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Abstract

Advances in integrated circuit technology have been largely responsible for the
growth of the computer graphics industry. This technology promises additional
growth through the remainder of the century. This dissertation addresses
how this future technology can be harnessed and used to construct very high
performance real-time computer graphics systems.

This thesis proposes a new architecture for real-time animation engines.
The ANIMAC architecture achieves high performance by utilizing a two-dimen-
sional array of processors that determine visible surfaces in parallel. An array
of sixteen processors with only nearest neighbor interprocessor communications
can produce real-time shadowed images of scenes containing 100, 000 triangles.

The ANIMAC architecture is based upon analysis and simulations of var-
ious parallelization techniques. These simulations suggest that the viewing
space be spatially subdivided and that each processor produce a visible sur-
face image for several viewing space subvolumes. Simple assignments of view-
ing space subvolumes to processors are shown to offer high parallel efficiencies.

Simulations of parallel algorithms were driven with data derived from
real scenes since analysis of scene composition suggested that using simplistic
models of scene composition might lead to incorrect results.

The ANIMAC architecture required the development of a shadowing algo-
rithm which was tailored to its parallel environment. This algorithm separates
shadowing into local and foreign effects. Its implementation allows individual
processors to compute shadowing effects for their image regions utilizing only
very local information.
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The design of the ANIMAC processors makes extensive use of new VLSI
architectures. A formerly proposed processor per object architecture is used
to determine visible surfaces while new processor per object and processor per
pixel architectures are used to determine shadowing effects.

It is estimated that the ANIMAC architecture can be realized in the early
1990’s. Realizing this architecture will require considerable amounts of hard-
ware and capital yet its cost will not be out of line when compared with today’s
real-time computer graphics systems.
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Introduction

During the first half of this decade the computer graphics industry has grown
at a rapid rate and it is likely to continue to do so for the remainder of the
decade. This growth has evidenced itself in many ways, including the spectacu-
lar computer-generated special effects found in entertainment and educational
films, the widespread acceptance of engineering workstations, and of course,
the now ubiquitous personal computer.

The driving force behind all of this growth has been the semiconductor
industry. Advances in VLSI technology have enabled a huge amount of storage
to be fabricated on a single chip, while drastically reducing the cost per bit
of this storage. At the same time, computer architects have been able to
utilize this new technology to produce microcomputers that outperform the
mainframes of the past decade.

The availability of this increased computational power has opened the
doors to new algorithms. Computation has become so relatively inexpensive
that many of the algorithms that were once considered too costly are now
commonly used. Newer algorithms, which require even more computational
resources, have replaced them. A new interest in realism has motivated the
development of these algorithms. Generating state-of-the-art computer graph-
ics still remains out of the grasp of the computing proletariat. State-of-the-
art computer graphics images are often computed on the highest performance
super-computers available. Real-time simulation engines are themselves very
powerful and very specialized computers capable of producing realistic images
of an environment that reacts instantaneously to a user’s actions.
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Just as advances in semiconductor technology ushered in this age of com-
puter graphics, newer advances in the same technology promise to offer vastly
improved computer graphics technology at a fraction of today’s costs. These
new advances are appearing in many areas within the computer graphics field.
Specialized processing and storage elements have been designed to assist in
the rendering of visible surfaces [FUCHS81] [COHENS80] [WEINBES82], the ren-
dering of graphic primitives [WHELAN82| [CLARKES80] [DEMETRS83], and in
performing constructive solid geometry operations [KEDEMS84].

These new architectures are not without their failings, but they offer sub-
stantial promise for the future. Their successors should be able to provide
performance well in excess of what today’s real-time simulation engines pro-
vide and at a fraction of the cost.

Future VLSI architectures will apply massive amounts of computational
power to computer graphics problems. This thesis studies how this computa-
tional power can be focused into a next generation architecture for animation
and real-time simulation needs.

This thesis presents an architecture for an animation machine which I have
named the ANIMAC. The targeted performance of this architecture is for it to
display in real-time scenes composed of 100,000 polygons. This performance
goal represents an improvement of almost two orders of magnitude over today’s
computer graphics systems.

The ANIMAC architecture is more than a blueprint for building a com-
puter system. It is also a new parallel algorithm for producing images of scenes
with shadowing effects. This is believed to be the first shadowing algorithm
developed for a multiprocessor.

This dissertation is divided into five major chapters. Each of these chap-
ters addresses an important issue in the development of the ANIMAC archi-
tecture.

Chapter 2 deals with analysis of synthetic scene composition. Design de-
cisions that affected the ANIMAC architecture were made based upon models
and simulations of realistic work environments. Analysis results indicated that
the scene composition is not adequately modeled with simplistic assumptions.
An important observation indicates that scenes are spatially non-uniform and
that the spatial non-uniformity of scenes can be characterized by an asymptot-
ically determined value. This observation strongly suggests that when a scene
in spatially divided into more and more distinct regions, the distribution of
objects to these regions starts to look similar.

Chapter 3 addresses the problem of how best to use parallelism to con-
struct a high performance visible surface rendering system. The main thrust
of this chapter is to investigate how parallelism can be used to achieve the
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performance required for the ANIMAC architecture. Simulations were per-
formed of architectures proposed by others and of new ones proposed by the
author. The results of these simulations suggest that a two-dimensional array
of physical processors together with a simple mapping of image regions onto
processors can provide the needed performance with relatively high efficiency.

Chapter 4 develops an algorithm for producing shadowed images on a
multiprocessor which spatially subdivides the scene among its processors. This
algorithm simplifies shadow determination by dividing the determination of
shadowing effects into two processes. A local shadowing process acts only upon
information local to the processor while a foreign shadowing process utilizes
information residing in other processors. This algorithm is useful for software
implementations as well as for hardware implementations since it allows the
image computation task to be subdivided down to a manageable size.

Chapter 5 discusses a software implementation and simulation of the AN-
IMAC shadowing algorithm. Two different shadowing algorithms were imple-
mented for use as local shadowing algorithms. One of these algorithms was
found to suffer from a serious problem. This problem and solutions to this
problem are discussed. Other difficulties were noticed in the implementation
of the foreign shadowing algorithm. The causes behind these difficulties are
examined and a solution is offered. The software implementation was used to
generate animation sequences which indicated that the algorithm is appropri-
ate for use in animation.

Chapter 6 discusses using the ANIMAC architecture to implement sys-
tems capable of real-time performance. Two possible implementations are
examined. The ANIMAC-1 system uses ANIMAC parallelization techniques
to produce visible surface images without shadowing effects. The ANIMAC-
2 system builds upon the ANIMAC-1 system architecture to produce images
with shadowing effects. Both of these architectures make extensive use of VLSI
architectures, some which have been previously proposed, and some which are
new. It is predicted that implementing the ANIMAC architecture will be both
technologically and economically feasible in the early 1990’s.

Chapter 7 discusses conclusions drawn from the work described in the
previous chapters and suggests areas for future work. An appendix contains
the results from the simulations discussed in Chapter 3.
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Analysis of Synthetic
Scene Composition

Systems are designed to work within a constrained environment. In computer
animation, this environment consists of the model, the view, and the lighting
environment. In order to design systems that are capable of working properly
within an environment, it is necessary to parameterize the environment in a
meaningful manner. Surprisingly, there is little or no meaningful data in the
literature. Manufacturers are likely to have developed their own models but
must consider them proprietary. Academicians either haven’t had the interest
in analyzing scene composition or haven’t had the tools to do so.

This chapter presents studies of certain properties of synthetic scenes. All
of these properties have a bearing on design decisions which must be made
in the course of implementing an architecture. Hopefully, the information
provided by these studies will allow us to make intelligent tradeoffs between
overall system performance and cost.

Analysis was performed on data derived from synthetic scenes. These
scenes were selected because of their diversity and availability. By no means are
these scenes representative of all images that might be produced by a computer
graphics system. Still, these selected scenes are useful. In mathematics, it
is common to disprove a conjecture by showing that it does not hold for a
specific case. Likewise, designers of computer graphics systems hold certain
beliefs. Hopefully, the analysis results will help designers change their beliefs
by showing that some of them are not necessarily well founded.

It is usually possible to derive special cases that illustrate the worst case
behavior of an algorithm. The scenes selected here have not been intentionally
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selected to do this. They are meant to be representative of commonly occurring
scenes and hopefully are diverse enough to be representative of more than a
single design niche. Figure 2.1 illustrates the six scenes that were selected for
analysis. These six scenes range in complexity from 178 polygons to 65,030
polygons.

Each of these scenes was modeled in a language similar to one used by
Blinn [BLINN82]. This modeling language has become known as Blinn Like
Format by the Caltech and the Art Center College of Design community. It
is commonly referred to as BLF. The language provides support for all of the
common modeling transformations, object definition, and object instancing.
Scenes are typically modeled as hierarchies of object instances.

These scenes were generated by a graphics package called render which
was written by the author. Render produces images of BLF models using
a depth buffer algorithm [CATMUL74] to produce shaded visible surface im-
ages. Various shaders can be used during the rendering of an object. Gouraud
[GOURAU71] and Phong [BUI-TU75] illumination models are most commonly
selected by designers.

An additional shader has been incorporated into render. This shader col-
lects statistical information about each polygon that the polygon tiler receives.
A concise description of each polygon is eventually output to a file. The statss-
tics shader tiles polygons differently than other shaders. Instead of updating
pixel depth and color information, the statistics shader maintains a count of
the number of objects that intersect each pixel. This information can be out-
put into another file. For purposes of scene analysis, each of the selected scenes
was rendered using the statistics shader. The resulting files were used to drive
various analysis programs.

Scene analysis has been undertaken to elucidate three particular concerns.
First, certain authors have performed performance analysis on multiproces-
sor computer graphics systems and have based some of their analysis on the
premise of having a uniform spatial distribution of polygons [PARKE80]. This
seems to be an all too convenient assumption since it makes the performance
of these architectures look extremely attractive. Analysis of the spatial distri-
bution of polygons will indicate whether their assumption was well founded or
whether these architectures should be re-examined in light of the findings.

The second concern centers around being able to predict the cost for tiling
polygons. This is a fundamental step in many visible surface algorithms so it
is natural to want to understand the processes that contribute to tiling costs.

The third concern centers around being able to understand the behavior
of visible surface algorithms. Visible surface algorithms must sort potentially
visible polygons by depth to determine which polygons are visible at a pixel.



Figure 2.1a: House—A simple scene, composed of 178 polygonsr,r modeled by Carol
Koffel, Brian Von Herzen, and Jim Hunter.

Figure 2.1b: Caltech—A moderate complexity scene, composed of 990 polygons,
modeled by John Biedenharn and John Platt.



Figure 2.1c: VW—A moderate complexity scene, composed of 1072 polygons, mod-
eled by Ivan Sutherland and his students at the University of Utah.

Figure 2.1d: X-Wing—A moderate complexity scene, composed of 1407 polygons,
modeled by Chuck Esrock.



. »1!
Figure 2.1e: Framell00—A relatively complex scene, composed of 8089 polygons,
modeled by the author.

