set of operators in the φ×φ OPE with low twist. Inverting their terms
in the t-channel via section 2.6.1, we obtain from (2.138) the leading 1/h behavior of
the 1-point functions of the [φφ]0 family,

a[φφ]0(J) ∼
∑
O

aO
K`O

(1 + (−1)J)KJ
dh

dJ
ShO−∆φ,∆φ

(h). (2.139)

Now, let’s insert this expression for a[φφ]0 back into the t-channel OPE, and consider
the t-channel sum over the [φφ]0 family∑

[φφ]0,J∈[φφ]0

a[φφ]0(J)

4πKJ

(1− z)h−∆φ(1− z)h−∆φ

∼
∑
[φφ]0

∑
O

aO
4πK`O

(1 + (−1)J)
dh

dJ
ShO−∆φ,∆φ

(h)(1− z)h−∆φ(1− z)h−∆φ + . . . .

(2.140)

We wish to apply the inversion formula to this sum. If we naïvely invert each term in
the sum, and then sum over the family, we notice that the sum over the contributions
of each individual member of the family diverges. In other words, the inversion
formula and the infinite sum over the family do not commute. So, we have to sum over
the family first before inverting to the s-channel. This is in line with our anticipation
that the poles for other families must arise from the tails of the sums over infinite
families, such as [φφ]0. If the t-channel sum and the inversion integral commuted, we
would only ever get poles for the [φφ]n families from the inversion formula.
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2.6.2.1 Analytic and numerical formulae for sums over families

Let’s analyze the t-channel sum over a double-twist family more carefully, in the spirit
of [20]. Consider the sum over a particular term in the Sc,∆(h) expansion of one-point
functions of an arbitrary double-twist family,35

∑
h=hf+`+δ(h)

dh

d`
Sc,∆(h)(1− z)hf+δ(h)−he(1− z)h−he . (2.141)

Here, h = hf + ` + δ(h) runs over the family with anomalous dimensions δ(h), and
h(h) = hf+δ(h) are the half-twists of the operators in the family. We have switched to
denoting spin by ` for sums over families, to avoid conflict with applying the inversion
formula to these sums later on. We have left out the (−1)` factor for now; we will
return to it later. In general, this is a difficult sum to evaluate, and we don’t yet know
of an exact treatment. However, since anomalous dimensions δ(h) for the families of
interest are small for large h, we can work order by order in δ(h). Concretely, we can
split the sum over h as ∑

h

=
∑

h<h0+δ(h0)

+
∑

h=h0+`+δ(h)
`=0,1,...

, (2.142)

for some large enough h0 = hf + `0 such that the anomalous dimensions δ(h) are
sufficiently small for h > h0, and expand the infinite sum piece in small δ(h) log(1−z),

∑
h=h0+`+δ(h)

dh

d`
Sc,∆(h)(1− z)h−he

∞∑
m=0

δ(h)m

m!
logm(1− z)(1− z)hf−he . (2.143)

This expansion is valid in a regime e−1/|δ(h)| < |1 − z| < e1/|δ(h)|, which is near the
double-lightcone limit for small anomalous dimensions. Now, the dependence on z —
which controls the discontinuity in the inversion formula — can be factored out of the
h sum. Recall that the anomalous dimensions δ(h) are themselves analytic functions
of h, and they can be computed perturbatively in a large-h expansion [13–17, 20, 23].
For example, the anomalous dimensions of a family [φφ]0 can be expanded at large
h, and include terms such as

δ(h) ⊃
∑
O∈φ×φ

δ(O)

h
2hO

. (2.144)

35For he and hf , the indices e and f stand for “external” and “family.” For the two-point function
of two identical scalars φ, he = ∆φ.
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How can we compute the sums over h? With a more general treatment in mind, let’s
consider the sum ∑

h=h0+`+δ(h)

dh

d`
f(h)(1− z)h−he , (2.145)

with a summand f(h) which grows at most as a power law at large h. The summands
of interest for us are of the form36

f(h) = δm(h)Sc,∆(h) . (2.146)

If we tried to expand in small z and compute the h sum order by order in z, we
see that for large enough powers of z we get divergent sums in h. In fact, this is
to be expected. By the existence of the inversion formula, we know that such sums
must have asymptotic pieces that reproduce the singular terms za, which could not
possibly be obtained from expanding in z first (which produces only integer powers
of z). Thus, we expect the result of such a sum to be of the form

∑
h

dh

d`
f(h)(1− z)h−he =

∑
a∈A

caz
a +

∞∑
k=0

αkz
k, (2.147)

with A ⊂ R\Z≥0 some set of numbers which are not non-negative integers that we
have to determine. (We can also have za logm z terms that we will write as ∂m

∂am
za.)

Our task is reduced to computing the coefficients ca and αk. To do this, we will
separate the sum into asymptotic parts, which reproduce the za terms, and leftover
regular parts that are convergent sums in h, with which we can compute the αk
coefficients.

First, we determine the large-h asymptotics of f(h) in terms of the known functions
Sa,∆(h),

f(h) ∼
∑
a∈A

ca,∆[f ]Sa,∆(h). (2.148)

Note that the set A is determined by the asymptotics of f(h), but the expansion
can be written for any choice of ∆. For summands of interest like in (2.146), the
asymptotic expansion is determined algorithmically from the large-h expansions of
Sc,∆(h) and of δ(h) à la (2.144). Once the asymptotics in (2.148) are obtained, we

36We will also be interested in sums including derivatives ∂mc Sc,∆(h), as we will discuss later.
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can compute the singular terms from the tails of the sums over the asymptotics, by
using the crucial identity of the integer-spaced sum

∑
h=h0+`
`=0,1,...

Sc,∆(h)(1− z)h = (1− z)h0Sc,∆(h0)2F1

(
1, h0 −∆− c
h0 −∆ + 1

; 1− z
)

= zc(1− z)∆ − Sc−1,∆+1(h0)(1− z)h0
2F1

(
1, h0 −∆− c
−c+ 1

; z

)
. (2.149)

Note that the first term is singular and the second term, proportional to 2F1(· · · , z)

is regular.

We claim that the noninteger-spaced sum over Sc,∆(h) (with h determined by the
anomalous dimensions δ(h)) has the same singular piece as the integer-spaced sum,

∑
h=h0+`+δ(h)

dh

d`
Sc,∆(h)(1− z)h = zc(1− z)∆ + regular. (2.150)

This can be verified by an argument due to [20] applied to the present case. We
convert the sum to a contour integral via Cauchy’s residue theorem,37

∞∑
`=0

dh

d`
Sc,∆(h)(1− z)h = −

∮
γ

dh

2πi
π cot(π(h− h0 − δ(h)))Sc,∆(h)(1− z)h, (2.151)

where γ is a contour along the real axis that picks up the desired poles. We can deform
the contour to one that runs parallel to the imaginary axis, plus arcs at infinity. The
singular terms come from the asymptotics of this integral. As long as δ(h) grows
slower than h as h→ ±i∞, the asymptotic region of the integral approaches a δ(h)-
independent constant exponentially quickly, since

π cot(π(h− h0 − δ(h)))→ ∓1 +O(e∓2s) as h→ ±is. (2.152)

Therefore, the singular pieces are independent of δ(h). To be even more concrete,
we can subtract the contour integral versions of the noninteger- and integer-spaced
sums, and notice that the asymptotics vanish, or that if we expand the difference in
small z, the integrals in h are convergent term by term so the singular terms must
have canceled. Thus, we see that

∑
h

dh

d`
f(h)(1− z)h−he =

∑
a∈A

ca,∆[f ] za(1− z)∆−he + regular. (2.153)

37This is also known as the Sommerfeld-Watson transform.
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Note that we can always choose ∆ = he in the asymptotic expansion in (2.148) to
simplify the organization of the singular terms,∑

h

dh

d`
f(h)(1− z)h−he =

∑
a∈A

ca,he [f ] za + regular. (2.154)

We are left with computing the coefficients αk of the regular terms. Since we have
extracted the asymptotics, we can write convergent expressions for αk by subtracting
the asymptotics and expanding in small z. This will be best done by once again
converting the sum over h into a contour integral in the complex h plane, via Cauchy’s
theorem. We want to write a contour integral of the form∑

h=h0+`+δ(h)

dh

d`
f(h)(1− z)h−he =

∑
h=h0+`+δ(h)

dh

d`
f(h)

∞∑
k=0

(
h− he
k

)
(−1)kzk

= −
∮ hc+i∞

hc−i∞

dh

2πi
π cot(π(h− h0 − δ(h)))f(h)

∞∑
k=0

(
h− he
k

)
(−1)kzk,

(2.155)

where hc = h0 + δ(h0)− ε, for some small ε > 0. This contour integral will equal the
sum only if f(h) decays fast enough on the arcs at infinity so that we may drop them,
and if f(h) does not have any simple poles for Re h ≥ hc. The second condition is
easily remedied in case f(h) does have poles, by simply removing the residues coming
from those poles. The first condition is related to the more important issue that for
large enough k, the h growth is divergent, and the sum over k and the contour integral
do not commute. However, we can regulate the integral by subtracting the divergent
asymptotics in the form of the integer-spaced sum until we get a convergent integral
(for which the arcs vanish as well), and add back the known result of the integer-
spaced sum. This gives the following formula

αk[p, δ, he](h0) = −
∮ hc+i∞

hc−i∞

dh

2πi

(
h− he
k

)
(−1)kπ

×

cot(π(h− h0 − δ(h)))f(h)− cot(π(h− h0))
∑
a∈A
a<K

ca,∆Sa,∆(h)


+
∑
a∈A
a<K

ca,∆
(
rk(a,∆, he, h0) + sk(a,∆, he, h0)

)
. (2.156)

Here, K should be at least k, but larger K gives a faster converging integral. In the
last line, we have added back terms with rk, which is the coefficient of zk for the
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integer spaced sum in (2.149),

rk(a,∆, he, h0) = −Sa−1,∆+1(h0)(1− z)h0−he
2F1

(
1, h0 −∆− a
−a+ 1

; z

)∣∣∣∣
zk

= −Sa−1,∆+1(h0)
k∑

m=0

(−1)m
(
h0 − he
m

)
(h0 −∆− a)k−m

(−a+ 1)k−m
(2.157)

and sk, which is the contribution of spurious poles (coming from the asymptotics
Sa,∆(h) we subtracted) that are picked up by the contour when hc −∆− a ≤ 0,

sk(a,∆, he, h0) =

ba+∆−hcc∑
n=0

Res
h=a+∆−n

(
h− he
k

)
(−1)kπ cot(π(h− h0))Sa,∆(h)

=

ba+∆−hcc∑
n=0

(
a+ ∆− n− he

k

)
(−1)kπ cot(π(a+ ∆− n− h0))

(−1)n

n!Γ(−a)Γ(a− n+ 1)
.

(2.158)

The contour integral can be integrated numerically in Mathematica to high precision.

Finally, to finish our discussion, let’s consider the alternating sum,∑
h

(−1)`f(h)(1− z)h−he . (2.159)

This sum is convergent order by order in the z expansion, so one does not need to
subtract off asymptotics. This sum is given by∑

h

(−1)`
dh

d`
f(h)(1− z)h−he =

∑
k

α−k [f, δ, he](h0)zk, (2.160)

where the coefficients α−k are given by the contour integral with the replacement
cot→ csc,

α−k [f, δ, he](h0) = −
∮ hc+i∞

hc−i∞

dh

2πi

(
h− he
k

)
(−1)kπ csc(π(h− h0 − δ(h))) f(h).

(2.161)

Collecting our calculations, the full sum over operators with even spin is given by∑
h=h0+`+δ(h)

(1 + (−1)`)
dh

d`
f(h)(1− z)h−he

=
∑
a∈A

ca,∆[f ]za(1− z)∆−he +
∞∑
k=0

αeven
k [f, δ, he](h0)zk, (2.162)

where

αeven
k [f, δ, he](h0) = αk[f, δ, he](h0) + α−k [f, δ, he](h0). (2.163)
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2.6.2.2 Corrections to one-point functions from double-twist families

Armed with the technology to compute the sums over double-twist families, we return
to understanding their contributions to one-point functions of operators. Let’s recall
the t-channel sum over [φφ]0 in (2.140), and expand it in δ log(1− z) as in (2.143),

∑
O

aO
4πK`O

∑
h

(1 + (−1)`)
dh

d`
ShO−∆φ,∆φ

(h)(1− z)h−∆φ

×
∞∑
m=0

δ(h)m

m!
logm(1− z)(1− z)hf−∆φ . (2.164)

Here, the sum is over the operators [φφ]0,` with h = h0 + `+ δ[φφ]0(h), where h0 is the
h of the lowest spin member of the family where we started the sum. For each O,
summing over h yields

∞∑
m=0

(∑
a

ca,∆φ

[
δm

m!
ShO−∆φ,∆φ

]
za +

∞∑
k=0

αeven
k

[
δm

m!
ShO−∆φ,∆φ

, δ,∆φ

]
(h0)zk

)
× logm(1− z)(1− z)hf−∆φ .

(2.165)

For [φφ]0, hf = ∆φ, but we’ve kept it general here to demonstrate the general struc-
ture. Now, let’s invert this piece of the two-point function to the s-channel. The
integer powers zk invert to poles for [φφ]n, giving contributions to the one-point func-
tions of these families, including [φφ]0 itself. The contributions are controlled by

Disc[logm(1− z)(1− z)hf−∆φ ] = ∂mhfDisc[(1− z)hf−∆φ ], (2.166)

which inverts to a term

S
(m)
hf−∆φ

(h) = ∂mhfShf−∆φ
(h) (2.167)

in the large-h expansion of thermal coefficients. For example, including the self-
corrections of [φφ]0 to leading order in large spin yields

a[φφ]0(J) = (1 + (−1)J)KJ
dh

dJ

×
∑
O

aO
K`O

(
ShO−∆φ,∆φ

(h)

+
∞∑
m=0

αeven
0

[
δm

m!
ShO−∆φ,∆φ

, δ,∆φ

]
(h0)S

(m)
0,∆φ

(h)

)
.

(2.168)
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We should remember that if we started the sum at some high h0, we should individu-
ally add the contributions of the low-lying members of the family that were excluded
from the sum.

Once we have computed the self-corrections as in (2.168), there is nothing that stops
us from iterating this procedure and computing the self-corrections from the new,
once-self-corrected one-point functions. Instead of iterating indefinitely, we can solve
for the fixed point of these self-corrections with a little cleverness. We have provided
a method for this in appendix A.5.

The singular terms za in (2.165) give poles at h = ∆φ + a+ n. We expect that these
poles correspond to other families of operators with the given naïve twist — we will
soon explore which families. Let’s denote these families by [∆ + a]n for now. We see
that the [φφ]0 family contributes

a
([φφ]0)
[∆+a]n

(J) = (1 + (−1)J)KJ
dh

dJ

∑
O

aO
K`O

∑
m

ca,∆φ

[
δm

m!
ShO−∆φ,∆φ

]
S

(m)
0,∆φ

(h) (2.169)

to the one-point functions of the [∆ + a]n families. The sum is over m such that
Sa,∆φ

appears in the asymptotic expansion of δm

m!
ShO−∆φ,∆φ

. Of course, this is rather
schematic, since for interacting CFTs, the spectrum of families of higher-twist opera-
tors is very complicated, with large anomalous dimensions and mixing among families.
Regardless, these contributions are present asymptotically in large J .

φ φ

φ φ

O

(a) Single O exchange.

φ φ

φ φ

O . . .

(b) Exponentiation of O exchange.

Figure 2.6: Large-spin diagrams illustrating the contribution to the anomalous di-
mensions of [φφ]n from the exchange of O.

In general, can we say which other families of operators appear in the asymptotics
of the sum of a given family, and therefore receive contributions via (2.165)? The
large-spin expansion of the anomalous dimensions and OPE coefficients allows us to
answer this question. Suppose O is an operator in the φ× φ OPE. Then, O corrects
the anomalous dimensions of the [φφ]0 family, via the large-spin diagram in figure 2.6
[12, 20]. Consequently, there is a term in the asymptotic expansion of δ[φφ]0 that goes
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like

δ[φφ]0(h) ∼ δ
(O)
[φφ]0

h
−2hO

+ . . . (2.170)

where δ(O)
[φφ]0

is some coefficient. Now, imagine the contribution of the identity op-
erator to the [φφ]0 thermal coefficients, which goes like S−∆φ,∆φ

(h) to leading order.
Therefore, the sum over the [φφ]0 family to first order in δ[φφ]0 contains the asymptotic
term

δ[φφ]0(h)S−∆φ,∆φ
(h) ∼ δ

(O)
[φφ]0

S2hO−∆φ,∆φ
(h) + . . . (2.171)

This asymptotic piece corresponds to the diagram depicted in figure 2.7. In the t-
channel sum over the [φφ]0 family, this term produces the singular term z2hO−∆φ ,
which inverts to poles at h = 2hO + n, naïvely corresponding to the families [OO]n.
For example, the residue for [OO]0 from this contribution is

a
([φφ]0)
[OO]0

(J) = (1 + (−1)J)4πKJ
dh

dJ
δ

(O)
[φφ]0

S
(1)
0,∆φ

(h). (2.172)

Thus, we see that the [φφ]0 family contributes to the [OO]n families through its
anomalous dimension! Similar arguments apply to the [φφ]n families. We could have
guessed that we should obtain poles for the [OO]n families by crossing the diagram
in figure 2.7 to the s-channel. As demonstrated in figure 2.8, the resulting s-channel
process is proportional to b[OO]n , so the inversion to the s-channel must have produced
poles for [OO]n. We therefore see that the intuition from the diagrams agree with
concrete calculations! One can also check that the expression for b[OO]0 obtained from
the 〈φφ〉β correlator agrees with the expression obtained from the 〈OO〉β correlator
to leading order in the large-h expansion.

φ

φ

O ×

φ

φ

=

φ

φ

O

Figure 2.7: The diagram on the right can be thought of as the product of the two
subdiagrams. Reading it from left to right, it is comprised of the contribution of O to
the anomalous dimensions of [φφ]n, and the thermal coefficients of the [φφ]n families
proportional to b1. Accordingly, it should be interpreted as the asymptotic piece with
δ

(O)
[φφ]n

(h)× a(1)
[φφ]n

(h) in the sum over [φφ]0.
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φ

φ

O

(a) t-channel

φ

φ

O

(b) s-channel

Figure 2.8: The t-channel sum over the asymptotic parts represented by the diagram
on the left inverts to the s-channel process on the right. Accordingly, the inversion
should produce poles for the [OO]m families. The diagram on the right can itself be
deciphered by reading it from right to left; first the external φ operators form [φφ]n,
which mixes with [OO]m via exchange of a φ, then the [OO]m receive expectation
values proportional to b1.

In fact, the situation is much more general. For example, we can consider other terms
in the asymptotic expansion of a[φφ]0 , such as ShO′−∆φ,∆φ

(h) coming from some other
operatorO′. Then, the sum over [φφ]0 to first order in δ[φφ]0 produces the singular term
z2hO+h′O−∆φ , naïvely corresponding to multi-twist families [OOO′]. The diagrams for
the sum over this asymptotic piece and the corresponding s-channel process are given
in figure 2.9. We could also work to higher order in the anomalous dimensions, and
obtain poles for multi-twist families, and so on.

However, we are unsure what the precise rules are for which diagrams are allowed,
and how to interpret them in general. We will leave deriving these diagrams from
physical arguments and further generalizing them to a future project.

φ

φ

O
O′

(a) t-channel

φ

φ

O
O′

(b) s-channel

Figure 2.9: The t-channel diagram denotes a sum over the asymptotics δ(O)
[φφ]n

(h) ×
a

(O′)
[φφ]n

(h). This inverts to poles for the [OOO′]m families in the s-channel. When
O′ = 1, we omit the line by convention and recover figure 2.8.
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2.6.2.3 Corrections to pole locations

We are also in a position to address the issue of naïve versus true locations of poles
of a(∆, J), raised in section 2.6.1. Corrections to the locations of poles essentially
arise from the asymptotics of the sums over the terms S(m)

c,∆ (h) with m > 0. By taking
derivatives of the integer-spaced sum in (2.149),∑

h=h0+`
`=0,1,...

S
(m)
c,∆ (h)(1− z)h = zc(1− z)∆ logm z + regular, (2.173)

we see that sums over the asymptotics S(m)
c,∆ (h) produce logm z terms. Such logm z

terms in g(z, z) in turn shift the location of the poles of a(∆, J) obtained from the z
integral in the inversion formula. For a nice way to see this, let’s define the generating
function

g̃n(z, h) =

∫ zmax

1

dz

z
qn(J)z∆φ−h−nDisc[g(z, z)]. (2.174)

The thermal data a(∆, J) is obtained from g̃n(z, h) by doing the remaining z integral
in the inversion formula,

a(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∞∑
n=0

z∆φ−h+ng̃n(z, h). (2.175)

Now, consider the role of terms in g̃n(z, h) of the form

∞∑
m=0

fm(h) zc logm z. (2.176)

The claim is that such terms resum to f(h) zc+δ(h), thus changing the location of poles
as a function of h, i.e. introducing anomalous dimensions!

Let’s try to see this concretely. For example, how can we see the anomalous di-
mensions of [φφ]0 arise? The anomalous dimensions must arise from sums of infinite
families, yet which families? The anomalous dimension of [φφ]0 contributes to other
data in the theory, like in figures 2.8 and 2.9. What is the data in the theory that
gives rise to the anomalous dimensions? Of course, there is nothing special about
interpreting figures 2.8 and 2.9 as sums over [φφ]0 in the t-channel, which invert to
poles for the [OO] and [OOO′] families. Rather, these diagrams are supposed to be
crossing symmetric! So, we can flip s- and t-channels in these diagrams, sum over
the [OO] and [OOO′] families in the t-channel, and hopefully obtain the expected
corrections to the [φφ] anomalous dimensions when inverted to the s-channel.
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Let’s start with the simpler process in figure 2.8, but now with the [OO]0 family run-
ning in the t-channel. Recall that the t-channel sum over the [φφ]0 family inverted to
poles for the [OO]0 family (through the asymptotics in (2.171)) with residue a([φφ]0)

[OO]0
(J)

given in (2.172). The t-channel sum over the [OO]0 family looks like∑
[OO]0

a[OO]0(J)

4πKJ

(1− z)h−∆φ(1− z)h−∆φ (2.177)

to leading order in (1− z). Focusing on the term a
([φφ]0)
[OO]0

(J) of a[OO]0(J), we have the
sum ∑

[OO]0

(1 + (−1)J)
dh

dJ
δ

(O)
[φφ]0

S
(1)
0,∆φ

(h)(1− z)h−∆φ(1− z)h−∆φ . (2.178)

Let’s assume that O 6= φ, so ∆O 6= ∆φ. Then, expanding to leading (constant) order
in δ[OO]0(h), the sum becomes

∑
[OO]0

(1 + (−1)J)
dh

dJ
δ

(O)
[φφ]0

S
(1)
0,∆φ

(h)(1− z)∆O−∆φ(1− z)h−∆φ

= δ
(O)
[φφ]0

log z(1− z)∆O−∆φ + . . . . (2.179)

If O = φ is in the φ× φ OPE, we should consider the sum over δ[φφ]0(h)a[φφ]0(J),

∑
[φφ]0

(1 + (−1)J)
dh

dJ
δ

(φ)
[φφ]0

1

h
∆φ
S−∆φ,∆φ

(h) log(1− z)(1− z)h−∆φ

=
∑
[φφ]0

(1 + (−1)J)
dh

dJ

−δ(φ)
[φφ]0

Γ(∆φ)
S

(1)
0,∆φ

(h) log(1− z)(1− z)h−∆φ + . . .

= −
δ

(φ)
[φφ]0

Γ(∆φ)
log z log(1− z) + . . . . (2.180)

Note that we have we have used the asymptotic expansion

1

h
aS−a,∆(h) = − 1

Γ(a)
S

(1)
0,∆(h) + . . . . (2.181)

Doing the z integral and summing over O, we obtain the contribution to g̃0(z, h)

∑
O∈φ×φ
O6=φ

δ
(O)
[φφ]0

log z S∆O−∆φ,∆φ
(h)−

δ
(φ)
[φφ]0

Γ(∆φ)
log z S

(1)
0,∆φ

(h). (2.182)
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Now, let’s combine this with the contribution of the unit operator to g̃0(z, h),

g̃0(z, h) = S−∆φ,∆φ
(h) + log z

 ∑
O∈φ×φ
O6=φ

δ
(O)
[φφ]0

S∆O−∆φ,∆φ
(h)−

δ
(φ)
[φφ]0

Γ(∆φ)
S

(1)
0,∆φ

(h)

+ . . .

= S−∆φ,∆φ
(h)

(
1 + log z

∑
O∈φ×φ

δ
(O)
[φφ]0

1

h
∆O

+ . . .

)
+ . . . . (2.183)

In the last step, we reverted the asymptotic expansion in (2.181) to separate the
contribution to the pole location from the residue. This looks like the first few terms in
the expansion of S−∆φ,∆φ

(h)zδ[φφ]0
(h) in small δ[φφ]0(h) log z and in large h. The higher

powers of log z come from the exponentiation of the anomalous dimension, which
arise from sums over multi-twist families, such as in the diagram depicted in figure
2.10. Essentially, any contribution to the anomalous dimension can be recovered by
embedding the corresponding four-point function large-spin diagram and performing
the thermal crossing operation. Thus, we see the beginnings of a self-consistent story
of how the anomalous dimensions are incorporated into the large-spin perturbation
theory of the thermal data. We can do the exact analysis with other asymptotics of
a[φφ]0(J), by reversing the diagram in figure 2.9 and thinking of the sum over [OOO′].
Repeating our analysis above line by line, we’ll start to recover the O corrections to
the anomalous dimensions for the poles proportional to aO′ .

. . .

φ

φ

O

(a) s-channel

..

φ

φ

O

(b) t-channel

Figure 2.10: Higher order terms δm[φφ] logm z that sum up to shift the [φφ] poles in
a(∆, J) are produced by sums over multi-twist families in the t-channel.

We can also see how the anomalous dimensions of families other than [φφ]0 arise as
well. Let’s consider a double-twist family [OO] for some O ∈ φ× φ with O 6= φ, and
think about how their anomalous dimensions appear to correct their pole locations in
a(∆, J). Applying our thinking above, we can first find which families δ[OO] contribute
to, and then reverse the process. This leads us to the process illustrated in figure 2.11.
Let’s see if the diagram indeed checks out. For simplicity, let’s consider the [OO]0
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O′

φ

φ

O

(a) s-channel

φ

φ

O
O′

(b) t-channel

Figure 2.11: Poles in a(∆, J) for other double-twist families [OO] in 〈φφ〉 shift
by anomalous dimensions through sums over multi-twist families [φφO′O′] in the
t-channel.

family, and suppose O′ ∈ O ×O, so

δ[OO]0(h) ⊃ δ
(O′)
[OO]0

1

h
2hO′

. (2.184)

Using the leading expression for a[OO]0 computed in (2.172), we see that the t-channel
sum over [OO]0 to first order in δ[OO]0 produces the singular term∑

[OO]0

(1 + (−1)J)a[OO]0(J)δ[OO]0(h)(1− z)∆O−∆φ log(1− z)(1− z)h−∆φ

⊃ −Γ(−2hO′)δ
(O)
[φφ]0

δ
(O′)
[OO]0

z2hO′ (1− z)∆O−∆φ log(1− z),

(2.185)

where we have used the asymptotic expansion38

1

h
aS

(1)
0,∆(h) = −Γ(−a)Sa,∆(h) + . . . , (2.186)

which can be obtained from the asymptotic expansion in (2.181). Such a term inverts
to poles for the multi-twist families [φφO′O′]n, as we expected from the diagram. The
lowest-twist family has the leading residue

a[φφO′O′]0(J) ⊃ (1 + (−1)J)4πKJ
dh

dJ
δ

(O)
[φφ]0

(−Γ(−2hO′))δ
(O′)
[OO]0

S
(1)
∆O−∆φ,∆φ

(h). (2.187)

Now, let’s reverse the diagram, which tells us to sum over [φφO′O′]0 in the t-channel
to constant order in their anomalous dimensions. Performing this sum yields the
singular terms

−Γ(−2hO′)δ
(O)
[φφ]0

δ
(O′)
[OO]0

z∆O−∆φ log z(1− z)2hO′ + . . . (2.188)

38For positive integer values of a, this asymptotic expansion is slightly modified, and one needs
to be more careful with the analysis that follows.
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which contribute the expected first-order shift to the [OO]0 poles, since

g̃0(z, h) ⊃ δ
(O)
[φφ]0

z∆O−∆φ

(
S

(1)
0,∆φ

(h)− log z
∑

O′∈O×O

Γ(−2hO′)δ
(O′)
[OO]0

S2hO′ ,∆φ
(h) + . . .

)

= δ
(O)
[φφ]0

z∆O−∆φS
(1)
0,∆φ

(h)

(
1 + log z

∑
O′∈O×O

δ
(O′)
[OO]0

1

h2hO′
+ . . .

)
. (2.189)

We see that we begin recovering the correct pole locations of the [OO]0 family in the
inversion of the 〈φφ〉β correlator. Once again, the higher-order corrections come from
diagrams with exponentiated anomalous dimensions analogous to figure 2.10.

2.6.3 Case study: 〈[σσ]0〉β in the 3d Ising model

Our primary example for applying the above technology is the 3d Ising CFT. At
this point, much is known both analytically and numerically about the spectrum and
OPE data of the 3d Ising CFT. This abundance of data makes the 3d Ising CFT a
natural and ideal candidate for studying thermal correlators. In [20], the low-twist
spectrum of the 3d Ising CFT has been computed via the lightcone four-point function
bootstrap. Especially relevant to our analysis here is the analytic computation for
the anomalous dimensions and OPE coefficients of the most important double-twist
family, [σσ]0, which has the lowest twist trajectory. Taking the spectrum and OPE
data as input, we will apply the thermal bootstrap to study the thermal coefficients
of the [σσ]0 family.

The most natural way to get a handle on the [σσ]0 family is by studying the thermal
correlator 〈σσ〉β. Let’s remind ourselves about the relevant low-twist spectrum of the
3d Ising CFT. The first few lowest-twist primary operators in the σ × σ OPE are

σ × σ = 1 + ε+ T +
∑

`=4,6,...

[σσ]0,` + . . . . (2.190)

Our strategy will be to determine the thermal coefficients of [σσ]0 in terms of bε
and bT , which we treat as unknowns. In chapter 3, we will show how information
about the low-twist families can be used in conjunction with the KMS condition in
the Euclidean regime to “tie the knot” on the thermal bootstrap and estimate some
thermal coefficients in the theory including bε and bT .

To numerically study the thermal coefficients in the [σσ]0 family, we use the scaling
dimensions of σ and ε, obtained from the numerical bootstrap study [56]

∆σ = .5181489(10), ∆ε = 1.412625(10) . (2.191)
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Using our result (2.138), together with these numerical values, we compute the leading
contributions to the [σσ]0 one-point functions,

a[σσ]0(J) =
∑
O=1,ε,T

aO(1 + (−1)J)
KJ

K`O

∂h

∂J
ShO−∆σ ,∆σ(h). (2.192)

To emphasize the utility of this result, we can write the large-spin expansion of the
thermal coefficients

a[σσ]0(J) = (1 + (−1)J)

[
1

J
1
2
−∆σ

(
1.0354 + 0.000171

1

J
+O

(
1

J2

))
+

aT
J1−∆σ

(
0.01218 + 0.001414

1

J
+O

(
1

J2

))
+

aε

J
1
2

+ ∆ε
2
−∆σ

(
−0.28971− 0.06859

1

J
−O

(
1

J2

))
+ . . .

]
,

(2.193)

where terms on each line come from the unit operator, the stress tensor and the ε
operator respectively. The final “ . . . ” include contributions of other operators that
are either suppressed in the 1/J expansion or with coefficients small enough that they
can be neglected for reasonable values of the spin.

To go beyond asymptotically large spin and estimate thermal coefficients for oper-
ators with small spin, we should include higher-order corrections in 1/J . The next
contributions come from the [σσ]0 family themselves. Thus, we need to sum over the
[σσ]0 family next. We use the leading expressions in the large-spin expansion (2.144)
of the anomalous dimensions of [σσ]0, which were computed in [20] as

δ[σσ]0(h) ∼ −0.001422
1

h
− 0.04627

1

h
∆ε

+ . . . . (2.194)

Upon first iteration, when considering the corrections from [σσ]0 to itself only once,
the corrected thermal coefficient is given by (2.168),

a[σσ]0(J) =
∑
O=1,ε,T

aO(1 + (−1)J)
KJ

K`O

dh

dJ

×

(
ShO−∆σ ,∆σ(h)

+
∞∑
m=0

αeven
0

[
δm[σσ]0

m!
ShO−∆σ ,∆σ , δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
0,∆σ

(h)

)
. (2.195)
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We can compute the fixed point of the self corrections above using appendix A.5,
with (3.28) as input. It turns out that the self-corrections of operators in the [σσ]0

family is given by convergent sums over operators in the [σσ]0 family, so one can
also evaluate the sums numerically by choosing a large spin cut-off. By recursively
repeating this numerical process the results converge to the fixed point determined
analytically à la appendix A.5.39

To be concrete, the table below shows a few examples for the values of the thermal
coefficients a[σσ]0,` and for the thermal one-point functions b[σσ]0,` :

` a[σσ]0,` b[σσ]0,`/
√
c[σσ]0,`

4 2.1113− 0.2163aε + 0.0102aT 33.431− 3.4255aε + 0.16182aT
6 2.1483− 0.1724aε + 0.0092aT 246.29− 19.773aε + 1.0500aT
8 2.1628− 0.1428aε + 0.0083aT 1844.1− 121.72aε + 7.0586aT
10 2.1714− 0.1223aε + 0.0076aT 1.3982× 104 − 787.68aε + 48.839aT

Table 2.1: The thermal coefficients and one-point functions for operators in the [σσ]0
family, a[σσ]0,` and, b[σσ]0,`/

√
c[σσ]0,` respectively. Both coefficients are shown in terms

of the unknown thermal coefficients aε and aT and include self-corrections from op-
erators in the [σσ]0 family and are shown in the normalization in which fσσ[σσ]0,` is
positive. As explained in section 2.2.1.1, the Monte Carlo results in [74–76] lead to
bT = −0.459, or aT = 2.105. This value is consistent with the estimate obtained
in appendix A.1. We determine the thermal coefficients aε and aT using bootstrap
methods in chapter 3.

2.7 Conclusions and future work

Modern advances in the conformal bootstrap have focused almost entirely on con-
straining OPE data using CFT correlation functions in flat space. Is there potential
for more? A broader perspective on the bootstrap suggests future extensions toward
probing dynamical questions in CFT, which are not obviously determined by OPE
data in a tractable way.

As a step toward this end, we have developed an approach to bounding CFT observ-
ables at finite temperature. Treating the thermal two-point function on S1

β ×Rd−1 in
analogy with the flat-space four-point function, and the KMS condition as the analog
of the crossing equations, one extracts constraints on the thermal one-point functions
of local operators. A key intermediate tool (of independent interest) in realizing this
approach was to derive a Lorentzian inversion formula (3.7) which, given a thermal

39We find that for small values of the spin the contribution of the stress-energy tensor is the most
affected by self-corrections, with a 20% correction for J = 4.
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two-point function, extracts thermal one-point coefficients and operator scaling di-
mensions. We applied this technique to the d = 3 critical O(N) model, which yielded
thermal one-point functions of higher-spin currents (2.106) and some scalar operators
(2.115). More generally, we developed a large-spin perturbation theory, applicable
to any CFT, in which thermal one-point functions are determined via an analytic
expansion in inverse operator spin J . This included the universal contributions to
thermal coefficients of double-twist operators, a[φφ]0,J , from the presence of the unit
operator and the stress tensor in the φ× φ OPE (2.5). By summing over entire fam-
ilies of operators and plugging back into the large spin expansion, one can solve for
CFT data to increasingly high accuracy. Together with the KMS crossing condition,
this suggests an iterative algorithm, discussed further below, with which to “solve”
the thermal sector of an abstract CFT.

There are many future directions to explore:

• In this work, we mostly consider a single thermal two-point function. How-
ever, the same one-point coefficients appear in the OPE decomposition of every
two-point function in a theory (except when forbidden by symmetry). Thus, it
might be very constraining to study larger systems of two-point functions si-
multaneously. We demonstrate the power of this observation when we consider
a system of two correlators to study the 3d Ising CFT in chapter 3.

• A more straightforward generalization of our work would be to study thermal
two-point functions of spinning operators. This is likely easier than studying
spinning four-point functions on Rd, due to the simplicity of the spinning ther-
mal conformal blocks [71].

• Our Lorentzian inversion formula makes it straightforward to compute the per-
turbative expansion of thermal data to all orders in 1/J , using the t-channel
OPE for z < 2. However, there are also nonperturbative corrections that decay
exponentially in J , coming from the region z > 2 (outside the regime of valid-
ity of the t-channel OPE). How can we compute these corrections? Answering
this question may require understanding the full analytic structure of thermal
two-point functions better.

• It would be interesting to study more general compactifications. For example,
one could study two-point functions on T n × Rd−n for n ≥ 2. On the other
hand, there can also be multiple one-point structures on T n for n ≥ 2, so there
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is more data to compute. For recent work on CFTs on spatial tori, see [105,
106].

• We derived thermal one-point functions of all single-trace operators in the crit-
ical O(N) model in d = 3. A clear target for the future is to generalize these
results to other slightly broken higher-spin CFTs, such as the Chern-Simons-
fundamental matter theories that are continuously connected to theO(N) model
[107, 108]. The thermal mass and some current-current correlation functions at
nonzero temperature have been computed in the large N limit of these theories,
for arbitrary ’t Hooft coupling λ [107, 109–111]. It would be satisfying if the
thermal one-point functions bJ` in these Chern-Simons-matter theories take the
same form as in (2.106), with the appropriate thermal mass mth(λ). More gen-
erally, we would like to understand the constraints of slightly broken higher-spin
symmetry on thermal correlations, in the spirit of [16, 65, 112, 113].

• Through the study of holographic CFTs, one can get a better intuition for the
applicability of the inversion formula down to small values of the spin. Such
a direction would entail studying the holographic thermal two-point function
in the regimes discussed in section 2.3.5, in which |w| → ∞. Besides offering
better intuition for the applicability of the inversion formula, as discussed in
section 2.5.2, the study of such a regime would also be illuminating for under-
standing the thermal properties of the stress-energy tensor as implied by black
hole physics. It should also be possible to define geodesic Witten diagrams
[114, 115] for black hole backgrounds in AdSd≥4, which should define an effec-
tive two-point “thermal conformal block” for d ≥ 3 CFTs with large higher-spin
gap.

• In section 2.6, it proved useful to use diagrams to organize terms in large-spin
perturbation theory for thermal correlators. It would be nice to place these
diagrams on firmer footing by giving a complete specification of the rules they
satisfy and what terms they correspond to. This problem is already interesting
in the context of large-spin perturbation theory for four-point functions [20,
116], where the diagrams have an interpretation in terms of physical processes
in a special conformal frame [12].

• We have made predictions for thermal one-point functions in the 3d Ising CFT
in terms of some unknowns, of which we expect bT (computed via Monte Carlo
in [74–76]) and bε are the most important. It would be nice to compute bε. To
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our knowledge, it is not present in the literature, but should be straightforward
to compute using e.g. using Monte Carlo simulation [117].40 We will explore
this in chapter 3.

• While in this paper we have made contact with the 3d Ising model by finding
the large-spin expansion for the thermal one-point functions b[σσ]0,J , one can
imagine a more involved iterative strategy to solve the thermal bootstrap in
the double-lightcone limit. This strategy can be summarized in the following
diagram:

Following our study in section 2.6.3, we start by considering the OPE pre-
sentation of the thermal two-point function 〈σσ〉β, with the thermal one-point
functions of a few low-twist operators as unknowns (in section 2.6.3, we con-
sider bε and bT as unknowns). Then, we use the inversion formula on 〈σσ〉β in
the double lightcone limit to determine the thermal coefficients of all remaining
operators in the [σσ]0 family as functions of the unknowns. Next, using the
technology we developed in section 2.6.2, we sum over the [σσ]0 family to de-
termine the self-corrections to the thermal coefficients of the [σσ]0 family, and
also determine the thermal coefficients for the [σσ]1 and [εε]0 families.

In principle, this process can be iterated further by summing over more and
more families, and obtaining higher-order terms in the large-spin expansion.
Also, by studying the thermal two-point functions of other operators, we get
alternative handles on the thermal coefficients of families of operators. For
instance, studying 〈εε〉β yields more direct information about the [εε]0 family.
Once the thermal coefficients of families of interest are determined to desired
order, we have expressions for a large part of the low-twist spectrum, which
still depend only on the unknown thermal one-point functions of the chosen
low-twist operators (bε and bT ). Finally, these unknowns can be determined by

40See [32] where similar quantities were computed for the O(2) model.
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moving away from the double lightcone limit and applying the KMS condition,
thus determining the low-twist thermal one-point functions of the 3d Ising CFT.
This procedure is the main subject of chapter 3.

• The eigenstate thermalization hypothesis (ETH) suggests that we can study
thermal correlators as a limit of expectation values in a single eigenstate |O〉
with sufficiently large dimension. See [118] for a recent discussion of ETH in the
context of CFTs. Assuming ETH, a thermal two-point function 〈φ(x1)φ(x2)〉β
is a limit of a family of four-point functions 〈O(0)φ(x1)φ(x2)O(∞)〉, where we
take ∆O → ∞, x12 → 0 with the product ∆O|x12| held fixed.41 It would be
interesting to understand whether the ability to view thermal correlators as
limits of pure correlators can bring new constraints to the thermal bootstrap.
Note that certain properties of vacuum four-point functions may not survive
the thermodynamic limit. For example, the analyticity structure changes, with
the development of new “forbidden singularities” reflecting periodicity of the
thermal circle [120].

• One big arena of physics at nonzero temperature that we have not even touched
upon in this paper is transport. Quantities like the diffusivity, viscosity, electri-
cal conductivity, and thermal conductivity are basic experimentally measurable
quantities that provide a wealth of information about the low-energy excitations
of a system. These transport coefficients have well-known expressions in terms
of two-point functions of components of conserved currents or the stress-energy
tensor [121–123]. The most interesting limit of the thermal two-point functions
for transport phenomena is the low frequency limit, which translates to large
separations in position space.

Apart from weak coupling expansions, transport has been exhaustively studied
from a holographic perspective: For a recent review, see [124].

While the OPE of the thermal two-point function strongly constrains the short
distance dynamics in the CFT, it does not directly constrain the long-distance
behavior due to the absence of any OPE channel for |x| > β. It is easy to derive
functional forms for correlators in the diffusive regime via hydrodynamics, which
is the correct low-energy description [125]. Can bootstrap techniques allow us
to derive this specific form of the diffusive correlator, and the value of the
energy diffusion constant for the 3D Ising model? It would be very interesting
to connect the OPE regime to the hydrodynamic regimes in a CFT.

41A similar thermodynamic limit was studied for large-charge correlators in [119].
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C h a p t e r 3

BOOTSTRAPPING THE 3D ISING MODEL AT FINITE
TEMPERATURE

1L. Iliesiu, M. Koloğlu, and D. Simmons-Duffin, “Bootstrapping the 3d Ising model
at finite temperature”, (2018), arXiv:1811.05451 [hep-th].

3.1 Introduction

In chapter 2, we initiated a study of conformal field theories at finite (i.e. nonzero)
temperature in d > 2 dimensions, using techniques from the conformal bootstrap.
At finite temperature, the operator product expansion (OPE) can still be used to
reduce n-point correlators to sums of n−1-point correlators. However, an important
new ingredient at temperature T = 1/β is that non-unit operators can have nonzero
one-point functions 〈O〉β. For example, the thermal one-point function of the stress
tensor 〈Tµν〉β encodes the free-energy density.

Thermal one-point functions are constrained by a type of “crossing-equation” first
written down by El-Showk and Papadodimas [38]. They noted that the Kubo-Martin-
Schwinger (KMS) condition for thermal two-point functions is not manifestly consis-
tent with the OPE, and this leads to constraints on CFT data. An efficient way to
study these constraints is to use the thermal Lorentzian inversion formula developed
in chapter 2, which is an analog of Caron-Huot’s Lorentzian inversion formula for
zero-temperature four-point functions [25, 26, 28].

In this work, we apply these ideas to estimate thermal one- and two-point functions
in a strongly-coupled conformal field theory in d = 3 dimensions: the 3d Ising CFT.
Physically, this theory describes the 2+1-dimensional quantum transverse field Ising
model at nonzero temperature, and the 3-dimensional statistical Ising model with a
periodic direction of length β (both at criticality).1 Besides its physical interest, an
advantage of studying the 3d Ising CFT is that we can leverage a wealth of information
about its zero-temperature OPE data from the conformal bootstrap [20, 41, 54–56].
The 3d Ising CFT is a case where Monte Carlo (MC) techniques are also very efficient
for computing some finite-temperature observables [126]. However, we believe it is

1Note that the temperature we discuss in this work is not related to the “temperature” of the
statistical Ising model that determines the spin-spin coupling. The latter quantity is set to its critical
value.

http://arxiv.org/abs/1811.05451
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worthwhile to develop bootstrap-based approaches. One might hope to eventually
apply these approaches to theories that are more difficult to study with MC, like
fermionic theories, or non-Lagrangian CFTs.

The thermal crossing equation of El-Showk and Papadodimas is difficult to study for
two reasons. Firstly, it does not enjoy the positivity conditions that are important
for rigorous numerical bootstrap techniques to work [11, 39, 40, 42, 43, 127]. Thus,
we will not be able to compute rigorous bounds on thermal data and will have to
content ourselves with estimates. Our rough strategy is to truncate the thermal
crossing equation and approximate it by a finite set of linear equations for a finite
set of variables. In spirit, this is similar to the “severe truncation” method initiated
by Gliozzi [52, 128] and applied with some success in the boundary/defect bootstrap
[44–51].

However, a second difficulty is that the thermal crossing equation converges more
slowly than the crossing equation for flat-space four-point functions. Thus, naïve
“severe truncation” is doomed to fail, and we need a more sophisticated approach.
We will use the thermal Lorentzian inversion formula and large-spin perturbation
theory to estimate the behavior of a few families of operators (specifically, the first
few Regge trajectories) in terms of a small number of unknown parameters. This
reduces the number of unknowns in the crossing equations and allows them to be
solved approximately by a least-squares fit.

In section 3.2, we review the conformal bootstrap at finite temperature, following
chapter 2, together with some features of the spectrum of the 3d Ising CFT [20]
that play an important role in our calculation. In section 3.3, we outline our overall
strategy and summarize the results. As a check, we perform an MC simulation of the
3d critical Ising model and find agreement with our determination of 〈σσ〉β to within
statistical error, inside the regime of convergence of the OPE. Section 3.4 presents
the details of our bootstrap-based calculation. The most complicated step is the
estimation of thermal one-point coefficients for subleading Regge trajectories, which
we perform by adapting the “twist-Hamiltonian” procedure of [20].

3.2 Review

3.2.1 The thermal bootstrap

A CFT at nonzero temperature T can equivalently be thought of as living on the
space S1

β × Rd−1, where β = 1/T is the length of the thermal circle. This space is
conformally flat, so one can compute finite-temperature correlators using the OPE,
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just as in flat space. However, an important difference compared to flat-space is that
the thermal circle introduces a scale, and as a result operators can have nonzero
one-point functions. Symmetries imply that the only operators with nonzero one-
point functions are primary even-spin traceless symmetric tensors Oµ1···µJ . For such
operators, we have

〈Oµ1···µJ (x)〉S1
β×Rd−1 =

bO
β∆

(eµ1 · · · eµJ − traces), (3.1)

where ∆ is the dimension of O, eµ is a unit vector in the S1 direction, and bO is a
dynamical constant.

Consider a two-point function of a real scalar primary φ at finite temperature:

g(τ,x) = 〈φ(τ,x)φ(0)〉S1
β×Rd−1 . (3.2)

Here, we introduced coordinates x = (τ,x), where τ ∈ [0, β) and x ∈ Rd−1. Assuming
|x| = (τ 2 + x2)1/2 < β, this two-point function can be evaluated using the OPE:

g(τ,x) =
∑
O∈φ×φ

a
〈φφ〉
O
β∆

C
(ν)
J

(
x · e
|x|

)
|x|∆−2∆φ ,

a
〈φφ〉
O ≡ fφφObO

J !

2J(ν)J
. (3.3)

Here, O runs over primary operators appearing in the φ× φ OPE, with OPE coeffi-
cients fφφO. ∆ is the scaling dimension of O, J is its spin, and ν = (d−2)/2. We call
each term in (3.3) a “thermal block.” The thermal one-point coefficient bO is defined
in (3.1), and we have defined the thermal coefficients a〈φφ〉O for later convenience.

For simplicity, we set β = 1 in what follows. Let us use d− 1-dimensional rotational
invariance to set x = (x, 0, . . . , 0) ∈ Rd−1 and introduce the coordinates

z = τ + ix, z = τ − ix. (3.4)

Note that z, z are complex conjugates in Euclidean signature.

The two-point function g(τ,x) is invariant under τ → 1 − τ . In the language of
thermal physics, this is the KMS condition, and it is furthermore obvious from the
geometry of S1

β×Rd−1. However, the OPE expansion (3.3) is not manifestly invariant
under τ → 1− τ . This leads to a nontrivial crossing equation that constrains thermal
one-point functions bO in terms of scaling dimensions and OPE coefficients [38]. In
terms of z and z, the crossing equation/KMS condition is

g(z, z) = g(1− z, 1− z). (3.5)
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Here, we have also used that g is invariant under x→ −x.

The coefficients a〈φφ〉O can be encoded in a function a〈φφ〉(∆, J) that is meromorphic
for ∆ in the right-half-plane, with residues of the form

a〈φφ〉(∆, J) ∼ − a
〈φφ〉
O

∆−∆O
. (3.6)

In chapter 2, we showed that such a function can be obtained from a “thermal
Lorentzian inversion formula”

a〈φφ〉(∆, J)

= (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ 1/z

1

dz

z
(zz)∆φ−∆

2
−ν(z − z)2νFJ

(√
z

z

)
Disc[g(z, z)]

+ θ(J0 − J)a〈φφ〉arcs (∆, J) . (3.7)

Here z, z are treated as independent real variables, which means that the integral is
over a Lorentzian regime x→ −ixL. The first term contains the discontinuity

Disc[g(z, z)] ≡ 1

i
(g(z + iε, z)− g(z − iε, z)) , (3.8)

and the functions KJ and FJ(w) are given by

KJ ≡
Γ(J + 1)Γ(ν)

4πΓ(J + ν)
, (3.9)

FJ(w) = wJ+d−2
2F1

(
J + d− 2,

d

2
− 1, J +

d

2
, w2

)
. (3.10)

The second line in (3.7) represents additional contributions that are present when
J < J0, where J0 controls the behavior of the two-point function in a Regge-like
regime. We argued in chapter 2 that J0 < 0 for the 3d Ising CFT. In this work, we
assume this is true and ignore these contributions.

3.2.1.1 Large-spin perturbation theory

The thermal inversion formula (3.7) becomes particularly powerful in conjunction
with the KMS condition (3.5).

Let us call (3.3) the s-channel OPE, which in our new coordinates is an expansion
around z = z = 0 and has the region of convergence

s-channel OPE: |z|, |z| < 1 . (3.11)
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By the KMS condition, the two-point function admits another expansion around
z = z = 1, which we call the t-channel:

g(z, z) =
∑
O∈φ×φ

a
〈φφ〉
O ((1− z)(1− z))

∆O
2
−∆φC

(ν)
`O

(
1

2

(√
1− z
1− z

+

√
1− z
1− z

))
.

(3.12)

Its region of convergence is given by:

t-channel OPE: |1− z|, |1− z| < 1 . (3.13)

We can insert the t-channel OPE into the inversion formula (3.7) to find expressions
for thermal coefficients in the s-channel. In this way, we uncover non-trivial relations
between the thermal coefficients of different operators in the theory.

The integral in the inversion formula (3.7) is within the region of convergence of the
t-channel OPE for 1 ≤ z < 2, but for z ≥ 2 it exits this region. Corrections to the
residues of a(∆, J) coming from the region z ≥ 2 are exponentially suppressed in
J . Thus, the t-channel OPE encodes the all-orders expansion in powers of 1/J for
thermal one-point coefficients.

Let us review how poles and residues of a(∆, J) arise from the thermal inversion
formula. As an example, we study the poles and residues contributed by a single t-
channel block. Individual t-channel blocks contribute poles at double-twist locations
∆ = 2∆φ + 2n + J , as shown in chapter 2. A similar phenomenon occurs in the
flat-space lightcone bootstrap, where individual t-channel blocks again contribute to
OPE data of double-twist operators. To obtain poles at other locations, one must
sum infinite families of t-channel blocks before plugging them into the inversion for-
mula. (We will see several examples below.) Nevertheless, individual t-channel blocks
provide an important example that will be a building block for later calculations.

Poles in ∆ come from the region z ∼ 0. Therefore, when computing residues one
can simply replace the upper bound of the z integral with 1/z ∼ ∞. However, the
range of the z integral must then be artificially restricted to zmax = 2 when plugging
in the t-channel expansion, in order for the z integral to fully be within the region
of OPE convergence. This restriction is essentially an approximation that discards
corrections that die exponentially in J .

The residues are determined by a one-dimensional integral over z. To see this, we
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first expand the function FJ
(√

z/z
)
in z in the inversion formula,

a〈φφ〉(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ 1/z

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ−h+rDisc[g(z, z)] ,

(3.14)

where the coefficients qr(J) are

qr(J) ≡ (−1)r
(J + 2r)

J

(J)r(−r + ν + 1)r
r!(J + ν + 1)r

, (3.15)

and we have rewritten the inversion formula in terms of the quantum numbers

h =
∆− J

2
, h =

∆ + J

2
. (3.16)

The t-channel OPE can also be expanded in a power series in (1− z) and (1− z),

g(z, z) =
∑
O∈φ×φ

a
〈φφ〉
O

`O∑
s=0

ps(`O)(1− z)hO−∆φ+s(1− z)hO−∆φ−s, (3.17)

where

ps(`) ≡
Γ(`− s+ ν)Γ(s+ ν)

Γ(`− s+ 1)Γ(s+ 1)

1

Γ(ν)2
=

1

4πK`

(`+ ν)−s
(`+ 1)−s

(
ν + s− 1

s

)
. (3.18)

The hO and hO are the quantum numbers defined by (3.16) for each O appearing in
the OPE. Plugging in the term corresponding to an individual O from the t-channel
OPE into the inversion formula (3.7), we find2

a〈φφ〉, (O)(∆, J) ≈ (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ zmax

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ−h+r

×Disc

[
a
〈φφ〉
O

`O∑
s=0

ps(`O)(1− z)hO−∆φ+s(1− z)hO−∆φ−s

]

= a
〈φφ〉
O (1 + (−1)J)KJ

∞∑
r=0

`O∑
s=0

qr(J)ps(`O)

× Γ(1 + hO −∆φ − s)Γ(∆φ + r − h)

Γ(hO − h+ 1− s+ r)
2πShO−∆φ+s,∆φ−r(h) ,

(3.19)

2We assume that J is larger than J0, so that the arcs do not contribute. As mentioned above,
we expect J0 < 0 in the 3d Ising CFT, so the arcs don’t contribute to the pole of any local operator.
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Here, the superscripts a〈φφ〉, (O) indicate that we are studying thermal coefficients for
〈φφ〉, focusing on the contribution of the t-channel operator O. To go from the first
equation to the second equation above, we have performed the z integral and defined
the function ShO−∆φ+s,∆φ−r(h) as

Sc,∆(h) =
sin(−πc)

π

∫ zmax

1

dz

z
z∆−h(z − 1)c

=
1

Γ(−c)
Γ(h−∆− c)
Γ(h−∆ + 1)

− 1

Γ(−c)Γ(1 + c)
B1/zmax(h−∆− c, 1 + c) . (3.20)

Here B1/zmax(h−∆− c, 1+ c) is the incomplete beta function, which decays as z−hmax ∼
z−Jmax at large h.

Note that in (3.19) the z-integral has generated poles at double-twist locations ∆ =

2∆φ + 2n+ J , coming from the factors Γ(∆φ + r − h). Taking the residue of (3.19),
we get the contribution of the operator O to the [φφ]n families

a
〈φφ〉, (O)
[φφ]n

(J) = − Res
∆=2∆φ+2n+J

a〈φφ〉, (O)(∆, J)

= a
〈φφ〉
O (1 + (−1)J)4πKJ

dh

dJ

n∑
r=0

`O∑
s=0

qr(J)ps(`O)(−1)n−r

×
(
hO −∆φ − s

n− r

)
ShO−∆φ+s,∆φ−r(h). (3.21)

For double-twist operators [φφ]n, we have h = ∆φ + n + J . The Jacobian factor dh
dJ

takes into account the leading correction to (3.21) when we additionally allow [φφ]n

to have anomalous dimensions.

The function ShO−∆φ+s,∆φ−r(h) can be expanded in large h (equivalently large J) as

ShO−∆φ+s,∆φ−r(h) =
1

Γ(−hO + ∆φ − s)
1

h
hO−∆φ+s+1

+O
(

1

h
hO−∆φ+s+2

)
. (3.22)

Thus, we see that the contribution of the t-channel operator O dies at large J at
a rate controlled by the half-twist hO = τO/2. The unit operator has the lowest
twist in any unitary theory, and thus gives the leading contribution at large J . A
second important contribution comes from the stress tensor O = Tµν , which gives a
universal contribution proportional to the free energy density. In general, by including
successively higher-twist contributions in the t-channel, we can build up a perturbative
expansion for thermal coefficients in 1/J . We will review this large-spin perturbation
theory of the thermal coefficients and detail how we use it for the 3d Ising CFT in
section 3.4.
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O family Z2 ` ∆ τ = ∆− ` fσσO fεεO
ε ? + 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)
ε′ [σσ]1 + 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)
Tµν [σσ]0 + 2 3 1 0.32613776(45) 0.8891471(40)
T ′µν [σσ]1 + 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)

Cµνρσ [σσ]0 + 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)

O family Z2 ` ∆ τ = ∆− ` fσεO -
σ ? − 0 0.5181489(10) 0.5181489(10) 1.0518537(41)
σ′ ? − 0 5.2906(11) 5.2906(11) 0.057235(20)

[σε]0 − 2 4.180305(18) 2.180305(18) 0.38915941(81)

Table 3.1: A few low-dimension operators in the 3d Ising CFT, from [20]. The “?”
are associated to scalars whose affiliation with a certain operator family is not fully
established. Errors in bold are rigorous. All other errors are non-rigorous.

3.2.2 The 3d Ising CFT

In this work, we apply the thermal crossing equation and inversion formula to compute
thermal one-point coefficients in the 3d Ising CFT. It will be crucial to incorporate
as much information as possible about the known flat-space data (i.e. operator di-
mensions and OPE coefficients) of the theory. Indeed, our approach will be closely
tailored to observed features of this data. We leave the question of how our approach
can be generalized to arbitrary CFTs for future work. In this section, we review some
features of the spectrum of the 3d Ising CFT that play an important role in what
follows.

The low-dimension spectrum of the 3d Ising CFT is summarized in table 3.1. The
lowest-dimension operator is a Z2-odd scalar σ with dimension ∆σ ≈ 0.518. The
lowest-dimension Z2-even scalar ε has dimension ∆ε ≈ 1.412.

Some of the operators in table 3.1 are (conjecturally) identifiable as members of
large-spin families — i.e. families of operators whose twists τ = ∆ − ` accumulate
at large spin. This identification works as follows. At asymptotically large spin, it
is known that there exist “multi-twist” operators [O1 · · · Ok]n,` whose twists approach
τ1 + · · · + τk + 2n as ` → ∞, where τi = ∆Oi − `Oi [20]. By analyticity in spin, all
operators O with spin above the Regge intercept ` > `0 are expected to lie on curves
τi(`) that are analytic in ` [25, 26]. Here, i labels the Regge trajectory of the operator.
If the trajectory associated to O approaches a multi-twist value τ1 + · · · + τk + 2n

as ` → ∞, we say that O is in the family [O1 · · · Ok]n. In practice, to identify a
particular family in numerics, one computes Regge trajectories using the lightcone
bootstrap [13–17, 20, 23] or Lorentzian inversion formula [25, 26, 28] and observes
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Figure 3.1: Twists of the double-twist family [σσ]0. Here, we plot τ = ∆ − ` versus
h = ∆+`

2
. The dots show estimates from [20] using the extremal functional method [41,

130, 131] and the numerical bootstrap. The curve shows the prediction of large-spin
perturbation theory with only ∆σ,∆ε, fσσε, cT taken from the numerical bootstrap.
Figure reproduced from [20].

which operators they pass through.3,4

Numerical bootstrap methods reveal large OPE coefficients in the σ × σ and ε × ε

OPEs for operators in the families [σσ]0, [εε]0, and [σσ]1. Certain other trajectories
with comparable twist are not described to high precision by numerics, including for
example [σσσσ]0. Instead, numerics indicate that these other families have relatively
small OPE coefficients in the σ × σ and ε × ε OPEs. In this work, we make the
approximation that we can ignore large-spin families other than [σσ]0, [εε]0, and
[σσ]1. It is difficult to quantify the error associated with this approximation, since
other families could potentially possess large thermal one-point coefficients that do
not play a role in flat-space correlators, but do contribute to thermal correlators.
Nevertheless, we will find a mostly-consistent picture. However, we also see some
indications that other families (in particular [σσε]0) could be important for more

3Operator mixing can make this procedure difficult in practice. Due to eigenvalue repulsion it
may be difficult to track a trajectory out to infinite spin if it passes near other trajectories. It is also
not known rigorously whether trajectories remain discrete in twist space when ` is not an integer.
See [20] for further discussion. None of these subtleties are visible in the first few orders of large-spin
perturbation theory.

4The operators marked with “?” in table 3.1 are scalars. Whether scalar operators lie on Regge
trajectories depends on the behavior of four-point functions in the Regge regime. It has been
conjectured that scalars do lie on Regge trajectories in the 3d Ising CFT [129].
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precise calculations (see section 3.4.4).

Let us discuss the families [σσ]0, [εε]0, and [σσ]1 in more detail. The lowest-twist
family [σσ]0 has twists ranging from 1 at ` = 2 to 2∆σ = 1.036 as ` → ∞. They
are increasing and concave-down as a function of `, by Nachtmann’s theorem [14, 98,
132]. The lowest-spin operator in the [σσ]0 family is the spin-2 stress-tensor Tµν . The
next operator Cµνρσ has spin-4 and controls the breaking of cubic symmetry when
the Ising model is implemented on a cubic lattice [133]. The family [σσ]0 is plotted
up to spin 40 in figure 3.1. There we show both the numerical bootstrap predictions
(dots) and the results of large-spin perturbation theory (curve), which agree to high
precision [17, 20]. The curve τ[σσ]0(h) is well-approximated by 2(2hσ+δ[σσ]0(h)) where
hσ = ∆σ/2 and

δ[σσ]0(h) =

∑
O=ε,T −f 2

σσO
Γ(2hO)

Γ(hO)2QhO−∆σ(h)

Q−∆σ(h)−
∑
O=ε,T 2f 2

σσO
(
ψ(0)(hO) + γ

) Γ(2hO)

Γ(hO)2QhO−∆σ(h)

=
−0.000971264Γ(h−0.981851)

Γ(h+0.981851)
− 0.031588Γ(h−1.18816)

Γ(h+1.18816)

0.68256Γ(h−0.481851)

Γ(h+0.481851)
− 0.00248716Γ(h−0.981851)

Γ(h+0.981851)
+ 0.0394879Γ(h−1.18816)

Γ(h+1.18816)

,

(3.23)

with Qa(h) = 1
Γ(−a)2

Γ(h−a−1)

Γ(h+a+1)
. The OPE coefficients of [σσ]0 in the σ × σ and ε × ε

OPEs can also be approximated in large-spin perturbation theory and are given in
[20].

The families [εε]0 and [σσ]1 are notable in that they experience large mixing with each
other at small spins. For example, the operators [σσ]1 have larger OPE coefficients
than [εε]0 in the ε × ε OPE for spins ` . 25. This mixing can be described by
supplementing large-spin perturbation theory with a procedure described in [20]. The
resulting twists and OPE coefficients match well with estimates using the extremal
functional method which is used in the numerical bootstrap to extract the spectrum
of theories on the boundary of the allowed region [41]. We show the twists of the
[σσ]1 and [εε]0 families in figure 3.2.

3.3 Method and results

3.3.1 Summary of method

The thermal bootstrap for the 3d Ising CFT consists of two parts. In the first part, we
compute the thermal coefficients of a truncated (but infinite) subset of the spectrum in
terms of the thermal coefficients of a few operators — 1, ε, and T , where a〈σσ〉ε and a〈σσ〉T
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Figure 3.2: Twists of the double-twist families [εε]0 (orange) and [σσ]1 (blue). Again,
we plot τ = ∆ − ` versus h = ∆+`

2
. The dots show estimates using the extremal

functional method and the numerical bootstrap. The curves are estimates using large-
spin perturbation theory and the mixing procedure described in [20] and reviewed
in section 3.4.4. The dashed curves illustrate the effects of modifying the mixing
procedure. Figure reproduced from [20].

are unknowns. Specifically, we use the thermal inversion formula to approximately
determine the thermal coefficients of all operators in the [σσ]0, [σσ]1, and [εε]0 families
described in section 3.2.2. In the second part, we approximate 〈σσ〉 as a sum over
the truncated spectrum with the thermal coefficients obtained in the first part. We
determine the remaining unknowns by demanding that the KMS condition is satisfied
in a region of the (z, z)-plane that is within the radius of converge of the s-channel
OPE. The procedure is summarized graphically in figure 3.3. The initial steps are as
follows:

1. Consider the thermal inversion formula for the 〈σσ〉 correlator.

2. Invert the low-twist operators 1, ε, and T in the t-channel OPE to compute
a
〈σσ〉
[σσ]0

(J) in terms of the unknowns a〈σσ〉ε,T .

3. Sum over the [σσ]0 family in the t-channel using the computed data. Invert the
result to obtain self-corrections of the [σσ]0 family.

4. Compute poles for higher-twist families up to twist 2 in the 〈σσ〉 and 〈εε〉
correlators by summing the self-corrected thermal coefficients of the [σσ]0 family
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〈εε〉
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+ . . .
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〈εε〉
[σσ]1

a
〈εε〉
[σσ]0

Operator Mixing

KMS Condition

Figure 3.3: Diagram of the algorithm which is used to obtain the thermal coefficients
in the 3d Ising CFT. Here, “...” represents contributions to the thermal coefficients
of families other than [σσ]0, [σσ]1, and [εε]0 that we account for when considering
operator mixing.

together with 1, ε, and T .

5. Estimate the thermal coefficients of the [σσ]1 and [εε]0 families at intermediate
spin by “mixing” the residues according to the large anomalous dimensions.

6. Assuming the smoothness of the thermal coefficients in the [σσ]1 family with
h up to J = 0, we interpolate the thermal coefficients of the [σσ]1 family to
estimate the thermal coefficients of ε′ and T ′.

7. After these steps, we are almost ready to determine the unknowns. As a penul-
timate simplification, we use the fact that T is the spin-two member of the [σσ]0

family. This requires that a〈σσ〉T is equal to a〈σσ〉[σσ]0
(J = 2), which we use to solve

for a〈σσ〉T . Thus, we are left with a single unknown, a〈σσ〉ε .

Finally, we approximate the 〈σσ〉 correlator by the truncated OPE including the
scalars 1 and ε, and the low-twist families [σσ]0, [σσ]1, and [εε]0. We solve for the
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final remaining unknown a〈σσ〉ε by imposing that the KMS condition is close to being
satisfied for a sampling of z and z points in the interior of the square 0 ≤ z, z ≤ 1.

3.3.2 Results

In this section, before diving into the details of our computation, we summarize
our results and compare to MC. To perform our computation, we must make some
arbitrary choices and approximations. We enumerate them in section 3.3.2.3 and
estimate the resulting errors. Overall, the results show robustness for a wide range of
choices.

3.3.2.1 One-point functions

After using the thermal inversion formula together with the KMS condition, we find
that

a〈σσ〉ε = 0.672(74), a
〈σσ〉
T = 1.96(2) , bε = 0.63(7) , bT = −0.43(1). (3.24)

The values and errors quoted capture the deviations seen over several runs of our
algorithm with different parameter choices. For comparison the results obtained from
MC are

bMC
ε = 0.667(3) [117] , bMC

T = −0.459(3) [74, 134, 135] . (3.25)

Note that the errors for the above two observables in MC are much smaller than
for the bootstrap. This is due in part to the difficulty of using the thermal crossing
equation, and also to the favorable behavior of finite-size effects when computing
thermal correlators with MC, see appendix B.1. Improving the precision of thermal
bootstrap results is clearly an important challenge for the future.

Our determinations for thermal coefficients in the three low-twist families, [σσ]0,
[σσ]1 and [εε]0 are presented in figure 3.4.5 Unfortunately, to our knowledge, there
are no available MC results for the thermal one-point functions of such higher-spin
operators. However, we can use the MC results for ε and T in (3.25) together with
the thermal inversion formula to compare to the results obtained in our computation.
Note that due to the strong contribution of the unit operator in the inversion formula,
the standard deviations in the thermal coefficient of all higher-spin operators in all
three families are much smaller than that for a〈σσ〉ε and a〈σσ〉T .

5We choose to present the thermal coefficients a〈σσ〉O instead of the thermal one-point function
due to the exponential increase of bO with the spin J (see definition (3.3)).
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Figure 3.4: Thermal coefficients for the three families [σσ]0, [σσ]1, and [εε]0. The
orange horizontal lines are obtained by using the KMS condition in combination
with the thermal inversion formula and by averaging over several parameter choices.
The spread given by the orange error bars is obtained by computing the operator
mixing using different sets of z values as explained in Section 3.4.4 and by imposing
the KMS conditions in different regions on the thermal cylinder (see figure 3.13 for
an example). The blue stars are MC estimates for a〈σσ〉, MC

ε = 0.711(3) [117] and
a
〈σσ〉, MC
T = 2.092(13) [74, 134, 135]. The blue lines are the estimates for the thermal

coefficients of all other operators in [σσ]0, [σσ]1 and [εε]0 families using these MC
results together with the inversion formula. Note that the spread of the thermal
coefficients of higher-spin operators estimated by the bootstrap are too small to be
visible on this scale.

3.3.2.2 Two-point function of σ

In figure 3.5, we show the thermal two-point function 〈σσ〉β computed using our
algorithm and compare it to a MC simulation that we performed. The details of our
simulation are described in appendix B.1.

Overall, we find good agreement between the bootstrap prediction and MC inside
the regime of convergence of the OPE. In part, this is due to the fact that the unit
operator gives a large contribution in this region, and its contribution is known very
precisely from the four-point function bootstrap. However, the thermal OPE also
correctly recovers other features of the two-point function. For example, large-spin
families sum up to correctly reproduce the t-channel singularity as τ → ±1.

We also observe decay of the two-point function in the spatial direction x. Exponential
decay of thermal two-point functions in x can be established rigorously by expanding
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Figure 3.5: Left: The thermal two-point function obtained by applying the inversion
formula and then solving the KMS condition (yellow) compared to that obtained
from a MC simulation (red). Note that we restrict the plot to the region of OPE
convergence around x = 0 and τ = 0. Right: Percentage difference between the two
correlators, showing good agreement (within 5%) between the bootstrap and MC
predictions. At small values of

√
|x|2 + τ 2 we expect the MC results to be inaccurate

due to lattice-size effects. As
√
|x|2 + τ 2 → β, we exit the region of OPE convergence,

and we expect inaccuracies in the bootstrap calculation.

the correlator in states on R× S1, as explained in [136, 137]. However, decay in x is
not obvious from the OPE, where each term grows in magnitude in the x direction.
The fact that we observe decay in x serves as a check on our calculation. At long
distances, the correlator behaves as e−mthx, where mth is the thermal mass. It would
be interesting to understand how to determine or bound mth using information in the
OPE region.6

Finally, in figure 3.6 we test how close we are to satisfying the KMS condition within
the region of OPE convergence. As emphasized in the figure, within an 0.9β radius
from the center of the OPE convergence region the deviation from satisfying KMS is
< 2%.

3.3.2.3 Systematic errors

Our algorithm above involves a few choices of parameters. To check for robustness
under different choices, we show the spread of results for the thermal coefficients
in figure 3.4. Specifically, variations in our results are mainly due to the following
choices:

• As we explain in section 3.4.4, the mixing of families requires a set of z points.
Figure 3.4 shows the results obtained when choosing different sets of z values

6We thank Tom Hartman for discussions on this point.
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Figure 3.6: Evidence of how well the KMS condition is satisfied in the (τ, x) plane
in the region of OPE convergence. We plot the difference of the two-point function
and it’s periodic image, δgKMS(τ, x) = g(1 + τ, x)− g(τ, x), using the average thermal
coefficients presented in figure 3.4. Note that towards the boundary of the region
of OPE convergence, our estimates for the two-point function become worse and the
KMS condition is further from being satisfied. For the range (τ, x) shown above the
deviation from satisfying KMS is < 2%.

which span a full order of magnitude. When considering our results for a〈σσ〉ε ,
the variation between the set with the lowest values of z and those with the
largest is at most ∼ 10%. As we will describe in section 3.4.4 and is already
clear from figure 3.4, the error for higher spin thermal coefficients is significantly
lower.

• In the final step of our algorithm, we choose a set of point in the (z, z)-plane, in
the s-channel region of convergence, for which we require that the thermal two-
point function satisfies the KMS condition approximately. When considering
significantly different regions in the (z, z)-plane as exemplified in figure 3.13,
the variation in a

〈σσ〉
ε is only ∼ 5%. Once again, the error associated to this

effect for operators with higher spins is significantly lower.

Besides the choices of parameters presented above, there are several other systematic
errors:

• When requiring that the KMS condition is close to being satisfied at a wide va-
riety of point in the (z, z)-plane, we truncate the OPE of the two-point function
〈σσ〉 to the three low-twist families 〈σσ〉. For the ranges of points at which we
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attempt to impose the KMS condition, corrections to the two-point function
are dominated by the contribution of the next Z2-even operator ε′′.7 Consider-
ing that the flat-space numerical bootstrap estimates the scaling dimension of
this operator to be ∆ε′′ ∼ 6.9, we can compare the contribution of the thermal
conformal block for this operator to the total contribution of all other operators
in [σσ]0, [σσ]1, and [εε]0 to 〈σσ〉. This helps us estimate the error associated
with neglecting this operator and higher twist operators to be ∼ 4%.

• The second largest systematic error which we expect comes from the fact that
when using the inversion formula we truncate the range of integration to the
t-channel region of convergence, z ≤ 2. As discussed in section 3.2.1, we expect
that the correction from the region z ≥ 2 to the thermal coefficient of an
operator with spin J is exponentially suppressed in J . However, since we use
the inversion formula for J ≥ 4, one might worry that at small J this correction
becomes large. To probe this we note that in the O(N)-model with N →∞ the
difference between the exact result and that extracted by inverting the OPE for
an operator with J = 4 is only ∼ 2.8%.8

• There are several systematic errors associated to the operator mixing procedure.
The first is due to the truncation of the spectrum to operators of twist below
a cut-off value. Since the contribution of operators with higher twist is visibly
suppressed, such a truncation should only introduce a small error. The second
is due to the fact that while multiple operator families serve as mixing inputs,
we solely focus on [σσ]0, [σσ]1, and [εε]0 as outputs. This assumes that, just
like in the flat-space bootstrap, the thermal coefficients of these three double-
twist families dominate over all other families with twists below the cut-off.
While we have found this to be true for the thermal coefficients in the 〈σσ〉
correlator, there is one family — the multi-twist family [σσε]0 — which has a
contribution comparable to that of [εε]0 in the 〈εε〉 correlator. While we will
discuss the contribution of this family extensively in section 3.4.3, here we note
that neglecting its contribution in the mixing procedure leads to an overall
difference of ∼ 4% in the mixing results. Finally, we note that after mixing we
assume that the [σσ]1 family is smooth in h and we use a fit to estimate the

7We remind the reader that this operator is not part of any of the three double-twist families
[σσ]0, [σσ]1 and [εε]0.

8Specifically, the exact result found in chapter 2 predicts that as N → ∞, aexact, 〈σσ〉
[σσ]0,`=4

= 0.964,

while by restricting the inversion formula to the interval 1 ≤ z ≤ 2, we find aOPE 〈σσ〉
[σσ]0,`=4

= 0.936.
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thermal coefficients of the ε′ and T ′ operators. We find that by varying this fit,
we introduce an overall error of ∼ 3% in the final results.

3.4 Details of the computation

In this section, we describe the details of the algorithm outlined in section 3.3.1. We
will methodically iterate large-spin perturbation theory — working our way up in
twist — to compute the thermal coefficients for the [σσ]0, [σσ]1, and [εε]0 families.

In general, we will invert operators with h < 1 from the t-channel, meaning we will
work to order

S1−2hσ ,2hσ(h) ∼ 1

h
2−2hσ

(3.26)

for the thermal coefficients in the 〈σσ〉 correlator, dropping terms Sc,∆(h) with c >
1− 2hσ, and analogously for 〈εε〉 with hσ replaced with hε.

3.4.1 [σσ]0

We begin by solving for the lowest-twist family of operators in the theory, [σσ]0. The
most direct way to study this family is through the 〈σσ〉β two-point function. Large-
spin perturbation theory instructs us to start by inverting the lowest-twist operators
in the t-channel. The first few low-twist primary operators in the σ × σ OPE are

σ × σ = 1 + T +
∑

`=4,6,...

[σσ]0,` + ε+ . . . . (3.27)

Note that [σσ]0 operators are nearly killed by Disc and thus give smaller contributions
than 1, T, ε. Thus, we will initially neglect them, but we will add them in later. We
have singled out T from the rest of the [σσ]0 family because it has the largest anoma-
lous dimension of the family and gives the least suppressed contribution. Inverting
the operators 1, ε, and T , we obtained a first approximation for a〈σσ〉[σσ]0

(J) chapter 2,

a
〈σσ〉
[σσ]0

(J) ⊃
∑
O=1,ε,T

a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

∂h

∂J
ShO−∆σ ,∆σ(h). (3.28)

These contributions can be represented by the large-spin diagrams in figure 3.7.

The next most significant contribution comes from the [σσ]0 family itself. To compute
their contributions, one needs to sum over the family in the t-channel before inverting,
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Figure 3.7: An illustration of how the inversion formula relates between s- and t-
channels in the 〈σσ〉β correlator. A single term in the t-channel OPE O ∈ σ × σ
represented in (a), inverts to a part of the sum over the [σσ]n families in the s-
channel, which are represented in (b). Alternatively, the sum in (b) over a〈σσ〉,(O)

[σσ]n

reproduces the O term in (a).

as discussed in chapter 2. The sum we need to do is9

∞∑
s=0

∞∑
`=min(`0,s)

ps(`)a
〈σσ〉
[σσ]0

(h)(1− z)h(h)−2hσ+s(1− z)h−2hσ−s , (3.29)

where h(h) = 2hσ + δ[σσ]0(h) and h = h(h) + `. The sum is evaluated by expanding in
small δ(h) log(1− z), and then regulating the asymptotic parts of the h sum, as was
explained in chapter 2. For the convenience of the reader, we reproduce the result
here,

∞∑
`=`0

ps(`) a
〈σσ〉
[σσ]0

(h)(1− z)2hσ+δ[σσ]0
(h)−2hσ+s(1− z)h−2hσ−s

=
∞∑
m=0

(∑
a∈Am

ca

[
δm[σσ]0

m!
psa
〈σσ〉
[σσ]0

]
za +

∞∑
k=0

αk

[
δm[σσ]0

m!
psa
〈σσ〉
[σσ]0

, δ[σσ]0 , 2hσ + s

]
(h0) zk

)
× (1− z)s logm(1− z), (3.30)

where h0 = 2hσ + `0. Here, the set Am ⊂ R\Z≥0 and the coefficients ca[f ] are deter-
mined by the large-h expansion of the summand f(h), via (2.148).10 The coefficients
ca[f ] do not depend on the finite part of the sum. The coefficients αk are computed
via the formula (2.156), and depend on the details of the sum. We call the terms za

(and za logm z) ‘singular’ terms, and the zk ‘regular’ terms. The singular terms have
are characterized by having nonzero s-channel discontinuity (near z ∼ 0), while the
regular terms have vanishing discontinuity.

9Note that terms with s > ` are absent from the t-channel sum, so for sufficiently large s, we
need to start the sum at higher `. We ensure this by letting the sum start at ` = min(`0, s).

10We note that the terms za can also include terms of the form za logm z for m ∈ Z≥0.
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The self-corrections of the [σσ]0 family are determined by the k = 0 term on the right
hand side. We are only interested in the leading large-h contribution; recalling that
the power of h is controlled by the power of (1− z), we need only consider the term
with s = 0. Taking the leading thermal coefficients in (3.28) and summing over the
[σσ]0 family starting at spin 4, and inverting, we obtain the first iteration of their
self-correction;

a
〈σσ〉
[σσ]0

(J) ⊃
∑
O=1,ε,T

a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

dh

dJ

×

(
ShO−∆σ ,∆σ(h) +

∞∑
m=0

αeven
0

[
δm[σσ]0

m!
ShO−∆σ ,∆σ , δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
0,∆σ

(h)

)
.

(3.31)

Note that S(0)
0,∆(h) = 0, so self-corrections start at order δ[σσ]0 and are suppressed by

powers of the small anomalous dimensions. To evaluate the α-sum above, we need
the large-spin expansion of the [σσ]0 anomalous dimensions reproduced in (3.23).
Concretely, the first few terms in the large-h expansion are

δ[σσ]0(h) ∼ −0.001423
1

h
− 0.04628

1

h
∆ε

+ . . . . (3.32)

In principle, we can iterate the self-correction indefinitely. The solution to this itera-
tion is the fixed-point of the self-correction map. How to solve for this fixed-point was
also explained in chapter 2. In practice, one needs to truncate to some order in the
anomalous dimension expansion. Truncating to order δ2, the self-corrected thermal
coefficients are

a
〈σσ〉
[σσ]0

(J) = (1 + (−1)J)4πKJ
dh

dJ

×
(
a
〈σσ〉
1

(
S−∆σ ,∆σ(h)− 0.0119S

(1)
0,∆σ

(h) + 2.14× 10−5S
(2)
0,∆σ

(h)
)

+ a〈σσ〉ε

(
Shε−∆σ ,∆σ(h) + 0.0007999S

(1)
0,∆σ

(h)− 1.95× 10−6S
(2)
0,∆σ

(h)
)

+ a
〈σσ〉
T

3

8

(
ShT−∆σ ,∆σ(h)− 0.0001312S

(1)
0,∆σ

(h) + 3.01× 10−7S
(2)
0,∆σ

(h)
))

+ . . . , (3.33)

where the dots denote terms suppressed in large-h or in small δ[σσ]0 . For convenience,
plots of the three terms are given by the dashed curves in figure 3.12.
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3.4.2 [σσ]1 and [εε]0

The next families that we solve for require more care. First, we compute the leading
contributions to their thermal coefficients in the large-spin limit. Afterwards, we
discuss subtleties that arise when considering finite spin members of the two families.

3.4.2.1 Tree level contributions

We start by computing the asymptotic contributions. Inverting the low-twist opera-
tors 1, ε, T , and the [σσ]0 family in the 〈σσ〉 correlator gives ‘tree-level’ contributions
to the thermal coefficients of the [σσ]1 family. We can compute the contributions of
1, ε, and T via (3.21) as

a
〈σσ〉,(O)
[σσ]1

(J)

= a
〈σσ〉
O (1 + (−1)J)4πKJ

dh

dJ

1∑
r=0

`O∑
s=0

qr(J)ps(`O)(−1)n−r
(
hO −∆σ − s

n− r

)
ShO−∆σ+s,∆σ−r(h)

= a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

dh

dJ

(
−(hO −∆σ)ShO−∆σ ,∆σ(h)− 2 + J

3 + 2J
ShO−∆σ ,∆σ−1(h)

)
+ . . .

(3.34)

where the dots denote higher order terms in 1/h that we will drop. We can also
sum over the rest of the [σσ]0 family and compute its contribution to the [σσ]1 pole,
similarly to how we computed the [σσ]0 self-correction in (3.31). Their leading con-
tribution is given by

a
〈σσ〉,([σσ]0)
[σσ]1

(J)

= (1 + (−1)J)4πKJ
dh

dJ

1∑
r=0

∞∑
m=0

qr(J)αn−r

[
δm[σσ]0

m!
p0a
〈σσ〉
[σσ]0

, δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
0,∆σ−r(h).

(3.35)

Thus, by adding terms from (3.34) with those from (3.35), we find that at large spin

a
〈σσ〉
[σσ]1

(J) =
∑

O=1,ε,T,[σσ]0

a
〈σσ〉,(O)
[σσ]1

(J) + . . . . (3.36)

What about the [εε]0 family? The sum over the [σσ]0 family inside the 〈σσ〉 corre-
lator also contribute to the [εε]0 family. Concretely, the sum over the [σσ]0 family
contains asymptotics that sum to a ‘singular term’ that corresponds to a pole for the
[εε]0 family. We can see this by the large spin diagrams in figure 3.8. This gives a
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Figure 3.8: The asymptotic parts of the t-channel sum over [σσ]n represented by
the diagram on the left inverts to the s-channel process on the right. Accordingly,
their inversion should produce poles for the [εε]m families. The diagram on the left
is deciphered by reading it from left to right; first the external σ operators fuse into
[σσ]n states, which exchange an ε to correct their self-energy (anomalous dimension),
then they receive expectation values proportional to b1. The diagram on the right
can also be deciphered by reading it from right to left; first the external σ operators
form [εε]m via exchange of a σ, then the [εε]m receive expectation values proportional
to b1.

contribution

a
〈σσ〉
[εε]0

(J) ⊃ (1 + (−1)J)4πKJ a
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
S

(1)
0,∆σ

(h). (3.37)

Here, we have used the coefficient δ(ε)
[σσ]0

in the large-h expansion of the anomalous
dimension,

δ[σσ]0(h) =
∑
O

δ
(O)
[σσ]0

1

h
2hO

, (3.38)

with the first few coefficients given in (3.23) and (3.32). Of course, this is only a naive
approximation of the [εε]0 thermal coefficients which should only work for very large
J . The [εε]0 family is more directly accessed in the 〈εε〉 correlator, where inverting
any single operator gives direct contribution to this family. For example, inverting
the low-twist operators 1, ε, and T in the 〈εε〉 correlator gives

a
〈εε〉
[εε]0

(J) ⊃
∑
O=1,ε,T

a
〈εε〉
O (1 + (−1)J)

KJ

K`O

∂h

∂J
ShO−∆ε,∆ε(h). (3.39)

Here, we labeled the thermal coefficients to indicate that they are the coefficients in
the 〈εε〉 correlator. The relation between the thermal coefficients in the two correlators
is given by the ratio of the OPE coefficients,

a
〈σσ〉
O =

fσσO
fεεO

a
〈εε〉
O . (3.40)
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Combining our result (3.33) for a〈σσ〉[σσ]0
from 〈σσ〉 with the ratio of OPE coefficients

fσσ[σσ]0/fεε[σσ]0 obtained from the analytic four-point function bootstrap, we can con-
sider the contributions of the [σσ]0 family in the 〈εε〉 correlator. For example, their
contribution to the [εε]0 thermal coefficients can be computed, correcting (3.39) as

a
〈εε〉
[εε]0

(J) ⊃
∑
O=1,ε,T

a
〈εε〉
O (1 + (−1)J)

KJ

K`O

dh

dJ
ShO−∆ε,∆ε(h)

+ (1 + (−1)J)KJ
dh

dJ

∞∑
m=0

α0

[
δm[σσ]0

m!

fεε[σσ]0

fσσ[σσ]0

p0a
〈σσ〉
[σσ]0

, δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
∆σ−∆ε,∆σ

(h).

(3.41)

While at large h, (3.36) and (3.41) provide good approximations for the thermal coef-
ficients this will not be the case at small h. In this regime, the two families [σσ]1 and
[εε]0 are very close together in twist, and have very large anomalous dimensions due
to the operator mixing described in section 3.2.2. Naïvely, since the families are so
close in twist, and strongly mix, we simply cannot be sure how the residues are dis-
tributed between the families. More systematically, the presence of large anomalous
dimensions means that the poles for the families are actually quite far from the naïve
locations at h = 2hσ + 1 and 2hε that were used to obtain (3.36) and (3.41). The
effects that produce anomalous dimensions also produce corrections to the residues
on a similar scale; since the anomalous dimensions are large at these intermediate h
values, the contributions to the residue must also be similarly large. Finally, there
are altogether other poles for multi-twist families near the twists of these families,
which the residues could further mix with.

We need to develop an approach to estimate the correct, mixed thermal coefficients.
In order to estimate the correct, mixed thermal coefficients, we thus need to take
into account all the corrections mentioned above. Towards that end, we now turn to
developing some required technology.

3.4.3 The half-inverted correlator

Each individual t-channel block contributes only double-twist poles in the s-channel.
However, the physical correlator has poles at non-double-twist locations. Conse-
quently, the sum over t-channel blocks cannot commute with the inversion integral
when ∆ is near the physical poles. To see why, consider a contour integral around the
location of a physical pole in ∆. This integral gives zero for every t-channel block, but
is certainly nonzero for the full a(∆, J). By contrast, the sum over t-channel blocks
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does commute with the inversion integral when ∆ is imaginary. However, we would
like to determine numerically what happens at real ∆.

To get a better numerical handle on how poles can shift, we will work with a more con-
venient object than a(∆, J). Let us imagine applying the inversion formula ‘halfway’,
where we do the z integral to compute the residues, but leave the z integral — which
produces the poles — undone. We want to define a generating function of the form

(1 + (−1)J)KJ

∫ 2

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ+rDisc[g(z, z)]. (3.42)

(Once again, we assume no contributions from the arcs of the inversion formula.)
Now, instead of poles in h, we have powers zh. Furthermore, the anomalous dimension
corrections to pole locations are of the form

δ(h)m

m!
zh logm z. (3.43)

The idea is that (3.42) is almost the inverse Laplace transform in h of

a(h, h) = a(∆ = h+ h, J = h− h) (3.44)

— almost due to the pesky factor of KJ . The generating function we want should
relate to a(h, h) along the lines of

ã(z, h) = −
∮

dh

2πi
zha(h, h), (3.45)

which is the inverse to

a(h, h) =

∫ 1

0

dz

z
z−hã(z, h). (3.46)

The inverse Laplace transform (3.45) can be performed in a region of h where the
inversion integral commutes with the sum over t-channel blocks, and thus we expect
it to have a convergent expansion in t-channel blocks. The idea of defining a “half-
inverted” correlator was discussed in the four-point function case in [20, 25].

The definitions (3.42) and (3.45) will agree if we make a few small modifications.
Firstly, we should of absorb the factor of KJ inside a(h, h), so the contour integral in
(3.45) does not pick up unwanted poles. (At small enough twist h such that we are
away from poles in KJ , we can skip this step.) Secondly, we should reinterpret J in
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ã(z, h) as an appropriate differential operator, Ĵ , as we will explain below. Thus, we
define

ã(z, h) =
1

4π

∫ 2

1

dz

z

∞∑
r=0

qr(Ĵ)z∆φ−h−rz∆φ+rDisc[g(z, z)], (3.47)

which satisfies

a(h, h) = (1 + (−1)J)4πKJ

∫ 1

0

dz

z
z−hã(z, h). (3.48)

We call ã(z, h) the half-inverted correlator.

Inside half-inverted correlators, J should be thought of as the linear operator

Ĵ = h− h = h− z ∂z (3.49)

acting on the space of functions of the form zh logm z. Note that Ĵ appears in ã(z, h)

inside qr(Ĵ), which are rational functions of Ĵ for each integer r. Therefore, we will
need to invert Ĵ when acting on this space of functions. For brevity, let us denote

|h,m〉 ≡ zh logm z. (3.50)

For our purposes, h > 0 and m is a non-negative integer. For example, we have

z ∂z|h,m〉 = h|h,m〉+m|h,m− 1〉. (3.51)

Then, expressions such as

1

c+ d Ĵ
=

1

c+ d(h− z ∂z)
(3.52)

can be interpreted as the inverse of the appropriate linear operator acting on this
space of functions. Inverting the operator z ∂z, we have

(z ∂z)
−1|h,m〉 =

1

h

m∑
k=0

(−1)k
m!

(m− k)!

1

hk
|h,m− k〉. (3.53)

Similarly,

1

c+ d Ĵ
|h,m〉 =

1

c+ d (h− h)

m∑
k=0

(−1)k
m!

(m− k)!

1

(c+ d (h− h))k
|h,m− k〉. (3.54)

With this interpretation, we can substitute Ĵ for J as we did in (3.47), and define
the half-inverted correlator as an honest function of z and h satisfying (3.48).
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3.4.3.1 Contributions to the half-inverted correlators 〈σ̃σ〉 and 〈ε̃ε〉

Returning to the Ising model, by half-inverting our low-twist operators 1, ε, T , and
the [σσ]0 family in the 〈σσ〉 and 〈εε〉 correlators, we obtain leading-order-in-large-h
approximations to the respective half-inverted correlators 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h).
The terms we compute include those that give the naïve [σσ]1 and [εε]0 thermal
coefficients (3.36) and (3.41), but also include many other terms coming from the
sum over the [σσ]0 family.

