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ABSTRACT 

Proper biogenesis of nascent protein is essential for cell survival. Signal recognition 

particle (SRP) is an essential and universally conserved factor involved in biogenesis of 

~30% of the proteome through co-translational targeting of nascent proteins to Endoplasmic 

Reticulum (ER). Despite its importance, the mechanisms by which eukaryotic SRP ensure 

selective and efficient delivery of substrates to ER is poorly understood. Here, we 

reconstituted human SRP and SRP receptor (SR) to study the interaction between human 

SRP and SR, and conformational dynamics of SRP and SRP-SR targeting complex through 

biochemical and biophysical methods. We find that signal sequence and ribosomal 

components of the substrate sequentially activate human SRP. Especially, presence of signal 

sequence pre-organizes SRP conformation for efficient recruitment of SR, allowing specific 

and efficient targeting. In addition, we discover two essential roles of a conformational 

change in SR, where it is required not only for brining targeting complex near the ER 

membrane, but also for inducing subsequent conformational changes of SRP-SR complex 

that ensures proper delivery of substrates to Sec61 translocon on ER membrane.  
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1 
C h a p t e r  1  

SEQUENTIAL ACTIVATION OF HUMAN SIGNAL RECOGNITION 
PARTICLE BY THE RIBOSOME AND SIGNAL SEQUENCE DRIVES 

EFFICIENT PROTEIN TARGETING 

A version of this chapter was first published as: Lee, J. H., Chandrasekar, S., Chung, S., Hwang 
Fu, Y.H., Liu, D., Weiss, S., Shan, S.-o. (2018). “Sequential activation of human signal recognition 
particle by the ribosome and signal sequence drives efficient protein targeting.” In: Proceedings of 
the National Academy of Sciences U.S.A. 115(24): E5487-E5496. doi: 10.1073/pnas.1802252115. 
 

Signal recognition particle (SRP) is a universally conserved targeting machine that 

mediates the targeted delivery of ~30% of the proteome. The molecular mechanism by which 

eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we 

describe the first quantitative analysis of completely reconstituted human SRP and SRP 

receptor. Enzymatic and fluorescence analyses showed that the ribosome together with a 

functional signal sequence on the nascent polypeptide are required to activate SRP for rapid 

recruitment of the SRP receptor, thus delivering translating ribosomes to the ER. Single 

molecule fluorescence spectroscopy combined with cross-complementation analyses reveal 

a sequential mechanism of activation, wherein the ribosome unlocks the human SRP from 

an auto-inhibited state and primes SRP to sample a variety of conformations. The signal 

sequence further pre-organizes the mammalian SRP into the optimal conformation for 

efficient recruitment of the SRP receptor. Finally, the use of a signal sequence to activate 

SRP for receptor recruitment is a universally conserved feature to enable efficient and 

selective protein targeting, while the eukaryote-specific components confer upon the 

mammalian SRP the ability to sense and respond to ribosomes. 
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1.1       INTRODUCTION 

Proper localization of nascent proteins is essential for maintaining 

compartmentalization and protein homeostasis in all cells (Hartl, Bracher, & Hayer-Hartl, 

2011). The universally conserved signal recognition particle (SRP) pathway is responsible 

for the targeted delivery of approximately 30% of the newly synthesized proteome to the 

eukaryotic endoplasmic reticulum (ER), or the bacterial plasma membrane. SRP recognizes 

an N-terminal transmembrane domain (TMD) or hydrophobic signal sequence as a nascent 

protein emerges from the translating ribosome. Through interaction with the SRP receptor 

(SR), SRP delivers translating ribosomes to the Sec61p (or SecYEG) translocase on the target 

membrane. Bacteria contain the simplest SRP, comprised of the universally conserved 

SRP54 protein bound to the 4.5S SRP RNA. SRP54 is a multi-domain protein that contains 

an M-domain that binds the SRP RNA and recognizes signal sequences on the nascent 

polypeptides, and a special GTPase domain, termed the NG-domain, that contacts the 

ribosome and binds to a homologous NG-domain in SR (termed FtsY in bacteria) (Akopian, 

Shen, Zhang, & Shan, 2013; Zhang & Shan, 2014). Extensive biochemical and biophysical 

studies demonstrated how an SRP-dependent signal sequence or transmembrane domain 

(TMD) in a ribosome•nascent chain complex (RNC) regulates the GTP-dependent 

interaction of SRP with SR and their reciprocal GTPase activation, thus enabling efficient 

and specific co-translational protein targeting in bacteria (Kuang Shen et al., 2013; Zhang, 

Rashid, Wang, & Shan, 2010; Zhang, Schaffitzel, Ban, & Shan, 2009). 
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SRP undergoes an extensive expansion in size and complexity during evolution. 

The eukaryotic SRP contains a larger 7SL SRP RNA and six protein subunits (SRP9, SRP14, 

SRP19, SRP54, SRP68, and SRP72). Eukaryotic SR is a heterodimer of SRa and SRb 

subunits. SRa contains an NG domain homologous to that in bacterial FtsY, and an 

additional X-domain that binds the cytosolic domain of SRb. SRb contains an additional N-

terminal TMD that anchors the eukaryotic SR at the ER membrane (Akopian et al., 2013). 

The complexity of the mammalian SRP has limited its in-depth mechanistic analyses, and 

the mechanism by which the eukaryotic SRP pathway achieves efficient and selective protein 

targeting remains unclear. Microarray and ribosome-profiling analyses of SRP-associated 

RNCs in yeast (Alamo et al., 2011; Chartron, Hunt, & Frydman, 2016) suggested that the 

eukaryotic SRP can associate with translating ribosomes without or before the emergence of 

a signal sequence, raising questions as to the timing and specificity of cargo recognition by 

SRP. On the other hand, proximity-ribosome profiling experiments in yeast and mammalian 

cells showed that most ER-associated ribosomes targeted by SRP contain TMD targeting 

signals (Costa, Subramanian, Nunnari, & Weissman, 2018; Jan, Williams, & Weissman, 

2014), suggesting that eukaryotic SRP maintains high targeting selectivity. A potential 

resolution of these observations is that molecular events after ribosome binding govern the 

selectivity of this pathway. As SRP has a limited time window to complete the targeting 

reaction before the nascent polypeptide reaches a critical length (Flanagan et al., 2003; Siegel 

& Walter, 2018), cargo recognition by SRP must be coupled to efficient delivery to the ER 

membrane, a process mediated by the direct interaction between the NG-domains of SRP54 

and SRa. However, limited information is available on this critical step in the eukaryotic 
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SRP pathway. Previous work showed that an RNC stimulates the GTPase activity of 

mammalian SRP and SR, presumably when they form a complex (Bacher, Lütcke, 

Jungnickel, Rapoport, & Dobberstein, 1996). Nevertheless, an empty ribosome was also 

found to stimulate the SRP-SR interaction and their GTPase activity (Mandon, Jiang, & 

Gilmore, 2003), and direct interactions between the mammalian SR and ribosome have been 

detected (Jadhav et al., 2015). These observations raise questions as to whether the 

recruitment of SR is specific to SRPs bound to RNCs bearing SRP-dependent substrates. The 

roles and contributions of the ribosome and signal sequence in regulating the membrane 

targeting step in the eukaryotic SRP pathway are unresolved, nor the mechanism by which 

these regulations are exerted. 

To address these questions, we reconstituted functional human SRP and SR from 

recombinant components, which enabled their mechanistic interrogation at high resolution. 

We found that both the ribosome and a functional signal sequence are necessary for the most 

efficient assembly and reciprocal GTPase activation between mammalian SRP and SR. 

Single-molecule FRET (smFRET) measurements showed that the signal sequence plays a 

dominant role in inducing a ‘proximal’ conformation of SRP that is optimal for the 

recruitment of SR, whereas the ribosome unlocks SRP from an auto-inhibited mode and 

allows SRP to sample a variety of conformations. These results, together with cross-

complementation analyses, showed that the use of signal sequence to activate SRP for 

receptor recruitment is a universally conserved feature of SRP pathways, but the mammalian 

specific components enable the SRP to also sense and be primed by the ribosome. 
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1.2       RESULTS 

Ribosome and signal sequence together activate the hSRP-hSR GTPase cycle. 

Previous biochemical work on the mammalian SRP pathway (Bacher et al., 1996; 

Powers & Walter, 1995) has largely relied on native SRP and SR. The low quantity and 

inability to perturb the system limited in-depth mechanistic investigations. To overcome this 

barrier, we assembled human SRP (hSRP) from recombinantly purified components using 

modifications of published procedures (Fig. S1.1A) (Gowda et al., 1998; Huck, 2004; 

Menichelli, Isel, Oubridge, & Nagai, 2007; Walker, Black, & Zwieb, 1995). Holo-SRP was 

selectively purified using DEAE-Sephacel, which effectively removes free 7SL RNA and 

incompletely assembled SRPs (Huck, 2004) (Fig. S1.1B-D). We also expressed and purified 

a soluble human SR (hSR) complex comprised of full-length hSRa and hSRbDTM, in which 

the dispensable N-terminal TMD in SRb was removed (Fig. S1.1E, F) (Ogg, Barz, & Walter, 

1998). The reconstituted hSRP and hSRabDTM are highly active in mediating the co-

translational targeting and insertion of a model SRP substrate, preprolactin (pPL), into 

trypsin-digested rough ER microsomes (TKRM) that lacks endogenous SRP and SR (Shan, 

Chandrasekar, & Walter, 2007) (Fig. S1.1G, H), with efficiency comparable to that of native 

SRP (Nilsson et al., 2015).  

To understand how the GTPases in the mammalian SRP and SR regulate protein 

targeting, we defined a rigorous kinetic and energetic framework for their GTPase cycle that 

includes the basal GTPase cycles of free hSRP and hSR (Fig. 1.1A, upper triangles), their 

assembly with one another (Fig. 1.1A, step 4), and GTP hydrolysis in the hSRP•hSR complex 

(Fig. 1.1A, step 5). The basal GTPase cycle of hSRP (or hSR) was determined by measuring  
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Figure 1.1 Summary of the individual steps in the GTPase cycles of human SRP and SR. 
(A) Scheme of the GTPase cycles of hSRP (blue) and hSR (green). Superscripts depict the 
nucleotide bound to each protein. The triangular cycles on the top left and right depict the 
basal GTPase cycles of hSRP54 and hSR, respectively. Binding of GTP and GDP to hSRP 
(or SR) are characterized by the equilibrium dissociation constants K1and K3(or K1’ and K3’), 
respectively. Rate constants for GTP hydrolysis from free hSRP and hSR are denoted by 
k2and k2’, respectively. Complex formation between hSRP and hSR is characterized by the 
association rate constant k4 and dissociation rate constant k-4. Bound GTPs are hydrolyzed 
from the GTP•hSRP•hSR•GTP complex, represented collectively by the rate constant k5, 
followed by dissociation of the GDP•hSRP•hSR•GDP complex. (B) Summary of the kinetic 
parameters described in A. Determination of the individual rate and equilibrium constants is 
described in the Materials and Methods section.  
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GTP hydrolysis rates under single turnover conditions with the enzyme in excess of GTP. 

The slow observed kcat (0.00060 s-1 and 0.0033 s-1 for hSRP and hSR, respectively) and kcat 

/Km (3.2 x 102 M-1s-1 and 3.7 x 102 M-1s-1 for hSRP and hSR, respectively) values in the basal 

GTPase reactions strongly suggest that equilibrium binding of GTP occurs before GTP 

hydrolysis.  Thus, the value of Km equals K1 (or K1’), the equilibrium dissociation constant 

of GTP for hSRP (or hSR). The binding affinity of GDP for hSRP (or hSR) was determined 

using GDP as a competitive inhibitor of the basal GTPase reactions.  The interaction and 

reciprocal activation between hSRP and hSR was initially assessed by measuring the rates of 

the reciprocally stimulated GTPase reaction using a small, fixed amount of hSRP and varying 

concentrations of excess hSR. As validated by independent fluorescence-based 

measurements of the hSRP-hSR interaction (next section), the value of kcat/Km in this 

reciprocally stimulated GTPase reaction equals k4, the rate constant for hSRP-hSR assembly, 

and the value of kcat reports on the rate constant of GTP hydrolysis from the most stable 

hSRP•hSR complex that accumulates during GTP turnover.   

Analogous to their bacterial homologues, hSRP and hSRabDTM by themselves 

displayed weak nucleotide affinities and slow basal GTPase rates (Fig. S1.2A-C; Fig. 1.1B, 

K1, k2, K3 and K1’, k2’, K3’). Bacterial SRP and SR activate the GTPase activities of one 

another when they form a complex (Peluso, Shan, Nock, Herschlag, & Walter, 2001; Powers 

& Walter, 1995). In contrast, this reciprocal GTPase activation was barely detectable when 

hSRP and hSRabDTM were incubated together (Fig. 1.2A, black circles), even in the 

presence of the detergent NIKKOL (Octaethylene glycol monododecyl ether, C12E8) that 

stimulated the GTPase cycle of bacterial SRP and SR (Fig. S1.2D) (Bradshaw, Neher, Booth, 
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& Walter, 2009). We therefore searched for potential regulators that stimulate the GTPase 

cycle of mammalian SRP and SR. Given the observation that fusion of a signal peptide to 

the C-terminus of the SRP54 M-domain (Hainzl, Huang, Meriläinen, Brännström, & Sauer-

Eriksson, 2011) led to structural reorganization of archaeal SRP54 and its stimulated GTPase 

reaction with SR (Hainzl & Sauer-Eriksson, 2015), we generated mutant hSRP-4A10L in 

which the C-terminal M-domain of hSRP54 is fused to a model signal sequence, 4A10L 

(LALALLLLLLALAL; also see Fig. S1.3A). In addition, we tested the effect of purified 80S 

ribosome, which was reported to enhance the stimulated GTPase reaction between canine 

SRP and SR (Bacher et al., 1996; Mandon et al., 2003).  

 

Figure 1.2. The ribosome and signal sequence activates the SRP-SR GTPase cycle. (A, B) 
Representative hSR concentration dependences of the reciprocally stimulated GTPase 
reaction between SRP and hSRαβΔTM (A) or hSRαΔX (B). Reactions contained 0.2 μM 
hSRP or hSRP-4A10L, 100 μM GTP, and indicated concentrations of hSR. Purified 80S was 
present at 0.25 μM where indicated. The lines are fits of the data to Eq. 2 in Materials and 
Methods. (C, D) Summary of the kcat (C) and kcat/KM (D) values derived from analysis of the 
data in parts A, B and their replicates. Data are represented as mean ± S.D., with n ≥2.  
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Indeed, the presence of either the signal sequence or the 80S ribosome enhanced the 

reciprocally activated GTPase reaction between hSRP and hSR (Fig. 1.2A). In contrast, the 

ribosome and signal sequence provided <50% stimulation for free hSRP (Fig. S1.2E, F), 

indicating that the observed GTPase stimulations are specific to the hSRP•hSR complex. 

