Mechanistic Study of Cu-Mediated, Photoinduced C–S Bond Formation and Demonstration of Electrochemical Ammonia Production by a Surface-Attached Iron Complex

> Thesis by Kareem Imad Hannoun

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2019

(Defended May 6, 2019)

© 2019 Kareem Imad Hannoun ORCID: 0000-0003-3176-1104 All rights reserved

ACKNOWLEDGEMENTS

My time at Caltech has been both fulfilling and frustrating. I have been privileged to work with an incredible group of scientists, from whom I have learned and grown immensely. As an advisor, Jonas has given me this opportunity and challenged me to grow as a scientist and person. The other members of my committee have also encouraged me to achieve more and provided support and guidance along the way. I especially have to thank the members of the Peters lab I've had the honor of overlapping, who have helped me in more ways than I could possibly list here. I especially have to thank Yichen Tan, Jon Rittle, and John Anderson, who all helped me get on my feet in a new environment. Miles Johnson was a great colleague who really pushed me to do thorough and careful science and had a lasting influence on the way I approach my work self-critically.

I would also like to thank the training and mentorship I received as an undergraduate. Richard Jordan took me in as a clueless undergraduate and showed great patience with me as I acquired the skills and knowledge necessary to succeed. His fastidiousness and kind feedback encouraged me to continue in chemistry and develop a keen eye for data analysis. The camaraderie I experienced in the Jordan group gave me an opportunity to learn from many scientists with disparate backgrounds.

I need to thank all the friends who've helped me through graduate school. Nik Thompson and Blake Daniels were instrumental in my happiness and adjustment to Caltech. Paul Walton, Trevor Del Castillo, Ben Matson, and Mark Nesbit have all provided great experiences, from hiking and camping together to roasting coffee. Nina Gu has supported me over the past couple of years and provided constant friendship and willingness to have new experiences outside of lab. Michael McGovern has been a consistent source of support and encouragement. Although we don't get to talk or see each other as often as we would like, I know he's always there for me.

Last, but not least, I need to thank my family for their unwavering support and belief. My parents and my sister Deena have always been encouraging during difficult stretches and I'm lucky to have such a loving family who support me unwaveringly.

ABSTRACT

The worldwide reliance on fossil fuels for energy and petrochemicals poses a massive environmental hazard. Furthermore, many chemical processes rely on precious metals that have low abundance on Earth and are threatened. As the world population grows rapidly, these factors pose an increasing threat to our planet and new chemical processes are needed that employ earth-abundant catalysts and alternative chemical currencies such as light and electricity derived from renewable sources.

Chapter 2 discusses an in-depth mechanistic study of the photoinduced, coppermediated cross-coupling of aryl thiols with aryl halides. This reaction employs light energy and an earth-abundant metal to achieve bond formation through a pathway distinct from that of thermal reactions. In particular, I focus on the stoichiometric photochemistry and subsequent reactivity of a $[Cu^{I}(SAr)_{2}]^{-}$ complex (Ar = 2,6-dimethylphenyl). A broad array of experimental techniques furnish data consistent with a pathway in which a photoexcited $[Cu^{I}(SAr)_{2}]^{-*}$ complex undergoes SET to generate a Cu^{II} species and an aryl radical, which then couple through an in-cage radical recombination.

Chapter 3 discusses the surface attachment of a P_3^BFe complex to a carbon electrode, and the electrochemical generation of ammonia from N_2 by the surface-appended species $(P_3^BFe = tris-phosphinoborane)$. Ammonia production is achieved industrially by the combination of N_2 and H_2 , the latter of which is derived from methane with concomitant production of CO₂. Alternative chemical processes, such as the use of energy derived from electricity, are vital for the decreasing the carbon footprint of ammonia production. Synthetic modification of a previously-reported P_3^BFe complex by addition of three pyrene substituents onto the catalyst backbone allows non-covalent attachment onto a graphite surface. The resulting functionalized electrode shows good stability towards iron desorption under highly reducing conditions, and produces 1.4 equiv NH₃ per iron site. The data presented provide the first demonstration of electrochemical nitrogen fixation by a molecular complex appended to an electrode.

PUBLISHED CONTENT AND CONTRIBUTIONS

Johnson, M. W.[†]; Hannoun, K. I.[†]; Tan, Y.; Fu, G. C.; Peters, J. C. A Mechanistic Investigation of the Photoinduced, Copper-Mediated Cross-Coupling of an Aryl Thiol with an Aryl Halide. *Chem. Sci.* 2016, 7 (7), 4091–4100. https://doi.org/10.1039/C5SC04709A. K.I.H. participated in running experiments, data analysis, DFT calculations, and manuscript preparation.

[†]These authors contributed equally.

TABLE OF CONTENTS

Acknowledgements	i
Abstractv	
Published Content and Contributionsvi	i
Table of Contentsvi	iii
List of Illustrations and/or Tablesx	
Nomenclaturexi	iii
Chapter I: Introduction1	
1.1 Motivation	
1.2 Copper-Mediated Cross Coupling and Photochemistry	
1.3 Mechanism of Copper-mediated Coupling Reactions	
1.4 Reduction of N ₂ to NH ₃ by Molecular Catalysts	
1.5 Surface Attachment of Molecular Electrocatalysts	С
1.6 Chapter Summaries	2
1.7 References	3
Chapter II: A Mechanistic Investigation of Photoinduced, Copper-Catalyzed	
Cross-Couplings of Aryl Thiols with Aryl Halides	1
2.1 Introduction	1
2.2 Results and Discussion	3
2.3 Conclusions	3
2.4 References	5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron	
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron Complex	5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron Complex	5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron Complex	5 5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron Complex	5 5 6 2
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62	5 5 5 2 2
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66	5 5 6 2 2 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66	5 5 6 2 2 5 5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70	5 5 2 2 5 5 5 5 5 5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76	5 5 6 2 2 5 5 5 5 5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76	5 5 5 5 5 5 5 5 5 5 5
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 76 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77	5 5 5 5 5 5 5 5 5 5 5 5 7
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 76 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78	5 5 5 5 5 5 5 5 5 5 5 5 5 7 8
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 76 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81	5 5 6 2 2 5 5 5 5 7 8 1
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 76 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81 A.8 Stern-Volmer Quenching Experiment 81	5 5 6 2 2 5 5 5 5 5 7 8 1
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 55 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81 A.8 Stern-Volmer Quenching Experiment 81 A.9 Steady-State Fluorimetry Experiment 82	556225555573112
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 76 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81 A.8 Stern-Volmer Quenching Experiment 81 A.9 Steady-State Fluorimetry Experiment 82 A.10 Reactivity of 1-(but-3-en-1-yloxy)-2-iodobenzene with [Cu ^I (SAr) ₂]Na 82	5562255557811222
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 76 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81 A.8 Stern-Volmer Quenching Experiment 81 A.9 Steady-State Fluorimetry Experiment 82 A.10 Reactivity of 1-(but-3-en-1-yloxy)-2-iodobenzene with [Cu ^I (SAr) ₂]Na 82 A.11 VT-NMR Study of 2.1 83	55622550557811223
Chapter III: Electrochemical Ammonia Production by a Surface-Attached Iron 55 Complex 55 3.1 Introduction 56 3.2 Results and Discussion 56 3.3 Conclusion 62 3.4 References 62 Appendix A: Supplementary Information for Chapter II 66 A.1 General Considerations 66 A.2 Synthesis and Characterization 70 A.3 Molar Conductivity Measurements 76 A.4 Spectroscopic Identification of Copper(II) Species 77 A.5 Identification of 2.1 by ESI-MS 77 A.6 Radical Clock Experiments 78 A.7 Stoichiometric of [Cu ^I (SAr) ₂]Na with Phenyl Halides 81 A.9 Steady-State Fluorimetry Experiment 82 A.10 Reactivity of 1-(but-3-en-1-yloxy)-2-iodobenzene with [Cu ^I (SAr) ₂]Na 82 A.11 VT-NMR Study of 2.1 83 A.12 DOSY Experiment 83	556225505578112233

