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Abstract

Advances in integrated circuit technology have been largely responsible for the
growth of the computer graphics industry. This technology promises additional
growth through the remainder of the century. This dissertation addresses
how this future technology can be harnessed and used to construct very high
performance real-time computer graphics systems.

This thesis proposes a new architecture for real-time animation engines.
The ANIMAC architecture achieves high performance by utilizing a two-dimen-
sional array of processors that determine visible surfaces in parallel. An array
of sixteen processors with only nearest neighbor interprocessor communications
can produce real-time shadowed images of scenes containing 100, 000 triangles.

The ANIMAC architecture is based upon analysis and simulations of var-
ious parallelization techniques. These simulations suggest that the viewing
space be spatially subdivided and that each processor produce a visible sur-
face image for several viewing space subvolumes. Simple assignments of view-
ing space subvolumes to processors are shown to offer high parallel efficiencies.

Simulations of parallel algorithms were driven with data derived from
real scenes since analysis of scene composition suggested that using simplistic
models of scene composition might lead to incorrect results.

The ANIMAC architecture required the development of a shadowing algo-
rithm which was tailored to its parallel environment. This algorithm separates
shadowing into local and foreign effects. Its implementation allows individual
processors to compute shadowing effects for their image regions utilizing only
very local information.
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The design of the ANIMAC processors makes extensive use of new VLSI
architectures. A formerly proposed processor per object architecture is used
to determine visible surfaces while new processor per object and processor per
pixel architectures are used to determine shadowing effects.

It is estimated that the ANIMAC architecture can be realized in the early
1990’s. Realizing this architecture will require considerable amounts of hard-
ware and capital yet its cost will not be out of line when compared with today’s
real-time computer graphics systems.
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Introduction

During the first half of this decade the computer graphics industry has grown
at a rapid rate and it is likely to continue to do so for the remainder of the
decade. This growth has evidenced itself in many ways, including the spectacu-
lar computer-generated special effects found in entertainment and educational
films, the widespread acceptance of engineering workstations, and of course,
the now ubiquitous personal computer.

The driving force behind all of this growth has been the semiconductor
industry. Advances in VLSI technology have enabled a huge amount of storage
to be fabricated on a single chip, while drastically reducing the cost per bit
of this storage. At the same time, computer architects have been able to
utilize this new technology to produce microcomputers that outperform the
mainframes of the past decade.

The availability of this increased computational power has opened the
doors to new algorithms. Computation has become so relatively inexpensive
that many of the algorithms that were once considered too costly are now
commonly used. Newer algorithms, which require even more computational
resources, have replaced them. A new interest in realism has motivated the
development of these algorithms. Generating state-of-the-art computer graph-
ics still remains out of the grasp of the computing proletariat. State-of-the-
art computer graphics images are often computed on the highest performance
super-computers available. Real-time simulation engines are themselves very
powerful and very specialized computers capable of producing realistic images
of an environment that reacts instantaneously to a user’s actions.
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Just as advances in semiconductor technology ushered in this age of com-
puter graphics, newer advances in the same technology promise to offer vastly
improved computer graphics technology at a fraction of today’s costs. These
new advances are appearing in many areas within the computer graphics field.
Specialized processing and storage elements have been designed to assist in
the rendering of visible surfaces [FUCHS81] [COHENS80] [WEINBES82], the ren-
dering of graphic primitives [WHELAN82| [CLARKES80] [DEMETRS83], and in
performing constructive solid geometry operations [KEDEMS84].

These new architectures are not without their failings, but they offer sub-
stantial promise for the future. Their successors should be able to provide
performance well in excess of what today’s real-time simulation engines pro-
vide and at a fraction of the cost.

Future VLSI architectures will apply massive amounts of computational
power to computer graphics problems. This thesis studies how this computa-
tional power can be focused into a next generation architecture for animation
and real-time simulation needs.

This thesis presents an architecture for an animation machine which I have
named the ANIMAC. The targeted performance of this architecture is for it to
display in real-time scenes composed of 100,000 polygons. This performance
goal represents an improvement of almost two orders of magnitude over today’s
computer graphics systems.

The ANIMAC architecture is more than a blueprint for building a com-
puter system. It is also a new parallel algorithm for producing images of scenes
with shadowing effects. This is believed to be the first shadowing algorithm
developed for a multiprocessor.

This dissertation is divided into five major chapters. Each of these chap-
ters addresses an important issue in the development of the ANIMAC archi-
tecture.

Chapter 2 deals with analysis of synthetic scene composition. Design de-
cisions that affected the ANIMAC architecture were made based upon models
and simulations of realistic work environments. Analysis results indicated that
the scene composition is not adequately modeled with simplistic assumptions.
An important observation indicates that scenes are spatially non-uniform and
that the spatial non-uniformity of scenes can be characterized by an asymptot-
ically determined value. This observation strongly suggests that when a scene
in spatially divided into more and more distinct regions, the distribution of
objects to these regions starts to look similar.

Chapter 3 addresses the problem of how best to use parallelism to con-
struct a high performance visible surface rendering system. The main thrust
of this chapter is to investigate how parallelism can be used to achieve the
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performance required for the ANIMAC architecture. Simulations were per-
formed of architectures proposed by others and of new ones proposed by the
author. The results of these simulations suggest that a two-dimensional array
of physical processors together with a simple mapping of image regions onto
processors can provide the needed performance with relatively high efficiency.

Chapter 4 develops an algorithm for producing shadowed images on a
multiprocessor which spatially subdivides the scene among its processors. This
algorithm simplifies shadow determination by dividing the determination of
shadowing effects into two processes. A local shadowing process acts only upon
information local to the processor while a foreign shadowing process utilizes
information residing in other processors. This algorithm is useful for software
implementations as well as for hardware implementations since it allows the
image computation task to be subdivided down to a manageable size.

Chapter 5 discusses a software implementation and simulation of the AN-
IMAC shadowing algorithm. Two different shadowing algorithms were imple-
mented for use as local shadowing algorithms. One of these algorithms was
found to suffer from a serious problem. This problem and solutions to this
problem are discussed. Other difficulties were noticed in the implementation
of the foreign shadowing algorithm. The causes behind these difficulties are
examined and a solution is offered. The software implementation was used to
generate animation sequences which indicated that the algorithm is appropri-
ate for use in animation.

Chapter 6 discusses using the ANIMAC architecture to implement sys-
tems capable of real-time performance. Two possible implementations are
examined. The ANIMAC-1 system uses ANIMAC parallelization techniques
to produce visible surface images without shadowing effects. The ANIMAC-
2 system builds upon the ANIMAC-1 system architecture to produce images
with shadowing effects. Both of these architectures make extensive use of VLSI
architectures, some which have been previously proposed, and some which are
new. It is predicted that implementing the ANIMAC architecture will be both
technologically and economically feasible in the early 1990’s.

Chapter 7 discusses conclusions drawn from the work described in the
previous chapters and suggests areas for future work. An appendix contains
the results from the simulations discussed in Chapter 3.






2

Analysis of Synthetic
Scene Composition

Systems are designed to work within a constrained environment. In computer
animation, this environment consists of the model, the view, and the lighting
environment. In order to design systems that are capable of working properly
within an environment, it is necessary to parameterize the environment in a
meaningful manner. Surprisingly, there is little or no meaningful data in the
literature. Manufacturers are likely to have developed their own models but
must consider them proprietary. Academicians either haven’t had the interest
in analyzing scene composition or haven’t had the tools to do so.

This chapter presents studies of certain properties of synthetic scenes. All
of these properties have a bearing on design decisions which must be made
in the course of implementing an architecture. Hopefully, the information
provided by these studies will allow us to make intelligent tradeoffs between
overall system performance and cost.

Analysis was performed on data derived from synthetic scenes. These
scenes were selected because of their diversity and availability. By no means are
these scenes representative of all images that might be produced by a computer
graphics system. Still, these selected scenes are useful. In mathematics, it
is common to disprove a conjecture by showing that it does not hold for a
specific case. Likewise, designers of computer graphics systems hold certain
beliefs. Hopefully, the analysis results will help designers change their beliefs
by showing that some of them are not necessarily well founded.

It is usually possible to derive special cases that illustrate the worst case
behavior of an algorithm. The scenes selected here have not been intentionally
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selected to do this. They are meant to be representative of commonly occurring
scenes and hopefully are diverse enough to be representative of more than a
single design niche. Figure 2.1 illustrates the six scenes that were selected for
analysis. These six scenes range in complexity from 178 polygons to 65,030
polygons.

Each of these scenes was modeled in a language similar to one used by
Blinn [BLINN82]. This modeling language has become known as Blinn Like
Format by the Caltech and the Art Center College of Design community. It
is commonly referred to as BLF. The language provides support for all of the
common modeling transformations, object definition, and object instancing.
Scenes are typically modeled as hierarchies of object instances.

These scenes were generated by a graphics package called render which
was written by the author. Render produces images of BLF models using
a depth buffer algorithm [CATMUL74] to produce shaded visible surface im-
ages. Various shaders can be used during the rendering of an object. Gouraud
[GOURAU71] and Phong [BUI-TU75] illumination models are most commonly
selected by designers.

An additional shader has been incorporated into render. This shader col-
lects statistical information about each polygon that the polygon tiler receives.
A concise description of each polygon is eventually output to a file. The statss-
tics shader tiles polygons differently than other shaders. Instead of updating
pixel depth and color information, the statistics shader maintains a count of
the number of objects that intersect each pixel. This information can be out-
put into another file. For purposes of scene analysis, each of the selected scenes
was rendered using the statistics shader. The resulting files were used to drive
various analysis programs.

Scene analysis has been undertaken to elucidate three particular concerns.
First, certain authors have performed performance analysis on multiproces-
sor computer graphics systems and have based some of their analysis on the
premise of having a uniform spatial distribution of polygons [PARKE80]. This
seems to be an all too convenient assumption since it makes the performance
of these architectures look extremely attractive. Analysis of the spatial distri-
bution of polygons will indicate whether their assumption was well founded or
whether these architectures should be re-examined in light of the findings.

The second concern centers around being able to predict the cost for tiling
polygons. This is a fundamental step in many visible surface algorithms so it
is natural to want to understand the processes that contribute to tiling costs.

The third concern centers around being able to understand the behavior
of visible surface algorithms. Visible surface algorithms must sort potentially
visible polygons by depth to determine which polygons are visible at a pixel.



Figure 2.1a: House—A simple scene, composed of 178 polygonsr,r modeled by Carol
Koffel, Brian Von Herzen, and Jim Hunter.

Figure 2.1b: Caltech—A moderate complexity scene, composed of 990 polygons,
modeled by John Biedenharn and John Platt.



Figure 2.1c: VW—A moderate complexity scene, composed of 1072 polygons, mod-
eled by Ivan Sutherland and his students at the University of Utah.

Figure 2.1d: X-Wing—A moderate complexity scene, composed of 1407 polygons,
modeled by Chuck Esrock.



. »1!
Figure 2.1e: Framell00—A relatively complex scene, composed of 8089 polygons,
modeled by the author.

Figure 2.1f: Fractal64—A complex scene, composed of 65030 polygons, modeled by
the author.
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It would be interesting to have a concrete idea as to how many polygons are
potentially visible at a pixel.

2.1 Spatial Distribution of Objects

The selected scenes, illustrated in Figure 2.1, do not appear to have a uniform
spatial distribution of polygons. Clearly, there are regions of these images that
have more polygons than other regions. Most interesting images seem to be
spatially non-uniform.

One can’t correctly estimate spatial uniformity by viewing an image since
this doesn’t really indicate how polygons are distributed. Many polygons aren’t
visible and some polygons meld into others because of the illumination models
that were used to generate the image.

To understand how polygons are spatially distributed, an analysis program
was written that subdivided the screen space into rectangular regions of equal
area and distributed the image’s polygons to each of these regions. After all
of the polygons had been distributed, each region contained a count of the
number of objects that intersected the region. The standard deviation, o, was
computed for the distribution and recorded.

Standard deviations were computed for various numbers of regions ranging
from 4 to 256 and for all six test images. So that the results for the various
scenes could be compared, the coefficient of variance, V', was computed as:

_ 1000

z

v

where Z is the mean of the counts for the various regions. A uniform spatial
distribution would result in ¢ = 0 and V = 0. V > 0 indicates how far the
distribution is from being uniform.

Figure 2.2 presents a plot of V' versus the number of regions. Each curve
represents one of the six test scenes. All scenes appear to be spatially non-
uniform since V' > 100%. In general, V increases to some asymptotic value as
the number of regions increases. This behavior is expected since in the limit
a region will have either zero polygons or some number of polygons which
represents the depth complexity for a point.

These results are interesting in that they suggest that the distribution of
polygons to regions starts to look similar when the number of regions increases.
Distributions for most of the scenes seem to become similar for partitionings
into 75 or more regions.

While these results suggest that the distribution starts to lock similar as
the number of regions increases, they do not suggest that the number distri-
bution of objects to regions becomes uniform. In fact, they suggest that there
is inherent non-uniformity to these scenes.
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Figure 2.2: A plot of the coefficient of variance, V, versus the number of regions
that scenes were divided into for the six test scenes.

2.2 Polygon Tiling

Polygon tiling is at the center of most visible surface determination algorithms.
Polygon tiling determines which pixels are within a polygon’s borders and what
color to render them. Depth buffer algorithms use polygon tiling exclusively
to implement the visible surface algorithm at each pixel.

Since the ultimate action of any visible surface algorithm is to tile a poly-
gon, or a portion thereof, it makes good sense to study the various subcosts
that contribute to the total cost of tiling a polygon. It also makes good sense
to study how polygon tiling costs are affected by increasing scene complexity.

Polygon tiling can be broken down into several readily identifiable sub-
costs. Parke [PARKES0] suggests that if polygon scan conversion is performed
by a single processor, the total time T is:

T = Npr + NsTs + ATETE
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where:
Ny the number of pixels computed
N, the number of scan line segments
N, the number of polygon edges
and:
Ty the computation time per pixel
Ts the computation time per segment
Te the computation time per edge

Parke’s analysis suggests that the times assoclated with processing a seg-
ment and processing edges are about the same, and about seven times greater
than the per pixel time Ty. This suggests that for very small polygons the
computation time may be entirely dominated by the edge and segment terms.
In his paper, Parke does not adequately describe what costs the Tp term in-
cludes. From his numbers, it would seem that it includes the time to color a
single pixel with a very inexpensive illumination model. Experience with the
author’s render program suggests that more realistic illumination models, such
as the one described by Bui-Tuong, easily cause the NpT, term to dominate
even for very small polygons.

The term NpTp may dominate, so Np, the area of a polygon as it is
projected onto the screen, represents an important metric. A program was
written to analyze the distribution of polygon areas. This program computes
a histogram which represents the distribution of polygons by projected area
\/Np. The square root of the areas was sampled in order to compress the data
into a meaningful range. Polygon areas were sampled and binned into 512
bins.

Figure 2.3 presents the results in a form that allows the histograms to be
easily compared. The abscissa represents the square root of polygon area and
ranges from 1 to 512. The ordinate is a percentage which has been computed

as:
512

y(n) =2z, / >«
1=1 1=1

where z; is the bin count. This measure is useful since it allows us to determine
that polygons with \/Np < n constitute a certain percentage of the polygon
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Figure 2.3: A plot of the distribution of polygons by area as a percentage of all
polygons in a scene.

population. The plot in Figure 2.3 has been scaled to show /N, < 100 since
most of the curves saturate by this point.

Figure 2.3 indicates that the vast majority of all polygons are small. We
also notice that the median polygon area tends to decrease as scenes become
more complex. This behavior is expected.

Another analysis of polygon area distribution is also important. Depth
buffer algorithms require time proportional to the total number of pixels, Ny,
that must be tiled for a scene. Ny is often called the drawn area and is simply
computed as:

P
Ng=>_ Ny
=1

where p is the number of polygons in a scene. A plot similar to Figure 2.3
can be produced that corresponds to the distribution of polygon areas as a
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percentage of drawn area. In this case, the ordinate of a point with abscissa n

y(n) = Zn:xiiz/Nd

=1

was computed as:

The results of this analysis are presented in Figure 2.4. This plot indicates
that small objects contribute to the majority of the drawn area, Ny, but that
for some scenes a few large polygons also make significant contributions to Nj;.
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Figure 2.4: A plot of the distribution of polygons by area as a percentage of drawn
area, Ng, for a scene.

The number of polygonal edges, N, also affects tiling cost through the
NeT. term. A number of proposals have favored limiting polygons to having
at most a fixed number of edges, usually three or four. Limiting the number
of polygonal edges allows certain resources to be statically allocated, generally
reducing hardware costs. In addition, there may be another good reason to
limit the number of polygonal edges. Most of the illumination models rely
on interpolation of colors or surface normal vectors. This works best if the
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polygon is convex. The results are usually so undesirable when the polygon is
concave that limiting the number of polygonal edges to three is not uncommon.

Figure 2.5 illustrates the distribution of polygonal edges for the selected
scenes. The results have been plotted in a fashion similar to Figure 2.3. In
this case, polygons have been binned by their number of edges. The horizontal
axis of Figure 2.5 represents the number of edges in a polygon. The ordinate

has been computed as:
512

n
==/

1=1 1=1
such that it represents the percentage of polygons with the same or fewer edges.
The figure indicates that, for all six scenes, the vast majority of polygons have
four or fewer edges. This is not surprising given the environment in which the
scenes were modeled.
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Figure 2.5: A plot of the distribution of polygons by number of edges.
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The number of scan lines that a polygon intersects, Ng, is another factor
that affects tiling costs. If we were to plot the distribution of N; for these
test scenes, the resultant figure would appear very much like Figure 2.3. This
would be the case since we can model N; as a function of N, as:

where A is an aspect ratio correction factor. The aspect ratio of a polygon can
be described by the ratio of a polygon’s width to its height. Square polygons
will have an aspect correction factor A = 1, while non-square polygons will
have A > 1lor A< 1.

Plotting the distribution of Ng will not offer much information about
the distribution of aspect ratios. Instead of plotting distributions of Ny, the
distribution of aspect ratios was examined. Each scene’s polygons were binned
by aspect ratio, the results are presented in Figure 2.6. Separate plots are
shown for each scene since the plots for multiple scenes appeared very cluttered
and were impossible to decipher. Each scene’s histogram has been plotted as
a polar plot occupying one quadrant. When drawn this way, the angle of each
bin’s walls correspond to the range of aspect ratios that fall into the bin. Only
one quadrant is utilized since aspect ratios are computed from a polygon’s
width and height which are unsigned quantities.

Figure 2.6 indicates that the distribution of polygon aspect ratios is not
uniform for these six scenes. There often appears to be a single preferred
aspect ratio but several of the scenes have two or more preferred aspect ratios.

2.3 Depth Complexity

Depth complexity at a pixel is a measure of how many polygons completely
or partially cover that pixel. Depth complexities are important for two rea-
sons. First, since many visible surface algorithms explicitly sort data by depth
for each pixel, a measure of depth complexity will indicate how well these
algorithms will perform on a scene.

Depth complexity is also important for another reason. High pixel depth
complexities indicate that many surfaces interplay at a pixel and suggest that
the pixel is likely to experience aliasing problems. High depth complexities
do not mandate that a pixel will experience aliasing problems since a polygon
may cover the entire pixel region hiding all other polygons from view.

At least one modern depth buffer algorithm, the A-Buffer developed at
Lucasfilm [CARPENS4], maintains a list of all polygons that intersect the pixel
in the buffer so that transparency and antialiasing effects can be calculated.
One hardware architecture also proposes accumulating a list of objects that
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Figure 2.6: These six plots illustrate the distribution of polygon aspect ratios for the
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intersect each pixel region for antialiasing purposes [WEINBES2]. It seems to
be an evolving trend to keep a list of objects that intersect pixel regions. Often
these lists can be pruned so that the length of a list never approaches the pixel
depth complexity. Nevertheless, it is interesting to examine the distribution of
pixel depth complexities since depth complexities suggest a worst case behavior
for these algorithms.

Figure 2.7 illustrates pixel depth complexity distributions for the selected
scenes. All six test scenes have median pixel depth complexities less than or
equal to five. Ninety percent of the pixels in four of the scenes have depth
complexities less than nine. The two most complex images, Framel100 and
Fractal64, have much higher depth complexities. These images also experience
the most severe aliasing problems which supports the suggestion that aliasing
problems are correlated to high pixel depth complexities.
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Figure 2.7: Distribution of pixel depth complexities for the six test scenes. The
ordinate value indicates the percentage of the pixels that have depth complexities
less than or equal to the abscissa value.
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2.4 Conclusions

This chapter analyzed several interesting characteristics of scene composition.
The data presented here was gleaned from a small sample of six scenes and the
results should be considered in light of this. Nonetheless, several interesting
points can be made about scene composition. These include:

1.

Scenes are not composed of a spatial uniform distribution of polygons and
assuming otherwise will invariably lead to incorrect assumptions.

It appears that the spatial non-uniformity of scenes can be characterized
by an asymptotic value. This value is computed as the coefficient of
variance of the number of polygons in a region as the number of regions
goes to infinity.

The majority of polygons are small and their size decreases as scene com-
plexity increases. In certain scenes, significant amounts of the total drawn
area can be attributed to a few large polygons.

Most polygons have few edges. Requiring polygons to be triangles proba-
bly will only double the number of polygons in a scene model.

Polygon aspect ratios do not appear to be distributed uniformly. Scenes
appear to have their own preferred aspect ratio but some scenes may have
more than one preferred aspect ratio.

Most pixels seem to have small depth complexities although 1t is easy
to create a model and view of that model with very high pixel depth
complexities. Aliasing difficulties seem to be correlated to high average
pixel depth complexities.

The analysis presented in this chapter only touches the tip of an iceberg.

There are many other interesting parameters that affect scene composition
that haven’t been addressed. Continued work in this area could lead to the
development of a statistical model of scene composition that could be used for
statistically analyzing algorithms or for driving simulators.

Since scenes are very complex and an adequate statistical model does not

currently exist, the performance of algorithms is best determined by simulating
them with realistic work loads that are derived from real scenes.
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3

Utilizing Parallelism
in
Computer Graphics Systems

Computer graphics systems are used in animation and simulation tasks to
generate sequences of images. Animated images may be very complex, and
computing a single frame often requires many minutes or even hours of pro-
cessing time. Real-time simulation requires that images must be generated
within a frame time. Because of this, real-time simulation systems have been
limited to displaying relatively low complexity images rendered with simplified
lighting models.

Parallelism can be utilized to significantly reduce the time needed to gen-
erate images. Reducing image generation time will allow more complex scenes
to be rendered in real-time simulation environments and will enable animators
either to reduce production costs or to enhance their imagery. This chapter
explores several ways of utilizing parallelism to this end.

To a certain degree, parallelism has always been employed in computer
graphics systems, since most are not capable of generating data at video rates
without relying upon parallelism to make their memory devices appear to be
much faster than they really are. This chapter will not address such fine grain
uses of parallelism, but will instead address parallelism on a much coarser level.
This work is targeted at applying parallelism at the subsystem or functional-
unit level in order to produce completed images faster than conventional se-
quential architectures would.

This chapter addresses the problem of how to make efficient use of paral-
lelism in order to dramatically reduce the time needed to compute sequences
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of images for use both in animation and simulation environments. Acceptable
solutions will improve both system throughput and latency.

Many people have pointed out that throughput can be increased rather
arbitrarily if the latency, the time required to compute a single frame, remains
constant. A simple implementation improves throughput by a factor of N by
employing N identical computer systems, each of which computes 1/N of the
frames.

Decreasing latency is an important goal for two reasons. First, by decreas-
ing latency we improve the state-of-the-art in real time simulation by allowing
more complex images to be computed in the same fixed amount of time. Fu-
ture generation simulation engines will produce images of today’s animation
complexity in real-time. The work, presented in this thesis, attempts to lay the
groundwork for the transition between the architectures of today’s simulation
machines and those yet to come.

Second, decreasing latency decreases turn-around time. Animation work
may be divided into two phases: design and production. Systems that deliver
higher throughput may reduce production time. Systems that provide lower
latency reduce design time by providing the designers with faster feedback.

Inefficient uses of parallelism are not practical solutions. While some par-
allel architectures might provide both higher throughputs and lower latencies,
the cost to run these machines may relegate them to the junk pile if they make
inefficient use of their resources. Therefore, we are necessarily constrained
by the market place to produce cost-competitive solutions. Doing so requires
making use of parallelism in a very efficient manner.

In this chapter, I will present an overview of previous work done in ap-
plying parallelism to computer graphics. Afterwards, I will present various
architectures for consideration and will simulate them with data derived from
real scenes. Results will be compared and an architecture will be selected as a
framework for the ANIMAC systems.

3.1 Prior Work

Much work has been expended developing various architectures for computer
graphics that exploit parallelism in one way or another. Some of these archi-
tectures are merely proposals, or paper studies, while some have been built
and used successfully.

I have separated the various architectures into three distinct categories:
(1) Spatial Subdivision Architectures, (2) Processor per Object Architectures,
and (3) Processor per Pixel Architectures. The rest of this section will dis-
cuss these three classes of architectures. The architectures belonging to each
category will be presented in chronological order. The applicability of each
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architecture to the problem at hand will be discussed and an overall recapping
will be made for each subsection.

3.1.1 Spatial Subdivision Architectures

Spatial subdivision architectures use parallelism by dividing a space into sub-
spaces and assigning processors to these subspaces. The space to be subdivided
may be any of the spaces common to computer graphics, typically either the
image space or the modeling space is used.

Spatial subdivision architectures appear to be much more prevalent than
either of the other two types. They take two different approaches to improving
the performance of scene rendering.

The first approach utilizes spatial subdivision to associate objects with
processors that perform a general visible surface algorithm to tile a portion of
the image. Justification for this approach usually relies on Sutherland’s obser-
vation that visible surface algorithms behave as sorting processes [SUTHER74].
As such, the time required for visible surface determination is determined
largely by the number of objects in the scene. Since sorting, and thus visible
surface determination, requires a minimum time proportional to the number
of objects, N, and commonly time proportional to N log NV, decreasing the
number of objects dramatically improves performance.

The second approach found in the literature makes use of spatial subdivi-
sion to speed up the tiling of objects. Overall performance is improved if tiling
of objects consumes a great proportion of the total time.

There has been at least one proposal for a hybrid solution which makes
use of spatial subdivision in both of the ways just outlined [PARKES0].

3.1.1.1 Kaplan and Greenberg

Kaplan and Greenberg [KAPLAN79] echo Sutherland’s observation that visible
surface determination is a sorting process. They note that effective algorithms
make use of coherence to reduce sorting times. They suggest that parallel pro-
cessing is an attractive approach to designing real-time visible surface engines.

They studied the performance, in a parallel environment, of two visi-
ble surface algorithms: a Watkins-like scan-line algorithm [WATKIN70] and a
Warnock-like spatial subdivision algorithm [WARNOC69]. Figure 3.1 illustrates
the two techniques that Kaplan and Greenberg used for subdividing the screen
space. Parallelism was utilized by dividing the screen space into: (1) groups
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The Watkins-like algorithm  The Warnock-like algorithm
subdivided the image space subdivided the image space
into groups of scan-lines. into rectangles.

Figure 3.1: Subdivision techniques used by Kaplan and Greenberg.

of adjacent scan-lines for the scan-line algorithm and (2) rectangles for the
Warnock algorithm.

The significant observations based on the scan-line algorithm were that:
(1) processing time decreased as more processors were utilized, but at a less
than linear rate, (2) the number of memory references and depth comparisons
for the first scan-line associated with a processor increased, and (3) the pro-
cessing time required for a particular screen area was highly variable. The first
two of these observations were explained by a loss of coherence in the scan-line
algorithm. The last observation was explained by the non-uniformity of the
object environment.

Observations based on the Warnock-like algorithm were that: (1) total
processing time decreased as more processors were added and (2) the number
of polygons per processor and the total polygon edge length per processor
showed a strong correlation to the processing time required by that processor.
Again, processing time was highly variable across the set of processors.

The authors claim that in both cases low intercommunication was re-
quired between processors, and they stress the importance of having an easily
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calculated value that can serve as a predictor of total processing time. They
suggest that one can obtain maximum efficiency from a parallel processor by
heuristically scheduling tasks using a predictor function to estimate costs.

3.1.1.2 Fuchs and Johnson

Fuchs and Johnson [FUCHS79] present a multiprocessor depth buffer architec-
ture that uses spatial subdivision to improve tiling performance. Figure 3.2a
illustrates the overall tiling engine architecture.
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Central Broadcast Processor
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1 Object Bus f
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Tiling VIDEO VIDEO SCAN J
Processors DISPLAY GENERATOR Units

Figure 3.2a: Distributed depth buffer architecture of Fuchs and Johnson.

Many tiling processors operate in parallel and they communicate over two
global busses: the object bus and the video bus. Each processor implements a
depth buffer algorithm for some fixed subset of pixels on the screen. Processors
have two memories, one for storing pixel colors and the other for storing the
associated depths.

Polygons to be tiled are handed to the Central Broadcast Processor, which
in turn broadcasts a description of the polygon to all of the tiling engines via
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the object bus. After receiving the polygon description, a tiling processor ac-
knowledges receipt by asserting the -busy signal and then colors those of its
pixels that lie within the polygon and are potentially visible. When a tiling
processor finishes, it lets the -busy signal float. The Central Broadcast Proces-
sor detects that all tiling processors have finished when -busy is deasserted. It
then may proceed with the next polygon.

The video bus is used by the Video Scan Generator to retrieve pixel values
from the tiling processors. The Video Scan Generator assembles a completed
image in a frame buffer memory, updating the frame buffer memory whenever
a new frame is available.

The novelty of this design lies in the method for partitioning the screen
space among the processors. Figure 3.2b illustrates how a modulo arithmetic
scheme can be used to map adjacent pixels to different processors in a regular
fashion. The authors describe this as a tesselation and claim that it allows all
processors to work in parallel during the scan-conversion of a polygon. The il-
lustrated tesselation is only one of many possible pixel to processor assignments
that the authors consider.
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Figure 3.2b: Assignment of pixels to processors in Fuchs’ and Johnson’s architecture.
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3.1.1.3 Parke

Parke [PARKES80] presented an analysis of three different multiprocessor depth
buffer architectures. He compared the previous architecture proposed by Fuchs
and Johnson with his own architecture, which he calls a Splitter Tree. He also
proposed a hybrid of these two architectures.

Parke’s Splitter Tree architecture is illustrated in Figure 3.3. It consists of
a tree of clipping engines that redistribute polygons to tiling processors. Each
engine divides the incoming polygons into two sets according to the side of a
clipping plane on which the polygon lies. Polygons straddling the clipping plane
are split into two polygons about the clipping plane. A tree of these clipping
engines effectively distributes a stream of polygons to a number of processors,
each associated with a distinct screen space region. These new processors
proceed in parallel to perform a depth buffer scan-conversion process.

Clipped
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Splitter Splitter
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Figure 3.3: Parke’s Splitter Tree Architecture
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Figure 3.4: Parke’s Hybrid Architecture

Parke’s Hybrid architecture uses a splitter tree to partition polygons ac-
cording to screen position, then instead of using a conventional depth buffer
engine to scan convert them, it uses a multiprocessor similar to that of Fuchs
and Johnson to tile the polygons in each subregion. This hybrid architecture
is illustrated in Figure 3.4.

The simulation of Parke’s splitter tree architecture shows impressive re-
sults when compared with Fuchs’ machine and the Hybrid engine. However,
Parke points out that the splitter tree architecture depends on having a uni-
form spatial distribution of polygons. He suggests that the hybrid architecture
might be a better approach since it offers some immunity to a nonuniform
distribution of polygons in space.

3.1.1.4 Evans and Sutherland

The CT-5 architecture [SCHUMAR®0], developed by the Evans and Sutherland
Computer Co. (E&S), uses spatial subdivision to reduce the number of objects
that must participate in visible surface calculations, thus reducing the time
needed to determine the visible surfaces for a region.
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The CT-5 architecture includes at least five types of processors. The most
interesting processor in the context of this discussion is the Display Processor,
which accepts image space object descriptions in visual priority order and
produces a composite video image.

The display processor divides the image plane into rectangles of adjacent
pixels, which E&S calls “spans.” Earlier pipeline stages order objects by visual
priority so that closer objects will arrive at the display processor first. Objects
are then processed a span at a time for all spans that the object intersects.

Visible surfaces are determined by associating a mask with each span. The
mask is the union of all objects that have been presented to the span processor
so far. When a new object is presented, two new masks are formed: a new union
which becomes the new mask, and a difference, which precisely describes which
portions of the new object will be visible. This difference image description is
passed to a spatial filter which adds the new object’s contribution to all of the
affected pixels. The result is an antialiased image, which E&S claims has been
properly sampled and filtered.

E&S states that their algorithm requires time proportional to the drawn
area of the image and claims that as a scene’s complexity increases, the system
requires less than a linear increase in computing time.

In their conclusions, E&S states that parallel processing is the ultimate
goal for the CT-5 architecture. They do not disclose the degree of parallelism
utilized in the currently marketed CT-5 systems, although they do indicate
that future systems will be heavily dependent upon custom VLSI chips to
realize parallel implementations of the CT-5 architecture.

3.1.1.5 Clarke and Hanna

Clarke and Hanna [CLARKES0] proposed an architecture that utilizes spatial
subdivision of the screen space to achieve higher tiling rates by increasing the
effective bandwidth to the image memory. Instead of multiplexing image mem-
ory address and data busses, as is the common practice, they associate custom
VLSI memory controllers with small collections of memory chips. These VLSI
chips can be configured as either Column Image Memory Processors (C-IMPs)
or as Row Image Memory Processors (R-IMPs). Figure 3.5 illustrates a con-
figuration of C-IMPs and R-IMPs.

C-IMPs accept commands from the parent processor and issue commands
to the R-IMPs. These commands allow for line, character, or polygon render-
ing, and for raster merging. In parallel, the C-IMPs subdivide the rendering
tasks and redistribute the work to their R-IMPs.

R-IMPs are connected directly to the image memory chips and are respon-
sible for scan-conversion. This architecture uses a tesselation scheme much like



- 30 -

Parent Proc. m— Geometrical Info.
I Ix —
Column IMPS A B E
IMP IMP oo IMP
!— Al || Bl | | E1 | |
IMP IMP D I 4
A2 || B2 4 . . . . ... EZ2 |
IMP IMP IMP
Row
IMPS
A4 B4 E4
P [ IMP_"'"""IMP'_J

Figure 3.5: Image Memory Processor Architecture

that of Fuchs and Johnson to associate pixels with the R-IMPs. Thus, an ad-
jacent group of pixels are effectively scattered across the collection of R-IMP
Processors.

This architecture is able to achieve very high scan-conversion rates for
large polygons. Performance for small polygons degrades when all of the R-
IMPs are unable to share the task. Worst case performance would be that of
a combined C-IMP and R-IMP,

The Image Memory Processor architecture can be extended to implement
a parallel depth buffer algorithm. The authors suggest that such an approach
would provide a very cost effective hidden surface rendering system.

3.1.1.6 Ullner
Ullner [ULLNERS3] presented several ray tracing machines in his dissertation.
One of these, which he called the “Ray Tracing Array,” makes use of spatial
subdivision of the modeling space.

