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ABSTRACT

One of the ways to describe the human body is as a fluidic system, with
pressure and flow being the fundamental parameters. To date, there has been no
proven general strategy for long term reliable, continuous, and precise measure-
ments of either quantity. Knowing the pressure or flow in various organs could
be extremely valuable to maintaining health and monitoring for diseases like heart
disease, glaucoma, hydrocephalus, and more. This thesis aims to present a generic
pressure sensor packaging scheme to make them reliable for long lifetimes while

inside the body, while also being compatible with active microelectronics.

This thesis discusses the failure mechanisms and sources of inaccuracy over
time, or drift, of standard microelectronic pressure sensors inside the body, and
proposes and analyses a new encapsulation scheme in order to protect against these
factors, such as an electrolytic environment, and biofouling, while being biocompat-
ible and space-efficient. In other words, rather than the performance immediately
after implantation, the bottleneck has been long term reliability of sensors past the
1-3 month range within the clinical accuracy tolerance, much less than a practical

lifetime of at least 1-2 years.

The novel packaging scheme is called parylene-oil-encapsulation, where a
pressure sensor membrane is submerged in biocompatible silicone oil, and then en-
capsulated in situ with chemically vapor deposited parylene, which is also biocom-
patible. The advantages of this packaging scheme, over the contemporary attempts,
such as silicone gel and/or pure parylene coatings are discussed theoretically and

confirmed with benchtop experiments.

To prove the viability of this packaging scheme, we built a wireless intraocular
pressure sensor implant for monitoring glaucoma, and we conducted ex vivo and in
vivo tests in rabbits. Glaucoma is a disease in which the optic nerve gets damaged,
leading to gradual but irreversible vision loss. Although the mechanisms that cause
glaucoma are varied, the most typical cause of optic nerve damage is excessive
intraocular pressure, or IOP. IOP is a crucial metric to monitor the health of eyes for

patients with or at risk of having glaucoma.

For those with severe glaucoma, the state of care is to go to the doctor’s office
for a single measurement to get a single data point per visit using an instrument

such as a tonometer. This procedure is inconvenient, but even worse, provides an
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incomplete assessment of IOP. It is known that IOP fluctuates throughout the day,
and is often higher at night, when patients would not be at the doctor’s office. Also,
the IOP waveform can fluctuate day to day. So unlucky patients may lose eyesight
because the outpatient monitoring method may miss brief periods of elevated IOP,
which can still damage the optic nerve. So doctors have identified that an IOP sensing
implant which can be read at home easily and on demand can prevent vision loss
by giving an accurate assessment of IOP and reduce the burden of time-consuming

outpatient measurements.

In summary, this thesis presents the first practical approach towards a solution
to the problem of general implantable pressure sensors having insufficient lifetimes,
with a specific example to show its compatibility with standard electronics to meet

an actual clinical need.
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