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ABSTRACT

In this thesis, I will present various advancements in the modeling of binary black
holes (BBHs): two black holes (BHs) that are in orbit around each other. The BHs
lose energy to gravitational waves, causing them to spiral towards each other until
they eventually merge and leave behind a single BH. BBHs are primary sources
for ground based detectors such as the Laser Interferometer Gravitational-Wave
Observatory (LIGO).

As the BHs are about to merge, they are moving at about half the speed of light
and the spacetime is highly dynamical. All analytical methods break down at this
stage, and numerical relativity (NR) simulations of the full Einstein’s equations are
necessary. These simulations, however, are very expensive, with each simulation
taking a month on a supercomputer. For direct data analysis applications with
LIGO, we need a model that can be evaluated in a fraction of a second. Therefore,
several approximate but fast models that are calibrated to NR simulations have been

developed over the years.

Surrogate modeling provides a more powerful alternative: trained directly against
the NR simulations without added assumptions, these models can reproduce the
simulations as accurately as the simulations themselves, while taking only a fraction
of a second to evaluate on a laptop. In short, surrogate models take BBH NR

simulations from supercomputers to your laptop, without a loss of accuracy.

In this thesis, I will present several state-of-the-art surrogate models including (i)
the first NR based surrogate model to span the full range of frequencies for ground
based detectors, (ii) the first surrogate model for the mass, spin, and kick velocity
of the final black hole after merger, and (iii) extension of an existing precessing
surrogate model to higher mass ratios. In addition, I will present some work in
improving the BBH initial data used in NR simulations, as well as in understanding
the systematic biases introduced by approximate waveform models in LIGO data

analysis.

As we head into the imminent era of high-precision gravitational wave astronomy,
accurate yet fast models such as surrogate models will play a crucial role in maxi-

mizing the science output of our detectors.
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Chapter 1

INTRODUCTION AND SUMMARY

1.1 Setting the scene

A long time ago in a galaxy far, far away, two black holes circled each other with
vicious intent. The black holes were destined for a cataclysmic union that would
unleash more power than is released in the form of light from the rest of the Universe
combined! All of this power was in the form of gravitational waves, ripples in the
very fabric of spacetime, that arrived on Earth on September 14, 2015 [1, 2]. The
signal was received by the twin LIGO [3] (Laser Interferometer Gravitational-Wave

Observatory) detectors, ushering in the era of gravitational wave astronomy.

Figure 1.1: Artist’s impression showing two merging black holes similar to those
detected by LIGO. Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet).

But what exactly are gravitational waves? Gravitational waves solve an old prob-
lem with Newton’s law of gravitation. While this simple law describes nearly all
gravitational effects we see in everyday life, it has a fundamental flaw: it describes
gravity as an instantaneous force. In this framework, if the Sun were to suddenly
vanish, the Earth would immediately stop orbiting and move in a straight line with

its current velocity. Einstein realized that this would violate special relativity [4],
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which says that no force can be transmitted faster than the speed of light. But
according to Newtonian gravity, the Earth would instantaneously react to the Sun’s

disappearance.

Newton's fixed space Einstein’s flexible space-time

Figure 1.2: Depiction of Newton’s fixed space and Einstein’s flexible space-time.
Credit: From the film "Testing Einstein’s Universe" by Norbert Bartel.

This fundamental flaw is resolved by Einstein’s general relativity [5], a geomet-
ric theory describing how gravity arises from the curvature of spacetime, the 4-
dimensional fabric of the Universe. According to general relativity, if the Sun were
to disappear, this information would be transmitted in the form of ripples in the
curvature: gravitational waves. These waves travel at the same speed as light, thus

keeping special relativity intact.

Einstein’s theory also tells us that gravitational waves are incredibly tiny and interact
weakly with matter. They cause distortions in the LIGO detector of about 10~'3
meters [2], which is 10 trillion times smaller than the width of a human hair! This
weakness is both a blessing and a curse. The weak interactions with matter allow the
waves to travel through the Universe nearly unaffected, giving us clean information
about their sources. In contrast, light, our primary source of information about
objects in the Universe, gets scattered and contaminated by interstellar dust and our
own atmosphere. But the weakness of gravitational waves also makes them very
hard to observe. To be detectable on Earth, they need to be generated by extremely
compact, massive objects moving at high velocities, such as two black holes orbiting

each other.

Gravitational waves from such a binary black hole were detected for the first time
by LIGO in 2015 [2], nearly a hundred years after Einstein’s prediction [6, 7]. This
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was the culmination of decades of experimental, theoretical, and computational ad-
vancements with important contributions from over a thousand scientists. Caltech’s
Kip Thorne and Barry Barish, along with MIT’s Rai Weiss, were awarded the 2017
Nobel Prize in Physics for this monumental achievement [8]. LIGO’s detection

launched the field of gravitational wave astronomy and marked the opening of a

never-before accessible window to the Universe.

Figure 1.3: The LIGO Laboratory operates two detector sites, one near Hanford in
eastern Washington, and another near Livingston, Louisiana. This photo shows the
Livingston detector site. Credit: Caltech/MIT/LIGO Lab.

LIGO, now joined by its sister detector Virgo [9], has been going strong since the first
detection. The current number of detections stands at 11 [10]! In the future, detectors
will become much more sensitive, and signals are expected to become routine.
When Galileo turned his telescope to the sky, it marked the beginning of modern
electromagnetic astronomy, a field which revealed a menagerie of unexpected cosmic
wonders such as quasars, pulsars, cosmic microwave background, gamma-ray bursts,
and much more. What new wonders does the field of gravitational wave astronomy
hold for us?



1.2 General relativity

General relativity (GR) is our current prevailing description of gravity, formulated
by Einstein in 1915 [5]. GR describes gravity as a geometric property of spacetime,
the four-dimensional fabric of our Universe. The curvature of spacetime is dictated
by the energy, momentum, and angular momentum of the matter present. And in
response, the evolution of the matter is dictated by the curvature of spacetime. As
John Wheeler eloquently put it: ‘Spacetime tells matter how to move; matter tells
spacetime how to curve.” For example, when the Earth orbits the Sun, according
to GR it is not being pulled by a gravitational force, but instead is merely following
the straightest possible path in the curved spacetime around the Sun (see Fig. 1.4).
In this section I will very briefly mention the main equations of GR, but refer the

reader to Refs. [11-14] for a more detailed study.

Figure 1.4: Warping of spacetime due to the Sun and Earth, represented with a grid.
The spacetime around the Sun is warped due to its mass. The Earth then merely
follows a geodesic, or a locally straight path, in this curved spacetime. However,
since the spacetime itself is curved, this locally straight path becomes a curved path
on a global scale; an ellipse in this instance. The Earth also warps the spacetime
around itself, which causes the Moon to orbit it (not shown here). Credit: LIGO/T.
Pyle.

In GR, the geometric structure of the spacetime is encoded in the spacetime metric,

gap- For example, the infinitesimal line element is given by:

ds® = gap dx® dx”. (1.1)
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Here, I use the Einstein summation notation. I use Latin indices from the start of
the alphabet (a, b, c . . .) for spacetime indices (which run from O to 3) and from the

middle of the alphabet (i, j, k . . .) for space indices (which run from 1 to 3).

The Einstein field equations describe how the metric responds to the presence of
matter:
Gap = 87 Tup, (1.2)

where G, is the Einstein tensor which contains g5, and Ty, is the stress-energy
tensor containing information about the density and flux of energy and momentum
in the spacetime. Note that here, and throughout this thesis, I use geometric units
withG =c = 1.

1.3 Gravitational waves

Gravitational waves (GWs) are an important prediction [6, 7] of GR. For a modern
review see Refs. [15, 16]. Far away from the source, the waves can be described by

perturbing about flat spacetime:

Sab = Tab + hap, (1.3)

where 7,5 is the Minkowski metric for flat spacetime, and hap is a small pertur-
bation (|/45| < 1). Under the Lorentz gauge, the linearized Einstein’s equations
become [11]:

Ohgp =0, (1.4)

where O = V_.V¢ is the d’Alembertian, A,y = hyp — %nabiz is the “trace reverse” of
hap, and h = 2.
Eq. (1.4) admits solutions of the form [11]:

hab = Aap exp(ikcxc), (1.5)

where A,y is a (complex) constant tensor, and k€ is a (real) null vector. This means
that Eq. (1.5) is a wavelike solution, whose propagation speed is the same as the
speed of light [11]; we refer to these as GWs. As indicated in Eq. (1.3), GWs form
part of the spacetime metric itself; hence they are often referred to as “ripples of

curvature”.

A spherically outgoing gravitational wave is typically converted into a spin-weight

—2 complex scalar by contracting:

h = hgym®m?, (1.6)
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where m® = (&5 + iég) /N2 is an element of a complex null dyad [14] along with

sa  sd
€g: €y

respectively. This quantity 4 is also equal to the fractional distortions caused in

its conjugate m“, and are the standard unit vectors in the 8 and ¢ directions,
the arms of detectors such as LIGO/Virgo, hence 4 is typically referred to as the

gravitational wave strain, or simply strain.

In many ways GWs are to gravity, what light is to electromagnetic theory (EMT).
They are both transverse waves, with two independent polarizations, that carry
information about changes in the field (g, for gravity, F,; or E/B fields for EMT).
Light waves are generated by time varying dipole (and higher) moments, while the
monopole radiation is zero due to conservation of total charge. Similarly, GWs are
generated by time varying quadrupole (and higher) moments, while the monopole
and dipole radiation are zero due to conservation of total mass and total linear

momentum, respectively.

Unlike light, however, the GWs we can observe on Earth are very weak. Following
Ref. [17], we can use the quadrupole formula to make a rough estimate of the
amplitude of gravitational waves emitted by two orbiting objects of equal mass:
h~5x1072 (%) (ﬂ) (%), (1.7)
R My \r
where m is the mass of each object in solar masses (M), r is the distance between
the two objects in units of m, and R is the distance to Earth in Megaparsecs. For
a stellar mass compact object with m = 10My, at a binary separation of r = 6m,
located in the Virgo cluster at R = 20 Mpc, we get a strain of 7 ~ 4 x 10721, This
would distort the 4km arms of the LIGO detectors by about 10717 meters; that is

100 times smaller than the size of a hydrogen nucleus!

This exercise also gives us useful insight into what constitutes a good source of
GWs. For an astrophysical binary of a given component mass m to emit strong
GWs, its m/r needs to be large. For this to happen, the mass of the component
needs to be confined to a small region, so that the binary orbit can shrink to a small
separation (r) before the two objects come into contact. Orbiting black holes and
neutron stars have therefore long been identified as prime sources and have now
been observed by LIGO and Virgo [10].

1.4 Binary black holes

In this thesis, I will focus mainly on orbiting black holes (BHs), referred to as binary

black holes (BBH). These systems lose energy to GW radiation, causing them to
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inspiral towards each other. This increases the amplitude of the GWs (see Eq. (1.7)),
thus increasing the rate of energy loss. The result is a runaway process, where the
BHs get closer and closer, until they eventually merge, leaving behind a highly
distorted single BH. The distortions are then quickly radiated away as GWs at the
characteristic quasi-normal mode frequencies of the final BH. GW 150914 [1] was

the first direct observation of such a signal, beginning the field of GW astronomy.

Despite their exotic nature, BHs are remarkably simple objects. An astrophysical
BH is entirely characterized by its mass (m) and spin (y) [18]. John Wheeler
famously said, “Black holes have no hair.”, meaning that all other information —the
“hair” — is forever lost behind the BH’s event horizon, and is inaccessible to external
observers. Here, y is the dimensionless spin vector (with magnitude y < 1), defined
as y = 8/ m? =a /m, where S is the spin angular momentum, and a is the Kerr

parameter.

X1

m

Figure 1.5: Parameters of a quasicircular BBH system. Each BH is characterized
by a mass (m) and a spin vector (x). Note, however, that the total mass scales out
in GR, and the mass dependence is captured in a single parameter, the mass ratio

q =my/ms.

Similarly, a quasicircular BBH system is characterized by seven intrinsic parameters:
mass ratio ¢ = mj/mjy, and two spin vectors 1, x2 (cf. Fig. 1.5). Here, subscript 1
(2) corresponds to the heavier (lighter) of the two BHs. The total mass of the system

M = my + m; can be scaled out and does not constitute an additional parameter.

If the BH spins are (anti-)aligned with respect to the orbital angular momentum, the
emitted GWs have monotonically increasing amplitude and frequency. Instead, if the

BH spins are misaligned with respect to the orbital angular momentum, relativistic
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spin-spin and spin-orbit couplings cause the system to precess [19]. Much like a
top whose spin axis is misaligned with the orbital angular momentum, the spins
and the orbital angular momentum oscillate about the direction of the total angular
momentum. This precession is imprinted on the gravitational waves as characteristic
modulations of amplitude and frequency, making it possible to observe precessing
BBHs with LIGO/Virgo. Precessing BBHs will be a major theme in Chapters 6, 7,
and 8 of this thesis.

1.5 Numerical relativity

One needs to solve Einstein’s equations (Eq. (1.2)) to obtain the spacetime metric
gap for any system of interest. However, G, contains up to second derivatives
of gu.», and is nonlinear in g,,. In other words, Einstein’s equations are a system
of coupled, nonlinear partial differential equations. This makes them notoriously
difficult to solve. In fact, there are only a handful of exact, analytical solutions, and
all of these correspond to simplified systems with a high degree of symmetry; for
example, a stationary, axisymmetric, charged BH.

For more astrophysically relevant systems, such as BBHs, no exact analytical solu-
tions are known. Post-Newtonian (PN) theory (cf. Ref. [20] for a review) provides a
perturbative framework to compute approximate solutions. The expansion parame-
ter in PN is the characteristic velocity of the BHs. However, as the BHs are about to
merge, they are moving at about half the speed of light and the expansion parameter
is no longer small. Similarly, BH perturbation theory can only be used to describe
the settling down of the final BH after the merger (cf. Ref. [21] for a review). All
perturbative methods break down near the BH merger, and full numerical simulation

of Einstein’s equations is the only avenue left.

This is the domain of numerical relativity (NR), where the Einstein field equations
are reformulated as an initial value problem suitable for numerical solutions. I
briefly describe NR here, but refer the reader to Ref. [17] for more details. The
reformulation is as follows: The four-dimensional spacetime is broken up into a
sequence of three-dimensional space-like hypersurfaces (cf. Fig. 1.6). Rather than
work with the spacetime metric g,,, we work with the induced metric g;; on the
spatial hypersurfaces, and the extrinsic curvature K;;, which is related to the first time
derivative of g;;. The Einstein equations are decomposed into a set of constraint and
evolution equations. The constraint equations do not contain any time derivatives

of g;; and K;;, therefore they only need to be solved at the initial time slice. Solving



Numericg|
grid

boundaries

hyperurfaces

Figure 1.6: Schematic description of NR initial value problem. The constraint
equations are solved on the initial hypersurfaces and the evolution equations are
used to step forward in time. Credit: H. Dimmelmeier.

the constraint equations gives us initial values for g;; and K;;; this is referred to as
initial data. The evolution equations contain up to first time derivatives of g;; and

K;;, and are used to step forward in time, to obtain g;; and K;; for the full spacetime.

The first successful NR simulation of a BH merger was achieved by Frans Pretorius
in 2005 [22], after decades of development by various groups [23]. The Spectral
Einstein Code (SpEC) [24], developed by the Simulating eXtreme Spacetimes [25] is
the current state-of-the-art code for NR simulations. This work relies heavily on this
code, as well as makes contributions to it. Chapters 2 and 3 present improvements
to the initial data treatment in SpEC, while all other Chapters make use of the

simulations performed using SpEC.

1.6 Waveform models

As discussed before, gravitational waves received by our detectors are very weak.
This means that they are buried deep in the noise of the detectors. Matched filtering
(see Ref. [15] for areview) is the optimal method to search for known signals in noisy
data and is applied in LIGO/Virgo data analysis. This method, however, crucially
depends on the accuracy of the model used in predicting the gravitational waves;

these models are referred to as waveform models.

Apart from the detection of signals buried in noise, we also need waveform models
to analyze the signal and identify the properties of the source of the signal; this

is referred to as parameter estimation. Parameter estimation typically demands
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higher accuracy in waveform models than detection. If the model has significant
systematic biases, our understanding of the source properties will also be biased.
As the detectors become more sensitive, the statistical biases due to noise become

lower, placing higher accuracy requirements on the waveform models.

One of the most important promises of GW astronomy is to test GR in the highly
dynamical, strong field regime. BBHs are prime candidates for this, as the gravi-
tational fields are extreme and the BH speeds are relativistic as one approaches the
merger. Tests of GR typically place the most stringent accuracy requirements on
waveform models, as systematic biases in waveform models could lead to a bias

being misidentified as a violation of GR.

Therefore, to maximize the science output of our detectors and to fulfill the promise
of GW astronomy, it is vital to have an accurate waveform model. As mentioned in
Sec. 1.5, perturbative schemes such as PN break down as one approaches the merger
of a BBH, and NR is the only method that can accurately predict the outcome. NR
simulations are very accurate, being limited mainly by the resolution of the grid used.
However, these simulations are prohibitively expensive for most direct data analysis
applications, with each simulation taking about a month on a supercomputer. To
see why this is a problem, parameter estimation of a single event can require about
107 waveform evaluations in different regions of the 7-dimensional parameter space
of BBHs.

Therefore, several approximate waveform models have been developed over the
years. The two main approaches have been dubbed "Phenomenological" and
"Effective-one-body" waveforms (see Ref. [26] for a review). These models typi-
cally make some assumptions about the phenomenology of the waveforms, based
on good physical motivations. Then, any remaining free parameters are set by cali-
brating against NR simulations. These models are also quite fast and have been used
in analyzing the signals seen by LIGO/Virgo. While these models have been shown
to be accurate enough for current detector sensitivities [27, 28], they typically have

a lower accuracy than NR simulations [29].

This raises the question: can we develop a model that can replicate the accuracy
of NR, without introducing any additional assumptions, and yet is fast enough for

direct data analysis applications? This is where surrogate modeling comes in.
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1.7 Surrogate models

Surrogate modeling employs a data-driven approach to waveform modeling. Rather
than make assumptions about the underlying phenomenology, one uses the NR
waveforms themselves to implicitly reconstruct the phenomenology. Using clever
interpolation techniques, the model learns from the NR simulations how the wave-

form depends on various parameters such as the masses and spins of the BHs.

In this section, I will demonstrate the steps involved in surrogate model construction
and evaluation for the simple case of nonspinning BBHs. For these systems, the
only free parameter is the mass ratio ¢g. Note that this is a high-level description of
the procedure, and I skip several important caveats in favor of simplicity. I refer the

reader to Refs. [30, 31] for more details.

q2 q1

Figure 1.7: Schematic description of reduced basis construction. At the top, we have
the dataset of waveforms, which sparsely populates the waveform space. At the bot-
tom, we have the reduced basis, which is constructed using the most representative
waveforms from the dataset. Credit: Chad Galley.

Reduced basis

To build a surrogate model, we begin with a dataset of waveforms. This dataset
is usually expensive to generate, and only sparsely covers the parameter space of
interest (cf. Fig. 1.7); for example, an NR waveform catalog. Our goal is to build a
much faster yet accurate interpolant that covers the parameter space of the dataset.

In this example, the dataset is comprised of nonspinning NR waveforms with mass
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ratio g between 1 and 10. Rather than work with the waveforms directly, which
is highly oscillatory, it is typically easier to work with slowly varying functions of

time such as the amplitude and phase. So, in this example we will build a surrogate

\ f 0.25

[ 0.20

model for the waveform amplitude.

[ 0.15

[ 0.10

" 0.05

" 0.00

10 —s00 t (M)

Figure 1.8: Demo of surrogate model construction for nonspinning BBHs. The mass
ratio (¢) and time are shown on the horizontal axes, while the waveform amplitude
is shown on the vertical axis. The blue lines show the reduced basis. The yellow-
orange circular markers indicate the empirical time nodes. The red lines indicate
the fits across parameter space. A visualization of this procedure is available at
vijayvarma392.github.io/SurrogateMovie/#demo.

The first step in the surrogate modeling procedure is to construct an accurate basis
that represents our space of waveforms (see Fig. 1.7 for a schematic description).
This is done using the very waveforms we are trying to model. The basis functions
are picked in an iterative manner such that the most representative waveforms get
picked. At each iteration, the waveform that has the largest projection error onto
the current basis gets added to the basis for the next iteration. This is done until
the largest projection error falls below a certain threshold. Typically, one only
requires a handful (< 10) of waveforms to bring the basis projection error down to
the resolution error of current NR simulations. At the end of this procedure, we

have reduced our large dataset of waveforms down to a small set of basis functions,
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without a loss of accuracy. Therefore, the final basis set is called a reduced basis.

This is represented by the blue lines in Fig. 1.8.

Empirical interpolation

Given an orthogonal basis, one can easily compute the basis coefficients for any
given waveform by basis decomposition. Therefore, we orthonormalize the reduced
basis using a modified Graham-Schmidt procedure [30]. Now, if we compute and
store the basis coefficients for all waveforms in the dataset, this gives us all the
information we need to reproduce the dataset at the required accuracy level. To
reproduce any given waveform, one just sums up the basis functions weighted by

the basis coefficients.

Unfortunately, this restricts us to the sparse set of waveforms already in the dataset.
We cannot generate the waveform at a generic point in parameter space, where we
do not a priori know the basis coefficients. We could overcome this problem by
constructing fits across parameter space for each of the basis coefficients. We instead
take a different approach called empirical interpolation, which lets us construct fits

for the amplitude directly, which is physically more meaningful.

Empirical interpolation makes use of the reduced basis to construct an effective
interpolant in time using only a small set of time values [30]. These time values,
called the empirical time nodes, are once again picked iteratively such that the most
representative time values are picked. These are represented by the yellow-orange
circular markers in Fig. 1.8. The number of empirical time nodes is the same as
the number of basis function. Given the amplitude values at each of the empirical
time nodes, one can compute the basis coeflicients by solving a linear system of

equations [30].

Parametric fits

At this point we have reduced our dataset in both parameter space and time directions.
To evaluate the waveform at a generic point, the empirical interpolant needs the
amplitude values at the empirical time nodes. Therefore, we construct fits across
parameter space for the amplitude, at each of the empirical time nodes. This is

indicated by the red lines in Fig. 1.8.
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Figure 1.9: Demo of surrogate model evaluation at a generic g. We first evaluate the
fits at each empirical time node, as indicated by the brown cross markers. This gives
us the basis coefficients. To evaluate the waveform (brown line) at the given g, we
just sum up the basis functions weighted by the basis coefficients. A visualization
of this procedure is available at vijayvarma392.github.io/SurrogateMovie/#demo.

Evaluation

Finally, to evaluate the waveform at a generic parameter space point: We first
evaluate the amplitude fits at that point for each empirical time node. This is
indicated by the brown cross markers in Fig. 1.9. As mentioned above, the amplitude
values at the empirical time nodes can be used to obtain the basis coefficients. Now,
all we need to do is sum up the basis functions with these coefficients as weights, to
get the amplitude evaluation at the given point. This is indicated by the brown line
in Fig. 1.9.

The basis functions are already chosen such that the projection errors are comparable
to the intrinsic NR resolution error. If the fits across parameter space can be done
accurately enough, we do not introduce additional errors in the estimation of the
basis coefficients. Therefore, the surrogate model accuracy can be comparable to
the error in the NR simulations themselves, while taking only a fraction of a second
to evaluate. In Chapters 5 and 7, I will present the current state-of-the-art surrogate

models for aligned-spin and precessing BBHs, respectively.
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1.8 Extending the parameter space of surrogate models
Hybridization

While NR surrogate models are very accurate and fast, they still have one important
limitation: they are restricted to the same number of orbits as the NR simulations.
Because of the computational expense of these simulations, they are typically re-
stricted to only 20 orbits before merger. Therefore, the surrogate models [29, 31,
32] constructed previously have been rather short, and cover only the late-time, high
frequency stage close to the merger. The frequency of the GWs scales as 1/M,
where M is the total mass of the system. This means that low-mass signals enter the
LIGO/Virgo detector band early in the inspiral and have a lot of orbits before merger.
Therefore, the previous surrogate models have been restricted to M > 57Mg. This
means that they do not cover the full range of masses for stellar mass BBHs in
ground based detectors, which can go down to M ~ 5Mg. See for example, the
mass range of the yellow patch in the left panel of Fig. 1.10 corresponding to the
NRSur7dq2 model of Ref. [29].

While NR simulations are currently too expensive to include enough orbits to cover
low-mass BBHs (although see Ref. [33]), fortunately, PN is accurate when the BHs
are far from each other. We can build a “hybrid” of NR and PN, where the early
evolution is modeled by PN, and the late time evolution including the merger is
modeled by NR. In Chapter 5, I will present NRHybSur3dq8, the first surrogate
model based on NR-PN hybrid waveforms.

Generic mass ratios

Another limitation of surrogate models is that they are restricted to the bounds of
parameter space set by the NR simulations. NR simulations become very expensive
for large mass ratios (g) and large spin magnitudes (y). For large ¢, the length scale
of the smaller BH demands larger spatial and temporal resolution requirements.
For large y, the BH horizons require significantly more resolution. Therefore,
NR simulations have typically been restricted to comparable masses (¢ < 10) and
moderate spins (y < 0.8) (although see Refs. [34, 35]).

In addition, the vast 7-dimensional parameter space of precessing BBHs requires a
large number of simulations to populate. Therefore, previous surrogate models have
been restricted to nearly equal masses (¢ < 2), apart from the nonspinning model of

Ref. [32]. For aligned-spin BBHs, the parameter space is only 3-dimensional and
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Figure 1.10: Improved coverage of the BBH parameter space over NRSur7dq2 [29]
due to the models presented in Chapter 5 (NRHybSur3dq8) and Chapter 7 (NR-
Sur7dq4). Left: Coverage of total mass M and mass ratio g. NRHybSur3dq8
covers the full range of total masses relevant for ground based detectors, and ex-
tends to ¢ = 8. NRSur7dg4 is still limited to high masses, but greatly extends
the mass ratio coverage over NRSur7dq2. Right: Coverage of spin space. yef is
the “effective spin” along the orbital angular momentum direction, and y; is the
effective in-plane spin. Roughly speaking, the larger the y,, the larger the effects
of precession. NRHybSur3dq8 is an aligned-spin model, therefore it is restricted to
Xp = 0. Note that NRSur7dqg2 and NRSur7dg4 are on top of each other here; they
are both generically precessing with spin magnitude y < 0.8.

is much easier to populate with simulations, therefore the NRHybSur3dq8 model
of Chapter 5 extends to ¢ = 8 for aligned-spin BBHs. In addition, the NRSur7dq4
model of Chapter 7 extends to g = 4 for precessing BBHs, while still being restricted
to pure NR simulations without hybridization. A hybridized, precessing, surrogate
model is still in development and will be made available in the future. Figure 1.10
shows the improved coverage of the BBH parameter space due to the NRHybSur3dq8
and NRSur7dg4 models.

1.9 Higher order modes of radiation

The gravitational-wave strain 4 on a sphere can be conveniently decomposed as

00 4

ht,r,0,0) = > > 2You(0, @) hon(t,r), (1.8)

=2 m=-¢

where _,Y;,, are the s = —2 spin-weighted spherical harmonics [36], ¢ is the time,

and (r, 0, ¢) are the standard spherical polar coordinates. The functions Ay, are



17

referred to as the modes of the GWs.

The quadrupole modes (¢ = 2,m + 2) typically dominate the sum in Eq. (1.8),
and the other subdominant modes are often ignored for the sake of simplicity. This
assumption, however, does not always hold, and the subdominant modes can become
important at high mass ratios (¢) and when the binary orbit is inclined with respect
to the plane of the detector. For these cases, neglecting these modes of radiation
can lead to systematic biases in data analysis.

In Chapter 4, I investigate the effects of subdominant modes for LIGO and identify
regions of parameter space where these modes are important for detection and
parameter estimation. In addition, the waveform models presented in Chapters 5

and 7 include the effects of subdominant modes, along with the quadrupole modes.
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Figure 1.11: BBHs seen from a scattering view point through a “Feynman diagram”.
Time flows to the right in this picture. On the left, we have the initial state: the
component BHs, characterized by their masses and spins. On the right, we have
the final state at the end of the merger: the gravitational waves escaping to future
null-infinity, and the final BH characterized entirely by its mass, spin, and a recoil
velocity imparted during the merger process. In this picture, the messy merger
process is hidden behind the interaction region.

1.10 Testing general relativity

While GR is the current best description of gravity, it is likely an incomplete theory,
as it is incompatible with quantum mechanics. Therefore, one might expect GR
to break down in certain extreme conditions. Just before the BHs collide, they are
moving at about half the speed of light, and the gravity is extreme. This is the most

curved that spacetime gets throughout all the Universe, except for during the Big
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Bang. Therefore, gravitational waves from a BH merger provide the most stringent
tests of GR.

Here, I will discuss one particular test of GR with GWs from BBH systems [37, 38],
but see Ref. [39] for a review of tests of GR with GWs. As described in Sec. 1.4,
both BHs and BBH systems are characterized by a small set of parameters. We can
take advantage of this and use Nature as our particle accelerator to test GR. As seen
from a high-energy physics scattering view point (see Fig. 1.11), two accelerated
BHs smash into each other and a single final BH emerges along with the GWs. The
masses and spins of the initial BHs can be inferred from the GWs: as mentioned in
Sec. 1.6, this involves parameter estimation with an accurate waveform model. In
addition, due to the no-hair theorem, the GW signal after the final BH has formed
has specific characteristic frequencies that depend only on the mass and spin of the
final BH. This can be used to infer the final BH’s mass and spin. We can also
get the final BH’s mass and spin in an independent manner: by performing an NR
simulation starting from the initial BHs and evolving the spacetime through merger.
If GR agrees with the observed signal, both estimates of the final BH’s mass and

spin should agree with each other.

1.11 Remnant black hole surrogate models

The key ingredient in the above test is the map from the initial BHs to the final BH
provided by NR. Therefore, apart from the waveform, the final BH properties are the
most widely used outputs from NR simulations. Again, because the NR simulations
are too expensive for direct use in data analysis, several approximate models have
been developed that predict the final BH’s mass and spin (see Ref. [40] for a review).
These models, however, are all phenomenological in nature; one first comes up with
an ansatz based on perturbation theory and physical intuition, and then calibrates

any free parameters to NR simulations.

This problem, however, is ideally suited to the data-driven approach of surrogate
modeling. In Chapter 6, I will present the first surrogate model for the final BH’s
mass, spin, and recoil kick velocity. With this in place, surrogate models are now
capable of reproducing all of the important outputs of NR simulations, cheaply and

without a loss of accuracy.
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1.12 Binary black holes on a laptop

Only 16 years ago, it was considered a remarkable achievement to numerically simu-
late a single orbit of a BBH close to merger [41]. However, we have come a long way
since Pretorius’s 2005 breakthrough [22]. The SXS collaboration recently published
a catalog [42] of 2,018 BBH NR waveforms, with a median length of ~ 20 orbits.
Perhaps in the future, NR will become advanced enough to generate simulations on

one’s personal laptop or even a mobile phone, rather than a supercomputer.

