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ABSTRACT

Every day, massive amounts of data are gathered, exchanged, and used to run
statistical computations, train machine learning algorithms, and inform decisions
on individuals and populations. The quick rise of data, the need to exchange and
process it, to take data privacy concerns into account, and to understand how it affects
decision-making, introduce many new and interesting economic, game theoretic, and
algorithmic challenges.

The goal of this thesis is to provide theoretical foundations to approach these
challenges. The first part of this thesis focuses on the design of mechanisms that
purchase then aggregate data from many sources, in order to perform statistical tasks.
The second part of this thesis revolves around the societal concerns associated with
the use of individuals’ data. The first such concern we examine is that of privacy,
when using sensitive data about individuals in statistical computations; we focus our
attention on how privacy constraints interact with the task of designing mechanisms
for acquisition and aggregation of sensitive data. The second concern we focus
on is that of fairness in decision-making: we aim to provide tools to society that
help prevent discrimination against individuals and populations based on sensitive
attributes in their data, when making important decisions about them. Finally, we end
this thesis on a study of the interactions between data and strategic behavior. There,
we see data as a source of information that informs and affects agents’ incentives; we
study how information revelation impacts agent behavior in auctions, and in turn how
a seller should design auctions that take such information revelation into account.
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C h a p t e r 1

INTRODUCTION

Nowadays, data is everywhere: with quintillions of bytes produced and treated every
day, more than 90 percent of the world’s data has been created in the past couple
years. In the current age of automation, data is gathered and used extensively in
computations that can serve many purposes. This data can be used to compute
statistics on populations; the U.S. Census Bureau, for example, aims to collect,
analyze, and release useful information about the U.S. population; a public health
administration may want to collect data on individuals in a population to output
statistics on the general health of said population. This data is also often used to
train the plethora of machine learning algorithms that are now part of our daily
lives, such as the ones used by online recommendation systems, or more recently
by self-driving cars; for instance, Netflix recommends specific movies or TV shows
to users, and Yelp recommends restaurants one may like, using machine learning
algorithms that are trained and make decisions based on user data and search or watch
histories. Finally, this data can be used to better understand individuals’ behavior,
and how to best respond to this behavior; the ability to understand and rationalize
how competitors and advertisees act in ad auctions is key to refining one’s own
bidding strategies in such auctions.

Some companies, such as Google or Facebook, hold enormous amounts of data from
their customers or users. Other companies may be looking to build or complement
their data-sets by buying and aggregating data from various sources. This supply and
demand of data gives rise to interactions in which data is sold and exchanged. Yet
exchange of data differs from exchange of physical goods in many ways. Data may
be expensive to produce but is cheap to replicate; data from various sources can be
aggregated to obtain higher quality, more informative data; data can inform decisions
and influences agent behavior. In this regard, much of the current understanding
of the economic and algorithmic aspects of markets for physical goods does not
transfer to markets for data. Further, many societal concerns arise when using
data about individuals in computations and in decision-making. Data privacy is of
particular importance; one may want to perform computations that use sensitive
data (think, for example, of medical data), while guaranteeing the privacy of the
individuals whose data is used. Another crucial concern is fairness: when attributes
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of individuals or populations inform important, life-altering decisions about them,
can we guarantee that fair decision-making, that does not unjustly discriminate based
on these attributes? Therefore, the rise of data, the need to exchange and process it,
and to understand how it affects decision-making, are introducing many new and
interesting economic, game theoretic, and algorithmic challenges.

The goal of this thesis is to examine the challenges related to the exchange and use of
data, and to provide theoretical foundations to address these challenges. We begin
by examining the design of markets for data acquisition; in particular, we provide
mechanisms that can be used to purchase and aggregate data from companies or
individuals, and give theoretical guarantees on their performance. We then examine
the privacy and fairness concerns that arise from the use of data. We first look at
privacy and analyze how imposing formal privacy constraints on data use impacts
the design of markets for data. Then, we shift our attention to fairness; there, we
attempt to identify possible sources of disparities between how different populations
or individuals are treated, and aim to understand which interventions provably reduce
these inequalities. Finally, we conclude this thesis on a study of the interactions
between data and strategic behavior. We consider two aspects of these interactions;
on the one hand, we study data as a source of information that affects how agents
behave in strategic settings, and how such information impact market design; on
the other hand, we briefly investigate how data about agent behavior can be used to
understand preferences and utilities of said agents.

1.1 Overview of this Thesis
This thesis is divided in three parts. The first part focuses on markets for data,
in particular on mechanism design for data acquisition. The second part studies
the societal concerns that arise from the use and exchange of data. The third part
examines the interaction between data and strategic behavior.

Markets for data
A fundamental challenge in the study of data markets is to develop new algorithms
to gather and aggregate data from many agents, in order to learn useful lessons from
this data. In this thesis, we will focus on data acquisition from strategic agents; i.e.,
informally, agents that act in their own best interest, and may be looking to “game”
the algorithm to obtain their preferred outcomes. For example, consider a data
analyst looking to buy a data point from a single data provider; the analyst wants to
compensate the provider for his cost for producing and reporting his data point, but
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simultaneously is on a budget and is looking to minimize his payment to the provider
in exchange for the data point. A simple algorithm to solve this problem is to ask
the data provider to report his cost for producing or releasing his data point, and
to pay the agent exactly this cost. A strategic agent, however, may game this naive
algorithm by over-reporting his cost, so as to increase the payment he receives from
the analyst and pocket the surplus. It is crucial to design algorithms for acquiring
data that are robust to such strategic behavior, while meeting computational goals
and budget constraints that an analyst may have.

The problem of designing algorithms for exchanging goods in the presence of strategic
behavior falls under the umbrella of mechanism design (Mas-Colell et al., 1995;
Nisan et al., 2001; Nisan et al., 2007). However, classical market and mechanism
design mostly applies to physical goods, and does not fully capture the complexity
of markets for data. In particular, an agent’s value for a data point usually depends
on additional information available to this agent, and data purchasing decisions
must be made while taking into account how this data will be aggregated and what
computation(s) will be performed. Further, data usually comes from a variety of
sources, and may come in different forms, qualities, and at different costs; as such,
one of the main challenges that this thesis seeks to address is that of developing
mechanisms that must simultaneously decide i) what type of data to buy from which
agents, ii) how to compensate agents for their data, and iii) how to aggregate data
from various sources. This is the object of Chapters 3 and 4 of the current document.

In Chapter 3—based on joint work with Rachel Cummings, Katrina Ligett, Aaron
Roth, and Steven Zhiwei Wu, published at ITCS 2015 (Cummings et al., 2015b)—we
take the point of view of an analyst that must choose which data points to buy,
how to aggregate them, and how to compensate data providers for the cost they
incur by producing and/or providing their data point. More precisely, the analyst
has a choice of what quality (or equivalently, accuracy) of data to purchase from
each provider. Each quality level has a cost associated with it, reported by the data
provider. The analyst’s problem is to choose which quality of data to buy from each
provider, so as to combine his purchased data into an aggregate estimator that meets
a pre-specified accuracy goal, while minimizing the costs incurred by the providers.
We provide a mechanism for this problem that is robust to agents acting strategically
and misreporting their costs for producing and releasing data.

The work of Chapter 3 considers situations in which the data point provided by
an agent is statistically independent of his cost for producing or revealing this data
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point. There are, however, many practical situations in which this is seldom the
case. Consider the following: a public health organization wants to understand
what fraction of a given population has HIV, and does so by asking individuals in
the population to report their HIV status. An individual incurs a privacy cost for
revealing his health status to the public health organization. In this setting, agents
with HIV have more sensitive data than their healthy counterparts, and as such are
generally expected to incur higher privacy costs for revealing their data points. A
single-minded public health organization focused on obtaining as many data points
for as cheap as possible, and in turn unwilling to pay for costly data points, runs the
risk of disproportionately aggregating data from agents who do not have HIV, and
vastly under-estimating the prevalence of HIV in the considered population. Another
situation of interest could be the following: an analyst asks workers on Amazon
Mechanical Turk to label pictures, that will be later be used to train a neural network;
the accuracy and quality of the labels provided by a worker is correlated with how
much time and effort, and hence cost, he put into labelling the data.

Chapter 4—based on joint work with Yiling Chen, Nicole Immorlica, Brendan Lucier
and Vasilis Syrgkanis that appeared at EC 2018 (Chen et al., 2018a)—explicitly
takes correlation between data and costs into account, by building on the model
of Roth et al. (2012). In this chapter, we consider an analyst who wants to compute
an unbiased statistic of interest, by purchasing data from agents, under a budget
constraint, when the data and cost of the agents are correlated in an unknown fashion.
We design a mechanism that optimizes the worst-case mean-squared error of the
estimation, where the worst-case is over the unknown correlation between costs and
data. We characterize the form of the optimal mechanism in closed-form, and further
extend our results to acquiring data for parameter estimation in regression analysis.

Societal concerns from the use of data
As recent events and developments have shown, when using possibly sensitive data
about individuals or populations, important societal concerns and considerations
arise. This thesis focuses on two such societal concerns: data privacy, and fairness
in decision-making.

Privacy A first, crucial concern is privacy: when using sensitive, individual data for
a given computation, one should ensure that the outcome of said computation does
not reveal much information about the input data; a well intentioned analyst may want
to understand statistics on HIV in a given population, but the resulting computation
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must not allow an adversary to identify whether any particular individual, in fact,
has HIV; a platform like Netflix may want to leverage user data to improve their
recommendation system, but must make sure that this data cannot be used to recover
any single user’s real-life identity. The following question then arises: how does one
compute useful, informative statistics from agents’ data while still providing them
with privacy guarantees?

Luckily, this is exactly what Differential Privacy strives to achieve. Differential
privacy is a widely studied notion of privacy introduced by Dwork et al. (2006); it
gives theoretical, worst-case guarantees on how much information can be learned
about any single individual in a computation, from observing the output of said
computation. More precisely, differential privacy ensures that if a single agent in
the computation were to modify his data point, the outcome of the computation
would be almost unchanged (in distribution). Differential privacy is not only a strong
privacy guarantee that has received a lot of attention in the academic computer
science literature (for a survey of differential privacy, see the book of Dwork et al.
(2014)), but also a privacy guarantee that the technology industry—in particular,
Google (Erlingsson et al., 2014) andApple (Greenberg, 2016)—aswell as government
agencies such as the U.S. Census Bureau (Abowd, 2018), are starting to adopt.

While there is a long line of work on differential privacy, its interactions with
economic considerations have not been studied as carefully. Privacy is an important
concern not only in the context of use of sensitive data, but also in the context of
data acquisition. The level of differential privacy provided to an agent affects the
privacy cost incurred by said agent to reveal his sensitive data, and an analyst must
balance out computational accuracy and payments to agents: too much privacy, and
the agents’ data becomes less and less informative, making it harder to meet accuracy
goals of any desired computation; too little privacy, and the agents’ privacy costs
become high, leading to an analyst lacking budget to compensate agents for their data.
Such issues are complicated by the fact that strategic agents may have an incentive to
misreport their privacy costs, should the analyst not appropriately design his data
acquisition mechanism.

Understanding trade-offs between accuracy and payments, in the presence of strategic
behavior, is the object of Chapter 5. There, we formally define the notion of
differential privacy, provide the reader with algorithms that guarantee data is treated
in a differentially private manner, and show how the results of Chapter 3—based on
joint work with Rachel Cummings, Katrina Ligett, Aaron Roth and Steven Z. Wu
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(Cummings et al., 2015b)—extend to data acquisition for sensitive data, when agents
are given differential privacy guarantees, and compensated for any remaining privacy
costs they incur.

Fairness A second fundamental concern is fairness: often, data on agents is used to
make important decisions; a bank may use loan applicants’ features to decide whether
to approve loans; algorithms such as COMPAS are used by the criminal justice
system to estimate chances of recidivism. When crucial, life-changing decisions
must be made based on agents’ features, it is of utmost importance that such decisions
are made in a fair, non-discriminatory manner.

However, the current status quo is that many decision-making algorithms are, in
fact, discriminatory. This could be due to a variety of reasons: decision-making
algorithms may be trained on discriminatory data, whose bias they learn to mimic; a
lack of data about the performance of a disadvantaged population in certain jobs,
due to the fact that said population has been historically prevented from accessing
such jobs, may lead employers to not be willing to hire from said population; a
decision-maker himself may be, consciously or unconsciously, biased towards or
against certain populations or individual profiles.

Examples of disparities are numerous in everyday life. Loan data is known to be
historically biased against minorities (Cohen-Cole, 2011) which in turns leads to
disparities in how loan approval decisions are made across populations. COMPAS,
a widely used tool to assess a defendant’s risk of recidivism, and to inform crucial
decisions about which defendants should be released and which should remain in jail,
has been shown to discriminate against minorities by over-estimating recidivism risk
for minority defendants while under-estimating risk for white defendants (Angwin
et al., 2016).

It is therefore essential to provide algorithmic tools to society that aim to prevent
various individuals or populations from being treated unfairly based on sensitive
attributes such as gender or race, and to correct for disparate treatment of populations.
A first step to do so, is to understand what causes disparities in treatment, and
how well current algorithms and interventions perform when it comes to alleviating
these disparities. Chapter 6—based on joint work with Nicole Immorlica and
Katrina Ligett, and published at FAT∗ 2019 (Immorlica et al., 2019)—focuses on
unfairness in university admissions. The first contribution of this chapter is to identify
unequal access to strategic signaling as a source of unfairness. We then quantify this
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unfairness, and show how classical interventions (for instance, having students take a
standardized exam) may have the undesirable outcome of increasing the disparities
between students in schools with unequal access to signaling.

Fairness in decision-making must also be sought with long-term considerations
taken into account. In many practical settings, decisions made today affect future
decision-making, either because they impact the priors and information available to
decision-making parties further down the pipeline, or simply because they restrict
the pool of agents or data future algorithms will make decisions on. This is the
object of joint work with Sampath Kannan and Aaron Roth (Kannan et al., 2019);
we study whether and—when possible— how a school can influence decisions from
other entities down the job market pipeline, and guarantee that similar students
from different populations will be treated equivalently; we only allow the school
to control its own admission and grading policies, and study the effect of setting
different admission rules (effectively, affirmative action) for different populations
on long-term fairness. For length reasons, we omit the details of this work in the
current thesis, and refer the reader to the publicly available version of this work.

Data and strategic behavior
A last important challenge that this thesis aims to address is to understand how data
explains and informs strategic behavior. We divide this discussion in two parts. The
first part aims to understand the effect of information revelation on mechanism design
and strategic behavior, while the second part focuses on the problem of inferring
utilities and preferences from behavioral data.

Effect of information onmechanism design and strategic behavior To begin with,
data is a source of information that influences the behavior of strategic agents. In
many real-life mechanism design settings and auctions in which a seller aims to sell
goods to a set of agents (or, in the current context, “bidders”), said bidders may have
incomplete information on how much they even value these goods in the first place.
Consider, for example, an auction for a piece of land; a bidder may have incomplete
information about how fertile the land is, or how much oil can be extracted, and
hence about how much he can expect to benefit from said land. In online ad auctions,
how much an advertiser can hope to profit from an ad depends on whether the ad
reaches a relevant target audience; an advertiser participating in an ad auction for
a specific advertising slot on, for example, Google, may be uncertain about what
users will see the ad, and therefore may have an incomplete understanding of his
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own value for said advertising slot.

However, in many such settings, auxiliary information about the good for auction
may be available to the agents, outside of the control of the auctioneer. Geological
information about a given piece of land might be publicly available; an advertiser in
an ad auction may be able to identify characteristics of the population of advertisees
via cookie data. As such, it is important to understand how third-party data influences
how agents behave in auctions and mechanism design settings, and how this affects
the seller’s auction design problem.

We do so in Chapter 7, based a manuscript with Yang Cai, Federico Echenique, Hu
Fu, Katrina Ligett, and Adam Wierman (Cai et al., 2018). This chapter builds on
a mechanism design setting introduced by Daskalakis et al. (2016), where bidders
have incomplete information about the item for sale, that could be of many possible
“types”. We assume that, in addition to the bidders and the seller found in the work
of Daskalakis et al. (2016), there is a third-party source of information that has the
ability to reveal information to the bidders about the identity of the item for sale. We
aim to understand how the revenue guarantees of a widely used and studied class
of simple mechanisms, which are known to achieve a constant-approximation of
the revenue in the absence of auxiliary information, translate to mechanism design
settings with auxiliary information. Our main contribution is to show that, in fact,
this revenue degrades significantly: when using simple mechanisms, a seller can
only guarantee a logarithmic (in the number of possible types) fraction of the optimal
achievable revenue in the presence of third-party information. Our results are shown
to hold in the worst-case over the auxiliary information, but also when the data
provider is strategic and trying to optimize some objective (for example, maximizing
his own utility from selling their information to bidders).

Inferring strategic incentives from behavioral data Finally, data on strategic
agents’ behavior reveals information about their utilities and preferences, and one
may be interested in understanding just how much knowledge can be acquired in
this manner and how it can be used to predict future behavior. There are several
reasons for doing so. First, understanding how much information can be learned
from observing agent behavior is key to preventing this inferred knowledge from
being misused. Second, the ability to compute counterfactuals of how agents would
react under new conditions is useful in predicting future agent behavior, and can
be leveraged to incentivize self-interested agents to act in a desired (for instance,
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socially beneficial) manner.

Inference from observed behavior is the object of joint work with Venkat Chan-
drasekaran and Katrina Ligett (Chandrasekaran et al., 2016). There, we study the
problem of using behavioral data to understand agents’ preferences and payoffs,
in a game of complete information (i.e., agents perfectly understand their own
valuations). We assume an analyst observes agents’ actions but does not know the
game the agents are playing and their payoff from each action. Similarly, in joint
work with Vasilis Syrgkanis and Elie Tamer (Syrgkanis et al., 2017), we provide
algorithmic tools to recover the distribution of the common value in a common
value auction with signaling from observing the bidding strategies of the agents,
under no assumption on the information structure on the common-value available
to the bidders. Both works assume that agents act according to variants of the
widely studied concept of Nash equilibrium (Nash et al., 1950), and leverage linearity
properties of these equilibrium concepts to provide convex programming-based,
computationally efficient frameworks to recover the parameters of interest. We omit
both Chandrasekaran et al. (2016) and Syrgkanis et al. (2017) in the current thesis,
and refer the reader to their publicly available versions.
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C h a p t e r 2

PRELIMINARIES: GAME THEORY AND MECHANISM DESIGN

For simplicity of notations, in this chapter, we let vi denote the i-th entry, and v−i

denote the vector of all entries except the i-th entry, for any vector v.

2.1 Strategic Behavior, Game Theory, and Equilibrium Play
Much of this thesis focuses on economic and algorithmic challenges in exchanging
and using data, in the presence of strategic agents; i.e., agents who act in their own,
best interest. In this section, we provide a formal, theoretical basis to study the
behavior of such agents.

To do so, we will first introduce the concept of utility of an agent. A utility function is
a function that measures an agent’s preferences over a set of alternatives, by assigning
a numerical value to each alternative. The numerical value associated to a given
alternative quantifies how much an agent likes said alternative; the higher the utility,
the more appealing the corresponding alternative is. A strategic agent is an agent
who aims to make decisions that maximize his utility.

Consider, for example, an individual who wants to buy a new phone. Several phones
may be available to the individual, and he must decide which one to buy. The
individual may make his purchasing decision based on a combination of several
considerations, such as how much he values different features of different phones, or
how much he has to pay for a given phone. This combination of considerations can
be encoded in a utility for each phone; the higher the utility, the better the trade-off
between features and price is from the individual’s point of view. A strategic agent
buys the phone that maximizes his utility among all alternatives.

In the above example, we considered a setting with a single agent that must pick his
preferred alternative, or outcome. It is often the case, however, that the alternative or
outcome obtained by an agent, is a combination of his own actions and decisions,
but also of the actions and decisions of several agents. Consider, for example, what
is commonly referred to as an “entry game”: several firms must decide whether to
enter a market; the revenue, hence utility, that each firm expects to make on this
market is a function of how many competitors this firm will face, and thus of how
many other firms also decide to enter the market.
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Such situations, in which agents aim to make decisions that are in their best interest,
but where the outcome they obtain is a function of decisions made by other agents,
are called games. Formally, a game can be defined as follows:

Definition 2.1.1 ((Normal-Form) Game). A game G = (P,A,U) consists of:

• A set of players P, of cardinality n.

• A collection of action sets A = (A1, . . . ,An). Each player i ∈ P has an
action set Ai, and can play an action ai ∈ Ai.

• A collection of utility functionsU = (u1, . . . , un). Each player i ∈ P has utility
function ui : A1 × A2 × . . . × An → R. A player’s utility ui(ai, a−i) depends
not only on his own action ai, but also on the actions a−i of the other players.

In the above entry game example, a player or agent is a firm, an action is to either
enter the market, or not enter it, and an agent’s utility is a measure of the profit he
expects to make by entering (or not entering) the market.

Agent i participates in the game by choosing a strategy ζi, which is a probability
distribution over actions inAi, i.e. agents are allowed to randomize over their action
sets. A strategy profile ζ = (ζ1, . . . , ζn) is a n-tuple of strategies, one for each player.
In this thesis, we model strategic agents as choosing their strategies so as to form a
Nash equilibrium of the game they are playing:

Definition 2.1.2 (Nash Equilibrium). A strategy profile ζ is a Nash equilibrium of
game G = (P,A,U) if and only if, for every player i, and for all âi ∈ Ai,

E(ai,a−i)∼ζ [ui (ai, a−i)] ≥ Ea−i∼ζ−i [ui (âi, a−i)] .

At a Nash equilibrium, every agent plays a strategy that maximizes his own utility,
given the strategies chosen by the remaining agents: i.e., ζi is the utility-maximizing
strategy for agent i when the other agents follow strategies ζ−i. Informally, a Nash
equilibrium is an equilibrium in which every player’s strategy is a best response to
the strategies of the remaining players.

To compute a Nash equilibrium of a (normal-form) game, we have to make the
implicit assumption that the utility function ui of every player is publicly known.
This is often not the case. In an auction, for example, how much a given agent values
an item for sale may only be known to this agent; in data acquisition settings, the
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privacy cost that an individual incurs for revealing his data to an analyst is generally
not known to other agents, nor to the analyst. To model such situations, we assume
that an agent i has a private type ti ∈ T , such that his utility function depends on this
type. In such cases, an agent’s strategy is allowed to depend on his type, and we
denote by ζi(ti) the strategy of player i when his type is ti.

Such incomplete information settings can typically be dealt with in several manners.
One possibility is to assume agents behave according to stronger equilibrium
concepts, such as dominant-strategy equilibria. A dominant strategy equilibrium
is an equilibrium in which each agent’s strategy is a best response to any possible
behavior of the remaining agents.

Definition 2.1.3 (Dominant-Strategy Equilibrium). A strategy profile ζ is a dominant
strategy equilibrium if and only if, for every player i, for all ζ−i(t−i) and for all
âi ∈ Ai,

E(ai,a−i)∼ζ(t) [ui (ai, a−i)] ≥ Ea−i∼ζ−i(t−i) [ui (âi, a−i)] .

In Chapter 3, we consider a setting where the agents’ types are private; there, the
mechanism designer assumes agents participate in his mechanism and decide how to
report their types according to a dominant-strategy equilibrium.

Another option is to make distributional assumptions on agent’s types. It is common
to make the assumption that the vector of agents’ types t is taken from a known (joint)
distribution F, also called “prior”. In Chapters 4 and 7, we allow the mechanism
designer to make distributional assumptions on the agents’ types, and to use such
priors to inform the design of his mechanism. In such settings, one can consider
agents acting according to the concept of Bayes-Nash equilibrium. Informally, a
Bayes-Nash equilibrium is an equilibrium in which each agent i’s strategy is a best
response to every other agent’s strategy, in expectation over the other agents’ types.

Definition 2.1.4 (Bayes-Nash Equilibrium). A strategy profile ζ is a Bayes-Nash
equilibrium if and only if, for every player i, and for all âi ∈ Ai,

E(ai,a−i)∼ζ,t∼F [ui (ai, a−i) |ti] ≥ Ea−i∼ζ−i,t∼F [ui (âi, a−i) |ti] .

Remark 2.1.5 (Dominant-strategy vs Bayes-Nash). Note that every dominant-
strategy truthful equilibrium of a given game is also a Bayes-Nash equilibrium of the
same game. Generally, the converse is not true; however, in settings where every
agent’s utility is a function of only his own type and action (as in Chapter 4), or in
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settings where there is a single agent participating in the game (as in Chapter 7),
every Bayes-Nash equilibrium is a dominant-strategy truthful equilibrium of the
considered game.

2.2 Mechanism Design
Mechanism design takes an engineering approach to game theory, by influencing and
designing incentives and utility functions of strategic agents, so as that it is in their
best interest to work towards the objective the designer wants to achieve. While game
theory aims to understand how players act within the rules of a game, mechanism
design strives to design the rules of the game to incentivize certain behaviors. A
mechanism is defined as follows:

Definition 2.2.1 (Mechanism). A mechanism is a (randomized) mapping from
players’ actions to outcomes that belong to a set Ω:

M : A1 × . . . × An → Ω.

In this thesis, we restrict our attention to direct revelation mechanisms, which are
mechanisms in which the available actions are restricted to reporting a (any) type;
i.e. the action sets are given by Ai = T . This can be shown to be without loss of
generality, i.e. any mechanism can be implemented as a direct-revelation mechanism,
by the Revelation Principle (Myerson, 1981). A direct revelation mechanism can
also often be implemented as a menu of options, such that the mechanism designer
lets agents pick their preferred option from said menu; we will do so in Chapters 4
and 7.

For instance, consider an analyst who wants to purchase data from individuals or
organizations, given a limited budget, in order to compute a population statistic. To
do so, the analyst can run a direct revelation mechanism. The mechanism first asks
each agent to report his cost for providing his data point to the analyst. Then, the
mechanism decides whether to buy data from each agent according to an allocation
rule, how to compensate each agent for his data according to a payment rule, and
how to aggregate the data acquired from the agents. Both the allocation and the
payment rules are functions of the collection of agents’ reported costs, and the design
of these rules controls the utilities the agents obtain when reporting costs to the
mechanism. In turn, the reported costs affect which and how many data points a
budget-constrained analyst is going to acquire, hence the outcome of the analyst’s
computation. The analyst may want to optimize some function of this outcome (for
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example, its accuracy), under his budget constraint. In Part 2, we focus on the design
of such mechanisms for data acquisition and aggregation.

Typically, several desirata are expected to hold for direct-revelation mechanisms:
it should be in each agent’s best interest i) to participate in the mechanism, and
ii) to report his true type to the mechanism, should he decide to participate in the
mechanism. This first property is called individual rationality, while the second
property is referred to as incentive compatibility, or truthfulness. These properties
ensure that a mechanism designer can properly understand the agents’ incentives, and
anticipate how they will act in the mechanism, so that the outcome of the mechanism
aligns with the designer’s objective. We give the definitions for the dominant-strategy
versions (i.e., that protect an agent against any possible reports by the other agents)
of these properties below:

Definition 2.2.2 (Dominant-Strategy Individual Rationality (IR)). A mechanismM
is individually rational if and only if, for all players i, and for all reports of the other
agents t−i,

EM [ui(t)] ≥ 0,

where ui is the (possibly randomized) utility of agent i for participating in (possibly
randomized) mechanismM.

Definition 2.2.3 (Dominant-Strategy Incentive Compatibility (IC)). A mechanism
M is incentive-compatible if and only if, for every player i, for any true type ti ∈ T

for agent i, for every possible misreport t̂i ∈ T for agent i, and every possible vector
of reports t−i ∈ Tn−1 for the remaining agents,

EM [ui(t)] ≥ EM, t−i∼F
[
ui(t̂i, t−i)

]
.

In Chapter 3, we make no assumption on the agents’ types, and therefore immediately
aim to design a dominant-strategy IC and IR mechanism for data acquisition. In
Chapter 4, our mechanism is dominant strategy IC and IR, despite the availability
of distributional priors on the agent’s types: this is by virtue of an agent’s utility
from participating in the mechanism being a function only of his own actions, and
not of the other agents’ actions, as per Remark 2.1.5. In Chapter 7, our mechanism
is also dominant strategy IC and IR, due to the presence of a single bidder in the
mechanism, once again as per Remark 2.1.5.
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C h a p t e r 3

ACQUISITION OF COSTLY DATA FOR STATISTICAL
ESTIMATION

Rachel Cummings, Katrina Ligett, Aaron Roth, Zhiwei Steven Wu, and Juba Ziani
(2015). “Accuracy for Sale: Aggregating Data with a Variance Constraint”. In:
Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pp. 317–324. J. Ziani is the primary author, came up with and
proved most of the results, and contributed to writing the manuscript. doi:
10 . 1145/ 2688073 . 2688106. url: http :/ / doi . acm. org / 10. 1145 /
2688073.2688106.

3.1 Introduction
In this chapter, we consider a data analyst who wishes to compute an unbiased
estimate of some underlying population statistic, by buying and aggregating data from
multiple strategic data providers. Each data provider may experience different costs
for different levels of data accuracy (variance), and may strategically price access to
his data if doing so would benefit him. The analyst must design a mechanism for
choosing which level of accuracy to purchase from each provider, and for combining
the purchased data into a single aggregate quantity that forms an unbiased estimator
of the statistic of interest. Her goal is to do so at minimum cost, given some target
level of overall accuracy.

An example of scenario captured by this model is the following: each data provider
might be an organization (such as a university) that has the ability to collect a
random sample of varying size from a sub-population that it controls (e.g., students,
professors, etc). Under the assumption that the individuals in the data provider’s
populations are sampled i.i.d. from some underlying distribution, the variance of
the estimate that they offer is inversely proportional to the number of individuals
that they sample. Here, the costs for different levels of variance correspond to the
costs required to recruit different numbers of participants to a study. These costs
may differ between organizations, and behave in complicated ways: for example, the
marginal cost for each additional sample might be decreasing (if there are economies
of scale—for example by advertising on a campus TV station), or might be increasing
(for example, after exhausting the undergraduate population at a university, obtaining
additional samples may require recruiting faculty, which is more difficult). Again,

http://dx.doi.org/10.1145/2688073.2688106
http://doi.acm.org/10.1145/2688073.2688106
http://doi.acm.org/10.1145/2688073.2688106
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because we allow data providers to report arbitrary cost schedules corresponding to
different variance levels, we need make no assumptions about the form that these
costs take.

Summary of contributions
We model the data analyst’s problem as a combinatorial optimization problem: From
each of the data providers, the analyst buys an unbiased estimator of the population
statistic of interest, for which she must choose a variance from a fixed, finite menu
of options. Importantly, by assuming the purchased estimators are unbiased no
matter what variance level is chosen, we are making the implicit assumption that
the sensitive data held by individuals is independent of their costs. We will do away
with this assumption in Chapter 4.

Given these purchased estimators, the data analyst may then take any convex
combination to obtain her final unbiased estimator of the underlying population
statistic. The choices made by the data analyst affect both the variance of the
final estimator that she derives, as well as the total payment that she must make.
This chapter considers the problem of finding the cheapest way of constructing an
estimator that has variance below some fixed desired level, specified in advance by
the data analyst.

Our main tool in solving this problem is linear programming. However, the solution
is not straightforward. First, our problem actually consists of two nested optimization
problems: we must choose a variance level for each of the estimators, and then we
must find the optimal weighted linear combination of these estimators. Rather than
solving these problems separately, we use the KKT conditions to derive a closed form
for the optimal weights to use in the linear combination of each of the estimators
as a function of their variance. This allows us to express the problem as a one-shot
optimization problem, with decision variables only for the choices of variance for
each estimator. Unfortunately, the natural fractional relaxation of this optimization
problem (in which the data analyst may fractionally choose different variance levels)
is non-convex. Instead, we consider a further (linear) relaxation of the constraint
in our problem, which matches the original constraint only for integer solutions.
We show that all optimal extreme points of the linear program that result from this
relaxation do in fact yield integer choices for all but at most one data provider, and
then show that if the number of data providers is sufficiently large, then rounding
the one fractional assignment to an integer assignment only marginally violates our
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target variance constraint.

We note that our algorithm chooses the minimum expected cost lottery over purchase
decisions from among a pre-specified feasible set of lotteries, and hence is maximal-
in-distributional-range (i.e. it outputs a lottery that maximizes expected welfare).
This means that when paired with VCG payments, truthful reporting of costs is
a dominant strategy for each of the data providers. (We recall that although we
allow data providers to misreport their costs, they cannot lie about their data or its
accuracy.)

In summary, we show the following theorem:

Theorem 3.1.1 (Informal). Given any finite menu of variance levels, and any feasible
aggregate variance level for the data analyst, there exists a dominant strategy truthful
mechanism that selects the minimum cost assignment of variance levels to providers,
and generates an unbiased linear estimator that satisfies the analyst’s variance
constraint up to an additive term that tends to 0 as the number of data providers
grow large.

Finally, we observe that VCG payments (although always truthful) do not guarantee
individual rationality in our setting, because these payments may fail to compensate
players for their cost for providing data. We prove an upper bound on the degree to
which individual rationality can be violated for any player, and hence can add a fixed
amount to the payment given to each player, to guarantee individual rationality for
all providers with sufficiently low minimum costs.

Related Work
A growing amount of attention has been placed on understanding interactions between
the strategic nature of data holders and the statistical inference and learning tasks
that use data collected from these holders.

