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ABSTRACT

Gravitational waves, first predicted by Einstein in 1916, eluded detection for nearly a
century. These faint ripples in the fabric of spacetime, with typical strain amplitudes
at the Earth on the order of |h| ~ 10722, carry secrets of the universe untold
by electromagnetic radiation. Following decades of research and development, a
network of terrestrial interferometric detectors succeeded in measuring the passing
of a gravitational wave (GW150914) for the first time in 2015. Individual detectors
within this network are currently said to be operating in a “second-generation”
configuration; over the next decade, planned upgrades will take these detectors
beyond this into a new generation. This thesis concerns the characterization and
reduction of noise in one of these second-generation detectors, Advanced LIGO, as

well as efforts underway to improve its sensitivity in the coming years.

The first part of this thesis is a detailed overview of gravitational waves, the history of
gravitational wave detection, and a reasonably thorough description of the Advanced
LIGO detector. Particular attention is paid to a pedagogical motivation of the optical
configuration of Advanced LIGO with reference to its forebears. This part ends with
an overview of the sources of noise limiting the sensitivity of Advanced LIGO, and

an exposition of plans to reduce their influence in the future.

The second part describes the development of a laser gyroscope for use in tilt sensing
in Advanced LIGO, starting with a motivation of the work based on limitations in

the area of seismic noise sensing and cancellation.

The third part recounts the design, fabrication, testing, installation and commission-
ing of an important component of the Advanced LIGO detector: the output mode
cleaner (OMCO).

The fourth part outlines a proposed scheme for reduction of quantum noise in
gravitational wave detectors and other experiments. In particular, this scheme
allows for the operation of a so-called “optical spring” cavity in such a way as to be

largely immune from the deleterious effects of quantum radiation pressure noise.

The fifth and final part describes progress towards a direct measurement of thermal
noise in thin silicon ribbons, which is pertinent to the design of suspensions in future

cryogenic gravitational wave detectors.

This thesis has the internal LIGO document number P1900035.


https://www.gw-openscience.org/events/GW150914/
https://dcc.ligo.org/LIGO-P1900035
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Part I

Background and Theory



Chapter 1
GRAVITATIONAL WAVES

1.1 Basic gravitational wave theory

Here, I will give a very brief summary of general relativity and gravitational waves.

1.1.1 General relativity

Gravity, a fundamental force of nature, is currently best understood using Einstein’s
theory of general relativity (GR) [1]. In contrast to the earlier Newtonian theory,
which treated the force of gravity as an instantaneous attractive interaction between
any two massive objects, general relativity describes the phenomenon as arising from
the interaction of matter and energy with the continuum of spacetime. Specifically,
the presence of matter or energy induces a local curvature in the spacetime manifold,

which in turn affects the trajectories of objects through it.!

In this way, the effect of gravity can be understood as a purely geometrical one: ob-
jects under the sole influence of gravity must travel along an extremal 4-dimensional
(4-D) path—known as a geodesic—that is determined everywhere by the local

spacetime curvature.

General relativity is therefore a field theory of gravity, governed by the Einstein
field equation?:

8nG

G”V = 7Tﬂy. (11)

On the right-hand side of this equation, G is Newton’s gravitational constant, c is the
speed of light in vacuum, and 7),,, known as the stress-energy tensor, represents
matter and energy present in a region of spacetime. The quantity on the left-
hand side, G, is called the Einstein tensor, and it encapsulates the curvature of

spacetime. More concretely, the Einstein tensor is constructed as
1
Guy = Ry — Eg‘”R' (1.2)

Here, the quantities R,, and R, known as the Ricci tensor and the Ricci scalar,

respectively, are both derived by contraction of a higher-rank tensor, R” . > termed

Tn the words of Misner, et al. [2], “spacetime tells matter how to move; matter tells spacetime
how to curve.”

