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ABSTRACT
This thesis contains investigations of the effects of a probability distribution of
the desired speeds of the drivers and of the effects of overtaking waiting time. It
deals only with traffic for which the density is less than the critical density. Part
I concerns simple approaches for assessing the effects for steady-state flow.
Part Il is a detailed formulation of integro-differential equations for the velocity
distribution functions. We prove that solutions to these equations exist, are
unique, are nonnegative, and are continuous along characteristics. We make use
of the simplifying assumption that, in lighter traffic, a car that has been slowed
by one car is unlikely to be slowed still further before passing. We examine the
possibility of constant speed, constant shape solutions, and we investigate some
special solutions as time approaches infinity. Delta function solutions are
found. For one case, we look at the difference between the velocity distribution
functions for models with continuous vs. discrete spatial distributions. We com-
pare the steady-state case for the model of Part II with that of Part I. Prelim-

inary comparison with observations is good.
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1. INTRODUCTION

In this thesis we consider several models of traffic flow. We consider the
effects of a probability distribution for the desired speeds of the drivers and of
the interference effects in overtaking. Each driver travels at his desired speed
unless delayed by other drivers; we specify a delay time during which the driver
travels at the reduced speed of the car ahead, after which he is free to pass and
resume his desired speed. Our models deal with only one lane of traffic at a
time, with the presence or absence of other lanes being accounted for in the
waiting time.

In a rough way the formulation is analogous to the kinetic theory of gases for
fluid fiow. We are interested in the velocity distribution of the individual cars
within a stream and its effect on the overall flow characteristics. The "collision
process' is the delay experienced in overtaking when a faster car arrives behind
a slower one. An important difference from kinetic theory is that a probability
distribution of the desired speeds of the individual drivers is posed as a given
part of the formulation of the problem and this is basic to the whole investiga-
tion. On the other hand, in kinetic theory the molecules remain at their new

velocities between collisions with no tendency to return to seme previous or

desired speed.

The thesis is in two main parts. The first part is limited to the steady-state
case in which the overall quantities, such as total density and total flow rate, are
uniform along the road and independent of time. Individual drivers have a dis-
tribution of speeds and experience delays, but the integrated quantities are con-
stant. In this first part, a relatively simple approach is developed by considering
the experience of a single driver moving relative to an average background pro-

vided by the rest. Then, taking his experience as typical, we derive equations for



the average behavior of the flow.

We compare the results of this investigation with actual measurements of
traffic flow. For one particular expressway, we find excellent agreement for the
left lane of a road with three lanes in one direction. The agreement is poor for
the right lane of this road, but this might be expected because of the influence

of drivers entering or leaving the road.

The second part is a more detailed study of the mutual interaction between
the cars in the stream, and integro-differential equations are obtained for the
velocity distribution functions. (This is analogous to the Boltzman equation in
kinetic theory, but the form is considerably different because of the different
interaction process and the underlying probability distribution of desired
speeds.) In this part, the basic formulation is for general time and space depen-
dence of the overall density, flow rate, etc. Various general properties of the
integro-difierential equations, such as the existence of solutions and the ten-
dency towards equilibrium over large times, are established. This more detailed
theory is also applied to the case of uniform flow conditions and compared with

the approach in Part I. For an appropriate range of variables, we find close

agreement.



2. SOME CHARACTERISTICS OF FREEWAY TRAFFIC FLOW

2.1 Introduction

This section is included with the idea that in order to have an accurate
sophisticated mathematical model of traffic flow, it is wise first to have a correct

qualitative understanding of the mechanisms involved.

Many researchers have studied traffic flow, continually bringing about a
better understanding of the subject. Unfortunately, some of the ideas of some
of the researchers neglect some important points. In order to clarify these
points for myself, | made a variety of measurements of traffic flow, along with

observing traffic without measurements and using the data of other research-

ers.

This section describes, sometimes quantitatively and sometimes qualitatively,
my conclusions and the reasons for them. Some of the measurements permit-
ted solid conclusions, while others pointed in a direction but would need
verification at other locations and under varied conditions. The samples fre-
quently consisted of several hundred vehicles so as to give a good measurement

at that particular location and amount of traffic.

2.2 Overview

There are two different types of traffic flow, namely, forced flow and subcriti-

cal flow.

Forced flow occurs where the capacity at some point in the road is exceeded
so that traffic backs up. The flow throughout the section is simply the capacity
of the bottleneck. Examples are: a point of reduction in the number of lanes, a

point at which an accident or breakdown has occurred (on or off the travelled
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lanes), an on-ramp adding to the demand so that the capacity is exceeded, and
an off-ramp for which the demand exceeds the capacity so that traffic backs up

onto the freeway. For forced flow, speeds are usually less than 35 mph.

Subecritical flow occurs on a section of rocad where the demand does not
exceed the capacity anywhere on the section and where no backing up into the
section has occurred from a downstream bottleneck, For subcritical flow,

speeds are usually greater than 35 mph.

A major point is that some phenomena are important in only one of the fwo

types of flow. Some authors try to use a phenomenon characteristic of one type

of flow to explain the other type of flow.

An example is the use of the mechanism of passing in subcritical flow to

explain forced flow. Of course, a phenomenon such as the flow-density curve is

valid for both types of flow.

2.3 Details of Forced Flow

2.3.1 Passing and Lane Changing: In forced flow, in the densest traffic, I have
found that I could change lanes frequently in less than 10 sec and usually in less
than 20 sec from the time I formed the desire to change lanes. I was highly
motivated to change lanes since my exit was coming up shortly. The only time I
could not change lanes quickly was when vehicles in the adjacent lane were at a
complete standstill. In measurements [ made [ found that, on the average, lane
changing from a forced flow lane occurred at rates varying from less than
.00055 changes/veh-sec to .0043 changes/veh-sec. For a single vehicle this

would be from more than 30 min between changes to about 4 min between

changes.
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Thus, the time necessary to change lanes is much smaller than the average

time between lane changes.

Lane changing is not the same as passing. I[n fact, in the measurements [
made, lane 1, the median lane, had a slightly lower average speed than lane 2,
yet far more vehicles changed from lane 2 to lane ! than vice versa. These
measurements were taken on the eastbound 134 Freeway slightly before lanes 3
and 4 join the 5 Freeway. Lanes 1 and 2 were in forced flow, while lanes 3 and 4
were in subcritical flow. In 24 min of my observing forced flow, 32 vehicles
changed from lane 3 to lane 2, clearly in order to stay on the 134 Freeway. In
the same time 24 vehicles changed from lane 2 to lane 1. This was not for the
purpose of passing since lane 1 had a lower average speed. Shortly beyond this
location the 134 Freeway widens again, adding lanes on the left, so this lane

changing may have been to avoid being in the right-hand lane.

In the same 24 min only 3 vehicles changed from lane 1 to lane 2. These
could be for the purpose of passing, but the average rate is equivalent to more
than 30 min between changes for a single vehicle and so is only a minor

phenomenon. For subcritical flow an average single vehicle would change lanes

every 1 1/2 to 2 min.

Finally, in the same 24 min only 5 vehicles changed from lane 2 to lane 3.
Once again, this is equivalent to a very long time between lane changes for a sin-
gle vehicle and so is of minor importance whatever the reason for the lane

changes.

I believe that, in forced flow, lane changing for the purpose of passing is only
a minor phenomenon. If one lane has a higher average speed than the others, a
driver can move to that lane, but then he is stuck. Other reasons for lane
changing may be to pick a lane the driver is comfortable with when entering the

freeway or to get to his exit when leaving the freeway.
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2.32 Continuity of Speed: Nonmeasured observalions indicate that, at any one
instant, speed is a smooth function of distance for forced flow as opposed to
there being a probability distribution of speeds for subcritical flow. An analogue
to forced flow that comes to mind is that for each lane the traffic is like a giant
'Slinky'” spring moving along the road with an cccasicnal wave propagating along
it. This indicates that the probability distribution formulation is not appropri-

ate for forced flow in one lane.

Several models which contain a probability distribution of speeds have faster
vehicles catching up with slower vehicles. This does not apply in forced flow
since, essentially, each vehicle is already caught up with the vehicle ahead. The
Highway capacity manual (Fig. 9.1, p. 264) gives a flow-velocity curve which is
extremely well fitted by assuming an effective car length of 36 ft and 0.92 sec
gap from the rear of the lead vehicle to the front of the following vehicle. A vehi-

cle that is 0.92 sec behind another vehicle does not have any catching up to de.

2.8.3 Causes of Speed Variation:

2331 Stop and go traffic Stop and go movement in traffic is caused by a lead
vehicle slowing slightly (from random acceleration or a car pulling in front of it)
and the following vehicle first getting too close then reducing speed below that
of the lead vehicle so as to achieve a more satisfactory headway. If enough vehi-
cles do this, the traffic will reach a point where some vehicles are completely
stopped. On the other hand, scme drivers leave more headway which they use to
delay the time at which they must slow down and they do not reduce their speed
below that of the lead vehicle. This kind of driver tends to dissipate propagating
disturbances. A disturbance will dissipate, persist, or grow to a complete stop,
depending on how many of each type of driver there are. A driver can be of one

type when the difference between his speed and that of the lead car is small and
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of another type when the speed difference is large. One simple model for these
drivers indicates that a disturbance will dissipate in the presence of drivers with
a reaction time that is less than the time gap to the vehicle ahead. If the reac-

tion time is greater than the time gap, the disturbance will grow.

I have seen speed variations of from 0 to 44 mph. Also, I have seen speeds
double {or halve) in about one minute, with essentially all vehicles staying in the

same lane.

2.3.8.2 Handom fluctuations Drivers do not maintain exactly constant speeds.

There is a random fluctuation of approximately 2 to 5 mph.

2.3.83 Lane changing Cars entering or leaving a lane cause the following
drivers to open or close the resulting changed gap. Sometimes they do this
immediately and sometimes they do not. A simple model indicates the speed

change could be 5 te 10 mph. My own driving behavior is in this range.

In a special case, 1 have seen a delayed reaction to vehicles entering a lane
result in very high flow rates, on a short section of the lane immediately follow-
ing an on-ramp, for short periods of time. Typical cbserved flows have been 1.00
veh/sec for 22 sec and .81 veh/sec for 90 sec. The Highway capacity manual
gives .55 veh/sec as the maximum long-term flow averaged over all lanes and .67
veh/sec as the maximum 5 minute flow for one lane. The phenomenon that
occurred was that the on-ramp traffic merged with the shoulder lane traffic and
the drivers accepted excessively close spacing for a short time, then changed

lanes to allow normal headways.

2.3.34 Different lane conditions A condition affecting one lane but not others
can cause very large differences in the speeds of the different lanes. One exam-
ple is the lane going teo the Hill Street off-ramp of the southbound Pasadena

Freeway moving at 45 mph while the other lanes are stopped during the morning



rush hours.

234 A Simple Model of Forced Flow: One possible model for forced flow is given

by:

Xn—1{t) = position of a car at time t,

xx(t) = position of the following car,

Trn = response time of driver n,

Thn = desired time gap from the front of car
n to the rear of car n-1,

L = effective length of a car,

an. Pn = magnitude of the acceleration

response to velocity differences
and space headways, respectively.

Tk Thn, 8n, by are randoem functions of n.
X(t + Tra) = an(¥--1(t) — x4{t))

+ bn(xp 1 (t) = xp(t) —L— Thnxxri(t)) .

Note that for equilibrium x, = X, = %, = 0, thus x,-; — X —L — TppXy = 0. (This
equation very closely fits the curve in the Highway capacity manual (Fig. 9.1, p.
264) for forced flow from jammed conditions almost to the critical density (den-
sity at maximum flow) (L = 36 ft, Tp, = 0.92sec)). Several researchers have

equations similar to this but that do not have anything to force a reasonable

equilibrium solution.

A model for forced flow which is derived from detailed mechanisms ought to

include parameters and concepts associated with the above.

A continuous version of the above is given by



xu(y.t + Tr) = ah{y,0) xp(yt)
+ b(h(y.0) xy(y.t) =L — Trx{y.t))

where

x{y,t) = the position of car y at time t,

x(y.0) =0

h(y.t) =the space headway of car y at time t.
This is one possible model that could be used in place of a model with a proba-
bility distribution of speeds. This continuous model dees not have different

characteristics for the different drivers.

2.3.6 Desired Speed Desired open road speeds play no part in forced flow since
no one ever attains his desired open-road speed. To a first approximation, a

driver’s speed is the same as that of the driver ahead of him.

As traffic goes from light to moderate to capacity, the desired speeds of the
drivers may drop on the order of 10 mph. In particular the slowest drivers'
desired speeds go from about 45 mph in light traffic to about 35 mph at capac-
ity. My casual experience has been that [ have seen drivers at about 45 mph in
light traffic but not at lower speeds. One way to envision the effect of slow
drivers is to note that at lighter than capacity flow the slowest drivers can
always go at their desired speeds. As traffic goes from light to capacity, the abil-
ity of faster drivers to pass and to go at their desired speeds diminishes, until at
capacity there is no more room left for increased speeds, so everyone goes at

the speed of the slowest drivers,

The desired speeds of drivers do not drop below this. As mentioned before,
one lane of the Pasadena Freeway was going 45 mph while the other lanes were
stopped. This indicates that even in the heaviest congestion a driver's desired

speed (the speed he will go if not blocked) will drop to maybe 45 mph for an
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average driver and 35 mph for the slowest drivers,

Two sources (Highway capacity manual, Figs. 3.26-3.28, and Edie et al. 1980,
Fig. 2) indicate that there is a very large decrease in the spread of speeds as

traffic goes from light to capacity. This tends to confirm the above.

2.4 Details of Subcritical Flow

2.4.1 Distribution of Speeds: One obvious characterstic of traffic is that vehicles
move at different speeds. The standard deviation of velocity varies from 9 mph
at low density to 0.5 mph at capacity (Highway capacity manual, Figs. 3.26-
3.28). Edie et al. (1980, Fig. 2) indicate the standard deviation varies from 7

mph to 2 mph.
The distribution of velocities is close to normal.