In the meantime, surrogate models provide an excellent alternative to a full NR
simulation, by accurately yet cheaply reproducing the main outputs of the simulation:
the waveform and the final BH properties. To demonstrate this in practice, Chapter 8
presents a visualization package based on the surrogate models of Chapters 6 and 7.
Previously, visualizations of BBH systems required a supercomputer NR simulation
that lasted for a month, followed by expensive rendering. With this package, you
can generate a visualization that is just as accurate, in a few seconds on your laptop.
This demonstrates the power of surrogate models: from supercomputers to your

laptop!

1.13 Thesis outline
The rest of the thesis is organized as follows.

Chapter 2 presents work towards constructing BBH initial data in the preferred
gauge of SpEC, the damped harmonic gauge. This work was published as Physical
Review D., 98, 084032 (2018), arxiv:1808.07490.

Chapter 3 presents various improvements to the initial data in SpEC, including better
boundary conditions, reduced unwanted initial transients, and more computationally
efficient evolution. This work was published as Physical Review D., 98, 104011
(2018), arxiv:1808.08228.

Chapter 4 presents work in identifying regions in the parameter space of BBH
systems where gravitational wave models must include the effects of the subdominant
modes. This work was published as Physical Review D., 96, 124024 (2017),
arxiv:1612.05608.

Chapter 5 presents the first surrogate model based on hybrid waveforms for aligned-

spin BBH, and therefore covers the full range of frequencies relevant for ground
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based detectors. This work was published as Physical Review D., 99, 064045
(2019), arxiv:1812.07865.

Chapter 6 presents the first surrogate model for the mass, spin, and recoil kick
velocity of the final BH left behind after a BBH merger. This work was published
as Physical Review Letters, 122, 011101 (2019), arxiv:1809.09125.

Chapter 7 presents an extension of existing precessing BBH surrogate models to

larger mass ratios. A manuscript based on this work is in preparation.

Chapter 8 presents a Python visualization package based on surrogate models for
precessing BBH. This work was published as Classical and Quantum Gravity, 36,
095007 (2019), arxiv:1811.06552.

References

[1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary
Black Hole Merger”. In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102. por:
10.1103/PhysRevLett.116.061102. urL: http://link.aps.org/
doi/10.1103/PhysRevLett.116.061102.

[2] Benjamin P. Abbott et al. “The basic physics of the binary black hole merger
GW150914”. In: Annalen Phys. 529.1-2 (2017), p. 1600209. por: 10. 1002/
andp.201600209. arXiv: 1608.01940 [gr-qc].

[3] J. Aasi et al. “Advanced LIGO”. In: 32 (2015), p. 074001. por: 10.1088/
0264-9381/32/7/074001. arXiv: 1411.4547 [gr-qc].

[4] A.Einstein. “Zur Elektrodynamik bewegter Korper”. In: Annalen der Physik
17:891.(1905). urL: https://web.archive.org/web/20050220050316/
http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf.

[5] A. Einstein. “Die Feldgleichungen der Gravitation”. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften zu Berlin: 844-847. (1915).
URL: http://digilib.mpiwg-berlin.mpg.de/digitallibrary/
jquery/digilib.html?fn=/permanent/einstein/sitzungsberichte/
6E3MAXK4 /pageimg.

[6] A. Einstein. “Niherungsweise Integration der Feldgleichungen der Gravi-
tation”. In: Sitzungsberichte der Koniglich Preuflischen Akademie der Wis-
senschaften (Berlin), Seite 688-696. (1916).

[7]1 A. Einstein. “Uber Gravitationswellen”. In: Sitzungsberichte der Koniglich
Preuflischen Akademie der Wissenschaften (Berlin), Seite 154-167. (1918).

[8] nobelprize.org/prizes/physics/2017.


https://arxiv.org/abs/1812.07865
https://arxiv.org/abs/1809.09125
https://arxiv.org/abs/1811.06552
https://doi.org/10.1103/PhysRevLett.116.061102
http://link.aps.org/doi/10.1103/PhysRevLett.116.061102
http://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://doi.org/10.1002/andp.201600209
https://doi.org/10.1002/andp.201600209
https://arxiv.org/abs/1608.01940
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://web.archive.org/web/20050220050316/http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf
https://web.archive.org/web/20050220050316/http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf
http://digilib.mpiwg-berlin.mpg.de/digitallibrary/jquery/digilib.html?fn=/permanent/einstein/sitzungsberichte/6E3MAXK4/pageimg
http://digilib.mpiwg-berlin.mpg.de/digitallibrary/jquery/digilib.html?fn=/permanent/einstein/sitzungsberichte/6E3MAXK4/pageimg
http://digilib.mpiwg-berlin.mpg.de/digitallibrary/jquery/digilib.html?fn=/permanent/einstein/sitzungsberichte/6E3MAXK4/pageimg
https://www.nobelprize.org/prizes/physics/2017/summary/

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

21

F. Acernese et al. “Advanced Virgo: a second-generation interferometric
gravitational wave detector”. In: 32.2 (2015), p. 024001. por: 10. 1088/
0264-9381/32/2/024001. arXiv: 1408.3978 [gr-qc].

B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs”. In: (2018). arXiv: 1811.12907 [astro-ph.HE].

Bernard F. Schutz. A First Course in General Relativity. 2nd. New York:
Cambridge University Press, 2009.

James B. Hartle. Gravity: An Introduction to Einstein’s General Relativity.
New York: Addison-Wesley, 2003.

Sean Carroll. Spacetime and Geometry: An Introduction to General Rela-
tivity. New York: Addison Wesley, 2003.

Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Grav-
itation. New York, New York: Freeman, 1973. por: 10 . 1002 / asna .
19752960110.

B.S. Sathyaprakash and Bernard F. Schutz. “Physics, Astrophysics and Cos-
mology with Gravitational Waves”. In: Living Reviews in Relativity 12.2
(2009).por1: 10.1007/1rr-2009-2. urRL: http://www.livingreviews.
org/lrr-2009-2.

M Maggiore. Gravitational Waves - Volume 1. First. New York, NY: Oxford
University Press, 2008.

Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Solving
Einstein’s Equations on the Computer. New York: Cambridge University
Press, 2010. por: 10.1080/00107514.2011.586052.

B. Carter. “Axisymmetric Black Hole Has Only Two Degrees of Free-
dom”. In: Phys. Rev. Lett. 26 (6 Feb. 1971), pp. 331-333. por: 10.1103/
PhysRevLett.26.331. urL: https://link.aps.org/doi/10.1103/
PhysRevLett.26.331.

Theocharis A. Apostolatos et al. “Spin induced orbital precession and its
modulation of the gravitational wave forms from merging binaries”. In: Phys.
Rev. D49 (1994), pp. 6274-6297. por: 10.1103/PhysRevD.49.6274.

Luc Blanchet. “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries”. In: Living Rev. Rel. 17 (2014), p. 2. por:
10.12942/1rr-2014-2. arXiv: 1310.1528 [gr-qc].

Emanuele Berti, Vitor Cardoso, and Andrei O. Starinets. “Quasinormal
modes of black holes and black branes”. In: Class. Quant. Grav. 26 (2009),
p- 163001. por: 10.1088/0264-9381/26/16/163001. arXiv: 0905.2975

[gr-qc].


https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://arxiv.org/abs/1811.12907
https://doi.org/10.1002/asna.19752960110
https://doi.org/10.1002/asna.19752960110
https://doi.org/10.1007/lrr-2009-2
http://www.livingreviews.org/lrr-2009-2
http://www.livingreviews.org/lrr-2009-2
https://doi.org/10.1080/00107514.2011.586052
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.26.331
https://link.aps.org/doi/10.1103/PhysRevLett.26.331
https://link.aps.org/doi/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://arxiv.org/abs/0905.2975

22

[22] Frans Pretorius. “Evolution of binary black hole spacetimes”. In: 95 (2005),
p. 121101. por: 10. 1103 /PhysRevLett.95.121101. arXiv: gr-qc/
0507014 [gr-qc].

[23] Ulrich Sperhake. “The numerical relativity breakthrough for binary black
holes”. In: Class. Quant. Grav. 32.12 (2015), p. 124011. por: 10. 1088/
0264-9381/32/12/124011. arXiv: 1411.3997 [gr-qc].

[24] The Spectral Einstein Code. http://www.black-holes.org/SpEC.
html.

[25] Simulating eXtreme Spacetimes. http://www.black-holes.org/.

[26] Frank Ohme. “Analytical meets numerical relativity - status of complete
gravitational waveform models for binary black holes”. In: Class. Quant.
Grav. 29 (2012), p. 124002. por: 10.1088/0264-9381/29/12/124002.
arXiv: 1111.3737 [gr-qc].

[27] B. P. Abbott et al. “Effects of waveform model systematics on the interpre-
tation of GW150914”. In: (2016). arXiv: 1611.07531 [gr-qc].

[28] B.P. Abbottet al. “Directly comparing GW 150914 with numerical solutions
of Einstein’s equations for binary black hole coalescence”. In: Phys. Rev. D
94 (6 Sept. 2016), p. 064035. por: 10.1103/PhysRevD.94.064035. URL:
http://link.aps.org/doi/10.1103/PhysRevD.94.064035.

[29] Jonathan Blackman et al. “Numerical relativity waveform surrogate model
for generically precessing binary black hole mergers”. In: Phys. Rev. D96.2
(2017), p. 024058. por: 10.1103/PhysRevD.96.024058. arXiv: 1705.
07089 [gr-qc].

[30] S.E.Field et al. “Fast Prediction and Evaluation of Gravitational Waveforms
Using Surrogate Models”. In: 4.3, 031006 (July 2014), p. 031006. por:
10.1103/PhysRevX.4.031006. arXiv: 1308.3565 [gr-qc].

[31] Jonathan Blackman et al. “A Surrogate Model of Gravitational Wave-
forms from Numerical Relativity Simulations of Precessing Binary Black
Hole Mergers”. In: Phys. Rev. D95.10 (2017), p. 104023. por: 10.1103/
PhysRevD.95.104023. arXiv: 1701.00550 [gr-qc].

[32] Jonathan Blackman et al. “Fast and Accurate Prediction of Numerical Rel-
ativity Waveforms from Binary Black Hole Coalescences Using Surrogate
Models”. In: Phys. Rev. Lett. 115.12 (2015), p. 121102. por: 10. 1103/
PhysRevLett.115.121102. arXiv: 1502.07758 [gr-qc].

[33] B. Szilagyi et al. “Approaching the Post-Newtonian Regime with Numerical
Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-
Wave Cycles”. In: 115 (2015), p. 031102. por: 10.1103 /PhysRevLett.
115.031102. arXiv: 1502.04953 [gr-qc].


https://doi.org/10.1103/PhysRevLett.95.121101
https://arxiv.org/abs/gr-qc/0507014
https://arxiv.org/abs/gr-qc/0507014
https://doi.org/10.1088/0264-9381/32/12/124011
https://doi.org/10.1088/0264-9381/32/12/124011
https://arxiv.org/abs/1411.3997
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/
https://doi.org/10.1088/0264-9381/29/12/124002
https://arxiv.org/abs/1111.3737
https://arxiv.org/abs/1611.07531
https://doi.org/10.1103/PhysRevD.94.064035
http://link.aps.org/doi/10.1103/PhysRevD.94.064035
https://doi.org/10.1103/PhysRevD.96.024058
https://arxiv.org/abs/1705.07089
https://arxiv.org/abs/1705.07089
https://doi.org/10.1103/PhysRevX.4.031006
https://arxiv.org/abs/1308.3565
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
https://arxiv.org/abs/1701.00550
https://doi.org/10.1103/PhysRevLett.115.121102
https://doi.org/10.1103/PhysRevLett.115.121102
https://arxiv.org/abs/1502.07758
https://doi.org/ 10.1103/PhysRevLett.115.031102
https://doi.org/ 10.1103/PhysRevLett.115.031102
https://arxiv.org/abs/1502.04953

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

23

M. A. Scheel et al. “Improved methods for simulating nearly extremal binary
black holes”. In: 32.10, 105009 (May 2015), p. 105009. por: 10. 1088/
0264-9381/32/10/105009. arXiv: 1412.1803 [gr-qc].

Carlos O. Lousto and Yosef Zlochower. “Orbital Evolution of Extreme-
Mass-Ratio Black-Hole Binaries with Numerical Relativity”. In: Phys. Rev.
Lett. 106 (2011), p. 041101. por: 10. 1103 /PhysRevLett.106.041101.
arXiv: 1009.0292 [gr-qc].

J. N. Goldberg et al. “Spin-s Spherical Harmonics and 8”. In: Journal of
Mathematical Physics 8.11 (1967), pp. 2155-2161. por: 10 . 1063 /1.
1705135. urL: http://link.aip.org/link/?JMP/8/2155/1.

B. P. Abbott et al. “Tests of General Relativity with GW150914”. In: Phys.
Rev. Lett. 116 (22 May 2016), p. 221101. por: 10. 1103 /PhysRevLett.
116.221101.urL:http://link.aps.org/doi/10.1103/PhysRevLett.
116.221101.

A. Ghosh et al. “Testing general relativity using gravitational wave signals
from the inspiral, merger and ringdown of binary black holes”. In: COQG
35.1, 014002 (Jan. 2018), p. 014002. por: 10.1088/1361-6382/aa972e.
arXiv: 1704.06784 [gr-qc].

Nicolds Yunes and Xavier Siemens. “Gravitational-Wave Tests of General
Relativity with Ground-Based Detectors and Pulsar Timing-Arrays”. In:
Living Rev. Rel. 16 (2013), p. 9. por: 10. 12942 /1rr-2013-9. arXiv:
1304.3473 [gr-qc].

D. Gerosa and M. Kesden. “precession: Dynamics of spinning black-hole
binaries with python”. In: PRD 93.12, 124066 (June 2016), p. 124066. por:
10.1103/PhysRevD.93.124066. arXiv: 1605.01067 [astro-ph.HE].

Bernd Bruegmann, Wolfgang Tichy, and Nina Jansen. “Numerical simula-
tion of orbiting black holes”. In: Phys. Rev. Lett. 92 (2004), p. 211101. por:
10.1103/PhysRevLett.92.211101. arXiv: gr-qc/0312112 [gr-qc].

Michael Boyle et al. “The SXS Collaboration catalog of binary black hole
simulations”. In: (2019). arXiv: 1904.04831 [gr-qc].


https://doi.org/10.1088/0264-9381/32/10/105009
https://doi.org/10.1088/0264-9381/32/10/105009
https://arxiv.org/abs/1412.1803
https://doi.org/10.1103/PhysRevLett.106.041101
https://arxiv.org/abs/1009.0292
https://doi.org/10.1063/1.1705135
https://doi.org/10.1063/1.1705135
http://link.aip.org/link/?JMP/8/2155/1
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
http://link.aps.org/doi/10.1103/PhysRevLett.116.221101
http://link.aps.org/doi/10.1103/PhysRevLett.116.221101
https://doi.org/10.1088/1361-6382/aa972e
https://arxiv.org/abs/1704.06784
https://doi.org/10.12942/lrr-2013-9
https://arxiv.org/abs/1304.3473
https://doi.org/10.1103/PhysRevD.93.124066
https://arxiv.org/abs/1605.01067
https://doi.org/10.1103/PhysRevLett.92.211101
https://arxiv.org/abs/gr-qc/0312112
https://arxiv.org/abs/1904.04831

24
Chapter 2

CONSTRUCTING A BOOSTED, SPINNING BLACK HOLE IN
THE DAMPED HARMONIC GAUGE

Vijay Varma and Mark A. Scheel, Physical Review D., 98, 084032 (2018),
arxiv:1808.07490.

2.1 Executive summary

NR simulations begin with a solution of the Einstein constraint equations at the
initial time; this is referred to as initial data. The initial data formalism used in
SpEC allows some quantities such as the conformal 3-metric to be specified freely;
these quantities are referred to as free data. Despite this freedom, the choice of
free data is important, particularly to control unwanted initial transients. Another
important choice one makes in NR is the gauge choice; a bad gauge choice can lead
to coordinate singularities. This Chapter presents work towards constructing initial
data in SpEC in the preferred gauge choice in SpEC, the damped harmonic gauge.
We construct a numerical solution for a single black hole in this gauge, which will

be used to construct initial data in this gauge in Chapter 3.

2.2 Abstract

The damped harmonic gauge is important for numerical relativity computations
based on the generalized harmonic formulation of Einstein’s equations, and is used
to reduce coordinate distortions near binary black hole mergers. However, currently
there is no prescription to construct quasiequilibrium binary black hole initial data
in this gauge. Instead, initial data are typically constructed using a superposition of
two boosted analytic single black hole solutions as free data in the solution of the
constraint equations. Then, a smooth time-dependent gauge transformation is done
early in the evolution to move into the damped harmonic gauge. Using this strategy
to produce initial data in damped harmonic gauge would require the solution of a
single black hole in this gauge, which is not known analytically. In this work we
construct a single boosted, spinning, equilibrium black hole in damped harmonic
coordinates as a regular time-independent coordinate transformation from Kerr-

Schild coordinates. To do this, we derive and solve a set of four coupled, nonlinear,
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elliptic equations for this transformation, with appropriate boundary conditions.
This solution can now be used in the construction of damped harmonic initial data

for binary black holes.

2.3 Introduction

Gauge freedom is one of the most elegant features of general relativity. Numerical
relativity, however, inherently breaks this freedom, since one picks a particular set of
coordinates to represent the solution on the computer. Gauge choices are particularly
important in numerical relativity, since a poor gauge choice can lead to coordinate

singularities.

Here we consider numerical relativity simulations that use the generalized harmonic
formulation of the Einstein equations [1—4]. In this formalism, the coordinates x*

obey
VeV.x® = HY, 2.1

where the gauge source function H¢ is an arbitrarily chosen function of the coordi-
nates and of the 4-metric ¥, but not of the derivatives of the 4-metric. Here V,
is the covariant derivative operator compatible with ,,. The coordinates x“ are
treated as four scalars in Eq. (2.1), so that one can write V¢V x¢ = —ybe e,
where W%, are the Christoffel symbols associated with ;. Despite the consid-
erable freedom allowed in the choice of H¢, in practice it is not straightforward to

choose an H¢ that leads to coordinates without singularities or large distortions.

One gauge choice that has been particularly successful in the numerical evolution of
binary black hole (BBH) mergers is to choose H* to satisfy the damped harmonic
gauge [5-7], given by Eqgs. (2.6) below. In damped harmonic gauge, the spatial
coordinates and the lapse function obey damped wave equations, and the damping
terms suppress spatial and temporal coordinate distortions that grow large near
merging black hole horizons when using simpler gauge choices. Damped harmonic
gauge is a key ingredient in BBH simulations that use the generalized harmonic

formulation of Einstein’s equations [8].

In this paper we are interested in combining damped harmonic gauge with another
property that is often desirable in BBH simulations: initial data that is as close to
equilibrium (in a co-rotating frame) as possible. If the initial data, including the

gauge degrees of freedom, are close to stationary in a co-rotating frame, then the
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subsequent evolution will be slowly-varying in this frame (at least during the inspiral
phase), leading to higher accuracy and lower computational cost. However, there
is currently no good prescription for constructing BBH initial data that satisfy both

the properties of quasiequilibrium and of damped harmonic gauge.

To further motivate the desire for BBH simulations that share both of these prop-
erties, consider in more detail the construction of initial data for BBH simulations
using the code SpEC [9], which we use as an example in this paper. Initial data
are constructed [10] using the Extended Conformal Thin Sandwich (XCTS) [11,
12] formalism, which is a reformulation of the Einstein constraint equations. The
free data in this formalism are the conformal 3-metric g;;, the trace of the extrinsic
curvature K, and the initial time derivatives of these quantities ¢,g;; and 0;K. These
time derivatives are customarily set to zero in a co-rotating frame; this is meant as
a quasi-equilibrium condition. The other free data, g;; and K, are constructed by
superposing the analytic expressions for the (non-conformal) three-metric g;; and
K of two single black holes (BHs) in Kerr-Schild [13, 14] coordinates. With this
choice of free data, the XCTS equations are solved to yield a constraint satisfying

initial data set.

The generalized harmonic evolution equations require as initial data the initial values
and time derivatives of all components of the 4-metric. The solution of the XCTS
equations determines all of these except for the initial time derivatives 9, N and 9, N’
of the lapse N and shift N'. These initial time derivatives are customarily chosen
to be zero in a co-rotating frame at = 0; these are additional quasi-equilibrium
conditions meant to reduce initial gauge dynamics. By rewriting the Christoffel
symbols in Eq. (2.1) in terms of time derivatives of the lapse and shift, these

quasi-equilibrium conditions can be written as conditions on H® and H':

0=08,N = N ;N - N*K + N°H", (2.2)
0=0,N =N/ 3N — N*°g"d;(log N) + N°T"
+ N2 (H' + N'HY). (2.3)

Here g;; is the spatial metric, and I is the Christoffel symbol associated with g; -
Note that H* thus constructed does not necessarily satisfy the damped harmonic

gauge condition.

The quasi-equilibrium initial H* constructed above is typically used only during
the very early inspiral of the BBH system. Once the black holes approach each

other, this choice of H leads to coordinate singularities. So early in the evolution
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a time-dependent gauge transformation is done to gradually change H“ from its
initial quasiequilibrium value into damped harmonic gauge. Unfortunately, this
gauge transformation can lead to several complications: (1) The early evolution of
the BBH initial data described above is typically discarded as it is contaminated
by spurious transients generally referred to as junk radiation [15, 16]. The junk
radiation is caused by several physical effects, such as the initial ringdown of each
BH to its correct equilibrium shape. The transformation to damped harmonic gauge
that begins near the start of the evolution introduces gauge dynamics, making it
difficult to separate the physical junk radiation from gauge effects. (2) In full general
relativity there is no analytic expression for the orbital parameters of two compact
objects that yields a quasi-circular orbit. So to produce initial data describing a
quasi-circular binary, we use an iterative procedure [17] in which we guess orbital
parameters, evolve the binary for a few orbits, measure the eccentricity from the
(coordinate) trajectories of the BHs, and then compute new lower-eccentricity orbital
parameters for the next iteration. This procedure occurs at early times while the
gauge transformation (which affects BH trajectories) is active, and this might make
it difficult to achieve a desired eccentricity. (3) Typically, the evolution becomes
more computationally expensive during the gauge transition, because of additional
gauge dynamics that must be resolved. (4) It is difficult to start simulations at
close separations, because merger occurs so quickly that there is not enough time to

transition smoothly to damped harmonic gauge before merger.

Therefore, there are several possible benefits in constructing BBH initial data that
satisfy the damped harmonic gauge condition and are in quasi-equilibrium. If one
could construct a time-independent representation of a single black hole in damped
harmonic coordinates, then one could construct quasi-equilibrium damped harmonic
BBH data by using a superposition of two single BHs in these coordinates, rather
than in Kerr-Schild coordinates, as free data in the XCTS system. This would
produce quasi-equilibrium BBH data that are nearly in damped harmonic gauge
near each of the two black holes. We know that a time-independent solution for a
single BH in damped harmonic coordinates exists, because this is the final state of
the merged black hole in BBH simulations done in the damped harmonic gauge.

Unfortunately, the form of such a single-BH solution is not known analytically.

In this work, we construct a numerical solution for a boosted, spinning single BH
in damped harmonic coordinates. This is done as a regular, time independent,

coordinate transformation from Kerr-Schild coordinates. We show that one needs to
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solve a set of four coupled, nonlinear, elliptic equations for this transformation. After
imposing appropriate boundary conditions, we solve these equations numerically.
Finally, we test our solution using a single BH evolution: We evolve a single BH
that starts in Kerr-Schild coordinates and then transitions into the damped harmonic
gauge. We show that the final steady state of this evolution agrees with our solution

for a single BH in damped harmonic coordinates.

Given the single-BH coordinate representation presented here, one can construct
initial data for a binary BH in damped harmonic gauge by superposing two such
single BHs. We discuss the binary case in a separate work [18], in which we
construct, evolve, and compare several BBH initial data sets (including those initially
in harmonic gauge and in damped harmonic gauge), and in which we also introduce

new boundary conditions for the XCTS equations.

The rest of the paper is organized as follows. Section 2.4 describes the damped
harmonic gauge. In Sec 2.5, we develop a method to construct a boosted, spinning
single BH in the damped harmonic gauge. In Sec 2.6 we validate our solution using
a single BH evolution. Finally, in Sec 2.7 we provide some concluding remarks.
Throughout this paper we use geometric units with G = ¢ = 1. We use Latin letters
from the start of the alphabet (a, b, c, . . . ) for spacetime indices and from the middle
of the alphabet (i, j, k, . . . ) for spatial indices. We use ¥, for the spacetime metric,
gap for the spatial metric, N for the lapse and N’ for the shift of the constant-

hypersurfaces.

2.4 Damped harmonic gauge

In this section we describe the damped harmonic gauge in more detail. But instead of
immediately discussing the damped harmonic gauge, we start first with the simpler
case of the harmonic gauge, which is defined by the condition that each coordinate

satisfies the covariant scalar wave equation:

VeVext = 0. (2.4)
Harmonic coordinates are not unique: different coordinates can satisfy Eq. (2.4) but
have different initial conditions and boundary values.

Harmonic coordinates have proven to be extremely useful in analytic studies in
general relativity [19-23], but numerical simulations of BBH in this gauge tend

to fail as they approach the merger stage. One reason for these failures might be
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that Eq. (2.4) does not sufficiently constrain the coordinates; for example it admits
dynamical wavelike solutions. Since all physical fields in numerical relativity are
expressed in terms of the coordinates, an ideal gauge condition would eliminate

these unwanted gauge dynamics.

The dynamical range available to harmonic coordinates can be reduced by adding a

damping term, resulting in the damped harmonic gauge [6]:

VeV, x4 = HS 2.5)
Hpy, = pp log (%) t* — g N7! g N'. (2.6)

Here ¢ is the future directed unit normal to constant-t hypersurfaces, g, = Yap+14tp
is the spatial metric of the constant-¢ hypersurfaces, g is the determinant of this
metric, N is the lapse, N is the shift, and u; and ug are positive damping factors

chosen as follows:

2
Hs = pr = Ho [10?; (%)] ; (2.7)
where
R2
Mo = fo(?) exp (—a ﬁ) : (2.8)

Equation (2.7) describes the dependence of the damping factors on metric compo-
nents, and Eq. (2.8) describes rolloff factors that are used to reduce damped harmonic
gauge to harmonic gauge far from the origin or at early times. In Eq. (2.8), R is the
Euclidean distance from the origin and w is a length scale which we choose to be
100M, where M is the total mass of the system. The dimensionless constant a is
chosen to be 34.54, so that the Gaussian factor reaches a value of 10™1° at R = w.
Finally, fy(¢) is an optional smooth function of time that we include if the evolution
is meant to transition from a different gauge into damped harmonic gauge; this
function is zero before the transition and unity afterwards. The precise values of the
constants w and a are not important for the success of damped harmonic gauge in
BBH simulations; any choice that results in pp ~ 1 near the black holes and g = 0

near the outer boundary should suffice.

This choice of the gauge source function H}, has the following benefits [6]: (1)
The spatial coordinates x’ satisfy a damped wave equation and are driven towards
solutions of the covariant spatial Laplace equation on a timescale of 1/ug. This

tends to reduce extraneous gauge dynamics when 1/ug is chosen to be smaller than



30

the characteristic physical timescale. (2) Similarly, the lapse satisfies a damped
wave equation with damping factor y; [5]. (3) This gauge condition controls the
growth of 4/g/N, which tends to blow up near black hole horizons near merger
in simpler gauges like the harmonic gauge. (4) The gauge source function Hj,,
depends only on the coordinates and the spacetime metric, but not on the derivatives
of the metric. This means that this gauge condition preserves the principal part
of the Einstein equations in the generalized harmonic formalism [24], and hence
preserves symmetric hyperbolicity. Like harmonic coordinates, damped harmonic
coordinates are not unique: any initial coordinate choice can be evolved using

Eq. (2.5) and will satisfy the damped harmonic condition.

2.5 Boosted, spinning black hole in damped harmonic gauge

First consider harmonic (not damped harmonic) coordinates. Although harmonic
coordinates are not unique, there is a unique coordinate representation of a single
boosted, charged, spinning black hole that satisfies the harmonic coordinate con-
dition Eq. (2.4), is time-independent, and is regular at the event horizon. This
coordinate representation can be determined analytically [23] by considering a reg-

ular coordinate transformation from Kerr-Schild coordinates.

The situation is similar for damped harmonic coordinates. In this section, we con-
struct the unique coordinate representation of a boosted, spinning single black hole
that satisfies the damped harmonic condition, Egs. (2.5)—(2.6), is time-independent,
and is regular at the event horizon. Following Ref. [23], we construct this solution by
considering a coordinate transformation from Kerr-Schild coordinates. But unlike
the case of harmonic coordinates, for damped harmonic coordinates we will obtain

a numerical rather than an analytical solution.

Starting with Kerr-Schild coordinates (denoted by x%), we try to find a transformation
to new coordinates x“ that satisfy the damped harmonic condition,
0 —7, ,,ab
VOV, x4 = b(—‘/;/w) = HY ., (2.9)

where i is the determinant of the spacetime metric i,p,.

For simplicity, we start with Kerr-Schild coordinates that represent an unboosted
black hole. However, we desire our damped harmonic coordinates to represent a
boosted black hole, so that we can use them in BBH initial data where the two BHs

are in orbit. To obtain a boosted BH we can apply a Lorentz transformation. For fully
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harmonic coordinates (as opposed to damped harmonic coordinates), adding a boost
is not difficult, because applying a Lorentz transformation to harmonic coordinates
results in boosted coordinates that still satisfy the harmonic gauge condition [23].
However, this is not true for damped harmonic gauge. To see this, consider a set of
coordinates x¢ , related to x“ by a Lorentz transformation:

x4 = A% P, (2.10)

Because A“; has only constant components and its determinant is unity, Eq. (2.9) is

% (ﬁ:ﬂ‘?@)

—y

transformed into:
= VeV = A HE,. (2.11)

As Hp,, is not a tensor, Hg g7 AaaH“ so the transformed coordinates x? do

DH’
not satisfy the damped harmonic condition. Therefore instead of constructing
unboosted damped harmonic coordinates and boosting the coordinates afterwards,
we must build the boost into the coordinate construction, by demanding that the

transformed coordinates x? satisfy Eq. (2.11).

Similarly, we desire a BH solution with an arbitrary spin direction, but it is most
straightforward to work with Kerr-Schild coordinates with spin along the z-axis. In
order to construct damped harmonic coordinates with generic spins, we can apply

an additional rotation transformation REE to Eq. (2.11).

Combining the boost and the rotation, the equation that must be satisfied for the

coordinates x“ to obey the damped harmonic condition and to have the desired boost

o5 (V-7 7|

and spin direction is

—— = VVax = T% Hyy, (2.12)
—¥
where
x4 =T 5P, (2.13)
T = A% R". (2.14)

We proceed as follows: we start with unboosted Kerr-Schild coordinates x* with

spin in the z-direction and find a transformation to intermediate coordinates x such
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that x“ satisfies the condition Eq. (2.12). This means that x“, related to x@ by
Eq. (2.13), satisfies the damped harmonic condition (Eq. (2.5)), while having the
desired spin direction and boost with respect to x*.

Transformation to damped harmonic gauge

We define a time-independent transformation from the Kerr-Schild coordinates x

to intermediate coordinates x¢ as follows:

—~ — 2M -~ =
xo = xO +2M 10g ( ) + Uo(xl)’
r —r_
x' = x' = Msin6cos ¢ + U (x), (2.15)

2=x*-M sin @ sin ¢ + Uz(xz),

=3~ Mcos + Ug(x‘T),

where M is the mass of the black hole, - = M — VM? — 42 is the radius of the
Cauchy horizon, a is the Kerr spin parameter and (r, 6, ¢) are the spatial coordinates

of the spherical coordinate version of the standard Kerr-Schild coordinates [13]:

PR J (52, p-a?)’