Quantitative analysis of the GTPase data also revealed modest differences in the effects of 

the signal sequence and the ribosome. The slope at sub-saturating hSR concentrations 

(kcat/Km), which reports on the assembly between hSRP and hSR (corroborated by 

fluorescence measurements of the hSRP-hSR interaction later), is more strongly stimulated 

by the ribosome (Fig. 1.2D and Table S1.1). The rate constant at saturating protein 

concentration (kcat), which reports on the rate constant of GTP hydrolysis from a stably 

formed hSRP•hSR complex, is more strongly stimulated by the signal sequence (Fig. 1.2C 

and Table S1.1). When both the ribosome and signal sequence are present, which provides a 

mimic of the RNC (corroborated by experiments with RNC4A10L later), the strongest 

stimulation was observed for both rate constants (Fig. 1.2, red, and Table S1.1), indicating 

synergistic actions of both components in activating the GTPase cycle of the mammalian 

SRP and SR.  

 

A functional signal sequence confers kinetic privilege to hSRP during hSR recruitment. 

To directly monitor complex formation between hSRP and hSR, we developed a 

Föster Resonance Energy Transfer (FRET) assay. A donor dye (Cy3B) was labeled at an 

engineered cysteine (C47) using thiol-specific maleimide chemistry in cyslite hSRP54, in 

which all the solvent-exposed native cysteines were removed (C36T, C136S, and C229A) 

(Fig. 1.3A). The two remaining native cysteines in hSRP54 were buried and not labeled 
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under our experimental conditions. An acceptor dye (ATTO 647N) was conjugated to the 

C-terminus of hSRα via sortase-mediated ligation (Fig. 1.3A) (Guimaraes et al., 2013).  

 

Figure 1.3. Ribosome and signal sequence stabilize and accelerate SRP-SR complex 
formation. (A) The positions of FRET probes are shown on the crystal structure of the NG 
domain complex between hSRP (blue) and hSRα (green) (PDB: 5L3Q) (Wild et al., 2016). 
(B) Fluorescence emission spectra of 20 nM Cy3B-labeled hSRP-4A10L before (green) and 
after addition of 400 nM ATTO 647N-labeled hSRαΔX (blue), and of 400 nM ATTO 647N-
labeled hSRαΔX alone (red). Addition of 2 μM unlabeled hSRαΔX (black) to a preformed 
hSRP-SR complex restores the donor fluorescence and reduces acceptor fluorescence, 
confirming that a large fraction of the observed fluorescence change arises from FRET. The 
reactions also contained 40 nM 80S to facilitate complex assembly. (C) Representative 
equilibrium titrations of SRP-SR complex formation using the FRET assay. Titrations used 
12.5 nM hSRP or hSRP-4A10L, indicated concentrations of hSR, and 2 mM GTP. Where 
indicated, 300 nM and 40 nM 80S were used for titrations with hSRP and hSRP-4A10L, 
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respectively. The lines are fits of the data to Eq. 7 in Materials and Methods, and the 
obtained Kd values are summarized in Table S1.2. All measurements were repeated at least 
twice. (D, E) FRET-based measurements of SRP-SR association kinetics. Reactions 
contained the same concentrations of all the factors as in C. The data were fit to Eq. 5 in 
Materials and Methods, and the obtained kon values are summarized in part E and Table S1.2.  
Error bars denote S.D., with n ≥ 2. 

 

Incubation of labeled hSRP and hSR resulted in a significant reduction in donor fluorescence 

and increase in acceptor fluorescence, and these fluorescence changes can be competed away 

by unlabeled SR (Fig. 1.3B), indicating FRET between the dye pair. The mutations and 

fluorescence labeling did not substantially affect the GTPase activity of hSRP and hSR, or 

their protein targeting activity (Fig. S1.4). In the course of these experiments, we found that 

a simpler hSR construct hSRαDX, in which the X-domain of SRa and SRb are removed (Fig. 

S1.1E, F), displayed SRP-SR assembly, GTPase activation, and preprotein targeting 

activities that are comparable to or slightly higher than hSRabDTM (Figs. S1.1G, H, 1.2B-

D, and Fig. S1.2). This is consistent with previous observations using canine SRP and SR 

(Hortsch, Avossa, & Meyer, 1985; Lauffer et al., 1985; Mandon et al., 2003; Meyer, 1982) 

and indicated that hSRαDX provides a fully functional mimic of hSR for studying the initial 

assembly between hSRP and hSR. Hence, all subsequent fluorescence measurements of the 

hSRP-hSR interaction were carried out with hSRαDX. Finally, to block GTP hydrolysis from 

the hSRP•hSR complex, which would provide an alternative pathway for complex 

dissociation (via the less stable GDP•SRP•SR•GDP complex (Connolly, Rapiejko, & Gilmore, 

1991)), we introduced the R458A mutation in hSR, which disrupts catalytic interactions at 

the composite active site between hSRP and hSR (Fig. S1.5A). As expected, this mutant was 

catalytically dead in the reciprocally activated GTPase reaction between hSRP and hSR (Fig. 
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S1.5B) but effectively competed with wildtype hSR for interaction with hSRP (Fig. 

S1.5C), indicating that mutant hSRαDX (R458A) still allows rapid and stable hSRP•hSR 

complex assembly but specifically blocks GTPase activation in the complex.  

Using this FRET assay, we tested how the kinetics and equilibrium of hSRP•hSR 

complex formation are regulated. Equilibrium titrations showed that the interaction between 

hSRP and hSR was weak by themselves, with an equilibrium dissociation constant (Kd) in 

the micromolar range (Fig. 1.3C and Table S1.2). The hSRP•hSR complex was stabilized 

~8-fold by the signal sequence and ~40-fold by the ribosome (Fig. 1.3C and Table S1.2). 

With both signal sequence and ribosome present, the equilibrium stability of the complex 

was 56 nM, similar to that with the ribosome (Fig. 1.3C and Table S1.2). Independent 

determination of Kd values from the ratio of dissociation and association rate constants 

(koff/kon) yielded similar conclusions (Fig. S1.6A and Table S1.2). On the other hand, kinetic 

analysis of hSRP-hSR complex assembly showed that this reaction was intrinsically slow, 

with an association rate constant (kon) of <102 M-1s-1. Assembly was accelerated ~102-fold 

by the signal sequence (Fig. 1.3D, E). The ribosome also provided a ~103-fold stimulation, 

and the additional presence of the signal sequence further accelerated hSRP-hSR assembly 

20-fold, bringing the kon value to >106 M-1s-1 (Fig. 1.3D, E). These results are consistent with 

the effect of the ribosome and signal sequence on the kcat/Km values measured in the GTPase 

assay (Fig. 1.2D and Table S1.1). Thus, although the ribosome appears to dictate the 

equilibrium stability of the hSRP•hSR complex, the signal sequence provides a significant 

additional stimulation for the kinetics of hSRP-hSR complex formation.  
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Figure 1.4. A functional signal sequence on the RNC stimulates the SRP-SR GTPase cycle 
and accelerates SRP-SR complex formation. (A) Introduction of the 2R mutation in the pPL 
signal sequence abolished co-translational targeting by hSRP and hSR. Targeting reactions 
were carried out as described in Materials and Methods using 50 nM hSRP and indicated 
hSR concentrations. (B) Reciprocally stimulated GTP hydrolysis reactions between hSRP 
and hSR were measured in the presence of 0.3 µM RNC4A10L (magenta) or RNC2R (olive). 
All other reaction conditions are the same as in Fig. 1.2A. The reactions with hSRP-4A10L 
and 80S (red) were performed in parallel for direct comparison. The reaction with 80S 
(green) was taken from Fig. 1.2B for comparison. The lines are fits of the data to Eq. 2 in 
Materials and Methods, and the obtained rate constants are summarized in Table S1.1. (C) 
FRET-based measurements of hSRP-SR association kinetics in the presence of RNC4A10L or 
RNC2R, carried out under the same conditions as in Fig. 1.3C. (D) Summary of the hSRP-SR 
association rate constants obtained from analysis of the data in part C and their replicates. 
The data with ribosome and SRP-4A10L were from Fig. 1.3 and shown for comparison. All 
error bars denote S.D., with n ≥ 2. 

 

To verify that the combination of ribosome and signal sequence fusion to hSRP54 

provides a reasonable mimic for the physiological SRP substrate, we generated stalled RNCs 

by in vitro translation of a truncated mRNA encoding the first 90 amino acids of pPL without 

a stop codon (Fig. S1.3A) (Voorhees & Hegde, 2015). The signal sequence in pPL was 
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replaced by 4A10L to allow direct comparison with hSRP-4A10L. As a negative control, 

we inserted two arginines into the pPL signal sequence to generate RNC2R (Fig. S1.3A) 

(Nilsson et al., 2015). In vitro targeting assay confirmed that the 2R mutation disrupted SRP-

dependent protein targeting (Fig. 1.4A and Fig. S1.3B). RNC4A10L and RNC2R were affinity 

purified via a 3xFLAG tag N-terminal to the pPL coding sequence followed by a sucrose 

gradient to isolate a homogenous population of monosomes bearing the nascent polypeptide. 

Binding of hSRP to RNC4A10L and to the 80S ribosome was confirmed by a binding assay 

based on microscale thermophoresis (Fig. S1.3C), and saturating concentrations of the RNC 

and ribosome with respective to their hSRP binding constants were used for the 

measurements below.  

Purified RNCs were tested for their ability to stimulate hSRP-hSR complex assembly 

and subsequent GTPase activation. In the GTPase assay, the reactions with RNC4A10L 

behaved more similarly to those of signal sequence-fused hSRP in the presence of the 

ribosome, whereas the reactions with RNC2R were more similar to that of hSRP with empty 

ribosomes (Fig. 1.4B). In the FRET assay, RNC4A10L induced rapid hSRP-hSR assembly, 

with a rate constant similar to that observed with the combination of signal sequence and 

ribosome, and 10- and 20-fold faster than the assembly rates observed with empty ribosome 

and RNC2R, respectively (Fig. 1.4C, D and Table S1.2). Although RNC2R presumably binds 

hSRP more weakly, the RNC2R-induced stimulation of hSRP-hSR assembly and GTPase 

activation indicated that binding between hSRP and RNC2R occurred. Furthermore, the 

observed GTPase rate constant was not substantially enhanced by increasing the 

concentration of RNC2R beyond 300 nM (Fig. 1.4B and Fig. S1.3E), indicating that an 

RNC2R•hSRP complex is completely formed under our experimental conditions. Thus, the 
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20-fold faster hSRP-hSR assembly rates with RNC4A10L than with RNC2R cannot be 

attributed to incomplete binding of hSRP by RNC2R, and instead reflects the kinetic 

advantage in SR recruitment provided by a functional signal sequence. 

 

The ribosome relieves auto-inhibition in mammalian SRP. 

Compared to the bacterial SRP system, the ribosome plays a much larger role during 

the receptor recruitment of mammalian SRP ((Bacher et al., 1996; Mandon et al., 2003) and 

this work).  To understand the mechanism underlying these differences, we carried out cross-

complementation analyses by making a hybrid SRP comprised of human SRP54 bound to 

the 4.5S SRP RNA from E. coli.  GTPase assays revealed surprising similarities and 

differences between the hybrid and human SRP. First, the hybrid SRP displayed higher 

intrinsic activity than human SRP in the reciprocally stimulated GTPase reaction with hSR 

in the absence of external activators (Fig. 1.5B; cf. black lines in Fig. 1.5A vs. Fig. 1.2A).  

This suggests that the additional components in human SRP inhibit hSRP54 from attaining 

a conformation conducive to hSR recruitment and GTPase activation. This result also ruled 

out general defects in the folding or conformation of hSRP54 in the absence of the additional 

subunits in human SRP. Second, signal sequence fusion to hSRP54 also stimulated the 

reciprocally stimulated GTPase reaction between the hybrid SRP and hSR, analogous to the 

hSRP (Fig. 1.5, blue). This indicates that the ability to sense and respond to a signal sequence 

is an intrinsic property of hSRP54 and can occur independently of the other SRP protein 

subunits.  Finally, in contrast to the human SRP, the ribosome lost most of its stimulatory 

effects on the interaction and reciprocal GTPase activation between the hybrid SRP and hSR 

(Fig. 1.5, green), indicating that the mammalian-specific components in human SRP are 
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required for the ribosome to exert its stimulatory effects. Together with previous work in 

bacterial and archaeal SRP (Bradshaw et al., 2009; HAINZL, 2005), the results of these 

cross-complementation analyses suggest that the signal sequence-induced stimulation of SR 

recruitment is a universally conserved property of SRP, whereas the ribosome-induced 

simulation of this event is a mammalian-specific phenomenon. 

 

Figure 1.5. Comparison of the activities of human SRP and hybrid SRP (hSRP54 bound to 
4.5S RNA). (A) Reciprocally stimulated GTPase reaction between hybrid SRP and hSR in 
the presence of indicated factors. Reactions were measured under the same conditions as 
those in Fig. 1.2A. The lines are fits of the data to Eq. 2 in Materials and Methods. (B, C) 
Summary of the kcat (B) and kcat/KM (C) values from analysis of the data in A and their 
replicates. All data were represented as mean ± SD, with n = 3. The rate constants for human 
SRP were from Fig. 1.2 and are shown for comparison. 

 

Signal sequence pre-organizes hSRP into the optimal conformation for hSR recruitment 

To understand the mechanism(s) by which the signal sequence and ribosome activate 

the interaction between human SRP and SR, we characterized the global conformational 

changes of hSRP based on FRET measurements between a donor dye (ATTO 550) labeled 

at SRP19 (C64) and an acceptor dye (ATTO 647N) labeled at SRP54 (C12). Based on the 

cryo-EM structure of the native hSRP•RNC complex (PDB: 3JAJ) (Voorhees & Hegde, 

2015), the distance between the dye pair is ~44 Å (Fig. 1.6A). Hence a high FRET efficiency 

is expected for this dye pair (Förster radius 65 Å) if the SRP54 NG-domain is positioned near  
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Figure 1.6. Signal sequence and the ribosome exert different effects on the conformation of 
hSRP. (A) Approximate positions of fluorescent donor and acceptor dyes on hSRP19 
(magenta) and hSRP54 (blue), shown on a cryo-EM structure of the mammalian RNC•SRP 
complex. (PDB: 3JAJ) (Voorhees & Hegde, 2015) (B-G) smFRET histograms of hSRP in 
the presence of different ligands. Pdf denotes the probability density function, and E* denotes 
uncorrected FRET efficiency. ‘n’ denotes the number of bursts used to construct each 
histogram, obtained from at least five independent measurements. The data were fit with the 
sum (solid line) of three Gaussian functions (dotted lines), and the dotted red lines denote the 
peak E* value for each population. (H) Summary of the fraction of SRPs in the Low, 
Medium, and High-FRET states under the respective conditions. 
 



 

 

18 
SRP19, which we term the ‘proximal’ conformation.  FRET was measured at single 

molecule resolution (smFRET) based on Fluorescence-aided Molecular Sorting using 

Alternating Laser Excitation Spectrocopy (ALEX) (Kapanidis et al., 2004), which optically 

purifies doubly-labeled single SRPs diffusing through a femtoliter-scale observation volume 

and extracts uncorrected FRET efficiencies (E*) for individual particles (Fig. S1.7A-C) 

(Kapanidis et al., 2005). Diffusion of the labeled molecules through the femtoliter-scale 

observation volume is estimated to take ~1 milliseonds. Thus, different conformations that 

exchange on the millisecond or longer timescale can be resolved as discrete populations in a 

FRET histogram (Torella, Holden, Santoso, Hohlbein, & Kapanidis, 2011).  

smFRET measurements showed that hSRP by itself exhibits a FRET distribution that 

is dominated by a medium-FRET population with a peak E* value of ~0.5 (Fig. 1.6B). With 

signal sequence fused hSRP, the FRET distribution shifted and peaked at a higher E* value 

(~ 0.65; Fig. 1.6C). The presence of both the signal sequence and ribosome further shifted 

the distribution to higher FRET, with E* peaking at ~ 0.7 (Fig. 1.6D). This predominantly 

high FRET distribution was also observed with hSRP bound to RNC4A10L (Fig. 1.6E), 

providing additional evidence that the combination of ribosome and signal sequence fusion 

provides a reasonable mimic of the effects of a signal sequence-bearing RNC. In contrast, 

empty ribosomes and RNC2R induced significant conformational heterogeneity in hSRP (Fig. 