A useful calculation for determining the time scale involved with one vehicle
catching up with another is the following. For two vehicles, picked at random

from a normal distribution with a standard deviation of 5 mph, the speeds being

v, and vy, we have the expected value of |v, —vp| = \%__-5 mph = 8 mph.
24.2 Passing and Lane Changing Another obvious characteristic of subcritical
flow is that frequently one vehicle will come up behind ancther and pass, with or
without being delayed. To pass it is necessary, but not sufficient, to change
lanes (except for motorcyclists, but they are few and have only a minor impact
on traffic). In measurements I made, I got the following rates of lane changing
expressed in time between lane changes for an average driver.

Flow veh/sec-lane 37 43 .38 .45

Time between changes sec 131 115 94* 1200*

* Freeway interchange probably had a large effect.
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My time from forming a desire to change lanes to making the
change is usually less than 10 sec and frequently as low as 3 sec in
light traffic. This is much less than the average time between changes
given above. If a driver is coming up behind a slower driver and he
anticipates wanting to change lanes to pass, he can accomplish the

lane change with no less of time during his approach.

One author has equated the time to make a lane change with the
waiting time before it is possible to pass another vehicle. This is not
justified. The waiting time to pass depends primarily on two things: (1)
the time before a driver decides he wants to pass, (2) the presence or
absence of vehicles blocking the passing maneuver and the length of
time of the blocking effect. I have measured the former to be from 0
sec to several minutes even in light traffic. Some people just like to fol-
low others, or possibly each driver has a range of acceptable speeds. In

light or moderate traffic, the first factor will overshadow the second
factor.

Incidentally, the average time during a lane change from the time
the tires on one side of the vehicle touch the lane line to the time the

tires on the other side touch it is 1.8 sec.



PART I

EQUILIBRIUM
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Traffic flow can be divided into two regions based on density. Let k. be the
critical density at which the maximum flow occurs. Subecritical flow occurs for
k < k¢ and is characterized by there being enough room on the road for passing
to occur and for some drivers to be able to go at their desired speeds. The dis-
tribution of desired and actual speeds, and the waiting time to pass are impor-
tant phenomena. Forced flow occurs for k > k.. Forced flow usually consists of
traffic that has backed up due to the demand exceeding the capacity at some
point downstream. Two geometrical configurations that can lead to this are: a
reduction in the number of lanes and an on-ramp. Forced flow is characterized
by there being no room on the road for a driver to go at his desired speed, by
each car going at a speed nearly equal to the speed of the car ahead, by each
driver choosing his average headway (distance from one car's front bumper to
the front bumper of the car ahead), and by the nature of the response of each
driver to acceleration of the car ahead. Essentially no passing occurs in forced
flow. A driver can get into the lane that is moving fastest, but then he is stuck.
Instability occurs in forced flow, but not in subcritical flow, because in subcriti-
cal flow there are only a limited number of cars following one another closely
before there is a large gap. A disturbance can start and grow as it moves back,
but when it reaches the large gap, it will die. In forced flow there are essentially

no large gaps, and disturbances can grow and persist.

Some authors in their models of forced flow have included passing, which is
not significant, and have failed to include the reaction of each driver to the
acceleration of the car ahead, which is very important since the instability it
can cause is one of the major phenomena of forced flow. Of course, there are
some phenomena, such as the flow-density relation, which apply to both subcrit-

ical and forced flow.
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In our model we deal with a uniform stream of cars traveling along one lane
of a road. In subcritical flow each driver has his own desired speed at which he
goes unless blocked by other cars. In forced flow he has his desired headway, his
speed being the same as the car ahead. Our model focuses on subcritical flow
and not on the details of forced flow. The desired speed is a function of the
average density k of cars on the road since a driver will reduce even his desired
speed as critical density is approached. That is, the desired speed refers to the
driver’s realistic assessment of how fast to go in the particular traffic situation.
However, there will be a probability distribution of desired speeds. When a
driver, going at his desired speed, comes up behind a slower car, he reduces his
speed to that of the slower car. After waiting a specified time W, he passes the
slower car and resumes his desired speed. The times taken to decelerate and
accelerate can be incorporated, to some extent, into the choice of W. We note
that, among other things, W will depend upon the density k, on which lane is

under consideration, and upon the number of other lanes.

An individual driver will go at a velocity u which has a dependence on k of the

type shown in Figure 1.

max

; kK
“max

Figure 1. Velocity-density curve.

When the density is low, he will choose a maximum speed Upax controlled by his
own view of safety or by the speed limit. As k increases the velocity will decrease
monotonically to zerce as k » Kpnay the jammed density for the road. Another

plot of this would result from considering u as a function of the headway h =1 /.
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This plot would take the form shown in Figure £ where L is the average distance

between cars {front bumper to front bumper) in the jammed condition.

L h

Figure 2. Velocity-headway curve.
In a simple reaction time model, the safe headway is given by
h—-L=uT
where T is the reaction time of driver and car. If this is combined with a cutoff

at a maximum speed U, we have

QT_—th h, = ug,T + L

USlu,  h=>h. (1)

h0 h

EA

Figure 3. Velocity-headway curve.

If all drivers had the same curve for u(k), then the total low would be given
by

q = ku(k) .

The g-k curve corresponding to Figure 1 is shown in Figure 4.
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Figure 4. Flow-density curve,

For the reaction time model in Figure 3,

(1 -KL)/T 1/L= k= 1/h,
9= lky, 0< k< 1/h,.

as shown in Figure 5.

q

Figure 5. Flow-density curve,
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3. THE EFFECT OF RANDOM DESIRED SPEEDS WITH FREE PASSING

In this model we allow each driver to have his own desired velocity-headway
curve, thus adding an element of reality that the first model lacked. Suppose
the velocity-headway curves are parameterized by the parameter b which
represents the type of driver, so that u = u(h,b). Assume that each driver is
affected by the same average headway as any other driver. Also assume that
drivers are able to pass freely, so that a driver's speed is determined solely by
his velocity-headway curve and by the average headway. Let p(b) be the proba-
bility density function for b, and let v(h) be the ensemble average of the desired

speeds, so that we have the relations
v(h) = [ u(hb)p(b)db, (3)
q =kv(h). (4)

To give an example let 0 < b < 1 and let

0 h< L

u(h,b) = {(th -L)/T L< h< (1-b)h;+bhy (5)
((1—b)th+bh2—L) (1-b)h; +bhy < h

p(b)=1. (6)

This is shown in Figure 6. For this example there is a uniform distribution of
desired top speeds. If we let § be the Dirac delta function and H be the Heaviside

step function and u = (h—L) /T, we can write the probability density of desired

speeds as
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6(s—u)
— L h<h
puls) = | (s —u) + H(s—u,) H(u~s) ’ (7)
Upg—, Uz—, hls h< hg
u2;u1 H(s~u,) H(ug—s) he< h .
u

L h1 h2
Figure 8. Desired velocity-headway curves.

Upon substituting (5) and (8) into (3) and (4), we get the average velocity-

headway relation and the flow-density relation.

q(k) =

[ h-1,

T L< h< h,
1 2up(h-L) h-L)?
Z(Uz—ul) T - ( TE) _ulz) h;< h=<h, (8)
u;+u
12 2 heh
[ 4
1—kL : .
T u, T+L
k 2ug(1-KkL) _ (1-KL)? ) 1 e . %
2(ug—uy) kT K2R D T %= e
k(u,+ug) . . |
¢ uT+L

\

In Figure 7 the dashed line is the simple flow-density curve, Equation 2, with top

desired speed (u,+us)/R. So the effect of allewing various maximum desired

speeds with free passing is simply to round off the peak of the flow-density curve

leaving the remainder unchanged. Moreover, the change is limited to a small

range for realistic values of T, L, u;, and uz. It is interesting that there is so little
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1 1 k
U, T+L u, T+L
Figure 7. Flow-density curve for free passing.

change that it might well be neglected. However, we get a significant difference
when we also incorporate interference with overtaking and a waiting time to

pass.
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4. RANDOM DESIRED SPEEDS WITH A WAITING TIME TO PASS

We now add to the previous considerations the condition that, before one
driver may pass another, he must wait a fixed time W before traffic conditions
permit passing. He then instantaneously increases his velocity to his desired

speed and maintains this velocity until he again encounters a slower car.

First we consider a stream of cars all with speed v and density k, and one
driver who desires to go faster than v, say at speed u. The fast car goes at speed
u until blocked by a car in the stream. It then goes at speed v for time W after
which it passes the slow car and resumes velocity u. This process is repeated
indefinitely. We now consider the average number of delays and determine the
average velocity of the fast car. If s is the average speed of the fast car, we
argue that in unit time the fast car goes a distance (s-v) farther than the other
cars, passing (s-v)k of them. Since it spends time W at speed v behind each of
them, the total time at speed v is (s-v)kW. The remainder of the time, 1-(s-v)kW,

is spent at speed u. Therefore, the average speed of the fast car is
s = (s—=v)kWv + (1 = (s —v)kW)u .

Solving for s we find

g = u+kWu-v)v . (10)

1+kW(u—v)

Next we use (10) in a situation where each driver has his own desired speed.
If a driver's desired speed is u, we would expect him to be delayed only by
drivers with desired speeds less than u. We would further expect his average
speed to be given approximately by (10), wherc v is the average speed of all
drivers with desired speed less than u, and k is the density of cars with desired

speed less than u.



—21~

Equation 10 is exact if all the slow cars have speed v. However, when v is the
average speed of the slower cars, (10) is only approximate because the fast car
passes more cars with speed less than v than cars with speed greater than v.
This decreases its average velocity from that given by (10). Improvements on
(10) lead to complicated equations. We use (10) with the thought that it is a
first approximation and that modification of {10) is not justified unless we make

improvements in seme of our other assumptions as well.

We now define

P(u) = the fraction of drivers with desired

speeds < u

_ dP{u)

p(w) = =3-
ke = the total number of cars per unit
length of road.
P(u) and p(u) are the probability distribution and density functions of the

desired speeds. Clearly we have

k(u) = koP(u) (11)
for the average density of cars whose drivers have desired speed less than u.
Substituting (11) in (10), we have

_u+Wk,Pu)v{u) (u—v(u)) ;
() = W B (0 = () (12)

where v(u) is the average velocity of all cars whose drivers have desired speed

less than u. If we average over the speeds s(u) ¢ ‘ndividual drivers, we get

[s(2)p(2) dz . (13)

Using (12) in (13), we derive the implicit relation for v{u),
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1 27+ Wk, P(z)v(z) (z —v(2))

v = sy L W@ vy PO (14)
On differentiation this gives
dv(w) _ p(w) ___ u-v{u) (15)

du Plu) 1 +WkP(u)(u-v(u)

Thus we have a first order ordinary differential equation for v(u). We may get
an appropriate initial condition for this equation by considering the minimum
desired speed ug of all drivers. Since there are no slower drivers to delay those

with desired speed ug, these drivers go at their desired speed. That is,
v{ug) = us . (18)

Now we wish to solve (15) with initial condition (18). There appear to be no
closed form solutions, so we assume p{u) to be some particular function and

solve (15) numerically. We assume

1

—— Us< u< Uy

p(u) = {uy—us s
0 otherwise (17)

which implies
0 u< ujg
u—us
P = — < u<
(u) s Uz< u< Uy (18)

1 < u

We chose this form of p(u) for its simplicity. It may be considered as a first
approximation to the true probability density. ** this stage we are interested in

the general behavior of our model and not in .ie many refinements we could

make,

Substituting (17) and (18) in (15) we get
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( -
dv(u) _ 1 u-v(u) . (19)

du HUs 1+ Wk, ( 47ts ) {(u=v({u))
Uy —Ug

We eliminate the parameters in (19) by introducing new variables r and v'(r) as

follows:

Uy —Us
u = r+us, (20
(W13 — )" =0)
Uy —Ug .
v(u) = v'(r) +ug. (21
(Wio {1tz —u) " : =
Equations 16 and 19 become

v'(0) =0, (22)

av'(r) _ 1 _ r=vi(r) (23)

dr r 1+r(r—v'(r))
Equations 22 and 23 were solved numerically, the solution being shown in Graph

2.

An approximate solution (within 5%) to (23) is
. 1 - r
v (1") = —Z—Z—tan ! ( 5%—) . (24)

Equation 24 comes from making a guess for the function v'(r), substituting this
in the right hand side of (23), and then integrating. The guess was v'(r) =r/2

which matches the value and slope of v' at r = 0.

Formally, a power series solution of (23) for r near 0 starts with

3 5
r_r . r 19 o, .
> "6 "98 Tosaoa’ T : (25)

vi(r) =

Substituting a power series in }1— into (23) for large r gives

1,1, 289

V.(I") =1.16 - I‘_+ 5;—3— o (26)
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Thus we have a model which accounts for the effects of waiting time to pass
and various desired speeds. From (20) and (21) we see that the solution to our
equation is largely controlled bv the dimensionless quantity (Wko(u, —us))%. For

the sake of convenience we define

a = (Wko(u4 - Us))% :
Next, we note that a controls the range of r. Since the range of u is ug< u< u,
(20) implies that the range of ris

O0<sr=< a.

The parameter a contains the combined effects of waiting time to pass, density,
and spread of desired speeds. It is interesting to see how these phenomena may
work in different ways to produce the same effect. For example, if a is small,

then r is small and from (25) we have

Using (20) and (21) then yields

\.1+l.13
5 .

v(u) =

That is, the average speed achieved by drivers with desired speed less than u is
approximately the same as the average of their desired speeds. This can only
happen if the average speed achieved by each driver is close to his desired

speed.

If a is small due to short waiting time to pass, then each driver, although he
may be blocked frequently, spends little time at reduced speed. This causes his

average speed to be close to his desired speed.



-25-

If a is small due to low density, then each driver is only rarely delayed, so that
he spends most of his time at his desired speed. Once again, this causes his

average and desired speeds to be approximately equal.

If a is small due to a small spread of desired speeds, then any given driver
does not catch up with the driver ahead very quickly because his speed relative
to the driver ahead is small. So he is blocked infrequently, and his average and

desired speeds are about the same.