We are not just limited to inverting the operators 1, ε, T , and the [σσ]0 family. While
we do not know enough about any of the other families in the theory to compute all
of their contributions, there are a special set of contributions that we can compute.
In particular, while the regular terms αk depend on such particulars of the family as
anomalous dimensions and an exact sum over the thermal coefficients, the singular
terms do not. The singular terms only depend on the asymptotic expansions. Fur-
thermore, the leading contributions to the singular terms are to constant order in
the anomalous dimensions, thus we can compute them without any knowledge of the
anomalous dimensions. Therefore, we can essentially take a half-inverted correlator,
and attempt to partially solve it in the large-h regime. Suppose that the sum over
[σσ]0 produced a term

p(h)zhf ⊂ 〈σ̃σ〉 (3.55)

where hf is the asymptotic half-twist of a multitwist family f . We can safely say that
p(h) is a part of the large-h asymptotics of the thermal coefficient of the family f .
Now, the sum over the family f in the t-channel includes a term∑
O∈f

(1 + (−1)`)p(h)(1− z)h−2hσ(1− z)hf+δf (h)−2hσ ⊃
∑
a∈A

ca[p]z
a(1− z)hf−2hσ

+O(δf ) + regular. (3.56)

Note that we can determine the singular term ca[p(h)] without having to know about
the small-h behavior of the thermal coefficients of the family f , or the anomalous
dimensions δf ! This is unlike the regular terms, which depend on knowing the small-
h behavior of the thermal coefficients as well as the anomalous dimensions. Inverting
the singular term in (3.56), we obtain a contribution to the half inverted correlator

〈σ̃σ〉 ⊃ ca[p]Shf−2hσ ,2hσ(h)z2hσ+a. (3.57)

So, we take the half-inverted correlators 〈σ̃σ〉 and 〈ε̃ε〉 computed from the contribu-
tions of 1, ε, T , and [σσ]0, and augment them with the singular terms (3.57) coming
from all the asymptotics of thermal coefficients of other families that appear in them.
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Figure 3.9: The t-channel diagram denotes a sum over the asymptotics δ(O)
[σσ]n

(h) ×
a
〈σσ〉(O′)
[σσ]n

(h). This inverts to poles for the [OOO′]m families in the s-channel. Con-
versely, swapping the s- and t−channels, and summing over the [OOO′]m family in
the t-channel reproduces the anomalous dimensions of the [σσ]n family in the terms
proportional to aO′ .

In fact, these singular terms are crucial, and augmenting by them is a natural thing
to do. For example, in order to reproduce known anomalous dimensions from the
thermal inversion formula — such as those of the [σσ]0 family — one needs to sum
over multi-twist families in the t-channel chapter 2. The prototypical example of this
process is illustrated in the thermal large-spin diagram in figure 3.9. Also, recovering
the thermal coefficients of [σσ]0 in 〈εε〉 requires summing over generically multitwist
families that are generated in 〈εε〉 by the sum over [σσ]0, as illustrated in figure 3.10.
We will now briefly review these relevant processes.

3.4.3.2 Generating anomalous dimensions in 〈σσ〉

Let us illustrate how anomalous dimensions are generated for the half-inverted corre-
lator 〈σ̃σ〉 by an example. We saw in (3.37) that the sum over [σσ]0 in 〈σσ〉 produced a
pole for the [εε]0 family. In particular, this means that the sum over [σσ]0 contributes
a term

〈σ̃σ〉(z, h) ⊃ z2hεa
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
S

(1)
0,∆σ

(h) (3.58)

to the half-inverted correlator 〈σ̃σ〉(z, h). This implies that there is a term, given in
(3.37), in the large-h expansion of a〈σσ〉[εε]0

(h). Now, we would be wrong to say that this
is a good approximation to the thermal coefficients at small h, but at large h, we know
such a term is there. By crossing symmetry of figure 3.8, this term is responsible for
generating the δ(ε)

[σσ]0
correction to the anomalous dimensions of [σσ]0 in 〈σ̃σ〉.

Let us consider the contributions of [εε]0 to the thermal coefficients in 〈σσ〉. To
evaluate them, we need to analyze the t-channel sum over the family. This sum has
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the same form as the sum (3.30) over the [σσ]0 family,

∞∑
`=`0

p0(`)a
〈σσ〉
[εε]0

(h)(1− z)2hε+δ[εε]0 (h)−2hσ(1− z)h−2hε

=
∞∑
m=0

(∑
a∈Am

ca

[
δm[εε]0
m!

p0a
〈σσ〉
[εε]0

]
za +

∞∑
k=0

αk

[
δm[εε]0
m!

p0a
〈σσ〉
[εε]0

, δ[εε]0 , 2hσ

]
(h0)zk

)
× (1− z)2hε−2hσ logm(1− z), (3.59)

where h = 2hε + ` + δ[εε]0(h) and h0 = 2hε + `0. One important difference is that
since 2hε − 2hσ /∈ Z≥0, the terms with m = 0 have nonzero discontinuity and con-
tribute to the inversion formula. So, we can consider the leading term m = 0 in
the anomalous dimension expansion. Now, without knowledge of small-h values of
a
〈σσ〉
[εε]0

(h), we cannot reliably evaluate the αk coefficients. However, the coefficients
ca[p] only depend on the asymptotic expansion of p(h), and are insensitive to small-h
behavior. So, using the term of a〈σσ〉[εε]0

in (3.58), we can compute the leading singular

term ca

[
p0a
〈σσ〉
[εε]0

]
za,

∑
a∈A0

ca

[
p0a
〈σσ〉
[εε]0

]
za ⊃ a

〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
log z. (3.60)

Half-inverting this term, we obtain the corresponding contribution

〈σ̃σ〉(z, h) ⊃ a
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
z2hσ log z S2hε−2hσ ,2hσ(h) + . . . . (3.61)

This is a correction to the anomalous dimension (pole location) δ[σσ]0 of the [σσ]0

family. As expected, this is exactly the term in large-spin perturbation theory that
produces the contribution of ε to the anomalous dimension through the crossing-
symmetric process illustrated in figure 3.8. Other contributions arise from similar
sums over other, potentially multi-twist families, as illustrated in figure 3.9.

One important point to highlight is that the contribution (3.61) above does not only
produce the expected anomalous dimension, it also contributes to higher poles. The
half-inversion of the term in (3.60) produces another term, contributing to the anoma-
lous dimensions at the naïve location of the [σσ]1 family,

〈σ̃σ〉(z, h) ⊃ a
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
z2hσ+1 log z q1(Ĵ)S2hε−2hσ ,2hσ−1(h). (3.62)

In principle, this is an important contribution when considering the [σσ]1 family, and
through mixing, the [εε]0 family. The moral is that we should systematically generate
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these terms by iterating t-channel sums and subsequent half-inversions, rather than
by putting the anomalous dimensions in by hand whenever they are known, as we will
also generate other contributions. In summary, we put in the anomalous dimensions
of [σσ]0 and recover them, but also generate some additional terms for [σσ]n.

3.4.3.3 Generating [σσ]0 in 〈ε̃ε〉

Another important phenomenon is the generation of the [σσ]0 thermal coefficients in
〈ε̃ε〉. Using 〈σσ〉, we already computed an expression for the [σσ]0 thermal coefficients,
which we believe to be accurate. One might be tempted to input them into 〈ε̃ε〉 by
hand. As with the anomalous dimensions above, it’s worthwhile to generate the
[σσ]0 thermal coefficients in 〈ε̃ε〉 systematically; similarly, contributions to the [σσ]1

thermal coefficients in 〈ε̃ε〉 are also generated.

The process with which the [σσ]0 thermal coefficients are generated in 〈ε̃ε〉 is depicted
in figure 3.10. Our task boils down to looking at the singular terms arising from the
sum over [σσ]0 in 〈εε〉,

∑
`

p0(`)
fεε[σσ]0(h)

fσσ[σσ]0(h)
a
〈σσ〉
[σσ]0

(h)(1− z)2hσ+δ[σσ]0
(h)−2hε(1− z)h−2hσ

⊃ (1− z)2hσ−2hε

∞∑
m=0

logm(1− z)
∑
a∈Am

ca

[
δm[σσ]0

m!
p0

fεε[σσ]0

fσσ[σσ]0

a
〈σσ〉
[σσ]0

]
za, (3.63)

and then considering the sum over the families appearing there. The singular terms
of the sums over those families (to constant order in their anomalous dimensions)
reproduce the [σσ]0 thermal coefficients we seek. As before, inverting anything that
contributes to a pole for [σσ]0 at h = 2hσ also contributes to higher poles at h =

2hσ + n, and in particular to [σσ]1.

3.4.4 Mixing between families

The combination of our effort so far allows us to compute good approximations for
the half-inverted correlators 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h). To summarize our steps so far,
our approximations are obtained first by half-inverting 1, ε, T , and the [σσ]0 family,
and then further refined by augmenting by the singular terms coming from sums over
other families (that appear in 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h) from the asymptotics of the
sum over the [σσ]0 family). Let g̃c(z, h) denote the vector of half-inverted correlators

g̃(z, h) =
(
〈σ̃σ〉(z, h), 〈ε̃ε〉(z, h)

)
, (3.64)
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Figure 3.10: To obtain the [σσ] thermal coefficients proportional to a〈εε〉O in the s-
channel of 〈εε〉, one must invert sums over [OO′O′] in the t-channel. Of course, the
diagrams are crossing symmetric, so the required t-channel terms are obtained from
inverting the sum over [σσ] in the first place.

where c labels the correlator. Our computations for the half-inverted correlators
produce approximations of the form

g̃cnaïve(z, h) =
∑
f

(acf )
naïve(h) zh

naïve
f

(
1 + δf (h) log z +O(log2 z)

)
(3.65)

for each of the two correlators, c. Here, the sum is over several of the low-twist
families f , such as [σσ]0, [σσ]1, [εε]0, and a few others appearing as singular terms
from the sum over [σσ]0. At sufficiently high h, the log z terms, like those found in
(3.61), correctly approximates the anomalous dimensions for some of these families.11

However, at small h, the thermal coefficients of families that are close in twist — and
thus have similar powers of z in the expansion (3.65) — prove difficult to disentangle.
As reviewed in 3.2.2, in the case of the 3D Ising CFT, the contributions of [σσ]1

and [εε]0 are difficult to disentangle as hnaive
[σσ]1

= ∆σ + 1 = 1.518, while hnaive
[εε]0

=

∆ε = 1.412. For this reason, we cannot simply identify the one point functions and
anomalous dimensions of each family from the expansion (3.65). We will instead use
the augmented half-inverted correlators from g̃naive to implement a mixing procedure
that disentangles the contributions of the three most important double-twist families
in the 3D Ising CFT: [σσ]0, [σσ]1, and [εε]0.

Using the ingredients in section 3.4.3, we can now explain the mixing procedure. We
expect a given half-inverted correlator to have the exact form

g̃c(z, h) =
∑
f

acf (h)zhf (h), (3.66)

where the sum is over families f once again, with the thermal coefficients in each
family given by acf (h) and the exact half-twist given by hf (h). In the 3d Ising CFT

11Note that our approach does not lead to the expected log z terms for every family f . This is
one reason for which considering mixing proves important.
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Figure 3.11: The effect of operator mixing for the thermal coefficients in the [σσ]0,
[σσ]1, and [εε]0 families. As an example we show the coefficient of a〈σσ〉1 in the thermal
coefficients of each family. The dashed curves represent the predictions made by the
inversion formula before implementing operator mixing, while the solid curves repre-
sent the post-mixing predictions, with the mixing region Pmix = {0.05, 0.1, . . . , 0.3}.

we would like to truncate the sum of families to f ∈ F = {[σσ]0, [σσ]1, [εε]0}, which,
due to their low twist, have the greatest contribution to the two correlators 〈σσ〉
and 〈εε〉 in the light-cone limit. We will denote these truncations gcF(z, h). At small
z, gc(z, h) is dominated by the families f ∈ F , and therefore well approximated by
gcF(z, h).

We do not include multi-twist families such as [σσε] and [σσσσ] in the sum over f
for two reasons. The first is that they give a small numerical contribution to the
flat-space four-point functions 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉, so it is reasonable to guess that
their contribution to thermal two-point functions is also small. The other reason is
that we know much less about their anomalous dimensions and OPE coefficients, and
thus would not be able to write a suitable ansatz. It will be important to better
understand multi-twist operators to improve our techniques in the future.

The thermal coefficients appearing in different correlators are related by ratios of OPE
coefficients. For each family, let us pick a thermal coefficient au(h) from a certain
correlator that we would like to parametrize the thermal data of that family by. Given
our choice of au(h), we can form the matrix λcu(z, h) comprised of appropriate ratios
of OPE coefficients such that

g̃cF(z, h) = λcu(z, h)au(h). (3.67)
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Specifically, the exact contribution of the families [σσ]0, [σσ]1, and [εε]0 to the half-
inverted correlator can be written using,

au(h) =

a
〈σσ〉
[σσ]0

(h)

a
〈σσ〉
[σσ]1

(h)

a
〈εε〉
[εε]0

(h)

 . (3.68)

Accordingly, we have

λcu =

 zh[σσ]0
(h) zh[σσ]1

(h) fσσ[εε]0
(h)

fεε[εε]0 (h)
zh[εε]0

(h)

fεε[σσ]0
(h)

fσσ[σσ]0
(h)
zh[σσ]0

(h) fεε[σσ]1
(h)

fσσ[σσ]1
(h)
zh[σσ]1

(h) zh[εε]0
(h)

 . (3.69)

We can now understand Eq. (3.65) as an approximation to the contribution of the
families correlator,

g̃cnaive(z, h) ≈ g̃cF(z, h). (3.70)

Note that at large h, due to the decrease in the anomalous dimensions for all three
families in F , the terms (acf )

naive(h) appearing in (3.65) are close to the correct thermal
coefficients appearing in (3.67). However, at small values of h, as has been described
in section 3.2.2, the anomalous dimensions of operators in the [σσ]1 and [εε]0 become
large and thus there is a large z-power mismatch between the terms which (acf )

naive(h)

in (3.65) and those that include acf (h) in (3.66). Thus, all the terms in the naive
expansion (3.65) will mix and contribute to the accurate thermal coefficients for all
three families in F . As previously mentioned, this effect is especially noticeable on
families such as [σσ]1 and [εε]0 whose twists are close and whose naive contribution
in (3.65) are difficult to distinguish at small h. For this reason, we will refer to (3.70)
as the mixing equation.

In solving for the mixed coefficients au(h) we have conveniently written (3.70) in
matrix form. Thus, for each value of h that we are interested in, we can treat the
mixing equation as an over-determined linear system. Concretely, we can impose that
(3.70) be satisfied for several values of z from some set of values Pmix. Of course, due to
the truncation of the expansion (3.65), we get an overdetermined system of equations
and it is impossible to satisfy the mixing equation for all values of z. However, as one
can see from figure 3.4, when choosing,

Pmix = {0.05, 0.1, . . . , zmax}, with zmax ∈ {0.15, 0.2, . . . , 0.6}. (3.71)
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Figure 3.12: Estimates for the terms multiplying a〈σσ〉1 , a〈σσ〉ε , and a〈σσ〉T in the thermal
coefficients a〈σσ〉[σσ]0

(J). The dashed blue curves are the predictions from the inversion
formula before performing operator mixing while the solid curves are the predictions
after accounting for operator mixing. The blue dots represent the post-mixing pre-
dictions for each local operator with J ≥ 4 in the [σσ]0 family. The purple dots are
the extrapolation of the thermal coefficient to the stress-energy tensor.

our results are robust under different choices of Pmix (see figure 3.4).12 Thus, we solve
for each term proportional to each unknown ac1, ε, T in au(h) using the method of least
squares for each value of h.13 To exemplify our procedure, in figure 3.11, we show
how the coefficients multiplying a〈σσ〉1 are affected by mixing.

We now use the estimates obtained from mixing to understand the thermal coefficients
of operators with small spin. Since T is a member of the [σσ]0 family, we can use
our calculation of a〈σσ〉[σσ]0

to constrain a
〈σσ〉
T . We thus extrapolate our results for the

thermal coefficients of the [σσ]0 family down to J = 2 (see figure 3.12). After mixing,
the thermal coefficient of T is computed in terms of the unknowns as

a
〈σσ〉
[σσ]0

(h = 2.5) =

(
dh

dJ

) ∣∣∣∣
h=2.5

(
2.07a

〈σσ〉
1 + 0.0163a

〈σσ〉
T − 0.257a〈σσ〉ε

)
. (3.72)

Using the known anomalous dimensions for the [σσ]0 family, we can compute dh/dJ .14

12This remains true as long as z � O(1)e−1/δO , where δO is the average anomalous dimension at
a certain value of h for the three operator families that we are considering.

13We give an equal weight to each value of z in the least square fit.
14Since [20] provides accurate values for the anomalous dimensions of all operators in [σσ]0, [σσ]1,

and [εε]0, we can use a fit to the numerical results to accurately obtain dh/dJ . At the h values of
local operators, the fit strongly agrees with the analytical predictions for the anomalous dimensions.
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Of course, (3.72) should be equal to a〈σσ〉T itself! Solving for a〈σσ〉T , we have

a
〈σσ〉
T = 2.136a

〈σσ〉
1 − 0.265a〈σσ〉ε . (3.73)

Recall that we can normalize all the thermal coefficients by that of the unit operator,
thus setting a〈σσ〉1 = 1. Therefore, we have only a single unknown left: a〈σσ〉ε . We
have successfully approximated the thermal coefficients of all operators in the three
low-twist families of interest in terms of a single unknown!

A similar issue presents itself when one considers low-spin operators in the higher-
twist families [σσ]1 and [εε]0. At spin 0 and 2, there are only the two operators ε′ and
T ′; both belong to the [σσ]1 family, whereas the [εε]0 family has no such operators
[20]. Therefore, our mixing procedure does not work for these operators. However,
it is crucial to estimate the thermal coefficients of ε′ and T ′ for solving the KMS
condition. We have found it best to extract the thermal coefficients of the low-spin
members of the [σσ]1 family by extrapolating the mixed thermal coefficients down to
small h by a simple fit. This is motivated by results from the flat-space data where
the OPE coefficients and anomalous dimensions of these two operators appear to lie
on smooth curves with all other members of the [σσ]1 family. The estimates for a〈σσ〉ε′

and a〈σσ〉T ′ obtained by performing such a fit can be extrapolated using figure 3.11.

3.4.5 Solving for bO
Finally, we will input the thermal coefficients we’ve obtained for the three families
[σσ]0, [σσ]1, and [εε]0 into the 〈σσ〉 correlator, and impose the KMS condition to
determine the last unknown a

〈σσ〉
ε . We do this via the following steps. We first

evaluate the correlator minus its image under crossing in various regions of the (z, z)

plane, PKMS. To determine a〈σσ〉ε , we attempt to minimize:

ΛKMS(a〈σσ〉ε ) =
∑

(z,z)∈PKMS

(g(z, z)− g(1− z, 1− z))2. (3.74)

By setting ∂ΛKMS(a
〈σσ〉
ε )/∂a

〈σσ〉
ε = 0 we can determine the results obtained in (3.24).

The thermal inversion formula guarantees that the KMS condition is satisfied in the
proximity of the point (z, z) = (0, 1). Thus, if one tries to approximately impose KMS
solely in that region, there would be an almost flat direction associated to the unknown
a
〈σσ〉
ε and, consequently, our numerical estimates would be inaccurate. However, if one

imposes KMS in a region where the OPE does not converge well the results would
once again be inaccurate. Thus, we try to impose that KMS is approximately satisfied
in an intermediate region and check for robustness under changes of PKMS within this
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Figure 3.13: Example of the smallest (black) and largest (red) regions in (z, z) where
we minimize the square of the difference of the two-point function and it’s periodic
image, as in (3.74).

intermediate regime. We find that our results are indeed robust for various choices of
the (z, z) region PKMS and, as mentioned before, for the choice of z values Pmix which
are used to perform the mixing of the three families. To emphasize this, in figure 3.4,
we show a spread of the thermal coefficients obtained by minimizing (3.74) for the
values of Pmix in (3.71) and for values of PKMS raging between the two regions showed
in (3.13). While the value of a〈σσ〉ε varies by at most ∼ 10% between any two choices
of Pmix and PKMS, the thermal coefficients for all other operators exhibit a much lower
variance.15 For instance, the stress energy tensor thermal coefficient varies by ∼ 5%,
while the the thermal coefficient of the spin-4 operator [σσ]0,`=4 varies by ∼ 1%. To
test how well the crossing equation is satisfied on the Euclidean thermal cylinder we
plot the difference

δgKMS(τ, x) = g(x, 1 + τ)− g(x, τ) , (3.75)

in figure 3.6. The KMS condition is very close to being satisfied in the regime in which
both the points (x, τ) and (x, 1 + τ) are close to the origin of the s-channel OPE,
(0, 0). For instance, we find that δgKMS(−1/4, 1/4)/g(−1/4, 1/4) = 0.0037. This
shows the great extent through which one could use the thermal inversion formula to

15This is partly due to the fact that the contribution of the unit operator dominates the thermal
coefficients of higher spin operators.
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systematically solve the KMS condition or, equivalently, solve the “crossing-equation”
of El-Showk and Papadodimas [38].
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C h a p t e r 4

SHOCKS, SUPERCONVERGENCE, AND A STRINGY
EQUIVALENCE PRINCIPLE

1M. Koloğlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “Shocks, Su-
perconvergence, and a Stringy Equivalence Principle”, (2019), arXiv:1904.05905
[hep-th].

4.1 Introduction

In General Relativity (GR), particles follow geodesics regardless of their polarizations
or internal composition. This is sometimes called the “strong equivalence principle”
[138]. However, in the presence of non-minimal (higher-derivative) couplings, this
principle is no longer true — the path of a particle can depend on its polarization
and is not given by a geodesic. Such modifications of GR are known to be in tension
with causality and unitarity.1

A simple example is the propagation of a probe particle through a gravitational shock
(gravitational field of a highly-boosted particle). In GR, propagation through a shock
leads to a velocity kick and a Shapiro time delay. By contrast, in theories with non-
minimal gravitational couplings, there can be gravitational birefringence: depending
on the polarization of the probe particle, the effect of the shock can be different.
Moreover, for certain polarizations, the probe particle can experience a time advance
[96]. By arranging many shocks one after the other, one can accumulate the time
advances and produce macroscopic violations of asymptotic causality. The restoration
of causality requires an infinite set of massive higher-spin particles. It was argued in
[96] that the masses of these higher-spin particles must be related to the scale that

1In quantum field theory, causality is a statement about commutativity of local operators at
spacelike-separated points. In gravitational theories, we do not have local operators but the asymp-
totic structure of the gravitational field is weakly coupled and relatively simple. We can there-
fore introduce gravitational field operators at the asymptotic boundary of spacetime and impose
their commutativity at spacelike separations. This leads to a notion of asymptotic causality [139].
In AdS/CFT, this becomes a familiar statement about commutativity of local CFT operators at
spacelike-separated points on the boundary of AdS. In flat space, it is related to the rate of growth
of the amplitude in the forward limit [96].

http://arxiv.org/abs/1904.05905
http://arxiv.org/abs/1904.05905
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enters the modified gravitational coupling2

αGB .
1

m2
gap

. (4.1)

Indeed, this is what happens in string theory, where the higher-spin particles are
string excitations. Similar bounds on three-point couplings were derived in [96–99,
140, 141]. A common feature of these arguments is the lack of a sharp equality relating
the non-minimal couplings to the extra degrees of freedom required for causality.

In this work, we provide such an equality between αGB and contributions of massive
states in a general gravitational theory. We note that non-minimal gravitational
couplings introduce another feature that is absent in GR, namely non-commutativity
of coincident gravitational shocks.3 This is another violation of the strong equivalence
principle. Indeed, as we review below, geodesics are insensitive to the ordering of
gravitational shocks. On the other hand, for theories with non-minimal gravitational
couplings, the effect of propagation through multiple shocks depends on the ordering
of the shocks. What is less trivial is that this effect can be traced to pathological
behavior of the scattering amplitude in the Regge limit. We find that the converse is
also true: in any UV-complete gravitational theory, soft Regge behavior guarantees
that coincident gravitational shocks must commute. This can be readily checked in
tree-level string theory.

Therefore, we suggest that a weaker “stringy” equivalence principle does hold in gen-
eral UV-complete gravitational theories: coincident gravitational shocks commute. In
contrast to the causality discussion above, commutativity of coincident shocks leads
to quantitative sum rules that equate the size of non-minimal couplings to the extra
degrees of freedom that are present in the theory.

In section 4.2, we explain how commutativity of coincident shocks is equivalent to
boundedness of amplitudes A(s, t) in the Regge limit (t→∞ with fixed s). Specifi-
cally, shocks with spins J1 and J2 commute if and only if the Regge intercept of the
theory J0 satisfies4

J1 + J2 > J0 + 1. (4.2)

2The subscript GB stands for the common Gauss-Bonnet modification of GR, but we mean it
more generally as a statement about any non-minimal gravitational coupling.

3A shock is a region of curvature localized on a null surface. We say that two shocks become
coincident in the limit that their null surfaces coincide.

4The Regge intercept depends on the value of the Mandelstam variable s, but we suppress that
dependence here for simplicity.
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For example, gravitational (spin-2) shocks commute if J0 < 3. It has been argued
that consistent weakly-coupled gravity theories in flat space actually obey J0 ≤ 2 [96],
so gravitational shocks certainly commute in this case (as do higher-spin shocks).

In section 4.2.2, we show that commutativity of coincident shocks is equivalent to
certain dispersion relations called “superconvergence” sum rules [142, 143]. When ap-
plied to gravitational amplitudes, these sum rules express (squares of) non-minimal
couplings in terms of three-point couplings of massive states. This shows that non-
minimal couplings cannot exist without additional massive states, recovering a re-
sult from [96] in a different way. In subsequent sections, we study superconvergence
sum rules in several examples, showing explicitly how they are obeyed in GR (sec-
tion 4.2.3), disobeyed in higher-derivative gravity theories (section 4.2.4), but obeyed
in string theories (sections 4.2.5 and 4.2.6). Indeed, the failure of superconvergence
sum rules in higher-derivative theories like Gauss-Bonnet gravity gives an efficient
way to show that they violate the Regge boundedness condition J0 < 3 without
computing full amplitudes in those theories.

In AdS, commutativity of coincident shocks translates into a statement that can be
proven nonperturbatively using CFT techniques. As we review in section 4.3, we can
create shocks by integrating local operators along null lines on the boundary of AdS.
It is most natural to study propagation through AdS shocks using observables called
“event shapes” [31, 144–147], which we review in sections 4.3.2 and 4.3.3. Commuta-
tivity of coincident shocks becomes the statement that two null-integrated operators
commute when placed on the same null plane:[∫ ∞

−∞
dv1O1;v···v(u = 0, v1, ~y1),

∫ ∞
−∞

dv2O2;v···v(u = 0, v2, ~y2)

]
?
= 0. (4.3)

Here, we use lightcone coordinates ds2 = −du dv+d~y2. The CFT operators lie on the
same plane u = 0 but at different transverse positions ~y1, ~y2 ∈ Rd−2. Furthermore,
their vector indices are aligned with the direction of integration (the v-direction). For
example, when O1 and O2 are both the stress-tensor Tµν , (4.3) becomes a commutator
of average null energy operators. An average null energy operator on the boundary
creates a gravitational shock in the bulk.

The commutativity statement (4.3) might seem obvious, sinceO1 andO2 are spacelike-
separated everywhere along their integration contours. However, the spacelike sep-
aration argument is too quick, and is actually wrong in some examples (see ap-
pendix C.2). The problem is that the positions of O1 and O2 coincide at the endpoints
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of their integration contours (in an appropriate conformal frame), and one must be
careful to analyze what happens there.

We perform a careful analysis of the commutator (4.3) in section 4.4, explaining the
circumstances when it is well-defined (but not necessarily zero), and the additional
conditions required for it to vanish. A necessary condition for vanishing is

J1 + J2 > J0 + 1, (4.4)

where J1 and J2 are the spins of O1 and O2, and J0 is the Regge intercept of the
CFT [25, 28, 148–150]. In chapter 5, we also show that a non-vanishing commutator
necessarily leads to a Regge pole at J = J1 + J2 − 1.

In section 4.4.2.4, we prove that J0 ≤ 1 in nonperturbative CFTs (generalizing argu-
ments of [25, 151] to spinning correlators). This establishes commutativity of average
null energy operators in nonperturbative theories5[∫ ∞

−∞
dv1 Tvv(u = 0, v1, ~y1),

∫ ∞
−∞

dv2 Tvv(u = 0, v2, ~y2)

]
= 0, (4.5)

for ~y1 6= ~y2. For large-N theories in the planar limit, the bound on chaos [84] implies
that J0 ≤ 2. Thus, average null energy operators commute in planar theories as well.
However, commutativity can be lost at higher orders in large-N perturbation theory
(and only recovered nonperturbatively).

The condition (4.4) is in direct analogy to the condition (4.2) in flat space. When it
holds, one can derive analogous superconvergence sum rules for CFTs by evaluating
event shapes of (4.3). In section 4.5, we show how to compute these event shapes using
the conformal block decomposition, expressing them as sums over intermediate CFT
states.6 The relevant conformal blocks can be computed explicitly in any spacetime
dimension. The blocks for stress tensors agree perfectly with our bulk calculations
from section 4.3. The result is an infinite set of superconvergence sum rules for CFT
data.

Of course, the usual crossing symmetry equations [9, 10] are also an infinite set
of sum rules for CFT data. However, CFT superconvergence sum rules have some

5Commutativity of average null energy (ANEC) operators is important for understanding
information-theoretic aspects of CFTs [152, 153], and plays a central role in the recently proposed
BMS symmetry in CFT [154]. As far as we are aware, it is usually argued for using the fact that
the stress tensors are spacelike separated. Our analysis closes a loophole in this argument.

6The conformal blocks we study in this work are for the “lightray-local→ lightray-local” channel.
This is the conventional OPE. By contrast, in chapter 5 we develop a new type of OPE that allows
one to describe the “lightray-lightray → local-local” channel.
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nice properties. In large-N theories in the planar limit, they get contributions only
from single-trace operators and non-minimal three-point structures (i.e. three-point
structures that do not arise from GR in AdS). Thus, one obtains expressions for
non-minimal three-point coefficients in terms of massive “stringy” states, analogous
to superconvergence sum rules in flat space.

As an example, in 4d CFTs, we find the superconvergence sum rules

(t4 + 2t2)2 =
∑
φ

|λTTφ|2
15 · 24π4Γ(∆φ − 1)Γ(∆φ)

CTΓ(4− ∆φ

2
)2Γ(2 +

∆φ

2
)6

+ non-scalar,

(t4 + 2t2)2 = −
∑
φ

|λTTφ|2
3602π4Γ(∆φ − 1)Γ(∆φ)

7CTΓ(4− ∆φ

2
)2Γ(2 +

∆φ

2
)6

+ non-scalar, (4.6)

along with an infinite number of others. Here, t2 and t4 are coefficients of non-Einstein
three-point structures in the correlator 〈TTT 〉, see [31]. For example, in 4d N = 1

theories, we have t2 = 6(c−a)
c

and t4 = 0. The sums in (4.6) run over scalar operators
φ with dimensions ∆φ and OPE coefficients λTTφ in the T × T OPE. The term
“non-scalar” refers to contributions of operators with spin J ≥ 2, not including the
stress-tensor (whose contribution is on the left-hand side of (4.6)). For simplicity, we
have written only the sum rules that get contributions from scalar operators. Other
sum rules give expressions for other combinations of t2 and t4, but involve exclusively
non-scalars. The factors Γ(4−∆φ

2
)−2 in (4.6) ensure that contributions of double-trace

operators are suppressed by O(1/N4) in the large-N limit. This is a generic feature
of superconvergence sum rules and it stems from the fact that they can be written in
terms of a double-discontinuity [25]. In particular, one can see explicitly that if no
single-trace operators are present other than the stress tensor, then t2 and t4 must
vanish in the planar limit.7,8

In [156], it was conjectured that for any CFT with a large gap ∆gap in the spectrum
of spin J ≥ 3 single-trace operators (“stringy states”), non-minimal couplings in the
effective bulk Lagrangian should be suppressed by powers of 1/∆gap. In section 4.6.1,
we argue (non-rigorously) that the contributions of stringy states to superconvergence
sum rules are suppressed by powers of 1/∆gap, and this establishes the conjecture of
[156] (in the case of three-point couplings) in a way different from the arguments of
[96–99, 140, 141]. We conclude in section 4.6.2.

7Strictly speaking the above equations only fix t4 + 2t2, but there are also linearly independent
constraints from other components of the sum rule.

8Our methods for computing event shapes may be also useful for investigating positivity condi-
tions. In [155] it was shown that positivity of multi-point energy correlators also leads to vanishing
non-minimal couplings, e.g. t2, t4 = 0 for 〈TTT 〉, in theories with only gravitons and photons in the
bulk.
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In appendix C.1, we give more details about superconvergence sum rules in flat space.
In appendix C.2, we give an example of the phenomenon of “detector cross-talk,”
where naïvely spacelike light-ray operators can fail to commute. In the remaining
appendices we provide details about sum rules in CFT.

Note added: After this work had been largely completed, we became aware of [157]
which has some overlap with this paper.

4.2 Shocks and superconvergence in flat space

In General Relativity (GR), test bodies follow geodesics, and it follows that the effects
of coincident shocks are commutative. To see this, consider a shockwave in flat space
[158, 159]

ds2 = −du dv +
4Γ(D−4

2
)

π
D−4

2

Gpv

|~y|D−4
δ(u)du2 + d~y2, (4.7)

and let us study null geodesics in this geometry.9

A shockwave is a gravitational field created by a relativistic source. The Aichelburg-
Sexl geometry (4.7) is an exact solution of Einstein’s equations with a stress-energy
source Tuu(u, ~y) = pvδ(u)δ(D−2)(~y) localized on a null geodesic. The only non-trivial
metric component huu(u, ~y) =

4Γ(D−4
2

)

π
D−4

2

Gpv

|~y|D−4 δ(u) is a solution of the Laplace equation
in the transverse plane parametrized by ~y with a non-trivial source

�~yhuu(u, ~y) = −16πGTuu(u, ~y). (4.8)

Famously, (4.7) continues to be an exact solution in any higher derivative theory
of gravity as well [161]. Higher derivative interactions, however, lead to nontrivial
corrections to the propagation of probe particles on the shockwave backgrounds.

Consider a probe particle on the shockwave background that follows a null geodesic.
We can parameterize the null geodesic by u. Suppose the geodesic approaches the
shock at impact parameter ~y(u = 0) = ~b. Crossing the shock causes both a Shapiro
time delay

vafter − vbefore =
4Γ(D−4

2
)

π
D−4

2

Gpv

|~b|D−4
, (4.9)

9Obtaining such solutions from a smooth Cauchy data (or limits thereof) in gravitational theories
can be subtle and was discussed for example in [160]. For us, the solution (4.7) is a convenient way
to think about the high energy limit of gravitational scattering and per se does not play any role.
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1
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1

Figure 4.1: The probe geodesic is denoted by a black line and shock waves by red
lines. Dashed lines mark time delay associated to each shock. In General Relativity
propagation through a pair of closely situated shockwaves is commutative, namely
the overall effect does not depend on the order of the shocks. This is no longer true in
theories with higher derivative corrections. We argue that commutativity must hold
in any UV complete theory.

and a velocity kick in the transverse plane due to gravitational attraction

~̇yafter − ~̇ybefore = −
4Γ(D−2

2
)

π
D−4

2

Gpv
~b

|~b|D−2
. (4.10)

The same result can be obtained by analyzing wave equations on the shockwave
backgrounds or using scattering amplitudes (as we review in detail below). In General
Relativity the effect of a shockwave on a probe particle does not depend on the the
polarization of the particle. This is no longer true in higher-derivative theories of
gravity. This can lead to Shapiro time advances and violations of asymptotic causality
[96].

We can also consider a more complicated geometry constructed by a superposition of
relativistic sources localized at different retarded times ui and transverse positions ~bi.
The exact gravitational field created by such a superposition is simply a sum of the
shockwaves (4.7).

If a probe particle follows a geodesic, then propagation through a series of closely
situated shocks leads to an additive effect. In particular, the result does not depend
on the ordering of shocks and is commutative (figure 4.1). This is no longer true in
theories with higher derivative corrections. In this case, the result of the propagation
through a pair of closely situated shocks will generically depend on their ordering.

In this section, we show that commutativity of shockwaves is directly related to the
Regge limit. In particular, we argue that in any UV complete theory (gravitational
or not) the shock waves must commute. Therefore, any non-commutativity of shocks



128

present in the low energy effective theory should be exactly canceled by the extra
degrees of freedom. The mathematical expression of this fact is encapsulated in the
superconvergence sum rules which we describe in detail below.

4.2.1 Shockwave amplitudes

It will be instructive for our purposes to restate the discussion of the previous section
in terms of scattering amplitudes. This has been done in [96], whose setup we review
momentarily. In the simplest case of a propagation through a single shock, we consider
an absorption of a virtual graviton by a probe particle

g∗X → X ′, (4.11)

where X and X ′ describe a particle in an initial and final state (these could be
different) and g∗ stands for a virtual graviton that is emitted from some extra source
that we do not write down explicitly.10 We denote the corresponding scattering
amplitude Ag∗X→X′ .

To discuss causality, we consider the high-energy behavior of the scattering amplitude
in the forward direction, see [96]. A convenient choice of momenta and polarization
for the process (4.11) is

pX =

(
pu,

~q2

4pu
,−~q

2

)
, pX′ =

(
−pu,− ~q2

4pu
,−~q

2

)
,

pg∗ = (0, 0, ~q), εg∗ = (0,−2, 0). (4.12)

Here, we use lightcone coordinates (u, v, ~y) with metric

ds2 = −du dv + d~y2, ~y ∈ RD−2. (4.13)

The virtuality of the graviton is ~q2.

An interesting phenomenon occurs when studying this process in impact parameter
space. In this case, the virtual graviton emitted by a source comes with the following
wavefunction ∫

dd−2~q
ei
~b·~q

~q2
Ag∗X→X′(pu, ~q). (4.14)

The remarkable property of this integral is that it can be evaluated by taking the
residue at ~q2 = 0, so that the virtual graviton becomes on-shell! The on-shell condition

10In other words, the full description of (4.11) is in terms of a four-point amplitude.
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X(p3) 

g*(p2) g*(p1) 

X(p4) 

Figure 4.2: An elastic scattering of a probe particle and an on-shell shock state
graviton. We will argue that the Regge behavior of this amplitude in consistent
theories of gravity is such that gravitational shockwaves always commute. We adopt
a CFT correlator-like prescription where the time in the diagram goes from right to
left.

~q2 = 0 requires that ~q becomes complex. The result is that the physical phase shift
δ(pv,~b) is computed by a scattering amplitude in spacetime with mixed signature
(making ~q complex corresponds to a second Wick rotation). More precisely, we get

δ(pv,~b) ∝ Ag∗X→X′(pu,−i∂~b)
1

|~b|D−4
, (4.15)

where AgX→X′ is now a usual on-shell amplitude, albeit evaluated in slightly unusual
kinematics. Note that the on-shell condition ~q2 = 0 is reflected in (4.15) by the fact
that 1

|~b|D−4
is a harmonic function, so it is killed by (−i∂~b)2. The causality discussion

of [96] then focuses on the properties of the on-shell amplitude Ag∗X→X′ , and shows
that in gravitational theories with higher derivative corrections it can lead to causality
violations unless new degrees of freedom are added.

We would like to emphasize that the whole discussion can be formulated in terms
of on-shell amplitudes with shockwave gravitons g∗ and their properties. This is
particularly useful in a gravitational theory, where there is no clear definition of off-
shell observables. Therefore it is desirable to formulate the problem purely in terms
of on-shell observables. This is the path we follow below.

In this paper we will be interested in elastic scattering of a probeX and two shockwave
gravitons g∗

g∗(p2)X(p3)→ g∗(p1)X(p4), (4.16)

see figure 4.2. We choose the final state of the probe to be X for simplicity, but the
whole discussion goes through intact for any other one-particle state X ′.
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A convenient choice of momenta is

p1 = (0,−pv, ~q1), p2 = (0, pv, ~q2),

p3 = (pu, 0,−~q2), p4 = (−pu, 0,−~q1), (4.17)

and again the shockwave gravitons have polarizations εg∗ = (0,−2, 0) as in (4.7). As
above, we can think of each shockwave graviton as originating from a pair of particles
that we have not written explicitly. In this way, Ag∗X→g∗X can be thought of as an
economical description of the relevant part of the six-point amplitude. An on-shell
condition is ~q2

1 = ~q2
2 = 0. As before this naturally arises in the impact parameter

transform ∫
dd−2~q1

∫
dd−2~q2e

i~q1·~b1ei~q2·
~b2

1

~q2
1

1

~q2
2

Ag∗X→g∗X . (4.18)

Below, we simply study the on-shell amplitude Ag∗X→g∗X as an object on its own,
without referring to impact parameter space.11

One new feature of (4.17) compared to (4.12) is that the shockwave graviton transfers
to the probe a large longitudinal momentum pv. In [96] the shockwaves were carefully
separated in the u direction such that pv is effectively set to 0 and the amplitude
Ag∗X→g∗X reduces to a product of a one-shock interactions Ag∗X→X′Ag∗X′→X . Our
regime of interest is the opposite, namely we would like to put the shockwaves on top
of each other. This effectively leads to studying Ag∗X→g∗X at arbitrarily large values
of pv.

4.2.2 Shock commutativity and the Regge limit

An important class of shockwave amplitudes arises when the shockwaves are local-
ized on null planes. Such objects provide a natural translation into the language

11In a gravitational theory when trying to separate a probe from the rest of the system we should
check that the joint system does not form a black hole. In particular, we would like the impact
parameter b in the discussion above to be larger than the Schwarzschild radius of the system rD−3

S =
√
pupvGN . In momentum space this implies that r2S

b2 < 1, where ~q1, ~q2 ∼ 1
b . This implies that for

given ~q1, ~q2 we can only consider pupv

m2
Pl

<
(
m2
Plb

2
)D−3. For energies pupv

m2
Pl

>
(
m2
Plb

2
)D−3 the picture

of a probe propagating through a shockwave is not the correct description of physics. This does not
present a problem in a tree-level gravitational theory when we work to leading order in GN and thus
can make it arbitrarily small (or, similarly, if we consider gravitational deep inelastic scatering in a
gapped QFT, see section 4.2.8). At finiteGN , we can still formally define the amplitudeAg∗X→g∗X in
kinematics (4.17) with complex null transverse momenta, but its physical interpretation at arbitrarily
high energies is less clear. We ignore this subtlety below and only consider tree-level examples in
flat space, though we believe everything we say holds at finite GN as well. This problem does not
appear in our CFT discussion where g∗ corresponds to a light-ray operator insertion in a boundary
CFT and has, thus, a clear definition in a finite N CFT.
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of on-shell amplitudes of propagation through classical shock backgrounds like (4.7).
For simplicity, we consider 2 → 2 scattering amplitudes of massless scalars in this
section, where particles 1 and 2 play the role of shocks. We generalize to the case of
gravitational (or spinning) shocks in the next section.

A shock wavefunction localized at u = u0 is given by

4πδ(u− u0)ei~q·~y =

∫ ∞
−∞

dpvei(−
1
2
pv(u−u0)+~q·~y) =

∫ ∞
−∞

dpve
i
2
pvu0eip·y,

pµ = (0, pv, ~q), (4.19)

where ~q ∈ CD−2 is null. In order for pµ to be on-shell, ~q must be complex. Note
also that pv is integrated over both positive and negative values. As explained in
the previous section, such wavefunctions do not represent physical incoming or out-
going particles, but rather can be thought of as arising from poles of higher-point
amplitudes.

Let shocks 1 and 2 be localized at u1 and u2. We take particles 3 and 4 to be
momentum eigenstates. Overall, the momenta in “all-incoming” conventions are given
by (4.17), where we must integrate over pv to create the delta-function localized
shocks. Let us define the Mandelstam variables s = −(p1 + p2)2 = −(~q1 + ~q2)2 and
t = −(p2 + p3)2 = pupv.12

Denote the scattering amplitude for particles 1, 2, 3, and 4 in momentum space by
iA (s, t). Plugging in shock-wavefunctions (4.19) for particles 1 and 2, and applying
momentum conservation pv1 = −pv2 = −pv, we find that the amplitude for particles 3
and 4 scattering with shocks 1 and 2 is

Q(u1 − u2) ≡ i

∫ ∞
−∞

dpv exp

(
− i

2
pv(u1 − u2)

)
A
(
s = −(~q1 + ~q2)2, t = pvpu

)
=

i

pu

∫ ∞
−∞

dt exp

(
− i

2

t

pu
(u1 − u2)

)
A(s, t). (4.20)

The amplitude A(s, t) may have singularities on the real t-axis. As usual, the correct
prescription is to approach these singularities from above for positive t and below for
negative t. The corresponding integration contour is shown in figure 4.3.

When the shocks are separated in the u direction, the amplitude should factorize into
a product of S-matrix elements describing successive interactions with each shock.

12This labeling is chosen for consistency with our CFT conventions in section 4.5. Note that the
roles of t and s are swapped relative to usual discussions of high energy scattering.
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t

Figure 4.3: Integration contour for computing the shock amplitude. The integral is
along the real axis, rotated by a small positive angle. The dashed lines represent t-
and u-channel cuts. We assume that s < 0.

This comes about as follows. Note that the factor

exp

(
− i

2

t

pu
∆u

)
(4.21)

causes the integrand in (4.20) to be exponentially damped in t in either the upper or
lower half-plane, depending on the sign of ∆u. For example, suppose ∆u > 0. The
integrand is damped for Im t < 0, so we can wrap the t-contour around the cut on
the positive t-axis, giving a discontinuity (figure 4.4a)

Q(∆u) =
2π

pu

∫ ∞
0

dt exp

(
− i

2

t

pu
∆u

)
DisctA(s, t) (∆u > 0), (4.22)

where

Disctf(t) ≡ i

2π
(f(t+ iε)− f(t− iε)) , (4.23)

so that Disct
1

t−m2
X

= δ(t−m2
X).

The formula (4.22) is true as long as A(s, t) grows sub-exponentially in t. The dis-
continuity factors into products of on-shell amplitudes in the t-channel

DisctA(s, t) = −
∑
X

δ(t−m2
X)A(23,−X)A(X, 14) (t > 0). (4.24)

Here, we use all-incoming notation, so −X indicates the state X with momentum and
helicities flipped. Plugging this into (4.22), we get an expression for the shock ampli-
tude as a sum over intermediate states X. The physical interpretation is that particle
3 propagates through shock 2, creating an intermediate state X. The intermediate
state X propagates through shock 1 to become particle 4.
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t

(a) When ∆u > 0, we can wrap the con-
tour around the positive t-axis.

t

(b) When ∆u < 0, we can wrap the con-
tour around the negative t-axis.

Figure 4.4: Depending on whether the integrand decays exponentially in the upper or
lower half-plane, we can deform the contour in different ways. In both cases, the old
contour is shown in gray and the new contour in black. The direction of deforming
the contour is indicated with a dotted arrow.

Next, suppose ∆u < 0, so that shock 1 occurs before shock 2. In this case, we can
fold the t-contour to wrap around the u-channel cut (figure 4.4b),

Q(∆u) = −2π

pu

∫ 0

−∞
dt exp

(
− i

2

t

pu
∆u

)
DisctA(s, t) (∆u < 0). (4.25)

The discontinuity now factorizes into a product of on-shell amplitudes in the u-channel

−DisctA(s, t) = −
∑
X

δ(−t− s−m2
X)A(13,−X)A(X, 24) (t < 0). (4.26)

Let us take a limit where the shocks become coincident, ∆u→ 0±. We find

Q(0+) =
2π

pu

∫ ∞
0

dtDisctA(s, t),

Q(0−) = −2π

pu

∫ 0

−∞
dtDisctA(s, t). (4.27)

For these quantities to be well-defined, the discontinuities should die faster than |t|−1

along the real t-axis. Let us assume this is the case. The commutator of coincident
shocks is

Q(0+)−Q(0−) =
2π

pu

∫ ∞
−∞

dtDisctA(s, t) (4.28)

= −2π

pu

∑
X

[A(23,−X)A(X, 14)−A(13,−X)A(X, 24)] . (4.29)

It is not immediately obvious what the sum (4.29) should be. However, if A(s, t)

decays faster than t−1 in the limit of large complex t with fixed s (the Regge limit),
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then we can close the integration contour in (4.28) by including arcs at infinity and
shrink it to zero. Thus, coincident shocks commute if and only if the amplitude is
sufficiently soft in the Regge limit.

When the amplitude decays faster than t−1 for fixed s, then we obtain the condition∫ ∞
−∞

dtDisctA(s, t) = 0 (4.30)

which is an example of a “superconvergence” sum rule [142, 143]. In general, if the
amplitude dies faster than t−N−1 in the Regge limit, we can integrate its discontinuity
against tn for 0 ≤ n < N to obtain additional superconvergence sum rules. Note that
we obtain a different sum rule for each s. Superconvergence sum rules have been
used, for example, to bootstrap the Veneziano amplitude [162].

4.2.2.1 Spinning shocks

While scalar shock amplitudes must decay faster than t−1 to have a superconvergence
sum rule, this condition gets relaxed for spinning shocks. Consider a massless spin-J
particle described by a traceless symmetric tensor field hµ1···µJ (x). It is convenient to
define a symmetric J-differential hJ(x, dx) = hµ1···µJ (x)dxµ1 · · · dxµJ .

States are labeled by a momentum pµ and a transverse traceless-symmetric polariza-
tion tensor εµ1···µJ , modulo gauge redundancy. Let us parameterize the polarization
tensor as a product of vectors εµ1···µJ = εµ1 · · · εµJ , where εµ is transverse and null.13

Thus, we can label momentum eigenstates by |p, ε〉 where pµ and εµ are vectors, and
the state is a homogeneous polynomial of degree-J in ε.

A momentum eigenstate has wavefunction

〈Ω|hJ(x, dx)|p, ε〉 = (ε · dx)Jeip·x. (4.31)

We are interested in shock-wavefunctions of the form

〈Ω|hJ(x, dx)|shock〉 = 4πδ(u)(du)Jei~q·~y. (4.32)

For example, when J = 2, hJ(x, dx) = hµνdx
µdxν has an interpretation as a metric

perturbation. In this case, (4.32) is the perturbation in the Aichelburg-Sexl shockwave
metric (Fourier-transformed in the transverse space) [158]. Comparing to (4.31), we

13Monomials of this form span the space of transverse traceless symmetric tensors, so this pa-
rameterization is without loss of generality.
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see that

|shock〉 =

∫ ∞
−∞

dpv
∣∣pµ = (0, pv, ~q), εµ = ηµu = (0,−2, 0)

〉
. (4.33)

The computation of the shock amplitude and its commutator goes through essentially
unchanged from the scalar case. To understand how the spinning amplitude should
behave at large t, it is useful to tie the Mandelstam variable t to a symmetry generator.
Consider a boost parameterized by z ∈ C,

Λ(z) : (u, v, ~y)→
(u
z
, zv, ~y

)
. (4.34)

The boost acts on the momenta p1, p2 by rescaling pv → zpv, which also rescales
t→ zt.14 Thus, the shock commutator can be written

Q(0+)−Q(0−) =
2πt

pu

∫ ∞
−∞

dzDisctA(ε1, ε2, ε3, ε4; s, zt), (4.35)

where

ε1 = ε2 = (0,−2, 0) (4.36)

are the polarizations of the shocks, and ε3, ε4 are the polarization vectors of the other
particles.

Let us define a boosted amplitude A(z) by acting with Λ(z) on particles 1 and 2, keep-
ing particles 3 and 4 fixed. Note that the boost acts nontrivially on the polarization
vectors (4.36):

Λ(z) : ε1,2 → zε1,2. (4.37)

Thus,

A(z) = A(zε1, zε2, ε3, ε4; s, zt) = zJ1+J2A(ε1, ε2, ε3, ε4; s, zt). (4.38)

In terms of the boosted amplitude, the shock commutator becomes

Q(0+)−Q(0−) =
2πt

pu

∫ ∞
−∞

dz
DisctA(z)

zJ1+J2
. (4.39)

Suppose that A(z) grows like zJ0 at large z, where J0 is a theory-dependent Regge
intercept. (The Regge intercept may be s-dependent, but we are suppressing that
dependence for now.) We see that the shock commutator vanishes if and only if

J1 + J2 > J0 + 1. (4.40)

14The action of the boost (4.34) is closely related to a BCFW deformation [163].
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In the particular case where particles 1 and 2 are gravitons, the shock commutator
vanishes if J0 < 3. It was argued in [96] that — for physical s — J0 > 2 leads
to a violation of causality.15 Assuming this argument, it follows that coincident
gravitational shocks commute and the superconvergence sum rule (4.30) holds in any
causal theory. Furthermore, a failure of commutativity signals a violation of causality.
It is instructive to see how (4.30) is obeyed (or not) in various examples.

We can also consider higher-point scattering amplitudes, where momenta pµ3 and pµ4
in the argument above stand for a sum of momenta of many particles. Assuming
that the same bound on the Regge behavior holds for higher-point amplitudes, we
get higher-point analogs of the superconvergence relation (4.30), where the integral is
taken over the discontinuity with respect to t of higher-point amplitudes. We expect
that commutativity of shocks should be true as “an operator equation,” in other words,
for any scattering amplitude. This is what we find in AdS, where commutativity of
shocks is dual to an operator equation in CFT. It would be interesting to explore this
possibility further.

4.2.3 Shock commutativity in General Relativity

Let us re-derive commutativity of shocks in General Relativity using scattering am-
plitudes and equation (4.28). The on-shell condition for the intermediate particle
implies that pv = 0 and pX = (puX , 0, ~qX), where ~q depends on the order of shocks.
We choose the polarization of the intermediate particle to be εX = (0,−2 (~eX .~q)

pu
, ~eX) so

that the sum over intermediate states
∑

X ε
µ
X(ε∗X)ν acts as an identity matrix in the

transverse space,
∑

X e
i
X(e∗X)j = δij. We write all amplitudes below in all-incoming

notation.

4.2.3.1 Minimally-coupled scalar

As the simplest example, consider a massless scalar field minimally coupled to gravity.
The relevant scalar-scalar-graviton three-point amplitude takes the form

Aφ3φXg1 = ε1 · p3 ε1 · pX = −(pu)2, (4.41)

where ε1 = (0,−2, 0) is the polarization of the graviton and we evaluated the ampli-
tude in the kinematics of the previous section, in particular pX = (−pu, 0, ~q2 − ~q1).
Note that the three-point amplitude does not depend on the transverse momentum

15Note that kinematics [96] leads to amplitudes that grow with t and thus do not admit super-
convergence sum rules that we consider here. We illustrate this in appendix (C.1.2).
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of the shock ~qi and therefore the shock commutator vanishes. We find

Qscalar(0
±) = −2π

pu
Aφ3φXg1Aφ4φXg2 = −2π(pu)3. (4.42)

Finally, we can reach the same conclusion by considering a scalar field propagating
on a shockwave background

ds2 = −du dv + δ(u)h(u, ~y)du2 + d~y2,

h(u, ~y) = 4π(ε1e
i~y·~q1 + ε2e

i~y·~q2), (4.43)

where ~q2
1 = ~q2

2 = 0. The wave equation ∇2φ = 0 takes the form

∂u∂vφ+ δ(u)h(u, ~y)∂2
vφ−

1

4
∂2
i φ = 0. (4.44)

We solve across the locus u = 0 as

φafter = e−h(0,~y)∂vφbefore. (4.45)

Choosing the initial state φbefore = e−i
1
2
vpue−i~y~q2 as in the amplitude computation,

and focusing on the term linear in ε1ε2, we get

φafter = δPSe
−i 1

2
vpuei~y~q1 , (4.46)

δPS = −2π2(pu)2, (4.47)

where δPS is the phase shift acquired by crossing a shock.

To compare with the amplitude computation, we must compute

〈apu4 ,~q4 |φafter〉 = 2pu(2π)D−1δ(pu4 + pu)δ(D−2)(~q4 + ~q1)δPS , (4.48)

which leads to

Q =
puδPS

π
, (4.49)

in complete agreement with the amplitude computation. Note also that in this way,
we can compute the effect of propagation of a probe through an arbitrary number of
shocks. Again, we see that the order of shocks does not matter in this case.
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4.2.3.2 Minimally-coupled photon

Next, let us consider particles with spin. It is convenient to choose external polariza-
tions as follows

ε3 =

(
0,−2

~q2 · ~e3

pu
, ~e3

)
, (4.50)

ε4 =

(
0, 2

~q1 · ~e4

pu
, ~e4

)
. (4.51)

In Einstein-Maxwell theory, the three-point amplitude is given by

AF 2

γ3γXg1
= ε1 · p3 ε1 · pX ε3 · εX − ε1 · ε3 ε1 · pX εX · p3 − ε1 · εX ε1 · p3 ε3 · pX
= −(pu)2~e3 · ~eX , (4.52)

where εX = (0,−2 (~eX ·~q2−~q1)
pu

, ~eX) and we used that ε1 · ε3 = ε1 · εX = 0.

Summing over intermediate states as in (4.28) trivially gives

Qphoton(0+) = −2π

pu

∑
X

AF 2

γ3γXg1
AF 2

γ4γXg2
= −2π(pu)3~e3 · ~e4, (4.53)

which obviously does not depend on the order of the shocks:∑
X

(
AF 2

γ3γXg1
AF 2

γ4γXg2
−AF 2

γ3γXg2
AF 2

γ4γXg1

)
= 0. (4.54)

Again, we can reproduce this result using the Einstein-Maxwell equations of motion
on a shockwave background [96]

∂uFvi + δ(u)h ∂vFvi = 0. (4.55)

Taking our initial state to be a plane wave, let us focus on the transverse polarizations
~Abefore = ~e3e

−i 1
2
vpue−i~y~q2 . After crossing the shock, we have

~Aafter = e−h(0,~y)∂v ~Abefore. (4.56)

Again, computing the overlap we recover (4.53).

4.2.3.3 Gravitons

Finally, the three-point function of gravitons in General Relativity takes the form

ARg3gXg1
= (ε1 · εXε3 · p1 + ε1 · ε3εX · p3 + εX · ε3ε1 · pX)2 = (pu)2(~e3 · ~eX)2. (4.57)
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Summing over intermediates states, we find∑
X

ARg1g3gX
ARg2g4gX

= (pu)4(~e3 · ~e4)2. (4.58)

The result is independent of the shock ordering. This result can be reproduced via
computing the propagation of a graviton through a shockwave background as above.

To summarize, minimally-coupled matter and gravitons lead to commuting gravita-
tional shocks (at tree level). This can be verified by studying shock amplitudes, or
by studying wave equations on a shockwave background.

4.2.4 Non-minimal couplings

4.2.4.1 Non-minimally coupled photons

Let us now demonstrate that commutativity of shocks can be lost in theories with non-
minimal couplings to gravity. As a first example, consider a non-minimal coupling of
photons to gravity of the schematic form α2RFF . The relevant three-point amplitude
takes the form

ARFFγ3γXg1
= ε1 · p3 ε1 · pX ε3 · pX εX · p3 = −(pu)2~e3 · ~q1 ~eX · ~q1, (4.59)

where we used that εX · p3 = −~eX · ~q1.

Summing over intermediate states, we can compute the commutator (4.28)

1

(pu)4

∑
X

(
AF 2+α2RFF
γ3γXg1

AF 2+α2RFF
γ4γXg2

−AF 2+α2RFF
γ3γXg2

AF 2+α2RFF
γ4γXg1

)
= α2

2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1) ~q1 · ~q2, (4.60)

which is clearly nonvanishing. Let us reproduce the same result using equations of
motion. In the presence of the RFF coupling, the equation of motion (4.55) gets
modified to

∂uFvi + δ(u)(δijh+ α2∂i∂jh)∂vFvj = 0. (4.61)

The solution takes the same form as (4.56), except now the transfer matrix that
describes how polarizations change when propagating though a shock is not diagonal.
Instead it takes the form δijh+ α2∂i∂jh, which for a given shock is

Mij(~q) = δij − α2qiqj. (4.62)



140

Different orderings of shocks now lead to different results. The commutator (4.60)
becomes ei4[M(~q1),M(~q2)]ije

j
3. More generally, given multiple shocks ordered accord-

ing to u1 > u2 > · · · > uk, the amplitude is given by a corresponding product of
(noncommuting) shockwave transfer matrices

Q =
pu

π
(4π)k

(
ipu

2

)k
~e4 ·M(~q1) · · ·M(~qk) · ~e3. (4.63)

4.2.4.2 Higher derivative gravity

In higher-derivative gravity, there are two additional graviton three-point amplitudes:

AR2

g3gXg1
= (ε1 · εX ε3 · p1 + ε1 · ε3 εX · p3 + εX · ε3 ε1 · pX)ε1 · pX εX · p3 ε3 · p1

= −(pu)2~e3 · ~eX ~e3 · ~q1 ~eX · ~q1,

AR3

g3gXg1
= (ε1 · pX εX · p3 ε3 · p1)2

= (pu)2(~e3 · ~q1)2(~eX · ~q1)2. (4.64)

Together with AR given in (4.57), these form a complete list of three-point structures
allowed by Lorentz invariance. To contract the three point amplitudes, we substitute∑

X

(eiXe
j
X)(ekXe

l
X)∗ → Πij,kl ≡ 1

2

(
δikδjl + δilδjk

)
− 1

D − 2
δijδkl. (4.65)

For a general linear combination R + α2R
2 + α4R

3, the shock commutator is

1

(pu)4

∑
X

(
AR+α2R2+α4R3

g3gXg1
AR+α2R2+α4R3

g4gXg2
−AR+α2R2+α4R3

g3gXg2
AR+α2R2+α4R3

g4gXg1

)
=

1

2
α2

2~e3 · ~e4~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1)

− α2α4~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1) (~e3 · ~q1~e4 · ~q1 + ~e3 · ~q2~e4 · ~q2)

+

(
α2

4(~q1 · ~q2)2 − α2
2

D − 2

)[
(~e3 · ~q1)2(~e4 · ~q2)2 − (~e3 · ~q2)2(~e4 · ~q1)2

]
. (4.66)

It is easy to check that this vanishes if and only if α2 = α4 = 0.

Again the same result can be obtained using the classical equations of motions as
above, see [96]. The difference compared to General Relativity is that the shockwave
transfer matrix is polarization-dependent, which leads to non-commutativity or viola-
tions of superconvergence relations in theories with non-minimal coupling to gravity.
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Explicitly, the transfer matrix is

Mij,kl(~q) = Πij,kl +
α2

4

(
δikPjl + δilPjk + δjlPik + δjkPil − 4

δijPkl + δklPij
D − 2

)
+ α4Pijkl,

Pij = qiqj,

Pijkl = qiqjqkql. (4.67)

To compute the transfer through n shocks, we simply multiply the corresponding
transfer matrices, as in (4.63).

Non-minimal couplings of gravitons to matter also contribute to noncommutativity.
For example, consider an interaction of the schematic form φR2 where φ is a (possibly
massive) scalar. The only possible three-point structure is

AφR
2

g3φXg1
= ((ε1 · ε3)(p1 · p3)− (ε1 · p3)(ε3 · p1))2 = (pu)2(~q1 · ~e3)2. (4.68)

The φR2 coupling allows φ to appear as an intermediate state when a graviton propa-
gates through two shocks. The corresponding contribution to the shock commutator
is∑
X

(
AφR

2

g3φXg1
AφR

2

g4φXg2
−AφR

2

g3φXg2
AφR

2

g4φXg1

)
= (pu)4((~q1 · ~e3)2(~q2 · ~e4)2 − (~q2 · ~e3)2(~q1 · ~e4)2).

(4.69)

4.2.5 Graviton scattering in string theory

Non-minimal couplings generically lead to non-commuting coincident shocks (at tree
level). In any theory with Regge intercept J0 < 3, the contributions from non-minimal
couplings to the shock commutator must be cancelled by high-energy states or loop
effects.

As a concrete example, consider graviton scattering in tree-level string theory. The
amplitude takes the form [164, 165]

A(i,j)
gg→gg = (K(i)

µ1µ2µ3µ4
εµ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4 )(K(j)
µ1µ2µ3µ4

εµ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4 )

× (−π2κ2)
Γ(−s/2)Γ(−t/2)Γ(−u/2)

Γ(s/2 + 1)Γ(t/2 + 1)Γ(u/2 + 1)
(i, j ∈ {b, ss}),

(4.70)

in units where α′ = 2. (Recall that we have parametrized the graviton polarizations
as εµν = εµεν .)
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There are two basic tensors K(i) that can appear in the amplitude: K(b), which occurs
in the open bosonic string, and K(ss), which appears in the open superstring. Accord-
ingly, the four-point amplitude of closed strings has three possible tensor structures,
corresponding to bosonic strings K(b)K(b), heterotic strings K(b)K(ss), and super-
strings K(ss)K(ss).

Plugging in the momenta (4.17) and polarization vectors (4.36) and (4.50), we find

K(ss)
µ1µ2µ3µ4

εµ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4 = (pu)2s~e3 · ~e4,

K(b)
µ1µ2µ3µ4

εµ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4

= (pu)2s
(
~e3 · ~e4 − ~e3 · ~q1 ~e4 · ~q1 − ~e3 · ~q2 ~e4 · ~q2

+
t

2 + u
~e3 · ~q2 ~e4 · ~q1 +

u

2 + t
~e3 · ~q1 ~e4 · ~q2

)
. (4.71)

Including only the contribution from graviton exchange, the last two terms in (4.71)
give a nontrivial shock commutator. However, if we boost the energy t → zt, the
gamma functions in (4.70) ensure that the amplitude dies as z−2+s. Thus, upon inte-
grating the full discontinuity, we must find that the graviton contribution is cancelled
by heavy modes. For example, in the heterotic string, we find the sum rule∫

dtDisctA = (pu)4s~e3 · ~e4(~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1)

(
1 +

∞∑
n=1

rn(s)

)
= 0, (4.72)

where

rn(s) =
(s− 2)(s+ 4n)

s(n+ 1)(s+ 2n− 2)

(s/2)2
n

n!2
, (4.73)

with (a)n = Γ(a+n)
Γ(a)

the Pochhammer symbol. In equation (4.72), 1 represents the
graviton multiplet contribution and the sum over n ≥ 1 is the contribution of heavy
modes. It is possible to decouple almost all the heavy modes by setting s = 0, in
which case one finds

1 + r1(0) = 0. (4.74)

In general, the sum over heavy modes converges like
∑

n n
s−3.

4.2.6 Shock S-matrix in string theory

In addition to studying four-point amplitudes, we can equivalently analyze the equa-
tion of motion for a string on a shockwave background, analogous to our discussions
of equations of motion for scalars, photons, and gravitons. Propagation of strings on
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shockwave backgrounds was discussed in [161, 166–172]. This leads to an understand-
ing of shock commutativity in terms of the string S-matrix for propagation through
a shock.

Let us follow the conventions of [166]. Recall that the string mode operators obey

[αin, α
j
m] = nδn+m,0δ

ij, (4.75)

where negative modes n < 0 create string excitations, while positive modes n > 0

annihilate the vacuum

αn>0|0〉 = 0. (4.76)

We choose the conformal gauge for the worldsheet metric hαβ = ηαβ, and fix the
light-cone gauge

u(σ, τ) = P uτ. (4.77)

The closed string mode expansion takes the form

X i(σ, τ) = xi + piτ +
i

2

√
α′
∑
n6=0

[
α̃ine

−2inτ − αi†n e2inτ
]
e−2inσ, (i = 2, . . . , D − 1),

(4.78)

where αi†n = αi−n.

Before and after a shock, the string propagates freely. If the shock geometry has the
metric

ds2 = −dudv + δ(u)f(~x)du2 + d~x2 , (4.79)

the transition through the shock is described by the S-matrix [166],

Sshock = e
i

2π
Pu
∫ π
0 f( ~X(σ,0))dσ. (4.80)

As an example, consider a shock created by a fast-moving particle at position ~xa,

fa( ~X(σ, 0)) =
Γ(D−4

2
)

4π
D−2

2

1

(( ~X(σ, 0)− ~xa)2)
D−4

2

=

∫
dD−2~q

~q2
ei~q·(

~X(σ,0)−~xa). (4.81)

In writing fa above, there is an ambiguity in the ordering of operators X i(σ, 0).
However, this ambiguity is proportional to ~q2

1 and is localized at zero impact parameter
upon doing the Fourier transform. It is therefore irrelevant for our purposes.
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Note that the the operator Sshock is diagonal in the position basis X i(σ, 0) for the
transverse oscillators. Thus, it instantaneously changes the momenta of the oscillators
without affecting their positions. Overall, the effect of the shock on the string is the
same as in the geodesic calculation (4.10): the center of mass of the string moves in the
v direction (Shapiro time delay), and the transverse modes receive an instantaneous
kick that depends on the profile fa( ~X). Essentially, each part of the string individually
follows a geodesic through the shock. Thus, coincident shocks commute because they
commute for geodesics.

To see this in more detail, consider the matrix element for propagation through two
shocks

〈Ψ|
(
i

2π
P u

)2 ∫ π

0

dσf1( ~X(σ, 0))

∫ π

0

dσ′f2( ~X(σ′, 0))|Ψ〉. (4.82)

We are interested in states |Ψ〉 that are eigenstates of ~x (fixed center of mass position
in the transverse plane), with a finite number of oscillator excitations above the
vacuum. As in the previous section, let us choose ~x|ψcm〉 = ~0. The relevant correlator
takes the form∫

dD−2~q1

~q2
1

e−i~q1·~x1

∫
dD−2~q2

~q2
2

e−i~q2·~x2

∫ π

0

dσ

∫ π

0

dσ′〈ψosc|ei~q1·
~Xosc(σ,0)ei~q2·

~Xosc(σ′,0)|ψosc〉.

(4.83)

The same formula is valid for superstrings as well [166].

Let us first compute the correlator in the oscillator vacuum. We have

〈0osc|ei~q1·
~Xosc(σ,0)ei~q2·

~Xosc(σ′,0)|0osc〉 = |2 sin(σ − σ′)|
1
2
α′~q1·~q2 . (4.84)

The integral over the worldsheet coordinate gives [31]∫ 2π

0

dσ

2π

∣∣∣2 sin
σ

2

∣∣∣α′~q1·~q2 =
2α
′~q1·~q2
√
π

Γ(1
2

+ α′~q1·~q2
2

)

Γ(1 + α′~q1·~q2
2

)
. (4.85)

Expanding at small α′ and plugging back into (4.83) reproduces the result from [31].
In general states, we can use the formula

: ei~q1·
~Xosc(σ,0) :: ei~q2·

~Xosc(σ′,0) := |2 sin(σ − σ′)|
1
2
α′~q1·~q2 : ei~q1·

~Xosc(σ,0)+i~q2· ~Xosc(σ′,0) : (4.86)

and then Taylor expand inside the normal ordering. In this way, commutativity is
manifest.
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Let us now understand how commutativity is achieved in more detail. For concrete-
ness, consider bosonic string theory and take a graviton as the external state

|ψosc〉 = α̃a−1α
b
−1|0〉. (4.87)

It is sufficient to keep only the leading α′ correction to see the effect:∫ π

0

dσ

π
ei~q·

~Xosc(σ,0) ∼ 1 +
α′

4
qiqjT

ij, (4.88)

where

T ij =
∑
n>0

(α̃
(i
−n − α(i

n )(α̃j)n − α
j)
−n), (4.89)

where (ij) stands for symmetrization. It is easy to check that [T ij, T kl] = 0.

Let us act with the operator (4.88) on a graviton state(
1 +

α′

4
qiqjT

ij

)
α̃a−1α

b
−1|0〉. (4.90)

Inside the operator T ij, there are two types of terms. Firstly, the terms α̃(i
−1α̃

j)
1 +

α
(i
−1α

j)
1 shuffle massless modes among each other. These by themselves lead to non-

commutative shocks. However, crucially there are also terms −α̃(i
nα

j)
n −α(i

−nα̃
j)
−n which

move the state across the string levels. In particular, the first term leads to mixing
with the tachyon, whereas the second term produces higher level states. For example,
the n = 1 term leads to mixing between the graviton and a spin-4 particle. As
expected, the extra states restore commutativity.

4.2.7 A stringy equivalence principle

We have seen that in string theory, extra states restore commutativity of coincident
shocks and satisfy the corresponding superconvergence sum rule. This phenomenon
should occur in any gravitational theory with J0 < 3, where J0 is the Regge in-
tercept. We give more details on the corresponding superconvergence sum rule in
a generic tree-level theory of gravity in appendix C.1.3. In a non-tree-level theory
with J0 < 3, the superconvergence sum rule can receive contributions from loops or
nonperturbative effects.

Reference [96] argued using causality that a tree-level theory of gravity should have
J0 ≤ 2. Their argument applies for scattering at nonzero impact parameter. As far
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as we are aware, there is currently no flat-space argument that the same should be
true away from tree level, or at zero impact parameter.16

However, as we will see in the next section, shock commutativity in AdS can be proved
rigorously, nonperturbatively, and for all values of the impact parameter. This leads
us to conjecture that the same is true in flat space and dS as well. More precisely, we
propose:

Conjecture (Stringy equivalence principle). Coincident gravitational shocks com-
mute in any nonperturbative theory of gravity in AdS, dS, or Minkowski spacetime.

We use the term “equivalence principle” because this is a modified version of the
statement that all particles follow geodesics. The word “stringy” comes from the fact
that mixing with stringy states can restore shock commutativity that would otherwise
be lost.

4.2.8 Gravitational DIS and ANEC commutativity

We can easily repeat the same discussion in the context of a gapped QFT (or, more
generally, a QFT that is free in the IR), where it becomes the statement about
commutativity of the ANEC operators when evaluated in one-particle states. The
virtual graviton g∗ of the previous sections couples to the QFT stress-energy tensor
as hµνT µν , and therefore the scattering process g∗X → g∗X is described by the
following matrix element

A(s, t) = 〈p4|T (Tvv(p1)Tvv(p2)) |p3〉, (4.91)

where as usual (4.91) describes the nontrivial part that multiplies δ(D)(
∑

i pi).
17 Un-

like gravitational theories, there is no problem in defining off-shell observables in QFT
and decoupling the probe that creates g∗ from the rest of the system (by considering
the GN → 0 limit). One consequence of that is that we can formulate the problem
using real momenta and keep g∗ off-shell. As before, we will be interested in the

16It was proven in the 60’s that scattering amplitudes in gapped QFTs satisfy dispersion relations
with at most two subtractions for |t| < R [173], where R depends on the mass of the lightest particle
in the spectrum. A similar statement holds for scattering of particles with spin [174, 175]. The
corresponding superconvergence sum rules for spinning particles were studied in [174]. It would be
interesting to understand the relation between their work and the commutativity of gravitational
shocks discussed here.

17For a related discussion see [14, 31, 176].
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following kinematics:

p1 = (0,−pv +
~q2

1

pu
, ~q1), p2 = (0, pv − ~q2

2

pu
, ~q2),

p3 = (pu,
~q2

2

pu
,−~q2), p4 = (−pu,−~q

2
1

pu
,−~q1), (4.92)

where ~q2
1 and ~q2

2 are non-zero. We chose the probe particle to be massless, but it
does not have to be the case. Mandelstam invariants take the form s = −(p1 +

p2)2 = (~q1 + ~q2)2 and t = −(p2 + p3)2 = pupv. The matrix element that describes
g∗X → g∗X is time-ordered as in the usual description of deep inelastic scattering.
The discontinuities of the time-ordered matrix element A(s, t) are computed by the
corresponding Wightman functions

Disct>0A(s, t) = 〈p4|Tvv(p1)Tvv(p2)|p3〉,

−Disct<0A(s, t) = 〈p4|Tvv(p2)Tvv(p1)|p3〉. (4.93)

Integrating the discontinuity over t, we get
1

pu

∫ ∞
−∞

dtDisctA(s, t) =

∫
dd−2~y1e

i~q1·~y1〈p4|
[∫

dvTvv(u = 0, v, ~y1), Tvv(0)

]
|p3〉,

(4.94)

where we used momentum conservation to rewrite the result in position space. We
see that the integral over the discontinuity of A(s, t) is related to the commutator of
ANEC operators inserted at the same time u = 0.

As in the scattering amplitude considerations of the previous section, causality con-
siderations apply to the matrix element (4.91). In particular, for physical s we expect
A(s, t) to obey

|A(s, t)| < 1

|t|
, |t| → ∞. (4.95)

The Regge boundedness condition (4.95) together with the usual assumptions about
the analyticity of A(s, t) implies commutativity of ANECs in a gapped QFT via the
superconvergence relations

0 =

∮
dt

2πi
A(s, t) =

∫ ∞
−∞

dtDisctA(s, t) +

∮
C∞

dt

2πi
A(s, t) =

∫ ∞
−∞

dtDisctA(s, t).

(4.96)

We conclude that for every ~q1, the commutator∫
dd−2~y1e

i~q1·~y1〈p4|[
∫
dvTvv(u = 0, v, ~y1), Tvv(0)]|p3〉 (4.97)

vanishes. This implies that coincident ANEC operators commute inside one-particle
states.
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4.3 Event shapes in CFT and shocks in AdS

In this section, we study shock commutativity and superconvergence sum rules in AdS,
interpreting them in CFT language. We focus on shocks created by integrating a local
CFT operator along a null line on the boundary of AdS.18 The simplest example is a
gravitational shock created by the average null energy (ANEC) operator E =

∫
dv Tvv

[31]. We will argue that ANEC operators on the same null plane commute, and
this leads to nontrivial superconvergence sum rules that must be satisfied by CFT
data. One of the nice properties of such superconvergence sum rules is that in large-
N theories, they get contributions only from single-trace operators and non-minimal
bulk couplings.

We start by introducing null integrals (“light-transforms”) of local operators in sec-
tion 4.3.1. In section 4.3.2, we review “event shapes,” which are certain matrix ele-
ments of light-transformed operators. In section 4.3.3, we compute some simple event
shapes in AdS, emphasizing the similarities to our shock amplitude calculations in
section 4.2.

4.3.1 Review: the light transform

We will be interested in integrals of a local CFT operator along a null line on the
boundary of AdS. For example, let Oµ1···µJ be a traceless symmetric tensor, and
consider the integral ∫ ∞

−∞
dvOv···v(u = 0, v, ~y). (4.98)

Here, we use lightcone coordinates (4.13), except we are now in d = D−1 dimensions
(so that ~y ∈ Rd−2). In holographic theories, such operators create shocks in the bulk.
An example is the average null energy (ANEC) operator∫ ∞

−∞
dv Tvv(u = 0, v, ~y). (4.99)

The ANEC operator on the boundary creates a gravitational shock in the bulk of the
form described by the AdS-Aichelburg-Sexl metric.

In the examples (4.98) and (4.99), the integration contour starts at the point (u, v, ~y) =

(0,−∞, ~y) ∈ I − at past null infinity and ends at the point (u, v, ~y) = (0,∞, ~y) ∈ I +

at future null infinity. More generally, we can perform a conformal transformation to
18These backgrounds will already be rich enough to develop an analogy to the flat-space story.

It would be interesting to study other types of shock backgrounds [177] in the future.
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bring the initial point of the null integral to some generic point x. The result is an
integral transform called the light-transform [28],

L[O](x, z) =

∫ ∞
−∞

dα(−α)−∆−JO
(
x− z

α
, z
)
. (4.100)

Here, z ∈ R1,d−1 is a null vector, ∆ and J are the dimension and spin of O, and we
use index-free notation

O(x, z) = Oµ1···µJ (x)zµ1 · · · zµJ . (4.101)

The light-transformed operator depends on an initial point x and a null direction z.
The integration contour runs from x, along the z-direction, to the point in the next
Poincare patch on the Lorentzian cylinder with the same Minkowski coordinates as
x.

An advantage of this language is that it makes the conformal transformation prop-
erties of null-integrated operators manifest. L is a conformally-invariant integral
transform that changes the quantum numbers as follows:

L : (∆, J)→ (1− J, 1−∆). (4.102)

In other words, L[O](x, z) transforms like a primary operator at x with dimension
1 − J and (non-integer) spin 1 − ∆. As we will see, this simplifies several compu-
tations involving these operators. We see from (4.100) that the light-transform is
well-defined whenever ∆+J > 1. An important property is that L[O] annihilates the
vacuum whenever it’s defined. This can be established formally using the conformal
transformation properties of L[O], or by deforming the α contour inside a correlation
function involving L[O] [28].

4.3.2 Review: event shapes

We will be interested in matrix-elements of light-transformed operators called “event
shapes.” First, consider a three-point function

〈Ω|φ1(x1)L[O](x, z)φ2(x2)|Ω〉, (4.103)

where we take φ1, φ2 to be primary scalars for simplicity. This transforms like a three-
point function of primary operators, which is fixed by conformal invariance up to an
overall constant. Without loss of generality, we can place x at spatial infinity x→∞
so that the light-transform contour runs along I +,

〈Ω|φ1(x1)L[O](∞, z)φ2(x2)|Ω〉 ≡ lim
x→∞

x2(1−J)〈Ω|φ1(x1)L[O](x, I(x)z)φ2(x2)|Ω〉

=M(x1 − x2). (4.104)
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The factor x2(1−J) ensures a finite result as x→∞. (Recall that L[O] transforms like
a primary with dimension 1− J .) We must act on the polarization vector z with the
inversion matrix Iµν(x) = δµν − 2xµxν

x2 , so that x1, x2 and z transform in the same way
under Lorentz transformations.

The operator L[O](∞, z) transforms like a primary inserted at spatial-infinity, which
means it is annihilated by momentum generators

[P µ,L[O](∞, z)] = 0. (4.105)

Hence, the matrix element (4.104) is translationally-invariant, which is why we have
writtenM(x1−x2) in (4.104). Recall that φ1, φ2 are operator-valued distributions, so
M(x1−x2) is really a translationally-invariant integral kernel that can be paired with
test functions f1(x1), f2(x2). This kernel can be diagonalized by going to momentum
space. Let us define the Fourier-transformed states

|φ(p)〉 =

∫
ddx eip·xφ(x)|Ω〉. (4.106)

Positivity of energy implies that |φ(p)〉 is nonvanishing only if p is inside the forward
lightcone. The event shape is

〈φ1(q)|L[O](∞, z)|φ2(p)〉 = (2π)dδd(p− q)M̃(p). (4.107)

We often abuse notation and write

M̃(p) = 〈φ1(p)|L[O](∞, z)|φ2(p)〉, (4.108)

where it is understood that we have stripped off the momentum-conserving δ-function.

The physical interpretation of M̃(p) is that the state |φ2(p)〉 acts like a source in
Minkowski space. Excitations from the source fly out to I +, where they hit the
“detector” L[O](∞, z). Here, z specifies a particular direction on the celestial sphere
Sd−2 where the detector sits. Finally, we take the overlap of the resulting state with
the sink 〈φ1(p)|. The correlator (5.49) is called a one-point “event shape” because it
involves a single detector.

More generally, we can consider an expectation value of multiple detectors at I +,
i.e. a multi-point event shape

〈φ1(p)|L[O1](∞, z1) · · ·L[On](∞, zn)|φ2(p)〉. (4.109)

Multi-point event shapes involve a limit where the initial and final points of the light-
transform contours become coincident. Specifically, all detector integration contours
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start at spatial infinity and end at future infinity. We discuss the conditions under
which this limit is well-defined in section 4.4.

Future null infinity I + is conformally equivalent to a null plane. For example, by
performing a null inversion, we can bring I + to the plane u = 0 in the (u, v, ~y)

coordinates

(u, v, ~y) =

(
− 1

x−
, x+ − ~x2

x−
,− ~x

x−

)
. (4.110)

In these coordinates, the event shape takes the form

〈φ1(p)| 1

(1 + nd−1
1 )∆1−1

∫
dv1O1 v···v(0, v1, ~y1) · · · 1

(1 + nd−1
n )∆n−1

∫
dvnOn v···v(0, vn, ~yn)|φ2(p)〉.

(4.111)

Note that the sink and source states are still defined via a Fourier transform with
respect to x. The transverse position of the detectors ~yi are related to the null vectors
zi by stereographic projection,

z = (1, ~n) , ~n = (~n⊥, n
d−1) =

(
2~y

1 + ~y2
,
1− ~y2

1 + ~y2

)
∈ Sd−2 . (4.112)

A consequence of writing the event shape in the form (4.111) is that it makes clear
that the operators Oi remain spacelike-separated along their integration contours.
This ostensibly implies that detectors should commute. However, this argument
ignores the fact that the operators become coincident at the ends of their integration
contours. The question of commutativity of detectors is more subtle, and is related
to singularities of four-point functions as we discuss in section 4.4.

4.3.3 Computing event shapes in the bulk

To understand the connection between event shapes and flat-space shock amplitudes,
let us review how event shapes are computed in theories with a gravity dual [31, 178–
180].19 For simplicity, we focus on energy detectors. A multi-point event shape for
ANEC operators E is called an “energy correlator.” We will see that commutativity
of energy detectors is essentially equivalent to the coincident shock commutativity
discussed in section 4.2.

To begin, let us separate the detectors in the u direction, so that L[Oi] is at position
ui with the ordering u1 > u2 > · · · > uk. The insertion of an integrated stress tensor

19We thank Xián Camanho, Jose Edelstein, Diego Hofman and Juan Maldacena for discussions
on this topic.
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i λi
∫∞
−∞ dv Tvv(ui, v, ~yi) in a CFT is dual to the shockwave geometry

ds2 =
−du dv +

∑d−2
i=1 d~y

2 + dz2 +
∑

i δ(u− ui)hi(~y, z)(du)2

z2
, (4.113)

hi(~y, z) = λi
2d−1

volSd−2

zd

(z2 + |~y − ~yi|2)d−1
. (4.114)

To derive the proportionality constant in (4.114), recall that according to the standard
AdS/CFT dictionary, the source for the stress tensor is encoded in the 1

z2 deformation
of the metric as z → 0. One can check that (4.114) corresponds to a source λiδ(u−
ui)δ

(d−2)(~y − ~yi) for Tvv(y).

A remarkable property of the metric (4.113) (or any superposition of such shock
waves) is that it is an exact solution of Einstein’s equations, even when arbitrary
higher derivative corrections are included [181]. Here, we used the y = (u, v, ~y)

coordinate system, which is related to the coordinate x by null inversion (4.110). The
locus u = 0 is the Poincare horizon of the original Poincare patch in x. We define
energy detectors as

E(~n) ≡ 2L[T ](∞, (1, ~n)), ~n ∈ Sd−2. (4.115)

In the ~y conformal frame, this is

E(~n) =
2

(1 + nd−1)d−1

∫ ∞
−∞

dv Tvv(ui, v, ~yi), (4.116)

where ~y = ~n⊥
1+nd−1 and ~n = (~n⊥, n

d−1).

To compute energy correlators, we need to compute an overlap between states before
and after propagation through a series of shocks

A(λi) = 〈Ψ|Ψ′〉, (4.117)

where |Ψ′〉 represents the state after propagation through shocks. We compute the
amplitude with shocks at locations u1 > u2 > · · · > uk, and then subsequently take
ui → 0. The energy correlator is given by

〈Ψ|E(~n1) · · · E(~nk)|Ψ〉 =
k∏
i=1

2

(1 + nd−1
i )d−1

(−i∂λ1) · · · (−i∂λk)A(λi)

∣∣∣∣
λi=0

. (4.118)

We are interested in states dual to a single-trace operator insertion with momentum
q:

|Ψ〉 =

∫
dx eiqxO(x)|Ω〉. (4.119)
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This corresponds to a single-particle state in the bulk. When the particle crosses a
shock, it could lead to particle production. However, particle-production is suppressed
to leading order in 1/cT . Instead, the leading-order effect is mixing with other single-
particle states.

Mixing is captured by one-point energy correlators 〈Ψ2|E(~n1)|Ψ1〉. To understand
these, let us study in more detail the propagation of fields on a shockwave background.
This problem was considered in [31]. Consider a shock located at u = 0. Without loss
of generality, we can set q = (q0, 0, . . . , 0). Using the bulk-to-boundary propagator,
we can compute the wave-function of the particle in the bulk. In the vicinity of u = 0,
it takes the form

φ(u, v, ~y, z) ∼ e−i
q0

2
vδ(z − 1)δ(d−2)(~y). (4.120)

In other words, the particle crosses u = 0 at a fixed transverse location. In (4.120),
we used the AdS y-coordinates, see formula (3.3) in [31]. The location of the probe
particle in the radial direction is related to its momentum. For ~q = 0 we get z = 1.

Before and after the shockwave, the scalar field propagates freely. At the location
of the shock, however, it changes discontinuously. The change is dictated by the
equations of motions, which for the minimally coupled scalar field φ become

∂u∂vφ+ δ(u)h(~y, z)∂2
vφ+ ... = 0. (4.121)

where we only kept the terms that contribute to the δ(u) discontinuity. The matching
condition for the field across the shock is obtained by integrating (4.121) over a small
interval u ∈ [−ε, ε], with the result

φafter(0, v, ~y, z) = e−h∂vφbefore(0, v, ~y, z). (4.122)

Plugging in the wavefunction (4.120), we see that (4.122) becomes multiplication by
a phase

φafter(0, v, ~y, z) ∼ ei
q0

2
h(~y=~0,z=1)φbefore(0, v, ~y, z). (4.123)

Finally, using (4.118) and the expression (4.114) for h, we obtain

〈E(~n)〉O(q) ≡
〈Ψ|E(~n)|Ψ〉
〈Ψ|Ψ〉

=
q0

volSd−2
. (4.124)

This calculation is almost identical to our calculation of the amplitude for a minimally-
coupled scalar to cross a shock in flat-space in section 4.2.3.1.
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To compute a k-point energy correlator, we can imagine propagating the particle
through a series of shocks at u1 > u2 > · · · > uk, and then taking the limit ui → 0.
Alternatively, we can simply multiply a series of one-point correlators (4.124). Either
way, the result is

〈E(~n1) · · · E(~nk)〉O(q) ≡
〈Ψ|E(~n1) · · · E(~nk)|Ψ〉

〈Ψ|Ψ〉
=

(
q0

volSd−2

)k
. (4.125)

The situation becomes more interesting if we include higher derivative corrections or
mixing between fields. For example, consider a massless vector field Aµ. As discussed
in [96], the most general equation of motion for Aµ takes the form

∇µFµν −
a2

d(d− 1)
R̂ µαβ
ν ∇µFαβ = 0, (4.126)

where a2 is a non-minimal coupling constant, and following [181], we introduced the
effective shockwave Riemann tensor R̂ µαβ

ν via

Rµνρσ = −gµρgνσ + gνρgµσ + R̂µνρσ. (4.127)

The shockwave Riemann tensor is given by

R̂µνρσ = l[µKν][ρlσ], (4.128)

where lµ = ∂µu and Kµν is symmetric, satisfies Kµνl
µ = 0, and takes the form

Kzz =
1

2

(
z−2∂2

zh− z−3∂zh
)
,

Kzi =
1

2

∂i∂zh

z2
,

Kij =
1

2

(
z−2∂i∂jh− δijz−3∂zh

)
. (4.129)

For us, the relevant component of R̂µνρσ is

R̂+ij+|~y=0,z=1 =
d(d− 1)

2

(
1 + nd−1

2

)d−1(
ninj −

δij
d− 1

)
. (4.130)

Note that the indices i and j above go from i, j = 1, ..., d − 2, whereas the problem
naturally has SO(d − 1) symmetry. It is easy to make this symmetry manifest by
going from planar coordinates to the coordinates of [181].

Consider now a perturbation to the transverse components of Aµ,

Ai(u, v, ~y, z) ∼ εie
−i q

0v
2 δd−2(~y)δ(z − 1), (4.131)
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where εi are components of a polarization vector εµ. The equations of motion become

∂u∂vAi + δ(u)Ĥij∂
2
vAj + ... = 0, (4.132)

Ĥij =
k∑
a=1

λa
ΩSd−2

(
1 + nd−1

a

)d−1
(Ĥa)ij, (4.133)

(Ha)
ij ≡

[
δij + a2

(
nian

j
a −

δij

d− 1

)]
. (4.134)

The solution is simply

Aafter
i =

[
e−Ĥ∂vAbefore

]
i
. (4.135)

The formulas above are sufficient to compute a one-point energy correlator for the
transverse components of Aµ. However, note that the full problem additionally in-
volves the component Az, which also gets excited by crossing the shock. As we
remarked above, its behavior is fixed by SO(d− 1) symmetry. The effect of including
Az should be to enlarge the transfer matrix Hij to include the (d− 1)’th component
of nµ. The same formula (4.134) applies, except now the indices ij run from 1 to
d− 1.

We can now compute the energy correlator (4.118). As before, let us order the shocks
such that u1 > u2 > · · · > uk and then take the limit ui → 0. This introduces
a corresponding ordering of the transfer matrices (4.134) that govern propagation
through each shock. The result becomes

〈E(~n1) · · · E(~nk)〉ε·J(q) =

(
q0

volSd−2

)k
ε†H1 · · ·Hkε

ε†ε
, (4.136)

where the subscript on the left-hand side indicates that we compute the event shape
in the state created by ε · Jµ, where Jµ is a current. A commutator [E(n1), E(n2)] is
simply related to a commutator of transfer matrices [H1, H2].

Let us next consider the case of gravity. As discussed in [96], the most general
equation of motion for a gravitational perturbation takes the form

δRµν + α2R̂
ραβ

(µ δRν)ραβ + α4

[
∇(µ∇ν)R̂

αβρσ
]
δRαβρσ = 0. (4.137)

As before, it is enough to consider transverse perturbations hij and keep only the
dependence on u and v (the rest is fixed by symmetries). Our equation becomes

∂u∂vhij + δ(u)Ĥij,mn∂
2
vhmn + ... = 0. (4.138)
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The form of the shockwave matrix Ĥij,mn is fixed by the symmetries of the problem
to be20

Ĥij,mn =
k∑
a=1

λa
ΩSd−2

(
1 + nd−1

a

)d−1
(Ha)ij,mn,

Hij,kl(~n) ≡ 1

2
(δikδjl + δilδjk)−

1

d− 1
δijδkl +

t2
4

(δikPjl + δilPjk + δjlPik + δjkPil)

+ t4Pijkl −
t2 + t4
d− 1

(δijPkl + δklPij) , (4.139)

where Ha = H(~na) and we have introduced

Pij = ninj −
δij
d− 1

,

Pijkl = ninjnknl −
δijδkl + δikδjl + δilδjk

(d+ 1)(d− 1)
, (4.140)

and used the known result for the one-point energy correlator.

