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ABSTRACT

This thesis describes two studies of the dynamics of many-body quantum sys-

tems with extensive numerical support.

In Part I we first give a new algorithm for simulating the dynamics of one-

dimensional systems that thermalize (that is, come to local thermal equilib-

rium). The core of this algorithm is a new truncation for matrix product

operators, which reproduces local properties faithfully without reproducing

non-local properties (e.g. the information required for OTOCs). To the ex-

tent that the dynamics depends only on local operators, timesteps interleaved

with this truncation will reproduce that dynamics.

We then apply this to algorithm to Floquet systems: first to clean, non-

integrable systems with a high-frequency drive, where we find that the system

is well-described by a natural diffusive phenomenology; and then to disordered

systems with low-frequency drive, which display diffusion—not subdiffusion—

at appreciable disorder strengths.

In Part II, we study the utility of many-body localization as a medium for a

thermodynamic engine. We first construct a small (“mesoscale”) engine that

gives work at high efficiency in the adiabatic limit, and show that thanks to the

slow spread of information in many body localized systems, these mesoscale

engines can be chained together without specially engineered insulation. Our

construction takes advantage of precisely the fact that MBL systems do not

thermalize. We then show that these engines still have high efficiency when

run at finite speed, and we compare to competitor engines.
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INTRODUCTION

Numerical methods for many-body quantum systems go back to the earliest

days of electronic computers. The physicists of Los Alamos during World War

II relied heavily on numerical simulations; the first calculations were done by

human “computers” or with mechanical calculators,1 but soon after the war

they began using ENIAC, the first programmable electronic computer [84].

We need simulations because the phenomena we study are complex. This

was certainly the case for the pioneers of computational physics, simulating

weapons physics at Los Alamos, and it is the case for us now. We may have

a microscopic Hamiltonian, but analytically solving the Schrödinger equation

with that Hamiltonian is out of the question, and tightly-controlled approx-

imations are frequently unavailable. So we are forced to rely on heuristic

approximations justified by physical arguments. But these approximations

need to be checked: do they describe the model’s behaviour well? At the very

least, do they describe some essential phenomenon at work in the system? Nu-

merical simulations of a model catch hidden assumptions and subtle mistakes

in your physical arguments—and they suggest further approximations to make

and phenomena to investigate. (The work of Part II of this thesis proceeded

in exactly this fashion, as an ongoing three-part conversation between physical

argument, careful analytical work, and numerical simulation.)

But numerical methods are not simply devices for checking your intuitions and

arguments. Developing a new numerical method and teasing out a characteri-

zation of where it succeeds, where it fails, and why it succeeds or fails provides

important insight into the physics of the systems that method simulates

Take the history of the density matrix renormalization group (DMRG)

and the matrix product state (MPS).2 Steve White developed the method

in 1993 [226, 227] as an extension of Wilson’s numerical renormalization group

(NRG) [230], and it quickly saw wide application [82, 100, 127, 180], not

only for computing ground states but also for simulating low-energy dynamics.

Meanwhile, in 1995, Ostlund and Rommer [248] showed that “infinite-system”

DMRG could be formulated in terms of matrix product states, which had

existed for some time, e.g. as a mechanism for writing down the ground

1The Los Alamos physicists required numerical stability from their algorithms because
dust caused frequent errors.

2This paragraph draws heavily on the review [187] of Schollwöck.
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state of the AKLT Hamiltonian [9, 10, 59], and in 1999 Takasaki et al. [203]

showed that “finite-system” DMRG is precisely a variational procedure, which

iteratively minimizes the energy over the manifold of matrix product states.

The notion of truncation was crucial to the practical developments. Matrix

product states offer not only a compact representation of low-entanglement

states, but also an obvious procedure for “lossy compression”—for optimally

approximating one matrix product state by another that requires less memory

and computation time to store and use.

The growing understanding that ground states of gapped Hamiltonians have

efficient matrix product state representations (in particular the work of Hast-

ings, e.g. [86]) gave physicists the confidence to use DMRG as, essentially,

a black-box method. Since most translation-invariant local Hamiltonians are

gapped (see [131] for a recent proof) and ground states of gapped Hamilto-

nians have efficient matrix product representations, one expects DMRG to

reliably find the ground state of an arbitrarily-chosen Hamiltonian. And

DMRG is generally self-diagnosing: even if it does fail, you can tell by

checking convergence in the simulation parameters, without having to com-

pare to an exact result, or argue without empirical evidence that it should

give the right answer.3 Even if you are not a specialist, you can choose from

a number of carefully-optimized, well-engineered MPS implementations, e.g.

ITensor [1] or TeNPy3 [87], and expect that either DMRG will work or you

will see clear evidence that it fails. The long list of papers using ITensor

(http://itensor.org/docs.CGI?page=papers) testifies to the impact of this

development.

But that understanding also led to a number of analytical results, notably Xie

Chen and friends’ classification of bosonic symmetry protected topological

phases (SPTs) [36]; cf Pollmann and friends’ [169, 170]. [170] is particularly

close to the spirit of this thesis: in it, Pollmann and his collaborators ask

how symmetry operations act on the vector space in which the entanglement

spectrum of an MPS in mixed canonical form lives. They find that the

decomposition of that vector space into irreducible projective representations

of the symmetry group strongly constrains the entanglement spectrum.

3A few of DMRG’s failure modes, notably difficulty capturing rare long-range correla-
tions as in a random-singlet ground state, are not self-diagnosing. See [184] for some of this
problem and the performance of an algorithm RRG that performs better for these states;
for more examples of failures in disordered systems see todo schmitteckert Brenden.

http://itensor.org/docs.CGI?page=papers


xi

And DMRG also gave rise to a variety of numerical methods for time evolution,

notably TEBD [213, 214, 228]. (I discuss TEBD in some detail in Sec. 1.3,

and give an opinionated discussion of a variety of MPS-based time evolution

methods in Sec.2.1.1.) These numerical methods in turn shed light on one of

the fundamental questions of computational physics—what physical processes

can one efficiently simulate on a classical computer?—by carving out a set

of quantum problems—namely those that generate little entanglement—that

can be efficiently simulated. This question in turn is intimately related to the

extended Church-Turing thesis. Other work along these lines includes

the Gottesman-Knill theorem [73], which shows that computations involving

only Clifford gates are efficiently simulable on classical computers.

A feedback loop between development and characterization of numerical meth-

ods, on the one hand, and analytical work of varying degrees of rigor on the

other, is clearly a fruitful way to do research: it leads to both practical nu-

merical methods and to a deeper analytical understanding of the phenomena

we started out trying to simulate.

Until recently, this feedback loop had been applied in only the most limited of

ways to questions of thermalization, disorder, and localization. Generic (viz.,

non-integrable) systems are expected to come to thermal equilibrium in finite

time; we call these systems thermalizing. Thermalization is understood in

terms of the eigenstate thermalization hypothesis (ETH): because the

time to approach a state that is effectively random except to the extent that

it has a certain energy expectation value—that is, a Gibbs ensemble—is given

by the exponentially long dephasing time between near-in-energy eigenstates,

each eigenstate must have the properties of a Gibbs state at that eigenstate’s

eigenenergy [44, 54, 182, 183, 200]. Interestingly, the ETH is not enough.

Some systems can satisfy the ETH but have very slow thermalization times,

either because they have only weak integrability-breaking terms, or because

they give rise to emergent local quasi-conserved quantities [20, 113, 136]; when

I say “thermalizing” I implicitly mean “quickly thermalizing”, for some notion

of “quickly” determined by the other timescales of the problem at hand and by

the resources (memory and computation time) available for simulations. And

not all “generic” systems thermalize at all: sufficiently strongly disordered sys-

tems undergo many-body localization (MBL), in the Hamiltonian com-

mutes with local conserved quantites, essentially dressed onsite occupations.

Near the transition between the ETH and MBL phases, a regime displaying

rich Griffiths physics, e.g. subdiffusion, is expected to occur.
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Because thermalizing systems generate entanglement quickly, TEBD is of lim-

ited utility, and numerical studies were for some time restricted to exact di-

agonalization (e.g. [115]), with occasional forays into special-purpose MPS or

matrix-product operator (MPO) calculations (e.g. [113]). But in the last few

years, three methods—TDVP [133], CTWA [233, 234], and my own density

matrix truncation, or DMT—have density matrix truncation come

into use; they promise to shed light on the physics of thermalizing systems.

This thesis sits in the tradition I have sketched of using both sides of this

feedback loop to advance the discipline.

I present necessary background in Chapter 1. The later chapters assume some

basic knowledge of many-body localization, matrix product states, and algo-

rithms for time evolution. Chapter 1 communicates that knowledge. I aim

more for intuition than rigor. Nothing in 1 is original; most of the contents

are ambient cultural knowledge, so I include few citations.

Part I describes DMT and the physics we can use it to study. DMT is a new

describe a new algorithm for approximating matrix product representations of

density matrices that takes advantage of our understanding of thermalization.

It succeeds at simulating previously unsimulable systems, and its convergence

properties already prompt interesting insights into those systems.

In Ch. 2, we argue that truncating MPDOs in such a way that the expectation

values of the conserved quantities of some thermalizing Hamiltonian do not

change should not change the long-time dynamics of that Hamiltonian. We

construct a truncation procedure that does this, and find that it does indeed

capture the long-time dynamics of a fruit-fly thermalizing Hamiltonian. In

Ch. 3 we apply DMT to a high-frequency Floquet system. We find that it

accurately captures not only the system’s hydrodynamics but also the Floquet

heating process; the degree to which it does this illuminates the details of that

process. We also find that the long-time prethermal dynamics of the system are

well-described by a phenomenological diffusion equation In Ch. 4, we apply

DMT to a low-frequency disordered Floquet system, and find that even for

substantial disorder its hydrodynamics are diffusive. We also comment on

some subtleties in evaluating DMT’s accuracy, and the degree to which it is

self-diagnosing.

In Part II I turn to a very different work: on turning MBL systems to ther-

modynamic advantage. After briefly contextualizing the problem in Ch. 5, we

construct a thermodynamic engine from an MBL system and analyze it in a
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relatively straightforward adiabatic limit (Ch. 6); we then analyze finite-speed

effects (Ch. 7), and compare it to competitor engines (Ch. 8).

At first sight the material of Part II does not fit so well into the tradition of

using methods development to comment on physics, and vice versa. But this

impression understates the degree to which the numerical simulations shaped

our numerical and even conceptual work, and it also understates the degree

to which the limits of the numerical methods we used give us insight into the

physics we use and the robustness of our protocols. I briefly comment on this

point in Sec. 7.2
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C h a p t e r 1

BACKGROUND: MBL AND MPS

1.1 Many body localization

1.1.1 Many-body localization in perturbation theory

Consider a random paramagnet—a system with Hamiltonian

Hrpara =
∑

hzjσ
z
j , (1.1)

where the hzj are drawn independently from the uniform distribution on [−h, h].

A system governed by this state has “perfect memory” in the sense that if it

starts out in some product of σzj eigenstates, say

|0xC0FFEE〉 = |↑↑↓↓↓↓↓↓↑↑↑↑↑↑↑↑↑↑↑↓↑↑↑↓〉 , (1.2)

it will remain in that state forever: e−iHt |0xC0FFEE〉 = |0xC0FFEE〉, up to a

phase, for all t. In terms of operators

d

dt
〈σzj 〉 = −i〈[Hrpara, σ

z
j ]〉 = 0 . (1.3)

Indeed [Hrpara, σ
z
j ] = 0: the σzj are conserved quantities of the Hamiltonian

Hrpara.

Now suppose we change the Hamiltonian. Suppose in particular that we add

a nearest neighbor interaction:

HRFH = Hrpara + t
∑

j

[σxj σ
x
j+1 + σyjσ

x
j+1] + ∆

∑

j

σzjσ
z
j+1]

= t
∑

j

[σxj σ
x
j+1 + σyjσ

x
j+1] + ∆

∑

j

σzjσ
z
j+1 +

∑

j

hzjσ
z
j ,

(1.4)

hzj still random in [−h, h]. (I choose this Hamiltonian with malice aforethought.

Since the work of Pal and Huse [160] this Hamiltonian, called the random-field

Heisenberg Hamiltonian, has served as the fruit-fly model for the study of many

body localization: see inter alia multa [246].) Then

[HRFH, σ
z
j ] 6= 0, (1.5)
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i.e. the σzj are no longer conserved quantities. Disaster!

But if h is large, the σzj are almost conserved. First, take ∆ = 0 and add

h 6= 0. Then the Hamiltonian is

H& = t
∑

j

[σxj σ
x
j+1 + σyjσ

x
j+1] +

∑

j

hzjσ
z
j . (1.6)

On Jordan-Wigner transformation this is the single-particle Hamiltonian

H& = 2t
∑

j

[c†jcj+1 + h.c.] +
∑

j

hzjnj . (1.7)

I’m going to take as read the fact that this Hamiltonian displays Anderson

localization, so its single-particle eigenstates are localized with some local-

ization length, call it ζ.

To put that statement about localized single-particle eigenstates in a more

useful form, write ñj for the occupation number operator of the eigenstate

centered at site j, and write τ z&j = 2ñj. (Similarly Jordan-Wigner transform

c̃† ∼ τ+.) τ z&j is called an (Anderson) l-bit. Then

H& =
∑

j

h′jτ
z
&j , (1.8)

where the h′j are the eigenenergies of the single-particle eigenstates. There is

some unitary U& (namely the unitary diagonalizing H&) such that

U †&τ
z
&jU& = σz (1.9)

and U †&τ
+
&jU& = σ+, etc. Since the single-particle eigenstates are localized

with localization length ζ,

τ z&j ∼ σzj +
∑

kl

Rj
kle
−(|k−j|+|j−l|)/ζσ+

k σ
−
l (1.10)

for some appropriate random Rj
kl.

How do interactions change this picture? Add an interaction term V =∑
j σ

z
jσ

z
j+1, for

HRFH = H& + V =
∑

~σj · ~σj+1 +
∑

j

hjσ
z
j . (1.11)
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We would hope to treat this as a perturbation. We can only do so if

∣∣∣∣
〈α|V |α〉
Dα −Dβ

∣∣∣∣� 1. (1.12)

To estimate this, suppose two states |α〉 , |β〉 differ on a subsystem of diameter

l: that is,

|α〉〈β| = τ+
&a1

. . . τ+
&an

τ−&b1 . . . τ
−
&bm

, (1.13)

where the sites a1, . . . an, b1, . . . , bm are all in a subsystem l. Then

〈β|σzjσzj+1 |α〉 = tr
[
σzjσ

z
j+1 |α〉 〈β|

]

= tr
[
σzjσ

z
j+1τ

+
&a1

. . . τ+
&an

τ−&b1 . . . τ
−
&bm

]

= tr
[
(U †&σ

z
jσ

z
j+1U&)σ+

a1
. . . σ+

anσ
−
b1
. . . σ−bm

]
.

(1.14)

What is the operator content of this strange construction U †σzjσ
z
j+1U? We

know that conjugation by U maps

U&σ
z
jU
†
& ∼

1

ζ
σzj +

∑

kl

Rj
kle
−(|k−j|+|j−l|)/ζσ+

k σ
−
l (1.15)

with Rj
kl ∼ ζ−1 random, so it is reasonable to suppose that U †σzjσ

z
j+1U is

U †σzjσ
z
j+1U =

∑

~ν

Rj
~ν2
−2`[~ν]e−`[~ν]/ζσ~ν , (1.16)

where Rj
~ν ∼ 1

ζ
, ~ν = ν1ν2ν3 . . . νl, νj ∈ 0 . . . 3 label Pauli strings σ~ν , we take each

~ν to have at least one νj 6= 0, and `[~ν] is the natural notion of the diameter of

the Pauli string σ~ν

`[~ν] ≡ max{j : νj 6= 0} −min{j : νj 6= 0} . (1.17)

The factor of 2−2`[~ν] ensures normalization. Then

〈β|σzjσzj+1 |α〉 = tr
[
(U †σzjσ

z
j+1U)σ+

a1
. . . σ+

anσ
−
b1
. . . σ−bm

]

∼ 2−l/2e−l/ζ .
(1.18)

The energy difference is typically not less than the spacing of levels on l sites:

Dα −Dβ & hl2−l . (1.19)
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So our condition for V to act perturbatively is that for most α, β

1�
∣∣∣∣
〈α|V |β〉
Dα −Dβ

∣∣∣∣ ∼ el(ln 2−ζ−1) (1.20)

or equivalently that the bare model H& have localization length

ζ−1 > ln 2 . (1.21)

(This is a heuristic sketch of certain elements of de Roeck et al.’s “avalanche

picture”; see also [5, 49, 145, 171, 206, 207]. The chief element I have not

treated is the possibility—near certainty, in fact—that some regions will be

resonant in the sense in the sense that the condition (1.20) is not satisfied;

de Roeck and friends give an RG-like scheme for determining whether these

“resonant regions” destabilize the Anderson-localized system.)

If you carry this diagonalization out in full you will find a unitary U such that

τ zj = Uτ z&jU
† = UU&σ

z
jU
†
&U
†
& is a conserved quantity of HRFH:

[HRFH, τ
z
j ] = 0 . (1.22)

Based on the condition (1.20) and the expectation that higher-order terms will

scale as

[nth-order term] ∼
(
el(ln 2−ζ−1)

)n
, (1.23)

one expects these l-bits to have the form localization length

τ zj ∼ U †U †&σ
z
jU&U ∼

1

ξ
σzj +

∑

kl

Rj
kle
−(|k−j|+|j−l|)/ξσ+

k σ
−
l (1.24)

where

ξ = (ln 2− ζ−1)−1 . (1.25)

(Again this is morally consistent with the results of the avalanche picture, but

they run this quantity through an RG scheme.) We have therefore constructed

extensively many local integrals of motion. These are l-bits in the usual sense

[34, 92].

A couple of notes about the condition (1.21) on the Anderson localization

length are in order. The right hand side of that condition, which ultimately

comes from an estimate of the level spacing, is actually an entropy density.

This has consequences:
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Figure 1.1: Left: Notional density of states (hence entropy density) for a disor-
dered many-body system. Right: Notional phase diagram, per (1.21). Com-
pare the phase diagram found in [146] for the isotropic random-field Heisenberg
model.

1. Systems with larger onsite Hilbert spaces, from the prosaic (spin-3/2

sites) to the exotic (SYK puddles), will require larger disorder to localize

(if they localize at all: constructing this Anderson route to MBL will

require creativity).

2. Since for real systems the entropy density is a function of energy density,

the condition (1.21) (as well as the more sophisticated treatments of de

Roeck et al.) näıvely predict a mobility edge. See Fig. 1.1. But de Roeck

et al. argue in [48] that a mobility edge is impossible, in the sense that

it will destabilize localized states at lower energies. Per this arguement,

interacting systems must be fully MBL (no mobility edge) or not MBL

at all. On the other hand, numerics (e.g. [146]) consistently show a

mobility edge consistent with the näıve prediction of (1.21)). My own

belief is that that the mobility edge exists, but this will require a great

deal of work to sort out.

In addition, the full avalanche picture predicts that MBL cannot exist in d ≥ 2

dimensions. You can already glimpse how this comes about: if you construct a

perturbative scaling in some length l based on (1.20), the level spacing shrinks

exponentially in ld, while the matrix element only shrinks exponentially in l.

So in d ≥ 2, couplings are always resonant at sufficiently long length scales.

1.1.2 Long-time memory in MBL systems

We started with a simple question about a system’s memory: supposing I

started out in state |0xCOFFEE〉, does the system remain recognizably in that

state? If the system is a random paramagnet, it obviously does: [H, σzj ] = 0.
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If the system is goveerned by a random-field Heisenberg model, the situation

is more complicated. Then [HRFH, σ
z
j ] 6= 0, but as we have just seen there are

operators τ zj not so different from σzj that are conserved.

Instead of worrying about the instantaneous decay d
dt
σzj = −i[HRFH, σ

z
j ], attack

the long-time limit directly. Work in the fermion picture, with nj = 1
2
(σzj + 1).

If Eα are the eigenenergies of HRFH, then

lim
t→∞

nj(t) = lim
t7→∞

∑

αβ

e−i(Eα−Eβ)t |α〉 〈α|nj |β〉 〈β| . (1.26)

This is strongly oscillatory, so the outcome could depend strongly on when

exactly we take the measurement. Clearer would be to start a measurement

after some time t0 and let the measurement go on for some very long time T :

1

T
lim

t0,T→∞

∫ t0+T

t0

nj(t) =
∑

αβ

|α〉〈α|nj |β〉〈β|
1

T
lim

t0,T→∞

∫ t0+T

t0

e−i(Eα−Eβ)t

=
∑

α

tr [|α〉〈α|nj] .
(1.27)

The eigenstates |α〉 are specified by l-bit occupations, e.g. |α〉 = |10011101 . . .〉,
so eigenstate projections are

|α〉〈α| =
∏

j∈α

ñj
∏

k 6∈α

ñk , (1.28)

where j ∈ α indicates that l-bit j is occupied in state |α〉, and I write

ñj =
1

2
(τ zj + 1) ∼ 1

ξ
nj +

∑

jk

e−ξ|j−k|c†jck + . . . (1.29)

for the occupation operator of the l-bit centered at j. That occupation operator

looks like

ñj ∼
1

ξ
nzj +

∑

kl

Rj
kle
−(|k−j|+|j−l|)/ξc†kcl . (1.30)

Then

1

T
lim

t0,T→∞

∫ t0+T

t0

nj(t) =
∑

α

tr

[∏

k∈α

ñk
∏

k′ 6∈α

ñk′nj

]
|α〉〈α| . (1.31)
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Since

nj ∼
1

ξ
ñj + [multiple l-bit flips with small coeff’s] , (1.32)

this is roughly

1

T
lim

t0,T→∞

∫ t0+T

t0

nj(t) =
1

ξ

∑

α

tr

[∏

k∈α

ñk
∏

k′ 6∈α

ñk′nj

]
|α〉〈α|

' ñj :

(1.33)

the long-time expectation value is given by the nearest l-bit.

1.1.3 Level spacing

This long-time memory, while conceptually satisfying, is too blunt a knife

either for diagnostics or for detailed considerations of dynamics. Level spacing

statistics—in particular, the distribution of gaps between nearest-in-energy

eigenstates, is a much finer tool: it is a standard diagnostic of thermalization

and localization, and we will use it extensively in Part II.

To understand the level-spacing statistics of a disordered Hamiltonian, think

once again about a random-field Heisenberg model, this time on a system

of size L with closed boundaries. To estimate the distribution of smallest

gaps, start in an eigenbasis of the underlying Anderson-localized system. Once

again, we’ll proceed by perturbation theory, but along a different route.

Suppose for the moment that the system is many-body localized, and take two

eigenstates |α〉 , |α + 1〉 of H& with energies E&α, E&α+1. Nearest-in-energy

eigenstates will differ on most of the system’s Anderson l-bits, so on the one

hand

δ& ≡ E&α+1 − E&α ∼ 2−L , (1.34)

and on the other

λ ≡ 〈α|σzjσzj+1 |α + 1〉 ∼ 2−L/2e−L/ζ . (1.35)

We can then write an effective two-level Hamiltonian on these two levels

H =

[
δ& λ

λ −δ&

]
. (1.36)
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Figure 1.2: Heuristic derivation of level-spacing distribution

The eigenvalues of (1.36) are

E = ±h
√
δ2

& + λ2 , (1.37)

so the gap is δ =
√
δ2

& + λ2.

What is probability distribution of gaps δ? Suppose now that the system

is MBL, and indeed far from the transition. Both δ& and λ are uniformly

distributed on their respective scales, but λ� δ&: this is the condition (1.20)

for the system to be MBL. To see the distribution of δ, Imagine plotting δ&, λ

in a plane (cf Fig. 1.2). For small δ (i.e. δ . λ) the ensemble-averaged level-

spacing distribution is

lim
s→0

p(δ)dδ ∼ δ dδ, δ . λ ; (1.38)

for δ & λ,

p(δ)dδ ∼ const.× dδ, λ . δ . h . (1.39)

We are therefore unlikely to see gaps smaller than

λ ∼ 2−L/2e−L/ζ . (1.40)

This logic was for gaps δ � 2−L. If the gap is larger, δ ∼ 2−L, the reasoning

above still holds—but δ ∼ δ&, and you must concern yourself with the fact

that δ& is not uniform. Take two Anderson levels separated by a gap δ′&.

As δ′& increases, the two levels with which you have concerned yourself are

increasingly unlikely to be nearest-neighbors in specrum: there is likely to be

a level in between. Taking this into account, one finds that

p(δ)dδ ' p(δ&)dδ& = µe−µδ&dδ& , (1.41)
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where µ = 2L is [average Anderson gap]−1. (In Part II, we will frequently

concern ourselves with the detail that the rate µ can vary with energy.) So

p(δ) ∼




δ δ . λ

µe−δ δ & λ
. (1.42)

It is convenient to have a single parameter to characterize this level repulsion.

Your first thought is probably to compute moments of the level-spacing dis-

tribution (1.42), but none are suitable: 〈s〉 = 1 by construction, and higher

moments capture the large-s behavior—not the small-s behavior we’re after.

Moreover, estimating the level-spacing distribution requires that finicky nor-

malization by the density of states.

Instead, it is conventional to use the so-called gap ratio, frequently called the

r-parameter. Given two adjacent level spacings δj = Ej−Ej−1 and Ej+1−Ej,
the gap ratio is

rj =
min (δj, δj+1)

max (δj, δj+1)
. (1.43)

The gap ratio characterizes the distribution (1.42), so one should average it

both over levels of a single Hamiltonian and over Hamiltonians drawn from

whatever ensemble you’re studying.

To get some intuition, consider two limiting cases:

• If the system has an exact two-fold degeneracy (e.g. a global spin-flip)

then small gaps are frequent, and

min (δj, δj+1) = 0

max (δj, δj+1) 6= 0
(1.44)

for

r = 0 . (1.45)

• If the eigenvalues are uniformly spaced then small gaps never show up,

and

δj = δj+1 (1.46)

so min (δj, δj+1) = max (δj, δj+1) for

r = 1 . (1.47)
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1.1.4 Local dynamics at finite time

We can use the level spacing to tease out details of the intermediate-time dy-

namics of MBL systems. Think about the evolution of the Heisenberg operator

σz(t) . (1.48)

How many sites does the operator touch? That is, how many sites in the initial

state does 〈σzj (t)〉 depend on? This is essentially a time-dependent correlation

length: σzj (t) and σzk(t) will be correlated to the extent that they depend on

the same sites in the initial state.

To compute this correlation function, note that on a timescale t the dynamics

is insensitive to gaps smaller than t−1: if two levels are separated by a smaller

gap they will not have had time to dephase. All levels differing on a subsystem

of diameter

l(t) ∼ ln t

ln 2− ζ−1
∼ ξ ln t, (1.49)

then, will have had time to dephase, but many levels separated on longer

length scales will not—so σz(t) will have support l(t) ∼ ξ ln t. (Cf [109, 158].)

This in turn predicts that the entanglement entropy should be

S ∼ ls ∝ ln t, (1.50)

where s is an entropy density; this is exactly what MPS simulations see [16,

194].

This reasoning will make a reappearance in Chs. 6 and 7.

1.2 Matrix product states

The long-time state of an MBL system is characterized by the expectation

values of its conserved quantities, the l-bits. l-bits are local, so expectation

values of physical operators here are only weakly dependent on values of l-bits

there, and the long-time state should in some sense be “simple”. Moreover, as

we just saw, an MBL system that starts out uncorrelated stays uncorrelated

for a long time—its correlation length grows as ln t. There should be some nice

numerical representations of the kinds of state that result from time evolution

with MBL Hamiltonians.
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So take an arbitrary state

|ψ〉 =
∑

s1...sN

ψs1...sN |s1 . . . sN〉 (1.51)

with short-range correlations on an N -site system with closed boundary condi-

tions. We want a “computationally efficient” representation for the state—that

is, an approximation to |ψ〉 such that that

1. the representation requires little memory, as long as |ψ〉 has a short

correlation length;

2. typical operations require little time (polynomial in system size), again

as long as |ψ〉 has a short correlation length;

3. the representation can “expand” to represent even states that are not

short-range entangled.

Such a representation exists: the matrix product state or MPS. The stan-

dard reference on matrix product states is the review of Schollwöck [187] . The

field has seen many new developments since that review (some described in

this thesis), but none have achieved the widespread acceptance of DMRG or

TEBD have. For a very different perspective, see the book of Xie Chen et al.

[242] .

To get some intuition for matrix product states work, start with a Schmidt

decomposition. Imagine cutting the state in two at some bond l (that is,

the bond to the right side of site l). One slightly roundabout way to find

the reduced density matrix of the left part of the system is to take the tensor

ψs1...sN of Eq. (1.51), group indices to turn it into a matrix,1 and do a

singular value decomposition (SVD)

ψ(s1...sl)(sl+1...sN ) =
∑

α

U(s1...sl)αsαV(sl+1...sN ) . (1.52)

This gives

|ψ〉 =
∑

α

|xLα〉 sα |xRα〉 (1.53)

1In this case, “grouping indices” is exactly the reshape operation in NumPy or Julia.
In other cases, “grouping indices” will correspond to reshape preceded by a reshuffling of
indices: np.transpose or Julia’s permutedims.
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with

|xLα〉 =
∑

s1...sl

U(s1...sl)α |s1 . . . sl〉

|xRα〉 =
∑

sl+1...sN

V(sl+1...sN )α |sl+1 . . . sN〉
(1.54)

Since U, V are isometries

〈xLα|xRβ〉 = 〈xLα|xRβ〉 = δαβ . (1.55)

(Eq. (1.53) is therefore a Schmidt decomposition.) The reduced density ma-

trices left and right of bond l are then immediately

ρL =
∑

α

s2
α |xLα〉〈xLα|

ρR =
∑

α

s2
α |xRα〉〈xRα| .

(1.56)

So the singular values sα are (the square roots of the) eigenvalues of the density

matrices ρ{L,R}, and entirely specify the state’s entanglement properties: the

2nd Rényi and von Neumann entanglement entropies, for example, are

S2 =
∑

α

s4
α

SN =
∑

α

2s2
α lg sα .

(1.57)

If the state has low entanglement entropy at bond l, it should require only a

few Schmidt vectors to capture—that is, we should be able to write a pretty

good approximation by truncating the sum in Eq. (1.53)

If we follow that line of attack, we’re still faced with the problem of representing

the states |x{L,R}α〉. What we require is a generalization of Eq. (1.53) that in

some sense offers Schmidt decompositions at every bond simultaneously.

A matrix product state offers exactly this property. It consists of a decom-

position of the tensor ψs1...sN into a product of matrices (hence the name)

ψs1...sN = As11 A
s2
2 . . . AsNN (1.58)

where each of the A
sj
j is a matrix of dimension χ×χ for some χ not too large

(except for As11 and AsNN , which are 1× χ and χ× 1 respectively). χ is called
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the bond dimension of the MPS; it controls the computational properties

and the entanglement of the MPS. The state is

|ψ〉 =
∑

s1...sN

As11 A
s2
2 . . . AsNN |s1 . . . sN〉 (1.59)

(relabeling α 7→ α1—in the future such relabelings will be silent) for

ψs1(s2...sN ) = As1α rαVα(s2...sN ) . (1.60)

The index α1 has dimension χ1 given by the rank of the d × dN−1 matrix

ψs1(s2...sN ). Now apply roughly the same process to rV : regroup indices so

that it is a (χ1d)× dN−2 and perform an SVD

rαV(α1s2)(s3...sN ) = U(α1s2)α2rα2Vα2(s3...sN ) . (1.61)

Identify

As2α1α2
= U(α1s2)α2 (1.62)

for

ψs1s2...sN =
∑

α1α2

As1α1
As2α1α2

rα2Vα2(s3...sN ) . (1.63)

The index α2 has dimension χ2 given by the rank of the χ1d × dN−1 matrix

rαV(α1s2)(s3...sN ) Proceed in this way until you find (after doing N − 1 SVDs)

ψs1s2...sN =
∑

α1α2...αN−1

As1α1
As2α1α2

. . . AsN−1
αN−2αN−1

VαN−1sN ) ; (1.64)

call VαN−1sN ) ≡ AsNαN−1
, so

ψs1s2...sN =
∑

α1α2...αN−1

As1α1
As2α1α2

. . . AsN−1
αN−2αN−1

AsNαN−1
(1.65)

—this is exactly the form required for Eq. (1.59).

We can bound the bond dimension inductively. χ1 is the rank of a d × dN−1

matrix, so

χ1 ≤ d, χ1 ≤ dN−1 . (1.66)

χ2 is the rank of a (χ1d)× dN−2 matrix, so

χ2 ≤ (χ1d) ≤ d2, χ1 ≤ dN−2 . (1.67)



14

Proceeding in this way

χn ≤ dn, χn ≤ dN−n , (1.68)

and in general

χn ≤ dbn/2c . (1.69)

In fact one rarely constructs an MPS in this way. The utility of MPSs is in

the fact that they are efficient representations of states too large to represent

otherwise. If the system size is small enough that one can store the whole

coefficient tensor ψs1...sN you are almost certainly better off working with the

exact state in an ordinary representation. But the fact that all states can

be represented exactly is useful. By taking large bond dimensions, one can

perform exact simulations and use them to check your low-bond dimension

approximate simulations (we will do this over and in Part I). More generally,

this motivates convergence testing. Suppose you are using an approximation

method that cuts MPSs down to some low bond dimension cap. If doubling

(say) that bond dimension cap doesn’t change the results, you can argue that—

since the method will give the exact result for sufficiently large bond dimension

cap—this insensitivity means that you have the right answer.

1.2.1 Graphical notation for tensors and tensor contractions

Writing out indices in sums like (1.65) is flexible but cumbersome, while the

matrix-multiplication form of Eq. (1.59) is compact but inflexible. It is custom-

ary to use a compact graphical notation for tensors and tensor contractions.