Ullner’s Array is a two-dimensional array of microprocessors with special-
ized ray intersection and communications hardware. Although the processors
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form a two-dimensional array, the modeling space is subdivided along all three
axis. Contiguous subvolumes along a doubly skewed path are mapped onto a
single physical processor. This mapping exhibits the property that the neigh-
bor of any subvolume resides in a neighbor of the processor to which the sub-
volume is mapped. Furthermore, the mapping spreads a family of rays onto
an equal number of physical processors. This last property is important to the
load balancing of Ullner’s machine.

The Array ray traces an image by first associating objects with physical
processors. This is done in the manner previously described. Once the objects
have been loaded into the processors, many different views may be computed
without reloading. To create a view, rays are cast from the viewpoint and
fall fairly uniformly on the physical processors. Each processor accepts a ray
and checks whether any objects within its subvolume intersect the ray. Several
things may happen, all of which generate ray messages. First, the ray may
intersect an object, in which case child rays are cast. Second, the ray may not
intersect any objects, in which case the ray is passed onto a neighboring sub-
volume’s processor. Third, a ray may meet a termination condition, in which
case a result ray message must be created and sent back to the originating
Processor.

Ullner discusses extensions to his architecture that enable it to handle
more general objects than polygons. He also addresses ways to virtualize the
algorithm so that subvolumes and ray messages can both be swapped onto

disk.

3.1.1.7 Dippé and Swensen

Dippé and Swensen [DIPPE84] presented another architecture for a ray tracing
machine that utilizes subdivision of the modeling space. Their ray tracing
algorithm is essentially similar to that of Ullner. They presented analysis which
shows that a message passing algorithm that checks only for ray intersections
in the processors along the path of the ray can provide substantial speedups
over naive algorithms that check for intersections in all processors.

Of much more interest to this discussion, they propose using a three-
dimensional subdivision of the modeling space in which each subvolume is to
be associated with a processor. Adjacent processors can communicate by send-
ing and receiving messages. In order to achieve load balancing, they propose
allowing the mapping of subvolumes to be both dynamic and adaptive. They
propose using the product of the number of objects within a region and the
number of rays in that region as a cost metric to be assessed by a global
algorithm that directs the redistribution of resources.

The authors have simulated their algorithm on conventional computers
and present a pleasing but by no means state-of-the-art image. They suggest
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the adaptive nature of their algorithm is important and indicate that the use
of adaptive subdivision algorithms be applied to other types of visible surface
algorithms.

3.1.1.8 Summary of Spatial Subdivision Architectures

The six spatial subdivision architectures just reviewed use parallelism in two
different ways. Two architectures used parallelism to improve tiling perfor-
mance. The other four architectures used parallelism to reduce the number
of objects that any processor would have to deal with when deciding which
surfaces are visible.

The distributed depth buffer architecture proposed by Fuchs and Johnson
and the Image Memory Processor architecture proposed by Clarke and Hanna
both use parallelism to speed up the tiling of graphical objects. While these
architectures are different in how they distribute tasks among processors, they
are very similar in how they actually apply parallelism to object tiling.

Both architectures use multiple processors to tesselate the screen plane
as in Figure 3.2b. Given such an architecture, the time, T, required by these
architectures to tile a polygon can be written as:

T=Tg +TP[NP/P-|

where:
Tg per polygon setup time

Tp pixel modification time
Np projected area of the polygon

P the number of processors

As noted in Chapter 2, the average polygon size decreases as a scene
becomes more complex. If the area of a polygon projected on the screen,
Np, decreases to the point where Np < P, some of the P processors do not
contribute to the tiling of the polygon. In such a case, polygon tiling time is
described by:

Np—P
T = Tg¢+Tp

We see that as scene complexity increases, T' asymptotically approaches
a value independent of P, the number of processors. Once this condition has
been met, adding processors has no affect on system performance. In fact, P
can be decreased without affecting performance. When scenes meet the Kajiya
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criterion of complexity?f, objects are typically smaller than a single pixel. In

this case, we see that we can set P = 1 and not suffer a performance loss.
The asymptotic value of T', may very well be dominated by the T'g term.

Such architectures are best run well away from their asymptotic knee where:

TP{‘NP/P] > TS

Under these conditions, system performance is enhanced through the use of
parallelism and can be improved by adding more processing elements.

The second class of spatial subdivision architectures use parallelism to
redistribute objects to processors that perform a visible surface determination
algorithm for the region associated with each processor. The four architec-
tures in this category used different techniques to redistribute objects. These
included regular subdivisions along one, two, or all three axes, as well as ir-
regularly spaced subdivisions. The architects hope that their redistribution
strategy balances the load on the array of processors so that each processor
ends up with the same number of objects.

The behavior of these architectures depends upon two variables: how
effectively objects are redistributed and the time complexity of the visible
surface algorithm that each processor uses to render an image of its region. A
few definitions will be useful for the following discussion of performance.

P, Processor t
N; Number of objects in F;
T; Time required by P; to handle N; objects

Two time metrics are of interest. Generally when an image is computed
one waits for the entire image to be computed before viewing it. This is akin
to stating that all processors must finish their tasks and can be written as:

T = max(Ty,...,TN)

Another time metric is useful in circumstances when individual processors
may proceed without waiting for other processors to finish. This behavior may
occur in a system that writes each processor’s pixel data to disk and eventually
collects all of the data together to create a composite image. Such a system
would be useful in an animation environment for production runs. In this

+ Kajiya suggests that a scene is complex when it consists of more graphical
objects than pixels.
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case, behavior depends upon the amount of buffering available in the system.
If arbitrary buffering is available, an image can be computed in time:

1 N
1=1

The time, T; required to scan-convert a screen region depends upon the
number of objects in that region, such that:

T; = f(N;)

The function f depends upon the nature of the visible surface determination
algorithm employed by the individual processors. Depth buffer algorithms
require time related to the number of objects O(N;), while other algorithms
commonly require time O(N;log N;). Thus T; can be rewritten as:

T,':O(Ni) or T,-:O(Nilog Ni)

Performance improvement, p, can be viewed as the time required by a
uniprocessor divided by the time required for a multiprocessor. For these two
visible surface algorithm behaviors, and for ideal distributions of objects to

processors, we find:
1
=0 =
g (P)

N
p=0 PlogN
log &

These spatial subdivision architectures exhibit performance improvements
that depend upon the number of processors. Adding more processors can im-
prove overall performance if objects are evenly distributed among the proces-
sors. Unlike the tiling architectures, these spatial subdivision architectures
would seem to perform best for highly complex scenes. Simple scenes contain
few objects and are more likely to result in uneven distribution of objects to
processors. The law of large numbers would seem to suggest that it would be
easier to evenly distribute objects from more complex scenes.

and:

3.1.2 Processor per Object Architectures

Processor per object architectures associate a processor with each graphical
object in a scene. Collectively, the processors determine which of the objects

is visible at each pixel.
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Some of the earliest real-time graphics systems, such as the GE NASA
system [SCHACHS83], used processor per object architectures. Over time, these
systems have evolved into systems that do not statically allocate a processing
element for each object. This evolution has been greatly motivated by a need to
build economical and robust systems. Economic motivation resulted from the
increased level of integration and faster switching times of integrated circuits.
Classical processor per object architectures do not exhibit a high degree of
robustness. A system may be configured to handle a specific number of objects
and no more. When such a system is presented with too complicated a task,
it fails completely instead of degrading nicely. Thus, alternate architectures
were sought out.

Interestingly, the “silicon foundry” revolution has led to a renewal of inter-
est in processor per object architectures. The design philosophy promoted by
Mead and Conway [MEADSO] stresses that high performance can be achieved
in MOS systems by parallelizing the computation instead of serializing it. Fur-
thermore, replication of functional units decreases design and development
time. Because of this new design philosophy, we find three modern day pro-
posals for processor per object architectures. These three architectures will be
reviewed in the following sections.

3.1.2.1 Cohen and Demetrescu

Cohen and Demetrescu [COHEN80] presented one of the first interesting VLSI
architectures targeted at real-time visible surface computer graphics. The
Cohen and Demetrescu algorithm may be divided into three distinct phases.
These phases—preparation, loading, and compute—operate sequentially, but
double buffering may be used to overlap their execution.

During the preparation stage, the scene description is transformed into
screen space, clipped, and fractured into triangles. Figure 3.6 illustrates that
this architecture consists of a pipeline of processors. During the load phase,
geometric and coloring information is passed down the pipeline and loaded
into the processors. After the pipeline has been properly loaded, the compute
phase may begin.

Each triangle processor contains a row and column counter, together with
logic for determining whether the pixel addressed by the row and column
counter is inside the triangle and for determining the depth at which the pixel
intersects the triangle. During the compute phase, the pixel address is incre-
mented on each clock tick. During each clock period, the processor determines
whether its triangle is potentially visible at the current pixel. If the trian-
gle is potentially visible at the current pixel, and the depth of the triangle at
the current pixel is closer to the viewer than the depth asserted on the input
bus, the triangle’s depth and color information are asserted on the output bus;
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Figure 3.6: Pipelined Processor per Object Architecture proposed by Cohen and
Demetrescu.

otherwise depth and color information from the input bus are simply passed
through the processor onto the output bus.

The output from the pipeline is a stream of pixel colors and depths for
each pixel in scan-line order. These pixel colors can be written into a frame
buffer for display or may be displayed directly.

3.1.2.2 Weinberg

Weinberg’s work [WEINBES2| builds upon that of Cohen and Demetrescu.
Weinberg’s goal is to enhance the processor per object paradigm to produce
properly antialiased images. Antialiasing computations generally require in-
formation about a locality surrounding a pixel center to be present at the
time the pixel’s color is computed. Depth buffer algorithms, of which Cohen
and Demetrescu’s is a hardware implementation, are attractive because they
perform radix sorts and require only computational time proportional to the
number of objects. Unfortunately, this type of sorting prevents the required
information about a locality from being easily extractable.
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Weinberg’s solution requires three major enhancements to the Cohen and
Demetrescu architecture. First, he modifies the processing elements so that
they do not merely decide whether the center of the pixel lies within a tri-
angle. Weinberg’s processors decide whether a region around the pixel center
intersects a trapezoid and whether the intersection partially or fully covers the
pixel region.

Weinberg also modifies the architecture so that it no longer passes only the
closest object’s information down the pipeline, but now passes a list of objects
that intersect the pixel region. Each processor inserts its object’s identifier into
the list in such a way that the list is in a visual priority sorted order by the time
it emerges from the pipeline. Processors whose objects are completely behind
objects already in the list need not insert their objects, and processors whose
objects completely obscure the entire list insert their identifier and remove
those that are hidden. This behavior prunes the list so that the pixel tiling
engine need consider only a few objects per pixel.

Weinberg’s third modification is to add a pixel tiling unit which tiles a
pixel by computing each trapezoid’s contribution on a fine subpixel grid. These
contributions are weighted by a filter function and added together to determine
the pixel’s final color.

Weinberg suggests that his architecture is capable of generating images of
6000 triangles every sixtieth of a second, for a display of 625 by 700 pixels. He
would implement this with ECL gate arrays. Each processor requires roughly
1500 ECL gate sites. Today’s ECL gate array technology would require several
thousand gate arrays to implement the object processor pipeline.

3.1.2.3 Ullner

Ullner’s architecture [ULLNERS3] is much different from the previous two. The
two previous architects strived to keep their processors as simple as possible
so that each processor’s cost would be minimized. Ullner takes a different tack
by associating larger processors with each object.

Ullner’s architecture logically consists of a binary tree of processing ele-
ments. The leaf processors are loaded with an object’s world space coordinates
and a viewing transformation. Each processor transforms its object into screen
space, and in lock step with other processors, scan converts its object. The
scan conversion is unique in that each processor determines which region of
the current scan line its object intersects. This line segment is passed up the
tree to a combine processor which merges the line segments together. The root
processor emits a sequence of line segments that tile the scan line.

One of the features of Ullner’s architecture is that it does not have to
dedicate a large portion of its time to loading object descriptions into proces-
sors. Object descriptions are loaded just once. New views are generated by
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changing the viewing transformation. This works best if the model is static.
Even if it isn’t, it is possible to only update the dynamic portions of the model.
This selective updating of the scene model requires stronger ties between the
modeling system and the viewing system.

3.1.2.4 Summary of Processor per Object Architectures

The three processor per object architectures presented here run along a com-
mon thread. Cohen and Demetrescu provided the seminal work in this area.
They showed that VLSI could be put to good use to produce real-time visible
surface graphics. Their architecture was very simple and had a few problems
but it opened the door. The most notable of the problems were: (1) lack of
support for antialiasing, and (2) a large overhead was required for initializing
the state of the processor pipeline.

Weinberg’s architecture directly addressed the antialiasing problem and
provided a good solution. He was still plagued with having to allocate a con-
siderable amount of time to initializing the processors.

Ullner’s contribution seeks to reduce the amount of time spent loading the
processors. He suggests using more powerful processors and distributing the
model across the processors. The processors are responsible for transforming
and clipping the model. Ullner’s work doesn’t really address handling dynamic
models. There is room for future work in this area.

All three of these systems consist of pipelines of processors. The archi-
tectures proposed by Cohen and Demetrescu and by Weinberg make use of
fairly linear pipelines while Ullner’s makes use of a binary tree form. The time
required to compute a scene can be written similarly for all three architectures
as:

Tframe = TN +TpN + Tp(Height + Width)

where:
T, time to load a processor
Tp data propagation time
Tp average pixel generation time
N number of processors and objects

Height number of pixels in the Y direction
Width number of pixels in the X direction

We see that as we add more processors and more objects, more time is
required to load the object data into the processors and more time is required
for the first pixel’s data to propagate through the pipeline. Both the loading
time, Tr N and the propagation delay TpN can be reduced in ways suggested
by Ullner. Nevertheless, these terms tend to dictate overall performance in
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real-time applications. Increasing the number of objects increases the overhead
time which requires the average pixel generation time, Tp, to be reduced in
order to produce the image in a frame time.

3.1.3 Processor per Pixel Architectures

Another result of the recent access to VLSI design and fabrication facilities
is a class of architectures that have come to be known as processor per pixel
architectures. These architectures associate a processing element with each
pixel. These pixel processors work on a task in parallel and have the potential
to achieve very high tiling rates.

3.1.3.1 Fuchs

In 1981, Fuchs devised the Pixel-Planes architecture [FUCHS81] and, in collab-
oration with others, has been developing it ever since. Pixel-Planes represents
another member in the class of parallel depth buffer algorithms. This archi-
tecture utilizes a simple processor for each pixel in the image buffer.

The array of processors scan converts convex polygons in time proportional
to the number of polygon edges. Each processor is able to evaluate the plane
equation (D = aX + bY + c) and uses the resulting sum in different ways
depending upon the different phases of the scan conversion process. The scan
conversion process is divided into three phases: visibility determination, depth
determination, and shading.

During the visibility determination phase, the state of all pixel processors
is initialized to indicate potential visibility. The line equations of each poly-
gonal edge are then presented to the pixel processors. The processors evaluate
the line equation in parallel, each calculating D, which is interpreted as the
distance of the pixel from the line. All processors to one side of the line (outside
the polygon) disable themselves from all further calculations. By the time all
of the polygons edges have been presented, only the pixel processors in the
interior of the polygon are still marked as potentially visible.

In the next phase, processors calculate the depth at each pixel. The
distance from each pixel to the viewer is encoded as (Z = aX + bY + ¢), and
this equation is presented to the array of pixel processors. Only processors that
are still marked as being potentially visible compare the computed depth with
their stored depth. If the computed depth is closer than the stored depth, the
stored depth is updated with the new value. Obscured pixels disable themselves
from all further calculations.

The final phase calculates the intensity at each pixel. This is done by
encoding each of the primary color intensities as: (I = aX + bY + ¢). Thus,
three more equations are presented to the array of processors, and each of
the pixel processors, still in the visible state, stores the result in their color
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registers. This completes the polygon tiling process and the next polygon is
started.

Fuchs’s processors are relatively simple due to a clever partitioning of the
logic needed to evaluate the line equation. Each chip consists of an array of
processors surrounded on two sides by some logic. This logic serially calculates
aX + c; for each column in the array. Similarly, the other logic tree calculates
bY + c5. In order to calculate D, each processor need only serially add the
numbers presented on its row and column lines.

Fuchs estimates that a Pixel-Plane machine can achieve a throughput of
about 1,000 polygons per frame time. This machine would perform as well as
most of today’s flight simulator engines. Drawbacks include its simple shading
model and most notably the lack of antialiasing, which is a common drawback
with depth buffer algorithms.

3.1.3.2 Whelan

This author also developed a processor per pixel architecture [WHELANS82].
The architecture was originally not intended for use in three-dimensional hid-
den surface graphics applications, but rather for use in two-dimensional VLSI
CAD applications. The architecture is capable of scan converting an arbitrary-
sized axis-aligned rectangle in constant time.

This rectangle tiling architecture probably represents the simplest proces-
sor per pixel architecture achievable. Its processing element is simply a RAM
cell with two extra transistors that allow the RAM cell to be written when both
row and column selects are asserted. Like Fuchs, Whelan partitioned the logic
so most of it is shared and resides on the periphery of the RAM array in the
form of specialized row and column decoders. Unlike ordinary RAM decoders,
which assert only one output, these decoders assert a band of outputs. In use,
the row decoder is loaded with the lower and upper Y values of the rectangle,
and the column decoder is loaded with the corresponding X values. The RAM
cells in the region defined by the intersection of the asserted row and column
selects are within the rectangle and participate in the write cycle.

An adaptation of this algorithm would serve as a fairly decent tiling engine.
Instead of tiling arbitrary rectangles, this new architecture would tile scan-
line segments and could be used with many visible surface algorithms which
first determine visible scan-line segments and then tile them. The scan-line
architecture is illustrated in Figure 3.7 and requires no modification to the
design of the conventional RAM cell. It requires modifying only the column
decoder, which again asserts a band of outputs corresponding to the affected
pixels. Gouraud shading can easily be implemented by organizing the chips
such that a full color bank of pixels is resident on a single chip. Logic similar
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Figure 3.7: Whelan’s processor per column tiling architecture.

to Fuchs’s can be used to calculate I = aX + ¢, and the result can be stored
in the memory cells.

3.1.3.3 Summary of Processor per Pixel Architectures

Fuchs’s Pixel-Planes architecture addresses the entire visible surface determi-
nation problem by utilizing a distributed depth buffer algorithm. The pro-
cessing elements required to implement this algorithm are fairly complex when
compared to a RAM cell.

Whelan’s architectures rely on very small processing elements. His second
architecture is in effect a processor per column architecture, and therefore
incurs no per pixel overhead.

These two approaches are at different ends of a spectrum. Fuchs finds
himself working hard to reduce the size of his processing elements so that many
more can be placed on a single die. His architecture will become economically
feasible when a Pixel-Planes system can be implemented with a reasonable
number of integrated circuits. Whelan’s architectures may be economically
feasible today but they cannot provide the same performance improvements as
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Fuchs’s. An architecture somewhere between the two will likely provide good
performance at reasonable costs.

With processor per pixel architectures, performance depends directly on
the number of objects in the scene. For Pixel-Planes, the time required to tile
a polygon, Tp,qy, is:

T,

poly = Ts + Tp(E + 4)

where:
Ts per polygon setup time

Tp basic calculation time

E number of polygonal edges

Interestingly, performance does not depend on the number of processors. Like-
wise, performance is not dependent upon the projected area of a polygon.

Clearly, processor per pixel architectures achieve very high tiling rates for
large polygons. Tiling rates, measured in pixels/second, decrease as polygons
become smaller suggesting that these architectures are best avoided for overly
complex scenes.

While much work has been done on processor per pixel architectures,
major issues still need to be resolved. First and foremost, neither architecture
provides any support for antialiasing. Without antialiasing, these architectures
cannot provide the image quality that is expected of such systems. Secondly,
these architectures provide for only the simplest of illumination models and
provide no support for higher order effects like shadowing and reflection.

Two approaches might be taken in the further development of these archi-
tectures. First, they might be improved to overcome the drawbacks inherent
in current designs. Second, applications might be found that aren’t hindered
by these drawbacks.

3.1.4 Conclusions

Three different uses of parallelism have been studied. Each use increases system
performance. All three exhibit different characteristics that seem to indicate
they will ind a certain niche in which they excel. Table 3.1 compares the per-
formance of these different uses of parallelism. Performance has been written
both as a function of the number of processors, Nproc, and as a function of the
number of objects, Nyp;, in the scene.

The table indicates that all of the architectures require more time for
scenes that contain more objects. This dependency is linear for the three
architectures listed because they all utilize depth buffer algorithms for visible
surface determination.

The table also indicates that performance improves as more processors
are added to spatial subdivision architectures. Performance worsens as more
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Architecture Processors Objects
Spatial Subdivision k/Nproc kN,
Proc. per Object ki Nproc + ko ki Nop; + ko
Proc. per Pixel k kNopy

Table 3.1: Performance comparisons for various parallel architectures.

processors are added for processor per object architectures. This arises from
pipeline loading and propagation times. The processor per pixel architectures
show no performance dependency on the number of processors.

Both processor per pixel and processor per object architectures are claimed
to offer performances of approaching 10,000 objects per frame time. This per-
formance would be approximately an order of magnitude better than today’s
flight simulation engines.

Both of these architectures could be extended to provide higher perfor-
mance. Both architectures are similar in that they utilize a depth buffer algo-
rithm. Depth buffer algorithms allow objects to be tiled independently. This
independence can be utilized to increase the performance of any depth buffer
algorithm.

Given a depth buffer engine capable of performance p, performance 2p
can be obtained by using two engines. Half of the objects are given to each
processor. Each processor creates a resultant image. The resultant images are
easily merged by selecting the pixel with the lowest depth value.

This technique works but has a severe problem. Aliasing will result when
two images are merged together. Aliasing may or may not be worse than
the aliasing present in the original images depending upon what antialiasing
measures were taken. The current state-of-the-art in real-time simulation and
animation requires that effective antialiasing measures be taken.

Spatial subdivision architectures provide a way of improving performance
by adding more processors. All objects that cover a region are redistributed
to a processor. This provides the needed information about a locality enabling
effective antialiasing measures to be taken.

Spatial subdivision techniques improve system performance by changing
the magnitude of the visible surface determination problem that must be solved
by each processor. The other techniques improved their performance by in-
creasing the amount of work accomplished per clock tick. Spatial subdivision
architectures provide a way of obtaining performance gains that result from
decreasing algorithmic complexity rather than from reducing gate propagation
delays.
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3.2 Simulations of Spatial Subdivision Architectures

Architectures that use spatial subdivision to reduce the total number of ob-
jects per processor seem to offer the greatest gains. By reducing the number
of objects each processor must handle, these architectures provide a mecha-
nism for drastically reducing the amount of time required by visible surface
determination algorithms. In addition, the smaller number of objects in each
processor reduces the demands on that processor’s tiling engine.

The potential performance improvements that can be attained by using
these spatial subdivision architectures can be easily estimated. If we assume
that each processor implements a visible surface algorithm that requires time
proportional to the number of objects distributed to each processor, then spa-
tially subdividing the computation of a scene among N processors can improve
performance by at most a factor of N.

Any distribution of objects to processors is likely to be non-uniform and
would lower the performance gains accordingly. Even if we could achieve ideal
performance gains, a performance improvement of two orders of magnitude
would require one hundred processors.

These processors are not simple devices. If built today, they certainly
would require at least one printed circuit board per processor. In the future
we might expect this to reduce to several VLSI circuits. Few extremely large
multiprocessors have actually been implemented. Considering the size of cur-
rent multiprocessor implementations and other physical constraints on system
size, we could expect spatial subdivision architectures to be limited to a few
hundred processors. These several hundred processors would likely yield a
performance improvement of two orders of magnitude.

Spatial subdivision architectures have one key performance advantage over
other parallel architectures. Spatial subdivision architectures prescribe only
a method of distributing objects to visible surface determination processors.
How these visible surface determination processors implement their algorithms
has not been discussed. Many of the previous parallel architectures address
exactly this problem. Performance improvements of a parallel visible surface
determination algorithm can be compounded with those provided by spatial
subdivision to provide much higher performance improvements.

For example, if we were to couple a spatial subdivision architecture with
the Pixel-Planes architecture, we might expect to achieve performance im-
provements of about four orders of magnitude over conventional architectures.
In more concrete terms, Pixel-Planes architectures seem to be capable of offer-
ing slightly more performance than commercially available real-time simulation
systems. We could then expect our compound system to achieve a performance
gain of two orders of magnitude over today’s real-time systems.
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This ability of spatial subdivision architectures to compound their perfor-
mance improvements with performance improvements of parallel visible surface
determination architectures makes spatial subdivision architectures particu-
larly attractive for use in very high performance graphics systems. Spatial
subdivision architectures that do not employ parallel tiling architectures do
not provide substantive performance gains over parallel tiling architectures,
although they may provide other benefits.

The remainder of this section attempts to justify the performance gains I
have cited for spatial subdivision architectures. This has been done by simu-
lating the performance of various spatial subdivision strategies under differing
load conditions. The following discussions present experimental methods, re-
sults, and conclusions.

3.2.1 Method

The performance gains offered by spatial subdivision architectures can be mea-
sured by parallel efficiency, the amount of parallelism actually delivered from
a parallel architecture. In the case of spatial subdivision architectures, the
parallel efficiency is controlled by two factors: processor utilization and object
fragmentation. Both of these factors are highly dependent both on the method
being used to spatial subdivide the image space and on the image that is being
rendered.

Processor utilization is a measure of the percentage of time a processor is
doing constructive work. In spatial subdivision architectures, it is likely that
the distribution of objects to processors will not be uniform. Processors will
have to wait for an individual processor to finish before proceeding with the
computation of the next frame. Load balancing occurs when all processors
require the same amount of computational time. Spatial subdivision methods
that achieve processor load balancing provide higher processor utilization and
contribute to higher parallel efficiencies.

Object fragmentation is a measure of the increase in the number of objects
that must be handled by the visible surface determination processors. Object
fragmentation occurs when an object spans processor boundaries. These ob-
jects must be either subdivided into smaller objects or replicated in adjacent
processors. In either case, more objects are created. Spatial subdivision meth-
ods differ in the amount of object fragmentation they produce.

Optimizing parallel efficiency involves optimizing both processor utiliza-
tion and object fragmentation. Certain spatial subdivision methods may com-
promise one of these factors in favor of the other. To understand more about
the behavior of different spatial subdivision methods, the performance of cer-
tain spatial subdivision methods was simulated and certain factors were me-
tered.
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It was previously mentioned that the processor utilization is affected by
both the spatial subdivision method and the scene being rendered. The im-
portance of simulating the subdivision methods under realistic conditions was
realized early on. As the previous chapter illustrated, realistic scenes are com-
plex in nature and cannot be adequately simulated by simple means. For
example, analysis of performance under uniform loading provides few useful
insights that can be extended to real loading.

For this reason, the simulator was driven by data derived from views of
real models. Computer generated images of models created by the author and
others, including graphic art designers and computer scientists, were rendered
with the author’s render program. In addition to producing images, render also
produces trace information that describes each polygon which its polygon tiler
was requested to tile. This information is not an exact polygon description
but adequately describes the bounding box of each tiled polygon.

A general purpose simulator for spatial subdivision architectures was writ-
ten. This simulator views a multiprocessor architecture as a collection of rect-
angular image space regions. It then reads a render statistics file and clips
each polygon’s bounding box against each processor’s image space region. A
hit is recorded whenever an polygon’s bounding box intersects a processor’s
image space region. This method properly simulates fragmentation since a
polygon may fall into many processor’s image space regions and the simulator
will record a hit for each affected processor.

Simulation results are tallied at the end of each simulation pass. Five
separate cost metrics were collected. Four of these cost metrics measure the
amount of time required for the simulated computation. Each metric is nor-
malized with respect to the time required by a conventional uniprocessor.

The first cost metric is the fraction of polygons handled by the processor
responsible for the greatest number of polygons. This metric is justified by two
factors. First, the faster algorithms require time proportional to the number
of objects, and second, when computing a frame, one usually must wait until
all processors have finished computing their subregions before being able to
view the resulting image.

The second cost metric measures the average number of polygons dis-
tributed to the processors and divides this number by the total number of
polygons. This metric is appropriate when one doesn’t have to wait for all
processors to finish before proceeding with the computation of the next frame.

These two metrics have an analog in pipelined systems. The first metric
measures the total time required for the computation while the second metric
measures the computation rate. In pipelined systems both measures are im-
portant and the computation rate often greatly exceeds the rate implied by
the total computational time.
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In a graphics environment, the first cost metric measures the time to
compute a single frame, which was referred to as latency in this chapter’s
introduction. The second cost metric measures the average frame computation
time when computing a sequence of frames. This corresponds to throughput.

Two additional cost metrics were calculated but proved to be of little use.
These are similar to the first two metrics, but instead of assuming a visible
surface determination algorithm with time cost proportional to the number of
objects, these two metrics implement a O(N log N) cost metric. These metrics
depend greatly on the value of N and as such it is not useful to compare results
from the simulations of scenes of differing complexities. Because the first two
metrics provided this capability, they were preferred over the latter two.

The fifth cost metric was a measure of average object fragmentation. The
number of objects residing in all of the processors was added up and divided
by the number of initial objects. This metric provides interesting insights into
the behavior of the different subdivision methods.

3.2.1.1 Spatial Subdivision Methods

The multiprocessor architectures that were simulated fall into two classes. The
first class of architectures make use of one-to-one mappings of object space
regions onto processors. The second class of architectures make use of many-
to-one mappings of object space regions onto processors. These can be thought
of as virtual processors.

The non-virtual architectures were the most apparent and the literature
reflects this. Practically all proposed architectures have been non-virtual, with
the exception of [KAPLAN79]. I, too, approached this task with non-virtual
architectures in mind and sought to achieve load balancing among processors
via non-equal partitioning of the image space. The results will show that this
is an approach that may deserve more attention.

More recently, it occurred to me that a better approach to load balancing
might be to have each processor sequentially perform many small tasks rather
than one large task. This assumption was based on a belief that it is easier to
distribute many small tasks equitably among a group of processors than it is
to distribute fewer large tasks. Further thought resulted in the notion of vir-
tual processors, and the resulting architectures which fall into two categories:
those that make use of topological information to perform virtual to physical
processor assignments and those that make no use of topological information.
Section 3.2.3 of the experimental results describes these architectures.

3.2.1.2 Scene Models

The decision of which scene models should drive the simulator was an impor-
tant one. Considerations included: (1) having a selection of scenes that was



— 48 —

representative of typical scenes, (2) having a selection of scenes that varied in
complexity between 1,000 and 100,000 polygons, and (8) having a selection of
scenes that was free of bias.

All of these factors had to be compromised somewhat. Scenes that had
been previously modeled at Caltech were neither representative of all of the
scenes we would expect in state-of-the-art computer graphics animation nor
were these scenes terribly complex. Most of these scenes consisted of between
1,000 and 10,000 polygons.

Bias presents itself in many forms. Foremost, I feared that my choice of
scenes or my creations of models might be self-serving. It is clear that one can
create scenes for which spatial subdivision works well and scenes for which it
doesn’t work at all. My fear was that I might pick scenes for which a certain
type of subdivision worked better than others. To avoid this, I have tried to
insulate myself from the design of the basic models.

Bias also exists in a more subtle form. Since models were created in a
particular modeling language and scenes generated by a particular rendering
program, it is unavoidable that the model will both take advantage of and
be hindered by the limitations of the modeling and rendering environments.
There was little I could do to avoid this type of bias. It is bias that is bound
to be found in any similar experiment and bias that has to be tolerated yet
understood.

My original simulations were run on a handful of scenes created by sev-
eral people. The results were inconclusive due mainly to the fact that most of
these scenes were rather simple. Overly simple scenes are best computed with
a single processor. The work inherent in distributing a simple scene to many
processors makes the proposition unworkable. Furthermore, I was not inter-
ested in the rendering of simple scenes, but in the rendering of highly complex
scenes containing some 100,000 polygons.

Since it takes considerable work to generate scenes of 100,000 polygons,
and since many such scenes would be needed, a new strategy evolved. One
of the goals of the simulations was to study how increased scene complexity
affected the performance of spatial subdivision architectures. I desired to read-
dress this task in a systematic fashion. This required forming a model of scene
complexity.

Scenes complexity varies in many ways. There are two important ways of
increasing a scene’s complexity. One method is to add new objects to the scene.
This has the effect of increasing the drawn area and may increase the average
depth complexity of the scene. Certain attributes such as the distribution of
polygon areas are likely to remain the same.
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Another method involves the addition of detail to existing objects within
a scene. This usually has the effect of keeping the drawn area relatively con-
stant and not affecting the average depth complexity much. Most notably, the
distribution of polygon areas changes greatly.

Together, these two paths to increased scene complexity provide a fairly
rich way to describe image complexity. One can think of these two paths as
basis functions in a two dimensional vector space. Points on the plane that can
be represented by a linear combination of these two basis functions describe
reachable image complexities.

Thus, in order that we might be able to draw some conclusions about how
changes in scene complexities affect the performance of various spatial subdi-
vision architectures, two scene models were chosen to drive the simulation.

The first scene model represents increasing image complexity by adding
new objects to the scene. I started with the model of a X-Wing fighter which
is illustrated in Figure 3.8a. This model was created by Chuck Esrock who
was then a student at the Art Center College of Design. A program assembled
a model consisting of a number of X-Wing fighters by placing X-Wing fighters
in randomly selected cells in a 9 by 9 array. The random selection was used
to avoid bias that might otherwise have been introduced by the author. A
sequence of ten scenes was created. These range from around 1,000 polygons
to more that 96,000 polygons.

The second scene model represents increasing image complexity by adding
detail. The most expedient way of generating such a model seemed to be to
generate views of a fractal landscape. Seven fractal landscape models were
generated. They range from 700 polygons to more than 96,000 polygons. A
view of one of these fractal landscapes is shown in Figure 3.8b.

These seventeen scenes involving more than 800,000 polygons were used
to drive the simulations. The following sections report on the simulation re-
sults. Many days of VAX CPU time were required to compute these simulation
results.

3.2.2 Non-virtual Multiprocessor Architectures

The non-virtual multiprocessor architectures can be divided into two cate-
gories. The first category makes use of regular subdivisions of the image space
while the second category does not.

Three regular spatial subdivision algorithms were simulated and are il-
lustrated in Figure 3.9. The first algorithm is referred to as subdivision into
columns and is implemented as a one-dimensional subdivision of the horizontal
axis. The scene may also be subdivided along the vertical axis into rows or
may be subdivided along both axes into rectangles. Other regular subdivisions
exist but were not simulated because they do not align with the pixel grid.



Figure 3.8a: X-Wing Fighter Model

Figure 3.8b: Fractal Landscape Model
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Figure 3.9a: Columns—Regular subdivision along the horizontal axis.

Figure 8.9b: Rows—Regular subdivision along the vertical axis.