The solution of (4.138) is

hafter
ij =

[
e−Ĥ∂vhbefore

]
ij
. (4.141)

The energy correlator (4.118) again depends on the ordering of the shocks. We get

〈E(~n1) · · · E(~nk)〉ε·T (q0) =

(
q0

ΩSd−2

)k
ε†H1 · · ·Hkε

ε†ε
. (4.142)

In these calculations, it was crucial to compute the propagation amplitude through
separated shocks u1 > u2 > · · · > uk, and afterwards take the limit ui → 0. This
is guaranteed to produce the ordering of operators E(~n1) · · · E(~nk). By comparing
different orderings, we can obtain interesting consistency conditions on the theory.
A different procedure is to first set ui = 0, compute the propagation through a
shock background h(~y, z) =

∑
i hi(~y, z), and then take derivatives with respect to λi.

Instead of producing an ordered product of transfer matrices, this latter procedure
produces a symmetrized product

ε†H(1H2 · · ·Hk)ε. (4.143)

If we only have access to this object, we cannot study commutativity. However, one
can study positivity of energy correlators [155].

20The precise relation between α2 and α4 that appear in (4.137) and more familiar three-point
structures t2 and t4 can be found in section 5 of [96].
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4.4 Products of light-ray operators and commutativity

In this section, we discuss in detail the question of when light-transformed operators
on the same null plane commute. We find that commutativity requires nontrivial
conditions on the OPE limit, lightcone limit, and Regge limit of CFT four-point
functions, all of which we verify in the case of ANEC operators in a nonperturbative
CFT. In the Regge limit, we find that J0 < 3 is a sufficient condition for commutativity
of ANEC operators. One can argue using the light-ray OPE that it is also necessary,
see chapter 5. Thus, superconvergence sum rules hold also in planar theories which
do not satisfy nonperturbative bounds on the Regge limit, but do satisfy the bound
on chaos J0 ≤ 2 [84].

4.4.1 Existence vs. commutativity

Our goal is to answer two related questions:

• Is a product of light-transforms at coincident points L[O1](x, z1)L[O2](x, z2)

well-defined?

• Do light-transforms at coincident points commute,

[L[O1](x, z1),L[O2](x, z2)] = 0? (4.144)

In event shapes, we set x = ∞, but the answer is the same for any x, by conformal
invariance. We take z1 6= z2, so that the integration contours for L[O1] and L[O2] are
not identical.

The coincident limit of light-transformed operators is defined by

lim
y→x

L[O1](x, z1)L[O2](y, z2). (4.145)

That is, we first perform the light-transforms starting from distinct x and y and
then take the limit where the initial points x and y coincide. To determine when
the operator (4.145) exists, let us study a matrix element between states created by
operators O3 and O4

21

lim
y→x
〈Ω|O4L[O1](x, z1)L[O2](y, z2)O3|Ω〉

= lim
y→x

∫ ∞
−∞

dα1dα2(−α1)−∆1−J1(−α2)−∆2−J2

× 〈Ω|O4O1(x− z1/α1, z1)O2(y − z2/α2, z2)O3|Ω〉. (4.146)

21The positions of O3,O4 can be smeared to create normalizable states, though that will not be
important in our analysis.
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If the above integral converges absolutely in the limit y → x, then we can commute
the limit and the integral to obtain

=

∫ ∞
−∞

dα1dα2(−α1)−∆1−J1(−α2)−∆2−J2〈Ω|O4O1(x− z1/α1, z1)O2(x− z2/α2, z2)O3|Ω〉.

(4.147)

When (4.147) converges, commutativity is manifest becauseO1 andO2 remain spacelike-
separated everywhere in the region of integration. In the next subsection, we analyze
in detail when (4.147) converges.

However, it can happen that the integral (4.147) is not absolutely convergent. This
does not necessarily mean that the product of operators (4.145) is ill-defined, but it
does mean that commutativity can be lost. To understand how this works, let us
start with the first line of (4.146) and use the fact that L[O1] and L[O2] annihilate
the vacuum to rewrite the correlator in terms of a double-commutator:

lim
y→x
〈Ω|[O4,L[O1](x, z1)][L[O2](y, z2),O3]|Ω〉

= lim
y→x

∫ ∞
−∞

dα1dα2(−α1)−∆1−J1(−α2)−∆2−J2

× 〈Ω|[O4,O1(x− z1/α1, z1)][O2(y − z2/α2, z2),O3]|Ω〉. (4.148)

If this integral is absolutely convergent in the limit y → x, then we can commute the
limit and integration to obtain

=

∫ ∞
−∞

dα1dα2(−α1)−∆1−J1(−α2)−∆2−J2

× 〈Ω|[O4,O1(x− z1/α1, z1)][O2(x− z2/α2, z2),O3]|Ω〉, (4.149)

which differs from (4.147) only in that the Wightman function has been replaced
by a double-commutator. The key point is that (4.149) might converge in a wider
variety of situations than (4.147). This is because the double-commutator might be
better behaved than the Wightman function in singular limits. Thus, the integral
(4.149) gives a more general way to define matrix elements of the product (4.145),
but it does not manifest commutativity. The fact that coincident light-transformed
operators sometimes fail to commute has been noticed previously and is sometimes
called “detector cross-talk” [147, 182]. We give an example of this phenomenon in
appendix C.2.

To summarize,
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∞∞ 4 3

x

x+

1

2

Figure 4.5: We consider the causal configuration where 4 > x and 3 < x+ with 3 and
4 spacelike from each other. The points 1 and 2 are integrated over parallel null lines
in the same null plane, with nonzero transverse separation. Here, we have suppressed
the transverse direction, so the null plane appears as a single diagonal line (blue) from
x to x+. (The conformal completion of the null plane also includes the left-moving
diagonal line from x to ∞ on the left, and then from ∞ to x+ on the right.)

• Absolute convergence of the double commutator integral (4.149) is a sufficient
condition for the existence of L[O1](x, z1)L[O2](x, z2).

• Absolute convergence of the Wightman function integral (4.147) is a suffi-
cient condition for the existence of L[O1](x, z1)L[O2](x, z2) and commutativity
[L[O1](x, z1),L[O2](x, z2)] = 0.

Note that when the integrals do not converge absolutely, it may be still possible to
prescribe values to them, but these values may suffer from ambiguities in how the
integral is computed. In the following sections, we discuss in detail when the above
conditions hold.

4.4.2 Convergence of the Wightman function integral

Let us analyze in detail the conditions under which the Wightman function integral
(4.147) is absolutely convergent. For now, we consider the causal configuration 4 > x,
x+ > 3, with 4 spacelike from 3, see figure 4.5. We comment on other configurations
in section 4.4.4. The region of integration is shown in figure 4.6. Let us describe some
of its important features.
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−∞ +∞α1

−∞
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OPE

Regge OPE

ReggeLC1 LC2

LC1

LC2

LC1LC2

LC1

LC2

2 ∼ 4

2 ∼ 3

1 ∼ 31 ∼ 4

Figure 4.6: Integration region for the double light-transform of a Wightman function
(4.147). The 1× 2 OPE converges in the white region (the “first sheet”), but it does
not necessarily converge in the gray-shaded region (the “second sheet”). The OPE
limit is indicated in blue, the Regge limit in green, the lightcone limit on the first
sheet (LC1) in light red, and the lightcone limit on the second sheet (LC2) in dark
red.

The dashed lines indicate when 1 and 2 become lightlike-separated from 3 and 4.
When 1, 2 are spacelike from 4, or 1, 2 are spacelike from 3, we can rearrange the
operators in the Wightman function so that 1 and 2 both act on the vacuum. The
1 × 2 OPE is guaranteed to converge in this case [183, 184]. We refer to this region
as the “first sheet” because the conformal cross-ratios need not move around branch
points to get there.

Meanwhile, when 4 > 1 and 2 > 3, or 4 > 2 and 1 > 3, the 1 × 2 OPE is not
guaranteed to converge. (Other OPEs do converge in these regions.) We call these
regions the “second sheet” (shaded gray in figure 4.6) because the cross ratios must
move around branch points to get there.

We only need to analyze the convergence of the integral near the boundary of the
integration region. Indeed, in the bulk of the integration region the only singularities
are due to 1 or 2 becoming lightlike from 3 or 4. These singularities are removed by
the iε prescriptions for operators O3 and O4. After this, we can split the integral into
the near-boundary region and the bulk region. The bulk region is compact and free
of singularities, so the convergence of the integral there is straightforward.
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On the boundary of the region of integration, there are several types of singularities.

• Firstly, when α1, α2 → ±∞ simultaneously, operators 1 and 2 become close on
the first sheet. This singularity is described by the OPE.

• When α1 → +∞, α2 → −∞ simultaneously or α1 → −∞, α2 → +∞ simulta-
neously, this is the Regge limit, which lies on the second sheet. This singularity
is described by conformal Regge theory [28, 149, 150].

• Another type of singularity occurs when either α1 or α2 approach ±∞, with
the other variable held fixed. This is the lightcone limit, where 1 and 2 become
lightlike separated. The lightcone limit on the first sheet is described by the
1 × 2 OPE, while the lightcone limit on the second sheet is not necessarily
described by the 1× 2 OPE.22

Our strategy will be to first analyze the singularities on the first sheet. Then we will
use Rindler positivity and the Cauchy-Schwarz inequality to bound singularities on
the second sheet in terms of singularities on the first.

4.4.2.1 OPE limit on the first sheet

Let us begin by studying the OPE singularity on the first sheet. Without loss of
generality, we take α1, α2 → −∞. We can choose a conformal frame where O1 and
O2 are both approaching the origin. For simplicity, consider a traceless symmetric
tensor O0 ∈ O1 ×O2 with dimension ∆0 and spin J0. The contribution of O0 in the
OPE takes the form

O1

(
x1 = − z1

α1

, z1

)
O2

(
x2 = − z2

α2

, z2

)
⊃
∑
m,n,k

cmnk(x
2
12)

∆0−∆1−∆2
2 (z1 · x̂12)J1−n(z2 · x̂12)J2−k

× (x̂12)µ1 · · · (x̂12)µmz1ν1 · · · z1νnz2ρ1 · · · z2ρkO
µ1···µmν1···νnρ1···ρk
0 (0), (4.150)

wherem+n+k = J0 and x̂12 = x12/(x
2
12)1/2. The factors of x2

12 come from dimensional
analysis. The factors of zi · x̂12 come from demanding the correct homogeneity in zi.

Let us make the change of variables

− 1

α1

= rσ, − 1

α2

= r(1− σ). (4.151)

22The lightcone limit on the second sheet has been conjectured to have an asymptotic expansion in
terms of 1×2 OPE data [151]. We comment on the implications of this conjecture in section 4.4.2.6.
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Supplying the appropriate factors (−αi)−∆i−Ji , the double light-transform of a single
term above becomes∫

dr

r3

∫ 1

0

dσ

σ2(1− σ)2
r∆1+J1+∆2+J2σ∆1+J1(1− σ)∆2+J2

× r∆0−∆1−∆2(σ(1− σ))
∆0−∆1−∆2

2

(
1− σ
σ

)J1−n
2
(

σ

1− σ

)J2−k
2

×

(
σz1 − (1− σ)z2√
−2z1 · z2σ(1− σ)

)m

× . . . , (4.152)

where “. . . ” indicates quantities independent of r and σ. We have also written
(x̂12)µ1 · · · (x̂12)µm schematically as (x̂12)m.

Requiring that the r-integral converge near r = 0 gives the condition

J1 + J2 > 2−∆0. (4.153)

This is a consequence of dimensional analysis. To derive it more succinctly, recall
that L[Oi] has dimension ∆L

i ≡ 1−Ji. If O0 appears in the OPE, then the coincident
limit of L[O1] and L[O2] can only be finite if ∆0 > ∆L

1 + ∆L
2 , which is equivalent to

(4.153). In particular, this shows that (4.153) must hold even if O0 is not a traceless
symmetric tensor.

Requiring that the σ-integral converge near σ = 0, 1 gives the conditions

J1 + J2 + ∆1 −∆2 > 2− τ0 − 2n,

J1 + J2 + ∆2 −∆1 > 2− τ0 − 2k, (4.154)

where τ0 ≡ ∆0−J0 is the twist of O0. These conditions are strongest when n = k = 0,
in which case they together become

J1 + J2 − |∆1 −∆2| > 2− τ0. (4.155)

The conditions (4.153) and (4.155) can be weakened slightly using the special kine-
matics of the light transform. Because the polarization vectors zi are aligned with
the positions xi = −zi/αi, the two-point function 〈O1O2〉 vanishes except when O1

and O2 are scalars. Consequently, the unit operator does not appear in the O1 ×O2

OPE, and we can write

J1 + J2 > 2−∆′0 (J1 > 0 or J2 > 0),

J1 + J2 − |∆1 −∆2| > 2− τ ′0 (J1 > 0 or J2 > 0), (4.156)
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where ∆′0 and τ ′0 are the smallest nonzero dimension and twist, respectively, appearing
in the 1× 2 OPE.

If the conditions (4.156) are satisfied, then the integral of each term in the OPE
expansion over the region r < r0 (for some sufficiently small r0, indicated by the
quarter-disc in the lower-left or upper-right corner of figure 4.6) converges, including
the boundaries where it probes the light-cone regime. Furthermore, the OPE expan-
sion converges absolutely and exponentially in this region, and integrating each term
does not change this — the convergence rate only improves as we approach the OPE or
light-cone boundary. In other words, the sum of integrals of absolute values converges.
The Fubini-Tonelli theorem then establishes absolute convergence of the Wightman
function integral over the OPE corners in figure 4.6 under conditions (4.156).

4.4.2.2 Lightcone limit on the first sheet

We do not need to do additional work to analyze the lightcone limit on the first sheet.
Studying the lightcone limit is equivalent to studying convergence of (4.152) when
σ → 0, 1, with r held fixed. Because the r-dependence of the integrand (4.152) factors
out from the σ-dependence, this again gives (4.155). We do not have to worry about
the null-cone singularities when 1 or 2 become light-like from 3 or 4, because these
are avoided by iε-prescriptions for the operators 3 and 4.

In this section we will re-derive (4.155) in a way that works when O0 is not a traceless
symmetric tensor. This approach will also be helpful for the discussion of the lightcone
limit on the second sheet.

Consider the product

O1(−z1/α1, z1)O2(−z2/α2, z2) =
∑
k

fk(α1)Ok(0), (4.157)

in the limit α1 → −∞ with fixed α2. There exists a boost generator M such that
eλMz1 = e−λz1 and eλMz2 = eλz2. Let us define V (λ) = e−λDeλM , where D is the
dilatation generator. Acting on the left-hand side of (4.157), we have

V (λ)O1(−z1/α1, z1)O2(−z2/α2, z2)V (λ)−1

= e−λ(∆1+∆2−J2+J1)O1(−e−2λz1/α1, z1)O2(−z2/α2, z2). (4.158)

Acting on a single term on the right-hand side, we have

V (λ)f0(α1)O0(0)V (λ)−1 = e−λτ0f0(α1)O0(0), (4.159)



164

where O0 has eigenvalue τ0 under D −M . Comparing both sides gives

f0(α1) ∝ (−α1)
−τ0+∆1+∆2−J2+J1

2 . (4.160)

Requiring that
∫
dα1(−α1)−∆1−J1f0(α1) converges gives the condition

J1 + J2 + ∆1 −∆2 > 2− τ0. (4.161)

From a similar analysis with 1↔ 2, we recover (4.155).

We will also need a simple generalization of this result. Consider the same OPE (4.157),
but with more general polarization vectors, i.e.

O1(−z1/α1, z
′
1)O2(−z2/α2, z

′
2) =

∑
k

fk(α1)Ok(0). (4.162)

For generic values of z′i, both operators will not be eigenstates of M , but instead con-
tain a mixture of different eigenstates. Suppose we isolate eigenstates with eigenvalues
m1 and m2. The corresponding piece of f0(α1) will be then, by a straightforward gen-
eralization of the above argument

f0(α1) ∝ (−α1)
−τ0+∆1+∆2−m1−m2

2 . (4.163)

When z′i = zi as above, we have m1 = −J1 and m2 = J2, recovering (4.160). For
generic z′i the dominant contribution to (4.162) will be determined by m1 = −J1 and
m2 = −J2, i.e.

f0(α1) ∝ (−α1)
−τ0+∆1+∆2+J1+J2

2 . (4.164)

On the other hand, in order for the stronger result (4.160) to be true it suffices to
have z′1 = z1, (z2 · z′2) = O(α−1

1 ) and z′2 has finite limit as α1 → −∞. In other words,
we can allow z′2 to vary with α1. The condition on z′1 implies m1 = −J1, and is as
good as generic z′1. To understand the condition on z′2, assume without any loss of
generality that z2 = (0, 1,~0) in (u, v, ~y) coordinates. This implies that

z′2 = ((−α1)−1uz(α1), u−1
z (α1)y2

z(α1), (−α1)
1
2~yz(α1)), (4.165)

where uz(α1) and ~yz(α1) are O(1) as α1 → −∞. We have then

O2(−z2/α2, z
′
2)

=
∑

n+k+l=J2

(−α1)−n−l/2uz(α1)n−ky2k
z (α1)yi1z (α1) · · · yilz (α1)O2,u...uv...vi1...il(−z2/α2)

(4.166)
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where O2,u...uv...vi1...il has n u-indices and k v-indices. If we were contracting with z2,
we would only get v-indices, andm2 = J2. Thus, v-indices carry positive charge under
M , and we have m2 = k − n = J2 − l − 2n. We thus see that for non-zero n or l we
depart from the optimal eigenvalue m2 = J2. However, such terms are additionally
suppressed by (−α1)−n−l/2. Combining these two effects with the help of (4.163), we
see that all terms contribute as (4.160).

4.4.2.3 Rindler positivity

Rindler positivity enables us to bound second-sheet correlators in terms of first-sheet
correlators. Its implications are simple for four-point functions of scalar primaries,
and this case has been analyzed previously in [25, 151]. However, its implications are
more subtle for spinning correlators, so let us discuss them in more detail.

Any CFT has an anti-unitary symmetry J = CRT satisfying J2 = 1. This symmetry
acts on local operators as

JO(x, s)J−1 = iF [O(x, e−πM
01
E s)]†, (4.167)

where x = e−πM
01
E x = (−x0,−x1, x2, . . .), s is a polarization variable appropriate for

the Lorentz irrep of O, and M01
E = iM01 is the Euclidean rotation in plane 01 which

rotates positive x1 into positive ix0. Fermion number is F = 0 for bosonic O and
F = 1 for fermionic O. In this paper, we will only study its action on traceless-
symmetric operators, which reduces to

JO(x, z)J−1 = O†(x, z), (4.168)

where z = (−z0,−z1, z2, . . .).

The statement of Rindler positivity is [185]

i−F 〈O|JO1 · · · OnJO1 · · · On|O〉 ≥ 0, (4.169)

where all operators Oi lie in the right Rindler wedge x1 > |x0|, and F is 1 if the
number of fermions among O1 · · · On is odd and 0 otherwise.23 This is a bit of an
oversimplification; the general statement is that the operators Oi should be smeared

23For F = 1 this form of Rindler positivity was proven in [185] only under an additional assump-
tion of “wedge ordering” of the coordinates of Oi. The version without this assumption was proven
using Tomita-Takesaki modular theory and assuming F = 0. While we have not proven this, we
expect that the general version also holds for F = 1. This can probably be checked explicitly in
CFT using conformal block expansions. We thank Nima Lashkari for discussions on this point.
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with test functions, and one can take arbitrary linear combinations of such smeared
products. When the correlation function is well-defined as a number (rather than just
as a distribution), the smearing is not necessary.

Now let a and b be sums of products of (possibly smeared) operators contained in the
right Rindler wedge, and define

(a, b) = i−F (a)〈O|JaJb|O〉, (4.170)

where F (a) ∈ {0, 1} is defined as above. Then we have

(a, b)∗ = (−i)−F (a)〈O|aJbJ |O〉 = i−F (a)〈O|JbJa|O〉 = (b, a), (4.171)

where we used anti-unitarity of J , J |O〉 = |O〉, and the fact that JbJ and a are
space-like separated. Rindler positivity implies (a, a) > 0. Thus, (·, ·) is a Hermitian
inner product and we have the Cauchy-Schwarz inequality

|(a, b)|2 ≤ (a, a)(b, b). (4.172)

Let us develop more conformally-invariant versions of these statements. The geometry
that defines J is given by the codimension-1 planes x0 ± x1 = 0. These planes can
be described more invariantly as the past null cones of points A and B at future null
infinity. Given these points, the right Rindler wedge is given by B > x > A− and
the left is given by A > x > B−.24 In general, for any spacelike-separated pair of
points A and B, there exists an anti-unitary Rindler conjugation JAB that depends
on these two points and exchanges the two wedges. A positive-definite Hermitian
inner product analogous to (4.170) can be defined for each JAB.

It is convenient to describe the action of JAB using the embedding formalism. Let
XA and XB be the embedding space coordinates of A and B. Then JAB acts on
spacetime as a Euclidean rotation by π in the plane spanned by XA and XB. It can
be written as25

JAB(X) = X − 2
(X ·XA)

(XA ·XB)
XB − 2

(X ·XB)

(XA ·XB)
XA. (4.173)

The action of JAB on local operators is then

JABO(X,Z)J−1
AB = O†(JAB(X), JAB(Z)). (4.174)

24Here, A− (B−) represents the point obtained by sending lightrays in all past directions from A
(B) and finding the point where they converge. See, e.g. [28] for details.

25We abuse notation and write JAB for both the anti-unitary operator on Hilbert space and a
linear transformation in the embedding space.
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Consider now a configuration of points 1, 2, 3, 4 with the causal relationships 4 > 1

and 2 > 3, where all other pairs of points are spacelike-separated. We can find
a conformal transformation that brings these points into a configuration where the
pair 1, 2 and the pair 3, 4 are each symmetric with respect to the standard Rindler
reflection J . Thus, there must exist A,B such that JAB maps 1 ↔ 2 and 3 ↔ 4. In
embedding-space language,

JAB(X1) = λ12X2, JAB(X3) = λ34X4, (4.175)

where we must introduce scaling factors λij because the X’s are projective coor-
dinates. Here, XA, XB and the coefficients λ12, λ34 are all functions of X1, . . . , X4.
These functions are somewhat complicated in general, but we will only need them in
certain limits.

In our configuration, the Wightman correlator

〈O|O4O1O2O3|O〉 (4.176)

is on the second sheet. However, we can write

〈O|O4O1O2O3|O〉 = (J−1
ABO4O1JAB,O2O3), (4.177)

and use the Rindler Cauchy-Schwarz inequality to write

|〈O|O4O1O2O3|O〉|2 ≤ (O2O3,O2O3)(J−1
ABO4O1JAB, J

−1
ABO4O1JAB). (4.178)

Let us focus on the first factor (the second can be treated equivalently)

(O2O3,O2O3) = 〈O|O2O3O2O3|O〉 (4.179)

Here we use the notation O = JABOJ−1
AB. Note that O2 is inserted at X1 and O3 is

inserted at X4. Both of these points are in the opposite Rindler wedge from X2 and
X3. This implies that O3 and O2 commute, so we can reorder the operators to obtain

= 〈O|O2O2O3O3|O〉. (4.180)

The operators O2 at X1 and O2 at X2 now act on the vacuum. By the results of [183,
184], the correlator (4.180) is on the first sheet and we can use the OPE to control
its behavior, and hence bound the left-hand side of (4.178). It is convenient that the
correlators in the right hand side of (4.178) have the same insertion points Xi as the
correlator in the left hand side, and hence the same cross-ratios.
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Let us briefly mention how one can determine the points XA and XB as functions of
Xi. To do this, we must solve the equations (4.175), together with the conditions

X2
A = X2

B = 0. (4.181)

Using (4.173), we can see that XA and XB must have the form

XA = cA1(X1 − λ12X2) + cA3(X3 − λ34X4),

XB = cB1(X1 − λ12X2) + cB3(X3 − λ34X4), (4.182)

for some coefficients cai. We have 2 scalar equations coming from each equation
in (4.175), by projecting on X1 − λ12X2 or X3 − λ34X4. We also have 2 scalar
equations (4.181), which adds up to 6 equations for 6 unknowns cai, λij.

It is easy to solve these equations by making use of the conformal symmetry. For
this, recall that all coordinates X are projective, and hence our unknowns cai and λij
have non-trivial projective weights as well. We can construct combinations such as

cA1
(X1 ·X2)

(XA ·X2)
, (4.183)

which are projective invariants. Projective invariants are the same as conformal
invariants, and thus must be expressible in terms of cross-ratios, i.e.

cA1
(X1 ·X2)

(XA ·X2)
= fA1(z, z). (4.184)

The function fA1(z, z) can be computed by using the expressions for Xi, XA, XB for
the standard Rindler reflection J . As soon as we know the function fA1(z, z), we can
find

cA1 = fA1(z, z)
(XA ·X2)

(X1 ·X2)
. (4.185)

Note that the expression in the right-hand side depends on XA but only through an
overall coefficient (XA ·X2). The same coefficient can be factored out from cA3, and
thus XA is determined up to an overall rescaling, which is irrelevant. For example, we
can simply set (XA ·X2) = 1 to get a concrete solution. All the other coefficients cai
and λij can be determined in the same way. We will not need the complete solution,
but it is helpful for explicitly checking our arguments.
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4.4.2.4 Regge limit

In the previous section, we saw that Rindler positivity implies a bound on the corre-
lator of the form

|〈O|O4O1O2O3|O〉|2 ≤〈O|O2O3O2O3|O〉〈O|O4O1O4O1|O〉

=〈O|O2O2O3O3|O〉〈O|O4O4O1O1|O〉. (4.186)

We can now use the first-sheet bounds from sections 4.4.2.1 and 4.4.2.2 to bound the
correlators in the right hand side. Before doing so, let us write out these correlators
a bit more carefully. For example,

〈O|O2O2O3O3|O〉 = 〈O|O†2(λ−1
12 X1, Z̃2)O2(X2, Z2)O†3(λ34X4, Z̃3)O3(X3, Z3)|O〉,

(4.187)

where

Z̃i ≡ JAB(Zi). (4.188)

Writing this in terms of real space operators, we find

〈O|O2O2O3O3|O〉 = λ∆2
12 λ

−∆3
34 〈O|O

†
2(x1, z̃2)O2(x2, z2)O†3(x4, z̃3)O3(x3, z3)|O〉.

(4.189)

Let us focus on the Regge limit when α1 → +∞ and α2 → −∞. Similarly to
section 4.4.2.1 it is convenient to work in the frame in which x2 is approaching the
origin,

x2 = − z2

α2

. (4.190)

In this frame point x1 is in the next Poincare patch, so it is convenient to work with
x−1 , which is the image of x1 in the Poincare patch of x2,

x−1 = − z1

α1

. (4.191)

In fact, since O(x1) acts on future vacuum, the correlator (4.189) changes only by
a constant phase upon replacement x1 → x−1 , so the analysis is very similar to sec-
tion 4.4.2.1. If the coefficients λij and polarization vectors z̃2 and z̃3 were constant,
we could simply reuse the results of that section.

Instead, since λij and z̃2, z̃3 depend on the xi (and thus α1, α2), we need to analyze
their behavior in the limit α1 → +∞ and α2 → −∞. Let us parameterize, similarly
to (4.151)

1

α1

= rσ, − 1

α2

= r(1− σ). (4.192)
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We have checked that in the limit r → 0 the coefficients λ12, λ34 stay finite and

z̃2 → z2, z̃3 → z′3, (4.193)

where z′3 is finite and depends on z3 and relative positions of 0, x3, x4. This means
that in Regge limit at fixed σ (4.189) is bounded in absolute value by

C

∣∣∣∣〈O|O†2(x1 = − z1

α1

, z2

)
O2

(
x2 = − z2

α2

, z2

)
O†3(x4, z

′
3)O3(x3, z3)|O〉

∣∣∣∣ , (4.194)

for some constant C > 0. The same analysis applies to the second correlator
in (4.186).

We can now reuse the arguments of section 4.4.2.1 to conclude that the Wightman
function integral converges near the Regge limit, at fixed σ, provided that

J1 + J2 > 2−∆vac, (4.195)

where ∆vac is the smallest scaling dimension appearing in the O2 ×O†2 (or O1 ×O†1)
OPE. Since O2 ×O†2 always contains the identity operator, ∆vac = 0. Note that the
polarizations of both O2 and O†2 are z2, so we cannot exclude the identity contribution
using kinematics as we did in section 4.4.2.1. So we finally obtain the sufficient
condition

J1 + J2 > 2. (4.196)

Note that we have only shown that this is sufficient for convergence of the integral
at fixed σ. We will discuss the case of σ approaching the light-cone boundaries, and
thus of the two-variable integral, in the next section.

This latter condition is sufficient, but may turn out to be not necessary, since we
cannot prove that the Cauchy-Schwartz bound (4.186) is tight. To allow for this
possibility, let us introduce a parameter J0 which is defined as the smallest real
number such that

〈O|O4O1O2O3|O〉√
〈O3(x3)O†3(x4)〉〈O4(x4)O†4(x3)〉〈O1(x1)O†1(x2)〉〈O2(x2)O†2(x1)〉

∈ O(r1−J0),

(4.197)

where all polarization vectors in denominator are generic. Then the Wightman func-
tion integral converges in the Regge limit if

J1 + J2 > J0 + 1. (4.198)

The result of this section can in turn be summarized by saying that

J0 ≤ 1. (4.199)
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4.4.2.5 Lightcone limit on the second sheet

Consider now the lightcone limit on the second sheet. The situation is very similar
to the Regge regime, and we can use the same frame as above to analyze it. The only
difference is that now we consider either α1 → +∞ or α2 → −∞, corresponding to
the right or the lower boundary in figure 4.6 respectively. The other two boundaries
can be treated in the same way. For concreteness, let us focus on the limit α2 → −∞.

For simplicity, we will assume that x1 is in the same Poincare patch as x2, and write

x1 = − z1

α1

, x2 = − z2

α2

. (4.200)

This time, we will have to discuss both correlators in the bound (4.186). Modulo
factors of λij in (4.189) and their analogues for the second correlator in (4.186), we
are essentially interested in the behavior of the OPEs

O2O2 ∼ O†2(x1, z̃2)O2(x2, z2)

O1O1 ∼ O1(x1, z1)O†1(x2, z̃1). (4.201)

The λ-factors and polarizations entering O3 and O4, similarly to Regge limit, can be
ignored because they all tend to some generic finite limits.26

It is easy to determine the direction of z̃1 in the strict lightcone limit α2 = −∞. In
this limit, we find x2 = 0, and z1 lies along the unique null ray which connects x1

and x2. This is a conformally-invariant statement, and so it should hold after we
apply JAB. Applying JAB sends x1 to x2, x2 to x1, and z1 to z̃1. Therefore, we find
that z̃1 should also lie along the unique null ray connecting x1 and x2, and thus it is
proportional to z1. In other words,

z̃1 → cz1, (4.202)

for some finite c. This implies that

(z1 · z̃1) = O(α−1
2 ). (4.203)

Using the results of section 4.4.2.2 (after swapping α1 and α2), we find that

O1(x1, z1)O†1(x2, z̃1) ∼ (−α2)
2∆1−2J1−τ0

2 . (4.204)

Here τ0 is the smallest twist that appears in O†1O1 OPE.
26This is true as long as we stay in the interior of the second sheet. These coefficients may diverge

as we approach 1 ∼ 3 lightcone limit. We comment on this subtlety below.
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There is nothing special we can say about z̃2, and it simply tends to some generic
finite value in the limit. This and results of section 4.4.2.2 imply that

O†2(x1, z̃2)O2(x2, z2) ∼ (−α2)
2∆2+2J2−τ0

2 . (4.205)

Combining these results we find that

|〈O|O4O1O2O3|O〉| ≤ C ′(−α2)
−τ0+∆1+∆2−J1+J2

2 (4.206)

near the second sheet null-cone limit α2 → −∞. This bound is uniform away from the
boundary between first and second sheets 1 ∼ 3. Including the light-transform weight
(−α2)−∆2−J2 , we conclude that the Wightman function integral converges absolutely
in this region provided

J1 + J2 −∆1 + ∆2 + τ0 > 2. (4.207)

Combining this with the condition from α1 → ±∞ we find the sufficient condition

J1 + J2 > 2 + |∆1 −∆2| − τ0. (4.208)

Similarly to the Regge limit, we cannot exclude the identity operator from O†1O1 (or
O†2O2) OPE, and so we must set τ0 = 0, resulting in the final condition

J1 + J2 > 2 + |∆1 −∆2|. (4.209)

There are two subtleties which we still need to address. One is the convergence of
the two-variable integral near Regge limit – we have established the convergence of
the radial integral in the previous section and of the angular integral in this section,
but we have not yet proved that the double integral converges. To see that it does,
note that we have succeeded in bounding both the Regge limit and the second-sheet
lightcone limit by using Rindler positivity. A closer look at our arguments shows that
for r < r0 and all σ the second-sheet correlator is bounded in absolute value by the
product of first-sheet correlators times a uniform constant C ′′, where r0 is sufficiently
small. Convergence of the double-integral of the product of first-sheet correlators can
be established by the same methods as in section 4.4.2.4, and then the convergence
of the integral on the second sheet follows immediately.

The second subtlety is that near the lightcone limit, either on the first or on the
second sheet, we have only established the convergence of the integral provided we
exclude a region near the boundary between the first and the second sheets. We now
turn to a discussion of this subtlety.
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4.4.2.6 Asymptotic ligthcone expansion

The discussion of previous sections provides us with rigorous bounds on the growth of
the Wightman function on the first and the second sheets. The situation is, however,
qualitatively different for the two sheets.

On the first sheet, we have a tight bound on the growth in OPE and lightcone limits –
we can use the convergent OPE expansion to see that the Wightman function actually
does saturate the bound. This means that unless the conditions of sections 4.4.2.1
and 4.4.2.2 are satisfied, the Wightman function integral diverges (in absolute value
sense).

On the second sheet, we have a potentially non-optimal bound on the growth in the
Regge and lightcone limits, which we derived from the Cauchy-Schwarz inequality
for Rindler reflection positivity. We have already pointed out that the growth in the
Regge limit may be weaker than the bound, and we parametrized the true growth
by an exponent J0. Similarly, there is no a-priori reason to believe that the lightcone
bound is tight.

In fact, there is a reason to believe that the growth of the correlator on the second
sheet is the same as on the first sheet. Indeed, it is natural to expect that the
lightcone OPE expansion, even though not convergent on the second sheet, is still
valid asymptotically [151]. Schematically,

O1(x1)O2(x2) =
∑
τO≤τ

(x2
12)

τO−∆1+m1−∆2+m2
2 O(x2) + o

(
(x2

12)
τ−∆1+m1−∆2+m2

2

)
, (4.210)

where mi is the boost eigenvalue of Oi (similarly to section 4.4.2.2), and the sum
on the right-hand side is over spin components of primaries and descendants. Such
an asymptotic expansion is sufficient to establish the growth rate of the Wightman
function near the second sheet lightcone limit, and gives the same results as on the first
sheet. In particular, the contribution of the identity operator to (4.210) is excluded
in the same way as on the first sheet, and we do not have to set τ0 = 0 in (4.208)
anymore.

By using the asymptotic expansion (4.210), we can also prove that the Wightman
function integral converges in the ligthcone limit near the boundary between the first
and the second sheets (with iε prescription employed for O3,O4), closing the loophole
in our arguments.

While (4.210) is a natural expectation, we do not have a general proof that it holds.
An argument was given in [151] for the case of scalar O1 = O2 and O3 = O4, with real
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1

z

Figure 4.7: Trajectory of z near the boundary between the first and the second sheets.

coordinates. In their argument, one splits the t-channel (O1×O4 OPE) expansion of
the Wightman function into two parts. The first part I1 consists roughly of double-
traces [O1O2]n,`, and is responsible for reproducing a finite number of terms in (4.210)
in the s-channel. The second part I2 contains all other contributions. By going suffi-
ciently far into the s-channel lightcone regime, one can make sure that I1 completely
dominates over I2. Continuation of I1 to the second sheet is straightforward, since
it is simply equal to a finite number of terms in (4.210). The expansion (4.210) then
follows if we can show that the second part I2 remains subleading on the second sheet.
In the setup of [151] this is easy to show, since all the terms in the t-channel channel
expansion (and hence in I2) are positive, and continuation to the second sheet merely
adds some phases, which cannot increase the total sum.

This last step is problematic in more general setups. The positivity of t-channel
contributions is due to the fact that the Wightman function considered in [151] is
Rindler-reflection positive on the first sheet. As soon as we consider non-identical
operators or operators with spin, the Rindler-reflection positivity ceases to be generic,
and the argument cannot be applied. Still, the fact that (4.210) is valid at least for
scalar O1 = O2, in some states, strongly suggests that it can be valid more generally.
For the argument of [151] to fail in the general setup, it must be that the phases in
I2 on the first sheet conspire to give an abnormally small result for all values of z,
which seems rather unlikely.

In view of this discussion, we will assume that the asymptotic expansion (4.210) holds.

4.4.3 Convergence of the double commutator integral

We now consider the convergence of the double commutator integral (4.149). The
first observation is that the double-commutator vanishes when 1 ≈ 4 or 3 ≈ 2. Our
integration region is therefore restricted to 1 < 4 and 2 > 3. This corresponds to the
upper left shaded square in figure 4.6. Note, however, that it is now meaningless to
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say that in this square the correlator is on the second sheet. The double-commutator
consists of four Wightman correlators, and it is not guaranteed that they all have
cross-ratios on the same sheet. In fact, by using the causal relations between the
points and microcausality, we can write in this region

〈O|[O4,O1][O2,O3]|O〉 =〈O|O4O1O2O3|O〉+ 〈O|O3O1O2O4|O〉

− 〈O|O1O2O3O4|O〉 − 〈O|O3O4O1O2|O〉. (4.211)

The first two Wightman functions are of the same type as studied in the previous
subsection, and are on the second sheet. In the last two Wightman functions, the
operators O1 and O2 act on the vacuum, and so they are on the first sheet.

When analyzing the convergence of the double commutator integral (4.149), once
again we only need to consider the convergence near the boundaries of the integration
region. Furthermore, we do not have to worry about the boundaries where 2 ∼ 3 or
1 ∼ 4. Near these boundaries the integral is defined by iε prescriptions. More
precisely, the double-commutator is obtained by folding integration contours in the
Wightman function integral (4.147). Due to this folding, near these boundaries the
four terms above pair up and form integration contours similar to figure 4.7. Overall,
the double-commutator integral is an integral of a single Wightman function over
a folded complex integration cycle in cross-ratio space. Everywhere away from the
2 ∼ 3 or 1 ∼ 4 boundaries this integration cycle can be split into four layers, and
each layer can be interpreted as an integral of a Wightman function from (4.211).
Near these boundaries the layers merge, wrapping around branch cuts and providing
a canonical regularization of the integral.

We will continue to refer to the remaining two boundaries as the lightcone limits,
and to the corner where they meet as the Regge limit. We can use the methods of
the previous subsections to bound the growth of each Wightman function in (4.211)
in these limits and find that the same conditions as we derived for (4.147) are also
sufficient for convergence of the double-commutator integral.27

It is easy to see that weaker conditions are in fact sufficient for convergence of
the double-commutator integral. Let us consider the lightcone limits first. The
asymptotic expansion (4.210) essentially implies that we can approximate the double-
commutator near these limits by replacing the Wightman functions in (4.211) by a
finite number of s-channel conformal blocks for the leading twist operators, analyt-
ically continued to the desired Wightman orderings. However, it is known [25] that

27With the same caveat about the boundary between the first and second sheets as before.
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s-channel conformal blocks cancel in the combination (4.211). This means that the
asymptotic expansion (4.210) does not contribute to the double-commutator. If this
expansion were valid for any τ , then we would conclude that the double-commutator
decays faster than any power of α1 or α2 near the lightcone limits.

However, it is well-known that the spectrum of primaries in any OPE has accumu-
lation points in twist [13, 14]. Let us denote the first twist accumulation point in
O1 ×O2 OPE by τ∗. We can only trust (4.210) for τ < τ∗, since for τ ≥ τ∗ we would
have to include infinitely many terms in the sum. Therefore, we can only conclude
that the double-commutator grows in the ligthcone regime no faster than at the rate
determined by τ∗. This leads to the following sufficient condition,

J1 + J2 − |∆1 −∆2| > 2− τ∗. (4.212)

For the Regge limit, we do not have an analogue of (4.210), and we will simply in-
troduce a growth exponent JdDisc

0 for the double-commutator in complete analogy
with (4.197). The condition for absolute convergence of the double-commutator inte-
gral near the Regge limit is then

J1 + J2 > 1 + JdDisc
0 . (4.213)

Similarly to J0, Rindler positivity bounds imply

JdDisc
0 ≤ 1. (4.214)

4.4.4 Summary of non-perturbative convergence conditions

Let us summarize the various conditions we have obtained thus far. Assuming the
asymptotic light-cone expansion (4.210), we have shown that the Wightman function
integral (4.147) converges absolutely if and only if the conditions

J1 + J2 > max (2−∆′0, 1 + J0) , (4.215)

J1 + J2 > 2− τ ′0 + |∆1 −∆2| (4.216)

are satisfied. Here τ ′0 ≥ d−2
2

and ∆′0 ≥ d−2
2

are the smallest non-zero twist and
dimension that appear in the O1×O2 OPE,28 J0 is the growth exponent in the Regge
limit, defined by (4.197). Using Rindler positivity, we have shown that

J0 ≤ 1. (4.217)

28When J1 = J2 = 0, then we cannot exclude unit operator contributions in the OPE and
lightcone limits and ∆′0 and τ ′0 should be the lowest dimension and twist in their respective OPEs.
In other words, they do not have to be nonzero in that case.
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We have also shown that the above conditions with τ ′0 = 0 are sufficient even if we do
not assume the asymptotic expansion (4.210), but simply use bounds from Rindler
positivity.29

For the double-commutator integral (4.149), we have shown that the sufficient condi-
tions for its convergence are

J1 + J2 > 1 + JdDisc
0 , (4.218)

J1 + J2 > 2− τ∗ + |∆1 −∆2|, (4.219)

where τ∗ ≥ d−2 is the first twist accumulation point in the O1×O2 OPE, and JdDisc
0

parameterizes the Regge growth of the double-commutator in the same way that J0

parametrizes growth of the Wightman function through (4.197). Note that we have

∆′0 ≥ τ ′0 ≥
d− 2

2
,

τ∗ ≥ τ ′0 ≥
d− 2

2
. (4.220)

Let us briefly discuss the values of J0 and JdDisc
0 . First of all, from the expan-

sion (4.211) if follows that

JdDisc
0 ≤ max (1−∆′0, J0) . (4.221)

Both J0 and JdDisc
0 can be studied using conformal Regge theory [25, 28, 149, 150].

Conformal Regge theory implies that the Regge limit of the four-point function be-
haves as 1+r1−j(0), where j(0) is the spin of the leading Regge trajectory at dimension
∆ = d/2. Here, the 1 comes from the identity operator in the O1×O2 OPE. However,
we are considering special kinematics where the unit operator does not contribute
unless O1 and O2 are identical scalars. In these special kinematics, the four-point
function behaves as r1−j(0). The double-discontinuity also does not get a contribution
from the unit operator, so it also behaves as r1−j(0). Thus, we expect

J0 = 1 and JdDisc
0 = j(0) ≤ 1 if O1 = O2 are identical scalars,

J0 = JdDisc
0 = j(0) ≤ 1 if O1,O2 are not identical scalars. (4.222)

Let us consider the case where O1,O2 are not identical scalars. Note that if J0 is the
intercept of the stress-tensor trajectory, then 1 ≥ J0 ≥ 2− d

2
by Nachtmann’s theorem

[14, 98, 132]. Furthermore, by unitarity 1 − ∆′0 ≤ 1 − τ ′0 ≤ 2 − d
2
, so the condition

29This argument has a small loophole discussed, e.g., in section 4.4.2.6.
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J1 + J2 > 2−∆′0 in (4.215) is redundant with J1 + J2 > 1 + J0. If ∆1 = ∆2, then the
conditions (4.216) and (4.219) are redundant as well.

As an example, consider the case where O1 = O2 = T (the stress tensor). By the
above reasoning, a product of ANEC operators on the same null plane is well-defined
and commutative if

3 > J0 = JdDisc
0 . (4.223)

In our analysis so far, we have considered the causal configuration 4 > x and x+ > 3

with 3 and 4 spacelike. One can use O3,O4 to generate a dense subspace of the
Hilbert space while staying in this causal configuration. Thus, our analysis establishes
well-definedness and commutativity (when applicable) acting on this dense subspace.
However, this subspace does not include important states like momentum eigenstates,
so we might hope to establish commutativity on a larger dense subspace.

Some different causal configurations can be reached by acting on O3 and O4 with
the operator T that translates operators to image points in other Poincare patches
(see [28] for details). This operation simply introduces a phase, leaving our analysis
unchanged. However, there exist other causal configurations that cannot be reached
in this way: for example, if 4 > x and x+ > 3 but 3 and 4 are timelike. In this
case, one cannot use Rindler positivity and we have not found a way to rigorously
bound the behavior of the correlator. We can argue non-rigorously as follows. To
establish convergence of the Wightman or double-discontinuity integrals in the light-
cone limit, we can invoke the asymptotic lightcone assumption of [151] described in
section 4.4.2.6. Under this assumption, the analysis of the lightcone limit between 1

and 2 is independent of the positions of points 3 and 4, and thus identical to what we
have already done. To establish convergence in the Regge limit, we can assume that
the leading Regge behavior r1−J0 predicted by conformal Regge theory continues to
hold in this different causal configuration. It is possible that conformal Regge theory
can be used to rigorously establish both of these assumptions. We leave this problem
for future work.

In chapter 5, we establish a connection between commutativity and the Regge limit
in a different way. We show that the commutator [L[O1],L[O2]] is nonvanishing if
and only if the four-point function 〈O4O1O2O3〉 has a Regge pole at J = J1 + J2− 1.
This again shows that the commutator vanishes if J1 + J2 > J0 + 1, where J0 is the
position of the rightmost Regge pole.
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4.4.5 Convergence in perturbation theory

Although we have shown that J0 ≤ 1 in a nonperturbative theory, this bound can be
violated at a fixed order in perturbation theory (e.g. either weak coupling or large-N).
In large-N perturbation theory, the bound on chaos [84] implies that

Jplanar
0 ≤ 2, (4.224)

where Jplanar
0 characterizes the Regge growth of the leading nontrivial term in 1/N .

This bound is saturated in holographic theories with a large gap, where Jplanar
0 = 2

comes from tree-level graviton exchange in the bulk. At one-loop in the bulk, we get
contributions from two graviton exchange, and hence we expect J1-loop

0 = 3 in such
theories.

From our discussion above, it follows that in these theories, products of ANEC oper-
ators on the same null plane should be well-defined and the ANEC operators should
commute at planar level, since Jplanar

0 < 3. However, a product of ANEC operators on
the same null plane is not well-defined at 1-loop order in the bulk, since J1-loop

0 ≥ 3.
To recover a well-defined observable, one would have to appropriately re-sum 1/N

effects.

Note that there is no contradiction with the product of ANEC operators being defined
nonperturbatively. The four-point function has an expansion in powers of 1/N at fixed
values of cross-ratios, but this expansion does not commute with taking the Regge
limit. Since the ANEC integrals probe the Regge limit, we find that these integrals
do not commute with 1/N expansion. Let us consider a (not necessarily physical) toy
model of such a situation,

IN =

∫ ∞
1

dss−3fN(s), fN(s) =
1

1 + s/N2
. (4.225)

Here the IN is the analogue of the energy-energy correlator, and fN(s) is the analogue
of the correlation function, where s → +∞ is the Regge limit. The integral for IN
converges if fN(s) grows as sj−1 with j < 3. This is true for N0 and N−2 terms in
large-N expansion of fN(s), which predict

IN =
1

2
−N−2 + · · · . (4.226)

The exact answer is

IN =
1

2
−N−2 +

log(N2 + 1)

N4
. (4.227)
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We see that term-wise integration is reliable for the orders at which it converges,
but at higher orders IN may cease to have a simple 1/N expansion. We expect that
something similar happens in energy-energy correlators, i.e.

〈E(n1)E(n2)〉ε·T = fplanar(n1, n2) + f rest
N (n1, n2), (4.228)

where fplanar(n1, n2) is computed from the planar part of the four-point function, and

lim
N→∞

f rest
N (n1, n2) = 0, (4.229)

but f rest
N (n1, n2) does not admit an expansion in integer powers of 1/N2. In N = 4

SYM, at finite ’t Hooft coupling J0 will be less than 2 and (4.228) may have more
1/N terms in it.

4.4.6 Other types of null-integrated operators

The works [153, 154] have considered other examples of operators integrated over null
rays. For example, the authors of [153] introduced

Ln(~y) ≡
∫ ∞
−∞

dv vn+1 Tvv(u = 0, v, ~y). (4.230)

They studied the algebra of such operators (under the assumption that products can
be suitably renormalized) and found that it resembles a separate Virasoro algebra for
each transverse point ~y. The work [154] did a similar analysis of other null integrated
operators and found that they generate a BMS algebra.

A first comment about the expression (4.230) is that it is generically divergent in any
correlation function when n ≥ d. A definition of Ln(~y) which is not divergent is in
terms of descendants of L[T ], as we explain below.

Let us make two additional comments about such operators. Firstly, the additional
insertions of vn+1 in the integrand make it more difficult to argue that products are
well-defined and commutative, even at nonzero transverse separation ~y12. The re-
quired analysis is similar to the previous subsections. For example, suppose we would
like to establish that 〈O4|[Ln(~y1), Lm(~y2)]|O3〉 = 0, for nonzero ~y12. The integral of
the Wightman function 〈Ω|O4TTO3|Ω〉 is absolutely convergent in the Regge limit if

J1 + J2 > J0 + 3 + n+m, (4.231)

where J1 = J2 = 2. If 0 < J0 < 1 (as expected for the 3d Ising model), we can only
prove commutativity at nonzero ~y12 for the cases n + m ≤ 0. If J0 = 1 (as expected
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in a gauge theory), we can only prove commutativity at nonzero ~y12 for n + m < 0.
One should also consider constraints coming from the lightcone limit. A full analysis
of well-definedness and commutativity of more general light-ray operators is outside
the scope of this work.

If Wightman function integrals are not absolutely convergent, then it may still be
possible to renormalize products Ln(~y1)Lm(~y2), but the renormalized product may
not be commutative at nonzero ~y12.

This discussion assumes that the Regge limit is always dominated by a fixed Regge
intercept J0. More generally, the Regge limit of a four-point function is related to an
integral over the leading Regge trajectory J0(ν) where ∆ = d

2
+ iν and ν ranges from

−∞ to ∞ [149, 150]. The J0 we have discussed so far is shorthand for the maximum
value of J0(ν) along this trajectory. However, it is possible to isolate different values
of ν by performing an integral transform in the transverse positions ~y. Thus, perhaps
by passing to ν space and choosing a ν such that J0(ν) is sufficiently small, one could
alleviate the problems with defining products Ln(~y1)Lm(~y2). We briefly discuss this
possibility again in section 4.6.2.2.

Finally, let us explain how operators like Ln(~y) and those in [154] can be described
using light transforms. The significance of L[T ](x, z) is that it transforms like a con-
formal primary. By contrast, the operators Ln(~y) can be understood as descendants
of L[T ](x, z) — i.e. derivatives with respect to x and/or z. As usual in conformal
field theory, correlators of descendants are determined by correlators of primaries.

Let us understand how this works for the case of

L0(~y) =

∫ ∞
−∞

dv v Tvv(u = 0, v, ~y). (4.232)

This expression looks like a light-transform, except that the object vTvv in the in-
tegrand is not a conformal primary. To understand its conformal transformation
properties, it is helpful to think of vTvv as a component of a larger object

XmT (X,Z), (4.233)

where

Xm = (X+, X−, Xµ) = (1, x2, xρ) ∈ Rd,2 (4.234)

is an embedding-space vector. Here, T (X,Z) is the embedding-space lift of Tµν(x),
which we describe in more detail in section 4.5.1.3. We recover vTvv by setting m = v

and Z = (0, 0, z) with z · x = v.
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The product XmT (X,Z) is an example of acting on T (X,Z) with a weight-shifting
operator [186]. Weight-shifting operators are conformally-covariant differential op-
erators that shift the conformal weights of the objects they act on, in addition to
introducing a free index for a finite-dimensional representation W of the conformal
group. In this case, Xm is a 0-th order differential operator (since it does not involve
any derivatives ∂

∂X
or ∂

∂Z
). It transforms in the vector representation W = � of

SO(d, 2), and shifts weights by (∆, J)→ (∆− 1, J).

Some weight-shifting operators for W = � are

D−0
m = Xm,

D0+
m = (J + ∆)Zm +XmZ ·

∂

∂X
. (4.235)

Here m = +,−, 0, . . . , d− 1 is a vector index for SO(d, 2). The superscripts indicate
how the operators shift dimension and spin, respectively:

Dαβm : (∆, J)→ (∆ + α, J + β). (4.236)

The representation W = � possesses other weight-shifting operators that will not be
important for our discussion.

Weight-shifting operators and conformally-invariant integral transforms satisfy a nat-
ural algebra. We can guess the form of this algebra simply by inspecting quantum
numbers. For example, because L : (∆, J)→ (1− J, 1−∆), we must have30

LDα,βm ∝ D−β,−αm L. (4.237)

In particular,

L[XmT (X,Z)] = L[D−0
m T (X,Z)]

∝ D0+
m L[T ](X,Z)

=

(
−dZm +XmZ ·

∂

∂X

)
L[T ](X,Z). (4.238)

The operator L0(~y) can be obtained by appropriately specializing X,Z above:

L0(~y) ∝
(
−dZm +XmZ ·

∂

∂X

)
L[T ](X,Z)

∣∣∣∣X0=−(0,0,
1
2
,
1
2
,~0)

Z0=(1,~y2,0,0,~y)

. (4.239)

30In general, a conformally-invariant integral transform Ir is associated to a Weyl reflection r of
SO(d, 2) [28, 187, 188]. When we commute a weight-shifting operator Dw with weight w past the
integral transform, the weight gets reflected, IrDw = Dr(w)Ir.
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4.5 Computing event shapes using the OPE

In this section, we discuss how event shapes can be computed using the OPE of
the boundary CFT. Simple examples of event shapes have been computed before,
for example in [31]. Our goal here is to provide tools for the calculation of n-point
event shapes with general intermediate and external operators. For the purposes
of this paper, this will allow us to match the results of section 4.3 and to express
the commutativity of shocks as an exact constraint on the CFT data. We will also
compute in closed form all conformal blocks which appear in scalar two-point event
shapes, which may be useful in other contexts.

Let us give a brief overview of this section. We start by introducing the appropriate
conformal blocks in section 4.5.1. After describing their general structure, we explain
in detail how they can be computed in subsections 4.5.1.2-4.5.1.4. We then use these
results in section 4.5.2 to match the bulk results of section 4.3, and in section 4.5.3
to describe the constraints that shock commutativity implies for the CFT data. Fi-
nally, in section 4.5.4 we give a closed-form expression for a general conformal block
appearing in a scalar event shape, and demonstrate how the expansion works in a
simple generalized free theory example.

4.5.1 t-channel blocks

Let us consider a general two-point event shape31

〈O4(p)|L[O1](∞, z1)L[O2](∞, z2)|O3(p)〉. (4.240)

We can rewrite it by inserting a complete set of states between the two light transforms∑
Ψ

〈O4(p)|L[O1](∞, z1)|Ψ〉〈Ψ|L[O2](∞, z2)|O3(p)〉. (4.241)

By the operator-state correspondence, the Hilbert space is spanned by states created
by a single insertion of a local operator, and thus the above sum can be interpreted as
an OPE expansion of O4L[O1] or L[O2]O3 in terms of local operators. However, since
the states 〈O|O4L[O1] and L[O2]O3|O〉 are not, strictly speaking, of finite norm, it
is not obvious that this expansion converges. In this paper, we will assume that it
does, modulo some remarks that we defer to section 4.5.1.1. We also discuss there
some informal arguments in favor of convergence.

To compute the expansion (4.241), we first reorganize it into conformal families∑
O

∑
ΨO

〈O4(p)|L[O1](∞, z1)|ΨO〉〈ΨO|L[O2](∞, z2)|O3(p)〉, (4.242)

31We are suppressing possible Lorentz indices for O3 and O4.
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where we sum over primary operators O, and ΨO run over an orthonormal basis of
descendants of O. Let us focus on the contribution of a single primary operator O.
To simplify the discussion, assume for the moment that O is a scalar.

Normally, the sum over the descendants ΨO is rather complicated, since in order to
perform it one needs to find an orthonormal basis in the conformal multiplet of O.
A simple, although a bit unorthodox, way to perform such orthogonalization is to
consider the momentum eigenstates

|O(p)〉 ≡
∫
ddxeipxO(x)|O〉. (4.243)

Since we are in Lorentzian signature, these states are perfectly well-defined (as distri-
butions in p). They also form an orthogonal set thanks to momentum conservation,

〈O(q)|O(p)〉 = A(∆)(2π)dδd(p− q)(−p2)∆− d
2 θ(p), (4.244)

where the right hand side is completely fixed by momentum conservation, Lorentz
and scale invariance, and energy positivity, up to an overall factor A(∆). Here, ∆

is the scaling dimension of O. Moreover, these states are complete in the conformal
multiplet of O, which follows from completeness of the states∫

ddxf(x)O(x)|O〉, (4.245)

where f ranges over Schwartz test functions [27]. Using this basis, we can write32∑
ΨO

|ΨO〉〈ΨO| = A(∆)−1

∫
p>0

ddp

(2π)d
(−p2)

d
2
−∆|O(p)〉〈O(p)|, (4.246)

This expression is morally equivalent to the shadow integral approach to conformal
blocks (see, e.g. [190]). An important difference is, however, that (4.246) is a rigorous
identity in the Hilbert space, and does not require subtraction of any analogs of
shadow contributions.

Expression (4.246) turns out to be perfectly suited for our needs. Indeed, in (4.242) we
are taking an inner product of 〈ΨO| with momentum eigenstates,33 and this localizes
the p integral in (4.246). Using this observation, we find the following expression for
the contribution of O to the event shape (4.240)

A(∆)−1

∫
q>0

ddq

(2π)d
(−q2)

d
2
−∆〈O4(p)|L[O1](∞, z1)|O(q)〉〈O(q)|L[O2](∞, z2)|O3(p)〉

= A(∆)−1(−p2)
d
2
−∆〈O4(p)|L[O1](∞, z1)|O(p)〉〈O(p)|L[O2](∞, z2)|O3(p)〉 (4.247)

32A version of (4.246) with spin was recently used in [189]. We will use a slightly different
generalization to spin.

33Recall that L[Oi] is inserted at infinity and is thus translationally-invariant
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Above, we used momentum conservation to go to the last line, and as usual abused
the notation by implicitly removing the momentum-conserving δ-functions in the final
three-point functions.

Let us immediately note an important feature of this expansion. Since the light
transform L[O2] annihilates the vacuum, we can write

〈O(p)|L[O2](∞, z2)|O3(p)〉 = 〈O(p)|[L[O2](∞, z2),O3(p)]|O〉, (4.248)

which, analogously to the situation with t-channel conformal blocks in the Lorentzian
inversion formula [25], implies that the contribution of O vanishes if it is a double-
trace of O2O3.34

In (4.247), we have essentially computed (in the case of scalar O) what we will call the
t-channel conformal blocks for the event shape (4.240). We use the name t-channel
block, because we would like to reserve s-channel to mean the OPE of L[O1]L[O2],
which we discuss in chapter 5. More precisely, the conformal block corresponding
to (4.247) is given by stripping off the OPE coefficients,

Gt,ab
∆,0(p, z1, z2)

= A(∆)−1(−p2)
d
2
−∆〈O4(p)|L[O1](∞, z1)|O(p)〉(a)〈O(p)|L[O2](∞, z2)|O3(p)〉(b),

(4.249)

where we used a superscript (a) to indicate that we are working not with a physical
three-point function, but with a standard conformally-invariant three-point tensor
structure with label a. We will denote the conformal block for exchange of O in a
general Lorentz representation ρO by

Gt,ab
∆O,ρO

(p, z1, z2). (4.250)

Again, the indices of operators O3 and O4 are implicit in this notation. The analog
of (4.249) for these more general blocks is a bit more involved, owing to the spin
indices of O, and we defer its discussion to section 4.5.1.2.

With this notation, the event shape can be written as

〈O4(p)|L[O1](∞, z1)L[O2](∞, z2)|O3(p)〉 =
∑
O,a,b

λ14O,aλ23O,bG
t,ab
∆O,ρO

(p, z1, z2),

(4.251)

34The reason is that in this case the commutator vanishes, as can be checked from explicit
expressions for the three-point tensor structures.
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where ρO is the Lorentz representation of O, and λ are the OPE coefficients dual to
the chosen basis of three-point tensor structures.

In principle, the t-channel event shape conformal blocks can be computed from the
usual conformal blocks by applying the light- and Fourier transforms. However, the
kinematics of event shapes are very special, and it is easier to directly use (4.249).
In particular, as we will soon see, any t-channel event shape block can be written in
terms of simple functions, which is not true for general conformal blocks.

To conclude this section, let us note that the above discussion can be straightforwardly
generalized to multi-point event shapes such as

〈O′1(p)|L[O1](∞, z1) · · ·L[On](∞, zn)|O′n+1(p)〉. (4.252)

We can insert a complete set of states in between each consecutive pair of light
transforms.35 The conformal block is obtained by restricting the sums over states to
conformal multiplets of some primary operators O′i,∑

ΨO′
i

〈O′1(p)|L[O1](∞, z1)|ΨO′2〉〈ΨO′2| · · · |ΨO′n〉〈ΨO′n|L[On](∞, zn)|O′n+1(p)〉. (4.253)

Assuming again that all operators O′2, . . . ,O′n are scalars, and repeating the argu-
ments leading to (4.249), we obtain the expression for the conformal block

Gt,a2···an
∆,0 (p, z1, . . . , zn) =

A(∆n+1)(−p2)−
d
2

+∆n+1

n∏
i=1

A(∆i+1)−1(−p2)
d
2
−∆i+1〈O′i(p)|L[Oi](∞, zi)|O′i+1(p)〉(ai).

(4.254)

Again, the generalization to O′i of non-trivial spin is straightforward.

4.5.1.1 Convergence of t-channel expansion

In this section, we discuss in more detail the convergence of the expansion (4.241).
On general grounds, (4.241) converges absolutely if the states L[O2](∞, z2)O3|O〉 and
L[O†1](∞, z1)O†4|O〉 have finite norm. This is certainly not the case since we have, for
example,

||L[O2](∞, z2)|O3(p)〉||2 = 〈O|[O3(p)]†L[O†2](∞, z2)L[O2](∞, z2)O3(p)|O〉, (4.255)

35Multi-point conformal blocks of this topology are sometimes called “comb-channel” blocks.



187

which is in general divergent because of the momentum-conserving delta-function and
the fact that polarizations of the two detectors are the same. We can try to avoid
both problems by considering the smeared ket state∫

Dd−2z2d
dpf(z2, p)L[O2](∞, z2)|O3(p)〉, (4.256)

and similarly for the bra. If we only had O3 and not the light-transform L[O2], this
state would be finite-norm by the usual Wightman axioms. In order to have a finite-
norm state with the insertion of O2, we would like to also have smearing over the
coordinates of O2 with an appropriate test function. Smearing over z2 is in principle
equivalent to smearing of O2, but the effective smearing function is not a test function
– it only has support on future null infinity, which is codimension 1. Whether this
smearing yields a finite-norm state is not obvious. One instance in which it does is
given by uniform smearing of z2 over the celestial sphere and O2 = T . In this case
we get ∫

Dd−2z2d
dpf(z2, p)L[T ](∞, z2)|O3(p)〉

∝
∫
ddpf(p)H|O3(p)〉 =

∫
ddp p0f(p)|O3(p)〉, (4.257)

which is finite-norm. There are several other smearing functions which give different
components of momentum generator P µ.36 More generally, we can also smear the
coordinate x2 of L[O2](x2, z2), which yields a finite-norm state and thus a convergent
expansion (4.241), and take the limit of localized x2 =∞. If the event shape is well-
defined in the first place (c.f. discussion in section 4.4), then one can expect this limit
to commute with the expansion (4.241), thus showing that smearing in polarization
vectors is sufficient.37

In chapter 5, we will relate the event shape (4.240) to the Lorentzian OPE inversion
formula at spin J1 +J2−1, with ∆ = d

2
+ iν on the principal series. In particular, the

coefficient function C(∆ = d
2

+ iν, J = J1 +J2−1) appearing in the inversion formula
is equal to a smearing of the two-point event shape with a particular test function that
depends on ν. In ν-space, the question of convergence of the OPE expansion (4.241) is
thus equivalent to the question of convergence of the conventional t-channel conformal

36For O2 = T a general smearing over z2 can be interpreted as a difference of modular Hamiltoni-
ans for two particular spatial regions [153]. It is unclear whether

∫
ddpf(p)|O3(p)〉 is in the domain

of this difference. We thank Nima Lashkari for discussion on this point.
37Additional smearing in p should not be important since the dependence of event shape on p is

essentially fixed by Lorentz invariance.
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block expansion, when inserted into the Lorentzian inversion formula. Thus, the t-
channel expansion for the event shape converges in ν-space if J1 + J2 − 1 > J0 [25,
26]. This is equivalent to the condition for the event shape to make sense in the first
place.

In what follows we will mostly be interested in event shapes in the space of spherical
harmonics, as opposed to ν-space. We will study in section 4.5.4.4 a simple example
in which (4.241) converges after smearing with a test function, provided this test
function vanishes sufficiently quickly near the collinear limit z1 ∝ z2. Smearing with
spherical harmonics does not have this property, but it can be achieved by taking
appropriate finite linear combinations. The number of such “subtractions” in the
example of section 4.5.4.4 depends on the scaling dimensions of O1 and O2. We will
take it as an assumption that this is the general picture. Furthermore, we will assume
that no subtractions are necessary if O1 = O2 = T , and smearing polarizations z1

and z2 against spherical harmonics already leads to a convergent expansion (4.241).38

It would be interesting to examine this question more rigorously.

Let us finally comment on a related subtlety. In the preceding discussion we showed
that the ANEC operators commute in the sense

[L[T ](∞, z1),L[T ](∞, z2)] = 0 (4.258)

for non-collinear z1 and z2. In principle, we have not excluded the possibility of contact
terms at z1 ∝ z2 in the right-hand side. Since we only study the t-channel expansion
after smearing with test functions, we might worry that the smeared commutators do
not vanish because of these potential contact terms. It was argued in [154] that under
natural assumptions there are no contact terms in this commutator, and we will work
under this assumption. Even if there are contact terms, one can still perform the
same subtractions as above to avoid them.

4.5.1.2 Fourier transform of Wightman two-point function

In this section we discuss the generalization of (4.246) to O with non-trivial spin,
and compute the coefficients A(∆) and their generalizations in the case of traceless-
symmetric O.

38If this turns out not to be the case, our results can be straightforwardly modified to account
for the subtractions. Note that the discussion of convergence is irrelevant for applications to planar
theories with a finite number of single-trace exchanges, since the sum over O in (4.242) is finite in
such theories.
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The identity (4.246) is essentially dual to the two-point function in momentum
space (4.244). Thus, in order to find its generalization to O with spin, we should
study the general Wightman two-point function in momentum space.

The two-point function is constrained by scale, translation, Lorentz, and special con-
formal invariance. Let us set special conformal invariance aside for the moment and
consider the implications of the other symmetries. First of all, scale and translation
invariance imply

〈Oα(p)|Oβ(q)〉 = (2π)dδd(p− q)(−p2)∆− d
2 θ(p)Fαβ(p/|p|) (4.259)

for some function F . Lorentz invariance further constrains the form of F . Suppose
we have defined

Fαβ(ê0), (4.260)

where ê0 is the unit vector along the time direction. Then Lorentz invariance allows us
to determine Fαβ(v) for any unit-normalized timelike v, and thus also the complete
two-point function. The value of (4.260) is only constrained by invariance under
SO(d − 1) rotations. In other words, the allowed values of (4.260) are in one-to-one
correspondence with

(ρ†O ⊗ ρO)SO(d−1). (4.261)

Under reduction to SO(d − 1), any Lorentz irrep ρO decomposes into SO(d − 1)

irreducible components without multiplicities. The complex conjugate irrep ρ†O de-
composes into dual SO(d − 1) irreps. This implies that a natural basis of invariants
is given by

Παβ
λ (v) (4.262)

where λ is an SO(d − 1) irrep which appears in the decomposition of ρO. These
invariants are defined, up to a constant multiple, by the following property: Παβ

λ (ê0)

is the SO(d − 1) invariant which has non-zero components only along the irrep λ in
index β and λ∗ in index α. We will see explicit examples of such invariants below.
Using this basis, we can write

Fαβ(v) =
∑
λ∈ρO

Aλ(∆, ρO)Παβ
λ (v), (4.263)

for some coefficients Aλ and thus [27]

〈Oα(p)|Oβ(q)〉 = (2π)dδd(p− q)(−p2)∆− d
2 θ(p)

∑
λ∈ρO

Aλ(∆, ρ)Παβ
λ (p/|p|). (4.264)
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Invariance under special conformal transformations now fixes the relation between
coefficients Aλ with different λ [27], yielding a unique solution for the momentum-
space two-point function. We will determine these coefficients for traceless-symmetric
O below.

To proceed, we will need the dual invariants Παβ,λ(v), defined by the completeness
relation ∑

λ∈ρO

Παβ,λ(v)Πβσ
λ (v) = δσα. (4.265)

It is an easy exercise to establish the existence of Παβ,λ(v) from basic representation-
theoretic arguments. Using these invariants, we can write the general form of (4.246)
as39∑

ΨO

|ΨO〉〈ΨO| =
∑
λ∈ρO

Aλ(∆, ρ)−1

∫
p>0

ddp

(2π)d
(−p2)

d
2
−∆Παβ,λ(p)|Oα(p)〉〈Oβ(p)|.

(4.266)

The general t-channel conformal block is then given by

Gt,ab
∆,ρ(p, z1, z2) =

∑
λ∈ρO

Aλ(∆, ρ)−1(−p2)
d
2
−∆〈O4(p)|L[O1](∞, z1)|Oα(p)〉(a)

× Παβ,λ(p)〈Oβ(p)|L[O2](∞, z2)|O3(p)〉(b). (4.267)

The simplest ingredients which enter into (4.267) are the coefficients Aλ(∆, ρ) and
the invariants Παβ,λ(p). In the case when ρO is traceless-symmetric tensor, λ is a
traceless-symmetric tensor of spin s = 0, 1, . . . J . The invariant Πs(p) has two sets of
traceless-symmetric indices,

Πµ1...µJ ;ν1...νJ
s (p). (4.268)

We can view Πs(p) as a linear operator on traceless-symmetric spin-J tensors, and de-
fine Πs(p) as the orthogonal projectors onto the spin-s SO(d−1) irrep inside the spin-J
traceless-symmetric irrep of SO(d − 1, 1). Note that Πs(p) have to be proportional
to these projectors; requiring them to be equal to the projectors gives a convenient
normalization with which Παβ,λ and Παβ

λ are equal. In particular, equation (4.265)
follows from, in operator notation,

J∑
s=0

Πs(p)Πs(p) =
J∑
s=0

Πs(p) = 1, (4.269)

39Here and below we abuse the notation by writing Π(p) instead of Π(p/|p|). In other words, we
assume that Π(p) = Π(p/|p|), i.e. Π is a scale-invariant function. This is consistent because we have
only defined Π(v) for v2 = −1.
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where we have used the standard properties of projectors.

It is convenient to contract the indices with null polarization vectors z1 and z2 to
define

ΠJ,s(p; z1, z2) ≡ z1,µ1 · · · z1,µJΠµ1...µJ ;ν1...νJ
s (p)z2,ν1 · · · z2,νJ . (4.270)

We have included an explicit J label to keep track of the Lorentz irrep when working
in index-free formalism. By Lorentz invariance and the homogeneity properties of
Πs(p), we must have

ΠJ,s(p; z1, z2) ≡ (−p2)−J(−z1 · p)J(−z2 · p)JΠJ,s(η), (4.271)

where ΠJ,s(η) is a polynomial of degree at most J and

1− η =
p2(z1 · z2)

(z1 · p)(z2 · p)
. (4.272)

In particular, if we set p = (1, 0, . . . , 0) and z1 = (1, ni), where ni are unit vectors
in RD−1, then η = (n1 · n2). Since ΠJ,s is projecting the spin-J SO(d) irrep onto the
spin-s SO(d− 1) irrep, we should have

ΠJ,s(η) ∝ C
(
d−3

2
)

s (η), (4.273)

where C
(
d−3

2
)

s is a Gegenbauer polynomial.40 We can fix the coefficients by requiring,
as a linear operator,

J∑
s=0

ΠJ,s(p) = 1, (4.274)

or in other words
J∑
s=0

ΠJ,s(η) = (z1 · z2)J = (η − 1)J . (4.275)

This leads to

ΠJ,s(η) =
2−JJ !(d+ J − 2)J(d− 2)J

(d−1
2

)J

(−1)s+J(d+ 2s− 3)

(J − s)!(d− 3)J+s+1

C
(
d−3

2
)

s (η). (4.276)

We will normalize the time-ordered two-point function for spacelike separation by

〈O(x1, z1)O(x2, z2)〉 =
(z1 · I(x12) · z2)J

x2∆
12

, (4.277)

40This follows, for example, from the quadratic Casimir equation for SO(d− 1).
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where

Iµν(x) = hµν − 2
xµxν
x2

. (4.278)

With this normalization, one can compute [82]

〈O(p, z1)|O(p, z2)〉

=
2d−2∆2π

d+2
2 Γ(∆ + 2− d)

Γ(∆− d−2
2

)Γ(∆ + J)Γ(∆ + 2− d− J)

×
J∑
s=0

(−1)s(∆− 1)s
(d−∆− 1)s

(−1)J+sΠJ,s(p; z1, z2)(−p2)∆− d
2 θ(p). (4.279)

We reproduce the calculation in appendix C.3. We then read off

As(∆, J) =
2d−2∆2π

d+2
2 Γ(∆ + 2− d)

Γ(∆− d−2
2

)Γ(∆ + J)Γ(∆ + 2− d− J)

(−1)s(∆− 1)s
(d−∆− 1)s

(−1)J+s. (4.280)

An interesting application of (4.279) is that it proves sufficiency of the usual uni-
tarity bounds. One can check that when these bounds are satisfied, the combination
(−1)J+sΠJ,s(p; z1, z2) corresponds to a positive-definite bilinear form, (−1)J+sAs(∆, J)

is positive, and that (4.279) is locally integrable. This is sufficient to show that∫
ddp

(2π)d
fµ1...µJ (p)|Oµ1...µJ (p)〉 (4.281)

has non-negative norm for any test function f .

Let us look at some simple cases which are relevant for the examples that we discuss
below. First of all, if J = 0, we can only have s = 0 and

A0(∆, 0) =
2d−2∆2π

d+2
2

Γ(∆− d−2
2

)Γ(∆)
. (4.282)

This is positive for ∆ > d−2
2
, in accord with the unitarity bound. As ∆ → d−2

2
,

A0(∆, 0) goes to 0. Combined with the factor (−p2)∆− d
2 we find that for ∆ = d−2

2

the two-point function is proportional to δ(p2), as is expected for the theory of free
scalars.41

Suppose now J = 1. We have

A0(∆, 1) = −2d−2∆2π
d+2

2 (∆− d+ 1)

Γ(∆− d−2
2

)Γ(∆ + 1)
, (4.283)

A1(∆, 1) =
2d−2∆2π

d+2
2 (∆− 1)

Γ(∆− d−2
2

)Γ(∆ + 1)
. (4.284)

41Recall that ε
x1−ε → δ(x).
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This has the positivity properties mentioned above for ∆ > d− 1, and for ∆ = d− 1

we find

A0(∆, 1) = 0, (4.285)

A1(∆, 1) =
23−dπ

d+2
2 (d− 2)

Γ(d
2
)Γ(d)

. (4.286)

This is consistent with the fact that spin-1 operators with ∆ = d − 1 are conserved
currents, i.e. they transform in a short multiplet. The condition A0(∆, 1) = 0 simply
says that the scalar s = 0 component vanishes,

pµOµ(p) = 0. (4.287)

In position space this is just the conservation equation

∂µOµ(x) = 0. (4.288)

This pattern persists for higher-spin operators: at the unitarity bound ∆ = J +

d − 2 only the s = J component of the operator survives, i.e. only AJ(∆, J) is non-
zero. This is the CFT analog of the statement that massless particles transform in
irreducible representations of the little group SO(d− 1) rather than SO(d) (here one
should think about QFT in d+1 dimensions, i.e. the flat space limit of AdSd+1/CFTd

correspondence), see, e.g. [191].

4.5.1.3 Light transform of a general three-point function

We now turn to the calculation of the three-point functions which enter (4.267). We
will first apply the light-transform and then the Fourier transform.

In this section we heavily utilize the embedding formalism [192, 193]. Let us briefly
review the basic features of this formalism. The space-time points in Rd−1,1 are put
in one-to-one correspondence with null rays in Rd,2. The conformal group SO(d, 2)

acts linearly in this space. The points in Rd,2 are denoted by X and null rays can
be described by X subject to X2 = 0 and identification X ∼ λX for λ > 0. If we
introduce the components X±, Xµ (where µ runs over indices of Rd−1,1) such that

X2 = −X+X− +XµXµ, (4.289)

then xµ ∈ Rd−1,1 can be embedded as

(X+, X−, Xµ) = (1, x2, xµ). (4.290)
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Here we usedX ∼ λX to setX+ = 1.42 Local operators can be described by functions
O(X), defined for X2 = 0, which are homogeneous

O(λX) = λ−∆O(X). (4.291)

Traceless-symmetric spin-J representations are described by adding dependence on a
polarization vector Z, subject to Z2 = X · Z = 0, and

O(X,λZ + αX) = λJO(X,Z). (4.292)

In terms of the Rd−1,1 polarization vector z and coordinate x, we can identify

(Z+, Z−, Zµ) = (0, 2(x · z), zµ). (4.293)

Here, we used the equivalence Z ∼ Z + αX to set Z+ = 0.

We will use the embedding formalism to compute the action of the light trans-
form (4.100) on correlation functions of local operators. For this, we need its form in
embedding space [28],

L[O](X,Z) =

∫ +∞

−∞
dαO(Z − αX,−X). (4.294)

Note that the arguments X and Z are effectively swapped in the right hand side
compared to the Minkowski coordinates x and z entering in (4.100).

As shown in [192], a general parity-even three-point function of traceless-symmetric
primary operators can be built out of two basic objects Vi,jk and Hij, defined as

Hij = −2(Zi · Zj)(Xi ·Xj) + 2(Zi ·Xj)(Zj ·Xi) = −4Z
[m
i X

n]
i Zj,[mXj,n],

Vi,jk =
(Zi ·Xj)(Xi ·Xk)− (Zi ·Xk)(Xi ·Xj)

(Xj ·Xk)
= 2

Z
[m
i X

n]
i Xj,mXk,n

(Xj ·Xk)
. (4.295)

Note that due to the condition (4.292), Zi only enters these expressions in the combi-
nation Z [m

i X
n]
i . Moreover, this is also the combination in which Xi enters into those

invariants above which contain Zi.

This fact greatly simplifies the computation of the light transform (4.294) of three-
point structures. Indeed, the definition instructs us to replace X → Z − αX,
Z → −X, and integrate over α. The combination Z

[m
i X

n]
i is invariant under this

replacement and thus factors out of the integral. For example, this implies that

Li[Vi,jkF (Zi, Xi, · · · )] = Vi,jkLi[F (Zi, Xi, · · · )], (4.296)

42The points with X+ = −1 correspond to a different Poincare patch of the Lorentzian cylinder.
For details see, e.g., [28].
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where notation Li means that the light transform is applied to point i. Similarly, we
can factor out all Hjk from under Li.43

Therefore, if we start with a three-point tensor structure

〈O1O2O3〉 =
g(V1,23, H12, H13, H23)V m2

2,31V
m3

3,12

X
τ1+τ2−τ3

2
12 X

τ1+τ3−τ2
2

13 X
τ2+τ3−τ1

2
23

, (4.297)

where g is an arbitrary function with appropriate homogeneity, and τ i = ∆i + Ji, we
find that

〈0|O2L[O1]O3|0〉 = g(V1,23, H12, H13, H23)〈0|O′2L[φ1]O′3|0〉. (4.298)

Here we defined the three-point tensor structure

〈φ1O′2O′3〉 =
V m2

2,31V
m3

3,12

X
τ1+τ2−τ3

2
12 X

τ1+τ3−τ2
2

13 X
τ2+τ3−τ1

2
23

, (4.299)

where new formal operators O′i have spin J ′i = mi and dimension ∆′i = ∆i + Ji −mi.
The scalar φ1 has dimension ∆φ = τ 1. Thus, the light-transform of a general three-
point tensor structure is reduced to light-transforms of a special class of three-point
tensor structures, where the light-transformed operator is a scalar.

On general grounds, we must have

〈0|O′2L[φ1]O′3|0〉 ∝
V

1−∆φ

1,23 V
J ′2

2,31V
J ′3

3,12 f
(

H12

V1,23V2,31
, H13

V1,23V3,12

)
X

τ ′1+τ ′2−τ
′
3

2
12 X

τ ′1+τ ′3−τ
′
2

2
13 X

τ ′2+τ ′3−τ
′
1

2
23

, (4.300)

where f(x, y) = 1 + O(x, y) is a polynomial of degree at most m2 in x and at most
m3 in y, and we defined J ′1 = 1 − ∆φ and ∆′1 = 1. We did not allow any factors
of H23 because they contain inner products (z2 · z3) and it is easy to see that the
light-transform integral cannot produce them.

To further constrain the form of the function f it is useful to step back and dis-
cuss some general properties of the light-transform. The light-transform in general
acts on continuous-spin operators and yields new continuous spin operators. Here
“continuous-spin” doesn’t necessarily mean J /∈ Z≥0, but rather that the operator is

43An alternative way to phrase this observation is to say that Z [mXn] is a weight-shifting opera-
tor [186] that commutes with the action of the light-transform. Indeed, it is the only weight-shifting
operator in the adjoint representation which shifts (∆, J) by (−1, 1), and this shift is invariant un-
der the Weyl reflection associated with L. The only non-differential weight-shifting operators which
enjoy this property are the powers of Z [mXn].
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not polynomial in its polarization vector z (or Z in embedding space notation). In
this sense, the J = 0 operator φ1 in (4.299) is special in that it is polynomial in Z1.44

We will refer only to the operators which satisfy this requirement as “integer-spin.”

The structure (4.299) is the only three-point tensor structure that is free of (z2 · z3)

and also consistent with all three operators being of integer spin. Similarly, the
structure (4.300) can be singled out as the only structure which is free of (z2 · z3) and
corresponds to two integer-spin operators and the light-transform of an integer-spin
operator φ1.

The fact that φ1 is an integer-spin operator can be expressed as

Dmφ1 =

(
(d

2
− 2)

∂

∂Zm
− 1

2
Zm

∂2

∂Z · ∂Z

)
φ1 = 0, (4.301)

where Dm is the Todorov/Thomas operator [192].45 This should be thought of as
a shortening condition for φ1. It is natural to expect that there exists a differential
operator DL

m which provides a dual shortening condition for L[φ1], i.e.

Dmφ1 = 0 =⇒ DL
mL[φ1] = 0. (4.302)

It is easy to guess the quantum numbers of DL
mL[φ1] by assuming that they are just

those of L[Dmφ1]. A simple exercise shows that it has ∆ = 2, J = 1 − ∆φ, and the
index m should be thought of as being in the second row of the Young diagram (the
first row is accounted for by Z). This allows us to write an ansatz for DL

m and fix the
coefficients by requiring consistency with various embedding space constraints. We
find that

WmDL
m = (∆φ − 1)(W · ∂

∂X
) + (Z · ∂

∂X
)(W · ∂

∂Z
) (4.303)

satisfies all the required properties, including (4.302). HereW is a polarization vector
for the second-row indices, and satisfies W 2 = W · X = W · Z = 0 and W ∼
W + αZ + βX.46

We can therefore constrain the function f by requiring that

〈0|O′2(DL
mL[φ1])O′3|0〉 = 0. (4.304)

44In this case it simply means that it is independent of Z1.
45This rather involved form of Dm is required to make sure it is consistent with the fact that φ is

only defined for Z2 = X2 = Z ·X = 0. Because of this, a single derivative ∂/∂Z is not good enough.
46We discuss/review the embedding formalism for general Young diagrams in chapter 5.
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By expanding this equation into appropriate conformally-invariant tensor structures,
we find the following constraints for f ,

[x(x+ 2)∂2
x − y(y + 2)∂x∂y + ((1 + x)(∆φ − J ′2) + (1 + y)J ′3 + ∆′23)∂x − J ′2(∆φ − 1)]f(x, y) = 0,

[y(y + 2)∂2
y − x(x+ 2)∂x∂y + ((1 + y)(∆φ − J ′3) + (1 + x)J ′2 −∆′23)∂y − J ′3(∆φ − 1)]f(x, y) = 0.

(4.305)

The solution to these equations with f(x, y) = 1 +O(x, y) is given by

f(x, y) = F2(−J ′1;−J ′2,−J ′3; 1
2
(τ ′1 + τ ′2 − τ ′3), 1

2
(τ ′1 − τ ′2 + τ ′3);−1

2
x,−1

2
y), (4.306)

where as before J ′1 = 1 − ∆φ, ∆′1 = 1, and τ ′i = ∆′i − J ′i , while F2 is the Appell F2

hypergeometric function

F2(α; β, β′; γ, γ′;x, y) ≡
∞∑
m=0

∞∑
n=0

(α)m+n(β)m(β′)n
m!n!(γ)m(γ′)n

xmyn. (4.307)

Note that the coefficients of the Taylor expansion of F2 in either variable are given
by 2F1 hypergeometric functions in the other variable.

Since we have uniquely fixed the form of the function f(x, y), it only remains to fix
the overall coefficient in (4.300). This can be done by choosing a degenerate kinematic
configuration which simplifies the integrals. We do this in appendix C.4. Here we
just quote the result,

〈0|O′2L[φ1]O′3|0〉 = −2πi
eiπτ

′
22J

′
1Γ(−J ′1)

Γ(
τ ′1+τ ′2−τ ′3

2
)Γ(

τ ′1−τ ′2+τ ′3
2

)

(−V1,23)J
′
1(−V2,31)J

′
2(−V3,12)J

′
3

X
τ ′1+τ ′2−τ

′
3

2
12 X

τ ′1+τ ′3−τ
′
2

2
13 (−X23)

τ ′2+τ ′3−τ
′
1

2

× f
(

H12

V1,23V2,31

,
H13

V1,23V3,12

)
((3 > 2) ≈ 1). (4.308)

which holds for causal relations (3 > 2) ≈ 1. In other words, 3 is in the future of 2
and both are spacelike from 1.

Let us apply the results of this section to an example which will be useful below,
namely to the three-point function 〈TJJ〉, where T is the stress-tensor and J is a
spin-1 current. We have the general form for the three-point function

〈T1J2J3〉 =
aV 2

1 V2V3 + bV1H12V3 + cV1H13V2 + hV 2
1 H23 + kH12H13

X
τ1+τ2−τ3

2
12 X

τ1+τ3−τ2
2

13 X
τ2+τ3−τ1

2
23

, (4.309)

where τ1 = d + 2, τ2 = τ3 = d, and we have added subscripts to the operators to
indicate at which point they are inserted. Furthermore, we used the standard notation
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V1 = V1,23, V2 = V2,31 and V3 = V3,12. The coefficients a, b, c, h, k are constrained by
the conservation conditions for T and J , by permutation symmetry in the two Js,
and by the Ward identity for stress-tensor. These imply

b = c, (d+ 2)h− db− a = 0, (d− 2)k − 2h+ 2b = 0, (4.310)

and

CJ =
(k − b)Sd

d
, Sd = volSd−1 =

2πd/2

Γ(d
2
)
, (4.311)

where CJ is defined as

〈J2J3〉 = CJ
H23

Xτ3
23

. (4.312)

In this section, however, it is more convenient to treat the structures that are multi-
plied by a, b, c, h, k independently. Let us focus on the structure with coefficient a in
(4.309). Using the results above, we find that

〈J2L[T1]J3〉 = V 2
1 L1

[
V2V3

X
d+2

2
12 X

d+2
2

13 X
d−2

2
23

]
, (4.313)

where the light transform is applied to the correlation function with

J ′1 = −d− 1, ∆′1 = 1, (4.314)

J ′2 = J ′3 = 1, ∆′2 = ∆′3 = d− 1. (4.315)

We can now use equations (4.308) and (4.306) to write (for (3 > 2) ≈ 1),

L1

[
V2V3

X
d+2

2
12 X

d+2
2

13 X
d−2

2
23

]
= 2πi

2−d−1Γ(d+ 1)

Γ(d+2
2

)2

V −d−1
1 V2V3

X
−d
2

12 X
−d
2

13 (−X23)
3d
2

f

(
H12

V1V2

,
H13

V1V3

)
,

(4.316)

where

f(x, y) =F2(−J ′1;−1,−1; 1
2
(d+ 2), 1

2
(d+ 2);−1

2
x,−1

2
y)

=1 +
d+ 1

d+ 2
(x+ y) +

d+ 1

d+ 2
xy. (4.317)

Therefore, in this case

〈J2L[T1]J3〉

= 2πi
2−d−1Γ(d+ 1)

Γ(d+2
2

)2

V −d+1
1 V2V3 + d+1

d+2

(
V −d1 V3H12 + V −d1 V2H13 + V −d−1

1 H12H13

)
X
−d
2

12 X
−d
2

13 (−X23)
3d
2

.

(4.318)
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Calculation of the light transforms for other structures, corresponding to coefficients
b, c, h, k, is completely analogous. The complete result is

〈J2L[T1]J3〉

= 2πi
2−d−1Γ(d+ 1)

Γ(d+2
2

)2
V −d−1

1

a′V 2
1 V2V3 + b′V1H12V3 + c′V1H13V2 + h′V 2

1 H23 + k′H12H13

X
−d
2

12 X
−d
2

13 (−X23)
3d
2

,

(4.319)

where

a′ = a, b′ = − d

d+ 2
b+

d+ 1

d+ 2
a, c′ = − d

d+ 2
c+

d+ 1

d+ 2
a,

k′ = k +
d+ 1

d+ 2
(a− b− c). (4.320)

Note that the algorithm for computing the light transform is much simpler than in
the case of the shadow transform [194].

4.5.1.4 Fourier transform of three-point functions

Above, we have described how to compute the light transform

〈0|O2(x2, z2)L[O1](x1, z1)O3(x3, z3)|0〉 (4.321)

for a general three-point structure. We now need to set x1 =∞ and Fourier-transform
O2 and O3. Since after setting x1 =∞ the three-point function becomes translation-
invariant in x2 and x3, it suffices to only Fourier-transform O3. Therefore, we want
to compute the Fourier transforms

〈O2(p, z2)|L[O1](∞, z1)|O3(p, z2)〉 =

∫
ddxeipx〈0|O2(0, z2)L[O1](∞, z1)O3(x, z3)|0〉.

(4.322)

The configuration in the integrand corresponds to

X1 = (0, 1,~0), X2 = (1, 0,~0), X3 = (1, x2, x),

Z1 = (0, 0, z1), Z2 = (0, 0, z2), Z3 = (0, 2(x · z3), z3). (4.323)

Under this substitution we have

V1,23 = −x−2(x · z1), V2,31 = (x · z2), V3,12 = (x · z3),

H12 = (z1 · z2), H23 = x2(z2 · I(x) · z3), H31 = (z1 · z3). (4.324)
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Using these identities, the three-point function under the integral in (4.322) can be
reduced to a linear combination of terms of the form

(z1 · z2)n12(z2 · z3)n23(z3 · z1)n31(−x · z2)m2(−x · z3)m3(−x · z1)1−∆1−n12−n31(−x2)λ/2

(4.325)

where

λ = (1− J1)−∆2 −∆3 −m2 −m3 − (1−∆1 − n12 − n31),

J2 = n23 + n12 +m2,

J3 = n31 + n23 +m3, (4.326)

and m2,m3, n12, n23, n31 are non-negative integers.

In the simplest case when J2 = J3 = 0, there is only one structure

(−x · z1)1−∆1

(−x2)
∆2+∆3−(1−J1)+(1−∆1)

2

. (4.327)

It is straightforward to compute the Fourier transform∫
ddxeipx

(−x · z1)1−∆1

(−x2)
∆2+∆3−(1−J1)+(1−∆1)

2

= F̂∆2+∆3−(1−J1),1−∆1(−p · z1)1−∆1(−p2)
∆2+∆3−(1−J1)−(1−∆1)−d

2 θ(p), (4.328)

where the iε prescription x0 → x0 + iε has to be used, and the coefficient F̂∆,J is given
by

F̂∆,J = 2π
e−iπ∆/22d−∆π

d
2

Γ(∆+J
2

)Γ(∆+2−d−J
2

)
. (4.329)

We can reuse this result for general J2 and J3. Note that exactly the same calculation
as above works for structures with m2 = m3 = 0. To obtain the result for non-zero
m2 and m3, we can introduce the following auxiliary basis,

{zJ1
1 z

J2
2 z

J3
3 |x−∆}n12n23n31

≡ (−x2)
−∆−m1−m2−m3

2 (z1 · z2)n12(z2 · z3)n23(z3 · z1)n31(z2 ·Dz1)m2(z3 ·Dz1)m3(−x · z1)m1+m2+m3 ,

(4.330)

wherem2 andm3 are given by (4.326),m1 = J1−n12−n31, andDz is the Thomas/Todorov
operator [192]. Acting with, for example, (z2 · Dz1) on (−x · z1)α produces terms of
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two types. One contains (x · z2), which is the desired term. If we had only this term,
then (4.330) would be proportional to (4.325). However, there is a second term, pro-
portional to (z1 · z2). Nevertheless, it is clear that this term leads to contributions
to (4.330) which have fewer powers of (x · zi) than (4.325). This means that the rela-
tionship between the structures (4.330) and (4.325) is given by a triangular matrix,
and thus can be straightforwardly inverted. In particular (4.325) and (4.330) span
the same space of structures.

The advantage of using (4.330) is that, obviously,∫
ddxeipx{zJ1

1 z
J2
2 z

J3
3 |x−∆}n12n23n31 = F̂∆,J1+J2+J3−2n12−2n23−2n31{zJ1

1 z
J2
2 z

J3
3 |p∆−d}n12n23n31θ(p).

