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ABSTRACT

The principal objective of this work on modefling and
analysis of switching de-to-de converters and regulatons 48 to obtain
a Linear model (eithen through state-space orn Linean circuilt descrip-
tion), subject to appropriate hestrictions, fon the inherently
nonlinearn power stage in which the de convernsion 44 accomplished.

A general unified approach to modelling and analysis of switching
de-fo-de conventers s developed which 48 directly applicable to any
de-to-de converntern operating in eithen of two conduction modes
(continuous on discontinuous inducton cunrent), and which results in
a final dynamic Linear model either in tewms of state-space equations
on in terms of thein cornresponding Linean cineult models, 1In
particular, in Parnt 1 this analysis technique, called state-space
averaging, 45 applied to the continuous conduction mode of converter
operation, while in Part 11 appropriate extension of the method Lo
the discontinuous conduction mode is made. 1In each case, the
cwmination of the modeﬁﬂimg and analysis is achieved in the develop-
ment of canonical cireuwlt models which represent any such converter
negandless of {ts detailed congiguration.

The insights that emernge ghom the general state-space modelling
approach (Parnts 1 and 11) Lead in Parts 111 and IV fo the design of
new converter topologies through the study of genetic properties
04 the cascade connection o4 basic buck and boost convertens. This
study paves the way in Part IV to the discovery of a new switching
converten based upon capacitive rather than the usual inductive
enengy thansfern., The new converter L8 shown Lo have substantial
advantages over the conventional converters in its class in
egpiciency, perfommance, and also in size and welght.

Both the state-space averaged models and thein corresponding
cireuit reallzations provide the circult designern with a powerful
tool gon analysis of existing converterns as well as for synthesds
of new converter topologies.
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INTRODUCTION

The ever increasing demand of society for new and more abundant
sources of energy, as well as for means of better and more efficient
conversion to a medium suitable for widespread use such as electrical
energy, has provided a healthy environment for the recent growth of the

new, interdisciplinary field of Power Electronics. Functions to be

performed by electronic power processing systems include a wide
range, from efficient conversion of dc source voltage from one voltage
to another, to inversion of dc to single-phase or multiple-phase ac,
and controlled conversion of ac to dc. The applications also cover
a wide spectrum, from a power supply in a hand-held calculator,
through a variety of spacecraft systems including solar array and
battery power conditioning, to industrial process control and electric
utility bulk power inversion.

However, it comes as no surprise that this new field has.
offered some unmatched challenges owing to its unique combination of
the three major disciplines of electrical engineering: electronics,

power, and control. Classical signal processing electronics, coupled

with the advent of semiconductor devices capable of handling substantial

amounts of power, is used to control the power (or electrical energy)

flow from some raw source of electrical energy (such as solar cells,
for example), to the user (load). But in distinction with signal-
processing electronics, where the power efficiency is of minor concern,
here, as in classical power systems, it becomes the major issue,

owing to the relatively large amounts of power involved. quer
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efficiency makes mandatory the use of control devices, such as
transistors and SCR's (silicon controlled rectifiers) in a repeti-
tive switching mode, thus further increasing the problems of modelling
the dynamic behavior of power switching circuits because of their
inherent nonlinear nature. In addition, in many instances, the
power conversion or inversion function is coupled with a requirement
for regulation, and stability problems naturally arise because the
self-correcting feature is usually obtained by employing electronic
feedback in a closed-loop system. It is in this context particularly
that a fusion of viewpoints of the power, control, and electronics
disciplines is most necessary and also potentially fruitful.

However, the bringing together of these disciplines in order to
achieve the general understanding and consequent innovation in power
processing electronics systems is not merely their accumulation, but
rather requires a revised look at their specific interrelations from
the component to the system level. For example, a signal-processing
electronics engineer usually thinks in terms of active devices used
in either linear or switching mode together with resistors and
capacitors; he avoids inductors and transformers. On the other hand,
a power-processing electronics engineer must think in terms of active
devices used in the switching mode together with capacitors, inductors,
and transformers; he must avoid resistors in the interest of maintain-
ing high efficiency in the power path. This important distinction
requires a different way of thinking about circuit function realiza-
tion. From the system point of view, one has only to recognize, for

example, a dc-to-dc switching regulator as a dc, wide-band, nonlinear
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sampled-data control system (with the ever-present high-efficiency

constraint), to appreciate the challenge of bringing together these

various disciplines.

Hence, the area of modelling and analysis of power processing

systems, owing to their inherent nonlinear nature, becomes an even
more challenging task, particularly in view of the lack of adequate
analysis tools at the disposal of the circuit designer working in this
field. 1In connection with that, the choice of parameter values in
already existing circuit topologies, as well as the design of new
circuit topologies is Tikewise a very difficult one.

The major thrust and purpose of this work is to provide the
circuit designer with analytical tools which are accurate enough for
practical purposes, yet simple enough to apply to give him powerful
tools for design-oriented analysis in one of thé major areas of

electronic power processing: switching dc-to-dc converters and/or

regulators. In addition, this analysis through appropriate linear
circuit models provides the necessary insight which may lead to inno-
vative converter topologies, offering better and near optimum
performance.

The structure of this work has been divided into two distinct

yet firmly interconnected major divisions: general unified approach

to modelling and analysis of switching dc-to-dc converters, presented

in Parts 1 and II, and design of new converter topologies presented

in Parts III and IV, which has been directly made possible by the
insights gained from the analysis methods of Parts I and II. Chapter

1, which is placed outside and in front of these four parts, is



intended to familiarize the reader with the basic switching conversion
concepts and at the same time to introduce both the analysis diffi-
culties as well as to designate the possible areas of performance
improvements in switching converter design.

The principal objective of the work on modelling and analysis

of dc-to-dc converters and regulators (Parts I and II) is to obtain a

linear model (either through state-space or linear circuit description),

subject to appropraite restrictions, for the inherently nonlinear

power stage in which the dc conversion is accomplished. Such convers

ters operate in one of two modes: a two-state mode referred to as the

"continuous conduction mode," in which inductor currents do not fall

to zero (as modelled in Part I), and a three-state mode, "discontinuous
conduction," in which an inductor current falls to zero (Part II).

The culmination of this work is a canonical circuit mndel for
a dc-to-dc converter in the continuous conduction mode which properly
represents both the Tine and duty ratio transfer functions and also,
for the first time, correctly represents the converter input
impedance. The principal advantage of the canonical model is that
it represents any such converter regardless of its detailed configura-
tion.

The corresponding canonical circuit model for a dc-to-dc
converter in the discontinuous conduction mode is obtained in Part II,
which not only confirms that the line and duty ratio transfer func-
tions become first-order, in contrast to the second-order functions
of the continuous conduction case, but also for the first time

correctly represents the input impedance.



Both canonical models are made possible by a powerful technique

called state-space averaging developed in both Parts I and II,

which wunifies and places in perspective what had previously been

considered distinct analytic methods.

The insights gained by the state-space averaging approach of

Part I and Part II leads in Part III to the study of the generic
properties of a new class of buck-boost converters obtained by cas-
cade connection of basic buck and boost converters.

Finally, this study culminates in Part IV in the discovery of
a new switching converter based upon capacitive rather than the usual
inductive energy transfer. The new converter is shown to have sub—.
stantial advantages over conventional converters in efficiency,

performance and also in size and weight.



CHAPTER 1
SWITCHING DC-TO-DC CONVERTERS
AND REGULATORS

In this introductory chapter several common switching dc-to-dc
converters are introduced and their physical operation briefly
explained. The basic property, dc-to-dc voltage and current level
conversion, is arrived at following some simplified arguments based
on fundamental physical laws in order to familiarize the reader with
some of the basic quantitative relationships.

Upon this initial exposure to the nature of the problems
associated with the analysis of these essentially nonlinear circuitss
the general, unified, and complete method of modelling and analysis of
any switching dc-to-dc converters (even those yet to be invented)
developed and presented in chapters to follow will be more easily

grasped.

1.1 Physical operation and basic properties of switching converters

We begin with the three common switching converters (also
called power stages because of their power handling capability)
depicted in Fig. 1.1. While in Fig. 1.la the topological structure
of these converters independent of any particular switch realization
is shown, in Fig. 1.1b a bipolar transistor, commutating diode
realization of the single-pole double-throw switch S is used. It is
also evident from Fig. 1.1b that transistors are used in their

switching mode: either fully turned on (corresponding to the position



a) b)
buck power stage:
L Vv L Vv
— AT 21"
Vg | S Vg | | ] g
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| J1r S ¢

boost power stage:

L L
V Vv
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buck — boost power stage:
lin S lout Vv iin iou‘f V
Vb'::‘ L C=F F{\@"::' A L_g; C == R
g1

Fig. 1.1 Three common switching de-to-de convertens:
a) topological congiguration independent of switch nealiza-
ton b) bilpolarn trhansiston implementation of the switch S.

of switch S in Fig. 1.1a) or fully off (the other position of switch
S). This is obtained by bringing a periodic switch drive signal as
shown in Fig. 1.2 to the base of the transistor. The frequency of
repetition of this signal is defined as the switching frequency

fs = 1/Ts,and for discuséion purposes will be considered constant.
The fraction of the complete period Tsfor which the transistor is on

is defined as the steady state duty ratio D =TN/TS. The diode in
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each converter acts as a switch automatically synchronous with the
transistor. That s, when the transistor is on, the diode is reverse
biased and effectively off; as soon as the transistor becomes off, the
diode is forced to conduct by the continuous inductor current, and
stays on as long as there is a positive inductor current.

switch drive

$ Ts

-

N Tr

- —Ptt -

s
I time

Fig. 1.2 Definition of the periodic switfch drive.

Consider now more closely the simplest of these converters,

- the buck power stage (sometimes called the step-down or chopper
converter because of its property of reducing the input dc voltage).
With assumption of ideal transistor and diode switches, the buck power
stage can be equivalently represented as in Fig. 1.3.

* dcgolfage

D .
Y l\\o—fé—ﬁ\ e — -
S P - ~

) 1 first harmonic
DTs C T R I —~

input low pass filter - - - higher
voltage network order harmonics

Fig. 1.3 Basdic dec conversion function of buck power stage viewed
through hammonic decomposition and principle of duper-
position.
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Fourier harmonic decomposition of the periodic input voltage
and the principle of superposition show that the output voltage con-
sists of a dc voltage V = DVg and ac harmonics with fundamental at
the switching frequency fs. If the low-pass filter elements are
chosen such that its corner frequency fC = 1/(2%/LC) is much smaller

than the switching frequency fe (f. << fs), all harmonics are sub-

c
stantially attenuated leading to very small output voltage ripple.
Hence, even though present, the output voltage ripple can be reduced

to an arbitrarily small value by proper choice of filter elements.

A significant feature of the switching converter is that a

degree of control over the output dc voltage has been introduced

through its dependence on the duty ratio D. Therefore, simply by
varying the switch drive duty ratio one is able to change the output
dc voltage. Also, since by definition 0 Sps 1, it is apparent that

the buck power stage is capable only of reducing the dc input

voltage level.

Another very important property of the converter is immediately
apparent. For a properly designed filter, the ripple voltage is

negligible, and the output current is dc current only I = V/R.

out
However, input current flows only during the interval when the tran-

sistor is on, and hence Iin = DIout' Therefore, the efficiency of

the converter in this ideal case is 100% since

Pout - out -pl=q
Pin ngin D

The key to this ideal 100% efficiency is in the fact that the control

device, the transistor, is used in the switching mode, unlike its
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~use in a linear regulator as a linear dissipative element or variable

resistance. However, in reality the voltage across a real transistor
when it is turned on is not zero as for ideal switch S, but its
saturation voltage VCEsat is usually 0.3V-1V. Likewise, the diode
has some forward vd]tégé dkdbydf the ééhéwg;der which also slightly
degrades the efficiency of a real converter. Nevertheless these

losses are negligible in comparison with losses present in a linear

regulator.

1.2 Two operating modes and their dc relations in the steady-state

regime

So far two important characteristics of switching converters
have been established: a degree of control through duty ratio drive
D, and high efficiency of operation. There are, however, some other
features peculiar to these converters which, even though present, are
not so clearly displayed in the buck power stage example. Let us
therefore consider the buck-boost converter, in which these additional
features are most visible.

For the two positions of the switch S in the buck-boost converter
of Fig. 1.1, the two switched network configurations shown in Fig. 1.4

are obtained, from which it is clear that a topological structural

change occurs within each period and the circuit configuration is

changed periodically from that of Fig. 1.4a to that of Fig. 1.4b.

Both switched networks in Fig. 1.4 are linear by themselves, but it

is due to this periodic structural change that the converter itself is
a nonlinear circuit. It is exactly here where the difficulty in

modelling and analysis of these converters arises.
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DTs :
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b) interval DTs =(1-D)Ts

[

V

il
1
(@]

Fig. 1.4 Two switched networnks forn the buck-boost convertern operating
n the continuous conduction mode.

Another interesting observation about the role of the induc-

tance can be made: it acts as an energy transferring device between

input source.voltage Vg and output load R, by accumulating the energy

in the form of a magnetic field during the first interval TSD and

then releasing it to the load during the subsequent interval TSD',

thus charging the output capacitor negatively as shown in Fig. 1.4b.

With assumption of LC filter values properly chosen for low (negligible)

output voltage ripple, the inductor voltage and current waveforms in

this steady state, so called "continuous conduction mode", are as shown

in Fig. 1.5.

a) inductor volfage Vv,

f

Vg

®

Fig. 1.5 Enengy storage inducton steady-state waveforms in the

» 1

VI

b) inductor current

b Vg/L slope VIL
\ .

Ay

I

continuous conduction mode.

» 1

it) 3

\
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The continuous conduction mode refers to operating
conditions and converter parameter values for which the instantaneous
inductor current does not fall to zero at any time during the switching
cycle, as shown in Fig. 1.5b. This is directly connected with the
existence of only two switched networks during each cycle, as was
shown in Fig. 1.4.

Let us now find for this operating mode the static conditions,
that is, the dc voltage and current level conversion relations in the
steady state regime. Here "steady state regime" signifies the fact
that the duty ratio D is held constant over a sequence of switching

cycles, thus leading to the current and voltage periodicity requirements;

steady i(0) i(Té) for inductor current

state v(0)

V(Tﬁ) for capacitor voltage

Then, from Faraday's law
T i(T)
va(t)dt=L fdi=L[1'(TS)— i(0)] = 0 (1.1)
i(0)

in steady state. Evaluation of the integral on left with help of

Fig. 5a gives
VPTg+ V(1-D)Tg= 0

or
v _ . D
Ui )] (1.2)

which is the ideal dc voltage gain for the buck-boost converter.
It is now obvious that the buck-boost power stage is capable
of producing a dc output voltage which is either smaller (for D < 0.5)

or larger (for D > 0.5) than the input voltage, and hence realizes
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a general dc conversion function. Since none of the lossy elements
has been accounted for, the dc current gain in this ideal 100%
efficient case would be Iout/lin = D'/D.

Consider now the case in which the energy stored in the inductor
during the first interva]TSD] ETSD is completely released to the output
load before the switching cycle T has ended, causing the inductor
current to become zero for the last portion of the period To. This
could happen if the switching period has been sufficiently increased,
or if the inductance has been substantially reduced and hence it has shortened
the time interval necessary to release energy to the output. Even
if neither change has occurred, but instead the load resistance R is
increased sufficiently to cause lowering of the average inductor
current I shown on Fig. 1.5b to the point where i(0) = i(TS)= 0, the
instantaneous inductor current becomes as shown in Fig. 1.6b. The
converter is thus operating in the so-called "discontinuous conduction
mode," 1in which the name clearly originates from the discontinuous

inductor current waveform in Fig. 1.6b.

b)

inductor voltage Vi
ﬁ inductor current iit]

Vg S 15

® .
e I—"Jf'a

VI

D ITS Dsz D31:5

Fig. 1.6 Steady-state inductor wavegorums in the discontinuous conduc-
tion mode.
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The immediate consequence of operation in the discontinuous
conduction mode is that there are three different switched network

configurations inside each switching period T as shown in Fig. 1.7.

a) interval DTs: b)interval D;Is: c¢) interval Dils:
V ? \Y vV

Vg

y |
o guzedr T BL iR ng L2c 3R
i i i=0

Fig. 1.% Three switched networks gor the buck-boost converten
operating in the discontinuous conduction mode:

a) trhansistorn on, diode 044, b) trhansistorn off, diode on,
c) thansiston off, diode 04§

At the end of the second interva]1gD2 s the energy stored on the
inductor has been completely released to the load and inductor current
vanishes. Hence, the inductor voltage becomes zero which causes the
diode to become reverse biased and hence nonconducting for the last
interva]TSDé, for which interval the third switched network topology
shown in Fig. 1.7c is formed. As for the continuous conduction mode

topological structural changes take place within each period, but for

the discontinuous conduction mode the changes are among three different

switched network topologies as displayed in Fig. 1.7.

It is important to emphasize that the two properties described

E— SN

principle and two modes of operation -- are not restricted to this
particular example but are general in nature. They are applicable
not only to the other two converters shown in Fig. 1.1 but also to

any switching converter so far known.
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Let us now, however, complete the comparison between the two
modes of operation for the buck-boost converter example. The steady
state dc voltage conversion ratio might be found as before by use of

Faraday's law and Fig. 1.6a as:

) VDT + VD,T.= 0
or g’'s 2's

e (1.3)
g 2

However, the interval DZTs’ which determines how deep in the discon-
tinuous conduction mode the converter is operating, is yet to be
determined. This can be accomplished by finding an alternative
relation for the dc voltage ratio, based upon the 100% efficiency

property of the ideal converter. From Fig. 1.6b, I

L2y 2

B A2
., =Dl =D vg.TS/ZL
and so Pin = Vﬁ;in}z D Vg Tg?L; then, Pou

i
Y =
=V*/Rso from Pin P

t out
. 2 ” T E/lf /d
v v T
2 o =
S
which leads to
v T\ IR
‘V_‘" oL D (1.4)
g
or
V. D
where Vg /K D
2L
K i fS

D, = K (1.5)

so that the dimensionless parameter K determines then the length of
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the second interval DZTs' It is interesting to note that the second
interval D2 is determined solely by K so that, for a given converter
the second interval is a constant affected only by the Togdkresistance
R. This is not true for the buck or the boost converter, in which the
second interval is dependent not only upon K but also upon the duty
ratio D.

For the buck-boost converter, comparison between (1.2) and (1.4)
shows thatvin the continuous conduction mode the dc gain is a highly
nonlinear function of duty ratio D only (1.2), while in the discon-
tinuous conduction mode it is a linear function of duty ratio D but
also dependent on the dimensionless parameter K (1.4).

The boundary between the two modes of operation is easily found
from Fig. 1.6b as:

D3=O;*>DZ=1-D:‘>D'=JK (1.6)

Furthermore, a criterion to determine in which of the two
modes the cénverter is operating can be established in the form of
an inequality relationship among circuit parameter Va]uef%PaRWMu
switching frequency fs’ and duty ratio D of the switching drive as

follows:

continuous conduction mode

D' < /XK

(1.7)

discontinuous conduction mode
D' > /K

where K = 2L/RTgis a dimensionless parameter.

For instance, when K 2 1 the converter will always be operating

in the continuous conduction mode regardless of the control--duty
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ratio D, while for K <1 it will operate in the discontinuous conduc-
tion mode for D < 1 - K.

To illustrate this with a numerical example, 1et L = TmH,
fS = 10kHz, and R = 10Q. Then,K = 2 and the converter will always
operate in the continuous conduction mode. However, if the load
resistance is increased to R = 100Q, K = 0.2 and the converter will
operate in the discontinuous conduction mode for D < 0.553. This
example a]sq justifies why the continuous conduction mode is sometimes
also called "heavy mode" (Tow resistance R and heavy loading) while
the discontinuous conduction mode is referred to as "light mode"

(higher resistance R.and therefore light loading).

1.3 Switching ripple and pulsation of input and output currents

Now that the two distinct modes of operation of switching dc-to-
dc converters have been clearly distinguished, the physical origin of
théir appearance understood and the quantitative measure describing
the transition between two modes of conduction correlated with circuit
physical parameters, we can proceed to expose some of the undesirable
features inherent in the switching converters of Fig. 1.1 in both

conduction modes.

Consider now both input and output currents (designated iin and

iout in Fig. 1.1) for the buck-boost converter in the continuous
conduction mode. Even though the converter is operating in the
continuous conduction mode, owing to the switching action of the

transistor and diode,both currents are as illustrated in Fig. 1.8.
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Fig. 1.8 Tnput and output cwuent of the buck-boost converten
operating 4in the continuous conductiOn mode.

It can easily be verified that the buck converter has the same

pulsating input current as shown in Fig.1.8a. This invariably requires

that an input filter (usually a single-section low-pass L,C filter)
be put in front of these two converters to smooth out the substantial
current ripple component at the switching frequency drawn from the
Tine supply. That way, electromagnetic interference (EMI) problems
generated by the abrupt variation in energy flow (pulsating current)
are reduced, and contamination of the environment by the undesired
electromagnetic disturbances alleviated.