The line of work considered in this thesis sees individuals as data holders who incur
a cost for providing their data point (this could be a cost for producing a data point,
or a privacy cost for revealing a sensitive data point), and may strategically misreport
these costs to the mechanism designer, but the data itself is verifiable (Ghosh et al.,
2015; Roth et al., 2012; Fleischer et al., 2012; Ligett et al., 2012; Nissim et al.,
2014; Cai et al., 2015; Abernethy et al., 2015; Chen et al., 2018c), i.e., agents do not
lie about their data when reporting it. The mechanism designer aims to optimize
the trade-off between costs incurred by the agents or payments to the agents, and
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accuracy of the desired computation. Chapters 3 and 4 of this thesis fall under this
line of work.

An important, related line of work looks at acquisition of unverifiable data points,
where agents may lie about their data. This line of work can be divided in two: one
part of this line of work does not use monetary payments, and leverages the fact that
the agents’ utilities, hence the way they manipulate their data, depend on the outcome
of the mechanism (Perote-Peña et al., 2003; Dekel et al., 2010; Meir et al., 2011;
Meir et al., 2012; Hardt et al., 2016a; Caragiannis et al., 2016; Dong et al., 2018;
Chen et al., 2018b); the other part of this line of work incentivizes truthful reporting
via payments (Ghosh et al., 2014; Cummings et al., 2015a; Kong et al., 2016b; Kong
et al., 2016a; Kong et al., 2018; Liu et al., 2016; Liu et al., 2017; Liu et al., 2018).

3.2 Model and Preliminaries
We consider an analyst who wishes to estimate the expected value µ of some statistic
on the underlying population. She has access to a set of n data providers, each of
which is capable of providing a data point, that is an unbiased estimate µi of the
statistic of interest, with different levels of variance E

[
(µi − µ)2

]
. The provider may

also experience some cost for computing the estimate at each variance level. The
analyst’s goal is to obtain an accurate unbiased estimate for µ, using the estimates
from the providers, while minimizing the social cost for computing such data.

We equip the analyst with a mechanism that offers a menu specifying a discrete,
finite range of possible variance levels 0 < v1 < v2 < . . . < vm < ∞, and asks each
provider i to report back a set of costs {ci j}mj=1 for computing the estimates at all
levels. The mechanism then selects a variance level to purchase from each provider,
and generates an estimate for µ that is a weighted sum of the providers’ reported
estimates µi’s: µ̂ =

∑
i wiµi. Note that the expectation E [µ̂] =

∑
i wiE [µi] =

∑
i wiµ,

so µ̂ will be an unbiased estimate as long as
∑

i wi = 1. The following proposition,
often called the Bienaymé formula, allows us to express the variance of µ̂ as a linear
combination of the variances of µi.

Proposition 3.2.1. Let Y1, . . . ,Yn be uncorrelated real-valued random variables, and
w1, . . . ,wn be any real numbers, then

Var

(∑
i

wiYi

)
=

∑
i

w2
i Var(Yi).

The goal of the analyst is to minimize the total cost among all providers, while
maintaining a guarantee that the variance of µ̂ is below some threshold α. This can
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be expressed in the following program, where each Ai j indicates whether we assign
provider i to variance level j:

min
Ai j,wi

∑
i, j

Ai jci j (3.1)

s.t.
∑

i

w2
i

(∑
j

Ai jv j

)
≤ α (3.2)∑

j

Ai j = 1 for all i (3.3)

Ai j ∈ {0, 1} for all (i, j) (3.4)∑
i

wi = 1 and for all i,wi ≥ 0. (3.5)

Mechanism Design for Prior-Free Data Acquisition
The problem we study here is a mechanism design problem, with n players and a
set Ω of possible outcomes, as defined in Chapter 2. In the current framework, the
analyst wishes to determine a variance level at which to purchase data from each
player, so this set Ω corresponds to the set of possible assignments of players to
variance levels. Each player has a type, which is given by a cost function ci : Ω→ R,
where ci(ω) is the cost player i incurs when the outcome is ω. Let c = (c1, . . . , cn)
denote the profile of cost functions for all players. We want to minimize total cost, so
our objective is

∑n
i=1 ci(ω). We will useΩ−i to denote the set of possible assignments

of all players other than i to variance levels, and c−i to denote the vector of reported
costs by all players other then i. We assume the players’ costs are private, and no
prior on these costs is available to the analyst.

In this chapter, a (direct revelation) mechanismM consists of an allocation rule
A, a function mapping reported cost profiles to outcomes, and a payment rule P, a
function mapping cost profiles to a payments to each player. Such a mechanism takes
as input reported cost functions from the players, and outputs (possibly randomly)
an allocation ω and payments to all the players. As discussed in Chapter 2, two
important desiderata in mechanism design are truthfulness (equivalently, incentive-
compatibility) and individual rationality. We remind the reader of these desirata,
and write them using the notations of this chapter:

Definition 3.2.2 (Dominant-strategy truthfulness-in-expectation). A mechanism
M = (A, P) is (dominant-strategy) truthful-in-expectation if for all i ∈ [n], for any
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reported cost profile c−i of other players, and any misreport ĉi by player i:

EM [Pi(ci, c−i) − ci(A(ci, c−i))] ≥ EM [Pi(ĉi, c−i) − ci (A(ĉi, c−i))] .

Definition 3.2.3 (Individual rationality). A mechanismM = (A, p) is individually
rational (I.R.) if for any reported cost profile c and for all i ∈ [n]:

EM [Pi(c) − ci (A(c))] ≥ 0.

We will use VCG-based mechanisms to minimize total cost while achieving truth-
fulness. A VCG mechanism is defined by the allocation rule that selects the
cost-minimizing outcome ω∗ ∈ arg minω∈Ω

∑
i ci(ω) for any reported cost functions,

and the payment rule P that rewards each player his “externality”:

Pi(c) = min
ω∈Ω−i

∑
i′,i

ci′(ω) −
∑
i′,i

ci′(ω∗). (3.6)

Let dist(Ω) be the set of all probability distributions over the set of outcomes Ω,
and let R ⊆ dist(Ω) be a compact subset. Then a maximal-in-distributional-range
(MIDR) allocation rule is defined as sampling an outcome ω from distribution
D∗ ∈ R, where D∗ minimizes the expected total cost Eω∼D∗[

∑
i ci(ω)] over all

distributions in R. A VCG payment rule can be defined accordingly, where R−i is
the corresponding compact subset of Ω−i:

Pi(c) = min
D′∈R−i

Eω∼D′

[∑
i′,i

ci′(ω)
]
− Eω∼D∗

[∑
i′,i

ci′(ω)
]
.

It is known from (Dobzinski et al., 2009) that when an MIDR allocation rule is paired
with a VCG payment rule, the resulting mechanism is truthful-in-expectation.

To guarantee individual rationality, we pay each player some entrance reward R

before running the MIDR mechanism so that R + E [Pi(c) − ci(A(c))] ≥ 0 for all
players. It suffices to set R ≥ maxi E [Pi(c) − ci(A(c))], and in Section 3.4 we derive
a more refined bound for R to achieve individual rationality.

3.3 Reformulating the Problem
The optimization problem introduced in Section 3.2 is non-convex because the
variance constraint (3.2) contains the product of decision variables Ai j and wi. To
achieve convexity, we will transform the program in three steps:
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1. First, we will eliminate the decision variables wi by deriving a closed form
solution for the weights wi that minimize variance, once the variables Ai j are
fixed. However, this will still leave us with a non-convex optimization problem.

2. Next, we will replace the non-convex constraint derived above with a linear
constraint, that is identical whenever the Ai j variables take on integral values.

3. Finally in Section 3.4, we relax the integrality constraint. Because our linear
variance constraint is no longer identical to the original “correct” non-convex
variance constraint, we must in the end argue that a rounded solution does not
substantially violate the original constraint.

First, to simplify notation, for any assignment {Ai j}, let v̂i denote the variance level
assigned to provider i. We want to write each wi as a function of the v̂k’s. In
particular, given the variance assignments, we want to choose the weights wi so that
the variance of the aggregate statistic µ̂ is minimized.

Lemma 3.3.1. Given a variance level assignment {v̂i}, the weight vector w∗ that
minimizes the variance of µ̂ =

∑
i wiµi satisfies

w∗i =
1/v̂i∑
k 1/v̂k

for all i.

Proof. The problem can be written as a convex program

min
∑

i

w2
i v̂i subject to

∑
i

wi = 1 and wi ≥ 0 for all i.

We know that strong duality holds because the program satisfies Slater’s condition,
and the Lagrangian is given by

L(w, λ) =
∑

i

v̂i · w2
i − λ

(
1 −

∑
i

wi

)
= wTVw − λ(1 − 1Tw),

where V = diag(v̂1, . . . , v̂n). Note that ∇wL(w, λ)T = 2Vw + λ1. By KKT
conditions, ∇wL(w∗, λ)T = 0, and so w∗ = −λ2V−1

1, which gives minw L(w, λ)T =
−λ2

4
∑

i 1/v̂i − λ. Now the dual problem can be written as
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max
λ

min
w≥0
L(w, λ) = max

λ

[
−λ

2

4

∑
i

1/v̂i − λ
]

= max
λ

[
−

(∑
i

1/v̂i

) (
λ/2 + 1∑

i 1/v̂i

)2
+

1∑
i 1/v̂i

]
.

It is easy to see that the maximum is reached at λ∗ = −2∑
i 1/v̂i . It follows that

w∗ =
−λ∗

2
V−1

1 =
V−1

1∑
i 1/v̂i

,

and so,
w∗i =

1/v̂i∑
k 1/v̂k

for all i

as suggested by the lemma. �

Section 3.3.1 shows that we can rewrite the variance constraint of µ̂ as∑
i

(
1/v̂i∑
k 1/v̂k

)2
v̂i =

∑
i

1/v̂i

(∑k 1/v̂k)2
=

1∑
k 1/v̂k

≤ α.

Changing indices back to i, plugging in v̂i =
∑

j Ai jv j , and taking the inverse on both
sides, constraint (3.2) becomes

1/α ≤
∑

i

1∑
j Ai jv j

. (3.7)

Note that the constraints are not linear, but since each Ai j ∈ {0, 1}, and only one
Ai j = 1 for each i, we have 1/∑ j Ai jv j =

∑
j Ai j/v j . Thus, we can write our whole

program as the following ILP.

min
Ai j

∑
i, j

Ai jci j (3.8)

s.t.1/α ≤
∑

i

∑
j

Ai j/v j (3.9)∑
j

Ai j = 1 for all i (3.10)

Ai j ∈ {0, 1} for all (i, j). (3.11)

Remark 3.3.2. Note that our problem is only interesting if the target variance α
is in the range of [v1/n, vm/n]. This is due to the following observation based
on constraint (3.9): if 1/α < n/vm, then the problem is trivial since the variance
constraint is satisfied by any assignment; if 1/α > n/v1, then the problem is infeasible,
i.e. even if we assign the lowest variance level to all providers, the variance constraint
is still violated.
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3.4 An MIDR Mechanism via a Linear Programming Relaxation
In order to obtain a computationally efficient mechanism, we consider the LP
relaxation of the integer linear program we derived in the previous section, by
replacing constraint (3.11) with Ai j ≥ 0 for all (i, j). We interpret a fractional
solution Ai = (Ai1, . . . , Aim) as a lottery over assignments for player i, i.e., the
probabilities of getting assigned to different variance levels. Since the objective is to
minimize the total cost, the LP gives a maximal-in-distributional-range allocation
rule, where the restricted distributional range is,

Sα = {A ≥ 0 |
∑

j

Ai j = 1 for all i, and
∑

i j

Ai j/v j ≥ 1/α}.

Similarly, the restricted distributional range for n − 1 players, used to compute VCG
payments is,

(Sα)−i = {A ≥ 0 |
∑

j

Ai′ j = 1 for all i′ , i,

and
∑

i′,i, j

Ai′ j/v j ≥ 1/α}.

Given a collection of reported costs, our mechanism first computes a distribution A

over assignments, based on the MIDR allocation rule defined by the LP. We then
pay each provider based on the VCG payment rule, in addition to some entrance
reward R. Given the realized variance assignment sampled from A, we ask the
providers to compute their estimates µi at the corresponding variance levels. Finally,
we re-weight the estimates to obtain the linear combination estimator µ̂ with the
minimum variance based on the optimal re-weighting rule in Lemma 3.3.1. The
formal description of our mechanism is presented in Algorithm 1.



26

Algorithm 1MIDR Mechanism for Buying Estimates
Input: Data providers’ reported costs {ci j} for different variance levels
{v1, . . . , vm}, target variance α, initial payment R
Compute assignment and payment based on MIDR allocation rule and VCG

payment rule:

A∗ ∈ arg min
A∈Sα

∑
i

ci j Ai j Pi = min
A−i∈(Sα)−i

[∑
i′,i

ci′(A)
]
−

∑
i′,i

ci′(A∗) + R

Let v̂ = (v̂1, . . . , v̂n) be the realized variance assignments sampled from A∗ and

wi =
1/v̂i∑
k 1/v̂k

for all i.

Collect the estimates from providers {µi} based on v̂

Output:
∑

i wiµi as our estimate µ̂

Theorem 3.4.1. Given n data providers with reported costs {ci j} for variance levels
{v j} and a feasible target variance level α, Algorithm 1 is a truthful-in-expectation
mechanism that selects a minimum expected cost assignment, and

1. for any ε > 0, computes an estimate µ̂ with variance Var(µ̂) ≤ (1 + ε)α as
long as

n ≥
(
vm

v1
− 1

) (
1
ε
+ 1

)
,

2. The mechanism is I.R. if the entrance reward R ≥ maxi min j ci j .

The properties of cost minimization and truthfulness follow from theMIDR allocation
rule and VCG payments. We show the other two properties in the following
subsections.

Remark 3.4.2. To achieve a 2-approximation for the variance (i.e. ε = 1), it will
suffice to have n = 2vm/v1 providers. Plugging in the bound in Remark 1, the
meaningful range of target variance should be v2

1/2vm ≤ α ≤ v1/2. Note that
v1/vm < 1, so this range is always non-empty.

Variance Violation
The fractional solution we obtain could violate the variance constraint (3.7), as could
the final assignment sampled from the fractional solution. Let A be an optimal
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solution to the LP. Then A violates the variance constraint (3.7) by at most

∆(A) =
∑

i

∑
j

Ai j/v j −
∑

i

1/
∑

j

Ai jv j =
∑

i

(∑
j

Ai j/v j − 1/
∑

j

Ai jv j

)
.

The quantity ∆(A) represents the distance between the “real” desired variance
constraint and our linear relaxation. Note that for any agent who happens to receive
an integral allocation, the corresponding terms in the two constraints are equal, but
they may diverge for agents who have fractional allocations. To simplify and bound
this quantity, we show that at any optimal fractional solution, all but at most one
agent receives an integral allocation:

Lemma 3.4.3. At any extreme point A∗ of the feasible region for the LP, there are at
least n − 1 indices i such that Ai j ∈ {0, 1} for all j.

Proof. Suppose not. Then let A be a point in the feasible set Sα such that at least two
players (without loss of generality, players 1 and 2) are assigned to lotteries. In other
words, each of these two players are assigned nonzero weight on at least two different
variance levels. Let a < b, k < l be the indices such that A1a, A1b, A2k, A2l < {0, 1}.
Let ε > 0 be a small enough number such that

A1a ± ε, A1b ± ε, A2k ± ε, A2l ± ε ∈ [0, 1]

and
A1a ± ε′, A1b ± ε′, A2k ± ε′, A2l ± ε′ ∈ [0, 1],

where ε′ = ε
(

1/va−1/vb
1/vk−1/vl

)
. Now consider the following two points that differ from A

only in four coordinates:

x : x1a = A1a + ε, x1b = A1b − ε, x2k = A2k − ε′, and x2l = A2l + ε
′

x′ : x′1a = A1a − ε, x′1b = A1b + ε, x′2k = A2k + ε
′, and x′2l = A2l − ε′.

Note that A = 1
2 (x + x′), and recall that 1/α ≤ ∑

i
∑

j Ai j/v j because A ∈ Sα.
Furthermore,∑

i

∑
j

xi j/v j =
∑

i

∑
j

Ai j/v j + ε(1/va − 1/vb) + ε′(1/vl − 1/vk)

=
∑

i

∑
j

Ai j/v j + ε

[
1/va − 1/vb + (1/vl − 1/vk)

1/va − 1/vb

1/vk − 1/vl

]
=

∑
i

∑
j

Ai j/v j ≥ 1/α.
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Similarly,
∑

i, j x′i j/v j =
∑

i, j Ai j/v j ≥ 1/α, so both x and x′ are in the feasible region
Sα. Since A is a convex combination of x and x′ that are both in Sα, we know that A

cannot be an extreme point of the feasible region. �

Lemma 3.4.3 says that at any extreme point A, at least n − 1 players have an integral
assignment in A. To use this property, we will compute the solution using an
(ellipsoid-based) polynomial-time LP solver from (Nemhauser et al., 1988) that
always returns an optimal extreme point solution.1 Now we can bound the variance
of our aggregate estimate µ̂.

Lemma 3.4.4. For any ε > 0, the variance of our estimate Var(µ̂) ≤ (1 + ε)α, as
long as

n ≥
(
vm

v1
− 1

) (
1
ε
+ 1

)
.

Proof. Suppose that n satisfies the bound above. If the solution A is fully integral, then
the variance is no more than α. Otherwise let k be the data provider receiving a lottery
in A. Since for every player i with an integral assignment

∑
j Ai j/v j =

∑
j 1/∑ j Ai jv j ,

we can further simplify,

∆(A) =
∑

j

Ak j/v j − 1/
∑

j

Ak jv j .

Then we can bound the violation of (3.7) by the final assignment v̂:∑
j

Ak j/v j − 1/vm ≤ 1/v1 − 1/vm.

In other words, the resulting variance Var(µ̂) satisfies

1
Var(µ̂) ≥

1
α
− ( 1

v1
− 1
vm
).

Since we assume n > vm/v1 − 1, we have n/vm − (1/v1 − 1/vm) > 0. As stated earlier
in Remark 1, the only interesting range of α is v1/n ≤ α ≤ vm/n. (Recall that if
α < v1/n, then the problem is infeasible; if α > vm/n, then the problem is trivial.)
For the remainder of the proof, we assume α ∈ [v1/n, vm/n]. By this assumption,

1The algorithm consists of two steps: first compute a sufficiently near optimal solution Â using
the ellipsoid algorithm; then round the solution Â to an optimal extreme point solution A∗ using the
method of continued fractions. For more details, see (Nemhauser et al., 1988).
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1/α − (1/v1 − 1/vm) > 0, and so,

Var(µ̂) ≤ 1
1
α −

1
v1
+ 1

vm

= α

(
1

1 − α
v1vm
(vm − v1)

)
≤ α

(
n

n − ( vmv1
− 1)

)
≤ (1 + ε)α,

which recovers our lemma. �

We give an example in Section 3.5 showing that this analysis cannot be improved,
and we do need n = Ω(vm/v1) to approximately satisfy the target variance constraint.

Individual Rationality
In order to ensure individual rationality, we need to set the entrance reward R large
enough, so that for each player i, R + Pi − ci ≥ 0, where ci denotes the cost for player
i to provide its assigned estimate. To reason about the payment player i gets, we
need to compute the following two costs C1 and C2, for all players except i. Let A∗

be the optimal (fractional) solution for our LP, and v̂i be the expected variance level
assigned to player i: v̂i =

∑
j A∗i jv j . Let OPT denote the optimal min-cost value of

the LP, and C1 denote the total cost for all players except i in A∗:

C1 = min
∑
k,i, j

Ak jck j

s.t.
∑
k,i, j

Ak j/v j ≥ 1/α − 1/v̂i∑
j

Ak j = 1 for all k

Ak j ≥ 0 for all (k, j).

Let C2 be the minimum cost had we removed agent i from the input:

C2 = min
∑
k,i, j

Ak jck j

s.t.
∑
k,i, j

Ak j/v j ≥ 1/α∑
j

Ak j = 1 for all k

Ak j ≥ 0 for all (k, j).
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The VCG payment given to player i in Algorithm 1 is Pi = C2 − C1. Note that since
the second LP is more constrained than the first, we know C2 ≥ C1 and the payment
is always non-negative. We can write down the expected utility of player i:

R + Pi − ci = R + C2 − C1 − ci = R + C2 − OPT .

Lemma 3.4.5. The mechanism in Algorithm 1 is individually rational if the entrance
reward satisfies

R ≥ max
i

min
j

ci j .

Proof. Let A−i be the optimal assignment for the second program (with optimal
objective value at C2). Now let’s add back player i to the problem, and construct an
assignment A such that A = (Ai, A−i), where Ai assigns player i to the assignment
with minimum cost (min j ci j).

Note that A is a feasible solution to our original problem since A−i already satisfies
the variance constraint. It follows that the cost given by A is at least as large as OPT,
the optimal solution: OPT ≤ C2 +min j ci j .

Therefore, as long as R ≥ min j ci j for each player i, we have individual rationality. �

We give an example in Section 3.5 to show that this bound is tight. In particular, our
example shows that without an entrance reward, the individual rationality constraint
could be violated by up to min j ci j for each player i.

Remark 3.4.6. Let cmin = maxi min j ci j . If costs are drawn from a known distri-
bution, the analyst can set R to ensure that with high probability, all players have
cmin ≤ R. If cmin is unbounded, it is clear that no Groves mechanism2 can be
individually rational for all players in this setting. The Green-Laffont-Holmström
theorem (Jerry R. Green et al., 1977; Holmström, 1979) shows that under certain
technical conditions, any mechanism which is dominant strategy incentive compatible
and maximizes welfare must be a Groves mechanism. Thus without additional
information on the players’ costs, we should not hope to satisfy individual rationality
for all players while still achieving our other desiderata.

2A Groves mechanism is one which selects the welfare maximizing outcome, and each player’s
payment is his externality plus an amount that is independent of his report. In particular, the payments
induced by any Groves mechanism to a player i are shifts of the payments induced by our mechanism,
by an amount that is independent of player i’s report. Therefore, by reporting a large enough value of
cmin, individual rationality can always be violated by a Groves mechanism.
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3.5 Tightness of Our Bounds
Example for Variance Violation Bound
Consider an example where there are only two options of variance levels, v1 and v2,
and we set the target variance α = v1v2

nv1+δ(v2−v1) . Suppose the reported costs ci1 = t1
and ci2 = t2 for each player i ∈ [n − 1], and cn1 < t1 and cn2 = t2 for player n. We
also assume that t2 < t1. Let A denote the assignment such that Ai1 = 0 and Ai2 = 1
for each i ∈ [n − 1], and An1 = δ ∈ (0, 1) and An2 = 1 − δ. That is, the assignment
gives v2 to the first (n − 1) players, and give a lottery between the two levels to player
n. Note that

1
α
=

n − δ
v2
+
δ

v1
.

We know that the fractional solution A exactly satisfies the variance constraint (3.7),
and is also the optimal min-cost solution. Therefore, with probability (1 − δ), the
realized variance satisfies,

1
Var(µ̂) =

n
v2
=

n − δ
v2
+
δ

v1
+
δ

v2
− δ

v1
=

1
α
− δ

(
1
v1
− 1
v2

)
> 0.

It follows that

Var(µ̂) = α

1 − αδ( 1
v1
− 1

v2
)
= α

©­­«1 −
δ
(

1
v1
− 1

v2

)
n
v2
+ δ

(
1
v1
− 1

v2

) ª®®¬
−1

= α
©­­«1 +

δ
(
v2
v1
− 1

)
n

ª®®¬ .
If we want δ(v2/v1−1)

n ≤ ε, we would need to have the number of providers

n ≥
(
v2
v1
− 1

)
δ

ε
.

For δ close to 1 and constant ε, the number of providers we need does scale with
v2/v1, which shows that the Ω(vm/v1) for n is essentially tight.

Example for Entrance Reward Bound
Consider an example with two providers, two possible variance levels v1, v2 such that
v2 = 2v1, and target variance α = v1. Suppose the costs satisfy c11 = c21 = t and
c12 = c22 = t − ε for some ε > 0. Since we need to an estimate from each provider,
the optimal solution is to assign v2 to both players, which yields cost OPT = 2t − 2ε.
Now suppose we remove any provider from the mechanism. Then we would assign
the remaining provider to v1, which yield cost C2 = t. Therefore, the utility for each
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provider is

R + C2 − OPT = R + t − 2(t + ε)
= R + 2ε − t

= R + ε − t.

In order to ensure non-negative utility, we need R ≥ t − ε. Note that the right hand
side tends to maxi min j ci j when ε tends to 0. Therefore, the bound in Lemma 3.4.5
is tight.



33

C h a p t e r 4

ACQUISITION OF COSTLY DATA FOR STATISTICAL
ESTIMATION, REVISITED

Yiling Chen, Nicole Immorlica, Brendan Lucier, Vasilis Syrgkanis, and Juba Ziani
(2018). “Optimal Data Acquisition for Statistical Estimation”. In: Proceedings
of the 2018 ACM Conference on Economics and Computation, pp. 27–44. J.
Ziani is the primary author, came up with and proved most of the results,
and contributed to writing themanuscript. doi: 10.1145/3219166.3219195.
url: http://doi.acm.org/10.1145/3219166.3219195.

4.1 Introduction
In this chapter, we further the study of mechanism design for buying verifiable data
from a population in order to estimate a statistic of interest, such as the expected value
of some function of the underlying data. We assume each individual has a private
cost, or dis-utility, for revealing his or her sensitive data to the analyst. Importantly,
this cost may be correlated with the private data. For example, individuals with HIV
are expected to have a higher cost of revealing their data than people of a healthy
weight than their healthy counterparts. This is a departure from Chapter 3, where
we implicitely make the assumption that data points and independent of costs (in
particular, in Chapter 3, an agent’s data point is always unbiased, independently of
the agent’s cost).

The analyst has a fixed budget for buying data. The analyst does not know the
distribution of the data: properties of the distribution is what she is trying to learn
from the data samples, therefore it is important that she uses the data she collects to
learn it rather than using an inaccurate prior distribution (for example, the analyst
may have a prior on weight distribution within a population from DMV records or
previous surveys, but such a prior may be erroneous if people do not accurately report
their weights). However, we do assume the analyst has a prior for the marginal
distribution of costs, and that she estimates how much a survey may cost her as a
function of said prior.1

1This prior could come from similar past exercises. Alternatively, when no prior is known, the
analyst can allocate a fraction of his budget to buying data for the sake of learning this distribution of
costs. In this chapter, we follow prior work (Roth et al., 2012) and assume that a prior distribution
is known, instead of focusing on how one might learn the distribution of costs. Chen et al. (2018c)

http://dx.doi.org/10.1145/3219166.3219195
http://doi.acm.org/10.1145/3219166.3219195
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The analyst would like to buy data subject to her budget, then use that data to obtain
an unbiased estimator for the statistic of interest. To this end, the analyst posts a
menu of probability-price pairs. Each individual i with cost c selects a pair (A, P)
from the menu, at which point the analyst buys the data with probability A at price
P. The expected utility of the individual is thus (P − c)A.2 To form an estimate
based on this collected data, we assume the analyst uses inverse propensity scoring,
pioneered by (Horvitz et al., 1952). This is the unique unbiased linear estimator; it
works by upweighting the data from individual i by the inverse of his/her selection
probability, 1/A.

The Horvitz-Thompson estimator always generates an unbiased estimate of the
statistic being measured, regardless of the price menu. However, the precision of
the estimator, as measured by the variance or mean-squared error of the estimate,
depends on the menu of probability-price pairs offered to each individual. For
example, offering a high price would generate data samples with low bias (since
many individuals would accept such an offer), but the budget would limit the number
of samples. Offering low prices allows the mechanism to collect more samples, but
these would be more heavily biased, requiring more aggressive correction which
introduces additional noise. The goal of the analyst is to strike a balance between
these forces and post a menu that minimizes the variance of her estimate in the
worst-case over all possible joint distributions of the data and cost consistent with the
cost prior. We note that this problem setting was first studied by Roth et al. (2012),
who characterized an approximately optimal mechanism for moment estimation. The
current chapter aims to generalize the results of the work of Roth et al. (2012), by
giving an exactly optimal mechanism to this problem, exhibiting new structure in the
optimal solution, and extending mechanism design for data acquisition to parameter
estimation via regression.

Note that unlike Chapter 3 where we aim to optimize the budget under a variance
constraint, we formulate the problem in this chapter as minimizing variance under a
budget constraint, for simplicity of exposition; such formulations are equivalent, in
the sense that they lead to the same trade-off curve between variance and budget.

consider an extension of this chapter that does away with this distributional prior on the costs.
2As we show, this menu-based formulation is fully general and captures arbitrary data-collection

mechanisms.
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Summary of contributions
Our main contribution comes in the form of an exact solution for the optimal menu,
as discussed in Section 4.3. As one would expect, if the budget is large, the optimal
menu offers to buy, with probability 1, all data at a cost equal to the maximum
cost in the population. If the budget is small, the optimal menu buys data from an
individual with probability inversely proportional to the square root of their cost.3
Interestingly, in intermediate regimes, we show the optimal menu employs pooling:
for all individuals with sufficiently low private cost, it buys their data with equal
probability; for the remaining high cost agents, it buys their data with probability
inversely proportional to the square root of their costs. Revisiting the example of
estimating the weight of a population of size n, our scheme suggests the following
solution. Imagine the costs are 0, 4, 8 with probability 1

2,
1
4,

1
4 , and the total budget

of the analyst is B = 7n. The analyst brings a scale to a public location and posts
the following menu of pairs of allocation probability and price: {(1, 36

5 ), (
4
5, 8)}. A

simple calculation shows that individuals with cost 0 or 4 will pick the first menu
option: stepping on the scale and having their weight recorded with probability 1,
and receiving a payment of 36

5 dollars. Individuals with cost 8 will pick the second
menu option; if they are selected to step on the scale, which happens with probability
4
5 , the analyst records their weight scaled by a factor of

5
4 . This scaling is precisely

the upweighting from inverse propensity scoring. In expectation over the population,
the analyst spends exactly his budget 7n. The estimate is the average of the scaled
weights.

We show how to extend our approach beyond moment estimation to the common task
of (multi-dimensional) linear regression, in Section 4.4. In this regression problem,
an individual’s data includes both features (which are assumed to be insensitive or
publicly available) and outcomes (which may be sensitive). The analyst’s goal is to
estimate the linear regression coefficients that relate the outcomes to the features. We
make the assumption that an individual’s cost is independent of her features, but may
be arbitrarily correlated with her outcome. For example, the goal might be to regress
a health outcome (such as severity of a disease) on demographic information. In this
case, we might imagine that an agent incurs no cost for reporting his age, height, or
gender, but his cost might be highly correlated with his realized health outcome.

3Of course, the individual is him/herself selecting the menu option and so the use of an active
verb in this context is perhaps a bit misleading. What we mean here is that, given his/her incentives
based on his/her private cost, the choice the individual selects is one that buys his/her data with
probability inversely proportional to the square root of his/her cost.
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In such a setting, we show that the asymptotically optimal allocation rule, given a
fixed average budget per agent as the number of agent grows large, can be calculated
efficiently and exhibits a pooling region as before. However, unlike for moment
estimation, agents with intermediate costs can also be pooled together.

Our techniques rely on i) reducing the mechanism design problem to an optimization
problem through the classical notion of virtual costs, then ii) reducing the problem
of optimizing the worst-case variance to that of finding an equilibrium of a zero-sum
game between the analyst and an adversary. The adversary’s goal is to pick a
distribution of data, conditional on agents’ costs, that maximizes the variance of the
analyst’s estimator. We then characterize such an equilibrium through the optimality
conditions for convex optimization described in (Boyd et al., 2004).

Related work
This chapter also belongs to the line of work on data acquisition where agents
incur a cost for producing or revealing their data point, and a mechanism designer
needs to balance budget and accuracy of the final estimate. Prior papers by Roth
et al. (2012) and Abernethy et al. (2015) are closest to the setting of the current
chapter. Similarly to our work, both Roth et al. (2012) and Abernethy et al. (2015)
consider an analyst’s problem of purchasing data from individuals with private costs
subject to a budget constraint, allow the cost to be correlated with the value of data,
and assume that individuals cannot fabricate their data. Roth et al. (2012) aim at
obtaining an optimal unbiased estimator with minimum worst-case variance for
population mean, while their mechanism achieves optimality only approximately:
instead of the actual worst-case variance, a bound on the worst-case variance is
minimized. While our setting is identical to that of Roth et al. (2012), our work
precisely minimizes worst-case variance (under a regularity assumption on the cost
distribution), and our main contribution is to exhibit the structure of the optimal
mechanism, as well as to extend our results to broader classes of statistical inference,
moment estimation and linear regression. In particular, compared to (Roth et al.,
2012), our solution exhibits new structure in the form of a pooling region for low
cost agents; i.e., the optimal mechanism pools agents with the lowest costs together
and treats them identically. Such structure does not arise in (Roth et al., 2012) under
a regularity assumption on the cost distribution. Abernethy et al. (2015) consider
general supervised learning. They do not seek to achieve a notion of optimality;
instead, they take a learning-theoretic approach and design mechanisms to obtain
learning guarantees (risk bounds).
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4.2 Model and Preliminaries
Survey Mechanisms: There is a population of n agents. Each agent i has a private
pair (zi, ci) (the agent’s type), where zi ∈ Z is a data point and ci > 0 is a cost. We
think of ci as the cost or dis-utility agent i incurs by releasing her data zi. The pair
is drawn from a distribution D, unknown to the mechanism designer. We denote
with F the CDF of the marginal distribution of costs,4 supported on a set C. We
assume that F and the support of the data points,Z, are known. However, the joint
distribution D of data and costs is unknown.