A.14 Emission Spectrum of 100-W Hg Lamp	86
A.15 Absorption Spectra of 2.1 in the Presence of 2.2	88
A.16 DFT Calculations	89
A.17 Probe of Direct Coupling between [Cu ^I (SAr) ₂]Na (2.1) and Aryl Radical.	92
A.18 X-Ray Crystallographic Data	96
A.19 ¹ H and ¹³ C NMR Data	97
A.20 References	110
Appendix B: Supplementary Information for Chapter III	113
B.1 General Considerations	113
B.2 Synthesis and Characterization	115
B.3 Chemical Ammonia Generation Experiments	119
B.4 Electrochemistry	119
B.5 Electrochemical Ammonia Generation Experiments.	123
B.6 Electrode Desorption Experiment	124
B.7 Supplementary XPS data	125
B.8 NMR Spectra	125
B.9 References	129

ix

LIST OF ILLUSTRATIONS AND TABLES

Chapter I:	
Scheme 1.1: Copper-mediated Ullmann coupling	2
Scheme 1.2: Copper-catalyzed, ligand-accelerated Ullmann coupling	3
Figure 1.1 Photoexcitation of a Cu ^I -amide to access a highly reducing excited	
state and photoinduced C–N cross-coupling catalyzed by a Cu ^I –amide	3
Figure 1.2: Possible pathways for ligand-accelerated Ullmann coupling	
reactions	4
Figure 1.3: Radical clock experiments disfavoring the intermediacy of an aryl	
radical in the copper-catalyzed C–N and C–S coupling reactions	5
Scheme 1.3: Model chemistry demonstrating the viability of a Cu ¹ /Cu ¹¹¹ cycle	
based on oxidative addition and reductive elimination for C-N coupling	5
Figure 1.4: Early mechanistic studies of photoinduced, Cu-catalyzed	
cross-coupling	6
Figure 1.5: First examples of N ₂ activation and catalytic reduction	8
Figure 1.6: Electrochemical reduction of N ₂	9
Figure 1.7: Overview of common strategies for surface attachment of	
molecular electrocatalysts	11
Chapter II:	• •
Equation 2.1	21
Equation 2.2	22
Figure 2.1: Outline of a possible catalytic cycle for photoinduced,	~~
copper-catalyzed cross-coupling	22
Equation 2.3	23
Figure 2.2: An alternative mechanism: coupling of an aryl radical with a	~ 4
copper(I)-thiolate as a key step	24
Figure 2.3: An alternative mechanism: $S_{RN}I$	25
Figure 2.4: An alternative mechanism: concerted oxidative addition	25
Equation 2.4	26
Equation 2.5	21
Equation 2.0.	21 مد
Figure 2.3: A-ray crystal structure of $[Cu(SAr)_2][Na(12-crown-4)_2](2.1)$	20 20
Equation 2.7	29 20
Figure 2.7: Optical spectrum and time resolved luminescence of 2.1	
Figure 2.8: Difference density plot for the lowest energy absorption	
hand of $[Cu^{I}(SAr)_{2}]N_{2}$ (2.1)	33
Figure 2 9: Stern–Volmer plot for the luminescence quenching of	
[Cu ^I (SAr) ₂]Na* in the presence of Ph–I	34
Fountion 2.8	35
Table 2.1: Reactions of a copper_thiolate with an aryldiazonium salt	36
Tuese 2.1. reductions of a copper another with an aryterizonian sait	

Equation 2.9.	36
Table 2.2: Reaction of an aryl radical: Cyclization versus capture by a	
copper-thiolate	38
Equation 2.10	39
Figure 2.10: X-band EPR spectrum (77 K) of a coupling reaction following	
irradiation for 5 min	40
Figure 2.11: Optical spectrum of a coupling reaction prior to photolysis and after	•
photolysis in propionitrile at -78 °C	41
Equation 2.11	41
Equation 2.12	42
Figure 2.12: Spin density plots of $[Cu^{II}(SAr)_3]^-$ and $Cu^{II}(SAr)_2$	43
Chapter III:	
Scheme 3.1	57
Scheme 3.2	57
Figure 3.1: UV-vis spectra of authentic sample of 3.3 and sample of 3.3	
recovered from functionalized electrode	59
Figure 3.2: Cyclic voltammograms of functionalized and unfunctionalized	
electrodes	60
Table 3.1: Yields of NH ₃ from CPE experiments with	
^{py} P ₃ ^B FeMe-functionalized electrodes	61
Figure 3.3: XPS spectra	62
Appendix A:	
Figure A.1: Representative example of reaction setup using a 100-W Hg lamp	69
Table A.1: Molar conductivities of measured compounds	76
Figure A.2: ESI-MS of 2.1	78
Table A.2: Reactivity of 2.1 with 1-(allyloxy)-2-iodobenzene	79
Table A.3: Reactivity of 2.1 with 1-(but-3-en-1-yloxy)-2-iodobenzene	80
Table A.4: Reactivity of 2.1 with 2-iodobenzophenone	80
Table A.5: Stability of radical clocks	80
Table A.6: Reactivity of 2.1 with iodobenzene and control experiments	81
Table A.7: Excited-state lifetime as a function of quencher concentration	82
Table A.8: Product distribution in the reaction of 2.1 with	
1-(but-3-en-1-yloxy)-2-iodobenzene	82
Figure A.3: Low temperature and ambient temperature ¹ H NMR of 2.1	83
Table A.9: Measured hydrodynamic radii	84
Table A.10: DFT-calculated radii	84
Figure A.4: Emission spectrum of 100-W Blak-Ray Long Wave	_
Ultraviolet Lamp (Hg)	87
Figure A.5: Absorbance spectra of [Cu ¹ (SAr) ₂]Na in acetonitrile	
at various concentrations	87
Figure A.6: Absorbance spectra of sodium 2,6-dimethylthiophenolate	
in acetonitrile at various concentrations	88
Figure A.7: Optical spectra of 2.1 in the presence of increasing concentrations	_
of sodium 2,6-dimethylthiophenolate	88
Figure A.8: Optical spectra of 2.1 in the presence of	

