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ABSTRACT

Optical Gyroscopes are among themost accurate rotation-measuring devices and are
widely used for navigation and accurate compasses. With the advent of integrated
photonics for complex telecommunication chips, there has been interest in the
possibility of chip-scale optical gyroscopes. Besides the potential benefits of
miniaturization, such solid-state systems would be robust and resistant to shock. In
this thesis, we investigate a chip-based optical gyroscope using counter-propagating
Brillouin lasers on a monolithic silicon chip. The near-degenerate lasers mimic a
commercial ring laser gyroscope including the existence of a locking band. By using
physical properties associated with the Brillouin process, a solid-state unlocking
method is demonstrated. We focus on three topics to explore the potential of the
counter-propagating Brillouin-laser gyroscope. First, we explore the physics of the
counter-propagating Brillouin lasers by deriving the theory to link the passive cavity
mode with the lasing gain medium. We explicitly show how the dispersion, Kerr
nonlinearity, dissipative coupling, and Sagnac sensing affect the beating frequency
of the Brillouin lasers. Second, we experimentally demonstrate the performance
of the gyroscope. Most notably, the gyroscope is used to measure the rotation of
the Earth, representing an important milestone for chip-scale optical gyroscopes.
Third, we investigate the non-Hermitian interaction between the counter-propagating
Brillouin lasers. We test the recent prediction of the EP-enhanced Sagnac effect, and
observe a Sagnac scale factor boost by over 4× by measurement of rotations applied
to the resonator. Our research shows the feasibility of the chip-based Brillouin laser
gyroscope. This gyroscope paves the way towards an all-optical inertial guidance
system.
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C h a p t e r 1

INTRODUCTION OF OPTICAL GYROSCOPES

1.1 Introduction of the Sagnac effect
Optical gyroscopes are rotation-measurement devices based on the Sagnac effect,
a small phase difference of laser lights propagating in opposite directions under
rotation[1, 2]. When clockwise (CW) light and counterclockwise (CCW) light
travel around closed paths in a steady plane, their propagation times are equal.
However, when the plane is rotating, the counter-propagating lights experience
different travel times due to the path length difference under rotation (Figure 1.1).
This time difference can be precisely measured by using optical interference and
converted into a phase shift or frequency shift. By tracking the beating shift of the
counter-propagating lights, we can measure the rotation.

Figure 1.1: Sagnac Effect. Left: When the clockwise (CW) light and the counterclockwise
(CCW) light are propagating in a close loop, their propagation time should be equal if the
system is steady. Right: When the loop is rotating, the CW and CCW lights travel back to
the same point on the loop at the different time. The counter-propagating lights have a path
length difference which can be detected as a phase shift or a frequency shift.

1.2 Commercial gyroscope
Currently, the high-end commercial market is dominated by optical gyroscopes.
They create long physical or effective pathlengths to boost the sensitivity of the
gyroscope. The mature products are the He-Ne ring laser gyroscope (RLG)[3] and
the fiber optic gyroscope (FOG)[4–6]. Both of them can achieve sub-millidegree
per hour sensitivity and bias drift. The performance allows these gyroscopes to be
useful for a wide range of applications in the markets of automation, navigation, and
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positioning[7–9].

He-Ne ring laser gyroscope
The He-Ne ring laser gyroscope (Figure 1.2a) uses a glass ring tube to hold the
Helium-Neon mixture and excites the gas as a gain medium to generate the counter-
propagating laser. Because the quality factor of the resonator (glass tube) is ultra-
high, the counter-propagating lights circulate millions to billions times within the
resonator to create huge effective pathlength. Equivalently, the linewidth of the
laser is very narrow, so a small frequency shift under rotation can be detected by the
following equation[2]:

δν =
4A · Ω
λP

, (1.1)

where A is the surface area vector enclosed by the counter-propagating light, Ω
the rotation velocity vector, λ the light wavelength, and P the roundtrip optical
pathlength, which depends on the refractive index.

The back-scattering and loss lock the counter-propagating lights and create a dead-
band in the gyro readout[3]. Tominimize the deadband, the glass tube and electrodes
are designed symmetrically. In addition, applying mechanical dithering further
unlocks the gyro operation for sensitive measurement.

Fiber optic gyroscope
The fiber optic gyroscope (Figure 1.2b) uses a long fiber spool to create a long
physical pathlength for the counter-propagating lights. The beating of the lights
is equivalent to the Michelson interferometry and generates a phase shift under
rotation. The phase shift is determined by the following equation[2]:

δφ =
8πNA · Ω

λc
, (1.2)

where N is the number of the loops, A the surface area vector of a single loop,
c the speed of light. Specifically, the phase shift under rotation is independent of
the refractive index of the medium. With a huge number of loops, the fiber optic
gyroscope can achieve extreme accuracy and sensitivity.

The sensitivity of the fiber optic gyroscope is limited by material loss, scattering,
and bending. In addition, the coherence of the lasers affects the readout noise. To
maximize the signal to noise ratio, several methods have been applied, such as re-
ciprocal cancellation, reverse or dual phase modulation, low-coherence interference
with the superluminescent diode, and balanced detection[4, 6].
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MEMS gyroscope
Another category of gyroscopes is the MEMS gyroscope, which uses integrated
electronics and micromechanical components to detect the Coriolis effect under
rotation[10]. The sensing components are fully integrated on a microchip such that
the overall footprint is less than 1cm2 × 1cm2 (Figure 1.2c). The manufacturing
process further reduces the overall cost of theMEMS gyroscopes, so they are widely
used in cellphones and dominate the portable market, which requires the sensitivity
above 10◦/h.

The success of the MEMS gyroscope demonstrates well the capability of the
integration technology. It is obvious that the optical gyroscope could follow a similar
roadmap with the integrated photonics. Integrated photonics can interconnect the
optical and electrical components on a single chip, so the rugged structure without
moving components enables the operation in the harsh environment such as high-G
vibration or ballistic shock. The reduced size may further reduce the drift sources
for better performance.

Figure 1.2: Commercial Gyroscopes. a, Helium-Neon ring laser gyroscope.∗ b, Fiber
optic gyroscope.† c,MEMS gyroscope.‡

1.3 Chip-based optical gyroscope
In the past decades, several chip-based optical gyroscopes have been proposed, but
are not demonstrated until recently. Here, we quickly review the chip-based optical
gyroscope[11].

Microresonator Brillouin laser gyroscope
The microresonator Brillouin laser gyroscope uses the solid-state material as a
gain medium to generate the backward propagating Brillouin lasers[12, 13]. The
Brillouin lasing process is directional and can be cascaded, so intrinsically the

∗Photo: NCSIST http://www.ncsist.org.tw/eng/csistdup/products/product.aspx?product_Id=189&catalog=21
†Photo: EMCORE http://emcore.com/products/eg-200-fiber-optic-gyroscope-fog/
‡Photo: DARPA https://www.darpa.mil/program/micro-technology-for-positioning-navigation-and-timing
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counter-propagating Brillouin lasers do not interact with each other. The indepen-
dent counter-propagating Brillouin lasers, therefore, sense the Sagnac rotation and
become a chip-based ring laser gyroscope. Currently, the silica on silicon resonator
(Figure 1.3a) and the silicon nitride platform (Figure 1.3b) have been demonstrated.
We investigate the microresonator Brillouin laser gyroscope on a silica-on-silicon
chip in this thesis.

Integrated interferometric optical gyroscope
The integrated interferometric optical gyroscope uses a long spiral waveguide to
maximize the enclosed Sagnac sensing area on a chip (Figure 1.3c)[14]. This
gyroscope mimics the fiber optic gyroscope to detect the phase change of the
counter-propagating lasers under rotation. Currently, the waveguide loss limits the
maximum available sensing area and gyro performance.

Resonator micro-optical gyroscope
The resonator micro-optical gyroscope (RMOG) uses a passive cavity to detect the
nonreciprocal shift of the mode. The CW and CCW passive modes split under
rotation, and the mode shift can be detected from the PDH error signal, the coupling
power change, or the optical spectrum[15–17]. The RMOG draws attention due to
the simplicity of the structure design. How to improve the resolution and to suppress
the drift are active research fields (Figure 1.3d-f).

Semiconductor ring laser gyroscope
The semiconductor ring laser gyroscope uses III-V material as a gain medium to
amplify the counter-propagating lasers. The lasers are both amplified by a single
gain medium, so the mode competition poses a constraint on the gyro operation
similar to the He-Ne ring laser gyroscope. The gyro performance is still under
investigation[11].

Coupled resonator gyroscope
The coupled resonator gyroscope usesmultiple rings to couple the counter-propagating
lights. The interaction from the coupling lifts the modes by dispersion[18] and cre-
ates nonlinear readout shifts under rotation. Famous examples include CROW[19]
and SCISSOR[20]. The Sagnac factor can be enhanced such that a small rotation
induces a huge change of the response near the modal splitting point.
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Figure 1.3: Recent Chip-Based Gyroscopes. a, A microresonator Brillouin laser
gyroscope made from a chip-based silica-on-silicon microresonator coupled with fiber taper
waveguide.[12] b, A microresonator Brillouin laser gyroscope made from a chip-based
silicon nitride waveguide resonator.[13] c, An integrated interferometric optical gyroscope
made from silicon nitride spiral waveguide.[14] d, A resonator micro-optical gyroscope
made from calcium fluoride crystalline resonator.[15] e, A spherical silica resonator testing
the nonreciprocal splitting under rotation.[16] f, A resonator micro-optical gyroscope made
from two silicon nitride rings for reciprocal drift suppression under dithering.[17] (Figures
are adapted from the references.)

1.4 Summary of the Chapters
Based on the knowledge of the commercial ring laser gyroscope, we investigate the
Sagnac sensing on a chip-based platform. In this thesis, we demonstrate a ring laser
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gyroscope by a silica microresonator using Brillouin gain. A novel offset counter-
pumping approach is used to create independent counter-propagating laser waves
whose difference in frequency is sensitive to rotation rate. To capture this rotation
readout, we develop the theoretical model to show the signal and drift sources of the
gyroscope. Then, we demonstrate the gyroscope’s sensitivity by sinusoidal rotation
measurement, and further show the Earth’s rotation measurement as a milestone of
the gyroscope performance. Finally, we show the Sagnac factor enhancement near
the exceptional point. In addition, because the gyroscope is coupled by a silica fiber
taper, we demonstrate how to characterize fiber tapers in a separate chapter.

The thesis is organized as follows:

In Chapter II, we introduce the optical microresonators and their applications in
nonlinear optics. Then, we quickly review the physics and performance of the
Brillouin lasers. In the later part, We showed the recent demonstration of the
cascaded Brillouin laser gyroscope.

In Chapter III,we introduce a new scheme of the counter-pumped Brillouin lasers.
We investigate the physics of the SBLs such as mode-pulling effect, dissipative-
coupling-induced locking, Kerr nonlinearity, and the Sagnac shift. The drift sources
and possible feedback scheme are further discussed.

In Chapter IV, we demonstrate the performance of the counter-pumped Brillouin
laser gyroscope by showing the sinusoidal rotationmeasurement, theAllan deviation
traces, and the drift reduction algorithm. We measure the Earth’s rotation as a
milestone of the gyro performance.

In Chapter V, we introduce the recently predicted enhancement of the gyro Sagnac
factor from the exceptional point (EP). We show the underlying physics of the modal
coupling and demonstrate an enhancement factor near EP.

In Chapter VI,we show the fabrication and characterization of the silica fiber taper
waveguide, which is an indispensable component to couple the light into the silica
microresonator on a chip.

In Chapter VII, we conclude the findings in this thesis.
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C h a p t e r 2

BRILLOUIN LASERS IN SILICA MICRORESONATORS

2.1 Whispering-gallery-mode Microresonators
A whispering-gallery-mode resonator is a structure made into a circular shape
such as a disk, a sphere, or a rod. The light or sound wave can circulate around
its circumference through the total internal reflection, and store the energy in the
resonant mode[21, 22]. For example, in St. Paul’s Cathedral, sound can be guided
near the wall of a circular chamber, so a whisper from one side of the room is
clearly heard at the other side (Figure 2.1). This phenomenon shows how the
“whispering-gallery-mode (WGM)” gets its name.

Figure 2.1: Whispering-Gallery-Mode in St Paul’s Cathedral. a, Picture of St Paul’s
Cathedral. The circle-shaped wall guides the acoustic wave near the circumference, such
that a whisper from one side of the dome can be heard clearly at the opposite side.∗ b,
Simulation of an acoustic mode in St Paul’s Cathedral. The acoustic wave is stored in the
structure and circulates along the wall to cause the whispering-gallery effect.†

In the past decades, a wide range of studies have investigated the physics of the
WGM microresonators with different shapes, materials, and structures[22, 23]. To
characterize the performance of the whispering gallery mode, a number called
quality factor (Q) is used. The Q factor is defined by the mode frequency (ν) over
linewidth (∆ν), and equivalently equals to the ratio of the stored energy (Emode) over

∗Photo: Wikipedia (By Mark Fosh) https://commons.wikimedia.org/w/index.php?curid=46084308
†Photo: Wikipedia (By Femtoquake) https://commons.wikimedia.org/w/index.php?curid=18233779
Simulation: Applied Solid State Physics Laboratory, Division of Applied Physics,
Faculty of Engineering, Hokkaido University Sapporo, Japan.
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power loss (Ploss) times modal angular frequency (ω ≡ 2πν).

Q ≡ ν

∆ν
= ω

Emode
Ploss

. (2.1)

The Q factors of these resonators depend on the material absorption and the
scattering process. Typical Q factor ranges from 104 to 1010. With these Q

factors, a small fraction of coupled power becomes a huge circulating intensity
in the resonator. For example, 1 mW of coupled power (Pc) to a 3mm-diameter
(Vmode = 5×105µm3) silica wedge disk withQ = 200 million at 1.55µmwavelength
becomes a circulation intensity (Icirc) around 10MW/cm2 in the resonator by

Icirc =
c
V

∫ t+τ

t
Pcdt′ ≈ Q

V
c
ω

Pc. (2.2)

Such a high circulating intensity in a cavity enables nonlinear interactions be-
tween lights and materials[24]. For example, the photon-phonon interaction en-
ables stimulated Brillouin scattering[25–29], stimulated Raman scattering[30], and
optomechanics[31–35]. The photon-photon interaction enables four-wave-mixing[36,
37], soliton generation[38–40], second harmonic generation[41], and third harmonic
generation[41]. Therefore, optical microresonators become platforms to test the
nonlinear optics, quantum optics, and laser physics[42–45]. By properly designing
the resonator, we can implement the microresonators as active or passive optical
devices on a chip, and design functional integrated photonic systems[13, 46, 47]. A
wide range of applications has been demonstrated recently, such as the sub-Hertz
linewidth laser[13, 47, 48], rotation sensor[12–17], reference cavity[49, 50], mi-
crowave generation for frequency synthesizer[27, 51], spectroscopy[52–54], range
finder[55, 56], imaging[57], and optical clock[58]. The microresonator is a critical
component in the photonics era.

Another key parameter of the microresonator is the free spectral range (FSR), which
is defined by the frequency difference between adjacent modes in the same mode
family. In a WGM, the FSR is calculated by

πDng = mλm = m
c
ωm

, (2.3)

FSR ≡ ωm+1 − ωm =
c

πDng
, (2.4)

where D is the size of the resonator, ng the modal group refractive index, m the
azimuthal mode number, λm and ωm the corresponding wavelength and frequency
in free space, and c the speed of light. The FSR is used for characterizing the
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round trip time of a microresonator. In addition, the FSR captures the modal group
refractive index, which depends on the material, geometry, and active process of
a cavity. Therefore, the change of the FSR is used for characterizing the group
dispersion (group refractive index change at different frequencies).

To couple the light into microresonators, several studies use free space coupling,
butt coupling, or evanescent coupling by either fiber tapers or prisms. Throughout
this thesis, we couple silica microresonators with fiber tapers (Figure 2.2)[59, 60].
The taper width is similar to the wavelength, so the light leaks out from the taper core
into the air and interacts with the WGM in the microresonator. The taper coupling
provides a wide range of tunability for fast characterization of the microresonator
and is even used in the packaged device. For detailed characterization of fiber tapers,
please see Chapter VI.

Figure 2.2: Coupling of Silica Disk. A silica microresonator was coupled by a silica fiber
taper (the thin white line in the picture). The fiber taper has a width close to the optical
wavelength, so the evanescent wave leaks out and couples to the microresonator. The quality
factor of the silica microresonator can reach over 100 M, so a small fraction of coupling
light becomes a huge circulating intensity in the cavity. The nonlinear process is generated
once the phase matching condition is achieved. (Photo: Yu-Hung Lai)

2.2 Brillouin laser generation
ABrillouin laser is the light amplification by Brillouin scattering[28, 61–63]. When
a coherent light wave is propagating in a material, the amplitude of the light wave
causes force on the atoms and changes the refractive index locally. Equivalently,
light generates a grating in a material. If another light with different frequency
propagates in the opposite direction, the interference of the two lights generates a
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moving grating. This grating propagates in the material like acoustic waves and
transfers the energy and momentum quantized as acoustic phonons. The grating
also scatters the pump photon into a back-propagating photon called Stokes photon
(Figure 2.3). This process is called Brillouin scattering.

In silica, Brillouin scattering has a bandwidth of 20 − 60 MHz[64], and the phonon
frequency is around 10.8 GHz. Now, we add a resonator. If we precisely control the
dimension of the resonator such that the backscattered light is held in the resonator,
and the SBS gain band is aligned with the optical mode, this process is actively
enhanced. The pump continuously generates the phonons and SBS photons in the
resonator, and the SBS photons further speed up the coherent conversion process.
The coherent SBS photons start to lase when the pump intensity is above the
threshold (Figure 2.4).