(4.331)

Therefore, the Fourier transform (4.322) can be computed by expanding the integrand
in the basis (4.330) and applying (4.331).

This method works well in practice if J2 and J3 are some concrete integers which are
not very large. For example, let us use it to compute the example we studied above,
namely

〈J(p, z2)|L[T ](∞, z1)|J(p, z3)〉. (4.332)

which corresponds to J2 = J3 = 1. We have to look at five structures,

〈J(0, z2)|L[T ](∞, z1)|J(x, z3)〉 =

ã{z1−d
1 z2z3|x−2d+1}000 + b̃{z1−d

1 z2z3|x−2d+1}100 + c̃{z1−d
1 z2z3|x−2d+1}010

+ h̃{z1−d
1 z2z3|x−2d+1}001 + k̃{z1−d

1 z2z3|x−2d+1}110. (4.333)

For example,

{z1−d
1 z2z3|x−2d+1}000

=
(d− 3)4(−x · z1)−1−d

4(−x2)
d+2

2

(d− 2

d− 1
(x · z1)2(x · z2)(x · z3)− x2(x · z1)(z1 · z2)(x · z3)

− x2(x · z1)(x · z2)(z1 · z3) + x4(z1 · z2)(z1 · z3)

+
1

d− 1
x2(x · z1)2(z2 · z3).

)
. (4.334)

After computing the other structures, it is straightforward to plug (4.324) into (4.319)
to find the coefficients ã, b̃, c̃, h̃, k̃ and then use (4.331). These intermediate steps get
somewhat messy and we do not reproduce them explicitly here.
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To write down the final result, it is convenient to apply a Lorentz transformation and
a dilatation so that p = (1,~0). We can then choose zi = (1, ni), where ni are unit
vectors. In this frame the Fourier transform becomes

〈J2(p, z2)|L[T ](∞, z1)|J3(p, z3)〉

= CJS
2
d

21−2dπ2−d(d− 2)

d− 1

(
(n2 · n3) + a2

(
(n1 · n2)(n1 · n3)− (n2 · n3)

d− 1

))
, (4.335)

where CJ and a2 define b by

b =
CJ(d− 2)d(a2 + d(d− 1))

Sd(d− 1)3
. (4.336)

The other constants a, c, h, k are determined by b and CJ through equations (4.310)
and (4.311).

Notice that this method of computing Fourier transforms quickly gets out of hand if,
say, J3 is large, or if we want to keep it as a free parameter. The latter is important
if we want to compute all the conformal blocks for a particular event shape. In
section 4.5.4.1, we describe the calculation of Fourier transforms relevant for scalar
event shapes at generic J3. This can be used as a seed for calculation of Fourier
transforms for more complicated event shapes at generic J3, although we will not
pursue this direction.

4.5.2 Holographic multi-point event shapes

In section 4.3.3 we have computed the following n-point even shapes in the bulk
theory,

〈E(n1) · · · E(nk)〉φ, 〈E(n1) · · · E(nk)〉ε·J , , 〈E(n1) · · · E(nk)〉ε·T . (4.337)

From the boundary t-channel point of view, this calculation corresponds to keeping
only the “comb” t-channel k-point blocks which exchange, respectively, φ, J , or T in all
intermediate channels. We discussed the computation of such t-channel k-point blocks
in section 4.5.1; here we would like to see how they reproduce the bulk calculations.

In this section we write all event shapes in the configuration p = (1,~0), zi = (1, ni).
In the simplest scalar case, we have

〈φ(p)|E(n1) · · · E(nk)|φ(p)〉 =〈φ(p)|E(n1)|φ(p)〉 1

A(∆)
〈φ(p)|E(n2)|φ(p)〉 · · ·

× 1

A(∆)
〈φ(p)|E(nk)|φ(p)〉 (4.338)
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while

〈φ(p)|φ(p)〉 = A(∆), (4.339)

where we again use notation where the momentum conserving delta-functions (2π)dδd(0)

are implicitly removed. Combining these expressions together, we find that

〈E(n1) · · · E(nk)〉φ =
〈φ(p)|E(n1) · · · E(nk)|φ(p)〉

〈φ(p)|φ(p)〉

=

(
〈φ(p)|E(n1)|φ(p)〉

A(∆)

)k
=

(
1

volSd−2

)k
. (4.340)

The last equality follows from the Ward identity∫
Sd−2

dd−2n〈φ(p)|E(n)|φ(p)〉 = p0〈φ(p)|φ(p)〉, (4.341)

together with the fact that because of Lorentz invariance, 〈φ(p)|E(n)|φ(p)〉 is inde-
pendent of n. Of course, we can also explicitly compute 〈φ(p)|E(n)|φ(p)〉 using the
algorithm described in the previous subsection, with the same result. Clearly, given
our choice of p, (4.340) is equivalent to (4.125).

This straightforwardly generalizes to the event shapes in ε · J and ε · T states. When
spinning operators are exchanged, according to (4.267), we need to glue the three-
point functions using SO(d − 1) projectors while summing over different SO(d − 1)

components. However, when we are working with J or T , the three-point functions
only have a single SO(d−1) component — of spin-1 or spin-2, respectively — because
of the shortening conditions. Thus, the projectors act trivially. For example, in the
case of an ε · J event shape, we have

〈ε · J(p)|E(n1) · · · E(nk)|ε · J(p)〉

= 〈ε · J(p)|E(n1)|Ji(p)〉
1

CJA1(∆, 1)
〈Ji(p)|E(n2)|Jj(p)〉 · · ·

× 1

CJA1(∆, 1)
〈Jl(p)|E(nk)|ε · J(p)〉, (4.342)

while

〈ε · J(p)|ε · J(p)〉 = CJA1(∆, 1)ε† · ε. (4.343)

Notice that we only sum over spatial indices above. This is because for p = (1,~0),
|J0(p)〉 = 0. We thus match the bulk result (4.136) if

〈Ji(p)|E(n)|Jj(p)〉
CJA1(∆, 1)

=
Hij(n)

volSd−2
. (4.344)
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Using (4.335), (4.285), and recalling that E = 2L[T ], we can see that this is indeed
true if the parameters a2 in (4.335) and (4.134) are identified. Effectively, we are
saying that if one-point event shapes match, so do the higher-point event shapes (in
the setting where only on single-trace operator is exchanged). In the case of one-point
event shapes this matching is well-known.

Similarly, for the stress-tensor we need to check

〈Tij(p)|E(n)|Tkl(p)〉
CTA2(∆, 2)

=
Hij,kl(n)

volSd−2
. (4.345)

This is also well-known to be true, given appropriate identifications of OPE coeffi-
cients. This result is also easily reproduced using our algorithm.

Let us finally consider an example of a non-minimal coupling of scalars to gravity
analogous to the one considered in the end of section 4.2.4.2. That is, we consider
the contribution of a scalar primary φ to

〈T (p, z4)|E(n1)E(n2)|T (p, z3)〉. (4.346)

This contribution is given by

〈T (p, z4)|E(n1)|φ(p)〉〈φ(p)|E(n2)|T (p, z3)〉
〈φ(p)|φ(p)〉

. (4.347)

Conservation and tracelessness of T imply that

〈T (p, z4)|E(n1)|φ(p)〉 ∝ na4n
b
4

(
na1n

b
1 −

δabn1 · n1

d− 1

)
= (n1 · n4)2 − 1

d− 1
. (4.348)

Explicit calculation shows that if

〈T1T2φ〉 = λTTφ
V 2

1,23V
2

2,31 + . . .

X
τ1+τ2−τ3

2
12 X

τ1+τ3−τ2
2

13 X
τ2+τ3−τ1

2
23

, (4.349)

where . . . contain contributions from H2
12 and V1,23V2,31H12 which are fixed by conser-

vation of T , then

〈T (p, z4)|E(n1)|φ(p)〉

= λTTφ
21−d−∆π2+ d

2 e
iπ
2

(d−∆)(d− 1)Γ(d+ 1)

(d− 2)Γ(d− ∆
2

)Γ(2 + ∆
2

)2Γ(d+∆
2

)

(
(n1 · n4)2 − 1

d− 1

)
. (4.350)

We see that this is non-zero unless ∆ = 2d + 2n, i.e. unless φ has the dimension of
a double-trace [TT ]0,n. This means that the contribution of a generic single-trace φ
to (4.346) is non-zero and proportional to(

(n1 · n4)2 − 1

d− 1

)(
(n2 · n3)2 − 1

d− 1

)
. (4.351)
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Computing the commutator [E(n1), E(n2)] is equivalent to antisymmetrizing in n1

and n2, which clearly gives a non-zero result when applied to the above expression.
We therefore see that, similarly to flat space case, a non-minimally coupled scalar
(λTTφ 6= 0) leads to a non-zero shock commutator, and must therefore be accompanied
by non-minimal couplings to other fields.

4.5.3 Structure of the general sum rule

In this section we describe the general properties of the sum rule which expresses the
commutativity of shocks,

〈O4(p, z4)|[L[O1](∞, z1),L[O2](∞, z2)]|O3(p, z3)〉 = 0. (4.352)

Particularly, we would like to understand some natural components in which this
equation can be decomposed, and how various operators in the t-channel contribute
to these components.

The sum rule is obtained by writing (4.352) as

〈O4|L[O1]L[O2]|O3〉 − 〈O4|L[O2]L[O1]|O3〉 = 0, (4.353)

and expanding both event shapes in t-channel conformal blocks. While this is mean-
ingful in any CFT, it is especially interesting to consider this sum rule in a large-N
theory.

Let us assume that Oi are single-trace. At leading order in 1/N , the four-point
function 〈O4O1O2O3〉 is given by the disconnected part. The disconnected part, if at
all non-zero, receives contributions from the identity and the double-trace operators
only. However, as noted in section 4.5.1, double-trace operators do not contribute
to the event shapes in (4.353), and thus to the sum rule. The same is true for the
identity operator, since L[Oi]|O〉 = 0. The story here is analogous to that of the
Lorentzian inversion formula, since each term in (4.353) can be written as a double
commutator.

Therefore, the leading contribution to the sum rule is given by the single-trace opera-
tors.47 As we have seen in the examples above and in section 4.3.3, there exist special,
minimal couplings of single trace operators, with which they do not contribute to the
sum rule. The sum rule is therefore satisfied if all single trace operators have mini-
mal three-point functions. However, if some single trace operator has a non-minimal

47Note that it does not make much sense to go to higher 1/N orders, since for example in the
case O1 = O2 = T the event shapes are ill-defined beyond the planar order, c.f. section 4.4.5.
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coupling, its contribution must be canceled by non-minimal couplings of some other
operators.

In the rest of this section we will study the symmetries of the sum rule, and the
constraints that these symmetries impose on the potential cancellation of non-minimal
couplings.

4.5.3.1 Tensor structures

First, let us discuss the symmetries of equation (4.352). It contains the momentum
p, which we are free to set to any value. We can choose p = (1,~0). After this, the
only symmetry remaining is the SO(d − 1) of spatial rotations transverse to p. It is
therefore convenient to decompose the spin degrees of freedom of all four operators
under this subgroup.

For the integer-spin operators O4 and O3, the decomposition is simple and is de-
scribed, for example, in [71, 195]. In the simplest case of a SO(1, d − 1) traceless-
symmetric tensor of spin J , upon reduction to SO(d− 1) we get traceless-symmetric
tensors of spins s = 0, . . . , J . If the operator is conserved, then only s = J survives.
In general, let us denote by ρi the SO(1, d−1) irreps of these operators, and by λi ∈ ρi
their SO(d− 1) components.

Decomposition of continuous-spin operators L[O1] and L[O2] is a bit more non-trivial.
Let us explain how it works in the case when the original O1 and O2 are traceless-
symmetric, so that L[Oi] are as well. In this case, all that we know about L[O1](∞, z1)

as a function of z1 is that it is homogeneous. This homogeneity allows us to completely
encode this function by its values for z1 = (1, n1), and these values are completely
unconstrained. We therefore conclude that L[O1](∞, z1) is equivalent to a scalar func-
tion on Sd−2 parametrized by n1. As is well-known, under the action of SO(d − 1),
the space of such functions decomposes into all possible traceless-symmetric repre-
sentations

{functions on Sd−2} '
∞⊕
j=0

j, (4.354)

where j denotes a traceless-symmetric irrep of SO(d − 1) of spin j. Alternatively,
we can say that we are allowed to smear L[O1](∞, z1) with a spherical harmonic of
n1, and such smeared operators transform nicely under SO(d− 1). Furthermore, any
smearing function can be decomposed into spherical harmonics.
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The left-hand side of (4.352) is an SO(d − 1) invariant of the four operators, i.e. an
element of  ∞⊕

j1,j2=0

⊕
λ3∈ρ3
λ4∈ρ4

j1 ⊗ j2 ⊗ λ3 ⊗ λ4


SO(d−1)

. (4.355)

Such invariants can be conveniently labeled by

{j1, j2|λ|λ3, λ4}s, (4.356)

where λ ∈ j1 ⊗ j2 and λ∗ ∈ λ3 ⊗ λ4, and s stands for s-channel. This invariant
is obtained by restricting to a particular term in the direct sums above, and by
selecting a particular irrep in j1⊗ j2.48,49 The left hand side of the sum rule can then
be expanded

〈O4|[L[O1],L[O2]]|O3〉 =
∞∑

j1,j2=0

∑
λ3∈ρ3
λ4∈ρ4

∑
λ∈j1⊗j2
λ∗∈λ3⊗λ4

cj1,j2|λ|λ3,λ4{j1, j2|λ|λ3, λ4}s. (4.357)

The sum rule can be written in components as

cj1,j2|λ|λ3,λ4 = 0. (4.358)

Note that these are scalar equations, i.e. they contain no cross-ratios.

We would now like to understand which t-channel operators these components receive
contributions from. First, note that the t-channel computes not the commutator, but
the individual event shapes (note the arguments in the second event shape),

〈O4|L[O1](n1)L[O2](n2)|O3〉 =
∑

E12
j1,j2|λ|λ3,λ4

{j1, j2|λ|λ3, λ4}s (4.359)

〈O4|L[O2](n1)L[O1](n2)|O3〉 =
∑

E21
j1,j2|λ|λ3,λ4

{j1, j2|λ|λ3, λ4}s. (4.360)

The coefficients in the sum rule are given by50

cj1,j2|λ|λ3,λ4 = E12
j1,j2|λ|λ3,λ4

− E21
j2,j1|λ|λ3,λ4

, (4.361)

48It may be the case that λ∗ appears in λ3 ⊗ λ4 with multiplicity. In this case, we need to add
an extra label.

49In the case O1 = O2, the sum rule is explicitly antisymmetric in n1 and n2. This is reflected
in a restriction j1 ≤ j2 and a selection rule on λ for j1 = j2. Also, the definition of the invariant for
j1 < j2 must be altered slightly.

50There might be an additional relative coefficient between the two terms which depends on the
convention for Clebsch-Gordan coefficients and normalization of the invariants. Note that in case
j1 = j2 the operation of permuting j1 and j2 has a definite eigenvalue ±1 depending on λ. In the
case O1 = O2 the two terms either cancel or add up, depending on the sign. This corresponds to
the selection rule on λ mentioned above.
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so it is sufficient to understand how t-channel operators contribute to E12 and E21.

The structures defined above are natural from the point of view of computing the
commutator, but for the t-channel expansion the more natural structures are

{λ4, j1|λ|j2, λ3}t, (4.362)

which are obtained similarly to {· · · }s structures, but with

λ ∈ ⊗j1 ⊗ λ4, λ∗ ∈ j2 ⊗ λ3. (4.363)

The usefulness of these structures comes from the fact that λ here is exactly the same
as the one summed over in (4.267). In other words, an operator O only contributes
to (4.362) with λ ∈ ρO, where ρO is the SO(d − 1, 1) irrep of O. Since there are
finitely many choices for λ3 and λ4 (for a given event shape), this implies that given
an O, there is a selection rule on possible j1 and j2.

For example, let us consider the sum rule for

〈T |[E , E ]|T 〉 = 0. (4.364)

In this case, we have only one choice for λ3 and λ4 because of the conservation of T , i.e.
λ3 = λ4 = 2 — the spin-two traceless-symmetric irrep. Let us, for simplicity, consider
contributions to the sum rule of traceless-symmetric operators. For an operator of spin
J , the allowed contributions are λ = 0, . . . J . The condition λ ∈ λ4 ⊗ j1 then implies
j1 ∈ {λ−2, λ, λ+2}, and similarly for j2. We then conclude that an operator of spin J
contributes only to the structures (either {. . .}t or {. . .}s) with j1, j2 ∈ {0, . . . , J+2}.

This is already non-trivial, since it tells us that contributions to the sum rule from
operators of bounded spin live in a finite-dimensional space. This also implies, for
example, that in the sum rule, a generic contribution of a spin-6 operator cannot
be canceled by a spin-0 operator. It is less obvious whether a spin-J operator can
be completely canceled by spin-J operators. In principle, we can have lots of spin-J
operators all contributing to the same finitely many components of the sum rule, so
it might seem that there are enough free parameters to cancel out all components.
However, in a unitary theory, due to the reality properties of OPE coefficients, the
contributions of operators have fixed signs, and it might be that it is impossible to
satisfy the sum rule by non-minimal couplings of operators of a single spin J . It
might even be true that no finite set of spins is sufficient. We leave the investigation
of this question to future work.
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4.5.3.2 〈T |EE|T 〉 example

Here, let us consider two simple contributions to (4.364), from the exchange of a
stress-tensor itself and from a massive scalar. We will only consider the structures to
which the scalar contributes non-trivially. According to the above discussion, before
taking the commutator the scalar only contributes to

{2, 2|0|2, 2}t, (4.365)

which, after taking the commutator, becomes a combination of

{2, 2|λ|2, 2}t (4.366)

with all allowed λ, i.e. λ = 0, 2, 4, (3, 1), (2, 2), (1, 1), where (`1, `2) denotes a Young
diagram with two rows `1 ≥ `2. As we explained above, for the commutator it
is more natural to look at the {2, 2|λ|2, 2}s structures. From the point of view of
the {2, 2|λ|2, 2}s structures, the commutator only contributes to λ which are in the
antisymmetric product 2 ⊗ 2, i.e. to λ = (3, 1) and λ = (1, 1). This means that we
will only get 2 equations involving scalar contributions.

In fact, we can compute that under taking the commutator

{2, 2|0|2, 2}t →
d2 − d− 4

(d+ 1)(d− 2)
{2, 2|0|2, 2}t −

d− 1

(d+ 3)(d− 3)
{2, 2|2|2, 2}t −

1

36
{2, 2|4|2, 2}t

− 1

12
{2, 2|(2, 2)|2, 2}t +

1

d+ 1
{2, 2|(1, 1)|2, 2}t +

1

8
{2, 2|(3, 1)|2, 2}t

=
1

4
{2, 2|(3, 1)|2, 2}s +

2

d+ 1
{2, 2|(1, 1)|2, 2}s, (4.367)

where the explicit expressions for structures {· · · }t and {· · · }s are given in ap-
pendix C.5.

On the other hand, stress-tensor contribution to j1 = j2 = 2 is only through

{2, 2|2|2, 2}t (4.368)

because T has only a spin-2 SO(d− 1) component. Under taking the commutator, it
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goes to

{2, 2|2|2, 2}t →−
2(d− 3)(d+ 3)

(d+ 1)(d− 1)(d− 2)
{2, 2|0|2, 2}t +

d2 − 2d+ 9

2(d+ 3)(d− 3)
{2, 2|2|2, 2}t

− d− 3

18(d− 1)
{2, 2|4|2, 2}t +

d+ 3

12(d− 1)
{2, 2|(2, 2)|2, 2}t

+
(d− 3)(d+ 3)

2(d− 1)(d+ 1)
{2, 2|(1, 1)|2, 2}t −

1

2(d− 1)
{2, 2|(3, 1)|2, 2}t

= − 1

d− 1
{2, 2|(3, 1)|2, 2}s +

(d− 3)(d+ 3)

(d− 1)(d+ 1)
{2, 2|(1, 1)|2, 2}s.

(4.369)

Scalar exchange of dimension ∆ contributes, according to the result of section 4.5.2,

〈T (n4)|E(n1)E(n2)|T (n3)〉 3 |λTTφ|2q(∆)

(
(n1 · n4)2 − 1

d− 1

)(
(n2 · n3)2 − 1

d− 1

)
= |λTTφ|2q(∆){2, 2|0|2, 2}t , (4.370)

where

q(∆) =
21−3dπ3+ d

2 (d− 1)2Γ(d+ 1)2

(d− 2)2Γ(d− ∆
2

)2Γ(2 + ∆
2

)4Γ(d+∆
2

)2
Γ(∆)Γ(∆ + 1− d

2
) ≥ 0 (4.371)

is a non-negative function. The stress-tensor exchange contribution to j1 = j2 = 2 is
given by

〈T (n4)|E(n1)E(n2)|T (n3)〉 3 CT2−1−3dπ3− d
2 ((4 + d)t2 + 4t4)2Γ(d+ 3)

(d− 1)d(d+ 1)2(d+ 4)Γ(3 + d
2
)Γ(d

2
)2
{2, 2|2|2, 2}t.

(4.372)

We therefore get two sum rules in which scalars participate, corresponding to the
structures {2, 2|(3, 1)|2, 2}s and {2, 2|(1, 1)|2, 2}s,

−CT2−1−3dπ3− d
2 ((4 + d)t2 + 4t4)2Γ(d+ 3)

(d− 1)2d(d+ 1)2(d+ 4)Γ(3 + d
2
)Γ(d

2
)2

+
1

4

∑
φ

|λTTφ|2q(∆φ) + non-scalar = 0,

CT2−1−3d(d2 − 9)π3− d
2 ((4 + d)t2 + 4t4)2Γ(d+ 3)

(d− 1)2d(d+ 1)3(d+ 4)Γ(3 + d
2
)Γ(d

2
)2

+
2

d+ 2

∑
φ

|λTTφ|2q(∆φ) + non-scalar = 0.

(4.373)

For example, in d = 4 this reduces to

−CTπ(t4 + 2t2)2

15 · 213
+

1

4

∑
φ

|λTTφ|2q(∆φ) + non-scalar = 0,

7CTπ(t4 + 2t2)2

75 · 213
+

1

3

∑
φ

|λTTφ|2q(∆φ) + non-scalar = 0, (4.374)
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which we quoted in (4.6) in the introduction. Here “non-scalar” represents contribu-
tions of higher-spin operators, starting from massive spin-2. We see explicitly that
there can be no cancellation between massive scalars. Furthermore, there is a com-
ponent of the contribution of scalars which cannot be canceled by the stress-tensor
exchange. (The reverse is obvious since the stress-tensor contributes also to compo-
nents other than j1 = j2 = 2.) One can also take appropriate linear combinations of
these equations to obtain separate sum rules for (t4 + 2t2)2 and scalar contributions.

4.5.4 General t-channel blocks for scalar event shapes

In this section, we derive a closed form expression for all t-channel conformal blocks
appearing in

〈φ4|L[φ1]L[φ2]|φ3〉, (4.375)

where φi are all scalars. The only essential difference from the algorithm of sec-
tion 4.5.1 is that we perform Fourier transform in a slightly different way, and we
keep the intermediate spin as a free parameter.

4.5.4.1 Fourier transform for scalar event shapes

We start with the three-point tensor structure

〈φ1φ2O3〉 =
V J3

3,12

X
∆1+∆2−∆3−J3

2
12 X

∆1+∆3−∆2+J3
2

13 X
∆2+∆3−∆1+J3

2
23

. (4.376)

Using results of section 4.5.1, we find for 1 ≈ (3 > 2)

〈0|φ2L[φ1]O3|0〉

= −2πi
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)

× (−V1,32)1−∆1(−V3,12)J3

X
2−∆1+∆2−∆3−J3

2
12 X

2−∆1+∆3−∆2+J3
2

13 (−X23)
∆2+∆3−2+∆1+J3

2

× 2F1

(
∆1 − 1,−J3; 1

2
(∆1 + ∆2 −∆3 + J3);−1

2

H13

V1,23V3,12

)
. (4.377)
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We now want to find the Fourier transform (4.322), so we have to specialize to con-
figuration (4.323). Using (4.324), we find

〈0|φ2(0)L[φ1](∞, z1)O3(x, z3)|0〉

= −2πi
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)

(−x · z1)1−∆1(−x · z3)J3

(−x2)
∆2+∆3−∆1+J3

2

× 2F1

(
∆1 − 1,−J3; 1

2
(∆1 −∆2 + ∆3 − J3);

1

2

x2(z1 · z3)

(x · z1)(x · z3)

)
. (4.378)

In (4.378), we have a rather non-trivial function of x, and it is not obvious whether
it should have a simple Fourier transform. Let us define functions

[zm1
1 zm2

2 |x] ≡ (−z1 · x)m1(−z2 · x)m2
2F1(−m1,−m2; 1− ν −m1 −m2; x2(z1·z2)

2(x·z1)(x·z2)
).

(4.379)

These functions are homogeneous in x and satisfy

∂2
x[z

m1
1 zm2

2 |x] = 0. (4.380)

This means that

[zm1
1 zm2

2 |x] = Qm1,m2
µ1...µm1+m2

(z1, z2)(xµ1 . . . xµm1+m2 − traces) (4.381)

for some function Q. Therefore, for the purposes of computing the Fourier transform,
we can treat these functions as (z · x)m1+m2 , where z is a null vector. In other words,∫

ddxeipx[zm1
1 zm2

2 |x](−x2)−
∆+m1+m2

2 = F̂∆,m1+m2 [zm1
1 zm2

2 |p](−p2)
∆−m1−m2−d

2 θ(p).

(4.382)

We can find the decomposition

(−x · z1)1−∆1(−x · z3)J3
2F1(∆1 − 1,−J3; 1

2
(∆1 −∆2 + ∆3 − J3); x2(z1·z3)

2(x·z1)(x·z3)
)

=

J3∑
k=0

αk(−z1 · z3)k(−x2)k[z1−∆1−k
1 zJ3−k

3 |x]. (4.383)

where

αk = 2k
(∆1 − 1)k(−J3)k(

2−d+∆1+∆2−∆3−J3

2
)k

k!(−d
2

+ ∆1 − J3 + k)k(
∆1−∆2+∆3−J3

2
)k
. (4.384)
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This yields the following Fourier transform

〈φ2(p)|L[φ1](∞, z1)|O(p, z3)〉 = −2πi
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)

×
J3∑
k=0

αkF̂∆2+∆3−1,1−∆1+J3−2k(−z1 · z3)k[z1−∆1−k
1 zJ3−k

3 |p](−p2)
∆2+∆3+∆1−J3+2k−2−d

2 θ(p).

(4.385)

Surprisingly, this sum reassembles into another hypergeometric function,

〈φ2(p)|L[φ1](∞, z1)|O(p, z3)〉

= −2πi
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)
F̂∆2+∆3−1,1−∆1+J3(−p2)

∆2+∆3+∆1−J3−2−d
2 θ(p)

× (−p · z1)1−∆1(−p · z3)J3

× 3F2(∆1 − 1,−J3,∆3 − 1; ∆1+∆2+∆3−d−J3

2
, ∆1−∆2+∆3−J3

2
; p2(z1·z3)

2(p·z1)(p·z3)
). (4.386)

It would be interesting to understand whether one can arrive at this expression in a
more direct way, which generalizes to more complicated three-point functions.

Note that one can in principle use this result as a “seed” to compute more complicated
objects, such as

〈T (p, z2)|L[T ](∞, z1)|O3(p, z3)〉 (4.387)

by using weight-shifting operators [186, 193]. We can always choose the weight-
shifting operator acting on the point at infinity to be powers of Z [m

1 X
n]
1 , which eval-

uates to something x-independent. Weight-shifting operators acting on points 2 and
3 can be rewritten as differential operators in momentum space, since any weight-
shifting operator is polynomial in both coordinates and derivatives [186]. This sug-
gests that an expression in terms of linear combinations of 3F2 functions can always
be found for this type of objects.

4.5.4.2 Decomposition into SO(d− 1) components

The last step in the computation of t-channel event-shape conformal blocks is to
compute the SO(d− 1)-invariant contraction

〈O4(p)|L[O1](∞, z1)|Oα(p)〉(a)Παβ,λ(p)〈Oβ(p)|L[O2](∞, z2)|O3(p)〉(b). (4.388)

For this, it is convenient to decompose the spin degrees of freedom of Oα(p) in each
three-point function into irreducible components under the SO(d− 1).
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Take the scalar structure

f(z3) = 〈φ2(p)|L[φ1](∞, z1)|O3(p, z3)〉. (4.389)

For the moment, we are considering it just as a function of z3. We can write

f(z3) = fµ1...µJ3
zµ1

3 · · · z
µJ3
3 =

J3∑
s=0

fµ1...µJ3
Π
µ1...µJ3
J3,s ν1...νJ3

(p)zν1
3 · · · z

νJ3
3 (4.390)

The indices of the traceless-symmetric fµ1 . . . fµJ have to be provided by p and z1.51

It may appear that there are several choices of how many indices to fill with p, but
in fact all possibilities are exhausted by using no p at all. The reason is that there is
only one way to obtain a given SO(d− 1) irrep from a given SO(d− 1, 1), and in this
case we are trying to extract spin-s irrep from L[φ1]. We thus find that

〈φ2(p)|L[φ1](∞, z1)|O3(p, z3)〉

=

J3∑
s=0

〈φ2|L[φ1]|O(s)
3 〉(−p · z1)1−∆1−J3ΠJ3,s(p; z1, z3)(−p2)

∆2+∆3−2+∆1+J3−d
2 θ(p)

(4.391)

for some numbers 〈φ2|L[φ1]|O(s)
3 〉.

Another way of arriving at this conclusion is to specialize to kinematics p = (1,~0)

and zi = (1, ni). In this kinematics, the three-point function (4.389) is necessarily a
function of (n1 · n2), where ni live on the unit sphere. The question of decomposing
into SO(d − 1) representations is then equivalent to decomposition of this function
into spherical harmonics of n2, which are proportional to ΠJ3,s(n1 ·n2) since the latter
is essentially a Gegenbauer polynomial.

To perform the decomposition explicitly, we rewrite the result (4.386) in the special
kinematics,

〈φ2(p)|L[φ1](∞, z1)|O(p, z3)〉

= −2π
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)
F̂∆2+∆3−1,1−∆1+J3

× 3F2(∆1 − 1,−J3,∆3 − 1; ∆1+∆2+∆3−d−J3

2
, ∆1−∆2+∆3−J3

2
; 1−η

2
), (4.392)

where η = (n1 · n2). The hypergeometric function truncates to a polynomial in η

thanks to the argument −J3, making the decomposition straightforward for each
51The contribution of hµν is fixed by tracelessness condition and in any case vanishes after con-

tracting with traceless symmetric projector.
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given J3. Interestingly, we can find a closed-form expression for the coefficients,

3F2(∆1 − 1,−J3,∆3 − 1; ∆1+∆2+∆3−d−J3

2
, ∆1−∆2+∆3−J3

2
; 1−η

2
)

=

J3∑
s=0

γs(∆1,∆2,∆3, J3)ΠJ3,s(η), (4.393)

where

γs(∆1,∆2,∆3, J3)

=
(−1)J3−s23−d−J3−2s

√
πΓ(J3 + s+ d− 2)(∆1 − 1)s(∆3 − 1)s

Γ(J3 + d−2
2

)Γ(s+ d−1
2

)(1
2
(∆1 −∆2 + ∆3 − J3))s(

1
2
(∆1 + ∆2 + ∆3 − d− J3))s

× 4F3

(
s+ d

2
− 1,−J3 + s,∆1 + s− 1,∆3 + s− 1

2s+ d− 2, ∆1−∆2+∆3−J3+2s
2

, ∆1+∆2+∆3−d−J3+2s
2

; 1

)
. (4.394)

We thus conclude that

〈φ2|L[φ1]|O(s)
3 〉

= −2πi
eiπ∆221−∆1Γ(∆1 − 1)

Γ(∆1+∆2−∆3+J3

2
)Γ(∆1−∆2+∆3−J3

2
)
F̂∆2+∆3−1,1−∆1+J3γs(∆1,∆2,∆3, J3),

(4.395)

where F̂ is given by (4.329).

4.5.4.3 Complete scalar event shape blocks

We have found that

〈φ2(p)|L[φ1](∞, z1)|O3(p, z3)〉

=

J3∑
s=0

〈φ2|L[φ1]|O(s)
3 〉(−p · z1)1−∆1−J3ΠJ3,s(p; z1, z3)(−p2)

∆2+∆3−2+∆1+J3−d
2 θ(p),

(4.396)

where the coefficients 〈φ2|L[φ1]|O(s)
3 〉 are given in (4.395). By applying Hermitian

conjugation, we find

〈O3(p, z3)|L[φ1](∞, z1)|φ2(p)〉

=

J3∑
s=0

〈O(s)
3 |L[φ1]|φ2〉(−p · z1)1−∆1−J3ΠJ3,s(p; z1, z3)(−p2)

∆2+∆3−2+∆1+J3−d
2 θ(p),

(4.397)
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where

〈O(s)
3 |L[φ1]|φ2〉 ≡ 〈φ2|L[φ1]|O(s)

3 〉∗. (4.398)

Using (4.267), we then find the scalar event shape t-channel conformal block

Gt
∆,J(p; z1, z2) =

J∑
s=0

〈φ4|L[φ1]|O(s)〉As(∆, J)−1〈O(s)|L[φ2]|φ3〉ΠJ,s(p; z1, z2)

× (−p2)
∆3+∆4−4+∆1+∆2+2J−d

2 (−p · z1)1−∆1−J(−p · z2)1−∆2−J .

(4.399)

To find the above expression, we used the identity ΠJ,sΠJ,s′ = δss′ΠJ,s.

As we discussed above, in order for the t-channel expansion to converge, we should
smear the event shape over the polarizations of detectors∫

Dd−2z1D
d−2z2f(z1, z2)〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉. (4.400)

It is convenient to use the following smearing functions

fs(z1, z2) ∝ (−p · z1)∆1+1−d(−p · z2)∆2+1−dC
(
d−3

2
)

s (η), (4.401)

so that the result simply picks out the coefficient of the Gegenbauer polynomial

C
(
d−3

2
)

s (η) in the event shape. We can define the corresponding blocks Gt
∆,J(s) by the

identity, for p = (1,~0),

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉 =
∑
s

∑
O

λ14Oλ
∗
23OG

t
∆O,JO

(s)C
(
d−3

2
)

s (η).

(4.402)

Using (4.399) and (4.276), we find

Gt
∆,J(s) =

2−JJ !(d+ J − 2)J(d− 2)J

(d−1
2

)J

(−1)s+J(d+ 2s− 3)

(J − s)!(d− 3)J+s+1

〈φ4|L[φ1]|O(s)〉〈O(s)|L[φ2]|φ3〉
As(∆, J)

.

(4.403)

Here, the reduced three-point functions 〈φ4|L[φ1]|O(s)〉 are given by (4.395) and (4.398)
(with appropriate permutation of indices), while the coefficients As(∆, J) are given
by (4.280). In interpreting this result, it is also important to note our normalizations
of two- and three-point tensor structures (4.277) and (4.376).
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4.5.4.4 Example: scalar event shape in (generalized) free scalar CFT

In this section, we will consider an example of the t-channel decomposition of the
scalar event shape

〈O|φ4L[φ1]L[φ2]φ3|O〉 (4.404)

for the four-point function of scalars of dimension ∆ = 2 in 4d,

〈φ1φ2φ3φ4〉 =
1

x2
14x

2
23x

2
13x

2
24

+ disconnected. (4.405)

This four-point function is given by a box Wick contraction, and the disconnected
part is any sum of products of two-point functions, such as 〈φ1φ2〉〈φ3φ4〉. The scalars
φi are not necessarily identical. For example, we can think about φi as being double-
trace operators φ1 = ρ2, φ2 = σ2, φ3 = φ4 = ρσ, where ρ and σ are fundamental free
scalars. In this case, we are looking at a state with one ρ and one σ particle, and
L[φ1] detects ρ while L[φ2] detects σ.

First, we observe that the disconnected part does not contribute to (5.182), since
L[φi] annihilates the vacuum state. We then note that

〈φ1φ2φ3φ4〉 = 〈φ1φ
′
3φ
′
4〉〈φ2φ

′
3φ
′
4〉, (4.406)

where φ′i are fictitious scalars of scaling dimension ∆/2 = 1. This allows us to
compute (5.182) by reusing the results of section 4.5.1.3. We find

〈0|φ′4L[φ1]φ′3|0〉 = −2πi
eiπ∆/221−∆Γ(∆− 1)

Γ(∆
2

)2

(−V1,43)1−∆

(x2
14)

2−∆
2 (x2

13)
2−∆

2 (−x2
43)

2∆−2
2

= iπ
(−V1,43)−1

−x2
43,

((3 > 4) ≈ 1) (4.407)

and similarly for 〈0|φ′4L[φ2]φ′3|0〉. Sending 1 and 2 to infinity, 4 to 0, and 3 to x > 0,
we find

〈0|φ′4L[φ1]φ′3|0〉 = iπ(−(x · z1))−1, (4.408)

and multiplying by 〈0|φ′4L[φ2]φ′3|0〉, we get

〈0|φ4L[φ1]L[φ2]φ3|0〉 = −π2(−(x · z1))−1(−(x · z2))−1. (4.409)

Now, we need to compute the Fourier transform of the above expression with the
iε-prescription x0 → x0 + iε. For this, it is convenient to use Lorentz invariance
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to set z1 = (1, 1, 0, 0) and z2 = (1,−1, 0, 0). Introducing the lightcone coordinates
x± = x0 ± x1, we find∫

d4xeipx(−(x · z1))−1(−(x · z2))−1 =
1

2
(2π)2δ2(~p)f(p+)f(p−), (4.410)

where ~p = (p2, p3) and

f(p) =

∫
dxe−

i
2
px(x+ iε)1−∆ = 23−∆π

e
iπ
2

(1−∆)

Γ(∆− 1)
p∆−2θ(p) = −2πiθ(p). (4.411)

We thus find

〈φ4(p)|L[φ1]L[φ2]|φ3(p)〉 = 8π6θ(p)δ2(~p). (4.412)

It is easy to find the covariant form

〈φ4(p)|L[φ1]L[φ2]|φ3(p)〉 = 8π6θ(p)δ2(~p)(−p2)(−z1 · p)−1(−z2 · p)−1, (4.413)

where

δ2(~p) =
1

π
δ(~p 2) =

1

π
δ

(
p2 − 2

(z1 · p)(z2 · p)
(z1 · z2)

)
. (4.414)

Now, setting p = (1,~0) and zi = (1, ni), we get

〈φ4(p)|L[φ1]L[φ2]|φ3(p)〉 = 16π5δ((n1 · n2) + 1). (4.415)

The delta-function forces n1 and n2 to point in opposite directions. This corresponds
simply to the fact that φ3 = ρσ creates a pair of particles, and by momentum conser-
vation they must fly off in opposite directions, since we have set the spatial component
of p to 0.

We would like to compute this event shape using the t-channel OPE. We will first
expand the four-point function (4.405) in the 14 → 23 channel and then use the
resulting expansion to sum the event shape conformal blocks.

The disconnected piece of (4.405) only contains the contributions of the identity and
double-trace operators. The double-trace operators do not contribute to the event
shape, as seen in the discussion below (4.248). The identity operator also doesn’t
contribute, as its contribution is

〈φ4(p)|L[φ1]|O〉〈O|L[φ2]|φ3(p)〉 = 0, (4.416)

since light-transforms annihilate the vacuum state [28].
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The connected contribution can be rewritten as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
1

x2
14x

2
23

〈φ′2(x4)φ′1(x1)φ′2(x2)φ′1(x3)〉, (4.417)

where φ′1 and φ′2 are fictitious canonically normalized free scalars of dimension ∆/2 =

1. The prefactor 1
x2

14x
2
23

simply plays the role of shifting the external dimensions of
conformal blocks, and so we have the identity

λ14Oλ23O = λ12Oλ21O (4.418)

where in the right hand side we mean the OPE coefficients which enter into the
decomposition of the function 〈φ′2(x4)φ′1(x1)φ′2(x2)φ′1(x3)〉. Since this is a four-point
function of free fields, only a single family of higher-spin currents O with ∆ = J + 2

contribute to its OPE. In our conventions, we have [196]

λ12Oλ21O = (−1)Jλ2
12O = (−1)J

2JΓ(J + 1)2

Γ(2J + 1)
. (4.419)

Setting ∆1 = ∆2 = ∆3 = ∆4 = 2, we find

Gt
J+2,J(s) =

2J+4π
9
2 Γ(J + 3

2
)

Γ(J + 1)
δJ,s. (4.420)

The reason only s = J is allowed is because ∆ = J + 2 corresponds to conserved
higher-spin currents, which only have one SO(d − 1) component. Using (4.402), we
find

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉 =

=
∑
s

∑
O

λ14Oλ
∗
23OG

t
∆O,JO

(s)C
(
d−3

2
)

s (η) =
∞∑
J=0

(−1)J
2JΓ(J + 1)2

Γ(2J + 1)

2J+4π
9
2 Γ(J + 3

2
)

Γ(J + 1)
PJ(η)

= 8π5

∞∑
J=0

(−1)J(2J + 1)PJ(η) = 16π5δ(η + 1). (4.421)

The last equality follows from the completeness relation for Legendre polynomials and
PJ(−1) = (−1)J . This result indeed agrees with (4.415). Note that the convergence
here is only in a distributional sense, i.e. we have to smear the event shape with some
test function in η before computing the sum.

A more nontrivial check is to repeat the same calculation in a generalized free theory
(GFT). The event shape is the same up to a coefficient,

〈φ4(p)|L[φ1]L[φ2]|φ3(p)〉 =
163−2∆fπ5

Γ(∆f )4
δ((n1 · n2) + 1), (4.422)
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where ∆f is the dimension of the fundamental fields ρ and σ (∆f = 1 for the free
scalar case considered above). We can use the same logic to obtain the relevant
OPE coefficients from the known GFT ones [87, 156]. The main difference is that
each Legendre polynomial Ps(η) receives contribution from infinitely many operators
[ρσ]n,J with J ≥ s and n ≥ 0.52 The sum is now much more non-trivial and we cannot
tackle it analytically. We have focused on the coefficients in front of P0(η) and P1(η),
and found numerically that the sum over n converges rather quickly. However, the
sum over J appears to behave as

∼
∑
J

(−1)JJ2∆f−3 , (4.423)

and so it diverges for ∆f > 3/2 and converges for ∆f < 3/2. In the latter case,
convergence can be improved by an Euler transform,53 which allows us to check for
a few sample values of ∆f with 1 < ∆f < 3/2 that the t-channel sum agrees to high
precision with

163−2∆fπ5

2Γ(∆f )4
P0(η)− 3

163−2∆fπ5

2Γ(∆f )4
P1(η) + . . . , (4.425)

which is the expansion of (4.422).54

Based on intuition from ν-space described in chapter 5, we expect that the divergence
for ∆f ≥ 3/2 is due to the behavior of our test functions near the collinear limit η = 1.
Recall that if

〈φ4(p)|L[φ1]L[φ2]|φ3(p)〉 =
∑
s

asPs(η), (4.426)

then the coefficients as are given by smearing the event shape with the test functions

fs(η) = 1
2
(2s+ 1)Ps(η). (4.427)

To moderate the contribution of η = 1, we can smear with linear combinations of
functions fs which vanish at η = 1 as (η − 1)k for sufficiently high k. Suppose that

52Note that these operators are not double-traces of ρσ and ρ2 or σ2, so they do contribute to
the OPE.

53 For series
∑∞
n=0(−1)nan the Euler transform is

∞∑
n=0

(−1)nan =

∞∑
n=0

(−1)nbn
2n+1

, (4.424)

where bn =
∑n
k=0(−1)k

(
n
k

)
ak. It generally tends to improve the rate of convergence of slowly-

converging series.
54In fact, Euler transform makes the sum over J convergent for all values of ∆f .
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s αsfs(η) is one such combination for a fixed k. We are then led to consider the

expansion

∑
O

λ14Oλ
∗
23O

∑
s

αsG
t
∆O,JO

(s)C
(
d−3

2
)

s (η). (4.428)

Numerically, we find that the sum over primary operators with different spin behaves
as ∑

J

(−1)JJωk , (4.429)

where wk is monotonically non-increasing function of k. Specifically, for any choice
of ∆f , we find that wk starts at w0 = 2∆f − 3 as described above, and then decreases
monotonically with k until it saturates at some value w∗ < 0.55 This means that for
any value of ∆f the expansion converges for test functions which vanish sufficiently
quickly at η = 1.

4.6 Discussion

4.6.1 Bounds on heavy contributions to non-minimal couplings

A quantitative understanding of the superconvergence sum rule requires some extra
analysis which we postpone for future work. Here, we sketch its qualitative implica-
tions. For simplicity, we consider a toy model for a gravitational scattering amplitude,
but the argument for the CFT correlator is essentially the same. In our discussion,
the rough correspondence between amplitudes and CFT correlators is

amplitude four-point function
t (zz)−1/2

s
(
∆− d

2

)2

J J

a±J (s) C±(∆, J)

Disc dDisc

Froissart-Gribov Lorentzian inversion

The basic idea was explained in [25] and goes as follows. Let us imagine a theory
with a large gap ∆gap � 1 in the spectrum of particles (or operators). We would like
to bound the contribution of heavy, or stringy, modes to the superconvergence sum

55Typically wk ≈ wk−1− 2, but we have not studied this in sufficient detail either numerically or
analytically.
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rule and therefore determine the maximal allowed value of non-minimal three-point
graviton couplings. To do so, recall that given a polynomially bounded “amplitude”
A(s, t) with “partial wave” expansion

A(s, t) =
∑
J

aJ(s)νJ , ν =
t− u

2
, (4.430)

we can write a “Froissart-Gribov inversion formula” which takes the following form

a±J (s) =

∫ ∞
0

dν

ν
ν−JDisctA(s, ν)±

∫ 0

−∞

dν

−ν
(−ν)−JDiscuA(s, ν). (4.431)

where Discu = −Disct. Convergence properties of the integral (4.431) depend on the
behavior of the amplitude at large t and fixed s. In a consistent theory, the integral
converges for J > 1. In particular, we can evaluate (4.431) at J = 2, for which the
integral (4.431) must reproduce the graviton pole at s = 0,

a+
J=2(s) ∼ 1

cT

1

s
. (4.432)

More generally, away from the graviton pole, the integral over the discontinuity should
correctly reproduce the Pomeron pole

a+
J (s) ∼

C2
φφP (s)

J − J(s)
. (4.433)

We expect that a+
J (s) is suppressed by 1/cT for small s. This suppression does not

follow from our knowledge of the three-point coefficients C2
φφP (s). Indeed, the value

of the residue in (4.433) solely reflects the asymptotic behavior of the discontinuity
in (4.431),

DisctA(s, ν) ∼ C2
φφP (s)νJ(s) at large ν. (4.434)

Demanding that the asymptotic behavior reproduces the graviton pole (4.432) via
the inversion formula (4.431) suggests that C2

φφP (s) is suppressed by 1/cT . How-
ever, we can imagine an isolated “outlier state” at some intermediate scale ν∗ that
contributes to DisctA(s, ν) ∼ C2

φφP ∗(s)δ(ν − ν∗) with a large coefficient C2
φφP ∗(s).

Through (4.431), such an outlier state would invalidate the estimate a+
J (s) ∼ 1

cT
away

from the pole. In what follows, we assume that there are no outliers. The same
assumption was made in [25].

In a large-gap theory we expect J(s) = 2+ s
∆2

gap
. Correctly reproducing the 1

cT
residue

of the graviton pole (4.432) from (4.433) thus requires that C2
φφP (s) ∼ 1

cT

1
∆2

gap
. Note
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also that by plugging DisctA(s, ν) ∼ C2
φφP (s)νJ(s) for ν > ∆2

gap into (4.431) (and thus
assuming no outliers), we get

a+
J (s) ∼ 1

cT

1

∆2
gap

1

J − J(s)
(∆2

gap)J(s)−J . (4.435)

The superconvergence sum rule is the statement that a−J=3(s) = 0. Note that only
the square of the non-minimal three-point coupling contributes to a−J=3(s), see e.g.
(4.66). We can write it as follows

α2
GB(s) +

∫ ∞
∆2

gap

dν

ν
ν−3DisctA(s, ν)−

∫ −∆2
gap

−∞

dν

−ν
(−ν)−3DiscuA(s, ν) = 0, (4.436)

where we separated the contribution from the graviton pole αGB(s) from the rest
(“GB” stands for Gauss-Bonnet — a particular type of nonminimal coupling that
contributes to αGB).

Next, we would like to bound the contribution of heavy states in (4.436). The estimate
goes as follows

|α2
GB(s)| =

∣∣∣∣∣
∫ ∞

∆2
gap

dν

ν
ν−3DisctA(s, ν)−

∫ −∆2
gap

−∞

dν

−ν
(−ν)−3DiscuA(s, ν)

∣∣∣∣∣
≤ a+

J=3(s) ∼ 1

∆4
gap

1

cT
(s� ∆2

gap) (4.437)

where we used the positivity of DisctA(s, ν) and DiscuA(s, ν), which follow from
unitarity in an appropriate kinematical region. We see that what follows is the same
qualitative conclusion as was obtained in [96]. This time, however, we have a precise
sum rule that must be satisfied. We will show in chapter 5 that the superconvergence
sum rule in CFT can be written as

C−(∆ =
d

2
+ iν, J = 3) = 0, (4.438)

where C±(∆, J) is the quantity computed by the Lorentzian inversion formula, so the
argument in the CFT case proceeds analogously to the one here.

4.6.2 Conclusions and future directions

In this work, we found connections between commutativity of coincident shocks, su-
perconvergence sum rules, and boundedness in the Regge and lightcone limits. These
connections hold both in flat space and in AdS.
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In flat space, we defined “shock amplitudes” as amplitudes with special external wave-
functions. We showed that boundedness of amplitudes in the Regge limit is a suffi-
cient condition for commutativity of coincident shocks. Furthermore, when coincident
shocks commute, one obtains superconvergence sum rules that constrain the matter
content and three-point couplings of the theory. It was argued in [96] that causal
theories of gravity should have Regge intercept J0 ≤ 2. Assuming this, it follows that
coincident gravitational shocks commute. The associated superconvergence sum rules
relate non-minimal gravitational couplings to three-point couplings of stringy states.

In AdS, commutativity of coincident shocks is dual to the question of commutativity
of certain null-integrated operators (e.g. ANEC operators) in a CFT. This question
can be studied on its own using CFT techniques. In particular, we show using CFT
methods that ANEC operators on the same null plane commute. (This result holds
both nonperturbatively and in the planar limit, but it can be violated at fixed loop
order in bulk perturbation theory.) This establishes commutativity of coincident grav-
itational shocks in AdS. We conjecture that coincident gravitational shocks commute
in UV-complete gravitational theories in flat space, AdS, dS, and possibly beyond,
dubbing this a “stringy equivalence principle.”

The CFT version of superconvergence sum rules can be obtained by inserting complete
sets of states between the null-integrated operators. In large-N theories, such sum
rules relate non-minimal bulk couplings to the massive single-trace spectrum. How-
ever, the resulting sum rules are completely general, independent from holography,
and interesting on their own.

Let us discuss some open questions and future directions.

4.6.2.1 Constraints on UV-complete gravitational theories

Higher derivative gravitational couplings are inconsistent with commutativity of co-
incident shocks, unless their effects are cancelled in the superconvergence sum rule.
This cancellation can occur in different ways. In weakly-coupled (tree-level) gravity
theories, the cancellation must involve massive (stringy) states. More generally, the
cancellation could involve loop effects. An important problem is to compute indepen-
dent bounds on non-graviton contributions to the superconvergence sum rules. This
would give quantitative bounds on the size of non-minimal gravitational couplings. A
toy version of this argument was presented in the previous section. However, it will
be important to make it precise.
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Another interesting question is the extent to which the low-energy matter content
of the Standard Model is consistent with commutativity of coincident gravitational
shocks. If one could compute the Standard Model contribution to superconvergence
sum rules (including loop effects) and find that it is nonzero, that would establish the
necessity of additional massive states, and possibly hint at their properties.

To incorporate loop effects (e.g. loops in the Standard Model or 1/N effects in CFT),
it may be necessary to use eikonal techniques to re-sum gravitational exchanges.
The reason is that n-graviton exchange on its own leads to Regge growth with spin
J0 = 1 + n, which would invalidate superconvergence sum rules.

4.6.2.2 Bootstrapping amplitudes and four-point functions

In the context of flat-space amplitudes, superconvergence sum rules have been used
to bootstrap the Veneziano amplitude [162]. This result relies on assuming linear
Regge trajectories. The assumption of linear trajectories has two nice effects. Firstly,
it removes the necessity of bootstrapping masses — one can focus only on three-point
couplings. Secondly, because Regge trajectories behave as J(s) = const.+α′s, one can
make J(s) arbitrarily negative by making s arbitrarily negative. When J(s) ≤ −k,
for integer k, one obtains a new superconvergence sum rule obtained by inserting tk

into a dispersion relation.

It would be interesting to perform an analogous exercise in CFT, with the goal of
using superconvergence sum rules to bootstrap a planar four-point function in AdS
with finite α′. In CFT, we do not have linear Regge trajectories. However, perhaps
one could take the known single-trace spectrum computed from integrability [197–
199] as input and try to bootstrap the three-point couplings. In N = 4 SYM theory,
the analog of J(s) = const.+ α′s is [148]

J(ν) = 2− ∆(4−∆)

2
√
λ

+ · · · = 2− ν2 + 4

2
√
λ

+ . . . , (4.439)

where λ is the ’t Hooft coupling, ∆ = 2 + iν, and “ . . . ” represents subleading correc-
tions in 1/λ. Here, −ν2/(2

√
λ) is analogous to α′s. In the flat space limit, λ → ∞

with ν2/
√
λ held fixed, it is possible to make J(ν) arbitrarily negative by making

ν2/(2
√
λ) large [149].56 It would be interesting to know whether this is true more

generally (e.g. at finite λ): can J(ν) always be made arbitrarily negative by going to
large ν?

56We thank David Meltzer for discussions on this point.
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If so, one should be able to obtain additional superconvergence sum rules beyond the
ones we have discussed at sufficiently large ν2. We expect such sum rules should come
from commutativity of the operators Ln(~y) defined in [153] and other descendants
of L[T ](x, z), such as those studied in [154]. Note that these operators only need
to commute when transformed to ν space and placed at sufficiently large ν. To
transform to ν-space, one must smear the operators in the transverse positions ~y
against an appropriate d−2-dimensional three-point structure, see chapter 5.

It would be interesting to understand how our flat space analysis is embedded into
the corresponding limit of the AdS/CFT duality. Indeed, in theories with sub-AdS
locality there is no problem in localizing both the shocks and the probes in the region
of spacetime much less than LAdS [200]. Therefore the flat space analysis should apply
in this limit. Shockwaves that are well-localized in the AdS interior were analyzed
for example in [177]. The same idea should apply to high energy scattering in non-
trivial backgrounds, e.g. in the vicinity of a black hole horizon [201]. Presumably, the
commutativity of shocks in this case is related to the consistency conditions on the
spinning scramblon couplings [202]. More generally, the statement that gravitational
shocks commute locally at every point in AdS should constrain spinning couplings to
the “modulon” [203], a mode that saturates the modular bound on chaos and captures
local high energy gravitational scattering in the bulk. It seems plausible that satura-
tion of the modular chaos bound together with the corresponding superconvergence
conditions uniquely select Einstein gravity in AdS as the dual theory.57

4.6.2.3 Generalizations

Although we have focused mostly on superconvergence sum rules coming from commu-
tativity of ANEC operators, one additionally gets sum rules from studying [L[O1],L[O2]]

for any pair of operatorsO1,O2 with sufficiently large J1+J2. A further generalization
could come from studying commutativity of more general continuous-spin light-ray
operators defined in [28]. Can one show that such general light-ray operators com-
mute on the same null plane as well, [O1,O2] = 0? As we show in chapter 5, one
way to obtain such light-ray operators is from OPEs of more traditional null inte-
grals, L[O1]L[O2] ∼

∑
kOk. In this case, commutativity of Ok would follow from

commutativity of null-integrated operators. However, the general construction of
continuous-spin light-ray operators is more complicated.

57We thank Tom Faulkner for discussions on this point.
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In addition to introducing continuous-spin light-ray operators in the CFT context,
it is interesting to ask whether they can be introduced in the amplitudes context as
well. In CFT, null integrated operators L[Oi,J ] can be analytically continued in spin
to obtain more general light-ray operators O±i,J , where i labels Regge trajectories. It is
natural to guess that the shock amplitudes defined in section 4.2.1 can be analytically
continued in the spin of the shocks. This would provide a vast generalization of the
amplitudes usually considered. It would be interesting to investigate such analytically
continued amplitudes in string theory.

4.6.2.4 Further applications

In the main text we discussed a set of extra consistency conditions (superconvergence
relations) on the CFT spectrum which follow from commutativity of average null
energy operators. Together with ANEC, commutativity also implies that products of
multiple average null energy operators are positive-semidefinite. Therefore, we can
further require that

〈Ψ|L[T ] · · ·L[T ]|Ψ〉 ≥ 0. (4.440)

Using the results of section 5, this leads to extra conditions on the OPE data of
the theory. In numerical bootstrap calculations, boundedness of the Regge limit is
manifest, and therefore superconvergence relations are automatically true. On the
other hand, from the point of view of four-point functions, the positivity conditions
(4.440) are extra nontrivial conditions. For example, positivity of two-point energy
correlators follows from unitarity of six-point functions, and thus is not manifest from
the conformal block expansion of a four-point function. It would be interesting to
include these positivity constraints in the numerical bootstrap. In particular, it will
be interesting to see how they affect the stress-tensor bootstrap results [204].

It will be interesting to apply the t-channel OPE formulas to QCD-like theories, say
N = 4 SYM. An appealing feature of the t-channel OPE is that in the planar limit
the contribution of double-trace operators is suppressed by an extra power of 1

N2 .
Therefore, to leading order only the single trace data is needed. We hope that one
day these will be computed at finite λ using integrability techniques, see e.g. [198,
205, 206]. It will be also interesting to use the t-channel OPE to reproduce the known
weak coupling results [182, 207], and try to extend the t-channel analysis to actual
QCD, where the state of the art is the NLO analytic result [208]. Note that in the
case of N = 4 SYM, due to superconformal symmetry energy-energy correlation can
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be computed using the four-point function of scalars to which (4.403) can be directly
applied.
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C h a p t e r 5

THE LIGHT-RAY OPE AND CONFORMAL COLLIDERS

1M. Koloğlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “The light-ray
OPE and conformal colliders”, (2019), arXiv:1905.01311 [hep-th].

5.1 Introduction

In this work, we study a product of null-integrated operators on the same null plane
in a conformal field theory (CFT) in d > 2 dimensions (figure 5.1):∫ ∞

−∞
dv1O1;v···v(u = 0, v1, ~y1)

∫ ∞
−∞

dv2O2;v···v(u = 0, v2, ~y2). (5.1)

Here, we use lightcone coordinates

ds2 = −du dv + ~y2, ~y ∈ Rd−2. (5.2)

The operators are located at different transverse positions ~y1, ~y2 ∈ Rd−2, and their
spin indices are aligned with the direction of integration (the v direction). As an
example, when O1 and O2 are stress-tensors, (5.1) is a product of average null energy
(ANEC) operators. In chapter 4, we established sufficient conditions for the existence
of the product (5.1).

Such null-integrated operators arise naturally in “event shape” observables in collider
physics [31, 144–147]. They also appear in shape variations of information-theoretic
quantities in quantum field theory [152, 153, 209], as generators of asymptotic sym-
metry groups [154], and in studies of positivity and causality [101, 140, 157, 210–214].
We review event shapes and null-integrated operators in section 5.2.

Each null-integrated operator is pointlike in the transverse plane Rd−2, so it is natural
to ask whether there exists an operator product expansion (OPE) describing the
behavior of the product (5.1) at small |~y12|:∫ ∞
−∞

dv1O1;v···v(u = 0, v1, ~y1)

∫ ∞
−∞

dv2O2;v···v(u = 0, v2, ~y2)
?
=
∑
i

|~y12|δi−(∆1−1)−(∆2−1)Oi.

(5.3)

Here, the objects Oi have dimensions δi and the powers of |~y12| are fixed by dimen-
sional analysis.

http://arxiv.org/abs/1905.01311


230

v

u

~y
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i+
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Figure 5.1: The local operators O1 and O2 are integrated along parallel null lines
(blue) on the same null plane. On the left, we show a conformal frame where the null
plane is u = 0, and the operators are at different transverse positions ~y1, ~y2 ∈ Rd−2.
On the right, we show a conformal frame where the null plane is future null infinity I +

and the null-integrated operators are separated by an angle θ12 on the celestial sphere.
We give the relationship between θ12 and ~y12 in (5.10). Note that the entire circle at
spatial infinity is really a single point i0. Thus, the operators become coincident at
the beginnings and ends of their integration contours.

The OPE for local operators is a powerful tool in CFT. It allows one to compute
correlation functions and to formulate the bootstrap equations [9, 10]. A similar
OPE for null-integrated operators (5.1) could have myriad applications. Thus, we
would like to ask whether (5.3) exists, whether it is convergent or asymptotic, and
what the objects Oi are.

Hofman and Maldacena analyzed this question in N = 4 SYM and found the leading
terms in the small-|~y12| expansion where O1,O2 are stress tensors and currents [31].
At weak-coupling, the leading objects are certain integrated Wilson-line operators.
At strong coupling, the leading objects can be described using string theory in AdS:
they are certain stringy shockwave backgrounds. What is the analog of these results
in a general nonperturbative CFT? Can we extend the leading terms to a systematic
convergent expansion?

There is a simple and beautiful argument for the existence of an OPE of local operators
in a nonperturbative CFT (see e.g. [215]): Consider a pair of local operators O1,O2

in Euclidean signature. We surround the operators with a sphere Sd−1 (assuming all
other operator insertions are outside the sphere) and perform the path integral inside
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the sphere. This produces a state |Ψ〉 on the sphere. In a scale-invariant theory, |Ψ〉
can be expanded in dilatation eigenstates

O1O2|0〉 = |Ψ〉 =
∑
i

|Oi〉. (5.4)

By the state-operator correspondence, these eigenstates are equivalent to insertions
of local operators at the origin |Oi〉 = Oi(0)|0〉. Thus (5.4) is the desired OPE.

Unfortunately, this argument does not work for the product (5.1). There is no ob-
vious way to surround the null-integrated operators with an Sd−1 such that other
operators are outside the sphere. The structure of (5.3) suggests that perhaps we
should surround the null-integrated operators with an Sd−3 in the transverse space
Rd−2. However there is no obvious Hilbert space of states associated with such an
Sd−3.1

Nevertheless, using different technology, we will show that a convergent OPE (5.3) for
null-integrated operators does exist in a general nonperturbative CFT. The objects
appearing on the right-hand side are the light-ray operators O±i,J defined in [28] with
a particular spin J = J1 + J2 − 1. Each O±i,J is obtained by smearing a pair of
local operators in a special way in the neighborhood of a light-ray. We review this
construction in section 5.3.2. The matrix elements of O±i,J can be computed via a
generalization of Caron-Huot’s Lorentzian inversion formula [25, 28]. The spectrum
of operators O±i,J is related to the spectrum of local operators by analytic continuation
in spin J ; i labels different Regge trajectories. For example, if O1 = O2 = T , then
J = 3 and we obtain an OPE in terms of O+

i,3, see figure 5.2.

Our strategy to establish the OPE (5.3) is as follows. First, in section 5.3.3, we
decompose the left-hand side of (5.3) into conformal irreps by smearing the transverse
coordinates ~y1, ~y2, using harmonic analysis for the transverse conformal group SO(d−
1, 1). In section 5.3.4, we focus on a single irrep and compute its matrix elements.
Such matrix elements can be written in terms of an integral of a double commutator.
After some manipulation, we express this integral as a linear combination of the
generalized Lorentzian inversion formula of [28], i.e. as a sum of matrix elements of
O±i,J ’s. Thus, the original product of operators is a sum of O±i,J ’s.

1An older argument for the existence of the OPE exists due to Mack [183], relying on very
different methods. Mack shows that a product of operators acting on the vacuum O1O2|Ω〉 can
be expanded in a sum of single operators acting on the vacuum

∑
iOi|Ω〉. However, this result is

insufficient for our purposes. One reason is that acting with (5.1) on the vacuum immediately gives
zero (as we will review shortly). Instead, we would like to act on nontrivial states, and then the
theorem of [183] does not apply.
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Figure 5.2: Chew-Frautschi plot of neutral even-spin operators. Local operators are
denoted by black dots, gray dots denote shadow operators. Solid lines represent
Regge trajectories. The OPE

∫
dvTvv ×

∫
dvTvv contains spin-3 light-ray operators

on even-spin Regge trajectories, shown here by red crosses.

The light-ray OPE (5.3) and the construction of light-ray operators in [28] give two
different ways of creating light-ray operators, and it is not obvious a priori that
they should be related. For example, the light-ray operators of [28] involve smearing
a pair of local operators in a region off the null plane orthogonal to the light-ray.
By contrast, in the light-ray OPE, we move operators in the ~y directions, keeping
them on the null plane. Even though the smearing kernels are very different, the
resulting operators turn out to be related, essentially due to analyticity properties of
conformal correlators. The fact that the light-ray operators of [28] can be obtained
in two very different ways suggests that they may represent some kind of complete
set of observables associated to a light ray, in the same sense that local operators
represent a complete set of observables associated to a point.

As an example, consider the case where O1 = φ1 and O2 = φ2 are scalars, so that
J1 + J2 − 1 = −1.2 Following the procedure above, we find the OPE3∫ ∞
−∞

dv1 φ1(0, v1, ~y1)

∫ ∞
−∞

dv2 φ2(0, v2, ~y2) = πi
∑
i

C∆i−1(~y12, ∂~y2)
(
O+
i,−1(~y2) + O−i,−1(~y2)

)
.

(5.5)

Here, Cδ(~y, ∂~y) is the same differential operator that appears in an OPE of local
2According to the analysis of chapter 4, a product of null-integrated scalars is only well-defined

in theories with Regge intercept J0 < −1. Here, we assume this is the case.
3A more precise expression involves an integral over ∆ instead of a sum over Regge trajectories.

The ∆ contour can be deformed to pick up singularities in the ∆ plane. When these singularities
are isolated poles, we arrive at the sum of Regge trajectories (5.5). We discuss these points in
section 5.5.2.
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primary scalars in d− 2 dimensions. It has an expansion

Cδ(~y, ∂~y) = |~y|δ−(∆1−1)−(∆2−1)

(
1 +

∆1 −∆2 + δ

2δ
~y · ∂~y + . . .

)
, (5.6)

where the coefficients are fixed by (d−2)-dimensional conformal invariance. The ob-
jects O±i,−1 are light-ray operators associated to the i-th Regge trajectory, evaluated
at spin J = −1. The superscript ± is called the “signature” and it indicates the
transformation properties of the light-ray operator under a combination of CRT and
Hermitian conjugation.

In section 5.3.4.4, we generalize (5.5) to arbitrary Lorentz representations for O1,O2.
The light-ray operators on the right-hand side have spin J = J1 +J2−1, where J1, J2

are the spins of O1,O2.4 For example, when O1,O2 are the stress tensor, we have a
sum of spin-3 light-ray operators∫
dv1Tvv(0, v1, ~y1)

∫
dv2Tvv(0, v2, ~y2) = πi

∑
s=±

∑
λ,a

∑
i

D(a),s
∆i−1,λ(~y12, ∂~y2)Os

i,J=3,λ,(a)(~y2).

(5.7)

Here, λ is an SO(d− 2) representation encoding spin in the transverse plane, s = ±
is a signature, (a) labels conformally-invariant three-point structures, and D(a),s

δ,λ is a
differential operator that generalizes Cδ.

In section 5.6 we find that the light-ray OPE also carries information about contact
terms in the ~y1 → ~y2 limit. These contact terms are important in at least two aspects.
First they are a part of the physical information present in event shape observables.
Second, they arise in commutators of null-integrated operators [154], leading to an
interesting algebra.

An interesting property of the light-ray OPE is that the transverse spins that ap-
pear are bounded. Specifically, the possible SO(d − 2) representations appearing in∫
dv1O1

∫
dv2O2 are given by listing all SO(d−1, 1) representations in the local OPE

O1 × O2, and removing the first rows of their Young diagrams. (We give a simpler
version of this rule in (5.150).) For example, in the OPE of null-integrated scalars
(5.5), the maximal transverse spin is zero (since only traceless symmetric tensors
appear in φ1 × φ2). In the OPE of ANEC operators (5.7), the possible transverse
representations are •, , , , , , . This is very different from
the naïve expectation that an OPE of point-like objects can contain objects with ar-
bitrarily high spin. Ultimately, it is a consequence of the same analyticity properties
that relate different smearings of local operators.

4For the definition of J in general representations, see appendix D.2.
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5.1.1 Commutators and superconvergence

Our analysis does not assume or require that null-integrated operators commute.
Indeed, we can write an expression for a commutator of null-integrated operators
using the OPE. For example, the commutator of ANEC operators is given by the
odd-signature terms in (5.7),[∫

dv1Tvv(0, v1, ~y1),

∫
dv2Tvv(0, v2, ~y2)

]
= πi

∑
λ,a

∑
i

D(a),−
∆i−1,λ(~y12, ∂~y2)O−i,J=3,λ,(a)(~y2).

(5.8)

In chapter 4, we showed that a commutator of ANEC operators vanishes if J0 < 3,
where J0 is the Regge intercept of the theory, and furthermore J0 ≤ 1 in unitary
CFTs. It is interesting to understand how vanishing occurs on the right-hand side
of (5.8). Note that the operators on the right-hand side are light-ray operators with
spin 3 and odd signature. We show in section 5.4.1 that if J0 < 3, such operators
must be null integrals of local spin-3 operators.5 However, local spin-3 operators are
not allowed in the T × T OPE by conservation conditions and Ward identities [191].
Thus, the commutator vanishes.

As we explain in section 5.4.1, this argument generalizes to establish vanishing of a
commutator of null-integrated operators whenever J1 +J2 > J0 + 1. It turns out that
even if local operators with signature (−1)J1+J2−1 and spin J1+J2−1 do appear in the
local O1×O2 OPE, they do not survive in the light-ray OPE. This provides another
(somewhat circuitous) way to derive the commutativity conditions of chapter 4. An
exception can occur at vanishing transverse separation ~y12 = 0. In that case, the
commutator may contain contact terms, which can be computed by our light-ray
OPE formula. As an example, in section 5.6.1, we describe how to compute contact
terms in a commutator of null-integrated nonabelian currents (assuming J0 < 1),
reproducing results of [154].

Vanishing of the commutator of ANEC operators means that the odd-signature terms
in (5.7) disappear, and the OPE of ANEC operators can be simplified to a sum of
even-signature light-ray operators with spin 3. This generalizes the results of [31].

Despite the fact that local spin-3 operators are not allowed in the T × T OPE, we
can try to compute their OPE data with the Lorentzian inversion formula. This is
equivalent to evaluating matrix elements of the right-hand side of (5.8). The result
must be zero. However, if we plug the OPE in a different channel (the “t-channel”)

5This justifies an assumption made in [154].
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into the inversion formula, we obtain sums that are not zero term by term. The
conditions that these sums vanish are precisely the “superconvergence” sum rules of
chapter 4. As we explain in section 5.4.3, in this language it is simple to argue
that (suitably-smeared) superconvergence sum rules have a convergent expansion in
t-channel blocks.

5.1.2 Celestial blocks and event shapes

An important application of the light-ray OPE is to event shapes [31, 144–147]. For
example, to compute a two-point event shape, we place a pair of null-integrated
operators (“detectors”) along future null infinity (right half of figure 5.1) and evaluate
a matrix element in a momentum eigenstate |O(p)〉. By applying the OPE (5.5), we
obtain a sum of matrix elements of individual light-ray operators O±i,J in momentum
eigenstates |O(p)〉,

C∆i−1(~y12, ∂~y2)〈O(p)|O±i,J(~y2)|O(p)〉. (5.9)

The quantity (5.9) is fixed by conformal symmetry up to a constant. It plays a
role for event shapes analogous to the role that conformal blocks play in the usual
OPE expansion of local 4-point functions. It is proportional to a function of a single
cross-ratio

ζ =
1− cos θ12

2
=

~y 2
12

(1 + ~y 2
1 )(1 + ~y 2

2 )
∈ [0, 1], (5.10)

where θ12 is the angle between detectors on the celestial sphere. We have also written
ζ in terms of the transverse positions ~y1, ~y2 in the conventions of [31]. In an event
shape, ζ → 0 is the collinear limit, while ζ → 1 corresponds to back-to-back detectors.
We call (5.9) a “celestial block.”

In section 5.5, we compute celestial blocks by solving an appropriate conformal
Casimir equation. For example, when O is a scalar, the result is6

f∆1,∆2

∆ (ζ) = ζ
∆−∆1−∆2+1

2 2F1

(
∆− 1 + ∆1 −∆2

2
,
∆− 1−∆1 + ∆2

2
,∆ + 1− d

2
, ζ

)
.

(5.11)

Note that f∆1,∆2

∆ becomes a pure power ζ
∆−∆1−∆2+1

2 in the collinear limit ζ → 0.
6Celestial blocks are an analytic continuation of the boundary conformal blocks studied in [44,

216].
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The light-ray OPE thus yields an expansion for two-point event shapes in celestial
blocks. For example, using (5.5) and superconformal symmetry [217, 218], an energy-
energy correlator (EEC) in N = 4 SYM can be written as

〈E(~n1)E(~n2)〉ψ(p) =
(p0)2

8π2
FE(ζ),

FE(ζ) =
∑
i

p∆i

4π4Γ(∆i − 2)

Γ(∆i−1
2

)3Γ(3−∆i

2
)
f 4,4

∆i
(ζ) +

1

4
(2δ(ζ)− δ′(ζ)), (5.12)

where ∆i runs over dimensions of Regge trajectories at spin J = −1, and p∆i
are

squared OPE coefficients of operators in the 105 representation of SO(6) in the
O20′ × O20′ OPE, analytically continued to spin J = −1. The state ψ(p) carries
momentum p = (p0, 0, 0, 0) and is created by acting with an O20′ operator on the
vacuum. The angle between energy detectors is cos θ = ~n1 · ~n2, and ζ is defined by
(5.10). The coupling-independent contact terms 1

4
(2δ(ζ) − δ′(ζ)) are related to the

contribution of protected operators to the EEC.

Thus, (5.12) expresses the EEC in N = 4 SYM in terms of OPE data. This formula
holds nonperturbatively in both the size of the gauge group Nc and the ’t Hooft
coupling λ. In section 5.7, we check it against previous results at weak and strong
coupling and find perfect agreement. Using known results for leading-twist OPE data
in N = 4 SYM, we use (5.12) to make new predictions for the small-angle limit of
N = 4 energy-energy correlators through 4 loops (NNNLO).

We conclude in section 5.8 with discussion and future directions. In appendix D.1 we
summarize our notation, in appendix D.2 we review general representations of orthog-
onal groups, and in appendix D.3 we clarify some points about analytic continuation
in spin. Appendices D.4, D.5 and D.6 contain details of the calculations described in
the main text.

Note added: During the last stages of this work we learned about [219] and [220]
which have some overlap with our analysis. Let us briefly describe the results of [219]
and [220] in relation to our work.

In [219] the EEC in N = 4 SYM was analyzed using the Mellin space approach
of [147]. We analyze N = 4 SYM in section 5.7. It was shown in [219] how the
back-to-back ζ → 1 limit of the EEC is captured by the double light-cone limit
of the correlation function studied in [221]. It led to the derivation of (D.85) and
identification of the coefficient function H(a) with a certain spin-independent part of
the three-point functions of large spin twist-2 operators. We do not analyze ζ → 1
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limit of the EEC in a generic CFT in the present paper. Similarly, a leading small
angle asymptotic of the EEC inN = 4 SYM, the small ζ limit of (5.313), was rederived
in [219].7 Based on (5.313), the four-loop small angle asymptotic was worked out in
[219], we do it in section 5.7.7. This represents the leading small-angle asymptotic of
our complete, non-perturbative OPE formula (5.12).

In [220] a factorization formula describing the small ζ → 0 limit for the EEC was
derived in a generic massless QFT, conformal or asymptotically free, in terms of the
time-like data of the theory. The authors [220] applied their results to QCD, N = 1,
and N = 4 SYM, in particular they analyzed the effects of a non-zero β-function
which goes beyond our considerations in the present paper. In the conformal case of
N = 4 SYM which is relevant to our analysis, the leading small-angle asymptotic was
derived in [220] through three loops.

In addition, both [219, 220] emphasized the importance of contact terms in the EEC
(we compute these using the OPE in section 5.6.2), the way to compute them from
the small angle and back-to-back limits, see appendix D.6, and their importance to
the Ward identities (5.233,5.234). In particular, [219, 220] checked that the N = 4

SYM NLO result [182] satisfies Ward identities, we do this in section 5.7.5.4. In [219]
it was also checked that the NNLO result [207] satisfies Ward identities, which we do
in section 5.7.6.

5.2 Kinematics of light-ray operators and event shapes

5.2.1 Null integrals and symmetries

Let us begin by examining the symmetries of a product of light-ray operators (5.1).
This analysis will already give a hint why the objects O±i,J appear in the OPE.

Firstly, consider a boost

(u, v, ~y) → (λ−1u, λv, ~y), λ ∈ R+. (5.13)

Each null-integrated operator
∫
dviOi;v···v has boost eigenvalue 1−Ji, where 1 comes

from the measure dvi and −Ji comes from the lowered v-indices. Thus, the product
(5.1) has boost eigenvalue (1− J1) + (1− J2) = 1− (J1 + J2 − 1). In other words, it
transforms like the null integral of an operator with spin J1 + J2 − 1 [31].

Another important symmetry is CRT, which is an anti-unitary symmetry taking

(u, v, ~y) → (−u,−v, ~y). (5.14)

7We reported (5.313) to G.Korchemsky in September 2018.
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Combining CRT with Hermitian conjugation, we obtain a linear map on the space of
operators. It is easy to check that(

(CRT)

∫ ∞
−∞

dvOi;v···v(0, v, ~y)(CRT)−1

)†
= (−1)Ji

∫ ∞
−∞

dvOi;v···v(0, v, ~y). (5.15)

We call the eigenvalue with respect to the combination of CRT and Hermitian conju-
gation the “signature” of the operator. Applying CRT and Hermitian conjugation to
(5.1), we find[∫ ∞

−∞
dv1O1;v···v(0, v1, ~y1),

∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2)

]
has signature (−1)J1+J2−1

(5.16){∫ ∞
−∞

dv1O1;v···v(0, v1, ~y1),

∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2)

}
has signature (−1)J1+J2 ,

(5.17)

where [ , ] and { , } denote a commutator and anticommutator, respectively. The
extra minus sign in the commutator appears because Hermitian conjugation reverses
operator ordering.

It often happens (under circumstances described in chapter 4 and discussed in sec-
tion 5.4.1) that the commutator (5.16) vanishes. For example, a commutator of
ANEC operators on the same null plane vanishes. For simplicity, suppose that the
commutator vanishes. In this case, the product (5.1) is the same as the anticommu-
tator (5.17). Thus, (5.1) transforms like the null-integral of an operator with spin
J1 +J2−1 and signature (−1)J1+J2 . An integrated local operator can never have these
quantum numbers. This shows that the OPE (5.3) cannot be computed by simply
performing the usual OPE between O1 and O2 inside the integral.

5.2.2 Review: embedding formalism and the Lorentzian cylinder

It is instructive to re-derive the selection rule J = J1 +J2−1 in a different way, using
conformal transformation properties of null-integrated operators. These properties
are easiest to understand in the embedding formalism [9, 192, 222–227].

In the embedding formalism, Minkowski space is realized as a subset of the projective
null cone in Rd,2. Let us choose coordinatesX = (X+, X−, Xµ) = (X+, X−, X0, · · · , Xd−1)

on Rd,2, with metric

X ·X = −X+X− − (X0)2 + (X1)2 + · · ·+ (Xd−1)2. (5.18)
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Figure 5.3: Minkowski patch Md (blue, shaded) inside the Lorentzian cylinder M̃d

in the case of 2 dimensions. Spacelike infinity ofMd is marked by i0 and future/past
infinity are marked by i±. The dashed lines should be identified. The point T p is
obtained from p by shooting light-rays in all possible future directions (dotted lines)
and finding the first point where they converge.

The projective null cone is the locus X ·X = 0, modulo positive rescalings X ∼ λX

(λ ∈ R+). This space is topologically S1×Sd−1. Lorentzian CFTs live on the universal
cover of the projective null cone M̃d, which is topologically R × Sd−1 — sometimes
called the Lorentzian cylinder. The conformal group S̃O(d, 2) is the universal cover
of SO(d, 2).

Minkowski space corresponds to the locus X = (X+, X−, Xµ) = (1, x2, xµ) ∈ Rd,2,
where x ∈ Rd−1,1. Spatial infinity i0 is obtained by taking x → ∞ in a spacelike
direction and rescaling X so it remains finite, yielding Xi0 = (0, 1, 0). Timelike
infinity i± corresponds to Xi± = (0,−1, 0). (Note that future and past infinity i±

correspond to the same embedding-space vector, but they are distinguished on the
universal cover of the projective null cone.) Finally, null infinity corresponds to the
points XI±(σ, z) = (0,−2σ, z), z = (±1, ~n), where ~n ∈ Sd−2 is a point on the celestial
sphere and σ is retarded time.

The Lorentzian cylinder M̃d is tiled by Minkowski “patches” (figure 5.3). To every
point p ∈ M̃d, there is an associated point T p obtained by shooting light rays in all
future directions from p and finding the point where they converge in the next patch.
In embedding coordinates, T takes X → −X. For example, T takes spatial infinity
i0 to future infinity i+. We sometimes write p+ ≡ T p and p− ≡ T −1p.

To describe operators with spin, it is helpful to introduce index-free notation. Given
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a traceless symmetric tensor Oµ1···µJ (x), we can contract its indices with a future-
pointing null polarization vector zµ to form

O(x, z) ≡ Oµ1···µJ (x)zµ1 · · · zµJ . (5.19)

When Oµ1···µJ (x) is an integer-spin local operator, O(x, z) is a homogeneous polyno-
mial of degree J .

In the embedding formalism, the operator O(x, z) gets lifted to a homogeneous func-
tion O(X,Z) of coordinatesX,Z ∈ Rd,2, subject to the relationsX2 = X ·Z = Z2 = 0

[192]. It is defined by

O(X,Z) = (X+)−∆O
(
x =

X

X+
, z = Z − Z+

X+
X

)
, (5.20)

where ∆ is the dimension of O. The advantage of O(X,Z) is that conformal transfor-
mations act linearly on the coordinates X,Z. Note that O(X,Z) has gauge invariance

O(X,Z) = O(X,Z + βX), (5.21)

and homogeneity

O(λX, αZ) = λ−∆αJO(X,Z). (5.22)

The operator O(x, z) on Rd−1,1 can be recovered by the dictionary

O(x, z) = O
(
X = (1, x2, x), Z = (0, 2x · z, z)

)
. (5.23)

Index-free notation and the procedure of lifting operators to the embedding space can
be generalized to arbitrary representations of the Lorentz group. We describe this
construction in appendix D.2.

5.2.3 Review: the light transform

Null-integrated operators like those in (5.1) can be understood in terms of a conformally-
invariant integral transform called the “light-transform” [28]. In embedding-space
language, the light-transform is defined by

L[O](X,Z) ≡
∫ ∞
−∞

dαO(Z − αX,−X). (5.24)

This transform is invariant under S̃O(d, 2) because (5.24) only depends on the embedding-
space vectors X,Z. It respects the gauge redundancy (5.21) because a shift Z →
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Z + βX can be compensated by shifting α→ α+ β in the integral. The initial point
of the integration contour in (5.24) is X, since Z − (−∞)X is projectively equivalent
to X. Furthermore, if O(X,Z) has homogeneity (5.22), then its light-transform has
homogeneity

L[O](λX, αZ) = λ−(1−J)α1−∆L[O](X,Z). (5.25)

Thus, L[O] transforms like a primary at X with dimension 1− J and spin 1−∆:

L : (∆, J)→ (1− J, 1−∆). (5.26)

Note that the light-transform naturally gives rise to operators with non-integer spin.

In Minkowski coordinates, L becomes

L[O](x, z) =

∫ ∞
−∞

dαO(Z − αX,−X)

∣∣∣∣ X=(1,x2,x)
Z=(0,2x·z,z)

=

∫ ∞
−∞

dα (−α)−∆−JO
(
X − Z

α
,Z

)∣∣∣∣ X=(1,x2,x)
Z=(0,2x·z,z)

=

∫ ∞
−∞

dα (−α)−∆−JO
(
x− z

α
, z
)
. (5.27)

In the second line above, we used gauge invariance (5.21) to shift −X → −X − (Z −
αX)/α = −Z/α and then homogeneity (5.22) to pull out factors of (−α). In the third
line, we used (5.23). The integration contour in (5.27) starts at x when α = −∞ and
reaches the boundary of Minkowski space when α = 0. The correct prescription there
is to continue the contour into the next Poincare patch to the point T x ∈ M̃d. The
expression (5.27) makes it clear that L[O] converges whenever ∆ + J > 1, as long as
there are no other operators at x or T x.8 Note that L[O](x, z) is not a polynomial
in z and thus cannot be written in terms of an underlying tensor with 1−∆ indices.

For any local operator O satisfying ∆ + J > 1, the light-transform L[O] annihilates
the vacuum |Ω〉. The reason is that if L[O]|Ω〉 did not vanish, then it would be a
primary state with spin 1−∆ /∈ Z≥0, which is not allowed in a unitary CFT [27]. One
can also verify that L[O]|Ω〉 = 0 by deforming the α contour in the complex plane
inside a Wightman correlation function [28].

8More precisely, L[O] converges as an operator-valued tempered distribution when ∆ +
J > 1. To define L[O](x, z) as a distribution, we must show how to smear it against
a test function,

∫
ddxf(x)L[O](x, z). We do so by integrating the light-transform by parts∫

ddx(T −1L)[f ](x, z)O(x, z). This makes it clear that L[O] converges whenever L[f ] converges
for any test function f . This again leads to the condition ∆ + J > 1.
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Let us now return to the boost selection rule J = J1 + J2 − 1 from section 5.2.1. To
recover the setup of that section, we can set

X0 = −(0, 0, 1
2
, 1

2
,~0) ∈ I −,

Z0 = (1, ~y2, 0, 0, ~y), (5.28)

where ~0, ~y ∈ Rd−2. Note that these satisfy the conditions X2
0 = X0 · Z0 = Z2

0 = 0.
The light-transform becomes

L[O](X0, Z0) =

∫ ∞
−∞

dαOv···v(u = 0, v = α, ~y), (5.29)

Thus, we should think of
∫
dvOv···v as a primary operator associated to the point X0

at past null infinity.

Consider now a product of null-integrated operators

L[O1](X0, Z0)L[O2](X0, Z
′
0) =

∫ ∞
−∞

dv1O1;v···v(0, v1, ~y1)

∫ ∞
−∞

dv2O2;v···v(0, v2, ~y2).

(5.30)

This is a product of primaries associated to the same point X0 at past null infin-
ity (with different polarization vectors Z0, Z

′
0). Thus, the dimension of the product

(assuming it is well-defined) is the sum of the dimensions: (1 − J1) + (1 − J2) =

1 − (J1 + J2 − 1).9 This is the same as the dimension of the light-transform of an
operator with spin J1 + J2 − 1. Hence, we have recovered the selection rule from
section 5.2.1.

The relationship between this argument and the one in section 5.2.1 is that the
dilatation generator that measures dimension around the point X0 is the same as
the boost generator discussed in section 5.2.1.

An important observation is that the product (5.30) transforms like a primary opera-
tor at the point X0. This is because both factors L[O1](X0, Z0) and L[O2](X0, Z

′
0) are

killed by the special conformal generators that fix X0. (Alternatively, we can simply
9Ordinarily in CFT, we do not consider a product of operators at coincident points. Instead, we

place them at separated points and study the singularity as they approach each other, for example

φ1(x)φ2(0) ∼
∑
k

x∆k−∆1−∆2φk(0). (5.31)

The dimensionful factor x∆k−∆1−∆2 allows the scaling dimension ∆k to be different from ∆1 + ∆2.
However, if the coincident limit x→ 0 is nonsingular, the only operators that survive the limit must
obey the selection rule ∆k = ∆1 + ∆2.
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I +

I −

i+

i−

i0

Figure 5.4: A one-point event shape [228]. The detector O = OEHT is integrated
along a null line (blue) along future null infinity, starting at spatial infinity i0 and
ending at future timelike infinity i+. (Note that the circle at spatial infinity is really
a single point.) The red wavy lines indicate energy propagating from the interior of
Minkowski space out to null infinity, created by the insertion of the source φ1(p).

observe that (5.30) is a homogeneous function of X0 on the null cone in the embed-
ding space, which again implies that it transforms like a primary.) Thus, when we
consider the OPE expansion of (5.30) in the limit Z0 → Z ′0, the only terms appearing
will be other primary operators at the point X0.

5.2.4 Review: event shapes and the celestial sphere

The symmetries of light-ray operators on a null plane are easiest to understand when
we take the null plane to be I +. This corresponds to choosing the embedding-space
coordinates

X∞ = (0, 1, 0),

Z∞(z) = (0, 0, z), (5.32)

where z ∈ Rd−1,1 is a future-pointing null vector. The integration contour for the light-
transform now lies inside I +, running from i0 to i+ along the z direction (figure 5.4).

The operator L[O](∞, z) ≡ L[O](X∞, Z∞(z)) transforms like a primary inserted at
spatial infinity, which means it is killed by momentum generators

[P µ,L[O](∞, z)] = 0. (5.33)
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Consequently, its matrix elements with other operators are translationally-invariant,
for example

〈Ω|φ2(x2)L[O](∞, z)φ1(x1)|Ω〉 = f(x1 − x2). (5.34)

(Throughout this work, we use φ to denote scalar operators and O to denote operators
in general Lorentz representations.) Thus, it is natural to go to momentum space,

〈φ2(q)|L[O](∞, z)|φ1(p)〉 = (2π)dδd(p− q)f̃(p), (5.35)

where

|φi(p)〉 ≡
∫
ddx eip·xφi(x)|Ω〉. (5.36)

Note that |φi(p)〉 vanishes unless p is inside the forward lightcone p > 0, by positivity
of energy.10 We often abuse notation by writing

〈φ2(p)|L[O](∞, z)|φ1(p)〉 = f̃(p), (5.37)

where it is understood that we have stripped off the momentum-conserving factor
(2π)dδ(d)(p+ q).

More generally, we can consider a product of light-transforms along I +, inserted
between momentum eigenstates

〈φ2(p)|L[O1](∞, z1) · · ·L[On](∞, zn)|φ1(p)〉. (5.38)

Following [229], we call such matrix elements “event shapes.” This terminology
comes from interpreting (5.38) as the expectation value of a product of “detectors”
O1, · · · ,On in a “source” state |φ1(p)〉 and “sink” state 〈φ2(p)|. The detectors sit at
points on the celestial sphere and are integrated over retarded time to capture signals
that propagate to null infinity.

In addition to being translationally-invariant, L[O](∞, z) transforms in a simple way
under d-dimensional Lorentz transformations SO(d − 1, 1): they act linearly on the
polarization vector z. The Lorentz group in d-dimensions is the same as the Eu-
clidean conformal group on the (d−2)-dimensional celestial sphere. Indeed, we can

10It is sometimes hard to keep track of signs in Lorentzian signature, so let us explain this point.
Ignoring position-dependence for simplicity, we have φ(t) = eiHtφ(0)e−iHt. The minus sign is in the
right-hand exponential e−iHt because that operator generates Schrodinger time-evolution. Acting
on the vacuum, we obtain eiHtφ(0)|Ω〉, which is a sum of positive-imaginary exponentials eiEt. To
get a nonzero result under the Fourier transform, we must multiply by e−iEt, which is contained in
the factor eip·x.
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think of z ∈ Rd−1,1 as an embedding-space coordinate for the celestial sphere Sd−2.
Furthermore, L[O](∞, z) is homogeneous of degree 1−∆ in z, due to (5.25). Thus,
L[O](∞, z) transforms like a primary operator on the celestial sphere with dimension
δ = ∆− 1.

In the previous coordinates (5.28), the group SO(d− 1, 1) acted by conformal trans-
formations on the transverse direction ~y. The coordinates ~y are stereographic coor-
dinates on Sd−2. Thus, we have proven the claim from section 5.2.1 that

∫
dvOv···v

transforms as a primary in the transverse space.

The event shape (5.38) is similar to a correlator of operators with dimensions δi =

∆i − 1 in a Euclidean (d−2)-dimensional CFT. However, the presence of a timelike
momentum p breaks the Lorentz group further to SO(d − 1). In the language of
(d−2)-dimensional CFT, this is similar to the symmetry-breaking pattern that occurs
in the presence of a spherical codimension-1 boundary or defect [44, 216]. This fact
will play an important role in section 5.5. We can choose a center-of-mass frame
p = (p0, 0, . . . , 0) and write zi = (1, ~ni) with ~ni ∈ Sd−2. The dependence on p0 is fixed
by dimensional analysis, so we can additionally set p0 = 1. The event shape then
becomes a nontrivial function of dot-products ~ni · ~nj.

In addition to respecting symmetries, event shapes are useful for studying positivity
conditions. For example, consider the average null energy operator E = 2L[T ], where
Tµν is the stress tensor. E is positive-semidefinite [31, 152, 210]. To test this, we
could compute the expectation value of E in several different states (primaries and
descendents at different points, etc.) and then aggregate the resulting positivity
conditions. However, it is sufficient to study event shapes 〈Oi(p)|E|Oj(p)〉 for the
following reason. The Hilbert space of a CFT is densely spanned by states of the
form ∑

i

∫
ddxfi(x)Oi(x)|Ω〉, (5.39)

where Oi are primary operators and fi(x) are test functions. Positivity of E is thus
equivalent to the statement that for any collection of test functions fi(x),∑

i,j

∫
ddx1d

dx2f
∗
i (x1)fj(x2)Kij(x1 − x2) ≥ 0, (5.40)

where

Kij(x1 − x2) ≡ 〈Ω|Oi(x1)E(∞, z)Oj(x2)|Ω〉. (5.41)
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This is the same as saying that Kij(x1 − x2) is a positive-semidefinite integral ker-
nel. To determine whether a kernel is positive-semidefinite, we should compute its
eigenvalues and check that they are positive. Because Kij(x1 − x2) is translation-
invariant, it can be partially diagonalized by going to Fourier space. Thus, E is
positive-semidefinite if and only if its one-point event shapes are positive-semidefinite.