On the other hand, the boost converter of Fig. 1.1 has the same

pulsating output current, as the buck-boost converter in Fig. 1.8b,

which is primarily responsible for the much higher output voltage

ripple of these two converters compared to the buck power stage with

the same storage element values and operating conditions (switching
frequency fs; duty ratio D, and continuous conduction mode). The
smaller voltage ripple in the buck power stage is a consequence of the
nohpu]sating output current (similar to that shown in Fig. 1.5a) with

very small current ripple Aiout which can easily be found as
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Consequently, the output voltage ripple Av is obtained from

Ai VD'
Av{peak-to-peak) = out_ . i (1
. BQC 8LCQ
and the relative output voltage ripple Av/V is:
\2
v 2 'fs
where
Fom—l
2m/LC

.8)

.9)

.10)

Here fc is the corner frequency of the low-pass filter formed by L and

C. Since the ultimate requirement of the dc-to-dc converter is to
provide dc level change and output d¢ voltage only, this poses a
rastriction on the choice of filter elements. Namely, from (1.10)

output voltage ripple will be negligible if the following require-

ments are satisfied:

fc << fs fc = 1/2w/LC
where (1.
wa << fs wa = 1/2RC

The second inequality condition in (1.11) comes from requirement
of negligible output voltage change during the interval TSD (see

Fig. 1.4a) when capacitance C discharges into load R.

As a numerical illustration for the typical parameter values,

in continuous conduction mode, L = émH, C = 40uF, fs = 20kHz,

1)
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R =60 , we obtain f. = 330Hz, v, = 211z and inequalitites (1.11)
are well satisfied. Hence from (1.10) Av/V ~ (fc/fs)2 " 10'4 or

the output voltage ripple is of the order of 0.01% for the buck

converter.

For the same element values but for the buck-boost converter,

since the output current ripple is now from Fig. 1.8b, A1out = I]oad =
V/R, the output voltage ripple becomes load current dependent and is:

Av 1/RC

Iload
Av =D *‘-——‘——fsc :>V- =D ——1‘:-;" (].]2)

or of the order of several percents for the given numerical example.
A similar result is obtained for the boost converter.

Hence for the two converters with pulsating output current,

almost two order of magnitudes higher voltage ripple is obtained.
It could be reduced to an acceptable level by increase of capacitance
C or by increase of the switching frequency fs; in that case, however,
the fundamental requirement (1.11) for low output voltage ripple
would be even better satisfied than for the buck converter example.

It is now no surprise that both EMI and output voltage ripple

would be further degraded in the discontinuous conduction mode,

since then both input and output current become even more pulsating,
as illustrated for the buck-boost converter in Fig. 1.9.

Suppose that the transition to the discontinuous conduction mode
is made by significantly lowering the inductance from that used in the
continuous conduction mode. Highly impulsive current in Fig. 1.9b

would then cause an intolerable output voltage ripple, unless either
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Fig. 1.9 TInput and output cwirent of the buck-boost converten
operating in the discontinuous conduction mode.

the output capacitance C or switching frequency is increased, or both.
In any case this has the consequence that the fundamental "small-
ripple" restrictions for the "natural frequencies," fC << fS and

W, << fs’ would be even better satisfied. As an example, for the
typical set of values in the discontinuous conduction mode L = 60uH,

C = 400pF, fs = 100kHz, R = 60Q we get fc = 1,02kHz andcua = 21Hz,
thus satisfying inequalities (1.11) to a high degree. In essence, one
recognizes that the burden of filtering out the switching ripple has
been shifted from an egual share among inductance and capacitance in
the continuous conduction mode completely to the capacitance in the
discontinuous conduction mode. The inductance has retained only its
energy transferring propérty but has lost its filtering property.

We therefore emphasize at this point the importance of the
simple inequality requirements (1.11) placed as restrictions on the
choice of parameter values in order to reduce the switching ripple
inherent in all these converters to an acceptable level. When these

relationships are properly recognized and incorporated in the model-
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ling procedure a tremendous simplification of the analysis is
obtained, and yet the derived results are accurate enough for all
practical purposes. They are also the underlying basis of the general
unified approach to modelling and analysis of switching converters
which will be presented in Part I and Part II.

Besides having its importance and implication on the
theoretical modelling procedure devised later, the relation (1.11) in

conjunction with, for example, (1.10) exposes yet another interesting

feature of switching dc-to-dc converters -- reduction of size and

weight. Simple increase of switching frequency fs would allow propor-
tional increase of corner frequency fc while still retaining the same
switching ripple. Hence, the inductance and capacitance could be

chosen smaller in value and size. However, this would not be
achieved without a cost; increase in switching frequency would degrade
the efficiency of the converter owing to increase in "switching losses,"
which become pronounced when the switching transistor rise and fall
times become a substantial part of the switching period. The
effigiency of conversion and quality of the switching transistor would

pose the upper bound on the switching frequency.

1.4 Dynamic response of a switching converter; switching regulators

So far we have demonstrated only the steady state or static
characteristics of switching converters. They would, of course, be
sufficient to characterize the converter if it were used in an open

loop fashion, namely, if the converter were used alone for voltage
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level conversion by setting the transistor steady state duty ratio

externally at some predetermined value. However, quite often the
primary source of energy is unregulated and could have a wide range of
voltage variation; on the other hand, a typical requirement is that
the voltage (or sometimes current) supplied at the output to a user
(some other electronic or electrical equipment) be maintained

constant over a wide range of loading conditions. This is naturally

achieved by the application of negative feedback in a closed-1oop

configuration, such as that shown iri,Fig. 1.10 depicting a typical

switching regulator.

—unregulated input regulated output —
input switching mode ocutput
filter converter filter
g1t K} T v
Ls %ﬁ Lo
Vg Cr Lé C= Co %R
>
PWM > power flow
Ve N 7 7 7 Feeoack |}
=L | NETWORK I
| I
dit} v |
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l I
| I
—_— —

—-
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Y B 2 et A 1

DE DTs sighal flow <t:3

Fig. 1.>70 Switching regulaton: closed-Loop AimplLementation of the
switehing de-to-de converten. ‘
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For concreteness, the switching mode converter is represented
by a buck-boost power stage, and the input and possible additional
output filter are incorporated to smooth out the pulsating input and
output currents as discussed before. Also a particular type of pulse
width modulator (PWM) is used in which the on-off signal to the switch
is produced by comparison of a sawtooth clocked waveform with the
feedback signal as illustrated in Fig. 1.10 and sometimes referred

to as a single-edge clocked pulse-width modulator.

As seen from Fig. 1.10 the error ¢ between the regulator
output v and reference Vi is amplified (and possibly compensated) to
produce an analog control signal Ve which further changes the duty
ratio of the digital on-off signal d(t) as necessary to maintain a
constant output voltage regardless of any source and load variations.
However, as in all feedback systems, careful investigation of the

closed loop is required to determine stability and dynamic response.

For small-signal analysis, the problem of loop gain determination can
be broken down into two parts: first, find how small-signal variations

”~

vgvand 8 superimposed upon the steady state, or dc, inputs Vg and D
to the converter alone determine a small-signal converter output ;
superimposed on its steady state value V; and second, determine how
this pertqrbation Q is propagated through the feedback network to

form a self-correcting modulation drive d. The first problem of

establishing the dynamic response of the power processing part, the
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switching mode converter itself, is a very challenging problem owing
to inherently nonlinear behavior of the converter, and will be
thoroughly dealt with in remaining chapters. The second problem of
modelling the dynamic behavior of the signal processing part, con-
taining the modulator stage, will also be touched upon later, and
hence the small-signal linear model of the complete closad Toop
switching regulator obtained.

Finally let us make the following simplifying observation.
Even though a switching converter is nonlinear, and hence a sinusoidal
test‘signal (such as ;g) would produce a number of harmonics, all
higher order harmonics may be neglected since the nonlinearity is
followed by a very effective low-pass filter which attenuates them
substantially with respect to the fundamental. This is the so-called
describing function (DF) approximation, which can also be used
experimentally to determine this linearized frequency response by
observation of the output disturbance at the same frequency as the

injected test sinusoidal signal.

1.5 Generalized switching dc-to-dc converter

It is now not hard on the basis of the previous discussion to
visualize a general switching dc-to-dc converter, as shown in
Fig. 1.11, where elements are purposely shown not interconnected in

order to emphasize relative freedom of the choice of topology.
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Fig. 1.11 Generalized switching de-to-de converten.

A generalized switching converter could consist of a number of

energy storage elements (not necessarily a single inductor and
capacitor as in the converters of Fig. 1.1), transformers and
synchronous switches (again not restricted to the single switch as
in Fig. 1.1) which are arranged in a topology such that the periodic
opening and closing of the switches would guide the input power through
the switching network in such a way that dc level conversion is
obtained at the output.

There are, however, two general restrictions which have
to be placed on the choice of interconnection of elements and their

values:

1. Topology of the converter is not quite random, but the
storage elements (inductors and capacitors) have to be
arranged in such a way as to form effective]& a low-pass
filter if the prime dc input power is to be allowed to

propagate to the converter output.
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2. If the switching ripple caused by periodic action of the
switches is to be negligible, the natural filter frequencies

fc and w, must be significantly smaller than the switching

frequency fs.

As seen from Fig. 1.11 the two independent inputs for the
steady state (dc) static operation of the converter are line dc
voltage Vg and steady state duty ratio D, while for the dynamic (ac)

response, they are line voltage variation vg and duty ratio

modulation d.

This generalized converter also has two modes of operation as
previously illustrated on the buck-boost example. In the continuous
conduction mode the topology of the converter is periodically changed
between two switched networks (analogous to that in Fig. 1.4) while
in the discontinuous conduction mode three switched network structureg

are clearly distinguished (compare with Fig. 1.7).

Note,however,that this generalized switching converter can have
multistructural change (more than two switched networks) even in the
continuous conduction mode (see Appendix D,for example). Likewise, the
discontinuous conduction mode is not restricted to just three structural
changes, though that is the minimum necessary to exhibit such behavior.
Neverthe]éss, we will in Part I analyse the continuous conduction mode
with only two structural changes, and in Part Il the discontinuous
conduction mode with only fhree structural changes because all the

essential features of the two modelling methods are presentvin these
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cases. The extension to the multistructural change is quite simple as
demonstrated in Appendix D for the converters with three or four struc-
tural changes (also referred to as "three-state" and "four-state"
converters, respectively) operating in the continuous conduction mode,
and in Chapter 6 (Section 6.2) for the discontinuous conduction mode with

more than three structural changes per switching period.

1.6 Review

It is for the generalized switching converter-with the features
described in Section 1.5 for which a general, unified method of
modelling and analysis in both conduction modes will be developed.
In particular, in Part I this general modelling technique is developed

in detail for the continuous conduction mode of converter operation.

In Part II, these techniques are extended with suitable modifications

to include modelling of the converters operating in the discontinuous

conduction mode. In both cases, a novel general and unified state space

averaging technique is used to arrive at the general equations des-

cribing both static and dynamic properties of any switching dc-to-dc

converter (pictorially represented in Fig. 1.11). Besides enabling
some general results not previously attainable, the method lends
itself ea;ily to extraction of very useful circuit model realizations
for any particular converter. Commonly used converters, shown in Fig.
1.1, are repeatedly used to demonstrate various models.

The ultimate goal and objective, however, of the modelling
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procedure was not only to provide the tool for both static and dynamic
analysis of existing converters, but through the circuit models
and general conclusions to give additional insight and incentive to
the circuit designer to devise new, better and possibly optimum
converters. |

In fact, it will be shown in Parts III and IV that this goal has
been achieved. Indeed, Part III is a result of the search for such
converter topologies which would confirm the general predictions
made by the canonical circuit model of Part I, since the known existing
structures failed to exhibit this generality. This has led naturally,
first, to the idea of interconnecting existing converter structures
into useful topologies, and cascade connection of switching converters
as described in Part III turned out to be a very powerful one, from
both theoretical and practical points of view. On the side of theory,
it has finally confirmed the general modelling results of Part I.
In addition, it has suggested a renewed look at the three "basic"
converters of Fig. 1.1, through recognition that the buck-boost power
stage may be considered as a buck converter cascaded with a boost
converter, and thus leaving only the first two converters of Fig. 1.1
to be considered tru]y‘basic. This crucial observation paved the way
for the discovery of a new switching converter which employs a novel
and optimum circuit topology, and which is shown in Part IV to out-
perform any switching converter in its class.

Finally, after the foundations for modelling and analysis are

firmly laid down in Parts I and II, and then used subsequently in
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Parts III and IV to show in a rather natural and logical order how
some new converter topologies could be devised, the thesis concludes
with a number of research areas wide open for future investigation:
discontinuous conduction mode in new converters, possible new modes
of operations and various technological implementations of synchronous

switches are just a few examples.
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GENERAL UNIFIED APPROACH TO
MODELLING SWITCHING CONVERTERS

PART I

ConTinuous ConpucTioN Mope
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CHAPTER 2
REVIEW OF THE NEW
STATE-SPACE MODELLING TECHNIQUE

The purpose of this chapter is to present a short, concise
review of the most important interrelationships among various
building blocks in the complete structure of the new modelling tech-
nique. Through this exposition of the varjous interconnections and
procedural steps summarized in the Flowchart of Fig. 2.1 a twofold
purpose will be achieved. First, the details of the modelling proce-
dures which are presented in the remaining chapters of this Part I will
be easier to grasp once it is understood how and where they fit into
the complete modelling picture. Second, after the details of
modelling are thoroughly explained in Chapters 3, 4 and 5, illustrated
on numerous examples and fully comprehended, it will serve as a quick
and easy reference guide and reminder containing all the essential
information about the modelling in the continuous conduction mode.

However, because of its overview feature, this chapter will be
relatively narrower in scope than,for example,Chapters 3 and 4 where
the detailed development of the new modelling technique is given and

the results discussed in depth.
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2.1 _Brief review of existing modelling techniques

In modelling of swifching converters in general, and power
stages in particular, two main approaches - one based on state-space
modelling and the other using an averaging technique - have been
developed extensively, but there has been little correlation between
them. The first approach remains strictly in the domain of equation
manipulations, and hence relies heavily on numerical methods and
computerized implementations. Its primary advantage is in the unified
description of all power stages regardless of the type (buck, boost,
buck-boost or any other variation) through utilization of the exact
state-space equations of the two switched models. On the other hand,
the approach using an averaging technique is based on equivalent
circuit manipulations, resulting in a single equivalent linear circuit
model of the power stage. This has the distinct advantage of
providing the circuit designer with physical insight into the
behavior of the original switched circuit, and of allowing the
powerful tools of linear circuit analysis and synthesis to be used to

the fullest extent in design of regulators incorporating switching

converters.

2.2 Proposed new state-space averaging approach

The method proposed in this work bridges the gap earlier
considered to exist between the state-space technique and the
averaging technique of modelling power stages by introduction of

state-space averaged modelling. At the same time it offers the




34

advantages of both existing methods - - the general unified treatment
of the state-space approach, as well as an equivalent linear circuit
model as its final result. Furthermore, it makes certain gencraliza-
tions possible, which otherwise could not be achieved.

The proposed state-space averaging method, outlined in the
Flowchart of Fig. 2.1, allows a unified treatment of a large variety
of power stages currently used, since the averaging step in the state-
space domain is very simple and clearly defined (compare blocks la
and 2a). It merely consists of averaging the two exact state-space
descriptions of the switched models over a single cycle T, where
fs = 1/TSis the switching frequency‘(block 2a). Hence there is no
need for special "know-how" in massaging the two switched circuit
models into topologically equivaTent forms in order to apply circuit-
oriented procedure directly, as required in [1] (block 1c). Never-
theless, through a hybrid modelling technique (block 2c), the circuit

structure of the averaged circuit model (block 2b) can be readily

recognized from the averaged state-space model (block 2a). Hence all
the benefits of the previous averaging technique are retained. Even
though this outlined process might be preferred, one can proceed from
blocks 2a and 2b in two parallel but completely equivalent directions:
one following path a strictly in terms of state-space equations, and
the other along path b in terms of circuit models. In either case,

a perturbation and linearization process required to include the duty
ratio modulation effect proceeds in a very straightforward and formal
manner, thus emphasizing the corner-stone character of blocks 2a and

2b. At this stage (block 2a or 2b) the steady state (dc) and line to
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output transfer functions are already available, as indicated by
blocks 6a and 6b respectively, while the duty ratio to output transfer
function is available at the final-state model (4a or 4b) as indicated
by blocks 7a and 7b. The two final state models 4a and 4b then give
the conplete description of the switching converter by inclusion of
both independent controls, the line voltage variation and the duty
ratio modulation.

Even though the circuit transformation path b might be
preferred from the practical design standpoint, the state-space
averaging path a is invaluable in reaching some general conclusions
about the small-signal Tow-frequency models of any dc-to-dc switching
converter (even those yet to be invented). Whereas, for path b, one
has to be presénted with the particular circuit in order to proceed
with modelling, for path a the final state-space averaged equations
(block 4a) yive the complete model description through general
matrices A], A2 and vectors b], b2, c]T, and ééT of the two starting
switched models (block la). This is also why along path b in the
Flowchart a particular example of a boost power stage with parasitic.
effects was chosen, while along path a general equations have been
retained. Specifically, for the boost power stage b] = b2 = b. This
example will be later pursued in detail along both paths.

In addition, the state-space averaging approach offers a
clear insight into the quantitative nature of the basic averaging

approximation, which becomes better the further the effective low-

pass filter corner frequency fc is below the switching frequency fs"
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that is, fc/fS << 1. This is, however, shown to be equivalent to
the requirement for small output voltage ripple, and hence does not
pose any serious restriction or limitation on modelling of practical
dc-to-dc converters.

Finally, the state-space averaging approach serves as a basis
for derivation of a useful general circuit model that describes the

input-output and control properties of any dc-to-dc converter.

2.3 New canonical circuit model

The culmination of any of these derivations along either path a
or path b in the Flowchart of Fig. 2.1 is an equivalent circuit (block
5), valid for small-signal low-frequency variations superimposed upon
a dc operating point, that represents the two transfer functions of
“interest for a switching converter. These are the line voltage to
output and duty ratio to output transfer functions.

The equivalent circuit is a canonical model that contains the
essential properties of any dc-to-dc switching converter, regardless
of the detailed configuration. As seen in block 5 for the general
case, the model includes an ideal transformer that describes the
basic dc-to-dc transformation ratio from line to output; a low-pass
filter whose element values depend upon the dc duty ratio; and a
voltage. and.a current generator proportional to the duty ratio
modulation input.

The canonical model in block 5 of the Flowchart can be obtained

following either path a or path b, namely from block 4a or 4b, as
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will be shown later. However, following the general description

of the final averaged model in block 4a, certain generalizations

about the canonical model are made possible, which are otherwise not
achievable. HNamely, even though for all currently known switching
dc-to-dc converters (such as the buck, boost, buck-boost, Venable [3],
Weinberg [4] and a number of others) the frequency dependence

appears only in the duty-ratio dependent voltage generator but not

in the current generator, and then only as a first-order (single-
zero) polynomial in complex frequency s; however, neither circumstance
will necessarily occur in some converter yet to be conceived. In

general, switching action introduces both zeros and poles into the

duty ratio to output transfer function, in addition to the zeros and
poles of the effective filter network which essentially constitute

the line voltage to output transfer function. Moreover, in general,
both duty-ratio dependent generators, voltage and current, are fre-
quency dependent (additional zeros and poles). That in the particular
cases of the boost or buck-boost converters this dependence reduces

to a first order polynomial results from the fact that the order

of the system which is involved in the switching action is only two.
Hence from the general result, the order of the polynomial is at most
one, though it could reduce to a pure constant as in the buck or the
Venable converter [3].

The significance of the new circuit model is that any
switching dc-to-dc converter can be reduced to this canonical fixed
topology form, at least as far as its input-output and control

properties are concerned, and hence it is valuable for comparison of
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various performance characteristics of different dc-to-dc converters.
For example, the effective filter networks could be compared as to
their effectiveness throughout the range of dc duty cycle D (in
general, the effective filter elements depend on duty ratio D),

and the configuration chosen which optimizes the size and weight.
Also, comparison of the frequency dependence of the two duty-ratio
dependent generators provides insight into the question of stability

once a regulator feedback loop is closed.

2.4 Extension to complete regulator treatment

Finally, all the results obtained in modelling the converter
or, more accurately, the network which effectively takes part in
switching action, can easily be incorporated into more complicated
systems containing dc-to-dc converters such as the switching regulator
in Fig. 1.10. For example, by modelling the modulator stage along the
same lines, one can obtain a linear circuit model of a closed-1oop
switching regulator. Standard linear feedback theory can then be used
for both analysis and synthesis, stability considerations, and proper
design of feedback compensating networks for multiple-loop as well as
single-Toop reguiator configurations.

In summary, the review in this chapter has shown that the new
general state-space averaging method is directly applicable to any
switching dc-to-dc converter, even those whose topologies have not
yet been conceived, namely to the generalized switching converter of
Fig. 1.1L By simply following path a in the Flowchart of Fig. 2.1

both static (dc) and dynamic (ac) characteristics of the converter



40

are easily obtained. The only assumption made is that the converter
operates in the continuous conduction mode, hence there exist only
two switched circuit models (or their equivalent linear state-space
description through triples (A], b], C]T) and (A2, b2, CZT) as shown
in block la of the Flowchart in Fig. 2.1).

In addition, for any particular converter, the circuit
averaged model results from following path b in the Flowchart.
Finally, as a culmination of both approaches, a new canonical
circuit model exhibiting fixed topology is obtained (block 5 in the
Flowchart) which makes certain general conclusions possible.

After being so general in this chapter, we proceed with the

specific derivations and illustrative examples in Chapters 3 and 4.
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CHAPTER 3
STATE-SPACE AVERAGING, HYBRID MODELLING
AND CIRCUIT AVERAGING
Several paths in the Flowchart of Fig. 2.1 are explored in

detail in this chapter and are illustrated by appropriate examples.
Since the justification of the basic state-space averaging step
(going from block la to 2a in the Flowchart of Fig. 2.1) is lengthy and
involved, the corresponding derivations are shown separately in
Appendices A, B and C. This way they will not hide or interfere with
the simple sequence of steps explained in this chapter, which are to

be followed in order to arrive at the final static and dynamic model

of the converter.

