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Abstract 

Diseases of the retina affect hundreds of millions of patients worldwide, with limited 

treatment options available. ALG-1001 is an investigational drug that showed success in 

mitigating disease symptoms in animal models and improved patient vision in multiple 

clinical trials. To gain a better understanding of the drug’s mechanism of action, RNA 

sequencing (RNA-seq) and shotgun proteomics were employed to study the drug-induced 

transcriptome change in retinal tissue and cell culture models. Chapter 2 focuses on 

application of this approach in an animal model of the disease that showed the drug can 

reversely modulate hypoxia-activated angiogenesis and inflammation gene expression 

changes. Chapter 3 discusses the study of drug-induced transcriptome response in two cell 

culture models relevant to pathophysiology of the retinal diseases. Chapter 4 explores retinal 

cell transcriptome after short and long-term exposure to disease-relevant hypoxia condition 

and after hypoxia recovery. Appendix A documents our shotgun proteomics protocol and 

includes results from the application of this method in the study of drug mechanism.  

Typical RNA-seq studies use few biological replicates for differential expression analysis, 

mainly due to the high cost of generating sequencing data. As a result, not all comparisons 

have the proper statistical power, which result in false positives and false negatives that can 

lead the researcher to the wrong conclusion. Chapter 5 discusses a novel algorithm and 

software that help users perform quality control of their dataset to identify whether the 

appropriate sample size was used for differential gene discovery. The chapter covers 

demonstration of the software with four publicly available RNA-seq datasets to illustrate its 

utility. 

Bioresorbable vascular scaffolds (BVSs) are the application of biocompatible polymer in the 

treatment of coronary heart disease, one of the leading causes of death worldwide. BVSs are 

designed to replace metal stents, which stay permanently in the body after surgery and can 

lead to various complications, such as lethal thrombosis. In contrast, BVSs provide the 

necessary support and are resorbed by the body to leave behind a healthy artery after 2-3 

years. Improving on the existing BVS material, chapter 6 explores a new polymer 

nanocomposite that increases the structure’s radial strength in a thinner profile and provides 

radio-opacity to enhance surgery success.  
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Chapter 1.  Introduction 

The human circulatory system is composed of a complex network of blood vessels that 

transport nutrients and oxygen to tissues and carry away metabolic waste. Disruption of this 

life-sustaining system can lead to tissue damage, disease, and even death. In many chronic 

diseases, abnormal growth of new blood vessels (called angiogenesis) sustains and 

aggravates the condition1. In other disorders, deterioration of existing vasculature can lead to 

irregular blood supply resulting in tissue necrosis2. The first three sections of this chapter 

(Chapter 1.1-1.3) discuss the vascular diseases of the retina, development of an 

investigational drug that targets these disorders and application of high-throughput methods 

to study the effect of the drug. The next section (Chapter 1.4) introduces the development 

of an analytical framework and an accompanying software that improves existing high-

throughput transcriptome data analysis. The last section (Chapter 1.5) explores 

characterization of a nanocomposite biomaterial that has the potential to advance treatment 

of coronary heart disease. 

1.1 Pathology and treatment of retinal diseases 

The human eye is composed of a diverse variety of cells that are organized in a complex 

three-dimensional architecture to enable a central sensory function: visual perception of the 

world around us3,4. In the eye, light first enters through the cornea and is focused by the lens 

onto the retina. Within the retina, photoreceptors (cones and rods) detect and convert the light 

to chemical signals, which are passed to retinal neurons and ultimately to the brain. Contrary 
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to our intuition, over most of the retina, photons first pass through several layers of neurons 

and blood vessels before reaching the photoreceptors. These additional cell layers disperse 

and absorb the light, reducing spatial resolution. In contrast, the macula is an approximately 

6mm dimeter region of the retina, where the neurons and the anterior blood vessels are mostly 

absent, thus allowing the light to more directly hit the photoreceptor cells. The macula also 

contains the highest density of cone photoreceptors, which provide us our high-resolution 

colored vision. The combination of high cell density and relatively lack of capillaries gives 

this highly metabolically-active tissue a predisposition for degeneration and disease5,6. 

In developed nations, degenerative diseases of the retina represent the leading cause of adult 

blindness7. Age-related Macular Degeneration (AMD) and Diabetic Retinopathy/Diabetic 

Macular Edema (DR/DME) are two major disorders that predominantly affect the macula. 

Based on the most recent statistics, AMD affects 11 million Americans (170 million 

worldwide), and accounts for more than half of all blindness and visual impairment in the 

industrialized countries8,9. Similarly, DR/DME affect approximately 4 million Americans 

(93 million worldwide), and is the largest cause of blindness under the age of 55 in the 

developed world10,11.  

Many factors, including both genetic predisposition and environmental stress, contribute to 

the onset of these diseases. Over time, presence of stress factors lead to development of 

chronic hypoxia and inflammation12, which contribute to develop of pathological 

angiogenesis (pathophysiology of DR/DME in Figure 1.4 and AMD in Figure 1.5)7,13,14. In 

early stages of AMD, the retina is inflamed with activated microglia cells (resident 
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macrophages of central nervous system) and show sign of degenerative blood vessel loss15. 

As AMD progresses, the retina become plagued by accumulation of extracellular debris in 

the posterior region in deposits called drusen16. Drusen formations hinder diffusion between 

the vasculature and retina, and their presence attracts inflammatory macrophages to the 

area17,18. The combination of these processes drive chronic hypoxia and inflammation in the 

AMD retina, contributing to the disease progression. In DR/DME, hyperglycemia is 

associated with damage and regression of retinal vasculature, creating a hypoxic/ischemic 

micro-environment in the tissue19,20. High blood sugar and excess lipid conditions also 

promote release of inflammatory mediators by the neural retina, leading to leukocyte 

recruitment. In both diseases, hypoxic and inflammatory conditions converge to drive 

cellular release of a variety of pro-angiogenic factors, including Vascular Endothelial Growth 

Factor (VEGF), a potent angiogenesis activator21. These signaling then lead to formation of 

immature vessels that are often poorly-developed and leak fluid, resulting in edema, bleeding 

and cell death in the retina/macula13. These degenerative conditions progressively get worse, 

causing vision impairment and eventually blindness.  

Currently, there are two main treatment options for the described retinal diseases. Before the 

introduction of anti-VEGF pathway antibodies, laser therapy was the most commonly used 

approach. One type of laser therapy burns the peripheral retinal tissue, while sparing the 

macula to reduce the metabolic demand and alleviate the hypoxia/ischemia condition20. A 

second type of laser therapy targets specific leaky blood vessels to seal the leakage and 

reduce edema/bleeding22. However, laser-based therapies generally damage the peripheral 
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vision and do not usually lead to vision improvement (they stabilize vision deterioration). 

Furthermore, neovascularization often re-emerges in many of the patients after surgery, 

making this treatment option only a short-term solution23. The current standard of care uses 

anti-VEGF antibodies (Ranibizumab, Aflibercept and Bevacizumab15,24) that specifically 

bind with VEGF and disrupt the activation of its signaling pathway to suppress retinal 

neovascularization. While significantly more successful than laser therapy, the antibody 

treatments are: a) expensive25, b) require burdensome intraocular (into the eye) injection 

every 30-60 days26, c) is ineffective in more than 25-50% of the patients27,28. Due to these 

drawbacks, an alternative and more efficacious therapy is needed to address the limitations 

of the existing standard of care. 

 

1.2 Discovery of an oligopeptide therapeutic agent – ALG-1001 

An investigational oligopeptide drug named ALG-1001 (Figure 1.1) was invented by 

Allegro Ophthalmics, LLC. and is currently undergoing clinical trial in the described retinal 

diseases. In an Phase I clinical trial, 15 subjects with very advanced forms of DME were 

recruited to receive three monthly intraocular injections, followed by three months of 

additional monitoring29. At the end of the study, no major drug-related side effects were 

observed in all fifteen patients and more than half of the subjects (8 out of 15 patients, 

including several that are refractory to existing antibody therapy) demonstrated a significant 

improve in vision (3 BCVA lines of improvement in visual acuity, Figure 1.2). Since this 

initial study, additional phase I/II trials with DR, DME and AMD patient cohorts were 
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completed and continued to demonstrate ALG-1001 is well-tolerated and improved vision 

with no drug-related side effects reported to date30–32. Based on these positive results, the 

company recently announced the plan to enter the drug into a phase III trial in DME, slated 

to start in early 201933.  

ALG-1001 was invented to structurally mimic a class of proteins that contain a common 

arginine, glycine, aspartic acid (RGD) amino acid sequence. The RGD sequence, in context 

of its flanking amino acids, has been studied extensively in the past for its natural role as the 

key recognition sequence of many important extracellular matrix proteins34. RGD containing 

peptides and their derivatives have also been investigated for potential therapeutic value in 

applications including tumor therapy, tissue engineering, and drug delivery35–37. The RGD 

motif was first isolated in 1984 by Pierschbacher and Ruoslahti as the specificity determining 

sequence in fibronectin proteins38. Later research found that the motif facilitates the normal 

binding of several important groups of extracellular matrix proteins to a class of cell receptors 

called integrins39. Today, 24 integrin heterodimers have been discovered in mammals, and 

their expression pattern on various cell types facilitate both normal and pathogenic cellular 

physiology. In particular, elevated expressions of certain integrins (e.g. αvβ3, αvβ5 and 

α5β1) are often observed on developing blood vessels during pathological angiogenesis40.  

In ocular tissues, it was previously reported that AMD patients express high level of αvβ3 

integrins while both αvβ3 and αvβ5 integrins were elevated in DR patients41. Similarly, α5β1 

elevation has been observed in neovascularization of the ocular tissue in animal models42. 

Since these integrins are selectively up-regulated in newly-formed blood vessels, it was 
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hypothesized that their expression is important for angiogenesis. Indeed, using the chick 

Chorioallantoic Membrane (CAM) model of angiogenesis, Brooks and Drake found that 

anti-integrin antibodies were able to inhibit vessel growth43,44. Around the same time, various 

research groups hypothesized that short RGD-containing peptides may also specifically bind 

with integrins and disrupt their normal involvement in angiogenesis. In a 1996 study, mouse 

subcutaneous injection of a cyclic RGD peptide was shown to reduce vessel proliferation by 

76% in the mouse retina45. In the same year, another independent study by Friedlander and 

coworkers reached the same conclusion using the same peptide and a different mouse 

model41. These results and additional confirmatory studies demonstrate that RGD-containing 

peptides can strongly inhibit angiogenesis through disruption of pro-angiogenic integrin 

function. 

In light of these early research, ALG-1001 was invented as an RGD mimic for treatment of 

neovascularization in the eye. Based on the RGD sequence, Dr. John Park (Allegro 

Ophthalmics, LLC.) replaced the carboxyl group on the aspartic acid with a sulfonate group, 

i.e. cysteic acid. In drug research, sulfonate and carboxylate groups are classical example of 

structurally distinct, yet bio-functionally equivalent molecular fragments46. In the original 

hypothesis, the placement of sulfonate group was proposed to induce a stronger interaction 

with the integrin binding pocket and thus increases the drug’s potency. Although more recent 

biochemical experiments call this hypothesis into question, concurrent studies revealed that 

ALG-1001 is a strong inhibitor of angiogenesis in animal models. 
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Using three different mouse models that mimic human retinal diseases, Dr. Peter 

Campochiaro (Johns Hopkins University) and his team demonstrated that ALG-1001 is 

effective in reducing ocular neovascularization (personal communication). In the Laser-

induced Choroidal Neovascularization (CNV) mouse model47, ALG-1001 injection reduced 

neovascularization by 43% compared to vehicle control. In another model named Oxygen-

induced Retinopathy (OIR)48, ALG-1001 was shown to reduce vessel growth by up to 54% 

five days after injection. In a third study of a mouse model that over-expresses human VEGF 

and subsequently develops retinal angiogenesis, ALG-1001 and the current standard of care, 

Ranibizumab, were tested in a combination study. In this experiment, both drugs comparably 

reduced subretinal neovascularization, but there was a further reduction when the two drugs 

were used in combination. The synergistic effect suggests ALG-1001 may act through a 

molecular pathway that differs from existing anti-VEGF treatment (as the effects appear to 

be additive). Collectively, these in vivo studies show that ALG-1001 is effective in 

modulating retinal neovascularization. 

 

1.3 ALG-1001 mechanism of action study 

Although ALG-1001 was designed to be a more potent inhibitor of integrin than RGD, recent 

studies found the drug’s binding affinity with various integrins are, in fact, weak. In one 

study at the Swenson lab (USC), Fluorescence Polarization Assay found micro-molar 

binding constants between ALG-1001 and αvβ3 (Kd=0.9uM), α5β1 (Kd>1uM) and αvβ5 

(Kd>1uM) integrins, in contrast to positive control between vitronectin and αvβ3 integrin (Kd 
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≅ 8nM) (personal communication). Another study performed at the Kornfield lab (Caltech) 

used Surface Plasmon Resonance (SPR) and reached the same conclusion (Kd ≅ 2mM for 

ALG-1001 with α5β1, while a control RGD peptide has a small Kd ≅ 12nM, unpublished). 

Altogether, these experiments suggest the binding affinity between ALG-1001 and 

recombinant integrins are weak and non-specific. However, these studies were also done 

with recombinant integrins that do not perfectly mimic the endogenous structure of 

integrins49 (e.g., the flexible and condition-dependent conformation of the extracellular 

domain of integrin heterodimers50). 

Based on these experiments, the hypothesis that ALG-1001 exerts its anti-angiogenesis effect 

through binding with pro-angiogenic integrins has not been confirmed and its precise 

mechanism of action requires further investigation. Toward the goal of uncovering the drug’s 

mechanism of action, my main thesis project aims to discover the biological pathways that 

confer the drug’s therapeutic effect. To do this, I evaluated two main methods to quantify the 

drug-induced changes: 1) in the transcriptome using RNA sequencing (RNA-seq) on 

polyadenylated messenger RNAs (mRNAs), and 2) in the proteome using mass-

spectrometry-based shotgun proteomics. The two methods naturally complement each other, 

as evidence in both the transcriptome and the proteome can reveal the drug-induced 

biological regulation. Additionally, the two approaches have their unique advantages and 

drawbacks that warrant their combined application.  

Methods measuring the proteome are powerful, as they directly study the expression level of 

cellular proteins, which perform a majority of functions in the cell51. Shotgun proteomics 
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started to become popular in the early 2000s as a high-throughput method to probe the 

proteome52. Despite its high-throughput nature, shotgun proteomics rely on mass 

spectrometry for measurement and current methods have little to no detection power for 

medium to low expressing proteins, on a practical scale53,54. On the other hand, nucleic acid-

based methods that probe the transcriptome can overcome this limitation through 

polymerase-based signal amplification55. As a result, methods such as RNA-seq have a much 

larger dynamic range of detection compared to typical shotgun proteomics and enables 

identification of changes in even the low expressing genes56. However, it has previously been 

reported that only around 40% of protein expression levels can be explained by mRNA 

dynamics while the rest are due to protein translation and degradation regulatory 

mechanisms57. Although recent studies suggest stronger correlations between the proteome 

and transcriptome (possibly due to better normalization methods and experimental 

protocols)58,59, the importance of protein expression regulation warrants observation at the 

proteome level. Faced with an unknown mechanism of action, I worked with Dr. Kai Yuet 

and Dr. Graham Hamblin in the Tirrell group (Caltech) to evaluate shotgun proteomics as an 

unbiased method to probe the effects of ALG-1001 at the level of the proteome. 

In shotgun proteomics, proteins are detected using liquid chromatography and tandem mass 

spectrometry (LC-MSMS) and analyzed to identify pattern of molecular fragments that 

match known protein sequences53,60. To detect differences in transient protein expression in 

response to a drug, it is necessary to differentiate between proteins synthesized before and 

after treatment, and between treated and control samples. To do this, Pulse Stable Isotope 
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Labeling by Amino Acids in Cell Culture (pSILAC) is used to provide relative protein ratio 

in two samples (one of each condition) by incorporating different isotopically-labelled amino 

acids (Lysine and Arginine) into newly-synthesized proteins (Figure 1.3)61. To obtain 

sufficient signal-to-noise ratio for the isotopically-labelled proteins, it is beneficial to 

suppress the large background of unlabeled proteins using a technique pioneered in the 

Tirrell lab at Caltech: Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT), which 

introduces the noncanonical amino acid azidohomoalanine (AHA) in place of methionine62 

to enable covalent capture of nascent proteins. When AHA is introduced at the same time as 

the isotopically-labeled amino acids, BONCAT enables the enrichment of the isotopically-

labeled proteins63 and has been successfully applied in recent years in many biological 

models including mammalian cell lines63–65, mouse ex vivo brain tissue66 and Caenorhabditis 

elegans67. In our study, removal of background protein using BONCAT is important due to 

a relatively short drug treatment period (<48 hours) versus the average protein half-life (e.g., 

estimated to be around 100 hours in primary cells68).  

To validate our technique, we performed a preliminary BONCAT-pSILAC experiment 

comparing a RGD-containing peptide versus control peptide, which successfully identified 

several hundred differentially expressed (DE) proteins in mammalian cell culture. Many of 

the regulated proteins were found to function in cell to cell adhesion (Appendix A.2), in 

agreement with RGD disruption of integrin-mediated cellular interaction. However, when 

we applied BONCAT-pSILAC to search for proteomic changes in response to ALG-1001, 

we did not identify any DE proteins (Appendix A.3). Subsequent RNA-seq experiments 
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reveal the measurable effect of ALG-1001 in vitro is weak (Chapter 3), even though stronger 

changes in the transcriptome are readily measured in vivo in the OIR mouse model (Chapter 

2). Although it is beyond the scope of this thesis, proteomic effects of ALG-1001 that are 

below the sensitivity of BONCAT-pSILAC in vitro may be measurable in a disease model 

in vivo.  

In contrast to the limited detection power of shotgun proteomics, RNA-seq is capable of 

measuring even low-expressing genes. In our hands, BONCAT-pSILAC detected only a few 

thousand highly expressed proteins, which limit the search for DE proteins to a small subset 

of all proteins expressed. The ability to routinely detect more than ten thousand genes using 

RNA-seq sheds new light on the effect of ALG-1001 in various biological models.  

RNA-seq, a high-throughput method of probing mRNA expression, was first applied to study 

the complex eukaryote transcriptome by the Wold lab at Caltech69. Since then, RNA-seq 

rapidly became the standard technique to study cellular transcriptome, largely replacing 

previously popular methods such as microarray and SAGE70. In a typical RNA-seq 

experiment, mRNA-derived complementary DNAs (cDNAs) are sequenced concurrently to 

generate millions of reads that contain sequence information71. The reads can then be mapped 

to the reference genome/transcriptome to tally the number of reads that map onto each gene 

in the genome. The tabulation of the number of mapped reads per gene is repeated for each 

sample in the experiment and statistical methods are then applied to identify genes that are 

DE between the groups72,73. Finally, the list of DE genes, together with corresponding fold 

change and measure of statistical significance, serve as inputs for functional analysis to 
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search for regulatory pathways, gene ontology groups and transcription factors that are 

correlated with the observed expression variation.  

Adoption of RNA-seq as the de facto tool for study of the transcriptome has been rapid. Since 

its introduction in 2008, over 14,000 RNA-seq-related papers have been published (PubMed, 

late 2018), including more than 3,000 in 2017 alone. There are several reasons to RNA-seq’s 

popularity. First, the technique has a high dynamic range (tens of thousands of genes across 

four or more orders of magnitude in expression level can be detected simultaneously)56. 

Second, RNA-seq typically has high reproducibility, where it is not uncommon to see 

technical replicates with R2 > 0.99. Third, sample preparation and sequencing is increasingly 

streamlined as a rapid increase in the number of users spurred development of commercial 

products. Fourth, the method can be easily adapted to study any organism, a major advantage 

over microarrays. Finally, there exists an active bioinformatics community (such as the 

Bioconductor project74) that develops analytical tools to support computational analysis of 

RNA-seq data. As a result, biomedical application of RNA-seq has become generally 

accepted, particularly in fields such as cancer research, disease diagnostics and drug 

discovery75.  

In our research, we applied comparative RNA-seq to identify the transcriptome regulation 

modulated by hypoxia and ALG-1001 in various biological models: in vivo OIR mouse 

retinal neovascularization model (Chapter 2), in vitro human endothelial and immune cell 

culture models (Chapter 3), and retinal cells conditioned with short to long-term hypoxia 
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and hypoxia recovery (Chapter 4). We also documented our BONCAT-pSILAC protocol 

and the experimental results in Appendix A.  

 

1.4 Sample size in comparative RNA-seq experiments 

It is well established that comparative RNA-seq experiments require biological replicates for 

statistical testing76. Increasing the number of biological replicates improves both statistical 

power and accuracy of gene expression estimation72,77,78. However, RNA-seq experiments 

are expensive (currently, each sample typically cost several hundred dollars in library 

preparation and sequencing alone) and sample procurement may be challenging in certain 

experimental settings. As a result, RNA-seq studies often include as few as two or three 

biological replicates per experimental condition, which put the results of statistical test in 

question.  

Selecting the appropriate number of replicates (sample size) for each condition examined in 

a specific RNA-seq experiment is challenging, as several determining factors are generally 

not known a priori79. First, when the true inter-condition difference (effect size) is small, 

more replicates are needed for differential expression discovery. Second, when biological 

variance is high among samples of the same condition, more replicates are needed to improve 

statistical power. Although several software packages have been released in recent years to 

help researchers choose the appropriate sample size for RNA-seq studies, Poplawski and 

Binder (2017) found that all of the tools failed to accurately estimate sample size even for 

substantial changes in gene expression (fold change ≥ 1.5)80. This systematic study 
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performed simulation-based assessment on six RNA-seq sample size calculation tools that 

support sample size calculation with multiple genes in consideration. The results from the 

evaluation showed that the six tools provided widely different results that are highly 

dependent on the effect size in consideration and none of them gave satisfactory agreement 

with the “ground truth” (which is known for the simulated data set used in the study). At 

present, RNA-seq sample size selection remains challenging and additional tools are needed 

to ensure accurate differential expression discovery. 

In Chapter 5, we describe a solution to this problem with an algorithm that does not rely on 

data simulation or a priori assumed parameters. Instead, we approach the problem by 

analyzing an existing data set that a user has already acquired to evaluate the benefit they can 

expect to achieve with additional replicates. The method, called Empirical RNA-seq Sample 

Size Analysis (ERSSA), uses a subsampling technique to compute the effect of increasing 

number of replicates on the number of DE genes identified. Using the trend in the amount of 

marginal improvement as sample size increases, the analytical framework allows the user to 

evaluate the potential benefit of procuring additional biological replicates. The algorithm has 

been implemented in the statistical programming language R and is publicly available on 

Bioconductor at http://bioconductor.org/packages/ERSSA/. 

 

1.5 Application of Bioresorbable Vascular Scaffolds in coronary heart disease 

Coronary heart disease (CHD) is a leading cause of mortality in the world. In the US alone, 

CHD is associated with one in every five deaths each year2.  In CHD, vessel-occluding lipid 
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deposits build up in the coronary artery and obstructs or complete blocks blood flow to the 

heart muscle, eventually leading to angina and heart attack81. In recent decades, the main 

therapy for CHD is to insert a permanent metal stent at the site of occlusion to open and 

support the artery and to maintain blood flow82. While metal stents provide tremendous 

therapeutic value, they also have some important side effects, including a higher risk of life-

threatening late thrombosis83. With more than 1 million stents implanted each year in the US 

alone as of 2008, there is an urgent need to develop safer therapies for CHD84. 

Bioresorbable vascular scaffold (BVS), such as Abbott Vascular’s FDA-approved Absorb®, 

recently emerged as a promising alternative to metal stents85. Absorb® is composed of 

biodegradable poly L-lactide (PLLA) that supports the artery for the first few months and 

then completely degrades in 2-3 years86. A five year follow-up clinical trial involving 101 

patients showed that artery regains the ability to dilate and pulsate, with no incidence of late 

thrombosis in patients87. Despite this initial success, a larger follow-up study found an 

increase in thrombosis associated with BVS (~1.3% prevalence rate) relative to metal stents 

(~0.6%)88. Two potential explanations provided by clinicians include: 1) BVSs contains 

thicker struts compared to metal stents, and 2) under-deployment of BVSs over fear of 

scaffold fracture and inability to image the deployed diameter during surgery. These 

concerns motivate development of a BVS device that has thinner strut as well as superior 

radial strength to reduce the chance of thrombosis. 

Working with a team of collaborators in the Kornfield lab and at ENEA Portici in Italy, we 

explored the application of Tungsten Disulfide nanotubes (WSNT) as a reinforcing agent 



16 

 

that could increase the strength and x-ray scattering contrast of the BVS. My collaborators 

characterized the effects of WSNT on the processing behavior and semi-crystalline 

morphology of PLLA-WSNT nanocomposites. I characterized the biocompatibility of this 

reinforcing agent and of the nanocomposite. Our combined results are included in Chapter 

6.  
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1.6 Figures and Tables 

 

 
Figure 1.1 Molecular structure of ALG-1001 (Gly-Arg-Gly-Cys(acid)-Thr-Pro) 

ALG-1001 is structurally designed to mimic RGD-containing peptides. Aspartic acid in the 

RGD sequence is replaced by a noncanonical amino acid – cystic acid89.  

  

Gly-Arg-Gly-Cys(acid)-Thr-Pro 
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Figure 1.2 ALG-1001 Phase I clinical trial in DME 

Phase I study of 15 “end-stage” DME patients with severe vision impairment. Three monthly 

ALG-1001 intraocular injections were performed follow by three months of follow-ups. No 

other treatment arms were included in this trial. At the end of 150 day trial, 8 out of 15 

patients showed significant improvement in a visual acuity test (green dots), while 7 out of 

15 patients showed no further visual deterioration (yellow dots). Dashed lines outline the 

trend in vision change in the two responder groups. Vertical, solid green arrow indicates the 

magnitude of improvement illustrated by the Snellen chart simulation to the left and right of 

the graph. 
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Figure 1.3 BONCAT with pSILAC schematic 

Illustration describes the major steps in a BONCAT with pSILAC experiment. Adapted from 

a review publication by Yuet and Tirrell90. A. In a typical BONCAT with pSILAC 

experiment, cells in two groups (treated “experiment” and untreated “control”) are grown in 

conventional media (blue) to the desired confluency. At the onset of treatment, the 

conventional media is removed and replaced with media containing 30 times more AHA 

than methionine, and all of the lysine and arginine replaced by isotopically labelled 

counterparts. In the depicted study, the new media for the “experiment” also contains a 

peptide of interest (ALG denotes ALG-1001 in the green medium) while “control” does not. 

After the treatment period, cells are harvested and lysed, proteins combined in 1:1 ratio and 

enriched through click-reaction chemistry (unenriched protein mixture shown in box labeled 

“no enrichment”). The enriched proteins are then characterized using liquid chromatography 

tandem-mass spectrometry (LC-MSMS), giving the “triplets” of peaks associated with 

background protein (blue), newly-synthesized protein from the “experiment” (green) and 

newly-synthesized protein from the “control” (yellow). Met is methionine, Lys is lysine, Arg 

is arginine and m/z is mass to charge ratio. B. Conventional lysine and arginine (left) are 

compared with “heavy” counterparts (right) and “medium” counterparts (center), where 

asterisks indicate sites where deuterium (D) replaces hydrogen, 13C replaces 12C and/or 15N 

replaces 14N. 

  



20 

 

 

Figure 1.4 Model of diabetic retinopathy 

Diabetes-related hyperglycemia induce generation of oxidative stress, inflammation, 

advanced glycation end products (AGEs) and activation of Protein Kinase C (PKC) and 

polyol pathways. These activated factors/pathways contribute to hypoxia and 

neovascularization in the eye, leading to vision loss. NPDR is non-proliferative diabetic 

retinopathy, PDR is proliferative diabetic retinopathy. Figure obtained from 91 with sharing 

allowed under a CC-BY license. 
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Figure 1.5 Model of macular degeneration 

In AMD, both environmental and genetic factors activates inflammation and cause RPE 

damage. An accumulation of activated immune cells and dysregulated RPE cells then 

contribute to tissue hypoxia, which activates pathological angiogenesis that can eventually 

lead to blindness. Reprinted with permission from Ambati et al.92.  



22 

 

1.7 References 

1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 

27–30 (1995). 

2. Chilton, R. J. Pathophysiology of Coronary Heart Disease: A Brief Review. J. Am. 

Osteopath. Assoc. 104, 5S-8S (2004). 

3. Oyster, C. W. The Human Eye: Structure and Function. (Sinauer Associates, 1999). 

4. Riordan-Eva, P. & Augsburger, J. J. Vaughan & Asbury’s General Ophthalmology, 19th 

Edition. (McGraw-Hill Education / Medical, 2017). 

5. Antonetti, D. A. et al. Diabetic Retinopathy. Diabetes 55, 2401–2411 (2006). 

6. Newman, A. M. et al. Systems-level analysis of age-related macular degeneration reveals 

global biomarkers and phenotype-specific functional networks. Genome Med. 4, 16 

(2012). 

7. Radeke, M. J., Peterson, K. E., Johnson, L. V. & Anderson, D. H. Disease susceptibility 

of the human macula: Differential gene transcription in the retinal pigmented 

epithelium/choroid. Exp. Eye Res. 85, 366–380 (2007). 

8. Wright, A. F., Chakarova, C. F., Abd El-Aziz, M. M. & Bhattacharya, S. S. Photoreceptor 

degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11, 

273–284 (2010). 

9. Pennington, K. L. & DeAngelis, M. M. Epidemiology of age-related macular 

degeneration (AMD): associations with cardiovascular disease phenotypes and lipid 

factors. Eye Vis. 3, (2016). 

10. Leading Causes of Blindness in the U.S. Available at: 

http://www.nei.nih.gov/health/fact_sheet.asp.  

11. Holekamp, N. M. Overview of diabetic macular edema. Am. J. Manag. Care 22, s284–

s291 (2016). 

12. Whitcup, S. M., Nussenblatt, R. B., Lightman, S. L. & Hollander, D. A. Inflammation in 

Retinal Disease. Int. J. Inflamm. (2013). doi:10.1155/2013/724648 

13. Friedlander, M. Fibrosis and diseases of the eye. J. Clin. Invest. 117, 576–586 (2007). 

14. Tang, J. & Kern, T. S. Inflammation in Diabetic Retinopathy. Prog. Retin. Eye Res. 30, 

343–358 (2011). 

15. van Lookeren Campagne, M., LeCouter, J., Yaspan, B. L. & Ye, W. Mechanisms of age-

related macular degeneration and therapeutic opportunities. J. Pathol. 232, 151–164 

(2014). 

16. Lim, L. S., Mitchell, P., Seddon, J. M., Holz, F. G. & Wong, T. Y. Age-related macular 

degeneration. The Lancet 379, 1728–1738 (2012). 

17. An, E. et al. Secreted Proteome Profiling in Human RPE Cell Cultures Derived from 

Donors with Age Related Macular Degeneration and Age Matched Healthy Donors. J. 

Proteome Res. 5, 2599–2610 (2006). 

18. An, E., Gordish-Dressman, H. & Hathout, Y. Effect of TNF-? on human ARPE-19-

secreted proteins. Mol. Vis. 14, 2292–2303 (2008). 



23 

 

19. Stitt, A. W., Lois, N., Medina, R. J., Adamson, P. & Curtis, T. M. Advances in our 

understanding of diabetic retinopathy. Clin. Sci. 125, 1–17 (2013). 

20. Cheung, N., Mitchell, P. & Wong, T. Y. Diabetic retinopathy. The Lancet 376, 124–136 

(2010). 

21. Costa, C., Incio, J. & Soares, R. Angiogenesis and chronic inflammation: cause or 

consequence? Angiogenesis 10, 149–166 (2007). 

22. Talwar, D. et al. Contrast sensitivity following focal laser photocoagulation in clinically 

significant macular oedema due to diabetic retinopathy. Clin. Experiment. Ophthalmol. 

29, 17–21 (2001). 

23. Macular Photocoagulation Study Group. Persistent and recurrent neovascularization 

after laser photocoagulation for subfoveal choroidal neovascularization of age-related 

macular degeneration. Macular Photocoagulation Study Group. Arch. Ophthalmol. Chic. 

Ill 1960 112, 489–499 (1994). 

24. Abcouwer, S. F. & Gardner, T. W. Diabetic retinopathy: loss of neuroretinal adaptation 

to the diabetic metabolic environment. Ann. N. Y. Acad. Sci. 1311, 174–190 (2014). 

25. Parikh, R. et al. A Multinational Comparison of Anti-Vascular Endothelial Growth 

Factor Use: The United States, the United Kingdom, and Asia-Pacific. Ophthalmol. Retina 

3, 16–26 (2019). 

26. Hussain, R. & Ciulla, C. Addressing the Anti-VEGF Treatment Burden. Available at: 

https://www.reviewofophthalmology.com/article/addressing-the-antivegf-treatment-

burden. (Accessed: 19th May 2019) 

27. Ehlken, C. et al. Switch of anti-VEGF agents is an option for nonresponders in the 

treatment of AMD. Eye 28, 538–545 (2014). 

28. Singer, M. A., Kermany, D. S., Waters, J., Jansen, M. E. & Tyler, L. Diabetic macular 

edema: it is more than just VEGF. F1000Research 5, (2016). 

29. Allegro Ophthalmics Receives Fda Ind Approval For Phase Ii Clinical Studies With First 

In Class Integrin Peptide Therapy Alg-1001 – Allegro Ophthalmics – From Theory to 

Therapy. 

30. A Clinical Trial Designed to Evaluate the Safety and Efficacy Study of Luminate® in 

Inducing PVD (Posterior Vitreous Detachment) in Non-Proliferative Diabetic 

Retinopathy - Full Text View - ClinicalTrials.gov. Available at: 

https://clinicaltrials.gov/ct2/show/NCT02435862. (Accessed: 11th September 2018) 

31. A Safety And Efficacy Study Of Alg-1001 In Human Subjects With Symptomatic Focal 

Vitreomacular Adhesion - Full Text View - ClinicalTrials.gov. Available at: 

https://clinicaltrials.gov/ct2/show/NCT02153476. (Accessed: 11th September 2018) 

32. A Safety And Efficacy Study Of ALG-1001 In Human Subjects With Wet Age-Related 

Macular Degeneration - Full Text View - ClinicalTrials.gov. Available at: 

https://clinicaltrials.gov/ct2/show/NCT01749891. (Accessed: 11th September 2018) 

33. Allegro Ophthalmics Prepares To Take Lead Compound Risuteganib To Phase 3, 

Appoints New CEO – Allegro Ophthalmics – From Theory to Therapy. 

34. Ruoslahti, E. Rgd and Other Recognition Sequences for Integrins. Annu. Rev. Cell Dev. 

Biol. 12, 697–715 (1996). 



24 

 

35. Mas-Moruno, C., Rechenmacher, F. & Kessler, H. Cilengitide: The First Anti-

Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation. 

Anticancer Agents Med. Chem. 10, 753–768 (2010). 

36. Wang, F. et al. The Functions and Applications of RGD in Tumor Therapy and Tissue 

Engineering. Int. J. Mol. Sci. 14, 13447–13462 (2013). 

37. Park, J. et al. A review of RGD-functionalized nonviral gene delivery vectors for cancer 

therapy. Cancer Gene Ther. 19, 741–748 (2012). 

38. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be 

duplicated by small synthetic fragments of the molecule. Publ. Online 03 May 1984 

Doi101038309030a0 309, 30–33 (1984). 

39. Hynes, R. O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673–687 

(2002). 

40. Ruegg, C. & Mariotti, A. Vascular integrins: pleiotropic adhesion and signaling 

molecules in vascular homeostasis and angiogenesis. Cell. Mol. Life Sci. 60, 1135–1157 

(2003). 

41. Friedlander, M. et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular 

neovascular diseases. Proc. Natl. Acad. Sci. U. S. A. 93, 9764–9769 (1996). 

42. Umeda, N. et al. Suppression and Regression of Choroidal Neovascularization by 

Systemic Administration of an α5β1 Integrin Antagonist. Mol. Pharmacol. 69, 1820–1828 

(2006). 

43. Brooks, P. C., Clark, R. A. F. & Cheresh, D. A. Requirement of vascular integrin alpha 

v beta 3 for angiogenesis. Science 264, 569–571 (1994). 

44. Drake, C. J., Cheresh, D. A. & Little, C. D. An antagonist of integrin alpha v beta 3 

prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci. 

108, 2655–2661 (1995). 

45. Hammes, H.-P., Brownlee, M., Jonczyk, A., Sutter, A. & Preissner, K. T. Subcutaneous 

injection of a cyclic peptide antagonist of vitronectin receptor–type integrins inhibits 

retinal neovascularization. Nat. Med. 2, 529–533 (1996). 

46. Nogrady, T. & Weaver, D. F. Medicinal Chemistry: A Molecular and Biochemical 

Approach. (Oxford University Press, USA, 2005). 

47. Lambert, V. et al. Laser-induced choroidal neovascularization model to study age-related 

macular degeneration in mice. Nat. Protoc. 8, 2197–2211 (2013). 

48. Stahl, A. et al. The Mouse Retina as an Angiogenesis Model. Invest. Ophthalmol. Vis. 

Sci. 51, 2813–2826 (2010). 

49. He, Y., Wang, K. & Yan, N. The recombinant expression systems for structure 

determination of eukaryotic membrane proteins. Protein Cell 5, 658–672 (2014). 

50. Ley, K., Rivera-Nieves, J., Sandborn, W. J. & Shattil, S. Integrin-based therapeutics: 

biological basis, clinical use and new drugs. Nat. Rev. Drug Discov. 15, 173 (2016). 

51. Cooper, G. M. The Molecular Composition of Cells. Cell Mol. Approach 2nd Ed. (2000). 

52. Hernandez-Fernaud, J. R., Reid, S. E., Neilson, L. J. & Zanivan, S. Quantitative mass 

spectrometry-based proteomics in angiogenesis. PROTEOMICS – Clin. Appl. 7, 464–476 

(2013). 



25 

 

53. Steen, H. & Mann, M. The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell 

Biol. 5, 699–711 (2004). 

54. Zubarev, R. A. The challenge of the proteome dynamic range and its implications for in-

depth proteomics. PROTEOMICS 13, 723–726 (2013). 

55. Ferreira, E. N. et al. Linear mRNA amplification approach for RNAseq from limited 

amount of RNA. Gene 564, 220–227 (2015). 

56. Nookaew, I. et al. A comprehensive comparison of RNA-Seq-based transcriptome 

analysis from reads to differential gene expression and cross-comparison with 

microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10084–

10097 (2012). 

57. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. 

Nature 473, 337–342 (2011). 

58. Jovanovic, M. et al. Dynamic profiling of the protein life cycle in response to pathogens. 

Science 347, 1259038 (2015). 

59. Li, J. J., Bickel, P. J. & Biggin, M. D. System wide analyses have underestimated protein 

abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014). 

60. Bateman, A. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, 

D158–D169 (2017). 

61. Mann, M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 

7, 952–958 (2006). 

62. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective 

identification of newly synthesized proteins in mammalian cells using bioorthogonal 

noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. 103, 9482–9487 

(2006). 

63. Howden, A. J. M. et al. QuaNCAT: quantitating proteome dynamics in primary cells. 

Nat. Methods 10, 343–346 (2013). 

64. Bagert, J. D. et al. Quantitative, Time-Resolved Proteomic Analysis by Combining 

Bioorthogonal Noncanonical Amino Acid Tagging and Pulsed Stable Isotope Labeling by 

Amino Acids in Cell Culture. Mol. Cell. Proteomics 13, 1352–1358 (2014). 

65. Eichelbaum, K., Winter, M., Diaz, M. B., Herzig, S. & Krijgsveld, J. Selective 

enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. 

Biotechnol. 30, 984–990 (2012). 

66. Bowling, H. et al. BONLAC: A combinatorial proteomic technique to measure stimulus-

induced translational profiles in brain slices. Neuropharmacology 100, 76–89 (2016). 

67. Yuet, K. P. et al. Cell-specific proteomic analysis in Caenorhabditis elegans. Proc. Natl. 

Acad. Sci. U. S. A. 112, 2705–2710 (2015). 

68. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. 

Commun. 9, 689 (2018). 

69. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and 

quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008). 

70. Xu, J. et al. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-

Led Efforts Advance Precision Medicine. Pharmaceutics 8, 8 (2016). 



26 

 

71. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. 

Nat. Rev. Genet. 10, 57–63 (2009). 

72. Seyednasrollah, F., Laiho, A. & Elo, L. L. Comparison of software packages for detecting 

differential expression in RNA-seq studies. Brief. Bioinform. bbt086 (2013). 

doi:10.1093/bib/bbt086 

73. Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis 

methods for RNA-seq data. Genome Biol. 14, R95 (2013). 

74. Bioconductor. Available at: https://www.bioconductor.org/. (Accessed: 14th September 

2018) 

75. Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. 

W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. 

Nat. Rev. Genet. advance online publication, (2016). 

76. Garber, M., Grabherr, M. G., Guttman, M. & Trapnell, C. Computational methods for 

transcriptome annotation and quantification using RNA-seq. Nat. Methods 8, 469–477 

(2011). 

77. Anders, S. et al. Count-based differential expression analysis of RNA sequencing data 

using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013). 

78. Liu, Y., Zhou, J. & White, K. P. RNA-seq differential expression studies: more sequence 

or more replication? Bioinformatics 30, 301–304 (2014). 

79. Hoskins, S. P., Shyr, D. & Shyr, Y. Sample Size Calculation for Differential Expression 

Analysis of RNA-Seq Data. in Frontiers of Biostatistical Methods and Applications in 

Clinical Oncology 359–379 (Springer, Singapore, 2017). doi:10.1007/978-981-10-0126-

0_22 

80. Poplawski, A. & Binder, H. Feasibility of sample size calculation for RNA-seq studies. 

Brief. Bioinform. (2017). doi:10.1093/bib/bbw144 

81. Nabel, E. G. & Braunwald, E. A Tale of Coronary Artery Disease and Myocardial 

Infarction. N. Engl. J. Med. 366, 54–63 (2012). 

82. Iqbal, J. et al. Bioresorbable scaffolds: rationale, current status, challenges, and future. 

Eur. Heart J. 35, 765–776 (2014). 

83. Ong, D. S. & Jang, I.-K. Causes, assessment, and treatment of stent thrombosis—

intravascular imaging insights. Nat. Rev. Cardiol. 12, 325–336 (2015). 

84. Epstein, A. J., Polsky, D., Yang, F., Yang, L. & Groeneveld, P. W. Coronary 

revascularization trends in the United States, 2001-2008. JAMA 305, 1769–1776 (2011). 

85. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 

487–492 (2004). 

86. Rizik, D. G., Shah, M. G. & Burke, R. F. First US experience following FDA approval 

of the ABBOTT vascular bioresorbable vascular scaffold for the treatment of coronary 

artery disease. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 88, 899–

901 (2016). 

87. Serruys, P. W. et al. A Polylactide Bioresorbable Scaffold Eluting Everolimus for 

Treatment of Coronary Stenosis: 5-Year Follow-Up. J. Am. Coll. Cardiol. 67, 766–776 

(2016). 



27 

 

88. Kang, J. et al. Bioresorbable Vascular Scaffolds - Are We Facing a Time of Crisis or 

One of Breakthrough? Circ. J. Off. J. Jpn. Circ. Soc. 81, 1065–1074 (2017). 

89. Mackel, M. J., Park, J. Y., Karageozian, H. L. & Karageozian, V. H. Integrin Receptor 

Antagonists and Their Methods of Use. (2013). 

90. Yuet, K. P. & Tirrell, D. A. Chemical Tools for Temporally and Spatially Resolved Mass 

Spectrometry-Based Proteomics. Ann. Biomed. Eng. 42, 299–311 (2014). 

91. Robinson, R., Barathi, V. A., Chaurasia, S. S., Wong, T. Y. & Kern, T. S. Update on 

animal models of diabetic retinopathy: from molecular approaches to mice and higher 

mammals. Dis. Model. Mech. 5, 444–456 (2012). 

92. Ambati, J., Atkinson, J. P. & Gelfand, B. D. Immunology of age-related macular 

degeneration. Nat. Rev. Immunol. 13, 438–451 (2013). 



28 

 

 

Chapter 2.  In vivo mouse retinal transcriptome response to 

hypoxia and ALG-1001 treatment  

2.1 Introduction 

In the industrialized nations, retinal diseases are the main cause of clinical blindness1. In the 

United States alone, Age-related Macular Degeneration (AMD), Diabetic Retinopathy (DR), 

and Diabetic Macular Edema (DME) affect nearly 15 million Americans combined2,3. In 

these diseases, pathogenic hypoxia4,5 and inflammation4–6 of the retinal tissue promotes 

varying amounts of tissue-damaging neovascularization, edema and cell death (DR/DME in 

Figure 1.4 and AMD in Figure 1.5). The current standard of care uses antibodies that target 

the Vascular Endothelial Growth Factor (VEGF), a potent pro-angiogenic cytokine7. For 

many patients, disrupting the disease-associated VEGF signaling slows disease progression 

and helps improve vision2,8. Despite their successes, current anti-VEGF treatments also have 

major limitations: 1) antibodies are expensive to manufacture with the high cost passed on 

to patients9, 2) antibody-based treatment requires monthly intraocular injections that burden 

patients and healthcare providers10, and 3) therapy is ineffective in more than 25-50% of the 

patients depending on the disease11,12.  

ALG-1001 or Risuteganib is an investigational oligopeptide drug that shows promise as an 

alternative therapy for a number of retinal diseases13. In a phase I trial of 15 late-stage DME 

patients, eight subjects experienced significant vision improvement, while the remaining 

seven did not show further vision deterioration14. Importantly, several of the patients that 
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responded to the drug are also refractory to the standard anti-VEGF treatment, suggesting 

ALG-1001 may be able to benefit patients who currently have no therapeutic option. More 

recently, several larger-scale, phase II trials in DR and wet AMD have been concluded with 

similar promising results15–17. In all of the human clinical trials conducted so far, ALG-1001 

showed an excellent safety profile, with no observation of major drug-related side effects 

(14,17–19 and personal communication). Interestingly, clinical data also suggest the visual 

benefit of ALG-1001 may last up to 90 days, which could help alleviate the need for monthly 

doctor visits20. Additionally, the oligopeptide may be a more cost-effective option as it can 

be readily produced synthetically and in more stable formulation than antibodies.  

ALG-1001 has also been studied in animal models of retinal neovascularization that 

resemble DR and wet AMD (Campochiaro lab, Johns Hopkins University (JHU), 

unpublished). Oxygen-Induced Retinopathy (OIR) mouse is one of the models tested and is 

widely-used to study neovascularization that matches the development in human DR 

patients21,22. In this model, one week old pups are moved to a hyperoxia chamber, where high 

oxygen tension regresses existing retinal vasculature and inhibits retinal vessel development 

that normally occurs in the first few weeks postnatal (Figure 2.1)23. After 5 days of hyperoxia 

conditioning, mice are returned to room air, where insufficient oxygen supply due to under-

developed vasculature leads to tissue hypoxia and rapid retinal neovascularization. This 

process lasts for approximately two weeks and eventually ends when balanced oxygen 

supply and demand are restored in the tissue. Thus, unlike conventional laboratory practice 

that places biological specimen in low oxygen environment to induce hypoxia, the OIR 
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model uses hyperoxia treatment to disrupt developing and existing vessels and induce a 

simulated hypoxia condition once the animal returns to room air.  

While often used to study pathology of retinal neovascularization, the OIR model has proven 

to be a useful model for testing anti-angiogenic therapeutics24,25. In a study of ALG-1001 in 

the OIR model, a significant 54% reduction in retinal vessel growth was observed after ALG-

1001 injection relative to vehicle alone (Campochiaro lab (JHU), personal communication). 

Furthermore, the therapeutic effect is dose-dependent, suggesting there is a specific 

modulation of retinal neovascularization by the drug.  

While both clinical trials and in vivo animal studies generated promising results, ALG-1001’s 

mechanism of action requires further investigation (Chapter 1.3). In this study, we applied 

RNA-sequencing (RNA-seq) to measure the drug-induced transcriptome changes in OIR 

retina to study the drug’s mechanism of action. RNA-seq is well suited for detecting effects 

of drug-tissue interaction, as it is both high-throughput and unbiased26. By analyzing the 

entire expressed transcriptome in the mouse model, we found ALG-1001 specifically 

suppressed angiogenic and inflammatory genes and pathways elevated by hypoxia. In 

addition, when compared to other drugs, we found ALG-1001 shares gene regulatory profile 

with drugs that block disease-related cell proliferation pathways. Intriguingly, we only 

observed the therapeutic effect in OIR mice, but not in control mice, suggesting the ALG-

1001’s effect is dependent on the disease state of the retina. 
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To support these analyses, we performed an in-depth analysis of the OIR retinal 

transcriptome change compared to non-hypoxia stimulated control. On top of the expected 

elevation of angiogenesis process, hypoxia-modulated gene, pathway, and transcription 

factor analyses collectively suggested a profound activation of inflammatory processes as 

well as a moderate suppression of neural signaling and metabolic processes. Intriguingly, 

these biological mechanisms also play important roles in retinal disease pathophysiology27, 

but are not well appreciated in the current literature on OIR model (predominantly thought 

as a model of retinal angiogenesis23,28). In agreement, our transcriptome analyses suggest 

OIR mouse may be suitable to model a broader range of retinal diseases and disease 

processes. Altogether, these findings provide novel insight into disease-relevant responses to 

hypoxia in the mammalian retina and modulation of the activated processes by ALG-1001.  

 

2.2 Materials and Methods 

Animal model and RNA-seq sample preparation 

Animal tissues were prepared by the Campochiaro group (JHU) following a well-established 

OIR protocol29–31. In brief, two litters of mouse pups and their mothers were reared in room 

air (RA) until Postnatal day 6 (P6), then in an elevated oxygen environment (75% oxygen 

tension) for 5 days (P7-P11), and later returned to RA on day P12 (referred to as “OIR mice”). 

As a control, two litters of mouse pups and their mothers were raised at RA throughout the 

study (referred to as “RA mice”). On P12, when OIR mice were returned to RA, all mice 

received intravitreal injection of 1uL vehicle in the left eye and 1uL 1% ALG-1001 injection 
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(equivalent to around 1-3mM concentration after complete vitreous diffusion) in the right 

eye. On day P17, all mice were euthanized and their retinal tissues dissected and stored in 

RNA-later (ThermoFisher) at 4°C for 2 days. The tissues were then briefly washed with 

phosphate-buffered saline and disrupted using micro-sized pestle for tissue (Kimble Chase) 

and with QIAshredder (Qiagen). Next, total RNA were extracted using RNeasy Mini Kit 

(Qiagen) and contaminating DNA removed using TURBO DNA-free kit (ThermoFisher). 

RNA quality was measured using Bioanalyzer (Agilent Genomics); all samples were found 

to have least 8.80 RNA integrity number. RNA-seq libraries were then prepared using 

NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs Inc.) and 

sequenced on the HiSeq 2500 (Illumina) to generate on average 12.5 million of single-end, 

100 base pair reads per sample. 

RNA-seq analysis 

Quality control 

FASTQ files generated by RNA-seq were submitted to FastQC for quality control32. All 

samples showed good sequencing quality (Figure S2.1) and were submitted for read 

alignment. Alignment was performed using Tophat233 to the mm10 genome and 

transcriptome references with Bowtie 2 sensitivity level set to very sensitive (alignment 

results summarized in Figure S2.2A). After read alignment, gene counts were quantified 

using HTSeq-count using the intersection-strict model34 (quantification results summarized 
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in Figure S2.2B). FastQC, tophat2 and HTSeq-count reports were visualized using multiQC 

software35. 

Principle Component Analysis (PCA) 

PCA was used to visualize the high-dimensional dataset. To eliminate null values, all counts 

in HTSeq-count-derived count table were increased by one. Transcript per Million (TPM) 

values were then calculated to correct for varying sequencing depth and gene length36. To 

reduce sensitivity to the uncertainty in TPM of low-expressing genes, PCA excluded genes 

for which the TPM averaged over all samples in the analysis was ⟨TPM⟩<5. Five genes that 

have sex-specific expression profile were also excluded (Xist, Uty, Kdm5d, Eif2s3y, and 

Ddx3y) based on inter-sex |log2-fold-change|>3.0 based on edgeR measurement. Finally, 

natural log of TPM values were used as input for PCA. Based on the PCA results, we 

observed one obvious outlier in the dataset. Further analysis of this sample’s profile suggest 

the tissue collected may be contaminated with lens cells (level of Cryaa gene that codes for 

lens crystalline protein37 is 60 times higher in this sample compared to the average of other 

samples). Both the outlier and the fellow eye samples were removed from the rest of the 

study.  

EdgeR differential expression comparison 

To identify modulated genes, it is beneficial to exclude genes that are not expressed or 

expressed at very low level (their inclusion reduces statistical power). Here, we retained 

expressed genes, defined as those with Count per Million (CPM)>1 in at least five samples 
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(the smallest number of biological replicates from the same condition and litter). CPM is 

calculated to normalize for sequencing depth36. Typically, around 14,000 genes remain after 

filtering. Next, edgeR was used to perform the differential expression comparison by 

applying the GLM model to block out expression variability from other confounding 

factors38. When analyzing for differences between OIR + Vehicle and RA + Vehicle, 

variability associated with sex and litter was blocked out. When analyzing for differential 

expression between ALG-1001 and vehicle (performed in either OIR or RA), animal-to-

animal variability was blocked out. After statistical test, genes with False Discovery Rate 

(FDR) ≤ 0.05 were considered as modulated and were further separated into positive and 

negative fold-change gene lists (summarized in Figure S2.7).  

Goseq enrichment analysis of modulated gene list 

Functional analyses of the hypoxia or ALG-1001-modulated genes were performed with the 

goseq package39, which mitigates gene length bias inherent to RNA-seq. Enrichment was 

evaluated for both Gene Ontology (GO) terms (biological processes, cellular components, 

and molecular functions)40 and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

biological pathways41. GO terms associated with genes were obtained from biomart42 while 

KEGG pathways were obtained from the KEGG REST server using the keggrest package43. 

Enrichment was performed separately for the positive and negative fold-change gene lists 

for each comparison. GO terms were considered enriched if FDR<0.05. The GO enrichment 

results were visualized using REVIGO, a visualization tool that aggregates closely-related 

GO terms, with similarity level set to small and GO term size determined using the UniPort 
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Mus musculus database44. Selected GO terms were labeled on the REVIGO plot based on our 

perception of their biological relevance. KEGG pathways were considered enriched if 

Benjamini-Hochberg adjusted p-value<0.05. In addition, “Human Diseases” KEGG 

pathways were removed to improve clarity. 

GAGE pathway enrichment 

In addition to goseq that analyzes genes with statistical significant change, GAGE45 was used 

as an alternative approach to identify modulated KEGG pathways. GAGE uses the measured 

log2-fold-change values of KEGG pathway genes to test if they are significantly different 

from log2-fold-change values associated with the background. Unlike goseq, this approach 

is capable of picking up many small but consistent shift in measured transcript level changes 

that may not be considered statistically significant by edgeR. Same as goseq, a KEGG 

pathway is considered enriched if FDR<0.05.  

ERSSA 

ERSSA was used to check whether the number of biological replicates used in the RNA-seq 

experiment is sufficient to identify a majority of modulated genes46. Since ERSSA currently 

does not support blocking, it was only applied to the OIR + Vehicle vs. RA + Vehicle 

comparison. Analysis was performed with |log2-fold-change| cutoff of 0.5 and 50 

subsamples at each replicate level. 

ISMARA 
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ISMARA47 was used to identify the transcription factors that may be responsible for the 

observed transcript level changes in response to OIR (OIR + Vehicle vs. RA + Vehicle) and 

in response to ALG-1001 (OIR + ALG-1001 vs. OIR + Vehicle). Samples involved in these 

two comparisons were submitted separately to ISMARA to obtain enrichment Z-scores. 