5.2.4.1 1-point event shapes

As an example, let us compute a one-point event shape 〈φ2|L[O]|φ1〉, where O has
dimension ∆ and spin J , and φ1, φ2 are scalars. We start from the Wightman func-
tion11

〈0|φ2(x2)O(x3, z3)φ1(x1)|0〉

=
(2V3,12)J

(x2
12 + iεx0

21)
∆1+∆2−∆−J

2 (x2
13 + iεx0

31)
∆1−∆2+∆+J

2 (x2
32 + iεx0

23)
∆2−∆1+∆+J

2

, (5.42)

where

V3,12 ≡
z3 · x13x

2
23 − z3 · x23x

2
13

x2
12

. (5.43)

In (5.42), we have written the iε prescription appropriate for the given operator
ordering. This is obtained by introducing small imaginary parts x0

i → x0
i − iεi with

ε2 > ε3 > ε1 in the same order as the operators appearing in the Wightman function.
We often omit explicit iε’s, restoring them only when necessary during a computation.
In these cases, the iε prescription should be inferred from the ordering of the operators
in the correlator.

The light-transform of (5.42) is [28]

〈0|φ2(x2)L[O](x3, z3)φ1(x1)|0〉

=
L(φ1φ2[O])(2V3,12)1−∆

(x2
12)

∆1+∆2−(1−J)−(1−∆)
2 (x2

13)
∆1−∆2+(1−J)+(1−∆)

2 (−x2
23)

∆2−∆1+(1−J)+(1−∆)
2

(2 > 3 > 1−),

(5.44)

where

L(φ1φ2[O]) ≡ −2πi
Γ(∆ + J − 1)

Γ(∆+∆1−∆2+J
2

)Γ(∆−∆1+∆2+J
2

)
. (5.45)

11We use the same conventions for two- and three-point structures as [28]. These include some
extra factors of 2J that ensure that three-point structures glue together into a conventionally-
normalized conformal block. These conventions are convenient when discussing inversion formulas.
We also use correlators 〈0| · · · |0〉 in the fictitious state |0〉 to indicate functions whose form is fixed
by conformal invariance (as opposed to correlators in a physical theory). See appendix D.1 for a
summary of our notation.
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2

2−

1

1−

3

3+

Figure 5.5: The causal relationship between points 2 > 3 > 1− used in (5.44). The
lightcone of 2 is drawn in gray and the lightcone of 1 in purple.

This indeed has the form of a conformally-invariant three-point function with an
operator with dimension 1−J and spin 1−∆. The notation i > j means “xi is inside
the future lightcone of xj.” Below, we will also use the notation i ≈ j to indicate
that xi is spacelike from xj. We have written (5.44) in the kinematics 2 > 3 > 1−

(figure 5.5), where all the quantities in parentheses are positive. This time, we have
left the iε prescription implicit.

We should now take x3 to spatial infinity. Keeping track of iε prescriptions, we find

〈0|φ2(x2)L[O](∞, z)φ1(x1)|0〉 = L(φ1φ2[O])
eiπ∆2(−2z · x12 + iε)1−∆

(−x2
12 + iεx0

12)
∆1+∆2−(1−J)+(1−∆)

2

. (5.46)

This is indeed translation-invariant. It is straightforward to compute the Fourier
transform∫

ddxeipx
(−2x · z + iε)1−∆

(−x2 + iεx0)
∆1+∆2−(1−J)+(1−∆)

2

= F̂∆1+∆2−(1−J),1−∆(−2p · z)1−∆(−p2)
∆1+∆2−(1−J)−(1−∆)−d

2 θ(p), (5.47)

where

F̂∆,J ≡
e−iπ

∆
2 2d+1−∆π

d+2
2

Γ(∆+J
2

)Γ(∆+2−d−J
2

)
. (5.48)

The theta function θ(p) ≡ θ(−p2)θ(p0) restricts p to lie in the forward lightcone.
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Overall, the one-point event shape is given by∫
ddx eip·x〈0|φ2(0)L[O](∞, z)φ1(x)|0〉

=
2d−∆1−∆2−J+3π

d
2

+2eiπ
∆2−∆1−J

2 Γ(J + ∆− 1)(−2p · z)1−∆(−p2)
∆1+∆2+∆+J−2−d

2 θ(p)

Γ(J+∆+∆1−∆2

2
)Γ(J+∆−∆1+∆2

2
)Γ(J−∆+∆1+∆2

2
)Γ(J+∆+∆1+∆2−d

2
)

.

(5.49)

Note that this is consistent with dimensional analysis in p, homogeneity in z, and
Lorentz invariance. In chapter 4, we describe an algorithm for computing more general
one-point event shapes.

5.2.4.2 2-point event shapes

A two-point event shape is constrained by dimensional analysis, homogeneity, and
Lorentz invariance to take the form

〈φ4(p)|L[O1](∞, z1)L[O2](∞, z2)|φ3(p)〉 =
(−p2)

∆1+∆2+∆3+∆4−4−d
2 θ(p)

(−2z1 · p)∆1−1(−2z2 · p)∆2−1
GO1O2(ζ),

(5.50)

where GO1O2(ζ) is a function of the cross-ratio

ζ ≡ (−2z1 · z2)(−p2)

(−2p · z1)(−2p · z2)
=

1− ~n1 · ~n2

2
. (5.51)

ζ takes values between 0 and 1. In the last step of (5.51) we evaluated ζ in a center-
of-mass frame where p = (p0,~0) and zi = (1, ~ni). The limit ζ → 0 corresponds to the
detector directions z1 and z2 becoming parallel, which is described by the light-ray-
light-ray OPE discussed in section 5.3. The limit ζ → 1 corresponds to the detectors
becoming back-to-back in the frame of p.

5.3 The light-ray-light-ray OPE

5.3.1 Summary of computation

In this section, we compute an expansion for

L[O1](x, z1)L[O2](x, z2) (5.52)

as z1 → z2. Here, we summarize the key steps of the computation. Our summary
will be schematic. We omit details and illustrate calculations using diagrams (which
do not capture some subtleties).
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The first step is to decompose (5.52) into irreducible representations of the conformal
group. As discussed in section 5.2.3, (5.52) transforms like a primary at the point x
with scaling dimension (1−J1)+(1−J2). However, it does not transform irreducibly
under the Lorentz group SO(d− 1, 1) that fixes x. The appropriate set of irreducible
representations are principal series representations labeled by δ ∈ d−2

2
+iR. To obtain

such a representation, we smear the polarizations z1, z2 against a kernel tδ12

Wδ(x, z0) ∝
∫
Dz1Dz2L[O1](x, z1)L[O2](x, z2)tδ(z1, z2, z0)

=

∫
dx1dx2Dz1Dz2Lδ(x1, z1, x2, z2;x, z0)O1(x1)O2(x2), (5.53)

where Dz is a measure on the projective null cone defined in (5.87). We write tδ
explicitly in (5.108).

On the second line of (5.53), we implicitly defined a kernel Lδ that combines the light
transforms with smearing in z1, z2. We can represent Lδ pictorially by

Lδ

1

2

OL =

1

2

OL

L

L

tδ
. (5.54)

The incoming arrows labeled 1 and 2 indicate that Lδ acts on the representations of
O1,O2. The outgoing arrow labeled OL indicates that Lδ produces an object trans-
forming with the quantum numbers of L[O], i.e. (1−J, 1−∆) where O has dimension
and spin (∆, J) = (δ+1, J1 +J2−1). On the right-hand side, the boxes labeled L take
the light-transform of O1 and O2. Then, we split each representation into two lines;
the solid blue line denotes the Minkowski position xi of the representation, and the
dashed red line denotes the null polarization zi — equivalently, the position on the
celestial sphere. The reason for this split is to accommodate for the next two opera-
tions, which act only on either Minkowski or celestial coordinates. The blue triangle
represents making the points xi coincident. The red three-point kernel represents
smearing polarization vectors with tδ.

The next step is to compute matrix elements of Wδ. Because a light-transformed
12The actual kernel can also depend on a finite-dimensional representation λ of SO(d − 2), but

we suppress that detail here for simplicity.
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operator kills the vacuum, we have

〈Ω|O4WδO3|Ω〉 =

∫
dx1dx2Dz1Dz2Lδ〈O|O4O1O2O3|O〉

=

∫
dx1dx2Dz1Dz2Lδ〈O|[O4,O1][O2,O3]|O〉. (5.55)

The appearance of the double commutator suggests that we could relate the matrix
elements of Wδ to the Lorentzian inversion formula. To see this relation, first note
that by conformal invariance we have

〈Ω|O4WδO3|Ω〉 = Ab(δ)〈0|O4L[O]O3|0〉(b) , (5.56)

where 〈0|O4OO3|0〉(b) are conformally-invariant three-point structures for the given
representations, and in (5.56) we have their light-transforms. The different structures
have a label b, and summation over b is implicit. Diagrammatically, we can express
(5.55) and (5.56) as

OL
1

2

4

3

LδdDisc[g] = Ab(δ)×
OL

4

3

b L
O

, (5.57)

where “dDisc” indicates the double-commutator.

The function Ab(δ) contains the matrix elements we are interested in. To extract it,
we pair with a dual structure (the pairing will be defined in (5.95))

Ab(δ) =
(
〈Ω|O4WδO3|Ω〉, (〈0|O4L[O]O3|0〉(b))−1

)
. (5.58)

The dual structure (〈0|O4L[O]O3|0〉(a))−1 is the one that satisfies
OL

4

3

b L
O

,

4

3

L
O

a
OL

−1

 = δba . (5.59)

We denote the operation of inverting a structure by an enclosing green circle,
−1
,
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suggestively labeled by a green inverse (−1). In pictorial language, (5.58) is

Ab(δ) =
OL

1

2

4

3

LδdDisc[g] b

−1

L . (5.60)

This is a four-point pairing between the double-commutator and a particular con-
formal block, as can be seen by cutting along the lines of the operators 1, 2, 3, and
4:

Ab(δ) =



4

3

dDisc[g]

1

2

,
OL

1

2

4

3

b

−1

LLδ


·

(5.61)

The generalized Lorentzian inversion formula [28] also has this form,

C+
ab(∆, J) + C−ab(∆, J)

=



4

3

dDisc[g]

1

2

,

1

2

4

3

b

−1

La

−1

L ×O
L


.

(5.62)

Here, the cross represents the formation of a conformal block from a pair of three-point
structures by summing over descendent operators and dividing by their norms. The
norms are computed using a two-point structure, which in this case is 〈L[O]L[O]〉−1,
defined in (5.96).
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Therefore, we can relate Ab(δ) to C±ab(δ+ 1, J1 +J2−1) by relating the two conformal
blocks in (5.61) and (5.62),

OL

1

2

4

3

b

−1

LLδ = γa

1

2

4

3

b

−1

La

−1

L ×O
L

.

(5.63)

Both conformal blocks are obtained by gluing three-point structures. The structure
appearing on the right is the same for both blocks, so we only need to relate the
structures on the left,

1

2

Lδ
OL

= γa

1

2

a

−1

L
OL

. (5.64)

The inverse of the cross on the right-hand side of (5.63) is integration against a
two-point structure.13 Here, the two-point structure is indicated by a dot on the left-
hand side of (5.64). The operation of integrating against a two-point structure is a
Lorentzian shadow transform, which changes the quantum numbers from (1−J, 1−∆)

(labeled as OL with an outgoing arrow) to (J + d− 1,∆− d+ 1) (labeled as OL with
an ingoing arrow).

Thus, we can compute γa by pairing both sides of (5.64) with the structure 〈O4L[O]O3〉(a),

γa =

1

2

Lδa

OLL =


1

2

Lδa
OL

L
OL

,
OLOL

 .

(5.65)

Here, we rearranged our diagram into a pairing of two-point structures. Finally, we
must compute the bubble diagram on the right-hand side. After substituting the

13The correct two-point structure is actually 〈L[O]L[O]〉−1, but this detail is not reflected in the
diagrams for the sake of simplicity.
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definition of Lδ (5.54), we obtain an expression involving a triple light transform of
the three-point structure a,

1

2

a
OL

L
OL tδ

L
+

L −

. (5.66)

The superscripts L± are related to a subtlety not captured in the diagrams. The
double-discontinuity produces additional θ-functions in the expression for the block
on the right-hand side of (5.61). On the left-hand side of (5.64), these theta functions
modify the kernel Lδ so that the light-transforms become “half light-transforms” L±,
i.e. null integrals over semi-infinite lines. These are what appear in (5.66).14

It turns out that the result of (5.66), and therefore also γa, is remarkably simple.
In section 5.3.4.4, we conjecture a formula for it in the case of an arbitrary three-
point structure 〈0|O1OO2|0〉(a) of operators in arbitrary representations. Putting
everything together, we obtain

Ab(δ) = γa(C+
ab(δ + 1, J1 + J2 − 1) + C−ab(δ + 1, J1 + J2 − 1)), (5.67)

which can be written

〈Ω|O4WδO3|Ω〉 = −γa〈Ω|O4

(
O+
δ+1,J1+J2−1(a) + O−δ+1,J1+J2−1(a)

)
O3|Ω〉. (5.68)

This expresses matrix elements of the smeared productWδ in terms of matrix elements
of light-ray operators. The smearing can be undone by suitably integrating over δ,

〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉 =

∫
dδ Cδ(z1, z2, ∂z)〈Ω|O4Wδ(x, z)O3|Ω〉,

(5.69)

where Cδ is a differential operator. Lifting this to an operator equation, we have

L[O1](x, z1)L[O2](x, z2)

= −
∫
dδ γaCδ(z1, z2, ∂z)

(
O+
δ+1,J1+J2−1(a)(x, z) + O−δ+1,J1+J2−1(a)(x, z)

)
. (5.70)

Finally, the δ-contour can be closed to the right, picking up a sum over light-ray
operators, as discussed in section 5.5.2.

14If we took three full light-transforms of a time-ordered three-point structure in an appropriate
causal configuration, we would get two pieces, one of which would be the object appearing in (5.66),
and the other would differ by a permutation.
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5.3.2 Review: light-ray operators and the Lorentzian inversion formula

Let us now proceed with the detailed computation. The objects that will ultimately
appear in the OPE expansion of L[O1](x, z1)L[O2](x, z2) are light-ray operators [28].
In this section, we collect some facts about these operators that will be needed below.

For simplicity, consider first the case where O1 = φ1 and O2 = φ2 are scalars. Light-
ray operators are defined by starting with a bi-local object that transforms as a
primary under the conformal group S̃O(d, 2),

O±∆,J(x, z) =

∫
ddx1d

dx2K
±
∆,J(x1, x2, x, z)φ1(x1)φ2(x2). (5.71)

The object O±∆,J has dimension 1−J and spin 1−∆, which are the quantum numbers
of the light-transform of an operator with dimension ∆ and spin J . The ± sign is
the signature, which is the eigenvalue under a combination of CRT and Hermitian
conjugation, as discussed in section 5.2.1.

The object O±∆,J is meromorphic in ∆ and J and has poles of the form

O±∆,J(x, z) ∼ 1

∆−∆±i (J)
O±i,J(x, z). (5.72)

Its residues O±i,J are light-ray operators. Light-ray operators are analytic continua-
tions in spin of light-transforms of local operators. When J is a nonnegative integer,
we have

O(−1)J

i,J = f12Oi,JL[Oi,J ], J ∈ Z≥0. (5.73)

Here, Oi,J is a spin-J operator appearing in the φ1× φ2 OPE with coefficient f12Oi,J ,
and i labels different Regge trajectories. Note that the even-signature light-ray op-
erators O+

i,J are analytic continuations in J of light-transformed even-spin operators,
while O−i,J are analytic continuations in J of light-transformed odd-spin operators.

Matrix elements of light-ray operators can be computed via a Lorentzian inversion
formula. Let φ3, φ4 be primary scalars for simplicity. A time-ordered correlator
involving the object O±∆,J is given by

〈φ4O±∆,J(x, z)φ3〉Ω = −C±(∆, J)〈0|φ4L[O](x, z)φ3|0〉. (5.74)

We use the shorthand notation that φi is at position xi unless otherwise specified.
We also use the notation from [28] where correlators in the state |Ω〉 are physical,
while correlators in the state |0〉 are conformally-invariant structures for the given
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representations. The structure on the right-hand side of (5.74) is the light-transform of
the standard three-point structure for two scalars and a spin-J operator, analytically
continued in J ,

〈0|φ4L[O](x0, z0)φ3|0〉

=
L(φ3φ4[O]) (2V0,34)1−∆

(x2
34)

∆3+∆4−(1−J)−(1−∆)
2 (x2

30)
∆3+(1−J)−∆4+(1−∆)

2 (−x2
40)

∆4+(1−J)−∆3+(1−∆)
2

. (5.75)

The coefficient L(φ3φ4[O]) is given in (5.45).

In (5.74), the time-ordering acts on φ1, φ2 inside O±∆,J . Thus the object O±∆,J is not
really an operator. However, its singularities as a function of ∆ come only from the
region where φ4 acts on the future vacuum and φ3 acts on the past vacuum, so upon
taking residues, we obtain a genuine operator

〈Ω|φ4O±i,J(x, z)φ3|Ω〉 = Res
∆=∆±i (J)

〈φ4O±∆,J(x, z)φ3〉Ω

= − Res
∆=∆±i (J)

C±(∆, J)〈0|φ4L[O](x, z)φ3|0〉. (5.76)

The coefficient function C±(∆, J) is given by Caron-Huot’s formula [25]

C±(∆, J) =
κ∆+J

4

[∫ 1

0

∫ 1

0

dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2

dDisct[g(z, z)]G∆̃i
J+d−1,∆−d+1(z, z)

±
∫ 0

−∞

∫ 0

−∞

dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2

dDiscu[g(z, z)]Ĝ∆̃i
J+d−1,∆−d+1(z, z)

]
,

(5.77)

where

κ∆+J =
Γ(∆+J+∆1−∆2

2
)Γ(∆+J−∆1+∆2

2
)Γ(∆+J+∆3−∆4

2
)Γ(∆+J−∆3+∆4

2
)

2π2Γ(∆ + J)Γ(∆ + J − 1)
. (5.78)

Here, we have defined a stripped four-point function g(z, z), which is a function of
conformal cross-ratios15

〈φ1φ2φ3φ4〉Ω = T∆i(xi)g(z, z)

T∆i(xi) ≡
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)∆2−∆1
2
(
x2

14

x2
13

)∆3−∆4
2

. (5.79)

15We use the letter z both for future-pointing null vectors and for conformal cross-ratios. We
hope that this does not cause confusion.
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The t-channel double-discontinuity dDisct is defined by

−2dDisct[g](z, z) ≡ 〈Ω|[φ4, φ1][φ2, φ3]|Ω〉
|T∆i(xi)|

= −2 cos(πφ) g(z, z) + eiπφg	(z, z) + e−iπφg�(z, z),

φ = ∆2−∆1+∆3−∆4

2
, (5.80)

where g	 or g� indicates we should take z around 1 in the direction shown, leaving z
held fixed. Similarly,

−2dDiscu[g](z, z) ≡ 〈Ω|[φ4, φ2][φ1, φ3]|Ω〉
|T∆i(xi)|

= −2 cos (πφ′) g(z, z) + eiπφ
′
g�(z, z) + e−iπφ

′
g	(z, z),

φ′ = ∆2−∆1+∆4−∆3

2
. (5.81)

where now g	 or g� indicates we should take z around −∞ in the direction shown,
leaving z held fixed.

Finally, G∆̃i
∆,J(z, z) denotes a conformal block for external scalars with dimensions

∆̃i ≡ d−∆i, exchanging an operator with dimension ∆ and spin J . In our conventions,
it behaves as z

∆−J
2 z

∆+J
2 for positive cross-ratios satisfying z � z � 1. Similarly,

Ĝ∆̃i
∆,J(z, z) is a solution to the Casimir equation that behaves like (−z)

∆−J
2 (−z)

∆+J
2 for

negative cross-ratios satisfying |z| � |z| � 1. In Caron-Huot’s formula (5.77), G and
Ĝ appear with dimension and spin swapped according to (∆, J)→ (J+d−1,∆−d+1).

5.3.2.1 More general representations

Before generalizing to non-scalar O1,O2, we must establish some notation for con-
formal representations. A primary operator O is labeled by a dimension ∆ and a
representation ρ of SO(d− 1, 1), which we can think of as a list of weights under the
Cartan subalgebra of SO(d− 1, 1).

When O is local, ρ is finite-dimensional. In this case, we define shadow and Hermitian
conjugate representations to have weights

Õ : (d−∆, ρR),

O† : (∆, (ρR)∗), (5.82)

where ρR denotes the reflection of ρ and (ρR)∗ is the dual of ρR. The conjugate
shadow representation Õ† has weights

Õ† : (d−∆, ρ∗), (5.83)
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and thus admits a conformally-invariant pairing with O:∫
ddxO(x)Õ†(x), (5.84)

where the SO(d− 1, 1) indices of O(x) and Õ†(x) are implicitly contracted.

For continuous-spin operators, ρ is no longer finite-dimensional. It has weights ρ =

(J, λ), where J ∈ C is spin and λ is a finite-dimensional representation of SO(d− 2).
We can think of J as the length of the first row of the Young diagram of ρ, while λ
encodes the remaining rows. Altogether, we specify the multiplet of O by a triplet
(∆, J, λ).

Operators with non-integer J admit a different kind of conformally-invariant pairing∫
ddxDd−2zO(x, z)OS†(x, z). (5.85)

Here, OS† has weights

OS† : (d−∆, 2− d− J, λ∗). (5.86)

In (5.85), we implicitly contract the SO(d − 2) indices in the representations λ and
λ∗. The measure Dd−2z is defined by

Dd−2z ≡ ddzδ(z2)θ(z0)

volR+

, (5.87)

where R+ acts by rescaling z. Note that Dd−2zO(x, z)OS†(x, z) is homogeneous
of degree 0 in z, so that the integral is well-defined. Using the pairings (5.84) for
integer-spin operators and (5.85) for continuous-spin operators, we can construct
conformally-invariant pairings between two- and three-point structures, as we will see
below.

In the diagrams in section 5.3.1 and below, we use an outgoing arrow labeled O
to denote a representation O, and an ingoing arrow labeled O to denote the dual
representation, either Õ† or OS† as appropriate to O. Joining lines represents the
conformally-invariant pairing appropriate for the representations.

When O1,O2 are not scalars, the OPE O1×O2 can contain operators O with weights
(∆, J, λ), where λ is nontrivial. In addition, O can appear with multiple tensor
structures. Physical three-point correlators are linear combinations of the possible
structures, labeled by indices a, b

〈O1O2O†〉Ω = f12O†(a)〈O1O2O†〉(a),

〈O3O4O〉Ω = f34O(b)〈O3O4O〉(b). (5.88)
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(Sums over a, b are implicit.) Following the notation of [28] (see also appendix D.1),
we use the subscript Ω to distinguish physical correlators from conformally-invariant
structures.

Thus, when O1,O2 are not scalars, O±∆,J gets generalized to have an additional SO(d−
2) representation label λ and structure label a: O±∆,J,λ(a). It has residues

O±∆,J,λ(a) ∼
1

∆−∆±i (J, λ)
Oi,J,λ(a), (5.89)

which for integer J and signature ± = (−1)J become light-transforms of local oper-
ators:

O(−1)J

i,J,λ(a) = f12O†i,J,λ(a)L[Oi,J,λ], J ∈ Z≥0. (5.90)

Let O3,O4 be primary operators (not necessarily scalars). Three-point functions
containing O±i,J,λ(a) are given by

〈O4O±∆,J,λ(a)(x, z)O3〉Ω = −C±ab(∆, J, λ)〈0|O4L[O](x, z)O3|0〉(b),

〈Ω|O4O±i,J,λ(a)(x, z)O3|Ω〉Ω = − Res
∆=∆±i (J,λ)

C±ab(∆, J, λ)〈0|O4L[O](x, z)O3|0〉(b). (5.91)

(We suppress spin indices on O3,O4 and only indicate the x, z dependence of O.) The
coefficients C±ab(∆, J, λ) are given by the generalized Lorentzian inversion formula

C±ab(∆, J, λ)

=
−1

2πi

∫
4>1
2>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈O|[O4,O1][O2,O3]|O〉

× T −1
2 T −1

4

(
T2〈0|O2L[O†]O1|0〉(a)

)−1 (T4〈0|O4L[O]O3|0〉(b)
)−1

〈L[O]L[O†]〉−1

± −1

2πi

∫
4>2
1>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈O|[O4,O2][O1,O3]|O〉

× T −1
1 T −1

4

(
T1〈0|O

†
2L[O†](x,−z)O†1|0〉(a)

)−1 (
T4〈0|O4L[O]O3|0〉(b)

)−1

〈L[O]L[O†]〉−1
.

(5.92)

A cartoon diagram for the first integral on the right hand side is given in (5.62). Let
us describe the ingredients in (5.92) in detail. Again, we use the shorthand notation
that Oi is at position xi. The integral is over a Lorentzian configuration where 4 > 1,
2 > 3, and all other pairs of points are spacelike separated. In terms of cross-ratios,
this is the same as the integration region 0 < z, z < 1 in (5.77).
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The object in the second line of (5.92) is schematic notation for a conformal block
obtained by merging the two three-point structures

(
T2〈0|O2L[O†]O1|0〉(a)

)−1 and(
T4〈0|O4L[O]O3|0〉(b)

)−1, using the two-point structure 〈L[O]L[O†]〉−1. (It is not
simply a ratio of three-point and two-point structures.) The precise merging pro-
cedure is described in [28] — it is essentially the usual procedure of summing over
products of descendent three-point functions to obtain a conformal block, generalized
to continuous spin. We will see some examples below. Pictorially, the block is

1

2

4

3

b

−1

La

−1

L ×O
L

. (5.93)

The three-point structures making up the conformal block are defined by((
T2〈0|O2L[O†]O1|0〉(a)

)−1
, T2〈0|O2L[O†]O1|0〉(c)

)
L

= δca,((
T4〈0|O4L[O]O3|0〉(b)

)−1
, T4〈0|O4L[O]O3|0〉(d)

)
L

= δdb , (5.94)

where Ti is translation to the next Minkowski patch discussed in section 5.2.2. Here,
(·, ·)L is a conformally-invariant pairing defined by using (5.84) for O1,O2 and (5.85)
for O:(

〈O1O2O〉, 〈Õ†1Õ
†
2OS†〉

)
L

≡
∫

2<1
x≈1,2

ddx1d
dx2d

dxDd−2z

vol(S̃O(d, 2))
〈O1(x1)O2(x2)O(x, z)〉〈Õ†1(x1)Õ†2(x2)OS†(x, z)〉

=
1

22d−2 vol(SO(d− 2))

〈O1(e0)O2(0)O(∞, z)〉〈Õ†1(e0)Õ†2(0)OS†(∞, z)〉
(−2z · e0)2−d . (5.95)

The notation 1/ vol(S̃O(d, 2)), means that the integral should be gauge-fixed using the
Fadeev-Popov procedure. To obtain the last line, we used S̃O(d, 2) transformations
to gauge-fix x2 = 0, x1 = e0, x = ∞, where e0 is a unit-vector in the time direction.
Finite-dimensional Lorentz indices are implicitly contracted between the two three-
point structures.

The two-point structure in the denominator of (5.92) is defined by(
〈L[O]L[O†]〉−1, 〈L[O]L[O†]〉

)
L

= 1. (5.96)
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Here, 〈L[O]L[O†]〉 is the double light-transform of a time-ordered two-point struc-
ture. Even though the light-transform of an operator annihilates the vacuum, the
light-transform of a time-ordered structure is delta-function supported. After light-
transforming again, we obtain a two-point structure that is nonzero at separated
points. These details are explained in [28]. The Lorentzian two-point pairing is given
by

(〈OO†〉, 〈OSOS†〉)L
vol(SO(1, 1))2

≡
∫
x1≈x2

ddx1d
dx2D

d−2z1D
d−2z2

vol(S̃O(d, 2))
〈Oa(x1, z1)Ob†(x2, z2)〉〈OS

b (x2, z2)OS†
a (x1, z1)〉,

=
〈Oa(0, z1)Ob†(∞, z2)〉〈OS

b (∞, z2)OS†
a (0, z1)〉

22d−2 vol(SO(d− 2))

1

(−2z1 · z2)2−d . (5.97)

In the last line, we gauge-fixed x1 = 0, x2 =∞.

The last line of (5.92) includes a three-point structure that has been acted on by a
combination of CRT and Hermitian conjugation,

Oi
† ≡ ((CRT)Oi(CRT))† ,

x = (−x0,−x1, x2, · · · , xd−1),

z = (−z0,−z1, z2, · · · , zd−1). (5.98)

The role of this term is to ensure that O± has the correct signature ±1. We give more
details on this term in appendix D.3.

5.3.3 Harmonic analysis on the celestial sphere

Consider a product of light-transforms of local operators, placed at the same space-
time point

L[O1](x, z1)L[O2](x, z2). (5.99)

For simplicity, we takeO1,O2 to be traceless symmetric tensors. Each light-transformed
operator has dimension 1−Ji, and thus the product (5.99) transforms like an operator
with dimension (1− J1) + (1− J2) = 1− (J1 + J2 − 1) located at x.

We would like to additionally decompose (5.99) into irreducible representations of
the Lorentz group that fixes x. To do so, we can use harmonic analysis [82] (or
“conglomeration” [87]) for SO(d− 1, 1), treating it as a Euclidean conformal group in
d − 2 dimensions. Harmonic analysis for SO(d + 1, 1) was reviewed in [194]. In this
section, we collect some of the needed ingredients from [194], replacing d→ d− 2.
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The SO(d−1, 1) representations that will appear are d−2-dimensional operator repre-
sentations Pδ,λ with scaling dimension δ and finite-dimensional SO(d−2)-representation
λ. We write Pδ when λ is trivial. We can think of the null vectors zi ∈ Rd−1,1 as
embedding-space coordinates for the celestial sphere Sd−2. In this language, for ex-
ample, we have a celestial three-point structure

〈Pδ1(z1)Pδ2(z2)Pδ3(z3)〉 =
1

z
δ1+δ2−δ3

2
12 z

δ2+δ3−δ1
2

23 z
δ3+δ1−δ2

2
13

,

zij ≡ −2zi · zj. (5.100)

Here, Pδ are not physical operators — they label representations of SO(d− 1, 1), and
(5.100) denotes the unique three-point structure (up to normalization) for the given
representations. We will also use the notation [28]

P̃δ,λ ≡ P2−d−δ,λR , P̃†δ,λ ≡ P2−d−δ,λ∗ , (5.101)

where λR is the reflected representation and λ∗ is the dual representation to λ.16

We will be particularly interested in principal series representations of SO(d − 1, 1),
which have δ ∈ d−2

2
+ iR. Their significance is that they furnish a complete set

of irreducible representations for decomposing objects that transform under SO(d −
1, 1).17 For example, consider a function f(z1, z2) that transforms like a product of
scalar operators with dimensions δ1, δ2 on Sd−2. It can be decomposed into traceless-
symmetric-tensor principal series representations, i.e. representations where λ is the
spin-j traceless symmetric tensor representation of SO(d − 2). We denote these by
Pδ,j.

Let us define the “partial wave”

Wδ,j(z) ≡ αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉f(z1, z2) (5.102)

= tδ,j f
...

1

2

Pδ,j
, (5.103)

where

αδ,j ≡
µ(d−2)(δ, j)S

(d−2)
E (Pδ1Pδ2 [P̃†δ,j])

(〈Pδ1Pδ2P̃
†
δ,j〉, 〈P̃

†
δ1
P̃†δ2Pδ,j〉)

(5.104)

16In odd dimensions, λR = λ. In even dimensions, λR is given by swapping the spinor Dynkin
labels of λ.

17When d = 3, we can also have discrete-series representations appearing. We comment on the
role of such representations in section 5.5.2.
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and

tδ,j(z1, z2, z) = αδ,j〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉. (5.105)

The integration measure in (5.102) is given by (5.87). The quantities in (5.104)
are the Plancherel measure µ(d−2)(δ, j) for SO(d − 1, 1), a shadow transform factor
S

(d−2)
E (Pδ1Pδ2 [P̃δ,j]), and a three-point pairing (〈Pδ1Pδ2P̃

†
δ,j〉, 〈P̃

†
δ1
P̃†δ2Pδ,j〉). Explicit

definitions and formulas for all of these quantities are available in [194]. We will not
need them here, since these factors will ultimately cancel. The only formula we will
need is the “bubble” integral [194]

tδ,j

1

2

Pδ,j P†δ,j
=

Pδ,j P†δ,j × vol SO(1, 1), (5.106)

which is

αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Pδ1(z1)Pδ2(z2)P†δ,j(z
′)〉

= 〈Pδ,j(z)P†δ,j(z
′)〉 vol SO(1, 1). (5.107)

Here 〈Pδ,j(z)P†δ,j(z′)〉 is a two-point structure on the celestial sphere.18 The infinite
factor vol SO(1, 1) will cancel in all calculations below. In the notation of section 5.3.1,
we have

tδ(z1, z2, z) = tδ,0(z1, z2, z). (5.108)

The function f(z1, z2) can be expanded in partial waves [82, 194]

f(z1, z2) =
∞∑
j=0

∫ d−2
2

+i∞

d−2
2
−i∞

dδ

2πi
Cδ,j(z1, z2, ∂z2)Wδ,j(z2). (5.109)

The differential operator Cδ,j(z1, z2, ∂z) is defined by

Cδ,j(z1, z2, ∂z2)〈Pδ,j(z2)P†δ,j(z
′)〉 = 〈Pδ1(z1)Pδ2(z2)P†δ,j(z

′)〉, (5.110)

This is simply the d−2-dimensional version of the usual differential operator appearing
in an OPE of conformal primaries. Thus, (5.109) takes the form of an OPE in d− 2

dimensions, where we have a contour integral over the principal series δ ∈ d−2
2

+ iR
18Specifically, it is the two-point structure used to obtain the shadow factor S(d−2)

E in the definition
of αδ,j .
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instead of a sum over δ. The contour can sometimes be deformed to give a sum, as
we will see below.

Several objects above carry indices, and we are leaving the contraction of indices
between dual objects implicit. For example, Pδ,j(z) carries j traceless-symmetric
indices for the tangent bundle of Sd−2, and consequently Wδ,j(z) does too. The
differential operator Cδ,j also carries these indices, and they are contracted in (5.109).

When f(z1, z2) transforms like a product of more general operators in representations
Pδ1,λ1 and Pδ2,λ2 , then there can be multiple celestial three-point structures

〈P̃†δ1,λ1
(z1)P̃†δ2,λ2

(z2)Pδ,λ(z)〉(α), (5.111)

labeled by an index α. Consequently, the partial wave W (α)
δ,λ (z) and differential oper-

ator Cδ,λ,α carry additional structure labels, and we have a more general expansion

f(z1, z2) =
∑
λ,α

∫ d−2
2

+i∞

d−2
2
−i∞

dδ

2πi
Cδ,λ,α(z1, z2, ∂z2)W

(α)
δ,λ (z2). (5.112)

5.3.4 Light-ray OPE from the Lorentzian inversion formula

Applying (5.102) and (5.109) to the product (5.99), we have

L[O1](x, z1)L[O2](x, z2) =
∞∑
j=0

∫ d−2
2

+i∞

d−2
2
−i∞

dδ

2πi
Cδ,j(z1, z2, ∂z2)Wδ,j(x, z2), (5.113)

where the partial waves are given by

Wδ,j(x, z) = αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉L[O1](x, z1)L[O2](x, z2)

=

∫
ddx1d

dx2D
d−2z1D

d−2z2Lδ,j(x1, z1, x2, z2;x, z)O1(x1, z1)O2(x2, z2),

(5.114)

and the kernel Lδ,j is given by

Lδ,j(x1, z1, x2, z2;x, z)

≡ αδ,j〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

×
∫ ∞
−∞

dα1dα2 (−α1)−δ1−J1−1(−α2)−δ2−J2−1δ(d)

(
x− z1

α1

− x1

)
δ(d)

(
x− z2

α2

− x2

)
.

(5.115)

Here, we have defined δi = ∆i − 1. We are taking O1,O2 to be traceless symmetric
tensors for simplicity, so that the partial wave expansion (5.113) only includes traceless
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symmetric tensors of spin-j on the celestial sphere. We remove this restriction in
section 5.3.4.4. We can represent the kernel Lδ,j pictorially as:

Lδ,j

1

2

OL =

1

2

OL

L

L

tδ,j
. (5.116)

The blue solid and red dashed lines represent the Minkowski and celestial coordinates,
respectively. We will not need to plug in the definition of Lδ,j until the very end of
our computation, accordingly we will omit the blue and red lines until necessary.

The object Wδ,j(x, z) is a bilocal integral that transforms like a primary of SO(d, 2)

with weights (1 − J, 1 −∆, j), where J = J1 + J2 − 1 and ∆ = δ + 1. O±∆,J,j(a)(x, z)

is another bilocal integral that transforms in the same way. However, the integration
kernels that define Wδ,j and O±∆,J,j(a) are very different, so it is not immediately clear
what the relationship is between them. For example, the kernel Lδ,j has δ-function
support when x1, x2 lie on the future null cone of x. By contrast, the kernel used to
define O±∆,J,j(a) has support off the null cone of x.

Another puzzle is that Lδ,j is nonvanishing for all j ∈ Z≥0. By contrast, the object
O±∆,J,j(a)(x, z) is only defined when j is such that operators with weights (∆, J, j) can
appear in the O1 × O2 OPE. For fixed O1,O2, this condition restricts j to a finite
set. For example, if O1,O2 are scalars, then only operators with j = 0 (i.e. traceless
symmetric tensors of SO(d− 1, 1)) can appear in O1×O2. See section 5.3.4.4 for the
rule that determines the allowed values of j.

Despite these puzzles, Wδ,j will actually be a linear combination of O±∆,J,j(a)’s. A
necessary condition for this to be true is that exotic values of j (i.e. values that aren’t
allowed in the O1×O2 OPE) lead to vanishing Wδ,j, even though Lδ,j is nonzero. We
will see that this is indeed true.

5.3.4.1 Matrix elements of Wδ,j

To determine Wδ,j(x, z), it suffices to study its matrix elements in states created by
local primary operators O3 and O4:

〈Ω|O4Wδ,j(x, z)O3|Ω〉

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉.

(5.117)
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1

x

x+

2

3

3−

4

Figure 5.6: We study a configuration where 4 > x > 3−. Points 1 and 2 are integrated
over distinct null lines from x to x+ (blue and purple). The diamond formed by the
past null cone of 4 and future null cone of 3− is indicated in gray.

As usual, Oi is at point xi unless otherwise specified. Without loss of generality, let
us assume the causal relationships 4 > x > 3− (figure 5.6). Other causal relationships
can be obtained by analytic continuation in x, x3, x4.

Because L[Oi] annihilates the vacuum, we can write (5.117) as the integral of a
double-commutator

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Ω|
[
O4,L[O1](x, z1)

][
L[O2](x, z2),O3

]
|Ω〉

=

∫
ddx1d

dx2D
d−2z1D

d−2z2Lδ,j(x1, z1, x2, z2;x, z)θ(4 > 1)θ(2 > 3)

× 〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉. (5.118)

In the last line, we introduced θ-functions θ(4 > 1)θ(2 > 3) that remove the regions
where x1 is spacelike from x4 and x2 is spacelike from x3. They are redundant because
commutators vanish at spacelike separation. However, they will play an important
role later, so we include them. Pictorially, we have

OL
1

2

4

3

Lδ,jg =
OL

1

2

4

3

Lδ,jdDisc[g] .

(5.119)
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To avoid visual clutter, we will omit theta functions in our diagrams.

The fact that (5.118) is the integral of a double commutator suggests that we should
relate it to the Lorentzian inversion formula. In fact, the proof of the generalized
Lorentzian inversion formula in [28] proceeds from an expression similar to (5.118).
We now follow the steps of that derivation.

First note that conformal invariance implies

〈Ω|O4Wδ,j(x, z)O3|Ω〉 = Ab(δ, j)〈0|O4L[O](x, z)O3|0〉(b), (5.120)

where O has quantum numbers (∆, J, λ) = (δ+ 1, J1 + J2− 1, j), 〈0|O4OO3|0〉(b) is a
basis of structures for the given representations, and Ab(δ, j) are coefficients we would
like to determine. A sum over b is implicit. In terms of diagrams, that is

OL
1

2

4

3

Lδ,jdDisc[g] = Ab(δ, j)×
OL

4

3

b L
O

.

(5.121)

Following [28], it is useful to act on both sides with T4 (equivalently relabel x4 →
T4x4 = x+

4 ), giving

T4〈Ω|O4Wδ,j(x, z)O3|Ω〉 = Ab(δ, j)T4〈0|O4L[O](x, z)O3|0〉(b). (5.122)

Note that T4 simply acts on three-point structures by multiplication by a phase.
Nevertheless, it is useful to keep the abstract notation in (5.122). This relabeling
turns the causal relationship 4 > x > 3− into 3 > 4 and 3 ≈ x and 4 ≈ x (see
figure 5.7). Here i ≈ j means xi is spacelike from xj, see appendix D.1. We write
these relationships compactly as (3 > 4) ≈ x. Our Lorentzian pairing (5.95) is
defined for this type of causal relationship. Thus, to isolate Ab(δ, j), we can take the
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Lorentzian pairing of both sides with a dual structure

Ab(δ, j) =
OL

1

2

4

3

Lδ,jdDisc[g] b

−1

L . (5.123)

This gives

Ab(δ, j) =
((
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1
, T4〈Ω|O4Wδ,j(x, z)O3|Ω〉

)
L

=

∫
4>1
2>3

ddx1d
dx2d

dx3d
dx4D

d−2z1D
d−2z2

vol S̃O(d, 2)
〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉

× T −1
2 T −1

4

[∫
ddxDd−2z

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1

× (T2Lδ,j)(x1, z1, x2, z2;x, z)θ(4+ > 1)θ(2+ > 3)

]
.

(5.124)

Here, we have plugged in (5.95) and (5.118). We then changed variables x4 → x−4 ,
acted with T −1

2 T2 in the last line, and used T2θ(2 > 3) = θ(2+ > 3). Again, these
relabelings are for the purposes of later applying the Lorentzian pairing (5.95).

The bracketed quantity in (5.124) is the object obtained by cutting the pairing (5.123)
on the lines labeled 1, 2, 3, and 4. Because of the factors T −1

2 T −1
4 outside the

brackets, the configuration of points inside the brackets (figure 5.7) is obtained from
figure 5.6 by relabeling 2 → 2+ and 4 → 4+. Note that the bracketed quantity
is a conformally-invariant function of x1, x2, x3, x4 that is an eigenfunction of the
conformal Casimirs acting simultaneously on points 1, 2 (or equivalently 3, 4). Hence
it is a linear combination of conformal blocks. To compute it, we can follow the
computation in appendix H of [28]. The kernel T2Lδ,j forces x to lie on the past
lightcone of x1 and the future lightcone of x2 (see figure 5.7). Thus, as x1 → x2

(equivalently x3 → x4) the integration point x is forced to stay away from x3, x4.
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1

x

x+

2

2+

3

3−

4

4+

Figure 5.7: After relabeling 2 → 2+ and 4 → 4+, we have 4+ > 1 & x & 2 > 3−,
where “i & j” means i is on the future null cone of j. Let us imagine that 1, 2, 3, 4
are fixed and ask where x can be. We see that x is spacelike from 3, 4 and 3 > 4,
equivalently (3 > 4) ≈ x. Furthermore, x is constrained to lie on the Sd−2 given by
the intersection of the past lightcone of 1 and future lightcone of 2. We show lightlike
segments between x and 1 (solid blue) and between 2+ and x+ (solid purple), which
are subsets of the light-transform contours from figure 5.6. The image of the solid
purple segment under T −1 is shown in dotted purple.

1

x

2

x′

3

4

Figure 5.8: To compute the block appearing in (5.124), we take the limit 3, 4 → x′

inside the integral over x, z. Note that we have (1 > 2) ≈ x′.

This means we can compute the integral by taking an OPE-type limit x3, x4 → x′

inside the integrand (figure 5.8).

First, we write the 34 three-point structure as a linear operator B(x3, x4, ∂x′ , ∂z′)
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acting on a two-point function19

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1
= B(x3, x4, ∂x′ , ∂z′)〈OF(x′, z′)OF†(x, z)〉. (5.125)

Here, OF† has the weights of something that can be paired with L[O], namely (J +

d− 1,∆− d+ 1, j) where ∆ = δ + 1 and J = J1 + J2 − 1. We must also replace

θ(4+ > 1)θ(2+ > 3)→ θ(x′+ > 1)θ(2+ > x′), (5.126)

since we are taking the limit x3, x4 → x′. Because of the restriction 1 > 2, (5.126) is
equivalent to θ((1 > 2) ≈ x′). The two-point function in (5.125) is then integrated
against the 12 three-point structure, giving a Lorentzian shadow transform∫
x≈x′

ddxDd−2z〈OF(x′, z′)OF†(x, z)〉T2Lδ,j(x1, z1, x2, z2;x, z) = S[T2Lδ,j](x1, z1, x2, z2;x′, z′).

(5.127)

The result is the conformal block

B(x3, x4, ∂x′ , ∂z′)S[T2Lδ,j](x1, z1, x2, z2;x′, z′)θ((1 > 2) ≈ x′)

=
(S[T2Lδ,j]θ((1 > 2) ≈ x′))

(
T4〈0|O4L[O](x, z)O3|0〉(b)

)−1

〈OFOF†〉
. (5.128)

In the second line, we use the notation for a conformal block where the three-point
structures in the numerator should be merged using the two-point function in the de-
nominator. The precise meaning of this notation is the first line of (5.128). Pictorially,
the block can be represented as

OL

1

2

4

3

b

−1

LLδ,j × . (5.129)

At this point, we can understand why Ab(δ, j) vanishes for exotic j not allowed in
the O1 × O2 OPE. Recall that Lδ,j does not vanish for exotic j. This is possible
essentially because Lδ,j involves δ-functions, and the presence of these δ-functions
changes the space of conformally-invariant three-point structures. However, the
shadow-transformed structure S[T2Lδ,j] does not contain any δ-functions because

19Although we have written B as a differential operator in z′, it must actually be an integral
operator when J is not an integer. See [28] for an explicit expression.
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they are integrated over in (5.127). Thus, it is subject to the usual classification
of conformally-invariant three-point structures. It transforms like a three-point func-
tion 〈O1O2OF†〉, where OF† has quantum numbers (J+d−1,∆−d+1, j). The space
of conformally-invariant three-point structures for 〈O1O2OF†〉 is the same as the space
of conformally-invariant three-point structures for 〈O1O2O†〉. Thus, S[T2Lδ,j] must
vanish for exotic j.

5.3.4.2 Relating to the inversion formula

After writing the quantity in brackets in (5.124) as a conformal block, our formula
for Ab(δ, j) looks extremely similar to the Lorentzian inversion formula (5.92). There
are two main differences. Firstly, our formula for Ab(δ, j) contains the three-point
structure S[T2Lδ,j]θ((1 > 2) ≈ x′) instead of (T2〈0|O2L[O†]O1|0〉(a))−1. We need to
express the former as a linear combination of the latter, and this is achieved by pairing
with T2〈0|O2L[O†]O1|0〉(a).

The second difference is that (5.124) involves an integral only over the double-commutator
〈Ω[O4,O1][O2,O3]|Ω〉, corresponding to the “t-channel” term in (5.92). It does not
include a contribution from the “u-channel” term. This is accounted for by averaging
over even and odd spins.

In summary, comparing (5.128) and (5.92), we find

Ab(δ, j) = −2πi× 1

2

(
C+
ab(δ + 1, J1 + J2 − 1, j) + C−ab(δ + 1, J1 + J2 − 1, j)

)
× 〈L[O]L[O†]〉−1

〈OFOF†〉
(
S[T2Lδ,j]θ((1 > 2) ≈ x′), T2〈0|O2L[O†]O1|0〉(a)

)
L
.

(5.130)

Note that in this formula, the ratio of two-point structures 〈L[O]L[O†]〉−1

〈OFOF†〉 is simply a
number — it does not refer to the formation of a conformal block. The three-point
pairing can be simplified further by rewriting it as a two-point pairing:

1

2

Lδ,ja

OLL =


1

2

Lδ,ja
OL

L
OL†

,
OLOL†


L

.

(5.131)
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In full detail, we have(
S[T2Lδ,j]θ((1 > 2) ≈ x′), T2〈0|O2L[O†]O1|0〉(a)

)
L

=

∫
(1>2)≈x′
x≈x′

ddx1d
dx2d

dx′ddxDd−2z1D
d−2z2D

d−2z′Dd−2z

vol S̃O(d, 2)
〈OF(x′, z′)OF†(x, z)〉

× T2Lδ,j(x1, z1, x2, z2;x, z)T2〈0|O2(x2, z2)L[O†](x′, z′)O1(x1, z1)|0〉(a)

=
1

vol SO(1, 1)2

(
〈OFOF†〉,

∫
1≈x′
2>x′

ddx1d
dx2D

d−2z1D
d−2z2Lδ,j(x1, z1, x2, z2;x, z)

× 〈0|O2(x2, z2)L[O†](x′, z′)O1(x1, z1)|0〉(a)

)
L

.

(5.132)

In the last equality, we made the change of variables x2 → T −1
2 x2 = x−2 and recognized

the integrals over x, z, x′, z′ as a Lorentzian two-point pairing (5.97). The infinite
factors vol SO(1, 1)2 will cancel shortly. Plugging in the definition of Lδ,j (5.115), we
have

Ab(δ, j) = −πi
(
C+
ab(δ + 1, J1 + J2 − 1, j) + C−ab(δ + 1, J1 + J2 − 1, j)

)
×

(
〈L[O]L[O†]〉−1, Q

(a)
δ,j

)
L

vol SO(1, 1)2
, (5.133)

where

Q
(a)
δ,j (x, z;x′, z′) = αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

× 〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a).

(5.134)

Here, L−[O1] indicates that the light-transform contour should be restricted to x1

spacelike from x′, and L+[O2] indicates that the light-transform contour should be
restricted to x2 in the future of x′ (figure 5.9).

Thus our task reduces to expressing Qδ,j as a multiple of 〈L[O]L[O†]〉. To do so, it
suffices to set x =∞ and x′ = 0. Lorentz invariance and homogeneity in z’s guarantee
〈0|L+[O2](∞, z1)L[O†](0, z′)L−[O1](∞, z2)|0〉(a)

vol SO(1, 1)
= q

(a)
δ,j 〈Pδ1(z1)Pδ2(z2)P†δ,j(z

′)〉,

(5.135)

for some constant q(a)
δ,j . With hindsight, we have included a factor vol SO(1, 1)−1 on

the left-hand side so that q(a)
δ,j is finite. Applying the bubble formula (5.107), we find

1

vol SO(1, 1)2
Q

(a)
δ,j (∞, z, 0, z′) = q

(a)
δ,j 〈Pδ,j(z)P†δ,j(z

′)〉. (5.136)
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x

x+

x′

x′+

L−[O1]

L+[O2]

L[O†]

Figure 5.9: Integration contours for the triple light-transform
〈0|L+[O2]L[O†]L−[O1]|0〉. O† is integrated along a complete null line from x′

to x′+ (solid green). O1 is integrated along a half null line spacelike from x′ (solid
blue), and O2 is integrated along a half null line in the future of x′ (solid purple).

Meanwhile, Lorentz invariance and homogeneity imply

〈L[O](∞, z)L[O†](0, z′)〉 = rδ,j〈Pδ,j(z)P†δ,j(z
′)〉. (5.137)

So that

Ab(δ, j) = −πi
(
C+
ab(δ + 1, J1 + J2 − 1, j) + C−ab(δ + 1, J1 + J2 − 1, j)

) q(a)
δ,j

rδ,j
. (5.138)

Finally, combining (5.113), (5.120), (5.91), and writing δ = ∆− 1, we have

L[O1](x, z1)L[O2](x, z2)

= πi

jmax∑
j=0

∫ d
2

+i∞

d
2
−i∞

q
(a)
∆−1,j

r∆−1,j

Cδ,j(z1, z2, ∂z2)
(
O+

∆,J1+J2−1,j(a)(x, z2) + O−∆,J1+J2−1,j(a)(x, z2)
)
.

(5.139)

The differential operator Cδ,j is defined by (5.110). Here, jmax is the maximum “non-
exotic” value of j — specifically, the maximum length of the second row of the SO(d−
1, 1) Young diagrams associated to operators appearing in the O1 ×O2 OPE.

5.3.4.3 Example: scalar O1,O2

As an example, consider the case where O1 = φ1 and O2 = φ2 are scalars.20 We have
J = J1 + J2 − 1 = −1. Furthermore, jmax = 0 since only traceless symmetric tensors
of SO(d− 1, 1) can appear in the φ1 × φ2 OPE.

20As discussed in chapter 4, the product of light-transforms at coincident points may not be well-
defined in this case. In this section, we ignore these issues and assume the product is well-defined.
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Let us compute qδ,0 and rδ,0. The unique Wightman structure for two scalars and a
spin J = −1 operator is

〈0|φ2(x2)O(x0, z0)φ1(x1)|0〉 =
(2V0,12)−1

x∆1+∆2−∆+1
12 x∆2+∆−∆1−1

20 x∆+∆1−∆2−1
01

, (5.140)

The light-transform of O is given by (5.44) with the relabeling (1, 2, 3) → (2, 1, 0),
and J = −1. In embedding-space language, we find

〈0|φ2(X2)L[O](X0, Z0)φ1(X1)|0〉 =
L(φ1φ2[O])(2V0,12)1−∆

(X12)
∆1+∆2−3+∆

2 (X10)
∆1−∆2+3−∆

2 (−X20)
∆2−∆1+3−∆

2

,

(5.141)

where

Xij ≡ −2Xi ·Xj,

Vk,ij ≡
(Zk ·Xi)(Xk ·Xj)− (Zk ·Xj)(Xk ·Xi)

Xi ·Xj

. (5.142)

We should now specialize X0 = (1, 0, 0) and compute the remaining light transforms
L−[φ1](X∞, Z1) and L+[φ2](X∞, Z2). We set

X1 = Z1 − α1X∞ = (0, 0, z1)− α1(0, 1, 0),

X2 = Z2 − α2X∞ = (0, 0, z2)− α2(0, 1, 0),

X0 = (1, 0, 0),

Z0 = (0, 0, z0), (5.143)

and integrate

〈0|L+[φ2](X∞, Z2)L[O](X0, Z0)L−[φ1](X∞, Z1)|0〉
vol SO(1, 1)

=
L(φ1φ2[O])

vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1

(−2α2z0 · z1 + 2α1z0 · z2)1−∆

(−2z1 · z2)
∆1+∆2−3+∆

2 (−α1)
∆1−∆2+3−∆

2 α
∆2−∆1+3−∆

2
2

=
L(φ1φ2[O])

vol SO(1, 1)

(∫ ∞
0

dα2

α2

)
Γ(∆−1+∆1−∆2

2
)Γ(∆−1+∆2−∆1

2
)

Γ(∆− 1)
〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉

= − 2πi

∆− 2
〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉, (5.144)

where δi = ∆i−1, δ = ∆−1, and the celestial three-point structure 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉
is defined in (5.100). To get the third line, we integrated over α1. The infinite factor
vol SO(1, 1) cancels against the unbounded integral over α2. Alternatively, we could
have used SO(1, 1)-gauge invariance to fix α2 = 1.
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Thus, we find

q∆−1,0 = − 2πi

∆− 2
. (5.145)

Meanwhile, the quantity r∆−1,0 was computed in [28] to be

r∆−1,0 = − 2πi

∆ + J − 1

∣∣∣∣
J=−1

= − 2πi

∆− 2
. (5.146)

The ratio q∆−1,0/r∆−1,0 is simply 1! We find

L[φ1](x, z1)L[φ2](x, z2) = πi

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
C∆−1,0(z1, z2, ∂z2)

(
O+

∆,−1(x, z2) + O−∆,−1(x, z2)
)
.

(5.147)

5.3.4.4 Generalization and map to celestial structures

Let us summarize our result so far in slightly different language. In addition, we will
generalize to the case where O1,O2 are not necessarily traceless symmetric tensors.
Suppose Oi have weights (∆i, Ji, λi), where the λi are SO(d − 2) representations.
The light-transforms L[Oi](∞) transform as tensors in the representation λi on the
celestial sphere. To describe them, we can use the notation of appendix D.2. We
write L[Oi](∞, z, ~w), where ~w = w1, . . . , wn−1 ∈ Cd is a collection of null polarization
vectors orthogonal to z, encoding rows in the Young diagram of λi. The light-ray
operators appearing in the OPE may also have nontrivial λ. In what follows, O
stands for the representation with weights (∆, J, λ) = (δ + 1, J1 + J2 − 1, λ).

Lorentz-invariance guarantees that there exists an SO(d − 1, 1)-invariant differential
operator D(a)

δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2) on the celestial sphere such that

D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)〈L[O](∞, z2, ~w2)L[O†](0, z0, ~w0)〉

=
〈0|L+[O2](∞, z2, ~w2)L[O†](0, z0, ~w0)L−[O1](∞, z1, ~w1)|0〉(a)

vol SO(1, 1)
. (5.148)

In the notation of section 5.3.4.2, when λ is the spin-j representation of SO(d − 2),
we have D(a)

δ,j = (q
(a)
δ,j /rδ,j)Cδ,j. The derivation of section 5.3.4.2 generalizes straight-

forwardly to give21

L[O1](x, z1, ~w1)L[O2](x, z2, ~w2)

= πi
∑
λ

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)

×
(
O+

∆,J1+J2−1,λ(a)(x, z2, ~w2) + O−∆,J1+J2−1,λ(a)(x, z2, ~w2)
)
. (5.149)

21As we discuss in section 5.4.1, only the term with signature (−1)J1+J2 contributes at z1 6∝ z2.
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Here, λ ranges over SO(d− 2) representations that can appear in the O1 ×O2 OPE.

A simple rule to determine the allowed λ is as follows. Let ρi = (Ji, λi) be the Lorentz
irreps of O1 and O2. The allowed λ are those satisfying

λ ⊂ Res
SO(d−1,1)
SO(d−2) ρ1 ⊗ ρ2, (5.150)

where ResGH denotes restriction of a representation of group G to its subgroup H. One
can derive this rule by considering the three-point structure 〈O1(x1)O(x0, z)O2(x2)〉
as a function of x1, x2, x0, and z. It furthermore carries indices for ρ1, ρ2 and λ which
we have suppressed. Using conformal invariance, we can fix x1, x0, x2 to lie on a line in
the time direction and z to be (1, 1, 0, . . . ). The stabilizer group of this configuration
is SO(d − 2), and the correlator must be invariant under this stabilizer group. This
leads to (5.150). The result is equivalent to the rule stated in the introduction, which
implies that the λ that appear are exactly those for which a Lorentzian inversion
formula exists.

Equation (5.148) essentially defines a map from a three-point structure 〈O1O2O†〉(a)

in d-dimensions to a differential operator D(a)
δ,λ in d− 2 dimensions. We saw in section

(5.3.4.3) that when O1,O2 are scalars, this map is surprisingly simple: it takes the
standard Wightman structure (5.140) to the standard differential operator Cδ,0. In
fact, this map turns out to be simple in general. We claim that D(a)

δ,λ is determined by

D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)

(
(−2H20)〈O(X2, Z2, ~W2)O†(X0, Z0, ~W0)〉

∣∣∣
celestial

)
= X12(−2V0,21)〈0|O2(X2, Z2, ~W2)O†(X0, Z0, ~W0)O1(X1, Z1, ~W1)|0〉(a)

∣∣∣
celestial

.

(5.151)

Here, we use embedding-space language, as explained in appendix D.2. The objects
Vi,jk and Hij are defined in appendix D.4, see also [192]. The two-point and three-
point structures above are each specialized to the “celestial” locus

f(Xi, Zi, ~Wi)

∣∣∣∣
celestial

≡ f(Xi, Zi, ~Wi)

∣∣∣∣ Z0=−(1,0,0)
Z1=−(0,1,0)
Z2=−(0,1,0)
Xi=(0,0,zi)

Wi,j=(0,0,wi,j)

. (5.152)

This corresponds to placing all three operators on the celestial sphere given by the
intersection of the future lightcone of the origin and the future lightcone of spatial
infinity (figure 5.10). It is easy to check that the three-point function on the right-hand
side of (5.151), after restricting to the celestial locus, has homogenity −δi = 1−∆i in



276

∞
0

O2

O1

O†

Figure 5.10: The celestial locus configuration appearing in (5.151) and (5.152). The
operators O1,O2, and O† are placed on the celestial sphere (orange) that is the
intersection of the future null cones of 0 and ∞. The arrows indicate the directions
of the polarization vectors of each operator (which are inherited from their original
light-transform contours).

zi, and hence transforms like a three-point function of operators with dimensions δi in
d− 2 dimensions. Similarly, the two-point function on the left-hand side transforms
correctly in d− 2 dimensions.

For example, when O1 = φ1,O2 = φ2 are scalars and O is a traceless symmetric
tensor with dimension ∆, one can check from (5.140) that

(−2H20)〈O(X2, Z2)O†(X0, Z0)〉
∣∣
celestial

= 〈Pδ(z2)Pδ(z0)〉,

X12(−2V0,21)〈0|φ2(X2)O†(X0, Z0)φ1(X1)|0〉
∣∣
celestial

= 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉,
(5.153)

which easily gives Dδ,0 = Cδ,0.

We have checked that (5.151) is equivalent to (5.148) for arbitrary traceless symmet-
ric tensor representations by explicit calculation, see appendix D.4. It can also be
justified by examining the limit as z1 → z2 in (5.148). It would be nice to prove
(5.151) more directly.

One important caveat to this discussion is that it only applies for separated points,
i.e. when z1 is not proportional to z2. As we will see in section 5.6, this map has to
be modified in some special cases if one wishes to study z1 ∝ z2 contact terms.

5.4 Commutativity

5.4.1 Light-ray OPE for the commutator

In chapter 4, we argued on general grounds that L[O1](x, z1, ~w1) and L[O2](x, z2, ~w2)

commute, given certain conditions on J1 and J2. Our derivation of the light-ray
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OPE does not assume commutativity. In fact, even when commutativity holds, it is
obscured in our derivation, since L[O1] and L[O2] are treated differently. For example,
to obtain a double-commutator, we subtract the action of L[O1] on the future vacuum
and L[O2] on the past vacuum.

It is instructive to see how commutativity appears from the point of view of the light-
ray OPE. This will lead to nontrivial consistency conditions on the space of light-ray
operators. In the remainder of this section, we assume the light-ray operators L[O1]

and L[O2] are not coincident z1 6∝ z2. We discuss how our arguments should be
modified for coincident lightrays in section 5.6.

We derived an expression for L[O1]L[O2] in (5.149). We can obtain an expression for
the reverse ordering L[O2]L[O1] by applying Rindler and Hermitian conjugation to
both sides. Using (D.53) and (D.54), we find

L[O2](x, z2, ~w2)L[O1](x, z1, ~w1)

= πi
∑
λ

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)

×
(

(−1)J1+J2O+
∆,J1+J2−1,λ(a)(x, z2, ~w2) + (−1)J1+J2−1O−∆,J1+J2−1,λ(a)(x, z2, ~w2)

)
.

(5.154)

Taking the difference with (5.149), we get the commutator

[L[O1](x, z1, ~w1),L[O2](x, z2, ~w2)]

= 2πi
∑
λ

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
D(a)
δ,λ(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)O(−1)J1+J2−1

∆,J1+J2−1,λ(a)(x, z2, ~w2)

= −2πi
∑
i

D(a)
δi,λi

(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)O(−1)J1+J2−1

i,J1+J2−1,λ(a)(x, z2, ~w2). (5.155)

In the last line, we have assumed that the behavior of the integrand at large ∆ is such
that we can deform the ∆-contour to pick up poles on the positive real axis, obtaining
a sum over Regge trajectories i. For more detail on deforming the ∆ contour, see
section 5.5.2.

The operators on the right-hand side of (5.155) have spin J = J1+J2−1 and signature
(−1)J . For example, when J1 ≡ J2 mod 2, the commutator is given by a sum of
light-ray operators with odd J and odd signature. This is easy to understand from
symmetries: the light-transforms L[Oi] have signature (−1)Ji , and the commutator
introduces an additional −1, since Hermitian conjugation reverses operator ordering.
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These quantum numbers are exactly the ones needed for O(−1)J1+J2−1

i,J1+J2−1,λi
to be the light-

transform of a local operator. Let us assume this is the case (we return to this
assumption in section 5.4.2). Using (5.90), we have

[L[O1](x, z1, ~w1),L[O2](x, z2, ~w2)]

= −2πi
∑
i

D(a)
δi,λi

(z1, ~w1, z2, ~w2, ∂z2 , ∂~w2)f12O†i (a)L[Oi](x, z2, ~w2), (5.156)

where each Oi has quantum numbers (∆, J, λ) = (δi + 1, J1 + J2 − 1, λi).

There are now two slightly different cases. In the first case, the local operators that
would appear in the right hand side of (5.156) are not allowed to appear in the
Euclidean OPE.22 In other words, f12O†i (a) are zero by selection rules. In this case we
immediately find that the commutator is identically zero.

The second case is when f12O†i (a) are not forbidden by Euclidean selection rules. To
see that the commutator vanishes in this case, recall that the differential operator
D(a)
δ,λ is nonzero only if the three-point structure 〈· · ·〉(a) survives the map to celestial

structures (5.151). However, the structure 〈· · ·〉(a) cannot survive this map if it also
appears in a three-point function of local operators, modulo a small subtlety to be
discussed below. The reason is that V0,21|celestial = 0, so the right-hand side of (5.151)
vanishes unless 〈· · ·〉(a) contains a pole V −1

0,21 that can cancel this zero. Such poles are
not allowed in three-point functions of local operators (which must be polynomial in
polarization vectors zi). It follows that

f12O†i (a)D
(a)
δi,λi

= 0 (5.157)

for any local operator Oi. Hence, the commutator [L[O1],L[O2]] vanishes again.

There is a small subtlety in the above argument, which is due to the fact the state-
ments about the map to celestial structures are correct for separated points only. As
we will show in section 5.6, it does sometimes happen that tensor structures appear-
ing in three-point functions of local operators map to contact terms on the celestial
sphere.

The above argument was somewhat abstract, so let us give a concrete example. Con-
sider the case O1 = O2 = T , where T is the stress tensor in a 3d CFT. The com-
mutator [L[T ],L[T ]] is a sum of spin-3 light-ray operators on odd-signature Regge
trajectories. By our assumption above, such operators are light-transforms of local

22This includes the cases when J1 + J2 − 1 is negative, i.e. J1 = J2 = 0.
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spin-3 operators. However, the T × T OPE does not contain any spin-3 operators,
due to selection rules and Ward identities [191, 204]. (Odd-spin operators appearing
in T × T have spins 5, 7, . . . .) Thus, the commutator [L[T ],L[T ]] must vanish. No
contact terms arise in this case.

5.4.2 Finishing the argument with conformal Regge theory

The key step in the above argument was the assumption that

O(−1)J1+J2−1

i,J1+J2−1,λ(a) = f12O†i (a)L[Oi], (5.158)

where Oi is a local operator of spin J1 + J2 − 1. As discussed in section 5.3.2.1,
this is true by construction in the case when f12O†i (a) is allowed to be non-zero by
selection rules of the Euclidean OPE.23 More precisely, this is true under the condition
J1 + J2 − 1 > J0, which comes from the fact that the Lorentzian inversion formula
is only guaranteed to reproduce Euclidean OPE data for spins larger than J0. We
return to this condition later in this section.

We are also interested in the case where f12O†i (a) is forbidden by the selection rules of
the Euclidean OPE. In this case, there is nothing that we can write in the right-hand
side of (5.158) and so we would like to argue that in this case

O(−1)J1+J2−1

i,J1+J2−1,λ(a) = 0. (5.159)

We can argue for (5.159) using conformal Regge theory and boundedness in the Regge
limit. Let us first review some aspects of conformal Regge theory, using a four-point
function of scalars for simplicity. We follow the presentation of [28]. One starts with
a four-point function in a Euclidean partial wave expansion

〈φ1φ2φ3φ4〉 =
∞∑
J=0

∮
d∆

2πi
C(∆, J)(F∆,J(xi) +H∆,J(xi)). (5.160)

Here, we’ve split each partial wave into a piece F∆,J(xi) that dies at large positive J
and a piece H∆,J(xi) that dies at large negative J . For simplicity, we only keep track
of F∆,J . The sum runs over nonnegative integer J because these are the allowed spins
in the Euclidean OPE.

23Saying that f12O†i (a) = 0 even thought it is allowed by Euclidean OPE amounts to saying that

there is no corresponding pole in O±∆,J,λ(a) and hence no O(−1)J1+J2−1

i,J1+J2−1,λ(a) in the first place.
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Figure 5.11: Deformation of Regge contour in Sommerfeld-Watson transform. Left:
even spins in the case of scalar four-point function. Right: odd spins in the case of
〈TTO3O4〉.

The key step is the Sommerfeld-Watson transform: we rewrite the sum over J as a
contour integral

∞∑
J=0

∮
d∆

2πi
C(∆, J)F∆,J(xi) = −

∮
Γ

dJ

∮
d∆

2πi

(
C+(∆, J)

1− e−iπJ
+
C−(∆, J)

1 + e−iπJ

)
F∆,J(xi),

(5.161)

where Γ encircles all nonnegative integers clockwise. We now deform the contour
Γ→ Γ′ towards the imaginary J axis (left panel of figure 5.11). When we do, we pick
up any poles or branch cuts in the integrand that were not encircled by the original
contour Γ. We refer to such singularities as “Regge poles.” In figure 5.11 we show a
single Regge pole at J = j(ν). The behavior of the correlator in the Regge limit is
determined by the Regge poles. If the Regge growth exponent is J0, then all Regge
poles must have real part less or equal to J0.

Let us now consider what happens in spinning four-point functions when we have
non-trivial selection rules. For concreteness, we will focus on the case O1 = O2 = T

and study matrix elements of O(−1)J1+J2−1

i,J1+J2−1,λ(a) = O−i,3,(a) (i.e. λ = 0) between generic
states created by O3 and O4. These matrix elements show up as residues of the poles
of the function C−ab(∆, J = 3, λ = 0) which appears in the partial wave expansion of
〈TTO3O4〉. Note that there are no local spin-3 (or spin-1) operators in T × T OPE
allowed by selection rules. In order to prove (5.159) we must show that this function
does not have physical poles.
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To see this, imagine applying conformal Regge theory to 〈TTO3O4〉. We will arrive
at the generalization of (5.161), where the factor24

1

1 + e−iπJ
(5.162)

will create poles for all odd J , including J = 1 and J = 3. However, since J = 1, 3

are not allowed in the Euclidean OPE, the contour Γ must not circle these poles, see
right panel of figure 5.11. This implies that these poles will be picked up by Γ′. If
J0 < 3, we must conclude that the residue of J = 3 pole vanishes, and so

C−ab(∆, J = 3, λ = 0) = 0. (5.163)

This straightforwardly generalizes to other situations, and we conclude that (5.158)
holds provided J1 + J2 − 1 > J0. If this condition is satisfied, the arguments in the
previous section show that [L[O1](x, z1),L[O2](x, z2)] vanishes for z1 6∝ z2. This is
precisely the same result as obtained in chapter 4, where it was shown that J1+J2−1 >

J0 is a necessary condition for the product L[O1](x, z1)L[O2](x, z2) to be well-defined
and commutative.

5.4.3 Superconvergence in ν-space

We have seen that when J1 + J2 − 1 > J0, the commutator (5.155) vanishes. This
follows from the analysis of chapter 4, or alternatively from the arguments of sec-
tions 5.4.1 and 5.4.2 using the light-ray OPE and conformal Regge theory.25 From
(5.155), commutativity is equivalent to the statement that

〈Ω|O4O(−1)J1+J2−1

d
2

+iν,J1+J2−1,λ(a)
(x, z2, ~w2)O3|Ω〉 = 0, if J1 + J2 − 1 > J0, (5.164)

where we have written ∆ = d
2

+ iν, and the above conditions hold for all ν ∈ R. Using
(5.91), we can also write this as

C
(−1)J1+J2−1

ab

(
d

2
+ iν, J1 + J2 − 1, λ

)
= 0, if J1 + J2 − 1 > J0. (5.165)

What constraints do these conditions imply on CFT data?
24One might argue that in this case we should use a different factor in the Sommerfeld-Watson

transform. However, the factor 1
1+e−iπJ

is the unique factor which has the same residue at all
sufficiently large odd J and an appropriate behavior at infinity in the complex plane.

25More precisely, those arguments applied to the case where the null directions z1 and z2 are
not coincident z1 6∝ z2. For coincident null directions, there can be contact terms. In that case,
the discussion in this section would need to be modified by subtracting those contact terms before
passing to ν-space. In the case of ANEC operators, contact terms are absent.
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For simplicity, let us specialize to the case where O1 = O2 = O3 = O4 = φ are
identical scalars (so that λ = • and the labels a, b are trivial). Recall that C±(∆, J)

is computed by plugging the physical four-point function g(z, z) into the Lorentzian
inversion formula (5.77) and performing the integral. The four-point function has
an expansion in t-channel conformal blocks that converges exponentially inside the
square z, z ∈ (0, 1) [184]:

g(z, z) =

(
zz

(1− z)(1− z)

)∆φ ∑
∆′,J ′

p∆′,J ′G∆′,J ′(1− z, 1− z).

dDisct[g](z, z) =

(
zz

(1− z)(1− z)

)∆φ ∑
∆′,J ′

2 sin2

(
π

∆′ − 2∆φ

2

)
p∆′,J ′G∆′,J ′(1− z, 1− z).

(5.166)

On the second line, we have written an expansion for dDisc[g]. Because dDisc inserts
positive, bounded factors 2 sin2

(
π

∆′−2∆φ

2

)
into the t-channel block expansion, the

t-channel block expansion for dDisc[g] converges exponentially inside the square as
well.

Inserting (5.166) into the Lorentzian inversion formula, we obtain an expression for
C±(∆, J) as a sum

C±(∆, J) =
∑
∆′,J ′

p∆′,J ′B±(∆, J ; ∆′, J ′), (5.167)

where B±(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single t-channel block. The
functions B±(∆, J ; ∆′, J ′) were computed in d = 2 and d = 4 dimensions in [230]. We
expect the sum (5.167) to converge whenever ∆ = d

2
+ iν is on the principal series and

J > J0 is larger than the Regge intercept. We argue for this using the Fubini-Tonelli
theorem in appendix D.5.

Plugging (5.167) into (5.165), we obtain an infinite set of sum rules26

0 =
∑
∆′,J ′

p∆′,J ′B−
(
d

2
+ iν,−1; ∆′, J ′

)
, if J0 < −1. (5.168)

As we will see in section 5.5.4, these are precisely the superconvergence sum rules
of chapter 4, written as a function of a different variable ν. In ν-space, we have a
clear argument that the sum is convergent. More generally, for spinning light-ray

26We expect that J0 < −1 is not true in most interesting theories. Here, we have this condition
because we specialized to scalar operators for simplicity.
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operators, we find

0 = C
(−1)J1+J2−1

ab

(
d

2
+ iν, J1 + J2 − 1, λ

)
=
∑

∆′,J ′,λ′

pcd∆′,J ′,λ′B
(−1)J1+J2−1

ab;cd

(
d

2
+ iν, J1 + J2 − 1, λ; ∆′, J ′, λ′

)
, if J1 + J2 − 1 > J0,

(5.169)

where B±ab;cd is the spinning analog of B±, including three-point structure labels
a, b, c, d. Equation (5.169) may be a good starting point for analyzing contributions
of stringy states to superconvergence sum rules in holographic theories.

We give more details on the relationship between (5.169) and the sum rules from
chapter 4 in section 5.5.4.

5.5 The celestial block expansion

5.5.1 Celestial blocks

For the purpose of computing event shapes, we would like to apply the light-ray OPE
inside momentum eigenstates. Matrix elements of individual light-ray operators O∆,J

in momentum eigenstates are proportional to the one-point event shape (5.49). To
apply the OPE (5.139), we must understand how to apply the differential operator
Cδ,0(z1, z2, ∂z2) to these matrix elements:

Cδ,0(z1, z2, ∂z2)〈φ(p)|O∆,J(∞, z2)|φ(p)〉 ∝ Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ. (5.170)

We call the resulting objects “celestial blocks” because they capture the full contri-
bution of a light-ray operator and its z-derivatives to an event shape.

The right-hand side of (5.170) is fixed by Lorentz-invariance and homogeneity to have
the form

Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ =
(−p2)

δ1+δ2−δ
2

(−2z1 · p)δ1(−2z2 · p)δ2
f(ζ), (5.171)

where the cross-ratio ζ is given by

ζ =
(−2z1 · z2)(−p2)

(−2z1 · p)(−2z2 · p)
. (5.172)

Furthermore, it is an eigenvector of the quadratic Casimir of the Lorentz group acting
simultaneously on z1, z2, or equivalently acting on p. Specifically, it is killed by the
differential operator

−1

2

(
pµ

∂

∂pν
− pν

∂

∂pµ

)(
pµ

∂

∂pν
− pν ∂

∂pµ

)
− δ(δ − d+ 2). (5.173)
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This gives the Casimir differential equation

0 = 4(1− ζ)ζ2f ′′(ζ)− 2ζ (2 (δ1 + δ2 + 1) ζ + d− 2 (δ1 + δ2 + 2)) f ′(ζ)

+ ((δ − δ1 − δ2) (d− δ − δ1 − δ2 − 2)− 4δ1δ2ζ) f(ζ). (5.174)

Meanwhile, from the definition of Cδ,0, we see that

Cδ,0(z1, z2, ∂z2)(−2z2 · p)−δ = (−2z1 · z2)
δ−δ1−δ2

2 (−2z2 · p)−δ + . . . , (5.175)

where “. . . ” represent higher-order terms in the separation between z1 and z2 on the
celestial sphere. In terms of f(ζ), this becomes

f(ζ) = ζ
δ−δ1−δ2

2 (1 +O(ζ)). (5.176)

The solution to the Casimir equation with boundary condition (5.176) is

f∆1,∆2

∆ (ζ) = ζ
∆−∆1−∆2+1

2 2F1

(
∆− 1 + ∆1 −∆2

2
,
∆− 1−∆1 + ∆2

2
,∆ + 1− d

2
, ζ

)
,

(5.177)

where we have written δi = ∆i − 1 for future convenience.

Essentially the same function has appeared previously in the literature as the con-
formal block for a two-point function of local operators in the presence of a spher-
ical codimension-1 boundary [44, 216]. The reason is that the momentum p breaks
SO(d−1, 1) in a similar way to a boundary in a d−2 dimensions. To see this, consider
an embedding space coordinate X ∈ Rd−1,1 for a d− 2-dimensional CFT. A spherical
codimension-1 boundary is specified by P ·X = 0, for some spacelike P ∈ Rd−1,1 [48].
The vector P breaks the symmetry from SO(d− 1, 1) to SO(d− 2, 1). In our case, we
have a timelike vector p that breaks the symmetry from SO(d − 1, 1) to SO(d − 1).
However, the Casimir equation is the same in both cases, and the only difference is a
minus sign in our definition of the cross-ratio ζ.

Now, we can finally write the light-ray OPE for a two-point event shape. For simplic-
ity, we consider the case where the sink, source, and detectors are all scalars. From
the OPE (5.139), we have

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉

= πi

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
C∆−1,0(z1, z2, ∂z2)〈φ4(p)|O+

∆,−1(∞, z2) + O−∆,−1(∞, z2)|φ3(p)〉

= −πi
∫ d

2
+i∞

d
2
−i∞

d∆

2πi
(C+(∆,−1) + C−(∆,−1))C∆−1,0(z1, z2, ∂z2)〈φ4(p)|L[O](∞, z2)|φ3(p)〉,

(5.178)
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where 〈0|φ4Oφ3|0〉 is the standard Wightman structure (5.140) with 2→ 4 and 1→ 3.
Plugging in the expression (5.49) for the light transform and Fourier transform (with
appropriate relabelings), and using (5.171) we find

〈φ4(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ3(p)〉 =
(−p2)

∆1+∆2+∆3+∆4−4−d
2 θ(p)

(−2z1 · p)∆1−1(−2z2 · p)∆2−1
Gφ1φ2(ζ),

(5.179)

where

Gφ1φ2(ζ) = 2d+4−∆3−∆4π
d
2

+3eiπ
∆4−∆3

2

×
∫ d

2
+i∞

d
2
−i∞

d∆

2πi

Γ(∆− 2) (C+(∆,−1) + C−(∆,−1))

Γ(∆−1+∆3−∆4

2
)Γ(∆−1−∆3+∆4

2
)Γ(∆3+∆4−∆−1

2
)Γ(∆−1+∆3+∆4−d

2
)
f∆1,∆2

∆ (ζ).

(5.180)

In the special case where the sink and source are the same φ3 = φ4 = φ, it is natural
to define an expectation value by dividing by a zero-point event shape:

〈φ(p)|φ(p)〉 ≡
∫
ddxeip·x〈0|φ(0)φ(x)|0〉 =

2d+1−2∆φπ
d+2

2

Γ(∆φ − d−2
2

)Γ(∆φ)
(−p2)

2∆φ−d
2 θ(p).

(5.181)

We find

〈φ(p)|L[φ1](∞, z1)L[φ2](∞, z2)|φ(p)〉
〈φ(p)|φ(p)〉

=
Γ(∆φ − d−2

2
)Γ(∆φ)

2d+1−2∆φπ
d+2

2

(−p2)
∆1+∆2

2
−2Gφ1φ2(ζ)

(−2z1 · p)∆1−1(−2z2 · p)∆2−1
.

(5.182)

5.5.2 Contour deformation in ∆ and spurious poles

In (5.180), the celestial block expansion of Gφ1φ2(ζ) takes the form of an integral
over the principal series ∆ ∈ d

2
+ iR. When ζ < 1, the celestial block f∆1,∆2

∆ (ζ) is
exponentially damped in the right-half ∆-plane, so we can deform the contour into
this region and pick up poles in the integrand.

The coefficient function C±(∆, J) contains poles of the form

C±(∆, J) 3 − p±i (J)

∆−∆±i (J)
, (5.183)

where p±i (J) are products of OPE coefficients analytically-continued in J , and ∆±i (J)

are dimensions analytically-continued in J .27 When we deform the ∆-contour, we
27We comment on the possibility of non-simple poles or branch-cuts in ∆ below.
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pick up contributions from these poles. They are interpreted as light-ray operators
in the light-ray OPE.

In general, C±(∆, J) can also contain “spurious” poles at ∆ = d + J + n for integer
n, originating from poles in the conformal block GJ+d−1,∆−d+1(z, z) in the Lorentzian
inversion formula (5.77). In the usual conformal block expansion, these spurious
poles cancel with poles in G∆,J(z, z) that are encountered when deforming the ∆-
contour from the principal series to the positive real axis [25, 26, 82, 149]. However,
the celestial block f∆1,∆2

∆ (ζ) does not have poles in ∆ to the right of the principal
series.28 Thus, it is not clear how spurious poles in C±(∆, J) could cancel.

Remarkably, it turns out that when we set J = −1, spurious poles in C±(∆, J) are
absent. This can be seen as follows. Note that the following combination of conformal
blocks is free of poles to the right of ∆ = d

2
[25]:

GJ+d−1,∆−d+1(z, z)− r∆,JG∆,J(z, z), (5.184)

where

r∆,J =
Γ(J + d−2

2
)Γ(J + d

2
)

Γ(J + 1)Γ(J + d− 2)

Γ(∆− 1)Γ(∆− d+ 2)

Γ(∆− d
2
)Γ(∆− d−2

2
)

×
Γ(J −∆ + d)Γ(−d−J+∆−∆1+∆2+2

2
)Γ(−d−J+∆+∆3−∆4+2

2
)

Γ(∆− J − d+ 2)Γ(d+J−∆−∆1+∆2

2
)Γ(d+J−∆+∆3−∆4

2
)
. (5.185)

Suppose first that d 6= 4. Setting J = −1, the factor Γ(J + 1)−1 in (5.185) ensures
that r∆,−1 = 0, so that GJ+d−1,∆−d+1|J=−1 is free of poles to the right of ∆ = d

2
. In

the special case d = 4, we have [231, 232]

G∆,−1 =
zz

z − z
(k∆−1(z)k∆−1(z)− k∆−1(z)k∆−1(z)) = 0, (5.186)

so that GJ+d−1,∆−d+1|J=−1 is again free of poles to the right of ∆ = d
2
.29

Let us also comment on the case d = 3. There, the Lorentz group is SL(2,R),
whose harmonic analysis is slightly different than for the higher-dimensional Lorentz
groups. In particular, the Plancherel measure for SL(2,R) has support on discrete
series representations in addition to principal series representations. In this case, we
expect the contribution of discrete series representations to be cancelled by poles in

28Assuming |∆1 −∆2| is not too large. See [28, 194] for examples of how to treat the case where
|∆1 −∆2| is large.

29Note that the case d = 2 is not relevant to our discussion, since there is no transverse space
Rd−2 in which to consider the light-ray OPE.
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C±(∆, J), in the same way as occurs in the four-point function of fermions in the
SYK model [233].

The end result is that spurious poles and discrete state contributions are absent in the
celestial block expansion for all d > 2. Deforming the ∆-contour, we obtain Gφ1φ2(ζ)

as a sum of contributions from light-ray operators when ζ < 1

Gφ1φ2(ζ) = 2d+4−∆3−∆4π
d
2

+3eiπ
∆4−∆3

2

×
∑
i

Γ(∆i − 2)
(
p+

∆i
+ p−∆i

)
Γ(∆i−1+∆3−∆4

2
)Γ(∆i−1−∆3+∆4

2
)Γ(∆3+∆4−∆i−1

2
)Γ(∆i−1+∆3+∆4−d

2
)
f∆1,∆2

∆i
(ζ)

(when ζ < 1). (5.187)

Here, i labels Regge trajectories and we have abbreviated ∆i = ∆i(J = −1) and p±∆i
=

p±i (J = −1). When ζ = 1, the celestial block f∆1,∆2

∆ (ζ) is no longer exponentially
damped at large positive ∆, so (5.187) does not apply. We will see examples of how
to treat the case ζ = 1 in section 5.7.3.

We expect that the above analysis extends to the more general light-ray OPE L[O1]L[O2],
where O1 and O2 have general spins J1 and J2. In this case, the contour integral over
∆ in (5.149) should become (in schematic notation)

L[O1]L[O2] = −πi
∑
i,λ

D(a)
∆i−1,λ

(
O+
i,J1+J2−1,λ(a) + O−i,J1+J2−1,λ(a)

)
. (5.188)

Let us return to the assumption that C±(∆, J) (more generally O±∆,J,λ(a)) has only
simple poles in ∆. This is known to be true when the signature and spin are such that
C±(∆, J) describes light-transforms of local operators, i.e. when J ∈ Z≥0 and ±1 =

(−1)J . However, for more general values of J , the singularity structure of C±(∆, J)

as a function of ∆ is not known. In the presence of other types of singularities like
higher poles and branch cuts, one can define light-ray operators O±i,J in terms of
discontinuities across those singularities, and then suitable generalizations of (5.187)
and (5.188) apply.

5.5.3 No contribution from disconnected terms

Consider an event shape of identical scalars

〈φ(p)|L[φ]L[φ]|φ(p)〉. (5.189)
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The four-point function of φ’s can be split into connected and disconnected pieces

〈φ(x1)φ(x2)φ(x3)φ(x4)〉

= 〈φ(x1)φ(x2)φ(x3)φ(x4)〉c
+ 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉+ 〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉+ 〈φ(x1)φ(x4)〉〈φ(x3)φ(x2)〉.

(5.190)

After taking the light-transforms to compute (5.189), the disconnected terms in
(5.190) must drop out. The reason is that the light-transform of a Wightman two-
point function vanishes, since the light-transformed operator annihilates the vacuum.

Despite the simplicity of this argument, vanishing of disconnected contributions in
the celestial block expansion is slightly nontrivial. The mechanism is similar to the
vanishing of spurious poles discussed in section 5.5.2. Note that the contribution of
disconnected terms to C+(∆, J) is given by the OPE coefficient function of Mean
Field Theory (MFT). This is [87, 194]

CMFT(∆, J)

=
2d+1−2∆Γ(J + d

2
)Γ(d+1+J−∆

2
)Γ(∆− 1)Γ(∆+J

2
)Γ(d

2
−∆φ)2Γ(J−∆

2
+ ∆φ)Γ(∆+J−d

2
+ ∆φ)

Γ(J + 1)Γ(d+J−∆
2

)Γ(∆− d
2
)Γ(∆+J−1

2
)Γ(

2d+J−∆−2∆φ

2
)Γ(

d+J+∆−2∆φ

2
)Γ(∆φ)2

.

(5.191)

Due to the factor Γ(J + 1)−1, this function vanishes at J = −1. Thus, we have

C±(∆, J = −1) = C±c (∆, J = −1), (5.192)

where the subscript c indicates the contribution of the connected term alone. Conse-
quently, disconnected terms do not contribute to the celestial block expansion (5.180),
as expected.

5.5.4 Relationship to t-channel blocks and superconvergence

In chapter 4, we introduced an alternative expansion for event shapes in terms of t-
channel event-shape blocks Gt

∆′,J ′(p, z1, z2). We computed Gt
∆′,J ′(p, z1, z2) by inserting

a projector onto an individual conformal multiplet O∆′,J ′ between L[O1] and L[O2].
An alternative way to obtain it is to first find the contribution of the t-channel four-
point block G∆′,J ′(1− z, 1− z) in the Lorentzian inversion formula and then plug this
into the celestial block expansion (5.180).

For example, in the case of scalars Oi = φi with dimensions ∆i, we claim that

Gt
∆′,J ′(p, z1, z2) =

(−p2)
∆1+∆2+∆3+∆4−4−d

2 θ(p)

(−2z1 · p)∆1−1(−2z2 · p)∆2−1
Gt∆′,J ′(ζ), (5.193)
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where

Gt∆′,J ′(ζ) = 2d+4−∆3−∆4π
d
2

+3eiπ
∆4−∆3

2

×
∫ d

2
+i∞

d
2
−i∞

d∆

2πi

Γ(∆− 2) (B+(∆,−1; ∆′, J ′) + B−(∆,−1; ∆′, J ′))

Γ(∆−1+∆3−∆4

2
)Γ(∆−1−∆3+∆4

2
)Γ(∆3+∆4−∆−1

2
)Γ(∆−1+∆3+∆4−d

2
)
f∆1,∆2

∆ (ζ).

(5.194)

Here B(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single t-channel block (defined
near (5.167)) andGt

∆′,J ′(p, z1, z2) are the functions defined in (4.399). We have verified
this identity numerically for some special cases in d = 2 and d = 4 using formulas for
B± from [230].

One property of event-shape t-channel blocks is that they are regular in the limit
z1 → z2. This is consistent with (5.194) because the Lorentzian inversion of a single
t-channel block contains double and single poles at double-trace values of ∆, and no
other singularities in ∆ [25, 230]. Thus, when we deform the ∆-contour in (5.194) to
pick up poles, we obtain only double-trace celestial blocks, which are indeed regular
near ζ = 0.

Equation (5.194) lets us clarify the relationship between (5.169) and the supercon-
vergence sum rules written in chapter 4. Equation (5.169) is a superconvergence sum
rule written in ν-space, obtained by decomposing the commutator (5.155) into celes-
tial conformal partial waves. By contrast, the sum rules of chapter 4 are obtained by
decomposing the commutator into t-channel conformal multiplets (each of which is a
finite sum of spherical harmonics on the celestial sphere). To go from (5.169) to the
formulas of chapter 4, we can integrate (5.169) against celestial blocks.

5.6 Contact terms

In addition to giving a convergent expansion for the product

L[O1](x, z1, ~w1)L[O2](x, z2, ~w1) (5.195)

for z1 6∝ z2, the OPE expansion (5.149) can also capture contact terms in the limit
z1 → z2, such as those studied in [154]. A complete description of possible contact
terms is beyond the scope of this work. Instead, in this section, we will study two
specific examples and explain how (5.149), suitably interpreted, can be used to deter-
mine contact terms at z1 ∝ z2. The contact terms in both examples ultimately arise
for the same reason: we must be careful about the distributional interpretation of the
integrand in (5.149). In particular, we must ensure that this distribution is analytic
in ∆.
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5.6.1 Charge detector commutator

Our first example concerns contact terms in the OPE of charge detectors,30

L[Ja](x, z1)L[J b](x, z2), (5.196)

where Ja is a current for a global symmetry group G, and a is an adjoint index for
G. From [154], the commutator should contain a contact term

[L[Ja](x, z1),L[J b](x, z2)] = ifabcδd−2(z1, z2)L[J c](x, z1), (5.197)

where fabc are the structure constants of G, and δd−2(z1, z2) is a delta-function on the
null cone. To see this, note that∫

Dd−2z L[Ja](x, z) = Qa, (5.198)

and we should have

[Qa, J b(x, z)] = ifabcJ c(x, z). (5.199)

Requiring that [L[Ja](x, z1),L[J b](x, z2)] vanishes for z1 6∝ z2 we arrive at (5.197).
Vanishing of this commutator for z1 6∝ z2 was justified in chapter 4 if J0 < 1. This
also follows from the arguments of section 5.4.1.