Figure 2.1f: Fractal64—A complex scene, composed of 65030 polygons, modeled by
the author.
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It would be interesting to have a concrete idea as to how many polygons are
potentially visible at a pixel.

2.1 Spatial Distribution of Objects

The selected scenes, illustrated in Figure 2.1, do not appear to have a uniform
spatial distribution of polygons. Clearly, there are regions of these images that
have more polygons than other regions. Most interesting images seem to be
spatially non-uniform.

One can’t correctly estimate spatial uniformity by viewing an image since
this doesn’t really indicate how polygons are distributed. Many polygons aren’t
visible and some polygons meld into others because of the illumination models
that were used to generate the image.

To understand how polygons are spatially distributed, an analysis program
was written that subdivided the screen space into rectangular regions of equal
area and distributed the image’s polygons to each of these regions. After all
of the polygons had been distributed, each region contained a count of the
number of objects that intersected the region. The standard deviation, o, was
computed for the distribution and recorded.

Standard deviations were computed for various numbers of regions ranging
from 4 to 256 and for all six test images. So that the results for the various
scenes could be compared, the coefficient of variance, V', was computed as:

_ 1000

z

v

where Z is the mean of the counts for the various regions. A uniform spatial
distribution would result in ¢ = 0 and V = 0. V > 0 indicates how far the
distribution is from being uniform.

Figure 2.2 presents a plot of V' versus the number of regions. Each curve
represents one of the six test scenes. All scenes appear to be spatially non-
uniform since V' > 100%. In general, V increases to some asymptotic value as
the number of regions increases. This behavior is expected since in the limit
a region will have either zero polygons or some number of polygons which
represents the depth complexity for a point.

These results are interesting in that they suggest that the distribution of
polygons to regions starts to look similar when the number of regions increases.
Distributions for most of the scenes seem to become similar for partitionings
into 75 or more regions.

While these results suggest that the distribution starts to lock similar as
the number of regions increases, they do not suggest that the number distri-
bution of objects to regions becomes uniform. In fact, they suggest that there
is inherent non-uniformity to these scenes.
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Figure 2.2: A plot of the coefficient of variance, V, versus the number of regions
that scenes were divided into for the six test scenes.

2.2 Polygon Tiling

Polygon tiling is at the center of most visible surface determination algorithms.
Polygon tiling determines which pixels are within a polygon’s borders and what
color to render them. Depth buffer algorithms use polygon tiling exclusively
to implement the visible surface algorithm at each pixel.

Since the ultimate action of any visible surface algorithm is to tile a poly-
gon, or a portion thereof, it makes good sense to study the various subcosts
that contribute to the total cost of tiling a polygon. It also makes good sense
to study how polygon tiling costs are affected by increasing scene complexity.

Polygon tiling can be broken down into several readily identifiable sub-
costs. Parke [PARKES0] suggests that if polygon scan conversion is performed
by a single processor, the total time T is:

T = Npr + NsTs + ATETE
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where:
Ny the number of pixels computed
N, the number of scan line segments
N, the number of polygon edges
and:
Ty the computation time per pixel
Ts the computation time per segment
Te the computation time per edge

Parke’s analysis suggests that the times assoclated with processing a seg-
ment and processing edges are about the same, and about seven times greater
than the per pixel time Ty. This suggests that for very small polygons the
computation time may be entirely dominated by the edge and segment terms.
In his paper, Parke does not adequately describe what costs the Tp term in-
cludes. From his numbers, it would seem that it includes the time to color a
single pixel with a very inexpensive illumination model. Experience with the
author’s render program suggests that more realistic illumination models, such
as the one described by Bui-Tuong, easily cause the NpT, term to dominate
even for very small polygons.

The term NpTp may dominate, so Np, the area of a polygon as it is
projected onto the screen, represents an important metric. A program was
written to analyze the distribution of polygon areas. This program computes
a histogram which represents the distribution of polygons by projected area
\/Np. The square root of the areas was sampled in order to compress the data
into a meaningful range. Polygon areas were sampled and binned into 512
bins.

Figure 2.3 presents the results in a form that allows the histograms to be
easily compared. The abscissa represents the square root of polygon area and
ranges from 1 to 512. The ordinate is a percentage which has been computed

as:
512

y(n) =2z, / >«
1=1 1=1

where z; is the bin count. This measure is useful since it allows us to determine
that polygons with \/Np < n constitute a certain percentage of the polygon
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Figure 2.3: A plot of the distribution of polygons by area as a percentage of all
polygons in a scene.

population. The plot in Figure 2.3 has been scaled to show /N, < 100 since
most of the curves saturate by this point.

Figure 2.3 indicates that the vast majority of all polygons are small. We
also notice that the median polygon area tends to decrease as scenes become
more complex. This behavior is expected.

Another analysis of polygon area distribution is also important. Depth
buffer algorithms require time proportional to the total number of pixels, Ny,
that must be tiled for a scene. Ny is often called the drawn area and is simply
computed as:

P
Ng=>_ Ny
=1

where p is the number of polygons in a scene. A plot similar to Figure 2.3
can be produced that corresponds to the distribution of polygon areas as a
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percentage of drawn area. In this case, the ordinate of a point with abscissa n

y(n) = Zn:xiiz/Nd

=1

was computed as:

The results of this analysis are presented in Figure 2.4. This plot indicates
that small objects contribute to the majority of the drawn area, Ny, but that
for some scenes a few large polygons also make significant contributions to Nj;.
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Figure 2.4: A plot of the distribution of polygons by area as a percentage of drawn
area, Ng, for a scene.

The number of polygonal edges, N, also affects tiling cost through the
NeT. term. A number of proposals have favored limiting polygons to having
at most a fixed number of edges, usually three or four. Limiting the number
of polygonal edges allows certain resources to be statically allocated, generally
reducing hardware costs. In addition, there may be another good reason to
limit the number of polygonal edges. Most of the illumination models rely
on interpolation of colors or surface normal vectors. This works best if the
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polygon is convex. The results are usually so undesirable when the polygon is
concave that limiting the number of polygonal edges to three is not uncommon.

Figure 2.5 illustrates the distribution of polygonal edges for the selected
scenes. The results have been plotted in a fashion similar to Figure 2.3. In
this case, polygons have been binned by their number of edges. The horizontal
axis of Figure 2.5 represents the number of edges in a polygon. The ordinate

has been computed as:
512

n
==/

1=1 1=1
such that it represents the percentage of polygons with the same or fewer edges.
The figure indicates that, for all six scenes, the vast majority of polygons have
four or fewer edges. This is not surprising given the environment in which the
scenes were modeled.
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Figure 2.5: A plot of the distribution of polygons by number of edges.
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The number of scan lines that a polygon intersects, Ng, is another factor
that affects tiling costs. If we were to plot the distribution of N; for these
test scenes, the resultant figure would appear very much like Figure 2.3. This
would be the case since we can model N; as a function of N, as:

where A is an aspect ratio correction factor. The aspect ratio of a polygon can
be described by the ratio of a polygon’s width to its height. Square polygons
will have an aspect correction factor A = 1, while non-square polygons will
have A > 1lor A< 1.

Plotting the distribution of Ng will not offer much information about
the distribution of aspect ratios. Instead of plotting distributions of Ny, the
distribution of aspect ratios was examined. Each scene’s polygons were binned
by aspect ratio, the results are presented in Figure 2.6. Separate plots are
shown for each scene since the plots for multiple scenes appeared very cluttered
and were impossible to decipher. Each scene’s histogram has been plotted as
a polar plot occupying one quadrant. When drawn this way, the angle of each
bin’s walls correspond to the range of aspect ratios that fall into the bin. Only
one quadrant is utilized since aspect ratios are computed from a polygon’s
width and height which are unsigned quantities.

Figure 2.6 indicates that the distribution of polygon aspect ratios is not
uniform for these six scenes. There often appears to be a single preferred
aspect ratio but several of the scenes have two or more preferred aspect ratios.

2.3 Depth Complexity

Depth complexity at a pixel is a measure of how many polygons completely
or partially cover that pixel. Depth complexities are important for two rea-
sons. First, since many visible surface algorithms explicitly sort data by depth
for each pixel, a measure of depth complexity will indicate how well these
algorithms will perform on a scene.

Depth complexity is also important for another reason. High pixel depth
complexities indicate that many surfaces interplay at a pixel and suggest that
the pixel is likely to experience aliasing problems. High depth complexities
do not mandate that a pixel will experience aliasing problems since a polygon
may cover the entire pixel region hiding all other polygons from view.

At least one modern depth buffer algorithm, the A-Buffer developed at
Lucasfilm [CARPENS4], maintains a list of all polygons that intersect the pixel
in the buffer so that transparency and antialiasing effects can be calculated.
One hardware architecture also proposes accumulating a list of objects that
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Figure 2.6: These six plots illustrate the distribution of polygon aspect ratios for the
six scenes. The most vertical bin represents polygons that are tall and narrow
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intersect each pixel region for antialiasing purposes [WEINBES2]. It seems to
be an evolving trend to keep a list of objects that intersect pixel regions. Often
these lists can be pruned so that the length of a list never approaches the pixel
depth complexity. Nevertheless, it is interesting to examine the distribution of
pixel depth complexities since depth complexities suggest a worst case behavior
for these algorithms.

Figure 2.7 illustrates pixel depth complexity distributions for the selected
scenes. All six test scenes have median pixel depth complexities less than or
equal to five. Ninety percent of the pixels in four of the scenes have depth
complexities less than nine. The two most complex images, Framel100 and
Fractal64, have much higher depth complexities. These images also experience
the most severe aliasing problems which supports the suggestion that aliasing
problems are correlated to high pixel depth complexities.
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Figure 2.7: Distribution of pixel depth complexities for the six test scenes. The
ordinate value indicates the percentage of the pixels that have depth complexities
less than or equal to the abscissa value.
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2.4 Conclusions

This chapter analyzed several interesting characteristics of scene composition.
The data presented here was gleaned from a small sample of six scenes and the
results should be considered in light of this. Nonetheless, several interesting
points can be made about scene composition. These include:

1.

Scenes are not composed of a spatial uniform distribution of polygons and
assuming otherwise will invariably lead to incorrect assumptions.

It appears that the spatial non-uniformity of scenes can be characterized
by an asymptotic value. This value is computed as the coefficient of
variance of the number of polygons in a region as the number of regions
goes to infinity.

The majority of polygons are small and their size decreases as scene com-
plexity increases. In certain scenes, significant amounts of the total drawn
area can be attributed to a few large polygons.

Most polygons have few edges. Requiring polygons to be triangles proba-
bly will only double the number of polygons in a scene model.

Polygon aspect ratios do not appear to be distributed uniformly. Scenes
appear to have their own preferred aspect ratio but some scenes may have
more than one preferred aspect ratio.

Most pixels seem to have small depth complexities although 1t is easy
to create a model and view of that model with very high pixel depth
complexities. Aliasing difficulties seem to be correlated to high average
pixel depth complexities.

The analysis presented in this chapter only touches the tip of an iceberg.