Analysis was focused on the top 50 most statistically significant transcription factor motifs 

as ranked by Z-score. Separately, all samples were also submitted together to obtain target 

gene activity profiles across all four conditions.  

Within the top 50 enriched motif groups, we surveyed their function using Genecard48 and 

Google searches and identified those with hypoxia and disease-relevant functions. Next, we 

identified KEGG pathways that are enriched in the top 50 TF motifs. In this analysis, we 

identified the KEGG pathways associated with the top TF motifs and compared them to the 

background, which consists of KEGG pathways associated with all TF analyzed by ISMARA. 

We tested for any KEGG Pathways that are over-represented in the top 50 motifs compared 

to the background using exact binominal test and then adjust the p-values using Benjamini 

& Hochberg approach49 with statistical cut off set at FDR<0.05. 

Cell type composition analysis 

From previously published mouse retina single cell RNA-seq (scRNA-seq) study50, we 

derived a list of genes that are highly expressed in specific retinal cell types. Briefly, among 

the previously identified 39 retinal cell clusters, we selected cluster #1, 2, 20, 24-26, 34-39 

representing 12 main retinal cell types. For amacrine and bipolar cells, multiple clusters were 
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identified in the single cell study and for this analysis, we only considered the most populated 

cluster. For each cell type, we isolated the top 20 genes previously found to be highly 

expressed in the particular cluster. From this list, any duplicates among the cell types were 

removed to generate the final cell type-specific marker gene list (Table 2.4). This gene list 

was then used for heat map gene level visualization and fold change analysis to identify likely 

cell type composition change by hypoxia. Only genes with ⟨TPM⟩>0.10 were considered for 

analysis. Cell types with >80% of markers with positive fold change are considered 

expanded, >80% of markers with negative fold change are considered depleted and not 

changed if neither. To validate these results, the cell type composition analysis was repeated 

for mouse brain cell markers obtained from Zeisel et al.51 Supplementary table 1, and mouse 

heart and immune cell markers from Skelly et al.52 figure 1D.  

Enrichr 

To identify other drugs that have similar effect on the transcriptome as ALG-1001, we 

submitted the list of 198 suppressed genes after drug treatment in OIR mice to Enrichr53 and 

compared them to the results of the LINCS L100054 and DrugMatrix datasets55. For this 

analysis, we looked for drugs that also suppressed the same genes as ALG-1001 with 

statistical significance (Enrichr adjusted p-value<0.05). For each analysis, we focused on the 

top 20 drugs with the strongest statistical evidence and identified their mechanism of action.  

Enrichment analysis of Ishikawa et al. (2015) gene set 
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List of modulated genes in DR retinal tissue compared to non-diabetic retina were obtained 

from the original study56. GO biological process enrichment was performed with 

PANTHER57 with adjusted p-value cutoff of 0.05. 

Analysis of Ishikawa et al. (2010) data set 

List of modulated genes in OIR retina compared to control retina were obtained from the 

original study58. Fold changes were calculated from the original microarray data using 

GEO2R59 for plotting and Pearson’s correlation calculations.  

Analysis of Mirabelli et al. (2017) data set 

With the Mirabelli et al. dataset60, differential analysis was performed using GEO2R between 

anti-VEGF antibody and anti-IgG antibody treated samples. Fold changes were used for 

plotting and Pearson’s correlation calculation. 

Correlation measurement with DR and AMD studies 

Hypoxia-modulated genes found in OIR + Vehicle vs. RA + Vehicle comparison were 

selected and converted to human gene symbol using biomart42. Fold changes for Ishikawa56, 

Newman61 and Whitmore62 studies were calculated from the original microarray data using 

GEO2R for plotting and Pearson’s correlation calculations.  

Data availability 
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Raw RNA-seq Fastq files from this study will be available at Gene Expression Omnibus63 

once the study has been published. All enrichment tables will be made available at 

CaltechDATA64. 

Reverse transcription and quantitative polymerase chain reaction (qPCR) 

From the statistically significant genes identified by edgeR, six genes were selected for 

separate validation with qPCR: Vegfa, Tgfbi, Col4a1 and Nrp1 (angiogenesis), Ccnb1 and 

Pdgfb (cell proliferation). SuperScript IV Reverse Transcriptase (ThermoFisher) and 

oligo(dT)20 primer (ThermoFisher) were used to convert polyadenylated mRNA to cDNA. 

qPCR was performed using iTaq Universal SYBR Green Supermix (Biorad) on LightCycler 

480 (Roche) with 45 amplification cycles. Three animals from each of the two litters for each 

condition were randomly selected to constitute 6 biological replicates per condition. To 

enhance accuracy, four technical qPCR replicates of the same cDNA were generated and the 

median value selected for further analysis. Differences were calculated using the ΔΔCt 

method versus Gapdh65. Primers used in this study were obtained from PrimerBank (Table 

2.1)66.  

 

2.3 Results 

In this study, RNA-seq was used to characterize the transcriptome in retinal tissue obtained 

from four conditions (RA and OIR mice treated with vehicle in the left eye and ALG-1001 

in the right eye). First, we visualized the quantified profile of RNA-seq samples with PCA 
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to identify outliers (removed from subsequent analysis) and to observe sample separation 

among the four conditions. Next, we focused on functional analysis of the transcriptome-

level response associated with retinal hypoxia and after ALG-1001 injection in both OIR and 

RA mice. Lastly, we applied analytical tools to identify transcription factors that likely 

influence the observed transcriptome changes.  

PCA of RNA-seq data 

PCA enables visualization of the RNA-seq dataset in a low-dimensional space to identify 

potential outliers and to give an initial impression on the strength of differences among the 

four conditions. First, we focused on the top three principal components (PC1-3All) obtained 

from analysis of all 48 samples (12 per condition), which capture a combined 63% of the 

total variance in the dataset. PC1All alone accounts for 46% of total variance and clearly 

separates the OIR and RA samples (Figure S2.3B). Interestingly, one sample is a strong 

outlier in PC2All dimension (characterized in Methods, Figure S2.3B). To remove the 

outlier’s effect on PCA, both the outlier and its fellow eye sample were removed and PCA 

repeated. The first three PCs from the revised PCA (PCANo-outlier) again capture 62% of total 

variance (Figure 2.2). In addition, PC1No-outlier continues to strongly separate the OIR and 

RA samples, capturing 49% of the total variance in the data set (Figure 2.2B). In comparison, 

PC2No-outlier captures 7% of the total variance and appears to weakly separate the different 

litters, indicating the presence of litter effect in the dataset (Figure S2.4A-B). We also looked 

for PCA separation based on gender and found no observable pattern in PC1-3No-outlier (after 

removal of five gender-specific genes as described in Methods, Figure S2.4C-D).  
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In the analysis of the four groups, none of the top 3 PCs in PCANo-outlier separated vehicle and 

ALG-1001 conditions at room air, whereas there is a weak separation along PC3No-outlier 

among vehicle and ALG-1001 samples in OIR mice (Figure 2.2C). Based on this 

observation, PCA is repeated with only OIR samples to better visualize the quantified 

variation induced by ALG-1001 treatment (Figure S2.5). Some of the main observations 

from this analysis include: a) the strongest principle component only explains 17% of the 

variance among the samples; b) of the top three principal components, PC2OIR distinguishes 

vehicle from ALG-1001 (all mice show higher value on PC2OIR for vehicle relative to ALG-

1001 treated fellow eye, Figure 2.3A). These results show ALG-1001 treatment induced a 

consistent perturbation of the transcriptome in the OIR mice. In contrast, no consistent shift 

was observed in PC1-3RA among the RA samples (PCARA in Figure S2.6, animal-specific 

analysis in Figure 2.3B).  

Hypoxia-associated changes in the transcriptome 

EdgeR was used to identify the genes that differ significantly in quantified level between 

hypoxia (OIR) and control (RA) retina, limited to vehicle samples to avoid confounding 

effect of ALG-1001. EdgeR analysis reveals 6208 genes modulated by hypoxia (satisfied 

FDR<0.05), representing more than 40% of the 14,402 expressed (⟨CPM⟩>1) genes (Figure 

2.4A). The vast majority of the genes modulated by hypoxia also show very strong statistical 

significance (FDR<<10-3, Figure 2.4B). Based on ERSSA analysis, a majority of hypoxia-

modulated genes with |log2-fold-change|>0.50 have been identified (discovery becomes 

marginal past n=9, Figure S2.8A). In addition, ERSSA simulation shows consensus among 
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subsamples (Figure S2.8B), FPR and TPR (Figure S2.8C) metrics continue to improve as 

sample size increases, indicating enhanced accuracy as more samples are included.  

For functional analysis of the genes that are modulated by hypoxia, they are separated into 

two lists (3141 “up” and 3067 “down”) to identify biological processes (GO) and pathways 

(KEGG) that are over-represented. Beyond “response to hypoxia”, GO biological process 

analysis of elevated genes disproportionally identified those that are associated with 

inflammation (“immune system process”, 326 out of  738 expressed “immune response” 

genes are elevated) and angiogenesis (“blood vessel development”, 181 out of 374 expressed 

“angiogenesis” genes are elevated) (Figure 2.5A), which are qualitatively in agreement with 

prior literature (Appendix 2.8.1). A number of functions identified are relevant to both 

angiogenesis67 and inflammation68, including “response to stimulus”, “cell proliferation”, 

and “cytokine production”. Additionally, a significant portion of hypoxia-elevated genes are 

strongly activated, including 586/3141 genes that are increased by more than one-fold 

(Figure S2.7). Intriguingly, processes related to glycolysis that were enriched in prior study 

with shorter hypoxia exposure (1d, P13) are not enriched in this analysis (5d, P17), 

suggesting resolved activation of glycolysis by P17 (Appendix 2.8.1).  

In contrast, GO biological process analysis of hypoxia-suppressed genes disproportionally 

identified processes related to neural system, such as “ion transport”, “chemical synaptic 

transmission”, and “neuron projection development” (Figure 2.5B). Compared to hypoxia-

elevated genes, the effect on the suppressed genes is more modest as only 78 genes are 

reduced by more than one-fold (Figure S2.7). Perhaps due to these small changes and the 
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longer hypoxia exposure, transcriptome studies of shorter hypoxia exposure in OIR mice did 

not find suppression of neural genes (Appendix 2.8.1).  

Beyond the hypoxia-response “HIF-1a signaling pathway”69, KEGG pathway analysis using 

goseq and the genes elevated in OIR identified cell proliferation and migration pathways that 

are involved in angiogenesis and inflammation: “PI3k-Akt signaling pathway”70,71, “focal 

adhesion”72,73, “regulation of actin cytoskeleton”71,74, and “cell cycle”75,76 (Figure 2.6, 

goseq). Additional KEGG pathways mainly associated with inflammation77 are also 

enriched, including “cytokine-cytokine receptor interaction”, “NF-Kappa B signaling 

pathway”, “JAK-STAT signaling pathway”, “complement and coagulation cascades”, and 

“leukocyte transendothelial migration”. In contrast, goseq applied to hypoxia-suppressed 

genes in OIR identified KEGG pathways that predominantly belong to two groups: 

metabolism and neural systems (Figure 2.7, goseq). Metabolism pathways suppressed by 

hypoxia include “oxidative phosphorylation” and “citrate cycle (TCA cycle)”, which are 

responsible for aerobic respiration78. In relation to neural system, a large number of related 

KEGG pathways are suppressed by hypoxia, including those that function in signaling, 

synapse, and secretory processes79.  

In addition to goseq (a statistical analysis of annotated gene set over-representation in a list 

of modulated genes), GAGE (a statistical analysis of rank order of annotated gene set among 

expressed genes ordered by fold change) was used as an alternative method of identifying 

KEGG pathways using observed transcriptome changes. When applied to analyze fold 

changes affected by hypoxia, GAGE identified fewer KEGG pathways than goseq and only 
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one (“TNF signaling”) that is not discovered by goseq (Figure 2.6 and 2.7, GAGE). 

Altogether, goseq and GAGE analysis provide statistical evidence that angiogenesis and 

inflammation-related pathway genes are elevated, while metabolism and neural system-

related pathway genes are suppressed. 

Transcriptome modulation by ALG-1001 

As evident in the PCA analysis, the effects of ALG-1001 treatment are measurable in OIR 

mice (albeit much weaker than the effects of hypoxia, a weak separation in PC3No-outlier in 

Figure 2.2C, consistent shift in PC2OIR in Figure 2.3A), but not in RA mice (No separation 

in PC1-3No-outlier in Figure 2.2B-C, no shift in PC1-3RA in Figure 2.3B). In contrast to the 

effects of hypoxia, which involved thousands of modulated genes (both “up” and “down”, 

Figure 2.4A), ALG-1001 treatment in RA (Figure 2.8A) and OIR (Figure 2.8B) mice 

affected only a few hundred genes, and essentially all with negative fold change (95% and 

94% of all ALG-1001-modulated genes in RA and OIR mice, respectively).  

Next, goseq-based functional analysis was used to study the suppressed genes (the number 

of elevated genes was too small for meaningful functional enrichment). When applied to the 

70 genes suppressed after ALG-1001 treatment in RA mice, goseq found a limited number 

of GO biological processes with weak statistical significance (Figure 2.9A). Curiously, 

vision-related processes such as “retinol metabolism”, “visual perception”, and “sensory 

perception of light stimulus” are enriched. In particular, five genes involved in retinol 

metabolism (Lrat, Rbp1, Rdh5, Rpe65, and Ttr) are suppressed after ALG-1001 treatment in 
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RA mice. Since retinol plays an important role in the detection of light by photoreceptors80, 

it is unclear whether moderate suppression of these genes may alter normal vision function.  

Analysis of 198 suppressed genes after ALG-1001 treatment in OIR mice identified many 

GO biological processes discovered with hypoxia-elevated genes (89/115 of enriched 

processes), including many related to angiogenesis81,82: “extracellular matrix organization”, 

“integrin-mediated signaling pathway”, “circulatory system development”, and “tube 

development” (Figure 2.9B). While not directly shown on the REVIGO plot, “angiogenesis” 

is also enriched, including 27 of 198 ALG-1001-suppressed genes (many of which are also 

elevated by hypoxia, including Vegfa). Additionally, cellular components (Figure S2.9A) 

and molecular functions (Figure S2.9B) analyses showed strong evidence that genes 

encoding extracellular matrix-located and structural-related proteins are suppressed after 

ALG-1001 treatment in OIR mice. In particular, many of these proteins form the extracellular 

matrix or are proteins that bind to the matrix, both of which are important for cell adhesion 

and migration during angiogenesis83. 

Goseq-based KEGG pathway enrichment supported the results from GO biological process 

analysis. In RA mice, “retinol metabolism” and two other KEGG pathways are enriched with 

ALG-1001-suppressed genes (Figure 2.10B, goseq, RA mice). However, evidence for their 

modulation are weak as indicated by the large adjusted p-values. On the other hand, four 

KEGG pathways are enriched with ALG-1001-suppressed genes in OIR mice, all of which 

are also enriched with hypoxia-elevated genes (highlighted, Figure 2.10B, goseq, OIR 

mice). Of the four, “PI3K-Akt signaling pathway”, “ECM-receptor interaction”, and “Focal 
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adhesion” are associated with various aspects of the angiogenesis and inflammation 

processes70–73. Within the last pathway – “Protein digestion and absorption”, we find ALG-

1001 suppressed a cluster of collagen genes that are involved in both protein metabolism and 

cell adhesion. Since the retinal tissue is not involved in gastrointestinal-based protein 

metabolism, enrichment of this pathway appears to be due to the diverse roles that collagens 

are involved in.  

GAGE analysis of KEGG pathway enrichment corroborated the goseq findings, improving 

the confidence of pathway identification and revealed a few additional modulated pathways 

related to ALG-1001 treatment in OIR mice (Figure 2.10¸GAGE). The four KEGG pathways 

that are identified by goseq with ALG-1001-suppressed genes in OIR mice are indeed the 

most confidently identified pathways found by GAGE (adjusted p-value<10-5, Figure 2.10B, 

GAGE, OIR mice). In addition, GAGE detected four additional KEGG pathways related to 

angiogenesis and inflammation and all eight pathways are enriched with hypoxia-elevated 

genes (highlighted in Figure 2.6, GAGE). Significantly, the overlap with hypoxia-modulated 

pathways is only observed with ALG-1001 treatment in OIR mice, but not in RA mice 

(compare Figure 2.10B, GAGE, OIR mice and Figure 2.10B, GAGE, RA mice).  

One of the main advantages of GAGE is it can detect small, but consistent shifts in the 

transcriptome among genes of a specific annotated gene set. In some cases, changes in 

quantified transcript level may be too small or noisy to be identified as statistically significant 

by software such as edgeR, but these small shifts can collectively have a meaningful 

biological effect. In this case, ALG-1001 only elevated a few genes with statistical 
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significance, which precludes goseq identification of related KEGG pathways. However, 

GAGE found two translation-related KEGG pathways that are elevated in response to ALG-

1001 in OIR mice (“Spliceosome” in Figure 2.10A, OIR mice) and in RA mice (“Ribosome” 

in Figure 2.10A, RA mice). While enrichment of the two pathways are not supported by 

goseq, these findings suggest ALG-1001 treatment elevated genes in protein synthesis 

pathways84, which are known to be disrupted in retinal degeneration85. 

Transcription factors enrichment 

Utilizing the transcriptome data, we used ISMARA to search for the transcription factors 

(TFs) that are likely involved in influencing the quantified changes in response to hypoxia 

(OIR + Vehicle vs. RA + Vehicle) and to ALG-1001 treatment in OIR mice (OIR + Vehicle 

vs. RA + Vehicle). The result is in form of TFs ranked by an enrichment Z-score that 

measures the confidence of their involvement (hypoxia response in Table 2.2 and ALG-1001 

response in Table 2.3). ISMARA shows many TFs that likely elevated target genes after 

hypoxia, including known regulators of cell proliferation (Jun, E2F, ETS, and Tead family 

members), angiogenesis (Fos), and inflammation (Stat2, Spi1, Irf family members, Nfatc3, 

and NF-κB family members) (labeled in Figure 2.11A, activity profile in Figure 2.12)48,86. 

Similarly, TFs with suppressed target genes after hypoxia include those relevant to cell 

proliferation (Hoxb7, Pml, Etv1, and Zbtb14), inflammation (Etv3), neuronal development 

(Rest), metabolism (Ppara), and hypoxia-response (Arnt) (labeled in Figure 2.11B, activity 

profile in Figure 2.13)48.  
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Consistent with earlier analyses, enrichment for TFs corresponding to the transcriptome 

change after ALG-1001 treatment in OIR mice is comparatively less significant. The 

difficulties posed by the small number of the modulated genes after drug treatment are 

particularly acute for ISMARA, which currently does not support removal of inter-animal 

variation to improve detection. As a result, none of the top 50 TFs have Z-score>1.0, which 

is generally used as the significance cutoff (Table 2.3). Nevertheless, biologically relevant 

TFs are observed in the top 50 TFs (labeled in Figure 2.14), with some evidence that indicate 

opposing effect of hypoxia and ALG-1001 (ALG-1001 reversed hypoxia-modulated activity 

level in 8/12 of biologically relevant TF motifs in Figure 2.15). Consistent with edgeR, 

majority of these TFs suppressed target gene activity, including several cell fate and cell 

proliferation-regulating regulator (Erg, Fosl2, Fos, Id4, Sox14, Jun, and Trp53), a hypoxia-

response regulator (Epas1), and two Bcl TFs (Bcl3 and Bcl6) that regulate inflammatory and 

cell-survival processes (Figure 2.15B)48. In particular, Erg, Fos, and Jun are also previously 

enriched with elevated target genes after hypoxia. At the same time, the top 50 TF groups 

also include three biologically relevant TFs with elevated target genes after ALG-1001 

treatment, including Etv1 and Etv6 (cell growth, angiogenesis, migration, and proliferation), 

and Foxo3 (apoptosis and protection against oxidative stress) (Figure 2.15A).  

qPCR 

qPCR was used to validate RNA-seq measured gene level profile for a limited number of 

genes. For this purpose, we selected six genes that are elevated by hypoxia and suppressed 

by ALG-1001, and are involved in angiogenesis (Vegfa, Tgfbi, Col4a1, and Nrp1) or cell 
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proliferation (Ccnb1 and Pdgfb) processes48. Consistent with RNA-seq (Figure 2.16A), 

qPCR measured changes showed the same pattern across all six genes (Figure 2.16B), 

demonstrating high reproducibility between the two detection methods.  

 

2.4 Discussion 

Hypoxia and the associated biological response play central roles in developmental 

processes, injury recovery and chronic diseases (as detailed in reviews87–89). In the eye, a 

pathological hypoxia condition is associated with diseases such as DR90, wet AMD91, 

retinopathy of prematurity90, and intraocular tumor92. In DR, hyperglycemia leads to 

oxidative stress and inflammation, which cause dysfunction of retinal vasculature and 

consequently, hypoxia (Figure 1.4)93,94. In AMD, the inability of the retinal pigment 

epithelium (RPE) to keep pace with the need for phagocytic maintenance of the posterior 

retina leads to development of waste deposits and inflammation, which cause failure of the 

blood-retina barrier and consequently, hypoxia (Figure 1.5)91,95,96. Subsequently, inadequate 

oxygen supply promotes abnormal retinal angiogenesis and inflammation that contribute to 

tissue damage and vision loss. 

As an unbiased source of information regarding the hypoxia response in OIR mouse retina, 

the value of RNA-seq comes through in four ways: a) it reveals new insight into the possible 

relationship between this animal model to human retinal diseases, b) points to possible 

therapeutic targets beyond the current clinically-approved therapies, c) shows evidence of 

change in subpopulations of retinal cells during the hypoxia response, and d) demonstrates 
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how the effects of a proposed therapeutic relate to the modulation of the transcriptome 

associated with hypoxia.  

The RNA-seq results give evidence that the OIR model may have broader relevance than the 

conventional view that it only simulates angiogenic conditions in DR patients: the 

transcriptome suggests that the elevation of the inflammatory response in the OIR mouse 

retina may make it a valuable model of retinal inflammation in both DR and AMD. In relation 

to angiogenic conditions, quantitative information from RNA-seq points to targets that are 

potentially more potent than anti-VEGF therapies that are currently the only clinically 

approved drugs. Applying RNA-seq to an intact tissue (here the retina) reflects two types of 

changes in the transcriptome: changes in tissue composition as result of proliferation, death 

and migration of certain types of cells each with a characteristic expression profile and 

changes in expression of certain genes by cells in the tissue. In relation to an investigational 

drug, application of RNA-seq in a four-arm study reveals that a particular compound has 

very little effect on the retina of unstressed mice and has effects that reverse many of the 

responses to hypoxia when administered to OIR mice. 

Retinal hypoxia activates angiogenesis and inflammation 

To better understand the biological processes active in the retina when insufficient oxygen is 

available, we use the OIR mouse model that exhibits aberrant retinal angiogenesis after 

suppression of retinal vasculature development by raising pups in a hyperoxia chamber 

(Figure 2.1)21,23. In the retina research community, the OIR model is widely used to study 
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retinal angiogenesis23, but considerably less attention has been placed on inflammation and 

other processes activated by hypoxia27. In this study, at height of morphological angiogenesis 

(5 days after inception of simulated hypoxia by returning pups to a normoxic atmosphere)97, 

we found significant elevation of not only angiogenesis, but also inflammatory genes in the 

OIR retina compared to control retina: GO analysis identifies “immune system process” and 

“blood vessel development” (goseq and REVIGO in Figure 2.5A), while enrichment analysis 

identifies KEGG pathways related to angiogenesis (e.g. “PI3K-Akt signaling pathway”70,71 

and “focal adhesion”72) and inflammation (e.g. “NF-Kappa B signaling pathway”77 and 

“leukocyte transendothelial migration”98) (goseq in Figure 2.6, and GAGE in Figure 2.6). 

More broadly, KEGG pathways enriched with genes elevated in OIR retina are involved in 

diverse cellular and system functions including adhesion, migration, proliferation, cell death, 

and inflammation. More importantly, many of the enriched pathways are implicated in DR 

and AMD human pathophysiology (e.g. “PI3K-AKT”99,100, “MAPK signaling” 99,100, “NF-

kappa B”101 and “JAK-STAT”102 pathways). 

Corroborating GO biological process and KEGG pathway analysis of hypoxia-elevated 

genes, TF enrichment also strongly points to transcriptome regulation of both angiogenesis 

and inflammation in the OIR retina (labeled TFs in Figure 2.11). In particular, TFs associated 

with both processes are over-represented with statistical significance in the list of top 50 

enriched TF motifs (Appendix 2.8.11). A particular strength of TF analysis is that it is 

capable of implicating TFs that are uncharacterized altogether, much less having known 

roles in the hypoxia response. TFs that are strongly enriched and not yet annotated (e.g. 
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Nhlh1 and Hsfy2) may represent candidates for future research in retinal hypoxia biology 

(Appendix 2.8.11).   

Retinal hypoxia disrupts neural retina 

Enrichment analysis of genes that are suppressed in OIR retina pointed to cellular 

metabolism and neural system processes (GO biological processes, Figure 2.5B). In relation 

to metabolism, enriched KEGG pathways include aerobic “oxidative phosphorylation” and 

“citrate cycle (TCA cycle)” (Figure 2.7), consistent with prior literature reporting a transition 

away from aerobic respiration to glycolysis in OIR mouse103 and in human AMD104 and 

DR105,106 patients. In relation to neural processes, GO biological process enrichment strongly 

identified neural system processes, including “synapse assembly”, “neurotransmitter 

transport”, and “neuron projection development” (Figure 2.5B). Similarly, genes in multiple 

neurotransmitter signaling and neuronal synapse KEGG pathways are suppressed (goseq and 

GAGE in Figure 2.7), likely due to disruption of normal neural development by hypoxia-

activated processes in OIR retina (in mouse pups, significant retinal neuron differentiation 

and synapse formation take place during the first 3 weeks postnatal107–109). Among the top 

50 TFs identified by ISMARA, only 1/3 were depressed in OIR; nevertheless, this small group 

includes the only neural and metabolism-related TF identified: Ppara (regulator of 

metabolism) and Rest (regulator of neuronal genes) (Figure 2.11B). Although the TF 

evidence is weak, it is compatible with the GO biological process and KEGG pathway 

evidence that metabolism and neural system processes are suppressed in the OIR retina.  
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OIR mouse as a model of human retinal diseases 

The human retina is supplied by two types of vasculature: blood vessels that reside within 

the retina and the choroid capillaries that lie outside of RPE and Bruch’s membrane28 (Figure 

2.23). Physiologically, neovascularization arises from different locations in wet AMD and 

DR. In wet AMD, vessels grow from the choroidal region. In DR, angiogenesis originates 

from the retinal vessels. Due to these differences, several animal models have been created 

to mimic each condition23. The mouse OIR model develops new vessels from the retinal 

blood vessels, as is the case in DR and unlike wet AMD. Therefore, most of the literature on 

the OIR mouse model asserts that it is a useful model for DR (bearing in mind the significant 

differences between the mouse model and the human retinal diseases, Appendix 2.8.12), and 

the conventional wisdom that the OIR mouse is not suitable to model AMD. The present 

RNA-seq data give us an opportunity to compare the changes in the retinal transcriptome of 

OIR mouse to those observed in human donor retina of particular eye diseases relative to 

individuals with no record of retinal disease. 

We begin by comparing the transcriptome changes in OIR to those reported in human donors 

diagnosed with DR in two prior transcriptome studies56,110. A study of human retinal vascular 

endothelial cells derived from DR patients vs. non-diabetic individuals110 reported 

enrichment of 57 GO biological processes among regulated genes – 42 (74%, p-value=0) of 

which were found in the present study of OIR retina, include “angiogenesis”, “inflammatory 

response”, “regulation of cell death”, and other related processes. Another study of human 

DR patients (DR vs. control retina)56, identified 87 elevated genes that are used to enrich 39 



54 

 

GO biological processes – 30 (77%, p-value=0) of which overlap our study, with most that 

are related to angiogenesis and inflammation. Intriguingly, we also found some evidence that 

suggest suppression of neural genes in DR retina, consistent with our observation in OIR 

mouse (Appendix 2.8.3).  

Next, we performed a quantitative analysis that compares transcriptome profile of hypoxia-

modulated genes in OIR retina to those found in DR and AMD patients. Based on prior 

literature, we expected to see a stronger correlation between mouse OIR and human DR, than 

for mouse OIR and human AMD. Indeed, hypoxia-modulated gene changes correlated more 

strongly with DR (Pearson’s r=0.3346, Figure 2.24A) than to AMD (r=0.0459-0.2606, 

depending on the stage of AMD, Figure 2.24C). We are surprised to see indications that the 

mouse OIR model captures the immune system process differences between diseased and 

control human retinas as well as angiogenesis genes: when only “immune system process” 

genes are considered, the correlation between OIR mouse and human DR is significant 

(r=0.3948) and nearly equal to the correlation of “angiogenesis” genes (r=0.4073). Indeed, 

the OIR mouse model correlates with immune system processes in AMD, particularly for 

disease states that are not associated with angiogenesis: r=0.261, 0.231 and 0.282 for immune 

system process genes in sub-clinical, dry, and GA AMD, respectively. For these three forms 

of AMD, hypoxia-modulated genes associated with cell death and neuron system processes 

also showed significant correlation with OIR mouse (Appendix 2.8.4).  

Over the past 20 years, the mouse OIR model has been widely used to study retinal 

angiogenesis, but the field has only recently started to appreciate the concurrent 
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inflammatory response to hypoxia27. In the broader research community, the co-occurrence 

of hypoxia-induced angiogenesis and activation of inflammation have been reported in a 

variety of human diseases111,112. Mechanistically, oxygen deprivation activates angiogenesis 

to increase oxygen supply82 and creates a local microenvironment that promotes 

inflammation113 and cell death114,115. Additionally, there is positive cross-talk between the 

activated angiogenesis and inflammation: early angiogenesis forms leaky vessels that 

enhance leukocyte adhesion and migration into the tissue to promote inflammation116, while 

inflammation increases oxygen demand in the tissue and activates angiogenesis117. As a 

result, dysregulation of these processes are thought to reinforce each other to create a 

persistent cytotoxic environment in chronic human diseases such as DR and AMD111. In 

relation, our comparative analysis suggest OIR mice may be relevant to a broader range of 

human retinal diseases (both DR and certain stages of AMD) and disease processes 

(angiogenesis, inflammation, neural disruption, and cell death). 

Angiogenic targets beyond VEGF 

Despite substantial clinical investigation in the past several decades, the only class of drug 

currently approved for DR118 and wet AMD119 consists of antibodies that target VEGF. 

VEGF is a potent pro-angiogenic factor that has been extensively studied in the past for its 

prominent role in activating angiogenesis120, including in the OIR mouse model21. In an 

examination of elevated angiogenesis genes in OIR retina at P17, we found one third of them 

(61 out of 181 total) are quantified to be elevated more than Vegfa (encodes pro-angiogenic 

form of VEGF, 2.27 fold increase, FDR=4.30×10-30). Functionally, these 61 genes are 
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closely related (Figure S2.10), with many involved in cell adhesion/migration (e.g. integrins, 

collagens, fibronectin, and cadherin) and cell proliferation (e.g. growth factors, tyrosine 

protein kinases and their associated proteins), both processes that are essential during 

angiogenesis (Table 2.8). Significantly, only 13 of these genes are downstream of VEGF 

signaling (Table 2.9). Since a majority (approximately 80%) of these highly-elevated 

angiogenesis genes do not appear to be part of VEGF signaling, they suggest other concurrent 

processes are important in driving angiogenesis in the hypoxic retina. Interestingly, Placental 

Growth Factor (Pgf)121 and Fibroblast Growth Factor 2 (Fgf2)122 are both potent pro-

angiogenic factors found to be elevated more than Vegfa, but have not been extensively 

tested in clinical trials of retinal diseases (none that specifically targets Pgf 123 or Fgf2124). 

Therapeutics targeting these growth factors and other highly elevated angiogenic proteins 

may lead to novel treatment of retinal diseases. 

Modulation of retinal cell composition by hypoxia 

Unlike traditional in vitro cell culture, animal tissue is comprised of multiple cell types whose 

populations are not static. In the retina, hypoxia response initiates subpopulation change 

among the retinal cells, which can influence the transcriptome measurement and contribute 

to differential expression identification. Specifically, hypoxia activates angiogenesis and 

inflammation that elevate blood vessel125,126 and immune127–130 cell populations in the retina 

through proliferation of resident cells and migration of systemic cells into the tissue. 

Additionally, hypoxic retinal cells increase production of reactive oxygen species and release 

excess glutamate that induce neuronal cell death131. Prior studies that used flow cytometry129 
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or fluorescent staining125,126,128 methods did observe changes in cell population in the OIR 

model, but these methods are low-throughput with the studies focused on a limited number 

of cell types at a time. On the other hand, while RNA-seq data contain transcriptome signal 

combined from all retinal cell types, it also allow us to analyze all of the retinal cell types at 

once.  

To investigate the representation of 12 common retinal cell types, we used lists of mutually 

orthogonal gene sets that we derived from a recent scRNA-seq study of the mouse retina50.  

Using these cell-type specific gene sets (as described in Methods), we found evidence that 

3 cell types may be expanded (Figure 2.19A), 3 cell types depleted (Figure 2.19B), and 6 

cell types with no strong evidence for change in cell population after hypoxia (Figure 2.20). 

In particular, we found vascular endothelial cells, pericytes and microglia numbers are likely 

expanded in OIR retina (supported by additional evidence using orthogonal markers from a 

brain51 study and a heart52 study, Appendix 2.8.2). Significantly, endothelial cells and 

pericytes are the main cells that form capillary vessels, while microglia are the retina-resident 

immune cells. Evidence for their expansion suggest the observed elevation of angiogenesis 

and immune genes in the OIR retina is not due to only gene expression change, but also tissue 

composition variation.   

We also identified three neuronal cell types that may have depleted population in OIR retina: 

ganglion, amacrine and bipolar cells, which represent 3 out of 4 major neuronal cell types in 

the retina132 (supported by additional evidence using orthogonal markers from a brain study, 
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Appendix 2.8.2). Consistent with these findings, prior study of OIR retina found evidence 

of neuron cell death (in layers of retina containing amacrine, bipolar, horizontal and ganglion 

cells) at P16-17133,134. However, imaging studies also found photoreceptors are susceptible 

to undergo cell death, which was not strongly detected in our transcriptome dataset (rods 

11/20 markers, cones 5/13 markers with negative fold-change in OIR mice). This 

discrepancy between imaging and transcriptome studies may be due to the significantly 

larger number of photoreceptors in the retina135, where death of a limited number of 

photoreceptors is not detectable by whole retina RNA-seq.  

Advantage of drug testing in both stressed and control animals 

Despite over 2000 clinical trials to date136, anti-VEGF therapy is the only class of drug 

approved for DR and wet AMD137, and alarmingly do not work for double digit percentage 

of patients (Chapter 1.1). Despite tremendous amount of clinical efforts, most experimental 

drugs fail in these diseases due to a lack of efficacy or presence of strong adverse events138. 

Thus, any new therapy needs to show both strong therapeutic benefit in patients while 

retaining a high safety profile. ALG-1001 is an experimental drug that matches this profile 

with demonstration of: a) vision improvement across multiple clinical trials in DME and 

AMD patient cohorts15–17 and b) no strong drug-related adverse events after more than 

several hundred human injections (Allegro Ophthalmics, LLC., personal communication). 

In this study, RNA-seq is applied to investigate ALG-1001’s safety profile in control mice 

(RA) and therapeutic effect in disease model mice (OIR). 
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Inclusion of both the unstressed group and the disease model enables us to discover a striking 

difference between effects of an active agent in the two treatment conditions. Specifically, 

we discovered ALG-1001’s pronounced anti-angiogenic and anti-inflammatory effects in the 

OIR group are absent in the RA group (compare GO biological processes enriched in RA 

group in Figure 2.9A and OIR group in Figure 2.9B). Indeed, the ALG-1001 treated eyes 

in the control animals are almost indistinguishable from their sham treated fellows (number 

of drug modulated genes in Figure 2.8A, biological processes enriched in Figure 2.9A and 

lack of separation in PCARA in Figure 2.3B). Altogether, this two-pronged experimental 

design enables quantitative identification of the (potentially therapeutic) effects of an active 

agent in a diseased tissue and the (desirable) absence of effects in unstressed tissue. Our 

findings show potential benefits of using this type of experimental design, which is 

uncommon in the research community that uses transcriptome methods to study drugs and 

diseases (small-scale survey with results summarized in Appendix 2.8.9). 

ALG-1001 modulates hypoxia-induced transcriptome changes 

After ALG-1001 treatment, transcriptome data reveal drug exposure in OIR mice suppressed 

genes that are part of hypoxia-activated angiogenesis and inflammatory-related biological 

processes (GO biological processes, Figure 2.9B) and pathways (goseq in Figure 2.10B, 

GAGE in Figure 2.10B), along with corroborating regulatory evidence (Appendix 2.8.7) 

and analysis that show a general inverse relationship between effects of hypoxia and ALG-

1001 (Appendix 2.8.13). Expanding on these observations, a protein-protein interaction 

graph of the 198 drug-suppressed genes revealed two noticeable clusters of highly-
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interacting proteins (Figure 2.25). One cluster contains growth factors (Vegfa, Fgf1 and 

Pdgfb), growth factor receptors (Met, Pgr and Fgfr2), cell cycle regulators (Ccnb1, Ccnd1, 

Cdk14 and Cdkn1a) and angiogenesis-related proteins (Nrp1, Ets1 and Esm1). The second 

cluster contains many highly related structural proteins including 8 collagen subunits, 3 

laminin subunits, and others (Bgn, Itga9, Timp3, and Zyx). In particular, collagen and 

laminin are important for cell adhesion and migration and promote angiogenesis by 

interacting with endothelial integrin receptors83. Focusing on integrins, we found only one 

integrin subunit (Itga9) is suppressed with statistical significance, but 16/19 of expressed 

integrin subunits have negative fold changes. These changes are too small for statistical 

significance, but when combined with suppression of their extracellular matrix (ECM) 

binding partners, the overall effect may explain drug’s anti-angiogenic mechanism. Indeed, 

in vitro studies of endothelial cells treated with ALG-1001 revealed suppression of cell 

migration and adhesion genes (Chapter 3), which result in measurable reduction of physical 

adhesion and migration of endothelial cells on ECM-coated surfaces (Campochiaro lab, JHU, 

described in Appendix 2.8.5). 

Moderation of hypoxia’s transcriptome effect correlates with observation of mitigated OIR 

vessel growth after ALG-1001 treatment, in a manner that is comparable to current standard 

of care – anti-VEGF antibodies. In this study, we did not test anti-VEGF antibodies (due to 

the high cost of RNA-seq and the paired eye experimental design), but we set out to explore 

the existing literature on transcriptome studies of anti-VEGF treatment for comparative 

analysis with ALG-1001. Despite an extensive search, we only found one microarray dataset 
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that tested anti-VEGF therapy in a stressed rat cornea model and, due to the modest effect of 

anti-VEGF therapy in this model (no regulated genes found), the comparative assessment is 

inconclusive (Appendix 2.8.6). Next, we broadened our analysis to large-scale transcriptome 

studies of drugs, where enrichr was used to search for drugs that primarily suppressed the 

same genes as ALG-1001.  

Despite wide adoption of high-throughput transcriptome methods, only a handful of studies 

had explored drug-induced transcriptome changes on a large number of drugs. Specifically, 

we found two datasets in which we could search for drugs that show significant similarity to 

ALG-1001: 1) the LINCS L1000 data set provides ~20,000 compounds/drugs studied in 

human cancer cell lines across around ~30,000 total experimental settings (varying dosage, 

treatment time, and cell lines)54 and 2) DrugMatrix data set contains 600 compounds tested 

in rat across around 4,000 total experimental settings (varying dosage, treatment time, and 

analyzed tissue)55. First, with the L1000 dataset, enrichr found ALG-1001 transcriptome 

profile matches 390 compounds with statistical significance, albeit with important caveats 

(Appendix 2.8.8). Within the set of 390 drugs, we are surprised that one of ALG-1001’s 

attributes is very rare: genes modulated by ALG-1001 overwhelmingly (93.8%) have 

negative fold change, but only 4 of the 390 drugs showing similarities to ALG-1001 have 

>80% of their DE genes in the negative fold-change category (none of 390 have >90% of 

DE gene as suppressed). Similarly, when this analysis is applied to the DrugMatrix dataset, 

we found ALG-1001 expression profile matches 89 drugs with statistical significance. Of the 

89 drugs with similarities to ALG-1001, none have >70% of their modulated genes as 
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suppressed (only one drug showed >60% of their modulated genes have negative fold 

change). Collectively, these observations suggest ALG-1001 is relatively unique in terms of 

its ability to mainly suppress genes.  

Next, we set out to identify any known mechanism of action among the top 20 enriched 

L1000 (Table 2.11) and DrugMatrix (Table 2.12) compounds. Through a manual search, 

we found known mechanism of action for a majority of the top 20 L1000 drugs, while the 

opposite is true with DrugMatrix compounds (Appendix 2.8.10 describes annotation of 

DrugMatrix top 20 enriched compounds). Here, we will focus on the enriched L1000 

compounds as they can help expand our understanding of ALG-1001’s mechanism of action. 

Among these 20 compounds, we are intrigued to see a majority of them (18/20) are either 

cancer drugs or cell cycle inhibitors. When specifically focused on the cancer drugs, we 

notice more than half of them (8/15, bolded in Table 2.11) are inhibitors of tyrosine kinases, 

which are a large family of proteins that facilitate signal transduction in the cell and play key 

roles in pathological cell proliferation, differentiation, migration, metabolism and cell 

death139,140. In relation to these observations, specific enrichment of tyrosine kinase inhibitors 

suggest ALG-1001 may disrupt targets in related processes, potentially explaining its 

positive effect in retinal diseases. 

 

2.5 Conclusions 

Neovascularizing diseases of the retina are the main cause of clinical blindness in the 

developed nations1. In these diseases, hypoxia is one of the main drivers of 
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neovascularization and inflammation that subsequently disrupt cell function and cause cell 

death91,93,95. Current treatments for these conditions are expensive9, burdensome10 and 

alarmingly do not work in a double digit percentage of patients11,12. ALG-1001 is an 

investigational peptide drug that is promising in treatment of blinding retinal diseases14,19, 

but its mechanism of action requires further exploration.  

In this study, RNA-seq shows simulated hypoxia in mouse OIR retina modulated thousands 

of genes: strongly elevating those related to angiogenesis and inflammation, while weakly 

suppressing others related to metabolism and neural system processes. These quantified 

changes can be explained by a combination of gene expression change in retinal cells and 

hypoxia-induced tissue composition variation, as revealed in a robust cell marker analysis. 

Additionally, quantitative comparative analyses to prior human datasets suggest the OIR 

model may be useful to model a wider range of human retinal diseases and disease processes. 

More broadly, our comparatively large transcriptome dataset can serve as a resource to the 

retinal research community as a foundation to further unravel the extremely complex 

biological processes that drive retinal diseases. 

In terms of therapeutic treatment of these diseases, RNA-seq reveal ALG-1001 co-treatment 

reversed of some of the transcriptome changes activated by hypoxia in OIR retina, 

specifically, the stimulated angiogenesis and inflammation processes. These findings support 

unpublished studies that showed ALG-1001 is effective in mitigating hypoxia-induced 

retinal neovascularization in OIR and several other mouse models (Campochiaro lab, JHU). 

Additionally, these effects are absent in control mice, where the transcriptome change is 



64 

 

minor and serves as quantitative evidence that corroborates the drug’s high safety profile in 

clinical studies14,17–19. In fact, this type of four-arm design for transcriptome study is 

uncommon in the drug research field, but should be adapted more widely to identify both 

therapeutic effect and safety profile related to a drug. 
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2.6 Figures and Tables 

 

Figure 2.1 Generation of OIR and RA groups 

Schematic showing treatments applied to all mice in the study. Mice were divided into two 

cohorts: OIR and RA (Room Air) groups. In the RA group, mice were left at room air for 

normal retinal development. In OIR group, mice were treated to 5 days of hyperoxia to 

regress retinal vessels, which then causes retinal angiogenesis that reaches peak development 

on P17. On P12, all mice are also injected intraocularly with either vehicle (Veh) or ALG-

1001 (ALG). Retinal sample were collected on P17 for whole tissue RNA-seq. Schematic 

developed with significant modification from original figure by Stahl et al.23.  
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Figure 2.2 PCA with outlier pair of samples removed 

PCANo-outlier with all samples except the outlier and its fellow eye sample. PC_# is principal 

component #. A. Percent of overall variance captured by the top 10 principal components. 

B-C. Samples in PC1 and PC2, PC1, and PC3, respectively. Percent of variance explained is 

shown in axis label. PC1No-outlier strongly separates OIR from RA samples. 
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Figure 2.3 Animal-specific change in PCA coordinate values between ALG-1001 and 

vehicle treated eyes 

PCA performed separately for OIR mice (A, PCAOIR in Figure S2.5) and RA mice (B, 

PCARA in Figure S2.6). For each paired sample from the same animal, the difference in PCA 

transformed value is calculated and plotted. In OIR mice, ALG-1001 treated samples show 

a consistent shift in PC2OIR compared to fellow vehicle treated samples. Red line indicates 

zero difference. PC_# is principal component # and analysis excluded outlier sample pair. 
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Figure 2.4 edgeR comparison that reveals hypoxia-modulated genes in retina 

EdgeR comparison of OIR + vehicle relative to RA + vehicle as control. Modulated genes 

are colored red while all others are black. Genes outside of display window are symbolized 

by triangle. A. Measured CPM and fold-change for each expressed gene. B. Measured fold-

change and FDR displayed for each expressed gene. Blue dashed line indicates FDR=0.05.  
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Figure 2.5 GO biological process enrichment with hypoxia-elevated and -suppressed 

genes  

Hypoxia-elevated (A) and -suppressed (B) genes (OIR + Vehicle vs. RA + Vehicle) are 

submitted for GO enrichment with results visualized using REVIGO. In part A, many GO 

processes enriched are related to angiogenesis and inflammation. In part B, a significant 

number of GO processes enriched are related to neural system. P-value is REVIGO-derived 

GO enrichment p-value. Selected biologically relevant processes are labeled.   
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Figure 2.6 KEGG pathways enriched with hypoxia-elevated genes 

Elevated KEGG pathways enriched with goseq using hypoxia-elevated genes (left) or GAGE 

with edgeR measured fold changes in comparison of OIR + Vehicle vs. RA + Vehicle (right). 

Many enriched pathways are related to inflammation, angiogenesis, cell proliferation and 

death. Highlighted pathways are enriched with ALG-1001-suppressed genes in OIR mice by 

goseq or GAGE. Statistically significant pathways are displayed. Benjamini Hochberg (BH) 

adjusted P-value is displayed on the x-axis.   
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Figure 2.7 KEGG pathway enriched with hypoxia-suppressed genes 

Suppressed KEGG pathways enriched with goseq using hypoxia-suppressed genes (left) or 

GAGE with edgeR measured fold changes in comparison of OIR + Vehicle vs. RA + Vehicle 

(right). Many enriched pathways are related to metabolism and neural system. No pathways 

overlap with those enriched with ALG-1001-elevated genes in OIR mice. Statistically 

significant pathways are displayed. Benjamini Hochberg (BH) adjusted P-value is displayed 

on the x-axis.   
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Figure 2.8 edgeR comparisons of ALG-1001 vs. vehicle treatment 

EdgeR comparison of RA + ALG-1001 vs. RA + vehicle (A, C) and OIR + ALG-1001 vs. 

OIR + vehicle (B, D). Modulated genes are colored red while all others are black. A-B. 

Measured CPM and fold-change for each expressed gene. C-D. Measured fold-change and 

FDR displayed for each expressed gene. Blue dashed line indicates FDR=0.05.  
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Figure 2.9 GO biological process enrichment of genes suppressed after ALG-1001 

treatment 

Suppressed genes after ALG-1001 treatment in RA mice (A) and OIR mice (B) relative to 

vehicle treated control are submitted for GO biological process enrichment with results 

visualized using REVIGO. Few processes with weak statistics are enriched with ALG-1001 

treatment in RA mice, while those related to angiogenesis and inflammation are enriched 

with ALG-1001 treatment in OIR mice. P-value is REVIGO-derived GO enrichment p-value. 

Selected biologically relevant processes are labeled.  
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Figure 2.10 KEGG pathways enriched with ALG-1001-modulated genes 

KEGG pathways significantly enriched with genes (A) elevated in the ALG-1001-treated 

eye relative to its fellow eye and (B) suppressed in ALG-1001-treated eye relative to its 

fellow eye. In each case, results for the RA mice are above those of the OIR mice. Results 

are shown for analysis with both goseq and GAGE. Benjamini Hochberg (BH) adjusted P-

value is displayed on the x-axis. 
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Figure 2.11 ISMARA enrichment for TFs associated with retinal hypoxia response 

Raw reads of OIR + Vehicle and RA + Vehicle samples were submitted to ISMARA to enrich 

for TFs that are likely involved in regulating retinal hypoxia response. Plot shows the top 50 

enriched TFs (Table 2.2) ranked by Z-score with: elevated (A) or suppressed (B) average 

target gene activity in OIR mice. Biologically relevant TFs are labeled with color by 

associated functions: cell proliferation and death (orange), angiogenesis (pink), inflammation 

(blue), neuronal development (black), metabolism (green), and hypoxia-response (gray).   
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Figure 2.12 Activity profile of selected TF motifs with hypoxia-elevated target genes 

OIR + Vehicle and RA + Vehicle samples were submitted to ISMARA to enrichment for TFs 

that are likely involved in retinal hypoxia transcriptome response. Activity profile (mean + 

standard deviation, values multiplied by 100) of selected TF motifs with elevated target 

activity in OIR vehicle condition are plotted.   
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Figure 2.13 Activity profile of selected TF motifs with hypoxia-suppressed genes 

OIR + Vehicle and RA + Vehicle samples were submitted to ISMARA to enrichment for TFs 

that are likely involved in retinal hypoxia transcriptome response. Activity profile (mean + 

standard deviation, values multiplied by 100) of selected TF motifs with suppressed target 

activity in OIR vehicle condition are plotted.   
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Figure 2.14 ISMARA enrichment for TFs associated with ALG-1001 treatment 

response in OIR mice 

Raw reads of OIR + ALG-1001 and OIR + Vehicle samples were submitted to ISMARA to 

enrich for TFs that are likely involved in regulating ALG-1001’s effect in OIR mice. Plot 

shows the top 50 enriched TFs (Table 2.3) ranked by Z-score with: elevated (A) or 

suppressed (B) average target gene activity in ALG-1001-treated samples. Biologically 

relevant TFs are labeled with color by associated functions: cell proliferation and death 

(orange), inflammation (blue), and hypoxia-response (gray). 
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Figure 2.15 Activity profiles of selected TF motifs with ALG-1001-modulated genes 

in OIR 

OIR + ALG-1001 and OIR + Vehicle samples were submitted to ISMARA to enrichment for 

TFs that are likely involved in regulating ALG-1001’s effect in OIR mice. Activity profile 

(mean + standard deviation, values multiplied by 100) of selected TFs with (A) elevated or 

(B) suppressed target activity in OIR + ALG-1001 condition are plotted.  
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Figure 2.16 qPCR validation of selected RNA-seq results 

Six genes shown by RNA-seq to be activated during retinal hypoxia (OIR + Vehicle vs. RA 

+ Vehicle) and suppressed by ALG-1001 (OIR + ALG-1001 vs. OIR + Vehicle) are selected 

for qPCR validation. Quantified gene levels are normalized in both plots so that average RA 

+ Vehicle level is 1. The mean and standard deviation are shown. A. RNA-seq gene level 

based on TPM values. B. qPCR gene level based on ΔΔCt-derived fold changes. RNA-seq 

and qPCR quantified gene levels are consistent across genes and conditions. 

  



81 

 

 
Figure 2.17 Compare P12.5 and P17 hypoxia-modulated genes 

Analysis limited to hypoxia-modulated genes at (A) P12.5, (B) P17, and (C) P17 modulated 

genes with |log2-fold-change|>1 in the present study. X-axis shows fold changes in P17 

mouse OIR retina compared to control (current study, vehicle comparison), Y-axis shows 

fold changes in P12.5 mouse OIR retina compared to control (Ishikawa et al.58, untreated 

comparison). Dashed blue lines indicate Y=0 and X=0 lines. Log2FC is log2-fold-change. 

Pearson’s correlation coefficients are shown in plot title. Correlation values show positive 

correlations across all gene sets tested, but significantly higher correlation when analysis is 

limited to hypoxia-modulated genes at P12.5.   
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Figure 2.18 High correlation between qPCR from Sato study and RNA-seq 

Genes in Sato study97 are selected for visualization, with RNA-seq measured fold change 

(OIR + Vehicle vs. RA + Vehicle) on X-axis and qPCR (OIR vs. RA) measured fold change 

on Y-axis. Dashed blue lines indicate Y=0 and X=0 lines. Pearson’s correlation coefficients 

are shown in plot title. All genes measured in the Sato study that are also measurable with 

RNA-seq are plotted in (A). Nrp2 appears to be an outlier and is removed in (B) with 

Pearson’s correlation re-calculated. With Nrp2 removed, a relatively high correlation is 

observed between the two datasets.   
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Figure 2.19 Retinal cell type-specific gene level change heatmap – part 1 

Normalized TPM (Norm. TPM) values of retinal cell type-specific genes are visualized in 

form of heatmap. All non-outlier samples are sorted column-wise by condition as indicated 

by color bar on top of heatmap. Norm. TPM values of each sample are summarized by box 

plot below heatmap. Cell types are categorized by >80% (A) or <20% (B) of markers with 

positive hypoxia-induced fold change (OIR + Vehicle vs. RA + Vehicle), suggesting 

evidence for specific cell type expansion or depletion after hypoxia. 