xi

Figure A.9: Calculated free energies of two possible Cu(I) speciations.90Figure A.10: Calculated free energies of three possible Cu(II) speciations.90Table A.11: Free energies of computed molecules.90Figure A.11: Spin density plots of Cu(2.6-dimethylthiophenolate)2and [Cu(2,6-dimethylthiophenolate)3] $^-$	sodium 2.6-dimethylthiophenolate at variable temperature	89
Figure A.10: Calculated free energies of three possible Cu(II) speciations90Table A.11: Free energies of computed molecules90Figure A.11: Spin density plots of Cu(2,6-dimethylthiophenolate)2and [Cu(2,6-dimethylthiophenolate)3] - showing the orientation of the g tensorand [Cu(2,6-dimethylthiophenolate)3] - showing the orientation of the g tensor92Table A.12: Crystal Data and Structure Refinement for 2.196Figure A.13: 'H NMR of [Cu'(SAr)2]Na97Figure A.13: 'H NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide99Figure A.16: ' ¹³ C NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide101Figure A.17: 'H NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide101Figure A.18: ' ¹³ C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide103Figure A.20: ' ¹³ C NMR of3-(2,6-dimethylphenyl sulfide103Figure A.21: 'H NMR of 2-(2,6-dimethylphenyl sulfide104Figure A.21: ' ¹⁴ N NMR of 2-(2,6-dimethylphenyl sulfide107Figure A.21: ' ¹⁴ N NMR of 2-(2,6-dimethylphenyl sulfide107Figure A.22: ' ¹³ C NMR of 2-(2,6-dimethylphenyl sulfide107Figure A.23: 'H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide109Figure A.23: 'H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide109Figure A.25: ' ¹⁴ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide107Figure A.25: ' ¹⁴ NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide107Figure A.25: ' ¹⁴ NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide109Figure A.25: ' ¹⁴ NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide109Figure B.	Figure A.9: Calculated free energies of two possible Cu(I) speciations	90
Table A.11: Free energies of computed molecules90Figure A.11: Spin density plots of Cu(2,6-dimethylthiophenolate)2and [Cu(2,6-dimethylthiophenolate)3] ⁻ and [Cu(2,6-dimethylthiophenolate)3] ⁻ 91Figure A.12: DFT structures of Cu(2,6-dimethylthiophenolate)2and [Cu(2,6-dimethylthiophenolate)3] ⁻ showing the orientation of the g tensorand [Cu(2,6-dimethylthiophenolate)3]96Figure A.13: 'H NMR of [Cu ¹ (SAr)2]Na97Figure A.13: 'H NMR of Cu ¹ (SAr)2]Na97Figure A.13: 'H NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide99Figure A.15: 'H NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide100Figure A.16: ¹³ C NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide101Figure A.17: 'H NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide102Figure A.19: 'H NMR of 3-(2,6-dimethylphenyl sulfide103Figure A.20: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone103Figure A.21: 'H NMR of 2-(2,6-dimethylphenylthio)-benzophenone105Figure A.22: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone106Figure A.23: 'H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide107Figure A.25: 'H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide108Figure A.26: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide104Figure A.26: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide108Figure A.26: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide107Figure A.26: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide108Figure B.1: Cyclic voltammogram of PiP3 ^B FeMe	Figure A.10: Calculated free energies of three possible Cu(II) speciations	90
Figure A.11: Spin density plots of Cu(2,6-dimethylthiophenolate)2and [Cu(2,6-dimethylthiophenolate)3]	Table A.11: Free energies of computed molecules	90
and [Cu(2,6-dimethylthiophenolate):]	Figure A.11: Spin density plots of Cu(2.6-dimethylthiophenolate) ₂	
Figure A.12: DFT structures of Cu(2,6-dimethylthiophenolate) ₂ and [Cu(2,6-dimethylthiophenolate) ₃] = showing the orientation of the <i>g</i> tensor92 Table A.12: Crystal Data and Structure Refinement for 2.1	and [Cu(2,6-dimethylthiophenolate) ₃] ⁻	91
and [Cu(2,6-dimethylthiophenolate) ₃] ⁻ showing the orientation of the <i>g</i> tensor92 Table A.12: Crystal Data and Structure Refinement for 2.1	Figure A.12: DFT structures of $Cu(2,6-dimethylthiophenolate)_2$	
Table A.12: Crystal Data and Structure Refinement for 2.1 96Figure A.13: ¹ H NMR of [Cu ¹ (SAr) ₂]Na	and $[Cu(2,6-dimethylthiophenolate)_3]^-$ showing the orientation of the g tensor	or92
Figure A.13: ¹ H NMR of $[Cu^{1}(SAr)_{2}]Na$	Table A.12: Crystal Data and Structure Refinement for 2.1.	96
Figure A.14: ¹ H NMR of Sodium 2,6-dimethylthiophenolate	Figure A.13: ¹ H NMR of [Cu ^I (SAr) ₂]Na	97
Figure A.15: ¹ H NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide	Figure A.14: ¹ H NMR of Sodium 2,6-dimethylthiophenolate	98
Figure A.16: ¹³ C NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide 100 Figure A.17: ¹ H NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide 101 Figure A.18: ¹³ C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide 102 Figure A.18: ¹³ C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide 103 Segure A.20: ¹³ C NMR of 103 -(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan 103 Figure A.21: ¹⁴ H NMR of 2-(2,6-dimethylphenylthio)-benzophenone 105 Figure A.22: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone 106 Figure A.23: ¹ H NMR of 2-(2,6-dimethylphenylthio)-benzophenone 106 Figure A.23: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.26: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 109 Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure B.2: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure B.1: Cyclic voltammogram of ^{py} P ₃ ^B (3.1) 121 Figure B.2: Cyclic voltammogram of ^{py} P ₃ ^B (3.1) 121 Figure B.3: Cyclic voltammogram of ^{syn} P ₃ ^B FeMe (3.3) 121 Figure B.4: Cyclic voltammogram of ^{syn} P ₃ ^B FeMe (3.3) 122 Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo	Figure A.15: ¹ H NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide	99
Figure A.17: ¹ H NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide101Figure A.18: ¹³ C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide102Figure A.19: ¹ H NMR of3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan103Figure A.20: ¹³ C NMR of104Figure A.20: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone105Figure A.21: ¹ H NMR of 2-(2,6-dimethylphenylthio)-benzophenone106Figure A.23: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide107Figure A.24: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide108Figure A.25: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide109Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide109Figure B.2: Cyclic voltammogram of ^{py} P ₃ ^B (3.1)121Figure B.2: Cyclic voltammogram of ^{py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4)122Figure B.3: Cyclic voltammogram of ^{[py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4)123Figure B.4: Cyclic voltammograms of surface-attached ^{py} P ₃ ^B (3.1)125Figure B.5: Overview XPS spectra125Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol126Figure B.8: ¹ H NMR of3-diisopropylphosphino-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol126Figure B.9: ³¹ P{ ¹ H} NMR of3-1127Figure B.10: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2)127Figure B.11: ³¹ P{ ¹ H} NMR of ^{py} P ₃ ^B FeBr (3.2)127Figure B.12: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2)127Figure B.11: ¹³ P{ ¹ H} NMR of ^{py} P ₃ ^B FeBr (3.2)128Fi	Figure A.16: ¹³ C NMR of 4-Methoxyphenyl 2,6-dimethylphenyl sulfide	100
Figure A.18: 13 C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide 102 Figure A.19: 1 H NMR of 3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan 103 Figure A.20: 13 C NMR of 104 Figure A.20: 13 C NMR of 2-(2,6-dimethylphenylthio)-benzophenone 105 Figure A.21: 14 H NMR of 2-(2,6-dimethylphenylthio)-benzophenone 106 Figure A.22: 13 C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 107 Figure A.24: 13 C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.25: 14 H NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure B.2: Cyclic voltammogram of ${}^{py}P_{3}^{B}$ (3.1) 121 Figure B.1: Cyclic voltammogram of ${}^{py}P_{3}^{B}$ (3.1) 121 Figure B.3: Cyclic voltammogram of ${}^{py}P_{3}^{B}$ FeN2][Na(THF)_n] (3.4) 122 Figure B.4: Cyclic voltammograms of surface-attached ${}^{py}P_{3}^{B}$ (3.1) 123 Figure B.4: Cyclic voltammograms of surface-attached ${}^{py}P_{3}^{B}$ (3.1) 125 Figure B.3: Cyclic voltammograms of ${}^{2}P_{3}^{B}$ FeN2][Na(THF)_n] (3.4) 126 Figure B.4: Cyclic voltammogram of ${}^{py}P_{3}^{B}$ FeN2][Na(THF)_n] (3.4) 125 Figure B.6: ${}^{1}H$ NMR of 3-lodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 125 Figure B.8:	Figure A.17: ¹ H NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide	101
Figure A.19: ¹ H NMR of 3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan	Figure A.18: ¹³ C NMR of 2-(Allyloxy) 2,6-dimethylphenyl sulfide	102
$\begin{aligned} 3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan$	Figure A.19: ¹ H NMR of	
Figure A.20: 13 C NMR of 3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan 104 Figure A.21: 14 NMR of 2-(2,6-dimethylphenylthio)-benzophenone 105 Figure A.22: 13 C NMR of 2-(2,6-dimethylphenylthio)-benzophenone 106 Figure A.22: 13 C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 107 Figure A.23: 14 NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.24: 13 C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.25: 14 NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure A.26: 13 C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 110 Appendix B: Figure B.1: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ (3.1) 121 Figure B.1: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ FeN2][Na(THF)_n] (3.4) 122 Figure B.3: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ FeN2][Na(THF)_n] (3.4) 123 Figure B.4: Cyclic voltammogram of surface-attached ${}^{py}P_{3}{}^{B}$ (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: 14 NMR of 3-Iodo-4-Bromo- O -(1-pyrenyl-butyl)phenol 125 Figure B.8: 14 NMR of 3-Iodo-4-Bromo- O -(1-pyrenyl-butyl)phenol 126 Figure B.9: ${}^{31}P{}^{1}H{}$ NMR of 127 <td>3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan</td> <td>103</td>	3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan	103