A survey mechanism is defined by an allocation rule A : C → [0, 1] and a payment
rule P : C → R, and works as follows. Each agent i arrives at the mechanism in
sequence and reports a cost ĉi. The mechanism chooses to buy the agent’s data with
probability A(ĉi). If the mechanism buys the data, then it learns the value of zi (i.e.,
agents cannot misreport their data) and pays the agent P(ĉi). Otherwise the data
point is not learned and no payment is made.

We assume agents have quasi-linear utilities, so that the utility enjoyed by agent i

when reporting ĉi is
u(ĉi; ci) = (P(ĉi) − ci) · A(ĉi). (4.1)

We will restrict attention to survey mechanisms that are truthful and individually
rational, as defined in Chapter 2. In the context of the current chapter, these definitions
can be rewritten as follows:

Definition 4.2.1 (Truthful and Individually Rational - TIR). A survey mechanism is
truthful if for any cost c it is in the agent’s best interest to report their true cost, i.e.
for any report ĉ:

u(c; c) ≥ u(ĉ; c). (4.2)

It is individually rational if, e. for any cost c ∈ C, P(c) ≥ c.

We assume that the mechanism is constrained in the amount of payment it can make
to the agents. We will formally define this as an expected budget constraint for the
survey mechanism.

Definition 4.2.2 (Expected Budget Constraint). A mechanism respects a budget
constraint B if:

n · Ec∼F [P(c) · A(c)] ≤ B. (4.3)
4Throughout the text we will use the CDF to refer to the distribution itself.
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Estimators: The designer (or data analyst) wishes to use the survey mechanism
to estimate some parameter θ ∈ R of the marginal distribution of data points. For
example, it might be that Z = R and θ is the mean of the distribution over data
points in the population. To this end, the designer will apply an estimator to the
collection of data points S elicited by the survey mechanism. We will write θ̂S for the
estimator used. Note that the value of the estimator θ̂S depends on the sample S, but
might also depend on the distribution of costs F and the survey mechanism. Due to
the randomness inherent in the survey mechanism (both in the choice of data points
sampled and the values of those samples), we think of θ̂S as a random variable, drawn
from a distribution T(D, A). We will focus exclusively on unbiased estimators.

Definition 4.2.3 (Unbiased Estimator). Given an allocation function A, an estimator
θ̂S for θ is unbiased if for any instantiation of the true distribution D its expected
value is equal to θ:

Eθ̂S∼T(D,A)
[
θ̂S

]
= θ. (4.4)

Given a fixed choice of estimator, the mechanism designer wants to construct the
survey mechanism to minimize the variance (finite sample or asymptotic as the
population grows) of that estimator. Since the designer does not know the distribution
D, we will work with the worst-case variance over all instantiations of D that are
consistent with the cost marginal F.

Definition 4.2.4 (Worst-Case Variance). Given an allocation function A and an
instance of the true distribution D, the variance of an estimator θ̂S is defined as:

Var(θ̂S;D, A) = Eθ̂S∼T(D,A)
[(
θ̂S − E

[
θ̂S

] )2
]
. (4.5)

The worst-case variance of θ̂S is

Var∗(θ̂S;F, A) = sup
D consistent with F

Var(θ̂S;D, A). (4.6)

We are now ready to formally define the mechanism design problem faced by the
data analyst.

Definition 4.2.5 (Analyst’s Mechanism Design Problem). Given an estimator θ̂S

and cost distribution F, the goal of the designer is to design an allocation rule A and
payment rule P so as to minimize worst-case variance subject to the truthfulness,
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individual rationality and budget constraints:

inf
A,P

Var∗(θ̂S;F, A)

s.t. n · Ec∼F [P(c) · A(c)] ≤ B

A, P define a TIR mechanism.

(4.7)

Remark 4.2.6 (Implementing Surveys as Posted Menus.). The formulation above
describes surveys as direct-revelation mechanisms, where agents report costs. We
note that an equivalent indirect implementation might be more natural: a postedmenu
survey offers each agent a menu of (price, probability) pairs (P1, A1), . . . , (Pk, Ak).
If the agent chooses (Pm, Am) then their data is elicited with probability Am, in which
case they are paid Pm. Each agent can choose the item that maximizes their expected
utility, i.e., argmaxm∈[k] (Pm − c) · Am. By the well-known taxation principle, any
survey mechanism can be implemented as a posted menu survey, and the number of
menu items required is at most the size of the support of the cost distribution.

Reducing Mechanism Design to Optimization
We begin by reducing the mechanism design problem to a simpler full-information
optimization problem where the designer knows the private cost of each player and
can acquire their data by paying them exactly that cost. However, the designer is
constrained to using monotone allocation rules, in which players with higher costs
have weakly lower probability of being chosen.

Definition 4.2.7 (Analyst’s Optimization Problem). Given an estimator θ̂S and
cost distribution F, the optimization version of the designer’s problem is to find a
non-increasing allocation rule A that minimizes worst-case variance subject to the
budget constraint, assuming agents are paid their cost:

inf
A

Var∗(θ̂S;F, A)

s.t. n · Ec∼F [c · A(c)] ≤ B

A is monotone non-increasing.

(4.8)

The mechanism design problem in Definition 4.2.5 reduces to the optimization
problem given by Definition 4.2.7, albeit with a transformation of costs to virtual
cost.

Definition 4.2.8 (Virtual Costs and Regular Distributions). If F is continuous and
admits a density f then define the virtual cost function as φ(c) = c + F(c)f (c) . For



40

discrete F with support C = {c1, . . . , c|C|} and PDF f , we define the virtual cost
function as: φ(ct) = ct +

ct−ct−1
f (ct ) F(ct−1), with c0 = 0. We also denote with φ(F) the

distribution of virtual costs; i.e., the distribution created by first drawing c from F
and then mapping it to φ(c). A distribution F is regular if the virtual cost function is
increasing.

When F is twice-continuously differentiable, F is regular if and only if F(c) f ′(c) <
2 f (c)2 for all c ∈ C. Importantly, in this case, the allocation rule described by Roth
et al. (2012) is monotone strictly decreasing in c and does not exhibit a pooling
region at low-cost as our solution does. The following is an analogue of Myerson
(1981)’s reduction of mechanism design to virtual welfare maximization, adapted to
the survey design setting.

Lemma 4.2.9. If the distribution of costs F is regular, then solving the Analyst’s
Mechanism Design Problem reduces to solving the Analyst’s Optimization Problem
for distribution of costs φ(F).

Proof. The proof is given in Section 4.5. �

Unbiased Estimation and Inverse Propensity Scoring
We now describe a class of estimators θ̂S that we will focus on for the remainder of the
chapter. Note that simply calculating the quantity of interest, θ, on the sampled data
points can lead to bias, due to the potential correlation between costs and data. For
instance, suppose that z ∈ R and the goal is to estimate the mean of the distribution of
z. A natural estimator is the average of the collected data: θ̂S =

1
|S |

∑
i∈S zi. However,

if players with lower z tend to have lower cost, and are therefore selected with higher
probability by the analyst, then this estimator will consistently underestimate the true
mean.

This problem can be addressed using inverse propensity scoring (IPS), pioneered
by Horvitz et al. (1952). The idea is to recover unbiasedness by weighting each data
point by the inverse of the probability of observing it.

This IPS approach can be applied to any parameter estimation problem where
the parameter of interest is the expected value of an arbitrary moment function
m : Z → R.

Definition 4.2.10 (Horvitz-Thompson Estimator). The Horvitz-Thompson estimator
for the case when the parameter of interest is the expected value of a (moment)



41

function m : Z → R is defined as:

θ̂S =
1
n

∑
i∈[n]

m(zi) · 1{i ∈ S}
A(ci)

. (4.9)

The Horvitz-Thompson estimator is the unique unbiased estimator that is a linear
function of the observations m(zi) (Roth et al., 2012). It is therefore without loss of
generality to focus on this estimator if one restricts to unbiased linear estimators.5

IPS beyond moment estimation: We defined the Horvitz-Thompson estimator
with respect to moment estimation problems, θ = E[m(z)]. As it turns out, this
approach to unbiased estimation extends even beyond the moment estimation problem
to parameter estimation problems defined as the solution to a system of moment
equations E[m(z; θ)] = 0 or parameters defined as the minima of a moment function
argminθ E[m(z; θ)]. We defer this discussion to Section 4.4.

4.3 Estimating Moments of a Data Distribution
In this section we consider the case where the analyst’s goal is to estimate the
(one-dimensional) mean of a given moment function of the distribution. That is,
there is some function m : C → [0, 1] such that both 0 and 1 are in the support
of random variable m(z), and the goal of the analyst is to estimate θ = E[m(z)].6
We assume that θ̂S, the estimator being applied, is the Horvitz-Thompson estimator
given in Definition 4.2.10. For multi-dimensional moment estimation, please refer to
the full version this work (Chen et al., 2018a).

For convenience we will assume that the agents’ types/cost distribution F have finite
support, say C = {c1, . . . , c|C|} with c1 < . . . < c|C|; we abuse notations and let ct

be the cost of an agent of type t. Note that we relax this finite support assumption in
the full version (Chen et al., 2018a). Write πt = f (ct) for the probability of cost ct

in F. Also, for a given allocation rule A, we will write At = A(ct) for convenience.
That is, we can interpret an allocation rule A as a vector of |C| values A1, . . . , A|C|.
For further convenience, we will write qt = Pr[m(z) = 1|ct]. This is the probability

5We note that we have assumed, for convenience, that A(ci) > 0 for all i ∈ [n] in the expression
of this estimator, for it to be unbiased and well-defined. It is easy to see from the expression for the
variance given in Section 4.3 that the variance-minimizing allocation rule will indeed be non-zero for
each cost.

6Observe that it is easy to deal with the more general case of m(z) ∈ [a, b] by a simple linear
translation, i.e., estimate m̃(z) = m(z)−a

b−a instead, which is in [0, 1] and then translate the estimator
back to recover m(z).
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that the moment takes on its maximum value when the cost is ct . Finally, we will
assume that the distribution of costs is regular.

Our goal is to address the analyst’s mechanism design problem for this restricted
setting. By Lemma 4.2.9 it suffices to solve the analyst’s optimization problem. We
start by characterizing the worst-case variance for this setting.

Lemma 4.3.1. The worst-case variance of the Horvitz-Thompson estimator of a
moment m : C → [0, 1], given cost distribution F and allocation rule A, is:

n · Var∗(θ̂S;F, A) = sup
q∈[0,1] |C |

|C|∑
t=1

πt ·
qt

At
−

( |C|∑
t=1

πt · qt

)2

. (4.10)

Proof. For any distribution D, observe that the Horvitz-Thompson estimator can be
written as the sum of n i.i.d. random variables each with a variance:

Var = E

[(
m(zi) · 1{i ∈ S}

A(ci)

)2
]
− E

[
m(zi) · 1{i ∈ S}

A(ci)

]2

=

|C|∑
t=1

πt ·
E

[
m(z)2 |ct

]
At

− E[m(z)]2.

Therefore, the variance of the estimator is Var
n . Observe that conditional on any value

c, the worst-case distribution D, will assign positive mass only to values z ∈ Z
such that m(z) ∈ {0, 1}. This is because any other conditional distribution can be
altered by a mean-preserving spread, pushing all the mass on these values, while
preserving the conditional mean E [m(z)|c]. This would strictly increase the latter
variance. Thus we can assume without loss of generality that m(z) ∈ {0, 1}, in which
case m(z)2 = m(z) and E[m(z)|c] = Pr[m(z) = 1|c]. Recall that qt = Pr[m(z) = 1|ct].
Then we can simplify the variance as:

n · Var(θ̂S;D, A) =
|C|∑
t=1

πt ·
E[m(z)|ct]

At
− E[m(z)]2 =

|C|∑
t=1

πt ·
qt

At
−

( |C|∑
t=1

πt · qt

)2

.

The theorem follows since the worst-case variance is a supremum over all possible
consistent distributions, and equivalently a supremum over conditional probabilities
q : [0, 1]|C|. �

Given the above characterization of the variance of the estimator, we can greatly
simplify the analyst’s optimization problem for this setting. Indeed, it suffices to find
the allocation rule A ∈ (0, 1]|C| that minimizes (4.10), subject to A being monotone
non-decreasing and satisfying the expected budget constraint.
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Characterization of the Optimal Allocation Rule
We are now ready to solve the analyst’s optimization problem for moment estimation.
In this and all following sections, we denote B̄ = B

n for simplicity of notations, and
refer to B̄ as the “average budget per agent”. Note that different agents with different
costs may be allocated different fractions of the total budget B that in general do not
coincide with B̄. We remark that if B̄ is larger than the expected cost of an agent,
then it is feasible (and hence optimal) for the analyst to set the allocation rule to pick
any type with probability 1. We therefore assume without loss of generality that
E[c] > B̄.

Our analysis is based on an equilibrium characterization, where we view the analyst
choosing A and the adversary choosing z as playing a zero-sum game and solve for
its equilibria. We first present the characterization and some qualitative implications
and then present an outline of our proof. We defer the full details of the proof to
Section 4.6.

Theorem 4.3.2 (Optimal Allocation for Moment Estimation). The optimal allocation
rule A is determined by two constants Ā and t∗ ∈ {0, . . . , |C|} such that:

At =


Ā if t ≤ t∗

α√
ct

o.w.
(4.11)

with α uniquely determined such that the budget constraint is binding.7 Moreover,
the parameters Ā and t∗ can be computed in time O(log(|C|)).

The parameters Ā and t∗ in Theorem 4.3.2 are explicitly derived in closed form in
Section 4.6. For instance, when B̄ ≥ c |C |

2 , then t∗ = |C| and At = Ā = min
{
1, B̄
E[c]

}
for all t. When B̄ ≤

√
c1E[
√

c]
2 then t∗ = 0 and At =

B̄√
ctE[
√

c] . In fact, it can be shown
(see full proof) that in this latter case, the worst-case distribution is given by q = 1.
In particular, in this restricted case, the approximation of (Roth et al., 2012) is in fact
optimal, and indeed our allocation rule is expressing the solution of (Roth et al., 2012)
as a posted menu for a discrete, regular distribution of costs. In every other case,
q , 1 and our solution differs from that of (Roth et al., 2012), exhibiting a pooling
region for low-cost agents. More generally, the computational part of Theorem 4.3.2
follows by performing binary search over the support of F, which can be done in
O(log(|C|)) time.

7The explicit form of this is α = B̄−ĀE[c ·1{c≤ct∗ }]
E[
√
c ·1{c>ct∗ }

.
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Figure 4.1: The pdf (left) of a distribution of costs and the corresponding optimal
allocation rule for varying levels of per-agent budget (right). Note that for sufficiently
large budgets, a flat pooling region forms for agents with low costs.

We note that the optimal rule essentially allocates to each agent inversely proportion-
ally to the square root of their cost, but may also “pool” the allocation probability
for agents at the lower end of the cost distribution. See Figure 4.1 for examples of
optimal solutions.

The proof of Theorem 4.3.2 appears in Section 4.6. The main idea is to view the
optimization problem as a zero-sum game between the analyst who designs the
allocation rule A, and an adversary who designs q so as to maximize the variance
of the estimate. We show how to compute an equilibrium (A∗, z∗) of this zero-sum
game via Lagrangian and KKT conditions, and then note that the obtained A∗ must
in fact be an optimal allocation rule for worst-case variance.

The analysis above applied to a discrete cost distribution over a finite support of
possible costs. We show how to extend this analysis to a continuous distribution below,
noting that the continuous variant of theOptimization Problem forMoment Estimation
can be derived by taking the limit over finer and finer discrete approximations of the
cost distribution, in the full version of this work.

4.4 Multi-dimensional Parameter Estimation via Linear Regression
In this section, we extend beyond moment estimation to a multi-dimensional linear
regression task (we discuss the non-linear case in the full version of (Chen et al.,
2018a)). For this setting we will impose additional structure on the data held by
each agent. Each agent’s private information consists of a feature vector xi ∈ R, an
outcome value yi ∈ R, and a residual value εi ∈ R, that are i.i.d among agents. Each
agent also has a cost ci. The data is generated in the following way: first, xi is drawn
from an unknown distribution X. Then, independently from xi, the pair (ci, εi) is
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drawn from a joint distribution D over R2. The marginal distribution over costs, Dc,
is known to the designer, but not the full joint distributionD. Then yi is defined to be

yi = x>i θ
∗ + εi, (4.12)

where θ∗ ∈ Θ with Θ a compact subset of Rd . We further require that θ∗ is in the
interior of Θ. We write Dε for the marginal distribution over εi, which is supported
on some bounded range [L,U] and has mean 0. (In particular, L ≤ 0 ≤ U.) We
remark that it may be the case, however, that E [εi |ci] , 0.

When a survey mechanism buys data from agent i, the pair (xi, yi) is revealed.
Crucially, the value of εi is not revealed to the survey mechanism. The goal of the
designer is to estimate the parameter vector θ∗.

Note that the single-dimensional moment estimation problem from Section 4.3 is a
special case of linear regression. Indeed, consider setting d = 1, εi = m(zi)−E[m(zi)]
for each i, θ∗ = E[m(zi)], and xi to be the constant −1. Then, when the survey
mechanism purchases data from agent i, it learns yi = m(zi), and estimating θ∗ is
equivalent to estimating the expected value of m(zi).

More generally, one can interpret xi as a vector of publicly-verifiable information
about agent i, which might influence a (possibly sensitive) outcome yi. For example,
xi might consist of demographic information, and yi might indicate the severity of
a medical condition. The coefficient vector θ∗ describes the average effect of each
feature on the outcome, over the entire population. Under this interpretation, εi is the
residual agent-specific component of the outcome, beyond what can be accounted
for by the agent’s features. We can interpret the independence of xi from (ci, εi) as
meaning that each agent’s cost to reveal information is potentially correlated with
their (private) residual data, but is independent of the agent’s features.

As in Section 4.3, the analyst wants to design a survey mechanism to buy from the
agents, obtain data from the set S of elicited agents, then compute an estimate θ̂S of
θ. The expected average payment to each of the n agents should be no more than
B̄. As in Section 4.2, we note that the problem of designing a survey mechanism in
fact reduces to that of designing an allocation rule A that minimizes said variance
and satisfies a budget constraint in which the prices are replaced by known virtual
costs. To this end, the analyst designs an allocation rule A and a pricing rule P so as
to minimize the

√
n-normalized worst-case asymptotic mean-squared error of θ̂S as

the population size goes to infinity. Our mechanism will essentially be optimizing
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the coefficient in front of the leading 1/n term in the mean squared error, ignoring
potential finite sample deviations that decay at a faster rate than 1/n. Note that we
will design allocation and pricing rules to be independent of the population size n;
hence, the analyst can use the designed mechanism even if the exact population size
in unknown.

Estimators for Regression
Let S be the set of data points elicited by a survey mechanism. The analyst’s estimate
will then be the value θ̂S that minimizes the Horvitz-Thompson mean-squared error
E[(yi − x>i θ

∗)2], i.e.,

θ̂S = argmin
θ∈Θ

∑
i

1{i ∈ S}
A(ci)

(yi − x>i θ)2. (4.13)

Further, we make the following assumptions on the distribution of data points:

Assumption 4.4.1 (Assumption on the distribution of features). E[xi x>i ] is finite
and positive-definite, and hence invertible.

Finite expectation is a property one may expect real data such has age, height, weight,
etc. to exhibit. The second part of the assumption is satisfied by common classes
of distributions, such as multivariate normals. We first show that θ̂S is a consistent
estimator of θ.

Lemma 4.4.2. Under Assumption 4.4.1, for any allocation rule A > 0 that does not
depend on n, θ̂S is a consistent estimator of θ∗.

Proof of Lemma 4.4.2. Let m(θ; x, y) = (y − x>θ)2, and let 1i = 1{i ∈ S} for
simplicity. The following holds:

1. First, we note that θ∗ is the unique parameter that minimizes E[(yi − x>i θ)2];
indeed, take any θ , θ∗, we have that

E[(yi − θ>xi)2] = E
[(
yi − x>i θ

∗ + x>i (θ∗ − θ))2
)]

= E
[ (
yi − x>i θ

∗)2
]
+ E

[ (
x>i (θ∗ − θ)

)2
]
+ 2E

[
εi(θ∗ − θ)>xi

]
.
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As x and ε are independent, ε has mean 0, this simplifies to

E[(yi − θ>xi)2]

= E
[ (
yi − θ∗>xi

)2
]
+ (θ∗ − θ)>E

[
xi x>i

]
(θ∗ − θ) + 2(θ∗ − θ)>E [εi xi]

= E
[ (
yi − θ∗>xi

)2
]
+ (θ∗ − θ)>E

[
xi x>i

]
(θ∗ − θ)

> E
[ (
yi − θ∗>xi

)2
]
.

where the last step follows from E[xi x>i ] being positive-definite by Assump-
tion 4.4.1.

2. By definition, Θ is compact.

3. m(θ; x, y) is continuous in θ, and so is its expectation.

4. m(.; .) is also bounded (lower-bounded by 0, and upper-bounded by either L2

or U2), implying that θ → 1i

A(ci)m(θ; xi, yi) is continuous and bounded. Hence,
by the uniform law of large number, remembering that 1i

A(ci)m(θ; xi, yi) are i.i.d,

sup
θ∈Θ

�����1n n∑
i=1

1i

A(ci)
m(θ; xi, yi) − E

[
1i

A(ci)
m(θ; xi, yi)

] �����→ 0.

Finally, noting that conditional on ci, m(θ; xi, yi) and 1i

A(ci) are independent, we
have:

E

[
1i

A(ci)
m(θ; xi, yi)

]
= E

[
E

[
1i

A(ci)

���� ci

]
E [m(θ; xi, yi) | ci ]

]
= E [m(θ; xi, yi)]

using E
[

1i

A(ci)

��� ci

]
= 1.

Therefore, all of the conditions of Theorem 2.1 of Newey et al., 1994 are satisfied,
which is enough to prove the result. �

Similarly to the moment estimation problem in Section 4.3, the goal of the analyst is
to minimize the worst-case (over the distribution of data and the correlation between
ci’s and εi’s) asymptotic mean-squared error of the estimator θ̂S. Here “asymptotic”
means the worst-case error as θ̂S approaches the true parameter θ∗. The following
theorem characterizes the asymptotic covariance matrix of θ̂S. (In fact, it fully
characterizes the asymptotic distribution of θ̂S.)
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Lemma 4.4.3. Under Assumption 4.4.1, for any allocation rule A > 0 that does not
depend on n, the asymptotic distribution of θ̂S is given by

√
n(θ̂S − θ∗)

d−→ N
(
0,E[xi x>i ]−1E

[
ε2

i
1{i ∈ S}

A2(ci)

] )
,

where d denotes convergence in distribution and where randomness in the expecta-
tions is taken on the costs ci, the set of elicited data points S, the features of the data
xi, and the noise εi.

Proof of Lemma 4.4.3. For simplicity, let 1i = 1{i ∈ S} and note that the 1i’s are
i.i.d. Let m(θ; xi, yi) = (yi − x>i θ)2. First we remark that ∇θm(θ; xi, yi) · 1i

A(ci) =

2 1i

A(ci) xi(x>i θ− yi) and ∇2
θθm(θ; xi, yi) · 1i

A(ci) = 2 1i

A(ci) xi x>i . We then note the following:

1. θ∗ is in the interior of Θ.

2. θ → m(θ; xi, yi) · 1i

A(ci) is twice continuously differentiable for all xi, yi, ci, 1i.

3.
√

n
(

1
n
∑n

i=1 ∇θ m(θ∗; xi, yi) · 1i

A(ci)

)
→ N

(
0, 4E

[
1i

A2(ci) xi x>i (x>i θ∗ − yi)2
] )
.

This follows directly from applying the multivariate central limit theorem,
noting that

E

[
∇θm(θ∗; xi, yi) ·

1i

A(ci)

]
= E

[
E [ 2xiεi | ci ] · E

[
1i

A(ci)

���� ci

] ]
= E [2xiεi]
= 0.

where the first step follows from conditional indepence on c of x, ε with A(c), S,
the second step from E

[
1i

A(ci)

��� ci

]
= 1, and the last equality follows from the

fact that x and ε are independent and E[εi] = 0.

4. supθ∈Θ



E [
∇2
θθm(θ; xi, yi) · 1i

A(ci)

]
− 1

n
∑

i ∇2
θθm(θ; xi, yi) · 1i

A(ci)




 → 0, apply-

ing the uniform law of large numbers as ∇2
θθm(θ; xi, yi) · 1i

A(ci) = 2 1i

A(ci) xi x>i is i)
continuous in θ, and ii) constant in θ, thus bounded coordinate-by-coordinate
by 2 1i

A(ci) xi x>i that is independent of θ and has finite expectation 2E[xi x>i ].

5. E
[
∇2
θθm(θ; xi, yi) · 1i

A(ci)

]
= 2E[xi x>i ] is invertible as it is positive-definite.

Therefore the sufficient conditions i)-v) in Theorem 3.1 of Newey et al., 1994 hold,
proving that the asymptotic distribution is normal with mean 0 and variance

E[2xi x>i ]−1E

[
4

1i

A2(ci)
(x>i θ − yi)2xi x>i

]
E[2xi x>i ]−1.
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To conclude the proof, we remark that by independence of xi with ci and εi,

E

[
1i

A2(ci)
(x>i θ − yi)2xi x>i

]
= E[xi x>i ]E

[
ε2

i
1i

A2(ci)

]
.

�

Lemma 4.4.3 implies that the worst-case asymptotic mean-squared error, under a
budget constraint, is given by the worst-case trace of the variance matrix. That is,

R∗(F, A) , sup
X

sup
Dε
E

[
ε2

i
1{i ∈ S}

A2(ci)

]
·

d∑
j=1
E[xi x>i ]−1

j j

s.t. E[εi] = 0.

(4.14)

where recall thatDε is the marginal distribution over ε and X the distribution over x.
Importantly, this can be rewritten as

R∗(F, A) , ©­«sup
X

d∑
j=1
E[xi x>i ]−1

j j
ª®¬ · sup

Dε
E

[
ε2

i
1{i ∈ S}

A2(ci)

]
s.t. E[εi] = 0.

(4.15)

Therefore, the analyst’s decision solely depend on the worst-case correlation between
costs ci and noise εi, and not on the worst-case distribution X. In turn, the analyst’s
allocation is completely independent of and robust in X.

Characterizing the Optimal Allocation Rule for Regression
As in Section 4.3, we assume costs are drawn from a discrete set, say C =
{c1, . . . , c|C|}. We will then write At for an allocation rule conditional on the
cost being ct , and πt the probability of the cost of an agent being ct . We will assume
that B̄ <

∑|C|
t=1 πtct , meaning that it is not feasible to accept all data points, since

otherwise it is trivially optimal to set At = 1 for all t.

The following lemma describes the optimization problem faced by an analyst wanting
to design an optimal survey mechanism. Recall that residual values lie in the interval
[L,H].

Lemma 4.4.4 (Optimization Problem for Parameter Estimation). The optimization
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program for the analyst is given by:

inf
A∈[0,1] |C |

sup
q∈[0,1] |C |

l∑
t=1

πt

At

(
(1 − qt) · L2 + qt ·U2

)
s.t.

|C|∑
t=1

πt ((1 − qt) · L + qt ·U) = 0

|C|∑
t=1

πtct At ≤ B̄

A is monotone non-increasing

(4.16)

Proof of Lemma 4.4.4. First we note that

R∗(F, A) , ©­«sup
X

d∑
j=1
E[xi x>i ]−1

j j
ª®¬ · sup

Dε
E

[
ε2

i
1{i ∈ S}

A2(ci)

]
s.t. E[εi] = 0.

(4.17)

We can therefore renormalize the worst-case variance by supX
∑d

i=1 E[xi x>i ]−1
ii , as it

does not depend on any other parameter of the problem. The analyst’s objective is
now given by

sup
Dε

|C|∑
t=1

πt
E[ε2

i |ct]
At

s.t.E[εi] = 0.

(4.18)

The worst case distribution is reached when εi |ct is binomial between L and U (and
such a distribution is feasible for εi |ct), therefore letting qt = P[εi = U | ct], we
obtain the lemma. �

We can now characterize the form of the optimal survey mechanism. For simplicity,
wewill assume thatU2 ≥ L2. This is without loss of generality, since the optimization
program is symmetric in L and U; if L2 > U2, the analyst can set qt = 1 − qt , L = U

and U = L to obtain Program (4.16) with U2 > L2.

Theorem 4.4.5. Under the assumptions described above, an optimal allocation rule
A has the form

1. At = min
(
1, α |L |√ct

)
for t < t−

2. At = Ā for all t ∈ {t−, . . . , t+}
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3. At = min
(
1, α U√

ct

)
for t > t+

for Ā and α positive constants that do not depend on n, and t− and t+ integers with
t− ≤ t+. Further, Ā and α can be computed efficiently given knowledge of t−, t+.

We remark that the allocation rule that we designed is strictly positive and independent
of n (as the optimization program itself does not depend on n), so Lemmas 4.4.2
and 4.4.3 apply. Theorem 4.4.5 immediately implies that an optimal allocation rule
can be obtained by simply searching over the space of parameters (t−, t+), which
can be done in at most |C|2 steps. For each pairs of parameters (t−, t+), A can be
computed efficiently as stated in the Theorem. Then the analyst only needs to pick
the allocation rule that minimizes the objective value among the obtained allocation
rules that are feasible for Program (4.16). Further, we remark that the solution for
the linear regression case exhibits a structure that is similar to the structure of the
optimal allocation rule for moment estimation (see Theorem 4.3.2): it exhibits a
pooling region in which all cost types are treated the same way, and changes in the
inverse of the square root of the cost outside said pooling region. However, we note
that we may now choose to pool agents together in an intermediate range of costs,
instead of pooling together agents whose costs are below a given threshold.

Proof sketch. We first compute the best response q∗ of the adversary; we note that
this best response is in fact the solution to a knapsack problem that is independent of
the value taken by the allocation rule A. We can therefore plug the adversary’s best
response into the optimization problem, and reduce the minimax problem above in a
simple minimization problem on A. We then characterize the solution as a function
of the parameters (t−, t+) ∈ [|C|]2 through KKT conditions. The full proof is given
in Section 4.7. �

4.5 Proofs: Reduction from Mechanism Design to Optimization
We give the proof when the cost support is discrete. In the whole proof, we let
C , {c1, . . . , c|C|} with c1 < . . . < c|C|, πt = f (ct), and At = A(ct). We first show
that given a fixed monotone non-increasing allocation rule A with A1 ≥ . . . ≥ A|C|,
there exists optimal prices P∗(A) such that the payments of any individually rational
and truthful mechanism are lower-bounded by P∗(A), and such that mechanism with
allocation rule A and prices P∗(A) is individually rational and truthful:

Claim 4.5.1. Let P∗|C|(A) = c|C|, and P∗t (A) = ct+
∑|C|

j=t+1
Aj

At
(c j−c j−1) for all t < |C|.

Then for every IC and IR mechanism with monotone non-increasing allocation rule
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A, the pricing rule P must satisfy Pt ≥ P∗t (A) for all t. Further, the mechanism with
allocation rule A and pricing rule P∗(A) is IC and IR.

Note that this directly implies that if there exists a variance-minimizing mechanism,
then there exists an IC and IR variance-minimizing mechanism with pricing rule
P∗(A) given allocation rule A. Therefore, we can reduce our attention to such
mechanisms.

Proof. We show the first part of the lemma by induction: clearly, it must be the case
that P|C| ≥ c|C| for the mechanism to be IR when using pricing rule P. Now, suppose
by induction that for any IC and IR mechanism, Pt+1 ≥ P∗t+1(A). We require by IC
constraint and induction hypothesis that for t < |C| − 1,

Pt ≥ ct +
At+1
At
(P∗t+1(A) − ct)

= ct +
At+1
At

©­«
|C|∑

j=t+2

A j

At+1
(c j − c j−1) + ct+1 − ct

ª®¬
= P∗t (A)

and for t = |C| − 1,

P|C|−1 ≥ c|C|−1 +
A|C|

A|C|−1
(P∗|C|(A) − c|C|−1)

= c|C|−1 +
A|C|

A|C|−1
(c|C| − c|C|−1)

= P∗|C|−1(A).

This proves the first part of the claim. Now, we note that the mechanism with
prices P∗(A) is IR as clearly P∗t (A) ≥ ct . It remains to show the mechanism is IC to
complete the proof of the claim. Take t , t′, we have:

At(P∗t − ct) − At ′(P∗t ′ − ct)

=

|C|∑
j=t+1

A j(c j − c j−1) −
|C|∑

j=t ′+1
A j(c j − c j−1) + At ′(ct − ct ′).