3.1 State-space averaging

In this section the state-space averaging method is developed
first in génera1 for any dc-to-dc switching converter, and then
demonstrated in detail for the particular case of the boost power stage
in which parasitic'effects (esr of the capacitor and series resistance
of the inductor) are included. General equations for both steady-
state (dc) and dynamic performance (ac) are obtained, from which
important transfer functions are derived and also applied to the

special case of the boost power stage.

Basic state-space averaged model
The basic dc-to-dc level conversion function of switching

. converters is achieved by repetitive switching between two linear
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networks consisting of ideally lossless storage elements, inductances
and capacitances. In practice, this function may be obtained by use
of transistors and diodes which operate as synchronous switches. On
the assumption that the circuit operates in the continuous conduction
mode in which the instantaneous inductor current does not fall to zero
at any point in the cycle, there are oh]y two different "states" of
the circuit. Each state, however, can be represented by a linear
circuit model (as shown in block 1b of Fig. 2.1) or by a corresponding
set of state-space equations (block la). Even though any set of
linearly independent variables can be chosen as the state variables,
it is customary and convenient in electrical networks to adopt the
inductor currents and capacitor voltages. The total number of storage
elements thus determines the order of the system. Let us denote such
a choice of a vector of state-variables by x.

It then follows that any switching dc-to-dc converter
operating in the continuous conduction mode can be described by the

state-space equations for the two switched models:

(1) interval T d: (i) interval T d':

X = A]x + b]vg X = Azx + b2vg (3.1)
T T

TG X | 2= %2

where Tsd denotes the interval when the switch is in the on state and
Ts(]—d) = Tsd' is the interval for which it is in the off state, as
shown in Fig. 1.2. The static equations ¥i = c]Tx and Yo = c2Tx

are necessary in order to account for the case when the output

quantity does not coincide with any of the state variables, but is
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rather a certain linear combination of the state variables.

Our objective now is to replace the state-space description
of the two linear circuits emanating from the two successive phases
of the switching cycle Tgby a single state-space description which
represents approximately the behavior of the circuit across the
whole period Ts' We therefore propose‘the following simple
averaging step: take the average of both dynamic and static equations
for the two switched intervals (3.1), by summing the equations ifor
interval Tsd multiplied by d and the equations for interval Tsd'

multiplied by d'. The following linear continuous system results;

X

d(A]x+b]vg) + d'(A2x+b2vg)
(3.2)

<
1

= dy1 + d'y2 = (dc]T+d'c2T)x

After rearranging (3.2) into the standard linear continuous
system state-space description, we obtain the basic averaged state-

space description (over a single period TS):

X

(dA]+d'A2)x + (db]+d'b2)vg
(3.3)

<
i

LY
(dc] +d CZT)X

This model 1is the basic averaged model which is the starting
model for all other derivations (both state-space and circuit
oriented).

Note that in the above equations the duty ratio d is considered
constant; it is not a time dependent variable (yet), and particularly

not a switched discontinuous variable which changes between 0 and 1 as
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in [1] and [2], but is merely a fixed number for each cycle. This
is evident from the model derivation in Appendix B. In particular,
when d = 1 (switch constantly on) the averaged model (3.3) reduces
to a switched model (3.11), and when d = 0 (switch off) it reduces
to switched model (3.111).

In essence, comparison between (3.3) and (3.1) shows that the
system matrix of the averaged model is obtained by taking the average
of two switched model matrices A] and AZ’ its control is the average
of two control vectors b] and b2, and its output is the average of
two outputs 2 and y, over a period Ts’

The justification and the nature of the approximation in
substitution for the two switched models of (3.1) by state-space
averaged model (3.3) is indicated in the Appendices. It has already
been shown in Chapter 1 that the requirement of low output switching
ripple places the natural frequencies w = 1/2RC and fC = 1/2w/LC
significantly lower than the switching frequency fs = 1/Ts(see for
example (1.11)). These two restrictions on the choice of elements,
namely “h/fs << 1 and fc/fS << 1 are shown in Appendix A to lead to a

very accurate approximation of the fundamental matrix eAt

At I + At. This linear approximation

by its
first-order linear term, or e
of the fundamental matrix is shown in Appendix B to lead directly to
the state-space averaging step, namely replacement of the two linear
continuous hodels (3.1) by a single continuous model of (3.3). In

addition, in Appendix C it is shown that in the steady state regime,
the exact dc conditions could be found which under the same linear

approximation of fundamental matrices reduce to the dc conditions
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obtained from basic averaged state-space model (3.3).
The model represented by (3.3) is an averaged model over a
single period TS. If we now assume that the duty ratio d is constant

from cycle to cycle, namely, d = D (stecady state dc duty ratio), we

get:
X=A_)F+bvg (3.4)
Yy = ¢ X

where
A= DA1 +D A2
b = Db] + D'b2 (3.5)
T _ T T
C Dc] + D c2

Since (3.4) is a Tinear system, superposition holds and it

can be perturbed by introduction of line voltage variations v_ as

g g g
corresponding perturbation in the state vector x = X + x, where again

v. =Y + v , where Vg is the dc 1ine input voltage, causing a

X is the dc value of the state vector and x the superimposed ac

perturbation. Similarly, y =Y + y, and

.
~

X

#

+ + + 3.6
AX bvg Ax bvg (3.6)

T T

c X+ cx

Y+ y

Separation of the steady-state (dc) part from the dynamic

(ac) part then results in the steady state (dc) model

AX + bV = 03 Y = Yoy o= —cTA']ng (3.7)

and the dynamic (ac) model

AX + by
TA g (3'8)
C X

<> X



46

It is interesting to note that in (3.7) the steady state (dc)
vector X in general depends only on the dc duty ratio D and
resistances in the original model, but not on the storage element
values (L's and C's). This is so because X is the solution of the

iinear system of equations

AX + ng =0 (3.9)

in which L's and C's are proportionality constants. This is in
complete agreement with the first-order approximation of the exact
dc conditions shown in Appendix C, which coincides with expression

- (3.7).

From the dynamic (ac) model, the line voltage to state-vector

transfer functions can be easily derived as:

~

s o (s1-a)"Tp

vg(s) (3.10)
Y o Tist-a)y Ty

vg(s)

Hence at this stage both steady state (dc) and Tine transfer
functions are available, as shown by block 6a in the Flowchart of

Fig. 2.1. We now undertake to include the duty ratio modulation effect

into the basic averaged model (3.3).

Penturbation
Suppose now that the duty ratio changes from cycle to cycle,
that is, d(t) = D + d where D is the steady state (dc) duty ratio as

before and d is a superimposed (ac) variation. With the corresponding
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~

X+ x,y=Y+ A, and v_=V + v
y y g g vg the

"

perturbation definitjon x

basic model (3.3) becomes:

X = AX+ng + Ax+bvg + [(A]—AZ)X + (b]—bZ)Vg]d + [(A]—Az)x + (b]-bz)vg]d

dc term Tine duty ratio variation nonlinear second-
variation order term
(3.11)
Y+ y-= CTX + ch + (¢ T—c T)Xd + (c T—c T)xd
1 2 1 -2
dc ac ac term nonlinear term

term term

The perturbed state-space description is nonlinear owing to

the presence of the product of the two time-dependent quantities

x and d.

Lineanization and final state-space averaged model
Let us now make the small-signal approximation, namely that
departures from the steady state values are small compared to the

steady state values themselves:

X
<< 1, ¥ << 1 (3.12)

Then, using approximations (3.12) we neglect all nonlinear terms

such as the second—ordef terms in (3.11) and obtain once again a
linear system, but including duty-ratio .modulation 8. After
separating steady state (dc) and dynamic (ac) parts of this linearized
system we arrive at the following results for the final state-space

averaged model.
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Steady state (dc) model:

X = —A']bvg, Y = clx = -cTA”bvg (3.13)

Dynamic (ac small-signal) model:

.
”~

x = Ax + bvg + [(Ay-AX + (b]—bz)vg]d (3.14)
y = oTx + (C]T—CZT)Xd

In these results, A, b and cT are given as before by (3.5).
Equations (3.13) and (3.14) represent the small-signal low-
frequency model of any two-state switching dc-to-dc converter
working in the continuous conduction mode.
From (3.14), the duty ratio modulation 8 to state-variable

X or to output y transfer functions are directly obtained as:

E(S = I-A -1 A,-A b.-b,)V
S (sI-A)" " [(A{-A))X + (by-by) g] (3.15)
%%ég- = ¢ (s1-A) 'L (A A X + (by-by)V] ey

s

It is important to note that by neglect of the nonlinear term
in (3.11) the source of harmonics is effectively removed. Therefore,
the linear description (3.14) is actually a linearized describing
function result that is the Timit of the describing function as the
amplitude of the input signals Qg and/or 8 becomes vanishingly small.
The significance of this is that the theoretical frequency
response obtained from (3.14) for line to output and duty ratio to
output transfer functions can be compared with experimental describing

function measurements as explained in [1], [2], or [8], in which
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small-signal assumption (3.12) is preserved. Very good agreement up
to close to half the switching frequency has been demonstrated

repeatedly [1], [2], [3], [7].

Example: boost powern stage with parasitics

We now illustrate the method for the boost power stage shown

in Fig. 3.1.

g
?
7

5O fel i

|t vi T
dls d'Ts 'lﬂ

Fig. 3.1 Example fon state-space averaged modelling: boosit power
stage with parnasitics included. ’

—fvvafZTG\— | — AT Y2

Vg<i> Re e vg<t> + SRe i
L Lt

Fig. 3.2 Two switched circuit models of the cirewit in Fig. 3.1
with assumption of Ldeal switches. ALL elLements in the
pinal state-space averaged model {3.13) and (3.14) are
obtained: A, by, c,T grom a) forn interval dl,, and
Ags bz, ¢g from b) for intervak d'T,.
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With assumption of ideal switched, the two switched models
are as shown in Fig. 3.2. For choice of state-space vector xT = (1 v),

the state-space equations become:

(i) interval Tsd: (ii1) interval Tsd':
X = A]x + bvg X = A2x + bv )
T (3.16
where . - - -
] I_%& . ) R, +R _|IR ] R
L L L(RFR )
A.l = ] A2 = R i _I
TR | TRRIC (RER I

T _ R T _ R
C] = [0 ﬁ—;ﬁ::l CZ = l:R”RC ———R+Rc] (3.17)

Note that (3.16) is the special case of (3.1) in which by = b, = b =
/L o7,
Using (3.17) and (3.5) in the general result (3.13) and (3.14),

we obtain the following final state-space averaged model.

Steady-state (dc) model:

y = o T L DR\l (3.18)
v r [(-0r R

in which 1 is the dc inductor current, V is the dc capacitor voltage,

and Y is the dc output voltage.
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Dynamic (ac small signal) model:

[ -] [ R +(1-D)R,IR) (1-0)R T [ 4]
! " L " TIRVR) !
d_ -
A XS o ;
] i RfRC C IR+RC§C ] ]
1] (R (D'R+RC)-
L L R a
~ c V d
+ v+ —
? R " (3.19)
L 0 L - {R+RC5C )
. : i RJR
y = (]’D)(RCH R) R ~ - Vg —R d
C v
in which R' £ (1-D)2R + R, + D(1-d)(R_|| R).
We now look more closely at the dc voltage transformation ratio
in (3.18):
2
vo_Y |1 , (1-D)°R (3.20)
Vg Vg 1-D (1-D)°R + Rz + D(]—D)(RCHR)
ideal correction factor
dc gain

This shows that the ideal dc voltage gain is 1/D' when all parasitics
are zero (RQ =0, R = 0) and that in their presence it is slightly
reduced by a correction factor less than 1. Also we observe that
nonzero esr of the capacitance (Rc # 0) (with consequent discontin-
uity of the output voltage) affects the dc gain and appears
effectively as a resistance DD'(RCHR) in series with the inductor
resistance Rl' This effect due to the discontinuity of output

voltage was not included in [2], but was correctly accounted for in

[1].
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This is also a good example to show how even tiny parasitic
resistances could significantly alter dc gain characteristics and
efficiency of the converter. Just for simplicity of presentation,
take Rc = 0 in (3.20) and consider voltage gain V/Vg as a function of
duty ratio D. It is easy to see that in this more realistic case
(R2 # 0) it will have a maximum (V/V) ax = O-5R7RT at D =
1 - V/R2/R, while in the ideal case it increases without the limit,

as shown in Fig. 3.3. As a numerical example, for R = 209, Rg = 0.2Q

the maximum dc gain is (V/Vg)max =5atD =0.9.

real
voltage gain 5

— — ideal
voltage gain
also real
current gain

0.0 0.5 Dm 1.0

Fig. 3.3 Voltage dc gain with inducton parasitic resistance included.

[t 1s interesting to note, however, that the dc current
conversion is not affected by inclusion of parasitics and stays at
Iin/Iout = 1/D", or the same as the ideal dc voltage gain shown in
Fig. 3.3. Therefore, the efficiency n(D) of the converter as a func-
tion of duty ratio D could be simply obtained by dividing the two
curves in Fig. 3.3 to produce Fig. 3.4. For the same numerical

example R&/R = 0.01, the efficiency would drop to only 50% at the
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507%

|
|
]
0.0 Dm LO

Fig. 3.4 Efficiency of the boost converter as a function of duty
natio gon RQ#O.

maximum dc voltage gain of 5. This illustrates in a rather dramatic
fashion how even the small resistance‘inevitably associated with any
inductor could drastically reduce eff%ciency and alter dc voltage
conversion. One can now properly appreciate the importance of
inclusion of various parasitic effects which distinguish the ideal
lossless circuits from the real lossy ones.

From the dynamic model (3.19) one can find the line voltage
to output and duty ratio to output transfer functions by applying
(3.10) and (3.15). If we take for simplicity R, = 0, the following

transfer functions, which now again include the effects of nonzero

RR are obtained:

)

G = v(s) _ G 1 .
vg 097 , 5 . (5
vg(s? 1+ Qu + (wo)

;gs) ®a
= = G (3.21)
where Wo Yo

G



Y
w, = (D' ZR-R /L
. R, 1 D'ZR+R
| L A e (oo
° JIT R D' 0 )
2
V. D'PR-R
6 =L ! ;g = 3 % DR
0g Rg 1 > “od D.Z(\.ZR + R )2
D' 1+ = 2

R D'2 ~
These results agree exactly with those obtained in [1] by following a

different method of averaged model derivation based on the equivalence

of circuit topologies of two switched networks.

The fundamental result of this section is the development
of the general state—sbace averaged model represented by (3.13) and
(3.14), which can be easily used to find the small-signal low-frequency
model of any switching dc-to-dc converter. This was demonstrated for
a boost power stage with parasitics resulting in the averaged model
(3.18) and (3.19). It is important to emphasize that, unlike the
transfer function description, the state-space description (3.13) and
(3.14) gives the complete system behavior. This is very useful in
implementing two-loop and multi-loop feedback when two or more states
are used in a feedback path to modulate the duty ratio 3. For example,

both output voltage and inductor current may be returned in a feedback

loop.
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3.2 Hybrid modelling

In this section it will be shown that for any specific

converter a useful circuit realization of the basic averaged model

given by (3.3) can always be found. Then, in the following section,
the perturbation and linearization steps will be carried out on the
circuit model finally to arrive at the circuit model equivalent of
(3.13) and (3.14).

The circuit realization will be demonstrated for the same
boost power stage example, for which the basic state-space averaged

model (3.3) becomes:

di R, +d' (R_JIR) d'R ]
dt ) L " TR ) ! L
= +

Yg

dv d'R 1 0

dt (R+Rc5c - '(R+RC5(;" LV B

b — e p— = -

(3.22)

y - [d'(Rch ;T] H

In order to "connect" the circuit, we express the capacitor

voltage v in terms of the desired output quantity y as:

R+RC
Vg - (]-d)Rc1

or, in matrix form
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_ _ " R
i ] 1 0 i
N (3.23)
R+RC
-d'R
N | e =) LY
Substitution of (3.23) into (3.22) gives
. d._w — — - oy =
] ] ] .
L at —(R2+dd (RCHR) d i 1
additional ideal
B resistance transformer ' v
) g
dv /
¢ I d - %— y 0
- T - - T (3.24)

From (3.24) one can easily reconstruct the circuit representation

shown in Fig. 3.5.

"o

Re

L ddIR|IR)

|
’

dy

1+

Fig. 3.5 Cirewit nealization of the basic state-space averaged

model

(3.24) through hybrid modelling.

The basic model (3.24) is valid for the dc regime, and the

two dependent generators can be modeled as an ideal d':1 transformer

wnose range extends down to dc, as shown in Fig. 3.6,



Re L dd'(ReIR) y

VgQD 2 41 éR

oy [

d':
Fig. 3.6 Basic circuit avenaged model fon the boost circuit example

in Fig. 3.1. Both de-to-de conversion and Line variation
are modelled when di{zt) = D.

A word about the new transformer symbol introduced in Fig. 3.6
is appropriate here. In the modelling of dc-to-dc converters a need

naturally arises to have as a convenient modelling tool special types

of transformers: a transformer which operétes for both ac and dc
signals, as for example the one in Fig. 3.6, and also a transformer
which only works at dc (for which the need will arise in Part II).
Lven though these transformers are not physically realizable they are,
nevertheless, very useful in modelling the basic converter function:
dc~to-dc conversion. Hence, as an indicator of their specific
functions, the symbols of Fig. 3.7 are introduced. For consistency,

~ the conventional, physically realizable, ac transformer only, is
pictorially represented as in Fig. 3.7c. Later, for similar purposes,

the same overprint glyphs will be used with resistance symbols.

a) dc and ac transformer b)dc transformer c¢lac transformer

o o] o ) o] o o]
QE 10 o: ¢ ®
(o O O 4 O O- 4 O

Fig. 3.7 Definition of various thansformer symbols.
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As before, we find that the circuit model in Fig. 3.6 reduces
for d = 1 to the switched model in Fig. 3.2a, and for d = 0 to the
switched model in Fig. 3.2b. In both cases the additional resistance
dd'(RCl|R) disappears, as it should.

If the duty ratio is constant so d = D, the dc regime can be
found easily by considering inductance L to be short and capacitance
C to be open for dc, and the transformer to have a d':1 ratio. Hence
the dc voltage gain (3.20) can be directly seen from Fig. 3.6
Similarly, all line transfer functions corresponding to (3.10) can
be easily found from Fig. 3.6.

It is interesting now to compare this ideal d':1 transformer
with the usual ac transformer. While in the latter the turns ratio
is fixed, the one employed in our model has a dynamic turns ratio
d':1 which changes.when the duty ratio is a function of time, d(t).
It is through this ideal transformer that the actual controlling
function is achieved when the feedback loop is closed. In addition
the ideal transformer has a dc transformation ratio d':1, while a
real transformer works for ac signals only. Nevertheless, the concept
of the ideal transformer in Fig. 3.6 with such properties is a very
useful one, since after all,the switching converter has the overall
property of a dc-to-dc transformer whose turns ratio can be
dynamically adjusted by duty ratio modulation to achieve the control-
ling function. We will, however, see in the next section how this can be

more explicitly modelled in terms of duty-ratio dependent generators

only.
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Following the procedure outlined in this section one can

easily obtain the basic averaged circuit models of three common

converter power stages, as shown in the summary of Fig.3.8 .

a) buck power stage:

Ry L
YV LR

Vg | Vol °
A 230

l:d Re L

T

b) boost power stage : buck
Re L Ry L Re d:1
AT

Vg Re | Vg *L1* 2R
® K 18O %]
1_ boost 1_

i:d Ry L Ridi

+ AT MWW
S et |

Ri=dd'(Rc||R) buck boost

c)] buck boost power stage:

Fig. 3.8 Suwnmmary o4 basic circuit averaged models gorn three common
powenr sages: buck, boost, and buck-boosZ.

The two switched circuit state-space models for the power
stages in Fig.3.8 are such that the general equations (3.1) reduce
to the special cases Ay = A2 = A, b] # b2 = 0 (zero vector) for the

buck power stage, and A] # A2, b] = b2 = b for the boost power stage,
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whereas for the buck-boost power stage A] 7 A2 and b] # b2 = 0 so

that the general case is retained.

3.3 Circuit averaging

As indicated at the beginning of this chapter, in this
section the alternative path b in the Flowchart of Fig. 2.1 will be
followed, and equivalence with the previously developed path a firmly
established. The final circuit averaged model for the same example
of the boost power stage will be arrived at, which is equivalent
to its corresponding state-space description given by (3.18) and (3.19).

The averaged circuit models shown in Fig. 3.8 could have
been obtained as in [2] by directly averaging the corresponding
components of the two switched models. However, even for some
simple cases such as the buck-boost or tapped-inductor boost [1]
this presents some difficulty owing to the requirement of having two
switched circuit models topologically equivalent, while there is no
such requirement in the outlined procedure.

In this section we proceed with the perturbation and
linearization steps applied to the circuit model, continuing with
the boost power stage as an example in order to include explicitly

the duty ratio moduiation effect.
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Pentwibation

If the averaged model in Fig. 3.8 1is perturbed according to
Vg = VgtVgs 1= I+, d = Did, d' = D'-d, v = Vv, y = Yty the

nonlinear model in Fig. 3.9 results.

Ry L e (D+dlD-AIRJ RI+)

L

Y+

1+?

(D-4)(1+3) S Re
Vg+og i) (D'-8)(Y+g)

4 + R
Viv _[_C
Fig. 3.9 Penturbation of the basic averaged cireuit model in Fig.

3.6 includes the duty natio modulation effect d, but resubts
An this nonlinear cireult model.

