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Abstract

Diseases of the retina affect hundreds of millions of patients worldwide, with limited
treatment options available. ALG-1001 is an investigational drug that showed success in
mitigating disease symptoms in animal models and improved patient vision in multiple
clinical trials. To gain a better understanding of the drug’s mechanism of action, RNA
sequencing (RNA-seq) and shotgun proteomics were employed to study the drug-induced
transcriptome change in retinal tissue and cell culture models. Chapter 2 focuses on
application of this approach in an animal model of the disease that showed the drug can
reversely modulate hypoxia-activated angiogenesis and inflammation gene expression
changes. Chapter 3 discusses the study of drug-induced transcriptome response in two cell
culture models relevant to pathophysiology of the retinal diseases. Chapter 4 explores retinal
cell transcriptome after short and long-term exposure to disease-relevant hypoxia condition
and after hypoxia recovery. Appendix A documents our shotgun proteomics protocol and
includes results from the application of this method in the study of drug mechanism.

Typical RNA-seq studies use few biological replicates for differential expression analysis,
mainly due to the high cost of generating sequencing data. As a result, not all comparisons
have the proper statistical power, which result in false positives and false negatives that can
lead the researcher to the wrong conclusion. Chapter 5 discusses a novel algorithm and
software that help users perform quality control of their dataset to identify whether the
appropriate sample size was used for differential gene discovery. The chapter covers
demonstration of the software with four publicly available RNA-seq datasets to illustrate its
utility.

Bioresorbable vascular scaffolds (BVSs) are the application of biocompatible polymer in the
treatment of coronary heart disease, one of the leading causes of death worldwide. BVSs are
designed to replace metal stents, which stay permanently in the body after surgery and can
lead to various complications, such as lethal thrombosis. In contrast, BVSs provide the
necessary support and are resorbed by the body to leave behind a healthy artery after 2-3
years. Improving on the existing BVS material, chapter 6 explores a new polymer
nanocomposite that increases the structure’s radial strength in a thinner profile and provides
radio-opacity to enhance surgery success.
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Chapter 1. Introduction

The human circulatory system is composed of a complex network of blood vessels that
transport nutrients and oxygen to tissues and carry away metabolic waste. Disruption of this
life-sustaining system can lead to tissue damage, disease, and even death. In many chronic
diseases, abnormal growth of new blood vessels (called angiogenesis) sustains and
aggravates the condition?. In other disorders, deterioration of existing vasculature can lead to
irregular blood supply resulting in tissue necrosis?. The first three sections of this chapter
(Chapter 1.1-1.3) discuss the vascular diseases of the retina, development of an
investigational drug that targets these disorders and application of high-throughput methods
to study the effect of the drug. The next section (Chapter 1.4) introduces the development
of an analytical framework and an accompanying software that improves existing high-
throughput transcriptome data analysis. The last section (Chapter 1.5) explores
characterization of a nanocomposite biomaterial that has the potential to advance treatment

of coronary heart disease.

1.1 Pathology and treatment of retinal diseases

The human eye is composed of a diverse variety of cells that are organized in a complex
three-dimensional architecture to enable a central sensory function: visual perception of the
world around us®*. In the eye, light first enters through the cornea and is focused by the lens
onto the retina. Within the retina, photoreceptors (cones and rods) detect and convert the light

to chemical signals, which are passed to retinal neurons and ultimately to the brain. Contrary



to our intuition, over most of the retina, photons first pass through several layers of neurons
and blood vessels before reaching the photoreceptors. These additional cell layers disperse
and absorb the light, reducing spatial resolution. In contrast, the macula is an approximately
6mm dimeter region of the retina, where the neurons and the anterior blood vessels are mostly
absent, thus allowing the light to more directly hit the photoreceptor cells. The macula also
contains the highest density of cone photoreceptors, which provide us our high-resolution
colored vision. The combination of high cell density and relatively lack of capillaries gives

this highly metabolically-active tissue a predisposition for degeneration and disease®®.