2 3)2 2.1
r > 1 +(ax?) (2.16)
3
cosf = — 2.17)
r
1 2
cos ¢ = rx Fax (2.18)

(r2 + a?)sin 6

Using Eq. (2.15), the left hand side of Eq. (2.12) can be written in terms of the

Jacobian of the transformation J% = dx%/dx%:

o (ﬁjﬁg)

4

=0, (ﬁa (/ﬁz) . (2.19)

Note that the Jacobian depends on first derivatives of Ua, so this is a second-order

elliptic equation for U“.
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Elliptic equations

After substituting the explicit form of the Kerr-Schild metric [13] waZ into Eq. (2.12),
and using Eq. (2.19), a lengthy but straightforward computation yields:

LU =T HE ., (2.20)
2
8,(A8,)  By(sin 69 9 2a6,0
£= 20 Osinbdy) e, 2a0% .21)
o p?sin 6 p?sin® @ o2

where £ is a linear differential operator, A = r2—2Mr+a?, and p2 =r2+a?cos? 6.

On the right hand side of these equations, Hj),, is obtained from Eq. (2.6):

3
HY, = % log( ”Nz"/’ )] , (2.22)
2
, —uoN? \— \—
Hi, = “]‘\)7 [log (N—z‘[’)] 1 +log (N—z‘”)] , (2.23)
where
/ 1
N' = N2y (2.25)
and y is the determinant of ¥ ,.
Finally, following Eq. (2.8), we get
iy
{0 = exp (—a Z’V;x ) (2.27)
xt =T J% X% (2.28)

Eqgs. 2.20 are a set of four coupled, nonlinear elliptic equations with three inde-
pendent variables (r,6,¢). Note that the left hand side of Eq. (2.20) is linear in
the functions U? and all the nonlinearities come from the source function H Dy as
seen in Egs. (2.22) and (2.23) (the functions e appear in the Jacobians Jaa). For
harmonic coordinates, as the gauge source function is zero, the four equations are
decoupled, linear, and separable in the radial and polar coordinates [23]. In the more

general case of damped harmonic coordinates, obtaining an analytical solution is
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very challenging because the equations are coupled and nonlinear. Therefore, we

solve these elliptic equations numerically, using a spectral elliptic solver [25].

It is interesting to note that the principal part of the elliptic equations is entirely on
the left hand side, as Hj),, has only up to first derivatives of the functions U a (in the
form of the Jacobians). Hence, the principal part is the same as that for harmonic

coordinates, derived in Ref. [23].

Boundary conditions

Before we can solve the elliptic equations derived above, we need to impose suit-
able boundary conditions. The elliptic equations have three independent variables
(r,6,¢). We do not need to specify a boundary condition for 6 and ¢ as we use
spherical harmonic basis functions for the angular part in the elliptic solver. For the
radial outer boundary condition, we impose asymptotic flatness. Note that Eq. (2.15)
is equivalent to writing x¢ = x, +U @ where x;, are the fully harmonic coordinates
of Ref. [23]. Because x; are already asymptotically flat, our boundary condition is
1

U = 0. (2.29)

r—00

For the boundary condition at the inner radial boundary, consider the elliptic equa-
tions, Eqgs. (2.20) and (2.21), with the radial derivatives expanded,

ASPUT  2(r — M)O, U 8y(sin 09,U%)
— + +
P
2a0,0,U%  9,U°
+
02

p? p?sinf

= TIHS,,. (2.30)

p?sin? 6

Now, A =0atr =r, = M + VM? — a2, the event horizon. Therefore, at r = r.. the
first term of Eq. (2.30) goes to zero and the nature of the principal part changes. In
order to ensure regularity of coordinates at the event horizon we restrict the domain

to [r4,00) and impose a regularity boundary condition at r:

20 = M)3,UT _ 3u(sin 03,U%) o;U"
o? p?sinf p?sin® @
2a8,0,U%

t———
P

'In practice, the outer boundary is set at a radius ~ 10'3 times the mass of the BH.

= TOHS, at r —ry. (2.31)




35

Convergence tests

Having chosen suitable boundary conditions for the elliptic equations, we solve
them numerically using a spectral elliptic solver [25]. Our domain consists of 12
concentric spherical shells extending from the horizon r; to 1055 M, distributed
roughly exponentially in radius. Each shell has the same number of angular collo-
cation points and approximately the same number of radial points. The number of
collocation points in each subdomain is set by specifying an error tolerance to our
adaptive mesh refinement (AMR) algorithm [26, 27].

The elliptic solver yields a solution for the intermediate coordinates x?, from which
we obtain the damped harmonic coordinates x“ using Eq. (2.13). To quantify how
well the final coordinates x“ actually satisfy the damped harmonic gauge condi-
tion (Eq. (2.5)), we define normalized damped harmonic constraints and constraint

energy?:

P T, + Hy

DH = - , (2.32)
Cpu = (2.33)

where ||.|| is the L? norm over the domain. The numerator of Eq. (2.32) is zero if
Eq. (2.5) is exactly satisfied, and the denominator of Eq. (2.32) is chosen so that a

solution very far from damped harmonic gauge has Cj),, of order unity.

Figure 2.1 shows the values of the damped harmonic constraints as a function of
numerical resolution, where higher resolution is achieved by setting a lower AMR
error tolerance. We note that the constraints decrease exponentially with resolution,

as expected for a spectral method.

Choosing a time slice

The solution of the elliptic equations along with Eq. (2.13) gives us a transformation

from Kerr-Schild coordinates (x%) to damped harmonic coordinates (x“). But the

Notice that for the denominator of Eq. (2.32) below, repeated indices are summed over after
squaring the quantities, unlike the standard summation notation.



36

102 g I I T3
E E i
S 103 —— Cp
17 g 3
S C - Cbn ]
O 104 L ,
o 10 E —+— C(py 3
G 10° E
(&) C ]
C - |
§ 10 E
£ : ;
% 10'7 E =
S g 3
q’ = -
o i ]
€ 108 -
© E 3
o i ]

10-9 1 1 1 1

20 25 30 35
N1/3

Figure 2.1: Convergence test for solving the elliptic equations (Eq. (2.20)) to con-
struct a single BH in the damped harmonic gauge. Plotted are the damped harmonic
constraints (cf. Egs. (2.32) and (2.33)) as a function of the number of colloca-
tion points per dimension in the domain. As expected for spectral methods, the
constraints converge exponentially.

desired initial data requires computing the metric and its derivatives on a slice of
constant time in the new coordinates x¢, so it is necessary to construct such a slice
as a function of the Kerr-Schild coordinates. Using Eq. (2.13), we can construct a

x% = 0 slice as follows:

x0=0="7% %" (2.34)
0
o TI'7 7
x! = x', (2.35)
0
S =TT
X =T;x%= % x'+ T x (2.36)

This gives us a constant-time slice of damped harmonic coordinates (x° = 0, x)
in terms of the intermediate coordinates (xa), which in turn are expressed as a

transformation from Kerr-Schild coordinates (Egs. (2.15)).

The final step in constructing single-BH initial data is to compute the metric and
its derivatives on a slice of constant x° = 0. This is done by choosing a set of

points in the new coordinates (x = 0, x'), computing the corresponding x? using
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Figure 2.2: Kruskal-Szekeres diagram showing constant time slices of the
unique horizon-penetrating time-independent slicings of Schwarzschild spacetime
in damped harmonic and harmonic coordinates, and constant time slices in Kerr-
Schild coordinates. The solid black curves represent the curvature singularity while
the dashed black lines represent the event horizon. Note that the damped harmonic
slices only extend up to the event horizon because we restrict our numerical solution
to this region; nevertheless, the damped harmonic slices are horizon-penetrating. In-
terestingly, we see that the damped harmonic slices are quite close to the Kerr-Schild
slices.

Egs. (2.35) and (2.36), computing the corresponding Kerr-Schild coordinates x“
using Eqgs. (2.15), and evaluating the metric and its derivatives analytically at those
values of x“ using the Kerr-Schild expressions. The components of the metric and
its derivatives are then transformed using the Jacobians (and Hessians for the metric

derivatives) that relate x% and x?.

To visualize the embedding of these damped harmonic slices in spacetime, we
restrict ourselves to a nonspinning BH with zero boost. In this spherically symmetric
case, we can use the Kruskal-Szekeres coordinates to display the time slices on a
spacetime diagram. These are shown in Fig 2.2, along with constant Kerr-Schild time
slices and constant time slices of the unique time-independent horizon-penetrating

harmonic slicing of Schwarzschild spacetime [23]. We note that constant time
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slices of damped harmonic coordinates lie nearly on top of the constant time slices
of Kerr-Schild coordinates, indicating that the extrinsic curvature of the two slicings

are quite similar.

2.6 Validation against single black hole simulations

In this section, we check whether the solution we constructed in Sec. 2.5 agrees with
the time-independent final state of a single BH that begins in some different gauge

and is evolved numerically using damped harmonic gauge conditions.

We start with a single BH on a # = 0 slice of Kerr-Schild coordinates, and we evolve

it using the following time-dependent gauge source function:
H(1)= B 17" + HY . (2.37)

Here H is the equilibrium gauge source function satisfying Eqgs. (2.2) and (2.3) for
a single Kerr black hole in Kerr-Schild coordinates. It is computed analytically as a
known function of # and x’ during the evolution. H' 5 1 the damped harmonic gauge
source function given by Eq. (2.6) and Eq. (2.7), where we set fy(¢) = 1 — ettt
During the evolution, H, is computed numerically using live values of the metric
and its derivatives. We choose the time scale of the gauge transformation, o, to be
S50M. At early times, the BH remains time-independent in Kerr-Schild coordinates,
then there is a transition on a timescale of S0M in which the solution is dominated
by gauge dynamics, and at late times the solution obeys the damped harmonic gauge

condition and settles down to a time-independent state.

Figure 2.3 shows the evolution of certain components of the metric as the evolution
progresses. These are compared against the single BH damped harmonic solution
of Sec. 2.5. The final steady state solution of the simulation agrees with our solution
for the time-independent single BH in damped harmonic coordinates. We note that
the extrinsic curvature, lapse and shift of the initial state, which is a black hole
in Kerr-Schild coordinates, are quite close to the corresponding quantities in the
final state; these are all quantities that depend on the embedding of the constant
time hypersurfaces in spacetime. We have already seen from Fig. 2.2 that for zero
spin, this embedding is very similar for Kerr-Schild and damped harmonic slicings;

Fig. 2.3 suggests that this embedding is also similar for nonzero spin.
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Figure 2.3: Snapshots during the evolution of a single BH with mass, M = 1 and
dimensionless spin, y, = 0.5, starting in Kerr-Schild coordinates and moving into
damped harmonic coordinates over a time scale of S0M. Certain components of the
spatial metric g;;, extrinsic curvature K;;, shift N " and lapse N along the x-axis are
shown as dashed red lines as the evolution progresses. The horizontal axis shows
the x coordinate. For each column, time flows downwards and is shown in the left
most column. The solid blue lines show our solution for a single time-independent
BH in damped harmonic gauge, as described in Sec. 2.5. This solution agrees with
the final state of the evolution.

2.7 Conclusion

The damped harmonic gauge has been useful for simulations of binary black hole
spacetimes, and is a key ingredient for handling mergers in simulations that use
the generalized harmonic formalism. However, currently there is no prescription to
construct quasi-equilibrium binary black hole initial data in this gauge; until now,
there has been no prescription to construct even a time-independent single black

hole in this gauge.

In this work we have developed a method to construct a time-independent boosted,
spinning single black hole in damped harmonic gauge. We start with a black hole in
Kerr-Schild coordinates, and we construct a coordinate transformation to damped

harmonic coordinates. This transformation involves the numerical solution of four
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coupled, nonlinear elliptic equations with appropriate boundary conditions. We
solve these equations with a spectral elliptic solver, and we verify that the solution
agrees with the final time-independent state of a single black hole that begins in

Kerr-Schild coordinates and is evolved using the damped harmonic gauge.

Our procedure to construct a time-independent boosted, spinning, single BH in
damped harmonic coordinates can now be used to construct equilibrium BBH initial
data that satisfies the damped harmonic gauge. This is done by superposing two time-
independent damped-harmonic BH solutions, in the same way that BBH initial data

is currently built by superposing two time-independent Kerr-Schild BH solutions.

The next step is to use the solutions here to construct a BBH initial data set in
damped harmonic gauge, evolve it, and compare with evolutions of BBH initial data
sets in harmonic gauge and in superposed Kerr-Schild coordinates. This is done in

a separate work, Ref. [18].
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Chapter 3

COMPARISON OF BINARY BLACK HOLE INITIAL DATA SETS

Vijay Varma, Mark A. Scheel, and Harald P. Pfeiffer, Physical Review D., 98, 104011
(2018), arxiv:1808.08228.

3.1 Executive summary

NR simulations begin with a solution of the Einstein constraint equations at the
initial time; this is referred to as initial data. The Einstein evolution equations are
then used to step forward in time. This Chapter presents various improvements to
the initial data in SpEC, including better boundary conditions, reduced unwanted

initial transients, and more computationally efficient evolution.

3.2 Abstract

We present improvements to construction of binary black hole initial data used in
SpEC (the Spectral Einstein Code). We introduce new boundary conditions for
the extended conformal thin sandwich elliptic equations that enforce the excision
surfaces to be slightly inside rather than on the apparent horizons, thus avoiding
extrapolation into the black holes at the last stage of initial data construction. We
find that this improves initial data constraint violations near and inside the apparent
horizons by about 3 orders of magnitude. We construct several initial data sets that
are intended to be astrophysically equivalent but use different free data, boundary
conditions, and initial gauge conditions. These include free data chosen as a su-
perposition of two black holes in time-independent horizon-penetrating harmonic
and damped harmonic coordinates. We also implement initial data for which the
initial gauge satisfies the harmonic and damped harmonic gauge conditions; this can
be done independently of the free data, since this amounts to a choice of the time
derivatives of the lapse and shift. We compare these initial data sets by evolving
them. We show that the gravitational waveforms extracted during the evolution
of these different initial data sets agree very well after excluding initial transients.
However, we do find small differences between these waveforms, which we attribute
to small differences in initial orbital eccentricity, and in initial BH masses and spins,

resulting from the different choices of free data. Among the cases considered, we
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find that superposed harmonic initial data leads to significantly smaller transients,
smaller variation in BH spins and masses during these transients, smaller constraint
violations, and more computationally efficient evolutions. Finally, we study the

impact of initial data choices on the construction of zero-eccentricity initial data.

3.3 Introduction

Numerical simulations of binary black holes (BBH) have been crucial for our un-
derstanding of BBH systems. For example, these simulations are important for the
construction of accurate waveform models that cover the inspiral-merger-ringdown
phases of a BBH system [1-5]; these models were used in successful detections [6—
10] of gravitational waves by LIGO [11]. Accurate waveform models are necessary
not only for the detection of gravitational wave signals but also for making inferences
about the astrophysical properties of the sources [12] and for conducting strong field

tests of general relativity [13].

A numerical BBH simulation begins with the construction of initial data that de-
scribes the state of the system on some three-dimensional initial surface labeled
t = 0. Constructing initial data requires not only solving the Einstein constraint
equations, but also freely choosing the initial spatial coordinates, the embedding of
the three-dimensional initial surface in the four-dimensional spacetime, and some
physical degrees of freedom; these choices are encoded in freely-specifiable func-
tions and boundary conditions that are used in the solution of the constraint equa-
tions. The subset of these choices that amount to choosing coordinates should not,
of course, affect the physics [14], but they may affect the robustness and accuracy
of the subsequent evolution. This is because they influence the gauge degrees of
freedom that evolve along with, and are intermixed with, the physical degrees of

freedom.

In this paper we study how binary black hole simulations are affected by different
choices of free data, gauge, and boundary conditions that are made when construct-
ing initial data sets that are meant to be physically identical. We consider simulations
performed with one particular numerical relativity code, the Spectral Einstein Code
(SpEC) [15].
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Summary of initial data for SpEC simulations

Before discussing how to improve the treatment of initial data, we first outline the
current procedure used to construct initial data for binary black hole simulations
using SpEC; this procedure is described in more detail in Sec. 3.4. We adopt the
Extended Conformal Thin Sandwich (XCTS) formalism [16, 17], and the free data
supplied to the XCTS equations are chosen to be constructed from a superposition
of two single black holes (BHs) in Kerr-Schild coordinates [18]. The region inside
each of the BHs is excised from the computational domain, and boundary conditions
are chosen that enforce the boundaries of these excision regions to be apparent

horizons [19].

After the XCTS system of equations is solved, yielding a constraint-satisfying initial
data set, the metric quantities are interpolated (and extrapolated) onto a new nu-
merical grid that extends slightly inside the original excision boundaries. This new
grid is used for the evolution. On the new grid the apparent horizons lie inside the
computational domain rather than on its boundary, and this allows the subsequent
evolution to track the apparent horizons as they dynamically change in shape and
size. Unfortunately, the small extrapolation to points inside the apparent horizons

introduces some constraint violations in the vicinity of the excision boundaries.

Binary black hole initial data described above represent a physical solution to
Einstein’s equations but do not result in an exact snapshot of a quasi-equilibrium
inspiral: the solution contains near-zone transient dynamics and does not include
the correct initial gravitational radiation in the far zone. During evolution the system
relaxes into a quasi-equilibrium state with the mismatch radiating away as a pulse
of spurious radiation, which is generally referred to as junk radiation. The initial
transients typically contain high spatial and temporal frequencies, so that resolving
them is computationally expensive. For this reason, we typically choose not to fully
resolve them at all, and we instead simply discard the initial part of the gravitational

waveforms that are affected by these transients.

In addition to initial data, evolution also requires an initial choice of gauge. SpEC
employs the generalized harmonic formulation of the Einstein equations [20-23],
where gauge conditions are imposed through gauge source functions H, (see 3.4).
At the beginning of a binary black hole simulation, H, is currently chosen such
that the time derivatives of lapse and shift vanish at + = 0 in a frame co-rotating
with the binary; this quasi-equilibrium condition is intended to minimize gauge

dynamics at the beginning of the evolution [24]. However, a different choice of
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H,, the damped harmonic gauge [25-27], is usually necessary later in the evolution
when the black holes merge. The choice of H, cannot be discontinuous in time
because time derivatives of H, appear in the evolution equations. Hence, a smooth
gauge transformation is applied in the early stages of evolution to move into damped

harmonic gauge.

Improvements in initial data treatment

In this paper we present several improvements to BBH initial data construction.
First, we introduce new boundary conditions for the XCTS elliptic equations that
enforce the excision surfaces to have a negative expansion. This means that the
excision surfaces are already inside the apparent horizons, eliminating the need to
extrapolate inside the horizons during the initial data construction. We find that this
improves constraint violations in initial data near and inside the apparent horizon

surfaces by about 3 orders of magnitude.

Next, we construct several initial data sets that implement different free data in
the XCTS equations as well as different initial gauge conditions. The new free
data choices include superpositions of two single BHs in time-independent horizon-
penetrating harmonic [28] and damped harmonic [29] coordinates rather than in
Kerr-Schild coordinates. The new initial gauge choices include imposing (to nu-
merical truncation error) the harmonic and damped harmonic gauge conditions at

t = 0, instead of setting the initial time derivatives of the lapse and shift to zero.

We evolve all these initial data sets. Among all the initial data constructions
considered here, we find that superposed harmonic initial data exhibits the most
favorable behavior in subsequent evolutions. Superposed harmonic initial data
exhibits the smallest amount of junk radiation, and the smallest variation in the
measured masses and spins of the BHs during the initial relaxation. Furthermore,
the constraint violations during the initial relaxation are smaller by about an order of
magnitude. Remarkably, evolution of superposed harmonic initial data also shows
a speed-up of about 33% compared to superposed Kerr-Schild data for the case
considered, reducing the runtime and computational cost of BBH simulations. The
speed-up can be traced to the adaptive mesh refinement (AMR) choosing fewer grid
points to achieve the same accuracy. We also find that during the initial relaxation,
when we intentionally do not attempt to resolve initial transients, the constraint
violations converge to zero with increasing resolution only for superposed harmonic

initial data.
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These positive findings suggest that simulations in the future should use superposed
harmonic initial data; however, it is known that a single BH in time-independent
horizon-penetrating harmonic coordinates becomes very distorted in the direction of
spin for large spins (cf. Fig. 3.10). These distortions are inherited by the superposed
harmonic BBH initial data sets, so that the black hole horizons become so deformed
to render evolutions of nearly extremal spins impractical. We find that superposed
harmonic initial data works well when both BH dimensionless spin magnitudes are
below 0.7.

We also find that superposed damped harmonic initial data does not perform as well
as superposed Kerr-Schild initial data in the above respects. However, we find that we
can construct superposed Kerr-Schild initial data that is initially in damped harmonic
gauge (so as to avoid a subsequent gauge transformation during the evolution), and
that this initial data set performs as well as superposed Kerr-Schild with the current
quasiequilbrium initial gauge, in the above respects. Therefore, we recommend that
superposed harmonic initial data be used for spin magnitudes < 0.7. For higher
spins, we recommend superposed Kerr-Schild initial data with damped harmonic
initial gauge, since this performs no worse than the current choice of superposed
Kerr-Schild with quasi-equilibrium initial gauge, and it is simpler because it requires

no gauge transition during evolution.

The rest of the paper is organized as follows. Section 3.4 provides a brief overview
of the initial data formalism, including the new negative-expansion boundary con-
ditions and new choices of free data and initial gauge. In Sec. 3.5 we summarize
the particular choices of initial data that we choose to construct and compare in this
work. In Sec. 3.6 we test convergence of constraints in each of these initial data sets.
In Sec. 3.7 we evolve these different initial data sets and compare the results of these
evolutions. Finally, in Sec. 3.8 we provide a conclusion and recommendations for
the construction of initial data in future BBH simulations. Throughout this paper
we use geometric units with G = ¢ = 1. We use Latin letters from the start of
the alphabet (a, b, c, . . . ) for spacetime indices and from the middle of the alphabet
(i,j,k,...) for spatial indices. We use y;, for the space-time metric. We use g;; for

the spatial metric, N for the lapse and N for the shift of the constant-¢ hypersurfaces.

We note that this paper focuses entirely on improvements to the initial data treatment
adopted by codes [15, 23] that use the generalized harmonic formulation [20-23] of
the evolution equations. NR codes [30—36] that use moving-puncture initial data [37]
(since they do not employ BH excision) and/or the BSSNOK formulation [30, 38,
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39] of the evolution equations (since the gauge is set directly by setting a lapse and a

shift, rather than a gauge souce funcion) would not benefit from these improvements.

3.4 BBH initial data formalism

In this section we provide a brief overview of binary black hole initial data formal-
ism, and we suggest improved boundary conditions and gauge choices. We start
by discussing the Extended Conformal Thin Sandwich (XCTS) system of elliptic
equations in Sec. 3.4. Next, in Sec. 3.4 we cover the boundary conditions for the
elliptic equations, including the new negative expansion boundary conditions that
lets us avoid spatial extrapolation of the initial data quantities. Finally, in Sec. 3.4
we discuss different gauge choices that we use in initial data. In the next section,

Sec. 3.5, we summarize the different initial data sets constructed for this study.

Extended conformal thin sandwich equations

XCTS [16, 17] is a formulation of the Einstein constraint equations well-suited for
numerical solution. The “extended” part of XCTS refers to an additional equation
that is added to the system: the evolution equation for the trace of the extrinsic
curvature, converted into an elliptic equation. This extra equation is useful in
producing initial data in quasi-equilibrium. For a more detailed review of initial

data construction, see [40-42].

The XCTS construction starts with a conformal decomposition of the 3-metric into

a conformal factor ¢ and a conformal metric g;;
gij =" &ij. (3.1)

Using the definition of extrinsic curvature in terms of the time derivative of the

spatial metric, the extrinsic curvature K;; takes the form

1
K,’j = §gin + Aij» (32)
where
_ oS
Ay =uTAy A= (@ - ar). (3.3)

Here N is the lapse, N' is the shift, (LN)" represents the conformal Killing operator
in conformal space, and it;; = 0;g;;'. K and A;; are the trace and trace-free part of
K;;.

Note that one also needs to set gV ii; 7 = 0 to uniquely specify u;;.
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In the XCTS formalism, one can freely specify the conformal metric g;;, trace of
extrinsic curvature K, and their time derivatives #;; and ;K. For quasi-equilibrium
situations, these time derivatives are typically set to zero. The system of of elliptic

equations to be solved becomes:

v%u--zw;- 1K21,// + w‘7A”A,]:O (3.4)
l7[/6 l l 17[/6 et |
( (LN)J) “ytVK -V, (2N f) 0, (3.5)
2 _ o i 4,4 T =8 Aij A,
V-(NY) Nlp(8 + 12[( Ut + 8¢ AJA,])
+° (6K — N*3,K) = 0, (3.6)

where R and V; are the Ricci scalar and the spatial covariant derivative operator
associated with g;;. Once these equations are solved for ¢, Ny and N I, the physical
solution (g;;, K;;) is constructed from Egs. (3.1-3.3) and the free data (g;;, #;;, K
and 0,K).

Choosing freely specifiable data

If the lapse N and shift N' computed from XCTS are used in the evolution of the
initial data, the time derivative of K will initially be equal to the specified 9;,K
and the trace-free part of d;g;; will be initially proportional to the specified i;;. In
order to generate quasi-equilibrium initial data, the natural choice for these freely

specifiable quantities is:

;; =0, 0,K=0. 3.7
Following Ref. [18], we construct the free data based on a superposition of two
single-BH solutions. Let gl?; and K be the 3-metric and the trace of extrinsic
curvature of a single boosted, spinning black hole, with @ = 1,2 labeling the two

black holes. We then choose the conformal 3-metric g;; and the trace of the extrinsic

curvature K to be
2 2 2
=S+ Z e TalVa (&% = fip)s (3.8)
a=1

K = Z e TalVa K, (3.9)
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where f;; is the flat 3-metric. Far from the holes, the conformal metric is very nearly
flat and the trace of extrinsic curvature is very nearly zero. This is achieved through
a Gaussian weight around each hole, with a width w, that determines how fast the
conformal metric approaches the flat metric with increasing Euclidean distance r,

from the center of each hole. The widths of the Gaussians w, are chosen to be
We = 0.6 d51, (3.10)

where dé " is the Euclidean distance to the Newtonian L; Lagrange point from the
center of hole . This is identical to the choice made in Ref. [18]. This ensures that
the widths are larger than the size scale of the hole (~ M,, the mass of the hole) but
smaller than the distance to the other hole. This also ensures that near each black
hole, the contributions of the other black hole are attenuated by several orders of
magnitude. The Gaussians are also needed so that at large distances the solution

does not develop a logarithmic singularity [43].

The single-BH quantities gl.“j and K“ above are determined by the Kerr metric,
by a choice of how to slice the Kerr metric into a foliation of three-dimensional
hypersurfaces, and by a choice of spatial coordinates on these hypersurfaces. These
choices are largely arbitrary, but they must satisfy certain conditions to produce a
viable initial data set; for example, the slices must contain an apparent horizon and

be regular there.

Exploring new choices of free data

A key goal of this paper is to investigate the effect of the choice of g?j and K on the
resulting initial data set and subsequent evolution. Here we consider three choices,
explained in more detail in Sec. 3.5. The first is the choice made in the current
implementation of SpEC, which was introduced in Ref. [18]: gi";. and K¢ are taken
to be in Kerr-Schild coordinates centered about each BH. The second is to specify
gg. and K¢ in harmonic coordinates, using the unique harmonic time slicing that is
both time-independent (for a single BH) and that penetrates the horizon as derived
in Ref. [28]. Finally, we also consider the case in which gf‘j and K“ are chosen in the
unique coordinate system that obeys the damped harmonic condition [25-27] and
for which the time slices are time-independent and horizon-penetrating [29]. For all

of these cases, we use the same Gaussian weights in Egs. (3.8) and (3.9).
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Boundary conditions

Equations (3.4), (3.5), and (3.6) require appropriate boundary conditions in order to

solve for initial data.

The outer boundary (denoted by 8,) conditions are obtained by requiring the initial
data to be asymptotically flat. Note that in practice, we do not actually place
the boundary B, at spatial infinity, but at a coordinate sphere of radius ~ 10°M.
Because the conformal metric and trace of extrinsic curvature, as given by Egs. (3.8)

and (3.9), are already asymptotically flat, the outer boundary conditions are

y=1 atBo, (3.11)
Ny =1 at B, (3.12)
N = (Qoxr) +aor' at Be. (3.13)

Here, N' is the shift in a frame that co-rotates with the binary, ri is the coordinate
position vector, € is the orbital angular velocity and ¢y is an expansion parameter.
The shift boundary condition consists of a rotation and an expansion term. The
rotation term (parametrized by ) ensures that the time coordinate is helical and
tracks the rotation of the system, and the expansion term (parametrized by a) sets
a non-zero radial velocity, to account for the initial decrease in the orbit due to
radiation reaction. These boundary conditions are identical to those in [44], which

presents a more detailed exposition.

The inner boundary conditions are imposed on the excision surfaces, denoted by
Bg. These are chosen to be surfaces of constant radial coordinate in the single BH
coordinates used in Eq. 3.8. We choose our single BH coordinates such that the
apparent horizon has a constant radial coordinate? but the excision boundary may
or may not be an apparent horizon, as explained below. Here we consider two types

of inner boundary conditions.

Horizon boundary conditions

The standard practice in SpEC has been to choose quasi-equilibrium apparent/isolated
horizon boundary conditions on the inner excision surfaces[19, 45]. We refer the

reader to [40, 46, 47] for a review of the properties of apparent and isolated horizons.

%For superposed Kerr-Schild and superposed harmonic, this is the Boyer-Lindquist radius; for
superposed damped harmonic, this coordinate is determined numerically [29].
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We require boundary conditions on the conformal factor, the shift vector, and the

lapse function.

The boundary condition for the conformal factor is obtained by setting the expansion
scalar on the excision surface to zero, ensuring that it is an apparent horizon. To see

how this results in a boundary condition, we first write out the expansion of B as

4 —k lﬂ3 Sisi (T 7
O = 7 55 Oy + AR (LN — 1))

4

. 1
+ZWV@—8KM, (3.14)

where 5 = y?s', s' is the spatial unit normal to Bg, and h;; = g; — 5;5; is the
induced conformal 2-metric on Bg. h; ; is related to the induced 2-metric on B by
hij = Wh ;. Enforcing the excision surfaces to be apparent horizons (setting ® = 0)

gives us a boundary condition on the conformal factor at B:

3 . . —_
sk o =— QSII_NElEJ ((LN)U - L_tij)

o 1
- %h’JV,-EJ + gKl//3 (3.15)

The boundary condition on the shift is obtained by requiring that: (1) The coordinate
location of the apparent horizons do not change (in a co-rotating frame) as the initial
data begin to evolve. (2) The shear tensor vanishes on the excision surface; this
is a property of isolated horizons [46]. We impose these two conditions only
approximately, as described below. To obtain the shift boundary condition, we first

decompose the shift into parts normal and tangential to the surface Bg,

M:W+Mﬁ (3.16)
where

W E@M, (3.17)

N, = Nis,. (3.18)

The inner boundary condition (at Bg) for the shift is

N, = N, (3.19)

i (k) gi
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where
o) = Y2 - 29, 3.21)
&1y = 28 - x2, (3.22)
Eo) = x§ — y& (3.23)

are three linearly independent conformal Killing vectors of a coordinate sphere, and
Qﬁk) are three arbitrarily specifiable free parameters that will be discussed below.
The first condition, Eq. (3.19), ensures the apparent horizons are initially at rest in
the coordinates. The second condition, Eq. (3.20), sets the spin of the black hole
[19, 45]. If the excision surface is a coordinate sphere, then g?(k) are conformal
Killing vectors associated with h; s E(k) are orthogonal to s;, and the shear tensor
vanishes on the excision surface [19]. For the initial data choices compared here,
the excision boundary is not a coordinate sphere, so neither the shear-free condition
nor the stationary-horizon condition that motivated the shift boundary conditions
are satisfied. Nevertheless, we find that the boundary conditions above are adequate

for binary black hole initial data.