1.6F, G). The FRET distributions of hSRP became broad, and could be accounted for by at 

least three populations with Low (E* ~ 0.2), Medium (E* ~ 0.5), and High (E* ~ 0.7) FRET 

values. Quantitative analyses of the FRET distributions further showed that, while free hSRP 

is dominated by the Medium FRET population (~80%), hSRP bound to the ribosome and 

RNC2R are approximately equally distributed amongst all three conformations, whereas the 
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High FRET population becomes dominant whenever a functional signal sequence is 

present (Fig. 1.6H). These results provide strong evidence that a correct cargo displaying an 

SRP-dependent signal sequence induces SRP into the proximal conformation, and that the 

signal sequence, rather than the ribosome, plays a dominant role in inducing this 

conformation. 

To exclude possible artifacts due to local environmental perturbations on the 

photophysics of fluorophores, we repeated these measurements after swapping the position 

of donor and acceptor dyes in hSRP. smFRET measurements using this swapped dye pair 

yielded similar signal sequence- and ribosome-induced changes in the FRET distributions of 

hSRP (Fig. S1.7D-H). In addition, the presence of various interaction partners did not affect 

the dye photophysics in a way that would alter the FRET distributions (Fig. S1.7I-N). These 

data strongly suggest that our observed FRET changes can be attributed to the global 

conformational transitions of hSRP.  

In summary, the smFRET data show that human SRP by itself adopts a conformation 

(or conformations) in which the SRP54-NG domain is positioned away from the proximal 

site where SRP19 and the SRP54 M-domain are located. In the presence of empty ribosomes 

or signal-less RNCs, hSRP explores a variety of alternative conformations in which the 

SRP54 NG-domain can be proximal to or further away from SRP19. In contrast, a functional 

signal sequence plays a dominant role in inducing the mammalian SRP into the proximal 

conformation. 
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1.3       DISCUSSION 

Efficient and selective targeting of nascent proteins by SRP is essential for the proper 

functioning of the endomembrane system in eukaryotic cells. Although the mechanism of 

the simplest bacterial SRP has been deciphered at high resolution (Kuang Shen et al., 2013; 

Zhang et al., 2010, 2009), our understanding of the more complex eukaryotic SRP has lagged 

behind. Previous fluorescence measurements suggested that mammalian SRP exhibits 

significant binding to empty ribosomes, with a Kd value (~80 nM) significantly below the in 

vivo SRP concentration (~500 nM in mammalian cells) (Flanagan et al., 2003; Kulak, 

Pichler, Paron, Nagaraj, & Mann, 2014). Substantial signal-independent association of 

eukaryotic SRP with translating ribosomes was also observed in global analyses in yeast cells 

(Alamo et al., 2011; Chartron et al., 2016). These observations raise questions as to whether 

SRP-RNC binding is sufficient to ensure selective co-translational protein targeting in 

eukaryotic cells. In the bacterial SRP pathway, substrate selection relies heavily on kinetic 

discrimination during the recruitment of SR, a step that is over 102-fold faster with RNCs 

bearing SRP-dependent than SRP-independent substrates. Whether this mechanism is 

conserved in mammalian SRP has been unclear, especially given previous observations that 

the 80S ribosome by itself can bind mammalian SR and enhance its GTPase activity together 

with SRP (Jadhav et al., 2015; Mandon et al., 2003). In this work, biochemical and 

biophysical analyses provide the first evidence that a functional signal sequence provides a 

kinetic advantage during SR recruitment in the mammalian SRP pathway, and suggest a 

molecular model for the mechanism of SRP activation by the ribosome and signal sequence.  

Co-translational protein targeting by SRP kinetically competes with translation 

elongation, as RNCs lose the competence to be targeted by SRP when the nascent  
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Figure 1.7. Comparison of the E. coli and human SRP, and model for sequential 
conformational activation of mammalian SRP during targeting. (A) Comparison of the SRP-
SR assembly rate constants between E.coli and human SRP in the absence (black) and 
presence of the ribosome (green) or RNC (red). The kon values for E.coli SRP were from 
reference (K. Shen, Zhang, & Shan, 2011). The shaded area with increasing red denotes SRP-
SR interaction rates that are increasingly targeting-competent. The threshold for targeting 
competent SRP-SR assembly rates was determined using a time window of 5 sec for bacterial 
SRP and 13 sec for mammalian SRP to complete the targeting reaction and an SR 
concentration of 500 nM. (B) Sequential conformational activation of mammalian SRP by 
the ribosome and signal sequence for efficient SR recruitment. Free hSRP is in an (or an 
ensemble of) ‘auto-inhibited’ conformation(s). Upon binding to the ribosome and in the 
absence of a signal sequence, hSRP is unlocked and samples a variety of alternative 
conformations (‘sampling’). The emergence of the signal sequence drives most of the hSRP 
into the ‘proximal’ conformation that allows rapid assembly with hSR for efficient targeting 
to the ER. 
 

polypeptide exceeds a critical length (~120 amino acids from the start of signal sequence or 

TMD; (Flanagan et al., 2003; Siegel & Walter, 2018)). Proximity-specific ribosome profiling 

in yeast further suggest that ER localization of ribosomes were attained immediately after 

the emergence of signal sequence from the ribosome (~60 amino acids from the start of signal 

sequence (Jan et al., 2014)). Considering the elongation rate of 6–10 amino acids/second in 
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mammalian cells (Ingolia, Lareau, & Weissman, 2011; Karpinets, Greenwood, Sams, & 

Ammons, 2006), a limited time window of ≤12 sec is imposed on the eukaryotic SRP to 

complete a targeting cycle (Fig. 1.7A). Although ribosomes and signal-less RNCs also 

substantially accelerate SRP-SR association, the measurements here suggest that the 

recruitment of SR at physiological concentrations (~0.5 µM (Kulak et al., 2014)) would 

require at least ~13 sec for empty ribosomes and ~32 sec for RNC2R. The crowded cytosolic 

environment and competition from other ribosome-associated factors could further delay the 

bi-molecular association between SRP and SR. The additional presence of a signal sequence 

brings the timescale of SR recruitment to ≤2 sec, a timescale sufficient to meet the demands 

for co-translational protein targeting (Fig. 1.7A). In addition, the weaker affinity of SRP for 

empty ribosomes than signal sequence-bearing RNCs (Flanagan et al., 2003) (Fig. S1.3C) 

suggests that SRP dissociates more quickly from the former. Together with the difference in 

SR recruitment rates, this would allow most of the RNCs bearing SRP-dependent substrates 

to be successfully delivered to the ER membrane, whereas a larger fraction of signal-less 

ribosomes could dissociate from SRP before SR is recruited. 

The ribosome is much more stimulatory during SR recruitment, whereas the 

additional kinetic advantage provided by the signal sequence on this event is much smaller, 

in the mammalian SRP system compared to its bacterial homologue (Fig. 1.7A, green vs. 

red). This suggests that additional strategies are used to maintain the fidelity of co-

translational protein translocation in eukaryotes, for example by using the Sec61p translocase 

to discriminate against mutant signal sequences (Hessa et al., 2005, 2007; Jungnickel & 

Rapoport, 1995). On the other hand, the observation that the ribosome alone brings the SR 

recruitment rate to the threshold of a targeting-competent timescale raises additional 
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possibilities of regulation, wherein other ribosome-interacting factors could drive a 

nascent protein into or out of the SRP pathway by tuning the relative rates of SR recruitment 

versus protein synthesis. This may include ribosome-associated chaperones that alter the 

conformational landscape of ribosome-bound SRP, such as the nascent polypeptide 

associated complex (NAC) (Alamo et al., 2011; Gamerdinger, Hanebuth, Frickey, & 

Deuerling, 2015; Lauring, Kreibich, & Weidmann, 1995), as well as cis regulatory elements 

or trans-interacting factors that tune translation elongation rates, such as codon usage and 

arrest sequences at strategic locations on the mRNA (Pechmann, Chartron, & Frydman, 

2014). Compared to its bacterial homologue, the mammalian SRP may be more poised for 

diverse mechanisms of regulation by external factors. The same concept and considerations 

may be extended to evaluate the possibility of pre-emptive targeting, a model suggested by 

previous observations that SRP can associate with translating ribosomes before a signal 

sequence or TMD emerges from the nascent polypeptide exit tunnel (Alamo et al., 2011; 

Berndt, Oellerer, Zhang, Johnson, & Rospert, 2009; Chartron et al., 2016; Mercier, 

Holtkamp, Rodnina, & Wintermeyer, 2017). An outstanding question regarding this model 

is whether productive SRP-SR interaction can initiate before the emergence of the targeting 

signal from the ribosome, and if so, whether the targeting is specific for SRP substrates. The 

eukaryote-specific large stimulatory effect of the ribosome during SR recruitment suggests 

that pre-emptive targeting might play a more significant role in the mammalian than the 

bacterial SRP pathway.  

Cross-complementation analyses and smFRET measurements of the global 

conformation of hSRP further suggest a molecular model by which the ribosome and signal 

sequence activate the hSRP-hSR interaction. The weak affinity and extraordinarily slow 
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association rate of the hSRP-hSR complex indicate that human SRP by itself exists in a 

conformation inactive for receptor recruitment. The higher activity of the hybrid SRP 

compared to human SRP further suggests that the eukaryote-specific components in 

mammalian SRP are responsible, at least in part, for this auto-inhibition. smFRET 

measurements further showed that free hSRP predominately adopts a conformation in which 

the dye pair between hSRP19 and hSRP54-NG exhibits medium FRET efficiency, indicating 

that the hSRP54-NG domain is positioned away from the proximal site of hSRP in this auto-

inhibited state (Fig. 1.7B). Importantly, a signal sequence-bearing RNC induces hSRP to 

predominantly adopt the ‘proximal’ conformation, in which the hSRP54-NG domain is close 

to hSRP19 (Fig. 1.7B). Although it is intuitive to envision that the dual interactions of the 

hSRP54 M-domain with the signal sequence and the hSRP54 NG-domain with the 

uL23/uL29 ribosomal proteins (Voorhees & Hegde, 2015) could induce this conformation, 

the finding here that signal sequence fusion to hSRP54 is sufficient to induce a near-proximal 

state of hSRP indicate that signal sequence occupancy in the hSRP M-domain plays a major 

role in bringing hSRP54-NG near the proximal site. This is in good agreement with 

crystallographic analyses in archaeal SRP (Hainzl & Sauer-Eriksson, 2015) and suggests that 

binding of a signal sequence in the human SRP54 M-domain induces re-structuring of the 

GM linker to reposition its NG domain.  

We found here a strong correlation between the acquirement of the proximal 

conformation of human SRP and faster SRP-SR assembly rates (all else held equal), 

suggesting that this conformation is optimal for SR recruitment. On the other hand, cryo-EM 

analyses of both the bacterial and mammalian RNC•SRP•SR complexes indicate that, in the 

presence of SR, the density of the SRP54 NG-domain is no longer visible near the ribosomal 
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tunnel exit (Halic, 2006; von Loeffelholz et al., 2015). In the bacterial SRP system, the 

NG-domain complex further moves to an alternative docking site near the 5’, 3’-distal end 

of the 4.5S RNA (Ataide et al., 2011; Kobayashi et al., 2018). These observations strongly 

suggest that complex formation with SR induces detachment of SRP54-NG from the vicinity 

of the ribosome exit site in both SRP systems. Nevertheless, the results here provide strong 

kinetic evidence that initial SRP-SR assembly occurs near the ribosome exit tunnel, 

predicting an early RNC•SRP•SR intermediate prior to rearrangement of the NG-domain 

complex. The structure, dynamics, and interactions of this initial targeting intermediate 

remain to be defined. 

The large stimulatory effect of the ribosome on SRP-SR assembly is a eukaryote-

specific phenomenon (Zhang et al., 2010). Previous work showed that the ribosome also bind 

the mammalian SR and suggested that it could provide a template that brings SRP and SR 

together for assembly (Jadhav et al., 2015; Mandon et al., 2003). Although this model is 

highly probable, the loss of ribosome-induced stimulation in the reaction of hybrid SRP with 

human SR indicates that additional mechanisms are necessary to account for all the 

stimulatory effects from the ribosome, and the results here suggested a new allosteric 

mechanism. smFRET measurements showed that, in contrast to the predominantly Medium-

FRET state observed with free hSRP, the ribosome induces multiple alternative 

conformations in which hSRP54-NG can be close to or even further away from the hSRP 

proximal site. In the simplest model, the stimulated recruitment of hSR could arise solely 

from the sub-population of ribosome-bound hSRP in the proximal conformation. It is 

plausible that the Low-FRET state observed with 80S-bound hSRP could also recruit hSR, 

but the correlation between assembly rates and smFRET data strongly suggest that SR 
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recruitment in this state is slower than in the proximal conformation. Together, the results 

here suggest that the ribosome unlocks hSRP from the auto-inhibited state and allows it to 

dynamically sample more active conformations, thus priming SRP for subsequent receptor 

recruitment (Fig. 1.7B, ‘sampling’). 

In summary, our work provides a new model for how a correct cargo activates the 

mammalian SRP for targeting to the ER membrane (Fig. 1.7B). In the absence of translating 

ribosomes, the eukaryote-specific components retain SRP in an auto-inhibited conformation 

where its interaction with SR is extremely slow. Binding of the ribosome relieves SRP from 

this auto-inhibited state and enables SRP to sample multiple alternative conformations, 

including the ‘proximal state’ conducive to assembly with SR. The direct interaction of the 

ribosome with SR provides an additional mechanism that can bring SRP and SR together to 

facilitate their assembly (Jadhav et al., 2015). SRPs bound to signal-less ribosomes remain 

largely in the sampling mode, in which SR recruitment, though accelerated, does not occur 

on a biologically relevant timescale. In contrast, the emergence of a signal sequence from the 

ribosome exit tunnel drives the majority of SRP into the proximal conformation in which SR 

recruitment can occur rapidly, thus delivering the translating ribosome to the ER membrane. 

Compared to the bacterial SRP, the use of signal sequence to activate SRP for receptor 

recruitment is a universally conserved feature of the co-translational protein targeting 

pathway; in contrast, the mammalian SRP evolved the unique ability to sense and be primed 

by the ribosomes, which may poise the pathway for additional layers of regulation. 
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1.4      MATERIALS AND METHODS 

Vectors. pET15b-h19 and pET23d-h54 for expression of hSRP19 and hSRP54, respectively, 

were gifts from C. Zwieb (Gowda et al., 1998; Walker et al., 1995). pET3b-h9 and pET9a-

h14 for expression of hSRP9 and hSRP14, respectively, and pS7CA for in vitro transcription 

of the 7SL SRP RNA were gifts from K. Strub (Huck, 2004; Mary et al., 2010). pRS426-

h68/72 vector and BCY123 yeast strain for expression of hSRP68/72 were gifts from K. 