If t > t′, we have

At(P∗t − ct) − At ′(P∗t ′ − ct ′) ≥ At ′(ct − ct ′) − At ′

t∑
j=t ′+1
(c j − c j−1) = 0
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as A j ≤ At ′ for all j ≥ t′, while if t < t′, we have

At(P∗t − ct) − At ′(P∗t ′ − ct) ≥ At ′

t ′∑
j=t+1
(c j − c j−1) − At ′(ct ′ − ct) = 0.

as A j ≥ At ′ for all j ≤ t′. This concludes the proof. �

We conclude the proof by showing that the budget constraint can be rewritten in the
desired form, i.e. such that the true costs are replaced by the virtual costs in the
budget expression:

Lemma 4.5.2. The expected budget used by a mechanism with allocation rule A and
payment rule P∗(A) can be written

n∑
t=1

|C|∑
t=1

πtφ(ct)At .

Proof. The expected budget spent on an agent can be written, using the previous
claim:

|C|∑
t=1

πt P∗t (A)At =

|C|∑
t=1

πtct At +

|C|∑
t=1

πt

|C|∑
j=t+1

A j(c j − c j−1)

=

|C|∑
t=1

πtct At +

|C|∑
j=2

j−1∑
t=1

πt A j(c j − c j−1)

= π1c1 A1 +

|C|∑
j=2

(
π jc j + (c j − c j−1)

j−1∑
t=1

πt

)
A j

=

|C|∑
j=1

π jφ(c j)A j .

�

4.6 Proofs: Theorem 4.3.2
A More Structural Characterization
We begin by giving a strengthening of our main Theorem 4.3.2 that exactly pin-points
the optimal allocation rule in a closed form. We then give a proof of this stronger
theorem.

Theorem 4.6.1 (Closed Form for Optimal Allocation for Moment Estimation). The
optimal allocation rule A is determined by two constants Ā and t∗ ∈ {0, . . . , |C|}
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such that:

At =


Ā if t ≤ t∗

1√
ct
· B̄−ĀE[c·1{c≤ct∗ }]
E[
√

c·1{c>ct∗ }
o.w.

(4.19)

The parameters Ā and t∗ are determined as follows. For k ∈ {0, 1, . . . , |C| + 1} and
x ∈ [0, 1] let (for c0 = 0 and c|C|+1 = ∞):

Q(k, x) =
k∑

t=1
πtct +

|C|∑
t=k+1

πt

√
ct · ck

x
. (4.20)

R(k, x) = 2

(
k∑

t=1
πt

ct · x
ck
+

|C|∑
t=k+1

πt

)
. (4.21)

B(k, x) = Q(k, x)
R(k, x) . (4.22)

Let k∗ be the unique k s.t. B(k, 1) ≤ B̄ < B(k + 1, 1). If k∗ = 0 then t∗ = 0.
Otherwise let x∗ ∈ [0, 1] be the unique solution to: B̄ = B(k∗, x∗).8 If R(k∗, x∗) ≥ 1
then t∗ = k∗ and Ā = 1

R(k∗,x∗) . If R(k∗, x∗) < 1 then t∗ = max{k : B̄ > Q(k, 1)} and
Ā = 1.

Proof of Theorem 4.6.1: Optimal Survey for Moment Estimation
In all that follows, we will drop the monotonicity constraints on A. We write

P = inf
A∈(0,1] |C |

sup
q∈[0,1] |C |

|C|∑
t=1

πt ·
qt

At
−

( |C|∑
t=1

πt · qt

)2

s.t.
|C|∑
t=1

πt · ct · At ≤ B̄.

(4.23)

We will show that nevertheless, the solution to this optimization program satisfies
the monotonicity constraint in A, hence dropping the constraint can be done without
loss of generality. For further simplification of notation, for any two vectors x, y

we let x ◦ y be their component-wise product vector, x./y their component-wise
division and 〈x, y〉 their inner product. Finally we denote with xi:k the sub-vector
(xi, xi+1, . . . , xk). Thus we can write the objective function inside the minimax
problem as:

V(A, q) = 〈π, q./A〉 − 〈π, q〉2 , (4.24)
8The latter amounts to solving a simple cubic equation of the form A√

x
+ B = xC + D ⇔

√
x3C + (D − B)

√
x − A = 0, which admits a closed form solution.
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where π is the pdf vector and we can write the budget constraint as 〈π ◦ c, A〉 ≤ B̄.

Rather than solving for simply the optimal solution for A in the latter minimax
problem, we will instead address the harder problem of finding an equilibrium of the
zero-sum game G associated with this minimax, i.e. a game where the minimizer
player is choosing A and the maximizing player is choosing q and the utility is
V(A, q). An equilibrium of this game is then defined as:

Definition 4.6.2 (Equilibrium Pair). A pair of solutions (A∗, q∗) is an equilibrium if:

V(A∗, q∗) = inf
A∈[0,1] |C | :〈π◦c,A〉≤B̄

V(A, q∗) = sup
q∈[0,1] |C |

V(A∗, q). (4.25)

Observe that the function V(A, q) is convex in A and concave in q, hence it defines
a convex-concave zero-sum game. From standard results on zero-sum games, if
(A∗, q∗) is an equilibrium solution, then A∗ is a solution to the minimax problem P

that we are interested in (see e.g. Freund et al., 1999), since:

inf
A

V(A, q∗) ≤ inf
A

sup
q

V(A, q) ≤ sup
q

V(A∗, q) = V(A∗, q∗) = inf
A

V(A, q∗),

directly implying supz V(A∗, z) = infA supq V(A, q).

Characterizing the best responses of the minimizing and maximizing player: In
this paragraph we characterize the best-responses of the minimizing and maximizing
players in the zero-sum game formulation of our problem.

Lemma 4.6.3 (Best Response of Min Player). Fix q such that qt > 0 for all t. Let
λ∗ > 0 be such that

|C|∑
t=1

πt · ct ·min
(
1,

√
qt

λ∗ct

)
= B̄. (4.26)

Then the allocation rule A such that At = min
(
1,

√
qt
λ∗ct

)
is a best-response to q in

game G.

Proof. Fix q . Note that when At goes to 0 for any t, the objective values tends to
infinity, but the optimal solution is clearly finite (simply splitting the budget evenly
among cost types ct is feasible and leads to a finite objective value). This implies that
a best-response exists for the analyst: indeed, the objective is convex and continuous
on (0, 1]|C|, and the feasible set can be restricted without loss of generality to be
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compact and convex by adding the constraints At ≥ γ for a small enough γ > 0. The
Lagrangian (for more on Lagrangians and KKT conditions, see Boyd et al., 2004) of
the minimization problem solved by the minimizing player is therefore given by:

L(A, λ, λ1
t ) = V(A, q) + λ

∑
t

(πtct At − B̄) +
|C|∑
t=1

λ1
t (At − 1)

where λ, λ1
t ≥ 0. Let (λ∗, λ1∗

t ) denote optimal dual variables and A an optimal primal
variable, we have that ∂L(A,λ

∗,λ1∗
t )

∂At
= 0 for all t by the KKT conditions, implying

−πt
qt

A2
t
+ λ∗πtct + λ

1∗
t = 0⇒ At =

√
πtqt

λ∗πtct + λ
1∗
t

where we note that the denominator is non-zero as we have ct > 0 and λ1∗
t ≥ 0.

Further, if A < 1, we must also have by the KKT conditions that λ1∗
t = 0. This

directly implies that at a best response, we must have At = min
(
1,

√
qt
λ∗ct

)
, for

some λ∗ ≥ 0. Since the budget constraint will always be binding (as increasing
the allocation probability can only help the variance), λ∗ must be solving Equation
(4.26). The latter concludes the proof of the Lemma. �

This gives the best response of the minimizing player. The best response of the
maximizing player can be obtained by similar techniques:

Lemma 4.6.4 (Best-Response of Max Player). Fix A such that A j > 0 for all j. Take
any q ∈ [0, 1]|C| such that for every j, at least one of the following holds:

1. q j = 0 and 1
Aj
< 2 〈π, q〉

2. q j = 1 and 1
Aj
> 2 〈π, q〉

3. 0 ≤ q j ≤ 1 and 1
Aj
= 2 〈π, q〉

Then q is a best response to A in game G.

Proof. Fix A. The Lagrangian of themaximization problem solved by themaximizing
player is given by:

L(q, λ0
t , λ

1
t ) = V(A, q) +

|C|∑
t=1

λ1
t (1 − qt) +

|C|∑
t=1

λ0
t qt

For optimal primal and dual variables, the KKT conditions are given by the following:
for all t ∈ {1, . . . , |C|}
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• First order. ∂L(q,λ0
t ,λ

1
t )

∂qt
= 0, which can be rewritten as: πt

At
−2πt 〈π, q〉−λ1

t +λ
0
t =

0.

• Feasibility. The variables qt, λ
1
t , λ

0
t are feasible, i.e. qt ∈ [0, 1] and λ0

t , λ
1
t ≥ 0

• Complementarity. Either λ0
t = 0 or qt = 0. Either λ1

t = 0 or qt = 1

Because the objective value is convex and differentiable in q, the KKT conditions
are necessary and sufficient for optimality of the primal and dual variables (see Boyd
et al., 2004). It is therefore enough to show that (qt, λ

0
t , λ

1
t ) satisfies the KKT

conditions for some well-chosen qt, λ
0
t , λ

1
t . If 1

At
< 2 〈π, q〉, then qt = 0, λ1

t = 0 and
λ0

t = −
πt
At
+ 2πt 〈π, q〉 ≥ 0 is a solution. If 1

At
> 2 〈π, q〉 then qt = 1, λ0

j = 0 and
λ1

j =
πj
Aj
− 2π j 〈π, q〉 ≥ 0 is a solution. Otherwise if 1

At
= 2 〈π, q〉 then λ0

t = λ
1
t = 0

and any feasible value for qt that respects the equality 1
At
= 2 〈π, q〉 is a solution. �

Properties of functions Q(k, x), R(k, x) and B(k, x): Before proceeding to the
main proof of the Theorem, we show some useful properties of Q(k, x), R(k, x) and
B(k, x).

Claim 4.6.5. For all k < |C|, R(k, 1) ≥ R(k + 1, 1), Q(k, 1) ≤ Q(k + 1, 1) and
B(k, 1) ≤ B(k + 1, 1). Therefore, the exists a unique k such that B(k, 1) ≤ B̄ <

B(k + 1, 1).

Proof. By expanding:

R(k, 1) − R(k + 1, 1) =
k∑

t=1
πt

ct

ck
+

|C|∑
i=k+1

πt −
k+1∑
t=1

πt
ct

ck+1
−
|C|∑

t=k+2
πt

=

(
1
ck
− 1

ck+1

) k∑
t=1

πtct ≥ 0.

Additionally,

Q(k + 1, 1) −Q(k, 1) =
k+1∑
t=1

πtct −
k∑

t=1
πtct +

|C|∑
t=k+2

πt
√

ck+1ct −
|C|∑

t=k+1
πt
√

ckct

= (√ck+1 −
√

ck)
|C|∑

t=k+1
πt
√

ct ≥ 0.

This concludes the proof. �
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Claim 4.6.6. There is a unique x∗ ∈
[

ck∗
ck∗+1

, 1
]
such that B̄ = B(k∗, x∗) for B(1, 1) ≤

B̄ < B(|C|, 1).

Proof. Observe that B(k∗, x) is continuous decreasing in x, proving uniqueness of
a solution if it exists. Existence within

[
ck∗

ck∗+1
, 1

]
follows by noting that B(k∗, x)

is continuous decreasing in x, and that trivially B(k∗, 1) ≤ B̄ < B(k∗ + 1, 1) =
B

(
k∗, ck∗

ck∗+1

)
, proving the result for B(1, 1) ≤ B̄ < B(|C|, 1). �

Proof of the Theorem: We split the proof of the theorem in the two corresponding
cases when B ≥ B(1, 1) i.e. t∗ ≥ 1, then deal with the corner case when B < B(1, 1).

Lemma 4.6.7 (Case 1: R(k∗, x∗) ≥ 1, B ≥ B(1, 1)). For this case, t∗ = k∗ and
Ā = 1

R(k∗,x∗) =
B̄

Q(k∗,x∗) .

Proof. Let q be such that qt =
ct

ck∗
x∗ for t ≤ k∗, qk∗+1 = . . . = q|C| = 1. We show

that A defined by the parameters Ā and t∗ given in the lemma, is a best response to q

and vice-versa.

First, let us show that q is a best response to A. For j ≤ k∗, we note that 0 ≤ q j ≤ 1
and we have

2 〈π, q〉 = 2

(
x∗

ck∗

k∗∑
t=1

πtct +

|C|∑
t=k∗+1

πt

)
= R(k∗, x∗) = 1

A j
.

For t ≥ k∗ + 1 (when such a case exists, i.e. when k∗ < |C|), q j = 1. Moreover, the
allocation takes the form:

At =
1
√

ct
· B̄ − ĀE[c · 1{c ≤ ct∗}]
E[
√

c · 1{c > ct∗}]
=

B̄
√

ct
·

1 − 1
Q(k∗,x∗)E[c · 1{c ≤ ct∗}]
E[
√

c · 1{c > ct∗}]

=
B̄
√

ct
·

√
ck∗
x∗

Q(k∗, x∗) .

By Claim 4.6.6, ck∗+1
ck∗
· x∗ ≥ 1. Thus:

At ≤
B̄
√

ct
·
√

ck∗+1

Q(k∗, x∗) ≤
B̄

Q(k∗, x∗) =
1

R(k∗, x∗) =
1

2 〈π, q〉 . (4.27)

By Lemma 4.6.4, q is a best response to A. Note that combined with the costs being
non-decreasing, this also proves that A is monotone non-increasing.

It remains to show that A is a best response to q. By Lemma 4.6.3, we only need to
check that for all j ∈ {1, . . . , |C|}, A j = min

(
1,

√
qj

λ∗cj

)
, where λ∗ is chosen to make
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the budget constraint tight. First, we note that the A given by the lemma does make
the budget constraint tight, as any allocation of the form given by Equation (4.19)

does so by construction. Now, let λ∗ =
(∑

t πt
√

ctqt
B̄

)2
. We have that for j ≤ k∗:√

q j

λ∗c j
=

√
x∗

ck∗

B̄∑
t πt
√

ctqt

=

√
x∗

ck∗

B̄√
x∗
ck∗

∑k∗
t=1 πtct +

∑|C|
t=k∗+1 πt

√
ct

=
B̄

Q(k∗, x∗)
= A j

and by a similar calculation that for j ≥ k∗ + 1 that√
q j

λ∗c j
=

√
1
c j

B̄∑
t πt
√

ctqt
=

1
√c j

B̄√
x∗
ck∗

Q(k∗, x∗)
= A j .

Since A j ≤ 1 for all j, by the conditions of the Lemma, we therefore have:

A j = min
(
1,

√
q j

λ∗c j

)
.

�

Lemma 4.6.8 (Case 2: R(k∗, x∗) < 1, B̄ ≥ B(1, 1)). For this case, t∗ = max{k :
B̄ > Q(k, 1)} and Ā = 1.

We start with the following claim:

Claim 4.6.9. If R(k∗, x∗) < 1, then there exist B̃, k̃ and x̃ such that k̃ ≤ k∗ is the
unique k such that B(k, 1) ≤ B̃ < B(k + 1, 1), x̃ is the unique solution to B̃ = B(k̃, x̃),
and R(k̃, x̃) = 1. Further, x̃ ∈

[
ck̃

ck̃+1
, 1

]
.

Proof. By the fact that R(k, x) is increasing in x and by Claim 4.6.6, we get that:
R(k∗ + 1, 1) = R

(
k∗, ck∗

ck∗+1

)
≤ R(k∗, x∗) < 1. Because R(0, 1) = 2 and R(k, 1) is

decreasing in k, there exists k̃ ≤ k∗ such that R(k̃, 1) > 1 ≥ R(k̃ + 1, 1) = R
(
k̃, ck̃

ck̃+1

)
.

Because R(k̃, x) is increasing continuous in x, there exists x̃ ∈
[

ck̃
ck̃+1

, 1
]
such that

R(k̃, x̃) = 1. Let B̃ = B(k̃, x̃) = Q(k̃, x̃), we have B(k̃, 1) ≤ B̃ ≤ B
(
k̃, ck̃

ck̃+1

)
=

B(k̃ + 1, 1) as B is decreasing in x. Thus (B̃, k̃, x̃) satisfies the claim. �
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Now we show the proof of the lemma:

Proof of Lemma 4.6.8. Let us define (B̃, k̃, x̃) as in the statement of Claim 4.6.9.
First we show that t∗ ≥ k̃. This follows from noting that B̄ > Q(k∗, x∗) ≥ Q(k∗, 1) ≥
Q(k̃, 1) as clearly Q(k, x) is increasing in k and decreasing in x. Now, let qt =

ct
ck̃

x̃

for t ≤ k̃, qk̃+1 = . . . = q|C| = 1.

We prove that q is a best response to A. We have that

2 〈π, q〉 = 2 ©­« x̃
ck̃

k̃∑
t=1

πtct +

|C|∑
t=k̃+1

πt
ª®¬ = R(k̃, x̃) = 1

For j ≤ k̃ ≤ t∗, A j = 1 hence 2 〈π, q〉 = 1
Aj
. For j > t∗, we note that by definition of

t∗,

B̄ ≤ Q(t∗ + 1, 1) =
t∗+1∑
t=1

πtct +

|C|∑
t=t∗+2

πt
√

ct · ct∗+1 =

t∗∑
t=1

πtct +
√

ct∗+1

|C|∑
t=t∗+1

πt
√

ct

⇒
B̄ −∑t∗

t=1 πtct
√

ct∗+1
∑|C|

t=t∗+1 πt
√

ct

≤ 1

and this directly implies that At∗+1 ≤ 1. By monotonicity of ct , it then holds that
A j ≤ 1 for any j > t∗. Hence 2 〈π, q〉 = 1 ≥ 1

Aj
. This proves q is a best response to

A by Lemma 4.6.4, and simultaneously proves monotonicity of A.

Finally, we prove that A is a best response to q. By Lemma 4.6.3 it suffices to
show that min

(
1,

√
qt
λ∗ct

)
= At for λ∗ that makes the budget constraint binding. First,

we note that the A given by the lemma makes the budget constraint tight, as any
allocation of the form given by Equation (4.19) does so by construction. Now, let

λ∗ =

(∑ |C |
t=t∗+1 πtct

B̄−∑t∗
t=1 πtct

)2
, the following holds:

1. For j > t∗: √
q j

λ∗c j
=

1
√c j
·

B̄ −∑t∗
t=1 πtct∑|C|

t=t∗+1 πt
√

ct

= A j ≤ 1.

2. For j ∈ {k̃ + 1, . . . , t∗} (when this regime exists, i.e. when k̃ < t∗), remember
that by definition of t∗,

B̄ > Q(t∗, 1) =
t∗∑

t=1
πtct +

√
ct∗

|C|∑
t=t∗+1

πt
√

ct
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which implies that √
1

λ∗ct∗
=

1
√

ct∗

B̄ −∑t∗
t=1 πtct∑|C|

t=t∗+1 πt
√

ct

> 1.

Thus √
1

λ∗c j
≥

√
1

λ∗ct∗
> 1

and min
(
1,

√
1

λ∗cj

)
= 1 = A j .

3. For j ≤ k̃, by Claim 4.6.9 we have x̃ ≥ ck̃
ck̃+1

. Therefore:√
q j

λ∗c j
=

√
x̃

λ∗ck̃
≥

√
1

λ∗ck̃+1
> 1,

which follows from the previous case. Hence, min
(
1,

√
1

λ∗cj

)
= 1 = A j .

�

Lemma 4.6.10 (Case 3: B̄ < B(1, 1) =
√

c1E[
√

c]
2 ). For this case, an optimal solution

is given by t∗ = 0.

Proof. We let qt = 1 for all t. We first show that qt is a best response to A. This
trivially follows by Lemma 4.6.4 by remarking that

2 〈π, q〉 = 2 <
√

c1E[
√

c]
B̄

≤
√c jE[

√
c]

B̄
=

1
A j

Now, we show that A is a monotone best response to q. Monotonicity directly follows
from the fact that the costs are non-decreasing. Now, to check that A is a best response

let us set λ∗ =
(
E[
√

c]
B

)2
. We have

√
qj

λ∗cj
=

√
1
cj

B̄
E[
√

c] = A j ≤ B̄√
c1E[
√

c] ≤ 1/2. Hence

A j = min
(
1,

√
qj

λ∗cj

)
. By Lemma 4.6.3, A is a best response to q. This concludes the

proof. �

4.7 Proof of Theorem 4.4.5
Before starting to prove the Theorem, we note that we can assume without loss of
generality that U > 0. Otherwise, U = L = 0 (as we are assuming U2 ≥ L2), and the
objective value of the optimization program is 0 and independent of the allocation
rule, thus any feasible allocation rule is optimal. In particular, any monotone
allocation rule of the form given in the theorem statement works.
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Simplifying the analyst’s problem
The following lemma reduces the minimax problem that the analyst needs to solve to
a simple convex minimization problem:

Lemma 4.7.1. The optimization program solved by the analyst can be written as:

inf
A∈(0,1] |C |

t∗−1∑
t=1

πt
L2

At
+ πt∗

R2

At∗
+

|C|∑
t=t∗+1

πt
U2

At

s.t.
|C|∑
t=1

πtct At ≤ B̄

A is monotone non-increasing,

(4.28)

where t∗ = min{ j : − L
U−L >

∑|C|
t= j+1 πt}, q∗t =

1
π∗t

(
= − L

U−L −
∑|C|

t=t∗+1 πt

)
> 0 and

R2 = (U2 − L2)qt∗ + L2 > 0.

Proof. We first note that for a given A, the optimization program solved by the
adversary can be rewritten as

sup
q∈[0,1] |C |

|C|∑
t=1

πt

At
qt(U2 − L2) + L2

|C|∑
t=1

πt

At

s.t.
∑

t

πtqt = −
L

U − L

As such, the adversary is exactly solving a knapsack problemwith capacity− L
U−L ≥ 0,

weights πt and utilities πt
At
. Therefore, an optimal solution exists and is to put the

weight on the t’s with the higher values of 1
At
, i.e., the lowest values of At first.

Because A is non-increasing in the costs and therefore in t, an optimal solution is
given by:

q1 = . . . = qt∗−1 = 0, πt∗qt∗ = −
L

U − L
−
|C|∑

t=t∗+1
πt, qt∗+1 = . . . = ql = 1.

This holds independently of A as long as A is feasible (hence monotone), proving
the result. �

Solving the optimization problem
We start with the following lemma that characterizes the form of the solution:

Lemma 4.7.2. There exist λ ≥ 0, non-negative integers t−, t+ such that t− ≤ t∗ ≤ t+,
and an optimal allocation rule A that satisfy
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1. A1 ≥ . . . ≥ At−−1 ≥ At− = . . . = At+ ≥ At++1 ≥ . . . Al

2. At = min
(
1,

√
L2

λct

)
∀t < t−

3. At = min
(
1,

√
U2

λct

)
∀t > t+,

and that make the budget constraint tight. In the rest of the proof, we denote
Ā , At− = . . . = At+ .

Proof. First, we show existence of an optimal solution A. Because the optimal value
of the program is finite but the objective tends to infinity when any A|C| tends to 0
(as we have U2, R2 > 0), there must exists γ > 0 such that the analyst’s program is
given by

inf
A∈[γ,1] |C |

t∗−1∑
t=1

πt
L2

At
+ πt∗

R2

At∗
+

|C|∑
t=t∗+1

πt
U2

At

s.t.
|C|∑
t=1

πtct At ≤ B̄

A is monotone non-increasing.

(4.29)

The objective is convex and continuous in A over [γ, 1]|C|, and the feasible set is
convex and compact, therefore the above program admits an optimal solution. Now,
consider the following program with partial monotonicity constraints:

inf
A∈(0,1] |C |

t∗−1∑
t=1

πt
L2

At
+ πt∗

R2

At∗
+

|C|∑
t=t∗+1

πt
U2

At

s.t.
|C|∑
t=1

πtct At ≤ B̄

A1, . . . , At∗−1 ≥ At ≥ At∗+1, . . . , Al

(4.30)

In fact, there exists an optimal solution to this problem that makes the budget
constraint tight (one can increase the allocation rule without decreasing the objective
value until the budget constraint becomes tight). Considering such a solution, the
Lagrangian of the program is given by

L(A, λ, λ1
t , λt) =

t∗−1∑
t=1

πt
L2

At
+

|C|∑
t=t∗+1

πt
U2

At
+ πt∗

R2

At∗
+ λ

∑
t

πtct At

+
∑

t

λ1
t At − λB/n −

∑
t

λ1
t +

∑
t<t∗

λt(At∗ − At) +
∑
t>t∗

λt(At − At∗).
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It must necessarily be the case at optimal that whenever At < 1, λ1
t = 0 and whenever

At > At∗ (for t < t∗) or At < At∗ (for t > t∗), λt = 0 by the KKT conditions, and
that A satisfies the first order conditions ∇AL(A, λ, λ1

t , λ
k) = 0. Thus, an optimal

solution must necessarily satisfy:

1. At = min
(
1,max

(
At∗,

√
πt L2

λπtct

))
for t < t∗

2. At = min
(
1, At∗,

√
πtU2

λπtct

)
for t > t∗

Note that this implies that A is monotone non-increasing (as the virtual costs are
monotone non-decreasing), therefore is an optimal solution to the analyst’s problem,
and that there must exist t− and t+ such that

A1 ≥ . . . ≥ At−−1 ≥ At− = . . . = At∗ = . . . = At+ ≥ At++1 ≥ . . . Al

with At = min
(
1,

√
L2

λct

)
∀t < t− and At = min

(
1,

√
U2

λct

)
∀t > t+. �

We now proceed onto proving the main statement. Let γt = |L | (resp. R, U), for
t < t∗ (resp. t = t∗, t > t∗). Let t−, t+ be such that t− ≤ t∗ ≤ t+ and At− = . . . = At+

at optimal. Suppose the analyst has knowledge of t−, t+. Then, replacing A as
a function of t−, t+, λ, Ā in the analyst’s problem (4.28) reduces to the following
problem of two variables λ and Ā:

inf
λ≥0, Ā∈[0,1]

t−−1∑
t=1

πt
γ2

t

min(1, γt√
λct
)
+

1
Ā
·

t+−1∑
t=t−

πtγt + ·
|C|∑

t=t+
πt

γ2
t

min(1, γt√
λct
)

s.t.
t−−1∑
t=1

πtct min(1, γt√
λct
) + Ā

t+∑
t=t−

πtct +

|C|∑
t=t++1

πtct min(1, γt√
λct
) = B̄

min
(
1,

γt√
λct

)
≥ Ā ∀t ∈ {t1, . . . , t− − 1}

min
(
1,

γt√
λct

)
≤ Ā ∀t ∈ {t+ + 1, . . . , |C|}.

(4.31)
Hence there exists an optimal solution of the form given by Lemma 4.7.2 with

Ā = A(λ) , 1∑t+
t=t− πtct

(
B̄ −

t−−1∑
t=1

πtct min
(
1,

γt√
λct

)
−

|C|∑
t=t++1

πtct min
(
1,

γt√
λct

))
,

as Ā as a function of λ is entirely determined by the budget constraint. Plugging
this back in the above program, we can rewrite the program as depending only on
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the variable λ as follows, also remembering that the (virtual) costs are monotone
non-decreasing:

inf
λ≥0

t−−1∑
t=1

πt
γ2

t

min
(
1, γt√

λct

) + 1
A(λ) ·

t+∑
t=t−

πtγt + ·
|C|∑

t=t++1
πt

γ2
t

min
(
1, γt√

λct

)
s.t. min

(
1,
|L |

√
λct−−1

)
≥ A(λ)

min
(
1,

U
√
λct++1

)
≤ A(λ).

(4.32)

Suppose that the analyst also has knowledge of t1, the maximum value of t ∈
{0, . . . , t− − 1} ∪ {t+ + 1, . . . , |C|} such that min(1, γt√

λct
) = 1. Then λ∗ must satisfy

one of the three following conditions:

1. min
(
1, |L |√

λct−−1

)
= A(λ). Letting µ = 1√

λ
, this is a linear equation in µ and

therefore can be solved efficiently given knowledge of t1. This follows from
noting the equation can be written

min
(
1,

µ|L |
√

ct−−1

)
=

1∑t+
t=t− πtct

(
B̄ −

t−−1∑
t=1

πtct min
(
1,
µγt√

ct

)
−

|C|∑
t=t++1

πtct min
(
1,
µγt√

ct

))
,

which is of the form aµ + b = 0 for some constants a, b.

2. min(1, U√
λct++1

) = A(λ). Letting µ = 1√
λ
, this is a linear equation in µ and

can be solved efficiently given knowledge of t1. This follows from the same
argument as above.

3. λ minimizes the optimization problem with only the non-negativity constraint
λ ≥ 0. Then, letting µ = 1√

λ
, the objective value is the following function of µ:

OPT(µ) =
t−−1∑
t=1

πtγ
2
t max

(
1,
√

ct

µγt

)
+

|C|∑
t=t+

πtγ
2
t max

(
1,
√

ct

µγt

)
+

∑t+
t=t− πtct ·

∑t+−1
t=t− πtγt

B̄ −∑t−−1
t=1 πtct min

(
1, µγt√ct

)
−∑|C|

t=t++1 πtct min
(
1, µγt√ct

) ,
i.e. can be written (with knowledge of t1) OPT(µ) = C + K

µ +
1

γ−κµ for some
constants C, γ,K, κ. The first order condition is given by K

µ2 =
κ

(γ−κµ)2 and
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a minimizer can therefore be computed efficiently (either as 0, +∞, or as a
solution of the first order conditions—whichever leads to the smallest objective
value).

The analyst only needs to pick the value of λ among the three cases above that is
feasible and minimizes the objective value of Program (4.32). In practice, the analyst
does not know t1 but can search over the space of possible t1’s, which can be done
in at most |C| steps (note that there may be values of t1 for which the program
is infeasible, showing that said value of t1 is impossible). The analyst can solve
the optimization problem absent knowledge of t− and t+ by searching over (t−, t+)
pairs, and the analyst obtains a solution by picking the (t1, t−, t+) tuple for which
Program (4.32) is feasible and the corresponding optimal λ that lead to the best
objective value over all tuples. This can be done in a most |C|3 steps.



Part 3

Societal Concerns from the Use of
Data
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C h a p t e r 5

PRIVACY CONCERNS FROM THE USE OF DATA

In this chapter, we consider the question of mechanism design for acquisition of
data. Similarly to Chapter 3, we consider a setting in which a data analyst wishes to
compute an unbiased estimate of some underlying population statistic, by buying
and aggregating data points from multiple strategic data providers. However, unlike
Chapter 3, the providers hold sensitive, private data, care about the privacy losses
incurred by revealing these data points to the analyst, and require their data to be
treated in a formally, differentially private fashion.

There has been significant interest in buying sensitive data from individuals (Ghosh
et al., 2015; Ligett et al., 2012; Roth et al., 2012; Fleischer et al., 2012; Ghosh et al.,
2013; Nissim et al., 2014; Ghosh et al., 2014; Cummings et al., 2015a). This line of
work considers the problem of incentivizing individuals to provide their data to an
analyst, when they experience a cost—usually due to privacy loss—from sharing
their data. These papers have used differential privacy, defined by Dwork et al.
(2006), to combat this privacy loss, but have generally offered only a single privacy
level to participants, or have made assumptions about the functional form of this
privacy loss in terms of the differential privacy parameter. The work described in
the current chapter, on the other hand, allows the analyst to offer each data provider
a menu of different levels of differential privacy, and allows the agents to express
arbitrary costs for each level independently. This requires no assumptions at all
about the functional form of agent costs.

5.1 Preliminaries: Differential Privacy
Defining Differential Privacy
Differential privacy was introduced by (Dwork et al., 2006), and provides a formal
framework for privacy, that that aims to prevent inference about individuals’ data from
observing the output of a computational query that involves this data. Differential
privacy does so by introducing randomness in the output of a query, and by ensuring
that the distribution over outputs cannot be affected much by a change in a data point
of a single agent. As such, because a change in an individual’s data point (almost)
does not affect the outcome of the computation, it becomes to hard to identify what
was the data that any given individual provided to the query.
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We consider the case of an analyst who collects data points, that live in a universeZ,
from n individuals. To formally define differential privacy, we introduce the concept
of database: a database Z ∈ Zn is simply a vector comprised of the data of these
n individuals; we let zi denote the data point of individual i. This database Z is
given as an input to a mechanismM that runs some query, or equivalently performs
a computation, on the data in Z; notation-wise, we letM(Z) be the outcome of a
mechanismM when using data from Z .

To formalize the idea of change in the data of a single individual, or equivalently in a
single entry of a database, we introduce the concept of neighboring databases:

Definition 5.1.1 (Neighboring Databases). Two databases Z and Ẑ are neighboring
if and only if 


Z − Ẑ





1
,

n∑
i=1

1 [zi , ẑi] ≤ 1,

i.e., Z and Ẑ differ in the data point of a single individual.

With these notations and definitions on hand, we can now formally introduce the
concept of differential privacy:

Definition 5.1.2 (Differential Privacy). A randomized mechanismM : Zn → Ω is
ε-differentially private for some parameter ε > 0 if and only if for every possible
subset of outputs S ⊂ Ω, and for all neighboring databases Z and Ẑ ,

Pr [M(Z) ∈ S] ≤ exp(ε) · Pr
[
M(Ẑ) ∈ S

]
, (5.1)

when the randomness is taken on the coin flips of mechanismM.