1+

Lineardization
Under the small-signal approximation (3.12), the following

linear approximations are obtained:

e, & DD' (R [R)(I+i) + d(D'-D) (R [R)I

(D'-d) (Y+y) & D' (Y+y) - dY

(D' -d)(1+1) v DU(I+) - dl
and the final averaged circuit model of Fig. 3.10 results. In this
circuit model we have finally obtained the controlling function
separated in terms of duty ratio d dependent generators ey and j],
while the transformer turns ratio is dependent on the dc duty ratio

D only. The circuit model obtained in Fig. 3.10 is equivalent to

the state-space description given by (3.18) and (3.19).
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Fig. 3.10 Unden small-signal assumption (3.12), the model in Fig. 3.9
5 Lineanized and this final averaged cireult model of
the boost stage 4in Fig. 3.1 14 obtained.

This now completes the detailed investigation of all paths
in the Flowchart of Fig. 2.1 except for the culminating block- - the
canonical circuit model, which is dealt with in the next chapter.
However, before going into this final step of modelling, let us first
review some of the more fundamental results obtained in this chapter.

A general method for modelling power stages of any switching
dc-to-dc converter has been developed through the state-space
approach. The fundamental step is in replacement of the state-space
descriptions of the two switched networks by their average over the
single switching period TS, which results in a single continuous
state-space equation description (3.3) designated the basic averaged
state-space model. The essential approximations made are indicated
in Chapter 1 and the Appendices, and are shown to be justified for
any practical dc-to-dc switching converter. Their essence can be

quickly summarized in the following sequence of implications:

switching natural switching —p fundamental
ripple small => frequencies S frequency matrix
~,  linear — state-space

approximation averaging step
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The subsequent perturkbation and linearization step under the
small-signal assumption (3.12) leads to the final state-space averaged
model given by (3.13) and (3.14). These equations then serve as the
basis for development of the most important qualitative result of this
work, the canonical circuit model (b]qck 5 in the Flowchart of Figq.
2.1).

In contrast with the state-space modelling approach, for any
particular converter an alterrative path via hybrid modelling and
circuit transformation could be followed, which also arrives first at
the final circuit averaged model equivalent of (3.13) and (3.14) and
finally, after equivalent circuit transformations, again arrives at

the canonical circuit model.

Although the state-space modelling approach has been
developed in this chapter for two-state switching converters, the
method can be extended to nmultiple-state converters. Examples of
three-state converters are the familiar buck, boost and buck-boost
power stages (shown in Fig. 1.1) operated in the discontinuous
conduction mode (compare Chapter 1, Fig. 1.7), while dc-to-ac switch-
ing inverters in which a specific output waveform is "assembled"
from discrete segments are examples of multiple-state converters.

In particular, Part IT will demonstrate in detail how the
extension of this state-space modelling approach can be accomplished
for converters operating in the discontinuous conduction mode, where
structural change takes place among three different switched network

topologies as opposed to two we have treated so far in this chapter.
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CHAPTER 4
CANONICAL CIRCUIT MODEL

This chapter is entirely devoted to the new canonical circuit
model (see block 5 in the Flowchart of Fig. 2.1). The derivations
via a general state-space model (3.13) and (3.14) are subsequently
illustrated on a buck-boost example, while the results for a number
of other converters are conveniently represented in the form of a
table, thanks to the fixed circuit topology of the new canonical
model. Finally, the significance of the new circuit model and general
conclusions not otherwise available are thoroughly discussed.

Even though the general final state-space averaged model
in (3.13) and (3.14) gives the complete description of the system
behavior, one might still wish to derive a circuit model describing

its input-output and control properties as illustrated in Fig. 4.1.

a) b)

. state — space A Al circuit model A
Vg+vg averaged model |Y+Y Vg on an Ty

via > o> O input oufpuf::>

input A,,Az,b,,bz,c’;,cz output input basis output

GD+3 G D+d

control control

Fig. 4.1 Definition of the modelling objective: circuit averaged
model describing dnput-output and contrhol properties.

In going from the model of Fig. 4.1a to that of Fig. 4.1b
some information about the internal behavior of some of the states
will certainly be lost but, on the other hand, important advantages
will be gained as were briefly outlined in Chapter 2, and as this

section will illustrate.
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We propose the following fixed topology circuit model, shown

in Fig. 4.2 as a realization of the "black box" in Fig. 4.1b.

control function basic dc-to-dc effective low-pass

via d transformation filter network
l Q‘SE’%/ w(D): | m v+
Ef(5)d 7o
54O | Ot > o3
~Helsl |

Fig. 4.2 Canonical circuit moded realization of the "black box"
in Fig. 4.1b, modeling the three essential functions of
any de-to-de converten: contrwok, basic de conversdion, and
Low-pass filterning.

We call this model the canonical circuit model, because any switching

converter input-output model, regardless of its detailed configura-
tion, could be represented in this form as long as the converter
operates in the continuous conduction mode. Different converters

aré represented simply by appropriate sets of formulas for the four
elements e(s), j(s), u, He(s)'in the general equivalent circuit. The
polarity of the ideal u:1 transformer is determined by whether or not
the power stage is polarity inverting. 1Its turns ratio p is dependent
on the dc duty ratio D, and since for modelling purposes the trans-

former is assumed to operate down to dc, it provides the basic dc-to-
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dc level conversion. The single-section low-pass LeC filter is shown
in Fig. 4.2 only for illustration purposes, because the actual number
and configuration of the L's and C's in the effective filter transfer
function realization depends on the number of storage elements in the
original converter. _

The resistance Re is included in the model’of Fig. 4.2 to
represent the damping properties of the effective low-pass filter.
It is an "effective" resistance that accounts for various series ohmic
resistances in the actual circuit (such as RQ in the boost circuit
example), the additional "switching" resistances due to discontinuity
of the output voltage (such as DD‘(RCHR) in the boost circuit example),
and also a "modulation" resistance that arises from a modulation of

the switching transistor storage time [1].
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4.1 Derivation of the canonical model through state-space

From the general state-space averaged model (3.13) and (3.14),

we obtain directly using the Laplace transform:

1

x(s) (sI—A)']b;g(s) + (s1-A)TTL(A-AX + (b]-bz)vg]a(s)

) | ) (4.1)
cTx(s) + (¢ -c," )Xd(s)

y(s)

Now, from the above complete set of transfer functions we

single out those which describe the converter input-output properties,

namely

;(S)

1}

6yg Cg(s) * Gy d(s)
(4.2)

~ ~

ig vg(s) *Giy d(s)

i(s) = G
in which the G's are known explicitly in terms of the matrix and

vector elements in (4.1).

Equations (4.2) are analogous to the two-port network
representation of the terminal properties of the network (output
voltage §(s) and input current ?(s)). The subscripts designate the
corresponding transfer functions. For example Gv is the source

g
voltage vg to output voltage y transfer function, Gid is the duty ratio

"~

d to input current i(s) transfer function, and so on.

For the proposed canonical circuit model in Fig. 4.2, we

directly get:

~

y(s) = (§g+e8)-% He(s) (4.3)
;(s) = j 5 + (ea+; )———~J~—-—~
9 124(5)

or, after rearrangement into the form of (4.2):.
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y(s) = %He(S) 39(5) te %He(s)a(s)
(4.4)
i(s) = ———— v () + |3 + ——S—|d(s)
Lz 0T W)

Direct comparison of (4.2) and (4.4) provides the solutions for He(s),

e(s), and j(s) in terms of the known transfer functions G,q> G

g’ “vd?
G].g and Gid as:
Gvd(s)
e(s) = RO i(s) = 65,4(s) - e(S)Gig(S)
Vg _ (4.5)

Ho(s) = uGVg(S)

Note that in (4.5) the parameter 1/u represents the jdeal dc voltage
gain when all the parasitics are zero. For the previous boost

power stage example, from (3.20) we get u = 1-D and the correction
factor in (3.20) is then associated with the effective filter net-

work He(s). However, p could be found from

-

v C -cTA']b = %-x (correction factor) (4.6)

g
by setting all parasitics to zero and reducing the correction factor
to 1.
The physical significance of the ideal dc gain u is that it

arises as a consequence of the switching action, so it cannot be

associated with the effective filter network which at dc has a gain
(actually attenuation) equal to the correction factor.
The procedure for finding the four elements in the canonical

model of Fig. 4.2 is now briefly reviewed. First, from (4.6) the
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basic dc-to-dc conversion factor u is found as a function of dc duty
ratio D. Next, from the set of all transfer functions (4.1) only
those defined by (4.2) are actually calculated. Then, by use of these
four transfer functions Gvd’ Gvg’ Gid’ G].g in (4.5) the frequency
dependent generators e(s) and j(s) as well as the low-pass filter

transfer function He(s) are obtained.

The two generators could be further put into the form

(4.7)

<
—~
7]
~—
il
[«
—+
™o
—
[%2]
~—

where f](O) = f2(0) = 1, such that the parameters E and J could be
identified as dc gains of the frequency dependent functions e(s) and
i(s).

Finally, a general synthesis procedure [10] for realization
of L, C transfer functions terminated in a single load R could be
used to obtain a low-pass ladder-network circuit realization of the
effective low-pass network He(s). Though for the second-order example
of He(s) this step is trivial and could be done by inspection, for
higher-order transfer functions the orderly procedure of the

synthesis [10] is almost mandatory.

Example: Lideal buck-boost power stage

For the buck-boost circuit shown in Fig. 3.10c with R2

]
o

RC = 0, the final stateéspace averaged model is:
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- Y9 - q A - -V -V o9
di D' D 9
@l |° L i r
= ¥ v+ d 4.8
) g (4.8)
dv D' 1 - v
al|"c “wm||V ? ] " DRC

in which the output voltage y coincides with the state-variable
capacitance voltage v.
From (4.6) and (4.8) one obtains u = D'/D. With use of (4.8)

to derive transfer functions, and upon substitution into (4.5), there

results
e(s) = :_\2!_ <] - S Dlé s j(s) = _.__-.V._..z__.
- 1 _1-D
He(S) = s W= e

1+ s/RC + sZLeC

in which V is the dc output voltage.
The effective filter transfer function is easily seen as a
low-pass LC filter with Le = L/D'2 and with Toad R. The two

generators in the canonical model of Fig. 4.2 are identified by

'I_S.._D..l:.._

p'2R

m
1}
~)
-
—h
—
—~
w
~
Il

(4.10)

[ oY
1
“
N
W
g
14
—

(1-D)°R
We now derive the same model but this time using the

equivalent circuit transformations and path b in the Flowchart of

Fig. 2.1.
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After perturbation and linearization of the circuit averaged

model in Fig. 3. 8¢ (with R2 =0, RC = O),the series of equivalent

circuits of Fig. 4.3 is obtained.

al el
Vgt () Q)Ia =C %R
b) Vil
Vgris(®) @Ia gf; L4 g{g Lo $r
‘! - G- R o'p LID® yag

&7
: [ ]

Vgeig(H) Q)"[\')/“'Rd 3r

Fig. 4.3 Equivalent cireudt transformations of the final cireudt
averaged model a) Leading to its canonical cireult nealiza-
tion cl, demonsthated on the buck-boost example of Fig. 3.8c
(with R =0, R =0).

11

- :C§R

The bbjective of the transformations is to reduce the original
four duty-ratio dependent generators in Fig. 4.3a to just two
generators (voltage and current) in Fig. 4.3c which are at the input

port of the model. As these circuit transformations unfold, one sees
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how the frequency dependence in the generators arises naturally, as

in Fig. 4.3b.

Also, by transfer of the two generators in Fig. 4.3b

from the secondary to the primary of the 1:D transformer, and the

inductance L to the secondary of the D':1 transformer, the cascade of

two ideal transformers is reduced to the single transformer with
equivalent turns ratio D':D.

network Le’ C, R is generated.

At the same time the effective filter

Expressions for the elements in the canonical equivalent

circuit can be found in a similar way for any converter configuration.

Results for the three familiar converters, the buck, boost, and buck-

boost power stages are summarized in Table I.

type | (D) E fi(s) J Hisl| Le
J V Vv

buck ff 'BE | E{ | L

Le V L
t - V -S4 | —= —_—
boos I-D | R (VWDFR | (1 -D]2
buck-l [-D -V |—5DL@ v | L
boost D D2 R (1- D)ZR (1-D)?

TABLE 1 Deginition of the elements in the canonical cireuit model

o4 Fig. 4.2 for the three common power stages of Fig. 1.1.

It may be noted in Table I that, for the buck-boost power

. . 2
stage, parameters E and J have negative signs, namely E = -V/D~ and

J = -v/(D'2R).

transformer in Fig. 4.3c¢c this stage is an inverting one.

However, as seen from the polarity of the ideal D':D

Hence, for

positive input dc voltage Vg, the output dc voltage V is negative
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(V < 0) since V/Vg = -D/D'. Therefore E > 0, J > 0 and consequently
the polarity of the voltage and current duty-ratio dependent generators
is not changed but is as shown in Fig. 4.3c. Moreover, this is true
in general: regardless of any inversion property of the power stage,
the polarity of the two generators stays the same as in Fig. 4.2.
If some parasitics have been included in the original converter model
(such as RQ, parasitic resistance of the inductance) Table I would have
had another column for Re (effective series resistance) as seen in
Fig. 4.2 with appropriate expressions.

Table I, together with the canonical circuit model of Fig. 4.2,

could then conveniently be used to obtain all the important static
(dc) and dynamic (ac) transfer properties of the converters listed
in Table I. For example, Tabie IT summarizing voltage gain and
efficiency of three common converters could be generated in such a

way. In Table II the effects of parasitics have also been included .

type V/Vg(dc gain) n (efficiency]
buck D R R
R+Ry R +Rp
2 2
boost DR DR

|
D' D*R+Ry*DDRJR | D®R+Re-DD'RIR

buck -
boost

D'?R DR
D2R+RetDDRCIR D2R+Ry+D DR R

D
D’

TABLE 11 Dec thansfen properties and efficiency of the three common
power stages of Fig. 1.1 in the continuous conduction mode.
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Similarly the dynamic (ac) transfer properties, that is,
Tine voltage variation to output voltage and duty ratio modulation to
output voltage, can be summarized for three common power stages of

Fig. 1.1 in the form of Table III.

buck boost buck ~boosgt
5 5 _R 1 _D*®R D _D*®R
°g R +Rpg D DR+Ry D’ D*R+Ry
R [D?’R-ReR |, D°R-(D-DIR¢
God Vg =————
°o 1Lc R yLC R VLC R
q | _R*Ry | DPR#R¢ | I D®R+Ry
ws L+CRR; |wh L+CRR; |z L+CRRy
12 2 )
-~ R-(D-O)R
a oo D" R-Ry D (D-DIR
L DL
aV o ' cn eV o_m | - S|Wa
Gvg* Ug Gog |+s/Qwo+(s/wa)2’GVd 4 G°d|+s/Qwo + (Swof2

TABLE 111 Swmnary of the ac transfern properties of the three common
power stages of Fig. 1.1 4in the continuous conduction mode.

After filing the information on these converters in Tables
I, IT and III we can proceed to discuss the significance of the new

canonical circuit model of Fig. 4.2 and related generalijzations
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4.2 Significance of the canonical circuit model and related

generalizations

The canonical circuit model of Fig. 4.2 incorporates all
three basic properties of a dc-to-dc converter: the dc-to-dc
conversion function (represented by the ideal u:1 transformer);

control (via duty ratio d dependent geherators); and low-pass

filtering (represented by the effective low-pass filter network

He(s)). Note also that the current generator j(s) d in the canonical

circuit model, even though superfluous when the source voltage

~

vg(s) is ideal, is necessary to reflect the influence of a nonideal

source generator (with some internal impedance) or of an inbut filter
[7] upon the behavior of the converter. 1Its presence enables one
easily to include the linearized circuit model of é switching converter
power stage in.other linear circuits, as the next chapter will
illustrate.

Another significant feature of the canonical circuit model
is that any switching dc-to-dc converter can be reduced by use of
(4.1), (4.2), (4.5) and (4.6) to this fixed topology form, at least
as far as its input-output and control properties are concerned.
Hence the possibility arises for use of this model to compare in an
easy and unique way various performance characteristics of different

converters. Some examples of such comparisons are given below.

1. The filter networks can be compared with respect to their
effectiveness throughout the dynamic duty cycle range D,
because in general the effective filter elements depend on

the steady state duty ratio D. Thus, one has the
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opportunity to choose the configuration and to optimize the

size and weight.

2. Basic dc-to-dc conversion factors p](D) and “Z(D) can be
compared as to their effective range. For some converters,

traversal of the range of duty ratio D from 0 to 1 generates
any conversion ratio (as in the ideal buck-boost converter),
while in others the conversion ratio might be restricted (as

in the Weinberg converter [4], for which 1/2 < u < 1).

3. In the control section of the canonical model one can
compare the frequency dependences of the generators e(s) and
j(s) for different converters and select the configuration
that best facilitates stabilization of a feedback regulator.
For example, in the buck-boost converter e(s) is a polynomial,
containing actually a real zero in the right half-plane,

which undoubtedly causes some stability problems and need

for proper compensation.

4. Finally, the canonical model affords a very convenient
means to store and file information on various dc-to-dc
converters in a computer memory in a form comparable to
Table I. Then, thanks to the fixed topology of the canonical
circuit model, a single computer program can be used to cal-
culate and plot various quantities as functions of frequency
(input and output impedance, audio susceptibility, duty

ratio to output transfer response, and so on). Also,

various input filters and/or additional output filter net-

works can easily be added if desired.
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We now discuss an important issue which has been intentionally
skipped so far. From (4.5) it is concluded that in general the duty
ratio dependent generators e(s) and j(s) are rational functions of

complex frequency s. Hence, in general, both some new zeros and poles

are introduced into the duty ratio to output transfer function owing

to the switching action, in addition to the poles and zeros of the

effective filter network (or Tine to output transfer function).
However, in special cases, as in all those shown in Table I, the
frequency dependence might reduce simply to polynomials, and even
further it might show up only in the voltage-dependent generators
(as in the boost, or buck-boost) and reduce to a constant (fz(s) = 1)
for the current generator. ievertheless, this does not prevent us
from modifying any of these circuits in a way that would exhibit the
general result -- introduction of both additional zeros as well as

poles.

Let us now {llustrate this general result on a simple

modification of the familiar boost circuit, with a resonant L], C]
circuit in series with the input inductance L, as shown in Fig. 4.4.
Ly A L
MO T N v

i

iy
=© o

AI
Fig. 4.4 Modified boost circudlt as an Lllustration of general fre-

quency behavion of the generatons in the canonical citreutt
model of Fig. 4.2.
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H
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By introduction of the canonical circuit model for the boost
power stage (for the circuit to the right of cross-section AA') and
use of data from Table I, the equivalent averaged circuit model of
Fig. 4.5a is obtained. Then, by application of the equivalent cir-
cuit transformation as outlined previously, the averaged model in the
cancnical circuit form is obtained in Fig. 4.5b. As can be seen from
Fig. 4.5b, the voltage generator has a double pole at the resonant
frequency W, = ]//f?f? of the parallel L], 1 network. However, the
effective filter transfer function has a deuble zero (null in
magnitude) at precisely the same locétion such that the two pairs
effectively cancel. Hence, the resonant null in the macnitude
response, while present in the line voltage to output transfer func-

tion, is not seen in the duty ratio to output transfer function.

a) SL
L, X“ OR ¥y, LD vy
AOH—CH)— T
|
I Vd ¢
V9+V9<t> Ci }q> DR I, T §R
|
| [
Al
b) 3 s SLIUZR ~
Vil-geg - |+s LC)d 01 Lo LID® Vv

Vgn“g(i) Q 5,7— D"°C, = C §R

Fig. 4.5 Equivalent circuit thansfommation Leading to the canonicakl
cineuit model b) of the cireudit in Fig. 4.4.
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Therefore, the positive effect of rejection of certain input
frequencies around the resonant frequency W, is not accompanied by a

detrimental effect on the loop gain, which will not contain a null in

the magnitude response.

The example dembnstrates yet another important aspect of
modelling with use of the averaging technique. Instead of applying
it directly to the whole circuit in Fig. 4.4, we have instead imple-
mented it only with respect to the storage element network which
effectively takes part in the switching action, namely L, C, and R.
Upon subskitution of thé switched part of the network by the averaged
circuit model, all other linear circuits of the complete model are
retained as they appearAin the original circuit (such as L], C] in
Fig. 4.5a). Again, the current generator in Fig. 4.5a is the one

which reflects the effect of the input resonant circuit.

After the detailed exposition we are now ready to briefly

review the salient features of this new canonical circuit model

(Fig. 4.2). Thanks to its fixed topology structure, different
converters are represented simply by an appropriate set of formulas
((4.5) and (4.6)) for four elements in this general equivalent circuit.
Besides its unified description, of which several examples are given

in Table I, one of the advantages of the canonical circuit model is
that various performance characteristics of different switching

converters can be compared in a quick and easy manner.
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Perhaps the most important consequence of the canonical
circuit model derivation via the general state-space averaged model
(3.13), (3.14), (4.1) and (4.2) is its prediction through (4.5) of
additional zeros as well as poles in the duty ratio to output transfer
function. In addition, frequency dependence is anticipated in the
duty ratio dependent cﬂrrent generator of Fig. 4.2, even though for
particular converters considered in Table I it reduces merely to a
constant. Furthermore, for some switching networks which would
effectively involve more than two storage elements, higher order
polynomials should be expected in f](s) and/or fz(s) of Fig. 4.2.