Nagai (Menichelli et al., 2007). Commercially available cDNA clones for human SRα 

(Origene) and mouse SRβ (SINO Biological) were subcloned to construct pET28a-hSRα, 

pET15b-SRβΔTM, and bicistronic pET28a-hSRα-SRβΔTM using Gibson cloning for co-

expression of hSRabDTM. The X-domain of SRα was removed from pET28a-hSRα using 

fastcloning to construct pET28a-hSRαΔX. Cyslite hSRP54, cysless hSRP19, and single 

cysteine mutants of hSRP54 and hSRP19 for fluorescence labeling were generated by 

QuikChange mutagenesis (Strategene). pET23d-h54-4A10L for expression of signal 

sequence fused hSRP54 was constructed using fastcloning. Sortase-tagged hSRaDX was 

constructed by adding the sortase tag and (GS)6 linker at the C-terminus using fastcloning. 

 

Biochemical Preparations.  

hSRP19. Rosetta pLysS cells harboring pET-h19 were grown to OD600 = 0.6 at 25 

°C. Expression was induced with 1 mM IPTG for 16 hrs at 25 °C. Cells were resuspended in 

Lysis Buffer (50 mM KHEPES (pH 7.5), 300 mM NaCl, 10% glycerol, 4 mM βME, and 

protease inhibitor cocktail (ProBlock Gold (Gold Bio), 1X)) and lysed by two passes through 

French press at 18,000 psi. Clarified lysate was incubated for 1 hr with Ni-NTA resin (2ml/L 
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of cells) equilibrated with Lysis Buffer. The resin was washed with 20 CV of Wash buffer 

(50 mM KHEPES (pH 7.5), 1 M NaCl, 5% glycerol, and 4 mM βME) containing 10 mM 

Imidazole, and protein was eluted with Lysis buffer supplemented with 250 mM Imidazole. 

Eluted protein was dialyzed in SP Buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM 

EDTA, 5% glycerol, and 2mM DTT), and further purified over SP-sepharose ion-exchange 

column using a gradient of 150–500mM NaCl over 20CV. Purified hSRP19 was stored in 

20% glycerol at –80°C. 

hSRP9/14. hSRP9 and hSRP14 were expressed separately in BL21(DE3) pLysS cells 

grown in LB media with 0.4% glucose at 37 °C. Expression was induced at OD600 = 0.6 using 

0.4 mM IPTG for 3 hours. Cells were resuspended in Lysis buffer (50 mM Tris-HCl (pH 

7.5), 50 mM NaCl, 0.25 M NH4Cl, 10 mM MgCl2, 20 mM EDTA, 10% glycerol, 10 mM 

DTT, and 2 mM AEBSF) and lysed by sonication. Clarified lysate containing SRP9 and 

SRP14 were mixed at 1:1 ratio and stirred gently for 30 minutes. The mixture was loaded 

onto Heparin-sepharose resin (10 ml/L of cells) equilibrated with Heparin Buffer (50 mM 

KHEPES (pH 7.5), 50 mM NaCl, 0.25 M NH4Cl, 1 mM EDTA, 10% glycerol, 10 mM DTT, 

and 2 mM AEBSF). The resin was washed with 10 CV of Heparin Buffer with 250 mM 

KOAc. Proteins were eluted using a gradient of 250 mM – 1.5 M KOAc. Peak fractions were 

dialyzed in Buffer A (50 mM KHEPES (pH 7.5), 300 mM KOAc, 1 mM EDTA, 0.01% 

Nikkol, 10% glycerol, 10 mM DTT, and 1 mM AEBSF) and further purified over a MonoS 

cation-exchange column using a gradient of 300 mM – 650 mM KOAc over 20CV. Purified 

hSRP9/14 was stored in 20% glycerol at –80°C.      

hSRP54. hSRP54 or hSRP54-4A10L were expressed in Rosetta pLysS cells grown 

at 37 °C to OD600 = 0.6. Cells were chilled to 25 °C in a water bath for 15 minutes, and 
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expression was induced using 1 mM IPTG for 2 hours at 25 °C. Cells were resuspended 

in Lysis Buffer (50 mM KHEPES (pH 7.5), 100 mM NaCl, 4 mM βME, 1 mM AEBSF, and 

Protease Inhibitor cocktail) and lysed by sonication. Clarified lysate was incubated with Ni-

Sepharose resin (1.5 ml/L of cells) equilibrated in Lysis Buffer for 1 hr. The resin was washed 

with 20CV of Ni-buffer (50 mM KHEPES (pH 7.5), 500 mM NaCl, 40 mM Imidazole, 10% 

glycerol, 4 mM βME, and 1 mM AEBSF). Protein was eluted with Lysis buffer containing 

300 mM NaCl and 300 mM Imidazole. Eluted protein was dialyzed to MonoS buffer (50 

mM Tris-HCl (pH 7.5), 2 mM EDTA, 10% glycerol, and 2 mM DTT) with 150 mM NaCl, 

and purified over a MonoS column using a gradient of 150–600 mM NaCl over 20CV. 

Purified hSRP54 or hSRP54-4A10Lwas stored in 20% glycerol at –80°C.      

hSRP68/72. hSRP68 and C-terminally His6-tagged hSRP72 were co-expressed in 

BCY123 yeast cells grown in SD-Ura + 2% glucose media at 30 °C. 25 mL of this culture 

was inoculated into 1L of SD-Ura + 2% raffinose media and cells were grown to OD600 = 

0.9. Expression was induced by adding 2% galactose for 16 hours. Cells were washed twice 

with ice-cold water and flash frozen in droplets. Frozen cells were ground to powder in liquid 

nitrogen using Cryomill (Retsch), and mixed with Lysis buffer (50 mM K-Phosphate (pH 

7.4), 1 M NaCl, 0.5 M Urea, 4 mM βME, 10% glycerol, and Protease inhibitor cocktail), and 

centrifuged at 42,000rpm in Ti45 rotor for 40 minutes. Clarified lysate was incubated with 

Ni-Sepharose resin (1.5ml/L of cells) equilibrated in Equilibration buffer (50 mM K-

Phosphate (pH 7.4), 500 mM NaCl, 0.5 M Urea, 4 mM βME, and 10% glycerol) for 1 hour. 

The resin was washed with 20CV of Equilibration buffer containing 35 mM imidazole. 

Protein was eluted using Equilibration buffer containing 500 mM Imidazole, and eluted 



 

 

30 
hSRP68/72 was further purified over a MonoS column using a gradient of 0.5 – 1 M NaCl 

over 20CV. Purified hSRP68/72 was stored in 50% glycerol at –30°C.      

hSRαβΔTM and hSRαΔX. To express hSRαβΔTM, pET28 vector encoding N-

terminally His6-tagged hSRα and hSRβΔTM [hSRb(57-269)], and pET15 vector encoding 

hSRβΔTM were co-transformed into BL21(DE3*). For hSRαΔX, pET28 vector encoding 

N-terminally His6-tagged hSRαΔX [hSRa(131-638)] was transformed into BL21(DE3*). 

Cells were grown at 30 °C to OD600 = 0.6, and expression was induced with 0.5 mM IPTG 

for 4 hours. Cells were resuspended in Lysis Buffer (50 mM KHEPES (pH 8.0), 500 mM 

NaCl, 10% glycerol, 4 mM βME, and protease inhibitor cocktail) and lysed by two passages 

through French press at 18,000 psi. Clarified lysate was incubated with Ni-Sepharose resin 

(3 ml/L of cells) equilibrated in Lysis Buffer for 1 hr. The resin was washed with 15CV of 

Wash Buffer (50 mM KHEPES (pH 7.5), 500 mM NaCl, 35 mM Imidazole, 10% glycerol, 

and 4 mM βME). Bound protein was eluted with Wash Buffer containing 500 mM imidazole. 

Fractions containing target protein were diluted to 60 mM NaCl with Dilution Buffer (50mM 

KHEPES (pH 8.0) and 20% glycerol) and incubated with CM-Sepharose resin (5ml/L of 

cells) equilibrated in CM Buffer (50 mM KHEPES (pH 8.0), 10% glycerol, and 2 mM DTT) 

containing 100 mM KOAc for 1hr. The resin was washed with 10CV of CM-Buffer 

containing 100 mM KOAc, and protein was eluted with CM Buffer containing 350 mM 

KOAc. Peak fractions were pooled, concentrated, and further purified on a Superdex200 

size-exclusion column in S200 Buffer (50 mM KHEPES (pH 7.5), 300 mM KOAc, 5 mM 

Mg(OAc)2, 10% glycerol, 0.02% Nikkol, and 2 mM DTT). Purified hSR was stored in 20% 

glycerol at –80 °C.   
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SRP RNA. S7CA, a circularly permutated version of human 7SL SRP RNA for 

improved SRP assembly, was in vitro transcribed using T7 RNA polymerase as described 

(Huck, 2004). Transcribed RNA was acid phenol extracted and purified over a denaturing 

polyacrylamide gel (100 mM Tris, 89 mM Boric Acid, 1.3 mM EDTA, 7 M Urea, and 10% 

acrylamide(29:1)) (Travers, Boyd, & Herschlag, 2007). RNA extracted from the gel was 

dialyzed in 20 mM Tris-HCl (pH 7.5), flash frozen in liquid nitrogen, and stored at –80 °C.   

80S purification. Rabbit Reticulocyte Lysate (RRL) was treated with micrococcal  

nuclease (Nuclease S7; Roche) as described before (Sharma, Mariappan, Appathurai, & 

Hegde, 2010). 20 mL nuclease treated RRL was ultracentrifuged at 42,000 rpm on TI70 rotor 

for 3.5 hours. The ribosome pellet was carefully resuspended with 6 mL HS Buffer (50 mM 

KHEPES (pH 7.5), 500 mM KOAc, 10 mM Mg(OAc)2, and 2 mM DTT) and layered on 1M 

sucrose cushion (1M Sucrose in HS Buffer) and centrifuged at 95,000 rpm in a TLA100.3 

rotor for 90 minutes. The ribosome pellet was resuspended with 6ml of HS Buffer and 1ml 

sample was layered on a 40 ml 10–50% sucrose gradient in HS Buffer. The gradient was 

ultracentrifuged at 23,000 rpm in a SW32 rotor for 12 hours. The monosome peak was 

collected and centrifuged at 95,000 rpm in a TLA100.3 rotor for 90 minutes. The ribosome 

pellet was gently washed once with SRP Assay buffer, and resuspended in SRP Assay buffer 

without Nikkol to desired concentration. Aliquots were flash frozen in liquid nitrogen and 

stored at –80 °C.  

RNC purification. mRNA encoding the nascent chains on RNC was translated in 

Rabbit Reticulocyte Lysate for 30 minutes at 32 °C (Voorhees & Hegde, 2015). 1.8 mL of 

translation reactions was layered on a 1 mL 0.5M Sucrose cushion (50 mM KHEPES (pH 

7.1), 100 mM KOAc, 15 mM Mg(OAc)2, 0.5 M Sucrose, 0.1% Triton, and 20 μg/ml 
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Cycloheximide) and centrifuged at 100,000 rpm for 1 hour at 4 °C in a TLA100.3 rotor. 

The pellet was resuspended with Resuspension Buffer (50 mM KHEPES (pH 7.1), 100 mM 

KOAc, 15 mM Mg(OAc)2, and 20 μg/ml Cycloheximide) and incubated with anti-FLAG 

resin (anti-FLAG M2 Magnetic Beads (Sigma), 5 μL/mL translation) for 1-2 hours. The resin 

was washed with 20 CV of Wash 1 Buffer (50 mM KHEPES (pH 7.1), 100 mM KOAc, 15 

mM Mg(OAc)2, 0.1% Triton, and 20 μg/ml Cycloheximide) followed by 20 CV of Wash 2 

Buffer (50 mM KHEPES (pH 7.1), 300 mM KOAc, 15 mM Mg(OAc)2, and 20 μg/ml 

Cycloheximide). RNC was eluted three times with 2 CV of Elution Buffer (50 mM KHEPES 

(pH 7.1), 150 mM KOAc, 15 mM Mg(OAc)2, 1 mg/ml 3xFLAG peptide, and 20 μg/ml 

Cycloheximide). Eluted RNCs were layered on a 4.8 mL 10–30 % sucrose gradient (in 50 

mM KHEPES (pH 7.1), 500 mM KOAc, 10 mM Mg(OAc)2, 2 mM DTT, 20 μg/ml 

Cycloheximide, and 0.3 mg/ml BSA) and ultracentrifuged at 50,000 rpm for 100 minutes at 

4 °C in a SW55 rotor (Verma, Oania, Kolawa, & Deshaies, 2013). 200 µL fractions were 

collected from the top of the gradient. The monosome peak fractions were combined and 

centrifuged at 95,000 rpm for 95 minutes at 4 °C in a TLA100.3 rotor. The RNC pellet was 

resuspended in SRP Assay Buffer, flash frozen in liquid nitrogen, and stored at –80°C.      

 

Fluorescence labeling  

 hSRP54.  There are five native cysteines in hSRP54. The three exposed cysteines in 

hSRP54 were mutated (C36T, C136S, and C229A) to generate ‘cyslite’ hSRP54, which did 

not show any labeling with maleimide dyes (data not shown). An engineered cysteine (C47 

or C12) was introduced into cyslite hSRP54 for site-specific labeling using maleimide 

chemistry (Zhang, Kung, & Shan, 2008). 50 μM hSRP54 or hSRP54-4A10L was treated 



 

 

33 
with 2 mM TCEP for 4 hours at room temperature. A 15-fold excess of Cy3b (or ATTO 

550 or ATTO 647N) maleimide was added and incubated at room temperature for 4 hours. 

Labeled protein was separated from free dye by size exclusion chromatography on a G-25 

column (Zhang et al., 2008). Labeled protein was concentrated and stored in 20% glycerol 

at –80°C. Labeling efficiency was 70–80%.  

hSRP19. The native cysteines in hSRP19 were mutated (C3S, C17V, C53L, and 

C94S) to generate cysless hSRP19, into which a single cysteine (K64C) is introduced. 50 

μM hSRP19 (K64C) was treated with 2 mM TCEP for 4 hours at room temperature. A 10-

fold excess of ATTO 550 or ATTO 647N maleimide was added and incubated at room 

temperature for 2 hours. Labeled hSRP19 was separated from free-dye by size exclusion on 

a G-25 column. Labeled protein was stored in 20% glycerol at –80°C. Labeling efficiency 

was ~80%.  

hSR. A sortase-tag (LPETG) with (GS)6 linker was added to the C-terminus of 

hSRαΔX (Guimaraes et al., 2013). A sortase peptide (GGGC) was labeled with ATTO 647N 

via maleimide chemistry, and labeled peptide was purified by HPLC using a C18 column. 

To label SR, 1:4:8 molar ratio of sortase-tagged SRaDX or SRabDTM, sortase, and labeled 

peptide was mixed in Sortase Buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM 

CaCl2, 10% glycerol, 1 mM DTT, and 0.02% Nikkol) and incubated for 3-4 hours at room 

temperature. The reaction mixture was purified on Ni-Sepharose resin to remove untagged-

sortase and free peptides. Labeling efficiency was 60–70%. Labeled protein was 

concentrated and stored in 20% glycerol at –80°C. 
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Biochemical assays.  