Tensors are represented by boxes with legs, each leg representing a tensor

index, so for example

As2α1α2
= . (1.70)

The mapping between leg and index is generally to be understood from context

and implicit convention; in this case, the left and right legs represent α1, α2

respectively, and the bottom leg s2. Frequently the box is omitted, and a

tensor is represented by a vertex:

As2α1α2
= = . (1.71)
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Tensor contraction—in which one sets indices equal and sums—is indicated

by joining the lines corresponding to the indices, so

∑

α1

As1α1
As2α1α2

= . (1.72)

In this notation the coefficient tensor ψ is

ψs1s2...sN =
∑

α1α2...αN−1

As1α1
As2α1α2

. . . AsN−1
αN−2αN−1

AsNαN−1
= . (1.73)

Complex conjugation is represented by flipping the diagram top-to-bottom

ψ∗s1s2...sN , (1.74)

so a state’s normalization is

〈ψ|ψ〉 =
∑

s1...sN

ψs1s2...sNψ
∗
s1s2...sN

= . (1.75)

1.2.2 Expectation values and correlations in MPSs

One is not typically satisfied with computing the normalization of a state.

Suppose one has an onsite operator B with matrix elements Bss′ . Then

Bss′ = (1.76)

and

〈ψ|B|ψ〉 = . (1.77)

(Ordinarily the operators are Hermitian; if they are not, some care must be

taken in interpreting diagrams like this one.)

This is less difficult to evaluate than it may appear. One can perform the

contractions in a diagram like Eq. (1.77) by “sweeping in” from left and right—

this is much more efficient than forming ψs1...sN explicitly. Reordering the

contractions corresponds to reshuffling sums and multiplications in an explicit

representation analogous to Eq. (1.65), so one can iteratively construct left
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and right environment tensors

ELj ≡ =

ELj =

ERj ≡ =

ELj =

(1.78)

Then the expectation value is

〈ψ|B |ψ〉 = . (1.79)

Multi-site operators are an easy generalization: if O is a two-site operator, it

has matrix elements

Oss′ = (1.80)

and expectation value

〈ψ|B |ψ〉 = (1.81)

None of these computations require constructing the coefficient tensor ψ, which

would require memory (and time) exponential in system size. Rather, they

require time and memory linear in system size and polynomial in the maximum

bond dimension χ, and if you want many expectation values you can store the

environment tensors and amortize the cost of computing them.

1.2.3 Canonical forms and orthogonality centers

The time-consuming part of the expectation value constructions of Sec. 1.2.2 is

the computation of the environment tensors of Eq. (1.78). But if we choose the

A matrices to have appropriate properties, then computing the environment

tensors (1.78) becomes immediate.

Suppose that the MPS is constructed as in Sec. ??. Then, because the A

matrices are (for j < N) the left unitary matrices of SVDs, we have

∑

sjαj−1

Asj∗αj−1αj
Asj∗αj−1αj′

= δαjα′j , j < N (1.82)

or in graphical notation

= , (1.83)

where the curved line is = δαα′ .
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So

EL1 = =

EL2 = =

ELn = = .

(1.84)

To find the analogous result for the right side, return to decompositions of the

form Eq. (1.63). After n− 1 steps we have

ψs1s2...sN =
∑

α1α2

As1α1
As2α1α2

. . . Asn−1
αn−1αn

rαnVαn(sn...sN ) (1.85)

so, comparing with Eq. (1.65),

∑

αn+1...αN−1

Asnαnαn+1
. . . AsNαN−1

=
∑

αn

rαnVαn(sn...sN (1.86)

and

E = =
∑

sn...sN

rαnrα′nV
∗
αn(sn...sN )Vα′n(sn...sN ) = r2

αδαα′ . (1.87)

Working from right to left one can deduce the right-side analogue of the local

condition Eq. (1.83):

∑

sjαj

Asj∗αj−1αj
A
sj
α′j−1αj

= r2
αj−1

δαj−1α′j−1
, j < N (1.88)

or in graphical notation

= . (1.89)

The diamond conventionally indicates a diagonal matrix, here with diagonal

entries r2
αj

. Now a single-site expectation value is

. = . (1.90)

MPSs with the property Eq. (1.83) are called left canonical. If a state is

called “left canonical” one generally expects it also to have the property (1.90),

but arranging this can require some effort. One can define right canonical
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MPSs analogously: these are MPSs

|ψ〉 =
∑

s1...sN

Bs1
1 B

s2
2 . . . BsN

N |s1 . . . sN〉 . (1.91)

such that ∑

sjαj−1

Bsj∗
αj−1αj

B
sj
αj−1α′j

= r2
αjα′j

, (1.92)

and typically ∑

sjαj

Bsj∗
αj−1αj

B
sj
αj−1α′j

= δαj−1α′j−1
, (1.93)

j < N , or

= (1.94)

Expectation values are then

〈ψ| |B |ψ〉 = . (1.95)

How does one switch between left and right canonical forms? One’s first

thought is to write

Bsj
αj−1αj

= (r(j−1)
αj−1

)−1Asjαjαj−1
r

(j)
j , (1.96)

(where I write r
(j−1),(j)
α to emphasize that these are two different sets of singular

values r). This gives the same state, because the r(j−1) on the right side of

B(j−1) will multiply the [r(j−1)]−1 on the left side of B(j). In principle this gives

the desired result, but it is numerically unstable because it involves dividing

by the singular values r
(j−1)
αj−1 , which generically range in magnitude from ∼ 1

to numerical precision.

Better is to sweep from right to left, performing SVDs at each site. Start with

a left-canonical MPS

|ψ〉 =
∑

s1...sN

As11 A
s2
2 . . . AsNN |s1 . . . sN〉 . (1.97)

SVD

AαNsN = UαNα′N rα′NVα′NsN . (1.98)
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Identify

BsN
α′N
≡ Vα′NsN ; (1.99)

now

|ψ〉 =
∑

s1...sN

As11 A
s2
2 . . . A

sN−2

N−2A
sN−1

N−1UrB
sN
N |s1 . . . sN〉 , (1.100)

where BN satisfies the right canonical relation (1.92) Now multiply that Ur

into the A to its left, defining

XsN−1
αN−2αN−1

= AsN−1
αN−2αN−1

rαN−1
. (1.101)

SVD

XαN−2(αN−1sN−1) = UαN−2γN−2
rγN−2

VγN−2(αN−1sN−1) . (1.102)

Identify

BsN−1
αN−2αN−1

= VαN−2(αN−1sN−1) ; (1.103)

this B again satisfies the right canonical relation (1.92).

|ψ〉 =
∑

s1...sN

As11 A
s2
2 . . . A

sN−2

N−2 U r B
sN−1

N−1 B
sN
N |s1 . . . sN〉 . (1.104)

Proceeding in this way, after N − n SVDs

|ψ〉 =
∑

s1...sN

As11 A
s2
2 . . . Asnn U r B

sn+1

n+1 . . . B
sN
N |s1 . . . sN〉 (1.105)

and after N − 1

|ψ〉 =
∑

s1...sN

Bs1
1 . . . BsN

N |s1 . . . sN〉 (1.106)

with all the B satisfying (1.92): we have put the MPS into right canonical

form, as desired, without ever dividing by singular values.

A state in the intermediate form (1.105) is said to have a (zero-site) orthog-

onality center at bond n2, or to be in mixed canonical form. This is

equivalent to the Schmidt decomposition.

2One sometimes uses “zero-site” to distinguish MPSs like (1.105) from those in which
the Ur has been multiplied into the A to its left; this is called a “one-site” orthogonality
center. I do not use one-site orthogonality centers in this thesis, so I do not say “zero-site”.
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1.3 Dynamics and matrix product states

In Sec. 1.1 we asked what happened to a state

|0xC0FFEE〉 = |↑↑↓↓↓↓↓↓↑↑↑↑↑↑↑↑↑↑↑↓↑↑↑↓〉 , (1.107)

under evolution by a Hamiltonian

HRFH =
∑

~σj · ~σj+1 +
∑

j

hjσ
z
j . (1.108)

We found that at long times the system retained some memory of that initial

state |0xC0FFEE〉, and that it develops correlations slowly—with a correlation

length l ∼ ξ log t, ξ the localization length of HRFH. Then I argued (briefly)

that matrix product states are natural tools for numerically simulating MBL,

and described (at length) natural operations on those matrix product states.

Now I need to describe one more “natural operation”—time evolution.

A Hamiltonian like HRFH acts locally. If I time evolve |0xCOFFEE〉 by HRFH

for some time δt� 1, then it is unreasonable to expect that the state of site 1

will come to depend on the state of site 20 in any substantial way—except to

the extent that they depended on each other to start out with. Hamiltonian

does not quickly introduce new correlations. This is doubly true of an MBL

system.

We can attempt to quantify the notion that the Hamiltonian does not quickly

introduce long-distance correlations by noticing that

e−iHδt = 1− iHδt+O(Hδt2) (1.109)

is local. Eq. 1.109 is of dubious suitability for describing dynamics, though,

because not unitary. We can remedy this defect, while preserving insight into

locality, by splitting the Hamiltonian up into even and odd terms and time

evolving first by the odd terms, and then by the even terms. Write two-site

gates

Fj(δt) = exp

[
−iδt

(
1

2
(hzj + hzj+1) + ~σj · ~σj+1

)]
. (1.110)

Then—as one can see by comparing Taylor series—

e−iHRFHδt = Uδt +O(δt2) Uδt ≡
L/2∏

j=1

[F2j(δt)]

L/2∏

j=1

[F2j+1(δt)] (1.111)
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and

e−iHRFHt = Uδt(t) +O(δt), Uδt(t) ≡ [Uδt]
t/δt +O(δt) . (1.112)

There exist Trotter decomposition’s with faster convergence, e.g. the second-

order decomposition

e−iHRFHδt = U
(2)
δt +O(δt3) ,

U
(2)
δt =

L/2∏

j=1

[F2j(δt/2)]

L/2∏

j=1

[F2j+1(δt)]

L/2∏

j=1

[F2j(δt/2)]
(1.113)

which takes little more time than (1.112) to compute, thanks to a convenient

telescoping property.

This higher-order convergence is of secondary (practical) importance for times

t & 1 in “natural units” (some coupling). In fact the error estimate O(δt) in

Eq. (1.112) is extraordinarily pessimistic: one can show that Uδt(t) approxi-

mates e−iHRFHt well to times exponentially large in 1/δt [4, 6, 7, 57, 126, 155].

Alternatively, we can decompose

e−iHδt '
L−1∏

j=1

[Fj(δt/2]

︸ ︷︷ ︸
leftward sweep after

1∏

j=L−1

[Fj(δt/2]

︸ ︷︷ ︸
rightward sweep

; (1.114)

the error is again of order L‖hj‖3δt3, where ‖hj‖ is an estimate of the typical

magnitude of the terms hj. We call this a “boustrophedon” Trotter decom-

position. If you wish to time evolve an MPS in mixed-canonical form and

truncate at the orthogonality center, as we will in 2, this makes it easy to

move the orthogonality center.

1.4 Matrix product operators

In Sec. 1.3, I represented time evolution in terms of Trotter gates—that is, of

local unitaries. This is a restrictive representation: if you wish to work with

more general operators than local Hamiltonians, like long-range Hamiltonians

or density operators, you need a matrix product representation of an operator.

To write a matrix product operator (MPO) representation of some generic
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operator O, decompose it in a basis of local operators

O =
∑

µ1...µN

Oµ1...µNσ
µ1 . . . σµN , (1.115)

and decompose the tensor Oµ1...µN as a product of matrices

Oµ1...µN = Aµ1 . . . AµN . (1.116)

All of the tricks for manipulating MPSs (gauge transformations, canonical

forms, truncations, etc.) apply to MPOs, but frequently with altered interpre-

tation. The operators are vectors in a larger Hilbert space than the system’s

physical Hilbert space—but their inner product is

〈A|B〉 = trA†B . (1.117)

1.4.1 MPO representation of an exponential interaction

Take a (portion of a) Hamiltonian

Hexp =
∑

i<j

σzi σ
z
j e
−s|j−i| (1.118)

for some constant s. We can build this Hamiltonian by walking in from the

right end of the chain with the recursion relation



HRi

hRi
IRi


 =



Ii σxi 0

0 e−sIi σxi
0 0 Ii


⊗



HRi+1

hRi+1

IRi+1


 (1.119)

starting with a right-end base case



HRL+1

hRL+1

IRL+1


 =




0

0

1


 . (1.120)

The Hamiltonian is then HR0—that is, the thing in the first slot when you’ve

walked all the way to the left end of the chain.
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The matrices constituting the MPO are then

W1 =



I1

σz1
0




W1<i<L =



Ii σzi 0

0 s−1Ii σzi
0 0 Ii




WL =




0

σzi
Ii




(1.121)

1.4.2 MPO representation of a power-law Hamiltonian

This is from [241]; cf [240].

Take for concreteness

H = Hlocal +Hpower,

Hpower =
∑

i<j

σzi σ
z
j

|j − i|q ,
(1.122)

where Hlocal is 2-local.

1.4.2.1 Exact representation

To understand how to represent this as an MPO, first note that there exist

unique Dk, k = 1 . . . L, such that

1

jq
=

L∑

k=1

Cse
−jsk/L, j ∈ 1 . . . L, sk = k/L (1.123)

—this simply by linear independence of the vectors e−jsk/L.

Then

Hpower =
∑

k

Ck
∑

i<j

e−|j−i|sk/Lσzi σ
z
j , (1.124)
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which has a recursion relation representation



HRi

hRi
IRi


 =




Ii C1σ
z
i C2σ

z
i . . . 0

0 e−s1Ii 0 . . . σzi
...

. . .
...

e−sLIi σzi
0 . . . 0 Ii



⊗



HRi+1

hRi+1

IRi+1


 (1.125)

and resulting MPO representation. The Hamiltonian has an MPO represen-

tation given by adding the MPO representations for Hpower and Hlocal.

1.4.2.2 Approximate representation

The key insight in [241] is that you can get away with many fewer than L

exponentials if you’re willing to accept small errors in your interaction. This

is apparently well-studied in the control system literature under the name

model reduction.

The approximation is given by the recursion relation



HRi

hRi
IRi


 = Wi ⊗



HRi+1

hRi+1

IRi+1


 (1.126)

with

Wi ≡




Ii C1σ
z
i C2σ

z
i . . . 0

0 e−s1Ii 0 . . . σzi
...

. . .
...

e−snIi σzi
0 . . . 0 Ii




(1.127)

(with resulting MPO representation) where the n < L decay wavevectors

s1 . . . sn are chosen by the algorithm. Note that the sk can be complex.

1.4.3 MPDOs

1.4.3.1 Closed-system dynamics of an MPDO

Consider a Hamiltonian

H =
∑

Hj (1.128)

(for instance (2.40)) where Hj is supported on sites j, j + 1. Call the onsite

Hilbert space Hj and its dual H∗j . Pure states then live in a Hilbert space
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H = H⊗Lj , and density operators ρ in a Hilbert space H⊗H∗ = [Hj ⊗H∗j ]⊗L.

Closed-system Hamiltonian evolution, then, is

d

dt
ρ = −i[H, ρ] ≡ −iH]ρ (1.129)

with a linear superoperator Hamiltonian defined

H] : H⊗H∗ → H⊗H∗,
H] = H ⊗ 1− 1⊗H.

(1.130)

For a spin-1/2 chain, we can write Sx,y,zj for operators on the ordinary (“ket”)

spaceHj and T x,y,zj for operators on the dual (“bra”) spaceH∗j ; in this notation,

the superoperator corresonding to our fruit-fly Ising Hamiltonian (2.40) is

H] =
∑

H]
j

≡
∑[

(SzjS
z
j+1 − T zj T zj+1)

+
1

2
hx(Sxj − T xj ) +

1

2
hz(Szj − T zj )

]
. (1.131)
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With H] in hand, we can proceed by Trotter decomposition, as with an MPS.

1.4.4 Matrix product density operator representations of Gibbs

states

1.4.4.1 Construction

In sections 2.3.3 and 2.3.4 we will require a Gibbs MPDO as our initial state.

The Gibbs state is

ρ ∝ e−βH = e−βH/2Ie−βH/2 , (1.132)

which is precisely the imaginary-time evolution of the product MPDO I by

the Hamiltonian superoperator

H]
therm = H ⊗ 1 + 1⊗H (1.133)

out to time β/2. We approximate this imaginary-time evolution not by tDMRG

with the boustrophedon Trotter decomposition (1.114), but by ordinary TEBD

using the trick of Hastings for numerical stability (as described in 7.3.2 of

Schollwöck’s magisterial review [187], q.v.).

1.4.4.2 Estimating thermal expectation values

In analyzing the time evolution of ETH states, one naturally requires Gibbs

state expectation values as a function of total energy (or, equivalently, energy

density): the long time limit of an expectation value is given by its expectation

value in a Gibbs state whose energy density matches that of the initial state.

We tabulate energy densities and observables of interests for Gibbs states at

a variety of temperatures using MPDOs as described above; to find the long-

time limit of an expectation value, we measure the energy density of the initial

state and linearly interpolate between the two nearest Gibbs energy densities.

Note that this does not account for Trotter heating (that is, the fact that—

because the system actually simulated is a Floquet system with period given

by the Trotter step δt, its energy as measured by the Hamiltonian simpliciter

gradually increases).

1.5 Some essentials of quantum thermodynamics

The classical Otto engine consists of a gas that expands, cools, contracts, and

heats [179]. During the two isentropic (constant-entropy) strokes, the gas’s

volume is tuned between values V1 and V2 < V1. The compression ratio is

defined as r := V1

V2
. The heating and cooling are isochoric (constant-volume).
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The engine outputs a net amount Wtot of work per cycle, absorbing heat

Qin > 0 during the heating isochore.

A general engine’s thermodynamic efficiency is

η :=
Wtot

Qin

. (1.134)

The Otto engine operates at the efficiency

ηOtto = 1− 1

rγ−1
< ηCarnot . (1.135)

A ratio of the gas’s constant-pressure and constant-volume specific heats is

denoted by γ := CP

Cv
. The Carnot efficiency ηCarnot upper-bounds the efficiency

of every thermodynamic engine that involves just two heat baths.

A quantum Otto cycle for harmonic oscillators was discussed in Refs. [3, 51,

53, 102, 123, 190, 215, 244]. The quantum harmonic oscillator’s (QHO’s) gap

plays the role of the classical Otto engine’s volume. Let ω and Ω > ω denote

the values between which the angular frequency is tuned. The ideal QHO Otto

cycle operates at the efficiency

ηQHO = 1− ω

Ω
. (1.136)

This oscillator model resembles the qubit toy model that informs our MBL

Otto cycle (Sec. 6.1).

The heat and work exchanged by slowly tuned systems are defined as

W :=

∫ τ

0

dt Tr

(
ρ
dH

dt

)
and (1.137)

Q :=

∫ τ

0

dt Tr

(
dρ

dt
H

)
(1.138)

in quantum thermodynamics [215]. This Q definition is narrower than the

definition prevalent in the MBL literature [39, 44, 70, 137]: here, all energy

exchanged during unitary evolution counts as work.
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C h a p t e r 2

SIMULATING QUANTUM DYNAMICS OF THERMALIZING
SYSTEMS

Questions about how (and whether) hydrodynamic behavior emerges from mi-

croscopic quantum physics arise frequently in condensed matter physics. The

exploration of this physics is hampered by the limitations of existing numerical

methods (cf Fig. 2.1). Numerically exact methods (like exact diagonalization

and Krylov subspace methods) can treat the dynamical properties of small

systems at arbitrary times, but require memory and computation time expo-

nential in system size. Matrix product state methods, on the other hand, can

treat large systems—but only when the systems have little entanglement en-

tropy. This means that for thermalizing systems, whose entanglement entropy

grows linearly with time, MPS methods can only treat short-time behavior

(see Figure 2.1).

This chapter describes a numerical method (“density matrix truncation” or

“DMT”) based on matrix product representations of density operators. The al-

system size

time

MPS

ED

Hydrodynamics

DMT

Figure 2.1: For small systems, exact diagonalization and related methods can
treat time evolution of small thermalizing systems to long times. Matrix prod-
uct state methods, on the other hand, can treat time evolution of large thermal-
izing systems, but only to short times, and hydrodynamic effective theories can
phenomenologically describe the long-time limit, but not intermediate times.
Our method, DMT, can treat large ETH systems at all times.
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gorithm can accurately simulate not only short-time, low-entanglement behav-

ior and long-time, hydrodynamic behavior, but also the complex intermediate-

time behavior from which the hydrodynamics emerges. While using matrix-

product representations of mixed states is not new, the core of our algorithm

is a new method for truncating matrix product density operators (MPDOs).

This truncation exactly preserves the energy density of the system and other

local conserved quantities, with the aim of leaving the hydrodynamics unaf-

fected. It also avoids generating unphysical density matrices with negative

entropy. At the same time, it is efficient enough that by taking large (but

constant in system size) bond dimension one can capture the thermalization

process.

We first (in Sec. 2.1) offer some background on matrix product state methods

and intuition for why a method using MPDOs should be able to efficiently

simulate time evolution governed by Hamiltonians satisfying the eigenstate

thermalization hypothesis (ETH) to arbitrary times. We also motivate cer-

tain properties of our method. We then describe (in Sec. 2.2) our algorithm

for time evolution. This algorithm consists of the time-evolution framework

described in Sec. 1.3 (cf [214]), paired with a novel scheme for truncating MP-

DOs. We then apply our algorithm to time evolution starting from a pure

state (Sec. 2.3.2) and find that it qualitatively improves upon existing meth-

ods. Applied to a mixed state (Sec. 2.3.3 and Sec. 2.3.4), we find that our

algorithm DMT matches or exceeds the state of the art. We conclude with

directions we hope will improve on the method.

2.1 Background and intuition

2.1.1 Background: matrix product state methods

Simulating real-time evolution of many-body quantum-mechanical systems is

hard: a system of L sites generically requires storage and computation time ex-

ponential in L. One line of attack, e.g. time-evolving block decimation (TEBD)

[213, 214, 228], proceeds by representing unitary time evolution as a series of

small time-steps applied to a matrix-product state (MPS) representation of a

pure state. These matrix-product structures offer efficient representations of

certain states (broadly speaking, “low-entanglement states”) in the sense that

typical operations require polynomial time and memory.

Matrix product state simulations of time-evolving pure states are stymied by

the fast increase of entanglement entropy with time, which grows linearly in

time for a typical global quench. When one compresses a pure state as a matrix
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product state, memory and computation time requirements grow exponentially

in the entanglement entropy among the subsystems, so this linear growth in

entanglement entropy sets a hard upper limit on the timescales on which ma-

trix product states are useful, though a variety of methods have been used in

attempts to circumvent this limit. [14, 58, 64, 78–81, 90, 157, 204, 223, 231].

One case in which entanglement growth does not limit the useful timescale of

matrix product state simulations is the dynamics of many-body localized sys-

tems, which exhibit a modest logarithmic entanglement growth [16, 192]. On

the thermal side of the localization transition, however, entanglement grows

quickly, and even the transition itself is expected to show extensive (volume-

law) entanglement [76]—consequently, pure-state time evolution under Hamil-

tonians remains restricted to short times.

Research into mixed-state time evolution and Lindblad dynamics has also pro-

gressed. It has been proven that density matrices (and purifications) of Gibbs

states of local Hamiltonians have efficient matrix product representations [85,

154, 163, 247]. Two schools of thought have used this insight to develop a

series of methods for simulating time evolution. One school employs density

matrices [21, 41, 95, 95, 101, 151, 152, 167, 168, 175–178, 212, 221, 222, 247].

They note that the space of operators on a spin chain is the tensor product

of onsite operator spaces, just as the space of many-body pure states being

a tensor product on onsite Hilbert spaces; the chief difference (in this view)

is merely the dimensionality of the onsite space. For example, on a spin-half

chain, the space of onsite operators is four-dimensional, while the space of

pure states is two dimensional. This school then applies familiar pure state

methods, including the creation and truncation of matrix product states and

time evolution by TEBD, to density matrices—which are, after all, vectors

in a larger space. The resulting truncation algorithms minimize the error ac-

cording to the Hilbert-Schmidt (Frobenius) norm. In certain situations—in

particular, dynamics near thermal equilibrium or a non-equilibrium steady

state—this approach works well. In other situations, however—in particular,

time evolution starting from a pure state—the density matrices suffer from

a catastrophic loss of positivity. (Even checking positivity is NP-hard in the

system size [117].)

The second school [17, 18, 23, 58, 60, 103–106, 208] uses purifications instead

of density matrices to represent mixed states. They pair each site in the sys-

tem with an ancilla, a notional site representing the bath. The mixed nature

of the system is represented by entanglement between sites and their ancillae,
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so the system and ancillae together are in a pure state. Grouping each site and

its ancilla into a larger onsite Hilbert space, one can write a matrix product

representation for this pure state and apply the usual methods (truncation,

TEBD, etc.) This solves the positivity problem: unlike density matrices, where

many operators with reasonable matrix product representations are not posi-

tive and hence are invalid as density matrices, every representable vector is a

valid state. Moreover, since one can act with a unitary on the space of ancillae

without changing the physical state, one can try to exploit this freedom to

reduce the matrix product state bond dimension of the purification [17, 104].

There is also a hybrid approach which locally unzips a density matrix into a

purification, which preserves positivity by construction [225]. These purifica-

tion methods employ truncations which minimize error according to the inner

product 〈·|·〉 defined on the whole (system with ancillae) state.

Neither the Frobenius norm on density matrices nor the quantum-mechanical

norm on purifications is the correct notion of error. In the case of density

matrices, the Frobenius norm fails to account for the fact that truncations

that change the component of the density-matrix vector along the identity

(i.e. which are not trace-preserving) are disastrous, because they can lead

to loss of positivity. Moreover, neither notion of error captures spatial lo-

cality: a good notion of error should prioritize short-range properties of the

model and guarantee that certain quantities (the local conserved quantities

of the model under consideration, like energy density or spin) are unchanged.

Since the methods of both the density-matrix and purification schools generi-

cally change the model’s conserved quantities at every gate application, they

are unable in principle to approach the known “hydrodynamic” long-time be-

havior of systems which thermalize. This may be the reason that existing

density-matrix methods lose accuracy over time, even though one would ex-

pect the accuracy of the matrix-product representation to improve as the state

approaches equilibrium.

In this work we propose a truncation of density matrices that ameliorates the

positivity problem of Frobenius truncation and exactly preserves the expecta-

tion values of all operators on all regions of up to three sites in diameter. (We

choose three sites for notational and practical convenience. In Sec. 2.2.4, we

discuss how to generalize to regions of arbitrary diameter.)
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2.1.2 Intuition: thermalization and computation

Why should one be able to efficiently simulate the dynamics of a local Hamil-

tonian satisfying the eigenstate thermalization hypothesis? In the long-time

limit, the system is well described (as far as local observables are concerned) by

a Gibbs state, which has an efficient matrix product density operator (MPDO)

representation [85, 154]. Moreover, the system will (one expects) locally ther-

malize before it reaches global equilibrium, and indeed after some short local

thermalization time ttherm expectation values of local operators will be well

approximated by the expectation values of those operators in a Gibbs state

with spatially varying temperature, chemical potential, etc. Heuristically, one

can imagine keeping the state exactly out to the local thermalization time and

then truncating to an efficient representation. This would require a maximum

bond dimension ca. (d2)vttherm , where v is some entanglement speed and d

is the dimension of the onsite Hilbert space. If vttherm is not too large, this

approach itself may be workable.

In practice, however, one will wish to efficiently represent the state even at

early and intermediate times t < ttherm—and also to avoid dependence on

the hard-to-define and likely-unknown constant ttherm. Having decided upon

an MPDO representation, then, one is faced with the problem of writing a

truncation algorithm: an algorithm that will approximate a given MPDO by

another, more compact MPDO.

The natural approach, by analogy with matrix product states, is to discard

low-weight Schmidt vectors. (This approach turns out to be an imperfect

solution, but it is a useful first step.) We call this truncation “Frobenius

truncation.” A density operator is a vector in a space with the same tensor-

product structure as a state, but a larger onsite dimension. We can therefore

cut the chain at bond j into two sections L and R, Schmidt decompose, and

truncate it:

ρ =

χ−1∑

α=0

x̂Lαsαx̂Rα 7→
χ′−1∑

α=0

x̂Lαsαx̂Rα, χ′ < χ, (2.1)

where x̂Lα, x̂Rα are operators supported on L andR, respectively, and tr x†LαxLβ =

trx†RαxRβ = δαβ. Explicitly, one starts with a matrix-product representation
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of the density operator

ρ =

χ−1∑

α=0

[
Aµ1

1 · · ·A
µj
j

]
α
sα
[
B
µj+1

j+1 · · ·BµL
L

]
α
σ̂µ1

1 · · · σ̂µLL (2.2)

where Aµll , B
µl
l are χ×χ matrices—with the exception of Aµ1

1 and BµL
L , which

are 1 × χ and χ × 1 respectively. We suppress for compactness a sum on µ

(that is, on a basis for the space on onsite operators, here the Pauli matrices

σµ with σ0 = I). The truncation (2.1) is then

ρ =

χ−1∑

α=0

[
· · ·Aµjj

]
α
sα
[
B
µj+1

j+1 · · ·
]
α
σ̂µ1

1 · · · σ̂µLL

7→
χ′−1∑

α=0

[
· · ·Aµjj

]
α
sα
[
B
µj+1

j+1 · · ·
]
α
σ̂µ1

1 · · · σ̂µLL ,

(2.3)

with χ′ < χ. This approximation minimizes the Frobenius (Hilbert-Schmidt)

norm distance—but a priori that is not the only norm one could use.

The Frobenius approximation scheme gives poor results for initial states far

from equilibrium. One can see why by considering the expectation values

of the operator Oy
lt = U(t)σyl U(t)† for a system that starts at t = 0 in a

product of σy eigenstates. (Note that Oy
l,t is a Schrödinger-picture operator

parametrized by time t. We work in the Schrödinger picture throughout,

except where noted.) At time t, 〈ψ(t)|Oy
l,t|ψ(t)〉 = ±1—but generically Oy

l,t will

be a large, complicated operator (if we choose t larger than the whole-system

entanglement time, as we are free to do, it will have support throughout the

system) and essentially unrelated to the local operators we wish to measure.

There are 2L such operators Oy
l1l2...,t

= U(t)σyl1σ
y
l2
· · ·U(−t), all corresponding

to long-range operators with expectation value ±1. These operators Oy
l1l2...,t

form part of an orthonormal basis for the space of operator space. Errors

along the dimensions Oy
l1l2...

will be penalized by the Frobenius-norm notion

of distance with precisely the same severity as errors along more physically

relevant dimensions, like σyl . A more reasonable metric for truncation error

should be willing to “forget” this information, in favor of more accurately

keeping local operators, once they are no longer expected to feedback into

the hydrodynamics. (There are more worrying problems still with the näıve

Frobenius truncation, which rapidly leads to a dramatic loss of positivity in

the supposed density matrix for many far-from-equilibrium initial-conditions,
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but these problems can be remedied by considering purifications.)

A BBGKY-like hierarchy for the dynamics of reduced density matrix of a

spin chain offers a clue as to how to proceed. In a system governed by a

Hamiltonian that is the sum of two-site terms H =
∑

j hj,j+1, the dynamics of

one-site reduced density matrices (say ρj, the reduced density matrix on site

j) depends on the two site density matrices:

d

dt
ρj = −i tr{j′ 6=j}[H, ρ]

= −i[hj,j+1ρj,j+1]− i[hj−1,jρj−1,j] , (2.4)

where we write ρj,j+1 for the two-site reduced density matrix on sites j, j + 1.

Meanwhile the two-site reduced density matrices depend on three-site density

matrices, the three-site on four-site, and so on up the sequence. One can

imagine truncating this hierarchy at some length l—that is, tracking l-site

reduced density matrices for some l, say 2 or 3 or 6, and writing the dynamics

for the l-site density matrices in terms of some approximation for the l+1-site

density matrices. A natural choice for such an approximation is to replace

the l + 1-site matrices by their disconnected component, e.g., for l = 1, take

ρj,j+1 ∼ ρjρj+1. The problem of the operators Oy
l,t then never arises.

The BBGKY-like approach fixes certain problems with Frobenius truncation,

but comes with its own set of problems. It is not obvious that the l-site density

matrices will even be consistent: it may not be possible to write them as

reduced density matrices for a density matrix on the whole system. (Checking

this, for a given set of reduced density matrices, is QMA-hard [139].) Moreover,

the hard truncation at l sites may not be appropriate to capture the dynamics

of the system. Longer-range operators may feed back into the dynamics of

few-site density matrices via the hierarchy starting with (2.4)—and conversely,

some short-range operators may have a negligible effect on the dynamics of

operators of physical interest.

The Frobenius norm attempts to keeps all operators with equal weight, while

BBGKY keeps connected components only up to a hard cutoff. A natural

compromise is to interpolate between the two by weighting the connected

components of an operator according to some measure of locality. In the

current work, we take the first step in this direction: we approximate the

whole-system density matrices in such a way that the dynamics of reduced

density matrices on up to three sites matches the BBGKY hierarchy, but
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instead of straightforwardly closing the BBGKY hierarchy at that level, we

approximate larger connected components using a method similar in spirit to

the Frobenius truncation (2.1). Our method zeros out long-range correlations,

replacing entanglement between different parts of the system by entanglement

with a notional bath.

Although we have used thermalizing Hamiltonians to motivate our method, our

method does not in fact assume that the Hamiltonian governing the dynamics

is thermalizing. We expect to be able to use it to treat MBL Hamiltonians,

with a more stringent accuracy vs. bond dimension tradeoff.

2.2 Method: truncation of MPDOs

Given an MPDO and a particular bond j, we wish to truncate the rank of

the MPDO. How can we modify the Frobenius truncation (2.1) in such a way

that it does not change the trace of the density matrix, nor the expectation

values of local operators? The trick is to start by Schmidt decomposing the

whole density matrix, and then cleverly choose basis changes on the spaces of

left and right Schmidt vectors that put the data we want to avoid changing in

specific, easily-understood locations (see Fig. 2.2). We can then slot our new

truncation into a (slight modification of a) standard time-evolution framework,

TEBD (see Sec.1.3).

Our truncation algorithm guarantees that the following will not change, up to

the precision of the numerical linear algebra involved, in a truncation on bond

j (cf Fig. 2.3):

1. the trace of the density matrix, tr ρ;

2. the reduced density matrix ρ1···j+1 on sites 1, . . . , (j + 1); and

3. the reduced density matrix ρj···L on sites j, . . . , L.

Consequently, no truncation will change the expectation of any operator on

three contiguous sites, because any such operator is always contained within

one of the guaranteed-preserved density operators.