If Wk, is large, then a is large and (26) governs the behavior of the faster

drivers. Using only the first term in the series yields

1.16(1.14—113)
a )

V(Ll) = Us +
from which we see that the average speed of each driver is close to the minimum
desired speed uz. This may be explained in terms of a long waiting time or a

high density.

A feature of this model is that it does not require a knowledge of the fine
details of passing, since these are lumped into the single waiting time W. For
example, when one car is delaying two others, there are several ways te assign
the waiting times and to specify how many cars the rear car passes. Such
details do not affect the form of our model, and we expect our model to be

approximately true (with appropriate choice of W).
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5. APPLICATION TO THE FLOW-DENSITY CURVE

We are interested in the average speed of all cars, and this will be given by
v(uy). Upon using (20) and (R1) with u = uy, we get

Uy —u, . .
v(Ws) = (S v (Mo (s —us) ) + us, (27)

and the total flow will be

1‘{o(utl “Us)

q=kev(ug) = YAV ((Wiko(us —ug))%) + kous. (28)

Equation 28 gives the flow when the desired speeds of the drivers are uni-
formly distributed over the range uz to uy. Of course, us and u, depend on the

headway. Thus (28) becomes

_ %
q(ny = | 90D o i (0, () —ugm) ) +loua(n). (29)

In order to apply (29), we must determine ug(h) and u,(h) from some other

source.

We now apply the waiting time model to the velocity headway curves of Figure
6. For h< h,, all drivers have the same speed, so there is no passing. For h= h,,
the desired speeds are uniformly distributed between u; and u,, so that (29)

applies with uz =u, and uy =u,.

For h;< h< h,, there will be some drivers with desired speed u=(h—-L)/T,
while the other desired speeds are uniformly distributed between u; and u. We
average the speeds of these cars as follows: First use (27) to determine the aver-
age speed w, of cars with uniformly distributed speeds.

%

u—uy .
= |7 ([Wko(uz_u
Wko

—— Ly (u-u) #) +u,

H

Wi

Ug—U,
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u
where k( n
,

u
ul )} is the density of the uniformly distributed cars. Next we
1

assume that each driver with desired speed u has only to contend with cars

going at speed w,. Then (10) gives the average speed w, of these drivers, the

result being

u-u;

u + Wk wilu—w
) o o ilu =)
S 1+ Wk, = —w))
-w

0112—1.11 1

The average speed v of all the cars is

u—u, Uz —u
w; +
Uz —U; Uz — Uy

v = Wy .

Combining the above gives the following formula for flow:

(

k
T‘)—(h—L) h=<h,
q = TypurTy ((u—up)w; +(ug —u)ws) h;<h<hy
ko(u —'ll) *
(2P ([Weo(uz —u) ) +kouy  he<h
1
ko = E

(30)

(31)
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6. COMPARISON WITH EMPIRICAL RESULTS
In this section we compare (31) with the measurements from a study by May
and Wagner (1960). They investigated the Ford Expressway, near Detroit, which
has three lanes in one direction. They present a flow-density curve for each
lane. Scme of the parameters we use are determined from the measurements of
* 1y and Wagner, while the others are picked to be reasonable and to provide a

good fit. First we choose the parameters for the left lane:

At very low density the average speed of all cars was 80.7 ft/sec (55 mph). So
we require

u, +le

> =B80.7.

To make a good fit with the empirical curve, we choose
u; = 86 ft/sec (45 mph),
up = 95.3 ft/sec {65 mph).
The waiting time to pass W increases with increasing density. We choose the

linear relationship
W=2x 10%k, .
This is a waiting time of 200 sec at a density of .01 cars/ft (52.8 cars/mile). It is

around this density that a substantial reduction of speed starts to occur which

one would expect to be accompanied by a relatively long waiting time to pass.

According to May and Wagner (1960), the maximum density is between 200

and 225 vehicles per mile per lane. This is equivalent to 26.4 to 23.5 ft/vehicle.

Sc we choose

L=251t.

A reaction time



was chosen to match the curve.

We use the same parameters for the right lane, except that we choose

u; = 50.0 ft/sec (34 mph),

uz = 79.2 ft/sec (54 mph).

The curves are plotted in Graph 1. The solid lines represent the measure-
ments of May and Wagner (1960). The dashed lines are derived from our waiting
time model, while the broken line assumes neither a waiting time nor a range of

desired speeds.

For the left lane, Graph 1 shows reasonable agreement between the empirical
curve and our model without a range of desired speeds. The use of desired

speeds and a waiting time causes the agreement to be excellent.

For the right lane, the agreement is not very good. This could be due to other
factors becoming important. One such factor might be the action of vehicles
entering or leaving the road which could cause deviations from the velocity-
headway curves of Figure 6. Another factor might be that drivers in the slow

lane tend not to pass; so that their average spead would be closer to the speed

of the slowest driver.
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Graph 1.

Flow-density curves on the Ford Expressway.
Solid lines redrawn from May and Wagner (1960).
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Graph 2. Normalized average speed v* as a function of normalized

desired speed r.



PART 11

THE DETAILED VELOCITY DISTRIBUTION FUNCTIONS
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7. ASSUMPTIONS AND EQUATIONS

We now consider a waiting time model with considerably more detail than in
Part I. We allow for the study of transient effects and give a very much more
detailed description of the velocity distributions of the cars. For this model we
assume a continuous distribution of cars along the road {as opposed to a
discrete distribution) and include a definite mechanism for passing. We make
some approximations to enable us to solve the equations and compare the

results with the previous waiting time model.

As before, we consider in this model a stream of cars on one lane of a mul-
tilane road where each driver has his own desired speed. Each driver goes at his
desired speed until he meets a slower car, at which time he decelerates instan-
taneously to the lower velocity. If no further delays occur, he accelerates
instantaneously to his desired speed after a time W. If on the other hand, both
cars meet a still slower vehicle, they both decelerate instantaneously to the
lower velocity. Once again, if no further delays occur, both drivers resume their
respective desired speeds at a time W after the last blocking. lf the rear driver
has the greatest desired speed, he passes both cars ahead of him at the same
time in order to achieve his desired speed. This process may continue for any
number of delays. The above description of the flow of traffic, together with ini-
tial conditions, is sufficiently detailed te uniquely define the position of each car

as a function of time.

To keep the model simple, we assume that the cars have zero length. A
consequence of this assumption is that each car in a multiple holdup can be

viewed as being blocked only by the lead driver, who is going at his desired

speed.

To describe the state of traffic, it is convenient to use two velocity distribu-
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tion functions. The first one g describes the distribution for drivers who are at
their desired speeds; the second one f refers to drivers travelling at less than

their desired speeds. We let

X = position on the road,

t = time,

s = actual speed of a car,

u = desired speed of a driver,

T = time since the last delay.
The number of drivers with position between x and x +dx, actual speed between
s and s+ds, desired speed between u and u+du, and time since the last delay
between T and T+dT is given by f(x,t,s,u,T) dx ds du dT. Similarly, the number
of drivers going at their desired speed in the box (x,dx) x (u,du) in (x,u) space is

g{x,t,u) dx du.
Equations for f and g are obtained by writing equations for the conservation
of cars. We consider the conservation for a small box

D =dxdsdudT

in (x,s5,u,T) space. Then, using subscripts to denote partial differentiation, ;D is
the rate of increase in the number of cars in this D box. This increase will be
due to three things: streaming in x, streaming in T, and s cars meeting slower

cars.
The increase due to streaming is

—{sfx +f1)D . (32)

To get the increase {decrease) due to delays, we take expected values from

the foHowing probabilistic model. We first consider two cars: one with speed in

(s.ds), the other with speed in (z,dz), and both in (x, dx) x (u,du) x (T.dT). For

the s car to be delayed, we must have z< s. In time dt the s car moves a distance
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(s —2) dt relative to the z car. We now assume that the positions of the s and z
cars are uniform random variables. That is, the probability that the s car is in
(¢,d¢) is d¢{dx) !, independent of ¢. The probability that the s car will meet the z
car is then (s —2z)dt(dx)™'. There are f(x,t,5,u,T)D, s type cars and g(x,t.z) dx dz,

z type cars which can effect a delay. The probability that one of the s cars will

meet any of the z cars is
(s —z)dt(dx)!g(x.t,z) dxdz .
The expected number of s cars meeting z cars is
(s—z)dt(dx)'g(xt,z)dxdzf(x,t,s,u,T)D,
and the rate of such meetings is
(s—z)g{x.t,z) f(x,t,s,u,T)Ddz .

We integrate to get the rate of s cars slowing to any speed (not just to z), and the

result is
8
f(x.t,s.u,T) f (s—z)g(x.t,z)dzD . (33)
¢}
On combining (32) and (33), we get
8
fux,tsu,T) = —sfy —fr—f f (s—z)g(xt,z)dz . (34)
[+]

At T = 0, the rate of change of f is due to four things: streaming in x, cars
slowing to speed s, s cars slowing down, and cars passing out of the range (0, dT)

by waiting at reduced speed long enough for T to become greater than dT.
The rate of change of f due to streaming in x is
—sizD . (35)

The rate of change due to T becoming greater than dT is
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—f{x,t,5,u,dT) dxdsdu . (36)

The change due to cars slowing to speed s comes from cars at their desired
speed u slowing to s and from cars at a speed z (u> z> s) slowing to s. As
before, the probability of one u car being slowed by a single s car is

(u—s)dt(dx)™! The expected number of u cars slowing to s is
(u—sg)dt(dx)tg(xtu)dxdug(x.ts)dxds
with the rate
(u—s)g{x.tu)g{x.t,s)dxdsdu . (37)

The rate of z cars slowing to s is

W
(z—5s) (dx)"lf f(x,t,2,u,T)dT dxdzdug(x.t.s)dxds.

[+]

The total rate of z cars {u> z> s) being delayed by s cars is
u w

g(x,t,s) f f (z—s)f(x,t,z,uT)dTdz dxdsdu. (38)

] 0

As in (33) the rate at which s cars are delayed is
3
f(x,t,5,u,0) f (s—z)g(x.t,z)dzD. (39)
Lol
The changeinfat T =0is

fu(x,t,s,u,0)D, (40)

Since D is of smaller order than dx ds du, we can neglect (35), (39), and (40).
The conservation of cars at T = 0 is expressed by combining (38), (37), and (38)

to get
f(x.t,s,u,0) = (u-s) g(xt.u) g(x.t,s) +
g(x,t,s)f uf w(z—s)f(x,t,z,u,T)dez. (41)

The rate of change of g comes from: streaming in x, drivers at their desired

speeds being delayed, drivers returning to their desired speeds. Arguments
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similar to the above give
u
gudx.t,u) = —ugy + ff(x,t,z,u,W) —(u-z)z(xtu)gixt,z)dz . (£2)
C

Equations (34), (41) and (42), together with initial conditions, determine f

and g uniquely. Appropriate initial conditions are
£(x,0,suT) = f'(x,s5uT) (43)
g(x.0,u) = g'(x.u) . (44)

For consistency we require that f'(x,s,u,0) satisfy (41). For actual traffic it is

certainly reasonable to assume that f' and g" are nonnegative and bounded. So

we require
0< <= A and (45)
0<g'< B (46)

where A and B are constants. (We also assume that f* and g’ are Riemann

integrable.)

We now discuss the reasons for choosing these particular variables. We could
represent the drivers who are at their desired speeds by f(x,t,u,u,T) instead of
g{x,t,u). But this presents two difficulties. First, the variable T is not applicable
to drivers at their desired speeds. Second, the behavior of f(x,t,s,u,T) for s near
u would be that of the Dirac delta function é{u—s). In any event, detailed
analysis of the equations would require separate consideration of these two

difficulties, so there is no increase in complexity due to the use of both f and g.
We make f a function of s, and g a function of u in order to write the delay
terms of our equaticns.

We require f to depend on u to write the f term in (42). This term represents

drivers returning to their desired speeds, and, unless {f depends on u, we do not
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know to what speed to return the drivers.

The variable T is used to tell when a driver should return to his desired speed.
Another mechanism for the return to desired speed is to have the return occur
at a rate proportional to f. The proportionality constant could depend on

several variables. The variable T could be included in, or eliminated from, this

mechanism.

We can eliminate f from (42) if we assume there are no multiple delays. A
multiple delay occurs when a driver, having once reduced his speed, must
reduce it again before passing. When there are no multiple delays, a driver will
be slowed for exactly a time W, and the rate of drivers returning to their desired

speeds at time t is equal to the rate of delays at time t-W. That is, the f term in

u u
(42) becomes ff(x,t,z,u,W)dz=f(u—z)g(x—zW,t -Wug(x—zW,t-W,z)dz. As we
[e] o]

show later, when there are no multiple delays, we can find an explicit formula

for f in terms of g, thereby entirely eliminating f from the system of equations.

Next, we integrate our equations along characteristics to get a set of non-
linear integro-difference equations to solve. For easy reference we rewrite the

integro-differential equations here.

