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Abstract 
 
Interacting with our environment involves multiple sensory-motor circuits throughout the 

human brain. How do these circuits transform sensory inputs into discernable motor 

actions? Our understanding of this question is critical to behavioral neuroscience and 

implementation of brain-machine interfaces (BMIs). In this thesis, we present 

experiments that explore the contributions of human cerebral cortex (parietal, premotor, 

and primary somatosensory cortices) to sensory-motor transformations. First, we provide 

evidence in support of primary somatosensory cortex (S1) encoding cognitive motor 

signals. Next, we describe a series of experiments that explore contributions of posterior 

parietal cortex (PPC) to the internal state estimate. Neural correlates for the state estimate 

are found in PPC; furthermore, it is found to be encoded with respect to gaze position. 

Finally, we investigate reference frame encoding in regions throughout human cortex 

(AIP, SMG, PMv, and S1) during an imagined reaching task. We find the greatest 

heterogeneity among brain regions during movement planning, which collapses to a 

largely single reference frame representation (hand-centered) during execution of the 

imagined reach. However, this result is dependent upon brain region. These findings 

yield new perspectives and evidence on the organization of sensory-motor 

transformations and the location the human brain’s internal estimate of the body’s state.   
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1. Introduction 
 
From the eye-hand coordination of a skilled drummer’s rhythm to the effortless pouring 

of freshly brewed coffee into a mug, we have come to observe movements as smooth, 

accurate, and coordinated actions that interact and adapt to the ever-changing dynamics 

of our environment. The smooth and unconscious nature of our interaction with 

surroundings conceals the true complexity of the underlying neural processes. These 

seemingly effortless actions are driven by a complex electrical symphony built of 

intricate networks of neurons located in a multitude of sensory and motor brain areas. 

The electrical potentials emerging across these areas produce precise and fluid 

representations of the surrounding sensory environment, intended movement, and internal 

simulation of these dynamics.  

 

 

An action or behavior that interacts with our surroundings is a dynamic link between our 

sensory world and our internal motor intentions. The coupling of sensory and motor are 

partially characterized by the following: 1) sensory information that encodes the 

spatiotemporal location of a movement goal, and 2) an estimate of the current state of the 

body, limb, and relevant effector. For example, when you visually identify a desired 

object in space and subsequently engage the musculature required to reach for it, your 

brain must integrate sensory information about the location of the target with information 

about the position of your body and effector (e.g., hand) in order to generate a smooth 

sequence of movements toward the goal. 
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These characteristics of sensory-motor control are discussed in Chapters 2, 3, and 4. In 

this chapter we will provide background on the pertinent literature with respect to the 

following topics: 1) a brief history and introduction to brain machine interfaces, 2) 

coordinate frame (i.e. reference frame) transformations, and 3) neural evidence in non-

human primates (NHPs) of internal state estimates. These will build a groundwork upon 

which Chapter two (Neural Correlates of Cognitive Motor Signals in Primary Sensory 

Cortex.) and four (Diverse Reference Frame Representations Across Human Cortex) will 

build upon. In Chapter three (Neural Correlates of the Internal State Estimate in Human 

Posterior Parietal Cortex), we will provide single-unit evidence of an internal state 

estimate of limb position in the posterior parietal cortex (PPC) of an adult human, which 

to the best of our knowledge is the first human single unit evidence to show that PPC 

encodes an internal state estimate. 

 

1.1 Background 
 

1.1.1. Brain Machine Interfaces 
 
In 1924, a psychiatrist named Dr. Hans Berger arguably made the first giant leap towards 

how we try to understand the brains function. His discovery of electroencephalography 

(EEG) was just the beginning and it would take almost half a century (1976) until Dr. 

Jacques Vidal at UCLA published his seminal paper “Real-time detection of brain events 

in EEG.” Vidal and colleagues went on to show the first evidence that they could detect 

and classify individual evoked responses with reliability, and furthermore coined the term 

brain machine interface (BMI). In essence, what Dr. Vidal had shown was the realization 
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that by recording from the brain he and his team could utilize brain signals effectively 

enough to control a cursor through a two-dimensional maze (Vidal, 1973; Wolpaw and 

Wolpaw, 2012).  

 
 
 
The annual incidence of spinal cord injury (SCI) is estimated to be 40 cases per million 

population in the United States, approximately 12,500 new SCI cases per year. These 

cases exclude those who die at the scene of the accident (National Spinal Cord Injury 

Statistical Center, 2015). Unfortunately, many high-level spinal cord injuries result in 

tetraplegia, that is, the total or partial paralysis of all four limbs and torso as well as loss 

of sensation below the level of injury. Per consequence, many tetraplegic patients are 

unable to perform many activities of daily living (ADL), such as eating and bathing. 

Fortunately, recent advances in neuroprosthetics and brain-machine interfaces (BMIs) 

have helped propel the translation of nearly a half century’s worth of NHP BMI work to 

human clinical trials in tetraplegic participants. While BMIs have numerous potential 

applications, the scientific community has identified that enabling direct brain-machine 

communication for tetraplegic patients would have a significant impact on both the 

personal and financial aspects of SCI patients’ lives: the long term aim of such research is 

to provide autonomy for patients to perform ADLs.  

 

 

Prior to the initiation of the first intracortical BMI clinical trials (Hochberg et al., 2006) 

the field was built upon decades of NHP research. Early evidence began to accumulate in 

the late 1960s. An initial set of experiments completed by Eberhard E. Fetz showed that 
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NHPs reliably modulated single neurons when given visual feedback of an analog signal 

correlated to their spiking activity, in an operant conditioning paradigm (Fetz et al., 

1969). This fortuitous finding came while Fetz and colleagues were trying to determine 

the motor analog to sensory receptive fields, wherein it was established that many of the 

operantly rewarded responses were associated with active limb movements (Fetz and 

Baker, 1973). As the rewarded unit was continuously driven by the animal for a reward, 

the associated movements became more discrete and often dropped out entirely, further 

adding that the central volitional drive on cells can be modulated independent of 

peripheral input (Fetz, 2007). These findings along with a series of other impressive 

demonstrations of neural control set the foundation for the field now referred to as brain-

machine interfaces (BMIs) (Wolpaw and Wolpaw, 2012).  

 

 

Brain-machine interfacing (BMI) refers to a wide array of techniques and applications 

that all share the characteristic of using signals directly from the brain to control an 

external device and/or using electrical or magnetic stimulation methods to “write” 

information to the brain. Interfaces technologies can be invasive or noninvasive; thus, the 

application of different recording techniques are often decided by technical and surgical 

constraints. Examples of recording methods that measure neuronal electrical potentials, 

either directly or indirectly, include electroencephalography (EEG), electrocorticography 

(ECoG), and intracortical microelectorde arrays (MEAs). EEG measures electrical 

potentials at the scalp that reflect the activity of billions of neurons whose summed 

potential has propagated through tissue and bone in a process called volume conduction. 
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ECoG is an invasive technique that involves implanting an array of electrodes underneath 

the skull, now capable of measuring the local field potentials of more specific cortical 

neuron populations. MEAs measure local field and single unit activity by implanting 

small 4 mm x 4 mm intracortical arrays in carefully localized brain areas of interest. 

There are also methods of measuring brain activity indirectly through neurovascular 

coupling for the purpose of a BMI control signal. These techniques include functional 

magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and 

functional ultrasound (fUS). For more detail on these methods, we direct the reader to 

Wolpaw and Wolpaw, 2012. In clinical practice, the number of BMI applications and 

recording techniques are still narrow. The most commonly implanted BMI is the cochlear 

implant, where auditory sensory information is conveyed to the user via electrical 

impulses from a medical device that replaces the function of a dysfunctional inner ear 

(House, 1976). More recently, BMI applications aimed to replace (Collinger et al., 2013) 

or assist (Norman et al., 2018) motor function in people that are severely paralyzed due to 

neurological injury. For example, BMIs have been shown to be capable of controlling 

cursors, robotic limbs, and functional electrical stimulation (FES) of the user’s own body 

(Aflalo et al., 2015; Ajiboye et al., 2017; Chaudhary et al., 2015; Collinger et al., 2013; 

Hochberg et al., 2006). As a result, BMI technology and science has garnered increasing 

attention within academic, private, and public domains.  

 

 

As the number of independent neural signals we can record from grows, much BMI 

research has turned its focus on the interpretation of those signals, leveraging analysis 
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techniques from various fields including control theory, information theory, and artificial 

intelligence. BMI-neuroprosthetic applications, e.g. control of robotic limbs and 

computer cursors, has primarily leveraged the dynamics of neural firing rates in cortical 

regions where the subjects’ motor intentions are hypothesized to be encoded. The link 

between firing rates of various motor related cortices has been established with half a 

century of scientific progress demonstrating that these populations can accurately predict 

overt motor intentions. This was expanded upon by Georgopoulous et al. (1982) with a 

demonstration that a simple linear sum of the preferred directions of neurons with 

overlapping tuning curves could predict arm movements. These findings, along with 

others in other cortical regions, helped propel the field forward toward extracting 

movement parameters from populations of neurons. 

 

 

Traditionally, a BMI model is fit during a training period, wherein the brains 

representations of movements are recorded in parallel with the subject mimicking or 

attempting an instructed action. During this time the subject has no overt control and is 

rather attempting or imagining the movement so as to create a training set of data with 

stereotyped actions. For example, a subject will be asked to concurrently attempt the 

same movements as a predetermined cursor trajectory is displayed on the screen. The 

neural data from this training set will then be used by a neural encoder to relate the neural 

activity that with a given label or movement direction. These models are then used during 

a testing period to decode neural information in an attempt to predict the user’s 

movement intention in real time. Neural encoders and decoders are composed of a 
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multitude of varying linear and non-linear methods, a fast-growing and important topic 

outside the scope of this work. For recent work, we refer the reader to (Glaser et al.; Kao 

et al., 2015; Pandarinath et al., 2018).  

 

 

Neural decoding in a BMI context leverages the electrical potentials of many neurons 

firing as the basis set upon which predictions on the world are made. Hence, it is 

important to know what kinds of information can be and are encoded in a given brain 

region within the context of the desired BMI. For example, researchers have shown that 

activity in motor and parietal cortices could be used to drive movements in a BMI context 

(Aflalo et al., 2015; Ethier et al., 2012; Hochberg et al., 2006; Kim et al., 2008; Serruya 

et al., 2002). In contrast, others have shown that location based information could be 

predicted by leveraging the information encoded in hippocampal cells (Davidson et al., 

2009; Zhang et al., 1998). Therefore, decoding information from the brain is not only 

useful in the context of BMIs but also for determining the amount of information the 

brain encodes as it pertains to the external world (i.e., behavioral variables, movements, 

sensations, etc.) and how the available information is differentially parcellated across 

brain areas (Hernández et al., 2010; van der Meer et al., 2010; Quiroga et al., 2006; 

Sugata et al., 2016). 

 

 

One of the more commonly utilized areas for BMI control is primary motor cortex (M1). 

M1 receives inputs from premotor, primary somatosensory, and parietal areas. M1 itself 
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encodes low-level motor output and is a final common pathway for the cortical control of 

movement. Its primary downstream projections are to the spinal cord. As a result, M1 

produces reliable, low-dimensional signals that correlate well with motor states such as 

velocity. These qualities make it desirable for decoding movement states and dynamics 

(Georgopoulos et al., 1982; Hochberg et al., 2006; Holdefer and Miller, 2002; Morrow 

and Miller, 2003; Russo et al., 2018), hence its utility in BMIs for spatial cursor or 

robotic limb control. Furthermore, another advantage to recording from M1 is its 

topographical representation of motor intent. That is, M1 is divided into separate regions 

controlling the movement of different muscles and body parts as described in the earliest 

work by Penfield (Penfield and Boldrey, 1937). Briefly, leg movements are largely 

elicited on the dorsal medial aspect of M1 and progress to shoulder elbow, wrist, and 

hand movements more laterally and ventrally, followed by the digits, face, and mouth. 

This topographical organization enables a spatially intuitive map on which BMIs can be 

designed. Furthermore, later work went on to show that the densest connections were 

found to be to the hand area of M1. This is to say, M1 is often-though to be an ideal 

location for MEA placement for the implementation of BMI for spatial motor control 

tasks (He et al., 1993; Nuyujukian et al., 2018; Rathelot and Strick, 2006). 

 

 

Another area that has been used for BMI purposes is the posterior parietal cortex (PPC). 

The PPC in contrast to M1 encodes higher level intentions and plays a pivotal role in the 

synergy required for sensory-motor transformations in the brain (Aflalo et al., 2015; 

Andersen and Cui, 2009; Andersen et al., 2010; Baldauf et al., 2008; Zhang et al., 2017). 
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The encoding of higher level intentions in PPC along with the ability to decode 

trajectories make PPC another proven area upon which human BMIs have been 

successfully implemented (Aflalo et al., 2015; Revechkis et al., 2014). We expand on the 

posterior parietal cortex and its subdivisions in a later section. 

 

 

It is clear that the specialization of cortical areas is pivotal to the implementation of a 

BMI.  However, another important aspect of the application of BMIs is the modality of 

neural code that is analyzed. Most neurons use action potentials (APs) to transmit 

information. This information is a product of electrical potentials reaching a threshold, at 

which time a “spike” is seen and the potential travels down the neurons axon towards the 

synapses of all its downstream post-synaptic neurons. The rate at which a series of APs 

occur in a single neuron is one example of neural encoding that researchers leverage. 

This is called a “firing rate” (FR). Electrodes are also capable of sensing the summed 

activity of large populations of neighboring neurons, the “local field potential (LFP). 

While FRs and LFPs are in the time domain, researchers have shown that neural codes in 

the frequency domain can also be used to robustly decode information as it pertains to a 

task (Adrian and Zotterman, 1926; Butts et al., 2007; Singh and Levy, 2017; Stein et al., 

2005; VanRullen et al., 2005). Much of the techniques that try to determine electrical 

potential changes in the brain parenchyma utilize signals that pertain to the AP. 

Interestingly, with the advent of functional magnetic resonance imaging (fMRI) 

researchers found that measuring blood oxygenation levels in regions of the brain is also 

a practical application for indirectly determining localized neuronal activity. While the 
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signals associated with hemodynamic methods such as fMRI do not retain the 

spatiotemporal qualities of invasive electrophysiological methods, they have the 

advantage of being noninvasive and capable of large-structure or whole-brain imaging. 

 

Another factor, briefly discussed above, in consideration of BMI recording techniques is 

invasive versus noninvasive strategies and the required spatial and temporal resolutions 

desired (Figure 1.1). Invasive strategies for recording neural activity such as 

microelectrode arrays (MEAs) and electrocorticography (ECoG) are yet unmatched for 

spatiotemporal resolution. MEAs are implanted directly in superficial cortical areas and 

allow for direct recording of single neuronal action potentials as well as local field 

potentials (LFPs) from the summed electrical currents of surrounding neurons. ECoG 

uses similar recording strategies as EEG; however, due to the invasive nature of ECoG 

resolution is increased due to the fact that electrodes are placed underneath the cranium, 

 

Figure 1.1 Different recording modalities and their associated resolutions, 
invasiveness, and method for recording brain activity.  
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yielding greater spatial resolution when compared to EEG. Substantial improvements in 

the spatial resolution of ECoG can be achieved with the use of closely spaced subdural 

grids and strips of electrodes yielding < 5 mm2 resolution (Buzsáki et al., 2012). Given 

the above regarding the techniques that utilize electrophysiology more recent 

implementations of MEAs and ECoG have been shown to reliably be useful for the 

implementation of different BMIs ranging from decoding motor imagery with MEAs in 

tetraplegic human subjects and decoding speech in humans with high density ECoG 

signals (Aflalo et al., 2015; Chartier et al., 2018; Hochberg et al., 2006).  

 

In contrast to the invasive techniques discussed above, EEG, being the oldest of the 

recording modalities, is the most widely used recording modality; however, it is limited 

by the distorting and attenuating effects of the tissues and bone that electrical potentials 

must travel through. Consequentially, single neuronal firing is highly unlikely to be found 

using this modality, rather the recorded signal from a single electrode more closely 

relates to a lower resolution (smoothed) version of the LFP in an area about 10 cm2 

(Buzsáki et al., 2012). Modalities for recording neural activity that utilize hemodynamics 

as a proxy for neural activity have the advantage of being more non-invasive and 

sacrificing spatio-temporal resolution (BOLD response and temporal limitations) 

(Baumann et al., 2010). However, one advantage of fMRI and more recent methods like 

function ultrasound (fUS) is the greater field of view, allowing for in some cases whole 

brain imaging that can be of advantage when desiring cortico-cortical interactions 

(Wander et al., 2016). Given the technical limitations of different recording modalities it 

is clear that more invasive strategies afford greater resolution. Until technological 
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advancements improve this tradeoff it is something that researchers must weigh heavily 

when determining the desired BMI implementation. 

 

1.1.1 Reference Frames 
 
 
As you are reading this, imagine you momentarily look away and reach for your bottled 

water. After taking a sip, you place the bottle back and continue reading. After some 

time, you reach again for your bottled water while you continue reading. This time you 

do not shift your gaze to the bottle. Our ability to complete such a task may not seem a 

significant one. While both reaches were to the same location in space, the image of the 

bottle on your retina was different, the latter being in your periphery. While the reach 

itself can be thought of a vector that starts at the location of your hand and ends at the 

bottle, the brain must still transform the retinotopic (sensory) coordinates of the bottle to 

the explicit muscle (motor) based coordinates that will yield the appropriate reach. In this 

section, we aim to answer the question: How are these robust transformations between 

multiple coordinates executed at the neural level?  

 

 

Our brain performs a remarkable number of subconscious coordinate transformations to 

enable smooth interactions with our environment (Andersen and Cui, 2009; Chivukula et 

al., 2019). In reaching for the bottle in the above example, the brain determines the 

appropriate axes to represent in space the configuration of the arm (effector) and the 

position of the cup (object) to bring one to the other. How does the brain reconstruct the 

external world and relate it to the body? At a minimum the brain is integrating three 
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different signals: proprioceptive information, visual information, and motor feedback. 