ε is a parameter that allows controlling the level of privacy that is provided to the
participants in the mechanism. As ε becomes smaller, Constraint 5.1 forces the
distributions of outputs between neighboring databases to be closer to each other,
leading in turn to stronger privacy guarantees.

The Laplace Mechanism
Now that we have defined differential privacy, we give a mechanism that is guaranteed
to be differentially private for queries with numeric answers. This mechanism is
called the Laplace mechanism. To do so, we introduce the concept of sensitivity of
a query, i.e., how much the value of a query can change between two neighboring
databases, that only differ in one entry. Formally:
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Definition 5.1.3 (Sensitivity of a query). The sensitivity of a query q : Zn → R is
given by

∆q = max
‖Z−Ẑ ‖1≤1

���q(Z) − q(Ẑ)
���

The Laplace Mechanism is based on the Laplace distribution, defined as follows:

Definition 5.1.4 (Laplace Distribution). The Laplace Distribution with parameter b

is the distribution with probability density function

Lap(x) = 1
2b

exp
(
− |x |

b

)
,

and has mean 0 and variance 2b2.

The Laplace Mechanism for releasing the answer to a query q is then defined as
follows:

Lemma 5.1.5 (Laplace Mechanism). Given any query q : Zn → R, the Laplace
Mechanism with parameter ε is defined as

M(Z, q, ε) = q(Z) + Y,

where Y is drawn from a Laplace distribution with parameter ∆q
ε . The Laplace

Mechanism with parameter ε is ε-differentially private.

Note that as ε grows smaller, the Laplace mechanism provides stronger privacy
guarantees, but the variance of the output of the mechanism (given by 2∆ f 2/ε2)
increases, meaning the final estimate becomes less accurate. This trade-off between
accuracy and privacy is, in fact, not an artifact of the Laplace mechanism, but an
unavoidable property of differential privacy. The proof of the differential privacy
guarantee of the Laplace mechanism, as well as a detailed discussion of differential
privacy, can be found in (Dwork et al., 2014).

5.2 Model
In this chapter, an analyst wishes to estimate the expected value µ of some statistic
on the underlying population. She has access to a set of n data providers, each of
which is capable of providing an unbiased estimate µi of the statistic of interest. We
assume providers protect their data points zi by using differential privacy—let us say
via the Laplace mechanism, for simplicity—and the µi’s are the unbiased but noisy
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estimates reported to the analyst. Each provider incurs a cost for revealing his data
point, that depends on the level of differential privacy used to protect said data point.
The analyst has the ability to require a specific differential privacy level from each
provider, that she chooses from a set {ε1, . . . , εm} (she may require different privacy
levels from different providers); the providers must comply and are not allowed to
lie about the level of privacy they provide. Choosing lower values of ε lead the
providers to incur lower privacy costs, but makes the reported data points noisier,
and decreases the accuracy and variance of the analyst’s estimate.

For example, each data provider might in fact be a single individual, who is selling a
(possibly perturbed) bit signifying some property of interest to the data analyst (e.g.,
the cancer or HIV status of the individual). An individual may add noise to his data
in order to guarantee a certain level of (differential) privacy, and can potentially offer
the data analyst access to his data at a menu of different levels of privacy protection.
The cost an individual experiences for a given privacy level is determined by his
preferences for privacy; different individuals may value their privacy differently,
hence incur different costs.

The goal of the analyst is to minimize the total cost among all providers, while
maintaining a guarantee that the variance of her estimate is below some threshold
α. To do so, the analyst designs a mechanism to buy and aggregate data from the
providers. First, the mechanism ask each strategic provider i to report his privacy
cost ci j for each possible privacy level ε j ; a provider may misreport his costs, if he
benefits from doing so. The mechanism then selects a privacy level to obtain from
each provider, compensate the providers from their data, and generates an estimate for
µ that is a weighted sum of the providers’ reported estimates µi’s: µ̂ =

∑
i wiµi. The

analyst wants to design a mechanism that is dominant-strategy incentive compatible
and individually rational.

We assume here, as in Chapter 3, that an agent’s data point is independent of his
(privacy) cost for reporting this data point to the analyst. This is motivated by
impossibility results of Ghosh et al. (2015) and Nissim et al. (2014), showing that
when privacy costs are correlated with data, no mechanism can satisfy individual
rationality and estimate the statistic of interest with non-trivial accuracy, while
making finite payments.
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5.3 An MIDR Mechanism for Private Data Acquisition
This problem can be cast exactly within the framework of Chapter 3. This stems from
the following, simple observation: every level of differential privacy ε j corresponds
to a level of variance v j for that same estimate, controlled by the amount of noise
added for privacy. It is a simple task to translate levels of privacy to levels of variance,
and we as such obtain the following result, that follows immediately from Chapter 3:

Theorem 5.3.1. Given n data providers, such that agent i reports cost {ci j} for
variance level {v j}, and a feasible target variance level α, Algorithm 1 in Chapter 3
is a dominant-strategy incentive compatible mechanism that selects a minimum
expected privacy cost assignment, and

1. for any ε > 0, computes an estimate µ̂ with variance Var(µ̂) ≤ (1 + ε)α as
long as

n ≥
(
vm

v1
− 1

) (
1
ε
+ 1

)
,

2. The mechanism is I.R. for any entrance reward R ≥ maxi min j ci j .
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C h a p t e r 6

FAIRNESS IN DECISION-MAKING

Nicole Immorlica, Katrina Ligett, and Juba Ziani (2019). “Access to Population-
Level Signaling As a Source of Inequality”. In: Proceedings of the Conference on
Fairness, Accountability, and Transparency, pp. 249–258. J. Ziani is the primary
author, came up with and proved most of the results, and contributed to
writing the manuscript. doi: 10.1145/3287560.3287579. url: http://doi.
acm.org/10.1145/3287560.3287579.

6.1 Introduction
Settings where personal data drive consequential decisions, at large scale, abound—
financial data determine loan decisions, personal history affects bail and sentencing,
academic records feed into admissions and hiring. Data-driven decision-making
is not reserved for major life events, of course; on a minute-by-minute basis, our
digital trails are used to determine the news we see, the job ads we are shown, and
the behaviors we are nudged towards.

There has been an explosion of interest recently in the ways in which such data-driven
decision-making can reinforce and amplify injustices. One goal of the literature has
been to identify the points in the decision-making pipeline that can contribute to
unfairness. For example, are data more noisy or less plentiful for a disadvantaged
population than for an advantaged one? Are the available data less relevant to
the decision-making task with respect to the disadvantaged population? Has the
disadvantaged population historically been prevented or discouraged from acquiring
good data profiles that would lead to favorable decisions? Is the decision-maker
simply making worse decisions about the disadvantaged population, despite access
to data that could prevent it?

In this chapter, we study access to population-level signaling as a source of inequity
that, to the best of our knowledge, has not received attention in the literature. We
consider settings where the data of individuals in a population passes to a population-
level signaler, and the signaler determines what function of the data is provided
as a signal to a decision-maker. The signaler can serve as an advocate for the
population by filtering or noising its individuals’ data, but cannot outright lie to the
decision-maker; whatever function the signaler chooses to map from individuals’

http://dx.doi.org/10.1145/3287560.3287579
http://doi.acm.org/10.1145/3287560.3287579
http://doi.acm.org/10.1145/3287560.3287579
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data to signals must be fixed and known to the decision-maker.

Examples of population-level strategic signalers include high schools, who, in
order to increase the chances that their students will be admitted to prestigious
universities, inflate their grades, refuse to release class rankings (Ostrovsky et al.,
2010), and provide glowing recommendation letters for more than just the best
students. Likewise, law firms advocate on behalf of their client populations by
selectively revealing information or advocating for trial vs. plea bargains. Even the
choice of advertisements we see online is based on signals about us sold by exchanges,
who wish to make their ad-viewing population seem as valuable as possible.

Our interest in asymmetric information in general and in population level strategic
signaling in particular are inspired by the recent wave of interest in these issues
in the economics literature (see related work for an overview). In particular, the
model we adopt to study these issues in the context of inequity parallels the highly
influential work on Bayesian persuasion (Kamenica et al., 2011) and information
design (Bergemann et al., 2019).

In order to explore the role that population-level strategic signaling can play in
reinforcing inequity, we investigate its impact in a stylized model of university
admissions.

We consider a setting in which a high school’s information about its students is noisy
but unbiased. Throughout, we call this noisy information grades, but emphasize
that it may incorporate additional sources of information such as observations of
personality and effort, that are also indicative of student quality. Importantly, all
relevant information about student quality is observed directly by the school alone.

The school then aggregates each student’s information into a signal about that
student that is transmitted to the university. This aggregation method is called a
signaling scheme, or informally, a (randomized)mapping from a student’s information
to a recommendation. A school could, for instance, choose to give the same
recommendation for all its students, effectively aggregating the information about all
students into one statement about average quality. Or, for example, the school could
choose to provide positive recommendations to only those students that it believes,
based on its information, to have high ability.

The university makes admission decisions based on these recommendations, with the
goal of admitting qualified students and rejecting unqualified ones.1 A school might

1In our simple model, the university does not have a fixed capacity, nor does it consider
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make recommendations designed to maximize the number of their students admitted
by the university. We call such a school strategic. Alternatively, a school might
simply report the information it has collected on its students to the university directly.
We call such a school revealing. As is common in economics, we assume that the
university knows the signaling scheme chosen by the school (but does not know the
realization of any randomness the school uses in its mapping). One justification
typically given for such an assumption is that the university could learn this mapping
over time, as it observes student quality from past years.

As expected, we find that strategic schools with accurate information about their
students have a significant advantage over revealing schools, and, in the absence of
intervention, strategic schools get more of their students (including unqualified ones)
admitted by the university.

A common intervention in this setting is the standardized test. The university could
require students to take a standardized test before being considered for admission,
and use test scores in addition to the school’s recommendations in an effort to enable
more-informed admissions decisions. Intuitively, the role of the standardized test is
that it “adds information back in” that was obfuscated by a strategic school in its
recommendations, and so one might naturally expect the test to reduce inequity in
the admissions process. While such a standardized test does increase the accuracy
of admissions decisions, we show that when the test is a noisy estimate of student
quality, it may in fact exacerbate the impact of disparities in signaling between
schools.

Summary of contributions
Wehighlight access to strategic population level signaling, as studied in the economics
literature, as a potential source of inequity. We derive the optimal signaling scheme
for a school and compute the resulting school utility and false positive and negative
rates in Section 6.3. We then show, still in Section 6.3, that disparities in abilities to
signal strategically can constitute a non-negligible source of inequity. In Section 6.4,
we study the effect of a standardized test that students must take before applying to
the university, and highlight its limitations in addressing signaling-based inequity.

Related work
There is a large literature on individual-level signaling in economics, following on
the Nobel-prize-winning work of Spence (1973). The general model there is quite
complementarities between students.
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different from our population-level signaling model; in the Spence model, individuals
(not populations) invest in costly (in terms of money or effort) signals whose costs
correlate with the individual’s type. In that model, equilibria can emerge where
high-type individuals are more likely to invest in the signal than low-types, which
can result in the signal being useful for admissions or hiring.

Closer to our setting, Ostrovsky et al. (2010) study a model in which schools provide
noisy information about their students to potential employers. Their focus is on
understanding properties of the equilibria of the system; they do not fully characterize
the equilibria, they do not consider the role of signaling in compounding inequity, and
they do not investigate the impact of interventions like our standardized test. Unlike
us, they do not consider the case where the schools have imperfect observations of
the students’ types. Such work falls into a broader literature on optimal information
structures (e.g., (Rayo et al., 2010)).

The impact of information asymmetries is a common theme in economics today, with
key early work including Brocas et al. (2007). Our model of signaling is inspired
by the influential work on Bayesian Persuasion (Kamenica et al., 2011), where a
persuader (played, in our model, by the school) commits to revealing some fixed
function of the types of the population it serves; this revelation is used as the basis
of a decision that impacts the welfare of both the decider and the persuader (and
the persuader’s constituents). The Bayesian Persuasion model has been applied to a
variety of domains, e.g. (Bergemann et al., 2015; Rabinovich et al., 2015; Xu et al.,
2015; “Implementing the “Wisdom of the Crowd”” 2014; Bergemann et al., 2007;
Emek et al., 2014; Johnson et al., 2006; Anderson et al., 2006), and generalizations
and alternatives to this model have been studied in (Rayo et al., 2010; Arieli et al.,
2016; Gentzkow et al., 2017; Alonso et al., 2016; Gentzkow et al., 2014; Kolotilin
et al., 2017). Recent work (Dughmi, 2014; Dughmi, 2017; Dughmi et al., 2016;
Dughmi et al., 2017; Emek et al., 2014; Guo et al., 2013; Dughmi et al., 2014) has
explored algorithmic aspects of persuasion settings. To our knowledge, ours is the
first work to consider access to population-level signaling, Bayesian Persuasion, or
information design as a source of inequity.

Recent work on fairness has highlighted a number of objectives that one might wish
to enforce when allocating resources to or making decisions about large numbers
of individuals. At a high level, these objectives tend to focus either on ensuring
group-level fairness (Feldman et al., 2015; Kamiran et al., 2012; Hajian et al., 2013;
Hardt et al., 2016b; Friedler et al., 2016; Chouldechova, 2017; Kleinberg et al., 2016;
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Zafar et al., 2017; Kearns et al., 2018) or individual-level fairness (Dwork et al.,
2012; Joseph et al., 2016; Kannan et al., 2017). The metrics we study—expected
utility, false positive rates, and false negative rates—are generally considered to
be metrics of group fairness, but they also (coarsely) compare the extent to which
similar individuals are being treated similarly.

One very interesting recent paper on fairness (Hu et al., 2017) does incorporate
Spence-style individual-level signaling; in their model, a worker can choose whether
and how much to invest in human capital, and this acts as an imperfect signal on
whether the worker is qualified. Although their model and its implications are very
different from ours, they similarly investigate the impact of upstream interventions
on downstream group-level unfairness. Similar notions of individual-level signaling
can also be found in (Foster et al., 1992; Coate et al., 1993).

6.2 Model and Preliminaries
We consider a setting with high schools (henceforth, “schools”), and a single
university. A school has a population of students. Each student i has a binary type
ti ∈ {0, 1} that represents the quality of the student. The students’ types are drawn
i.i.d. from a Bernoulli distribution with mean p; that is, a student has type 1 w.p. p and
0 w.p. 1− p. A student’s type is private, that is, known to the student but unknown to
both the school and the university. The prior p is public and common knowledge to
all agents.

A school observes noisy information about the types of each of its students. To
formally model this, we assume student i has a grade gi ∈ {0, 1}, which is observed
by the school but is unknown to the university.

The grade gi for student i is drawn as follows: Pr[gi = 0|ti = 0] = Pr[gi = 1|ti = 1] =
q, for q ∈ [1/2, 1].2 That is, the student’s type is flipped with some probability 1 − q.
As q increases, the grade gi becomes a more accurate estimate of the student’s type
ti. The grade gi is known to the school but not the university. The distribution q of
the grade, however, is public, i.e., common knowledge to all parties.

A school has access to a (possibly trivial or uncountably infinite) set of signals Σ, and
commits to a signaling scheme mapping grades g to probability distributions over
signals in Σ. For each student i, the university makes an accept/reject decision based
on the distribution of the types p, the distribution of the grades q, and the realization

2The assumption that q ≥ 1/2 is without loss of generality; when q < 1/2, one can set
q = 1 − q, gi = 1 − gi and all results carry through by symmetry.
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of the signal chosen by the school. The goal of the university is to maximize the
quality of the students it accepts.3 In particular, we model the university as having
additive utility over the set of students it accepts, with utility 1 for accepting a student
of high type (ti = 1), and utility −1 for a student with low type (ti = 0). We assume
that the university has unlimited capacity; therefore, the university accepts exactly
those students who induce non-negative expected utility given the common priors
and the signal.4 We measure a school’s utility by the expected fraction of its students
who are admitted to the university. We note that this choice of utility measures the
access to opportunity (defined as admittance to university) of the school’s students.
We refer to a school as revealing if it simply transmits the grade to the university
as the signal. We refer to a school as strategic if it employs the optimal strategic
signaling scheme, as examined in Section 6.3. A strategic school thus maximizes its
expected utility.

In several places, wewill discuss the distribution of students accepted by the university.
To do so, it is useful to introduce the notions of false positive and false negative
rates. The false positive rate of a school is the (expected) probability that a student
with type 0 is accepted by the university. The false negative rate of a school is the
(expected) probability that a student with type 1 is rejected by the university.

We introduce several assumptions that restrict our attention to settings of interest.
First, we assume the expected quality of a student is negative, such that the university
would reject students without any signal from the school.

Assumption 6.2.1. The university’s expected utility for accepting any given student,
absent any auxiliary information, is negative, i.e., p − (1 − p) < 0, and therefore
p < 1/2.

Next we assume the university’s expected utility of accepting a student with a high
(resp. low) grade is positive (resp. negative).

Assumption 6.2.2. The university has non-negative expected utility for accepting a
student with a high grade, and negative expected utility for accepting a student with
a low grade:

Pr [t = 1|g = 1] − Pr [t = 0|g = 1] ≥ 0;

Pr [t = 1|g = 0] − Pr [t = 0|g = 0] < 0.
3There is no notion here of students “applying” to the university or not; the university considers

all students for admission.
4When indifferent, the university accepts the student.



79

These can be rewritten as:

pq − (1 − p)(1 − q) ≥ 0;

p(1 − q) − (1 − p)q < 0.

We note that if the expected utility of accepting a student with a high grade were
negative, then none of the school’s students would be admitted by the university
under any signaling scheme. On the other hand, if the expected utility of accepting
a student with a low grade were positive, then the university would always accept
every student.5 Thus, this assumption restricts our analysis to the regime in which
the utilities of revealing and strategic schools may differ.

The following easy consequence of these assumptions will be useful in our analysis.

Observation 6.2.3. Under Assumption 6.2.1, Assumption 6.2.2 implies q ≥ 1 − p.

We conclude with the following well-known result (see, e.g., (Kamenica et al., 2011))
that an optimal signaling scheme contains, without loss of generality, at most as
many signals as there are actions available to the decision-maker. In our setting, this
corresponds to restricting |Σ | = 2 as the university makes an accept/reject decision
for each student.

The result, reproduced below for our setting, follows from a revelation-principle type
argument. The idea is to replicate the utilities of a signaling scheme with many
signals by first producing a signal according to the original scheme and then simply
reporting to the university, as a signal in the simplified scheme, the action σ+ =
accept or σ− = reject that it would choose to take as a result of seeing the original
signal.

Theorem 6.2.4 (Kamenica and Gentzkow (Kamenica et al., 2011)). Suppose Σ is
a measurable (but potentially uncountable) set with at least two elements. Let Σ′

be such that |Σ′| = 2. Given any original signaling scheme mapping to ∆ (Σ), there
exists a new signaling scheme mapping to ∆ (Σ′) that induces the same utilities for the
school and the university as those induced by the original scheme. Further, one can
write Σ′ = {σ−, σ+} such that a student with signal σ+ is accepted by the university
with probability 1, and a student with signal σ− is rejected with probability 1.

5In fact, this condition is already ruled out by Assumption 6.2.1.
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When |Σ | = 1, signals carry no information, making mute the question of access to
signaling schemes. Therefore, throughout the chapter, we make the assumption that
|Σ | = 2 and denote its elements by Σ = {σ+, σ−}. This is without loss of generality,
by the argument above.

6.3 Impact of Signaling Schemes
The goal of this chapter is to highlight the role of access to strategic signaling in
creating unequal access to opportunity and explore the intervention of a standardized
test as a way to combat this inequity. In order to do so, we first formulate optimal
signaling schemes, and then we study their impact on students and their relationship
to noisy grades.

Optimal signaling scheme
We first derive the optimal signaling scheme. The idea is to pack low-quality students
together with high quality students by giving both the accept signal σ+. A school is
limited in the extent to which it can do so, as it must ensure the university obtains
non-negative expected utility by accepting all the students who have signal σ+. The
following theorem provides the right balance.

Theorem 6.3.1. The optimal signaling scheme for a school is

Pr
[
σ+ | g = 0

]
=

p + q − 1
q − p

Pr
[
σ+ | g = 1

]
= 1.

Proof. As per the revelation principle in Theorem 6.2.4, we can let σ+ be a signal
such that all students with that signal are accepted by the university, and σ− a signal
such that all students with that signal are rejected. Conditional on σ+, we can write
the probabilities that a student is of each type as

Pr[t = 1|σ+] =Pr [t = 1, σ+]
Pr [σ+]

=Pr[t = 1] · Pr[σ+ |t = 1]
Pr[σ+]

=Pr[t = 1] · Pr[σ+ |g = 1]Pr[g = 1|t = 1]
Pr[σ+]

+Pr[t = 1] · Pr[σ+ |g = 0]Pr[g = 0|t = 1]
Pr[σ+]

=p · q Pr[σ+ |g = 1] + (1 − q)Pr[σ+ |g = 0]
Pr [σ+]
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and, similarly,

Pr[t = 0|σ+] = (1 − p) · (1 − q)Pr[σ+ |g = 1] + q Pr[σ+ |g = 0]
Pr [σ+] .

The university’s expected utility when accepting all those students with signal σ+ is
non-negative if and only if such a student is at least as likely to be of type 1 as of
type 0, that is, Pr[t = 0|σ+] ≤ Pr[t = 1|σ+]. Plugging in and rearranging, this gives
the constraint

Pr[σ+ |g = 0] · (q(1 − p) − p(1 − q))
≤ Pr[σ+ |g = 1] · (pq − (1 − q)(1 − p)) .

Recall that q(1 − p) − p(1 − q) > 0 by Assumption 6.2.2, and thus the constraint can
be rewritten as

Pr[σ+ |g = 0] ≤ pq − (1 − q)(1 − p)
q(1 − p) − p(1 − q) · Pr[σ+ |g = 1]

=
p + q − 1

q − p
· Pr[σ+ |g = 1].

The school’s expected utility is

Pr[σ+] = Pr[σ+ |g = 0]Pr[g = 0] + Pr[σ+ |g = 1]Pr[g = 1].

Since Pr[σ+ |g = 1] is unconstrained, the school’s utility is maximized by setting
it to 1. The school’s utility is, similarly, maximized by maximizing the value of
Pr[σ+ |g = 0], which, given the constraint, occurs by setting

Pr[σ+ |g = 0] = p + q − 1
q − p

· Pr[σ+ |g = 1] = p + q − 1
q − p

.�

School’s utility, false positive and false negative rates
In this section, we calculate the expected utility, false positive, and false negative
rate achieved by a school, depending on the accuracy of its grades and whether it
uses the optimal strategic signaling scheme when transmitting information about its
students to the university. These lemmas will form the basis of our evaluation of the
impacts of strategic signaling, later in Section 6.3. Recall that we refer to a school
that does not strategically signal and instead transmits its raw grades to the university
as revealing.

The proofs of the following Lemmas follow by direct calculations. We provide an
exposition of the more involved calculations of Lemmas 6.3.3 and 6.3.5 in Section 6.5.
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Lemma 6.3.2 (Revealing school’s utility). The expected utilityUr(p, q) of a revealing
school is

Ur(p, q) = pq + (1 − p)(1 − q).

For the special case of a revealing school with accurate grades (when q = 1), we
have

Ur(p, 1) = p.

A revealing school gets exactly the students with high grades accepted, as per
Assumption 6.2.2; in particular, a q fraction of high-type students will have a high
grade and be accepted, while a (1 − q) fraction of the low-type students will be
accepted.

Lemma 6.3.3 (Strategic school’s utility). A school’s expected utility Us(p, q) when
it signals strategically is given by

Us(p, q) = 1 + (p + q − 2pq) · 2p − 1
q − p

.

For the special case of a strategic school with accurate grades (when q = 1), we have

Us(p, 1) = 2p.

A school that signals strategically gets exactly those students with a signal of σ+

accepted, as per the revelation principle argument of Theorem 6.2.4; a student with
a high grade will be accepted with probability Pr [σ+ | g = 1] and a student with a
low grade with probability Pr [σ+ | g = 0], with the probabilities chosen according
to Theorem 6.3.1.

Lemma 6.3.4 (Revealing school’s FPR/FNR). When a school is revealing, the false
positive rate is given by

FPRr(p, q) = 1 − q

and the false negative rate by

FNRr(p, q) = 1 − q.

For the special case of a revealing school with accurate grades (when q = 1), we
have FPRr(p, 1) = FNRr(p, 1) = 0.
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In the case of a revealing school, a low-type (resp. high-type) student obtains a low
(resp. high) grade and gets rejected (resp. accepted) with probability 1 − q, i.e., if the
grade does not match the type.

Lemma 6.3.5 (Strategic school’s FPR/FNR). When a school signals strategically,
the false positive rate is given by

FPRs(p, q) = 1 − q + q · p + q − 1
q − p

and the false negative rate by

FNRs(p, q) = (1 − q)1 − 2p
q − p

.

For the special case of a strategic school with accurate grades (when q = 1), we
have FPRs(p, 1) = p

1−p and FNRs(p, 1) = 0.

In the case of a school that signals strategically according to Theorem 6.3.1, a
low-type student gets accepted with probability Pr [σ+ | g = 1] = 1 if his grade is 1
(which occurs with probability 1 − q), and probability Pr [σ+ | g = 0] if his grade is
g = 0 (which occurs with probability q). On the other hand, a high-type student gets
rejected when his signal is σ−; because Pr [σ+ | g = 1] = 1, this happens only when
g = 0 and the signal is σ−, i.e., with probability Pr [σ− | g = 0]Pr[g = 0|t = 1].

Remark 6.3.6. While we chose to focus on average population (i.e., school) utility
in this chapter, because of space constraints, one can use these derivations of FRP
and FNP to calculate the welfare of subpopulations, such as low-type students at a
revealing school, which then implies population-level utility comparisons as well.
One interesting observation is that, using the above Lemmas and Assumptions 6.2.1
and 6.2.2, one can see that the FPR of a strategic school is larger and the FNR smaller
than that of a revealing school. Thus, while it is intuitively obvious that low-type
students prefer a strategic school, these calculations show that high-type students
also prefer a strategic school (and the preference is strict unless the assumptions
hold with equality).

Consequences of strategic signaling for access to opportunity
In this section, we quantify the impact of access to strategic signaling and its
interaction with accuracy of the information (grades) on which the signals are
based. We study both the resulting expected utility of a school as well as the
resulting acceptance rates of both types of students. We find that the ability to
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strategically signal always has a positive (although bounded) impact, increasing
students’ acceptance rates and the school’s expected utility. The benefit of strategic
signaling for both students and the school improves (boundedly so) with the accuracy
of the grades, whereas a revealing school and its students receive (potentially
dramatically) higher expected utility from noisy grades.

Theorem 6.3.7. For all p < 1/2 and q > q′ ≥ 1 − p, the following hold:

• accuracy in grades benefits strategic schools,

1
1 − p

Us(p, q′) ≥ Us(p, q) ≥ Us(p, q′);

• strategic schools have higher expected utility than revealing schools,

2Ur(p, q) ≥ Us(p, q) ≥ Ur(p, q);

• and accuracy in grades harms revealing schools,

2(1 − p)Ur(p, q) ≥ Ur(p, q′) ≥ Ur(p, q).

Further, all above bounds are tight for some q, q′.

Proof. The following theorem is a direct consequence of Lemmas 6.5.1, 6.5.2, 6.5.3,
6.5.4, and 6.5.5, in Section 6.5. �

We see that, perhaps counter-intuitively, adding noise to the grades can help a
revealing school get more students admitted, up to a point.6 This follows from the
fact that adding noise to the grade increases the number of students with a high
grade overall, by Assumption 6.2.1, as there are more low-type students (whose
representation increases as grade accuracy decreases) than high-type students (whose
representation decreases as grade accuracy decreases). Adding noise to grades
is, however, a blunt instrument, in that it drives up both false negatives and false
positives (see Lemma 6.3.4), which limits its utility benefits. The ability to signal
strategically is more subtle, driving up false positives (and expected utility), at no
cost of false negatives. The power of strategic signaling is maximized when schools
have access to highly accurate grades. Accurate information, the ability to control the

6A similar observation in a somewhat different setting was made in work of Ostrovsky and
Schwarz (Ostrovsky et al., 2010).
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noise level of that information, and, most notably, the ability to strategically signal
about that information, therefore constitute powerful drivers of unequal access to
opportunity in settings where key information is transmitted to a decision-maker on
behalf of a population.

We can derive comparisons resulting in similar insights for the false positive and
false negative rates of revealing and strategic schools; we do so in the full version of
this work (Immorlica et al., 2019).

6.4 Intervention: Standardized Test
The prior sections show that unequal access to strategic signaling can result in
unequal access to opportunity. This is driven by high error rates for students accepted
from schools with signaling technologies and/or noisy grades. The university has
a vested interested in decreasing this error rate as it harms the university’s utility.
In addition, an outside body or the university itself might be concerned about the
resulting unequal access to opportunity. In this section, we explore the impact of
a common intervention: the standardized test. While availability of a test score
certainly can only improve the expected utility of the university,7 we find that it has
an ambiguous effect on the inequity. In particular, for a large range of parameter
settings, the introduction of a test can increase the inequality in access to opportunity.

Augmented model
Throughout this section, we augment the model of Section 6.2 to add the requirement
that each student must take a test, and the results of that test are visible both to the
student’s school and to the university. (The school may then incorporate the test
results into its subsequent strategic behavior.)

We model the test score si ∈ {0, 1} of student i as a noisy estimate of ti, conditionally
independent from the grade gi, obtained as follows: Pr[si = 0|ti = 0] = Pr[si = 1|ti =
1] = δ, for δ ∈ [1/2, 1].8 The score si is public, i.e., the school and the university
both observe it.

A school has access to a set of signals Σ as before, but now can design a signaling
scheme S : {0, 1} × {0, 1} → ∆(Σ) that is a function of both the student’s grade

7This is because the expected utility of the university from strategic schools without test scores is
zero, and so can only increase. For revealing schools, the university gets strictly more information
with test scores and hence more utility.

8The assumption that δ ≥ 1/2 is, as with our analogous assumption about the grades, without
loss of generality.



86

and his test score, i.e., the school designs Pr [S | gi, si] for σ ∈ Σ. The university
again makes accept/reject decisions that maximize its expected utility, but now the
university has access to the test score si and its distribution δ as well as the signal and
the distributions p and q. As before, a strategic school chooses a signaling scheme
that maximizes the fraction of students accepted whereas a revealing school simply
transmits the grade to the university as the signal.

As in Section 6.2, we introduce an assumption controlling the noise δ of the test.

Assumption 6.4.1. The university has non-negative expected utility for accepting a
student with a high test score, and negative expected utility for accepting a student
with a low test score:

0 ≤ pδ − (1 − p)(1 − δ)
0 > p(1 − δ) − (1 − p)δ.

We note that if the expected utility of accepting a student with a high test score
were negative, or the expected utility of accepting a student with a low test score
were positive, then in the absence of signals, the university would always accept
either none or all of the students. Note that regimes when the standardized test is
uninformative on its own but becomes informative when coupled with grades may
still be interesting. However, even under Assumption 6.4.1, which excludes certain
parameter ranges from consideration, we have a rich enough model to illustrate our
main findings. In the full version of this work (Immorlica et al., 2019), we show how
to relax this assumption, and how doing so affects the optimal signaling scheme.

The following consequence will be useful in our analysis:

Observation 6.4.2. Under Assumption 6.2.1, Assumption 6.4.1 implies

δ ≥ 1 − p.

Fixing p, we denote by uq,δ(g, s) the expected utility the university derives from
admitting a student with score s and grade g:

uq,δ(g, s) := Pr[ti = 1| g, s] − Pr[ti = 0| g, s].

When δ = q = 1, uq,δ(s, g) is not defined for s , g as in this case s and g are perfectly
correlated. For notational convenience, we define uq,δ(s, g) = −1 in these cases.
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Lemma 6.4.3. Assumptions 6.2.2 and 6.4.1 together imply that the university receives
non-negative expected utility from accepting a student with both a high grade and a
high score, and negative expected utility from a student with both a low grade and a
low score:

uq,δ(1, 1) ≥ 0 > uq,δ(0, 0).

This can be rewritten as

pqδ − (1 − p)(1 − q)(1 − δ) ≥ 0;

p(1 − q)(1 − δ) − (1 − p)qδ < 0.

Theorem 6.2.4 (the revelation principle) also holds in this setting, and so we assume
for the remainder of this section that Σ = {σ−, σ+}, without loss of generality.

Optimal signaling
We first derive the optimal strategic signaling scheme. Again, a school would like to
pack low-quality students together with high quality students, but is now limited in
its ability to do so by their test scores. If the expected utility the university receives
from a student with a high grade but low test score is negative (uq,δ(1, 0) < 0),
then this student (and in fact any student with a low test score) will be rejected
regardless of the signal from the school. Otherwise (uq,δ(1, 0) ≥ 0), the school can
signal to the university to accept such a student, and can additionally pack in some
low-grade-low-score students, subject to maintaining non-negative expected utility
for the university.