Figure 2.3: SBS Diagram. a, The dispersion diagram of the SBS process. When pump
light is propagating in a medium, the pump photon interacts with the lattice and decays into
a backward Stokes photon and an acoustic phonon. b, A simplified SBS process depicts the
phase matching condition. The interference of the pump and the Stokes field generates a
moving grating (phonon) in the medium.

To calculate the Brillouin shift, we consider the energy and momentum conservation
laws,

Energy Conservation: ~ωp = ~ωs + ~ΩB, (2.5)

Momentum Conservation: ~kp = −~ks + ~kB, (2.6)
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Figure 2.4: SBL Generation Process. a, When the resonant mode and the SBS gain
spectrum are mismatched, even though the pump intensity is very high, the SBS photon
cannot be stored. Therefore, the lasing process is rejected. b, By precisely controlling the
size of the resonator, the resonant mode and the SBS gain spectrum are matched. The SBS
photon can be stored in the resonator and further amplified. Once the pump exceeds the
threshold, the coherent Stokes field starts to generate SBL.
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where ωp (kp), ωs (ks), ΩB (kB) are the angular frequency (wavevector) of pump
photon, Stokes photon, and Brillouin phonon, respectively. We can rewrite Eq.
(2.6) by using the dispersion relation:

kB =
ΩB

cs
=

n
c

(
ωp + ωs

)
= kp + ks, (2.7)

where cs is the speed of sound in the medium, c the speed of light in vacuum, and n

the refractive index of the medium. Since ωp ≈ ωs � ΩB, we simplify the equation
as:

ΩB ≈
2ncsωp

c
=

4πncs

λp
, (2.8)

where λp is the wavelength of the pump in vacuum.

The Brillouin scattering process is originally a parametric process. When the
acoustic field decays much faster than the optical field does, the damped acoustic
phonons are adiabatically eliminated from the system, such that the remaining optical
photons are amplified. Therefore, the parametric process turns into a stimulated
scattering process.

As an aside, when the acoustic field decays much slower than the optical field
does, the phonon mode is amplified and becomes a phonon laser (phaser)[31, 33].
The cavity optomechanics dominates in such a system, and interesting phonon
cooling[29] or optomechanics-induced transparency[65] can be observed.

2.3 Cascaded Brillouin laser
The Brillouin scattering process can be cascadedwhen the phasematching condition
of the high order Stokes light is achieved. When the original pump light is high
enough, the high intensity of the first order Stokes light acts as a new pump for the
second order Stokes light. The second order Stokes light starts to lase once the gain
exceeds the loss (threshold). This process can continue as long as the high order
Stokes lights can be stored in the resonators and the pump power can compensate
the overall loss mechanisms in the Brillouin scattering process (Figure 2.5). Due
to the backscattering nature of SBS, we intrinsically generate counter-propagating
SBLs in the resonator.

We visualize this process from the frequency spectrum. If themodes of the resonator
are aligned with the mode of SBLs, each order of SBL can be stored in the resonator
and further amplify the next order SBL. (Figure 2.6) This process is called the
cascaded generation of SBLs. In the cascaded process, the propagation direction of
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Figure 2.5: Cascaded SBS in the Microresonator. When the SBS frequency shift equals
to a multiple of free spectral range of the resonator, the SBS process can be cascaded. Once
the pump power (blue) is high enough, the corresponding first order Stokes power (green)
acts as a pump to amplify the second order Stokes (yellow). Similarly, the third order Stokes
(red) starts to lase when the pump is further increased.

Figure 2.6: Cascaded SBS spectrum diagram. The cascaded SBS process is a natural
way to generate counter-propagating Brillouin lasers in a resonator. The even-order Stokes
laser and the odd-order Stokes laser have opposite propagating direction, so their beating
captures the Sagnac rotation shift. ΩB is the Brillouin angular frequency shift.

SBLs flips at each order. The even-order Stokes laser and the odd-order Stokes laser
have opposite circulating directions. The beating of the counter-propagating SBLs,
therefore, captures the Sagnac rotation shift.

In our experiment, we generate the cascaded SBLs up to 9th order (Figure 2.7a).
We detect the light at one output of the fiber taper waveguide, so the high peaks
(odd order Stokes) shows the output from the resonator, and the low peaks (even
order Stokes) shows the backscattering in the system. This asymmetry indicates the
counter-propagating natures of the even/odd order SBLs. In addition, we check the
beating of the 1st order and 3rd order SBLs. The beating frequency is around twice
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Figure 2.7: Cascaded SBL Spectrum and Linewidth. a, The cascaded SBL is generated
up to 9th order. The photodetector detects the SBLs from the odd order sides of the fiber
waveguide. The pump and the even-order SBLs are detected due to the back-reflection
(≈ −20 dB) in the optical line. b, the beating linewidth of the 1st order and the 3rd order
SBL. The beating frequency is around 21.7 GHz. Since the lasers are in the same resonator,
most of the common noise has been canceled. In addition, the SBL linewidth is Schawlow-
Townes noise limited, so the beating linewidth can be less than a Hertz. (This figure is
adapted from reference [48].)

the Brillouin shift and the linewidth is less than a Hertz. The sub-Hertz linewidth
comes from two reasons. First, the lasers are held in the same resonator, so most
of the common noise has been canceled through the beating process. Second, the
SBL linewidth is Schawlow-Townes noise limited, and the high-quality factor of the
resonator narrows the linewidth of the SBL (Figure 2.7b).

To verify that the counter-propagating SBLs track the Sagnac shift, we packaged
an 18mm-diameter disk in a brass package. One end of the package was fixed at
a pivot point, and another end of the package was put on a piezoelectric stage. By
modulating the stage, we applied a sinusoidal rotation on the resonator in parallel
with the resonator axis and detected the beating frequency change of the counter-
propagating SBLs. In Figure 2.8, the beating frequency shows 90◦ phase shift
relative to the angular displacement, indicating the beating frequency change tracks
the rotation properly. The minimal measured root-mean-square rotation rate is
22◦/h. This result is the first demoof amicroresonatorBrillouin laser gyroscope[12].

The gyro readout frequency of the cascaded Brillouin laser gyroscope is at the
microwave region (≈ 10.8 GHz). Building a readout circuit at microwave band with
Hertz level resolution complicates the electronic system design. To further simplify
the system for integration, a lower readout frequency is preferred. We introduce a
novel method to generate the gyro readout at the audio rate in the next chapter.
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Figure 2.8: Cascaded SBL for Rotation Sensing. a & b, We packaged the resonator
and applied a sinusoidal rotation on the resonator. The blue, orange, and red arrows show
the direction of the pump, 2nd order SBS, 3rd order SBS, respectively. The black dashed
arrow shows the direction of the external rotation. c, We read out the beating frequency
of the 2nd order SBL and the 3rd order SBL, and compare the trace with the modulated
angular displacement. The 90◦ phase shift shows the differential nature between the angular
displacement and the angular velocity. (This figure is adapted from reference [12].)
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C h a p t e r 3

PHYSICS OF THE COUNTER-PUMPED BRILLOUIN LASER

In this chapter, we introduce a new method to generate the nondegenerate counter-
propagating SBLs in a microcavity. By precisely controlling the frequencies of
the counter pumps, the nonzero detuning frequency of the pump unlocks the
corresponding SBLs. We use the coupled mode theory to show that the Brillouin
gain-induced dispersion causes the mode-pulling effect. The mode-pulling effect
suppresses the SBL beating signal to acoustic or ultrasound frequency. The low-
frequency readout simplifies the requirement of the readout electronics. In addition,
we show that dissipative coupling induces the locking zone and generates high
harmonics in the SBL beating spectrum. The SBL beating signal captures the
Sagnac rotation such that the Sagnac factor can be precisely measured. On the
other hand, we investigate the drift mechanism caused by Kerr nonlinearity and
temperature. We showed that these two effects are dominant limiting factors of
the gyro performance. Based on our findings, we may design the active feedback
control for high-performance gyroscopes in the future.

Figure 3.1: Conceptual illustration of counter-pumped stimulatedBrillouin laser. When
the microresonator is counter-pumped in the same cavity mode, each pump generates its
own corresponding stimulated Brillouin lasers. Since the CW and CCW Brillouin gains do
not interact with each other due to the phase matching condition, the counter-propagating
SBLs are independent.

Part of this chapter was adapted from the paper, Y.-H. Lai, et al., “Earth rotation measured by
a chip-scale Brillouin laser gyroscope,” arXiv preprint (2019).
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3.1 Mode-pulling equation
In an ultra-high-Q microresonator, the stimulated Brillouin laser is generated and
amplifiedwhen both the pump photons and the scattered Brillouin photons are stored
in the resonator simultaneously. The phase matching conditions make the Brillouin
gain directional, so the counter-propagating pumps excite their own corresponding
SBLs independently (Figure 3.1). When the two pumps have a nonzero detuning
frequency (∆νp), the corresponding SBL frequencies are pulled apart as a result
of Brillouin-induced dispersion. This pulling induces a splitting in the SBL
beating frequency (∆νs) that inhibits locking of the laser frequencies as a result
of backscattering (Figure 3.2).

Figure 3.2: The spectral diagram of the offset-counter-pumped SBL. The pump detuning
frequencies are precisely controlled and independently shifted. The nonzero pump detuning
(∆νs) unlocks the gyroscope through Brillouin-induced dispersion (mode pulling). The
non-degenerate SBL beating frequency captures the Sagnac rotation. (N = 6 in a 36mm
silica disk.)

We introduce the coupled mode theory to analyze the counter propagating SBLs.
The equations in the cavity-mode rotating frame are:

Ûα1 =
[
i (ωs1 − ω0) −

γ

2

]
α1 + g1 |A1 |2 α1 (3.1)

Ûα2 =
[
i (ωs2 − ω0) −

γ

2

]
α2 + g2 |A2 |2 α2, (3.2)

where A1,2 are the photon number amplitudes of the pumps, α1,2 the photon
number amplitudes of the SBLs, γ the photon decay rate, ωp1,p2 the pump angular
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frequencies,ωs1,s2 the SBL angular frequencies, andω0 the center angular frequency
of the SBL cavity mode. The SBL gain function[48] g1,2 is defined as

g1,2 ≡
g0

1 + 2i∆Ω1,2
Γ

(3.3)

∆Ω1,2 ≡ ωp1,p2 − ωs1,s2 −ΩB, (3.4)

where g0 is the gain coefficient of SBL, ΩB the angular frequency of the acoustic
phonon, and Γ the angular bandwidth of the SBL gain. At steady state, ÛA1,2 = Ûα1,2 =

0. Then, we get

i
(
ωs1,s2 − ω0

)
− γ

2
+

g0
��A1,2

��2
1 +

4∆Ω2
1,2
Γ2

(
1 − 2i∆Ω1,2

Γ

)
= 0 (3.5)

Both the real parts and the imaginary parts are zero. Therefore, we get the clamping
condition,

g0 |A1 |2

1 + 4∆Ω2
1

Γ2

=
g0 |A2 |2

1 + 4∆Ω2
2

Γ2

=
γ

2
. (3.6)

The imaginary parts become(
ωs1,s2 − ω0

)
− γ∆Ω1,2

Γ
= 0 (3.7)

The difference between the two equations is

∆ωs =
γ/Γ

1 + γ/Γ∆ωp, (3.8)

where ∆ωs ≡ ωs2−ωs1 is the SBL beating angular frequency, and ∆ωp ≡ ωp2−ωp1

is the pump detuning angular frequency. The dispersion from the SBL lasing process
introduces a mode-pulling effect that pulls the SBLs toward to the Brillouin gain
center. This effect reduces the SBL beating frequency relative to the pump detuning
frequency by a mode pulling factor, γ/Γ

1+γ/Γ .

We estimate the SBL beating frequency by the mode-pulling equation 3.8 (Figure
3.3). Themode-pulling factor is a function of the resonatorQ factor, and independent
of the pump detuning frequency (∆νp ≡ ∆ωp/2π). If we assume the SBS gain
bandwidth is 50 MHz, then the SBL beating frequency (∆νs ≡ ∆ωs/2π) is less than
100 kHz if the Q factor of the resonator is larger than 100 M. The dynamic range of
the pump detuning (∆νp max = νp/Q) is also a function of the Q factor and sets the
upper limit of the rotation sensing.
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Figure 3.3: Simulation of the mode pulling. The SBL beating frequency is a linear
function of the pump detuning frequency (color lines). Both the pulling factor (slopes of
the color lines) and the dynamic range of the rotation sensing (Black dashed line) depend
on the cavity linewidth. In this figure, we assume that the SBS gain bandwidth is 50 MHz,
and the dynamic range of the rotation sensing is equal to the full-width-half-maximum of
the cavity linewidth.

To verify the theory, we use the PDH locking to center-lock the first pump to the
cavity center and sweep the frequency of the second pump to change the pump
detuning. We measure the corresponding SBL beating frequency in the experiment.
The wide sweeping shows the full dynamic range of the pump detuning in a 36mm
disk sample (Q ≈ 130 M, Γ/2π ≈ 30 MHz). No beating is detected beyond this
range. The data shows a nearly linear response of the mode pulling consistent with
the theoretical prediction (Figure 3.4a). We further zoom in the near-zero detuning
frequency region and observe the locking effect similar to the He-Ne ring laser
gyroscope (Figure 3.4b). Similar results are observed among different modes, mode
families and different sizes of samples. To capture the locking zone, we further
consider dissipative coupling in the next section.

3.2 Dissipative coupling, Kerr nonlinearity, and Sagnac effect
In the counter-propagating SBLs, the SBL beating signal tracks the Sagnac rotation
signal, and is affected by the dissipative coupling and the Kerr nonlinearty. To
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Figure 3.4: Experiment of the mode pulling effect. a, The full range of the SBL beating
frequency versus pump detuning shows good linearity. b, A zoom-in of the red dotted box
in part a. The lock region and unlock region are well-resolved. The resulting SBL beating
signal is consistent with a model including the mode-pulling effect and the dissipative
coupling.

capture the physics, we add these terms into Eq. (3.1)-(3.2):

Ûα1 =

[
i
(
ωs1 − ω0 −

δΩ
2

)
− γ

2

]
α1 + g1 |A1 |2 α1

+κα2e−i(ωs2−ωs1)t + iη
(
|α1 |2 + 2 |α2 |2

)
α1 (3.9)

Ûα2 =

[
i
(
ωs2 − ω0 +

δΩ
2

)
− γ

2

]
α2 + g2 |A2 |2 α2

+κα1e−i(ωs1−ωs2)t + iη
(
|α2 |2 + 2 |α1 |2

)
α2, (3.10)

where δΩ captures the Sagnac passive modal shift (2πD/ngλ, where D is the
resonator diameter, ng the group refractive index, λ the light wavelength), and κ
captures the dissipative coupling rate. The η is defined as the nonlinear angular
frequency shift per photon and can be calculated by[15]

η =
n2~ω

2c
n2

0V
, (3.11)

where n2 is the nonlinear refractive index, n0 the material refractive index, V the
mode volume, ω the angular frequency of light, and c the speed of light.

We use the clamping condition in Eq. (3.6), and treat the Sagnac shift, dissipative
coupling, and Kerr shift as perturbations around steady-state. (In Chapter V, we will
show the clamping condition is exact with the coupling.) Equations (3.9)-(3.10)
become
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i
(
ωs1 − ω0 −

δΩ
2

)
− i

γ∆Ω1
Γ
+ κ

α2
α1

e−i(ωs2−ωs1)t + iη
(
|α1 |2 + 2 |α2 |2

)
= 0

(3.12)

i
(
ωs2 − ω0 +

δΩ
2

)
− i

γ∆Ω2
Γ
+ κ

α1
α2

e−i(ωs1−ωs2)t + iη
(
|α2 |2 + 2 |α1 |2

)
= 0.

(3.13)

We introduce the following definition:

q ≡
����α2
α1

����
t=0
, θ ≡ θs2 − θs1 ⇒

α2
α1
= q exp(iθ) (3.14)

Ûθ = d
dt
(θs2 − θs1) = ωs2 − ωs1 = ∆ωs . (3.15)

where q is the amplitude ratio of the SBLs at a specific timing (constant), and θs1,s2

are complex phases of the SBL fields capturing the phase and the small amplitude
changes. The difference between Eq. (3.12) and Eq. (3.13) becomes an Adler
equation[66],

dθ
dt
=

1
1 + γ/Γ

[γ
Γ
∆ωp − δΩ + η

(
|α2 |2 − |α1 |2

)]
︸                                                  ︷︷                                                  ︸

≡a

−
κ
(
q + 1

q

)
1 + γ/Γ︸      ︷︷      ︸
≡b

sin θ − i
κ
(
q − 1

q

)
1 + γ/Γ︸      ︷︷      ︸
≡c

cos θ.

(3.16)

The analytical solution of θ(t) in the Adler equation is

θ(t) = 2 tan−1


b + ωm tan

(
1
2ωmt

)
a + ic

 , (3.17)

where ωm ≡
√

a2 − b2 + c2 is the fundamental beating angular frequency of the
counter-propagating SBLs, such that

ωm =
1

1 + γ/Γ

√√√√√√√√√√√√
γ

Γ
∆ωp − δΩ︸︷︷︸

Sagnac

+ η
(
|α2 |2 − |α1 |2

)
︸               ︷︷               ︸

Kerr


2

− 4κ2︸︷︷︸
Coupling

. (3.18)
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Particularly, there is an offset frequency induced by the imbalance of the SBL
powers. Specifically,

δoffset = η
(
|α2 |2 − |α1 |2

)
=
η∆PSBL
γex~ω

, (3.19)

where ∆PSBL = PSBL2 − PSBL1 are the output power difference of the SBLs, and γex

is the photon decay rate to the external output.