Understanding the coordinate transformations that the brain intrinsically computes in the 

process of motor control is essential in eventually utilizing cortical neural signals for 

BMI applications. This is vital as algorithms used in BMIs must know what behavioral 

effectors modulate neural activity in order to yield the best control.  

 

 

Single neuron data from both humans and NHPs suggest that spatial locations are 

represented in multiple reference frames and can vary within and across sensory 

modalities (Avillac et al., 2005; McGuire and Sabes, 2009, 2011). For instance, visual 

stimuli can be encoded with respect to the eye or the head, and tactile stimuli may 

likewise be encoded with respect to the eyes or body parts (e.g., hands) (Buneo et al., 

2002; Pesaran et al., 2006b, 2010). There appear to be anatomically defined, regional 

preferences for the coordinate frames utilized. Both visual and auditory stimuli are 

encoded in a common gaze-centered reference frame by neurons in most regions of the 

PRR, but in hand-centered coordinates by area 5d (Andersen and Cui, 2009; Crawford et 

al., 2011; Bremner and Andersen, 2012). However, a  recent growing body of evidence is 

suggestive of gradients of representations including mixed or intermediate reference 

frames being used throughout the motor system (Batista et al., 2007; Chang and Snyder, 

2010; Colby and Duhamel, 1996; McGuire and Sabes, 2011; Pesaran et al., 2006). An 

explanation as to why a distribution of reference frames may exist is postulated to be due 

to a reduction in planning variability (McGuire and Sabes, 2009). Moreover, reference 

frames can dynamically evolve even in the same population of neurons with changing 
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behavioral demands, ensuring that the most relevant postural and spatial information is 

encoded at each behavioral stage(Bremner and Andersen, 2014; Chang and Snyder, 2010; 

Chang et al., 2009). 

 

 

The process of converting sensory stimuli into motor commands (sensory-motor 

transformation) has historically been postulated to occur through the remapping of 

disparate modalities into a common reference frame(Avillac et al., 2005). Neurons in 

distinct brain areas were predicted to have receptive fields (RFs) with positions invariant 

of reference frame(Duhamel et al., 1997). However, multiple multisensory areas (such as 

the superior colliculus) demonstrate partially shifting RFs(Pouget and Snyder, 2000; 

Trotter and Celebrini, 1999). For instance, when an eye movement is executed, the neural 

representation of spatial location for eye centered RFs must update. Although these 

representations change with eye movement, they do so by less than the change in eye 

position, which suggests, and indeed requires, a shift in the RF itself. These findings also 

extend to auditory RFs for the same neural units (Pouget et al., 2002). Moreover, the 

amplitude of the neural response may be modulated by eye position, creating a 

phenomenon referred to as a “gain field” (Andersen et al., 1985; Pouget and Snyder, 

2000).  

 

 

The multiple modalities and nuances of reference frames across brain areas and even at 

the individual neuron level suggests that we do not yet fully understand how these 
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reference frames are maintained, transformed, and integrated. Several hypotheses have 

been put forward to unify reference frame neural encoding (Chivukula et al., 2019). In 

one such hypothesis, a mixture of reference frames appears to be heterogeneously 

distributed around the brain. This may explain partial shifts in RFs, and gain fields 

(Pouget et al., 2002). Another, more recent concept, mixed selectivity, is increasingly 

recognized as fundamental to the coding and implementation of brain functions (Rigotti 

et al., 2013). Mixed selectivity dictates that neurons behave differently in different 

contexts, belonging to different ensembles that encode explicit but highly context-

dependent information (Fusi et al., 2016). The common neural substrate may provide a 

basis for the transfer of learning: motor skills acquired through one ensemble may be 

recruited by others (Zhang et al., 2017). This provides an alternative viewpoint for gain 

fields and multiple reference frames; a single neuronal population may encode many 

types of information in a context dependent manner. A direct consequence of this is that 

overlapping activity at the population level may afford the brain significant 

computational savings through shared resources, such as different views of the object, 

different starting configurations of the effector, even information from different brain 

areas (Fusi et al., 2016; Zhang et al., 2017). Within the framework of mixed selectivity, 

neurons can greatly enhance the diversity and dimensionality of neural representations 

that can be encoded by a subset of neurons (Rigotti et al., 2013). This has important 

implications for cortical neuroprosthetics, foremost amongst them that large volumes of 

data may be extracted from cortical signals derived from strategic neuronal applications. 

For example, PPC encodes rich, high-level cognitive processing and may thus serve as 

one such highly-informative cortical brain region for BMI and neuroprosthetics (Aflalo et 
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al., 2015; Cohen and Andersen, 2004; Zipser and Andersen, 1988). In Chapters 2 and 4 

we investigate reference frame representations and the common modes of tuning found 

across areas during a delayed cognitive reaching task. 

 

1.1.2 Internal Models 
 
 
 Our lives are filled with situations upon which we must act faster than our senses allow 

us. The sensation of catching a falling cup, a major league pitcher throwing a curveball 

for a strike, or serving a tennis ball with spin, our lives are filled with these scenarios in 

which we must evaluate and integrate information from our bodies and environment to 

compensate for physically inescapable sensory delays. A growing body of literature has 

begun to amount evidence in support of the theory that the brain utilizes internal models 

during controlled movements, such as those mentioned above.  

 

 

Internal models utilize outgoing motor signals and sensory feedback to internally 

simulate the dynamics of behavior during motor control (Shadmehr and Krakauer, 2008; 

Wolpert and Ghahramani, 2000; Wolpert et al., 1995a, 1995b). Two categories of internal 

models exist: forward and inverse. Forward models, predict future states of the motor 

system given the current motor command without the associated sensory input (Jordan 

and Rumelhart, 1992; Wolpert and Ghahramani, 2000; Wolpert et al., 1995a). Thus, the 

primary function of a forward model is to predict the relationship between our motor 

actions and their sensory outcomes. Conversely, an inverse model does the opposite. 

Inverse models predict the relationship between a current and desired sensory outcome 
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and the motor actions that will elicit the desired state (for more on inverse models see 

(Gomi and Kawato, 1996; Katayama and Kawato, 1993)). Given the above, 

computational models suggest that to do this one must maintain an internal state estimate 

via efferent motor commands and afferent sensory input. This internal state estimate is 

stored and integrated further as more motor and sensory information is collected. 

Integrating this information over time produces a much more stable internal estimate that 

effectively reduces the noise from motor signals and delayed sensory information.  

 

To do this the brain must maintain an internal state estimate of the body and the PPC has 

substantially gained evermore evidence that this is where it is stored. The PPC is thought 

to be the location where this estimate is stored due to the location of this region. PPC 

associates multiple sensory modalities and subsequently transforms the association into a 

representation for guiding motor actions (Andersen and Buneo, 2002; Andersen et al., 

1997; Colby, 1998). Furthermore, the PPC sits at an intersection of the dorsal visual 

pathway of the brain where it receives efferent and afferent motor and sensory signals 

making it a strong candidate for integrating the internal state estimate with information 

regarding these incoming signals (Desmurget and Grafton, 2000a; Goodale, 1998; Inoue 

et al., 1998). 

 

1.1.3 State estimation in PPC 
 
 
Strong evidence in support of this theory was published in the seminal work published by 

Rushworth and colleagues followed by Wolpert and colleagues in NHPs and a case report 

in subject PJ. Rushworth and colleagues demonstrated a dissociation between the two 
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areas of the PPC, SPL, and IPL, wherein they found that reaches made in the dark (using 

proprioception) were dysfunctional when lesions to the SPL were present, but not IPL. In 

contrast, reaches made in the light (using vision) were dysfunctional when lesions in the 

IPL were present, and not the SPL (Rushworth et al., 1997) . Furthermore, Wolpert and 

colleagues followed this with their reporting of patient PJ’s inability to maintain an 

internal representation (Wolpert et al., 1998). Patient PJ suffered from an extra-axial cyst 

encroaching upon the cortex of the left superior parietal lobe. She presented with a 

progressively worsening symptoms in her right arm. The symptoms initially began with 

jerking of her right arm and two years later was marked by an increasingly uncertain 

sense of arm position if her vision of the arm was occluded or out of view. If vision of the 

arm was not present she reported that over time under a static load the arm disappeared. 

Lastly, these findings shared share distinct parallels with the studies done by Rushworth 
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and colleagues in so far that she could maintain constant and stable representations of the 

hand if she was given visual feedback. 

 

PPC is known to be involved in not just the specification of a movement plan but also the 

control of ongoing movements. Perhaps some of the better evidence in support of this can 

be found in the studies done by Grea et al. (2002) where they observed an inability for a 

patient with bilateral parietal lesions to reach toward a target if it jumped to a new 

location during the movement to the initial target location. The patient continued to the 

initial location as if the target had not been displaced (Gréa et al., 2002). Similarly, TMS 

studies in subjects with normal parietal function show similar deficits in reaching when 

given a pulse of stimulation as the reach begins to the initial target (Desmurget et al., 

 
Figure 1.2 Wolpert and colleagues schematic of sensorimotor integration. The 
observer (dashed line) monitors and integrates afferent and efferent sensory and 
motor information with recursive updates of the stored internal state estimate of 
the effector. (Wolpert et al., 1998) 
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1999). These studies suggest that either integration of novel sensory information, as it 

regards to the target jumping during the reach, is affected by a lesion or TMS stimulation. 

These findings fit in well with Wolpert and colleagues’ findings that suggest PPC serves 

as an observer shaping the internal state estimate of the arm as it is recursively updated. 

An inability to maintain this estimate would lead to deficits in monitoring the state of the 

effector and correcting ongoing movements, as was found in the studies mentioned here.  

 

 

State prediction can also be used in imagined movements. Imagined movements which 

are found to share the same time course as attempted movements despite the lack of 

sensory feedback is suggestive of the brain maintaining a state estimate. Interestingly, 

Sirigu and colleagues found that patients with PPC lesions had significantly different 

imagined time courses for the same attempted movements (imagined movements were 

usually faster) (Sirigu et al., 1996). In contrast patients with motor cortex lesions were 

found not to have differences in these same attempted and imagined movement despite 

difficulty with the attempted movements. The production of imagined and attempted 

movements differ in that imagined movements rely solely on the prediction and must 

change the weight of incoming sensory feedback to zero (Shadmehr and Krakauer, 2008). 

Deficits in adjusting the weight of sensory feedback would result in deficient estimates of 

imagined movements. These findings when put together can be explained by the same 

observer model described by Wolpert and colleagues (Fig 1.2). The most recent 

physiological evidence in NHPs of state estimates being stored and updated in PPC show 

that neural data on average occurs at zero lag with respect to behavior indicated a 
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possible link with the internal model (Mulliken et al., 2008). In Chapter 3 we investigate 

and provide to the best of our knowledge the first single unit human evidence that 

internal state estimates are maintained and stored in PPC of a tetraplegic subject during a 

cognitive reaching task.  
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2. Neural Correlates of Cognitive Motor Signals in Primary 
Sensory Cortex 

 
 

2.1 Introduction 
 

Somatosensory cortex (S1) is largely studied and understood in its role as the primary 

sensory region for processing somatic sensory signals from the body. However, recent 

work highlights a more direct role in motor production: S1 neurons can respond to 

passive movements alone, active movements alone, or both (London and Miller, 2013; 

Nelson, 1987) and neurons become activated prior to movement initiation. S1 neurons 

project to the spinal cord (Rathelot and Strick, 2006; Rathelot et al., 2017), and electrical 

or optical stimulation of S1 elicits motor movements (Matyas et al., 2010; Penfield and 

Boldrey, 1937; Welker et al., 1957). Taken together, these results indicate a direct role of 

S1 in the production motor behavior. However, in many of these studies it is hard to 

disentangle the degree to which neural signals may reflect motor variables per se or 

aspects of sensory processing.  

 
2.2 Methods 
 
2.2.1 Subject Information 
 
 

A 32-year-old male tetraplegic subject was recruited who suffered a complete C5/C6 

spinal cord injury and consented 1.5 years’ post-injury to participate in a clinical trial of a 

BMI system consisting of intracortical stimulation and recording. Subject FG has residual 

sensation in the anterior lateral portions of the upper limbs and residual sensation with no 
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discriminatory ability in the posterior radial section of the upper arm and forearm that is 

also accompanied with paresthesia. All sensations and motor ability are consistent with 

the level of the sustained injury. The subject remains intact of all other motor control and 

sensations above the injury other than those noted above. The study and all procedures 

were approved by the California Institute of Technology (Caltech), Institutional Review 

Boards (IRB) of the University of Southern California (USC), and Rancho Los Amigos 

National Rehabilitation Hospital (RLA). Surgical implantation took place at Keck 

Hospital of USC. All future study sessions with this subject discussed here were run at 

RLA. 

 

2.2.2 Surgical Planning and Implantation 

 

Surgical planning for subject FG followed the protocols described in (Aflalo et al., 2015; 

Salas et al., 2018). Based off these experiments analysis of the fMRI data was done in 

order to determine and identify the areas to implant. Subject FG was implanted in PMv, 

SMG, and S1. All areas except S1 were implanted with 96-channel Neuroport 

microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT). S1 was implanted 

with two 7x7 microelectrode arrays (48 channels per array). 

 

2.2.3 Reference Frame Task 

 

Experimental sessions with subject FG were performed at Rancho Los Amigos National 

Rehabilitation Center (RLA). The subject performed the task in a dim room with his 
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motorized wheelchair seated so that the task screen covered approximately 45 degrees of 

visual angle. The subject was asked to minimize any and all head movements throughout 

the task and was placed in front of the screen with a researcher monitoring his head 

movements. Subject FG was seated in his motorized wheel chair throughout the duration 

of the task. At the beginning of each trial the subject was cued to fixate their gaze and 

imagine their right hand (dominant and contralateral to recording arrays) at one of four 

locations marked by a circle and hand image, respectively. After 3 seconds a circle was 

shown above the cued eye and hand positions for 1.25 seconds wherein the subject 

continued to hold their gaze and imagined hand fixations. A change in the color of the 

fixation marker was the cue for the subject to begin his imagined reach to the target 

above. The subject was asked to make an imagined reach and maintain the imagined 

ending position (target location) until the execution epoch was over (2 seconds). The 

execution epoch was then followed by an inter-trial interval (ITI) of 2 seconds.  

 

Each run consisted a total of 64 trials for each unique combination of the four eye, hand, 

and target positions. This task was run 3 times (192 total trials, 3 repetitions) 

consecutively with a 2-5 minute break between each run. All imagined reaches were 

asked to be made within the frontal plane of the subject. Each session recording was 

separated out by at least a week. 

 

2.2.4 Neural Recordings 
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Initial placement of all arrays was predetermined based on pre-operative fMRI imaging, 

placement may have differed if the initial location was occluded by vasculature seen 

during the operation (Aflalo et al., 2015). Neural activity from each array was amplified, 

digitized, and recorded at 30 KHz using the Neuroport neural signal processor (NSP). 

The Neuroport system, composed of the arrays and NSP, has received FDA clearance for 

less than 30 days of acute recordings. However, for the purposes of this study we 

received FDA IDE clearance for extending the duration of the implant (IDE number: 

G130100).  

 

Thresholds at -4.5 times the root-mean-square were set after high pass filtering the full 

bandwidth signal sampled, using the Blackrock Central software suite (Blackrock 

Microsystems). Waveforms collected consisted of 48 samples, 10 prior to threshold 

crossing and 38 samples after. These recordings were then sorted (both single and multi-

unit) using k-mediods clustering using the gap criteria to estimate the total number of 

clusters (Tibshirani et al., 2001; Zhang et al., 2017). Offline sorting was then reviewed 

and adjusted as needed following standard practice (Harris et al., 2016). On average 

across 4 days of recordings in S1 we analyzed 163 sorted units per session. All sorting 

was done prior to analysis and blind to channel or unit responses found during the task. 

Further spike sorting methods can be found in Zhang et al., 2017. 

 

2.2.5 Eye Tracking 
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Subject FG’s eye position was monitored using a 120 Hz binocular eye tracking system 

(Pupil Labs, Berlin, Germany). If the subject’s gaze shifted off the cued eye position the 

task was terminated and ran again ensuring that gaze position remained fixed to the cued 

eye position. Eye positions were synced to the task and allowed online determination of 

eye position. 

 

2.2.6 Linear Analysis for Tuning 

 

We defined a unit as selectively tuned if the unit displayed a significant tuning based on a 

linear regression analysis. We created a matrix that consisted of indicator variables for 

each unique condition separated by either a single behavioral variable or pair, similar to 

(Zhang et al., 2017). There were 64 unique conditions (4 eye, hand, and target positions) 

indicator variables. Firing rate was estimated as a linear combination of these indicator 

variables: FR is firing rate, Xc is the vector indicator variable for condition c, ßc is the 

estimated scalar weighting coefficient for condition c, and ß0 is the intercept. 

 

𝐹𝑅 = 	%𝛽𝑐𝑋𝑐 + 𝛽𝑜
+

 

 

Windows were 750 ms in duration and window start times were stepped every 500 ms. 

This was done for all units in each sliding window. The significance of each fit was 

determined using the p-value of the F-test of overall significance for the linear analysis (p 
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< 0.05, FDR-corrected). Units that were found to be significant in this analysis were then 

determined to be tuned and further analyzed in the reference frame analysis. 

 

2.2.7 Reference Frame Analysis: Gradient Analysis 

 

For every individual unit three trials per condition were analyzed. Trials were 

subsequently aligned to the cue execution epoch (0 s). The delay epoch is defined as -1 s 

to -0.25 s. Gradient analysis was used to determine the degree of modulation each 

behavioral variable had on the firing rate of the unit when comparing across each unique 

combination of variable pairs (Hand-Gaze (HG), Target-Gaze (TG), and Target-Hand 

(TH)) (Bremner and Andersen, 2012; Buneo et al., 2002; Peña and Konishi, 2001; 

Pesaran et al., 2006). For each tuned unit we created a four by four matrix (response 

matrix) representing each unique behavioral variable position and its associated mean 

firing rate. We averaged across trials and the third variable. Gradients were determined 

using the gradient function in Matlab 2019a (Mathworks). For each gradient a resultant 

angle and length are generated indicating the modulation by each variable and its strength 

(Fig. 2.3). However, as we can see in Fig 2.3A often times the gradients show a 

symmetrical pattern that would result in cancellation of symmetrical angles. To avoid 

this, we double each angle in the matrix and represent each angle from 0º to ±180º. 