These guarantees do not fully specify our truncation method. To do so, define

a matrix of connected correlators across the cut j:

M̃αβ = 〈ŷLαŷRβ〉 − 〈ŷLα〉〈ŷRβ〉 (2.5)
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spanfx̂Lαg

truncate

spanfσ̂µ

j g

Figure 2.2: DMT, viewed in the space of operators on the left half of the chain.
We truncate perpendicular to certain physically-relevant operators (the σµj ).

with ŷLα and ŷRβ operators supported on sites 1, . . . , j and j+1, . . . , L respec-

tively. (The ŷ’s spans the set of observables and are defined below.) We

wish to replace this matrix M̃ by another M̃ ′ with lower rank such that

tr(M̃ − M̃ ′)†(M̃ − M̃ ′) is minimized subject to the constraints above. The

focus on connected components is itself an important improvement.

2.2.1 Setting, notation, and tools

The concept of the method may be straightforward, but it is obscured by a

flurry of notation. We start truncation on bond j with an MPDO of the form

ρ =

χ−1∑

α=0

∑

{µ}

[
Aµ1

1 · · ·A
µj
j

]
α
sα
[
B
µj+1

j+1 · · ·BµL
L

]
α
σ̂µ1

1 · · · σ̂µLL (2.6)

on an L-site chain. The Aµll , B
µl
l are χ×χ matrices—with the exception of Aµ1

1

and BµL
L , which are 1×χ and χ×1 respectively. (χ, called the bond dimension,

will, in fact, vary between bonds and between steps of time-evolution and

truncation, but for the moment we suppress this variation.)

In writing our truncation algorithm, we hat our operators 1. We use Roman

1We hat all operators except for the density matrix ρ, and identity I.



38

Truncation at one bond preserves

this density matrix

this density matrix

Truncation at each bond in succession preserves

this density matrix etc.

this density matrix

Figure 2.3: The reduced density matrices that are guaranteed to be preserved
under truncation.

letters (frequently j, l) to index sites and bonds; a bond inherits the index of

the site to its left. We use Greek letters (frequently α, β, γ—but excepting µ

and χ) for the virtual index labeling the Schmidt vectors. The Greek letter

µ = 0, 1, 2, 3 is used to label Pauli matrices, i.e., σ̂µj is an operator at site j

(with σ̂0 = I, σ̂1 = σ̂x, etc.).

Following the standard notation [187], the MPDO is in mixed-canonical form

with an orthogonality center at site j—that is, for any j1 ≤ j and j2 ≥ j, the

operators

x̂Lα[j1] =
∑

{µ}

[
Aµ1

1 · · ·A
µj1
j1

]
α
σ̂µ1

1 · · · σ̂
µj1
j1
,

x̂Rα[j2] =
∑

{µ}

[
B
µj2+1

j2+1 · · ·BµL
L

]
α
σ̂
µj2+1

j2+1 · · · σ̂µLL
(2.7)

are orthogonal with respect to the Frobenius inner product

tr[x†LαxLβ] = tr[x†RαxRβ] = δαβ.

This mixed-canonical form gives the Schmidt decomposition of the density

matrix ρ at bond j:

ρ =

χ−1∑

α=0

x̂Lα[j] sα x̂Rα[j]. (2.8)
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Henceforth, we will implicitly always be working with Schmidt vectors at bond

j, and drop the bond label as follows:

x̂Lα = x̂Lα[j],

x̂Rα = x̂Rα[j].
(2.9)

The two vector spaces span{x̂Lα} and span{x̂Rα} are the setting in which we

work.

We frequently abuse notation by replacing s for a diagonal matrix whose entries

are sα. This allows us to shorten Eq. (2.8) into

ρ = x̂Lsx̂R, (2.10)

where x̂L,R are row and column vectors of operators, respectively.

With stage set and notation defined, we can walk through the algorithm.

2.2.2 Re-writing the MPDO to expose properties whose preserva-

tion we guarantee

We wish to take the MPDO

ρ =

χ−1∑

α=0

x̂Lαsαx̂Rα (2.11)

(cut along bond j) and re-write it as

ρ =

χ−1∑

α,β=0

ŷLαMαβ ŷRβ, (2.12)

with the new bases {ŷLα}, {ŷRα}. The bases {ŷLα}, {ŷRα} and M are chosen

such that the properties we wish to avoid changing are characterized by certain

easily-identifiable blocks of M :

1. tr ρ is independent of Mαβ for α, β 6= 0.

2. The reduced density matrix on sites 1, . . . , (j+1), ρ1···j+1 = tr{(j+2)···L} ρ,

is independent of Mαβ for β ≥ 4.

3. The reduced density matrix on sites j, . . . , L, ρj···L = tr{1···(j−1)} ρ, is

independent of Mαβ for α ≥ 4.
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Once we have made this basis change we will be able to modify Mαβ, α, β ≥ 4

with impunity: no such modification will violate our guarantees.

Consider a change of basis

ŷLβ ≡ (x̂LQ
∗
L)β

≡
χ−1∑

α=0

x̂LαQ
∗
Lαβ

=
∑

α,{µ}

[
Aµ1

1 . . . A
µj
j

]
α
Q∗Lαβ σ̂

µ1

1 · · · σ̂
µj
j ,

ŷRβ ≡ (Q†Rx̂R)β

≡
χ−1∑

α=0

Q̂∗RαβxRα

=
∑

α,{µ}

Q∗Rαβ
[
B
µj+1

j+1 . . . BµL
L

]
α
σ̂
µj+1

j+1 · · · σ̂µLL

(2.13)

with QL,R unitary χ× χ matrices. Now write

ρ = x̂Lsx̂R = [x̂LQ
∗
L][QT

LsQR][Q†Rx̂R] = ŷLMŷR; (2.14)

we can see that M is related to s via

M = QT
LsQR. (2.15)

The requisite basis transformations QL,R are given by QR decompositions

QLαβRLβ
µ = tr[x̂Lασ̂

µ
j ]

∝
[
A0

1 · · ·A0
j−1A

µ
j

]
α
∈ Cχ×4,

QRαβRRβ
µ = tr[x̂Rασ̂

µ
j+1]

∝
[
Bµ
j+1 · · ·B0

L−1B
0
L

]
α
∈ Cχ×4

(2.16)

(here we use the Einstein summation convention). In this context, the fact

that the fact that the RLβ
µ is upper triangular is exactly the statement that

RLβ
µ = 0 for β > µ. (Similarly for RRβ

µ.)
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To see that this is in fact the basis change we seek, first note the trace relations

tr[σ̂µj ŷLβ] =
∑

α

tr[σ̂µj x̂Lα]Q∗Lαβ = RLβ
µ,

tr[σ̂µj+1ŷRβ] =
∑

α

Q†Rβα tr[σ̂µj+1x̂Lα] = RRβ
µ.

(2.17)

The trace of the density matrix is

tr ρ =

χ−1∑

α,β=0

(tr ŷLα)Mαβ(tr ŷRβ) = RL0
0M00RR0

0. (2.18)

(Recall that σ̂0
j = σ̂0

j+1 = I and that the R’s are upper triangular.) This shows

that tr ρ is independent most of the elements of M , as desired. Similarly, the

density matrices on sites 1, . . . , j + 1 and j, . . . , L are

ρ1···j+1 =

χ−1∑

α,β=0

ŷLαMαβ

3∑

µ=0

tr[ŷRβσ̂
µ
j+1]σ̂µj+1

2

=
1

2

3∑

µ=0

σ̂µj+1

χ−1∑

α,β=0

ŷLαMαβRRβ
µ,

(2.19a)

and

ρj···L =

χ−1∑

α,β=0

3∑

µ=0

σ̂µj tr[σ̂µj ŷLα]

2
Mαβ ŷRβ

=
1

2

3∑

µ=0

σ̂µj

χ−1∑

α,β=0

RLα
µMαβ ŷRβ.

(2.19b)

That is, they depend only on the left four columns and top four rows of M ,

again as desired.

2.2.3 Modifying the MPDO

Working in the {y} bases, we can modify Mαβ for α, β ≥ 4 at will without

violating our guarantees. We wish to do so in a way that reduces the rank of

M while doing the least violence, in some sense, to the connected components

of correlations across the cut. Explicitly, we wish to change the quantities

C(AL, BR) = 〈ÂLB̂R〉 − 〈ÂL〉 〈B̂R〉, where ÂL, B̂R have support on the left,

right portions of the chain respectively, as little as possible.

First, let us see what the correlator involves. Using the definition 〈Â〉 =
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1
Z

tr Âρ, with Z ≡ tr ρ = RL0
0RR0

0M00, it is easy to see that

〈ÂL〉 =
1

Z
tr[ŷLαÂL]MαβRRβ

0 =
1

Z
aαMα0RR0

0 (2.20a)

and

〈B̂R〉 =
1

Z
RRα

0Mαβ tr[ŷRβB̂R] =
1

Z
RL0

0M0βbβ. (2.20b)

We define aα = tr[ŷLαÂL], bα = tr[ŷRαB̂R] for convenience. (Throughout this

subsection, we employ Einstein summation notation over the Greek indices.)

The expectation value of the product is then

〈ÂLB̂R〉 =
1

Z
tr[ŷLαÂL]Mαβ tr[ŷRβB̂R]

=
1

Z
aαMαβbβ.

(2.21)

Putting all these together we find

C(ÂL, B̂R) =
1

Z
aα

(
Mαβ −

Mα0M0β

M00

)
bβ. (2.22)

Since we wish to only alter pieces of the density matrix which affect correlations

accross the cut at bond j, we will modify the matrix in the parenthesis, and

denote it by

M̃αβ = Mαβ −
Mα0M0β

M00

. (2.23)

At this point we have pushed one step further the process of re-writing the

density matrix so that its structure explicitly reflects the distinction between

information we are willing to change and information we are not willing to

change, but we still have not truncated it. To carry out the truncation, perform

an SVD on the lower right block of M̃ , writing M̃αβ =
∑

γ XαγrγYγβ for

α, β ≥ 4. Choose an integer χ′ (we will see shortly how it relates to the bond

dimension of the final truncated MPDO) and insert a projection P (χ′) onto
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the largest χ′ elements of r to form a new matrix

M̃ ′ =


 XrP (χ′)Y



. (2.24)

M̃ ′ differs from M̃ only in those elements M̃ ′
αβ with α, β ≥ 4—that is, in those

elements that encapsulate correlations with range ≥ 2. Moreover, only small

elements of M are changed, since we take small (connected) correlations and

set them identically to zero.

This truncation results in a new matrix M ′
αβ to replace Mαβ:

M ′
αβ = M̃ ′

αβ +
Mα0M0β

M00

(2.25)

and then

ρ′ = ŷLαM
′
αβ ŷRβ, (2.26)

where the matrix M ′ has rank at most 8 + χ′ (vide infra).

Since we know M ′ and (matrix-product representations of) the xLα and xRβ,

putting this into MPDO form like (2.6) with bond dimension 8+χ′ is a matter

of rearrangement. To rearrange into MPDO form perform a second singular

value decomposition, this time on M ′, for

M ′ = Us′V. (2.27)

Since M ′ has rank at most χ′+8, there will be at most χ′+8 nonzero singular

values s. The density matrix after truncation is then

ρ 7→
∑

{µ}

[
Aµ1

1 · · ·A
′µj
j

]
s′
[
B
′µj+1

j+1 · · ·BµL
L

]
σ̂µ1

1 · · · σ̂µLL , (2.28)

with

A
′µj
j = AjQ

∗
LU,

B
′µj
j+1 = V Q∗LBj+1;

(2.29)

and the rest of matrices A1, . . . , Aj−1, Bj+2, . . . , BL are untouched. Note that,

regardless of our choice of χ′, the reduced density matrices on sites 1, . . . , j+1,
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j, . . . , L are exactly as they were before the truncation.

One loose end needs to be tied up. We claimed that the rank of the matrix

M ′ (hence the bond dimension of the MPDO after truncation) is χ′ + 8. To

see this, first decompose M̃ ′ as

M̃ ′ = M̃ ′A + M̃ ′B + M̃ ′C (2.30)

with M̃ ′A,B,C the left, upper, and lower right blocks of M ′ respectively:

M̃ ′A
αβ = M̃ ′

αβ, 0 ≤ α ≤ 3

M̃ ′B
αβ = M̃ ′

αβ, 3 < α, 0 ≤ β ≤ 3

M̃ ′C
αβ = M̃ ′

αβ, 3 < α, β

(2.31)

(other elements zero). These have ranks

rank M̃ ′A ≤ 4,

rank M̃ ′B ≤ 4,

rank M̃ ′C ≤ χ′,

(2.32)

so

rank(M̃ ′) ≤ rank M̃ ′A + rank M̃ ′B + rank M̃ ′C

≤ 8 + χ′ .
(2.33)

Since

range
Mα0M0β

M00

⊆ range M̃ ′A (2.34)

(the range of an operator is also known as its column space) we have

rankM ′ = rank M̃ ′ ≤ χ′ + 8, (2.35)

as desired.

2.2.4 Preservation of l-site operators

The2 preservation of `-site operators for any ` is a generalization of this preser-

vation of 3-site operators. Suppose we truncate at the bond between site i and

i+ 1. Then the reduced density matrix of the whole system can once again be

2This section was work with Bingtian Ye.
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written

ρ =

χ−1∑

α=0

x̂Lαsαx̂Rα (2.36)

with

x̂Lα =
∑

{µ}

[Aµ1

1 . . . Aµii ]ασ̂
µ1

1 . . . σ̂µii

x̂Rα =
∑

{µ}

[B
µi+1

i+1 . . . BµL
L ]ασ̂

µi+1

i+1 . . . σ̂µLL .
(2.37)

As before, we perform a basis transformation before SVD decomposition and

truncation:

ŷLβ =

χ1∑

α=0

x̂LαQ
∗
Lαβ

ŷRβ =

χ1∑

α=0

Q∗Rαβx̂Rα.

(2.38)

But now the tranformations QL,R are

QLαβR
λ
Lβ = tr[x̂LαÔ

λ
i+1−n,i] ∈ Cχ×4n

QRαβR
λ
Rβ = tr[x̂RαÔ

λ
i+1,i+n] ∈ Cχ×4n ,

(2.39)

where n is an integer to control the size of the preserved operators, and the

Ôλ
j,k form a basis for operators on the subsystem [i + 1 − n, i] indexed by λ.

After the transformation, we proceed by analogy with the previous section.

This procedure will preserve the reduced density matrices of the subsystem

[1, i + n] and the subsystem [i + 1 − n, L]. To guarantee this requires the

bond dimension χ ≥ χpreserve = 2× 4n, where 4n is the number of all possible

Ôλ
i+1−n,i (or Ôλ

i+1,i+n), i.e. the number of operators living in the subsystem

[1, i+ n] (or the subsystem [i+ 1− n, L]).

Suppose we keep in this way n sites on either side of the cut. What is the

largest-diameter operator that is preserved? For an operator on ` consecutive

sites, we only need to consider the case when the truncation seperates it into

two parts. Let `left and `right denote the size of the left and the right parts

(relative to the truncation) of this operator respectively. Since `left + `right =

`, we have min{`left, `right} ≤ dl/2e. If `left ≤ n, the `-site operator will

live on the subsystem [1, i + n], and is thus preserved (the marginal case is

the blue frame in Fig. 2.4a). Similarly, if `left ≤ n, the `-site operator will
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… …… …

… …… …

(a)

(b)

subsystem [i+1-n,L] (preserved)

subsystem [1,i+n] (preserved)

i-n i-n+1 i-n+2 i-1 i i+1 i+2 i+n-1 i+n i+n+1

subsystem [i+1-n,L] (preserved)

subsystem [1,i+n] (preserved)

i-n i-n+1 i-n+2 i-1 i i+1 i+2 i+n-1 i+n i+n+1

Figure 2.4: The operators preserved during the truncation. (a) 2n + 1 is the
maximum size of the operators that can be preserved. (b) A truncation can
change the expectation of a (2n+ 2)-site operator.

also be preserved (the marginal case is shown by the red frame in Fig. 2.4a).

Therefore, any l-site operator with d`/2e ≤ n is preserved during a truncation

on any bond i, which means for a given n, we can preserve all (2n + 1)-site

operators. However, a (2n+2)-site operator can be changed by the truncation

at the middle of it (Fig. 2.4b). Combining the previous expression for χpreserve

and ` = 2n + 1, we prove that to preserve all `-site operators requires bond

dimension χpreserve = 2`.

2.3 Results

We apply the method to a variety of initial states, pure and mixed. We time

evolve by the boustrophedon Trotter decomposition (1.114) of a Hamiltonian

known to satisfy the eigenstate thermalization hypothesis with Trotter step

δt = 1.0 (except where specified). We work at a maximum bond dimension

cutoff (i.e., at each gate application we truncate to this cutoff using the al-

gorithm described in section 2.2) and measure performance by varying this

cutoff.

2.3.1 Hamiltonian

We take as our Hamiltonian the spin-1/2 transverse-field Ising model on an

L-site chain with open boundary conditions:

H =
L−1∑

j=1

SzjS
z
j+1 +

1

2
hx

L∑

j=1

Sx +
1

2
hz

L∑

j=1

Sz. (2.40)
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Figure 2.5: 〈Sz〉 for the initial state described in (2.42) on a 24-site chain.

At hz = 0 the model is integrable (by Jordan-Wigner and Bogoliubov trans-

formations); the longitudinal field hz
∑
Sz breaks integrability, and at hz =

0.8090, hx = 0.9045 the model is known to satisfy the eigenstate thermalization

hypothesis in a strong sense [115]. We work at onsite fields

hz = 0.8090, hx = 0.9045 (2.41)

(except where otherwise specified). Despite their ETH nature, TFIM Hamilto-

nians like this can display ill-understood pre-thermalization behavior, thought

to be related to long-range emergent conserved or nearly-conserved quantities

[13, 113, 135]. We do not expect DMT to be able to capture this emergent-

integrable behavior (see Section 2.1), so we choose our initial conditions to

avoid it.

2.3.2 Application: pure-state evolution

We engineer an initial state with a long-wavelength energy variation by taking

a product of σy eigenstates and rotating blocks of four spins alternately towards

+z and −z (cf Fig. 2.5). The initial state is

|nearY 〉 =
L∏

j=1

[
1 + i(1 + gj)σ

+
j

]
|↓↓ . . . ↓〉 (2.42)

(suitably normalized), where

gj = 0.1×




−1 j mod 8 = 1, 2, 7, or 0,

+1 j mod 8 = 3, 4, 5, or 6.
(2.43)
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Figure 2.6: Normalization Z = [tr ρ]/
√

tr[ρ2] as a function of time, comparing
DMT (solid) and Frobenius (dashed), for the initial pure state (2.42) evolving
under the Hamiltonian (2.40). Note that the second Rényi entropy of the
whole chain (64-sites long) is S2 = 2 lnZ. As Z = 1 for a pure state, any
deviations from Z = 1 result from the truncation.

(We choose the state to be near the σy product state in order that we may

avoid the pre-thermalization behavior found in [13, 113, 135].)

Since the initial state is a product state, it may be represented exactly as an

MPO with bond dimension χ = 1. Trotter time evolution increases the bond

dimension with each time step δt, but truncation (whatever the algorithm)

kicks in only at a time ttrunc(χmax) when χ(t) reaches χmax. Thus for each

χmax the time evolution is semiexact (that is, exact up to error resulting from

the Trotter decomposition of the Hamiltonian) for t < ttrunc(χmax), at which

time it begins to deviate from the semiexact value. This effect appears in all

of our results; we also use it to benchmark our method (vide infra).

Figure 2.6 shows the normalization Z = tr ρ√
tr ρ2

as a function of time. The

normalization is related to the second Rényi entropy of the entire chain S2 ≡
− ln tr[ρ2]

[tr ρ]2
via S2 = 2 lnZ. Time evolution by DMT produces bath entropy for

the system, and this is reflected in the increase of Z as a function of time.

In contrast, we find that the Frobenius method produces non-physical states

with Z < 1 over the course of time-evolution, which results from negative

eigenvalues of the density matrix generated in the truncation. The observation

that Z ≥ 1 for DMT does not imply positive semi-definitity, but suggests that

any error arising from the negative eigenvalues is small and well-controlled.

Figure 2.7 shows the second Rényi entropy of the left half of the chain—that is,

the subsystem consisting of sites 1 to L/2 = 32. (The von Neumann entropy

is difficult to calculate for MPDOs, while second Rényi entropies are nearly
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Figure 2.7: Second Rényi entropy (in units of bits) of left half of a 64-site
chain for an initial pure state (2.42) evolving under the Hamiltonian (2.40),
in matrix product state (MPS) and DMT simulations. The largest entropy
we see (χ = 64 at t = 100) is S2 ≈ 31.4 bits, very close to the theoretical
maximum of 32 bits.

trivial.) In contrast to matrix product states, MPDOs can represent states

with arbitrarily large entropy by replacing system entanglement entropy with

bath entropy.

Note that once truncation starts, the entropy in the DMT simulation increases

above that in MPS. This is not unexpected: in ordinary matrix product state

TEBD the entanglement entropy of the left half is exactly its entropy with

the right half and is a property of the matrix product state at bond bL/2c,
so it can only increase when we apply a gate at bond bL/2c. In the DMT

algorithm, on the other hand, the entanglement entropy of the left half of the

chain is entanglement entropy not only with the right half but also with a

notional bath, and it increases with every truncation on bonds within the left

half.

Figure 2.8 shows the system’s total energy over time as simulated by ordinary

matrix product state TEBD and our density-matrix TEBD. In the DMT sim-

ulation, the energy is constant. Matrix produt state time evolution, however,

imposes an additional ‘heating’ whereas DMT is designed to conserve total

energy. Because the matrix product state representation is biased towards

low-entanglement states, the system drifts towards the extrema of the energy

spectrum over time. (The simulation begins with positive energy, and hence

drifts towards the negative temperature state T → 0−.)

Onsite spins are easy to measure but hard to analyze: their expection values



50

0 5 10 15 20 25 30 35 40
time t (units of SzSz coefficient)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
(t

)
=
〈H

(t
)〉

DMT δt = 0.0625

MPS δt = 0.0625

Figure 2.8: Energy over time at fixed χ = 16 for the initial pure state (2.42)
evolving under the Hamiltonian (2.40) at system size L = 64. By design, the
total energy remain constant under DMT.

are noisy and they decay quickly with time. Instead, we measure a Fourier

component of the energy density. The energy density εj, defined over a pair

of sites, is

ε1 =
hz

2

(
Sz1 + 1

2
Sz2
)

+
hx

2

(
Sx1 + 1

2
Sx2
)

+ Sz1S
z
2 ,

ε1<j<L−1 =
hz

2

(
1
2
Szj + 1

2
Szj+1

)
+ (x↔ z) + SzjS

z
j+1,

εL−1 =
hz

2

(
1
2
SzL−1 + SzL

)
+ (x↔ z) + SzL−1S

z
L. (2.44)

We measure a Fourier component of the energy density

εk=π/4 = − 1

L

L−1∑

j=1

eikjεj, k = π/4 (2.45)

with a wavelength of 8 sites. Fourier components are eigenmodes of the dif-

fusion equation which should govern the system’s long-time non-equilibrium

behavior. We choose this particular component (and choose the initial state

accordingly) because its wavelength is long enough that it should not imme-

diately decay, but not so long as to be longer than accessible system sizes.

Figure 2.9 shows the the Fourier component of energy density (2.45) as simu-

lated by matrix product states (dashed) and DMT (solid)for L = 16, 20, 24.
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Figure 2.9: (a) Fourier component of energy density for the initial pure state
(2.42) evolving under the Hamiltonian (2.40) on chains of length L = 16, 20, 24.
(b) The ‘error’ of the energy density, measured by comparing each data set
with the semiexact result as simulated by matrix product states at χ = 2L/2.
Note we do not show the MPS simulations for χmax = 2048, 4096.

At fixed maximum bond dimension χ � 2bL/2b, DMT is more accurate than

matrix product state TEBD, which illustrates the power of DMT in both short-

and long-time dynamics. Moreover, where matrix product state TEBD error

increases with system size, DMT error decreases. This is due to finite-size de-

viations from thermalizing behavior: oscillations about the local equilibrium

values for local operators result from long-range coherences that we do not

expect to be able to capture.

Any pure state on a system of length L can be represented exactly by matrix

product states with bond dimension χmax = 2bL/2c. At this bond dimension

the evolution by matrix product state TEBD becomes semiexact for all times;

no truncation occurs for the simulation. We can therefore simulate pure-state

evolution of a matrix product state using exactly the same Hamiltonian (2.40)

and boustrophedon Trotter decomposition (1.114), and compare the results to

those of DMT, shown in Fig. 2.9. The data is a measure of the error introduced
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by the truncation; these are small ≈ 10−3 for a wide range of bond dimensions

in the DMT simulations.

2.3.3 Application: mixed-state evolution (near equilibrium)

To probe the behavior of our algorithm near equilibrium, we take as our initial

state a Gibbs state with a spatially-varying temperature

ρ0 ∝ exp

[∑

j

βjεj

]
(2.46)

with εj the energy density of Eq. (2.44), and

βj = β0

(
1 + g′j

)
(2.47)

where

g′j = 0.1×





0 j mod 8 = 1, 2, 7, or 0,

1 j mod 8 = 3, 4, 5, or 6.
(2.48)

This temperature profile is broadly similar to the Sz profile we impose on the

pure initial state (see Eq. (2.42) and Fig. 2.5).

See Sec. 1.4.4.1 for details of the construction of the Gibbs state.

In Figs. 2.10 and 2.11 we compare DMT to the purification method of Kar-

rasch, Bardarson and Moore [104], which we label “purification”. This method

takes advantage of the freedom to apply unitaries to the ancillae by time-

evolving the ancillae backwards even as it evolves the physical system for-

wards. The time-evolution framework is therefore very similar to ours; the

chief differences are in the interpretation of the vector space (Cd2
)L in which

one works and in the truncation algorithm. The similarity is magnified by our

choice to use the boustrophedon Trotter decomposition (1.114) not only for

DMT but for purification.

Both DMT and this purification time evolution converge very quickly, as one

might expect: the results are essentially identical between the methods and

between bond-dimension cutoffs, even to quite small bond dimensions. (Note

that we subtract the thermal value in each case.)

2.3.4 Application: mixed-state evolution (far from equilibrium)

One might worry that the two initial states (2.42) from Sec. 2.3.2 and (2.46)

from Sec. 2.3.3 are each special cases in their own ways: the first is a pure
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Figure 2.10: Fourier component of energy density for (a) purification time
evolution and (b) DMT for the near-equilibrium mixed state (2.46) evolv-
ing under the Hamiltonian (2.40) on a 128-site chain. The thermal value is
〈εk=π/4〉thermal = −0.00038.

state, and the second is very near equilibrium.

In order to probe the performance of DMT for in more generic situations, we

quench from a Gibbs state of the TFIM (2.40) with

hx0 = 0.5

hz0 = 0.5 (2.49)

and

βj = β0

(
1 + g′j

)
, (2.50)

where

g′j = 0.1×





0 j mod 8 = 1, 2, 7, or 0,

1 j mod 8 = 3, 4, 5, or 6
(2.51)

(as in section 2.3.3), to a TFIM (2.40) with

hx1 = 2.0

hz1 = 0.5. (2.52)

We again compare to the purification method [104], and find that our method
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Figure 2.11: Expectation value of Sz at the midpoint of the chain for (a) pu-
rification time evolution and (b) DMT for the near-equilibrium initial state
(2.46) evolving under the Hamiltonian (2.40) on a 128-site chain. Both meth-
ods converge very quickly, so they give nearly identical results (cf. Fig. 2.15).
This expectation value fails to approach the thermal value due to the large
Trotter step we use (dt = 1.0). The thermal value is 〈SzbL/2c〉thermal = −0.0622.

and that purification time evolution both converge quickly (see Figs. 2.12a and

2.13). Even very small bond dimensions (e.g. χ = 16) can accurately treat

long-time, hydrodynamic behavior; accurately treating short-time behavior

requires somewhat higher bond dimension.
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(a) Fourier component of energy density for purification time evolution and DMT
starting from a far-from-equilibrium initial state on a 128-site chain. The thermal
value is 〈εk=π/4〉thermal = −0.00031.
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Figure 2.13: Expectation value of Sz at the midpoint of the chain for purifi-
cation time evolution and DMT starting from a far-from-equilibrium initial
state on a 128-site chain. The thermal value is 〈SzbL/2c〉thermal = −0.021.

2.3.4.1 Convergence of mixed-state evolution

It is difficult to judge convergence of any of the three algorithms from plots like

Figure 2.10 or 2.12a. In Figure 2.14 we take a near-equilibrium initial state

and plot the deviation in εk=π/4, as measured for a series of bond dimensions

χ, from the last (largest) χ in the series. In Figure 2.16 we do the same

for a far-from-equilibrium mixed state, and in Figures 2.15, 2.17 for SzL/2 for

near-equlibrium and far-from-equilibrium mixed states.

Our method converges with approximately the same bond dimension vs. accu-

racy tradeoff as purification time evolution for both the near-equilibrium initial

state (Fig. 2.14) and the far-from-equilibrium initial state (Fig. 2.16). In both

cases, Frobenius time evolution converges more slowly than either method.

2.4 Conclusion

We have presented an algorithm for approximating density operators by low-

rank matrix product operators suitable for simulating long-time quantum dy-

namics. The method exactly preserves expectation values of operators on

up to three contiguous sites, and it slots neatly into a standard Trotter-

decomposition framework for time evolution of matrix product structures (TEBD),

allowing time evolution by an ETH Hamiltonian of a variety of initial states.
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Figure 2.14: Convergence of εk=π/4 for three algorithms. Initial state is a
near-equilibrium mixed state (cf Section 2.3.3 and Figure 2.10) on a 128-site
chain. For each algorithm, we plot εk=π/4[χ]− εk=π/4[χ = χmax]—that is, how
far the measurement during a run with a certain bond dimension χ deviates
from measurement during a run with some high bond dimension.
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Figure 2.15: Convergence of Sz at site L/2 for three algorithms. Initial state is
a near-equilibrium mixed state (cf Section 2.3.3 and Figure 2.11) on a 128-site
chain. For each algorithm, we plot SzL/2[χ]− SzL/2[χ = χmax]—that is, how far
the measurement during a run with a certain bond dimension χ deviates from
measurement during a run with some high bond dimension.

Our algorithm, DMT, qualitatively outperforms its nearest competitor (ordi-

nary matrix product state TEBD) for pure initial states. We use the fact that

matrix product density operators with small bond dimension can represent

states with high entropy to circumvent the area-law entanglement bound on

matrix product states. Thus far the work is unoriginal: Zwolak and Vidal

realized this was possible more than a decade ago. Our key insight is that

we can preserve the trace of the density matrix and the expectation values

of conserved quantities by appropriately rotating the Schmidt spaces at the

bond at which we truncate. Consequently, DMT can simulate time evolution

by ETH Hamiltonians to arbitrary times using memory and computation time

polynomial in system size.
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Figure 2.16: Convergence of εk=π/4 for three algorithms. Initial state is a far-
from-equilibrium mixed state (cf Section 2.3.4 and Figure 2.12a) on a 128-site
chain. For each algorithm, we plot εk=π/4[χ]− εk=π/4[χ = χmax]—that is, how
far the measurement during a run with a certain bond dimension χ deviates
from measurement during a run with some high bond dimension.
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Figure 2.17: Convergence of Sz at site L/2 for three algorithms. Initial state
is a far-from-equilibrium mixed state (cf Section 2.3.4 and Figure 2.13) on a
128-site chain. For each algorithm, we plot SzL/2[χ] − SzL/2[χ = χmax]—that
is, how far the measurement during a run with a certain bond dimension χ
deviates from measurement during a run with some high bond dimension.

In addition, DMT matches the current state of the art (purification time evo-

lution) for near-equilibrium mixed initial states and outperforms it for far-

from-equilibrium initial states.

The reader would be right to worry that our method does not converge: as

we increase the bond dimension above a certain value (perhaps 25–26), the

accuracy of our method does not improve. We suspect that—once again—this

is a result of the operators Oy
l,t, whose large expectation values result from

the fact that we start near an Syl eigenstate. When we reduce the rank of the

matrix M̃ in (2.24), we still do so in a way that minimizes error with respect to

the Frobenius norm (even though we have arranged to exactly preserve very-

short-range operators). This means that the operators Oy
l,t again dominate
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the error, and the matrix resulting from the truncation is pulled toward those

operators. The obvious next step is to reduce rank in such a way that we

minimize error with respect to a different norm, one that takes into account

the spatial structure of the operator space: if we truncate at bond j, we should

weight errors along σzj−1σ
z
j+2 more heavily than errors along σzj−7σ

z
j+6. Such

controlled-metric truncation is a natural extension of this work.

One natural question to attack using our algorithm is the characterization of

the ergodic side of the MBL transition. The random field Heisenberg model

with small disorder appears to satisfy the ETH [160], but the nature of its

dynamics is unclear (see the review of Luitz and Bar Lev [143]). Quantities

like the spin-spin correlation 〈Szi+r(t)Szi (t)〉, from which one can compute a

number of diagnostics for subdiffusion, should be straightforward to calculate

using our method.

More interesting still are questions about interfaces between ETH and MBL

systems. Besides being of inherent interest (how large must a bath be to

thermalize an MBL system of a given size? how quickly does it thermalize?),

answers to these questions will shed light on the phenomenological RG schemes

of Potter, Vasseur, and Parameswaran [172] and Vosk, Huse, and Altman [220]

for which ETH-MBL interfaces are fundamental building blocks. Because MBL

systems display low entanglement in a wide variety of situations, we expect

our algorithm to be able to simulate both bath and system out to large system

sizes.
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C h a p t e r 3

HEATING, PRETHERMALIZATION, AND
HYDRODYNAMICS IN A HIGH-FREQUENCY FLOQUET

SYSTEM

In the previous chapter we considered out-of equilibrium dynamics resulting

from a quench. But, a many-body system can also be taken out of equilibrium

via periodic (Floquet) driving—a strategy which has received recent attention

in the context of novel Floquet phases of matter [38, 56, 110, 116, 138, 216–

218, 235, 243]. In this case, the non-equilibrium system is generically expected

to absorb energy from the driving field (so-called Floquet heating) until it

approaches a featureless infinite temperature state [29, 45, 128, 150, 173, 174].