2This equation and ones that follow in this chapter contain tensors. The reader should be familiar
with tensor notation and the Einstein summation convention.



the Riemann curvature tensor:

R, = R* (1.3)
R = RY,. (1.4)

The quantity g,,,, called the metric tensor (or simply “the metric”), directly encodes
the geometry of spacetime and appears in GR whenever this geometry is invoked.
For example, the metric is used when calculating tensor contractions (e.g., R =

R4 1 = 8" Ryy)?. Ttis also used in the definition of the Riemann curvature tensor,

0 0

0 _ Y
Kow =gl e~ 5w

[ +T7 T =TF T (1.5)

via the Christoffel symbols:

Y -

1 3g (?g v 6g v
A _ Z Ap PH P H
M =-g ( o ). (1.6)

Most pointedly, the metric determines the spacetime interval (or line element),
ds® = guvxtx”, (1.7)

which generalizes the concept of distance in three dimensions to 4-D. By extremizing
an action defined as the length of a curve in spacetime (i.e., S = f ds), one arrives
at the geodesic equation:

d2xH L dx? dx“
dr? PT dr dr

=0, (1.8)
where the proper time 7 is defined with respect to the spacetime interval as
dr? = —ds* . (1.9)

1.1.2 Gravitational waves
In regions far from any matter or energy, we have T, ~ 0. Here, defining the

Minkowski metric that describes flat spacetime,

-1 000
0 1 00O

N = 0 01 ol (1.10)
0 0 0 1

3The quantity g** found here is known as the inverse metric tensor and is defined through the
equation ghtg,, = &%, where 6! is the Kronecker delta.



we can write
Suv :n#y+hﬂv (1.11)

and treat spacetime as flat, save for a small perturbation #,,, called the spacetime
strain. In this regime, known as the weak-field limit, one can search for solutions

to a wave equation in /4, of the form [2]

1 62
2 _
(V -3 _aﬂ) By = 0. (1.12)

After appropriate gauge fixing#, a solution to this equation can be found of the form

0 O 0 O
0 hy hx O
h,(t,2) = cos |w r—2), 1.13
wt =0 [waw (£ - 2)] (1.13)
0 O 0 O

where the orthogonal polarization amplitudes /. and Ay are known as “h-plus” and
“h-cross”, respectively. This equation describes a gravitational wave of angular

frequency wgw traveling in the +Z direction.

Using (1.7), (1.11) and the form of %, we can see that, atz, z = 0 in the presence of

this perturbation, the line element becomes
ds? = —c?dr* + (1 + hy) dx® + (1 = hy) dy? + 2hy dxdy + dz? . (1.14)

Apparently, spacetime has been stretched in the X direction and compressed in the
direction by the factor V1 + A, =~ (1 + %). Due to the oscillatory nature of (1.13),
it is clear that the opposite will be true at a GW phase shift of 7 from this point. The
orthogonal polarization amplitude /iy has the identical effect, only along the lines
y =xand y = —x, as can be confirmed by a coordinate rotation of 45° about the z
axis. These polarizations can be combined with an arbitrary phase shift to produce
more complicated waveforms (e.g., “circularly polarized” GWs, etc.). A diagram

of these modes can be found in Fig. 1.1.

1.1.2.1 GW sources and amplitudes

Gravitational waves are generated by any object with a fluctuating quadrupole

7®

moment. Given a source object A with quadrupole moment 1,

the spacetime

“The choice of gauge used here, called the transverse traceless (TT) gauge, assigns fixed
coordinates to objects traveling along spacetime geodesics (i.e., objects that are “freely falling”).



Figure 1.1: The two orthogonal gravitational wave polarization modes, 4 and Ay,
as a function of phase. It should be easy visualize the “circular polarization” that
results from a combination of these two with a phase shift of /2.

strain caused by A evaluated a distance r away is given by [3]

2G ..
W) (r,1) = Fl}f?(r -1, (1.15)

where the dots denote time derivatives.

How large are gravitational waves? By definition, the strain amplitudes are far
smaller than unity (h = |h,,| < 1), but by how much? As I’ll show in more detail
in Sec. 1.2.1, we can use (1.15) to estimate the amplitude of a GW reaching the
earth from some hypothetical source. For instance, a binary star system located 30
Mpc away, whose constituents are two solar-mass neutron stars orbiting one another
nearly close enough to touch (on the order of 10 km), would produce a peak strain
on earth of & ~ 107211 Due to their extreme faintness, then, GWs from all but the

most violent events in the universe bear no hope of being detected here on earth.
Gravitational wave sources can be roughly divided into four categories:
* Continuous: Steady sinusoidal signals produced by individual rotating mas-
sive objects (e.g., a neutron star with a mountain on its surface).

* Compact Binary Inspiral: Quasi-sinusoidal signals produced by binary

systems of dense objects like neutron stars and black holes.
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* Burst: Brief, wideband signals theoretically emitted by some energetic ob-

jects like supernovae.

» Stochastic: Cosmic background produced by phase changes in the early

universe.