Therefore, the summed resultant angle is represented by 0º for left-right patterns of 

gradients, ±180º for up-down patterns of gradients, and -90º for gradients pointed at the 

diagonal as seen in Fig 2.3A. The summed resultant angle and length, however, cannot be 

mapped directly onto the response matrix, and thus we have notated the appropriate 
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variable and combinations of variables to help with interpretation. For example, in figure 

2.3A hand only (H) modulation would be found at ±180º, gaze only (G) modulation is 

seen at 0º, H+G at 90º, and H-G at -90º. Therefore, we can use the angle of the resultant 

angle as a proxy for overall orientation bias for a variable or variable pair. 

 

2.2.8 Dimensionality Reduction 

 

We used population level dimensionality reduction analyses to determine the most 

common modes of reference frame encoding over time in a brain area. The firing rates for 

all units, trial averages, and time points were arranged in a matrix (unique trials by unit) 

and reduced down using principal component analysis (Fig. 2.4). For the first 20 

components we then ran a gradient analysis for each time window. Time windows were 

100 ms in duration and response field angles and lengths were acquired from the start of 

the cue hand-eye epoch to the end of the cue execution epoch. Analyses done with larger 

steps showed similar results. Next, we converted all resultant angles and lengths into 

complex numbers to account for both variables (resultant angle and length) and utilized 

complex principal component analysis to identify the most common mode of tuning. 

Previous work on geophysical data sets have successfully used similar methods for 

identifying dynamics (Horel, 1984). A matrix of each complex value for each time point 

and each component was then created and reduced to find the components that explained 

the greatest variance. Furthermore, we used parallel analysis to determine which 

components from this dimensionality reduction were significant (Fig 2.6) (Franklin et al., 

1995). 
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2.3 Results 
 
 
To understand if S1 processes reach intentions in the complete absence of sensation or 

expected sensations we recorded single unit activity from multi-channel arrays implanted 

in the sensory cortex (Fig 2.1B) of a 34-year-old tetraplegic male (FG) during a delayed 

imagine reaching paradigm. The arrays were implanted in S1 as part of an ongoing 

clinical trial in which we recently showed that microstimulation delivered through these 

same multi-channel arrays evokes localized and naturalistic cutaneous and proprioceptive 

sensations (Salas et al., 2018). Our paradigm (Fig 2.1A), adapted from previous non-

human primate studies (Bremner and Andersen, 2012; Pesaran et al., 2006), 

systematically manipulated fixation, imagined initial hand, and reach target locations at 

distinct points in the trial. Importantly, the subject is capable of moving his eyes and thus 

direct his gaze to the fixation targets. However, the paralyzed subject did not move his 

arm, but instead used motor imagery to imagine moving his hand to the initial hand cue 

location and subsequently move to the final target location. This design allowed us to 

one, understand how activity in S1 relates to storing information about arm location, 

movement plans, and movement execution; and two, characterize the reference frame of 

these signals, e.g., whether movement variables are coded relative to the initial imagined 

position of the hand, relative to the eyes, or relative to the body or world. 
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Figure 2.1 Behavioral Task, Electrode Location, and Tuning Throughout Task. a) 
Delayed reference frame reaching task with four gaze, hand, and target positions. 
Geometry of the reference frame task (bottom-right). Cued hand, eye, and target 
locations varied across four positions (top-right, green) b) Normalized brain map 
(left) and brain of subject FG (right) showing location of implanted microelectrode 
array (red) and Brodmann Area 1 (blue). c) Percent of units in population tuned (p 
< 0.05, FDR corrected). Units were considered tuned from the beta value of the 
linear fit, and subsequently corrected for multiple comparisons. 
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We performed a sliding window analysis to understand whether and when neurons in 

sensory cortex become active for our cognitive motor task: for each unit, we used a linear 

model with interactions to explain firing rate as a function of fixation, initial imagined 

hand, and target locations (Fig 2.2A, p < 0.05 FDR corrected for number of units per time 

slice, window size: 750 ms, step size: 500 ms). We find negligible selectivity following 

cueing of the hand and eye positions indicating no neural coding for true eye position or 

the imagined position of the arm. We also find negligible selectivity following target 

presentation indicating no encoding of the spatial location of the target or planning 

activity related to the upcoming motor action. Finally, we found that a significant 

proportion of the population was selective following the instruction to initiate the 

imagined reach. Thus, sensory cortex is engaged during a cognitive motor task despite 

the absence of overt movement and sensory feedback, but only during imagined 

movement of the limb. 
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We found that nearly all the neurons selective during the movement execution phase 

coded movement as the reach vector: the direction of imagined movement of the hand. In 

other words, selective units coded the location of the target relative to the initial imagined 

hand position (or, by symmetry, hand position relative to the target). This result was 

found using a gradient analysis pioneered in NHPs (Buneo et al., 2002): neural responses 

for each unit were organized into response matrices where the firing rate is coded for 

each hand, eye, and target position. A gradient field is then computed which describes 

how the firing rate is sensitive to changes in the behavior variables. Finally, the resultant, 

or vector sum, of the gradient field summarizes the net effect of behavioral manipulations 

which can be used to determine whether neural activity encodes target position relative to 

gaze position (T-G), the target position relative to the hand (T-H), the hand position 

relative to gaze direction (H-G), or some combination of these vectors (see Fig 2.3). A 

representative response matrix for a neuron coding the position of the target relative to 

Figure 2.2 Example S1 Unit, Gradient Analysis, and Distribution of Gradients of Tuned 
Units. a, Peristimulus time histograms for all 64 conditions (3 trials; mean ± standard 
deviation). Each of the 16 subplots shows the response of the unit to a particular 
combination of eye, hand, and gaze position. b, matrices and gradient resultant orientations 
for the cell shown in 2A during the execution epoch (Fig 2A, green). c, Histograms show 
response field orientations for the population of tuned units. 
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the hand and the population distribution of response gradients is shown in Figure 2.2B 

 
Figure 2.3 Idealized Unit Responses Displaying Eye-Hand-Target Tuning for Three 
Different Reference Frames. a) Eye-centered unit encoding the target location in eye 
coordinates. b) Hand-centered unit encoding the target location in hand centered coordinates. 
c) Relative-position unit whose responses are modeled as the combination of eye-centered, 
hand-centered, and relative eye-hand position tuning. The response field orientations for all 
units are shown for each of the three variable pairs along the horizontal beneath each 
response matrix. Gradient analysis, and the subsequently derived resultant angle (±180º and 
0º point left and right, respectively) and length, quantifies how firing rate responses can be 
attributed to each behavioral variable (HG, TG, and TH). 
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and C. Interestingly, despite no neural coding for imagined hand position prior to 

movement execution, our result indicates that the neural coding during the imagined 
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reach incorporates the internal estimate of hand position when computing the reach 

response. 

 

 
Figure 2.4 Graphical Illustration of Complex PCA Processing. The firing rates for 
all units, trial averages, and time points were arranged in a matrix (unique trials by 
unit) and reduced down using principal component analysis (top-left). For the first 20 
components we then ran a gradient analysis for each time window. Time windows 
were 100 ms in duration and response field angles and lengths were acquired from 
the start of the cue hand-eye epoch to the end of the cue execution epoch (top-right). 
Next, we converted all resultant angles and lengths into complex numbers to account 
for both variables (resultant angle and length) and utilized complex principal 
component analysis to identify the most common mode of tuning (bottom). 
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Single unit analysis shows that the population is dominated by units coding the reach 

vector. To verify that this interpretation is an adequate summary of S1 encoding, we used 

complex principal component analysis (cPCA) to characterize the full temporal dynamics 

of the reference frame of the population as a whole (Fig 2.4). The gradient analysis 

described above summarizes the sensitivity of a neuron to behavioral variables using the 

resultant of the gradient, a 2D vector that can be described by a length and angle. cPCA 

 
Figure 2.5 Dimensionality of population level reference frames from S1. a, Shows the most 
common mode of reference frame encoding and its temporal evolution across the population 
of units in S1. The first component (shown) was found to be the only component to be 
significant (p < 0.05; parallel analysis, Fig S3) 
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was used as it is capable of handling our situation where data samples for each 

observation are described by both a length and angle (Horel, 1984). We find that coding 

of the reach vector strengthens and peaks around 750 ms after the cue to execute the 

imagined reach (Figure 2.5). Further, only the first cPCA component was significant 

(parallel analysis (Franklin et al., 1995), α < 0.05, Figure 2.6). This suggests that reach 

coding in S1 is dominated by a single homogeneous representation of the reach vector 

exclusively during execution of the imagined reach. 

 

 
Figure 2.6 Parallel Analysis in S1. The red line shows the eigenvalues for the 95th 
percentile across each component for a randomized matrix. The blue line shows the 
eigenvalues from complex PCA. 
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2.4 Discussion 
 
 
We have shown the first single unit evidence that cognitive imagery of movements is 

represented in the primary somatosensory area of human cortex demonstrating S1 

neurons track motor intentions in the complete absence of sensation. Activity is restricted 

to the time of imagined execution with negligible activity while the subject must actively 

maintain the position of the limb in memory, maintain fixation at distinct spatial 

locations, and maintain movement plans. These results suggest that the role of S1 in 

motor production is restricted to the time of movement execution. Lastly, we show S1 

activity codes the reach vector, coding motor intention relative to the imagined position 

of the hand. These findings are important, as we show deafferented regions of S1 encode 

functional information that can be leveraged for future neuroprosthetic applications. 

Furthermore, a possible concern is that these results are unique to individuals who have 

lost their main peripheral input. However, recent findings from our lab and others have 

shown these representations are largely stable and reorganization does not result in the 

production of novel functional sensory representations (Flesher et al., 2016; Makin and 

Bensmaia, 2017; Salas et al., 2018). These results implicate a role of primary 

somatosensory cortex in cognitive imagery, and of S1 in motor production in the absence 

of sensation, and suggest that S1 may provide a source of control signals for future 

implementations of neural prosthetic systems.  
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3. Neural Correlates of the Internal State Estimate in 
Human Posterior Parietal Cortex 

 

3.1 Introduction 
 

The sensory information that informs movement, comes from a mixture of modalities, 

and is noisy, frequently incomplete, and delayed (Desmurget and Grafton 2000, 

Faisal, Selen et al. 2008, More and Donelan 2018). Increasing evidence suggests that 

the brain overcomes these limitations by utilizing an internal model or mental 

representation of the body and state of the world (McNamee and Wolpert 2018; 

Desmurget and Grafton, 2000; Miall and Wolpert, 1996). For example, the brain can 

use motor command signals to predict how the arm will move and therefore predict 

upcoming sensory states (Jordan and Rumelhart, 1992; Wolpert et al., 1995a). During 

movement, these predictions can compensate for sensory processing delays (Scott 

2016) which can have a destabilizing effect when sensory feedback is used to guide 

movement, and can ensure that motor output commands compensate for changing 

forces that occur during movement (Johansson, Riso et al. 1992, Flanagan and Wing 

1993). Such models may also be used before movement to prospectively simulate 

potential actions and thus understand their possible outcomes prior to committing to a 

specific action (Cisek and Kalaska 2004). This internal model of the state of the body 

is frequently called the state estimate and is related to concepts like the body schema.  
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The posterior parietal cortex (PPC) has been hypothesized to encode such a state 

estimate. The posterior parietal cortex is well-situated for this role as a functional 

interface between multi-modal sensory and motor representations (Jones and Powell 

1970, Mountcastle, Lynch et al. 1975). Regions of PPC have long been known to play a 

critical role in representing the state of the body (Graziano, Cooke et al. 2000, Graziano 

and Botvinick 2002, Ehrsson, Spence et al. 2004). Neural activity recorded in non-human 

primates during reaching is consistent with coding the state-estimate (Mulliken, 

Musallam et al. 2008) and the region has long been associated with visuomotor planning 

(Andersen and Buneo 2002). Lesions to PPC can disrupt an individual’s ability to 

maintain an internal estimate of the state of their bodies (Wolpert, Goodbody et al. 1998), 

while electrical stimulation can generate the perception of movement, although no such 

movement has occurred (Desmurget, Reilly et al. 2009). Transient inactivation of PPC 

using transcranial electrical stimulation during movement can impact error-correction in 

ways consistent with disruption of the state estimate (Desmurget, Epstein et al. 1999). 

However, there is little direct electrophysiological recording evidence for internal models 

in PPC as experiments are complicated; the variables of the state estimate are highly 

correlated with sensory input and motor output signals that are used to construct the 

internal estimate. In the most direct evidence to date Mulliken and Andersen found that 

neural data on average occurs at zero lag with respect to behavior indicated a possible 

link with the internal model (Mulliken et al., 2008). However, individual neurons covered 

the entire spectrum from delayed to anticipatory signals, leaving ambiguity as to whether 

units were encoding a state estimate as such, or simply mixtures of sensory and motor 

signals. 
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In an ideal world, we would want an experiment in which sensory and motor variables 

can be completely dissociated from the output of the internal model. The ability to 

measure changes in the internal estimate of limb state in the absence of sensory feedback 

would provide strong evidence for PPC encoding a state estimate. Here we adopt this 

approach in a tetraplegic human. Motor imagery has been proposed to be the 

manipulation of an internal state in the absence of overt movement. Here we ask whether 

an internal estimate of the position the limb is updated and maintained in a motor 

imagery task that controls for a variety of factors. The data comes from a single subject, 

participant NS. 

 
3.2 Methods 

 

3.2.1 Internal Model Task 

 

The subject was positioned so that the screen occupied approximately 25 degrees of 

visual angle. The task performed by the subject was a center-out imagined reaching task 

with systematic manipulation of the initial imagined arm configuration and eye fixation 

point. Figure 3.1B illustrates the behavioral paradigm. At the start of each trial, the 

subject was asked to fixate her eyes on a small red circle and imagine her hand at the 

location of a small icon of a hand. All possible combinations of four fixation and hand 

icon cues were tested for a total of 4x4=16 possible configurations. The subject was 
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given 1.75 seconds to fixate and use motor imagery to position her hand at the instructed 

cue locations. This 1.75 seconds time was determined based on the participant’s feedback 

as it gave her ample time to reach the target prior to the next task epoch. A dynamic 

white noise mask was then displayed for 2 seconds to extinguish the hand cue from the 

participant’s vision. Critically, during this masking epoch, there was no sensory 

information available to the subject about the location of the imagined hand position. The 

mask was then removed revealing the original cued hand position as well as the position 

of a spatial reach target. The reach target was displayed at one of four positions (up, 

down, left, or right) equidistant from the hand cue. The subject did not make any 

imagined movements during this target cue epoch. After a variable interval (1.25-1.75 

seconds, randomly sampled from a uniform distribution) the fixation point changed color 

instructing the subject to initiate an imagined reach to the cued target location. This 

epoch lasted for 2 seconds and the subject was asked to maintain the final endpoint 

location until the end of the epoch. For each possible unique combination of the fixation 

and starting hand location, we presented all four target positions Thus, in total, there were 

64 possible cue configurations (4 eye x 4 hand x 4 target positions). We performed two 

runs, each lasting approximately 11 minutes, in which each cue configuration was once 

with the order randomly determined. Our primary interest was in the pattern of neural 

activity during the masked interval prior to target presentation. Thus, we had 8 repetitions 

for each of the 16 hand and fixation locations. 

 

We chose the center-out configuration of reach targets for several reasons. As shown in 

the other chapters, we found that the same cortical population encoded the relative 
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position of the hand and target which is functionally equivalent to the direction of 

movement from the starting hand position to the target. Given previous studies showing 

that potential reach targets can be encoded in higher-order motor regions (Cisek and 

Kalaska 2010), we chose the center surround arrangement to ensure that initial hand 

position conveyed no information about potential reach direction and therefore implicit 

planning signals would not be correlated with initial hand position. In contrast, in the 

previous target arrangement, starting hand position was at least partially predictive of 

target direction due to the constraints of the monitor (e.g. for the far left starting hand 

position all movements were either upwards or to the right while for the far left hand 

position all movements were upward or towards the right.) Further, the inline 

arrangement is not optimal for a hand-target relative reference frame: the angular range 

of directions is relatively small, only targets above the starting hand positions were 

tested, the set of angles that are tested are hand position dependent (e.g. when the starting 

position is to the right, all movements are either upward or directed to the left), and 

direction is partially confounded with movement distance (e.g. when the hand is placed to 

the far right, the target to the far left is over three times the distance as the target directly 

above the hand.) Finally, the center-out arrangement also allowed us to compare coding 

for the relative position of the hand and eye with the relative coding for the hand and 

reach target (see below).  

 

3.2.2 Spatial Match-to-Sample Task 
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The spatial match-to-sample task was designed to be similar to the internal model task 

with several key modifications. As in the internal model task, the trial began with the 

presentation of a fixation cue and hand icon cue, each at one of four spatial locations. The 

spatial locations of the fixation and hand icon cues were identical to the internal model 

task. As in the internal model task, the subject was instructed to fixate the fixation cue; 

however, in the spatial match-to-sample task, the subject was instructed to simply 

remember the spatial location of the icon without any accompanying motor imagery. As 

above, all possible combinations of four fixation and hand icon cues were tested for a 

total of 16 possible configurations (4 eye x 4 hand), and as before the task epoch lasted 

1.75 seconds. The dynamic mask was then presented for 2 seconds. Following the 

dynamic mask the hand icon was presented for one second. For half the trials, the 

position of the icon was presented at the same spatial location as originally cued while for 

the other half of the trials, the position of the icon was moved from its original location to 

one of the other three possible locations (randomly selected from a uniform distribution). 