In fact, Part III has resulted as a consequence of the search
for such switching networks which would demonstrate the predictions
anticipated by this general canonical model. There, a new class of-
switching converters generated by the various cascade combinations
of the two fundamental converters, buck and boost of Fig. 1.1, not
only shows yet another topological realization of the generalized
switching converter in Fig. 1.11 but also demonstrates how powerful
the general equations (4.5) and (4.6) are in arriving at the canonical
circuit model of Fig. 4.2. In addition, this circuit model exhibits
a single zero (first-order) polynomial in complex frequency s for the
duty ratio dependent current generator and a second-order polynomial
for theAduty ratio dependent voltage generator, besides its low-
pass effectfve filter of fourth order (four storage elements L's
and C's). Therefore, general predictions made available by the
derivation of the canonical circuit model in this chapter will be

confirmed by the new class of switching converters in Part III and a
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new switching converter of Part IV which employs an optimum
topology.

As was demonstrated in Chapter 1, the main difficulty in analyzing
a switching-mode regulator (Fig. 1.10) lies in the modelling of its
nonlinear part, the switching-mode converter. However, we have
succeeded in previous chapters in obtaining the small-signal low-
frequency circuit model of any “two-state" switching dc-to-dc
converter, operating in the continuous conduction mode, in the
canonical circuit form. In the next chapter it will be demonstrated
how this converter circuit model can easily be incorporated in the

complete regulator, and the general switching mode regulator circuit

model obtained.
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CHAPTER 5
SWITCHING MODE REGULATOR MODELLING

This chapter represents the culmination of the modelling
procedures developed in Part I in that it demonstrates the ease with
which the different converter circuit models, and the canonical cir-
cuit model in particluar, can be incorporated into more complicated
systems such as a switching-mode regulator.

First a brief discussion of modelling of modulator stages
(such as, for example, the single-edge clocked pulse width modulator
of Fig. 1.10) in general is presented, which leads to a complete
general switching-mode regulator circuit model.

This then serves as a basis for establishment of analytic
quantitative expressions for the important regulator properties loop
gain T, input and output impedances Zi and Zo’ and line transmission
characteristic F of the resulting linear negative feedback circuit
model of a complete regulator. Knowledge of these quantitative
relations and the well-known body of linear feedback theory will not
only permit one to design a regulator according to the performance
requirements (line and load regulation etc) but also, by proper
design of the frequency shaping compensation network, to ensure
stability of operation under all operating conditions.

For.the same reason, an in depth discussion of the input
properties, both open-loop and especially closed-loop input impedance,
is included to reveal the source of potential instability when a

switching regulator is a part of a larger system (for example, preceded
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by an input filter or some other linear network or converter). This
comes as a consequence of a unique behavior of a switching requlator,
which at low frequencies exhibits a negative incremental input
resistance Ri as will be confirmed both qualitatively and quantita-
tively. It is, perhaps, interesting to mention that none of the
other techniques of modelling switching regulators ([11] through
[17]) is able to describe such behavior, owing to the lack of an
input model of the converter and/or requlator.

Consider now a switching wmode regulator as shown in Fig. 5.1.

—unregulated input regulated output
swiTching mode converter v
50 {1
L
Vg ?—‘t, T | é R
I Zotd—
} |
iboos? power stage |
- |
duty ratio Dl |
control Jd -
modulator| _ Voltage Ve
amplifier +
dc
reference

Fig. 5.1 Switching-mode negufaion of Fig. 1.10 with input and output
fiLtens omitted 4in ornden to expose the properties of the
converten-regulaton alone.

For concreteness and in order to have the convenient illustrative
example throughout derivation, the switching-mode converter is

represented by a boost power stage, but the discussion applies, to

any converter.
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5.1 Modulator stage modelling and complete requlator circuit model

So far, we have obtained the canonical circuit model for the
switching-mode converter. The next step in development of the
regulator equivalent circuit is to obtain a model for the modulator.
This is easily done by .writing an expression for the essential function
of the modulator, which is to convert an (analog) control voltage VC
to the switch duty ratid D. This expression can be written D = Vc/vm
in which, by definition, Vm is the range of control signal required to
sweep the duty ratio over its full range from 0 to 1. A small varia-
tion CC superimposed upon VC therefore produces a corresponding

variation d = vC/Vm in D, which can be generalized to account for a

nonuniform frequency response as

d=-M"" (5.1)

in which fm(O) = 1. Thus, the.control voltage to duty ratio small-

signal transmission characteristic of the modulator can be represented

in general by the two parameters Vm and fm(s), regardless of the

detailed mechanism by which the modulation is achieved. Hence, by

substitution for d from (5.1) the two generators in the canonical

circuit model of the switching converter can be expressed in terms

of the ac control voltage QC, and the resulting model is then a

linear ac equivalent circuit that represents the small-signal transfer

properties of the nonlinear processes in the modulator and converter.
It remains Simp]y to add a linear amplifier to obtain the

equivalent circuit of the closed-loop regulator as shown in Fig. 5.2.
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Fig. 5.7 Genernal ac small-signal equivalent circult for the
switching-mode regulaton of Fig. 5.1.

The modulator transfer function has been incorporafed in the
generator designations eC(s), jc(s), and the generator symbol has
been changed from a circle to a square to emphasize the fact that, in
the closed-loop regulator, the generators no longer are independent
but are dependent on another signal in the same system. The connection
from point Y to the error amplifier, via the reference voltage summing
node, represents the basic voltage feedback necessary to establish
the system as a voltage regulator. The dashed connection from point Z
indicates a'possible additional feedback sensing; this second feedback
signal may be derived, fbr example, from the inductor flux, inductor
current, or capacitor current, as in various "two-loop" configurations

that are in use [9].
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The current generator jc(s)Qc in Fig. 5.2 may seem superfluous
because it is shorted by the zero source impedance. However, its
presence is necessary not only to reflect the influence of an input
filter or nonzero source impedance,.as was previously illustrated (see
Fig. 4.5 for example) but, more importantly, properly to represent
the switching regulator itself, namely its negative input impedance

at low frequencies, as the znalysis in Sections 5.2 and 5.3 will

confirm.

5.2 Analysis of switching-mode regulator

A number of quantities of interest are shown explicitly in the
regulator model of Fig. 5.2. The averaging filter is defined to have
a voltage transfer function He(s) in the presence of the external
load R; this represents the basic low-pass filter characteristic.
ATso, the effective filter has an input impedance zei and output
impedance Zeo at the ports indicated; these are defined for the open-
loop condition of the regulator, and hence are properties of the
effective low-pass filter and load resistance only, and are unaffected
by any other regulator parameter. Explicitly, Zei is the impedance
of Re and Le in series with C and R in parallel, and Zeo is the
impedance of C in parallel with Re and Le' The subscript e is employed
in He’ Zei’ Zeo because these are all properties of the averaging
filter in terms of the "effective" inductance La and resistance Re'
The rehaining quantities identified in Fig. 5.2 represent
properties of principal interest in the design and analysis of the

regulator. The loop gain T is a fundamental parameter upon which

important properties of the regulator depend; it must be designed to
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have a dc value sufficient to provide the required dc regulation
specification, and it must be frequency shaped to ensure stability.
The closed-loop regulator output impedance ZO is an important system
specification that determines the transient response and load requla-
tion, and the line transmission characteristic F : Q/;g (sometimes
also called audiosusceptibility characteristic) specifies the ability
of the closed-loop regulator to prevent line voltage variations from
appearing in the regulated output. Finally, the closed-loop regulator
input impedance Ziis important when the regulator is preceded by an
input filter or some other network. Both the dc value and frequency
response of each of the terminal parameters Zo’ F and Zi are important,
and are strongly influenced by the dc value and frequency response of

the loop gain T.

Analysis of the equivalent circuit in Fig. 5.2 leads to the

following results:

T = = £ ()P (SH (S)A(S) = Gy A(s)F ()Y, (5.2)
m
A

Zo "7 SOT (5.3)
1 H G

=g 757 ° 77 (5.4)

1. T 1 1 1
Z. 1+ T ueRE(s) Ty AT W27 (5.5)
i 1 . ei

The first three expressions are a direct consequence of the
general results of linear feedback theory. Namely, the expression
for loop gain T is obtained simply from Fig. 5.2 as the product of

the voltage generator ec(s)=%*-f](s)fm(s), effective filter transfer
m
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function He(s), and amplifier gain A(s), while the current generator
jc(s) does not enter into the result since it is effectively
shorted.

The expression for Z0 shows that the closed-loop output
impedance is equal to the open-loop output impedance Zeo divided by
the feedback factor 1 + T, and likewise, the expression for F shows
that the closed-loop line transmission function is equal to the
corresponding open-loop function He/u divided by 1 + T, both of which
results are in accordance with the elementary properties of feedback.

The general model in Fig. 5.2 and expressions (5.2) through
(5.5) constitute the basic representation of the switching-mode

regulator operating in the continuous conduction mode and can be

successfully used for both analytical or computer aided design of

switching regulators.

Let us now discuss input properties represented by (5.5) in

more details.

5.3 Input properties of switching requlators

The closed-loop input admittance 1/Zi consists of two
components as seen from (5.5). At dc and low frequencies where the
Toop gain T is large, the first component dominates and Zi o —uZRf](s),
hence it is a negative impedance. However, above loop gain crossover
where the loop gain T falls substantially below unity, the second
component dominates and Zi g uzzei. However, from Fig. 5.2 this is the

same as the open-loop input impedance, the result which should be

expected when the loop gain is negligibly small. The complete
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expression (5.5) shows then how the input impedance changes from
negative at low frequencies to positive at high frequencies as the
loop gain falls below unity.

The result that the input impedance at low frequencies is
negative may seem at first surprising. Nevertheless it is inherent
in switching regulators, as the following simplified analysis will
demonstrate.

At low frequencies where the loop gain T is high, the feedback
action maintains constant output voltage, and hence constant output
power by varying duty ratio D (consequently gain u(D)), even if
the input voltage Vg varies. It follows that if Vg increases, Ig
must decrease since the input power also remains constant (under
simplifying 100% efficiency assumption). Consequently, the regulator

exnibits a negative incremental input resistance Ri given by

oo
-
[
H['U

-py —=-uR (5.6)
I

This is the low frequency value of the regulator input impedance Zi
given in (5.5). For example, for the boost converter example of Fig.

5.1 the closed-loop incremental resistarce becomes:

Vo2
Ry = DR = - (ﬁ) R (5.7)

while the.ogen-]oop low frequency input resistance Rin is:

A
R, = D'“R =<Vﬂ> R (5.8)
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It will be interesting later, in Part II, to compare these
particular results (5.7) and (5.8) as well as the above general result
(5.5) with corresponding expressions for the switching-mode regulator

operating in the discontinuous conduction mode.

Another interesting interpretation of the negative input
impedance at low frequency will perhaps even more illuminate
the need for the presence of the current generator in the model of
Fig. 5.2. VWhen the regulator is driven by an ac voltage ;g’ the high
Toop gain at low frequencies will force the ac voltage ; at the output
to be vanishingly small by appropriate adjustment of the ac duty ratio
3; since ; is the output of the filter, the voltage at the filter
input and also the voltage across the current generator, is therefore
vanishingly small; hence the impedance Zi seen by the driving source

~

vg is simply the ratio of the voltage and current generators

e (s) o fi(s)
Ziz‘ji‘(g)’ = "URf—z—(—S-)‘ (5.9)

which is the same at low frequencies as expression (5.6) since
f](O) = f2(0) = 1.

As a conclusion, the regulator negative input resistance Ri
in combination with the input filter can under certain conditions
constitute a negative resistance oscillator, and is the origin of the
system potential instability. The problem of how properly to design
the input filter and to avoid performance degradation and/or stability
problems is treated and solved in detail in [7]. It has been

discussed here merely to demonstrate the complieteness of the canonical

circuit model developed in previous chapters.
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PART I1

DisconTinuous ConpucTioN Mope
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CHAPTER 6
REVIEW OF THE NEW STATE-SPACE MODELLING TECHNIQUE
IN THE DISCONTINUOUS CONDUCTION MODE

The development in Part Il to a large extent resembles the
same procedural order of exposition followed in Part I. This is
Jjustified for two very good reasons. First, since the procedure for
modelling in discontinuous conduction mode 1is viewed as a special
case of that applied in Part I for continuous conduction mode
(provided the state-space averaging step of Part I is properly
generalized to include three or more structural changes within each
switching period as shown in Appendix D), the additional requirements
imposed here will be immediately recognized and easy to follow in the
exposition consistent with that of Part I. Second, this parallelism
facilitates a direct comparison between the two modelling procedures
at a number of points. While, for example, the steps common to both
methods will be immediately accepted and understood on the basis of
the previous in-depth explanation in Part I, those that are different
will be clearly distinguished and their significance vividly
displayed. This emphasizes the fact that Part II is essentially a
consistent extension of the technique in Part I specially designed
to model the discontinuous cdnduction mode of operation of switching
dc-to-dc converters.

In analogy to Chapter 2 of Part I, this chapter has also
a twofold purpose: to provide an extensive overview of the complete

structure of the modelling of switching converters and regulators in
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the discontinuous conduction mode and yet to serve post facto, after
detailed exposition in later chapters, as a quick reference and
reminder. In that sense, similarly to the Flowchart of Fig. 2.1 for
the continuous conduction mode, the Flowchart of Fig. 6.1 summarizes
all the essential information for modelling in the discontinuous
conduction mode. Again, owing to the overview feature of this
chapter, it will be relatively shorter than, for example, Chapters

7 and 8 where the various paths of the modelling technique are
discussed at length and illustrated on several examples correspond-

ing to those presented in Part I.

6.1 Brief review of existing modelling techniques

Owing to the relatively more complicated nature of the con-
verter operation in the discontinuous conduction mode, dynamic (ac
small signal)models have been lacking (even though valid models for
continuous conduction mode have already been obtained) until recently
several approaches ([11]-[17]) have been proposed. However, while
all these techniques ([11]-[17]) provide through various lineariza-
tion procedures the proper linearized transfer functions (duty
ratio modulation 8 to output voltage ; and line voltage Qg to
output voltage Q transfer functions), they are incapable of
representing the input properties of the converter, and hence fail to
arrive at the complete linearized converter model. This is an
entirely analogous situation to that of Part I, where these methods
could not model the input properties (open-and closed-loop input

impedance, for example) of the converters and regulators in
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continuous conduction mode of operation, as was suggested in the
previous chapter. In addition, they stay throughout modelling

in the domain of equation manipulations only, and thus the useful

insight which can be gained from linear circuit models (as demonstrated

in Part I) is lost. Hence the primary objective of the development
in Part II is to overcome all these difficulties by extending the
powerful state-space averaging technique of Part I, together with
its circuit model realizations, to the discontinuous conduction mode

of converter operation and finally to arrive at the complete linear

circuit model of various converters (1ike, for example, those of

Fig. 1.1).

6.2 New state-space and circuit averaging methods for switching

converters in the discontinuous conduction mode

The state-space and circuit averaging methods presented in
Part I are now to be suitably modified to account for the dis-
continuous conduction mode of operation, and the results are
summarized in the Flowchart of Fig. 6.1. As before for the contin-
uous conduction mode (Flowchart of Fig. 2.1), the starting model for
the switching converter (block 1 in the quwchart of Fig. 6.1)

is either in terms of the state-space description of the switched

networks (as in block la), or in terms of linear circuit models

of the switched networks (as in block 1b).
The difference, however, from the previous description
(compare with the Flowchart of Fig. 2.1) is not only that now there

are three different structural configurations within each switching



period, but also in the fact that instantaneous inductor current

is restricted in its behavior: it starts at zero at the beginning of
a switching period and falls to zero current again even before the
switching period has expired (see the instantaneous inductor current
waveform in block 1 of Fig. 6.1).

It is actually this second difference which clearly dis-
tinguishes the discontinuous conduction mode of operation (as also
demonstrated in Chapter 1 for the buck-boost converter), while the
first difference, that of having three different structural configura-
tions, appears in a way to be merely incidental. That is, in
Appendix D it is shown that the state-space averaging step of Part I
can be directly extended to include "three-state" converters
(converters with three structural changes within each switching
period), provided such converters are operated in the continuous
conduction mode, and any restrictions on state-space variables
(inauctof currents and capacitor voltages) are avoided. Therefore,
our objective in modelling converters operating in the discontinuous
conduction mode (and exhibiting "three state" configuration behavior)
becomes that of supplementing this generalized state-space averaging
step for "three state" converters by additional constraints which
reflect the special behavior of one of the state-variables, the
inductor current. Hence the switching-mode converter operating in
the discontinuous conduction mode (and having three structural

changes) may be viewed as a special case of the ordinary "three-

state" converters which are free from any restrictions on state-
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variables. Thus the primary goal of this chapter (and for the whole
of Part II) is properly to determine these additional constraints
and to find how they propagate through various paths of the model-
1ing (such as paths a and b on the Flowchart of Fig. 6.1).

From the Flowchart of Fig. 6.1 it is inmediately clear that
path a follows a development strictly in terms of state-space
equations, the state-space averaged modelling technique,while the
other path b proceeds in terms of circuit models, circuit averaged
modelling. Moreover, as before for the continuous conduction mode,
along path a the general equations (through general matrices A],

A2, A3 and vectors b], b2 and b3) are retained to emphasize the

fact that the outlined procedure is applicable to any "three state"
converter operating in the discontinuous conduction mode, while along
path b a particular example of the boost converter is followed,

owing to the requirement for the specific converter topology along
that pathf Specifically, for the boost power stage,A] = A3 # A2

are 2 x 2 matrices, and b1 = b2 # 0, b3 = 0 are vectors. This
example will be later pursued in detail along both paths.

We now follow path a more closely. The crucial step is made
in going from block la to 2a in that the original description through
three state-space equations (block la) is substituted by a single
state-space averaged model (block 2a). This is justified as follows.
In Chapter 1 it was demonstrated that the fundamental performance
requirement of switching converters (negligible switching ripple)
results in natural frequencies W, and fC much Tower than the
switching frequency fs' This, in turn, leads in Appendices A

through D to the generalized state-space averaging step. So far
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this would be the same averaging step as applied to any ordinary

"three state" switching converter. However, as indicated before,
the inductor current i does not behave as a true state-space variable
in the discontinuous conduction mode since it does not have free
boundary conditions (but fixed at zero) which is shown to lead to

the following constraint:

[

0 (6.1)

Q—ID.
ot | =

This immediately reduces by one the order of the basic state-space
averaged model (block 2a), since one of the dynamic equations (that
for inductor current) reduces to a static equation. In addition to
this, an expression describing the average inductor current i can
be found directly from the converter itself (block 1) and becomes

the second constraint, termed perturbation equation I, which is

i = i(vg,v,d,L,TS) (6.2)

Thus, the two additional constraints ((6.1) and (6.2)),
together with the generalized state-space averaging step, completely
determine the converter model in the discontinuous conduction mode.
It remains only to apply the standard perturbation techniques (block
3a) and (on the basis of the small-signal assumption) the
linearization techniques to’both state-space averaged equations and
the perturbation equation of block 2a in order to arrive at the final
state-space averaged model (block 4a). This model gives separately
both dc and ac small-signal descriptions through general matrices
A], A2’ A3 and vectors b], b2, b3 of the starting switched models

(block la) and constraints corresponding to those of (6.1) and (6.2).
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Naturally, as was done before for the continuous conduction
mode (compare Flowchart of Fig. 2.1 for example), we can now proceed
from the basic state-space averaged model (block 2a) via hybrid
modelling and circuit recognition (block 2c) to arrive at the very
useful circuit realization (block 2b). Note, however, that now the
constraint (6.1) effectively leads to shorting the inductance L
in the circuit model since v T L di/dt = 0. This, for the particular
boost circuit example, reduces the circuit to first order. The
other constraint (6.2) is also easily specified (see additional
constraint in block 2b) with the help of the inductor current wave-
form (block 1). The same circuit model (block 2b) could, however,
be obtained directly from tﬂe switched circuit models (block 1b),
by following the circuit averaging path, provided the circuit
averaging step for "three state" converters is supplemented by the
aforementioned equivalents of the constraints (6.1) and (6.2).
Again, the remaining circuit perturbation (block 3b) and circuit
linearization steps are straightforward and result in the final
circuit averaged models (block 4b) separately for dc and ac small-
signal. As seen from block 4b, the dc part of the perturbation
equation, current I, together with the dc circuit model, completely
determines the dc conditions, while its ac part ; contributes
to the final ac circuit averaged model.

Finally, both models (block 4a or 4b) can be used to deter-
mine the transfer functions of interest: Tline voltage variation
Cg and duty ratio modulation 8 to output voltage ; (blocks 6a

and 6b respectively).
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6.3 New canonical circuit model for discontinuous conduction mode

As for the continuous conduction mode, the culmination of
the modelling is again a canonical circuit model {(block 5 of Fig.
6.1), whose fixed topology (though different from the one for
continuous conduction.mode) has all the features necessary to

present a complete circuit model. However, this fixed topology of

the model for discontinuous conduction mode came merely as a by-
product, since for the three convértérs of Fig. 1.1 (buck, boost and
buck-boost) the ac small-signal models all resulted in the fixed
topological structure of the model in block 4b of Fig. 6.1 without
any need for equivalent circuit or other transformations. It does
not appear that this canonical circuit topology could be directly
extended to some arbitrary converter. Even though this canonical
circuit model is not so general as that for two-state converters
(Part 1), a useful comparison between the two canonical circuit
topologies can be made (at least for the common converters of Fig.
1.1 in both operating modes).