Figure 3.5: Mode pulling, dissipative coupling, and Kerr Effect. Red curve: Dissipative
coupling locks counter-propagating SBLs when pump detuning is small. Large pump
detuning unlocks the SBLs. Green curve: The imbalance of the SBL powers shifts the
center of the locking zone by the Kerr nonlinearity. Nonzero SBL beating signal can
exist even though the pumps are degenerate. (∆PSBL = −170µW. The theoretical and
experimental pump detuning offsets are 27kHz and 28kHz, respectively.) Inset: The full
span of the SBL beating frequency versus the pump detuning. The mode-pulling response
fits the linear model. The small curvature comes from the Kerr nonlinearity under different
detuning.

In Figure 3.5, we center the locking zone by balancing the SBLpowers. When the two
SBL powers are imbalanced (∆PSBL , 0), the Kerr effect imposes a nonlinear phase
shift through self-phase-modulation and cross-phase-modulation on each SBL, and
further changes the center of the locking zone. In the extreme case, the SBL beating
frequency exists (∆νs , 0) even when the pumps are degenerate (∆νp = 0). In
addition, changing the pump detuning modifies the pump2 power coupled into the
resonator and the corresponding SBL2 power. The SBL2 power deviation causes a
slight bending in the large detuning data.

Assuming n2 ≈ 2.7 × 10−20m2/W, n0 = 1.45, V = 107µm3 (mode volume in a
36mm-diameter disk), λ = 1.55µm, we get η/2π ≈ 10−5Hz. If γex/2π = 1.5MHz
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(Qex ≈ 130M), γ/Γ = 0.052, then δoffset/2π∆PSBL ≈ 8Hz/µW. This value agrees
with the experiment.

Please note that when ω2
m < 0, the SBLs lock with each other, and the Sagnac

rotation cannot be tracked properly. In this case, the gyroscope is in the locking
zone. In contrast, when ω2

m > 0, the instantaneous SBL beating frequency changes
with time and induces high harmonic components in the beating spectrum.

3.3 High harmonic contents in the SBL beating spectrum
We examine a simplified Adler equation by assuming the power is balanced (q=1).
We also assume no rotation for simplicity. The Adler equation becomes

dθ
dt
=

γ/Γ
1 + γ/Γ∆ωp −

2κ
1 + γ/Γ sin θ = a − b sin θ, (3.20)

and the solution is

θ(t) = 2 tan−1


b + ωm tan

(
1
2ωmt

)
a

 , (3.21)

where ωm =
√

a2 − b2. We can get the instantaneous beating frequency by differen-
tiating Eq.(3.21).

∆νs(t) =
1

2π
dθ(t)

dt
=

ω2
m/2π

a + b2

a cos(ωmt) + bωm

a sin(ωmt)
(3.22)

To simulate the effect of the Schawlow-Townes linewidth, we add a phase noise
term, θST(t) into the phase term in Eq. (3.22). The phase noise term is simulated
by the following method:

1. We generate a set of random numbers Ri by the normalized Cauchy distribu-
tion,

L(x) = 1
π

(
1 + x2) . (3.23)

2. We calculate the accumulated phase noise by

θST(t) = lim
∆tstep→0

t/∆tstep∑
i=0
∆tstep × Ri × ∆νST/2. (3.24)

3. The simulated instantaneous beating frequency becomes

∆νs(t) =
ω2

m/2π
a + b2

a cos(ωmt + θST(t)) + bωm

a sin(ωmt + θST(t))
+ νn(t), (3.25)

where νn(t) is the white frequency noise in the spectrum.
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4. We calculate the frequency spectrum by FFT with proper amplitude normal-
ization,

Fs( f ) = FFT {∆νs(t)} . (3.26)

Figure 3.6: The SBL beating baseband spectrum. a, The spectrum simulated by the
Adler equation and the experimental baseband signal. The high harmonics in the baseband
comes from the high harmonics of the Adler solution. The Schawlow-Townes 3dB linewidth
of the fundamental mode is 0.9 Hz. The coupling parameters (κ/2π = 1.6 kHz) and the
fundamental frequency (ωm/2π = 48.2 kHz) are measured by the experiment. The PDH
loop gain causes the small wide bump in the experimental noise level. b, The zoom-in
of each order of harmonics. The simulated spectrum (upper envelope) agrees with the
experiment.

In Figure 3.6, we compare the result between the simulation and the experiment
spectrum recorded by an ESA. The Schawlow-Townes 3dB linewidth (∆νST = 0.9
Hz), dissipative coupling rate (κ/2π = 1.6 kHz), and fundamental beating frequency
(ωm = 48.2 kHz) are measured from the experiment. Putting these parameters into
the simulation, the simulated spectral components of the instantaneous beating
frequency agree with the experiment. The result indicates that the high harmonic
components in the baseband originate from the perturbation of the dissipative
coupling near the locking zone. The Schawlow-Townes noise limits the noise level
in the SBL beating spectrum.
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Currently, we consider the model under fixed temperature. In reality, the room
temperature and system temperature change over time so the SBL beating frequency
drifts in the long term.

3.4 Frequency dithering and temperature dependency
We use frequency dithering to further investigate the drift source in the resonator. If
we assume that dissipative coupling and Kerr nonlinearity are negligible, then the
Eq. (3.22) becomes:

∆νs =
γ/Γ

1 + γ/Γ∆νp −
1

1 + γ/Γ
D

ngλ
Ω (3.27)

≡ X(T)
1 + X(T)∆νp −

1
1 + X(T)Y (T)Ω, (3.28)

where X(T) ≡ γ/Γ, Y (T) ≡ D/ngλ, ∆νs ≡ ∆ωs/2π, and ∆νp ≡ ∆ωp/2π. When the
small rotation exists, the readout frequency at high edge (∆νs+) and low edge (∆νs−)
from the counter is:

∆νs+ =

���� X(T)
1 + X(T)∆νp+ −

1
1 + X(T)Y (T)Ω

���� , ∆νp+ > 0, (3.29)

∆νs− =

���� X(T)
1 + X(T)∆νp− −

1
1 + X(T)Y (T)Ω

���� , ∆νp− < 0. (3.30)

If we dither the pump detuning frequency by continuously flipping the sign of the
detuning, the frequency difference becomes

∆νsd = ∆νs+ − ∆νs− =
X(T)

1 + X(T)
(
∆νp+ + ∆νp−

)
− 2

1 + X(T)Y (T)Ω

≈︸︷︷︸
X(T)�1

X(T)︸︷︷︸
dX
dT ≈10−2−10−3

(
∆νp+ + ∆νp−

)
− 2 Y (T)︸︷︷︸

dY
dT ≈10−5

Ω. (3.31)

This equation gives us two insights. First, the frequency shift induced by the rotation
is doubled (Figure 3.7). Second, if we set the pump detuning frequencies at high
edge and at low edge to be equal but with opposite signs, then the temperature
dependency from the mode-pulling factor is eliminated. With the dithering, the
temperature-induced drift in the readout is suppressed (Figure 3.8).

We further consider the Kerr nonlinearity:

∆νs =
γ/Γ

1 + γ/Γ∆νp −
1

1 + γ/Γ
D

ngλ
Ω +

1
1 + γ/Γ

η∆PSBL
2πγex~ω

(3.32)

≡ X(T)
1 + X(T)∆νp −

1
1 + X(T)Y (T)Ω +

1
1 + X(T)Z(T)∆PSBL . (3.33)
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Figure 3.7: Frequency dithering diagram. When the sign of the pump detuning frequency
(high edge: ∆νp > 0, low edge: ∆νp < 0) is modulated by a dithering frequency ( fd), the
gyro readouts have opposite responses to the external rotation. By calculating the frequency
difference of the SBL beating signal (∆νsd = ∆νs+ −∆νs−), we double the sensitivity of the
gyro.

Figure 3.8: Rotation response of frequency dithering. In the experiment, we set ∆νp+ =
−∆νp− = 500 kHz. The frequency difference comes from the imbalance of SBL powers.
When an external sinusoidal rotation is applied (modulation frequency = 0.1 Hz, Ωpk =

50◦/h, fd = 500 mHz), the envelopes of the high and low edges capture the opposite
frequency shift. The simulated envelopes from the Sagnac theory agree with the experiment.
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Figure 3.9: Temperature dependency of frequency dithering. When we applied a slow
triangularmodulation on the sample temperature (∆T = 0.4K), both the difference frequency
and the common frequency of the dithered signal change. The experimental value is close
to the theoretical estimation. The common mode frequency drift primarily comes from the
change of the pulling factor. The differential frequency drift mainly comes from the change
of the SBL powers. The modal temperature drift should be controlled below 2 mK so the
readout signal has sub-Hz stability.

By calculating the difference frequency (∆νsd) and common frequency (∆νsc) and
by assuming X(T) � 1, we get:

∆νsd = ∆νs+ − ∆νs−

≈ X(T)
(
∆νp+ + ∆νp−

)
− 2Y (T)Ω + Z(T) (∆PSBL+ + ∆PSBL−)

≈︸︷︷︸
∆νp+=−∆νp−

−2Y (T)Ω + Z(T) (∆PSBL+ + ∆PSBL−) (3.34)

∆νsc = (∆νs+ + ∆νs−) /2
≈ X(T)

(
∆νp+ − ∆νp−

)
/2 + Z(T) (∆PSBL+ − ∆PSBL−) /2.

≈︸︷︷︸
∆PSBL+≈∆PSBL−

X(T)
(
∆νp+ − ∆νp−

)
/2. (3.35)

Therefore, we separate the drift source by the dithering. The common frequency
captures the temperature dependency of the mode-pulling factor, and the difference
frequency captures the temperature dependency of the Kerr effect. In our experi-
ment, we use FSK to generate ∆νp± = ±500 kHz. We get d∆νsc/dT = 0.5 Hz/mK,
and d∆νsd/dT = 0.3 Hz/mK (Figure 3.9). The experiment agrees with the theory
(d∆νsc theory/dT ≈ 0.5 Hz/mK, d∆νsd theory/dT ≈ 0.2 Hz/mK).
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3.5 Backaction of the cascaded Brillouin laser
The thermal fluctuation limits the absolute frequency of the SBL lasers, such that
the advantage of the ultra-narrow-linewidth is washed out. That is, the long term
stability is not preserved. To minimize the temperature drift, controlling the modal
temperature becomes indispensable.

Here we show a way to control the modal temperate by introducing the cascaded
Brillouin backaction. The SBL absolute frequency is affected by the absorption
induced dispersion. The magnitude and sign of this dispersion are sensitive to the
modal temperature (Figure 3.10). By applying a small power modulation on the
cascaded SBL, we create a dithered signal which serves as a sensitive indicator of
the modal temperature. Then, the modal temperature of the sample is precisely
controlled by an LED. This temperature feedback scheme has stability around mK
level in the long term.

Below we derive the temperature dependency of the frequency shift in the power-
dithered cascaded SBL. In the cavity-mode rotating frame, we write the pump, SBL,
and cascaded SBL in the following form,

ÛA1 =
[
i
(
ωp − ω0

)
− γ

2

]
A1 − g∗1 |α1 |2 A1 +

√
κexS1, (3.36)

Ûα1 =
[
i (ωs − ω1) −

γ

2

]
α1 + g1 |A1 |2 α1 − g∗2 |β1 |2 α1, (3.37)

Ûβ1 =
[
i (ωc − ω2) −

γ

2

]
β1 + g2 |α1 |2 β1, (3.38)

where A1, α1, β1 are the normalized photon number amplitudes of the pump, SBL,
cascaded SBL, respectively. The ωp, ωs, and ωc are the lasing angular frequencies,
and the ω0, ω1, ω2 are the cavity angular frequencies. The g1,2 are the Brillouin
gains, which are defined by

g1,2 =
g0

1 + 2i∆Ω1,2
Γ

, (3.39)

∆Ω1 = ωp − ωs −Ω1, (3.40)

∆Ω2 = ωs − ωc −Ω2, (3.41)

ΩB ≡ Ω1 ≈ Ω2, (3.42)

where ΩB is the Brillouin shift, which is equal to 4πncs/λp (n the refractive index,
cs the speed of sound in silica, and λp the pump wavelength). In addition, the g0 is
the peak of the Brillouin gain, κex is the external coupling coefficient, and S1 is the
normalized external pump photon number.
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Figure 3.10: The backaction induced by the cascaded Brillouin laser. a, When the
FSR is larger than the Brillouin shift (ΩB), the cascaded laser induces a backaction on
the SBL1. The backaction originates from the dispersion of the absorption (mode-pushing
effect) proportional to the cascaded laser power. The beating frequency of the counter-
propagating SBLs decreases when the cascaded laser power increases. b, When the FSR
is smaller than the Brillouin shift, the mode pushing changes the SBL1 frequency to the
opposite direction. The beating frequency of the counter-propagating SBLs increases when
cascaded laser power increases. In both cases, the SBL2 frequency is not affected by the
mode-pushing effect because the Brillouin absorption is directional. Therefore, the SBL2
becomes a reference to measure the shift of SBL1. The dual-SBL beating frequency tracks
the temperature dependency of the backaction under the cascaded power dithering.

At steady-state of the cascaded lasing, if we assume the mismatch between the
free spectral range and the Brillouin shift is sufficiently small (∆Ωi � Γ), we can
simplify the equations as follows:

The real parts and imaginary parts of Eq.(3.37-3.38) are

g0

(
|A1 |2 − |β1 |2

)
= g0 |α1 |2 =

γ

2
, (3.43)
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Figure 3.11: Experiment of the cascaded Brillouin laser backaction. a, The temperature
dependency of the backaction. We fix the cavity mode and tune the sample temperature.
Without the cascaded laser, the beating frequency slightly reduces when the SBL1 power
increases due to the Kerr effect (∆νp > 0 in this case). When the cascaded laser is
generated, the absorption-induced-backaction further changes the beating frequency, which
is proportional to the cascaded laser power. The magnitude and sign of the backaction
depend on the temperature, so the SBL beating frequency becomes a modal temperature
indicator when we fixed the pump power. (d∆νs/dT = 13 Hz/mK at 1 mW coupled pump
power.) b, The wavelength dependency of the backaction. We fix the temperature and
change the cavity mode. The backaction changes the sign and magnitude as the prediction
when we sweep the wavelength. At different wavelengths, the modal interaction changes
the threshold of the cascaded laser.

ωs − ω1 =
2g0
Γ

(
|A1 |2 ∆Ω1 + |β1 |2 ∆Ω2

)
(3.44)

ωc − ω2 =
2g0
Γ
|α1 |2 ∆Ω2. (3.45)

Using Eq.(3.43) to remove |α1 |2 and |β1 |2, we get

ωs = ω1 +
2g0
Γ
|A1 |2 (∆Ω1 + ∆Ω2)︸          ︷︷          ︸

ωp−ωc−2ΩB

−γ
Γ
∆Ω2, (3.46)

ωc =
ω2 +

γ
Γ
(ωs −ΩB)

1 + γ
Γ

.. (3.47)

Assuming P = ~ωpγex |A1 |2, and we know that ω1, ω2, ωp, ΩB are independent of
power, we have,

dωc

dP
=

γ/Γ
1 + γ/Γ

dωs

dP
, (3.48)

dωs

dP
=

2g0
~ωpγexΓ

ωp − ωc − 2ΩB

1 + γ/Γ
1+γ/Γ +

2g0P
~ωpγexΓ

γ/Γ
1+γ/Γ

. (3.49)
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Figure 3.12: Thermal tuning of the backaction under pump power dithering. a, The
tuning curve of the dual-SBL beating frequency under cascaded laser backaction with a
small power dithering. The SBL beating frequency is sensitive to the temperature due to the
existence of the backaction. b, The polarity and amplitude of the frequency shift depending
on the temperature when a small saw-tooth signal modulates the pump power. The power
dithering provides a small-signal temperature indicator for the feedback. Inset, the system
is temperature stabilized by a 1W LED and TEC by using the dithered amplitude of the
SBL beating frequency shift as a feedback signal. The long term drift is suppressed with a
time constant around 10 seconds. The short term fluctuation (around second-level) becomes
larger due to the slow thermal response. Fast thermal control is needed to suppress the drift
below 10 seconds.

Near the threshold, we can take 2g0 |A1 |2 = γ. Eq. (3.49) becomes

dωs

dP
=

1
1 + γ/Γ

2g0
~ωpγexΓ

(
ωp − ωc − 2ΩB

)
. (3.50)

If we consider the temperature dependency of the lasing mode near the threshold,
and γ/Γ � 1, we have

∂2ωs

∂P∂T
≈ −4g0
~ωpγexΓ

(
d∆ωB

dT
− dΩB

dT

)
, (3.51)

d∆ωB

dT
=

(
−1

n
dn
dT
− αL

)
∆ωB, (3.52)

where ∆ωB = ωp−ωs ≈ ωs−ωc ≈ ω0−ω1. For the silica glass, α = 0.51×10−6/K
and dn/dT = 11.6× 10−6/K . Putting the values into the equation (g0/2π = 3 mHz,
Γ/2π = 30 MHz, γex/2π = 2 MHz, ωp/2π = 193 THz, dΩB/dT = 2π × 1 MHz/K,
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d∆ωB/dT = 2π × 100 kHz/K), we get the theoretical estimation, 250 kHz/(K.mW).
According to the experiment (Figure 3.11), this value is around 140kHz/(K.mW),
which is deviated by a factor of 2. This deviation comes from two factors. First, the
accuracy of the estimated g0 and ΩB is limited. Second, the conversion efficiency
from the pump power to the cascaded SBL power is not ideal.