Theorem 6.4.4. The optimal signaling scheme for a school with access to grades
and a test score, under Assumption 6.4.1, is

Pr
[
σ+ | g = 1, s = 1

]
= 1

Pr
[
σ+ | g = 0, s = 1

]
= 1

Pr
[
σ+ | g = 1, s = 0

]
=


1, if uq,δ(1, 0) ≥ 0

0, if uq,δ(1, 0) < 0

Pr
[
σ+ | g = 0, s = 0

]
=


pq(1−δ)−(1−p)(1−q)δ
(1−p)qδ−p(1−q)(1−δ), if uq,δ(1, 0) ≥ 0

0, if uq,δ(1, 0) < 0

Proof. We defer the proof to Section 6.6. �



88

School’s utility, false positive and false negative rates
In this section, we calculate the expected utility achieved by both a strategic school
and a revealing school as a function of the type distribution, the accuracy of its grades,
and the accuracy of the standardized test score. We defer all proofs to Section 6.6.

For a revealing school, the university always accepts high-grade high-score students.
If high grades are more informative than low test scores (that is, if uq,δ(1, 0) ≥ 0,
which depends on p as well as q and δ and happens, for instance, if p = 1/4,
q = 9/10, and δ = 7/10), then the university also accepts students with low test
scores, benefiting the school. Alternatively, if high test scores are more informative
than low grades (i.e., uq,δ(0, 1) ≥ 0), then the university also accepts students with
low grades. These conditions provide additional boosts to the utility of a revealing
school.

Lemma 6.4.5 (Revealing school’s utility). The expected utility Ur(p, q, δ) of a
revealing school with access to grades and a test score is

Ur(p, q, δ) = pqδ + (1 − p)(1 − q)(1 − δ)
+ 11

[
uq,δ(1, 0) ≥ 0

]
(pq(1 − δ) + (1 − p)(1 − q)δ)

+ 11
[
uq,δ(0, 1) ≥ 0

]
(p(1 − q)δ + (1 − p)q(1 − δ)) .

For the special case of a revealing school with accurate grades (when q = 1), we
have

Ur(p, 1, δ) = p.

As illustrated in Figure 6.1, for fixed p and δ, Ur(p, q, δ) may not be a decreasing
function of q. In fact, when q is small enough, the grades are completely uninformative
and the university only admits students with a test score of 1. In that regime, the
expected utility for a revealing school is therefore constant in q. For intermediate
values of q, the grades are still uninformative on their own but are informative coupled
with a high standardized test score; at this point, only students with both a score and
a grade of 1 get admitted by the university, and the school’s expected utility suddenly
drops when compared to smaller q. The school’s expected utility in that regime
is increasing in q as, under Assumption 6.4.1, increasing the value of q increases
the fraction of students with both high scores and high grades. Finally, when q is
large enough, the grades are significant enough on their own that only students with
high grades are admitted; this leads to a jump in expected utility compared to the
intermediate regime. In this regime for high values of q, the school’s expected utility
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is decreasing as a result of the fact that increasing the value of q now decreases the
number of students with a high grade by Assumption 6.2.1, as seen in Section 6.3.

Lemma 6.4.6 (Strategic school’s utility). The expected utilityUs(p, q)when a school
signals strategically and uq,δ(1, 0) < 0 is

Us(p, q, δ) = pδ + (1 − p)(1 − δ);

when uq,δ(1, 0) ≥ 0, the expected utility is

Us(p, q, δ) = (1 − p(1 − q)(1 − δ) − (1 − p)qδ)

+ (p(1 − q)(1 − δ) + (1 − p)qδ) pq(1 − δ) − (1 − p)(1 − q)δ
(1 − p)qδ − p(1 − q)(1 − δ) .

For the special case of a strategic school with accurate grades (when q = 1), we have

Us(p, 1, δ) = 1 − δ + p.

The expected utility of a strategic school is, unsurprisingly, monotone in q (as
illustrated in Figure 6.1), as higher-quality information about its students’ types
allows the school to signal more effectively. For small and intermediate values of
q (i.e., insignificant grades), the university bases admission decisions solely on the
standardized test score and only admits students with a score of 1 (it has positive
expected utility from doing so, by Assumption 6.4.1); in this regime, a strategic
school’s expected utility is hence constant. When q becomes large enough, i.e.,
when the grades are significant enough, the university starts having positive expected
utility from admitting students with a high grade even if they have a low score, and
the school can start bundling these students together with the high score students,
leading to a jump in its expected utility. The plotted parameters for the figures are
chosen to satisfy Assumptions 6.2.1, 6.2.2, and 6.4.1; the discontinuities occur at q

such that uq,δ(0, 1) = 0 and uq,δ(1, 0) = 0.

We also calculate the false positive and false negative rates of strategic and revealing
schools; we defer this derivation to (Immorlica et al., 2019).

Impact of Standardized Test
With a perfect standardized test or, in fact, a sufficiently good one, (i.e., high enough
δ), it is not hard to see that the university accepts exactly those students with a high
test score from strategic as well as revealing schools. Thus, no matter the accuracy
of the grades or distribution of types, the standardized test results in equal expected
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Figure 6.1: Strategic school utility Us(p, q, δ) and revealing school utility Ur(p, q, δ)
as a function of the grade accuracy q, for average student type p = 0.35. We observe
that the expected utility may be non-monotone in q.

utility, and hence equal access to opportunity, for revealing and strategic schools (see
Section 6.7 for details). Similarly, if grades are accurate (i.e., q = 1), then a revealing
school’s expected utility is fixed at p whereas a strategic school’s expected utility
is only diminished (from 2p without the test) by the extra constraints introduced
by a standardized test. Thus, in this case as well, a standardized test decreases the
inequality between the utilities of a strategic and a revealing school, making the ratio
of utilities less than 2 (see Section 6.7 for details).

Figure 6.2 plots Us(p, q)/Ur(p, q), with and without test scores, as a function of q, for
p = 0.35 and different values of δ. The form of the utility ratio between a strategic
and a revealing school in the absence of a test score follows from the fact that both
utilities are continuous, and that the expected utility of a strategic school increases
while that of a revealing school decreases in q, as we have seen in Section 6.3. The
form in the presence of a test score can be explained as follows. First, when in
the regime of small values of q, only students with a high standardized test score
are admitted by the university, in which case admission decisions do not depend
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on how the schools act and both the strategic school and the revealing school have
the same expected utility, leading to a ratio of 1. For intermediate values of q, we
have previously discussed that the utility for a strategic school remains constant (the
university still has positive utility for students with a score of 1 and the strategic
school can bundle all such students together, regardless of grade), while the utility
for a revealing school suddenly drops (only students with both a high grade and a
high score are admitted) and is increasing in q, explaining the sudden drop in ratio
of utilities at the change of regime, and the decreasing monotonicity of the ratio in
q within the intermediate regime. When q becomes large enough, we have seen
that both the revealing and the strategic school experience a jump in utilities, which
explains the second discontinuity in the ratio of utilities. Because the revealing
school has significantly lower utility than the strategic school for intermediate values
of q, the relative jump in the utility of a revealing school is higher than the relative
jump in utility of a strategic school. Because in the regime with high values of q, the
utility of a strategic school is increasing and that of a revealing school is decreasing,
the ratio of utilities is increasing.

Figure 6.2: The ratio Us(p, q)/Ur(p, q) of utilities of a strategic school vs. a revealing
school, as a function of the grade accuracy q, with and without test score. We observe
that the test score intervention may increase inequality.
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Interestingly, we observe that the introduction of a standardized test does not always
decrease inequity. For noisy grades, when the test score is also sufficiently noisy, the
test may have the effect of increasing the ratio of utilities between a strategic school
and a revealing school. This is clearly illustrated in Figure 6.2, where the curve with
test scores sometimes lies above that without a test. Some intuition for this result is
as follows. In the regime for intermediate values of q, as q becomes more and more
inaccurate, the ratio of utilities in the presence of a standardized test increases and
eventually overtakes the ratio in the absence of a standardized test (which decreases
to 1 as the grades become more inaccurate). In the regime for high values of q,
the university admits students with a high grade only, independently of what their
standardized test scores are; therefore, the utility of a revealing school is the same
with or without a standardized test. On the other hand, when the standardized test
score becomes more inaccurate, the strategic school can take advantage of the noise
in said score to bundle in more students than if there was no standardized test: the
university loses in utility from accepting unqualified students with high scores, but
at the same time gains in utility from accepting qualified students with low scores,
allowing a strategic school to bundle more students when compared to the case with
no standardized test. As δ decreases and the standardized test becomes less and less
accurate, a strategic school starts losing fewer high-score students to rejection than it
gains in admitted low-score students, and its utility increases.

6.5 Proofs: Model Without Standardized Test
Proof of Lemma 6.3.3.

Us(p, q) =Pr[σ+ |g = 1] (pq + (1 − p)(1 − q)) + Pr[σ+ |g = 0] (p(1 − q) + q(1 − p))

=(1 + 2pq − p − q) + (p + q − 2pq) · p + q − 1
q − p

=1 + (p + q − 2pq) · 2p − 1
q − p

. �

Proof of Lemma 6.3.5.

FPRs(p, q) =Pr[σ+ |g = 1]Pr[g = 1|t = 0] + Pr[σ+ |g = 0]Pr[g = 0|t = 0]

=1 − q + q · p + q − 1
q − p
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FNRs(p, q) =
(
1 − Pr[σ+ |g = 1]

)
Pr[g = 1|t = 1]

+
(
1 − Pr[σ+ |g = 0]

)
Pr[g = 0|t = 1]

=(1 − q)
(
1 − p + q − 1

q − p

)
=(1 − q)1 − 2p

q − p
. �

Lemma 6.5.1. Suppose p < 1/2. Then Us(p, q) and FPRs(p, q) are increasing
functions of q ∈ [1− p, 1]. On the other hand, Ur(p, q), FPRr(p, q), FNRr(p, q) and
FNRs(p, q) are decreasing functions of q ∈ [1 − p, 1].

Proof. We first consider the expected utility of a strategic school.

∂Us

∂q
(p, q) = 2p − 1

(q − p)2
((1 − 2p)(q − p) − (p + q − 2pq))

=
2p − 1
(q − p)2

(
q − p − 2pq + 2p2 − p − q + 2pq

)
= 2

2p − 1
(q − p)2

p(p − 1)

> 0,

since p < 1 and by Assumption 6.2.2, 2p − 1 < 0. Therefore, Us(p, q) is increasing
in q.

We next consider the FPR of a strategic school.

∂FPRs

∂q
(p, q) = 2p(q − p) − (2pq − p)

(q − p)2
=

p − 2p2

(q − p)2
> 0

as p < 1/2 implies p − 2p2 = p(1 − 2p) > 0.

Ur(p, q) = pq + (1 − p)(1 − q) = (2p − 1)q + 1 − p is decreasing in q as 2p − 1 < 0.
FPRr(p, q) = FNRr(p, q) = 1 − q are immediately decreasing in q. FNRs(p, q) =
(1 − q)1−2p

q−p is decreasing in q as 1−q
q−p is decreasing in q and 1 − 2p > 0. �

Lemma 6.5.2. For a revealing school, the impact on expected utility of moving
between noisy and accurate grades is quantified by

1
2(1 − p) ≤

Ur(p, 1)
Ur(p, q)

≤ 1.

A revealing school maximizes its expected utility by setting q = 1 − p.

The impact on the FPR and the FNR, when q , 1, is quantified by

FPRr(p, 1) = FNRr(p, 1) = 0, FPRr(p, q) = FNRr(p, q) = 1 − q.
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Further, all above bounds are tight for some q.

Proof. For a revealing school, Ur(p, q) = pq + (1 − p)(1 − q). Ur(p, q) = pq + (1 −
p)(1−q) = q(2p−1)+(1−p) is a decreasing function of q, so under Assumption 6.2.2
that pq ≥ (1 − p)(1 − q), a revealing school’s expected utility is maximized when
pq = (1 − p)(1 − q), i.e., when q = 1 − p and minimized when q = 1. It is therefore
the case that

Ur(p, 1)
Ur(p, q)

≥ Ur(p, 1)
Ur(p, 1 − p) =

p
2p(1 − p) =

1
2(1 − p) .

The result for false positive and negative rates follow immediately from the fact that
they are 0 for accurate and 1 − q for noisy grades. �

Lemma 6.5.3. For an strategically signaling school, the impact on expected utility
of moving between noisy and accurate grades is quantified by

1 ≤ Us(p, 1)
Us(p, q)

≤ 1
1 − p

< 2.

An strategically signaling school maximizes its expected utility when q = 1.

The impact on the FPR is

1 ≤ FPRs(p, 1)
FPRs(p, q)

≤ 1
1 − p

< 2.

The impact on the FNR, for q , 1, is

FNRs(p, 1) = 0, FNRs(p, q) = 1 − q.

Further, all above bounds are tight for some q.

Proof. The expected utility of a strategic school with noisy grades is

Us(p, q) = 1 + (p + q − 2pq) · 2p − 1
q − p

with Us(p, 1) = 2p. Because Us(p, q) is increasing in q by Lemma 6.5.1, we have
that Us(p, q) ≤ Us(p, 1) and Us(p,1)

Us(p,q) ≥ 1. Further, q ≥ 1 − p implies

Us(p, q) ≥ Us(p, 1 − p) = 1 + (1 − 2p(1 − p)) · 2p − 1
1 − 2p

= 2p(1 − p).

Therefore,
Us(p, 1)
Us(p, q)

≤ 1
1 − p

< 2,
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recalling that by Assumption 6.2.1, 1 − p > 1/2. The ratio of false negative
rates is exactly 0, as the false negative rate is 0 when q = 1 and non-zero when
q , 1. The false positive rate for accurate grades is FPRs(p, 1) = p

1−p . For noisy
grades, FPRs(p, q) is increasing in q by Lemma 6.5.1, and it must be the case that
FPRs(p, q) ≤ FPRs(p, 1). Further,

FPRs(p, q) ≥ FPRs(p, 1 − p) = 2p(1 − p) − p
1 − p − p

=
p − 2p2

1 − 2p
= p.

Hence, as FPRs(p, 1) = p
1−p we have that

FPRs(p, 1)
FPRs(p, q)

≤ 1
1 − p

< 2,

where the last inequality follows from p < 1/2. �

Lemma 6.5.4. For a school with accurate grades, the impact on expected utility of
introducing strategic signaling is

Us(p, 1)
Ur(p, 1)

= 2.

The impact on the false positive rate is

FPRs(p, 1) =
p

1 − p
, FPRr(p, 1) = 0.

The impact on the false negative rate is

FPRs(p, 1) = FNRr(p, 1) = 0.

The optimal signaling scheme doubles the expected utility of the school by increasing
its false positive rate from 0 to p

1−p , and keeping its false negative rate constant at 0.

Proof. This follows immediately from the fact that Us(p, 1) = 2p, FPRs(p, 1) = p
1−p ,

FNRs(p, 1) = 0, Ur(p, 1) = p, and FPRr(p, 1) = FNR(p, 1) = 0. �

Lemma 6.5.5. For a school with noisy grades, the impact on expected utility of
introducing strategic signaling is

1 ≤ Us(p, q)
Ur(p, q)

≤ 2,

and is increasing in q.
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The impact on the false positive rate is

1 ≤ FPRs(p, q)
FPRr(p, q)

≤ +∞,

and is increasing in q ∈ [p − 1, 1]. The impact on the false negative rate is

1 − 2p
1 − p

≤ FNRs(p, q)
FNRr(p, q)

≤ 1

and is decreasing in q ∈ [p − 1, 1]. Further, all above bounds are tight for some q.

Proof. For a revealing school with noisy grades, the expected utility Ur(p, q) =
pq+ (1− p)(1−q) = q(2p−1)+ (1− p) and the false positive rate FPRr(p, q) = 1−q

are decreasing in q (as 2p − 1 < 0 by Assumption 6.2.1). By Lemma 6.2.3, we have
that q ≥ 1 − p and it must be that

2p(1 − p) = Ur(p, 1 − p) ≥ Ur(p, q) ≥ Ur(p, 1) = p.

For an strategically signaling school, the expected utility Us(p, q) is increasing in q

by Lemma 6.5.1, hence

2p(1 − p) = Us(p, 1 − p) ≤ Us(p, q) ≤ Us(p, 1) = 2p.

The ratio of expected utilities is therefore increasing, and satisfies

1 ≤ Us(p, q)
Ur(p, q)

≤ 2.

The false positive rate FPRs(p, q) is increasing in q also by Lemma 6.5.1, hence
FPRs(p,q)
FPRn(p,q) is increasing in q. As FPRs(p, 1 − p) = p, FPRs(p, q) = p, FPRs(p, 1) =

p
1−p and FPRr(p, 1) = 0,

1 =
FPRs(p, 1 − p)
FPRr(p, 1 − p) ≤

FPRs(p, q)
FPRn(p, q)

≤ FPRs(p, 1)
FPRr(p, 1)

= +∞.

FNRs(p, q) = (1 − q)1−2p
q−p and FNRr(p, q) = 1 − q, hence the ratio of false negative

rates for q , 1 is given by

H(p, q) = FNRs(p, q)
FNRr(p, q)

=
1 − 2p
q − p

,

which is a decreasing function of q, and we have

1 = H(p, 1 − p) ≥ FNRs(p, q)
FNRr(p, q)

≥ lim
q→1

H(p, q) = 1 − 2p
1 − p

. �
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6.6 Proofs: Model With Standardized Test
Proof of Lemma 6.4.3. By Observation 6.2.3 and Assumption 6.2.1, q ≥ 1 − p >

1/2 > 1 − q. Therefore, pqδ − (1 − p)(1 − q)(1 − δ) ≥ q (pδ − (1 − p)(1 − δ)),
which is non-negative by Assumption 6.4.1, and p(1 − q)(1 − δ) − (1 − p)qδ <

(1 − q)(p(1 − δ) − (1 − p)δ, which is negative by Assumption 6.4.1. The rest of the
proof follows from the fact that

uq,δ(1, 1) =
Pr [t = 1, g = 1, s = 1]

Pr [g = 1, s = 1] − Pr [t = 0, g = 1, s = 1]
Pr [g = 1, s = 1]

=
pqδ − (1 − p)(1 − q)(1 − δ)

Pr [g = 1, s = 1]

and

uq,δ(0, 0) =
Pr [t = 1, g = 0, s = 0]

Pr [g = 0, s = 0] − Pr [t = 0, g = 0, s = 0]
Pr [g = 0, s = 0]

=
p(1 − q)(1 − δ) − (1 − p)qδ

Pr [g = 0, s = 0] �

Proof of Theorem 6.4.4. The revelation principle of Lemma 6.2.4 can be extended
to the current setting via a nearly identical proof. Therefore, as before, we design
σ+ and σ− so that every student with signal σ+ is accepted by the university, and
every student with signal σ− is rejected. The school’s goal is then to maximize the
probability of a student having signal σ+, under the constraint that the university
gets expected non-negative expected utility from students with signal σ+, regardless
of their score.

We first consider the case in which s = 1:

Pr
[
t = 1|σ+, s = 1

]
=

Pr [σ+, s = 1|t = 1]Pr [t = 1]
Pr [σ+, s = 1]

= p · qδ Pr[σ+ |g = 1, s = 1] + (1 − q)δ Pr[σ+ |g = 0, s = 1]
Pr [σ+, s = 1]

We also have that, by similar calculations:

Pr
[
t = 0|σ+, s = 1

]
=(1 − p) · (1 − q)(1 − δ)Pr[σ+ |g = 1, s = 1]

Pr [σ+, s = 1]

+ (1 − p) · q(1 − δ)Pr[σ+ |g = 0, s = 1]
Pr [σ+, s = 1] .
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Therefore, the university’s expected utility for accepting a student with (σ+, s = 1) is
non-negative if and only if

pqδ Pr[σ+ |g = 1, s = 1] + p(1 − q)δ Pr[σ+ |g = 0, s = 1]
≥ (1 − p)(1 − q)(1 − δ)Pr[σ+ |g = 1, s = 1]
+ (1 − p)q(1 − δ)Pr[σ+ |g = 0, s = 1],

which can be rewritten to give the constraint

Pr[σ+ |g = 1, s = 1] (pqδ − (1 − p)(1 − q)(1 − δ))
≥ Pr[σ+ |g = 0, s = 1] ((1 − p)q(1 − δ) − p(1 − q)δ) .

By Assumption 6.4.1,

0 ≤ pδ − (1 − p)(1 − δ)
= (pqδ − (1 − p)(1 − q)(1 − δ))
− ((1 − p)q(1 − δ) − p(1 − q)δ) ,

and hence the constraint does not bind, and we are free to set

Pr[σ+ |g = 1, s = 1] = Pr[σ+ |g = 0, s = 1] = 1.

We now consider the case in which the signal is σ+ and the score is s = 0. Similar
calculations to the s = 1 case show that the university’s expected utility for accepting
a student with such a score and signal is non-negative iff

Pr[σ+ |g = 1, s = 0] (pq(1 − δ) − (1 − p)(1 − q)δ)
≥ Pr[σ+ |g = 0, s = 0] ((1 − p)qδ − p(1 − q)(1 − δ)) . (6.1)

Note that by Lemma 6.4.3, (1 − p)qδ − p(1 − q)(1 − δ) ≥ 0.

We split up the case in which s = 0 into two sub-cases on uq,δ(1, 0).

When uq,δ(1, 0) ≥ 0, then pq(1 − δ) − (1 − p)(1 − q)δ ≥ 0.

Therefore, to maximize its expected utility, the school should set

Pr[σ+ |g = 1, s = 0] = 1,

Pr[σ+ |g = 0, s = 0] = min
(
1,

pq(1 − δ) − (1 − p)(1 − q)δ
(1 − p)qδ − p(1 − q)(1 − δ)

)
.
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Because by Assumption 6.4.1, p(1 − δ) − (1 − p)δ < 0, it must be the case that
pq(1 − δ) − (1 − p)(1 − q)δ
(1 − p)qδ − p(1 − q)(1 − δ) < 1,

and the school therefore optimizes its expected utility with

Pr[σ+ |g = 0, s = 0] = pq(1 − δ) − (1 − p)(1 − q)δ
(1 − p)qδ − p(1 − q)(1 − δ).

When uq,δ(1, 0) < 0, then the left-hand side of Equation (6.1) is non-positive. The
right-hand side non-negative, so

Pr[σ+ |g = 1, s = 0] = Pr[σ+ |g = 0, s = 0] = 0

is required for the inequality to hold. �

Proof of Lemma 6.4.5. By Lemma 6.4.3, uq,δ(1, 1) ≥ 0, and hence the university
accepts students with g = 1, s = 1, which occurs with probability pqδ + (1 − p)(1 −
q)(1−δ). Similarly, uq,δ(0, 0) < 0, so the university rejects students with g = 0, s = 0.
The case g = 0, s = 1 happens with probability p(1 − q)δ + (1 − p)q(1 − δ), and
yields the school expected utility 1 iff uq,δ(0, 1) ≥ 0 (i.e., the university accepts
students with g = 0, s = 1). Similarly, g = 1, s = 0 happens with probability
pq(1 − δ) + (1 − p)(1 − q)δ and yields the school expected utility 1 iff uq,δ(1, 0) ≥ 0.

The second part of the proof has two cases.

When q = 1 and δ , 1, then uq,δ(1, 0) = pq(1 − δ) − (1 − p)(1 − q)δ = p(1 − δ) ≥ 0.
Also, uq,δ(0, 1) = p(1 − q)δ − (1 − p)q(1 − δ) = −(1 − p)(1 − δ) < 0 (recalling that
1 − p > 0 by Assumption 6.2.1 and that 1 − δ > 0). Therefore, for δ , 1,

Ur(p, 1, δ) =pqδ + (1 − p)(1 − q)(1 − δ) + pq(1 − δ) + (1 − p)(1 − q)δ
=pδ + p(1 − δ)
=p.

When q = 1 and δ = 1, then uq,δ(1, 0) = pq(1 − δ) − (1 − p)(1 − q)δ = p(1 − δ) ≥ 0.
Also, uq,δ(0, 1) = p(1 − q)δ − (1 − p)q(1 − δ) = 0. Therefore,

Ur(p, 1, 1) =pqδ + (1 − p)(1 − q)(1 − δ)
+ pq(1 − δ) + (1 − p)(1 − q)δ
+ p(1 − q)δ + (1 − p)q(1 − δ)
=p.

This concludes the proof. �
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Proof of Lemma 6.4.6. When uq,δ(1, 0) < 0, then

Us(p, q, δ) =Pr [s = 1]
=pδ + (1 − p)(1 − δ).

When uq,δ(1, 0) ≥ 0, Pr[σ+ |g = 1, s = 1] = Pr[σ+ |g = 1, s = 0] = Pr[σ+ |g = 0, s =
1] = 1, and we have

Us(p, q, δ)
=1 − Pr [g = 0, s = 0] + Pr [g = 0, s = 0]Pr[σ+ |g = 0, s = 0]
= (1 − p(1 − q)(1 − δ) − (1 − p)qδ)

+ (p(1 − q)(1 − δ) + (1 − p)qδ) pq(1 − δ) − (1 − p)(1 − q)δ
(1 − p)qδ − p(1 − q)(1 − δ) .

When q = 1, uq,δ(1, 0) ≥ 0 (equivalently, p(1 − δ) ≥ 0), and the expected utility is

Us(p, 1, δ) = (1 − (1 − p)δ) + ((1 − p)δ) p(1 − δ)
(1 − p)δ

= 1 − (1 − p)δ + p(1 − δ)
= 1 − δ + p. �

6.7 Supplemetary Material: Impact of Standardized Test
Lemma 6.7.1. Fix p > 0 and q < 1. For

δ > max
(

pq
(pq + (1 − p)(1 − q),

(1 − p)q
p(1 − q) + (1 − p)q

)
,

we have
Us(p, q, δ)
Ur(p, q, δ)

= 1.

Proof. pq(1 − δ) − (1 − p)(1 − q)δ < 0 and p(1 − q)δ − (1 − p)q(1 − δ) ≥ 0, hence
uq,δ(1, 0) < 0 and uq,δ(0, 1) ≥ 0. Therefore, a school’s expected utility for revealing
is given by

pqδ + (1 − p)(1 − q)(1 − δ) + p(1 − q)δ + (1 − p)q(1 − δ) = pδ + (1 − p)(1 − δ)

This is exactly the expected utility of a school that is strategically signaling when
q = 1, hence the ratio of utilities when strategic over revealing is 1. �

Lemma 6.7.2. When the grades are accurate, i.e., q = 1,

1 ≤ Us(p, 1, δ)
Ur(p, 1, δ)

≤ 2,
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Proof. The expected utility from strategically reporting is p+ (1− p)(1−δ)+ p(1−δ)
by Lemma 6.4.6, while the expected utility for revealing is p by Lemma 6.4.5.
Therefore,

Us(p, 1, δ)
Ur(p, 1, δ)

= 2 − δ + 1 − p
p
(1 − δ) ≥ 1.

By Assumption 6.2.2, (1 − p)(1 − δ) ≤ pδ, hence

Us(p, 1, δ)
Ur(p, 1, δ)

= 2 − δ + 1 − p
p
(1 − δ) ≤ 2 − δ + δ = 2. �

We have by Theorem 6.3.7 that in the absence of standardized test,

Us(p, 1)
Ur(p, 1)

= 2.

Forcing students to take a standardized test thus improves fairness between two
schools with accurate grades.
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C h a p t e r 7

MECHANISM DESIGN UNDER THIRD-PARTY INFORMATION
REVELATION

Yang Cai, Federico Echenique, Hu Fu, Katrina Ligett, Adam Wierman, and Juba
Ziani (2018). “Third-Party Data Providers Ruin Simple Mechanisms”. In: arXiv
preprint arXiv:1802.07407, J. Ziani is the primary author, came up with and
proved most of the results, and contributed to writing the manuscript. url:
http://arxiv.org/abs/1802.07407.

7.1 Introduction
Information asymmetries are rampant in markets from ad auctions to art auctions,
from acquiring a summer home to acquiring a startup. Naturally, whenever significant
information asymmetries occur, agents have incentives to acquire information through
outside channels. As a result, there is a proliferation of companies that seek to collect
information that can be sold to participants in auctions with information asymmetries.
Online advertising provides an extreme example. By tracking online behavior, data
providers are able to sell valuable information about internet users (whose attention
is the good for sale) to bidders in online advertising auctions. An FTC report [2014]
details the scale and prevalence of such data providers — generating $426 million in
annual revenue in 2012 and growing considerably in the years since.

The current chapter focuses on understanding mechanism design in settings with
such information asymmetries. We consider a mechanism design setting where a
bidder has incomplete information about the good he is bidding on, and obtains
information about the good from a third-party data provider.

Specifically, the goal of this chapter is to investigate the impact of third-party data
providers on the revenue of simple mechanisms. To do this, we consider a simple
market—a single seller, a single bidder, and a single good—and a particular form
of information asymmetry—the seller knows the type of the good she is selling,
but the bidder has only partial information on the item type; the bidder knows his
valuation for each of the m possible item types, but the seller knows only distributional
information about the valuations. The key to the model is that, in addition to a prior
over the item type, the bidder obtains a signal about the item type from a third party
data provider and, while the seller can anticipate the signaling scheme used by the

http://arxiv.org/abs/1802.07407
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data provider, the seller does not know the realization of signals. This captures, for
example, a simple model of an ad auction where a mechanism designer sells an ad
auction slot to an advertiser, who has incomplete information about the users targeted
by the slots. The advertiser can get additional, third-party information about the
target user(s) via data providers that track, for example, users’ cookies.

Our model, though stylized, is already general enough to expose the difficulties
created by third-party data providers. When no data provider is present, it is known
that simple mechanisms can be used to provide a constant fraction of the revenue
of optimal mechanisms; in contrast, our main results show that simple mechanisms
cannot provide revenue within a constant factor of the revenue provided by an optimal
mechanism, in the presence of a data provider.

In the absence of a data provider, Daskalakis et al. (2016) study optimal auctions in
recent work. Daskalakis et al. (2016) look at the design of simple mechanisms in
a setting where the only uncertainty about the item type is that it is drawn from a
common prior. In this context, the question is whether it is valuable for the seller to
share information with the bidder about the item type, or whether mechanisms that
do not reveal information can be approximately optimal. Interestingly, Daskalakis
et al. (2016) are able to characterize optimal auctions for this setting. Their insights
show a direct correspondence between mechanisms for selling a single item of
uncertain type and multi-item auctions; in particular, this correspondence implies
that the seller does not need to reveal any information about the item type to the
bidder in order to maximize his revenue. Further combining this observation with
the work of Babaioff et al. (2014) allows them to observe that the better mechanism
of two simple approaches—setting a fixed price for the item (the parallel notion
of grand bundling, which we term “item-type bundling”), or pricing each item
type separately (the parallel notion of item pricing, which we term “item-type
pricing”)—is guaranteed to yield a constant fraction of the revenue of the optimal
mechanism. Thus, in the case where there is no third-party data provider, simple
mechanisms are sufficient.

Our results show, in contrast, that the presence of a third-party data provider, who
reveals information outside of the control of the seller, complicates the mechanism
design task dramatically. We first consider revenue-optimal mechanisms. While
Daskalakis et al. (2016)’s characterization of optimal auctions extends naturally
to our setting, these optimal mechanisms may be quite complex. Concretely, our
setting satisfies a type of revelation principle (Lemma 7.2.10) stating that optimal
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mechanisms require only a single round of bidding, followed by a single round of
information revelation (full revelation, in fact); however, such a mechanism presents
the bidder with a menu of options that includes an option for each possible valuation
vector, combined with each possible posterior of the bidder on the item type after
receiving the data provider’s signal, and requires the seller to condition the price
charged on the realization of the item type.

Not only does the presence of a data provider complicate the design of the optimal
mechanism, our main results show that it also impacts the revenue achievable via
simple mechanisms. Specifically, in the presence of a data provider, the better
of item-type bundling and item-type pricing may achieve only an Ω (log m) factor
approximation of the revenue the seller could have achieved had she offered a richer
menu to the bidder, where m is the number of possible item types (see Theorem 7.3.2).
In particular, a mechanism that divides the item types into disjoint groups and offers
a price on each group can outperform both item-type pricing and item-type bundling
by a logarithmic factor. Such mechanisms are known in the multi-item auction
literature as partition mechanisms, and are seen as relatively simple mechanisms (see,
e.g., Rubinstein, 2016). In our setting, we refer to such mechanisms as item-type
partition mechanisms.

This separation between the revenue of item-type partitioning and that of item-type
pricing and item-type bundling raises a natural question: if we expand our view
of what constitutes “simple” mechanisms to include item-type partitioning, which
generalizes both item-type pricing and item-type bundling, can we guarantee that
simple mechanisms obtain a constant approximation of the optimal revenue in the
presence of a data provider?

Our main result uses a more intricate argument to show that this is not the case.
We demonstrate that, in the presence of a data provider, optimal mechanisms
can outperform the best item-type partition mechanism by an Ω(log log m) factor
(Theorem 7.4.2). So, in the presence of a data provider, simple mechanisms truly are
no longer optimal. Additionally, our result highlights that the presence of third-party
information can simultaneously hurt the optimal revenue achievable by the seller (by
a O (log log m/log m) factor, see Theorem 7.4.2). These consequences of our result
imply that, in settings where bidders have incomplete information (e.g., ad auctions),
it is crucial for a seller whose goal is to maximize revenue via a simple mechanism
to have a monopoly on the information available about the good for sale. A seller
loses significant revenue if using a simple design without a monopoly on data.
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Our discussion so far has focused on the seller, and ignored the data provider’s
incentives. The results described above do not depend on a specific model of the data
provider behavior. However, when interpreting the lower bounds, it is interesting to
consider how the data provider may behave. Two particular cases of interest are (i) a
strategic data provider that seeks to maximize its profit, and (ii) an adversarial data
provider that seeks to minimize the seller’s profit.