There are many other interesting parameters that affect scene composition
that haven’t been addressed. Continued work in this area could lead to the
development of a statistical model of scene composition that could be used for
statistically analyzing algorithms or for driving simulators.

Since scenes are very complex and an adequate statistical model does not

currently exist, the performance of algorithms is best determined by simulating
them with realistic work loads that are derived from real scenes.
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3

Utilizing Parallelism
in
Computer Graphics Systems

Computer graphics systems are used in animation and simulation tasks to
generate sequences of images. Animated images may be very complex, and
computing a single frame often requires many minutes or even hours of pro-
cessing time. Real-time simulation requires that images must be generated
within a frame time. Because of this, real-time simulation systems have been
limited to displaying relatively low complexity images rendered with simplified
lighting models.

Parallelism can be utilized to significantly reduce the time needed to gen-
erate images. Reducing image generation time will allow more complex scenes
to be rendered in real-time simulation environments and will enable animators
either to reduce production costs or to enhance their imagery. This chapter
explores several ways of utilizing parallelism to this end.

To a certain degree, parallelism has always been employed in computer
graphics systems, since most are not capable of generating data at video rates
without relying upon parallelism to make their memory devices appear to be
much faster than they really are. This chapter will not address such fine grain
uses of parallelism, but will instead address parallelism on a much coarser level.
This work is targeted at applying parallelism at the subsystem or functional-
unit level in order to produce completed images faster than conventional se-
quential architectures would.

This chapter addresses the problem of how to make efficient use of paral-
lelism in order to dramatically reduce the time needed to compute sequences
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of images for use both in animation and simulation environments. Acceptable
solutions will improve both system throughput and latency.

Many people have pointed out that throughput can be increased rather
arbitrarily if the latency, the time required to compute a single frame, remains
constant. A simple implementation improves throughput by a factor of N by
employing N identical computer systems, each of which computes 1/N of the
frames.

Decreasing latency is an important goal for two reasons. First, by decreas-
ing latency we improve the state-of-the-art in real time simulation by allowing
more complex images to be computed in the same fixed amount of time. Fu-
ture generation simulation engines will produce images of today’s animation
complexity in real-time. The work, presented in this thesis, attempts to lay the
groundwork for the transition between the architectures of today’s simulation
machines and those yet to come.

Second, decreasing latency decreases turn-around time. Animation work
may be divided into two phases: design and production. Systems that deliver
higher throughput may reduce production time. Systems that provide lower
latency reduce design time by providing the designers with faster feedback.

Inefficient uses of parallelism are not practical solutions. While some par-
allel architectures might provide both higher throughputs and lower latencies,
the cost to run these machines may relegate them to the junk pile if they make
inefficient use of their resources. Therefore, we are necessarily constrained
by the market place to produce cost-competitive solutions. Doing so requires
making use of parallelism in a very efficient manner.

In this chapter, I will present an overview of previous work done in ap-
plying parallelism to computer graphics. Afterwards, I will present various
architectures for consideration and will simulate them with data derived from
real scenes. Results will be compared and an architecture will be selected as a
framework for the ANIMAC systems.

3.1 Prior Work

Much work has been expended developing various architectures for computer
graphics that exploit parallelism in one way or another. Some of these archi-
tectures are merely proposals, or paper studies, while some have been built
and used successfully.

I have separated the various architectures into three distinct categories:
(1) Spatial Subdivision Architectures, (2) Processor per Object Architectures,
and (3) Processor per Pixel Architectures. The rest of this section will dis-
cuss these three classes of architectures. The architectures belonging to each
category will be presented in chronological order. The applicability of each
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architecture to the problem at hand will be discussed and an overall recapping
will be made for each subsection.

3.1.1 Spatial Subdivision Architectures

Spatial subdivision architectures use parallelism by dividing a space into sub-
spaces and assigning processors to these subspaces. The space to be subdivided
may be any of the spaces common to computer graphics, typically either the
image space or the modeling space is used.

Spatial subdivision architectures appear to be much more prevalent than
either of the other two types. They take two different approaches to improving
the performance of scene rendering.

The first approach utilizes spatial subdivision to associate objects with
processors that perform a general visible surface algorithm to tile a portion of
the image. Justification for this approach usually relies on Sutherland’s obser-
vation that visible surface algorithms behave as sorting processes [SUTHER74].
As such, the time required for visible surface determination is determined
largely by the number of objects in the scene. Since sorting, and thus visible
surface determination, requires a minimum time proportional to the number
of objects, N, and commonly time proportional to N log NV, decreasing the
number of objects dramatically improves performance.

The second approach found in the literature makes use of spatial subdivi-
sion to speed up the tiling of objects. Overall performance is improved if tiling
of objects consumes a great proportion of the total time.

There has been at least one proposal for a hybrid solution which makes
use of spatial subdivision in both of the ways just outlined [PARKES0].

3.1.1.1 Kaplan and Greenberg

Kaplan and Greenberg [KAPLAN79] echo Sutherland’s observation that visible
surface determination is a sorting process. They note that effective algorithms
make use of coherence to reduce sorting times. They suggest that parallel pro-
cessing is an attractive approach to designing real-time visible surface engines.

They studied the performance, in a parallel environment, of two visi-
ble surface algorithms: a Watkins-like scan-line algorithm [WATKIN70] and a
Warnock-like spatial subdivision algorithm [WARNOC69]. Figure 3.1 illustrates
the two techniques that Kaplan and Greenberg used for subdividing the screen
space. Parallelism was utilized by dividing the screen space into: (1) groups
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The Watkins-like algorithm  The Warnock-like algorithm
subdivided the image space subdivided the image space
into groups of scan-lines. into rectangles.

Figure 3.1: Subdivision techniques used by Kaplan and Greenberg.

of adjacent scan-lines for the scan-line algorithm and (2) rectangles for the
Warnock algorithm.

The significant observations based on the scan-line algorithm were that:
(1) processing time decreased as more processors were utilized, but at a less
than linear rate, (2) the number of memory references and depth comparisons
for the first scan-line associated with a processor increased, and (3) the pro-
cessing time required for a particular screen area was highly variable. The first
two of these observations were explained by a loss of coherence in the scan-line
algorithm. The last observation was explained by the non-uniformity of the
object environment.

Observations based on the Warnock-like algorithm were that: (1) total
processing time decreased as more processors were added and (2) the number
of polygons per processor and the total polygon edge length per processor
showed a strong correlation to the processing time required by that processor.
Again, processing time was highly variable across the set of processors.

The authors claim that in both cases low intercommunication was re-
quired between processors, and they stress the importance of having an easily
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calculated value that can serve as a predictor of total processing time. They
suggest that one can obtain maximum efficiency from a parallel processor by
heuristically scheduling tasks using a predictor function to estimate costs.

3.1.1.2 Fuchs and Johnson

Fuchs and Johnson [FUCHS79] present a multiprocessor depth buffer architec-
ture that uses spatial subdivision to improve tiling performance. Figure 3.2a
illustrates the overall tiling engine architecture.
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Central Broadcast Processor
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1 Object Bus f
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\ j
4 | i |
// Video Bus
Lo Memory
Tiling VIDEO VIDEO SCAN J
Processors DISPLAY GENERATOR Units

Figure 3.2a: Distributed depth buffer architecture of Fuchs and Johnson.

Many tiling processors operate in parallel and they communicate over two
global busses: the object bus and the video bus. Each processor implements a
depth buffer algorithm for some fixed subset of pixels on the screen. Processors
have two memories, one for storing pixel colors and the other for storing the
associated depths.

Polygons to be tiled are handed to the Central Broadcast Processor, which
in turn broadcasts a description of the polygon to all of the tiling engines via
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the object bus. After receiving the polygon description, a tiling processor ac-
knowledges receipt by asserting the -busy signal and then colors those of its
pixels that lie within the polygon and are potentially visible. When a tiling
processor finishes, it lets the -busy signal float. The Central Broadcast Proces-
sor detects that all tiling processors have finished when -busy is deasserted. It
then may proceed with the next polygon.

The video bus is used by the Video Scan Generator to retrieve pixel values
from the tiling processors. The Video Scan Generator assembles a completed
image in a frame buffer memory, updating the frame buffer memory whenever
a new frame is available.

The novelty of this design lies in the method for partitioning the screen
space among the processors. Figure 3.2b illustrates how a modulo arithmetic
scheme can be used to map adjacent pixels to different processors in a regular
fashion. The authors describe this as a tesselation and claim that it allows all
processors to work in parallel during the scan-conversion of a polygon. The il-
lustrated tesselation is only one of many possible pixel to processor assignments
that the authors consider.
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Figure 3.2b: Assignment of pixels to processors in Fuchs’ and Johnson’s architecture.
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3.1.1.3 Parke

Parke [PARKES80] presented an analysis of three different multiprocessor depth
buffer architectures. He compared the previous architecture proposed by Fuchs
and Johnson with his own architecture, which he calls a Splitter Tree. He also
proposed a hybrid of these two architectures.

Parke’s Splitter Tree architecture is illustrated in Figure 3.3. It consists of
a tree of clipping engines that redistribute polygons to tiling processors. Each
engine divides the incoming polygons into two sets according to the side of a
clipping plane on which the polygon lies. Polygons straddling the clipping plane
are split into two polygons about the clipping plane. A tree of these clipping
engines effectively distributes a stream of polygons to a number of processors,
each associated with a distinct screen space region. These new processors
proceed in parallel to perform a depth buffer scan-conversion process.

Clipped
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Figure 3.3: Parke’s Splitter Tree Architecture
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Figure 3.4: Parke’s Hybrid Architecture

Parke’s Hybrid architecture uses a splitter tree to partition polygons ac-
cording to screen position, then instead of using a conventional depth buffer
engine to scan convert them, it uses a multiprocessor similar to that of Fuchs
and Johnson to tile the polygons in each subregion. This hybrid architecture
is illustrated in Figure 3.4.

The simulation of Parke’s splitter tree architecture shows impressive re-
sults when compared with Fuchs’ machine and the Hybrid engine. However,
Parke points out that the splitter tree architecture depends on having a uni-
form spatial distribution of polygons. He suggests that the hybrid architecture
might be a better approach since it offers some immunity to a nonuniform
distribution of polygons in space.

3.1.1.4 Evans and Sutherland

The CT-5 architecture [SCHUMAR®0], developed by the Evans and Sutherland
Computer Co. (E&S), uses spatial subdivision to reduce the number of objects
that must participate in visible surface calculations, thus reducing the time
needed to determine the visible surfaces for a region.
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The CT-5 architecture includes at least five types of processors. The most
interesting processor in the context of this discussion is the Display Processor,
which accepts image space object descriptions in visual priority order and
produces a composite video image.

The display processor divides the image plane into rectangles of adjacent
pixels, which E&S calls “spans.” Earlier pipeline stages order objects by visual
priority so that closer objects will arrive at the display processor first. Objects
are then processed a span at a time for all spans that the object intersects.