Figure 8.9c: Rectangles—Regular subdivision along both axis.
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One irregular two-dimensional subdivision of the image space was simu-
lated. The algorithm used to irregularly subdivide the image space attempted
to achieve load balancing through a top down subdivide and conquer strategy.
Figure 3.10 illustrates how this irregular two-dimensional subdivision technique
recursively partitions the image space. At each recursion level, a median point
is determined from the centroids of all objects within a region and the region
is divided at that median point along one of the axis.

This algorithm, referred to as the Median Cut algorithm, attempts to put
half of the objects into each subregion but doesn’t properly achieve this goal
since fragmentation occurs when objects cross the cutting plane. The Median
Cut algorithm does not produce optimal partitionings of the image space but
was selected as a representative member of this class of algorithms and should
be thought of as providing a lower bound on the performance that is achievable
with adaptive algorithms.

Each of these four spatial subdivision algorithms was simulated with vary-
ing numbers of processors for each of the seventeen test images. Simulations
were performed over the range of 1 to 256 processors. The different algo-
rithms required simulations to be performed at different sample points since
the number of processors required by the different algorithms is related to the
dimensionality of their subdivision technique. The one-dimensional algorithms
can easily partition the image space N ways, whereas the two-dimensional al-
gorithms can only partition the image space v/N ways and the median cut
algorithm log N ways.

The simulation results are presented in Appendix A. Figures A.1-A4.17,
illustrate the simulation results for the ten X-Wing fighter images and the
seven fractal landscape scenes. Each of these figures is presented in the same
format to allow for easy comparison of the results. Each of these seventeen
figures consists of four subfigures.

Subfigure (a) is a photograph of the scene for which the simulation re-
sults correspond. Subfigure (b) illustrates the four different spatial subdivision
methods for which simulations were run. Each of these methods is illustrated
for sixteen processors. Notice the figure which corresponds to the Median Cut
algorithm since this is the only spatial subdivision which changes depending
upon the scene content.

Subfigures (c) and (d) illustrate simulation results. Subfigure (c) plots the
cost metric which corresponds to latency while subfigure (d) corresponds to
the average frame computation time. These two figures are plotted similarly.
The vertical axis corresponds to the cost metric and is accordingly labeled
Relative Time. The horizontal axis corresponds to the number of processors
and is so labeled. Four curves are drawn on each graph, one curve representing
each of the four spatial subdivision techniques. These curves are identified by
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Figure 3.10: The Median Cut algorithm recursively divides the image space depend-
ing upon scene complexity.
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textual labels on the right and by distinct symbols which are used to mark
each simulation point.

A diagonal line is also drawn on each graph. This line represents the ideal
performance curve. The distance from the ideal curve to the simulation curves
indicates how good or bad the results are. Besides indicating how well a spatial
subdivision technique performs for a given number of processors, these graphs
indicate how performance is affected by increasing the number of processors.

Notice how performance indicated by Relative Time changes as the num-
ber of processors changes. Also notice how well the different spatial subdivision
techniques track the ideal performance curve.

By comparing results from the different images one can easily see how
performance changes with scene complexity. Notice the different behaviors for
the X-Wing series and the fractal landscape series. Remember that these two
series represent two different approaches to changing scene complexity.

Figure 3.11 consists of a plot of data extracted from the simulation results
associated with the X-Wing fighter series (Figures A.1-A.10). This figure
indicates how performance, this time measured as efficiency, changes with scene
complexity. Efficiency has been calculated from the simulated relative times
which represent scene computation time, or latency. The data presented is for
processor configurations of sixteen processors.

The figure illustrates that the Median Cut technique provided the highest
efficiencies across the entire spectrum of scene complexities. The Median Cut
algorithm provided efficiencies well over 90% while the other methods struggled
to reach 50%. We do notice a general upward trend in the efficiency curves,
indicating that efficiency tends to increase as scene complexity increases due
to the addition of new objects.

Figure 3.12 consists of a plot similar to the previous one. This one presents
data extracted from the fractal landscape simulation results (Figures A.11-
A.17). Once again the Median Cut technique dominates the picture, easily
providing efficiencies in excess of 70%. The other methods never exceed 35%.
Of these three methods, subdivision into columns appears best, while the rect-
angular subdivision appears worst. The columns method may work better than
the other techniques since the fractals were generated by stretching polygons
in the z direction which happens to correspond to the vertical axis in the views
used to drive the simulator.

The relative flatness of the curves in Figure 3.12 is more interesting than
their performance. This flatness suggests that increasing scene complexity by
adding detail does not have much affect upon parallel efficiency. This is some-
what expected since the spatial distribution of objects is somewhat invariant
when scene complexity is increased this way.
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Figure 3.11: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies. This plot represents data from the simula-
tions of 16 processors scan-converting the ten X-Wing images.

These results would suggest that computer graphics systems ought to em-
ploy the Median Cut algorithm to implement parallelism through spatial sub-
division. Unfortunately, the Median Cut algorithm has several serious draw-
backs. The most serious problem with this algorithm is that determining a
partitioning involves performing many sorts on large amounts of data and
probably requires as much computation as computing the image of the scene.

Another problem with irregular spatial subdivision is that it requires
that the clipping processors be capable of dynamically changing their clip-
ping boundaries. This isn’t difficult to implement yet it will cost more to
implement than static clipping boundaries.

A third problem associated with irregular spatial subdivision is that pro-
cessors end up being responsible for screen regions of various sizes. One pro-
cessor may end up tiling nearly all of the image’s pixels while others tile very
few pixels. This behavior requires that each processor must be designed to
handle the worst case where it must tile the entire screen at the video update
rate. The regular spatial subdivision techniques allow processors to tile pixels
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Figure 8.12: A plot of parallel efficiency versus scene complexity for the four non-

virtual spatial subdivision strategies. This plot represents data from the simula-
tions of 16 processors scan-converting the seven fractal landscape images.

at much slower speeds since they only tile a fixed fraction of the image’s pixels.
As an example, a processor in a sixteen processor Median Cut system may have
to be designed to tile pixels sixteen times faster than the tiling engines used
by the regular spatial subdivision methods. The regular spatial subdivision
methods have more time to tile each pixel and can afford to do a better job of
it.

Irregular subdivision techniques like the Median Cut algorithm can use
feedback techniques to adapt to a scene. An initial guess can be made as to
how to subdivide the image space. After the objects have been distributed, a
processor may determine how uniform the distribution of objects is and based
upon this information it may select the next image space partitioning. Such
techniques have been proposed [DIPPE84] and deserve further investigation.

Because of the high costs associated with irregular subdivision strategies,
alternative techniques were looked into as a way of improving the performance
of the regular spatial subdivision strategies. The following section reports on
this work.
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3.2.3 Virtual MultiProcessor Architectures

The virtual multiprocessor architectures that were simulated all make use of
static partitionings of the image space. These partitions are also statically
mapped onto physical processors. These restrictions were applied for two rea-
sons. First, virtual architectures were studied to see how much improvement
they can provide over the non-virtual architectures. Thus, the partitions must
exhibit a strong correspondence to the partitions employed by the non-virtual
architectures. Second, static partitionings of the image space are less expensive
than dynamic partitionings and require no a priori knowledge about how the
image space should be partitioned.

Static assignments of image space regions to physical processors are also
less expensive than dynamic techniques because the system does not have to
provide for hardware that is capable of dynamic changes and no decision has
to be made about how to associate image space regions with processors.

It seems clear that dynamic partitionings and dynamic mappings of image
space regions onto physical processors may provide better performance. It
should be pointed out though that there may be considerable advantages to
having adjacent image space regions reside in the same or adjacent physical
processor. In fact, the shadowing algorithm presented in the next chapter relies
heavily upon this.

Six virtual spatial subdivision methods will be studied. These are best
described as one- and two-dimensional subdivisions of the image space and as
tessellations of various degrees of the image space.

Figure 3.13 illustrates the regular one- and two-dimensional subdivisions
of the image space. Since these partitionings are similar to those simulated for
non-virtual processors, we would expect their performance to be very similar
to the prior case. More precisely, we expect to achieve a certain amount of par-
allelism which can be predicted from the results of the non-virtual simulations.
In addition, we expect to have to pay a certain amount for having to simulate
a parallel machine on a sequential machine. This increased cost corresponds
directly to the object fragmentation occurring in the virtual processors that
map onto a physical processor.

The one- and two-dimensional tessellations appear to be much more in-
teresting. They are illustrated in Figure 3.14. The interesting aspect of these
organizations is that they map topological regions that are far apart onto the
same processor. There is hope that this property has a load balancing ef-
fect on the system. Similar schemes have been suggested to improve tiling
performance [FUCHS79] [CLARKS0].

All seventeen scenes were once again simulated. These simulations were
performed for various numbers of physical processors at various ratios of virtual
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Figure 8.18a: A regular virtual horizontal subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 8.18b: A regular virtual vertical subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 3.13c: A regular virtual rectangular subdivision. Sixteen virtual processors
are shown mapped onto four physical processors.
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Figure 3.14a: A tesselated virtual horizontal subdivision. Eight virtual processors
are shown mapped onto four physical processors.
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Figure 3.14b: A tesselated virtual vertical subdivision. Eight virtual processors are
shown mapped onto four physical processors.
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Figure 3.14c: A tesselated virtual rectangular subdivision. Sixteen virtual processors
are shown mapped onto four physical processors.
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to physical processors. The simulations yielded families of curves for each
virtual spatial subdivision method.

The simulation results are illustrated in Appendix A. Figures A.18 through
A.34 illustrate the simulation results for the ten X-Wing fighter images and the
seven fractal landscape scenes. Only the data that represents image computa-
tion time (latency) has been plotted. Each figure is divided into six subfigures.
Subfigure (a) represents the results for the Rows method. Subfigure (b) repre-
sents the results for the Tessellated Rows method. Subfigure (c) represents the
results for the Columns method. Subfigure (d) represents the results for the
Tessellated Rows method. Subfigure (e) represents the results for the Rectan-
gle method. Subfigure (f) represents the results for the Tessellated Rectangle
method.

Notice that when the ratio of virtual to physical processors is equal to
one, the subdivision method is identical to the one used in the non-virtual
section and the performance curves are identical. These curves can be used
to compare the performance of the virtual techniques with the non-virtual
techniques. When curves fall below the non-virtual curve, the virtual technique
performs better than the non-virtual technique.

The data from the preceding plots is terribly difficult to capture in a brief
reading. Data can be extracted from these simulation results and plotted in a
more concise form. Figure 3.15 plots efficiency versus scene complexity for the
X-Wing fighter series. It is similar to Figure 3.11 but contains three additional
curves which represent the performance achievable with the virtual schemes.
Curves were plotted for virtual rows, virtual columns, and virtual rectangles.
Each of these curves is drawn for a fixed number of processors, sixteen in
the case of Figure 3.15. Each point on a curve was computed by choosing
the best result from both tessellated and nontessellated strategies over all the
computed ratios of virtual to physical processors. Although both tessellated
and nontessellated strategies were considered, the tessellated strategies always
performed best.

Figure 3.15 illustrates that the virtual processor technique provides better
performance than the non-virtual schemes. We notice a great improvement for
rectangular subdivision in a virtual environment. This occurs because the
rectangular subdivision technique fractures fewer objects than the other two
techniques.

All of the virtual schemes easily made it above the 50% mark and the
rectangular subdivision scheme made it into the 70% region. Once again,
the curves show an upward trend indicating that efficiency improves as scene
complexity increases due to adding more objects.

Figure 3.16 illustrates the performance of virtual and non-virtual spatial
subdivision techniques for the fractal landscape series. Again we see a marked
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Figure 8.15: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies and the three tesselated virtual spatial sub-
division strategies. This plot represents data from the simulations of 16 processors
scan-converting the ten X-Wing images.

improvement for the virtual techniques. Notice that the virtual columns tech-
nique provided performance comparable to that provided by the Median Cut
algorithm. Also note that the virtual rectangles technique improved from less
than a 20% efficiency to well over 50%. As was the case for the non-virtual
curves, the virtual curves are relatively flat. This suggests that efficiency does
not change much as scene complexity changes due to changing the level of
detail.

We have seen that certain scenes may prefer subdivision into rows while
others such as the fractal landscape series may prefer to be subdivided into
columns. The rectangular subdivision approach seems to offer some insensitiv-
ity to the preferred subdivision axis of the scene. The previous results indicate
that virtual rectangular spatial subdivision can offer respectable efficiencies in
excess of 50%. Such efficiencies make it practical to build graphics engines
that utilize spatial subdivision techniques.
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Figure 3.16: A plot of parallel efficiency versus scene complexity for the four non-
virtual spatial subdivision strategies and the three tesselated virtual spatial sub-
division strategies. This plot represents data from the simulations of 16 processors
scan-converting the seven fractal landscape images.

All of the previous plots were illustrated for an array of sixteen processors.
This number was chosen for a good reason. Proponents of processor per pixel
and processor per object architectures have claimed that their architectures
are capable of performance approaching 10,000 polygons per frame time. A
goal of this research was to study how to build a machine capable of rendering
100,000 polygons per frame time. With an engine capable of rendering 10,000
polygons per frame time, and with a spatial subdivision architecture that pro-
vided decent efficiencies, an array of sixteen processors should be capable of
approaching the goal of 100,000 polygons per frame time.

Nevertheless, it is important to understand how the number of processors
used in the spatial subdivision strategy affects the performance of the machine.
Figures 3.17 and 3.18 plot efficiency versus scene complexity. Each curve rep-
resents a different number of processors used in the subdivision strategy. All
curves represent virtual rectangular subdivision. Figure 3.17 represents data
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Figure 3.17: A plot of parallel efficiency versus scene complexity using the virtual
tesselated rectangular spatial subdivision strategy. The different curves represent
different numbers of physical processors. This plot represents data from the
simulations of the ten X-Wing images.

from the X-Wing series of images. Figure 3.18 represents the fractal landscape
scenes.

These figures illustrate what can easily be seen in the simulation results.
As we decrease the number of processors, we improve efficiency. A uniprocessor
provides us with 100% efficiency. Increasing the number of processors decreases
efficiency. Efficiency decreases more slowly than the number of processors
increases.

3.3 Conclusions

This chapter has studied various ways of utilizing parallelism to improve the
performance of computer graphics systems. The behavior of processor per
object and processor per pixel architectures limit their performance to about
10,000 polygons per frame time. This is consistent with the claims of the
proponents of such architectures.
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Figure 3.18: A plot of parallel efficiency versus scene complexity using the virtual
tesselated rectangular spatial subdivision strategy. The different curves represent
different numbers of physical processors. This plot represents data from the
simulations of the seven fractal landscape images.

Analysis indicated that spatial subdivision architectures could provide a
method to achieving higher system performance figures. Simulation of differ-
ent spatial subdivision strategies indicated that a virtual rectangular spatial
subdivision technique holds much promise.

Virtual rectangular spatial subdivision provides performance that is likely
to improve as scene complexity increases. It also provides performance that
can be improved by adding more processors. This parallelization technique is
the foundation for the ANIMAC architectures. Details of these architectures
are discussed in the following chapters.
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4

A Partitionable
Shadowing Algorithm

Shadows arise in scenes when objects occlude light rays and in doing so prevent
other objects from being illuminated. Shadows form an important part of our
every day visual environment. Shadows may enrich a scene and at the same
time decrease visual discernibility.

Shadows enrich scenes by providing additional information. Shadows can
greatly improve depth perception by providing many additional cues as to
which objects lie in front of others. Information about relative distances be-
tween objects may often be inferred from their shadows.

Shadows can also mask objects making them less discernible, if visible
at all. Crow [CROW77A] points out that this aspect of shadowing can have
important implications upon task training and performance. Certain tasks,
such as space craft manipulations, may not be performable because objects
may be hidden in cast shadows. Crow’s suggestion is that visual simulations of
certain tasks need to include accurate shadowing effects in order to determine
whether a protocol is feasible. Failure to accomplish a protocol during a space
shuttle mission could easily result in the loss of millions of dollars.

Most commonly available computer graphics systems are not capable
of generating scenes with shadows. Several methods for producing realistic
shadow effects have been available to implementors of computer graphics sys-
tems during the past decade. Due to the increased computational requirements
of these algorithms, few software implementors seem to have implemented
shadowing and there have been no hardware implementations capable of real-
time performance.
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The previous chapter suggested that multiprocessor architectures might
be used to speed up the rendering of visible surfaces. In order to compute
images with shadowing effects on a multiprocessor, we must develop a visible
surface algorithm that makes use of reasonably local data. Heavy use of non-
local data would require complex and expensive communications networks and
in the end would limit the usefulness of the algorithm by making it economical
for only the smallest networks.

Shadow calculations are by their very nature non-local since an object far
away can cast a shadow upon another object. Figure 4.1 illustrates that even
objects outside of the field-of-view can cast shadows on visible objects. Thus
localizing the transfer of information in a shadowing algorithm is a non-trivial
problem and deserves attention.

Vi

<\

%W«-

Figure 4.1: Shadowing is a non-local effect. Even objects outside of the observer’s
field-of-view may cast visible shadows.
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This chapter deals with shadowing algorithms by first presenting an over-
view of previous work in this area. These algorithms are then examined as to
how they would behave in a spatial subdivision multiprocessor environment.
Finally, a new shadowing algorithm is presented that is tailored to this envi-
ronment.

4.1 Previous Work

Sutherland et al. [SUTHER74], in their seminal taxonomic survey, divided
hidden surface algorithms into three main categories: object space algorithms,
image space algorithms and list priority algorithms. Object space algorithms
attempt to solve the hidden surface problem as accurately as possible and are
generally limited by the precision of the computer’s numeric representation.
On the other hand, image space algorithms make great use of the limited
resolution of display devices to reduce the total amount of computation. List
priority algorithms operate in both realms.

I have tried to use Sutherland’s notation for categorizing shadowing al-
gorithms. Shadowing algorithms generally consist of two phases. The first
phase determines the extent of potential shadow boundaries, and the following
phase performs an augmented hidden surface algorithm that makes use of the
shadow boundary information when calculating pixel intensities. The type of
algorithm used for the second phase can be quite independent of the first phase
algorithm. For example, either an object or an image space algorithm can be
used as a second pass algorithm. Since the first pass algorithm can be rela-
tively independent of the second pass algorithm, I have categorized shadowing
algorithms solely on the methods they utilize to determine potential shadow
boundaries.

Object space shadow algorithms attempt to solve for shadow boundaries
exactly, independent of the resolution of the final image. Image space shadow
algorithms may also solve for shadow boundaries in manners independent of
the resolution of the final image, but they do so in a discrete manner. Shadow
boundaries are calculated only to some predetermined resolution.

4.1.1 Object Space Shadowing Algorithms

The vast majority of shadowing algorithms fall into the object space category.
These include algorithms proposed by Appel [APPEL68|, Bouknight and Kelly
[BOUKNI70], Crow [CROW77A], Atherton et al. [ATHERT78], and Brotman and
Badler [BROTMAS84]. In addition to these algorithms, object space algorithms
include the currently in vogue ray tracing algorithm, which in its recent incar-
nation traces back to Whitted [WHITTES0] and has been employed by many
people since then.
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4.1.1.1 The Shadow Volume Algorithm

Crow [CROWT77A] proposed that projected shadow polygons be added to the
environmental description. Shadow polygons are treated like other polygons
by the hidden surface algorithm except that they are not visible and serve only
to determine which portions of visible surfaces lie in shadow.

The basis for Crow’s algorithm rests on the observation that an object
casts a shadow over a well defined region of space, which he calls a shadow
volume. Figure 4.2 illustrates the shadow volume that an object might cast.
Shadow volumes encompass all of the space that the object obscures from the
light source’s point-of-view. Such a volume is semi-infinite and can be clipped
against the viewing volume to yield shadow polygons.

Figure 4.2: An object shadows any object within its shadow volume.
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Shadow polygons are used during the hidden surface algorithm to imply
the presence of a shadow. If a portion of a visible surface lies behind a frontfac-
ing shadow polygon and in front of a backfacing shadow polygon, that portion
of the visible surface lies in shadow.

Since shadow polygons are treated the same as regular objects, they may
be clipped against the hither and yon clipping planes. This clipping action may
remove the front or back faces of a shadow volume. Crow precisely describes the
criteria for determining whether a point lies in a shadow volume by stating that
“surfaces are shadowed whenever they lie in front of a backfacing frontmost
shadow polygon or the surface depth count is such that more frontfacing than
backfacing shadow polygons have been pierced.”

One of the advantages of Crow’s shadow volume technique is that shadow
polygons need only be computed once for a particular environment. If the light
source and the objects remain stationary, the environment may be viewed
from any orientation and correct shadowing effects will be observed. Thus,
it is possible to view the computation of shadow polygons as an additional
cost incurred during data base creation for static environments. For dynamic
environments, this cost must be incurred whenever the object data base or
the lighting environment change. This may happen seldomly or frequently,
possibly requiring recomputation for each frame.

Shadow volume computations increase the size of the environmental data
base. If all objects are allowed to cast shadows many more polygons may have
to be added to the environment’s description. A worst case analysis requires
an additional shadow polygon for each edge in the data base. This would seem
to indicate that the total number of polygons in the data base would grow by
at least a factor of four since a triangular polygon would require an additional
three shadow polygons.

Fortunately, shadow polygons do not need to be cast for each polygonal
edge. If the data base is properly structured, shadow polygons can be cast only
for the contour edges. Deriving shadow volumes from object contour edges may
greatly reduce the number of shadow polygons that need to be generated. The
number of shadow polygons can be reduced further by taking into account that
if the shadow volume cast by one object encompasses the shadow volume cast
by another object, the latter shadow volume need not be cast since it can have
no affect.

While the addition of shadow polygons may increase the size of the envi-
ronmental data base at a rate that has a less than linear dependence upon the
number of objects in the data base, other costs may be incurred. Crow pointed
out that the shadow polygons may greatly increase the average depth com-
plexity of the image. He mentioned that Sutherland [SUTHER74] has observed
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that “increased depth complexity may well severely hamper the performance
of scanning algorithms.”

Finally, since Crow’s shadow polygon method entails modifications to the
environmental data base, the computation of shadow polygons needs to be
done prior to distributing objects to processors in a multiprocessor that relies
upon spatial subdivision. Parallelism can be utilized in the data base back
end processor to rapidly generate these shadow polygons, but nonetheless, this
process may be very time consuming for large environmental data bases.

4.1.1.2 The Shadow Polygon Algorithm

The shadow polygon algorithm has been proposed by Atherton, Weiler, and
Greenberg [ATHERT78]. Although its name is similar to terminology used to
discuss Crow’s shadow volume algorithm, it is quite different in nature and
should not be confused.

The shadow polygon algorithm employs a two-pass approach to generating
shadowed scenes. During the shadowing pass, descriptions of the object and
lighting environments are read in and an object environment description that
has been augmented to include shadow descriptions is emitted. This output
description has precisely the same form as the input description and can be
used by a number of hidden surface algorithms to generate shadowed scenes
without any modification to the algorithms.

Shadows are generated as detail polygons, which are used only to de-
termine pixel illumination and thus do not play any role in visible surface
determination. The z.thors claim that an important advantage of their ap-
proach is that it pro..ces these shadow polygons explicitly. They claim that
the output from their algorithm can be used for purposes other than display.
For example, shadow polygons might serve as input to various energy analyses
that can be useful in architectural engineering and design.

Shadows are determined by creating a hidden surface view of the object
environment as viewed from the light source. The polygon area sorting visible
surface algorithm of Weiler and Atherton [WEILER78| is used to generate vis-
ible polygons. These visible polygons are then added to their source polygons
as surface detail.

The authors also illustrate that their technique can be used to model the
effects of multiple light sources. With their technique, the data base is simply
run through the shadowing program for each light source.

Like Crow’s algorithm, this one manipulates the environmental data base.
As such, it works best for static object and lighting environments, allowing
multiple views to be generated without further data base modification. Un-
like Crow’s algorithm, this one requires substantial work to make the data
base modifications. This additional work does provide an advantage in that
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the modified data base does not alter the average depth complexity of the
scene. Once the data base has been modified, views of shadowed scenes can
be computed much faster with this technique than with Crow’s.

4.1.1.3 Ray Tracing Algorithms

In recent years, ray tracing algorithms have been used to create some of the
most realistic synthetic images. These images illustrate reflection, refraction,
and shadowing effects. The ray tracing algorithm is very simple, but unfortu-
nately it typically requires a great deal of time to compute an image.

Figure 4.3 will be helpful in understanding the ray tracing algorithm. As
the figure illustrates, the ray tracing environment exists in a three-dimensional
modeling space. Within this space are an observer, a viewing rectangle, a
collection of objects, and one or more light sources. Different views of the
objects can be selected by repositioning the observer and the viewing rectangle
through which the observer views the world.
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Figure 4.3: A ray tracing environment.
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The raster display is mapped onto the viewing rectangle. Pixel centers
can be thought of as points in the plane of the viewing rectangle and within
the boundaries of the rectangle. The color of a pixel is determined by casting
a pizel ray from the observer’s position through a pixel center. The collection
of objects is searched to find if the ray intersects any of the objects and if so,
which of these objects lies nearest to the observer. If the ray intersected an
object, this object is visible at the pixel and must be colored, otherwise the
pixel can be colored according to some background coloring algorithm.

If reflection and refraction effects are not needed, the pixel coloring is
simplified. The color of the pixel depends on properties of the object, how the
object is illuminated, and how the object is being viewed. Color properties
can be associated with objects in a variety of ways, none of which is important
in the context of this discussion. Illumination is determined by casting an
tllumination ray from the visible surface towards each light source. Once again
all objects are searched to find out whether any object might intersect the
illumination ray and prevent the light source from illuminating the visible
surface. Once illumination has been determined, the pixel can be colored
using information derived from the pixel and illumination rays and object color
properties.

If reflection and refraction are desired, a recursive procedure results. From
the visible surface, two additional rays are cast. The reflection rayis cast in the
appropriate reflection direction and the refraction rayis cast in the appropriate
refraction direction. The same algorithm is applied recursively to associate
pixel color contributions with these rays. The depth of recursion is usually
limited to some maximum to insure that the process terminates.

While the algorithm appears rather simple, it is time consuming. The
basic algorithm outlined here must be repeated for each pixel or subpixel if
antialiasing measures are being taken. Interesting scenes usually consist of at
least one quarter of a million pixels and often require the casting of millions of
pixel rays since antialiasing steps must be taken.

Each pixel ray may result in the generation of 3¢ additional rays, where
d is the recursion limit. For each ray that is generated, the entire object data
base must be searched for potential object-ray intersections. A 512 by 512
image of a scene composed of 1,000 objects often results in billions of object-
ray intersection calculations. Ray tracing requires much time to compute single
images on the fastest computers.

Several researchers have proposed parallel machine architectures for ray
tracing applications. These include Ullner [ULLNERS83] and Dippé [DIPPE84]
both of which were reviewed in the Chapter 3. Both of these architectures speed
up the ray tracing algorithm by (1) implementing an object-ray intersection
algorithm in hardware and by (2) pruning the list of objects which must be
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searched to those objects which are capable of intersecting the ray. Even with
hardware support, neither of these authors has suggested that their parallel
architectures are capable of real-time performance.

4.1.2 Image Space Shadowing Algorithms

At this time, the only image space shadowing algorithms is the one proposed
by Williams.

4.1.2.1 The Shadow Buffer Algorithm

Williams [WILLIA78] suggested an image space shadowing algorithm that may
be used for computing shadowed images of scenes containing curved surfaces.
Curved surfaces cast curved shadows and thus the interplay between shadow
volumes quickly becomes quite complex.

Williams’s approach does not explicitly compute shadow volumes or re-
gions, but rather uses an implicit technique fashioned after the depth buffer
approach to computing hidden surface images [CATMUL74].

Williams suggested that a shadowed image can be computed by first com-
puting a depth buffer view of the environment as seen from the light source.
This image need only consist of depth values; pixel colors need not be com-
puted. This depth buffer image is often referred to as a shadow buffer.

A second depth buffer image is then computed from the viewer’s point-
of-view. During this process, as each pixel is being tiled, the visible surface’s
(X,Y, Z) coordinates are transformed into the light sources coordinate space,
(X',Y', Z'). The depth value, Zg, stored in the shadow buffer at (X', Y")
is compared compared with Z'. The pixel is determined to lie in shadow if
Z' > Zg since this implies that another surface lies in front of it in the light
source’s view.

Once shadowing has been determined, the proper color is computed for
the pixel in the viewer’s image buffer and that pixel is updated. After all pixels
in the viewer’s image buffer have been tiled in this manner, a shadowed visible
surface image resides in the buffer.

Williams suggested the previous algorithm as a correct implementation.
He has however modified the algorithm for the sake of speed. His modification
consists of calculating the two images, one from the light source’s point-of-
view and the other from the observer’s point-of-view, independently. A post-
processing pass transforms the (X,Y,Z) values of the visible pixels into the
light source’s coordinate space (X',Y’, Z'), checks for shadowing and darkens
those pixels that are found to lie in shadow.

This modified algorithm has the advantage that it need transform surface
coordinates only once for each pixel. The original algorithm possibly required
a transformation for each surface at each pixel. Thus this post-processing
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pass makes transformation costs proportional to the number of pixels and
independent of image complexity. This greatly reduces the time needed to
compute images for complex scenes.

Williams’s modified algorithm does have one admitted problem. Since it
computes pixel intensities independently of shadowing and then simply atten-
uates the pixel intensity if that pixel is found to be in shadow, highlighted
areas are not shadowed correctly. Highlights are due to specular reflection of
light and should not occur within shadowed regions since light does not di-
rectly shine on these regions. Since the modified algorithm only attenuates
pixel intensities, highlights can occur in shadowed regions.

Williams’s algorithm requires time proportional to the number of objects
in the scene. Creating shadowed images requires roughly twice the computa-
tional time as generating a depth buffered image, since two depth buffer images
need to be computed. The fixed transformation cost may be small compared
to the depth buffer image generation costs.

Since this algorithm is discrete in nature, care must be taken in the han-
dling of certain aspects, and certain tradeoffs have been made. Most impor-
tantly, the object environment must be scaled so that the visible portion is
also rendered from the light source’s point-of-view. The object environment
should also be scaled so that it makes maximum use of the available shadow
buffer resolution. Objects not visible in the light source’s view will not be able
to cast shadows.

Williams suggests that if the light source is within the observer’s field-
of-view, the environment may be sectored as Crow has suggested [CROW774A].
Computational requirements for this particular situation increase due to the
fact that multiple depth buffer images need to be created for the different
sectors and each visible pixel must be transformed into each of these sector’s
coordinate spaces. Williams admits that the only difficulty with this lies in its
increased memory demands.

Williams notes that severe perspective, which may be introduced either
by the observer’s view or by the light source being near to the scene, can
cause quantization problems to arise when transforming coordinates from one
coordinate system to the other.

In an example to illustrate the quantization problems that can arise,
Williams discusses the generation of a view of a scene consisting of four spheres.
Each sphere casts a shadow on itself and several of the spheres cast shadows
on each other.

The first problem he addresses deals with depth quantization in a depth
buffer. Ideally, a coordinate triple (X,Y, Z) representing a point on a surface
would transform into (X', Y, Z') and would fall exactly on the transformed sur-
face. However, since depth values have been quantized, the transformed depth
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value Z' will lie near the surface, either a bit above or below it. Williams’s
solution to this is to add a depth offset to the Z’ value before comparing it
with the shadow buffer depth value. He incorporates this depth offset into the
observer space to light source space transformation matrix so that additional
computation is not required.

Curved surfaces may have silhouette curves which are not defined by the
boundaries of the object. When these curved surfaces are rendered in a depth
buffer, the silhouette curve may appear noisy and jagged due to quantization
effects. Sampling these silhouette curves in the shadow buffer may result in
a moiré in the resultant image. Williams works around this problem by first
dithering the shadow buffer image and then low-pass filtering it prior to sam-
pling.

These silhouette problems are not encountered in scenes composed of
polygonal objects, and the aforementioned steps of dithering and filtering need
not be applied. Williams does mention that the filtering steps have the addi-
tional property of creating a penumbra effect, i.e. soft shadow edges, which
may be desirable even if not truly accurate.

4.2 Parallelizing Shadowing Algorithms

Chapter 3 advocates the use of a tesselated rectangular spatial subdivision
architecture as a method for parallelizing visible surface determination. This
architecture associates a virtual processor with a subspace in such a way that
neighboring subspaces reside in neighboring physical processors. Each physical
processor is responsible for producing a visible surface image for each of its
subspaces.

I wish to extend the capability of this multiprocessor system so that it
can produce images with shadowing effects. In doing this, I realize that since
shadowing is a non-local effect, I will have to provide for interprocessor com-
munications. My selection of a shadowing algorithm will determine the connec-
tivity and bandwidth of the interprocessor communications network. Thus the
principal objective is to select or develop an algorithm that requires only very
localized communications among processors and that keeps this interprocessor
communications to a minimum.

Localized communications will allow processors to be built with a small
number of interprocessor communication channels. Localization may also allow
processors to be designed somewhat independently of the size of the multipro-
cessor. This implies that the size of the multiprocessor may be able to change
without necessitating the redesign of the individual processors.

Minimizing interprocessor communications allows the interprocessor com-
munication channels to be built for lowest possible data rates. This has both
physical and economic benefits. Moderate bandwidth channels can be longer
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than higher bandwidth channels, allowing processors to be housed further
apart. Moderate bandwidth communication channels are also typically much
less expensive to manufacture and maintain than channels that push techno-
logical limits.

Given these selection criteria, we can set about the search for an ap-
propriate shadowing algorithm. The previous section reviewed the currently
employed shadowing algorithms. All of these algorithms were initially designed
for a uniprocessor model of computation. Of these algorithms, the ray tracing
algorithm is the only one that has been recommended for multiprocessor imple-
mentations; however, the proponents of these architectures have not suggested
that they are appropriate for real-time image generation.

The other algorithms suffer when one attempts to map them onto a spatial
subdivision multiprocessor. The shadow volume algorithm [CROW77A] can be
made to work in such an environment. As objects are distributed to processors,
shadow volumes can be generated and the shadow polygons distributed to
the processors. If this is done, shadow polygons will be unevenly distributed
to the processors, since processors further from the light source will receive
more shadow polygons than processors nearer the light source. This uneven
distribution of shadow polygons suggests that the shadow volume algorithm
does not parallelize best onto the regular spatial subdivision architectures.

The shadow polygon algorithm [ATHERT78] works best for static scenes
since it must do a reasonably large amount of work to modify the environmental
data base. However since the algorithm simply creates a view of the scene from
the light source’s point-of-view, a spatial subdivision multiprocessor could be
used to perform this task. Another spatial subdivision multiprocessor would
have to be used to generate the observer’s view. The only real problem with
this is that the scene model needs to be reconstructed and reclipped between
these two visible surface passes. It is unreasonable to expect that this work
can be performed fast enough for real-time system response.

The shadow buffer algorithm [WILLIA78] can also be mapped onto a spatial
subdivision multiprocessor since it also creates a view from the light source’s
point-of-view. Both the shadow buffer image and the viewer’s image could be
computed in parallel in separate spatial subdivision multiprocessors. A final
shadowing pass is needed to transform visible pixels into shadow buffer coordi-
nates and then sample the shadow buffer to determine whether the pixel lies in
shadow. This pass randomly accesses the entire shadow buffer image, which is
spread across many processors. This results in non-localized communications
between processors. A communications network could be constructed for this
task, but the effort is probably not worthwhile since the algorithm has inherent
sampling difficulties that will be further highlighted in Chapter 5.
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The ray tracing architectures of Ullner [ULLNERS3] and Dippé |[DIPPE84]
partition the visible surface algorithm among a group of processors and the
communications was localized to neighboring processors. Unfortunately, com-
munications was not limited. Many rays are cast during the scan conversion
of a scene and each ray may travel through a number of processors.