In developed nations, degenerative diseases of the retina represent the leading cause of adult
blindness’. Age-related Macular Degeneration (AMD) and Diabetic Retinopathy/Diabetic
Macular Edema (DR/DME) are two major disorders that predominantly affect the macula.
Based on the most recent statistics, AMD affects 11 million Americans (170 million
worldwide), and accounts for more than half of all blindness and visual impairment in the
industrialized countries®®. Similarly, DR/DME affect approximately 4 million Americans
(93 million worldwide), and is the largest cause of blindness under the age of 55 in the

developed world®1t,

Many factors, including both genetic predisposition and environmental stress, contribute to
the onset of these diseases. Over time, presence of stress factors lead to development of
chronic hypoxia and inflammation®?, which contribute to develop of pathological
angiogenesis (pathophysiology of DR/DME in Figure 1.4 and AMD in Figure 1.5)"3%4 In

early stages of AMD, the retina is inflamed with activated microglia cells (resident



macrophages of central nervous system) and show sign of degenerative blood vessel loss?®.
As AMD progresses, the retina become plagued by accumulation of extracellular debris in
the posterior region in deposits called drusen'®. Drusen formations hinder diffusion between
the vasculature and retina, and their presence attracts inflammatory macrophages to the
area'”'8, The combination of these processes drive chronic hypoxia and inflammation in the
AMD retina, contributing to the disease progression. In DR/DME, hyperglycemia is
associated with damage and regression of retinal vasculature, creating a hypoxic/ischemic
micro-environment in the tissue’®?. High blood sugar and excess lipid conditions also
promote release of inflammatory mediators by the neural retina, leading to leukocyte
recruitment. In both diseases, hypoxic and inflammatory conditions converge to drive
cellular release of a variety of pro-angiogenic factors, including Vascular Endothelial Growth
Factor (VEGF), a potent angiogenesis activator?!. These signaling then lead to formation of
immature vessels that are often poorly-developed and leak fluid, resulting in edema, bleeding
and cell death in the retina/macula'®. These degenerative conditions progressively get worse,

causing vision impairment and eventually blindness.

Currently, there are two main treatment options for the described retinal diseases. Before the
introduction of anti-VEGF pathway antibodies, laser therapy was the most commonly used
approach. One type of laser therapy burns the peripheral retinal tissue, while sparing the
macula to reduce the metabolic demand and alleviate the hypoxia/ischemia condition?®. A
second type of laser therapy targets specific leaky blood vessels to seal the leakage and

reduce edema/bleeding®?. However, laser-based therapies generally damage the peripheral



vision and do not usually lead to vision improvement (they stabilize vision deterioration).
Furthermore, neovascularization often re-emerges in many of the patients after surgery,
making this treatment option only a short-term solution?. The current standard of care uses
anti-VEGF antibodies (Ranibizumab, Aflibercept and Bevacizumab'®?%) that specifically
bind with VEGF and disrupt the activation of its signaling pathway to suppress retinal
neovascularization. While significantly more successful than laser therapy, the antibody
treatments are: a) expensive®®, b) require burdensome intraocular (into the eye) injection
every 30-60 days?, c) is ineffective in more than 25-50% of the patients?”?%. Due to these
drawbacks, an alternative and more efficacious therapy is needed to address the limitations

of the existing standard of care.

1.2 Discovery of an oligopeptide therapeutic agent — ALG-1001
An investigational oligopeptide drug named ALG-1001 (Figure 1.1) was invented by

Allegro Ophthalmics, LLC. and is currently undergoing clinical trial in the described retinal
diseases. In an Phase | clinical trial, 15 subjects with very advanced forms of DME were
recruited to receive three monthly intraocular injections, followed by three months of
additional monitoring®®. At the end of the study, no major drug-related side effects were
observed in all fifteen patients and more than half of the subjects (8 out of 15 patients,
including several that are refractory to existing antibody therapy) demonstrated a significant
improve in vision (3 BCVA lines of improvement in visual acuity, Figure 1.2). Since this

initial study, additional phase I/l trials with DR, DME and AMD patient cohorts were



completed and continued to demonstrate ALG-1001 is well-tolerated and improved vision
with no drug-related side effects reported to date3®32. Based on these positive results, the
company recently announced the plan to enter the drug into a phase Il trial in DME, slated