To date, all GW detections have been in the compact binary inspiral category.

1.2 History of detection science

Even as he first predicted them, Einstein was already thinking about the possibility
of detecting gravitational waves [4]. Given how hard they would be to measure,
however, he himself had little confidence we would ever do so. It took a number of
years for the scientific community to reach a consensus that the GWs were real and

produced an observable effect [5].

1.2.1 First estimates: Hertz-type experiment

In 1879, the Berlin Academy of Sciences offered a prize to anyone who could prove
experimentally the relationship between electromagnetic forces and the dielectric
polarization of insulators. Heinrich Hertz pursued this prize at the insistence of
his mentor, Hermann von Helmholtz [6]. In a series of experiments throughout the
1880s, Hertz built scientific apparatuses to generate electromagnetic waves and then
detect them, all within the same laboratory. In doing so, he experimentally confirmed

many of James Clerk Maxwell’s theoretical predictions on electromagnetism.

Given the clear parallels, one might ask if it is possible to perform the analogous
experiment with GWs. For example, if we took a barbell-like object with heavy
masses on either end and then rotated it rapidly, what would be the magnitude of
the GWs generated? Following the analysis in [3], we can use (1.15) to answer that

question.

The quadrupole moment is defined as

Iy = f(xﬂxv — 18, p(r)dv . (1.16)

If we assume our radiator is a barbell of point mass M on each side, separated by

a distance d and rotating about its center of mass at a frequency fo in the x — y



plane, this gives3:

Mad?
Iy = 5 [0052 2r frot) — %] (1.17)
Md?* |
Ly = = [sin” 27 frat) — 4] (1.18)
Md? ,
Iy =1, = — c0S (27 froet) sin (27 frot)- (1.19)
Therefore, using (1.15):
8 2G Md2 2
h= ] ~ — = (1.20)
C Z

where z is the distance from the x — y plane at which we make our detection. Let’s
say we could manage to make a device with M = 1000 kg, d = 1 m, and fio = 1
kHz. That would give

1
h~6.5x 1073 x (—m) . (1.21)
Z
As if that weren’t bad enough, in order to distinguish a GW from near-field effects,
we would need to be far from the source in the wave zone (i.e., 7 = Agw = %).
Even at the nearer edge with z = Agw = 300 km, this gives
Bpest ~ 2% 1077, (1.22)

which is very, very small.

1.2.2 Early detection attempts: Weber’s resonant bars

As it was clear that the only gravitational waves we would stand a chance of detecting
would be astrophysical in origin, experimenters started devising apparatuses to make
such ameasurement. In the 1960s, Joseph Weber began searching for GW's with large
aluminum cylinders [7], which he realized could be used as mechanical resonant

amplifiers.

To understand how bar detectors work, it helps to introduce the concept of treating
a GW as a tidal force acting on the detector system. Imagine two free point masses
of mass M separated in space by a distance L. If a GW were to act on these
masses with strain amplitude 4 (7) along the line between them, then—relative to the
midpoint between them—an experimenter would see that each object is displaced

by a distance
L h(t)

xgw (1) = 275 - (1.23)

5The z components of 1, either vanish or are constant, and therefore do not contribute to GW
generation.
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Given this displacement response, one can write down an apparent gravitational
wave force of magnitude
ML .

|Fow| = Mg = —=h (124)

acting on each object.

Even though the calculation above is done for two free masses, it would still be valid
to use Fgw to describe the passing GW even if we were to connect the two masses
using a spring. In that case, we would expect the system’s response to GWs, x/h, to
be augmented by the resonant mechanical response of the system to external forces.
In fact, this force approach can be used to calculate the effect of a passing GW on
an arbitrarily constructed distribution of mass®. Taking advantage of this effect,
one can use high-quality mechanical resonators as bells, ringing at their resonant

frequencies when acted upon even by the paltry force of a gravitational wave.

Weber experimented with bar detectors for many years, and though he claimed to
have made GW observations, they were never corroborated by other researchers [8].
Nevertheless, he is credited with sparking interest in the field of gravitational wave

detection, and bar detectors were still in use many decades later [9].

1.2.3 Astronomical observations

Several attempts have been made to observe the effects of gravitational waves by

studying the motion of objects and other phenomena in the sky.

1.2.3.1 The Hulse-Taylor binary

As a form of radiation, gravitational waves carry energy. Therefore, as an astro-
physical system emits GWs, it must lose the energy carried away. In the case of a
binary star system, this loss of energy translates into an orbital decay, or the gradual

inspiral of each constituent towards the system’s barycenter.