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Figure A.20: ¹³ C NMR of	
Figure A.21: ¹ H NMR of 2-(2,6-dimethylphenylthio)-benzophenone 105 Figure A.22: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone 106 Figure A.23: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 107 Figure A.24: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.25: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure B.1: Cyclic voltammogram of ^{py} P ₃ ^B (3.1) 121 Figure B.2: Cyclic voltammogram of ^{py} P ₃ ^B FeMe (3.3) 121 Figure B.3: Cyclic voltammogram of ^{py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4) 122 Figure B.4: Cyclic voltammograms of surface-attached ^{py} P ₃ ^B (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol 126 Figure B.8: ¹ H NMR of 3-diisopropylphosphino-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3.1 127 Figure B.10: ¹ H NMR of p ⁹ P ₃ ^B (3.1) 127 127 Figure B.10: ¹ H NMR of p ⁹ P ₃ ^B (3.1) 127 127 Figure B.11: ³¹ P{ ¹ H} NMR of p ⁹ P ₃ ^B FeBr (3.2) 127 127	3-(2,6-dimethylphenylthiomethyl)-2,3-dihydrobenzo-furan	104
Figure A.22: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone	Figure A.21: ¹ H NMR of 2-(2,6-dimethylphenylthio)-benzophenone	105
Figure A.23: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 107 Figure A.24: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide 108 Figure A.25: ¹ H NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 109 Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide 110 Appendix B: 121 Figure B.1: Cyclic voltammogram of ^{py} P ₃ ^B (3.1) 121 Figure B.2: Cyclic voltammogram of ^{py} P ₃ ^B FeMe (3.3) 121 Figure B.3: Cyclic voltammogram of ^{[py} P ₃ ^B FeMe (3.3) 122 Figure B.4: Cyclic voltammograms of surface-attached ^{py} P ₃ ^B (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol 125 Figure B.7: ¹³ C { ¹ H} NMR of 3-Iodo-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol 126 Figure B.8: ¹ H NMR of 3-diisopropylphosphino-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol 126 Figure B.10: ¹ H NMR of ^{py} P ₃ ^B (3.1) 127 127 Figure B.11: ³¹ P { ¹ H} NMR of ^{py} P ₃ ^B (3.1) 127 Figure B.12: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2) 127 Figure B.13: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2) 127 Figure B.13: ¹ H NMR of ^{py} P ₃ ^B FeMe (3.3) <t< td=""><td>Figure A.22: ¹³C NMR of 2-(2,6-dimethylphenylthio)-benzophenone</td><td>106</td></t<>	Figure A.22: ¹³ C NMR of 2-(2,6-dimethylphenylthio)-benzophenone	106
Figure A.24: 13 C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide	Figure A.23: ¹ H NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide	107
Figure A.25: ¹ H NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide109 Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide110 Appendix B: Figure B.1: Cyclic voltammogram of $^{py}P_3^B$ (3.1)	Figure A.24: ¹³ C NMR of 2-(but-3-en-yloxy) 2,6-dimethylphenyl sulfide	108
Figure A.26: 13 C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide	Figure A.25: ¹ H NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide	109
Appendix B: Figure B.1: Cyclic voltammogram of ${}^{py}P_3{}^B$ (3.1) 121 Figure B.2: Cyclic voltammogram of ${}^{py}P_3{}^BFeMe$ (3.3) 121 Figure B.3: Cyclic voltammogram of ${}^{py}P_3{}^BFeN_2$][Na(THF)n] (3.4) 122 Figure B.4: Cyclic voltammograms of surface-attached ${}^{py}P_3{}^B$ (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: ${}^{1}H$ NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 125 Figure B.7: ${}^{13}C{}^{1}H{}$ NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.8: ${}^{1}H$ NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ${}^{3}P{}{}^{1}H{}$ NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ${}^{1}H$ NMR of ${}^{py}P_3{}^{B}$ (3.1) 127 127 Figure B.11: ${}^{3}P{}{}^{1}H{}$ NMR of ${}^{py}P_{3}{}^{B}$ (3.1) 127 127 Figure B.12: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ FeBr (3.2) 127 127 Figure B.13: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeMe$ (3.3) 128 128 Figure B.13: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeMe$ (3.3) 128 128 Figure B.14: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeMe$ (3.3) 128 128 128	Figure A.26: ¹³ C NMR of 4-(methylchromane) 2,6-dimethylphenyl sulfide	110
Figure B.1: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ (3.1) 121 Figure B.2: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ FeMe (3.3) 121 Figure B.3: Cyclic voltammogram of ${}^{py}P_{3}{}^{B}$ FeN ₂][Na(THF) _n] (3.4) 122 Figure B.4: Cyclic voltammograms of surface-attached ${}^{py}P_{3}{}^{B}$ (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: 1 H NMR of 3-Iodo-4-Bromo- O -(1-pyrenyl-butyl)phenol 125 Figure B.7: ${}^{13}C{}^{1}H{}$ NMR of 3-Iodo-4-Bromo- O -(1-pyrenyl-butyl)phenol 126 Figure B.8: 1 H NMR of 3-diisopropylphosphino-4-Bromo- O -(1-pyrenyl-butyl)phenol 126 Figure B.9: ${}^{3}P{}^{1}H{}$ NMR of 3-diisopropylphosphino-4-Bromo- O -(1-pyrenyl-butyl)phenol 126 Figure B.10: 1 H NMR of ${}^{py}P{}_{3}{}^{B}$ (3.1) 127 127 Figure B.11: ${}^{31}P{}^{1}H{}$ NMR of ${}^{py}P{}_{3}{}^{B}$ (3.1) 127 127 Figure B.12: 1 H NMR of ${}^{py}P{}_{3}{}^{B}$ FeBr (3.2) 127 127 Figure B.13: 1 H NMR of ${}^{py}P{}_{3}{}^{B}$ FeBr (3.2) 127 127 Figure B.13: 1 H NMR of ${}^{py}P{}_{3}{}^{B}$ FeMe (3.3) 128 128 Figure B.14: 1 H NMR of ${}^{py}P{}_{3}{}^{B}$ FeMe (3.3) 128 128	Appendix B:	
Figure B.2: Cyclic voltammogram of ${}^{py}P_3{}^BFeMe$ (3.3)	Figure B.1: Cyclic voltammogram of $^{py}P_3^B$ (3.1)	121
Figure B.3: Cyclic voltammogram of $[^{py}P_3^BFeN_2][Na(THF)_n]$ (3.4) 122 Figure B.4: Cyclic voltammograms of surface-attached $^{py}P_3^B$ (3.1) 123 Figure B.5: Overview XPS spectra 125 Figure B.6: ^{1}H NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 125 Figure B.7: $^{13}C\{^{1}H\}$ NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.8: ^{1}H NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: $^{31}P\{^{1}H\}$ NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ^{1}H NMR of $^{py}P_3^B$ (3.1) 127 127 Figure B.11: $^{31}P\{^{1}H\}$ NMR of $^{py}P_3^B$ (3.1) 127 127 Figure B.12: ^{1}H NMR of $^{py}P_3^B$ FeBr (3.2) 127 127 Figure B.13: ^{1}H NMR of $^{py}P_3^B$ FeMe (3.3) 128 128 Figure B.14: ^{1}H NMR of $^{py}P_3^B$ FeMe [3.4) 128 128	Figure B.2: Cyclic voltammogram of ${}^{py}P_3{}^{B}FeMe$ (3.3)	121
Figure B.4: Cyclic voltammograms of surface-attached ${}^{py}P_{3}{}^{B}$ (3.1)	Figure B.3: Cyclic voltammogram of $[^{py}P_3^BFeN_2][Na(THF)_n]$ (3.4)	122
Figure B.5: Overview XPS spectra 125 Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 125 Figure B.7: ¹³ C{ ¹ H} NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.8: ¹ H NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ¹ H NMR of ^{py} P ₃ ^B (3.1) 127 127 Figure B.11: ³¹ P{ ¹ H} NMR of ^{py} P ₃ ^B FeBr (3.2) 127 127 Figure B.12: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.3) 128 128 Figure B.14: ¹ H NMR of ^{py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4) 128	Figure B.4: Cyclic voltammograms of surface-attached ^{py} P ₃ ^B (3.1)	123
Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 125 Figure B.7: ¹³ C{ ¹ H} NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.8: ¹ H NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ¹ H NMR of ^{py} P ₃ ^B (3.1) 127 127 Figure B.11: ³¹ P{ ¹ H} NMR of ^{py} P ₃ ^B FeBr (3.2) 127 Figure B.12: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2) 127 Figure B.13: ¹ H NMR of ^{py} P ₃ ^B FeMe (3.3) 128 Figure B.14: ¹ H NMR of ^{[py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4) 128	Figure B.5: Overview XPS spectra	125
Figure B.7: ${}^{13}C{}^{1}H$ NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol	Figure B.6: ¹ H NMR of 3-Iodo-4-Bromo-O-(1-pyrenyl-butyl)phenol	125
Figure B.8: ¹ H NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.9: ³¹ P{ ¹ H} NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ¹ H NMR of ^{py} P ₃ ^B (3.1) 127 Figure B.11: ³¹ P{ ¹ H} NMR of ^{py} P ₃ ^B (3.1) 127 Figure B.12: ¹ H NMR of ^{py} P ₃ ^B FeBr (3.2) 127 Figure B.13: ¹ H NMR of ^{py} P ₃ ^B FeMe (3.3) 128 Figure B.14: ¹ H NMR of ^{[py} P ₃ ^B FeN ₂][Na(THF) _n] (3.4) 128	Figure B.7: ${}^{13}C{}^{1}H$ NMR of 3-Iodo-4-Bromo- <i>O</i> -(1-pyrenyl-butyl)phenol	126
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Figure B.8: ¹ H NMR of	
Figure B.9: ${}^{31}P{}^{1}H$ NMR of 3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol 126 Figure B.10: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ (3.1) 127 Figure B.11: ${}^{31}P{}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ FeBr (3.2) 127 Figure B.12: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ FeBr (3.2) 127 Figure B.13: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ FeMe (3.3) 128 Figure B.14: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ FeN2][Na(THF) _n] (3.4) 128	3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol	126
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Figure B.9: ³¹ P{ ¹ H} NMR of	
Figure B.10: 1 H NMR of ${}^{py}P_{3}{}^{B}$ (3.1)	3-diisopropylphosphino-4-Bromo-O-(1-pyrenyl-butyl)phenol	126
Figure B.11: ${}^{31}P{}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}$ (3.1) 127 Figure B.12: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeBr$ (3.2) 127 Figure B.13: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeMe$ (3.3) 128 Figure B.14: ${}^{1}H$ NMR of ${}^{py}P_{3}{}^{B}FeN_{2}$][Na(THF) _n] (3.4) 128	Figure B.10: ¹ H NMR of ${}^{py}P_{3}{}^{B}$ (3.1)	127
Figure B.12: ¹ H NMR of ${}^{py}P_{3}{}^{B}FeBr$ (3.2)	Figure B.11: ${}^{31}P{}^{1}H{}$ NMR of ${}^{py}P_{3}{}^{B}(3.1)$	127
Figure B.13: ¹ H NMR of ${}^{py}P_{3}{}^{B}FeMe$ (3.3)	Figure B.12: ¹ H NMR of ${}^{py}P_{3}{}^{B}FeBr$ (3.2)	127
Figure B.14: ¹ H NMR of $[^{py}P_3^BFeN_2][Na(THF)_n]$ (3.4)	Figure B.13: ¹ H NMR of $^{\text{py}}\text{P}_3^{\text{B}}\text{FeMe}$ (3.3)	128
	Figure B.14: ¹ H NMR of $[{}^{py}P_{3}{}^{B}FeN_{2}][Na(THF)_{n}]$ (3.4)	128