S
fi(x,tis,u,T) = —sfy —fr—f f(s—z)g(x.t,z)dz , (34)
[¢]
u W
f(x,t,s,u,0) = (u—s)g(x,t,u)g(x.ts) +g{xt s) ff(z -s)f{x.,t,z,u,T)dTdz, (41)
8 ©
|58
gix.tu) = —ugx+ff(x,t,z,u,W) —(u-z)g(x tu)g(x.t,z)dz, (42)
[e]

f(x,0,5u,T) = £'(xx,s,u,T), (43)
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g(x.0,u) = g'(x,u) . (44)
0<ft'< A, (45)
0<g'<B. (48)

We first notice that (34) is a linear partial differential equation in f. The

characteristics, with parameter y, are given by the system of equations

dt _, dx _ dT _
dy_l' iy - dy—l (47)
Along one of these characteristics we have
df _ :
b ~f f(s ~z)g{x,t,z)dz . (48)
y o
Upon letting
S
G(x.t:s) = f(s—z)g(x.t.z)dz, (49)
Q
equation (48) becomes
daf _
dy fG . (50)

Suppose that, for y = 0, we have x=x,, t =t,, T=T, The characteristics are then
t=to+y, x=%X,+538y, T=T, +y.
We now distinguish between two types of characteristics:
1. those with t < T and

2. those with t > T.
For the former we set t, =0 while for the latter we set T,=0. Figure 8 displays

the characteristics. The solution to (50) is

For Lype 1 characteristics (51) becomes
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W T

Figure 8. Characteristics for the time variables of Equation 34.

y
. — J G(x,+s€.¢,5)d
f(xO + SY:Y.S,u,T°+y) —_.f (XO’S,u'TO)e [ ( o é E S) g '

For type 2 characteristics (51) becomes

Y
~ } G(xo+sé to+€,8)d
o+ sy.toy5.0) =Kt tosoe % O St 60,

Upon changing variables, we get

t

—fG(x—st+s$,$As)d$

HxtswT) = f'(x—stsuT-t)e % o fort< T (52)
(xtsuT) = — [ G(x—sT+s£t—T+£5)dE
f(x—sTt-T,s,u,0)e o fort> T. (53)

By integrating along characteristics, we may put (42) into the form of an

integro-difference equation. The characteristics are
X=X, +uy t=y, (54)
and (42) becomes

E—E— = [ui f(x,t,z,u,W) —(u—2z)g(x,t,u)g(x.t,z)i{dz . (55)

Therefore,

Yy u

g(x, +uy,y.u) =g'(x,,u) +f (%, +uf €,z,uW)

o]

—(u—2)g(x,+ut fu)g(xe+ué £, z)§dzde,

and upon changing variables we get
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tuw

g{x,t,u) =g'(x—ut,u) +f Hx—ut+ug &,z,uW)

©

—{u-z)g(x—ut+uf £ u)g(x—ut+uf ¢, z)]dzde. (56)

Next we substitute (52) and/or (53) into (56). If t < W, then in (58) ¢ < W so we
may use (52) alone. If t= W, we split the integral in (56) into two integrals: one
from 0 to W, the other from W to t. Equation 52 is substituted in the first

integral, while (53) is used in the second. With the use of (49), we get

tu
g(x,t,u) =g’(x—ut,u) +fff'(x—ut+u£—z$,z.u,w—£)
£ 2

o~ JleOalxmuthugran—atmi)dtan |

f u-z)g(x—ut+ué, £ u)g(x—ut+uf,£,z)dzdé fort< W, (67)

]

g(x.t,u) = g'(x—ut,u)

& z
W u - - — —
+fff'(x—ut+u$—z$,z,u,W-—£)e [[(Z Oglx—ut+uf Z$+ZT]'7}’6)(16(:177dzdg-‘
¢ ¢ ¥
t u - —_ — — —
+f f f(x—ut+ufé—zW,£—W,z,u.0)e ‘[’[(Z Oalx-ut+ug+an—zW.¢ V\H-n'@dédndzdg
—f f (u—z)g{x—ut+uf £,u)g(x—ut+uf,£,z)dzdé fort> W. (58)

Similarly, when we substitute (49), (52,) and (53) into (41), we get

f(x.t.s,u,0) = (u-s)g(x.t,u)g(x.t,s)
T z
- —zTt-T+£&n)dnd
th)f f z—s)f(x—2T t-T,z,u,0)e _{[(Z—’V})g(x+zg zTt-T+£m)dn ngd

tz

u w _ 2T d
g(x.t,S)f f (Z—S)f‘(x—zt,z,u,T——t)e jo-[(z_"?)g(x+zf ZT E n)dn Ede
8 t

fort< W, (59)
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f(x.tsu,0) = (u-s)g(x.tu)g(x.t.s)
u W _ Py T t—
+g(x,t,s)f f (z—s)f(x—zT,t-T.z.u,0)e [[(z—ﬂ)g(xﬂg zT.t T+g,77)d77dng

o]

dz

for t> W. (80)

We notice that (57) is an integro-difference equation in g alone, and the t
argument of g, wherever it appears, is limited to the range 0< t< W. Thus (57)
is uncoupled from (58)-(60), so we may work with it independently of the others.
The same remarks apply to (59) once the solution to (57) is known. Similarly,

we may use (58) and (60) alternately to extend the range of t in steps of W.
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8. EXISTENCE AND ELEMENTARY PROPERTIES OF SOLUTIONS

In this section we prove that there exists a solution to the set of integro-
difference equations, {52), (53), (57)-(60), which is bounded, nonnegative, and
continuous along characteristics. We also prove that there is only one solution
in the set of all bounded, integrable functions which satisfy the equations. Note

that any solution to these equations also satisfies (56).
First we consider solutions which are integrable and for which a bound
M(t;u,) exists; that is,
lg(xtu)] < Mt ), (81)

[E(xt,s,u,T)] < M{tuy) . (82)

for

—e L X< o, 0=t t;, 0=, 0=susy, 0T W.
Inequalities 81 and 62 hold for all u; and t,, and nowhere is M(t;,u,) infinite.
We now show that g is continuous along the characteristic
X —ut = ¢ = constant .

Along this characteristic, {(56) becomes

i3

t
gle+uttu) = g'cw)+ [ fif(c+ué.¢zuwW)

[+]

—(u—2z)glc+ut.éu)glc+ud £z)jdzde . (63)

We must show that g{c+ut,t,u) is a continuous function of t. Restricting u to be
less than u; and t to be less than t; yields, by (61) and (62), that f and g are
bounded. Since f and g are bounded and integrable, the integrand in (83) is
bounded and integrable, and hence the integral in {63) is continuous. g'(c,u) is
a constant function of t. Hence, g{c+ut,ut) is continuous for u< u; and t< t;.

Since u; and t, are arbitrary, g is continuous along characteristics for all



uand t.
In a similar manner we may use (52) and {53) to show that f is continuous
along the characteristics

X —st = ¢ = constant ,
T —~t =d = constant .

Next we use a proof by contradiction to show that g is nonnegative for t< W.
The proof that g is nonnegative for t> W and that f is nonnegative follow later,
since the nature of the equations forces us to consider first g for t< W, then f

for t< W, then g for W< t< 2ZW, ete. Suppose that for some (X,tp,u) we have
g{xtzu) < 0. (84)

We consider the quantity g(c+ut,t,u) for 0< t< t; where c=x—ut, This gives
the values of g on the characteristic through (x,t;,u). At one end of this charac-
teristic we have t=0 and g=g'(c,u)> 0, while at the other end t=t, and
g=g(x.tp,u) < 0. Since we have shown that g is continuous along characteristics,
there must be some t between 0 and t; for which g=0. In fact, there is a largest

t, say t;, such that g(c+ut;,t;,u)=0. This t, is defined by

t; =supft | 0st<ty, gle+uttu)=03}.
Continuity of g implies that t;, < t; and

glc+ut, t;,u) =0. (85)
Thus we have

gle+uttu) < 0 for t; < t< ;. (66)

If we evaluate (57) along the characteristic and split the integrals, we get an

equation of the form
» t‘ t
gle+utt,u) = g'lc,u) + f+ _[ : (87)
c 1
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But by (65) we have

t
g'lcu) + fl =g(e+ut; t,u)y=0.
(<]

Since the initial function f is assumed to be nonnegative, the term in {(57) con-

taining f* is nonnegative. Upon combining the above, (67) becomes

t u

gle+utt,u) = -—f f(u—z)g(c+u$,$,u)g(c+ué,$,z)dzd£

ty o

fort, < t

Using inequality (81) allows us to write
a 1
If (u—z)glc+u¢,éz)dz| < e EM(tg,u) .
-]

1

Upon letting N = >

t
glc+uttu) = N[ glc+ué fu)de .

Repeatedly substituting inequality (69) into itself yields

t 61 3 En—l
gle+uttu)= N“_[ S/ fz o [ glec+uén.épu)ds, -

1 oY 1

v

t en—l
N“[l [ ~ Mtz u)de, - df

(t—t)"
n! '

v

- M(tz,u)Nn
Upon letting n approach infinity and t = t,, we find

glxtzu) = glc+utatau)= 0,
contrary to assumption (64). Thus we have shown

gixtu)= 0 for 0= t=s W.

te .

u®M(tz,u) and keeping {66) in mind, (68) becomes

d€zdéz df,

(68)

(69)

(70)
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In the following proofs of existence, nonnegativity, and uniqueness of solu-
tions, we restrict the range of u to 0< u< u,, where u, is arbitrary. After the

main body of the proofs, we remove this restriction.

To show the existence of a solution to (57) for 0 = t < W, suppose we have a
nonnegative solution for 0< t< t; (when t, =0 the solution simply consists of
the initial conditions). We show that we can extend this to a range

0=< t=< t; +dt, where dt is independent of t;. Thus the solution can be extended

totherange0< t< W. Let
h{x.tu) =g'(x— utu)+f f (x—ut+ué—zé&zuW—-¢) .

1

(z—@g(x —ut+ué+zn— zéng‘)dg‘dn

o ~n

dzdf
ho(x.tz,ué) = £ (x —ut +ué —z¢,z,u,W—¢) .
t oz
S [ (2= Oglx—ut+ug +am-2¢ mQ)dcdy

t u

hs(x,t,u) =f lf (u—z)g(x —ut +ué £ u)g(x —ut +uf £ z)dzdé
hy(x.tu) = h;{x,t,u) — ha(x.t,u),
C=B+AWu,.

Equation 5% implies that

t u t u
g{xtu)< B +f f Adzd¢ —f f (u—z)g gdzd¢
o] ¢} [« (¢}
< B+ AWy, =C for0= t< t,. {(71)

Since g(x,t,u) is known for 0 < t < t;, h;, hy, and hg are known for 0< t < . If

we define

H, =B+ AWu,, (72)



47~

Hg = Wu2C?, (73)
H4 - H1 + Hs s (?4>
we have the following bounds on h;, hy, hg, and hy.

0 < h;< H,,
0 < hpy< A,
0

Dy

A A
jmy
@
A
s
@

Let Qo be the operator defined by

t u - t 4 d
Qz(g) =jt' S ha(xtzug)e [1 [(Z Og(x —ut +uf +2zn—zén.$)d¢ ndzdg
ff (u—z)g(x —ut +uf £u)g(x —ut +ué ¢ z) dzds . (75)
1 Yo
Thus

glxtu) = hy(x,t.u) + Qz(e) .

Pick C; such that

C,> H,. (78)
Let

D, = eWuozcl , (77)

Ds = AD,u, + uZHZ , (78)

Dg = AD,udW + 2Cu? . (79)

Pick dt > 0 such that

Ds
Ds

Dgdt

[e —1J<C1“H4.

Fort; = t< t; + dt define
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go(x.t,u) = hy(x.t,u) (80)
gnni(xtu) = ha(x,tu) + Qelgn) . (81)
kn(xtu) = | gn(xtu) —goa(xtw) | . (82)

We use induction to show that

{ gn ] = C1 (83)
and
Ds (t—ty)"
kn= p-D§ —(— (84)
Clearly,
lgol = lhy| = Hy < Cy
t u
k,< [ [ AD, + (u —z)HZ dzd¢
131
t uo
< [ [ °AD, + u,HZdzd¢ = Ds(t ~t;) .
ty To
Therefore,

Ds . Dg(t—t;)
e —

Igllé1g°|+Igl—goisH4+D5(t—t1)$H4+-D—8—-[ 11<Cy.

Thus (83) and (84) hold for n = 1. Assume they hold for n—1; we must show they

hold for n. We need a bound on the difference of exponential functions of the

type occurring in (75). If y,< Y and yz< Y, then |e’'—¢’%| < Y]y, —yz|. Also

£ =z W u
| =f fz=0gm(x—ut +u +zn—2£ n,¢)dedn| < [ f 4,Cydédn = WuZC,

1A

for 0= (s W, O=2z<y,, O<m=<=n-1.

Hence,
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£ z
— ] J(z=Ognoy(x —ut + uf + 2 —2€,m,¢)dédn

-f S (z=Qgn-alx —ut+uf +2n-2¢ m,0)dedn

—e c o ‘

2 z
- eWuocl jf(z =k (X —ut+ué +zn—z£,n.0)dédn . (85)
[ J 85

Upon combining (82), (81), (75), (85), {77), and (73), we get
t u & z
kn(x.t,u) < [ S AD4[ J (2 = Qkn_y(x —ut +ug +z7—z¢ 1,0)dédn dzde
t u
+_[ f(u—z)Cl[kn_l(x—-ut+u$,$,u)+kn_1(x-ut+u$,$,z)]dzd$. (86)
1 "o

Inequality (84) then yields

u D D n-1i
K (x.tu) < f f AD, f f : e I(;’ 1t)!) dédndzdé

Mo, . Ds DFTHE—t)"!
+jt:f2 CID: . 3zd¢

[ ( _l)!
t u W -1 n-1 n
0 Ds DF'(¢~t;) 2 Ds D&~ Ht-ty)
< AD 22 dndzd£ + 2C,u —_—
L AP [ o gy Ty dndadt Rt G =
Ds DE 't —t,)" 2 Ds D§~ Ht—t)"
gy s Y6 N TL) Yo b
< ADyugW 5 Y +205 5=

_ Dy Dg(t—t,)®

= Dg n! (87)
Also,
Ds Da(t—ty)!
20l = o+ B smaial = gl + Thoe e § 2 A0S (59)
< H,+ D—s[eDB(t_t‘)—l]< c,.
Dg

o (83) and (84) hold for n = n, thus completing the induction. A slight varia-
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tion of (88) shows that {g,} is a uniform Cauchy sequence. Let g=Limg, and note
norw

that g, » g uniformly. Since |g,|=< C,, we have |g| < C;. The uniform conver-
gence implies that g satisfies (57). Combine this g (with range t;< t=<t, +dt)
with the original g (with range 0<t=<t,) to get a solution to (57) for
0= t=< t;+dt. Note that in (B0) and (B1), hy(x,t;,u) =g(x,t;,u) and Qz =0 for t =t,.
Hence gn(x.t;,u) =g{x,t;,u). This means that the original and the extended func-

tions g are the same at t;. Inequality 70 implies g is nonnegative.