Finally, a response screen was presented and the subject verbally reported whether the 

position of the hand icon was the same before and after the dynamic masking stimulus. 

We collected eight repetitions of each unique hand and eye combination in a 

pseudorandom fashion (with each hand eye position tested once prior to repetition.) 

 

3.2.3 Behavioral Variable Tuning ANOVA 

 

We performed a sliding-window 4x4x4 ANOVA to quantify the percent of the neural 

population selective for hand, eye, and target position (4 unique positions per behavioral 
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variable) throughout the course of the trial. The sliding window of 500 ms was stepped 

every 250 ms seconds. We tested for main effects resulting in 3 p-values for each unit 

one for each behavioral variable (eye, hand, and target). The resulting p-value for each 

factor and time window was then used to visualize temporal tuning and dynamics. 

Testing for main effects provides limited insight into the nature of how the variables are 

encoded and thus we performed a reference frame analysis as described below. 

 

3.2.4 Linear Analysis for Tuning 

 

We defined a unit as selectively tuned if the unit displayed a significant tuning based on a 

linear regression analysis. We created a matrix that consisted of indicator variables for 

each unique condition separated by either a single behavioral variable or pair, similar to 

(Zhang et al., 2017). There were 64 unique conditions (4 eye, hand, and target positions) 

indicator variables. Firing rate was estimated as a linear combination of these indicator 

variables: FR is firing rate, Xc is the vector indicator variable for condition c, ßc is the 

estimated scalar weighting coefficient for condition c, and ß0 is the intercept. 

 

𝐹𝑅 = 	%𝛽𝑐𝑋𝑐 + 𝛽𝑜
+

 

 

Windows were 750 ms in duration and window start times were stepped every 500 ms. 

This was done for all units in each sliding window. Significance of each fit was 

determined using the p-value of the F-test of overall significance for the linear analysis (p 
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< 0.05, FDR-corrected). Units that were found to be significant in this analysis were then 

determined to be tuned and further analyzed in the reference frame analysis. 

 

3.2.5 Gradient Analysis 

 

Gradient analysis was used to determine the degree of modulation each behavioral 

variable had on the firing rate of a tuned unit from the linear analysis when comparing 

across each unique combination of variable pairs (Hand-Gaze (HG), Target-Gaze (TG), 

and Target-Hand (TH)) (Bremner and Andersen, 2012; Buneo et al., 2002; Peña and 

Konishi, 2001; Pesaran et al., 2006). For each tuned unit we created a four by four matrix 

(response matrix) representing each unique behavioral variable position and its associated 

mean firing rate. We averaged across trials for the third variable. Gradients were 

determined using the gradient function in Matlab 2018a (Mathworks). For each gradient, 

a resultant angle and length are generated indicating the modulation by each variable and 

its strength (Fig. 3.2A). However, as we can see in Fig 3.2A (right) often times the 

gradients show a symmetrical pattern that would result in cancellation of symmetrical 

angles. To avoid this, we double each angle in the matrix and represent each angle from 

0º to ±180º. Therefore, the summed resultant angle is represented by 0º for gradients 

oriented along the horizontal directions (Fig. 3.2A left panel), ±180º for gradients 

oriented along the vertical direction (Fig. 3.2A middle panel), and -90º for gradients 

oriented along the diagonal (Fig. 3.2A right panel). The summed resultant angle and 

length, however, cannot be mapped directly onto the response matrix; thus we have 

notated the appropriate variable and combinations of variables to help with interpretation. 
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Therefore, we can use the angle of the resultant angle as a proxy for overall orientation 

bias for a variable or variable pair. 

 

3.2.6 AUC Analysis 

 

We performed a receiver operating characteristic (ROC) analysis to quantify how well 

individual neurons encoded right from left eye positions and right from left target 

positions. We used average neural firing rate in the 750 ms window at the end of the 

masking phase for measuring neural responses to right and left eye positions relative to 

the hand and we used average neural firing rate in the 750 ms window at the end of the 

delay phase for measuring neural responses to right and left target positions relative to the 

hand. We used all trials where the eye or target was presented to the left and right of the 

hand position resulting in 16 trials per condition. For each unit we summarized the ROC 

by its area under the curve (AUC). Within our AUC analyses, values above 0.5 indicate 

that the cue presented to the right generated a larger response while a value below 0.5 

indicated that the cue to the left generated a larger response. For each unit, the AUC 

value for the eye comparison and target comparison were compared with a Pearson 

correlation to determine if there was any systematic correlation between these values.  

 

3.2.7 Population Decoder Analysis 

 

Using the same time windows and binning procedures as the above AUC analysis, we 

implemented a leave-one out cross-validation procedure to distinguish right from left 
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cues across the population of units recorded across all sessions: we trained a partialized 

least squares regression model to predict left versus right eye or target location from the 

population of neural activity recorded across all sessions using N-1 trials, where N is the 

total number of trials collected per condition type. The decoder was then applied to the 

held-out trial of the same condition type (e.g. if the decoder was trained on right and left 

eye position data, it was tested on the held-out eye position data) as well as the other 

condition type (e.g. the target data.) In this way we were able to measure how well the 

neural population was able to distinguish both within condition trials as well as how well 

the decoder generalized across conditions. In the decoder training, we used the labels of 

+1 and -1 for left versus right trials respectively. Thus, for each held out trial, the 

population response would lead to a scalar prediction. These values were saved and their 

histograms are shown in figure 3.4C. The distance between the distributions of the right 

and left predictions were quantified using the d-prime measure (𝑑- = ./01234.5673

8.:(./0123
< 4.5673

< )
). A 

permutation shuffle test was used to test whether the d-prime measure was significant. 

 

3.2.8 Cross-Hand Position Classification Analyses 

 

To understand the population similarity in coding of target position across hand positions 

we performed a cross-hand position decode analyses. Classification analyses was 

performed using linear discriminate analysis. For cross-hand position results, classifiers 

were trained within a given hand position and applied to the three alternate hand 

positions. All predictions across folds of the cross-validation procedure were used to 

compute decode accuracy. This enables us to understand how well the neural 
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representation of the different target locations generalize to a novel hand position when 

the definitions of the target positions are preserved across the two positions. The accuracy 

results were also organized based on the distance between hand positions. A linear 

regression model was trained to test for a systematic change in classification accuracy as 

a function of distance between the starting hand positions. 

 

3.3 Results 

 
We asked NS to perform a center-out imagined reaching task while systematically 

manipulating the initial imagined arm configuration and point of fixation (Figure 3.1B). 

Following an inter-trial interval, a fixation and hand position cue appeared at one of 4 

spatial locations and appeared in all pairwise combinations for a total of 16 possible hand 

and eye configurations. The patient’s control of gaze remained intact, and she was 

capable of fixating the fixation cue. However, due to NS’s level of injury, she is unable to 

move her arm and instead imagines her hand at the cued location without any 

accompanying body movements. We then presented a dynamic masking stimulus to 

extinguish the hand position cue. Critically, during this masking phase, there is no 

sensory (visual or proprioceptive) information related to the imagined position of the 

hand. The mask was then removed and a reach target was presented at one of four 

locations in a center-surround arrangement. Finally, the subject was instructed to imagine 

a movement starting from the imagined hand position out to the target. Note that during 

the masking phase, the subject must maintain her arm configuration in her mind, but there 

is no sensory signal that provides any information about the state of the limb nor are there 
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planning or movement related signals as the subsequent position of the target is unknown. 

Thus, we are able to test whether the neural population in PPC maintains an internal 

Figure 3.1 Schematic of Sensorimotor Integration, Task Design, and Tuning Across 
Epochs. a) Schematic model for sensorimotor integration process, and its relation to the 
state estimate. b) Timeline of center-out imagined reaching task. Cued hand, eye, and 
target (dashed lines) locations were varied across four positions (hand and eye, green 
panel). c) Percent of units with significant selectivity to hand, gaze, or target position 
across all task relevant epochs (mean ± 95% CI; 4x4x4 ANOVA). 
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representation of the imagined arm position in the absence of any sensory, motor 

 
Figure 3.2 Idealized, Sample, and Population Responses during the Mask Epoch. a) 
Matrices generated for each idealized unit showing FR during each unique combination 
of eye and hand position. Right: idealized responses of a unit encoding hand position in 
body-centered coordinates. Firing rate only varies with changes in eye position and is 
invariant to eye position. Middle: an idealized unit encoding the position of the eye, eye-
centered encoding. FR is modulated by changes in eye and not hand position. Right: 
encoding of the hand position relative to gaze (eye) position. In this idealized unit, peak 
responses for the hand are  found when the hand is located immediately to the right of 
where the subject is fixated (gaze/eye position). Resultant angles generated from 
gradient analysis (see Methods) shown below. 0º points to the right and ± 180º to the left 
b) Sample units from AIP showing HG encoding. The hand position is encoded relative 
to where the subject is looking. Left: peak responses are found when the subject is 
imagining their hand at the same location they’re fixating.  Right: peak responses when 
the hand position is located to the right of where the subject is fixating (HG tuning). c) 
Population histogram displays resultant angles for the population of tuned units during 
the mask epoch. Hand position is coded with respect to the eye, with very few examples 
of pure coding for eye or hand position.  
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execution, or planning signals (Figure 3.1A). 

 

 

We used sliding window analysis (4x4x4 ANOVA, 500 ms windows stepped at 250ms) 

to summarize selectivity for hand, eye, and target position throughout the course of a trial 

(Fig. 3.1C). Analyses was performed on 541 cells acquired over 5 sessions. We found 

coding for hand and eye position begins with the instructional cue and is preserved 

throughout the mask phase. Coding for target begins immediately upon target 

presentation and increases during the imagined reach. Of special importance and a 

majority of the focus for the current study is the coding of hand and eye position during 

the dynamic masking phase. 

 

To understand how hand position is coded during the mask phase, we used a gradient 

analysis (Buneo, Jarvis et al. 2002, Pesaran, Nelson et al. 2006): neural responses for all 

combinations of the 4 hand and 4 eye positions were organized into a neural response 

matrix that describes the firing rate at each of the hand/eye combinations. How firing 

changes across this response matrix determines how the unit codes hand and eye position. 

Examples of possible coding are shown in figure 3.2A. The left panel shows a 

hypothetical unit where neural firing changes systematically for changes in imagined 

hand position but is invariant to changes in eye position. This is characteristic of a neuron 

that codes hand position independent of the eye.  This could reflect body-centered coding 

of hand position and would require further investigation. The middle panel shows a 

hypothetical unit that changes systematically for changes in eye position but is invariant 
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to changes in hand position. This is characteristic of a neuron that codes eye position. 

Finally, the right panel shows a hypothetical unit where firing rate shifts in a systematic 

way with changes in hand and eye position consistent with encoding of the relative 

position of the hand and eye (e.g. in this case the neuron responds maximally when the 

hand is to the immediate right of the eye). To quantify how firing rate changes for 

changes of eye and hand position we take the gradient of the response matrix (see arrows 

within response matrix diagram). The full gradient can then be summarized by a resultant 

vector that describes the net direction of flow. The resultant vector gives a single value 

that summarizes the influence of one or both variables on firing rate. The resultants for 

these hypothetical example units are shown in the bottom row of figure 3.2A. Resultants 

are mapped so that net changes along the horizontal or hand direction maps to 0 degrees, 

changes along the vertical or eye position map to 180 degrees, and resultants aligned 

along this diagonal, for units that code the relative hand-eye position, are mapped to -90 

degrees. Together, this analyses allows us to characterize unit responses as tuned to eye 

position independent of hand position, tuned to hand position independent of eye 

position, or tuned to the position of the hand relative to the eye (HG). 

 

The results of this analysis for two representative example neurons are shown in figure 

3.2B. Each of these cells has a diagonal response vector resulting in a resultant around -

90 degrees, hence encoding hand position relative to eye position. The resultants of all 

the significant units in the population are plotted as a population histogram (Fig 3.2C).  

There is a clear peak around -90; or in other words, hand is coded relative to the eye with 

very few examples of pure coding for eye or hand position. The type of hand-eye 
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relationship we see here can either be coding in a reference frame like manner, coding the 

relative hand-eye position. 

 

 

During the masking phase, we found neurons are selective for the subject’s imagined 

hand position. Hand position is coded as the relative position of the hand and eye. At this 

point there is no sensory information related to hand position and no motor actions or 

intent. Thus, a preliminary interpretation is that the relative hand and eye neural coding is 

best understood as an internal state estimate that can be manipulated through motor 

imagery. However, an alternative explanation of the data is also possible. Neural coding 

may reflect more general spatial signals such as spatial attention or working memory. To 

address this issue, we had the participant perform a spatial match-to-sample task (5 

sessions, 519 recorded units). The task is shown in figure 3.3A. Following an inter-trial 

interval, a fixation cue and the hand icon cue were again presented at one of 4 spatial 

locations and appeared in all pairwise combinations for a total of 16 possible hand icon 

and eye configurations. However, the subject was asked to not imagine her hand at the 

 
Figure 3.3 Lack of Coding for Imagined Hand Position in Working Memory Task. 
a)  Timeline for a single trial of the working memory task. b) Quantification of 
percent of the population found to be tuned during the last second of the mask 
epoch during the center-out imagined reaching and working memory tasks (p < 
0.05, Chi-squared test). 
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icon but instead to simply remember the position of the icon. The dynamic mask was then 

presented. Following the dynamic mask, the icon was again shown. However, on 50% of 

trials, the position of the icon was moved from its initial presentation location to one of 

the other 3 possible positions (randomly selected from a uniform distribution.) Finally, a 

response screen was presented and the subject reported whether the position of the mask 

icon before and after the dynamic masking stimulus were at the same location. Thus the 

visual elements of the task up through the masking phase as well as the duration of the 

task phases where identical in the two tasks, and in both tasks the position of the cue was 

behaviorally relevant and necessary for successful task completion. The primary 

difference was whether the subject was asked to maintain their imagined arm position at 

the cue or simply remember the spatial location of the cue. We analyzed the last second 

of the mask phase using a categorical regression model and found significant selectivity 

in the imagined movement task but not the match-to-sample task (Fig. 3.3B). Further, the 

proportion of selective cells was significantly different between the two tasks (Chi-

squared test, p < 0.05). The neural responses are better described as relating to the 

internal state estimate of the position of the hand as opposed to a more general spatial 

signal.  

 

 

As shown in the next chapter, AIP neurons encode, at least to a first approximation, the 

relative position of the hand and target. Here we report that AIP neurons also code the 

relative position of the hand and eye. Are these two distinct neural processes, or does 

neural coding of the relative position of the hand and eye share a common neural 
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substrate with coding for the hand and the target? Such might be the case, for instance, if 

the neural population treated the eye cue as a potential target and formed a motor plan to 

move the hand to the eye cue location. The set-up of the current task paradigm allowed us 

to address this possibility. For hand positions 2 and 3, eye cue locations are found that 

flank the hand position to the right and left. Further, during target presentation, target cue 

positions flank the hand position to the right and left at an equal distance. If coding of 

relative hand-eye and hand-target share a common neural substrate, then left versus right 

coding of the eye and target relative to the hand should be similar. We used a rank-sum 

statistic to quantify the percentage of the population selective for right versus left eye and 

target locations as a function of time throughout the task (Fig. 3.4A, sliding window 

analyses, 0.5 second windows with 0.25 second step size.) Selectivity for left and right 

targets was found as expected. We used the mean neural response in the 750 ms window 

at the end of the masking phases to quantify coding for the relative hand-eye position and 

mean response 750 ms window at the end of the cue target phase to quantify coding for 

the relative hand-target position. For each unit, we quantified how well the firing rate was 

able to distinguish rightward from leftward trials using an AUC analyses. Within an AUC 

analyses, values above 0.5 indicate that the cue presented to the right generated a larger 

response while a value below 0.5 indicated that the cue to the left generated a larger 

response. If hand-eye and hand-target share a common neural substrate there should be a 

tendency for the AUC values to be correlated as the AUC values that express the relative 

location of the eye and hand should be similar to the AUC values that express the relative 

location of the target and hand. The AUC values for the hand-eye and hand-target were 

found to have no systematic association (Fig 3.4B, p > 0.05, Pearson correlation.) This 
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single unit analysis was complemented by a population analyses. We used a partial least 

squares regression model to predict rightward from leftward trials using the entire 

population of 513 neurons recorded over the 5 sessions. Using a leave-one out cross-

validation procedure we found that we could distinguish right and left cues for both the 

eye and target with relatively high fidelity (Fig 3.4C, diagonal). However, the decoder 

trained on the eye position data failed to generalize to the target position data and vice 

versa (Fig 3.4B, off-diagonal). In other words, if you train a model on coding for the 

intended target relative to the hand, it fails to generalize to eye location relative to the 

hand. And conversely, if you train a model on eye position relative to hand, it fails to 

generalize to target position relative to hand. The quality of separation is summarized in 

figure 3.4D using a sensitivity index (d’) to quantify the separation between the right and 

left cues. The congruent (HG®HG and HT®HT) generalizability is significantly greater 

than incongruent (HG®HT and HT®HG) (p < 0.05; shuffle permutation test). This 

result is consistent with the single unit analyses of figure 3.4B and demonstrates that 

coding of the relative position of the hand and eye (HG) and coding of the relative 

position of the hand and target (HT) do not share a common neural substrate.  
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We next turn to coding of target location. The center out variant of the task employed 

here does not have a fixed set of target locations that are the same across all hand 

positions.  Instead, the locations of the target relative to the hand are conserved.  This 

requires a slight reinterpretation of a reference frame analyses relative to the in-line 

 
Figure 3.4 Distinct Representations for Hand Position and Potential Reach 
Targets. a) Percent of the population found to be tuned to right versus left target 
(black) and eye (red) locations throughout the task. b) AUC analysis to quantify 
how well the FR of each unit was able to distinguish right versus left trials. 
Values above 0.5 indicate when the cue was presented on the right a greater 
response was found, and below 0.5 for cues to the left. Since no systematic 
association is found between AUC of HG and TH units (p > 0.05; Pearson’s 
correlation) suggesting hand-eye and target-hand encoding do not share a 
common neural substrate. c) Population decoding framework (leave-one out 
cross-validation) reliably distinguishes right vs left cues when training and 
testing on eye and hand position data. The trained decoder on eye-position data 
did not reliably generalize to target-position data, and vice versa. d) 
Quantification of the quality of separation for congruent train and decode 
performance (HG → HG and TH → TH ) versus incongruent (HG → TH and 
TH → HG) using a sensitivity index (d’) (p < 0.05, ; shuffle permutation test). 
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versions if the reference frame task reported previously (Pesaran, Nelson et al. 2006, 

Bremner and Andersen 2012) and in the other chapters of this dissertation. Here we focus 

on the hand and target component of the response as eye position had a negligible impact 

on neural coding. In the inline version, relative hand-target coding effects appear as a 

response oriented towards -90 degrees. However, now direction appears explicitly and 

instead a direction tuning response would be oriented towards the target at 0 degrees.  As 

before, tuning at -180 degrees would appear as pure coding of hand position. Coding 

at -90 degrees now means that tuning to direction systematically shifts with the starting 

hand position. A representative example cell along with the population summary is 

shown in Figure 3.5 A and B. In agreement with the inline results, the population is 

centered around 0 degrees, showing that the overall trend of the population is to code 

direction of imagined reaches invariant to starting hand position. However, the 

distribution is somewhat broad and summarizing the neural response with the resultant of 

the gradient may fail to capture non-linear dependencies between direction and hand 

position. 