NOMENCLATURE

A. Absorbance. Å. Angstrom. Ar. Aryl group. ATR. Attenuated Total Reflectance. A(X). Hyperfine coupling constant due to nucleus X **BAr**^F₄. $[B(3,5-C_6H_3(CF_3)_2)_4]^-$ Carb. Carbazolide. Cat. Catalyst. CO₂RR. CO₂ Reduction Reaction. **CPE.** Controlled Potential Electrolysis. CV. Cyclic Voltammetry or Cyclic Voltammogram. **D.** Doublet or deuterium. **DCM.** Dichloromethane **DFT.** Density Functional Theory. DMF. Dimethylformamide. DMPHEN. 2,8-dimethyl-1,10-phenanthroline. **DOSY.** Diffusion Ordered Spectroscopy **D**_x. Compound with x deuterium atoms. **E.** Electron. \mathbf{E}° . Thermodynamic reduction or oxidation potential. E_{p} . Peak reduction or oxidation potential. EPR. Electron Paramagnetic Resonance. EPR. Electron Paramagnetic Resonance. Eqn. Equation. **Equiv.** Equivalent(s). ESI-MS. Electrospray Ionization-Mass Spectrometry. FT. Fourier Transform. g. Electron g-factor. GC. Gas Chromatography. HER. Hydrogen Evolution Reaction. HOPG. Highly Ordered Pyrolytic Graphite. HPLC. High-Performance Liquid Chromatography. *I*. Nuclear spin quantum number. ^{*i*}**Pr.** Isopropyl. **IR.** Infrared. J. NMR coupling constant. L. Generic ligand or liter. LTQ. Linear Trap Quadrupole. Lut. 2,6-lutidine. M. Multiplet or metal.

NMR. Nuclear Magnetic Resonance.

Nuc. Nucleophile.

OTf. Trifluoromethanesulfonate anion.

P₃^B. Tris(*o*-diisopropylphosphinophenyl)borane.

Phen. 1,10-phenanthroline.

 $^{\mathbf{py}}\mathbf{P3^{B}}$. $(o^{-i}Pr_{2}P-p-O(CH_{2})_{4}pyrene-(C_{6}H_{4}))_{3}B$.

Pyrr. Pyrrolidinone.

Q. Stern-Volmer quenching fraction, quality factor, or quartet.

R. Alkyl or aryl group.

S. Siemen (Ω^{-1}).

S. Spin quantum number.

SCE. Saturated Calomel Electrode.

SET. Single Electron Transfer.

S_N2. Bimolecular nucleophilic substitution.

SNAr. Nucleophilic aromatic substitution.

SRN1. Unimolecular radical nucleophilic substitution.

T. Triplet.

t-Bu. Tertial-butyl.

TD-DFT. Time-Dependent Density Functional Theory.

TEMPO. 1-hydroxyl-2,2,6,6-tetramethylpiperidine anion.

TEMPOH. 1-hydroxyl-2,2,6,6-tetramethylpiperidine.

TMS. Tetramethylsilane.

UV-vis. Ultraviolet-visible.

X-band. Radio frequency range from 8.0 to 12.0 GHz (typically ~9.5 GHz for EPR).

XPS. X-ray Photoelectron Spectroscopy.

δ. NMR chemical shift.

ε. Extinction coefficient.

 $\Lambda_{\mathbf{m}}$. Molar conductivity.

μв. Bohr Magneton.

µeff. Effective magnetic moment.

Φ. Quantum Yield.

Chapter 1

INTRODUCTION

1.1 Motivation

Over the current century, rapidly growing world population and increased energy usage in the developing world is projected to lead to at least a three-fold increase of worldwide energy usage.¹ The majority of energy currently comes from non-renewable sources that produce CO₂ emissions, contributing to climate change.² While renewable energy alternatives exist for providing electricity with a low carbon footprint, many chemical processes are reliant on fossil-fuel feedstocks such as natural gas.³

Furthermore, many important chemical processes rely on precious metals such as Pd, Rh, and Ir.^{4, 5} These metals have low abundance on earth and their continued usage is not sustainable based on projected worldwide growth. Due to the use of precious metals and fossil-fuel based chemical feedstocks in many vital chemical processes, there is an urgent need to develop new chemical methods that use earth-abundant metals and incorporate alternative sources of energy such as sunlight and electricity.⁶

The use of alternative chemical processes opens up new methods for bond formation based on divergent reactivity.⁷ The development on new strategies for difficult bond formation reactions also opens up the possibility of discovering new transformations unachievable with previous methods. To better apply these new chemical methods to broader classes of reactions, we seek to understand the mechanism of these transformations and identify key reaction steps that we can alter through reaction design. The design and study of photochemical and electrochemical reactions mediated by earth-abundant metals will lead to a greater understanding of reaction pathways operative in these classes of reactions.

However, many barriers exist to elucidating pathways of photochemical and electrochemical reactions. Photochemical reactions are often complex, and common spectroscopic methods that are suitable for thermally-driven reactions are not always applicable to their study. Electrochemical transformations can be difficult to control due to the interfacial and heterogeneous nature of electron transfer. Multi-electron, multi-proton redox processes are also complex due to the vast number of possible reaction pathways that can be spanned. Despite these difficulties, improvement and study of electrochemical and photochemical reactions is necessary to better employ renewable energy sources for chemical reactions. This thesis will discuss the study of photochemical bond formation reactions and development of an electrochemical N₂ reduction system.

1.2 Copper-Mediated Cross Coupling and Photochemistry

Scheme 1.1: Copper-mediated Ullmann coupling.