Thus there exists a solution to (57) for 0< t< W. Each of the finite number of
extension steps produces a g with |g|< C,. Hence g (0< t< W) is bounded and

nonnegative.

To show that there is only one nonnegative solution to (57), suppose g is

another such scolution for 0< t< W, Redefine Dy, D5, and Dg by

WulC
e

D, =
Dy =2C,
Dg = AD,udW+2Cul.

Asin (71), g{x,t,u) = Cand g{x,tu) < C. Let

k(x,t,u) = |g{x.t,u) —glx,t,u)| = 2C = D;g .
By proceeding in a manner similar to the derivation of (86) and by using (57), we
get

t u Z
k(x,t,u)S_f AD4f€f(z—()k(x—ut+uf+zn—z$,n,()d(dndzd$

+ft fu(u—z)C[k(x—ut +uf fu)+k(x—ut+ué €,z2)]dzde .

© o]

In a manner similar to the derivation of (87), we can show that k=< Dst and by

induction that
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Upon letting n approach =, we find k=0, hence g=g' That is, there is only one

nonnegative solution to (57).

Now that we have proven the existence, uniqueness, nonnegativity and bound-

edness of g for 0< t< W, we do the same for f for 0< t< W. We start with the

proof of the existence of f. Let

hs(x.t,s,u) = (u—-s)g(x.t.u)g(x.t,s)

t z
S z x +z€ —zt, dnd
xts)ffz—s)fx —zt,z,u.T—t)e j‘:[ —mg(x + 2z — Sn)nész,
t
) T =z
- Z— x+z€—zTt =T+ £m)dnd
he(x.t,5,2T) = (z—s)g(x.t,s)e [fo( mel(x +z¢ ¢ mydndé
for s<z< u,
= u, C? + u2 CAW,
H6=L1°C,
Then
0% Bo= Mo 0= he= T (©9)

and (59) becomes

u t
f(x.t,s,u,0) = hs(x,t,5,u) +f fhe(x,t,s,z.T)f(x—zT,t—T,z,u,O) dTdz .
8 [+]

let
f.(x,t.s,u,0) = hs(x.tsu), (90)
u t
fnn(xtswo) = hs(xtsu)+ [ f he(xtszT)in(x—2zTt~Tzu0)dTdz . (91)
8 o}
in(xtsu) = [th(xtsu,0) =f,,(xtsu0)| . (92)

Then we have, forn= 2,
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u t

ja(xtsu) = f f he(x,t,5,2,T)jp—1 (x —2T,t =T,z,u,)dTdz] .

8 c

Equations (89), (90), (91), and (92) yield
u t u w
=) [ hefodTdz=HsHg / [ dTdz = HsHgW(u-s),
i s [ 8 o
and

Hs(HgW)™ (u=-s)"

In= oy

follows easily by induction. Note that

(f _fl 1)

—t
=}

I
P—V:
Mﬂ

i=1

(HGWU-O)
il

‘f_flli—.hﬁHS (93)

let f = Limf, =f, + },(f;—f;_;). Inequality (93) shows that i(fi—fi_l) converges
i=1

ne i=1
absolutely and uniformly, so f is well-defined and bounded by

HeW
f< Hge ° .

The uniform convergence implies that f satisfies (59). The boundedness implies
that f is continuous along characteristics. The nonnegativity of {,, hs, and hg

imply each f, = 0; hence f = 0.

To show that in the set of all bounded integrable functions f is unique, sup-

pose that f'is another such solution to (59). Pick &'such that (f—ﬂ <A Let
~ u
Rx,t,s,u)=|f-fl=}ff (x.t,5,2,T)j(x—zT,t —T,z,u)dTdz| .
8 o]
Algebraic manipulations similar to the above show
T< AHFW*(u—s)"/n! .

Since n can be arbitrarily large, j~= 0, hence f =f. Thatis, f is unique,
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Next we prove existence, uniqueness, boundedness, and nonnegativity for f
and g for t= W. We use induction and suppose f has these properties for
O=< t< mW, while g has these properties for 0< t< t,, where mW=< t, < (m + 1)W.
First we extend the proof of these properties of g to the interval t,< t< t; +dt,

where dt will be defined shortly. Let

h,(x,t.u) =g'(x—ut,u)

£ z
+f f (x—ut+uf-z£&zuW—£e ‘[[ —{elx —ut+ué— Z$+Z777I()d(°d7)

-

dzd{

z—{)g(x—ut+uf +zn—zW,£-W+n,¢)dédn

s

o dzd¢

t u
+‘4;1 f f{x—ut+uf—zW £6-W,z,u,0)e

o]

—f (u—z)g(x—ut +uéfu)g(x —ut +ué,€,z) dzdé .
Equation 28 implies

hy(x,t,u) = g{x—ut+ut;,t;,u)= 0.
By the inductive assumption that f is bounded, suppose

f(x,t,s,u0)< A, for O0<t< mW.

Let

H; = B+ Wu A+ mWugA,
then

0< h,=< H,.
Let

hg(x,t,u,£,2) = f(x—ut +ué —zW,£ —W,z,u,0) .

fz —8g(x —ut +uf +zn—zW.£ —W+n,6)dédn

and note that
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hg < A, .

Let Qg be the operator defined by

¢ =z
t v = [ (z-¢g(x—ut+uf +2n—z£n.E)dédn
= [ J hee

1 o dzdé¢

u

—[f u—2z)g(x —ut+uf ¢ u)g(x —ut +uf £,z)dzde .

o

Then (58) becomes
g(x,t,u) = hy + Qs(g) .
Pick C; such that H, < Cz and define

Wulc
D7=e Ug 2,

Ds = Aju, + CEu?,
Dg = A1D7UEW + 202115 .

Restrict t to the range t; < t< t, +dt where dt > 0 and satisfies

D Dgdt

%(e s "1)5 Cg"'H',.
Define

8o = h’? '

gn+1 = hy +Qs(g) |
Kn = |gn—8nl -
It is easily seen that

Kk, < f Aju, +CEuldé = (Aju, + CEud) (t—t,) = Dt —t,)

|80l =
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To show that

Dg DF(t—t;)"

k <
n(X’t’u) Dg n!

(94)

!gn] < C2- (95)

we note that these are true for n=1, and we then use induction. Assuming they

hold for n-1, we have

Ky = |Qs(8n-1) —QslEn-2) | .

t u ¢ u n-1 — n-1
° o u,Dg D§'{(n—ty)
k= [ [ AD [ [ 5 oy ¢dmdad

t u -1 -1
o Dy DF'(£-t))”
+[1 S ue2C, D, o) dzd¢

o

t -1 -1 -1 n
Dg DEFME—-t)" Dg D& t—t,)
3w 8 73 V4 2 78 78 N\ M
< [1 A DyusW " ( ) ¢ +2Ceu; Dy my

n _ n
_ Ds DB(t-t)

a Dg n!
n n Dg & Di(t—t,)
Ign|$ Igo“'Z'gi_gi—l':lgof +ij$ H7+'ﬁ—'z ‘i_,‘l— (96)
i=1 i=1 9 i=1 L
Dg  Dgdt
< Hy+ =2(e ° —1)=Cp.
Dg

This completes the induction on n, thus proving (94) and {95). A slight variation

of (96) shows that {gn} is a uniform Cauchy sequence. Let g=1limg, Since g - g
now

uniformly, g satisfies (58) for t,< t<t,+dt. When we note that (68) follows
from (58), we see that a proof similar to the proof of nonnegativity of g for

0< t< Wholds for t, < t< t, +dt. Equation (568) and the nonnegativity of g yield
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The proof that there is only one nonnegative solution to (58) is analogous to the

uniqueness preoof for 0< t< W.

Thus we have extended the range of the existence, etc., proofs from 0< t< t;
to 0< t< t; +dt. Since dt is independent of t;, we can, in a finite number of

steps of size dt, extend the range to 0< t< (m+ 1)W.
To extend the range of proofs for f from 0< t< mW to 0< t< (m+1)W, we
note that, with hs and hg redefined, (60) has the form

u W
f(x.t,s,u,0) = hs(x.t,s,u) +ffhg(x,t.s,z,T)f(x—zT,t—T,z,u,o)dez (97)
8 ©

The functions hy and hg are bounded,
O=< hs< Hs = constant,

constant.

0< hg=< Hg
t W

Equation 97 has the same form as (59) except f is replaced by f In the
[¢] [+]

t W
existence, etc., proofs for f for 0< t< W, if we replace f by f we find: There
[¢] e}

exists a solution f for O<t< (m+1)W, f=0 since each f,=0,

HegW{(u—s)

O< < ||+ |fi—fi-1| < Hse , and there is only one bounded solution

to {60).

In all the above proofs, u was restricted to u< u,. We now remove that res-
triction. Since u, is arbitrary, we could simply take u, to be the maximum
desired speed of any driver so the proofs held for the range of interest, But, for
mathematical convenience, one might want to allow u to be arbitrarily large as,
for example, by setting the distribution of desired speeds to be proportional to
exp(—(u—-U)?/20%) for 0< u< =. In this case z2ote that f and g, for u=4a,

depend only on fgf*g* for u={d So we may pick a sequence
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U< < - <up< - such that u,-» =, and let f,, g, be the solution for
u< u, For m< n the restriction of f;, g, to 0=< u< uy is a solution to (57)-(60).

But bounded sclutions are unique; so define
f(x,t,s,ul) = fo(xts,uT) = (xtsuT) = - -,
glxtu) = gn(xtu) = gnu(xtu) = -,

where n satisfies u, > u. Then f and g satisfy (57)-(60), are nonnegative, are
unique, are bounded within any finite range of t and u, and are continuous along

characteristics.
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9. ASSOCIATED EQUATIONS

We now consider several equations that may be derived from (34), (41) and

(4R). First, since these equations are based on the conservation of cars, we

expect that the usual conservation equation,

ki +gx =0

(98)

in terms of the density k and the flow q, may be obtained from them. The vari-

ables k and q are functions of position and time only, so

w0 W oo
k(x,t) = f g(x,t,u)du +f f fuf(x,t.s,uT)dsdudT,
Q e o [¢]

o

u
f sf(x,t,5,u,T)dsdudT.

o

q(x.t) waug(x,t,u)du+fwf

Hence,
o0 w w0 u
ke+ae = [ getuggdu+ [ [ [ f+sfudsdudT.
c o]

c [+]

Upon substituting (34) and (42) in (101), we get

= u

kt+qx=.{ _[ [f(x.t,z,uW) —(u—-2z)g(x.tu)g{x.t,z) | dzdu
N S SR

—f(x.t,5,u,T) fs A(s —2z)g(x,t,z)dz ] dTdsdu,

and using (41) yields

o

ketax = f fu [f(x.tzuW)~f(xt.zu0)

o

u w
+g(x,t,z)f f (n—2)i(x,t,nu,T)dTdn |dzdu
z [¢]

‘fm fu [f(x.t.s,u,W)—f(xt,s,u,0) |dsdu

w W
—f f“ f fs f(x.t,s,u . s—z)g(x,t,z)dzdTdsdu,
[ o o o

which after a little manipulating becomes (98).

(99)

(100)

(101)

(102)
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Thus we have a check on the reasonableness of our equations.

A feature of our model is that if no one has a desired speed less than some

speed u,, then for t= W, no one has an actual speed less than u;. To see this,

suppose for s< u< u; we have
g{xtu) =0,
f(x,t,5,uT) = 0 .

Then (59) and (60) show that fors< u;< u
f(x,t,s,u,0) =0,

and (53) shows that

f(xtsuT)=0.

Thus, after a time W after the initial distribution, no one has speed less than u;.

We can use this fact to translate the variables u and s by u; and the variable

x by u;t. This will show that u and s operate as 'small" quantities in our equa-

tions when they are near u,. While we are transforming variables, we observe

that time can be scaled to eliminate the waiting time W as a variable in the

transformed equations. The combined transformation is

X=x—-ut,
t=t/W,
T=T/W,
§=W(s—-uy).
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f(xtsurl) = %,—f(x,t,s,u,T) :

The resulting equations are identical to {34), (41) and (42), with barred variables

replacing unbarred variables and with W set equal to 1.

Some of the terms in (34) and (41) represent multiple delays; that is, while a
driver is at less than his desired speed, he is forced to reduce his speed still
further. These terms are the ones which contain the product of an f and a g. To
simplify our equations, we delete these terms. The solution to the simplified
equations should approximate the solution to the original equations. We expect
the approximation te be particularly good for light traffic or when the waiting
time to pass, W, is small. To be more specific, let k, be a typical density of cars,
and let u, be a typical difference in speed between two cars. Then (U.ke)™! is a
typical time for one car to catch up with another. If W< < {(u,k,)™*, a second
delay is unlikely, and the terms representing multiple delays will be small. We
expect that some general properties possessed by the simplified system are
shared by the original system. One such property, which we investigate later, is

that of the solution approaching equilibrium as time appreaches infinity.

The equations without multiple delays are

f(xts,uT) = —sty—fr, (104)
B(x,ts.0,0) = (u—8)g(xtw)g(x.ts) | (105)
gu{x.t,u) = —ugy +‘Zf(x,t,z,u,W) —(u—-2z)g(x,tu)g(xt,z)dz, (108)
f(x,0,5u,T) = ' (x,5u.T), (107)
g(xou) =g'(x.u) . (108)

We now proceed to partially integrate the system of equations, (104)-(108),

obtaining a pair of integro-difference equations in g.
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Equation 104 is a first order, linear, partial differential equation in f. The

characteristics, with parameter y, are given by the system of equations

dt _ dx _ dT _
—— S —

1.

dy ' dy ' dy
Along these characteristics we have

af _
dy

Referring to Figure B we see

f'(x-stsuT-t) 0=st=<T
b= T (109)

fxtsul) = { f(x—sT,t ~T,s,u,0)
Equations 105 and 109 combine to give

_ffx—stsu T -t) 0
txtsuT) = (u-s)g(x—sTt-Tu)g(x—sTt-Ts) t

Substituting (110) in (108) yields

gulx.t,u) +ugg + f‘(lu ~z)g(x.t,u)g(x,t,z)dz

1
ff'(x—zt,z.u,W—t)dz 0= t< W
={* (111)
f(u—z)g(x—zw,t—W,u)g(x—zW,t -W,z)dz t> W,

[¢}
Along the characteristics
t=y, X = X, + Uy,

and with G defined by (49), (111) becomes

u
4 t'(x—zt.zuW—t)dz D= t< W
—g—+ gG ={° u
dy f(u~z)g(x-—zW,t—-W,u)g(x—zW,t—W,z)dz t> W.