To estimate g0 (in the unit of rad/s), we use the following equations[47]:

g0 ≈
~ω3

PclampQTQE
(3.53)

≈
4π∆νclamp

nT
, (3.54)

where Pclamp is the clamping power of SBL without cascade, QT (QE ) the total
(external) quality factor,∆νclamp the full-width-half-maximumof the linewidth under
clamping, nT the thermal quanta of the phonon.

We further use power dithering to generate the temperature indicator (Figure 3.12).
The polarity and amplitude of the indicator is resolved by a slow saw-tooth power
dithering. Furthermore, the fast sinusoidal power dithering ( fd = 200 − 500 Hz)
generates a temperature-dependent feedback signal by a locking amplifier. Using a
servo to control the 1WLED and TEC, we stabilize the long termmodal temperature
(> 10 seconds) to several-mK level. Currently, the thermal response is slow, so the
short term (second-level) fluctuation becomes larger. A fast actuator is needed to
stabilize the short term thermal drift further.

3.6 Conclusion
We investigate the physics of the counter-pumped stimulated Brillouin laser (CP-
SBL), and our model captures the mode-pulling effect, dissipative coupling, Kerr
nonlinearity, and Sagnac shift. The resulting Adler equation recovers the high
harmonic contents in the beating spectrum. In addition, we use frequency dithering
to double the sensitivity of the rotation and identify the drift sources. Also, we use
the backaction of the cascaded Brillouin laser to generate a temperature indicator
by power dithering. By using power feedback, the long term temperature is actively
stabilized. With the theoretical model developed in this section, we demonstrate the
performance of Sagnac sensing by the CP-SBL gyroscope in the next chapter.
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C h a p t e r 4

COUNTER-PUMPED BRILLOUIN LASER GYROSCOPE

Counter-propagating lightwaves within a closed rotating loop experience different
round-trip propagation times as a result of the Sagnac effect. This time difference
can be precisely measured using optical interference. Moreover, it can be greatly
increased by creating very long real or effective path lengths, as is possible using
an optical fiber or optical resonators. Modern optical gyroscopes use this favorable
combination of sensitive time difference measurement with low-optical-loss path
length enhancement to realize accurate rotation measurement. The transfer of
this powerful discrete technology to a solid state chip-based form has received
considerable attention for some time. Such chip-based Sagnac gyroscopes could
potentially offer high performance in an inherently rugged structure. They would
also enable a more scalable manufacturing process as enjoyed by micro-electrical-
mechanical gyroscopes that are used widely in consumer products. However, until
quite recently, monolithic gyroscopes have been limited in performance on account
of the lack of waveguide and large-scale optical resonators with a sufficiently low
optical loss. The development of monolithic waveguide and resonator platforms
with over a 100-fold reduction in optical loss has started to change this situation.
Analogs of fiber-optic, passive-resonant and ring-laser gyroscopes in compact and
often monolithic form have been reported. In this work, we report a monolithic ring
laser gyroscope using counter-propagating Brillouin lasers. The device performance
is explored, including measurement of the Earth’s rotation rate.

Unlike an earlier chip-based Brillouin laser gyroscope which operated in cascaded
mode[12], the current device operates in a near-degenerate fashion similar to com-
mercial ring laser gyroscopes. This scheme is advantageous for signal processing
and ultimate system simplicity as the readout is around audio rates as opposed to
microwave X-band rates. However, in this configuration, the device also becomes
susceptible to a back-scatter induced locking effect that is well known in commercial
ring-laser gyroscope systems. In commercial systems, a mechanical dithering
approach is used to break the locking effect. In the current work, we demonstrate
a solid-state unlocking approach that relies upon the physics of the underlying

This chapter was adapted from the paper, Y.-H. Lai, et al., “Earth rotation measured by a
chip-scale Brillouin laser gyroscope,” arXiv preprint (2019).
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Brillouin process. This unlocking approach leverages the Brillouin phase matching
condition and related pulling phenomena in a new way to induce dispersion that is
distinct for the clockwise and counter-clockwise Brillouin laser waves. Beyond a
critical level of Brillouin-induced dispersion, the system is unlocked and gyroscope
operation is possible.

4.1 Offset-counter-pumping experiment

Figure 4.1: Packaged 36mm-diameter silica resonator. The 36mmwedge silica resonator
was coupled with a polarization-maintained fiber taper waveguide and packaged in a brass
package to minimize the thermal fluctuation, acoustic noise, and air flow. A TEC is attached
beneath the sample so the temperature can be controlled. Inset: The silica resonator is
attached with the fiber taper and characterized before packaging. (Photo: Yu-Hung Lai)

To make the gyroscope, we first fabricate a silica wedge resonator on a silicon
chip by oxidation, lithography, HF wet-etching, and XeF2 dry-etching[67]. Then, a
phase-maintained fiber taper waveguide[59, 60, 68] is coupledwith the resonator and
packaged together in a brass box (Figure 4.1). The optical resonator has a loaded-
quality-factor above 100 M, and the FSR is 1.808 GHz for a 36.0 mm-diameter
resonator.

To counter-pump the gyroscope, we use an external-cavity diode laser (ECDL)
amplified by an erbium-doped fiber amplifier (EDFA). The laser is split into two
pumps and frequency shifted by acoustic-optical modulators (AOMs) independently.
The first pump is phase modulated to create a Pound-Drever-Hall error signal for
center-locking to the cavity mode[69]. The second pump has a pump detuning
frequency (∆νp) relative to the first pump. Both pumps are actively stabilized to
minimize the power drift. Then, the counter-propagating pumps excite their own
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corresponding SBLs in the resonator. The SBLs recombined on a photodetector
(PD) to generate an SBL beating frequency (∆νs) at audio frequency. In addition,
the copropagating pump and SBL beat on a high-speed PD to generate pump-SBL
beating at microwave frequency. The readout signals are recorded by an electrical
spectrum analyzer (ESA) or by a frequency counter (FC). Sometimes an additional
optical spectrum analyzer (OSA) is added in the optical line to resolve the pump
powers and SBL powers. Thewholemodulation system is enclosedwithin a shielded
environmental chamber to passively suppress the temperature drift (Figure 4.2).

Figure 4.2: Offset-counter-pumped SBL gyro system. The ECDL amplified by the EDFA
is PDH-locked to the microcavity. The independent AOMs control the pump detuning
frequency, and actively stabilize both pump powers. The gyroscope package is enclosed
in a high-permeability magnetic shield to remove potential magneto-optical Faraday-effect
induced nonreciprocity[70, 71]. The whole gyro modulation system is enclosed in an
environmental chamber tominimize the temperature drift. The readout signals aremonitored
by PDs, and examined by the FC and ESA. PM: phase modulator, PI: proportional-integral
servo, RF: radio frequency.

The full model of the SBL beating frequency under rotation is

∆νs =
1

1 + γ/Γ

√[
γ

Γ
∆νp −

DΩ
ngλ
+
η∆PSBLλ

2πγex hc

]2
− 4

( κ
2π

)2
, (4.1)

where ∆νs is the fundamental SBL beating frequency, ∆νp the pump detuning
frequency, γ/2π the cavity linewidth, Γ/2π the SBS gain bandwidth, η/2π the
nonlinear frequency shift per photon, γex/2π the photon decay rate to the output,
and κ/2π the dissipative coupling rate. All units are in Hertz. In addition, D is
the disk diameter, ng is the passive modal group refractive index, λ is the SBL
wavelength, Ω is the rotation angular velocity, ∆PSBL is the output SBL power
difference measured by OSA, h is the Planck’s constant, and c is the speed of light.
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4.2 Sinusoidal rotation measurement
To demonstrate the capability of the gyroscope, we operate the gyro far away
from the locking zone (∆νpγ/Γ � κ/2π) to minimize the interaction from the
dissipative coupling. We also balance the SBL powers by centering the locking
zone (∆PSBL → 0). When we apply a small sinusoidal rotation to the gyroscope,
the gyro readout becomes

∆νs ≈
1

1 + γ/Γ

(
γ

Γ
∆νp −

DΩ
ngλ

)
. (4.2)

The Sagnac factor is calculated by

S ≡
����d∆νs

dΩ

���� = 1
1 + γ/Γ

D
ngλ

. (4.3)

The Sagnac factor of the counter-pumped Brillouin laser gyroscope is similar to
its passive counterpart, resonator micro-optical gyroscope (RMOG), but has an
additional mode-pulling correction term, 1/(1 + γ/Γ).

Figure 4.3: Sinusoidal rotation response of an 18mm gyro. We use a piezo-electric
stage to apply 10 Hz sinusoidal angular modulation on the gyro package. The rotation
amplitudes are 690◦/h and 21◦/h, respectively. There is a 90◦ phase shift between the
angular displacement (blue trace) and the gyro readout, which tracks the angular velocity
(red trace). The experiment agrees with the corrected Sagnac theory (black dashed curve)
in Eq. (4.3). The traces are averaged by 240 seconds.

In the experiment, we fix one end of the gyro package at a pivot point and put the
other end on a PZT stage. Then, we apply a small sinusoidal rotation displacement
on the gyro package and check the gyro readout simultaneously. Both the rotation
vector and the gyro surface vector are parallel, so the external rotation is fully
coupled to the gyroscope.
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We first verify the gyro readout signal from the time domain. We use a voltage-
controlled oscillator (VCO) to track the frequency readout and use the oscilloscope
to measure the SBL beating frequency change in an 18mm gyro (Figure 4.3). The
gyro tracks the angular velocity so there is a 90◦ phase shift between the angular
displacement and the gyro readout. The frequency shift agrees with the prediction
calculated in Eq. (4.2).

Figure 4.4: Sensitivity and Sagnac factor of a 36mm gyro. a, The fast-Fourier-transform
(FFT) spectrum of the gyro readouts after 200 seconds of measurements. The sinusoidal
rotation amplitude is clearly captured by the modulation peak at 100 mHz. The circles
indicate the peak position. The white noise level spans from 0.08 to 10 Hz. Inset: The
amplitude of the frequency shift to the external sinusoidal rotation. Red line: the corrected
Sagnac factor predicted by the theory. Blue dots: the 5-measurement average. The error bars
capture the standard deviations. b, The quantitative verification of the Sagnac correction
factor. The mode-pulling effect in the SBL process induces a small dispersion such that
the Sagnac factor in an active resonator (red line and blue dots) is smaller than the Sagnac
factor in a passive resonator (black dotted line). The pump detuning frequency ∆νp = 1
MHz is much larger than the dissipative coupling rate, so the coupling effect is negligible.
The rotation modulation frequency is 500.0mHz. The error bar is smaller than the dot size.

Next, we check the sensitivity limit of the gyro from the frequency domain. We
apply 100 mHz pure sinusoidal rotation on a 36mm gyro and record the data by
the frequency counter. The gyro signal is resolved from the fast-Fourier transform
(FFT) spectrum. The spectra with peak rotation rate from 5 to 40◦/h are captured
(Figure 4.4a). The reference signal also shows a white noise level from 0.08 to
10Hz. The relation between the applied rotation amplitude and the peak frequency
shift of the gyro readout agrees with our model.

Last, we verified the existence of the mode-pulling correction factor in the Sagnac
factor in Eq. (4.3). We applied a large sinusoidal rotation to measure the Sagnac
factor against the theories (Figure 4.4b). In the experiment, the corrected Sagnac



38

factor in an active SBL gyro is smaller than the conventional Sagnac factor of a
passive RMOG gyro by an additional mode-pulling correction factor. The mode-
pulling correction factor can be viewed as the dispersion contribution from the SBS
gain to the passive modal group refractive index. According to Eq. (4.3), the
estimated passive modal refractive index ng = 1.47± 0.01, which is consistent with
the value calculated from the cold-cavity FSR, ng(FSR) = 1.466 ± 0.004.

Both the Sagnac factors of the SBL gyro and the RMOG gyro preserve a group
refractive index term. This group refractive index term, however, is not present in
an interferometric optical gyroscope.

4.3 Schawlow-Townes linewidth, size effect, and drift reduction
In this section, we check the performance of the counter-pumped SBL gyroscope.

Figure 4.5: Size effect and drift compensation. a, Allan deviations of 18mm- and 36mm-
gyroscope. Doubling the size of the gyroscope has a three-fold improvement: first, the
minimal Schawlow-Townes linewidth is reduced; second, the Sagnac factor doubles; third,
the bias drift is suppressed due to the larger mode volume. The overall performance of
the gyroscope is boosted by at least 5×. ARW: angular random walk. b, In the 36mm-
diameter gyroscope, we calculate the Allan deviations of the SBL beating frequency and
the corrected gyro readout. The corrected gyro readout is post-processed by removing the
pump-SBL beating correlated part from the SBL beating frequency. Since the pump-SBL
beating tracks the modal temperature of the SBL modes, the long term drift is suppressed
after the compensation algorithm. The error bars show the standard deviation. Inset: the
frequency drift traces in the time domain.

Schawlow-Townes linewidth
In a 36mm-diameter gyroscope, the saturated SBL beating linewidth is less than
a Hertz. The narrow linewidth is caused by two reasons. First, the intrinsic SBL
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linewidth is Schawlow-Townes noise limited[48]

∆νST =
~ω3

4πPSBLQTQE
(nT + NT + 1) (4.4)

where the∆νST is the Schawlow-Townes linewidth of the SBL, nT the thermal quanta
of phonons, NT the thermal quanta of SBL photons, ω the angular frequency of the
SBL, PSBL the SBL power, QT and QE the total and external Q factors. If we
assume the laser wavelength is 1.55µm, PSBL = 1 mW, QT ≈ QE ≈ 130 M, and the
resonator is at room temperature (T = 300 K, nT = 578, NT � 1), then ∆νST = 0.5
Hz. Second, the counter-propagating SBLs circulate in the same cavity mode, so
most of the common noise is canceled by the beating process. The common drift
from the external fluctuations is suppressed, so the bias drift of the gyro readout is
low.

Size effect
We characterize the gyro performance by calculating the Allan deviation of the gyro
readout. The Allan deviation is calculated by

σν (τ) ≡

√√√
1

2 (M − 1)

M−1∑
i=1
(νi+1 − νi)2 ≡ S × σΩ (τ) , (4.5)

where νi is the measured frequency at each timestamp, τ the gate time, and M the
number of sampling points subject to τ, and S the Sagnac factor. The error bars
show the standard deviations of the measured Allan deviations at corresponding
gate time.

We check the performance of the 18mm and 36mm gyro (Figure 4.5a). The left
part of the traces has a slope equal to −1/2. This part is the angular random walk
(ARW) dominant region, and the gyro readout is improved by longer averaging time.
The center part of the traces has a slope equal to 0. The value of the lowest point
is called bias drift, which is the limit of achievable sensitivity by averaging. The
right part of the traces has a slope equal to 1. The slope is called ramp coefficient,
which is dominated by the linear thermal drift. In this region, the long averaging
diverges. Suppressing the drift source in the system is the key to improve the gyro
performance.

Furthermore, doubling the size of the gyro enables an overall improvement of the
performance. This improvement is caused by three reasons. First, the saturated
Schawlow-Townes linewidth (before cascaded lasing) is narrower in a larger gyro,
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so the frequency sensitivity is enhanced. Second, doubling the physical dimension
doubles the Sagnac factor. Third, other drift sources (e.g. power and temperature)
are suppressed because the mode volume is larger. The 36mm gyro has ARW at
0.068◦/

√
h and the bias drift at 3.6◦/h.

Drift reduction algorithm
To further suppress the drift, we use pump-SBL beating frequency to track the drift
of the SBL modal temperature and removes the correlated components from the
dual-SBL beating frequency by post-processing. The correlation removal algorithm
calculates the corrected gyro readout by the following process:

1. Both the linear frequency drift and mean frequency in the dual-SBL beating
and pump-SBL beating are removed (blue and yellow traces in the inset of
Figure 4.5b).

2. The algorithm calculates the correlation factor between the dual-SBL beating
and pump-SBL beating from the time domain trace.

3. The correlation part of the pump-SBL beating is removed from the dual-SBL
beating by minimizing the standard deviation of the gyro readout signal (red
trace in the inset of Figure 4.5b).

We confirm that the rotation signal only presents in the dual-SBL beating and doesn’t
exist in the pump-SBL beating by monitoring the traces with an external sinusoidal
rotation Ωpk > 800◦/h. Therefore, this method fully preserves the original rotation
signal and suppresses the long-term drift. After post-processing, the Allan deviation
becomes flat beyond 100 seconds (Figure 4.5b).

As an aside, the temperature and the Kerr nonlinearity-induced drift are both
observed in the gyro readout. The temperature drift is suppressed by the passive
insulation. The Kerr nonlinearity induced drift is minimized by actively stabilizing
both pump powers, and by centering the locking zone to balance the SBL powers.