The coupling of nucleophiles and electrophiles catalyzed by copper dates back to the early 20th century, making it the first example of metal-catalyzed cross-coupling (Scheme 1.1).^{8,9} These early coupling reactions required harsh reaction conditions and showed limited functional group tolerance, leading to these methods being superseded by catalytic reactions based on precious metals such as palladium.¹⁰ In the early 21st century, it was discovered that the addition of chelating ligands, typically bidentate nitrogen donors, led to enhanced reactivity at lower temperatures with broader functional group tolerance relative to ligand-

free conditions (Scheme 1.2).¹¹ Over the last 15 years, there has been a significant growth in the use and number of reports of copper-catalyzed reactions.¹²

Nuc-H
$$R-X$$
 \xrightarrow{ligand} $r > 90 °C$
ligand = amine, ketone, phenanthroline

Scheme 1.2: Copper-catalyzed, ligand-accelerated Ullmann coupling.

Copper complexes have also been noted for their desirable photophysical properties, such as long excited-state lifetimes and highly reducing excited states.¹³ Our group has studied a number of P- and N-coordinated Cu^I complexes that access highly-reducing excited states, and we sought to employ these complexes to achieve copper-mediated bond formation reactions through single-electron redox processes.^{14–17} In 2012, we reported the copper-catalyzed coupling of carbazole with aryl halides through a radical pathway (Figure 1.1).¹⁸ This approach has been successfully expanded to a number of nucleophiles and electrophiles, yet many mechanistic questions remained (and still remain) unanswered.

Figure 1.1: (A) Photoexcitation of a Cu^I-amide to access a highly reducing excited state.
(B) Photoinduced C–N cross-coupling catalyzed by a Cu^I-amide.

1.3 Mechanism of Copper-mediated Coupling Reactions

Despite the long history of copper-catalyzed coupling reactions, very little was understood about the pathways operative in these reactions until recently. This lack of understanding provided an obstacle to reaction discovery and optimization, as chemists were not able to make rational choices in testing substrates and ligands.

Early mechanistic work on thermal copper-catalyzed coupling reactions demonstrated that Cu^{I} -nucleophile complexes are key reaction intermediates, and that these intermediates can react with electrophiles.¹⁹ Several mechanisms have been proposed for this step, including (i) oxidative addition to generate a Cu^{II} intermediate, (ii) halogen atom transfer to generate a Cu^{II} -halide and electrophile radical, (iii) single-electron transfer (SET) to generate a Cu^{II} complex and electrophile radical, and (iv) σ -bond metathesis through a 4-centered transition state (Figure 1.2).

A number of radical clock and radical trapping experiments have disfavored mechanisms involving the formation of a free electrophile radical (Figure 1.3).^{19, 20} However, these studies do not exclude the possibility of short-lived radical intermediates that undergo rapid recombination. Mechanistic studies on the reaction of iodobenzene and both methanol and methylamine concluded that both iodine atom transfer and single electron transfer mechanisms were accessible, with the preferred pathway depending on the nature of the nucleophile and ancillary ligand.²¹ While evidence exists for all pathways mentioned, most

proposals favor oxidative addition to generate a Cu^{III} species.²² The Ribas and Stahl groups demonstrated the viability of this oxidative addition mechanism by stoichiometrically demonstrating the synthesis of a macrocyclic Cu^{III} complex that undergoes reductive elimination to form a C–N bond (Scheme 1.3).²³ It is likely that different mechanisms may be operative in thermal Ullmann coupling reactions depending on the reaction conditions, or that multiple pathways may be accessible even in a single reaction.

Figure 1.3: Radical clock experiments disfavoring the intermediacy of an aryl radical in the copper-catalyzed C–N (left) and C–S (right) coupling reactions.

Scheme 1.3: Model chemistry demonstrating the viability of a Cu^I/Cu^{III} cycle based on oxidative addition and reductive elimination for C–N coupling.

In the photoinduced arylation of carbazole by a copper phosphine complex, early evidence supports a mechanism involving photoexcitation of a bis-phosphine copper carbazolide species as the first step.¹⁸ Complexes of this type can be quenched by iodobenzene, and EPR data of a frozen reaction mixture revealed the presence of a Cu^{II} species, consistent with photoinduced single-electron transfer (SET) from Cu^I to iodobenzene to form a Cu^{II} species and an aryl radical (Figure 1.4). Radical cyclization

experiments supported the intermediacy of an aryl radical, but the mechanism of the bond formation step was not determined.

Figure 1.4: Early mechanistic studies of photoinduced, Cu-catalyzed cross-coupling. (A) Radical clock experiments demonstrating the intermediacy of an aryl radical. (B) Observation of a Cu^{II} species under catalytic conditions, which is proposed to be involved in C–N bond formation.

Following this report, a number of photoinduced copper-catalyzed cross coupling reactions were reported by our group, including N-alkylation,^{24, 25} S-arylation,²⁶ O-arylation,²⁷ and C-alkylation reactions.²⁸ These reactions did not require traditional ligands such as phosphines, and proceeded under varying conditions. We then sought to investigate the mechanism of these reactions to determine the factors affecting these ligand-free reactions and to characterize the mechanistic diversity of these reactions. In particular, we sought to determine the active species in these reactions, understand their photochemical properties, and better understand the nature of the coupling step.

1.4 Reduction of N2 to NH3 by Molecular Catalysts

The splitting of dinitrogen into ammonia is an essential process for worldwide agriculture, and is performed on a scale of 413 Tg N annually.²⁹ Nitrogen is fixed naturally primarily by nitrogenase enzymes that reside in root nodules of plants such as soybeans and

other legumes.³⁰ However, the amount of nitrogen fixed enzymatically falls significantly short of current worldwide demand.^{29, 31}

As a supplement to natural sources of fixed nitrogen, industrial ammonia production represents a significant cost for the efficient growth of various crops. Industrially, N₂ is fixed by the Haber-Bosch process on a scale of 120 Tg N annually.³¹ The Haber-Bosch process employs an iron-based catalyst to convert H₂ and N₂ to ammonia at high temperature and pressure. While efficient, the Haber-Bosch process uses 2% of the global energy output and requires significant infrastructure. The majority of this energy input is employed for H₂ production through steam reforming and the water-gas shift reaction, which leads to CO₂ formation.^{29, 32} The low volumetric energy density of H₂ also requires its on-site production and limits Haber-Bosch plants to areas that have large amounts of hydrocarbon fuels.³³ Development of scalable alternatives to the Haber-Bosch process that can be coupled to solar light or energy is important to the decentralized production of ammonia in the developing world, as well as to meeting the growing demand for ammonia-based fertilizer throughout the developed world.

As an alternative to the Haber-Bosch process, the fixation of N_2 with protons and electrons has been proposed as a scalable and energy-efficient method.³³ In particular, the reduction of dinitrogen with electricity derived from renewable sources is of particular interest. Significant progress has been made in the reduction of dinitrogen by transition metal complexes over the past 50 years, although efficient catalytic reduction of N_2 remains difficult.

Figure 1.5: (A) The first example of N_2 binding to a transition metal. (B) Protonation of a metal-bound N_2 fragment to give N–H bond formation. (C) Catalytic reduction of N_2 to ammonia by a molybdenum complex.

The binding of N₂ to a transition metal center was first observed by Allen and Senoff at a Ru^{II} center in 1965.³⁴ In 1972, protonation of a metal-bound N₂ fragment was first reported by Chatt,³⁵ to give a M=NNH₂ species (Figures 1.5A, 1.5B). Catalytic reduction of N₂ to ammonia was then first reported by Schrock in 2003 at a Mo center (Figure 1.5C).³⁶ This report was followed by a number of other reports of catalytic N₂ reduction, including the reduction of N₂ to NH₃ by P₃^BFe by our group.^{37, 38} Despite the rapidly growing number of reports of N_2 reduction by molecular complexes, chemical reductants and large driving forces are required in nearly every case.

1.4.1 Viability of Electrochemical Reduction

Figure 1.6: (A) Stoichiometric reduction of N_2 to ammonia by a tungsten complex at a Hg pool electrode by Pickett. (B) Electrocatalytic reduction of N_2 to ammonia by a molecular iron complex and a cocatalytic redox mediator by our group.