In practice, it is not possible to a priori choose values of Qﬁk) that will yield a
desired black hole spin; instead one must use an iterative procedure [48, 49], where
at each iteration Qﬁk) is updated until the spin converges to the desired value. For
each iteration, the spin parameter in the single-black-hole solutions gg. and K¢ (cf.
Egs. (3.8) and (3.9)) is unchanged, and is set to the desired black hole spin.

Finally, the boundary condition at B for the lapse (which can be chosen freely [19])
is chosen such that its value in the vicinity of each black hole approaches that of the

corresponding single black hole lapse,
2 27,2
Ny =1+ Z ealVa(N, — 1), (3.24)
a=1

where N, is the lapse corresponding to single black hole @ and the Gaussian weights

are the same as in Eq. (3.8).

Negative expansion boundary conditions

The horizon boundary conditions discussed above enforce the excision surfaces to
be apparent horizons. However, BBH evolutions require an inner boundary that is

slightly inside the apparent horizons, for the following reasons: (1) The apparent
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Figure 3.1: Initial constraint violations on the equitorial plane near the larger hole of
a BBH system, for horizon boundary conditions (left) and negative expansion bound-
ary conditions (right). Colors show the magnitude of the Hamiltonian-momentum
constraint energy (cf. Eq. 3.42), the yellow circle is the apparent horizon, and
the large black area inside the horizon is the excision region. Here superposed
Kerr-Schild free data are used to construct a BBH with mass ratio ¢ = 1.1 and
spins y1; = —0.3 and y», = —0.4 along the direction of orbital angular momentum.
Unlike the horizon boundary conditions, the negative expansion boundary condi-
tions require no extrapolation inside the horizon, and thus yield constraints near and
inside the apparent horizon that are about 3 orders of magnitude smaller.

horizons dynamically change shape and size during evolution, so if the excision
surfaces are at the apparent horizons, the horizons can fall off the numerical grid
during evolution. (2) Our method of finding apparent horizons during the evolution
needs to explore regions just inside and just outside of the horizon in order to
converge onto the correct surface. (3) During the evolution, no boundary conditions
need to be imposed at the inner boundary, because all characteristic fields are ingoing
(into the black hole) there. To maintain this ingoing-characteristic-fields condition,
the inner boundary is adjusted to closely track the apparent horizon to within a small

but nonzero error tolerance.

This means that after solving for initial data using horizon boundary conditions, the
initial data must be extrapolated spatially to a new grid that has smaller excision
surfaces. This extrapolation introduces constraint violations (cf. left panel of
Fig. 3.1), and therefore we propose new boundary conditions that are similar to the
horizon boundary conditions discussed above but are set on a surface inside the

horizon and thus avoid extrapolation altogether.
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The idea behind the new boundary conditions is to set the expansion not to zero, but
to some nonzero value that ensures that the excision boundary is inside an apparent
horizon rather than on one. We use Eq. (3.14) to modify the conformal factor

boundary condition at B to:

3

_ /A _
Sk 8kl// = _W SJ ((LN)ij—uij)
Yhigs + kg
4h V,s]+6K¢/ + 7 Qo (3.25)

where « denotes the particular BH and ©,, is computed from the single BH metrics
used in Eq. 3.8. As we choose the excision surface to be slightly inside the single
BH horizons, 0, is negative on the surface. Henceforth we refer to this boundary

condition as a negative expansion boundary condition.

When imposing the negative expansion condition, we also need to modify the shift
boundary condition, as Eq. (3.19) holds only on a horizon. Noting that for a single
BH, € = N, — N is positive inside the horizon and negative outside, we modify the

boundary condition at Bg for the normal component of shift to:
Ny =N + &, (3.26)

where €, = N,, — N, are again obtained from the single BH solutions of the

individual holes.

For negative expansion boundary conditions, we continue to use Eq. (3.20) for the
tangential part of the shift. We also continue to use Eq. (3.24) for the boundary
condition on the lapse, with N, evaluated at the new location of the inner boundary.

Ek), as described

We find that the procedure for setting the spin via iteration over Q
in Sec. 3.4, works just as well in the case of a negative expansion BC as it does for

a horizon BC.

Figure 3.1 demonstrates the efficacy of these new boundary conditions; shown are the
constraints near the larger black hole when using horizon boundary conditions and
the new negative expansion boundary conditions. When using negative expansion
boundary conditions, the constraints improve by about 3 orders of magnitude inside
and near the apparent horizon. Note, however, that once the evolution begins, most
of this constraint violation propagates inwards into the excision surfaces and out of
the computational domain. This is because in the generalized harmonic formalism
the evolution of constraint violations is governed by a wave equation [20], which

ensures that constraint violations propagate causally. Hence, we do not expect the
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new boundary conditions to reduce constraint violations during the evolution nearly

as much as they improve initial constraint violations.

Gauge choices

SpEC uses the generalized harmonic evolution system [20-23] to evolve the initial
data. In this formalism, the gauge choice is set by requiring the coordinates to satisfy

an inhomogeneous wave equation,
- @Wre = yey x* = HY, (3.27)

where e = ybc (4)FZC, Yap is the spacetime metric, (4)1"2’6 are the Christoffel
symbols associated with ¢, V, is the covariant derivative operator compatible
with .5, and H (called the gauge source function) is a function of the coordinates

x% and the metric i, (but not the derivatives of the metric).

The simplest choice for the gauge source function is to set it to zero, which yields
the harmonic gauge:
VeV.x = H* = 0. (3.28)

Harmonic coordinates have proven to be extremely useful in analytic studies in GR
[28, 50-53]. However, this gauge does not work well for simulations of black hole
mergers. One common reason for the failure is growth in 4/g/N, which tends to

blow up as the black holes approach each other [27].

SpEC evolutions are done instead in the damped harmonic gauge [27] given by:

VeVxt = HS . (3.29)
V& N
Hpy = pylog (W 1 - ,USﬁgai’ (3.30)

where ¢ is the future directed unit normal to constant-t hypersurfaces, g,; is the
spatial metric of the constant-t hypersurfaces and g its determinant, and y; and ug
are positive damping factors that can be chosen arbitrarily. The spatial coordinates
and lapse satisfy a damped wave equation with damping factors us and yy, and are
driven towards solutions of the covariant spatial Laplace equation on timescales of
1/us and 1/ug, respectively. Damped harmonic gauge tends to reduce extraneous

gauge dynamics present in the harmonic gauge.

The damping factors are chosen as follows:

2
Hs = 1L = Ho [10g (%)] ) (3.31)
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Type Initial Data Evolution
XCTS free data (g;;, K) Inner BC Initial Gauge Final Gauge
SKS-Eq-6g | Superposed Kerr-Schild Horizon BC Quasi-equilibrium | Damped Harmonic
SKS-Eq Superposed Kerr-Schild Negative expansion BC | Quasi-equilibrium | Damped Harmonic
SH-H Superposed Harmonic Negative expansion BC | Harmonic Damped Harmonic
SDH-DH Superposed Damped Harmonic | Negative expansion BC | Damped Harmonic | Damped Harmonic
SKS-DH Superposed Kerr-Schild Negative expansion BC | Damped Harmonic | Damped Harmonic

Table 3.1: Types of initial data considered in this study. The initial data formalism is
described in Sec. 3.4. See Sec. 3.4 for the XCTS system of equations and Sec. 3.4 for
the freely specifiable data in XCTS. We describe the horizon boundary conditions
in Sec. 3.4 and negative expansion boundary conditions in Sec. 3.4. The gauge
choices are described in Sec. 3.4. The initial gauge is chosen by setting d;N and
9;N' according to Sec. 3.4.

where M g is chosen to be of order unity, and yq is a function of time (to accommo-
date starting an evolution from initial data satisfying a different gauge condition).
This choice of the damping factors ensures that 4/g/N is driven faster than expo-
nentially towards an asymptotic state [27], so that 4/g/N does not grow rapidly near

mergers as often happens with harmonic gauge.

Setting the initial gauge

The generalized harmonic evolution system requires the metric ¢, and its time
derivative 9,4, to be specified on the initial time slice. Most of these quantities
are determined by the solution of the XCTS equations and the free data that are
used in solving these equations. However, d,¢/,p also includes the time derivatives
of the lapse and shift, which are independent of the XCTS equations. Instead, they
are equivalent to the initial choice of the gauge source function H¢. To see this,
we expand the generalized harmonic gauge condition, Eq. (3.27), and rewrite it in

terms of the time derivatives of lapse and shift:

&N = N/3;N-N?K+NH", (3.32)
N = N/O;N' - N?g"d;(log N) + N°T"
+N%(H' + N'HY). (3.33)

Here I = g/ kl“j. . and Fj.k are the Christoffel symbols associated with g;;. Note
that N2 and N? indicates powers of the lapse function, whereas N', H® and H' are

components of the shift-vector N’ and the gauge-source function H.
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The default choice in SpEC simulations has been toset ;N = o;N ! = 0inaframe co-
rotating with the binary; this is meant to be a quasiequilibrium condition that reduces
initial gauge dynamics. Given this choice, Eqs. (3.32) and (3.33) determine the initial
values of H“, which are kept time-independent in this co-rotating frame during the
initial stages of the evolution. However, the damped harmonic gauge works best for
mergers, so SpEC simulations customarily move from co-rotating gauge to damped
harmonic gauge via a smooth gauge transformation during the first ~ S0M of the
evolution. However, this gauge transformation introduces additional complications:
(1) The gauge change causes additional gauge dynamics in the evolution. (2) The
gauge change happens at the same time as the junk radiation leaves the system,
making it difficult to distinguish junk radiation from gauge dynamics. (3) The gauge
change impacts the ability to achieve configurations with zero orbital eccentricity.
To understand this last point, we note that SpEC evolutions customarily employ
iterative eccentricity reduction [54]: Starting with orbital parameters predicted by
post-Newtonian theory, we evolve the binary for ~ 2 orbits, compute the eccentricity,
adjust the initial parameters and repeat until the desired eccentricity is achieved.
This involves an extrapolation back in time to compute adjusted parameters and this

extrapolation happens at the same time as the gauge transformation.

New choices of initial gauge

With the aim of addressing these issues, as part of this work we have also explored
setting the initial gauge to satisfy the harmonic or damped harmonic condition, as
explained in more detail in Sec. 3.5. In order to set the initial gauge to the harmonic
or damped harmonic gauge, we set d;N and 9,N' according to Eqgs. (3.32) and (3.33)
att = 0, with H* = 0 for harmonic gauge and H“ = Hj}),, for damped harmonic

gauge.

3.5 BBH initial data types

Having introduced the BBH initial data formalism, in this section we discuss the
different initial data sets considered in this study; these are also listed in Table 3.1.
Our naming convention for the initial data sets indicates the choice of free data,
initial gauge condition and boundary conditions at excision surfaces. For example,
SKS-Eqg-6y stands for superposed Kerr-Schild free data, quasi-equilibrium initial

gauge condition, and horizon boundary conditions at excision surfaces. Unless
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explicitly specified, we use the new negative expansion boundary conditions at

excision surfaces.

Superposed Kerr-Schild with horizon boundary conditions (SKS-Eq-6,)

This is the type of initial data currently implemented in SpEC [18]. Initial data
are constructed by solving the XCTS system of equations, with horizon boundary
conditions imposed on the excision surfaces. The free data for XCTS equations are
obtained using a superposition of two single BHs in the Kerr-Schild gauge. Once
the XCTS equations are solved, the initial data are extrapolated slightly inside the
apparent horizon surfaces. The initial gauge is set by imposing ;N = o;N' = 0
in a co-rotating frame. During the initial stages of the evolution a smooth gauge
transformation moves into the damped harmonic gauge over a time scale of 50M.
We refer to this initial data set as SKS-Eq-6y.

Superposed Kerr-Schild with negative expansion boundary conditions (SKS-
Eq)

This is the same as SKS-Eq-6p above but with a negative expansion boundary
condition (Sec. 3.4) on the excision surfaces. We choose the excision surfaces to
be slightly inside the apparent horizons and thus avoid the need for extrapolation in
initial data. We refer to this as SKS-Eq.

Superposed Harmonic-Kerr (SH-H)

The free data are obtained by superposing two single BHs in the harmonic coordi-
nates of Ref. [28]. The time derivatives 9;,N and 9;N' at t = 0 are set according to
the Harmonic gauge condition (cf. Eqs. 3.28, 3.32 and 3.33):

&N = N/9;N - N’K, (3.34)
ON' = NJg;N' — N2g'9;(log N) + N°I". (3.35)

Therefore, the initial data is in the harmonic gauge at t = 0. As in the case of SKS-
Eq, during the initial stages of the evolution we do a smooth gauge transformation
to the damped harmonic gauge over a time scale of S0M. A negative expansion
boundary condition (Sec. 3.4) is used on the excision surfaces. We refer to this
initial data as SH-H. We find that SH-H initial data works well for dimensionless
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spin magnitudes y < 0.7; for higher spins the single BHs in harmonic coordinates

are highly compressed in the direction of spin (see Fig. 3.10).

Superposed Damped Harmonic (SDH-DH)

The free data are obtained by superposing two single BHs in the damped harmonic
gauge of Ref. [29], and a negative expansion boundary condition (Sec. 3.4) is used
on the excision surfaces. ;N and ;N at t = 0 are set according to the damped
harmonic gauge condition, Egs. (3.30), (3.32) and (3.33):

&N = N/O;N-N?K+N>HY ., (3.36)
N = N/Q;N' - N?g"7d;(log N) + N°T"
+N2(HL,, + NTHY ). (3.37)

Because the initial data are already in the damped harmonic gauge at ¢ = 0, no gauge
transformation is necessary during the evolution. We refer to this initial data set as
SDH-DH.

Superposed Kerr-Schild with Damped Harmonic Gauge (SKS-DH)

This is the same as SKS-Eq, except the initial gauge is set to the damped harmonic
gauge using Egs. (3.36) and (3.37). Because the damped harmonic gauge condition
is satisfied at # = 0, no gauge transformation is needed during evolution. We refer to
these initial data as SKS-DH. Although the motivation for SKS-DH is to avoid the
smooth gauge transformation during the evolution, for SKS-DH the gauge is not in
quasi-equilibrium at r = 0 even if the BHs are far apart; this could potentially lead

to more gauge dynamics at the start of the evolution.

3.6 Convergence of initial data

In this section, we perform a convergence test of the different initial data sets we
construct. We use the spectral elliptic solver described in Refs. [48, 55] to solve the
XCTS equations. We compare the Hamiltonian and momentum constraint violations
at different resolutions, for the case of a nonprecessing BBH system with mass ratio
q = 1.1 and dimensionless spins y1, = —0.3, y2, = —0.4 along the orbital angular

momentum direction. The Hamiltonian and momentum constraints in vacuum are
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Figure 3.2: Convergence test for the spectral elliptic solver in solving the XCTS
equations for the different initial data types listed in Table. 3.1. Shown is the
Hamiltonian-momentum constraint energy (Eq. 3.42) vs. the number of colloca-
tion points per dimension in the domain. As expected for spectral methods, the
constraints decrease exponentially. Also shown are the constraints for SKS-Eqg-6y
after extrapolation of initial data, where, at high resolution, the constraint violation
from extrapolation dominates (cf. Fig. 3.1). There is no extrapolation for SKS-Eq,
SH-H, and SDH-DH, as we use negative expansion boundary conditions for these.
Note that SKS-DH is not shown here because its solution of the XCTS equations is
identical to SKS-Eq; the cases SKS-Eq and SKS-DH differ only in the initial gauge
condition.

given by:

R+K* - KijK" =0, (3.38)
g/* (VK — ViKji) = 0, (3.39)
where R and V; are the Ricci scalar and the spatial covariant derivative operator

associated with g;;. We quantify these constraint violations by computing their L?

norms over the initial data domain. We also normalize them to obtain dimensionless
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quantities 3,

IR+ K? — K;;K'||
H - , (3.40)

' ¥ [(Rijg ) HKijKrig* g/ HK;jKii gl gk)?|

ik
g/*(V;Kii — ViKji) ||

, (3.41)

M; =
H % [V K)? + (VK|
i,j,k

where ||.|| denotes the L? norm over the domain. Finally, we define a Hamiltonian-

Momentum constraint energy:

(3.42)

Figure 3.2 shows a convergence test for the different initial data sets considered
in this study. We see exponential convergence in all cases, as is expected with
spectral methods. For SKS-Eqg-6y, while we see exponential convergence for the
constraints before extrapolation, the constraints after extrapolation are significantly
higher. This is why we introduced the new negative expansion boundary condition,
which avoids extrapolation by placing the excision surface inside rather than at the

apparent horizons.

3.7 BBH evolution with different initial data sets

In this section we evolve the different initial data sets discussed above and compare
them for a nonprecessing BBH system with mass ratio ¢ = 1.1 and dimensionless
spins yi; = —0.3, y2, = —0.4 along the orbital angular momentum direction. In par-
ticular we look at the constraint violations, gauge evolution, component parameters,
extracted waveforms, junk radiation, simulation expense, and ease of constructing

zero-eccentricity initial data.

We performed each of these simulations for 5 different resolutions in order to do a
convergence study. Each resolution is determined by specifying an error tolerance
to our adaptive mesh refinement (AMR) algorithm [56]. In order to match this error

tolerance as the evolution proceeds, AMR adds or removes collocation points from

3Notice that for the denominator of Egs. (3.40) and (3.41) as well as Eq. (3.44) below, repeated
indices are summed over after squaring the quantities, unlike the standard summation notation.
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Figure 3.3: Convergence test for constraints during evolution using different initial
data sets. The top panels show the constraints for different resolutions for each case:
Levl corresponds to the lowest resolution and LevS corresponds to the highest
resolution. After the junk radiation leaves the system, we see convergence in all
cases. However, we get good convergence during junk radiation stages only for
SH-H. The bottom panel shows the constraints for the highest resolution for each
case. We see that for SH-H, the constraints during junk radiation are smaller by
about an order of magnitude.
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each subdomain (p-type refinement) and also splits a single subdomain into two
or joins two neighboring subdomains as needed (h-type refinement). We use the
labels “Lev1” through “Lev5” to indicate decreasing values of AMR error tolerance.
During the junk radiation stage, we intentionally prevent the AMR algorithm [56]
from resolving the high-frequency features present in the initial transients. This
is done because attempting to resolve these features slows down the evolution
considerably, and for most purposes (such as comparing with LIGO data) the junk-

containing part of the waveforms is removed anyway.

Constraint violations

Figure 3.3 shows the generalized harmonic constraint energy (defined in Eq.(53)
of Ref. [20]) during the evolution of the initial data sets for different resolutions.
As expected, we see convergence for all the cases after the junk radiation has left
the system. Because we intentionally prevent the AMR algorithm from resolving
the high-frequency junk-radiation features, it is no surprise that we lose exponential
convergence during the junk stage (¢ < 700M) for most of the cases considered.
However, for SH-H initial data, we still retain exponential convergence for most
of the junk stage, i.e. for 100M < t < 700M, although with a shallower slope
than at later times. This indicates that that there are less prominent high-frequency
features present during the junk for SH-H initial data. The bottom panel of Fig. 3.3
shows the constraints for the highest resolution for different initial data sets. We
see that during the initial junk radiation stage, the constraints are lower for SH-H
by about an order of magnitude compared to SKS-Eq-6y. SDH-DH and SKS-DH
initial data sets result in slightly higher constraint violations during junk radiation
than SKS-Eq-6y, but not by much.

Approach to damped harmonic gauge

The evolution of each initial data set discussed above eventually settles into damped
harmonic gauge (Eq. 3.27). For SDH-DH and SKS-DH, the initial data should
already be in damped harmonic gauge, and for the other cases damped harmonic
gauge is achieved via an explicit gauge transformation. Here we quantify to what
extent the evolutions of these initial data sets actually satisfy the damped harmonic

gauge condition. Using Eqs. (3.27) and (3.29), we define a normalized damped
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harmonic constraint energy,

(3.43)

19T + HY |

, (3.44)

a _
CDH_‘

3
\/ S |wre@rn)2 + (g,

b,c=0

where ||.|| denotes the L? norm over the domain. We call this quantity an “energy”

because it represents one piece of the constraint energy defined in Eq. (53) of
Ref. [20].
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Figure 3.4: Damped harmonic constraint energy (Eq. 3.43) during evolution of
different initial data sets. The damped harmonic constraint energy quantifies to
what extent the gauge satisfies the damped harmonic condition. For SDH-DH and
SKS-DH initial data sets, the initial data are already in the damped harmonic gauge.
For the other cases, a smooth gauge transformation is done during early evolution,
on a time scale of about 50M, to move into the damped harmonic gauge. The curves
for SKS-Eq-6y and SKS-Eq lie nearly on top of each other.

Figure 3.4 shows the damped harmonic constraint energy during evolution of dif-
ferent initial data sets. For SDH-DH and SKS-DH, since initial data are already in
the damped harmonic gauge, Cpy starts at about 1073, and rises during the junk

radiation stage. However, Cpy always stays below about 10~*. Furthermore, the two



66

methods to generate damped harmonic initial data give rise to comparable Cpy. We
find that this peak value of 10~ does not change significantly with resolution. This
is understandable, as this is caused by junk radiation, which we intentionally do not
fully resolve. SKS-Eq-6y, SKS-Eq, and SH-H start in a different gauge, and there
is no reason to expect small Cpy at t = 0. Cppy falls as the evolution transitions
to damped harmonic gauge around t ~ 50M. The damped harmonic constraint
values after the gauge transformation are lower for SH-H than for all the other cases

because of smaller junk radiation content, as we will see in Sec.3.7 below.

Component parameters
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Figure 3.5: Behavior of dimensionless spin along the angular momentum direction
(top panel) and mass (bottom panel) of the larger black hole during the initial stages
of the evolution. Here, AM4 = |MA(t)— M*(t = 0)] and AX? = |X?(t)—/\/?(t = 0)|.
The mass and spin are much more stable for SH-H than for the other cases. We
attribute this to the small amount of junk radiation in this case; see Sec. 3.7 below.

At the start of the evolution, the component spins and masses change slightly with
time. This typically results in slightly lower spins than what we start with. These
changes occur as a result of initial transients such as junk radiation leaving the
system. Note also that in our initial data we do not tidally deform the BHs. Hence,

the initial component parameters can change as the BHs settle down into their
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equilibrium shapes.

Figure 3.5 shows the change in mass and spin of the larger black hole (with respect
to the simulation input parameters), as the simulation progress. We see that the
component parameters are more stable by about an order of magnitude for the SH-H
initial data compared to SKS-Eq-6p. SDH-DH initial data results in the largest
changes while SKS-DH does better than SKS-Eq-8p. In Sec. 3.7 we will see that
this can be attributed to the amount of junk radiation for each of these initial data
sets. Note that Fig. 3.5 corresponds to the highest resolution (Lev=5) used for this
study. Repeating Fig. 3.5 with a lower resolution results in changes on the order of
10~* in spin and 1073 in mass for all cases except SH-H, and changes on the order
of 1073 in spin and 107 in mass for SH-H. Since the changes with resolution are on
the same order as the variations shown in the figure, the curves in Fig. 3.5 should be
regarded only as order of magnitude estimates. For all resolutions, the variations in

mass and spin for SH-H are smaller than for the other cases.

Waveform comparison

Figure 3.6 shows the gravitational waveforms obtained by the evolution of the
different initial data sets. The waveforms are extracted at different extraction radii
up to 600M from the origin and extrapolated to spatial infinity [57]. The left
column shows different spin weighted spherical harmonic modes of the waveform
(we only show the real parts of the modes here; the imaginary parts have very similar
features). As expected, after the initial junk radiation stage the waveforms between

the different initial data sets agree very well.

The right panels of Fig. 3.6 show the amplitudes of different modes during the junk
radiation stage. Among all the initial data sets considered here, the junk radiation is
the least in the case of SH-H initial data. Compared to the current implementation in
SpEC (SKS-Eg-6p), the junk radiation decreases by a significant amount for SH-H

initial data. The junk radiation also leaves the system much faster in this case.

As noted before, when evolving most initial data sets we perform a smooth time-
dependent gauge transformation so that the system settles into damped harmonic
gauge on a time scale of S0M after the start of the evolution. The SDH-DH and
SKS-DH initial data sets already satisfy the damped harmonic condition at r = 0,
so there is no need for such a gauge transformation. We see that, among the cases
considered, the junk radiation is largest in the case of SDH-DH initial data. For
SKS-DH initial data, the junk radiation is at a comparable level to SKS-Eq-6y. This
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Figure 3.6: Comparison of the waveforms resulting from evolution of different initial
data sets. The left column shows the real parts of different spin-weighted spherical
harmonic modes. The waveforms are aligned by time-shifting them so that the peak
amplitude occurs at t = 0, and phase-shifting them so that the orbital phase is zero
at t = 0. Once the junk radiation leaves the domain, the waveforms agree very well
between the different initial data sets. The right panels show the amplitudes of the
different modes (without any time-shifting) during the junk radiation stage. We see
that SH-H initial data results in the least amount of junk radiation. SDH-DH initial
data, on the other hand, leads to the most junk radiation. Note however, that junk
radiation is not well resolved for all cases except SH-H (cf. Fig 3.3), hence the
amount of junk radiation changes significantly with resolution.
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suggests that we lose nothing by choosing the simpler SKS-DH initial data over the
standard choice of SKS-Eq-6y. We also confirm that, as expected, the amount of

junk radiation is roughly independent of initial gauge, but depends on the free data.

We can quantify the agreement between any pair of waveforms by the mismatch*

between them:

MM=1- (. o) , (3.45)
\/<ﬁl,ﬁ1><ﬁz,ﬁz>
fmax ~ -
(f1, h2) = 4R [ / m(NE(S) df |, (3.46)

where f (f) is the Fourier transform of £;(z), R[.] denotes the real part, = denotes a
complex conjugation, and f,;, and f,,,, denote the relevant frequency range. fin
is chosen to be the GW frequency at a time 500M from the start (to exclude junk
radiation) and f;,,, is chosen to be 8 times the merger frequency of the £ = m = 2

mode.

We compute the mismatches as outlined in Appendix D of Ref. [58], where both
polarizations are treated on an equal footing and the mismatch is minimized over
shifts in time, initial binary phase, and polarization angle. We include all available

modes (¢ < 8,|m| < €), when computing the strain

(60, 6,6) = > 2Xen(6,9) hum(2), (3.47)

tm
where _,Y,,(0,¢) are the spin-weighted spherical harmonics, 6 is the polar angle
defined with respect to the initial orbital angular momentum direction and ¢ is the
azimuthal angle in the source frame. We compute the mismatch for several different
values of (6, ¢) (uniformly distributed in cosé and ¢) and compare the median

mismatches between different cases.

Figure 3.7 compares the median mismatches between waveforms from different
initial data sets to the median mismatch between waveforms computed at different
numerical resolutions. First, we note that the numerical resolution errors show
reasonable convergence, as expected. Interestingly, we find that the differences
between different initial data sets does not change significantly with resolution. We

understand this as follows: Different initial data sets correspond to slightly different

4We choose to use a flat noise curve so that our statements are independent of the choice of GW
detector.
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Figure 3.7: Median mismatches across the sky in the source frame between wave-
forms generated from different initial data sets, as a function of numerical resolution.
The horizontal axis shows the numerical resolution; we ran at five different numer-
ical resolutions labeled from lowest (Lev=1) to highest (Lev=5). The solid lines
represent numerical resolution error: they compare the waveform at the labeled
Lev to that of Lev—1. Dashed lines show the differences between the waveform
generated from evolving the labeled initial data set to that generated from evolv-
ing SKS-Eqg-6p. The numerical resolution errors show reasonable convergence, as
expected. Interestingly, the mismatch between different initial data sets does not
change significantly with resolution. For sufficiently high resolution, the resolution
errors become smaller than initial data differences. See discussion in Sec. 3.7 for
more details.

physical systems (i.e. they have different junk radiation and therefore slightly
different orbital eccentricities and BH masses and spins, cf. Fig. 3.5 and Fig. 3.9)
and this difference is independent of resolution. At low resolution, the differences
due to different initial data sets are within the numerical resolution errors, as was
found in Ref. [14]. However, contrary to the findings> of Ref. [14], as we go towards
high resolution, the numerical resolution errors eventually go below the initial data
differences. This suggests that the resolution is now high enough to differentiate

between the initial data sets. These results also suggest that when very high accuracy

Note that Ref. [14] compares the phase and amplitude of the quadrupole mode (£ = 2, m = +2)
to evaluate the errors between waveforms. Instead, we use the mismatch between the waveforms,
including all available modes, to evaluate the errors. Also, Ref. [14] compares SKS-Eq-6y initial
data to CFMS (Conformally Flat Maximally Sliced) initial data, for an equal mass non-spinning
BBH.
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is required, one should be concerned with how well the initial data set represents
the desired astrophysical system. Specifically, it is important to measure masses and
spins after the junk radiation, and one must consider tuning initial data parameters

to achieve desired “post-junk’ parameters.

Simulation expense
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Figure 3.8: Computational efficiency. The top panel shows the total number of
collocation points versus time for several simulations running with the same AMR
tolerance. The bottom panel shows the total CPU time as a function of the evolution
time. Using SH-H initial data speeds up the evolution by about 33% compared to
SKS-Eq-68p. All simulations are performed on the same machine with the same
number of CPUs.

As discussed at the beginning of Sec. 3.7, the resolution of a simulation is determined
by specifying an AMR error tolerance. For different simulations, the same AMR
tolerance may result in a different number of collocation points and a different
computational expense, since AMR chooses the number of collocation points based
on the properties of the solution. Figure 3.8 shows the number of collocation
points in the domain (top panel) and the total CPU time (bottom panel) for the
different cases we consider, for a fixed AMR tolerance. For SH-H initial data, not

only is the constraint violation during the junk radiation stage lower by an order
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of magnitude, this is achieved using 15% fewer collocation points and with a 33%
speed-up compared to SKS-Eq-6y. This is another indication that evolutions of
SH-H data contain fewer or smaller high-frequency features than for other initial
data sets, so that AMR needs fewer collocation points to meet its error tolerance.
These features can possibly be physical high-frequency oscillations associated with
junk radiation, gauge oscillations, or gauge features that might manifest as sharper
features in quasi-stationary metric functions near the horizons. We do not see
significant differences in simulation expense between SKS-Eq-6y and SDH-DH or
SKS-DH initial data sets. While this speedup is shown for the specific case of
qg = 1.1, y1; = —0.3, and y», = —0.4, we find similar improvements for more
generic cases as well. However, since this improvement is largely due to lesser junk
content, we expect speed-ups only in the initial stages of the evolution. For example,
at times ¢ r > 1600M in Fig. 3.8, the number of grid points and the CPU-time per
simulation time are comparable for SH-H and SKS-Eq-6p. This also implies that

the speed advantage of SH-H will be less for longer simulations.