Floquet heating, emergent hydrodynamics and microscopic thermalization are

all fall naturally under the umbrella of non-equilibrium dynamics, but un-

derstanding the interplay between them represents an important step to-

ward the characterization and control of non-equilibrium many-body systems

[4, 6, 7, 30, 57, 126, 155, 224]. One can already see such connections; for

example, in the limit of a high-frequency Floquet drive, energy absorption is

set by an extremely slow heating rate. So one anticipates a relatively long

timescale where the system’s stroboscopic dynamics can be captured by an ef-

fective static prethermal Hamiltonian. These expectations prompt one to ask:

How do the late-time dynamics of driven systems account for both the prether-

mal Hamiltonian’s hydrodynamics and the energy absorption associated with

Floquet heating?

In this chapter, we investigate the dynamics of a non-integrable Floquet spin

chain using DMT. Our main results are three fold. First, by benchmark-

ing DMT against conventional Krylov subspace methods (for small systems,

L = 20), we find that DMT efficiently simulates the system’s late-time physics,

including both prethermalization and late-time Floquet heating to infinite tem-

perature (Fig. 3.2). Second, by extending to larger systems (up to L = 100),

we essentially eliminate the finite-size effect and demonstrate the exponentially

slow Floquet heating (Fig. 3.1); such a calculation is fundamentally impossi-

ble for either exact diagonalization based methods (owing to the size of the

Hilbert space) or conventional density matrix renormalization group (DMRG)
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Figure 3.1: Floquet thermalization of an L = 100 spin chain (χ = 128). (a)

Average energy density measured with respect to D
(0)
eff = Hstatic under a global

drive. (b) The second Rényi entropy of the leftmost three sites. (c) Spatial
profiles of energy density under a half-system drive with 〈Hstatic〉 = −0.25.
Insets: the drive’s time dependence (a) and schematics of the global drive (b)
and the half-system drive (c).

methods (owing to the large amount of entanglement at late times). Finally,

we illustrate the emergence of a classical hydrodynamical description from the

underlying quantum model. Having studied the late-time heating, we begin

by considering transport in the associated static model and use DMT to di-

rectly measure the diffusion coefficient of the energy density. We then consider

an inhomogeneously driven spin chain, where both heating and transport are

crucial for understanding the late-time equilibration of the system (Fig. 3.8).

Intriguingly, the dynamics of the local energy density is well described by a

simple hydrodynamical equation.

3.1 Model and Floquet phenomenology

We study the dynamics of a one-dimensional spin-1/2 chain whose evolution

is governed by a time periodic Hamiltonian H(t) = Hstatic +Hdrive(t), where

Hstatic =
L−1∑

i=1

[Jσzi σ
z
i+1 + Jxσ

x
i σ

x
i+1] + hx

L∑

i=1

σxi , (3.1)
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with σαi being the α ∈ {x, y, z} Pauli operator acting on site i.1. We note

that, while the bond terms can be mapped to a free-fermion integrable model,

the additional field term breaks this integrability. The driven part, Hdrive(t) =

Hdrive(t+T ), has a period T = 2π/ω and corresponds to an oscillating field in

the ŷ and ẑ directions (Fig. 3.1a inset):

Hdrive(t) =
L∑

i=1

vi(t) (hyσ
y
i + hzσ

z
i ) . (3.2)

In this work we consider two driving protocols: a global drive, where all

the spins are driven [vi(t) = sgn cos(ωt) for all spins], and a half-system

drive, where only the right half of the system is driven [vi≤L/2(t) = 0 and

vi>L/2(t) = sgn cos(ωt)]. In our calculations we take the initial state to be

the Néel state with a domain wall every four spins while using parameters

{J, Jx, hx, hy, hz} = {1, 0.75, 0.21, 0.17, 0.13} within the high-frequency regime

ω ≥ 5J . Based on previous studies we believe this choice of parameters and

initial state to be generic and to capture the main features of Floquet heating

[150].

The quenched dynamics of a high-frequency driven system is characterized

by two timescales. The heating timescale, τ ∗, determines the rate of en-

ergy absorption from the drive (thus the approach to infinite temperature)

and has been proven to be at least exponential in the frequency of the drive,

τ ∗ ≥ O(eω/Jlocal), where Jlocal is a local energy scale [4, 6, 7, 57, 126, 155].

Until τ ∗ the dynamics of the system is, stroboscopically, well described by the

static prethermal Hamiltonian Deff = Hstatic + O(ω−1). The prethermaliza-

tion timescale, τDeff
, determines the time at which the system approaches the

equilibrium state with respect to Deff . When τDeff
� τ ∗, the system exhibits

a well defined, long-lived prethermal regime with respect to the prethermal

Hamiltonian.

There is some ambiguity in the definition of the heating timescale τ ∗. It is

the characteristic timescale on which the system’s state decays towards the

infinite-temperature state. But how does one measure that? Two options

present themselves: the energy and the entropy. The energy is perhaps the

most physically natural—in an ETH system, one expects that any state with

energy E = 0 will be locally like the infinite temperature state, or at least

1A Jordan-Wigner transform maps Hstatic to a p + ip superconductor with hopping
t = J + Jx, pairing ∆ = J − Jx, and an integrability breaking term of order hx.
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evolve into a state locally like the infinite temperature state on a timescale

like τDeff
� τ ∗, so one can measure the τ ∗E such that

〈E(t)〉 ∼ −e−t/τ∗E . (3.3)

But the entropy, in particular the second Rényi entropy, is more natural from

a formal point of view. Take a subsystem of length l and consider the Frobe-

nius distance between the reduced density matrix ρl on the subsystem and the

infinite-temperature density matrix 2−lI. This characterizes how far all oper-

ators are from their infinite temperature values. If we decompose the reduced

density matrix into Pauli-string components

ρl = 2−l

[
I +

∑

~ν

R~νσ
~ν

]
, (3.4)
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where ~ν = ν1ν2ν3 . . . νl, νj ∈ 0 . . . 3] label Pauli strings σ~ν and we take each ~ν

to have at least one νj 6= 0, then the R~ν are the expectation values of those

Pauli strings

tr[σ~νρl] = R~ν (3.5)

and

‖ρl − I‖2 = 2−2l tr(ρl − I)2 = 2−l
∑

~ν

R2
~ν = 2−l

∑

~ν

(
tr[σ~νρl]

)2
. (3.6)

But this is intimately related to the second Rényi entropy:

‖ρl − 2−lI‖2 = tr ρ2
l + 2−2l tr I − 2−l tr ρl

= 2−S2 − 2−l

= 2−l
(
eln 2(l−S2) − 1

)

' 2−l ln 2(l − S2)

(3.7)

when S2 is close to maximum the entropy l. (We measure the entropy S2 in

bits, not nits). Then the time τ ′∗S such that for the subsystem

l ln 2− S2(t) ∼ e−t/τ
′∗
S (3.8)

characterizes the decay of all observables

But there turns out to be a factor of two between τ ∗E and τ ′∗S . This is already

apparent from Eq. (3.6): τ ′∗S actually characterizes the decay time of the square

of the local expectation values, including energy. But we can see the factor

more explicitly when ρl is a high-temperature Gibbs state.

Define τ ∗S = 1
2
τ ′∗S , and consider a Gibbs ensemble at temperature T . The

probability pi assigned to the i’th eigenstate (with εi being its eigenenergy) of

Hstatic can be approximated to the first order as

pi =
e−βεi

tr[e−βH ]
≈ 1− βεi

tr[1− βH]
= 2−L(1− βεi) , (3.9)

where β = 1/T , 2−L is the dimension of the Hilbert space, and we use the fact

that trH = 0. The energy is then

E =
∑

i

piεi ≈ 2−L
∑

i

(1− βεi)εi = −2−L
∑

i

βε2i ∝ β . (3.10)
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The second Rényi entropy of the entire system is similar:

Sentire = − log2

∑
p2
i

≈ − log2

[
2−2L

∑

i

(1− βεi)2

]

= L− β22−L
∑

i

ε2i

(3.11)

for

∆Sentire ≡ L− Sentire ' β22−L
∑

i

ε2i ∝ β2. (3.12)

Since the entropy is an extensive quantity for a Gibbs state, one expects this

behavior to hold for any subsystem; thus ∆S ∝ β2. Therefore

1/τ ∗E
1/τ ∗S

=

(
1

E

dE

dt

)
/

(
1

∆S

d∆S

2dt

)

=

(
d log |E|

dt

)
/

(
d log ∆S

2dt

)

=

(
d log |E|
d log β

)
/

(
1

2

d log ∆S

d log β

)

= 1 .

(3.13)

In Figs. 3.1a,b, we illustrate these two timescales τ ∗ and τDeff
for an L = 100

initial state evolved with DMT (we defer the analysis of the validity of DMT

until next section). In Fig. 3.1a, we highlight τ ∗ using the average energy

density 〈Hstatic(t)〉/L. Until τ ∗, the evolution is well described by Deff , and

thus 〈Hstatic〉 remains constant (up to ω−1 corrections). After τ ∗, 〈Hstatic〉
starts the approach to its infinite temperature value 〈Hstatic〉T=∞ = 0.

To highlight the prethermalization timescale τDeff
, a different diagnostic is

needed. In Fig. 3.1b, we use the second Rényi entropy of the leftmost three

spins of the system S2 = − log2 tr[ρ2
sub], where tr describes the trace opera-

tion, ρsub = trsite i>3[ρ], and ρ is the density matrix describing the system.

Our choice of a small subsystem ensures that S2 is not biased by DMT (see

discussion below and [? ]). While the system begins in a product state with

S2 = 0, its entropy quickly approaches a plateau, consistent with the Gibbs

state of Deff at a temperature which matches the energy density [? ]; the sys-

tem has approached the prethermal state. The timescale at which this occurs

corresponds to τDeff
and, indeed, we observe τDeff

∼ 1/Jlocal independent of
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the frequency ω of the drive. At later times t > τ ∗, parallel to 〈Hstatic〉/L, S2

begins the approach to the infinite temperature value of ST=∞
2 = 3 bits.

3.2 Benchmarking DMT

To ensure the reliability of DMT in the simulation of Floquet dynamics,

we compare it Krylov subspace evolution [15, 89, 185] at small system sizes

(L = 20). But before we compare DMT to Krylov, we verify that the Krylov

evolution gives accurate results. This analysis not only gauges the applicability

of DMT, but also leads to insights into the nature of the Floquet heating.

Time evolution with DMT proceeds via two repeating steps, each acting on

a matrix product representation of the system’s density operator. The two

steps are a TEBD-like approximation of the time evolution unitary and a

truncation via DMT. In the TEBD-like step, we Trotter decompose the time

evolution operator into a series of gates which we then apply to the MPDO.

Because each gate application increases the bond dimension of the MPDO, we

must truncate it back to a fixed maximum bond dimension, which we call χ.

During the truncation step, DMT separates χ into two contributions: χpreserve

and χextra. χpreserve = 2` is used to guarantee the preservation of all observables

on ` contiguous sites during the truncation [? ], and we call ` the preservation

diameter. χextra is then used to preserve the remaining correlations with largest

magnitude. We emphasize that, although truncation does not directly affect

`-sized operators, their dynamics is affected by the truncation of larger sized

operators via the evolution of the system.

3.2.1 Benchmarking Krylov subspace dynamics

In this section we study the error of the Krylov subspace method by comparing

to exact diagonalization (ED) at small system size. For each system size

L ∈ {4, 6, 8, 10}, we consider a random initial product state of spins aligned in

the ẑ direction. We then compute the evolution of the system under driving

frequencies ω ∈ {5, 6, 7, 8, 9, 10}.

In Fig. 3.3, we show the difference between the two numerical methods for the

quantities of interest in our study. In particular we consider energy density

Hstatic/L, second Rényi Entropy S2, onsite operators (σ
{x,y,z}
i ) and two-site

operators (σxi σ
x
i+1 and σzi σ

z
i+1). In the top row of plots of Fig. 3.3, we consider

the maximum error observed in the first 600/J time units of the evolution.

Errorbars correspond to the standard deviation of the maximum error observed

over 6 different initial states. We note that the maximum error in this regime
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is not substantially affected by the system size.

It is perhaps more enlightening to estimate the rate of error growth: for a

given simulation parameters, Krylov subspace dynamics should induce a small

constant error per timestep. This observation is borne out by the data for

t < 600/J . In the bottom row of Fig. 3.3 we show the maximal rate of error

growth, for some quantity O:

R = max
t≤600

|OED(t)−OKrylov(t)|
t

. (3.14)

This provides an estimate of the error growth as a function of the simulation

time. Since the rate of growth is ≤ 10−7, we believe Krylov subspace methods

are suitable for benchmarking DMT, even at long times.
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Figure 3.3: Difference of measured quantities between exact diagonalization
and Krylov subspace methods over t ≤ 600/J physical time. In particular we
consider energy density Hstatic/L, second Réniy Entropy S2, single body oper-

ators (σ
{x,y,z}
i ) and two body operators (σxi σ

x
i+1 and σzi σ

z
i+1), in their respective

columns. In the top row we consider the largest difference observed within the
elapsed time. In the lower row, we consider the largest rate of error growth,
defined as Eq. (3.14).

3.2.2 DMT and Krylov

In Figs. 3.2 and 3.4, we compare the time evolution under DMT and Krylov

and observe good quantitative agreement for t > τDeff
, even at small bond

dimension χ = 64. In this regime, the system is close to a local thermal state

and therefore has a natural low-bond-dimension MPDO representation. This

behavior is clearest in the evolution of the energy density 〈Hstatic〉/L, as it

is not sensitive to the prethermalization process (Fig. 3.2a). Moreover, the
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same late-time behavior emerges when studying local observables, as well as

the second Rényi entropy S2 (Fig. 3.2b,c).

Closer inspection, however, shows that the small long-time disagreement in-

creases with the frequency of the drive. This trend reflects the nature of Flo-

quet heating. As the frequency increases, absorbing an energy quantum from

the drive requires the rearrangement of a larger number of sites [6, 7, 155].

However, the truncation in DMT, limited by χ, often destroys the necessary

longer ranged correlations (〈ab〉 − 〈a〉 〈b〉 7→ 0 for operators a and b supported

a distance r > `) suppressing the heating more severely at larger driving fre-

quencies.

In Fig. 3.4, we leverage this very high-frequency regime to highlight the con-

vergence properties of DMT with the bond dimension χ and the preservation

diameter `. As expected, increasing χ at fixed ` improves the accuracy of DMT

since the amount of information preserved during each truncation is greater

(Fig. 3.4a). Curiously, tuning ` at fixed χ can also affect the accuracy, despite

not increasing the amount of preserved information (Fig. 3.4b). This suggests

that, by carefully choosing which operators to preserve during truncation, one

can achieve a high accuracy in DMT while keeping a low total bond dimension

χ.

Having studied the late-time heating via the energy density, we now focus on

the early-time dynamics via local observables and the second Rényi entropy.

Unlike energy density, which is insensitive to the prethermalization dynamics,

both local observables and S2 can accrue significant errors for t < τDeff
at small

bond dimension. This reflects the importance of long-range coherences in the

early-time thermalization dynamics. A clear example is the dips in S2 that
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DMT fails to capture (arrows in Fig. 3.2c). We interpret these dips as the

growth of operators bouncing back at the other edge of the system — DMT

is unable to correctly capture the dynamics of the intermediate long-range

operators and thus misses their return, resulting in a larger entropy value. We

note that, by increasing χ, DMT better captures longer ranged operators and

better captures the resonant dip, Fig. 3.2c inset. Curiously, although both S2

and local observables are affected by long-range coherences, DMT appears to

better capture the entropy dynamics. We believe this arises from the higher

sensitivity of local observables to the details of the underlying interactions.

One might expect the large early-time deviations to lead to equally large late-

time deviations. This is not what we observe. In particular, despite a consid-

erable error in the early-time evolution under DMT, the system approaches

the correct prethermal state at τDeff
, and exhibits the correct energy density,

local observables and entropy. To understand this behavior, we note that the

prethermal Gibbs state can be fully determined by the system’s energy den-

sity, which is conserved until τ ∗ � τDeff
. Because both exact evolution and

DMT conserve Deff , the dynamics are constrained to the same subspace of

the Hilbert space. As a result, although the precise agreement between the

dynamics is limited by the finite bond dimension χ, as the evolution explores

this subspace, both methods reach the same equilibrium state. For t > τ ∗, the

system absorbs energy from the drive, and evolves between different thermal

states of Deff at the heating rate (for further evidence see [? ]). In this regime,

DMT accurately simulates observables to the extent it accurately simulates

the heating process.

Finally, we explain how our choice to study S2 on only three sites is moti-

vated by the choice of preservation diameter ` ≥ 3. During the truncation

procedure, by ensuring that any operator acting on ` contiguous sites is pre-

served, DMT also preserves the corresponding density matrix. As a result,

truncation via DMT does not affect the entropy if the subsystem considered

is smaller or equal to `. As such, errors in the entropy arise from errors in

longer ranged operators propagated via the system’s dynamics. This ensures

that by measuring the accuracy of S2, we are measuring the accuracy of the

dynamics rather than the impact of the truncation on the density matrix. In

fact, when considering a subsystem larger than `, the truncation biases the

measured entropy. Each truncation step reduces the purity of the system,

generating thermal-like entropy which leads to an extensive rate of entropy

growth (for a detailed discussion see [? ]).
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3.2.3 Entropy in DMT

In the main text, we show the evolution of the entropy of the leftmost three

sites. Here we provide more details on the entropy of subsystems with different

sizes that motivates that choice for the main text.

3.2.4 Effect of Trotter step size on DMT numerics

In the main text, we considered the convergence of DMT with respect to the

bond dimension χ and the size of preserved operators `. Here we complement

that analysis by considering the convergence in the size of the Trotter step.

We quantify the error by measuring the average error

δ〈Ôi〉 ≡
√
L−1

∑

i

(
〈Ôi〉DMT − 〈Ôi〉Krylov

)2
, (3.15)

i.e., the error of a local observable averaged over all sites.

In Fig. 3.5, we take Ôi ∈ {σzi σzi+1, σ
x
i σ

x
i+1, σ

x
i }, the three local observables that

contribute to energy Hstatic. By decreasing the Trotter step size from 4/J to

10/J , we observe an improvement of results, especially during the late-time

heating. However, the simulation does not benefit from further decreasing the

step size from 10/J to 20/J at late time, although the error at very early-time

decreases. This is because to apply truncations too frequently will destroy

the many-body correlators more severely. We therefore use Trotter step 10/J

throughout this work.

3.2.4.1 Page-like correction at late time

For a subsystem with size Lsub ∼ L/2, the bipartite entanglement entropy

approahes the maximal value of Lsub bits in DMT simulations, but a smaller

value in Krylov subspace simulations (see Fig. 3.6). This discrepancy arises

because the Krylov method guarantees that the system remains in a pure

state, while in DMT the MPDO representation is entangled with a notional

bath arising from the truncation procedure. The difference between the two

corresponds to a Page-like correction. At Lsub = L/2 and infinite tempera-

ture, this correction is exactly log 2 (1 bit), in agreement with the theoretical

prediction [142]. As one decreases Lsub, the correction decreases exponentially,

and the two methods agree better and better.
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3.2.4.2 Early-time behaviors

For t < τDeff
, the system is well described by the time-independent interacting

Hamiltonian Deff . For an initial product state, the entropy of a subsystem

is expected to increase linearly with time. Using Krylov subspace methods,

we indeed observe the linear increase of entropy at early time. Curiously,

the system often exhibits some non-monotonicity at intermediate times (from

long-range coherences), but it eventually approaches its prethermal value at
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τDeff
(Fig. 3.7a). We can extract the early-time entropy production rate ΓSearly.

Importantly, t ·ΓSearly sets an upper bound on the of entropy production (black

line in Fig. 3.7).

However, DMT fails to capture both the effect of the many-body coherences,

as well as the previously mentioned bound in entropy growth. On the one

hand, the truncation destroys the long-range coherences necessary to capture

the many-body revivals observed when using Krylov, resulting in a smoothed

entropy curve. On the other hand, at subsystem sizes greater than the preser-

vation diameter `, the entropy in DMT can exceed the upper bound t · ΓSearly
(Fig. 3.7b). This is because the truncation in DMT can convert some entan-

glement entropy to thermal entropy, which does not care about the subsystem

boundary. The entropy of a subsystem can then increase with the number of

bonds truncated, so in larger subsystems we observe a higher rate of entropy

growth (Fig. 3.7b).

3.3 Analysis and results

Having established that DMT accurately captures the late-time thermalization

of quantum systems, we now apply it in the study of the late-time emergent
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hydrodynamics in large spin chains (L = 100), beyond what can be achieved

with previous methods.

Our ultimate goal is to write down a phenomenological description of the state

and its dynamics, and to verify numerically that it describes our model.

The phenomenology is easily written down. In general, the dynamics of the

local energy density follows the continuity equation: ∂tε(x, t) = ∂xj(x, t) +

Q̇(x, t), where j is the energy current and Q̇ describes heating. Near equilib-

rium, the energy current is j ∝ ∂xT , where T is the local temperature. In

contrast to homogeneous systems where ∂xT ∝ ∂xε, the spatial inhomogeneity

induced by the half-system drive forces the current to depend not only on ∂xε,

but also the position in the chain; thus a small correction in j is needed. At

the same time, motivated by the exponential heating of the global drive, we

expect the heating rate at the driven sites to be Q̇ = −ε(t)/τ ∗local, where τ ∗local

is set by the global heating timescale τ ∗E.

We combine both these effects — heating and diffusion across the chain — in

a simple hydrodynamical equation for the local energy density:

∂tε(x, t) = D(ε)∂2
x

(
[1 + ηg1(x)]ε(x, t)

)
− g2(x)

ε(x, t)

τ ∗local

, (3.16)

where D(ε) is the energy density dependent diffusion coefficient, while g1(x)

and g2(x) characterize the regions where the drive affects diffusion and heating,

respectively (the magnitude of the latter is controlled by a small parameter

η). We set g1(x) = g2(x) = 1
2

+ 1
2

tanh[(x−L/2)/ξ], a smoothed step function,

and ξ = 5. (Our results are not sensitive to the particular choice of ξ, as long

as ξ � L.)

Verifying this phenomenology is less straightforward. To do so, we consider

two protocols: Fig. 3.8 offers a précis of the process. After verifying that the

system is in fact well-described by a Gibbs state with time-varying temperature

(Sec. 3.3.1, not shown in Fig. 3.8), we verify that the system displays an

appropriate Floquet heating rateh under both a half-system drive and a global

drive (Fig. 3.8a).

We then turn to the details of the dynamics of the local energy density. To

provide a baseline for comparison, we measure the diffusion coefficients of the

static Hamiltonian Hstatic (Sec. 3.3.3, Fig. 3.8b). We then apply the half-

driving protocol and fit the results to the modified diffusion equation (3.16)
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Figure 3.8: (a) Heating rate τ ∗ extracted from energy density and subsystem
entropy for L = 20, 100, as well as global and half-system drive. (b) Evolv-
ing with the static Hamiltonian Hstatic, an initial spatial variance in energy
density will decay. The diffusion coefficient (at different energy densities) can
be extracted from the exponential decay of the amplitude of Fourier modes.
The amplitudes are normalized. (c) Dynamics of the energy density. By start-
ing with the data at some initial state (e.g. t = 200/J) the hydrodynamical
description Eq. (3.16) (dashed black curve) is able to correctly capture the
energy density at late times.

(Fig. 3.8c, Sec. 3.3.4).

3.3.1 Approach to Gibbs Ensemble

To show that the system approaches a Gibbs ensemble at late time, we com-

pare the expectation value of local observables of the late-time Floquet state

and the Gibbs state of the static Hamiltonian Hstatic, which approximates the

prethermal Hamiltonian Deff to order ω−1. By doing imaginary-time evolution

with DMT, we obtain the Gibbs states of the Hstatic at different temperatures.

The inset of Fig. 3.9 shows the averaged energy density 〈Hstatic〉 at different

temperatures; similarly we can obtain other physical quantities as a function

of temperature. This provides the map between energy density and the ex-

pectation value of other observables in the Gibbs state, allowing us to directly

compare the late-time Floquet state to the Gibbs state at the same averaged

energy density. As shown in Fig. 3.9, the two states have the same entropy and

local observables, given the same energy density, indicating that the Floquet

system can be described by a Gibbs ensemble with respect to the prethermal
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Hamitonian (for local observables).
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Figure 3.9: Physical quantities as a function averaged energy density for Gibbs
states and late-time Floquet states (L = 20, ω = 6). (a) second Rényi entropy
of the half chain, (b) a two-site local observable, and (c) an one-site local
observable. Inset: The averaged energy density as a function of inverse tem-
perature.

How can these results be consistent with our claim in the main text that the

relationship between effective temperature and (e.g.) the energy density of

Hstatic is itself frequency dependent? Essentially, consistency requires that the

particular local observables of Fig. 3.9 depend weakly on frequency. We find

that they depend on frequency only at second order or higher in ω−1, because

those observables and Hstatic are even under global spin flip, while our drive is

odd.

To see these symmetry considerations play out, suppose the system is in a

Gibbs state

ρ(t;ω) =
1

Z
e−β(t)Deff(ω−1) , (3.17)

where the effective temperature T (t) = 1/β(t) is given by

〈Deff(t)〉 ≡ Z−1 tr[Deff(ω−1) e−β(t)Deff(ω−1)] (3.18)

with Z = tr[e−β(t)Deff(ω−1)]. For compactness we drop the time dependence of
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the temperature. Expand Deff in powers of ω−1:

Deff = Hstatic + ω−1D′ +O(h2ω−2). (3.19)

Per Ref. [150]:

ω−1D′ =
1

T

∫ T

0

dt i

∫ t

0

dt′[Hdrive(t
′), Hstatic]

=
1

T

∫ T

0

dt i

∫ t

0

dt′v(t)
∑

jk

[hzσ
z
j + hyσ

y
j , Jσ

z
kσ

z
k+1 + Jxσ

x
kσ

x
k+1 + hxσ

x
k ]

= i
πω−1

2

∑

jk

[hzσ
z
j + hyσ

y
j , Jσ

z
kσ

z
k+1 + Jxσ

x
kσ

x
k+1 + hxσ

x
k ]

= πω−1
∑

k

[
−hzJx(σykσxk+1 + σxkσ

y
k+1)− hzhxσyk − hyJ(σxkσ

z
k+1 + σzkσ

x
k+1)

+hyJx(σ
z
kσ

x
k+1 + σxkσ

z
k+1) + hyhxσ

z
k

]
.

(3.20)

It is immediately apparent that D′ is odd under a π rotation about the x axis,

while Hstatic is even—more specifically, if

X =
∏

j

σxj (3.21)

then

XHstaticX = Hstatic

XD′X = −D′ ,
(3.22)

so

0 = tr[D′Hn
static] . (3.23)
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Then the partition function is

Z = tr
[
e−β(Hstatic+ω−1D′)

]
+O(ω−2)

≈ tr

[
e−

βω−1

2
D′e−βHstatice−

βω−1

2
D′
]

+O(ω−2)

≈ tr

[(
1− βω−1

2
D′
)
e−βHstatic

(
1− βω−1

2
D′
)]

+O(ω−2)

≈ tr
[
e−βHstatic(1− βω−1D′)

]
+O(ω−2)

= tr
[
e−βHstatic

]
+O(ω−2)

= Z0 +O(h2ω−2)

(3.24)

with Z0 = tr
[
e−βHstatic

]
the partition function of the static Hamiltonian.

Consider now some (local) operator Oj. With this fact about the partition

function in mind its expectation value in the Gibbs state ρ is

trOjρ = Z−1
0 tr

[
e−

βω−1

2
D′e−βHstatice−

βω−1

2
D′ ×Oj

]
+O(ω−2)

= Z−1
0 tr

[(
1− βω−1

2
D′
)
e−βHstatic

(
1− βω−1

2
D′
)
×Oj

]
+O(ω−2)

= Z−1
0 tr

[
e−βHstaticOj

]
− βω−1

2
Z−1

0 tr
[
e−βHstatic{D′, Oj}

]
+O(ω−2) ,

(3.25)

where {·, ·} corresponds to the anti-commutator.

If Oj is even under X, as the operators of Fig. 3.9 are, tr
[
e−βHstaticD′Oj

]
= 0

and, to first order in ω−1, Oj takes the same expectation value it has in the

Hstatic Gibbs state:

tr
[
ρ Oeven

j

]
= Z−1

0 tr
[
e−βHstaticOeven

j

]
+O(ω−2) . (3.26)

If Oj is odd under X, then

tr
[
ρ Oodd

j

]
= −Z−1

0

βω−1

2
tr
[
e−βHstatic{D′, Oodd

j }
]

+O(ω−2) . (3.27)

Here we note that Z−1
0 tr

[
e−βHstatic{D′, Oodd

j }
]

corresponds to the sum of ex-

pectation values of one and two-body operators. Taking Oodd
j = σyk , the sig-

nificant terms in D′ are hzJx(σ
x
k+1σ

y
k +σykσ

x
k+1) +hzhxσ

y
k . Using, β ∼ 0.2, hz =

0.13, hx = 0.21, Jx = 0.75, ω = 6 and the data from Fig. 3.9, we estimate
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within the undriven side of the chain, where the effective Hamiltonian is only
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tr ρσyk ∼ βπω−1(2hzJx〈σxk〉 + hzhx) ∼ 2.2 × 10−3. In fact when we con-

sider our half-driven chain and compare σy for a site in the the undriven part

(Deff = Hstatic) to a site in the driven part (Deff = Hstatic + ω−1D′ +O(ω−2)),

we find that in the driven part 〈σy〉 ∼ 3 × 10−3 whereas the in the undriven

region 〈σy〉 ∼ 0 (Fig. 3.10), in agreement with our estimate.

3.3.2 Heating

To ensure our results are not affected by finite-size effects, we revisit the global

drive protocol in Figs. 3.1a,b. As in the L = 20 case shown in Figs. 3.2a,b, we

observe a prethermal plateau in S2 followed by the late-time heating of both

〈Hstatic〉/L and S2 toward the infinite temperature state. We characterize the

late-time dynamics by extracting the heating timescale associated with their

evolution. More specifically, given the observed exponential decay of both

〈Hstatic〉/L and S2 to their infinite-temperature values, i.e. |〈Hstatic〉/L| ∝
e−t/τ

∗
E and (ST=∞

2 − S2) ∝ e−2t/τ∗S , we extract τ ∗E and τ ∗S as a measure of the

heating timescale τ ∗ [? ]. Crucially, τ ∗E and τ ∗S agree with one another for both

system sizes, Fig. 3.8a, demonstrating they capture the same heating process

and are not affected by finite size effects. By repeating the same procedure

for different frequencies of the drive, we observe the expected exponential

dependence in frequency, τ ∗E,S ∝ eω/J
E,S
local , suggesting previous bounds are tight

[4, 6, 7, 57, 126, 155]. The extracted effective local energy scales, JElocal = 1.21±
0.04 and JSlocal = 1.16±0.04, are in good agreement with the microscopic onsite

energy scale ofHstatic (||ĥi|| ' 1.26, where ĥi = Jσzi σ
z
i+1+Jxσ

x
i σ

x
i+1+hx

(σxi +σxi+1)

2
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is the local Hamiltonian on each bond).

Having investigated Floquet heating with DMT, we now move to study the

emergent diffusive behavior of local energy density. By performing imaginary-

time evolution, we prepare the initial state to be a thermal state (Gibbs en-

semble) with a small spatial variation in energy (taken to be different Fourier

modes) [? ]. As the system evolves and approaches the global equilibrium

state, the amplitude of this spatial variation decays. Indeed, we observe the

exponential decay of the amplitude of these modes. Crucially, this decay

timescale grows as q2, where 2π/q is the wavelength of the Fourier mode, cor-

roborating the diffusive nature of the dynamics [? ]. By also changing the

temperature of the initial Gibbs ensemble, the diffusion coefficient D can be

studied as a function of average energy density of the system ε, Fig. 3.8b.

We note our method, near infinite temperature (ε = 0), matches independent

calculations of the diffusion [162].

The ability to correctly simulate Floquet heating and diffusive behaviors in

large-scale quantum systems enables us to study more complex late-time hy-

drodynamics. We now attempt to combine these two aspects by investigating

the half-system driving protocol, where the drive only adds energy to the right

side of the system. As a result, the heating timescale τ ∗ is twice of that of the

global drive, Fig. 3.8a. In this setup, the dynamics of the local energy den-

sity is much richer than in the globally driven case: due to the inhomogenous

heating, energy must be transported across the spin chain for the system to

approach the infinite temperature state, Fig. 3.1c. As such, both heating and

transport are crucial to capturing the late-time equilibration of the system.

Moreover, by changing the frequency of the drive, one directly modifies the

heating rate exponentially without much change to transport, thus controlling

the relative importance between the two.

3.3.3 Extracting diffusion coefficients of a spatially uniform, static

Hamiltonian

In this section we discuss the method used to extract the diffusion constant

for a spatially uniform Hamiltonian H, which is a sum of local terms:

H =
L−1∑

site i=0

hi . (3.28)
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We present the numerical experiment performed using DMT and Krylov sub-

space methods, and how the diffusion constant can be extracted from the

obtained data.

3.3.3.1 Numerical Experiment

To properly probe diffusive behavior it is imperative that the system is per-

turbed around an equilibrium (i.e. thermal) state of H. More specifically, we

want to initialize the system in a thermal state of H + ηHperturb, where the

form of Hperturb controls the type of perturbation imposed, while η controls its

strength.

Since we are interested in studying the diffusion of energy when evolved H,

we want the perturbations to correspond to the eigenmodes of the diffusion

equation, spatial oscilations of the energy density. We then consider a family

of H
[k]
perturb which generate the k-th mode:

H
[k]
perturb =

L−1∑

site i=0

hi cos
kiπ

L− 1
. (3.29)

In DMT, the thermal state can be straighforwardly generated by performing

imaginary time evolution on the infinite temperature state ρT=∞ ∝ I:

ρβ = Z−1 exp {−β [H + ηHperturb]} . (3.30)

Because Krylov subspace methods can only treat pure states, it is impossible to

directly compute expectations of the thermal state. Nevertheless, expectation

values over the thermal density matrix ρβ can be obtained by averaging over

initial states, which are then imaginary time evolved:

trOρβ =
1

D

D∑

i=1

〈
ψi

∣∣∣ρ1/2
β O ρ

1/2
β

∣∣∣ψi
〉
≈ 1

Nave

Nave∑

i=1

[〈
ψi

∣∣∣ρ1/2
β

]
O
[
ρ

1/2
β

∣∣∣ψi
〉]

.