While most examples of molecular N_2 fixation have utilized relatively strong chemical reductants as the electron source, there has been long-standing interest in using alternative electron sources in N_2 fixation. Reduction of dinitrogen to ammonia without stoichiometric chemical reductants is necessary for coupling ammonia production to sunlight or electricity. In 1985, Pickett and coworkers demonstrated the stoichiometric reduction of N_2 to NH₃ at an electrode mediated by a tungsten phosphine complex (Figure 1.6A).^{39–41} Recently, our group has demonstrated the electrocatalytic reduction of N_2 at low temperature by a tris-phosphinoborane iron catalyst (P_3^B Fe, Figure 1.6B).^{42, 43} This was followed by the Berben group's report of stoichiometric N_2 electroreduction by an aluminum complex at lower overpotential.⁴⁴ These electroreductions demonstrate the viability of a molecular electrochemical strategy to reduce N_2 to ammonia.

1.5 Surface Attachment of Molecular Electrocatalysts

Electrocatalysis is fundamentally important for securing our energy future and producing chemical fuels from renewable energy.⁴⁵ Catalysis by synthetic transition metal complexes offer significant advantages over heterogeneous materials, including the ability to control interactions in their coordination sphere and the multitude of spectroscopic techniques available to study mechanism. These mechanistic understandings can allow rational alteration of catalysts to increase activity and stability.

A number of difficulties arise when soluble molecular complexes are employed as electrocatalysts in solution:⁴⁶ only a small portion of the added catalyst is electrochemically active at a given time, deleterious bimolecular pathways can occur, catalyst can diffuse into both chambers of the electrochemical cell, and mechanistic study of molecular electrocatalysts presents numerous challenges. To avoid these difficulties, molecular catalysts can be immobilized on an electrode surface. While appealing, catalyst immobilization presents its own challenges. Most immobilization techniques require significant modification to the original catalyst synthesis, and may not be broadly applicable.

It is then difficult to determine the nature of the metal sites on the electrode, and the resulting catalyst activity may differ from that of the freely diffusing catalyst.

Figure 1.7: Overview of common strategies for surface attachment of molecular electrocatalysts.

Surface immobilization can be achieved by a number of approaches by using various types of catalyst-surface interactions, including both covalent and non-covalent attachment (Figure 1.7). Common covalent strategies include reduction of an aryl diazonium, Cucatalyzed alkyne-azide click reaction, and alkyne oxidation. Common non-covalent strategies include adsorption of phosphonates on metal oxide layers and adsorption of pyrene moieties onto graphitic carbon surfaces. Covalent attachment methods generally require the incorporation of reactive functional groups and harsh redox processes that may interfere with catalyst synthesis, while adsorption on metal oxide layers allow limited electrode materials to be used.

A number of electrocatalytic reactions relevant to the generation of chemical fuels from electricity have been demonstrated by surface-attached molecular catalysts. The hydrogen evolution reaction (HER) has been heavily studied, as it is the simplest fuelforming reaction. A broad number of attachment strategies have been demonstrated for HER by an immobilized catalyst.⁴⁶ The CO₂ reduction reaction (CO₂RR) has also been explored; the harsher and more reducing conditions required for CO₂RR have however limited the applicability of many strategies. Adsorption of pyrene-containing catalysts has been most broadly successful,^{47–50} although other strategies have been successfully demonstrated.^{51–57}

1.6 Chapter Summaries

Chapter 2 discusses an in-depth mechanistic study of the photoinduced, coppermediated cross-coupling of aryl thiols with aryl halides. In particular, I focus on the stoichiometric photochemistry and subsequent reactivity of a $[Cu^{I}(SAr)_{2}]^{-}$ complex (Ar = 2,6-dimethylphenyl). A broad array of experimental techniques furnish data consistent with a pathway in which a photoexcited $[Cu^{I}(SAr)_{2}]^{-*}$ complex undergoes SET to generate a Cu^{II} species and an aryl radical, which then couple through an in-cage radical recombination.

Chapter 3 discusses the surface attachment of a P_3^BFe complex to a carbon electrode, and the electrochemical generation of ammonia from N_2 by the surface-appended species. Synthetic modification of a previously-reported P_3^BFe complex by addition of three pyrene substituents onto the catalyst backbone allows non-covalent attachment onto a graphite surface. The resulting functionalized electrode shows good stability towards desorption under highly reducing conditions, and produces 1.4 equiv NH₃ per iron site. The data presented provide the first demonstration of electrochemical nitrogen fixation by a molecular complex appended to an electrode.

1.7 References

- Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. *Proc. Natl. Acad. Sci.* 2006, *103* (43), 15729–15735.
- Balzani, V.; Credi, A.; Venturi, M. Photochemical Conversion of Solar Energy. *ChemSusChem* 2008, 1 (1–2), 26–58.
- (3) Olah, G. A. Beyond Oil and Gas: The Methanol Economy. *Angew. Chem. Int. Ed.* **2005**, *44* (18), 2636–2639.
- J. Dunn, P. The Importance of Green Chemistry in Process Research and Development. *Chem. Soc. Rev.* 2012, 41 (4), 1452–1461.
- (5) Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. *Adv. Synth. Catal.* 2009, *351* (18), 3027–3043.
- (6) Chirik, P.; Morris, R. Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals. *Acc. Chem. Res.* **2015**, *48* (9), 2495–2495.
- Holland, P. L. Distinctive Reaction Pathways at Base Metals in High-Spin
 Organometallic Catalysts. *Acc. Chem. Res.* 2015, 48 (6), 1696–1702.
- Ullmann, F.; Bielecki, J. Ueber Synthesen in Der Biphenylreihe. Berichte Dtsch.
 Chem. Ges. 1901, 34 (2), 2174–2185.

- (9) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl–Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. *Chem. Rev.* 2002, *102* (5), 1359–1470.
- Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. *Angew. Chem. Int. Ed.* 2012, *51* (21), 5062–5085.
- (11) Beletskaya, I. P.; Cheprakov, A. V. The Complementary Competitors: Palladium and Copper in C–N Cross-Coupling Reactions. *Organometallics* 2012, *31* (22), 7753– 7808.
- (12) Thapa, S.; Shrestha, B.; K. Gurung, S.; Giri, R. Copper-Catalysed Cross-Coupling: An Untapped Potential. *Org. Biomol. Chem.* 2015, *13* (17), 4816–4827.
- (13) Horváth, O. Photochemistry of Copper(I) Complexes. *Coord. Chem. Rev.* 1994, 135–136, 303–324.
- (14) Harkins, S. B.; Peters, J. C. A Highly Emissive Cu₂N₂ Diamond Core Complex Supported by a [PNP]⁻ Ligand. J. Am. Chem. Soc. 2005, 127 (7), 2030–2031.
- Miller, A. J. M.; Dempsey, J. L.; Peters, J. C. Long-Lived and Efficient Emission from Mononuclear Amidophosphine Complexes of Copper. *Inorg. Chem.* 2007, *46* (18), 7244–7246.
- (16) Lotito, K. J.; Peters, J. C. Efficient Luminescence from Easily Prepared Three-Coordinate Copper(I) Arylamidophosphines. *Chem. Commun.* 2010, 46 (21), 3690–3692.

- (17) Deaton, J. C.; Switalski, S. C.; Kondakov, D. Y.; Young, R. H.; Pawlik, T. D.;
 Giesen, D. J.; Harkins, S. B.; Miller, A. J. M.; Mickenberg, S. F.; Peters, J. C. E-Type Delayed Fluorescence of a Phosphine-Supported Cu₂(μ-NAr₂)₂ Diamond Core: Harvesting Singlet and Triplet Excitons in OLEDs. *J. Am. Chem. Soc.* 2010, *132* (27), 9499–9508.
- (18) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Photoinduced Ullmann C–N Coupling: Demonstrating the Viability of a Radical Pathway. *Science* 2012, *338* (6107), 647–651.
- (19) Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. Copper Complexes of Anionic Nitrogen Ligands in the Amidation and Imidation of Aryl Halides. *J. Am. Chem. Soc.* **2008**, *130* (30), 9971–9983.
- (20) Chen, C.; Weng, Z.; Hartwig, J. F. Synthesis of Copper(I) Thiolate Complexes in the Thioetherification of Aryl Halides. *Organometallics* **2012**, *31* (22), 8031–8037.
- (21) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. J. Am. Chem. Soc. 2010, 132 (17), 6205–6213.
- Monnier, F.; Taillefer, M. Catalytic C–C, C–N, and C–O Ullmann-Type Coupling Reactions. *Angew. Chem. Int. Ed.* 2009, 48 (38), 6954–6971.
- (23) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Direct Observation of Cu^I/Cu^{III} Redox Steps Relevant to Ullmann-Type Coupling Reactions. *Chem. Sci.* **2010**, *1* (3), 326–330.