Constructing zero-eccentricity initial data

Unlike the Newtonian or post-Newtonian (PN) case, in full general relativity there
is no analytic expression for the orbital parameters of two compact objects that yield
a zero-eccentricity orbit. In order to achieve quasi-circular initial data, we adopt an
iterative procedure as follows [54]: Start with an initial guess for orbital parameters
Qy and dg (defined in Eq. 3.13), typically taken from PN. Construct initial data with
these initial orbital parameters and evolve for ~ 2 orbits, compute the eccentricity
from the binary orbit and update the initial orbital parameters. Repeat until the

desired eccentricity is achieved.

Note that the eccentricity is measured over a few orbits of evolution, so that updating
the initial orbital parameters effectively involves an extrapolation back in time to
t = 0. When there is also a gauge transformation happening before or during
the eccentricity measurement (cf. Sec. 3.4), this extrapolation can in principle
be erroneous. Therefore, it is interesting to compare the eccentricity reduction
procedure for the different initial data sets we construct. Particularly for SKS-
DH and SDH-DH initial data sets, where there is no initial gauge transformation,

we might expect improvements in eccentricity reduction. Figure 3.9 shows the

The outer boundary for these simulations is placed at a Euclidean radius of 800M, so 1600M
is approximately the light crossing time for the domain, at which point the junk radiation will have
moved out of the domain.
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Figure 3.9: Eccentricity reduction iterations for different initial data sets considered
in this study. The parameters of the binary are shown in the text above each plot.
We stop the iterations once the eccentricity reaches 5 x 107#; this cutoff is shown as
a black dashed line.

eccentricity reduction iterations for different initial data sets. While we see that
SKS-DH reaches the desired eccentricity in fewer iterations than SKS-Eq-6y, we
note that the initial guess from PN theory produces lower starting eccentricity for
this case. In general, as the slopes of the curves do not differ significantly, we cannot
conclusively say that the eccentricity reduction procedure improves when there is no
gauge transformation. However, we find that SKS-DH is either better or the same as
SKS-Eq-6y for eccentricity reduction, for the cases we tested. Apart from SDH-DH
initial data, all other initial data sets seem to perform at the same level as SKS-Eq-6.
For SDH-DH, while the rate of eccentricity reduction is the same, the initial guess
from post-Newtonian theory produces higher eccentricity initial data. These results
suggest that other approximations made in our eccentricity-reduction procedure have

a larger influence than the effect of a time-dependent gauge transformation.

3.8 Conclusion

In this paper, we introduce new ways to choose free data and new boundary con-
ditions at excision surfaces, when constructing BBH initial data. Furthermore, we
experiment with several initial gauge choices. We evolve these initial data sets
and compare the waveforms, junk radiation, evolution of component parameters,
constraint violations, simulation expense, and ease of constructing zero-eccentricity

initial data for the different cases.

The initial data cases we compare include the following new features compared
to the traditional “SKS” initial data (here called SKS-Eq-6p) used in past BBH




74

simulations performed by the SpEC code:

* We introduce new boundary conditions that allow the initial-data numerical
grid to extend inside (as opposed to on) the apparent horizons. Because
the numerical grid for evolution must extend inside the apparent horizon,
these new boundary conditions allow us to eliminate an extrapolation from
the initial-data grid to the evolution grid. This reduces the initial constraint
violations near the individual BH horizons by about 3 orders of magnitude.
We denote the current implementation (SKS-Eq-6p) with only this change by
SKS-Eq.

* We construct BBH initial data with free data given by a superposition of
two Harmonic-Kerr single BHs as derived in Ref. [28]. The initial gauge is
imposed by setting ;N and d,N' according to the harmonic gauge condition.
We denote this by SH-H.

* We construct BBH initial data with free data given by a superposition of two
Damped-Harmonic single BHs as derived in Ref. [29]. The initial gauge is
imposed by setting 6;N and ;,N' according to the damped harmonic gauge
condition. We denote this by SDH-DH.

+ We also construct initial data identical to SKS-Eq above, except d;N and 9;N'
are chosen according to the damped harmonic gauge condition as opposed to

a quasiequilibrium condition. We denote this by SKS-DH.

Note that among these cases, we use the negative expansion boundary condition for
all except SKS-Eqg-6y and we do a gauge transformation into the damped harmonic
gauge over a time scale of 50M at the start of evolution for all except SDH-DH and
SKS-DH (which already satisfy this gauge condition).

We compare these initial data sets by evolving a nonprecessing BBH system with
mass ratio ¢ = 1.1 and dimensionless spins y1, = —0.3, y2, = —0.4 along the orbital
angular momentum direction. We compare the gravitational waves (extrapolated
to spatial infinity) generated using the different initial data sets by computing the
mismatches between them. We also compare these mismatches to the mismatches
between waveforms evolved at different numerical resolution. As expected, the
numerical resolution errors decrease as we go towards higher resolutions. However,

we find that the mismatches between different initial data sets are approximately
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independent of resolution; we attribute this to the small physical differences between
different initial data sets. These differences correspond to different amounts of junk
radiation, and different parameters such as masses, spins, and orbital eccentricity.
At low resolution, the initial data differences are below the numerical resolution
errors. However, at high resolutions the numerical truncation error eventually drops
below the initial data differences. Therefore, one must be careful to associate the
waveform with the parameters (masses, spins, orbital eccentricity) measured after
the junk radiation stage of the evolution rather than the parameters used to construct

initial data.

The case for using SH-H initial data

By comparing the different initial data sets we conclude that SH-H initial data has

the following benefits over the current implementation in SpEC (SKS-Eqg-6)):

* The initial spurious junk radiation is much smaller.

* The junk radiation leaves the system sooner.

* The constraint violations during the junk radiation stage decrease by about an

order of magnitude.

* The constraints have good convergence even during junk radiation. This

suggests that the junk radiation is being resolved properly.

* The time variation in masses and spins during junk radiation is smaller by an

order of magnitude.

* This improvement in constraints during junk radiation is achieved using 15%
less collocation points in the domain. This leads to a remarkable 33% speed

up in the total evolution time.

Because of these benefits, we recommend SH-H as the preferred choice for initial
data, when possible. Unfortunately, we are currently able to construct SH-H initial
data only for dimensionless spin magnitudes y < 0.7. At higher spins the single
BH harmonic coordinates used for the construction of the free data in XCTS are

too distorted (see Fig. 3.10), and the elliptic solver fails to converge. Therefore,
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we recommend that SH-H initial data be used for y < 0.7; otherwise, SKS-DH is
our recommendation, since SKS-DH eliminates the need for extrapolation and for

dynamical gauge changes, and it performs no worse than SKS-Eq-6y.
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Figure 3.10: Apparent horizon surface for a single BH with dimensionless spin,
X = 0.9 in the harmonic coordinates of Ref. [28]. The colors show the imaginary
part of complex scalar curvature of the 2D horizon surface [59, 60]. The spin
direction is along the poles. We note that the shape of the surface is compressed in

the spin direction (much like a pancake), making it difficult to construct initial data.
The ratio of the extents of the horizon between the spin direction and an orthogonal

direction goes as 4/1 — x2, so this issue becomes more prominent at high spins. We
currently can construct superposed harmonic initial data only for spins y < 0.7.

Outlook and future work

Having seen that SH-H initial data is superior to the current implementation in SpEC,
it would be worthwhile to extend it to spins higher than y = 0.7. To overcome the
problem with highly distorted horizons, one could use a coordinate map to make
the horizons more spherical; this may violate the harmonic spatial gauge condition
but will preserve harmonic time slicing. It would be interesting to see if such a map

preserves the benefits of SH-H initial data.

Our tests on SH-H initial data suggest that even the junk radiation stage is convergent
when using this initial data. Therefore, SH-H initial data allows us to study properties
of junk radiation transients, such as their frequency content or how long they remain
in the computational domain. For other initial data sets, the main obstacle for such

a study is the prohibitively high resolution needed to fully resolve junk radiation.
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Chapter 4

EFFECTS OF NONQUADRUPOLE MODES IN THE
DETECTION AND PARAMETER ESTIMATION OF BLACK
HOLE BINARIES WITH NONPRECESSING SPINS

Vijay Varma and P. Ajith, Physical Review D., 96, 124024 (2017), arxiv:1612.05608.

4.1 Executive summary

Gravitational radiation on a sphere can be decomposed into a sum of spin-weighted
spherical harmonic modes. The quadrupole modes (¢ = 2,m = %2) typically
dominate this sum, and the other subdominant modes are often ignored in LIGO
data analysis. This assumption, however, does not always hold, particularly when
the two black holes have significantly unequal masses. In this Chapter, we study
the importance of these subdominant modes for detection and parameter estimation
with LIGO. We identify regions in the parameter space of binary black hole systems

where gravitational wave models must include the effects of the subdominant modes.

4.2 Abstract

We study the effect of nonquadrupolar modes in the detection and parameter esti-
mation of gravitational waves (GWs) from black hole binaries with nonprecessing
spins, using Advanced LIGO. We evaluate the loss of the signal-to-noise ratio (SNR)
and the systematic errors in the estimated parameters when a quadrupole-mode tem-
plate family is used to detect GW signals with all the relevant modes. Target signals
including nonquadrupole modes are constructed by matching numerical-relativity
simulations of nonprecessing black hole binaries describing the late inspiral, merger
and ringdown with post-Newtonian/effective-one-body waveforms describing the
early inspiral. We find that neglecting nonquadrupole modes will, in general, cause
unacceptable loss in the detection rate and unacceptably large systematic errors in
the estimated parameters, for the case of massive binaries with large mass ratios.
For a given mass ratio, neglecting subdominant modes will result in a larger loss
in the detection rate for binaries with aligned spins. For binaries with antialigned
spins, quadrupole-mode templates are more effectual in detection, at the cost of

introducing a larger systematic bias in the parameter estimation. We provide a sum-
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mary of the regions in the parameter space where neglecting nonquadrupole modes
will cause an unacceptable loss of detection rates and unacceptably large systematic

biases in the estimated parameters.

4.3 Introduction and summary

We are firmly in the era of gravitational wave (GW) astronomy, with LIGO having
made two confident detections of binary black holes [1, 2] and many more expected
in upcoming observing runs [3, 4]. Indeed, these first observations have already
given us a glimpse of the unique capabilities of GW astronomy. Apart from providing
the first direct evidence of the existence of GWs, these observations confirmed the
existence of stellar mass black holes that are much more massive than commonly
thought by astronomers [5, 6]. They also provided the first evidence of black
hole binaries that inspiral under GW emission and merge within the age of the
Universe. These observations also enabled us to perform the first tests of GR in the
highly relativistic and nonlinear regime of gravity — a regime inaccessible by other

astronomical observations and laboratory tests [7].

The first LIGO event, termed GW150914, was produced by the merger of two
massive black holes. The resultant signal in the detectors contained imprints of
the late inspiral and merger of the two holes and the subsequent ringdown of the
remnant black hole. The signal was first detected by two low-latency searches for
generic transient signals that are coherent in multiple detectors [8—11]. The signal
was later confirmed with higher confidence by matched filter-based searches that use
relativistic models of expected signals from coalescing compact binaries [12—-15].
The second signal was produced by the coalescence of two less massive black holes,
and the resultant signal in the detector predominantly consisted of the long inspiral.

Hence matched filter-based searches were essential for its detection [2].

Matched-filtering is the most sensitive search method for extracting signals of known
signal shape from noisy data, such as the GW signals from the coalescence (inspi-
ral, merger and ringdown) of binary black holes. The source parameters are then
extracted by comparing the data against theoretical templates by means of Bayesian
inference [5, 16]. Our ability to optimally detect the signal using matched-filtering
and to estimate the source parameters using Bayesian inference depends crucially
on how faithfully the theoretical templates model the signal present in the data. If
the template is a poor representation of the true signal, this can reduce the matched-

filtering signal-to-noise ratio (SNR), potentially causing nondetection and/or caus-
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ing unacceptable systematic biases in the estimated parameters. Good waveform
templates should be not only effectual in the detection (small loss in the SNR) but
also faithful in parameter estimation (small systematic biases) [17].

Matched filter-based searches for GWs performed to date, including the ones
that resulted in detections, have employed templates that model only the leading
(quadrupole, or £ = 2, m = +2) spherical harmonic modes of the GWs radiated
from the binary. The parameter estimation exercise also has largely employed
quadrupole mode templates (with the notable exception of one that directly em-
ployed numerical-relativity (NR) waveforms [18]). This choice is partly dictated by
the unavailability of fast-to-evaluate, semianalytical waveform templates describing
the inspiral, merger and ringdown of binary black holes that model the subdominant
(nonquadrupole) modes over a sufficiently wide region in the parameter space (e.g.,
spinning binaries). More importantly, several studies in the past have suggested that
the contribution from subdominant modes are appreciable only for very massive
binaries with large mass ratios [19-22]. The effect of subdominant modes was thor-
oughly investigated in the context of GW150914, and the study concluded that the
effect of subdominant modes is negligible in the detection and parameter estimation
of this event [23, 24].

In a previous study [22], we investigated the effect of subdominant modes in the
detection and parameter estimation of a population of nonspinning black hole bi-
naries. Here, we extend our previous study to the case of black hole binaries with
nonprecessing spins . We construct target GW signals that include subdominant
modes (¢ < 4, m # 0) by matching nonprecessing numerical-relativity simulations
describing the late inspiral, merger and ringdown with post-Newtonian/effective-
one-body waveforms describing the early inspiral. We then compute the reduction
in the detectable volume (for a fixed SNR threshold) and systematic bias in the
estimated parameters when nonprecessing quadrupole-mode only templates are em-

ployed in the detection and parameter estimation of these target waveforms.

Figure 4.1 summarizes the main results from this study. The left plot shows the
region in the parameter space where neglecting subdominant modes will cause an

unacceptable (more than 10%) loss in the detectable volume (appropriately averaged

"We note that, in a recent paper, Calderon-Bustillo et al [25] extended our previous study of
nonspinning binaries to the case of spinning binaries with equal component spins. Our new study
covers a larger region in the parameter space, by employing numerical-relativity waveforms with
larger mass ratios and spins. The template family that we use also can span a large spin range
(x1z.2; € [-1,1] as opposed to x € [—1,0.6] employed in [25]); hence we see better fitting factors at
the cost of a larger parameter bias.
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Figure 4.1: These plots summarize the region in the parameter space of nonprecess-
ing black-hole binaries where contributions from subdominant modes are important
for detection and parameter estimation. In the left panel, the shaded areas show
the regions in the parameter space where the loss of detection volume due to ne-
glecting subdominant modes is larger than 10%. In the right panel, shaded areas
show the regions in the parameter space where the systematic errors in any of the
estimated parameters [M, i and y.g] are larger than the expected statistical errors
for a sky and orientation-averaged SNR of 8. In each plot the three solid curves
correspond to different effective spin values: blue for y.g ~ 0.5, green for yeg ~ 0
and red for y.g ~ —0.5. The left panel was made by computing the fitting factors
of dominant-mode templates including nonprecessing spins with hybrid waveforms
including all the relevant modes, and the right panel was made making use of aver-
aged systematic biases. The markers (triangles pointing up/down denoting binaries
with aligned/antialigned spins and circles denoting nonspinning binaries) indicate
the data points that are used to construct the shaded regions and curves. The leg-
end shows the mass ratios and spins of the target signals featured in these plots.
See Sec. 4.3 for a summary and Sec. 4.5 for a detailed discussion. For compari-
son, the dashed green lines show the same results for nonspinning binaries using a
nonspinning template family from our previous work [22].

over all orientation and sky location angles) for a fixed SNR threshold. The right plot
shows the region in the parameter space where neglecting subdominant modes will
cause unacceptably large systematic bias in the parameter estimation (i.e., systematic
errors larger than the expected statistical errors for a sky and orientation-averaged

SNR of 8). Comparing these results with our previous study employing nonspinning
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templates (i.e., by comparing the dashed green curve with the solid green curve in
the left plot of Fig. 4.1), we see that including spin effects in the dominant-mode
templates enhances their effectualness, thus reducing the region in the parameter
space where subdominant mode templates are required for detection. However,
this is achieved at the cost of introducing larger systematic errors in the estimated
parameters, thus increasing the volume of the parameter space where subdominant
mode templates should be used in the parameter estimation. This effect (better
effectualness at the cost of larger systematic errors) is more pronounced in the
case of binaries with spins antialigned with the orbital angular momentum. Thus,
subdominant-mode templates are required for detection of binaries with antialigned
spins only over a small region in the parameter space; but they are required for
parameter estimation over a large region. This effect is reversed in the case of

aligned spins.

The rest of this paper is organized as follows: Section 4.4 provides details of the
methodology and figures of merit for this study. Section 4.5 discusses our results
including how we arrive at Fig. 4.1. Finally, Sec. 4.6 has some concluding remarks,
limitations of this work and targets for future work. Appendix 4.A presents a
comparison of our estimates of the statistical and systematic errors with the same
estimated from fully Bayesian parameter estimation for one sample case. Please
note our notation for the rest of this article: M refers to the total mass of the binary,

my and my (m; >

my) refer to the component masses, and y; and y» refer to the
dimensionless spin parameters; y12 = Si2 /mi2 where S1, are the spin angular
momenta of the components. All masses are detector frame (redshifted) masses.
We only consider spins aligned/antialigned with the orbital angular momentum. The
mass ratio is denoted by ¢ = m/my while n = mymy/M 2 denotes the symmetric
mass ratio. We also define the effective spin parameters yeg = (m x1+mo x2)/ M and
Xefi = (myx1 —mox2)/M. We refer to waveforms that include contributions from
sub-dominant modes (£ < 4, m # 0) as “full” waveforms and waveforms that include
only quadrupole modes (£ = 2,m = +2) as “quadrupole” waveforms. We refer to the
SNR averaged over orientation and inclination angles as the orientation-averaged
SNR; note that SNR along optimal orientation is ~ 2.5 times the orientation-
averaged SNR [26].



87

Simulation ID q X1z X2z Mwor, Number of orbits
SXS:BBH:0172 1 0.98 098 0.015 25.4
SXS:BBH:0160 1 0.90 0.90 0.015 24.8
SXS:BBH:0155 1 0.80 0.80 0.015 24.1
SXS:BBH:0152 1 0.60 0.60 0.016 22.6
SXS:BBH:0090 1 0.00 0.00 0.011 324
SXS:BBH:0151 1 -0.60 -0.60 0.016 14.5
SXS:BBH:0154 1 -0.80 -0.80 0.016 13.2
SXS:BBH:0159 1 -090 -0.90 0.016 12.7
SXS:BBH:0156 1 -0.95 -0.95 0.016 12.4
SXS:BBH:0253 2 0.50 0.50 0.014 28.8
SXS:BBH:0047 3  0.50 0.50 0.017 22.7
SXS:BBH:0174 3 0.50 0.00 0.013 35.5
SXS:BBH:0110 5 0.50 0.00 0.019 24.2
SXS:BBH:0202 7 0.60 0.00 0.013 62.1
SXS:BBH:0203 7 040 0.00 0.013 58.5
SXS:BBH:0065 &8 0.50 0.00 0.019 34.0
SXS:BBH:0184 2 0.00 0.00 0.018 15.6
SXS:BBH:0183 3  0.00 0.00 0.020 15.6
SXS:BBH:0167 4  0.00 0.00 0.021 15.6
SXS:BBH:0056 5 0.00 0.00 0.016 28.8
SXS:BBH:0181 6 0.00 0.00 0.018 26.5
SXS:BBH:0298 7  0.00 0.00 0.021 19.7
SXS:BBH:0063 &8  0.00 0.00 0.019 25.8
SXS:BBH:0189 9.2 0.00 0.00 0.021 25.2
SXS:BBH:0185 10 0.00 0.00 0.021 24.9
SXS:BBH:0238 2 -0.50 -0.50 0.011 32.0
SXS:BBH:0036 3 -0.50 0.00 0.012 31.7
SXS:BBH:0046 3 -0.50 -0.50 0.018 14.4
SXS:BBH:0109 5 -0.50 0.00 0.020 14.7
SXS:BBH:0205 7 -0.40 0.00 0.013 44.9
SXS:BBH:0207 7 -0.60 0.00 0.014 36.1
SXS:BBH:0064 8 —-0.50 0.00 0.020 19.2

Table 4.1: Summary of the parameters of the NR waveforms used in this paper:
q = mj/my is the mass ratio of the binary, y;, and y;, are the dimensionless
spins of the larger and smaller black holes respectively, and Mwq, is the orbital
frequency after the junk radiation. All of these waveforms have residual eccentricity,
e < 4 x 1073 (typically significantly smaller).
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Figure 4.2: This plot shows the mass ratio (vertical axis) and effective spin (horizon-
tal axis) of the NR waveforms used in this study. The color scheme of the markers
is same as that in Figs. 4.1, 4.6 and 4.8, enabling direct comparison.

4.4 Methodology

In a past study [22], we investigated the effects of nonquadrupole modes in the
detection and parameter estimation of nonspinning binaries. Here we extend the
earlier work to the case of nonprecessing binaries, covering a wide range of total
masses (40My < M < 300M;), mass ratios (¢ < 10) and spins (—0.5 < yeg < 0.5
for ¢ > 2 and —0.95 < ye < 0.98 for ¢ = 1). For our target signals, we use
hybrid waveforms constructed by matching NR waveforms that describe the late
inspiral, merger and ringdown of binary black holes with post-Newtonian (PN) /
effective-one-body (EOB) waveforms modeling the early inspiral. These hybrids
contain several nonquadrupolar modes (A, (t) with £ < 4,|m| < £,m # 0) of GW

signals from binary black holes. The PN waveforms were generated using the 3PN
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amplitude given by [27-29], but using the phase evolution given by the SEOBNRv2
waveform family? [30]. We match them with NR waveforms produced by the
SpEC [31-47] code by the SXS Collaboration that are available at the public SXS
catalog of NR waveforms [31]. The parameters of the NR waveforms used in this
study are shown in Table 4.1 and Fig. 4.2. Note that the (£, m) = (4,1) mode in several
of the NR waveforms has significant numerical noise. However, as the amplitude of
this mode is several orders of magnitude smaller than that of the dominant mode,

we do not expect this to impact our results.

As described in detail in our past study [22], to construct hybrids, we match the PN
modes £, (r) with NR modes A}X(t) by a least square fit over two rotations (¢, )
on the NR mode and the time difference between NR and PN modes:

A = ming, 4,y / dt Z (ﬁNR — to)e! Mot — gPN(1) . 4.1)
1

The hybrid modes are constructed by combining the NR modes with the “best-

matched” PN modes:

A20(0) = (1) ANR(1 — 1) € M0t 1 (1 = (1)) AN (D), 4.2)

where 1), ¢, and ¢ are the values of 7, o and ¢ that minimizes the difference A
between PN and NR modes and 7(¢) is a suitable weighting function that smoothly
goes from O to 1 during the interval #; < ¢t < ;. We refer the reader to Ref. [22]
for details about the construction of hybrid waveforms. An example of hybrid
waveform modes is shown in Fig. 4.3. It can be seen that higher modes are excited
only during the very late inspiral, merger and ringdown. The effect of higher
modes will be appreciable only in the mass range where the SNR contributed by
the merger-ringdown is a significant fraction of the total SNR. This is the reason
we restrict our study to the mass range 40My < M < 300Mg; we do not see any
evidence of a significant impact of higher modes for binaries with lower masses.
Since the NR waveforms we use include tens of cycles in the inspiral, we do not
expect hybridization errors to impact our results, particularly for high masses. For

a detailed study on hybridization errors, we refer the reader to Refs. [48-52].

The template family used is IMRPhenomD [53, 54], which is a quadrupole-only
(¢ = 2,m = %2) inspiral, merger and ringdown waveform family described by two

2This was done in order to make the phase evolution of the hybrids very similar to that of the
templates, so that a mismatch between the hybrid and the template due to the different phase evolution
will not be mistaken as due to the effect of subdominant modes.
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mass parameters and two nonprecessing spin parameters. These waveforms are
calibrated to NR waveforms with ¢ < 18, | x1,2;| < 0.85 (0.98 for ¢ = 1) and we
find that they have a very good agreement with the quadrupole modes of the hybrid
waveforms discussed above (cf. the dashed lines in Fig. 4.6). The waveforms are

generated in the Fourier-domain using the LALSimulation [55] software package.

We compute fitting factors [56] by maximizing the overlap (noise weighted inner
product) of the template family against the target hybrid signals and infer the sys-
tematic errors by comparing the best-match parameters with the true parameters.
The overlaps are maximized over the extrinsic parameters (time of arrival 7y and the
reference phase ¢g) using the standard techniques in GW data analysis (see, e.g.,
Ref. [57]), while the overlaps are maximized over the intrinsic parameters (M, 7,
X1z and x»,) of the templates using a Nelder-Mead downhill simplex algorithm [58],
with additional enhancements described in Ref. [22]. For the model of the noise
power spectrum, we use the “zero-detuned, high-power" design noise power spectral
density (PSD) [59] of Advanced LIGO with a low frequency cut-off of 20 Hz.

The contribution of subdominant modes in the observed signal depends on the rel-
ative orientation of the binary and the detector. The SNR (and hence the volume
in the local Universe where the binary can be confidently detected) is also a strong
function of this relative orientation. For, e.g., binaries that are face-on produce the
largest SNR in the detector; however, the contribution from subdominant modes is
minimal for this orientation. This effect is reversed for the case of edge-on orienta-
tions. Thus, if we want to calculate the effect of subdominant modes on detection
and parameter estimation of a population of binary black holes, the effect has to be

averaged over all orientations after appropriately weighting each orientation.

We evaluate the effective volume [22] of a search, defined as the fraction of the
volume that is accessible by an optimal search (corresponding to a fixed SNR

threshold), by averaging over all the relative orientations in the following way:

3 3
Popt FE

3
Popt

Vesr (m1,m2, X1z, X27) = , (4.3)

where pop is the optimal SNR of the full signal, FF is the fitting factor of the
dominant mode template, and the bars indicate averages over all (isotropically

distributed) orientations 3. The dominant-mode template family is deemed effectual

3This corresponds to uniform distributions in the phase angle ¢y € [0,27), polarization angle
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for detection when the effective volume is greater than 90%; or when the effective
fitting factor FF.g := Ve{f is greater than 0.965.

Similarly, we define the effective bias [22] in estimating an intrinsic parameter A as

|A4] p3 FF?
Adesi(my, ma, X1z, X27) = —— (4.4)
Popt FF

where AA is the systematic bias in estimating the parameter A for one orientation, FF
is the corresponding fitting factor, and pop the corresponding optimal SNR. Here,
also, the bars indicate averages over all orientations. The effective bias provides
an estimate of the bias averaged over a population of detectable binaries with
isotropic orientations. We compare them against the sky and orientation averaged
statistical errors. Statistical errors are computed using the Fisher matrix formalism
employing quadrupole-only templates. The quadrupole-mode template family is
deemed faithful for parameter estimation when the effective biases in all of the three
intrinsic parameters M, n, . are smaller than the 10 statistical errors in measuring

the same parameter for an orientation-averaged SNR of 8.

4.5 Results and discussion

In this section, we evaluate the performance of the quadrupole-mode inspiral-merger-
ringdown template family IMRPhenomD, against the “full” hybrid waveforms by
computing the fitting factor of the template and inferring the parameter biases from

the best-matched parameters.

Figure 4.4 shows the optimal SNR of the hybrid waveforms and fitting factor of
the quadrupole-mode templates at different values of ¢ and ¢( (averaged over the
polarization angle ¢). Figure 4.5 shows the systematic bias in estimating parameters
total mass M, symmetric mass ratio n, and effective spin y.g, using the quadrupole-
mode template family. Itis clear that for the g = 1 case (left column) the fitting factor
is close to 1, and the systematic errors are negligible for all orientations, indicating
the weak contribution of subdominant modes. For mass ratio 8, the fitting factor can
be as low as ~ (.84 for binaries that are highly inclined (¢ ~ 7/2) with the detector,
where the contribution from nonquadrupole modes is the highest. However, these

Y € [0,27), and the cosine of the inclination angle cost € [—1,1]. Note that we assume that the
binaries are optimally located (i.e., the angles 6, ¢ describing the location of the binary in the detector
frame on the sky are set to zero). The error introduced by this restriction is very small (~ 0.1%) due
to the weak dependence of the matches on (6, ¢) and the strong selection bias towards binaries with
0 =~ 0,7, where the antenna pattern function peaks [22].
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Figure 4.4: Optimal SNR (top panel) and fitting factor of quadrupole templates
(bottom panel), averaged over polarization angle ¢ for binaries with total mass
M =100 Mg, located at 1 Gpc. The y-axis shows the inclination angle ¢ in radians
and the x-axis shows the initial phase of the binary ¢( in radians. The equator
(¢ = m/2) corresponds to “edge-on” orientation while the poles (¢ = 0, ) correspond
to “face-on” orientation. Different columns correspond to different mass ratios and
spins of the larger black hole (the spin on the smaller black hole is O in all three
cases). It may be noted that the fitting factor as well as the intrinsic luminosity are
smallest (largest) at ¢« = 7/2 (¢ = 0, r) where contribution from the nonquadrupolar
modes is the largest (smallest), illustrating the selection bias toward configurations
where nonquadrupole modes are less important.

are the orientations where the SNR is the minimum (see Fig. 4.4). Similarly,
the systematic biases are typically the largest (smallest) for the edge-on (face-on)
configurations where the SNR is the smallest (largest). Hence GW observations are
intrinsically biased toward orientations where the effect of nonquadrupole modes is
minimum. This effect, in general, reduces the importance of nonquadrupole modes

for a population of binaries that are oriented isotropically [19-22] 4.

Figure 4.6 shows the ineffectualness (1 — FF ) and effective biases in estimated
parameters as a function of the total mass of the binary for different mass ratios
and spins. For total mass M and symmetric mass ratio n, fractional biases are

shown while for y.g absolute biases are shown>. Solid (dashed) lines correspond

“Note that this is an artifact of the limited horizon distance of the second-generation GW
detectors. For the case of third generation GW detectors, binaries with practically all orientations
will be detected, thus eliminating this selection bias; see, e.g., [60]

3In the case of anti-symmetric spin parameter g, the biases are dominated by the bias in the
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Figure 4.5: Systematic bias in the estimation of total mass (top panel), symmetric
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ization angle y for binaries with total mass M = 100 My. For M and n, relative
biases are shown, while for y.g absolute biases are shown. The y-axis shows the
inclination angle ¢ in radians and the x-axis shows the initial phase of the binary ¢
in radians. Different columns correspond to different mass ratios and spins of the
larger black hole (the spin on the smaller black hole is O in all three cases).

to the case where “full” (quadrupole-only) hybrid waveforms are used as target
waveforms. The template family in both cases contains only the quadrupole mode.
The difference between the solid and dashed lines indicates the effect of ignoring
sub-dominant modes for detection and parameter estimation. Note that many of the

dashed lines lie below the scale of these plots and are not displayed.

Previous studies [19-22, 25] have shown that the effects of subdominant modes
become important for binaries with high masses and large mass ratios. At large mass
ratios, subdominant modes are excited by a larger extent due to higher asymmetry.