 

 

We analyzed the neural population within a decoder framework to understand how large 

an effect different hand positions have on decoding target location. A linear discriminant 

classifier was trained to decode target direction for each hand position and applied across 

all hand positions to construct a cross hand-position confusion matrix to quantify how 

well a classifier trained on one location will generalize to other hand locations. This 

analysis was performed separately for each session and averaged to create the result of 



 60 

figure 3.5C. This data was also used to show how accuracy changed as a function of 

distance between the starting hand positions (Fig. 3.5D). Classification of target position 

generalizes between different starting hand positions but accuracy decreases, especially at 

the largest hand distances. Thus relative coding of hand and target provides a reasonable 

first order description of the neural responses, however, this coding is not “pure”, as the 



 61 

starting hand position has some impact on how the relative hand-target relationship is 

coded. 

 

 

 

 
Figure 3.5 Direction Encoding in AIP. a) Sample unit from AIP displays direction 
(D) encoding. B) Population histogram displays resultant angles for the population 
of tuned units during the CE epoch. Majority of units encode the direction of the 
imagined movement. C) Confusion matrix of cross-validated accuracy when training 
on four different directions for a unique hand position and testing accuracy on other 
unique hand positions. D) Quantification of degrading accuracy as the tested hand 
position is moved further away from the trained hand position. 
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3.4 Discussion 
 
 
In summary, we show that PPC encodes an internal state estimate of the position of the 

body that can be manipulated with motor imagery. The internal state estimate of hand 

position is encoded as the relative position between the (imagined) hand and eye 

locations. These responses cannot be easily explained as potential planning signals or 

working memory. Finally, information about target position is coded relative to the state 

estimate of the hand. There are minor but significant shifts in direction coding relative to 

the initial starting position of the hand. 

 

We modified the paradigm in two primary ways relative to that used in the other chapters 

of this dissertation. The first modification was to include a masking phase following 

presentation of the initial hand position and fixation cue. In the other paradigm, relative 

coding of the hand and eye could simply have been the consequence of the visual 

stimulus of the hand position cue relative to the point of fixation. The masking phase was 

used to ensure that no low-level visual stimuli could confound interpretation of coding 

for hand position. It remained possible however that edge effects of the masking stimulus 

or the computer monitor relative to the point of gaze could still drive neural signals. 

However, such coding with respect to the point of gaze would have shown up as neural 

coding in an “eye” reference frame (e.g. middle panel Figure 3.2A). Given the negligible 

portion of the population that coded an eye reference frame (Figure 3.2C) such low-level 

visual effects did not seem to be an appreciable component of the neural response. 
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Another modification was the use of a center out movement paradigm. This was 

primarily used to control against potential planning signals given that rightward starting 

hand positions would result in leftward reaches for the inline version of the task and vice-

versa. It also allowed us to look at the possibility that hand-eye and hand-target relative 

coding shared a common neural substrate. Finally, this paradigm allowed us to verify that 

the neural population encoded intentions as the relative hand-target position. This 

paradigm therefore was a powerful complement to the inline version of the reference 

frame task.  

 

Our results are interesting from the perspective of neural prosthetics. First, previous 

studies that decode position for use in neural prostheses have implicitly assumed that 

position is coded in a body centered reference frame. While such assumptions may hold 

for other cortical regions, our results contradict this assumption and may partially account 

for why velocity/direction based decoding methods have outperformed methods that 

utilize position. Future work is needed to determine if a better understanding of how hand 

position is encoded can improve online neural decode performance. Second, population 

level coding for direction of motion changes as a function of starting hand position, even 

over the relatively limited workspace of the computer monitor. Using decoding algorithm 

approaches that are account for such dependence may improve future implementations of 

neural prosthesis.  

Previous studies in paralyzed individuals have shown neural coding of hand position. 

However, these studies were not sufficient to support the claim that the hand position was 

evidence for an internal state estimate. This is because one, these studies did not control 
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for gaze position or visual differences which is problematic given that eye and head 

movements naturally follow the controlled effector effectively confounding these sets of 

variables. Second, the experiments were generally performed using a simple center-out 

paradigm where coding for hand position is based on intervals of time when the cursor is 

at the peripheral target locations. In this way, hand position is confounded both with 

target location as well possible planning signals from the peripheral targets back to the 

center “home” location. Thus, these studies left it unclear whether neural coding for hand 

position was an internal state estimate or potential confounding variables.  

 

The finding of internal state estimates in PPC has implications for basic science questions 

as well. It has been proposed that sensory signals in PPC are too slow to enable rapid 

updating of reference frames for the purposes of recomputing updated movements plans 

(Duhamel et al., 1992). However, our results are consistent with the fact that PPC does 

not need to wait for delayed sensory feedback, but can instead use motor efference 

signals with delayed sensory feedback to maintain and store an up-to-date estimate of the 

sensory-state of the body.  
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4. Diverse Reference Frame Representations Across 
Human Cortex 

 
 

4.1 Introduction 
 
Brain machine interfaces (BMIs) have gained recognition over the previous two decades 

with seminal work in both non-human primates (NHPs) and humans demonstrating the 

capability to control cursors and robotic arms with variable degrees of freedom (Serruya 

et al., 2002, Musallam et al., 2004, Aflalo et al., 2015). In these examples BMIs are used 

to decode the intended motor goals directly from the neural activity of the recorded 

population. Understanding the reference frames in which these motor intent signals are 

encoded and correspond across brain areas is pivotal for the advancement and utility of 

decoding algorithms (Andersen et al., 2010; Miall and Wolpert, 1996; Musallam et al., 

2004; Velliste et al., 2008). For example, if motor intent is encoded in eye coordinates 

then the location of the eyes would have to be known or fixed in order to maintain 

accurate decoding from the underlying population. Conversely, if intent is encoded in 

hand centered coordinates then eye location would not need to be known as the target 

would be encoded relative to hand position. Thus, knowledge of how motor intent is 

encoded in a brain area is vital to employing proper decoding algorithms and furthermore 

may yield insight into how interconnected brain areas variably encode motor intent. 

  

 

To put this into perspective, let’s use an example, imagine you are performing your daily 

coffee routine and you reach for your favorite coffee mug. As we go throughout our daily 
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lives performing tasks similar to the one mentioned above our brains are tasked with 

performing an accurate reach. In doing so our brains must transform incoming 

information regarding the location of the cup from an initial eye-centered reference 

frame, like those found in primary visual cortex, to a hand or body-centered reference 

frame and finally to a set of muscle commands that must be sent to the appropriate 

muscles. In other words, connected parietal and frontal areas involved in sensorimotor 

transformations define a set of sensory axes in which to represent the desired motor 

action (movement) from the initial position of the arm, position of the head, and the 

visual location of the cup (visual sensory input). Single neuron data from NHPs suggest 

that spatial locations are represented in multiple reference frames that can vary within 

and across sensory modalities (Avillac et al., 2005). For instance, visual stimuli can be 

encoded with respect to the eye or the head or hand, and tactile stimuli may likewise be 

encoded with respect to the eyes or body parts (e.g. hands) (Buneo et al., 2002; Pesaran et 

al. 2006; Pesaran et al., 2010). However, from the NHP literature there is conjecture as it 

regards to anatomically defined and regional preferences for the reference frames 

utilized. Understanding how these transformations are uniquely encoded in human cortex 

can yield further insight into the degree of functional specificity of different brain areas. 

 

 

Population level analyses of reference frame representations in NHPs has yielded insight 

into how parietal and frontal areas encode reaches. Work in parietal reach region (PRR) 

has shown that the intended target is largely represented in gaze-centered coordinates 

(Pesaran et al., 2006, Andersen et al., 1998, Batista et al., 1999). Conversely, studies in 



 67 

area 5d have shown reaches to a target are largely encoded in hand centered coordinates 

(Bremner and Andersen, 2012). Interestingly, while largely eye or hand centered 

representations of intended reach targets are found in some regions of PPC, physiological 

evidence from areas like dorsal premotor cortex (PMd) and ventral intraparietal area 

(VIP) have found that responses are not entirely encoded purely in eye or hand centered 

coordinates but rather encode intended actions in an intermediate space. For example, 

VIP has been shown to employ a reference frame wherein unit responses are modulated 

by an intermediate of eye and head centered coordinates (Duhamel et al., 2005). 

Furthermore, findings in PMd were shown to encode the locations of the eye, hand, and 

target relative to each other, employing what was termed a full relative position code 

(Pesaran et al., 2006). However, there still remains debate with regards to the 

employment of a largely unitary reference frame in areas especially close to the sensory 

input. (Batista et al., 2007).  

 

 

To assess diversity of reference frame representations in human cortex during an 

imagined reach we used a range of target, hand, and gaze positions while analyzing firing 

rates in four brain areas: a region near ventral premotor cortex (PMv), supramarginal 

gyrus (SMG), primary somatosensory cortex (S1) in subject FG and anterior intraparietal 

area (AIP) in subject NS. PMv is an area of interest as work in NHPs has shown this 

region to be involved not only for sensorimotor transformations of arm movements but 

also hand shaping during both movement preparation and execution (Genitlucci et al, 

1983; Kakei et al., 2001; Fluet et al., 2010). PMv was found to encode these movements 
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in body-centered coordinates (Kakei et al., 2001). SMG a subregion of the inferior 

parietal lobule (IPL) is a rich region that is responsive to different sensory stimuli and has 

many reciprocal connections to frontal and parietal areas such as the superior parietal 

lobule (SPL). The reference frames in which intentions in PPC are encoded has been 

found to vary from predominantly hand-centered (parietal area 5d) to eye-centered 

(PRR). The AIP area is a region known to be important in planning and organizing of 

grasping movements and was shown by our lab in a tetraplegic human to encode high-

level cognitive aspects of a movement (Aflalo et al., 2015). While much research has 

focused on more caudal and superior areas of PPC very few have investigated the rostral 

areas of IPL (Rozzi et al., 2008). Mountcastle and Powell, in 1959, identified neurons in 

the NHP somatosensory cortex that encode proprioception and kinesthesis helping to 

establish a primary role of S1 in coding body sensations. Subsequent studies suggest a 

role of S1 in motor movements and the finding that pre-movement activity is encoded in 

S1 upon presentation of a target for reach (Nelson et al., 1989). More recently, S1 has 

been histologically demonstrated to contribute to corticospinal projections (Rathelot and 

Strick, 2006), and that executed arm reaches can be decoded from S1 (Fujiwara et al., 

2017).  

 

 

While studies have been conducted in NHPs on reference frames in parietal and premotor 

areas finding eye-centered, hand-centered, intermediate and heterogeneous 

representations. Few have successfully identified common and distinct modes of 

reference frame encoding across human cortex (Bremner and Andersen, 2012). Here we 
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explore the reference frame encoding of imagined arm reaches in two human subjects 

with chronically implanted cortical electrode arrays in four brain areas: ventral premotor 

cortex (PMv), supramarginal gyrus (SMG), and primary somatosensory cortex (S1) in 

subject FG and anterior intraparietal cortex (AIP) in subject NS. Of interest is 

understanding to what degree potentially interconnected brain regions vary or are similar 

in reference frame representations during the different behaviorally demanding epochs of 

an imagined reaching task. We find a greater proportion of heterogeneous reference 

frame representations during the planning epoch; however, all areas encode the reach in 

predominantly hand-centered coordinates during the cued execution epoch of a delayed-

imagined reaching task. 

 

4.2 Methods 
 
 

4.2.1 Subject Information 

4.2.1.1 Subject NS 

A 59-year old female tetraplegic subject who suffered a complete C3/C4 spinal cord 

injury was recruited and consented for a clinical trial for a BMI system. Subject NS has 

no control or sensation below her upper arms but maintains normal control and sensations 

for all areas innervated above the level of her spinal cord injury. The study and all 

procedures were approved by the California Institute of Technology (Caltech), Casa 

Colina Hospital and Centers for Rehabilitation, and the University of California, Los 

Angeles (UCLA) Institutional Review Boards (IRB). Informed consent was obtained 

after explanation of the objectives and possible risks involved. Surgical implantation took 



 70 

place at Ronald Reagan UCLA Medical Center. All study sessions with subject NS took 

place at Casa Colina Hospital and Centers for Rehabilitation. 

 

4.2.1.2 Subject FG 

A 32-year-old male tetraplegic subject was recruited who suffered a complete C5/C6 

spinal cord injury and consented 1.5 years post-injury to participate in a clinical trial of a 

BMI system consisting of intracortical stimulation and recording. Subject FG has residual 

sensation in the anterior lateral portions of the upper limbs and residual sensation with no 

discriminatory ability in the posterior radial section of the upper arm and forearm that is 

also accompanied with paresthesia. All sensations and motor ability are consistent with 

the level of the sustained injury. The subject remains intact of all other motor control and 

sensations above the injury other than those noted above. The study and all procedures 

were approved by the California Instituite of Technology (Caltech), Institutional Review 

Boards (IRB) of the University of Southern California (USC), and Rancho Los Amigos 

National Rehabilitation Hospital (RLA). Surgical implantation took place at Keck 

Hospital of USC. All future study sessions with this subject discussed here were run at 

RLA. 

 

4.2.2 Surgical Planning and Implantation 

 

Surgical planning for both subjects followed the protocols described in (Aflalo et al., 

2015; Salas et al., 2018). Based off these experiments analysis of the fMRI data was done 

in order to determine and identify the areas to implant. Initial placement of all arrays was 

predetermined based on pre-operative fMRI imaging, but placement may have differed if 
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the initial location was occluded by vasculature seen during the operation. Subject NS 

was implanted in the left superior parietal lobule more specifically the AIP area and 

subject FG in an area near PMv, SMG, and S1. All areas except S1 were implanted with 

96-channel Neuroport microelectrode arrays (Blackrock Microsystems, Salt Lake City, 

UT). S1 was implanted with two 7x7 microelectrode arrays (48 channels per array).  

 

4.2.3 Reference Frame Task 

 

Experimental sessions with both subjects were performed at their respective facilities. 

Both subjects performed the task in a dim room with their motorized wheel chairs seated 

similar distances from their task screen. The subjects were asked to minimize any and all 

head movements throughout the task and were placed in front of their screen with a 

researcher monitoring their head movements. Subjects were seated in their motorized 

wheel chair throughout the duration of the task. The task screen approximately occupied 

45 degrees of visual angle. At the beginning of each trial the subject was cued to fixate 

their gaze and imagine their right hand (dominant and contralateral to recording arrays) at 

one of four locations marked by a circle and hand image, respectively. After 3 seconds a 

cue was shown above the cued eye and hand positions for 1.25 seconds wherein the 

subject continued to hold their ocular and imagined hand fixations. A change in the color 

of the fixation marker was the cue for the subject to begin their imagined reach to the 

target. The subject was asked to make an imagined reach and maintain the imagined 

ending position (target location) until the execution epoch was over (2 seconds). The 

execution epoch was then followed by an inter-trial interval (ITI) of 2 seconds.  
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Each run consisted a total of 64 trials for each unique combination of the four eye, hand, 

and target positions. This task was run 3 times (192 total trials, 3 repetitions) 

consecutively with a 2-5 minute break between each run. All imagined reaches were 

made within the frontal plane of the subject. Each session recording was separated out by 

at least seven days. 

 

4.2.4 Neural Recordings 

 

Neural activity from each array was amplified, digitized, and recorded at 30 KHz using 

the Neuroport neural signal processor (NSP). The Neuroport system, composed of the 

arrays and NSP, has received FDA clearance for less than 30 days of acute recordings. 

However, for purposes of this study we received FDA IDE clearance for extending the 

duration of the implant (IDE numbers: G130100 and G120287).  

 

Thresholds at -4.5 times the root-mean-square were set after high pass filtering the full 

bandwidth signal sampled, using the Blackrock Central software suite (Blackrock 

Microsystems). Waveforms collected consisted of 48 samples, 10 prior to threshold 

crossing and 38 samples after. These recordings were then sorted (both single and multi-

unit) using k-mediods clustering using the gap criteria to estimate the total number of 

clusters (Tibshirani et al., 2001; Zhang et al., 2017). Offline sorting was then reviewed 

and adjusted as needed following standard practice (Harris et al., 2016). Units from all 

arrays in AIP, PMv, SMG, and S1 were analyzed. On average across 5 days of recordings 

in AIP we analyzed 84 sorted units per session in subject NS. In subject FG, on average 

per session we analyzed 90, 178, and 163 sorted units across 6, 6, and 5 days of 
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recordings in PMv, SMG, and S1, respectively.  All sorting was done prior to analysis 

and blind to channel or unit responses found during the task. Further, spike sorting 

methods can be found in Zhang et al., 2017. 