Since none of these shadowing algorithms seems to work terribly well
in a multiprocessor environment, a new shadowing algorithm, the ANIMAC
algorithm, was developed to make use of the tesselated spatial subdivision
architecture.

4.3 The ANIMAC Algorithm

The ANIMAC consists of a two-dimensional array of processors that render
an image in parallel. Each processor is assigned several image regions and
is responsible for producing visible surface shadowed images for these regions.
Regions are assigned to processors using the virtual tesselated rectangular spa-
tial subdivision method described in the previous chapter. This assignment of
regions to processors distributes neighboring regions to neighboring processors.

Scene descriptions are distributed to each of the ANIMAC processors by a
clipping subsystem. Each ANIMAC processor has detailed information about
objects associated with its image space regions but must communicate with
neighboring processors if information about other objects is needed.

Each processor in the ANIMAC is identical and executes the same al-
gorithm. This algorithm determines which surface is visible at a particular
pixel and whether that surface lies in shadow. Figure 4.4 provides an abstract
picture of an ANIMAC processor.

Each processor can be thought of as a collection of several subprocessors
with specific tasks to perform. The Visibility Processor (VP) determines which
of the processor’s objects are visible at a particular pixel. The Shadowing
Processor (SP) checks whether visible surfaces lie in shadow. The Illumination
Processor (IP) computes the color for a pixel based upon information from the
VP and SP. Pixel data can then be stored in a frame buffer for viewing or it
may be written to disk and composited with data from the other processors at
a later time.

Since visible surface determination does not require interprocessor com-
munication, most any visible surface algorithm may be implemented in the VP.
The shadowing algorithm implemented by the SP must check whether objects
in other processors cast shadows upon visible objects in this processor, and
thus the SP algorithm is at the heart of the ANIMAC algorithm.

Figure 4.5 illustrates that the shadowing can be determined in the ANI-
MAC multiprocessor by casting an illumination ray from a visible surface, Sy,
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Figure 4.4: Functional diagram of an ANIMAC processor.

towards the light source, L. If any objects intersect this ray, the visible surface
lies in shadow since it can receive no direct light from L.

As Figure 4.5 illustrates, the illumination ray, in traveling from the visible
object, S1, to the light source, L, passes through several processor’s subspaces.
Dividing the illumination ray into two segments, a local segment residing in the
processor handling the pixel and a foreign segment residing in other processors,
allows shadowing to be divided into two processes.

A pixel may be shadowed by a surface either local to the processor han-
dling the pixel or local to some other processor. These two kinds of shadows
require different treatment, and can be implemented with separate processors
in the ANIMAC. Figure 4.6 illustrates how this affects the overall ANIMAC
processor architecture. The SP has been replaced with two processors, the Lo-
cal Shadowing Processor (LSP) and the Foreign Shadowing Processor (FSP).
The LSP determines whether any of the objects local to the processor occlude
the light source. The FSP determines whether foreign objects occlude the light
source. A visible surface is now illuminated if both processors determine that
the light source has not been occluded by any other object.
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Figure 4.5: Shadowing effects can be determined by casting illumination rays and
checking for intersections with other objects.

Dividing shadow determination into two processes has two potential bene-
fits. First, different algorithms may be used to determine local and foreign light
source occlusion. Second, these two processes may be executed sequentially or
in parallel.

The freedom to use different shadowing algorithms for determining local
and foreign light source occlusion allows us to use any of the previously re-
viewed shadowing algorithms in the LSP. The choice of algorithm is discussed
in Chapters 5 and 6. Different algorithms may require a tighter binding be-
tween the VP and LSP than is abstractly illustrated in Figure 4.6.

Parallel determination of local and foreign light source occlusion may al-
low for higher performance implementations. Sequential implementations may
take advantage of early termination to improve system performance. If either
process decides the light source has been occluded, no more work need be done.
Typically, most of the pixels in a scene are not shadowed, so both local and
foreign light source occlusion need to be determined. If this is the case, the
overall benefit of early termination may be minimal.
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Figure 4.6: An augmented functional diagram of an ANIMAC processor. Shadowing
is now determined by both the LSP and FSP.

We have developed the ANIMAC algorithm in an abstract manner. Its
functional components have been described but we have not yet described how
each of these functional units must be implemented. Explicit functional de-
scriptions are not needed at this time for the VP, LSP, and IP since these
processors depend only upon data which is local to the processor. The se-
lection of which algorithms to use for these processors depends solely upon
the realization of the ANIMAC architecture. The algorithm employed by the
FSP requires non-local information. The ANIMAC architecture is not well
described without the specification of a foreign shadowing algorithm since this
will mandate a particular interprocessor communications network.

4.3.1 Shadow Maps: A Foreign Shadowing Algorithm

The shadow map algorithm provides a mechanism for determining whether
objects foreign to a processor cast shadows upon visible surfaces. The shadow
map algorithm requires low computational overhead and requires only nearest
neighbor interprocessor communications.
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In order to discuss the development of the shadow map algorithm, five
restrictions will be imposed upon the discussion. First, views will be restricted
to parallel projections; second, objects outside the view volume do not generate
visible shadows; third, there is only one light source; fourth, the light source
is distant and can be specified adequately with only a direction vector; and
fifth, cast shadows will have distinct edges, simulating only the umbra of real
shadows. These restrictions will serve to simplify the following discussion.
A later section will discuss extensions to the algorithm that can lessen these
restrictions.

Foreign shadowing can be determined by checking whether an illumination
ray intersects any objects. This suggests a solution similar to ray tracing in
which processors generate query messages that propagate through the multi-
processor eventually causing answer messages to be sent back to the originator.
This quickly results in the generation of many messages and much work.

Foreign shadowing can also be determined using a method in which in-
formation propagates through the multiprocessor network and is collected by
the local processors. After all the information has been distributed, each lo-
cal processor has enough information to determine foreign shadowing. This
method is a dual form to the ray tracing method.

I have named this solution the Shadow Map algorithm. It bears strong
similarity to the reflectance maps of Blinn [BLINN76]. A shadow map is a
description of all objects that might occlude any illumination rays cast from a
point within a processor’s view space region.

To check for foreign shadowing, the FSP need only compare the illumina-
tion ray with the shadow map. The exact nature of this comparison depends
upon the exact representation chosen for the shadow maps. Such representa-
tions include but are not limited to: bit maps, strip trees, surface nets, and
analytic representations. Each of these representations has different properties
that might make it appropriate for a certain application.

Before a shadow map can be inspected, it must be constructed so that it
contains the appropriate information. Figure 4.7 illustrates the construction
of a shadow map for a processor. Given a light source direction, only certain
processors hold objects that may shadow objects in processor (1,1). These
processors are indicated in the illustration via hashing. A Composite Shadow
Map (CSM) can be defined for processor (1,1) as the union of the projections
of all potentially shadowing objects upon a Ezternal Shadow Map (ESM). The
ESM lies in a plane that is perpendicular to the light source direction vector.
The extents of the CSM are delimited by the projection of the bounding box
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Figure 4.7: Construction of a processor’s shadow map.

of processor (1,1) on the ESM. The extents of the ESM can be defined by the
projection of the bounding box of the viewing volume on the ESM plane.

After the CSM has been constructed, foreign shadowing can be determined
for any visible point, P, within the processor by finding the intersection of the
illumination ray cast from P with the ESM plane and inquiring whether the
intersection point is within the projection of any object in the CSM.

Shadow map inspection appears to be fairly economical, particularly when
compared to computing ray tracing object-ray intersections. If the shadow
map is represented as a bit map, each inspection consists of the projection of
a point onto the shadow map plane and a two dimensional array lookup. This
amounts to six multiplications and four additions for the projection and one
multiplication and one addition for the array indexing. Seven multiplications
and five additions is much less work than is normally done in ray tracing
object-ray intersection computations.

Although shadow map inspection may be relatively inexpensive, the cost
to create the shadow maps is a much more important question. Creating
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shadow maps depends totally upon information in other processors. This in-
formation must be communicated in a local manner and the total amount of
information transferred should be kept as small as possible.

Since the ANIMAC processors are defined in a rectangular array, at most
three of a processor’s neighbors may hold objects capable of casting shadows
upon that processor. We refer to these processors as shadowing neighbors. A
processor’s CSM is composed from the union of all objects held by shadowing
neighbors plus the union of all objects that can shadow shadowing neighbors.

A Local Shadow Map (LSM) can be constructed for a processor by forming
the union of all of the processor’s objects projected upon the ESM plane. This
allows us to redefine a processor’s CSM as the union of its shadowing neighbor’s
CSMs and its shadowing neighbor’s LSMs. This relationship shows that the
communication between processors can be easily localized. Each processor
need only communicate with at most three of its nearest neighbors in order to
construct its shadow map.

The amount of information to be transferred between processors depends
upon the representation of the shadow maps. For example, if the shadow
maps consist of an analytic descriptions of the union of objects projected upon
the shadow map plane, the description may require an amount of information
dependent upon the number of objects in the shadow map. If the shadow maps
are represented as bit maps, they can be described by a fixed number of bits
which is independent of the shadow map contents.

If shadow maps are represented as bit maps, the amount of information
that must travel through any of a processor’s communication channels (channel
capacity) can be limited to the amount of information that processor is using
to represent its shadow map.

Furthermore, the channel capacity does not need to increase as more pro-
cessors are added to the multiprocessor. When the number of processors in-
creases, one of two things may happen. Each processor may still store its
shadow map with the same number of bits resulting in the overall shadow
map being computed to a higher resolution since there are more processors.
Channel capacity remains unchanged since the same amount of information
must be transferred. Alternatively, each processor may reduce the amount of
storage that it uses for shadow maps in order to compute the overall shadow
map to the same spatial resolution. This reduces the amount of interprocessor
communications.

The shadow map algorithm is well suited to the tesselated spatial subdivi-
sion environment employed by the ANIMAC architecture. When the shadow
map algorithm is realized with bit maps, the algorithm requires extremely lo-
calized interprocessor communications and requires channel capacities which
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are independent of the number of processors in the ANIMAC array. Further-
more, both LSM creation and CSM inspection are relatively inexpensive. All of
these factors strongly suggest that the shadow map algorithm is an attractive
algorithm to implement in the ANIMAC processor’s FSP.

Figure 4.8 illustrates the shadow map algorithm on a four processor array
for a simple test scene. In the test scene, Figure 4.8a, both objects and shadows
cross the processor boundaries. Figure 4.8b illustrates a view of the scene from
the light source’s point-of-view. Figure 4.8¢ shows the scene from the observer’s
view point with foreign shadowing effects. Figure 4.8d combines local and
foreign shadowing effects to yield a correctly shadowed image. Figures 4.8¢ —
4.87 illustrate the local and composite shadow maps which are computed by
each of the four processors. Processor (1,0) has a null CSM since objects
within that processor are correctly shadowed by the local shadowing algorithm.
Processor (0,1) has a null LSM since no other processors depend upon this
LSM. All of the shadow maps are are illustrated in ESM coordinates.

4.3.2 Shadow Map Extensions

The previous section imposed four restrictions upon the shadow map algo-
rithm. This section will discuss how those restrictions may be eased by exten-
sions to the shadow map algorithm.

4.3.2.1 Perspective Viewing Projections

Most interesting images are created with perspective projections. The shadow
map algorithm can be extended to handle perspective projections by reformu-
lating the way composite shadow maps are created.

Parallel projections result in processor viewing volumes that are rectan-
gular parallelepipeds. Light rays may enter a parallelepiped through at most
three of its six sides. This allowed us to formulate CSM; ; with a simple recur-
rence relationship that depended upon at most three neighboring CSMs and
LSMs.

Perspective projections result in each processor’s viewing volume being a
prismatoid. The near and far clipping planes form the parallel base planes
while the four other clipping planes form the sides.

Figure 4.9 illustrates the nine viewing volumes that might result from a
3 by 3 subdivision of the viewing space. The central processor’s viewing volume
illustrates that when the light source is on the —z axis, light rays may enter
the processor’s viewing volume through as many as five of its six sides.

Since light rays may enter the prismatoid through more than three of its
six sides, the previous formulation for CSM; ; will not suffice. CSM; ; can be
reformulated from its definition as the union of all LSMs which potentially
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Figure 4.8a: Illustration of the shadow map algorithm for four processors. The
photograph illustrates the test scene. The drawing below it illustrates the image
space regions associated with the four processors.
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Figure 4.8b: A view of the test scene from the light source’s point-of-view.

Figure 4.8c: A view of the test scene with only foreign shadowing effects.
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Figure 4.8d: A view of the test scene with both foreign and local shadowing effects.
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Figure 4.8e: LSM0—The local shadow map computed by processor 0.
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Figure 4.8f: LSM1—The local shadow map computed by processor 1.
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Figure 4.8g: LSM3—The local shadow map computed by processor 3.
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Figure 4.8h: CSM0O—The composite shadow map computed by processor 0.
(CSM0 = LSM1 U CSM1)
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Figure 4.8i: CSM2—The composite shadow map computed by processor 2.
(CSM2 = LSMO U CSMO U LSM1 U CSM1 U LSM3 U CSM3)
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Figure 4.8j: CSM3—The composite shadow map computed by processor 3.
(CSM3 = LSM1 U CSM1)
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Figure 4.9: Perspective projections result in the viewing volume being a truncated
pyramid. Regular subdivision of the image space results in processor viewing
volumes which are prismatoids.
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shadow objects within processor p; ;. The LSMs which contribute to CSM; ;
can be determined by considering a little geometry.

The viewing space is divided by a number of planes which make up the
faces of the processor’s viewing volumes. Each viewing volume is bounded
by six boundary planes. Two of these boundary planes are parallel and lie in
constant z planes. The other four boundary planes intersect at the origin.

Other processors can potentially cast shadows on processor p; ; if they lie
on the same side of a boundary plane as the light source and the light source
lies on the opposite side of the boundary plane as p; ;.

Other processors cannot cast shadows on p through the two constant z
boundary planes since all processors lie on the same side of these planes. Only
the left, right, upper and lower boundary planes need be considered. These
four planes can be used to define four boundary sets of local shadow maps
which can potentially shadow p; ;. These sets are defined as:

n 0
U;=U U LSMgy
z=0y=5—-1
n m
Di;=) U LsMg,
z=0y=j5+1

-1 m
Lij= U LSMz,y
z=0 y=0
n m
Ri;= U ULSMzy
z=1+1y=0

where n and m are the processor array width and height.

CSM; ;, the composite shadow map for processor p; ; is the selective union
of U; j, Djj, R;j and L; ;. These sets are unioned into CSM; ; when their
boundary plane separates the light source and processor viewing volume.

Unfortunately, this formulation of CSM; ; requires global communications
between processors. Communications can be limited by rewriting the four
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boundary sets as recurrence relations.

n
Ui =Uij-1 | LSMgz ;1

z=0

n
D; ;= Dij1 |J LSM; iy

z=0

m
y=0

m
Ri,j = Rit1,5 U LSMi+1,y
y=0
This obvious recurrence relationship helps to localize communications but
still requires that each processor communicate with many other processors.

Communications can be restricted to a processor’s eight nearest neighbors by
introducing four new recurrence relations:

QSMI,‘J = LSM,"J' U QSM1i+1,J’ U QSM1i+1,j—1 U QSMli,]’_l
QSM?,’J = LSM,;,J' U QSM2,'__1’J' U QSM2,‘_1J’_1 U QSM2,~,J'_1
QSM3; ; = LSM; ; UQSM3;_; ; UQSM3,_y ;41 UQSM3, ;1
QSM4, ; = LSM; ; UQSM4; ;1 ; UQSM4; 4 ;11 UQSM4, iy

These relationships define quadrant shadow maps (QSMs). A quadrant

shadow map consists of the union of all local shadow maps that lie in a quad-
rant. For example, QSM1; ; consists of the unions of all LSMz y for z > ¢ and

y<J.
The four boundary sets can be rewritten using the quadrant shadow map
recurrence functions as:
U=QSM2;_1,;-1 UQSM2;; 1 UQSMI;; ; UQSMI;1; ;1
D = QSM3;_1,j4+1 U QSMS3; j 11 UQSM4; ;41 UQSM4iy1 541
L = QSMzi-—l,j—l ] QSMQ,-_I,J- U QSM31’__1,J' U QSM31'_1,]'+1
R=QSMl;;; ;1 UQSM1,; ; UQSM4, 4y ; U QSM4 4y 11
This formulation for the boundary sets, allows the CSM to be computed
as the union of at most twelve quadrant shadow maps. These twelve quadrant

shadow maps are precisely the same twelve shadow maps which the processor
requires to compute its four QSMs.
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Interprocessor communication need only occur during the computation of
the quadrant shadow maps. The computation of each quadrant shadow map
is easily pipelined and the four QSMs can be computed in parallel.

CSMs can be implemented in hardware as bit maps with 12 bits per pixel.
Each bit corresponds to one of the twelve QSMs. CSMs can be inspected by
accessing the 12-bit pixel value and masking out the bits which correspond to
the needed QSMs. The mask depends upon the light source direction and the
processor viewing volume and can be computed once per frame.

4.3.2.2 Shadows Cast by Non-Visible Objects

Objects which are not visible can cast shadows upon visible objects. The
Shadow Map algorithm can be extended to handle these shadows. This exten-
sion requires two changes to the way scenes are computed.

Only certain non-visible objects are capable of generating visible shad-
ows. These objects lie in a restricted portion of the modeling space that can
be determined from the light source direction vector and the viewing volume
coordinates. Potential shadow casting objects may be selected by clipping the
model appropriately. An ezternal shadow map (ESM) can be formed from the
union of the projections of these objects on the ESM plane.

Once the ESM has been created, it needs to be unioned into the CSMs
associated with all processors on the boundaries of the array that face towards
the light source. This unioning requires that processors have communications
channels to the ESM processor.

4.3.2.3 Multiple Light Sources

The Shadow Map algorithm is easily extended to handle multiple light sources.
Each light source requires the creation of a local shadow map and a composite
shadow map in each processor. A certain amount of interprocessor channel ca-
pacity is also required for the unioning of shadow maps. Multiple light sources
require each processor to maintain multiple shadow maps and need increased
interprocessor channel capacity. The shadow maps are entirely independent
and may be computed in parallel or may be sequentialized to reduce processing
and communications requirements.

4.3.2.3 Localized Light Sources

Distant light sources are modeled with an intensity and a direction vector.
Since localized light sources result in non-parallel illumination rays, they can-
not be represented with a direction vector but instead are represented with a
modeling space coordinate. Illumination models usually model the intensity
of a localized light source with a function that decreases with the square of
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the distance from the light source. These intensity functions produce images
that often appear both much more realistic and more visually complex than
images produced with the constant intensity functions utilized with distant
light sources.

Shadows cast by localized light sources can be computed using shadow
maps. As with other shadowing algorithms, special care must be taken if the
light source is within the viewing volume. We first consider the case when the
light source is outside of the viewing volume.

With distant light sources, the view of the scene from the light source was
an orthographic projection. Localizing the light sources causes this view to be
a perspective projection. The Shadow Map algorithm introduced the External
Shadow Map Plane as a virtual screen. Shadow maps could be thought of as
rectangles in the ESM plane. With localized light sources, the ESM plane can
still be treated as a virtual screen and shadow maps can still be thought of as
rectangles in the ESM plane. The ESM can no longer be described as existing
in a plane perpendicular to the light source direction vector but instead must
be constructed so that it is a rectangle through which the light source views
the world.

Shadow maps are created by projecting objects onto the ESM plane. With
localized light sources, a plane can be constructed that contains the light source
point and bisects the modeling space such that objects to one side of the
plane are capable of casting shadows upon objects within the viewing volume.
Objects on the other side of this dividing plane cannot shadow visible objects
and need to be discarded. The remaining objects can be projected upon the
ESM during the creation of the local and external shadow maps.

Shadow maps must be inspected differently than with distant light sources.
Given a visible point P, we must compute the intersection of the ray PL with
the ESM plane. Fortunately, inspection can still be treated as the transfor-
mation of a point, but in this case, the transformation is a full perspective
transformation which requires more arithmetic operations than before.

Since all shadow maps are defined in the same coordinate system, the
coordinate system of the ESM, localizing the light source does not change how
they are unioned. Unioning is still a function of the shadow map representation.

The light source existing within the viewing volume, i.e. within a proces-
sor’s region, complicates matters. In this case we must assure that the local
shadowing algorithm can handle this condition. Both Crow’s Shadow Volume
and Williams’s Shadow Map algorithms can be made to handle this condition
by sectoring space and running independent algorithms on each sector.

Foreign shadowing effects should not be computed for the region contain-
ing the light source. Normally, processors map their shadow maps onto the
External Shadow Map which consists of a view of the entire viewing volume
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from the point-of-view of the light source. If the light source is within the
scene, one unique ESM does not exist. The multiprocessor array can be parti-
tioned into four subarrays. Each subarray requires a separate notion of what
the ESM is but since the light source is outside each of these subarrays, for-
eign shadowing can be treated exactly as it is for ordinary local light sources.
Figure 4.10 illustrates how a nine processor array might be partitioned into
four subarrays.

(0,0) (1,9 (.

{o, 1) % tg,n

(0,2) (4,2) (1.2)

Figure 4.10: The processor array can be partitioned into four subarrays when the
light source lies within a processor, processor (1,1) in this case.

Localized light sources require additional work be done when creating
the local shadow maps. Most of this additional work results from the increase
computation required by perspective projections over othrographic projections.
The shadow map algorithm extends naturally to handle localized light sources.

4.3.2.5 Soft Shadows

Soft shadows (penumbra) cannot be adequately represented with this algo-
rithm. Williams has suggested that low-pass filtering of his shadow buffer
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images results in a pleasing soft shadow effect. This effect is, of course, totally
without physical basis.

Similar low-pass filtering of shadow maps may be performed with this
algorithm. Again, any pleasing effects would be totally without a physical
basis. The author has no interest in this area and has not attempted to achieve
such effects. Obviously, care must be taken if one is to attempt this, since it is
important to have a consistent view of the shadowing environment from each
Processor.

4.4 Conclusions

The ANIMAC algorithm and architecture have been further developed in this
chapter. ANIMAC still utilizes the virtual tesselated spatial subdivision archi-
tecture advocated in Chapter 3 but now includes a nearest neighbor commu-
nications network. The visible surface algorithm, employed by the ANIMAC
engines, has been extended to include shadowing effects.

The ANIMAC architecture has been described functionally. Many im-
plementations meet this functional description. The choice of visible surface
and local shadowing algorithms has been left to the implementor. The next
two chapters discuss implementations. Chapter 5 discusses a software imple-
mentation which has served as an ANIMAC simulator. Chapter 6 discusses
how emerging VLSI architectures can be used to create a hardware ANIMAC
implementation.
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5

Simulation of the
ANIMAC
Shadowing Algorithm

This chapter discusses a software implementation of the ANIMAC shadowing
algorithm. The ANIMAC shadowing algorithm was implemented within the
framework of the author’s render program. In order to discuss the implemen-
tation details, it becomes necessary to understand how render creates images.

Render uses any of a number of different visible surface algorithms to
create an image of a model. Render requires a model to be a hierarchy of
objects. Only the leaf nodes in the model hierarchy can represent geometric
objects. These nodes are referred to as primitive objects. All other nodes in the
hierarchy are called modeling objects. Modeling objects are used to compose
primitive objects into more complex objects.

Render creates an image by traversing the model hierarchy. Primitive
objects are transformed into the viewing space, clipped against the viewing
volume, and finally projected onto a view plane.

A series of transformations transforms a point p in a primitive object’s
coordinate system successively into modeling coordinates, viewing coordinates,
clipping coordinates, and image coordinates. By composing transformations,
render uses one transform, Tetym, to transform points from a primitive object’s
coordinate space into viewing space. T¢ty, is composed as:

Tctm - MV

M is a composite modeling transformation which transforms p from an
object’s coordinate system into the global model coordinate system. V is a
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viewing transform which transforms the modeling coordinate system into a
left-handed viewing coordinate system. Render’s viewing coordinate system is
arranged such that the +Z axis goes into the screen. The X axis maps onto
the screens horizontal axis with positive being to the right. The Y axis maps
onto the screen’s vertical axis, positive being up.

Points are transformed from viewing space to clipping space with another
transform Tp. Tp is composed as:

Ty = PTyT,

where P is a projection transformation that implements either a perspective
or parallel projection. Render can process an image by dividing it up into tiles.
A particular tile can be made to fill the clipping volume by applying scale and
translation transforms represented here as the tiling transform T}. Different
output devices have different aspect ratios. Aspect ratios are compensated for
by the aspect transform 7T,. Perspective division is performed after clipping
the object. A final viewport transform, Ty, translates clipping coordinates into
image pixel coordinates.

Details of the implementation of Ty and T, are of particular interest since
discussion of the shadow buffer and shadow map algorithms use these trans-
formations to create transformations that map image space coordinates into
shadow buffer or shadow map coordinates.

The form of P depends upon whether the projection is perspective or
parallel. P is simply an identity matrix for parallel projections. Perspective
projections are implemented in a form similar to [BLINN82]. Given a viewer at
the origin, a field-of-view 20, and near and far clipping planes, Z = Znear and
Z = Zjq,y, the perspective projection matrix can be written as:

cos @ 0 0 0
0 cos® O 0
P= 0 0 a sinf
0 0 b 0
where: )
Zjaysinb

a= -7
Zjar - Znear

b= —Zneaerar sin 6

Zfa,r - Znear

The tiling transform, T%, depends only upon the tiling ratios, sz and tsy,
and the tile center coordinates (z¢,y:). The tiling ratio is determined by the
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number of tiles in the z or the y direction. The tile centers are defined by the
clipping space coordinates at the middle of a tile. T} is formed as:

tsz 0 0 O
| 0 ty 00O
=19 0 10
tszTt tayyt O 1
The aspect ratio correction transform, Tg, scales y values in the range
[~ Aspect, Aspect] to map onto [—1,1].

1 0 0 0

r - |0 1/Aspect 0 0O
R 1) 0 1 0
0 0 01

The composite projection transform, Ty, can be represented as:

Sz 0 0 0

T — 0 sy 0 ©
P~ ltzsinf tysinf a sind

0 0 b 0

where:
8z = tsz cos @

8y = tey cos f/Aspect
tz = tsz 2y
ty = tayyt/Aspect
The viewport transformation maps clipping coordinates into pixel coor-

dinates. Given physical device dimensions, z; and y;, render constructs Ty

as:
Vgz 0 0 0

_ 1 0 wvy 0O
T, = 0 0 1 0
vdz vdy 0 O
where: 24
Vsz = o
_ Yd
Vey 2Aspect
Id -1
Vdz = 2
ya—1

Udy = 2
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Render implements Tp and Ty with explicit calculations instead of using
a vector-matrix multiplication. The perspective transformation Tp is imple-

mented as:
2 = az + bw;

w' ;= zsing;

z = 82T + tzw';
. l.

y = syy + tyw;

Perspective division and the viewport transform are implemented as:

!
T Vgz
z" = w' + vgg;
ylvsy
"o .
y = w, + vdy)
!
F4
Z” = —
79
w

A point p” in image coordinates can be transformed back into the viewing
coordinate point p by a transformation Tp';,l. Render implements this transform
as:

b
2=
2""'sinf —a’
"
. x = vy — Vgt
z:= zsinf dz z’z.
VszSz
"
. — U4y — Ugyt
y = zsinf y yy;
VsySy
w:=1;

Tp’;,l turns out to be a very useful transformation. Both the shadow buffer and
shadow map algorithms use this transformation.

Besides constructing the needed transformations, render computes addi-
tional information about the model prior to rendering it. Two bounding boxes
are computed for each object in the modeling hierarchy. Since the scene model
is considered as an object, these bounding boxes are also computed for it. One
bounding box, bb, represents the model’s extents in the modeling space. The
other bounding box, bb,, represents the bounding box of all shadow casting
objects within the model in the modeling space. Render allows objects to be
tagged as shadow casting or not in order to increase the effective spatial res-
olution of shadow buffers and shadow maps. Only objects tagged as shadow
casting can shadow other objects.



- 103 -

Render simulates an ANIMAC processor by associating with each proces-
sor (1) a subspace within the viewing volume and (2) a portion of the screen.
The program provides control over (1) the X and Y dimensions of the processor
array, (2) the dimensions of the screen region associated with each processor,
(3) a pixel subsampling ratio used for antialiasing, and (4) the dimensions of
the External Shadow Map (ESM). The dimensions of both a processor’s screen
region and the ESM are specified by a width and height measured in pixels.

The pseudo-code in Figure 5.1 outlines the method used to sequentialize
the ANIMAC algorithm. First, the local shadow maps are computed. Com-
posite shadow maps are computed next. After the shadow maps have been
computed, each processor computes its visible surface image. A local shadow
algorithm is then executed. Finally, pixels are checked to see whether they
lie in local or foreign shadows. If they do, the pixel’s color is attenuated to
approximate shadowing effects.

When antialiasing measures are being taken, pixel colors are computed by
tiling the image on a subpixel raster. Pixel colors are assigned by filtering the
subpixel raster. Render creates a subpixel raster by dividing the screen region
associated with each processor into tiles. Visible surfaces and local shadowing
effects are computed independently for each of a processor’s tiles. The final
image is reconstructed by filtering and assembling each processor’s tiles.

foreach processor do
Compute Local Shadow Map
od

foreach processor do
Compute Composite Shadow Map
od

foreach processor do
foreach tile do
Compute Visible Surface Image
Compute Local Shadowing Effects
Merge Local and Foreign Shadowing Effects
od
od

Figure 5.1: Sequentializing the ANIMAC algorithm.
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Two local shadowing algorithms were implemented: a simplified version of
Williams’s shadow buffer algorithm [WILLIA78] and a depth buffer implemen-
tation of Crow’s shadow volume algorithm [CROW77A]. The following sections
will discuss the implementation of both of these algorithms in detail.

Foreign shadowing was implemented with the shadow map algorithm de-
veloped in the preceding chapter. In this implementation, shadow maps were
implemented as high resolution bit maps. The section on foreign shadowing
will discuss design decisions relating to bit map shadow map implementations.

The implementation was tested by computing a number of test images.
Since the goal of the ANIMAC algorithm and architecture is to provide for
an animation environment, motion tests were made to study how well cast
shadows animate.

5.1 Implementing the Shadow Buffer Algorithm

The shadow buffer algorithm proposed by Williams [WILLIA78] was the first
local shadowing algorithm implemented within the render framework. Since
both the shadow buffer algorithm and the shadow map algorithm are image
space shadowing algorithms, it was hoped that an ANIMAC implementation
might be able to use the shadow buffer algorithm to compute the local shadow
maps in the process of computing local shadowing effects.

For this implementation, the shadow buffer was implemented as a 32-bit
per pixel buffer. Each buffer entry consists of a single-precision floating point
number which represents the depth of the visible surface at that pixel. The
program provides control over the shadow buffer dimensions. Shadow buffer
dimensions default to 512 by 512 pixels which requires one megabyte of storage.

The shadow buffer algorithm can be divided into two phases. The first
phase creates a depth buffer image of the scene as viewed from the light source.
The second phase determines whether points on visible surfaces lie in shadow.
Each point, in image space coordinates, is transformed into a shadow buffer
address and depth. The depth is then compared with the depth value stored
in the shadow buffer to determine whether the object lies in shadow.

To create the shadow buffer image, render allocates storage for a shadow
buffer, and then creates a viewing transformation which positions the camera
at the light source, looking down the light source direction vector, L, at the
scene model. This viewing transformation should scale the scene model in X
and Y to make use of as much of the shadow buffer’s spatial resolution as
is possible. Skewing can also be incorporated in the viewing transformation
to make more use of the available spatial resolution. Depth resolution is as
important as spatial resolution; the viewing transformation should crop the
image to make full use of shadow buffer’s depth resolution.
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Render uses the LView() procedure to create a viewing transformation.
LView() takes as arguments a bounding box which encloses the scene model
and a light source direction vector, L. LView() implements a specialized lookat
transformation in which the viewer gazes down the light direction vector at the
model. The model is scaled and translated within this view to fill the viewer’s
clipping volume.

The LView() procedure creates a view of the scene model from an arbitrary
direction. This is accomplished by a series of transformations. L can be used to
define a plane, P;, which represents the projection plane in modeling space. We
construct P; to be perpendicular to L and to contain the bounding box vertex,
V), nearest to the light source. P; must be transformed so that it becomes
the Z = 0 plane in the viewing coordinate system. This is accomplished
by two simple transformations. The first transformation, 77, translates the
modeling space so that P; now contains the origin. The second transformation,
R, rotates the modeling space so that P is the Z = 0 plane. Two additional
transformations complete the modeling to viewing space transformation by
translating (73) the model in X and Y so that its projection on the Z = O plane
is centered about the origin and scaling (S) it so that it fills the clipping volume.
The resultant viewing transformation, Vg, s, is simply the composition of the
transformations:

Vipus = T1RT2S

Determining the rotation transformation is the only difficult part of this
task. The rotation can be treated as a generalized rotation that rotates any
three orthogonal basis vectors onto the principal axes. A rotation transforma-
tion that maps the (vz, vy, v;) vectors onto the X,Y, and Z axes is constructed

as:
vz; Yy Yz 0

0
Vzg Vyz Vzg 0
0 0 0 1

This leaves us with the task of selecting the three orthogonal basis vectors.
Since we want to create a view looking down the — L axis, we want the rotation
matrix to rotate —L onto the Z axis. This leaves us with only having to define
one more basis vector since the third can be constructed as the cross product
of the first two. We chose to select vy, which will rotate onto the Y axis; vy
may be any vector perpendicular to —L but some choices may be better than
others. In selecting vy, we desire to find a projection of the scene model upon
the Z = O plane that ultimately makes best use of the spatial resolution of the
shadow buffer.
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This implementation selects vy in a non-optimal manner. It projects V;
onto P to find V,,;. The other bounding box vertices are also projected onto
Pl and a point V, d is selected as being the vertex which lies most distant from

. The vector ( Vy1) is then used as vy resulting in a rotation matrix:

_ (Ve — V1)
N2 sz

u=vX —L

uiy v —L1 0
us v '—Lz 0
uz v3 —L3 0
0 0 0 1

The final rotation and scaling transformations are determined from the
scenes new bounding box dimensions. The new bounding box, bd', is calculated
by transforming the scene’s bounding box, bb, by T1 R. Bounding boxes are
transformed by transforming the eight vertices, which represent the bounding
box’s corners, and then constructing a new bounding box that encloses these
transformed vertices. Given the transformed bounding box bb', the translate
and scale transforms are:

b/ + b0z,

tz ming 5
!
bbmmy + bbmuy
ty = >
2
87 =
© 7 Bbhagg — i,
2
Sy = 7
bl nazy — bbmmy
. 1
i beYYLGZz
1T 0 0 O
0 1 00
=10 0 1 0
[tz ty 0 1
s, 0 O O
|0 s 0 O
S= 0 0 s O
(o 0 0 1
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After the viewing transformation has been constructed, the scene is ren-
dered into the shadow buffer. Render renders a scene by traversing the model
hierarchy. During this traversal, object coordinates are first transformed into
viewing space coordinates and then clipped against the viewing volume. Vis-
ible objects are then tiled in the shadow buffer. Render makes use of extent
testing to quickly cull non-visible objects. Backface culling is also performed
on closed polyhedral objects that do not intersect the near clipping plane.