We study the case of a strategic data provider in Section 7.5, and obtain results about
the equilibrium outcome when the seller and the data provider interact strategically.
Specifically, we consider a game played between a seller and a data provider. The
game has the seller and the data provider each choosing an action simultaneously.
The seller proposes a mechanism that the buyer will engage in, a mechanism which
depends on the signaling scheme that the seller expects the provider to offer. The data
provider chooses a signaling scheme that it offers to the buyer. Both agents, the seller
and data provider, seek to maximize profits. Our results highlight that, regardless of
the form of the mechanism used by the seller, the strategic data provider chooses to
reveal all the information that is available to him (Lemma 7.5.1). Importantly, all of
the constructionsused to prove the lower bounds for simple mechanisms apply to the
specific case of strategic data providers, and thus the lower bounds discussed above
hold in the presence of a strategic data provider.

Finally, we consider the case of an adversarial data provider in Section 7.5. In this
case, the data provider seeks to minimize the seller’s profits, which could be the goal
if the data provider were also running a platform that competed with the seller. As
in the case of the strategic data provider, our lower bounds can be extended to this
setting, and Corollary 7.5.3 highlights that an adversarial data provider can force a
revenue of at most O (1/log m) of the achievable revenue when no data provider is
present. Additionally, this setting is of particular interest because it demonstrates
behavior that is, perhaps, counter-intuitive. Specifically, in contrast to the case of a
strategic data provider, a data provider that is attempting to negatively impact the
revenue of the seller may not want to fully reveal her information about the item type
to the bidder (Lemma 7.5.5). Instead, there may be intermediate signals which, upon
revelation, minimize the revenue of the seller. This serves to highlight the complexity
of mechanism design in the context of a third-party data provider, motivating the
importance of designing mechanisms that have strong lower bounds regardless of the
behavior of the data provider.
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Summary of contributions
To summarize, in this chapter we make the following contributions. We propose a
simple model of an auction in the presence of a third-party data provider, capturing
information asymmetry regarding the type of the item for sale. Within this model,
we first (Section 7.2) provide a characterization of the optimal auction based on that
of Daskalakis et al. (2016), which may require a complex menu of options. Our
main results study the potential for simple mechanisms to approximate the revenue
of optimal mechanisms. In Section 7.3, we show that the item-type equivalents
of item pricing and grand bundling cannot achieve within an Ω (log m) factor of
the revenue achievable by the optimal mechanism, nor even of the best item-type
partition mechanism. Further, in Section 7.4, we show that there may be an
Ω (log log m) gap between the revenue of the best item-type partitioning and that of
the optimal mechanism. These results highlight that the presence of a data provider
significantly reduces the ability of simple mechanisms to approximate the revenue of
optimal mechanisms, even in the case of a single seller and a single bidder. Finally,
in Section 7.5, we turn to understanding the impact of the behavior of the data
provider. We show that our lower bounds also hold for the specific cases of strategic
and adversarial data providers. Additionally, we show a contrast between these
two cases: strategic, revenue-maximizing data providers always fully reveal the
information available to them, while adversarial data providers may only partially
reveal information. Thus, partial revelation may be more damaging to the seller than
full information revelation.

Related work

There is a rich literature on information and signaling in auctions. One line of
research focuses on designing a signaling scheme (on the part of the seller) given a
certain auction format such as the second price auction (see, e.g., Lewis et al., 1994;
Ganuza, 2004; Eső et al., 2007; Emek et al., 2014; Bro Miltersen et al., 2012; Cheng
et al., 2015; Dughmi et al., 2015; Smolin, 2019); another line, closer to our setting,
studies the design of both the auction and the signaling scheme (again, in such work,
there is no data provider; bidders have a prior on their valuation for the item, and any
signal on this valuation comes from the seller). Fu et al. (2012) showed that, if the
auctioneer commits to a signaling scheme before choosing the form of the auction,
full revelation followed by Myerson’s auction for the revealed item type is the optimal
design. Daskalakis et al. (2016) revealed the subtlety of this order of commitment
and showed that, when the design of the auction and that of the signaling scheme are
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considered together (without having to commit to one before the other), the optimal
strategy is to reveal no information at all, and the overall problem is in fact equivalent
to the design of a multi-item auction. In particular, they show that, when the bidders
have a publicly known common prior on the type of the item, the optimal revenue for
the seller is that of a multi-item auction.

Furthermore, Theorem 2 of Daskalakis et al. (2016) shows a one-to-one correspon-
dence between types when selling a single item of uncertain type and items in a
classical multi-item auctions. In particular, item-type pricing, i.e., mechanisms in
which the seller first reveals the item type and then charges a take-it-or-leave-it price,
is equivalent to selling separately (i.e., item pricing) in the corresponding multi-item
auction, and item-type bundling, i.e., mechanisms in which the seller does not reveal
any information and offers a single take-it-or-leave-it price, is equivalent to grand
bundling in the corresponding multi-item auction. When there is a single bidder,
Daskalakis et al. (2016) further combine this correspondence with results of Babaioff
et al. (2014) to show that the better of item-type pricing and item-type bundling gives
at least 1/6 of the optimal revenue.

The results described above highlight the connection between our work and the study
of simple mechanisms for multi-item auctions. Hart et al. (2017) pioneered this area.
They showed that a seller, using item pricing, can extract a Ω

(
1/log2 m

)
fraction

of the optimal revenue from an additive bidder whose values for m items are drawn
independently, and selling these items as a bundle can achieve a Ω (1/log m)-fraction
of the optimal revenue if the bidder’s values are i.i.d. Li et al. (2013) improved the
approximation ratio for item pricing to O (1/log m), which is tight. Babaioff et al.
(2014) showed that, surprisingly, the better of selling separately and grand bundling
can achieve at least 1/6 of the optimal revenue. Subsequently there has been a surge
of results generalizing the results of Babaioff et al. to broader settings (Cai et al.,
2013; Yao, 2015; Rubinstein et al., 2015; Cai et al., 2016; Chawla et al., 2016; Cai
et al., 2017). At this point, it is known that simple mechanisms such as sequential
two-part tariffs can obtain a constant fraction of the optimal revenue for multiple
bidders with combinatorial valuations that are, e.g., submodular, XOS (Cai et al.,
2017). One might hope to extend these simple deterministic mechanisms to settings
where the bidder has correlated values over the items; however, this is impossible.
Hart et al. (2013) showed that even for a single additive bidder, when valuations are
interdependent, the ratio between the revenue obtainable by a randomized mechanism
and that of the best deterministic mechanism can be unbounded.
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Finally, there has been a line of work in economics that focuses on mechanism design
and revenue guarantees that are robust to uncertainty on the information structure
available to the bidders, often in common value auctions (see, e.g., Bergemann et al.,
2016; Bergemann et al., 2017; Bergemann et al., 2018; Du, 2018).

7.2 Model and Preliminaries
We consider a single, revenue-maximizing seller selling a single item to a buyer.
The item for sale takes one of m possible types, and the buyer’s valuation may
depend on the item type. The buyer does not know the type i of the item, but has a
publicly-known prior π over the item types. We let π(i) denote the prior probability
that the item is of type i.

The buyer’s private value when the good is of each type i is drawn independently
from a publicly known distribution F(i) over the space of non-negative real numbers
R+. We denote by V(i) the buyer’s valuation for an item of type i, and denote by
V = (V(1), . . . ,V(m)) the buyer’s valuation vector.

In our setting, there is a third-party data provider who has (potentially imperfect)
information on the type of the item, in the form of a random variable X that can be
arbitrarily correlatedwith the type of the item. This is unlike the setting of (Daskalakis
et al., 2016) in which only the seller could reveal information about the item type
to the bidders. The joint distribution of i and X is publicly known, but the realized
value of X is only observed by the data provider.

The data provider designs a signaling scheme in the form of a function S that maps
X to ∆(Σ), the set of distributions over an alphabet Σ. The data provider is able to
commit to such a scheme and, on observing information X , the data provider draws
a signal σ from Σ according to the distribution S(X), and sends it to the buyer if the
latter purchases from the data provider.

After receiving σ, the buyer updates his prior using Bayes’ rule. We denote the
resulting posterior by πσ ∈ ∆([m]). The buyer aims to maximize his utility given his
posterior on the item type; we assume utilities are quasi-linear. Since the realization
of X was not visible to the seller, if the buyer purchases from the data provider, the
seller would know only the distribution over the buyer’s posteriors, conditioning on
the item type i.

Motivated by the sale of online advertisements, where the sale repeats rapidly with
the item type redrawn in each round, we assume that the buyer’s decision to purchase
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from the data provider is made before his value is realized. In this setting, the buyer,
seller and data provider act as follows:

1. The seller commits to a information revelation policy and a mechanism.
Simultaneously, the data provider commits to a signaling scheme.

2. The buyer decides whether to enter a contract with the data provider and to
purchase his information.

3. All the participants receive their private information: the buyer observes his
valuation vector, the data provider observes X , and the seller observes the item
type.

4. The buyer sees the signal from the data provider. The seller reveals information
to the buyer and runs her mechanism.

We remark there is asymmetry between the seller and the data provider, in that
the buyer makes the decision of purchasing the data provider’s signal before his
valuation vector is realized, whereas the purchase decision with the seller is made
after the buyer realizes his valuation vector. In the ad auction setting, this asymmetry
is motivated by the practice that data sets are often sold in batch, or as “right of
access,” whereas ads are sold per impression, often via bidding in an auction for each
individual ad. This asymmetry is even more marked when the buyer is an agency
that bids on behalf of many advertisers in individual auctions but buys data access in
batch to inform all such bidding.

In Sections 7.3 and 7.4, we show that there exists a signaling scheme for the data
provider such that no simple mechanism can extract a constant fraction of the optimal
revenue.1 In Section 7.5, we take the incentives of the data provider into account and
consider two different scenarios: one in which the data provider is strategic and aims
to maximize his revenue from selling his signal, and one in which he is adversarial
and tries to hurt the seller’s revenue.

Simple mechanisms for a single buyer in the absence of a data provider
In the absence of a third-party data provider, in the single seller, single buyer,
multi-item setting, where each item has a single type, Babaioff et al. (2014) show that,
although the optimal mechanism may be complex, a simple mechanism achieves a

1More specifically, we show that no item-type partitioning mechanism (see Definition 7.2.6) is a
constant factor approximation.
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constant factor of the optimal revenue. In particular, this mechanism is simply the
better of either item pricing or grand bundling. This result was originally stated for
multi-item auctions, but the results of Daskalakis et al. (2016) show that the current
setting, with a single item that can take on multiple possible types, in fact reduces
to the multi-item auction setting. Remark 7.2.1 below explains how this reduction
works.

Remark 7.2.1 (Reduction between multi-item, and multi-type auctions). Consider a
single bidder, single item setting with m possible types, prior π and valuation vector
V = (V(1), . . . ,V(m)), distributed according to joint distribution F. Daskalakis
et al. (2016) show that this setting in fact reduces to a multi-item auction with
m items, in which the bidder’s valuation for the items are distributed as follows:
i) draw V according to F, then ii) let the bidder’s valuation vector be V ′ =

(π(1)V(1), . . . , π(m)V(m)), the coordinate-by-coordinate product of V and π.

The optimal auction in such a single-bidder, multi-item setting can be written without
loss of generality as a menu of options {(Po, Ao)}o, such that a bidder either opts out,
or selects a single option o in which case he i) must pay price Po then ii) receives
any given item i ∈ [m] with allocation probability Ao(i). An optimal single-bidder,
single-item, multi-type auction is then given by the exact same menu {(Po, Ao)}o,
where i) a bidder who picks option o picks price Po, but now ii) the bidder receives
the (here, a single) item with probability Ao(i∗) where i∗ is the realized item type. For
example, consider the following scenario, studied previously in Hart et al. (2015):

Example 7.2.2. There are two item types, denoted 1 and 2. The bidder’s prior on
the types is uniform, given by π(1) = π(2) = 1/2. The bidder’s valuations V(1) and
V(2) are i.i.d, and take values 2, 4, and 8 with probabilities 1/6, 1/2, and 1/3. The
equivalent multi-item auction is one with two items whose valuations V ′(1),V ′(2)
are i.i.d, and take values distributed as follows: V ′(1) = π(1)V(1) = V(1)/2 and
V ′(2) = π(2)V(2) = V(2)/2, i.e., 1, 2, and 4 with probabilities 1/6, 1/2, and 1/3.
As shown by Hart et al. (2015), the optimal mechanism in this case has two menu
options:

1. Option 1 has price 1, and gives the first item with probability 1/2 and the
second with probability 0.

2. Option 2 has price 4, and gives both items with probability 1.
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This translates into a menu of options in the multi-type, single-item settings in which
a bidder that selects option 1 gets the item only if it is of type 1, with probability 1/2,
and a bidder that selects option 2 always get the item, independently of the item type.

As simple mechanisms are important throughout our chapter, we formally define
them here, in the context of selling a single item with multiple possible types.

Definition 7.2.3. An item-type pricing mechanism first reveals the type i of the item
to the buyer, then offers to sell the item to the buyer at some price Pit(i). We also
refer to such mechanisms as “selling the types separately,” in analogy to the concept
of selling separately in the case of multi-item auctions.

Definition 7.2.4. An item-type bundling mechanism offers the item for sale at some
price Pgr without revealing any information about the realized type of the item.

The following result from Babaioff et al. (2014) and Daskalakis et al. (2016)
summarizes the power of these simple mechanisms in the single-item, multi-type
setting, without a data provider.

Proposition 7.2.5 (Babaioff et al. (2014) and Daskalakis et al. (2016)). In the
absence of a data provider, the maximum of item-type pricing and item-type bundling
yields at least a 1

6 -approximation to the optimal revenue when there is a single seller,
a single buyer, a single item for sale, and the buyer has a publicly known prior over
the type of the item.

A generalization of both item-type bundling and item-type pricing mechanisms is
also important for the results in this chapter.

Definition 7.2.6. An item-type partition mechanism first partitions the set of item
types into non-empty groups G1 to Gg, priced (resp.) P1 to Pg. The mechanism then
observes the type i of the item, and offers the item at price Pr , where r is uniquely
chosen such that i ∈ Gr .

Note that, after observing the offered price Pr , the buyer may infer that the realized
item type must belong to group Gr . Item-type pricing is an instantiation of item-type
partitioning where the partition contains a separate group for each type; item-type
bundling corresponds to item-type partitioning using the trivial partition. Item-
type partitioning is, however, significantly more powerful than these other simple
mechanisms, as it allows the seller to partition the item types into arbitrarily many
groups of arbitrarily many sizes.
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The equal revenue distribution
An important tool in the derivation of lower bounds for mechanisms is the so-called
equal revenue distribution. This distribution is crucial to a number of our examples
in this chapter and is defined as follows.

Definition 7.2.7. A random variable Y with support [1,+∞) follows the equal
revenue (ER) distribution if and only if Pr [Y ≤ y] = 1 − 1

y .

The equal revenue distribution gets its name from the fact that it has constant virtual
value, and every price in the distribution’s support offers the same expected revenue.
The equal revenue distribution also has a number of other useful properties, proved
by Hart et al. (2017), which we summarize here. Unless otherwise specified, log is
taken to be the natural logarithm.

Lemma 7.2.8 (Hart et al. (2017)). Let m ≥ 2 be an integer, and let Y1, . . . ,Ym be m

i.i.d random variables that follow the ER distribution. Then:

Pr

[
1
m

m∑
i=1

Yi ≥
log m

2

]
≥ 1

2
,

and for any P ≥ 6 log m,

Pr

[
1
m

m∑
i=1

Yi ≥ P

]
≤ 9

P
.

Optimal mechanisms in the presence of a data provider
We provide a characterization of the optimal mechanisms for a single buyer and
a single item, with several possible item-types, in the presence of a third-party
data provider who knows (possibly imperfect) information about the item type, and
who reveals some of this information to the buyer. Note that the data provider is
represented via a signaling scheme that, from the model perspective, is subsumed
into a probability distribution over posteriors π, representing beliefs of the buyer
regarding the item’s type. Therefore, a buyer with access to the data provider’s signal
has private information in the form of a valuation V and a posterior π.

We consider a class of mechanisms that allow the seller to charge the buyer a price that
is conditional on the type of the item. We observe that restricting attention to such
type-contingent price mechanisms is without loss of generality. The characterization
we present is a type of revelation principle, similar to that presented in Daskalakis
et al. (2016), where the difference is the presence of a data provider.
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First, we need the definition of a conditional price menu.

Definition 7.2.9. Amenu with conditional prices is a fixed collection of pairs (A, P),
where each A ∈ [0, 1]m is called an allocation rule, and each P ∈ Rm

+ is called a
pricing rule. The buyer selects at most one pair (A, P). After his choice has been
made, the type i of the item is revealed. Given item type i, the buyer pays price P(i),
and receives the item with probability A(i).

We show that there always exists an optimal mechanism that takes the form of a
conditional price menu. We postpone the proof of Lemma 7.2.10 and detailed
discussion of our characterization to Section 7.6.

Lemma 7.2.10. For any equilibrium of any mechanismM in the presence of a data
provider, such that the buyer, conditioned on the realization of her valuation vector
and posterior beliefs over item types given the signal from the data provider, obtains
non-negative payoff in expectation, there is a conditional price menu that is incentive
compatible, interim individually rational, and provides the same revenue.

Lemma 7.2.10 implies the optimal revenue is given by the solution of a linear
program whose size is proportional to the number of possible pairs of value vectors
and posteriors. We make use of this linear program in Section 7.5. Additionally,
note that Lemma 7.2.10 can easily be extended to the multi-buyer setting, in which
case one can write the optimal mechanism as an interim individually rational, direct
revelation mechanism, with no information revelation by the seller required prior to
bidding.

7.3 Revenue of Simple Mechanisms: A Warm-up
Our main results focus on bounding the revenue achievable via simple mechanisms,
in the presence of a third party data provider. In this section, we focus on “simple”
mechanisms in which the seller runs the better of item-type pricing and item-
type bundling. These are particularly interesting mechanisms to consider given
Proposition 7.2.5, where Daskalakis et al. (2016), using results of Babaioff et al.
(2014), show that this style of mechanism obtains a constant fraction of the optimal
revenue when a data provider is not present. To show that this is not the case when a
data provider is present, we consider the following construction.

Construction 7.3.1. Let m = η2 be the number of item types, for some integer η. The
types are partitioned into η groups I1, . . . , Iη such that each group contains exactly η
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types. The bidder’s prior on the item type is uniform, i.e., the bidder initially believes
that each item type is realized with probability 1/m = 1/η2, and that the probability
that the realized type belongs to group Ik is therefore 1/η. The bidder’s valuation
for type i in group Ik is V(i)/k, where V(i) is a random variable drawn from the
equal revenue distribution. The bidder’s valuations for different item types are drawn
independently of each other.

In this setting, we allow the data provider to observe to which group the item type
belongs. The data provider fully reveals this information to the bidder. We show later
(Section 7.5) that this is the signaling scheme that a strategic, revenue-maximizing
data provider would sell in this scenario, and that the buyer would always opt to buy
the data provider’s signaling scheme; therefore, our results extend to the case of a
strategic provider.

Given the data provider’s signal, the bidder’s posterior probability on the item being
of type i, upon observing signal σk informing him that the group is Ik , is given by

πσk
(i) =


0 i < Ik

1
η i ∈ Ik

.

We use the above construction to prove that the better of item-type pricing and
item-type bundling cannot always achieve a constant fraction of the optimal revenue:

Theorem 7.3.2. There exists a single seller, single bidder, single item (taking one
of m item types) setting where, in the presence of a data provider who signals
information about the item type realization to the bidder, the expected revenue of
the better of item-type pricing and item-type bundling is no more than a O

(
1

log m

)
fraction of the expected revenue of the optimal mechanism. More specifically:

• In the absence of a data provider, the optimal revenue is Θ
(

log2 m√
m

)
. The

optimal revenue for item-type pricing is Θ
(

log m√
m

)
, and the optimal revenue

from item-type bundling is Θ
(

log2 m√
m

)
.

• In the presence of a data provider, the optimal revenue is Θ
(

log2 m√
m

)
. The

optimal revenue from item-type pricing and the optimal revenue from item-type
bundling are both O

(
log m√

m

)
.

In particular, this theorem illustrates a setting where the introduction of a data
provider does not affect the optimal revenue, but where the data provider’s presence is
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quite harmful to the optimal revenue of the better of item-type pricing and item-type
bundling. We break the proof of this theorem into the following claims, which we
prove in Section 7.7.

Claim 7.3.3. The expected revenue from optimal item-type pricing in Construc-
tion 7.3.1 is Θ

(
log m√

m

)
, independently of whether a data provider is present.

We emphasize that while item-type pricing is unaffected by the introduction of a
data provider, the presence of a data provider can harm the optimal revenue of other
classes of mechanisms.

Claim 7.3.4. The expected revenue from optimal item-type bundling in Construc-
tion 7.3.1 is Θ

(
log2 m√

m

)
in the absence of a data provider.

Claim 7.3.5. The expected revenue from item-type bundling in Construction 7.3.1 is
O

(
log m√

m

)
in the presence of a data provider.

Claim 7.3.6. There exists an item-type partition mechanism that achieves expected
revenue Ω

(
log2 m√

m

)
in Construction 7.3.1. The optimal revenue in Construction 7.3.1

is Θ
(

log2 m√
m

)
.

7.4 Revenue of Simple Mechanisms: Item-type Partitioning
The previous section shows that neither item-type pricing nor item-type bundling, nor
the better of the two, can always achieve a constant fraction of the optimal revenue
in the presence of a data provider. However, one may wonder if the result is due
to the restrictive nature of the “simple” mechanisms considered. Here, we show
that, in the presence of a data provider, even the more general class of item-type
partition mechanisms is insufficient to guarantee a constant fraction of the optimal
revenue. This is particularly tantalizing due to the fact that Construction 7.3.1 admits
an item-type partition mechanism that yields a constant approximation to the optimal
revenue. However, in this section, we show a construction where the best item-type
partition mechanism only achieves a O (1/log log m) fraction of the optimal revenue.
Note that this also implies that our “simpler” simple mechanisms, item-type bundling
and item-type pricing, also do not yield a constant fraction of the optimal revenue,
since they are special cases of item-type partitioning.

To show this result, we consider the following construction:

Construction 7.4.1. Given an integer η, let m = 2η be the number of item types. The
bidder’s prior on the item type is uniform, i.e., the bidder initially believes the item
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type takes each i ∈ [m] with probability 1/m. The bidder’s valuation for each type is
drawn i.i.d. from an equal revenue distribution.

We consider η possible partitions of the m types. Given a particular k ∈ [η],
we partition the set of all types into mk = 2η−k subsets of size 2k ≥ 2 each.
Specifically, for k ∈ [η] we partition the set of types into the subsets Ik,1 to Ik,mk

,
where Ik, j = {( j − 1) · 2k + 1, . . . , j · 2k} for all j ∈ [mk].

The information we allow the data provider to observe is structured as follows. First,
a value of k ∈ [η] is drawn according to the following distribution: for k ≤ η − 1,
k is drawn with probability 1

k(k+1); k = η is drawn with the remaining probability
1
η . The value k is drawn, importantly, independently of the type i of the item. Then,
the data provider observes which group of size mk (i.e., among Ik,1 to Ik,mk

) the item
type lies in. Given the observations, the data provider reveals his full information to
the bidder, namely, exactly which group of size mk the item type belongs to. We show
later (Section 7.5) that this is what a strategic, revenue-maximizing data provider
would reveal in this scenario. We denote by σk, j the realization of the signal that
indicates to the bidder that the item belongs to group Ik, j . We call k the size indicator.

This construction allows us to prove the following main result, that states that the
mechanism designer cannot always achieve a constant fraction approximation of the
optimal revenue via item-type partition mechanisms:

Theorem 7.4.2. There exists a single seller, single bidder, single item (taking one
of m item types) setting where, in the presence of a data provider who signals
information about the item type realization to the bidder, no item-type partition
mechanism can achieve revenue higher than O

(
1

log log m

)
of the optimal revenue.

More specifically:

• In the absence of a data provider, the optimal revenue is Θ (log m). The
optimal revenue from item-type partitioning is Θ(log m), and is achieved for
the item-type bundling partition.

• In the presence of a data provider who signals information about the item type
realization to the bidder, the optimal revenue is Θ (log log m), and is achieved
by Mechanism 7.4.5 below. The optimal revenue from item-type partition
mechanisms is Θ(1).
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This theorem illustrates a setting where the introduction of a data provider does
decrease the revenue of optimal mechanisms, and where restricting to item-type
partitioning mechanisms further harms revenue in the presence of a data provider.
There therefore could be strong incentives for a seller to be a data monopolist,
particularly if the seller has a preference to run simple mechanisms.

The first part of the lemma, when a data provider is not present, is a direct consequence
of Hart et al. (2017) and Babaioff et al. (2014). We prove the result in the presence
of a data provider via the following sequence of claims, each of which is proven in
Section 7.8.

Claim 7.4.3. The expected revenue from the optimal item-type partition mechanism
is O(1) in Construction 7.4.1.

Claim 7.4.4. There exists a mechanism that yields revenue Ω (log log m) in Con-
struction 7.4.1. The optimal revenue in Construction 7.4.1 is Θ (log log m).

To prove Claim 7.4.4, we first construct a mechanism that achieves revenue
Ω(log log m) in Construction 7.4.1. In particular, we consider the following design.

Mechanism 7.4.5. The seller offers a menu of
∑η

k=1 mk options. For every κ ∈ [η],
and every ι ∈ [mκ], the menu contains the following option Lκ,ι: the bidder first pays
Pκ = 1

8 log 2κ = log 2
8 κ, then gets the item if and only if it is in group Iκ,ι. Note that

the price only depends on κ.

To show that Mechanism 7.4.5 yields revenueΩ (log log m) in Construction 7.4.1, we
need the following claim, which characterizes the bidder’s behavior in the mechanism.
More specifically, we show in the following claim that if the bidder receives signal
σk, j , he purchases the corresponding option Lk, j in Mechanism 7.4.5 with probability
almost 1.

Claim 7.4.6. In the the setting of Construction 7.4.1, suppose the bidder receives
signal σk, j (indicating that the item belongs to group Ik, j of size 2k) for k ≥ 2 ·102+1.
Consider the menu of options proposed by the seller in Mechanism 7.4.5. With
probability at least 1 − 10−3, no option Lκ,ι with either κ , k or ι , j yields a higher
utility for the bidder than option Lk, j , and Lk, j yields positive utility to the bidder.

We remark thatMechanism 7.4.5, although it has a concise description, is not “simple”
in any of the usual senses, and is in fact carefully tailored to the incentives of the
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bidder. We do not know of “simpler” mechanisms that are approximately optimal in
this setting.

7.5 Modeling the Behavior of the Data Provider
So far, we have not discussed the behavior of the data provider. The characterization of
optimalmechanisms, and our bounds on the achievable revenue of simplemechanisms
in the previous sections, do not depend on specific assumptions about the behavior
of the data provider. However, it is useful to consider specific models of the data
provider when interpreting our lower bounds. In particular, one may wonder if
more positive results are possible for some standard game-theoretic models of the
interaction between the data provider and the seller.

To this end, it is natural to consider two extreme models for a data provider’s
incentives: (i) the data provider may be strategic, seeking to maximize his revenue
from selling his information, or (ii) the data provider may be adversarial, seeking to
minimize the profits of the seller. In this section, we characterize the behavior of the
data provider in each of these models. Our results provide a clear contrast between
the two models: strategic data providers always reveal all of their information to the
bidder, while adversarial data providers may not reveal all available information to
the bidder. Our results have implications for mechanism design, highlighting the
importance of mechanisms with good worst-case bounds on revenue, independent of
data provider behavior.

Importantly, the proofs of the bounds on the achievable revenue of simple mechanisms
in Theorems 7.3.2 and 7.4.2 use constructions that can be interpreted as complete
revelation by the data provider. Thus, those bounds apply to the case of a strategic
data provider. Concretely, this means that, in the presence of a strategic, revenue-
maximizing data provider, simple mechanisms cannot guarantee near-optimal revenue
for the seller.

The behavior of a strategic data provider
In this section we show that a third-party data provider, if aiming to maximize his
revenue from selling his information, should reveal his information in full. In other
words, to maximize his utility, the data provider should send X directly to the buyer
as the signal. More formally, the provider should let Σ be the range of X , and let
S(X) be the distribution where all probability is point massed on X . In what follows
we use S∗ to denote this fully-revealing signaling scheme.
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We first show that, for any mechanism adopted by the seller, and for any buyer’s
value vector, a fully revealing signaling scheme maximizes the utility of the buyer.
A simple consequence is then that the data provider can retain the added utility as
revenue, by pricing his signaling scheme appropriately. So we obtain the conclusion
that, no matter what mechanism the seller uses, it is a dominant strategy for the data
provider to fully reveal his information.

Let us fix a mechanismM and valuation vector V . Let S be an arbitrary signaling
scheme that maps the data provider’s information X to ∆(Σ). Recall that the buyer
forms a posterior distribution πs over the item type i when receiving signal σ drawn
from S(X). We denote by U(V, S) the buyer’s utility inM when her value vector
is V and he purchases signaling scheme S from the data provider.

To compare U(V, S∗) and U(V, S), in the following we slightly abuse notation and let
πX denote the posterior distribution the buyer forms over i when the signaling scheme
is S∗ and the buyer receives signal X . A proof of the following lemma appears in
Section 7.9.

Lemma 7.5.1. For any valuation vector V , any information X received by the data
provider, and any signaling scheme S(.), U(V, S∗) ≥ U(V, S).

Let U(V) be the buyer’s utility if his value vector is V and he does not purchase from
the data provider. The ex-ante value of a signaling scheme S for the buyer is then
EV [U(V, S) −U(V)], and this difference is the highest price the buyer is willing to
pay for the scheme S. A rational data provider would charge arbitrarily close to this
difference for the signaling scheme, and this would be his revenue. Therefore our
lemma immediately implies that S∗, the fully-revealing signaling scheme, maximizes
the data provider’s revenue.

Corollary 7.5.2. The fully-revealing signaling scheme is revenue-maximizing for
the data provider.

The corollary above is particularly important because the examples we use to prove
Theorems 7.3.2 and 7.4.2 make use of constructions where the data provider uses full
revelation. Thus, the implications of those theorems also hold under the assumption
of a strategic data provider. In the following corollary we contrast the revenue
between the settings where a data provider is or is not present. (Recall that item-type
partition mechanisms yield at least 1

6 of the optimal revenue when no data provider
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is present (Babaioff et al., 2014).) This result highlights the damaging impact of a
third-party data provider for the seller.

Corollary 7.5.3. There exists a single seller, single bidder, single item setting where,
in the presence of a revenue-maximizing data provider, no item-type partition
mechanism can achieve revenue higher than O

(
1

log m

)
of the optimal revenue

achievable by an item-type partition mechanism when no data provider is present.
More precisely:

• The optimal revenue achievable in the absence of a data provider is Θ (log m),
and is attained by item-type bundling.

• The optimal revenue achievable in the presence of a data provider is 1, and is
attained by item-type pricing.

Proof. Consider a setting with m item types, distributed i.i.d. according to an Equal
Revenue distribution. The optimal revenue in the absence of a data provider is
Θ(log m) by (Hart et al., 2017). As P · Pr [V(i) ≥ P] = P · 1

P = 1 for all P when
V(i) follows an equal revenue distribution, the optimal revenue in the presence of a
revenue-maximizing data provider that exactly knows and reveals the item type is
1. On the other hand, for independent valuations, the seller can always guarantee a
Ω

(
1

log m

)
of the revenue by revealing the item type and pricing optimally, as per (Li

et al., 2013). Note that this example is a special case of Construction 7.4.1. �

The behavior of an adversarial data provider
We now move to consider an adversarial data provider, who aims to minimize the
seller’s revenue. The main result in this section shows that revealing less information
can sometimes bemore damaging to the seller’s revenue. This phenomenon, however,
does not occur when the data provider has perfect information about the item type.
Our first lemma below shows that he minimizes the expected revenue of the seller by
fully revealing the type, if the type is known.

Recall from Section 7.5 that we use S∗ to denote the fully-revealing signaling scheme.
Throughout this section, we use REV(S) to denote the seller’s optimal revenue when
the data provider adopts the signaling scheme S.

Lemma 7.5.4. If the data provider is adversarial and has full information about the
type of the item (that is, if X is perfectly correlated with the item type), the optimal
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strategy for the data provider is to reveal X , i.e., to use the fully-revealing signaling
scheme S∗.

Proof. Let SREV be the optimal revenue that the seller can achieve when the type of
the item is revealed. On the one hand, the seller can always guarantee a revenue of
SREV by revealing the type of the item and then selling this type optimally, no matter
what signaling scheme is used by the data provider. So SREV ≤ REV(S) for any S.
On the other hand, when X fully reveals the type, and S∗ fully reveals this information,
the buyer would know the type, and by the definition of SREV the optimal revenue
that can be achieved by the seller is SREV . Therefore SREV ≥ REV(S∗). Therefore
REV(S∗) ≤ REV(S) for any scheme S. �

More interestingly, and perhaps counter-intuitively, if the data provider does not have
full information, then only partially revealing information may minimize the revenue
of the seller.