We would now like to argue for (5.197) using the light-ray OPE. Recall that the
commutator is a sum of light-transforms of local operators with spin J1 + J2− 1 = 1.
Thus, we must understand three-point structures

〈Ja(x1, z1)J b(x2, z2)Oc∆(x3, z3)〉(a) (5.200)

where Oc∆ is a local spin-1 operator in the adjoint representation of G, with dimension
∆. There exist two tensor structures

〈J(x1, z1)J(x2, z2)O∆(x3, z3)〉(1) =
V1H23 + V2H13 + (∆ + d− 2)V3H12 + (∆ + 3)V1V2V3

X
2d−∆−1

2
12 X

∆+1
2

13 X
∆+1

2
23

,

(5.201)

〈J(x1, z1)J(x2, z2)O∆(x3, z3)〉(2) =

(∆− 2d+ 3)((∆ + 1)(V1H23 + V2H13)− (∆− 2d+ 1)V3H12) + (∆− d+ 1)(∆ + 3)V −1
3 H23H13

X
2d−∆−1

2
12 X

∆+1
2

13 X
∆+1

2
23

.

(5.202)
30Note that a sufficient condition for the charge-charge correlator to exist is J0 < 1. Therefore,

we expect that we encounter divergences in gauge theories both in the weak and strong coupling
perturbative expansion. On the other hand, we expect that it exists in the critical O(N) model.
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Here we used the convention V1 = V1,23 and its cyclic permutations, and Hij, Vi,jk, Xij

are defined in appendix D.4, see also [192]. The second structure cannot appear in
the local three-point function (5.200) for generic ∆ because of the term involving
V −1

3 . However, when O = J and ∆ = d − 1, the term with V −1
3 vanishes, and this

structure is allowed.31 Moreover, at ∆ = d − 1 Ward identities fix the coefficient λ2

of the second structure as

λabc2 =
CJf

abc

(d2 − 4) volSd−1
, (5.203)

where CJ is defined by

〈Ja(x1, z1)J b(x2, z2)〉 = CJ
H12δ

ab

Xd
12

. (5.204)

We will now argue that the second structure survives the map to celestial structures
even at ∆ = d− 1 as a contact term.

According to the results of section 5.3.4.4, naïvely, when ∆ = d − 1 the struc-
ture (5.202) does not survive the map to celestial structures because it does not
contain factors of V −1

3 . However, this is only true for z1 6∝ z2. When z1 ∝ z2, this
claim must be modified. It should be possible to see this directly by performing a
more careful analysis of the map to celestial structures. However, we can also use the
following indirect argument. According to the results of section 5.3.4.4, for generic ∆

the structure (5.202) gets mapped to the following OPE contribution

L[Ja](x0, ~y1)L[J b](x0, ~y2) 3 iπ (∆ + 3)(∆− d+ 1)λabc2

CJ
(|~y12|(∆−1)−2(d−2) + · · · )L[Oc](x0, ~y2).

(5.205)

This result is obtained using (5.149) and (5.151). Here, we put x0 at past null infinity
and used transverse coordinates ~yi to parametrize the detectors. The factor (∆−d+1)

appears because only the term with V −1
3 in (5.202) contributes. We can now take the

limit ∆→ d− 1 in this expression, taking into account that

(∆− d+ 1)|~y12|(∆−1)−2(d−2) → (volSd−3)δd−2(~y1 − ~y2), (5.206)

while the higher-order terms in the parenthesis in (5.205) are less singular and go to
zero. We then find

L[Ja](x0, ~y1)L[J b](x0, ~y2) 3 iπ (d+ 2)λabc2 volSd−3

CJ
δd−2(~y1 − ~y2)L[J c](x0, ~y2)

=
ifabc

2
δd−2(~y1 − ~y2)L[J c](x0, ~y2). (5.207)

31We thank Simon Caron-Huot for pointing out this interpretation of the second structure at
∆ = d− 1.
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It follows from the discussion in 5.4.1 that this is the only term that survives after
taking the commutator,32 and so we find

[L[Ja](x0, ~y1),L[J b](x0, ~y2)] = ifabcδd−2(~y1 − ~y2)L[J c](x0, ~y2), (5.208)

as expected.

We expect that it should be possible to generalize this discussion to other commutators
considered in [154]. The main difficulty in this generalization is that the operators
considered in [154] are descendants of light transforms chapter 4. We expect that the
light-ray OPE can be generalized to OPE of these descendants; we briefly discuss this
direction in section 5.8.

5.6.2 Contact terms in energy correlators in N = 4 SYM

Our second example concerns the celestial block expansion (5.180). For simplicity,
we will specialize to ∆i = 2, which is relevant for the case of energy-energy correlator
in N = 4 SYM studied in the next section, see (5.227) and (5.228).

We will focus on the function

f̂∆(ζ) =
4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 4,4

∆ (ζ)

=
4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
ζ

∆−7
2 2F1(∆−1

2
, ∆−1

2
,∆− 1, ζ) (5.209)

that multiplies C+(∆,−1) under the integral in (5.228). Naïvely, this function van-
ishes at ∆ = 3 + 2n due to the Γ-function in the denominator. However, at the same
time the factor ζ

∆−7
2 becomes singular as ζn−2 if n = 0, 1. To interpret (5.228) in a

distributional sense and simultaneously treat it as the integral of an analytic function,
we must ensure that we make sense of f̂∆(ζ) as a distribution that is analytic in ∆.
This distribution must be defined for ζ ∈ [0, 1].

For Re ∆ > 5, f̂∆(z) is integrable near ζ = 0 and thus uniquely defines a distribution
analytic in ∆. Therefore, for all other ∆ the distribution f̂∆(z) must be defined by
analytic continuation in ∆. For example,

f̂5(ζ) = lim
∆→5

f̂∆(ζ) = lim
∆→5

8π4 ∆−5
2
ζ

∆−7
2 = 8π4δ(ζ), (5.210)

and similarly

f̂3(ζ) = 4π4δ′(ζ)− 2π4δ(ζ). (5.211)

32This is assuming that the first structure (5.201) does not produce contact terms under the map
to celestial structures.
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The other values of ∆ that give negative integer powers of ζ are ∆ = 1 − 2n for
n ≥ 0. In these cases, we find f̂∆(ζ) = 0, due to higher-order zeros coming from
Γ(∆−1

2
)3 in the denominator. For other values of ∆, the exponent of ζ, even if large

and negative, is non-integer, and analytic continuation in ∆ defines a distribution
even though there is no zero coming from the Γ-functions.

As we will see in the next section, the function relevant for scalar event shapes in
N = 4 SYM is ζ2f̂∆(ζ). Since we only a found delta function and its first derivative
in f̂∆(ζ), this means that there are no contact terms in the scalar event shapes.
Alternatively, by repeating the above analysis for ζ2f̂∆(ζ) we find that it stops being
integrable at ∆ = 1, at which point the Γ(∆−1

2
)3 factor in denominator kicks in, and

we do not get interesting distributions.

We will also need a slight refinement of the result for f̂∆(ζ) near ∆ = 5. Near this
point, the only term non-integrable in ζ comes from the leading term of the 2F1, so
we can write

f̂∆(ζ) ∼ 4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
ζ

∆−7
2 . (5.212)

Furthermore,

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
= 4π4(∆− 5) + 2π4(∆− 5)2 − π4(∆− 5)3 +O((∆− 5)4), (5.213)

and

ζ
∆−7

2 =
2

∆− 5
δ(ζ) +

[
1

ζ

]
0

+
∆− 5

2

[
log ζ

ζ

]
0

+O((∆− 5)2), (5.214)

so

f̂∆(ζ) ∼8π4δ(ζ) + 4π4

(
δ(ζ) +

[
1

ζ

]
0

)
(∆− 5)

− 2π4

(
δ(ζ)−

[
1

ζ

]
0

−
[

log ζ

ζ

]
0

)
(∆− 5)2 +O((∆− 5)3). (5.215)

Here the distribution [ζ−1]0 is in principle defined by the Laurent expansion in which
it appears. Otherwise, one can define it as the unique distribution which agrees with
ζ−1 on test functions which vanish at ζ = 0 and for which∫ 1

0

dζ

[
1

ζ

]
0

= 0. (5.216)

Similar comments apply to [ζ−1 log ζ]0. It is straightforward to obtain subleading
terms in (5.215). In section 5.7 we will see that the contact terms we just described
are necessary to satisfy the Ward identities for the energy-energy correlator.
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5.7 Event shapes in N = 4 SYM

In this section, we apply the machinery derived above to scalar half-BPS operators
in N = 4 SYM. We re-derive some previous results both at weak and strong coupling
and make further predictions. The basic operators of interest are

OIJ = Tr

(
ΦIΦJ − 1

6
δIJΦKΦK

)
, (5.217)

which transform as traceless symmetric tensors of SO(6), i.e. in the 20′ representation.
These operators are part of a supermultiplet that also contains R-symmetry conserved
currents, supersymmetric currents, and the stress tensor, among other operators.

We will study a scalar event shape, where the detectors, source, and sink are all
built from OIJ ’s. Superconformal Ward identities relate the four-point function of
20′ scalars to four-point functions of other operators in the stress tensor multiplet
[234, 235]. These relations were explicitly worked out in [217, 218]. In particular they
imply a simple relation between scalar event shapes and energy-energy correlators
which we review below.

The structure of the section is as follows. We first review basic properties of the four-
point function of 20′ operators and define the scalar event shape of interest. We then
explain its relation to the energy-energy correlator which is the main subject of our
interest. In sections 5.7.3, 5.7.4, 5.7.5, we apply the light-ray OPE at weak coupling
at tree-level, 1-loop, and 2-loops (at leading and subleading twist), finding agreement
with previous results and completing them with contact term contributions. In sec-
tion 5.7.7, we use known OPE data to make a new prediction for the the small-angle
limit at 3 and 4-loops. In section 5.7.8, we apply the OPE at strong coupling, again
finding agreement with previous results.

5.7.1 Review: event shapes in N = 4 SYM

The scalar event shape of interest is built from OIJ ’s, where the R-symmetry indices
are contracted with particular polarizations. Following the conventions of [147], we
treat the in- and out-states differently from the detectors. For the in- and out-states,
we contract OIJ with null polarization vectors YI ∈ C6,

O(x, Y ) =

(
N2
c − 1

2π4

)−1/2

OIJ(x)YIYJ . (5.218)

The two-point function of O(x, Y ) is given by

〈O(x, Y )O(0, Y )〉 =

(
N2
c − 1

2π4

)−1
N2
c − 1

32π4

(Y · Y )2

x4
=

(Y · Y )2

16x4
. (5.219)
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For the detectors, we contract the R-symmetry indices of OIJ with traceless symmet-
ric tensors SIJ ,

O(x, S) = 2OIJ(x)SIJ . (5.220)

Obviously, O(x, Y ) and O(x, S) encode the same thing, with the R-symmetry indices
treated slightly differently.

Let us denote O(z) ≡ 1
2
L[O](∞, z), where z is a future-pointing null vector.33 Our

scalar event shape is defined by

〈O(z1, S1)O(z2, S2)〉p,Y ≡ σ−1
tot(p, Y )

∫
ddxe−ip·x〈Ω|O(x, Y )O(z1, S1)O(z2, S2)O(0, Y )|Ω〉,

(5.221)

σtot(p, Y ) ≡
∫
ddxe−ip·x〈Ω|O(x, Y )O(0, Y )|Ω〉 = 2π3 (Y · Y )2

16
θ(p).

(5.222)

This event shape is sometimes called “scalar flow,” by analogy with energy flow ob-
servables that measure the flow of energy at null infinity.

Following [147], let us choose the R-symmetry structures

Y0 = (1, 0, 1, 0, i, i),

S0 = diag(1,−1, 0, 0, 0, 0),

S ′0 = diag(0, 0, 1,−1, 0, 0). (5.223)

With this choice, we have 〈O(x, Y 0)O(0, Y0)〉 = 1
x4 . Moreover, only the 105 represen-

tation of SO(6) contributes to the O(n1, S)×O(n2, S
′) OPE. Finally, superconformal

Ward identities relate the event shape with these choices to energy correlators

〈E(z1)E(z2)〉p,Y0 =
16(−p2)2

(−2z1 · z2)2
〈O(z1, S0)O(z2, S

′
0)〉p,Y0 + protected contact terms.

(5.224)

(The energy correlators are independent of Y .) In [217], this relation was derived
while ignoring contact terms at z1 ∝ z2. We will find that consistency with the OPE
requires correcting this relation by contact terms. We expect that these contact terms
come from the protected part of the 20′ four-point function. We discuss them in more
detail below.

33The factor of 1
2 is for consistency with the definitions of [147].
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Using (5.182), the scalar event shape can be written

〈O(z1, S0)O(z2, S
′
0)〉p,Y0 =

(
1

2

)2
1

2π3

GOO(ζ)

(−2z1 · p)(−2z2 · p)
, (5.225)

where the factor (1
2
)2 in (5.225) comes from O(z) ≡ 1

2
L[O](∞, z). The function

GOO(ζ) has a celestial block expansion given by (5.180):

GOO(ζ) =

∫ 2+i∞

2−i∞

d∆

2πi
C+(∆,−1)

16π5Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 2,2

∆ (ζ). (5.226)

Here, C+(∆,−1) encodes the OPE data of the 〈OOOO〉 four-point function, analyt-
ically continued to spin J = −1. We discuss this four-point function in section 5.7.2.
Since the 105 representation appears in the symmetrized tensor square of the 20′

representation, the OPE contains only even spin operators. This is the reason for the
absence of C−(∆,−1) in (5.226).

The superconformal Ward identity (5.224) lets us obtain a celestial block expansion for
the energy-energy correlator in terms of OPE data for the scalar four-point function.
Let us define the function FE(ζ) by

〈E(z1)E(z2)〉p,Y0 =
4 volS2

2π3

(−p2)4

(−2z1 · p)3(−2z2 · p)3
FE(ζ). (5.227)

Here we include the factor 4 volS2 = 16π because it simplifies the Ward identities
discussed below. The relation (5.224) implies that FE has the celestial block expansion

FE(ζ) =

∫ 2+i∞

2−i∞

d∆

2πi
C+(∆,−1)

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 4,4

∆ (ζ) + ξ(ζ), (5.228)

where

f 4,4
∆ (ζ) = ζ

∆−7
2 2F1

(
∆− 1

2
,
∆− 1

2
,∆− 1, ζ

)
, (5.229)

ξ(ζ) ≡ 1

4
(2δ(ζ)− δ′(ζ)). (5.230)

Here, C+(∆,−1) is the same function that enters (5.226). The function ξ(ζ) repre-
sents the protected coupling-independent contact terms mentioned in (5.224). Below,
we fix ξ(ζ) by requiring consistency with Ward identities and check that it is indeed
independent of the coupling (at one and two loops, and at strong coupling). Its effect
is to remove the contribution of short multiplets from C+(∆,−1) in (5.228). It would
be interesting to derive the presence of ξ(ζ) from first principles along the lines of
[217].



297

For 0 < ζ ≤ 1, the superconformal Ward identity relating scalar flow and the energy-
energy correlator takes the simple form

FE(ζ) =
GOO(ζ)

4πζ2
, (0 < ζ ≤ 1). (5.231)

However, the celestial block expansion (5.228) also captures contact terms at ζ = 0

that are not captured by (5.231).

When evaluating the celestial block expansion for ζ < 1, we will find it convenient
to close the ∆-contour to the right as discussed in section 5.5.2 and write the event
shape as a sum over Regge trajectories, see (5.187). For example, we have

FE(ζ) =
∑
i

p∆i

4π4Γ(∆i − 2)

Γ(∆i−1
2

)3Γ(3−∆i

2
)
f 4,4

∆i
(ζ) + ξ(ζ), (ζ < 1). (5.232)

Before computing FE(ζ), let us comment on some of its properties. First, FE(ζ) is
constrained by Ward identities. By integrating E(z1) over the celestial sphere with the
appropriate weight, we can produce different components of the translation generators
P µ. In the energy correlator (5.227), these must evaluate to pµ, which leads to the
Ward identities ∫ 1

0

dζ FE(ζ) =
1

2
, (5.233)∫ 1

0

dζ(2ζ − 1)FE(ζ) = 0. (5.234)

Since (5.233),(5.234) are sensitive to the values of FE(ζ) at arbitrary angle ζ they can
be used as a nontrivial consistency check on the computations of FE(ζ).

Finally, note that FE(ζ) has a weak-coupling expansion

FE(ζ) = F (0)
E (ζ) + aF (1)

E (ζ) + . . . , a ≡ g2
YMNc

4π2
. (5.235)

FE(ζ) is explicitly known up to two-loop order [182], and as a two-fold integral at
three loops [207].34 It is also easily computable at strong coupling, reproducing the
result of Hofman and Maldacena [31].

5.7.2 Review: four-point function of 20′ operators

The main ingredient in computing FE(ζ) is the four-point function of 20′ operators
that enters in the definition of the scalar event shape (5.221), specialized to the R-
symmetry structures (5.223). This is

〈O(x4, Y 0)O(x1, S0)O(x2, S
′
0)O(x3, Y0)〉 =

G(105)(u, v)

x4
12x

4
34

. (5.236)

34The quantity EEC(ζ) computed in [182, 207] is equal to our FE(ζ).
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It will be convenient to write G(105)(u, v) in two different ways. Firstly, we have

G(105)(u, v) =
c

2(2π)4

(
u2 +

u2

v2

)
+

1

(2π)4

u2

v

(
1

2
+ uΦ(u, v)

)
, (5.237)

where the central charge c is given by

c =
N2
c − 1

4
. (5.238)

Here, the function Φ(u, v) = Φ(v, u) = 1
v
Φ
(
u
v
, 1
v

)
encodes the dependence of the

correlator on the coupling a (it is zero for a = 0). It is known explicitly up to three
loops [236]. The integrand for G(105)(u, v) is known up to ten loops in the planar limit
[237, 238].

The other way of writing G(105)(u, v) is to organize it into the contribution of short
and long supermultiplets in the superconformal block expansion,

G(105)(u, v) =
c

2(2π)4
u2G(short)(u, v) +H(u, v), (5.239)

where G(short)(u, v) encodes the contribution from protected operators and was com-
puted in [239]. H(u, v) encodes the contribution of long multiplets and can be written
in terms of superconformal blocks as follows

H(u, v) =
∑

∆

∑
even J

a∆,Jg∆+4,J(u, v) =
∑

∆

∑
even J

p∆,Jg∆,J(u, v) (5.240)

where g∆,J(u, v) are the usual conformal blocks and a∆,J is the three-point coupling
to a given superconformal primary, see e.g. [239].35 We will use p∆,J to denote the
three-point coupling to a given conformal primary. Note that only even spin operators
enter in the OPE decomposition of G(105)(u, v).

Because of the factor Γ(3−∆
2

)−1 in (5.232), most protected operators from G(short)(u, v)

will not contribute to FE(ζ). However, operators with dimensions ∆ = 3 and ∆ = 5

can contribute contact terms at ζ = 0, in accordance with the discussion in sec-
tion 5.6.2.

5.7.3 Tree level

To get the tree-level correlator we set Φ(u, v) = 0 in (5.236). Recall from section 5.5.3
that

C+(∆, J = −1) = Cc(∆, J = −1), (5.241)

35Note that [62] used a different conformal block normalization.
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where Cc(∆,−1) corresponds to the connected part of the four-point function. Writ-
ten in terms of cross-ratios, the connected tree-level correlator takes the form

〈O(x4, Y 0)O(x1, S0)O(x2, S
′
0)O(x3, Y0)〉tree

c =
1

2(2π)4

1

x2
14x

2
23x

2
13x

2
24

=
1

x4
12x

4
34

(
1

2(2π)4

u2

v

)
.

(5.242)

Plugging into the inversion formula, we have

Ctree
c (∆, J) = 2

κ∆+J

4

∫ 1

0

∫ 1

0

dz

z2

dz

z2

(z − z)2

(zz)2
GJ+3,∆−3(z, z)dDisc

[
1

2(2π)4

(zz)2

(1− z)(1− z)

]
,

(5.243)

where the factor of 2 in front comes from the fact that the t- and u-channel terms in
the inversion formula are equal. dDisc 1

1−z is delta-function supported near z = 1. To
regulate it, we will replace

zz

(1− z)(1− z)
→ (zz)1+δ

((1− z)(1− z))1+δ
. (5.244)

Recall that [231, 232]

GJ+3,∆−3(z, z) =
zz

z − z
(k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z)),

kβ(z) = zβ/22F1

(
β

2
,
β

2
, β, z

)
. (5.245)

Doing the integral and removing the regulator δ → 0 leads to the result

Ctree
c (∆, J)

=
Γ(∆+J

2
)4

Γ(∆ + J − 1)Γ(∆ + J)

1

2(2π)4

(
Γ(∆ + J)

Γ(∆+J
2

)2
I1(J+4−∆

2
,−1)− I1(∆+J

2
,−1)

Γ(J + 4−∆)

Γ(J+4−∆
2

)2

)
,

(5.246)

where

Iα(h, p) ≡
∫ 1

0

dz

z(1− z)
zα
(

z

1− z

)p
k2h(z)

=
Γ(α + p+ h)Γ(−p)

Γ(α + h)
3F2(h, h, α + p+ h; 2h, α + h; 1). (5.247)
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We can now compute the energy-energy correlator by plugging (5.246) at J = −1

into (5.228). The result is

Ctree
c (∆,−1)

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)

=
1

8

(
1

Γ(∆−1
2

)

I1(3−∆
2
,−1)

Γ(3−∆
2

)
− I1(∆−1

2
,−1)

Γ(∆−1
2

)

Γ(∆− 1)

Γ(3−∆)

Γ(3−∆
2

)3

)

=
1

8

Γ(∆−1
2

)

Γ(∆− 1)Γ(3−∆
2

)

∫ 1

0

dz

z

(
Γ(∆− 1)

Γ(∆−1
2

)2
k3−∆(z)− Γ(3−∆)

Γ(3−∆
2

)2
k∆−1(z)

)

=
1

8

Γ(∆−1
2

)2

Γ(∆− 2)
. (5.248)

This expression is free of poles to the right of the principal series, so by closing the
contour in (5.228) to the right we conclude that FE(ζ) = 0 for 0 < ζ < 1. This ignores
the possibility of contact terms discussed in section 5.6.2, which we now address.

Let us start by studying contact terms at ζ = 0. As explained in section 5.6.2, apart
from the protected contact term ξ(ζ) in (5.230), the energy correlator FE(x) may
receive contact terms from the integral (5.228). Indeed, when ζ = 0, the distribution
f̂∆(ζ) does not vanish at ∆ = 3, 5, and we in fact have

F (0)
E (ζ) = −(4π4δ′(ζ)− 2π4δ(ζ))res∆=3 C

tree
c (∆,−1)− 8π4δ(ζ)res∆=5C

tree
c (∆,−1) + ξ(ζ)

=
1

4
δ(ζ) , (ζ < 1). (5.249)

Let us now analyze contact terms at ζ = 1. When ζ = 1, we should worry about the
convergence of the integral when closing the contour, since there is no suppression
coming from ζ

∆−7
2 in the celestial block. To probe possible delta-function terms

localized at ζ = 1 let us consider moments of the energy flow∫ 1

0

dζ ζNF (0)
E (ζ) =

δN,0
4

+

∫ C0+i∞

C0−i∞

d∆

2πi
Ctree
c (∆, J = −1)

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)

∫ 1

0

dζ ζNf 4,4
∆ (ζ), ·

(5.250)

where we deformed the integration contour to Re[∆] = C0 > 5 so that the integral∫ 1

0
dζ ζNf 4,4

∆ (ζ) converges for N ≥ 0. We find that at large |∆| � 1 the integrand
behaves as ∫ 1

0

dζ ζNF (0)
E (ζ) =

δN,0
4

+

∫ 2+i∞

2−i∞

d∆

2πi

1

2∆
=

1 + δN,0
4

, (5.251)
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where we evaluated the ∆ integral using the principal value prescription. If we sub-
tract off this leading behavior, then the contour deformation in ∆ becomes legitimate
and we get 0 for the remainder. This implies that F (0)

E (ζ) 3 1
4
δ(1− ζ), in agreement

with the straightforward scattering amplitude evaluation, see e.g. [147]. More gener-
ally, we see that distributional terms supported at ζ = 1 are encoded in the large-∆
behavior of C+(∆, J = −1).

To summarize, the energy-energy correlator at tree-level is given by

F (0)
E (ζ) =

1

4
(δ(ζ) + δ(1− ζ)). (5.252)

Note that this is the unique expression with delta functions at ζ = 0 and ζ = 1 that
satisfies both Ward identities (5.233) and (5.234).

5.7.4 One loop

To study perturbative corrections, let us briefly discuss how they are encoded in
C+(∆, J). Non-perturbatively, we have poles of the form

C+(∆, J) ∼ − ai(a)

∆−∆i(a)
, (5.253)

where ai(a) and ∆i(a) are, respectively, the product of OPE coefficients and scaling
dimension of an exchanged operator.

We furthermore have expansions

ai(a) = a
(0)
i + a a

(1)
i + a2a

(2)
i + · · · , (5.254)

∆i(a) = ∆
(0)
i + a γ

(1)
i + a2γ

(2)
i + · · · , (5.255)

and thus

C+(∆, J) ∼ − a
(0)
i

∆−∆
(0)
i

+ a

(
− a

(1)
i

∆−∆
(0)
i

− a
(0)
i γ

(1)
i

(∆−∆
(0)
i )2

)
+ · · · . (5.256)

Suppose now that there is a degeneracy at tree level, i.e. ∆
(0)
i = ∆

(0)
∗ . Then we have

C+(∆, J) ∼ −
∑

i a
(0)
i

∆−∆
(0)
∗

+ a

(
−
∑

i a
(1)
i

∆−∆
(0)
∗
−
∑

i a
(0)
i γ

(1)
i

(∆−∆
(0)
∗ )2

)
+ · · ·

∼ − 〈a(0)
∗ 〉

∆−∆
(0)
∗

+ a

(
− 〈a(1)

∗ 〉
∆−∆

(0)
∗
− 〈a(0)

∗ γ
(1)
∗ 〉

(∆−∆
(0)
∗ )2

)
+ · · · , (5.257)

where we introduced the notation 〈· · ·〉 (used extensively below) representing the
total contribution of operators that are degenerate at tree level. Below, the subscript
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∗ will be replaced by a label referring to the degenerate group of operators. The
contribution of these poles to (5.228) now becomes

F (1)
E (ζ) 3 〈a(1)

∗ 〉

[
4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 4,4

∆ (ζ)

]
∆=∆

(0)
∗

+ 〈a(0)
∗ γ

(1)
∗ 〉

[
∂∆

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 4,4

∆ (ζ)

]
∆=∆

(0)
∗

. (5.258)

In this section, we will not compute C+(∆,−1), but rather use the known OPE data
〈a(1)
∗ 〉 and 〈a(0)

∗ γ
(1)
∗ 〉, analytically continued to J = −1. The complete OPE data for

the one-loop correlator was written down in [240]. Recall from section 5.7.2 that the
contribution of long multiplets, which are the ones that receive loop corrections, is
given by

H(u, v) =
c

2(2π)4
u2

(
1 +

1

v2
−G(short)(u, v)

)
+

1

(2π)4

u2

v

(
1

2
+ uΦ(u, v)

)
. (5.259)

At tree level, this can be decomposed into superconformal blocks (5.240) as follows,
see (2.21) in [240],

〈a(0)
τ=2,J〉 =

1

(2π)4

Γ(J + 3)2

Γ(2J + 5)
,

〈a(0)
τ,J〉 =

c

(2π)4

Γ( τ
2

+ 1)2Γ( τ
2

+ J + 2)2

Γ(τ + 1)Γ(τ + 2J + 3)

(
(τ + J + 2)(J + 1) +

(−1)τ/2

c

)
, (5.260)

where we used twist τ = ∆ − J and even spin J ≥ 0 to label the operators, with
τ = 4, 6, 8, . . . in the second line.

Note that for τ > 2 there are degeneracies in the spectrum, so 〈· · ·〉 notation is nec-
essary. One can check that (5.260) indeed correctly reproduces (5.259) upon setting
Φ(u, v) to zero.

In perturbation theory, we write

Φ(u, v) = a Φ(1)(u, v) + a2Φ(2)(u, v) + · · · , (5.261)

and similarly for H(u, v). At one loop we have

H(1)(u, v) =
1

(2π)4

u3

v
Φ(1)(u, v),

Φ(1)(u, v) = −1

4

1

z − z

(
2Li2(z)− 2Li2(z) + log zz log

1− z
1− z

)
. (5.262)
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Analogously to (5.258), the OPE data enters as

δH(u, v) =
∞∑

τ=2,4,...; even J

(
〈a(1)
τ,J〉Gτ+4+J,J + 〈a(0)

τ,Jγ
(1)
τ,J〉∂τGτ+4+J,J

)
, (5.263)

where for convenience we labeled the superconformal primaries by twist τ = ∆ − J
instead of the dimension (as we did in (5.240)).

The result of the one-loop decomposition for anomalous dimensions is, see (A.24-A.25)
in [240],

〈γ2,J〉 ≡
〈a(0)

2,Jγ
(1)
2,J〉

〈a(0)
2,J〉

= 2S1(J + 2),

〈γτ,J〉 ≡
〈a(0)
τ,Jγ

(1)
τ,J〉

〈a(0)
τ,J〉

= −2

c

[η + 1]S1( τ
2
) + [η − 1]S1( τ

2
+ J + 1)

(τ + J + 2)(J + 1) + η
c

, (5.264)

where following [240] we introduced η = (−1)τ/2 and

Sk(N) =
N∑
i=1

1

ik
. (5.265)

We can concisely write the OPE coefficients at one loop by defining

〈a(1)
τ,J〉 ≡ 〈ατ,J〉〈a

(0)
τ,J〉+

1

2
∂J〈a(0)

τ,Jγ
(1)
τ,J〉. (5.266)

The coefficients 〈ατ,J〉 are

〈α2,J〉 = −ζ2,

〈ατ,J〉 = −2

c

1(
(τ + J + 2)(L+ 1) + (−1)τ/2

c

)(1− η
2

ζ2 + (1 + η)S1( τ
2
)2 − 1 + η

2
S2( τ

2
)

− (1 + η)S1( τ
2
)S1(τ) + [(2η − 1)S1( τ

2
) + (1− η)S1(τ)]S1( τ

2
+ L+ 1)

)
,

(5.267)

Note that for superconformal primaries of twist τ and spin J we should set ∆
(0)
∗ =

4+τ+J in (5.258). Here the shift by 4 is due to the form of the superconformal block
in (5.240). This means that for twist τ = 2n, n ≥ 1, and spin J = −1 we have to use
∆

(0)
∗ = 3 + 2n. In this case, the first term in (5.258) vanishes for ζ 6= 0 due to the



304

factor Γ(∆−3
2

)−1. Thus, the only relevant term is the one proportional to 〈a(0)
τ,−1γ

(1)
τ,−1〉

for which we get

〈a(0)
τ,−1γ

(1)
τ,−1〉 = (−1)τ/2+1 Γ(1 + τ

2
)4S1( τ

2
)

4π4Γ(1 + τ)2
. (5.268)

From this we conclude that for 0 < ζ < 1

F (1)
E (ζ) = 2π4

∞∑
n=1

(−1)n+1〈a(0)
τ=2n,−1γ

(1)
τ=2n,−1〉

1

rn+1

f 4,4
3+2n(ζ)

=
∞∑
n=1

(n!)2

2(2n)!
S1(n)f 4,4

3+2n(z) = −1

4

log(1− ζ)

ζ2(1− ζ)
, (5.269)

where

rh =
Γ(h)2

Γ(2h− 1)
. (5.270)

Again our results are in perfect agreement with the direct evaluation performed in
[147].

Let us now analyze the contact terms at ζ = 0 and ζ = 1 in FE(ζ). First, let us fix
these contact terms using the result for 0 < ζ < 1

F (1)
E (ζ) = −1

4

log(1− ζ)

ζ2(1− ζ)
(0 < ζ < 1), (5.271)

together with Ward identities. We will then check that we reproduce the same contact
terms at ζ = 0 using the light-ray OPE. We can rewrite (5.271) as

F (1)
E (ζ) =

1

4ζ
− 1

4

log(1− ζ)

1− ζ
+ F (1),reg

E (ζ), (5.272)

where F (1),reg
E (ζ) is integrable near 0 and 1, and so has an unambiguous distributional

interpretation. We then only need to interpret the first two terms. The most general
expression we can write is36

F (1)
E (ζ) = c

(1)
0 δ(ζ) + c

(1)
1 δ(1− ζ) +

1

4

[
1

ζ

]
0

− 1

4

[
log(1− ζ)

1− ζ

]
1

+ F (1),reg
E (ζ), (5.273)

where [· · · ]0 is defined near (5.216), and the definition of [· · · ]1 is analogous with
ζ → 1− ζ. Ward identities (5.233) and (5.234) require∫ 1

0

dζ F (1)
E (ζ) =

∫ 1

0

dζ(2ζ − 1)F (1)
E (ζ) = 0, (5.274)

36We assume that there are no derivatives of delta-functions. We verify this at ζ = 0 using the
OPE.
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from which we find

c
(1)
0 = −1

4
, c

(1)
1 = −ζ2

4
. (5.275)

We would now like to reproduce the distributional piece near ζ = 0

F (1)
E (ζ) = −1

4
δ(ζ) +

1

4

[
1

ζ

]
0

+ regular (5.276)

from the OPE. From the discussion in section 5.6.2 together with (5.258), this piece
is given by

F (1)
E (ζ) 3 〈a(1)

τ=2,−1〉f̂5(ζ) + 〈a(0)
τ=2,−1γ

(1)
τ=2,−1〉∂∆f̂∆(ζ)|∆=5

= − 1

16π4
× 8π4δ(ζ) +

1

16π4
× 4π4

(
δ(ζ) +

[
1

ζ

]
0

)
= −1

4
δ(ζ) +

1

4

[
1

ζ

]
0

, (5.277)

where we used (5.215). This is precisely the expected result.

To summarize, the full one-loop energy-energy correlator takes the form

F (1)
E (ζ) = −1

4
δ(ζ)− ζ2

4
δ(1− ζ) +

1

4

[
1

ζ

]
0

− 1

4

[
log(1− ζ)

1− ζ

]
1

+ F (1),reg
E (ζ), (5.278)

where F (1),reg
E (ζ) is defined via (5.272). The distributional part at ζ = 1 is in agree-

ment with the one obtained in [147]. We also derive this ζ = 1 contact term from a
different point of view in appendix D.6.

5.7.5 Two loops

Next, we would like to perform a similar analysis for the two-loop result [241, 242].
In this case, we must expand both the three-point coefficients and the anomalous
dimensions up to second order. We have

H(2)(u, v)

=
∞∑

τ=2,4,...; even J

(
〈a(2)
τ,J〉Gτ+4,J + 〈a(1)

τ,Jγ
(1)
τ,J + a

(0)
τ,Jγ

(2)
τ,J〉∂τGτ+4,J +

1

2
〈a(0)
τ,J(γ

(1)
τ,J)2〉∂2

τGτ+4,J

)
,

(5.279)
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and a similar extension of (5.258) for the celestial block expansion (5.232). The
explicit expression for H(2) is [221]

H(2)(u, v) =
1

(2π)4

u3

v

(
1

2
(1 + u+ v)

[
Φ(1)(u, v)

]2
+ 2

[
Φ(2)(u, v) + Φ(2) (v, u) +

1

v
Φ(2)

(
u‘

v
,

1

v

)])
,

Φ(2)(z, z) =
1

16

1

z − z

(
6(Li4(z)− Li4(z))− 3 log(zz)(Li3(z)− Li3(z))

+
1

2
log2(zz)(Li2(z)− Li2(z))

)
. (5.280)

A complete OPE expansion of this result is not available in the literature (as far as
we know). Otherwise, we could simply evaluate the OPE data at J = −1, plug into
the celestial OPE formula, and read off the answer for the energy-energy correlator.
Some parts of the OPE expansion were obtained in [243], whose results we use below.
For simplicity we focus on the term that involves 〈a(1)

τ,J(γ
(1)
τ,J)2〉, which on the celestial

sphere maps to terms containing log2 ζ.

Below, it will be useful to explicitly write the small-z expansion of ∂2
τGτ+4,J , which

takes the form

∂2
τGτ+4,J = (zz)2+ τ

2 log2 z

(
1

4
g̃τ+4,J +

1

4
(zz)g̃sub

τ+4,J + ...

)
,

g̃τ,J = gτ/2,J = zJ 2F1

(τ
2

+ J,
τ

2
+ J, τ + 2J, z

)
,

g̃sub
τ,J (z) = g̃τ+4,J−2(z) +

τ − 2

4
g̃τ+2,J−1(z)− δJ,0g̃τ+2,−2(z) , (5.281)

where we only kept the terms containing log2 z.

5.7.5.1 Leading twist

The leading-twist contribution to H(2) takes the form (zz)3 log2 zf3(z), where

f3(z) =
1

16

1

(2π)4

1

(1− z)z2

(
log2[1− z] + 2z Li2(z)

)
. (5.282)

Since there is no tree-level degeneracy for twist-two operators, this is equal to

f3(z) =
1

2

∑
even J

a
(0)
2,J

(
γ

(1)
2,J

)2
[

1

4
g̃6,J(z)

]
. (5.283)

Indeed one can check that (5.283) reproduces (5.282) .
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5.7.5.2 Subleading twist

Knowing 〈a(1)
τ,J(γ

(1)
τ,J)2〉 at τ = 2 allows us to compute the ζ2 log ζ piece in F (2)(ζ). A

really nontrivial check would be to reproduce the ζ3 log ζ term. Indeed the two-loop
result of [182] contains both rational and transcendental pieces (π2) at this order. The
latter should come from the analytically continued 〈γ2〉 6= 〈γ〉2, due to the degeneracy
of twist 4 operators.

We can compute the required OPE data from the piece (zz)4 log2 zf4(z) ∈ H(2), where

f4(z)

= − 1

16

1

(2π)4

1

(1− z)z4

(
2z2 + z(z − 2) log[1− z]− (2 + z2) log2[1− z]− 2z(1 + z)Li2(z)

)
.

(5.284)

This receives contributions from descendants of twist-two operators as well as from
the subleading twist-four Regge trajectory. The subleading trajectory has tree-level
degeneracies that we have not resolved, and therefore we cannot simply compute the
result using our one-loop analysis.

The function (5.284) has decomposition

f4(z) =
1

2

∑
even J

a
(0)
2,J

(
γ

(1)
2,J

)2
[

1

4
g̃sub

8,J (z)

]
+

1

2

∑
even J

〈a(0)
4,J [γ

(1)
4,J ]2〉

[
1

4
g̃8,J(z)

]
. (5.285)

Using

g̃τ,J(z) = z−
τ
2 g̃0,τ+J(z) (5.286)

and (5.281) it is easy to compute the contribution of descendants of twist 2 operators.
After that we are left with the contribution of twist-four primaries

f̃4(z)

=
1

2(2π)4z4

(
−9

2
− 1

4

z2

1− z
+

(z − 2)(18− z2

1−z )

8z
log(1− z) +

1

8
(1 +

z2

1− z
) log2(1− z)

)
,

(5.287)

which admits the decomposition (5.285) with the second term only. From this, we
find37

37To solve this decomposition problem, one can use the methods of [243].
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〈a(0)
4,J [γ

(1)
4,J ]2〉 =

1

4π4

2−8−2J
√
π

3Γ(J + 7/2)

(
−6(11 + 7J + J2)Γ(3 + J)

4 + J

− Γ(4 + J)
(
π2 + 6(1− 2S1(3 + J))S1(3 + J) + 3S2(2 + J

2
)− 3S2(5+J

2
)
))

.

(5.288)

Evaluating at J = −1, we finally get

〈a(0)
4,−1[γ

(1)
4,−1]2〉 = −2

9
(π2 − 11)

1

2(2π)4
. (5.289)

Note the appearance of the transcendental quantity π2 which is absent for even integer
J .

5.7.5.3 Two-loop energy correlator

Expanding (5.232) to the second order, we get

F (2)
E (ζ) = 2π4

∞∑
n=1

((
〈a(0)
τ=2n,−1γ

(2)
τ=2n,−1〉+ 〈a(1)

τ=2n,−1γ
(1)
τ=2n,−1〉

) (−1)n+1

rn+1

f 4,4
3+2n(ζ)

+ 〈a(0)
τ=2n,−1[γ

(1)
τ=2n,−1]2〉(−1)n+1 1

2
∂n

[
f 4,4

3+2n(ζ)

rn+1

])
. (5.290)

Here, we used the fact that corrections to three-point coefficients alone do not con-
tribute to scalar flow, due to the vanishing of the prefactor in (5.232) at tree-level
twists.

Since we do not have degeneracies at twist two, we can fully predict the n = 1 term
in (5.290). For n = 2, corresponding to twist-four operators, we only computed the
term 〈a(0)

4,−1[γ
(1)
4,−1]2〉. The only missing element in the twist two sector is the two-loop

anomalous dimension. It takes the following form (see e.g. formula (5.29) in [243])

γ
(2)
2,J = 2S−2,1(J + 2)− 2S1(J + 2)(S2(J + 2) + S−2(J + 2))− (S3(J + 2) + S−3(J + 2)) ,

(5.291)

where S−2,1(N) =
∑N

n=1
(−1)n

n2 S1(n) is an example of a nested harmonic sum. The
relevant analytic continuation from even spins to J = −1 gives

γ
(2),+
2,−1 = 2S+

−2,1(1) +
π2

3
− 6 +

3

2
ζ3 = −4 +

π2

3
− ζ3, (5.292)

where we used standard methods [244] to perform the analytic continuation.
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Figure 5.12: Integrable part F (2),reg
E (ζ) of the two-loop energy correlator. Left:

F (2),reg
E (ζ) as a function of ζ. Right: F (2),reg

E (ζ)/h(ζ) as a function of ζ, where
h(ζ) = (1− log ζ)(1− log(1− ζ))3.

Plugging everything back, we get the following prediction for the small-angle expan-
sion of the scalar flow observable at two loops

F (2)
E (ζ) =

1

4ζ

(
1 +

π2 − 5

6
ζ + . . .

)
log ζ +

1

4ζ

(
−1

2
ζ3 +

π2

6
− 3

)
+ . . . . (5.293)

This coincides with the expansion of the result in [182]. In principle, by performing
the OPE decomposition of the small z expansion of the two-loop result (5.280) further
and evaluating it at J = −1, we can predict higher order terms in the small-angle
(small ζ) expansion of the scalar event shape.

5.7.5.4 Contact terms

Let us also check that we reproduce the correct ζ = 0 contact terms in F (2)
E (ζ).

Firstly, as in the one-loop example, we can use the Ward identities to fix the contact
terms in the two-loop result of [182]. We have

F (2)
E (ζ) =

1

4

1

ζ

(
π2

6
− 1

2
ζ3 − 3

)
+

1

4

log ζ

ζ
+
ζ3

8

1

1− ζ
+
π2

16

log(1− ζ)

1− ζ
+

1

8

log3(1− ζ)

1− ζ
+ F (2),reg

E (ζ), (5.294)

where F (2),reg
E (ζ) is integrable both at ζ = 0 and ζ = 1. We show the plot of F (2),reg

E (ζ)

in figure 5.12. It only has integrable logk-type singularities at the endpoints. To
demonstrate this, we show also the ratio F (2),reg

E (ζ)/h(ζ) with h(ζ) = (1− log ζ)(1−
log(1 − ζ))3. This ratio is finite, but approaches its limits near ζ = 0, 1 in a non-
analytic way due to 1/ logk type non-analyticities.
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As before, we make an ansatz for the distribution by writing

F (2)
E (ζ) =

1

4

[
1

ζ

]
0

(
π2

6
− 1

2
ζ3 − 3

)
+

1

4

[
log ζ

ζ

]
0

+
ζ3

8

[
1

1− ζ

]
1

+
π2

16

[
log(1− ζ)

1− ζ

]
1

+
1

8

[
log3(1− ζ)

1− ζ

]
1

+ c
(2)
0 δ(ζ) + c

(2)
1 δ(1− ζ) + F (2),reg

E (ζ), (5.295)

where [ζ−1 logk ζ]0 is defined by the Taylor expansion of ζ−1+ε in ε to the appropriate
order, and similarly for [(1−ζ)−1 logk(1−ζ)]1. The Ward identities (5.233) and (5.234)
require that

0 =c
(2)
0 + c

(2)
1 +

∫ 1

0

dζ F (2),reg
E (ζ), (5.296)

0 =− c(2)
0 + c

(2)
1 −

1

2
(ζ3 + 1) +

5π2

24
+

∫ 1

0

dζ(2ζ − 1)F (2),reg
E (ζ). (5.297)

The explicit expression for F (2),reg
E (ζ) follows easily from the definition and the results

of [182]. Due to its complexity, we computed the above integrals numerically,∫ 1

0

dζ F (2),reg
E (ζ) = −2.6133007151791604187079457 . . . , (5.298)∫ 1

0

dζ(2ζ − 1)F (2),reg
E (ζ) = −1.047646501079170962972713 . . . , (5.299)

from which we can determine

c
(2)
0 = 1.26039667304023767931294 . . . ,

c
(2)
1 = 1.35290404213892273939500 . . . . (5.300)

Using Mathematica’s FindIntegerNullVector, we found that to the available preci-
sion these numbers are given by

c
(2)
0 =

11π4

1440
− π2

8
+

7

4
,

c
(2)
1 =

π4

72
. (5.301)

To summarize, the distributional piece of F (2)
E (ζ) near ζ = 0 is

F (2)
E (ζ) =

(
11π4

1440
− π2

8
+

7

4

)
δ(z) +

1

4

[
1

ζ

]
0

(
π2

6
− 1

2
ζ3 − 3

)
+

1

4

[
log ζ

ζ

]
0

+ · · · .

(5.302)
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As at one loop, from the OPE point of view these pieces are determined completely
by twist-two OPE data. In particular, we have

F (2)
E (ζ) =〈a(2)

τ=2,−1〉f̂5(ζ) + 〈a(1)
τ=2,−1γ

(1)
τ=2,−1 + a

(0)
τ=2,−1γ

(2)
τ=2,−1〉∂∆f̂∆(ζ)|∆=5

+
1

2
〈a(0)
τ=2,−1(γ

(1)
τ=2,−1)2〉∂2

∆f̂∆(ζ)|∆=5 + · · · . (5.303)

All OPE data in this equation except for 〈a(2)
τ=2,−1〉 has been described above. We give

〈a(2)
τ=2,−1〉 in the next section in equation (5.315). Using these results and (5.215), we

precisely reproduce (5.302). A calculation in appendix D.6 also reproduces the value
of c(2)

1 in (5.301). Note that this is non-trivial consistency check of the result [182],
since in order to fix the contact terms we used Ward identities which involve integrals
of the even shape over ζ, not just the ζ → 0 and ζ → 1 limits.

To summarize, the full two loop energy-energy correlator is given by (5.295), where
c

(2)
0 and c

(2)
1 are given by (5.301). This completes the 0 < ζ < 1 result of [182].

We checked numerically that the complete two-loop energy-energy correlator satisfies
Ward identities (5.233) and (5.234). This check was also performed in [219].

5.7.6 Three loops

Recently the three loop the energy-energy correlator have been computed in [207].
The authors have verified that the leading ζ asymptotic of their result agrees with
our prediction (see section 5.7.7).38 In this section we extend this check to contact
terms at ζ = 0, similarly to what we did at the two-loop level above. Namely, we
will use the results of [207] and Ward identities to fix the contact terms at ζ = 0 and
ζ = 1, and then compare to the ζ = 0 contact terms predicted by the light-ray OPE.
This provides a highly non-trivial consistency check of the results of [207], since the
Ward identities involve integrals of F (3)

E (ζ) over ζ.

We proceed as before, by writing

4F (3)
E (ζ)

= 4c
(3)
0 δ(ζ) + 1

2

[
log2 ζ
ζ

]
0

+
(
π2

3
− ζ3 − 5

) [
log ζ
ζ

]
0

+
(

17− 4π2

3
+ 5π4

144
− ζ3 + 3

2
ζ5

) [
1
ζ

]
0

+ 4c
(3)
1 δ(y)− 1

8

[
log5 y
y

]
1
− π2

6

[
log3 y
y

]
1
− 11ζ3

4

[
log2 y
y

]
1
− 61π4

720

[
log y
y

]
1
−
(

7
2
ζ5 + π2

3
ζ3

) [
1
y

]
1

+ 4F (3),reg
E (ζ), (5.304)

where y = 1− ζ and F (3),reg
E (ζ) is integrable at ζ = 0 and ζ = 1. We show the plot of

F (3),reg
E (ζ) in the left panel of figure 5.13. Again, it only has integrable logk singular-
38This was also independently verified in [220] based on the two-loop result [182] and the energy

Ward identity (5.233).
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Figure 5.13: Integrable part F (3),reg
E (ζ) of the two-loop energy correlator. Left:

F (3),reg
E (ζ) as a function of ζ. Right: ∂ζ

∂p
F (3),reg
E (ζ) as a function of p.

ities. In order to perform numerical integration of these singularities we change the
variable from ζ ∈ [0, 1] to p ∈ [0, 1] defined as

ζ =
(1− p)2 + (1− p)3

log2 p

(
1 +

p5(1− p)
log5(1− p)

)
. (5.305)

This change of variables is designed so that the Jacobian ∂ζ
∂p

has appropriate 1/ logk

behavior to cancel logk singularities of F (3),reg
E (ζ) near ζ = 0, 1. We show the plot of

the resulting function ∂ζ
∂p
F (3),reg
E (ζ) in the right panel of figure 5.13.

The singular part, except from the delta functions (and distributional interpretation
of other pieces), can be obtained from the results of [207]. We can fix the coefficients
c

(3)
i by requiring that the Ward identities (5.233) and (5.234) are satisfied. We find
the equations

0 = c
(3)
0 + c

(3)
1 +

∫
dζ F (3),reg

E (ζ), (5.306)

0 = −c(3)
0 + c

(3)
1 + 4− 4π2

3
− π4

40
+

11ζ3

4
+
π2ζ3

6
+

5ζ5

2
+

∫
dζ(2ζ − 1)F (3),reg

E (ζ).

(5.307)

Integrating the result of [207], numerically we find∫
dζ F (3),reg

E (ζ) ≈ 9.53135,∫
dζ(2ζ − 1)F (3),reg

E (ζ) ≈ 4.84686. (5.308)

In [207], F (3)
E (ζ) contains a piece expressed as a double integral, and the integrals

above are therefore effectively triple integrals. Because of this, it is non-trivial to
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control the numerical errors, and we have not attempted to get an a priori error
estimate for (5.308). Based on the agreement with the light-ray OPE below, we
expect that the errors in the numbers above are in the last digit.

Using this data, we find

c
(3)
0 ≈ −4.20195,

c
(3)
1 ≈ −5.32939. (5.309)

Using the same methods as above, and the OPE data described in section 5.7.7, we
find the light-ray OPE prediction for c(3)

0 ,

c
(3)
0 = −49

4
+ π2 − π4

576
− 109π6

30240
+

5ζ3

4
− 7

24
π2ζ3 +

3ζ2
3

16
+

27ζ5

8

= −4.2019873198181 · · · . (5.310)

This agrees well with (5.309), and based on the accuracy of the agreement, we expect
for c(3)

1

c
(3)
1 ≈ −5.3294(1). (5.311)

We show in appendix D.6 that c(3)
1 is given by

c
(3)
1 = −197π6

40320
− 7ζ2

3

16
= −5.329425268 · · · , (5.312)

which precisely agrees with (5.311).39 This numerical check was also done in [219].

To summarize, the complete three-loop energy-energy correlator, including contact
terms, is given by (5.304), where c

(3)
0 and c

(3)
1 are given by (5.310) and (5.312),

while F (3)
E (ζ) follows from its definition and results of [207]. We checked numerically

that the complete three-loop energy-energy correlator satisfies Ward identities (5.233)
and (5.234).

5.7.7 Four loops in the planar limit and finite coupling

Using known results for the OPE data of twist-2 operators, we can make new pre-
dictions for the leading small-angle asymptotics of the energy-energy correlator. At
finite coupling the contribution of twist-two operators takes the form

F twist-two
E (ζ) = a

(+)
2,−1

4π4Γ
(

3 + γ
(+)
2,−1

)
Γ

(
2 +

γ
(+)
2,−1

2

)3

Γ

(
−1− γ

(+)
2,−1

2

)f 4,4

5+γ
(+)
2,−1

(ζ) , (5.313)

39In deriving (5.312), we used the three-loop result for the so-called coefficient function H(a)
[219].
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where by (+) we indicate analytic continuation from even spin. Note that γ(+)
2,−1 can

be computed at any ’t Hooft coupling using integrability methods [198, 245]. At small

angles we have f 4,4

5+γ
(+)
2,−1

(ζ) ≈ ζ
γ

(+)
2,−1
2
−1. Therefore, at weak coupling (5.313) controls

the small angle ζ → 0 expansion of the EEC. When the coupling becomes large,
operators with twist two at tree level become very heavy and the leading small-angle
asymptotic is controlled by the approximately twist-four double trace operators. This
transition happens at a ≈ 2.645, see figure 5.14.

At finite coupling there is no contact term coming from (5.313), since the anomalous
dimension of twist-two operators is finite. The term ξ(ζ) in (5.232) is completely
canceled by a contribution of a protected operator. This cancellation is the same as
at strong coupling and is described in the next section. In summary, the event shape
at finite coupling is integrable near ζ = 0 and the contact terms only appear at weak
coupling through the expansion (5.215).

Using (5.313), we can easily make a planar four-loop prediction for the leading asymp-
totic of F(ζ).40 The relevant OPE data takes the form

γ
(+)
2,−1 = 2a+

(
−4 +

π2

3
− ζ3

)
a2 +

(
16− 4

3
π2 +

π4

120
− 3ζ3 + 3ζ5

)
a3

+

(
−80 +

π2

6
[48− 13ζ3 + ζ5]− 1

720
π4[46 + 5ζ3]

−107π6

15120
+ 14ζ3 +

9

2
ζ2

3 + 16ζ5 −
69

8
ζ7

)
a4 + . . . , (5.314)

a
(+)
2,−1

a
(0)
2,−1

= 1− 2a+

(
12− 2π2

3
+

11π4

360
+

1

2
ζ3

)
a2

+

(
−80 + π2(6− 7

6
ζ3)− π4

24
− 109

7560
π6 + 6ζ3 +

3

4
ζ2

3 + 12ζ5

)
a3 + a4a

4 + . . . ,

(5.315)

where for our normalization of the four-point function the tree-level three-point func-
tion is a(0)

2,−1 = 1
32π4 . Up to three loops, the results can be found in [247], where

the three-loop correction to the structure constant was first explicitly computed.41

For the four-loop anomalous dimensions, we combined the results of [249] and [250].
To analytically continue in spin, we used the HPL package [251] together with the
supplement developed in [252].42

40Starting from the four loops there are non-planar corrections to the correlator [246].
41The currently available online version (arXiv v1) of [247] contains a typo. The corrected version
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Figure 5.14: γ(+)
2,−1 as a function of the coupling constant a = λ

4π2 . The plot was kindly
made for us by Nikolay Gromov. The actual numerics was done for J = −1 + 10−5.
The blue dotted line represents a four-loop weak coupling approximation to γ(+)

2,−1, the
red dashed line corresponds to the first four terms at the strong coupling expansion
[245]. The solid line was obtained using the quantum spectral curve technique [245].
The curve intersects γ(+)

2,−1 = 2 at a ≈ 2.645. At this point the small angle expansion
of the EEC becomes regular and dominated by the twist four double trace operators.

Plugging these results into (5.313), we easily obtain the leading small-angle expansion
of the energy-energy correlator up to four loops. Due to the factor

1

Γ

(
−1− γ

(+)
2,−1

2

) , (5.316)

only the three-loop correction to three-point coefficients is needed to compute the
four-loop result for 0 < ζ < 1. At ζ = 0, ζ = 1, there are contact terms that
depend on additional data at four loops (discussed below). The first two terms in
the expansion in the coupling reproduce the two-loop computation of [182]. The
three- and four-loop predictions are new. Our three-loop prediction was recently
independently confirmed in [207].

of the formula can be found for example in [248] which we used in our computation.
42In the papers cited above, the anomalous dimension and three-point coupling of Tr[ZDJZ]

operator are computed. These operators transform in the 20′ representation and their dimensions
and couplings are related to the anomalous dimension γτ=2,J and aτ=2,J of the superconformal
primaries that appear in (5.240) by a spin shift J → J + 2, see e.g. [253]. Therefore, the formulas of
[247] should be evaluated at J = 1 for our purposes.
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In more detail, we can write the following expression for the planar four-loop energy-
energy correlator43

F (4),pl
E (ζ) = c

(4)
0 δ(ζ) +

1

24

[
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+
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+ F (4),reg
E (ζ), (5.317)

where F (4),reg
E (ζ) is integrable at ζ = 0, 1. We also included the leading terms in

the ζ → 1 limit, which we obtained using results of [182, 219, 254] as described in
appendix D.6 (recall y = 1−ζ).44 The contact term coefficients c(4)

0 and c(4)
1 are equal

to

c
(4)
0 =

1

4

(
−209 +

37

2
π2 − 23

80
π4 − 389

30240
π6 + 20ζ3 −

8

3
π2ζ3 −

3

160
π4ζ3
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2
ζ2

3 + 14ζ5 +
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12
π2ζ5 −

69

16
ζ7 + a4

)
,

c
(4)
1 = 17

144
π2ζ2

3 +
7

2
ζ3ζ5 +

1

4
H4 , (5.318)

where a4 is a four-loop correction to the three-point function at J = −1, see (5.315),
and H4 is a four-loop correction to the coefficient function, see appendix D.6, which

43By planar we mean that it was obtained from the planar four-loop correlation function. Starting
from four loops there are corrections to the energy correlator suppressed by 1

c .
44Here we again made use of the three-loop result for H(a) [219].
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are presently unknown. The Ward identities (5.233), (5.234) thus take the form

c
(4)
0 + c

(4)
1 +

∫ 1

0

dζ F (4),reg
E (ζ) = 0,

−c(4)
0 + c

(4)
1 +

∫ 1

0

dζ(2ζ − 1)F (4),reg
E (ζ) =

45

2
− 245

24
π2 − 13

240
π4 − 151

17280
π6 +

39

2
ζ3

+
37

16
π2ζ3 +

107

1440
π4ζ3 −

119

16
ζ2

3 +
35

4
ζ5

+
91

96
π2ζ5 +

923

64
ζ7

≈ −9.784125919 . . . . (5.319)

As was the case at three loops, these identities provide a nontrivial test for any future
four-loop computation. Because we explicitly isolated all the distributional terms it
is particularly suited for numerical tests. Alternatively, given a four-loop result for
F (4),pl
E , one can use (5.319) to predict a4 and H4. These values can then be used to

predict leading five-loop asymptotics at ζ → 0 and ζ → 1.

5.7.8 Strong coupling in the planar limit

The four-point function at strong-coupling is simple enough that we can directly
compute C+,sugra(∆, J) and use the celestial block expansion to obtain the full scalar
flow observable as a function of ζ. The four-point function is [255]

Φ(sugra)(u, v) = uvD2422(u, v). (5.320)

For a review of D-functions see e.g. [253].

As explained in [62], remarkably the tree-level supergravity answer is fixed by the
protected half-BPS data and is given by

dDisc[G(105)(z, z)] = dDisc

[
zz

(1− z)(1− z)

]
f(z, z), (5.321)

where f(z, z) is regular at z, z = 1 and is symmetric under permutations of z and z.
The relation to the G(z, z) used in [62] is G(105)(z, z) = c1

2
1

(2π)4 (zz)2G(z, z). Thus,

C+,sugra(∆, J) = 2
κ∆+J

4

∫ 1

0

dz

z2

∫ 1

0

dz

z2

z − z
zz

×(k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z))
2(sinπδ)2z1+δz1+δ

(1− z)1+δ(1− z)1+δ
f(z, z)

∣∣∣∣
δ→0

,

(5.322)

where we have regulated the integral by introducing δ in the same way as we did in
section 5.7.3.
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To isolate the contribution that survives as δ → 0, we rewrite z−z = (1−z)−(1−z).
By the symmetry of the integral under the exchange of z and z, each of the terms
produces an identical contribution, giving a factor of 2. We can rewrite the integral
as

C+,sugra(∆, J) =
κ∆+J

(2π)4
(sinπδ)2

∫ 1

0

dz

z2

∫ 1

0

dz
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1

2
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z log z
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)
× (k∆+J(z)k4+J−∆(z)− k∆+J(z)k4+J−∆(z))

z1+δ

(1− z)1+δ

∣∣∣∣
δ→0

,

(5.323)

where we set z = 1 in f(z, z) since it does not affect the δ = 0 result, and used
f(z, 1) = 1

2
1

(2π)4

(
−1

2
D(D − 2) z log z

1−z

)
, see [62]. We have also introduced the differential

operator

D = z2∂z(1− z)∂z , (5.324)

which is the Casimir operator of which kβ(z) is an eigenfunction with eigenvalue
β(β−2)

4
. Doing the integrals, we get
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(5.325)

where

Ĩ(β) =
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(5.326)

where the second term in the second line comes from boundary terms when we inte-
grate by parts. Its contribution to C+,sugra(∆,−1) is equal to zero.

Specializing to J = −1, we find

C+,sugra(∆,−1)
4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
= −π

(∆ + 1)(∆− 1)(∆− 5)Γ(∆−1
2

)2

256Γ(∆− 3) cos π∆
2

. (5.327)
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This provides the data needed to compute F (sugra) using the celestial block expansion.
Formula (5.228) gives an integral which we can evaluate by residues when 0 < ζ < 1,

F (sugra)
E (ζ) =

∫ 2+i∞

2−i∞

d∆

2πi
C(∆,−1)

4π4Γ(∆− 2)

Γ(∆−1
2

)3Γ(3−∆
2

)
f 4,4

∆ (ζ)

=
∞∑
n=0

(−1)n

8
(n+ 1)(n+ 2)(n+ 3)(n+ 4) rn+3f

4,4
7+2n(ζ)

=
1

2
, 0 < ζ < 1. (5.328)

where rh was defined in (5.270). This answer coincides with the one obtained in [31].
Alternatively, we could have directly continued the known OPE decomposition of the
correlation function to J = −1. Indeed, in the one-loop example above the sum above
is equal to

F (sugra)
E (ζ) = 2π4

∞∑
n=0

(−1)n+1〈a(0)
τ=4+2n,−1γ

(sugra)
τ=4+2n,−1〉

1

rn+3

f 4,4
7+2n(ζ), (5.329)

where the sum goes over the Regge trajectories of double trace operators with scaling
dimension ∆(J) = 4+2n+J+γ

(sugra)
τ=4+2n,J . Note that in our normalization a(0)

τ=4+2n,−1 ∼
O(c), see (5.260), whereas γ(sugra)

τ=4+2n,−1 ∼ O(1
c
). After an appropriate overall rescaling

related to the normalization of the conformal blocks the coefficients in the celestial
block expansion (5.328) and (5.329) coincide with the analytic continuation of the
OPE data worked out in [62] to J = −1.

The result (5.328) already satisfies Ward identities (5.233) and (5.234), so we do
not need to add any distributional terms at ζ = 0 or ζ = 1. Let us now check
this using the light-ray OPE. Using (5.327) and formulas from 5.6.2 we find for the
distributional terms at ζ = 0

− res∆=3C(∆,−1)f̂3(ζ)− res∆=5C(∆,−1)f̂5(ζ) + ξ(ζ)

=
1

16π4

(
4π4δ′(ζ)− 2π4δ(ζ)

)
− 3

64π4
8π4δ(ζ) + ξ(ζ)

=
1

4
(δ′(ζ)− 2δ(ζ)) + ξ(ζ) = 0. (5.330)

Similarly, to probe distributional terms at ζ = 1 we consider
∫ 1

0
dζ ζNF (sugra)(ζ) and

evaluate the integral over ∆. The result is that distributional terms are absent.

To summarize, the complete strong coupling result takes the form

F (sugra)
E (ζ) =

1

2
. (5.331)
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5.7.9 Comments on supergravity at one loop

Recently, the function G(105)(u, v) was also computed at strong coupling to the 1
N4

order [256], see also [62, 257, 258]. It corresponds to a one-loop computation in super-
gravity. It is therefore natural to ask if we can use it to compute the corresponding
correction to the two-point energy correlator. As discussed in chapter 4, the exis-
tence of the two-point energy correlator is guaranteed in the non-perturbative theory
as well as in the planar theory. This, however, does not have to be the case in 1

N2 per-
turbation theory. Indeed, in this case the Regge behavior of the correlation function
becomes more and more singular and the condition for the existence of the energy
correlator J0 < 3 can be violated (here J0 is the Regge intercept of the correlator).

At infinite ’t Hooft coupling and order 1
N4 , we have J0 = 3 and thus the energy

correlator becomes ill-defined. In other words, to compute it we have to first re-sum
1
N2 corrections before doing the light transforms and taking the coincident limit, see
chapter 4. It is very easy to see the manifestation of the problem at the level of the
OPE as well. If we are to try to evaluate corrections to the spectrum at J = −1 as
we did above in section (5.7.5) we find a pole in 〈aτ,−1[γτ,−1]2〉, see e.g. (3.15) in [62].
It is an interesting question how to compute subleading large N corrections to the
energy correlator. We leave this question for the future.

5.7.10 Multi-point event shapes

It is also interesting to consider higher-point event shapes. To our knowledge, the
only higher-point event shapes available in the literature are the ones due to Hofman
and Maldacena [31] for planar N = 4 SYM at strong coupling. In principle, higher-
point event shapes can be computed via repeated light-ray OPEs, in the same way
that correlation functions of local operators can be computed by repeated local OPEs.
(Alternatively, we can use the t-channel block decomposition introduced in chapter 4.)
Although we have not developed the formalism for taking OPEs of completely general
light-ray operators in this work, it is reasonable to conjecture that the light-ray OPE
closes on the light-ray operators of [28]. This is already enough information to make
nontrivial predictions about the small-angle limit of multi-point event shapes.

As a simplest nontrivial example, consider a three-point event shape of null-integrated
scalars. We assume that the Regge behavior of the theory is such that the event shape
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exists, and the null-integrated scalars commute. By taking consecutive OPEs, we have

L[φ1](~y1)L[φ2](~y2)L[φ3](~y3) =
∑
i

C∆i−1(~y12, ∂~y2)O+
i,−1(~y2)L[φ3](~y3)

=
∑
i,j

C∆i−1(~y12, ∂~y2)C∆j−1(~y23, ∂~y3)O+
j,−2(~y3), (5.332)

where for simplicity we have ignored transverse spins in the second OPE and we are
dropping overall constants. We have also abused notation and written the light-ray
operators as a function of the transverse position ~y, as opposed to x, z used in most
of this work.

Inserting the above expression into an event shape, we obtain a sum of multi-point
celestial blocks (which would be interesting to compute explicitly). In the limit |~y12| �
|~y23| � 1, the product of operators is dominated by the lightest-dimension terms in
each OPE

lim
~y23→0

lim
~y12→0

L[φ1](~y1)L[φ2](~y2)L[φ3](~y3)

∝ |~y12|∆
+
−1−∆1−∆2+1|~y23|∆

+
−2−∆+

−1−∆3+1O+
lightest,−2(~y1), (5.333)

where ∆+
−1 and ∆+

−2 represent the lightest dimensions at spin −1 and −2.

Similarly, we can take repeated OPE limits of an arbitrary number of scalar light-ray
operators (assuming their products exist). This leads to a very simple formula for
the multi-collinear limit of scalar event shapes

lim
θ1k→0

· · · lim
θ12→0

〈L[φ1](∞, z1) · · ·L[φk](∞, zk)〉ψ(p)

∝ |θ1k|∆
+
1−k−∆+

2−k−(∆k−1) · · · |θ12|∆
+
−1−∆1−∆2+1, (5.334)

where we have suppressed subleading terms and an overall proportionality constant
that does not depend on relative angles.

Of course, a more physically interesting case is to consider multi-point energy corre-
lators. A difference compared to the scalar case is that the OPE of ANEC operators
contains light-ray operators transforming nontrivially under SO(d − 2) (except for
d = 3), see (5.149) and [31]. Let us ignore this for the moment. Repeated OPEs give

lim
θ1k→0

· · · lim
θ12→0

〈E(z1) · · · E(zk)〉ψ(p) ∝ |θ1k|τ
+
k+1−τ

+
k +2−d · · · |θ12|τ

+
3 +4−2d. (5.335)

Here τ+
J represents the leading twist at spin J . When operators transform non-

trivially under SO(d− 2), the overall scaling with respect to the corresponding small
angle will not change — it will still be controlled by the minimal twist [31].
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A fascinating property of repeated ANEC OPEs is that alternating steps are con-
trolled by local operators. Specifically, after a single OPE, we obtain light-ray opera-
tors with even signature and spin 3. After taking an additional OPE with an ANEC
operator, we obtain light-ray operators with even signature and spin 4. These are the
quantum numbers of a light-transformed local operator. We expect that arguments
like the ones in sections 5.4.1 and 5.4.2 establish that the resulting operator is indeed
the light-transform of a local spin-4 operator. Thus, the structure of the light-ray
OPE is45

L[local]× L[local] ∼ (nonlocal)

(nonlocal)× L[local] ∼ L[local]. (5.336)

We have already determined the form of the first line above. To understand OPEs
for multi-point event shapes, it suffices to understand the second line.

5.8 Discussion and future directions

5.8.1 Generalizations

In this work, we derived an OPE for a product of null-integrated operators on the
same null plane. There are several possible generalizations that would be interesting
to consider.

One possibility is to derive OPEs of more general continuous-spin light-ray operators
[28]. Such an OPE would enable repeated OPEs in multi-point event shapes. For
example, a three-point energy correlator could be computed by applying the OPE in
this paper to merge two ANEC operators into spin-3 light-ray operators, followed by
a generalized OPE with the remaining ANEC operator to produce spin-4 light-ray
operators. From symmetries, a multi-point OPE of n ANEC operators will produce
light-ray operators with spin n + 1. The average null energy condition implies pos-
itivity of the leading light-ray operator in this product, which is presumably the
lowest-twist light-ray operator with spin n+ 1.46 This gives an alternative derivation
of the higher-even-spin ANEC [210] that additionally includes the case of odd spins,
but is not as general as the continuous spin version in [28].

A possible application of repeated OPEs for multi-point event shapes is to set up a
bootstrap program for event shapes similar to the bootstrap program for four-point

45In writing (5.336), we assumed that the nonlocal spin-3 operators that appear in the OPE
of two ANEC operators commute with the ANEC operator. This is consistent with the fact that
[E(z1)E(z2), E(z3)] = 0.

46We thank Clay Córdova for discussions on this point.
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functions of local operators [9, 10].47 Specifically, one could demand that the light-ray
OPE is associative and use this condition to study the space of possible event shapes
abstractly. One can also consider mixed light-ray and t-channel OPEs of the type
discussed in chapter 4. With sufficient positivity conditions, perhaps one could apply
numerical bootstrap techniques [11, 39, 54]. Even without deriving the details of the
generalized light-ray OPE, it is reasonable to conjecture that it closes on the light-ray
operators of [28], and thus multi-point event shapes should admit an expansion in
multi-point celestial blocks (which would be interesting to compute).

A surprising property of the light-ray OPE is boundedness in transverse spin, i.e.
in spin on the celestial sphere. This is a vast simplification compared to the naïve
expectation that a product of point-like objects on the celestial sphere might result
in arbitrarily high spin on the celestial sphere. Boundedness in transverse spin is a
strong constraint on event shapes that would be interesting to test either analytically
or experimentally. It also might have implications for the multi-point event-shape
bootstrap. In the bootstrap of local operators, the presence of unbounded spin is
important for associativity of the operator algebra [13–17, 20, 23]. It would be inter-
esting to understand how this works for the light-ray OPE.

It would also be interesting to study OPEs of other types of null-integrated operators,
such as those studied in [153, 154]. As explained in chapter 4, these can be viewed
as descendants of light-transformed operators L[O]. Consider two such descendants
inserted at the same point, say x = 0,

(P k1L[O1])(0, z1)(P k2L[O2])(0, z2), (5.337)

where we denoted the descendants schematically by P kiL[Oi] and suppressed polar-
izations associated to P . Acting on this with Kk1+k2+1 we get 0, and so we must
conclude that this product has an expansion in terms of descendants of light-ray
operators at level at most k1 + k2. A conformally-invariant way to think about de-
scendants P kiL[Oi] is in terms of weight-shifting operators [186, 214]. It is likely that
the derivation of the light-ray OPE in this paper can be dressed appropriately with
weight-shifting operators using methods described in [28, 186].

Another generalization is to allow null-integrated operators to be on different null
planes that approach each other. It should still be possible to relate matrix elements
of such a product to the Lorentzian inversion formula. We expect that light-ray
operators with spin other than J1 + J2 − 1 would appear.

47We discuss a different kind of bootstrap program for event shapes in the next subsection.
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In chapter 4, we introduced shock amplitudes, which describe the flat-space limit of
the bulk dual of a null-integrated operator. In theories with bounded Regge growth,
it should be possible to analytically continue shock amplitudes in spin, giving a vast
generalization of the amplitudes usually considered. This work suggests a simple
way to partially achieve this generalization: one can take coincident limits of shock
particles to produce other types of shocks with different (integer) spin. For example,
a coincident limit of shock gravitons produces a spin-3 “stringy” shock, as studied by
Hofman and Maldacena [31].

A more speculative possible direction is to derive a nonperturbative OPE for ampli-
tudes, describing a convergent expansion around the collinear limit. Such an OPE
expansion exists in planar N = 4 [259–264], relying on special properties of the theory
like amplitude-Wilson-loop duality and integrability; it would be nice to generalize to
a generic CFT. (Presumably, this would also require finding a good nonperturbative
definition of an amplitude in a generic CFT.) Perhaps the conformal basis [265, 266]
could be helpful for this. The soft limit of an external particle should correspond to
the insertion of a null-integrated operator, so perhaps the hypothetical amplitudes
OPE would be related to the light-ray OPE in this limit.

5.8.2 More applications to event shapes

It would be interesting to understand whether the light-ray OPE can be applied
to asymptotically-free theories like QCD. The small angle behavior of the EEC in
QCD was analyzed in [267]. A more general factorization formula describing the
collinear limit ζ → 0 and applicable to any weakly coupled gauge theory was derived
in [220]. The energy-energy correlator (EEC) in QCD was recently computed at 2
loops (NLO) for arbitrary ζ [208, 268]. The light-ray OPE gives a way to resum
large logarithms using symmetries as opposed to RG equations. The celestial block
expansion is ultimately a consequence of Lorentz symmetry, which is still present
when conformal symmetry is broken. Thus, event shapes in any theory should admit a
celestial block expansion. However, when dilatation symmetry is broken, the selection
rule J = J1 +J2−1 will no longer hold. Thus, we expect the celestial block expansion
in asymptotically-free theories to involve light-ray operators with spin other than 3.48

In [31], it was shown how to relate the EEC to spin-3 moments of PDFs. Because
these spin-3 moments compute matrix elements of spin-3 light-ray operators, it is
natural to guess that spin-J moments of PDFs for general J ∈ C compute matrix

48We thank Ian Moult for discussions on this point.
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elements of general spin-J light-ray operators.49 It would be interesting to derive this
connection directly.

The celestial block expansion suggests a way of “perturbatively bootstrapping” the
EEC in the same sense as the perturbative bootstrap for amplitudes and Wilson loops
in N = 4 SYM [269–275]. The idea of the perturbative bootstrap is to guess a basis
of functions for the answer at some loop order (for example, by guessing the symbol
alphabet). One then imposes consistency conditions to fix the coefficients in this
basis. In the case of amplitudes in N = 4, this program has been wildly successful,
for example resulting in expressions for the 6-point gluon amplitude up to 7 loops
[276]. There, consistency with the OPE for amplitudes [259–264] and data from
integrability provide powerful constraints. The celestial block expansion can provide
analogous constraints for the EEC. Furthermore, in chapter 4, we gave a different
expansion for the EEC in terms of “t-channel blocks.” OPE data from integrability
can be used in either channel to make predictions that could help bootstrap the EEC.

An important ingredient in the perturbative bootstrap is the presence of contact terms
in perturbative event shapes at ζ = 0 and ζ = 1. Because of Ward identities, the
coefficients of contact terms serve as a check on the entire event shape. The light-ray
OPE gives a systematic way to compute contact terms at ζ = 0. Furthermore, it
provides a connection between the ζ = 0 contact term at L loops and the leading
non-contact term as ζ → 0 at L+ 1 loops.50

It would also be interesting to understand event shapes inN = 4 SYM in a systematic
expansion in 1/λ and 1/N . The leading 1/λ corrections to energy-energy correlators
were computed in [31], see also [104]. They take the form of a finite sum of the t-
channel event-shape blocks defined in chapter 4. This suggests that t-channel blocks
could be simple ingredients for setting up a perturbative expansion in 1/λ. One
advantage of the t-channel expansion is the absence of contributions from double-
trace operators in the planar limit. (By contrast, the light-ray OPE discussed in this
paper gets contributions from both single- and double-trace operators.) The extreme
simplicity of the 1/λ corrections in [31] stems from the fact that the string shockwave

49We thank Juan Maldacena and Aneesh Manohar for making this suggestion, and Ian Moult
and Cyuan Han Chang for discussions.

50Meanwhile, the back-to-back expansion (D.85) provides a description of contact terms and
leading non-contact terms at ζ = 1, given knowledge of the hard function H(a) and cusp/collinear
anomalous dimensions. Given this, one could imagine a poor-man’s version of the perturbative
bootstrap, where one uses contact terms at L loops to predict leading non-contact terms at L + 1
loops, fits the leading non-contact terms to a simple ansatz, integrates the ansatz to obtain contact
terms at L+ 1 loops, and repeats.
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S-matrix, expanded to leading order in α′, only mixes adjacent levels on the string
worldsheet, see e.g. chapter 4.

The problem of developing a 1/N expansion at large λ is conceptually interesting
because the condition J0 < 3 for the event shape to be well-defined is violated in
naïve 1/N perturbation theory. To study 1/N corrections, it will be necessary to
re-sum the four-point function in the Regge regime.

5.8.3 Other applications and future directions

Null-integrated operators arise naturally in information-theoretic quantities in quan-
tum field theory. For example, the full modular Hamiltonian in the vacuum state of
a region bounded by a cut v = f(~y) of the null plane u = 0 is [153]

Hf = 2π(K − Pf ),

Pf =

∫
dd−2~yf(~y)

∫ ∞
−∞

dvTvv(u = 0, v, ~y) =

∫
dd−2~yf(~y)L[T ](~y), (5.338)

where K is the generator of a boost in the u-v plane. Here, we have abused notation
and written L[T ] as a function of the transverse position ~y, instead of the usual
arguments x, z.

The vacuum modular flow operator is Uf (s) = e−isHf . It is interesting to ask how Uf

changes as we deform the cut f(~y)→ f(~y)+δf(~y). Because the ANEC operator L[T ]

appears in the modular Hamiltonian, we can use the algebra of K and Pf together
with the light-ray OPE to do perturbation theory in δf(~y):

Uf+δf (s)Uf (−s) = exp

(
− i

2π
(e2πs − 1)(Hf+δf −Hf )

)
= exp

(
it

∫
dd−2~y δf(~y)L[T ](~y)

)
= 1 + it

∫
dd−2~y δf(~y)L[T ](~y)

− (−iπ)
t2

2

∑
i

∫
dd−2~y1d

d−2~y2δf(~y1)δf(~y2)C∆i−1(~y12, ∂~y2)Oi,J=3(~y)

+ . . . , (5.339)

where t = e2πs−1. Similarly, at n-th order in δf , light-ray operators with spin J = n+

1 will appear. The expression (5.339) gives a direct connection between the spectrum
of a CFT and the shape dependence of the vacuum modular flow operator. It may
be useful for understanding aspects of the quantum null energy condition (QNEC)
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[209, 277–279]. Furthermore, it would be interesting to see whether it (or other
manifestations of the light-ray OPE) has implications for bulk locality in holographic
theories.

It would also be interesting to study the light-ray OPE for strongly-coupled theories
like the 3d Ising model. With enough CFT data, it may be possible to compute event
shapes and study modular flow quantitatively in this theory.

Particle colliders like the LHC have given us a wealth of data on event shapes in
the Standard Model. In principle, it should be possible to measure event shapes in
condensed matter systems using a tabletop collider. One must prepare a material
in a state described by a QFT, excite it at a point, and measure the pattern of
excitations on the boundary of the material. Several quantum critical points have
both Euclidean and Lorentzian avatars in the laboratory. Traditionally, the most
precise measurements are available for the Euclidean avatars, in the form of scaling
dimensions of low-dimension operators. Event shapes for these systems could reveal
intrinsically Lorentzian dynamics that would otherwise remain deeply hidden in the
Euclidean measurements.

Finally, it could be interesting to study event shapes in gravitational theories in an
asymptotically flat spacetime, see e.g. [280] and references therein.51 In this case,
physical measurements are performed at the future null infinity I +. As in a particle
collider experiment, one can measure energy flux through the celestial sphere created
in a gravitational collision. In addition to energy carried away by matter fields, there
is a contribution due to gravity waves E(~n) ∼

∫
I + News2 which is quadratic in the so-

called news tensor. In a gravitational theory, however, it is also natural to consider
light-ray operators that are linear in the metric, similar to the ones measured in
the current gravitational wave experiments. One such example is a memory light-ray
operatorM(~n) ∼

∫
I + News which measures the memory effect on the celestial sphere.

As in the main body of the paper, we can consider multi-point gravitational event
shapes and possibly study the corresponding light-ray OPE. One appealing feature
of these observables is that they are IR safe — in other words all IR divergencies that
arise in the computations of scattering amplitudes should cancel in the event shapes.
BMS symmetry [281] and familiar soft theorems [282] should become statements that
relate different gravitational event shapes.52

51The same comment applies to electromagnetism.
52For example, an integral of the energy flux operator over the celestial sphere is related to the

insertion of the memory operator [283].
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C h a p t e r 6

QUANTUM VACUA OF 2D MAXIMALLY SUPERSYMMETRIC
YANG-MILLS THEORY

1M. Koloğlu, “Quantum Vacua of 2d Maximally Supersymmetric Yang-Mills The-
ory”, Journal of High Energy Physics 11, 140 (2017) 10.1007/JHEP11(2017)140,
arXiv:1609.08232 [hep-th].

6.1 Introduction and summary

Supersymmetric Yang-Mills theories (SYM) have been of central interest in string
theory, especially since the advent of D-branes. In Type II string theories, the world-
volume interactions of BPS Dp-branes at low energies are described by maximally
supersymmetric Yang-Mills theories in (p + 1)-dimensions (MSYMp+1). These theo-
ries have 16 supersymmetries, inherited from the target-space supersymmetries left
unbroken by the half-BPS D-branes. For a stack of N D-branes, the gauge group
of the MSYM is U(N). The gauge field arises from the open strings that stretch
between pairs of branes, which carry U(N) Chan-Paton factors when the branes are
coincident. The gauge theory is enhanced by the higher-form gauge fields and fluxes
present in the string theory target place, which generalize the topological sectors of
the theory. Properties of these gauge theories are intimately related to the interac-
tions of D-branes. For example, topological sectors of the gauge theory are interpreted
as the bound states of the branes with other objects in the string theory, including
other D-branes of various dimensions and the fundamental string [284]. In fact, an
entire non-perturbative formulation of M-theory was conjectured to arise from the
N →∞ limit of the N = 16 quantum mechanics MSYM1 describing the interactions
of D0-branes [285].

In this article, we will focus on the two-dimensional (2d) MSYM theories with gauge
group U(N) or SU(N). In two dimensions, the weakly coupled gauge theory de-
fined by the SYM Lagrangian is inherently the ultraviolet (UV) description, and such
theories are asymptotically free. In the infrared (IR), the theory becomes strongly
coupled. It is a difficult and interesting question to understand the infrared dynamics
of MSYM2. Both of the closely related theories with U(N) and SU(N) gauge group
have been extensively analyzed, and much has been conjectured about their infrared
description and quantum vacua [284, 286–289]. For example, in [286, 287], U(N)

http://dx.doi.org/10.1007/JHEP11(2017)140
http://dx.doi.org/10.1007/JHEP11(2017)140
http://arxiv.org/abs/1609.08232
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MSYM2 theory was developed into matrix string theory, describing matrix theory
compactified on a circle. It was proposed that the N →∞ limit of this theory should
provide a non-perturbative formulation of Type IIA string theory. Using M-theory
and string duality considerations, the authors of [286] related the IR limit of MSYM2

with gauge group U(N) to the supersymmetric sigma model into the symmetric orb-
ifold SymNR8, identified as the sector of second quantized free Type IIA strings with
light-cone momentum p+ = N . However, exact computations or quantitative evidence
have been elusive — a situation we seek to remedy.

The Lagrangian of MSYM2 can be obtained by dimensional reduction from 10d N = 1

SYM, and for U(N) or SU(N) gauge group it is given by [286, 289]

L = Tr

(
−1

4
F 2
µν −

1

2
(DµX

i)2 + iχT /Dχ+
g2

4
[X i, Xj]2 −

√
2gχTLγi[X

i, χR]

)
. (6.1)

The bosons X i, the left-moving fermions χα̇L, and the right moving fermions χαR are
in the 8v, 8c, and 8s representations, respectively, of the Spin(8) R-symmetry. The
fields are also in the adjoint representation of the gauge group, so they are valued in
u(N) (su(N)) and can be realized as N ×N (traceless) Hermitian matrices for gauge
group U(N) (SU(N)). The theory has N = (8, 8) supersymmetry generated by
the transformations with 16 fermionic parameters (εαL, ε

α̇
R). We take the worldsheet

directions to be µ = 0, 9. The dimensional reduction of the Lagrangian and the
supersymmetry transformations are reproduced in Appendix E.1.1.

The MSYM2 theory was observed to have classical vacua determined by the zeroes of
the bosonic potential V (X) = g2

4
[X i, Xj]2, which are commuting matrices X i, modulo

the Weyl group SN permuting the eigenvalues [284, 286]. For the U(N) theory on the
worldsheet Rt × S1, all the zero-energy configurations of the gauge field correspond
to flat connections on the trivial U(N)-principal bundle, so in the quantum U(N)

theory, the gauge field contributes a single trivial zero-energy state to the vacuum
wavefunction, as elaborated in [290]. Therefore, it seems natural to conjecture that
in the infrared limit, as g →∞, the theory flows to the supersymmetric sigma model
into SymN(R8), parametrized by the N eigenvalues of the X i and fermionic partners
[286]. Similar arguments could be made for the SU(N) theory, by removing the
contributions for the free diagonal U(1) factor of the U(N) theory, leading to the
supersymmetric sigma model into (R8)N−1/SN as the conjectural IR limit.

However, this is not all of the vacua and therefore not the end of the story. In
his analysis of bound states of fundamental strings and D-branes in Type II string
theories, Witten [284] argued that the existence of (M,N)-string bound states in



331

Type IIB string theory requires the existence of various supersymmetric vacua for
the SU(N) MSYM2. For the worldvolume theory of N D1-branes, the sector with
M bound fundamental strings corresponds to a “charge at infinity” in the form of a
Wilson loop in the Mth tensor power of the fundamental representation of SU(N)

[284]. Therefore, the (M,N)-string is naturally a superselection sector in the 2d
quantum theory, and the vacuum in that sector is identified as the discrete θ vacuum
[291] (of the related SU(N)/ZN theory) with θ angle specified by M (mod N) as

eiθ = ei
2πM
N . (6.2)

Specifically, Witten argued that the case when M and N are relatively prime should
correspond to a single supersymmetric vacuum of the SU(N) theory with a mass gap.
This is because the center-of-mass motion of the branes decouples from the U(N)

worldvolume theory as a free N = (8, 8) U(1) vector multiplet, corresponding to the
determinant U(1) in U(N) (which decomposes as U(N) = (U(1)× SU(N))/ZN). In
the case with M and N relatively prime, the center-of-mass dynamics encoded in
the decoupled U(1) multiplet correspond to all of the massless physical degrees of
freedom of the bound state in the string theory target space.

In the more general case when M and N are not relatively prime, Witten reasoned
that there is no argument to indicate the corresponding vacuum should be massive.
In fact, the (M,N)-string should be able to split up into D many (M/D,N/D)-string
bound states without an energy barrier, where D = gcd(M,N), as the eigenvalues of
the scalars corresponding to the relative positions of these (M/D,N/D)-strings can
take arbitrary expectation values at no cost in energy. It is then natural to expect
that the vacuum corresponding to the (M,N)-string with D > 1 should have massless
excitations corresponding to the massless degrees of freedom of the relative motion
of the (M/D,N/D)-strings. The relative positions of these bound states is just the
configuration space of D indistinguishable strings in the transverse space R8, with
the center-of-mass moduli excluded, which is described by the 2d symmetric-orbifold
sigma model into (R8)D−1/SD.

We would like to analyze the classical and the quantum theory, and determine to
what extent these predictions hold. The main feature of the MSYM2 theory which
gives rise to some important subtleties is that all the local fields are in the adjoint
representation of the gauge group G. In particular, if G has a nontrivial center Z(G),
then there are no fields charged under it, so the Z(G) charge cannot be screened,
giving rise to superselection sectors labeled by the Z(G) charge. For example, for
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G = SU(N), Z(G) = ZN , and there are N superselection sectors. Given a state
in some sector, the emanation of a Wilson loop in some representation R of SU(N)

with charge NR under ZN will yield a state in another superselection sector, differing
by NR units modulo N . Since there are no fields charged under the center, we can
also define the G/Z(G) = SU(N)/ZN theory that has the same Lagrangian. The
SU(N)/ZN theory has the θ angle parameter as additional discrete data, and for
each of the N choices of θ, the spectrum is a restriction of the SU(N) spectrum to
one of the N superselection sectors. Likewise, one can define the SU(N)/ZK theory
for K|N , which will have N/K superselection sectors with the same ZK ⊂ ZN charge
for each of the K choices of the θ angle.

Interestingly, when we consider the classical vacua of the SU(N)/ZN theory, we re-
cover a spectrum consistent with the spectrum of relative positions of the (M/D,N/D)-
strings. This requires analyzing the topological sectors of the theory. Let us recall that
the discrete θ vacua exist for the SU(N)/ZN theory because this gauge group has non-
trivial fundamental group π1(SU(N)/ZN) = ZN . Consequently, there are “instanton
sectors” of the 2d theory corresponding to the topologically distinct SU(N)/ZN -
principal bundles, labeled by elements in π1(SU(N)/ZN) [291, 292]. We denote the
Z/NZ-valued instanton number by k. As usual, the effect of the θ angle in the path
integral is to weigh the k-instanton sector by eiθk in the sum over the instanton sec-
tors. Naturally, the θ angle takes values in the Pontryagin dual of the π1 of the gauge
group, which is ZN once again for π1(SU(N)/ZN) = ZN . The theory at a given θ

angle could be explicitly defined by including a surface operator constructed from the
integral of a 2-form gauge field, as in [30]. When one puts the SU(N)/ZN theory
on the two-torus T 2, the SU(N)/ZN -principal bundle PN,k over T 2 with instanton
number k admits flat connections, with moduli space MN,k, so there are classical
zero-energy configurations of the gauge field in each instanton sector. As all of the
fields are in one N = (8, 8) vector multiplet, the modes supersymmetric to the zero-
energy modes of the gauge field are also classically zero-energy field configurations.
The moduli space of flat connectionsMN,k turns out to have complex dimension d−1,
where d = gcd(k,N). Thus, one expects on general supersymmetry grounds to have
a 8(d − 1) real dimensional moduli space of vacua for the scalar fields, specifically
(d− 1) real moduli for the eigenvalues of each of the scalars X i. Indeed, when d = 1,
MN,k is a point, and there is a single classical zero-energy field configuration with all
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the scalars set to zero. When d > 1, the zero-energy scalar fields take the form

X i = IN/d ⊗


xi1

. . .

xid

 , with TrX i = 0, (6.3)

in the strong coupling limit g → ∞, and the eigenvalues parametrize (R8)d−1/Sd.
When d = N , we are in the trivial instanton sector with k = 0, with the classical
vacua described by (R8)N−1/SN , in agreement with [284, 286].

In the quantum theory, the wavefunction of a vacuum state spreads over all clas-
sical vacuum configurations, including the disconnected components. Although one
expects that the quantum vacua should parallel the classical vacua in theories with
high supersymmetry, one might be hesitant to reach this conclusion in our setting as it
is a priori unclear how the sum over classical disconnected configurations reproduces
the vacua wavefunctions. Nonetheless, the θ angle isolates superselection sectors cor-
responding to (M,N)-strings, which have string theoretic descriptions strikingly in
parallel with the classical vacua, supporting this conclusion. Here, a few relevant
studies are crucial in guiding one’s intuition. First of all, the SO(8) R-symmetry
anomalies vanish for MSYM2 [284], so there are no anomaly arguments that rule out
the existence of the various massive and massless vacua, unlike in theories with less
supersymmetry. Also, in [288], it was argued that the IR description of MSYM2 could
not be a non-trivial superconformal field theory with N = (8, 8) supersymmetry, as
there is no extension of this N = (8, 8) supersymmetry algebra to a linear supercon-
formal algebra [293].1 This suggests that any scale invariant theories with massless
excitations describing the IR fixed points should be free theories, or orbifolds thereof.
Lastly, in [289], MSYM2 was analyzed using discrete light-cone quantization (DLCQ).
There, numerical results were obtained in finite resolution of light-cone momentum
indicating the absence of normalizable massless states and supporting the existence
of a vacuum with mass gap for the SU(N) theory. By these considerations, the
only possible choices for the IR limit of MSYM2 are massive vacua or orbifolds of
free N = (8, 8) sigma models. Given the favorable evidence, we conjecture that the
quantum vacuum of the SU(N)/ZN theory with θ = 2πM/N corresponding to the
(M,N)-string should be described by the sigma model into (R8)D−1/SD, and further-
more that the infrared fixed point of the theory with the given θ angle is this sigma

1Non-linear N = 8 superconformal algebras have been constructed, however they are quite
exceptional and do not seem to be relevant to MSYM2. See [294] and the references therein for
details.
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model. We note that this description is invariant under the SL(2,Z) S-duality of the
Type IIB string theory, which acts on the doublet (M,N) but leaves D invariant.
Also, the vacua of the related SU(N) theory in one of its N superselection sectors is
the vacuum of the SU(N)/ZN theory with the corresponding θ parameter.