84 

 

 
Figure 2.20 Retinal cell type-specific gene level change heatmap – part 2 

Normalized TPM (Norm. TPM) values of retinal cell type-specific genes are visualized in 

form of heatmap. All non-outlier samples are sorted column-wise by condition as indicated 

by color bar on top of heatmap. Norm. TPM values of each sample are summarized by box 

plot below heatmap. All cell types have within 20-80% of markers with positive hypoxia-

induced fold change (OIR + Vehicle vs. RA + Vehicle), suggest lack of strong evidence for 

cell composition change by hypoxia.  
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Figure 2.21 Brain cell type-specific gene level heatmap 

Normalized TPM (Norm. TPM) values of brain cell type-specific genes are visualized in 

form of heatmap. All non-outlier samples are sorted column-wise by condition as indicated 

by color bar on top of heatmap. Norm. TPM values of each sample plotted as a heatmap and 

summarized by box plot below heatmap. Endothelial and microglia cells show transcriptome 

sign of cell number expansion after hypoxia while interneuron show sign of cell number 

depletion.  
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Figure 2.22 Heart and immune cell type-specific gene level heatmap 

Normalized TPM (Norm. TPM) values of heart and immune cell type-specific genes are 

visualized in form of heatmap. All non-outlier samples are sorted column-wise by condition 

as indicated by color bar on top of heatmap. Norm. TPM values of each sample plotted as a 

heatmap and summarized by box plot below heatmap. Endothelial, macrophage and 

pericytes cells show transcriptome signs of cell number expansion after hypoxia.   
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Figure 2.23 Blood vessels that support the retina 

The retinal tissue is composed of distinguishable cell layers and is supported by two systems 

of blood vessel: choroidal and retinal vessels. In diabetic retinopathy and related diseases, 

neovascularization originates from the retinal vessels. In wet age-related macular 

degeneration, vessel growth stems from chorodial vessel and expand into the retina through 

Bruch’s membrane and retinal pigment epithelium.  
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Figure 2.24 Hypoxia-modulated genes in OIR show positive correlation with DR and 

AMD 

Hypoxia-modulated genes in OIR + Vehicle vs. RA + Vehicle were selected for plotting with 

their log2-fold-change on the X-axis. Y-axis shows log2-fold-change derived from human 

clinical studies of DR (A, Ishikawa study56) and AMD (B, Whitmore study62 and C, Newman 

study with samples from various stages of AMD61) patients versus healthy cohorts. Pearson’s 

correlations are calculated for each plot and displayed in the title. Correlation to Whitmore 

study is low due to different tissues tested (RPE and choroid tissue in Whitmore study versus 

retina in the present study). Positive correlations are observed across all comparisons with 

the highest between OIR mice and DR patients.  
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Figure 2.25 Protein-protein interaction graph of ALG-1001-suppressed genes in OIR 

mice 

Suppressed genes in the comparison OIR + ALG-1001 vs. OIR + Vehicle were submitted to 

STRING to visualize connection between the proteins these genes encode. Closely-associated 

proteins were clustered into two observable clusters that include proteins that regulate 

angiogenesis, cell growth, motility and adhesion.   
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Gene Direction 5' to 3' Sequence 

Gapdh Forward AGGTCGGTGTGAACGGATTTG 

Gapdh Reverse TGTAGACCATGTAGTTGAGGTCA 

Vegfa Forward GCACATAGAGAGAATGAGCTTCC 

Vegfa Reverse CTCCGCTCTGAACAAGGCT 

Tgfbi Forward CAGCACGGCCCCAATGTAT 

Tgfbi Reverse GGGACCTTTTCATATCCAGGACA 

Col4a1 Forward CTGGCACAAAAGGGACGAG 

Col4a1 Reverse ACGTGGCCGAGAATTTCACC 

Ccnb1 Forward AGAGCTATCCTCATTGACTGGC 

Ccnb1 Reverse AACATGGCCGTTACACCGAC 

Pdgfb Forward TGCTGCACAGAGACTCCGTA 

Pdgfb Reverse GATGAGCTTTCCAACTCGACTC 

Nrp1 Forward GACAAATGTGGCGGGACCATA 

Nrp1 Reverse TGGATTAGCCATTCACACTTCTC 

Table 2.1 qPCR primers 
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Transcription Factor Z-score 

Activity diff. 

OIR + Vehicle –  

RA + Vehicle 

Activity diff.  

OIR + ALG-1001 – 

OIR + Vehicle 

Esrrb_Esrra 3.430265 -0.03231 -0.00108 

Hoxb7 3.320527 -0.05074 -0.00091 

Rest 3.299146 -0.04594 -0.00013 

Erg 3.294661 0.038089 -0.00408 

Stat2 3.211164 0.055767 -0.00141 

Spi1 3.082239 0.024399 -0.00136 

Irf2_Irf1_Irf8_Irf9_Irf7 3.033734 0.064852 -0.0005 

Elf1_Elf2_Etv2_Elf4 2.875717 0.022166 0.004149 

Tead1 2.379707 0.023405 -0.00212 

Tead3_Tead4 2.340649 0.034684 -0.00265 

Etv3_Erf_Fev_Elk4_Elk1_E

lk3 

2.322505 -0.02009 0.001095 

Irf5_Irf6 2.314453 0.016595 0.000054 

Ppara 2.237315 -0.0259 0.000813 

Irf3 2.143088 0.022035 0.000424 

Spic 2.130711 0.031155 0.00171 

E2f1 2.093629 0.023454 0.000368 

Rela_Rel_Nfkb1 2.019875 0.035114 -0.00309 

Nhlh1 2.013827 -0.01724 0.000541 

Hsfy2 1.929333 0.018104 -0.00114 

Etv1_Etv5_Gabpa 1.897489 -0.01673 0.004982 

Nfil3_Tef 1.893919 -0.02395 0.000293 

Runx2_Bcl11a 1.864103 0.015979 0.000558 

Zbtb14 1.86305 -0.01603 -0.00019 

Onecut1_Cux2 1.810252 -0.01471 -0.00137 

Spib 1.796229 0.022922 0.001562 

Tcf7l1 1.791399 0.020335 -0.00218 

Nkx3-2 1.739507 0.018187 -0.00146 

Vdr 1.726826 -0.01608 0.001313 

Klf4_Sp3 1.699623 0.01458 -0.00276 

Fos 1.691026 0.016206 -0.00398 

Srf 1.638139 0.023866 -0.00307 

Nfic_Nfib 1.602884 0.02684 -0.00318 

Chd1_Pml 1.592378 -0.01424 -5.6E-05 
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Nfatc3 1.554134 0.018816 0.000899 

Cebpb 1.53586 0.023171 -0.00088 

Myog_Tcf12 1.527287 -0.01169 -0.00254 

Jun 1.522605 0.014055 -0.00274 

Brca1 1.502649 -0.01066 -0.00058 

Nfe2_Bach1_Mafk 1.493496 -0.01506 -0.00204 

Arnt 1.462555 -0.01142 -0.00049 

Nr2c2 1.454343 0.020481 0.002312 

Foxf1 1.445879 -0.01458 -0.00062 

Nrf1 1.433137 -0.01262 0.006486 

Hey2 1.426067 -0.00987 -0.0005 

Hoxa4 1.421377 -0.01097 0.001539 

E2f4 1.404575 0.013226 -0.00129 

E2f2_E2f5 1.380132 0.021169 -0.00248 

Nr2e1 1.370329 -0.00996 0.00128 

Snai1_Zeb1_Snai2 1.358701 -0.01225 0.002979 

Pou2f2_Pou3f1 1.346542 0.019262 0.000696 

Table 2.2 Top 50 TF motifs enriched with hypoxia 

TF motifs are ordered by Z-score calculated by ISMARA between OIR + Vehicle and RA + 

Vehicle. “Activity diff. OIR + Vehicle – RA + Vehicle” is the average target gene activity 

difference between OIR + Vehicle and RA + Vehicle conditions. “Activity diff. OIR + ALG-

1001 – OIR + Vehicle” is the average target gene activity difference between OIR + ALG-

1001 and OIR + Vehicle conditions. Average target gene activity value was calculated by 

ISMARA and is a measure of average expression of genes that contain the TF motif47. A 

positive activity difference indicates higher average expression of target genes in the first 

condition of the comparison. Bolded TFs indicate those that are also found in the list of top 

50 TF motifs identified with ALG-1001 treatment in hypoxia condition. Selected 

biologically relevant TFs are labeled in Figure 2.11 and their activity profile in Figure 2.12 

and 2.13. 
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Transcription Factor Z-score 

Activity diff. 

OIR + Vehicle –  

RA + Vehicle 

Activity diff.  

OIR + ALG-1001 – 

OIR + Vehicle 

Fosl2_Bach2 0.866357 -0.0049 -0.00509 

Zfp263 0.819355 0.012223 -0.00343 

Epas1_Bcl3 0.811259 -0.00834 -0.00519 

Zfx_Zfp711 0.728028 -0.00205 0.004629 

Fos 0.693695 0.016206 -0.00398 

Etv1_Etv5_Gabpa 0.662583 -0.01673 0.004982 

Id4 0.620802 0.003379 -0.00362 

Zfp652 0.616116 0.011292 -0.00288 

Etv6 0.567969 -0.005 0.002375 

Bcl6 0.562167 0.000266 -0.00336 

Nr1i2 0.556931 0.005574 -0.00342 

Sox14 0.552916 0.000295 -0.00319 

Nfe2l2 0.552207 -0.00472 -0.00257 

Tcf21_Msc 0.530699 -0.00055 0.002127 

Klf1 0.512749 0.00123 -0.00515 

Nrf1 0.510102 -0.01262 0.006486 

Nr5a2 0.506052 0.000782 0.002753 

Pitx3 0.501015 0.012145 0.00327 

Hes5_Hes7 0.496144 -0.00357 0.001916 

Tfap2d 0.492704 0.007685 0.002097 

Hmx1 0.489585 0.005463 0.002019 

Elf1_Elf2_Etv2_Elf4 0.489097 0.022166 0.004149 

Rfx5 0.486523 0.011514 0.002021 

Zfp219_Zfp740 0.475588 0.000603 0.003176 

Hcfc1_Six5_Smarcc2_Zfp14

3 

0.461353 -0.00939 0.005259 

Atf3 0.457336 -0.00924 0.003532 

Jun 0.456271 0.014055 -0.00274 

Myf6 0.451113 -0.0023 -0.00301 

Zic4 0.445612 -0.00533 0.001703 

Bsx 0.444895 0.004805 -0.00175 

Tead1 0.437919 0.023405 -0.00212 

Rorc_Nr1d1 0.424381 0.001066 0.001643 

Cux1 0.42068 -0.00216 0.002518 
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Foxo3 0.420198 0.003627 0.00162 

Zbtb4 0.41824 -0.00849 0.001714 

Srf 0.416023 0.023866 -0.00307 

Taf1 0.412891 -0.01311 0.007399 

Mafb 0.411795 0.001309 0.001874 

Arntl_Tfe3_Mlx_ 

Mitf_Mlxipl_Tfec 

0.406988 0.005772 0.002271 

Erg 0.40352 0.038089 -0.00408 

Tcf7l1 0.401934 0.020335 -0.00218 

Pitx2_Otx2 0.398509 0.01238 0.003785 

Myog_Tcf12 0.398378 -0.01169 -0.00254 

Gsx1_Alx1_Mixl1_Lbx2 0.397332 -0.00475 -0.00163 

Vsx1_Uncx_Prrx2_ 

Shox2_Noto 

0.396899 -0.00391 -0.00281 

Elf5 0.392256 -0.00897 0.003303 

Gsc2_Dmbx1 0.389319 -0.00164 0.001911 

Sox6_Sox9 0.384688 0.015104 -0.0018 

Trp53 0.382392 0.010513 -0.00165 

Nfe2_Bach1_Mafk 0.381502 -0.01506 -0.00204 

Table 2.3 Top 50 TF groups identified with ALG-1001 treatment under hypoxia 

TF motifs are ordered by Z-score calculated by ISMARA between OIR + ALG-1001 and OIR 

+ Vehicle. “Activity diff. OIR + Vehicle – RA + Vehicle” is the average target gene activity 

difference between OIR + Vehicle and RA + Vehicle conditions. “Activity diff. OIR + ALG-

1001 – OIR + Vehicle” is the average target gene activity difference between OIR + ALG-

1001 and OIR + Vehicle conditions. Average target gene activity value was calculated by 

ISMARA and is a measure of average expression of genes that contain the TF motif47. A 

positive activity difference indicates higher average expression of target genes in the first 

condition of the comparison. Bolded TFs indicate those that are also found in the list of top 

50 TF motifs enriched with hypoxia exposure. Selected biologically relevant TFs are labeled 

in Figure 2.14 and their activity profile in Figure 2.15. 
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Cell type Genes 

Horizontal 

cells 

Calb1;Tpm3;Sept4;Slc4a3;Vim;Gnas;Pcsk1n;Smarca4;Snhg11; 

Ndrg1;Snap25;Cd47;Maged1;Tfap2b;Mgarp;Ndrg4;Ppp1r1a 

Retinal 

ganglion cells 

Nefl;Nefm;Stmn2;Sncg;Uchl1;Stmn3;Thy1;Slc17a6;Nrn1;Gap43; 

Cdk14;Ywhah;Tubb2a;Calm2 

Amacrine cells Ppp1r17;Tcf4;Meg3;Syt1;Ebf3;Pnmal2;Marcks;Lgr5;Celf4;Elavl3; 

Gria2;Ebf1;Basp1;Snca;Sphkap 

Rods Rho;Sag;Pdc;Gngt1;Gnat1;Prph2;Gnb1;Pde6g;Pde6b;Rcvrn;Rp1; 

Tulp1;Rom1;Cnga1;Nr2e3;Nrl;Slc24a1;Hmgn1;Rpgrip1;Rs1 

Cones Pde6h;Opn1sw;Gngt2;Opn1mw;Arr3;Gnat2;Pde6c;Kcne2;Guca1a; 

Cd59a;Ccdc136;Gnb3;Scg3 

Bipolar cells Trpm1;Pcp2;Calm1;Gng13;Isl1;Gnao1;Pcp4;Prkca;Nme1;Car8; 

Chgb;Gpr179;Vsx2;Lrtm1;Qpct;Lin7a;Ablim1;Grm6;Map4;Gm4792 

Muller glia Acsl3;Rlbp1;Slc1a3;Car2;Spc25;Car14;Mfge8;Crym;Rtn4; 

Gpr37 

Astrocytes Igf2;Aldoc;S100b;Pdgfra;Gpm6b;Id3;Cntnap2;Mlc1 

Fibroblasts Crhbp;Optc;Col18a1;Gja1;Ptgds;Fbn2;Fstl1;Fbln1;Tsc22d1;Pvrl3; 

Col23a1;Timp3 

Vascular 

endothelium 

Bsg;Flt1;Cldn5;Ptprb;Itm2a;Ramp2;Cd93;Fn1;Spock2;Ctla2a;Pltp 

Pericytes Rgs5;Mgp;Cald1;Aspn;Nid1;Itga1;Serpine2;Pdgfrb;Myl9;Itgb1; 

Higd1b 

Microglia Ctss;Hexb;C1qb;Lgmn;C1qc;C1qa;B2m;Sepp1;Cx3cr1;Ly86; 

Laptm5;Jun;Ctsb;Csf1r 

Table 2.4 Mouse retina cell type-specific marker genes  

The set of cell type-specific markers are derived from the Macosko et al. scRNA-seq 

dataset50. The selected marker genes are found to be expressed at a high level in each cell 

type and not in the other cell types included in this analysis.  
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Human 

Disease 

Comparison 

Modul

ated 

genes 

in 

OIR1 

Non-

modul

ated 

genes 

in 

OIR2 

Modulated gene in OIR with GO term3 

Immun

e system 

process 

Angiog

enesis 

Cell 

death 

Metabolic 

process 

Nervou

s system 

develop

ment 

Diabetic Retinopathy (Ishikawa) 

DR 0.3347 0.059 0.3948 0.4073 0.3484 0.3293 0.2999 

Age-related Macular Degeneration (Newman) 

Pre-AMD 0.0459 0.0108 -0.0042 0.0641 0.0631 0.0411 0.1096 

Sub-clinical 

AMD  

0.2606 0.0386 0.2613 0.1367 0.2767 0.2561 0.3292 

Dry AMD 0.199 0.052 0.2307 0.1765 0.2592 0.2189 0.2761 

GA AMD 0.216 0.0284 0.2818 0.2264 0.2627 0.2355 0.2477 

CNV AMD 0.123 0.0043 0.2179 0.0477 0.1751 0.1243 0.1638 

GA and 

CNV AMD 

0.0654 -0.0205 0.1194 -0.0415 0.0625 0.0602 0.0898 

Age-related Macular Degeneration (Whitmore) 

Dry AMD 0.0324 0.0116 0.0286 0.1102 0.0339 0.0075 0.018 

Table 2.5 Pearson’s correlation of fold changes between OIR and disease studies 
1All hypoxia-modulated genes found in OIR + Vehicle vs. RA + Vehicle comparison are 

included for calculation. 
2All non-hypoxia-modulated genes found expressed in mouse retina are included for 

calculation. 
3Pearson’s r calculated with genes included in the following GO biological processes: 

“immune system process”, “angiogenesis”, “cell death”, “metabolic process” and “nervous 

system development”. Aside from “metabolic process”, all others are enriched in goseq 

enrichment analysis. “Metabolic process” is selected as it encompasses several related 

metabolic processes that are enriched in goseq analysis. 
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Correlation to Whitmore study is low due to different tissues analyzed (RPE and choroid 

tissue in Whitmore study versus retina in Ishikawa, Newman, and the present studies). 

 

 

 

 

 

 

 

Study Method Sample 

size 

OIR 

time 

point 

Study 

of 

hypoxia 

Study 

of 

drug 

Raw 

data 

available 

Modulated 

gene list 

available 

Hoppe141 RNA-seq 6 P12 No Yes No No 

Ishikawa58 Microarray 3 P12.5 Yes No Yes Yes 

Yang142 Microarray 3 P13 Yes No No Yes 

Oubaha143 Microarray 2 P14 Yes No No No 

Sato97 qPCR,  

94 genes 

1 P12-

P21 

Yes No Yes No 

Table 2.6 Mouse OIR transcriptome studies 
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Study Method Sample size Disease Raw data 

available 

Modulated 

gene list 

available 

Ishikawa56 Microarray 3 control, 

6 DR 

DR Yes Yes 

Lam110 RNA-seq 4 control, 

8 DR 

DR No No 

Newman61 Microarray 31 control, 

37 AMD 

AMD Yes Yes 

Hunter144 Microarray 11 control, 

10 AMD 

AMD No Yes, but 

discovery 

with mixed 

samples 

Radeke6 Microarray 10 control, 

5 AMD 

AMD No Yes, but 

between 

macular and 

extramacular 

samples 

Whitmore62 Microarray 9 control, 

9 AMD 

AMD Yes No 

Table 2.7 Human retinal disease transcriptome studies 

Comparative analysis limited to Ishikawa, Lam, Newman, and Whitmore studies due to 

availability of raw data (Ishikawa, Newman, and Whitmore) and GO biological processes 

enriched using genes with statistically significant change (Lam). Hunter study is excluded 

due to both a lack of raw data and mixing of samples from different AMD stages and tissue 

specimens. Radeke study is excluded as it did not study expression difference between AMD 

and control cohorts.  
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Gene Ontology Selected 

Gene 

Frequency 

Total 

Frequency 

Percent 

of Total 

Biological process 61 20952 0.3 

Developmental process 61 5717 1.1 

Anatomical structure development 61 5271 1.2 

Multicellular organism development 61 4846 1.3 

System development 61 4354 1.4 

Anatomical structure morphogenesis 61 2409 2.5 

Anatomical structure formation involved in 

morphogenesis 

61 1050 5.8 

Circulatory system development 61 1030 5.9 

Cardiovascular system development 61 699 8.7 

Vasculature development 61 687 8.9 

Blood vessel development 61 663 9.2 

Blood vessel morphogenesis 61 568 10.7 

Angiogenesis 61 476 12.8 

Cellular process 59 16081 0.4 

Regulation of cellular process 55 11255 0.5 

Response to stimulus 52 9183 0.6 

Regulation of developmental process 45 2380 1.9 

Localization 44 5544 0.8 

Cell communication 43 6871 0.6 

Signaling 43 6807 0.6 

Cell differentiation 42 3789 1.1 

Metabolic process 41 11008 0.4 

Organic substance metabolic process 41 10448 0.4 

Nitrogen compound metabolic process 41 9491 0.4 

Signal transduction 41 6394 0.6 

Cellular metabolic process 38 9910 0.4 

Regulation of metabolic process 35 6173 0.6 
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Regulation of cellular metabolic process 35 5833 0.6 

Regulation of nitrogen compound metabolic 

process 

35 5613 0.6 

Response to stress 35 3398 1 

Locomotion 35 1544 2.3 

Regulation of vasculature development 35 310 11.3 

Regulation of angiogenesis 35 283 12.4 

Negative regulation of cellular process 34 4487 0.8 

Animal organ development 34 3217 1.1 

Cell motility 34 1337 2.5 

Cell migration 34 1210 2.8 

Positive regulation of metabolic process 32 3111 1 

Cellular component organization 30 5578 0.5 

Response to organic substance 30 2990 1 

Positive regulation of cellular metabolic process 30 2903 1 

Cell proliferation 30 1866 1.6 

Cell surface receptor signaling pathway 29 2392 1.2 

Tissue development 29 1729 1.7 

Gene expression 28 5132 0.5 

Biosynthetic process 26 5708 0.5 

Protein metabolic process 26 5511 0.5 

Regulation of cellular component movement 26 852 3.1 

Regulation of locomotion 26 841 3.1 

Regulation of cell motility 26 773 3.4 

Regulation of cell migration 26 730 3.6 

Cellular biosynthetic process 25 5533 0.5 

Regulation of gene expression 25 4226 0.6 

Regulation of signaling 25 3046 0.8 

Regulation of cell communication 25 3023 0.8 

Regulation of signal transduction 25 2743 0.9 
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Regulation of cell proliferation 25 1541 1.6 

Organic cyclic compound metabolic process 24 5679 0.4 

Cellular aromatic compound metabolic process 24 5509 0.4 

Heterocycle metabolic process 24 5460 0.4 

Nucleobase-containing compound metabolic 

process 

24 5335 0.4 

Cell adhesion 24 1208 2 

Cellular macromolecule biosynthetic process 22 4672 0.5 

RNA metabolic process 22 4331 0.5 

RNA biosynthetic process 22 3526 0.6 

Transcription, DNA-templated 22 3489 0.6 

Regulation of molecular function 22 3060 0.7 

Immune system process 22 2343 0.9 

Positive regulation of vasculature 

development 

22 175 12.6 

Positive regulation of angiogenesis 22 157 14 

Cellular protein metabolic process 21 4730 0.4 

Regulation of cell differentiation 21 1660 1.3 

Regulation of RNA metabolic process 20 3611 0.6 

Regulation of RNA biosynthetic process 20 3445 0.6 

Regulation of nucleic acid-templated 

transcription 

20 3438 0.6 

Regulation of transcription, DNA-templated 20 3421 0.6 

Regulation of protein metabolic process 20 2630 0.8 

Cellular response to organic substance 20 2175 0.9 

Epithelium development 20 1057 1.9 

Table 2.8 Top GO biological process annotations associated with the 61 

“angiogenesis” genes with larger fold change than Vegfa in OIR + Vehicle vs. RA + 

Vehicle 

GO biological processes associated with the 61 “angiogenesis” genes with larger fold change 

than Vegfa in OIR + Vehicle vs. RA + Vehicle comparison are identified and those processes 

with at least 20 genes are displayed in the table. “Selected gene frequency” represents the 

number of selected “angiogenesis” genes associated with each process. “Total frequency” 
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represents the total number of mouse genes associated with each process. “Percent of total” 

is percentage of selected gene frequency out of total frequency. Processes with percentage 

less than 1.5% are shaded gray, between 1.5% to 10% are italicized and more than 10% are 

bolded.  

 

 

 

 

 

 

KEGG Pathway Number of 

genes in 

pathway 

Subset of 61 “angiogenesis” genes with 

larger fold change than Vegfa that are 

found in pathway 

VEGF signaling pathway 58 None 

Calcium signaling 

pathway 

183 Ednra; Tbxa2r 

PI3K-Akt signaling 

pathway 

356 Fgf2; Angpt2; Epha2; Pgf; Itgb3; Syk; 

Itga5; Thbs2; Col4a1; Col4a2; Fn1 

MAPK signaling 

pathway 

294 Fgf2; Angpt2; Epha2; Pgf 

Focal adhesion 199 Pgf; Itgb3; Itga5; Thbs2; Col4a1; Col4a2; 

Fn1 

Arachidonic acid 

metabolism 

89 None 

Table 2.9 Subset of 61 “angiogenesis” genes with larger fold change than Vegfa that 

are found in pathways down-stream of KEGG “VEGF signaling pathway” 

None of the 61 angiogenesis genes with larger fold change than Vegfa in OIR + Vehicle vs. 

RA + Vehicle comparison are part of the KEGG “VEGF signaling pathway”. The number 

of selected “angiogenesis” genes that are part of the five pathways downstream of “VEGF 

signaling pathway” are limited.  
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KEGG pathway P-value Adjusted P-

value 

General 

function 

mmu04620 Toll-like receptor 

signaling pathway 

5.48E-05 0.001645 Immune 

mmu04621 NOD-like receptor 

signaling pathway 

5.48E-05 0.001645 Immune 

mmu04622 RIG-I-like receptor 

signaling pathway 

0.001454 0.016353 Immune 

mmu04623 Cytosolic DNA-sensing 

pathway 

0.001454 0.016353 Immune 

mmu04660 T cell receptor signaling 

pathway 

0.001635 0.016353 Immune 

mmu04662 B cell receptor signaling 

pathway 

0.001635 0.016353 Immune 

mmu04625 C-type lectin receptor 

signaling pathway 

0.003258 0.024432 Immune 

mmu04657 IL-17 signaling pathway 0.002905 0.024432 Immune 

mmu04010 MAPK signaling pathway 0.003874 0.025825 Proliferation, 

migration 

mmu04392 Hippo signaling pathway - 

multiple species 

0.005866 0.035198 Proliferation, 

apoptosis 

mmu04014 Ras signaling pathway 0.010398 0.045432 Proliferation, 

migration 

mmu04210 Apoptosis 0.010398 0.045432 Apoptosis 

mmu04380 Osteoclast differentiation 0.010601 0.045432 Immune 

mmu04668 TNF signaling pathway 0.009687 0.045432 Immune 

Table 2.10 KEGG pathways enriched in top 50 TF motifs involved in hypoxia 

TFs in the top 50 TF motif groups enriched with OIR + Vehicle vs. RA + Vehicle samples 

are used to test if any KEGG pathways that the TFs are associated with are observed more 

than by random chance. 14 KEGG pathways are enriched in this analysis, with eight that are 

also enriched by KEGG pathway enrichment of hypoxia-modulated genes using goseq and 

GAGE (in bold). The enriched pathways function in immune system, cell proliferation, 

migration, and death.  
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Drug Adjusted P-value Characteristics 

Selumetinib 5.38E-12 MAPK kinase inhibitor, cancer drug 

Radicicol 2.15E-10 HSP90 inhibitor, cancer drug 

Dacomitinib 2.17E-10 EGFR inhibitor, cancer drug 

NVP-AUY922 6.00E-10 HSP90 inhibitor, cancer drug 

Ruxolitinib 7.63E-10 JAK inhibitor, cancer drug 

Geldanamycin 1.06E-09 HSP90 inhibitor, cancer drug 

Sunitinib 4.84E-09 Receptor tyrosine kinase inhibitor, cancer drug 

BMS-345541 7.07E-09 Anti-inflammatory compound 

BMS-387032 8.51E-09 CDK2 inhibitor, cell cycle inhibitor 

QL-XII-47 1.22E-08 BTK inhibitor, cancer drug 

PHA-767491 1.43E-08 Cdc7/CDK9 inhibitor, cell cycle inhibitor 

NVP-TAE684 1.46E-08 NPM-ALK inhibitor, cancer drug 

Vorinostat 1.65E-08 HDAC inhibitor, cancer drug 

PD-184352 1.65E-08 MAPKK inhibitor, cancer drug 

Dovitinib 2.28E-08 FGFR3 inhibitor, cancer drug 

TWS-119 2.60E-08 WNT pathway activator 

Canertinib 2.73E-08 Tyrosine kinase inhibitor, cancer drug 

Pelitinib 2.85E-08 EGFR inhibitor, cancer drug 

PF-477736 2.85E-08 CHK1 inhibitor, cancer drug 

MK-1775 3.02E-08 Wee1 inhibitor, cell cycle inhibitor 

Table 2.11 Top 20 LINCS L1000 studied drugs that show a transcriptome profile in 

vitro that correlates with that of ALG-1001 in vivo in OIR mouse 

15/20 are cancer drugs with 8 of them being tyrosine kinase inhibitors (in bold). The 

remaining 5 drugs include three cell cycle inhibitors, an anti-inflammatory compound and a 

WNT pathway activator.  
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Drug Adjusted 

P-value 

Characteristics Lower 

choleste

rol1 

Target 

CNS2 

Anti-

inflam

matory3 

Amiodarone 0.000554 Treat heart rhythm 

problems 

   

Simvastatin 0.000923 Statin drug, reduce 

cholesterol production 

X 
  

Fluphenazine 0.001072 Anti-psychotic drug, 

block dopaminergic 

receptors 

 X 
 

Fluoxetine 0.001106 Anti-depressant, serotonin 

reuptake inhibitor 

 
X 

 

Fludrocortiso

ne Acetate 

0.00152 Glucocorticoid 

replacement 

   

Fenofibrate 0.00152 Reduce cholesterol level X 
  

Dexamethaso

ne 

0.001748 Corticosteroid, anti-

inflammatory 

  
X 

Droperidol 0.002001 Anti-dopaminergic drug 
 

X 
 

Cerivastatin 0.002077 Reduce cholesterol level X 
  

Beta-

Estradiol 

0.002077 Estrogen steroid hormone 
   

Sodium 

Nitroprusside 

0.002077 Reduce blood pressure 
   

Dexfenflura

mine 

0.0023 Increase extracellular 

serotonin 

 
X 

 

Amoxapine 0.002403 anti-depressant 
 

X 
 

Lovastatin 0.002403 Reduce cholesterol level X 
  

Carvedilol 0.002487 Reduce blood pressure 
   

Fluvastatin 0.002487 Statin drug, reduce 

cholesterol production 

X 
  

Rosiglitazone 0.002892 anti-diabetic drug, 

increase insulin response 

   

Myrtecaine 0.004 Not available 
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Buspirone 0.004 Anti-depressant drug 
 

X 
 

Indomethacin 0.004 Anti-inflammatory drug 
  

X 

Table 2.12 Top 20 DrugMatrix drugs that show a transcriptome profile in rat that 

correlates with that of ALG-1001 in OIR mouse  

Drugs that function in lower cholesterol1, that target CNS2, or have anti-inflammatory 

property3 are labeled by cross.   
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2.8 Appendix 

Appendix 2.8.1 OIR retina transcriptome at P17 compared to prior literature 

In the past, several groups have used high-throughput transcriptome methods (RNA-seq and 

microarray) to study biology of OIR retina, with limited discovery of modulated genes and 

biological processes (Table 2.6). In contrast to these earlier studies, the present study 

improved in three key aspects. First, the we measured the transcriptome at height of hypoxia-

induced angiogenesis (postnatal day P17)97, rather than at onset of hypoxia (P12141, P12.558, 

P13142, and P14143). This approach allow us to measure the full effect of retinal hypoxia and 

avoid inadvertently characterizing effects of hyperoxia, which is still measurable at P12.558 

and possibly later. Second, we included measurements of the effect of both hypoxia and a 

therapeutic agent (Hoppe et al.141 only examined effect of two drugs in OIR model, while 

Ishikawa et al.58, Yang et al.142, and Oubaha et al.143 only evaluated OIR transcriptome). 

Finally, we employed a relatively large number of replicates (n=11-12) to discern the 

transcriptome response due to retinal hypoxia (in contrast to the small number of replicates 

previously used: 3 in Ishikawa et al.58, 3 in Yang et al.142, and 2 in Oubaha et al.143). The 

large sample size allows us to detect significantly more hypoxia-regulated genes with higher 

confidence (as sample size increases, Figure S2.8A shows more genes discovered, Figure 

S2.8B-C show higher confidence in the discovery) and enables us to perform in-depth 

analyses using GO biological process, KEGG pathway and TF enrichments that are either 

not performed before58,143 or are of limited capability142 in previous studies.  
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Qualitatively, prior studies of OIR retina at P12.558 and P13142 found consistent evidence of 

elevated angiogenesis and inflammatory transcript levels. In Ishikawa et al. (moderately high 

transcriptome correlation, Figure 2.17A)58, a significant number of 53 elevated genes 

identified at P12.5 are associated with vasculogenesis and inflammation.  Similarly, at P13, 

Yang et al.142 discovered 62 elevated genes that enriched 13 GO biological processes, 

including “angiogenesis” and “immune response”. Intriguing, all of these processes are 

represented in our study except “glycolysis” and “glucose metabolic process”, which are 

known to be activated during hypoxia response145. Further analysis suggest activation of 

glycolysis may be transient and has already receded at P17: out of the six glycolysis genes 

found to be elevated at P13, only three are still elevated at P17 and with much smaller fold 

changes compared to at P13. 

Among the prior transcriptome studies of OIR retina, none of them reported a suppression 

of neural genes and only Oubaha et al.143 reported elevated levels of apoptosis and 

inflammation genes at P14, which are also observed at P17 in our dataset (“apoptosis” and 

inflammation KEGG pathways such as “NF-kB signaling”, Figure 2.6). The lack of 

evidence for activation of cell death at the early time points (P12.5, P13) and their presence 

at the later time points (P14, P17) suggest transcriptome signature of cell death may not be 

detectable until hypoxia-activated physiological responses are fully established post-P13.  

Comparative analysis also suggest VEGF-mediated blood vessel growth may be in the 

decline at P17. First, “VEGF signaling pathway” was not enriched with elevated genes at 

P17 (adjusted p-value=0.609, 15/50 pathway genes elevated). Next, we looked at a time 
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series (P12 to P21) qPCR study97 that analyzed gene levels of 94 genes (including Vegfa) 

between OIR and control retina (Pearson’s r=0.91 with exclusion of outlier Nrp2 gene, 

Figure 2.18B). In the time course study, Vegfa level gradually increased and reached peak 

level at P16 before falling 48.9% on P17, followed by further decrease on subsequent days. 

Intriguingly, Tgfb1, a blood vessel maturation146 (and possible angiogenesis inhibitor147) 

gene, was also found to be co-activated in OIR mice and reached peak level one day later on 

P17 (42.7% increase from P16) before a gradual decline. Collectively, these evidence suggest 

the molecular activation of blood vessel formation is likely already in decline at P17 with the 

tissue transitioning to post-angiogenesis vessel maturation148.  

Clearly, hypoxia-response in the OIR model is dynamic with transient elevation of 

glycolysis, angiogenesis and inflammation genes (supported by Sato et al.) and delayed signs 

of apoptosis and neural stress. While the Sato el al. study was able to capture some of these 

transcriptome dynamics by focusing on 94 genes, future studies should explore multiple time 

points in a single high-throughput study to fully capture the transient changes in the retinal 

hypoxia response. 

Appendix 2.8.2 Validation of tissue composition analysis 

To validate retinal cell marker-based tissue composition analysis (Figure 2.19, 2.20), we 

employ two well cited scRNA-seq studies of mouse brain (cortex and hippocampus)51 and 

mouse heart and immune cells52. First, we analyzed markers derived from the brain, as both 

the brain and retina are formed from the same neural tissue and presumably share similar cell 
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types149. From the brain study, we obtained markers associated with nine major brain cell 

types (3/330 or <1% overlap with retinal cell markers), which showed endothelial cell and 

microglia cell numbers are likely expanded in the OIR mice (Figure 2.21, pericyte is not 

annotated in the brain study). Additionally, >80% of interneuron (related to amacrine cells 

in the retina150) markers showed negative fold change in the OIR mice, providing additional 

evidence that selected neuronal cells are depleted in the OIR retina.  

Similarly, with the heart and immune cell markers (5/96 or 5.2% overlap with retinal cell 

markers, none are of the same cell type), we saw >80% of endothelial cell, macrophages 

(related to microglia in the retina) and pericytes markers have positive fold change in OIR 

mice (Figure 2.22). Not surprisingly, there wasn’t any cell types with a large number of 

negative fold change markers, as no neuronal cells was annotated in this data set. Altogether, 

based on mostly orthogonal gene sets derived from non-retinal tissues, these results show 

consistent evidence of vessel and immune-related cell expansion and neuronal cell depletion 

in the OIR retina.  

Appendix 2.8.3 Suppressed genes in DR retina compare to OIR retina 

In this study, we found suppressed genes in hypoxia response are over-represented with ones 

associated with neural system processes, indicative of a detectable disruption in normal 

neural function and development. Similarly, in human retinal diseases that occur much later 

in life, there are also clear signs of neural damage from hypoxia, neovascularization and 

inflammation119. Supporting these observations, we performed a GO biological process 
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enrichment of suppressed genes in human DR tissue56 and found neural system processes 

such as “ion transport” and “nervous system development” are enriched (8/36 GO biological 

processes enriched overlap with those enriched with suppressed genes in hypoxia response, 

p-value=3.00e-05). However, the DR study also has major caveat – it compared non-neural 

fibrovascular membrane tissue collected from DR patients to neural retina collected from 

normal donors. Since non-neural fibrovascular membrane presumptively contains fewer cells 

of neural origin, this could also explain the lower level of neural mRNA in the DR samples. 

Appendix 2.8.4 Correlation between OIR and human disease retina among subset of 

hypoxia-modulated genes 

We set out to find if any biological process-specific transcriptome features of hypoxia 

response in OIR mice are correlated with the human retinal diseases. In particular, we 

individually analyzed fold change correlation of genes among “immune system process”, 

“angiogenesis”, “cell death”, “metabolic process”, and “nervous system development” GO 

biological processes, all of which are enriched in GO biological process enrichment except 

“metabolic process” (included to encompass 20 other enriched metabolism-related 

processes). 

In this analysis (Table 2.5), we found when limited to “immune system process” and “cell 

death” genes, correlations generally improved across the different disease cohorts, 

demonstrating OIR mouse may be a good model for these disease processes. Next, 

correlation with “nervous system development” genes improved within the AMD cohorts, 

but slightly dropped with DR (still relatively high at r=0.2999). This observation suggest the 
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modulated neural system in OIR retina are able to capture some signatures of the neural retina 

disruption in AMD118 and DR119. With “angiogenesis” genes, correlation reaches the highest 

level in our analysis to r=0.4073 between OIR mice and DR, but dropped for most of the 

AMD cohorts, including those that develop angiogenesis. Here, the relatively high 

correlation with DR shows the OIR model is useful to model angiogenesis in these patients, 

but the low correlation to AMD cohorts, especially those that develop neovascularization, is 

surprising (perhaps due to differences in angiogenesis between the two diseases, Figure 

2.23). As a control, we also performed correlation analyses with non-statistically significant 

genes in hypoxia response, which produced near zero correlations across all disease cohorts 

and served as a validation of this analysis approach. 

Appendix 2.8.5 ALG-1001 affects endothelial cell migration and adhesion to ECM 

ALG-1001’s effect on the transcriptome of OIR retina is largely in agreement with in vitro 

HUVEC cell culture studies (Chapter 3) and is further supported by endothelial cell 

adhesion and migration studies (Campochiaro group, JHU). First, in HUVECs treated with 

ALG-1001 under hypoxia condition, a statistically significant number of angiogenesis genes 

were selectively down-regulated. Additional analysis of ALG-1001-modulated genes in vitro 

found strong evidence of selective down-regulation of genes that encode proteins that 

function in the ECM and in modulating cell adhesion. Of these, we found fibronectin, two 

collagens, two laminin, and four integrin subunit genes are down regulated after drug 

treatment.  
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Transcriptome suppression of cell adhesion and migration genes manifested in detectable 

disruption of these cellular functions in in vitro endothelial cell studies. In these experiments, 

our colleagues at the Campochiaro group found ALG-1001 specifically inhibited endothelial 

cell migration on fibronectin-coated and less strongly on vitronectin-coated surfaces 

(personal communication). Additionally, ALG-1001 treatment weakly inhibited endothelial 

adhesion to both fibronectin-coated and vitronectin-coated surfaces.  

Appendix 2.8.6 Comparison of ALG-1001 transcriptome profile to anti-VEGF treatment 

In our search, we found nearly all of the transcriptome studies of anti-VEGF drugs are 

investigation of Bevacizumab in context of cancer treatments, which are not directly 

comparable to ocular diseases due to increased complexity of cancer heterogeneity and 

pathophysiology. There is one recent study60 that tested anti-VEGF antibody and a control 

anti-IgG antibody in a rat model that develops trauma-induced angiogenesis and 

inflammation in the cornea. While analyzing the rat cornea dataset, we were surprised to see 

that after 2 days of treatment, no gene level is changed by anti-VEGF antibody compare to 

anti-IgG antibody (this observation was also reported by the original authors). Interestingly, 

the authors also noted that the effect of anti-VEGF antibody is quite modest in these models, 

where drug treatment was found to reduce neovascularization by less than 15-20%.  

Next, we compared the fold changes measured in the rat cornea study with the present study, 

limited to the genes modulated by ALG-1001 in the OIR mice. In this analysis, we found 

almost no correlation between the two datasets (Pearson’s r=-0.0324), but interestingly, 74% 
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of genes that have negative fold change after ALG-1001 treatment also have negative fold 

change after anti-VEGF treatment in rat cornea, indicating some level of consistency in the 

drug-induced transcriptome change (Figure S2.11). On the other hand, whereas ALG-1001 

mainly suppressed transcript level, there are non-statistically significant evidence that 

suggest anti-VEGF treatment appears to elevate gene level more than gene suppression (1298 

probes “up” and 1040 probes “down” with p-value<0.05 by anti-VEGF antibody, compared 

to 566 genes “up” and 1036 genes “down” with p-value<0.05 by ALG-1001 in OIR mice).  

Appendix 2.8.7 TF groups responsible for effect of ALG-1001 

ISMARA was used to predict TFs that may be involved in ALG-1001 associated 

transcriptome changes in OIR mice. In this analysis, no TF was enriched with Z-score>1.0, 

which is typically used as the statistical significance cutoff (Table 2.3). While weakly 

supported by evidence, we set out to evaluate the top 50 TF groups identified with the 

understanding that the results are not statistically sound. In the top 50 TF groups, we 

identified at least 12 TF groups with known function related to the cell proliferation, 

angiogenesis, hypoxia-response, and inflammatory processes (labeled in Figure 2.15). Out 

of the 12 identified, 9 have suppressed target gene level, consistent with edgeR that shows 

majority of drug-induced transcriptome changes are suppressed. In addition, 8/12 of these 

TF motifs are ranked very high on the enrichment list, representing more than half of the top 

15 TF groups enriched. 
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We also compared the top 50 TF motifs identified in both hypoxia and ALG-1001-modulated 

transcriptomes and find 11 TF groups that are on both lists (bold TFs in Tables 2.2 and 2.3). 

For 8 of these 11 TF groups, the direction of target gene level is reversed by ALG-1001 

treatment and will be the focus of the following discussion. Notably, the 8 TF groups include 

Fos86, Jun86 and several members of the ETS protein family151 (Erg, Etv1 and Etv5) that are 

well known regulator of cell proliferation and angiogenesis (Fos and Jun are down-stream of 

VEGF signaling152). In addition, the other TFs also play important function in various aspects 

of the hypoxia response: Tead1 (regulates cell proliferation and migration153), Tcf7l1 

(regulates cell cycle progression154), Srf (stimulates cell proliferation and differentiation155), 

and Nrf1 (regulates metabolism and cell growth156). Altogether, TF analysis provides 

additional evidence that ALG-1001 treatment in OIR mice moderated some of the hypoxia-

initiated transcriptional changes.  

Appendix 2.8.8 Limitations of the L1000 study 

There are two important caveats with the L1000 study: a) drug exposure were done in human 

cancer cell lines, and b) inference of expression in >90% of genes. First, the LINCS L1000 

transcriptome study was performed with human cancer cell lines, instead of with animal 

model or human primary cells. In our studies, there was a large gap in drug-induced 

transcriptome change between animal and cell culture studies (for example, 93.8% of ALG-

1001-modulated genes in OIR mice were suppressed, but only 48.8% in HUVEC and 53.4% 

in PBMC, Chapter 3). Thus, the results between the present in vivo study and the in vitro 

cancer cell study may not be directly comparable. A second major limitation of the LINCS 
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L1000 study is it measured the expression of 978 genes and then used their expression profile 

to infer the expression of 9196 additional genes, all of which were used to generate the list 

of compound-regulated genes. Since gene expression was not directly measured for a 

majority of the genes, analysis performed with the LINCS L1000 dataset should be 

interpreted with caution.  

Appendix 2.8.9 Literature survey shows transcriptome studies tend to use diseased model, 

but not control animals for drug research 

A small-scale survey of the recent literature on transcriptome study of ocular drug treatment 

shows our study of combined control and diseased animals is quite unconventional. Of the 

four studies that we reviewed, all of them probed the drug effect in diseased models, but not 

in control animals141,157–159. Similarly, a broader survey outside the ocular field arrived at the 

same observation160–162. While limited in scope, this survey shows current transcriptome 

studies of therapeutics tend to mainly focus on identifying the drug effect in diseased models. 

In these studies, high cost of high-throughput approaches may be one explanation for the 

lack of research in control animals. However, as sequencing cost continues to drop163, it 

becomes desirable to study the drug-induced transcriptome change not only in diseased 

model to identify therapeutic effects, but also in control animals to assess the drug’s safety 

profile164.  

Appendix 2.8.10 Comparison of ALG-1001 transcriptome profile with DrugMatrix 

compounds 
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Compared to the L1000 dataset, the DrugMatrix study is significantly smaller in scale, yet it 

measured the effect of drugs in in vivo rat animals. Among the drugs included in the 

DrugMatrix dataset, 89 compounds shared transcriptome profile with ALG-1001 with 

statistical significance. Of those, we focused on characterizing the top 20 hits (Table 2.12) 

through a manual search of their function. Unlike the L1000 study, there wasn’t an 

abundance of anti-cancer drugs in the top compounds. Instead, there are five cholesterol 

lowering drug, six central nervous system (CNS)-targeting drugs, two anti-inflammatory 

drugs and others of miscellaneous functions. Importantly, most of the enriched drugs’ 

mechanism of action remains unknown (several developed before era of molecular biology), 

reducing their utility in uncovering ALG-1001’s mechanism of action.  

Appendix 2.8.11 Enrichment of TFs involved in hypoxia response 

When ISMARA was applied to study OIR + Vehicle vs. RA + Vehicle, 104 motif groups are 

enriched with high confidence (defined as ones with Z-score>1.0, top 50 shown in Table 

2.2). To make interpretation feasible, analysis was limited to the top 50 enriched TF groups. 

Through a manual review of their biological function, we found many of them are 

involvement in cell proliferation, angiogenesis, inflammation, metabolism, hypoxia-

response and neuronal development (labeled in Figure 2.11, activity profile shown in Figure 

2.12-13). For an objective analysis, we employed the KEGG pathway database to identify 

pathways that contain one or more TFs in the top 50 enriched TF groups. Of the 156 KEGG 

pathways that contain at least one TF tested by ISMARA, we found 60 pathways contained 

at least one TF in the top 50 enriched TF groups. Next, we tested whether any of these 60 
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KEGG pathways are over-represented in the top 50 TF groups than one would expect by 

random chance and identified 14 KEGG pathways with statistical significance (Table 2.10). 

Of the 14 enriched-KEGG pathways, 8 (Table 2.10, bolded) are also enriched by goseq or 

GAGE with elevated genes in OIR mice, which serves as a validation of this line of TF 

functional analysis. Additionally, all 14 TF-enriched KEGG pathways are strikingly relevant 

to the immune system, apoptosis, and cell proliferation and migration processes, 

demonstrating the active involvement of these pathways and their associated TFs in 

regulating retinal hypoxia response. 

While many of the top TF groups are relevant to hypoxia response, it is worth noting that 

over half of them (27/50, groups not labeled in Figure 2.11 and shown in Table 2.2) are 

either not well established to regulate a putative hypoxia process or are uncharacterized 

altogether. In the top 20 TF groups alone, there are 4 groups where we did not find a 

connection with hypoxia: regulators of estrogen response (Esrra and Esrrb), iron homeostasis 

(Spic) and two mostly uncharacterized putative regulators: Nhlh1 and Hsfy2. These 

observations suggest the retinal transcriptome regulation in response to low oxygen is 

complex, with involvement of TFs of seemingly unrelated function or are uncharacterized 

altogether.  

Appendix 2.8.12 Limitations of OIR mouse model 

The extensive literature on OIR (over 15,000 publications since 1994) documents a robust 

animal model for DR23. While the OIR model has been useful in studying the development 
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of abnormal angiogenesis in the retina, it is important to bear in mind the differences between 

the mouse model and human diseases. First, in the mouse model, hypoxia and angiogenesis 

are transient events in a young animal, while the human retinal diseases are chronic and 

typically occur much later in life95. Second, in contrast to the rapidly activated and quickly 

resolved angiogenesis in the mouse OIR model23, human retinal diseases and their associated 

physiological changes develop over a long period of time and typically do not get better over 

time118,165. Furthermore, the pathophysiology of the human retinal diseases is highly complex 

and includes involvement of many contributing factors related to both environmental stress 

and genetics predisposition6,118. Thus, while the OIR model may capture hypoxia-activated 

retinal angiogenesis and other processes to a certain extent, the human diseases are driven by 

additional factors that are not part of the mouse model. As a result, it is important to view 

our findings in the context of the limited ability of the mouse OIR model to capture the 

characteristics of human retinal diseases.  

Appendix 2.8.13 Fold change of hypoxia-modulated genes after ALG-1001 treatment 

To further investigate ALG-1001’s hypoxia-modulating effect, we broadened the analysis to 

all 6208 hypoxia-modulated genes at P17 and analyzed their corresponding fold change after 

ALG-1001 treatment. Intriguingly, we found a moderate and negative correlation between 

the two comparisons (r=-0.258, Figure S2.12). In particular, of the 3139 genes elevated, over 

67% (2117/3139) have negative fold-change after ALG-1001 injection (r=-0.471). Further 

investigation of the 2117 genes using GO biological process enrichment showed many of the 

angiogenesis and inflammatory processes (Figure S2.13A) previously enriched with 
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hypoxia-elevated genes in OIR mice, are recovered (877 out of 1157, Figure S2.13C). To 

confirm ALG-1001 specifically suppressed genes associated with hypoxia-elevated 

processes, we repeated for 1000 times a randomly selection of 2117 genes from the 3139 

hypoxia-elevated genes and calculated the number of processes that are enriched with the 

selected genes and that are also previously enriched with the 3139 genes. In this analysis, we 

see the 877 common processes observed in Figure S2.13C is highly unlikely by random 

chance, as only 1/1000 selections showed a stronger overlap (across all 1000 simulations: 

mean=661, standard deviation=72 overlapping processes). Additionally, a control 

enrichment with the remaining 1022 genes (elevated in OIR mice and with positive fold 

change with ALG-1001 treatment) only identified 77 of the previous 1157 enriched 

biological processes (GO biological processes in Figure S2.13B, overlap in Figure S2.13D).  
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2.9 Appendix Figures 

 

Figure S2.1 FastQC mean sequencing quality score 

The averaged sequencing quality (Phred score, generated by FastQC32) at each base in the 

reads generated for each sample. Each green line detonates a sample and the majority of them 

overlap for the majority of the entire 100 base pair region. Phred score shows good 

sequencing quality across all samples.  
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Figure S2.2 Tophat2 and HTSeq-count statistics 

Label in bar indicates sample condition and sample ID, 12 samples per condition. A. At least 

85% of reads are mapped by Tophat2 in each of 48 samples. B. HTSeq-count uniquely 

assigned (blue bar) between 72-76% of a sample’s aligned reads to a gene.   
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Figure S2.3 PCA of all samples reveals an outlier 

PCAAll with all 48 retinal samples. A. Percent of overall variance captured by the top 10 

principal components. B-C. Samples in PC1 and PC2, PC1 and PC3, respectively. PC_# is 

principal component number and percent of variance explained is shown in axis label. PC1All 

strongly separates OIR from RA samples. One RA + ALG-1001 sample appears to be an 

outlier on PC2All. 
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Figure S2.4 PCA with outlier pair removed and color indicating litter or gender 

PCANo-outlier with all samples except the outlier and its fellow eye sample. PC_# is principal 

component number. Percent of variance explained are shown in axis label. Color-code for 

sample-litter association (A-B) or sample-gender association (C-D). (A, C) Samples in PC1 

and PC2. (B, D) Samples in PC1 and PC3. PCANo-outlier shows weak separation based on 

litter, indicating presence of litter-specific effect, which is blocked out in edgeR analysis. No 

clear separation associated with gender after exclusion of gender-specific genes (see 

Methods). 
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Figure S2.5 PCA with OIR samples 

PCAOIR with 24 OIR samples. A. Percent of overall variance captured by the top 10 principal 

components. B-C. Samples in PC1 and PC2, PC1 and PC3, respectively. PC_# is principal 

component # and percent of variance explained is shown in axis label. Symbols indicate 

condition while colors indicate animal. 
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Figure S2.6 PCA with RA samples 

PCARA with 22 RA samples excluding outlier pair (Mouse 10). A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC1 and PC2, PC1 and PC3, 

respectively. PC_# is principal component # and percent of variance explained is shown in 

axis label. Symbols indicate condition while colors indicate animal. 
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Figure S2.7 Number of modulated genes in each edgeR comparison 

The number of genes with statistically significant change (false discovery rate (FDR)<0.05) 

in each of the three edgeR comparisons are plotted as bar graph. The number of genes in each 

bar is shown above the bar. Log2FC is log2-fold-change.  
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Figure S2.8 Sample size analysis with ERSSA 

ERSSA is used to determine if sufficient sample size has been used to maximize discovery of 

genes with statistically significant change in the comparison of OIR + Vehicle vs. RA + 

Vehicle. A. Plot shows the measured number of hypoxia-modulated gene at each replicate 

number with 50 combinations per sample size and |log2-fold-change| cut off=0.5. 

Subsampling results show improved discovery of modulated genes as sample size increases 

up to the full dataset. B. Plot shows number of modulated genes found in all subsamples at 

each replicate number. As sample size increases, the consensus improves among the 

subsamples, indicating more reliable discovery. C. Plot shows individual and averaged false 

positive rate (FPR) and true positive rate (TPR) among the subsamples with full dataset 

discovery as the ground truth. TPR tend to increase, while FPR tend to decrease as sample 

size increases.   
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Figure S2.9 Cellular components and molecular functions enriched with 198 genes 

suppressed by ALG-1001 in OIR mice 

Suppressed genes after ALG-1001 treatment OIR mice relative to vehicle treated control are 

submitted for GO cellular component (A) and molecular function (B) enrichment with results 

visualized using REVIGO. P-value is REVIGO-derived GO enrichment p-value. Selected 

biologically relevant processes are labeled.  
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Figure S2.10 STRING connection map of 61 selected “angiogenesis” genes  

Selected “angiogenesis” genes have larger fold change than Vegfa in OIR mice (OIR + 

Vehicle vs. RA + Vehicle). The 61 genes are submitted to STRING to visualize connection 

between gene-coded proteins. STRING connection map shows the 61 “angiogenesis” genes 

are closely connected. 
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Figure S2.11 Fold change comparison with anti-VEGF drug in rat cornea 

Log2-fold-change of modulated genes after ALG-1001 treatment in OIR mice relative to 

vehicle treated fellow control are plotted on the X-axis. The same gene’s log2-fold-change 

after anti-VEGF drug treatment in rat cornea trauma study is plotted on the Y-axis. Dashed 

blue lines indicate Y=0 and X=0. Pearson’s correlation coefficient is indicated in the plot 

title. While little to no correlation is detected between the datasets, 74% of genes suppressed 

by ALG-1001 also have negative fold change in anti-VEGF treated animals. 
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Figure S2.12 Fold change of hypoxia-response genes after ALG-1001 treatment 

Each dot represents a gene modulated in OIR + Vehicle vs. RA + Vehicle comparison, with 

the gene’s log2-fold-change plotted on the x-axis. The same gene’s fold change after ALG-

1001 treatment in OIR mice relative to vehicle control is plotted on the y-axis. Plot window 

is limited to the (-1, 1) range on both axes. Pearson’s r value is measured as -0.258. The plot 

can be divided into four quadrants, as indicated by the blue dashed lines with 1520 genes in 

the top left, 1507 in the bottom left, 1022 in the top right, and 2117 in the bottom right 

quadrant. Note the numbers do not add up to the number of modulated genes in OIR + 

Vehicle vs. RA + Vehicle, because some genes failed to pass TPM cutoff in OIR + ALG-

1001 vs. OIR + Vehicle comparison.   
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Figure S2.13 GO biological process enrichment of elevated genes in OIR mice 

Among hypoxia-elevated genes (OIR + Vehicle vs. RA + Vehicle), 2177 genes with negative 

fold change (A) and 1022 genes with positive fold change (B) after ALG-1001 treatment 

(OIR + ALG-1001 vs. OIR + Vehicle) are submitted for GO biological process enrichment 

with results visualized using REVIGO. P-value is REVIGO-derived GO enrichment p-value. 