All proteins except for SRP were centrifuged at 4 °C, 100,000 rpm in TLA100 rotor 

for 30 minutes to remove aggregates before the assay. GTPase reactions were performed in 

SRP Assay Buffer (50 mM KHEPES (pH 7.5), 150 mM KOAc, 5 mM Mg(OAc)2, 10% 

glycerol, 2 mM DTT, and 0.04% Nikkol) at 25 °C. Reactions were followed and analyzed as 

described before (Peluso et al., 2001) except that PEI cellulose thin layer chromatography 

were run in 1 M formic acid / 0.5 M LiCl. Observed rate constants were determined as 

described before (Peluso et al., 2001).  

Steady-state fluorescence measurements to analyze the SRP-SR interaction were 

carried out on a Fluorolog 3-22 spectrofluorometer (Jobin Yvon) and Kintek stopped-flow 

apparatus (Kintek Inc.) at 25 °C. The binding of SRP to RNC4A10L or to 80S was measured 

using Microscale Thermophoresis (MST; Nanotemper) following manufacturer’s 

instructions. 

Co-translational targeting and translocation of 35S-methionine labeled pPL into salt-

washed, trypsinized rough ER microsome (TKRM) was measured in wheat germ extract as 

previously described (Powers, 1997; Shan et al., 2007). The efficiency of translocation was 

quantified as: 

%Translocation =
-870 𝑝𝑟𝑜𝑙𝑎𝑐𝑡𝑖𝑛

-870 𝑝𝑟𝑜𝑙𝑎𝑐𝑡𝑖𝑛 + 𝑝𝑟𝑒𝑝𝑟𝑜𝑙𝑎𝑐𝑡𝑖𝑛
	× 100 

The (8/7) term here corrects for the different number of methionines in pPL versus signal 

sequence-cleaved prolactin.  
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Determination of individual rate and equilibrium constants.  Basal GTPase 

reactions were measured under single-turnover conditions using varying concentrations of 

hSRP or hSR in excess of trace g-32P-GTP. The SRP or SR concentration dependence of the 

observed rate constant (kobsd) were fit to Eq. 1, 

          (1) 

in which kcat is basal GTPase rate constants and Km is the GTP concentration required to 

reach half of the maximal observed GTPase rate constant.  

The reciprocally stimulated GTPase reaction between SRP and SR were measured 

under multiple turnover conditions using 0.2 μM hSRP, varying concentrations of excess 

hSR, and 100 μM GTP doped with trace g-32P-GTP. The SR concentration dependences of 

observed rate constants were fit to Eq. 2.  

          (2) 

The binding affinity of GDP for hSRP and hSR were determined using GDP as a 

competitive inhibitor of the basal GTPase reaction. The GDP concentration dependence of 

observed rate constants were fit to Eq. 3,  

          (3) 

where k0 is rate in the absence of GDP and Ki is inhibition constant. 

Inhibition of GTPase activity by hSRaDX(R458A) was measured in multi-turnover 

conditions using 0.2 μM of hSRP, 0.5 μM of hSRaDX, and increasing concentrations of 
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hSRaDX(R458A). hSRaDX(R458A) concentration dependence of observed rate 

constants were fit to Eq. 4,  

          (4) 

where k0 is the observed reaction rate in the absence of hSRaDX(R458A), [SR] = 0.5 μM, 

Km is the Michaelis constant for the reaction of wildtype hSRP with SR, determined as 0.06 

μM from the data in Figure 1.2, and Ki is the inhibition constant of hSRaDX(R458A). 

Association rate constants between hSRP and hSR were measured on a stopped-flow 

apparatus by rapid mixing of a fixed concentration of Cy3B-labeled hSRP or hSRP-4A10L 

with varying concentrations of excess ATTO-647N-labeled hSRaDX. The time courses of 

fluorescence change were fit to exponential functions to extract the observed association rate 

constants (kobsd). The SR concentration dependences of kobsd values were fit to Eq. 5, 

          (5) 

in which kon is the bi-molecular association rate constant between hSRP and hSR, and koff is 

the dissociation rate constant of the hSRP•hSR complex. The ribosome or RNC was pre-

incubated with hSRP where indicated. 

The values of koff were also directly determined using pulse chase experiments. 

Labeled hSRP and hSR were mixed and incubated until it reached equilibrium. Excess 

amount of unlabeled hSR was added to initiate chase, and the fluorescence signal change 

over time was measured. Resulting time-courses were fit to exponential functions to extract 

koff.  
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Equilibrium titrations to measure the equilibrium dissociation constant (Kd) of the 

hSRP•hSR complex were carried out using 15 nM Cy3B labeled SRP, 2mM GTP, and 

addition of increasing concentrations of ATTO-647N-labeled SR. Donor fluorescence was 

recorded when equilibrium is reached. 0.6 mg/ml BSA was supplemented in SRP Assay 

buffer to reduce non-specific adhesion of proteins to surfaces. A control titration with 

unlabeled hSR was carried out in parallel, and the fluorescence signal change from the 

control reaction was subtracted. The fluorescence signal was converted to FRET (E) using 

Eq. 6,  

          (6) 

where FDA and FD are the fluorescence signals with and without the acceptor present. E was 

plotted against hSR concentration and fit to Eq. 7, 

          (7) 

in which Emax is the value of E at saturating SR concentrations. Independently, the values of 

Kd were calculated from: Kd = koff / kon. 

Equilibrium binding affinities between hSRP/hSRP-4A10L and 80S/RNCs were 

measured on Microscale Thermophoresis (MST) instrument (Nanotemper). 15 nM of Cy3B 

labeled hSRP/hSRP-4A10L was incubated with series of concentrations of either 80S or 

RNC4A10L. Thermophoresis of each sample was measured, and normalized fluorescence 

change was plotted against 80S/RNC4A10L concentration, and fit to Eq. 8,  

          (8) 
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where ΔF is normalized fluorescence, and Kd is equilibrium binding constant.  

 

smFRET measurements 

 hSRP was diluted to 50–100 pM in SRP Assay Buffer containing 200 µM GTP and 

1 μM 80S, 150 nM RNC4A10L or 150 nM RNC2R where indicated. Based on independently 

determined Kd values (Fig. S1.3), these concentrations of RNC and 80S ensure that all 

observed hSRP complexes were bound with the indicated partner. Samples were placed in a 

closed chamber made by sandwiching a perforated silicone sheet (Grace Bio-Labs) with two 

coverslips to prevent potential evaporation during measurements. Data were collected over 

30-60 min using an ALEX-FAMS setup (Kapanidis et al., 2005, 2004) with two single-

photon Avalanche photodiodes (Perkin Elmer) and 532 nm and 638 nm continuous wave 

lasers (Coherent) operating at 150 µW and 70 µW, respectively. 

All smFRET data analyses including burst search, burst selection were performed 

using FRETBursts, an open-source burst analysis toolkit for confocal smFRET (Ingargiola, 

Lerner, Chung, Weiss, & Michalet, 2016). A dual-channel burst search (Nir et al., 2006) was 

performed to isolate the photon streams of particles containing FRET pairs from those 

containing only the donor or acceptor dye. Each burst (assumed to be the fluorescence signal 

from an individual SRP particle) was identified as a minimum of 10 consecutive detected 

photons with a photon count rate at least 10 times higher than the background photon count 

rate during both donor and acceptor excitation periods. Since the background rate can 

fluctuate within a measurement, the background rate was computed for every 50 second 

interval according to maximum likelihood fitting of the inter-photon delay distribution. The 
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identified bursts were further selected according to the following criteria: (i) 𝑛BB + 𝑛BC ≥ 

25; and (ii) 𝑛CC ≥	25, where 𝑛BB and 𝑛BC are the number of photons emitted from donor 

and acceptor during the donor excitation period, respectively, and 𝑛CC is the number of 

photons emitted from acceptor during the acceptor excitation period. 

The uncorrected FRET efficiency (E*) and the Stoichiometry (S) for each burst were 

calculated using the following equations: 

          (9) 

          (10) 

In most cases, E* is different from the actual FRET efficiency due to simplifying 

assumptions (i.e. lk=0, dir=0, γ=1). However, since the correction factors only depend on 

the photo-physical properties of fluorophores and the configuration of the optical setup, their 

contributions to the actual FRET efficiency are constant as long as the same optical set up, 

FRET pair and labeling position are used throughout all measurements. Importantly, we did 

not observe any significant changes in the photo-physical properties of both the donor and 

acceptor dyes by local environments (i.e. different conformations, substrates, ligands) (Fig. 

1.6 and Fig. S1.7). Therefore, conformational changes in SRP that alter the actual FRET 

efficiency will also change the E* value, and the trend of the changes with different binding 

partners will be the same. FRET histograms were obtained by 1D projection of the 2D E*-S 

histograms onto the E* axis. In this context, we used E* in this study to demonstrate the 

relative conformational change in SRP induced by its binding partners.  
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1.5         SUPPLEMENTARY FIGURES AND TABLES 

 
Figure S1.1. Large scale reconstitution of human SRP and SR. (A) Visualization of purified 
human SRP proteins by SDS-PAGE and Coomassie blue staining. (B) Outline of human SRP 
assembly based on modifications of published procedures (Huck, 2004; Mary et al., 2010). 
SRP proteins were ultracentrifuged at 100,000 rpm in TLA100 rotor for 30 minutes to 
remove aggregates prior to assembly. SRP RNA was refolded by heating at 95 °C for 1 
minute and snap cooling on ice for 1 minute, followed by addition of 0.25 volume of 5X 
Binding Buffer (100 mM Tris-HCl (pH 7.5), 1.5 M KOAc, 25 mM Mg(OAc)2, 20 mM DTT, 
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and 50% glycerol) and incubation at room temperature for 20 minutes. A typical 600 μL 
assembly reaction contained 300 μL of 1XHKMN buffer (50 mM KHEPES (pH 7.5), 500 
mM KOAc, 5 mM Mg(OAc)2, 1 mM DTT, and 0.02% Nikkol) and the remainder with SRP 
proteins and RNA in 1X Binding Buffer. Refolded SRP RNA at a final concentration of 2.5 
μM was first incubated with 4-6 μM hSRP19 at 37 °C for 15 minutes, followed by addition 
of 2.5 μM hSRP68/72 and 4 μM hSRP9/14 and an additional 10 minute incubation. 4 μM 
hSRP54 was added last, and the assembly mixture was incubated at 37 °C for 30 minutes 
and then at room temperature for 20 minutes. The assembly reaction was chilled on ice and 
diluted with 0.6 volume of Dilution Buffer (50 mM KHEPES (pH 7.5), 5 mM Mg(OAc)2, 1 
mM DTT, 0.01% Nikkol, and 20% glycerol). (C) A representative A260 profile of the 
purification of assembled hSRP using a DEAE-Sephacel column. The assembly mixture 
from part B was centrifuged at 18,000g for 5 minutes to remove large aggregates and loaded 
twice on 180 µl DEAE-sephacel resin pre-equilibrated in 20CV of Equilibration Buffer (50 
mM KHEPES (pH 7.5), 250 mM KOAc, 3 mM Mg(OAc)2, 0.5 mM EDTA, 1 mM DTT, 
0.01% Nikkol, and 10% glycerol). The resin was washed with 5CV of Wash Buffer (50 mM 
KHEPES (pH 7.5), 350 mM KOAc, 4 mM Mg(OAc)2, 0.5 mM EDTA, 1 mM DTT, 0.01% 
Nikkol, and 10% glycerol). Holo-SRP was eluted using 80 µl E600 Buffer (50 mM KHEPES 
(pH 7.5), 600 mM KOAc, 6.5 mM Mg(OAc)2, 0.5 mM EDTA, 1 mM DTT, 0.01% Nikkol, 
and 10% glycerol) per fraction. Incompletely assembled SRP was eluted with E1000 Buffer 
(50 mM KHEPES (pH 7.5), 1000 mM KOAc, 6.5 mM Mg(OAc)2, 0.5 mM EDTA, 1 mM 
DTT, 0.01% Nikkol, and 10% glycerol). Peak fractions containing SRP were collected based 
on A260 readings. FT denotes Flow-through. (D) Visualization of purified Holo-SRP by SDS-
PAGE and silver staining. (E) Schematic of the hSR constructs used in this work. (F) 
Visualization of purified hSRαβΔTM and hSRαΔX by SDS-PAGE and Coomassie blue 
staining. (G) Representative co-translational targeting and translocation of preprolactin 
(pPL) mediated by reconstituted hSRP and hSR. pPL was translated in wheat germ extract 
in the presence of 35S-methionine, hSRP and hSR, and salt-washed/trypsinized rough ER 
microsomes (TKRM). Reactions were stopped after 30-40 minutes and analyzed by SDS-
PAGE and autoradiography. (H) Quantification of the data in part G for reactions with 
hSRαβΔTM (¨) and hSRαΔX (l). 
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Figure S1.2. Basal GTPase activities of hSRP, hSR, and their controls. (A, B) The basal 
GTPase reactions of hSRP54 (A), hSRαβΔTM (B, □■), and hSRαΔX (B, ○●) were measured 
under single-turnover conditions with trace g-32P-GTP and indicated concentrations of 
proteins. The lines are fits of the data to Eq. 1 in the SI Methods, and the obtained rate 
constants are summarized in Fig. 1.1B. (C) Inhibition assay to measure the binding of GDP 
to hSRP54 (Δ,▲), hSRαβΔTM (□), and hSRαΔX (○,●). Observed rate constants were 
measured under single-turnover conditions using 1 μM hSRP54 or hSR and indicated 
concentrations of GDP. The lines are fits of the data to Eq. 3, and the values of Ki are 
summarized in Fig. 1.1B. Open and closed symbols denote the data from two independent 
measurements. (D) Increasing concentrations of Nikkol (up to 0.2%) do not affect the basal 
GTPase activity of hSR (▲), nor the stimulated GTPase reaction of hSRP with hSR (Δ). (E) 
The basal GTPase activity of hSR was unaffected by the ribosome. The intrinsic GTPase 
activity of hSR was measured under kcat conditions with increasing concentrations of 80S. 
(F) Signal sequence and ribosome did not substantially stimulate the basal GTPase activity 
of hSRP.  
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Figure S1.3. Schematic depiction of substrates used in this work and measurement of hSRP 
binding to ribosomal complexes. (A) The nascent chain of RNCs were based on the first 90 
amino acids of preprolactin (pPL). An N-terminal 3xFLAG tag allows for affinity 
purification, and is followed by a 20 amino acid flexible linker and a PreScission protease 
site (PcX) for removing the affinity tag after purification. The pPL signal sequence was 
mutated to 4A10L or 2R to generate a correct and an incorrect substrate for SRP. (B) N-
terminal sequences of full-length pPL, a model substrate for SRP-dependent co-translational 
targeting and translocation, and a 2R mutant of pPL as a negative control. Red highlights the 
wildtype or mutant signal sequence. (C) Equilibrium titration to measure the binding of hSRP 
to RNC4A10L and the 80S ribosome. Measurements were based on Microscale 
Thermophoresis (MST) using 20 nM of Cy3B labeled hSRP and indicated concentrations of 
purified 80S or RNC4A10L. The lines are fits of the data to Eq. 8, and gave Kd values of 5.1 ± 
2.0 nM and 120 ± 29 nM for RNC4A10L and 80S, respectively. (D) Equilibrium titration to 
measure the binding of signal sequence fused hSRP to the 80S ribosome using MST. The 
data was fit to Eq. 8 and gave a Kd value of 3.1 ± 1.0 nM. All data are presented as mean ± 
S.D., with n = 3. (E) GTPase activity measured with increasing concentrations of RNC2R. 
Reciprocally stimulated GTPase reaction between hSRP and hSRaDX was measured in the 
presence of either 0.45 μM (closed circle) or 0.9 μM (open circle) of RNC2R. 
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Figure S1.4. Fluorescence labeling does not substantially affect the activity of hSRP and 
hSR. (A, B) Reciprocally stimulated GTPase reactions between hSRP and hSR were 
measured as in Fig. 1.2A with wildtype hSRP and hSRaDX (A, open), Cy3B-labeled hSRP 
and hSRaDX (A, closed), hSRP and ATTO 647N-labeled hSRaDX (B, closed), and the 
combination of dye-labeled hSRP and hSR (B, open). Note the different scales in A and B. 
(C, D) Co-translational targeting and translocation of pPL was measured as in Fig. S1.1H 
with fluorescently labeled hSRP (C) and hSR (D). The reactions in c contained 200 nM hSR. 
The reactions in D used 30 nM hSRP.  
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Figure S1.5. Characterization of the mutant hSR(R458A). (A) R458 in hSRa is highlighted 
in the crystal structure of the NG-domain complex between hSRP54 (blue) and hSRa (green; 
PDB 5L3Q) (Wild et al., 2016). The bound nucleotides are in stick, and the dotted line shows 
the hydrogen bond between R458 and the g-phosphate of GMPPNP. (B) Reciprocally 
stimulated GTPase reaction of hSRP with hSRaDX (closed symbols) and hSRaDX(R458A) 
(open symbols), measured as in Fig. 1.2A. (C) hSRaDX(R458A) potently inhibits the 
interaction between hSRP and hSRaDX. Reciprocally stimulated GTPase reactions were 
measured with 0.2 μM hSRP and 0.5 μM hSRaDX in the presence of the indicated 
concentrations of mutant hSRaDX (R458A). The data were fit to Eq. 4 in the SI Methods, 
which gave an apparent inhibition constant of Ki = 83 nM. ‘□’ and ‘○’ denote the data from 
two independent measurements.  
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Figure S1.6. Additional FRET measurements of the hSRP-SR interaction. (A) 
Representative time traces of hSRP-hSR dissociation in the presence of the indicated SRP 
ligands. 12.5 nM hSRP or hSRP-4A10L was pre-incubated with labeled hSR (hSR*) to allow 
their complex formation, and unlabeled hSR was added to initiate complex dissociation. The 
following concentrations of labeled and unlabeled hSR were used: 2 μM hSR* and 10 μM 
hSR for the reaction with hSRP only, 0.25 μM hSR* and 2.5 µM hSR in the presence of 80S 
(300 nM), 2 μM hSR* and 8 μM hSR for hSRP-4A10L, and 75 nM hSR* and 375 nM hSR 
for hSRP-4A10L bound to 80S (40 nM). The data were fit to double exponential functions, 
and the weighted sum of the observed rate constants were reported in Table S1.2. (B) 
Representative time traces of hSRP-SR dissociation in the presence of RNCs, measured as 
in part A. The following concentrations of labeled and unlabeled hSR were used: 160 nM 
hSR* and 0.8 µM hSR for hSRP bound to RNC4A10L, and 400 nM hSR* and 4 μM hSR for 
hSRP bound to RNC2R. (C) Equilibrium titrations to measure the stability of the hSRP-SR 
complex in the presence of RNCs. Titrations were carried out under the same conditions as 
in Fig. 1.3C, except that 300 nM RNCs were used instead of ribosomes. 
 