- (24) Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles. *Angew. Chem. Int. Ed.* **2013**, *52* (19), 5129–5133.
- (25) Ziegler, D. T.; Choi, J.; Muñoz-Molina, J. M.; Bissember, A. C.; Peters, J. C.; Fu, G.
 C. A Versatile Approach to Ullmann C–N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes. J. Am. Chem. Soc. 2013, 135 (35), 13107–13112.
- (26) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. A New Family of Nucleophiles for Photoinduced, Copper-Catalyzed Cross-Couplings via Single-Electron Transfer: Reactions of Thiols with Aryl Halides Under Mild Conditions (0 °C). J. Am. Chem. Soc. 2013, 135 (25), 9548–9552.
- (27) Tan, Y.; Muñoz-Molina, J. M.; Fu, G. C.; Peters, J. C. Oxygen Nucleophiles as Reaction Partners in Photoinduced, Copper-Catalyzed Cross-Couplings: O-Arylations of Phenols at Room Temperature. *Chem. Sci.* **2014**, *5* (7), 2831–2835.
- (28) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. Photoinduced, Copper-Catalyzed Carbon–Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature. *J. Am. Chem. Soc.* 2015, *137* (43), 13902–13907.
- (29) Fowler, David; Coyle, Mhairi; Skiba, Ute; Sutton, Mark A.; Cape, J. Neil; Reis, Stefan; Sheppard, Lucy J.; Jenkins, Alan; Grizzetti, Bruna; Galloway, James N.; et al. The Global Nitrogen Cycle in the Twenty-First Century. *Philos. Trans. R. Soc. B Biol. Sci.* 2013, *368* (1621), 20130164.

- (30) Mus, F.; Crook, M. B.; Garcia, K.; Costas, A. G.; Geddes, B. A.; Kouri, E. D.;
 Paramasivan, P.; Ryu, M.-H.; Oldroyd, G. E. D.; Poole, P. S.; et al. Symbiotic
 Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. *Appl Env. Microbiol* 2016, 82 (13), 3698–3710.
- (31) Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. *Nat. Geosci.* **2008**, *1*, 636–639.
- (32) Recently, the possibility of producing ammonia from dihydrogen derived from water electrolysis has also been explored as a low-carbon alternative to steam reforming. However, this process Is extremely energy intensive and relies on a non-abundant platinum catalyst.
- (33) Singh, V.; Dincer, I.; Rosen, M. A. Chapter 4.2 Life Cycle Assessment of Ammonia Production Methods. In *Exergetic, Energetic and Environmental Dimensions*; Dincer, I., Colpan, C. O., Kizilkan, O., Eds.; Academic Press, 2018; pp 935–959.
- (34) Allen, A. D.; Senoff, C. V. Nitrogenopentammineruthenium(II) Complexes. *Chem. Commun. Lond.* 1965, 0 (24), 621–622.
- (35) Chatt, J.; Heath, G. A.; Richards, R. L. The Reduction of Ligating Dinitrogen to Yield a Ligating N₂H₂ Moiety. *J. Chem. Soc. Chem. Commun.* **1972**, *0* (18), 1010–1011.
- (36) Yandulov, D. V.; Schrock, R. R. Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center. *Science* 2003, *301* (5629), 76–78.
- (37) Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic Conversion of Nitrogen to Ammonia by an Iron Model Complex. *Nature* **2013**, *501* (7465), 84–87.
- (38) Roux, Y.; Duboc, C.; Gennari, M. Molecular Catalysts for N₂ Reduction: State of the Art, Mechanism, and Challenges. *ChemPhysChem* **2017**, *18* (19), 2606–2617.

- (39) Pickett, C. J.; Talarmin, J. Electrosynthesis of Ammonia. *Nature* 1985, *317* (6038), 652.
- (40) Al-Salih, T. I.; Pickett, C. J. Electron-Transfer Reactions in Nitrogen Fixation. Part 1. The Electrosynthesis of Dinitrogen, Hydride, Isocyanide, and Carbonyl Complexes of Molybdenum: Intermediates, Mechanisms, and Energetics. J. Chem. Soc. Dalton Trans. 1985, 6, 1255–1264.
- (41) Pickett, C. J.; Ryder, K. S.; Talarmin, J. Electron-Transfer Reactions in Nitrogen Fixation. Part 2. The Electrosynthesis of Ammonia: Identification and Estimation of Products. J. Chem. Soc. Dalton Trans. 1986, 7, 1453–1457.
- (42) Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Roddy, J. P.; Peters, J. C. Catalytic
 N₂-to-NH₃ Conversion by Fe at Lower Driving Force: A Proposed Role for
 Metallocene-Mediated PCET. ACS Cent. Sci. 2017, 3 (3), 217–223.
- (43) Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Peters, J. C. Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring pK_a Effects and Demonstrating Electrocatalysis. *J. Am. Chem. Soc.* 2018, *140* (19), 6122–6129.
- (44) Sherbow, T. J.; Thompson, E. J.; Arnold, A.; Sayler, R. I.; Britt, R. D.; Berben, L. A. Electrochemical Reduction of N₂ to NH₃ at Low Potential by a Molecular Aluminum Complex. *Chem. Eur. J.* 2019, 25 (2), 454–458.
- (45) Markovic, N. M. Electrocatalysis: Interfacing Electrochemistry. *Nat. Mater.* 2013, *12*(2), 101–102.
- Bullock, R. M.; Das, A. K.; Appel, A. M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. *Chem. Eur. J.* 2017, 23 (32), 7626–7641.

- (47) Axet, M. R.; Dechy-Cabaret, O.; Durand, J.; Gouygou, M.; Serp, P. Coordination Chemistry on Carbon Surfaces. *Coord. Chem. Rev.* 2016, *308*, 236–345..
- (48) Kang, P.; Zhang, S.; Meyer, T. J.; Brookhart, M. Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes. *Angew. Chem. Int. Ed.* **2014**, *53* (33), 8709–8713.
- (49) Maurin, A.; Robert, M. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO₂-to-CO Conversion in Water. J. Am. Chem. Soc. 2016, 138 (8), 2492–2495.
- (50) Blakemore, J. D.; Gupta, A.; Warren, J. J.; Brunschwig, B. S.; Gray, H. B. Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production. J. Am. Chem. Soc. 2013, 135 (49), 18288–18291.
- (51) Rosser, T. E.; Windle, C. D.; Reisner, E. Electrocatalytic and Solar-Driven CO₂
 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous
 TiO₂. Angew. Chem. Int. Ed. 2016, 55 (26), 7388–7392.
- (52) Yao, S. A.; Ruther, R. E.; Zhang, L.; Franking, R. A.; Hamers, R. J.; Berry, J. F. Covalent Attachment of Catalyst Molecules to Conductive Diamond: CO₂ Reduction Using "Smart" Electrodes. *J. Am. Chem. Soc.* 2012, *134* (38), 15632–15635.
- (53) Kramer, W. W.; McCrory, C. C. L. Polymer Coordination Promotes Selective CO₂
 Reduction by Cobalt Phthalocyanine. *Chem. Sci.* 2016, 7 (4), 2506–2515.
- (54) Goff, A. L.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Métayé, R.; Fihri, A.;
 Palacin, S.; Fontecave, M. From Hydrogenases to Noble Metal–Free Catalytic
 Nanomaterials for H₂ Production and Uptake. *Science* 2009, *326* (5958), 1384–1387.

- (55) Rodriguez-Maciá, P.; Dutta, A.; Lubitz, W.; Shaw, W. J.; Rüdiger, O. Direct Comparison of the Performance of a Bio-Inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes. *Angew. Chem. Int. Ed.* 2015, *54* (42), 12303–12307.
- (56) Zhanaidarova, A.; Moore, C. E.; Gembicky, M.; Kubiak, C. P. Covalent Attachment of [Ni(Alkynyl-Cyclam)]²⁺ Catalysts to Glassy Carbon Electrodes. *Chem. Commun.* 2018, *54* (33), 4116–4119.
- (57) Zhanaidarova, A.; Ostericher, A. L.; Miller, C. J.; Jones, S. C.; Kubiak, C. P. Selective Reduction of CO₂ to CO by a Molecular Re(Ethynyl-Bpy)(CO)₃Cl Catalyst and Attachment to Carbon Electrode Surfaces. *Organometallics* **2019**, *38* (6), 1204–1207.