Selected biologically relevant processes are labeled. C-D. Overlap of enriched processes in 

(A or B, respectively) with those enriched with all 3141 hypoxia-elevated genes.  
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Chapter 3.  Transcriptome response to ALG-1001 treatment in 

human endothelial and immune cell cultures 

 

3.1 Introduction 

Degenerative diseases of the retina affect millions of Americans, who suffer from vision loss 

and even blindness1–5. The current standard of care uses antibodies to disrupt the Vascular 

Endothelial Growth Factor (VEGF) pathway to suppress the disease-worsening retinal 

neovascularization5. However, the current treatment has many shortcomings, raising the need 

to develop a second line of effective therapeutic (see Chapter 1.1 and 2.1 for more detail)6,7. 

To address these unmet needs, ALG-1001 was developed by Allegro Ophthalmics, LLC. and 

is currently undergoing clinical testing with promising results8. In multiple phase I and II 

clinical trials, patients who received intraocular injections of the drug experienced favorable 

vision improvement with no drug-related adverse effect to date9,10. Despite its success in the 

clinical trials, the precise mechanism of action of ALG-1001 remains unclear.  

In this study, we employed two human primary cell culture models to study the transcriptome 

regulation driven by ALG-1001 treatment. First, human umbilical vein endothelial cells 

(HUVECs) are used as a model for vascular endothelial cells, which play a primary role 

during neovascularization through their active proliferation, migration and tube formation11. 

Retinal neovascularization has long been associated with retinal disease progression12,13 and 

previous in vivo mouse studies have showed ALG-1001 has anti-angiogenic property (see 
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Chapter 1.2 and 2.1 for more detail). Second, human peripheral blood mononuclear cells 

(PBMCs) consisting of mostly lymphocytes (T cells, B cells and NK cells) and monotypes 

are used as a model for immune cells typically found in sustaining a pro-inflammatory state 

in the retinal diseases (see Chapter 1.1 for detail)14–16.  

For each cell culture model, we treated the cells with ALG-1001 and then captured the drug-

related transcriptome response using RNA-sequencing (RNA-seq)17. In addition, we exposed 

HUVECs to 3% O2 hypoxia to induce a disease-relevant growth environment and probed the 

gene expression with and without ALG-1001 co-treatment. By analyzing the expressed 

transcriptome, we identified the genes, biological processes and pathways regulated by ALG-

1001 in both models and by hypoxia in HUVECs. Using the available expression dataset, we 

also identified transcription factors (TFs) that may be involved in the expression regulation. 

Results from these analyses suggest ALG-1001 can specifically modulate angiogenesis 

genes in endothelial cells and inflammatory genes in immune cells, bringing us closer to a 

broader understanding of the drug’s therapeutic effect in retinal diseases.  

 

3.2 Materials and Methods 

Cell culture 

Pooled HUVECs at passage 2 (P2) were purchased from American Type Culture Collection 

(ATCC) and grown to P5-P6 for experiments. Cell cultures were kept in a 37˚C humidified 

incubator with pH controlled by 5% CO2 and media exchanged every two days. The cells 
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were grown in Vascular Cell Basal Medium (ATCC) with Endothelial Cell Growth Kit-BBE 

(ATCC) and Antibiotic Antimycotic Solution (Sigma-Aldrich) added according to the 

manufacturer’s instruction. For hypoxia treatment, the culture plates were moved to a 

hypoxia chamber (Biospherix) with O2 concentration set to 3% and placed inside the cell 

culture incubator. For ALG-1001 treatment, the peptide (CPC Scientific) was dissolved in 

water at a high concentration and then added to the growth media to the final concentration 

for cell exposure. 500µM of ALG-1001 was used for RNA-seq experiments while a 

concentration series of ALG-1001 was used for other assays. Equal volume of vehicle water 

was also added to control samples. After appropriate amount of hypoxia and drug exposure, 

the cells were collected and assayed (see Figure 3.1 for more details). 

For PBMC study, freshly collected PBMCs from a human donor were purchased from Zen-

Bio. Immediately upon arrival, the cells were washed with growth media (RPMI (Thermo 

Fisher) with 5% heat-inactivated fetal bovine serum (Thermo Fisher) and Antibiotic 

Antimycotic Solution) and stained with trypan blue to confirm >90% cell viability. Cells 

were then allowed to rest in 6-well, Ultra-low attachment plates (Corning) overnight in a 

37˚C humidified incubator with pH controlled by 5% CO2. The next morning, cells were 

treated for 8 hours with 100µM of ALG-1001 (peptide was first dissolved in water to a high 

concentration and then added to the growth media to the final treatment concentration). The 

same volume of vehicle water was added to control samples. At the end of 8 hours treatment 

period, both suspended and adherent cells were collected for RNA-seq sample preparation. 

Dead and live staining 
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Dead and live staining was performed with HUVECs after treatment with a concentration 

series of ALG-1001. Cells were cultured in 12-well plates (Falcon) and followed the 

treatment regime specified in Figure 3.1. After treatment, LIVE/DEAD 

Viability/Cytotoxicity Kit (Invitrogen) was used to simultaneously capture the status of both 

dead and live cells. At start of the assay, cells were washed once with Dulbecco's Phosphate-

Buffered Saline (PBS, Thermo Fisher) before incubation for 30 minutes at 37˚C in the media-

dye mixture. At end of incubation, cells were washed with PBS and imaged on a Zeiss 

Axiovert 25CFL microscope. FIJI software package was used to merge fluorescent signals 

into one image with red indicating dead cells and green indicating live cells. Phase contrast 

images were captured on the same microscopy system with bright-field illumination. A 10x 

Lysis Buffer (Thermo Scientific Pierce) was used as the lethal control and added to the wells 

to working concentration for 15 minute incubation before staining. 

WST-1 assay 

WST-1 assay was performed with HUVECs treated with a concentration series of ALG-

1001. Cells were cultured in 96-well plates (Falcon) and followed the treatment regime 

specified in Figure 3.1. At start of the assay, WST-1 cell proliferation reagent (Roche) was 

added to the cell culture media at the recommended working concentration for four hours 

incubation at 37˚C. At end of incubation, the assay intensity was measured on a Flexstation 

3 microplate reader (440nm and 690nm). The baseline absorption from the background and 

media was subtracted to isolate the contribution of the cells. All test well measurements were 

normalized as a percentage of the mean control well value. One-way ANOVA tests were 
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performed between control and treated cells in GraphPad Prism 7.00 with the statistical 

significance threshold set at p-value < 0.05.  

RNA-seq sample preparation 

For RNA-seq studies, HUVECs were cultured on 6-well plates (Falcon) and PBMCs on 6-

well, Ultra-low attachment plates (Corning). At end of treatment, HUVECs were washed 

once with PBS without calcium and magnesium (Thermo Fisher) and collected using 

Accutase (Stemcell Technologies). For PBMC, suspended cells were first collected and then 

combined with adherent cells isolated with the same technique as in HUVECs. Total RNA 

was extracted using RNeasy Mini Kit (Qiagen) and contaminating DNA removed using 

TURBO DNA-free kit (Thermo Fisher). RNA quality was measured using Bioanalyzer 

(Agilent Genomics); all samples were found to have at least 8.40 RNA integrity number. 

RNA-seq libraries were then prepared using NEBNext Ultra RNA Library Prep Kit for 

Illumina (New England Biolabs Inc.) and sequenced on the HiSeq 2500 (Illumina) to 

generate on average 12.5 million, single-end, 100 base pair reads per sample. 

RNA-seq analysis 

Quality control 

FASTQ files generated by RNA-seq were submitted to FastQC for quality control. All 

samples showed good sequencing quality and were submitted for read alignment. Alignment 

was performed using Tophat2 to the hg38 genome and transcriptome references with Bowtie 

2 sensitivity level set to very sensitive18. After read alignment, gene counts were quantified 



149 

 

using HTSeq-count using the intersection-strict model19. FastQC, tophat2, and HTSeq-count 

reports were visualized using multiQC software (Figures 3.2-3.7)20. All samples exhibited 

good alignment property except replicate 5 of the ALG-1001+hypoxia condition in HUVEC 

batch 1 study, and as a result this sample was removed from all subsequent analysis. 

Principle Component Analysis (PCA) 

PCA was used to visualize the high-dimensional datasets. To eliminate null values, all counts 

in HTSeq-count-derived count table were increased by one. Transcript per Million (TPM) 

values were then calculated to correct for varying sequencing depth and gene length21. To 

reduce sensitivity to the uncertainty in TPM of low-expressing genes, PCA excluded genes 

for which the TPM averaged over all samples in the analysis was < 5. Finally, natural log of 

TPM values were used as input for PCA. For HUVEC dataset, PCA was first performed 

individually for each batch experiment. Based on the PCA results (Figure 3.10-3.12), several 

outliers were detected (based on separation from other biological replicates) and 

subsequently removed from further analysis: batch 1’s control replicates 3, ALG-1001 

replicates 5 and 6, batch 2’s ALG-1001 replicates 6 and hypoxia replicates 6, and batch 3’s 

ALG-1001+hypoxia replicates 6. PCA was performed again with all HUVEC samples 

excluding the outliers. For the PBMC dataset, PCA did not detect any obvious outliers 

(Figure 3.33). 

EdgeR differential expression comparison 
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In the analysis of differential expression, it is beneficial to exclude genes that are not 

expressed (they reduce statistical power for identifying differential expression). Here, we 

retained expressed genes, defined as those with Count per Million (CPM) > 1 in at least four 

HUVEC samples or six PBMC samples (the smallest number of biological replicates from 

the same condition and batch experiment). CPM is calculated to normalize for sequencing 

depth 21. Typically, around 13,000 genes remain after filtering. Next, GLM-based edgeR was 

used to perform the differential expression comparisons in the HUVEC study with batch 

variation removed from differential analysis22. Classic edgeR was used for the PBMC 

comparison. After statistical test, genes with False Discovery Rate (FDR) ≤ 0.05 were 

considered as differentially expressed (DE) and were further separated into up-regulated and 

down-regulated gene lists. 

ERSSA 

ERSSA was used to check whether the number of biological replicates used in the PBMC 

RNA-seq experiment is sufficient to identify the majority of DE genes23. Analysis was 

performed with absolute log2-fold-change cutoff at 0.5 with up to 50 subsamples generated 

at each replicate level. Since ERSSA currently does not support blocking, it was not used to 

test the HUVEC comparisons.  

DE gene heatmap of log2-fold-change values 

Heatmaps of TPM value were used to visualize the expression profile of DE genes. TPM 

values were first calculated from the unadjusted gene counts; then for each gene, TPM was 
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offset such that the minimum is zero and normalized so the maximum is one. DE genes were 

sorted row-wise from high to low edgeR-measured log2-fold-change values.  

Goseq enrichment analysis of DE gene list 

Functional analyses of the DE genes were performed with the goseq package, which 

mitigates gene length bias inherent to RNA-seq24. Enrichment was evaluated for both Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological 

pathways25,26. GO terms associated with genes were obtained from biomart while KEGG 

pathways were obtained from the KEGG REST server using the keggrest package27,28. 

Enrichment was performed separately for the up- and down-regulated gene lists. GO terms 

were considered enriched if FDR < 0.05. The GO enrichment results were visualized using 

REVIGO, a visualization tool that aggregates closely-related GO terms, with similarity level 

set to small and GO term size determined using the UniPort Homo Sapiens database29. For 

the particular cluster of GO terms that includes “angiogenesis” GO annotation, the cluster is 

represented by “angiogenesis” instead of the default selected GO annotation. Selected GO 

terms were labeled on the REVIGO plot based on our perception of their biological relevance. 

KEGG pathways were considered enriched if Benjamini-Hochberg adjusted p-value < 0.05 

(p-value displayed in bar plots). In addition, “Human Diseases” KEGG pathways were 

removed to improve clarity. 

Pathview 
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Pathview enables visualization of the fold changes across all expressed genes in any 

particular KEGG biological pathway30. EdgeR measured fold changes were used as input for 

Pathview visualization of selected pathways enriched in the PBMC analysis. For genes that 

share a common node on the KEGG pathway, the averaged fold change is displayed.  

ISMARA 

ISMARA was used to identify the transcription factors (TFs) that may be responsible for the 

observed profiles of gene expression across all comparisons31. Samples involved in specific 

comparisons were submitted together to ISMARA to obtain enrichment Z-scores. Analysis 

was focused on the top 50 most active motifs with Z-score > 1.0. Separately, all HUVEC 

samples were submitted together to obtain target gene activity profiles across all four 

conditions.  

Data availability 

Raw RNA-seq Fastq files will be available at Gene Expression Omnibus once the study has 

been published32. All enrichment tables will be made available at CaltechDATA33. 

Reverse transcription and quantitative polymerase chain reaction (qPCR) 

Based on edgeR DE gene discovery, ALG-1001 regulated genes were selected for manual 

validation of expression among the HUVEC (six genes) and PBMC (three genes) samples. 

SuperScript IV Reverse Transcriptase (ThermoFisher) and oligo(dT)20 primer 

(ThermoFisher) were used to convert polyadenylated mRNA to cDNA. qPCR was 

performed using iTaq Universal SYBR Green Supermix (Biorad) on LightCycler 480 
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(Roche) with 45 amplification cycles. For HUVEC comparisons, six non-outlier replicates 

per condition from batch 1 and batch 2 (3 per batch experiment) were selected for qPCR. All 

PBMC samples were selected for qPCR. To enhance accuracy, four technical qPCR 

replicates of the same cDNA were generated and the median value selected for further 

analysis. Differences were calculated using the ΔΔCt method versus Actb34. Primers used in 

this study were obtained from PrimerBank or designed using Primer-BLAST (Table 

2.1)35,36.  

 

3.3 Results 

WST-1 metabolic assay of HUVEC 

ALG-1001 treatment in in vivo mouse models of retinal neovascularization generated strong 

anti-angiogenic effect (see Chapter 1.2 for more detail, experiment performed by 

Campochiaro lab, Johns Hopkins University, unpublished). Here, we employed HUVECs to 

model human vascular endothelial cells and exposed them to an ALG-1001 concentration 

series to investigate the drug’s anti-angiogenic property in vitro. First, cells seeded at low 

density were exposed to the drug for 2 days before measurement of cellular metabolic level 

as an indicator of cell density. During the incubation period, normal HUVEC growth media 

was supplied to promote active cell proliferation as during angiogenesis. Additionally, a 

separate set of samples were exposed to 24 hours of hypoxia to stimulate endothelial cells in 

a more disease-relevant environment (treatments described in Figure 3.1). 
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At end of the incubation period, metabolic assay shows HUVECs exhibited an ALG-1001 

dose-dependent drop in metabolic activity (Figure 3.8). At room air oxygen tension (Figure 

3.8A), a small reduction is already measurable at the lowest drug concentration tested 

(10µM) and continues to only around 30% of the control metabolic level at the highest drug 

concentration (5mM). The measurable decline is less apparent in the hypoxia treatment 

condition with only two of the highest concentrations tested (2.5 and 5.0mM) showing 

statistical significant reduction (Figure 3.8B). A higher biological variance was also 

observed with hypoxia co-treatment, which reduces our ability to accurately detect changes 

induced by ALG-1001. 

Dead and live staining of HUVEC 

To confirm the observation with metabolic assay is not due to drug-induced cell death, we 

performed dead and live staining of HUVECs at three ALG-1001 concentrations (500, 1000 

and 2500µM). At both room air oxygen tension (Figure 3.9A) and 3% O2 hypoxia (Figure 

3.9B) conditions, we observed no obvious cell death or change in cell morphology in 

HUVECs after AGL1-1001 treatment. In addition, we found a noticeable drop in cell density 

at the highest drug concentration tested in both oxygen conditions (Control vs. 2500µM in 

Figure 3.9A-B). Combined with the metabolic assay findings, ALG-1001 appears to 

suppress vascular endothelial cell proliferation without causing cell death and morphology 

change.  

PCA of HUVEC RNA-seq dataset 
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RNA-seq was used as an unbiased approach to explore the transcriptome regulation that may 

explain the metabolic assay and dead and live staining observations. For this study, four 

conditions were prepared by exposing HUVECs to vehicle or 500µM ALG-1001 in 

combination with room air oxygen tension or 24 hours of 3% O2 hypoxia. To reduce batch 

effect and improve detection of the subtle effect of the drug on HUVEC transcriptome, the 

experiment was repeated three times to generate 18 biological replicates (6 replicates per 

study) for each condition. 

Before performing differential expression analysis, PCA was first applied individually to 

each batch to visualize the RNA-seq samples in a low-dimensional space (Figure 3.10-3.12). 

In all three batch-specific PCAs, we see a clear separation between room air oxygen tension 

and hypoxia samples, suggesting the presence of a hypoxia-induced transcriptome shift. 

PCAs also show ALG-1001 treated samples appear to cluster close in space to control 

samples of the same oxygen level exposure, suggesting the drug effect is weaker than the 

effect of hypoxia. In terms of outlier detection, analysis of the top three principal components 

(PCs) revealed a total of six outliers (see Figure 3.10-3.12 legend for specific samples) that 

are excluded from all subsequent analysis. Here, the outliers were identified base on strong 

separation from other replicates of the same condition, suggesting possible sample cross-

contamination or other sample preparation issues. 

After outlier removal, all non-outlier samples were visualized using PCA (Figure 3.13). In 

this analysis, the first three PCs captured a combined 48% of total variance. One feature that 

stood out is a clear separation on PC2 between batch 1 and batch 2-3 (Figure 3.13B). 
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Incidentally, the latter two batches were prepared around the same time while batch 1 was 

sequenced roughly half a year earlier. This observable batch effect suggests batch-specific 

transcriptome expression pattern exists and should be accounted for during differential 

expression analysis. Focusing on PC1, we also noticed separation between hypoxia and room 

air oxygen tension samples on a batch-specific basis, which serves as evidence of hypoxia-

specific transcriptome regulation. On the other hand, separation between ALG-1001 treated 

samples and their respective control remains weak in all three PCs. In summary, PCA of 

HUVEC samples indicate: a) a strong batch effect exists in this dataset, b) there is an 

observable transcriptome shift by hypoxia treatment, and c) the expression regulation by 

ALG-1001 appears to be more subtle. 

Hypoxia-associated transcriptome regulation in HUVEC 

EdgeR was used to identify DE genes regulated by 24 hours of 3% O2 hypoxia exposure in 

HUVECs (Figure 3.14). Between hypoxia and control conditions, we found 5376 genes 

differentially expressed, representing around 40% of the expressed transcriptome (Figure 

3.14A). Of the 5376 DE genes, nearly all of them (5373/5376, 99%) are found to be 

moderately regulated with less than 1-fold change. This is in contrast to the large fold-

changes detected in both the OIR mouse retina (Chapter 2.3) and ARPE-19 cell culture 

(Chapter 4.3) studies. Heatmap visualization of the DE gene expression indicates consistent 

perturbation across the experimental batches and fairly uniform expression among the 

biological replicates (Figure 3.15). Unlike our other studies, ERSSA was not used to confirm 

the appropriate sample size in this comparison since blocking (used in this study to remove 
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batch effect) is not currently supported by the software. Yet, the DE results suggest the 

number of replicates used is likely sufficient given the large number of small-fold-change 

DE genes discovered. 

Next, we used goseq to identify the biological processes over-represented in the discovered 

DE genes. For this analysis, the DE genes were separated into two lists for investigation of 

up- and down-regulated biological processes (GO terms) and pathways (KEGG pathways). 

With the up-regulated genes, goseq found GO biological processes associated with known 

hypoxia-related mechanisms such as angiogenesis (e.g. “angiogenesis”, “extracellular matrix 

organization”), inflammation (e.g. “immune system process”, “cytokine production”) and 

cell growth/dead (e.g. “cell proliferation”, “cell death”) (Figure 3.16A)37. In the enriched 

“angiogenesis” GO biological process, we found 125 associated genes, consisting of 39 

positive regulator and 29 negative regulator of angiogenesis. VEGFA, which encodes for the 

potent angiogenic growth factor VEGF38, was also found to be up-regulated. With the down-

regulated genes, biological functions enriched include ones related to cell cycle (e.g. “cell 

cycle”, “DNA replication”) and metabolism (e.g. “heterocycle metabolism”, “metabolism”), 

both of which are known to be regulated by hypoxia exposure39,40.  

KEGG pathway enrichment provides additional evidence and provide several new insights. 

With up-regulated genes, both angiogenesis- and inflammation-related pathways were 

enriched (Figure 3.17A). Out of the six pathways discovered, three (“ECM-receptor 

interaction”, “Cell adhesion molecules”, and “focal adhesion”) are related to cell adhesion, 

which is actively involved in enabling vascular endothelial cell migration during 
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angiogenesis41. “Leukocyte transendothelial migration” is also enriched and is responsible 

for initiation of immune cell infiltration during inflammation37. Other enrichment results 

suggest regulation of energy-intensive translational processes in response to hypoxia: 

“ribosome” genes were found to be up-regulated while three of the four pathways enriched 

with down-regulated genes (“ribosome biogenesis in eukaryotes”, “Aminoacyl-tRNA 

biosynthesis” and “RNA transport”) are involved in various aspects of translation (Figure 

3.17A-B). Lastly, “steroid biosynthesis” and “Fanconi anemia pathway” were also enriched, 

but their adjusted p-values are very weak and their relationship with hypoxia is unclear. 

Transcriptome regulation by ALG-1001 exposure in HUVEC 

In contrast to the transcriptome regulation by hypoxia, the effect that ALG-1001 has on 

HUVEC transcriptome is relatively small. Here, we performed two comparisons to identify 

the genes regulated by the drug at both room air oxygen tension and with hypoxia co-

treatment conditions. In the two comparisons, we found 1470 (room air oxygen tension) and 

922 (hypoxia) DE genes, respectively (Figure 3.18). Heatmap visualization of the DE gene 

expression shows consistent expression pattern across the three batches with some 

heterogeneity among the biological replicates (Figure 3.19-20). ERSSA was not applied to 

these comparisons due to lack of blocking capability in existing software.  

Functional enrichment of the regulated genes generated both expected as well as surprising 

results. With the DE genes activated by ALG-1001 at room air oxygen tension, we observed 

enrichment of GO biological processes related to angiogenesis (“angiogenesis”, “circulatory 
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system development”, “extracellular matrix organization”) and inflammation 

(“inflammatory response”) (Figure 3.21A). Among the up-regulated genes, 48 are found to 

be involved with “angiogenesis” with 13 positive and 12 negative regulators. Interestingly, 

we also found 32 “angiogenesis” genes down-regulated including the positive regulator – 

VEGFA. However, GO enrichment with the down-regulated DE genes mainly identified 

several GO biological processes related to metabolism and translation (Figure 3.21B). 

Together, we found evidence of a selective up-regulation of angiogenesis and inflammation 

genes after ALG-1001 treatment at room air oxygen tension.  

In comparison, the regulation by ALG-1001 with hypoxia co-treatment shows down-

regulation of many processes activated by hypoxia (Figure 3.22B). Several noteworthy GO 

biological processes up-regulated by hypoxia and down-regulated by ALG-1001 co-

treatment include “angiogenesis”, “cell proliferation”, “cell death”, “extracellular matrix 

organization”, and “actin cytoskeleton organization”. In fact, more than 62% (135/218) of 

these enriched biological processes were previously enriched with hypoxia up-regulated DE 

genes. Complementary analysis of cellular component and molecular function GO 

annotations found strong evidence that the down-regulated genes function in the extracellular 

matrix and are involved in cell-adhesion (Figure 3.44). In addition, around 33% (303/922) 

of the ALG-1001-regulated genes in this comparison show opposite regulatory pattern 

compare to hypoxia treatment, supporting the observation that ALG-1001 moderated the 

effect of the low oxygen tension (Table 3.2, versus 21%, 196/922 that show same regulatory 

pattern). Taking one step further, we also found a weak but inverse relationship (r=-0.160) 
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between the fold change of the hypoxia-regulated genes and their fold change with ALG-

1001 co-treatment (Figure 3.23). It is worth mentioning that among the ALG-1001 down-

regulated genes, 38 are “angiogenesis” genes with 13 positive and 6 negative regulators. 

VEGFA, previously found to be up-regulated by hypoxia, was also suppressed by ALG-1001 

during hypoxia co-treatment. In summary, with the cells stimulated in a disease-relevant 

hypoxia state, ALG-1001 appears to moderate some of the hypoxia-activated transcriptome 

regulation.  

Since “angiogenesis” GO biological process was enriched in all three comparisons, we set 

out to investigate the associated DE genes in more detail (Figure 3.25). Across the three 

comparisons, we found hypoxia treatment disproportionally increased “angiogenesis” gene 

expression (125/190 or 66% of regulated “angiogenesis” genes are elevated), while ALG-

1001 without hypoxia appeared to be more moderate (48/80 or 60% of regulated 

“angiogenesis” genes are elevated) and ALG-1001 under hypoxia condition with the reverse 

trend (26/64 or 41% of regulated “angiogenesis” genes are elevated). In terms of the fold 

change, the regulatory pattern of ALG-1001-modulated “angiogenesis” genes is quite 

consistent regardless of the hypoxia co-treatment (Figure 3.25B-C). Additionally, among 

the 354 genes regulated by ALG-1001 in both comparisons, 100% of them have the same 

regulatory direction (Table 3.3). On the other hand, expression pattern of hypoxia-regulated 

“angiogenesis” genes are more heterogeneous among the three comparisons, with the highest 

consistency still between the two ALG-1001 comparisons (Figure 3.25A). These 
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observations show in contrary to the goseq results, specific fold change of ALG-1001-

regulated “angiogenesis” genes are consistent across both oxygen conditions. 

Limited KEGG pathways were enriched with ALG-1001 regulated genes (Figure 3.24). In 

both comparisons, we found the “steroid biosynthesis” pathway enriched with ALG-1001 

up-regulated genes and “aminoacyl-tRNA biosynthesis” pathway enriched with ALG-1001 

down-regulated genes. Out of the two, we found proteins in the “aminoacyl-tRNA 

biosynthesis” pathway have alternative functions in regulating angiogenesis. Specifically, 

the tRNA synthases encoded by YARS, WARS, TARS (down-regulated by ALG-1001 in 

both comparisons) have alterative functions in activating angiogenesis, immune cell 

migration, endothelial cell detachment and migration42.  

Transcription factors enriched from HUVEC RNA-seq dataset 

ISMARA was used to identify the TFs that are likely responsible for the observed gene 

expression regulation in HUVECs. For the TFs predicted to be involved in regulating 

hypoxia response, many of the top 50 enriched are relevant to the biology of hypoxia (Figure 

3.26, Table 3.4). The associated Z-scores of these TFs are relatively high, which suggests an 

abundance of evidence for their involvement in hypoxia transcriptome regulation. Notable 

TFs with elevated target expression include those involved in regulating hypoxia-related 

processes such as cell growth/death (SMAD4, SMAD1, WRNIP1, KLF4, PLAGL1, BCL3, 

and ERG), angiogenesis (GATA3), metabolism (ESRRA), and hypoxia-response (EPAS1) 

(Figure 3.27). Similarly, many of the TFs with down-regulated target genes are found to be 
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involved in regulating cell growth/death (HCFC1, TAF1, SIN3A, MYB, ATF2, and SP1), 

angiogenesis (E2F7, E2F1, E2F3, TFDP1, and ZNF384), metabolism (NRF1, AHR), 

inflammation (STAT5A), and hypoxia-response (ARNT2, CREB1) (Figure 3.28).  

Consistent with the OIR mouse dataset (Chapter 2.3), the enrichment of TFs regulated by 

ALG-1001 is less statistically significant compared to hypoxia. For both oxygen tension 

conditions, we found less than 20 TF motifs with Z-score>1.0, which is typically used as the 

statistical cutoff for ISMARA (Figure 3.29, 3.31, Table 3.5-3.6). When analysis was 

narrowed to those TFs that passed the statistical cutoff, we found many of them are in fact 

related to processes regulated by hypoxia. At room air oxygen tension, we observed 

enrichment of TFs regulating angiogenesis (GATA3, ID4), cell growth/death (SMAD4, 

WRNIP1, ERG, FOS, TAF1, and KLF8) and inflammation (CEBPB) (Figure 3.30). At 

hypoxia condition, only 12 TFs are enriched with 6 involved in angiogenesis (ZNF384), cell 

growth/death (SP1, MNT, MYC, and KLF4) and inflammation (CEBPB) (Figure 3.32). 

Intrigued by functional analysis that showed ALG-1001 is able to moderate hypoxia 

transcriptome regulation, we looked for the same pattern in the ISMARA results. 

Interestingly, we observed that out of the 18 TF motifs that are found on both the list of top 

50 enriched TFs (Table 3.6, labeled in bold), 15 of them showed a reverse target gene 

activity. In addition, many of these 15 regulators are related to hypoxia biology, including 

SMAD1, SMAD4, KLF4, PLAGL1, ZNF384, ESRRA, E2F3, and SP1.  

Transcriptome regulation by ALG-1001 exposure in PBMC 
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Immune cells’ involvement in the pathophysiology of retinal diseases has been extensively 

reported in prior literature43,44. In OIR dataset (Chapter 2.3), we found disease-related 

hypoxia stimulation activated both angiogenesis and immune gene expression, suggesting 

modulation of immune system together with neovascularization. After ALG-1001 treatment 

in the neovascularizing retina, we also discovered evidence that hypoxia-activated immune 

genes are suppressed by the drug treatment. To further investigate ALG-1001’s involvement 

in regulating immune cells, we treated human donor PBMCs with ALG-1001 and probed the 

transcriptome regulation after drug treatment. For this study, six replicates of PBMC treated 

with vehicle or ALG-1001 were sequenced with RNA-seq. PCA of the expression profile 

indicates weak separation on PC1 (accounting for 31% of total variance) between the 

treatment conditions (Figure 3.33). EdgeR comparison identified 1204 DE genes regulated 

by ALG-1001 with few by more than 1-fold (Figure 3.34A). Heatmap of the DE genes 

shows moderate amount of expression variation between biological replicates, suggesting 

some amount of inconsistency between the replicates (Figure 3.35). We also employed 

ERSSA to test the detection power of the current sample size and the results suggest not all 

DE genes have been discovered (double digit percentage increase in DE gene discovery up 

to the full sample size, Figure 3.34C-D). As a result, the following functional analysis should 

be viewed as preliminary as more genes are likely regulated by ALG-1001. 

Goseq was used to identify GO biological processes associated with up-regulated and down-

regulated genes. With up-regulated genes, we found enrichment of “lymphocyte activation”, 

“regulation of immune system process”, and “activation of immune response” processes. 
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“rRNA processing” was also strongly enriched, suggesting regulation of translational 

processes (Figure 3.36A). With down-regulated genes, we mainly found enrichment of 

immune-related processes such as “immune response”, “leukocyte activation involved in 

immune response”, “inflammatory response”, and “leukocyte migration” (Figure 3.36B).  

KEGG pathway enrichment of the DE genes are consistent with the GO biological process 

analysis. With up-regulated genes, we found enrichment of “ribosome” and “T cell receptor 

signaling” pathways (Figure 3.37A). Consistent with GO analysis, enrichment of 

“ribosome” pathway suggest modulation of translational processes by ALG-1001. On the 

other hand, enrichment of “T cell signaling pathway” is intriguing, as stimulation of the 

pathway activates T cells, leading to their proliferation, differentiation, and immune 

modulation. Visualization of the “T cell signaling pathway” gene expression shows the 

expression profile is mixed, with predominant up-regulation of genes that encode for proteins 

that initiate the signaling process and down-regulation of genes down-stream in the pathway 

(Figure 3.38). With down-regulated genes, we see enrichment of many pro-inflammatory 

pathways, including “TNF”, “C-type lectin receptor”, “IL-17”, and “Toll-like receptor” 

signaling pathways (Figure 3.37B). In particular, TNF signaling pathway is a potent pro-

inflammatory process that has reported to be activated in retinal diseases45–47.  Visualization 

of the pathway gene expression shows down-regulation of many pathway components, 

including genes that are transcriptionally regulated by the pathway (Figure 3.39).  

Using ISMARA, We found selected TFs that are likely involved in ALG-1001 treatment 

response and are biologically relevant to retinal disease pathophysiology (Figure 3.40-3.41, 
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Table 3.7). Specifically, some of the enriched transcriptional regulators are involved in 

processes such as angiogenesis (E2F7, E2F1, E2F3, and ZNF384), cell growth/death 

(FOXO3, FOSL2, PLAGL1, SMAD1, and SMAD4) and inflammation (NFKB2, IKZF1, 

IRF4, and IRF5). Among the TFs enriched, NFKB2 is particularly interesting as it is a 

member of the NF-κB family of transcription factors that, once activated, lead to expression 

of pro-inflammatory cytokines, chemokines and adhesion molecules48. NF-κB has also 

previously been found to be activated in mouse models of retinal diseases and in retinal cells 

of diabetic patients49–51. Here, we found that expression of NFKB2 target genes are down-

regulated by ALG-1001, indicating possible suppression of pro-inflammatory gene 

expression by the drug through NF-κB (Figure 3.41B). 

qPCR (HUVEC and PBMC) 

qPCR was used to validate six selected genes found to be regulated by ALG-1001 in HUVEC 

(Figure 3.42). Compared to the RNA-seq measurements, some of the qPCR gene expression 

quantification’s standard deviation are noticeably higher. In addition, a few genes found by 

RNA-seq to be up-regulated in hypoxia condition appeared to be unchanged with qPCR 

measurement. The discrepancy is likely due to the fairly small expression change observed, 

which may be within the range of qPCR technical error. Overall, a large fraction of regulatory 

patterns are consistent between the two results despite technical limitation.  

For the PBMC dataset, we aimed to validate the RNA-seq result with three immune-relevant 

genes (CCL2, CSF1, and RELB) using qPCR. For each gene, RNA-seq showed ALG-1001 
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weakly down-regulated their gene expression (Figure 3.43A), while the corresponding 

qPCR measurements largely confirm these results except for the expression pattern of RELB 

(Figure 3.43B). For this gene, the expression change is likely too small to be accurately 

detected by qPCR, as evident by the relatively large standard deviation. In short, we were 

able to observe the same expression pattern for two of the three genes tested while the 

expression change associated with the RELB appears to be too small to be accurately 

qualified by qPCR. 

 

3.4 Discussion 

Endothelial transcriptome modulation by hypoxia and ALG-1001 

Diseases of the retina affect millions of patients worldwide with few effective treatment 

options available12,13,52. With the current antibody-based standard of care ineffective in 

double digit percentage of patients, new solutions are sorely needed6,7. In recent years, the 

development of ALG-1001 as a potential therapy has produced promising clinical trial results 

as well as positive data in mouse (see Chapter 1.2 and 2.1 for more detail)10,53. Here, we 

applied RNA-seq to study the therapeutic effect of the drug in two human primary cell culture 

systems that represent cells relevant to disease pathophysiology. In particular, low passage 

HUVECs were used to study the drug’s effect on proliferating endothelial cells that play an 

essential role in disease-associated retinal neovascularization54. Freshly collected PBMCs 

were also tested to identify ALG-1001’s effect on immune cells that generally promote a 

cytotoxic inflammatory environment in diseased retinal tissue14–16. Through these 
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approaches, we found weak, but specific regulation by the drug on angiogenesis and 

inflammation.  

Using proliferating HUVECs, we set out to validate the anti-angiogenic effect observed in 

the OIR mouse model. Employing metabolic activity measurement as a proxy for cell 

density, we observed a dose-dependent suppression of endothelial cell proliferation by ALG-

1001 (Figure 3.8). In addition, fluorescent staining confirmed this effect is through inhibition 

of cell proliferation, instead of by inducing cell death as previously observed with structurally 

similar RGD peptide (Figure 3.9)55. Collectively, metabolic and imaging assays suggest 

ALG-1001 can suppress endothelial proliferation, even in a highly angiogenic cell culture 

environment where cells are induced to undergo rapid cell division. 

Next, RNA-seq was used as an unbiased approach to study HUVEC’s transcriptome 

response to disease-relevant hypoxia exposure and ALG-1001 treatment. After 24 hours of 

3% O2 low oxygen exposure, differential expression analysis found more than 5000 genes 

regulated by the treatment (Figure 3.14). However, compared to the magnitude of the 

hypoxia-induced expression change observed in OIR mouse retina (Chapter 2.3) and ARPE-

19 cells (Chapter 4.3), the fold changes are noticeably smaller in HUVECs. We suspect this 

is likely due to different cell microenvironments among the three models. In both OIR mouse 

model and ARPE-19 cell culture experiments, the retinal cells reside in a low proliferating 

state before hypoxia exposure. On the other hand, the HUVEC experiments were conducted 

in nutrient-rich growth media that promotes fast proliferation of the vascular endothelial 

cells. Thus, it is likely that HUVEC transcriptome is already in a state that sustains rapid cell 
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proliferation, leaving little room for hypoxia to induce further transcriptome change in the 

direction of promoting cell division.  

While the magnitude of expression changes is relatively small, functional analysis of the 

roughly five thousand DE genes enriched many biological processes relevant to hypoxia 

biology. In particular, GO enrichment with hypoxia up-regulated genes revealed biological 

processes related to angiogenesis, cell growth/death, inflammation and hypoxia response 

(Figure 3.16A)56,57. Similarly, down-regulated genes are over-represented with those related 

to hypoxia response such as cell cycle and metabolism (Figure 3.16B)39,40. In agreement, 

KEGG pathway enrichment found up-regulation of genes involved in cell adhesion (an 

important component of angiogenesis) and immune cell transendothelial migration (Figure 

3.17A)37,41. However, unlike biological process analysis, KEGG pathway enrichment of 

hypoxia down-regulated genes identified three pathways related to translation, but not those 

related to cell cycle and metabolism (Figure 3.17B). In relation to translation, hypoxia is 

known to suppress translation due to a state of cellular energy shortage58.  

Compared to the hypoxia-induced transcriptome change, ALG-1001’s effect on gene 

expression is relatively small. After 48 hours of ALG-1001 treatment, we found 1470 and 

922 DE genes at room air oxygen tension and hypoxia conditions, respectively (Figure 3.18). 

Of the genes regulated by ALG-1001 at room air oxygen tension, we are surprised to find 

over-representation of several GO biological processes that were previously found to be 

associated with hypoxia response (Figure 3.21). In particular, there are several that suggest 

selective up-regulation of angiogenesis genes by ALG-1001. In terms of fold change, we 
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found a positive correlation (r=0.407) among hypoxia-regulated “angiogenesis” genes 

between hypoxia-response and ALG-1001 response at room air oxygen tension (Figure 

3.25A). Taken together, these results suggest, on face value, that ALG-1001 may be 

activating angiogenesis instead of suppressing it.  

It is worth noting that there are also “angiogenesis” genes down-regulated by ALG-1001 that 

are up-regulated by hypoxia. In fact, we noticed several important angiogenesis genes that 

are up-regulated by hypoxia and suppressed by ALG-1001 at both oxygen treatment 

conditions. Four notable genes that exhibit this pattern include VEGFA and ANXA3, both 

of which are potent pro-angiogenesis proteins38,59; TGFB2, which was reported to suppress 

angiogenesis60; and TGFBI, which plays a role in cell adheison61. Additionally, both VEGFA 

and ANXA3 were also observed to be down-regulated by ALG-1001 in the OIR mouse retina 

(Chapter 2), indicating possible regulation of angiogenesis through modulation of these key 

players.  

Interestingly, the transcriptome regulation by ALG-1001 with hypoxia co-treatment tells a 

different story. Under hypoxic condition, we detected an inverse relationship between 

hypoxia-induced gene expression and after co-treatment with ALG-1001 (Pearson’s r=-

0.160, Figure 3.23), which suggest ALG-1001 moderated some of transcriptome response 

to hypoxia stimulation. Additionally, more than half of the GO biological processes enriched 

with ALG-1001-suppressed genes (e.g. “angiogenesis”, “cell death”, “cell proliferation”, and 

“extracellular matrix organization”) are enriched with hypoxia up-regulated genes (Figure 

3.22). KEGG pathway enrichment supports these findings with enrichment of “aminoacyl-
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tRNA biosynthesis” pathway among ALG-1001-suppressed genes (Figure 3.24). 

Specifically, we found three tRNA synthases (YARS, WARS, and TARS) down-regulated 

by ALG-1001 also have alternative function in modulating angiogenesis42. For instance, 

tyrosyl-tRNA synthase (YARS) can be secreted and cleaved into cytokine fragments with 

pro-angiogenic effect, while threonyl-tRNA synthase (TARS) is secreted to stimulate vessel 

migration, patterning and maturation. On the other hand, Tryptophanyl-tRNA synthase 

(WARS) appears to inhibit angiogenesis, where its cleaved form can be secreted to disrupt 

endothelial cell attachment and angiogenic signaling molecule. Since tRNA synthases 

function in both translation and angiogenesis regulation, it is unclear from gene expression 

alone whether they are actually involved in ALG-1001’s anti-angiogenic effect. Additional 

biochemistry and genetics experiments could help clarify their involvement. 

A key component of drug mechanism of action study is identification of both the drug target 

and the modulated down-stream effector proteins. With RNA-seq data, we are unable to 

directly identify either of these components, but we can use the gene expression profile to 

infer TFs that are likely involved in driving the gene regulation. For this analysis, we used 

ISMARA to identify the factors that are predicted to participate in hypoxia response and after 

ALG-1001 treatment. When applied to study hypoxia, the algorithm enriched many TFs that 

are known regulator of hypoxia-regulated processes such as cell growth/death, angiogenesis, 

metabolism, inflammation, and hypoxia-response (Figure 3.26). In terms of ALG-1001 

transcriptome modulation, limited number of TFs were enriched with statistical significance 

(Figure 3.29, 3.31). Interestingly, enriched factors include those involved in angiogenesis, 
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cell growth/death, and inflammation processes. Additionally, ALG-1001 treatment reversed 

target gene activity for several TFs that are regulated by hypoxia (e.g. SMAD family proteins, 

SP1 and KLF4), suggesting these TFs may play a role as down-stream effector of ALG-

1001. Intriguingly, these factors are also involved in regulating a wide range of biological 

activities, including cell growth, adhesion, apoptosis, development, metabolism, immune 

system and morphogenesis62–66. Although RNA-seq data does not provide concrete evidence 

that these TFs are involved in ALG-1001’s therapeutic effect, our findings warrant further 

investigation to confirm their roles in the drug’s mechanism of action. 

Immune cell gene expression modulated by ALG-1001 

In a second study, fresh human donor PBMCs were treated with low dosage of ALG-1001 

for 8 hours and then probed with RNA-seq to identify the genes regulated. Comparable to 

the HUVEC results, we found around 1200 DE genes, many with small fold changes (Figure 

3.34). Interestingly, functional analysis of the enriched genes suggest regulation of multiple 

immune processes by ALG-1001 (Figure 3.36, 3.37). Using KEGG pathway enrichment, 

we found over-representation of “TNF signaling pathway” genes in the down-regulated gene 

list (Figure 3.37B). Visualization of the changes in the pathway shows that majority of the 

pathway is weakly down-regulated by ALG-1001 (Figure 3.39). Intriguingly, we also 

enriched “T cell receptor signaling pathway” with up-regulated genes. T cell receptor 

signaling is activated after successful antigen binding and its activation suggest possible T 

cell receptor recognition of ALG-1001, leading to initiation of T cell activity (Figure 3.37A, 

3.38). In terms of ISMARA TF enrichment, we found: a) enrichment of NFKB2, a member 
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of the pro-inflammatory NF-κB protein family and b) identification of SMAD4 and SNF384, 

which were also enriched in the HUVEC experiment. In particular, ALG-1001 suppressed 

these two factor’s target gene activity in both models, indicating a common predicted 

regulatory effect.  

While these results are promising, the PBMC study was repeated only once with PBMCs 

collected from a single donor. As a result, these findings should be considered as preliminary 

as additional samples are needed for more concrete conclusions (suggested by ERSSA, 

Figure 3.34C-D). Additionally, PBMCs are composed of multiple immune cell types and 

bulk RNA-seq cannot easily discern the effect of ALG-1001 on individual cell types. More 

studies should be carried out with purified samples of specific cell types, with monocytes as 

a priority due to their known involvement in retinal diseases67.  

Limitation of in vitro cell culture 

In general, results from in vitro cell culture should be further validated in vivo. In cell culture, 

the cells are removed from their in vivo tissue microenvironment, which can alter their 

response to drug treatment68. Indeed, as in most cell culture studies, the culture environment 

employed in our studies are artificial: a) high level of oxygen tension (typical room air 

oxygen percentage of around 21% vs. around 5% in normal tissue69), b) nutrient-rich growth 

media (induce rapid cell proliferation with growth factor levels much higher than those found 

in tissue), c) cells grown in monolayer without interaction with other cell types. Additionally, 

this study have the added challenge of trying to mimic the diseased microenvironment in cell 
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culture, which is very challenging. Overall, our results from cell culture studies should be 

viewed in context of these limitations, such that any observations in vitro need to be validated 

with the appropriate animal model.  

 

3.5 Conclusions 

Retinal diseases are currently untreatable for millions of patients worldwide. ALG-1001 is 

an oligopeptide drug that is currently under clinical investigation for treatment of these 

blinding eye diseases. In this study, we used human primary cell culture models of vascular 

endothelial and immune cells to study the drug’s therapeutic effect, through analysis of the 

treatment-associated transcriptome regulation. In endothelial cells, we found ALG-1001 

modulated expression of angiogenesis genes activated by disease-relevant hypoxia exposure. 

In immune cells, we found ALG-1001 treatment down-regulated pro-inflammatory TNF 

signaling pathway, potentially through modulation of NF-κB. Altogether, our results 

provided evidence of cell type-specific regulation by ALG-1001, particularly in suppressing 

disease-worsening angiogenesis and inflammation. It is also important to view these results 

in context of the limitations of cell culture models, which always require further validation 

with animal studies.  
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3.6 Figures and Tables 

 
Figure 3.1 HUVEC treatment design 

HUVECs were exposed to vehicle (empty) or ALG-1001 (blue bar) at experiment-specific 

concentration for 48 hours and with or without 3% O2 hypoxia (red bar) for 24 hours before 

assay. This treatment scheme is applied to prepare WST-1 assay, Dead/live staining and 

RNA-seq samples.  
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Figure 3.2 FastQC mean sequencing quality score – part 1 

MultiQC plots the average sequencing quality Phred score at each base in the reads generated 

for each sample. Each line detonates a sample, with majority of them overlapping throughout 

the entire 100 base pair region. Phred score plot indicates good sequence quality across all 

samples. A. HUVEC study, batch 1 samples B. HUVEC study, batch 2 samples. 
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Figure 3.3 FastQC mean sequencing quality score – part 2 

MultiQC plots the average sequencing quality Phred score at each base in the reads generated 

for each sample. Each line detonates a sample, with majority of them overlapping throughout 

the entire 100 base pair region. Phred score plot indicates good sequence quality across all 

samples. A. HUVEC study, batch 3 samples B. PBMC study samples. 
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Figure 3.4 Tophat2 and HTSeq-count statistics – HUVEC, batch 1 samples 

A. At least 88% of reads were mapped in all samples by Tophat2. B. HTSeq-count uniquely 

assigned (blue bar) between 77-79% of a sample’s aligned reads to a gene except replicate 

5 of ALG-1001+hypoxia condition (62.5%). 
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Figure 3.5 Tophat2 and HTSeq-count statistics – HUVEC, batch 2 samples 

A. At least 91% of reads were mapped in all samples by Tophat2. B. HTSeq-count uniquely 

assigned (blue bar) between 76-79% of a sample’s aligned reads to a gene. 
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Figure 3.6 Tophat2 and HTSeq-count statistics – HUVEC, batch 3 samples 

A. At least 92% of reads were mapped in all samples by Tophat2. B. HTSeq-count uniquely 

assigned (blue bar) between 77-80% of a sample’s aligned reads to a gene. 
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Figure 3.7 Tophat2 and HTSeq-count statistics – PBMC samples 

A. Between 76-87% of reads were mapped in all samples by Tophat2. B. HTSeq-count 

uniquely assigned (blue bar) between 63-67% of a sample’s aligned reads to a gene. 

Trouble uniquely assigning reads likely due to difficulty with polymorphic antibody and T 

cell receptor genes. 
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Figure 3.8 WST-1 assay of HUVECs treated with ALG-1001 concentration series 

After 48 hours of ALG-1001 treatment at specified concentration, cellular metabolic activity 

level was measured as an indicator of cell density. At both room air oxygen tension (A) and 

24 hours of 3% O2 hypoxia exposure (B) conditions, HUVECs treated with ALG-1001 

demonstrated a dose-dependent drop in cell density at end of treatment. Experiment was 

performed once with n=6 per condition. Metabolic activity was normalized with mean 

activity of control cells as 100%. Mean and standard deviation plotted. All statistical tests 

were performed against control condition with the stars indicate the magnitude of the 

adjusted p-value (* P≤0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001).   
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Figure 3.9 Dead and live staining of HUVECs treated with ALG-1001 concentration 

series 

After 48 hours of ALG-1001 treatment at specified concentrations, dead and live staining 

was performed to detect cell state. (left) Phase contrast micrographs and (right) merged live 

(green) and dead (red) stained images show no obvious cell death or change in cell 

morphology after drug exposure. Experiment was repeated at both room air oxygen tension 

(A) and after 24 hours of 3% O2 hypoxia (B) conditions. Lethal control shows cells that are 

dead with compromised cell membrane.  
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Figure 3.10 PCA of HUVEC, batch 1 samples 

PCA of 24 HUVEC, batch 1 samples. ALG48h is ALG-1001, Hypoxia_ALG48h is ALG-

1001+hypoxia conditions. PC_# is principal component #. A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC_1 and PC_2, PC_1 and 

PC_3, respectively. Percent of variance explained are shown in axis label. Three obvious 

outliers were detected: control replicate 3, and ALG-1001 replicate 5 and 6. 
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Figure 3.11 PCA of HUVEC, batch 2 samples 

PCA of 24 HUVEC, batch 2 samples. ALG48h is ALG-1001, Hypoxia_ALG48h is ALG-

1001+hypoxia conditions. PC_# is principal component #. A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC_1 and PC_2, PC_1 and 

PC_3, respectively. Percent of variance explained are shown in axis label. Two obvious 

outliers were detected: ALG-1001 replicate 6 and hypoxia replicate 6. 
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Figure 3.12 PCA of HUVEC, batch 3 samples 

PCA of 24 HUVEC, batch 3 samples. ALG48h is ALG-1001, Hypoxia_ALG48h is ALG-

1001+hypoxia conditions. PC_# is principal component #. A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC_1 and PC_2, PC_1 and 

PC_3, respectively. Percent of variance explained are shown in axis label. One obvious 

outlier was detected: ALG-1001+hypoxia replicate 6.  
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Figure 3.13 PCA of all non-outlier HUVEC samples 

PCA of 66 non-outlier HUVEC samples. ALG48h is ALG-1001, Hypoxia_ALG48h is ALG-

1001+hypoxia conditions. PC_# is principal component #. A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC_1 and PC_2, PC_1 and 

PC_3, respectively. Percent of variance explained are shown in axis label. Experimental 

batch is symbol-coded while condition is color-coded. 
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Figure 3.14 edgeR comparison of HUVEC control and hypoxia conditions 

A. Measured CPM and fold-change for each expressed gene. DE genes are colored red while 

all others are black. Genes outside of display window are symbolized by triangle. B. edgeR 

measured fold-change and FDR displayed for each gene. DE genes are colored red while all 

others are black. Genes outside of display window are symbolized by triangle. Blue dashed 

line indicates FDR=0.05.  
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Figure 3.15 Heatmap of 5376 DE genes found to be regulated by hypoxia in HUVEC 

Normalized (Norm.) TPM values are plotted for DE genes between HUVEC control and 

hypoxia conditions. Genes are plotted on rows and are ranked by decreasing log2-fold-

change. Samples are grouped by condition (gray-scale) and by experimental batch (color) as 

indicated by the bars shown below the heatmap.  
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Figure 3.16 GO enrichment of DE genes regulated by hypoxia in HUVEC 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO term. 

Selected biologically relevant GO terms were labeled.  
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Figure 3.17 KEGG pathway enrichment of DE genes regulated by hypoxia in HUVEC 

Goseq-enriched KEGG pathways with up-regulated (A) or down-regulated (B) DE genes. 

Statistically significant pathways are displayed. Benjamini Hochberg (BH) adjusted P-value 

is displayed on the x-axis.  
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Figure 3.18 DE genes regulated by ALG-1001 at room air oxygen tension and hypoxia 

conditions 

EdgeR used to identify DE genes between control and ALG-1001 conditions (A-B) and 

hypoxia and ALG-1001 + hypoxia conditions (C-D). (A, C) Measured CPM and fold-change 

for each expressed gene. DE genes are colored red while all others are black. Genes outside 

of display window are symbolized by triangle. (B, D) EdgeR measured fold-change and FDR 

displayed for each gene. DE genes are colored red while all others are black. Genes outside 

of display window are symbolized by triangle. Blue dashed line indicates FDR=0.05. 
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Figure 3.19 Heatmap of 1470 DE genes regulated by ALG-1001 at room air oxygen 

tension in HUVEC 

Normalized (Norm.) TPM values are plotted for DE genes between HUVEC control and 

ALG-1001 conditions. Genes are plotted on rows and are ranked by decreasing log2-fold-

change. Samples are grouped by condition (gray-scale) and by experimental batch (color) as 

indicated by the bars shown below the heatmap.
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Figure 3.20 Heatmap of 922 DE genes regulated by ALG-1001 with hypoxia co-

treatment in HUVEC 

Normalized (Norm.) TPM values are plotted for DE genes between HUVEC hypoxia and 

ALG-1001 + hypoxia conditions. Genes are plotted on rows and are ranked by decreasing 

log2-fold-change. Samples are grouped by condition (gray-scale) and by experimental batch 

(color) as indicated by the bars shown below the heatmap.  
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Figure 3.21 GO enrichment of DE genes regulated by ALG-1001 at room air oxygen 

tension 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO term. 

Selected biologically relevant GO terms were labeled.  
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Figure 3.22 GO enrichment of DE genes regulated by ALG-1001 with hypoxia 

stimulation 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO term. 

Selected biologically relevant GO terms were labeled. 
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Figure 3.23 ALG-1001 treatment weakly moderates hypoxia-induced transcriptome 

regulation  

Each dot represents a DE gene found to be regulated during hypoxia response. The gene’s 

log2-fold-change after hypoxia treatment is plotted on the x-axis, while the fold change with 

ALG-1001 co-treatment is plotted on the y-axis. Plot window is limited to the (-1, 1) range 

on both axes. Pearson’s r value is measured as -0.160. The plot can be divided into four 

quadrants, as indicated by the blue dashed lines, with 1710 genes in the top left, 986 in the 

bottom left, 1106 in the top right, and 1568 in the bottom right.  
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Figure 3.24 KEGG pathway enrichment of DE genes regulated by ALG-1001 at room 

air oxygen tension and hypoxia conditions 

Goseq-enriched KEGG pathways with up-regulated (A) or down-regulated (B) DE genes by 

ALG-1001 at room air oxygen tension and up-regulated (C) or down-regulated (D) DE genes 

by ALG-1001 with hypoxia stimulation. Statistically significant pathways are displayed. 

Benjamini Hochberg (BH) adjusted P-value is displayed on the x-axis.  
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Figure 3.25 Heatmap of DE angiogenesis genes 

Fold change of DE “angiogenesis” (GO biological process) genes are plotted as heatmap. 