 

 

 

 

 



 

 

47 

 



 

 

48 
Figure S1.7. Schematic and control experiments for smFRET measurements. (A) 
Schematic depiction of the fluorescence-aided molecule sorting measurements using 
Alternating Laser Excitation Spectroscopy (ALEX). Fluorescently labeled SRPs diffusing 
through a femtoliter-scale observation volume are alternatively excited with donor (green) 
and acceptor (red) excitation lasers, and fluorescence emission from both the donor and 
acceptor dyes are measured to calculate donor-acceptor stoichiometry (S) and uncorrected 
FRET efficiency (E*) to generate a 2-D E*-S plot. This allows optical purification of the 
doubly labeled particles with both donor and acceptor dyes (S ~ 0.5), and 1D-projection of 
the doubly labeled population onto the E* axis generates the FRET histogram (Kapanidis et 
al., 2005). (B-C) Representative 2-D E*-S plots for free hSRP labeled with ATTO-550 at 
SRP19(C64) and ATTO-647N at SRP54(C12). Panel B shows all the data from the 
measurement, while panel C shows the data for doubly labeled species after optical 
purification. (D-G) FRET histograms for hSRP, labeled with ATTO-550 at SRP54(C12) and 
ATTO-647N at SRP19(C64), with various binding partners. (H) Summary of the fraction of 
hSRPs containing the SRP54-ATTO550/SRP19-ATTO647N pair in the Low, Medium, and 
High-FRET populations from the data in D-G. Compared to the SRP19-ATTO550/SRP54-
ATTO647N pair (Fig. 1.6), switching the position of donor and acceptor dyes did not 
significantly affect the FRET distribution of hSRP and its regulation by various ligands. 
Although the High-FRET state was slightly more populated with the SRP19-
ATTO647N/SRP54-ATTO550 dye pair, the ribosome and signal sequence-induced changes 
in FRET distributions are the same between the two dye pairs. (I-N) Steady state 
fluorescence measurements (I-L) and median photon emission rate measurements on the 
ALEX setup (M, N) detected no significant effects of the various SRP ligands on the 
fluorescence of donor and acceptor dyes labeled at either SRP position.  
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Table S1.1. Summary of the rate constants from measurements of the stimulated GTPase 

reaction between human SRP and SR. N.D, not detectable. Values are reported as mean ± 

S.D., with n ≥ 2.  

 hSRαβΔTM hSRαΔX 

 kcat (s-1) kcat/Km (M-1s-1) kcat (s-1) kcat/Km (M-1s-1) 

SRP Only N.D. N.D. N.D. N.D. 

+SS 0.082 ± 0.018 6.7(±0.53) × 104 0.087 ± 0.012 8.3(±0.50) × 104 

+80S 0.032 ± 0.00017 1.5(±0.19) × 105 0.057 ± 0.012 2.3(±0.28) × 105 

+SS+80S 0.15 ± 0.008 8.0(±3.0) × 105 0.21 ± 0.017 2.5(±0.5) × 106 
 
 
 
Table S1.2. Summary of the rate and equilibrium constants of the SRP-SR interaction 

measured using the FRET assay. Values are reported as mean ± S.D., with n ≥ 2. 

 k4 (M-1s-1) k-4 (s-1) Kd (koff/kon)  
(nM) 

Measured Kd 
(nM) 

SRP Only 8.6(±4.1) × 101 8.9(±0.14) × 10-4 10350 *2460 ± 48 

+SS 8.4(±0.78) × 103 3.3(±1.3) × 10-3 393 326 ± 13 

+80S 1.6(±0.10) × 105 9.1(±0.60) × 10-3 57 64 ± 10 

+SS+80S 3.5(±0.50) × 106 8.3(±1.1) × 10-2 24 56 ± 13 

RNC4A10L 1.0(±0.10) × 106 1.7(±0.12) × 10-2 17 77 ± 5 

RNC2R 6.5(±0.76) × 104 5.7(±1.0) × 10-3 88 35 ± 4 

* In the absence of ligands, the Kd value from the equilibrium titration is less accurate, 
because saturation could not be reached due to limitations in protein concentration, and 
because of difficulties in reaching equilibrium at low SR concentrations due to the slow 
assembly rates. 
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C h a p t e r  2  

DUAL ROLE OF SRP RECEPTOR COMPACTION DURING MEMBRANE 
TARGETING STEPS OF MAMMALIAN SRP PATHWAY 

A part of this chapter was first published as: Kobayashi, K., Jomaa, A., Lee, J.H., Chandrasekar, S., 

Boehringer, D., Shan, S.-o., Ban, N. (2018). “Structure of a prehandover mammalian ribosomal 

SRP•SRP receptor targeting complex.” In: Science 360: 323-327. doi: 10.1126/science.aar7924 

 

Signal recognition particle (SRP) is an essential and universally conserved machinery 

responsible for biogenesis of ~30% of proteome. How SRP and SRP receptor (SR) mediates 

co-translational delivery of nascent proteins to Endoplasmic Reticulum (ER) is poorly 

understood. Here, we observe, for the first time, the details of conformational dynamics of 

SRP-SR targeting complex by single-molecule fluorescence spectroscopy. Through 

mutational studies, we identified three distinct conformational changes of targeting complex 

during membrane targeting steps. Moreover, we discovered two essential roles of SR 

compaction, where SR compaction not only brings the targeting complex near the membrane, 

but also induces subsequent conformational changes to expose Sec61 binding site and 

generate transfer-ready intermediate. Mutations blocking these conformational changes 

caused significant defect in SRP targeting activity. Interestingly, multiple interactions at this 

state delays GTP hydrolysis. These results together establish a detailed model for membrane 

targeting in mammalian SRP pathway and emphasize a crucial role of SR in ensuring proper 

delivery of substrates to ER membrane.   
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2.1       INTRODUCTION 

Proper biogenesis of nascent proteins is essential for maintaining protein homeostasis 

inside the cell (Hartl et al., 2011). Signal recognition particle (SRP) pathway is a universally 

conserved pathway that mediates co-translational delivery of ribosomes translating ~30% of 

proteome to eukaryotic endoplasmic reticulum (ER) or bacterial plasma membrane. SRP 

recognizes and binds to translating ribosomes with exposed N-terminal signal sequence or 

transmembrane domain. Through interaction with SRP receptor (SR), SRP delivers 

translating ribosomes to Sec61p (or SecYEG in bacteria) translocase on ER, where 

translation continues coupled with translocation through the membrane (Akopian et al., 

2013; Zhang & Shan, 2014). Mammalian SRP is an RNA-protein complex composed of six 

proteins (SRP19, SRP9/14, SRP68/72, and SRP54) bound to 7SL SRP RNA (Peter Walter 

& Blobel, 1983). SRP54 is a universally conserved subunit that contains M-domain, which 

binds to the RNA as well as the signal sequence, and NG-domain, which contains the GTPase 

module required for interaction with SR. Mammalian SR is a heterodimer of SRa and SRb. 

SRa contains homologous NG-domain, which also has a GTPase module for interaction with 

SRP54 NG-domain, and X-domain, which is the domain interacting with SRb. These two 

domains of SRa is connected through a long unstructured flexible linker (~150 residues) that 

has been implicated in binding ribosomes (Jadhav et al., 2015). SRb is a membrane protein 

on ER presumably localizing SR heterodimer near the ER membrane (Akopian et al., 2013; 

Nyathi, Wilkinson, & Pool, 2013).   

Previous studies on the initial steps of mammalian SRP pathway found that the 

presence of correct signal sequence pre-organizes SRP into proximal conformation, where 
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NG-domain of SRP54 is near the ribosome exit site. Moreover, this pre-organization led 

to efficient recruitment of SR, implying that SRP-SR NG-complex initially forms at the 

proximal site (Lee et al., 2018). On the other hand, structural studies of ternary complex of 

ribosome-nascent chain complex (RNC) bound SRP in complex with SR described a 

completely different conformation where NG-complex is docked at the opposite end of SRP, 

the distal site (Halic, 2006; Kobayashi et al., 2018). These two sets of data suggest that the 

SRP-SR NG-complex undergoes largescale movement from the proximal site to the distal 

site during the targeting cycle. Although similar movement has been extensively studied in 

bacterial system (Jomaa et al., 2017; Kuang Shen et al., 2013; Voigts-Hoffmann et al., 2013), 

such movement has never been observed in mammalian system and its functional relevance 

remains unknown.  

However, structure of SRP-SR complex in distal conformation leads to speculations 

on its functional role in SRP targeting. First, the NG-complex docked at the proximal site 

would prevent Sec61p binding and substrate transfer. Thus, it would be essential to induce a 

movement of NG-complex to distal site in order to expose Sec61p binding site on the 

ribosome and allow substrate transfer (Halic, 2006; Kobayashi et al., 2018). Secondly, 

structure of distal conformation (Kobayashi et al., 2018) shows three domains of SR (NG, 

X, and b) forming multiple protein-protein interactions at the distal site. As SRaNG and X/b 

domains are connected through a flexible linker, these two domains can initially be far apart, 

which puts the SRP bound translating ribosome far from the membrane. Through 

hypothesized conformational change to reach distal conformation, SR could bring the three 

domains of SR in contact, which effectively brings the substrate near the membrane for 
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interaction with Sec61 for transfer (Fig. 2.1). Although these two aspects would be 

essential for SRP targeting activity, no direct evidence is available to support these 

hypotheses. Moreover, the precise mechanism of SRP-SR conformational change during 

membrane targeting steps is entirely unknown.  

 

 

Figure. 2.1. Distinct steps during conformational change from proximal to distal 
conformation. Conformational change from proximal to distal site can be dissected into 
three distinct steps; 1. Detachment of NG-complex from proximal site (Detachment), 2. NG-
complex docking at the distal site (Docking), 3. SR compaction to bring X/b and NG domain 
together (Compaction).  
 

To address these outstanding questions, we studied the conformations of SRP-SR 

complex through single-molecule FRET (smFRET) methods and dissected the functional 

roles of these conformations during SRP targeting cycle. For the first time, we show that the 

largescale movement of NG-complex indeed occurs in solution upon SRP-SR interaction. 

Through mutational studies, we found that this NG-complex movement occurs in three 

distinct steps. Moreover, we discovered dual role of SR compaction where this step not only 

brings targeting complex near the membrane, but also induces the NG-complex movement. 

These steps during conformational change was found to be essential for SRP activity, and 
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importantly, we discovered that interactions at the distal site inhibits GTP hydrolysis. 

These results elucidate previously unknown mechanistic details during SRP targeting cycle 

and emphasize the essential role of SR compaction for successful delivery of substrates to 

ER membrane by SRP and SR.  

 

2.2       RESULTS 

Largescale movement of NG complex occurs upon SRP-SR interaction 

The conformational change of SRP-SR complex from proximal site to distal site can 

be separated into three distinct steps. First, the NG complex needs to detach from the 

proximal site. Secondly, the NG complex can dock at the distal site through multiple protein-

protein interactions. Finally, the flexible linker of SR connecting X-domain and NG-domain 

needs to compact to bring two domains together (Fig. 2.1). To directly monitor these distinct 

steps, we designed three sets of FRET probes. The conformations of SRP and SRP-SR 

complex were monitored at single-molecule resolution (smFRET) based on Fluorescence-

aided Molecular Sorting using Alternating Laser Excitation Spectroscopy (ALEX) 

(Kapanidis et al., 2005, 2004).  