to start in early 2019,

ALG-1001 was invented to structurally mimic a class of proteins that contain a common
arginine, glycine, aspartic acid (RGD) amino acid sequence. The RGD sequence, in context
of its flanking amino acids, has been studied extensively in the past for its natural role as the
key recognition sequence of many important extracellular matrix proteins®*. RGD containing
peptides and their derivatives have also been investigated for potential therapeutic value in
applications including tumor therapy, tissue engineering, and drug delivery®-’. The RGD
motif was first isolated in 1984 by Pierschbacher and Ruoslahti as the specificity determining
sequence in fibronectin proteins®. Later research found that the motif facilitates the normal
binding of several important groups of extracellular matrix proteins to a class of cell receptors
called integrins®. Today, 24 integrin heterodimers have been discovered in mammals, and
their expression pattern on various cell types facilitate both normal and pathogenic cellular
physiology. In particular, elevated expressions of certain integrins (e.g. avp3, avp5 and

aSp1) are often observed on developing blood vessels during pathological angiogenesis®.

In ocular tissues, it was previously reported that AMD patients express high level of avp3
integrins while both avp3 and avp5 integrins were elevated in DR patients*!. Similarly, a581
elevation has been observed in neovascularization of the ocular tissue in animal models*.

Since these integrins are selectively up-regulated in newly-formed blood vessels, it was



hypothesized that their expression is important for angiogenesis. Indeed, using the chick
Chorioallantoic Membrane (CAM) model of angiogenesis, Brooks and Drake found that
anti-integrin antibodies were able to inhibit vessel growth***4, Around the same time, various
research groups hypothesized that short RGD-containing peptides may also specifically bind
with integrins and disrupt their normal involvement in angiogenesis. In a 1996 study, mouse
subcutaneous injection of a cyclic RGD peptide was shown to reduce vessel proliferation by
76% in the mouse retina®. In the same year, another independent study by Friedlander and
coworkers reached the same conclusion using the same peptide and a different mouse
model*. These results and additional confirmatory studies demonstrate that RGD-containing
peptides can strongly inhibit angiogenesis through disruption of pro-angiogenic integrin

function.

In light of these early research, ALG-1001 was invented as an RGD mimic for treatment of
neovascularization in the eye. Based on the RGD sequence, Dr. John Park (Allegro
Ophthalmics, LLC.) replaced the carboxyl group on the aspartic acid with a sulfonate group,
i.e. cysteic acid. In drug research, sulfonate and carboxylate groups are classical example of
structurally distinct, yet bio-functionally equivalent molecular fragments*. In the original
hypothesis, the placement of sulfonate group was proposed to induce a stronger interaction
with the integrin binding pocket and thus increases the drug’s potency. Although more recent
biochemical experiments call this hypothesis into question, concurrent studies revealed that

ALG-1001 is a strong inhibitor of angiogenesis in animal models.



Using three different mouse models that mimic human retinal diseases, Dr. Peter
Campochiaro (Johns Hopkins University) and his team demonstrated that ALG-1001 is
effective in reducing ocular neovascularization (personal communication). In the Laser-
induced Choroidal Neovascularization (CNV) mouse model*’, ALG-1001 injection reduced
neovascularization by 43% compared to vehicle control. In another model named Oxygen-
induced Retinopathy (OIR)*, ALG-1001 was shown to reduce vessel growth by up to 54%
five days after injection. In a third study of a mouse model that over-expresses human VEGF
and subsequently develops retinal angiogenesis, ALG-1001 and the current standard of care,
Ranibizumab, were tested in a combination study. In this experiment, both drugs comparably
reduced subretinal neovascularization, but there was a further reduction when the two drugs
were used in combination. The synergistic effect suggests ALG-1001 may act through a
molecular pathway that differs from existing anti-VEGF treatment (as the effects appear to
be additive). Collectively, these in vivo studies show that ALG-1001 is effective in

modulating retinal neovascularization.

1.3 ALG-1001 mechanism of action study
Although ALG-1001 was designed to be a more potent inhibitor of integrin than RGD, recent

studies found the drug’s binding affi