Genes are plotted row-wise and comparisons column-wise. Expression profiles are clustered 

using average Euclidean distance method with results shown above the heatmap. |log2-fold-

change|>0.50 are shown as 0.50 or -0.50 to improve visualization of small changes. Log2FC 

is log2-fold-change. DE “angiogenesis” genes found in hypoxia vs. control (A), ALG-1001 

vs. control (B) and ALG-1001 + hypoxia vs. hypoxia (C) comparisons are plotted, with genes 

ranked by the log2-fold-change in each respective comparison.  
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Figure 3.26 ISMARA prediction of TFs involved during hypoxia response 

HUVEC control and hypoxia samples were submitted to ISMARA for enrichment of TFs that 

are likely involved during hypoxia-response. Top 50 enriched factors with the highest Z-

score were plotted (x-axis shows rank by Z-score). Selected biologically relevant factors with 

higher (A) or lower (B) target gene activity in hypoxia condition are labeled.   
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Figure 3.27 Activity profile of selected TF motifs with higher target activity in hypoxia 

samples 

HUVEC control and hypoxia samples were submitted to ISMARA for enrichment of TFs that 

are likely involved during hypoxia-response. Activity profile (mean + standard deviation) of 

selected TFs with higher target activity in hypoxia condition are plotted. Conditions labeled 

as follows: ALG-1001 as ALG48h, ALG-1001 + hypoxia as Hypoxia_ALG48h.   
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Figure 3.28 Activity profile of selected TF motifs with lower target activity in hypoxia 

samples 

HUVEC control and hypoxia samples were submitted to ISMARA for enrichment of TFs that 

are likely involved during hypoxia-response. Activity profile (mean + standard deviation) of 

selected TFs with lower target activity in hypoxia condition are plotted. Conditions labeled 

as follows: ALG-1001 as ALG48h, ALG-1001 + hypoxia as Hypoxia_ALG48h. 
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Figure 3.29 ISMARA prediction of TFs regulated by ALG-1001 at room air oxygen 

tension 

HUVEC control and ALG-1001 samples were submitted to ISMARA for enrichment of TFs 

that are likely involved during ALG-1001 induced transcriptome regulation. Top 50 enriched 

factors with the highest Z-score were plotted (x-axis shows rank by Z-score). Only results 

with Z-score > 1.0 (blue dashed line) are considered for further analysis. Selected 

biologically relevant factors with higher (A) or lower (B) target gene activity in drug 

treatment condition are labeled.   
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Figure 3.30 Activity profile of selected TF motifs likely involved in ALG-1001 induced 

transcriptome regulation 

HUVEC control and ALG-1001 samples were submitted to ISMARA for enrichment of TFs 

that are likely involved during ALG-1001 response. Activity profile (mean + standard 

deviation) of selected TFs with higher (A) or lower (B) target activity in ALG-1001 condition 

are plotted. Conditions labeled as follows: ALG-1001 as ALG48h, ALG-1001 + hypoxia as 

Hypoxia_ALG48h. 
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Figure 3.31 ISMARA prediction of TFs regulated by ALG-100 with hypoxia treatment 

HUVEC hypoxia and ALG-1001 + hypoxia samples were submitted to ISMARA for 

enrichment of TFs that are likely involved during ALG-1001 induced transcriptome 

regulation. Top 50 enriched factors with the highest Z-score were plotted (x-axis shows rank 

by Z-score). Only results with Z-score > 1.0 (blue dashed line) are considered for further 

analysis. Selected biologically relevant factors with higher (A) or lower (B) target gene 

activity in drug treatment condition are labeled.  
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Figure 3.32 Activity profile of selected TF motifs likely regulated by ALG-1001 with 

hypoxia treatment 

HUVEC hypoxia and ALG-1001 + hypoxia samples were submitted to ISMARA for 

enrichment of TFs that are likely involved during ALG-1001 response. Activity profile 

(mean + standard deviation) of selected TFs with higher (A) or lower (B) target activity in 

ALG-1001 + hypoxia condition are plotted. Conditions labeled as follows: ALG-1001 as 

ALG48h, ALG-1001 + hypoxia as Hypoxia_ALG48h. 
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Figure 3.33 PCA of PBMC samples 

PCA of 12 PBMC samples. ALG-1001 labeled as ALG. PC_# is principal component #. A. 

Percent of overall variance captured by the top 10 principal components. B-C. Samples in 

PC_1 and PC_2, PC_1 and PC_3, respectively. Percent of variance explained is shown in 

axis label. 
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Figure 3.34 edgeR comparison of ALG-1001 treatment in PBMC 

EdgeR comparison of control and ALG-1001 conditions. A. Measured CPM and fold-change 

for each expressed gene. DE genes are colored red while all others are black. B. edgeR 

measured fold-change and FDR displayed for each gene. DE genes are colored red while all 

others are black. Blue dashed line indicates FDR=0.05. C-D. ERSSA-generated number of 

DE gene plot (C) and marginal change plot (D) with 50 combinations per replicate level and 

log2-fold-change cut off = 0.5.  
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Figure 3.35 Heatmap of 1204 DE genes with ALG-1001 treatment in PBMC 

Normalized (Norm.) TPM values are plotted for DE genes between control and ALG-1001 

treatment conditions. Genes are plotted on rows and are ranked by decreasing log2-fold-

change.   
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Figure 3.36 GO enrichment of DE genes with ALG-1001 treatment in PBMC 

Up- (A) and down-regulated (B) DE genes were submitted for GO enrichment with results 

visualized using REVIGO. P-value is REVIGO-derived GO enrichment p-value. Size is the 

number of human proteins associated with each GO term. Selected biologically relevant GO 

terms were labeled.  



210 

 

 

Figure 3.37 KEGG pathway enrichment of DE genes with ALG-1001 treatment in 

PBMC 

KEGG pathways enriched with up- (A) or down-regulated (B) DE genes using goseq. 

Statistically significant pathways are displayed. Benjamini Hochberg (BH) adjusted P-value 

is displayed on the x-axis.  
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Figure 3.38 Pathview visualization of the T cell receptor signaling pathway 

ALG-1001 treatment induced pathway expression changes in PBMC are plotted. White 

colored nodes indicate genes that are not found to be expressed in the dataset. 
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Figure 3.39 Pathview visualization of the TNF signaling pathway 

ALG-1001 treatment induced pathway expression changes in PBMC are plotted. White 

colored nodes indicate genes that are not found to be expressed in the dataset. 
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Figure 3.40 ISMARA TF enrichment with PBMC samples 

PBMC samples were submitted to ISMARA for enrichment of TFs that are likely involved in 

transcriptome regulatory response to ALG-1001 treatment. Top 50 enriched factors with the 

highest Z-score were plotted (x-axis shows rank by Z-score). Only results with Z-score > 1.0 

(blue dashed line) are considered for further analysis. Selected biologically relevant factors 

with higher (A) or lower (B) target gene activity in drug treatment condition are labeled.  



214 

 

 

Figure 3.41 Activity profile of selected TF motifs predicted to be regulated by ALG-

1001 in PBMC samples 

PBMC samples were submitted to ISMARA for enrichment of TFs that are likely involved in 

the transcriptome regulatory response to ALG-1001 treatment. Activity profile (mean + 

standard deviation) of selected TFs with higher (A) or lower (B) target gene activity in ALG-

1001 condition are plotted.  
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Figure 3.42 qPCR validation of selected HUVEC RNA-seq results 

Six genes shown to be regulated by ALG-1001 were selected for qPCR validation. 

Expression values were normalized in both plots so that average Control expression is 1. The 

mean and standard deviation are shown. Conditions are labeled as follows: ALG-1001 as 

ALG, ALG-1001 + hypoxia as Hypoxia_ALG. A. RNA-seq expression are based on TPM 

values. B. qPCR expression are based on ΔΔCt-derived fold changes.  
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Figure 3.43 qPCR validation of selected PBMC RNA-seq results 

Three genes shown to be regulated by ALG-1001 were selected for qPCR validation. 

Expression values were normalized in both plots so that average Control expression is 1. The 

mean and standard deviation are shown. ALG-1001 condition is labeled as ALG. A. RNA-

seq expression are based on TPM values. B. qPCR expression are based on ΔΔCt-derived 

fold changes.  
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Figure 3.44 GO cellular component and molecular function enrichment of ALG 

down-regulated genes in HUVEC under hypoxia 

ALG-1001 down-regulated DE genes in HUVEC with hypoxia co-streatment were 

submitted for cellular component (A) and molecular function (B) GO enrichment with results 

visualized using REVIGO. P-value is REVIGO-derived GO enrichment p-value. Size is the 

number of mouse proteins associated with each GO term. Selected biologically relevant GO 

terms are labeled.  
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Gene Direction 5' to 3' Sequence 

VEGFA Forward AGGGCAGAATCATCACGAAGT 

VEGFA Reverse AGGGTCTCGATTGGATGGCA 

FSTL3 Forward ACATTGACACCGCCTGGTC 

FSTL3 Reverse GTCGCACGAATCTTTGCAG 

TGFBI Forward CACTCTCAAACCTTTACGAGACC 

TGFBI Reverse CGTTGCTAGGGGCGAAGATG 

TGFB2 Forward CAGCACACTCGATATGGACCA 

TGFB2 Reverse CCTCGGGCTCAGGATAGTCT 

YARS Forward ACCTCCACGCATACCTGGATA 

YARS Reverse TTGCTGAGCTGGTAATCAGTG 

TARS Forward GGAGAAGCCGATTGGTGCT 

TARS Reverse TCAACTCAGCTCGACCTCCAT 

ACTB Forward CATGTACGTTGCTATCCAGGC 

ACTB Reverse CTCCTTAATGTCACGCACGAT 

CCL2 Forward CAGCCAGATGCAATCAATGCC 

CCL2 Reverse TGGAATCCTGAACCCACTTCT 

CSF1 Forward TCCAGTTGCTGGAGAAGGTC 

CSF1 Reverse ACATCTTGGCTGGAGCATTC 

RELB Forward AGCTACGGCGTGGACAAG 

RELB Reverse TGGGGGTCAGAGCTGTTC 

Table 3.1 qPCR primers 
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Hypoxia vs. Control 

Up Down Total 

ALG-1001 + 

Hypoxia vs. 

Hypoxia 

Up 125 139 472 

Down 164 71 450 

Total 2674 2702 
 

Table 3.2 Two-way contingency table of hypoxia and ALG-1001 with hypoxia 

treatment regulated DE genes 

A larger portion (61%) of commonly regulated genes are in the reverse direction across the 

two comparisons.  

 

 

 
 

ALG-1001 vs. Control 

Up Down Total 

ALG-1001 + 

Hypoxia vs. 

Hypoxia 

Up 203 0 472 

Down 0 151 450 

Total 816 654 
 

Table 3.3 Two-way contingency table of ALG-1001 regulated DE genes 

All of the commonly regulated genes are in the same direction across the two ALG-1001 

comparisons.   
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Trans. Factor Z-score Activity.diff_

Hypoxia-

Control 

Activity.diff_

ALG48h-

Control 

Activity.diff_

Hypoxia_AL

G-Hypoxia 

SIX5_SMARCC2_HCF

C1 

3.984283 -0.00416 0.00095 0.000501 

TAF1 3.799678 -0.00642 -0.00235 -0.00037 

E2F7_E2F1 3.695472 -0.0064 -0.00136 9.50E-05 

NRF1 3.647543 -0.005 0.00031 5.00E-04 

ELK4_ETV5_ELK1_EL

K3_ELF4 

3.202669 -0.00497 -0.002 0.000284 

TFDP1 3.181176 -0.0051 -0.00095 0.000183 

SMAD4 3.043193 0.005763 0.002883 -0.00094 

HIC2 3.010955 0.006124 0.000152 -0.00096 

WRNIP1 2.937209 0.002543 0.001362 -0.00024 

NFIX_NFIB 2.920625 0.005313 0.001506 -0.00077 

PATZ1_KLF4 2.862023 0.004281 0.001677 -0.00124 

HOXB6_PRRX2 2.860698 -0.00449 -0.00197 -0.0007 

ZBTB33_CHD2 2.68979 -0.00538 -0.0024 0.00074 

EBF1 2.63914 0.004784 0.000684 -0.00124 

SIN3A_CHD1 2.521402 -0.00536 -0.00229 0.000184 

TAL1 2.465716 0.002684 0.00262 0.000746 

GATA3 2.463018 0.002618 0.001966 -5.00E-06 

TBP 2.416656 0.004614 0.001385 0.000431 

PLAGL1 2.402684 0.005463 0.001948 -0.00086 

POU3F2 2.401511 -0.00412 -0.00151 0.001395 

ZBTB14 2.333934 -0.00358 -0.00157 0.000131 

STAT5A 2.302745 -0.00381 -0.00241 8.70E-05 

RUNX1_RUNX2 2.299625 0.003737 0.000961 -0.00043 

POU2F2_POU3F1 2.272958 0.004328 0.001928 -6.70E-05 

MYB 2.272434 -0.00373 -0.00117 -0.00018 

IKZF1 2.261967 0.003544 0.001164 4.90E-05 

AHR_ARNT2 2.255568 -0.0031 -0.00024 2.90E-05 

POU5F1_POU2F3 2.210019 0.00378 0.001746 -0.00056 

ZNF384 2.190534 -0.00343 -0.00134 0.001379 

TFAP2C 2.107671 0.003238 -0.00094 -0.00078 

ESRRA_ESR2 2.077387 0.004888 0.000632 -0.00102 

MEIS2 2.047777 -0.00362 -0.00086 0.000553 
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ZFX 2.047151 -0.00289 -0.00121 -0.00048 

E2F3 2.030033 -0.00359 -3.10E-05 0.000927 

ATF2_ATF1_ATF3 2.030014 -0.0029 -0.00145 0.000442 

EPAS1_BCL3 2.006106 0.003194 0.001539 -0.00039 

CREB1 1.963439 -0.00377 0.000645 2.70E-05 

SMAD1 1.92378 0.00205 0.00064 -0.00076 

CXXC1 1.903042 -0.00357 -0.00186 0.000306 

SP1 1.898054 -0.00206 0.000159 0.001339 

ERG 1.880574 0.002637 0.00184 0.000737 

WT1_MTF1_ZBTB7B 1.800999 0.001699 0.000619 -0.00021 

ZNF143 1.67804 -0.0028 -0.00125 -0.00041 

MECP2 1.673895 -0.00186 0.000171 -0.00072 

DLX4_HOXD8 1.667185 -0.00281 -0.00048 0.000587 

FOXD1_FOXO1_FOXO

6_FOXG1_FOXP1 

1.665125 0.002779 0.00085 -0.00037 

GMEB2 1.659293 -0.00287 -0.00115 7.20E-05 

TLX1_NFIC 1.645351 0.003109 0.000426 -7.30E-05 

BARHL1 1.639518 -0.00295 -0.00063 0.001171 

ZNF711_TFAP2A_TFA

P2D 

1.625267 -0.00151 -9.20E-05 4.30E-05 

Table 3.4 Top 50 TF motifs enriched with hypoxia treatment in HUVEC 

TFs are ordered by Z-score. Activity.diff_Hypoxia-Control is the average target gene activity 

difference between hypoxia and control conditions. Activity.diff_ALG48h-Control is the 

average target gene activity difference between ALG-1001 and control conditions. 

Activity.diff_Hypoxia_ALG-Hypoxia is the average target gene activity difference between 

ALG-1001 + hypoxia and hypoxia conditions. Bolded TFs indicate ones that are also found 

on the list of top 50 TFs enriched with ALG-1001 and hypoxia co-treatment. 
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Trans. Factor Z-score Activity.diff_

Hypoxia-

Control 

Activity.diff_

ALG48h-

Control 

Activity.diff_

Hypoxia_AL

G-Hypoxia 

TAL1 2.330915 0.002684 0.00262 0.000746 

GATA3 1.581428 0.002618 0.001966 -5.00E-06 

KLF16_SP2 1.53227 -0.00017 0.001613 0.000985 

TAF1 1.465342 -0.00642 -0.00235 -0.00037 

ID4_TCF4_SNAI2 1.449888 0.001203 0.00179 0.000794 

STAT5A 1.4191 -0.00381 -0.00241 8.70E-05 

SMAD4 1.410515 0.005763 0.002883 -0.00094 

WRNIP1 1.406317 0.002543 0.001362 -0.00024 

MYF6 1.30968 0.001564 0.002249 0.00125 

ERG 1.273625 0.002637 0.00184 0.000737 

HOXB6_PRRX2 1.21669 -0.00449 -0.00197 -0.0007 

ATF4 1.154007 -0.00086 -0.00243 -0.00187 

CEBPB 1.148956 -0.00129 -0.00237 -0.00165 

YBX1_FOS_NFYC_NF

YA_NFYB_CEBPZ 

1.095402 0.000732 0.001037 0.00047 

ZBTB33_CHD2 1.026279 -0.00538 -0.0024 0.00074 

HOMEZ 1.00642 -0.00164 -0.00191 0.000347 

KLF8 1.00128 0.001451 -0.00123 0.000344 

POU5F1_POU2F3 0.994232 0.00378 0.001746 -0.00056 

ZBTB14 0.991485 -0.00358 -0.00157 0.000131 

POU2F2_POU3F1 0.989412 0.004328 0.001928 -6.70E-05 

ATF2_ATF1_ATF3 0.988414 -0.0029 -0.00145 0.000442 

RXRG 0.978004 0.00036 0.001877 -0.0003 

SIX5_SMARCC2_HCF

C1 

0.976472 -0.00416 0.00095 0.000501 

RHOXF1 0.965833 0.002598 0.001662 0.000477 

SIN3A_CHD1 0.962837 -0.00536 -0.00229 0.000184 

NFKB2 0.93887 0.002021 0.001801 0.000374 

EPAS1_BCL3 0.9382 0.003194 0.001539 -0.00039 

MLXIPL 0.934386 -0.00055 -0.00131 -0.00039 

NR5A2 0.928886 0.000331 0.001681 0.000279 

TCF3_MYOG 0.925927 0.001869 0.001701 0.000297 

BARX1 0.919222 0.000486 0.001714 -2.50E-05 

CPEB1 0.895738 0.001256 0.001702 2.90E-05 
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E2F7_E2F1 0.893876 -0.0064 -0.00136 9.50E-05 

NR1I2 0.888603 0.000676 0.001762 0.000138 

ZNF384 0.875025 -0.00343 -0.00134 0.001379 

ELK4_ETV5_ELK1_E

LK3_ELF4 

0.871213 -0.00497 -0.002 0.000284 

MXI1_MYC_MYCN 0.861105 -0.00028 0.001389 -0.0015 

CREB3L2 0.852152 -0.00051 -0.00172 0.000144 

PATZ1_KLF4 0.850309 0.004281 0.001677 -0.00124 

SPIC 0.845122 5.60E-05 0.001521 0.000256 

ZFX 0.845066 -0.00289 -0.00121 -0.00048 

CDC5L 0.840737 0.000397 0.00161 0.001088 

NFIX_NFIB 0.834121 0.005313 0.001506 -0.00077 

ELF3_EHF 0.821372 -0.00031 -0.00141 -0.00067 

HIC1 0.820189 -0.00042 0.001289 0.000245 

ETV4_ETS2 0.787745 0.000559 0.001413 0.000763 

ESRRB_ESRRG 0.786311 -0.00063 0.001471 0.00035 

ZNF524 0.775437 0.001632 0.00137 -0.00061 

CXXC1 0.768383 -0.00357 -0.00186 0.000306 

IRF2_STAT2_IRF8_IR

F1 

0.759538 0.000673 -0.00153 0.000411 

Table 3.5 Top 50 TF motifs enriched with ALG-1001 treatment under room air 

oxygen tension in HUVEC 

TFs are ordered by Z-score. Activity.diff_Hypoxia-Control is the average target gene activity 

difference between hypoxia and control conditions. Activity.diff_ALG48h-Control is the 

average target gene activity difference between ALG-1001 and control conditions. 

Activity.diff_Hypoxia_ALG-Hypoxia is the average target gene activity difference between 

ALG-1001 + hypoxia and hypoxia conditions.  
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Trans. Factor Z-score Activity.diff_

Hypoxia-

Control 

Activity.diff_

ALG48h-

Control 

Activity.diff_

Hypoxia_AL

G-Hypoxia 

SOX3_SOX2 1.362482 -5.00E-06 0.000532 0.001711 

MNT_HEY1_HEY2 1.243884 -0.00174 -0.00043 -0.00156 

ATF4 1.235011 -0.00086 -0.00243 -0.00187 

ZNF384 1.220908 -0.00343 -0.00134 0.001379 

POU3F2 1.169375 -0.00412 -0.00151 0.001395 

SP1 1.119032 -0.00206 0.000159 0.001339 

CEBPB 1.105643 -0.00129 -0.00237 -0.00165 

MXI1_MYC_MYC

N 

1.047564 -0.00028 0.001389 -0.0015 

PAX5 1.046509 0.000803 -0.00015 -0.00095 

PATZ1_KLF4 1.03941 0.004281 0.001677 -0.00124 

KLF16_SP2 1.034759 -0.00017 0.001613 0.000985 

EBF1 1.002073 0.004784 0.000684 -0.00124 

OLIG3_NEUROD2

_NEUROG2 

0.954093 -0.00118 0.000622 0.001352 

HMX3 0.942457 -0.00147 -0.00028 0.001316 

MYF6 0.939048 0.001564 0.002249 0.00125 

MYBL2 0.93492 -0.0024 -0.00011 0.00131 

IRX3 0.904105 -0.00114 -0.00011 0.001283 

BARHL1 0.894953 -0.00295 -0.00063 0.001171 

FOSL2_SMARCC1 0.874464 0.001586 1.70E-05 -0.00123 

ETV1_ERF_FEV_E

LF1 

0.84078 -9.00E-04 -9.70E-05 -0.00098 

MAZ_ZNF281_GT

F2F1 

0.822072 0.000742 -0.00072 0.000972 

HIVEP1 0.787989 0.002172 0.001181 -0.00114 

RAD21_SMC3 0.783436 0.00022 -0.00048 -0.00107 

HIC2 0.7788 0.006124 0.000152 -0.00096 

TAL1 0.772233 0.002684 0.00262 0.000746 

FOXK1_FOXP2_F

OXB1_FOXP3 

0.766034 0.000221 0.000118 0.001037 

CDC5L 0.7587 0.000397 0.00161 0.001088 

FOXL1 0.757831 -0.00054 -0.00029 0.001006 

MECP2 0.756401 -0.00186 0.000171 -0.00072 

SMAD1 0.752081 0.00205 0.00064 -0.00076 
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ELF2_GABPA_ELF

5 

0.740125 -0.00167 -0.00098 -0.0007 

PLAGL1 0.739074 0.005463 0.001948 -0.00086 

ID4_TCF4_SNAI2 0.736997 0.001203 0.00179 0.000794 

BPTF 0.724676 -0.00089 -0.00064 0.000837 

E2F3 0.703794 -0.00359 -3.10E-05 0.000927 

SMAD4 0.699577 0.005763 0.002883 -0.00094 

FOXD3_FOXI1_FO

XF1 

0.689003 2.30E-05 0.000115 0.000951 

TFAP2C 0.685647 0.003238 -0.00094 -0.00078 

GLI3 0.66094 0.001357 -0.0007 -0.00086 

SCRT1_SCRT2 0.651946 -0.00016 0.000298 0.000964 

FOXO4 0.646831 -0.00048 -0.00081 0.000951 

ERG 0.643106 0.002637 0.00184 0.000737 

RCOR1_MTA3 0.636119 -0.0006 8.10E-05 0.000344 

LEF1 0.614704 -0.00037 -0.00106 0.000864 

MBD2 0.593068 -0.00141 -0.00014 0.000855 

FOXC1 0.592749 -0.00024 -1.60E-05 0.000875 

ZSCAN4 0.591362 -5.40E-05 -0.00023 0.000887 

ZBTB33_CHD2 0.590825 -0.00538 -0.0024 0.00074 

NFIX_NFIB 0.589195 0.005313 0.001506 -0.00077 

ESRRA_ESR2 0.581249 0.004888 0.000632 -0.00102 

Table 3.6 Top 50 TF motifs enriched with ALG-1001 treatment with hypoxia co-

exposure in HUVEC 

TFs are ordered by Z-score. Activity.diff_Hypoxia-Control is the average target gene activity 

difference between hypoxia and control conditions. Activity.diff_ALG48h-Control is the 

average target gene activity difference between ALG-1001 and control conditions. 

Activity.diff_Hypoxia_ALG-Hypoxia is the average target gene activity difference between 

ALG-1001 + hypoxia and hypoxia conditions. Bolded TFs indicate ones that are also found 

in the list of top 50 TFs with hypoxia treatment. 
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Trans. Factor Z-score Activity.diff_ALG-

Control 

BARHL1 2.510727 0.010332 

E2F7_E2F1 2.223354 0.011538 

E2F3 2.163938 0.009745 

FOSL2_SMARCC1 1.897279 -0.01027 

PLAGL1 1.619265 -0.00773 

ZNF384 1.368142 0.006736 

MIXL1_GSX1_BSX_MEOX2_LHX4 1.222901 0.006275 

SMAD4 1.194822 -0.00684 

NFKB2 1.188247 -0.00785 

ZNF524 1.176369 -0.00768 

TFAP2C 1.15979 -0.00529 

CXXC1 1.158057 0.005567 

PPARG 1.144605 -0.00572 

FOXO3_FOXD2 1.125123 0.005529 

ESRRA_ESR2 1.107849 -0.00636 

IKZF1 1.100988 -0.00641 

POU3F2 1.099071 0.007951 

HOMEZ 1.092696 0.00778 

SMAD1 1.038231 -0.00488 

ZBTB33_CHD2 1.029819 0.00906 

ZNF740_ZNF219 1.029537 0.006702 

BPTF 1.02537 0.005366 

SP100 1.020871 0.004835 

PITX1 1.012363 -0.00747 

IRF6_IRF4_IRF5 1.00791 0.007163 

SIX5_SMARCC2_HCFC1 0.993107 0.005058 

SREBF1_TFE3 0.992486 -0.00618 

TAF1 0.989275 0.010782 

EBF1 0.98762 -0.00773 

ELK4_ETV5_ELK1_ELK3_ELF4 0.968993 0.006617 

FOXD1_FOXO1_FOXO6_FOXG1_FOXP1 0.963061 0.005478 

ZNF263 0.959227 -0.00573 

MAFB 0.945579 0.005795 

GCM2 0.929757 -0.00527 

RFX7_RFX4_RFX1 0.91573 -0.00463 
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RUNX3_BCL11A 0.915547 0.005313 

TCF7L1 0.890568 0.004693 

NR3C1 0.889856 0.00371 

ATF7 0.870925 0.00514 

ZNF711_TFAP2A_TFAP2D 0.866604 0.003493 

HOXC9 0.859728 0.004473 

PATZ1_KLF4 0.854418 -0.00217 

KLF15 0.848141 0.004259 

HSFY2 0.84565 0.006691 

PITX3 0.837512 0.004288 

SPDEF 0.835104 0.004976 

LEF1 0.830758 0.004643 

MAFK 0.82314 0.006295 

IRF9 0.802357 0.008305 

HOXC12_HOXD12 0.794469 0.004031 

Table 3.7 Top 50 TF motifs enriched with ALG-1001 treatment in PBMC 

TFs are ordered by Z-score. Activity.diff_ALG-Control is the average target gene activity 

difference between ALG-1001 and control conditions. 
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Chapter 4.  Hypoxia-induced biological regulation in ARPE-19 

cells 

4.1 Introduction 

The human eye is a sophisticated organ, meticulously organized to enable the visual 

perception of our surrounding world. Light enters at front of the eye and is detected by the 

retina, a relatively thin layer tissue consists of mostly retinal photoreceptors and neurons. 

During this process, the photon signals are converted to electrical impulses that are then 

transmitted to brain, where they are interpreted1. This process is highly energy demanding, 

which renders the retina one of the most metabolically active tissue in the body2. To sustain 

the high metabolic need, nutrients are delivered to the photoreceptors through a network of 

capillaries called choroid. Between the choroid and photoreceptors, there is a monolayer of 

pigmented and supportive cells called the retinal pigment epithelium (RPE)3. Despite being 

only one cell layer thick, the RPE plays several important functions, including light energy 

absorption, nutrient and waste transportation, retinal metabolic conversion, growth factor 

secretion, and more3,4. These processes are important for both sustaining the visual system 

and maintaining tissue homeostasis, while any disruption can lead to retinal degeneration, 

reduced visual perception and in severe cases, blindness. 

Age-related macular degeneration (AMD) and diabetic macular retinopathy (DR) are two 

commonly occurring retinal diseases, where RPE plays a role in the pathophysiology. In 

AMD, genetic predisposition combined with environmental stress factors cause RPE damage 
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during the early phase of the disease, which then contribute to the production of pro-

angiogenic factors that drive pathological neovascularization4–6. Similarly, in diabetic 

patients with DR, glucose dysregulation is correlated with RPE cell apoptosis and 

neovascularization7–10. The full pathophysiology of these retinal diseases are complex and 

remain to be explored, but retinal hypoxia is one of the conditions that commonly occur 

during the early stages of retinal diseases. While the cause of the hypoxia varies, the down-

stream responses include activation of inflammation, oxidative stress, angiogenesis, and 

metabolic regulation11–13. Under normal physiological condition, the hypoxia-activated 

activities help the tissue return to homeostasis. However, under prolonged stress exposure, 

as typical of retinal diseases, the hypoxia-activated responses can become chronic and 

eventually cause irreversible damage to the tissue13,14. Thus, it has become increasingly clear 

that persistent retinal hypoxia and its activated processes contribute to dysregulation of RPE 

cells and disruption of their normal function in maintaining retinal homeostasis.  

Current research in hypoxia-activated RPE response is limited, but largely consistent with 

our general understanding of hypoxia regulation. In an in vivo mouse model study, activated 

hypoxia was shown to commit the RPE to switch from using oxidative phosphorylation to 

glycolysis for energy production. This metabolic adaptation induced the RPE to hoard 

glucose and reduce glucose delivery to the photoreceptors, thus causing retinal 

degeneration15. In other studies with in vitro ARPE-19 cells, a cell line derived from human 

RPE tissue, the putative hypoxia response protein HIF-1α was found to be stabilized after 

hypoxia exposure and contributed to elevated secretion of the potent pro-angiogenic factor – 
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vascular endothelial growth factor (VEGF)16–18. Recently, the high-throughput RNA-

sequencing (RNA-seq) technique was used by Jiang and coworkers to study the 

transcriptome regulation during acute hypoxia exposure (1-4 hours) in ARPE-19 cells19. In 

that study, the authors found acute hypoxia induced detectable up-regulation of apoptosis, 

metabolism, ribosome, and translation machinery genes and down-regulation of cell cycle 

genes. To the best of our knowledge, the Jiang study presents the first application of RNA-

seq to study the hypoxia-activated expression change in RPE cells, but the short hypoxia 

exposure used in the Jiang study cannot capture the transcriptome change associated with 

chronic hypoxia found in the retinal diseases. 

In this study, we explored the transcriptome regulation after varying length of low-oxygen 

exposure by conditioning ARPE-19 cells with short- (8 hours), intermediate- (2 days), and 

long-term (2 weeks) hypoxia (3% O2) followed by RNA-seq to identify the differentially 

expressed genes compared to untreated (maintained at room oxygen tension) control. We are 

interested in exploring the overall transcriptome change at each time point, as well as 

similarities and differences in gene expression after varying length of hypoxia exposure. 

Additionally, a separate set of samples were prepared with exposure to two weeks of hypoxia 

followed by two weeks of room air oxygen tension. Here, we asked the question whether the 

cells can recover from long-term hypoxia stimulation, and if so, what is the extent of the 

recovery. For each condition, we also performed dead and live staining and ROS 

measurement to identify the treatments’ effect on visible cell death and measurable ROS 

level. Altogether, our study provides a quantitative view of the transcriptome regulation and 
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the accompanying physiological changes after different length of hypoxia exposure and 

recovery in RPE cells.  

 

4.2 Materials and Methods 

Cell culture 

ARPE-19 cells at passage 19 (P19) were purchased from the American Type Culture 

Collection and grown to P22-24 for all experiments. Cell cultures were kept in a 37˚C 

humidified incubator with pH controlled by 5% CO2 and media exchanged twice per week. 

Initially, DMEM/F12 (Thermo Fisher) supplemented with 10% fetal bovine serum (FBS, 

Thermo Fisher) and Antibiotic Antimycotic Solution (Sigma-Aldrich) was used to culture 

the cells. Once cells reach confluency in the assay plate, the FBS concentration was reduced 

to 2% for the remainder of the experiments. After the switch to low serum, the cells were 

cultured for six more weeks with plates moved to and from a hypoxia chamber (Biospherix) 

with O2 concentration set to 3% and placed inside the cell culture incubator. All cells were 

collected or assayed at the end of the six weeks culture period after reaching the appropriate 

period of hypoxia and room air oxygen tension conditioning (see Figure 4.1 for more 

details).  

ROS assay 

For ROS assay, ARPE-19 cells were cultured on 96-well plates (Falcon). To start the assay, 

cells were washed once with Phosphate-Buffered Saline (PBS, Thermo Fisher) and then 
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incubated with 2µM H2DCFDA (Thermo Fisher) in cell culture media for 30 minutes at 

37˚C. Next the media-dye mixture was replaced with PBS and ROS-correlated fluorescent 

signal detected on a microplate reader with excitation at 482nm and emission at 520nm. 

Experiment was repeated once with n=12 per condition. Differences between hypoxia-

treated conditions and control were tested using one-way ANOVA with Dunnett multiple 

testing correction. Statistical analysis was performed in GraphPad Prism 7.00. 

Dead and live staining 

For dead and live staining, ARPE-19 cells were cultured on 24-well plates (Falcon). The 

LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen) was used to simultaneously capture the 

status of both dead and live cells. At the start of the assay, cells were washed once with PBS 

before incubation for 30 minutes at 37˚C in the media-dye mixture. At the end of incubation, 

cells were washed with PBS and imaged on a Zeiss Axiovert 25CFL microscope. FIJI 

software package was used to merge fluorescent signals into one image with red indicating 

dead cells and green indicating live cells. Phase contrast images were captured on the same 

microscopy system with bright-field illumination. A 10x Lysis Buffer (Thermo Scientific 

Pierce) was used as the lethal control and was added to the wells to working concentration 

for 15 minute incubation before staining.  

RNA-seq sample preparation 

For RNA-seq study, ARPE-19 cells were cultured on laminin-coated Transwell filter inserts 

(Corning) in six-well tissue culture plates (Falcon) as previously described20. At end of cell 
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culture, cells were washed once with PBS without calcium and magnesium (Thermo Fisher) 

and collected using Accutase (Stemcell Technologies). Total RNA was extracted using 

RNeasy Mini Kit (Qiagen) and contaminating DNA removed using TURBO DNA-free kit 

(Thermo Fisher). RNA quality was measured using Bioanalyzer (Agilent Genomics); all 

samples were found to have a passing quality score of at least 7.20 RNA integrity number. 

RNA-seq libraries were then prepared using NEBNext Ultra RNA Library Prep Kit for 

Illumina (New England Biolabs Inc.) and sequenced on the HiSeq 2500 (Illumina) to 

generate on average 12.5 million, single-end, 100 base pair reads per sample. 

RNA-seq analysis 

Quality control 

FASTQ files generated by RNA-seq were submitted to FastQC for quality control. All 

samples showed good sequencing quality and were submitted for read alignment. Alignment 

was performed using Tophat2 to the hg38 genome and transcriptome references with Bowtie 

2 sensitivity level set to very sensitive21. After read alignment, gene counts were quantified 

using HTSeq-count using the intersection-strict model22. FastQC, tophat2 and HTSeq-count 

reports were visualized using multiQC software (Figure 4.2-4.4)23. 

Principle Component Analysis (PCA) 

PCA was used to visualize the high-dimensional dataset. To eliminate null values, all counts 

in HTSeq-count-derived count table were increased by one. Transcript per Million (TPM) 

values were then calculated to correct for varying sequencing depth and gene length24. To 
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reduce sensitivity to the uncertainty in TPM of low-expressing genes, PCA excluded genes 

for which the TPM averaged over all samples in the analysis was < 5. Finally, natural log of 

TPM values was used as input for PCA. From this analysis, no obvious outlier sample was 

detected. 

EdgeR differential expression comparison 

In the analysis of differential expression, it is beneficial to exclude genes that are not 

expressed (they reduce statistical power for identifying differential expression). Here, we 

retained expressed genes, defined as those with Count per Million (CPM) > 1 in at least five 

samples (the number of biological replicates per condition). CPM is calculated to normalize 

for sequencing depth 24. Around 13,000 genes remain after filtering. Next, the classical 

approach of edgeR was used to perform all of the differential expression comparisons25. After 

statistical test, genes with False Discovery Rate (FDR) ≤ 0.05 were considered as 

differentially expressed (DE) and further separated into up-regulated and down-regulated 

gene lists.  

Goseq enrichment analysis of DE gene list 

Functional analyses of the DE genes were performed with the goseq package, which 

mitigates gene length bias inherent to RNA-seq26. Enrichment was performed with both Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological 

pathways27,28. GO terms associated with genes were obtained from biomart while KEGG 

pathways were obtained from the KEGG REST server using the keggrest package29,30. For 
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each comparison, enrichment was performed separately for the up- and down-regulated gene 

lists. GO terms were considered enriched with FDR < 0.05 and visualized using REVIGO, a 

visualization tool that aggregates closely-related GO terms, with similarity level set to small 

and GO term size determined using the UniPort Homo Sapiens database31. Selected GO 

terms were labeled on the REVIGO plot base on our perception of their biological relevance. 

KEGG pathways were considered enriched with Benjamini-Hochberg adjusted p-value < 

0.05 (p-values are displayed in bar plots). In addition, “Human Diseases” KEGG pathways 

were removed to improve clarity. 

ERSSA 

ERSSA was used to check whether the number of biological replicates used in the RNA-seq 

experiment is sufficient to identify the majority of DE genes32. Analysis was performed with 

absolute log2-fold-change cutoffs set to 0.5 and 50 subsamples at each replicate level. 

DE gene heatmap of log2-fold-change values 

Heatmaps of TPM value were used to visualize the expression profile of DE genes. TPM 

values were first calculated from the unadjusted gene counts; then for each gene, TPM was 

offset such that the minimum is zero and normalized so the maximum is one. DE genes were 

clustered using k-mean method with k=6 selected based on clustering performance across 

experimental conditions as well as the marginal improvement in sum squared error (Figure 

4.26A). For each cluster, associated genes were used for functional analysis using goseq as 

previously described.  
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ISMARA 

ISMARA was used to identify the transcription factors that may be responsible for the 

observed profiles of gene expression changes in this study33. All samples were submitted to 

ISMARA with analysis focused on the top 50 most active motifs as ranked by the enrichment 

Z-score. For the HIC2 protein, STRING was used to visualize the protein associations 

between the transcription factor targets34. Default settings were used for STRING network 

generation.  

Data availability 

Raw RNA-seq Fastq files will be available at Gene Expression Omnibus once the study has 

been published35. All enrichment tables will be made available at CaltechDATA36. 

Reverse transcription and quantitative polymerase chain reaction (qPCR) 

From the DE genes identified by edgeR, six genes were selected for separate validation with 

qPCR: HIF1A (hypoxia response), LDHA (sustains glycolysis), DLD (oxidative 

phosphorylation), SOD2 (clears ROS), MMP2 and VEGFA (angiogenesis). SuperScript IV 

Reverse Transcriptase (ThermoFisher) and oligo(dT)20 primer (ThermoFisher) were used to 

convert polyadenylated mRNA to cDNA. qPCR was performed using iTaq Universal SYBR 

Green Supermix (Biorad) on LightCycler 480 (Roche) with 45 amplification cycles. All 

samples were selected for analysis. To enhance accuracy, four technical qPCR replicates of 

the same cDNA were generated and the median value selected for fold change calculation. 
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Differences were calculated using the ΔΔCt method versus TUBB37. Primers used in this 

study were obtained from PrimerBank (Table 4.1)38.  

 

4.3 Results 

ROS assay 

Hypoxia is a major physiological stimulus that activates many intracellular processes 

including elevation of ROS production39. Using a non-fluorescent dye that becomes highly 

fluorescent after intracellular oxidation, we measured the ROS level in ARPE-19 cells 

exposed to different length of hypoxia exposure (Figure 4.1). Compared to control, ROS 

level appears unchanged after 8 hours of acute hypoxia, but is weakly elevated after 2 days 

and 2 weeks of prolonged hypoxia conditioning (Figure 4.5). Intriguingly, cells that were 

allowed to recovery after 2 weeks of hypoxia did not show increased ROS level compared 

to control. 

Dead and live staining 

A dual color dye system was used to stain for dead (loss of plasma membrane integrity) and 

live (active intracellular esterase activity) ARPE-19 cells after hypoxia treatment. 

Micrograph results show that in all hypoxia conditions, the cell monolayer was maintained 

and no elevated density of dead cells was observed (Figure 4.6). While it is hard to 

distinguish individual cells, the overall cell morphology also appeared to be unchanged after 

treatment. 
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PCA 

For each experimental condition, five samples were generated for RNA-seq to probe the 

transcriptome regulation modulated by each treatment relative to control. PCA was first used 

to visualize the RNA-seq samples in a low-dimensional space to identify potential outliers 

and to visualize the separation between conditions. Based on the analysis of the top three 

principal components (PC1-3 captured a combined 75% of total variance), no obvious 

outliers were detected (Figure. 4.7). The PC1 alone accounted for 47% of total variance in 

the dataset and clearly separated hypoxia samples from control and hypoxia recovery 

samples. On PC2, samples that experienced 2 weeks of hypoxia with and without recovery 

were moderately separated from the other samples. Intriguingly, there appeared to be a 

trajectory among the hypoxia samples on PC2: 8 hours-treated samples on one end, 2 days-

treated samples in the middle and 2 weeks-treated samples on the other end. In addition, 

hypoxia recovery samples appeared to cluster close to control samples on PC1 and between 

control and 2 weeks-treated samples on PC2. Without looking at the DE genes, PCA 

evidence suggest that: 1) there is a detectable transcriptome change after hypoxia exposure, 

2) hypoxia’s effect on the transcriptome varies based on treatment length, and 3) gene 

expression partially recovered after long-term hypoxia treatment, but the recovery was not 

complete.  

Transcriptome regulation during hypoxia exposure 
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EdgeR was used to identify DE genes between control and each of the hypoxia-treated 

cohorts without recovery (8 hours, 2 days and 2 weeks). Surprisingly, around 6300-6600 DE 

genes (representing roughly half of the detectable expressed genes) were discovered in each 

of the comparisons, representing a major shift in the transcriptome after hypoxia treatment 

(Figure 4.8). This transcriptome shift appeared to occur relatively quickly as it was already 

detectable after 8 hours of hypoxia exposure. To confirm enough biological replicates were 

included in the comparisons, we used ERSSA to simulate DE discovery at different sample 

sizes. The simulation showed small marginal improvements past four biological replicates in 

all three comparisons, suggesting five replicates was sufficient to identify a majority of DE 

genes with |log2-fold-change|>0.5 (Figure 4.9-4.11).  

With the DE genes, functional analysis was performed to understand the biological processes 

that are regulated during hypoxia. At all three time points, we see putative hypoxia-response 

biological processes were enriched with up-regulated DE genes: “blood vessel 

development”, “immune system process”, “response to hypoxia”, “cell proliferation”, “cell 

death”, and others (Figure 4.12A, 4.14A, 4.16A). Some of the angiogenesis-related 

processes enriched include “actin cytoskeleton organization”, “extracellular matrix 

organization”, “locomotion”, and “anatomical structure morphogenesis”. These findings are 

consistent with previous studies that found RPE under hypoxia stress will respond by 

promoting angiogenesis13,16,40. Enrichment with the down-regulated DE genes generally 

identified processes involved in metabolism: “oxidative-reduction process”, “small molecule 

metabolism”, “electron transport chain”, “cellular respiration”, and others (Figure 4.12B, 
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4.14B, 4.16B). Down-regulation of genes related to mitochondria-based metabolism is 

consistent with hypoxia-induced shut down of aerobic respiration2,40.  

To identify variation in enriched GO biological processes among each of the three hypoxia 

comparisons, each comparisons’ top 100 processes (referred to as “top processes”) with the 

strongest statistical evidence were selected and compared (Figure 4.19). This analysis 

showed there are more than 70 common top processes enriched with up-regulated genes in 

the three hypoxia comparisons (Figure 4.19A). On the other hand, the top processes enriched 

with the down-regulated genes showed less similarity with only 40 found in all three 

comparisons and 26 others that are shared between the two latter time points (2 days and 2 

weeks-treated hypoxia). More importantly, more than 51 (8 hours), 25 (2 days), and 34 (2 

weeks) top processes were found in only one of the hypoxia comparisons. A closer look at 

the 51 unique top processes at 8 hours revealed many that are involved in transcription and 

translation, such as “RNA processing”, “mRNA processing”, “ribosome biogenesis”, and 

“translation” (Figure 4.19B). On the other hand, the unique top processes enriched at the 

latter two times points appeared to be more diverse (Figure 4.20).  

Beyond GO analysis, DE genes were used to identify over-represented KEGG pathways. 

Across the pathways enriched, many are related to either inflammation (“cytokine-cytokine 

receptor interaction”, “leukocyte transendothelial migration”, “chemokine signaling 

pathway”, etc.) or angiogenesis (“MAPK signaling pathway”, “VEGF signaling pathway”, 

“PI3k-Akt signaling pathway”, “regulation of actin cytoskeleton”, and others). Additionally, 

eight KEGG pathways were consistently found to be enriched (highlighted in Figure 4.13A, 
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4.15A, 4.17), including “ribosome”, “ECM-receptor interaction”, “Cell adhesion molecules 

(CAMs)”, “HIF-1 signaling pathway”, “Focal adhesion”, and “complement coagulation 

cascades”, “Hematopoietic cell lineage”, and “axon guidance”.  

Pathway enrichment with the down-regulated genes found a combination of “genetic 

information processing” and “metabolism” pathways after 8 hours of hypoxia treatment 

(Figure 4.13B). In particular, “oxidative phosphorylation” is enriched along with those 

related to transcription (“Spliceosome” and “RNA transport”) and translation (“Ribosome 

biogenesis in eukaryotes” and “Proteasome”). As hypoxia prolong to two days and two 

weeks, we see significantly more enrichment of a variety of metabolic pathways (Figure 

4.15B, 4.18), ranging from “pyruvate metabolism” to “fatty acid degradation” and “carbon 

metabolism”. Among the three time points, four pathways are consistently enriched: 

“oxidative phosphorylation”, “metabolic pathways”, “thermogenesis”, and “proteasome”.  

Transcriptome variation after hypoxia recovery 

In agreement with PCA, the differential expression discovery with hypoxia recovery samples 

is smaller in scale compare to the other hypoxia treatment cohorts (Figure 4.21). Unlike the 

other groups, the number of DE genes discovered is reduced roughly by half to around three 

thousand genes (Figure 4.21A). In addition, their fold changes were much closer to zero, 

with no DE genes of |log2-fold-change|>2. These observations suggest the transcriptome of 

hypoxia recovery samples is much closer to control condition, a sharp contrast from other 

hypoxia groups. Additionally, ERSSA showed this comparison would benefit from additional 
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samples, as many of the genes with small change may need additional replicates to be 

identified with statistical significance (Figure 4.21D).  

GO biological process and KEGG pathway enrichment found processes and pathways 

previously enriched in hypoxia treatment groups. Some of the GO biological processes 

enriched with up-regulated genes include those involved in angiogenesis (“anatomical 

structure morphogenesis”, “extracellular matrix organization”, “actin cytoskeleton 

organization”), inflammation (“immune system process”), “response to hypoxia”, “cell 

proliferation”, and “cell death” (Figure 4.22A). On the other hand, enrichment with down-

regulated genes revealed those involved in metabolism, including “oxidative-reduction 

process”, “carboxylic acid catabolism”, and others (Figure 4.22B). Consistent with the GO 

analysis, KEGG pathway enrichment discovered many pathways previously enriched among 

all of the three hypoxia treatment groups: 6/8 pathways consistently enriched with up-

regulated genes and “metabolic pathways” with down-regulated genes (Figure 4.23-4.24). 

Next, limited to the genes regulated after 2 weeks of hypoxia exposure, we are interested in 

observing their expression profile after recovery. Intriguingly, we found a majority of these 

genes have closer to control expression level after recovery (Figure 4.25, fold changes after 

recovery are closer to zero). However, the Pearson’s r correlation is 0.7177, suggesting there 

is still strong correlation to hypoxia response despite two weeks of recovery at control 

oxygen tension.  

Hypoxia-induced transcriptome response across time series 
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To further understand gene expression variation among the treatment cohorts, we selected 

DE genes across all comparisons and used k-mean clustering to form six groups of genes 

with different expression profile (Figure 4.26B). Cluster 1 to 3 appear to contain genes that 

are up-regulated after hypoxia exposure: cluster 1 show highest expression after 2 days of 

hypoxia, cluster 2 after 2 weeks of hypoxia, and cluster 3 after 8 hours of hypoxia (Figure 

4.27, 4.28A). Genes in cluster 4 to 6 are generally down-regulated after hypoxia exposure, 

with cluster 4 showing lowest expression after 2 weeks, cluster 5 consistently across all three 

hypoxia time points, and cluster 6 after 8 hours of hypoxia (Figure 4.28B, 4.29).  

For the genes identified in each cluster, GO biological process and KEGG pathway 

enrichment were performed to identify associated functions. Out of the three clusters with 

up-regulated DE genes, only cluster 2 generated enrichment results (Figure 4.27, 4.28A), 

which included many of the same biological processes enriched after all three hypoxia 

treatments. A closer look at several of these enriched GO biological processes shows genes 

associated are consistently up-regulated after 8 hours and 2 days hypoxia and eventually 

reach peak measured expression after 2 weeks (Figure 4.30).  

Enrichment analysis of the three clusters containing down-regulated genes are consistent 

with earlier functional analysis. In cluster 6, which showed the sharpest down-regulation 

after 8 hours of hypoxia, mainly transcription and translation processes are enriched (Figure 

4.29B). Similarly, enrichment of cluster 4 genes, which showed the lowest expression after 

2 weeks of hypoxia, identified a diverse array of metabolic pathways that were previously 

enriched with down-regulated genes after 2 weeks of hypoxia (compare Figure 4.28B with 
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Figure 4.18). Lastly, cluster 5 contains genes sharply down-regulated at all three hypoxia 

time points (Figure 4.29A), which were used to enrich many pathways related to aerobic 

respiration (e.g. “oxidative phosphorylation” and “citrate cycle”).  

Transcription factor (TF) enrichment 

ISMARA was applied to identify TFs that are likely involved during hypoxia regulation. In 

the top 50 TF groups enriched as ranked by Z-score, we found many of them are well known 

regulator of biological processes important during hypoxia response (Figure 4.31 and Table 

4.2). Some of the target genes of the enriched biologically-relevant TFs have higher 

expression during hypoxia (Figure 4.31A) while others have lower expression (Figure 

4.31B).  Noteworthy TFs with higher target gene expression include known regulators of 

hypoxia response (HIF1A, ARNT, ARNT2, EPAS1), cell proliferation/apoptosis (KLF4, 

SRF, FOSL1, FOSL2, ATF4), inflammation (BCL3, CEBPB, CEBPD), and angiogenesis 

(ZBTB7B) (Figure 4.32)41. Interestingly, we see a variety of patterns in the target gene 

activity with some (e.g. HIF1A and ERG) that are highly activated during initial hypoxia 

followed by a gradual decline and others that do not become involved until after at least 2 

days of hypoxia (e.g. CEBPB and ATF4). Similarly, TFs with lower target expression are 

enriched and function in hypoxia-regulated biological processes such as cell 

proliferation/apoptosis (MYC, MXI1, MYCN, FOS, CEBPZ, HCFC1, TAF1, ATF1/2/3), 

metabolism (NRF1), oxidative stress response (NFE2L2), and hypoxia response (CREB1) 

(Figure 4.33)41. As before, a diverse array of target expression profile were detected, 

including those that initially have the lowest target gene activity that gradually recovered 
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(e.g. MYC, MXI1, MYCN, CREB1, TAF1) and others have target genes more consistently 

down-regulated throughout hypoxia exposure (e.g. NRF1, FOS, CEBPZ).  

We also observed many members of the ETS transcription factor family were enriched, 

including ERG with up-regulated targets and ETV1, ERF, FEV, ELF1, ELF2, GABPA, and 

ELF5 with down-regulated targets (Figure 4.32-33). ETS family is a large family of proteins 

known to be active in regulating a wide variety of functions including cell migration, cell 

proliferation, angiogenesis, inflammation, and apoptosis42. Indeed, several ETS family 

members were also previously found to be involved in transcriptome regulation during 

hypoxia exposure43,44. 

Since ISMARA is an unbiased approach to identify TFs that may be involved during hypoxia, 

it can also be used to discover TFs with unknown regulatory functions. In this dataset, we 

found one particular TF – HIC2 that was ranked very high on the enrichment result (number 

12, Z=2.752), but have only been studied in a few studies unrelated to hypoxia45–47. Activity 

profile of HIC2 shows its target genes are consistently up-regulated by hypoxia across all 

three treatment groups (Figure 4.34A). Intriguingly, ISMARA predict HIC2 regulated several 

genes important for angiogenesis (VEGFA, MMP2, ADM, TGFA, and collagen proteins) 

and metabolism (LDHA, PKM and GPI) (Figure 4.34B)41. Furthermore, HIC2 was also 

enriched with ISMARA analysis of HUVECs after exposure to hypoxia (number 8, Z=3.011, 

Chapter 3). 

qPCR 
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qPCR was used to validate RNA-seq measured expression profile. For this purpose, six genes 

important in hypoxia-response were selected: HIF1A (hypoxia response), LDHA (sustains 

glycolysis), DLD (oxidative phosphorylation), SOD2 (clears ROS), MMP2 (angiogenesis), 

and VEGFA (angiogenesis). RNA-seq detected hypoxia-response varies between the six 

genes: HIF1A was slightly down-regulated, LDHA, MMP2, and VEGFA were significantly 

up-regulated, while DLD and SOD2 were down-regulated. For all six genes tested, qPCR 

measured expression profiles (Figure 4.35B) are highly consistent with those identified by 

RNA-seq (Figure 4.35A), demonstrating the accuracy of RNA-seq quantification.  

 

4.4 Discussion 

In this study, we employed RNA-seq to probe the cellular transcriptomic response after short 

(8 hours) to long-term (2 weeks) hypoxia in ARPE-19 cells. Based on this dataset, we found 

many putative hypoxia response pathways are modulated with the regulation both rapid and 

dynamic. After 8 hours of hypoxia treatment, we already detected differential expression of 

slightly less than half of the expressed genes. In particular, it is surprising to see many genes 

up-regulated more than several folds (~10% of up-regulated gene with more than 1 fold 

change) after such short amount of hypoxia exposure (Figure 4.8A). Next, as hypoxia 

exposure lengthens to two days and two weeks, we are surprised to see that the number of 

regulated genes detected stayed roughly the same at around half of the expressed 

transcriptome (Figure 4.8C, E). However, further analysis of these genes suggest the identity 

of regulated genes can differ among the three time points tested.  
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First, focusing on genes up-regulated by hypoxia, many biological processes are consistently 

enriched regardless of the hypoxia treatment time (Figure 4.12A, 4.13A, 4.14A, 4.15A, 

4.16A, 4.17). This is supported by supplementary analysis of the top 100 enriched GO 

biological processes found in analysis of each hypoxia group, where 70 out of the 100 top 

processes are found in all three hypoxia cohorts (Figure 4.19A). Time series analysis 

provides another dimension to this observation. By following four processes that are enriched 

in each of the three hypoxia groups, we found their associated DE gene expression pattern is 

in fact dynamic (Figure 4.30). Thus, although many biological processes are consistently 

activated by hypoxia regardless of exposure time, the expression level of the associated genes 

is dependent on amount of low-oxygen exposure. 

Focusing on the specific biological processes up-regulated, we found they are predominantly 

involved in angiogenesis, immune activation and hypoxia response at all three time points. 