To monitor NG complex detachment, we incorporated a donor dye (Atto550) on 

SRP19 (C64) and an acceptor dye (Atto647N) on SRP54 (C12) (Proximal Probe) (Lee et al., 

2018). Based on the available structure (Voorhees & Hegde, 2015), the distance between the 

dye pair is ~44 Å (Fig. 2.2A), so we would expect high FRET when NG domain is near the 

proximal site (Förster radius 65 Å). But if NG complex moves away from the proximal site 

(‘Detachment’), we expect loss of high FRET population and increase in low FRET 

populations (Fig. 2.2B). As shown previously (Lee et al., 2018), in the absence of SR, 
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substrate-bound SRP shows predominantly high FRET population (Fig. 2.2C). Upon 

addition of SR, we observed a dramatic change where the FRET population is now 

dominated by low FRET population (Fig. 2.2D). This result shows that although SRP-SR 

NG complex initially forms at the proximal site (Lee et al., 2018; Voorhees & Hegde, 2015), 

it rapidly moves away from the proximal site.   

 

Figure 2.2. FRET probes to monitor NG-complex detachment and distal docking. (A) 
Structure showing SRP in proximal conformation with positions of proximal FRET probes 
highlighted (PDB: 3JAJ) (Voorhees & Hegde, 2015); SRP19 (orange) with a donor dye 
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(Atto550) on C64, and SRP54 (blue) with an acceptor dye (Atto647N) on C12 (Lee et al., 
2018). (B) NG-complex detachment from proximal site (high FRET) to distal site (low 
FRET). (C-D) smFRET histograms of signal sequence fused human SRP with ribosome (Lee 
et al., 2018) in the absence (C) and presence (D) of SRabDTM. ‘pdf’ denotes probability 
density function, ‘n’ is number of data points, and ‘Prox’ denotes proximal probes. [SRP-
4A10L]=200pM, [80S]=150nM, [SRabDTM]=2µM. All smFRET histograms are combined 
data from five to ten independent experiments. (E) Structure showing ternary complex of 
RNC bound SRP-SR complex in distal conformation (PDB: 6FRK) (Kobayashi et al., 2018), 
with positions of distal FRET probes highlighted; SRP54 (blue) with a donor dye (Cy3B) on 
C47 and SRP68 (yellow) with an acceptor dye (Atto647N) on ybbr tag inserted after P149 
(Yin, Lin, Golan, & Walsh, 2006). (F) NG-complex movement from proximal site (low 
FRET) to distal site docking (high FRET). (G-H) smFRET histograms under the same 
condition as C-D, but with distal probes. ‘Dist’ denotes distal probes.  

 

Next, we designed a new set of FRET probes to monitor NG complex docking at the 

distal site. Instead of SRP19, SRP68, which is at the opposite side of SRP, was used as the 

target for fluorescent dye incorporation. A short sfp recognition motif (DSLEFI) was inserted 

into one of the loops of SRP68 (after P149) for site-specific incorporation of CoA-Atto647N 

conjugate (Yin et al., 2006). A donor dye (Cy3B) was incorporated on SRP54 (C47) (Distal 

Probe) (Lee et al., 2018). Based on the structure of distal conformation (Kobayashi et al., 

2018), the distance between the dye pair is ~39 Å (Fig. 2.2E) and we expect high FRET when 

NG domain is near distal site (Förster radius 62 Å) (Fig. 2.2F). In the absence of SR, 

substrate-bound SRP showed predominantly low FRET population (Fig. 2.2G), consistent 

with the data from proximal probe. Upon addition of SR, high FRET population appeared, 

which is occupied by 34% of the entire population (Fig. 2.2H). This result provides direct 

evidence that the conformational change from proximal to distal occurs upon SRP-SR 

interaction and that the distal conformation depicted in the structure exists in solution. The 

fraction of SRP-SR complex in low FRET with proximal probe (71%) differs from that in 

high FRET with distal probe (34%). This implies that although most of NG complex detaches 
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from the proximal site, only half of them actually docks on the distal site, while the other 

half is localized at another site that is far from both proximal and distal site suggesting 

existence of an additional conformation that is yet to be characterized.  

  

SR compaction is SRP dependent 

The degree of SR linker compaction can be indirectly measured through the 

proximity of NG-domain and X/b-domain. To this extent, we designed another set of 

FRET probe (Compaction Probe) by incorporating a donor dye (Atto550) at the C-terminus 

of NG-domain through sortase mediated conjugation (Guimaraes et al., 2013; Lee et al., 

2018) and an acceptor dye (Atto647N) at the N-terminus of SRb through sfp mediated 

conjugation (Yin et al., 2006). Based on the structure of distal conformation (Kobayashi et 

al., 2018), the distance between the two dyes is very short (~36 Å) (Fig. 2.3A). Thus, even 

if SRP-SR is not specifically in the distal conformation, when the linker compacts and there 

is interaction between NG-domain and X/b-domain, we can expect SR to sample high 

FRET states (Fig. 2.3B).  
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Figure 2.3. FRET probes to monitor SR compaction. (A) Structure showing ternary 
complex of RNC bound SRP-SR complex in distal conformation (PDB: 6FRK) (Kobayashi 
et al., 2018), with positions of compaction FRET probes highlighted; SRa-NG (green) with 
a donor dye (Atto550) at the C-terminus and SRb (deep blue) with an acceptor dye 
(Atto647N) at the N-terminus. (B) SR with linker extended (low FRET) compacts to bring 
SRa-NG and SRb in proximity (high FRET); cartoons represent one of many possible 
conformations. (C-D) smFRET histograms of double-labeled SRabDTM with ribosome in 
the absence (C) and presence (D) of signal sequence fused SRP. ‘Comp’ denotes compaction 
probes. [SR]=200pM, [80S]=400nM, and [SRP-4A10L]=300nM.  
 

We first measured the conformation of SR in the presence of ribosome without 

SRP. Surprisingly, vast majority of SR sampled low FRET state (Fig. 2.3C) showing 

evidence that the linker is in an extended form and that NG-domain and X/b-domain are far 

apart. Upon addition of SRP, the SR population was highly biased towards high-FRET 

state (Fig. 2.3D). This implies a novel mode of regulation. While SR is known to interact 

with ribosomes (Jadhav et al., 2015), our results show that it does not compact when SR is 

interacting with ribosome. Rather, SR compacts only when SRP is present implying that 

SR searches for SRP bound ribosomes to specifically bring them near the membrane 

through compaction.  

 

Distal movement of SRP-SR NG-complex is initiated by SR compaction 

To gain mechanistic insights on the conformational change of SRP-SR complex, we 

introduced a series of mutations to SR that are designed to disrupt the distal conformation 

based on the available structure (Fig. S2.1 and Fig. 2.4A). The mutations can be classified 

into two major classes; mutations designed to disrupt intramolecular interaction of SR 

between NG-domain and X/b-domain (Fig. 2.4A, green), and mutations disrupting 

interaction between SRP68/72 subunit of SRP and NG-domain of SR (Fig. 2.4A, blue). D477  
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Figure 2.4. SR mutations and their effects in the conformation of SRP-SR complex. (A) 
Table summarizing the mutations. (B) Sequence alignment of part of SRa-NG in mammals 
and archaea. Two evolved loops unique to mammals are highlighted. (C) Complex assembly 
rate of SRP-SR measured through kcat/Km. Data represented as mean ± SD, with n=3 (Lee et 
al., 2018). (D) Fraction of SRP-SR conformation in high FRET state with distal probes 
normalized to wild-type (black). (E) Extent of NG-complex detachment quantified as 
combined fraction of SRP-SR conformation in median and high FRET states normalized to 
wild-type (black). (F) Extent of SR compaction was quantified by first combining two bins 
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at low and high FRET peaks, calculating fraction in high-FRET state, and normalizing to 
wild-type (black).  
 

and D572 mutations were initially identified through sequence analysis where we found two 

loops that potentially co-evolved with SRP68/72, which is a unique subunit to mammalian 

system (Fig. 2.4B). This idea is further supported by the structure of distal conformation 

(Kobayashi et al., 2018), which shows direct contact between loop 572 and SRP68 (Fig. 

S2.1). These mutations did not significantly affect SRP-SR complex assembly rate (Fig. 

2.4C) showing that the mutations did not disrupt interaction with SRP. Thus, all defects that 

we observe in subsequent analyses are caused by the defect in conformational change, and 

not by the defect in SRP interaction.  

Because these mutations are based on distal conformation, we first analyzed whether 

the mutations reduce the distal docking activity of SRP-SR complex using ‘Distal Probe’ 

(Fig. 2.2F). Indeed, all the mutants displayed reduced high FRET population compared to 

the wild-type (Fig. S2.2 and Fig. 2.2H). High FRET population with each mutant was plotted 

relative to the wild-type for comparison (Fig. 2.4D). The defect was mild (Fig. S2.2D and E) 

for some while others showed significant defect (Fig. S2.2A-C). Importantly, the mutations 

disrupting interactions between NG-domain and X/b-domain of SR showed more significant 

defect (Fig. 2.4D, green).   

We next monitored SRP-SR NG-complex detachment from the proximal site using 

‘Proximal Probe’ (Fig. 2.2B). In this case, we observed two distinct behaviors of the mutant 

SRs. One set of mutants showed virtually the same conformational distribution as the wild-

type, where majority is in low-FRET state (compare Fig. S2.3D and E, and Fig. 2.2D). On 
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the other hand, another set of mutants showed significant population still sampling high-

FRET state (Fig. S2.3A-C). The fraction of median and high FRET state was combined and 

plotted relative to the wild-type for comparison (Fig. 2.4E). And surprisingly, these two types 

of behaviors corresponded well with the type of mutations introduced (Fig. 2.4E, green vs 

blue). This result is consistent with the defect we observe in distal docking activity; because 

NG-complex of mutants in green cannot detach efficiently from the proximal site, it cannot 

dock at the distal site. More importantly, these results show that the intramolecular 

interaction within SR between NG-domain and X/b-domain is crucial for initiating 

detachment and subsequent conformational changes.  

However, NG-domain and X/b-domain of SR are far apart initially as the linker is in 

an extended form (Fig. 2.3C), and only compacts upon interaction with SRP (Fig. 2.3D). So 

how could the interaction between the two domains that are far apart be important for 

initiating conformational change of SRP-SR complex? This invokes a model where SR 

compaction must occur first before the other steps (detachment and distal docking) during 

the conformational change of SRP-SR complex. In fact, SR compaction must be initiating 

NG-complex detachment from the proximal site as intra-molecular interaction of SR is 

crucial for NG-complex detachment. Based on this model, we can predict that the mutants 

showing defect in NG-complex detachment would show defect in SR compaction.   

Indeed, when SR compaction activity of the mutants were measured with 

‘Compaction Probe’ (Fig. 2.3B), we observed largest defect with D371 (Fig. S2.4A and Fig. 

2.4F), which was also defective in NG-complex detachment (Fig. 2.4E). On the other hand, 

D572, which showed no defect in NG-complex detachment, showed milder defect in SR 
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compaction compared to D371 (Fig. S2.4C and Fig. 2.4F). These results support the model 

where SR compaction initiates NG-complex detachment from proximal site, which 

subsequently allows the complex to dock at the distal site. R407A shows defect in NG-

complex detachment (Fig. 2.4E) but shows similar SR compaction activity as D572 (Fig. 

2.4F and Fig. S2.4B). This implies that R407 residue may not be directly involved in 

compaction but is rather involved in positioning X/b-domain for specific interaction that 

leads to NG-complex detachment.  

We can also find some structural evidence to support this model. Although there is 

no available structural information of SRP-SR NG-complex docked at the proximal site, 

there are existing structures of SRP NG-domain docked at the proximal site (Voorhees & 

Hegde, 2015), and SRP-SR NG-complex docked at the distal site (Kobayashi et al., 2018). 

A structural model of NG-complex docked at the proximal site can be derived based on these 

existing structures by aligning SRP-SR complex from distal structure to the proximal 

structure using SRP54 NG-domain homology (Fig. S2.5A). In this structural model, X-

domain of SR is in very close contact with the proximal site of the ribosome (Fig. S2.5B). 

Thus, initially when SR linker is extended, SRP-SR NG-complex forms at the proximal site. 

Subsequently, SR compacts to bring X-domain near the proximal site, which potentially 

introduces a clash or a specific interaction (Fig. S2.5B) that induces detachment of NG-

complex from the proximal site. NG-complex can then dock at the distal site to allow Sec61 

binding and substrate transfer.  
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SR compaction is essential for SRP activity 

To evaluate the importance of these series of conformational changes of SRP-SR 

complex in SRP activity, we measured co-translational targeting activity of the mutants that 

inhibit distinct steps of conformational changes. At saturating concentration of SR, mutants 

showed different degree of defects (Fig. 2.5A). Distal docking mutants (D477 and D572) 

showed about ~20% reduced activity compared to the wild-type (Fig. 2.5A, blue), providing 

evidence that distal docking activity is indeed an important step during targeting by SRP. On 

the other hand, R407A, which showed little defect in SR compaction but significant defect 

in NG-complex detachment from proximal site, showed virtually no defect in targeting 

activity (Fig. 2.5A, R407A). This implies that the defect in NG-complex detachment of 

R407A mutant may be rescued by a membrane component. 

Importantly, SR compaction mutant (D371) showed largest defect in targeting 

activity with only ~35% activity compared to the wild-type (Fig. 2.5A, D371). This provides 

additional support for our current model; as SR compaction is the initial step of membrane 

targeting after SRP-SR interaction, inhibiting this step would lead to largest defect in overall 

activity. Moreover, this implies that SR compaction is the essential step that brings the 

targeting intermediate near the membrane, and without this conformational change, the 

substrates are not able to reach the membrane or the translocon. Once the targeting 

intermediate reaches the membrane through SR compaction (R407A, D477, and D572), the 

defect in overall activity is much less (Fig. 2.5A), likely because a membrane component 

may be able to rescue other defects.  
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Figure 2.5. Targeting and GTP hydrolysis activity of SR mutants. (A) Translocation 
activity of model SRP substrate, preprolactin, into ER microsomes were measured through 
standard procedures (Lee et al., 2018; Shan et al., 2007). Efficiency at saturating SR 
concentration (75nM) was normalized to wild-type (black). Data represented as mean ± SD, 
with n=3. (B) Stimulated GTPase activity of SRP and SR was measured through previously 
developed procedures (Lee et al., 2018). Data represented as mean ± SD, with n=3. (C) Bar 
graph of kcat values extracted from fitting in B. Data represented as mean ± SD, with n=3. 
(D) Correlation plot between kcat and relative fraction of SRP in distal conformation (Fig. 
2.4D).  
 

Distal site docking of SRP-SR NG-complex inhibits GTP hydrolysis 

Regulation of GTP hydrolysis was an essential regulatory mechanism of the SRP 

pathway in other organisms (Kuang Shen et al., 2013; Voigts-Hoffmann et al., 2013). To test 

whether distal conformation has any regulatory role of GTP hydrolysis in mammalian 
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system, we measured GTPase activity of the SR mutants. Stimulated GTPase activity was 

measured in SR concentration dependent manner to extract maximal rate of GTP hydrolysis 

(kcat) (Fig. 2.5B) (Lee et al., 2018; Peluso et al., 2001). When we compared kcat across the 

mutants, we observed general hyperactivity compared to the wild-type, where most of the 

mutants showed over 2-fold higher kcat value (Fig. 2.5C). Moreover, when we plotted 

correlation between kcat and distal docking activity of the mutants (Fig. 2.4D), there was a 

mild negative correlation (Fig. 2.5D). This implies that distal site docking of the NG-complex 

inhibits GTPase activity. As SRP and SR dissociates upon GTP hydrolysis, the inhibition 

caused by distal site docking would increase the lifetime of transfer-ready targeting 

intermediate. This increased lifetime may provide sufficient time window for the substrate 

to dissociate from SRP and engage Sec61 translocon.  