4.4 Earth’s rotation measurement
Figure 4.6 shows the conceptual illustration of the Earth’s rotation measurement
by a resonator laser gyroscope. When the gyroscope is toward North and South,
the effective cavity round-trips seen by the clockwise (CW) and counterclockwise
(CCW) lights are different due to the Earth rotation. This round-trip difference



41

Figure 4.6: The Earth’s rotation measured by the resonator laser gyroscope. The
Earth’s rotation is detected from the laser beating frequency change (δν) when the gyroscope
is switching back and forth between North and South. There is no Earth rotation induced
Sagnac shift if the gyroscope is toward East and West. Solid curve: cavity mode. Solid
arrow: laser mode with Sagnac shift. Dashed line: laser mode without rotation. CW:
clockwise. CCW: counterclockwise.

causes the frequency splitting of the passive cavity modes, and the corresponding
laser frequencies are shifted accordingly. When the counter-propagating lasers have
an offset, both the magnitude and direction of the rotation are resolved by tracking
the beating frequency change, δν. In contrast, no rotation couples into the gyroscope
toward East and West, so the beating frequency change is zero.

Measuring the Earth’s rotation is a milestone for gyroscope development, not only
because the measurement proves the sensitivity of the gyroscope, but also because
the system drift is suppressed to a certain level such that the gyro shows the potential
for a field test and North-finding. In our experiment, the full gyro system is installed
on top of an automated air-bearing rotation stage (Figure 4.7). The rotation stage
is installed firmly with a vibration absorbing pad on the ground to minimize the
vibration noise and rotates freely on the horizontal surface. The gyro surface is
vertically aligned (tilt angle < 0.1◦) to minimize the stage rotation induced signal.
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Figure 4.7: Full rotation system. To measure the Earth’s rotation, we install the full
system on an automatic air-bearing stage. The packaged gyro is installed in a damped and
shielded environmental chamber. The gyro axis is well-aligned so the coupling from the
stage rotation is minimized. Also, the whole system is well-balanced to minimize wobbling.
During measurement, the stage rotates toward specified directions and then stabilizes until
the next cycle begins. We retrieve the stabilized data for analysis. (Photo: Yu-Hung Lai)

The system is balanced to minimize wobbling during rotation. The gyro orientation
is flipped by 180◦ every 60 seconds. In the first 15 seconds, the full system rotates.
In the following of 45 seconds, the system stops moving and is stabilized. We
retrieve 30 seconds of data from each stabilized session, and run the drift reduction
algorithm for the overall trace. Then, the shifts of the gyro readout at different
orientations are measured.

When the orientation of the gyroscope changes from North to South locally, the
gyro axis and Earth axis have an angle equal to the latitude (34.1◦ at Caltech). The
frequency shifts are normalized into the measured Earth rotation rates with latitude
correction. Furthermore, we switch the sign of the detuning, such that the polarity of
the frequency shifts reverses according to our model. We compare the North-South
data and East-West data to check the validity of the measurement. Each data set is
measured in a single trace without interruption.

The results show the opposite polarity in the North-South measurement, and the
near zero response in the East-West measurement (Figure 4.8). According to the
rate change measured in the experiment, the averaged Earth’s rotation vector is
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15 ± 10◦/h toward true North, which is consistent with the prediction. The current
precision is limited by the sensitivity and drift of the gyroscope. This is the first time
in history that the Earth’s rotation is measured by a chip-based optical gyroscope.

4.5 Conclusion
We measure the Earth’s rotation by flipping a chip-based microresonator Brillouin
laser gyroscope between North and South. The sensitivity and bias drift of the
gyroscope are sufficiently low such that the rotation below Earth’s rate is resolved.
In the future, suppressing the cascaded lasing to reduce the Schawlow-Townes
linewidth may further improve the sensitivity of the gyroscope. Actively stabilizing
the modal temperature may further reduce the thermal drift. This gyroscope paves
the way towards an all-optical inertial guidance system that is both rugged andwhose
manufacturing process is scalable.
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Figure 4.8: The Earth’s rotation measurements. a, The North-South measurement
(top) and the East-West measurement (bottom) with negative pump detuning (∆νp,∆νs <
0). The Earth rotation is captured in the North-South measurement, while the East-West
measurement has near zero response. Both measurements have similar residual long term
drift. b, The Earth measurement with positive pump detuning (∆νp,∆νs > 0). Switching
the relative frequency of the CW and CCW lights changes the sign of the Sagnac shift
as predicted. (Dots/Thick lines/Dotted line: the 1s-averages/30s-averages/full-average of
the gyro readout in each direction. The left axis shows the gyro readout in the frequency
shift. The right axis is the rotation velocity normalized by the latitude correction and the
corrected Sagnac factor.) Left Panels: The statistics of frequency changes of switching
the gyro orientation. Each count is calculated by the 1s-average frequency change between
consecutive cycles. (Bars: the histogram of frequency change of 1s-averages. Dashed
curve: the Gaussian envelope. The error bar shows the standard deviation.)
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C h a p t e r 5

EXCEPTIONAL POINT ENHANCED SAGNAC EFFECT

Exceptional points (EPs) are special spectral degeneracies of non-Hermitian Hamil-
tonians governing the dynamics of open systems. At the EP, two or more eigenvalues
and the corresponding eigenstates coalesce [72–74]. Here we introduce a physical
system for the study of non-Hermitian physics and nonlinear optics with precise
control. Because this system dissipatively couples counter-propagating lightwaves
in a single high-optical-Q resonator, it also functions as a sensitive gyroscope
for measurement of rotations. As a result, our system is used to test the recent
prediction of the EP-enhanced Sagnac effect [75, 76]. We are able to observe a
Sagnac scale factor boost by over 4× by measuring the rotations applied to the
resonator. Moreover, the amount of boost can be controlled by adjustment of system
bias relative to the EP, and modeling confirms the measured enhancement. Besides
verifying EP physics in a new system and application area, this work has practical
importance for enhancement of optical gyroscope performance.

5.1 Introduction of exceptional point
The use of optical microresonators as sensors is being studied across a wide range
of applications including biomolecule [77–79] and nanoparticle detection [80],
temperature measurement [81], and rotation measurement [12, 13, 15–17]. A
new approach to enhance their sensitivity uses the physics of exceptional points
[75, 76, 82, 82–86]. Traditionally, a perturbation to an optical microresonator (or to
its reference frame as in the case of a gyroscope) introduces a linewidth change, a
frequency shift, or a resonance frequency splitting that monotonically changes with
the strength of the perturbation. However, exceptional points alter this situation by
introducing of a square-root dependence into the Sagnac scale factor that can boost
the sensor response [82].

In this work, we experimentally and theoretically demonstrate the existence of EPs
in a microresonator system controlled and probed using the Brillouin process [28].
As shown in Figure 5.1a, state vectors of the system are clockwise and counter-
clockwise lightwaves, and phase matching of two independently tuned pump waves

This chapter was adapted from the paper, Y.-H. Lai, et al., “Enhanced sensitivity operation of
an optical gyroscope near an exceptional point,” arXiv:1901.08217 (2019).
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Figure 5.1: Brillouin control of state vectors in a non Hermitian system. a, The dual-
stimulated Brillouin laser process in a microresonator. Center: The green (blue) solid
curve represents pump 1 (pump 2) with angular frequency ωp1 (ωp2) and the red (yellow)
solid curve represents SBL 1 (SBL 2) with angular frequency ωs1 (ωs2). The orange wavy
line represents the acoustic phonons with angular frequency Ωphonon. Left: The Brillouin
energy and the momentum conservation constraints (phase matching) are illustrated for the
scattering of a pump wave into a Stokes wave. Right: CW and CCW modes experience
dissipative coupling at rate κ. This coupling creates eigenmodes that map to a Bloch sphere
containing dual EPs (black dots). The trajectories on the Bloch sphere show the evolution
of two eigenmodes (red for SBL1 and yellow for SBL2) under Brillouin control when the
pump detuning decreases from +∞ to −∞. The low-loss and high-loss eigenmodes inside
the locking zone are plotted in solid and dashed black curves, respectively. b, Efficient
laser action requires that each Stokes mode (black with linewidth γ and separated from the
pump by a multiple of the cavity FSR) lies within the Brillouin gain band (orange with
linewidth Γ) which, through the phase matching condition, is shifted relative to the pump by
Ωphonon = 4πncs/λp (refractive index n, speed of sound in silica cs and pump wavelength
λp). In this work, the FSR is ∼1.8 GHz so that 6×FSR approximately matched the Brillouin
shift. Dispersion from the Brillouin gain pulls the Stokes lasing modes by different amounts
towards the gain center on account of the difference ∆ωp in pump angular frequencies.
c, The blue solid curve (red dashed curve) shows the dependence of the dual-SBL beating
angular frequency∆ωs versus the normalized pump detuning frequency∆ωp/∆ωc for κ , 0
(κ = 0) as per Eq. 5.4. The yellow wavy arrow represents the input rotation signal, while
the blue solid and red dotted wavy arrows represent the output signal with and without EP,
respectively. The inset shows the κ , 0 Sagnac factor normalized to the κ = 0 Sagnac factor,
indicating the enhancement near the EP.
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to these waves allows for separate control of their optical gain and dispersion for
precise manipulation of system state on the Bloch sphere. Moreover, the phase-
matching condition allows this control of the two state vectors to occurwithin a single
resonator. Brillouin scattering causes a pump photon with frequency ωpj to scatter
from a co-propagating acoustic phonon with frequency Ωphonon into a backward-
propagating Stokes photon with frequency ωsj . In the context of a resonator (and as
illustrated in Figure 5.1b), the associated phase matching condition requires that the
Brillouin shift frequency (Ωphonon) is close in value to a multiple of the resonator
free-spectral-range (FSR). This phase matching condition is readily achieved by
microfabrication control of resonator diameter and in effect locates a resonator
mode (the Stokes mode) within the Brillouin gain spectrum for efficient stimulated
Brillouin laser (SBL) action [48, 67]. Counter-pumping is performed on the same
resonant mode number (m) so that laser action on two counter-propagating Stokes
waves also occurs on one mode number (set to m-6 in this measurement).

To better reveal the non-Hermitian physics of this system, consider the equation of
motion which reads idΨ/dt = H0Ψ where Ψ = (α1, α2)T is the column vector for
the two laser modes and H0 is the non-Hermitian Hamiltonian governing the time
evolution:

H0 =

(
ω0 + i

(
g1 |A1 |2 − γ/2

)
iκ

iκ ω0 + i
(
g2 |A2 |2 − γ/2

)) (5.1)

In this expression, α1 (A1) and α2 (A2) represent the photon-number-normalized
amplitudes of the CW and CCW SBL (pump) modes, respectively. ω0 is the
unpumped frequency of the Stokes’ cavity mode, and γ is the cavity damping rate.
g j = g0/(1 + 2i∆Ω j/Γ) ( j = 1, 2) represents the Brillouin gain factor where g0 is
the gain coefficient, Γ is the gain bandwidth, and ∆Ω j = ωpj − ωs − Ωphonon is
the frequency mismatch with ωs the Stokes frequency, ωpj ( j = 1, 2) the pump
frequency, and Ωphonon the Brillouin shift [48]. The real part of the Brillouin
gain factor leads to amplification of the Stokes mode, while the imaginary part is
responsible for the mode-pulling effect. κ is the dissipative coupling rate between
two SBL modes.

In the absence of backscattering (κ = 0), the CW and CCW SBL processes are
independent because the Brillouin gain is intrinsically directional as a result of the
phase-matching condition (Figure 5.1a). The steady-state lasing condition requires
the power loss rate γ to be balanced by theBrillouin gain, which leads to the clamping
condition of the pump powers |A j |2 = γ(1 + 4∆Ω2

j/Γ2)/2g0 [48]. As shown in
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the Methods, these conditions remain valid for nonzero dissipative backscattering
(κ , 0) within the regime where EP-enhanced rotation measurement is performed
(the unlocked regime defined below). As a result, Eq. (5.1) simplifies above laser
threshold to the following form:

H0 =

(
ω0 +

γ
Γ
∆Ω1 iκ

iκ ω0 +
γ
Γ
∆Ω2

)
(5.2)

With the introduction of κ, the lasing system exhibits a frequency locking-unlocking
transition when varying the pump detuning frequency. The locking regime is
known in ring laser gyroscopes to create a sensing dead band for rotations [3]. In
the frequency unlocked regime, the two lasing modes oscillate with distinct angular
frequencies ωs+ and ωs−, which are the eigenvalues of the Hamiltonian (Eq. (5.2)).

ωs± − ωr =
γ/2Γ

1 + γ/Γ

(
∆ωp ±

√
∆ω2

p − ∆ω2
c

)
(5.3)

whereωr ≡ ω0+γ(ωp1 −Ωphonon)/Γ and ∆ωc ≡ 2Γκ/γ is defined as a critical pump
frequency detuning where the system state is at an EP. In deriving this result, it is
important to note that the Hamiltonian (Eq. (5.2)) depends weakly upon its own
eigenvalues through the appearance of ∆Ω1 and ∆Ω2 (see derivation in Methods).
The SBL beating frequency is readily extracted by taking the difference of the above
eigenfrequencies, ∆ωs ≡ |ωs+ − ωs− |:

∆ωs =
γ/Γ

1 + γ/Γ

√
∆ω2

p − ∆ω2
c (5.4)

This equation is plotted in Figure 5.1c. The dissipative coupling between the clock-
wise (CW) and counterclockwise (CCW) lasing modes induces second-order EPs at
critical pump-detuning frequencies |∆ωp | = ∆ωc where the eigenfrequencies as well
as the eigenmodes coalesce. For pump detuning |∆ωp | > ∆ωc the eigenfrequencies
bifurcate and the eigenmodes are an unbalanced hybridization of CW and CCW
modes. For pump detuning |∆ωp | < ∆ωc the eigenfrequencies (real part of the
eigenvalues) are equal but have different loss rates.

5.2 Enhancement near the exceptional point
To verify the EP physics predicted above, a high-quality-factor (Q ≈ 108) silica
wedge resonator [67] is counter-pumped as shown in Figure 5.1a at distinct fre-
quencies determined by radio-frequency modulation of a single laser (∼1552.5 nm).
Coupling into the resonator is realized from both ends of a fiber taper [59, 87].
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Figure 5.2: Measurement of the eigenmode properties. a, Typical measured dual-SBL
beating spectrum. b, Typical pump-SBL beating spectrum with frequency axis shifted
approximately 10.845 GHz to center the pump1-SBL1 beating peak. The individual pump-
SBL beating peaks are identified. c, Measured dual-SBL beating frequency versus pump
detuning frequency (blue circles). Red solid curve is fitting (γ/Γ = 0.073 and κ = 1.80kHz)
and black dotted line corresponds to κ = 0 (γ/Γ = 0.073). The data have a slope 1/2 (slope
1) near (away from) the EP in the log-log plot provided in the inset. This data used another
mode with a larger κ compared to panel d. d,Measured shifted frequencies of the two SBLs
(ωs± − ωr )/2π versus pump detuning frequency. Theoretical values of (ωs+ − ωr )/2π and
(ωs− − ωr )/2π with γ/Γ = 0.076 and κ = 1.23kHz are plotted as red and yellow lines,
respectively. The experimental data of the shifted SBL1 (SBL2) frequency is shown as
blue (purple) circles. The inset shows the measured power ratio of CCW components of
the lasing modes (blue circles) obtained by analysis of spectral components in panel b and
agrees reasonably well with the theoretical prediction (red solid curve).

One of the pump frequencies is Pound-Drever-Hall locked to a resonator mode
by feedback control to the laser. The second pump frequency is then tuned for
state vector control. The two pump powers are stabilized via power feedback.
An electrical spectrum analyzer was used to measure the photo-detected dual-SBL
beating frequency ∆ωs/2π (Figure 5.2a) and the SBL-pump beating frequency
(Figure 5.2b). Plots of these frequencies versus the pump frequency detuning are
given in Figure 5.2c and Figure 5.2d. Comparisons with Eq. (5.3) and Eq. (5.4)
are provided and are in good agreement with measurement. Moreover, the ratio of
the CCW components in the eigenmodes was measured from the intensity of the
CCW-pump beating with the SBL signals (see Method for analysis) and is plotted
as the inset of Figure 5.2d. There is a reasonable agreement between the model and
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measurement. Within the locked regime, only one Stokes mode is lasing, so this
measurement is no longer possible.

When the resonator experiences an angular rotation rate Ω (positive for CW direc-
tion), the Sagnac effect further lifts the degeneracy of the CW and CCW modes by
shifting the CW and CCW mode frequencies by ∆ωSagnac = ∓2πDΩ/ngλ where D

is the resonator diameter, ng is the group index of the passive cavity mode, and λ is
the laser wavelength [12]. This modifies the SBL beating frequency as follows:

∆ωs =
γ/Γ

1 + γ/Γ

√(
∆ωp − Γ∆ωSagnac/γ

)2 − ∆ω2
c (5.5)

Figure 5.3: Measured Sagnac scale factor S(∆ωp) compared with model. The blue
dots are data (each point is an average of four measurements) while the red curve is the
theoretical prediction using Eq. (5.6). The mode-pulling factor 1/(1+γ/Γ) slightly reduces
the Sagnac factor at large pump detuning. The black dashed line gives the conventional (non
EP-enhanced) Sagnac factor. The inset shows a log-log plot of 5 data points near the EP
with a slope of -1/2, further verifying that the Sagnac factor enhancement is proportional to
(∆ωp − ∆ωc)−1/2.

Accordingly, the counter-pumped Brillouin system can serve as a gyroscope for
measuring the rotation signal Ω by monitoring the dual-SBL beating ∆ωs. For
comparison with measurements below, the Sagnac scale factor S is calculated as the
derivative of the SBL splitting frequency with respect to the applied rotation rate
amplitude Ω:

S =
∂∆ωs

∂Ω

����
Ω=0
=

2π
1 + γ/Γ

∆ωp√
∆ω2

p − ∆ω2
c

D
ngλ

(5.6)

where a linear response requires Γ∆ωSagnac/γ � ∆ωp. In this equation, the
coefficient 1/(1 + γ/Γ) is a correction from the mode-pulling effect, and the factor



51

∆ωp/
√
∆ω2

p − ∆ω2
c is the enhancement caused by the square-root dependence at the

EP. This enhancement originates from the steep slope of the response curve near the
EP (Figure 5.1c) so that the Sagnac scale factor surpasses the conventional value.