Angiogenesis and inflammation, in particular, are two well-known physiological responses 

to low tissue oxygen supply: angiogenesis grows new vessels to improve oxygen supply, 

while inflammation cleans up damaged cells and cell debris generated by the hypoxic 

stress48–50. Both conditions are also extensively reported to be active in retinal diseases and 

are associated with disease progression5,13,51,52. In fact, studies have previously shown that 

RPE cells may be the main source of the potent angiogenic factor, VEGF, in the diseased 

retina3. Collectively, these findings suggest hypoxic stress can induce RPE cells to activate 

disease-relevant physiological processes, which can contribute to disease development. 
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Next, focusing on down-regulated genes, we found GO biological process and KEGG 

pathway analyses both suggest transcription and translation-related genes are 

disproportionally down-regulated after eight hours of hypoxia (Figure 4.12B, 4.13B, 4.19B). 

As some of the most energy intensive processes, mRNA synthesis and protein translation are 

known to be rapidly suppressed during hypoxia response at a time when energy supply is 

disrupted53,54. Yet, as hypoxia continues, the biological processes that are most highly 

enriched are replaced with ones that are involved in metabolism, particularly ones involved 

in aerobic respiration, i.e. TCA cycle and oxidative phosphorylation (Figure 4.14B, 4.15B, 

4.16B, 4.18). This is consistent with our current understanding of hypoxia, where a lack of 

oxygen supply induces cells to primarily use oxygen-independent glycolysis for energy 

production. DE gene expression clustering analysis provided additional evidence to support 

these finding. In the three clusters that contained down-regulated genes after hypoxia 

exposure, cluster 6 showed the lowest expression after 8 hours of hypoxia treatment and was 

highly enriched with genes involved with transcription and translation (Figure 4.29B). 

Similarly, cluster 4 and 5 both mainly enriched metabolic related processes with genes down-

regulated the most after 2 weeks hypoxia (Figure 4.28B) or consistently down-regulated 

across all hypoxia treatments (Figure 4.29A). 

In relation to the Jiang et al. study that used RNA-seq to measure ARPE-19 transcriptomic 

response after acute hypoxia exposure (4 hours and less)19, our results show major 

similarities as well as differences. First, both datasets found acute hypoxia induced regulation 

of transcription and translation processes. However, the enrichment results differ from there 
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as the Jiang study also found activation of apoptosis and suppression of cell cycle genes. 

Among these two processes, we found very weak enrichment of “cell death” and no 

functional analysis results that suggest cell cycle down-regulation. We suspect this 

discrepancy might be due to a relatively mild 3% O2 hypoxia treatment used in our study 

compare to the 1% O2 used in the Jiang study. Consistent with the lack of apoptosis-related 

biological enrichment, dead and live staining as well as ROS assay did not reveal any 

systematic loss of cell density or significantly elevation of ROS level after 3% O2 hypoxia 

exposure (Figure 4.5-6). In a second major difference, the Jiang study did not detect the 

activation of angiogenesis and inflammatory processes and suppression of metabolic genes. 

We suspect this might be due to a lack of statistical power in the original study (2 replicates 

per condition), where only 332 DE genes were identified (versus ~6000 in each of our 

hypoxia cohorts). As a result, the limited replicates employed likely failed to capture many 

of the real changes between the conditions.  

In our dataset, we also found genes normally associated with “axon guidance” KEGG 

pathway are up-regulated by hypoxia in ARPE-19 cells. This observation is confounding as 

a literature search failed to find a connection between RPE cells and axon guidance, which 

is a key process in the formation of a neuronal network. Intriguingly, a yet unpublished study 

also found highly statistical significant enrichment of axon guidance pathway, but in the 

context of RPE cells stimulated to undergo EMT55. In that study, 40 axon guidance-related 

genes were found to be regulated after EMT induction and out of those, 37 are also regulated 

by hypoxia in at least one of the hypoxia time points in our study. These results suggest genes 
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normally involved in axon guidance may also be involved in EMT and that regulation of 

these same genes by hypoxia indicate possible induction of EMT in ARPE-19 cells. Since 

RPE cells that undergo EMT have been reported in a variety of retinal diseases including 

AMD56, our transcriptome findings suggest hypoxia may be one of the contributing factors 

to the transition. Based on these observations, further investigation in the connection between 

hypoxia and EMT is warranted, particularly in the context of the possible role EMT may 

play in retinal disease pathophysiology. 

In comparison to our other studies of hypoxia-induced transcriptome response in OIR mice 

(Chapter 2) and human endothelial cells (Chapter 3), many of the same biological 

processes were found to be enriched in ARPE-19 cells. In all three studies, we found 

inflammation, angiogenesis, and hypoxia-response processes were enriched with up-

regulated genes, which suggest activation of these processes is likely to be more universal. 

On the other hand, enrichment of down-regulated genes produced different results, where the 

mice study (Chapter 2) mainly found down-regulation of neuronal and metabolic processes, 

while the endothelial study (Chapter 3) found down-regulation of both cell cycle and 

metabolism. Additionally, since both previous studies involved hypoxia exposure longer 

than 8 hours (5 days in OIR mice and 1 day in endothelial cells), down-regulation of 

transcription and translation-related genes were not strongly detected.  

In this study, we also conditioned ARPE-19 cells to two weeks of hypoxia followed by two 

weeks of recovery at room air oxygen tension. These hypoxia recovery samples showed 

expression profile that is fairly close to control samples while retaining some signature of the 
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hypoxia-induced transcriptome modulation. First, PCA shows hypoxia recovery samples 

clustered closely with control samples on the major PC that separates the control and hypoxia 

samples (Figure 4.7A). Additionally, PC2 shows recovery samples are situated between 

control and 2 weeks hypoxia-treated samples, which suggest recovery samples likely have 

an expression profile between these two conditions. Similarly, DE gene heatmap shows gene 

expression of hypoxia recovery samples largely resided between control and week 2 hypoxia 

treated levels (Figure 4.26). Compared to the other three time points, comparison of hypoxia 

recovery samples to control also identified around half as many DE genes, many of which 

have relatively small fold change and none with |log2-fold-change|>2 (Figure 4.21A). 

Functional analysis of these DE genes revealed many of the same biological processes 

previously enriched with the other hypoxia treatment conditions, suggesting some of the 

hypoxia modulated signature is retained despite the long recovery period (Figure 4.22-4.24). 

In short, these results demonstrate ARPE-19 gene expression is adaptable to oxygen level, 

but some signature of hypoxia remains even after recovery.  

Transcription factor enrichment largely supports results of functional analysis based on DE 

genes (Figure 4.31). Focusing on the top 50 enrichment TFs, we recovered many that are 

known to regulate the biological processes enriched with the hypoxia-regulated genes. In 

addition, we also enriched a mostly uncharacterized transcription factor – HIC2, with strong 

statistical significance. Based on ISMARA calculation, expression of predicted HIC2 target 

genes were consistently up-regulated at all three hypoxia time points (Figure 4.34) and some 

of the possible targets include angiogenesis- and metabolic-related genes. At the time we 
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performed this analysis, less than five HIC2-associated papers have been published and none 

of them in context of hypoxia activation. Based on these observations, it may be interesting 

to further explore HIC2 in context of hypoxia response and identify the genes modulated by 

the transcription factor.  

 

4.5 Conclusions 

In the present study, we exposed human RPE cells to three different length (8 hours, 2 days, 

and 2 weeks) of 3% O2 hypoxia treatment and probed the hypoxia-induced transcriptome 

regulation using RNA-seq. Our results suggest the hypoxia-induced transcriptome regulation 

is both rapid and dynamic with many processes involved, such as activation of angiogenesis 

and inflammation genes as well as suppression of metabolic genes. Another set of samples 

prepared with 2 weeks of hypoxia exposure followed by room air oxygen tension recovery 

showed their transcriptome was in a state between the control and long-term hypoxia treated 

cells, suggesting at least a portion of the transcriptome response to hypoxia is reversible. We 

also discovered a poorly studied transcriptome factor that may be involved in hypoxia 

regulation and found evidence that suggest hypoxia exposure may have activated EMT in 

RPE cells, both of which are interesting areas for future research.  
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4.6 Figures and Tables 

 

 

Figure 4.1 APRE-19 hypoxia treatment design 

ARPE-19 cells were exposed to 3% O2 (red bar) or room air oxygen tension (empty) for the 

specified amount of time before assay at the end of six weeks of confluent cell culture. After 

reaching confluency (week 0), cells were cultured for two weeks without any hypoxia 

treatment to induce differentiation into RPE morphology.  
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Figure 4.2 FastQC mean sequencing quality score 

MultiQC plots the average sequencing quality Phred score at each base in the reads generated 

for each sample. Each line detonates a sample with majority of them overlapping throughout 

the entire 100 base pair region. Green Phred score indicates good sequence quality while red 

indicates poor quality.  
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Figure 4.3 Tophat2 statistics 

At least 89% of reads were mapped in all 25 samples by Tophat2. 
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Figure 4.4 HTSeq-count statistics 

HTSeq-count uniquely assigned (blue bar) between 70-77% of a sample’s aligned reads to a 

gene. 

 

  



261 

 

 

Figure 4.5 ROS level measured after hypoxia treatment 

After exposure to varying length of hypoxia treatment, ARPE-19 cells were assayed to 

measure ROS level using a dye that becomes highly fluorescent after intracellular oxidation. 

The results suggest there is a weakly elevated ROS level after 2 days and 2 weeks of hypoxia 

treatment, but no change after 8 hours of hypoxia and after recovery from hypoxia. ROS 

level were normalized to average measurement in control samples. Mean and standard 

deviation (n=12) plotted. All statistical tests were performed against control samples with 

the stars indicating the magnitude of the adjusted p-value (* P≤0.05, ** P≤0.01). 
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Figure 4.6 Dead and live staining of ARPE-19 after hypoxia treatment 

After exposure to varying length of hypoxia treatment (A. no hypoxia, B. 2 weeks hypoxia 

and 2 weeks recovery, D. 8 hours hypoxia, E. 2 days hypoxia, F. 2 weeks hypoxia), ARPE19 

cells were assayed to stain for dead (red) and live (green) cells as shown in bottom image of 

each subsection. Corresponding phase contrast micrographs are shown in the top image of 

each subsection. No elevated cell death is observed after hypoxia treatment. Detergent-

treated lethal control is shown in C.   
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Figure 4.7 PCA of all samples 

PCA performed with all 25 ARPE-19 samples. 2wHypo2wNorm is 2 weeks hypoxia 

followed by recovery, 8hHypo is 8 hours hypoxia, 2dHypo is 2 days hypoxia, and 2wHypo 

is 2 weeks hypoxia samples. PC # is principal component #. A. Percent of overall variance 

captured by the top 10 principal components. B-C. Samples in PC 1 and PC 2, PC 1 and PC 

3, respectively. Percent of variance explained is shown in axis label.  
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Figure 4.8 edgeR comparisons of hypoxia time points and control 

EdgeR comparisons between control and 8 hours hypoxia (A, B), 2 days hypoxia (C, D) and 

2 weeks hypoxia (E, F). A., C., E. Measured CPM and fold-change for each expressed gene. 

DE genes are colored red while all others are black. Genes outside of display window are 

symbolized by triangle. B., D., F. edgeR measured fold-change and FDR displayed for each 

gene. DE genes are colored red while all others are black. Genes outside of display window 

are symbolized by triangle. Blue dashed line indicates FDR=0.05.  
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Figure 4.9 ERSSA result of the DE comparison between 8 hours hypoxia and control 

ERSSA-generated number of DE gene plot (A) and marginal change plot (B) with 50 

combinations per replicate level and log2-fold-change cut off = 0.5. Median used to measure 

the percentage change in the marginal change plot.  
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Figure 4.10 ERSSA result of the DE comparison between 2 days hypoxia and control 

ERSSA-generated number of DE gene plot (A) and marginal change plot (B) with 50 

combinations per replicate level and log2-fold-change cut off = 0.5. Median used to measure 

the percentage change in the marginal change plot.  
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Figure 4.11 ERSSA result of the DE comparison between 2 weeks hypoxia and control 

ERSSA-generated number of DE gene plot (A) and marginal change plot (B) with 50 

combinations per replicate level and log2-fold-change cut off = 0.5. Median used to measure 

the percentage change in the marginal change plot.  
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Figure 4.12 GO biological process enrichment with DE genes in comparison between 

control and 8 hours hypoxia 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO 

biological process. Selected biologically relevant GO biological process were labeled.   
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Figure 4.13 KEGG pathway enrichment with DE genes in comparison between 

control and 8 hours hypoxia 

KEGG pathways enriched with goseq using up-regulated (A) and down-regulated (B) DE 

genes. Statistically significant pathways are displayed. Benjamini Hochberg (BH) adjusted 

P-value is displayed on the x-axis. Pathways enriched at all hypoxia time points are 

highlighted in yellow.  
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Figure 4.14 GO biological process enrichment with DE genes in comparison between 

control and 2 days hypoxia 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO 

biological process. Selected biologically relevant GO biological process were labeled.   
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Figure 4.15 KEGG pathway enrichment with DE genes in comparison between 

control and 2 days hypoxia 

KEGG pathways enriched with goseq using up-regulated (A) and down-regulated (B) DE 

genes. Statistically significant pathways are displayed. Benjamini Hochberg (BH) adjusted 

P-value is displayed on the x-axis. Pathways enriched at all hypoxia time points are 

highlighted in yellow.  
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Figure 4.16 GO biological process enrichment with DE genes in comparison between 

control and 2 weeks hypoxia 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO 

biological process. Selected biologically relevant GO biological process were labeled.   
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Figure 4.17 KEGG pathway enrichment with up-regulated DE genes in comparison 

between control and 2 weeks hypoxia 

KEGG pathways enriched with goseq using up-regulated DE genes. Statistically significant 

pathways are displayed. Benjamini Hochberg (BH) adjusted P-value is displayed on the x-

axis. Pathways enriched at all hypoxia time points are highlighted in yellow.  
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Figure 4.18 KEGG pathway enrichment with down-regulated DE genes in 

comparison between control and 2 weeks hypoxia 

KEGG pathways enriched with goseq using down-regulated DE genes. Statistically 

significant pathways are displayed. Benjamini Hochberg (BH) adjusted P-value is displayed 

on the x-axis. Pathways enriched at all hypoxia time points are highlighted in yellow. 
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Figure 4.19 Top 100 enriched GO biological processes compared between three 

comparisons – part 1 

Top 100 enriched GO biological processes from each GO enrichment were compared. A. 

Plot shows the overlap between the top 100 lists. Bars indicate the number of overlap among 

the 6 lists of GO annotations. Dot with connected line indicate inclusion in the GO list. GO 

lists are named with syntax: Hypoxia_TimePoint_v_Control_Direction with TimePoint of 

2w as 2 weeks, 2d as 2 days, and 8h as 8 hours. Direction is either up- or down-regulation. 

B. REVIGO visualization of 51 unique GO biological process in the top 100 enriched with 8 

hours hypoxia down-regulated genes. Selected biologically relevant processes were labeled.   
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Figure 4.20 Top 100 enriched GO biological processes compared between three 

comparisons – part 2 

A. REVIGO visualization of 25 unique processes in the top 100 enriched with 2 days hypoxia 

down-regulated genes. Selected biologically relevant processes were labeled. B. REVIGO 

visualization of 34 unique processes in the top 100 enriched with 2 weeks hypoxia down-

regulated genes. Selected biologically relevant processes were labeled.  
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Figure 4.21 edgeR and ERSSA results of DE comparison between hypoxia recovery 

and control 

A. edgeR-measured CPM and fold-change for each expressed gene. DE genes are colored 

red while all others are black. Genes outside of display window are symbolized by triangle.  

B. edgeR-measured fold-change and FDR displayed for each gene. DE genes are colored red 

while all others are black. Genes outside of display window are symbolized by triangle. Blue 

dash line indicates FDR=0.05. C-D. ERSSA-generated number of DE gene plot (C) and 

marginal change plot (D) with 50 combinations per replicate level and log2-fold-change cut 

off = 0.5. Median used to measure the percentage change in the marginal change plot.  

  



278 

 

 
Figure 4.22 GO biological process enrichment with DE genes in comparison between 

control and hypoxia recovery 

Up- (A) and down-regulated (B) DE genes were submitted for GO biological process 

enrichment with results visualized using REVIGO. P-value is REVIGO-derived GO 

enrichment p-value. Size is the number of human proteins associated with each GO 

biological process. Selected biologically relevant processes were labeled.  
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Figure 4.23 KEGG pathway enrichment with up-regulated DE genes in comparison 

between control and hypoxia recovery 

KEGG pathways enriched with goseq using up-regulated DE genes. Statistically significant 

pathways are displayed. Benjamini Hochberg (BH) adjusted P-value is displayed on the x-

axis. Pathways also enriched at all hypoxia time points without recovery are highlighted in 

green. 
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Figure 4.24 KEGG pathway enrichment with down-regulated DE genes in 

comparison between control and hypoxia recovery 

KEGG pathways enriched with goseq using down-regulated DE genes. Statistically 

significant pathways are displayed. Benjamini Hochberg (BH) adjusted P-value is displayed 

on the x-axis. Pathways also enriched at all hypoxia time points without recovery are 

highlighted in green. 
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Figure 4.25 Fold change of 2 weeks hypoxia-regulated DE gene after hypoxia recovery 

Each dot represent a DE gene found to be regulated after 2 weeks hypoxia treatment. The 

gene’s log2-fold-change after 2 weeks hypoxia treatment is plotted on the x-axis, while the 

fold change after hypoxia recovery is plotted on the y-axis. The plot window is limited to the 

(-2, -2) range on both axes. Pearson’s r value is measured as 0.7177. It is worth noting that a 

majority of genes sits below y=x line (dash dark blue line) in positive x-axis regime and 

above y=x line in negative x-axis regime, suggesting hypoxia recovery moderated hypoxia-

induced transcriptome regulation. 
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Figure 4.26 Expression profile of all DE genes clustered by k-mean method 

A. Sum squared error of k-mean clustering with up to k=10 clusters. k=6 selected for further 

cluster-specific analysis. B. Gene-wise normalized (Norm.) TPM plotted as a heatmap with 

genes on rows and samples organized by conditions (color-coded on top of heatmap) on 

columns. Genes sorted by k-mean clustering result (k=6). Cluster association indicated by 

color and number on the left of heatmap. 
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Figure 4.27 Cluster-specific expression profile and enrichment 

For cluster 1 (A) or cluster 2 (B), every gene’s condition-averaged expression profile is 

plotted in black and the average across genes plotted as a thick colored line. Cluster 

associated genes are used for GO biological process enrichment with results visualized with 

REVIGO. Statistically significant pathways enriched are also displayed.   



284 

 

 

Figure 4.28 Cluster-specific expression profile and enrichment 

For cluster 3 (A) or cluster 4 (B), every gene’s condition-averaged expression profile is 

plotted in black and the average across genes plotted as a thick colored line. Cluster 

associated genes are used for GO biological process enrichment with results visualized with 

REVIGO. Statistically significant pathways enriched are also displayed.  
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Figure 4.29 Cluster-specific expression profile and enrichment 

For cluster 5 (A) or cluster 6 (B), every gene’s condition-averaged expression profile is 

plotted in black and the average across genes plotted as a thick colored line. Cluster 

associated genes are used for GO biological process enrichment with results visualized with 

REVIGO. Statistically significant pathways enriched are also displayed.  
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Figure 4.30 Expression profile across selected GO 

All DE genes in cluster 1, 2 and 3 that belong to one of the four GO biological processes 

selected were used to plot individual gene expression profile in gray lines and average 

expression in thick solid black line. For all four GO biological processes, the average selected 

genes’ expression is elevated after 8 hours and 2 days hypoxia and reached peak expression 

after 2 weeks hypoxia. 8hHypo is 8 hours hypoxia, 2dHypo is 2 days hypoxia, 2wHypo is 2 

weeks hypoxia, and 2wHypo2wNorm is hypoxia recovery conditions. 
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Figure 4.31 ISMARA TF enrichment 

All samples were submitted to ISMARA for enrichment of TFs that are involved in ARPE-

19 hypoxia response. Top 50 enriched factors as ranked by Z-score are plotted (x-axis shows 

rank by Z-score). Selected biological relevant factors with higher (A) or lower (B) target 

gene activity in hypoxia response are labeled.  
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Figure 4.32 Activity profiles of selected TF motifs with higher target gene activity 

during hypoxia 

Activity profile (mean + standard deviation) of selected TFs with higher target gene activity 

are plotted. Hypo_8h is 8 hours hypoxia, Hypo_2d is 2 days hypoxia, Hypo_2w is 2 weeks 

hypoxia, and Hypo_2w_Norm_2w is hypoxia recovery conditions.   
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Figure 4.33 Activity profiles of selected TF motifs with lower target gene activity 

during hypoxia 

Activity profile (mean + standard deviation) of selected TFs with lower target gene activity 

are plotted. Hypo_8h is 8 hours hypoxia, Hypo_2d is 2 days hypoxia, Hypo_2w is 2 weeks 

hypoxia, and Hypo_2w_Norm_2w is hypoxia recovery conditions.  
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Figure 4.34 ISMARA found predicted HIC2 targets are regulated during hypoxia 

A. Activity profile (mean + standard deviation) of HIC2 target genes. Hypo_8h is 8 hours 

hypoxia, Hypo_2d is 2 days hypoxia, Hypo_2w is 2 weeks hypoxia and 

Hypo_2w_Norm_2w is hypoxia recovery conditions. B. STRING representation of the 

predicted HIC2 targets that ISMARA found to be regulated in this dataset. Proteins with 

related interactions are connected by edges.  
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Figure 4.35 qPCR validation of selected RNA-seq results 

Six genes shown by RNA-seq to be regulated during hypoxia were selected for qPCR 

validation. Expression values were normalized in both plots so that the average expression 

in control condition is 1. The mean and standard deviation are shown. Hypoxia_8h is 8 hours 

hypoxia, hypoxia_2d is 2 days hypoxia, hypoxia_2w is 2 weeks hypoxia, and 

hypoxia_2w_normoxia_2w is hypoxia recovery conditions. A. RNA-seq expression based 

on TPM values. B. qPCR expression based on ΔΔCt-derived fold changes. 
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Gene Direction 5' to 3' Sequence 

HIF1A Forward GAACGTCGAAAAGAAAAGTCTCG 

HIF1A Reverse CCTTATCAAGATGCGAACTCACA 

LDHA Forward ATGGCAACTCTAAAGGATCAGC 

LDHA Reverse CCAACCCCAACAACTGTAATCT 

DLD Forward CTCATGGCCTACAGGGACTTT 

DLD Reverse GCATGTTCCACCAAGTGTTTCAT 

MMP2 Forward TACAGGATCATTGGCTACACACC 

MMP2 Reverse GGTCACATCGCTCCAGACT 

SOD2 Forward TTTCAATAAGGAACGGGGACAC 

SOD2 Reverse GTGCTCCCACACATCAATCC 

VEGFA Forward AGGGCAGAATCATCACGAAGT 

VEGFA Reverse AGGGTCTCGATTGGATGGCA 

TUBB Forward TGGACTCTGTTCGCTCAGGT 

TUBB Reverse TGCCTCCTTCCGTACCACAT 

Table 4.1 qPCR primers 
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Trans. Factor Z-score 

Activity.

diff 

Hypoxia

_8h-

Control 

Activity.

diff 

Hypoxia

_2d-

Control 

Activity.

diff 

Hypoxia

_2w-

Control 

Activity.

diff 

Hypoxia

_2w_nor

moxia_2

w-

Control 

MXI1_MYC_MYCN 5.985751 -0.04156 -0.02475 -0.01506 -0.00251 

NRF1 4.709144 -0.01371 -0.01576 -0.01061 0.003826 

HIF1A 4.702637 0.037304 0.031275 0.02326 0.004819 

ARNT 3.969943 0.026974 0.026438 0.026203 0.00866 

YBX1_FOS_NFYC_NFY

A_NFYB_CEBPZ 

3.583263 -0.0186 -0.01836 -0.01918 -0.00067 

SIX5_SMARCC2_HCFC1 3.433916 -0.00965 -0.01465 -0.01192 -0.00198 

PATZ1_KLF4 3.377575 0.005596 0.009211 0.009242 0.002927 

EPAS1_BCL3 3.002331 0.026016 0.007556 0.006703 0.002857 

ELF2_GABPA_ELF5 2.954512 -0.01664 -0.01427 -0.00911 -0.003 

ZNF711_TFAP2A_TFAP2

D 

2.868172 -0.01185 -0.00687 -0.00262 -0.00193 

PITX3 2.862096 -0.01573 -0.01699 -0.01735 -0.00546 

HIC2 2.751785 0.015762 0.017797 0.015536 0.008411 

WT1_MTF1_ZBTB7B 2.688741 0.013391 0.009849 0.008728 0.002619 

AHR_ARNT2 2.687516 0.01195 0.011722 0.009293 -0.00062 

BACH1_NFE2_NFE2L2 2.682164 -0.01493 -0.02065 -0.022 -0.00786 

ESRRB_ESRRG 2.587262 -0.01033 -0.01781 -0.01954 -0.00744 

CREB1 2.584654 -0.01806 -0.0142 -0.00827 0.000501 

TAF1 2.576257 -0.02713 -0.02198 -0.01851 -0.00941 

MECP2 2.561408 -0.00492 -0.00517 -0.00465 0.000575 

SRF 2.516779 0.00486 -0.00354 0.02003 0.012833 

MAZ_ZNF281_GTF2F1 2.50939 0.009488 0.011252 0.008038 0.000994 

WRNIP1 2.468187 0.008925 0.005619 0.004495 0.000455 

GTF2I 2.441592 0.012833 0.008224 0.007822 -0.00223 

FOSL2_SMARCC1 2.405661 0.015183 0.016825 0.021105 0.007225 

CEBPB 2.387667 0.000121 -8.50E-

05 

0.017481 -0.00211 

ZFX 2.385102 -0.01729 -0.01044 -0.00985 -0.00739 

FOSL1 2.366784 0.014858 0.014785 0.012922 0.001207 

ERG 2.30491 0.013408 0.009604 0.005387 -0.00036 



294 

 

ATF4 2.302819 -0.0022 0.001443 0.018105 0.000298 

ATF2_ATF1_ATF3 2.281693 -0.0125 -0.01138 -0.00888 -0.00064 

HOXB2_UNCX_HOXD3 2.233088 -0.00791 -0.01757 -0.0108 -0.00452 

ZNF143 2.229308 -0.01519 -0.0033 -0.00225 0.0039 

MEIS2 2.147955 -0.00316 -0.00834 -0.01007 -0.00115 

EBF1 2.10306 0.012099 0.012974 0.012471 0.000648 

ZBTB14 2.088882 0.011221 0.004773 0.004971 -0.0014 

PPARA 1.999801 -0.01269 -0.0133 -0.01742 -0.00929 

HSF4 1.978446 -0.01271 -0.01112 -0.01423 -0.00162 

NR5A2 1.959715 -0.01511 -0.01196 -0.01396 -0.00408 

MYF6 1.952703 0.015941 0.013566 0.015877 0.009493 

SOX4 1.946565 0.01024 0.011339 0.014389 0.000526 

ETV1_ERF_FEV_ELF1 1.93076 -0.00905 -0.01416 -0.00812 0.005953 

CTCF_CTCFL 1.920265 0.011528 0.011027 0.01426 0.004409 

POU5F1_POU2F3 1.909801 0.012421 0.006181 -0.00168 0.001858 

TFAP2C 1.895419 0.00527 0.006948 0.008185 -0.00154 

MESP1 1.85942 0.009111 0.01138 0.010689 0.00149 

MIXL1_GSX1_BSX_ME

OX2_LHX4 

1.811681 -0.00953 -0.01093 -0.01296 -0.00372 

NFIA 1.811268 0.016127 0.005478 -0.00114 -0.00094 

CEBPE_CEBPD 1.794327 0.009854 0.016299 0.00577 0.001329 

NR1I2 1.786169 0.012905 0.010234 0.004668 0.000229 

RFX7_RFX4_RFX1 1.7746 0.012971 0.000765 0.004503 2.90E-05 

Table 4.2 Top 50 TF groups enriched 

TFs are ordered by Z-score. Last four columns contain average target gene activity difference 

between control and each of Hypoxia_8h (8 hours hypoxia), Hypoxia_2d (2 days hypoxia), 

Hypoxia_2w (2 weeks hypoxia), and Hypoxia_2w_normoxia_2w (hypoxia recovery) 

conditions.   
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Chapter 5.  ERSSA, a subsampling-based RNA-seq sample size 

analysis method 

5.1 Introduction 

For comparative RNA-seq experiments, selecting the appropriate sample size is an important 

optimization step1. Comparisons with limited biological replicates tend to be under-powered 

with inferior differential expression (DE) discovery. On the other hand, the improvement in 

DE identification becomes marginally small as more replicates are added, while cost 

increases linearly2. In the past few years, several algorithms have been proposed to identify 

the appropriate sample size for RNA-seq experiments3. As summarized in Chapter 1.4, a 

recent survey article set out to systematically evaluate these algorithms and found all of them 

are ineffective in estimating the correct sample size when the inter-condition differences 

(effect size) are modest4. Here, we present a new method called Empirical RNA-seq Sample 

Size Analysis (ERSSA5) that tackles this challenge from a different angle: instead of 

attempting to predict the appropriate sample size using a priori assumptions prior to 

acquiring data, ERSSA evaluates existing RNA-seq data to estimate the marginal return in 

DE gene discovery as sample size increases. The results then allow the user to assess whether 

the number of replicates already acquired is sufficient for their study.  

To demonstrate ERSSA’s utility, we applied the analytical approach to several publicly 

available RNA-seq datasets that span four types of experimental systems: mouse tissue, 

https://doi.org/doi:10.18129/B9.bioc.ERSSA
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human tissue, human population, and in vitro cell culture. We will cover comparisons where 

ERSSA shows sufficient replicates have been included and examples where additional 

samples could be beneficial. More broadly, the results from this study depict the importance 

of post-data acquisition sample size validation, a practice largely ignored in the RNA-seq 

research community. By incorporating ERSSA (and the accompany software, ERSSA) into 

existing research projects, users can benefit from both a better understanding of their 

experimental dataset and avoid biological interpretation based on insufficiently powered 

experiments.  

 

5.2 Materials and Methods 

Software development and data acquisition 

The ERSSA algorithm is implemented in the statistical programming language R and the 

software package (also named ERSSA) is available on Bioconductor for download5. ERSSA 

currently supports differential expression testing with edgeR6 and DESeq27, but additional 

tools can be incorporated through manual modification of the code8. 

To demonstrate ERSSA’s utility, we applied the technique to four biomedically-relevant 

datasets that represent a diverse set of RNA-seq experiments:  

1) GTEx: a dataset containing human heart and muscle tissues9. 

2) Bottomly: brain tissues from two mouse strains often used in neuroscience research10. 
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3) Montgomery-Pickrell (MP): lymphoblastoid cell lines derived from Europeans and 

Nigerians11,12. 

4) Fossum: cell lines treated with transcription factor knockdown or control siRNA13. 

The four publicly available datasets were downloaded from the recount and recount2 

projects, which are systematic efforts to generated gene expression count table from 

thousands of RNA-seq studies14,15. Bottomly and MP datasets were obtained from the 

original recount project. GTEx and Fossum datasets were downloaded from the recount2 

project. Recount2 count files were scaled using the recount software package as 

recommended by the authors before usage in ERSSA16. All analyses were performed in R 

with random seed set to 1. For GTEx and MP, the entire datasets are too large for the purpose 

of ERSSA evaluation. For these two datasets, 25 replicates of each condition were randomly 

selected for analysis. Furthermore, the GTEx dataset is broken down into three datasets 

containing 5, 10, and 25 replicates per condition for testing purposes. Table 5.1 (GTEX), 5.2 

(GTEX), 5.4 (Bottomly), 5.6 (MP), and 5.8 (Fossum) display the original ID of the samples 

used in this study. 

Algorithm 

Before running ERSSA, two inputs need to be prepared ahead of time:  

1) A RNA-seq count table containing samples from two conditions; 

2) A table that specifies the sample-condition relationship.  
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Examples of the input tables are included in the ERSSA vignette section 3.28. Once the inputs 

are ready, the ERSSA algorithm runs through four sequential steps: 1) filter count table to 

remove non-expressed genes, 2) generate unique subsamples (combinations of samples from 

both conditions) at each replicate level, 3) perform DE analysis of the subsamples using well-

established DE software, and 4) generate plots to visualize and interpret the results. Here, we 

will briefly describe each step; full descriptions are available in the ERSSA software 

documentation5. 

Filter count table 

Removal of non-expressed genes before differential expression comparison is a widely 

accepted practice that is recommended to maximize discovery17. ERSSA uses a simple gene-

wise average Count per Million (CPM) value to identify non-expressed genes: 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃𝑀𝑔 = (∑
𝑐𝑜𝑢𝑛𝑡𝑔𝑖 ∗ 106

 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑖

𝑀
𝑖 ) 𝑀⁄  ,  

where g denotes a specific gene, i denotes a specific sample, and M is the total number of 

samples. At default, genes with average CPM<1 are removed from further analysis. 

Additionally, the user can elect to supply their own pre-filtered count table generated from 

other filtering methods. The filtered count table is then passed to the differential testing step 

(DE analysis, below). 

Generate subsample combinations 
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One of the core features of ERSSA is to use subsamples selected at each replicate level to 

observe the trend in DE gene discovery as a function of sample size. Using the sample-

condition relationship table, the algorithm first identifies the smaller of the two numbers of 

replicates (N) available among the two conditions. Next the algorithm performs a pre-

determined number of subsampling, where possible, at each step-wise replicate levels (n= 2, 

3, 4, ..., N-1). For large N, the number of unique subsamples at some replicate levels n 

becomes very large and it is not necessary to evaluate all combinations. Typically, Ns=30-50 

subsamples at each replicate level are sufficient to observe the pattern in DE gene discovery 

as a function of sample size. When the total number of unique sample combinations is less 

than Ns (for example: N=3 and n=2 produces 9 unique subsamples), then all unique 

subsamples are selected. When the number of possible combinations exceeds Ns, the 

algorithm generates Ns unique and random subsamples. At default, ERSSA generates Ns=30 

subsamples at each n; the user can change the value Ns, which affects run time linearly. The 

generated subsample combinations together with the filtered count table are then passed to 

DE software for statistical testing. 

DE analysis 

Using the previously generated filtered count table and subsample combinations, ERSSA 

makes a call to a DE software for statistical testing. Currently, ERSSA supports edgeR and 

DESeq2, two of the most widely used DE software packages, for differential discovery18. At 

default, edgeR is used as it is slightly faster in runtime compare to DESeq2. After statistical 
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testing, DE genes are defined by two cutoff statistics: multiple-test corrected p-value 

(adjusted p-value in DESeq2 and False Discovery Rate (FDR) in edgeR)<0.05 and  

|log2-fold-change|>1. Unless otherwise specified, genes that match both criteria are 

considered to be DE in the scope of ERSSA calculations. At the end of the test, the identity 

of the DE genes are retained and subsequently used for quantification and visualization. 

Plot DE results 

Using the test outputs, ERSSA generates four summary plots to help the user interpret the 

results. Further detail regarding the four summary plots and their utility can be found in the 

Results section (Chapter 5.3) below. The first plot displays the number of DE genes 

identified as a function of the number of replicates (n) employed. The second plot shows the 

percent change in average number of DE genes identified as n increases. The third plot 

displays the number of DE genes that are identified in all of the subsamples at each replicate 

level, revealing the increase in the consistency of DE gene discovery as n increases. Based 

on the statistics from this plot, the percentage of consistently discovered DE genes found in 

all subsamples can be calculated. The last plot must be viewed with care. Since the ground 

truth is not known in RNA-seq studies, the DE discovery at the full replicate level is used as 

the “pseudo ground truth” for calculating a True Positive Rate (TPR) and False Positive Rate 

(FPR) of DE discovery for each subsample, color coded for corresponding sample size n. 

The average rates (TPR and FPR) at each replicate level are also displayed. It is important to 

consider that when the discovery with the full dataset is not reliable, interpretation of this 
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plot is inappropriate. Only when ERSSA shows the full dataset is able to detect a majority of 

DE genes consistently (through interpretation of first three plots) is this analysis useful. 

All four plots are created using the ggplot2 R package with the plot objects and the plotted 

data saved19. From there, further modifications can be applied to adapt to various display 

preferences. Lastly, the raw data generated during the calculations are also available to the 

user for additional analysis outside the scope of ERSSA. 

 

5.3 Results 

GTEx – human muscle and heart tissue dataset 

The original dataset from GTEx contains hundreds of human tissue samples, including ones 

from muscle and heart. For the purpose of ERSSA evaluation, 25 muscle and heart samples 

were randomly selected for inclusion (Tables 5.1, 5.2). To illustrate how ERSSA enables 

discrimination of statistical power as a function of the number of replicates, we analyzed 

three cases: N=5, N=10, and N=25. A single random selection of 5 replicates taken from the 

25 total illustrates what would be observed if N=5. Likewise, a single random selection of 10 

from the 25 total illustrates what would be observed with N=10. This example shows how a 

user can evaluate a small number of replicates and see the likelihood that significant gains 

could be achieved by increasing the number of replicates (results for N=5 indicate that 

additional replicates could bring significant improvements, which is confirmed by the 
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analysis for N=10). This example also shows how a user can evaluate an intermediate number 

of replicates and accurately infer that further replicates are unlikely to reveal additional DE 

genes (results for N=10 suggest that the improvement with increasing N has saturated, which 

is confirmed by the analysis for N=25). 

For most studies, the average number of identified DE genes generally increases as sample 

size increases. In our literature search, we observed that most RNA-seq studies use N≤5 

replicates. While this might be sufficient in well controlled studies testing large transcriptome 

changes, others could see significant improvement in detection with more replicates. 

Therefore, we chose a mock experiment with only 5 replicates as an example. In this analysis, 

the test result with all 5 replicates is taken as the “pseudo ground truth” and the improvement 

with increasing n is computed for subsamples of n=2, 3, and 4. The increase in the mean 

number of DE genes and the decrease in the variability among the different subsamples is 

strong over this range of n (Figure 5.1A, note the increase in the mean (red line) and the 

median, as well as the decrease in the difference from the 1st to 3rd quartiles as n increases 

from 2 to 4). The potential for significant further increase in the number of DE genes 

discovered is indicated by the percent increase in the DE gene discovery for n=5 relative to 

n=4 (Figure 5.1B suggests improvements in the order of 5-10% could be achieved with 

additional replicates). Furthermore, ERSSA shows that there is potentially a significant 

increase in the fraction of genes that can be reliably discovered with more replicates (Figure 

5.2A) as only 40% of the DE genes at n=4 is found in all subsample results (Table 5.3). 
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Finally, the graph of TPR and FPR must be regarded with caution in the view of the previous 

three ERSSA outputs: the “pseudo ground truth” using N=5 is not a good approximation for 

the ground truth (Figure 5.2B). 

Based on the ERSSA results for N=5, a user might choose to acquire 5 additional replicates 

to improve discovery. As anticipated based on Figure 5.1, the N=10 dataset identified around 

6200 DE genes (Figure 5.3A), a significant increase relative to around 5500 for N=5. Indeed, 

5 additional replicates provided a DE gene discovery increase in the low double digits 

percentage range, which is consistent with the prediction base on the N=5 analysis. With 

N=10, ERSSA also suggests that the number of DE genes identified hardly changed with 

increase of n from 8 to 9 and 10 (Figure 5.3A and B). This observable “plateau” at the large 

n regime suggests that a majority of DE genes have already been discovered with the 

available biological replicates. At this regime, the additional benefit of increasing replicates 

is the confidence that regardless of the particular set of samples obtained for the experiment, 

each one will find DE genes that would be identified in any other subsamples (Figure 5.4A, 

Table 5.3).  

Based on the evidence that the “pseudo ground truth” represented by the DE genes 

discovered using N=10 is a good approximation, the fourth output of ERSSA has greater value 

in this case than it did for N=5. The graph of TPR and FPR indicates that the FPR only begins 

to decrease when n > 4 and that it decreases from around 5% at n=6 to around 2% for n=9 

(Figure 5.4B). Additionally, the TPR continuously progress from n=8 to 9 to 10, suggesting 
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that the actual ground truth might reveal that TPR for N=10 is less than 100%. Lastly, it is 

again worth noting that this particular sampling of N=10 replicates is not a perfect 

representation of the ground truth; the data point for the full data set is placed at TPR=1, 

FPR=0 simply because it is used as the “pseudo ground truth.” 

When we proceed to N=25 replicates, the expectations based on application of ERSSA at 

N=10 are borne out. The mean number of genes discovered hardly changed for n>10 (Figure 

5.5A and B). The benefit of the increase in the number of replicates is that approximately 

5300 DE genes are reliably found by any subsamples at n=24 (Figure 5.6A), corresponding 

to a high of 83% of all DE genes discovered (Table 5.3). The TPR increases a few percent 

as n increases from 21 to 24 and the FPR is consistently less than 2% for n>21 (Figure 5.6B), 

suggesting that the marginal return on acquiring additional replicates has become 

increasingly small. 

As demonstrated with the GTEx example dataset, ERSSA helps the user deal with the fact 

that while the true list of DE genes is typically never known, the existing replicates at hand 

can be used to predict the amount of improvement to be gained by acquiring additional 

replicates. For N=5, ERSSA reveals that the discovery is most likely incomplete (Figure 5.1 

and 5.2A), in which the TPR and FPR calculated are not useful (Figure 5.2B). ERSSA 

analysis of N=5 replicates correctly anticipated that an additional 5 replicates could bring a 

substantial improvement (compare Figure 5.1A and 5.2A, to Figure 5.3A and 5.4A). We 
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also noticed that a large number of replicates is required to obtain a good approximation of 

the true list of DE genes (average TPR>95% for N=25, Figure 5.6B). 

Bottomly – mouse tissue dataset 

The Bottomly dataset contains brain samples from two mouse strains that are commonly 

used in neuroscience research (Table 5.4). When all 10 replicates available were tested with 

ERSSA, it appears that there are relatively few DE genes between the two strains (Figure 

5.7A). Consistent with previous observation with the GTEx dataset, there is a clear pattern 

of improved DE gene discovery as additional replicates are used (Figure 5.7B). Some 

subsamples at the low n regime did found significantly more DE genes that pass the FDR 

cutoff. However, these results are outliers with many false positive discoveries as indicated 

by the relatively low number of DE gene discovery with n=10. After inclusion of six 

replicates, the improvement is primarily in the fidelity of the DE gene identification, rather 

than the number of DE genes identified (compare the increase in bars and mean DE gene 

curve for n>6 in Figure 5.8A). Based on the fraction of consistently identified DE genes (the 

consensus DE genes represent 42% of the putative DE genes identified in at least one of the 

subsamples at n=9, Figure 5.8A, Table 5.5), the discovery with the full dataset is likely an 

imperfect approximation for the true DE gene list. This must be kept in mind when viewing 

the fourth output of ERSSA, where the full dataset is used as the “pseudo ground truth”.  In 

this dataset, TPR calculation shows a strong improvement from n=6 to 9 in Figure 5.8B, 

suggesting that there is much to be gained by increasing the number of replicates.  
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MP – human population dataset 

The MP dataset is collected as part of the International HapMap Project and contains 

lymphoblastoid cell lines derived from European and Nigerian individuals. The entire dataset 

contains more than 60 replicates per group. To illustrate the use of ERSSA, 25 replicates from 

each population were randomly selected for testing (Table 5.6). Compared to the GTEx and 

Bottomly datasets, ERSSA shows that DE gene discovery in the MP dataset requires a much 

greater number of replicates (compare Figure 5.9 to Figures 5.5 and 5.7). As n increases, 

the mean number of putative DE genes gradually increases and reaches plateau at around 

n=18 with approximately 1000 putative DE genes on average. However, fewer than 400 of 

those identified at n=18 are consistently found in all subsamples that were analyzed (Figure 

5.10A). Indeed, consensus among the subsamples remains quite low across all sample sizes 

tested (even at n=24, there are only 720 consensus DE genes, representing 53% of the 

putative DE genes identified in at least one of the subsamples, Table 5.7). Similarly, the 

average TPR is quite low in the low replicate regime and gradually improves to at least 0.75 

as n increases to 14 and higher (Figure 5.10B). However, even at the high replicate regime 

(n=20 to 24), the TPR continues to increase significantly with additional replicates. Thus, 

ERSSA shows that while the total number of DE genes detectable has plateaued, a more 

accurate DE discovery could be obtained by increasing the number of replicates.  

Fossum – cell line dataset 
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The Fossum dataset originated from an effort to identify the transcriptome change after EHF 

transcription factor perturbation. In this dataset, EHF expression was knocked down using 

siRNA and a separate cohort of samples were treated with negative control siRNA. In both 

conditions, five cell culture replicates are available for ERSSA (Table 5.8). This example 

illustrates an experiment for which the default setting of the fold-change threshold (|log2-

fold-change|>1) is too stringent. Using the default settings, only a few DE genes are detected 

at all available replicate levels (Figure 5.11), which suggests that treatment-induced 

transcriptome changes are mild and might be better explored by relaxing the fold change 

cutoff to 0.5. Analysis with the relaxed parameter allows a larger number of putative DE 

genes to be identified and the results show a substantial increase in the number of DE gene 

discovery as sample size increases, suggesting the plateau has not been reached (Figure 

5.12). Robustness among the subsamples also remains low with consensus DE genes at n=4 

representing only 18% of putative DE genes found in at least one of the subsamples (Figure 

5.13A, Table 5.9). Based on these observations, the fourth plot of ERSSA is of limited use 

as the “pseudo ground truth” with N=5 is likely a poor representation of the real ground truth. 

Indeed, the primary message from Figure 5.13B is that increasing the number of replicates 

brings a dramatic increase in calculated TPR, providing strong motivation to acquire 

additional replicates. 
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5.4 Discussion 

In recent years, many algorithms have been proposed to guide the selection of the appropriate 

sample size for RNA-seq experiments4. These algorithms typically use pilot or publicly 

available RNA-seq data to estimate parameters and rely on a priori assumptions about the 

effect size to estimate the sample size. Some well cited packages that use this approach 

include Scotty (2013)20, RNASeqPowerCalculator (2014)21, ssizeRNA (2016)22, and 

powsimR (2017)23. Typically, these algorithms are applied prior to RNA-seq experiments to 

estimate the sample size needed to gain sufficient statistical power. However, a recent paper 

showed that these approaches actually perform poorly when the effect size is modest4, as is 

the case for a large fraction of RNA-seq experiments. To the best of our knowledge, there 

are no methods available that are specifically designed to validate sample size post-RNA-

seq sample acquisition. 

The ERSSA algorithm and the accompanying ERSSA package address these needs. In 

ERSSA, a subsampling approach is used with existing DE analysis software to determine 

whether the appropriate sample size has been reached. Here, we applied the analytical 

approach to several publicly available datasets and found favorable utility across different 

experimental settings. In three datasets (GTEx, Bottomly and MP), ERSSA shows sufficient 

biological replicates have been included for DE gene discovery (Figure 5.5, 5.7, and 5.9). 

Furthermore, we performed the GTEx analysis at three maximum sample sizes and verified 

that ERSSA forecast correctly from N=5 that a substantial increase in the number of putative 
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DE genes could be achieved by obtaining additional replicates and from N=10 that a 

significant increase in the number of consensus DE genes could be obtained with additional 

replicates (Figure 5.1-5.6). In one study (Fossum), the results suggest additional samples 

could improve the number of DE gene discovery (Figures 5.11 to 5.13). Although obtaining 

additional replicates may not always be feasible or economical, ERSSA enables the user to 

appreciate the limitations of their dataset. 

In addition to estimating the quantity of putative DE genes at a certain replicate size, 

ERSSA’s subsampling approach also enables analysis of the fidelity of DE gene discovery. 

Using the number of consensus DE genes across all subsamples as a metric, we found that 

the four studies typically have low consistency at the low replicate regime and a continuous 

improvement as sample size increases (Figure 5.6A, 5.8A, 5.10A, 5.13A). The lack of 

consistency with small n is likely due to a combinations of limited DE gene discovery and 

higher variability. On the other hand, it is interesting to note that even at the high replicate 

regime, we did not observe a plateau in the consensus/putative ratio of DE genes (Table 5.3, 

5.5, 5.7, 5.9). Instead, we consistently observed a continuous increase in the percentage of 

consensus DE genes calculated from the subsample analyses. 

TPR and FPR are other metrics of evaluating the variability in the DE gene discovery. In 

figures plotting the two rates, we found that the four studies behaved very differently in terms 

of their TPR/FPR profile. In three studies (Bottomly, MP and Fossum), the average FPRs are 

across the board quite low, typically in the range of 0.01 to 0.04 (Figure 5.8B, 5.10B, 5.13B). 
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In the GTEx study, average FPRs are consistently higher in all three analyses, but still 

reasonable within a 0.05 to 0.10 range (Figure 5.2B, 5.4B, 5.6B). Additionally, we found 

that while TPR tend to increase consistently as a function of sample size, FPR can initially 

increase and then decrease (Figure 5.4B, 5.6B, 5.10B). This interesting FPR pattern is 

clearly observable in both GTEx and MP datasets, suggesting that while initial sample size 

addition improves discovery, it can also increase the number of false positives. Another 

interesting observation is that while TPR improvement appears monotonic, its marginal 

increment becomes smaller as sample size becomes larger. This is especially noticeable in 

the three larger datasets with N>5, particularly in the N=25 GTEx dataset (Figure 5.6B). 

Lastly, we would like to again emphasize that the rates are calculated by setting the list of 

DE genes discovered with the full available dataset as the ground truth. In the datasets where 

discovery is under-powered, the calculated rates are unreliable and no conclusions should be 

drawn.  

While the ERSSA algorithm does not use any a priori assumptions about the dataset, there 

are several runtime specifications that need to be considered. First, the number of subsamples 

to run per replicate level is an important ERSSA parameter. For the majority of datasets, we 

found 30 subsamples are sufficient to provide a good estimate of the discovery. On the other 

hand, some datasets are prone to outliers, where additional subsamples could reduce the 

sensitivity to any particular result (e.g. 50 subsamples used in MP dataset). Two additional 

runtime specifications that can be adjusted are the statistical test and fold change cutoffs used 
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for DE consideration. In particular, depending on the effect side, the fold change cutoff can 

be either tightened or relaxed to fit the comparison. We saw an example of this in the Fossum 

dataset where the transcriptome change after treatment is quite mild, so the fold change cutoff 

is relaxed to increase DE gene discovery (Figure 5.11, 5.12).  

While using ERSSA, we also found it useful to run the algorithm multiple times with different 

random seeds. Since ERSSA uses a random process to generate the subsamples, running the 

algorithm multiple times causes it to generate different groups of subsamples. When the 

conclusions are consistent across multiple simulations, the user can gain confidence that the 

results are independent of the specific choice of subsamples. Lastly, depending on the size 

of the dataset, hundreds to thousands of DE comparisons may need to be run (e.g. N=25 with 

default 30 subsamples require a total of 691 statistical tests). To reduce run time, the user is 

highly encouraged to turn on parallel processing in ERSSA, which is managed by the 

BiocParallel package24.  

 

5.5 Conclusions 

For any comparative RNA-seq experiment, selecting the appropriate sample size is an 

important and challenging design decision. ERSSA is a novel algorithm that enables users to 

determine whether an existing RNA-seq dataset has sufficient number of biological 

replicates. In this study, we applied an implementation of the algorithm in R to four publicly 

available RNA-seq datasets to demonstrate the utility of this approach. With these studies, 
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ERSSA shows good performance with a diverse set of experimental conditions including 

different sample size, sample type, and effect size. Results from our study further 

demonstrate that post-RNA-seq sample size analysis is an important quality control step. The 

ERSSA software can be broadly applied to any simple comparative RNA-seq studies 

(meaningfully with N>3) and is available for download at the Bioconductor website.  
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5.6 Figures and Tables 

 
Figure 5.1 ERSSA with 5 replicate GTEx dataset – part 1 

Plots generated by running ERSSA with 5 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1). Up to 30 subsamples at each replicate level. A. Dots represent the number of DE 

genes discovered in each subsample. Boxplot summarizes the results. Red and blue lines 

represent the average and full discovery, respectively. B. Percent change in average DE gene 

discovery as sample size increases. 
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Figure 5.2 ERSSA with 5 replicate GTEx dataset – part 2 

Plots generated by running ERSSA with 5 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1). Up to 30 subsamples at each replicate level. A. Bar plot of the number of DE 

genes found in all subsamples at each replicate level. Red and blue lines represent the average 

and full discovery, respectively. B. Dots indicate FPR and TPR of each subsample. 

Diamonds represent the average rates at each replicate level. DE discovery with the full 

dataset is set as the ground truth for the calculations. 
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Figure 5.3 ERSSA with 10 replicate GTEx dataset – part 1 

Plots generated by running ERSSA with 10 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1). Up to 30 subsamples at each replicate level. A. Dots represent the number of DE 

genes discovered in each subsample. Boxplot summarizes the results. Red and blue lines 

represent the average and full discovery, respectively. B. Percent change in average DE gene 

discovery as sample size increases.  
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Figure 5.4 ERSSA with 10 replicate GTEx dataset – part 2 

Plots generated by running ERSSA with 10 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1). Up to 30 subsamples at each replicate level. A. Bar plot of the number of DE 

genes found in all subsamples at each replicate level. Red and blue lines represent the average 

and full discovery, respectively. B. Dots indicate FPR and TPR of each subsample. 

Diamonds represent the average rates at each replicate level. DE discovery with the full 

dataset is set as the ground truth for the calculations. 
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Figure 5.5 ERSSA with 25 replicate GTEx dataset – part 1 

Plots generated by running ERSSA with 25 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1).  Up to 30 subsamples at each replicate level. A. Dots represent the number of 

DE genes discovered in each subsample. Boxplot summarizes the results. Red and blue lines 

represent the average and full discovery, respectively. B. Percent change in average DE gene 

discovery as sample size increases.  
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Figure 5.6 ERSSA with 25 replicate GTEx dataset – part 2 

Plots generated by running ERSSA with 25 replicate GTEx dataset comparing human muscle 

and heart tissues. Default settings used for DE definition (FDR<0.05 and |log2-fold-

change|>1). Up to 30 subsamples at each replicate level. A. Bar plot of the number of DE 

genes found in all subsamples at each replicate level. Red and blue lines represent the average 

and full discovery, respectively. B. Dots indicate FPR and TPR of each subsample. 

Diamonds represent the average rates at each replicate level. DE discovery with the full 

dataset is set as the ground truth for the calculations. 
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Figure 5.7 ERSSA with Bottomly dataset – part 1 

Plots generated by running ERSSA with Bottomly dataset comparing brain tissues from two 

mouse strains. Default settings used for DE definition (FDR<0.05 and |log2-fold-change|>1). 

Up to 30 subsamples at each replicate level. A. Dots represent the number of DE genes 

discovered in each subsample. Boxplot summarizes the results. Red and blue lines represent 

the average and full discovery, respectively. B. Percent change in average DE gene discovery 

as sample size increases.  
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Figure 5.8 ERSSA with Bottomly dataset – part 2 

Plots generated by running ERSSA with Bottomly dataset comparing brain tissues from two 

mouse strains. Default settings used for DE definition (FDR<0.05 and |log2-fold-change|>1). 

Up to 30 subsamples at each replicate level. A. Bar plot of the number of DE genes found in 

all subsamples at each replicate level. Red and blue lines represent the average and full 

discovery, respectively. B. Dots indicate FPR and TPR of each subsample. Diamonds 

represent the average rates at each replicate level. DE discovery with the full dataset is set as 

the ground truth for the calculations.  
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Figure 5.9 ERSSA with MP dataset – part 1 

Plots generated by running ERSSA with 25 replicate MP dataset comparing lymphoblastoid 

cell lines derived from Europeans and Nigerian individuals. Default settings used for DE 

definition (FDR<0.05 and |log2-fold-change|>1). Up to 50 subsamples at each replicate level. 