Visible surfaces are determined by associating a mask with each span. The
mask is the union of all objects that have been presented to the span processor
so far. When a new object is presented, two new masks are formed: a new union
which becomes the new mask, and a difference, which precisely describes which
portions of the new object will be visible. This difference image description is
passed to a spatial filter which adds the new object’s contribution to all of the
affected pixels. The result is an antialiased image, which E&S claims has been
properly sampled and filtered.

E&S states that their algorithm requires time proportional to the drawn
area of the image and claims that as a scene’s complexity increases, the system
requires less than a linear increase in computing time.

In their conclusions, E&S states that parallel processing is the ultimate
goal for the CT-5 architecture. They do not disclose the degree of parallelism
utilized in the currently marketed CT-5 systems, although they do indicate
that future systems will be heavily dependent upon custom VLSI chips to
realize parallel implementations of the CT-5 architecture.

3.1.1.5 Clarke and Hanna

Clarke and Hanna [CLARKES0] proposed an architecture that utilizes spatial
subdivision of the screen space to achieve higher tiling rates by increasing the
effective bandwidth to the image memory. Instead of multiplexing image mem-
ory address and data busses, as is the common practice, they associate custom
VLSI memory controllers with small collections of memory chips. These VLSI
chips can be configured as either Column Image Memory Processors (C-IMPs)
or as Row Image Memory Processors (R-IMPs). Figure 3.5 illustrates a con-
figuration of C-IMPs and R-IMPs.

C-IMPs accept commands from the parent processor and issue commands
to the R-IMPs. These commands allow for line, character, or polygon render-
ing, and for raster merging. In parallel, the C-IMPs subdivide the rendering
tasks and redistribute the work to their R-IMPs.

R-IMPs are connected directly to the image memory chips and are respon-
sible for scan-conversion. This architecture uses a tesselation scheme much like
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Figure 3.5: Image Memory Processor Architecture

that of Fuchs and Johnson to associate pixels with the R-IMPs. Thus, an ad-
jacent group of pixels are effectively scattered across the collection of R-IMP
Processors.

This architecture is able to achieve very high scan-conversion rates for
large polygons. Performance for small polygons degrades when all of the R-
IMPs are unable to share the task. Worst case performance would be that of
a combined C-IMP and R-IMP,

The Image Memory Processor architecture can be extended to implement
a parallel depth buffer algorithm. The authors suggest that such an approach
would provide a very cost effective hidden surface rendering system.

3.1.1.6 Ullner
Ullner [ULLNERS3] presented several ray tracing machines in his dissertation.
One of these, which he called the “Ray Tracing Array,” makes use of spatial
subdivision of the modeling space.

Ullner’s Array is a two-dimensional array of microprocessors with special-
ized ray intersection and communications hardware. Although the processors
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form a two-dimensional array, the modeling space is subdivided along all three
axis. Contiguous subvolumes along a doubly skewed path are mapped onto a
single physical processor. This mapping exhibits the property that the neigh-
bor of any subvolume resides in a neighbor of the processor to which the sub-
volume is mapped. Furthermore, the mapping spreads a family of rays onto
an equal number of physical processors. This last property is important to the
load balancing of Ullner’s machine.

The Array ray traces an image by first associating objects with physical
processors. This is done in the manner previously described. Once the objects
have been loaded into the processors, many different views may be computed
without reloading. To create a view, rays are cast from the viewpoint and
fall fairly uniformly on the physical processors. Each processor accepts a ray
and checks whether any objects within its subvolume intersect the ray. Several
things may happen, all of which generate ray messages. First, the ray may
intersect an object, in which case child rays are cast. Second, the ray may not
intersect any objects, in which case the ray is passed onto a neighboring sub-
volume’s processor. Third, a ray may meet a termination condition, in which
case a result ray message must be created and sent back to the originating
Processor.

Ullner discusses extensions to his architecture that enable it to handle
more general objects than polygons. He also addresses ways to virtualize the
algorithm so that subvolumes and ray messages can both be swapped onto

disk.

3.1.1.7 Dippé and Swensen

Dippé and Swensen [DIPPE84] presented another architecture for a ray tracing
machine that utilizes subdivision of the modeling space. Their ray tracing
algorithm is essentially similar to that of Ullner. They presented analysis which
shows that a message passing algorithm that checks only for ray intersections
in the processors along the path of the ray can provide substantial speedups
over naive algorithms that check for intersections in all processors.

Of much more interest to this discussion, they propose using a three-
dimensional subdivision of the modeling space in which each subvolume is to
be associated with a processor. Adjacent processors can communicate by send-
ing and receiving messages. In order to achieve load balancing, they propose
allowing the mapping of subvolumes to be both dynamic and adaptive. They
propose using the product of the number of objects within a region and the
number of rays in that region as a cost metric to be assessed by a global
algorithm that directs the redistribution of resources.

The authors have simulated their algorithm on conventional computers
and present a pleasing but by no means state-of-the-art image. They suggest
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the adaptive nature of their algorithm is important and indicate that the use
of adaptive subdivision algorithms be applied to other types of visible surface
algorithms.

3.1.1.8 Summary of Spatial Subdivision Architectures

The six spatial subdivision architectures just reviewed use parallelism in two
different ways. Two architectures used parallelism to improve tiling perfor-
mance. The other four architectures used parallelism to reduce the number
of objects that any processor would have to deal with when deciding which
surfaces are visible.

The distributed depth buffer architecture proposed by Fuchs and Johnson
and the Image Memory Processor architecture proposed by Clarke and Hanna
both use parallelism to speed up the tiling of graphical objects. While these
architectures are different in how they distribute tasks among processors, they
are very similar in how they actually apply parallelism to object tiling.

Both architectures use multiple processors to tesselate the screen plane
as in Figure 3.2b. Given such an architecture, the time, T, required by these
architectures to tile a polygon can be written as:

T=Tg +TP[NP/P-|

where:
Tg per polygon setup time

Tp pixel modification time
Np projected area of the polygon

P the number of processors

As noted in Chapter 2, the average polygon size decreases as a scene
becomes more complex. If the area of a polygon projected on the screen,
Np, decreases to the point where Np < P, some of the P processors do not
contribute to the tiling of the polygon. In such a case, polygon tiling time is
described by:

Np—P
T = Tg¢+Tp

We see that as scene complexity increases, T' asymptotically approaches
a value independent of P, the number of processors. Once this condition has
been met, adding processors has no affect on system performance. In fact, P
can be decreased without affecting performance. When scenes meet the Kajiya
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criterion of complexity?f, objects are typically smaller than a single pixel. In

this case, we see that we can set P = 1 and not suffer a performance loss.
The asymptotic value of T', may very well be dominated by the T'g term.

Such architectures are best run well away from their asymptotic knee where:

TP{‘NP/P] > TS

Under these conditions, system performance is enhanced through the use of
parallelism and can be improved by adding more processing elements.

The second class of spatial subdivision architectures use parallelism to
redistribute objects to processors that perform a visible surface determination
algorithm for the region associated with each processor. The four architec-
tures in this category used different techniques to redistribute objects. These
included regular subdivisions along one, two, or all three axes, as well as ir-
regularly spaced subdivisions. The architects hope that their redistribution
strategy balances the load on the array of processors so that each processor
ends up with the same number of objects.

The behavior of these architectures depends upon two variables: how
effectively objects are redistributed and the time complexity of the visible
surface algorithm that each processor uses to render an image of its region. A
few definitions will be useful for the following discussion of performance.

P, Processor t
N; Number of objects in F;
T; Time required by P; to handle N; objects

Two time metrics are of interest. Generally when an image is computed
one waits for the entire image to be computed before viewing it. This is akin
to stating that all processors must finish their tasks and can be written as:

T = max(Ty,...,TN)

Another time metric is useful in circumstances when individual processors
may proceed without waiting for other processors to finish. This behavior may
occur in a system that writes each processor’s pixel data to disk and eventually
collects all of the data together to create a composite image. Such a system
would be useful in an animation environment for production runs. In this

+ Kajiya suggests that a scene is complex when it consists of more graphical
objects than pixels.
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case, behavior depends upon the amount of buffering available in the system.
If arbitrary buffering is available, an image can be computed in time:

1 N
1=1

The time, T; required to scan-convert a screen region depends upon the
number of objects in that region, such that:

T; = f(N;)

The function f depends upon the nature of the visible surface determination
algorithm employed by the individual processors. Depth buffer algorithms
require time related to the number of objects O(N;), while other algorithms
commonly require time O(N;log N;). Thus T; can be rewritten as:

T,':O(Ni) or T,-:O(Nilog Ni)

Performance improvement, p, can be viewed as the time required by a
uniprocessor divided by the time required for a multiprocessor. For these two
visible surface algorithm behaviors, and for ideal distributions of objects to

processors, we find:
1
=0 =
g (P)

N
p=0 PlogN
log &

These spatial subdivision architectures exhibit performance improvements
that depend upon the number of processors. Adding more processors can im-
prove overall performance if objects are evenly distributed among the proces-
sors. Unlike the tiling architectures, these spatial subdivision architectures
would seem to perform best for highly complex scenes. Simple scenes contain
few objects and are more likely to result in uneven distribution of objects to
processors. The law of large numbers would seem to suggest that it would be
easier to evenly distribute objects from more complex scenes.

and:

3.1.2 Processor per Object Architectures

Processor per object architectures associate a processor with each graphical
object in a scene. Collectively, the processors determine which of the objects

is visible at each pixel.
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Some of the earliest real-time graphics systems, such as the GE NASA
system [SCHACHS83], used processor per object architectures. Over time, these
systems have evolved into systems that do not statically allocate a processing
element for each object. This evolution has been greatly motivated by a need to
build economical and robust systems. Economic motivation resulted from the
increased level of integration and faster switching times of integrated circuits.
Classical processor per object architectures do not exhibit a high degree of
robustness. A system may be configured to handle a specific number of objects
and no more. When such a system is presented with too complicated a task,
it fails completely instead of degrading nicely. Thus, alternate architectures
were sought out.

Interestingly, the “silicon foundry” revolution has led to a renewal of inter-
est in processor per object architectures. The design philosophy promoted by
Mead and Conway [MEADSO] stresses that high performance can be achieved
in MOS systems by parallelizing the computation instead of serializing it. Fur-
thermore, replication of functional units decreases design and development
time. Because of this new design philosophy, we find three modern day pro-
posals for processor per object architectures. These three architectures will be
reviewed in the following sections.

3.1.2.1 Cohen and Demetrescu

Cohen and Demetrescu [COHEN80] presented one of the first interesting VLSI
architectures targeted at real-time visible surface computer graphics. The
Cohen and Demetrescu algorithm may be divided into three distinct phases.
These phases—preparation, loading, and compute—operate sequentially, but
double buffering may be used to overlap their execution.

During the preparation stage, the scene description is transformed into
screen space, clipped, and fractured into triangles. Figure 3.6 illustrates that
this architecture consists of a pipeline of processors. During the load phase,
geometric and coloring information is passed down the pipeline and loaded
into the processors. After the pipeline has been properly loaded, the compute
phase may begin.