To measure rotations and verify the EP enhancement, the resonator was packaged in
a small metal box with one edge hinged and the opposing end attached to a PZT stage
in a manner similar to that used in ref. [12]. As an aside, that reference used a single
pump in a cascaded SBL arrangement for rotation sensing. Such an arrangement,
however, excludes EP physical effects because the underlying states occur on distinct
cavity longitudinal modes. To create a precise rotation, a sinusoidal oscillation was
generated by the PZT at a 1 Hz rate with a fixed amplitude (equivalent to 410
deg/h). The resulting time-varying dual-SBL beating frequency was recorded using
a frequency counter, and the amplitude of the modulated frequency was extracted
by applying a fast-Fourier transform to the counter signal. Frequency modulation
amplitudes were recorded at a series of pump frequency detunings. The resulting
Sagnac scale factor (i.e., the SBLdifference frequencymodulation amplitude divided
by the applied rotation-rate amplitude) is plotted in Figure 5.3. A boosted Sagnac
scale factor by up to 4× compared to the non-EP-enhanced case is observed when
operating close to the EP (i.e., near the critical detuning frequency). There is good
agreement between Eq. (5.6) and the measurement as shown in Figure 5.3.

While the Sagnac scale factor is observed to increase near the exceptional point,
fluctuation mechanisms also exert a greater impact on the measurement leading to
relatively larger error bars. At present, these are the result of technical noise contri-
butions associated with thermal and pumping power fluctuations. The consideration
of fundamental limits to sensor signal-to-noise near an exceptional point is a very
recent area of theoretical study [88]. With a reduction of technical sources of noise
in the present system, it should be possible to explore this issue.

5.3 Methods: Detailed derivation related to EP physics
Origin of the dissipative coupling
In a standing-wave mode basis, the optical loss induced by the fiber taper or any
other spatially localized absorption or dissipative scattering element will be different
for each mode and can be captured by the following contribution to the Hamiltonian:

Htaper =

(
−iγ1 0

0 −iγ2

)
. (5.7)
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Changing to a traveling wave basis (CW and CCW) by using the relation |Φ±〉 =
(|CW〉 ± |CCW〉/

√
2 gives the following Hamiltonian in the new basis,

Htaper =

(
−iγcommon 0

0 −iγcommon

)
+

(
0 iκ

iκ 0

)
(5.8)

where γcommon = (γ1 + γ2)/2 and κ = (γ1 − γ2)/2. The first term is the common
loss (out-coupling loss of the taper) while the second term is the dissipative
backscattering in Eq. (5.1).

Validity of clamping condition
Note that the Hamiltonian in Eq. (5.1) depends on its eigenvalues ωsj through the
Brillouin gain factor g j = g0/[1+2i(ωpj−Ωphonon−ωsj )/Γ]. However, by separating
the Brillouin gain factor into real part and imaginary part as follows:

Re(g j) =
g0

1 + 4
(ωpj
−Ωphonon−ωsj

)2

Γ2

(5.9)

Im(g j) = Re(g j)
[
1 − 2i

(
ωpj −Ωphonon − ωsj

)
/Γ

]
(5.10)

it can be seen that for mode pulling that is small compared to the cavity linewidth
(which is the case in this work), ωsj can be replaced by ω0 in the denominators of
Eq. (5.9) and Eq. (5.10), leaving the eigenvalue dependence only in the dispersive
term (numerator). Furthermore, by defining normalized quantities:

I j ≡
Re(g j)|A j |2

γ/2 , k ≡ κ

γ/2, npj ≡
ωpj −Ωphonon

γ/2 , x ≡ ωs

γ/2, x0 ≡
ω0
γ/2, r ≡ γ

Γ
,

the Hamiltonian reduces to:

H̃0 ≡
H0
γ/2 = x0I +

(
i (I1 − 1) + r I1(np1 − x) ik

ik i (I2 − 1) + r I2(np2 − x)

)
. (5.11)

The eigenvalues x± can be solved from det(H̃0 − xI) = Ax2 + Bx + C = 0 where

A = (1 + I1r)(1 + I2r),
B = 2i − 2x0 − (I1 + I2)(i − ir + x0r) − r(I1np1 + I2np2) + I1I2[2i + (np1 + np2)r],
C = k2 + (−i + x0)2 + (−i + x0)[I1(i + np1r) + I2(i + np2r)] + I1I2(i + np1r)(i + np2r).

Because the two eigenvalues x± = (−B ±
√

B2 − 4AC)/2 should both be real (i.e.,
above laser threshold operation), the following equations can be derived from
Im(x±) = 0,
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Im(B2 − 4AC) = 2r(r + 1)(I1 − I2)[I1I2r(np1 − np2) + I1(np1 − x0) + I2(x0 − np2)] = 0

(5.12)

Im(B) = 2r I1I2 + (I1 + I2)(1 − r) − 2 = 0 (5.13)

It can be obtained from Eq. (5.12) that I1 = I2. Inserting this result into Eq.
(5.13) gives I1 = I2 = 1 yielding |A j |2 = γ(1 + 4∆Ω2

j/Γ2)/2g0 where ∆Ω j =

ωpj − Ωphonon − ωsj . These are also the κ = 0 gain clamping conditions used to
simplify the Hamiltonian to the form given in Eq. (5.2). Numerical solution of
the eigenvalue equation confirms that this result holds for the unlocked regime. On
the other hand, numerical solution also shows that in the locked regime, only one
eigenvalue can be real for any combination of pumping powers (i.e., only one mode
lases in the locked regime). Moreover, low and high loss eigenvalues exist so that
one mode has a lower threshold pumping power. An equal pump power solution
(I1 = I2) is still possible for laser action, but this condition is no longer unique.

Characterization of eigenmodes
The eigenmodes of Eq. (5.2) are:

|Ψ+〉 =
1
N

©«
−i[

∆ωp/∆ωc +

√(
∆ωp/∆ωc

)2 − 1
]ª®®¬ (5.14)

|Ψ−〉 =
1
N

©«
[
∆ωp/∆ωc +

√(
∆ωp/∆ωc

)2 − 1
]

i

ª®®¬ (5.15)

where N is normalization. These lasing eigenmodes are valid in the uncoupled
regime of operation (

��∆ωp
�� > ∆ωc) and are hybrid modes of the original CW and

CCW modes. To make the data plot within the inset of Figure 5.2d the laser output
in the CCW direction (combination of two laser Stokes waves) was monitored. This
combined CCW field is given by:

|CCW〉 = 1
N′

{[
∆ωp/∆ωc +

√(
∆ωp/∆ωc

)2 − 1
]
|Ψ−〉 − i |Ψ+〉

}
(5.16)

Where N′ is another normalization. The ratio of powers of the components was
determined by heterodyning this field with a CCW pump field and then measuring
the respective Pump-SBL1,2 beat components on an electrical spectrum analyzer.
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The ratio of the powers in these beat frequency components is the ratio of the powers
in the CCW Stokes’ waves components:

Is2
Is1
=

������∆ωp/∆ωc
�� +√(

∆ωp/∆ωc
)2 − 1

����2 (5.17)

which directly follows from Eq. (5.16).

It is also interesting to note that in the locked regime (
��∆ωp

�� /∆ωc < 1) numerical
solution shows that eigenvector solutions having an equal admixture of CW and
CCW waves occur when I1 = I2, but at distinctly different threshold power levels
(i.e., the two states have different loss rates). Moreover, this pumping combination is
not unique so lasing solutions featuring an unbalanced admixture of CW and CCW
states are also possible. The (locked regime) equatorial trajectories shown in Figure
5.1 represent the low and high loss I1 = I2 trajectories (i.e., equal CW and CCW
admixture).

As an aside, the measurement in Figure 5.2c and Figure 5.2d use the beat note
spectra in Figure 5.2a and Figure 5.2b. There are additional lines in these spectra
that are believed to originate from nonlinear mixing in the Brillouin interaction (a
third order nonlinear interaction). This four-wave-mixing process becomes more
significant near the EP where the CW and CCW modes strongly interact with each
other. It impacts the intensity of the beating lines but leaves their frequencies
intact. As a result, data for the eigenmode components slightly fluctuate around the
theoretical value while the data of the pump-SBL and dual-SBL frequencies fit well
with the theory (see Figure 5.2c and d).

Kerr-induced shift
The Kerr effect shifts the resonance frequency by adding the following term into the
Hamiltonian:

HKerr =
©«
−η

(
|α1 |2 + 2 |α2 |2

)
0

0 −η
(
2 |α1 |2 + |α2 |2

)ª®¬ (5.18)

where η = n2~ω
2c/Vn2

0 is the single photon induced nonlinear angular frequency
shift. The corrected beating frequency (without rotation) reads:

∆ωs =
1

1 + γ/Γ

√[γ
Γ
∆ωp + η

(
|α2 |2 − |α1 |2

)]2
− 4κ2 (5.19)

The correction from the Kerr effect is therefore equivalent to shifting∆ωp by angular
frequency ηΓ(|α2 |2 − |α1 |2)/γ. In the experiment, this Kerr shift was minimized by



55

centering the locking zone at zero pump detuning by adjusting the two pump powers.
After that, the pump powers were locked so that the two SBL powers were balanced.
The subsequent pump detuning changes required to make the measurement affected
the SBL power, but only negligibly. Specifically, the Kerr shift is around 10s of
Hz after a pump detuning change by 200kHz. This is negligible in comparison to
the Stokes frequency separation changes measured in Figure 5.2c and Figure 5.2d.
Moreover, the dithering measurement in Figure 5.3 was insensitive to these constant
Kerr-induced shifts since it measured the amplitude of a sinusoidal rotation.

5.4 Conclusion
In summary, phase matching of Brillouin gain and dispersion in a microresonator
systemhas been shown to provide precise control of clockwise and counter-clockwise
laser modes near an exceptional point. This control and the inherent high relative
stability of the laser modes makes the possible observation of the EP-enhanced
Sagnac effect. By measurement of rotations with an approximate amplitude of one
revolution per hour, it was possible to observe boosts to the Sagnac scale factor by
up to 4× near the EP. This work, therefore, provides a new platform for studying
EPs in a nonlinear optical system while also demonstrating a potential path for
improvement of rotation measurement sensitivity.
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C h a p t e r 6

FIBER TAPER CHARACTERIZATION BY OPTICAL
BACKSCATTERING REFLECTOMETRY

Abstract
Fiber tapers provide a way to rapidly measure the spectra of many types of optical
microcavities. Proper fabrication of the taper ensures that its width varies suffi-
ciently slowly (adiabatically) along the length of the taper so as to maintain single
spatial mode propagation. This is usually accomplished by monitoring the spectral
transmission through the taper. In addition to this characterization method, it is also
helpful to know the taper width versus length. By developing a model of optical
backscattering within the fiber taper, it is possible to use backscatter measurements
to characterize the taper width versus length. The model uses the concept of a local
taper numerical aperture to accurately account for varying backscatter collection
along the length of the taper. In addition to taper profile information, the backscatter
reflectometry method delineates locations along the taper where fluctuations in fiber
core refractive index, cladding refractive index, and taper surface roughness each
provide the dominant source of backscattering. Rayleigh backscattering coefficients
are also extracted by fitting the data with the model and are consistent with the fiber
manufacturer’s datasheet. The optical backscattering reflectometer is also used
to observe defects resulting from microcracks and surface contamination. All of
this information can be obtained before the taper is removed from its fabrication
apparatus. The backscattering method should also prove useful for characterization
of nanofibers.

Introduction
Over the last decade, a remarkably wide range of new research areas and ap-
plications has emerged that relies upon high-quality-factor optical microcavities
[22, 23]. These include frequency microcombs [36, 37] including soliton mode-
locked microcombs [38–40], nonlinear parametric and stimulated oscillators [25–
27, 30], harmonic generation[41], Brillouin signal processing [28] and cooling
[29], cavity optomechanics [31–35], studies of physical symmetry [42, 43], cavity

This chapter was adapted from the paper, Y.-H. Lai, et al., “Fiber taper characterization by
optical backscattering reflectometry,” Opt. Express 25 (2017).
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quantum electrodynamics [44, 45], sensing [77–80], optical gyroscopes [12, 15],
and reference cavities [49, 50, 89]. Rapid prototyping and testing of both discrete
and monolithic resonators in the laboratory frequently make use of fiber tapers for
optical coupling [59, 87, 90]. Beyond rapid testing, thismethod provides controllable
loading of the resonator by variation of a coupling air gap [87], which is often
essential to understand performance optimization. Tapers are also intrinsically fiber
compatible so that their interface with pump lasers, detectors and, spectrometers
is straightforward. Outside of their use in microresonator research, fiber tapers
and the closely-related optical nanofiber are applied to trap atoms [91, 92], for
supercontinuum generation [93, 94], and in sensing applications [95, 96]. The
methods developed here should also prove useful in these applications.

A properly fabricated fiber taper can readily achieve both critical and over-coupled
operation with high ideality [59, 87, 97, 98]. Ideal tapers have two key features.
First, they are nearly single mode near the region at which optical coupling to the
resonator will occur. Second, they maintain propagation in a single spatial mode
as the fiber profile is reduced from a width of 125 microns (for SMF-28 fiber) to
a width of around 1 micron. This latter adiabatic condition requires that the taper
width varies slowly along its length [99, 100]. The adiabatic condition can be tested
by measuring coupling ideality [59] or monitoring the spectral transmission through
the taper [87, 98].

This work studies the application of optical backscatter reflectometry (OBR) to
characterize the width versus length of fiber tapers. Instead of using an optical
microscope (limited spatial resolution) or a scanning electron microscope (potential
taper damage risk) for point-wise profile examination, it is shown that modeling
combinedwith the OBR data can extract the taper profile with good accuracy (within
20% of the width profile obtained by measurement using an SEM). The OBR data
also provide information on imperfections along the taper. Significantly, the method
is nondestructive and can be appliedwhile the taper iswithin its fabrication assembly.
It is therefore useful when developing a taper pulling schedule, when using a new
fiber type for taper fabrication, in verifying taper pulling reproducibility, and for
identification of defects and contamination. It is possible to discern distinct regions
where the optical mode propagates primarily within the fiber core, the fiber cladding,
and finally the taper waist region. Rayleigh scattering coefficients are also extracted
using the backscattering model [101, 102] and the inferred values are consistent
with the scattering coefficients of the fibers.
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In the following sections, example OBR measurements are presented and compared
with the corresponding taper width versus length profiles obtained by scanning
electron microscopy. The model used to infer taper profile information from
backscatter data is then developed. Finally, the model is applied in combination
with OBR data to study several tapers.

6.1 Taper fabrication and backscattering reflectometry

Figure 6.1: Taper width versus position measurement and OBR measurement. a, A
composite image is presented for a fiber taper. The image was produced by stitching together
a series of scanning electron microscope (SEM) images as described in the text. The black
vertical lines in the image are 1 mm tick marks on a metal ruler and provide a reference used
to construct the image. The scale factors for the vertical and horizontal axes are different
and are provided in the legend. b,Width versus position profiles measured on two different
tapers are presented. The tapers were fabricated under the same conditions and measured
using the SEMmethod in panel a. c,OBR data for the two tapers in panel b. The consistency
between taper profiles and scattering traces verifies the reproducibility of the fabrication
system. d, Four sets of OBR data taken using one taper illustrate the consistency of the
OBR measurement.

To fabricate a taper, the plastic jacket is removed along a section of SMF-28 fiber,
and the two ends of the exposed glass fiber are attached to fiber holders in a chuck.
The holders are free to slide under the control of motorized translation stages.
The exposed fiber is heated with a ceramic microheater, and the motorized stages
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gradually pull the fiber at a speed of approximately 0.2 millimeters per second. The
taper waist width is adjusted by either changing the pulling length or by varying the
temperature of the microheater. After fabrication, the taper is left in its fabrication
apparatus, and backscatter characterization is performed at room temperature.

A scanning electron microscope (SEM) is used to image the taper profile as shown
in Figure 6.1a. The image is a composite of a series of scans. The vertical and
horizontal scales in the image are different (see scale bars in legend). To construct
the image, a fiber taper is mounted on a metal ruler with 1 mm tick spacings. The
ruler then functions as a reference to combine the SEM images together. Using
such images recorded for two tapers, width versus position plots were constructed
in Figure 6.1b. The plots closely match and verify the reproducibility of the taper
fabrication system. The vertical scale is logarithmic and also shows that (away from
the taper waist region) the taper width varies exponentially over a wide range of the
taper length. This behavior is expected on account of a well-defined softened region
of glass produced by the heater [98]. The narrow region of the taper has a length of
only a few millimeters in the present work. However, the backscatter method should
also be able to characterize structures having longer waist regions.

Backscatter reflectometry was performed using a LUNA OBR 4400. This instru-
ment measures backscatter strength versus position using the frequency domain
method. Optical frequency domain reflectometry uses swept-frequency coherent
interferometry to measure a device under test [103–106]. In the instrument, the
laser center wavelength is nominally 1566 nm, and the laser sweeping bandwidth is
88 nm. The highest spatial resolution setting along the propagation direction is 10
microns. OBR sweep signals are presented in Figure 6.1c, measured using the two
tapers from Figure 6.1b. The signals show a high level of consistency. In addition,
four OBR sweep traces performed on a single taper are shown in Figure 6.1d to
verify the repeatability of the OBR measurement.