[¢]

Hence,
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y
- G(xe+unmnu)d
g(xo+uyy,u) = e [ (xerunma)dn,

y G(xe nu)dn U
§g’(xo,u)+f ej: (%o +umm.u) nf £*(x, + uf —z¢,2,u,W — £)dzdé}

(o]

0= y=< W,

y
— [ G{x,+un.nu)d
g(x, +uyy.u) = e JOOrumnddn

¢
w d
f e'o[G Xotunn.u) nf f*(x,tuf —zé&,z,u,W—¢)dzdé +

o]

¢
fwy e[G(X°+un'n'u)dnfu(u—z)g(x°+u$—zW,g—W,u)~

g(xotué —zW.¢ —~W.z)dzdé y=

Upon changing variables and using (49), we get

t u

P [ [ (u-Qeglx—ut +un.n.¢)dédng.(x_ut’u) .

u

fou Qglx—ut +unmO)dldn., ¢+t — ot 20 W —£)dade

[

© [¢]

D<t< W, (112)

u

[ [(a-0g(x~ ut+unn¢>d¢dng.

g{x,t,u) =e (x —ut,u) +

tu
d
. {fu He(x —ut +un,n,Edé 77.( —ut +u¢ —z£,z,uW—§)dzdé +

ff

e}

tu

ff“e—{f(u—é)g(x—ut+u?7.n-<“)d<‘dn
(u-z)g(x —ut +ué —zW,£ —W,u)g(x —ut + u¢ —zW.£ —~W,z)dzd¢

t> W, (113)

The proof that there exists a nonnegative solution to (112) and (113) and that
this solution is unique, bounded for finite t and u, and continuous along charac-

teristics is accomplished easily by taking t in steps of size W and using the
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Picard iteration technique. Once g is known, f follows from (110). The above

properties hold for f and, in addition, f is constant along characteristics.
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10. CONSTANT-SPEED, CONSTANT-SHAPE SOLUTIONS

Up to this point we have required the densities f and g to be bounded ordi-
nary functions. If we allow § functions, we find there are some solutions with a
property which is not shared by ordinary function solutions. In particular, we
looked for sclutions to the equations without multiple delays which travelled at
constant speed with constant shape. When we let u; be the minimum desired
speed, we prove that there is a range of speeds u; to u; for which the only con-
stant-speed, constant-shape, bounded, ordinary function solutions are also
independent of x. Then we exhibit a constant-speed, constant-shape solution

which involves ¢ functions.

To show the lack of constant-speed c, constant-shape, erdinary function solu-

tions, we substitute
g(xt,u) = h(x—ct,u) (114)
in (111) for t= W to get

(u—c)hg(x —ct,u) + fu(u —z)h(x —ct,u)h(x —ct,z)dz

Yy

u
=_/ (u—2z)h{x—ct —zW+cW,u)h(x —ct —zW +cW,z)dz
u
1

where the lower limit of integration is u; since, for z< u;, h{ ,z)=g(,.z)=0.
Without loss of generality, we may set t=0 (it is equivalent to renaming the

quantity x —ct) which yields

(U —c)hy(x,u) =fu(u—z) [—h(x,u)h(xz) +

u
1

h(x—zW+cW,u)h(x —zW+cW,z) |dz. (115)

Now define

h*(u) = h(o,u), (118)



kix,u) = 'h{xu)-h'u) | . (117)
Note that h{x,u) =h"(u) is a solution to (115). At this time we limit the range of

uto

where u; will be chosen later. However, we can say now that if u,< c, then

u; < c. We can integrate {115) and combine with (117) to get
1 X u
k(xu)= ———| [ [ (u=2)[h{£2)k{éu) +h'(Wk(¢ 2)
‘ u-—c J o Uy
+h{f —zW+cW,2)k(é —zW+cW,u) +h"(Wk(£ —2W +cW,z) | dzdé | .

Since we are limiting our considerations to functions h which are bounded,
h{x,u) < D = constant. (119)

Hence

k(x,u) < 2D (120)

X
k(x.u) = ——JD—NJ[ (u—2) [ k(£,u) +K(£,2) +K(£ —2W + cW,1)

+ k(£ —zW+cW,z) | dzdé | (1R1)

We now show by induction that when u, # ¢,

2
» for u; < u<u, (122)

Cl n!

u —c if e<

C, = 4
L7 le—ug if ¢> u,
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u, —c if ¢ <
Ce = c—u; if ¢> u;.

By (120), (122) holds for n=0. Assume (122) holds for n=n, and substitute

(12R) in (121) to get

X W . 4D{u; —u;)?
k)= 2| [ af —upep( DI
1 [¢] o 1

(€] +(n=1CW)" (¢ +(n=1)CW) |
n! n!

(€ —2zW+cW| +(n—1)CW)" N ([¢—2W+cW| +{(n—1)CoW)"
n! n!

dzd¢ |

2Dn+24n * _ 2ri+l X ul
< )T 7 a6 oty dad |
[}

Cptin! 1
4D(uy —u;)? 1 E
k(xu) < 2D (———)""' o [ (£ +nCoW)" d¢
< 2D( 4D(uy —u,)? e+ (Ix] +nCaW)™h)

(n+ 1)

This completes the proof by induction of (122) for u; # ¢. When u, =c¢, the factor
(u-z)/|u—c| in (121) is less than 1 and so may be deleted without invalidating
the inequality. The rest of the proof still holds with C; =1, C; =u;y —c and the fac-
tor (u; —u,)? replaced by (u; —u;)!. From Sterling’s approximation for the fac-

torial function, we have

(WP [+ H D

(Ix| +(n-1)CW)"

n! (2m)knnthen asmz =
|
CXW -1
(CoWe)re ®
(27‘;‘1’1)% as n —» oo,

For n large enough we have
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| x| )
CoW
(Ix| +(n-1)CW)" _ 2(Calie)e °

n! (2mmn)#

Hence (122) becomes

i
X
C,W 1 for u; < u< u; when u;#c

B n
k(x,u) < (nn) De E™ for u; < u< u; when u;=c

where
4D(u; —uy)* CyWe

Cy
4D(u; —u;)CWe  u; =c.

u1¢c
E=

As uj - u; +, C; and C; are bounded above, and C,; is bounded away from 0, so we
may pick u; > u; such that E< 1. Since n can be arbitrarily large, this implies

k(x,u)=0 for u,; < u< u;. Thus

g(xtu) =h(x—ctu) =h'(u) for u;< u< uy,
and (110) for t= T yields

f(x.t,s,uT) = (u—s)h*(u)h’(s) for u,< s< u< u;.

When u=u; =c, any function h satisfies (115), but since u=u, is a set of measure
zero, it represents no cars. This concludes the proof that any constant-speed,
constant-shape, bounded, ordinary function solution to (110) and (111) has a

range of speeds, u; < s< u< u;, for which the solution is independent of x and t.
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11. DELTA FUNCTION SOLUTIONS

In this section we find some delta function solutions which exhibit some
features of the model. Solutions which are discrete in the velocities are of
interest for the mathematical simplification they can bring and the fact that a
numerical solution will have discrete velocities. Also, in real traffic some drivers
will come up behind a slower driver and not pass for several or many minutes.

The use of discrete velocities is a step in the direction of representing this

phenomencon.

We start with the equations without multiple delays, (109), (110), and (111),
and we let t have the range —= < t < «. We then use only the second half of each
of these equations which will hold in the range —e < t< =, We integrate (111)

along the characteristics
t=y, X =X, + Uy
getting
g(xo +uyy.u) = g(x..0.u)
y u-
y u-
+ f f (u—2)g(x, +ur—zW,r —W,u) - g{x, +ur —zW,r —W,z)dzdr,
] Q
g(x.t,u) = g{x—ut,0,u) (123)
t u-—
—f f (u—z)g(x —ut +ur,r,u)g(x—ut +ur,rz)dzdr
¢} e}
u—

t
+ .[ fo- (u—z)g(x—ut+ur —zW,r —W,u)g(x —ut + ur —zW,r -W,z)dzdr.

The upper limit of the integration with respect to z has been changed from u to
u- to reflect the fact that u cars are not delayed by z cars unless z< u. Of
course, this only makes a difference if we have an integrand of the type 6(z —u).

We now try a solution to {123) of the form
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g(x.t,u) = grod(x —uit)d(u —uy) +ga(x.t)6(u — uz) (124)

where u; < uz and g is a constant. When we substitute {124) in (123), the terms

of the form
ul~ 111— UE“
f &(z —u,)dz , fd(z—uz)dz , and fd(z—ug)dz
vanish leaving
g106(xX ~u t)d(u —uy) + ga(x.t)6(u —up) =
gio8(x —ut)(u —u,) +go{x —ut,0)6{u —uy)

t u-—

—ff(u—z)gz(x—ut+ur,r)d(u—uz)gmé(x—-ut+ur—ulr)d(z—ul)dzdr
0 ©
t u-—-

+ff(u—z)gz(x—ut+ur—zW,r—W)d(u—ug)-

g100(x —ut +ur —zW —u,(r —=W)) 8(z —u,)dzdr .

Separate this into two equations, valid near u=u,; and u=uy respectively, to get

g1o8(x —uyt) =g106(x —ust), (125)
(up —u,) ( - (uzt—x) ugt—x)
~ ———ga{x—ugt +u ,
(ug—u,) * 2 ? Up =~ Ug—U, §i0
(1g —u,) ust —x ugt —x
)= —ut,0)+ X —ust+u -, W, -Ww
ga(x.t) = ga(x —ust,0) (g —u,) 2 2 2 llz“u1) 1 R V810
for x—upt< 0< x—it (126)
0 otherwise .
Equation 125 is satisfied for all values of g,o, while (126) simplifies to
r_ (Ll (ugt"‘X) Ut —x
£1082\01 Uz —u; ' U
- gl —x Ut —x%
Xt)=go(x—wst,0) + + -W), ~-W
ga(x.t) = ga(x —upt,0) gogelm( === W) ~— )
for u;t< x< ugt (127)
\0 otherwise .

Figure 9 shows the paths of cars in (127). The number ! indicates cars

represented by the first term on the right-hand side of (127), etc. The second
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t
X
/0‘\
+ 2
(x,t)
4,7
4,2 X
% %=1
/

Figure 9. Paths of cars for g =g,¢6(x —u t)d(u —u,) +ga(x,t)s(u —up).
term represents cars being delayed.

For simplicity in the following, we talk about 'cars” when it would be more
accurate to use the phrase "expected value of the density of cars." If g;o=1
(representing one u, car), then every u, car which meets a u; car gets delayed.
This is exactly what happens in the discrete model from which we derived our

continuous model.

If, however, g;0< 1, then only the fraction g, of the u; cars are delayed, while
the fraction 1 —g,q pass freely. If farther down the road is the rest of the u, car,
then the fraction 1 —g;o of the delayed u, cars will be delayed again, and the
same fraction of undelayed ug cars will be delayed. The sum of the delayed u,
cars will be gpdx, but this will be achieved by some u, cars not being delayed,
some being delayed once, and some being delayed twice, If we approximate a
continuous distribution of u; cars by a sum of a large number of delta func-
tions, we see that some u, cars (or fractions of uy cars) will not be delayed at all,
while others will be delayed once, twice, thrice, etc. Thus the passing process

has a definite dispersive effect on the uy cars.

If g;0> 1. the second term of (127) represents more than 100 % of the up cars
being delayed; in fact,it is possible for g, to become negative. This difficulty can

easily be avoided by not putting more than one u, car at a point on the road.



If we set gz(x.t) equal to an arbitrary constant gzs, we find that (127) is
satisfied. Thus a constant speed, constant shape solution to our equations

without multiple delays is
g(xtu) = gred(x —ut)o(u~u,) +geod{u ~uz) .

A more general solution is

n
g(x.t) =k2 Z10k8(X — X3 —uyt)d(u —u;) +ggod{u—ug) .
=1

Next we consider what happens if we do not allow passing. This restriction,
when coupled with discrete speeds, allows us to see the delay process more
clearly in mathematical terms. It is also of interest on one-lane roads where
passing is not possible. The only changes in our equations (with multiple

interactions) are that W=e and (42) becomes
gi(x.t,u) +ugg = xtu)f (u—2z)g(xt,z)dz . (128)

Along characteristics this becomes

a-
%}%—(xo +uyte +y.u) = —g(x, +uy,t, +y,u) f(u —2)g(X, +uy.te +y,z)dz. (129)
o]

We restrict the speeds to the discrete set u; < up < - - - < ug, so g has the form
2l
g(xtu) =3 gi(x.t)6(u—uy). (130)
i=1

In (129) we discard terms of the form &(u~u;)é(z—u;), where i< j, since slow

cars are not delayed by cars with equal or greater speed. Thus,

n dgi(xe+uy.te +y)
u-w) =
1:_21 dy ( 1
U-n i—1
—-fz;g u—2z)gi(X, +uy.te +y)(u —uy)g;(X, +uy.te +y) 6(z —uy)dz . (131)
© i=2 j=1

Separating {131) into a separate equation for each u; and performing the
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integration with respect to z gives

dai(etwytoty) _
dy
dgi(%, +uiy.te + S
Bl et ) - S o walne ke +Y) g F Uyt +) (132)
=1
=2, 'n.