Each triangle processor contains a row and column counter, together with
logic for determining whether the pixel addressed by the row and column
counter is inside the triangle and for determining the depth at which the pixel
intersects the triangle. During the compute phase, the pixel address is incre-
mented on each clock tick. During each clock period, the processor determines
whether its triangle is potentially visible at the current pixel. If the trian-
gle is potentially visible at the current pixel, and the depth of the triangle at
the current pixel is closer to the viewer than the depth asserted on the input
bus, the triangle’s depth and color information are asserted on the output bus;



- 36 —

DATA PRE- SIMULATICON
BASE PROCESSOR PROCESSOR

Triangle Prccessors

— 1

VIDEO
e e DISPLAY

DM w

HS [ I U N S N

Color and Depth Information
is passed from processor to
processor,

Figure 3.6: Pipelined Processor per Object Architecture proposed by Cohen and
Demetrescu.

otherwise depth and color information from the input bus are simply passed
through the processor onto the output bus.

The output from the pipeline is a stream of pixel colors and depths for
each pixel in scan-line order. These pixel colors can be written into a frame
buffer for display or may be displayed directly.

3.1.2.2 Weinberg

Weinberg’s work [WEINBES2| builds upon that of Cohen and Demetrescu.
Weinberg’s goal is to enhance the processor per object paradigm to produce
properly antialiased images. Antialiasing computations generally require in-
formation about a locality surrounding a pixel center to be present at the
time the pixel’s color is computed. Depth buffer algorithms, of which Cohen
and Demetrescu’s is a hardware implementation, are attractive because they
perform radix sorts and require only computational time proportional to the
number of objects. Unfortunately, this type of sorting prevents the required
information about a locality from being easily extractable.
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Weinberg’s solution requires three major enhancements to the Cohen and
Demetrescu architecture. First, he modifies the processing elements so that
they do not merely decide whether the center of the pixel lies within a tri-
angle. Weinberg’s processors decide whether a region around the pixel center
intersects a trapezoid and whether the intersection partially or fully covers the
pixel region.

Weinberg also modifies the architecture so that it no longer passes only the
closest object’s information down the pipeline, but now passes a list of objects
that intersect the pixel region. Each processor inserts its object’s identifier into
the list in such a way that the list is in a visual priority sorted order by the time
it emerges from the pipeline. Processors whose objects are completely behind
objects already in the list need not insert their objects, and processors whose
objects completely obscure the entire list insert their identifier and remove
those that are hidden. This behavior prunes the list so that the pixel tiling
engine need consider only a few objects per pixel.

Weinberg’s third modification is to add a pixel tiling unit which tiles a
pixel by computing each trapezoid’s contribution on a fine subpixel grid. These
contributions are weighted by a filter function and added together to determine
the pixel’s final color.

Weinberg suggests that his architecture is capable of generating images of
6000 triangles every sixtieth of a second, for a display of 625 by 700 pixels. He
would implement this with ECL gate arrays. Each processor requires roughly
1500 ECL gate sites. Today’s ECL gate array technology would require several
thousand gate arrays to implement the object processor pipeline.

3.1.2.3 Ullner

Ullner’s architecture [ULLNERS3] is much different from the previous two. The
two previous architects strived to keep their processors as simple as possible
so that each processor’s cost would be minimized. Ullner takes a different tack
by associating larger processors with each object.

Ullner’s architecture logically consists of a binary tree of processing ele-
ments. The leaf processors are loaded with an object’s world space coordinates
and a viewing transformation. Each processor transforms its object into screen
space, and in lock step with other processors, scan converts its object. The
scan conversion is unique in that each processor determines which region of
the current scan line its object intersects. This line segment is passed up the
tree to a combine processor which merges the line segments together. The root
processor emits a sequence of line segments that tile the scan line.

One of the features of Ullner’s architecture is that it does not have to
dedicate a large portion of its time to loading object descriptions into proces-
sors. Object descriptions are loaded just once. New views are generated by
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changing the viewing transformation. This works best if the model is static.
Even if it isn’t, it is possible to only update the dynamic portions of the model.
This selective updating of the scene model requires stronger ties between the
modeling system and the viewing system.

3.1.2.4 Summary of Processor per Object Architectures

The three processor per object architectures presented here run along a com-
mon thread. Cohen and Demetrescu provided the seminal work in this area.
They showed that VLSI could be put to good use to produce real-time visible
surface graphics. Their architecture was very simple and had a few problems
but it opened the door. The most notable of the problems were: (1) lack of
support for antialiasing, and (2) a large overhead was required for initializing
the state of the processor pipeline.

Weinberg’s architecture directly addressed the antialiasing problem and
provided a good solution. He was still plagued with having to allocate a con-
siderable amount of time to initializing the processors.

Ullner’s contribution seeks to reduce the amount of time spent loading the
processors. He suggests using more powerful processors and distributing the
model across the processors. The processors are responsible for transforming
and clipping the model. Ullner’s work doesn’t really address handling dynamic
models. There is room for future work in this area.

All three of these systems consist of pipelines of processors. The archi-
tectures proposed by Cohen and Demetrescu and by Weinberg make use of
fairly linear pipelines while Ullner’s makes use of a binary tree form. The time
required to compute a scene can be written similarly for all three architectures
as:

Tframe = TN +TpN + Tp(Height + Width)

where:
T, time to load a processor
Tp data propagation time
Tp average pixel generation time
N number of processors and objects

Height number of pixels in the Y direction
Width number of pixels in the X direction

We see that as we add more processors and more objects, more time is
required to load the object data into the processors and more time is required
for the first pixel’s data to propagate through the pipeline. Both the loading
time, Tr N and the propagation delay TpN can be reduced in ways suggested
by Ullner. Nevertheless, these terms tend to dictate overall performance in
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real-time applications. Increasing the number of objects increases the overhead
time which requires the average pixel generation time, Tp, to be reduced in
order to produce the image in a frame time.

3.1.3 Processor per Pixel Architectures

Another result of the recent access to VLSI design and fabrication facilities
is a class of architectures that have come to be known as processor per pixel
architectures. These architectures associate a processing element with each
pixel. These pixel processors work on a task in parallel and have the potential
to achieve very high tiling rates.

3.1.3.1 Fuchs

In 1981, Fuchs devised the Pixel-Planes architecture [FUCHS81] and, in collab-
oration with others, has been developing it ever since. Pixel-Planes represents
another member in the class of parallel depth buffer algorithms. This archi-
tecture utilizes a simple processor for each pixel in the image buffer.

The array of processors scan converts convex polygons in time proportional
to the number of polygon edges. Each processor is able to evaluate the plane
equation (D = aX + bY + c) and uses the resulting sum in different ways
depending upon the different phases of the scan conversion process. The scan
conversion process is divided into three phases: visibility determination, depth
determination, and shading.

During the visibility determination phase, the state of all pixel processors
is initialized to indicate potential visibility. The line equations of each poly-
gonal edge are then presented to the pixel processors. The processors evaluate
the line equation in parallel, each calculating D, which is interpreted as the
distance of the pixel from the line. All processors to one side of the line (outside
the polygon) disable themselves from all further calculations. By the time all
of the polygons edges have been presented, only the pixel processors in the
interior of the polygon are still marked as potentially visible.

In the next phase, processors calculate the depth at each pixel. The
distance from each pixel to the viewer is encoded as (Z = aX + bY + ¢), and
this equation is presented to the array of pixel processors. Only processors that
are still marked as being potentially visible compare the computed depth with
their stored depth. If the computed depth is closer than the stored depth, the
stored depth is updated with the new value. Obscured pixels disable themselves
from all further calculations.

The final phase calculates the intensity at each pixel. This is done by
encoding each of the primary color intensities as: (I = aX + bY + ¢). Thus,
three more equations are presented to the array of processors, and each of
the pixel processors, still in the visible state, stores the result in their color
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registers. This completes the polygon tiling process and the next polygon is
started.

Fuchs’s processors are relatively simple due to a clever partitioning of the
logic needed to evaluate the line equation. Each chip consists of an array of
processors surrounded on two sides by some logic. This logic serially calculates
aX + c; for each column in the array. Similarly, the other logic tree calculates
bY + c5. In order to calculate D, each processor need only serially add the
numbers presented on its row and column lines.

Fuchs estimates that a Pixel-Plane machine can achieve a throughput of
about 1,000 polygons per frame time. This machine would perform as well as
most of today’s flight simulator engines. Drawbacks include its simple shading
model and most notably the lack of antialiasing, which is a common drawback
with depth buffer algorithms.

3.1.3.2 Whelan

This author also developed a processor per pixel architecture [WHELANS82].
The architecture was originally not intended for use in three-dimensional hid-
den surface graphics applications, but rather for use in two-dimensional VLSI
CAD applications. The architecture is capable of scan converting an arbitrary-
sized axis-aligned rectangle in constant time.

This rectangle tiling architecture probably represents the simplest proces-
sor per pixel architecture achievable. Its processing element is simply a RAM
cell with two extra transistors that allow the RAM cell to be written when both
row and column selects are asserted. Like Fuchs, Whelan partitioned the logic
so most of it is shared and resides on the periphery of the RAM array in the
form of specialized row and column decoders. Unlike ordinary RAM decoders,
which assert only one output, these decoders assert a band of outputs. In use,
the row decoder is loaded with the lower and upper Y values of the rectangle,
and the column decoder is loaded with the corresponding X values. The RAM
cells in the region defined by the intersection of the asserted row and column
selects are within the rectangle and participate in the write cycle.

An adaptation of this algorithm would serve as a fairly decent tiling engine.
Instead of tiling arbitrary rectangles, this new architecture would tile scan-
line segments and could be used with many visible surface algorithms which
first determine visible scan-line segments and then tile them. The scan-line
architecture is illustrated in Figure 3.7 and requires no modification to the
design of the conventional RAM cell. It requires modifying only the column
decoder, which again asserts a band of outputs corresponding to the affected
pixels. Gouraud shading can easily be implemented by organizing the chips
such that a full color bank of pixels is resident on a single chip. Logic similar
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Figure 3.7: Whelan’s processor per column tiling architecture.

to Fuchs’s can be used to calculate I = aX + ¢, and the result can be stored
in the memory cells.

3.1.3.3 Summary of Processor per Pixel Architectures

Fuchs’s Pixel-Planes architecture addresses the entire visible surface determi-
nation problem by utilizing a distributed depth buffer algorithm. The pro-
cessing elements required to implement this algorithm are fairly complex when
compared to a RAM cell.

Whelan’s architectures rely on very small processing elements. His second
architecture is in effect a processor per column architecture, and therefore
incurs no per pixel overhead.

These two approaches are at different ends of a spectrum. Fuchs finds
himself working hard to reduce the size of his processing elements so that many
more can be placed on a single die. His architecture will become economically
feasible when a Pixel-Planes system can be implemented with a reasonable
number of integrated circuits. Whelan’s architectures may be economically
feasible today but they cannot provide the same performance improvements as
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Fuchs’s. An architecture somewhere between the two will likely provide good
performance at reasonable costs.