After the scene has been rendered into the shadow buffer, points on visible
surfaces can be checked to determine whether they lie in shadow. The render
implementation of the ANIMAC algorithm uses a final post-processing pass
to determine whether points on visible surfaces lie in shadow, attenuating the
color of those pixels which are found to be in shadow. Shadows may be cast
by either local or foreign objects. This discussion will focus on determining
local shadowing when using the shadow buffer algorithm.

A transformation, Sp, s, Was constructed to transform coordinates from
image space, ie. (z;,¥;, 2;), to shadow buffer space, (z',4',2'). This transfor-
mation essentially transforms the pixel coordinates back into modeling space
coordinates; then transforms the modeling space coordinates by the shadow
buffer viewing coordinates. The complete transformation was constructed as:

Sbuf = Tp-;lv_lvsbufTsv

Tp_v1 transforms image space coordinates back into eye viewing space. y-1
transforms eye viewing space coordinates back into modeling space. Vyyy5
transforms modeling space coordinates into virtual shadow buffer coordinates
and the viewport transformation, Tsy, maps virtual shadow buffer coordinates
into physical shadow buffer coordinates.

Sampling problems arise when transforming the visible surface coordinates
into shadow buffer coordinates. Both the visible surface and shadow buffer
images were constructed by point sampling the scene. During the generation
of each of these images, great care was taken to consistently sample objects
on pixel centers so that depth comparisons between objects were meaningful.
Unfortunately, sample points in the image buffer do not necessarily transform
into sample points in the shadow buffer. Figure 5.2 illustrates that comparing
the transformed depth with the depth stored in the shadow buffer introduces
an error AZ. This error depends upon the plane equation of the object stored
in the shadow buffer.

Given a particular planar surface, S, in the shadow buffer coordinate
system, we can find an upper bound on the depth comparison error AZ. S
can be defined as:

az+by+cz+d=0
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Figure 5.2: Transformation between coordinate system leads to sampling problems
with the shadow buffer algorithm.

The value of z is sampled on each shadow buffer pixel center (z',y'). Since
S is planar, the worst case depth occurs on one of the shadow buffer pixel’s
corners, ie. (z' = 0.5,4' = 0). The depth at a corner, z. can be computed as:

L;z'ilﬁiléf
20z 203y

)

The partial derivatives are easily computed from the surface normal [a b (]

k4

Thus the depth error is constrained:

dz
dy

dz

1
AZ < = (| =—
_2(8:z:+

as:
9z _¢
dz  a
3z_c
dy b
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To compensate for this depth comparison error, I used the technique pro-
posed by Williams. He simply adds a depth bias factor to the transformed
depth 2’ before comparing it with the depth value stored in the shadow bufer.
This depth bias must be large enough to prevent objects from shadowing them-
selves. If it is too large, shadows will appear to have been incorrectly cast. This
depth bias can be incorporated in the Sy, transformation by modifying the
shadow buffer viewport transform, Ty, such that:

Vepz 0 0
0 vy 0

OO OO0

Tev=| o 0 1
Ysdz Vady Zbias
where:
_ sbufygtp
vsbz - .“——2_—
_ sbufpeigns
Vsby — — 9

sbuf;qin — 1
Vgdz — _"“2_"'

_ sbufpeigne — 1
vy =g

Point sampling the shadow buffer produces shadows with sharp transi-
tions between dark and light. It has been suggested that smoother shadow
transitions can be computed by sampling the shadow map pixels around the
point (z',y') and bilinearly interpolating their values to compute an attenua-
tion factor. This does not seem to have any physical basis since neighboring
shadow buffer entries do not indicate that points near (z’,y', 2') lie in shadow.

Instead of bilinearly interpolating shadow buffer values, render point sam-
ples the shadow buffer at the four pixel corners, (z; = 0.5,y; + 0.5, ;) and
computes an attenuation factor based upon the average of the shadow buffer
values. This technique is not without its problems, i.e. it presumes that the z;
is the correct depth value at the pixel corners, but it is physically more sound
than bilinearly interpolating shadow buffer values.

Figure 5.3a illustrates an image generated with the shadow buffer algo-
rithm. As the figure illustrates, this algorithm can be made to work rea-
sonably well despite drawbacks inherent to the algorithm. These drawbacks
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include sampling problems that introduce depth comparison errors and limited
shadow buffer spatial resolution.

Figures 5.3b and 5.3¢c illustrate that improper selections of the depth bias
value leads to improperly shadowed scenes. Figure 5.3b illustrates a scene
produced without any depth bias. Notice that surfaces tend to shadow them-
selves. Figure 5.3c illustrates a scene with too large a depth bias. In this scene,
shadows do not appear where they should.

Figure 5.3d illustrates the problems associated with limited shadow buffer
spatial resolution. This figure was produced with a smaller shadow buffer using
256 by 256 pixels instead of the 512 by 512 pixels used for Figures 5.3a~5.3c.
Notice the jaggies apparent in the object’s shadow. Careful inspection will
show that these jaggies are apparent in both images. Furthermore, notice that
the size of these jaggies appears larger in portions of the shadow which lie
closer to the viewer. This results from the viewer’s perspective transformation
which results in a non-uniform sampling of the shadow buffer.

These shadow buffer problems can be combated in several ways. Several
techniques can be taken to improving depth comparison. The first technique
makes use of the fact that surfaces that are tangential to, or nearly tangen-
tial to, the light source direction vector cause the worst depth comparison
problems. These surfaces are typically found near silhouette edges and can be
culled without much effect on the shadowed image. The render implementa-
tion currently culls only the surfaces tangential to the light source direction
vector.

Other techniques can be used to automatically determine an optimal value
for the depth bias term. When a polygon is tiled in the shadow buffer, its
error contribution can be determined from its plane equation and the number
of pixels it covers. Information about the distribution of error contributions
could be maintained allowing a depth bias term to be statistically determined.
One might select a depth bias value such that at least a certain percentage
of the tiled pixels are guaranteed to be correctly shadowed. This technique
has some problems since the error distribution will include contributions from
objects that do not end up being visible. This problem could be avoided by
tiling objects in the shadow buffer with a visible surface algorithm that only
tiles each pixel once.

A better solution might be to try to reduce the source of the depth com-
parison error problem. If we provide additional storage for each shadow buffer
entry, we can store a surface normal for each pixel. Instead of using the pixel’s
depth value for shadowing depth comparisons, the pixel’s depth at (z',y') can
now be computed more precisely using the surface normal. There will still be
depth comparison errors due to numerical quantization but these effects will
be much smaller than the errors introduced by incorrect sampling.
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Figure 5.8a: A properly shadowed image created with the shadow buffer algorithm.

Figure 5.8b: An improperly shadowed image created with no depth bias.
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Figure 5.8d: A shadowed image created with a low resolution (256 by 256) shadow
buffer.
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Several techniques can be used to reduce the amount of additional infor-
mation that has to be stored for each pixel. The visible surface’s normal vector
provides more information than is needed. Instead of storing surface normals,
we can store the partial derivatives, dz/dz and 8z/dy, which provide all of
the needed information in a more usable form. The partial derivatives may
be represented as floating point numbers or as limited resolution fixed point
numbers to decrease storage requirements.

The amount of storage needed for each pixel can be further reduced. In-
stead of storing a pixel depth, we can store a surface identifier (SID) in the
shadow buffer. The SID is treated as an index into a surface property table.
During the tiling and shadowing determination phases, pixel depth can be eas-
ily determined from information stored in the table. SIDs could be represented
as 24-bit integers which would reduce the total amount of storage needed by
the shadow buffer over the depth buffer implementation. Additional storage
would be required for the surface property table.

The SID shadow buffer reduces storage requirements by increasing the
amount of computation which must be performed to retrieve the pixel depth.
Besides reducing storage requirements, the SID shadow buffer can also elimi-
nate the self-shadowing polygon problem. If both image and shadow buffers are
represented as SID buffers, then during shadow determination self-shadowing
can be avoided by comparing the SIDs of the surfaces in each buffer. If they
are identical, the pixel should not be shadowed. This technique only works for
scenes composed of planar surfaces since non-planar (curved) surfaces must be
allowed to shadow themselves.

The problem of inadequate shadow map spatial resolution has one very
obvious solution. Spatial resolution can be improved by increasing the size of
the shadow buffer. Increasing the shadow buffer dimensions will increase the
amount of time needed to create the shadow buffer image since tiling requires
time proportional to the image surface area.

In the render implementation, the additional storage required for the
shadow buffer caused a marked increase in the number of observed page faults.
This page faulting caused the shadowed image computation to require much
more than twice the real-time needed to create non-shadowed depth buffered
images. Increasing the size of the shadow buffer makes the page faulting prob-
lem even worse.

The page faulting behavior associated with shadow buffers could be man-
aged by dividing the shadow buffer into tiles and swapping these tiles onto
disk. We would expect page faulting behavior to improve because less memory
would be required. Swapping shadow map tiles causes problems during the
shadow determination phase during which the shadow map is sampled ran-
domly. In the non-tiled shadow buffer implementation, this activity results
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in a lot of page faults. In a tiled shadow buffer implementation, this random
sampling would result in a lot of tile swapping. Tile swapping is effectively
the same as page faulting but must be managed by the render program. It is
sometimes useful for a user program to manage its own swapping but usually
only when the swapping behavior is predictable.

The shadow buffer algorithm is not currently implemented within the
ANIMAC simulation. It still exists within the render framework but was not
selected for use in the simulation because of the aforementioned problems. The
depth comparison error could have been improved in the ways mentioned, but
without these improvements there were serious concerns as to how shadowed
scenes, created with the shadow buffer algorithm, might animate. A particular
depth bias value might be adequate for one frame and inadequate for the next.

Another reason for not selecting the shadow buffer algorithm for use in
the simulation was the general inefficiency of the implementation. Even with
small shadow buffers, render page faulted too much, suggesting that it might
be inappropriate for the ANIMAC simulation which would make even larger
memory demands.

It should be noted here that the shadow buffer algorithm does have an ad-
vantage when implemented in hardware. In the creation of the shadow buffer
image, the shadow buffer algorithm is creating an implicit local shadow map
for that processor. A hardware implementation could capitalize upon this by
using less hardware to create the local shadow map. Hardware implementa-
tions would also have to provide for much larger shadow buffers than the render
implementation provided since it would be necessary to have the shadow buffer
dimensions be equal to the local shadow map dimensions. Shadow map dimen-
sions are often much larger than shadow buffers, but can be implemented with
much less storage than shadow buffers.

5.2 Implementing the Shadow Volume Algorithm

Dissatisfaction with the shadow buffer algorithm encouraged the author to
explore implementing a depth buffer variant of Crow’s shadow volume algo-
rithm [CROW77A]. It was expected that this algorithm would produce more
accurate shadows and with fewer problems simply because this algorithm is
a object space shadowing algorithm. It was also expected that the shadow
volume algorithm would require more computational time than the shadow
buffer algorithm since it determines shadow boundaries much more precisely.
It was hoped that the shadow volume implementation would not page fault as
severely as the shadow buffer algorithm and thus be more practical to use.
The shadow volume algorithm determines whether a point on a visible
surface lies in shadow by determining whether that point lies within any shadow
volume. Shadow volumes are polyhedra whose faces are composed of shadow
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polygons. These shadow polygons may be labeled as either frontfacing or
backfacing depending upon whether the polygons face towards or away from
the observer.

Figure 5.4 illustrates the shadowing environment that must be considered
in determining whether a point P lies in shadow. The figure illustrates a pizel
ray, OP, which was constructed to have the observer’s viewpoint O as its origin
and pass through the visible point P. The figure shows that shadow polygons
may intersect this ray. Given this environment, we can decide if P is in shadow
by inspecting the half open interval [OP). If in this interval, we find that there
are more shadow polygon-ray intersections with frontfacing shadow polygons
than with backfacing shadow polygons, then the point P lies in shadow because
it must lie in the interior of a shadow volume.
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Figure 5.4: Shadow volume environment
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In his description of the shadowing criteria, Crow worried about a special
case that occurs when the shadow volume pierces the near clipping plane. In
this case, there may not be a frontfacing shadow polygon. We eliminate this
special case from consideration during shadow determination by requiring that
the shadow volume clipping algorithm recognize this condition and generate
an appropriate frontfacing shadow polygon.

This shadow volume algorithm can be implemented in a depth buffer
framework by allocating an additional buffer along with the depth buffer. This
buffer, the sv-buffer, provides a special counter for each pixel. Shadowed images
are created by first generating a visible surface image. A second pass generates
shadow volumes for all of the objects, storing them in a temporary file. Shadow
volumes are later read back from this file and clipped against the viewing
volume to produce shadow polygons. These shadow polygons are then tiled in
the sv-buffer.

A special tiler is used to tile shadow polygons. This tiler incrementally
calculates the shadow polygon depth for each pixel in the shadow polygon’s
interior. If the tiler finds that the shadow polygon depth lies in front of the
image buffer depth, then depending upon whether the polygon is front or back
facing, the tiler either increments or decrements that pixel’s sv-buffer counter.

After all shadow polygons have been tiled in this manner, pixels that are in
shadow will have counters that are positive. A post-processing pass attenuates
the colors of all pixels that are found to be in shadow. This post-processing pass
linearly scans the sv-buffer. This localized behavior should result in fewer page
faults than the random sampling activity used by the shadow buffer algorithm.

If shadow volume tiling is considered an atomic operation (that is all of a
shadow volume’s shadow polygons are tiled before another shadow volume is
started) the number of bits needed to represent the shadow polygon counter
can be limited, reducing the amount of storage needed to implement the sv-
buffer.

The tiling of a shadow volume results in a net counter change of +1 if the
pixel lies within the shadow volume or of 0 if the pixel lies outside the shadow
volume. Tiling a shadow volume can only mark a pixel as being in shadow,
it cannot remove a pixel from shadow. This is physically intuitive because
shadowing can be viewed as a subtractive process; once light has been removed
by an object occluding the light source, adding or deleting other objects can
not change whether a point lies in shadow.

The atomic tiling of shadow volumes allows us to state that a pixel’s
shadow polygon counter may increase by at most one count after a shadow
volume is tiled. If we are careful, we can guarantee that during the tiling of a
shadow volume’s shadow polygons the counter needs only to have a dynamic
range of [1,—1]. This means that if the counter has an initial value ¢, then
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during the tiling of a shadow volume, the counter value can never exceed 1+ +1
nor can it be less than 1 — 1. Furthermore, when tiling a shadow volume sets
the counter value to 1, no further work need to be done to that pixel since its
outcome has been determined.

The sv-buffer counter can be represented with only four states. Three of
these states represent the counts -1, 0, and 1. The fourth state represents all
of the counts greater than 1. This four state representation allows the shadow
volume algorithm to be implemented with only an additional two bits per pixel.

It can be easily shown that the counter need only have a dynamic range
of [~1,1] during the tiling of a shadow volume. The shadow volume clipper
clips a shadow volume against the viewing volume creating a closed polyhedron
whose faces are the shadow polygons. The intersection of this polyhedron and
any plane is a closed curve or in degenerate cases either a line or a point.
Figure 5.5 illustrates the intersection of a shadow polyhedron with a plane
that contains the ray OP. Since the shadow volume is a closed polyhedron
with non-intersecting faces, the ray OP may only enter the shadow volume by
piercing a frontfacing shadow polygon. Once the ray enters the shadow volume,
it must exit through a backfacing shadow polygon. Moving down the ray from
its origin O towards P, we must observe intersections with faces whose sign
alternate. If shadow polygons are tiled in either a front to back or a back
to front depth ordering then the counter need only have a dynamic range of
[-1,1].

'Ilhe render implementation of this algorithm generates shadow volumes
for each shadow casting polygon. Figure 5.6 illustrates the procedure used to
generate shadow volumes and to clip them against the viewing volume.

Given a visible shadow casting polygon p with vertices vg,...,vn and a
light source direction vector, L, we construct another set of vertices bg,...,bn
by projecting the polygon’s vertices some distance d along —L such that:

by =v; —dL

These vertices are projected along — L because the shadow volume is cast away
from the light source direction. We can construct the shadow volumes side
faces, sg,.-..,sn as quadrilaterals such that a side face has the vertices:

8y = (v, ”succ(z‘),bsucc(i)abi)

where:

succ(s) = {’+ 1, i

0, otherwise.

Two end polygons are needed to close the polyhedron. One end polygon is
the shadow casting polygon p, the other is b which consists of vertices by, ..., bn.
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Shadow Volume

Visible
Object

Figure 5.5: The ray OP alternatively passes through frontfacing then backfacing
shadow polygons.

The vertices b; were constructed by projecting the vertices v; a distance d along
L. Since the shadow volume will be clipped against the viewing volume, the
distance d need only be large enough to guarantee that the end face b is outside
the viewing volume.

The clipping of shadow volumes against the viewing volume can take ad-
vantage of certain properties. First, pixel rays never penetrate the four planes
that make up the side walls of the viewing volume. This means that the clipper
need not generate shadow polygons when the shadow volume exits the viewing
volume through these four walls.

Second, the shadow casting polygon p need not be tiled as a shadow poly-
gon because it can never intersect any pixel ray in the interval [OP) (P must
be on p or closer to the viewer since p was rendered in the image depth buffer).
Thus p can have no affect upon shadowing and can be culled.

Third, if the shadow volume penetrates the near clipping plane, a front-
facing shadow polygon must be generated otherwise the shadow determination
scheme will not work. This frontfacing shadow polygon can be computed as &
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2 =2ummr

Figure 5.6: Constructing a shadow volume from a visible shadow casting polygon.

if we alter the definition of b to make it coplanar with the near clipping plane

(Z = Znear)-
b‘i = vi - d.LL

The distance d; 1s determined by:

T =

d, otherwise.

Face b only needs to be considered if it is created in the Z,.4, plane since
only then can it affect the sv-buffer counter state. If b is not in the Z,.4r
plane then the shadow volume exits the viewing volume through planes other
than the Z,..r plane. Since pizel rays cannot intersect any of the side planes,
no shadow polygons coplanar with the side planes need to be generated by
the shadow volume clipper. Shadow polygons coplanar with the far clip plane
(Z = Zj,,) need not be generated either because such a shadow polygon would
intersect a pizel ray at Zyq, which cannot be in the half-open interval [0, Zgar)-
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If we construct b as advocated, the shadow volume can be clipped against
the viewing volume by clipping the side faces, s;, and b, when coplanar with
Zpear, against the viewing volume. The clipping of these faces is independent
of each other and is performed with an ordinary polygon clipper [SUTHER74].

Before the shadow polygons are tiled, they must be inspected to see if they
are front or backfacing. Face b is always front facing when it is drawn. The
faceness of the side faces can be determined by computing a surface normal
vector, N;, for each face and transforming N; into perspective space, Np. If
Np < 0 then the polygon is determined to be frontfacing. If Np > 0, then
the polygon is determined to be backfacing. When Np, =0, the polygon is
tangential to the pizel rays and should be discarded.

N; can be computed from the cross product of its edge on p with the light
direction vector L such that:

N; = (sgucc(s) — 8i) X L

When using this technique, one must be careful that L does not lie in the plane
p (these shadow volumes can be culled) and that N; is consistently calculated
for each shadow polygon.

Consider a second polygon, p’, which has vertices vy ...vy. The shadow
polygons computed for p’ will be the same as the ones computed for p except
that the order of polygon edges will be reversed. This will cause N; to be
computed differently for these two shadow volumes. Clearly, this is improper
behavior and N; needs to be redefined as:

N (ssucc(s) = s;) x L, if pis clockwise
* 7 | —(ssucc(iy — 8i) X L, otherwise

Render determines a polygon’s direction by insisting that all polygons
in the model be created in a consistent order. Both viewing and modeling
transformations may change the polygon direction, i.e. viewing it from behind.
Render inspects its transformation matrix to determine whether it needs to flip
the polygon’s direction.

Extreme care must be taken in the design and implementation of the
shadow polygon tiler. Figure 5.7 illustrates some of the tiling conditions that
must be taken into account. The job of the tiler is to change the sv-buffer
state of certain pixels within the shadow polyhedron. The shadow polyhedron
consists of faces determined by the clipped shadow polygons and edges that
exist between the faces. Edges may be classified as either silhouette or interior.
Silhouette edges separate frontfacing and backfacing faces while interior edges
separate two frontfacing or two backfacing faces.
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As Figure 5.7 illustrates, the tiler must make certain that the pixels along
edges are treated properly. For the algorithm to work, pixels on interior edges
must be tiled by only one of the faces on the edge. If these pixels are inad-
vertently tiled twice, shadowing effects will be improperly computed. Pixels
along silhouette edges must be tiled by both faces or none of them.

TILING A SHADOW VOLUME

Silhouette
Edge
P

Sithouette
Edge

Interior
Edge

Figure 5.7: The shadow polygon tiler must be designed to account for all the special
cases that occur during the tiling of a shadow volume.

The scan-conversion algorithm used in render tiles a polygon by calling
a tiler routine for each scan-line segment which the polygon intersects. For
non-convex polygons, this tiler routine may be called several times during the
processing of a scan-line.

The tiler routine receives as arguments: (1) the scan-line number and
(2) the x-extents, [z, ;,,Zmax], of the scan-line segment. The tiler routine
uses the floating point x-extents to select a range of pixels [z;...z,] to tile.
The selection of z; and z, is extremely important to the functioning of the
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tiler. In order that pixels along interior shadow volume edges are properly
tiled, the shadow polygon tiler selects:

I = Lzmin + I.OJ

Iy = |_-’€maxJ

This selection of z; and z, values has the effect of removing a pixel from
the left of the scan-line segment. When adjacent polygons are tiled, the pixels
along a shared edge are tiled by the polygon to the left of the edge. Pixels
along a shadow volume’s left silhouette edge are not tiled while pixels along
the right silhouette edge are tiled twice, once for the frontfacing polygon and
again for the backfacing polygon. Narrow scan-line segments which do not
cross pixel centers, i.e. z; > z,, are not tiled.

This tiler correctly tiles shadow volumes in that pixels along interior edges
are tiled only once while pixels along silhouette edges are tiled twice or not at
all. The only shortcoming this tiler might be considered to have is that since
it does not tile pixels along a shadow volume’s left edge, these pixels cannot
appear in shadow because of this particular shadow volume. This behavior
potentially strips shadows of their left-most pixel. This behavior is perfectly
acceptable since it only happens on the boundaries of cast shadows and not in
the interior.

After the tiler routine decides which pixels to tile, it compares the depth
stored in the depth buffer with the depth of the shadow polygon at that pixel.
If the shadow polygon is closer to the observer than the visible surface stored
in the depth buffer, the sv-buffer entry is updated.

Sv-buffer entries are stored as one of four states. The tiler uses a lookup
table to implement the state transitions illustrated in Table 5.1. Different
lookup tables are selected depending upon whether the shadow polygon is
frontfacing or back facing.

SV-Buffer State Transitions
Current State Next State (+) Next State (-)
Minusl Zero Minusl*
Zero Plusl Minusl
Plusl InShadow Zero
InShadow InShadow InShadowt

* (Non-occurring

state transition)

t (Once InShadow, stay InShadow)

Table 5.1: SV-Buffer state transition table. The + transition is used for frontfacing
ghadow polygons and the — transition is used with backfacing shadow polygons.
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The implementation of the shadow volume algorithm has been extremely
successful. It is capable of generating properly shadowed images without any
noticeable artifacts. Figure 5.8 illustrates several shadowed images produced
with this algorithm.

As was expected, the shadow volume algorithm required more CPU time
than the shadow buffer algorithm. This results from having to tile many more
polygons than the shadow buffer algorithm. Not only are there more polygons
to tile but these shadow polygons are larger since they extend to the boundaries
of the viewing volume. The tiling of these polygons is simpler than the tiling
of visible polygons which compensates for some of the additional work.

It was hoped that this implementation would not page fault very much.
Experimental results indicate that this expectation has been realized. The
implementation of the sv-buffer as two bit per pixel entries has certainly helped
achieve this performance.

The performance of this implementation could be further improved by
creating a single shadow volume for each closed polyhedral object. Currently,
render creates a shadow volume for each shadow casting polygon. This tech-
nique was first suggested by Crow [CROW77A]. It should be implemented as it
is likely to have a considerable impact upon shadow polygon tiling time.

5.3 Implementing the Shadow Map Algorithm

The ANIMAC architecture utilizes the shadow map algorithm to determine
whether objects in other processors shadow local objects. The render imple-
mentation of the shadow map algorithm has been divided into several phases.
The first phase defines the external shadow map (ESM) coordinate system
which serves as a frame of reference for all other shadow maps. The second
phase computes local shadow maps (LSM) for each processor. The third phase
computes composite shadow maps (CSM) for each processor. The final phase
determines whether points lie in shadow by sampling the processor’s composite
shadow map.

The ESM has been defined to lie in a plane that is perpendicular to the
light source direction vector L. The ESM can be thought of as a rectangle in
the ESM plane. The extents of this rectangle are defined such that they fully
enclose the projection of all objects, within the viewing volume, onto the ESM
plane.

A transformation, Tesm, that projects objects from viewing space coor-
dinates into ESM coordinates is constructed to provide a frame of reference
for creating and sampling shadow maps. Render creates this transformation
by first using the LView() procedure to compute a viewing transformation, E,
which transforms model coordinates into ESM virtual device coordinates. A
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Figure 5.8: Two properly shadowed images created with the shadow volume algo-
rithm.
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viewport transform Vegm is constructed from the ESM X and Y dimensions.
Tesm 1s constructed as:

Tesrn = EVesm

The ESM coordinate system allows shadow maps to be created such that
they are aligned on ESM pixel centers with each other. This will allow shadow
maps to be unioned together without introducing alignment errors.

Local shadow maps must be constructed for each processor. A processor’s
LSM consists of a bit map and its two dimensional extent on the ESM. Render
implements a bit map as an array of unsigned integers. Each array entry con-
tains sixteen contiguous pixels along a scan-line. Bit maps are allocated based
upon the ESM extents of the shadow map. For efficiency reasons, the shadow
map’s left edge is aligned with a word (16-bit) boundary. This simplifies the
inspection of a shadow map entry and speeds up the unioning of shadow maps.

The extents of a processor’s LSM can be determined by transforming a
bounding box, bbp, which encloses the processor’s viewing volume subspace
by Teem. LSM extents generated in this manner are guaranteed to be large
enough to encompass any objects that might reside in the processor. Since a
processor’s objects often do not occupy the entire subspace, smaller LSMs may
be used.

Render constructs smaller LSMs by determining a bounding box, bbyns,
which encompasses all shadow casting objects within the processor’s subspace.
This bounding box is simply the intersection of bb, with a bounding box, bbs,
which encloses all shadow casting objects within the scene model. If bbyns
is null, the processor does not need to allocate a LSM. Otherwise, bbpns 1s
transformed by Tesm to yield the LSM extents, bbysyy,, on the ESM.

If a processor has non-null LSM extents, render allocates a shadow map
for the processor and creates a transformation, Ty, Which transforms model
space coordinates into the LSM bit map coordinates. Bit maps always have
their origin at (0,0) requiring ESM coordinates to be translated in X and YV’
before being used as bit map indices. Ty, is constructed as:

1 0 0 0O

0 1 0 0

Tiom = Teom 0 0 1 0
—bbjgm-ming —bbjgy ming 0 1

After T},,, has been constructed, the processor’s objects are tiled into the
local shadow map. Render accomplishes this by adjusting its viewing transfor-
mation so that the processor’s subspace fills the clipping volume. The scene
model hierarchy is then traversed clipping objects as they are encountered.
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Objects which remain after being clipped against the processor’s subspace are
then transformed by T}, and tiled into the LSM.

The shadow map tiler unions objects into the local shadow map by ORing
scan-line segments into the LSM bit map. This tiler uses table lookup methods
to rapidly tile polygons.

After creating all of the local shadow maps, render creates the composite
shadow maps. A processor’s CSM is formed from the union of its shadowing
neighbor’s LSMs and CSMs. CSMs must be formed in an order that depends
upon the light source direction vector, L. Render creates a directed graph
which it uses to determine the dependencies between processors.

Figure 5.9 illustrates a processor array and a dependency graph that would
result from the indicated light source direction vector, L. Each processor is
represented as a node in the graph. Each node may have up to three edges
emanating from it. Theses edges point to the processor’s neighbors upon which
it depends for shadowing information.

RANK ESM
L
7 1 i

0 1 2

2 (D/ \
3 | s

3 \é/ ®
6 ? 8 4 (3

5 (6)
A Nine Processor Array Associated Dependency

Graph

Figure 5.9: A processor array and its dependency graph. The dependency graph is
constructed to indicate which of a processor’s neighbors potentially cast shadows

upon the processor.
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Render represents each graph node with three pointers. Each pointer may
point to another processor’s graph node or may be NULL. A processor’s shad-
owing neighbors can be determined by inspecting the z and y components of
the light source direction vector. The following pseudo-code procedure deter-
mines which neighbors a processor depends upon.

ProcDependency(x, y)
int x, y.

{

int Column, Row;

/* Set Column and Row to be outside Processor Array */
Column = Row = -1;

/* Find an adjacent column closer to the light source */
if (L.x > 0.0)
Column = x + 1;
else if (L.x < 0.0)
Column = x - 1;
/* Find an adjacent row closer to the light source */
if (L.y > 0.0)

Row = y + 1;
else if (L.y < 0.0)
Row =y - 1;

/* Set the Node Pointers */

NodePtri = AddressofProc(x, Row);

NodePtr2 = AddressofProc(Column, y);

if (NodePtri != NULL && NodePtr2 != NULL)
NodePtr3 = AddressofProc(Column, Row);

}

Render constructs the dependency graph by calling ProcDependency () for
each processor. AddressofProc() sets a processors node pointer to a neighbor-
ing processor. If the coordinates of the neighboring processor are outside of the
processor array boundaries, AddressofProc returns either NULL or the address
of the ESM processor.

The ESM node must be the terminal node in the graph since it depends
upon no other processors. Each node in the graph can be ranked by its maximal
distance from the ESM node. A processor’s rank determines the order in
which CSMs must be created. Since a processor’s CSM can only depend upon
processors of lesser rank, CSMs must be created in a rank ordering, from
smallest to largest.
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Render determines a node’s rank recursively. The procedure RankProc()
is called for each root node in the graph. RankProc() sets the rank of a node
to be one greater than the maximum ranks of the processors upon which this
node depends. RankProc() calls itself to determine the rank of dependent
nodes. The rank of a terminal node (the ESM node) is defined to be 0.

After the nodes in the dependency graph have been ranked, all nodes
that represent physical processors have ranks of at least one. Render sorts the
graph’s processor nodes into a list ordered by rank. Using this sorted list, each
processor’s CSM is created in the proper order.

A processor’s CSM is created by first determining the extents of the CSM,
allocating a bit map of that size, and then unioning the processor’s shadowing
neighbor’s LSMs and CSMs into the bit map.

The extents of a CSM need be no larger than the projection of a processor’s
subspace upon the ESM. Previously, bby, was defined as a processor’s extents
upon the ESM. The CSM is created as the union of a processor’s shadowing
neighbors LSMs and CSMs. Render determines a CSMs extents as:

bbCSm = ((bblsml U... bblsm‘.) @] (bbcsml U... bbcsmi)) n bbp

where bbl_.,mt. and bbcem,; denote shadow maps belonging to this processor’s
shadowing neighbors.

After bb.sym has been determined, the CSMs bit map is allocated and the
LSMs and CSMs are unioned into this processor’s CSM. Bit map unioning is
performed with a procedure similar to the RasterOp function [NEWMAN79].
A bit map is unioned into another by finding the portion of the bit maps that
overlap in ESM coordinates and then ORing one bit map into the other over
this two dimensional region. Since both bit maps have been created so that
they are word aligned, no bit shifting needs to be done to align the two bit
maps. Render unions bit maps very fast.

Any particular LSM contributes to at most three CSMs. After these
three CSMs have been created, the LSM may be discarded since they are not
needed during shadow determination. Likewise, a CSM only contributes to
at most three other CSMs. A processor’s CSM can only be discarded when
the processor has no objects. Since only one CSM is needed at a time during
shadow determination, CSMs may be swapped onto disk to reduce memory
usage. A good time to swap a CSM onto disk is after it is no longer needed
for the creation of other CSMs.

The current implementation discards all the LSMs after all CSMs have
been created. It does not currently swap CSMs to and from disk. CSMs
reside in the processes virtual address space and although they can require
reasonably large amounts of memory, they don’t tend to cause excessive page
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faulting behavior because at most two CSMs are ever accessed at any one time.
Swapping becomes more attractive on machines with limited virtual address
spaces.

Composite shadow maps must be sampled to determine whether a pixel
lies in shadow. A pixel’s image space coordinates can be transformed into CSM
coordinates by a simple transformation, Tegm, which is constructed as:

1 0 00

- 0 1 0 0

Teem = Tpvl Tesm 0 0 1 0
_bbcsm-minz _bbcsmminy 0 1

Tp_v1 transforms the point into the viewing coordinate system. Tesp, translates
from viewing coordinates into ESM coordinates. The final transform maps
ESM coordinates into CSM bit map coordinates.

Transforming the pixel’s visible surface coordinate into shadow map co-
ordinates point samples the shadow map. The shadow map pixel can be in-
spected and a binary decision can be made as to whether the pixel should be
shadowed. Render shadows pixels by multiplying their color components by
an attenuation factor o which is in the range [0 < o < 1].

Shadow effects with smoother edges can be obtained by bilinearly interpo-
lating the shadow buffer values associated with the four pixel centers around
(Xcsm, Yesm). This provides an attenuation factor ¢ which varies between
[o,1].

5.4 Simulation of the ANIMAC Algorithm

The implementation of the shadow volume algorithm, for local shadowing, and
the shadow map algorithm, for foreign shadowing, together with render’s depth
buffer visible surface algorithm provides all of the utilities needed to simulate
the ANIMAC algorithm.

Several test scenes were produced with the ANIMAC algorithm. Fig-
ure 5.10 illustrates two types of anomalous behavior that were observed. Ob-
jects were observed to shadow themselves along processor boundaries and
shadow dropouts were observed in the interior of shadows.

-Figure 5.11 illustrates how dropouts and false shadows arise. The figure
illustrates a scene composed of two objects being processed by two processors.
Object p; is oriented with respect to the light source direction, L, such that
it casts a shadow upon object ps. Object p; happens to cross a processor
boundary and has been bisected into two objects, p'l and p'l'. The bisection
introduces an artificial edge, e.
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Figure 5.10: This image demonstrates that the initial ANIMAC implementation has
two problems: shadow dropouts and false shadows along processor boundaries.