A. Dots represent the number of DE genes discovered in each subsample. Boxplot 

summarizes the results. Red and blue lines represent the average and full discovery, 

respectively. B. Percent change in average DE gene discovery as sample size increases.  
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Figure 5.10 ERSSA with MP dataset – part 2 

Plots generated by running ERSSA with 25 replicate MP dataset comparing lymphoblastoid 

cell lines derived from Europeans and Nigerian individuals. Default settings used for DE 

definition (FDR<0.05 and |log2-fold-change|>1). Up to 50 subsamples at each replicate level. 

A. Bar plot of the number of DE genes found in all subsamples at each replicate level. Red 

and blue lines represent the average and full discovery, respectively. B. Dots indicate FPR 

and TPR of each subsample. Diamonds represent the average rates at each replicate level. 

DE discovery with the full dataset is set as the ground truth for the calculations. 
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Figure 5.11 ERSSA with Fossum dataset using absolute log2-fold-change cutoff of 1.0 

Plot generated by running ERSSA with Fossum dataset comparing cell line treated with 

transcription factor knockdown or control siRNA. Default settings used for DE definition 

(FDR<0.05 and |log2-fold-change|>1). Up to 30 subsamples at each replicate level. Very few 

DE genes are discovered with the full dataset using the above cutoffs. Dots represent the 

number of DE genes discovered in each subsample. Boxplot summarizes the results. Red and 

blue lines represent the average and full discovery, respectively. 
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Figure 5.12 ERSSA with Fossum dataset – part 1 

Plot generated by running ERSSA with Fossum dataset comparing cell line treated with 

transcription factor knockdown or control siRNA. DE gene defined to have FDR<0.05 and 

|log2-fold-change|>0.5. Up to 30 subsamples at each replicate level. A. Dots represent the 

number of DE genes discovered in each subsample. Boxplot summarizes the results. Red and 

blue lines represent the average and full discovery, respectively. B. Percent change in average 

DE gene discovery as sample size increases.  
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Figure 5.13 ERSSA with Fossum dataset – part 2 

Plot generated by running ERSSA with Fossum dataset comparing cell line treated with 

transcription factor knockdown or control siRNA. DE gene defined to have FDR<0.05 and 

|log2-fold-change|>0.5. Up to 30 subsamples at each replicate level. A. Bar plot of the 

number of DE genes found in all subsamples at each replicate level. Red and blue lines 

represent the average and full discovery, respectively. B. Dots indicate FPR and TPR of each 

subsample. Diamonds represent the average rates at each replicate level. DE discovery with 

the full dataset is set as the ground truth for the calculations.  
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Sample ID Condition N=25 N=10 N=5 

SRR598148 heart x x x 

SRR598509 heart x x x 

SRR598589 heart x x x 

SRR599025 heart x x x 

SRR599086 heart x x x 

SRR599249 heart x x 
 

SRR599380 heart x x 
 

SRR600474 heart x x 
 

SRR600829 heart x x 
 

SRR600852 heart x x 
 

SRR600924 heart x 
  

SRR601239 heart x 
  

SRR601613 heart x 
  

SRR601645 heart x 
  

SRR601868 heart x 
  

SRR601986 heart x 
  

SRR602106 heart x 
  

SRR602437 heart x 
  

SRR602461 heart x 
  

SRR603449 heart x 
  

SRR603918 heart x 
  

SRR603968 heart x 
  

SRR604122 heart x 
  

SRR604174 heart x 
  

SRR604206 heart x 
  

Table 5.1 GTEx heart samples tested with ERSSA 

25 GTEx human heart samples included in the analysis. A portion of the samples were used 

to simulate experiments with 5 and 10 replicates. Samples with a cross indicates inclusion in 

the respective analysis (example, sample SRR598148 is included in all three analyses while 

sample SRR600924 is only used in the N=25 analysis). 
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Sample ID Condition N=25 N=10 N=5 

SRR598044 muscle x x x 

SRR598452 muscle x x x 

SRR600656 muscle x x x 

SRR600981 muscle x x x 

SRR601387 muscle x x x 

SRR601671 muscle x x 
 

SRR601695 muscle x x 
 

SRR601815 muscle x x 
 

SRR602010 muscle x x 
 

SRR603116 muscle x x 
 

SRR603164 muscle x 
  

SRR603236 muscle x 
  

SRR605101 muscle x 
  

SRR606974 muscle x 
  

SRR607067 muscle x 
  

SRR607117 muscle x 
  

SRR608264 muscle x 
  

SRR612215 muscle x 
  

SRR612227 muscle x 
  

SRR612395 muscle x 
  

SRR612539 muscle x 
  

SRR612635 muscle x 
  

SRR612683 muscle x 
  

SRR612695 muscle x 
  

SRR612767 muscle x 
  

Table 5.2 GTEx muscle samples tested with ERSSA 

25 GTEx human muscle samples included in the analysis. A portion of the samples were 

used to simulate experiments with 5 and 10 replicates. Samples with a cross indicates 

inclusion in the respective analysis (example, sample SRR598044 is included in all three 

analysis while sample SRR603164 is only used in the N=25 analysis). 
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Number 

of 

Replicates
a 

N=5, 

Union of 

all DE 

genesb 

N=5, 

Consensu

s DE 

genes 

[%]c 

N=10, 

Union of 

all DE 

genesb 

N=10, 

Consensu

s DE 

genes 

[%]c 

N=25, 

Union of 

all DE 

genesb 

N=25, 

Consensu

s DE 

genes 

[%]c 

n = 2 9102 6.62 10545 7.49 10315 5.69 

n = 3 8789 18.02 10924 13.33 11370 11.29 

n = 4 8108 39.38 10630 23.10 10984 17.52 

n = 5 
  

9751 31.51 10873 21.55 

n = 6 
  

9343 38.06 10234 24.34 

n = 7 
  

8750 46.23 10130 27.90 

n = 8 
  

8119 54.83 9369 34.70 

n = 9 
  

7516 66.14 9002 36.65 

n = 10 
    

9018 39.10 

n = 11 
    

8765 41.19 

n = 12 
    

8573 42.47 

n = 13 
    

8178 46.06 

n = 14 
    

8165 48.57 

n = 15 
    

7855 52.30 

n = 16 
    

7790 53.44 

n = 17 
    

7636 57.36 

n = 18 
    

7499 60.27 

n = 19 
    

7259 62.83 

n = 20 
    

7103 67.18 

n = 21 
    

7000 69.53 

n = 22 
    

6829 73.79 

n = 23 
    

6613 78.92 

n = 24 
    

6440 82.87 

Table 5.3 Effect of the number of replicates on the fidelity of DE gene identification: 

GTEx human muscle and human heart dataset 

Analysis repeated for all three GTEx sample size (N=5, 10 and 25). aA random selection of 

up to 30 unique subsamples were analyzed at each replicate level. bThe number of putative 

DE genes that were found in at least one of the subsample analyses. cThe fraction of those 

genes that were identified in every one of the subsample analyses.   
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Sample ID Condition 

SRX033480 C57BL/6J  

SRX033488 C57BL/6J  

SRX033481 C57BL/6J  

SRX033489 C57BL/6J  

SRX033482 C57BL/6J  

SRX033490 C57BL/6J  

SRX033483 C57BL/6J  

SRX033476 C57BL/6J  

SRX033478 C57BL/6J  

SRX033479 C57BL/6J  

SRX033472 DBA/2J  

SRX033473 DBA/2J  

SRX033474 DBA/2J  

SRX033475 DBA/2J  

SRX033491 DBA/2J  

SRX033484 DBA/2J  

SRX033492 DBA/2J  

SRX033485 DBA/2J  

SRX033493 DBA/2J  

SRX033486 DBA/2J  

SRX033494 DBA/2J 

Table 5.4 Bottomly dataset 

The Bottomly dataset contains 10 brain tissue samples from C57BL/6J mouse strain and 11 

brain tissue samples from DBA/2J strain. All samples are used in ERSSA. 
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Number of 

Replicatesa 

Union of all 

DE genesb 

Consensus DE 

genes [%]c 

n = 2 1099 1.27 

n = 3 1046 4.30 

n = 4 771 9.21 

n = 5 720 11.94 

n = 6 677 14.33 

n = 7 512 22.46 

n = 8 434 29.95 

n = 9 373 41.55 

Table 5.5 Effect of the number of replicates on the fidelity of DE gene identification: 

Bottomly dataset 
aA random selection of up to 30 unique subsamples were analyzed at each replicate level. 
bThe number of putative DE genes that were found in at least one of the subsample analyses. 
cThe fraction of those genes that were identified in every one of the subsample analyses.   
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Sample ID Condition Sample ID Condition 

NA06985 European NA18486 Nigerian 

NA06986 European NA18498 Nigerian 

NA06994 European NA18499 Nigerian 

NA07000 European NA18501 Nigerian 

NA07037 European NA18502 Nigerian 

NA07051 European NA18504 Nigerian 

NA07346 European NA18505 Nigerian 

NA07347 European NA18507 Nigerian 

NA07357 European NA18508 Nigerian 

NA10847 European NA18510 Nigerian 

NA10851 European NA18511 Nigerian 

NA11829 European NA18516 Nigerian 

NA11830 European NA18517 Nigerian 

NA11831 European NA18519 Nigerian 

NA11832 European NA18520 Nigerian 

NA11840 European NA18522 Nigerian 

NA11881 European NA18523 Nigerian 

NA11894 European NA18852 Nigerian 

NA11918 European NA18853 Nigerian 

NA11920 European NA18855 Nigerian 

NA11931 European NA18856 Nigerian 

NA11992 European NA18858 Nigerian 

NA11993 European NA18861 Nigerian 

NA11994 European NA18862 Nigerian 

NA11995 European NA18870 Nigerian 

Table 5.6 MP dataset 

25 replicates from each group were randomly selected from the original MP dataset for the 

purpose of ERSSA analysis.  
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Number of 

Replicatesa 

Union of all 

DE genesb 

Consensus DE 

genes [%]c 

n = 2 2085 0.00 

n = 3 2399 0.00 

n = 4 2936 0.07 

n = 5 3265 0.37 

n = 6 2892 0.59 

n = 7 3194 1.53 

n = 8 3122 2.15 

n = 9 3018 3.11 

n = 10 3056 3.73 

n = 11 2972 5.01 

n = 12 2819 5.89 

n = 13 2700 6.93 

n = 14 2477 9.69 

n = 15 2428 11.29 

n = 16 2269 13.75 

n = 17 2202 16.53 

n = 18 2073 18.86 

n = 19 1985 21.16 

n = 20 1835 24.58 

n = 21 1707 31.52 

n = 22 1608 36.88 

n = 23 1471 42.42 

n = 24 1364 52.93 

Table 5.7 Effect of the number of replicates on the fidelity of DE gene identification: 

MP dataset 
aA random selection of up to 50 unique subsamples were analyzed at each replicate level. 
bThe number of putative DE genes that were found in at least one of the subsample analyses. 
cThe fraction of those genes that were identified in every one of the subsample analyses. 
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Sample ID Condition 

SRR1655002 Control_siRNA  

SRR1655003 Control_siRNA 

SRR1655004 Control_siRNA 

SRR1655005 Control_siRNA 

SRR1655006 Control_siRNA 

SRR1655007 EHF_siRNA  

SRR1655008 EHF_siRNA 

SRR1655009 EHF_siRNA 

SRR1655010 EHF_siRNA 

SRR1655011 EHF_siRNA 

Table 5.8 Fossum dataset 

The Fossum dataset contains 5 replicates each of cell lines exposed to either control or EHF 

knockdown siRNA. 

 

 

 

Number of 

Replicatesa 

Union of all 

DE genesb 

Consensus DE 

genes [%]c 

n = 2 2312 0.35 

n = 3 1290 4.57 

n = 4 837 17.56 

Table 5.9 Effect of the number of replicates on the fidelity of DE gene identification: 

Fossum dataset 
aA random selection of up to 30 unique subsamples were analyzed at each replicate level. 
bThe number of putative DE genes that were found in at least one of the subsample analyses. 
cThe fraction of those genes that were identified in every one of the subsample analyses. 
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Chapter 6.  Reinforcing Polylactide (PLA) with Tungsten 

Disulfide (WS2) nanotubes to enable thinner, radio-opaque 

bioresorbable vascular scaffolds 

6.1 Introduction 

The treatment of coronary heart disease (CHD), one of the leading causes of death in the 

world1,2, has seen significant breakthroughs due to improvements in percutaneous 

cardiovascular intervention. Drug-eluting metal stents (DES), the current standard of care for 

CHD, restore blood flow through the occluded artery by physically supporting the artery at 

the site of the lesion. Despite their success, DES are made from materials (e.g. Co-Cr alloys3) 

that are not biodegradable and consequently, lead to undesirable side effects. Patients 

implanted with metal stents (>1M in the US alone in 20084) suffer from angina, due to 

restricted arterial vasomotion, and are at risk of developing late stent thrombosis (LST), the 

most dreaded complication associated with stents5,6. A promising successor to DES is a 

bioresorbable vascular scaffold (BVS), which is made entirely out of a biodegradable 

polymer such as poly L-lactide (PLLA)7,8. Unlike DES, the first clinically-approved BVS 

(CE Mark in 20115 and FDA-approval in 20169) is a transient entity in the body; it supports 

the occluded artery for the requisite 3-6 months but is completely resorbed in 2-3 years10. 

Clinical reports on the five-year follow-up to the first-in-man trials for BVS indicated that 

they restore arterial vasomotion and eliminate the risk of LST11–13. However, subsequent 

clinical trials reported an increase in thrombosis for BVS compared to metal stents within 
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the first year14. Clinicians speculate that the greater thickness of BVSs (~150µm) relative to 

metal stents (~80µm) perturbs the flow of blood which contributes towards the risk of 

thrombosis12. Surgeons also find it challenging to implant a BVS under X-ray guidance as 

polymers are virtually transparent to X-rays. This difficulty in “seeing” the BVS during 

implantation can result in malapposed scaffolds at the site of the lesion, which in turn 

contributes towards thrombosis. Thus, physicians advocate for two main improvements in 

BVS to foster wider adoption and to serve a broader spectrum of patients: (1) reduce the 

thickness of BVS to treat smaller vessels and mitigate the risk of thrombosis, and (2) enhance 

the radio-opacity of BVS to improve visualization with X-rays.  

The key to a thinner ~80µm BVS is to confer radial strength comparable to the clinically-

approved 150µm BVS. PLLA can be made stronger via blending with other polymers15,16 or 

copolymerization17–19, but these methods do not provide any increase in radio-opacity and 

can lead to premature loss of radial strength due to accelerated degradation in the body20. 

Therefore, reinforcing PLLA with inorganic, radio-opaque nanoparticles seems to be a viable 

solution for tackling the dual challenge of a thinner, radio-opaque vascular scaffold. Widely 

used nanoparticles such as carbon nanotubes and graphene nanosheets can increase the 

strength of the polymer matrix21, but they disperse poorly without functionalization22, 

provide no increase in radio-opacity, and are toxic to mammalian cells23. Nanocomposites 

made with Group 3 (Mg, Zn, and Fe) and Group 4 (Ti) elements have been unsuccessful due 

to the lack of sufficient radio-opacity. Group 6 elements (W, Au, and Pt) are promising 

candidates as they provide radio-opacity comparable to an ~80µm-thick Co-Cr stent at a 
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relatively low volume fraction of ~6%. Of these three elements, we select Tungsten Disulfide 

(WS2) nanotubes (WSNTs) as they readily disperse in PLLA without any surface 

modification24 and show promising biocompatibility in vitro25–27. We select WSNTs over 

other WS2 nanoparticles (e.g spheres or fullerene-like) as their high-aspect ratio (70–200 nm 

diameter, 2–3 µm length) will favor preferential orientation along the hoop-direction of the 

BVS during processing, which can enhance radial strength.  

The clinically-approved BVS is made from a predominantly amorphous PLLA preform that 

is processed through a sequence of tube expansion, laser-cutting and crimping. Tube 

expansion subjects the PLLA preform to strains in excess of 400% on the order of seconds. 

This rapid deformation transforms the initially amorphous preform into a highly oriented, 

semicrystalline tube28. The expanded tube is subsequently laser-cut to create an “as-cut” 

scaffold with a lattice network of struts that permits crimping onto a balloon catheter. 

Crimping is performed near the glass transition temperature of PLLA and confers a unique 

morphology that facilitates deployment in the artery29 and provides lasting radial strength for 

months afterword30. Nanoparticles are known to alter morphology development during 

processing, particularly in semicrystalline polymers21,22, motivating the present study on the 

biocompatibility of WSNT-reinforced polylactide (PLA, <2% D-content) and the effects of 

WSNTs on the semicrystalline morphology of PLA under the influence of flow. Guided by 

prior literature showing that 0.1 wt% of WSNTs boost the compressive strength of 

polypropylenefumarate (PPF) by over 50%31, we examine up to 0.1 wt% of WSNTs in PLA. 

We assess the biocompatibility of bare WSNTs and PLA-WSNT films with appropriate 
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controls via microscopy and cytotoxicity assays in cells relevant to the human vasculature. 

In view of the importance of kinetically-controlled morphology in the clinically-approved 

BVS29,30, we study the development of PLA structure in real time under elongational and 

shear flow. In contrast to the scant literature on injection-molded PLA that only probes the 

final state of the material, we perform in situ measurements that reveal aspects of the PLA 

morphology that are only observed for short intervals during flow (e.g. inception of thread-

like precursors that template oriented crystals). The flow-induced crystallization experiments 

described in this report place an emphasis on the shear stress, which correlates with the 

degree of orientation of chain segments in the melt. We complement the in situ measurements 

with ex situ microscopy and X-ray scattering to provide deeper insight on the impact of 

WSNTs on the PLA morphology both during and post flow. 

 

6.2 Materials and Methods 

Preparation of nanoparticles 

Tungsten Disulfide (WS2) nanotubes (WSNTs; 70-200 nm diameter, 2-3 µm length) (Figure 

S1A) were purchased from NanoMaterials, Israel. Before use, the WSNTs were sonicated 

and centrifuged to eliminate agglomerates and small impurities (e.g. broken nanotubes) using 

the following procedure. First, 200 mg of WSNTs was dispersed in 200 mL of isopropyl 

alcohol; the resulting solution was then sonicated in a flask for 2 hours. Second, the sonicated 

solution was poured into falcon tubes (leaving behind the sediment at the bottom of the flask) 

and centrifuged at 1500 rpm for 15 minutes. Third, the supernatant was discarded and falcon 
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tubes containing the residue were immersed in a water bath at 50-60°C for a few days until 

the WSNTs were completely dry and ready to use. Zinc Oxide (ZnO) nanoparticles 

(catalogue #: 544906, Sigma-Aldrich) (Figure S1B) were used as a negative control in 

cytotoxicity experiments. For cell culture, the nanoparticles (WSNTs and ZnO) were 

sterilized by UV light overnight before they were solubilized in media using a combination 

of sonication and vortexing. Residual, non-solubilized aggregates were filtered out using a 

cell strainer with a 40 µm pore size. The nanoparticle-media mixture was then added to cell 

culture wells to reach the desired final treatment concentration. 

Preparation of nanocomposite films 

This study uses polylactide (PLA) with ~2% D-content32,33 and Mw ~ 125 kg/mol (values in 

Figure S2; gel-permeation chromatograms in Figure S3) purchased from NatureWorks, 

USA (Grade 4032D). To limit degradation of PLA at high temperatures (>150°C), PLA 

pellets are first dried under vacuum at 80°C for 1 day and subsequently at 40°C for an 

additional 4 days to reduce moisture. The vacuum-dried polymer is then dissolved in 

chloroform at 60°C for 2 hours. In parallel, a separate solution of WSNTs (0.05 or 0.1wt%) 

in chloroform is sonicated for ~30 mins to break up nanotube agglomerates. The solution of 

WSNTs is then added to the polymer solution and stirred for an additional 1 hour; the 

resulting solution is then cast into glass petri dishes and allowed to dry inside a fume-hood 

for ~2 days; the as-cast films are placed in an oven and dried for ~4 days under vacuum at 

80°C to remove residual solvent. The films are thereafter maintained at 40°C under vacuum.  
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SEM of nanoparticles 

Scanning electron micrographs of WSNTs and ZnO nanoparticles (Figure S1) were acquired 

at Caltech on a ZEISS 1550VP Field Emission SEM with an electron accelerating voltage of 

10kV. The SEM samples were prepared using the following protocol: (1) disperse 7.2 mg of 

nanoparticles (WSNTs or ZnO) in 12 mL of chloroform, (2) sonicate the dispersion for 20 

minutes to break-up agglomerates, and (3) drop-cast the sonicated solution (~0.5 mL) on a 

silicon wafer for imaging.  

Cell culture 

Pooled, Normal, Primary Umbilical Vein Endothelial Cells (HUVECs, ATCC PCS-100-

013) and Normal Human Primary Aortic Smooth Muscle Cells (HASMCs, ATCC PCS-100-

012) were obtained from the American Type Culture Collection (ATCC). HUVECs were 

grown in Vascular Cell Basal Medium with Endothelial Cell Growth Kit-BBE additive 

(ATCC). HASMCs were grown in Vascular Cell Basal Medium with Vascular Smooth 

Muscle Cell Growth Kit additive (ATCC). P5 to P7 HUVECs and P4 to P6 HASMCs were 

used in all cell culture experiments. All cell cultures were grown in a humidified incubator 

at 37˚C with 5% carbon dioxide to control media pH.  

Preparation of PLA, PLA-WSNT and PLA-ZnO disks for cell culture 

Disks were prepared by first cutting out circles (diameter: 22 mm) from solvent-cast PLA, 

PLA-WSNT (0.1 wt%), and PLA-ZnO films and then punching out their center (inner 

diameter: 6 mm) to facilitate transport of media (Figure S4A-B). The disks were then 
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sterilized through stringent washes in a 70% Ethanol, 30% water solution followed by 

thorough air drying. The dried disks were then inserted into 12-well cell culture plates at the 

start of the treatment (Figure S4C). At end of the treatment, the disks were carefully removed 

to facilitate assay reagent diffusion prior to the WST-1 assay and Live/Dead staining. 

WST-1 assay 

The WST-1 cell proliferation reagent (Roche) was first added to the cell culture media at the 

recommended working concentration; the reagent-media solution was subsequently 

incubated for four hours at 37°C. After incubation, 100 µL of the solution was transferred to 

each well of the 96-well plate for plate-reading using a Flexstation 3 microplate reader (440 

nm and 690 nm). The baseline absorption from the background and media was subtracted to 

isolate the contribution of the cells. All test wells were then normalized as a percentage of 

the mean control well value except for the disk overlay study, in which normalization was 

done as a percentage of the mean PLA well value. In the bare nanoparticle concentration 

series and time series experiments, statistical tests were performed between control and 

treated cells. In the disk overlay experiment, statistical tests were performed between cells 

exposed to PLA films and other conditions. A 10x Lysis Buffer (Thermo Scientific Pierce) 

was used as a lethal control (cells were treated for 15 mins prior to the WST-1 assay). For 

the time series experiments, each disk was incubated with 1 mL of the appropriate growth 

media for 24 hours in a humidified incubator maintained at 37°C. Cells were then exposed 

to this pre-conditioned media (growth media that was in contact with the disks) and their 

viability was assessed via WST-1 at three different time points (24, 48, and 72 hours).   
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Live/Dead staining and phase-contrast microscopy 

The LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen) was used to simultaneously capture 

the status of both dead and live cells. At start of the assay, cells were washed once with 

Dulbecco's Phosphate-Buffered Saline (DPBS) before incubation for 30 minutes at 37˚C in 

the media-dye mixture. At end of incubation, cells were washed with DPBS and imaged on 

a Zeiss Axiovert 25CFL microscope. The FIJI software package was used to merge 

fluorescent signals into one image with red indicating dead cells and green indicating live 

cells. Phase contrast images were captured on the same microscopy system with bright-field 

illumination (see Figure S5 for phase contrast micrographs of the cells before and after the 

wash). A 10x Lysis Buffer (Thermo Scientific Pierce) was used as the lethal control and was 

added to wells for 15 minutes before Live/Dead staining. 

TEM of cells cultured with WSNT 

Cells were grown in 100 mm cell culture plates to near 50% confluency before treatment 

with 20 µg/mL of WSNTs . After 24 hours of treatment, the cells were washed with 

Cacodylate buffer and fixed with a 3% glutaraldehyde and 1% paraformaldehyde fixative 

solution. The cells were then gently scraped off and post-fixed with 2% Osmium Tetroxide, 

0.7% Potassium ferrocyanide in Cacodylate buffer. After post-fix, the cells were washed with 

additional Cacodylate buffer and distilled water before en bloc staining with 1% aqueous 

uranyl acetate. Finally, the cells were dehydrated with an acetone gradient series, infiltrated 

into an Epon-Araldite resin and transferred to embedding molds for polymerization. Semi-
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thick 400 nm sections of the samples were cut with a UC6 Ultramicrotome (Leica 

Microsystems) using a diamond knife (Diatome, Ltd.). The sections were placed on formvar-

coated, copper-rhodium 2 mm slot grids and stained with 3% uranyl acetate and lead citrate.  

The grids were placed in a dual-axis tomography holder (Model 2040, EA Fischione Inc.) 

and imaged with a Tecnai TF30ST transmission electron microscope (ThermoFisher 

Scientific) at 300 keV.  Images were recorded digitally with a US1000 CCD camera (Gatan, 

Inc.). Tomographic tilt-series data were acquired as described in the literature34. Briefly, the 

grids were tilted ±64° and images were acquired in 1° increments. The grid was then rotated 

90° and a similar series was taken about the orthogonal axis. Tomographic data and 

projection images were processed and analyzed using the IMOD software35,36 package on a 

MacPro Computer (Apple, Inc).  

Statistical analysis 

All biocompatibility statistical tests were performed in GraphPad Prism 7.00. The variation 

in cellular viability between different conditions was tested using two-way ANOVA for 

WST-1 assays (statistical significance threshold set at p-value < 0.05). In the nanoparticle 

concentration and time series studies, statistical tests were performed against untreated cells. 

In the disk overlay study, statistical tests were performed against cells exposed to PLA. 

Preparation of PLA and PLA-WSNT ingots 

Vacuum dried PLA pellets and PLA-WSNT films were compression-molded into an ~8 g 

cylindrical “ingot”, which is the starting material for the flow-induced crystallization 
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experiments described below. Heat and pressure are applied to the mold using a Carver hot-

press. The two platens of the hot-press are maintained at 200°C and the temperature of the 

mold is continuously recorded used a thermocouple. The mold is also connected to vacuum 

line (< 300 mTorr) to remove any moisture that can induce degradation of PLA near the melt. 

The mold is heated up to 180°C and held at that temperature for 10 mins under a pressure of 

~2 tonnes. The mold is then removed from the hot-press and rapidly quenched to ~60°C in 

dry ice. The ingot is subsequently extracted from the mold and stored under vacuum at 40°C.  

In situ flow induced crystallization (FIC) 

A custom-built apparatus37 was used to probe the impact of WSNTs on the microstructure of 

PLA during flow. PLA and PLA-WSNT ingots are first placed in the instrument’s reservoir, 

which is maintained at 200°C, above the melting temperature of PLA (Tm ~ 170°C). A 

narrow rectangular capillary termed the “shear cell” (6.35 cm x 6.35 mm x 500 µm) is located 

downstream of the reservoir; the shear cell is filled with material using a pressure-driven 

piston at the lowest possible wall shear stress to avoid pre-orientation of material. A pressure 

transducer located near the inlet of the shear cell enables calculation of the wall shear stress 

(σw; see equation S1). The shear cell is then maintained at 200°C for an additional 5 minutes 

to erase thermal history. The shear cell is cooled to the prescribed shear temperature (Ts: 125 

– 140°C) at ~8.5°C/min and a shear pulse (ts: 10–40 s; σw: 0.11–0.23 MPa) is applied using 

the pressurized piston. A pair of quartz windows at the outlet of the shear cell permit a path 

for plane polarized light (652 nm He-Ne laser) to interact with the material both during and 

post flow. A pair of detectors continuously record the transmitted intensity, which is used to 
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calculate the “retardance”, an optical property analogous to birefringence that provides a 

measure of oriented crystallization.  

Gel permeation chromatography (GPC) 

The molecular weight (Mw) of PLA and PLA-WSNT was measured using a Wyatt DAWN 

EOS Multi-Angle Light Scattering System (MALLS, λ = 690 nm) in conjunction with a 

Waters 410 differential refractometer (λ = 930 nm). The system uses degassed 

tetrahydrofuran (THF) as the mobile phase at a temperature and flow rate of 35°C and 0.9 

mL/min respectively. The samples are first dissolved in THF at a concentration of 5 mg/mL 

and the resulting solution is filtered through a 0.45 µm pore poly(tetrafluoroethylene) (PTFE) 

membrane. The filtered solution is injected into the system and separation is achieved 

(longest molecules elute first) using four Agilent PLgel columns (pore sizes: 103, 104, 105, 

and 106 Å) connected in series. Elution is complete in 50 minutes and data (light scattering 

and refractive index) are acquired at a resolution of 5 Hz. Data analysis is performed in the 

Wyatt Astra software (version 5.3.4) using the Zimm fitting formula with dn/dc = 0.042 ml/g 

for poly L-lactide. Cognizant that thermal degradation of PLA can alter our interpretation of 

the retardance data, we checked the Mw of the starting resin, the compression-molded ingots 

and the extruded material at the end of each flow-induced crystallization experiment. We 

found that our samples have good thermal stability during compression-molding and for the 

duration of the shear experiments (~4 hours) as little to no change in Mw was observed 

(Figure S2–S3). 
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Sectioning and Microscopy 

Sheared PLA and PLA-WSNT samples are first embedded in OCT (optimal cutting 

temperature) media to facilitate sectioning. The embedded samples are microtomed using 

Sakura Finentek’s Tissue Tek-Cryo3 into ~50 µm thick sections both normal to the flow-

direction (∇xv–∇v) and the vorticity-direction (v–∇v). The samples are sectioned at -35°C to 

minimize the impact of the stainless-steel knife (Sakura Accu-Edge 4685 blades) on the 

morphology of the samples. The microtomed sections are subsequently imaged at 4x through 

crossed-linear polarizers in a Zeiss Universal Microscope equipped with a Canon EOS DS30 

camera.  

X-ray scattering 

The morphology of PLA and PLA-WSNT samples subjected to shear flow was probed using 

X-rays at beamline 5-ID-D of the Advanced Photon Source (APS), Argonne National Labs. 

The incident X-ray beam with spot-size 250 µm x 250 µm was aligned parallel to the gradient 

(∇ v), flow (v) and vorticity-direction (∇ xv) to obtain a 3D-view of the morphology in each 

sample. Wide Angle X-ray Scattering (WAXS) patterns were acquired on a Rayonix CCD 

detector that was located 200.83 mm from the sample. Diffraction patterns were acquired 

with an exposure time of 0.5s using X-rays of wavelength 0.7293Å. Drift in the background 

scatter was monitored by periodically acquiring “air” scattering patterns (no sample in the 

path of the beam) at 0.5s exposure as well. The air frames were averaged to obtain a single 

background image that was subtracted from the sample images to isolate the scattering from 



352 

 

PLA/PLA-WSNT alone. The subtracted patterns were then normalized by the total number 

of counts to account for variations in thickness. 

 

6.3 Results 

In vitro biocompatibility assays were performed on bare WSNTs and PLA-WSNT 

nanocomposites with appropriate controls in two cell lines – Human Umbilical Vein 

Endothelial Cells (HUVECs) and Human Aortic Smooth Muscle Cells (HASMCs), which 

represent the major cell types that are likely to surround the deployed scaffold in the artery38. 

We performed a series of cell culture experiments to assess the biocompatibility of WSNTs 

and the PLA-WSNT nanocomposites.  To evaluate cell tolerance of bare WSNT, we used 

four methods: phase contrast microscopy39, Live/Dead staining40, WST-1 (water soluble 

tetrazolium with iodo, nitro and disulfo functional groups)27 assay, and transmission electron 

microscopy (TEM)26. The cytotoxicity of PLA-WSNT nanocomposite films in direct contact 

with HUVECs and HASMCs for 24 hours was assessed using phase contrast microscopy, 

Live/Dead staining and WST-1 assays. As an additional test, media that had been incubated 

with PLA-WSNT nanocomposites for 24 hrs was applied to cells and their metabolic activity 

was monitored at 24, 48, and 72 hrs.  Based on the encouraging results of these 

biocompatibility assays, we examined the effect of WSNT on morphology development of 

PLA during processing using short term shear experiments37,41. 

HUVEC and HASMC tolerate bare WSNT in vitro 
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Consistent with the prior literature on the biocompatibility of WSNTs with rat salivary 

cells26, human bronchial epithelial cells27, human hepatocytes27 and mouse macrophages27, 

phase contrast microscopy of HUVECs and HASMCs indicates that both cell lines retain 

their morphology when exposed to concentrations ranging from 5 to 100 µg/mL of WSNTs 

(see Figure 1A for a schematic of the experiment, 1B-C for microscopy images of 20 µg/mL 

and Figure S6A and S7A for other concentrations). Micrographs of cells subjected to 

Live/Dead staining confirm that cells which retain their expected morphology are indeed 

alive (Figure S8). In negative controls that received ZnO nanoparticle treatment, which is 

known to be cytotoxic42,43, both cell lines experience cell death at concentrations above 20 

µg/mL of ZnO nanoparticles, (Figure 1B-C and Figure S6B and S7B). Wells containing 20 

µg/mL of ZnO were dominated by detached and possibly apoptosed cells (black arrows, 

Figure 1B-C); it was difficult to find any cells with normal morphology in wells exposed to 

50 and 100 µg/mL of ZnO (Figure 1B-C bottom; and Figure S6B and S7B). 

WST-1 assays of the average metabolic activity performed after a 24-hour treatment with 

bare WSNTs show that WSNT treated cells, both HUVECs and HASMCs, retain at least 

70% of their metabolic activity relative to media controls (WS2, Figure 1D-E). As there is 

no evidence of cell death at 100 µg/mL of WSNTs (Figure S6A and S7A), it appears that 

WSNTs may be influencing the measured metabolic activity by reducing the metabolic 

and/or cell proliferation rates. In agreement with the micrographs (ZnO, Figure 1B-C, 

bottom; and Figure S6B and S7B), WST-1 measurements show a sharp drop in metabolic 

activity for ZnO at 20µg/mL, and negligible activity remains for cells exposed to 50 and 100 
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µg/mL ZnO (Figure 1D-E). The results were confirmed by replicate experiments at 20 

µg/mL for three time points (24, 48, and 72 hrs) that compared the vehicle control with 

WSNT and ZnO (Figure S9). 

HUVEC and HASMC tolerate direct contact with PLA-WSNT nanocomposites in vitro 

Phase contrast micrographs of cells in contact with PLA-WSNT (0.1 wt%) films for 24 hours 

show that both HUVECs and HASMCs have similar cell morphology and cell density as 

their respective media controls underneath the disk (Figure 2B-C, left). Surprisingly, all 

three polymeric samples tested—including the PLA-ZnO negative control—had cell density 

underneath and next to the nanocomposite similar to that of the control untreated cells 

(Figure S10). Since a cytotoxic material would induce cell death at the cell-material 

interface, constant cell density at the PLA disk interface suggests that the PLA matrix can 

sequester even a toxic nanoparticle under these testing conditions.  

Dead (red) and live (green) channel composite micrographs (right side of each pair of images 

in Fig 2B, C) indicate that all disk treatment conditions have comparable cell viability to the 

vehicle controls. Cell density appears to be consistent between conditions with only a few 

dead (red) cells detected. A separate set of samples placed in contact with a PLA or 

nanocomposite disk overlay was used for WST-1 assays of cell metabolic activity. In both 

HUVEC and HASMC samples, no detectable difference in metabolic activity was found 

between PLA compared to PLA-WSNT and PLA-ZnO (Figure 2D-E). A minor but 

statistically significant drop in metabolic activity was detected in HASMC between the 



355 

 

control and PLA. Additionally, these results were confirmed by experiments in which the 

medium was incubated with PLA nanocomposites for 24 hrs and then applied to cells in 

culture, which were analyzed at three incubation time points (24, 48 and 72 hrs; Fig S9). 

TEM of cells exposed to bare WSNT suggest endocytosis and association with cytosolic 

vesicles   

Transmission electron micrographs (TEM) of HUVECs and HASMCs treated with bare 

WSNTs show black features that are aggregates of WSNTs, intracellular gray regions where 

the protein or nucleic acid concentration is typical of cytoplasm or nuclear contents, 

intracellular pale gray to white regions containing vesicles, and pale gray outside the cells 

where there is embedding resin (Figure 3A-B). Of the 91 WSNT aggregates in HUVEC cells 

and 65 WSNT aggregates in HASMC cells identified in the TEM images, none were 

observed in the nucleus. The majority of intracellular WSNTs – ~84% (76/91) of the 

aggregates in HUVECs and ~85% (55/65) of the aggregates in HASMCs – are visibly 

associated with vesicles. In many of the TEM micrographs, the WSNT aggregates appear to 

be incompletely surrounded by vesicles (Figure 3A-IV). We attribute this observation to the 

inherent 3D pleomorphic structure of cellular compartments and the inability of TEM to 

accurately discern the borders of the vesicles in the 2D projection images. To confirm that 

WSNTs are indeed surrounded entirely by vesicles, tomographic reconstructions were 

prepared at selected nanoparticle locations to visualize the sample in 3D. Although 

tomography was limited to a smaller number of WSNT aggregates, the 3D images provided 

a confident delineation of the vesicle border relative to the nanoparticles within it. In these 
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reconstructions, the nanoparticle aggregates appear to be fully enclosed by the associated 

vesicles in both HUVECs and HASMCs (Movie S1 and S2).  

Probing the impact on WSNTs on the microstructure of PLLA during flow 

We probe changes in microstructure during and after flow with millisecond time resolution 

by measuring the optical retardance. The average retardance is measured using the variations 

of light intensity transmitted through crossed and parallel polarizers, with the polarizer and 

analyzer oriented at ±45° relative to the flow direction and with the laser pointed along the 

velocity gradient direction37. The average retardance is related to the integral of the 

birefringence over the thickness of the channel44,45. Here, there are three contributions to the 

birefringence: the melt flow birefringence, the birefringence due to formation of oriented 

PLA crystals, and the birefringence due to oriented nanotubes. 

First, consider the retardance during a 10s shear pulse of σw = 0.19 MPa as a function of 

shear temperature (Ts). The application of a flow field distorts the initially isotropic melt, 

which manifests as an increase in retardance (δ) for the duration of the shear pulse (inset of 

Figure 4A). For a fixed wall shear stress, decreasing Ts mildly increases the retardance 

during flow. In the absence of nanoparticles (Figure 4A, left), this increase is indicative of 

the increase in the melt normal stresses relative to the (fixed) shear stress.  For PLA-WSNT, 

the retardance during the shear pulse accords with the PLA melt retardance (Fig 4A, compare 

center to right insets), indicating that the contribution of the nanotubes is minimal. A new 

feature appears when the WSNT concentration is increased to 0.1wt%: near the end of the 
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shear pulse, the retardance rises steeply for Ts = 133, 130, and 127°C. Furthermore, the 

behavior after cessation of flow (t = 10s, Figure 4A, right) is incomplete and the surviving 

retardance after cessation of shear increases when Ts is lower than 135°C. This occurs 

despite the fact that the wall shear rate and the total shear strain decrease as Ts decreases 

(Figure S12, left). 

Next, consider the retardance after cessation of flow as a function of shear temperature (Ts) 

for matched growth conditions. After the melt relaxes (abrupt decrease in retardance upon 

cessation of shear), any subsequent increase in retardance is indicative of oriented 

crystallization templated by oriented precursors and/or oriented nanotubes. In every 

experiment, the retardance due to crystallization goes over orders (orders are marked by gray 

horizontal dashed lines, labelled in Figure 4C, left). Open circles mark the time each order 

of retardance is reached; the last full order observed is the last data point shown (limited by 

loss of transmitted intensity due to crystallization). In PLA alone, the increase in retardance 

due to oriented crystallization reaches the first order for Ts ≤ 137°C, indicating oriented 

precursors were created within 10s during flow (there are no nanotubes). Even though the 

behavior during the shear pulse is similar for PLA and PLA-WSNT (insets Figure 4A), the 

subsequent increase in retardance due to crystallization is significantly affected by WSNT: 

the increase in retardance after flow begins earlier and reaches higher values for the 

nanocomposites than for neat PLA, suggesting that WSNTs promote oriented crystallization 

in PLA (see t > 10s, Figure 4A). The effect of shear temperature shows that deeper 
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subcooling during the shear pulse results in stronger oriented growth (the rise in retardance 

begins earlier and the retardance reaches higher values). 

To examine the effect of shearing time (ts: 10–40s, Figure 4B) and shear stress (σw: 0.11–

0.23 MPa, Figure 4C), we chose a fixed shearing temperature (Ts = 130°C) that gives a 

significant retardance after cessation of flow and low enough viscosity to permit flow for 40s 

even at the highest wall shear stress (σw = 0.23 MPa). Increasing the shearing time (ts) 

increases the strength of oriented crystallization (Figure 4B).  This increase interacts with 

nanotubes: during sustained flow the shear pulse induces an “upturn” (labeled in Figure 4B, 

mid) in the retardance at t ≥ 30s, which increases significantly with the addition of WSNTs.  

Further, the upturn during shear correlates with significant features after cessation of flow: 

the retardance does not relax completely and the residual retardance is roughly proportional 

to the height of the upturn (see Figure 4B and Figure 5, left). In the literature, an upturn in 

the retardance is associated with a population of shish that survives melt relaxation and 

promotes growth of kebabs45–48, as evidenced by an earlier and strong increase in retardance 

after cessation of flow (Figure 4B). For PLA without nanotubes, increasing ts from 10s to 

40s shortens the time to reach the first order in retardance (δ = π) by 50s and increases the 

growth rate of retardance. With the addition of nanotubes, the effect of ts lessens: increasing 

ts from 10s to 40s reduces the time to reach first order only by ~20s for PLA-WSNT 0.05 

wt% and <10s for PLA-WSNT 0.1 wt%. Intriguingly, the transient retardance after flow 

becomes insensitive to ts at the highest WSNT concentration (0.1 wt%): the time required to 

observe the first four orders of retardance (δ = π, 2π, 3π and 4π) is nearly independent of ts 
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(Figure 4B, right). The effect of the wall shear stress (σw) reveals that WSNTs decrease the 

critical stress required for nucleation of oriented precursors; the stress required to induce an 

upturn decreases from σw ≥ 0.17 MPa for PLA to σw ≥ 0.13 MPa for PLA-WSNT 0.1wt% 

(Figure 4C). The interaction of shear stress with nanotubes in producing oriented precursors 

is also evident in the magnitude of the upturn. For example, at σw = 0.19MPa, the height of 

the upturn increases 5-fold with addition of 0.1wt% WSNT (Figure 5A, right)  

PLA and PLA-WSNT samples were extracted from the instrument and microtomed at -35°C 

both normal to the flow (sections in the vorticity–velocity gradient plane, denoted by ∇xv–

∇v) and normal to the vorticity (sections in the flow–velocity gradient plane, denoted by v–

∇v) for ex situ polarized light microscopy; therefore, pairs of images are shown for each 

composition and shearing time that are reminiscent of the classic skin–core morphology 

observed in injection molding of semicrystalline polymers49. The PLA sections are 

crystalline near the walls and predominantly amorphous towards the core (Figure 6A). The 

lack of significant crystallization in the core indicates the absence of quiescent nucleation 

events prior to removal of the shear cell from the heater block (at 1000s for all samples); the 

material in the shear cell then cools into glass within the next 300s. In contrast, the PLA-

WSNT sections have a completely crystalline, spherulitic core, indicating that WSNTs act 

as heterogenous nucleation sites even in the absence of flow (Figure 6B–C). Consistent with 

the in situ retardance data (Figure 4B), we observe an increase in the retardation of the fully 

solidified samples with increasing ts (see color scale50 and corresponding retardation below 

Figure 6). Intriguingly, the increase in retardation with ts is more apparent in the plane 
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normal to the flow direction (∇xv–∇v, Figure 6A-C, left) than in the plane containing the 

flow direction (v–∇v, Figure 6A-C, right). For example, in PLA-WSNT 0.05 wt%, 

increasing ts results in a thicker birefringent skin that is readily evident in the ∇xv–∇v plane 

(orange-red Michel Levy color, Figure 6B, left), but there is little to no indication of an 

oriented skin in the v–∇v plane (Figure 6B, right). PLA-WSNT 0.1 wt% is the only 

exception to this trend; in addition to an oriented skin in the ∇xv–∇v plane (Figure 6C, left), 

a weak but distinct skin in the v–∇v plane is observed as well (for ts: 30–40s, Figure 6C, 

right). 

 

6.4 Discussion 

WSNT and PLA-WSNT nanocomposite biocompatibility 

WS2 nanoparticles possess beneficial physical and mechanical properties51 and have recently 

been studied for various biomedical applications such as friction-reducing agents in nickel-

titanium alloys52 and for reinforcing orthopedic implants31. The first step in the use of these 

nanomaterials for any medical application is to assess their biocompatibility in relevant cells. 

In a study that explored the use of WSNTs to reinforce salivary gland scaffolds, the 

nanotubes were introduced to rat submandibular gland-derived A5 cells and found to have 

no effect on the rate of cell proliferation for concentrations up to 35.2 µg/mL26. Similarly, 

another study investigated WSNT biocompatibility in three different cell types (NL-20 

human bronchial epithelial cells, human liver-derived HepG2 cells and mouse Raw264 

macrophages) and found high cell survival rate with WSNT concentrations of up to 100 
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µg/mL27. In this study, we are interested in interrogating the potential cytotoxicity of WSNTs 

for use in a PLA nanocomposite scaffold that can be inserted into occluded arteries for 

structural support. We found that WSNTs are well tolerated in two relevant human primary 

cell lines, HUVECs and HAMSCs, for concentrations up to 100 µg/mL after 24 hours of 

exposure. Both cell lines show a modest, dose-dependent reduction of metabolic activity 

relative to controls: exposure to 20 µg/mL WSNT (for exposure up to 72 hrs, Figure S9) had 

no measurable effect, but exposure to 50 µg/mL and 100 µg/mL shows a measurable 

decrease of ~11-24% and up to ~32% respectively (Figure 1D-E). We did not observe an 

abnormal number of floating dead cells at the higher concentrations (100 µg/mL of WSNT), 

suggesting that WSNTs have a relatively mild impact on cellular metabolic and proliferation 

rates. Our choice of cytotoxic control (ZnO nanoparticles) was based on prior literature 

showing strong cytotoxicity of ZnO towards human astrocyte-like U87 cells43 and human 

cardiac microvascular endothelial cells42. In the present study on HUVECs and HASMCs, 

we establish a similar dosage-dependent cytotoxicity profile (24 hr, Figure 1D-E; up to 72 

hr, Figure S9). Transmission electron micrographs of cells treated with 20 µg/mL of WSNTs 

indicate that the nanotubes form aggregates that are endocytosed and enclosed within 

cytosolic vesicles (Figure 3); within the limitations of the image contrast and resolution, no 

discernable effect on the nucleus, mitochondria, or endoplasmic reticulum was observed.  

We also tested the biocompatibility of PLA-WSNT (0.1 wt%) nanocomposite films and 

found no indication of cytotoxicity with phase contrast microscopy, live/dead staining, and 

WST-1 metabolic assays. Comparison of the PLA control to PLA-WSNT in HUVECs and 
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HAMSCs after 24 hours of exposure showed: a) consistent cell density in the central open 

area and at the cell-film interface (Figure S10); b) consistent cell density under the film 

(Figure 2); c) indistinguishable, high viability of cells in the area that was underneath the 

film (Figure 2); and d) comparable metabolic levels as measured by WST-1 assays. Relative 

to cells that did not have a film placed on them, HASMCs (but not HUVECs) show a small, 

statistically significant decrease in metabolic activity, independent of WSNT content (Fig 

2E). Likely causes include reduced nutrient transport due to disk-overlay and/or disruption 

of cells due to insertion and removal of disks. Interestingly, the PLA-ZnO (0.1wt%) 

nanocomposite has favorable biocompatibility with little difference from the PLA control 

(Figure 2). This may be due to negligible hydrolysis of PLA during the treatment period (24 

hours), such that the ZnO nanoparticles remain trapped in the PLA matrix and consequently, 

have no detectable impact on cellular metabolic activity.  

In situ oriented crystallization in PLA-WSNT relative to PLA 

The literature on flow-induced crystallization is scarce for PLA, particularly for PLA-

nanocomposites. The majority of studies on the effects of shear on PLA morphology, 

particularly those that observe structure development during shear, impose shear flow using 

a parallel-plate geometry (Linkam CSS-450, shear rate: �̇� = 1–100s-1)53–57. Prior studies of 

flow-induced crystallization of PLA include some that examine polymers similar to the 

present study (references 53-56 use PLA from same supplier, with similar <2% D-content 

and Mw).  Interestingly, prior works report relatively low densities of oriented structures 

(row-structures ~50µm apart)55–57, even for PLA containing 0.1wt% carbon nanotubes (row-
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structures ~10µm apart)56. In contrast, we observe densely packed oriented structures (<5µm 

apart, Figure 6) despite operating at a much lower shear rate (here �̇� <1s-1) and shear duration 

(ts: <40s) compared to the studies described above55–57 (�̇�: 5 to 30s-1; ts: 3 to 10 mins). Only 

at much higher shear rates (10, 25 and 100s-1)53,54 and shear durations (5 to 10 mins)53 are 

tightly packed oriented structures (shish-kebabs < 5 µm apart) reported.  Although the origin 

of this stark difference is unclear, a contributing factor might be a difference in molecular 

weight: the sample handling and experiment conditions in this study preserve the initial 

molecular weight (Figure S2–S3), in contrast to reports of a   >20% decrease in the PLA 

molecular weight53, or severe degradation54. Perhaps retaining high molecular weight species 

enhances formation of oriented precursors during flow. If the stress observed during prior 

experiments was known, it might be feasible to test this possibility; however, the stress was 

not measured in these previous studies53–57.  In addition to the rapid and highly oriented 

crystallization of PLA, we also observe a fascinating anisotropy in the oriented skin 

indicating that the structures are not cylindrulites (i.e., they are not isotropic in the plane 

orthogonal to the flow direction). The PLA-WSNT nanocomposites exaggerate the unusual 

behavior: nanotubes further enhance rapid, highly oriented crystallization and the peculiar 

anisotropy in the oriented skin increases (for increasing WSNT content, compare the bottom 

row in Figure 6, left column). The remainder of the Discussion is devoted to these intriguing 

features evident in our data: (1) why does an increase in WSNT concentration reduce the 

effect of shear time; (2) what is the molecular basis for the unusual morphology observed in 
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the PLA/PLA-WSNT micrographs; and (3) how does oriented crystallization vary through 

the thickness of a sample?  

PLA and PLA-WSNT differ in their response to an increase in the shear duration (ts). For 

PLA, an increase in ts increases the slope of the retardance traces after cessation of flow (PLA 

traces fan out, compare ts: 10–40s, Figure 4B, left, 50-200s). The increase in slope is 

consistent with the expected effect of increasing ts: the activation of point-like nuclei that 

form thread-like precursors continues for the duration of the shear pulse and the initial rate 

of increase of birefringence after cessation of flow is proportional to the total shish length 

per unit volume in the oriented skin45. The addition of WSNTs changes this behavior: the 

retardance profiles for PLA-WSNT at the end of the shear pulse are more or less unaffected 

by ts; the retardance traces are clustered together and have almost identical slopes (see Figure 

4B, mid–right). It appears that an increase in ts has little bearing on the concentration of 

thread-like precursors; this behavior is reminiscent of “saturation” of shish in isotactic 

polypropylene (iPP)46,48. This saturation effect in the retardance traces manifests in the ex 

situ micrographs as well: with increasing ts (Figure 6A, left), the degree of anisotropy in the 

layers near the wall clearly increases in PLA alone, but not for ts >20s in PLA-WSNT 0.05 

wt% (Figure 6B, left) nor for any ts in PLA-WSNT 0.1 wt% (Figure 6C, left). The effect of 

WSNT concentration (cf. PLA-WSNT 0.05 wt% and 0.1 wt% retardance post flow, Figure 

4B, mid–right) suggests that a concentration of 0.1 wt% has enough oriented nanotubes that 

any shear-induced oriented precursors have negligible effect: the curves are not only parallel, 

they are almost indistinguishable for all ts (Figure 4B, right). If WSNTs are dispersed 
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uniformly, a 0.1 wt% loading of oriented WSNTs translates to a spacing of ~3.5 µm (see SI 

for calculation) between adjacent nanotubes, which makes it likely that the nanotubes act as 

preexisting oriented structures in the PLA melt.  

The oriented skin in these samples has a feature we have not found in the shear-induced 

crystallization of any other semicrystalline polymer: a lack of rotational symmetry about the 

flow direction. To our knowledge, none of the copious literature on skin-core morphologies 

reports a deviation from rotational symmetry of the crystallites growing outward from the 

shish. Shear leads to shish that have the chain axis along the flow direction in isotactic 

polypropylene and polyethylene, among others. Lamellae nucleate on the shish and grow 

radially outward. Sections cut in the plane of the gradient and vorticity directions (such that 

the observer is looking down the flow direction, hence the chain axis in the shish) have an 

oriented skin that appears dark when viewed between crossed polars; this is usually 

interpreted to mean that the a- and b- axes are randomly oriented in the plane perpendicular 

to the c-axis46. This morphology is referred to as cylindrulitic. Sections cut in the plane of 

the flow and gradient directions (observer looking along the vorticity axis) have an oriented 

skin that appears bright when viewed between crossed polarizers, due to the pronounced 

difference in polarizability along the c-axis compared with the a- and b-axes of the crystal46.   

Electron microscopy on PLA confirms that formation of shish along the flow direction can 

be induced by shearing the subcooled melt, albeit for relatively long shearing times and high 

shear strain49,53. However, we were unable to find any mention of an unexpected asymmetry 

about the flow direction. In the present specimens, the pairs of images in the plane of the 
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gradient and vorticity (Figure 6A-C, left) and in the plane of the flow and gradient (see 

Figure6A-C, right) violate the expectation that the oriented skin on the left should show no 

retardance (here, a full wave retarder is used, and null retardation would appear first order 

red/purple). Instead, for each material and each shear time, that is the projection that appears 

bright—consistently brighter than its partner image in the plane of the velocity and gradient 

(on the right for each pair of images in Figure 6). We confirmed that the bright skin seen in 

(∇xv–∇v)-plane is due to preferentially-oriented crystallites and not densely packed 

spherulites by rotating the sample and observing that the skin appears bright when oriented 

-45° or 45° relative to the crossed polarizers and dark when it is parallel to them (Figure 

S19A-C, left). X-ray scattering data acquired along all three projections (v–∇xv, ∇xv–∇v, 

and v–∇v) confirm that the orientation distribution of crystallites is not symmetric about the 

flow direction (Figure 7). The observed WAXS patterns are a superposition of the scattering 

from a thin layer of oriented crystallites and a substantially thicker layer of spherulites. In the 

(v–∇xv)-plane, all three samples (PLA, PLA-WSNT 0.05%, and PLA-WSNT 0.1%) indicate 

a population of crystallites with their c-axes aligned along the v-direction (Figure 7A). 

However, when the same sections are probed in the (∇xv–∇v)–plane, we observe crystallites 

with their c-axes aligned along the ∇v-direction (Figure 7B), which may explain the presence 

of a bright skin viewed in this projection (Figure 6A-C, left image of each pair). In the (v–

∇v)-plane, there is little evidence of a preferred direction of orientation (Figure 7C), 

consistent with the absence of a distinct skin in the micrographs (Figure 6A-C, right image 
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of each pair). Thus, the X-ray data corroborate the micrographs and confirm the absence of 

cylindrical symmetry in the sheared samples.  

The observed in situ retardance profiles are depth-averaged measurements as the beam of 

plane polarized light passes through the entire 500 µm thickness (∇v-direction) of the sample. 