 

Mechanism of GTPase regulation diverged in mammalian system 

The movement of SRP-SR NG-complex from proximal site to distal site has been 

studied in other organisms previously (Kuang Shen, Arslan, Akopian, Ha, & Shan, 2012; 

Kuang Shen et al., 2013). When we compare the active site structure from mammalian (Fig. 

2.6A) and bacterial (Fig. 2.6B) system (Jomaa et al., 2017; Kobayashi et al., 2018), the 

architecture and arrangements are very similar. F456 from mammalian SR and G232 of 

mammalian SRP RNA are arranged identically to bacterial F332 and G83 (compare Fig. 

2.6A and B). G83 in bacteria was found to be essential for activating GTP hydrolysis, and 

any mutation on this site led to nearly complete abolishment of GTP hydrolysis. Thus, in 

bacterial system, distal conformation was essential for activating GTP hydrolysis and 

recycling SRP and SR (Kuang Shen et al., 2013; Voigts-Hoffmann et al., 2013). As G232 in 
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mammalian system is arranged identically to bacterial G83, we hypothesized that mutating 

this residue would also abolish GTPase activity. In addition, C-terminus of SRP72 also 

protrudes into the GTPase active site next to G232 (Fig. 2.6C and D). Thus, we mutated 

G232 and generated series of C-terminal truncation mutants of SRP72 and measured GTPase 

activity (Fig. S2.6).  
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Figure 2.6. GTPase inhibition of active site residues in mammalian SRP system. (A-
B) Close up view of active site structure of distal conformation from mammalian SRP (A) 
(PDB: 6FRK) (Kobayashi et al., 2018) and bacterial SRP (B) (PDB: 5NCO) (Jomaa et al., 
2017). Stacking interaction between phenylalanine and RNA base is shown. (C-D) View of 
active site structure of distal conformation from mammalian SRP showing the proximity of 
G232 as well as C-terminus of SRP72 to the active site (PDB: 6FRK) (Kobayashi et al., 
2018). (E-F) kcat was measured for different mutants and plotted on a bar graph. Data 
represented as mean ± SD, with n=3.  

 

Surprisingly, all C-terminal truncations of SRP72 led to an increase in GTPase 

activity (Fig. 2.6E and Fig. S2.6A), rather than a decrease which was suggested by previous 

studies in bacterial system. Moreover, mutation on G232 also led to increase in GTPase 

activity (Fig. 2.6F and Fig. S2.6B). When RNA and SRP72 mutations were combined, we 

observed over 5-fold increase in kcat of GTP hydrolysis (Fig. 2.6F). This is consistent with 

our previous data with SR mutants, where disruption of distal site interactions leads to an 

increase in GTPase activity (Fig. 2.5C and D). Thus, interactions at the distal site are 

designed to inhibit GTP hydrolysis in mammalian system. As discussed in the previous 

section, this inhibition would increase the lifetime of transfer-ready targeting complex and 

may provide longer time window for substrate transfer to Sec61. The mechanistic details of 

what gives rise to the opposite phenotypes in mammalian system compared to bacterial 

system despite having similar active site structure would require extensive study in the future.  

 

2.3       DISCUSSION 

Co-translational targeting of nascent proteins by SRP pathway is a multi-step process 

(Zhang et al., 2010; Zhang & Shan, 2014). After initial substrate recognition and binding by 

SRP, it recruits SR to deliver targeting intermediate to the membrane (Akopian et al., 2013; 

Zhang & Shan, 2014). In bacterial system, this step is mediated by the interaction between 
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the amphipathic helix of FtsY (bacterial SR) and the membrane (Hwang Fu et al., 2017). 

On the other hand, how substrates reach membrane after initial SR recruitment has been 

poorly understood in mammalian system. In this work, we observe, for the first time, multiple 

conformational changes during membrane targeting by SRP-SR complex and provide a 

molecular model for membrane targeting steps in mammalian system.  

In mammalian SRP system, SRb is a membrane protein, and SRa is attached to SRb 

through the X-domain (Nyathi et al., 2013). Thus, mammalian SR is naturally localized near 

the membrane, and it has been speculated that this proximity is sufficient for delivering 

translating ribosomes to the membrane. However, SR NG-domain and X-domain is 

connected through a long unstructured flexible linker. Thus, if the linker is in an extended 

form, targeting intermediate can be far away from the membrane. Indeed, our data suggests 

that SR, in the absence of SRP, is in an extended conformation (Fig. 2.3C). Based on the 

FRET value of low FRET population (~0.15), the distance between NG-domain and SRb 

would be at least 90Å, which is quite far for any spontaneous delivery of substrates. Thus, 

mammalian SRP requires additional regulated mechanism to ensure delivery of targeting 

intermediates closer to the membrane. 

Our smFRET data provides direct evidence that SR compaction mediates membrane 

targeting. Importantly, SR compaction only occurs after interaction with SRP (Fig. 2.3D). 

As SR is known to interact with ribosomes by itself (Jadhav et al., 2015), this regulation by 

SRP is crucial for maintaining specificity of the pathway by selectively bringing SRP-bound 

ribosomes near the membrane. Moreover, this suggests that there may be additional 

interactions between SRP and SR other than between the two NG-domains, that exerts this 
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mode of regulation. Further studies would be required to elucidate detailed mechanism of 

regulation of SR compaction.  

In addition to membrane targeting, SR compaction is found to be essential for 

initiating subsequent conformational changes of SRP-SR complex. Our data from mutational 

studies show that NG-complex detachment from proximal site is inhibited by mutations 

inhibiting SR compaction (Fig. 2.4E and F, D371). The exact nature of this phenotype is yet 

to be determined, but based on generated structural model, it seems likely that clash or 

interaction between X-domain and ribosome induces NG-complex detachment (Fig. S2.5B). 

In addition, disruption of SR compaction leads to the largest defect in targeting activity (Fig. 

2.5A, D371). These data further signify the importance of SR compaction with dual role in 

mammalian SRP pathway. 

SRP-SR NG-complex movement from the proximal site to the distal site is not a 

feature unique to mammalian system. Similar conformational change has been observed in 

bacterial system (Kuang Shen et al., 2012). In bacteria, distal conformation was shown to be 

important for GTPase activation to recycle enzymes (Kuang Shen et al., 2013; Voigts-

Hoffmann et al., 2013). Surprisingly, we observed an opposite phenotype in mammalian 

system, where distal conformation inhibits GTP hydrolysis. Any mutations disrupting NG-

complex docking at the distal site, or mutations disrupting interactions at the GTPase active 

site led to higher GTP hydrolysis activity (Fig. 2.5C, Fig. 2.6E and F). The precise 

mechanism that exerts this phenotype remains to be elucidated, but this opposite phenotype 

leads to interesting hypothesis about the evolution of SRP pathway.  
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Cellular concentration of SRP (~500nM in mammalian cells) is well below the 

concentration of ribosome (40-50µM) requiring SRP to be efficiently recycled to ensure that 

all substrates are targeted (Kulak et al., 2014; Zhang & Shan, 2014). On the other hand, 

premature dissociation from substrate before complete transfer of substrate to Sec61 

translocon could expose hydrophobic signal sequence or transmembrane domain to cytosol, 

which would lead to aggregation. Thus, the timing of SRP dissociation through GTP 

hydrolysis needs to be precisely controlled for balance between processivity and accuracy. 

Based on this, we can speculate that in bacteria, substrate engagement of SecYEG translocon 

may be more efficient requiring less time, allowing SRP to be highly processive. On the other 

hand, in mammals, substrate engagement of Sec61 translocon may be slow requiring more 

time. Thus, SRP evolved to inhibit GTP hydrolysis to increase lifetime of SRP-SR complex 

and provide sufficient time for substrate transfer from SRP to translocon. This could be 

particularly important for substrates with less-hydrophobic signal sequences as their initial 

interaction with Sec61 may be even slower. Interestingly, native SRP has been traditionally 

purified from isolated ER microsomes (Peter Walter & Blobel, 1983) and preliminary studies 

showed that roughly 40% of SRP is localized on ER membrane (P. Walter, 1983). Moreover, 

kcat of stimulated GTP hydrolysis of mammalian SRP-SR complex is much slower than that 

of bacterial system (Lee et al., 2018; Peluso et al., 2001), supporting the idea that mammalian 

SRP has evolved to increase lifetime of targeting intermediate at the ER membrane. 

In summary, our work describes a new detailed molecular model for mammalian SRP 

pathway. Previous studies showed presence of signal sequence pre-organizes SRP into 

proximal conformation, and this efficiently recruits SR to the proximal site (Lee et al., 2018).  
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Figure. 2.7 Model for mammalian SRP pathway. SRP binds to signal sequence exposed 
RNC, which pre-organizes SRP into proximal conformation. This conformation rapidly 
recruits SRa-NG to the proximal site. SRP binding to SR induces compaction (SR 
Compaction), and this introduces potential clash at the proximal site that induces detachment 
of NG complex from the proximal site (Detachment). NG-complex can then dock at the distal 
site (Distal Docking), where multiple protein interactions stabilizes the complex to delay 
GTP hydrolysis. This delay potentially provides sufficient time-window for substrate transfer 
from SRP to Sec61 translocon. After transfer, GTP is hydrolyzed and SRP/SR can be 
recycled for additional rounds of targeting.  
 
 

Upon SRP-SR interaction, SR compacts to bring the targeting intermediate near the 

membrane and introduces potential clash between X-domain and ribosome to induce 

detachment of SRP-SR complex from proximal site (Fig. 2.7). NG-complex then can dock 

at the distal site to expose Sec61 binding site and allow substrate transfer to the translocon 

(Fig. 2.7). We find that GTP hydrolysis is delayed through multiple interactions in distal 

conformation, which may provide sufficient time-window for substrate engagement by 

Sec61. After transfer, GTP is hydrolyzed to dissociate SRP-SR complex to recycle them for 
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additional rounds of targeting. Compared to bacterial SRP, mammalian SRP seem to have 

evolved to increase the lifetime of targeting complex more than the processivity.  

 

2.4       MATERIALS AND METHODS 

Vectors.  

Most vectors used in this study has been described previously (Lee et al., 2018). For 

fluorescence labeling of SRP68, sfp recognition motif (ybbr6, DSLEFI) was inserted after 

residue P149 through fastcloning. For fluorescence labeling of SRbDTM, longer sfp 

recognition motif (ybbr11, DSLEFIASKLA) was inserted at the N-terminus through 

fastcloning. All SR mutants were generated by replacing original residues with residues 

specified in Fig. 2.4A. SRP72 truncation mutants were generated by removing residues 

specified in Fig. S2.6A.  

 

Biochemical Preparations.  

Human SRP components were prepared as described previously (Lee et al., 2018).  

 

Fluorescence Labeling 

Fluorescence labeling of SRP54 (C12), SRP54 (C47), SRP19 (C64), and SRabDTM 

C-terminus has been described previously (Lee et al., 2018).  

SRP68/72. A sfp recognition motif (ybbr6, DSLEFI) was inserted right after residue 

P149 on SRP68. Atto647N maleimide was conjugated to CoA through sulfhydryl group. 

CoA-Atto647N was attached on underlined serine by sfp. The reaction was done for 20 
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minutes at room temperature with 0.4 molar ratio of protein to sfp enzyme, in the presence 

of 2-fold excess of CoA-Atto647N. The salt concentration was maintained below 120mM 

for efficient labeling. The labeled protein was immediately used for SRP assembly. The 

labeling efficiency was close to 100%.  

SRabDTM. C-terminus of SRa was labeled using sortase as described previously 

(Lee et al., 2018). A sfp recognition motif of 11-residue ybbr-tag (DSLEFIASKLA) (Yin et 

al., 2006) was inserted at the N-terminus of SRbDTM. SRabDTM was doubly labeled by 

carrying out sfp mediated labeling for 30 minutes at room temperature with 0.4 molar ratio 

of sfp and 2-fold excess of CoA-Atto647N. Subsequently, sortase mediated labeling was 

done for 3 hours at room temperature with 5-fold excess of sortase and 10-fold excess of 

GGGC-Atto550. Unconjugated fluorescent species were removed by purifying reaction 

mixture on Ni-Sepharose resin. The labeling efficiency for sfp labeling was close to 100%, 

and the efficiency of sortase labeling was around 60~70%.  

 

Biochemical Assays.  

All proteins except for SRP were centrifuged at 4 °C, 100,000 rpm in TLA100 rotor 

for 30 minutes to remove aggregates before the assay. GTPase activity and co-translational 

targeting/translocation activity were measured following same procedures as described 

previously (Lee et al., 2018).  

smFRET measurements was done following similar procedure as before (Kapanidis 

et al., 2005, 2004; Lee et al., 2018). hSRP-4A10L was diluted to 100-200pM in SRP Assay 

Buffer (50 mM KHEPES (pH 7.5), 150 mM KOAc, 5 mM Mg(OAc)2, 10% glycerol, 2 mM 
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DTT, and 0.04% Nikkol) containing 200 µM non-hydrolysable GTP (GppNHp) and 

150nM 80S, and 2µM SRabDTM where indicated. For measuring SR conformation, SR was 

diluted to 100-200pM in SRP Assay Buffer with 200 µM GppNHp, 400nM 80S, and 300nM 

SRP-4A10L where indicated. The measurement and analysis were done following the same 

procedures described previously (Ingargiola et al., 2016; Lee et al., 2018).  
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2.5       SUPPLEMENTARY FIGURES 

 

Figure S2.1. SRP-SR complex in distal conformation with SR mutations highlighted. 
Structural view of ternary complex of RNC bound SRP-SR complex in distal conformation 
with SR mutations highlighted (Kobayashi et al., 2018).  
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Figure S2.2. smFRET histograms of distal docking activity of SR mutants. (A-E) 
smFRET histograms of signal sequence fused SRP bound to ribosome in the presence of 
indicated SR mutants measured with distal probes. The measurement conditions were the 
same as Fig. 2.2.   
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Figure S2.3. smFRET histograms of NG-complex detachment activity of SR mutants. 
(A-E) smFRET histograms of signal sequence fused SRP bound to ribosome in the presence 
of indicated SR mutants measured with proximal probes. The measurement conditions were 
the same as Fig. 2.2.   
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Figure S2.4. smFRET histograms of SR compaction activity of SR mutants. (A-C) 
smFRET histograms of SR mutants in the presence of signal sequence fused SRP bound to 
ribosomes measured with compaction probes. The measurement conditions were the same 
as Fig. 2.3.   
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Figure S2.5. Structural model showing SRP-SR complex docked at the proximal site. 
(A) Structural model was generated by aligning SRP-SR complex structure in distal 
conformation (Kobayashi et al., 2018) to proximal structure (Voorhees & Hegde, 2015) using 
SRP54 homology. (B) Zoomed-in view of proximal site showing potential clash between X-
domain of SRa and ribosome.  
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Figure S2.6. Details of GTPase active site mutations. (A) SRP72 mutations are outlined 
along with sequence conservation of the region. The indicated sites were either truncated or 
replaced with flexible GS-linker to remove any specific interactions. (B) RNA mutations are 
highlighted. G232 that protrudes into the GTPase active site was deleted or mutated into U 
combined with A231 deletion. This mutation was designed to remove the 5f-loop 
completely.  
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