Shadow dropouts can occur on object ps near the projection of edge e
upon py. Pixels to one side of this edge are shadowed by the local shadowing
algorithm while pixels on the other side are shadowed by the foreign shadowing
algorithm. Shadow dropouts occur when points on pg are transformed into
CSM coordinates and fall near the projection of ¢ on the shadow map. Some
of these pixels fall to the outside of ¢ when they should fall inside. This problem
arises because local shadowing was implemented in a different sampling space
than foreign shadowing. Increasing shadow map resolution reduces the number
of shadow dropouts but can not eliminate the problem. The problem can be
eliminated if local shadowing is implemented with a shadow buffer algorithm
that samples in ESM coordinates.

The problem of surfaces shadowing themselves along processor boundaries
is most noticeable for surfaces that are oblique to the light source and that are
bisected by processor boundaries. Illumination rays cast from these surfaces
may intersect the same surface in the shadow map causing false shadows. In
Figure 5.11, false shadows may occur on object p} along edge e. The surface
at these pixels may transform onto the edge e in the CSM causing the pixels
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Processor 0 Processor 1

Figure 5.11: Shadow dropouts may result from polygons being bisected by processor
boundaries.

to be incorrectly shadowed. These falsely shadowed pixels always project onto
polygon edges in the CSM.

Both of these problems are really the same problem which shows itself in
two different manifestations. The problem is that shadow maps implemented
as bit maps can only be sampled with a precision determined by the bit map
resolution. Other realizations of shadow maps might maintain exact descrip-
tions of boundaries. These representations will require much more effort to
construct, union and inspect than bit map implementations therefore, we seek
solutions that can mask these problems inherent in bit map implementations.

One might be inclined to suggest simple solutions to this sampling prob-
lem. For example, the shadow dropout problem arises from illumination rays
that barely miss striking the interior of objects in the shadow map. Bloating
objects in the shadow map would cause these illumination rays to strike ob-
jects in the shadow map; however, at the same time, it would cause objects
which shouldn’t be in shadow to fall in shadow, 1.e. false shadows. Alterna-
tively, shrinking objects in the shadow map could eliminate false shadows but
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would introduce dropouts. This sampling problem is not amenable to simple
solutions.

Render implements two strategies to mask this sampling problem. It elim-
inates false shadowing by shrinking the shadow map image. Figure 5.12 illus-
trates how this solves the false shadowing problem. The figure illustrates two
shadow map images. The image on the right has been shrunk by one pixel.
The sample point p which fell on an edge in the left shadow map image now
must fall outside the polygon in the right shadow map image. The sample
point can be moved an arbitrary distance, ¢, away from the polygon’s edge by
shrinking the image by e.

® 9
*
L
] ol
. ®le
SHADOW MAP SHADOW MAP

Shrunk 1 Pixel

EEJ Set Pixel

® Sample Point

Figure 5.12: False shadows can be eliminated by performing a global shrink on the
shadow map image.

Shrinking the shadow map eliminates false shadows but may cause more
shadow dropouts to occur. Fortunately, dropouts are easy to remedy. Figure
5.13 illustrates that dropouts that occur due to the bisection of object p;
can be eliminated by including the entire p; object in the local shadowing
computations. Pixels that previously had dropouts will now be shadowed by
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Figure 5.13: Shadow dropouts can be eliminated by including the offending shadow
casting polygon in the local shadowing computations. Pixels, in the region labeled
R, may be shadowed by both local and foreign shadowing effects.

the local shadowing algorithm. Some pixels will be shadowed by both local
and foreign shadowing algorithms which doesn’t hurt matters.

The method that render uses to make local shadowing regions overlap for-
elgn shadowing regions is an approximate solution. Ideally, any object that is
bisected by a processor’s boundaries should be included in the local shadowing
computation. The current render implementation may not include the entire
object since it only expands the size of the clipping volume used by the lo-
cal shadowing algorithm. The render implementation makes shadow dropouts
highly unlikely but not impossible. In practice, shadow dropouts are not as
noticeable as false shadows since subsampling reduces their total contribution
to any pixel.

Shadow maps can be shrunk by convolving them with an appropriate
filter kernel. This requires time proportional to the the number of shadow map
pixels. Since shadow maps are sparsely sampled during shadow determination,
the filter can be applied to localized regions of the shadow map during the
sampling process requiring only time proportional to the number of image
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pixels. A simple filter function, which seems to work fairly well, has been
implemented. This filter inspects the pixels that surround a sample point in
the shadow map and shadows the pixel only if all of these pixels have been set.
This filter effectively shrinks the shadow map image by one pixel since if the
sample point lies on an edge, its neighbors will not all be set and the sample
point will be deemed to be not in shadow.

To demonstrate the feasibility of the ANIMAC algorithm, test images were
made and time spent performing certain tasks was monitored. Figure 5.14
presents two of the test images that were created. CPU time measurements
were made to determine how much time was spent in each of four major tasks.
These tasks consist of: (1) computing the visible surface image, (2) computing
local shadowing, (3) computing foreign shadowing, and (4) shadow determi-
nation. Times for computing local and foreign shadowing do not include the
time required to determine whether a visible pixel lies in shadow. This time
and the time required to attenuate pixel intensities is included in the fourth
task. The foreign shadow task was further broken down to study the amount
of time spent creating local shadow maps and composite shadow maps.

These CPU measurements are presented in Table 5.2. These CPU time
measurements were made on a VAX 11/780 computer. Both images were
computed with 2 by 2 subsampling and a 3,000 by 3,000 pixel shadow map.
The image of the cubes was computed simulating four processors while the
X-Wing image was computed simulating sixteen processors.

Computation Cubes X-Wing
Visible Surfaces 13.17 (6.6%) 349.68  (22.5%)
Local Shadowing 2487 (12.5%) 704.72  (45.3%)
Foreign Shadowing 9.75 (4.9%) 56.57 (3.6%)

LSM Creation 2.48 (1.3%) 34.43 (2.2%)
CSM Creation 7.27 (3.7%) 22.13 (1.4%)
Shadow Attenuation 150.55  (75.9%) 443.72  (28.5%)
Total CPU 198.33  (100.0%) 1554.68  (100.0%)

Table 5.2: VAX CPU time (seconds) required to compute the images of Figure 5.14
broken down by time spent in computational task.

The image of the cubes is relatively simple and little CPU time was re-
quired to determine visible surfaces, local shadowing, and foreign shadowing.
Most of the time was spent checking if pixels lie in shadow and attenuating
them when necessary. Local shadowing required about twice as much time as
visible surface determination. Foreign shadowing required the least time with
the majority of that time spent merging LSMs into CSMs.
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The X-Wing image is quite a bit more complex than the image of the
cubes. Pixel shadowing still requires a considerable amount of time but no
longer monopolizes as it did for the image of the cubes. Local shadowing
now dominates and requires twice as much CPU time as visible surface deter-
mination, roughly the same ratio found for the image of the cubes. Foreign
shadowing requires very little time with LSM creation now dominating CSM
creation.

A bottom line comparison of the total CPU times indicates that this
implementation is reasonably efficient. A simple image like the cube image
can be computed in several CPU minutes. More complex images require tens
of minutes. The ANIMAC algorithm seems very appropriate for producing
animation sequences on conventional computers.

Two short animation sequences were computed to study how well the
ANIMAC algorithm synthesizes moving shadows. The first animation piece
consisted of a view of the cube image illustrated in Figure 5.14. The model
was rotated about its Z axis. Five seconds (150 frames) of animation was
produced and studied. The animation showed the shadows moving properly
with no apparent anomalies. The degree of aliasing appeared to be no worse
in shadowed portions of the image than in non-shadowed regions.

Another five second animation sequence was produced using the X-Wing
model. This model is sufficiently complex to illustrate nearly all shadow inter-
play effects. The X-Wing animation appeared quite natural and no anomalies
were noticed by several very astute observers.

5.5 Conclusions

Implementing the ANIMAC algorithm within the render framework has proved
to be very worthwhile. It has illustrated some of the shortcomings inherent in
image space shadowing algorithms and has allowed the implementation of mea-
sures that prevent these shortcomings from visually manifesting themselves.

Incorporating the ANIMAC simulation within a widely used program al-
lowed the algorithm to be tested with scenes that the author did not model.
Hopefully, this has helped remove a source of bias from the observations.

The ANIMAC algorithm appears to be quite amenable to uniprocessor
software implementations. It provides a natural method for managing the size
of the visible surface algorithm by subdividing an image into tiles.

Experiences with implementing the ANIMAC algorithm on a uniproces-
sor have interested the author in multiprocessor software implementations.
The ANIMAC algorithm should be easily ported to nearest-neighbor multi-
processors. If these machines can be made to provide adequate floating point
performance, overall scene creation time should be greatly improved.
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Figure 5.14: Two properly shadowed images created with the ANIMAC algorithm.
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In the course of developing the ANIMAC simulation, the author has stud-
ied drawbacks inherent in the shadow buffer algorithm and has proposed new
solutions to these problems. The author also developed a new depth buffer
oriented implementation of the shadow volume algorithm. Both the author’s
shadow volume implementation and his SID shadow buffer algorithm provide
adequate shadowing effects when used with conventional depth buffer visibility
algorithms.
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6

Hardware Realizations
of the
ANIMAC Architecture

The purpose of this chapter is to demonstrate that it will be feasible to im-
plement real-time animation systems based upon the ANIMAC architecture.
The ANIMAC architecture consists of two facets, a technique for computing
subimages in parallel, and a shadowing algorithm designed to work in a parallel
environment.

This chapter will focus upon using the ANIMAC architecture to real-
ize two different real-time systems. The first system, the ANIMAC-1, uses the
ANIMAC parallelization techniques to implement a high performance real-time
animation system. This system produces antialiased shaded visible surface im-
ages without shadowing effects. The second system, the ANIMAC-2, extends
the ANIMAC-1 architecture to implement shadowing effects.

Performance goals for the ANIMAC implementations have been set signif-
icantly higher than what represents today’s state-of-the-art in real-time sim-
ulation. Today’s systems are capable of producing scenes of several thousand
polygons at thirty frames a second. The ANIMAC systems have been targeted
to produce 512 by 512 pixel images of scenes composed of 100,000 polygons
at thirty frames a second.

In order to focus discussion on the important issues, several constraints
have been placed upon the scene environment. The scene model is required
to be constructed from closed convex polyhedra and each polygon must be a
triangle. These conditions are easy to meet. Nonconvex closed polyhedra can
be split into closed convex polyhedra and arbitrary polygons can be split into
triangles.
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The ANIMAC-1 and ANIMAC-2 architectures exploit VLSI architectures
to make feasible the construction of such high performance systems. These
systems either borrow or extend architectures proposed by other researchers.
Knowledge of the processor per object architectures proposed by Cohen [CO-
HEN80| and Weinberg [WEINBES2] and of the processor per pixel architecture
proposed by Fuchs [FUCHS81] [FUCHS82] is required to fully appreciate the
ANIMAC architectures.

The main emphasis of this chapter is to demonstrate that it will become
technologically feasible to build the ANIMAC-1 and the ANIMAC-2 systems
in the not too distant future. For this reason, the discussions will focus upon
technological bottlenecks. These technological bottlenecks involve being able
to implement a computation fast enough or being able to implement the hard-
ware with a reasonable number of integrated circuits. Pipeline techniques will
be used to show that computations can be performed within a certain amount
of time.

The number of integrated circuits required to implement a computation
depends upon the technology that the computation is implemented in. Many
forecasts can be found that parameterize future technologies. I present two of
these forecast to give an idea of how MOS technologies will evolve during the
next fifteen years.

Rideout presents a conservative forecast of MOS technologies for 1990
[RIDEOUS1|. He suggests that production integrated circuits will be produced
using one micron lithography. He suggests that microprocessors will utilize
250, 000 transistors, or about 50, 000 logic gate equivalents. This forecast seems
very conservative since integrated circuits of this complexity are being fabri-
cated today.

Mohsen [MOHSEN79] described the development of MOS technologies. He
summarized his findings by suggesting that in the late 1990’s, MOS integrated
circuits will be fabricated with 0.3um design rules yielding 107 devices per
square centimeter. He suggested that logic chips will, at that time, be made
with millions of logic gates and operate at 100 MHz with a 0.5 volt supply.

These two forecasts provide ball park estimates for the technology that
will become available during the next fifteen years. Some of this chapter’s dis-
cussions will utilize these forecasts to estimate when certain VLSI architectures
will become economically practical to pursue.

Both of the ANIMAC systems examined within this chapter make use of
the generalized architecture illustrated in Figure 6.1. This system architec-
ture is composed of a modeling subsystem, a clipping subsystem, a visibility
determination subsystem, a frame store, and a supervisory processor.

The modeling subsystem is responsible for accessing a data base and gen-
erating geometric models of the scene which is to be viewed. It must respond
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Figure 6.1: Both ANIMAC systems utilize a generalized system architecture which
consists of a specialized processors to model the scene, clip the scene, and generate
visible images of the scene.

to real-time inputs from the system’s users and simulate the task being per-
formed. It must generate geometric data at high rates, i.e. 3,000,000 triangles
per second. Specific discussion of the modeling subsystem design is considered
to be outside the scope of this thesis, and may very well be a good subject
for other doctoral dissertations. At least one commercially available graphics
system, the E&S PS300, implements a modeling engine capable of performance
within a factor of three of what the ANIMAC systems require, suggesting that
implementing the modeling subsystem will be technologically feasible within
the near future.

The clipping subsystem receives triangles from the modeling subsystem
and distributes polygons to each visibility processor implemented within the
visibility subsystem. The ANIMAC architecture implements the virtual tesse-
lated rectangular clipping space subdivision strategy proposed in Chapter 3.
Figure 6.2 illustrates how the clipping space is divided among virtual proces-
sors, vzy. The clipping space z-axis is equally divided into vx columns while
the y-axis is equally divided into vy columns. The total number of virtual
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processors is Ny = vxvy. Each virtual processor, v;;, is associated with a
screen region, S”ij’ and a subspace of the viewing space, sz.j.

r
Yo,0 [Y1,0 V2,0 V3,0 [Va,0 |¥s,0
Yo,1 V1,1 V2,1 V3,1 {VYa,1 Vs
vy
Yo,2 [Y1,2 V2,2 |Y3,2 |Va,2 V5,2
y 1 I \ \
V0,3 11,3 1Y2,3 {Y3,3 V4,3 V5.3
.
\_ S
—
Uy

Figure 6.2: The clipping space is divided equally along the z and y axes. A virtual
processor is assigned to each of the clipping space subvolumes.

A many-to-one mapping exists which associates virtual processors with
physical processors. Each physical processor is responsible for producing a
visible surface image for each of its virtual processors. Figure 6.3 illustrates an
array of physical processors, p;y. The array consists of N, processors divided
into rows of px processors and columns of py processors.

I require vy to be an integer multiple of py and vy to be an integer
multiple of py. I define ratios of virtual to physical processors as:

ox =vx/px
oy = vy /py
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Figure 6.3: An array of physical processors implements the visible surface algorithm
for the virtual processors.

A mapping of virtual processors onto physical processors, p;;, is defined

as:
ox—loy-1
U U Yitko x,j+ioy 77 Pi,g
k=0 [I=0

It is the job of the clipping subsystem to transform polygons into clipping
coordinates and to clip an object against each virtual processor’s boundaries.
Visible polygons are emitted from the clipping subsystem on a separate channel
for each physical visibility processor.

The frame store consists of a double buffered image memory. During a
frame time, the visibility subsystem writes pixels into one image memory. That
image memory is displayed during the following frame time.

The supervisory processor coordinates the activities of all of the subsys-
temns. It only needs to operate at the frame rate and can be implemented with
most any conventional processor.
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The visibility subsystem consists of a two-dimensional array of visibility
processors. The physical dimensions of this array are adjusted to achieve a spe-
cific system performance. The two ANIMAC systems are targeted to generate
images of scenes consisting of 100,000 triangles. Since the scene is composed of
closed polyhedra, about half of these triangles will face away from the viewer
and will not be visible. These backfacing triangles are culled by the clipping
subsystem leaving 50,000 triangles that need to be handled by the visibility
subsystem.

Chapter 3 suggested that these 50,000 triangles will be distributed fairly
uniformly to the Np physical processors. Representing the system’s parallel
efficiency as n allows us to determine, N, the number of triangles that will
be distributed to each visibility processor.

50,000
T =
’7Np

Chapter 3 suggested that a system with sixteen physical processors could
be constructed to have n > 50% with o < 16. Substituting these values:

50, 000

= = 6,250

Thus each of the processors must be capable of processing about six thou-
sand triangles during each frame time. This figure falls near the performance
claimed for both the processor per object and processor per pixel architectures
so, I chose to implement each of the ANIMAC systems with sixteen visibil-
ity processors. Each visibility processor must handle sixteen virtual visibility
processors.

The ANIMAC-2 uses shadow maps to determine foreign shadowing. The
resolution of these shadow maps is dependent upon the overall ESM resolu-
tion and the number of virtual processors. The software simulation indicated
that external shadow maps created with about 8 Mb provided adequate res-
olution. The resolution of individual shadow maps scales with the square
root of the number of virtual processors. Since the ANIMAC-2 employs 256
virtual processors, the ANIMAC-2 shadow map resolution has been set at
8Mb/\/256 = 0.5Mb each.

The following sections discuss how the ANIMAC-1 and the ANIMAC-2
visibility subsystems might be implemented.
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Figure 6.4: The ANIMAC-1 visibility subsystem architecture requires no interpro-
cessor communications.

6.1 Implementing the ANIMAC-1 System

Figure 6.4 illustrates the overall visibility subsystem architecture used in the
ANIMAC-1 system. Since the ANIMAC-1 does not produce shadowing effects,
no interprocessor communication is required between visibility processors.

Each visibility processor tiles the screen regions, Svij’ associated with
each of its virtual processors. Figure 6.5 illustrates that a viewporting trans-
formation can be used to make each of a processor’s virtual images appear
contiguous. A different viewport transformation is needed for each virtual
processor and is implemented in the clipping subsystem.

It is advantageous to have a visibility processor process a single image since
this allows the clipping subsystem to deliver polygons in any order. If separate
images are to be created for each virtual processor, the visible polygons arriving
from the clipping subsystem should arrive in an order that is sorted by virtual
processor.

Both processor per pixel and processor per object architectures are capable
of creating a visibility processor’s image in the required time. The ANIMAC-1
system uses a processor per object architecture to implement visible surface
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Figure 6.5: The clipping subsystem can implement a viewporting transformation
that causes each of a physical processor’s virtual processor’s screen regions to be
adjacent.

determination for two reasons. First, Weinberg [WEINBE82] has shown how to
construct a processor per object system which implements effective antialiasing
measures that do not require more object processors or faster object processors.
Antialiased images can be produced with processor per pixel architectures by
increasing the number of pixel processors to subsample the image.

The second reason for using a processor per object architecture in the
ANIMAC-1 system is that processor per object architectures require a clock
rate that is proportional to the number of pixels to be tiled. Spatial subdivision
techniques reduce the number of pixels that each visibility processor must tile
and thus reduce the clock rate that the object processors must operate at. This
will be shown to make object processors easily realizable in MOS technologies.

Weinberg’s processor per object architecture is illustrated in Figure 6.6.
It consists of an Object Preprocessor, Object Processors, and a Pizel Tiler. The
object preprocessor splits polygons into scan-line aligned trapezoids which are
loaded into the object processors. Each trapezoid is assign a unique identifier
(TID) which is associated with it in the object processor. The preprocessor
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constructs a trapezoid property table (TPT) which contains an entry asso-
ciated with each TID. TPT entries contain trapezoid geometrical and color
information and are used by the pixel tiling engine to compute pixel coverage
and coloring.

OBJECT PROCESSORS

Visible OBJECT
Objects— PREPROCESSOR > = e
from
Clipper
}__.._
TRAPEZOQID
PROPERTY
TABLE el - - 1
Pixel Data
PIXEL TILER Ea— to
Frame Store

Figure 6.6: Weinberg’s processor per object architecture.

Each object processor is initialized with a concise geometrical description
of a trapezoid and its TID. During scan conversion, each processor decides
whether its trapezoid intersects with a region centered about the current pixel.
If it does, the processor attempts to insert its trapezoid’s TID into a list which is
passed from processor to processor in the pipeline. The entire object processor
pipeline produces a stream of TIDs of objects that intersect pixel regions. This
stream is sorted in a yzz ordering so that a sublist of TIDs can be associated
with each pixel. This sublist is sorted by depth, the closest objects arriving
first.

The pixel tiling unit uses a pixel’s list of TIDs to tile a region surrounding
the pixel on a fine grid. Each TID is used to recompute the intersection of
the trapezoid with the pixel region and that intersection is tiled in a subpixel
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buffer. A trapezoid’s subpixels are convolved with a spatial filter kernel and
the trapezoid’s color contribution is added into the pixel color. After all of
a pixel’s trapezoids have been processed, the pixel has a correct color value
associated with it and the pixel can be displayed.

The performance of Weinberg’s architecture depends primarily upon the
rate at which object processors can make their decisions and pass information
along to the next processor. The preprocessor and tiling unit must keep up
with the object processors but since only one object preprocessor and one pixel
tiler are needed, Weinberg can afford to use a fair amount of fast logic in these
units.

Weinberg determines the number of clock cycles, ¢, that his architecture
will require to produce a visible surface image as:

c=fx(z*xy*xd.+pxs)

where:
z = screen z dimension in pixels

y = screen y dimension in pixels
d. = average number of objects at each pixel
s = cycles to load each processor

p = number of processors

Weinberg suggests that an average of three visible surfaces are emitted
from the processor pipeline for each pixel. His design requires that nine values
be loaded into each processor. Implementing a processor per object architec-
ture for 6,000 trapezoids, and a 512 by 512 pixel screen requires:

¢ = 30 = (512 % 512 * 3 + 6000 * 9) = 25,212,960 cycles

This requires the processors to be designed with a clock cycle of ~ 40 nsec.
Weinberg argues that this is possible with an ECL gate array implementation.

The spatial subdivision technique employed in the ANIMAC architecture
allows the object processor’s clock period to be increased significantly. Each
visibility processor in the ANIMAC-1 system is responsible for the tiling of six-
teen virtual processors. The total screen region associated with each visibility
processor, Np;z, is the total screen area divided by the number of processors:

512 %512 262,144
N, 16

Npiz = = 16, 384 pixels
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Substituting Np;; for the z * y term in Weinberg’s equation, we find:
c = 30 * (16384 * 3 + 6000 = 9) = 3,094, 560 cycles

which allows the processors to be implemented in a much slower technology
since the clock period has been increased to = 325 nsec.

The number 6,000 has been used in these examples because Weinberg
used it to illustrate the performance of his architecture in his dissertation.
The ANIMAC-1 system must handle more than 6,000 trapezoids. Earlier we
decided that each visibility processor must be designed to handle 6,250 poly-
gons. These 6,250 polygons will be fractured into a number of trapezoids
that depends upon the number of vertices in the visible polygons. All 6,250
polygons were initially triangles before being clipped. Based upon the obser-
vations of Chapters 2 and 3, we assume that most triangles will not cross a
virtual processor boundary and will arrive in the visibility processor as trian-
gles. Each triangle will be fractured into at most two trapezoids. This suggests
that each processor be designed to handle 13,000 trapezoids. To be conserva-
tive, the ANIMAC-1 visibility processor has been designed to handle 20,000
trapezoids. This requires:

c = 30 * (16384 * 3 + 20000 = 9) = 6,874,560 cycles

Thus a processor per object architecture can be realized with a processor
that operates with a ~ 145 nsec. clock cycle. The clock period can be increased
more by realizing that the majority of the clock cycles are being used to load
trapezoids into the processors, i.e. the p * s term.

We can decrease the loading time by breaking the processor pipeline into
N, independent chains as Weinberg has suggested. Each chain is loaded in
parallel and the chains are reconfigured as a pipeline during image tiling. The
total number of clock cycles needed to compute an image can be rewritten as:

c=f*(Npig ¥dc +s*p/N.)

If we implement the visibility processor so that it loads ten chains of 2,000
object processors in parallel, the image can be computed in:

¢ = 30 * (16384 * 3 + 9 % 20,000/10) = 2,014, 560 cycles

This increases the clock period to a2 495 nsec. The object processor can
now be implemented in technologies which are slower than ECL gate arrays.
I expect that the technology of choice will be bulk CMOS. A CMOS imple-
mentation will offer two major advantages. First, heat dissipation is greatly
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reduced over an ECL gate array implementation, and second, many more ob-
ject processors can be realized on a die.

Weinberg estimated that his processors require about 1,500 gate equiva-
lents. Today’s best gate array technology implements about 10,000 gates on
a die. About six objects processors could be fabricated on a gate array today.
We would expect that an object processor would occupy less silicon area when
implemented in bulk CMOS. Custom MOS designs require less space than gate
array implementations because they route signals more efficiently and imple-
ment logic and state more efficiently. Today’s bulk CMOS probably would be
able to implement ten processors per die.

Moore [MOORE79] suggests that the number of devices per die will double
every two years. Thus, it should be possible to fabricate forty processors on a
die by the early 1990’s. This level of integration would allow a 2,000 processor
chain to be implemented on a single printed circuit board with 50 integrated
circuits. The entire 20,000 processor chain would only require 500 integrated
circuits and could easily be implemented with only ten printed circuit boards.

In his dissertation, Weinberg describes how to implement a pixel tiler
in ECL logic that can tile and filter a 64 by 64 subpixel tile in 23 nsec. His
design makes extensive use of parallelism, pipelining and table lookup methods.
With 495 nsec. to tile each pixel, implementing the pixel tiler will not push
technological limits.

Figure 6.7 illustrates the overall visibility processor architecture. Visi-
ble polygons arrive from the clipping subsystem. The polygons need not be
sorted by virtual processor. The object preprocessor fractures polygons into
trapezoids and loads the trapezoids into the object processors. The object pre-
processor also constructs the trapezoid property table (TBT). The pixel tiler
generates pixels in yz order and transmits these pixel values to the frame store
where they are stored for display. The frame store is double buffered so that
one frame is being displayed while the other is being constructed.

With early 1990’s technology, it would seem reasonable to expect that the
visibility processor could be implemented with less than twenty printed circuit
boards. I expect the object processors to occupy ten printed circuit boards
and expect that the object preprocessor and pixel tilers could be implemented
on just a few additional printed circuit cards. If we assume that a visibility
processor can be implemented with sixteen printed circuit boards, then the
entire ANIMAC-1 visibility subsystem could be constructed with 256 printed
circuit cards which would most likely be housed in two racks.

Although the visibility subsystem is only a part of the ANIMAC-1 system,
it will require considerably less space than the equivalent portion of today’s
real-time simulation engines and will offer performance well above that offered
by today’s systems.
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Figure 6.7: The ANIMAC-1 visibility processor architecture.

6.2 Implementing the ANIMAC-2 System

The ANIMAC-2 system extends the ANIMAC-1 system to produce shadowing
effects in real-time. The addition of shadowing effects substantially increases
the amount of hardware needed to implement the visibility processor. This
should not be surprising since the software simulation spent most of its time
performing shadowing computations.

Chapter 4 illustrated that shadowing requires interprocessor communi-
cations. That chapter developed the ANIMAC shadowing algorithm which
divided image generation into three separate tasks. Visible surface determina-
tion determines which surfaces are visible, local shadowing determines whether
pixels lie in shadows cast by objects within a visibility processor, and foreign
shadowing determines whether pixels lie in shadows cast by objects in other
visibility processors.

Foreign shadowing is implemented by the visibility processors with the
shadow map algorithm which requires only a nearest neighbor processor in-
terconnection scheme. Figure 6.8 illustrates the interprocessor communication
links required in the ANIMAC-2 visibility subsystem architecture. The lines
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between processors represent interprocessor communications channels. Each
processor communicates with its eight nearest neighbors using horizontal, ver-
tical and diagonal channels. Processors on the array boundaries must commu-
nicate with processors on the opposite side of the array; the figure illustrates
that the channels form four tori, one each in the horizontal and vertical direc-
tions, and two in the diagonal directions.
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Figure 6.8: The ANIMAC-2 visibility subsystem requires interprocessor communi-
cations. Lines represent channels between a processor and its eight neighbors.
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The ANIMAC-1 visibility subsystem was capable of producing a visible
surface image of a scene within one frame time. The ANIMAC-2 visibility sub-
system is unable to produce a shadowed scene within one frame time. Instead,
the ANIMAC-2 system requires three frame times to compute a shadowed
image. The ANIMAC-2 system can be built to update the image at slower
than real-time (10 Hz) or may three-way interleave its visibility subsystem to
achieve real-time performance. The majority of this chapter’s discussion will
focus upon implementing a visibility subsystem that can compute a shadowed
frame in three frame periods since the problem of three-way interleaving such
a system poses no new technological problems.

Generating shadowed images requires: (1) computing a visible surface
image, (2) computing local shadowing effects, and (3) computing foreign shad-
owing effects. Table 6.1 illustrates the temporal sequence in which activities
must be scheduled to generate frame ¢. The table also illustrates how three-
way interleaving may be used to compute subsequent frames ¢+ + 1 and 1t 4 2.
Activities are subscripted to indicate the frame to which they contribute.

71 T2 73 T4 75
LSM; CSM; Shad;
Vis; Shad;
Local; Shad;
LSMH—I CSM{-}J ShadHl
ViSH_l Shad,‘.H
Local; Shad;
LSM,, ¢ CSM; o Shad, , 5
Vis; 1o Shad; o
Local; 1 Shad; o

Table 8.1: Task scheduling for the ANIMAC-2 Visibility Subsystem.

Table 6.1 illustrates that the foreign shadowing algorithm dictates system
timing. Foreign shadowing must be broken down into three distinct compu-
tational phases. First, local shadow maps (LSMs) must be computed. After
LSMs have been computed, composite shadow maps (CSMs) are created by
merging data from LSMs. Finally, CSMs are sampled to determine whether
a visible surface lies in a shadow cast by a foreign object. The ANIMAC-2
allocates a frame time to each of these three tasks which are denoted as LSM;,
CSM; and Shad;.

Visible surfaces require only one frame time to compute and are denoted
in the table as Vis;. Visible surfaces are computed at the same time as LSMs
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because they must be computed prior to local shadowing and shadow map
sampling.

The ANIMAC-2 implements local shadowing with a shadow volume algo-
rithm. This algorithm requires the visible surface image to have already been
computed. Therefore, the local shadowing task, Local;, must follow Vis;.

Table 6.1 shows that no two instances of a task are ever scheduled concur-
rently. This suggests that three-way interleaving may be implemented without
replicating processing units if appropriate buffering is implemented. Interpro-
cessor communication occurs only during the CSM; task which suggests that
the interprocessor communication channels need not be replicated for three-
way interleaving.

Figure 6.9 presents a detailed functional diagram of the ANIMAC-2 visibil-
ity processor architecture. The processor is divided into five major subsystems.
The visible surface processor (VSP) uses a processor per object architecture
similar to the one employed by the ANIMAC-1. The local shadowing proces-
sor (LSP) uses a new processor per object architecture which will be discussed
later. The local shadow map processor (LSMP) uses a processor per pixel ar-
chitecture to create each LSM. The composite shadow map processor (CSMP)
uses a simple merging processor to create each CSM. The illumination proces-
sor (IP) determines the color of a subpixel taking into account whether the
subpixel needs to be shadowed.

Figure 6.9 illustrates the visibility processor receiving polygons from the
clipping subsystem over three links. The clipping subsystem clips visible poly-
gons against each virtual processor’s clipping space. These visible polygons are
received by the VSP and LSMP over different links. The clipping subsystem
also clips shadow volume polygons against each virtual processor’s clipping
space. Shadow volume polygons are received by the LSP.

Visibility processors communicate with each other over their interproces-
sor communication channels. Each virtual processor communicates over eight
virtual channels. Figure 6.9 shows these virtual channels being multiplexed
onto eight physical channels by the channel multiplexor.

The visibility processor also contains several memories which are shared
between subsystems. The subpixel buffer (SPBUF) is used to store information
about visible surfaces on a subpixel basis. Information is stored in the SPBUF
by the VSP and accessed by the LSP and the IP.

The local shadow buffer (LSBUF) contains a bit for each subpixel. This
entry indicates whether the subpixel lies in a locally cast shadow. The LSBUF
is written to by the LSP and read from by the IP.

The composite shadow maps (CSM) are illustrated as part of the CSMP.
Each CSM is implemented as twelve QSMs. CSMs are written by the CSMP
and inspected by the IP.



- 155 ~

VOssANSd $Avion0n
ANIMQAYHS MOdYHS
v yossMredd w4305 IalsiA
P e e _ prmm e
' 1 i !
“ UoS32700d Fo1y " ” “
(1xzrsxss) " Ivntoq moaiis 1 ; T 1304 gag "
1 1 .
| re0d !
X ﬁ ' (bg ¥ 2tsnus) 1 1
ad41ng 1 w.amau“uk (xad 907 k1 ! | e e
.15 l
moqu s _ . 3131 ! 3a4103 ) Twact as a7t 173130 |
70207 1| Ameron 052004 moavhs ! 7ax1d4305 ! 317 2dsd "
“ moqvns t “ 2055200Y ) LI3LyQ 1
!

1 1 1 "
b e e e e a L e e N

e e e e e e
' " i
1 v 1
1 N 4 1 \
nas 3vyna é — Yossdroyd A “ReAd !
. o X GA TS ERREDN 9V s I
Tandans ] WosS3j0¥d — he— le—— -4 |
NOLLYNIWA 17| — b s —’r F——1 ® 203d ws1 |
51 w1 t

W05A20%d.
AvAdaw !
Fﬂ'}. _JHIII} L !
5t L i
wossdr0ad 51 WS 7 ! St 7084 WS |
oty L !
i 7

1 ! t
L e Foxad K ey U G U U -

“0yd dwiv MmIVYS Firsadio)

REGLLE ]

NI

spounsidn
[T
TAAATH)

203533004 dyvi modyis 1407

HRiye
1181514

SAIALHO
T4
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Figure 6.9
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The following sections discuss the implementation of the visibility proces-
sor subsystems.

6.2.2 Visible Surface Processor

The ANIMAC-2 visible surface processor uses a processor per object ar-
chitecture similar to the one used in the ANIMAC-1 system. The object pre-
processor and the object processors are identical. The pixel tiler has been
changed. Instead of computing the final color for a pixel, it now tiles subpixels
and stores these subpixel values in a subpixel buffer (SPBUF).

The processor per object architecture has previously been discussed in
some detail. This discussion will focus on the design of the pixel tiler and
subpixel buffer.

6.2.2.1 Pixel Tiling Processors

The pixel tiler receives a trapezoid identifier (TID) from the object processor
pipeline every clock cycle (495 nsec.). Several TIDs may arrive for each pixel
that has to be tiled. The previous discussion assumed that the pixel tiler must
on the average consider three TIDs per pixel. Each tiled pixel requires the
tiling of some number, s, of subpixels. Since the pixel tiler may have to tile a
pixel for each TID received, it must be capable of generating s subpixels every
clock period. The ANIMAC-2 architecture tiles each pixel on a four by four
subpixel grid, thus sixteen subpixels must be computed every 495 nsec.