(3.31)

Due to the large size D of the Hilbert space, we cannot perform the entire

calculation. Instead we approximate it by averaging over Nave number of

random initial states |ψi〉:

|ψi〉 ∝
D∑

i=1

ci |i〉 , ci normally distributed complex variables . (3.32)
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Due to quantum typicality, such random states behave as infinite temperature

states (for local operators) [181], and so the number of Nave need not be very

large (we use Nave = 50).

Once the initial state is generated, the system is time evolved with H, and the

local energy hi is calculated as a function of time evolved. We observe that

the initial spatial profile of the local energy quickly decays and the system

becomes spatially uniform due to the diffusion of the energy density.

3.3.3.2 Extraction of the diffusion constant

Consider a system with some conserved quantity S =
∑

j sj such that sj are

local operators. Moreover let ṡj = i[H, sj] be also local (as is guaranteed in

for a local Hamiltonian). We call sj local conserved quantities. In our case,

S = H and sj = hj, the local energy.

When H is spatially uniform and at equilibrium sj(t) will be constant for

all sites (up to edge effects). As a result, we can measure the distance from

equilibrium by

P(t) =

√∑

j

(〈sj(t)〉 − s̄)2 (3.33)

where s̄ ≡ S/L is independent of time. The decay of this quantity provides

a proxy for the diffusion coefficient: if the system is diffusive with diffusion

coefficient D, then the decay rate of this quantity is given by the decay rate of

the slowest non-zero diffusive mode. For a generic initial state, this corresponds

to

P(t) ∝ exp[−π2tD/L2] (3.34)

for t� L2/(4π2D) (the decay rate of the second-slowest mode). The diffusion

coefficient is extracted by fitting this long-time behavior of P(t).

Alternatively, we can probe that slowest mode directly, by exciting a partic-

ular diffusive mode and measuring its magnitude. This is most straightfor-

wardly implemented by preparing the lowest diffusive mode k = 1, sj(t =

0) ≈ cos(jπ/L) + C as the initial state and measuring the amplitude of the

corresponding Fourier mode:

sq=π/L(t) =
2

L

L−1∑

j=0

cos
jπ

L− 1
sj(t) . (3.35)
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Figure 3.11: (a) The evolution of the first Fourier mode under Hstatic. (b)
Decay of Fourier modes at large system size. β is chosen such that the averaged
energy density is set to be ε̄ = −0.1. (c) The decay rate of Fourier modes
depends quadratically on the wavevector. The system size L = 100.

In this, the decay of sq=π/L(t) will be ∝ e−π
2tD/L2

, from where D can be

extracted. We note that the profile of sj(t) can also be fitted, with a least-

square method, to the lowest Fourier mode. Both methods yield the same

results.

Fig. 3.11a,b illustrate both methods, investigating P(t) and sq=π/L(t) for H =

Hstatic. We see both the slowest mode and the sum over all modes decay

exponentially with time; they have the same decay rate. Here we note that,

at early times, we observe non-exponential behavior in the decay of sq=π/L(t)

until a timescale ∼ 1/hx, the integrability breaking term of our system. It

is at this timescale that we expect the interactions to induce the appropriate

diffusive behavior.

Moreover, we can study the decay of higher Fourier modes by using the same

methodology. In Fig. 3.11(c), we observe the quadratic dependence of the

decay rate on the wavevector, supporting that the dynamics of local energy

density is diffusive in our system.

3.3.3.3 Accuracy of extracted diffusion coefficients

The work of Kloss, Bar Lev and Reichman [119] and ongoing (unpublished)

work of Leviatan et al. find that TDVP shows “false convergence”: it can

converge very quickly in bond dimension—but to dynamics with an unphysical

diffusion coefficient. We must therefore check that DMT shows the correct

diffusive dynamics. In this section we compare the diffusion constant extracted

between DMT and Krylov-space dynamics.
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Consider our static Hamiltonian

Hstatic =
L−1∑

i=1

[Jσzi σ
z
i+1 + Jxσ

x
i σ

x
i+1] + hx

L∑

i=1

σxi . (3.36)

In the main text we used {J, Jx, hx, hy, hz} = {1, 0.75, 0.21, 0.17, 0.13}, similar

to previous work [150]. Because we are considering nearest neighbor interac-

tions, the only integrability breaking term is hx, leading to a näıve estimate for

the scattering length of λ ∼ J/hx ' 5. As a result, observing diffusion at small

system sizes is difficult. Fig. 3.12 (left) highlights this difficulty. Nevertheless,

we observe good agreement between DMT and Krylov in the dynamics. We

believe that DMT artificially increases a dephasing rate for the model’s quasi-

particles; this explains the gradually increasing discrepancy between the DMT

and Krylov simulations.

To check how well DMT can capture diffusion, we increase hx = 1.03, decreas-

ing the scattering lengthscale and making small system sizes more amenable

to studies of diffusion. Indeed, Fig. 3.12 clearly demonstrates the agreement

between the two methods, and as a result, the ability of DMT to probe the

diffusive physics.

3.3.4 Classical diffusion equation

With the previously extracted parameters τ ∗E and D(ε), we can calculate the

hydrodynamical evolution by Eq. 3.16, and compare it with the DMT simu-

lation of the microscopic model. We leave η to be the only fitting parameter,

constant across the entire evolution, but dependent on the frequency of the

drive. Starting with an initial product state, we let the system reach local

equilibrium by evolving it to time t0 = 200/J . Choosing the resulting energy
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density profile as the initial state of Eq. 3.16, we observe excellent agreement

of the remainder of the evolution, Fig. 3.8c. Using the same methodology,

we reproduce the dynamics for different driving frequencies, corroborating our

hydrodynamical description for the local energy density dynamics under the

Floquet quantum model, Fig. 3.1c. Finally, we note that the fitting parame-

ter η shows the expected negative dependence on the driving frequency ω; at

higher frequency, Deff on the right side of the chain approaches Hstatic and the

spatial inhomogeneity in Deff is reduced.

3.3.4.1 Derivation and approximation

In general, the equations governing the heat transport in classical systems are

∂tε(x, t) = ∂xj(x, t) + q(x, t) (3.37)

j(x, t) ∝ ∂xT (x, t) . (3.38)

The first equation is energy conservation, and the second equation reflects that

a non-uniform temperature T (x, t) will lead to a heat current j(x, t).

By driving the right half of the chain, the conversion from energy density ε(x, t)

to temperature T (x, t), as well as the energy absorption q(x, t) varies explicitly

in position along the chain. In particular, the lowest order ε(x, t) correction to

T (x, t) yields a heat current j(x, t) ∝ ∂xT (x, t) ∝ ∂[(1+ηg(x))ε(x, t)], in which

the small parameter η characterizes the correction of the conversion from ε to T

on the driven half and g(x) captures the spatial profile of the inhomogeneity.

In our model, g(x) should be close to the step function Θ(x − L/2). The

diffusion equation then reads

∂tε = D∂2
x[(1 + ηg(x))ε]− q(x, t) ≈ D∂2

x[(1 + ηg(x))ε]− ε

τ ∗
g(x), (3.39)

where we have used the fact that q(x, t) ≈ −g(x)ε/τ ∗ (for the driven part).

We remark that a spatially varying Deff may also lead to another two modifica-

tions in the heat equation: a spatially dependent definition of ε, and spatially

dependent diffusion constant D. A heat equation including all these modifi-

cations can be written as

∂t[(1 + λg(x))ε] = ∂x{[D + δDg(x)]∂x[(1 + ηg(x))ε]} − ε

τ ∗
g(x) , (3.40)

where λ, δD and η are all small numbers. We find that the dynamics in our
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experiment is not sensitive to the inclusion of these terms, as they do not lead

to qualitatively different terms in the equation.

In fact, we find that the η term is the most meaningful for well describing the

dynamics than λ and δD. At early times, before the heating occurs (τDeff
< t <

τ ∗), we already observe a non-homogenous spatial profile of energy density, due

to the temperature inhomogeneity induced by η. Moreover, since the spatial

profile g(x) is close to the step function Θ(x − L/2), a higher derivative of it

will contribute to larger correction. Therefore, the η term, which has a second

derivative, should be the most important correction.

3.3.4.2 Solving the Heat Equation

Since no energy can flow out of the boundary of the system, we require 0 =

j(t)|x=0,L ≈ ∂x[(1 + ηg(x))ε]|x=0,L. Considering that g(x) remains constant

deeply inside the driven and undriven parts, we can simplify the boundary

condition as ∂xε|x=0,L = 0. This can be immediately achieved by considering

the cosine series of the problem

ε(x, t) =
∞∑

n=0

fn(t) cos
nπx

L
. (3.41)

The differential equation then becomes:

∞∑

n=0

cos
nπx

L
∂tfn(t) = −D

∞∑

n=0

[nπ
L

]2

cos
nπx

L
fn(t)

+Dη
∞∑

n=0

∂2
x

[
g(x) cos

nπx

L

]
fn(t)

− 1

τ ∗

∞∑

n=0

g(x) cos
nπx

L
fn(t).

(3.42)
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Integrating both sides with against cos kπx
L

for k ∈ N yields (the second term

on the right-hand side is integrated by parts):

∂tfk(t) = −fk(t)D
[
kπ

L

]2

− 2

L(1 + δk0)

∞∑

n=0

fn(t)

{
Dη

[
kπ

L

]2

+
1

τ ∗

}

×
∫ L

0

dx g(x) cos
kπx

L
cos

nπx

L
.

(3.43)

The resulting equations can be cast in a vectorial form as

∂t ~f(t) = M ~f(t) , (3.44)

where ~f is the vector of the Fourier components and M describes the coupling

between the modes in the right-hand side of Eq. (3.43). In practice, the mag-

nitude of the Fourier modes decays very quickly with n, so we can consider

only the first N = 40 and not incur significant error.

The time evolution of ~f then becomes exactly

~f(t) = exp {(t− t0)M} ~f(t0) . (3.45)

3.3.4.3 Dynamics of the energy density

We now describe the procedure by which we can obtain the dynamics of the

energy density at late times in the L = 100 system.

The hydrodynamical description holds only for systems near a local equilib-

rium. As such to ensure we have a correct initial state, we choose some initial

time t0 and Fourier transform the energy density profile at that time, thus

obtaining fn(t0).

We can now consider the evolution iteratively, i.e. to consider a series of times

{tn} and evolve our state using Eq. (3.45) from tn−1 to tn. Here, the heating

timescale τ ∗ and the diffusion coefficient D(ε) are from the global heating

rate and the diffusion under static Hamiltonian, respectively. For the energy-

independent parameter η, we opitimize its value to minimize the discrepency

between the two evolutions (DMT and hydrodynamical model). In particular,

we charaterize the discrepency by the standard deviation averaged over all

time slices, namely,
∑

tn

√∑
x |ε(x, tn)DMT − ε(x, tn)Hydro|2/L.
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Figure 3.13: Time evolution of the energy density profile starting with the
lowest energy density state as the initial state. We observe great agreement
with the DMT results. The extracted values of η are shown in Fig. 3.14.

In Fig. 3.13, we compare the energy density profile from the simulation with

that arising from Eq. (3.45). Using the lowest energy density state as the initial

state, we can then apply the above procedure to obtain the energy density

dynamics for later times across a large frequency range. We also observe that

η has a negative dependence on frequency ω as expected (Fig. 3.14), since

its value is determined by the higher order corrections to Deff in ω−1, which

goes smaller when the driving frequency increases. Moreover, by increasing

bond dimension χ in DMT, we check the convergence of the energy density

(Fig. 3.15).

ω
7.06.56.05.5

0.08

0.04

0.06

Figure 3.14: Extracted η decreases as the driving frequency increases.

3.3.5 Hydrodynamics in large spin chains

3.4 Discussion

In this chapter, we used DMT to study the emergence of hydrodynamics in the

late-time evolution of large-scale Floquet systems. We began by demonstrating

the validity and the range of applicability of this new method by comparing

it against Krylov subspace methods, showing excellent agreement of the late-
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Figure 3.15: Convergence of energy density. (a) Direct comparison between
different bond dimension χ. (b) The relative error of local energy density
δε = εχ − εχ=180. We chose ω = 6 and averaged energy density ε̄ = −0.2 as an
illustration. For other choice of parameters, we observe similar trends.

time thermalization dynamics. By working at large system size (L = 100),

we independently characterize the heating and the diffusive properties of the

dynamics of local energy density in our model. Using the half-system drive,

we combine these two effects and describe the resulting late-time dynamics

with a simple hydrodynamical model, Eq. (3.16).
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C h a p t e r 4

HYDRODYNAMICS IN A DISORDERED
LOW-FREQUENCY FLOQUET SYSTEM

In Ch. 3, we considered the dynamics of a clean Floquet system. Since the work

of Deutsch [54] and Srednicki [200], we have believed generic isolated quan-

tum systems to satisfy the eigenstate thermalization hypothesis. We expect

that for times greater than some local thermalization time, systems satisfying

that hypothesis will be well-described by a hydrodynamical model. That is,

that local observables will be given by a Gibbs state with spatially varying

Lagrange multipliers for the model’s conserved density (temperature, chem-

ical potential, etc.). Those Lagrange multipliers in turn evolve by a partial

differential equation, generally (at lowest order) a diffusion equation. The key

result of Ch. 3 was that one could extend this phenomenological description

to include Floquet heating—as long as one was careful to draw the diffusion

coefficient from the right (effective prethermal) Hamiltonian.

But Basko, Aleiner, and Altschuler [19] (cf [159]) introduced a broad class

of disordered systems—so-called many body localized systems—that do not

satisfy the eigenstate thermalization hypothesis, and are not well-described by

a diffusive hydrodynamical theory with any small number of local conserved

quantities. Instead, these MBL systems have local conserved quantites: their

Hamiltonians commute with local operators (l-bits or local integrals of motion

[92, 193]). Consequently, the system retains a local memory of its initial state

even at long times.

Many disordered models display a transition: they satisfy the eigenstate ther-

malization at small disorder, but are localized at large disorder. The fruit-fly

example is the random-field Heisenberg model [146, 160], but other examples—

including the the second-neighbor hopping model of [159], a variant of which we

study here—are also known to display both phases. A number of phenomeno-

logical renormalization group schemes exist to describe this transition[72, 172,

220]; all predict that on the thermalizing side of the transition, the system will

display subdiffusive hydrodynamics due to rare insulating regions.

But it is still not clear how far the Griffiths region extends. Do systems with

MBL transitions display subdiffusion all the way to the clean limit? [108, 147]
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find that it does; [144, 189, 246] find that it does not. We find one such

model that does not; in fact, it displays a large diffusive regime. We take

a robustly non-integrable model (a Floquet variant of the second-neighbor

hopping model studied by Huse and Oganesyan [159]) and use DMT to probe

its hydrodynamics. We find that this model displays a large diffusive region. In

this region, we measure the diffusion constant and a characteristic ultraviolet

length scale for the model, which we identify as a coherence length; curiously,

this coherence length does not change with disorder.

4.1 Model

We use a Floquet variant of the model of [159]. When written with fermion

operators, that model is

H =
∑

i

[
wini + V (ni − 1/2)(ni+1 − 1/2)

+ (c†ici+1 + h.c.) + (c†ici+2 + h.c.)
]
.

(4.1)

We, like Huse and Oganesyan, take V = 2. Upon Jordan-Wigner transforma-

tion the model becomes

H =
∑

i

[
2(~S · ~S + [S+

i S
z
i+1S

−
i+2 + h.c.]) + wiS

z
i

]
. (4.2)

In each case the disorder fields wi are normally distributed about 0 with width

W . The continuous-time model satisfies the ETH at W = 0, while Huse and

Oganesyan find an ETH-MBL transition around W = 6.

The model (4.2) has two local conserved quantities, namely spin (particle num-

ber) and energy density. The coupling between the two conserved quantities

leads to important nonlinear corrections to the hydrodynamics [156, 202]. We

avoid this complication by breaking energy conservation: we time evolve by a

series of unitaries

U(t) = (UevenUodd)t, t ∈ Z (4.3)

and stroboscopically sample. Spatially random Floquet models have been used

as generic toy models for quantum thermalization[33, 111, 219] for similar

reasons: they provide minimally-structured models.

The precise form we choose for Ueven,odd is motivated by computational con-

venience: essentially, we group nearest-neighbor sites and then perform a

first-order even-odd Trotter decomposition of the continuous-time evolution
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U(t) = e−iHt. More precisely,

Ueven =

bL/4c∏

j=1

exp[−i δt h2j]

Uodd =

bL/4c∏

j=1

exp[−i δt h2j+1] ,

(4.4)

where L is the system size and

h
(1)
j =

1

2
~S2j−1 · ~S2j +

1

2
[W2j−1S

z
2j−1 +W2jS

z
2j]

h
(2)
j =

1

2
~S2j · ~S2j + [S+

2j−1S
z
2jS
−
2j+1 + h.c.]

+ [S+
2jS

z
2j+1S

−
2j+2 + h.c.]

hj = α2j−1h
(1)
j + α2jh

(1)
j+1 + h

(2)
j

(4.5)

with αl chosen to take care of the left and right boundaries:

αl =





1
2

l = 1 or l = L− 1

1 else .
(4.6)

δt is a parameter. We wish to choose δt large enough that a Magnus ex-

pansion far from convergence. If we choose δt too small then we may see an

approximately local conserved Floqet energy density, which could lead to the

nonlinear hydrodynamics we wish to avoid.

The Floquet model has an MBL transition around disorder width W = 20

(see Fig. 4.1).

4.2 Method

We use DMT, as described in Ch. 2, to simulate the time evolution of a random

mixed initial state by the Floquet unitaries (4.3) .

We take an initial state

ρ =
1

Z
exp

[∑

j

µjS
z
j

]
(4.7)

with µj random in [−1, 1]. We choose this initial state because it is not far

from the identity—which makes us more confident of DMT’s efficacy—while

containing variability at all wavelengths.
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Figure 4.1: Gap ratio for the Floquet model of Sec. 4.1 as a function of disorder
width at half-filling. Error bars show standard deviation of per-realization
average gap ratio divided by square root of number of realizations.

Since the model in question (4.2) is three-local, we group each adjacent pair of

physical sites (local onsite dimension 2) into a single effective site (local onsite

dimension 4). The method then guarantees that no truncation will change

any operator on six contiguous physical sites. This is a strong guarantee. In

particular, truncation does not change

〈Szj 〉, 〈
d

dt
Szj 〉, . . . , 〈

d5

dt5
Szj 〉 . (4.8)

Consider, then, DMT at some small, fixed bond dimension. Thanks to this

guarantee, we expect that DMT should approximate the model’s dynamics

well in the hydrodynamical regime, where higher derivatives are very small—

even if it requires much higher bond dimension to faithfully approximate short-

to intermediate-time dynamics.

4.2.1 Convergence testing

One can crudely estimate truncation error by simulating the same system at

two different bond dimensions (say χ0 and 2χ0) and comparing the expecta-

tion values of the observables at different bond dimensions. But as the Szj (t)

approach their (small) thermal values, this becomes less useful: we want to

normalize the discrepancy by the site-to-site variation in one Szj (t) or the other.

(It is not sufficient to normalize by a typical value of Szj (t), as this will just

be given by the thermal value. Since we seek to measure deviations from this

thermal value, we desire that our error be small compared to those devia-

tions. Nor can we normalize by individual Szj (t): as these cross zero, they will

produce spurious divergences in the error.) We therefore define the relative
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Figure 4.2: Relative convergence error (4.11) at a variety of disorder strengths,
for system size L = 64. (We label only even disorder strengths, for compact-
ness.) The thick line indicates W = 8.0, the largest disorder strength for which
we judge the simulation to be converged.

convergence error between bond two bond dimensions χ1, χ2

Eχ1,χ2 [Szj (t)] ≡ Szj (t, χ = χ1)− Szj (t, χ = χ2)

std
[
Szj (t, χ = χ2)

] . (4.9)

where we normalize by the standard deviation

std
[
Szj (t, χ = χ2)

]

≡
[ 1

L

∑

j

Szj (t, χ = χ2)2

− 1

L

(∑

j

Szj (t, χ = χ2)
)2]1/2

,

(4.10)

which is a proxy for deviation from the thermal value and one quantity of phys-

ical interest. (We will consider the physics of this quantity in detail below.)

In order to have a single measure, we take the RMS:

Ez
χ1,χ2

(t) ≡
(∑

Eχ1,χ2 [Szj (t)]2
)1/2

. (4.11)

We also call this the relative convergence error.

The error increases at a rate roughly independent of disorder strength W until

a peak number of gate applications tworst, after which the error decreases. tworst.

It is tempting to interpret tworst as a local-thermalization time and the decay
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of error after tworst as confirmation of our intuition that our method captures

hydrodynamics accurately (even if it fails to capture short- or intermediate-

time dynamics). We leave to future work the careful diagnostics required to

be confident in this interpretation.

We see that for W ≤ 8.0, Ez
32,128(t) . 0.1; we judge the method to be trust-

worthy for these disorder strengths.

At first sight these results seem to contradict the previous chapter. There

we compared DMT simulations of a Floquet system at high frequencies to

quasiexact Krylov space simulations and found that DMT agrees very well

with the Krylov space results at long times, but fails at short times (t ∼ 10/J ,

J a coupling). We, on the other hand, find that DMT converges well (at least

for clean systems) at all times.

The apparent discrepancy is due to the fact that the model of Ch. 3 is close to

free-fermion integrability. Truncation with DMT is liable to change the nearly

conserved free fermion occupation numbers; since these occupation numbers

are important to the system’s short-time dynamics (e.g. the revivals clearly

visible in Fig. 3.2). This chapter’s model, on the other hand, is far from any

kind of integrability.

4.2.2 Comparison with exact simulations

But in light of the work of Kloss et al. [119], it is not enough to check conver-

gence. They applied TDVP as in [133] and found that it could display false

convergence: that as one increases the bond dimension, one sometimes sees

the TDVP simulations converge quickly—but to a value that disagrees with

exact results.

In this section we consider DMT on small systems (L ≤ 28). Because the

system size is small, we can compare DMT to exact simulations using MPSs

of large bond dimensions (cf. Sec. ?? We consider two initial states: a product

of random Sz eigenstates (chosen so the system is at half-filling) and a product

state of rotated spins:

|ψ(0)〉 =
L−1⊗

j=0

[cos(πj/L) |↑〉+ sin(πj/L) |↓〉] . (4.12)

(The latter is chosen to mimic the slowest mode of the continuous diffusion

equation. Additionally, because it is not an eigenstate of
∑

j S
z
j , its dynamics
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should better mimic the large-system limit.) In each case we compare DMT

to MPS simulations with bond dimension 2L/2—large enough that the MPS is

never truncated (except to remove values below a numerical noise floor).

Fig. 4.3 shows the hydrodynamics extracted from product of random Sz eigen-

states, while Fig. 4.4 shows that extracted from the product of superpositions

(4.12). At first sight, Fig. 4.3 appears to show the false convergence that has

bedeviled efforts to use TDVP to extract diffusion coefficients. Bond dimen-

sions χ = 64 and χ = 128 give very nearly the same value—but this value is

not the correct (exact) value.

But this difference between diffusion coefficients extracted from DMT and

those extracted from exact dynamics is of the same order as the difference

between diffusion coefficients extracted from the exact dynamics at different

system sizes—which suggests that the physics DMT is failing to capture more

than finite size effects. Turning to the second initial state, Eq. (4.12) and

Fig. 4.4, we see more reasonable convergence properties—χ = 64, 128 differ by

an amount on the order of 1%—and still different “exact” values. We believe

that the discrepancies are a combination of finite-size effects and imprecisions

in our protocol.
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Figure 4.3: Hydrodynamics starting from an Sz product state randomly chosen
at half-filling. Left: decay of the distance from equilibrium (3.33) for L = 26.
Center: diffusion coefficient, as calculated exactly (with large bond dimension
matrix product states) and with DMT at three bond dimensions. Right: error
in the DMT diffusion coefficients.
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Figure 4.4: Hydrodynamics starting from the initial state (4.12). Left: decay of
the distance from equilibrium (3.33) for L = 26. Center: diffusion coefficient,
as calculated exactly (with large bond dimension matrix product states) and
with DMT at three bond dimensions. Right: error in the DMT diffusion
coefficients.

4.2.3 Quantity of interest

We directly measure sj(t) ≡ 〈Szj (t)〉, but the time traces of onsite spins are

not enlightening. Instead, we define a distance from equilibrium

P ≡
∑

j

(sj − s̄)2 , (4.13)

where s̄ is the average spin

s̄ =
1

L

∑

j

sj(t) =
1

L

∑

j

sj(0) . (4.14)

Writing the sj as a vector s, that distance from equilibrium is

P = (s− s̄)T (s− s̄) . (4.15)
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P is the total weight on all of the system’s decay modes: if u(α) is a mode with

decay rate γ(α), i.e.

Au(α) = γ(α)u(α) 6= 0 , (4.16)

then

P ≡
∑

α

(sTu(α))
2 . (4.17)

4.2.4 Disorder averaging

One can legitimately disorder-average any measurable quantity. The disorder

average then characterizes the distribution of that quantity. This is not the

only reasonable goal, however: one may wish to use the disorder average not to

characterize the distribution at a given length, but to mimic a longer systems

than one simulates, so the limit of many disorder reaizations becomes the

thermodynamic limit. Using a disorder average in this way, to probe large

system sizes, requires some kind of phenomenological renormalization group

scheme. One must disorder average in a way that mimics this scheme.

In our case, if we imagine connecting two disorder realizations with uniform

resistances ρ1, ρ2, the resulting segment has resistivity ρ12 = 1
2
(ρ1 + ρ2). Since

the diffusion coefficient is D ∝ ρ−1, this means that we should average diffusion

coefficients by D12 = [D−1
1 +D−1

2 ]−1.

Consider now the distance from equilibrium P in two regimes, divided by the

Thouless time tTh ∼ L2/D:

1. 1/J � t� tTh ∼ L2/D, when P ∼ 1√
Dt

. In this case P ∝ D−1/2 ∝ √ρ,

so we should disorder average by

P̄ = 〈(P (r))2〉1/2 . (4.18)

2. tTh � t, when P ∼ e−(π2D/2L2)t. In this case P ∼ e−t/ρ, so we should

disorder average

P = exp
[
〈
(

lnP(r)
)−1〉−1

]
. (4.19)

In each case we denote by angle brackets a simple disorder average 〈A〉 =
1

Nreals

∑Nreals

r=1 A(r). Most of our results derive from the longest time behavior—

that is, the decay of the slowest hydrodynamic mode. We therefore use the

disorder averaging protocol 2.
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4.3 Results

We plot the distance from equilibrium P(t) for disorder width W = 3.0 in

Fig. 4.5. There we see not only intermediate-time P4 ∼ t−0.5 scaling, but also

a convincing finite-size scaling collapse t̃ = t/L2, which is strongly indicative

of diffusive behavior. This collapse captures not only the long-time limit but

also the crossover from the intermediate-time power law.

The scaling collapse does not work for L = 16. This is unsurprising. The

scaling collapse should only work for system sizes L � lUV, where lUV is

the UV cutoff of the diffusive hydrodynamics; because our Trotter gates are

supported on four sites, one would expect the diffusive, hydrodynamical model

to have a UV cutoff lUV & 4. In particular, the outermost four sites (two on

the left and two on the right) are only affected by every other layer of gates;

when L = 16, this is a significant portion of the system.

We can extract effective whole-system diffusion coefficients by considering the

long-time behavior of the P(r). In the long-time limit

lim
t→∞
P(r) ∝ e−2γ(r)t (4.20)

or

lim
t→∞

d

dt
P(r) ∼ −2γ(r)t , (4.21)

where γ is the decay rate of the slowest eigenmode of the system’s hydrody-

namics. We then identify the diffusion constant

D(r) ≡ L2γ(r)/2π2 (4.22)
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on the assumption that the slowest mode has characteristic wavevector π/L,

even if it is not strictly the cosine one would find in the continuous diffu-

sion equation with closed (homogeneous Neumann) boundary conditions and

homogeneous diffusion coefficient. We then disorder-average1

D =

[
Nreals∑

r=1

(D(r))−1

]−1

(4.23)
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Figure 4.6: Diffusion coefficients extracted from the distance from equilibrium
(4.13). We perform a least-squares fit of each disorder realization’s distance
from equilibrium log(P(r)(t)) vs t for 924 ≤ t ≤ 1024 for L = 64, 128 (or
150 ≤ t ≤ 250 for L = 16, 32), and then disorder average per Eq. (4.23). The
difference in times is because for L = 16, 32, by t = 900 the system is close
enough to equilibrium that we do not believe we can reliably see deviations
from that equilibrium. Error bars show 5th and 95th percentiles in a non-
parametric bootstrap scheme.

Fig. 4.6 shows the disorder-averaged diffusion coefficients extracted from P4

at different disorder widths W . L = 16 shows slower diffusion than L =

32, 64, 128, but as noted above it does not properly reflect the long-system

hydrodynamics. L = 128 shows somewhat faster diffusion at disorder widths

W & 3.0; this is because for L & 128,W & 3.0 the higher decay modes have

not entirely decayed away by the end of our simulation time, so the diffusion

coefficient we extract is polluted by that faster decay.

1Note that in the language of Le Doussal and Machta [129] this is the so-called “an-
nealed” diffusion coefficient, corresponding to an immediate spatial average, as opposed to
the “quenched” diffusion coefficient. Some care must be taken in comparing our results here
to those like [118] that probe different length scales at different times.
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Figure 4.7: Another scaling collapse for the distance from equilibrium P(t) for
30 disorder realizations at L = 64. Error bars show 5th and 95th percentiles
in a non-parametric bootstrap scheme.

These results, while suggestive, are not sufficient to demonstrate that our data

shows diffusiive behavior at all disorder widths 0 ≤ W ≤ 8.2 In Fig. 4.7 we

plot the power P4(t) against the rescaled time Dt for L = 64. All disorder

widths 0 ≤ W ≤ 8 show a good scaling collapse on the shape of figure 4.6.

Since the diffusion constant is a free parameter in the scaling and we determine

the diffusion coefficient from exactly and only the data shown in Fig. 4.7, there

is a certain circularity in the analysis that is absent from the scaling collapse

of Fig. 4.6; nonetheless, the consistency in the overall shape of the curve

demonstrates that the system is in fact diffusive for 0 ≤ W ≤ 8.

4.4 Discussion

We have applied time evolution with DMT to a disordered low-frequency Flo-

quet system. We first evaluated its performance in this case both by checking

convergence in bond dimension and by comparing with exact simulations. We

found that it gives moderately good results, with error of order 5% in the

largest exactly-simulable clean systems. But if one seeks greater precision

than that, DMT may not be able to offer that precision. And, more worry-

ingly, time evolution with DMT does not appear to be self-diagnosing with

respect to errors of that order. We believe that the physics DMT fails to cap-

ture consists of finite size effects, perhaps peculiar to this model, but much

work remains to be done to understand those effects and convincingly argue

2As the joke runs: we have thus far seen that at least one side of one sheep in Scotland
is black.
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that DMT will converge to better than this 5% precision in long systems.

Additionally, work remains to be done to reconcile the convergence tests of

Sec. 4.2.1 with the comparison with exact results of Sec. 4.2.2. The compar-

ison with exact results show that a bond dimension χ = 32 gives a diffusion

coefficient that differs from that of χ = 128 by ∼ 20% at L = 28, but the

convergence tests at L = 64 show that local observables differ between χ = 32

and χ = 128 by . 5% in the clean case. This difference may be due to the

different measures (diffusion coefficient vs. local observables), but more opti-

mistically it could be due to improved performance of DMT at longer system

sizes.

Additionally, it is possible that DMT fails to capture Griffiths regions—but

we see apparent convergence because the systems we use to check convergence

happen not to have rare, anomalously slow regions.

We found that—contra expectations based on [108, 147]—it displays a large

regime where it is diffusive, not subdiffusive.



Part II

MBL-mobile:

Many-body-localized engine
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C h a p t e r 5

MBL AND THERMODYNAMIC ENGINES

In Ch. 4 we alluded to many body localization, but we did not treat a lo-

calized system. At most, many body localization could have caused regions

of anomalously large resistance, leading to subdiffusion. But a tantalizing

question is whether the unique properties of MBL could be put to use. So

far, MBL was proposed to be used for robust quantum memories [158]. We

believe, however, that the potential of MBL is much greater. MBL systems

behave athermally, and athermality (lack of thermal equilibrium) facilitates

thermodynamic tasks [8, 26, 43, 50, 55, 69, 75, 83, 91, 98, 229, 236]. When a

cold bath is put in contact with a hot environment, for instance, work can be

extracted from the heat flow. Could MBL’s athermality have thermodynamic

applications?

In this part we present such an application. We formulate, analyze, and nu-

merically simulate an Otto engine cycle for a quantum many-body system that

has an MBL phase. The engine contacts a hot bath and a narrow-band cold

bath, as sketched in Fig. 5.1. This application unites the growing fields of

quantum thermal machines [22, 28, 51, 65, 66, 99, 123, 130, 164, 199, 205, 232]

and MBL [19, 92, 158–160, 191]. Our proposal could conceivably be explored in

ultracold-atom [24, 37, 120, 148, 188], nitrogen-vacancy-center [125], trapped-

ion [198], and possibly doped-semiconductor [124] experiments.

Our engine relies on two properties that distinguish MBL from thermal sys-

tems: its spectral correlations [191, 196] and its localization. The spectral-

correlation properties enable us to build a mesoscale level-statistics engine.

The localization enables us to link mesoscale engines together and create a

large engine with extensive work output.

Take an interacting finite spin chain as an example. Consider the statistics of

the gaps between consecutive energy eigenvalues far from the energy band’s

edges. A gap distribution P (δ) encodes the probability that any given gap has

size δ. The MBL gap distribution enables small (and large) gaps to appear

much more often than in ETH spectra [44]. This difference enables MBL to

enhance our quantum many-body Otto cycle.