We provide strong evidence in favor of our claim by computing the N = (8, 8) analog
of the elliptic genus — or, index for short — of MSYM2 for SU(N) and SU(N)/ZN
gauge group, for the latter also including the surface operator specifying the θ-angle
parameter. This index is a supersymmetric partition function on the Euclidean flat
torus T 2 (with conformal class τ), which counts states that are BPS with respect to
a conjugate pair of right-moving supercharges. The choice of any such supercharge
commutes with a Spin(6) subgroup of the Spin(8) R-symmetry, and we can refine
the index with equivariant parameters a1,2,3 = exp 2πiξ1,2,3 coupling to the Spin(6)

subgroup. This refinement keeps track of more information about the spectrum,
as well as regulating the otherwise divergent sum over the infinitely many states
contributed by the non-compact bosonic zero-modes. This index also agrees with the
equivariant elliptic genus of the theory when viewed as a N = (0, 2) supersymmetric
theory — from which perspective the Spin(6) symmetry is just a flavor symmetry.
Concretely, the index of an SU(N)/ZK theory is defined as the following trace in the
Ramond-Ramond (RR) Hilbert space H of the theory, which is a direct sum of K RR
Hilbert spaces on the circle, Hk, quantized in the given instanton background k:

Iθ(τ |ξ) =
∑
k

eiθkTrHk(−1)FafqHLqHR . (6.4)

Here, q = e2πiτ , and HL and HR are the left- and right-moving Hamiltonians. We
show that the index of the SU(N)/ZN theory with the θ(M) = 2πM/N vacuum is

Iθ(M)
SU(N)/ZN (τ |ξ) =

ID
I1

(τ |ξ), (6.5)

where D = gcd(M,N), and ID is the index of the supersymmetric sigma model
into SymD(R8). Of course, when D = 1, IθSU(N)/ZN = 1, which is the index of a
single massive supersymmetric vacuum. When D > 1, ID/I1 is the index of the
sigma model into (R8)D−1/SD, since by factoring the diagonal copy of R8, we have
SymD(R8) = R8 × (R8)D−1/SD. The expressions for IθSU(N)/ZN (τ |ξ) and IDI1 (τ |ξ) are
obtained through different methods, and it is non-trivial to show that they agree.
Thankfully, both sets of functions enjoy multi-periodicity and SL(2,Z) modular in-
variance, and using these very restrictive properties we are able to establish (6.5) for
N ≤ 7. Since the index is an invariant of the theory under renormalization group
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(RG) flow, which is furthermore a “strong” invariant in the sense that it contains data
about the spectrum of the theory, matching the index computed in the UV with the
index of our candidate IR fixed point is a powerful indication that the two theories
are indeed related by RG flow.

From the SU(N)/ZN index, we infer the index of the SU(N)/ZK theory for any
K|N ,

Iθ(M)
SU(N)/ZK (τ |ξ) =

∑
m≡M (mod K)

Igcd(m,N)

I1

(τ |ξ), (6.6)

where the sum is over the N/K values of positive integers m between 1 and N equiva-
lent to M modulo K. The terms being summed over are interpreted as the indices of
the corresponding superselection sectors of the theory, and they are consistent with
our earlier analysis of the superselection sectors.

Having understood the vacua SU(N) MSYM2, we would like to analyze the U(N) the-
ory as well. Including the center of mass modes into our considerations of the SU(N)

theory, one can readily conjecture that the U(N) theory also has vacua described
by sigma models into SymD(R8) corresponding to the (M,N)-strings, as expected
from string theory. However, the correct analysis of the full N D1-brane worldvolume
theory is somewhat more complicated, and requires some discussion. For a standard
2d U(N) gauge theory with only adjoint fields, the U(1) degrees of freedom decouple,
and the index of the standard U(N) MSYM2 can be readily inferred from the SU(N)

index as

IU(N)(τ |ξ) = IU(1)ISU(N)(τ |ξ) =
N∑
m=1

Igcd(m,N)(τ |ξ). (6.7)

But, this theory is not accurately taking into account the full structure of the (M,N)-
string bound states. The true gauge theory describing the full worldvolume theory of
the N D1-branes is not a standard U(N) gauge theory, but also has the Kalb-Ramond
2-form gauge field B coming from the Neveu-Schwarz (NS) sector of the string theory.
The B-field has an Abelian gauge symmetry generated by a 1-form gauge transfor-
mation, under which the trace mode of the U(N)-connection A is also charged. Due
to this additional 1-form gauge symmetry, the theory has generalized field content
roughly described by U(1)×SU(N)/ZN gauge bundles, and the structures of the clas-
sical and quantum vacua are different. Indeed, we find that the U(N) MSYM2 with
the 2-form B-field has sectors corresponding to the (M,N)-strings as sought. The
Mth sector has a net U(1) generalized electric flux of M units, which is interpreted
as the flux of the M F-strings, as well as a θ angle 2πM/N in the SU(N)/ZN sector.
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When M = 0, the net flux is zero, with correspondingly zero Yang-Mills energy, so
the index is readily interpreted as

IM=0
U(N)+B(τ |ξ) = IU(1)Iθ=0

SU(N)/ZN (τ |ξ) = IN(τ |ξ). (6.8)

What about the other sectors with M 6= 0? Although the bundles with non-zero field
strength have non-zero Yang-Mills action, these (M,N)-string configurations are still
half-BPS in the the string theory target space, and must still preserve 16 super-
symmetries! Explicitly, the D1-brane worldvolume theory has non-linearly realized
supersymmetries acting on the U(1) center of mass modes, which are the goldstinos
of the spontaneously broken translation symmetry in the presence of the D-branes
[295–297]. The action or energy of this flux should be considered as part of the bind-
ing energy of the (M,N)-string, or as the difference in the central charge of the two
BPS sectors of the target-space supersymmetry algebra. The binding energy should
be attributed to the DBI action [298] in the same sense as the tension of the N D1-
branes is, and should be excluded from the vacuum describing the fluctuations of the
bound state. In particular, we can modify the definition of the elliptic genus to count
states that are BPS with respect to the supercharges preserved by the bound state,
essentially by shifting the Hamiltonian by the central charge of the superalgebra. The
corresponding BPS states are exactly the configurations with fixed electric flux M

and minimal energy. Since the U(1) factor is free, the fields that contribute to the
index are unaffected by this modification. Thus, we obtain the index of the U(N)

theory for given sector with M units of electric flux,

IMU(N)+B(τ |ξ) = ID(τ |ξ). (6.9)

This strongly suggests that the vacuum describing the massless fluctuations of the
(M,N)-string is given by the sigma model into SymDR8. Moreover, we also construct
the index of the U(N) + B theory that sums over each (M,N)-string BPS sector,
which is naturally refined by the U(1) holonomies of the B-field on the spacetime
torus eiMφ = eiM

∫
T2 B with representations labeled by the F1-string winding number

M ,
IU(N)+B(τ |ξ) =

∑
M∈Z

eiMφIMU(N)+B(τ |ξ) =
∑
M∈Z

eiMφID(τ |ξ). (6.10)

We note that this D1-brane index is invariant under the S-duality of the Type IIB
string, which is generated by exchanging M and N and shifting M by a multiple of
N , all the while leaving D invariant. By an S-duality followed by a T-duality on the
circle wrapped by the D-string, the (M,N)-string is mapped to N F-strings bound
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to M D0-branes [286]. Thus, the index (6.10) is also an index of the N Type IIA
F-strings bound to D0-branes. Our result suggests that the world sheet theory of
N F-strings bound to M D0-branes in the free string limit gs = 0 is given by the
supersymmetric sigma model into SymDR8, and in particular, N/D F-strings bound
to M/D D0-branes behave like free strings.

The paper is organized as follows. In Section 6.2, we analyze the structure of topo-
logical sectors of MSYM2 for SU(N) and U(N) gauge group, as well as the related
SU(N)/ZK and U(N) + B theories, and determine the moduli space of flat connec-
tions and the classical vacua when the spacetime is T 2. In Section 6.3 we discuss how
the elliptic genus generalizes for SU(N)/ZN gauge theories to include integration over
the various components of the moduli space of flat connections. In Section 6.4, we
compute the elliptic genus of SU(N)/ZK MSYM2, and infer the elliptic genus for the
U(N) theory with and without the B field. Finally, in Section 6.5, we compute the el-
liptic genus of the SymN(R8) sigma model, and establish some of its properties which
allow us to match it to the gauge theory elliptic genus. We also include Appendix E.1,
which spells out some details about the action and supersymmetry transformations
of MSYM2.

6.2 The structure of vacua

Bound states of D1-branes with the F-strings in Type IIB string theory suggest that
the MSYM2 with SU(N) gauge group should have N superselection sectors, and that
the full worldvolume theory of the N D1-branes (with U(N) gauge group) should
have topological sectors labeled by Z [284]. A complete description of the vacua of
theMSYM2 should account for the vacua in these additional sectors as well. Therefore,
we will now task ourselves with hunting for them. We will discover that a rich story
underlies the various vacua.

6.2.1 Topological sectors

Let us start by focusing on the SU(N) theory. It was shown in [284] that on a
worldsheet with boundary, such as R1,1 for concreteness, the sector with M F-strings
attached to the stack of N D1-branes manifests itself as a Wilson loop “at infinity”
in the Mth tensor power of the fundamental representation of the gauge group. The
vacua of superselection sectors of 2d non-abelian theories have been analyzed a long
time ago by Witten [291]. Since MSYM2 contains only adjoint fields, the center of
the gauge group acts trivially on all fields. In particular, the net charge under the
center cannot be screened by local fields. For G = SU(N), the center is Z(G) = ZN .



338

Therefore, we see that the N superselection sectors in the SU(N) theory are labeled
by the background ZN charge. More precisely, the theory has a Z(G) 1-form global
symmetry, for which the charged objects are the Wilson loops in SU(N) represen-
tations [30], and the corresponding conserved ZN charge labels the superselection
sectors. The creation of a Wilson loop in representation R will act as a domain wall
between two superselection sectors of ZN charge differing by the charge under the
center (or N -ality) NR of the representation.

We would like to be able to identify and isolate the vacua. This is best done if
one declares the gauge group to be Gadj = SU(N)/ZN , which we can do since all
the fields are uncharged under the ZN center. Indeed, the MSYM2 Lagrangian (6.1)
with the fields taken to be valued in su(N) does not uniquely define a quantum field
theory, since one can declare the gauge group to be any Lie group with Lie algebra
su(N). This choice does not affect the local physics, but determines which non-local
operators and instanton sectors are present in the theory. For example, the theory
with SU(N) gauge group has Wilson loops in all SU(N) representations, whereas
the SU(N)/ZN theory only has Wilson loops in representations for which NR ≡ 0,
but also has surface operators which have boundary Wilson loops in arbitrary SU(N)

representations (we will revisit these surface operators shortly). Moreover, because
π1(SU(N)/ZN) = Z(SU(N)) = ZN , the SU(N)/ZN theory has a total ofN instanton
sectors. When the worldsheet is R1,1, the instanton sectors were described in [291].
More generally, if one considers the SU(N)/ZN gauge theory on a closed Riemann
surface Σ, the instanton sectors are the N SU(N)/ZN -principal bundles on Σ, labeled
by discrete non-abelian ’t Hooft electric flux [292] — or, mathematically, the second
Stiefel-Whitney class of the bundle [299]

w2(P ) ∈ H2(Σ, π1(Gadj)) = H2(Σ,ZN). (6.11)

The Gadj theory has additional data in the form of the discrete θ angle, which takes
values in the Pontryagin dual ZN of π1(Gadj). For each of the N choices of the θ
angle, the theory isolates a corresponding superselection sector of the SU(N) theory,
and the Hilbert space is a restriction of the SU(N) Hilbert space to that sector. This
structure mirrors the structure of vacua in the closely related pure Yang-Mills theories
with SU(N) and SU(N)/ZN gauge group [300].

The SU(N)/ZN and SU(N) theories are of course closely related. One can obtain
the SU(N)/ZN theory from the SU(N) theory by gauging the 1-form symmetry
generated by the center ZN = Z(SU(N)) [30]. The procedure is illuminating, as
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it allows one to explicitly construct the surface operator that detects w2. One can
first enhance the SU(N) gauge field to a U(N) gauge field by adding in the trace
component Â, and then impose the U(1) 1-form gauge symmetry generated by

Â→ Â−Nλ (6.12)

which removes the field strength for Â and also enhances the allowed gauge bundles
to SU(N)/ZN bundles. In the resulting SU(N)/ZN theory, there are no Wilson loops
in representations of SU(N) that transform nontrivially under the center ZN , unless
they are the boundary of a surface operator constructed from dÂ, which is now a
2-form gauge field. The closed surface operator

eiM
∫
Σ dÂ/N (6.13)

evaluates to ei2πMk/N for a bundle with ’t Hooft flux
∫

Σ
w2 = k around the two-

cycle represented by Σ. The integral here is schematic, as dÂ is not a globally-
defined 2-form, instead one should integrate it as a Deligne-Belinson cocycle (see
[30] and references therein).2 This operator can be inserted into the path integral
to obtain the SU(N)/ZN theory with the discrete θ angle equal to 2πM/N . The
parameter M is quantized in integer units, as required by invariance under large
gauge transformations.

Even as classical theories, the G theory and the Gadj theory are different. In par-
ticular, the Gadj theory has additional classical field configurations corresponding to
connections on Gadj-bundles, even for those which are not G-bundles. Each of these
bundles admit flat connections, so the moduli space of classical vacua of Yang-Mills
theory on Riemann surfaces is enlarged to include flat connections of Gadj-bundles on
the Riemann surface. For theories with supersymmetry, one expects zero energy field
configurations supersymmetric to flat connections for the non-trivial Gadj-bundles.
We will describe these configurations in Section 6.2.2.2, and find a pleasant parallel
to the string theory predictions for the vacua.

It is perhaps good practice to say a few words about the definition of a gauge theory
with gauge group G and solidify our footing. In accordance with the literature [29],
we take a general G-gauge theory to satisfy the following properties:

1. All local fields are in representations of G.
2Heuristically, given a cover Ui of the base, the transition functions λij on double overlaps and

the cocycle conditions on triple overlaps of dÂ encode the same information as the ’t Hooft flux of
the SU(N)/ZN -bundle [30]. The integral extracts that data.
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2. Wilson lines in all representations of G are present.

3. The path integral sums over all G-bundles. There could be additional data that
determines weights for the sum over G-bundles.

With these properties, the difference between a G and G/H theory where H ⊂ Z(G)

is made explicit. We can go ahead and generalize our above analysis by also defining
the SU(N)/ZK MSYM2 theory with K|N accordingly. The 2d SU(N)/ZK theory
has K instanton sectors, weighted by a ZK valued discrete θ angle. Since the theory
contains only adjoint fields, the charge under the center ZN/K = ZN/ZK will not be
screened, and for each choice of the θ angle the theory will have N/K superselection
sectors corresponding to those superselection sectors of the SU(N) theory with ZN
charge congruent modulo K to a given value determined by the choice of θ.

Let us return to the U(N) MSYM2. The “standard” U(N) MSYM2 has superselection
sectors analogous to the SU(N) MSYM2 The pure U(N) Yang-Mills theory in 2d
has N superselection sectors [300]. Similarly, a 2d U(N) gauge theory without fields
charged under the center of the gauge group also has N superselection sectors, thus
so does U(N) MSYM2. The U(N) theory has instanton sectors labeled by the inte-
gers corresponding to the quantized electric flux (or vortex number) c1 ∈ H2(Σ,Z).
Although one might hope to identify these sectors with the (M,N)-string sectors,
this turns out to be not quite right. The true theory describing the interactions of N
D1-branes is not just the U(N) MSYM2 that we described above by the action (6.1),
but also has a 2-form gauge field B coming from the restriction of the Kalb-Ramond
field present in the NS-NS sector of the string theory target space to the brane world-
volume. The B-field plays a subtle and important role, primarily by enhancing the
classical field configurations of the theory. The B-field, being a 2-form gauge field,
has Abelian 1-form gauge transformations under which the U(N) gauge field A also
transforms [284],

B → B + dλ, (6.14)

A→ A− λ1N , (6.15)

where λ is the 1-form gauge transformation parameter and 1N is the N × N iden-
tity matrix generating the center of the u(N) algebra. The correct gauge-invariant
Lagrangian has the following kinetic term for the gauge field,

−1

4
Tr (Fµν +Bµν1N)2, (6.16)
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and F = F + B1N is the appropriately modified field strength. Writing the U(N)

gauge field as

A =
1

N
Â1N + A′, (6.17)

with Â the U(1) gauge field corresponding to the trace and A′ the leftover SU(N)/ZN
gauge field, we note that the 1-form gauge transformation above acts only on the U(1)

gauge field Â. Since all of the scalar and fermion fields are in the adjoint, Â only
appears in the gauge field kinetic term in the Lagrangian, and therefore none of the
rest of the Lagrangian is modified with the inclusion of the B-field, as they are already
gauge invariant under the 1-form gauge symmetry. The N = (8, 8) supersymmetry
remains intact once one modifies the supersymmetry transformations accordingly by
replacing F with F .

Now, let us consider what gauge bundles the theory has. As can be seem from the
equation of motion for Â, TrF is constant, and has periods quantized in integer units
when we impose the parameter λ generates the gauge group U(1) instead of R [284].
So the theory considered on a Riemann surface Σ has a topological quantum number
labeled by c̃1 = [TrF/2π] ∈ H2(Σ,Z) corresponding to the generalized U(1) electric
flux. For an honest U(N) theory — without the B-field — the single Chern class
c1 = [TrF/2π] ∈ H2(Σ,Z) would classify all U(N)-principal bundles. A U(N)-bundle
can be thought of as the data of a U(1)-bundle and an SU(N)/ZN -bundle, such
that the Stiefel-Whitney class of the SU(N)/ZN -bundle w2 ∈ H2(Σ,ZN) is related
to the U(1) characteristic class as

∫
w2 =

∫
c1 (mod N) [301]. This can be seen

at the level of the transition functions for the gauge field. However, in the theory
with the B-field, the additional 1-form symmetry enhances the transition functions
and generalizes the allowed bundles and connections, as detailed in [30, 302]. The
resulting generalized U(N)-connection admits an independent ’t Hooft flux w2 in
addition to the electric flux c̃1. This type of gauge bundle would be more accurately
described in the language of gerbes or 2-bundles, but we will not need to go into
such territory here. Due to the particularly simple 2-group structure, practically
speaking we can think of the allowed gauge bundles as U(1) × SU(N)/ZN -bundles,
with independently chosen characteristic classes (c̃1, w2) ∈ H2(Σ,Z) × H2(Σ,ZN).
The classical configurations of the scalar and fermion fields in the theory mimic the
configurations in a U(1)× SU(N)/ZN theory. It is important to emphasize that the
theory is not a U(1)×SU(N)/ZN gauge theory; for example the operator content —
such as Wilson lines and surface operators — is different.
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Configurations with
∫

Σ
TrF/2π = M correspond to the binding of M F-strings [284].

The M units of flux is interpreted as the NS-NS charge carried by the F-string, and
TrF serves as a source for the B-field in the string target space. The generalized
Yang-Mills action (or energy) of the flux is the binding energy of the (M,N)-string,
measured as the difference from the mass of the N D-strings. If one considers the
theory on the cylinder C = Rt×S1, the presence of M units of TrF flux implies that
there is a Wilson loop

eiM
∮
∂C Â/N (6.18)

at the boundary. However, this Wilson loop must also be complemented by the B-
field to be gauge invariant. This can be seen by noting that the standard U(N)

Wilson loops are not gauge invariant in this theory, instead one has the following
surface operators considered in [30],(

TrRP exp

∮
∂Σ′

A

)
eiNR

∫
Σ′ B =

(
TrRP exp

∮
∂Σ′

A′
)
eiNR

∫
Σ′

dÂ
N

+B. (6.19)

Note that the inside and outside of this operator differ by NR units of U(1) electric
flux TrF . So, the sector with M units of electric flux has the operator

eiM
∮
∂C

Â
N eiM

∫
C B = eiM

∫
C
dÂ
N eiM

∫
C B (6.20)

turned on. As with the SU(N)/ZN theory, the integral of the 2-form gauge fields dÂ
and B are not of global 2-forms. Upon quantizing the theory on the cylinder, these
states with M units of electric field TrF are the (M,N)-string states. They fall into
N superselection sectors determined by M (mod N).

We are interested in the low-energy fluctuations of the (M,N)-string bound states.
The path integral of the worldvolume U(N) + B theory on the Euclidean torus T 2

is naturally a trace of the theory quantized on the cylinder C. The trace sums over
the (M,N)-string sectors by summing over the flux c̃1 ∈ H2(T 2,Z). Crucially, the
U(N) +B theory has the operator

eiM
∫
T2 dÂ/NeiM

∫
T2 B (6.21)

turned on in the sector with M units of electric flux. On a closed surface such
as T 2, the first factor measures the ’t Hooft flux in the SU(N)/ZN sector, since∫
T 2 dÂ =

∫
T 2 w2 exactly as for the SU(N)/ZN theory discussed above. Once again,

the presence of this term provides a discrete θ angle 2πM/N for the sum over the
SU(N)/ZN -bundles. The second factor is simply the Wilson surface operator for the
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U(1) 1-form gauge symmetry. The “charge” M is nothing but the F-string winding
number once again. This closed Wilson surface operator measures the U(1)-valued
holonomy of the background B-field.

We note that for the U(N) theory with or without the B field, one can also add a
continuous θ-angle term to the action proportional to

∫
TrF or

∫
TrF , or in general

a supersymmetric FI parameter. For the theory with the B field, this θ angle is
related to the axion of the Type IIB string theory [284]. However we will not consider
including this term, as it does not affect the qualitative features of our discussion (or
the elliptic genus).

6.2.2 Classical vacua on T 2

Motivated to perform a quantitative check of our conjectures regarding the structure
and description of the vacua, we would like to compute the elliptic genera of the
MSYM2 theory with the various gauge groups discussed above. The elliptic genus
is a certain supersymmetric partition function on the 2-torus T 2 [303], which counts
(with a sign (−1)F ) states in the cohomology of a conjugate pair of right-moving
supercharges Q±R.3 States in the cohomology correspond to right-moving vacua ten-
sored with left-moving BPS states. Elliptic genera have been extensively used to
study N = (2, 2) and more recently N = (0, 2) theories; for a very restricted set of
examples see [304–307]. It is often useful to refine the elliptic genus by other conserved
charges in the theory that commute with Q±R, which allows more information about
the spectrum of the theory to be captured. For a theory with at least N = (0, 2)

supersymmetry, the elliptic genus can be schematically defined as

I = Tr (−1)F
∏
JL

yJL
∏
f

xfqHLqHR , (6.22)

where JL stands for the generators of left-moving R-symmetry, and f stands for
the generators of bosonic flavor symmetries, all commuting with the Q±R. With this
philosophy, the definition of the elliptic genus can be extended to theories with higher
supersymmetry, as we will do so for theories with N = (8, 8) supersymmetry in
Sections 6.4 and 6.5. The trace can be taken in the Ramond or Neveu-Schwartz left-
and right-moving Hilbert spaces of the theory on the spatial circle. We will specialize
to the Ramond-Ramond sector. The elliptic genus is invariant under deformations
of a theory preserving the right-moving supercharges, and therefore is a topological

3Elliptic genera can be defined for theories with N = (0, 1) supersymmetry as well, with a single
self-conjugate right moving supercharge QR. However, one expects less control over the spectrum,
as generically R- and flavor symmetries can be discrete.
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index of theories. In particular, it is invariant under RG flow, which allows it to
be computed in the free UV limit of a theory. For example, for Landau-Ginzburg
theories it is sufficient to know the contributions from the field content of the theory
in the free limit and impose the restrictions on R- and flavor symmetries coming from
the superpotential [304].

For gauge theories the elliptic genus can be computed in the free limit of the theory
by introducing fugacities for the gauge charges, which amounts to doing the path
integral in the presence of a fixed but arbitrary background flat gauge connection,
and then imposing Gauss’ Law to project onto physical states by integrating over
the moduli space of flat connections [305, 306, 308]. As discussed, for gauge theo-
ries with only adjoint fields such as MSYM2, one has freedom in choosing the global
form of the gauge group. For example, the theory with SU(N) gauge group differs
from the theory with SU(N)/ZK gauge group for any K|N , despite having the same
Lagrangian. Since π1(SU(N)/ZK) = ZK , the SU(N)/ZK theory has additional clas-
sical field configurations on T 2, therefore both the moduli spaces of flat connections
and the moduli space of classical vacua are enhanced to include various disconnected
components. These additional components are crucial for the computation of the
elliptic genus for such theories, as the path integral sums over them as well. We note
that to compute the elliptic genus of the SU(N) theory and the U(N) theory without
the B field, we only to integrate over the trivial moduli space of the SU(N) bundle.
However, to compute the elliptic genus of the U(N) theory with the B field, we need
to integrate over the full SU(N)/ZN moduli space. Also, once we have a description
of the SU(N)/ZN moduli space, we can infer the SU(N)/ZK moduli space, and com-
pute the elliptic genera for the SU(N)/ZK theories for free. To prime ourselves for
computing the elliptic genera, we now turn to a description of the moduli space of flat
SU(N)/ZN -connections on T 2. As an added bonus, we will be able to understand
the classical field configurations on T 2 for the various theories discussed, and discover
the classical vacua.

6.2.2.1 Flat connections on SU(N)/ZN -bundles over T 2

A treatment of the moduli spaces of flat connections for SU(N)/ZN bundles was given
in [309], where in particular it was shown that the moduli spaces for the topologically
non-trivial bundles with structure group G are isomorphic to moduli spaces of trivial
bundles for a different structure group Gω. Here, we will give a self-contained, very
explicit, and somewhat pedestrian account of the moduli spaces of flat connections
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on T 2, specializing to the structure group Gadj = SU(N)/ZN .

Flat connections can be solved for by their holonomies, and the moduli space is given
by

Mflat = Hom(π1(T 2), Gadj)/Gadj. (6.23)

Denoting elements of SU(N)/ZN as conjugacy classes [A] of elements A ∈ SU(N),
such homomorphisms for Gadj = SU(N)/ZN is the set of solutions to the equation

[A][B][A]−1[B]−1 = 1 (6.24)

modulo conjugation by SU(N)/ZN (or, equivalently, by SU(N) as the center acts
trivially). For SU(N), the analogous equation ABA−1B−1 = 1 implies A and B lie in
the same maximal torus. While such commuting holonomies describe flat SU(N)/ZN
connections, they are not the only solutions to (6.24). To find the rest of the solutions,
we can lift (6.24) to SU(N), and find solutions there. In SU(N), we haveN equations,

ABA−1B−1 = ωkN , (6.25)

labeled by k ∈ Z/NZ, that project to the equation (6.24) in SU(N)/ZN . In (6.25),
A and B are now in SU(N) and ωN is a primitive Nth root of unity. We can use part
of the gauge freedom to diagonalize B, leaving only the Weyl group, which reorders
the eigenvalues. The equation now reads

SDS† = ωkND, (6.26)

which is an eigenvalue equation for conjugacy action of SU(N) on a diagonal matrix.
For each N and k, there is always a solution, constructed from the clock and shift
matrices4

DN =


1

ωN
. . .

ωN−1
N

 , and SN =


0 1

0 1
. . . 1

1 0

 (6.27)

which satisfy

SkNDN(SkN)† = ωkNDN . (6.28)

4We note that as defined, DN and SN do not always have determinant equal to 1, and therefore
are not always in SU(N). This can easily be fixed by dividing by the Nth root of the determinant
in the definition. Since this overall phase decouples from the conjugation action, and so does not
affect our calculations, we will drop it to avoid clutter.
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Correspondingly, the pair of holonomies ([SkN ], [DN ]) describes a flat SU(N)/ZN con-
nection. Therefore, each k contributes a new component,MN,k, to the moduli space
of flat SU(N)/ZN connections,MN . These components are disjoint, and labeled by
discrete data k, so we can write

MN =
N−1⊔
k=0

MN,k. (6.29)

The principal SU(N)/ZN bundle PN,k on T 2, with ’t Hooft non-abelian flux k =∫
T 2 w2(PN,k), has the moduli space of flat connection preciselyMN,k.

Let’s proceed to describe MN,k for given N and k. It will be useful to define d =

gcd(N, k), asMN,k will turn out to have complex dimension d− 1. In fact, for given
N and any two k1 and k2 such that d = gcd(N, k1) = gcd(N, k2), we will have the
isomorphism MN,k1

∼= MN,k2 . This is not a surprise, since the bundles PN,k1 and
PN,k2 are related by an automorphism of π1(SU(N)/ZN) = ZN exchanging k1 and
k2. Motivated by this, we define MN,d

∼= MN,k. Let’s start with the case when N

and k are relatively prime, so d = 1.

Moduli space of bundles with d = 1: We first note that for any pair of elements
(A,B) in SU(N) satisfying some commutation relation, such as (6.25), there are a
total ofN2 points (ωaNA, ω

b
NB), where a, b = 1, 2, . . . , N , that do so. (This is necessary

for SU(N) solutions (A,B) to descend to SU(N)/ZN solutions ([A], [B]).) So, we
can work with representatives (A,B) of the conjugacy class ([A], [B]).

To solve (6.25), we can diagonalize either A or B, and obtain the solutions (Dm
N , S

n
N)

or (SmN , D
n
N), for some mn = k. We note that SN generates the ZN subgroup of the

Weyl group SN , and therefore has the same eigenvalues as DN (up to an irrelevant
determinant factor). So, SN and DN are conjugate and the solutions (SmN , D

n
N) and

(Dm
N , S

n
N) are identified by gauge transformations. Also, since we necessarily have

gcd(m,N) = gcd(n,N) = 1, the solutions for variousm,n only reorder the eigenvalues
of DN and SN up to an overall cyclic ordering, and are related by the action of the
Weyl group. We can partially fix the gauge by choosing m = k and n = 1, and we
are left with N2 solutions in SU(N) given by (ωaNS

k
N , ω

b
NDN). But, precisely because

SNDNS
†
N = ωNDN , these N2 points are also identified by gauge transformations

generated by the simultaneous conjugation by DN and by SN ,

SN(ωaNS
k
N , ω

b
NDN)S†N = (ωaNSNS

k
NS
†
N , ω

b
NSNDNS

†
N) = (ωaNS

k
N , ω

b+1
N DN) (6.30)

DN(ωaNS
k
N , ω

b
NDN)D†N = (ωaNDNS

k
ND

†
N , ω

b
NDNDND

†
N) = (ωa−1

N SkN , ω
b
NDN) (6.31)
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so there is a single solution in SU(N) up to conjugacy. Projecting to SU(N)/ZN ,
we still have a single point, ([SkN ], [DN ]), of SU(N)/ZN holonomies, but this point is
fixed at order N2 by the Z2

N generated by simultaneous conjugation by [DN ] and by
[SN ],

[SN ]([SkN ], [DN ])[SN ]† = ([SkN ], [DN ]) (6.32)

[DN ]([SkN ], [DN ])[DN ]† = ([SkN ], [DN ]) (6.33)

So, we finally have

MN,k = {([SkN ], [DN ])}/Z2
N . (6.34)

We see that

MN,d=1 = {([SN ], [DN ])}/Z2
N , (6.35)

and the isomorphism MN,d=1
∼= MN,k is given by replacing the primitive Nth root

of unity ωN by its kth power.

Moduli space of bundles with d > 1: The essential observation for the d 6= 1

cases is that

SdN = SN/d ⊗ Id, and Dd
N = DN/d ⊗Dd/N

d . (6.36)

Since the d-dimensional factors commute, one can turn on arbitrary eigenvalues in the
corresponding d-dimensional subgroup of the Cartan torus. Explicitly, the solutions
are generalized to

(eihN,d(θs)SkN , e
ihN,d(θt)DN) = (SN/d ⊗ eihd(θs), DN/d ⊗ eihd(θt)Dd

N), (6.37)

where

eihN,d(θ) := IN/d ⊗ eihd(θ) := IN/d ⊗


e2πiθ1

e2πiθ2

. . .

e2πiθd

 , (6.38)

as one can easily check that

(eihN,d(θs)SkN)(eihN,d(θt)DN)(eihN,d(θs)SkN)†

= S
k/d
N/dDN/d(S

k/d
N/d)

† ⊗ eihd(θs)(eihd(θt)D
d/N
d )e−ihd(θs)

= ω
k/d
N/dDN/d ⊗ eihd(θt)D

d/N
d

= ωkN(eihN,d(θt)DN).

(6.39)
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The unitarity condition fixes (θs)i and (θt)i to be real, and the determinant condition
fixes their sums to zero. Assigning the two holonomies to the spatial (along 1) and
temporal (along τ) directions of the base torus, the moduli space inherits a natural
complex structure, and is parametrized by complex coordinates ui = (θt)i − τ(θs)i

which are periodic: ui ∼ ui + 1 ∼ ui + τ .

In choosing this presentation of the holonomies, we have used part of the gauge
symmetry to write them as products of factors of size N/d and d. We are left with a
Z2
N/d×Sd subgroup of the gauge group. To see this, note that as far as the N/d by N/d

factor is concerned, the situation is analogous to the d = 1 case, wherein we have used
part of the gauge symmetry to order the eigenvalues of SN/d and DN/d up to a cyclic
ordering, and there is a remaining Z2

N/d, generated by simultaneous conjugation by
SN/d⊗ Id and by DN/d⊗ Id, corresponding to the cyclic reordering of the eigenvalues,
which acts on the solutions by identifying ui ∼ ui + 1

N/d
∼ ui + τ

N/d
. The d× d block

also has its eigenvalues permuted by the Weyl group Sd of the d-dimensional Cartan
subgroup. So, in SU(N), the moduli space is M̃N,k/Sd where

M̃N,k :=
{

(S
k/d
N/d ⊗ e

ihd(θs·N/d), DN/d ⊗ eihd(θt·N/d))
}
∼= (T 2/Z2

N/d)
d−1. (6.40)

Here, T 2 is a copy of the base torus, with the same complex structure.

Once we project to SU(N)/ZN , the coordinates undergo the further identifications,
ui ∼ ui+

1
N
∼ ui+

τ
N
, so the solutions are fixed by the Z2

N/d action above. The moduli
space is then

MN,k
∼= {([Sk/dN/d ⊗ e

ihd(Nθs)], [DN/d ⊗ eihd(Nθt)])}/Z2
N/d × Sd. (6.41)

Once again, dependence on k is only through d, via the choice of an N/dth root of
unity, and we can define

MN,d
∼= (MN,d/Sd)/Z2

N/d, (6.42)

where

MN,d =
{

(SN/d ⊗ eihd(Nθs), DN/d ⊗ eihd(Nθt))
} ∼= (T 2/Z2

N)d−1, (6.43)

and analogously for its lift to SU(N) via M̃N,d
∼= M̃N,k. Note thatMN,d

∼=MN/d,1×
Md,d.
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6.2.2.2 Classical vacua in instanton sectors

The classical zero energy configurations in the SU(N)/ZN theory are gauge invariant
solutions to the BPS equations,

Fµν = 0,

[X i, Xj] = 0,

DµX
i = 0,

(6.44)

as can be seen from the fermionic supersymmetry variations, or directly from the
action. In the IR limit as g →∞, we can think of a particular solution as the data of
a flat connection Aµ, and commuting constant bosons X i satisfying [Aµ, X

i] = 0. In
the sector with trivial instanton number k = 0, the two components of A commute, so
the X i are all in the same Cartan subalgebra h, with the Weyl groupW permuting the
eigenvalues, so the eigenvalues parametrize (h)8/W = (R8)N−1/SN [286]. However,
in the presence of flat connections for non-trivial bundles, zero-energy configurations
of the bosons are restricted further. To see directly from the above descriptions
of the flat connections which X i are zero energy, we can exponentiate the relation
[Aµ, X

i] = 0 to the holonomies of Aµ as ei
∮
AX ie−i

∮
A = X i for each of the two 1-

cycles, the solutions to which are of the form (6.3), parametrizing (R8)d−1/Sd for the
instanton sector with d = gcd(k,N).

For the U(N) theory with the B field, classical field configurations are determined
by picking (c̃1, w2), which specifies a gauge 2-bundle. Given (c̃1, w2), there will be
minimal action configurations with constant field strength F09 = 2πM

N
1N and action

proportional to M2, where M =
∫
c̃1, with the scalars parametrizing SymdR8. (In

the Lorentzian theory, such configurations have M units of constant electric flux and
energy g2M2/N .) The naive “zero-energy” vacua have c̃1 = 0, but, like the SU(N)/ZN
theory, there are N disconnected components labeled by w2.

What about the other choices for c̃1? In the brane picture, the U(N) + B MSYM

theory is the leading approximation to the brane effective action. One can identify
the energy of the flux TrF as the binding energy of F-strings to the D-strings [284,
286, 298]. These configurations are half-BPS in the target space, so the corresponding
state in the MSYM theory should also preserve 16 supercharges. This is indeed the
case, as the U(N)+B MSYM2 theory has nonlinearly realized supersymmetries, which
are the goldstinos of the breaking of translation symmetry in the presence of D-branes
[295–297], so the supersymmetry variation (E.10) of the fermions is corrected to

δΘ = ΓMNFMNε1 + 1Nε2. (6.45)
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Here, Θ = (χ, 0)T is the 10d Majorana spinor and 1N is the generator of the center
of the u(N) algebra. In particular, the BPS equations are generalized to

F09 = Λ1N ,

[X i, Xj] = 0,

DµX
i = 0,

(6.46)

by choosing ε2 = −2ΛΓ09ε1. So, there are BPS sectors with constant F09 = 2πM
N
1N

such that the minimal action configurations discussed above — with constant, com-
muting X i parametrizing Symd(R8), which are the solutions to the BPS equations for
given bundle with w2 — preserve 16 appropriately chosen supersymmetries. There-
fore, these configurations are “supersymmetric vacua”, but in a sector with a different
central charge of the superalgebra.

We comment that it would be interesting to pursue the relation between the existence
of the nonlinear supersymmetry to the presence of the B field.

6.3 Elliptic genera of SU(N)/ZN gauge theories

We now delve into the task set upon in 6.2.2 of generalizing the elliptic genus when
there are additional bundles to consider, such as for SU(N)/ZN theories, or for the
U(N) theory with the B-field. Once again, as explored in [305, 306, 308], the elliptic
genera of 2d gauge theories is a certain path integral on the torus, which due to
localization can be calculated by integrating over the moduli space of flat connections.
Let G̃ be a simply-connected semi-simple Lie group with a discrete center Z(G̃). As
discussed in the previous section, when one has a Lagrangian with gauge symmetry
G̃ and with all fields invariant under some subgroup H ′ of Z(G̃), one has several
distinct choices of theories corresponding to a choice of the global form of the gauge
group G = G̃/H, for each H ⊂ H ′. These theories will generically have different
choices of gauge bundles on the spacetime, and thus the choice of the gauge group
will determine which bundles are being summed over by the path integral [29]. For
such 2d theories, the elliptic genus is naturally also a sum over the path integrals for
the sectors with different gauge bundles, each of which localizes to an integral over
the moduli space of flat connections for that bundle. Furthermore, since π1(G) = H,
each 2d G-gauge theory carries additional discrete data in the form of a θ angle dual
to the relevant characteristic class w(P ) of the bundle P , which specifies a weight for
the sum over components. So, the elliptic genus can be written schematically as

Iθ =
∑
P

eiθ
∫
w(P )ZP , (6.47)
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where ZP is the result of the path integral for the sector of the gauge theory with
gauge bundle P .

Concretely, for 2d SU(N)/ZN theories, there are N SU(N)/ZN -bundles PN,k, and
the relevant characteristic class is w2(P ) ∈ H2(T 2,ZN), with k =

∫
T 2 w2(Pk), so we

write

IθSU(N)/ZN =
N−1∑
k=0

eiθkZN,k, (6.48)

where θ takes values in

θ = 0, 2π
1

N
, 2π

2

N
, . . . , 2π

N − 1

N
. (6.49)

For U(N) MSYM2, there is an analogous but slightly more nuanced story. For a
standard U(N) theory without the B-field, the gauge bundles are U(N)-bundles,
which are classified by a single integer characteristic class c1 ∈ H2(Σ,Z). Only the
trivial bundle with c1 = 0 admits flat connections. Since the U(1) degrees of freedom
are free and therefore decouple, the elliptic genus is computed as

IU(N) = IU(1)ISU(N). (6.50)

For the U(N) theory with the 2-form gauge field B, recall that there are additional
field configurations corresponding to connections on gauge bundles withGadj = U(1)×
SU(N)/ZN structure group. On a Riemann surface, these bundles are characterized
by two independent classes, (c̃1, w2), however, only certain bundles will contribute to
the elliptic genus. For the theory taken at face value, flat connections are only present
when TrF = 0, but there are still the SU(N)/ZN -bundles with flat connections to
sum over, so we have the index

I c̃1=0
U(N)+B = IU(1)Iθ=0

SU(N)/ZN . (6.51)

Let us consider the other sectors, which require adding to the path integral the oper-
ator

eiM
∫
Σ
dÂ
N

+B. (6.52)

As we discussed in Section 6.2, this operator turns on a U(1) electric flux of M units,
so we are in the sector with c̃1 = M . For the SU(N)/ZN sector, w2 is unfixed, and
is summed over with the discrete theta angle θ = 2πM/N specified by the operator
eiM

∫
Σ
dÂ
N . The definition of the elliptic genus for the sector with M strings needs
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to be modified to take into account the non-linear supersymmetries, which shifts
the central charge in the superalgebra. The corresponding elliptic genus localizes to
states that saturate the BPS bound in this sector, F = 2πM

N
1ω with ω the volume

form, which specifies the bundle with c̃1 = M . The scalar and fermionic fields in
the U(1) multiplet, as well as the SU(N)/ZN sector of the theory are unaffected by
this modification. Isolating the holonomy of the B-field eiφ = ei

∫
ΣB, we see that the

elliptic genus of this sector is

eiMφIMU(N)+B = eiMφI1Iθ=2πM/N
SU(N) , (6.53)

where I1 is the contribution of the free center of mass modes. As a check, note that
for the U(1) theory, the sector with M strings attached, which is the (M, 1)-string,
has index I1. The S-dual (1,M) string indeed has the same index, if IθSU(N) = 1 for
θ = 2π/N which we will show to be the case. We can also construct the elliptic genus
that sums over each BPS sector (labeled by the M units of flux),

IU(N)+B =
∑
M∈Z

eiMφIMU(N)+B. (6.54)

To obtain each of the various indices, the crucial object we need to compute is
IθSU(N)/ZN . The computation requires some discussion, which we will now elaborate.

6.3.1 Integration over components of the moduli space of flat SU(N)/ZN -
connections

To compute IθSU(N)/ZN , we need to calculate the path integrals ZN,k for the SU(N)/ZN
bundles, so let’s analyze them. In general, ZP is the path integral over all connections
for P , so we can write

ZP =
1

Vol(G(P ))

∫
A∈Ω1(T 2,adP )

DA Z(A). (6.55)

Here, Z(A) is the result of the path integral over all other fields in the presence of a
P connection A, and G(P ) is the group of gauge transformations (automorphisms) of
the bundle P . The path integral for the elliptic genus localizes to a finite dimensional
integral over the flat connections for the bundle P , but there are some global factors
we need to worry about.

Let’s consider the case when the moduli space of flat connections MP for a given
bundle P is a point. After localization, there are no moduli to integrate over, so the
path integral just becomes an evaluation of the torus partition function, Z1−loop(u), of
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the fields in the theory in the background of the unique flat connection u ∈MN,1 (for
a similar example, see the Abelian example in [305, §4.5]). If the point u is fixed by
some finite group of gauge transformations, as is the case for u ∈MN,1 = MN,1/Z2

N ,
we should divide by the order of this group. The bundles PN,k with k ⊥ N (so d = 1)
are exactly of this type, and contribute ZN,k = ZN,1 each, with

ZN,1 = Z1−loop(u)|u∈MN,1
=

1

N2
Z1−loop(u)|u∈MN,1

. (6.56)

Next, let’s consider the integral over the trivial SU(N)/ZN -bundle, PN,k=0. Since
the bundle PN,0 lifts to the (necessarily trivial) SU(N)-bundle P̃N , we can lift the
path integral over the SU(N)/ZN -connection to a path integral Z̃P̃ over an SU(N)-
connection, Ã. As analyzed in [310, §4.1], the two path integrals are related by a
factor of the ratio of the volume of gauge transformations of the bundles, which can
be computed using the N : 1 covering map Ã→ A to be

Vol(G(P̃N))

Vol(G(PN,0))
= |π1(SU(N)/ZN)|1−2g (6.57)

on a Riemann surface of genus g. Now, the SU(N) path integral is precisely what
was shown in [306] to localize to a contour integral over the moduli space of flat
SU(N)-connections, M̃N = M̃N/SN . Therefore,

ZN,0 =
1

N
Z̃P̃N =

1

N

1

|SN |

∮
M̃N

Z1−loop. (6.58)

The contour integral is determined by the Jeffrey-Kirwan residue operation JK-Res.
The integrand is once again Z1−loop(u), which is naturally a meromorphic function
on the SU(N)/ZN moduli space MN,0 for a theory with no fields charged under
the center. Since the SU(N) moduli space M̃N is an N2 : 1 cover of the moduli
spaceMN,0 = MN,0/SN of PN,0, Z1−loop extends to a periodic function on M̃N . The
contours specified by the JK-Res operation only depend on the charges of the fields
giving rise to the poles, so the contours on the SU(N) moduli space are also periodic
on the SU(N)/ZN moduli space for a theory with no fields charged under the center.
In particular, the contour integral over M̃N is just N2 times the contour integral on
MN,0. So, (6.58) can be simplified as

ZN,0 = N
1

|SN |

∮
MN,0

Z1−loop. (6.59)

Finally, let’s consider the case with general k 6⊥ N , so d > 1. The moduli space in
this case isMN,k

∼=MN,d =MN/d,1×Md,d, so flat connections are of the form Aµ =
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(AN/d ⊗ Ad)µ, with AN/d the unique gauge-invariant flat connection on the bundle
PN/d,k/d, and Ad a flat connection on the bundle Pd,0 which needs to be integrated
over. Combining our arguments above leading to the formulas (6.56) and (6.59), the
path integral for such PN,k localizes to ZN,k = ZN,d with

ZN,d =
1

(N/d)2
d

1

|Sd|

∮
MN,d

Z1−loop, (6.60)

where MN,d as given in (6.43). Once again, the contour is determined by the JK-Res
operation.

Collecting our results in equations (6.56) and (6.60), the elliptic genus (6.48) is com-
puted by the formula

IθSU(N)/ZN =
N−1∑
k=0

eiθk gcd(N, k)
1

|WN,k|

∮
MN,k

Z1−loop(u) (6.61)

=
∑
k 6⊥N

eiθk gcd(N, k)
1

|WN,k|
∑

u∗∈M∗N,d

JK-Res
u=u∗

(Q(u∗), η)Z1−loop(u)

+
∑
k⊥N

eiθk
1

|WN,k|
∑

u∈MN,1

Z1−loop(u) (6.62)

with WN,k = Z2
N/d × Sd. We will elaborate on the residue prescription JK-Res in

Section 6.4.3 as part of the computation of the elliptic genus for MSYM2.

6.3.2 Adjoint fields in the presence of background flat connections

To evaluate the contribution to the index from each of the components of the mod-
uli space, we need to analyze how fields behave in the presence of background flat
connections, and determine what Z1−loop(u) is for each component. In line with our
end goal, here we will determine Z1−loop(u) for a theory with all fields in the adjoint
representation.

First off, as is well known, background flat connections on T 2 can be interchanged
with boundary conditions around the two 1-cycles for fields charged under them. As
a simple example, one could keep in mind that the choice of periodic or antiperiodic
boundary conditions for fermions is equivalent to the choice of a background flat
Z2-connection. Correspondingly, the boundary conditions determine the mode ex-
pansions of the fields into oscillators. Since the elliptic genus can be computed in the
free field limit, the moding in the presence of arbitrary background flat connections
can be easily determined by the charges of the fields.
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Let’s start by considering adjoint fields in the presence of a flat connection for the
bundle PN,1 over T 2, described by a pair of SU(N)/ZN holonomies ([SN ], [DN ]).
Although the two matrices SN and DN do not commute, their actions by conjugation
on N ×N matrices commute, since

SNDNA(SNDN)† = ωNDNSNA(ωNDNSN)† = DNSNA(DNSN)†. (6.63)

Therefore, the matrices SN and DN acting on the Lie algebra su(N) by conjugation
furnish an (N2−1)-dimensional representation of ZN×ZN , with eigenvalues (ωaN , ω

b
N),

where a, b = 0, 1, . . . , N − 1, and a and b both not 0 (as the mode with a = b = 0

corresponds to the identity matrix, which is not in su(N)). Explicitly, the eigenspace
of the eigenvalue (ωaN , ω

b
N) is the 1-dimensional vector space of scalar multiples of the

matrix S−bN Da
N . For such a flat connection, adjoint fields will have gauge fugacities

exp 2πia+(−1)abτ
N

= ωaNq
(−1)ab
N , where the charges a, b are taken from the set

CN =

{−N−1
2
,−N−1

2
+ 1, . . . , N−1

2
} for N odd,

{−N
2
,−N

2
+ 1, . . . , N

2
, N

2
+ 1} for N even,

(6.64)

but with the eigenvalue a = b = 0 excluded. We had to be careful in picking the
sign of the exponent of q, since we would like our expression to be charge conjugation
invariant. This will be necessary later for evaluating the elliptic genus, which is a
trace in the Ramond sector. These choices are also invariant under the modular S
transformation of the base torus, which amounts to exchanging a and b. To summa-
rize, if the contribution to the path integral of modes with gauge fugacity z = e2πiu

is Ξ(u), the evaluation in (6.56) of Z1−loop(u) at u ∈MN,1 is

Z1−loop(u)|u∈MN,1
=

1

N2

∏
a,b∈CN

(a,b)6=(0,0)

Ξ
(
a+(−1)abτ

N

)
. (6.65)

The result is identical for all bundles PN,k with k ⊥ N ; although the holonomies
change to ([SkN ], [DN ]), the action on the Lie algebra is isomorphic — as expected,
since they have isomorphic moduli spaces.

Next, we should consider the bundles with moduli spaces of positive dimension. We
can study the holonomies ([SN/d⊗ eih(θs)], [DN/d⊗ eih(θt)]) ∈MN,d, and the result will
be the same for all k with gcd(k,N) = d. Similar to our above discussion, conjugation
by SN/d and DN/d furnish d2 copies of a (N/d)2-dimensional representation of Z2

N/d.
Each of the d2 copies has the usual gauge charges for the adjoint representation of
SU(d). Explicitly, the matrices

SaN/dD
b
N/d ⊗ (E(d))i,j (6.66)
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diagonalize the conjugation action, with eigenvalue(
ωbN/d e

2πi((θs)i−(θs)j), ω−aN/d e
2πi((θt)i−(θt)j)

)
, (6.67)

where (E(d))i,j is the d×d matrix with a 1 in the (i, j)th entry and zeroes everywhere
else. So, for a flat connection on the torus with these holonomies, the adjoint fields
have gauge fugacities ωaN/d q

(−1)ab
N/d zi

zj
, where a, b ∈ CN/d, and zi = exp(2πiui) with ui =

(θt)i−τ(θs)i. One of the d modes with a = b = 0 and i = j corresponds to the identity
matrix, and should be excluded, as above for the d = 1 case. Putting everything
together, the contribution from a component of the moduli space isomorphic toMN,d

is schematically∫
MN,d

Z1−loop = d
1

(N/d)2

1

d!

∮
Md

(∏
i

dui

)
1

Ξ(0)

∏
a,b∈CN/d

d∏
i,j=1

Ξ
(
a+(−1)abτ

N/d
+ ui − uj

)
,

(6.68)

where the 1/Ξ(0) term serves to remove from the product the mode corresponding
to the identity element in the Lie algebra. As a check, we see that this formula
reproduces our earlier expression (6.65) for d = 1, and reproduces 1/N times the
expression for the integral over the SU(N) moduli space obtained by [305, 306, 308]
for the integral over the moduli space of the trivial bundle with d = N , as can be
seen by liftingMd to SU(N).

6.4 Elliptic genus of MSYM2

6.4.1 Setup

We are now sufficiently equipped to turn to the computation of the elliptic genus
of MSYM2. To compute the elliptic genus of a N = (8, 8) supersymmetric theory,
it is convenient to pick an N = (0, 2) subalgebra of the N = (8, 8) supersymmetry
algebra and express the fields and the Lagrangian in representations of this N = (0, 2)

superalgebra. As elaborated in Appendix E.1, a choice of an N = (0, 2) subalgebra
is given by picking two right moving supercharges Q±R that generate right-moving
supersymmetry transformations ε±R ⊂ εαR, such that ε±R (and thus Q±R) are eigenstates
of a weight of the 8s representation. To paraphrase the Appendix for convenience,
this choice decomposes the R-symmetry group as Spin(8) → Spin(2) × Spin(6) ∼=
U(1)R × SU(4), such that

8s → 1+1 ⊕ 60 ⊕ 1−1

8c → 4− 1
2
⊕ 4+ 1

2

8v → 4+ 1
2
⊕ 4− 1

2
.

(6.69)
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Let {±ei}i=1,...,4 ⊂ h∗ be the weights of the 8v representation of Spin(8), and let
{Kj}j=1,...,4 ⊂ h denote the Cartan generators with ei(Kj) = δij. A concrete choice of
ε±R is given by the 8s weights ±r where r = 1

2
(e1 + e2 + e3 + e4), for which U(1)R is

generated by the Cartan generator JR = 1
2
(K1 +K2 +K3 +K4).

Under such a split, the SU(4) factor commutes with the supercharges Q±R; therefore it
is a flavor symmetry from the perspective of the N = (0, 2) superalgebra. This allows
us to define the index in the Ramond-Ramond sector via the N = (0, 2) flavored
elliptic genus [305, 306, 308]

TrH(−1)F qHLqHR
∏
A

afAA (6.70)

where fA are the Cartan generators of Spin(6) ∼= SU(4). Generalizing the index to
include the θ angle, we obtain

TrHe
iθ
∫
w2(−1)F qHLqHR

∏
A

afAA =
∑
k

TrHke
iθk(−1)F qHLqHR

∏
A

afAA . (6.71)

Under the decomposition (6.69), the fields decompose into SU(4) representations as

{X i} → {φA, φA}

{χαL} → {λ−, λ−, ψAB− }

{χα̇R} → {ψA+, ψ+A},

(6.72)

which can be reorganized into N = (0, 2) superfields {ΦA,ΦA,Λ,Λ,Ψ
A4,ΨA4} as

ΦA = φA + θ+ψA+ + θ+θ
+
D+φ

A

Λ = λ− + θ+ 1√
2

(D + iF09) + θ+θ
+
D+λ−

ΨA4 = ψA4
+ + θ+GA4 + θ

+
EA4(Φ) + θ+θ

+
D+ψ

A4
+ .

(6.73)

The Fermi multiplet Λ is the N = (0, 2) vector multiplet, and carries the gauge
field strength F09 (or F09 for the U(N) + B theory). The E-type interaction term is
EA4(Φ) = −i

√
2g[ΦA,Φ4]. There is also a J-term superpotential

igTr

∫
dθ+ΨA4JA(Φ)

∣∣∣∣
θ
+

=0

+h.c. = ig
εABC4

3!
Tr

∫
dθ+ΨA4[ΦB,ΦC ]

∣∣∣∣
θ
+

=0

+h.c. (6.74)

Perhaps the easiest way to derive these interactions is from the Lagrangian of 4d
N = 4 SYM written in N = 1 supermultiplets. When dimensionally reduced to 2d,
we get 2d N = (8, 8) SYM, expressed in N = (2, 2) vector and chiral superfields,
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denoted Σ̃ and Φ̃1,2,3, respectively, with the N = 1 superpotential descending to the
N = (2, 2) superpotential

igTr

∫
dθ2Φ̃1[Φ̃2, Φ̃3] + h.c.. (6.75)

Now, we can decompose the N = (2, 2) multiplets and the N = (2, 2) superpotential
into their N = (0, 2) counterparts as described in [311]. The vector multiplet Σ̃

decomposes into a chiral multiplet Φ4 and the Fermi vector multiplet Λ. The chiral
multiplet Φ̃A of N = (2, 2) decomposes into a N = (0, 2) chiral multiplet ΦA and
Fermi multiplet ΨA4, where the Fermi multiplet has E-term D+ΨA = i

√
2g[Φ4,ΦA].

The N = (2, 2) superpotentialW (Φ) descends to JA(Φ) = ∂W
∂ΦA

, which reproduces our
expression above.

For the free U(1) theory, the index as defined vanishes due to the zero mode of λ− and
its conjugate, as usual. This is because λ− and its conjugate are in the same eigenstate
of bosonic symmetries as the N = (0, 2) supercharges, including the R-symmetry, and
have opposite fermion number, so their contributions cancel. But, following [312, 313],
we can remove the contribution from the problematic zero modes by inserting a factor
of JR into the definition of the trace, as we will discuss in detail in Section 6.5. Then
the index is simply the product of the one loop partition functions for each of the
superfields

IU(1) = ZΛ

∏
A

ZΦAZΨA4 = η(τ)3

∏3
A=1 θ1(τ |ξA + ξ4)∏4

A=1 θ1(τ |ξA)
(6.76)

where ξA are holonomies for flat background gauge fields for the SU(4) “flavor’’ sym-
metry, coupling to fields via ρ(ξ) = ρAξA, where ρ is a weight of the fundamental
SU(4) representation. The holonomies ξA satisfy∑

A

ξA = 0, (6.77)

which is the determinant constraint of SU(4), or equivalently the superpotential con-
straint. The Dedekind eta function is defined as

η(τ) = q1/24

∞∏
n=1

(1− qn), (6.78)

and the Jacobi theta function is defined as

θ1(τ |u) = −iq1/8z1/2

∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn−1), (6.79)



359

with q = e2πiτ and z = e2πiu.

Let’s recall that in order to compute the index for the interacting gauge theory, one
also needs to introduce gauge fugacities, and then impose Gauss’ Law, which takes
the form of a contour integral. Since the theory is free in the UV, and the index is
scale invariant, we can do the computation in the free UV limit, so we only need the
contribution from each free field. The integrand of the contour integral for the gauge
theory index is then

Z1−loop(τ |u; ξ) =
∏
α

Ξ(τ |α(u); ξ), (6.80)

where Ξ(τ |α(u); ξ) is the factor from the modes with charge α in the presence of a
background flat gauge connection specified by u, with α(u) as discussed in Section
6.3.2 for the various components of the moduli space of flat connections. For MSYM2,
the free field index is

Ξ(τ |u; ξ) :=
θ1(τ |u)

∏3
A=1 θ1(τ |ξA + ξ4 + u)∏4

A=1 θ1(τ |ξA + u)
. (6.81)

Note that we can recover the U(1) index as

IU(1)(τ |ξ) = − ∂

∂u

∣∣∣∣
u=0

Ξ(τ |u; ξ). (6.82)

The function Ξ(τ |u; ξ) inherits the following periodicity properties from the theta
function θ1(τ |u),

Ξ(τ |u+ a+ bτ ; ξ) = e−2πib(2ξ4)Ξ(τ |u; ξ),

Ξ(τ |u; ξ1 + a+ bτ, ξ2, ξ3) = e2πib(2u)Ξ(τ |u; ξ),
(6.83)

as well as the following modular transformation properties,

Ξ(τ + 1|u; ξ) = Ξ(τ |u; ξ),

Ξ

(
−1

τ

∣∣∣∣ uτ ;
ξ

τ

)
= e

πi
τ

(4uξ4)Ξ(τ |u; ξ).
(6.84)

These properties imply that the integrand Z1−loop(τ |u; ξ), and therefore the index is a
modular invariant symmetric Abelian (multi-periodic) function of the variables ξ1,2,3

with modular parameter τ . We will explore such functions in Section 6.5, and their
uniqueness properties will help us match the gauge theory index to the symmetric-
orbifold index in Section 6.4.3.
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6.4.2 Contribution from isolated flat connections

We are now ready to compute the various contributions to the SU(N)/ZN gauge
theory index from the components ofMflat. Let’s start with the pointlike components,
corresponding to isolated flat connections of the bundles PN,k with k ⊥ N . Applying
our earlier result (6.65), we have

Z1−loop|MN,1
=

1

N2

∏
a,b∈CN

(a,b) 6=(0,0)

Ξ(τ |a+(−1)abτ
N

; ξA). (6.85)

In fact, this expression simplifies quite a bit, due to the identity∏
a,b∈CN

Ξ(τ |u+ a+(−1)abτ
N

; ξA) = Ξ(τ |Nu;NξA). (6.86)

We can now rewrite the contribution to the index as

Z1−loop|MN,1
=

1

N2
lim
u→0

Ξ(τ |Nu;NξA)

Ξ(τ |u; ξA)
=

1

N

IU(1)(τ |NξA)

IU(1)(τ |ξA)
. (6.87)

6.4.3 Integral over flat connections on the trivial bundle

Let’s move on to the contributions from components ofMflat of positive dimension.
We will start with the component corresponding to the trivial SU(N)/ZN -bundle
PN,0, which will be the bulk of our computation. As discussed in Section 6.3.1, we
can lift the integral on the moduli space of flat connections MN,N of PN,0 to an
integral on the moduli space of flat SU(N)-connections M̃/SN . This allows us to use
the formula obtained by [306] (see also [305, 308]) and write the integral in (6.58) as∮

MN,N

Z1−loop(u) =
1

|π1(SU(N)/ZN)|
1

|SN |
∑

u∗∈M̃sing∗

JK-Res
u=u∗

(Q(u∗), η)Z1−loop(u),

(6.88)

where

Z1−loop =
(
IU(1)

)N−1
∏
i 6=j

θ1(τ |ui − uj)
∏3

A=1 θ1(τ |ξA + ξ4 + ui − uj)∏4
A=1 θ1(τ |ξA + ui − uj)

N∧
i=2

dui. (6.89)

The authors of [306] give a detailed prescription for evaluating the JK-Res operation.
Here, we will briefly recall parts of the prescription, and compute the residue. Let r
denote the rank of the gauge group, so r = N − 1 here for SU(N). The integrand
Z1−loop is naturally a meromorphic (r, 0)-form on M̃, which is the torus hC/(Q

∨ +

τQ∨) ∼= (C/Z + τZ)r, where h is the Cartan subalgebra of SU(N), and Q∨ is the
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coroot lattice. We pick u2, . . . , uN as coordinates on M̃ and solve for u1 using the
trace constraint

∑
i ui = 0. We observe that Z1−loop is singular along the hyperplanes

HA
ij = {ui − uj + ξA = 0 mod Z + τZ} ⊂ M̃. (6.90)

Let QA
ij ∈ h∗ denote the weight of the multiplet responsible for the hyperplane HA

ij ,
which are the non-zero roots QA

ij(u) = ui − uj. Let Q(u∗) = {QA
ij | u∗ ∈ HA

ij} denote
the set of charges of the singular hyperplanes meeting at u∗. The collection of points
u∗ where at least r singular hyperplanes intersect is denoted by M̃sing∗ . When the
charges Q(u∗) of all singular hyperplanes meeting at a point are contained in a half-
space of h∗, the arrangement of hyperplanes is termed “projective.” When there are
exactly r singular hyperplanes intersecting at a point, labeled say Hj1 , . . . , Hjr , the
arrangement is termed “non-degenerate.” To evaluate the residue, we need to pick a
covector η ∈ h∗, which for theories with only adjoint fields specifies a Weyl chamber.
For a projective and non-degenerate arrangement, the residue is determined by the
operation

JK-Res
u=u∗

(Q(u∗), η)
du1 ∧ · · · ∧ dur

Qj1(u− u∗) · · ·Qjr(u− u∗)
=

 1
|det(Qj1 ...Qjr )| if η ∈ Cone(Qj1 . . . Qjr),

0 otherwise.

(6.91)

Here, Cone(Qj1 . . . Qjr) stands for the positive cone generated by the charge rays
Qj1 , . . . , Qjr . When the arrangement is degenerate, so there are more than r singular
hyperplanes intersecting, the JK-Res operation is more complicated, as one needs
to specify the precise cycle to integrate on. However, for the case of interest for
us, whenever the arrangement is degenerate, one can exploit the linearity of the
JK-Res operation to determine the cycle relatively easily, as was pointed out in some
examples in [306]. In any case, the JK-Res operation corresponds to a particular
linear combination of iterated residues, and in our case we will be able express JK-Res
explicitly as a somewhat simple prescription of iterated residues.

Let’s analyze which poles give non-zero contributions to the sum in (6.88). It simplifies
the classification of poles to note that non-zero residues are from points u∗ where s
singular hyperplanes and s′ zero hyperplanes intersect, such that s− s′ = r. We see
that Z1−loop has zeroes along the hyperplanes defined by

Nij = {ui − uj = 0 mod Z + τZ},

NB4
ij = {ui − uj + ξB + ξ4 = 0 mod Z + τZ},

(6.92)
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for i 6= j and B = 1, 2, 3. So, for example, at the N2 points where the hyperplanes
HA
i+1,i with i = 1, . . . , N −1 and some fixed A intersect, there are no other singular or

zero hyperplanes intersecting (for generic ξA). These points therefore give non-zero
contributions as long as η ∈ Cone({QA

i+1,i}i=1,...,N−1). However, whenever say HA
i,j

and HA
i′,j intersect, we have ui = ui′ , at which point there is a double zero in the

integrand, and such points don’t contribute for generic ξA.

We note that sets of hyperplanes that contribute a non-zero residue always intersect at
N2 points, and each of these points will contribute identical residues. This is coming
from the fact that we have lifted the integral on the trivial SU(N)/ZN -bundle’s
moduli space to the SU(N) moduli space M̃, which as we discussed in Section 6.3.1
is an N2 → 1 covering. For concreteness, we will continue the integral on M̃ to
make direct contact with the literature, and observe that we will obtain N2 times the
integral over the SU(N)/ZN moduli space.

Let’s return to the classification of poles. There are some points where a degenerate
intersection occurs with the required number of zero hyperplanes for the residue to
be non-zero. When this is the case, first of all, we need to determine what order
of iterated residues JK-Res corresponds to. A second point that needs attention is
as follows. We note that due to the constraint

∑
ξA = 0, the second set of zero

hyperplanes NB4
ij can be written as

NAB
ij = {ui − uj + ξA + ξB = 0 mod Z + τZ} (6.93)

with A,B = 1, 2, 3, 4, but A 6= B — essentially, as an rank 2 antisymmetric tensor of
SU(4). Although the zeroes are totally symmetric in the ξA (as expected, since the
integrand is totally symmetric in the ξA), the signs of the factor in the integrand giving
these hyperplanes differ for the pairs (A,B) ∈ {(1, 4), (2, 4), (3, 4)} versus (A,B) ∈
{(1, 2), (1, 3), (2, 3)}. This introduces a subtle sign in the computation of the residue,
which we have to keep track of.

For concreteness, let’s look closely at an example, as it will illuminate some of the
subtleties in the computation. For N = 4, there are N2 = 16 points where four
singular hyperplanes HA

12, HB
13, HB

24, and HA
34 meet the zero hyperplane {ε(A,B)(u1−

u4) + ξA + ξB = 0}. Here, ε(A,B) is the sign that determines the correct zero
hyperplane, NAB

14 or NBA
14 ; it is 1 if either of A or B is 4, and −1 otherwise. The

intersection occurs at the points

(u2, u3, u4) =
1

2
(ξA − ξB,−ξA + ξB, ξA + ξB) +

a+ bτ

4
(1, 1, 1) (6.94)
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for a, b = 1, . . . , 4. A more suitable choice of coordinates is given by vi = Qi1(u) =

ui − u1 for i = 2, 3, 4. The intersection points in these coordinates are at

(v2, v3, v4) = (ξA, ξB, ξA + ξB) + (a+ bτ)(1, 1, 1). (6.95)

First of all, let’s note that the integrand is doubly periodic in each of the variables
vi under translations by Z + τZ, so each of the poles contributes the same residue.
Shifting the coordinates so that the intersection happens at vi = 0, we need to evaluate

JK-Res
v=0

(Q∗, η)
ε(A,B)v4

v2v3(v4 − v2)(v4 − v3)

dv2 ∧ dv3 ∧ dv4

4
. (6.96)

The set of charges Q∗ is {Q12, Q13, Q24, Q34}, which are

Q12 = (−1, 0, 0), Q13 = (0,−1, 0), Q24 = (1, 0,−1), Q34 = (0, 1,−1) (6.97)

in coordinates dual to vi. We pick the convenient choice of η = (−1,−1,−1) in
these coordinates. Now, we need to determine which cycle of integration JK-Res
corresponds to for this η. As discussed in (6.88), there could be various such cycles,
depending on which sub-chamber η sits in; however, the results are equivalent. By
linearity of the JK-Res operation, if we find some cycle of integration such that when
applied to the 3-form defined by

ω234 =

(
a

v2v3(v4 − v2)
+

b

v2v3(v4 − v3)
+

c

v2(v4 − v2)(v4 − v3)
+

d

v3(v4 − v2)(v4 − v3)

)
(6.98)

gives the correct residue for each of the linear pieces, as according to (6.91), then
it is the right prescription for the degenerate case. Noting that for the four subsets
of charges, only Cone(Q12,Q13,Q24) and Cone(Q12,Q13,Q34) contain η, the correct
cycles are determined as Res

v4=0
Res
v3=0

Res
v2=0

and Res
v4=0

Res
v2=0

Res
v3=0

, as both evaluate to a+b when

applied to ω234. Therefore, applying either of the iterated residues to (6.96), we see
that it evaluates to ε(A,B)/4. Such poles generalize to N > 4 as Young tableaux
along pairs (A,B) as one expects.

Another subtlety comes from poles containing “cubes,” which starts occurring for
N ≥ 8. Concretely, for N = 8, we have a pole at the point

(vi)i=2,...,8 = (ξ1, ξ2, ξ3, ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3, ξ1 + ξ2 + ξ3). (6.99)

There are 13 singular hyperplanes

H1
12, H

2
13, H

3
14, H

1
25, H

2
35, H

3
26, H

1
46, H

3
37, H

2
47, H

3
58, H

2
68, H

1
78, H

4
81 (6.100)
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and 6 zero hyperplanes N34
51 , N

24
61 , N

14
71 , N

14
82 , N

24
83 , N

34
84 meeting at this point. However,

the charge vector Q81 coming from H4
81 points outside of any half-space containing

all the other charge vectors, so the arrangement is not projective. As was pointed
out in [306], we can deal with this situation by relaxing the constraint on the R-
symmetry fugacities (which resolves the intersection into a bunch of projective ones),
computing the residues, and then taking the limit ε→ 0. Relaxing the constraint on
ξA to ξ1+ξ2+ξ3+ξ4 = ε, the singular point is resolved to two points, at v8 = ξ1+ξ2+ξ3

and at v8 = −ξ4 = −ξ1 − ξ2 − ξ3 + ε with v2, . . . , v7 as before. For η = (−1, . . . ,−1),
the second point does not contribute, and to obtain the contribution from the first
point, we need to calculate

JK-Res
v=0

(Q∗, η)
(v5 + ε)(v6 + ε)(v7 + ε)

v2v3v4(v5 − v2)(v5 − v3)(v6 − v2)(v6 − v4)(v7 − v3)(v7 − v4)

× (v8 − v2 + ε)(v8 − v3 + ε)(v8 − v4 + ε)

(v8 − v5)(v8 − v6)(v8 − v7)(−ε− v8)

∧8
i=2 dvi

8
.

(6.101)

We can determine possible choices of a cycle of integration for this degenerate ar-
rangement as above, and once again the residue is independent of this choice. One
choice is given by

JK-Res
v=0

(Q∗, η)
8∧
i=2

dvi = Res
v8=0

Res
v7=0

. . .Res
v2=0

, (6.102)

so (6.101) evaluates to −1/8. Note that this sign comes from the singular hyperplane
H4

18 with the problematic charge covector which made the arrangement non-projective
in the first place, and is separate from the sign coming from zero-hyperplanes discussed
above. So, in general we need to keep track of both sources of sign for the residue.

Finally, we note that starting N ≥ 16, there are poles containing “hypercubes,” with
v16 = ξ1 + ξ2 + ξ3 + ξ4. Due to the constraint on ξA, v16 = 0 and there is a double
zero from N16,1 and N1,16, so such poles have vanishing residue.

We are now ready to compute the contour integral for general N . The contributing
poles in any Weyl chamber are classified by certain 4d Young tableaux of size N .5

A 4d Young tableau is a collection of N “nodes” Y = (y1, . . . , yN) ∈ Z4
≥0, subject

to the “stacking” condition: if the node x = (x1, x2, x3, x4) ∈ Y , then so do all the
nodes y = (y1, y2, y3, y4) with 0 ≤ yA ≤ xA for all A = 1, 2, 3, 4 [314]. We also
require that each node yi have at most 3 non-zero coordinates yAi . We will denote

54d Young tableaux of size N also classify solid (3d) partitions of N ,
∑
i,j,k ni,j,k = N, where

for each nonzero nijk, there are nijk corresponding nodes (i − 1, j − 1, k − 1, l), with 0 ≤ l < nijk.
In [314], such partitions are denoted 4d partitions of N .
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the collection of such 4d Young tableaux of size N by YN . Each such 4d Young
tableau Y of size N describes N ! ·N2 poles of the integrand, at coordinates given by
solutions to ui − uj = yAσ(i)ξA, for some choice of j and the (N − 1)! orderings σ(i)

of the remaining ui with i 6= j.6 The choice of j is related to the choice of a Weyl
chamber; for any choice of η only (N − 1)! · N2 poles survive the JK-Res operation,
corresponding to some fixed j. For concreteness, we fix j = 1 with the convenient
choice of η = (−1,−1, . . . ,−1) in coordinates (u2, u3, . . . , uN). Since the integrand is
symmetric in the ui, the (N−1)! orderings σ(i) contribute identically, cancelling part
of the factor coming from the order of the Weyl group. We define vi = Qi1(u) = ui−u1

for i = 2, . . . , N , noting the relation
∑
ui = 0. Contributing poles are at points v(Y )

given by coordinates vi = yAi ξA + a+ bτ , for a, b = 1, . . . , N . Due to the periodicity
structure of the integrand, the sum over a, b is trivial and produces a factor of N2.

We introduce the following partial ordering � on the nodes of 4d Young tableaux,

yi � yj if yAi ≤ yAj for all A, (6.103)

which keeps track of the stacking of the nodes. The operation JK-Res for a pole
Y = (y1, . . . , yN), partially ordered such that yi � yj if i < j, is given explicitly by
the iterated residue

JK-Res
u=u∗

(Q∗, η)
∧

dui =
1

N
Res

vN=yAN ξA

· · · Res
v3=yA3 ξA

Res
v2=yA2 ξA

. (6.104)

The integral over the moduli space is then∮
MN,N

Z1−loop =
1

N

∑
Y ∈YN

N2 JK-Res
vi=yAi ξA

(Q∗, η) Z1−loop(u) (6.105)

=
1

N

∑
Y ∈YN

ε(Y ) lim
δ→0

1

Ξ(τ |δ; ξ)
∏
i,j

Ξ(τ |yAi ξA − yAj ξA + δ; ξ), (6.106)

where we have introduced an auxiliary variable δ to simplify the expressions of the
residues. The coefficient ε(Y ) is a sign due to degenerate and non-projective inter-
sections, and is determined as follows. Let c3(Y ) be the number of nodes in Y with
at least 2 nonzero entries in the first 3 coordinates, and let c4(Y ) be the number of
nodes in Y with exactly 3 nonzero coordinates, or

c3(Y ) = #{yi ∈ Y | yBi = 0 for at most one B, with B ∈ {1, 2, 3}.}

c4(Y ) = #{yi ∈ Y | yAi = 0 for exactly one A, with A ∈ {1, 2, 3, 4}.}
(6.107)

6We have picked yAj = 0 which we are free to do for any Y .
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Then, the sign ε(Y ) is given by

ε(Y ) = (−1)c3(Y )+c4(Y ). (6.108)

We conjecture that the sum over the residues greatly simplifies to the expression

1

N

∑
|Y |=N

ε(Y ) lim
δ→0

1

Ξ(τ |δ; ξ)
∏
i,j

Ξ(τ |yAi ξA − yAj ξA + δ; ξ) =
1

N

∑
s|N

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

.

(6.109)

This is a highly nontrivial simplification to check analytically, as the summands on
the left-hand side grow in number and complexity very quickly in N . Fortunately, the
functions on both sides of this equation are very special, and they enjoy some very
restrictive properties, which allows us to make some exact statements. Specifically,
they are modular invariant symmetric Abelian (multi-periodic) functions of the vari-
ables ξ1,2,3 with the modulus τ and period as in (6.134), of the kind explored in detail
in Section 6.5. This follows from the periodicity and modular transformation prop-
erties of Ξ(τ |u; ξ) and IU(1)(τ |ξ); as the integrand (6.89) is such a function, so is the
integral. We will explore some key properties of such functions in Section 6.5, leading
up to Lemma 6.5.1 which states that such functions are completely determined by
the rational function in variables a1,2,3 = exp 2πiξ1,2,3 obtained by setting τ = i∞
(or q = 0), corresponding to the constant term in the Fourier expansion in q. This
dramatically simplifies the effort of checking (6.109), since if we can show the equality
for q = 0, the full equality follows exactly! We were able to show this for N ≤ 7 by
using Mathematica to simplify the sum over the residues with q = 0. For larger N , up
to N ≤ 12, we checked that the pole structure of the rational functions obtained by
setting q = 0 on both sides agrees, as well as by performing some numerical checks.

6.4.4 Integral over flat connections on generic bundles

Having computed the integral on the moduli space of the trivial bundle, turns out we
can infer the integral on each of the other components of Mflat. We first note that
we can use the identity (6.86) to simplify the integrand in (6.68),∫
MN,d

Z1−loop

=
d2

N

IU(1)(τ |Nd ξ)
IU(1)(τ |ξ)

1

d!

∮
Md

(∏
i

dui

)(
N

d
IU(1)

(
τ |N

d
ξ
))d−1 d∏

i,j=1
i 6=j

Ξ(τ |N
d

(ui − uj); Nd ξ).

(6.110)
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We recognize the first factor as the contribution from MN/d,1. The integral is the
same as the integral overMd,d, but with scaled flavor charges ξ → N

d
ξ. Quoting our

result above, we have∫
MN,d

Z1−loop =
1

N

IU(1)(τ |Nd ξ)
IU(1)(τ |ξ)

∑
s|d

s
IU(1)(τ |ds

N
d
ξ)

IU(1)(τ |Nd ξ)
=

1

N

∑
s|d

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

. (6.111)

6.4.5 Putting the pieces together

Adding up the contributions from each of the components of the moduli space of flat
connections, we obtain the index

IθSU(N)/ZN (τ |ξ) =
1

N

N∑
k=1

eiθk
∑

s| gcd(k,N)

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

. (6.112)

In fact, we can evaluate the sum over k with given θ = 2πM
N

(mod 2π)

Iθ=
2πM
N

SU(N)/ZN (τ |ξ) =
∑
s|D

IU(1)(τ |sξ)
IU(1)(τ |ξ)

=
ID
I1

(τ |ξ) (6.113)

where D = gcd(M,N). Thus we establish that the index for the SU(N)/ZN MSYM2

theory at theta angle θ = 2πM
N

is equal to the index of the sigma model into (R8)D−1/SD,
providing strong evidence that the IR limit of the gauge theory with the corresponding
theta parameter is described by this sigma model.

We can also easily infer the index of the SU(N) and SU(N)/ZK theories for each
K|N with our results thus far. For each such theory, the contributing bundles are
a subset of the SU(N)/ZN -bundles, with the moduli space of flat connections lifted
appropriately. For the SU(N) theory only the trivial bundle contributes, so we have
the index

ISU(N) =
∑
s|N

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

=
N∑
k=1

Igcd(k,N)

I1

(τ |ξ), (6.114)

which is the sum of the index of each of theN superselection sectors in the theory, with
the kth superselection sector described by the sigma model into (R8)d−1/Sd with d =

gcd(k,N). For a SU(N)/ZK theory, there are K bundles to sum over, corresponding
to those SU(N)/ZN bundles with w2 liftable to H2(T 2,ZK) where ZK ⊂ ZN —
essentially those with K|w2. Accounting for the volume of gauge transformations and
adding in the ZK-valued θ angle θ = 2πM/N with M ∈ ZN/ZN/K ∼= ZK , we obtain
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the index

Iθ=
2πM
N

SU(N)/ZK (τ |ξ) =
1

K

N/K∑
k=1

eiθkK
∑

s| gcd(kK,N)

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

(6.115)

=
∑

k≡M (mod K)

∑
s| gcd(k,N)

IU(1)(τ |sξ)
IU(1)(τ |ξ)

(6.116)

=
∑

k≡M (mod K)

Igcd(k,N)

I1

(τ |ξ). (6.117)

For each of the K values of θ, the index is the sum of the indices of the N/K

superselection sectors of the SU(N) theory with the same ZK charge.

As discussed, the index of the U(N) theory can be inferred from that of the SU(N)

theory, and is

IU(N)(τ |ξ) = IU(1)ISU(N)(τ |ξ) =
N∑
k=1

Igcd(k,N)(τ |ξ). (6.118)

The U(N) theory has N superselection sectors, as expected.

The index of the N D1-branes worldvolume theory with U(N) gauge field and the
B-field in the sector with M units of flux c̃1 is

IMU(N)+B(τ |ξ) = I c̃1=M
U(1) I

θ= 2πM
N

SU(N) (τ |ξ) = ID(τ |ξ). (6.119)

We have used the fact that the U(1) factor is free, and since the field strength does
not contribute to the index, I c̃1U(1) = I1 in the appropriate topological sector of the
supersymmetry algebra. The index summing over all flux sectors (and therefore all
BPS sectors) is

IU(N)+B(τ |ξ) =
∑
M∈Z

eiMφID(τ |ξ). (6.120)

Once again, we note that the D1-brane index is invariant under the S-duality of the
Type IIB string, which is generated by exchanging M and N and shifting M by a
multiple of N , while leaving D invariant.

6.5 Elliptic genera of N = (8, 8) sigma models

We have thus far computed an N = (8, 8) analog of the elliptic genus of the SU(N)

and the U(N) MSYM2, and claimed that they are equal to the corresponding elliptic
genus of some symmetric orbifolds of the supersymmetric sigma model into R8. In this
section, we will compute the elliptic genus of the orbifold sigma model, and establish
some of its key properties that allow us to match it with the gauge theory elliptic
genus.



369

6.5.1 Elliptic genus of the R8 sigma model

For brevity, we will denote the supersymmetric sigma model into R8 by C. C is
a free theory. When viewed as a non-supersymmetric theory, C carries 3 Spin(8)

flavor symmetry groups, labeled Kb, Kl, and Kr, each acting separately on the 8
real bosons, the 8 real left-moving fermions, and the 8 real right-moving fermions.
When viewed as a N = (8, 8) supersymmetric theory, these actions are combined
into a single copy of Spin(8), K, which is the R-symmetry identified as the rotation
symmetry of the target space, with the bosons, the left-moving fermions, and the
right-moving fermions transforming in the 8v, 8s, and 8c representations, respectively
(up to Spin(8) triality). We can pick the representations of the fields under Kb ×
Kl ×Kr as

(8v,1,1)⊕ (1,8s,1)⊕ (1,1,8c). (6.121)

With this choice, K is identified as the diagonal combination of Kb ×Kl ×Kr.

The philosophy for computing the flavored elliptic genus is to pick an N = (0, 2)

supersymmetry, and insert into the trace fugacities for every bosonic charge which
commutes with the chosen supersymmetry. We can think of C as an N = (0, 8)

theory with R-symmetry Kr, which has flavor symmetry Kb × Kl. Any choice of
an N = (0, 2) subalgebra gives the free theory with 4 chiral and 4 Fermi complex
N = (0, 2) superfields. The flavored elliptic genus in the RR sector of this theory is
then

Z1(τ |ξA, ζ̃Ã) = TrRR(−1)F qHLqHR
4∏

A=1

a
Kb,A
A

4∏
Ã=1

b
Kl,Ã

Ã
=
θ1(ζ̃1)θ1(ζ̃2)θ1(ζ̃3)θ1(ζ̃4)

θ1(ξ1)θ1(ξ2)θ1(ξ3)θ1(ξ4)

(6.122)

where ξA and ζ̃Ã are eigenvalues of flat background gauge fields for Kb and Kl corre-
sponding to the Cartan generators Kb,A and Kl,Ã, with

aA = e2πiξA , b̃Ã = e2πiζ̃Ã . (6.123)

We have used the superscript tildes for the Kl Cartan to denote the basis in which
the 8s weights are diagonal. The transformation to the basis in which the 8v weights
are diagonal is given by

Kl,Ã = MA
Ã
Kl,A, where MA

Ã
=

1

2


1 1 1 1

1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

 . (6.124)
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However, this Kb×Kl flavor symmetry only commutes with the action of a N = (0, 8)

superalgebra, and does not respect the fullN = (8, 8) supersymmetry of the theory. If
we insist that C is indeed an N = (8, 8) supersymmetric theory, there is a single K =

Spin(8) R-symmetry, which is not respected by the backgrounds considered above.
As described in Section 6.4.1 and Appendix E.1.2, once an N = (0, 2) subalgebra of
the N = (8, 8) algebra is chosen, the supersymmetry generators Q± are eigenstates
of a corresponding Spin(2) subgroup of K, and there is only a Spin(6) ∼= SU(4)

symmetry commuting with it. In this case, we can define an index with fugacities for
the SU(4) ‘‘flavor’’ symmetry, which we label K ′,

Z1(τ |ξ′B) = TrRR(−1)F qHLqHR
3∏

B=1

a′K
′
B

B , (6.125)

with K ′B the Cartan generators of K ′. But the left-moving fermions and the right-
moving supersymmetry generators transform in the same representation, 8s, ofK. So,
for any choice of an N = (0, 2) subalgebra, there will be left-moving fermions which
are eigenstates of the Spin(2) R-symmetry, and therefore uncharged under the SU(4)

flavor symmetry. The index as defined in (6.125) vanishes due to the contributions of
these fermion zero modes, as was the case for the free U(1) multiplet as discussed in
the paragraph leading up to equation (6.76).

Once again, as is commonly done in the literature, we can remove the contributions
from the uncharged fermion zero modes by slightly modifying the index (6.125). This
is done by (re)introducing fugacities for symmetries the fermions with problematic
fermion zero modes are charged under (so that the modified index has a zero when
the fugacities are turned off), taking appropriate derivatives to get rid of the zero,
and then turning off the fugacities, as in [313] (see also [312]). We can do this by
relating (6.122) to (6.125). First, we identify Kb and Kl diagonally, and write the
reduced N = (0, 8) index

Z1(τ |ξA) =
θ1( ξ1+ξ2+ξ3+ξ4

2
)θ1( ξ1−ξ2−ξ3+ξ4

2
)θ1(−ξ1+ξ2−ξ3+ξ4

2
)θ1(−ξ1−ξ2+ξ3+ξ4

2
)

θ1(ξ1)θ1(ξ2)θ1(ξ3)θ1(ξ4)
. (6.126)

The N = (8, 8) index (6.125) can be computed from (6.126) by further identifying
Kr with Kb and Kl diagonally (so KA = Kb,A + Kl,A + Kr,A), and turning off the
fugacity corresponding to the Spin(2) R-symmetry of the N = (0, 2) subalgebra.
Choosing the N = (0, 2) superalgebra as in Section 6.4.1 and equation (E.15), with
the R-symmetry generated by JR = MA

1 KA = 1
2
(K1 +K2 +K3 +K4), we identify

K ′B = MA
B+1KA, B = 1, 2, 3 (6.127)
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as the Cartan generators of K ′. Practically, turning off the fugacity for JR can be re-
alized by having the ξA descend to eigenvalues of background flat SU(4)-connections,
which satisfy the trace constraint

ξ1 + ξ2 + ξ3 + ξ4 = 0. (6.128)

The N = (0, 8) index (6.126) has a first-order zero at exactly this constraint due to
fermion zero-modes, as it should by our argument above. To remove this zero, we
simply take the derivative with respect to b1 = exp(2πiζ̃1) = exp(2πi ξ1+ξ2+ξ3+ξ4

2
) =

√
a1a2a3a4, and set b1 = 1,

I1(τ |ξA) := − ∂

∂b1

Z1(τ |ξA)

∣∣∣∣
b1=1

(6.129)

=
η3(τ)θ1(τ |ξ1 + ξ4)θ1(τ |ξ2 + ξ4)θ1(τ |ξ3 + ξ4)

θ1(τ |ξ1)θ1(τ |ξ2)θ1(τ |ξ3)θ1(τ |ξ4)
. (6.130)

In this expression, it is understood that the ξA satisfy the constraint above. One could
explicitly plug in ξ4 = −ξ1− ξ2− ξ3, if desired. We note that this is exactly the index
for the (necessarily free) U(1) N = (8, 8) vector multiplet with the vanishing gaugino
zero-mode contributions removed, which is a good check that the two definitions of
the index for the gauge theory and the sigma model agree.

More generally, for any N = (8, 8) theory, this index is defined as

I(τ |ξA) = − ∂

∂b1

∣∣∣∣
b1=1

TrRR(−1)F qHLqHR
4∏

A=1

aKAA (6.131)

= TrRR(−1)FJRq
HLqHR

3∏
B=1

a′K
′
B

B . (6.132)

Fourier expansion of I1. The index I1 enjoys a number of very special properties.
For definiteness, we will solve for the SU(4) (or, really, SL(4,C)) constraint by setting
ξ4 = −ξ1 − ξ2 − ξ3 explicitly in this section.

• (Abelian function.) I1 is holomorphic in τ ∈ H/SL(2,Z) (including at the cusp
q = 0 or τ = i∞), and meromorphic in each ξA ∈ C/(Z + τZ). Moreover, I1 is
doubly periodic in each ξA under translations by the lattice Z + τZ, i.e.

I1(τ |ξ + Ω · n) = I1(τ |ξ), (6.133)

where n ∈ Z6 and Ω is the period matrix

Ω =

1 τ 0 0 0 0

0 0 1 τ 0 0

0 0 0 0 1 τ

 . (6.134)
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• (Symmetric function.) I1 is symmetric in ξA.

• (Modularity.) I1 is modular invariant, i.e. under SL(2,Z) transformations
τ → aτ+b

cτ+d
, we have,

I1

(
aτ + b

cτ + d

∣∣∣∣ ξA
cτ + d

)
= I1(τ |ξA),

(
a b

c d

)
∈ SL(2,Z). (6.135)

It follows from these properties that I1 is an honest map (H/SL(2,Z)) × (C/Z +

τZ)3 → C, and also a 3 variable Jacobi form (function) of weight 0 and index (0, 0, 0).
The periodicity in τ → τ + 1 and ξA → ξA + 1 allows for a Fourier expansion, of the
form

I1(τ |ξA) =
∑
m

qmfm(ξ) =
∑
m≥0,l

c(m, l)qm
∏
A

alAA . (6.136)

Since the function is holomorphic in q, the coefficients fm(ξ) of qm are unique and
well-defined. But since the fm are meromorphic functions themselves, they might
have multiple Fourier expansions. For example, we can easily determine

I1|q=0 (ξ) := I1(τ = i∞|ξ) =
(1− a1a2)(1− a1a3)(1− a2a3)

(1− a1)(1− a2)(1− a3)(1− a1a2a3)

= 1 +
a1

1− a1

+
a2

1− a2

+
a3

1− a3

− a1a2a3

1− a1a2a3

.
(6.137)

The function I1|q=0 (ξ) has different Fourier expansions in different regions of conver-
gence of the aA. Now, we can use the periodicity in ξA → ξA + τ to find a recursion
relation for c(m, lA), which, when combined with modular invariance, determines I1

completely given I1|q=0 := I1(τ = i∞|ξ). Explicitly, we have

I1(τ |ξ) = I1|q=0 (ξ) +
∞∑
m=1

qm
∑
s|m

χ(sξ) (6.138)

where χ(ξ) is the SL(4,C) character

χ(ξA) = χ�(ξA)− χ∧3 �(ξA) = a1 + a2 + a3 + a4 −
1

a1

− 1

a2

− 1

a3

− 1

a4

. (6.139)

To see this, note that the periodicity of I1 under ξ1 → ξ1 + τ implies the identity,∑
m≥0,lA

c(m, l1, l2, l3)qmal11 a
l2
2 a

l3
3 =

∑
m≥0,lA

c(m, lA)qm+l1al11 a
l2
2 a

l3
3 , (6.140)
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and similarly for ξ2 and ξ3. To retain a holomorphic series expansion in q, we must
choose c(0, l) to be the coefficients of the expansion of I1|q=0 in positive powers of aA,
i.e. the expansion convergent in the region |aA| < 1. From here, for each A = 1, 2, 3

and m ≥ 0, we infer the following relations

c(m, l1, l2, l3) =

0 if m > 0 and, m+ lA < 0 or m− lA < 0,

c(m+ lA, l1, l2, l3) if m+ lA > 0.

(6.141)
The case with lA < 0 such that m + lA = 0 should be handled with more care. In
that case, for say A = 1, we have

I1|q=0 (ξ) =
∑

l1≤0,l2,l3

c(−l1, l1, l2, l3)al11 a
l2
2 a

l3
3 , (6.142)

which determines c(−lA, l1, l2, l3) = c̃(0, l1, l2, l3) where c̃ are the coefficients of I1|q=0

in the expansion with negative powers of aA. Putting it together, we have7

c(m, l1, l2, l3) =



c(0, l1, l2, l3) if lA > 0 and lA|m for some A,

c̃(0, l1, l2, l3) if lA < 0 and lA|m for some A,

c(m, 0, 0, 0) if lA = 0 for all A,

0 otherwise.

(6.143)

The only coefficients that are not determined by these relations are those of the form
c(m, 0, 0, 0), implying that the function is determined up to a holomorphic function
of q. Requiring the function to be modular invariant fixes this ambiguity, since the
only holomorphic modular invariant functions are constants. For I1, c(m, 0, 0, 0) = 0

for m > 0, and we obtain (6.138).

It is important to note that our discussion above proves that if any Abelian, modular
invariant function f(τ |ξ) with the same period matrix Ω as I1(τ |ξ) agrees with I1 at
q = 0, then it must equal I1. More generally, we have the following result.