 

4.2.5 Eye Tracking 

 

Each subject’s eye position was monitored using a 120 Hz binocular eye tracking system 

(Pupil Labs, Berlin, Germany). If the subjects gaze shifted off the cued eye position the 

task was terminated and ran again ensuring that gaze position remained fixed to the cued 

eye position. Eye positions were synced to the task and allowed online determination of 

eye position. Processing of raw XY coordinates was done using Matlab 2019a 

(Mathworks). Coordinates were then filtered using a disk filter via the fspecial function. 

The filter was had a radius of 2, and this was done to ensure we did not exceed our 

sampling resolution. 

 

4.2.6 Linear Analysis for Tuning 

 

We defined a unit as selectively tuned if the unit displayed a significant tuning based on a 

linear regression analysis. We created a matrix that consisted of indicator variables for 

each unique condition separated by either a single behavioral variable or pair, similar to 

(Zhang et al., 2017). For example, there were 64 unique conditions (4 eye, hand, and 

target positions) indicator variables were for each unique eye, hand, target, eye-hand, 

eye-target, and hand-target. Firing rate was estimated as a linear combination of these 
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indicator variables: FR is firing rate, Xc is the vector indicator variable for condition c, ßc	

is	the	estimated	scalar	weighting	coefficient	for	condition	c,	and	ß0	is	the	intercept. 

 

𝐹𝑅 = 	%𝛽𝑐𝑋𝑐 + 𝛽𝑜
+

 

 

Windows were 750 ms in duration and window start times were stepped every 500 ms. 

This was done for all units in each sliding window. Significance of each fit was 

determined using the p-value of the F-test of overall significance for the linear analysis (p 

< 0.05, FDR-corrected). Units that were found to be significant in this analysis were then 

determined to be tuned and further analyzed in the reference frame analysis. 

 

4.2.7 Reference Frame Analysis: Gradient Analysis 

 

For every individual unit three trials per condition were analyzed. Trials were 

subsequently aligned to the cue execution epoch (0 s). The delay epoch is defined as -1 s 

to -0.25 s. Gradient analysis was used to determine the degree of modulation each 

behavioral variable had on the firing rate of unit when comparing across each unique 

combination of variable pairs (Hand-Gaze (HG), Target-Gaze (TG), and Target-Hand 

(TH)) (Bremner and Andersen, 2012; Buneo et al., 2002; Peña and Konishi, 2001; 

Pesaran et al., 2006). For each tuned unit we created a four by four matrix (response 

matrix) representing each unique behavioral variable position and its associated mean 

firing rate. We averaged across trials and the third variable. Gradients were determined 

using the gradient function in Matlab 2019a (Mathworks). For each gradient a resultant 



 75 

angle and length are generated indicating the modulation by each variable and its strength 

(Fig. 4.3). However, as we can see in Fig 4.3 oftentimes the gradients show a 

symmetrical pattern that would result in cancellation of  symmetrical angles. To avoid 

this, we double each angle in the matrix and represent each angle from 0º to ±180º. 

Therefore, the summed resultant angle is represented by 0º for left-right patterns of 

gradients, ±180º for up-down patterns of gradients, and -90º for gradients pointed at the 

diagonal as seen in Fig 4.3A. The summed resultant angle and length however cannot be 

mapped directly onto the response matrix, thus we have notated the appropriate variable 

and combinations of variables to help with interpretation. For example, in figure 4.3A 

hand only (H) modulation would be found at ±180º, gaze only (G) modulation is seen at 

0º, H+G at 90º, and H-G at -90º. Therefore, we can use the angle of the resultant angle as 

a proxy for overall orientation bias for a variable pair. 

 

 

In each epoch gradient analyses of all tuned units were used to determine the reference 

frame representations. Rayleigh’s test was used to assess the uniformity of circular 

 
 

Category 
HG 

Response 
Filed 

Orientation 
(degrees) 

TG 
Response 

Field 
Orientation 
(degrees) 

TH 
Response 

Field 
Orientation 
(degrees) 

HG -90 ±180 ±180 
TG ±180 -90 0 
TH 0 0 -90 

HG-TH -90 ≠ -90 -90 
TG-TH ≠ -90 -90 -90 
HG-TG -90 -90 ≠ -90 

HG-TG-TH -90 -90 -90 
 
Table 4.1 Criteria for Categorizing Individual Units 
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histograms for tuned resultant angles. Circular means were determined by weighting the 

contribution of each resultant angle by the resultant length. To test whether individual 

units coded exclusively for the target relative to the hand we categorized each unit based 

on the three variable-pair resultant angles. Our criteria were the following: 1) is the unit 

found to show significant tuning in the linear analysis; and 2) classify units based on the 

appropriate response field orientation for each category (tolerance ±45º Table 4.1). This 

categorization scheme is similar to the one used by Bremner and Andersen, 2012.  

 

4.2.8 Dimensionality Reduction 

 

We used population level dimensionality reduction analyses to determine the most 

common modes of reference frame encoding over time in a brain area. The firing rates for 

all units, trial averages, and time points were arranged in a matrix (unique trials by unit) 

and reduced down using principal component analysis (Fig. 4.8). For the first 20 

components we then ran a gradient analysis for each time window. Time windows were 

100 ms in duration and response field angles and lengths were acquired from the start of 

the cue hand eye epoch to the end of the cue execution epoch. Analyses done with larger 

steps showed similar results. Next, we converted all resultant angles and lengths into 

complex numbers to account for both variables and utilized complex principal component 

analysis to identify the most common mode of tuning found. Previous work on 

geophysical data sets have successfully used similar methods for identifying dynamics 

(Horel, 1984). A matrix of each complex value for each time point and each component 

was then created and reduced to find the components that explained the greatest variance. 
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Furthermore, we used parallel analysis to determine which components from this 

dimensionality reduction were significant (Franklin et al., 1995). 

 

4.3 Results 
 

What coordinate frame or frames do we use to encode imagined movement intentions? 

To answer this, we recorded neural activity in ventral premotor cortex (PMv), 

supramarginal gyrus (SMG), and primary somatosensory cortex (S1) in participant FG 

and anterior intraparietal cortex (AIP) in participant NS (Fig. 4.1B). These participants 

completed a delayed-reach task in which we systematically varied hand, eye, and target 

position in order to determine the reference frame encoding of reach intentions during 

planning and execution epochs (see Methods). This design allowed for us to characterize 

whether cell firing rates (FRs) encoded the target position relative to gaze direction (T-

G), target relative to hand (T-H), hand position relative to gaze direction (H-G), or a 

combination of these vectors. The combination of these three vectors allows us to identify 

if a unit is encoding the target relative to the direction of gaze (eye-centered), the position 

of the hand (hand-centered), relative to the position of eye, hand, and target specifying 

the differences in locations (relative), or body/world centered. 
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The task was composed of four different phases (Fig 4.1A): 1) we cued both gaze 

position and hand position at one of four locations where the subject would fixate and 

imagine their hand (Cue Hand and Eye (CHE), 3.25 seconds), 2) while maintaining gaze 

fixation and imagined hand position from the previous epoch a target was presented 

above and in line at one of four locations, (Cue Target (CT), 1.25 second, possible 

locations greens) 3) a cue was given to begin the imagined reach to the target while 

maintaining eye fixation (Cue Execution (CE), 2 seconds), 4) an inter-trial interval with 

 
Figure 4.1 Experimental Design, Recording Locations, and Significant 
Tuning Across Epochs. a) Delayed-imagined reaching paradigm for a 
single trial. Cued hand, eye, and target locations varied across four 
positions (green). Geometry of behavioral variables and their extrinsic 
coordinate space (blue). b) Location of array implants in subject NS (AIP) 
and FG (PMv, SMG, S1). c) Percent of units with significant selectivity to 
hand, gaze, or target position across all task relevant epochs (linear 
analysis, see methods). 
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no stimuli presented on the screen. The subject’s gaze position was monitored using an 

eye tracker (Pupil Labs, Berlin, Germany) in order to ensure that data was not analyzed if 

the participant broke gaze fixation after a gaze position was cued (Fig 4.2). If the 

participant broke gaze fixation, we restarted the task. 

 

 

4.3.1 Imagined Reaching Related Activity in Human Cortex 
 

Firing rates were analyzed using a sliding window of 750 ms throughout the entirety of 

the task. Using the neural (e.g. FR) and behavioral states (e.g. gaze position), we 

employed a linear analysis to determine significant relations between single unit activity 

and associated behavioral states (see methods). We found significant proportions of the 

population that were tuned during the CHE, CT, and CE epochs of the task. We recorded 

from 537 (PMv), 1066 (SMG), 651 (S1), and 421 (AIP) units across 4-6 sessions. The 

maximal percentage of tuned units per epoch was: 4.66%, 17.82%, 0.15%, and 8.31% 

 
Figure 4.2 Eye position distribution for different task epochs and cued positions. a) 
Eye position distribution of the subject on the task screen during the ITI epoch during 
which time the subject could gaze freely. b) Eye position distribution of the subject 
on the task screen during the epochs where the subject was cued to fixate. 
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during the CE epoch (p < 0.0001; ANOVA), 21.60%, 34.99%, 0.31%, and 6.89% of units 

tuned during the delay (p < 0.0001; ANOVA) and 5.03%, 14.07%, 15.05%, 16.86% (p = 

0.0015; ANOVA) during the go epoch for PMv, SMG, S1, and AIP (p < 0.05, FDR 

corrected), respectively (Fig 4.1C). We find that tuning varies across all phases of the 

task and that tuning differs between brain regions. S1 has little to no tuning throughout 

the task until the cue execution epoch. In contrast, SMG shows robust tuning throughout 

all 3 epochs (CHE, CT, and CE).  

 

4.3.2 Reference Frames 
 

 In order to determine and understand the coordinate frames in which behavioral 

variables are encoded, it is important we provide a brief explanation here of how we used 

gradient analyses to define the coordinate frame of a unit (further explained in methods 

and  Pesaran et al., 2006). Put simply, movements in the brain can be represented in two 

ways: 1) an extrinsic space defined by endpoint directional movements (Fig 4.1A blue 

panel), and 2) an intrinsic space defined by the angles and forces required of individual 

muscles to make the desired movement. This distinction can be represented by the 

following example: saccades and reaches in the same direction can both be thought of 

sharing the same extrinsic space. However, because the muscle and joint movements are 

unique to the effector (i.e., muscle), they do not share an intrinsic space representation. 

One aim of this work is to transform the intrinsic commands for saccades to the reference 

frame of target position relative to initial gaze position (T-G). Similarly, we aim to 

transform intrinsic reach commands to target position relative to initial hand position (T-

H). Finally, another vector can be defined by the relative position of the initial hand 



 81 

position and eye position (H-G) (Buneo and Andersen, 2006). H-G can be either gaze 

position in hand coordinates or hand position in eye coordinates. See Buneo and 

Andersen, 2005 for further discussion. For the rest of this section, we will refer to and 

describe H-G as hand position in eye coordinates.  

 

The utility of a gradient analysis used here is the ability to determine how much a unit’s 

firing rate is modulated based on either hand, eye, target position, or a combination of 

these. The relative relationship between hand and target in a hand centered unit is best 

explained by the hand and target having the same spatial positioning in order to maintain 

the same firing response. For example, if a hand centered cell fires maximally when the 

target is placed above the hand position. Assuming we shift the target over to the right by 

a position in order for the unit to fire at a comparable rate we must also shift the hand 

position. This shows that for the following example of a hand-centered unit the influence 
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of hand and target on FR is best defined as a representation of the extrinsic reach vector 

 
Figure 4.3 Idealized Unit Responses Displaying Eye-Hand-Target Tuning for Three 
Different Reference Frames. a) Eye-centered unit encoding the target location in eye 
coordinates. b) Hand-centered unit encoding the target location in hand centered 
coordinates. c) Relative-position unit whose responses are modeled as a product of eye-
centered, hand-centered, and relative eye-hand position tuning. The response field 
orientations for all units are shown for each of the three variable pairs along the 
horizontal beneath each response matrix. Gradient analysis, and the subsequently 
derived resultant angle (±180º and 0º point left and right, respectively) and length, 
quantifies how firing rate responses can be attributed to each behavioral variable (HG, 
TG, and TH). 
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moves upwards. In Figure 4.3 we illustrate how a matrix and gradients would appear for 

idealized eye-centered, hand-centered, and relative position units. 

 

Building upon the previous efforts from Pesaran et al., 2006 in NHPs we used a similar 

reference frame dissociation task to independently control and minimize the possible 

vector representations of T-G, H-T, and H-G that might be represented by a single unit 

during free behavior. This task allowed us to systematically control hand, eye, and target 

 
Figure 4.4 Example Units from AIP and SMG and their Reference Frames. a) 
Peristimulus time histograms for the 64 conditions of a unit in AIP. Each subplot 
shows the response of the unit (mean ± std) to a unique combination of target position 
(T) and hand position (H) at the four unique gaze positions (G). For example, the top 
left plot shows event related averages when the target & hand were fixed in the fourth 
position and gaze was fixed at the first (dark blue), second (light blue), third (light red), 
and fourth position (dark red). Windows used for reference frame analysis in the cue 
target (CT) and cue execution (CE) epochs are marked by the yellow and green shaded 
boxes, respectively. During the CE epoch gaze position only weakly modulates firing 
rate, thus the traces overlap. b) Matrices and resultant angles for the cell shown in (a) 
during the CE epoch (green). Top: hand-gaze matrix showing hand modulates FR 
compared to gaze. Middle: target-gaze matrix showing target and again not gaze 
modulates FR when compared against each other. Bottom: target-hand matrix showing 
both target and hand influence FR. c) Matrices and resultant angles for a relative 
position unit found in SMG during the CT epoch. Top: hand-gaze matrix shows hand 
relative to gaze tuning. Middle: target-gaze matrix displays target relative to gaze 
tuning. Bottom: target-hand matrix shows tuning to target relative to hand position. 0º 
points to the right and ± 180º to the left. Figure 3 shows idealized unit responses for 
gaze-centered, hand-centered, and relative position units and their resultant angles. 
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positions while using a gradient analysis to determine the coordinate frames in which 

these variables were represented on a single unit basis. Figure 4.4 shows an example of a 

cell found in AIP that codes target location in hand-centered coordinates. The 

peristimulus time histogram (PSTH) in Figure 4.4A is typical of a neuron found to 

encode the target location in hand centered coordinates. This unit showed significant 

activity during the CHE and CE epochs. In Figure 4.4b, we illustrate the reference frame 

analysis derived from the CE window of the PSTH. Furthermore, in Figure 4c, we show a 

sample matrix for a relative position unit. Units were sampled from AIP and SMG, 

respectively. The gradients for the hand centered unit show that with respect to H-G (4°) 

and T-G (-6°), hand and target position respectively are exerting the greatest influence on 

the firing rate of this unit. Thus, when we examine T-H we find that the response field for 

reach targets shifts with each initial hand position (-89°).  In Figure 4.4c we see a 

different relation amongst the three vectors. In this sample cell during the CT epoch we 

find that H-G, T-G, and T-H all have diagonal gradient orientations, indicating that there 

is a relative response to each variable pair to the other (-55° HG, -67° TG, and -62° TH).   

 

4.3.3 Heterogeneous Representations of Coordinate Frames 
 

We examined the proportion of tuned units from the linear analysis that encoded the 

different vectors during planning and execution epochs of the delayed imagined reaching 

task. We found that during the planning epoch there was a greater tendency across all 

brain areas to encode more than one vector. However, this overall tendency changed 

during the execution epoch where all areas collapsed to a largely hand centered dominant 

encoding of the target (Figure 4.5). Overall, of the units that were significantly tuned 
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during each epoch we found 20% (PMv), 9% (SMG), 0% (S1), and 0% (AIP) of the total 

amount of tuned units to be hand centered, and 16% (PMv), 13% (SMG), 14% (S1), and 

10% (AIP) to be coding the relative position of the three behavioral variables during the 

planning epoch. This changed during the execution epoch with 22% (PMv), 13% (SMG), 

40% (S1), and 32% (AIP) to show hand-centered tuning and 4% (PMv), 7% (SMG), 4% 

(S1), and 7% (AIP) encoding relative position of eye, hand, and goal (target) during the 

execution epoch. This uses a 45° freedom explain in methodology like those used by 

Bremner and Andersen, 2012 (Table 4.1). 
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 In PMv, 78/116 (67%) units were found to encode one or multiple vectors based on the 

definitions for each category. Of these, 23/116 units (20%) encoded only the TH vector 

and 0 units for the single vector of TG or HG. The next largest proportions were found to 

encode multiple vectors concurrently with the TH vector. HG and TH vectors were 

concurrently encoded by 20/116 units (17%), while TG and TH were encoded by 14/116 

units (12%). All three vectors were encoded by 18/116 units (16%). This changes during 

 
Figure 4.5 Heterogeneous Reference Frame Representations Across Brain Regions 
a) legend showing the different categories and their corresponding area. b) AIP. CT 
epoch (left) and CE epoch (right). c) SMG. d) S1. only two units were tuned during 
the CT epoch and only one of those could be categorized. Otherwise, no significant 
tuning was found during the CT epoch. This changed during the CE epoch (right). 
e) PMv exhibited mixed coding both during the CT & CE epochs with a strong HG 
and TH representation. The numbers above each diagram give the number of units 
that fit a category over the total number of tuned units found in the respective 
epoch. 
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the execution phase where 16/27 units fit our criteria. Of these, TH and HG vectors were 

concurrently encoded in 8/27 units (30%) or only the TH vector in 6/27 units (22%). 

 

 In SMG, 242/373 (65%) tuned units were able to be categorized based off our criteria. 