Let us introduce the MBL and ETH distributions in greater detail. Let 〈δ〉E
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Wb

Figure 5.1: Schematic of MBL engine: We formulate an Otto engine cycle
for a many-body quantum system that exhibits an MBL phase. We illustrate
with a spin chain (green dots and black arrows). A random disorder potential
(jagged red line) localizes the particles. Particles interact and hop between
sites (horizontal red arrows). Consider strengthening the interactions and
the hopping frequency. The system transitions from strong localization to a
thermal phase or to weak localization. The engine thermalizes with a hot bath
(flames) and with a cold bath (ice cube). The cold bath has a small bandwidth
Wb, to take advantage of small energy gaps’ greater prevalence in the highly
localized regime.

denote the average gap at the energy E. MBL gaps approximately obey Pois-

son statistics [44, 159]:

P
(E)
MBL(δ) ≈ 1

〈δ〉E
e−δ/〈δ〉E . (5.1)

Any given gap has a decent chance of being small: As δ → 0, P
(E)
MBL(δ)→ 1

〈δ〉E
>

0. Neighboring energies have finite probabilities of lying close together: MBL

systems’ energies do not repel each other, unlike thermal systems’ energies.

Thermalizing systems governed by real Hamiltonians obey the level statistics of

random matrices drawn from the Gaussian orthogonal ensemble (GOE) [159]:

P
(E)
GOE(δ) ≈ π

2

δ

〈δ〉2E
e−

π
4
δ2/〈δ〉2E . (5.2)

Unlike in MBL spectra, small gaps rarely appear: As δ → 0, P
(E)
GOE(δ)→ 0.

MBL’s athermal gap statistics should be construed as a thermodynamic re-

source, we find, as athermal quantum states are [8, 26, 43, 50, 55, 69, 75, 83,

91, 98, 229, 236]. In particular, MBL’s athermal gap statistics improve our en-

gine’s reliability: The amount Wtot of work extracted by our engine fluctuates

relatively little from successful trial to successful trial. Athermal statistics
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also lower the probability of worst-case trials, in which the engine outputs

net negative work, Wtot < 0. Furthermore, MBL’s localization enables the

engine to scale robustly: Mesoscale “subengines” can run in parallel without

disturbing each other much, due to the localization inherent in MBL. Even in

the thermodynamic limit, an MBL system behaves like an ensemble of finite,

mesoscale quantum systems, due to its local level correlations [96, 196, 201].

Any local operator can probe only a discrete set of sharp energy levels, which

emerge from its direct environment.

This part is organized as follows. Ch. 6 describes the MBL-mobile in the

adiabatic limit—we take the tuning to be infinitely slow. In Sec. 6.1, we in-

troduce the basic idea with a qubit (two-level quantum system). In Sec. 6.2,

we scale the engine up to a mesoscopic chain tuned between MBL and ETH.

In Sec. 6.5, we calculate its work output and efficiency. We check these calcu-

lations numerically in Sec. 6.7 with numerical simulations of disordered spin

chains. In Sec. 6.6, we argue that the mesoscopic segments can be combined

into a macroscopic MBL system while operating in parallel.

Ch. 7 describes the MBL-mobile at finite speed. We discuss limitations on the

speed at which the engine can be run (and consequently the engine’s power).

This leads us to a more careful consideration of diabatic corrections to the

work output, communication amongst subengines, and the cold bath’s nature.

We again test our analytic calculations in Sec. 7.2,

In Ch. 8 we provide order-of-magnitude estimates for a localized semiconduc-

tor engine’s power and power density, and we compare our engine to some

competitor engines.

Background information, intuitive examples, and extensive calculations appear

in [238].
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C h a p t e r 6

THE MBL-MOBILE IN ITS ADIABATIC LIMIT

We aim to formulate an MBL engine cycle for the thermodynamic limit. Our

road to that goal runs through a finite-size, or mesoscale, MBL engine. In

Sec. 6.1, we introduce the intuition behind the mesoscale engine via a qubit

toy model. Then, we describe (Sec. 6.2) and quantitatively analyze (Sec. 6.5)

the mesoscale MBL engine. Table 6.1 offers a spotter’s guide to notation.

6.1 Qubit toy model for the mesoscale engine

At the MBL Otto engine’s core lies a qubit Otto engine whose energy eigenbasis

transforms during the cycle [31, 112, 121, 122]. Consider a two-level system

evolving under the time-varying Hamiltonian

Hqubit(t) := (1− αt)hσx + αth
′σz . (6.1)

σxand σz denote the Pauli x- and z-operators. αt denotes a parameter tuned

between 0 and 1.

Figure 6.1 illustrates the cycle. The engine begins in thermal equilibrium at a

high temperature TH. During stroke 1, the engine is thermally isolated, and αt

is tuned from 0 to 1. During stroke 2, the engine thermalizes to a temperature

TC � TH. During stroke 3, the engine is thermally isolated, and αt returns

from 1 to 0. During stroke 4, the engine resets by thermalizing with the hot

bath.

Let us make two simplifying assumptions (see [238, App. C] for a generaliza-

tion): First, let TH =∞ and TC = 0. Second, assume that the engine is tuned

slowly enough to satisfy the quantum adiabatic theorem. We also choose1

h =
δGOE

2
, h′ =

δMBL

2
,

and δGOE � δMBL.

1The gaps’ labels are suggestive: A qubit, having only one gap, obeys neither GOE nor
MBL gap statistics. But, when large, the qubit gap apes a typical GOE gap; and, when
small, the qubit gap apes a useful MBL gap. This mimicry illustrates how the mesoscopic
engine benefits from the greater prevalence of small gaps in MBL spectra than in GOE
spectra.
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Figure 6.1: Qubit toy model for the MBL Otto cycle: A qubit models two
“working levels” in the MBL Otto engine’s many-body spectrum. The energy
eigenstates |E(1)

t 〉 and |E(2)
t 〉 span the “working subspace.” The gap E

(2)
t −E(1)

t

begins at size δGOE during a successful trial. The gap shrinks to δMBL, then
returns to δGOE. In addition to changing the gap, each Hamiltonian tuning
changes the eigenstates’ functional forms. The displacement δdispl is included
for generality. The blue text marks the times t = 0, τ, . . . , τ ′′′ at which the
strokes begin and end during a work-outputting trial. The spectator level
|E(3)

t 〉 fails to impact the engine’s efficiency. The cold bath has too narrow a

bandwidth Wb to couple |E(3)
t 〉 to any other level. If the engine begins any

trial on the top green line, the engine remains on that line throughout the
trial. Zero net work is outputted.

Let us analyze the cycle’s energetics. The system begins with 〈Hqubit(t)〉 = 0.

Stroke 1 preserves the T =∞ state I/2. Stroke 2 drops the energy to − δMBL

2
.

The energy drops to − δGOE

2
during stroke 3. During stroke 4, the engine resets

to zero average energy, absorbing heat 〈Q4〉 = δGOE

2
, on average.

The energy exchanged during the tunings (strokes 1 and 3) constitutes work

[Eq. (1.137)], while the energy exchanged during the thermalizations (strokes

2 and 4) is heat [Eq. (1.138)]. The engine outputs the per-cycle power, or

average work performed per cycle, 〈Wtot〉 = 1
2
(δGOE − δMBL).

The efficiency is ηqubit = 〈Wtot〉
〈Q4〉 = 1 − δMBL

δGOE
. This result is equivalent to the
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• Cold isochore

Hamiltonian 
[Hmeso(t)] 

• Isentrope

• Isentrope

• Hot isochore

ETH 
(“thermal”) MBL

Energy (Et)

• W1 > 0

• W3 > 0

• Q4 > 0

• Heat -Q2 > 0 
leaves the  
engine.

• Stroke 1

• Stroke 2

• Stroke 3

• Stroke 4

Figure 6.2: Otto engine cycle for a mesoscale MBL system: Two ener-
gies in the many-body spectrum capture the cycle’s basic physics. The engine
can be regarded as beginning each trial in an energy eigenstate drawn from
a Gibbs distribution. The red dot represents the engine’s starting state in
some trial of interest. During stroke 1, Hmeso(t) is tuned from “thermal” to
MBL. During stroke 2, the engine thermalizes with a cold bath. Hmeso(t) re-
turns from MBL to thermal during stroke 3. Stroke 4 resets the engine, which
thermalizes with a hot bath. The tunings (strokes 1 and 3) map onto the
thermodynamic Otto cycle’s isentropes. The thermalizations (strokes 2 and 4)
map onto isochores. The engine outputs work W1 and W3 during the tunings
and absorbs heat Q2 and Q4 during thermalizations. MBL gap statistics’ lack
of level repulsion enhances the cycle: The engine “slides down” the lines that
represent tunings, losing energy outputted as work.

efficiency ηOtto of a thermodynamic Otto engine [Eq. (1.135)]. The gap ratio
δMBL

δGOE
plays the role of 1

rγ−1 . ηqubit equals also ηQHO [Eq. (1.136)] if the frequency

ratio ω/Ω is chosen to equal δMBL/δGOE. As argued in Sec. 6.6 (and 7.3),

however, the qubit engine can scale to a large composite engine of densely

packed qubit subengines operating in parallel. The dense packing is possible

if the qubits are encoded in the MBL system’s localized degrees of freedom

(l-bits, roughly speaking [93]).

6.2 Set-up for the mesoscale MBL engine

The next step is an interacting finite-size system tuned between MBL and ETH

phases. Envision a mesoscale engine as a one-dimensional (1D) system of N ≈
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Symbol Significance

N Number of sites per mesoscale engine or per mesoscale
subengine (in the macroscopic engine). Chosen, in
the latter case, to equal ξ>.

N Dimensionality of one mesoscale (sub)engine’s
Hilbert space.

E Unit of energy, average energy density per site.
αt Hamiltonian parameter tuned from 0 (in the

mesoscale engine’s ETH regime, or the macroscopic
engine’s shallowly localized regime) to 1 (in the en-
gine’s deeply MBL regime).

〈δ〉 Average gap in the energy spectrum of a length-N
MBL system.

Wb Bandwidth of the cold bath. Small: Wb � 〈δ〉.
βH = 1/TH Inverse temperature of the hot bath.
βC = 1/TC Inverse temperature of the cold bath.

δ− Level-repulsion scale of a length-N MBL system.
Minimal size reasonably attributable to any energy
gap. Smallest gap size at which a Poissonian (5.1)
approximates the MBL gap distribution well.

v Speed at which the Hamiltonian is tuned: v := E dαt
t

.
Has dimensions of 1/time2, in accordance with part
of [46].

ξ> Localization length of macroscopic MBL engine when
shallowly localized.
Length of mesoscale subengine.

ξ< Localization length of macroscopic MBL engine when
deeply localized. Satisfies ξ< < ξ>.

Xmacro Characteristic X of the macroscopic MBL engine
(e.g., X = N, 〈δ〉).

g Strength of coupling between engine and cold bath.
τcycle Time required to implement one cycle.

〈δ〉(L) Average energy gap of a length-L MBL system.

Table 6.1: Parameters of the mesoscopic and macroscopic MBL en-
gines: Boltzmann’s and Planck’s constants are set to one: kB = ~ = 1.

10 sites. This engine will ultimately model one region in a thermodynamically

large MBL engine. We will analyze the mesoscopic engine’s per-trial power

〈Wtot〉, the efficiency ηMBL, and work costs 〈Wdiab〉 of undesirable diabatic

transitions.
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The mesoscopic engine evolves under the Hamiltonian

Hmeso(t) :=
E

Q(αt)
[(1− αt)HGOE + αtHMBL] . (6.2)

The unit of energy, or average energy density per site, is denoted by E . The

tuning parameter αt ∈ [0, 1]. When αt = 0, the system evolves under a

random Hamiltonian HGOE whose gaps δ are distributed according to P
(E)
GOE(δ)

[Eq. (5.2)]. When αt = 1, Hmeso(t) = HMBL, a Hamiltonian whose gaps are

distributed according to P
(E)
MBL(δ) [Eq. (5.1)]. For a concrete example, take a

random-field Heisenberg model in which the disorder strength is tuned. HGOE

and HMBL have the same bond term, but the disorder strength varies in time.

We simulate (a rescaled version of) this model in Sec. 6.7.

The mesoscale engine’s cycle is analogous to the qubit cycle, including initial-

ization at αt = 0, tuning of αt to one, thermalization with a temperature-

TC bath, tuning of αt to zero, and thermalization [47, 63, 94, 132] with a

temperature-TH bath. To highlight the role of level statistics in the cycle,

we hold the average energy gap 〈δ〉 constant.2 We do so using the renormal-

ization factor Q(αt).
3 Section 6.7 details how we define Q(αt) in numerical

simulations.

The key distinction between GOE level statistics (5.2) and Poisson (MBL)

statistics (5.1) is that small gaps (and large gaps) appear more often in Poisson

spectra. A toy model illuminates these level statistics’ physical origin: An

MBL system can be modeled as a set of noninteracting quasilocal qubits [93].

Let gj denote the jth qubit’s gap. Two qubits, j and j′, may have nearly

equal gaps: gj ≈ gj′ . The difference |gj − gj′| equals a gap in the many-

body energy spectrum. Tuning the Hamiltonian from MBL to ETH couples

2 〈δ〉 is defined as follows. The density of states at the energy E has the form µ(E) ≈
N√

2πN E e
−E2/2NE2 (see Table 6.1 for the symbols’ meanings). Inverting µ(E) yields the local

average gap: 〈δ〉E := 1
µ(E) . Inverting the average of µ(E) yields the average gap,

〈δ〉 :=
1

〈µ(E)〉energies

=
N∫∞

−∞ dE µ2(E)
=

2
√
πN

N E . (6.3)

3Imagine removing Q(αt) from Eq. (6.2). One could increase αt—could tune the Hamil-
tonian from ETH to MBL [191]—by strengthening a disorder potential. This strengthening
would expand the energy band; tuning oppositely would compress the band. By expanding
and compressing, in accordion fashion, and thermalizing, one could extract work. This en-
gine would benefit little from properties of MBL, whose thermodynamic benefits we wish to
highlight. So we “zero out” the accordion motion by fixing 〈δ〉 through Q(αt). For a brief
discussion of the accordion-like engine, see Sec. 8.1.1.
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the qubits together, producing matrix elements between the nearly degenerate

states. These matrix elements force energies apart.

To take advantage of the phases’ distinct level statistics, we use a cold bath

that has a small bandwidth Wb. According to Sec. 6.1, net positive work

is extracted from the qubit engine because δMBL < δGOE. The mesoscale

analog of δGOE is ∼ 〈δ〉, the typical gap ascended during hot thermalization.

The engine must not emit energy on this scale during cold thermalization.

Limiting Wb ensures that cold thermalization relaxes the engine only across

gaps δ ≤ Wb � 〈δ〉. Such anomalously small gaps appear more often in MBL

energy spectra than in ETH spectra [71, 107, 161].

This level-statistics argument holds only within superselection sectors. Sup-

pose, for example, that Hmeso(t) conserves particle number. The level-statistics

arguments apply only if the particle number remains constant throughout the

cycle [238, App. F]. Our numerical simulations (Sec. 6.7) take place at half-

filling, in a subspace of dimensionality N of the order of magnitude of the

whole space’s dimensionality: N ∼ 2N√
N

.

We are now ready to begin analyzing the mesoscopic-engine Otto cycle. The

engine begins in the thermal state ρ(0) = e−βHHGOE/Z, wherein Z := Tr
(
e−βHHGOE

)
.

The engine can be regarded as starting each trial in some energy eigenstate j

drawn according to the Gibbs distribution (Fig. 6.2). During stroke 1, Hmeso(t)

is tuned from HGOE to HMBL. We approximate the tuning as quantum-

adiabatic (diabatic corrections are left to Sec. 7.1). Stroke 2, cold thermal-

ization, depends on the gap δ′j between the jth and (j − 1)th MBL levels. δ′j
typically exceeds Wb. If it does, cold thermalization preserves the engine’s

energy, and the cycle outputs Wtot = 0. With probability ∼ Wb

〈δ〉 , the gap is

small enough to thermalize: δ′j < Wb. In this case, cold thermalization drops

the engine to level j−1. Stroke 3 brings the engine to level j−1 of HGOE. The

gap δj between the (j − 1)th and jth HGOE levels is 〈δ〉 � Wb, with the high

probability ∼ 1 − (Wb/ 〈δ〉)2. Therefore the engine likely outputs Wtot > 0.

Hot thermalization (stroke 4) returns the engine to ρ(0).

6.3 Notation and definitions:

We focus on one mesoscopic engine S of N sites. The engine corresponds to a

Hilbert space of dimensionality N ∼ 2N√
N

. The Hamiltonian, H(t) ≡ Hmeso(t),

is tuned between HGOE, which obeys the ETH, and HMBL, which governs an
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MBL system. ETH and MBL Hamiltonians typically have Gaussian DoSs4

µ(E) =
N√

2πN E
e−E

2/(2NE2) , (6.4)

normalized to
∫∞
−∞ dE µ(E) = N . The unit of energy, or energy density per

site, is E . We often extend energy integrals’ limits to ±∞, as the Gaussian

peaks sharply about E = 0.

The local average gap is 〈δ〉E = 1
µ(E)

, and the average gap is 〈δ〉 := N∫∞
−∞ dE µ2(E)

=

2
√
πN E
N [Eq. 6.3]. The average HGOE gap, 〈δ〉, equals the average HMBL gap, by

construction. 〈δ〉 sets the scale for work and heat quantities. Hence we cast

Q’s and W ’s as (number)(function of small parameters) 〈δ〉.

The system begins the cycle in the state ρ(0) = e−βHHGOE/Z, wherein Z :=

Tr
(
e−βHHGOE

)
denotes the partition function. Wb denotes the cold bath’s

bandwidth. We set ~ = kB = 1 .

H(t) is tuned at a speed v := E
∣∣dαt
dt

∣∣, wherein αt denotes the dimensionless

tuning parameter. v has dimensions of energy2, as in [195]. Though our v is

not defined identically to the v in [195], we expect ours to behave similarly.

6.4 Quantitative analysis of the adiabatic mesoscale engine: some

easy limits

How well does the mesoscale Otto engine perform? We calculate average work

〈Wtot〉 outputted per cycle and the efficiency ηMBL.

We focus on the parameter regime in which the cold bath is very cold, the cold-

bath bandwidth Wb is very small, and the hot bath is very hot: TC � Wb �
〈δ〉, and

√
N βHE � 1. The mesoscale engine resembles a qubit engine whose

state and gaps are averaged over. The gaps, δj and δ′j, obey the distributions

P
(E)
GOE(δj) and P

(E)
MBL(δ′j) [Eqs. (5.2) and (5.1)]. Correlations between the HGOE

and HMBL spectra can be neglected.

In this section we make three simplifying assumptions: (i) The engine is as-

4This is only approximately true, even in the thermodynamic limit. In the random-
field Heisenberg Hamiltonian (6.33) that we use for our numerical simulations, for example,
the coupling term skews the the density of states: the mean of the DoS is trH = 0, but
the median is nonzero. Our numerics nonetheless match analytics performed assuming a
Gaussian DoS (cf Sec. 6.7). This is because the Gaussian is sharply peaked around the
mode: we can think of the skewness as an effective constant offset to the energy.

Moreover, the DoS is essentially a parameter in our calculations: the details of some of
our results are specific to this form for the DoS, but the physics does not depend on it.
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sumed to be tuned quantum-adiabatically. (ii) The hot bath is at TH = ∞.

We neglect finite-temperature corrections, which scale as N(βHE)2 Wb

〈δ〉2 . (iii)

The gap distributions vary negligibly with energy: P
(E)
GOE(δj) ≈ PGOE(δj), and

P
(E)
MBL(δ′j) ≈ PMBL(δ′j), wherein 〈δ〉E ≈ 〈δ〉.

We relax assumptions (ii) and (iii) in Sec. 6.4; relaxing assumption (i) must

wait till Sec. 7.1.

6.4.0.1 Average work 〈Wtot〉 per cycle:

The key is whether the cold bath relaxes the engine downwards across the

MBL-side gap δ′ ≡ δ′j, distributed as PMBL(δ′), during a given trial. If δ′ < Wb,

the engine has a probability 1/(1 + e−βCδ) of thermalizing. So the overall

probability of relaxation by the cold bath is

pcold ≈
Wb∫

0

dδ′
1

〈δ〉
e−δ

′/〈δ〉

1 + e−βCδ′
≈ 1

〈δ〉 (Wb − TC ln 2) , (6.5)

wherein we neglected Wb/ 〈δ〉 by setting e−δ
′/〈δ〉 ≈ 1.

Alternatively, the cold bath could excite the engine to a level a distance δ′

above the initial level. Such an upward hop occurs with a probability

p̄cold ≈
Wb∫

0

dδ′
e−δ

′/〈δ〉

〈δ〉
e−βCδ

′

1 + e−βCδ′
≈ TC ln 2

〈δ〉 . (6.6)

If the engine relaxed downward during stroke 2, then upon thermalizing with

the hot bath during stroke 4, the engine gains heat 〈Q〉4 ≈ 〈δ〉, on average.

If the engine thermalized upward during stroke 2, then the engine loses 〈δ〉
during stroke 4, on average. Therefore, the cycle outputs average work

〈Wtot〉 ≈ (pcold − p̄cold) 〈δ〉+ 〈Q2〉 ≈ Wb −
2 ln 2

βC

. (6.7)

〈Q2〉 denotes the average heat absorbed by the engine during cold thermaliza-

tion:

〈Q2〉 ≈ −
Wb∫

0

dδ′
δ′

〈δ〉
e−δ

′/〈δ〉

1 + e−βCδ′
≈ −(Wb)2

2 〈δ〉 , (6.8)
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which is � 〈Q4〉. This per-cycle power scales with the system size N as5

Wb � 〈δ〉 ∼ effective bandwidth
# energy eigenstates

∼ E
√
N
N .

6.4.0.2 Efficiency ηMBL:

The efficiency is

ηMBL =
〈Wtot〉
〈Q4〉

=
〈Q4〉+ 〈Q2〉
〈Q4〉

≈ 1− Wb

2 〈δ〉 . (6.9)

The imperfection is small, Wb

2〈δ〉 � 1, because the cold bath has a small band-

width. This result mirrors the qubit-engine efficiency ηqubit.
6 But our engine

is a many-body system of N interacting sites. MBL will allow us to employ

segments of the system as independent qubit-like subengines, despite interac-

tions. In the absence of MBL, each subengine’s effective 〈δ〉 = 0. With 〈δ〉
vanishes the ability to extract 〈Wtot〉 > 0. Whereas the efficiency is nearly

perfect, an effective engine requires also optimized power. The MBL engine’s

power will be limited by dynamical considerations, discussed in Ch. 7.

6.5 Quantitative analysis of the adiabatic mesoscale engine: a more

detailed calculation

6.5.1 Partial-swap model of thermalization

Classical thermalization can be modeled with a probabilistic swap, or partial

swap, or p-SWAP [186, 245]. Let a column vector ~v represent the state. The

thermalization is broken into time steps. At each step, a doubly stochastic

matrix Mp operates on ~v. The matrix’s fixed point is a Gibbs state ~g.

Mp models a probabilistic swapping out of ~v for ~g: At each time step, the

system’s state has a probability 1 − p of being preserved and a probability

5The effective bandwidth is defined as follows. The many-body system has a Gaussian
density of states: µ(E) ≈ N√

2πN E e
−E2/2NE2 . The states within a standard deviation E

√
N

of the mean have gaps obeying the Poisson or GOE level-spacing distributions, Eqs. (5.1)
and (5.2). These states form the effective band, whose width scales as E

√
N .

6ηMBL is comparable also to ηQHO [Eq. (1.136)]. Imagine operating an ensemble of
independent QHO engines. Let the jth QHO frequency be tuned between Ωj and ωj , dis-
tributed according to PGOE(Ωj) and PMBL(ωj). The average MBL-like gap ωj , conditioned

on ωj ∈ [0,Wb], is 〈ωj〉 ∼ 1
Wb/〈δ〉

∫Wb

0
dωj ωj PMBL(ωj) ≈ 1

Wb

∫Wb

0
dωj ωj = Wb

2 . Averaging

the efficiency over the QHO ensemble yields 〈ηQHO〉 := 1 − 〈ω〉〈Ω〉 ≈ 1 − Wb

2〈δ〉 ≈ ηMBL . The

mesoscale MBL engine operates at the ideal average efficiency of an ensemble of QHO en-
gines. But MBL enables qubit-like engines to pack together densely in a large composite
engine.
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p ∈ [0, 1] of being replaced by ~g. This algorithm gives Mp the form Mp =

(1− p)I + p~g(1, 1).

We illustrate with thermalization across two levels. Let 0 and ∆ label the

levels, such that ~g =
(

e−β∆

1+e−β∆ ,
1

1+e−β∆

)
:

Mp =

[
1− p 1

1+e−β∆ p e−β∆

1+e−β∆

p 1
1+e−β∆ 1− p e−β∆

1+e−β∆

]
. (6.10)

The off-diagonal elements, or transition probabilities, obey detailed balance [40,

239]: P (0→∆)
P (∆→0)

= e−β∆.

Repeated application of Mp maps every state to ~g [239]: limn→∞ (Mp)
n ~v = ~g.

The parameter p reflects the system-bath-coupling strength. We choose p = 1:

The system thermalizes completely at each time step. (If p 6= 1, a more

sophisticated model may be needed for thermalization across > 2 levels.)

6.5.2 Average heat 〈Q2〉 absorbed during stroke 2

Let j denote the HGOE level in which the engine begins the trial of interest.

We denote by Q
(j)
2 the average heat absorbed during stroke 2, from the cold

bath. (Q
(j)
2 will be negative and, provided that j is around the energy band’s

center, independent of j.)

The heat absorbed can be calculated easily from the following observation.

Stroke 1 (adiabatic tuning) preserves the occupied level’s index. The level

closest to j lies a distance δ away when stroke 3 begins. δ can have either

sign, can lie above or below j. Heat is exchanged only if |δ| < Wb. Let

us initially neglect the possibility that two nearby consecutive gaps are very

small: |Ej±2 −Ej| ≤ Wb. We can write the average (over trials begun in level

j) heat absorbed as

Q
(j)
2 =

Wb∫

−Wb

dδ δ
e−βCδ

1 + e−βCδ
P

(E)
MBL(δ) +O

(
W 3

b/ 〈δ〉2
)
. (6.11)

This equation assumes a Sommerfeld-expansion form, so

Q
(j)
2 = −W

2
b

2
µ(E) +

π2

6
µ(E)(TC)2 +O

(
[Wb]3/ 〈δ〉2

)
+O

(
µ(E)2[TC]3

)
.

(6.12)
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The first correction accounts for our not considering two levels within Wb of

level j.

Next, we need to average this result over all initial states j, assuming the

initial density operator, ρ(0) = e−βHHGOE/Z:

〈Q2〉 :=

〈〈
〈Q2(E)〉 cold

therm.

〉
gaps

〉

ρ(0)

(6.13)

=

(
−(Wb)2

2
+
π2

6

1

(βC)2

)∫ ∞

−∞
dE µ2(E)

e−βHE

Z
(6.14)

+ 〈δ〉
{
O

([
Wb

〈δ〉

]3
)

+O

(
Wb

〈δ〉 e
−βCWb

)
+O

([
µ(E)

βC

]3
)}

. (6.15)

We substitute in for the DoS from Eq. (6.4):

〈Q2〉 =
N 2

2πNE2

1

Z

(
−(Wb)2

2
+
π2

6

1

(βC)2

)∫ ∞

−∞
dE e−E

2/NE2

e−βHE +O(.) ,

(6.16)

wherein the correction terms are abbreviated. The integral evaluates to
√
πNE eN(βHE)2/4.

The partition function is

Z =

∫ ∞

−∞
dE µ(E)e−βHE = N eN(βHE)2/2 . (6.17)

Substituting into Eq. (6.16) yields

〈Q2〉 =

(
−(Wb)2

2 〈δ〉 +
π2

6

1

(βC)2 〈δ〉

)
e−N(βHE)2/4

+ 〈δ〉
{
O

([
Wb

〈δ〉

]3
)

+O

(
[µ(E)Wb]

µ(E)

βC

e−βCWb

)

+O

([
µ(E)

βC

]3
)

+O

([√
N βHE

]4
)}

. (6.18)

The prefactor was replaced with 1
〈δ〉 via Eq. (6.3) in the main text.

Equation (6.18) is compared with numerical simulations in Fig. 6.3. In the

appropriate regime (wherein Wb � 〈δ〉 and TC � Wb), the analytics agree

well with the numerics, to within finite-size effects.
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In terms of small dimensionless parameters,

〈Q2〉 = 〈δ〉
[
−1

2

(
Wb

〈δ〉

)2

+
π2

6

1

(βC 〈δ〉)2

][
1− N

4
(βHE)2

]
+O(.) . (6.19)

The leading-order term is second-order. So is the βC correction; but 1
(βC〈δ〉)2 �(

Wb

〈δ〉

)2

, by assumption. The βH correction is fourth-order—too small to in-

clude. To lowest order,

〈Q2〉 ≈ −
(Wb)2

2 〈δ〉 . (6.20)

6.5.3 Average heat 〈Q4〉 absorbed during stroke 4

The 〈Q4〉 calculation proceeds similarly to the 〈Q2〉 calculation. When cal-

culating 〈Q2〉, however, we neglected contributions from the engine’s cold-

thermalizing down two small gaps. Two successive gaps have a probability

∼
(
Wb

〈δ〉

)2

of being < Wb each. Thermalizing across each gap produces heat ≤

Wb. Each such pair therefore contributes negligibly to 〈Q2〉, as 〈δ〉O
([

Wb

〈δ〉

]3
)

.

We cannot neglect these pairs when calculating 〈Q4〉. Each typical small

gap widens, during stroke 3, to size ∼ 〈δ〉 . These larger gaps are thermal-

ized across during stroke 4, contributing at the nonnegligible second order, as

∼ 〈δ〉O
([

Wb

〈δ〉

]2
)

to 〈Q4〉 . Chains of ≥ 3 small MBL gaps contribute negli-

gibly.

The calculation is tedious, appears in [238, App. G 5], and yields

〈Q4〉 ≈ Wb −
2 ln 2

βC

+
(Wb)2

2 〈δ〉 + 4 ln 2
Wb

βC 〈δ〉
. (6.21)

The leading-order terms are explained heuristically below Eq. (6.7) in the main

text.

The leading-order βC correction, −2 ln 2
βC

, shows that a warm cold bath lowers

the heat required to reset the engine. Suppose that the cold bath is maximally

cold: TC = 0. Consider any trial that S begins just above a working gap (an

ETH gap δ > Wb that narrows to an MBL gap δ′ < Wb). Cold thermalization

drops S deterministically to the lower level. During stroke 4, S must absorb



117

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Wb/〈δ〉

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
〈Q

2
〉/
〈δ
〉

(a) 〈Q2〉 vs. Wb at TC = 0 and TH =∞

0.00 0.02 0.04 0.06
TC/〈δ〉

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

〈Q
2
〉/
〈δ
〉

(b) 〈Q2〉 vs. TC at TH = ∞ and Wb =
2−4 〈δ〉

0.0 0.5 1.0 1.5 2.0
βHE
√
N

−0.00002

−0.00001

0.00000

0.00001

0.00002

〈Q
2
〉/
E√

N

(c) 〈Q2〉 vs. βH at TC = 0 and Wb =
2−4 〈δ〉

Figure 6.3: Magnitude | 〈Q2〉 | of the average heat absorbed during cold
thermalization (stroke 2) as a function of the cold-bath bandwidth
Wb (6.3a), the cold-bath temperature TC (6.3b), and the hot-bath
temperature TH = 1/βH (6.3c): The blue lines represent the magnitude of
the analytical prediction (6.18); in the bottom figure (showing βH dependence)
we use the full analytical result from [238]. See Sec. 6.7 for other parameters
and definitions. The analytics match the numerics’ shapes, and the agreement
is fairly close, in the appropriate limits (where Wb

〈δ〉 � 1 and TC/ 〈δ〉 � 1, in

the gray shaded regions). The analytics systematically underestimate 〈Q2〉 at
fixed Wb, due to the small level repulsion at finite N . The analytical predic-
tion (6.18) substantially underestimates 〈Q2〉 when the cold-bath bandwidth
is large, Wb & 〈δ〉. Such disagreement is expected: The analytics rely on
Wb

〈δ〉 � 1, neglecting chains of small gaps: δ′j , δ
′
j+1 , · · · < Wb. Such chains

proliferate as Wb grows. A similar reason accounts for the curve’s crossing
the origin in Fig. 6.3b: We analytically compute 〈Q2〉 only to second order in
TC/ 〈δ〉.
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Q4 > 0 to return to its start-of-trial state. Now, suppose that the cold bath

is only cool: TC & 0. Cold thermalization might leave S in the upper level.

S needs less heat, on average, to reset than if TC = 0. A finite TC therefore

detracts from 〈Q4〉. The +4 ln 2 Wb

βC〈δ〉
offsets the detracting. However, the

positive correction is smaller than the negative correction, as Wb

〈δ〉 � 1 .

A similar argument concerns TH < ∞. But the βH correction is too small to

include in Eq. (6.21): 〈Q4〉 ≈ Wb − 2 ln 2
βC

+ (Wb)2

2〈δ〉 e
−N(βHE)2/4.

Figure 6.4 shows Eq. (6.21), to lowest order in TC, as well as the βH dependence

of 〈Q4〉. The analytical prediction is compared with numerical simulations.

The agreement is close, up to finite-size effects, in the appropriate regime

(TC � Wb � 〈δ〉).

6.5.4 Average per-cycle power 〈Wtot〉
By the first law of thermodynamics, the net work outputted by the engine

equals the net heat absorbed. Summing Eqs. (6.21) and (6.20) yields the

per-trial power, or average work outputted per engine cycle:

〈Wtot〉 = 〈Q2〉+ 〈Q4〉 ≈ Wb −
2 ln 2

βC

+ 4 ln 2
Wb

βC 〈δ〉
. (6.22)

The leading-order βH correction is negative and too small to include—of order

〈δ〉
(
Wb

〈δ〉

)2

N (βHE)2 . Equation (6.22) agrees well with the numerics in the

appropriate limits (TC � Wb � 〈δ〉) and beyond, as shown in Fig. 6.5. The

main text contains the primary analysis of Eq. (6.22). Here, we discuss the

〈Q2〉 correction, limiting behaviors, and scaling.