6.2 Scattering modeling and simulation
Refractive-index fluctuations in the glass [107–109] and surface-roughness scatter-
ing in the taper waist region are the dominant sources of scattering. The resulting
backscattered light must be collected by the fiber waveguide so as to be guided to
the OBR instrument. The collection efficiency for this process has been analyzed
for single-mode optical fiber [101] and depends upon the local mode field diameter.
Fiber waveguides with smaller mode field diameters are more efficient in collecting
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the backscattered light, because they have a larger numerical aperture. The taper
adiabaticity condition makes it possible to introduce a local backscatter collection
efficiency (effectively, there is a local numerical aperture). The collection efficiency
results originally developed for standard optical fiber can then be applied to a fiber
taper where the mode field diameter is slowly varying.

To further explore the backscattering process, the simulated intensity profile of an
HE11 mode [110] along a taper is provided in Figure 6.2. Comparing the profile
with the measured backscatter data in Figure 6.1c, the initial backscatter level in
Figure 6.1c is determined by the refractive index fluctuations of the SMF-28 fiber
core region. As the core tapers down in width, there is an initial reduction in
the backscattering level that accompanies the expansion of the optical mode into
the surrounding glass cladding region. This reduction is expected on account of
the reduced optical backscattering collection efficiency with increasing mode field
diameter (i.e., reduced local numerical aperture). Then, when the taper width is less
than 50 microns, increasing confinement provided by the glass-air interface boosts
the backscattering collection efficiency. Since the mode field now extends well
outside of the fiber core, the backscattering signal in this region is dominated by
refractive index fluctuations within the fiber cladding. Finally, when the taper width
is around 3-4 microns, the glass-air interface scattering becomes dominant. Despite
the relatively small cross-sectional area presented by surface roughness fluctuations
in comparison to the cladding density fluctuations, the large difference in the
refractive index of air and dielectric increases the strength of the surface scattering
[111, 112]. To connect backscattering power to taper width versus position, it is in
principle possible to construct a look-up table based on taper calibrations. However,
a model of backscattering has several advantages over such an empirical method.
First, the model provides a physical understanding of the behavior observed in
the taper backscattering signal. Second, it provides quantitative values for Rayleigh
scattering coefficients associatedwith core, cladding, and surface scattering. Finally,
these Rayleigh coefficients provide reference data that serve to monitor the taper
fabrication process over time (e.g., surface smoothness of the waist region).

The above physical picture of scattering motivates a model for normalized backscat-
ter power per unit length. The contributions to backscattering from the core, cladding
and taper surface are described by three terms in Eq. (6.1) below. Details on the
derivation are provided in Section 6.4.
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1
Pin

dPOBR(w(z))
dz

= αcoreσcore(w(z)) + αcladσclad(w(z)) + βη(w(z)) (6.1)

where Pin is the total input power to the taper and dPOBR(w(z))/dz is the backscat-
tered power per unit length at taper position z with w(z) the width of the taper at
position z. αcore and αclad are the Rayleigh scattering coefficients in the core and
cladding regions, respectively. β is the Rayleigh surface scattering coefficient at the
taper-air interface (see Section 6.4). These parameters are determined by fitting to
the OBR data. σcore and σclad are related to backscattering contributions in the core
and in the cladding respectively. η is related to backscattering contributions at the
taper glass-air interface. These parameters account for cross-sectional variations
of the core, cladding, and surface as well as the local coupling efficiency of the
scattered light into the taper guided mode. Their forms follow from the analysis for
backscattering in standard optical fiber [101]:

σcore, clad ≡
3λ2

8πn2

∫
core, clad | ®E(®r)|

4dS(∫
all | ®E(®r)|2dS

)2 (6.2)

η ≡ 3λ2

8πn2

∮
interface | ®E(®r)|

4dl(∫
all | ®E(®r)|2dS

)2 (6.3)

where each integration is performed at a specific width w(z) along the fiber taper.
λ is the center wavelength of the OBR laser scan, and n is the fiber refractive index
(small differences in core and cladding regions are neglected). The analysis leading
to these forms is provided in Section 6.4. A key assumption made in the analysis is
that powers from distinct, random scatterers are added to compute the total scattered
power. This is equivalent to assuming that the correlation length for scattering
centers is much smaller than the optical wavelength. A finite element solver is used
to calculate σcore, σclad, and η as a function of the taper width, w. The results are
shown in Figure 6.3. Because, as noted above, the backscatter signal is generated
using a wavelength sweep over 88 nm centered at 1566 nm, it is important to check
the wavelength dependence of the parameters in Figure 6.3. It is found that there is
a negligible variation in their values relative to the scale of signal variations in the
measurement.

In the analysis, it is assumed that the taper maintains a circular cross section and
that the ratio of core width to taper width is constant along the taper. Moreover,
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Figure 6.2: Illustration showing a fiber taper with a mode profile superimposed. The
blue planes give the energy density profiles associated with the transverse polarization.
Initially in region A, light is confined in the core region, and the fluctuations in the refractive
index of the core dominate the scattering process. In region B, the taper width is reduced
to tens of microns, and a substantial portion of the optical power is propagating within
the cladding region. Here, the refractive-index fluctuations of the cladding dominate the
scattering process. Region C occurs around the taper waist where the surrounding air
functions as the cladding, and the taper surface roughness dominates the scattering process.

the statistical properties of the scatterers within the core and cladding regions are
assumed to be uniform in each region. Also, scattering centers at the glass-air
interface are assumed to be spatially uniform in their statistical properties. These
assumptions mean that αcore, αclad, and β are treated as constants and, based on the
analysis [101, 102], are expected to be intensive quantities. Finally, an additional
assumption is that the attenuation of the input power along the length of the taper is
so weak that the propagating power along the length of the fiber taper can be treated
as constant.

An additional effect must be added to the model on account of the effective index
variation along the length of the fiber taper as its width varies. In performing a
conversion of time delay into distance, the OBR system assumes that the effective
index is a constant over the length of the optical fiber (in this case SMF-28).
However, since the effective refractive index decreases as taper width decreases,
light propagates faster within the taper region, and this causes the OBR to detect the
signal earlier and thereby incorrectly compute a scattering location too close to the
OBR instrument. Accordingly, a location zOBR given by the following equation is
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Figure 6.3: Calculation of the parameters σcore, σclad and η in Eq. (6.1) versus the
taper width w. The calculations used a finite element method solver. The effective index,
neff, is also presented. For the narrowest taper widths neff approaches unity, the index of air,
while at the largest widths it has the index of the SMF-28 fiber used to prepare the fiber
taper. The wavelength assumed is 1566 nm and SMF-28 parameters are: wclad = 125µm,
wcore = 8.2µm, ncore = 1.4682, nclad = 1.4631.

Figure 6.4: Flow charts illustrating three distinct taper-related calculations that are
possible. a, Calculation I (blue): a known taper profile is combined with OBR data to
determine fitting parameters (αcore, αclad, β). Calculation II (orange): a known taper profile
is combined with average fitting parameters (ᾱcore, ᾱclad, β̄) to predict an OBR signal. b,
Calculation III: an OBR signal is combined with average fitting parameters (ᾱcore, ᾱclad, β̄) to
determine a taper profile. This particular measurement is performed in a piecewise fashion
on regions where the OBR signal monotonically varies with taper length.

computed by the instrument,∫ z

0
neff(w(z′))dz′ = nOBRzOBR (6.4)
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where neff(w(z)) is the taper effective index at location z, and nOBR is the effective
index assumed by the OBR instrument. Given a taper profile w(z) and using the
neff(w) from Figure 6.3, it is possible to convert z into zOBR (z → zOBR) using the
above equation. Also, because the OBR signal is a relative scattering per unit length
in zOBR units, the form of the left-hand side of Eq. (6.1) in units measured by the
OBR instrument is the following:

dPOBR
dz

=
dPOBR
dzOBR

dzOBR
dz

= ncorr(w)
dPOBR
dzOBR

(6.5)

where the corrected refractive index factor is defined as,

ncorr(w) =
neff(w)
nOBR

(6.6)

Therefore, in calculating the instrument measured OBR signal, both the position
correction provided by Eq. (6.4) and the scaling correction of Eq. (6.1) given in
Eq. (6.5) must be used.

Eqs. (6.1)-(6.6) allow three distinct calculations to be performed that are illustrated
schematically in the Figure 6.4 flow charts.

Calculation I [blue arrows in Figure 6.4a]: This calculation computes the (αcore, αclad, β)
scattering coefficients. A taper profile is measured (w(z)) and used to calculate neff,
σcore, σclad, and η as a function of z by applying results in Figure 6.3. These results
are used to map z into zOBR using Eq. (6.4). Equation (6.1) (in the measured
zOBR-units provided by Eq. (6.5)) is then fit to the experimental backscatter data.
The result of this fitting is a set of (αcore, αclad, β) constants. To ensure consistent
values for (αcore, αclad, β) the fiber type used to fabricate the taper should not be
varied. Also, although the taper profile can be varied, such things as the annealing
schedule and furnace temperature should be maintained constant so as to ensure
similar density fluctuations in the glass [113, 114].

Calculation II [orange arrows in Figure 6.4a]: This calculation uses a measured
taper profile and existing (αcore, αclad, β) coefficients to predict an OBR trace for a
given taper. A taper profile is first measured (w(z)) and used to calculate neff, σcore,
σclad and η as a function of z by applying the results in Figure 6.3. Conversion of
z → zOBR is performed as in Calculation I. These results are then combined with
the existing (αcore, αclad, β) constants to predict an optical backscatter signal using
Eq. (6.1). Averaged constants (ᾱcore, ᾱclad, β̄) obtained by measuring several tapers
can be used to improve accuracy.
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Calculation III [green arrows in Figure 6.4b]: A third calculation is to determine
an unknown taper profile, w(z), from OBR data and averaged scattering coefficients
(ᾱcore, ᾱclad, β̄) obtained using other tapers having different profiles. Because the
taper width is not a one-to-one function of the OBR signal as shown in Figure 6.1b
and 6.1c, it is convenient to perform this calculation in a piecewise fashion within
specific taper regions where the OBR signal varies monotonically with length. A
taper whose profile (w(z)) is to be determined is characterized to obtain its OBR
signal versus zOBR. When restricted to the piecewise regions noted above, each
OBR data point maps uniquely into a w value using Eq. (6.1) (corrected using the
scaling in Eq. (6.5)) in conjunction with Figure 6.3. This establishes the function
w(zOBR) since the OBR instrument provides the OBR signal versus zOBR. Using
Eq. (6.4), it follows,

dzOBR
dz

= ncorr(w(zOBR)) (6.7)

from which the conversion of OBR position to actual position (zOBR → z) can be
computed as the following integral,

z =
∫ zOBR

0

dz′OBR
ncorr(w(z′OBR))

(6.8)

This, in turn, allows w(zOBR) to be converted into the actual taper profile w(z).
For tapers having widths < 800nm, the taper waist region must be separated in
the piecewise analysis since the OBR signal once again becomes multi-valued (see
σcore, σclad, and η curves in Figure 6.3).

6.3 Experiment results
Table 6.1: Rayleigh Scattering Coefficients of SMF-28 Tapers Pulled at 1660◦C

Taper Number Waist Width (µm) αcore (10−6/m) αclad (10−6/m) β (10−9)

1a 0.49 45.2 81.3 4.39
2a 0.90 51.2 75.0 3.69
3a 1.02 40.9 87.1 3.94
4a 1.05 37.1 90.8 3.46
5a 1.34 49.2 95.2 3.47
6a 1.74 45.5 67.4 4.85

Average 45 ± 5 (11%) 83 ± 10 (12%) 4.0 ± 0.6 (15%)

Determination of taper Rayleigh scattering coefficients (αcore, αclad, β)
The coefficients (αcore, αclad, β) provide information on refractive index fluctuations
in the core, cladding, and interface regions. The coefficients can in principle depend
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Figure 6.5: Predicted OBR signal is compared with actual OBR data. a, OBR data from
taper 2a in Table 6.1 is plotted versus taper position relative to the taper waist at one end
of the taper. The data are compared with the prediction based on Calculation II using the
average parameters in Table 6.1. Also shown are the contributions from the three scattering
mechanisms in Eq. (6.1). A, B, and C intervals delineated by the dashed vertical lines (see
Figure 6.2) give regions in which each mechanism provides the dominant contribution to
total scattering. b, Averaged parameters from measurements on the 6 tapers in Table 6.1 are
used to predict the OBR signal measurements (dots) from four tapers (Table 6.1) by using
Calculation II (solid curves). Taper waist widths are provided in the legend. Note that for
the smallest taper width, 0.49 µm, the model successfully predicts the reduction in the OBR
scattering at the taper waist qualitatively. Inset: OBR trace over the full length of taper 4a
is compared with the prediction using Calculation II.

upon the oven temperature and annealing applied during taper fabrication. Assuming
that oven temperature and annealing are not varied, it should not be necessary to
remeasure these parameters. In a first test, six tapers were prepared using SMF-28
optical fiber by pulling at 1660◦C. The oven temperature was inferred from the
manufacturer datasheet and drive current. A range of waist widths was intentionally
produced by adjusting the pulling distance for each taper. OBR data was first
measured for each taper. After this, the taper profiles, w(z), were measured using
an SEM as described in Figure 6.1. A weighted-least-squares fitting of Eq. (6.1)
(corrected to zOBR units) to the OBR data is then performed to extract (αcore, αclad, β)
for each taper using Calculation I. The fitting results are provided in Table 6.1.

Determination of the optical backscatter signal from w(z)
As a test of theCalculation IImethod to predictOBR signals from a set of parameters,
the averaged fitting parameters are calculated in the last row of Table 6.1 and used
to compute the backscatter signal from Eq. (6.1) for four tapers (1a, 2a, 5a and 6a
in Table 6.1). The computed results for a single taper are shown in Figure 6.5a.
The separate contributions to the overall scattering power from the three underlying
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Figure 6.6: Effective refractive index and taper width reconstruction a, The position
zOBR calculated from Eq. (6.4) plotted versus position z for tapers 1a, 2a, 5a, 6a in Table
6.1. Zero on both axes corresponds to the taper center. The calculated OBR position error
ranges from 0.13 mm (w0 = 1.74µm) to 0.57 mm (w0 = 0.49µm) after 2 mm of light
propagation and is caused by the varying effective index along the taper. The legend gives
the taper waist width and the black dashed line is the case zOBR = z. b, The taper width
versus position as determined from the OBR signal using Calculation III is plotted for four
tapers from Table 6.1 (solid curves). The circles are the taper profiles measured using an
SEM. The taper waist widths are provided in the legend.

contributions are also plotted. In Figure 6.5b, the computed results for the four
tapers are presented. The agreement between the predicted OBR signal and the
measured signal is reasonable. It is interesting to note that the reduction in the
backscatter signal at the waist of the narrowest taper is correctly predicted by the
model using the single set of averaged fitting parameters. For the narrowest waist
width measured, the glass-air interface scattering drops around this region because
of increased propagation in the air.

zOBR is plotted versus z in Figure 6.6a to illustrate the impact of the varying effective
index on the scattering location as inferred by the OBR instrument. The maximum
OBR position error (difference between propagation in tapered and untapered fiber)
ranges from 0.13 mm (w0 = 1.74µm) to 0.57 mm (w0 = 0.49µm) after only 2 mm
of light propagation.

Determination of w(z) from the optical backscatter signal
To determine the width versus position profile from the OBR signal trace, the OBR
traces are numerically smoothed before analysis to reduce fluctuations. Using the
Calculation III procedure, the taper width versus taper position profiles calculated
for four of the tapers in Table 6.1 are presented in Figure 6.6b. While the entire
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taper could be analyzed, the results are presented for one side of the taper. The
inferred taper profiles approximately follow an exponential variation with length.
For comparison, the SEM-measured profiles of the four tapers are included as the
circles. The agreement is good. The relative deviation between the taper profile
estimated by OBR and that measured by an SEM is within 20%. A summary of
the minimum taper waist widths as inferred from the OBR measurement and the
directly measured waist widths using the SEM is provided in Table 6.2. Note that
one taper is thin enough (0.49 µm) to exhibit non-monotonic OBR behavior near
the taper center. Nonetheless, the taper profile is estimated correctly outside this
region.

Table 6.2: Waist Width Comparison of Tapers Pulled at 1660◦C

SEM Measurement (µm) OBR Estimation (µm) Relative Deviation

0.90 0.93 +3.3%
1.34 1.42 +6.0%
1.74 1.77 +1.7%

Variation of fiber type and pulling temperature
To study the effect of pulling temperature and fiber type on these procedures, three
additional SMF-28 fiber tapers were prepared but with the oven temperature set to
1550◦C. Also, three SM980 fiber tapers were prepared at this oven temperature.
OBR and SEM measurements were performed, and Calculation I in Figure 6.4
was applied to determine the new Rayleigh coefficients (αcore, αclad, β) shown in
Table 6.3 (note: an SM980 calculation corresponding to Figure 6.3 for SMF-28 was
also performed using SM980 fiber parameters: wclad = 125µm, wcore = 5.7µm,
ncore = 1.4499, nclad = 1.4440). Comparing results for the SMF-28 fiber in Table
6.1 and Table 6.3, the coefficient ᾱcore is similar in value. On the other hand, when
the pulling temperature is lower, the parameter ᾱclad decreases about 40% and β̄

decreases about 20%, suggesting that the lower temperature pulling reduced the
refractive-index fluctuations and surface scattering in the taper. On the other hand,
the values of the SMF-28 and SM980 coefficients ᾱcore, ᾱclad and β̄ in Table 6.3
for tapers pulled at the same temperature are within the range of the experimental
deviation. This is reasonable since the core and cladding compositions of the two
fiber types are germanium-doped silica and pure silica, respectively. Their scattering
properties should therefore be similar.