Of these we find a larger proportion of units to concurrently encode multiple vectors 

along with the TH vector. Interestingly, TG-TH and HG-TH are encoded by 69/373 

(18%) and 68/373 (18%), respectively. Furthermore, we find that there is a large 

proportion of units that are relative position units (HG-TG-TH) 52/373 (14%), and 

smaller proportion of units only encoding the TH vector (34/373, 9%). Unlike PMv, we 

do not see as large of shifts in the proportion of units encoding each respective category. 

During the CE epoch we find that a greater proportion of units as compared to the CT 

epoch encode the TH vector only (20/150 units, 13%). Interestingly, units showing 

relative position coding during this epoch decreases to 10/150 (7%), while encoding of 

both the HG-TH and TG-TH vectors decreases minimally to 22/150 (15%) and 19/150 

(13%), respectively. 

 

 In contrast to the other brain regions, in S1 we find little to no tuning during the CT 

epoch.  Surprisingly, during the subsequent epoch (CE) we find a majority of tuned units 

to be hand centered. The greatest proportion of units in S1 are found to encode TH vector 

only (39/98, 40%). Interestingly, of the remaining tuned units TG-TH and HG-TH are 

encoded by 17% (17/98) and 11% (11/98). Lastly, only a small proportion of units fall 

within the relative position category with 4/98 (4%) units. Overall, S1 seems to encode 

the behavioral variables only during the CE epoch in mostly hand centered coordinates. 
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 In contrast to SMG we find that AIP, an area in the SPL of PPC, encoding of the HG, 

TG, and TH vectors differs especially during the planning epoch. We find that during 

planning AIP does not show large proportions of the population to be tuned to the TH 

vector during the CT epoch. The largest proportion of tuned units during this epoch 

encode two or more vectors: TH-HG 8/29 units (28%), TH and TG 4/29 (14%), all three 

vectors (TH, TG, HG) 3/29 units (10%). This changes during the execution epoch to 

resemble S1, but with a relatively smaller percentage of units encoding the TH vector 

only 23/71 units (32%). Also, TH-HG were concurrently encoded by 8/71 units (11%), 

TH-TG by 9/71 units (13%), and all three vectors by 5/71 units (7%). 

 

4.3.4 Population Level Encoding of Reference Frames 
 

While single unit analysis displayed a common theme of heterogeneity of units, 

especially during the planning epoch, when looking at population level encoding more 

distinct reference frames emerged as a whole. This difference can be due to the 

categorization criteria used. Anywhere from 32-41% of the tuned population was 

excluded in the single unit analyses categorization analysis. Population level analyses of 

all tuned units included these cells and yields a clearer perspective on the overall 

differences and reference frame encoding used in each region. 
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4.3.4.1 PMv 
 

Population level analyses determined the reference frames of units that were found to be 

significantly tuned from the regression analysis. When looking at population level 

reference frame encoding of gaze, hand, and target we find a predominantly hand-

centered encoding during the planning epoch with a distinct peak of a subset of the 

population encoding HG. The population of resultant angles for the HG vector was found 

to be unimodally distributed (p < 0.0001; Rayleigh test) and nonuniform (p < 0.01; 

Watson test) with a weighted mean direction of  -48° and average length of the resultant 

vector from the gradient analysis was 5.9.  The TG vector was found to be unimodally 

 
Figure 4.6 Population Level Reference Frames Across Brain Regions. a) AIP. 
Histograms show the resultant angles for the population of tuned units per epoch. HG and 
TH tuning found during the CT epoch. b) SMG. Relative position coding during the CT 
epoch. c) S1. d) PMv. HG and TH tuning found during the CT epoch. TH coding is the 
most dominant form found across brain regions during the CE epoch. 
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distributed (p < 0.0001; Rayleigh test) and nonuniform (p < 0.01; Watson test) with a 

weighted average of -13° and average vector length of 3.8. The TH population vector was 

found to be unimodally distributed as well (p < 0.0001; Rayleigh test) and nonuniform (p 

< 0.01; Watson test) with a weighted average of -85° and average resultant vector length 

of 11.7. However, while the mean angles of HG and TG are trending towards a difference 

(p = 0.08, Watson’s nonparametric test) the resultant lengths of these same angles are 

found to be significantly different (p < 0.03; Wilcoxon signed-rank test, Fig 4.7D). Taken 

together this shows that during the CT epoch both TH and HG are the most strongly 

represented vectors (Figure 4.6D). 

 

In contrast, during the execution epoch we find that of the significantly smaller number 

of tuned units during the execution epoch the HG, TG, and TH vectors were all found to 

be unimodally distributed (p < 0.0001, p <0.01, p < 0.0001, respectively; Rayleigh test) 

and nonuniform (p < 0.01; Watson test) with weighted mean directions of -36°, 42°, and -

92°, respectively. Weighted resultant vector lengths were found to be 8.1, 4.8, and 20 for 

HG, TG, and TH vectors, respectively. Furthermore, when comparing population level 

differences across the epochs we found from planning to execution the HG vector 

population distributions did not significantly differ (p = 0.34; Mardia-Watson-Wheeler 

test) nor did the mean resultant angles (p = 0.97; Watson’s nonparametric test). 

Strikingly, the encoding of the hand relative to gaze position was maintained from 

planning to execution, with similar modulation (p = 0.46; rank-sum test). TG was found 

to have a significantly different distribution from planning to execution (p = 0.005 

Mardia-Watson-Wheeler test) as well as a significant difference in the mean direction of 
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resultant angles (p = 0.003; Watson’s nonparametric test). Lastly, TH vector encoding 

remains consistent with no significant differences in the distribution or in the mean 

resultant angles (p = 0.87 and p = 0.75; Mardia-Watson-Wheeler test and Watson 

nonparametric test, respectively). Interestingly, we do however find that the resultant 

lengths of the TH vector are different across the epochs with greater modulation seen 

during the CE epoch (p = 0.01; Wilcoxon rank-sum test). This shows that while more 

units are tuned during the CT epoch, and the response to changes in T and H position is 

the same in PMv, the magnitude of modulation for TH units is greatest during the CE 

epoch. 

 

4.3.4.2 SMG 
 

The population level reference frames found in SMG were analyzed from 1066 units 

across 6 sessions in subject FG. Population analyses of reference frames were done on 

231 and 149 units found to be significantly tuned during the planning and execution 

epochs, respectively. Interestingly, during the planning epoch we find that HG, TG, and 

TH are all unimodally distributed (p < 0.0001; Rayleigh test) and nonuniform (p < 0.01; 

Watson test) with weighted mean resultant angles at -63°, -44° and -80 with average 

resultant vector lengths of 5.8, 8.3, and 15.9, respectively. Furthermore, the tuning 

strength of TH is significantly greater than both TG and HG (p < 0.0001; Wilcoxon-

signed-rank test, Fig 4.7B) with TG greater than HG (p = 0.002; Wilcoxon-signed-rank 

test, Fig 4.7B). While there is no significant difference in the mean (p = 0.31; Watson’s 

non-parametric mean) of HG compared to TG we do find that the distributions are 

significantly different (p = 0.02; Mardia-Watson-Wheeler test). There is a very 
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concentrated amount of resultant angles encoding the target position relative to the hand 

(TH at -90º), which is found to have significantly different mean and distributions when 

compared to TG and HG (p < 0.0001 Watson nonparametric test, p < 0.0001; Mardia-

Watson-Wheeler test, HG or TG vs TH). Strikingly, this lends to show that while the TH 

vector is mostly encoded during the planning phase there is still a moderate amount of 

gaze influence on unit encoding of target position (TG) and hand position (HG) (Figure 

4.6B).  

 

During execution we see an overall shift in the tuning of HG and TG response field 

angles from encoding a relative position encoding to a stronger representation of TH with 

subsequent shifts in HG and TG vectors to hand and target. The HG, TG, and TH 

populations were unimodally distributed (p < 0.0001; Rayleight test) and nonuniform (p 

< 0.01; Watson test). The weighted resultant mean angles for HG, TG, and TH were 

found to be -16°, -33°, and -80° with average resultant vector lengths of 3.7, 7.9, and 

13.6, respectively. The HG and TG population distributions are significantly different (p 

= 0.002; Mardia-Watson-Wheeler test), but don’t have significantly different means (p = 

0.25; Watson nonparametric test, p = 0.07), and are trending towards having differences 

in the strength of tuning (p = 0.07; Wilcoxon-signed-rank test, Fig 4.7B). Furthermore, 

the TH populations mean and distribution is significantly different from both the TG and 

HG populations (p < 0.0001 Watson nonparametric test, p < 0.0001; Mardia-Watson-

Wheeler test, HG or TG vs TH).  
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Lastly, we find significant shifts in the populations from the CT to CE epochs. This is 

represented with significant changes in the mean and distribution of overall population 

responses of HG from planning to execution (p = 0.002; Watson nonparametric test, p = 

0.01; Mardia-Watson-Wheeler test). Interestingly, we do not find a significant difference 

in TG or TH population mean or distribution across epochs (p = 0.1 (TG) and p = 0.75 

(TH); Watson nonparametric test, p = 0.09 (TG) and p = 0.48 (TH); Mardia-Watson-

Wheeler test). Interestingly, SMG displays a relative encoding of the three behavioral 

variables hand, gaze, and target during planning which then changes to a much more 

hand centric representation (TH) when the imagined reach is being made with moderate 

TG encoding.  

 

4.3.4.3 S1 
 

Population level reference frame encoding in S1 are only analyzed during the CE epoch 

as this was the only phase that showed significant proportion of the population to be 

tuned (Figure 4.6C). During the CE epoch we interestingly find that much like the results 

from the individual unit analysis the population shows a very strong peak at TH. 

Weighted mean directions of the three vectors HG, TG, and TH were found to be -10°, -

19°, and -91° with resultant lengths of 13, 15, and 34.8, respectively. All three vectors 

were also found to be unimodally distributed (p < 0.0001 HG, TG, TH; Rayleigh test) 

and nonuniform (p < 0.01; Watson test). Interestingly, based off these findings S1 seems 

to have the most homogenous representation of reference frames, with a strong encoding 

of the target relative to the hand during the CE epoch. 
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4.3.4.4 AIP 
 

A more comprehensive look at the population level tuning found in AIP interestingly 

shows a strong preference for the HG vector (Fig 4.6A). We find that population level 

resultant angles for only HG and TH are unimodal (HG: p < 0.0001, TG: p = 0.24, TH: p 

< 0.0001; Rayleigh test) and nonuniform (HG: p < 0.01, TG: p > 0.15, TH: p <0.01; 

Watson test). Weighted mean resultant angles during the planning epoch in AIP for HG, 

TG, and TH were found to be -82°, -88°, -99° with average resultant vector lengths of 

7.7, 1.5, and 4.8, respectively. This tuning is suggestive of tuning of the position of the 

hand relative to gaze position (HG) and target location relative to hand position (TH).  

 

In contrast, during the execution epoch we find that all vectors (HG, TG, TH) are 

unimodally distributed (p < 0.0001; Rayleigh test) and nonuniform (p < 0.01; Watson 

test). We find a significant concentration of the reference frame population resultant 

angles centered around TH with a weighted mean angle and resultant vector length 

of -84° and 13.2, respectively. The mean weighted resultant angles and vector lengths for 

HG and TG were found to be 4°, 4.8 and  -11°, 7, respectively. Shockingly, here we see 

that during the planning epoch the HG and TH reference frame representations are 

present however during execution we see a shift in the HG response indicating a more 

defined hand centered coding of the target (p < 0.001; Mardia-Watson-Wheeler test). We 

also find significant changes in the mean resultant angle of HG but not in TG or TH (p < 

0.0001, p = 0.3, p = 0.96; Watson’s nonparametric test). Furthermore, of note is that 

during the planning epoch TG was not found to be unimodal or nonuniform; however this 

shifted during the CE epoch towards target centric tuning of the TG vector. These results 
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further indicate that AIP possibly encodes the relative position of the hand to gaze (HG) 

and target to hand (TH) during the delay epoch (CT) and the population of tuned units 

shifts to a more hand centric encoding of the target (TH) during the execution of the 

imagined reach (CE). 

 

 
Figure 4.7 Comparison of Strength of Modulation for Each Vector. a) TH resultant 
lengths in AIP were significantly greater than TG during both cue target and execution 
epochs. b) SMG displayed greater TH resultant lengths compared to TG and HG as 
well as HG versus TG during the cue target epoch. Furthermore, SMG showed 
significantly larger TH vs TG and HG resultant lengths during the cue execution 
epoch. c) S1 showed significantly larger TH vs TG and HG resultant lengths during 
the cue execution epoch. d) PMv much like SMG during the cue target epoch showed 
greater TH resultant lengths compared to HG and TG. HG lengths were found to be 
significantly greater than TG during the cue target epoch. Resultant lengths are derived 
from their respective response matrices. (*p < 0.05, ** p < 0.01, *** p < 0.001; 
Wilcoxon signed-rank test). 
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4.3.5 Temporal Evolution of Reference Frames 
 

From the above single unit analyses we find that population level reference frames shift 

and dimensionality collapses from the CT to CE epochs. The degree to which this occurs 

and how reference frames evolve temporally exactly is something that potentially 

depends upon the cortical region. The nature of these temporal dynamics and how exactly 

they differ between brain areas is not clear from the single unit analyses above as they 

only provide a brief picture of the reference frame encoding and provide no information 

about how the HG, TG, and TH vectors are concurrently evolving. Furthermore, utilizing 

static time windows to determine reference frame representations of dynamic imagined 

movements fail to encompass tuning through time. To resolve this issue, we employ a 

population level dimensionality reduction analyses to allow us to compare brain areas at 

the level of the full temporally evolving dynamics across all tuned units. This allows us to 

determine how strongly different reference frame dynamics express across different brain 

areas throughout the entirety of a delayed imagined reaching task. 
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Through the steps of our dimensionality reduction we generate a correlation matrix across 

the first 20 principal components (Figure 4.8) of each brain region and compare the 

correlation of each components temporally evolving reference frame across all brain 

regions and their respective components (Figure 4.9A, corr(brain region Xi , brain region 

Yi) where X and Y are the different brain regions and i is components 1-20). PMv and 

SMG have significantly greater correlation between their reference frame components 

than PMv and AIP. (**p < 0.01; Wilcoxon rank-sum test, Figure 4.9B). This result agrees 

 
Figure 4.8 Graphical Illustration of Complex PCA Processing. Firing rates for all 
units, trial averages, and time points were arranged in a matrix (unique trials by unit) 
and reduced down using principal component analysis (top left). For the first 20 
components we then ran a gradient analysis for each time window (second step). Time 
windows were 100 ms in duration and response field angles and lengths were acquired 
from the start of the cue hand eye epoch to the end of the cue execution epoch. Next, 
we converted all resultant angles and lengths into complex numbers to account for both 
variables and utilized complex principal component analysis to identify the most 
common mode of tuning found. A matrix of each complex value for each time point 
and each component was then created and reduced to find the components that 
explained the greatest variance (bottom). 
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with the NHP literature where anatomical connections between these two areas have been 

identified (Rozzi et al., 2008). 

 

Using the correlation matrix, we perform a second dimensionality reduction of the HG, 

TG, and TH vectors and subsequently identify the components that meet a threshold 

determined from a parallel analysis to be significant principal components (Franklin et 

al., 1995). Parallel analysis reveals that one component met our stopping criteria (i.e. 

significance level) of 0.05 (95th percentile). In the first principal component we see the 

temporal evolution of reference frames across all brain areas during the imagined 

reaching task.  

 

 

 

 
Figure 4.9 Correlation of Reference Frame Representations over Time and Across 
Brain Regions. a) correlation matrix showing the circular-circular correlation between 
each principal component of AIP, PMv, S1, and SMG. b) histograms of correlation 
values from (a). PMv and SMG have significantly greater correlation between their 
reference frame components than PMv and AIP. (**p < 0.01; Wilcoxon rank-sum test) 
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In AIP, the first principal component (38% of variance explained across all brain areas) 

showed strong tuning of the HG vector during the cueing of the effectors and 

maintenance of this tuning even after presentation of the target (Figure 4.10). We do also 

see small resultant vector lengths of TH during the planning. These smaller resultant 

lengths are suggestive of little to no tuning to TG or TH during the CT epoch. We see 

that this reference frame tuning changes during the execution epoch wherein we find 

resultant vectors evolve for all three vectors. During execution of the imagined reach the 

TH vector resultant length grew and encoded the relation of the target and hand position 

more uniformly. The HG vector progressively evolved to encode hand position and the 

TG vector encoded target position most likely per consequence of the strong encoding of 

TH during the execution epoch. This shows that in AIP the position of the hand is 

encoded relative to gaze position (HG) during the planning epoch with relatively subtle 

tuning of the target position relative to the hand; this then evolved to a more pronounced 

and stronger encoding of the TH vector during the CE epoch. 

 

 
Figure 4.10 Dimensionality Reduction of Reference Frames. Complex PCA yields the 
most common modes of tuning found across brain regions over time. This reveals 
subtle and interesting differences from the underlying population. The first component 
(shown) was the only component found to be significant (p < 0.05; parallel analysis). 
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In PMv we found different patterns of tuning compared to AIP. During the fixation and 

maintenance of hand position (cueing of the effectors) there was a phasic representation 

of the HG vector that dissipates unlike the tonic HG representation seen in AIP and SMG. 

However, we found that during the planning epoch unlike the AIP area, there was strong 

TH representation during the planning epoch. This encoding during the planning epoch 

stayed consistent throughout the planning epoch and was maintained throughout the 

execution epoch.  

 

From previous work in the same patient, we elicited naturalistic responses in the arm via 

intracortical microstimulation of S1 (Salas et al., 2018). Utilizing the same array during 

our imagined reaching task we found little to no encoding of any of the vectors. This was 

expected, as we find no tuning above chance in S1 during the cueing of the effectors and 

target epochs of the delayed-imagined reaching task. Interestingly, we found strong hand 

centered encoding of the target (TH) during the cue execution epoch peaking around 1 

second after the CE epoch is cued to begin.  