Lemma 7.5.5. Let the number of item types be m = 2. There exists a distribution
over the buyer’s valuations V , a prior π over the item type and a partially informative
distribution over the data provider’s information X , such that there is a signaling
scheme S, with REV(S) < REV(S∗).

The proof of this result uses the following example.

Example 7.5.6. Let the bidder’s valuation for each item type be drawn i.i.d., taking
value 1 with probability 1/2 and value 2.1 with probability 1/2. The bidder and
the data provider share a common prior π = (3/4, 1/4). That is, they both initially
believe the item is of type 1 with probability 3/4 and of type 2 with probability 1/4.
The data provider receives information X on some support {x1, x2}. If the item type
is 1, the provider receives x1 with probability 2/3 and x2 with probability 1/3, and if
the item type is 2, the provider receives x2 with probability 1.

Proof. We show that in Example 7.5.6, the data provider has a signaling scheme
under which the seller’s optimal revenue is less than under the fully-revealing scheme.

If the data provider reveals full information, then with probability 1/2, the bidder
receives x1 and has posterior πx1 = (1, 0) (when receiving x1, the provider knows
the item must be of type 1); with probability 1/2, he receives x2 and thus has
posterior πx2 = (1/2, 1/2). Remember that by the characterization of Section 7.2,
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the seller’s best response to the data provider can be written as an interim individually
rational mechanism that does not require any information revelation; further, the
optimal revenue from such mechanisms can be obtained by solving a linear program.
Computing the seller’s optimal revenue via linear programming, we see that the
revenue is REV(S∗) = 1.1062.

Consider the following partially revealing signaling scheme: let Σ, the range of
the signaling scheme, be {σ1, σ2, σ3}; let ϕ be the mapping ϕ(xi) = σi for i = 1, 2;
when the provider receives realization x of X that belongs to {x1, x2}, the provider
outputs ϕ(x) w.p. 1− ε = 0.86 and, outputs σ3 with probability ε = 0.14. Given this
signaling scheme, when the bidder receives signal σ1 (which occurs with probability
1
2 (1 − ε) = 0.43), he infers X = x1, and so his posterior is πσ1 = πx1 . Similarly,
when he receives signal σ2 (which also occurs with probability 0.43), the bidder
infers that it must be the case that X = x2, hence he has posterior πσ2 = πx2 . Finally,
when the bidder receives σ3 (which occurs with probability ε = 0.14), he infers that
X = x1 or X = x2 with equal probability by symmetry, and hence his posterior is
πσ3 =

1
2
(
πx1 + πx2

)
= (3/4, 1/4) = π. Computing the optimal revenue of the seller

via linear programming, using the the results of Section 7.2, we get that the revenue
is only REV(S) = 1.0991 < 1.1062 = REV(S∗). �

It may seem counter-intuitive that the data provider can harm the seller more
by providing less information to the bidder. After all, one consequence of the
characterization of Section 7.2 is that the seller can only lower her revenue by
revealing more information to the bidder. However, information from the provider
and information from the seller are not equivalent from the perspective of the seller,
because the seller does not get to see the realization of the signal that the provider
sends to the bidder. When the seller reveals information, she knows exactly what the
bidder’s posterior is, and can act as a function of the realized posterior; she is then
faced with exactly the problem solved by Daskalakis et al. (2016) for that realized
posterior. When the data provider reveals information, the seller, who only knows
the signaling scheme but not the signal, faces a distribution of posteriors and does
not know which of them is correct.

In particular, in Example 7.5.6, in the fully-revealing signaling scheme there are
two posteriors πx1 and πx2 . Each occurs with probability 1/2. The seller, intuitively,
wishes to design a menu with one option for each of these two posteriors. In the
partially revealing signaling scheme there is a third posterior, πσ3 = π, which is an
average of πx1 and πx2 . In fact, the first signaling scheme is a mean-preserving spread
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of the second one. The seller, intuitively, wishes to design a menu with three options,
one for each posterior.

This third posterior induces a trade-off in the linear program the seller solves to find
the optimal mechanism. The second linear program has more IC constraints for the
two posteriors than the linear program given the fully revealing signaling scheme.
This makes the revenue the seller gets from bidders with posteriors πσ1 and πσ2 lower
than before. The trade-off is that there is now a new posterior πσ3 , from which the
seller can make additional revenue. Example 7.5.6 is constructed so that the harm
from the additional posterior exceeds the benefit.

Finally, we characterize the revenue the seller loses due to the presence of an
adversarial data provider. Note that the revenue the seller can obtain when there is
an adversarial data provider is less than what would be achieved under a strategic,
revenue-maximizing data provider (who uses a fully-revealing signaling scheme).
Thus, it follows from Corollary 7.5.3 that the presence of an adversarial data provider
can greatly harm the revenue of the seller.

Corollary 7.5.7. There exists a single seller, single bidder, single item setting where,
in the presence of an adversarial data provider, no item-type partition mechanism
can achieve revenue higher than O

(
1

log m

)
of the optimal revenue achievable by an

item-type partition mechanism when no data provider is present. More precisely:

• The optimal revenue achievable in the absence of a data provider is Θ (log m),
and is attained by item-type bundling.

• The optimal revenue achievable in the presence of a data provider is 1, and is
attained by item-type pricing.

7.6 Supplementary Material: Revelation Principle, the Full Version
The characterization we present shows that the revenue achievable via any mechanism
can be obtained with a conditional price menu.

A few comments about themechanism are in order. Note that the allocation probability
and price may both depend on the realized type of the item. So, one can think of
the mechanism as requiring a single round of bidding, followed by a single round
of information revelation (in fact, full information revelation), to determine which
price P(i) the bidder should pay. Additionally, note that the bidder pays regardless of
whether he receives the item. Finally, note that conditional price mechanisms are
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strictly more general than item-type partition mechanisms. Item-type partitioning is,
in fact, an instantiation of menus with conditional prices in which each A ∈ {0, 1}m

(no fractional or probabilistic allocations are allowed), each item type is offered in
exactly one option, and the conditional prices within an option are all identical. Each
option then corresponds to a single subset of the partition.

Despite allowing prices and allocations to depend on the realization of the item
type, the conditional price menus guarantee interim individual rationality, defined as
follows.

Definition 7.6.1. A mechanism is interim individually-rational (interim IR) if and
only if the bidder’s expected utility from participating in the mechanism, conditional
on a valuation V and posterior beliefs π over item types, is non-negative.

Interim IR can be seen as the bidder committing to an option from the menu offered
by the mechanism. One justification for this notion is that a bidder might, in theory,
be engaged in many auctions simultaneously. Therefore, the bidder might care only
about his average payoff across multiple purchases. While for some type realizations
such a bidder may lose, with high probability his overall utility is non-negative.
Interim IR can always be guaranteed by adding a dummy option with price 0 and
allocation probability A = 0, such that an agent that gets negative utility from any
other option goes for the dummy option.

Proof of Lemma 7.2.10. We treat the pair (V, πσ), where V is the bidder’s valuation
vector and πσ is his posterior given he sees signal σ, as the bidder’s type. We follow
the same steps as the proof of Theorem 1 and Section A of Daskalakis et al. (2016).
Consider a mechanismM with voluntary participation. M may use multiple rounds
of communication and information revelation to the bidder. For each valuation vector
V and posterior πσ, let A (V, πσ) be the (possibly randomized) equilibrium strategy
of the bidder when his type is (V, πσ).

Let A(i, ζ) be an indicator random variable that indicates whether the bidder gets the
item when he chooses strategy ζ and the realized item type is i. Similarly, let P(i, ζ)
denote the price the bidder is asked to pay. The bidder’s interim expected utility is
then given as follows:

Ei∼πσ [E [A(i, ζ) · V(i) − P(i, ζ)]] ,
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where the first (outer) expectation is with respect to the randomness of the item type,
while the second (inner) expectation is with respect to the randomness in the choices
of the mechanism, the information revealed and the actions ζ of the bidder.

For all possible types (V, πσ), and for all possible misreports (V ′, πσ′) of the bidder,
for ζ to be an equilibrium strategy it must be the case that

Ei∼πσ [E [A (i, ζ (V, πσ))V(i) − P (i, ζ (V, πσ))]]
≥ Ei∼πσ [E [A (i, ζ (V ′, πσ′))V(i) − P (i, ζ (V ′, πσ′))]] .

Now, let us abuse notations and define the variables

Ai (V, πσ) = E [A (i, ζ (V, πσ))] ,
Pi (V, πσ) = E [P (i, ζ (V, πσ))] .

The equation above can be rewritten as

∑
i

πσ(i) (Ai (V, πσ)V(i) − Pi (V, πσ)) ≥
∑

i

πσ(i) (Ai (V ′, πσ′)V(i) − Pi (V ′, πσ′)) .

(IC)

Moreover, since the equilibrium ζ respects voluntary participation, the bidder’s
equilibrium payoff must be non-negative. As a consequence, we have∑

i

πσ(i) (Ai (V, πσ)V(i) − Pi (V, πσ)) ≥ 0. (IR)

Finally, we note that the revenue of the seller is given by

R =
∑
πσ,V

Pr [V, πσ]
∑

i

πσ(i) · Pi (V, πσ) ,

where Pr [V, πσ] is the probability the realized type of the bidder is (V, πσ).

A mechanism that satisfies constraints (IC) and (IR) and yields revenue R can clearly
be implemented as an interim IR menu with conditional prices, in which the options
are given by (A (V, πσ) , c (V, πσ)) for each possible type (V, πσ). Thus, there exists
an incentive compatible, individually rational, conditional price menu that provides
the same revenue as mechanismM. �
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7.7 Proofs: Theorem 7.3.2
Proofs of Claim 7.3.3. In item-type pricing, the seller announces the item type
(hence, completely superseding the effect of the data provider’s signal) and then
offers a price that is a function of the realized item type. The expected revenue of
such a mechanism is simply given by

1
m

η∑
k=1

η

k
= Θ

(
log m
√

m

)
,

as the expected revenue from selling an item of type i in the kth group is P ·
Pr [V(i) ≥ P] = P · 1

kP =
1
k , as k · V(i) follows an ER distribution. �

Proof of Claim 7.3.4. This proof follows the same structure as the proof of Proposi-
tion 25 of Hart et al. (2017). For all i and all M ≥ 1, we let V M(i) = min (V(i), M).
By Hart et al. (2017), V M(i) has mean log M + 1 and variance upper-bounded by
2M. In particular, it follows that the expectation and variance of the value of the
bundle (renormalized by m), were the bidders valuations truncated at M , satisfy:

E

[∑
k=1

η
∑
i∈Ik

V M(i)
k

]
= η (log M + 1) ·

η∑
k=1

1
k

∈
[
1
2
(log M + 1)

√
m log(m); (log M + 1)

√
m

(
1 +

1
2

log m
)]

as well as

Var

[
η∑

k=1

∑
i∈Ik

V M(i)
k

]
≤ 2Mη

∑
k

1
k2 ≤

π2

3
M
√

m

We first give a lower bound on the revenue of the item-type bundling mechanism.

Pr

[
1
m

η∑
k=1

∑
i∈Ik

V(i)
k
≥ P

]
≥ Pr

[
η∑

k=1

∑
i∈Ik

V M(i)
k
≥ mP

]
= Pr

[
E

[
η∑

k=1

∑
i∈Ik

V M(i)
k

]
−

η∑
k=1

∑
i∈Ik

V M(i)
k
≤ η (log M + 1) ·

η∑
k=1

1
k
− mP

]
= 1 − Pr

[
E

[
η∑

k=1

∑
i∈Ik

V M(i)
k

]
−

η∑
k=1

∑
i∈Ik

V M(i)
k

> η (log M + 1) ·
η∑

k=1

1
k
− mP

]
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≥ 1 − Pr

[�����E
[
η∑

k=1

∑
i∈Ik

V M(i)
k

]
−

η∑
k=1

∑
i∈Ik

V M(i)
k

����� > η (log M + 1) ·
η∑

k=1

1
k
− mP

]
≥ 1 − π2M

√
m

3
(
η (log M + 1) ·∑m

k=1
1
k − mP

)2

≥ 1 − π2M
√

m

3
(

1
2 (log M + 1)

√
m log(m) − mP

)2 ,

where the second-to-last step follows from Chebyshev’s inequality, in the case when
η (log M + 1) ·∑η

k=1
1
k −mP ≥ 0. Let M =

√
m log2 m and P = log2 m

4
√

m
, we obtain that

Pr

[
1
m

η∑
k=1

∑
i∈Ik

V(i)
k
≥ P

]
≥ 1 − π2m log2 m

3
(

1
2

(
1
2 log m + 2 log log m + 1

) √
m log m −

√
m log2 m

4

)2

≥ 1 − π2m log2 m

3
(√

m log m · log log m
)2

≥ 1 − π2

3 (log log m)2
.

Therefore, a buyer buys a bundle with price P = log2 m
4
√

m
with constant probability (for

m large enough), guaranteeing a revenue of Ω
(

log2 m√
m

)
.

For the upper bound, we first remark that for P ≤ 2 log m√
m

(
1 + log m

2

)
, the revenue is at

most O
(

log2 m√
m

)
. We there assume w.l.o.g that P > 2 log m√

m

(
1 + log m

2

)
. The revenue

from grand bundling at price P satisfies, by union bound:

P · Pr

[
1
m

η∑
k=1

∑
i∈Ik

V(i)
k
≥ P

]
≤ P · Pr

[
η∑

k=1

∑
i∈Ik

VmP(i)
k
≥ mP

]
+ P · Pr

[
∃k ∈ [η], i ∈ Ik :

V(i)
k
≥ mP

]
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By union bound, we have on the one hand that

P · Pr
[
∃k ∈ [η], i ∈ Ik :

V(i)
k
≥ mP

]
≤ P

∑
k

∑
i∈Ik

Pr [V(i) ≥ kmP]

= ηP
∑

k

1
kmP

= O
(
log m
√

m

)
On the other hand, remembering that

E

[
η∑

k=1

∑
i∈Ik

VmP(i)
k

]
≤ (log(mP) + 1)

√
m

(
1 +

log m
2

)
Var

[
η∑

k=1

∑
i∈Ik

VmP(i)
k

]
≤ π2

3
m
√

mP,

we have by Chebyshev that

P · Pr

[
η∑

k=1

∑
i∈Ik

VmP(i)
k
≥ mP

]
= P · Pr

[
η∑

k=1

∑
i∈Ik

VmP(i)
k
− E

[
η∑

k=1

∑
i∈Ik

VmP(i)
k

]
≥ mP − E

[
η∑

k=1

∑
i∈Ik

VmP(i)
k

] ]
≤ π2m

√
mP2

3
(
mP − (log m + log P + 1)

√
m

(
1 + log m

2

))2

Using the fact that w.l.o.g, P ≥ 2 log m√
m

(
1 + log m

2

)
, i.e.

√
m log m

(
1 +

log m
2

)
≤ mP/2,

and that
(log P + 1)

√
m

(
1 +

log m
2

)
= o (mP) ,

we have that

mP − (log m + log P + 1)
√

m
(
1 +

log m
2

)
= mP − (log P + 1)

√
m

(
1 +

log m
2

)
−
√

m log m
(
1 +

log m
2

)
≥ mP − o(mP) − mP

2
= Ω (mP) ,



130

which leads to

P · Pr

[
η∑

k=1

∑
i∈Ik

VmP(i)
k
≥ mP

]
= O

(
m
√

mP2

m2P2

)
= O

(
1
√

m

)
.

It follows that

P · Pr
[
∃k ∈ [η], i ∈ Ik :

V(i)
k
≥ mP

]
= O

(
log m
√

m

)
,

which concludes the proof. �

Proof of Claim 7.3.5. Let P∗ be the optimal bundling price, and suppose the data
provider announces signal σk . There are two cases:

1. For k such that P∗ ≥ 6
k log η, by Lemma 7.2.8, the expected revenue is

P∗ · Pr

1
η

∑
i∈|Ik |

V(i)
k
≥ P∗

 = P∗ · Pr

1
η

∑
i∈|Ik |

V(i) ≥ kP∗
 ≤ P∗ · 9

kP∗
=

9
k
,

as |Ik | = η.

2. Otherwise, we have k such that P∗ ≤ 6
k log η.

Letting k∗ = min{k : P∗ > 6
k log η}, we see that the expected revenue of charging

price P∗ for the grand bundle is upper-bounded by

1
η

(∑
k≥k∗

9
k
+

∑
k<k∗

P∗
)
≤ 1
√

m

(
9 · (1 + log η) +

∑
k<k∗

6
k∗ − 1

log η

)
=

1
√

m
(9 · (1 + log η) + 6 log η)

= O
(
log m
√

m

)
. �

Proof of Claim 7.3.6. Consider the following item-type partition mechanism: the
seller first partitions the item types into η groups in the same way as specified in
Construction 7.3.1. When the realized item type is in group Ik , she offers to sell the
item to the bidder at price Pk =

log η
2k .

If the bidder receives signal σk , then the price offered by the seller must be log η
2k , and

the bidder knows the item type is from group Ik . By Lemma 7.2.8, as |Ik | = η, we
have:

Pr

[
1
η

∑
i∈Ik

V(i)
k
≥ log η

2k

]
≥ 1

2
,
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and hence with probability at least 1/2, conditional on S = σk , he accepts the price,
yielding expected revenue to the seller of at least log η

4k . The total expected revenue
for the seller is then given by

1
η

η∑
k=1

log η
4k
=

log m
8
√

m

η∑
k=1

1
k
= Ω

(
log2 m
√

m

)
.

No truthful mechanism can achieve revenue higher than log η times the revenue of
item-type pricing conditioned on receiving signal σk : Theorem 2 of Li et al. (2013)
shows that in traditional multi-item auctions, selling separately achieves at least a
Ω

(
1

log η

)
fraction of the optimal revenue for selling η independent items; this result

carries over to single-item, multi-type auctions by the reduction of Daskalakis et al.
(2016). Thus, the optimal revenue is at most O

(
log2 m√

m

)
, and hence the item-type

partition mechanism we just described yields a constant approximation to the optimal
revenue. �

7.8 Proofs: Theorem 7.4.2
Proof of Claim 7.4.3. Suppose the item-type partition mechanism splits the item
types into non-empty groups G1 to Gg, where g ≤ 2η is the number of such groups.
Let’s assume that the item type i lies in Gr , then the seller offers to sell the item
at price at Pr . Suppose the signal is σk, j for some j ∈ [mk] with i ∈ Ik, j . In the
bidder’s posterior, the item type is uniform over Gr ∩ Ik, j . Note that

��Gr ∩ Ik, j
�� ≤ 2k .

By Lemma 7.2.8, we have

Pr · Pr


1��Gr ∩ Ik, j
�� ∑

t∈Gr∩Ik, j
V(t) ≥ Pr

 ≤


9 if Pr ≥ 6 log
(
2k ) = 6k log 2

Pr if Pr < 6k log 2,
,

following from 6 log
(
2k ) ≥ 6 log

��Gr ∩ Ik, j
��.

Let k∗(r) = max{k : Pr ≥ 6k log 2}. Further, let us denote by Pr[k] the probability
that the data provider selects a partition of size 2k . When item type i ∈ Gr , the
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revenue in expectation over the randomness of the signal is upper-bounded by

9
∑

k≤k∗(r)
Pr[k] + Pr ·

©­«
η∑

k=k∗(r)+1
Pr[k]ª®¬

= 9
∑

k≤k∗(r)

1
k(k + 1) + Pr ·

©­«
η−1∑

k=k∗(r)+1

1
k(k + 1) +

1
η

ª®¬
≤ 9

(
1 − 1

k∗(r) + 1

)
+ 6 log 2 · (k∗(r) + 1)

(
1

k∗(r) + 1
− 1
η
+

1
η

)
≤ 9 + 6 log 2,

where the first step follows from the fact that the probability of the data provider
selecting a k ≤ η − 1 is 1

k(k+1) , and the probability of him drawing k = η is 1
η . Since

the upper bound holds for all possible prices, the expected revenue of any item-type
partition mechanism is also upper-bounded by 9 + 6 log 2. �

Proof of Claim 7.4.6. The bidder’s expected utility for Lk, j when receiving signal
σk, j is given by

Uk, j =
1
2k

∑
i∈Ik, j

V(i) − 1
8

log 2k,

his expected utility for selecting option Lκ,ι for κ > k is only less (his expected value
for the item type is not more, but the price is higher), and his utility for selecting
option Lκ,ι for κ < k is

Uκ,ι =
1
2k

∑
i∈Iκ,ι∩Ik, j

V(i) − 1
8

log 2κ,

and his expected utility for selecting any option Lκ,ι such that Iκ,ι∩ Ik, j = ∅ is negative,
since he will pay but never be allocated the item.

Therefore, the bidder prefers Lκ,ι to Lk, j with κ ≤ k and Iκ,ι ⊂ Ik, j only if

1
2k

∑
i∈Ik, j\Iκ,ι

V(i) ≤ 1
8

log 2k−κ .

We want to upper bound the probability of the above event for all κ < k and
Iκ,ι ⊂ Ik, j . Let us denote V M(i) = min(V(i), M) for any M. We have immediately
that E

[
V M(i)

]
= log M + 1 and that its variance is upper-bounded by 2M. Taking

M = 2k−1 and W(i) = log M + 1 − V M(i) yields |W(i)| ≤ M, E [W(i)] = 0 and
E

[
W(i)2

]
≤ 2 · 2k−1 = 2k . Recall Bernstein’s inequality:
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Lemma 7.8.1. (Bernstein’s Inequality): Suppose Y1, ...,Ym are independent random
variables with zero mean, and |Yi | ≤ B almost surely for all i. Then for any t > 0,

Pr

[∑
i=1

Yi > t

]
≤ exp

(
−

1
2 t2∑m

i=1 E[Y2
i ] +

1
3 Bt

)
We can then apply Bernstein’s inequality to show that

Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) < 1
2k ·

©­«
∑

i∈Ik, j\Iκ,ι

(log M + 1) − tª®¬


= Pr


∑
i∈Ik, j\Iκ,ι

V(i) <
∑

i∈Ik, j\Iκ,ι

(log M + 1) − t


≤ Pr


∑
i∈Ik, j\Iκ,ι

V M(i) <
∑

i∈Ik, j\Iκ,ι

(log M + 1) − t


= Pr


∑
i∈Ik, j\Iκ,ι

W(i) > t


≤ exp
(
−1

2
· t2

2k · |Ik, j \ Iκ,ι | + M · t/3

)
= exp

(
−1

2
· t2

2k
(
2k − 2κ

)
+ M · t/3

)
,

where Bernstein’s inequality is used in the last inequality. Taking

t =
(
3
4

) (
2k − 2κ

)
(log M + 1) ,

we have

1
2k

©­«
∑

i∈Ik, j\Iκ,ι

(log M + 1) − tª®¬ = 1
2k ·

1
4

(
2k − 2κ

)
(log M + 1)

≥ 1
2k ·

1
4

(
2k−1

)
(log M + 1)

=
1
8
(log M + 1) ,

and we thus obtain a bound on the probability of the event that a particular menu
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option Lκ,ι for κ < k is better for the bidder than option Lk, j , given signal σk, j :

Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) ≤ 1
8

log 2k−κ


< Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) < 1
8

(
log 2k−1 + 1

)
≤ Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) < 1
2k

©­«
∑

i∈Ik, j\Iκ,ι

(
log 2k−1 + 1

)
− tª®¬


≤ exp

(
− k2

2
·

(3/4)2
(
2k − 2κ

)2 (log 2)2

2k
(
2k − 2κ

)
+ 1

42k−1 (
2k − 2κ

) (
log 2k−1 + 1

) )
≤ exp

(
−(k − 1)2

2
·

(3/4)2 · 2k−1 (
2k − 2κ

)
(log 2)2

2k
(
2k − 2κ

)
+ 1

42k−1 (
2k − 2κ

) (
log 2k−1 + 1

) )

≤ exp
©­­«−

k − 1
2
· (3/4)2 (log 2)2

2
k−1 +

1
4

(
log 2 + 1

k−1

) ª®®¬ ,
For k ≥ 2 · 102 + 1, the above yields

Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) < 1
8

(
log 2k−1 + 1

)
≤ exp

©­­«−(k − 1) · (3/4)2 (log 2)2

4
2·102 +

1
2

(
log 2 + 1

2·102

) ª®®¬ .
We now let

K = exp
©­­«

(3/4)2 (log 2)2

4
2·102 +

1
2

(
log 2 + 1

2·102

) ª®®¬ ,
and note that we then have that for k ≥ 2 · 102 + 1,

Pr


1
2k

∑
i∈Ik, j\Iκ,ι

V(i) < 1
8

(
log 2k−1 + 1

) ≤
(

1
K

) k−1
.

Since there are less than 2k groups Iκ,ι such that Iκ,ι ⊂ Ik, j , a union bound gives us
that the probability that the bidder prefers a different option other than Lk, j is upper

bounded by 2 ·
(

2
K

) k−1
. A direct calculation shows that 2 ·

(
2
K

) k−1
≤ 10−3. �
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We are now ready to prove Claim 7.4.4.

Proof of Claim 7.4.4. The proof of Claim 7.4.6 directly implies that the revenue of
the considered mechanism is lower-bounded by

(1 − 10−3) log 2
8

(
η−1∑

k≥2·102+1

k
k(k + 1) +

η

η

)
= Ω (log η) = Ω (log log m) ,

as a bidder who receives signalσk, j picks option Lk, j with price log 2
8 k with probability

at least 1 − 10−3.

The revenue of the best mechanism is upper-bounded by the optimal revenue the
seller could obtain if she knew the realization of the signal. When facing signal
σk, j , the bidder’s posterior is that the item type is taken uniformly at random from
group Ik, j . By Babaioff et al. (2014) and Daskalakis et al. (2016), the better of
item-type pricing and item-type bundling (conditioning now on the realization of
the signal) yields a constant approximation to the optimal revenue. The revenue
from item-type pricing is clearly 1, and the revenue from item-type bundling is
O

(
log 2k ) by Lemma 7.2.8 as setting P > 6 log 2k yields constant revenue while

setting P ≤ 6 log 2k yields O
(
log 2k ) . Therefore, the optimal revenue conditional

on the signal being σk, j must be O
(
log 2k ) = O (k), and the optimal (unconditional)

revenue is therefore

O

(
η−1∑
k=1

k
k(k + 1) +

η

η

)
= O (log η) = O (log log m) . �

7.9 Proofs: Lemma 7.5.1
Here, we provide the proof of Lemma 7.5.1:

Proof of Lemma 7.5.1. Consider a lottery of the form given in Section 7.2 and
discussed in Section 7.6. Suppose the lottery has l + 1 options, denoted by L0, L1

to Ll , where L0 is a dummy option with price 0 and allocation A0(i) = 0 added to
guarantee IR (as in Section 7.6). Further, let Ak(i) denote the probability with which
Lk allocates item of type i, and Pk(i) the price at which Lk sells item of type i. The
expected utility of the bidder when he has valuation V and signal S(X) is given by

U(V, S) = EX

[
Eσ∼S(X)

[
max

k

∑
i

πσ(i) (V(i)Ak(i) − Pk(i))
] ]
.
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On the other hand, if the data provider fully reveals his information, the bidder
possessing this information and with value V would have utility

U(V, S∗) = EX

[
max

k

∑
i

πX(i)(V(i)Ak(i) − Pk(i))
]
.

Since the bidder’s posterior when observing the realization of σ is obtained via
Bayes update, we have πσ = EX̃ | σ[πX̃], where on the right hand side the expectation
is taken over X̃ , the buyer’s belief of the data provider’s information, drawn from the
conditional distribution given the received signal σ. Therefore we can write

U(V, S) = EX

[
Eσ∼S(X)

[
max

k
EX̃ | σ

[∑
i

πX̃(i)(V(i)Ak(i) − Pk(i))
] ] ]

≤ EX

[
Eσ∼S(X)

[
EX̃ | σ

[
max

k

∑
i

πX̃(i)(V(i)Ak(i) − Pk(i))
] ] ]

= EX̃

[
max

k

∑
i

πX̃(i)(V(i)Ak(i) − Pk(i))
]

= EX

[
max

k

∑
i

πX(i)(V(i)Ak(i) − Pk(i))
]

= U(V, S∗),

where the inequality follows from Jensen’s inequality. Conditional on the signal
being s, the distributions of X̃ |s and X |s are identical by definition of Bayes update,
which in turn directly implies the distributions of X̃ and X are identical, and the
second-to-last equality holds. This concludes the proof. �
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C h a p t e r 8

CONCLUSION AND DISCUSSION

The goal of this thesis is to address some of the challenges related to the exchange and
use of data. In particular, in this thesis, we build formal and theoretical foundations
for markets for data, for understanding how data is tied with strategic behavior, and
for dealing with the societal considerations and issues that arise from the use of data.
Yet, many open questions and future directions remain to be explored.

Chapters 3 and 4 of this thesis focus on the study of data markets, and more precisely
aim to design mechanisms for data acquisition and aggregation, when this data is
held by strategic agents. The work presented in these chapters looks at off-line data
acquisition decisions, in which data points come in a batch. In practice, it is often
the case that data holders may not be available simultaneously; further, an analyst
may want to use information about the data points he has already collected to decide
which data will be most useful to him in the future. As such, an important future
direction is that of mechanism design for “online” data acquisition, when agents
participate sequentially in the data analyst’s mechanism, and the analyst uses the
history of acquired data points to inform future data acquisition decisions.

Further, most of the current line of work on data acquisition (including the work
presented in this thesis) is tailored to simple statistical tasks, such as moment
and parameter estimation. With the growing importance of machine learning and
automated decision-making, future work should aim to develop mechanisms that
efficiently purchase data from data holders for classification tasks.

Another practical consideration is that many settings of interest are complex and
involve many entities that may bid or compete over agents’ data, as well as intermedi-
aries that must decide how to acquire data from many sources, how to allocate and
sell this data to a variety of interested buyers, and what services to provide on said
data; therefore, optimal mechanism design for data acquisition and aggregation in
multi-sided settings, with many (possibly competing) agents that aim to buy and/or
sell data, is a natural direction to explore.

When it comes to data acquisition, it is also important to guarantee the privacy
of individuals whose sensitive data is used. We show how to acquire data in a
differentially private manner, and how to compensate agents for any remaining
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privacy loss, in Chapter 5. We focus on the case in which agent data and costs are
independent. However, there is a need to understand data acquisition when privacy
costs are correlated with how sensitive the data is, as is often the case in real life;
a concrete question in this direction is how to use differential privacy to prevent
information about the agents’ costs from being leaked to an adversary that observes
data purchasing decisions and the outcome of the mechanism. While Ghosh et al.
(2015) suggest this might be an impossible task in the worst case, Nissim et al. (2014)
show that restricting attention to special cases, many of which could potentially
capture practical applications, helps.

Further, this thesis and most of the line of work on data acquisition with privacy
constraints consider settings where an individual’s perception of how much he values
privacy is fixed. Realistically, this may not be the case; an individual may value the
same differential privacy level differently, depending on how many computations are
performed on his data, and how widely his data is shared. As such, data acquisition
with privacy becomes a much more relevant (and challenging) task when studied
in the context of multi-sided markets for data, where one individual’s data may be
acquired, used, and sold by many different entities.

Chapter 6 aims to understand how various individuals or populations may be treated
unfairly based on sensitive attributes such as gender or race, and to prevent such
disparate treatment. There, we focus on fairness concerns in the context of university
admissions, and identify unequal access to signaling as a possible source of unfairness,
that may be exacerbated by classical interventions (e.g., forcing students to pass
a standardized test). There may be many other sources of unfairness between
individuals or populations that are not yet well understood; as such, it is crucial
that future work aims to identify and study such sources, so as to understand what
interventions are efficient, in what contexts.

Additionally, long-term considerations are central when it comes to fairness in
decision-making. Decisions are rarely made in isolation, and it is often the case
that decisions made today inform, compose with, and affect decisions made in the
future. In such cases, fairness of individual decisions does not guarantee fairness of a
combination of decisions, as observed by Dwork et al. (2018). The work of Kannan
et al. (2019) mentioned in this thesis studies such long-term effects, when decisions
made at the university level affect decision-making on the job market. However,
there is still a need to develop broader scope decision-making algorithms that do
not introduce bias and prevent bias from propagating, even when they are composed
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with other and possibly future decisions, and even when these other decisions are
outside of the control of the decision maker.

A recurrent theme in this thesis is that of agents acting strategically, and a question
of importance is fairness in the context of strategic behavior. In particular, can
one design mechanisms that treat individuals or populations fairly, even when these
agents may have incentives to misreport their data to obtain better outcomes, and
different agents may have different abilities to conduct such manipulations? How
does one design mechanisms that incentivize decision-makers to explore and give a
chance to populations that have been historically discriminated against, and may in
turn appear unappealing (either due to lack of accurate data on, or to persisting bias
against such populations)?

Finally, Chapter 7 studies the role of data as a source of information that explains but
also affects strategic behavior, and in turn mechanism design. More precisely, the
chapter examines settings of incomplete information with third-party information
revelation, and shows that there, standard, simple mechanisms do not capture a
significant fraction of the achievable revenue. A natural open question, from the
mechanism designer’s point of view, is to understand what simple and near-optimal
mechanisms look like, if they even exist in the first place. On the other hand, a data
provider with access to information about a strategic setting may wonder how to
release some of this information in order to affect strategic behavior and mechanism
design, and to incentivize specific outcomes—in particular, socially better, and fairer
ones.
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