As a further test, the average coefficients (ᾱcore, ᾱclad, β̄) were used to determine
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Table 6.3: Rayleigh Scattering Coefficients of Taper Types Pulled at 1550◦C

SMF-28
Taper Number Waist Width (µm) αcore (10−6/m) αclad (10−6/m) β (10−9)

1b 0.90 54.7 56.0 3.38
2b 1.25 39.0 49.1 2.96
3b 1.76 48.6 42.2 2.81

Average 48 ± 8 (17%) 49 ± 7 (14%) 3.0 ± 0.3 (10%)

SM980
Taper Number Waist Width (µm) αcore (10−6/m) αclad (10−6/m) β (10−9)

1c 1.37 42.7 52.4 3.18
2c 1.62 36.9 54.3 2.90
3c 2.56 54.7 49.4 3.99

Average 45 ± 9 (20%) 52 ± 3 (6%) 3.4 ± 0.6 (18%)

the backscattering signals of these fibers (Calculation II). Also, Calculation III was
applied to determine w(z). The results are presented in Figure 6.7 with comparison
to measurements. The relative deviation between the SEM measured and the OBR
predicted taper profiles in Figure 6.7b and 6.7d is within 15%. It is interesting to note
that the exponential profile observable in the tapers fabricated at higher temperature
is not observed in the tapers fabricated at the lower temperature.

Other OBR taper measurements
It is interesting to compare the inferred Rayleigh scattering coefficients for the
core and cladding regions of the taper with those computed for the core region of
the original (unpulled) optical fiber. Also, because the dominant loss mechanism
is expected to be scattering at the wavelengths measured, it is possible to infer a
Rayleigh scattering parameter by using the fibermanufacturer’s specified attenuation
coefficient. This comparison is made in Table 6.4 and results are in fairly close
agreement. Here, the Rayleigh coefficient is written as α′ in dB/km attenuation
units where α′(dB/km) = 104(log10 e)α(1/m) [107], and α is the mks-units form in
Eq. (6.1).

Beyond using the OBR analysis to predict the taper profile or to use a taper profile to
predictOBR signals, the backscatteringmethod also provides diagnostic information
on taper defects such as what might be caused by dust or micro-cracks. As one
example, two back-scattering traces are recorded using a dusty taper by recording
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Figure 6.7: Measured and predicted OBR signals and taper profiles for SMF-28 and
SM980 tapers pulled at 1550◦C. a, SMF-28 OBR signal traces (dots) and the Calculation
II prediction (solid curve). b, SMF-28 profiles measured by an SEM (circles) and profiles
predicted using Calculation III (solid curves). c, SM980 OBR signal traces (dots) and the
Calculation II prediction (solid curve). d, SM980 profiles measured by an SEM (circles)
and profiles predicted using Calculation III (solid curves). Taper waist widths are given in
the legend of each panel.

the OBR signal from opposite ends of the taper. The OBR traces in Figure 6.8a
contain scattering features thatmirror one another, indicating the presence of the dust
particles. As another example, Figure 6.8b presents scans of a taper both before and
after the appearance of what is believed to be a microcrack. The microcrack formed
under application of tension to the taper and is accompanied by the appearance
of a spike-like feature near the backscatter maximum. As further evidence of the
microcrack, a bright scattering point is observed near the center of the taper when a
white LED is shining on the taper region.

6.4 Derivation of Rayleigh scattering coefficient
For convenience, a short derivation of Eq. (6.1) is provided in this section based on
the analysis in ref [102]. The taper-guided mode ®En(®r) induces a polarization ®P =
∆ε(®r) ®En = 2εon∆n(®r) ®En (and a displacement current ®J = iω ®P) through refractive
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Table 6.4: Taper Rayleigh Scattering Coefficients Comparison With Optical Fiber

Fiber Type (Temp.) SMF-28 (1660◦C) SMF-28 (1550◦C) SM980 (1550◦C)

α′core (dB/km) 0.20 ± 0.02 0.21 ± 0.03 0.20 ± 0.04
α′clad (dB/km) 0.36 ± 0.04 0.21 ± 0.03 0.23 ± 0.01

OBR Meas. (dB/km) 0.26 ± 0.01 0.23 ± 0.01 0.28 ± 0.01
Data Sheet (dB/km) 0.25 0.25 n.a.∗

* Not provided by manufacturer.

Figure 6.8: OBRmeasurements of dust and microcracks. a, Backscatter traces produced
by coupling into the right and left ends of a taper are shown. Evidence of dust or defects on
the taper appear as small spikes in the backscatter signal and, as expected, switch sides in the
traces relative to the taper center. b, The lower trace shows an OBR trace without tension.
The upper trace shows the scan when tension is increased to induce what is believed to be a
microcrack.

index perturbations∆n(®r). ∆ε(®r) is the dielectric permittivity perturbations, εo is the
vacuum permittivity, and n is the average dielectric refractive index. It is assumed
that incident light is single frequency (harmonic time dependence). The fractional
amplitude, An, of the propagating mode that scatters into the same spatial mode,
but propagating in the backward direction, can be determined using the approach
described in ref [102] and is given by the following expression,

An =
−

∫
V
®J · ®E∗n dV

2
∫

S
®En · ®H∗n dS

=
−iω

c

∫
V ∆n(®r)| ®En(®r)|2dV∫

all | ®En(®r)|2dS
(6.9)

where ®Hn is the magnetic field, V is the scattering volume (taper volume) such
that the volume differential dV can be expressed as dV = dSdz where dS is the
differential cross-sectional area and dz is the differential length along the taper axis.
In addition, “all” indicates integration over the infinite cross sectional area.
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The fraction of the scattered power that couples into the backward guided mode is
the ensemble average of the magnitude-squared of Eq. (6.9). If Pin and Ps are the
input power (assumed constant along the taper) and the backscattered power that is
coupled into the guided taper mode, then they are accordingly related by,

Ps =
ω2

c2

∫
V ′

∫
V | ®En(®r)|2

〈
∆n(®r)∆n(®r′)

〉
| ®En(®r′)|2dVdV ′(∫

all | ®En(®r)|2dS
) (∫

all | ®En(®r′)|2dS′
) Pin (6.10)

The correlation length of the scattering centers is assumed to be much smaller
than the scale of the wavelength. The correlation function of the refractive index
fluctuation is therefore taken as proportional to a delta-function,〈

∆n(®r)∆n(®r′)
〉
≡

〈
∆n2〉 Vcδ(®r − ®r′) (6.11)

where Vc is the scattering volume[102]. This delta-function correlation eliminates
one of the volume integrations in Eq. (6.10). Next, by introducing the infinitesimal
power dPs(z) that is scattered from the volume with infinitesimal thickness, dz, the
following equation results from Eq. (6.10) after simplification using Eq. (6.11),

dPs(z) =
ω2

c2

〈
∆n2〉 Vc

∫
S | ®En(®r)|4dS(∫

all | ®En(®r)|2dS
)2 Pindz (6.12)

In a statistically homogeneous scattering medium, the Rayleigh scattering coef-
ficient, α, can be related to the refractive index fluctuation

〈
∆n2〉 and average

refractive index n [107] as follows,

α =
32π3n2

3λ4

〈
∆n2〉 Vc (6.13)

Upon substitution in Eq. (6.12) this gives the result,

1
Pin

dPs(z)
dz

=
3λ2

8πn2α

∫
S | ®En(®r)|4dS(∫

all | ®En(®r)|2dS
)2 (6.14)

By assuming there are distinct scattering regions (i.e., core, cladding, surface)
with their own corresponding Rayleigh coefficients (αi, i ∈ {core, clad, ss}), we
replace the above single region result by a summation over the regional scattering
contributions.

1
Pin

dPs(z)
dz

=
3λ2

8πn2

∑
i

αi

∫
Si | ®En(®r)|4dS(∫
all | ®En(®r)|2dS

)2 ≡
∑

i

αiσi (6.15)
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As an aside, it is a peculiar coincidence that the field integrals involved in σi bear
a similarity to the effective area in nonlinear optics [115] despite the very different
physical contexts. The surface scattering is assumed to be confined to within a small
(compared to the wavelength) uniform thickness (∆t) such that a Rayleigh surface
scattering coefficient (β) can be defined from the Rayleigh scattering coefficient
within this surface volume (αss),

3λ2

8πn2αss

∫
ss | ®En(®r)|4dS(∫
all | ®En(®r)|2dS

)2 =
3λ2

8πn2 αss∆t

∮
interface | ®En(®r)|4dl(∫
all | ®En(®r)|2dS

)2 ≡ βη (6.16)

where,
β ≡ αss∆t (6.17)

6.5 Conclusion
When combined with modeling, optical backscatter reflectometry provides a way
to characterize the width versus position profile of an optical fiber taper. The
OBR signal, itself, also measures the mode evolution from fiber core to taper
waveguiding as it propagates through the taper. The model developed to fit the
data accounts for scattering mechanisms associated with the fiber core and cladding
of the bulk silica glass as well as surface scattering along the narrow portions
of the taper. It also includes the variation of backscatter coupling into the taper
guided mode on account of the varying taper width. Rayleigh scattering coefficients
for core, cladding, and taper surface were extracted by fitting the model with the
OBR data. The experimentally-determined Rayleigh backscattering coefficients
for the core and cladding are consistent with those inferred from attenuation data
in the fiber manufacturer’s datasheet. The OBR method of taper characterization
is nondestructive and can be performed while the taper is within its fabrication
system. Moreover, it can be used to measure defects and contamination. The
method also provides a convenient way to calibrate a taper pulling recipe. The OBR
characterizationmethod developed here could be applied to analyze width variations
in chip-integrated waveguides.



74

C h a p t e r 7

SUMMARY AND CONCLUSION

In this thesis, we reviewed the basic concepts of the optical gyroscope, whisper
gallery mode resonator, and Brillouin lasing process. By introducing the counter-
propagating Brillouin lasers in a microresonator, we made a chip-based solid-state
ring laser gyroscope. We further unlocked the gyroscope by the offset-counter-
pumping, and measured the sinusoidal rotation rate as small as 5 ◦/h. The 36 mm
disk gyroscope achieved a bias drift at 3.6 ◦/h. Furthermore, we measured the
Earth’s rotation by this gyroscope. This is the first time that the Earth’s rotation is
measured by a chip-based optical gyroscope.

In addition, we introduced the physics of the gyroscope, and showed how the mode-
pulling, rotation, dissipative coupling, and Kerr nonlinearity affected the gyroscope
operation. We further checked the enhancement near the exceptional point, and
demonstrated a 4× boost of the Sagnac factor. We examined how the gyroscope
readout is affected by the power and temperature drift, and showed the temperature
feedback control by using the backaction of the cascaded Brillouin laser.

We demonstrated a prototype of the chip-based optical gyroscope, which can
measure the Earth’s rotation. In the future, we hope that the gyroscope could
be fully integrated with photonics and electronics, so the robust system would be
immune to the shock and resistant to the vibration noise, and could be further used
for the aerospace applications.
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A p p e n d i x A

DERIVATION OF THE SAGNAC FORMULA

In this appendix, we derive the Sagnac formulas of the fiber optical gyroscope and
the ring laser gyroscope. To simplify the derivation in the classical region, here
we assume that the velocity at any point of the gyroscope caused by the rotation is
much smaller than the speed of light.

Figure A.1: Model of the Sagnac effect. When a free space loop is rotating, the CW and
CCW lights travel back to the same point on the loop with a round trip path length difference,
∆l. The radius of the loop is R, and the angular velocity is Ω.

A.1 Sagnac phase shift in the fiber optical gyroscope
Let us consider a closed loop in the free space with radius R and angular velocity
Ω. When the loop is steady (Ω = 0), both the lights have a round trip time:

τr =
2πR

c
. (A.1)

When the loop is rotating (Ω , 0), the round trip path length difference,∆l, becomes:

∆l = ΩRτr . (A.2)

The counter-propagating path length difference, ∆L, becomes:

∆L = LCW − LCCW = 2∆l = 2ΩRτr =
4πΩR2

c
, (A.3)

where c is the speed of light, and LCW (LCCW) is the CW (CCW) path length.
Therefore, the round trip time difference between two lights, ∆t, is

∆t =
∆L
c
=

4πΩR2

c2 . (A.4)
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We can measure this round trip time difference by using the interferometry, and
readout the phase difference, ∆φ, as follows:

∆φ = ∆t
2πc
λ
=

8π2R2Ω

cλ
, (A.5)

where λ is the wavelength of light. Since the area of the gyroscope, A, is defined by
A ≡ πR2, the final equation is

∆φ =
8πA
cλ
Ω. (A.6)

Next, let us consider a fiber optical gyroscope made from the dielectric medium
with refractive index, n. At rest, the round trip time becomes nτr since the speed
of light in the medium is c/n. The round trip path length difference under rotation
becomes n∆l. The CW and CCW (free space) path lengths under rotation become:

L∗CW = 2πR + n∆l = 2πR +
2πnΩR2

c
(A.7)

L∗CCW = 2πR − n∆l = 2πR − 2πnΩR2

c
. (A.8)

When the medium is rotating, the speed of light is no longer the same due to the
Fresnel-Fizeau drag [116]. The moving medium changes the speed of light in the
CW and CCW directions:

vCW =
c
n
+ αdΩR (A.9)

vCCW =
c
n
− αdΩR, (A.10)

where αd is the Fresnel-Fizeau drag coefficient:

αd = 1 − n−2. (A.11)

The new round trip time difference between two lights, ∆t∗, is

∆t∗ =
L∗CW
vCW

−
L∗CCW
vCCW

=
2πR + 2πnΩR2

c
c
n + αdΩR

−
2πR − 2πnΩR2

c
c
n − αdΩR

. (A.12)

We simplify the equation by assuming c2/n2 � αdΩ
2R2:

∆t∗ ≈ 4πR2n2Ω (1 − αd)
c2 =

4πΩR2

c2 = ∆t. (A.13)

The phase difference keeps the same with the presence of medium:

∆φ ≈ 8πA
cλ
Ω. (A.14)

If we have N loops of fiber under arbitrary rotation, the final equation becomes:

∆φ =
8πNA · Ω

cλ
. (A.15)
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A.2 Sagnac frequency shift in the ring laser gyroscope
Now we derive the Sagnac formula in the ring laser gyroscope. When the resonator
is steady, the mode frequency is calculated by

mc = νmP, (A.16)

where m is the modal number, c the speed of light, νm the modal resonant frequency,
and P the optical path length of the mode. When the resonator is rotating, the
resonant frequency is shifted due to the change of the optical path length:

νm,CW =
mc

PCW
, (A.17)

νm,CCW =
mc

PCCW
, (A.18)

where νm,CW (νm,CCW) is the resonant frequency of the CW (CCW) mode, and PCW

(PCCW) the optical path length of the CW (CCW) mode. Therefore, the frequency
splitting under rotation, ∆ν, becomes [117]:

∆ν = νm,CCW − νm,CW = mc
(

1
PCCW

− 1
PCW

)
≈ mc

∆P
P2 = νm

∆P
P
, (A.19)

where ∆P is the round trip path length difference between CW and CCW modes.
According to the Eq. (A.13), this path length difference is calculated by

∆P = c∆t∗ ≈ 4πR2Ω

c
. (A.20)

In addition, in a circular ring resonator, the optical path length of the mode is defined
by

P = 2πRng, (A.21)

where ng is the group velocity of the mode. Therefore, the frequency splitting of a
ring laser gyroscope under rotation is

∆ν = νm
2RΩ
ngc

=
DΩ
ngλ

, (A.22)

where D is the diameter of the resonator. We can write the formula in a general
form:

∆ν =
4A · Ω
λP

. (A.23)



78

A p p e n d i x B

OTHER SYSTEM DIAGRAMS

Figure B.1: Sinusoidal rotation experiment. The ECDL amplified by the EDFA is PDH-
locked to themicrocavity. The independent AOMs control the pump detuning frequency, and
actively stabilize both pump powers. The gyroscope package is put on a piezo-electric stage
with a sinusoidal displacement modulation. The whole gyro modulation system is enclosed
in an environmental chamber to minimize the drift. The readout signals are monitored by
photodetectors (PDs), and analyzed by the phase noise analyzer (PNA), frequency counter
(FC), or oscilloscope (OSC). PM: phase modulator, PI: proportional-integral servo, RF:
radio frequency, VCO: voltage controlled oscillator.

Figure B.2: Frequency dithering experiment. A frequency-shift keying (FSK) signal
flips the pump detuning frequency periodically to generate dithering signal. The frequency
dithering allows the tracking of common frequency and difference frequency in the readout.
A slow triangular frequency can be added to the TEC to modulate the sample temperature
so the thermal response of the SBL beating signal can be analyzed.
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Figure B.3: Temperature feedback by cascaded SBL backaction. A sinusoidal power
dithering is applied to the cascaded SBL power. The backaction of the cascaded SBL
generates a frequency modulation on the SBL beating signal. The dithered SBL beating
signal is converted to a voltage signal by a frequency tracking circuit. Then, the shift
amplitude is resolved by a lock-in amplifier (LIA) to generate a feedback signal for the LED
and TEC. The feedback suppresses the longterm temperature drift.
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