 

In SMG we found temporal evolution of reference frames to be similar to AIP with some 

subtle differences. Much like AIP during the cueing of the effectors, we found that HG 

tuning was prominent with TG and TH vectors pointing in the direction of G and H, 

respectively. During the planning epoch we found that HG tuning was maintained while 

TG and TH tuning evolved to encode the target relative to gaze position (TG) and target 

relative to the hand position (TH), respectively. Further analyses on decode performance 

are suggestive of an eye position effect (see below). The HG vector shifts to H while the 
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TH vector remains the same as it did during the delay, but with a decrease in the 

magnitude of the resultant vector length, indicating lower tuning strength. Interestingly, 

the TG vector remains oriented in the same direction as it did during the CT epoch. Thus, 

in SMG we find a relative position code (HG, TG, TH) during the CT epoch that shifts to 

TH and weak TG vector encoding during the CE epoch. 

 

4.3.6 Decoding Accuracy 
 

Based on the findings above and noting that TH is largely encoded across most brain 

areas it follows that if the true encoding mechanism in that brain area is mainly hand 

centric then we can increase our decoding accuracy by separating out trials based upon 

hand position. Our reasoning is as follows, if the reference frame for example in S1 

during the CE epoch is found to be TH then based off the temporal reference frame 

analysis target position should be encoded with respect to hand position. Thus, as we vary 

hand position we would expect coding for target positions to change as it is hand 

centered. Within a decoder framework we tested this assumption by training a linear 

classifier to decode target position given data from each independent hand (Figure 4.11) 

position and utilize dropping curves to compare decode accuracies across brain regions.  
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Figure 4.11 Decoding Target Position from Unique Hand Positon. Cross validated 
accuracies are shown when decoding target position while restricting to a unique hand 
position. Furthermore, we show these accuracies using neuronal dropping curves.  For 
example, SMG during the CT epoch when restricting our dataset to trials where the 
initial hand position was at 1, we find accuracies are above 80% with greater than 250 
units. Solid black horizontal line depicts chance (25%). 
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As expected based on our temporal reference frame analysis in brain regions SMG and 

PMV where TH vectors had large resultant vectors we find greater than 80% cross 

validated accuracy during the CT epoch. Interestingly, in SMG where we find strong 

encoding of the TG vector (Figure 4.10) we also find ascending cross validated 

accuracies when eye positions move from the right to left most eye positions (Figure 

4.12). This is suggestive of eye position dependent modulation during this epoch with the 

left most eye positions having the greatest effect during the CT epoch. This trend can also 

be seen during the cue execution epoch, but to a lesser degree, which also corresponds to 

 
Figure 4.12 Decoding Target Position from Unique Eye Position. Cross validated 
accuracies when decoding target position while restricting to a unique eye position. 
Interestingly, we see as eye position moves to the left (4 to 1) cross validated 
accuracies increase. Solid black horizontal line depicts chance (25%). 
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the smaller resultant lengths (Figure 4.10 and 4.12). Conversely, in areas AIP and S1 

where we found the smallest resultant vectors for TH we find cross validated accuracies 

to be at chance or slightly better during the same epoch. During the cue execution epoch 

we find cross validated accuracies to significantly be greater than chance across all brain 

regions. Due to the limited number of hand and target positions in our task the most 

lateral hand positions have the least diversity in reach directions, therefore biasing cross 

validated accuracies to be greatest at the centermost starting hand positions. For example, 

reaches are only up and away from the left and right most starting hand positions as 

opposed to hand positions two and three where there is greater diversity in the reach 

directions. 

 

4.4 Discussion 
 
 
Here we studied how sensorimotor reference frames are encoded and develop in four 

brain regions of human cortex across two patients during an imagined-delayed reaching 

task. The task design included a large array of combinations for the three behavioral 

variables that allowed us to examine this question. The percent of the population found to 

be tuned to any combination of the effectors varies across epochs and brain areas 

(Bremner and Andersen, 2012; Buneo et al., 2002; Chang and Snyder, 2010; McGuire 

and Sabes, 2011; Pesaran et al., 2006). The tuned units in areas near PMv, SMG, S1, and 

AIP showed mixed encoding of the eye, hand, and target variables more so during the 

planning than the execution epoch. However, the size of this effect varied based on the 

area being recorded from. Furthermore, utilizing dimensionality reduction techniques 

revealed that the evolution of reference frame encoding varies across brain areas and 
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epochs. The predominantly hand-centered coding found in these brain regions during the 

execution epoch is distinct from many of the previously reported eye-centered and 

heterogeneous reference frames seen in SPL areas of NHPs (McGuire and Sabes, 2011). 

Reference frame encoding during the planning epoch seems to be more mixed, however 

this seems to vary based on the area that is being recorded from. Lastly, while we find 

hand-centered tuning in our task paradigm we are limited by the high degree of 

correlation between the hand and muscle kinematics. Thus, at a first approximation, we 

are unable to discern between coding with respect to the hand versus coding of muscle 

kinematics. 

 

There has long been a lasting debate with regards to the heterogeneity of reference frames 

across brain regions (Avillac et al., 2005; Batista et al., 2007; Bremner and Andersen, 

2012; Chang and Snyder, 2010; McGuire and Sabes, 2011; Pesaran et al., 2010). It can be 

difficult to draw a single conclusion based on these reports due to behavioral and 

analytical differences between them. Here we aimed to resolve this by using the same 

behavioral and analytical techniques across brain regions. To the best of our ability, we 

objectively quantified common modes of tuning using gradient analyses and 

dimensionality reduction on the entire population of tuned neurons across brain regions. 

In doing so, we came to the most likely conclusion that the result of reported 

discrepancies is most likely due to the variable encoding of behavioral variables across 

brain regions. For example, we find more homogenous representations in areas like S1 

compared to intermediate representations in areas SMG and PMv. This analysis differs 
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from previous work in that it does not require fitting responses to a model to determine 

reference frame representations (Batista et al., 2007; McGuire and Sabes, 2011). 

 

Previous findings that established anatomical connections between PMv and SMG in 

NHPs (Clower et al., 2001; Rozzi et al., 2006, 2008) and the results here, e.g. these areas’ 

reference frame representations had greater correlations compared to other regions, add to 

the growing body of work suggestive of these two areas’ role in visuo- and somatomotor 

transformation of arm movements. We also do find that heterogeneity of brain regions is 

also variable in parietal cortex especially when we compare SMG and AIP. While both 

areas are in different subdivisions of the parietal cortex and do both encode reaches in 

hand centered coordinates during the cue execution epoch they encode slightly different 

variables during the delay. With SMG encoding TH, TG, and HG and AIP encoding the 

HG vector. However, we must note these conclusions are limited by the number of 

behavioral variables used in paradigm. 

 

During movements we must be able to rapidly adjust and control our limbs in order to 

smoothly interact with our environment. Sensory delays in visual and proprioceptive 

feedback during these movements are delayed enough that errors cannot be appropriately 

integrated. Thus, previous work has hypothesized that the brain generates an internal 

estimate of our limbs (Miall and Wolpert, 1996). PPC, an association area at the 

functional interface between sensory and motor representations, is a strong candidate as 

an anatomical structure that might represent the internal estimate. However, it is difficult 

to collect direct neural evidence of this phenomenon due to the high correlation between 
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sensory and motor efference signals. The parietal lobe was also proposed as a candidate 

for encoding these state estimates with recent evidence suggesting that neurons encode 

internal forward models that are not available from passive sensory feedback or 

correlated with outgoing motor commands (Mulliken et al., 2008). In our behavioral 

setup we have the unique opportunity to measure the internal estimate of the limb 

disassociated from the motor and sensory variables during the cueing of the effectors 

epoch. The ability to measure these changes in the absence of sensory feedback could be 

highly suggestive of encoding of this estimate. In areas AIP, SMG, and PMv we found 

that hand position is encoded relative to gaze position during the cueing of the effectors, 

but not in S1 (Fig 4.10). In NHPs, PPC (AIP and SMG) has been shown to be an area that 

maintains an internal state estimate, and we found similar activity in an area near PMv 

(Mulliken et al., 2008; Stavisky et al., 2017). Although these findings contribute to the 

evidence that an internal state estimate is maintained in PMv, further investigation is 

required (see internal state estimate section).  

 

Some studies quantify reference frames by fitting cell firing rates to models of predicted 

encoding schemes. This approach can be advantageous when neural signals area good fits 

for the proposed model, however it can fall apart when the parameters being fit cannot 

explain a large proportion of the variability. This can prove to be problematic when 

looking at a population of units that seem to be heterogeneous. Fortunately, the approach 

that we take allows us to determine the subtle impact that different variables have on a 

units firing rate. We take this a step further by utilizing dimensionality reduction 

techniques that take into consideration both the magnitude and push-pull nature that pairs 
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of behavioral variables have on the entire population of tuned units. Furthermore, this 

also yields insight into the temporal evolution and significant modulatory influences 

behavior variables have not just on a single unit, but across the overall population all 

whilst not enforcing a rigid framework to be fit.  

 

Our results in PMv are, to the best of our knowledge, the first single unit recordings in 

humans showing significant tuning to an imagined reach and that these neural data can be 

used to decode target location. Previous work in NHPs by Kakei et al. (2001) showed that 

PMv neurons were directionally tuned and displayed an extrinsic like tuning. This study 

also went on to show that tuning to reaches was found during planning, execution, and 

both. Our results here suggest that direction tuning is modulated by hand position in 

humans. Furthermore, Kakei and colleagues did not vary the location of hand position, 

thus this is something that would most likely be overlooked in their task paradigm. 

However, the greatest proportion of tuning we found was primarily during the planning 

epoch. These differences between directional and epoch relevant tuning compared to the 

findings of Kakei and colleages is possibly due to the relative depth of recording. Kakei 

recorded at an average depth of 2.9 ± 0.89 mm whereas our recordings were at ~1.5 mm. 

Lastly, our findings in PMv display encoding of the hand relative to gaze position (HG) 

during planning and execution. More recent work from PMv has shown that hand 

configuration can be decoded from neural data acquired from PMv (Schaffelhofer et al., 

2015). Combining these previous findings with those of Kakei suggests that PMv plays a 

role in encoding reaches and hand configuration (Kakei et al., 2001). Our findings in 

PMv during an imagined reach show HG and TH encoding during planning and 
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execution of the imagined movement. Further investigation is needed to determine the 

role of concurrent HG and TH tuning.  

 

Previous findings in NHPs have found that the IPL, a larger area encompassing SMG, is 

a rich region that is responsive to different sensory stimuli and has many connections to 

frontal, parietal, and temporal areas such as the ventral premotor cortex (PMv), superior 

parietal lobule (SPL) and area MSTd, respectively (Matelli et al., 1986; Nelissen et al., 

2011; Petrides and Pandya, 1984a; Rizzolatti et al., 1998; Rozzi et al., 2006, 2008). 

Furthermore, functional connectivity analyses in humans have gone on to show that IPL 

is potentially part of a multimodal integration network that acts as a strong network 

interface between unimodal-related systems and cortical hubs (Sepulcre et al., 2012). In 

relation to these findings we find that SMG indeed displays a relative position code 

(concurrent HG, TG, and TH tuning) during the CT (planning) epoch which then evolves 

to encoding the target relative to both the hand and, to a lesser degree, gaze position (TH 

and TG). Interestingly, these findings compliment functional and anatomical studies that 

find IPL to be connected with visual areas, such as area MSTd in NHPs (Caspers et al., 

2006, 2011; Nelissen et al., 2011). Further work on disassociating how reaching 

movements compared to eye movements could yield further insight into the potential 

contribution of SMG in the distributed cortical network that controls coordinated eye and 

arm movements, such as those proposed to be in PMd (Pesaran et al., 2010). 

 

The results in S1 in contrast to the other areas are interesting, as we find no tuning to HG 

during the cueing of the effectors and little to no tuning throughout the task until the 
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subject imagines making a reach during the cue execution epoch. During this phase we 

find a strong largely homogenous hand centered representation. As mentioned in chapter 

2, to the best of our knowledge these are the first human single unit findings to show S1: 

1) encodes imagined reaches, 2) represents these in hand centric coordinates, and 3) has 

little no encoding of any behavioral variables until the imagined execution (no internal 

state estimate present). 

 

In AIP, an area in PPC, we find strong HG tuning during the cueing of the effectors and 

delay with an even more robust encoding of the target relative to the hand. Throughout 

the task AIP seems to display a unitary reference frame that dominates each distinct 

epoch: cueing of effectors – HG, planning – HG, execution – TH. Interestingly, we find 

that AIP like SMG and less so PMv encodes an internal state estimate during the cueing 

of the effectors (Chapter 3). 

 

Here we show that reference frames can shed light on what information is encoded in a 

brain region during a specific task. Using a delayed-imagined reaching task we show that 

imagined reaches are encoded in different reference frames among the brain areas we 

recorded from. However, additional work is needed to determine how different brain 

areas encode imagined reaches, and additionally how they encode saccades. Does spatial 

information about the target link the control of eye and arm movements? Or does SMG 

play a more direct role similar to FEF and SEF? Lastly, studying how these areas 

concurrently encode this information would be of value but would require simultaneous 

recordings to shed further light on the temporal dynamics of reference frame encoding.  
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5. Conclusion 
 
 
In Chapter 2, we studied the role of primary somatosensory cortex (S1) in a cognitive 

motor imagery task. To the best of our knowledge, we have shown the first single unit 

evidence that cognitive imagery of movements is represented in the primary 

somatosensory area of human cortex (Chapter 2). Demonstrating S1 neurons track motor 

intentions in the complete absence of sensation. These findings possibly lend credence to 

previous findings showing S1 has direct projections to the spinal cord, and stimulation of 

S1 produces overt motor movements (Matyas et al., 2010; Penfield and Boldrey, 1937; 

Rathelot and Strick, 2006). Further investigation teasing apart whether these signals 

originate from S1 or copies from areas, such as M1, are still needed. Interestingly, we 

find that this activity is restricted to the time of imagined execution with negligible 

activity while the subject must actively maintain the position of the limb in memory, 

maintain fixation at distinct spatial locations, and maintain movement plans. These 

results suggest that the role of S1 in motor production is restricted to the time of 

movement execution. This parallels much of the NHP literature showing activity to be 

restricted to epochs involving active movements. However, of note is that active 

movements in S1 of NHPs has been shown to exhibit pre-movement activity (Fetz and 

Baker, 1973; London and Miller, 2013). Due to the constraints of our paradigm we are 

unable to test this as we have no way of determining when the subject began his imagined 

reach. Future studies aimed at recording S1 activity during attempted movements, at or 

one level above the SCI, in tetraplegic subjects would be interesting as this could elicit 

pre-movement activity with an associated EMG signal marking the beginning of the 

movement. Lastly, we show S1 activity codes the reach vector, coding motor intention 
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relative to the imagined position of the hand. These results implicate a role of primary 

somatosensory cortex in cognitive imagery, implicate a role of S1 in motor production in 

the absence of sensation, and suggest that S1 may provide a source of control signals for 

future implementations of neural prosthetic systems. 

 

 

In Chapter 3, we studied if internal state estimates are stored in human posterior parietal 

cortex. Previous clinical reports found that subjects with parietal lesions while capable of 

performing activities of daily living, had unique deficits such as the inability to sense 

their arm if it was out of view and stationary (Wolpert et al., 1998). Here we show strong 

evidence for internal state estimates of the hand being encoded and stored in posterior 

parietal cortex (PPC). Furthermore, we find that the internal state estimate of the hand is 

encoded relative to the position of the eye. This holds implications for future 

implementations of neural prosthetics aimed at decoding hand position. While the 

findings shown in this dissertation provide evidence for the internal state estimate being 

stored in PPC, future aims towards understanding if this estimate is updated in this brain 

region during dynamic behaviors is required. Finally, in Chapter 4 we show that areas 

AIP, PMv, and SMG all exhibit HG tuning during the CHE epoch, suggesting that hand 

position is encoded relative to gaze position, but not in S1. Further studies, aimed at 

comparing how these representations differ or are similar across brain regions will aid in 

understanding if these are true internal state estimates in PMv and SMG. If so, is the 

internal state estimate stored similarly to AIP? And is it updated?  
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In Chapter 4, we investigated the reference frames encoded in an area near PMv, SMG, 

S1, and AIP. We show that reference frame representation heterogeneity is dependent 

upon the brain region. Further work in understanding if this heterogeneity is a by-product 

of sensory inputs to each brain region is needed. Interestingly, we find the most 

heterogeneity during the planning epoch. This evolves into a much clearer and unified 

hand centered reference frame across all brain regions suggesting that during a selected 

action the reference frame switches to the most relevant behavioral variable encoded. 

Further work, similar to those done by Pesaran and colleagues (2010), is needed and 

could be enhanced if the subjects made randomly interleaved saccades to the cued target 

as opposed to imagined reaches. Interestingly, we find that SMG and PMv, previously 

reported areas found to be reciprocally connected, share similar reference frame 

representations throughout our delayed-imageind-reaching task (Matelli et al., 1986; 

Petrides and Pandya, 1984b; Rizzolatti et al., 1998; Rozzi et al., 2006, 2008). Lastly, we 

show that complex PCA can be utilized to objectively reduce the dimensionality of 

heterogeneous reference frame representations to the most common modes found across 

brain regions. Future work, aimed at discerning local and long range spike field 

coherence will be beneficial, in so far as possibly providing mechanisms by which 

neurons across different brain regions coordinate their activity for reaches. 

 

 

Understanding how the brain encodes behavioral variables is highly relevant to future 

successful implementations of brain machine interfaces (BMIs). Furthermore, how the 
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interplay across brain regions, can aid in finding new potential targets for BMI 

applications. While M1 and PPC to date have been the primary examples of successful 

BMI implementation we show here that areas like primary somatosensory cortex (S1) is 

also a region that should be used especially for closed-loop BMI applications.  

 

 

Taken together the work presented here has broad applications for the successful 

implementation of future brain machine interfaces, decoding algorithms, 

neuroprosthetics, and our general understanding of how our brain helps us navigate an 

ever-changing world.  
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