For high masses, the observed signal is dominated by the merger, during which

quadrupole mode itself. This is expected as previous studies have shown that LIGO can only estimate
Xeff to a good accuracy. Therefore we do not consider biases in yeg in this study.
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Figure 4.6: “Ineffectualness” and effective parameter biases when using quadrupole-
mode templates against hybrid waveforms including all modes. Dashed lines cor-
respond to the same but against quadrupole-only hybrid waveforms, so that the
difference between the dashed and sold lines gives an indication of the effect of
nonquadrupole modes. Fractional biases are shown for total mass M and symmet-
ric mass ratio n, while absolute biases are shown for effective spins yeg. FFeg
and effective parameter biases are obtained by averaging over all relevant orienta-
tions of the binary using Eqs. (4.3) and (4.4). The horizontal axis reports the total
mass of the binary while the mass ratio and spins are shown in the legend. The
markers indicate the spin types: triangles pointing up/down denoting binaries with
aligned/antialigned spins and circles denoting nonspinning binaries. The horizontal
dashed black line corresponds to 1 — Fszf = 0.1. Note that most of the dashed lines
in the top-left subplot lie below 1073, We see that as the total mass increases, the
ineffectualness and effective biases in M, i and y.g increase and are dominated by
the effects of subdominant modes; see Sec. 4.5 for further discussion.
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Figure 4.7: Comparison of the frequency domain amplitudes of the “full” hybrid
waveform containing subdominant modes (solid lines) and the best-match template
waveforms containing only the quadrupole modes (dashed lines). The waveforms
have been “whitened” according to the PSD used for match calculation and nor-
malized such that the match with itself is unity. The orientation angles are chosen
tobet = n/4, oo = n, ¥ = n/3. The total mass is M = 200 M, and the mass
ratio is ¢ = 8. The legends show the spin of the larger black hole. The spin on
the smaller black hole is zero in all three cases. The inset text shows the fitting
factor, fractional biases in parameters M and n and absolute bias in parameter y.f,
at the best-match point. Particularly in the case of negative spin, where the observed
signal is dominated by the ringdown, we see that the template is able to mimic the
target, producing a reasonably good fitting factor. But this comes at the expense of
larger parameter biases.

sub-dominant modes are excited prominently. Consistent with our expectation, in
Fig. 4.6, the solid lines show that, in general, the ineffectualness and effective biases
increase with increasing mass ratio and with increasing mass. We also see a clear
separation of the solid and dashed lines for large mass ratios and high masses,

illustrating the effect of neglecting nonquadrupole modes.

Figure 4.6 also reveals an interesting dependence of the effect of nonquadrupole
modes on the spins. For binaries with aligned, zero, and antialigned spins, the
ineffectualness peaks at total masses of M ~ 300Mg, M ~ 150Mg, M ~ 100M,,
respectively ¢. This is roughly the mass range where the observed signal is dominated
by the late inspiral and merger — the phase where the higher modes are excited most
prominently. For binaries with antialigned spins, merger happens at relatively lower

frequencies, while, for the case of aligned spins, merger happens at relatively higher

SNote that this is not true for the q = 1 cases. For these, since the mismatches are quite small
~ 1073, several competing effects are playing out.
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frequencies, owing to the “orbital hangup” [61, 62] effect. Since frequencies are
scaled inversely to the total mass of the system, this creates the mass dependence
of the ineffectualness that we describe above. For very high masses, the observed
signal will contain only the ringdown phase. Due to the smaller bandwidth and the
relatively simpler structure of the ringdown signal, the quadrupole-only templates
are likely to be able to mimic the full ringdown signal relatively well, at the cost of
considerable systematic errors (see Fig. 4.7 for an example). Hence, we anticipate the
effectualness of the quadrupole-mode templates to go up at very high masses. This
effect should start dominating the effectualness patterns at relatively lower masses for
binaries with antialigned spins. Consistent with our expectation, we see in Fig. 4.6
(top left panel) that for a given mass ratio, at low masses, binaries with negative
spins have higher ineffectualness but as the mass increases there is a crossover point
beyond which binaries with positive spins have higher ineffectualness. While for
positive spins, the ineffectualness continues to increase with total mass, for zero
spins the ineffectualness plateaus and for negative spins it reaches a maximum value
and starts deceasing beyond that point. We see from Fig. 4.6 that this trend of larger
(smaller) effectualness for negative (positive) spins at high masses (M > 100My) is

achieved at the cost of larger (smaller) systematic biases in the estimated parameters.

We set FF.¢ > 0.965 (which corresponds to a ~ 10% loss in detection volume for a
fixed SNR threshold) as the benchmark for the relative importance of nonquadrupole
modes in detection. This is shown by the dashed black line in the top-left panel of
Fig. 4.6. Figure 4.1a summarizes the region in the parameter space where the loss
of detectable volume (at a fixed SNR threshold) due to neglecting nonquadrupole
modes is greater than 10%. For the case of negative spins, even at large mass ratios,
we see that subdominant modes are important for detection only over a range of
masses (M ~ 75 — 150My). For binaries with positive and zero spins, we anticipate
that the upper limit of total mass where the higher modes are important is above
300Mg, the highest mass that we consider in this study. Based on Fig. 4.1a, we
expect the quadrupole mode templates to be fully effectual for detection either when
q < 4 or when M < 70M,, (irrespective of spins), considering a population of
binaries distributed with isotropic orientations. We note that the region in which
subdominant modes become important for detection is the smallest (largest) for

negative (positive) spins.

Figure 4.1a also shows the region in the parameter space (marked by the green dashed

line) where subdominant modes are important for the detection of nonspinning
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binaries when nonspinning quadrupole mode templates are used, obtained in our
previous study [22]. We see that the use of quadrupole mode templates with
nonprecessing spins has helped us to reduce the region in the parameter space
where subdominant modes cause unacceptable loss in the detection volume. This is
consistent with our expectation, as two additional parameters (spins) in the templates
allow them to achieve higher fitting factors with the target signals, at the cost of a

larger bias in the best-matched template parameters.

In order to gauge the relative importance of the systematic errors shown in Fig. 4.6,
we compare them against the expected statistical errors from the quadrupole-mode
template family IMRPhenomD (computed using Fisher matrix formalism). Fig-
ure 4.8 shows the minimum SNR (orientation-averaged) at which the 1 o statistical
errors become low enough to equal the systematic errors. (Note that statistical errors
are inversely proportional to the SNR.) We see that, at high masses, the systematic
errors start to dominate the error budget for orientation-averaged SNRs as low as 3.
In this study, whenever the systematic errors are less than the statistical error for an
orientation-averaged SNR of 8 (horizontal black dashed line in Fig. 4.8), we regard

the quadrupole-mode templates to be faithful for parameter estimation 7.

Figure 4.1b summarizes the region in the parameter space where this minimum
orientation-averaged SNR is less than or equal to 8 for estimation of any of M, n
or yef- We exclude any cases where the systematic biases are dominated by the
biases in the quadrupole mode itself. We note that the region in which subdominant
modes become important for parameter estimation is smallest (largest) for positive
(negative) spins. This trend is opposite to what we see in Fig. 4.1a for detection.
This is because, at high masses negative spin binaries have higher effectualness than
positive spin binaries, which is achieved at the cost of higher systematic biases. We
remind the reader that, for spins of higher magnitude than considered in this study
(i.e. |xefr| > 0.5 for g > 2), we expect the shaded regions in Fig. 4.1 to expand or
reduce depending on the spin; the contours that we draw are indicative demarcations
only. For greater aligned spins, the shaded region for detection should expand and
the shaded region for parameter estimation should reduce. The opposite trend is
expected for greater antialigned spins. Figure 4.1b also compares these results with
the results obtained in our previous study [22] (dashed green line) using nonspinning

quadrupole-only templates against nonspinning “full” target waveforms. We see that

"Note that, when full mode templates are employed in the parameter estimation, the statistical
errors are expected to go down in general, due to the increased amount of information in the
waveform (see, e.g., [63]). We do not consider this effect here.
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the use of spinning templates essentially increases the region where the parameter

estimation bias is dominated by systematic errors.

4.6 Conclusion

We studied the effects of sub-dominant modes in the detection and parameter esti-
mation of GWs from black hole binaries with nonprecessing spins using Advanced
LIGO detectors. The effect of sub-dominant modes on detection is quantified in
terms of the effective detection volume (fraction of the optimal detection volume
that the suboptimal search is sensitive to, for a given SNR threshold) and the effect
on parameter estimation in terms of the effective bias (weighted average of the sys-
tematic errors for different orientations) in the estimated parameters. We compared
quadrupole-mode templates with target signals (hybrid waveforms constructed by
matching NR simulations describing the late inspiral, merger and ringdown with
PN/EOB waveforms describing the early inspiral). These signals contained contri-
butions from all the spherical harmonic modes up to £ = 4 and —¢ < m < { except

the m = 0 modes.

Our study considered black hole binaries with total masses 40My < M < 300M,
mass ratios 1 < ¢ < 10, and various spins including yeg ~ —0.5,0,0.5 (| yeff| < 0.98
for ¢ = 1). The results are appropriately averaged over all angles describing
the orientation of the binary (the results are not explicitly averaged over the sky
location because both the fitting factors and systematic biases are only weakly
dependent on the sky location 3). Figure 4.1 shows the regions in the parameter space
where the contribution from nonquadrupole modes is important for GW detection
and parameter estimation. In general, neglecting subdominant modes can cause
unacceptable loss of SNR and unacceptably large systematic errors for binaries with
high masses and large mass ratios. For a given mass ratio, subdominant modes are
more important for positive (negative) spins for detection (parameter estimation). As
compared to our previous study restricted to the case of nonspinning binaries, we see
that the use of quadrupole mode templates with nonprecessing spins, enhances the

effectualness for detection, but extends the region where systematic errors dominate.

Note that the scope of our study was rather restricted — while we conclude that
subdominant mode templates are likely to improve the detection rates of binary black
holes in certain regions in the parameter space (high mass and large mass ratios), a
proper characterization of this will require characterizing the associated increase in

the false alarm rate also (see, e.g., Ref. [21]). Also, we did not study the effect of
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neglecting nonquadrupole modes on signal-based vetoes such as the ‘“chi-square”
veto [64]. Similarly, we have only investigated the region in the parameter space
where the use of the quadrupole-only template would introduce systematic errors
that are larger than the expected statistical errors. However, the use of full-mode
templates in parameter estimation is likely to reduce the statistical errors, owing
to the increased information content in the waveform. We have not explored this
aspect of the problem here. The expected statistical errors were estimated using the
Fisher matrix formalism. Since these error bounds are lower limits, our estimates
on the region of the parameter space where the systematic errors are negligible
should be treated as conservative estimates. We conclude that subdominant modes
are important for parameter estimation when the systematic errors are greater than
1o statistical errors at a sky and orientation averaged SNR of 8. If more stringent
criteria are applied, our shaded regions in Fig. 4.1b would widen. Also, note that we
restricted our study to the case of binaries with nonprecessing spins. Astrophysical
black hole binaries may have generic spin orientations. It is not clear how our
conclusions hold in the case of precessing spins (see Ref. [65] for some recent work

in this direction). We leave some of these investigations as future work.
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APPENDIX

4.A Comparison with Bayesian parameter estimation

In this paper, we tried to quantify the loss of detection efficiency due to neglecting
subdominant modes by computing the fitting factors of the dominant-mode tem-
plates with target signals including the effect of subdominant modes. Systematic
errors in parameter estimation were computed by comparing the parameters of the
“best-matched” subdominant-mode templates with the true parameters of the target
signals, while statistical errors are computed from the Fisher information matrix.
Since these calculations are computationally inexpensive, this allows us to study
the impact of subdominant modes over the entire parameter space of interest, after
averaging over extrinsic parameters such as the orientation angles. However, we
know that the inverse of the Fisher matrix provides a lower bound of the statistical
errors in the parameter estimation [66, 67]. In order to verify that our simplified
estimates of the statistical and systematic errors give a good approximation to the
true errors, we compare our estimates of the systematic and statistical errors with

those derived from full Bayesian parameter estimation for one sample case.

Method My;as Ibias X Sgs oM on O Xeft

Bayesian 7.6 x 107'Mg 2.2x 1073 4.3x 1072 2.8My 2.4x 1073 1.3x 107!
FF/Fisher 2.6 X 107'Mgy 2.7x 107 5.4%x 1072 1.9My 9.5x 1072 7.0 x 1072

Table 4.A.1: Comparison of systematic and statistical biases as predicted by a full
Bayesian parameter estimation (top row) study with a fitting factor/Fisher matrix
study that is used in this paper (bottom row). The first three columns show the
absolute systematic biases and the next three columns show the statistical errors
in the estimation of total mass M, symmetric mass ratio n and effective spin yef.
For the Bayesian study (top row), systematic biases are inferred from the peaks of
the posterior distributions and the statistical biases are given by the widths of 68%
credible intervals. In the bottom row, the systematic biases are inferred from the
best-match parameters and the statistical biases are given by 1o errors from a Fisher
matrix study.

We create a simulated data stream by injecting a numerical-relativity waveform
from the SXS waveform catalog [31, 33, 68] into colored Gaussian nose with the
power spectrum of Advanced LIGO. The injected waveform (SXS:BBH:0307) has
the mass ratio my /my = 1.228, aligned spins y; = 0.32, y» = —0.5798, and has a

SNR of ~ 25. We estimate the posterior distributions of of the masses and spins
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using the LALINFERENCENEST code [16, 69] that is part of the LSC Algorithms

Library [70]. We compare the maximum a posteriori probability (MAP) estimates
with the true parameters, which provides us an estimate of the systematic bias.
Similarly, the width of the 68% credible regions provides us an estimate of the
statistical errors. These estimates are compared with the same estimated using the
methods that we use in the paper. Table 4.A.1 provides a comparison between
these independent estimates. We see that, for the parameters that we consider,
the two different estimates are in reasonable agreement. Although this provides
some confidence in our results, extensive comparisons with Bayesian estimates over
the full parameters space are required to confidently establish the accuracy of our

approximate results. We leave this as future work.
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Chapter 5

SURROGATE MODEL OF HYBRIDIZED NUMERICAL
RELATIVITY BINARY BLACK HOLE WAVEFORMS

Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Lawrence E. Kid-
der, and Harald P. Pfeiffer. Physical Review D., 99, 064045 (2019), arxiv:1812.07865.

5.1 Executive summary

Surrogate models are capable of accurately, yet cheaply reproducing numerical
relativity simulations. They are however restricted to the length of these simulations,
which typically only include about 20 orbits before merger due to the computational
expense. Fortunately, post-Newtonian theory is valid for earlier times, and can be
combined with the numerical relativity waveform to produce a “hybrid” waveform.
This Chapter presents the first surrogate model based on hybrid waveforms, and
therefore covers the full range of frequencies relevant for stellar mass aligned-spin
binary black holes with ground based detectors. This model is more accurate than

existing aligned-spin models by about two orders of magnitudes.

5.2 Abstract

Numerical relativity (NR) simulations provide the most accurate binary black hole
gravitational waveforms, but are prohibitively expensive for applications such as
parameter estimation. Surrogate models of NR waveforms have been shown to
be both fast and accurate. However, NR-based surrogate models are limited by
the training waveforms’ length, which is typically about 20 orbits before merger.
We remedy this by hybridizing the NR waveforms using both post-Newtonian and
effective one body waveforms for the early inspiral. We present NRHybSur3dgs,
a surrogate model for hybridized nonprecessing numerical relativity waveforms,
that is valid for the entire LIGO band (starting at 20 Hz) for stellar mass binaries
with total masses as low as 2.25 M. We include the £ < 4 and (5,5) spin-
weighted spherical harmonic modes but not the (4,1) or (4,0) modes. This model
has been trained against hybridized waveforms based on 104 NR waveforms with
mass ratios ¢ < 8, and |yi;|,|x2;] < 0.8, where yxi; (x2.) is the spin of the
heavier (lighter) BH in the direction of orbital angular momentum. The surrogate
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reproduces the hybrid waveforms accurately, with mismatches < 3 x 107 over
the mass range 2.25My < M < 300My. At high masses (M > 40M;), where the
merger and ringdown are more prominent, we show roughly two orders of magnitude
improvement over existing waveform models. We also show that the surrogate works
well even when extrapolated outside its training parameter space range, including at
spins as large as 0.998. Finally, we show that this model accurately reproduces the

spheroidal-spherical mode mixing present in the NR ringdown signal.

5.3 Introduction

The era of gravitational wave (GW) astronomy has been emphatically unveiled
with the recent detections [1-7] by LIGO [8] and Virgo [9]. The detection of
gravitational wave signals from compact binary sources is expected to become a
routine occurrence as the advanced detectors reach their design sensitivity [10, 11].
The possible science output from these events crucially depends on the availability

of an accurate waveform model to compare against observed signals.

Numerical relativity (NR) is the only ab initio approach that accurately produces
waveforms from the merger of a binary black hole (BBH) system. However, be-
cause NR simulations are computationally expensive, it is impractical to use them
directly for applications such as parameter estimation, which can require upwards
of 107 waveform evaluations. Therefore, the GW community has developed several
approximate waveform models [12-21], some of which are fast to evaluate. These
models make certain physically-motivated assumptions about the underlying phe-
nomenology of the waveforms, and they fit for any remaining free parameters using
NR simulations.

Surrogate modeling [22, 23] is an alternative approach that doesn’t assume an
underlying phenomenology and has been applied to a diverse range of problems [22—
32]. NR Surrogate models follow a data-driven approach, directly using the NR
waveforms to implicitly reconstruct the underlying phenomenology. Three NR
surrogate models have been built so far [26-28], including a 7-dimensional (mass
ratio ¢ and two spin vectors) model for generically precessing systems in quasi-
circular orbit [28]. Through cross-validation studies, these models were shown to

be nearly as accurate as the NR waveforms they were trained against.

Despite the success of the surrogate modeling approach, existing surrogate models
have two important limitations: (1) Because they are based solely on NR simulations,
which typically are only able to cover the last ~20 orbits of a BBH inspiral, they



112

are not long enough to span the full LIGO band for stellar mass binaries. (2) Apart
from the first non-spinning model [26], these models have been restricted to mass
ratios ¢ < 2 !. There are two reasons for this: (i) The 7d parameter space is vast,
requiring at least a few thousand simulations to sufficiently cover it. (ii) Because
of the smaller length scale introduced by the lighter black hole, NR simulations

become increasingly more expensive with mass ratio.

In this work we address these limitations in the context of nonprecessing BBH
systems. First, to include the early inspiral we “hybridize” the NR waveforms : each
full waveform consists of a post-Newtonian (PN) and effective one body (EOB)
waveform at early times that is smoothly attached to an NR waveform at late times.
Second, since we restrict ourselves to the 3-dimensional space of nonprecessing
BBHs, fewer simulations are necessary compared to the 7-dimensional case, and
therefore we can direct computational resources to simulations with higher mass
ratios. The resulting model, NRHybSur3dgg, is the first NR-based surrogate model
to span the entire LIGO frequency band for stellar mass binaries; assuming a
detector low-frequency cut-off of 20 Hz, this model is valid for total masses as low
as 2.25Mg. This model is based on 104 NR waveforms in the parameter range
q < 8, and |xi;l,|x2;] < 0.8, where xi1; (x2;) is the dimensionless spin of the
heavier (lighter) black hole (BH).

The plus (h;) and cross (hyx) polarizations of GWs can be conveniently represented
by a single complex time-series, i = h; — ihyx. The complex waveform on a sphere
can be decomposed into a sum of spin-weighted spherical harmonic modes fy,, [33,
34], so that the waveform along any direction (¢,¢0) in the binary’s source frame is
given by

o0

!
it o) = D > hum() 2Yim(t. g0), (5.1)
=2 m=—I
where _,Yz,, are the spin =—-2 weighted spherical harmonics, ¢ is the inclination
angle between the orbital angular momentum of the binary and line-of-sight to the
detector, and ¢y is the initial binary phase. ¢q can also be thought of as the azimuthal
angle between the x—axis of the source frame and the line-of-sight to the detector.
We define the source frame as follows: The z—axis is along the orbital angular

momentum direction, which is constant for nonprecessing BBH. The x—axis is

I'We use the convention q = my/my, where m; and m; are the masses of the component black
holes, with m; > m,.
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along the line of separation from the lighter BH to the heavier BH at some reference

time/frequency. The y—axis completes the triad.

The ¢=|m|=2 terms typically dominate the sum in Eq. (5.1), and are referred to
as the quadrupole modes. Studies [35—42] have shown that the nonquadrupole
modes, while being subdominant, can play a nonnegligible role in detection and
parameter estimation of GW sources, particularly for large signal to noise ratio
(SNR), large total mass, large mass ratio, or large inclination angle ¢. For the
first event, GW150914 [1], the systematic errors due to the quadrupole-mode-only
approximation are generally smaller than the statistical errors [43, 44], although
higher modes may lead to modest changes in some of the extrinsic parameter
values [45]. However, as the detectors approach their design sensitivity [10], one
should prepare for high-SNR sources (particularly at larger mass ratios than those
seen so far), where the quadrupole-mode-only approximation breaks down. In
addition, nonquadrupole modes can help break the degeneracy between the binary
inclination and distance, which is present for quadrupole-mode-only models (see
e.g. [14, 46, 47]).

In this work, we model the following spin-weighted spherical harmonic modes:
¢ < 4 and (5,5), but not the (4,1) or (4,0) modes 2. Several inspiral-merger-
ringdown waveform models [14, 15, 20, 21] that include nonquadrupole modes
have been developed in recent years; however, compared to those models we show

an improved accuracy and we include more modes.

The rest of the paper is organized as follows. In Sec. 5.4 we choose the parameters
at which to perform NR simulations, which will be used for training the surrogate
model. Sec. 5.5 describes the NR simulations. Sec. 5.6 describes our procedure to
compute the waveform for the early inspiral using PN and EOB waveforms. Sec. 5.7
describes our hybridization procedure to attach the early inspiral waveform to the NR
waveforms. Sec. 5.8 describes the construction of the surrogate model. In Sec. 5.9,
we test the surrogate model by comparing against NR and hybrid waveforms. We end
with some concluding remarks in Sec. 5.10. We make our model available publicly
through the easy-to-use Python package gwsurrogate [48]. In addition, our model
is implemented in C with Python wrapping in the LIGO Algorithm Library [49].

We provide an example Python evaluation code at [50].

ZBecause of the symmetries of nonprecessing BBHs (see Eq. (5.23)), the m < 0 modes contain
the same information as the m > 0 modes, and do not need to be modeled separately.
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5.4 Training set generation
Greedy parameters from PN surrogate model

We do not know a priori the distribution or number of NR simulations required to
build an accurate surrogate model. Furthermore, we hope to select a representative
distribution that will allow for an accurate surrogate to be built with as few NR
simulations as possible. Therefore, we estimate this distribution by first building
a surrogate model for PN waveforms; we find that parameters suitable for building
an accurate PN surrogate are also suitable for building an NR or a hybrid NR-PN

surrogate.

We use the same methods to build the PN surrogate as we use for the hybrid
surrogate (cf. Sec. 5.8). We use the PN waveforms described in Sec. 5.6; however,
for simplicity we only model the (2,2) mode. In addition, we restrict the length of
the PN waveforms to be 5000M, terminating at the innermost-stable-circular-orbit’s

orbital frequency, wor, =6>/? rad/ M, where M is the total mass of the binary.

We determine the desired training data set of parameters as follows. We begin with
just the corner cases of the parameter space; for the 3d case considered here, that
consists of 8 points at (g, x1z, x2;) = (1 or 8,+0.8,+0.8). We build up the desired
set of parameters iteratively, in a greedy manner: At each iteration we build a PN
surrogate using the current training data set and test the model against a much larger
(~ 10 times) validation data set. The validation data set is generated by randomly
resampling the parameter space at each iteration. Since the boundary cases are
expected to be more important, for 30% of the points in the validation set we sample
only from the boundary of the parameter space, which corresponds to the faces of
a cube in the 3d case. We select the parameter in the validation set that has the
largest error (cf. Eq. (5.2)), and add this to our training set (hence the name greedy
parameters). We repeat until the validation error reaches a certain threshold.

In order to estimate the difference between two complexified waveforms, f; and £,

we use the time-domain mismatch,

MM =1- {fa, fo) , (5.2)
\/<ﬁl’ﬁ1><ﬁz’ﬁ2>
tlnax

(ﬁl”iz}:/ fa (DR (1)dt|, (5.3)

where = indicates a complex conjugation, and |.| indicates the absolute value. Note
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that in this section, we do not perform an optimization over time and phase shifts.

In addition, we assume a flat noise curve.

100 Max Mismatch

10—7 | | | | | i
20 40 60 80 100 120

Number of Greedy parameters

Figure 5.4.1: Largest mismatch of the surrogate (over the entire validation set) as a
function of number of greedy parameters used to train the PN surrogate. The PN
surrogate is seen to converge to the validation waveforms as the size of the training
data set increases.

Figure 5.4.1 shows how the maximum validation error decreases as we add greedy
parameters to our training data set. For our case, we stop at 100 greedy parameters
(at which point the mismatch is < 107%) and use those parameters to perform the
NR simulations. Note that we don’t expect 100 NR simulations to produce an NR
surrogate with comparable accuracy, MM < 107, for two reasons. First, unlike
the PN waveforms used here, the NR simulations also include the merger-ringdown
part, which we expect to be more difficult to model. Second, the NR numerical
truncation error is typically higher than 107® in mismatch, therefore the numerical

noise will limit the accuracy.

5.5 NR simulations

The NR simulations for this model are performed using the Spectral Einstein Code
(SpEC) [51-56] developed by the SXS [57] collaboration. Of the 100 cases de-
termined in Sec. 5.4, only 91 simulations were successfully completed. These
simulations have been assigned the identifiers SXS:BBH:1419 - SXS:BBH:1509,
and are made publicly available through the SXS public catalog [58]. For cases with

3The main reason for failure is large constraint violation as the binary approaches merger. We
believe a better gauge condition may be needed for some of these simulations.
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equal mass, but unequal spins, we can exchange the two BHs to get an extra data
point. There are 13 such cases, leading to a total of 104 NR waveforms. These are

shown as circular markers in Fig. 5.5.1.

X2z
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I0.75
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0.25

A A 0.00

X1z

-0.25

—0.50

I —0.75
' ~1.00

10

Figure 5.5.1: The parameter space covered by the 104 NR waveforms (circle mark-
ers) used in the construction of the surrogate model in Sec. 5.8. We also show the
9 long NR waveforms (square markers) used to test hybridization in Sec. 5.9, and
the 8 NR waveforms (triangle markers) used to test extrapolation in Sec. 5.9. The
axes show the mass ratio and the spin on the heavier BH, while the colors indicate
the spin on the lighter BH. The black rectangle indicates the bounds of the training
region: 1 < g <8, -0.8 < 1, x2; < 0.8.

The start time of these simulations varies between 4270M and 5227M before the
peak of the waveform amplitude (defined in Eq. (5.38)), where M = m; + mj is
the total Christodoulou mass measured after the initial burst of junk radiation. The
algorithm for choosing a fiducial time at which junk radiation ends is discussed
in Ref. [59]. The initial orbital parameters are chosen through an iterative proce-
dure [60] such that the orbits are quasicircular; the largest eccentricity for these
simulations is 7.5 x 10~%, while the median value is 4.2 x 10™*. The waveforms
are extracted at several extraction surfaces at varying finite radii form the origin and
then extrapolated to future null infinity [61]. Finally, the extrapolated waveforms are
corrected to account for the initial drift of the center of mass [62, 63]. The time steps
during the simulations are chosen nonuniformly using an adaptive time-stepper [59].
We interpolate these data to a uniform time step of 0.1M; this is dense enough to

capture all frequencies of interest, including near merger.
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5.6 Early inspiral waveforms

While NR provides accurate waveforms, computational constraints limit NR to only
the late inspiral, merger, and ringdown phases. Fortunately, PN/EOB waveforms
are expected to be accurate in the early inspiral. Hence we can “stitch” together
an early inspiral waveform and an NR waveform, to get a hybrid waveform [40,
64—71] that spans the entire frequency range relevant for ground-based detectors.
In this section, we describe the waveforms we use for the early inspiral, leaving the

hybridization procedure for the next section.

PN waveforms

We first generate PN waveforms as implemented in the GWFrames package [72].
For the orbital phase we include nonspinning terms up to 4 PN order [73-77] and
spin terms up to 2.5 PN order [78-80]. We use the TaylorT4 [81] approximant to
generate the PN phase; however, as described below, we replace this phase with an
EOB-derived phase. For the amplitudes, we include terms up to 3.5 PN order [82—
84].

The spherical harmonic modes of the PN waveform can be written (after rescaling

to unit total mass and unit distance) as [74, 82],

16 .
iy =20 (PN | == Hpy e, (5.4)

PN s the characteristic speed

where n = ¢/(1 + ¢)? is the symmetric mass ratio, v
that sets the perturbation scale in PN, ¢E§) is the (real) orbital phase, and H f nlj are the
complex amplitudes of different modes. Note that we ignore the tail distortions [85,

86] to the orbital phase as these are 4 PN corrections (see e.g. [87]).

The complex strain ﬁgj is obtained as a time series from GWFrames. We can absorb

the complex part of the amplitudes into the phases and rewrite the strain as

AN = APNGi0, (5.5)

Dim =1 By + €t (5.6)
PN

PN _ ¢22 57

Por = 5 (5.7)

where APN and ¢} are the real amplitude and phase of a given mode, and &7 is an
offset that captures the complex part of H 5 nlj Note that Egs. (5.6) and (5.7) together
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imply fg\} =0; ngN contains complex terms starting at 2.5PN, but these appear as

5PN corrections in the phase (see e.g. [87]), which we can safely ignore.
At this stage, AN, ¢PN_and &N are functions of time. But they can be recast as

functions of the characteristic speed by first computing

PN\ 173
d¢orb) , (5.8)

PN/ _ [ “Porb
Y (t)_( dt

where the derivative is performed numerically, and then inverting Eq. (5.8) to obtain
t(vPN). Then we define

APNGPN) = BN (0PY)), (5.9)
ENWINY = 6PN (vPN)) — m gPN (1 (vP)). (5.10)

Note that the PN waveform is generated in the source frame defined such that the
reference time is the initial time. This also ensures that the heavier BH is on the

positive x—axis at the initial time, and the initial orbital phase is zero.

To summarize: From the GWFrames package, we obtain the complex time series
ﬁfnlj (Eq. (5.5)). We compute the orbital phase (Eq. (5.7)), the real amplitudes
(Eq. (5.9)), and the phase offsets (Eq. (5.10)). These three quantities are obtained
as a time series but can be represented as functions of the characteristic speed using
Eq. (5.8).

EOB correction

As was shown in previous works [35, 40], we find that the accuracy of the inspiral
waveform can be improved by replacing the PN phase with the phase derived from
an NR-calibrated EOB model. For this work we use SEOBNRv4 [17].

SEOBNRV4 is a time domain model that includes only the (2,2) mode, which we

can decompose as follows:

EOB

h‘zEzoB — A];é)B e_i¢22 s (5.11)

where AE?B and ¢]25§)B are the real amplitude and phase of the (2,2) mode. These

are functions of time, but following the same procedure as earlier, they can be recast
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in terms of the characteristic speed:

EOB EOB( )
oy (1) = (5.12)
J$EOB 1/3
vEOB(t):( "2’;" ) , (5.13)

where the derivative is performed numerically, and we invert Eq. (5.13) to obtain
t(vEOB). We replace vPN — vFOB in Egs. (5.9) and (5.10) to get, respectively, the
EOB-corrected amplitudes and phase offsets:

A1) = APN(VEOB(1)), (5.14)
Em(r) = £ (VOB (@)). (5.15)

Note that in practice, computing A”‘“(t) and f‘““(t) is accomplished via an interpo-
lation in v: AP N o (v) and g—‘P N(v) as computed in Egs. (5.9) and (5.10) are known only
at particular values of v, which are vPN(;,,) where #;, are the times in the PN time
series; we interpolate APN(v) and £)N(v) to the points vEOB(fi,.,) where 7, are
the times in the EOB time series. We use a cubic-spline interpolation scheme as

implemented in Scipy [88].