In the 1979, Hulse and Taylor described [10] a binary star system (PSR B1913+16)
with a pulsar as one constituent star. By measuring the doppler shift of the pulsar
emissions due to the binary orbit, they were able to accurately track the orbital
period of the system. In doing so, they observed that it was spinning down at a rate

consistent with that predicted by GR via gravitational radiation.

This discovery earned Hulse and Taylor the 1993 Nobel Prize in Physics and cat-

alyzed a strong scientific pursuit of a direct detection.

®This tidal force formalism is valid in the long-wave limit (i.e., L < Agw).



1.2.3.2 CMB polarization

According to the theory of inflation, the universe experienced a period of rapid
expansion shortly after its inception at the big bang. As it expanded, it carried
with it quantum fluctuations that were present at its previous tiny scales. Once the
universe had expanded and cooled enough to transmit light, photons encoded with
these fluctuations were emitted in all directions. These photons, constituting the
cosmic microwave background (CMB), are perceptible from all angles on the sky,

and provide deep insight into the history of the universe.

In studying the anisotropy of the CMB, experts make a distinction between curl-free
“E-modes” and divergence-free “B-modes.” While many fields can be responsible
for the former, the latter can only be accounted for by interaction with primordial
gravitational waves. Therefore, some researchers endeavor to detect the effect of

gravitational waves by searching for B-mode anisotropy in the CMB [11].

1.2.3.3 Timing arrays

In the 1970s, some realized [12, 13] that low-frequency gravitational waves could
be detected by precise timing of known pulsars in the sky. By observing the minute
variations in the apparent arrival of pulsar emissions from multiple stars, their
relative velocities with respect to earth could be tracked. In doing so, one could

observe the effect of a gravitational wave passing through the intervening space.

Around the same time, it was suggested that this method could be applied to man-

made spacecraft, as well [14].

1.2.4 Laser interferometers
The following is a ridiculously brief history of interferometric gravitational wave

detectors. For an excellent review of the field, see [15].

1.2.4.1 First generation

In 1972, Rainer Weiss proposed using a Michelson interferometer to search for grav-
itational waves [16]. Roughly 20 years later, following a major multi-national re-
search, development and prototyping effort, the Laser Interferometer Gravitational-
wave Observatory (LIGO) was born [17].

By the mid-2000s, the twin LIGO observatories in Hanford, WA and Livingston,
LA were operating at the design sensitivity of their first incarnation, termed Initial
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LIGO (iLIGO) [18]. These first-generation detectors reached a peak strain sensitiv-
ity of about 2 x 10723 1/4/Hz near 100 Hz, and—along with a network of partnering
detectors worldwide [19-21]—proved the principle of interferometric gravitational

wave detection.

While a second-generation detector had been planned for LIGO from the start, it was
decided during iLIGO to install an incremental upgrade known as Enhanced LIGO
(eLIGO) [22]. This upgrade, which included a more powerful laser and a novel
GW signal readout scheme, resulted in a modest strain sensitivity improvement of

roughly a factor of two over most of the operational frequency band.

1.2.4.2 Second generation

In late 2010, the LIGO detectors went down and began installation of their second
incarnation, Advanced LIGO (aLIGO) [23]. This major upgrade included a com-
pletely new, much-higher-power laser source, a new multi-stage seismic isolation
system, an exquisitely more complicated multi-stage test mass suspension including
much larger mirrors, a modified interferometer topology, new sensors and actuators,
and a host of additional auxiliary control systems. As a result of these improve-
ments, aLIGO will eventually have a strain sensitivity nearly ten times better than
that of iLIGO.

On September 14, 2015, while operating in an “engineering run” prior to its first true
observational run, aLLIGO made the world’s first direct detection of a gravitational
wave [24]. This detection, christened GW150914, was a loud (SNR ~ 24) event
caused by the merger of two relatively massive black holes. For this achievement,
the 2017 Nobel Prize in Physics was awarded to LIGO pioneers Kip Thorne, Rainer
Weiss, and Barry Barish.

Since that initial detection and up to the date of this publication, LIGO and its
partners have detected ten subsequent GW events [25], including one from a binary
neutron star coalescence [26] that was paired with electromagnetic observations in

a major breakthrough for multi-messenger astronomy.