The ANIMAC-2 pixel tiler has been designed to tile subpixels differently
than Weinberg’s original pixel tiler. Weinberg’s pixel tiler tiled a two by two
pixel region around the pixel center. He assumed that a visible surface’s depth
and color were constant over this region. The ANIMAC-2 pixel tiler differs
in that it need only compute the subpixels within a one by one pixel region
around the pixel center. So that subpixels may be shadowed correctly, the
ANIMAC-2 pixel tiler does not assume constant depth and color over the pixel
region.

The ANIMAC-2 pixel tiler is implemented as a pipelined system. Fig-
ure 6.10 illustrates that the pixel tiler consists of a trapezoid intersection pro-
cessor (TIP) and four row processors (RP). The trapezoid intersection pro-
cessor receives a TID from the object processor pipeline and clips the TID’s
trapezoid against the current pixel’s y extents. This produces another trape-
zoid which is passed onto the first row processor.

Each row processor is responsible for the tiling of four subpixels. RPs
compute, for each subpixel, trapezoid depth and surface normal vectors. RPs
operate by receiving trapezoids from their left neighbor and tiling their sub-
pixels. Each row processor strips its scan-line from the trapezoid and passes
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Figure 6.10: The ANIMAC-2 pixel tiler architecture.

this new trapezoid to the RP to its right. Each RP can store its four subpixels
in the SPBUF memory.

The TIP operates by receiving a TID and a opcode from the object proces-
sor pipeline. The opcode indicates what type of operation is occurring. During
scan-conversion, the opcodes indicate that the TID should be associated with
a new pixel or with the current pixel. Processors keep track of the current
pixel by updating a pixel counter when new pixel opcodes arrive.

To determine the y extents of the TID’s trapezoid, the TIP first retrieves
information describing the trapezoid from the trapezoid property table (TPT).
A trapezoid’s boundaries are described to subpixel resolution with a fixed point
representation. Surface normals vectors are also computed using a fixed point
representation. The following values are stored in the TPT and describe a




trapezoid.
Yt

Yb
]
Zy
bz
bz,
z
62p
62
N
6N,
6Np
86Ny
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Top scan-line y value

Bottom scan-line y value
Left-most z value on yz
Right-most z value on y;

Left edge dz/3dy

Right edge 0z/dy

Depth at (z;, y¢)

Change in depth per pixel, i.e. 8z/9z
Change in depth per scan-line
Normal vector at (z;,yt)

Change in N per scan-line

Change in N per pixel, i.e. 9N/dz

Change in Np per scan-line

A rectangular region surrounding the current pixel can be described with
its z and y edge coordinates as:

pt
4
bl
Pr

Top subpixel scan-line y value
Bottom subpixel scan-line y value
Left subpixel edge z value

Right subpixel edge z value

The intersection of a trapezoid and a rectangular pixel region can be
computed by intersecting the trapezoid with the pixels y extents. Since the
trapezoid is visible at the current pixel, we know that y; > py. If y; < pr we
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compute another trapezoid which is clipped to y; as:

y := min(yz, pt);
Y 1= b
z) =z, + bz(ye — pt);

2 =z, + 8z, (yt — pt);

5:; = dzy;
6z, = bzy;
2= 2+ 8z(yt — pt);
52; 1= b2p;
52{ = bzp;

N := N + §Ni(yt — pt);
5N1’J := 6Np + 66 Np(yt — pt);
§N| == 6Ny;

66 N;', 1= 66 Np;

Only the boundary coordinates, depth, and normal vector are modified
during this computation. These variables can be computed more efficiently by
regrouping as:

y; == min(yt,pt);
AY =yt — pt;

:z:; = z; 4+ bx;Ay;
a:', =z, + 6z, Ay;

Z = z+ 6zAy;
Nj:=N;+ 5Ny, Ay;
N} := N3+ 5N12Ay;
N§:= N3+ 5N13Ay;

5N;,1 = Np; + 86Ny, Ay;
5N1',2 = Np, + 66 Np, Ay;
Ny, = Npg + 66 Npz Ay;

This computation requires nine multiplications, ten additions, and one

comparison to be performed every 495 nsec. The longest computation path
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requires the sequential computation of two additions and one multiplication.
Figure 6.11 illustrates how this computation can be implemented in hardware.

The different computations have to be computed to different precisions.
We know that any trapezoid is constrained to lie in the portion of the subpixel
space associated with its virtual processor. For the ANIMAC systems, a virtual
processor occupies a 32 by 32 pixel region. Each pixel is tiled on a 4 by
4 subpixel grid. Thus each virtual processor region occupies a 128 by 128
subpixel region which implies that the difference Ay can be represented as a
signed 8 bit integer.

The trapezoid is clipped against y; only if Ay > 0. This implies that each
of the multiplies requires multiplying an n bit signed integer by a 7 bit unsigned
integer. Both 6z; and éy; can be represented as 15 bit signed integers. If z is
represented as a 24 bit unsigned integer, then §2z; needs to be represented as
a 32 bit signed integer. Normal vectors can be represented with 16 bit signed
integers which suggests that §N; and 6 Ny be represented with 23 bit signed
integers. 66 Ny requires additional precision and should be represented with a
30 bit signed integer.

Thus the longest computation path involves the computation of 2’ which
requires an 8 bit subtraction, a 32 by 8 bit multiplication and a 24 bit addition.
The multiplication dominates the computation time. A 32 by 8 bit multipli-
cation can be implemented with two 16 by 8 bit multiplications and one 24
bit addition. Commercially available 16 by 16 multipliers can produce a 32
bit product in 75 nsec. The computation of z + §2;Ay can easily be computed
in 225 nsec. which is much faster than the required computation time of 495
nsec. This extra 270 nsec. can be used to fetch the trapezoid values from the
TPT. The TPT can be implemented with MOS dynamic RAMs.

Figure 6.12 illustrates the structure of the row processors. The row pro-
cessor consists of five subcomponents. The trapezoid computation processor
(TCP) strips the row processor’s subscan-line from the trapezoid and passes
the new trapezoid onto the next row processor. The z range processor (XRP)
computes the intersection of the trapezoid with the row processor’s subscan-
line and passes a description of this intersection onto the subpixel processors
(SPP). Each SPP computes the trapezoid’s depth and surface normal at the
subpixel and retains these values if the depth is less than the subpixel’s current
depth. SPPs are also responsible for storing the SPP values in the subpixel
buffer memory (SPBUF).

When the TCP receives a trapezoid, it strips its scan-line from the trape-
zoid and passes the remaining trapezoid and opcode onto the next row pro-
cessor. The TCP determines whether its scan-line, y, intersects the trapezoid
by checking if y5 < y < y:. If y > y¢, the row processor passes the trapezoid



- 161 -

s P
I ‘r
i 2
so fe— E 2 —v 3
— 3 e 3 °
- © i »
5° 1
LR
coIaqaw » F
] -
+
o s
~ g
3 ol g
£
g ol <
»
>

-3k wns ¢ O

A
Py [

Figure 6.11: One possible implementation of the trapezoid intersection computation.
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Figure 6.12: The Row Processor can be implemented in a pipelined fashion with six
specialized processors.

to the next processor unmodified, otherwise it removes a scan-line from the
trapezoid by modifying:

vi= g — L

z) =z + by

a:', = zy + 0z,

2=z 462,

N{ = Ny + 5N11;

Nj := Noy + 5N12;

N} = N3+ §N,;
5N£1 = 6Np, + 66Ny, ;
5N1’)2 := 8§ Np, + 66 Np,;
SNy, = 6Npy + 66 Nys;
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This computation only requires ten additions and can easily be imple-
mented in well under 495 nsec.

The XRP determines the z extents of the trapezoid on the row processor’s
subscan-line. It computes three values which are passed along to the subpixel
processors. These values are used to indicate whether the current scan-line is
within the trapezoid and which subpixel processors are within the trapezoid.
These values are:

sy Subpixel scan-line intersects trapezoid (1-bit)

8z, Left-most active subpixel (2-bits)
Szy Right-most active subpixel (2-bits)

These values are computed as:

sy =(Y=utAy=wu);
8z, = max(z, py);

8z, := min(zy,pr);

These three values along with the trapezoids TID, z, 625, N, and 6§ Ny are
passed to the subpixel processors. The pixel depth and surface normal must
be correctly computed for the first pixel if z; < p; as:

2= 2+ 82p(z; — p1);
Nj := Ny + 6 Np, (z1 — m);
Nj := Nz + 6Ny, (21— p1);
Nj := N3+ 6Ny, (21— p1);

These computations require five additions, four multiplications and four
comparisons. These operations can easily be computed in the required 495
nsec. with today’s technology.

Each subpixel processor receives these values from the processor to its left.
The SPP compares the subpixel depth with its subpixel depth and updates its
visible trapezoid if the new trapezoid is closer.

The SPP maintains information about the surface which is currently visi-
ble at its subpixel. This information consists of the subpixel depth, trapezoid
TID, and surface normal vector. The SPP potentially updates its visible sur-
face every clock period. It receives information from the preceding processor
and first checks whether its subpixel lies in the interval [sz;,sz,]. If it is in
this interval, the SPP attempts to update its visible surface and modifies the
values of z and N that it passes onto the next SPP.
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The SPP updates its visible surface by comparing the arriving subpixel
depth with the stored subpixel depth. If the arriving depth is smaller, the SPP
stores the arriving depth, TID, and surface normal vector.

The SPP also must update the values of z and N. These values are
computed as:

2 =z4 bzy;
N{:=N; + 8 Np,;
N3 := N3 + 6§ Np,;
Ni{:= N3+ 6 Npg;

These four additions plus the conditional update of the visible surface can
be performed in much less than the 495 nsec. The remaining time can be used
to store the subpixel information in the SPBUF when a new pixel is to be tiled.

The subpixel buffer (SPBUF) stores visible surface information at the
subpixel resolution. These subpixels are later checked to see if they lie in
shadow. Finally, subpixel colors are computed by the illumination processor
(IP) and stored in the frame store for viewing.

Each SPBUF entry contains entries for subpixel depth (24 bits), surface
identifier (17 bits), and surface normal vector (48 bits) requiring a total of 89
bits of storage per subpixel. The SPBUF must be capable of storing sixteen
subpixel entries every 495 nsec. The SPBUF can be implemented with 200
nsec. memory if it is organized so that eight subpixels can be written simulta-
neously. This would require a data buss that is 712 bits wide. Narrower data
busses could be implemented by utilizing faster memories.

6.2.3 Local Shadowing Processor

The ANIMAC-2 system implements a local shadowing algorithm fashioned
after the shadow volume algorithm [CROW77A]. This implementation makes
use of a new processor per object architecture developed by the author. This
architecture resembles Weinberg’s visible surface architecture [WEINBES2] but
instead of determined which surface is visible at a point, this architecture
determines whether points on visible surfaces lie in shadow. In the ANIMAC-
2, these points are the subpixels computed by the visible surface processor.

Figure 6.9 illustrates the local shadowing processor per object architec-
ture. The clipping subsystem creates shadow volumes and clips the shadow
volume’s faces (shadow polygons) against each virtual processor’s clipping vol-
ume. The clipping subsystem delivers shadow polygons to the shadow volume
preprocessor (SVP) ordered so that a shadow volume’s shadow polygons arrive
as a group.
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The SVP fractures the shadow polygon into trapezoids and loads these
trapezoids into the shadow polygon processors so that all of a shadow volume’s
trapezoids are loaded into adjacent processors. These adjacent processors are
collectively referred to as a shadow volume region.

After a shadow polygon processor has been loaded, its state consists of
geometrical information that describes the trapezoid’s boundaries and depth,
and two additional bits of information which are stored as processor flags.
The F flag bit indicates whether the trapezoid faces towards or away from the
viewer. The P flag bit indicates that the processor is the last processor in a
shadow volume region.

The local shadowing processor pipeline operates by passing opcodes and
data down the pipeline. An opcode and datum are presented to the first
shadow polygon processor by the shadow volume preprocessor and are passed
from processor to processor. Under certain conditions, a processor may alter
the opcode but it can never alter the datum.

The opcodes consist of instructions to initialize the processors, to update
scan-line variables, and to shadow a subpixel. Subpixels are shadowed by
propagating the subpixel’s depth down the processor pipeline. Information
about the subpixel’s shadowing state is encoded within the opcode using four
shadowing states. The shadowing states are:

U
(

Shadowing is undetermined.

—~— S

The subpixel is behind a frontfacing trapezoid.
I
(S

The subpixel is in front of a backfacing trapezoid.

—~

The subpixel is in shadow.

As the subpixel depth propagates down the pipeline, each processor in-
crementally computes the depth of its trapezoid at the current subpixel and
compares its depth with the subpixel depth. The subpixel’s shadowing state
is then modified depending upon the results of the depth comparison and the
processor’s state. When the subpixel is shifted out of the pipeline, the shadow
volume post processor observes the shadowing state and records the subpixel’s
shadowing state in the local shadow buffer (LSB).

This architecture implements the shadow volume algorithm through a
sequence of simple shadowing state transitions. A subpixel enters a shadow
volume region in one of two shadowing states. The shadowing state may be
unknown (U) or in shadow (S). Since the subpixel must enter a shadow volume
region in these two shadowing states, it also must exit the region in one of these
two states. Shadowing states may make the transition from (U) to (S) within
a shadow volume region.
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The shadow volume algorithm implies that a subpixel lies in shadow if
the subpixel lies in the interior of a shadow volume. If the scene environment
is constructed from convex polygons, the test to decide if a point lies inside
a shadow volume is simplified to checking whether the point lies behind a
frontfacing shadow polygon and in front of a backfacing shadow polygon. Table
6.2 shows that simple shadowing state transitions can be used to implement

this decision.

Pixel Shadowing State Transitions

F = Frontfacing F = Backfacing

Pixel State 2t < Zp 2t > zp zt < zp 2t > 2Zp
(v) (B) (U) (U) (1)
(B) (B) (B) (B) (S)
) (S) (1) (1) (1)
(3) 3) (8) (s) (3]

Table 6.2: Pixel Shadowing State Transitions. z, represents the subpixel depth. 2z
represents the trapezoid’s depth.

A subpixel’s shadowing state must be restored to either (U) or (S) by the
last shadow polygon processor in a shadow region, i.e. when P = 1. Table
6.3 illustrates a shadowing state transition that is applied by processors with
P =1 after the shadowing state transition of Table 6.2. These two shadowing
state transitions can be combined into one state transition that depends upon
the flag bits F' and P and the results of a depth comparison.

Pixel Restoration State Transitions
Pixel State Next State
(U) U)
(B) (U)
() )
(S) (S)
Table 6.3: Pixel states are restored to either the (U) or (S) state by the last processor

in a shadow volume region.

The idea of using a state transition function to implement the shadow
volume algorithm was also used in the author’s software implementation de-
scribed in Chapter 5. The processor per object implementation is simpler than
the software implementation because the scene model is constructed from con-
vex polygons. A state transition technique exactly like the one used by the
software implementation can be implemented in hardware to handle shadow
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volumes cast by non-convex polygons. The software shadowing state transi-
tion requires that polygons be tiled carefully. The shadowing state transition
proposed here allows the shadow polygon processors to tile shadow polygons
without worrying about silhouette and interior edges.

Operation of the shadow polygon pipeline can be broken down into three
phases. During the load phase, trapezoidal information is loaded into the
shadow polygon processors. During the shadowing phase, processors incre-
mentally determine whether their trapezoid is visible at the current subpixel
and if so, perform the shadowing state transitions of Tables 6.2 and 6.3. Dur-
ing the scan-line update phase, processors update trapezoidal values that need
to be updated for each new scan-line.

A description of the shadow polygon processor behavior during these three
phases requires first describing how trapezoids are represented. Trapezolds are
conveniently described with the nine values recommended by Weinberg. All
values must be described to the resolution of the subpixel image. These values
are:

Yt Top scan-line y value

¥b Bottom scan-line y value
z; Left-most z value on y;
Ty Right-most z value on y;

6z, Left edge dz/dy
Sz, Right edge dz/dy
z Depth at (z;,yt)
b2y Change in depth per subpixel, ie. dz/dz
62; Change in depth per scan-line

Figure 6.12 illustrates the shadow polygon processor architecture at the
register level. This implementation is similar to the one proposed by Weinberg.
An opcode and a datum arrive at the processor’s input port. The control logic
interprets the opcode to effect the instruction. Three classes of instructions
are encoded in the opcode. The Load instructions are used to initialize the
processor’s state. The Inc instructions are used to perform scan-line updates
of y¢, ¥, ], Zr, and z. The Piz instructions determine whether a subpixel
should be shadowed. The four shadowing states are encoded in the four Piz
instructions. Table 6.5 lists the opcodes and describes their functions.

Table 6.5 indicates that none of the instructions modify the datum d' and
only the Load instructions and three of the Piz instructions modify the opcode
op'. The Load instructions stores datum bits in the various registers. The
five Inc instructions use the processor’s adder to perform scan-line updates to
values stored in the registers. The four Piz instructions possibly modify the
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Figure 6.12: Shadow Polygon Processor architectural detail.
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NOP | Do Nothing
op' « NOP d «—d
Reset I Reset Processors and Enable Loading
I«1
T+0 B«+0
op' — Reset d«—d
LoadY ! Load Y and Flag Registers
if (I=1)
y; + d{0:8) yp — d(9:17)
F — d(18) P« d(19)
op' — NOP d«—d
else

op' — LoadY d—d

LoadX i Load X Registers
f({I=1)
z; «— d(0:8) z, — d{9:17)
op' — NOP d—d
else

op' — LoadX d—d

LoadXL | Load Left Edge Register
if (I=1)
6z « d(0:17)
op' — NOP d«—d
else
op' — LoadXL d—d
LoadXR | Load Right Edge Register
if(I=1)
8z, «— d{0:17)
op' — NOP d—d
else

op’ + LoadXR d—d

Table 6.5: Shadow Polygon Processor opcodes and their functional descriptions.



- 170 -

LoadZP ] Load 6zp Register
if(I=1)
§zp «— d(0:31)
op' + NOP d«—d
else
op' — LoadZP d—d
LoadZ | Load Z Register
if (I=1)
z « d(0:23)
op' — NOP d«—d
else
op' +— LoadZ d—d
LoadZL | Load 62 Register
if(I=1)
§z; — d(0:31)
op’ — NOP d—d
else
op' «— LoadZL d—d
I~0
IncXL | Scan-line update z;
z«0
T — 1+ 5:1:[ L=0
op' «— IncXL d«—d
IncXR [ Scan-line update z,
Ty — Zy + 8z, R=0
op' — IncXR d«d
IncZ [ Scan-line update z
ze—zp—z+ 62
op' — IncZ d—d
IncYT ] Scan-line update y:
yt —yr— 1 T—(y=0VT
op' — IncYT d—d

Table 6.5 (cont.): Shadow Polygon Processor opcodes and their functional descrip-
tions.
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IncYB | Scan-line update y,
¥p — yp— 1 B~ (yy=0)VvB
op' «+ IncYB d«—d
PixU | Determine Subpixel Shadowing
L—(z;=2z)VL R—(zy=2z)VR
if (L)
2zt — 2zt + 62z
z—z+1
op’ « Pix? d «—d
PixI | Determine Subpixel Shadowing
L~ (r;=2)VL R+ (z,=2z)VR
if (L)
zt—zt+ bz
z—z+1
op' — Pix? d —d
PixB | Determine Subpixel Shadowing
L—(zj=2z)VL R+~ (zy=2z)VR
if (L)
2zt +0zp
z—z+1
op' — Pix? d—d
PixS | Determine Subpixel Shadowing
L—(z;j=2z)VL R—(z, =2z)VR
if (L)
etz
ze—z+1
op’ — PixS d«—d

Table 6.5 (cont.): Shadow Polygon Processor opcodes and their functional descrip-

tions.

opcode if the subpixel is inside the processor’s trapezoid and update certain
trapezoidal values.

The implementation of the Load and Inc instructions is straightforward
and can be implemented with a small control logic PLA. The interesting com-
putations take place during the Piz instructions. Pixel shadowing state tran-
sitions are implemented by the Nezt State Logic unit based upon inputs from
the Eztent Logic, Control Logic, Depth Comparator, and the trapezoid state

flags.
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Seven one-bit state flags are needed by the shadow polygon processor.
Two of these seven flags are set by the Load instructions. These two flags are
the F flag, which indicates whether the trapezoid is front or backfacing, and
the P flag, which indicates whether the processor is at the end of a shadow
volume region. Another flag, the I flag, is used during processor loading.

Two other flag bits are updated once per scan-line by the Inc instructions.
These flags are the T flag, which indicates that the current scan-line is equal
to or less than y; and the B flag, which indicates that the current scan-line is
equal to or less than y;.

The remaining two flags are updated for each subpixel during the Piz
instructions. These flags are the L flag, which indicates whether the current
subpixel z coordinate is equal to or greater than z;, and the R flag, which
indicates that the current subpixel z coordinate is greater than z,.

The Eztent Logic, illustrated in Figure 6.13, determines the values of L
and R. During each scan-line update, the z-counter is zeroed and the L and
R flags are reset. The z-counter is incremented by each Piz instruction and
maintains the current z pixel coordinate. The L flag indicates that the current
pixel is to the left of the trapezoid’s left edge. The L flag is set when z; = =z.
The R flag indicates that the current pixel is to the right of the trapezoid’s
right edge and is set when z, = z.

Three of the Piz instructions require that the incoming subpixel depth
be compared with the trapezoid’s depth. Depths are represented as 24-bit
unsigned integers. The depth comparator produces two exclusive outputs, Less
and More. Less indicates that the subpixel depth is less than the trapezoid’s
depth while More indicates the subpixel depth is greater than the trapezoid
depth.

The Piz instructions also require that the trapezoid depth value be up-
dated if the current subpixel is inside the trapezoid. The adder always com-
putes the sum of z and 62z, which is stored in z if the L flag bit is set.

Shadowing state transitions are implemented by the Nezt State Logic.
This state transition logic can be implemented in a small PLA or with discrete
logic. The next state logic, illustrated in Figure 6.14, computes the Alter
signal which indicates that the opcode is one of {PizU,Pizl, PizB} and that
the current subpixel is inside the trapezoid. The next state logic may modify
the opcode’s shadowing state field op(0:1) only if Alter is asserted. Alter is

computed as:
MATA-BALA-R

M is produced by the control logic and indicates that the opcode is one of
{PizU, PizI PizB}. T A-B indicates that the current subpixel is within the
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CLK —> L CLK ™ P R

Figure 6.13: The Eztent Logic determines the values of the L and R flag bits for
each subpixel.

trapezoid’s y extents. L A —~R indicates that the current subpixel 1s within the
trapezoid’s z extents.

Since the majority of shadow polygon processor instructions are Piz in-
structions, the time required to perform the Piz operations determines the
overall performance of the local shadowing processor. The previous discussion
revealed that during a Piz instruction, the polygon processor must perform
three computations. It must compare two 24-bit depth values, add two 32-
bit values, and perform the shadowing state transition. Since the comparison
and addition are performed in parallel, the polygon processor requires a clock
period long enough to perform the addition and the shadowing state transition.

The ANIMAC-2 system requires that the local shadowing processor op-
erate fast enough that it can determine local shadowing for n, subpixels and
n; shadow polygon trapezoids. The value of n, is determined by the image
resolution, the number of physical processors, Ny, and the subsampling rate s.
For the ANIMAC-2, n; is equal to 262, 144.

The value of n; has not yet been determined. Earlier we decided that the
visibility processors had to be designed to handle 8,250 frontfacing polygons
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Figure 6.14: The Nezt State Logic performs the shadowing state transitions when
necessary.

per frame time. For purposes of casting shadow volumes, these polygons can
be considered to be triangles which cast shadow volumes that are triangular
prisms. Each triangular prism is made from three quadrilaterals and two tri-
angles which together require eleven trapezoids. Each shadow volume would
require eleven trapezoids. Since shadow volumes do not need to be cast for
backfacing polygons,

n:; = 6,250 % 11 = 68,750 trapezoids
The total number of clock cycles required to compute a frame, cy, is the
sum of the loading time, the processing time, and the time required to drain

the processor pipeline and can be written as:

Cf:8*nt+ns+nt
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where the constant 8 is the number of instructions required to initialize a pro-
cessor. The total number of clock cycles per second, ¢, is found by multiplying
¢y by the frame rate.

c=30%(8xns+n, + n¢)

Substituting in the value of n¢, we find that:
¢ = 30 * (8 * 68,750 + 262, 144 + 68,750) = 26,426,820 cycles

which suggests that the shadow polygon processor pipeline must operate with
a 37 nsec. clock period. Noticing that most of the clock cycles are used loading
the processor pipeline and draining it, suggests that the clock period can be
increased by decreasing the number of trapezoids, n;.

Crow has suggested several ways for decreasing the number of shadow
polygons that need to be considered. We consider his suggestion that a shadow
volume may be cast from a closed polyhedron’s silhouette instead of from each
of the polyhedron’s polygons. Some analysis shows this to be a worthwhile
suggestion.

Given a closed convex polyhedron composed of n triangular faces, we
wish to determine how many trapezoids, ¢, are required to construct a shadow
volume. To simplify the discussion, consider a spherical polyhedron with faces
of similar area.

The shadow volume cast by a closed polyhedron consists of a front face
which is constructed from the polyhedron’s frontfacing polygons, side faces
which are formed as projections of the polyhedron’s silhouette edges, and a
back face. The silhouette of the polyhedron consists of \/mn edges, each which
casts a quadrilateral shadow volume side face. The front face is composed of
n/2 triangles while the back face can be constructed as a polygon with \/7n
vertices. This results in:

t=3/mn+2(n/2)+Van—-1=4/mn4+n-1

The value of n; depends upon the number of triangles distributed to a
visibility processor. Earlier we determined that each visibility processor must
be designed to handle 6,250 front facing triangles or 13,000 triangles in all.
Table 6.4 tabulates the number of trapezoids to represent shadow volumes
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Silhouette Shadow Volumes

n m t %

4 3250 55833 (81%)
9 1444 42265 (61%)
16 812 35207 (51%)
25 520 30913 (45%)
36 361 27991 (41%)
49 265 25871 (38%)

Table 6.4: Polyhedron silhouettes can be used to reduce the number of trapezoids
needed to tile the shadow volume faces. The percentages indicate the reductions
over the 68,750 trapezoids normally required to tile the shadow polygon faces.

for a scene composed of 13,000 triangles. These triangles are clustered as m
polyhedra of n triangles each.

Table 6.4 suggests that silhouette shadow volume casting can be used to
reduce the number of trapezoids by more than 50%. These results can be used
to determine how many shadow polygon processors are needed in the local
shadowing processor. The rest of this discussion will be based upon the as-
sumption that we need 40,000 shadow polygon processors. This corresponds to
a scene constructed of polyhedra with about ten faces each. We do not expect
the scene to be uniform but suggest that 40,000 trapezoids is a conservative es-
timate for two reasons. First, polyhedra which are to appear smoothly shaded
will be modeled with at least ten faces, and second, the scene will contain
many polyhedra with more than ten faces, which further reduces the number
of needed trapezoids.

The number of shadow polygon processor clock cycles can be recomputed
for the new value of n; as:

¢ = 30 x (8 = 40,000 + 262, 144 + 40,000) = 18,664, 320 cycles

which requires a clock period of 53.5 nsec. The clock period can be lengthened
by loading shadow polygon processors in parallel. If the pipeline of 40,000
processors can be loaded in ten parallel chains, the number of clock cycles
becomes:

¢ = 30 * (8 % (40,000/10) + 262, 144 + 40,000) = 10,024,320 cycles

which requires a clock period just under 100 nsec.
It seems reasonable to expect that the shadow polygon processor can be
designed to perform a 32-bit addition and the shadowing state transition within
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100 nsec. in a CMOS technology. If the system implementor is willing to fur-
ther constrain the shadowing environment, the number of shadow polygon
processors, and the clock rate, can be further reduced. This constraint con-
sists of only marking certain objects as shadow casting. Only objects marked
as shadow casting need to generate shadow volumes. The software implemen-
tation discussed in Chapter 5 used this strategy.

Since it seems reasonable to expect that the shadow polygon processor
can be constructed in the near future to operate at the required speed, the
ANIMAC-2 system utilizes the full 40,000 shadow polygon processors. These
processors require approximately the same amount of silicon area as the object
processors. Therefore, it seems reasonable to expect to be able to fabricate 40
shadow polygon processors on a single die by the early 1990’s.

This level of integration results in a local shadowing processor that is
constructed of 1,000 shadow polygon integrated circuits organized into ten
subsystems of 100 packages each. The local shadowing processor requires twice
as many integrated circuits as the visible surface processor and probably will
require twice the rack space. It would seem reasonable to expect that the
visible surface processor, subpixel memory, local shadowing processor, and
local shadow memory could be fabricated on about 50 printed circuit boards.

6.2.4 Local Shadow Map Processor

The local shadow map processor (LSMP) is responsible for generating local
shadow maps (LSMs) for each of the sixteen virtual processors. The LSMP
consists of a preprocessor and sixteen Bit-Plane processors. The preprocessor
receives visible polygons from the clipping engine and prepares them for the
Bit-Plane processors. Bit-Plane processors tile each polygon in their local
shadow map. One Bit-Plane processor is associated with each of a processor’s
sixteen virtual processors.

Polygons arrive from the clipping subsystem tagged with a virtual pro-
cessor identifier (VPID). Vertices arrive in viewing space coordinates. The
preprocessor is responsible for transforming polygons from viewing space into
ESM space. This transform is implemented as:

Tesm 1= ATy + byy + c2y + d;
€xy + fyv + g2v + h;

Yesm -

The ANIMAC-2 design assumes that each visibility processor will receive
6,250 polygons from the clipping subsystem during each frame time. These
polygons were triangles before being clipped against the virtual processor’s
clipping volume. Clipping against a plane can add one vertex to a polygon.
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Each polygon is clipped against six planes which means that each triangle
could end up having nine vertices when it arrives at the LSMP.

The simulations run in Chapter 3 showed that the two dimensional spatial
subdivision of the image space resulted in little polygon fracturing. Even if
polygons are fractured, the odds of a polygon having to be clipped against
more than one plane is small because the vast majority of polygons are small.

The design of the LSMP is based on the assumption that at most one
half of the 6,250 polygons will have been clipped against one plane. The total
number of vertices arriving from the clipping subsystem, ny, is:

ny = (3,125 % 3) + (3,125 % 4) = 21,875

The performance criteria for the LSMP is established by ny. This par-
ticular choice for n, implies that the LSMP must handle a vertex every 1.52
usec.

The preprocessor must perform six floating point multiplies and six float-
ing point adds every 1.52 usec. This computation only requires 7.9 million
floating point operations per second (MFLOPS). Weitek [WEITEK83] currently
produces 32-bit floating point multipliers and ALUs that operate at 8 MFLOPS
when pipelined. The preprocessor is easily realizable with today’s technology.

ESM coordinate space vertices are routed to the Bit-Plane processors.
Each Bit-Plane processor is associated with a virtual processor and only tiles
that virtual processor’s polygons in its LSM. Bit-Plane processors select their
polygons by inspecting the polygon VPIDs.

If we design to handle worst case performance, each Bit-Plane processor
must be capable of tiling all 6,250 polygons in one frame time. Bit-Plane
processors are implemented using a processor per pixel architecture. Since
LSMs are large, ie. 0.5 Mb, it would be impractical to implement the Bit-
Plane processors with a processor per object architecture since the clock rate
would be excessively high. Processor per pixel architectures operate at a clock
rate that is relatively independent of the number of pixels and therefore work
well for this task.

The processor per pixel architecture used by the Bit-Plane processor is
an adaptation of Fuchs’s Pixel-Plane design. Fuchs’s processors tile convex
polygons, determining pixel depth, and coloring by evaluating the equation
aX + bY + ¢ en masse. The reader should refer to the discussion in Chapter
3 for details on Fuchs’s architecture.

Fuchs’s machine must evaluate aX + bY + ¢ once for each of the poly-
gon’s edges to determine which pixels are inside the polygon. Four additional
evaluations compute depth and pixel coloring. The Bit-Plane architecture only
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needs to determine which pixels lie inside a polygon. This allows the Bit-Plane
architecture to process polygons faster than the Pixel-Plane architecture.

Our earlier discussion suggested that the average polygon has 3.5 edges
and thus requires 3.5 evaluations with the Bit-Plane architecture versus 7.5
for the Pixel-Planes architecture. Fuchs’s group estimates that current Pixel-
Plane chips are capable of scan-converting 1,000 quadrilaterals per frame time
[POULTO85]. We expect that the Bit-Plane architecture can scan-convert at
least twice as many polygons per frame time. Thus, it would seem that a Bit-
Plane architecture implemented today could scan-convert in excess of 2,000
polygons per frame time. Future design and technological improvements are
likely to allow Bit-Plane architectures to create LSMs at the rates demanded
by the ANIMAC-2 architecture.

Each Bit-Plane processor utilizes half a million pixel processors. Clearly,
many pixel processors must be fabricated on a die to make this economical to
construct. Table 6.6 indicates how many integrated circuits will be needed to
construct a 512 Kb LSM processor for various levels of integration.

Processors/Chip Chips
256 2048

512 1024

1024 512

2048 256

4096 128

8096 64
16384 32

Table 6.6: Relationship between the number of Bit-Plane processors per die and the
number of integrated circuits required to implement a 512 Kb shadow map.

The Bit-Plane architecture probably becomes economical to implement
when 2048 pixel processors can be fabricated on a die. This level of integration
implies that the Bit-Plane processor could fit on a single printed circuit card
using surface mount technology. Achieving this level of integration is the only
technological obstacle preventing the LSMP from being built today. Both the
LSMP preprocessor and the Bit-Plane preprocessor are realizable with today’s
technology.

Fuchs’s group reports fabricating a 64 pixel processor Pixel-Planes chip
[POULTO8S]. Figure 6.15 illustrates the Pixel-Plane pixel processor. The pixel
processor consists of a small ALU which implements two bit serial adders
and some control logic plus four registers for storing pixel state informa-
tion. The Z register stores the pixel depth. The F register stores the sum
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of Az+ By+ Cy + Cs. The I and P registers store pixel intensity values. Each
of these four registers requires 24 bits of storage. We quickly realize that the
size of a processor is limited by the space required to store 96 bits of infor-
mation. Fuchs’s reports that the Pixel-Planes chip uses 70% of its silicon area
to implement storage, 20% to implement the bit serial adder-multiplier trees
that compute Az+C; and Az+ Csg, and 10% to implement the pixel processor
ALUs.

Figure 6.16 illustrates the Bit-Plane pixel processor architecture. Since the
Bit-Plane processor only needs to tile the polygon, the Z, F, I, and P registers
are not needed. Furthermore, since depth comparisons are never performed,
the ALU can be implemented with a single serial adder. Only two bits of state
are required. The E bit indicates that the processor is enabled, i.e. currently
inside all of a polygons edges, and the T bit indicates that the pixel has been
tiled. The entire Bit-Plane processor should be implemented in less space than
Fuchs’s Pixel-Plane ALU.