Therefore, we take advantage of the linear shear stress profile in the channel and apply a 

“depth-sectioning” approach44 to the series of experiments in which σw is varied with Ts and 

ts held fixed (Figure 4C).  The analysis isolates the transient retardance of the material at 

specific distances from the walls in a sample subjected to σw = 0.21 MPa. The depth-

sectioned traces for all three materials (PLA with 0, 0.05, and 0.1wt% WSNT) share some 

common features: the relaxation in retardance after cessation of flow is most pronounced in 

the layer farthest from the walls (~85 µm, Figure 8A); the retardance begins to increase 

within 5s after cessation of flow at every distance from the walls; the rate of retardance 

increase is greater the closer the material is to the walls (Figure 8A to D, i.e. the higher the 

local stress); and the time at which impingement of neighboring crystals (the inflection point 

in Figure 8) becomes evident is earlier the closer the material is to the wall.  All of these 

features are indicative of greater formation of flow-induced precursors at greater shear stress: 

oriented precursors prevent complete relaxation of retardance after cessation of shear, 

increase the number of oriented lamellae that subsequently nucleate, and decrease the 

distance oriented lamellae grow prior to impingement. At each distance from the wall, adding 

WSNTs causes the retardance to rise sooner and more steeply than it does for PLA alone. 

Quantitatively, oriented crystallization develops as rapidly in the PLA-WSNT 0.1wt% layer 
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farthest from the wall (~85µm, blue line in Figure 8A) as it does in the PLA layer closest to 

the wall (~20µm, black line in Figure 8D). This suggests that 0.1wt% WSNTs make up for 

a substantial stress deficit of ~0.05MPa over a distance of 60µm. The growth velocity is 

expected to be the same in all of these experiments (that of quiescent pure PLA at 135°C), 

so the differences in the initial rate of increase of the retardance reveal differences in the 

number of oriented lamellae that nucleate on shear-induced precursors, and differences in 

the time at which impingement occurs reveal the distance between precursors. If we consider 

the layer closest to the wall, the “roll-off” in the slope indicates that impingement occurs at 

~100s for PLA and ~70s for PLA-WSNT (~60s post flow for PLA and ~30s post flow for 

PLA-WSNT, see arrows in Figure 8D). Based on the time at which impingement becomes 

evident and the quiescent lamellar growth velocity of this grade of PLA (~1.8 µm/min at 

135°C55), we estimate that the separation between shish decreases from ~3.5µm apart in PLA 

to ~2µm apart in PLA-WSNT (both 0.05 and 0.5%). 

 

6.5 Conclusions 

There is an unmet need for a bioresorbable vascular scaffold (BVS) that has thickness 

comparable to metal stents (~80µm) for the treatment of lesions in smaller and tortuous 

arteries. The poor radio-opacity of polymers compared to metals is an added complication as 

surgeons find it challenging to visualize a BVS with X-rays. Towards the goal of a thinner, 

stronger, and radio-opaque BVS, we evaluate Tungsten Disulfide (WS2) nanotubes 

(WSNTs) as a candidate additive to polylactide (PLA) to reinforce PLA and confer radio-
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opacity comparable to clinical standards (e.g., platinum markers). Using cell lines (HUVEC 

and HASMC) that are relevant to vascular tissue, we assess the biocompatibility of bare 

WSNTs and PLA-WSNT nanocomposites (0.1 wt%) against appropriate controls. Cells 

treated with the bare WSNTs (up to 100 µg/mL) and PLA-WSNT films retain their 

morphology and metabolic activity. Transmission electron micrographs of cells exposed to 

20 µg/mL WSNTs indicate that the nanotubes are endocytosed and appear to be trapped in 

cytoplasmic vesicles.  

The promising in vitro biocompatibility of WSNTs motivated us to explore PLA-WSNT 

from a materials science perspective. The clinically-approved BVS derives its radial strength 

from an oriented microstructure that develops under elongational deformation. Therefore, 

we designed short term shear experiments that probe the impact of WSNTs on oriented 

crystallization of PLA. In situ rheo-optical measurements show that inclusion of 0.1wt% 

WSNTs reduced both the critical shear duration and the shear stress required for induction 

of oriented precursors during the short shear pulse. These template oriented crystallization, 

which can increase strength in semicrystalline polymers, relevant to the goal of enabling 

thinner vascular scaffolds. Ex situ polarized light microscopy and X-ray scattering led to a 

surprising discovery: in both PLA alone and PLA-WSNT, the shear-induced oriented 

semicrystalline morphology does not have cylindrical symmetry about the flow direction. 

The results presented in this report suggest that WSNTs may be viable reinforcing additives 

and X-ray contrast agents for biomedical implants. Proposed future biocompatibility studies 

include in vivo testing of the nanocomposite in appropriate animal models. Future in vitro 
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experiments may reveal the degradation kinetics and degradation products of WSNT. The 

flow-induced crystallization results provide an impetus to prepare PLA-WSNT preforms and 

to process them into ~80µm thick tubes to study laser cutting and crimping of PLA-WSNT. 

The connection between microstructure and strength for the PLA-WSNT BVS in the 

expanded, crimped, and deployed state might open a path toward a future generation of 

thinner, stronger, and radio-opaque scaffolds. 
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6.6 Figures and Tables 

 

Figure 6.1 Nanoparticle incubation followed by microscopy and metabolic assay 

(A) Schematic illustrating that cells grown in 6-well plates are treated with varying 

concentrations of WSNT or ZnO nanoparticles for 24 hours before (B-C) phase contrast 

microscopy and (D-E) WST-1 assays. Experiments were performed twice with six replicates 
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per condition. (B) HUVECs and (C) HASMCs incubated with 20 µg/mL WSNT retained 

normal cell morphology while those incubated with 20 µg/mL ZnO underwent cell death 

(black arrows). (D, E) Cells exposed to increasing concentrations of WSNT showed a 

moderate drop in metabolic activity. ZnO induced strong cytotoxicity at concentrations ≥ 

20µg/mL. Mean and standard error of mean plotted. All statistical tests were performed 

against control samples and stars indicate the magnitude of adjusted p-value              (* 

P≤0.05, ** P≤0.01, ***P≤0.001, **** P≤0.0001). 
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Figure 6.2 PLA disk incubation followed by microscopy and metabolic assay 

(A) Schematic of HUVECs and HASMCs treated with polymer disks for 24 hours in 12-well 

plates. (B-C, left) Phase contrast micrographs and (B-C, right) merged live (green) dead (red) 
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stained images of cells underneath the disk show that the treated cells retain their morphology 

and remain viable. (D-E) Cellular metabolic activity levels, inferred from the WST-1 assay, 

show no statistical difference in viability between cells treated with PLA disks and PLA 

nanocomposite (WSNT or ZnO) disks. Experiments were performed twice with four 

replicates per condition. Experiment-specific mean and standard deviation are plotted. All 

statistical tests were performed against the PLA condition; stars indicate the magnitude of 

adjusted p-value (* P≤0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001). 
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Figure 6.3 TEM of cells with endocytosed WSNT 

TEM images of (A) HUVECs and (B) HASMCs exposed to 20 µg/mL WSNT for 24 hours. 

In A-B, (I–II) control HUVECs and HASMCs; (III & V) endocytosed WSNTs in HUVECs 

and HASMCs and (IV & VI) enlarged images of the endocytosed nanotubes in the regions 

bounded by a dashed box in (III & V).  
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Figure 6.4 In situ retardance profiles 

In situ retardance profiles during and after cessation of flow for (left) PLA, (mid) PLA-

WSNT (0.05 wt%) and (right) PLA-WSNT 0.1 wt% subjected to varying (A) shear 

temperature (Ts: 127 to 140°C), (B) shear duration (ts: 10 to 40s), and (C) wall shear stress 

(σw: 0.11 to 0.23 MPa) at matched thermal and flow conditions (Figure S11). In (A), the wall 

shear rate varies from ~0.15s-1 at 125°C to ~0.8s-1 at 140°C; in (B), the wall shear rate is ~ 

0.35s-1 for all cases; and in (C), the wall shear rate varies from ~0.19s-1 at 0.11MPa to ~ 

0.35s-1 at 0.23MPa. The wall shear rate is calculated from the extruded material (Figure 

S12A) and the Rabinowitsch correction (equations S2–S4) is applied to account for non-

Newtonian flow (Figure S12B). The onset of an “upturn” in the retardance during flow is 

indicated by a black arrow in (B, mid). Quantitative characteristics of the upturn for PLA and 

PLA-WSNT are presented in Figure 5. The dashed horizontal gray lines indicate the order 

of retardance (δ), which follows integer multiples of π (e.g. 1st order: δ = π; 2nd order: δ = 2π 

and so on). The retardance is calculated from normalized intensity traces presented in Figure 
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S13–S15. The extruded material from each condition was subject to gel permeation 

chromatography (GPC) measurements that indicated little to no change in molecular weight 

for the experiments in A-C (Figure S2-S3). 

 

 

 

Figure 6.5 Upturn height and residual retardance 

In situ retardance traces of PLA and PLA-WSNT were analyzed to compute (A) the “upturn 

height”, i.e., retardance at the upturn time (defined in Figure 4B inset) and (B) the residual 

retardance after cessation of flow as a function of (left) shear duration (see Figure 4B) and 

(right) wall shear stress (see Figure 4C).  We describe the calculation of the upturn height 

and residual retardance in the SI (Figure S16–17). 
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Figure 6.6 Polarized light micrograph 

Polarized light micrographs of ~50µm thick sections from samples sheared for ts from 10 to 

40s at Ts = 130°C and σw= 0.23MPa for (A) PLA, (B) PLA-WSNT (0.05 wt%) and (C) 

PLA-WSNT (0.1 wt%). For each composition, pairs of images are displayed: the first column 

(A-C, left) presents micrographs of sections cut normal to the flow direction (vorticity – 

velocity gradient plane, labelled as ∇xv–∇v) and the second column (A-C, right) presents 

micrographs of sections cut normal the vorticity direction (flow – velocity gradient plane, 

labelled as v–∇v). Images are acquired through linear crossed polarizers, analyzer (A) and 

polarizer (P) orientations are indicated in (B) 30s, right), with a full-wave retardation plate 

inserted (slow axis vertical, see Figure S18 for details). The Michel-Levy color chart at the 

bottom (adapted from Ref. [50]) relates colors to retardation in nm.  
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Figure 6.7 Wide Angle X-ray Scattering of PLA and PLA-WSNT 

Wide Angle X-ray Scattering (WAXS) data acquired on PLA, PLA-WSNT 0.05wt% and 

PLA-WSNT 0.1wt% samples sheared at Ts = 130°C, ts = 40s and σw = 0.21MPa. For each 

sample, the microstructure was probed along all three projections: (A) flow – vorticity (v–

∇xv), (B) vorticity – velocity gradient (∇xv–∇v) and (C) flow – velocity gradient (v–∇v). The 

WAXS data are presented as (A-C, left) 2D patterns and (A-C, right) azimuthally, I(q), and 

radially averaged, I(φ), intensity plots. Radial averaging for the I(φ) plots is performed near 

the (110)/(200) diffraction: 1.13 ≤ q ≤ 1.23 Å-1. The 1D plots for PLA, PLA-WSNT 0.05wt% 

and PLA-WSNT 0.1wt% (A-C, right) are presented in black, red and blue respectively. The 

WAXS patterns are presented using a custom colormap that varies from 0 [white] to 1.75e-5 

[red] counts. X-ray data acquired at different wall shear stresses (σw = 0.11 and 0.15 MPa) 

for each sample are presented in the SI (see Figure S20 – S22). 
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Figure 6.8 Local Retardance 

In situ retardance data acquired for PLA (black), PLA-WSNT 0.05wt% (red) and PLA-

WSNT 0.1wt% (blue) at varying wall shear stresses (Figure 4C) are “depth-sectioned” to 

isolate the local retardance at (A) 85, (B) 65, (C) 40, and (D) 20 µm from the wall for σw = 

0.21MPa. The arrows in (D) mark inflection points. See equations S9–S10 and Table S1 for 

the depth-sectioning calculations.   
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6.8 Supplementary Information 

 

Figure S1. Scanning electron micrographs (SEM) of (A) Tungsten Disulfide (WS2) 

nanotubes (WSNTs) and (B) Zinc Oxide (ZnO) nanoparticles.  
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Figure S2. Weight-averaged molecular weights (Mw), inferred from the GPC traces in Figure 

S3, are presented for (A) PLA, (B) PLA-WSNT 0.05wt% and (C) PLA-WSNT 0.1wt% that 

were subjected to matched flow conditions under varying (left) shear temperature (Ts), 

(middle) shear duration (ts) and (right) wall shear stress (σw). The Mw of the starting material 

for each experiment, labelled as “ingot”, is presented as a horizontal line in each plot. The 

upper and lower horizontal lines indicate the uncertainty in the Mw of the ingot.  

 

 

Figure S3 Selected gel-permeation chromatography (GPC) traces for extruded (left) PLA, 

(mid) PLA-WSNT (0.05wt%) and (right) PLA-WSNT (0.1 wt%) samples subjected to flow 

under varying (A) shear temperature (Ts), (B) shear duration (ts) and (C) wall shear stress 

(σw). The selected traces encompass the start and the end of the short-term shear experiments 

(~4 hours) and show no sign of degradation when compared with the starting material 

(labelled as “ingot” in each plot). Traces from both the light scattering detector (solid lines) 
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and the refractive index detector (dashed lines) are presented. The molecular weights and 

GPC traces in Figures S2–S3 correspond to the in situ retardance profiles in Figure 4.  

 

 

 

Figure S4. (A) Dimensions of the PLA/nanocomposite disks that are cut from solvent-cast 

films. (B) Photographs of PLA, PLA-WSNT 0.1 wt% and PLA-ZnO 0.1wt% disks. (C) 

Photograph of the disks in (B) submerged in 12-well plates containing media.   



388 

 

 

Figure S5. Phase contrast micrographs of (A) HUVECs and (B) HASMCs in (left) vehicle 

control wells, (mid) wells treated with 20µg/mL WSNT for 24 hours and (right) wells treated 

with 20µg/ml WSNTs that are subsequently washed after 24 hrs to remove non-endocytosed 

nanoparticles. 
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Figure S6. Phase contrast micrographs of HUVECs treated with increasing concentrations 

of (A) WSNTs and (B) ZnO nanoparticles for 24 hours.  
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Figure S7. Phase contrast micrographs of HASMCs treated with increasing concentrations 

of (A) WSNTs and (B) ZnO nanoparticles for 24 hours.  
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Figure S8. Live/Dead staining images of (A) HUVECs and (B) HASMCs after 24 hours of 

treatment (with and without bare nanoparticles). (A-B, left) Phase contrast micrographs and 

(A-B, right) merged dead (red) and live (green) staining images of the treated cells. A 

majority of the cells treated with ZnO underwent detachment and were subsequently 

removed during the assay wash steps. 
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Figure S9. Time course cell viability assay for HUVECs and HASMCs exposed to bare 

nanoparticles and disk-treated media with appropriate controls. (A) Schematic of HUVECs 

and HASMCs grown in 96-well plates before the media is replaced with one that either 

contains nanoparticles or has been conditioned with polymer disks for 24 hours. Separate 

samples were used at 24, 48 and 72 hours after treatment for the WST-1 assay. Experiments 

were performed three times with six replicates per condition. (B) Metabolic activity 

measurements generated by the WST-1 assay. All statistical tests were performed against 

vehicle control samples at each respective time point. Mean and standard error of mean 

plotted. The stars indicate the magnitude of adjusted p-value (* P≤0.05, ** P≤0.01, *** 

P≤0.001, **** P≤0.0001).  
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Figure S10. Phase contrast micrographs of (A) HUVECs and (B) HASMCs exposed to PLA, 

PLA-WSNT 0.1wt% and PLA-ZnO 0.1 wt% disks for 24 hours. The images indicate 

consistent cell density across the edge of the disk in each case.  
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PLA and PLA-WSNT are subjected to matched thermal histories during shear 

experiments  

We probe the influence of WSNTs on the flow-induced crystallization of PLA by 

systematically varying the crystallization temperature (nucleant effects increase with 

increasing temperature above the fastest-crystal growth temperature), shearing time (nuclei 

formed by PLA increase with increasing shear time, but the number of nanoparticles does 

not), and shear stress (which correlates with different degrees of polymer orientation in the 

melt).  We start by erasing thermal history by heating the sample to 200°C.  In every case, 

the sample is subjected to the same thermal profile during cooling (Figure S11, left, time zero 

set to the onset of cooling). When the temperature at the observation point ("Outlet") reaches 

the desired shearing temperature, short term shear is induced by rapidly imposing a high 

pressure at the inlet of the rectangular channel (Figure S11, right, time zero set to 0.02s prior 

to the onset of the pressure rise) and rapidly releasing the inlet pressure to stop shearing when 

the desired shear time (ts) is reached. Note that we vary the temperature during the shear 

pulse, but impose the same growth conditions by selecting the moment at which the shear 

pulse is triggered (Figure S11A, left, gray and black lines show the moment shear is triggered 

for Ts = 140°C and 125°C, respectively, since the moment cooling began; Fig S11A, right, 

shows seven 10s pressure pulses with respect to time from the onset of the shear pulse). For 

the remaining protocols, the shear pulse was triggered at the moment the temperature falls to 

130°C to examine the effects of either shear time (ts, Figure S11B) or wall shear stress (σw, 

proportional to the pressure drop from inlet to exit of the channel shown in Figure S11C) 
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Figure S11. Temperature (left) and pressure traces (right) for short-term shear experiments 

with varying (A) shear temperature (Ts), (B) shear duration (ts), and (C) wall shear stress 

(σw). The temperature of the flow cell is measured near the inlet, at the outlet and midway 

between the inlet and the outlet. The flow-cell is equipped with a pair of quartz windows at 

the outlet to permit acquisition of in situ retardance data. Therefore, the temperature at the 

outlet is used to trigger shear at a prescribed Ts. The inlet is deliberately kept ~20°C warmer 

than the outlet at the time of shear to prevent choking at the inlet. A pressure transducer 

records the pressure imposed at the inlet of the flow-cell and is also used to infer the wall 

shear stress experienced by the sample. In (A), Ts is varied from 140°C (gray lines) to 125°C 

(black lines) using the same shear duration (10s) and wall shear stress (0.19 MPa). In (B) and 

(C), Ts is held constant (130°C, black lines) but the shear duration (ts: 10–40s) and wall shear 

stress (σw: 0.11–0.23 MPa) are varied respectively. In (A-C, left), the temperature is plotted 

with respect to the onset of cooling. In (A-C, right), the pressure traces are plotted with 

respect to the onset of shear at a specific Ts. The thermal and deformation histories presented 

in (A-C) correspond to the in situ retardance data presented in Figure 4A-C and Figure S13–

15.   
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Calculation of the wall shear rate  

In the experiments described in this report, we impose flow at a fixed wall shear stress (σw), 

which is inferred from the pressure drop (∆P), and the width (w: 0.5mm), height (h: 6.35mm) 

and length (l: 63.5mm) of the channel (S1)1. By shearing at a prescribed wall shear stress, we 

allow the material to respond to the imposed flow at a shear rate that reflects its viscosity and 

Mw distribution.  

𝜎𝑤 =  
∆𝑃

𝑙
 (

ℎ

2 (1 + ℎ 𝑤⁄
)                                                              [𝑆1] 

𝑄 =  
𝑚𝑎𝑠𝑠 𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑑

𝑠ℎ𝑒𝑎𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 . 𝜌𝑃𝐿𝐴
                                                       [𝑆2] 

𝛾�̇� =  
6𝑄

𝑤. ℎ2
                                                                          [𝑆3] 

Using the volumetric flow rate (Q), which is calculated from the density of PLA (ρ : 1.25 

mg/mm3)2 and the mass of extruded material (S2), we compute an apparent shear rate that is 

applicable to Newtonian flow (S3). In order to account for the non-Newtonian behavior of 

polymer melts, we apply a correction (S4) based on the Weissenberg–Rabinowitsch–Mooney 

equation3. However, this correction requires measurement of the apparent shear rate as a 

function of the wall shear stress. Thus, Figure S12 reports the apparent wall shear rate 𝛾�̇� for 

experiments performed at constant σw (Figure 4A-B) and the true wall shear rate 𝛾�̇� for 

experiments performed with varying σw (Figure 4C).  
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𝛾�̇� =
𝛾�̇�

3
  [2 +  

𝑑(ln 𝛾�̇�)

𝑑 (ln 𝜎𝑤)
]                                                             [𝑆4] 

 

 

Figure S12. (A) The mass extruded from each short-term shear experiment is used to 

compute the corresponding (B) wall shear rate 𝛾�̇�for data acquired at varying (left) shear 

temperature (Ts), (mid) shear duration (ts) and (right) wall shear stress (σw). The apparent 

wall shear rate is presented in (B, left–mid); the true wall shear rate is only presented in (B, 

right) as the correction requires the variation in the mass extruded with respect to the wall 

shear stress.  
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Figure S13. Normalized intensity profiles for (left) PLA, (mid) PLA-WSNT 0.05 wt% and 

(right) PLA-WSNT 0.1 wt% at varying shear temperature (Ts: 125–140°C). The samples 

were extruded for a duration (ts) of 10s at a wall shear stress (σw) of 0.19 MPa.  



399 

 

Figure S14. Normalized intensity profiles for (left) PLA, (mid) PLA-WSNT 0.05 wt% and 

(right) PLA-WSNT 0.1 wt% at varying shear duration (ts: 10–40s). The samples were 

extruded at Ts = 130°C at a wall shear stress (σw) of 0.23 MPa.  
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Figure S15. Normalized intensity profiles for (left) PLA, (mid) PLA-WSNT 0.05 wt% and 

(right) PLA-WSNT 0.1 wt% at varying wall shear stress (σw: 0.11–0.23 MPa). The samples 

were extruded at Ts = 130°C for a duration (ts) of 40s.  
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Estimating the average spacing between WSNTs dispersed in the PLA matrix  

Let us consider a 1cm3 volume element of PLA that contains 0.1 wt% of homogenously 

dispersed WSNTs (diameter ~200nm, length ~ 2µm). Based on the density of PLA (1.25 

g/cm3) and WS2 (7.5 g/cm3), this volume of element is expected to contain 1.3 µg of WS2 

that occupies a volume of ~1.73 x 107 µm3. As a result, 0.1 wt% of WSNTs occupy 0.0017 

volume % in the PLA matrix.  

Based on the volume of an individual nanotube (0.0628 µm3), 1 cm3 of PLA, which contains 

1.73 x 107 µm3
 WS2, is expected to contain ~ 2.75 x 108 nanotubes. Therefore, the volume 

of polymer surrounding each individual nanotube is ~ 36µm3. Assuming uniform dispersion, 

the average spacing between WSNTs is the cube root of 36µm3 or ~ 3.3 µm.  

Calculating the birefringence associated with WSNTs 

To determine the birefringence associated with 0.1 wt% WSNTs relative to the PLA melt, 

we apply Weiner’s equations4 that were developed for an analogous case of microtubules 

dispersed in a medium. The birefringence (Δn, S5) is defined as the difference between the 

extraordinary (ne) and ordinary (no) refractive indices.  

∆𝑛 =  𝑛𝑒 −  𝑛𝑜                                                                      [𝑆5] 

We compute ne (S6)4 and no (S7)4 using refractive indices of WSNTs (n1 = 4)5 and PLA (n2 

= 1.46)6, and the volume fraction of WSNTs (f = 1.7x10-5 for 0.1wt% WSNTs) in the PLA 

melt.   
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𝑛𝑒 =  𝑛2 √1 +  
(𝑛1

2 −  𝑛2
2)

𝑛2
2 . 𝑓                                                                     [𝑆6] 

𝑛𝑜 =  𝑛2 √
𝑛1

2 +  𝑛2
2 + 𝑓(𝑛1

2 −  𝑛2
2)

𝑛1
2 +  𝑛2

2 − 𝑓(𝑛1
2 −  𝑛2

2)
                                                            [𝑆7] 

From equations S5–S7, we infer that the birefringence associated with 0.1wt% of WSNTs is 

~ 6.17x10-5, which translates to a retardance (δ, S8) of ~0.3 for the optical train used in our 

instrument [sample thickness (d): 500µm and laser wavelength (λ): 632nm]. At 0.05wt% 

WSNTs (0.00085 vol%), the resulting retardance is ~0.15 (for f << 1, the birefringence is 

proportional to f).  

𝛿 =   
2 𝜋 ∆𝑛 𝑑

𝜆
                                                                              [𝑆8] 

 

Depth-sectioning the in situ PLA and PLA-WSNT retardance traces  

The depth-sectioning approach was developed by Fernandez-Ballester et al7 to isolate the 

retardance contributed by individual layers of material through the thickness of isotactic 

polypropylene subjected to a shear flow. We apply the same approach to our experiments 

with PLA and PLA-WSNT. We begin by acquiring in situ retardance data at the highest wall 

shear stress (σw,i), and then collect data at progressively lower wall shear stresses (σw,i+1).  
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𝛥𝛿(𝜎𝑤,𝑖, 𝜎𝑤,𝑖+1)
𝑎𝑝𝑝

=  𝛿(𝜎𝑤,𝑖) −  
 𝜎𝑤,𝑖+1

 𝜎𝑤,𝑖
 𝛿(𝜎𝑤,𝑖+1)                               [𝑆9]  

 

𝛥𝛿(𝜎𝑤,𝑖, 𝜎𝑤,𝑖+1)
𝑡𝑟𝑢𝑒

=  
𝜎𝑤,𝑖

(𝜎𝑤,𝑖 −  𝜎𝑤,𝑖+1)
 .

1

𝑑
2⁄

 . 𝛥𝛿(𝜎𝑤,𝑖, 𝜎𝑤,𝑖+1)
𝑎𝑝𝑝

                       [𝑆10] 

 

The depth-sectioning approach relies on the linear variation of shear stress from the walls 

(maximum) to the core (zero) of the sample (the thickness, d, is 500µm along the velocity 

gradient direction). It enables isolation of the residual or depth-sectioned retardance 

contributed by a slice of material that experiences a shear stress varying from (σw,i) to (σw,i+1) 

by subtraction of the retardance profiles acquired at the two different wall shear stresses. 

Prior to subtraction, the data acquired at the lower wall shear stress δ(σw,i+1) is rescaled by 

the ratio of the lower (σw,i+1) to the higher wall shear stress (σw,i+1) (S9). The resulting residual 

retardance is then normalized by the thickness of the layer, which is calculated based on the 

linear shear stress profile (see correction factor before the residual retardance term, Δδ, in 

S10).  

In Figure 7, depth-sectioned retardance profiles are presented for layers located ~20µm, 

40µm, 65µm and 85µm from the wall of the channel. Table S1 below lists the pair of 

retardance profiles from Figure 4C that were used to compute the depth-sectioned profiles in 

Figure 7.    
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Table S1: Pairs of retardance traces acquired at differing wall shear stresses that were used 

to compute the depth-sectioned traces 

Layer Position Residual Retardance 

~20µm Δδ (σ0.21MPa, σ0.17MPa) 

~40µm Δδ (σ0.19MPa, σ0.15MPa) 

~65µm Δδ (σ0.17MPa, σ0.13MPa) 

~85µm Δδ (σ0.15MPa, σ0.11MPa) 

  

Quantifying the upturn and residual retardance  

We present select retardance traces for PLA-WSNT (0.05 wt%) acquired at three different 

wall shear stresses (σw: 0.11, 0.17, and 0.23 MPa) to illustrate how we compute the height of 

the upturn (Figure S16) and the residual retardance (Figure S17). The same method is applied 

to PLA and PLA-WSNT (0.1 wt%) data.  
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Figure S16. Retardance traces acquired at a wall shear stress of (left) 0.11MPa, (mid) 

0.17MPa and (right) 0.23MPa are plotted for 10 ≤ t(s) ≤ 40s to illustrate the increase in the 

upturn as a function of increasing wall shear stress. To quantify the height of the upturn, we 

subtract a baseline (dashed black line) that corresponds to the plateau retardance (taken as 

the average of all values for 10 ≤ t(s) ≤ 15) from the retardance at the end of the shear pulse 

(t = 40s).  
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Figure S17. Retardance traces acquired at a wall shear stress of (left) 0.11MPa, (mid) 

0.17MPa and (right) 0.23MPa are plotted for 10 ≤ t(s) ≤ 50s to illustrate the correspondence 

between the height of the upturn (see Figure S16) and the residual retardance after cessation 

of flow. The black arrows (identified as the minima in retardance traces for 40 ≤ t(s) ≤ 50) 

quantify the increase in the residual retardance as a function of increasing wall shear stress.  
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Figure S18. PLA sections (σw = 0.23MPa, Ts = 130°C and ts = 40s; ∇xv–∇v plane) are rotated 

in the microscope in 45° intervals (left to right) to highlight anisotropy in the core and the 

skin. The same approach is applied to PLA-WSNT sections as well (see Figure S19). (A) 

Photographs of microtomed PLA sections (~50µm thick) in the microscope and (B-C) 

polarized light micrographs of a PLA section in all three orientations (-45°, 0° and 45°) (B) 

without a retardation plate and (C) with a full-wave retardation plate. The orientation of the 

analyzer and polarizer for all images in (B-C) is indicated in (B, left). The orientation of the 

slow axis of the full-wave retardation plate for the images in (C) is indicated in (C, left). The 

Michel-Levy color chart (adapted from Ref. [50] of main text) at the bottom connects the 

observed colors to the retardation in nm.   
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Polarized light microscopy indicates oriented crystallites normal to the flow direction  

 

Figure S19. Polarized light micrographs acquired at three different orientations of the 

~50µm thick sections relative to the polarizer and the analyzer (indicated in the top-right 

corner of each image) from samples sheared for ts = 40s at Ts = 130°C and σw = 0.23MPa 

for (A) PLA, (B) PLA-WSNT 0.05wt% and (C) PLA-WSNT 0.1wt%. Images were acquired 

through linear crossed polarizers with a full-wave retardation plate (see Figure S18 for 

details). Pairs of images show sections cut in the vorticity–velocity gradient plane (∇xv –∇v) 

on the left and flow–velocity gradient plane (v –∇v) on the right). The top row of images are 

the same ts = 40s images in Fig 6A–C; from top to bottom are successive 45° rotations of the 

sample. Note that the slow axis of the waveplate is vertical in the top image, CW 45° in the 

middle image and horizontal in the bottom image. The Michel-Levy color chart (adapted 

from Ref. [50] of main text) at the bottom connects the observed colors to the retardation in 

nm.  
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Wide Angle X-ray scattering reveals orientation of crystallites in PLA  

 

Figure S20. Wide angle X-ray scattering (WAXS) data were acquired on PLA sections 

subjected to varying wall shear stress (σw = 0.11, 0.15 and 0.21MPa at Ts = 130°C and ts = 

40s) along the (A) flow – vorticity plane (v – ∇xv), (B) vorticity – velocity gradient plane 

(∇xv – ∇v) and (C) flow – velocity gradient plane (v – ∇v). WAXS data are presented as (A-

C, left) 2D patterns and (A-C, right) azimuthally [I(q)] and radially averaged [I(φ)] plots. 

Radial averaging for the I(φ) plots is performed in the vicinity of the (110)/(200) diffraction: 

1.13 ≤ q ≤ 1.23 Å-1. The WAXS patterns are presented using a custom colormap with a scale 

that varies from 0 [white] to 1.75e-5 [red] counts. The crystallinity observed for PLA in the 

flow – gradient plane (part C) is higher than usual as the samples have been subjected to a 

thermal ramp (heat from 30°C to 180°C at 10°C/min and immediately cool back to 30°C at 

10°C/min) prior to data acquisition. Transient X-ray patterns acquired during the ramp 

indicate that the material gains crystallinity and preserves the orientation distribution of 

crystallites.  
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Wide Angle X-ray scattering reveals orientation of crystallites in PLA-WSNT 0.05wt% 

 

Figure S21. Wide angle X-ray scattering (WAXS) data were acquired on PLA-WSNT 

0.05wt% sections subjected to varying wall shear stress (σw = 0.11, 0.15 and 0.21MPa at Ts 

= 130°C and ts = 40s) along the (A) flow – vorticity plane (v – ∇xv), (B) vorticity – velocity 

gradient plane (∇xv – ∇v) and (C) flow – velocity gradient plane (v – ∇v). WAXS data are 

presented as (A-C, left) 2D patterns and (A-C, right) azimuthally [I(q)] and radially averaged 

[I(φ)] plots. Radial averaging for the I(φ) plots is performed in the vicinity of the (110)/(200) 

diffraction: 1.13 ≤ q ≤ 1.23 Å-1. The WAXS patterns are presented using a custom colormap 

with a scale that varies from 0 [white] to 1.75e-5 [red] counts. 
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Wide Angle X-ray scattering reveals orientation of crystallites in PLA-WSNT 0.1wt% 

 

Figure S22. Wide angle X-ray scattering (WAXS) data were acquired on PLA-WSNT 

0.1wt% sections subjected to varying wall shear stress (σw = 0.11, 0.15 and 0.21MPa at Ts = 

130°C and ts = 40s) along the (A) flow – vorticity plane (v – ∇xv), (B) vorticity – velocity 

gradient plane (∇xv – ∇v), and (C) flow – velocity gradient plane (v – ∇v). WAXS data are 

presented as (A-C, left) 2D patterns and (A-C, right) azimuthally [I(q)] and radially averaged 

[I(φ)] plots. Radial averaging for the I(φ) plots is performed in the vicinity of the (110)/(200) 

diffraction: 1.13 ≤ q ≤ 1.23 Å-1. The WAXS patterns are presented using a custom colormap 

with a scale that varies from 0 [white] to 1.75e-5 [red] counts.  
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Appendix A. Protocol and results from shotgun proteomics 

experiments 

A.1 Introduction 

BONCAT with pSILAC (introduced in Chapter 1.3) was used to probe the proteomic 

expression variation after peptide treatment in vascular endothelial cells. In one experiment, 

the cells were exposed to the integrin-binding RGD peptide (contains Arg-Gly-Asp integrin 

binding motif) and control RGE peptide (binds integrins at a much lower affinity1) to identify 

the proteomic changes after integrin modulation. In a second experiment, cells were treated 

with ALG-1001 therapeutic peptide and vehicle control in an effort to discover the proteomic 

regulation after drug exposure. In both studies, proteins synthesized during the peptide 

incubation period were enriched and analyzed using mass spectrometry to calculate the 

quantitative expression ratio between conditions. The following sections detail our 

experimental protocol as well as some observations from these two studies. This work was 

done in collaboration with Dr. Kai Yuet and Dr. Graham Hamblin, previous members of the 

Tirrell lab (Caltech).  

 

A.2 RGD experiment 

Reagents and methods 

Pooled passage 2 (P2) Human Umbilical Vein Endothelial Cells (HUVECs) from American 

Type Culture Collection (ATCC) were cultured to P5 in a humidified incubator with pH 

controlled by 5% CO2. The cells were grown in Vascular Cell Basal Medium (ATCC) with 
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Endothelial Cell Growth Kit-BBE (ATCC) and Antibiotic Antimycotic Solution (Sigma-

Aldrich) added according to the manufacturer’s instruction. The media was exchanged every 

two days. At P6, HUVECs were seeded at 5,000 cells per cm2 density into eight T75 cell 

culture flasks (Greiner Bio-One) and cultured for three days in Endothelial Growth Medium 

(EGM, Lonza) with EGM Endothelial Cell Growth Medium SingleQuots (Lonza) and 

Antibiotic Antimycotic Solution added according to the manufacturer’s instruction. 

At end of the three day culture, the media were switched to BONCAT with pSILAC media 

(referred to as proteomics media) containing azidohomoalanine (AHA) and labeled amino 

acids. The proteomics media was based on a custom EGM media (Lonza) without 

manufacturer-added L-Arginine, L-Lysine and L-Methionine. The media was supplemented 

with EGM Endothelial Cell Growth Medium SingleQuots and Antibiotic Antimycotic 

Solution comparable to the standard EGM media except Fetal Bovine Serum (FBS) was 

replaced with dialyzed FBS (Thermo Fisher Scientific). L-Methionine (Sigma-Aldrich) was 

added to a final concentration of 33µM while AHA (Iris Biotech GmbH) was added to a final 

concentration of 1mM to achieve a 1:30 ratio (previously reported to be optimal for 

BONCAT experiments2). The media was also supplemented with either medium-labeled or 

heavy-labeled L-Lysine (medium: D4 L-Lysine, heavy: 13C6
15N2 L-Lysine) and L-Arginine 

(medium: 13C6 L-Arginine, heavy: 13C6
15N4 L-Arginine) sourced from Cambridge Isotope 

Laboratories. Labeled L-Lysine was added to a final concentration of 1mM while labeled L-

Arginine was added to final concentration of 0.3mM. For four of the eight flasks, media were 

switched to the proteomics media with medium L-Lysine and L-Arginine while the other 
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four were switched to the proteomics media with heavy L-Lysine and L-Arginine. 

Concurrently, RGD peptide (sequence: GRGDTP, CPC Scientific) was added to two flasks 

with proteomics media containing medium-labeled amino acids and two flasks with 

proteomics media containing heavy-labeled amino acids. RGE (sequence: GRGESP, CPC 

Scientific) was added in similar manner to the remaining four flasks with both peptides added 

to a final concentration of 1mM.  

Cells were incubated in the proteomics media for 24 hours and then detached using Typsin-

EDTA solution (ATCC) and pelleted with a table top centrifuge (Beckman Coulter). We 

observed that at the end of the incubation, a fraction of the cells (estimate around 30%) 

exposed to the RGD peptide were detached from the flask and were not collected (detached 

cells likely undergo apoptosis with degraded proteome that may interfere with subsequent 

analysis). Cell lysis was performed with lysis buffer – PBS (Thermo Fisher) with 1% Sodium 

Dodecyl Sulfate (SDS, Sigma Aldrich), 100mM 2-chloroacetamide (Sigma Aldrich) and 1x 

protease inhibitor cocktail (Roche), at 90˚C for 10 minutes in the dark. Cellular debris was 

pelleted by centrifugation and the supernatant solution containing the total protein extract 

was collected for down-stream analysis. Total protein concentration was measured using 

Pierce BCA Protein Assay Kit (Thermo Fisher) followed by dilution of all samples to the 

same protein concentration using additional lysis buffer. 

Next, replicates of RGD were individually paired with RGE samples and mixed in 1:1 ratio. 

In particular, medium-labeled samples were mixed with heavy-labeled samples to enable 

quantification of protein expression ratio in down-stream mass spectrometry analysis. After 
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mixing, 1/5th volume of PBS containing 0.8% SDS and 600mM 2-chloroacetamide (referred 

to as PBS/SDS/2Chl solution) was added to each sample and allowed to incubate for 30 

minutes in the dark at 65˚C on a centrifuge tube shaker (Eppendorf). Meanwhile, 50uL per 

sample of DBCO agarose beads (Click Chemistry Tools) were washed three times with 

10mL of PBS/SDS/2Chl solution. After 30 minutes of incubation on the shaker, the samples 

were then transferred to individual 15mL centrifuge tubes containing the washed DBCO 

agarose beads. Sample volume of PBS containing 8M urea, 0.85M NaCl, and 1x protease 

inhibitor was used to rinse the emptied sample tubes to collect any remaining sample solution 

and was added to the 15mL centrifuge tubes.  

Samples were allowed to incubate with the beads for three hours covered in foil on a rotary 

mixer to facilitate click reaction enrichment of AHA-incorporated proteins. At end of the 

incubation step, 20µL of 100mM AHA was added for an additional 10 minute incubation on 

the rotary mixer. Afterwards, the samples were centrifuged and supernatant removed. Water 

was next added to wash the beads. Beads were then resuspended in 0.5mL of PBS/SDS/2Chl 

solution containing 1mM DTT (Sigma Aldrich) for 15 minute incubation at 70˚C, followed 

by 15 minutes cool down to room temperature. Supernatants were removed through 

centrifugation and beads incubated again with 0.5mL of PBS/SDS/2Chl solution containing 

40mM iodoacetamide (Sigma Aldrich) for 30 minutes in the dark on the tube shaker. 

The beads were next washed with 40mL of PBS/SDS/2Chl solution, 40mL of Tris (pH 8.0, 

Thermo Fisher) containing 8M urea (Sigma Aldrich) and 40mL of 20% acetonitrile in water 

(Sigma Aldrich). Washes were performed with 5mL of wash solution at a time and in the 



417 

 

order described above. After the washes, the beads were suspended in 200uL of 10% 

acetonitrile in 50mM ammonium bicarbonate (ammbic) and transferred to 1.7mL centrifuge 

tubes. Beads were then gently spun down and supernatant removed while keeping 100uL in 

each tube. On-bead digestion of the proteins was then performed by adding 10uL of 10% 

acetonitrile in 50mM ammbic containing 0.1µg of trypsin to each sample. The beads were 

allowed to incubate overnight on the shaker at 37˚C in the dark. 

Following overnight trypsin digestion, the samples were added to filter columns with 

additional 20% acetonitrile in water used to ensure transfer of all samples. The solutions 

containing digested proteins were then collected by centrifugation and dried on a vacuum 

concentrator. Dried peptide pellets were then resuspended in 100uL of 50mM ammbic with 

a combination of vortex and sonication for 15 minutes. Next, HiPPR Detergent Removal 

Spin Column (Thermo Fisher) was used to remove detergent contaminants in the sample by 

following the manufacturer’s instruction. Formic acid was then added to a final concentration 

of 0.2% to acidify the sample before sample concentration using C18 ZipTip (EMD 

Millipore) following the manufacturer’s instruction. The sample was allowed to dry in the 

vacuum concentrator and then resuspended in 10uL of 0.2% formic acid with a combination 

of vortex and sonication. Finally, 5uL of each sample were analyzed using an EASY II nano-

UPLC (Thermo Fisher) connected on-line to an Orbitrap Fusion Tribrid Mass Spectrometer 

(Thermo Fisher) with two hours of run time per sample. All raw files obtained were then 

analyzed together in one MaxQuant search against human proteome obtained from 
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UniProt3,4. MaxQuant was set up to detect AHA and SILAC amino acids as well as with “re-

quantification” and “match between runs” settings turned on.  

Results and discussion 

In this study, around 1200 to 1500 protein groups were identified in each sample. However, 

not all protein groups have a measurable heavy to medium-labeled protein ratio. Overall, 

1092 protein groups were found to have at least one measured protein ratio with 439 groups 

contain ratio in all four samples. The protein groups with at least one protein ratio were 

submitted to Limma for differential expression analysis5. For each protein group, the leading 

protein with the most peptide evidence was chosen for analysis. In the rare cases where two 

or more protein groups have the same leading protein, the one with the most peptide evidence 

was retained. Results of Limma showed around 20% (229/1092) of the protein groups were 

identified to be differentially expressed (DE) with roughly 2/3rd of them up-regulated in the 

RGD-treated samples (Figure A.1).   

Functional analysis of the DE proteins was performed using DAVID with the up- and down-

regulated proteins analyzed separately6. All discovered gene ontology (GO) biological 

processes were visualized using REVIGO, with similarity level set to medium and GO 

annotation size determined using the Uniport Homo Sapiens database4,7. GO biological 

processes with FDR<0.05 were considered to be statistically significant. With both the up- 

and down-regulated protein lists, “cell-cell adhesion” was the only biological process found 

to be strongly enriched (Figure A.2).  
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In context of the natural roles of RGD-containing proteins and their targeted integrins in cell 

adhesion and recognition8, modulation of proteins associated with “cell-cell adhesion” after 

integrin binding is not unexpected. During RGD exposure, binding of the peptide with cell 

surface integrins likely activated a diverse group of downstream pathways that regulated 

adhesion-related protein expression9. Previous microarray studies that probed RGD-induced 

transcriptome regulation found genes in immune response, hematological system 

development, cell migration, development, growth, and death are modulated10–12. In our 

proteomics study, we were unable to validate many of these previous findings, possibly due 

to the differences in throughput of the technologies: microarray is able to measure expression 

changes across tens of thousands of genes, while our proteomics approach quantified only 

around one thousand proteins. Nevertheless, modulation of “cell-cell adhesion” proteins is 

consistent with known mechanism of the RGD peptide. 

 

A.3 ALG-1001 experiment 

Reagents and methods 

The BONCAT with pSILAC experiment with RGD and RGE demonstrated that proteomics 

can be used to identify proteome perturbation during peptide treatment. Next, we applied the 

technique to identify proteomic changes during ALG-1001 exposure. Between the two 

studies, some additional improvements were made to the proteomics sample preparation 

protocol with the updated protocol shown below. 
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Pooled P2 Human Umbilical Vein Endothelial Cells (HUVECs) from American Type 

Culture Collection (ATCC) were cultured to P4 in a humidified incubator with pH controlled 

by 5% CO2. The cells were grown in Vascular Cell Basal Medium (ATCC) with Endothelial 

Cell Growth Kit-BBE (ATCC) and Antibiotic Antimycotic Solution (Sigma-Aldrich) added 

according to the manufacturer’s instruction. The media was exchanged every two days. At 

P5, HUVECs were seeded at 4,000 cells per cm2 density into twelve T75 cell culture flasks 

(Greiner Bio-One) and cultured for two days in Endothelial Growth Medium (EGM, Lonza) 

with EGM Endothelial Cell Growth Medium SingleQuots (Lonza) and Antibiotic 

Antimycotic Solution added according to the manufacturer’s instruction. 

At end of two day culture, the media were switched to BONCAT with pSILAC media 

(referred to as proteomics media) containing AHA and labeled amino acids. The proteomics 

media was based on a custom EGM media (Lonza) without manufacturer-added L-Arginine, 

L-Lysine and L-Methionine. The media was supplemented with EGM Endothelial Cell 

Growth Medium SingleQuots and Antibiotic Antimycotic Solution comparable to the 

standard EGM media except FBS was replaced with dialyzed FBS (Thermo Fisher 

Scientific). L-Methionine (Sigma-Aldrich) was added to a final concentration of 33µM while 

AHA (Iris Biotech GmbH) was added to a final concentration of 1mM to achieve a 1:30 ratio 

(previously reported to be optimal for BONCAT experiments2). The media was also 

supplemented with either medium-labeled or only heavy-labeled L-Lysine (medium: D4 L-

Lysine, heavy: 13C6
15N2 L-Lysine) and L-Arginine (medium: 13C6 L-Arginine, heavy: 

13C6
15N4 L-Arginine) sourced from Cambridge Isotope Laboratories. Labeled L-Lysine was 
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added to a final concentration of 1mM while labeled L-Arginine was added to a final 

concentration of 0.3mM. For six of the twelve flasks, media were switched to the proteomics 

media with medium L-Lysine and L-Arginine while the other six were switched to the 

proteomics media with heavy L-Lysine and L-Arginine. Concurrently, concentrated ALG-

1001 peptide (CPC Scientific) dissolved in DI water was added to a final concentration of 

100uM in three flasks with proteomics media containing medium-labeled amino acids and 

three flasks with proteomics media containing heavy-labeled amino acids. An equal volume 

of sterilized DI water was added in similar manner to the remaining six flasks to serve as 

vehicle control.  

Cells were incubated in the proteomics media for 48 hours and then detached using Typsin-

EDTA solution (ATCC) and pelleted with a table top centrifuge (Beckman Coulter). Cell 

lysis was performed with lysis buffer – PBS (Thermo Fisher) with 1% Sodium Dodecyl 

Sulfate (Sigma Aldrich), 100mM 2-chloroacetamide (Sigma Aldrich) and 1x protease 

inhibitor cocktail (Roche), at 90˚C for 10 minutes in the dark. Cellular debris was pelleted 

by centrifugation and the supernatant solution containing the total protein extract was 

collected for down-stream analysis. Total protein concentration was measured using Pierce 

BCA Protein Assay Kit (Thermo Fisher) followed by dilution of all samples to the same 

protein concentration using additional lysis buffer. 

Next, replicates of ALG-1001 treated samples were paired with control samples and mixed 

in 1:1 ratio to form six samples. In particular, medium-labeled samples were mixed with 

heavy-labeled samples to enable quantification of protein expression ratio in down-stream 
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mass spectrometry analysis. After mixing, 1/5th volume of PBS containing 0.8% SDS and 

600mM 2-chloroacetamide (subsequently referred to as PBS/SDS/2Chl solution) was added 

to each sample and allowed to incubate for 30 minutes in the dark at 65˚C on a centrifuge 

tube shaker (Eppendorf). Meanwhile, 50uL per sample of DBCO agarose beads (Click 

Chemistry Tools) were washed with 10mL of PBS/SDS/2Chl solution, 10mL of Tris (pH 

8.0, Thermo Fisher) containing 8M urea (Sigma Aldrich), 10mL of 20% acetonitrile in water 

and 20mL of PBS/SDS/2Chl solution. After 30 minutes incubation on the shaker, the samples 

were then transferred to individual 15mL centrifuge tubes containing the washed DBCO 

agarose beads. Sample volume of PBS containing 8M urea, 0.85M NaCl and 1x protease 

inhibitor was used to rinse the emptied sample tubes to collect any remaining sample solution 

and are then added to the 15mL centrifuge tubes. Samples were incubated for three hours 

covered in foil on a rotary mixer to facilitate click reaction enrichment of AHA-incorporated 

proteins. Next, sample volume of PBS containing 8M urea, 0.85M NaCl and 1x protease 

inhibitor was added and the samples were allowed to incubate overnight in foil on the rotary 

mixer. The additional incubation step helps improve the amount of AHA-containing proteins 

recovered. 

At end of incubation, 30µL of 100mM AHA was added for additional 10 minute incubation 

on the rotary mixer. Afterwards, the samples were centrifuged and the supernatant removed. 

Water was next added to wash the beads and removed through centrifugation. Beads were 

then resuspended in 0.5mL of PBS/SDS/2Chl solution containing 1mM DTT (Sigma 

Aldrich) for 15 minute incubation at 70˚C, followed by 15 minutes cool down to room 
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temperature. Supernatants were removed through centrifugation and beads incubated again 

with 0.5mL of PBS/SDS/2Chl solution containing 40mM iodoacetamide (Sigma Aldrich) 

for 30 minutes in the dark on the tube shaker. 

The samples were next washed with 40mL of PBS/SDS/2Chl solution, 40mL of Tris (pH 

8.0, Thermo Fisher) containing 8M urea (Sigma Aldrich) and 40mL of 20% acetonitrile in 

water (Sigma Aldrich). Washes were performed with 5mL of wash solution at a time and in 

the order described above. After the washes, the beads were suspended in 200uL of 10% 

acetonitrile in 50mM ammonium bicarbonate (ammbic) and transferred to 1.7mL centrifuge 

tubes. Beads were then gently spin down and supernatant removed while keeping 150uL in 

each tube. On bead digestion of proteins was then performed by adding 10uL of 10% 

acetonitrile in 50mM ammbic containing 0.2µg of Lys-C protease to each sample. The beads 

were allowed to incubate for two hours on shaker at 37˚C in the dark. Next, 10uL of 10% 

acetonitrile in 50mM ammbic containing 0.2µg of trypsin was added to each sample and the 

samples allowed to incubate overnight on the shaker at 37˚C in the dark. 

After overnight trypsin digestion, the samples were added to filter columns and 20% 

acetonitrile in water was used to ensure transfer of all samples. The solution containing 

digested proteins was collected by centrifugation and dried on a vacuum concentrator. Dried 

peptide pellets were then resuspended in 100uL of 50mM ammbic with a combination of 

vortex and sonication for 15 minutes. Next, HiPPR Detergent Removal Spin Column 

(Thermo Fisher) was used to remove detergent contaminants in the sample by following the 

manufacturer’s instruction.  
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After detergent cleanup, vacuum centrifuge was used to reduce sample volume to around 

20uL. Formic acid was then added to a final concentration of 0.2% to acidify the sample 

before sample concentration using C18 ZipTip (EMD Millipore) following the 

manufacturer’s instruction. ZipTip was performed twice to improve recovery of samples. 

The samples were then dried in vacuum concentrator and then resuspended in 20uL of 0.2% 

formic acid with a combination of vortex and sonication. Finally, 1uL of each sample was 

analyzed using an EASY II nano-UPLC (Thermo Fisher) connected on-line to an Orbitrap 

Fusion Tribrid Mass Spectrometer (Thermo Fisher) with two hours of run time per sample. 

All raw files obtained were then analyzed together in one MaxQuant search against human 

proteome obtained from UniProt3,4. MaxQuant was set up to detect AHA and SILAC amino 

acids as well as with “re-quantification” and “match between runs” settings turned on.  

Among the six samples tested, detection doubled to around 2700 to 2800 protein groups per 

sample, due to several improvements in sample preparation. One major improvement 

potentially came from the extended (48 hours in this study vs. 24 hours in RGD vs. RGE 

study) proteomics media exposure that ensured there is a larger fraction of AHA-

incorporated proteome for enrichment. Next, bead-based click reaction was optimized to 

improve overall efficiency and was allowed to react overnight to enhance enrichment of 

newly synthesized proteins. After that, both Lys-C and trypsin proteases were used to 

enhance the digestion of proteins into expected peptide fragments. Lastly, the ZipTip 

desalting step was performed twice to increase the amount of peptide recovery. Overall, 
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implementation of these technical changes significantly improved protein group detection in 

mass spectrometry.  

Results and discussion 

Among the protein groups discovered, 2440 were found to have at least one measured protein 

ratio and 1141 groups that contained ratios in all six samples. The protein groups with at least 

one protein ratio were submitted to Limma for differential expression analysis5. For each 

protein group, the leading protein with the most peptide evidence associated was chosen for 

analysis. In the rare cases where two or more protein groups have the same leading protein, 

the one with the most peptide evidence was retained.  

Limma results showed that no detectable proteins was found to be differentially expressed 

with statistical significance (Figure A.3). After further analysis, we found that compared to 

the RGD vs. RGE study, a larger fraction of proteins have a close to zero fold change in this 

study (Figure A.4). Additionally, this pattern is consistent with two previous RNA-seq 

studies that found perturbation by RGD is significantly stronger than ALG-1001 (Kornfield 

group, Caltech, unpublished). On the other hand, the two proteomics studies presented here 

are not directly comparable, since many experimental parameters and sample preparation 

steps were changed. Experimentally, treatment time was doubled (48 hours in this study vs. 

24 hours in the RGD vs. RGE study), while the peptide concentration was reduced by 10 

folds. The lower concentration was used to reduce effects of non-specific binding, but this 

dosage may be too mild to elicit detectable proteomic changes. Thus, these findings do not 

demonstrate the proteome is not regulated after ALG-1001 treatment, but that the effect on 
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the proteome may be too small to be detected at the dosage tested. To improve discovery, 

higher dosages of ALG-1001 and more biological replicates should be employed. 
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A.4 Figures and tables 

 
Figure A.1 Volcano plot of Limma result containing proteins regulated between RGD 

and RGE treatments 

Limma-measured fold change and adjusted p-values were plotted with each dot representing 

a protein. Proteins colored red are considered DE by an adjusted p-value (FDR) cutoff of 

0.05 (blue dotted line).  
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Figure A.2 REVIGO plot of GO biological processes-enriched with DE genes between 

RGD and RGE treatments 

Up- (A) and down-regulated (B) DE proteins were submitted for GO enrichment with results 

visualized using REVIGO. P-value is REVIGO-derived GO enrichment P-value. Size is the 

number of human proteins associated with each GO term. Strongly enriched processes are 

labeled.  
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Figure A.3 Volcano plot of Limma results shows no protein regulated by ALG-1001 

with statistical significance 

Limma-measured fold change and adjusted p-values are plotted with each dot representing a 

protein. No DE proteins are detected with an adjusted p-value (FDR) cutoff of 0.05 (blue 

dotted line).  
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Figure A.4 Density plot of the fold changes measured among the two comparisons 

Fold changes calculated by Limma are plotted in form of density plot. Area under the curve 

sums to 1 for each of the comparisons. ALG vs. Ctrl is ALG-1001 vs. vehicle control 

comparison, which shows more proteins with near zero fold change.  
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