While in the continuous conduction mode the effect of duty
ratio modulation 8 was represented by voltage and current duty
ratio dependent generators at the input port (hence properly
representing negative closed-loop input impedance at Tow frequencies
as shown in Chapter 5), here in discontinuous conduction mode there
are two duty ratio dependent current generators, one in the input
circuit (again,properly to model converter input properties as
shown later in Chapter 9) and the other in the output circuit to

generate the duty ratio d to ouiput transfer function.
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The salient feature of the canonical circuit model in block 5

of the Flowchart in Fig. 6.1 is that both transfer functions are
obtained using only the output post of the complete canonical circuit
model, unlike the situation for continuous conduction mode (Part I),
where the complete circuit model was necessary to determine them.

This is also why other methods which properly represent the transfer
functions in discontinuous conduction mode ([11]-[17]) have completely

omitted modelling of the converter input properties.

6.4 Extension to complete regulator treatment

It has already been shown in Part I how the linear model of
the modulator stage can be obtained. It remains simply to incor-
porate the canonical circuit model (block 5 in the Flowchart of
Fig. 6.1) to arrive at the linear circuit model of a closed-loop
switching regulator operating in the discontinuous conduction mode.

A word of caution, however, is appropraite here. Namely,
since the very nature of the operation in the discontinuous conduc-
tion mode is that the order of the system is reduced at least by
one, this would definitely change the dynamics and possible
compensation networks necessary for stable operation of the closed-
Toop regulator. Furthermore, if both conduction modes are expected
to take place for the particular application, the compensation
network should be designed to ensure stability of the closed-Toop
and acceptable transient performance for either of the two modes.
Hence canonical circuit models for both continuous and discontinuous

conduction mode become an invaluable tool in the proper design of
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switching regulators. In addition, the comparison of the advantages
and/or disadvantages between the two modes of operation become
feasible and possible trade-offs between regulator performance and
choice of parameters and operating conditionsis clearly displayed.

In summary, the method presented in this chapter is generally
applicable to ggx_"thrée state" converter operating in the discon-
tinuous conduction mode (block 4a), even though for an arbitrary
converter the final circuit model (block 4b) may have different
(more complicated) topology than the canonical circuit model for
the three common converters (block 5). We also emphasize the fact
that the methods for finding dc and ac small-signal models are
consistent with each other. Namely, for both models we need only the
standard state-space or circuit averaging step (depending on
whether path a or b is chosen) applicable to any converter with three
switched network configurations. Then to distinguish that the
converter is operating in the discontinuous conduction mode, addi-
tional restrictions ((6.1) and (6.2)) are imposed. Now, the dc
part of perturbation equation (6.2) together with the dc state-space
or circuit averaged model completely determines the final dc model,
while the ac part ; of (6.2) helps in complete definition of the final
ac small-signal state-space or circuit averaged model.

It may seem that the method outlined in this chapter holds
only for the “three-state” converters in discontinuous conduction
mode. This is not so, Since it can be easily generalized to include
more complicated schemes of discontinuous conduction mode of opera-

tion. As an illustration of this generality, consider the new class
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of switching converters of Part III, the cascade connection of
ordinary buck and boost converters, which could also be classified
as two-inductor converters (as opposed, for example, to the
converters of Fig. 1.1 which are one-inductor converters). Suppose
also that the two switches are driven synchronously with the same
switch duty ratio D, thus resulting in a two-state converter for
continuous conduction operation. If, however, one of the two
inductor currents becomes discontinuous, a three-state converter
overating in the discontinuous conduction mode is obtained. But
now the matrices Ays Ays Aj and A would be of 4-th order (as
opposed to 2-nd order for the converters of Fig. 1.1) and the final
state-space or circuit averaged model would be of the 3-rd order
(reduction of order by one due to discontinuity of one of the two
inductor currents). Moreover, there is also the possibility that
both inductor currents could become discontinuous under certain
operating conditions in which case four-state converters are generated.
Therefore, the generalized state-space averaging step (Appendix D)
applicable to four-state converters is supplemented with additional
constraints: for each discontinuous current there will be two
constraints imposed analogous to (6.1) and (6.2). The immediate
consequence of these constraints is that the fourth order original
converter model becomes only a second-order final state-space or
circuit avéraged model (with two inductances effectively disappearing
from the final circuit'averaged‘mode1).

Despite this demonstration of the generality of the method,
we will restrict ourselves in the remaining chapters of Part II to

the "three-state" converters in the discontinuous conduction mode
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since all the essential features of the method are present there.
Likewise, in Part III and also Part IV we will consider the cascade
connection of converters only in the two-state continuous conduction
mode, since the emphasis of these two parts is on the intelligent
choice of converter topologies rather than on the particular mode of

their operation.
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CHAPTER 7
STATE-SPACE AVERAGING, HYBRID MODELLING AND
CIRCUIT AVERAGING IN DISCONTINUOUS CONDUCTION MODE

In this chapter various paths on the Flowchart of Fig. 6.1
are followed in detail, first with general derivation and then
illustrated by examples corresponding to those of Chapter 3. The
detailed exposition will follow that of Chatper 3 as much as possible
in order to make direct comparison easier and also to emphasize the
significant differences. But, in order to obtain clear insight into
the first-order effects, and to avoid cumbersome algebraic expres-
sions, this time throughout the presentation it is assumed that the
output quantity (voltage) coincides with one of the state variables,
the capacitor voltage (esr of the capacitance neglected). The same
assumption was also used throughout the Flowchart of Fig. 6.1.
However, if desired, this effect can be incorporated along lines

similar to those already presented in Part I.

7.1 State-space averaging

In this section, the final state-space averaged model (block
4a of Fig. 6.1) is derived, first in general for any three-state
switching converter in discontinuous conduction mode, and then
demonstrated on the idealized boost circuit example (parasitic
effects not included). Steady state (dc) conditions are obtained
for this particular example and discussed in depth including
determination of the boundary between the two modes of converter
operation. From the dynamic (ac small signal) model, the two trans-

fer functions of interest (;(s)/cg(s) and v(s)/d(s)) are also
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determined to enable comparison with the corresponding transfer
functions derived from the final circuit averaged model for the

boost converter presented in Section 7.3.

Basdic state-space averaged model

We first define the time-domain description of an arbitrary
three-state switching converter operating in the discontinuous
conduction mode with the help of Fig. 7.1, which displays the switch
drive (Fig. 7.7a) and instantaneous inductor current (Fig. 7.1b)
which becomes discontinuous. The definition of the three
intervals Tsd], Tsd2’ and Tsd3 (or corresponding steady-state

quantities TSD], TsDZ and TSD3) is also clearly visible on Fig. 7.1.

a) d(t)
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Fig. 7.1 Definition of the time intervals and perturbation
quantities: a) thansiston switch drive b) Anstantaneous
Lnducton cwurent.
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As seen from Fig. 7.1, the "on" interval Tsd] = Tsd = TSD
coincides with the previous "on" interval TN in Fig. 1.2, while the
"off" interval TF of Fig. 1.2 or Tsd' = TSD' of Fig. 7.1a is now
subdivided into two intervals Tsd2 and Tsd

(or TSD and TsD3)'

3 2
While the first "on" interval TSD is dictated by the switch drive
and is a known quantity (at least in open-loop converter usage),

the second interval Tsd2 (or TSDZ) is as yet unknown and depends in
general on both the length of the first interval and some circuit
parameters, and describes how deep in the discontinuous conduction
mode the converter is operating (see, for example, the simplified
analysis of the buck-boost converter in discontinuous conduction mode -
as shown in Chapter 1). Nevertheless we assume that the interval

TSD2 exists (hence discontinuous conduction follows) and leave it to

the modelling proéedure itself to reveal how it is actually
determingd.

For each of the three intervals in Fig. 7.1, there exists
in general a different switched network (compare with Fig. 1.7
for the buck-boost converter example), which can be described by a

corresponding state-space equation as follows:

X = A]x + b]vg for interval d]TS, (03¢< t])

X = Azx + bzvg for interval dZTs’ (t] S¢S tz) (7.1)
. : St

X A3x + b3vg for interval d3TS, (t2 Ts)

While the similar expression (3.1) for continuous conduction

mode was sufficient to describe the converter, here in discontinuous
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conduction mode, (7.1) does not describe the switching converter

completely. MNamely, the instantaneous inductor current is restricted

in its evolution since from Fig. 7.1:
i(0) = i[(d]+d2)TS] =0 and i(t) =0 for t e[tZ,TS] (7.2)

Therefore (7.1) together with (7.2) completely determine the
behavior of the switching converter. However, directly from this
description, even the determination of the steady-state (dc)
conditions on an exact basis might be a very difficult (if not
insurmountable) task, as was demonstrated for the simpler continuous
conduction mode description (3.1) in Appendix C. Moreover, the
tremendous complexity of the result may be unnecessary (compare

(C.4), (c.5), (C.7) and (C.8) with the much simpler result (C.10)).

In addition, the direct perturbation of (7.1) and (7.2) to obtain
the dynamic response of the converter would become by an order of
magnitude more difficult if not virtually impossible. Our objective
then becomes, as it was in Part I for the continuous conduction mode,
to replace the original converter description through three state-
space equations (7.1) by a single state-space description which will
very accurately represent thé_evolution of the state-vector at the
switching instants. It is also desirable that the additional
constraint (7.2) is appropriately accounted for to modify this
averaging equivalent, but in such a way as to interfere the least

possible with its orderly procedure.
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The first task is accomplished by application of the
generalized state-space averaging step for three-state converters

(Appendix D) to (7.]), which results in a single state-space

description

X = (d]A]+d2A2+d3A3)x + (d]b]+d2b2+d3b3)vg (7.3)

Note, however, that this continuous description ((7.3) and previously

(3.3) for two-state converters) is a continuous equivalent to the

originally derived approximate discrete system (see (B.8) in Appendix
B). Hence the definition of derivative (B.9) from Appendix B

transforms the constraint (7.2) into

. (1) - 1(0) |
%% (nT,) = —S— -0 (7.4)
S

[t follows that the inductor current in the equivalent

continuous system (7.3) ceases to be a true state-space variable,

since according to (7.4) it has lost its dynamic properties.
Nevertheless, despite the zero constraints i(nTS) = 0 and

di/dt(nTS) =0 forn = 0,];..., a line voltage perturbation ;

(as seen in Fig. 7.1b) does cause a perturbation of the insfantaneous
inductor current (shown in dotted lines on Fig. 7.1b) from its
steady-state waveform (heavy line in Fig. 7.1b), which in turn
results in a corresponding perturbation ; of the output steady-state
voltage. Note that there is also perturbation of the average
inductor current i (defined in Fig. 7.1b for interval (d]+d2)TS

when instantaneous inductor current i(t) is different from zero)
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from its steady-state average current I. This is in sharp contrast
to the situation in the continuous conduction mode where the average

inductor current does not change under any small-signal perturbation,

but rather initial and final conditions i(0) and i(TS) change
accordingly to accommodate perturbation. Here, i(0) and i(TS) are
fixed at zero, and the average inductor current is the quantity
which reflects the effect of introduced perturbation.

Since the objective in modelling the dynamic performance
of the converter is faithfully to represent departure from the
steady-state, we introduce the average inductor current as a sub-
stitute for the "lost" state-variable (the instantaneous inductor
current). But, rather than change the symbol, we assign to the
same designation i this new meaning. Then from Fig. 7.1b we obtain

i

. _ o max _ .
i=— 1(vg,v,d,L,TS) (7.5)

and designate it perturbation equation I, for reasons which will

become apparent later. Naturally, the other constraint (7.4) for
this average inductor current i is maintained (as seen also from
Fig. 7.1b) and we finally obtain the basic state-space averaged model

for discontinuous conduction mode:

X = (d]A]+d2A2+d3A3)x + (d]b]+d2b2+d3b3)vg (7.6)
with additiona] constraints
di _
at - 0 (7.7)

i= i(vg,v,d],L,Ts) (7.8)
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The two additional constraints (7.7) and (7.8) modify the ordinary
averaged model (7.6) to account for the discontinuity of the inductor
current. This model (block 2a in the Flowchart of Fig. 6.1) is

the starting point for all other derivations (both state space and
circuit oriented) and represents an averaged model over a single
period TS.

Note,also from (7.5) that the calculation of the average inductor
current i is actually based on the assumption of the linearity of the
inductor current waveform (triangular waveshape in Fig. 7.1). However,
this does not pose any limitations at all, since the linearity of the
inductor waveform is again a consequence of the small switching ripple
requirement and therefore consistent with the same basic assumption made
in the continuous conduction mode.

We now consider first the simplest possible case, determina-
tion of the basic dc conditions in the steady state regime. In the
steady state all quantities become dc quantities and are denoted by
capital letters, that is, d] = D] = D, d2 = DZ’ d3 = D3, v =V,

g g
x = X. The average inductor current i becomes the steady state

average inductor current I (see Fig. 7.1b. for example) and the

steady-state vector X = (I V ...). Since then dX/dt = 0, the state-

space equation (7.6) reduces to the linear algebraic system

AX + ng =0 (7.9)
where

A = D]A] + D2A2 + D3A3

= D]b1 + D2b2 + D3b3

(7.10)

o
I
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while the first constraint (7.7) is automatically satisfied and the

second constraint becomes
I = i(Vg,V,D],L,TS) (7.11)

It is now interesting to compare these results for dc
conditions ((7.9) and'(7.]1)) with those of Part I (3.9). For
easier correlation of these results, the notation d] = d and Dy =D
henceforth will be used interchangeably. The steady state vector
X is the solution of the linear system (7.9) as it was before in
(3.9). Hence storage elements (L's and C's) are proportionality
constants in the linear system (7.9) and it appears as though solution
X of (7.9) is independent of them and dependent on dc duty ratios
and resistances in the original model. However, since
Dy + D, + Dy =1 or Dy =1 - (D+Dz) from {7.9) and (7.10) it
follows that steady state vector X is now dependent on two duty
ratios D (given) and D, (as yet undetermined) as opposed to only D
in (3.9). The additional constraint (7.11) which expresses the

average steady state inductor current I in terms of circuit parameter

values can now be used together with (7.9) to solve for the

unknown duty ratio D2, and hence to determine the length of the
second interval DZTS. In general, then, D, is dependent on circuit
parameters (such as L and TS, for example) and hence dc conditions

are also substantially dependent on switching frequency fs and

inductance L (compare with (1.4) and (1.5)). This .is in sharp
contrast to the continuous conduction mode (see Fig. C.2), where dc

conditions were dependent on duty ratio D and resistances only.
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In summary, expressions (7.9) and (7.11) completely deter-
mine the dc conditions in the discontinuous conduction mode, and
at the same time help to determine the length of the second interval
D2Ts’ which was unknown at the beginning of this analysis.

We now undertake to obtain the dynamic model for the line
voltage variation Qg only, in order to compare it with the
corresponding result (3.8) in Part I and to emphasize the significant
differences. From Fig. 7.1b it becomes obvious that the super- |
imposed variation Qg causes the perturbation of the instantaneous

inductor current (dotted lines) and hence modulation of the second

interval d2TS and the third interval d3TS as well. Therefore only
the switch drive duty ratio d is constant (d = D) as it was also
in Part I, while the other two duty ratios are modulated. After the

perturbation equations

d=D, d =DZ+8

[=8
1
o
1
a.

2 2’ 37 "3

(7.12)
+v ., = X+ i I+i
g Vg vg X = Xtx and i i

v

il

are introduced, the basic state-space averaged model given by (7.6),

(7.7) and (7.8) becomes

X = [DA]+(DZ+d2)A2+-(D3—d2)A3](X+x)+-[Db]+(02+d2)b2+ (D3-82)b3](vg+vg)

(7.]3)
with additional constraints
di
d (7.14)

D+ F = i(Vgtvg, V4v, D, L, T)) (7.15)
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Note that the perturbations (7.12) are now applied not only to the
state-space equations (7.6) but to the constraints (7.7) and (7.8)
as well. Upon the usual small-signal assumption, the second-order
terms are neglected and linear state-space equations with
linearized constraints (7.15) are obtained. The separation

of the dc and ac models then results in the steady-state dc model

as given before by (7.9) and (7.11) and the dynamic (ac

small-signal) model for line variations vg only, given by

X = Ax + bvg + dz[(AZ—A3)X + (bz-b3)vg] (7.16)
subject to constraints
di _ (7.17)
- 0
A\ B\ Iy
i= ng Yg vl | (7.18)

where A and b are as given before in (7.10).

From (7.18) it also becomes obvious why (7.5) was originally
?alled perturbation equation I. In addition, since
X = [d;/dt d;/dt ...]T the introduction of constraint (7.17) into
(7.16) reduces the first dynamic equation to a static one, from which
the unknown modulation 32 can be determined in terms of Qg and ;
modulations and circuit parameters.

The dynamic state-space equation which, because of (7.17),
became a static one, can now be designated perturbation equation II,
since it helps to determine the other unknown perturbation quantity

”~

d2. Together with (7.18) this uniquely defines the line transfer
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N

function, v(s)/vg(s). However, owing to the presence of constraints
(7.17) and (7.18) we cannot give the closed-form expression for this

transfer function as we could in (3.10) for continuous conduction

mode.
We turn next to the most general case and allow both
modulations (line voltage variation vg and duty ratio modulation d)

to occur concurrently.

Pertunbation
ile now suppose that the switch drive duty ratio d changes
from cycle to cycle, in addition to the line voltage variation.

Hence, the general perturbation equations

D+d, d

Q.
i

I

= Do+d,, d. = D.-d
N 3 (7.19)

~ ~

X+x, and i

<
i
>
1]
i
—
-+
e

+
g = Vg'Vge

introduced into the basic-state space averaged model given by (7.6),

(7.7) and (7.8) result in

X = [(D+3)A] + (02+32)A2 + (03-8-32)A3](X+§) +

| (7.20)
+ [(Drd)by + (Dy+d)by + (Dg-d-dy)by1(V +v,)
with additional constraints
| di .
& - 0 (7.21)
I1+14-= i(vg+vg, V+v, D+d, L, Ts) , (7.22)
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From d + d2 + d3 = 1, when perturbed by (7.19), we got

D+d+ 02 + d2 + D3 + d3 =1 or, since also D + 02 + D3 =1, we

finally arrive at

d3 = -(d+d2) (7.23)
which was then used in (7.20).

The perturbed model given by (7.20), (7.21) and (7.22)

is nonlinear owing to the presence of at least second-order terms.

Linearnization and ginal sitate-space aveﬁaged model gon

discontinuous conduction mode

We now make the small-signal approximation, namely that the
departures from the steady-state values are small compared to the

steady-state values themselves:

2

<< 1, — << 1,

<< 1 (7.24)
D,

>| x>

Using approximations (7.24) we neglect all second (or
higher) order terms, and obtain once again a linear system but
including duty-ratio modulation 8. After separating the steady-state
(dc) and dynamic (ac) parts of both state-space equations (7.20) and
constraints (7.21) and (7.22) we arrive at the following results for

the final state-space averaged model.

Steady state (dc) models

1

X = -A""bV (7.25)

g

subject to constraint

I = i(Vg,V,D,L,TS) (7.26)
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Dynamic (ac small-signal model:

X = Ax+bvg+d[(A]-A3)X+(b]-b3)vg]+d2[(A2—A3)X+(b2—b3)vg] (7.27)
subject to constraints
di _
a‘EfO (7.28)
1 IS DO |
=y vg tey Vg d (7.29)

where A and b are as given before by (7.10). Note how duty ratio
modulation d is now included in constraint (7.29).

We conclude this section with illustration of these general
results on the boost converter. Both dc and ac small-signal models
are then analyzed in detail and some unique insights into the
cperation of the boost converter 1in the discontinuous conduction
mode are obtained. Dc conditions and the determination of the

boundary of the two modes of operation are particularly thoroughly

analyzed.
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Example: Adeal boost powern siage in discontinuous conduction

mode

For the ideal boost power stage of Fig. 1.1 (or Fig. 3.1

with RQ = 0, RC = 0) the three switched networks in the discontinuous

conduction mode of operation are shown in Fig. 7.2.

a) interval dis: b) interval dpls: c)interval dils:
L

1

Fig. 7.2 Three switched networks of the ideal boost converten 56
Fig. 1.1 operating in the discontinuows conduction mode.

For the choice of state-space vector x = (i v)T, the state

space equations of the three linear switched networks in Fig. 7.2

become:

H

X = Ayx + b]vg ~ for interval dTS

L

X

H

Aox + bzvg for interval d,T, (7.30}

it

A3x + b3vg for interval d3TS
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where
- 1
0 0 0 - 0 0
M 1 h2 - 1 1 Ay = 1
0 - . 0 - o=
L RC C RC RC

(7.31)

'] T 1 T

In addition to this, perturbation equation I (7.5) is needed. How-

i
—
o
2

—

ever, it can easily be found from Fig. 7.2a as

v
.. o max_ _ g _ s
i > st dT 1(vg,d,L,TS) (7.32)

The same result could have been concluded also from Fig. 7.2b, which
actually represented instantaneous inductor current for the boost
converter (or buck-boost converter since both have the same slope
during interval dTS).

Equations (7.31) and (7.32) contain now all that is needed
to determine both dc and ac small-signal models by application of the
general result, equations (7.25) through (7.29). We first analyze
in greater depth the steady-state (dc) model.