With processor per pixel architectures, performance depends directly on
the number of objects in the scene. For Pixel-Planes, the time required to tile
a polygon, Tp,qy, is:

T,

poly = Ts + Tp(E + 4)

where:
Ts per polygon setup time

Tp basic calculation time

E number of polygonal edges

Interestingly, performance does not depend on the number of processors. Like-
wise, performance is not dependent upon the projected area of a polygon.

Clearly, processor per pixel architectures achieve very high tiling rates for
large polygons. Tiling rates, measured in pixels/second, decrease as polygons
become smaller suggesting that these architectures are best avoided for overly
complex scenes.

While much work has been done on processor per pixel architectures,
major issues still need to be resolved. First and foremost, neither architecture
provides any support for antialiasing. Without antialiasing, these architectures
cannot provide the image quality that is expected of such systems. Secondly,
these architectures provide for only the simplest of illumination models and
provide no support for higher order effects like shadowing and reflection.

Two approaches might be taken in the further development of these archi-
tectures. First, they might be improved to overcome the drawbacks inherent
in current designs. Second, applications might be found that aren’t hindered
by these drawbacks.

3.1.4 Conclusions

Three different uses of parallelism have been studied. Each use increases system
performance. All three exhibit different characteristics that seem to indicate
they will ind a certain niche in which they excel. Table 3.1 compares the per-
formance of these different uses of parallelism. Performance has been written
both as a function of the number of processors, Nproc, and as a function of the
number of objects, Nyp;, in the scene.

The table indicates that all of the architectures require more time for
scenes that contain more objects. This dependency is linear for the three
architectures listed because they all utilize depth buffer algorithms for visible
surface determination.

The table also indicates that performance improves as more processors
are added to spatial subdivision architectures. Performance worsens as more
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Architecture Processors Objects
Spatial Subdivision k/Nproc kN,
Proc. per Object ki Nproc + ko ki Nop; + ko
Proc. per Pixel k kNopy

Table 3.1: Performance comparisons for various parallel architectures.

processors are added for processor per object architectures. This arises from
pipeline loading and propagation times. The processor per pixel architectures
show no performance dependency on the number of processors.

Both processor per pixel and processor per object architectures are claimed
to offer performances of approaching 10,000 objects per frame time. This per-
formance would be approximately an order of magnitude better than today’s
flight simulation engines.

Both of these architectures could be extended to provide higher perfor-
mance. Both architectures are similar in that they utilize a depth buffer algo-
rithm. Depth buffer algorithms allow objects to be tiled independently. This
independence can be utilized to increase the performance of any depth buffer
algorithm.

Given a depth buffer engine capable of performance p, performance 2p
can be obtained by using two engines. Half of the objects are given to each
processor. Each processor creates a resultant image. The resultant images are
easily merged by selecting the pixel with the lowest depth value.

This technique works but has a severe problem. Aliasing will result when
two images are merged together. Aliasing may or may not be worse than
the aliasing present in the original images depending upon what antialiasing
measures were taken. The current state-of-the-art in real-time simulation and
animation requires that effective antialiasing measures be taken.

Spatial subdivision architectures provide a way of improving performance
by adding more processors. All objects that cover a region are redistributed
to a processor. This provides the needed information about a locality enabling
effective antialiasing measures to be taken.

Spatial subdivision techniques improve system performance by changing
the magnitude of the visible surface determination problem that must be solved
by each processor. The other techniques improved their performance by in-
creasing the amount of work accomplished per clock tick. Spatial subdivision
architectures provide a way of obtaining performance gains that result from
decreasing algorithmic complexity rather than from reducing gate propagation
delays.



— 44 —

3.2 Simulations of Spatial Subdivision Architectures

Architectures that use spatial subdivision to reduce the total number of ob-
jects per processor seem to offer the greatest gains. By reducing the number
of objects each processor must handle, these architectures provide a mecha-
nism for drastically reducing the amount of time required by visible surface
determination algorithms. In addition, the smaller number of objects in each
processor reduces the demands on that processor’s tiling engine.

The potential performance improvements that can be attained by using
these spatial subdivision architectures can be easily estimated. If we assume
that each processor implements a visible surface algorithm that requires time
proportional to the number of objects distributed to each processor, then spa-
tially subdividing the computation of a scene among N processors can improve
performance by at most a factor of N.

Any distribution of objects to processors is likely to be non-uniform and
would lower the performance gains accordingly. Even if we could achieve ideal
performance gains, a performance improvement of two orders of magnitude
would require one hundred processors.

These processors are not simple devices. If built today, they certainly
would require at least one printed circuit board per processor. In the future
we might expect this to reduce to several VLSI circuits. Few extremely large
multiprocessors have actually been implemented. Considering the size of cur-
rent multiprocessor implementations and other physical constraints on system
size, we could expect spatial subdivision architectures to be limited to a few
hundred processors. These several hundred processors would likely yield a
performance improvement of two orders of magnitude.

Spatial subdivision architectures have one key performance advantage over
other parallel architectures. Spatial subdivision architectures prescribe only
a method of distributing objects to visible surface determination processors.
How these visible surface determination processors implement their algorithms
has not been discussed. Many of the previous parallel architectures address
exactly this problem. Performance improvements of a parallel visible surface
determination algorithm can be compounded with those provided by spatial
subdivision to provide much higher performance improvements.

For example, if we were to couple a spatial subdivision architecture with
the Pixel-Planes architecture, we might expect to achieve performance im-
provements of about four orders of magnitude over conventional architectures.
In more concrete terms, Pixel-Planes architectures seem to be capable of offer-
ing slightly more performance than commercially available real-time simulation
systems. We could then expect our compound system to achieve a performance
gain of two orders of magnitude over today’s real-time systems.
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This ability of spatial subdivision architectures to compound their perfor-
mance improvements with performance improvements of parallel visible surface
determination architectures makes spatial subdivision architectures particu-
larly attractive for use in very high performance graphics systems. Spatial
subdivision architectures that do not employ parallel tiling architectures do
not provide substantive performance gains over parallel tiling architectures,
although they may provide other benefits.

The remainder of this section attempts to justify the performance gains I
have cited for spatial subdivision architectures. This has been done by simu-
lating the performance of various spatial subdivision strategies under differing
load conditions. The following discussions present experimental methods, re-
sults, and conclusions.

3.2.1 Method

The performance gains offered by spatial subdivision architectures can be mea-
sured by parallel efficiency, the amount of parallelism actually delivered from
a parallel architecture. In the case of spatial subdivision architectures, the
parallel efficiency is controlled by two factors: processor utilization and object
fragmentation. Both of these factors are highly dependent both on the method
being used to spatial subdivide the image space and on the image that is being
rendered.

Processor utilization is a measure of the percentage of time a processor is
doing constructive work. In spatial subdivision architectures, it is likely that
the distribution of objects to processors will not be uniform. Processors will
have to wait for an individual processor to finish before proceeding with the
computation of the next frame. Load balancing occurs when all processors
require the same amount of computational time. Spatial subdivision methods
that achieve processor load balancing provide higher processor utilization and
contribute to higher parallel efficiencies.

Object fragmentation is a measure of the increase in the number of objects
that must be handled by the visible surface determination processors. Object
fragmentation occurs when an object spans processor boundaries. These ob-
jects must be either subdivided into smaller objects or replicated in adjacent
processors. In either case, more objects are created. Spatial subdivision meth-
ods differ in the amount of object fragmentation they produce.

Optimizing parallel efficiency involves optimizing both processor utiliza-
tion and object fragmentation. Certain spatial subdivision methods may com-
promise one of these factors in favor of the other. To understand more about
the behavior of different spatial subdivision methods, the performance of cer-
tain spatial subdivision methods was simulated and certain factors were me-
tered.
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It was previously mentioned that the processor utilization is affected by
both the spatial subdivision method and the scene being rendered. The im-
portance of simulating the subdivision methods under realistic conditions was
realized early on. As the previous chapter illustrated, realistic scenes are com-
plex in nature and cannot be adequately simulated by simple means. For
example, analysis of performance under uniform loading provides few useful
insights that can be extended to real loading.

For this reason, the simulator was driven by data derived from views of
real models. Computer generated images of models created by the author and
others, including graphic art designers and computer scientists, were rendered
with the author’s render program. In addition to producing images, render also
produces trace information that describes each polygon which its polygon tiler
was requested to tile. This information is not an exact polygon description
but adequately describes the bounding box of each tiled polygon.

A general purpose simulator for spatial subdivision architectures was writ-
ten. This simulator views a multiprocessor architecture as a collection of rect-
angular image space regions. It then reads a render statistics file and clips
each polygon’s bounding box against each processor’s image space region. A
hit is recorded whenever an polygon’s bounding box intersects a processor’s
image space region. This method properly simulates fragmentation since a
polygon may fall into many processor’s image space regions and the simulator
will record a hit for each affected processor.

Simulation results are tallied at the end of each simulation pass. Five
separate cost metrics were collected. Four of these cost metrics measure the
amount of time required for the simulated computation. Each metric is nor-
malized with respect to the time required by a conventional uniprocessor.

The first cost metric is the fraction of polygons handled by the processor
responsible for the greatest number of polygons. This metric is justified by two
factors. First, the faster algorithms require time proportional to the number
of objects, and second, when computing a frame, one usually must wait until
all processors have finished computing their subregions before being able to
view the resulting image.

The second cost metric measures the average number of polygons dis-
tributed to the processors and divides this number by the total number of
polygons. This metric is appropriate when one doesn’t have to wait for all
processors to finish before proceeding with the computation of the next frame.

These two metrics have an analog in pipelined systems. The first metric
measures the total time required for the computation while the second metric
measures the computation rate. In pipelined systems both measures are im-
portant and the computation rate often greatly exceeds the rate implied by
the total computational time.
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In a graphics environment, the first cost metric measures the time to
compute a single frame, which was referred to as latency in this chapter’s
introduction. The second cost metric measures the average frame computation
time when computing a sequence of frames. This corresponds to throughput.

Two additional cost metrics were calculated but proved to be of little use.
These are similar to the first two metrics, but instead of assuming a visible
surface determination algorithm with time cost proportional to the number of
objects, these two metrics implement a O(N log N) cost metric. These metrics
depend greatly on the value of N and as such it is not useful to compare results
from the simulations of scenes of differing complexities. Because the first two
metrics provided this capability, they were preferred over the latter two.

The fifth cost metric was a measure of average object fragmentation. The
number of objects residing in all of the processors was added up and divided
by the number of initial objects. This metric provides interesting insights into
the behavior of the different subdivision methods.

3.2.1.1 Spatial Subdivision Methods

The multiprocessor architectures that were simulated fall into two classes. The
first class of architectures make use of one-to-one mappings of object space
regions onto processors. The second class of architectures make use of many-
to-one mappings of object space regions onto processors. These can be thought
of as virtual processors.

The non-virtual architectures were the most apparent and the literature
reflects this. Practically all proposed architectures have been non-virtual, with
the exception of [KAPLAN79]. I, too, approached this task with non-virtual
architectures in mind and sought to achieve load balancing among processors
via non-equal partitioning of the image space. The results will show that this
is an approach that may deserve more attention.