Lemma 6.5.1. Let f(τ |ξA) be a modular invariant, Abelian function with periods 1

and τ for each ξ, holomorphic in τ (including at the cusp, q = 0) and meromorphic
in ξA. Then f(τ |ξA) is completely determined by f |q=0 (ξA) = f(τ = i∞|ξA).

A particularly useful class of such functions for us turn out to be I1(τ |Nξ), which
satisfy the same properties as I1(τ |ξ).

7We should note that for the general case, the first two cases should be generalized to hold for
the conditional nAlA = m for some integers nA, rather than just lA|m. But for the specific case of
I1, since c(0, l) is only nonzero when l = (l1, l2, l3) is of the form (l, 0, 0), (0, l, 0), (0, 0, l), or (l, l, l),
the notions coincide.
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6.5.2 Elliptic genus of the SymN(R8) sigma model

There are various equivalent methods of computing the partition function ZN of a
symmetric product theory given the partition function of the base theory Z1. We list
three prominent methods here.

• Summing over SN connections and twisted sectors

ZN =
1

|SN |
∑
gh=hg

(ZN
1 )g,h (6.144)

• The DMVV formula [315]

Z := 1 +
∑
N≥1

pNZN(q,~a) =
∏

n>0,m≥0,~l

1

(1− pnqm~a~l)c(nm,~l)
. (6.145)

• Hecke operators [313]

logZ =
∞∑

M=1

pMTMZ1, (6.146)

so in particular

ZN = TNZ1 + · · ·+ 1

N !
(T1Z1)N (6.147)

where

TMZ1(τ |~ξ) :=
1

M

M∑
d|M,d=1

M/d−1∑
b=0

Z1

(
dτ + b

M/d

∣∣∣∣ d~ξ) . (6.148)

The Hecke operators turn out to be the most straightforward to extract a closed-form
expression for ZN , given one for Z1. For the index we are interested in, we need to
perform the “index operation” to remove zero-mode contributions,

IN := − ∂

∂b1

∣∣∣∣
b1=1

ZN , (6.149)

like we did to obtain I1. Analogous to the case in [313], only the term linear in Z1

survives this operation, as all the other terms have zeroes of order greater than 1 at
b1 = 1. Thus,

IN = − ∂

∂b1

∣∣∣∣
b1=1

TNZ1 =
1

N

∑
d|N

N/d−1∑
b=0

d I1

(
dτ + b

N/d

∣∣∣∣ dξA) . (6.150)
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Specializing to the sigma model into SymN(R8), turns out we can simplify further,

IN =
∑
d|N

I1(τ |dξA). (6.151)

This last simplification is nontrivial, but can be seen in two ways. One can notice
that the q = 0 piece of the two expressions in (6.150) and (6.151) agree, and they are
both periodic functions on (C/Z + τZ)3; therefore they are equal by Lemma 6.5.1.
Alternatively, one can directly compute from the Fourier expansion:

1

N

∑
d|N

N/d−1∑
b=0

d I1

(
dτ + b

N/d

∣∣∣∣ dξA) =
∑
d|N

I1|q=0 (dξA) +
∑
d|N

∞∑
m=1

qdm
∑
s|N
d
m

χ(sdξA)

=
∑
d|N

I1 (τ = i∞|dξA) +
∞∑
k=1

qk
∑
d′|N

∑
s′|k

χ(s′d′ξA)

=
∑
d|N

I1(τ |dξA).

(6.152)

6.6 Conclusions and future directions

We have computed the elliptic genera of the SU(N)/ZK MSYM2 and U(N) MSYM2

with and without the B field, with each corresponding choice of the discrete θ angle,
and matched it with the elliptic genus of a corresponding N = (8, 8) sigma model
into a symmetric orbifold of R8, which we claim describes the IR fixed point in that
sector. While the main focus of this work was in answering questions about the vacua
of MSYM2, the elliptic genera we have computed as part of our analysis are interesting
objects in their own rights. For example, they are related to the supersymmetric
partition function of the free second quantized Type IIA string as explored in [315],
if one performs the sum over the string winding number N ;

Z0(τ, σ|ξ) = 1 +
∑
N≥1

pNIN(τ |ξ), (6.153)

where p = e2πiσ. One needs to modify this expression with an appropriate factor to
obtain the T-duality invariant partition function Z(τ, σ|ξ) [315]. T-duality exchanges
sting winding number and oscillator number, so acts by interchanging p and q, which
can be used to determine Z. One could try to extract information about the strongly
coupled limit of the string, which is M-theory, using the topological invariance of this
function. It would also be an interesting question to understand the automorphic
properties of Z, a la [316]. One might also consider replacing IN with the full D1-
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brane index IU(N)+B, which in the Type IIA picture sums over the bound states with
D0-branes as well.

This work was inspired by the 4d-2d correspondence explored in [311], as well as
by recent developments in the computation of flavored elliptic genera for 2d gauge
theories. In particular, MSYM2 can be obtained by considering M5-branes on a four-
dimensional torus T 4 and letting the volume of the T 4 shrink to zero. On the other
hand, considering M5-branes on T 6 = T 2 × T 4, and compactifying first on the T 2

factor taken to be the worldvolume of the MSYM2, one obtains 4d N = 4 SYM.
Following the general idea of [311], the elliptic genus of MSYM2 is then related to
the Vafa-Witten partition function of the 4d N = 4 theory on T 4, as well as to an
appropriate supersymmetric partition function of the 6d N = (2, 0) theory on T 6.
We will be exploring this relation in upcoming works.
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A p p e n d i x A

APPENDICES TO CHAPTER 2

Appendices to chapter 2 are attached here.

A.1 Estimating bT from ZS1
β×Sd−1

As discussed in section 2.2.1.3, estimating thermal one-point functions by taking a
limit of correlation functions on S1

β × Sd−1 is challenging. In general, one needs to
know the spectrum ∆O′ and OPE coefficients fOO′O′ for arbitrarily high dimension
operators O′ (not to mention the one-point blocks for all tensor structures appearing
in 〈OO′O′〉). In the next appendix, we give slightly more detail in d = 2.

However, in any d, the observable bT is special in that it depends only on the spectrum
of the theory.1 This is because the expectation value of the stress-tensor on S1

β×Sd−1

is proportional to a derivative of the partition function,

〈T 00〉S1
β×Sd−1 =

1

Sd

∂

∂β
logZS1

β×Sd−1 , (A.1)

where Sd = vol(Sd−1) = 2πd/2

Γ(d/2)
. Thus, we can compute bT via the limit

bT = lim
β→0

βd

1− 1/d
〈T 00〉S1

β×Sd−1 =
1

Sd(1− 1/d)
lim
β→0

βd
∂

∂β
logZS1

β×Sd−1 . (A.2)

The partition function can be expanded in characters

ZS1
β×Sd−1 =

∑
O

χ∆,ρ(e
−β), (A.3)

where ∆, ρ are the dimension and SO(d) representation, respectively, of O, and we
sum over primaries only. In practice, even if we don’t know the full spectrum of a
theory, we can try to estimate bT by truncating the sum over characters at some ∆max.
More precisely, let us define

g∆max(β) =
1

Sd(1− 1/d)
βd

∂

∂β
log

∑
∆≤∆max

χ∆,ρ(e
−β). (A.4)

1We thank Chris Beem, Scott Collier, Liam Fitzpatrick, and Slava Rychkov for discussions that
inspired the calculations in this appendix.
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We can then try to extrapolate g∆max(β) towards β = 0. The actual value of g∆max(0)

will always be 0, because βd will dominate over the contribution of a finite number of
characters at sufficiently small β. However, perhaps we can estimate bT by evaluating
g∆max(β) at a small, nonzero value of β.

As a check on this idea, let us study the free boson, where we know the spectrum
exactly. For concreteness, we work in d = 3. The partition function is given by

Zfree(q) =
∞∏
j=0

1

(1− qj+1/2)2j+1
, (A.5)

where q = e−β.2,3 It can be decomposed into conformal characters as

Zfree(q) = 1 + χfree(q) +
∑

`=2,4,...

χshort
` (q) + Zlong(q),

χfree(q) = χ1/2,0(q)− χ1/2+2,0(q),

χshort
` (q) = χ`+1,`(q)− χ`+2,`−1(q),

χ∆,`(q) =
q∆(2`+ 1)

(1− q)3
. (A.6)

Here, χ∆,`(q) is the character of a long multiplet, and the first three terms in Zfree(q)

correspond to the unit operator, the boson φ itself, and a tower of higher-spin currents.
The long multiplet content is

Zlong(q) = χ1,0(q) + χ3/2,0(q) + χ2,0(q) + . . . . (A.7)

To determine the quantum numbers and multiplicities of long multiplets, we can
include a fugacity for angular momentum and decompose the full partition function
with this fugacity into conformal characters. This is a standard exercise and we do
not include the details here.

Using our knowledge of the spectrum, we can plot g∆max(β) for various values of ∆max

in the free boson theory (figure A.1). The function with ∆max = ∞ (black dotted
2This expression comes from counting states that can be built from arbitrary products of the

basic words ∂µ1 · · · ∂µjφ. The dimension of a word is j+ 1/2. Because ∂2φ = 0, the words transform
as traceless symmetric tensors, so there are 2j + 1 of them for a given j. This leads to the above
product representation of the partition function.

3There is no Casimir energy contribution to the partition function on S1 × Sd−1 in odd dimen-
sions. One way to understand this is to start on Sd and perform a Weyl transformation to a long
capped cylinder with length L. Because there is no Weyl anomaly in odd dimensions, the partition
function does not develop any interesting dependence on L at large L, and hence the Casimir energy
is zero. In 4 and higher even dimensions, the Casimir energy on Sd−1 is scheme-dependent, since it
can be shifted by a counterterm proportional to powers of the scalar curvature. Thus, there is only
a universal scheme-independent Casimir energy in d = 2. (The story is different in supersymmetric
theories [317].)
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2 4 6 8
β0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

bT

free boson: gΔmax (β), Δmax=1,2,...,12, and ∞

Figure A.1: The function g∆max(β) in the free boson theory in 3d, plotted for the
values ∆max = 1, 2, . . . , 12 (colors), and ∆max = ∞ (black dotted line). The value of
bT in the free theory (gray horizontal line) is −3ζ(3)

2π
≈ −0.574.

line) decays as e−β/2 for large β (coming from the contribution of the lowest-dimension
operator φ). It reaches a minimum near β = 5, and then smoothly approaches the
value bT = −3ζ(3)

2π
≈ −0.574 as β → 0. The curves with finite ∆max move closer to

the ∆max =∞ curve, with longer and longer plateaus near bT before eventually going
to 0 at β = 0.

The 3d Ising model is a nonperturbative theory where we don’t know the full spec-
trum, but we do know a large part of it to reasonable precision from numerical boot-
strap computations [20, 41, 43, 54–56, 318]. In particular, the spectrum of operators
appearing in the σ × σ, σ × ε, and ε × ε OPEs are known up to dimension 8 [20].
Some additional low-twist families are known up to very high dimension, but these
are a small portion of the high-dimension spectrum. The lowest-dimension operator
not appearing in the above OPEs is expected to be a Z2-even vector with dimension
approximately 6, though its dimension is not known to high precision [319]. Thus, our
knowledge of the spectrum begins to fade when ∆max ≈ 6. Nevertheless, in figure A.2,
we estimate g∆max(β) by including the known operators with dimension ∆ ≤ ∆max.

Despite our ignorance of the high-dimension spectrum, the plot in figure A.2 already
shows similar structure to the free scalar case, with a plateau beginning to form near
bT ≈ −0.45, close to the value bT ≈ −0.459 determined via Monte Carlo simulations
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3d Ising model: gΔmax (β), Δmax=1,2,...,10

Figure A.2: The function g∆max(β) in the 3d Ising model, estimated using known
operators only, and plotted for the values ∆max = 1, 2, . . . , 10. The value of bT
determined from Monte Carlo simulations is −0.459 (gray horizontal line, [74–76]).

[74–76]. It would be interesting to understand whether figure A.2 can be turned into
a rigorous estimate, perhaps by understanding better the analytic structure of g∞(β).
It would also be interesting to understand whether the existence of a minimum, seen
as the “dip” in these plots, is a feature shared by all CFTs.

A.2 One-point functions on S1
β×Rd−1 from one-point functions on S1

β×Sd−1

Here we make some basic comments about the challenges in determining bO by passage
from S1

β × Sd−1
L , for generic operators O. The strategy is to expand the one-point

function in S1
β×Sd−1

L conformal blocks, and take the large L limit. In (2.28), we gave
the conformal block expansion for 〈O〉S1

β×S
d−1
L

. We focus here on d = 2 for simplicity.
In this case, the thermal blocks factorize,

F (hO, hO;hO′ , hO′|β) = |g(hO, hO′ |β)|2 (A.8)

where |f(h)|2 ≡ f(h)f(h), and (e.g. [320, 321])

g(hO, hO′|β) =
qhO′

(1− q)hO 2F1(2hO′ − hO, 1− hO; 2hO′ ; q) (A.9)

where q ≡ e−β. (A.8) generalizes in the obvious way to unequal left- and right-moving
temperatures. Using the connection formulae for hypergeometric functions, we may
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rewrite the left-moving block (for generic (hO, hO′)) as

g(hO, hO′|β)

=
qhO′

(1− q)hO

[
Γ(2hO′)Γ(2hO − 1)

Γ(hO)Γ(2hO′ + hO − 1)
2F1(2hO′ − hO, 1− hO; 2− 2hO; 1− q)

+ (1− q)2hO−1 Γ(2hO′)Γ(1− 2hO)

Γ(2hO′ − hO)Γ(1− hO)
2F1(hO, 2hO′ + hO − 1; 2hO; 1− q)

]
.

(A.10)

As β → 0, there are two branches:

g(hO, hO′ |β) ∼ β−hO
Γ(2hO′)Γ(2hO − 1)

Γ(hO)Γ(2hO′ + hO − 1)
+ βhO−1 Γ(2hO′)Γ(1− 2hO)

Γ(2hO′ − hO)Γ(1− hO)
.

(A.11)
Combining the left- and right-moving blocks yields the full scaling behavior of the
torus one-point blocks at high temperature.4

It is remarkable that, for hO ≥ 1/2, the leading term in (A.11) exhibits the same
scaling of the full one-point function on S1

β×R, for all intermediate operators O′. For
instance, for scalar O with ∆O = 2hO > 1,

F (hO, hO;hO′ , hO′|β) ∼ β−2hO

∣∣∣∣ Γ(2hO′)Γ(2hO − 1)

Γ(hO)Γ(2hO′ + hO − 1)

∣∣∣∣2 . (A.12)

This leads to a formal expression for the S1
β × Rd−1 one-point function bO as a sum

over states, in the limit of high temperature:

bO =
Γ2(2hO − 1)

Γ2(hO)

∑
Primary O′

fOO′O′

∣∣∣∣ Γ(2hO′)

Γ(2hO′ + hO − 1)

∣∣∣∣2 (
hO >

1

2

)
. (A.13)

Note that the summand is not, in general, sign-definite, and receives contributions
from all spins and arbitrarily high energies.5 On the other hand, for low-dimension
operators O, with hO < 1/2, the second term of (A.11) dominates, and even the
recovery of the requisite β−2hO scaling at high temperature is sensitive to the details
of the full sum. For any value of hO, one can approximate bO using the asymptotics
of fOO′O′ for hO′ � 1, which are often determined by eigenstate thermalization.

4The d > 2 one-point blocks have similar behavior. In fact, there is a third branch in that case.
We thank Alex Maloney for sharing the results of [80] with us.

5One can instead use Virasoro conformal blocks, although these are not known in full generality.
At large central charge c, the torus one-point Virasoro block is simply the the global block (A.8)
times the Virasoro vacuum character, χvac(β) = q(1−c)/24(1− q)η−1(q), where η(q) is the Dedekind
eta function. At high temperature, χvac(β) ∼ β3/2. This implies that at c → ∞, the sum (A.13)
must, in general, diverge.
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A.3 Thermal mass in the O(N) model at large N

Our starting point is the Lagrangian (2.90). By integrating out the fields φi, the
partition function is given by,

Z =

∫
Dσe−

N
2

Tr log(−∇2+σ) . (A.14)

As N → ∞ the partition function is dominated by the saddle-point solution for σ.
On R3, due to Poincare symmetry, the saddle-point solution can be argued to be
σ = 0. However, on R2 × S1

β, the saddle-point solution is nonzero. The saddle point
equation is

∂

∂σ
Tr log(−∇2 + σ) =

∞∑
n=−∞

∫
d2p

(2π)2

1

ω2
n + p2 + σ

= 0 , (A.15)

where ωn = 2πn/β are the Matsubara frequencies. Doing the sum over n, we reduce
this equation to ∫ Λ

0

pdp

2π

1

2
√
p2 + σ

coth

√
p2 + σ

2T
= 0. (A.16)

Now make the change of variables x =
√
p2 + σ/2T . The integral of cothx is

log sinhx. The upper limit gives log sinh[Λ/2T ] ≈ Λ/2T − log 2. The linear UV
divergence is subtracted out by hand, and the log 2 is left over. Alternatively, we
could replace the integrand cothx by cothx−1, which is equivalent to a Pauli-Villars
regulator. Thus, overall we get the equation

log

[
2 sinh

√
σ

2T

]
= 0, (A.17)

whose solution is (2.91).

A.4 Subtleties in dimensional reduction of CFTs

The dimensional reduction of a d-dimensional CFT on S1 does not always give a
well-defined theory in d − 1-dimensions. For example, a problem occurs if we try to
compactify the free boson CFT in 3d down to 2d (with periodic boundary conditions
around the S1).6 Naively, we should get the 2d free boson with noncompact target
space, but this theory is pathological because correlations grow logarithmically with
distance. Another way to see the problem is that if we try to compute the propagator
using the method of images, the sum over images diverges.7

6Conformal invariance requires that the free boson CFT have a noncompact target space in 3d.
7It is interesting to ask what happens if we have a physical system that has an EFT description

in terms of a 3d free boson, and we place it at finite temperature. In this case, the thermal physics
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We expect this issue to arise whenever we compactify a 3d CFT with a nontrivial
moduli space of vacua down to 2d, as long as the boundary conditions do not destroy
the moduli space. For example, supersymmetric compactifications of 3d SCFTs with
Higgs or Coloumb branches should be treated with care. One way to study such
theories is to introduce twisted boundary conditions that remove the zero mode from
the path integral.8 Correlation functions in the twisted setting then share many
similar properties to those we discuss in this work (for example an OPE and crossing
equation). It would be interesting to adapt the techniques in this work to deal with
general twisted boundary conditions. In our case, thermal compactification does the
job because it breaks supersymmetry and generically lifts the moduli space.

A.5 Fixed point of self-corrections of double-twist families

Let’s consider the self-corrections of the [φφ]0 family in 〈φφ〉β. To leading order in
large h, self-correction is the linear map

S : a[φφ]0 7→ a[φφ]0 +
∞∑
n=0

αeven
0

[
δn

n!
a[φφ]0 , δ, he

]
(1 + (−1)J)KJS

(n)
hf−he,he(h). (A.18)

Self-corrections of a[φφ]0 take the general form

a[φφ]0(J) = a0
[φφ]0

(J) + (1 + (−1)J)KJ

∞∑
m=0

fmS
(m)
hf−he,he(h) (A.19)

with some initial a0
[φφ]0

(J), and some coefficients fm. Inserting this form into the
self-correction map, we get

S[a[φφ]0 ] = a[φφ]0 + (1 + (−1)J)KJ

∞∑
n=0

(
λn +

∞∑
m=0

fmT
m
n

)
S

(n)
hf−he,he , (A.20)

where we have defined the vector

λn = αeven
0

[
δn

n!
a0

[φφ]0
, δ, he

]
(A.21)

and matrix

Tmn = αeven
0

[
δn

n!
S

(m)
hf−he,he , δ, he

]
, (A.22)

can depend on UV details that are not directly captured by the 3d effective CFT. For example, if
the 3d boson is the Goldstone boson of a broken U(1) symmetry with symmetry breaking scale Λ,
its dimensional reduction is better described as a 2d boson with compact target space, where the
radius is R ∝

√
βΛ.

8We thank Nati Seiberg for discussions on this point.
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of coefficients. To evaluate these coefficients, we need to evaluate sums of S(m)
c,∆ (h),

which is easily obtained by generalizing our treatment of the sums of Sc,∆(h) by taking
derivatives of c. The fixed point of the map S satisfies S[a] = a, which from (A.20)
is the solution to the linear equation

λn + fmT
m
n = 0. (A.23)

Inverting this equation, the fixed point is determined by

fm = λn(T−1)nm. (A.24)

In practice, one can work order-by-order in the small anomalous dimensions of the
family, effectively truncating the m and n to some finite order, thus avoiding having
to compute an infinite number of coefficients and to invert an infinite matrix. Finally,
let’s note that it is possible to generalize this method to the [φφ]n families, and even
potentially to considering collections of families at once.



385

A p p e n d i x B

APPENDIX TO CHAPTER 3

Appendix to chapter 3 is attached here.

B.1 Details of the Monte-Carlo simulation

To compute the thermal two-point function 〈σσ〉β using Monte-Carlo integration,
we implemented Wolff’s cluster algorithm on a periodic square lattice of size 40 ×
500 × 500. We used the spin-spin coupling βcritical = 0.22165463(8) from [126]. The
periodic direction of size 40 represents the thermal circle, while the directions of size
500 approximate noncompact R2. The MC integration was performed over 4 × 108

iteration steps.

As usual, there are three main sources of error: statistical error, finite-size effects (IR),
and lattice-size effects (UV). One of the nice properties of thermal correlators is that
finite-size effects are much easier to control than for flat-space correlators. The reason
is that we can imagine dimensionally reducing our system along the thermal circle.
The result is a theory with thermal mass mth ∼ 1/β, and consequently fluctuations in
the noncompact directions die off like e−x/β. Thus, on a torus with lengths β×L×L,
we expect corrections from the finiteness of L to be suppressed by e−L/β ∼ 4× 10−6.
By contrast, to compute flat-space two-point functions, one must consider torii with
size L × L × L. In that case, finite-size effects go like (L/x)−∆O , where O is the
leading operator appearing in the OPE.

Thus, we expect that finite-size effects are negligible. Our main sources of error
are statistical (visible as jitteriness in figure 3.5) and lattice effects which cause the
simulation to become inaccurate near the coincident point singularity.
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A p p e n d i x C

APPENDICES TO CHAPTER 4

Appendices to chapter 4 are attached here.

C.1 More on superconvergence in flat space

C.1.1 Commutativity and the Regge Limit

It is also very easy to see the connection between the Regge limit and commutativity
at the level of the four-point function. As the simplest example, consider φ3 theory
where we write different couplings in different channels. The amplitude takes the
form

A(s, t) =
αs
s

+
αt
t

+
αu
u
, (C.1)

where s+ t+ u = 0.

Let us consider the Regge limit of (C.1), t → ∞ and s fixed. The amplitude takes
the form

A(s, t) =
αs
s

+
αt − αu

t
+ .... (C.2)

For the superconvergence sum rule to hold, the amplitude should decay faster than
1
t
. We see that it implies αs = 0 and αt = αu, the latter condition being the analog

of shock commutativity.

A different example is to consider the scattering of a vector particle against the scalar
shocks. The amplitude takes the form

A(s, t, ε3, ε4) =

(
αt
p1 · p3

p1 · p2

+ αu
p2 · p3

p1 · p2

)(
ε3 · ε4 +

ε3 · p1ε4 · p2

p1 · p3

+
ε3 · p2ε4 · p1

p2 · p3

)
,

(C.3)

where the form of the amplitude is fixed by unitarity and we introduced different
couplings for the t- and u-channel residues. The second bracket in (C.3) is manifestly
symmetric under permutations of the shocks 1 ↔ 2. On the other hand, we can
rewrite the first bracket as

A(s, t, ε3, ε4) ∼ (αt
u

s
+ αu

t

s
)→ (αu − αt)t, t→∞, s fixed. (C.4)

Again, we explicitly see the relation between the commutativity of shocks and the
Regge limit.
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C.1.2 Scalar-graviton elastic scattering

Let us consider a four-point amplitude of scalar-graviton elastic scattering in General
Relativity. The scattering amplitude takes the form [322]

A = −1

2

p1 · p3p2 · p3

p1 · p2

(
1

p1 · p3

ε1 · p3ε2 · p4 +
1

p2 · p3

ε1 · p4ε2 · p3 − ε1 · ε2
)2

, (C.5)

where gravitons have momenta p1 and p2 and scalars have momenta p3 and p4.

We evaluate this amplitude in the shockwave kinematics (4.17). The result takes the
form

Aφg∗→φg∗ = 2(pu)3 ~q1 · ~q2

pv(pupv − 2~q1 · ~q2)
. (C.6)

As expected from the discussion in the main text, at large pv (or t) this goes as
Aφg∗→φg∗ ∼ 1

t2
, in particular we can write the superconvergence sum rule. Upon

taking the discontinuity at t = 0, we reproduce (4.42).

Let us contrast this behavior with the kinematics used in [96] which describes a high-
energy scattering with physical transverse momenta and polarizations

p1 = (−~q
2

pv
,−pv, ~q), p2 = (

~q2

pv
, pv, ~q),

p3 = (pu,
~q2

pu
, ,−~q), p4 = (−pu,−~q

2

pu
,−~q), (C.7)

and polarizations

ε1 = (−2
~e1 · ~q
pv

, 0, ~e1), ε2 = (2
~e2 · ~q
pv

, 0, ~e2). (C.8)

The scattering amplitude then evaluates to

Aφg→φg = (~e1 · ~e2)2 (pupv)2

16~q2

(
1− ~q2

pupv

)2(
1 +

~q2

pupv

)2

. (C.9)

This time the amplitude grows as Aφg→φg ∼ t2 consistent with the usual intuition
about the high energy behavior of gravitational scattering. In this case, it is not
possible to write the superconvergence sum rule. The difference in the high energy
behavior of (C.6) and (C.9) is 1

tJ1+J2
= 1

t4
as discussed in the main text.

C.1.3 Gravitational sum rule in a generic theory

In this section, we describe the superconvergence sum rule for commutativity of co-
incident shocks in a generic tree-level theory of gravity. Firstly, a shock three-point
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amplitude for a massive graviton g̃ with mass m takes the form

Aµνg1g3g̃
= α̃2 [εµ1p

ν
3(ε3 · p1) + εµ3p

ν
1(ε1 · p3)− pµ1pν3(ε1 · ε3)− εµ1εν3(p1 · p3)]

× [(ε1 · ε3)(p1 · p3)− (ε3 · p1)(ε1 · p3)]

− α̃4p
µ
1p

ν
3 [(ε1 · p3)(ε3 · p1)− (ε1 · ε3)(p1 · p3)]2 , (C.10)

where the µν indices should be contracted with the polarization tensor of the massive
graviton. The massive graviton can appear as an intermediate state in the propagation
of a graviton through two shocks. Its contribution to the shock commutator is given
by

∆QJ=2 =
2π

pu

(
Aµνg1g3g̃

Πg̃
µν,ρσA

ρσ
g2g4g̃
−Aµνg2g3g̃

Πg̃
µν,αβA

αβ
g1g4g̃

)
, (C.11)

where

Πg̃
µν,αβ =

1

2
(PµαPνβ + PµβPνα)− 1

D − 1
PµνPαβ,

Pαβ = ηαβ +
pαpβ
m2

. (C.12)

The explicit result for (C.11) is

∆QJ=2 ∼
1

2
α̃2

2~e3 · ~e4~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1)

− α̃2α̃4~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1) (~e3 · ~q1~e4 · ~q1 + ~e3 · ~q2~e4 · ~q2)

+

(
α̃2

4[(~q1 · ~q2)2 − 1

2
m2~q1 · ~q2] +

D−2
4
m4α̃2

4 − (D − 4)m2α̃2α̃4 + (D − 10)α̃2
2

4(D − 1)

)
[
(~e3 · ~q1)2(~e4 · ~q2)2 − (~e3 · ~q2)2(~e4 · ~q1)2

]
. (C.13)

From this form of the commutator, it is immediately obvious that massive spin-2 par-
ticles cannot cancel the contributions of higher-derivative gravitational interactions.

For higher spin particles, the shock three-point amplitude has the same structure, with
extra polarization indices contracted with the momentum 1

mJ−2 εµ1µ2µ3...µsp
µ3

3 ...p
µJ
3 . An

extra structure takes the form

Aggg̃ =
1

mJ−4
α̃J0 εµνρσ · p3...p3 [εµ1p

ν
3(ε3.p1) + εµ3p

ν
1(ε1.p3)− pµ1pν3(ε1.ε3)− εµ1εν3(p1.p3)]

[ερ1p
σ
3 (ε3.p1) + ερ3p

σ
1 (ε1.p3)− pρ1pσ3 (ε1.ε3)− ερ1εσ3 (p1.p3)] , (C.14)

where we added the proper powers of mass to have the same dimensionality for
different couplings that will contribute to the superconvergence sum rules.
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To compute the blocks we simply need to square these and sum over intermediate
states in our kinematics. A convenient way to do that is to first contract a spin-J
symmetric traceless projection operator with null vectors. The result takes the form

ΠJ(p, z1, z2) = zµ1

1 ...zµJ1 Πµ1...µJ ;ν1...νJz
ν1
2 ...z

νJ
2

=
Γ(J + 1)Γ(D−3

2
)

2JΓ(D−3
2

+ J)
(−p2)−J(z1 · p)J(z2 · p)JC

(D−3
2

)

J (η) , (C.15)

where

η = 1− p2z1 · z2

(z1 · p)(z2 · p)
. (C.16)

The commutator is then given by

∆QJ =
2π

pu
(
Aµ1µ2µ3µ4

g1g3g̃
Πµ1µ2µ3µ4;ν1ν2ν3ν4(−p1 − p3; p3, p4)Aν1ν2ν3ν4

g2g4g̃

−Aµ1µ2µ3µ4

g2g3g̃
Πµ1µ2µ3µ4;ν1ν2ν3ν4(−p2 − p3; p3, p4)Aν1ν2ν3ν4

g1g4g̃

)
, (C.17)

where we defined

Πµ1µ2µ3µ4;ν1ν2ν3ν4 = D(1)
µ1
D(1)
µ2
D(1)
µ3
D(1)
µ4
D(2)
ν1
D(2)
ν2
D(2)
ν3
D(2)
ν4

ΠJ(p, z1, z2) (C.18)

with Dµ =
(
D
2
− 1 + z · ∂z

)
∂µ− 1

2
zµ∂

2 being the standard Thomas-Todorov operator.
In both channels, the argument of the Gegenbauer polynomial becomes η = 1+ 4~q1·~q2

m2 .
The final superconvergence sum rule holds for any ~q1 · ~q2.

The result for the commutator takes the form

∆QJ = ~e3 · ~e4~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1) ∆Q(1)
J (η)

+ ~q1 · ~q2 (~e3 · ~q1~e4 · ~q2 − ~e3 · ~q2~e4 · ~q1) (~e3 · ~q1~e4 · ~q1 + ~e3 · ~q2~e4 · ~q2) ∆Q(2)
J (η)

+
[
(~e3 · ~q1)2(~e4 · ~q2)2 − (~e3 · ~q2)2(~e4 · ~q1)2

]
∆Q(3)

J (η), (C.19)

where ∆Q(i)
J are computable polynomials of η of maximal power ηJ and quadratic

functions of the couplings (α̃J0 , α̃
J
2 , α̃

J
4 ). We get three superconvergence sum rules,

each should be satisfied identically for any η.

Let us go back to the non-commutativity introduced by the Gauss-Bonnet coupling
α2. Adding a spin four particle with α̃J2 = α̃J4 = 0 leads to

∆Q(1)
4 (η) ∼ −(α̃4

0)2,

∆Q(3)
4 (η) ∼ −(α̃4

0)2,

∆Q(2)
4 (η) = 0, (C.20)
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where we omitted irrelevant positive-definite D-dependent coefficients. We see that
by adding to the Gauss-Bonnet theory a single spin four particle and a non-minimally
coupled scalar, we can satisfy the superconvergence relations in flat space. With one
spin four particle in the spectrum, the theory would still have pathological Regge
behavior which should become visible in a slightly different kinematics, see e.g. [96].

C.2 Noncommutativity of light-transformed scalars

Let us consider a simple model that illustrates some of the subtleties involved in
computations of light transforms at coincident points. Imagine four free complex
scalar fields of different masses in AdS. The dual theory is a version of generalized free
field theory with scalar operators φk with dimensions ∆k. We consider the following
correlator1

O1 = φaφb, O2 = φ†bφ
†
d, O3 = φ†cφd, O4 = φ†aφc, (C.21)

where O1,2 model detectors and O3,4 model sinks. The four-point function takes the
form

〈O4O1O2O3〉 =
1

x2∆b
12 x2∆c

34

1

x2∆a
14 x2∆d

23

. (C.22)

An immediate observation about this four-point function is that

〈[O4,O2][O1,O3]〉 = 0. (C.23)

Therefore, doing the light transform and taking the coincident limit for the L[O2]L[O1]

ordering of light ray operators always exist and is trivially equal to zero.

For the other ordering of operators, we get

〈[O4,O1][O2,O3]〉 =
4 sinπ∆a sin π∆d

x2∆b
12 x2∆c

34

sgn[x0
14]θ(−x2

14)sgn[x0
23]θ(−x2

23)

(−x2
14)∆a(−x2

23)∆d
. (C.24)

To do the light transforms, it is convenient to specialize to simple kinematics in the
lightcone coordinates (u, v, ~y) for which we get

〈Ω|O4(1,−1,~0)O1(−δu, v1,−~y)O2(δu, v2, ~y)O3(−1, 1,~0)|Ω〉 (C.25)

=
1

(2δu(v1 − v2 − iε) + 4~y2)∆b4∆c

1

((1 + δu)(v1 + 1 + iε) + ~y2)∆a((1 + δu)(1− v2 + iε) + ~y2)∆d
,

1See fig. 3 in [229], where this model of detector cross-talk is discussed.
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where we explicitly wrote the iε prescription dictated by the ordering of operators
and introduced a small separation in the u-direction between the detector operators.

Let us first analyze the integral (4.147) which guarantees both the existence and
commutativity of the coincident limit. To do that we set δu = 0 in (C.25) and
perform the integral over v1 and v2∫ ∞

−∞
dv1dv2

1

(4~y2)∆b4∆c

1

(v1 + 1 + ~y2 + iε)∆a(1− v2 + ~y2 + iε)∆d
. (C.26)

This integral is zero for ∆a,∆d > 1 and diverges otherwise. Let us check that it
agrees with the sufficient conditions for the existence of the integral derived in the
main text. For the local operators at hand, we have J1 = J2 = 0 and ∆1 = ∆a + ∆b

and ∆2 = ∆b + ∆d. The Euclidean OPE, light-cone OPE, and the Regge limit are all
controlled by the leading operator that appears in the OPE of O1 and O2, which has
dimension ∆a + ∆d and spin 0. The strongest constraint comes from the light-cone
OPE (4.155) which for the case at hand becomes

−|∆a −∆d| > 2− (∆a + ∆d). (C.27)

This can be rewritten as

4(∆a − 1)(∆d − 1) > 0, (C.28)

which indeed coincides with the direct analysis above. Note also that in this case,
the behavior of the double discontinuity (C.24) is no different from the behavior of
the original Wightman function. Using the analysis from the main text, we again
conclude that the sufficient condition for the existence of the coincident limit of the
light transform is ∆a,∆d > 1.

Let us now do the light transform first, while keeping δu 6= 0. Again it is clear from
the position of poles that the result depends on the ordering of the operators O1 and
O2, one of them trivially producing zero in agreement with (C.23). For the nontrivial
ordering, we get∫ ∞

−∞
dv1dv2〈Ω|O4(1,−1,~0)O1(−δu, v1,−~y)O2(δu, v2, ~y)O3(−1, 1,~0)|Ω〉 (C.29)

= (2πi)2e−iπ(∆a+∆d) Γ(∆a + ∆b + ∆d − 2)

Γ(∆a)Γ(∆b)Γ(∆d)4∆c
(2δu)∆a+∆d−2(4~y2)2−∆a−∆b−∆d .

Next, we take the δu → 0 limit for the nontrivial ordering of light ray operators
L[O1]L[O2]. We see that the result is zero for ∆a + ∆d > 2, finite and non-trivial for
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∆a + ∆d = 2, and divergent for ∆a + ∆d < 2. Thus, we observe that the coincident
limit exists beyond the range found by the sufficient conditions described in the text.

Apart from variations of the correlator above where subtleties related to the coincident
limit of the light-ray operators can be demonstrated, one can also consider exchange
Witten diagrams in AdS where similar subtleties occur. This can be easily seen using
the Mellin space approach used to efficiently compute light transforms in [147].

C.3 Fourier transform of two-point functions

In this appendix we compute the Fourier transform of the two-point function, which
in Euclidean signature takes the form

〈OJ(x1, z1)OJ(x2, z2)〉 =
(z1 · I(x12) · z2)J

x2∆
12

. (C.30)

Continuation to Lorentzian signature for

〈O|OJ(0, z1)OJ(x, z2)|O〉 (C.31)

amounts to using the Euclidean expression for spacelike x and the iε prescription
x0 → x0 + iε for analytic continuation to timelike x.

The basic strategy is the same as for three-point functions. We first decompose into
harmonic functions (4.379)

(z1 · I(x) · z2)J =
J∑
k=0

βk(z1 · z2)k(−x2)k−J [zJ−k1 zJ−k2 |x] , (C.32)

with

βk =
2J−kJ !(d−2

2
+ J − k)J−k+1

k!(J − k)!(d−2
2

+ J)J−k+1

. (C.33)

Therefore, for x > 0 the Wightman two-point function (C.31) takes form

〈O|OJ(0, z1)OJ(x, z2)|O〉 =
J∑
k=0

eiπ∆βk(z1 · z2)k(−x2)k−J−∆[zJ−k1 zJ−k2 |x]. (C.34)

Using (4.382) we find that the Fourier transform is given by

〈O|OJ(0, z1)OJ(p, z2)|O〉

=
∑
k

eiπ∆βkF̂2∆,2J−2k(−p2)∆−J+k−d(z1 · z2)k[zJ−k1 zJ−k2 |p]θ(p)

= eiπ∆F̂2∆,2J2J(−z1 · p)J(−z2 · p)J

× 2F1

(
−J,∆− 1; ∆− J − d−2

2
;
1

2

p2(z1 · z2)

(z1 · p)(z2 · p)

)
(−p2)∆−d/2−Jθ(p), (C.35)
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where F̂ is given by (4.329).

We would now like to understand its decomposition into SO(d − 1) projectors. For
this, we set p = (1, 0, . . .), zi = (1, ni), and decompose into (d − 1)-dimensional
Gegenbauer polynomials of η = (n1 · n2). In particular, we have

2F1

(
−J,∆− 1; ∆− J − d−2

2
;
1− η

2

)
=

J∑
s=0

2−2JJ !(d+ J − 2)J(d− 2)J(d−∆− 1)J

(d−1
2

)J(d−2∆
2

)J

(−1)s(d+ 2s− 3)

(J − s)!(d− 3)J+s+1

(∆− 1)s
(d−∆− 1)s

C
( d−3

2
)

s (η).

(C.36)

Plugging this into (C.35) and by using (4.276), we reproduce the claimed result (4.279).

C.4 Details on the light-transform of three-point structures

In this section we fix the overall normalization in our light-transform ansatz (4.300)

〈0|O′2L[φ1]O′3|0〉 ∝
V

1−∆φ

1,23 V
J ′2

2,31V
J ′3

3,12 f
(

H12

V1,23V2,31
, H13

V1,23V3,12

)
X

τ ′1+τ ′2−τ
′
3

2
12 X

τ ′1+τ ′3−τ
′
2

2
13 X

τ ′2+τ ′3−τ
′
1

2
23

. (C.37)

We have fixed the form of the function f in (4.306). To fix the coefficient, we will
compute this light-transform in special kinematics. In particular, we take x2 = 0,
x3 = ∞, and x1 = x in the absolute past of 0. Since light transform annihilates the
vacuum state, we have

〈0|O′2L[φ1]O′3|0〉 = 〈0|[O′2,L[φ1]]O′3|0〉, (C.38)

and the integral in L in the right-hand side is only over positions of φ1 which are in the
past of O′2. The rest of the integral over φ1 is spacelike from O′2 and the commutator
vanishes.

Therefore, we first need to find 〈0|[O′2, φ1]O′3|0〉 in the configuration where (2 > 1) ≈
3, starting from the Euclidean expression (4.299). We obtain

〈0|O′2φ1O′3|0〉 =
e−iπ

τ1+τ2−τ3
2 V

J ′2
2,31V

J ′3
3,12

(−X12)
τ1+τ2−τ3

2 X
τ1+τ3−τ2

2
13 X

τ2+τ3−τ1
2

23

. (C.39)

We then specialize to our kinematics, which gives (using also τ 2 = τ ′2 and τ 3 = τ ′3)

〈0|O′2φ1O′3|0〉 =
e−iπ

τ1+τ ′2−τ
′
3

2 (−(x · z2))J
′
2(x−2(x · z3))J

′
3

(−x2)
τ1+τ ′2−τ

′
3

2

. (C.40)
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We can further set z2 = z3 = z to get

〈0|O′2φ1O′3|0〉 =
e−iπ

τ1+τ2−τ3
2 (−(x · z))J

′
2+J ′3

(−x2)
τ1+τ ′2−τ

′
3+2J′3

2

. (C.41)

The opposite ordering comes with the opposite phase, and so

〈0|[O′2, φ1]O′3|0〉 = −
2i sin

(
π τ1+τ2−τ3

2

)
(−(x · z))J

′
2+J ′3

(−x2)
τ1+τ ′2−τ

′
3+2J′3

2

. (C.42)

We can evaluate the light transform L[φ1] at z1 = z,

〈0|[O′2,L[φ1]]O′3|0〉 = −
∫ 2(z·x)/x2

−∞
dα(−α)−τ1

2i sin
(
π τ1+τ2−τ3

2

)
(−(x · z))J

′
2+J ′3

(−x2 + 2(x · z)/α)
τ1+τ ′2−τ

′
3+2J′3

2

,

(C.43)

where the upper bound of integration is due to the vanishing of the commutator. The
integral is easy to perform, and by comparing to the ansatz (C.37), we can fix the
overall coefficient. After some simple manipulations, the result is

〈0|O′2L[φ1]O′3|0〉 = −2πi
2J
′
1Γ(−J ′1)

Γ(
τ ′1+τ ′2−τ ′3

2
)Γ(

τ ′1−τ ′2+τ ′3
2

)

(−V1,23)J
′
1(−V2,31)J

′
2(−V3,12)J

′
3

(−X12)
τ ′1+τ ′2−τ

′
3

2 X
τ ′1+τ ′3−τ

′
2

2
13 X

τ ′2+τ ′3−τ
′
1

2
23

× f
(

H12

V1,23V2,31

,
H13

V1,23V3,12

)
((2 > 1) ≈ 3), (C.44)

which holds for causal relations (2 > 1) ≈ 3. Note that the explicit (−) signs are
inserted so that there are no phase ambiguities in this causal configuration. Other
causal configurations may be obtained by analytic continuation using the appropriate
iε prescription.

In particular, we need to send point 1 to spatial infinity, which corresponds to 1 ≈ 2, 3,
and we’ll also choose 3 > 2. During the corresponding analytic continuation, one can
check that all V structures go from being negative back to being negative, with
trivial monodromy around 0.2 Then, the only phases come from the distances x2

ij in
the denominator, and it is easy to see that after the analytic continuation, we find

〈0|O′2L[φ1]O′3|0〉 = −2πi
eiπτ

′
22J

′
1Γ(−J ′1)

Γ(
τ ′1+τ ′2−τ ′3

2
)Γ(

τ ′1−τ ′2+τ ′3
2

)

(−V1,23)J
′
1(−V2,31)J

′
2(−V3,12)J

′
3

X
τ ′1+τ ′2−τ

′
3

2
12 X

τ ′1+τ ′3−τ
′
2

2
13 (−X23)

τ ′2+τ ′3−τ
′
1

2

× f
(

H12

V1,23V2,31

,
H13

V1,23V3,12

)
((3 > 2) ≈ 1). (C.45)

2This really only matters for V1,23 and it is a general result that the value of this structure cannot
wind around 0 with the iε prescriptions corresponding to the Wightman ordering in question [28].
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This can also be derived by observing that if (2 > 1) ≈ 3, then (3 > 2−) ≈ 1,
which is the desired ordering if we replace 2 → 2+. Using the fact that 〈0|O′2T −1 =

e−iπτ
′
2〈0|O′2, where T is defined in [28], we can arrive at the same result.

C.5 Structures for the sum rule

In this appendix, we describe the tensor structures {2, 2|λ|2, 2}t and {2, 2|λ|2, 2}s
used in the main text. We start with {2, 2|λ|2, 2}t. In principle, these structures
are harmonic polynomials of ni with appropriate homogeneity degree 2. To describe
them, it is convenient to restrict to complex ni subject to n2

i = 0. For example, the
structure {2, 2|0|2, 2}t is given in main text as(

(n1 · n4)2 − 1

d− 1

)(
(n2 · n3)2 − 1

d− 1

)
. (C.46)

We can first restore homogeneity as(
(n1 · n4)2 − n2

1n
2
4

d− 1

)(
(n2 · n3)2 − n2

2n
2
3

d− 1

)
, (C.47)

and then set n2
i → 0 to get

(n1 · n4)2(n2 · n3)2, (C.48)

which is a more economical encoding of the original structure.

Using this convention, we have

{2, 2|0|2, 2}t = n2
14n

2
23,

{2, 2|2|2, 2}t = 4n14n23

(
n12n34 + n13n24

2
− n14n23

d− 1

)
,

{2, 2|4|2, 2}t = 6
( 8n2

14n
2
23

(d+ 1)(d+ 3)
− 8n14 (n13n24 + n12n34)n23

d+ 3
+ n2

13n
2
24

+ n2
12n

2
34 + 4n12n13n24n34

)
,

{2, 2|(1, 1)|2, 2}t =
8n2

14n
2
23

d2 − 5d+ 6
− 8n14 (n13n24 + n12n34)n23

d− 3
+ 4 (n13n24 − n12n34) 2 ,

{2, 2|(2, 2)|2, 2}t = 2n14n23 (n12n34 − n13n24) ,

{2, 2|(3, 1)|2, 2}t = −4 (n13n24 − n12n34) ((d+ 1) (n13n24 + n12n34)− 4n14n23)

d+ 1
,

(C.49)

where nij = (ni · nj).

The structures {2, 2|0|2, 2}s are obtained from {2, 2|0|2, 2}t by exchanging 2↔ 4.
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A p p e n d i x D

APPENDICES TO CHAPTER 5

Appendices to chapter 5 are attached here.

D.1 Notation

In this appendix, we summarize some of our notation. Many of our conventions are
taken from [28].

It is useful to distinguish between physical correlation functions and conformally
invariant structures. A correlation function in the state |Ω〉 represents a physical
correlation function in a CFT. For example,

〈Ω|O1 · · · On|Ω〉 (D.1)

is a Wightman n-point function in a physical theory, and

〈O1 · · · On〉Ω (D.2)

is a time-ordered n-point function in a physical theory.

Two- or three-point functions in the fictitious state |0〉 represent conformally-invariant
functions that are fixed by conformal invariance. If conformal symmetry allows a finite
set of possible tensor structures, then we index the possibilities by a label (a), (b),
etc.. For example,

〈0|O1O2O3|0〉(a) (D.3)

represents a conformally-invariant tensor structure for the representations ofO1,O2,O3,
and a runs over the possible solutions to the conformal Ward identities. The above
structure has an iε prescription appropriate for a Wightman function. Meanwhile,

〈O1O2O3〉(a) (D.4)

represents a conformally-invariant structure with the iε prescription of a time-ordered
correlator.

Primary operators are labeled by weights (∆, ρ) with respect to the conformal group
S̃O(d, 2). Here, ∆ ∈ C and ρ is an irreducible representation of SO(d − 1, 1). (∆ is
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constrained to be real and sufficiently positive for local operators in unitary theories.)
The weights of ρ can be futher decomposed into ρ = (J, λ), where J is a positive
integer for local operators, but in general J ∈ C can be continuous in Lorentzian
signature. Here, λ is a finite-dimensional representation of SO(d− 2). We can think
of J as the length of the first row of the Young diagram of ρ, while λ encodes the
remaining rows. Altogether, we specify a conformal representation by the triplet
(∆, J, λ).

We often use the symbol O to stand for the conformal representation with quantum
numbers (∆, J, λ). We use φ to represent a scalar operator with quantum numbers
(∆φ, 0, •), where • is the trivial representation. (An exception is in section 5.7, where
OIJ refers to a 20′ operator in N = 4 SYM.)

If O is a local operator, then ρ is a finite-dimensional representation. In this case, we
define shadow and Hermitian conjugate representations as follows:

Õ : (d−∆, ρR),

O† : (∆, (ρR)∗), (D.5)

where ρR denotes the reflection of ρ and (ρR)∗ is the dual of ρR.

For continuous-spin operators, ρ = (J, λ) is infinite-dimensional. The light transform
turns a local operator into a continuous spin operator

L[O] : (1− J, 1−∆, λ) . (D.6)

To define a conformally-invariant pairing for continuous spin operators we define

OS : (d−∆, 2− d− J, λ),

OS† : (d−∆, 2− d− J, λ∗). (D.7)

Similarly, we define OF as an operator that can be paired with L[O] (upon Hermitian
conjugation)

OF : (J + d− 1,∆− d+ 1, λ),

OF † : (J + d− 1,∆− d+ 1, λ∗). (D.8)

To describe the causal relation between two points, we use the following symbols:

• x ≈ y if x and y are space-like;
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• x > y (x < y) if x lies in the future (past) light-cone of y;

• x & y (x . y) if x is on the future (past) null cone of y.

In section 5.3, we extensively use Euclidean and Lorentzian pairings between the 2-,
3- and 4-point functions. These are described in detail in appendix C and D of [28]
correspondingly.

D.2 Representations of orthogonal groups

D.2.1 General index-free notation

A finite-dimensional representation of SO(d) is labeled by a sequence

md = (md,1, . . . ,md,n) (D.9)

such that

md,1 ≥ md,2 ≥ · · · ≥ md,n−1 ≥ |md,n| d = 2n (D.10)

md,1 ≥ md,2 ≥ · · · ≥ md,n ≥ 0 d = 2n+ 1 (D.11)

The md,i are either all integers (in the case of tensor representations) or all half-
integers. When they are integers, we can think of them as lengths of rows of a Young
diagram. See [71] for a recent review.

A spin-J traceless symmetric tensor has labels md = (J, 0, . . . , 0), corresponding
to a single-row Young diagram with length J . More generally, an object in the
representation md is a tensor with indices

fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,n . (D.12)

For a given Young diagram, we can choose to make either symmetry of the rows
manifest or antisymmetry of the columns manifest. We choose to make symmetry of
the rows manifest. Thus, f is symmetric in each of its n groups of indices

fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,n = f (µ1···µmd,1 )(ν1···νmd,2 )···(ρ1···ρmd,n ). (D.13)

Furthermore, it is traceless in all pairs of indices. Antisymmetrization of columns
of the Young diagram is reflected in the fact that if we try to symmetrize too many
indices, we get zero. For example,

f (µ1···µmd,1ν1)ν2···νmd,2 ··· ρ1···ρmd,n = 0. (D.14)
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It is useful to encode the tensor f using index-free notation. We introduce polarization
vectors z1, . . . , zn ∈ Cd for each row of the Young diagram and contract them with
the corresponding indices to form a polynomial

f(z1, . . . , zn) ≡ fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,nz1µ1 · · · z1µmd,1
z2ν1 · · · z2νmd,2

· · · znρ1 · · · znρmd,n .
(D.15)

By construction, f(zi) is homogeneous in each polarization vector

f(α1z1, · · · , αnzn) = α
md,1
1 · · ·αmd,nn f(z1, · · · , zn) (αi ∈ C). (D.16)

Because f is traceless, we can impose the conditions

z2
i = 0, zi · zj = 0. (D.17)

These conditions mean that shifting f by anything proportional to δµν leads to the
same polynomial f(zi). The traceless tensor f can thus be recovered from the polyno-
mial f(zi) by choosing any tensor leading to the correct polynomial and subtracting
traces.

In index-free notation, the antisymmetrization condition (D.14) becomes

f(z1, z2 + βz1, z3, . . . , zn) = f(z1, z2, z3, . . . , zn). (D.18)

In other words, f is gauge-invariant under shifts z2 → z2 +βz1. (Note that this gauge-
redundancy is consistent with the orthogonality conditions (D.17).) More general
antisymmetrization conditions show that f is invariant under the gauge redundancies

z2 → z2 + #z1

z3 → z3 + #z2 + #z1

...

zn → zn + #zn−1 + · · ·+ #z1. (D.19)

Finally, in even dimensions, the tensor f can satisfy

εµ1···ρ1
µ0···ρ0f

µ0µ2···µmd,1 ··· ρ0ρ2···ρmd,nz1µ1 · · · z1µmd,1
z2ν1 · · · z2νmd,2

· · · znρ1 · · · znρmd,n
= ±pnf(z1, . . . , zn) (D.20)

where pn is a constant depending only on n. This is equivalent to imposing an (anti-
)self-duality condition on the polarization vectors

εµ1···ρ1
µ0···ρ0z1µ1 · · · znρ1 = ±pdn!z[1µ0 · · · znρ0]. (D.21)
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To summarize, the representation md is equivalent to the space of homogeneous poly-
nomials of polarization vectors z1, . . . , zn ∈ Cd with degrees md,1, . . . ,md,n, satisfying
the orthogonality conditions (D.17), duality condition (D.21) in even dimensions, and
subject to gauge-redundancy (D.19).

We have essentially arrived at the Borel-Weil theorem, specialized to orthogonal
groups. The theorem states that each irreducible finite-dimensional representation
of a reductive Lie group G is equivalent to the space of global sections of a holomor-
phic line bundle on the flag manifold G/B, where B ⊂ G is a Borel subgroup. In the
case G = SO(d), the flag manifold G/B is the projectivization of the space of vectors
z1, . . . , zn satisfying the above conditions and gauge-redundancies. A section of a line
bundle on this space is a homogeneous polynomial of the polarization vectors.

It is sometimes useful to use mixed index-free notation, where only some of the
polarization vectors are contracted. For example, we could consider

f ν1···νmd,2 ··· ρ1···ρmd,n (z1) ≡ fµ1···µmd,1 ν1···νmd,2 ··· ρ1···ρmd,nz1µ1 · · · z1µmd,1
. (D.22)

The object f ν1···νmd,2 ··· ρ1···ρmd,n (z1) is a tensor on the null cone z2
1 = 0. Its indices sat-

isfy all the symmetry conditions appropriate for the Young diagram (md,2, . . . ,md,n)

obtained by discarding the first row of the Young diagram (md,1,md,2, . . . ,md,n). Fur-
thermore, antisymmetry conditions like (D.14) mean that if we contract any of the
indices of (D.22) with z1, the result is zero. We say that (D.22) is “transverse.”

D.2.2 Poincare patches

We can think of the polarization vector z1 as an embedding-space coordinate in d− 2

dimensions. It is natural to ask what the function f(z1, . . . , zn) looks like in flat
coordinates. Let us write the metric on Cd as

z · z = −z+z− + z⊥ · z⊥, (D.23)

where z⊥ ∈ Cd−2. For generic z1, we can use homogeneity to set

z1 = (z+
1 , z

−
1 , z

⊥
1 ) = (1, (y⊥)2, y⊥), y⊥ ∈ Cd−2. (D.24)

Using the gauge redundancies (D.19), we can set z+
2 = · · · = z+

n = 0. The orthogo-
nality conditions (D.17) then imply that the other zi take the form

zi = (0, 2z⊥i · y⊥, z⊥i ), z⊥i ∈ Cd−2, (D.25)
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where

z⊥i · z⊥j = 0 (i, j = 2, . . . , n). (D.26)

Thus, we obtain a function

f ↓(y⊥; z⊥2 , . . . , z
⊥
n ) ≡ f(z1, . . . , zn)| z1=(1,~y⊥2,y⊥)

zi=(0,2z⊥i ·y⊥,z⊥i ).

(D.27)

The function f ↓ is not homogeneous in y⊥, but it is a homogeneous polynomial in
the remaining arguments z⊥2 , . . . , z⊥n ∈ Cd−2. Furthermore, the z⊥2 , . . . , z⊥n are subject
to the same orthogonality and gauge redundancies as before, except now in 2-fewer
dimensions. Thus, f ↓ is equivalent to a tensor field on Cd−2, transforming in the
SO(d− 2) representation (md,2, . . . ,md,n)

f ↓(y⊥; z⊥2 , . . . , z
⊥
n ) = f ↓α1···αmd,2 ···β1···βmd,n (y⊥)z⊥2α1

· · · z⊥2αmd,2 · · · z
⊥
nβ1
· · · z⊥nβmd,n ,

(D.28)

where αi, βi are vector indices in d − 2-dimensions. This is the usual procedure of
restricting to a Poincare patch in the embedding formalism.

The function f(z1, . . . , zn) can easily be recovered from f ↓(y⊥; z⊥2 , . . . , z
⊥
n ) by imposing

the correct homogeneity and gauge redundancy

f(z1, . . . , zn) = (f ↓)↑(z1, . . . , zn)

= (z+
1 )m1f ↓

(
z⊥1
z+

1

; z⊥2 −
z+

2

z+
1

z⊥1 , . . . , z
⊥
n −

z+
n

z+
1

z⊥1

)
. (D.29)

This is the usual procedure of lifting to the embedding space.

If we would like, restriction to a Poincare patch can be iterated again to obtain
a tensor field on Cd−2 × Cd−4 with indices valued in the SO(d − 4) representation
(md,3, . . . ,md,n),

f ↓↓(y⊥, x⊥⊥; z⊥⊥3 , . . . , z⊥⊥n ),

= f ↓↓α1···αmd,3 ··· ,β1···βmd,n (y⊥, x⊥⊥)z⊥⊥3α1
· · · z⊥⊥3αmd,3

· · · z⊥⊥nβ1
z⊥⊥nβmd,n

x⊥⊥, z⊥⊥j ∈ Cd−4.

(D.30)

Here, αi, βi are vector indices in d−4 dimensions. Similarly, we can obtain f ↓↓↓ which
is a tensor field on Cd−2 ×Cd−4 ×Cd−6, etc. All of these functions can be lifted back
to the original homogeneous polynomial f(z1, . . . , zn).
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D.2.3 Application to CFT

Most of the above constructions still work when some of the weights md,i become
continuous. We can now no longer demand that f is a polynomial in the polar-
ization vectors with continuous weights. However, we can still demand that f is a
homogeneous function. Such homogeneous functions yield infinite-dimensional repre-
sentations of SO(d).1

We are interested in studying infinite-dimensional representations of S̃O(d, 2), corre-
sponding to operators in CFT. These are labeled by a weight

md+2 = (−∆,md,1, . . . ,md,n), (D.31)

where ∆ is not necessarily a negative integer. To describe light-ray operators, we
must additionally allow md,1 = J to be non-integer. We often use the notation

md+2 = (−∆, J, λ),

λ = (md,2, . . . ,md,n), (D.32)

where λ are weights of a finite-dimensional representation of SO(d−2). When J is an
integer satisfying J ≥ md,2, we can also define the finite-dimensional representation
of SO(d− 1, 1)

ρ = (J,md,2, . . . ,md,n). (D.33)

The elements of the representation with weights md+2 are homogeneous functions
of the kind described in section D.2.1. Here, we simply introduce some specialized
notation for the case at hand. The functions are

O(X,Z,W1, . . . ,Wn−1), X, Z ∈ Rd,2, Wi ∈ Cd+2, (D.34)

where the vectors X,Z,Wi are null and mutually orthogonal. Furthermore, they
satisfy gauge redundancies

Z ∼ Z + #X

W1 ∼ W1 + #Z + #X

...

Wn−1 ∼ Wn−1 + #Wn−2 + · · ·+ #X. (D.35)

1An index-free formalism for CFT operators in general tensor representations was introduced in
[323]. That formalism introduces fermionic polarization vectors, and essentially differs from the one
here by privileging the columns of Young tableaux instead of the rows.
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The homogeneity condition is

O(αX, βZ, α1W1, . . . , αn−1Wn−1) = α−∆βJα
md,2
1 · · ·αmd,nn−1 O(X,Z,W1, . . . ,Wn−1).

(D.36)

Furthermore, O is constrained to be a polynomial in the Wi’s (but not in X,Z).

The restriction of O to a Poincare patch is given by

O↓(x, z, w1, . . . , wn−1) = O(X,Z,W1, . . . ,Wn−1)| X=(1,x2,x)
Z=(0,2x·z,z)

Wi=(0,2x·wi,wi)

. (D.37)

Here, z, wi are mutually orthogonal null vectors, subject to the gauge redundancies

w1 ∼ w1 + #z

w2 ∼ w2 + #w1 + #z

...

wn−1 ∼ wn−1 + #wn−2 + · · ·+ #z. (D.38)

The function O↓ satisfies the homogeneity condition

O↓(x, βz, α1w1, . . . , αn−1wn−1) = βJα
md,2
1 · · ·αmd,nn−1 O↓(x, z, w1, . . . , wn−1). (D.39)

The transverse coordinates ~y discussed in section 5.2.1 come about when we do an
additional restriction to a Poincare patch in the z variable:

O↓↓(x, ~y; ~w1, . . . , ~wn−1) = O↓(x, z, w1, . . . , wn−1)
∣∣

z=(1,~y2,~y)
wi=(0,2~y·~wi, ~wi)

, (D.40)

where

x ∈ Rd−1,1, ~y ∈ Rd−2, ~wi ∈ Cd−2. (D.41)

We can equivalently think of O↓↓(x, ~y) as a tensor field on Rd−1,1×Rd−2 transforming
in the SO(d− 2) representation λ. When O is a traceless symmetric tensor (i.e. λ is
trivial), we have ∫ ∞

−∞
Ov···v(u = 0, v, ~y) ∝ L[O]↓↓(−∞z0, ~y), (D.42)

where z0 = (1, 1, 0, . . . , 0) is a null vector in the v direction.

We almost always abuse notation and drop the ↓ superscripts, relying on the argu-
ments of O to distinguish between the embedding-space function and its restrictions
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to Poincare patches. We also often use mixed index-free notation, where we strip off
the wi’s to obtain a tensor operator

O(x, z, w1, . . . , wn−1) = Oµ1···µmd,2 ··· ν1···νmd,n (x, z)w1µ1 · · ·w1µmd,2
· · ·wn−1ν1 · · ·wn−1νmd,n

.

(D.43)

The tensor Oµ1···µmd,2 ··· ν1···νmd,n (x, z) has indices symmetrized using the Young tableau
λ = (md,2, . . . ,md,n), and furthermore all its indices are transverse to z. Finally, we
often suppress tensor indices and simply write O(x, z), where it is understood that
O can carry indices transverse to z.

All of these different formalisms for representing O are equivalent, and they are
convenient for different purposes. For example, to define the celestial map in sec-
tion 5.3.4.4, it is convenient to use embedding-space operatorsO(X,Z,W1, . . . ,Wn−1).
To define the Lorentzian pairings (5.95) and (5.97), it is convenient to use the object
Oµ1···µmd,2 ··· ν1···νmd,n (x, z) which caries a finite set of indices transverse to z. We move
freely between the different formalisms as needed.

D.3 More on analytic continuation and even/odd spin

In this section, we give more detail on the relationship between CRT and the gen-
eralized Lorentzian inversion formula. In particular, we explain how to go from the
formula in [28] to the formula (5.92) in the main text.

The formula derived in [28] is

C±ab(∆, J, λ) = − 1

2πi

∫
4>1
2>3

ddx1 · · · ddx4

vol(S̃O(d, 2))
〈O|[O4,O1][O2,O3]|O〉

× T −1
2 T −1

4

(
T2〈O1O2L[O†]〉(a)

)−1 (T4〈O4O3L[O]〉(b)
)−1

〈L[O]L[O†]〉−1

+ (1↔ 2). (D.44)

It involves light-transforms of time-ordered structures 〈O1O2L[O†]〉(a) and 〈O3O4L[O]〉(b).2

Time-ordered structures only make sense for integer J (see appendix A of [28]), so
we must give a prescription for how to analytically continue (D.44) in J . Such a

2By a “time-ordered structure,” we mean a conformally-invariant function of positions, with the
iε prescription appropriate for a time-ordered correlator. By a “Wightman structure,” we mean a
conformally-invariant function of positions, with the iε prescription appropriate for a Wightman
function with the given ordering.
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prescription was described in [28].3 However, for our purposes, it will be helpful to
phrase it in a different way. In particular, this requires clarifying the role of the ±
sign in the definition of O±∆,J,λ(a).

Note that there are two terms in the Lorentzian inversion formula. The t-channel
term written explicitly in (D.44) depends on

T2〈O1O2L[O†](x0, z0)〉(a) = T2〈0|O2L[O†](x0, z0)O1|0〉(a) ((1 > 2) ≈ 0), (D.45)

T4〈O3O4L[O](x0, z0)〉(b) = T4〈0|O4L[O](x0, z0)O3|0〉(b) ((3 > 4) ≈ 0). (D.46)

On the right, we indicate the causal relationship between points for which the struc-
ture is needed. We also give light-transformed Wightman structures that equal
the light-transformed time-ordered structures when those causal relationships hold.
Meanwhile, the u-channel term (1↔ 2) depends on

T1〈O1O2L[O†](x0, z0)〉(a) = T1〈0|O1L[O†](x0, z0)O2|0〉(a) ((2 > 1) ≈ 0), (D.47)

instead of (D.45).

We see from (D.45) and (D.47) that the Lorentzian inversion formula actually depends
on a pair of Wightman structures

〈0|O2O†(x0, z0)O1|0〉(a), 〈0|O1O†(x0, z0)O2|0〉(a). (D.48)

It is easy to separately analytically continue each Wightman structure in spin. How-
ever, we should take care to preserve the correct relationship between the structures.
Let us describe this relationship when J is an integer, and then generalize to non-
integer J .

The simplest way to relate the structures (D.48) for integer J is to demand that
they are equal when all operators are spacelike separated. Unfortunately, this type of
relationship does not generalize to non-integer J due to branch cuts in the spacelike
region [28].

A different way to state the relationship between the structures (D.48) for integer J
is to say how they transform under a combination of CRT and Hermitian conjugation.
Recall that CRT is an anti-unitary symmetry that takes x = (x0, x1, x2, . . . , xd−1) to

3It is as follows: we should first compute 〈O1O2L[O†]〉(a) for general nonnegative integer J
(where J is the spin of O). The result is no longer a time-ordered structure (e.g. it has θ-functions
of positions). It can then be analytically continued from even or odd J , depending on whether we
are computing C+

ab(∆, J, λ) or C−ab(∆, J, λ). The analytic continuations are fixed by demanding that
they are well-behaved in the right-half J-plane.
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its Rindler reflection x = (−x0,−x1, x2, . . . , xd−1). Its action on a local operator is
given by

(CRT)Oαlocal(x)(CRT) =
(

(e−iπM
01

)αβOβlocal(x)
)†
, (D.49)

where α, β are indices for the Lorentz representation of O, andM01 is the generator
of a boost in the 01 plane. (We assume Olocal is bosonic, for simplicity.) In general,
we define the “Rindler conjugate” of any (not necessarily local) operator O by

O ≡ (CRT)O(CRT). (D.50)

Note that Rindler conjugation preserves operator ordering, since it is simply conju-
gation by a symmetry.

If we combine Rindler conjugation with Hermitian conjugation, we obtain a linear
map that reverses operator ordering

O → O†. (D.51)

For local operators, this is equivalent to a rotation by π in the plane spanned by x1

and Euclidean time ix0,

Oαlocal(x)
†

= (e−iπM
01

)αβOβlocal(x). (D.52)

(One way to understand why this reverses operator ordering is that such a rotation
reverses all the iε’s.) However, for non-local operators, (D.51) cannot be described in
terms of a Euclidean rotation. We call the eigenvalue of an operator under (D.52) its
“signature.”

Let z0 = (1, 1, 0, . . . , 0) be a null vector satisfying z0 = −z0. Given a local op-
erator Olocal with dimension ∆ and spin-J , it is easy to check using (D.49) that
L[Olocal](−∞z0, z0) has signature (−1)J ,

L[Olocal](−∞z0, z0)
†

= (−1)JL[Olocal](−∞z0, z0). (D.53)

However, more general light-ray operators can have a signature that is not necessarily
related to J , and this is what the superscript ± encodes:

O±∆,J(−∞z0, z0)
†

= ±O±∆,J(−∞z0, z0). (D.54)

Let us understand how signature is encoded in the inversion formula. Since (D.51)
acts as a complexified Lorentz transformation (D.52) on local operators, it is an
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operator-order-reversing “symmetry” of three-point functions of local operators. Let
O1,O2 be any local operators. We have

〈0|O1O†local(x, z)O2|0〉 = 〈0|O†2O
†
local(x, z)

†
O†1|0〉

= 〈0|O†2O
†
local(x, z)O†1|0〉

= (−1)J〈0|O†2O
†
local(x,−z)O†1|0〉. (D.55)

In the last line, we used that O†local(x, z) is a degree-J polynomial in z to give it a
future-pointing polarization vector −z. Here, O†1,2 are given by (D.49).

The natural generalization to non-integer J is that the Wightman structures (D.48)
should be related by

〈0|O1O†(x, z)O2|0〉(a) = ±〈0|O†2O†(x,−z)O†1|0〉(a), (D.56)

where ± indicates whether we have analytically continued from even or odd spin.
Again, O†i is given by (D.52). Plugging this in to (D.44) gives equation (5.92).

D.4 Checking the celestial map with triple light transforms

For symmetric traceless tensors O1 and O2, our OPE formula (5.139) relies on the
computation of the coefficient q(a)

δ,j defined by the triple light-transform in (5.135). For
more general representations of O1 and O2, our formula (5.149) requires computation
of the map defined by (5.148). We claim that this map is determined by the celestial
map (5.151). In this appendix, we will prove the celestial map for operators in
symmetric traceless tensor representations. We leave proving it for more general
representations for the future.

Let O1 and O2 be symmetric traceless tensors of spins J1 and J2, and consider the
three-point structures

〈0|O1(X1, Z1)O2(X2, Z2)O(X0, Z0)|0〉(a) . (D.57)

For simplicity, we consider the case with O in a symmetric traceless tensor represen-
tation, (∆, J = J1 + J2− 1, λ = •), as well. Then, the relevant three-point structures
were classified in [192]. In embedding space, we can use the following basis of tensor
structures:

〈0|O1(X1, Z1)O2(X2, Z2)O(X0, Z0)|0〉(a) =

∏
i(−2Vi)

mi
∏

i<j(−2Hij)
nij

X
τ1+τ2−τ0

2
12 X

τ2+τ0−τ1
2

20 X
τ0+τ1−τ2

2
01

, (D.58)
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where i, j = 0, 1, 2, τ i = ∆i +Ji and the basis index (a) is determined by six numbers
{mi, nij} satisfying

mi +
∑
j 6=i

nij = Ji. (D.59)

Recall that Xij ≡ −2Xi ·Xj. The building blocks for the structures are [192]

Xij ≡ −2Xi ·Xj,

Vi,jk ≡
Zi ·Xj Xi ·Xk − Zi ·Xk Xi ·Xj

Xj ·Xk

,

Hij ≡ −2 (Zi · Zj Xi ·Xj − Zi ·Xj Zj ·Xi) . (D.60)

For brevity, we define Vi ≡ Vi,jk for {i, j, k} in cyclic order. We have shown in [214]
that

〈0|O2L[O]O1|0〉(a) = (−2V0)m0

∏
i<j

(−2Hij)
nij 〈0|O′2L[φ]O′1|0〉(a

′) . (D.61)

The new structure 〈0|O′2φO′1|0〉(a
′) is the unique one that has

n′ij = 0, m′0 = 0, m′1 = m1, m′2 = m2 . (D.62)

The new formal operators O′i have spin J ′i = mi and dimension ∆′i = ∆i + Ji −mi.
(Note that τ i = τ ′i.) The formal scalar φ has dimension ∆φ = τ . The light-transform
of the structure (a′) is [214]

〈0|O′2L[φ]O′1|0〉(a
′)

= L(O′1O′2[φ])
(−2V0)1−τ (−2V1)m1(−2V2)m2

(−X02)
τL+τ2−τ1

2 X
τL+τ1−τ2

2
01 X

τ1+τ2−τL
2

12

× f
(
− H01

2V0V1

,− H02

2V0V2

)
((2 > 0) ≈ 1), (D.63)

where τL = (1− J) + (1−∆) = 2− τ ,

L(O′1O′2[φ]) = −2πi
Γ(∆φ − 1)

Γ(
∆φ+τ ′1−τ ′2

2
)Γ(

∆φ−τ ′1+τ ′2
2

)
, (D.64)

and

f(x, y) = F2(τ − 1;−m1,−m2; 1
2
(τ + τ ′1 − τ ′2), 1

2
(τ − τ ′1 + τ ′2);x, y) . (D.65)
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F2 is the Appell hypergeometric function

F2(α; β, β′; γ, γ′;x, y) ≡
∞∑
k=0

∞∑
l=0

(α)k+l(β)k(β
′)l

k!l!(γ)k(γ′)l
xkyl . (D.66)

Now, we’d like to specialize X0 = (1, 0, 0) and compute the remaining light transforms
L−[O1](X∞, Z1) and L+[O2](X∞, Z2).

〈0|L+[O2](X∞, Z2)L[O](X0, Z0)L−[O1](X∞, Z1)|0〉(a)

vol SO(1, 1)

=
1

vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1(2V0)m0

∏
i<j

(−2Hij)
nij 〈O′1L[φ]O′2〉(a

′)

=
1

vol SO(1, 1)

∫ ∞
0

dα2

∫ 0

−∞
dα1

∏
i<j

(−2Hij)
nij L(O′1O′2[φ])

× (2V0)1−τ+m0(2V1)m1(2V2)m2

(−X02)
τL+τ1−τ2

2 X
τL+τ2−τ1

2
01 X

τ1+τ2−τL
2

12

f

(
− H01

2V0V1

,− H02

2V0V2

)
. (D.67)

Inside the integral, the light-transform instructs us to replace

X1 → Z1 − α1X∞ = (0,−α1, z1)

X2 → Z2 − α2X∞ = (0,−α2, z2)

Z1,2 → −X∞ = (0,−1,~0) (D.68)

where Zi = (0, 0, zi), and accordingly,

V1 = −z1 · z2

α2

V2 =
z1 · z2

α1

V0 =
α2z1 · z0 − α1z2 · z0

2z1 · z2

H01 = z0 · z1

H02 = z0 · z2

H12 = 0. (D.69)

Since H12 = 0, only structures with n12 = 0 will survive. In that case, the selection
rule J = J1 + J2 − 1 implies

m0 = m1 +m2 − 1. (D.70)
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Expanding the Appell F2 sum, we evaluate the integral for each term;∫ ∞
0

dα2

∫ 0

−∞
dα1

(−2H01)J1−m1+k(−2H02)J2−m2+l(2V0)1−τ+m0−k−l(2V1)m1−k(2V2)m2−l

(−X02)
τL+τ1−τ2

2 X
τL+τ2−τ1

2
01 X

τ1+τ2−τL
2

12

=
zk+J1−m1

01 zl+J2−m2
02

z
τ1+τ2−τ

2
12

∫ ∞
0

dα2

∫ 0

−∞
dα1

(α2z01 − α1z02) 1−τ−k−l+m0

α
τL−τ1+τ2

2
−k+m1

2 (−α1)
τL+τ1−τ2

2
−l+m2

=
Γ( δ+δ12

2
+ J1 −m1 + k)Γ( δ+δ21

2
+ J2 −m2 + l)

Γ(δ + J −m0 + k + l)

(∫ ∞
0

dα2

α2

)
〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉.

(D.71)

Combining with the remaining factors, we have
〈0|L+[O2](X∞, Z2)L[O](X0, Z0)L−[O1](X∞, Z1)|0〉(a)

vol SO(1, 1)
= q

(a)
δ,0 〈Pδ1(z1)Pδ2(z2)Pδ(z0)〉

(D.72)

with

q
(a)
δ,0 = −2πi δn12,0

(δ + J −m0)m0

( δ+δ1−δ2
2

+ J1 −m1)m2( δ+δ2−δ1
2

+ J2 −m2)m1

×
∞∑

k,l=0

1

k! l!

(−m1)k(−m2)l(δ + J)k+l(
δ+δ1−δ2

2
+ J1 −m1)k(

δ+δ2−δ1
2

+ J2 −m2)l

(δ + J −m0)k+l(
δ+δ1−δ2

2
+ J1 −m1 +m2)k(

δ+δ2−δ1
2

+ J2 −m2 +m1)l
.

(D.73)

Quite remarkably, this sum completely simplifies, yielding a pair of Kronecker delta
functions. Finally, we have

q
(a)
δ,0 = −2πiδn12,0

(δ + J −m0)m0

( δ+δ1−δ2
2

+ J1 −m1)m2( δ+δ2−δ1
2

+ J2 −m2)m1

δm1,0 δm2,0

= −2πi
1

δ + J
δn12,0 δm1,0 δm2,0 . (D.74)

Recalling that

rδ,0 = − 2πi

δ + J
, (D.75)

the OPE differential on the celestial sphere is given by

D(a)
δ,0 (z1, z2, ∂z2) =

q
(a)
δ,0

rδ,0
Cδ,0 = δn12,0 δm1,0 δm2,0 Cδ,0 . (D.76)

In other words, the differential is Cδ,0 if (a) is the structure

(a) = {m0,m1,m2, n01, n02, n12} = {−1, 0, 0, J1, J2, 0} (D.77)

proportional to

V −1
0 HJ1

01H
J2
02 , (D.78)

and zero otherwise. This precisely agrees with the celestial map (5.151).
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D.5 Swapping the integral and t-channel sum in the inversion formula

We would like to argue that

C±(∆, J) =
∑
∆′,J ′

p∆′,J ′B±(∆, J ; ∆′, J ′) (D.79)

is a convergent sum, where B±(∆, J ; ∆′, J ′) is the Lorentzian inversion of a single
t-channel block, and we have J > J0 and ∆ = d

2
+ iν. We can argue for this using

the Fubini-Tonelli theorem. The theorem implies that we can exchange the sum over
∆′, J ′ and the integral over z, z in the Lorentzian inversion formula if the result after
replacing each term with its absolute value is finite:∫ 1

0

∫ 1

0

dzdz
|z − z|d−2

(zz)d
|GJ+d−1,∆−d+1(z, z)|

×
∑
∆′,J ′

∣∣∣∣∣p∆′,J ′dDisct

[(
zz

(1− z)(1− z)

)∆φ

G∆′,J ′(1− z, 1− z)

]∣∣∣∣∣ <∞. (D.80)

Because p∆′,J ′ is positive and dDisct[. . . ] is as well, we can write this condition more
simply as∫ 1

0

∫ 1

0

dzdz
|z − z|d−2

(zz)d
|GJ+d−1,∆−d+1(z, z)|dDisct[g](z, z) <∞. (D.81)

Note that the Lorentzian inversion formula converges for J > J0 and ∆ = d
2

+ iν

on the principal series [25, 26]. Thus, it suffices to bound the integral (D.81) by a
constant times the Lorentzian inversion formula with ∆ = d

2
(which is on the principal

series). Specifically, we will argue that

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d

2
−d+1(z, z)

< const, z, z ∈ [0, 1], ∆ =
d

2
+ iν, (D.82)

where the constant can depend on ∆ and J , but is independent of z, z. Because the
functions in the numerator and denominator of (D.82) are smooth and nonzero in the
interior of the square, it suffices to argue that their ratio is bounded in a neighborhood
of the boundary of the square. By symmetry, it suffices to consider z ≤ z.

When z � z, the ratio takes the form

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d

2
−d+1(z, z)

∼

∣∣∣z J−∆+2d−2
2 k∆+J(z)

∣∣∣
z
J− d2 +2d−2

2 k d
2

+J(z)
=
|k∆+J(z)|
k d

2
+J(z)

, z � z (D.83)
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where kβ(x) is an SL2 block. The above ratio is equal to 1 (and hence bounded) when
z = 0. Since both SL2 blocks behave like log(1− z) near z = 1, their ratio is bounded
near z = 1 as well. Because the numerator and denominator are smooth and nonzero
for 0 < z < 1, the ratio (D.83) is bounded by a z-independent constant.

In the Regge limit z, z � 1 with z/z fixed, (D.82) is

|GJ+d−1,∆−d+1(z, z)|
GJ+d−1, d

2
−d+1(z, z)

∼ |C∆−d+1(x)|
C d

2
−d+1(x)

, z, z � 1, (D.84)

where CJ(x) is a Gegenbauer function and x = z+z
2
√
zz

ranges from 1 to ∞. Again, by
examining the limits x→ 1 and x→∞, one finds that the above ratio is bounded.

The z → 1 limit of a conformal block can be studied by solving the Casimir equation.
Again in this case, one finds that the numerator and denominator of (D.82) both
behave as the same function of 1− z, times functions of z whose ratios are bounded.
This completes our argument.

D.6 Contact terms at ζ = 1 in N = 4 SYM

In the main text, we described how one can recover the contact terms in the energy-
energy correlator FE(ζ) in N = 4 SYM at ζ = 0 and ζ = 1 using Ward identi-
ties (5.233) and (5.234). We were also able to recover the ζ = 0 contact terms using
the light-ray OPE formula (5.227). In this appendix we explain how the ζ = 1 contact
terms can be obtained by another independent argument.

In the back-to-back region, the energy-energy correlator in N = 4 SYM takes the
following form [182, 219, 254]:

FE(ζ) ∼ζ→1
H(a)

8y

∫ ∞
0

e
−1

2
Γcusp(a) log2

(
b2

yb20

)
−Γcoll(a) log

(
b2

yb20

)
bJ0(b)db, (D.85)

where y = 1− ζ, b0 = 2e−γE , Γcusp(a) is the cusp anomalous dimension and Γcoll(a) is
the so-called collinear anomalous dimension. Both Γcusp(a) and Γcoll(a) are known at
any coupling a from integrability [324]. Note that starting from four loops there are
non-planar corrections to Γcusp(a) and Γcoll(a) which we do not write here [325–327].

At weak coupling, Γcusp(a) is given by the following expansion [328]:

Γcusp(a) = a− 1
2
ζ2a

2 +
11

8
ζ4a

3 −
(

1

8
ζ2

3 +
219

64
ζ6

)
a4 + · · · , (D.86)

Γcoll(a) is the collinear anomalous dimension given by [329, 330]

Γcoll(a) = −3
2
ζ3a

2 + (1
2
ζ2ζ3 + 5

2
ζ5)a3 −

(
21

16
ζ3ζ4 +

5

8
ζ2ζ5 +

175

32
ζ7

)
a4 + · · · , (D.87)
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and H(a) is the so-called coefficient function given by4 [207, 219]

H(a) = 1− ζ2a+ 2ζ2
2a

2 +
(
−33

8
ζ3

2 − 1
4
ζ4ζ2 − 17

12
ζ2

3 + 1
64
ζ6

)
a3 +H4a

4 + · · · . (D.88)

The coefficient H4 is at present unknown.

At finite a, (D.85) is integrable near y = 0, and so does not have any contact terms.
It is possible that even at finite coupling there is an extra contact term that has
to be added to (D.85). We assume that this is not the case, and that there are no
contact terms at ζ = 1 at finite coupling. Under this assumption, we can therefore
obtain perturbative contact terms at ζ = 1 if we carefully expand (D.85) in powers
of a. Naïve expansion yields terms of the form y−1 logk y. In our conventions for the
distributional part of FE(ζ), we interpret these terms as [y−1 log y]1, which satisfy∫ 1

0

dζ

[
logk(1− ζ)

1− ζ

]
1

= 0. (D.89)

Therefore, to determine the coefficient of δ(y) = δ(1 − ζ) in (D.85), it suffices to
integrate (D.85) from 0 to 1, and expand the result as a power series in a.

The y integral we need to perform is

Ia(b) =

∫ 1

0

dyy
−1+2Γcusp(a) log b

b0
+Γcoll(a)

e−
1
2

Γcusp(a) log2 y

= e
(2Γcusp(a) log b

b0
+Γcoll(a))2

2Γcusp(a)

√
πerfc

(
2Γcusp(a) log b

b0
+Γcoll(a)√

2Γcusp(a)

)
√

2Γcusp(a)
. (D.90)

This can be expanded in powers of a, with b-dependence entering as powers log b
b0
.

Note that naïvely this function has an expansion in powers of
√
a. However, all

non-integer powers of a will go away after performing b-integral.

We now want to perform the a-expansion of the integral∫ ∞
0

Ia(b)e−2Γcoll(a) log b
b0 e
−2Γcusp(a) log2 b

b0 bJ0(b)db. (D.91)

The product

Ia(b)e−2Γcoll(a) log b
b0 (D.92)

can be expanded in a with coefficients polynomial in log b
b0
. This is legal since the

integral still converges after the expansion. This means that it suffices to compute
4We thank Grisha Korchemsky for sharing the coefficient of a3 in H(a) with us.
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the integrals ∫ ∞
0

logk b
b0
e
−2Γcusp log2 b

b0 bJ0(b)db, (D.93)

where we treat Γcusp as arbitrary parameter. It suffices only to compute this in the
case k = 0, 1 since to get higher k, we can simply take derivatives with respect to
Γcusp. Let us consider the case k = 0; k = 1 is completely analogous. We first
integrate by parts,∫ ∞

0

e
−2Γcusp log2 b

b0 bJ0(b)db =

∫ ∞
0

e
−2Γcusp log2 b

b0 d(bJ1(b))

= 4Γcusp

∫ ∞
0

log b
b0
e
−2Γcusp log2 b

b0 J1(b)db. (D.94)

Now the integral converges even for Γcusp = 0, so we can expand the exponential since
Γcusp ∈ O(a). This way, we reduce to integrals∫ ∞

0

logk b
b0
J1(b)db =

(
∂kν

∫ ∞
0

(
b
b0

)ν
J1(b)db

)
ν=0

=

(
∂kν

(
2
b0

)ν Γ(1 + ν
2
)

Γ(1− ν
2
)

)
ν=0

.

(D.95)

Using this algorithm we find that the coefficient c1 in front of δ(1− ζ) is given by

c1 =
H(a)

8
(2− 4[Γcoll(a)Γcusp(a)ζ3 + 5

3
Γcusp(a)3ζ2

3 ]

+ 12ζ5[Γcoll(a)Γcusp(a)2 + 14
3

Γcusp(a)4ζ3] +O(a5))

=
H(a)

8

(
2− 2

3
ζ2

3a
3 + (28ζ3ζ5 + 5ζ2ζ

2
3 )a4 +O(a5)

)
= 1

4
− 1

4
ζ2a+ 1

2
ζ2

2a
2 −

(
197π6

40320
+

7ζ2
3

16

)
a3 + 1

144

(
17π2ζ2

3 + 504ζ3ζ5 + 36H4

)
a4 +O(a5).

(D.96)
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A p p e n d i x E

APPENDICES TO CHAPTER 6

Appendices to chapter 6 are attached here.

E.1 Action and supersymmetry transformations of MSYM2

E.1.1 Dimensional reduction from 10d to 2d

The Lagrangian for the N = (8, 8) super Yang-Mills theory in 2 dimensions can be
obtained by dimensionally reducing the 10 dimensional N = 1 SYM action∫

d10xTr

(
−1

4
FMNF

MN +
i

2
ΘΓMDMΘ

)
(E.1)

where

DM = ∂M + ig[AM , ·] (E.2)

FMN =
1

ig
[DM , DN ] = ∂MAN − ∂NAM + ig[AM , AN ]. (E.3)

The dimensionally reduced Lagrangian is [286, 289]

L = Tr

(
−1

2
(DµX

i)2 + iχT /Dχ− 1

4
F 2
µν +

g2

4
[X i, Xj]2 −

√
2gχTLγi[X

i, χR]

)
. (E.4)

We will summarize the derivation presented in [289], but adopt a “mostly plus” metric
signature in contrast. We use the 10 dimensional metric

gMN = ηµν ⊕ δij (E.5)

where µ, ν = 0, 9, and i, j = 1, 2, . . . , 8, and ηµν = diag(−1,+1). We can write the fol-
lowing 10d Majorana-basis (purely imaginary) gamma matrices satisfying {ΓM ,ΓN} =

−2gMN

Γ0 = σ2 ⊗ I16

Γi = iσ1 ⊗ γi

Γ9 = iσ1 ⊗ γ9,

γi =

(
0 βi

βTi 0

)
,

γ9 =

(
I8 0

0 −I8

)
,

(E.6)

where the σa are the usual Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (E.7)
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and the γi are 16×16 SO(8) gamma matrices of the reducible 8s⊕8c representation,
with the βi satisfying {βi, βTj } = 2δij. The 10d spinor Θ is Majorana, and has real
components in the Majorana basis we have chosen above, thus we can identify the
charge conjugation matrix C = −Γ0. Θ also satisfies the Weyl condition Θ = Γ11Θ,
where Γ11 = Γ0 · · ·Γ9 = σ3 ⊗ I16 is the 10d chirality matrix, which allows us to
write Θ = (χ, 0)T . The 8d chirality matrix γ9 allows us to decompose further as
χ = (χL, χR).

Dimensionally reducing on the 1, 2, . . . , 8 directions, we define scalars X i := Ai, and
obtain the action

SMSYM2 =

∫
dx2Tr

(
−1

2
(DµX

i)2 +
i

2
χTL(D0 +D9)χL +

i

2
χTR(D0 −D9)χR −

1

4
F 2
µν

+
g2

4
[X i, Xj]2 − gχαLγiαβ̇[X i, χβ̇R]

)
.

(E.8)

We are interested in the theory with gauge group U(N) or SU(N). The scalars X i

and the fermions χ = (χαL, χ
α̇
R) are in the adjoint of the gauge group. The Lagrangian

manifestly possesses a Spin(8) R-symmetry, interpreted as rotations in the 8 trans-
verse directions, under which the scalars X i and the spinors χαL, and χα̇R transform in
the 8v, 8s, and 8c representations, respectively.

The supersymmetry transformations can be deduced from the 10d SYM transforma-
tions [331]:

δAM = iεΓMΘ (E.9)

δΘ = ΓMNF
MNε. (E.10)

After dimensional reduction, they are given by

δAµ = iεTΓ0Γµχ (E.11)

δX i = iεαLγ
i
αα̇χ

α̇
R + iεα̇Rγ

i
α̇αχ

α
L (E.12)

δχαL = 4c

[
(+F09δαβ −

ig

2
[Xi, Xj]γ

i
αρ̇γ

j
ρ̇β)εβL + (D0 −D9)Xiγ

i
αβ̇
εβ̇R

]
(E.13)

δχα̇R = 4c

[
(−F09δα̇β̇ −

ig

2
[Xi, Xj]γ

i
α̇ργ

j

ρβ̇
)εβ̇R + (D0 +D9)Xiγ

i
α̇βε

β
L

]
(E.14)

where c is the constant in ΓMN = c[ΓM ,ΓN ], and is determined as c = 1
4
by imposing

ΓMNΓMN = −2
(

10
2

)
. In the U(N) + B theory, one should replace F09 with the

generalized field strength F09.
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E.1.2 Supersymmetry subalgebras and superspace formulation

For the purpose of computing the index of MSYM2, it is convenient to express fields
and the Lagrangian in N = (0, 2) or N = (2, 2) superspace. This can be done by
considering the representations of the fields and supersymmetries under the Spin(8)

R-symmetry. The 16 supersymmetry generators (εα̇L, ε
α
R) are in the representation

8c⊕8s of Spin(8). A choice of a N = (0, 2) subalgebra of the supersymmetry algebra
is generated by ε±R := ε1

R±iε2
R corresponding to a pair of antiparallel weights of the 8s

representation. Letting {±ei} ⊂ h∗ be the weights of the fundamental representation
8v, we pick the two weights ±r of 8s where

r :=
1

2
(e1 + e2 + e3 + e4). (E.15)

Note that ±r are eigenvalues for the action of the Cartan generator J = 1
2
(K1 +

K2 +K3 +K4) on the weightspaces of ±r, where ei(Kk) = δik. With this choice, the
Spin(8) representations reduce as

8s → 1+1 ⊕ 60 ⊕ 1−1

8c → 4− 1
2
⊕ 4+ 1

2

8v → 4+ 1
2
⊕ 4− 1

2

(E.16)

under the decomposition U(1)R×SU(4) ∼= Spin(2)×Spin(6) ⊂ Spin(8), where U(1)R

is generated by J . The supersymmetry generators are now (εα̇L, ε
α
R) = (εAL , (εL)A, ε

±
R, ε

AB
R ),

where A,B = 1, 2, 3, 4 are SU(4) indices for the fundamental representation 4. The
field content of the theory is organized into N = (0, 2) superfields as in (6.73) in the
main text, with the Lagrangian given by the standard D-terms and the superpotential
(6.74).

To get an N = (2, 2) subalgebra, one can to pick l := 1
2
(e1 + e2 + e3 − e4). Then, the

vector and axial R-symmetries are determined by

RV = r + l = e1 + e2 + e3, RA = r − l = e4. (E.17)

This choice further decomposes the R-symmetry to U(1)R×U(1)L×SU(3) ⊂ Spin(8),
with the representations decomposing as

8s → 1+1,+ 1
2
⊕ 30,+ 1

2
⊕ 30,− 1

2
⊕ 1−1,− 1

2

8c → 3− 1
2
,0 ⊕ 1− 1

2
,−1 ⊕ 3+ 1

2
,0 ⊕ 1+ 1

2
,+1

8v → 3+ 1
2
,+ 1

2
⊕ 1+ 1

2
,− 1

2
⊕ 3− 1

2
,− 1

2
⊕ 1− 1

2
,+ 1

2

(E.18)
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The supersymmetries are generated by (ε±L , ε
A
L , (εL)A, ε

±
R, ε

A
R, (εR)A). In N = (2, 2)

superspace, the SU(3) singlets correspond to the components of the vector multiplet
Σ̃ and its conjugate, and the 3⊕ 3 correspond to the compontents of the chiral fields
Φ̃B and its conjugate, with the superpotential as in (6.75).
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