For each g; this is a first-order, linear, ordinary differential equation. For t,=0

the solution is
gi1(x.t) =g (x —u,t,0)

ti-1
—fE (4 —u)gi(x —uit +uy.y)dy

gi(xt) =gi(x—ut,0)e °¥ (

[N
o
(93]

~

i=2, - n.

Thus no u, cars are delayed, and the spatial distribution of the u, cars does not
distort; it moves with velocity u;. The density of the u; cars depends only on the
initial conditions and the densities of slower cars. Also, g; experiences a com-
plex exponential decay being more affected by cars with a greater diflference in
speed than with a lesser difference. If typical values of g; for j<i exist, an
approximate decay 'constant’ for g; could be determined from (133). A simple

solution is obtained by considering only two speeds with the initial conditions

_ 0] x < 0

gzo x< 0
g0 =g x> 0.

The solution is
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0 x-uyt < 0

gaxt) =y x-ut> 0.
0 ust < x
ga{x.t) = {gzo X < u;t
—{x—u;t
gop € ( 1t)eio Ut < x < ugt.

This is just the simple attenuation that occurs in many physical processes when
energy is absorbed as it travels through a medium. Examples are: ultraviolet
light travelling through water, y-rays travelling through a solid material, or
sound waves travelling through a porous material. The attenuation is adjusted
for the fact that the medium is moving. Equation 133 represents the same type
of attenuation occurring in many media simultaneously, each with its own velo-
city.

We can check the accuracy of the model, focusing on the delay terms, by
comparing the solution with the following discrete model. The discrete model
has cars entering the road at x=0 with a time interval h between successive
cars. The speed of the cars is chosen randomly from an approximately normal

discrete distribution. Let

cDu =uyy; —u,

p; = probability that an entering car
has speed u;, j =1, - .n,

_ P(u;+Du) —P(u; —Du)
Pi = P(q, +Duw) - P(u;, —Du)

Suppose that car number 0 leaves at time 0 with speed u, while the i** preceding
car left at time -hi with speed U;. The variables U; are random, while u is fixed.

Car 0 does not catch up with car i by the time car 0 reaches position x if and
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only if
X X . . 1
U < " + hi or equivalently U; > —_I_—:E—
u X
Let
R,-(x) =Prob | U; > —1—1—5—
—._+ —
u - x

R(x) = Prob { car 0 does not catch up with any car

by the time it reaches position x }

where

m=[(- b1

[yl = smallest integer that is greater than y.

-—1—_—< u;, so that Rj=1. Letting gi(x) be the density of
+ e

X

Fori= m+ 1, we have

E|-

y; cars in this model gives
gi(x) = gioR(x) . (134)
Solving (132) with the boundary conditions gj(o.t) = g;, yields densities which are

independent of t,

g1{x) = g0

=1

“S-3 fetay
gi(x) = g © e : (135)

These equations may be solved recursively.

Nurmerical solutions were found for g;(x) and g(x), using parameters that
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would fit a city street: h=5sec, 4 =40mph, ¢ =5mph, u; =24 mph, u;> =56 mph,
Uiy —yy=2mph, x= %—mﬂe, and x=1mile. The results are shown in Graph 3.
Note that curve 1 is not the normal distribution with mean 40 mph since curve 1
is the space density, while it is the input flow that has normally distributed

;
speeds. In fact, equating two expressions for the input flow gives fl—pj = Ujgio-

Hence, gjo = n G

LB and the denominator distorts the normal distribution. Graph
!

3 shows that there are differences between models which are continuous in

space and models which are discrete in space. These differences would be large

or small depending on the application.
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12. SPECIAL SOLUTIONS AS t » =

We now consider what the solutions to our equations are like when t is large.
To keep things simple, we consider the equations without the multiple delay

terms, that is, equations 110 and 111. To further simplify the problem we let

g'(x,u) =h(u),
f*'(x.suT)=0. (136)

Since the initial conditions are independent of x, the solution will not depend on
x (the solution is unique and may be found by the Picard iteration process
which starts and continues with functions that are independent of x). Thus we
have
g =gltu),
f=1f(tsul). (137)
We show that, for u small enough, f approaches a function of s, u, and T only,

while g approaches a function of u only.
With the use of (136) and (137), equation 111 becomes
u
g(tw) + [ (u-2)g(tu)gt.z)dz
[+
0 O< t< W
u

Su-2)gt-Wu)glt-Wz)dz t>W.

o

(138)

Integrating from 0 to W and from W to t gives

g(W,u) +ff(u—z)g(r,u)g(r,z)dzdr = h(u),

u

g(t.u) +_[_wf(u—z)g(r.u)g(r,z)dzdr

o}

=g(Wu) +}}(u——z)g(r,u)g(r,z)dzdr = h(u). (139)
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Since g is non-negative, this gives us a bound on g, namely,

0< g(t,u)< h(u) . (140)
We now assume that h{u) is bounded by some constant C so that (140) becomes

0< g{tu)=< C. (141)
We define m by

mitu) = |gltu) —g{t—Wu)| for t= W,

and show that m approaches zero as t approaches infinity. A little juggling with

(139) yields

m(tu)=< Cf f u-z)[ m(r,z) +m(r,u) | dzdr. (142)
t-W'o
Inequality (141) implies
m(tu)< C for t=> W, (143)

Limiting u to the range
0= u=< y
with
Cufw< 1
and using (143) and (142) repeatedly gives
m(t,u) < C(CufW)* for t= (n+1)W. (144)

Since CufW< 1, the sequence {g{t+nW,u)} n=0,12, - is a Cauchy sequence
and hence converges. We must show that any two such sequences, say
fg{t, +nW,u)} and {g(ts +nW,u)}, with limits B, and B actually have the same

limit. To do this we use {144) in (138) with the result

lg(tu) | = CPuf(Cufw)" for t= (n+1)W.
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Hence,
|g(tz +nW.u) —g(t, +nW,u) [ < C2uf(CufW)® [te -t .
Therefore,
|Ba=By| < [Be—g{te +nWu)| + lg(tz +nW.u) —g{t, +nW.u) |
+|g{t; +nW,u) -B; | . (145)

As n approaches infinity, the right hand side of {145) approaches zero so that we

have

Thus, as t approaches infinity with u< u,, g{t,u) approaches a function of u

alone, g{u), and by virtue of (110), f(t,s,u,T) approaches (u—s)g(u)g(s).
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13. EQUILIBRIUM

A solution of (34), (41), and (42) which is of particular interest, if it exists, is
one which is independent of both position and time. Such a solution could be

compared with the previous model.

Upon deleting x and t from f and g, (34), (41), and (42) become

fT(s,u,T)+f(s.u,T)fs(s—z)g(z)dz=0. (148)
f(s,u,0) = (u—s)g(u)a(s) +g(s) fufw(z—s)f(z,u.T)dez, (147)
S [tz W) -(u -2)g(wa(n)]dz =0. (148)

Q

If we integrate (146), with respect to s from 0 to u, and with respect to T from 0
to W, then add the result to the integral of (147) with respect to s from 0 to u,
we get (148). Thus (14B) is redundant. This is the same phenomenon that

occurred in (98)-(102) where conservation of cars forced cancellation of source

and sink terms.

Next we note that (146) is a first order, linear differential equation in f with

independent variable T. Solving for f gives

f(suT) = f(s,u,O)e_T‘[(s ~2)g@)dz. (149)

Upon substituting in (147), we find
f(s,u.0) = (u —s)g(u)g(s)

u W f
g(s)ff (z —s)f( zuO)e j;z Vel V)dVdez. (150)

or,
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Zz

—Wf(z—v)g(v)dv

f(s,u,0) =(u —s)g(u)gls) +g(s)f(z —s)f(z,u.0) 1—ef(7'ziv)g(v)dv dz. (151)

o

So we are left with only (151), an equation in f(s,u,0) and g{u), which possesses a
multiplicity of solutions. That this is so may be seen by picking g, bounded and
integrable but otherwise arbitrary, and noting that for each fixed u {151) is a
linear Volterra integral equation for which a solution f exists. What we are miss-
ing is the total number, or rather the density, since the range of x is infinite, of
drivers with desired speed u. So we define p(u)du to be the fraction of all

drivers with desired speed between u and u+du. Clearly,

W ou
b(u) = g(u)+££iis,u,T)dsdT (152)

where k, is the number of cars per unit length of road.

We expect that, when p(u) is given, (149) (151), and (152) define the functions

f and g uniquely.

We can eliminate the parameter W by means of a transformation. This

transformation is

s = W*sg, (153)

- plu) = WEp(T) .

The functions f and g satisfy (151) and (152) with W=1. Note that we achieve
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the same result with transformation (103) if we include k, = kKo /W.

If there is some speed u, such that every driver's desired speed is greater

than u;, we have
p{u) =0 for u< u;.

In this case, since f and g are required to be non-negative, (152) implies that
g(u) =0 for u< u;.

The previous argument for the time-dependent case gives
f(s,uT) =0 for s< u;.

Thus, as before, we have the result that if no one wants to go slower than u,,
then no one is forced to go slower than this speed. This is true as long as traffic
is in subcritical flow. As traffic gets heavier, the desired speeds of drivers
decrease somewhat. My guess is that the lowest desired speed of the slowest
driver on a freeway is around 35 mph at capacity flow since this is about the
speed of traflic at capacity flow. A situation [ have seen which I think is
illuminating is where all lanes except one are at a complete standstill, while the
one lane leads to an off-ramp with cars travelling at 45 mph. This indicates to
me that a driver’'s desired speed does not decrease enough to explain the low
speeds of forced flow. The only reason an average driver will not go 45 mph or
more {s that there is a slower car ahead of him. Slower speeds do occur, but
these are due to demand exceeding capacity. In this case a driver can choose

his headway, but his speed will be approximately that of the driver ahead.
If we translate the speeds in our equations by the transformation

f(s,u,T) = f(30,T),
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p(u) = p(Q) .
u=ﬁ+u1,
S =8+u,;,

then f and g satisfy (151) and (152), and p(Q) is non-zero near U = 0.

(154)

Another transformation of our equations {useful for general information)

occurs for the case in which p(u) is constant over some range and zero else-

where. (Actual traffic has p(u) much more nearly Gaussian.) Thus,

ug! foru;< u< u;+un
p(u) = 0 otherwise .

If we transform f and g by

f(s,u,T) =

(155)

(156)

(157)
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z

i S eveme
gu)=1 "_E(Zﬂyo) fi(z ——— dz. (158)

o]

The domain of the equations is

A

A
=3t wl
IA

<u= (Wkoun)#,
1.

0
0 (159)

13.1 Without Multiple Delays

The final terms in (146) and (147) represent multiple delays. As we discussed
previously, it is useful to investigate the equations with these terms deleted. It
is also useful to assume that p(u) has the form of (155). With these assump-

tions, with the transformation (156), and with the deletion of the bar from

barred variables, {148), (147), and (152) become

fr(s,u.T) =0, (160)
f(su,0) = (u-s)g(we(s) , (161)
g(u) +fxfuf(z,u,T)dsz =1, (162)

Equations (160) and (161) imply

Hs.uT) = (u—s)g(wels) (163)
Substituting (163) in (162) yields

() +8(w) f(a-2)g(z)dz=1. (164)

We now define

u

G(u) = [(u—Z)g(Z)dz
and note the relation
G"(u) = g(u) . (185)

Thus (164) becomes



G'(u)+G"(u)Glu)=1,
G(0)=0,
G'(0)=0.
This is solved as follows:

G'(u
1+Gu) '

G'(W)G"(u) =

G'(u) = (2In(G+1))%,

u= [G(zm(ﬁ 1)) *dr.
Letting

z2 =In(r+1)

gives the form
(In(G+1))% 2
e
o

Equations 165 and 166 show

g(w) = (G(w)+ 1),
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dz .

and, upon using barred variables again, (167) becomes

Applying transformation (156) to get to unbarred variables yields

m

(gat (amw) = [

o]

(1n =~ Ing(w))¥

2
e? dz .

The function g(Q) is plotted in Graph 4.

—~
Ja—
o>}
&)

~——

(187)

(168)

(169)

The physical interpretation of g(Q) is that it represents the fraction of drivers

with desired speed u who are at their desired speed. To show this, we note that
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] ] ] |
0 2 4 6 8 10
a
Graph 4., Fraction of cars § at their normalized speed u,

at equilibrium and without multiple delavs.
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the number of drivers, per unit length of road, at their desired speed, between u
and u+du, is g(u)du. The total number of drivers with these desired speeds is

k.p(u)du. Thus the fraction who are at their desired speed is

s g(w)
{(u)du _ Unm o
kpr(lu)gu B K, 1 =g(@).
U

This quantity also represents the fraction of his total time on the road that a

driver spends at his desired speed.
We may see from the graph that as the desired speed of drivers increases, the

time spent at the desired speed decreases, and that only when the desired speed

corresponds to @=0, that is u=u,, does the driver continuously travel at his
desired speed.

To get an idea of how g(Q) corresponds to actual traffic, we take some typical

values of W, k,, and up,. For example,

W =5 sec,
k, = .00R carsAt ,
u, = 50 ftAec

corresponds to very light traffic. Using (159) we find the range of U to be

O< u< .7. For this case drivers spend more than B80% of their time at their

desired speeds.

The values
W = 300 sec,
k, = .01 carsAt ,
Up, = 30 ftAec

might be found near capacity flow with T in the range O=< U< 9. For this case
most drivers spend most of their time at less than their desired speed with the

fastest drivers going at their desired speed only 6% of the time.



-88-

13.2 Comparison with Part I

It is convenient to have an explicit solution to (157) and (158). To get one, we
substitute for f a power series in § and T and for § a power series in Q. It is easy
to show that the coefficients in these power series are all well-defined, so that we

have at least a formal expansion of the solution. The first few terms of these

power series are

f(—-'——]’o) -— —u —S l (—U.s _Ss) + e (l O)
— 1 2 13 =4 f

It is of interest to compare the present model of traffic low with the model of
Part 1. Although the models are similar, there are differences, so we do not
expect identical behavior. The quantity we compare is ¥(u), the average velocity

of all drivers with desired speed less than u.