More recently, it occurred to me that a better approach to load balancing
might be to have each processor sequentially perform many small tasks rather
than one large task. This assumption was based on a belief that it is easier to
distribute many small tasks equitably among a group of processors than it is
to distribute fewer large tasks. Further thought resulted in the notion of vir-
tual processors, and the resulting architectures which fall into two categories:
those that make use of topological information to perform virtual to physical
processor assignments and those that make no use of topological information.
Section 3.2.3 of the experimental results describes these architectures.

3.2.1.2 Scene Models

The decision of which scene models should drive the simulator was an impor-
tant one. Considerations included: (1) having a selection of scenes that was
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representative of typical scenes, (2) having a selection of scenes that varied in
complexity between 1,000 and 100,000 polygons, and (8) having a selection of
scenes that was free of bias.

All of these factors had to be compromised somewhat. Scenes that had
been previously modeled at Caltech were neither representative of all of the
scenes we would expect in state-of-the-art computer graphics animation nor
were these scenes terribly complex. Most of these scenes consisted of between
1,000 and 10,000 polygons.

Bias presents itself in many forms. Foremost, I feared that my choice of
scenes or my creations of models might be self-serving. It is clear that one can
create scenes for which spatial subdivision works well and scenes for which it
doesn’t work at all. My fear was that I might pick scenes for which a certain
type of subdivision worked better than others. To avoid this, I have tried to
insulate myself from the design of the basic models.

Bias also exists in a more subtle form. Since models were created in a
particular modeling language and scenes generated by a particular rendering
program, it is unavoidable that the model will both take advantage of and
be hindered by the limitations of the modeling and rendering environments.
There was little I could do to avoid this type of bias. It is bias that is bound
to be found in any similar experiment and bias that has to be tolerated yet
understood.

My original simulations were run on a handful of scenes created by sev-
eral people. The results were inconclusive due mainly to the fact that most of
these scenes were rather simple. Overly simple scenes are best computed with
a single processor. The work inherent in distributing a simple scene to many
processors makes the proposition unworkable. Furthermore, I was not inter-
ested in the rendering of simple scenes, but in the rendering of highly complex
scenes containing some 100,000 polygons.

Since it takes considerable work to generate scenes of 100,000 polygons,
and since many such scenes would be needed, a new strategy evolved. One
of the goals of the simulations was to study how increased scene complexity
affected the performance of spatial subdivision architectures. I desired to read-
dress this task in a systematic fashion. This required forming a model of scene
complexity.

Scenes complexity varies in many ways. There are two important ways of
increasing a scene’s complexity. One method is to add new objects to the scene.
This has the effect of increasing the drawn area and may increase the average
depth complexity of the scene. Certain attributes such as the distribution of
polygon areas are likely to remain the same.
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Another method involves the addition of detail to existing objects within
a scene. This usually has the effect of keeping the drawn area relatively con-
stant and not affecting the average depth complexity much. Most notably, the
distribution of polygon areas changes greatly.

Together, these two paths to increased scene complexity provide a fairly
rich way to describe image complexity. One can think of these two paths as
basis functions in a two dimensional vector space. Points on the plane that can
be represented by a linear combination of these two basis functions describe
reachable image complexities.

Thus, in order that we might be able to draw some conclusions about how
changes in scene complexities affect the performance of various spatial subdi-
vision architectures, two scene models were chosen to drive the simulation.

The first scene model represents increasing image complexity by adding
new objects to the scene. I started with the model of a X-Wing fighter which
is illustrated in Figure 3.8a. This model was created by Chuck Esrock who
was then a student at the Art Center College of Design. A program assembled
a model consisting of a number of X-Wing fighters by placing X-Wing fighters
in randomly selected cells in a 9 by 9 array. The random selection was used
to avoid bias that might otherwise have been introduced by the author. A
sequence of ten scenes was created. These range from around 1,000 polygons
to more that 96,000 polygons.

The second scene model represents increasing image complexity by adding
detail. The most expedient way of generating such a model seemed to be to
generate views of a fractal landscape. Seven fractal landscape models were
generated. They range from 700 polygons to more than 96,000 polygons. A
view of one of these fractal landscapes is shown in Figure 3.8b.

These seventeen scenes involving more than 800,000 polygons were used
to drive the simulations. The following sections report on the simulation re-
sults. Many days of VAX CPU time were required to compute these simulation
results.

3.2.2 Non-virtual Multiprocessor Architectures

The non-virtual multiprocessor architectures can be divided into two cate-
gories. The first category makes use of regular subdivisions of the image space
while the second category does not.

Three regular spatial subdivision algorithms were simulated and are il-
lustrated in Figure 3.9. The first algorithm is referred to as subdivision into
columns and is implemented as a one-dimensional subdivision of the horizontal
axis. The scene may also be subdivided along the vertical axis into rows or
may be subdivided along both axes into rectangles. Other regular subdivisions
exist but were not simulated because they do not align with the pixel grid.



Figure 3.8a: X-Wing Fighter Model

Figure 3.8b: Fractal Landscape Model
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Figure 3.9a: Columns—Regular subdivision along the horizontal axis.

Figure 8.9b: Rows—Regular subdivision along the vertical axis.

Figure 8.9c: Rectangles—Regular subdivision along both axis.
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One irregular two-dimensional subdivision of the image space was simu-
lated. The algorithm used to irregularly subdivide the image space attempted
to achieve load balancing through a top down subdivide and conquer strategy.
Figure 3.10 illustrates how this irregular two-dimensional subdivision technique
recursively partitions the image space. At each recursion level, a median point
is determined from the centroids of all objects within a region and the region
is divided at that median point along one of the axis.

This algorithm, referred to as the Median Cut algorithm, attempts to put
half of the objects into each subregion but doesn’t properly achieve this goal
since fragmentation occurs when objects cross the cutting plane. The Median
Cut algorithm does not produce optimal partitionings of the image space but
was selected as a representative member of this class of algorithms and should
be thought of as providing a lower bound on the performance that is achievable
with adaptive algorithms.

Each of these four spatial subdivision algorithms was simulated with vary-
ing numbers of processors for each of the seventeen test images. Simulations
were performed over the range of 1 to 256 processors. The different algo-
rithms required simulations to be performed at different sample points since
the number of processors required by the different algorithms is related to the
dimensionality of their subdivision technique. The one-dimensional algorithms
can easily partition the image space N ways, whereas the two-dimensional al-
gorithms can only partition the image space v/N ways and the median cut
algorithm log N ways.

The simulation results are presented in Appendix A. Figures A.1-A4.17,
illustrate the simulation results for the ten X-Wing fighter images and the
seven fractal landscape scenes. Each of these figures is presented in the same
format to allow for easy comparison of the results. Each of these seventeen
figures consists of four subfigures.

Subfigure (a) is a photograph of the scene for which the simulation re-
sults correspond. Subfigure (b) illustrates the four different spatial subdivision
methods for which simulations were run. Each of these methods is illustrated
for sixteen processors. Notice the figure which corresponds to the Median Cut
algorithm since this is the only spatial subdivision which changes depending
upon the scene content.

Subfigures (c) and (d) illustrate simulation results. Subfigure (c) plots the
cost metric which corresponds to latency while subfigure (d) corresponds to
the average frame computation time. These two figures are plotted similarly.
The vertical axis corresponds to the cost metric and is accordingly labeled
Relative Time. The horizontal axis corresponds to the number of processors
and is so labeled. Four curves are drawn on each graph, one curve representing
each of the four spatial subdivision techniques. These curves are identified by
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Figure 3.10: The Median Cut algorithm recursively divides the image space depend-
ing upon scene complexity.
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textual labels on the right and by distinct symbols which are used to mark
each simulation point.

A diagonal line is also drawn on each graph. This line represents the ideal
performance curve. The distance from the ideal curve to the simulation curves
indicates how good or bad the results are. Besides indicating how well a spatial
subdivision technique performs for a given number of processors, these graphs
indicate how performance is affected by increasing the number of processors.

Notice how performance indicated by Relative Time changes as the num-
ber of processors changes. Also notice how well the different spatial subdivision
techniques track the ideal performance curve.

By comparing results from the different images one can easily see how
performance changes with scene complexity. Notice the different behaviors for
the X-Wing series and the fractal landscape series. Remember that these two
series represent two different approaches to changing scene complexity.

Figure 3.11 consists of a plot of data extracted from the simulation results
associated with the X-Wing fighter series (Figures A.1-A.10). This figure
indicates how performance, this time measured as efficiency, changes with scene
complexity. Efficiency has been calculated from the simulated relative times
which represent scene computation time, or latency. The data presented is for
processor configurations of sixteen processors.

The figure illustrates that the Median Cut technique provided the highest
efficiencies across the entire spectrum of scene complexities. The Median Cut
algorithm provided efficiencies well over 90% while the other methods struggled
to reach 50%. We do notice a general upward trend in the efficiency curves,
indicating that efficiency tends to increase as scene complexity increases due
to the addition of new objects.

Figure 3.12 consists of a plot similar to the previous one. This one presents
data extracted from the fractal landscape simulation results (Figures A.11-
A.17). Once again the Median Cut technique dominates the picture, easily
providing efficiencies in excess of 70%. The other methods never exceed 35%.
Of these three methods, subdivision into columns appears best, while the rect-
angular subdivision appears worst. The columns method may work better than
the other techniques since the fractals were generated by stretching polygons
in the z direction which happens to correspond to the vertical axis in the views
used to drive the simulator.

The relative flatness of the curves in Figure 3.12 is more interesting than
their performance. This flatness suggests that increasing scene complexity by
adding detail does not have much affect upon parallel efficiency. This is some-
what expected since the spatial distribution of objects is somewhat invariant
when scene complexity is increased this way.
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Figure 3.11: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies. This plot represents data from the simula-
tions of 16 processors scan-converting the ten X-Wing images.

These results would suggest that computer graphics systems ought to em-
ploy the Median Cut algorithm to implement parallelism through spatial sub-
division. Unfortunately, the Median Cut algorithm has several serious draw-
backs. The most serious problem with this algorithm is that determining a
partitioning involves performing many sorts on large amounts of data and
probably requires as much computation as computing the image of the scene.

Another problem with irregular spatial subdivision is that it requires
that the clipping processors be capable of dynamically changing their clip-
ping boundaries. This isn’t difficult to implement yet it will cost more to
implement than static clipping boundaries.

A third problem associated with irregular spatial subdivision is that pro-
cessors end up being responsible for screen regions of various sizes. One pro-
cessor may end up tiling nearly all of the image’s pixels while others tile very
few pixels. This behavior requires that each processor must be designed to
handle the worst case where it must tile the entire screen at the video update
rate. The regular spatial subdivision techniques allow processors to tile pixels
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Figure 8.12: A plot of parallel efficiency versus scene complexity for the four non-

virtual spatial subdivision strategies. This plot represents data from the simula-
tions of 16 processors scan-converting the seven fractal landscape images.

at much slower speeds since they only tile a fixed fraction of the image’s pixels.
As an example, a processor in a sixteen processor Median Cut system may have
to be designed to tile pixels sixteen times faster than the tiling engines used
by the regular spatial subdivision methods. The regular spatial subdivision
methods have more time to tile each pixel and can afford to do a better job of
it.