Steady state (dc) model analysis

By use of (7.31) in (7.25) the following linear algebraic

system results
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|3
|>=<
o

0 2] ] DDy
L L
+ V =0 (7.33)
D g
2 L v 0
C RC
I i | -

in which the qﬁantities A, X and b are clearly identified and obtained
by use of their definition (7.10). The general remark made previously
about the solution of this linear algebraic system (7.33) becomes
clearly visible. Storage elements (L's and C's) are indeed

proportionality constants, and the solution of (7.33) is

v

.\_l.—= 1 +—[ﬁ)——- (7-34)
g 2
v
I = —= (7.35)
D2R
Hence, the dc conditions depend only on duty ratios D and D, and

2
resistance R. From (7.34) we conclude also that the boost converter

has even in the discontinuous conduction mode the boosting property
(dc gain V/Vg z 1), since D, D2 are by definition positive quantities.
However, the dc conditions are not quite determined since D2 is as yet
unknown. But, by use of the additional constraint (7.26), as
further specified in (7.32) as

v DTS

=9 S
I 5T (7.36)

together with (7.34) and (7.35), dc conditions (and also D2) are

completely determined. For example, substitution of (7.36) into
(7.35) results in
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S 9
where the very important dimensionless quantity K is defined as
a2l a2l

This dimensionless parameter K plays a key role in the discontinuous
conduction mode since it combines uniquely all the parameters respon-
sible for such behavior. Another quantity which will frequently appear

is the dc voltage gain V/Vg, so we define also another dimensionless

parameter M as

i3

v
M2 (7.39)

9
Finally, by use of (7.37) and (7.39) in yet unused dc relation (7.34),
the quadratic equation for dc gain M is obtained

2

M - M -D2/K =0 (7.40)

Since from (7.34) the dc gain M is positive, only the positive solution
of (7.40) 1s meaningful and we obtain

w o 1+ V1 + apf/k

5 (7.41)

Finally, the substitution of (7.41) in (7.37) determines the pre-
viously unknown duty ratio D2 as

ST V1 + ap?/x
D

= 5 (7.42)

2

Hence, we have succeeded in expressing, through (7.41) and
(7.42), two important quantities, the dc gain M and duty ratio D2, in
terms of the driving condition (duty ratio D of the transistor switch),

and the single dimensionless quantity K which solely reflects the
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effect of circuit parameter values (L and R) and the other operating
condition, the switching frequency fs’ upon the dc conditions in the
discontinuous conduction mode. If desired, the remaining dc quantity,
the steady-state average inductor current I, may be found in terms of
D and K by use of (7.42) in (7.35).

A11 these expressions (7.41), (7.42) and (7.35) are very use-
ful in predicting the dc conditions when the switching converter is

used alone, that is in an open-loop fashion, since then the duty ratio

D is given (independently generated) and the constant K may be
calculated from element values with use of (7.38). However, if the
converter is used in a closed-loop switching regulator (such as, for
example, those of Fig. 1.10 or Fig. 5.1), the output dc voltage V is
predetermined by the choice of the reference voltage and kept constant
regardiess of any variation of input dc voltage Vg, by appropriate
self-adjustment of the dc duty ratio D (internally generated) in a

negative feedback manner. Hence in closed-loop operation, D and D

2
become dependent on the external dc gain M and the dimensionless

parameter K. These dependences can easily be found from (7.41) and

(7.42) to get, for closed-loop consideration:

D = vKM(M-1 (7.43)

D, =/§_‘T.T (7.44)

Hence, (7.41) and (7.42) conveniently determine dc quantities for
open-loop considerations, while (7.43) and (7.44) are likewise use-

ful for closed-loop considerations.
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It is now very interesting to compare the open-loop dc
gain in the discontinuous conduction mode given by (7.41) with
the corresponding dc gain in the continuous conduction mode, which,

for ideal boost converter (see for example (3.20)), is
M= ———-—~—-—] D (7.45)

Hence, the ideal dc gain (7.45) is dependent on duty ratio D only
and not on circuit parameters (such as L, .R) or switching frequency
fs. Even the exact dc analysis of Appendix C (with parasitics
Rl # 0, RC # 0 also included) demonstrated in a very convincing
manner (see, for example, Fig. C.2) that for all practical purposes
(small switching ripple) dc gain is independent of switching fre-
quency fs (and L, C, R as well) in the continuous conduction mode.
In sharp contrast to this, the dc gain M in the discontinuous conduc-
tion mode (7.41) is dependent also on K in addition to D and hence is
a strong function of switching frequency fs, inductance L and load R.
Nevertheless, when the converter is used in this mode in a closed-
loop regulator, the self-correcting feature of the duty ratio D
would compensate any possible changes of load R or switching
frequency fs and sti]j keep output vo]tage relatively constant.
Another question naturally arises in comparison of the two dc
gains: when do we calculate dc gain from one (7.41) or the other
formula (7.45) or, what is the criterion to determine in which of the
two modes (continuous or discontinuous) the converter is operating?
The answer is provided easily with reference to Fig. 7.1. When the

second interval DZTS is smaller than interval (1-D)TS, the converter is
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operating in the discontinuous conduction mode, and in continuous

otherwise, so the criterion becomes

continuous conduction mode

D2 >1-D (7.46)

discontinuous conduction mode

D2 <1-D (7.47)

To obtain a convenient quantitative measure we find, first,
what happens exactly on the boundary between the two modes of

converter operation, or

boundary between two conduction modes

D2 =1-D (7.48)

By use of (7.42) in (7.48), the equation to determine the critical

value of parameter K, that is, K for which this happens, is

crit
"\/K?‘ +4K_ . D% = 20D' - K (7.49)
crit crit crit ’
from which
JRy
Kcrit = DD (7.50)

The solution (7.50) is the proper solution of (7.49) since

2

2DD' - Kepit = 2DD' - DD'“ = 2DD'(2-D*') = 2DD'(1+D) is always posi-

tive, regardless of D resulting in a proper positive right hand side

of (7.49). With this, the criteria (7.46) and (7.47) for determina-

tion of the operating mode become
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continuous conduction mode K > Kcrit (7.51)
discontinuous conduction mode K < Kcrit (7.52)
boundary between two conduction modes

K = Kcr‘it (7.53)

where K, as given before by (7.38), is a function of parameters L,

R -and fs, while K is a function of the duty ratio D only.

crit
We now investigate how these criteria, (7.51) through (7.53),
behave throughout the duty ratio range D €[0,1]. To facilitate this

insight, Kcrit is plotted as a function of duty ratio D in Fig. 7.3a.

3) open~loop consideration b) closed—loop consideration
Kerit(D) Kerit(M)
4  discontinuous )
conduction »
4 D(1-D) 4 M-I
27 // 27 ’ ’4/ M3
K=0.08 K=0.08
e —
Drmin '3 Dmax '°D Mmin -2 Mmax M

Fig. 7.3 Detemination of the operating mode (continuous or
discontinuous) gon the ideal boost converntern of Fig. 1.1.

As seen in Fig. 7.3a, Kcm‘t(D) has a maximum of 4/27 at D = 1/3. This

now enables a very important conclusion about operating mode to be

made. Namely, if the parameters L, R and fg are such that the computed

parameter K is greater than 4/27, expression (7.51) is satisfied
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regardless of duty ratio D. Hence for K > 4/27 the converter

always operates in the continuous conduction mode, no matter what the
oﬁerating condition (duty ratio D) is. However, if parameters L,

R and fs are such that K < 4/27 ~ 0.15 the situation becomes as shown
in Fig. 7.3a, where the particular example of K = 0.08 < 0.15 was
chosen. For a certain range of duty ratio D, that is Dmin< D < Dmax

(as shown by the shaded area in Fig. 7.3a), the condition (7.52) is

satisfied and the converter operates in the discontinuous conduction

mode, while for the remaining portions of the operating range

(0 <D< Dip and D .. <D < 1.0) it again operates in the continuous

conduction mode, since then inequality (7.51) holds.

This discussion has been in terms of open-1loop considerations,
when duty ratio D is given and externally controlled. However, as
before for dc conditions, it is desirable to have the boundary condi-
tion (7.50) in terms of the dc gain M, which is a more suitable
quantity for the closed-loop considerations. This can easily be done
since the dc gain M is continuous across the boundary (as seen by

use of (7.48) in (7.34) resulting in (7.45)), and thus substitution
D= (M-1)/M in (7.50) gives

_ M1
Kepit = -3 (7.54)

=

This function Kcrit(M) is plotted in Fig. 7.3b and a similar discus-
sion applies. However, now the maximum of Kcrit<M) of 4/27 is obtained

for gain M = 1.5, As before, for K < 4/27, the converter is in the
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discontinuous conduction mode, but now for dc gain M in the

range Mmin <M< Mma as shown by the shaded area in Fig. 7.3b. This

X
reveals a potentially serious problem if the boost regulator were
designed (and compensated) to operate in the discontinuous conduc-
tion mode only. Namely, during the initial turn-onprocess, the out-
put voltage starts from zero, and the converter would have to pass
min)’
before coming to the discontinuous conduction region (shaded area in

through the continuous conduction region first (for 1 <M <M

Fig. 7.3b). This would suggest possible stability problems, if the
closed-Toop was not compensated to assure stable operation in the
continuous conduction mode as well.

From the standpoint of the dc gains (as a function of duty
ratio D), the situation corresponding to that of Fig. 7.3 is shown in

Fig. 7.4 for some K < 4/27.

dc gain M=VIV9 /

! 57 \

O

Mmax - Al 1\ 40K
S 7/ 2
27
1.0 ‘
‘ ] | .
0.0 Dmin Dmax 1.0 D

Fig. 7.4 Boost convernten de voltage gains in continuous and dis-
continuous conduction modes as a gfunction of duty ratio D.
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From the dc gains for both conduction modes shown in Fig. 7.4,
it becomes obvious that the actual dc gain will follow the larger
of the two gains, thus the mode of operation will change accordingly
as the duty ratio changes from 0 to 1. Also in the close vicinity

of gain M =1 (1 <M M

min)’ the converter is always operating in
the continuous conduction mode. Thus, the problem of having, for
example D, infinite when M»1 from (7.44) is only a fictitious one,
since (7.44) dis for the discontinuous conduction mode and hence not
applicable in the vicinity of gain M=1.

We conclude this dc analysis with some numerical examples and
related quantitative and qualitative significance of the dimension-
less parameter K. For example, for the set of parameters L = 880uH,

R = 2209 and fs

20kHz, we compute K = 2LfS/R = 0.16. Therefore,
zince K = 0.16

\4

4727, the converter will with this set of parameters
always operate in the continuous conduction mode. However if, for
example, the switching frequency’ is reduced to fs= 10 kHz, this results
in K = 0.08 < 4/27 and some range of discontinuous conduction
operation should be expected (see Figs. 7.3 and 7.4). Therefore, the
reduction of parameter K below 4/27 causes this transition. From

the definition of K in (7.38) this reduction and change to the dis-
continuous conduction mode is qualitatively achieved by three means:
increase of load R, decrease of the inductance L or switching fre-
quency fs.' There is also a fourth way to enter the discontinuous
conduction mode, and that is to change the operating condition, the
duty ratio D, as illustrated in Fig. 7.3 and Fig. 7.4, but only if
the condition K < 4/27 is met.
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Very often, however, out of all these four possibi]ities,
one is mostly interested in how the change of load R affects the
operating mode. Namely, the parameters L and fS are usually design
parameters whose choice may depend on the size and efficiency require- .
ments of the converter or regulator. On the other hand, the range of
variation of duty ratio D or equivalently gain M, is a design require-
ment in a closed-loop implementation since the output voltage V is
maintained constant against the range of variationof input voltage Vg
(hence range of M = V/Vg) by the action of negative feedback. The
load R also can have a wide range of change depending on the user of
the regulator, and is often out of the designer's control. Hence,
determination of the converter operating mode with respect to changes
of load R becomes important. This can be easily accomplished by

finding an equivalent of (7.50) and (7.54) respectively, as

Rcrit - DD'2 Rnom (7.55)
M3
Repit = MT Room (7.56)

where Rnom is a design parameter designed by

Rnom = 2LfS (7.57)

The criteria for determination of the operating mode, (7.51), (7.52)

and (7.53) then become

continuous conduction mode

R<R (7.58)

crit
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discontinuous conduction mode

crit (7.59)

boundary between two modes

R = Rcrit (7.60)

Let us now illustrate this on a numerical example. For L = 880yF,
fs = 20kHz we calculate Rnom = 35.2G. By the same argument as before

(see Figs. 7.3 and 7.4, for example), the converter will always

operate in the continuous conduction mode if

R <—Z—7~Rnom (7.61)

or for the given numerical example for R < 238Q. When R > 238Q
there will be a range of gain M (see Fig. 7.4) for which the converter
operates in the discontinuous conduction mode.
This concludes the extensive dc analysis and we now turn to
the dynamic (ac small-signal) model analysis of this ideal boost

converter example.

Dynamic (ac small-signal) model analysis

Before we apply the general result to this ideal boost converter
example, let us first put the constraint (7.32) into a more suitable

form by using the steady-state average inductor current I of (7.36)

to get
v dT vd
i 5T VD I (7.62)

By use of perturbation equation (7.62), model description (7.31) and
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definition (7.10) in the general result given by (7.27) through (7.29),

we obtain

dynamic (ac small-signal) model

- A - — 4 - - - 7 - v
al T, %] [s5] [Pl Yq Yol
dt L L ~ L N L ~
= + v+ d + d, (7.63)
~ D 1 N 9 I
dv 2 BF v 0 0 =
it & -wre) V] LO 01 Lg
with additional constraints
di
at 0 (7.64)
i= v vg + D d (7.65)

g

As opposed to the general result, we can now for this specific
example enter the constraints (7.64) and (7.65) into dynamic model
description (7.63). The introduction of (7.64) reduces the first
dynamic equation in (7.63) to a static one, and after proportionality

constant L is removed the dynamic model becomes

0 =-Dv + (D+Dz)vg + vgd + (vg-v)d2 (7.66)
cd —pi-WR+1d (7.67)
dt 2 2 '
with additional constraint (7.65). Note, however, that now the

first static equation (7.66) actually determines the unknown
modulation quantity 32 (modulation of the second interval d2TS as
shown in Fig. 7.1, for example) in terms of the other dc and ac
quantitites. In the remaining dynamic equation (7.67), besides this
modulation 32 which we can now express from (7.66), current modula-

tion i also appears. But, from the perturbation equation I (7.65)
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it is also determined in terms of the known ac quantities (forced
modulations ;g and 8). In general, both equations (7.65) and (7.66)
could have both modulation quantities ? and 82 for some arbitrary
converter. But, they are linear algebraic equations and could be
solved for ; and 82 in terms of other ac quantities and then
substituted in the remaining dynamic description (which could be, for
some converter with more than two storage elements, higher than the
first order model given by (7.67)).

Another general feature, which is in this model hidden, is that

(7.66) can be considered as a consequence of the equation
(d+d2)vg = d2v (7.68)

which after usual perturbation and linearization steps and subtraction
of dc terms reduces to (7.66). Hence, in analogy to (7.62), equation
(7.68) can now be designated perturbation equation II. The appearance
of (7.68) in the modelling will become more apparent later in the
hybrid modelling and circuit averaging techniques. But in any case,
the unknown modulation quantities ; and 32 come as the solution of
two linear algebraic equations, which are essentially linearized
versions of perturbation equations I and II, (7.62) and (7.68)
respectively.

To complete the dynamic model description we simply substitute

(7.65) and the solution of 82 from (7.66) in (7.67) to get

dv I 1> D. DD D, V
C—=-2_+_)isl2, "2\ 2.9 ki
dt <’Vg R)Y <v +v-vg Vg "\ +v-vg Id

[
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Since this dynamic model has significance only for the closed-loop
regulator, it is convenient to express all dc quantities in terms of
M, K, R and output voltage V, as was explained before in the dc

analysis. Hence by use of (7.43), (7.44) and (7.35) we obtain

dv_ M1 Moam1) v 1
C dt -1 R VT T R vg t g Jfﬁfﬁjijﬂd (7.69)

In (7.69) all proportionality constants would become infinite and
meaningless when M = 1. However, it was explained in the dc analysis
that in the vicinity and at gain M = 1, the boost converter always

operates in the continuous conduction mode, hence a different dynamic

model (that of (3.19) with Rl = Rc = 0 in Part I) applies.

It is now easy to obtain from (7.69) two transfer functions

of interest

a6 = v(s) _ G 1

= =

Ve vg(s) 91+ s/

P (7.70)
G :M:G ___J._...._.__.
vd 8(5) od 1+ s/w
where p
- 2M-1 1
and
_ -2V |KM
Gog = M, God = T A e (7.72)

As seen from (7.70) both transfer functions have a single pole
mp and no 'zeros. This is qualitatively completely different dynamic
behavior than in the continuous conduction mode (compare with the
corresponding transfer functions in (3.21)) where two poles and even

a right half-plane zero are obtained (for the Gvd transfer function
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only). This in turn sugyests easier compensation (even no compensation
at all) and reduced stability problems if the converter as a part of

switching regulator is operating consistently in the discontinuous

conduction mode. But, a potential danger exists there: any signifi-
cant transient changes (such as sudden change of input voltage or
temporary substantial change of load R) could move the operating point
to the continuous conduction region (see Fig. 7.4) and cause insta-
bility. Another problem is inherent to the discontinuous conduction
mode. In addition to the output current, now the input current
becomes pulsating as well (as shown in Fig. 7.1) which increases
electromagnetic interference problems. Hence, a decision on the
choice of operating mode becomes a complex one, depending on the
particular design requirements. To facilitate that decision, we now
undertake the task of developing useful circuit models of the switch-

ing converter operating in the discontinuous conduction mode.

7.2 Hybrid modelling in the discontinuous conduction mode

In analogy to Section 3.2, we demonstrate in this section how
for any specific converter a useful circuit model of the basic
state-space averaged model (7.6) can be found, appropriately modified
by inclusion of the constraint (7.7), and supplemented by the addi-
tional constraint (7.8). In terms of the Flowchart of Fig. 6.1 we
will procéed from block 2a through 2c¢ to arrive at the circuit model
in block 2b. Again this is illustrated on the same ideal boost

converter example as in the previous section.
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When the boost converter description (7.31) and (7.32) is
applied to (7.6), (7.7) and (7.8) the following basic state-space

averaged model results:

— —

[ 4 b1 T [ dtd, |
at 0 T i L
- + v (7.73)
d g
,_d_v, __2_. - _]__. v 0
| dt | C RC) [ LY
with additional constraints
gl,'c.: 0 (7.78)
dT
;i = ig_z_Lg (7.75)

It now becomes clear that introductioh of (7.74) into (7.73) reduces
the first dynamic equation to perturbation equation II as given before
by (7.68). But, instead of introducing this substitution, let us
first find the circuit realization of the state-space equations

(7.73) as shown in Fig. 7.5.

V= Ldildt=0
+. -
| l v
00—
(d+d2;v9<i> dpv |7 blai Lc §R

Fig., 7.5  Clrewdt nealization of the state-space model (7.73), with
constraint (7.74) also 4ncluded.
The constraint (7.74) leads, in the circuit model of Fig. 7.5,
to effective disappearance of the inductance L, since v = Ldi/dt = 0.

The resulting equality of the two voltage generators produces again
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the perturbation equation II given before by (7.68). At the same
time shorting of the inductance causes reduction of system order by
one, and effectively a single pole transfer function result (7.70)
becomes apparent.

Let us now put the circuit of Fig. 7.5 into more elegant form,
by introducing a dc and ac transformef in place of the two dependent

generators in Fig. 7.5. Also, it is desirable to have source voltage

vg effectively at the input of the converter, rather than as some
modified quantity as (d+d2)vg in Fig. 7.5. However, this is easily
accomplished by introduction of another dc and ac transformer at the
input of the converter. In addition, the true input current into
the converter becomes properly exposed as seen in the basic circuit-
averaged model of Fig. 7.6. In addition to the circuit model in
Fig. 7.6 we need the remaining constraint (7.75) to complete the
description of the converter in discontiriuous conduction mode (as
also dispiayed in Fig. 7.6). As before, the circuit model and the
additional perturbation equation are valid for both dc and ac
conditions. Hence the two transformers in Fig. 7.6 are operating both

at ac and dc and the appropriate symbol introduced in Part I to

expose that fact is also used.

lin i lout Vv
e L
® [ J [ ] ® T
Vi —— i-Ygd's
g :é%{%f 7 C R i 50

| t{d+da)  dp it

Fig. 7.6 Basic cireuilt averaged model for the Lideal boosl convertern
in the discontinuous conduction mode.
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Following the procedure outlined in this section one can

easily obtain the basic averaged circuit models of three common

power stages of Fig. 1.1. These models for discontinuous conduction

mode are summarized in Fig. 7.7.

a) buck power stage:

L]

€ ‘ ¢ R
l:d [dedy):!
b} boost power stage:
v
— 00 . Y —
Vg Vg ol leo of Jo
D o Lenld % Lk
:{d+d,) dptl
c) buck-boost power stage: .
> v |=ng'E/2L v
K i
Vg ¥ Vg ® e o
D LB 3 Sk e
[ ]
I+ d do: |

Fig. 7.7 Sumary of the basic circuit averaged models forn three
common powen stages Ain discontinuous conduction mode.
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An interesting comparison with the corresponding summary of
Fig. 3.8 can be made. While the topologies of circuit models in
Fig. 3.8 are different from each other owing to the presence of

inductance L, the converter models of Fig. 7.7 already have the same

topology. This suggests that the circuit averaging procedure (circuit
perturbation and linearization steps) presented in the next section

will directly result in the fixed circuit topology of the final

linearized model, without a need for any circuit equivalent trans-

formations that were necessary in Part I in order to arrive at the

canonical circuit model. This conjecture will be confirmed in the
next chapter in which the canonical circuit model for discontinuous
conduction mode for the three converters of Fig. 7.7 is arrived at.
Another distinction between the two circuit models is that
the circuit models in Fig. 3.8 are already in a topological form
which directly accounts for line voltage variation ; » Wwhile those
in Fig. 7.7 are not, because of the additional constraint, the
perturbation equation I,which should be also incorporated into the
dynamic model as the next section will illustrate. However, Fig. 7.7

does represent dc circuit models directly (as Fig. 3.8 also did) as

the next section will also verify.
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7.3 Circuit averaging in the discontinuous conduction mode

In this section the alternative path b in the Flowchart of
Fig. 6.1 is followed and the perturbation and linearization steps
corresponding to those in state-space averaging path a are applied to
the circuit model to arrive at the final circuit averaqed models,
separately for steady-state (dc) and dynamic (ac) response.