The negative 〈Q2〉 = − (Wb)2

〈δ〉 detracts little from the leading term Wb of 〈Q4〉:
(Wb)2

〈δ〉 � Wb, since Wb

〈δ〉 � 1. The 〈Q2〉 cuts down on the per-trial power little.

The limiting behavior of Eq. (6.22) makes sense: Consider the limit as Wb → 0.

The cold bath has too small a bandwidth to thermalize the engine, so the

engine should output no work, on averge. Indeed, the first and third terms

in Eq. (6.22) vanish, being proportional to Wb. The second term vanishes

because βC →∞ more quickly than Wb → 0 : The cold bath is very cold.

Equation (6.22) scales with the system size N no more quickly than
√
N/2N ,

by the assumption Wb � 〈δ〉 ∼
√
N/2N . This scaling makes sense: The engine

outputs work because the energy eigenvalues meander upward and downward

in Fig. 6.2 as H(t) is tuned. In the thermodynamic limit, levels squeeze to-
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Figure 6.4: Average heat 〈Q4〉 absorbed during hot thermalization
(stroke 4) as a function of the cold-bath bandwidth Wb, the cold-
bath temperature TC, and the hot-bath temperature TH = 1/βH: The
blue lines represent the analytical prediction (6.21), to lowest order in TC, with
the βH dependence of 〈Q4〉, too small a correction to include in Eq. (6.21):

〈Q4〉 ≈ Wb − 2 ln 2
βC

+ (Wb)2

2〈δ〉 e−N(βHE)2/4. In the bottom figure (showing βH

dependence) we again use the full analytical result from [238]. See Sec. 6.7
for other parameters and definitions. The analytics’ shapes agree with the
numerics’, and the fit is fairly close, in the appropriate limits (where e−βCWb �
1, 1

βC〈δ〉
� 1, and Wb

〈δ〉 � 1, in the gray shaded regions). The predictions

underestimate 〈Q4〉; see the Fig. 6.3 caption. Figure 6.4c suggests that the
numerics deviate significantly from the analytics: The numerics appear to
depend on βH via a linear term absent from the 〈Q4〉 prediction. This seeming
mismatch appears symptomatic of finite sample and system sizes.
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Figure 6.5: Per-cycle power 〈Wtot〉 as a function of the cold-bath band-
width Wb, the cold-bath temperature TC, and the hot-bath tem-
perature TH = 1/βH: The blue lines represent the analytical prediction
〈Wtot〉 ≈ Wb − 2 ln 2

βC
: Eq. (6.22), to first order in Wb

〈δ〉 and in 1
βC〈δ〉

. See Sec. 6.7
for other parameters and definitions. The analytics largely agree with the nu-
merics in the appropriate regime: Wb

〈δ〉 � 1, and TC

〈δ〉 � 1 (in the gray shaded

region). Outside that regime, the analytics underestimate 〈Wtot〉; see Fig. 6.3
for an analysis. Figure 6.5c suggests that the numerics depend on βH via a
linear term absent from the analytical prediction; see the caption of Fig. 6.4c.

gether. Energy eigenvalues have little room in which to wander, and S outputs

little work—hence our parallelization of fixed-length mesoscopic subengines in

the thermodynamic limit (Sec. 6.6).

6.5.5 Efficiency ηMBL in the adiabatic approximation

The efficiency is defined as

ηMBL :=
〈Wtot〉
〈Qin〉

. (6.23)
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The numerator is averaged separately from the denominator because averaging

Wtot over runs of one mesoscopic engine is roughly equivalent to averaging over

simultaneous runs of parallel subengines in one macroscopic engine. 〈Wtot〉
〈Qin〉 may

therefore be regarded as the Wtot

Qin
of one macroscopic-engine trial.

The positive-heat-absorbing-stroke is stroke 4, in the average trial:

〈Qin〉 = 〈Q4〉 = 〈Wtot〉 − 〈Q2〉 = 〈Wtot〉
(

1− 〈Q2〉
〈Wtot〉

)
= 〈Wtot〉 (1 + φ) ,

(6.24)

wherein

φ := − 〈Q2〉
〈Wtot〉

≈ Wb

2 〈δ〉 . (6.25)

Substituting from Eq. (6.24) into Eq. (6.23) yields

ηMBL ≈
〈Wtot〉

〈Wtot〉 (1 + φ)
≈ 1− φ = 1− Wb

2 〈δ〉 . (6.26)

Using suboptimal baths diminishes the efficiency. Adding βC-dependent terms

from Eq. (6.22) to 〈Wtot〉 yields

φ′ =
Wb

2 〈δ〉 +
ln 2

βC 〈δ〉
− 2 ln 2

Wb

〈δ〉
1

βC 〈δ〉
. (6.27)

The βH correction, 1− Wb

2〈δ〉 e
−N(βHE)2/4, is too small to include. The correction

shares the sign of βH: A lukewarm hot bath lowers the efficiency.

Expressions (6.26) and (6.27) are compared with results from numerical sim-

ulations in Fig. 6.6. The analytics agree with the numerics in the appropriate

regime (TC � Wb � 〈δ〉).

6.6 MBL engine in the thermodynamic limit

In Secs.6.2, 6.5, and 6.4 we analyzed a single mesoscale engine. The power

output of that mesoscale engine was very small, and indeed decreased expo-

nentially with the size of the engine: 〈Wtot〉 ∼ Wb � 〈δ〉 ∼ 2−N . Worse, the

tuning speed v must shrink exponentially: Hmeso(t) is ideally tuned quantum-

adiabatically. The time per tuning stroke must far exceed 〈δ〉−1.

The mesoscale engine scales poorly, but properties of MBL offer a solution.
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Figure 6.6: Efficiency ηMBL as a function of the cold-bath band-
width Wb, the cold-bath temperature TC, and the hot-bath temper-
ature TH = 1/βH: The blue lines represent the analytical predictions (6.26)
and (6.27). Figure (6.6c) shows the leading-order βH dependence of ηMBL, a
correction too small to include in Eq. (6.27): 1− Wb

2〈δ〉 e
−N(βHE)2/4. See Sec. 6.7

for other parameters and definitions. The analytics agree with the numerics
fairly well in the appropriate regime (Wb

〈δ〉 � 1, TC

〈δ〉 � 1, and
√
N THE � 1).

The analytics underestimate ηMBL; see the Fig. 6.3 caption.
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The MBL engine’s advantage lies in having a simple thermodynamic limit that

does not compromise efficiency or power output.

A thermodynamically large MBL Otto engine consists of mesoscale subengines

that operate mostly independently. This independence hinges on local level

correlations of the MBL phase [96, 196, 201]; cf Sec.1.1.4: Subsystems sepa-

rated by a distance L evolve roughly independently until times exponential in

L, due to the localization [158].

Consider perturbing an MBL system locally. In the Heisenberg picture, the

perturbing operator spreads across a distance logarithmic in time [158]. (See

also [109].) To see this, recall from Sec. 1.1.3 that the gaps between states

differing on L sites are roughly

δ ∼ E2−Le−L/ξ . (6.28)

On a timescale t the system is indifferent to gaps less than t−1, for

(Et)−1 ∼ 2−Le−L/ξ (6.29)

or

L(t) ∼ (ln 2 + ξ−1)−1 ln(HScalet) . (6.30)

The longer the time t for which the perturbation lasts, the farther the influence

spreads.

First imagine tuning an MBL Hamiltonian infinitely slowly, to preclude dia-

batic transitions: t → ∞ . Even if the Hamiltonian consists of spatially local

terms, the perturbation to each term spreads across the lattice. The global

system cannot be subdivided into independent subengines. 7 The global

system’s average gap vanishes in the thermodynamic limit: 〈δ〉 → 0 . Since

〈Wtot〉 ∼ Wb � 〈δ〉, the per-cycle power seems to vanish in the thermody-

namic limit: Wb → 0.

But now imagine tuning the Hamiltonian at a finite speed v. How big of

a region can the tuning of a single local term affect? Dimensional analysis

7Granted, subengines are coupled together even if the Hamiltonian is quenched infinitely
quickly: Hsim(t) encodes a nearest-neighbor interaction, for example. That interaction
might be regarded as coupling the edge of subengine k with the edge of subengine k + 1 .
But subengines’ edges may be regarded as ill-defined. The sites definitively in subengine
k, near subengine k’s center, should not couple to the sites near subengine `’s center, for
any ` 6= k , if the subengines are to function mostly independently. Additionally, one may
separate subenegines with “fallow” buffer zones, as we do.
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suggests that the relevant time scale is t ∼ E
v
. Local perturbations then affect a

region of length ∼ L(E/v) ∼ ζ ln(E2/v). On a length scale L(E/v), global level

correlations govern the engine’s performance less than local level correlations

do, i.e., less than R(L(E/v), ω) does. This correlator registers level repulsion

at a scale independent of N . Finite-speed tuning renders finite the average gap

accessible to independent subengines, the 〈δ〉 that would otherwise close in the

thermodynamic limit. Each mesoscale subengine therefore outputs 〈Wtot〉 > 0 .

We can explain the gap’s finiteness differently: Suppose that the engine’s state

starts some trial with weight on the jth energy level. The eigenenergies wiggle

up and down during stroke 1. The jth energy may approach the (j − 1)th.

Such close-together energies likely correspond to far-apart subengines. If the

levels narrowly avoided crossing, particles would be rearranged across a large

distance. Particles must not be, as subengines must function independently.

So the engine must undergo a diabatic transition: the engine’s state must

retain its configuration. The engine must behave as though the approaching

energy level did not exist. Effectively removing the approaching level from the

available spectrum effectively creates a gap in the spectrum. One can create

such an effective gap (can promote such diabatic transitions) by tuning the

Hamiltonian at a finite v.

Let us apply this principle to a chain of N -site mesoscale engines separated

by N -site buffers. The engine is cycled between a shallowly localized (HGOE-

like) Hamiltonian, which has a localization length ξ>, and a deeply localized

(HMBL-like) Hamiltonian, which has ξ< � ξ>.

The key element in the construction is that the cold bath acts through local

operators confined to < N ∼ ξ> sites. This defines the subengines of the ther-

modynamic MBL Otto engine. Localization guarantees that “what happens

in a subengine stays in a subengine”: subengines do not interfere much with

each other’s operation.

This subdivision boosts the engine’s power. A length-N mesoscale engine oper-

ates at the average per-cycle power 〈Wtot〉meso ∼ Wb � E
√
N

2N
(Sec. 6.5). A sub-

divided length-Nmacro MBL engine outputs average work ∼ Nmacro

2N
〈Wtot〉meso.

In contrast, if the length-Nmacro engine were not subdivided, it would output

average work ∼ E
√
Nmacro

2Nmacro , which vanishes in the thermodynamic limit.

We can be more quantitative.
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6.7 Numerical simulations

We use numerical exact diagonalization to check analytical results. In Sec. 6.7.1,

we describe the Hamiltonian used in our numerics. In Sec. 6.7.6, we study

engine performance in the adiabatic limit (addressed analytically in Sec. 6.5).

The code is available at https://github.com/christopherdavidwhite/MBL-

mobile.

Call the times at which the strokes end t = τ, τ ′, τ ′′, and τ ′′′ (see Fig. 6.1). For

each of Nreals ≈ 1, 000 disorder realizations, we computed the whole density

matrix ρ(t) at t = 0, τ, τ ′, τ ′′, τ ′′′. The engine’s time-t internal energy is E(t) =

Tr(H(t)ρ(t)) . The quantities of interest are straightforwardly

〈W1〉 = E(0)− E(τ) , 〈W3〉 = E(τ ′′′)− E(τ ′′) , (6.31)

〈Q2〉 = E(τ ′′)− E(τ ′) , and 〈Q4〉 = E(0)− E(τ ′′′) . (6.32)

We disorder-averaged these quantities before dividing to compute the effi-

ciency, ηMBL = 1− 〈W1〉+〈W3〉
〈Q4〉 .

6.7.1 Hamiltonian

The engine can be implemented with a disordered Heisenberg model. A similar

model’s MBL phase has been realized with cold atoms [188]. We numerically

simulated a 1D mesoscale chain governed by a Hamiltonian

Hsim(t) =
E

Q(h(αt))

[
N−1∑

j=1

~σj · ~σj+1 + h(αt)
N∑

j=1

hjσ
z
j

]
; (6.33)

this is a special case of the general mesoscopic Hamiltonian (6.2) described

in Sec. 6.2. Equation (6.33) describes spins equivalent to interacting spinless

fermions. Energies are expressed in units of E , the average per-site energy

density. For γ = x, y, z, the γth Pauli operator that operates nontrivially on

the jth site is denoted by σγj . The Heisenberg interaction ~σj · ~σj+1 encodes

nearest-neighbor hopping and repulsion.

The tuning parameter αt ∈ [0, 1] determines the phase occupied by Hsim(t).

The site-j disorder potential depends on a random variable hj distributed uni-

formly across [−1, 1]. The disorder strength h(αt) varies as h(αt) = αt hGOE +

(1 − αt)hMBL. When αt = 0, the disorder is weak, h = hGOE, and the engine

occupies the ETH phase. When αt = 1, the disorder is strong, h = hMBL �
hGOE, and the engine occupies the MBL phase.

https://github.com/christopherdavidwhite/MBL-mobile
https://github.com/christopherdavidwhite/MBL-mobile
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The normalization factor Q(h(αt)) preserves the width of the density of states

(DoS) and so preserves 〈δ〉. Q(h(αt)) prevents the work extractable via change

of bandwidth from polluting the work extracted with help from level statistics

(see Sec. 8.1.1 for a discussion of work extraction from bandwidth change).

Q(h(αt)) is defined and calculated below.

The ETH-side field had a magnitude h(0) = 2.0, and the MBL-side field had

a magnitude h(1) = 20.0. These h(αt) values fall squarely on opposite sides of

the MBL transition at h ≈ 7.

6.7.2 Scaling factor

We wish to keep the DoS constant through the cycle. To fix µ(E), we rescale

the Hamiltonian by a factor Q(h(αt)). We define Q2(h(αt)) as the disorder

average of the variance of the unrescaled DoS:

Q2(h(αt)) :=

〈(
1

N
N∑

j=1

E2
j

)
−
(

1

N
N∑

j=1

Ej

)2〉

disorder

(6.34)

=

〈
1

N Tr(H̃2(t))−
(

1

N Tr(H̃(t))

)2〉

disorder

. (6.35)

The H̃(t) denotes an unrescaled variation on the random-field Heisenberg

Hamiltonian H(t) of Eq. (6.33):

H̃(t) := E
[
N−1∑

j=1

~σj · ~σj+1 + h(αt)
N∑

j=1

hjσ
z
j

]
. (6.36)

To compute Q2(h(αt)), we rewrite the unrescaled Hamiltonian as

H̃(t) = E
[

2
N−1∑

j=1

(
σ+
j σ
−
j+1 + h.c.

)
+

N−1∑

j=1

σzjσ
z
j+1 + h(αt)

N∑

j=1

hjσ
z
j

]
. (6.37)

We assume thatN is even, and we work at half-filling. The N
2

-particle subspace

has dimensionality N =
(
N
N/2

)
.

Let us calculate some operator traces that we will invoke later. Let X :=∏N
j=1 σ

x denote the global spin-flip operator. For any operator A such that

X†AX = −A,

Tr(A) = Tr
(
X†AX

)
= −Tr(A) . (6.38)
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We have used the evenness of N , which implies the invariance of the half-filling

subspace under X. Also, Tr(A) = 0. In particular, 0 = Tr(σzj ) = Tr(σzjσ
z
j′σ

z
j′′),

if j 6= j′ 6= j′′.

Traces of products of even numbers of σz factors require more thought:

Tr(σzjσ
z
j+1) = (# states j, j + 1 =↑↑) + (# states j, j + 1 =↓↓) (6.39)

− 2(# states j, j + 1 =↑↓)

=

(
N − 2

N/2− 2

)
+

(
N − 2

N/2

)
− 2

(
N − 2

N/2− 1

)

= −N 1

N − 1
. (6.40)

Similarly,

Tr
(
[σ+
j σ
−
j ][σ−j+1σ

+
j+1]
)

= Tr
(
[σ−j σ

+
j ][σ+

j+1σ
−
j+1]
)

= (# states j, j + 1 =↑↓)

=

(
N − 2

N/2− 1

)
(6.41)

= N N

4(L− 1)
, (6.42)

and

Tr
(
σzjσ

z
j+1σ

z
j′σ

z
j′+1

)
= (# states j, j + 1, j′, j′ + 1 =↑↑↑↑)

+

(
4

2

)
(# states j, j + 1, j′, j′ + 1 =↑↑↓↓)

+ (# states j, j + 1, j′, j′ + 1 =↓↓↓↓)

−
(

4

1

)
(# states j, j + 1, j′, j′ + 1 =↑↑↑↓)

−
(

4

1

)
(# states j, j + 1, j′, j′ + 1 =↑↓↓↓)

=

(
N − 4

N/2− 4

)
+ 6

(
N − 4

N/2− 2

)
+

(
N − 4

N/2

)
(6.43)

− 6

(
N − 4

N/2− 3

)
− 6

(
N − 4

N/2− 1

)

= N 3

(N − 1)(N − 3)
, (6.44)

wherein the first equality’s combinatorial factors come from permutations on



128

sites j, j + 1, j′, and j′ + 1.

Assembling these pieces, we find Tr(H̃(t)) = E∑N−1
j=1 Tr

(
σzjσ

z
j

)
= −EN . Next,

we compute Tr(H̃2(t)):

H̃2(t) = E2

[
4
N−1∑

j

(σ+
j σ
−
j )(σ−j+1σ

+
j+1) + 4

N−1∑

j

(σ−j σ
+
j )(σ+

j+1σ
−
j+1)

+
N−1∑

j,j′=1

σzjσ
z
j+1σ

z
j′σ

z
j′+1 + h2(αt)

N∑

j=1

h2
j + (traceless terms)

]
(6.45)

= E2

[
4
N−1∑

j

(σ+
j σ
−
j )(σ−j+1σ

+
j+1) + 4

N−1∑

j

(σ−j σ
+
j )(σ+

j+1σ
−
j+1)

+
N−1∑

j=1

I +
N−2∑

j=1

σzjσ
z
j+2 +

N−3∑

j=1

N−1∑

j′=j+2

σzjσ
z
j+1σ

z
j′σ

z
j′+1

+ h(αt)
2(αt)

N∑

j=1

h2
j + (traceless terms)

]
. (6.46)

We take the trace, using Eqs. (6.39), (6.41), and (6.43):

Tr(H̃2(t)) = N
[

3N − 1 +
N − 2

N − 1
+ h2

N∑

j=1

h2
j

]
. (6.47)

We disorder-average by taking h2
j 7→

∫ 1

0
dhjh

2
j = 1

3
:

〈
Tr(H2(t))

〉
disorder

= N
[

3N − 1 +
N − 2

N − 1
+N

h2

3

]
. (6.48)

Substituting into Eq. (6.34), we infer the rescaling factor’s square:

Q2(h(αt)) = 3N − 2 +
N − 2

N − 1
+N

h2

3
. (6.49)

Our results are insensitive to the details of Q. The width of the DoS in one

disorder realization will differ from the disorder average (6.49). Moreover,

that difference will vary as we tune h(αt), because the disorder affects only

one term. The agreement between the analytics, in which µ(E) is assumed to

remain constant in t, and the numerics is therefore comforting: the engine is

robust against small variations in the rescaling.
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6.7.3 Representing states and Hamiltonians

We structured our software to facilitate a possible extension: The cold bath

might be modeled more realistically, as coupling to the engine only locally.

We represent the state of one mesoscopic MBL Otto engine with a density ma-

trix ρ ∈ CN×N , and the Hamiltonian with a matrix H ∈ CN×N , relative to

the basis {|s1〉 , . . . , |sN 〉} = {|↑ . . . ↑〉 , . . . , |↓ . . . ↓〉} of products of σz eigen-

states. We track the whole density matrix, rather than just the energy-diagonal

elements, with an eye toward the coherent superpositions that diabatic cor-

rections create. For an N -site chain at half-filling, N =
(
N
N/2

)
'
√

2
πN

2N .

6.7.4 Strokes 1 and 3: tuning

The (l,m) entry of the initial-state density matrix is

ρ(0)lm = 〈sl|
1

Z
e−βHH(0) |sm〉 =

1

Z

∑

j

e−βHEj(0) 〈sl〉Ej(0) 〈Ej(0)〉 sm . (6.50)

The jth eigenstate of H(0), associated with energy Ej(0), is denoted by

|Ej(0)〉. We approximate the time evolution from 0 to τ (during stroke 1)

as adiabatic. The evolution therefore does not move weight between levels:

ρ(τ)lm =
1

Z

∑

j

e−βHEj(0) 〈sl〉Ej(τ) 〈Ej(τ)〉 sm . (6.51)

If we represented our density matrix relative to an instantaneous energy eigen-

basis, simulating the time evolution would be trivial: We would reinterpret the

diagonal matrix ρ as being diagonal, with the same elements in a new basis.

However, we wish to represent ρ(t) relative to the σzj product basis. This rep-

resentation enhances the code’s flexibility, facilitating the inclusion of diabatic

evolutions and a more detailed model of cold thermalization. To represent ρ(t)

relative to the σzj product basis, we note that

ρ(τ)lm =
∑

j

〈sl〉Ej(τ) 〈Ej(0)| ρ(0) |Ej(0)〉 〈Ej(τ)〉 sm = [U(τ, 0)ρ(0)U(τ, 0)†]lm .

(6.52)

We have defined a time-evolution matrix U(τ, 0) ∈ CN×N by U(τ, 0)lm =∑
j 〈sl〉Ej(τ) 〈Ej(0)〉 sm . This matrix is easily computed via exact diagonal-

ization of H(0) and H(τ).

We can compute the density matrix ρ(τ ′′) at the end of stroke 3 (the tuning

from MBL to GOE) from the density matrix ρ(τ ′) at the end of stroke 2
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(the cold-bath thermalization) similarly: ρ(τ ′′) = U(τ ′′, τ ′)ρ(τ ′)U(τ ′′, τ ′)† . The

time-evolution matrix U(τ ′′, τ ′) ∈ CN×N is given by

U(τ ′′, τ ′)lm =
∑

j

〈sl〉Ej(0) 〈Ej(τ)〉 sm . (6.53)

[Recall that H(τ ′′) = H(0) and H(τ ′) = H(τ).]

6.7.5 Stroke 2: Thermalization with the cold bath

During stroke 2, the system thermalizes with a bandwidth-Wb cold bath. We

make three assumptions. First, the bandwidth cutoff is hard: The bath can

transfer only amounts < Wb of energy at a time. Therefore, the cold bath

cannot move probability mass between adjacent levels separated by just one

gap δ′ > Wb. Second, the bath is Markovian. Third, the system thermalizes

for a long time. The bath has time to move weight across sequences of small

gaps δ′j, δ
′
j+1, . . . < Wb.

We can implement thermalization as follows. First, we identify sequences of

levels connected by small gaps. Second, we reapportion weight amongst the

levels according to a Gibbs distribution.

Suppose, for example, that the MBL Hamiltonian H(τ) contains the following

chain of six energies, E1, . . . , E6, separated from its surrounding levels by large

gaps (Fig. 6.7):

(E2 − E1), (E3 − E2) < Wb ,

(E5 − E4) < Wb , and

(E4 − E3), (E6 − E5) > Wb .

(6.54)

We suppress the time arguments to simplify notation. Before thermalization,

the density operator is diagonal with respect to the energy basis: ρ(τ) =∑
j ρj |Ej〉〈Ej| . The weight on level j is denoted by ρj. Thermalization maps

ρ(τ) 7→ ρ(τ ′) =
ρ1 + ρ2 + ρ3

e−βCE1 + e−βCE2 + e−βCE3

×
(
e−βCE1 |E1〉〈E1|+ e−βCE2 |E2〉〈E2|+ e−βCE3 |E3〉〈E3|

)

+
ρ4 + ρ5

e−βCE4 + e−βCE5

(
e−βCE4 |E4〉〈E4|+ e−βCE5 |E5〉〈E5|

)

+ ρ6 |E6〉〈E6| . (6.55)
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Energies

E3

E1

E2

E4

E5

E6

Wb

Figure 6.7: Energies of a cold-thermalized system: We illustrate our
implementation of cold thermalization with this example chain of six energies.
The cold bath has a bandwidth of size Wb, depicted in green.

6.7.6 Results

We compare the analytical predictions of Sec. 6.5 to numerical simulations of

a 12-site engine governed by the Hamiltonian (6.33). During strokes 1 and

3, the state was evolved as though the Hamiltonian were tuned adiabatically.

We index the energies Ej(t) from least to greatest at each instant: Ej(t) <

Ek(t) ∀j < k. Let ρj denote the state’s weight on eigenstate j of the initial

Hamiltonian, whose αt = 0. The engine ends stroke 1 with weight ρj on

eigenstate j of the post-tuning Hamiltonian, whose αt = 1.

The main results appear in Fig. 6.8. Figure 6.8a shows the average work

extracted per cycle, 〈Wtot〉. Figure 6.8b shows the efficiency, ηMBL.

In these simulations, the baths had the extreme temperatures TH = ∞ and

TC = 0. This limiting case elucidates the Wb-dependence of 〈Wtot〉 and of

ηMBL: Disregarding finite-temperature corrections, on a first pass, builds in-

tuition. Finite-temperature numerics appear alongside finite-temperature an-

alytical calculations above.

Figure 6.8 shows how the per-cycle power and the efficiency depend on the cold-
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Figure 6.8: Average per-cycle power 〈Wtot〉 (left) and efficiency ηMBL

(right) as functions of the cold-bath bandwidth Wb: Each red dot rep-
resents an average over 1,000 disorder realizations of the random-field Heisen-
berg Hamiltonian (6.33). The slanted blue lines represent the analytical pre-
dictions (6.7) and (6.9) of Sec. 6.5. When Wb � 〈δ〉 (in the gray shaded
region), 〈Wtot〉 and ηMBL vary linearly with Wb, as predicted. The error bars
are smaller than the numerical-data points.

bath bandwidth Wb. As expected, 〈Wtot〉 ≈ Wb. The dependence’s linearity,

and the unit proportionality factor, agree with Eq. (6.7). Also as expected,

the efficiency declines as the cold-bath bandwidth rises: ηMBL ≈ 1− Wb

2〈δ〉 . The

linear dependence and the proportionality factor agree with Eq. (6.9).

The gray columns in Fig. 6.8 highlight the regime in which the analytics were

performed, where Wb

〈δ〉 � 1. If the cold-bath bandwidth is small, Wb < 〈δ〉, the

analytics-numerics agreement is close. But the numerics agree with the analyt-

ics even outside this regime. If Wb & 〈δ〉, the analytics slightly underestimate

ηMBL: The simulated engine operates more efficiently than predicted. To pre-

dict the numerics’ overachievement, one would calculate higher-order correc-

tions in Sec. 6.5: One would Taylor-approximate to higher powers, modeling

subleading physical processes. Such processes include the engine’s dropping

across a chain of three small gaps, δ′1 , δ
′
2 , δ

′
3 < Wb, during cold thermalization.

The error bars are smaller than the numerical-data points. Each error bar

represents the error in the estimate of a mean (of 〈Wtot〉 or of ηMBL := 1 −
〈Wtot〉
〈Qin〉 ) over 1,000 disorder realizations. Each error bar extends a distance

(sample standard deviation)/
√

# realizations above and below that mean.
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C h a p t e r 7

THE MBL-MOBILE AT FINITE SPEED

In Ch. 6, we assumed that we could tune the engine in strokes 2 and 4 infinitely

slowly, as far as the individual mesoscale engines were concerned—but then

we also assumed that we could tune it quickly enough that information does

not propagate between those individual mesoscale engines.

Are these two assumptions broadly consistent? That is, does a regime exist

that is both slow with respect to unwanted transitions in a single mesoscale

engine and fast with respect to transitions across multiple mesoscale engines?

More generally, an experimenter would want to run our cycle in a finite time:

she is restricted by the coherence times of her systems, by a desire to go to

lunch, and ultimately by the requirement that she finish, publish, and gradu-

ate. How does our engine perform at finite speed?

The time scales of a macroscopic engine are crucial for the assessment of

the MBL Otto engine. In this chapter we estimate the restrictions on the

speed with which the Hamiltonian must be tuned to avoid diabatic transitions

(Sec. 7.1). We compare these diabatic corrections to numerical simulations

(Sec. 7.2 After that we compute the restrictions on the speed required to pre-

vent intersubengine communication (Sec. 7.3); we find that we can indeed

tune the system quickly enough to avoid communication, but slowly enough

to avoid undue diabatic transitions. We finally estimate the time required for

cold thermalization (stroke 2) in Sec. 7.4.

7.1 Diabatic corrections

We have modeled the Hamiltonian tuning as quantum-adiabatic, but realistic

tuning speeds v := E
∣∣dαt
dt

∣∣ are finite. To understand diabatic tuning’s effects,

we distinguish the time-t density matrix ρ(t) from the corresponding diagonal

ensemble,

ρdiag(t) =
∑

j

|Ej(t)〉 εj 〈Ej(t)| , wherein

εj = 〈Ej(t)| ρ |Ej(t)〉
(7.1)
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(Et)
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APT Landau- 
Zener Frac-Landau- 
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Hamiltonian 
[Hmeso(t)]

Figure 7.1: Three (times two) classes of diabatic transitions: Hops to
arbitrary energy levels, modeled with general adiabatic perturbation theory
(APT), plague the ETH regime. Landau-Zener transitions and fractional-
Landau-Zener transitions plague the many-body-localized regime.

and |Ej(t)〉 is an instantaneous energy eigenbasis ofHmeso(t) =
∑

j |Ej(t)〉Ej(t) 〈Ej(t)|.
The average energy depends on ρ(t) only through ρdiag(t). [More generally, the

state’s off-diagonal elements dephase under the dynamics. ρdiag(t) is “slow”

and captures most of the relevant physics [44].]

In the adiabatic limit, εj(t) = εj(0). We seek to understand how this state-

ment breaks down when the tuning proceeds at a finite speed v It is useful

to think of “infinite-temperature thermalization” in the sense of this diag-

onal ensemble: Fast tuning may push the diagonal-ensemble weights εj(t)

towards uniformity—even though the process is unitary and the entropy S =

−ρ(t) ln ρ(t) remains constant—thanks to the off-diagonal elements.

The effects of diabatic tuning appear in three distinct regimes, which we label

“fractional-Landau-Zener,” “Landau-Zener,” and “APT” (Fig. 7.1). We esti-

mate the average per-cycle work costs 〈Wdiab〉 of diabatic jumps, guided by the

numerics in Sec. 6.7. We focus on TH = ∞ and TC = 0, for simplicity. Since

TH = ∞, diabatic hops cannot bring ρdiag(t) closer to I/2N—cannot change

the average energy—during stroke 1. Hence we focus on stroke 3.

7.1.1 Fractional-Landau-Zener transitions

At the beginning of stroke 3, nonequilbrium effects could excite the system

back across the small gap to energy level j. The transition would cost work

and would prevent the trial from outputting Wtot > 0. We dub this excitation

a fractional-Landau-Zener (frac-LZ) transition. It could be suppressed by a

sufficiently slow drive [46]. The effects, and the resultant bound on v, are

simple to derive



135

Let the gap start stroke 3 at size δ and grow to a size ∆ > δ. Because the

two energy levels begin close together, one cannot straightforwardly apply the

Landau-Zener formula. One must use the fractional-Landau-Zener result of

De Grandi and Polkovnikov [46],

pfrac-LZ(δ) ≈ v2(δ−)2

16

(
1

δ6
+

1

∆6

)
≈ v2(δ−)2

16δ6
. (7.2)

δ− denotes the MBL level-repulsion scale, the characteristic matrix element

introduced by a perturbation between eigenstates of an unperturbed Hamilto-

nian. We suppose that energy-level pairs with pfrac-LZ . 1 are returned to the

infinite-temperature state from which the cold bath disturbed them. These

pairs do not contribute to 〈Wtot〉. Pairs that contribute have pfrac-LZ � 1, i.e.,

δ & (vδ−)1/3 . (7.3)

If the rest of the stroke is adiabatic, the average work performed during the

cycle is

〈Wtot〉 ∼ 〈Q4〉 − 〈Q2〉 − (vδ−)1/3 , (7.4)

which results immediately in the correction

〈Wdiab,frac-LZ〉 ∼ (vδ−)1/3 . (7.5)

This correction is negligible at speeds low enough that

v � (Wb)3

δ−
. (7.6)

7.1.2 Landau-Zener transitions

While the system is localized, the disturbances induced by the tuning dH(t)
dt

can propagate only only a short distance lv. The tuning effectively reduces

the mesoscale engine to an effective length-lv subengine. To estimate lv, we

compare the minimum gap of a length-lv subsystem to the speed v:

E2−lve−lv/ξ< ∼ √v . (7.7)

This minimum gap—the closest that two levels are likely to approach—is given

by the smallest level-repulsion scale, δ−. δ− characterizes the deeply localized
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system, whose ξ = ξ<. Consequently,

lv ∼
ln(E2/v)

2
(

ln 2 + 1
ξ <

) . (7.8)

Suppose that lv ≤ N , and consider a length-lv effective subengine. In the

adiabatic limit, 〈Wtot〉 does not depend on the engine’s size. (〈Wtot〉 depends

only on the bath bandwidth Wb � 〈δ〉.) To estimate how a finite v changes

〈Wtot〉, we consider the gaps δ < Wb of the size-lv subengine. We divide the

gaps into two classes:

1. Gaps connected by flipping l-bits on a region of diameter l < lv. The

tuning is adiabatic with respect to these gaps, so they result in work

output.

2. Gaps connected by flipping l-bits on a region of diameter l = lv. The

tuning is resonant with these gaps and so thermalizes them, in the sense

of the diagonal ensemble: The tuning makes the instantaneous-energy-

eigenvector weights εj uniform, on average.

Type-1 gaps form a v-independent O(1) fraction θ of the length-lv subengine’s

short-length-scale gaps.1 Type-2 gaps therefore make up a fraction 1 − θ.

Hence Landau-Zener physics leads to a v-independent O(1) diabatic correction

(1− θ)Wb to 〈Wtot〉, provided that v is high enough that lv < N .