Following Eq. (5.6), the EOB-corrected phases are given by:

O = m gEOB 4 £l (5.16)

tm>

where we use the EOB orbital phase from Eq. (5.12). Finally, our EOB-corrected

inspiral waveform modes are given by:

ins

fne = APS e om. (5.17)

Fig. 5.6.1 shows an example of PN and EOB-corrected waveforms along with the
corresponding NR waveform. All three waveforms have the same starting orbital
frequency and their initial orbital phase is set to zero. We see that the PN waveform
becomes inaccurate at late times, as expected. The EOB-corrected waveform, on

the other hand, remains faithful to the NR waveform until much later times.

5.7 Hybridization

In this section we describe our procedure to “stitch” together an inspiral waveform
(described in Sec. 5.6) to an NR waveform (described in Sec. 5.5).
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Figure 5.6.1: NR, PN (Sec. 5.6), and EOB-corrected PN (Sec. 5.6) waveforms for
an example case. We show the (2,2) and (2,1) modes. The binary parameters are
shown at the top of the plot. The EOB-corrected PN waveform [35, 40] stays faithful
to the NR waveform until much later times, compared to the pure PN waveform.

We start by generating inspiral and NR waveforms with the same component masses
and spins. We note that the spins measured in SpEC simulations agree well with
PN theory [89]. However, the PN and NR waveforms are typically represented
in different coordinate systems that need to be aligned with each other as follows.
The two coordinate systems are related to each other by a possible time translation
and a possible rotation by three Euler angles: inclination angle ¢, initial binary
phase ¢, and polarization angle . For nonprecessing BBH the first angle ¢,
is trivially specified by requiring that the z-axis is along the direction of orbital
angular momentum. This leaves us with the freedom to vary ¢y and . We choose
the hybridization frame and time shifts by minimizing a cost function in a suitable

matching region; this is described in more detail below.

4000
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Choice of cost function

We use the following cost function when comparing two waveforms, / and A, in the
matching region:
. -
EIh.F] 1 2em f,f | A (t) — bem(1)|?dt
2 e ) V(0P

where #; and 7, denote the start and end of the matching region, to be defined in

(5.18)

Sec. 5.7, and the sum does not include m = 0 modes for reasons described in
Sec. 5.7. This cost function was introduced in Ref. [27] and is shown to be related

to the weighted average of the mismatch over the sky.

We minimize the cost function by varying the time and frame shifts between the NR

and inspiral waveforms

min E[ANR(t; @, ), A™(t; 10)], (5.19)

to,004

AER(8; o, 00) = Ao (t) €™ 2, (5.20)
BYS(t510) = At — t). (5.21)

We perform the time shifts on the inspiral waveform so that the matching region
always corresponds to the same segment of the NR waveform. The frame shifts
are performed on the NR waveform so as to preserve the initial frame alignment of
the inspiral waveform (cf. Sec. 5.6). This alignment gets inherited by the hybrid

waveform, and is important in the surrogate construction.

m = 0 modes

We find that the m = 0 modes of the inspiral waveforms do not agree very well with
the NR waveforms. There are several possible reasons for this [90]: (1) The NR
waveform does not have the correct “memory” contribution since this depends on
the entire history of the system starting at # = —oo, while the NR simulation covers
only the last few orbits. (2) The extrapolation to future null infinity does not work
as well for these modes [59]. This could be improved in the future with Cauchy
Characteristic Extraction (CCE) [91-94]. (3) The amplitude of these modes is very
small except very close to merger; therefore the early part of the NR waveform where

we compare with the inspiral waveforms is contaminated by numerical noise.

Therefore, when constructing the hybrid waveforms, we set the entire inspiral wave-
form to zero for these modes,
ins _
/i&mzo =0. (5.22)
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When computing the cost function (Eq. (5.18)), we ignore the m = 0 modes.

This means that our hybrid waveforms for these modes are equivalent to the NR
waveforms. In addition, the main contribution for these modes comes from the
region close to merger, which does not correspond to a memory signal, but instead

is due to axisymmetric excitations near merger (cf. bottom panel of Fig. 5.7.2).

Choice of matching region

There are several considerations to take into account when choosing a matching
region [t1,,] for the cost function (Eq. (5.18)): (1) The NR and inspiral waveforms
should agree with each other reasonably in this region; at early times the NR
waveform is contaminated by junk radiation while at late times the inspiral waveform
deviates from NR (cf. Figs. 5.6.1 and 5.7.2). (2) The matching region should be

wide enough that the cost function is meaningful.

Our matching region starts at 1000M after the start of the NR waveform; we find
that this is necessary to avoid noise due to junk radiation in some of the higher order
modes. The length of the NR waveforms from the start of the matching region to
the peak of the waveform amplitude varies between 3270M and 4227M. The width
of the matching region is then chosen to be equal to the time taken for 3 orbits of
the binary. We use the phase of the (2,2) mode of the NR waveform to determine
this. This choice ensures the width of the matching region scales appropriately with
the NR starting frequency, so that we get wider matching regions when the NR

waveform starts early in the inspiral.

Allowed ranges for frame and time shifts

The allowed range for ¢ is [0,27]. For nonprecessing binaries the allowed values
for ¢ can be restricted by taking into account the symmetries of the system. We will
show that this restriction is a consequence of the well-known relationship

ﬁf,—m = (_l)g h,

tm?

(5.23)
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between the m < 0 modes and the m > 0 modes for nonprecessing binaries orbiting

in the x-y plane [95]. We compute the shifted waveform

ﬁf,—m(t) e o0 MV = ﬁf,—m(t; ©0,¥)
= (=D (g (t; 00, ¥))*
= (-D)fe e ™y (1)
= e Ve, (1)

— MV = ¢, (5.24)

Eq. (5.24) implies that the only allowed values for  are 0 and 7/2 “. If the
inspiral waveform and the NR waveform have the same sign convention, then ¢ = 0.
Unfortunately, not all NR catalogs and PN-waveform codes use the same sign

convention, so we allow the possibility of ¢ = /2 to account for this.

To set the allowed range for 7y, we begin by computing the orbital frequency of
the inspiral waveform, W™, as half the frequency of the (2,2) mode. Similarly, we
compute the orbital frequency of the NR waveform, wNR. We first time-align the NR
and inspiral waveforms such that their frequencies match at the start of the matching

region. This gives us a good starting point to vary the time shift.

We also define,
W = ™Rt = 1), (5.25)
™ =0.995 x W™ | (5.26)
Wt = 1.005 X W™, (5.27)

where w™R(¢ = 1) is the NR frequency at the start of the matching region. The
ins _tins tins_tins ]

allowed range for time shifts 7y is restricted to lie in the interval [7, S " :
ow mid’ "hi mid

where 71 1" and £ are the times at which w™(¢) is equal to ™ , W™ and W,
ow’ "mid hi low”> ““mid hi
respectively. In other words, the allowed range for #( is a region near 79 = 0. tp = O is
the case when the frequencies of the inspiral and the NR waveforms match at 1, the
start of the matching region. The lower (upper) limit for 7y is chosen such that the
inspiral waveform has a frequency equal to 0.995 (1.005) times the NR frequency

at fy.

The factors in Egs. (5.26) and (5.27) are chosen such that the time shift that minimizes

the cost function is always well within the range of allowed time shifts. Hence,

4y = m is also allowed, but it is degenerate with ¢ = 0.
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choosing a wider range (i.e. values of these factors farther from unity) does not
improve the hybridization procedure. Note also that, like the width of the matching
region in Sec. 5.7, setting the range of time shifts based on the orbital frequency

ensures that it scales appropriately with the start frequency of the NR waveform.

The minimization in Eq. (5.19) is performed as follows. We vary the time shift 7
over 500 uniformly spaced values in the above mentioned time range °. For each
of these time shifts 7y, we try both allowed values of ¢ € {0,7/2}. For each #y and
¥, we minimize the cost function over ¢q using the Nelder-Mead down-hill simplex
minimization algorithm as implemented in Scipy [88]. To avoid local minima in the
o minimization, we perform 10 searches with different initial guesses, which are

sampled from a uniform random distribution in the range [0, 27].

Stitching NR and inspiral waveforms.

Having obtained the right frame and time shifts between the NR and inspiral wave-
forms, the final step is to smoothly stitch the inspiral waveform to the shifted NR
waveform. The stitching is done using a smooth blending function:

0, ift <ty
7(f) = { sin? (g%) ifty <t <t (5.28)
1, ift >,

where # and 1, take on the same values as those appearing in Eq. (5.18). Different
blending functions have been proposed in the literature [64, 67, 69, 96]. Our choice
is equivalent to the blending function defined in Ref. [67]. We find that our results

are not sensitive to the choice of blending function.

In what follows, for brevity, we drop the hybridization parameters ¢g, ¥, o with
the understanding that the models are stitched together after transforming into hy-

bridization frame,

BS(1) = B2S(t; 1), (5.29)
iy (1) = by, (85 00, 9). (5.30)

Given the shifted waveforms and the blending function, there are still several ways

in which one can stitch the waveforms together.

>We find that increasing the number of time samples results in no noticeable improvement; the
typical values of the cost function after minimization with 500 samples are & ~ 107>, and using
1000 samples results in changes only of order A& < 1078,
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Inertial frame stitching

One could work with the complex waveform strain and define:
fip?® = (1= 7(1)) AS(0) + (r) ANR(D). (531)

With this choice, by construction, the complex strain transitions smoothly from the
inspiral part to the NR part over the matching region. However, the transition is
more complicated for the frequency, since it involves time derivatives of the complex
argument of the strain; the time derivatives of the blending function do not behave
like a smooth blending function. This is demonstrated in the top panel of Fig. 5.7.1:
the inspiral and NR frequencies agree well in the matching region but the frequency

of the hybrid waveform deviates from this.

Amplitude-Frequency stitching

To avoid the undesirable artifacts described above, we choose to perform the inspiral-
NR stitching using the amplitude and frequency rather than the inertial frame strain.

We begin by decomposing the NR and inspiral waveforms into their respective

amplitude and phase:

AR (1) = ANRe= 90 ANR(p) = NS00 (5.32)

tm

The frequency of each mode

ins
NR _ d¢€m ins _ ¢
tm — dt ’ wfm - dt ’

is then numerically computed from 4th-order finite difference approximations to the

(5.33)

time derivative. Finally, we stitch the amplitude and frequency of each mode to get

their hybrid versions:

AR = (1= 7)) A1) + (1) ANR, (5.34)
Hyb =(1-1()) wms(t) + 7(¢) w . (5.35)

To get the inertial frame strain we first need to integrate the frequency to get the
phase. However, we already know the phase in the region before (only inspiral) and

after (only NR) the matching region. So, we integrate the hybrid frequency

15)
¢Hyb —match—region _ / w;l”ylbdt, (536)

n
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Figure 5.7.1: Top: The real part (top) and frequency (bottom) of the (3,2) mode
using the inertial frame stitching described in Sec. 5.7. The binary parameters are
shown on the top of the plot. The vertical red dashed lines indicate the matching
region. Note that this plot shows the inspiral and NR waveforms after the time
and frame shifts are performed. Bottom: Same, but using the amplitude-frequency
stitching described in Sec. 5.7. Now we see that the frequency of the hybrid
waveform agrees much better with the NR and inspiral data.
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in the matching region using a 4th-order accurate Runge-Kutta scheme.

Finally, we set the phase of the hybrid waveform to,

oS+ 6, ift <1
Hyb Hyb—match—regi .
¢€,Z — ¢€n)1/ match—region +6?m’ if H<t<th
¢{N,5’ ift > 1,

Hyb . .
where & é and 62 are chosen such that 0] ¥b s continuous at t; and 1.
m tm tm
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(5.37)

Since, by construction, the frequency transitions smoothly from the inspiral-waveform

to NR data, we eliminate the artifact seen in the bottom left panel of Fig 5.7.1 (dashed

line), as demonstrated in the bottom panel of Fig. 5.7.1.

We note that since the m = 0 modes are purely real/imaginary and nonoscillatory for

nonprecessing systems, they do not have a frequency associated with them, therefore

we use the inertial frame stitching of Sec. 5.7 for these modes. For these modes the

waveform goes from zero to the NR value over the matching region.
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Figure 5.7.2: An example hybrid waveform used in this work. We show the £ = 2
modes of the inspiral, NR and hybrid waveforms. The binary parameters are shown
on the top of the plot. The vertical red dashed lines indicate the matching region.
Note that this plot shows the inspiral and NR waveforms after the time and frame

shifts are done.
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In the hybridized waveform we include the ¢ < 4 and (5, 5) modes, but not the (4, 1)
or (4,0) modes. For the (4,1) and (4,0) modes we find that the inspiral and NR
waveforms do not agree very well. This is possibly due to issues in the extrapolation
to future-null infinity [61] for these modes, and could be resolved in the future with
CCE [91-94] An example of the final NR, inspiral and hybrid waveforms is shown
in Fig. 5.7.2.

5.8 Building the surrogate model

Starting from the 104 NR waveforms described in Sec. 5.4 and Sec. 5.5, we construct
hybrid waveforms as described in Sec. 5.7. In this section we describe our method

to construct a surrogate model for these hybrid waveforms.

Processing the training data

Before building a surrogate model, we process the hybrid waveforms as follows.

Time shift

We shift the time arrays of the hybrid waveforms such that the peak of the total

A = |3 Venl?, (5.38)
lm

occurs at ¢ = O for each waveform.

amplitude

Frequency and mass ranges of validity

The length of a hybrid waveform is set by choosing a starting orbital frequency wy,
for the inspiral waveform; we use wg = 2 X 10~ rad /M for all waveforms. However,
for the same starting frequency, the length in time of the waveform is different for
different mass ratios and spins. Since we want to construct a time-domain surrogate
model, we require a common time array for all hybrid waveforms. The initial time
for the surrogate is determined by the shortest hybrid waveform in the training data
set; this waveform begins at a time ~ 5.4 x 103 M before the peak. We truncate all

hybrid waveforms to this initial time value.

The largest starting orbital frequency among the truncated hybrid waveforms is
wo = 2.9 x 107* rad/M, which sets the low frequency limit of validity of the
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surrogate. For LIGO, assuming a starting GW frequency of 20 Hz, the (2,2) mode
of the surrogate is valid for total masses M > 0.9My. The highest spin-weighted
spherical harmonic mode we include in the surrogate model is (5,5), for which the
frequency is 5/2 times that of the (2,2) mode. Therefore, all modes of the surrogate
are valid for M > 2.25M. This coverage of total mass is sufficient to model all
stellar mass binaries of interest for ground based detectors; for an equal mass binary

neutron star system, the total mass is M ~ 2.7M,.

Downsampling and common time samples

Because the hybrid waveforms are so long, it is not practical to sample the entire
waveform with the same step size we use for the NR waveforms (0.1M). Fortunately,
the early low-frequency portion of each waveform requires sparser sampling than
the later high-frequency portion. We therefore down-sample the time arrays of the
truncated hybrid waveforms to a common set of time samples. We choose these
samples so that there are 5 points per orbit for the above-mentioned shortest hybrid
waveform in the training data set, except for t > —1000M we choose uniform time
samples separated by 0.1M. This ensures that we have a denser sampling rate at late
times when the frequency is higher. We retain times up to 135M, which is sufficient

to capture the entire ringdown.

Before downsampling, we first transform the waveform into the co-orbital frame,
defined as:

b = figm €™, (5.39)
oy = Ay €792, (5.40)
bo = 2, (5.41)

where fy,, is the inertial frame hybrid waveform, ¢, is the orbital phase, and ¢
is the phase of the (2,2) mode. The co-orbital frame can be thought of as roughly
co-rotating with the binary, since we perform a time-dependent rotation given by the
instantaneous orbital phase. Therefore the waveform is a slowly varying function of
time in this frame, increasing the accuracy of interpolation to the chosen common
time samples. For the (2,2) mode we save the downsampled amplitude A, and phase
@22, while for all other modes we save ﬁgﬂ . We find that this down-sampling results

in interpolation errors & < 10710 (defined in Eq. (5.18)) for all hybrid waveforms.



130

Phase alignment

After down-sampling to the common temporal grid of the surrogate, we rotate the
waveforms about the z-axis such that the orbital phase ¢, is zero at t = —1000M.
Note that this by itself would fix the physical rotation up to a shift of 7. When
generating the inspiral waveforms for hybridization, we align the system such that
the heavier BH is on the positive x—axis at the initial frequency; this fixes the «
ambiguity. Therefore, after this phase rotation, the heavier BH is on the positive

x—axis at t = —1000M for all waveforms®.

Decomposing the data

It is much easier to build a model for slowly varying functions of time. Therefore,
rather than work with the inertial frame strain fy,,, which is oscillatory, we work
with simpler “waveform data pieces” , as explained below. We build a separate
surrogate for each waveform data piece. When evaluating the full surrogate model,
we first evaluate the surrogate of each data piece and then recombine the data pieces

to get the inertial frame strain.

A common choice in literature when working with nonprecessing waveforms has
been to decompose the complex strain into an amplitude and phase, each of which

is a slowly varying function of time:
bigm = Apme ™90 (5.42)

However, when ¢ = 1 and yji; = x»;, the amplitude of odd-m modes becomes
zero due to symmetry. This means that the phase becomes meaningless, so one
has to treat such cases separately. For example, Ref [26] used specialized basis
functions for the odd-m modes that captured the divergent behavior of the phase in

the equal-mass limit.

To avoid this issue, instead of using the amplitude and phase we use the real and
imaginary parts of the co-orbital frame strain ﬁgn, defined in Eq. (5.39), for all
nonquadrupole modes. The co-orbital frame strain is always meaningful: in the

special, symmetric case mentioned above, the co-orbital frame strain for the odd-

%Here the BH positions at t = —1000M are defined from the waveform at future null infinity,
using a phase rotation relative to the early inspiral where the BH positions are well-defined in
PN theory; these positions do not necessarily correspond to the (gauge-dependent) coordinate BH
positions in the NR simulation.



131

m modes just goes to zero, rather than diverge. For the (2,2) mode we use the

amplitude’ A, and phase ¢»».

As mentioned above, our hybrid waveforms are very long, typically containing
~ 3 x 10* orbits. This presents new challenges that are not present for pure-
NR surrogates. For instance, ¢,> sweeps over ~ 4 x 10° radians for a typical
hybrid waveform. We find that the accuracy of the surrogate model at early times
improves if we first subtract a PN-derived approximation to the phase, model the
phase difference rather than ¢,>, and then add back the PN contribution when
evaluating the surrogate model. In particular, we use the leading order TaylorT3
approximant [97]. For this approximant, the phase is given as an analytic, closed-
form, function of time. Therefore, even though TaylorT3 is known to be less accurate
than some other approximants [98], its speed makes it ideal for our purpose as we
only need it to capture the general trend. At leading order, the TaylorT3 phase is
given by:
T3 T3 2

2 = Prer — ﬁ, (5.43)
where ¢rT§ is an arbitrary integration constant, 8 = [1] (tret — 1)/(SM)] V8, trer is an
arbitrary time offset, and 7 is the symmetric mass ratio. Note that ¢£’ diverges at
t = trer. We choose e = 1000M, long after the end of the waveform (recall that
the peak is at + = 0), to ensure that we are always far away from this divergence.
We choose ¢rTe3f such that ¢§§ = 0 atr = —1000M; this is the same time at which we

align the hybrid phase in Sec. 5.8.
Instead of modeling ¢»7>, we model the residual
¢ = ¢ — 433 » (5.44)

res
22

zero att = —1000M. We find that after removing the leading order TaylorT3 phase,

after removing the leading-order contribution ¢§23 By construction, ¢77 goes to
the scale of ¢33 for a typical hybrid is ~ 10? radians, compared to ~ 4 x 10’ radians
for ¢2;. In essence, this captures almost all of the phase evolution in the early
inspiral, simplifying the problem of modeling the phase to the same as modeling
the phase of late-inspiral NR waveforms. We stress that the exact form of ¢§23 (or

its physical meaning) is not important, as long as it captures the general trend, since

Ires

5> When evaluating the surrogate. In

we add the exact same ¢)§23 to our model of ¢

"Note that for the (2,2) mode Ay = AS,.
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fact, we find that adding higher order PN terms in Eq. (5.43) does not improve the

accuracy of the surrogate.

To summarize, we decompose the hybrid waveforms into the following waveform

Ires

data pieces, each of which is a smooth, slowly varying function of time: (A2, ¢35

for the (2,2) mode, and the real and imaginary parts of ﬁgn for all other modes?.

Building the surrogate

Once we have the waveform data pieces, we build a surrogate model for each data
piece using the procedure outlined in Refs. [22, 27], which we only briefly describe
here. Note that the steps below are applied independently for each waveform data

piece.

Greedy basis

We first construct a greedy reduced-basis [99] such that the projection errors (cf.
Eq. (5) of Ref. [27]) for the entire data set onto this basis are below a given tolerance.
For the basis tolerances we use 1072 radians for the ¢5e2s data piece, 2 X 1073 for Ay,
and 8 x 107° for all other data pieces. These are chosen through visual inspection of
the basis functions to ensure they are not noisy, and based on the expected truncation
error of the NR waveforms. For instance, we expect the error in phase to be about

1072 radians.

The greedy procedure is initialized with a single basis function as described in
Ref. [27]. Then at each step in the greedy procedure, the waveform with the
highest projection error onto the current basis is added to the basis. Previous work
has shown that the resulting greedy reduced-basis is robust to different choices of
initialization [100]. When computing the basis projection errors, we only include
data up to S0M after the peak. We find that this helps avoid noisy basis functions.
This is particularly important for the phase data piece as this becomes meaningless

at late times, when the waveform amplitude becomes very small.

8For m = 0 modes of nonprecessing systems, ﬁfm is purely real (imaginary) for even (odd) ¢, so
we ignore the imaginary (real) part for these modes.
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Empirical interpolation

Next, using a different greedy procedure, we construct an empirical interpolant [101—
103] in time. This picks out the most representative time nodes, where the number
of time nodes is the same as the number of greedy basis functions. We require that
the start of the waveform always be included as a time node for all data pieces. This
is a useful modeling choice because the magnitude of the waveform data pieces in
the very early inspiral can be smaller than the basis tolerances mentioned above.
By requiring the first index to be an empirical time node, we enforce an anchor
point that ensures the waveform data piece has the right magnitude at the start of the
waveform. Furthermore, we do not allow any empirical time nodes at times > 50M,
since we expect this part to be dominated by noise (especially for the phase data

piece).

Parametric fits

Finally, for each time node, we construct a fit across the parameter space. The fits
are done using the Gaussian process regression (GPR) fitting method described in
the supplemental material of Ref. [104]. Following Ref. [104], we parameterize our
fits using log(g), ¥, and y,. Here y is the spin parameter entering the GW phase at
leading order [16, 105—107] in the PN expansion,

+
Yo = TAEZAZ (5.45)
+q

« Xet — 38n(x1z + x20)/113
= ) 5.46
X 1—76n/113 (546)

and y, is the “anti-symmetric spin”,

Xa = 3(x1z = x22) - (5.47)

The fit accuracy, and as a result the accuracy of the surrogate model, improves

noticeably when using log(g), compared to g or 7.

Evaluating the surrogate

When evaluating the surrogate waveform, we first evaluate each surrogate waveform

data piece. Next, we compute the phase of the (2,2) mode,

0% = 03 + 433, (5.48)
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where </)r2625’s ~ @5, is the surrogate model for ¢33 and qﬁg’ is given in Eq. (5.43). If
the waveform is required at a uniform sampling rate, we interpolate each waveform
data piece from the sparse time samples used to construct the model to the required
time samples, using a cubic-spline interpolation scheme. Finally, we use Egs. (5.39),

(5.40), and (5.41) to reconstruct the surrogate prediction for the inertial frame strain.

5.9 Results

In order to estimate the difference between two waveforms, f; and Ay, we use the
mismatch, defined in Eq. (5.2), but in this section instead of Eq. (5.3) we use the

frequency-domain inner product

fmax ii ~*
<ﬁl,ﬁ2>:4Re/f. %’jcz)(ﬁ

where ﬁ( f) indicates the Fourier transform of the complex strain A(z), * indicates a

df, (5.49)

complex conjugation, Re indicates the real part, and S,(f) is the one-sided power
spectral density of a GW detector. We taper the time domain waveform using a
Planck window [108], and then zero-pad to the nearest power of two. We further
zero-pad the waveform to increase the length by a factor of eight before performing
the Fourier transform. The tapering at the start of the waveform is done over 1.5
cycles of the (2,2) mode. The tapering at the end is done over the last 20M. Note
that our model contains times up to 135M after the peak of the waveform amplitude,

and the signal has essentially died down by the last 20M.

We compute mismatches following the procedure described in Appendix D of
Ref. [27]: the mismatches are optimized over shifts in time, polarization angle, and
initial orbital phase. Both plus and cross polarizations are treated on an equal footing
by using a two-detector setup where one detector sees only the plus and the other
only the cross polarization. We compute the mismatches at 37 points uniformly
distributed on the sky in the source frame, and we use all available modes of a given

waveform model.

When computing flat noise mismatches (S, = 1), we take fnin to be the frequency of

the (2,2) mode at the end of the initial tapering window, and fyax = 5 £7°%, where

22

Peak i the frequency of the (2,2) mode at its peak. This choice of fyax ensures that

22
we capture the peak frequencies of all modes considered in this work, including the

(5,5) mode, whose frequency has the highest multiple of the (2,2) mode frequency

of all the modes we model. We also compute mismatches with the Advanced-LIGO
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Figure 5.9.1: Errors in NRHybSur3dq8 and SEOBNRv4HM when compared against
hybrid waveforms. For NRHybSur3dq8, we show out-of-sample errors. Mis-
matches are computed at several points in the sky of the source frame using all
available modes in each waveform. Top: Mismatches computed using a flat noise
curve, but including only the late inspiral part of the waveforms, starting at —3500M
before the peak. Therefore, we are essentially comparing only to the NR part of the
hybrid waveforms. For comparison, we also show the NR resolution error, obtained
by comparing the two highest available resolutions. The histograms are normalized
such that the area under each curve is 1 when integrated over log;,(Mismatch). Bot-
tom: Mismatches as a function of total mass, computed using the Advanced LIGO
design sensitivity noise curve. Here we compare against the full hybrid waveforms.
The solid (dashed) lines show the 95th percentile (median) mismatch values over
points on the sky as well as different hybrid waveforms.
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design sensitivity Zero-Detuned-HighP noise curve [109] with fyi, = 20Hz and
Jmax = 2000Hz.

Surrogate errors

We evaluate the accuracy of our new surrogate model, NRHybSur3dqg8, by comput-
ing mismatches against hybrid waveforms. For this, we compute “out-of-sample”
errors as follows. We first randomly divide the 104 training waveforms into groups
of ~5 waveforms each. For each group, we build a trial surrogate using the re-
maining ~99 training waveforms and test against these five validation ones. We
also compute the mismatch between an existing higher-mode waveform model,
SEOBNRv4HM [15], and the hybrid waveforms.

Figure 5.9.1 summarizes mismatches of both NRHybSur3dq8 and SEOBNRv4HM
versus the hybrid waveforms. We use all available modes for each waveform model.
In the top panel we show mismatches computed using a flat noise curve over the
NR part of the hybrid waveforms (to do this, we truncate the waveforms and begin
tapering at t = —3500M). We see that the mismatches for NRHybSur3dg8 are about
two orders of magnitude lower than that of SEOBNRv4HM. We compare this with
the truncation error in the NR waveforms themselves, by computing the mismatch
between the two highest available resolutions of each NR waveform. The errors
in the surrogate model are well within the truncation error of the NR simulations.
Note that NR error estimated in this manner is a conservative estimate; if we treat
the high resolution simulation as the fiducial case, the NR curve in Fig. 5.9.1 can
be thought of as the error in the lower-resolution simulation. This explains why the
errors in the surrogate are smaller than the NR errors. We suspect that the error of

the high resolution simulations is close to the surrogate model’s error.

The bottom panel of Fig. 5.9.1 shows mismatches computed using the Advanced
LIGO design sensitivity noise curve. The mismatches are now dependent on the
total mass of the system, so we show mismatches for masses starting at the lower
limit of the range of validity of the surrogate: M > 2.25My. 95th percentile
mismatches for NRHybSur3dq8, are always below ~3 x 10~ in the mass range
225My < M < 300Mg. At high masses (M > 40Mg), where the merger and

ringdown are more prominent, our model is more accurate than SEOBNRv4HM by

roughly two orders of magnitude, in agreement with the top panel of Fig. 5.9.1.

For high masses only the last few orbits of the hybrid waveforms are in the LIGO

band, and the hybrid waveforms are effectively the same as the NR waveforms. For
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Figure 5.9.2: The plus polarization of the waveforms for the cases that result in
the largest mismatch for NRHybSur3dq8 (top) and SEOBNRv4HM (bottom) in
the left panel of Fig. 5.9.1. We also show the corresponding hybrid waveforms
(labeled as NR because only the late part is shown). Each waveform is projected
using all available modes for that model, along the direction which results in the
largest mismatch for NRHybSur3dq8 (SEOBNRv4HM) in the top (bottom) panel.
Note that NRHybSur3dg8 is evaluated using trial surrogates that are not trained
using these cases. The binary parameters and the direction in the source frame are
indicated in the inset text. All waveforms are time shifted such that the peak of the
total waveform amplitude occurs at ¢+ = 0 (using all available modes, according to
Eq. (5.38)). Then the waveform modes are rotated about the z—axis such that the
orbital phase is zero at t = —3500M.

low masses, the errors in the bottom panel of Fig. 5.9.1 quantify how well different
models reproduce the hybrid waveforms. However, this comparison cannot account
for the errors in the hybridization procedure itself. We provide some evidence for
the fidelity of the hybrid waveforms in Sec. 5.9, by comparing against some long

NR waveforms.

Fig. 5.9.2 shows NRHybSur3dq8 and SEOBNRv4HM waveforms for the cases
leading to the largest errors in the left panel of Fig. 5.9.1. The surrogate shows very
good agreement with the NR waveform, even for its worst case. SEOBNRv4HM
shows a noticeably larger deviation that cannot all be accounted for with a time

and/or phase shift. Note that we align the time and orbital phase of the waveforms
in Fig. 5.9.2.
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We note that the main improvement over SEOBNRvV4HM is not due to the inclusion
of more modes. We find that the agreement between SEOBNRv4HM and the
NR/hybrid waveforms in Figs. 5.9.1 and 5.9.2 improves only marginally when
restricting the NR/hybrid waveforms to the same set of modes as SEOBNRv4HM.