We continue with the same ideal boost converter example and
hence use as a starting model the circuit model of Fig. 7.6. Even
though that circuit model was obtained by following hybrid modelling,
we emphasize also the other possibility. Namely, it could have been

obtained directly by averaging the three switched circuit models of

Fig. 7.2 using the standard circuit averaging technique and supple-

menting it by the appropriate constraints (7.74) and (7.75).

Perntunbation

If the averaged circuit model of Fig. 7.6 is perturbed together

with its perturbation equation I according to

A

Vg = Vg+vg, i=1+i, d= DHd, d2 = Dz+d2, v = Vt+v (7.76)

the nonlinear model of Fig. 7.8 results.

(D+DprdedXI+1) 147 (DpdVe0) (Dpdll+] Ved

\ (D+D,- oIy / /
+

Vgl Q.) il £ £ [

[+1 = (Vg+Yg)(D+d ) &/ 2L

= C §R

41

Fig. 7.8 Periwrbation of the basic averaged circuit model in Fig. 7.6
nesults in this nontlinean cincuct model.
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Linearnization
With the small-signal assumption on perturbation, that is

A ~ N

d << D, dy << Dy, 1 << I, vV, Vg << Vg (7.77)

the second order terms in Fig. 7.8 can be neglected and the

linearized model of Fig. 7.9 obtained.

(8+dp)(DeD,) T (DDaNgrldrdalVg  DpvrdaV

—+ +— Dé}ag vy
< \\ [+7 \ .
Vg “JGD n iy | T4 3 j:C?R’

(DD, (D+DalVg DV D1

[+i=VgDTs/2L + [3/D +1¥y/\g

Fig. 7.9 Model of Fig. 7.8 Linearnized to include dc and ac small-
signal models .

The circuit model in Fig. 7.9 together with the dc and ac
part of the perturbation equation I (also shown in Fig. 7.9)
completely determines both models. At this point, we continue to
develop separately the two circuit models -- the steady-state (dc)

circuit model and the dynamic (ac small-signal) model.

Steady-state (dc) circuit model

With all ac quantities set to zero, the dc circuit model is
obtained directly from Fig. 7.9, and upon substitution of dc depen-
dent generators by the dc transformer symbols, the circuit model in

Fig. 7.10 results.
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1=VgD Ts/2L v

L
TEY

| 1(D+Dp)  Dyp: |

Fig. 7.10 Finak de cireuit model fon the boost converter in the
discontinuous conduction mode.

This circuit model is also supp]emented by the dc part of the

perturbation equation I, which is, of course, the same as (7.36).

From the circuit model in Fig. 7.10 the other two dc relations (7.34)

and (7.35) are obtained. Hence the dc¢ circuit model leads to the same
dc conditions and results discussed. at length in Section 7.1 on

state-space averaging.

We now turn to the development of the dynamic (ac) circuit

mdde].

Dynamic (ac) circuit model

After the steady-state (dc) quantities are subtracted from the

circuit model in Fig. 7.9 (and perturbation equation as well) the ac

circuit model in Fig. 7.11 is obtained.
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(D+Dp)i+(ded,] 1 i DV Dyivdyl g
-
(D+D2)/09+(d+82)vg l \

N\
WO 50 EWTOGE O Lo sk

i=1dID + [3/Vq

Fig. 7.11 Dynamic (ac small-signal) circuit model fon the boost

converten with the constraint on modulation 3 (pertuwrbation
equation 1) not yet included in the circuit model.

From Fig. 7.11 it is obvious that the two dependent current
generators are functions of two yet undetermined modulation quantities
82 and ? , since the other quantities are either already determined
from the dc circuit model (such as Dy I) or are known driving
quantities (as D and 8). While the current modulation is already
available through the linearized perturbation equation I (see Fig.
7.11), the other modulation quatity 82 can easily be obtained from
the inside loop of Fig. 7.11. Namely, since the two voltage

generators in Fig. 7.11 must be equal, we get

N ~

(D+D2)vg + (d+d2)Vg = Dyv + d2V (7.78)

Note that this is the same equation as the first (static) equation
(7.66) of the state-space averaged model. Now it is easy to see that
(7.78) and (7.66) came out actually as a consequence of the perturba-
tion and'linearization steps applied to the perturbation equation II
(7.68), since the voltage generators in Fig. 7.11 resulted from the
perturbation and linearization of the voltage generators in Fig. 7.5,

which have been shown to be equal for discontinuous conduction mode



(owing to di/dt = 0 constraint).
The equation (7.78) can now be solved for the unknown modula-
tion d2 and, ‘together with the perturbation equation defining i,

determines the two current generators in terms of the known modulation

quantities as follows:

R R AL LV (DHD)T '021 R

Ji = (drdp) T+ (D)1 = oy d 4 - = v - Y Y (7.79)
| g g g g

A 2V 1 AT U A

jo=d21+021=_gd+vg-v-_—v—§ﬁvg—v—:—v—g—ﬁv (7.80)

Since the converter dynamic model is solely used in closed-loop
regulator applications, we conveniently express all dc quantities in

terms of M, K, R and output regulated voltage V (as explained before)

to arrive at

Al RS Vi R (I

i "R IRF Y 4T TR Yy " mTRY (7.81)

Gy =g ) 15 N 17 (7.82)
R VKM(M-1) M-1 R 9 M1 R

By use of (7.81) and (7.82) in the circuit model of Fig. 7.11,
the circuit model in Fig. 7.12 is generated.

2VIMd M3 -MT MM _2vd M
RVKIM-1) (M-1)R" (M-I)R (M=1IR ™ RVKMIM-1) (M-1)R G

—— =

1N L A I 4
O OOOE HOOO oz

VO;
Fig. 7.12 Dynamic (ac small-signal) cireuit model of the boost .
’ converten with perturbation equation 1 (gorn modulation A)
and perturbgtion equation 11 (equakity of the voltage
generatons v, and uo) ancluded in the cirneult model.
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The two voltage generators ;1 and ;0 in Fig. 7.12 are purposely
shown in dotted lines to emphasize the fact that they are no longer
essential, since the information provided by them (7.78) has alrcady
been used to find modulation 82 and substituted elsewhere in the cir-
cuit model. Therefore they can now be omitted from the circuit model.
Finally, by modelling the current generators in Fig. 7.12 which are
proportional to voltages across them as ac resistors only, the final

circuit model of Fig. 7.13 is obtained.

s
l
|
I
l

|
<>

e
<>
&

’§/rp_ C@Jza =—C gR

o Q} J-,a@ r,f%

-+——

Fig., 7.13 Finaﬂ‘ac small-signal cireult model fon boost converter in
the discontinuous conduction mode.

The element values in Fig. 7.13 are defined as

T A 1 ol
W Ve T 3R 9 TETR (7.83)

M
o2V 1 M-1 M(2M-1) 1
J A s e———— Y r ey R Y g = _ Y (7-84)
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Also since " and r, are ac resistances only, the appropriate symbol
consistent with that adopted for the ideal transformer designation

(see Fig. 3.7, for example) is used in Fig. 7.13. The two current
generators inside the dotted line box in Fig. 7.13 are used with square
symbols to emphasize the fact that they are dependent current generators
(on some other quantities in the circuit).

From the circuit model in Fig. 7.13 and by use of element
definitions (7.83) and (7.84), the two transfer functions Gy and Gvg
can be derived. It can easily be verified that they agree exactly
with those obtained Lefore,((7.70), (7.71) and (7.72)), using the
state-space averaging. An interesting observation with regard to
the topology of the circuit model in Fig. 7.13 can be made. Namely,
to arrive at these two transfer functions, only the elements in the
output port j2’ ro and 95 have been used, without any need for input
port description. However, the input port description becomes
mandatory if the determination of the complete circuit model is
desired, since it properly models the important input properties (both
open- and closed-Toop input impedances, for example), as will be
illustrated in Chapter 9. Moreover, the output port model now does
affect the input properties through the dependent current generator

gqv in Fig. 7.13.

An.interesting comparison with the circuit model topologies
for the continuous conduction mode (Fig. 3.10 or Fig. 4.2) seems
appropriate here. While in the continuous conduction mode, the effect
of duty ratio modulation 8 was expressed through duty ratio

dependent voltage and current generators, here two duty ratio
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dependent current generators (one at the input and the other at the
output port) appropriately account for both input and transfer
properties (and output properties, as well). Another distinction and
unique feature of the circuit model of Fig. 7.13 is the presence of
ac resistances only (which are in general dependent on an operating
condition, the gain M), a characteristic not present in the continuous
conduction mode. But despite these topological and qualitative
differences, the circuit models for continuous conduction mode (Fig.
4.2) and discontinuous conduction mode (Fig. 7.13) have something
very important in common: they both represent a complete linearized
circuit model which accurately represents not only transfer properties
but input and output properties as well.

In summary, this chapter has provided detailed insight into
the various paths in the Flowchart of Fig. 6.1. A general method
for modelling any three-state switching converter operating in the
discontinuous conduction mode has been presented first. The
fundamental step is in replacement of the state-space descriptions of
the three switched networks (7.1) by their average (7.6) over the
single period TS, the same step as taken for any ordinary three-state
converter. This is then supplemented by additional constraints (7.7)
and (7.8) which properly account for the discontinuous conduction

mode of operation.

The subsequent perturbation and linearization steps are
applied not only to the state-space or circuit averaged models but
also to the constraints, which then provide the additional information

needed to define completely both dc and ac small-signal models.
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An extensive analysis of the dc conditions in the discontinuous
conduction mode has been given, which then enabled the definition of
the boundary between the two operating modes for specific boost
converter example. An easily interpretable formula ((7.50) or (7.54))
led to simple criteria ((7.51), (7.52) and (7.53)) for determination
of the converter mode of operation.

Analysis of the dynamic (ac small-signal) model confirmed
the general modelling prediction-veduction of the system order by
one. Thus, common converters of Fig. 1.1 showed a single-pole frequency
response in the discontinuous conduction mode, as opposed to their
two pole response in the continuous conduction mode.

Finally, a new circuit model (Fig. 7.13) with a rather unusual
topological structure is obtained, which provides a complete model for
dynamic (ac small-signal) behavior.

The method outlined in this section, and illustrated for the
boost converter, is applied to the other two converters of Fig. 1.1
and results are presented in various tabular forms (including the

boost circuit example) in the next chapter on a canonical circuit

model.



148

CHAPTER 8
CANONICAL CIRCUIT MODEL FOR
DISCONTINUOUS CONDUCTION MODE

In this chapter the canonical circuit model for discontinuous
conduction mode (block 5 in the Flowchart of Fig. 6.1 or Fig. 7.13)
is obtained for the three common switching converters of Fig. 1.1
and, thanks to its fixed circuit topology, the results are conveniently
summarized in the form of various tables, separately for dc and for
ac small-signal circuit models.

From the dc conditions and by following the derivations
presented in Section 7.1, the simple formulas for determination of
the boundary between the two conduction modes may also be found for
the buck and buck-boost converters. These results, analogous to
(7.50) and (7.54) through (7.56) for the boost converter, are again
tabulated for all three common converters of Fig. 1.1. This then
ultimately determines which of the circuit models (those of Part I
or those of Part II) should be chosen for given parameter values and
operating conditions of a closed-loop switching regulator. An
interesting pictorial interpretation facilitating this decision is
given in terms of the frequency scale and position of another
"inherent" frequency wg (frequency defined by converter element values,
like Wy, aﬂd fc before) with respect to switching frequency fs.

Finally, both dc and ac transfer properties are experimentally
verified on a partiéu]ar buck-boost converter breadboard and

excellent agreement with the predictions is observed, thus confirming
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the high accuracy of the circuit models for the discontinuous

conduction mode.

8.1 Derivation of the canonical circuit models for discontinuous

conduction mode

In this section the canonical circuit models (both dc and ac
small-signal circuit models) for the two remaining converters of

Fig. 1.1 are derived from the basic circuit averaged models in Fig. 7.7.

Buck conventer in discontinuous conduction mode

With regard to the dc circuit model derivation, a general
observation seems appropriate here. Namely, the dc circuit model of
the boost converter (Fig. 7.7) could have been obtained directly from
the unperturbed circuit model in Fig. 7.7b by simply taking all
quantities to be dc quantities and as usual considering the capacitance
C to be opén for dc signals. Hence, as should have been expected,
the circuit models in Fig. 7.7 together with the additional expres-
sions for the average inductor current i are valid dc models. But
this is exactly why it was previously emphasized that the presented
methods for finding dc and ac models are consistent with each other.
After all, ac small-signal models really represent the linearized
perturbation around some steady-state (dc) conditions. Hence, by
perturbation and linearization of the circuit models in Fig. 7.7,
the ac circuit models consistent with the superimposed dc circuit
models result. Therefore, the dc circuit model for the buck

converter is as in Fig. 7.7a with dc quantities d = D, d2'= DZ’
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i=1, Vg = Vg, v = V and dc transformers only.
After usual perturbation and linearization steps are applied

to circuit model of Fig. 7.7a, the dynamic (ac) circuit model in

Fig. 8.1 is obtained.

Di+d]  DyrdVg (9;02)0+(8+82)v [D+D,) i+ (d+dy)1

\ "\ | Y
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Fig. 8.1 Dynamic (ac small-signal) circuit model for the buck

converter in discontinuous conduction mode with cornesponding
perturbation equation 1 forn modulation 4.

The perturbation equation 1 is different from

that for the boost converter and is

.. (vg-v)dTS (vg—v)d

5L y (7,710 I (8.1)

After perturbation and linearization of (8.1) we get

AR SR SE N S
i= VE:V'Vg tgyd- V;:V'V (8.2)

When the unknown modulation quantity d2 is found from equality of the
two voltage generators in Fig. 8.1 , and by use of (8.2), the two
current generators in Fig. 8.1 , after expression of dc quantities in

terms of'closed—]oop parameters M, K, R and V, become



where
.2y (1M _ 1-M oM
1 Ry x o TR 9 ° MR (8.4)
.. eV 1 11-M - - M(2-M) 1
Lemwr e et OmR, g = MENG (8.5)

Hence the same topology of the dynamic (ac) model for the boost con-

verter shown in Fig. 7.13 is also obtained for the buck converter in

the discontinuous conduction mode, but with the model element values

defined by (8.4) and (8.5).

Buck-boost convernten in the discontinuous conduction mode

The dc¢ circuit model for the buck-boost converter is
obtained directly from the circuit model in Fig. 7.7¢c. After
perturbation and linearization of the model, the dynamic (ac) circuit

model, the dynamic (ac) circuit model in Fig. 8.2 is obtained.
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Fig. 8.2 Dynamic (ac small-signal) cincuit model fon the buck-boost
converten in disqontinuous conduction mode with perturbation
equation T (fon 1) shown explicitly.
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The perturbation equation I is now the same as for the boost
converter (7.75) and the two current generators ji and jo in Fig. 8.2

are as defined in (8.3) but with the following element values for the

buck-boost converter:

j'] #ZJ_\LL_, r] =B—z' [ g-l = 0 (8.6)
VKR M

) vl 1 2M

g,=2 1o, g, = 2 (8.7)

2 KR M 2 2 R

Again the same circuit topology of Fig. 7.13 results, but with element
values (8.6) and (8.7). However, there is a small distinction from
the previous two models since now, as seen in (8.6), 91 = 0. There-
fore there is no feedback effect from the output port to the input
circuit model as in the other two converters, and the open-loop input
impedance is just ry. But, this is reasonable to expect for the buck-
boost converter, since it is the only converter in which the energy
transferring inductance is present either solely in the input circuit
(interval DTS) or solely in the output circuit (interval DZTS).

In the other two converters (buck and boost), on the other hand, the
output circuit (including C and R) is at least for a portion of period
TS connected to the input and represents a loading effect on it.
Hence the feedback action through current generator glg is to be

expected in these two converters.

The results for all three converters (buck, boost and buck-

boost) are summarized in the next section.



8.2 Summary of the canonical circuit model results for three common

converters
In this section the results for both dc and dynamic (ac)
canonical circuit models for buck, boost and buck-boost converter
are summarized and, owing to the fixed circuit model topology,

conveniently listed in several tables.

STEADY STATE {DC) CIRCUIT MODEL

ILn I Iou‘f

ST S L

I:Ml l:Mg

Fig. 8.3 Steady-state (dc) cincult model fon the converters of
Fig. 1.1 in the discontinuous conduction mode.

In Fig. 8.3 the polarity of
the second transformer 1:M2 is 1nvér£ing for the buck-boost
converter and otherwise as shown. The parameters in the dc circuit
model of Fig. 8.3 are defined in the first three columns of Table IV,
while the remaining two columns tabulate the dc relations derived
from this circuit model. Note, however, that this circuit model can
be used to determine other dc quantities as well, such as the dc

input current Iin in terms of the defining parameters.
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converter] definition of dec model derived quantities
fgpe Ml M2 I(averagd IZMZV/R M :M, M2
buck D \ (Vg-VIDTs| v D
D+D2 2L (D+D2)R D+D2
boost ' 1 Vg Dls V_ D+Dz
D+D, Dp 2L D,R Dy
buck - | VgD Ts \
A g D
boost D Do 2 DoR Dy

TABLE TV Definition of the de cirewit model in Fig. §.3 fon the

three common convertens of Fig. 1.1 operating in the
discontinuows conduction mode.,

With use now of the last three columns of Table IV and the
procedures outlined in Chapter 7 in Section 7.1, the very useful

Table V can be generated, in which the dimensionless parameter K is

defined as before with K = 2L/RTs = 2LfS/R.

open- onsi ‘ -1o i Ti
converter| ©Pen-loop consideration| closed-loop consideration

type M{D,K] D, D,K) DIM,K) | Dy M,K)
2 K 2 K M2
buck = K{1-M
1+V1 +4K|D? |p I+\71+4K/D2 I-M ( |

v/ 2 KM
boost | l+24DIK %n |+24D21K PYIIVEE T

buck - D
boost K VK MK Vi

TABLE V  Swmmary of de trans fern propenties of the three common

converterns of Fig. 1.1 in the discontinuous conduction mode
expressed for open-Loop as well as fon closed-Loop considera-
Lions. .
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: A<:§:> .

CIRCUIT MODEL

<>

Fig. 8.4 Final ac small-signal circuit model for converters o4 Fig.

1.1 dn the discontinuows conduction mode.

The element values of the dynamic (ac) circuit model in Fig.

2.4 for the three converters are shown in Table VI.

type Ji n g, Jo P 9,
2VII-M] 1-M M2 1 tevii-ml M(2-M) |
buck |==|/--M | =M ML == (-MR R
R K M2 R I-M R |RM{K | I-M R
V[ M | M= Mo 2V | M-I M{OM-1) |
boost R | M 1 R L
oo RbK(M-I) M3 M-1 R [RVKMMT M M-I R
buck-| 2|V] R o 2Vl R M
boost RVK M2 RVK M R
TABLE VI Definition of the elements in the canonical circuwit model

of Fig. 8.4 forn the three common converters of Fig. 1.1
operating 4in the discontinuous conduction mode.
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Again, as Table V was generated from Table IV and only input-
output dc transfer properties obtained, we can similarly generate
from Table VI another Table VII in which only input-output ac

transfer properties (transfer functions Gvg and Gvd) are listed for

the three converters.

type Gog God QUp
) ov(i-MM | 2-M 1
buc M VK M(2M] I-M RC
2V 1[KM M-I |
.
boos M 2M-1 (M-1 M-1 RC
buck- M V 2
boost KM RC

_V |

v
CGvg vg“ Cog I +sfwp Gvd“a = God I+ Slwp

TABLE VIT Summany of the ac transfen properties of the three
common converters o4 Fig. 1.1 operating 4in the discon-
Linuous conduction mode.

A11 the results presented in this section are applicable only

to the discontinuous conduction mode of operation of these three

switching converters. To determine when these results ought to be
applied and when those presented in Chapter 4 for continuous conduction
mode, the boundary between the two modes of operation is determined

for these three converters and tabulated in the next section.
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8.3 Determination of the boundary between two conduction modes

As explained in detail in Section 7.1 the criteria for

determination of the converter conduction mode are

boundary between the two conduction modes

continuous conduction mode

K= Kcrit

K> Kcrit

or

or

discontinuous conduction mode

K< Kcrit

or

crit

crit

g Rcrit

(8.8)

(8.9)

(8.10)

where K is as defined before K = 2L/RTS = 2LfS/R. Following the same

procedure outlined in Section 7.1 for the boost converter example,

the parameters K

crit

and Rcrit c

an easily be found for the other two

converters and all results are shown tabulated in Table VIII.

open-loop consideration closed - loop consideration
converter
*HPQ KCI”H’(D) Rcri'f( D)RDOIT} KCI"iT(M) RCI’“VHM,Rnom)
R R
k - —hom -M Anom
buc | -D 0 I =y
R M- | M
boost | D(I-pf® | —rmem_ | M-l MR
00 D“‘DP M3 M= | nom
buck - 2 Rnom l 2
boost “—D) (‘_HB)Z (M+l)2 (M+l) Rnom
TABLE VITT Determination of the boundary between the two conduction

modes, expressed for open-Loop as well as forn closed-
Loop considerations.
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In Table VIII nominal resistanc e Rnom is a design parameter defined by

Room = 2LFs (8.11)

It has already been demonstrated in Section 7.1 for the boost
converter that parameter K can be chosen (K > 4/27), such that the
c