The number of Bit-Plane processors that can be fit on a die with today’s
technology can be estimated from Fuchs’s numbers. The Bit-Plane architecture
eliminates the 70% of Fuchs’s silicon area that was used for storage. Since we
have eliminated 70% of the silicon area from Fuchs’s chip, This suggests that a
64 processor Bit-Plane chip would require about 30% of the area of Fuchs’s die.
It doesn’t seem unreasonable to expect to be able to fabricate 256 Bit-Plane
pixel processors on a die with today’s technology.

Fabricating the desired 2,048 processors on a die only requires eight times
as many devices per die. If the density of components continues to double
every two years, it should be feasible to fabricate chips of this complexity in
the early 1990’s.

The Bit-Plane processor’s clock rate has not yet been discussed. If Az +
By + C is to be computed to n bits precision, the time required to process an
edge is n clock periods. The ANIMAC-2 LSMs require that n be computed to
22 bits. The clock period, 7, can be computed as:

_ T
T 22n,

where 7 is the frame time of one thirtieth of a second and ny is the number of
vertices that must be handled during a frame time. Substituting ANIMAC-2
values, we find:

1

T = = 69 nsec.
30 %22 % 21,875




- 181 —

AX+C, D Control
BY+C2
+ e
Enable
AX4BY+C. +C Register
1 72
Data
Register
| Row
Select

Figure 6.15: Fuchs’s Pixel-Plane processor requires two serial adders and four 24-bit
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Figure 6.16: The Bit-Plane processor requires only one serial adder and two bits of
state information.
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The only computation that has to be performed during this 69 nsec. is a
serial add and updating the ALU’s E state bit. This should be easily imple-
mentable even with today’s technology. Fuchs’s reports that the Pixel-Planes
chip is designed to run at 10 MHz, just a bit slower than the Bit-Plane chip.

6.2.5 Composite Shadow Map Processor

Figure 6.9 illustrates that the ANIMAC-2 visibility processor uses a merge
processor (MP) to construct each CSM. Since each ANIMAC-2 visibility pro-
cessor manages sixteen virtual visibility processors, sixteen merge processors
are used to construct the sixteen CSMs.

The ANIMAC-2 virtual processors form their CSMs as the union of up
to twelve quadrant shadow maps (QSMs). Each of these QSMs is computed
in neighboring processors. Chapter 4 discussed how these twelve QSMs are
formed and mentioned that all twelve of these QSMs are passed to a virtual
processor during the creation of a processor’s four QSMs.

The computation of a virtual processor’s four QSMs is totally indepen-
dent, so each merge processor computes the four QSMs in parallel. I first
discuss how merge processors can be used to construct QSMs and the amount
of interprocessor communications that is required. Later, I discuss the total
amount of interprocessor communications that is required to compute all four
QSMs.

A merge processor creates a QSM by unioning its LSM with the QSMs
of three of its neighbors. A merge processor communicates with its neigh-
bors over virtual channels. Figure 6.17 illustrates how each MP communicates
with its neighboring MPs. The figure shows eight channels connecting merge
processor mgy with its eight neighbors. During the QSM merging process, a
merge processor receives data from three of its neighbors and transmits data
to three of its neighbors. During the creation of the QSMs, the interproces-
sor communications network can be broken down into four separate networks
as illustrated in Figure 6.18. Each channel in this figure is a unidirectional
channel. The vertical and horizontal channels are utilized by all four QSM
computations while the diagonal channels are only used for two of the QSM
computations.

The merge processor’s primary task is to communicate with other proces-
sors. The first part of this section will analyze the amount of communication
that is necessary between processors. The second part will discuss an algorithm
that the merge processor might implement to perform this communication and
create a QSM.
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Figure 6.17: Virtual processors communicate with their eight neighbors over virtual

channels.
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Figure 6.18: Computation of the four QSMs requires can be split into four separate
computations, each with its own interprocessor connectivity.
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Interprocessor communication can be studied by analyzing how informa-
tion propagates through the interprocessor communication network. This anal-
ysis will allow us to compute the rate at which data must be transmitted across
each channel and how much of a channel’s capacity is actually utilized.

The amount of information that passes between processors depends solely
upon the size of the shadow maps. Each virtual processor implements local
and composite shadow maps of the same size. For the ANIMAC-2 system,
each LSM and QSM requires 500 Kb of storage. During the merge operation,
each processor sends the union of its LSM and QSM to three of its neighbors.
The union of a processors LSM and QSM bit maps is another 500 Kb bit
map. Thus, computing a QSM requires the transmission of 500 Kb across each
channel during a frame time.

Transmitting 500 Kb every frame time suggests that the minimum channel
rate is 15 Mb/sec. If the channel is not fully utilized, higher channel rates will
be needed. We present an analysis of the channel rates needed to create QSMs
by analyzing three algorithms for creating QSMs.

The first QSM creation algorithm is identical to the sequential QSM al-
gorithm proposed in Chapter 4 and implemented in Chapter 5 and is called
the Raster Sequential algorithm. Figure 6.19 illustrates a directed graph that
is used to compute one QSM. Nodes represent virtual processors and edges
represent interprocessor communication channels. The QSM computation is
initiated by the root node sending the union of its LSM and QSM to its chil-
dren. Each child processor forms its QSM by unioning the three shadow maps
that it receives with its LSM. QSMs received from other processors are saved
for future use as the processor’s CSM. After the processor has formed its QSM,
it transmits it to its children.

The time, 7, required to create all of the shadow maps depends upon the
maximum depth of the graph, d. Since a shadow map must be received by
a processor before it can transmit its shadow map, the total communications

time for this algorithm is:
Scamd

Cr

where, scsm represents the number of bits that must be transmitted over each
channel, and Cp represents the channel bit rate. We notice that the maximum
depth of the graph is w+h —1, where w is the width of the processor array and
h is the height of the processor array. The previous equation can be rewritten
as:

_ sCsm(w + h e 1)
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QSM1

Figure 6.19: A directed graph can be used to create a QSM.

Which can be rewritten to solve for Cp as:

Scsm(w + h - 1)
T

Cp =

Substituting ANIMAC-2 values for scsm, w, h, and 7, we find the channel
bit rate to be:

Cp = 524,288 + (16 4 16 — 1) * 30 ~ 487 Mb/sec.

Thus, Raster Sequential merging of shadow maps requires virtual channel
rates in excess of 487 Mb /sec. This algorithm is very inefficient when compared
to the minimum channel rate that we earlier computed to be 15 Mb/sec.

The Pixel Sequential algorithm creates QSMs more efficiently than the
Raster Sequential algorithm. Figure 6.20 helps explain how this algorithm
operates. QSM creation can be pipelined by computing the QSM pixels that
fall along a ray. All QSM pixels can be created by raster scanning the ray
across the ESM. This algorithm can be parallelized by scanning multiple rays
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across the ESM. A separate ray may be cast to scan out each QSM that directly
depends upon the ESM. This method requires time proporticnal to the number
of pixels in a QSM plus the propagation delay, €, through the interprocessor
network. This can be written as:

_ Scem t €
Cr

d

Figure 6.20: QSMs can be merged in a pixel parallel manner. The ray illustrates
the current pixel that is being computed. During the computation, the ray raster

scans the QSM.

Substituting ANIMAC-2 values into the equation for 7, and rewriting to
solve for Cp, we find:

Cr = (524,288 + 0) * 30 & 15 Mb/sec.

The Pixel Sequential algorithm performs at the minimum channel bit rate
when the propagation delay € is small. Note that € can be quite long before it
starts to have a substantial influence upon Cg.
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The two CSM creation algorithms both operate similarly. Each algorithm
operates by sending a portion of a processor’s shadow map to its dependent
processors, which in turn do the same. We see two extreme behaviors when
we (1) send the entire shadow map, and (2) send only one pixel of the shadow
map. We can generalize this algorithm by specifying that a processor sends a
packet of p bits to each of its dependent processors. Each of these dependent
processors updates a portion of its shadow map and sends that portion in a
packet to its dependents. Updating a portion of a shadow map requires time
and we model this time as § which is measured in sec./bit. We can model the
time required by this algorithm as:

Scsm V4 p
= ———+5)+ w+h—2 (—+5>
o (2 v op) +( ) (& +ev

The first term represents the number of packets times the time required
to send and process a packet. The second term represents the time required
to drain the pipeline. We can rewrite this equation to solve for channel rate
Cpgr. We find:

(scsm + P(w +h - 2))
T — dp(Scsm + p(w + h — 2))

Substituting ANIMAC-2 values into the equation for Cg, we find:

Cp=

(524,288 + 30 * p)
a5 — 524,288 xdxp— 30 p

Cp=

Table 6.7 tabulates values of C'g for various packet lengths and delay times.
We notice that for reasonable packet sizes and delays, the channel bit rate can
be kept below 20 Mb/sec. The table also shows that this model produces the
same bit rates that were previously calculated for the Raster Sequential and
Pixel Sequential algorithms. The Pixel Sequential algorithm is modeled by
p =1 while p = 524288 models the Raster Sequential algorithm.

The delay term mandates how fast pixels must be accessed from the the
LSM and written into the QSM memory. If data is accessed from the LSM
and QSM memories at 16 bits per cycle, a 10 nsec./bit delay will require less
than 20 Mb/sec. This delay implies that 16 bits of data must be processed in
160 nsec. This suggests that the LSM and QSM memory be accessed in a little
under 160 nsec. The memory access time can be made longer by increasing the
packet size. Notice that if p = 1024, we can still use a 10 nsec./bit delay and
run under 20 Mb/sec. This combination of packet size and bit delays suggest
accessing 1024 bits every 10 usec.
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Channel Bit Rates (Mb/sec)
P §=0 | 6=05] 6=1 | 6=5 | 6§=10 | 6 =50
1 15.73 15.85 15.98 17.07 18.67 73.67
16 15.74 15.87 15.99 17.09 18.68 73.96
1024 16.65 16.79 16.93 18.16 19.98 99.41
4096 19.42 19.61 19.80 21.50 24.09 663.8
16384 30.47 30.95 31.43 35.95 43.83
65536 74.71 77.61 80.74 119.3 295.4
131072 133.7 143.3 154.3 403.3
262144 251.7 287.9 336.3
524288 487.6 644.8 951.6

Table 6.7: Interprocessor channel bit rates computed for various packet lengths, p,
and bit delays § (nsec./bit).

Figure 6.9 suggests that virtual channels can be multiplexed onto channels
between physical processors. The virtual to physical processor mapping assures
that a virtual processor’s neighbor resides in one of its physical processor’s
neighbors. Figure 6.8 illustrated how physical channels wrap around to form
a torus in the z, y, and diagonal directions.

The amount of communications that is required on a physical channel
depends upon the virtual channel bit rate, Cp, the ratio of virtual processors
to physical processors, o, and the number of QSMs which must be computed.
Earlier it was mentioned that four QSMs are computed in parallel using the
processor interconnect illustrated in Figure 6.17. Figure 6.21 illustrates the
bandwidth required on each channel to compute the four QSMs in parallel.
The vertical and horizontal channels must handle 4CRr bits per second while
the diagonal channels only need to handle 2Cpr. Each of these channels is
illustrated as two unidirectional channels requiring half the bandwidth.

If Cp = 20 Mb/sec, each of the eight unidirectional horizontal and ver-
tical channels must handle 40 Mb/sec while the eight diagonal channels need
to handle 20 Mb/sec. The ANIMAC-2 maps sixteen virtual processors onto
each physical processor. Thus the amount of information that flows between
physical processors must be multiplied by 16. We find that the horizontal and
vertical physical channels must handle 640 Mb/sec while the diagonal channels
need only 320 Mb /sec.

The processor intercommunication demands are high but not excessive.
Today’s fiber-optic technology can transmit data in excess of 565 Mb/sec.
[ELECTRS85]. A processor could implement each of its unidirectional channels
with a 320 Mb fiber-optic link. The eight bidirectional interprocessor channels
would require sixteen fiber-optic strands. The interprocessor communication
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Figure 6.21: Bandwidth requirements for each of a virtual processor’s channels.

may be the most difficult part of the ANIMAC-2 system to implement. Al-
though expensive, it is technologically feasible to construct the interprocessor
communication channels.

6.2.6 INlumination Processor

Figure 6.9 illustrates that each ANIMAC-2 visibility processor implements an
illumination processor (IP) for each of its sixteen virtual processors. These
illumination processors read subpixel data from the subpixel buffer (SPBUF)
and determine what color values to assign to the subpixels. Subpixel color val-
ues are stored in the frame store where they are spatially filtered and presented
to the viewer.

The IP discussed in this section implements a Gouraud [GOURAU71] illu-
mination model. The color of a subpixel is described by three primary color
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intensities, I, I, and Ig which represent red, green and blue respectively.
These values are computed as:

Ip=ILip+Ii(N- L)
Ig = Log + Ia (N - L)é
Ip=ILig+14,(N-L)¢

The I, terms represent the amount of ambient light which is added into
every pixel. The I; terms represent the amount of diffuse light which can be
added into each pixel. The actual amount of diffuse light is attenuated by two
factors. The N - L term effects a Lambert Law light intensity function and the
¢ term attenuates the subpixel’s intensity when it is in shadow.

The illumination processor must determine subpixel colors for all of a
virtual processor’s subpixels. In the ANIMAC-2 system, a virtual processor
has a 32 by 32 screen area. Since each pixel is tiled with 16 subpixels, an
illumination processor must color 16,384 subpixels every frame time. This
corresponds to computing a new color every 2.06 usec. This section will show
that the computations can be pipelined so that the IP can operate on a 2 usec
clock.

The IP must perform several tasks. First, it must retrieve the subpixel
data from the SPBUF and LSBUF. Second, it must determine foreign shad-
owing by inspecting the composite shadow map. Finally, it must compute the
subpixel’s color.

Figure 6.22 illustrates the illumination processor architecture as a pipeline
of processes. The subpixel access processor (SAP) retrieves the subpixel data
from the SPBUF and the local shadowing bit from the LSBUF. The viewing
transform processor (VTP) transforms the image space subpixel coordinates
back into viewing space coordinates. The CSM transform processor (CTP)
transforms the subpixel’s viewing space coordinates into CSM coordinates.
The CSM inspection processor (CIP) inspects the CSM to determine whether
the subpixel lies in foreign shadow. The color processor (CP) retrieves values
for I, and I; from a color property table (CPT) which is indexed by the
object’s identifier. The Lambert processor (LP) determines the dot product
N - L. The subpixel color processor (SCP) uses all of this information to color
the subpixel.

6.2.6.1 Subpixel Access Processor

The SAP retrieves a subpixel’s data from the SPBUF and LSBUF. This re-
quires one read access per 2 usec. to be performed by each of the sixteen SAPs.
Thus the SPBUF and LSBUF must be able to deliver a subpixel’s data every
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Figure 6.22: The lllumination Processor can be implemented as a pipeline of spe-
cialized processors.

125 nsec. An earlier discussion suggested that the SPBUF and LSBUF are
accessed at faster rates by the VSP and LSP and thus, the SAP imposes no
additional demands upon these memory systems.

The SAP retrieves the subpixels depth, 2, object id, 7d, and surface normal
vector, N, from the SPBUF. The local shadowing bit, s;, is retrieved from the
LSBUF. The subpixel’s depth is passed onto the VTP. The object identifier
is passed to the CP. The normal vector is passed to the LP and the local
shadowing bit is passed to the SCP.

6.2.6.2 Viewing Transform Processor

The viewing transform processor implements a transform similar to Tp_v1 which
was discussed in Chapter 5. Given a subpixel with image space coordinates
(z,y, z), viewing space coordinates (zy,yy, zy) are computed by equations of
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the form:
ky

- Zk2 - k3

Ty = zy(kgz — ks)

Yv = zu(k6y - k7)
where ki,..., k7 are floating point constants that are determined from the
projection and virtual processor region.

The computation of (zy,yy,2y) requires three floating point additions,
three floating point multiplications and one floating point divide. The total
computation can be performed in the allotted 2 usec. with a floating point
ALU capable of operating at 3.5 MFLOPS.

2y

6.2.6.3 CSM Transform Processor

The CTP receives the viewing space subpixel coordinates (zy, yv, 2zy) and trans-
forms them into CSM space coordinates, (Z¢sm,Ycsm). These coordinate are
computed as:

Zesm 1= aTy + byy + c2y + d

Yesm = €Ty + fyv + 920 + b;

The LTP computation requires six floating point multiplies and six floating
point additions and can be computed with a floating point ALU that operates
at 6 MFLOPS.

6.2.6.4 CSM Inspection Processor

The CIP receives the integer CSM subpixel coordinates and determines if that
subpixel lies in foreign shadow. The CIP checks if zcsm and yesm are within
the LSM array bounds. If the point is in bounds, the CIP computes the array
indices of the subpixel and the eight CSM pixels surrounding the subpixel and
samples these nine CSM pixels. The CIP determines that the subpixel lies
in foreign shadow only if all nine CSM pixels are set. Foreign shadowing is
indicated with the s bit which is passed to the SCP.

The CIP computation requires two range comparisons, nine array index
computations and nine CSM accesses. All arithmetic can be performed with
integer arithmetic. The two range comparisons can be performed quickly with
four comparisons. Each array index requires one multiplication and one addi-
tion. None of these operations requires time even near the allotted 2 usec.

The CSM accesses can be arranged so that all nine accesses have a full
2 usec. Depending upon how the CSM is organized, the nine accesses require
nine, three or one memory read operation. Under worst case considerations,
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the CSM must be read nine times during each 2 usec. which indicates that the
CSM must have a 220 nsec. read cycle time.

6.2.6.5 Lambert Processor

The Lambert processor (LP) computes the dot product N - L. L is the light
source direction vector and can be considered a constant. A new N arrives
with each subpixel. Both N and L are represented with 16-bit fixed point
numbers. N - L is computed as:

(N1Ly + N2Lg + N3L3)

N-L=
V/NE+ NE + N2

The division can be implemented as a multiplication with the reciprocal
of the magnitude of N. Table lookup can be used to evaluate the square root
function and to determine the reciprocal. None of the operations required for
the LP computation requires more than 2 usec.

6.2.6.6 Color Processor

The color processor uses the objects id to retrieve ambient and diffuse colors
from the color property table (CPT). These colors, I, and I; are stored for
each triangle as 16-bit fixed point numbers. The CPT stores six values for
each of the 100,000 triangles and is accessed by all sixteen color processors. It
must be implemented with an effective read cycle time of 125 nsec.

6.2.6.7 Subpixel Color Processor

The subpixel color processor receives N - L, I, I;, and shadowing indicators
s; and sy. It computes the subpixels color by computing:

Ip = Ia’R + IdR(N' L)d)
Ig = I“G + IdG(N -L)¢
Ig = I”'B + IdG(N' L)¢

The shadowing attenuation factor ¢ is either 1 or some constant less than
one if the subpixel lies in shadow which can easily be determined as s; V s5.

The entire computation can be computed with five integer multiplications
and three integer additions in well under 2 usec.

6.3 Conclusions

This chapter has illustrated how the techniques developed in this thesis can be
used to construct two real-time computer graphics systems. The author has
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also presented two new VLSI architectures that are useful for certain computa-
tions. One of these used an object per processor architecture to compute local
shadowing effects. The other used a simplified processor per pixel architecture
to create local shadow maps.

The two systems illustrated in this chapter would be difficult to implement
with today’s technology. Discussions in the chapter illustrated that these sys-
tems will become realizable in the not too distant future. The ANIMAC-1
visibility subsystem will become economically realizable when about 40 object
processors can be fabricated upon a single die. The ANIMAC-2 visibility sub-
system will be economically realizable when: (1) 40 object processors can be
fabricated upon a single die, (2) when 2,048 Bit-Plane pixel processors can be
fabricated upon a single die, and (3) when several hundred megabit channels
become relatively inexpensive. All of these conditions should occur during the
early 1990’s.

Implementing the ANIMAC-2 system requires roughly 80,000 integrated
circuits to implement its local and foreign shadowing calculations. This seems
like a huge price to pay for shadows but when compared to the increased time
demands of the software implementation, this amount of hardware is readily
justified. Still, it is interesting to compare the number of integrated circuits
that would be required if shadowing was implemented solely as a local process.
A few definitions will simplify the discussion.

N, The number of virtual processors (regions)
N, The number of triangles in the scene
] The expected parallel efficiency
Sesm The size of the ESM
k¢ The number of shadow volume trapezoids per triangle

The number of integrated circuits required to implement the ANIMAC
shadowing algorithm can be computed by first determining the number of Bit-
Plane processors required for the LSMs and the number of shadow volume
processors required for the LSP.

LSMs require a number of bits, Nj,,,, that depends upon the size of the
ESM and the number of processors. Ny, can be computed as:

N it Ny = 1;
lsm = | g.emV Ny, otherwise.

The local shadowing processors require a number of processors, Ngyoi,
which is independent of the number of processors and depends only on the
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number of objects, the expected parallel efficiency, and the ratio of shadow
volume trapezoids to objects. N,,,; can be computed as:
No
Nyyor = kt—
Y]

The number of integrated circuits can be computed given two ratios which
describe the number of processing elements that can be fit on a die:
ky The number of Bit-Plane processors per die
ko The number of shadow volume processors per die

With these definitions, N4, the number of integrated circuits required to
implement the ANIMAC shadowing computations can be written as:

Sesm\/_ﬁv + kN,
ky kan
If instead of using the ANIMAC shadowing algorithm, each processor
implements the local shadowing algorithm for all potential shadow casting
objects, N, integrated circuits will be required, where:

NL — F“Nv ktN,
kan
The behavior of N4 and Ny, as functions of Ny, determines which algo-

rithm requires the least integrated circuits for a given Ny, holding constant
all other variables. N, the number of processors for which N4 = Ny, can be

solved for as: )
N! = ( kiksNo )
kiktNo — sesmkan
Substituting in ANIMAC-2 values, we find:

2048 - 6.4 - 50000 2
N} = ( > ~ 1.75

Ny=

2048 - 6.4 - 50000 — 8000000 - 40 - 0.5

The computed value of N} would require some 21, 120 integrated circuits
to be used for shadowing computations. Clearly, N} is so small that it suggests
that having each processor compute only local shadow effects is only feasible
for a uniprocessor under these constraints. N also depends upon our choice
of No, 1, Sesm, kt, k1, and kg and would need to be evaluated for different
environments.

The ANIMAC-2 system requires some 78,500 integrated circuits to im-
plements its shadowing computations. A similar system which computed only
local shadows would require about 256,000 integrated circuits. This exam-
ple very vividly illustrates the savings introduced by the ANIMAC shadowing
algorithm.
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7

Conclusions
and

Future Work

The work presented in this dissertation can be summarized as contributions to
four specific research areas. These include understanding scene composition,
utilizing parallelism in real-time computer graphics, developing a shadowing
algorithm for a parallel environment, and utilizing VLSI architectures to im-
plement high performance real-time computer graphics systems.

The analysis of scene composition led to several interesting findings. The
most interesting discovery was that the spatial non-uniformity of scenes can
be characterized by an asymptotic value. This finding suggests that as more
and more processors are used to render a scene, the distribution of objects to
processors starts to look self-similar. Other findings typically support com-
monly held opinions about scene composition and are reported herein since
the literature is relatively void of such observations.

This thesis proposes that parallelism can be utilized to build very high per-
formance real-time computer graphics engines by assigning processors to por-
tions of the image space. Simulation results suggest that one of the best ways
of assigning processors to image space regions is to perform a two-dimensional
division of the image space and assign several regions to each processor. These
regions are assigned to processors in a way that maps regions topologically far
apart onto a processor and maps neighboring regions onto neighboring proces-
sOrs.

The ANIMAC shadowing algorithm proposes that shadowing computa-
tions be divided into two separate processes. One process determines shadows
cast by objects within a processor’s viewing space subvolume and as such need
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only rely on data local to the processor. The second process determines shad-
ows cast by objects in other processors. This process can be implemented so
that interprocessor communications is limited to a processor’s eight neighbors.

The ANIMAC shadowing algorithm is also well suited to software im-
plementations since it allows image creation to be subdivided into tasks of
manageable proportions. Its structure allows it to be easily ported to, and
make good use of, today’s general purpose multiprocessors.

Several VLSI architectures have been proposed for computer graphics ap-
plications. This thesis suggests ways of utilizing these and new VLSI archi-
tectures to construct computer graphics systems whose aggregate performance
exceeds the performance attainable from any one of these VLSI architectures.

These systems are complex, the most sophisticated will probably require
some 100,000 integrated circuits when it becomes realizable in the 1990’s.
However, this level of complexity is not out of line when compared to today’s
real-time computer graphics systems.

The work presented in this dissertation suggests several areas for future
work. The work on scene analysis was performed on a very small sample space
and studied relatively few of the variables that contribute to scene composition.
Much more work is needed in this area and will hopefully lead to a statistical
model of scene composition that can be used to analyze algorithms and to
drive simulators.

The tesselated regular two-dimensional spatial subdivision techniques ap-
pear to offer relatively high parallel efficiencies. Irregular spatial subdivision
techniques appear to offer higher efficiencies but depend upon being able to
determine an optimal image space partitioning. These irregular spatial sub-
division architectures deserve further attention. It would be interesting to
study whether near optimal partitionings can be determined without requiring
intensive computation.

Shadow Maps have been implemented using bit map representations and
suffer from sampling problems related to their discrete representation. Shadow
Maps may be implemented in other representations that maintain more accu-
rate descriptions of shadow boundaries. Future research might develop shadow
map representations which are much more accurate than bit maps yet can be
implemented efficiently.
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Appendix A

Simulation Results

This appendix contains data from simulations of various spatial subdivision
strategies discussed in Chapter 3. Figures A.1-A.17 correspond to nonvirtual
spatial subdivision techniques. Figures A.18-A.34 correspond to the virtual
spatial subdivision techniques.

Each set of figures is plotted similarly. The nonvirtual figures consist of
four subfigures. The first subfigure is a photograph of the scene that was used
to drive the simulator. The second subfigure illustrates the four methods that
were used to subdivide the image space and is illustrated for configurations of
sixteen processors. The third subfigure is a plot of performance for the cost
metric which corresponds to latency. The fourth subfigure plots performance
for the cost metric which corresponds to throughput.

The virtual plots each contain six subfigures. These six subfigures plot
performance for the six different spatial subdivision techniques. These are
rows, columns, rectangles, virtual rows, virtual columns, and virtual rectangles.
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Figure A.1: X-Wing Fighter (xwf0)
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Figure A.1: X-Wing Fighter (xwf0) (cont.)
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Figure A.2: X-Wing Fighter (xwfl)
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Figure A.2: X-Wing Fighter (xwf1) (cont.)
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Figure A.3: X-Wing Fighter (xwf2)
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Figure A.8: X-Wing Fighter (xwf2) (cont.)
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Figure A.4: X-Wing Fighter (xwf3)
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Figure A.4: X-Wing Fighter (xwf3) (cont.)
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Figure A.5: X-Wing Fighter (xwf4) (cont.)
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Figure A.6: X-Wing Fighter (xwf5)
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Figure A.8: X-Wing Fighter (xwf5) (cont.)
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Figure A.7: X-Wing Fighter (xwf6)
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Figure A.7: X-Wing Fighter (xwf6) (cont.)
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Figure A.8: X-Wing Fighter (xwf7)
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Figure A.8: X-Wing Fighter (xwf7) (cont.)



Figure A.9: X-Wing Fighter (xwf8)
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Figure A.9: X-Wing Fighter (xwf8) (cont.)
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Figure A.10: X-Wing Fighter (xwf9)
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Figure A.10: X-Wing Fighter (xwf9) (cont.)
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Figure A.11: Fractal Landscape (frac8)
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Figure A.11: Fractal Landscape (frac8) (cont.)
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Figure A.12: Fractal Landscape (fracl6)
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Figure A.12: Fractal Landscape (frac16) (cont.)

= i
e =
e -t
N ] \-H_.'\
\\‘\\ ‘.\‘\.\\k\‘\:"ﬂ'\
N i SN,
= e
a BECTANGL
D~
. ‘\’*\‘
\‘\ L'\.COLLMI\S
\\ ™ \GiEDiAN | cluT
N
N
A 10 100 10C0
Number of Processors
File: fraci18.sta, 16341 Polygons
Time = Max(n)
~
N
N
o
N
AN,
.
“Sha.
]
) el
\- e s ROWSE
N\“k:‘?:\
-
YT e N s
"\ T FOLUMNS.
m RECTANGLE
™
1 10 100 1000



- 224 -

Figure A.13: Fractal Landscape (frac32)
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Figure A.18: Fractal Landscape (frac32) (cont.)
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Figure A.14: Fractal Landscape (frac40)
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Figure A.14: Fractal Landscape (frac40) (cont.)
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Figure A.15: Fractal Landscape (frac64)



Relative Time

Relative Time

- 229 -

1.0 %
S
N
ST T
S -
N ™ RSl anN
0.1 N \.\ Nl | [ =
S = =
— N UE
\
\ \.
‘\\ ’*\
™~ \\
0.01 ™ AN
i~
N
0.001 ™
; o 1o 1000

Number of Processors

File: frac64.sta, 65030 Polygons

Time = Max(n)
1.0
~%
N
\\
~
\NN
0.1 R
=
A
Ty
\\.\k\!»\
&:\ -\‘*\‘N‘“‘F‘Ows
N
0.01 \\'§
.
<
AW TS} NPl Wi
W RECTIRNETE
0.001 ™
1 10 100 1000

Number of Processors

File: froc64.sta, 65030 Polygons
Time = Avg(n)

Figure A.15: Fractal Landscape (frac64) (cont.)
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Figure A.16: Fractal Landscape
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Figure A.16: Fractal Landscape (frac85) (cont.)
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Figure A.17: Fractal Landscape (frac96)
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Figure A.17: Fractal Landscape (frac96) (cont.)
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Figure A.18: X-Wing Virtual Simulation Results (xwf0)
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Figure A.18: X-Wing Virtual Simulation Results (xwf0) (cont.)
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Figure A.19: X-Wing Virtual Simulation Results (xwf1)



Relative Time

Relative Time

- 238 -

b
e
N
T
e R
—— i :
\'\\
\\‘t‘
.
‘;
\.
1 10 iRele] 1000
Number of Phnysical Processors

File: xwfi.sta, 108982 Polygons
Time = Max(n)
Method = Columns

T +

SRS Sy
e E
b
\-

1 » 10 100 iRelele]

Numpber of Physiccl Processors

File: xwfl.sta, 10882 PRoiygons
Mex{(n)
Metroag = Tesselatec Columns
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Figure A.21: X-Wing Virtual Simulation Results (xwf3) (cont.)



Relative Time

Relalive Time

— 245 -

/4

\'ﬁé\g

. :
“w
=

0.01 |

1 10 100 1000

Number of Physical Processors

Fite: xwf3.sta, 32008 Polygons

Time = Max(n)

Method = Rectangles
10 :
.0

.

S
N
\\\\';\-L\-
.
ﬁk\ﬁ
Q.1 ™ . \-\
et )
-
S
T
-t :

c.o1 : ;

1 10 100 RRelote

Number of Physical PFProcessors

File: xwf3.sta, 32008 Polygors
Time = Max(n)
Methocd = Tesseictec Rectangies

Figure A.21: X-Wing Virtual Simulation Results (xwf3) (cont.)



alive Time

2

K

alive Time

Re

.01

— 246 -

Number of Physical

Fite: xwf4.sta, 43146 Polygons

|
S I
SRRE 4 —
3
\\Q ta 8 i
Ta
.
=]
-
4 10 1COo

Processors

10060

Time = Maox{(n)
Method = Rows
=
™~
o
SR
) N\-LN
-
e
o L
~ ]
~=
;
t
| i

10
Number of Physical
File: xwfé.sta, 431746 PFPolygons
Time = Maex(n)
Method = Tesseicted Rows

1CC

Processors

Figure A.22: X-Wing Virtual Simulation Results (xwf4)
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Figure A.23: X-Wing Virtual Simulation Results (xwf5) (cont.)
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Figure A.24: X-Wing Virtual Simulation Results (xwf6) (cont.)
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Figure A.25: X-Wing Virtual Simulation Results (xwf7)
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Figure A.26: X-Wing Virtual Simulation Results (xwf8)
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Figure A.26: X-Wing Virtual Simulation Results (xwf8) (cont.)
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Figure A.26: X-Wing Virtual Simulation Results (xwf8) (cont.)
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Figure A.27: X-Wing Virtual Simulation Results (xwf9)
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Figure A.27: X-Wing Virtual Simulation Results (xwf9) (cont.)
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Figure A.27: X-Wing Virtual Simulation Results (xwf9) (cont.)
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Figure A.28: Fractal Landscape Virtual Simulation Results (frac8)
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Figure A.28: Fractal Landscape Virtual Simulation Results (frac8) (cont.)
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Figure A.29: Fractal Landscape Virtual Simulation Results (frac16)
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Figure A.30: Fractal Landscape Virtual Simulation Results (frac32)
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Figure A.30: Fractal Landscape Virtual Simulation Results (frac32) (cont.)
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Figure A.30: Fractal Landscape Virtual Simulation Results (frac32) (cont.)



ative Time

)

Re

Relative Time

- 273 -

Figure A.31: Fractal Landscape Virtual Simulation Results (frac40)

‘o = .
4 S i |
I . ‘
———— e—
AU
e —e———————
N TTT—
\\ e
H — i
i P
; e |
{ ™~ e i
o , N .
RS- "
T H
s’ | |
‘ { N o b
o.ct L l“} IR ERN ! HE NEul
4 “0 1Q0 100C
Number of PFPhysical Processors
Fite froc4O.sta, 4C707 FPolygons
Time = Max(n)
Method = Rows
10 T
1 !
; |
i
1.0 f !
N T i !
\\‘\ \,hg\ . P |
~ -
\\..\"\ —
s i
y \\Qﬁ\
™~
0.1 \\L\ T
s o—
I A
‘ 1 10 kR ele} 1OCC
Number of Physicci Processors
File: froc4O.stc, 407C7 Poiygors
Time = Max{(r)
Metnod = Tesseicted Rows



Relative Time

Relative Time

- 274 -

[

N
N
\\ ! +
S== T
S 5:\ i i
\‘5 ; i
[ i i
o \ L | i
~w
\1
| i | i i . { i
.01 J ! ] | | | 1 ! R
1 10 100 1000
Number of Physical Processors
File: frac4G.sta, 40701 Poiygons
Time = Max(n)
Method = Columns
‘o — X
1.0
.
S
NSO ‘,
"
= -y
\\ 7 i i
=
NQS\‘.\‘
0.1 ™ L Lo
h W
-
I~ |
~ ]
\- \- i i
.04 ! .
. 10 sco 1060

Number of Physicc! Processors

File: frac4C.sta, 4C707 Polygoers

Tirme = Max(n)
Metnocd = Tesselatec Columns

Figure A.31: Fractal Landscape Virtual Simulation Results (frac40) (cont.)
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Figure A.31: Fractal Landscape Virtual Simulation Results (frac40) (cont.)
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Figure A.32: Fractal Landscape Virtual Simulation Results (frac64) (cont.)
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Figure A.32: Fractal Landscape Virtual Simulation Results (frac64) (cont.)
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Figure A.33: Fractal Landscape Virtual Simulation Results (frac85)
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Figure A.34: Fractal Landscape Virtual Simulation Results (frac96) (cont.)
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