Advanced LIGO continues to improve its sensitivity and is scheduled to meet design

specifications within the next few years [27].
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Chapter 2

STATE OF THE ART: ADVANCED LIGO

This chapter contains a detailed look at the Advanced LIGO detector, divided into
three parts. In Sec. 2.1, I give a thorough description of the interferometer, including
the optical configuration and the control strategy. Sec. 2.2 contains an overview of
the various noise sources that conspire to limit the sensitivity of aLIGO. Finally,
in Sec. 2.3, I give a brief synopsis of the path forward for improving alLIGO and
terrestrial GW detectors in general, which will motivate the main work of this thesis
in Part V.

2.1 Description of the instrument
Advanced LIGO is a complicated machine. This section gives a detailed description
of the aLLIGO optical configuration, as well as the control strategy needed to make

it work.
2.1.1 Optical configuration

2.1.1.1 The Michelson interferometer

At the core of Advanced LIGO is a Michelson interferometer. To understand why,
consider the response of such an apparatus to a gravitational wave (illustrated in
Fig. 2.1). Defining the input field

Ey, = Ege', 2.1)

where wy is the laser angular frequency, we can calculate the input-output relation
of this interferometer. First, the fields leaving the beamsplitter and entering the arms
are
i
Eyi = %Ein (2.2)

1
Ey = —FEn,

V2

where we will use the so-called “Siegman convention” [28], wherein amplitude

transmission coeflicients carry the complex factor i, while reflection coefficients do
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not. Propagating these fields down the arms, reflecting off the end mirrors, and then

propagating them back to the beamsplitter gives

) ) ie—Zika
Eow = ™ (1) e g = Eiy (2.3)
V2
- L o~2ikLy
Ey = et (1) e YEyi = 2 Ein,
where k = 27” = % is the laser wave number and L, and L, are the lengths of the x
and y arms, respectively. Finally, the two output fields are:
E iE E; ‘ A
Eom _ % + \/30 _ % (e—Ztka + e—ZIkLy) (24)
= Byl KLt bl cog [k (L, — Ly)]
E E
Eep = —2+ -2 25)

NI

= —iEye 0 H bt ) gin [k (L, - Ly)].

Now, a photodetector doesn’t directly measure the amplitude of the electromagnetic

field, but rather its power, i.e.:

Pout = ElyEou = Pocos® [k(L, — Ly)] (2.6)
Pen = EppEren = Posin’ [k(Lx = Ly)],

where Py = Eg. Thus, the transmission or reflection of input light by the interfer-

ometer is dependent on the differential length of its arms.

Note that the quantity kL has units of radians, and it quantifies a phase traversed by
the optical field over a length L. Examining the equations above, we see that what
really matters for the interference condition is the phase. Changing the physical
length of the arms is one way to affect this phase, but it is not the only way; for
instance, one could change the optical path length by adding a refractive medium
into the arm, or a gravitational wave could cause the space itself to stretch or shrink.

In general terms of this phase, A¢, we can rewrite (2.6):

Ap P
%t:mmﬁﬁzgammw) 2.7)

A P
P = Pocos2 —¢ = 70(1 —CcosAgQ).
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Figure 2.1: Illustration of a gravitational wave’s effect on the orthogonal arms of a
Michelson interferometer.
2.1.1.2 Michelson response to a gravitational wave

As discussed briefly in Sec. 1.2.2, in the limit of long, low-frequency GWs, it is

valid to treat the wave as a force Fgw acting on the free end masses, resulting in

displacements
h(t)
Li(t) = Lox+ALgw(t) = Loy |1+ — (2.8)
h(t
Ly(t) = L()y —ALgw(t) ~ L()y (1 - %) .

In the case where the macroscopic lengths of the arms are equal (i.e., Loy = Loy, = L),

the differential signal produced by the GW is

L,(t) — Ly(t) = Lh(1). (2.9)

As the GW’s wavelength shortens and becomes comparable to the length of the
detector, one must use a more accurate approach. Recall that in the TT gauge,
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freely falling objects (like our mirrors, at least in the x — y plane) are by definition
at fixed spatial coordinates. However, as the spacetime line element is modulated
by a passing GW, a light beam traveling between two such objects must traverse a

varying path length as the metric perturbation passes.