7.1.3 APT transitions

When the system is in the ETH phase (or has correlation length ξ ∼ N),

typical minimum gaps (points of closest approach) are still given by the level-

repulsion scale, which is now 〈δ〉. Hence one expects the tuning to be adiabatic

if

v � 〈δ〉2 . (7.9)

This criterion is at least as stringent (depending on the system size) as the

requirement (7.6) that fractional Landau-Zener transitions occur rarely. Both

1We can estimate θ crudely. For a given diameter-lv subset, each gap connected by a
diameter-(lv − 1) operator can be made into a diameter-lv gap: One flips the last (lv)th
l-bit, for θ ∼ 1/2. This estimate neglects several combinatorial matters. A more detailed
analysis would account for the two different diameter-(lv − 1) regions of a given length-lv
subengine, gaps connected by l-bit flips in the intersections of those subengines, the number
of possible diameter-lv subengines of an N -site system, etc.
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Figure 7.2: Average per-cycle work as a function of tuning speed: We
numerically simulated 995 disorder realizations of the random-field Heisen-
berg Hamiltonian (6.33) for a system of N = 8 sites (red dots). The
results are compared to the analytical estimate (6.7) for the adiabatic
work output (blue line) and an empirical straight-line fit Wtot = W0 −
W1(vδ−)1/3/Wb (black line). Errors in the estimate of the mean, computed
as (sample standard deviation)/

√
(# realizations), lead to error bars smaller

than the numerical-data points.

fractional Landau-Zener transitions and APT transitions bound the cycle time

τcycle less stringently than thermalization with the cold bath; hence a more

detailed analysis of APT transitions would be gratuitous. Such an analysis

would rely on the general adiabatic perturbation theory of De Grandi and

Polkovnikov [46]; hence the moniker “APT transitions.”

7.2 Numerical simulations

We simulate the engine as in Ch. 6 (in particular Sec. 6.7)—with the exception

that now in the work strokes, strokes 1 and 3, Hsim(t) was tuned at finite speed

v. We numerically study the preclusion of communication between mesoscale

subengines (addressed analytically in Sec. 7.3) only insofar as these results fol-

low from diabatic corrections: Limitations on computational power restricted

the system size to 12 sites.

Computational limitations restricted the engine to 8 sites. (These simulations

quickly become slow to run because our upper bounds on v scale as powers of

〈δ〉 ∼ 2−N .)
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7.2.1 Simulating finite-time tuning

We simulate a stepwise tuning, taking

αt =
δt bt/δtc

T
. (7.10)

δt denotes a time-step size, and T ∝ hMBL−hGOE

v
denotes the time for which one

tuning stroke lasts. This protocol is more violent than the protocols treated

analytically: v is assumed to remain finite in the diabatic analytics. In the

numerics, we tune by sudden jumps (for reasons of numerical convenience).

We work at TH = ∞ and TC = 0—again, to capture the essential physics

without the complication of finite-temperature corrections.

To implement this stepwise tuning, we take

α(t) =
δt bt/δtc

T
, (7.11)

where δt denotes a time-step size and T ∝ (hMBL− hGOE)/v denotes the total

tuning time, and we compute a time-evolution unitary for the whole stroke by

chaining together the unitaries for each time step. For stroke 1,

U(τ, 0; v, δt) = e−iH(τ−δt)δte−iH(τ−2δt)δt . . . e−iH(0)δt , (7.12)

with the number of time steps set by the speed. We use the time step δt =

0.405 〈δ〉, but our results are not sensitive to time step’s size.

In judging the engine’s effectiveness at a finite v, we must estimate the level-

repulsion scale δ−. We do this by diagonalizing 106 disorder realizations at

the relevant disorder width, h = 20, for N = 8 sites. A histogram of the

gaps is plotted in Fig. 7.3. We then visually estimate the point at which the

distribution turns over. Our results are not sensitive to this value.

Figure 7.2 shows the average work output, 〈Wtot〉, as a function of v. Despite

the simulated protocol’s violence, both a fractional-Landau-Zener correction

Wfrac-LZ ∼ (vδ−)3, explained in Sec. 7.1.1, and a v-independent O(1) Landau-

Zener correction, explained in Sec. 7.1.2, are visible. We believe that the

adiabatic numerics (v = 0 red dot) differ from the analytics (blue line) due

to finite-size effects: For small systems away from the spectrum’s center, the

average gap estimated from the density of states can vary appreciably over one

gap. These numerics confirm the analytics and signal the MBL Otto engine’s

robustness with respect to changes in the tuning protocol.
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Figure 7.3: Level-spacing distribution for 106 disorder realizations of the
random-field Heisenberg model at disorder width h = 20 and system size
N = 8 (blue line). The vertical black line shows the estimate of the level-
repulsion parameter δ−.

7.2.2 Enlightenment from numerical methods

Sec. 7.2 discusses numerical simulations of a finite-speed MBL engine. We

simulate not the notionally smooth tuning of Sec. 6.2, but rather a stepwise

tuning with step size δt ' 0.405 〈δ〉−1.

Faithfully simulating the smooth-tuning protocol is substantially more difficult

than simulating the stepwise protocol. In either case, the tuning time grows

exponentially with system size, because it is set by (an estimate of) the smallest

gap. But in the stepwise protocol, we fix the step size in terms of the average

gap, so the step size grows with the the tuning time.

Faithfully simulating the smooth tuning protocol, on the other hand, requires

step size constant with system size. The highest frequency ωmax in the problem

is of order the many-body bandwidth ∼ 1
Q
N ∼ 1, and even with higher-order

methods we require step size δt ∼ ωmax: to see this heuristically, note that a

fourth-order polynomial can approximate at most two periods of a sine.

And yet the stepwise protocol with long timestep δt ' 0.405 〈δ〉−1 captures

the essential physics. Why is this? What about that physics is amenable to

capture by such a crude method2? A timestep δt = 0.405 〈δ〉−1 can capture

physics on energy scales smaller than δt−1 ' 2 〈δ〉. The results of Fig. 7.2 are

2Given our reliance on the numerics to catch persuasive but subtly incorrect arguments,
this could be could merely signal that we made a mistake that happened to line up with the
ways in which the stepwise protocol differs from the smooth protocol. But let us proceed
on the assumption that this is not the case.
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not sensitive to δt, suggesting that diabatic corrections occur on energy scales

small This is (weak) evidence for our implicit supposition in Sec. ss:diabatic-

correction that far-away levels (that is, levels that are not nearest in energy). It

is also evidence that the fractional Landau-Zener and Landau-Zener transitions

of Sec’s 7.1.1 and 7.1.2—which take place on an energy scale δ−—are indeed

the dominant contribution.

To claim this definitively would require a much more careful analysis of con-

vergence in δt than we have performed. Looking beyond convergence analysis,

this is a place where the well-developed methods of numerical solution of ODEs

may have physical insight to offer. In particular, adaptive stepsize methods

would directly probe the energy scale required to capture the system’s essen-

tial physics. The challenge in applying these methods would be constructing

a good quantitative measure of how accurately an individual step has been

approximated.

7.3 Precluding communication between subengines

To maintain the MBL engine’s advantage, we must approximately isolate

subengines. The subengines’ (near) independence implies a lower bound on

the tuning speed v: The price paid for scalability is the impossibility of adi-

abaticity. Suppose that Hmacro(t) were tuned infinitely slowly. Information

would have time to propagate from one subengine to every other. The slow

spread of information through MBL [109] lower-bounds v. This consideration,

however, does not turn out to be the most restrictive constraint on the cycle

time. Therefore, we address it only qualitatively.

As explained in Sec. 7.1.2, v determines the effective size of an MBL subengine.

Ideally, v is large enough to prevent adiabatic transitions between configura-

tions extended beyond the mesoscale N . For each stage of the engine’s oper-

ation, v should exceed the speed given in Eq. (7.7) for the localization length

ξ of a length-(N + 1) chain:

v � [δ−(N + 1, ξ)]2 ∼ E22−2(N+1)e−2(N+1)/ξ. (7.13)

(We have made explicit the dependence of the level-repulsion scale δ− on the

mesoscale-engine size N and on the localization length ξ.)

This scale quickly decays as the system is taken through stroke 1. This implies

that the speed should interpolate between [δ−(N + 1, ξ>)]2 and (Wb)3

δ−(N,ξ<)
[from

Ineq. (7.6)].
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7.4 Lower bound on the cycle time from cold thermalization

Thermalization with the cold bath (stroke 2) bounds τcycle more stringently

than the Hamiltonian tunings do. The reasons are (i) the slowness with which

MBL thermalizes and (ii) the restriction Wb � 〈δ〉 on the cold-bath band-

width. We elaborate after introducing our cold-thermalization model (see [238,

App. I] for details).

We envision the cold bath as a bosonic system that couples to the engine

locally, as via the Hamiltonian

Hint = g

∫ Wb/ξ>

−Wb/ξ>

dω

Nmacro∑

j=1

(
c†jcj+1 + h.c.

) (
bω + b†ω

)

× δ(〈0|cjHmacro(τ)c†j+1|0〉 − ω) . (7.14)

The coupling strength is denoted by g. cj and c†j denote the annihilation

and creation of a fermion at site j. Hmacro(t) denotes the Hamiltonian that

would govern the engine at time t in the bath’s absence. Cold thermalization

lasts from t = τ to t = τ ′ (Fig. 6.1). bω and b†ω represent the annihilation

and creation of a frequency-ω boson in the bath. The Dirac delta function is

denoted by δ(.).

The bath couples locally, e.g., to pairs of nearest-neighbor spins. This locality

prevents subengines from interacting with each other much through the bath.

The bath can, e.g., flip spin j upward while flipping spin j + 1 downward.

These flips likely change a subengine’s energy by an amount E. The bath can

effectively absorb only energy quanta of size ≤ Wb from any subengine. The

cap is set by the bath’s speed of sound [114], which follows from microscopic

parameters in the bath’s Hamiltonian [134]. The rest of the energy emitted

during the spin flips, |E − Wb|, is distributed across the subengine as the

intrinsic subengine Hamiltonian flips more spins.

Let τth denote the time required for stroke 2. We estimate τth from Fermi’s

Golden Rule,

Γfi =
2π

~
|〈f |V |i〉|2 µbath . (7.15)

Cold thermalization transitions the engine from an energy level |i〉 to a level

|f〉. The bath has a density of states µbath ∼ 1/Wb.

We estimate the matrix-element size |〈f |V |i〉| as follows. Cold thermaliza-
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tion transfers energy Eif ∼ Wb from the subengine to the bath. Wb is very

small. Hence the energy change rearranges particles across a large distance

L � ξ = ξ<, due to local level correlations. V nontrivially transforms just a

few subengine sites. Such a local operator rearranges particles across a large

distance L at a rate that scales as Ee−L/ξ 2−L ∼ δ−. Whereas E sets the scale

of the level repulsion δ−, g sets the scale of |〈f |V |i〉|. The correlation length

ξ = ξ< during cold thermalization. We approximate L with the subengine

length ξ>. Hence |〈f |V |i〉| ∼ gδ−
E .

We substitute into Eq. (7.15). The transition rate Γfi = 1
τth

. Inverting yields

τcycle ∼ τth ∼ Wb

( E
gδ−

)2

. (7.16)

To bound τcycle, we must bound the coupling g. The interaction is assumed

to be Markovian: Information leaked from the engine dissipates throughout

the bath quickly. Bath correlation functions must decay much more quickly

than the coupling transfers energy. If τbath denotes the correlation-decay time,

τbath < 1
g
. The small-bandwidth bath’s τbath ∼ 1/Wb, so g < Wb. This

inequality, with Ineq. (7.16), implies

τcycle = τth >
E2

Wb(δ−)2
∼ 10

E e2ξ>/ξ< 23ξ> . (7.17)

The final expression follows if Wb ∼ 〈δ〉
10

.

Like Markovianity, higher-order processes bound τth. Such processes transfer

energy E > Wb between the engine and the cold bath. Because they require

n ∼ E/Wb excitations in the bath, they will be suppressed by a factor∼ gE/Wb .

To understand these processes in more detail, write Htot = Hmacro(t)+Hbath +

Hint for the Hamiltonian that governs the engine-and-bath composite. Htot

generates the time-evolution operator U(t) := e−iHtott. Consider Taylor-expanding

U(t). The `th term is suppressed in g`, contains 2` fermion operators cj and

c†j′ , and contains ` boson operators bω and b†ω′ . This term encodes the absorp-

tion, by the bath, of ` energy quanta of sizes ≤ Wb. The subengine gives the

bath a total amount ∼ `Wb of heat. The subengine should not lose so much

heat. Hence higher-order processes should occur much more slowly than the
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rate-g processes:

τhigh−ord. � τth . (7.18)

Let us construct an expression for the left-hand side. Which processes most

urgently require suppressing? Processes that change the subengine’s energy

by & 〈δ〉. Figure 6.2 illustrates why. If the right-hand leg has length & 〈δ〉,
the right-hand leg could be longer than the left-hand leg. If it were, the trial

would yield net negative work, Wtot < 0. The bath would absorb energy 〈δ〉
from a subengine by absorbing ∼ 〈δ〉

Wb
packets of energy ∼ Wb each. Hence the

bath would appear to need to flip ∼ L = 〈δ〉
Wb

spins to absorb energy ∼ 〈δ〉. (We

switch from fermion language to spin language for convenience.) However, the

length-L spin subchain has a discrete effective energy spectrum. The spectrum

might lack a level associated with the amount (initial energy)− 〈δ〉 of energy.

If so, the bath must flip more than 〈δ〉
Wb

spins—local level correlations suggest

∼ ξ> spins. Hence L = max
{
〈δ〉
Wb
, ξ>

}
. Energy is rearranged across the

distance L at a rate ∝ gL.
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C h a p t e r 8

RACING THE MBL-MOBILE

In Chs 7, we analyzed the MBL engine mostly in terms of scaling properties.

But what are the constant factors in front of those scalings? In particular,

what would the power density of an experimental realization look like? And

how does our engine compare to other quantum Otto engines?

8.1 Comparisons with competitor Otto engines

We compare the MBL Otto engine to four competitors: a bandwidth engine,

a variant of the MBL engine that is tuned between two disorder strengths,

an engine of quantum dots, and an Anderson-localized engine. We argue

that the MBL Otto engine is more robust against perturbations than the

bandwidth, Anderson, and quantum-dot engines. We also argue that our MBL

engine is more reliable than the equal-disorder-strength engine: Our MBL

engine’s Wtot varies less from trial to trial and suppresses worst-case trials, in

which Wtot < 0. This paper’s arguments go through almost unchanged for an

Anderson-localized medium. Such a medium would lack robustness against

interactions, though: Even if the interactions do not delocalize the medium—

which would destroy the engine—they would turn the Anderson engine into

an MBL engine. One can view our MBL engine as an easy generalization of

the Anderson engine.

8.1.1 Comparison with bandwidth engine

Imagine eliminating the scaling factor Q(h(αt)) from the Hamiltonian (6.33).

The energy band is compressed and expanded as the disorder strength h(αt)

is ramped down and up. The whole band, rather than a gap, contracts

and widens as in Fig. 6.2, between a size ∼ ENmacro h(α0) and a size ∼
ENmacro h(α1)� ENmacro h(α0). The engine can remain in one phase through-

out the cycle. The cycle does not benefit from the “athermality” of local level

correlations.

Furthermore, this accordion-like motion requires no change of the energy eigen-

basis’s form. Tuning may proceed quantum-adiabatically: v ≈ 0. The ideal

engine suffers no diabatic jumps, losing 〈Wdiab〉macro = 0.
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But this engine is impractical: Consider any perturbation V that fails to com-

mute with the ideal Hamiltonian H(t): [V,H(t)] 6= 0. Stray fields, for example,

can taint an environment. As another example, consider cold atoms in an op-

tical lattice. The disorder strength is ideally Eh(αt). One can strengthen the

disorder by strengthening the lattice potential Ulattice. Similarly, one can raise

the hopping frequency (ideally E) by raising the pressure p. Strengthening

Ulattice and p while achieving the ideal disorder-to-hopping ratio Eh(αt)
E = h(αt)

requires fine control. If the ratio changes from h(αt), the Hamiltonian H(t)

acquires a perturbation V that fails to commute with other terms.

This V can cause diabatic jumps that cost work 〈Wdiab〉macro. Can the band-

width engine not withstand several hops—say, through 0.02Nmacro levels?

No, because the ground state pulls away from the rest of the spectrum as

Nmacro grows. Suppose, for simplicity, that TC = 0 and TH = ∞. The band-

width engine starts stroke 1 in ρ(0) = I/Nmacro. Diabatic hops preserve ρ(t)

during stroke 1, on average: The engine as likely hops upward as drops. Cold

thermalization drops the engine to the ground state (plus an exponentially

small dusting of higher-level states). The ground-state energy is generically

extensive. Hence the engine absorbs 〈Q2〉macro ∼ −Nmacro, on average. Sup-

pose that, during stroke 3, the engine jumps up through 2% of the levels.

The engine ends about two standard deviations below the spectrum’s cen-

ter, with average energy ∼ √Nmacro. While returning to TH = 0 during the

average stroke 4, the bandwidth engine absorbs 〈Q4〉macro ∼
√
Nmacro. The av-

erage outputted work 〈Wtot〉macro = 〈Q4〉macro + 〈Q2〉macro ∼
√
Nmacro−Nmacro.

As Nmacro grows, 〈Wtot〉macro dips farther below zero. A few diabatic jumps

threaten the bandwidth engine’s ability to output 〈Wtot〉 > 0.

The bandwidth engine’s v must decline as Nmacro grows also because the typical

whole-system gap 〈δ〉macro ∼ E
Nmacro

shrinks. The smaller the gaps, the greater

the likelihood that a given v induces hops. As 〈δ〉macro → 0, v must → 0. The

MBL Otto cycle proceeds more quickly, due to subengines’ parallelization.

8.1.2 Comparison with MBL engine tuned between same-strength

disorder realizations

Take our MBL Otto cycle, and vary not the disorder strength, but the disorder

realization during each cycle. The disorder strength h(αt) in Eq. (6.33) would

remain � 1 and constant in t, while the random variables hj would change.

Let S̃ denote this constant-h(αt) engine, and let S denote the MBL engine.
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S̃ takes less advantage of MBL’s “athermality,” as S̃ is not tuned between

level-repelling and level-repulsion-free regimes.

Yet S̃ outputs the amount 〈Wtot〉 of work outputted by S per cycle, on average.

Because Wb is small, cold thermalization drops S̃ across only small gaps δ′ �
〈δ〉. S̃ traverses a trapezoid, as in Fig. 6.2, in each trial. However, the MBL

engine has two advantages: greater reliability and fewer worst-case (negative-

work-outputted) trials.

Both the left-hand gap δ and the right-hand gap δ′ traversed by S̃ are Poisson-

distributed. Poisson-distributed gaps more likely assume extreme values than

GOE-distributed gaps: P
(E)
MBL(δ) > P

(E)
GOE(δ) if δ ∼ 0 or δ � 〈δ〉 [44]. The

left-hand gap δ traversed by S is GOE-distributed. Hence the Wtot outputted

by S̃ more likely assumes extreme values than the Wtot outputted by S. The

greater reliability of S may suit S better to “one-shot statistical mechanics” [8,

25, 42, 43, 52, 55, 74, 75, 83, 91, 97, 210]. In one-shot theory, predictability of

the work Wtot extractable in any given trial serves as a resource.

Additionally, S suffers fewer worst-case trials than S̃. We define as worst-case

a trial in which the engine outputs net negative work, Wtot < 0. Consider

again Fig. 6.2. Consider a similar figure that depicts the trapezoid traversed

by S̃ in some trial. The left-hand gap, δ, is distributed as the right-hand gap,

δ′, is, according to P
(E)
MBL(δ). Hence δ has a decent chance of being smaller

than δ′: δ < δ′. S̃ would output Wtot < 0 in such a trial.

Suppose, for simplicity, that TH = ∞ and TC = 0. The probability that any

given S trial outputs Wtot < 0 is

pworst ≈ (Prob. that the left-hand gap < the right-hand gap) (8.1)

× (Prob. that the right-hand gap is small enough to be cold-thermalized)

≈ (Prob. that the left-hand gap < Wb)× Wb

〈δ〉 . (8.2)

The initial factor is modeled by the area of a region under the P
(E)
GOE(δ) curve.

The region stretches from δ = 0 to δ = Wb. We approximate the region as a

triangle of length Wb and height π
2
Wb

〈δ〉2 e
−π

4
(Wb)2/〈δ〉2 ∼ Wb

〈δ〉2 , [δ ≈ Wb, Eq. (5.2),

and Wb

〈δ〉 � 1]. The triangle has an area of 1
2
·Wb · π2 Wb

〈δ〉2 ∼
(
Wb

〈δ〉

)2

. Substituting
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into Eq. (8.2) yields

pworst ∼
(
Wb

〈δ〉

)3

. (8.3)

Let p̃worst denote the probability that any given S̃ trial outputs Wtot < 0. p̃worst

shares the form of Eq. (8.2). The initial factor approximates to the area of a

region under the P
(E)
MBL(δ) curve. The region extends from δ = 0 to δ = Wb.

The region resembles a rectangle of height P
(E)
MBL(0) ≈ 1

〈δ〉 . Combining the

rectangle’s area, Wb

〈δ〉 , with Eq. (8.2) yields

p̃worst ∼
(
Wb

〈δ〉

)2

. (8.4)

Since Wb

〈δ〉 � 1, pworst � p̃worst .
1

8.1.3 Quantum-dot engine

MBL has been modeled with quasilocal bits [34, 93]. A string of ideally inde-

pendent bits or qubits, such as quantum dots, forms a natural competitor. A

qubit Otto engine’s gap is shrunk, widened, and shrunk [11, 61, 67, 68, 88]. In

addition to the order-of-magnitude analysis below, we make two points about

implementations’ practicality. First, the MBL potential’s generic nature offers

an advantage. MBL requires a random disorder potential {h(αt)hj}, e.g., a

“dirty sample,” a defect-riddled crystal. This “generic” potential contrasts

with the pristine background required by quantum dots. Imposing random

MBL disorder is expected to be simpler. On the other hand, a quantum-dot

engine does not necessarily need a small-bandwidth cold bath, Wb � 〈δ〉.

8.1.4 Anderson-localized engine

Anderson localization follows from removing the interactions from MBL. One

could implement our Otto cycle with an Anderson insulator because Anderson

Hamiltonians exhibit Poissonian level statistics (5.1). But strokes 1 and 3

would require the switching off and on of interactions. Tuning the interaction,

as well as the disorder-to-interaction ratio, requires more effort than tuning

just the latter.

1The discrepancy is exaggerated if the exponent in Eq. (8.3) rises, if the left-hand S
Hamiltonian is modeled with a Gaussian ensemble other than the GOE. The Gaussian
unitary ensemble (GUE) contains an exponent of 4; the Gaussian symplectic ensemble
(GSE), an exponent of 6. Different ensembles model different symmetries.
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Also, particles typically interact in many-body systems. MBL particles in-

teract; Anderson-localized particles do not. Hence one might eventually ex-

pect less difficulty in engineering MBL engines than in engineering Anderson-

localized engines.

8.2 Order-of-magnitude estimates

Localized engine: Localization has been achieved in solid-state systems.2

Consider silicon doped with phosphorus [124]. A distance of ∼ 10 nm may

separate phosphorus impurities. Let our engine cycle’s shallowly localized

regime have a localization length of ξ> ∼ 10 sites, or 100 nm. The work-

outputting degrees of freedom will be electronic. The localized states will

correspond to energies E ∼ 1 eV. Each subengine’s half-filling Hilbert space

has dimensionality N =
(

10
5

)
∼ 102. Hence each subengine has an effective

average gap 〈δ〉 ∼ E
√
N
N ∼ 1 eV

102 ∼ 10 meV. The cold-bath bandwidth must

satisfy 〈δ〉 � Wb .We setWb to be an order of magnitude down from 〈δ〉: Wb ∼
1 meV ∼ 10 K. The cold-bath bandwidth approximates the work outputted

by one subengine per cycle:3 〈Wtot〉 ∼ Wb ∼ 1 meV [Eq. (6.7)].

What volume does a localized subengine fill? Suppose that the engine is three-

dimensional (3D).4 A little room should separate the subengines. Classical-

control equipment requires more room. Also, the subengine needs space to

connect to the baths. We therefore associate each subengine with a volume of

V ≈ (100 nm)3.

The last element needed is the cycle time, τcycle. We choose for δ− to be a little

smaller than Wb—of the same order: δ− ∼ Wb ∼ 1 meV. In the extreme case

allowed by Ineq. (7.17), τcycle ∼ ~E2

Wb(δ−)2 ∼ ~E2

(Wb)3 ∼ (10−15 eV s)(1 eV)2

(1 meV)3 ∼ 1 µs.

The localized engine therefore operates with a power P ∼ Wb

τcycle
∼ 1 meV

1 µs
≈

10−16 W. Interestingly, this P is one order of magnitude greater than a flagellar

motor’s [27] power, according to our estimates.

2This localization is single-particle, or Anderson [12], rather than many-body. Sec. 8.1.4
extends the MBL Otto engine to an Anderson-localized Otto engine.

3The use of semiconductors would require corrections to our results. (Dipolar interac-
tions would couple the impurities’ spins. Energy eigenfunctions would decay as power laws
with distance.) But we aim for just a rough estimate.

4Until now, we have supposed that the engine is 1D. Anderson localization, which has
been realized in semiconductors, exists in all dimensionalities. Yet whether MBL exists in
dimensionalities D > 1 remains an open question. Some evidence suggests that MBL exists
in D ≥ 2 [24, 37, 125]. But attributing a 3D volume to the engine facilitates comparisons
with competitors. We imagine 10-nm-long 1D strings of sites. Strings are arrayed in a plane,
separated by 10 nm. Planes are stacked atop each other, separated by another 10 nm.
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We can assess the engine by calculating not only its power, but also its power

density. The localized engine packs a punch at P
V
∼ 10−16 W

(10−7 m)3 = 100 kW/m3.

Car engine: The quintessential Otto engine powers cars. A typical car

engine outputs P ∼ 100 horsepower ∼ 100 kW . A car’s power density is
P
V
∼ 100 kW

100 L
= 1 MW/ m3 (wherein L represents liters). The car engine’s P

V

exceeds the MBL engine’s by only an order of magnitude, according to these

rough estimates.

Array of quantum dots: MBL has been modeled with quasilocal bits [34,

93]. A string of ideally independent bits or qubits, such as quantum dots,

forms a natural competitor. A qubit Otto engine’s gap is shrunk, widened,

and shrunk [11, 61, 67, 68, 88].

A realization could consist of double quantum dots [165, 166]. The scales

in [165, 166] suggest that a quantum-dot engine could output an amount

Wtot ∼ 10 meV of work per cycle per dot. We approximate the cycle time τcycle

with the spin relaxation time: τcycle ∼ 1 µs. (The energy eigenbasis need not

rotate, unlike for the MBL engine. Hence diabatic hops do not lower-bound the

ideal-quantum-dot τcycle.) The power would be P ∼ Wtot

τcycle
∼ 10 meV

1 µs
∼ 10−15 W.

The quantum-dot engine’s power exceeds the MBL engine’s by an order of

magnitude.

However, the quantum dots must be separated widely. Otherwise, they will

interact, as an ETH system. (See [122] for disadvantages of interactions in

another quantum thermal machine. Spin-spin couplings cause “quantum fric-

tion,” limiting the temperatures to which a refrigerator can cool.) We com-

pensate by attributing a volume V ∼ (1 µm)3 to each dot. The power density

becomes P
V
∼ 1 kW/m3, two orders of magnitude less than the localized en-

gine’s. Localization naturally implies near independence of the subengines.

8.3 Outlook

The realization of thermodynamic cycles with quantum many-body systems

was proposed very recently [32, 62, 99, 130, 149, 153, 164, 211]. MBL offers

a natural platform, due to its “athermality” and to athermality’s resourceful-

ness in thermodynamics. We designed an Otto engine that benefits from the

discrepancy between many-body-localized and “thermal” level statistics. The

engine illustrates how MBL can be used for thermodynamic advantage.

Realizing the engine may provide a near-term challenge for existing exper-

imental set-ups. Possible platforms include cold atoms [24, 37, 120, 148,
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188]; nitrogen-vacancy centers [125]; ion traps [198]; and doped semiconduc-

tors [124], for which we provided order-of-magnitude estimates. Realizations

will require platform-dependent corrections due to, e.g., variable-range hop-

ping induced by particle-phonon interactions. As another example, semicon-

ductors’ impurities suffer from dipolar interactions. The interactions extend

particles’ wave functions from decaying exponentially across space to decaying

as power laws.

Reversing the engine may pump heat from the cold bath to the hot, lowering

the cold bath’s temperature. Low temperatures facilitate quantum computa-

tion and low-temperature experiments. An MBL engine cycle might therefore

facilitate state preparation and coherence preservation in quantum many-body

experiments: A quantum many-body engine would cool quantum many-body

systems.

We have defined as work the energy outputted during Hamiltonian tunings.

Some battery must store this energy. We have refrained from specifying the

battery’s physical form, using an implicit battery model. An equivalent ex-

plicit battery model could depend on the experimental platform. Quantum-

thermodynamics batteries have been modeled abstractly with ladder-like Hamil-

tonians [197]. An oscillator battery for our engine could manifest as the mode

of an electromagnetic field in cavity quantum electrodynamics.

MBL is expected to have thermodynamic applications beyond this Otto engine.

A localized ratchet, for example, could leverage information to transform heat

into work. Additionally, the paucity of transport in MBL may have technolog-

ical applications beyond thermodynamics. Dielectrics, for example, prevent

particles from flowing in undesirable directions. But dielectrics break down in

strong fields. To survive, a dielectric must insulate well—as does MBL.

In addition to suggesting applications of MBL, this work identifies an op-

portunity within quantum thermodynamics. Athermal quantum states (e.g.,

ρ 6= e−H/T/Z) are usually regarded as resources in quantum thermodynam-

ics [26, 43, 50, 69, 75, 77, 83, 91, 98, 140, 141, 229, 236, 237]. Not only athermal

states, we have argued, but also athermal energy-level statistics, offer thermo-

dynamic advantages. Generalizing the quantum-thermodynamics definition

of “resource” may expand the set of goals that thermodynamic agents can

achieve.

Optimization offers another theoretical opportunity. We have shown that the

engine works, but better protocols could be designed. For example, we pre-
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scribe nearly quantum-adiabatic tunings. Shortcuts to adiabaticity (STA)

avoid both diabatic transitions and exponentially slow tunings [2, 35, 51,

53, 122, 209]. STA have been used to reduce other quantum engines’ cycle

times [2, 51, 53]. STA might be applied to the many-body Otto cycle, after

being incorporated into MBL generally.
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trix Product Operators for the Steady State of Dissipative Quantum
Systems. Physical Review Letters, 114(22):220601, June 2015.

[42] Oscar C. O. Dahlsten. Non-equilibrium statistical mechanics inspired by
modern information theory. Entropy, 15(12):5346, 2013.

[43] Oscar C. O. Dahlsten, Renato Renner, Elisabeth Rieper, and Vlatko Ve-
dral. Inadequacy of von Neumann entropy for characterizing extractable
work. New J. Phys., 13(5):053015–1–053015–10, 2011.

[44] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol.
From Quantum Chaos and Eigenstate Thermalization to Statistical Me-
chanics and Thermodynamics. Adv. Phys., 65(3):239–362, May 2016.

[45] Luca D’Alessio and Marcos Rigol. Long-time behavior of isolated peri-
odically driven interacting lattice systems. Phys. Rev. X, 4:041048, Dec
2014.

[46] C. De Grandi and A. Polkovnikov. Adiabatic Perturbation Theory:
From Landau-Zener Problem to Quenching Through a Quantum Critical
Point. In A. K. K. Chandra, A. Das, and B. K. K. Chakrabarti, editors,



156

Lecture Notes in Physics, Berlin Springer Verlag, volume 802 of Lecture
Notes in Physics, Berlin Springer Verlag, page 75, 2010.

[47] Andrea De Luca and Alberto Rosso. Dynamic nuclear polarization and
the paradox of quantum thermalization. Phys. Rev. Lett., 115:080401,
Aug 2015.

[48] Wojciech De Roeck, Francois Huveneers, Markus Müller, and Mauro
Schiulaz. Absence of many-body mobility edges. Phys. Rev. B,
93:014203, Jan 2016.

[49] Wojciech De Roeck and François Huveneers. Stability and instability
towards delocalization in MBL systems. Physical Review B, 95(15), April
2017. arXiv: 1608.01815.

[50] Sebastian Deffner, Juan Pablo Paz, and Wojciech H. Zurek. Quantum
work and the thermodynamic cost of quantum measurements. Phys.
Rev. E, 94:010103, Jul 2016.

[51] A. del Campo, J. Goold, and M. Paternostro. More bang for your buck:
Towards super-adiabatic quantum engines. Scientific Reports, 4, 2014.
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[151] Ugo Marzolino and Tomaž Prosen. Computational complexity of
nonequilibrium steady states of quantum spin chains. Physical Review
A, 93(3):032306, March 2016.

[152] Eduardo Mascarenhas, Hugo Flayac, and Vincenzo Savona. Matrix-
product-operator approach to the nonequilibrium steady state of driven-
dissipative quantum arrays. Phys. Rev. A, 92:022116, Aug 2015.

[153] Ranjan Modak and Marcos Rigol. Work extraction in an isolated quan-
tum lattice system: Grand canonical and generalized gibbs ensemble
predictions. Phys. Rev. E, 95:062145, Jun 2017.

[154] Andras Molnar, Norbert Schuch, Frank Verstraete, and J. Ignacio Cirac.
Approximating gibbs states of local hamiltonians efficiently with pro-
jected entangled pair states. Phys. Rev. B, 91:045138, Jan 2015.

[155] Takashi Mori, Tomotaka Kuwahara, and Keiji Saito. Rigorous bound on
energy absorption and generic relaxation in periodically driven quantum
systems. Phys. Rev. Lett., 116:120401, Mar 2016.

[156] Subroto Mukerjee, Vadim Oganesyan, and David Huse. Statistical the-
ory of transport by strongly interacting lattice fermions. Phys. Rev. B,
73:035113, Jan 2006.

[157] Alexander Müller-Hermes, J Ignacio Cirac, and Mari Carmen Bañuls.
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[177] Tomaž Prosen and Marko Žnidarič. Diffusive high-temperature trans-
port in the one-dimensional Hubbard model. Physical Review B,
86(12):125118, September 2012.
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