By scaling out the various parameters, by using (20) and (21) and by using

(R5), we have

. a =3 =5
vi(@) = §-~‘11—6+ g-é-+ (172)

where the subscript 1 on v; indicates the model of Part I. The corresponding

quantity for the present model is defined by

u W ou

fu; [g(2)+£ (2. T)dydT ] zdz
u—, '
Um

ko

and with k,, W and u,, scaled out it is
1 0 1 u
vo(T) = —ﬁj—f[g(z)+fff(z,y,T)dydT]zdz .
c Z

Upon using (149), (170), and (171) this becomes
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_ 3 .
ve(Q) = ‘21——;1—+ 19w, (173)

Comparing {172) with (173), we notice that the first terms are identical and
that the same powers of U are present in each. Some disagreement between
(172) and (173) was expected, and in particular we notice that v,(Q)> v3(Q)
when U is small enough. This is due at least partially to the following
phenomenon which affects vy but not v;. In the model of Part I, a driver with
desired speed u is considered to be delayed by cars with speed ¥(u). A more
accurate description, as in the present model, considers the car to be delayed by
cars with various speeds. In the model of Part I, the use of ¥(u) is equivalent to
assigning equal weights to the delaying effects of the various cars. But the u car
catches up with slow cars more frequently than with fast cars, so that the delay-
ing effect of a slow car should be given more weight than that of a faster car.

This makes v; larger than it would be if these considerations were taken into

account.

We are content with the agreement between (172) and (173).

13.3 Small Waiting Time to Pass

In this section we explore the consequences of assuming the waiting time to

pass, W, is small. As a preliminary, substitute (149) in (152)
‘ Z
—W [(z-v)g(v)dv

kop(u) =g(u) + _{uf(z,u,O) L-e fié _"V)g(v)dv dz. (174)

c

Let
Hg.2)= 1 (2—v)g(v)dv (175)

Easily,
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1 —e H H?
=W— WP+ W3- ..
H T

Let

f(s.u,0) = f,(s,u) + Wi (s.u) + Wets(s,u) + - -

Equation 151 becomes

f.(s,u) + Wi (s,u) + Wefo(s,u) = (u —s)g(u)g(s)

u

+a(s) flz =) [folzw) +Wirlzw) +Wohaz )] (W~ Tz s Hogo_

fo(s.u) = (u—s)g(u)g(s),

fi(su)= g(s)_uf(z -3s)f,(z,u)dz

u

=g(w)a(s) flz —s)(u-2)g(2)dz ,

g

u

fa(s.0) = g(s) f (2=5) [11(2.0) = fo{z.0) -] dz.

S

(176)

(177)

- ]dz.  (178)

(179)

This determines f when g is known. To solve (151) and (174) for f and g simul-

taneously, let

g{u) = go(u) + Wg,(u) +W2g2(u) o

Substituting (177) and (180) in (151) and (174) yields

go(u) = kop(u) )

fo(s.1) =kF(u—s)p(u)p(s) ,

£(1) = —kZp(u) f (u-2)p(z)dz

u

ti(s.w) =kép(wp(s)t f (z-s)(u~-2)p(z)dz~ [ (s —2)p(z)dz .

:4

- f<u—z>p<z>dzz ,

ete.

(180)
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If p(u) were approximated by a polynomial, the above formulas would be espe-

cially simple.
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APPENDIX

COMPARISON OF THIS INVESTIGATOR'S WORK WITH

THAT OF OTHERS

Our work uses the following variables to describe traffic flow on a freeway.
X = position,
t = time,
s = actual speed of a car,
u = desired speed of a driver,
T = time since a driver last was forced to reduce
his speed {applies only to drivers who are
at less than their desired speeds),
W = waiting time before a delayed vehicle passes
the blocking vehicle,
f(x,t,s,u,T)dx ds du dT = the number of drivers who
are at less than their desired speeds
with position in (x,x+dx), with actual speed in
(s,s+ds), with desired speed in {u,u+du), and
with time since last delay in (T, T+dT),
g{x,t,u)dx du = the number or drivers who are at
their desired speeds with position in (x,x+dx) and

with desired speed in (u,u+du).

With only one excepticn of which [ am aware, all other authors use only one
function, f(x.t,s), to describe all cars {(not just those at less than their desired
speeds). All the authors have terms of the form
f,+sfiy=D+R

where D is a term describing faster cars catching up with slower cars and where
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R describes the return to a higher speed of a delayed car.

Prigogine and his fellow investigators in many papers have used a D of the
form f s —z)f(s)f(z)dz Simply stated, (s-z) is the rate at which an s car catches
up with a z car, and the number of delays is proportional to both f{s) and f(z).
This leads to the difficulty, admitted by Prigogine, of too many cars being
delayed. Lampis (1978) and I (independently) use a D of the form
f(s—z)f(s)g(z)dz since the blocking effect of a queue of cars is the same as the
blocking effect of one car, and we each assign the entire effect to the lead car.

Lampis reports that for the equilibrium case this solves the above difficulty.

All the other researchers use a return to speed term of the form R = i_(fp —tf)

where 7 is a relaxation time and f, is a given speed distribution to which the
actual speed distribution tends to return. My model has cars returning to their
individual desired speeds after being delayed a fixed time W. Since this model
keeps track of desired speeds, the different effects of a situation on drivers with
different desired speeds can be examined. Also, this model aliows drivers with
different desired speeds to flow as they will according to the rules of delay and
passing, rather than being forced into an equilibrium with respect to desired
speed. This model can be modified easily to allow the waiting time to pass to be
an arbitrary probability distribution. When this distribution is a negative
exponential, one gets R=constant x f, which is the same as part of the return to

speed term of the other investigators.

This work is the only one of which I am aware with existence and uniqueness
and non-negativity proofs (Prigogine's solutions sometimes went negative), with
a comparison of the delay phenomenon for the continucus model and a discrete
model, with a proof of the lack of constant-speed, constant-shape, ordinary-

function solutions (for low desired speeds), and with a simple constant-speed,



constant-shape, ¢ function seolution.

We now take a look at a paper by Phillips (1977) in some depth because some
other investigators have made some of the same assumptions and because Phil-
lips has written another paper which is largely based on this model. These

works have some items in common with our work.
Phillips' basic equation is

9D 4 o 2ED - K —proym-uyr + Zig KW =) (1)

where
X = position on road,

t = time,

u = speed,

U = average speed = juf(u,x,t)du.
°

n = number of lanes,

f(u.x,t)du = Prob{a car at x,t has velocity in (u,u+du)),

K(x,t)dx = number of cars in (x,x+dx),

P(K) = probability that an overtaking car will be able
to change lanes without delay,

f,(Ku)du = fraction of drivers who return to a speed
in (u,u+du) after a pass,

7{K) = a relaxation time for he returning to

speed process.

Generally, Phillips makes many false assumptions about traffic and makes
logical and mathematical errors as well. Some of Phillips' graphs contradict his

text.

Also, Phillips’ results are poor. For subcritical flow, as density increases from
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zero, the flow-density curve bends slightly due to the phenomenon of cars being
delayed by other cars and then passing. Without this phenomenon, Q=u/K,
where Q is flow, U, is average low-density speed and K is density. One typical set

of data presented by Phillips (p.48) is fitted very well by the equation

Q=uK—-akK?® 0< K=<.00819 vehAt

where

u, = 87.3 ft/sec,

a = 2600 ft?/veh-sec,

units of @ are veh/sec-lane,

units of K are veh/ft-lane.
Thus it takes only a simple equation with one free parameter, a, to accurately
represent the delay-passing phenomenocn in subcritical flow. Phillips’ equations
do not accurately give an equivalent of the aK?® term, the errors being on the
order of the aK? term. In all five data sets, Phillips’' curves fail to bend at low
enough K. This effect does not stand out strongly on a flow-density curve
because it is masked by the large value of u,K. However, this effect is the whole
reason for including delays and passing in the model. It should be represented

accurately.

For the forced flow portion of the flow-density curve, in four cut of five of the
data sets, the data decrease less rapidly than Phillips’ curve. This is probably
due in large measure to the fact that Phillips errenecusly uses 120 veh/mile-
lane as the jam densily, whereas May and Wagner give 200 to 225 veh/mile-lane,

and my measurements (on a city street) indicate about 225 veh/mile-lane.

Phillips derives the function P(K) based on whether the adjacent lane is occu-
pied next to a driver who wants to pass. That is, P is based on the ability of a

driver to change lanes. It should be based on whether he actually changes lanes
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and whether this results In passing. My observations of traffic indicate driver
psychology is equally as important as the existence of a car in an adjacent lane.
Some drivers will anticipate the need to pass and will not pass only if the road is
blocked in a much larger area than within an effective car length of the slow car.
Other drivers will come up behind a slow car and not pass even though there are
no cars to block the pass. Some of these drivers wait about 10 to 30 seconds
and then pass, while others stay behind the slow car for several minutes even in

very light traffic. Phillips' formula for P(K) is derived from
P(K)=1-Kly/n=1-k

where
P.(K) = P(K) if there is only one adjacent lane,
Lo =n/K, = {jam density for one lane) ™},
k=K/K, = normalized density 0< k< 1,
His argument is, ".. the probability of such a car being able to change lanes is
just the fraction of the adjacent lane which is not blocked with cars or
P,=1—-KlL,/n=1-K/K, =1 —k' The quantity L, should not be (jam den-
sity) ™! but rather an effective length of the blocking car, considering the speed
at which it is going. For example, an open space of 25 ft at 60 mph is a gap of
0.28 sec which will not be acceptable to most drivers {2 to 3 sec gap is the
minimum requirement of many drivers). For the sake of completeness, we
include Phillips' expression for P(K) based on the number of lanes and the pro-
babilistic argument that the probability of two adjacent lanes being blocked is
(1-Pg)%

P(k) = 1—(;21-k+ Eg—g—kz) .

The term —If——fl -P(K))(@W—u)f{uxt)in (1) accounts for:



-G7-

i. fast cars catching up with a car at speed u, and either passing immediately

or slowing to speed u and

ii. cars at speed u being slowed by slower cars.
This makes sense in subcritical flow but not in forced flow where all drivers are

already caught up with the car ahead. Thus, this term should be deleted for

forced flow.

The final term in (1) is based on the idea that drivers who have been slowed
will, after a time, return to a higher speed (although not necessarily the desired
s eed). My observations and measurements indicate that essentially no passing

occurs in forced flow, so that this term also should be deleted in forced flow,

An expression for the relaxation time 7 for drivers returning to a higher

speed is derived from the idea that a blockage will disappear in time

_ L
-

T 2u,

where U, is the average difference of speeds of cars. As in the probability of
passing without delay, the driver's psychology plays a major role. Many drivers
will not pass even when not blocked. Thus, 7 cannot be determined from posi-

tions of vehicles alone. Phillips also errs in his determination of G,

0 =

U, = f f |u —u | f.(u)f.(u)du du

¢} o

by using a distribution f. which is supposed to hold only for forced flow {and is
very badly in error in subcritical flow). He errs in his evaluation of the double
integral, and he makes an arithmetic error. His result, with the last two errors

corrected, is
T=1"71 kL, /(1 =k)u,

where
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u; = 38 ft/sec and comes from a reaction time
argument for the spacing of vehicles in
forced flow,

gap size, S = time gap X speed,

time gap = L, /u; = (44 ft)/(38 ft/sec) = 1.18 sec.

Phillips intends fp(u,K) to be an improvement over slowed drivers returning to
their desired speeds since they may pass one slow car only to be delayed still by
a car that is not as slow as the original blocking car. To do this Phillips uses two

»eed distributions: fg, the distribution of desired speeds, and {,, which is

approximately the Weibull distribution

2u-—1u, 2u—1
ﬂ_(_Li_é_EleXp ( _Qj#)z) U= 4./2
, U ¢ U.
fm =g u< U,/2,
L. = u;(1—k)/k = mean of f distribution, (2)
tp(w) = f fm(u)fa(u) + Im(Wia(u)du’ . (3)

u

The distribution of maximum speeds that the traffic situation will allow a driver
to return te is represented by f,. A driver will return to the minimum of his
desired speed and this maximum. The distribution of this minimum is fy(u).
For this formula to be based on sound probabilistic principles, it should include
a modification, since the fact that, given that a driver starts at some speed v
and given that he is passing, will affect the distributions f4(u) and f,(u') (we
must have v< u and v< u'). After making these modifications for fixed v, he
should average over all v. Equation 2 is at the heart of what makes Phillips
model follow the true flow-density curve somewhat. This equation is derived

directly from the car-following model where the time gap T between successive

cars is constant. Thus the head-to-head distance between cars is %—zﬁwTqu.
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Hence,

Uo = (Lo /T = (= )/T = (=) /(KT

This is identical to {2). The result of this is that when K is large f, has a mean
that is correct for forced flow, and (3) gives fp = frn. When K is small, U. becomes
larger than the mean of f4, so (3) gives f, =f4. Thus (3) provides a smooth tran-
sition from the distribution f4 to the distribution f,. For subcritical flow {, is a
fictitious distribution since it has a mean higher than even the desired speeds.
There are sometimes limits on the speed to which a car can return in subcritical

flow, but they are not given by fy,.

Phillips gives a formula for the equilibrium distribution derived from (1),
fo =f,/(1+y(u—1)), where y=7K(1-P)/n. Taking u—-u to be two standard
deviations gives |y(u-1T)|= .005 throughout the range of subcritical flow. This
term contains delay and passing effects but is entirely negligible in subcritical

flow which is the only region in which it is valid.

Phillips presents graphs for speed distributions with the theoretical distribu-
tion superimposed on the experimental distribution. In many cases he would

have done much better to assume the distribution is normal and to try to

predict x4 and o,

Conclusion:

Phillips’ work is supposed to predict the effects of delay and passing but fails
to do this. His derivations are incomplete or faulty and do not provide insight
except possibly through focusing on what he is trying to achieve. He does not
recognize that passing is an insignificant phenomenon in forced flow, and he

does not take proper account of driver psychology.
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