Following [3], we can compute the accurate response of a +-polarized GW by
integrating the square root of (1.14), noting that the spacetime interval between any

two events linked by a beam of light is zero. For the outbound leg down the X arm:

Tx,out 1 L
‘[0 dr = Ef(; A1+ h(t)dx (2.10)
1 L
= p f \/1 + hy cos (wgwt) dx
0

lfL (1 N h. cos (wgwt) dx
c Jo 2

X

A similar integral can be constructed for the return leg to determine 7. The
time dependence of the integrand on the dx side should be rewritten in terms of the
position of a single phase front (i.e., # = < for the outbound leg and ¢ = ZLT_X for the

return leg).

After finding the total, roundtrip travel time 7, rT = Ty out + Tx.ret and the correspond-

ing time for the Y arm, one arrives at the differential phase

2mc
Ag(t) = T(Tx,RT — TyRT) (2.11)
2rL L
= 7; h sinc (wGw ) cos (wgwt) .

Plugging this into (2.7) gives the accurate power response of the interferometer to a
sinusoidal GW h(¢). This treatment is important when considering higher-frequency
gravitational waves; for the remainder of this thesis, we will use the approximation
in (2.9), and we will regularly consider the displacement response and noise of the

instrument rather than directly referring to the strain.

2.1.1.3 Arm cavities

As we have seen, the core function of the Michelson interferometer is to convert
phase differences in the light returning from its orthogonal arms into power modula-
tion at the reflection and output ports, which will hereafter sometimes be referred to

as the symmetric and anti-symmetric (AS) ports. Given this fact, we can seek out
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Figure 2.2: A Michelson interferometer with Fabry-Pérot arm cavities. Labeled
are the input test masses (ITMs), end test masses (ETMs), and the beamsplitter
(BS).

methods of increasing the displacement-to-phase response of the arms. One way to

do this is to install Fabry-Pérot cavities into the arms, as shown in Fig. 2.2.

To understand how this works, consider the cavity drawn schematically in Fig. 2.3,
and let us compute the fields E..q and Eyans as a function of the input field Ej, =

Eoe' (i.e., the input-output relation). The field just inside the input mirror is

E, =it;E, +riEs. (2.12)
But we also know that
E; = r.e?*E;, (2.13)
SO
Ei = it;Ein + rir.e” L E; . (2.14)

Therefore, recursively,

E = (L) Ei . (2.15)

1 — rirpe?ikL
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Using this, we can find the intracavity circulating power:

12
Pare = |E1]? = ’ Enl*. 2.16
e = 11 (1 +r2r2 = 2r;r, cos (2kL)) i (210
In particular, in the resonant condition where 2kL = n X 2,
2

Pcirc ( L )
G = = , 2.17
Pin lres 1 —rir, ( )

where Py, = |Eiy|? and G is known as the cavity power gain.

ri, ti Tesle
Ein El E2 Etrans
—> —> —> —>
<+ <+
Ereﬂ E3
L

Figure 2.3: Diagram of a Fabry-Pérot cavity.

We can also now find the transmitted and reflected fields:

Eyans = itoEy = it,e'* E, (2.18)
_ —l‘ileeikL
— \1 = rireedikl )
Eef = riEg +itiE3 = riEy + itir.e” ¥ E; (2.19)

tineeZikL e
= vri—\——+— i
1 — rirpe?ikL
Fi — roekL
= in -

1 — rir,e2kL

Consider the case r; = r, = VR, where R is the power reflection coeflicient, so that
ti=t, = VT = V1 = R. This case, where the input and end mirrors are identical, is

called critical coupling. Here, we have

Ptrans — |Etrans|2 — T2 (220)
P; |Ein|? 1+ R2—-2Rcos (2kL)
Pei_ |Eenl>  2R[1—cos(2kL)] 221

Pn  |Ewl> 14+ R2-2Rcos(2kL)’
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Therefore, on resonance,

P, T?
trans | (2.22)
Pi res (1 - R)2
P,
ref 0, (2.23)
Pin res

and the cavity is perfectly transmitting.

Now consider the case when the end mirror is perfectly reflecting (i.e., r. = 1)'.
Assuming there are no optical losses in the system, all the power must be reflected
regardless of the resonance condition. Using (2.19), however, we can see that the

phase changes as we sweep the cavity from anti-resonant to resonant:

E; anti-resonant
Eren = ) (2.24)
-Ei resonant

Differentiating that equation with respect to L and evaluating on resonance, we find:

dEreﬂ
dL

1 +r;
:2ik( ”)Em. (2.25)

res l—ri

As expected, the derivative is imaginary, meaning the response is in phase. 