Irregular subdivision techniques like the Median Cut algorithm can use
feedback techniques to adapt to a scene. An initial guess can be made as to
how to subdivide the image space. After the objects have been distributed, a
processor may determine how uniform the distribution of objects is and based
upon this information it may select the next image space partitioning. Such
techniques have been proposed [DIPPE84] and deserve further investigation.

Because of the high costs associated with irregular subdivision strategies,
alternative techniques were looked into as a way of improving the performance
of the regular spatial subdivision strategies. The following section reports on
this work.
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3.2.3 Virtual MultiProcessor Architectures

The virtual multiprocessor architectures that were simulated all make use of
static partitionings of the image space. These partitions are also statically
mapped onto physical processors. These restrictions were applied for two rea-
sons. First, virtual architectures were studied to see how much improvement
they can provide over the non-virtual architectures. Thus, the partitions must
exhibit a strong correspondence to the partitions employed by the non-virtual
architectures. Second, static partitionings of the image space are less expensive
than dynamic partitionings and require no a priori knowledge about how the
image space should be partitioned.

Static assignments of image space regions to physical processors are also
less expensive than dynamic techniques because the system does not have to
provide for hardware that is capable of dynamic changes and no decision has
to be made about how to associate image space regions with processors.

It seems clear that dynamic partitionings and dynamic mappings of image
space regions onto physical processors may provide better performance. It
should be pointed out though that there may be considerable advantages to
having adjacent image space regions reside in the same or adjacent physical
processor. In fact, the shadowing algorithm presented in the next chapter relies
heavily upon this.

Six virtual spatial subdivision methods will be studied. These are best
described as one- and two-dimensional subdivisions of the image space and as
tessellations of various degrees of the image space.

Figure 3.13 illustrates the regular one- and two-dimensional subdivisions
of the image space. Since these partitionings are similar to those simulated for
non-virtual processors, we would expect their performance to be very similar
to the prior case. More precisely, we expect to achieve a certain amount of par-
allelism which can be predicted from the results of the non-virtual simulations.
In addition, we expect to have to pay a certain amount for having to simulate
a parallel machine on a sequential machine. This increased cost corresponds
directly to the object fragmentation occurring in the virtual processors that
map onto a physical processor.

The one- and two-dimensional tessellations appear to be much more in-
teresting. They are illustrated in Figure 3.14. The interesting aspect of these
organizations is that they map topological regions that are far apart onto the
same processor. There is hope that this property has a load balancing ef-
fect on the system. Similar schemes have been suggested to improve tiling
performance [FUCHS79] [CLARKS0].

All seventeen scenes were once again simulated. These simulations were
performed for various numbers of physical processors at various ratios of virtual
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Figure 8.18a: A regular virtual horizontal subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 8.18b: A regular virtual vertical subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 3.13c: A regular virtual rectangular subdivision. Sixteen virtual processors
are shown mapped onto four physical processors.
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Figure 3.14a: A tesselated virtual horizontal subdivision. Eight virtual processors
are shown mapped onto four physical processors.
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Figure 3.14b: A tesselated virtual vertical subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 3.14c: A tesselated virtual rectangular subdivision. Sixteen virtual processors
are shown mapped onto four physical processors.
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to physical processors. The simulations yielded families of curves for each
virtual spatial subdivision method.

The simulation results are illustrated in Appendix A. Figures A.18 through
A.34 illustrate the simulation results for the ten X-Wing fighter images and the
seven fractal landscape scenes. Only the data that represents image computa-
tion time (latency) has been plotted. Each figure is divided into six subfigures.
Subfigure (a) represents the results for the Rows method. Subfigure (b) repre-
sents the results for the Tessellated Rows method. Subfigure (c) represents the
results for the Columns method. Subfigure (d) represents the results for the
Tessellated Rows method. Subfigure (e) represents the results for the Rectan-
gle method. Subfigure (f) represents the results for the Tessellated Rectangle
method.

Notice that when the ratio of virtual to physical processors is equal to
one, the subdivision method is identical to the one used in the non-virtual
section and the performance curves are identical. These curves can be used
to compare the performance of the virtual techniques with the non-virtual
techniques. When curves fall below the non-virtual curve, the virtual technique
performs better than the non-virtual technique.

The data from the preceding plots is terribly difficult to capture in a brief
reading. Data can be extracted from these simulation results and plotted in a
more concise form. Figure 3.15 plots efficiency versus scene complexity for the
X-Wing fighter series. It is similar to Figure 3.11 but contains three additional
curves which represent the performance achievable with the virtual schemes.
Curves were plotted for virtual rows, virtual columns, and virtual rectangles.
Each of these curves is drawn for a fixed number of processors, sixteen in
the case of Figure 3.15. Each point on a curve was computed by choosing
the best result from both tessellated and nontessellated strategies over all the
computed ratios of virtual to physical processors. Although both tessellated
and nontessellated strategies were considered, the tessellated strategies always
performed best.

Figure 3.15 illustrates that the virtual processor technique provides better
performance than the non-virtual schemes. We notice a great improvement for
rectangular subdivision in a virtual environment. This occurs because the
rectangular subdivision technique fractures fewer objects than the other two
techniques.

All of the virtual schemes easily made it above the 50% mark and the
rectangular subdivision scheme made it into the 70% region. Once again,
the curves show an upward trend indicating that efficiency improves as scene
complexity increases due to adding more objects.

Figure 3.16 illustrates the performance of virtual and non-virtual spatial
subdivision techniques for the fractal landscape series. Again we see a marked



10CZ

/"’«
sc% //_4—’——*/
80% : i
‘ ’ /_//- ViR—RECT

70%
C T  eviE-CO
Z /// —— > [Ny
o T 2| % GBwRCws
o 7 7 ~
- e i
o ‘ g o

./
V
7

LA
N
T

PARALLEL

30%

7

10% (

Y

0% {
o 10000 20C00 30000 40000 50000 6C0CO 70000 8C00OQ 90000 100000

NUMBER OF POLYGONS
Figure 8.15: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies and the three tesselated virtual spatial sub-
division strategies. This plot represents data from the simulations of 16 processors
scan-converting the ten X-Wing images.

improvement for the virtual techniques. Notice that the virtual columns tech-
nique provided performance comparable to that provided by the Median Cut
algorithm. Also note that the virtual rectangles technique improved from less
than a 20% efficiency to well over 50%. As was the case for the non-virtual
curves, the virtual curves are relatively flat. This suggests that efficiency does
not change much as scene complexity changes due to changing the level of
detail.

We have seen that certain scenes may prefer subdivision into rows while
others such as the fractal landscape series may prefer to be subdivided into
columns. The rectangular subdivision approach seems to offer some insensitiv-
ity to the preferred subdivision axis of the scene. The previous results indicate
that virtual rectangular spatial subdivision can offer respectable efficiencies in
excess of 50%. Such efficiencies make it practical to build graphics engines
that utilize spatial subdivision techniques.
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Figure 3.16: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies and the three tesselated virtual spatial sub-
division strategies. This plot represents data from the simulations of 16 processors
scan-converting the seven fractal landscape images.

All of the previous plots were illustrated for an array of sixteen processors.
This number was chosen for a good reason. Proponents of processor per pixel
and processor per object architectures have claimed that their architectures
are capable of performance approaching 10,000 polygons per frame time. A
goal of this research was to study how to build a machine capable of rendering
100,000 polygons per frame time. With an engine capable of rendering 10,000
polygons per frame time, and with a spatial subdivision architecture that pro-
vided decent efficiencies, an array of sixteen processors should be capable of
approaching the goal of 100,000 polygons per frame time.

Nevertheless, it is important to understand how the number of processors
used in the spatial subdivision strategy affects the performance of the machine.
Figures 3.17 and 3.18 plot efficiency versus scene complexity. Each curve rep-
resents a different number of processors used in the subdivision strategy. All
curves represent virtual rectangular subdivision. Figure 3.17 represents data
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Figure 3.17: A plot of parallel efficiency versus scene complexity using the virtual
tesselated rectangular spatial subdivision strategy. The different curves represent
different numbers of physical processors. This plot represents data from the
simulations of the ten X-Wing images.

from the X-Wing series of images. Figure 3.18 represents the fractal landscape
scenes.

These figures illustrate what can easily be seen in the simulation results.
As we decrease the number of processors, we improve efficiency. A uniprocessor
provides us with 100% efficiency. Increasing the number of processors decreases
efficiency. Efficiency decreases more slowly than the number of processors
increases.

3.3 Conclusions

This chapter has studied various ways of utilizing parallelism to improve the
performance of computer graphics systems. The behavior of processor per
object and processor per pixel architectures limit their performance to about
10,000 polygons per frame time. This is consistent with the claims of the
proponents of such architectures.
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Figure 3.18: A plot of parallel efficiency versus scene complexity using the virtual
tesselated rectangular spatial subdivision strategy. The different curves represent
different numbers of physical processors. This plot represents data from the
simulations of the seven fractal landscape images.

Analysis indicated that spatial subdivision architectures could provide a
method to achieving higher system performance figures. Simulation of differ-
ent spatial subdivision strategies indicated that a virtual rectangular spatial
subdivision technique holds much promise.

Virtual rectangular spatial subdivision provides performance that is likely
to improve as scene complexity increases. It also provides performance that
can be improved by adding more processors. This parallelization technique is
the foundation for the ANIMAC architectures. Details of these architectures
are discussed in the following chapters.
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4

A Partitionable
Shadowing Algorithm

Shadows arise in scenes when objects occlude light rays and in doing so prevent
other objects from being illuminated. Shadows form an important part of our
every day visual environment. Shadows may enrich a scene and at the same
time decrease visual discernibility.

Shadows enrich scenes by providing additional information. Shadows can
greatly improve depth perception by providing many additional cues as to
which objects lie in front of others. Information about relative distances be-
tween objects may often be inferred from their shadows.

Shadows can also mask objects making them less discernible, if visible
at all. Crow [CROW77A] points out that this aspect of shadowing can have
important implications upon task training and performance. Certain tasks,
such as space craft manipulations, may not be performable because objects
may be hidden in cast shadows. Crow’s suggestion is that visual simulations of
certain tasks need to include accurate shadowing effects in order to determine
whether a protocol is feasible. Failure to accomplish a protocol during a space
shuttle mission could easily result in the loss of millions of dollars.

Most commonly available computer graphics systems are not capable
of generating scenes with shadows. Several methods for producing realistic
shadow effects have been available to implementors of computer graphics sys-
tems during the past decade. Due to the increased computational requirements
of these algorithms, few software implementors seem to have implemented
shadowing and there have been no hardware implementations capable of real-
time performance.
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The previous chapter suggested that multiprocessor architectures might
be used to speed up the rendering of visible surfaces. In order to compute
images with shadowing effects on a multiprocessor, we must develop a visible
surface algorithm that makes use of reasonably local data. Heavy use of non-
local data would require comp