Hybridization errors

The errors described in Sec. 5.9 are computed by comparing the surrogate against
hybrid waveforms, hence they do not include the errors in the hybridization pro-
cedure or the errors from EOB-corrected-PN waveforms (cf. Sec. 5.6) we use for
the early inspiral. To estimate these errors, we compare the surrogate against a few
very long NR simulations °. We perform five new simulations that are ~ 10°M
long and two that are ~ 3 x 10*M long. These have been assigned the identifiers
SXS:BBH:1412 - SXS:BBH:1418, and will be made publicly available in the up-
coming update of the SXS public catalog [58]. In addition, we use two simulations
of length ~ 3 X 10*M from Ref. [111]. These nine simulations are represented as
square markers in Fig. 5.5.1, and have not been used in training the surrogate. The
surrogate was trained against hybrid waveforms whose NR duration varied between
3270M and 4227M. Therefore, comparing against long NR waveforms, which

include the early inspiral, is a good way to estimate the hybridization error.

We begin by repeating the mismatch computation from the right panel of Fig. 5.9.1,
using the 10° M long NR waveforms. This is shown in Fig. 5.9.3. We also show the
errors in the NR simulations, estimated by comparing the two highest available NR
resolutions. We find that the mismatches between the surrogate and the long NR
waveforms for M > 30M, are below 10, in agreement with Fig. 5.9.1. For lower
masses, the mismatches quickly increase and can be as high as ~ 1072, However,
this increase in mismatch is accompanied by an increase in the error of the NR
waveforms. This is expected, since for very long NR waveforms the accumulated
phase error is a dominant source of numerical error, which becomes increasingly
relevant for low mass systems as more of the waveform moves in-band. Therefore, in
Fig. 5.9.3, at low masses, the comparison between the surrogate and NR waveforms
is largely dominated by the numerical resolution error of the long NR waveforms

themselves.

Note that for these long NR simulations, the outer boundary location is chosen based on the
length of the simulations [59] so as to avoid unphysical center-of-mass accelerations seen in earlier
long-duration runs [110].
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Figure 5.9.3: Comparisons between the NRHybSur3dq8 surrogate model and a
few NR waveforms of ~10°M in duration. We also show the NR resolution error.
95th percentile mismatches (over points in the sky) are shown as a function of total
mass. The inset text indicates the mass ratio and component spins. Mismatches are
computed using the Advanced LIGO design sensitivity noise curve. To best assess
the error introduced by the hybridization procedure we use the same set of modes
for the NR waveforms as the surrogate. At low masses, the hybridization errors (red
circles) become less reliable measures of accuracy due to the large NR resolution
error (black circles) itself. Fig. 5.9.4 describes a refined comparison to improve the

assessment at low masses.
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We find that a better test of the hybridization procedure, one that is less sensitive
to NR phase accumulation errors, is to compare against different segments of the
NR waveform. Since the phase errors accumulate over a large number of cycles,
by looking at smaller segments we ensure that this contribution is not the dominant
error. To be precise, we compare the surrogate and the NR data, using segments of
length A7 = 5 x 103M ending at a particular number of orbits before the peak of
the waveform. For each segment we compute mismatches at several points in the
sky using a flat noise curve. By varying the number of orbits to the peak, we can
cover the entire NR waveform including the early inspiral region where the surrogate
depends on the hybridization procedure. These errors are shown in Fig. 5.9.4. We
find that in each segment, the mismatch between the surrogate and the NR data is,
in general, lower or comparable to the NR resolution error. Therefore, the surrogate
reproduces the NR data accurately in the early inspiral and the hybridization errors
are smaller than or comparable to the NR resolution error for these cases. We note
that the surrogate errors in Fig. 5.9.4 depend on the length of the segment considered

and are only meaningful when compared to the NR errors in the same segment.

Unfortunately, long NR simulations such as these are not available at regions of the
parameter space where both mass ratio and spin magnitudes are large. These are
the cases where PN is expected to perform poorly, so we expect larger hybridization

errors for these cases.

Extrapolation outside the training range

We now investigate the efficacy of NRHybSur3dg8 to extrapolate beyond its training
parameter range by comparing against SpEC NR simulations [58, 111-114] at larger
mass ratios (8 < g < 10) and/or larger spin magnitudes (| y1,| > 0.8 or | y12| > 0.8).
These NR simulations are represented as triangle markers in Fig. 5.5.1.

Fig. 5.9.5 shows mismatches for NRHybSur3dq8 when compared against these
simulations. We find that surrogate extrapolates remarkably well, with the mismatch
always < 4 x 107 for all cases, which include mass ratios up to ¢ = 10 and spin
magnitudes up to | y| = 0.998. However, the extrapolation errors can be about
half an order of magnitude larger than errors within the training range. Note
that NR simulations with both high mass ratios and high spin magnitudes are not
currently available, and the ones used here represent the most extreme cases found
in the SXS Catalog. We do not hybridize these simulations before comparing to

NRHybSur3dg8 because several of them are too short. In Fig. 5.9.5, the minimum
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Figure 5.9.4: Errors in the NRHybSur3dq8 surrogate model against long NR wave-
forms, but only looking at segments of length Az = 5 x 10°M individually. Each
point represents one segment that ends at a specified number of orbits before the
waveform peak, as plotted on the horizontal axis; Therefore, going from left to right
in the figure, we plot segments that start earlier in the inspiral. We also show the
NR resolution error in the same segments. The inset text indicates the mass ratio
and component spins. We show 95th percentile mismatches (over points in the
sky), computed using a flat noise curve. We use the same set of modes for the NR
waveforms as the surrogate. We find that, in general, the surrogate error is lower
than or comparable to the NR resolution error throughout the inspiral.
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Figure 5.9.5: Errors in NRHybSur3dq8 when evaluated outside its training range.
95th percentile mismatches (over points in the sky) are shown as a function of total
mass for different extrapolated cases. These are computed using the Advanced
LIGO design sensitivity noise curve. To best assess the error introduced by the
extrapolation, we use the same set of modes for the NR waveforms as the surrogate.
The labels indicate the mass ratio and component spins (g, X1z, ¥2;). For comparison
we reproduce the 95th percentile mismatches for NRHybSur3dq8 within its training
range from the right panel of Fig. 5.9.1.

mass for each case is chosen to be the lowest mass at which all used modes of the
NR simulation lie fully in the LIGO band with a low frequency cut-off of 20 Hz.

At much higher mass ratios than those tested here, such as ¢ = 15, we find that
the waveforms generated by the surrogate can have “glitches" in the time series.
Therefore, we recommend the surrogate be used for ¢ < 10 and | yi;|,|x2:| < 1.

However, we advise caution with any extrapolation in general.

Mode mixing

Numerical relativity waveforms are extracted as spin-weighted spherical harmonic
modes [33, 34]. However, in the ringdown regime, the natural basis to use is the
spin-weighted spheroidal harmonic basis [115, 116]. A spherical harmonic mode
hem can be written as a linear combination of all spheroidal harmonic modes ﬁfm
with the same m index [117]. Therefore, during the ringdown, we expect leakage
of power between different spherical harmonic modes with the same m. This is

referred to as mode mixing.

Since the surrogate accurately reproduces the spherical harmonic modes from the NR
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Figure 5.9.6: Mode mixing between spherical harmonic modes is clearly seen in the
ringdown signal of the NR waveform and is accurately reproduced by the surrogate.
The absolute values of the Fourier transform of different spherical harmonic modes
are shown as solid (dashed) curves for the surrogate (NR). The dotted vertical lines
indicate the frequencies of the fundamental QNM overtone of these modes. The
component parameters as well as the remnant mass and spin are shown in the text
above the figure.

simulations, it also captures this mode mixing. We demonstrate this for an example
case in Fig. 5.9.6. Here we compute the Fourier transform of different spherical
harmonic modes in the ringdown stage of the waveform. Before computing the
Fourier transform, we first drop all data before ¢+ = 20M, where ¢ = 0 corresponds to
the peak of the waveform amplitude (cf. Eq. (5.38)). Then, we taper the data between
t = 20M and t = 40M, as well as the last 10M of the time series, using a Planck
window [108]. The tapering width at the start is chosen such that the remaining signal
is dominated by the fundamental quasi-normal mode (QNM) overtone. Fig. 5.9.6
shows the absolute value of these Fourier transforms for different modes, for both
the surrogate and the NR waveform. In addition, we show the frequency of the

fundamental QNM overtone for each mode [118].

Note that the (2,2) mode and the (3,2) mode have the same m index, the condition
required for mode mixing. We see that the peak of the (2,2) mode agrees with the
QNM frequency as expected. For the (3,2) mode however, while there are features of
a peak at the expected QNM frequency, there is a much larger peak at the frequency
of the (2,2) mode. This is because some of the power of the stronger (2,2) mode

has leaked into the (3,2) mode due to mode mixing. Mode mixing can also be seen
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for the (3,3) and (4, 3) modes, which also have the same m index. Fig. 5.9.6 shows
that not only does the surrogate agree with NR in the ringdown, it also reproduces

the mode mixing present in the NR data.

Evaluation cost

Figure 5.9.7 shows the evaluation cost for NRHybSur3dq8, at different total masses,
starting at 20Hz, and using a sampling rate of 4096Hz. This suggests that NRHyb-
Sur3dq8 is fast enough for direct use in parameter estimation. We also show the eval-
uation cost per mode. Note that the total cost as well the cost per mode in Fig. 5.9.7
include the cost of a Fast Fourier Transform (FFT). We perform the FFT only once,
after summing over all modes in the time domain. This cost is also shown separately
in Fig. 5.9.7. Finally, we show the evaluation cost of SEOBNRv4_ROM [17], a
Fourier domain Reduced Order Model (ROM) version of SEOBNRv4. Note that
SEOBNRv4_ROM models only the (2,2) mode. Comparing the cost for SEOB-
NRv4_ROM to the cost per mode of NRHybSur3dq8 suggests that the evaluation
cost of NRHybSur3dg8 can be reduced by a factor of ~ 2.5 by building a Fourier
domain ROM along the lines of Ref. [23].

1
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Figure 5.9.7: Evaluation cost for NRHybSur3dq8 including the cost of an FFT. We
show the cost for evaluating all 11 modes modeled by NRHybSur3dg8, as well as
the cost per mode. The FFT cost is included in both of the above but also shown
separately. We also show the evaluation cost of SEOBNRv4_ROM which includes
only the (2,2) mode. The evaluation cost is computed by averaging over 64 points
uniformly distributed in the parameter space, ¢ < 8 and | x1;/, | x2;| < 0.8.

At low masses, where the waveform is very long, the dominant costs for NRHyb-
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Sur3dq8 are due to the temporal interpolation from the sparse domain of the surro-
gate to the required time samples, and the FFT. At high masses, where the waveform
is short, the interpolation and FFT are cheap and the dominant cost for NRHyb-
Sur3dq8 is due to the GPR evaluations for the parametric fits. SEOBNRv4_ROM
instead uses tensor spline interpolation for the parametric fits [17], which accounts

for the main difference in the evaluation cost per mode at high masses.

These tests were performed on a single core on a 3.1 GHz Intel Core i5 processor.
Both NRHybSur3dq8 and SEOBNRv4_ROM were evaluated using a C imple-
mentation in the LIGO Algorithm Library [49]. The Python implementation of
NRHybSur3dqg8 in gwsurrogate [48] is slower than the C implementation by at most

a factor of 2.

5.10 Conclusion

We present NRHybSur3dq8, the first NR-based surrogate waveform model that
spans the entire LIGO bandwidth, valid for stellar mass binaries with total masses
M > 2.25Mg. This model is trained on 104 NR-PN/EOB hybrid waveforms
of nonprecessing quasicircular BBH systems with mass ratios ¢ < 8, and spin
magnitudes | yi.|,|x2;| < 0.8. The parametric fits for this model are performed
using Gaussian process regression. This model includes the following spin-weighted
spherical harmonic modes: ¢ < 4 and (5,5), but not (4,1) or (4,0). We make our
model available publicly through the easy-to-use Python package gwsurrogate [48].
In addition, our model is implemented in C with Python wrapping in the LIGO
Algorithm Library [49]. We provide an example Python evaluation code at [50].

Through a cross-validation study, we show that the surrogate accurately reproduces
the hybrid waveforms. The mismatch between them is always less than ~3 x 10~%
for total masses 2.25My < M < 300M,. For high masses (M > 40M;), where the
merger and ringdown are more prominent, we show roughly a 2 orders of magnitude
improvement over the current state-of-the-art model with nonquadrupole modes,
SEOBNRv4HM [15].

By comparing against several long NR simulations, we show that the errors in our
hybridization procedure are comparable or lower than the resolution error in current
NR simulations. In addition, by comparing against available NR simulations at
higher mass ratios and spins, we show that our model extrapolates reasonably well

outside its training range. Based on these tests, we are cautiously optimistic that the
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surrogate can be used for ¢ < 10 and | x1;|,| x2:| < 1, and we leave a more detailed

investigation for future work.

Future work

While our tests of the hybridization procedure are encouraging, long NR simulations
are available only for low mass ratios and low spin magnitudes. Therefore, we have
no means to test hybridization at high mass rations and/or high spins, where PN is
expected to perform poorly. An improved surrogate model and refined study of the
hybridization errors will require longer inspiral waveforms with greater coverage of

the parameter space.

Another extension of interest is towards larger mass ratios and spin magnitudes.
While the surrogate extrapolates very well when compared to available simulations
at larger mass ratios and spins, no NR simulations are available with both large
mass ratios (¢ > 8) and large spins (y > 0.8). Therefore, our model is untested
in that region of parameter space and it might be necessary to add training points
there. The model could also be extended to include precession and/or eccentricity,
however this is more challenging because of the enlarged parameter space as well

as more complicated hybridization.

Finally, as mentioned in Sec. 5.9, the evaluation time of NRHybSur3dq8 can likely
be reduced by constructing a Fourier domain ROM [23] of the time-domain model.

We leave these explorations to future work.
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Chapter 6

HIGH-ACCURACY MASS, SPIN, AND RECOIL PREDICTIONS
OF GENERIC BLACK-HOLE MERGER REMNANTS

Vijay Varma, Davide Gerosa, Leo C. Stein, Francois Hebert, and Hao Zhang.
Physical Review Letters, 122, 011101 (2019), arxiv:1809.09125.

6.1 Executive summary

This Chapter presents models for the final black hole left behind after the merger
of two black holes. The final black hole is fully characterized by its mass, linear
momentum, and angular momentum. The prediction of these properties is of utmost
importance in gravitational wave astronomy, from the construction of waveform
models to developing tests of general relativity. For the first time, we make these
predictions in a purely data-driven approach by training directly against hundreds of
numerical relativity simulations. Our fits are extremely accurate- surpassing present

models used in LIGO/Virgo analyses by an order of magnitude.

6.2 Abstract

We present accurate fits for the remnant properties of generically precessing binary
black holes, trained on large banks of numerical-relativity simulations. We use
Gaussian process regression to interpolate the remnant mass, spin, and recoil ve-
locity in the 7-dimensional parameter space of precessing black-hole binaries with
mass ratios ¢ < 2, and spin magnitudes yi, v < 0.8. For precessing systems,
our errors in estimating the remnant mass, spin magnitude, and kick magnitude are
lower than those of existing fitting formulae by at least an order of magnitude (im-
provement is also reported in the extrapolated region at high mass ratios and spins).
In addition, we also model the remnant spin and kick directions. Being trained
directly on precessing simulations, our fits are free from ambiguities regarding the
initial frequency at which precessing quantities are defined. We also construct a
model for remnant properties of aligned-spin systems with mass ratios g < 8, and
spin magnitudes yi, y2 < 0.8. As a byproduct, we also provide error estimates for
all fitted quantities, which can be consistently incorporated into current and future

gravitational-wave parameter-estimation analyses. Our model(s) are made publicly
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available through a fast and easy-to-use Python module called surfinBH.

6.3 Introduction

As two black holes (BHs) come together and merge, they emit copious gravitational
waves (GWs) and leave behind a BH remnant. The strong-field dynamics of this
process are analytically intractable and must be simulated using numerical relativity
(NR). However, from very far away, the merger can be viewed as a scattering
problem, depicted in Fig. 6.3.1. The complicated dynamics of the near zone can
be overlooked in favor of the gauge-invariant observables of the in- and out-states:
the initial BH masses and spins, the outgoing GWs, and the final BH remnant. This
final BH is fully characterized by its mass, spin, and recoil velocity; all additional

complexities (“hair”) of the merging binary are dissipated away in GWs [1-3].

All GW models designed to capture the entire inspiral-merger-ringdown (IMR)
signal from BH binary coalescences need to be calibrated to NR simulations (e.g.,
[4-12]). In particular, the BH ringdown emission is crucially dependent on the
properties of the BH remnant — properties obtained from NR simulations. Accurate
modeling of the merger remnant is therefore vital for construction of accurate IMR

templates.

Besides waveform building, accurate knowledge of the remnant properties is also
instrumental to fulfill one of the greatest promises of GW astronomy: testing Ein-
stein’s general relativity (GR) in its strong-field, highly dynamical regime. Current
approaches to test the Kerr hypothesis attempt to measure the properties of the
inspiralling BHs from the low frequency part of the GW signal, then use NR fits
to predict the corresponding remnant mass and spin; this final-state prediction is
compared to the properties inferred from the high frequency part of the GW signal
[13, 14]. Inaccuracies in remnant models therefore directly propagate to the final

fundamental-physics test.

The importance of building fits for the remnant properties was realized soon after
the NR breakthrough [15—17] and has been periodically revisited by several groups
since then [18-39]. There are two important shortcomings in all existing fitting
formulae. First, they enforce analytic ansitze (with NR-calibrated coefficients) that
are physically motivated, but lack a rigorous mathematical justification. Therefore,
current fits can be prone to systematic errors, especially in regions of parameter
space where the intuition used to design the formulae become less accurate. Sec-

ond, current expressions for remnant mass and spins are calibrated on aligned-spin
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Figure 6.3.1: Quasi-circular binary BH merger problem viewed as a scattering
process via a “Feynman” diagram. Time flows to the right. All quantities are well
defined in the asymptotically flat region far from the interaction (merger).

simulations and therefore fail to fully capture the rich physics of precessing sys-
tems (but see e.g. [34] where a non-generic subspace of precessing configurations
is considered). For example, current LIGO/Virgo parameter-estimation pipelines
[40, 41] rely on ad-hoc corrections to partially account for precession effects [42].
Aligned fits applied to precessing systems are inevitably ambiguous, as the outcome
will depend on where (in time, separation, or frequency) the spins are defined and
inserted into the fits (e.g., [43]).

In this Letter we tackle both these issues for the first time. We construct surrogate
models that fit the remnant properties from a large sample of generic, precess-
ing, quasi-circular binary BH simulations performed with the Spectral Einstein
Code (SpEC) [44]. Surrogates are trained directly against the NR simulations, us-
ing Gaussian process regression (GPR) without any phenomenological ansitz, and
achieve accuracies comparable to those of the NR simulations themselves. In their
regime of validity, the models presented here are at least an order of magnitude

more accurate than previous fits.

In particular, we present two models:

1. surfinBH7dq?2: afit trained against precessing systems with mass ratios g < 2

and dimensionless spin magnitudes i, y> < 0.8.

2. surfinBH3dg8: an aligned-spin model trained against systems with mass ratios

up to g < 8 and (anti-)aligned spin magnitudes y1, y2 < 0.8.

Both these models can be easily accessed using the publicly available Python module

surfinBH [45], and are ready to be incorporated in both waveform constructions and
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GW parameter-estimation studies.

6.4 Fitting procedure

We construct fits for the BH remnant mass my, spin vector yr, and recoil kick
vector v ¢ as functions of the binary mass ratio ¢ and spin vectors x1, x2. Our fits for
surfinBH7dq?2 (surfinBH3dg8) map a 7- (3-)dimensional input parameter space to a
7- (4-)dimensional output parameter space. The fits are performed in the coorbital
frame at t = —100M, with ¢ = 0 at the peak of the total waveform amplitude (cf.
Ref. [12] for details). The coorbital frame is defined such that the z-axis lies along
the direction of the orbital angular momentum, the x-axis runs from the smaller BH

to the larger BH, and the y-axis completes the triad.

All fits are performed using GPR [46]; details are provided in the supplemental
material [47]. Notably, GPR naturally returns estimates of the errors of the fitted

quantities across the parameter space.

The values of spins, masses, and kicks used in the training process are extracted
directly from the NR simulations. We use the simulations presented in Ref. [12] for
surfinBH7dg?2 and those of Ref. [48] for surfinBH3dg8. Both spins and masses are
evaluated on apparent horizons [49]; the dimensionful spin S solves an eigenvalue
problem for an approximate Killing vector, and the mass is determined from the

spin and area A following the Christodoulou relation m* = m2_+ S?/(4m? ), where
2

irr

the beginning of the simulation at the “relaxation time” [50], whereas the spins

m = A/16x is the irreducible mass. The masses m;, are determined close to
X12 =812/ miz are measured at £=—100M. The remnant mass m and spin y y are
determined long after ringdown, as detailed in [50]. All masses are in units of the
total mass M = m + my at relaxation. The remnant kick velocity is derived from
conservation of momentum, vy = —Prad/m ¢ [51]. The radiated momentum flux
P™ is integrated [52] from the GWs extrapolated to future null infinity [50, 53].
Before constructing the fits, y s and v are transformed into the coorbital frame at
t=—100M.

Besides the GPR error estimate, we further address the accuracy of our procedure
using “k-fold” cross validations with k =20. First, we randomly divide our training
dataset into k mutually exclusive sets. For each set, we construct the fits using
the data in the other k — 1 sets and then test the fits by evaluating them at the
data points in the considered set. We thus obtain “out-of-sample” errors which

conservatively indicate the (in)accuracies of our fits. We compare these errors
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against the intrinsic error present in the NR waveforms, estimated by comparing
the two highest resolutions available. We also compare the performance of our
fits against several existing fitting formulae for remnant mass, spin, and kick which
we denote as follows: HBMR ([30, 35] with ny, = ny = 3), UIB [37], HL [38],
HLZ [33], and CLZM ([21, 22, 27, 31, 32] as summarized in [36]). To partially
account for spin precession, fits are corrected as described in Ref. [42] and used
in current LIGO/Virgo analyses [40, 41]: spins are evolved from relaxation to the
Schwarzschild innermost stable circular orbit, and final UIB and HL spins are post-
processed adding the sum of the in-plane spins in quadrature. We note these fitting
formulae were calibrated against different sets of simulations. Fitting methods,
number of simulations, their quality, and their distribution in parameter space all

contribute to the accuracy of the fits.
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Figure 6.4.1: Errors in predicting remnant mass, spin, kick magnitude, and kick
direction for non-precessing binary BHs with mass ratios g < 8, and spin magnitudes
X1, x2 < 0.8. The direction error is the angle between the predicted vector and a
fiducial vector, taken to be the high-resolution NR case and indicated by a *. The
square (triangle) markers indicate median (95 percentile) values. Our model
surfinBH3dq8 is referred to as 3dq8. The black histogram shows the NR resolution
error while the dashed histograms show errors for different existing fitting formulae.

6.5 Aligned-spin model

We first present our fit surfinBH3dqg8, which is trained against 104 aligned-spin
simulations [48] with ¢ < 8 and —0.8 < xi;, x2; < 0.8. Symmetry implies that
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the kick lies in the orbital plane while the final spin is orthogonal to it [54]. We

therefore only fit for four quantities: mys, xf;, Vrx, and vyy.

Figure 6.4.1 shows the out-of-sample errors of surfinBH3dg8. Our fits are as
accurate as the NR simulations used in the training process. 95" percentile errors
lie at Am~4x107*M, Ay;~107%, and Avy~5x107>c. The kick direction is
predicted with an accuracy of ~0.5 radians, which is the inherent accuracy of the
NR simulations. Our errors for the remnant mass and kick magnitude are comparable
to the most accurate existing fits. On the other hand, for the final spin, our procedure

outperforms all other formulae by at least a factor of 5.

6.6 Precessing model

We now present surfinBH7dq2, a remnant model trained on 890 simulations [12] of
generic, fully precessing BH binaries with mass ratios ¢ < 2 and spin magnitudes
X1, x2 < 0.8. Out-of-sample errors are shown in Fig. 6.6.1. 95 percentiles are
~5x10~*M for mass, ~2x10~3 for spin magnitude, ~4x10~3 radians for spin direction,
~4x10~* ¢ for kick magnitude, and ~0.2 radians for kick direction. As in the aligned-
spin case above, our errors are at the same level as the NR resolution error, thus
showing that we are not limited by our fitting procedure but rather by the quality
of the training dataset. Our fits appear to outperform the NR simulations when
estimating the spin direction, which suggests this quantity has not fully converged in
the NR runs, and that the difference between the two highest resolution simulations

is an overestimate of the NR error in this quantity.

Figure 6.6.1 shows that our procedure to predict remnant mass, spin magnitude,
and kick magnitude for precessing systems is more precise than all existing fits by
at least an order of magnitude. These existing fits presented significantly lower
errors when applied to aligned binaries (cf. Fig. 6.4.1), which suggests that they
fail to fully capture precession effects despite the augmentation of Ref. [42]. Some
impact of precession effects on the final spin and recoil is expected, since both of
these quantities have been found to depend strongly on the in-plane orientations of
the spins of the merging BHs [43, 51, 55]. More surprisingly, we find that spin
precession significantly affects the energy radiated as well, which was expected to
depend mostly on the aligned-spin components via the orbital hang-up effect [56—
58].

The largest errors in the kick direction can be of order ~1 radian. The bottom-right

panel of Fig. 6.6.1 shows the joint distribution of kick magnitude and kick direction



1.5 7dq2 I;I 0.75 ' 7dq2 oo d grrl.r|<
r 7 HBMR Ay T CLzm "o
LoF==7 uB i 0.50 =3 nr o
O HL i rﬂ-l" 1 T r 3
0.5 - 0.25- kY !
. E _I'l_._ —
2 v i iy I-LLLlI _Lrl_l.‘l'ldlﬂ‘ll 1 lllllll IR 1 1111:1
0% 10®° 10* 10% 102 107! 10~* 107% 107% 107! 10° 10!
Amy [M] Avy [0.001 ]
O O RO DE
1 7dq2 X 1.0 [ 7dq2 L <<
LOme == upuR __lj " 1 NR
-5 uB
0.5==3 HL 0.5
10° 10° 10* 10° 102 107! 10-* 103 102 10° 109 10!
Axy . cos™!(vy - 0) [radians]
= 10' g
1.5 1 7dq2 O <9 O N
1 NR ) 0;
1.0 g 10 .
S : >
0.5 =107 e .
E e 3dg8 ° Ve
i 1 1 lllllll 1 1 lllllll 1 1 lTllllI ° 1 1 lllllll 1L L
100% 10® 10* 10% 102 107! 100=* 107% 1072 107! 10° 10
cosH(xy - X}) [radians] cos ™ H(y - 07) [radians]

Figure 6.6.1: Errors in predicting the remnant mass, spin magnitude, spin direction,
kick magnitude, and kick direction for precessing binary BHs with mass ratios
q < 2, and spin magnitudes yi, y2 < 0.8. Our model, surfinBH7dq?2 is referred
to as 7dq2. The black histogram shows the NR resolution error while the dashed
histograms show errors for different existing fitting formulae. In the bottom-right
panel we show the distribution of kick magnitude vs. error in kick direction.

error for both surfinBH7dq2 and surfinBH3dq8, showing that errors are larger at
low kick magnitudes. Our error in kick direction is below ~0.1 radians whenever

v 2 10 %¢.

6.7 Regime of validity

The errors in Fig. 6.6.1 are obtained by evaluating fits using input spins specified at
t=—-100M, i.e., where the GPR interpolation is performed. The input spins can also
be specified at earlier times; this case is handled by two additional layers of time
evolution. Given the spins at an initial orbital frequency fy, we first evolve the spins
using a post-Newtonian (PN) approximant — 3.5PN SpinTaylorT4 [59—61]— until
the orbital frequency reaches a value of 0.018 rad/M. At this point, we are in the



165

2 _ 102
10 g mm Amy [M] :-F Avy [0.001 ¢] glo
101 %_ ] AXf (20871(13/ . ’l}?)é 101
: m cos™' (X - Xj) &
10° = - 10°
101 107!
§ QE 2
o 1077 10~
1073 10°3
1074 7 104
1075 1075
£ | l l

30 50 70 90 [2,3] [3.4]
M [M.)] q

Figure 6.6.2: Left panel: Errors for surfinBH7dq2 in predicting remnant properties
when the spins are specified at an orbital frequency of f, =10 Hz, for different total
masses. Right panel: Errors for surfinBH7dq2 when extrapolating to higher mass
ratios, with the spins specified at t = —100M. The labels on the horizontal axis
indicate the range of mass ratios being tested. Note that the distributions in these
plots are normalized to have a fixed height, not fixed area.

range of validity of the (more accurate) NRSur7dq2 approximant [12], which we use
to evolve the spins until #=—100M. Thus, spins can be specified at any given orbital
frequency and are evolved consistently before estimating the final BH properties.
This is a crucial improvement over previous results, which, being calibrated solely to
non-precessing systems, suffer from ambiguities regarding the separation/frequency

at which spins are defined.

The left panel of Fig. 6.6.2 shows the errors when the spins are specified at an orbital
frequency fop = 10Hz. These errors are computed by comparing against 20 long
NR simulations [50] with mass ratios ¢ < 2 and generically oriented spins with
magnitudes yi, Y2 < 0.5. None of these simulations were used to train the fits.
Longer PN evolutions are needed at lower total masses, and the errors are therefore
larger. These errors will decrease with an improved spin evolution procedure. Note,
however, that our predictions are still more accurate (and, crucially, unambiguous)

than those of existing fitting formulae (cf. Fig. 6.6.1).

Finally, the right panel of Fig. 6.6.2 shows the the performance of surfinBH7dq2
when extrapolating to more extreme mass ratios. We compare against 175 (225)
NR simulations [62] with 2 < g <3 (3 < g <4), and generically oriented spins with
magnitudes xi1, y2> < 0.8 specified at t = —-100M. The error distribution broadens,
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but our fits still provide a reasonable estimate of the final remnant properties even
far out of the training parameter space. Detailed results on extrapolation accuracy

are provided in the supplemental materials [47].

6.8 Conclusion

We have presented two highly accurate surrogate models for the remnant properties
of BH binaries. surfinBH7dq2 (surfinBH3dg8) is trained against 890 (104) NR
simulations with mass ratios ¢ < 2 (¢ < 8) and precessing (aligned) spins with
magnitude yi, y2 < 0.8. Both models use GPR to provide fits for the remnant
mass, spin, and kick velocity (both magnitudes and directions). Our findings are
implemented in a public Python module named surfinBH (details are provided in

the supplemental materials [47]).

For aligned spins, errors in surfinBH3dq8 are comparable to existing fitting formulae
for the final mass and kick magnitude, while the spin is predicted about 5 times
more accurately. For precessing systems, errors in surfinBH7dq2 for final mass,
spin magnitude, and kick magnitude are lower than all existing models by at least
an order of magnitude. Crucially, our fits are free from ambiguities regarding the
time/frequency at which precessing quantities are specified. This is a point of major

improvement over previous models, which all fail to fully capture precession effects.

Is this increased accuracy necessary? For current events like GW150914, the es-
timated error in the remnant properties are Amy~0.1M and Ay y~0.1 [40]. These
measurements are currently dominated by statistical errors, as the systematics in-
troduced by existing fits used in the analysis are Am~5x1073M and A y ;~2x1072
(see 95" percentile values in Fig. 6.6.1). Because statistical errors scale approxi-
mately linearly with the detector sensitivity [63], we estimate that systematic errors
in current models for y s will start dominating over statistical uncertainties at signal-
to-noise ratios which are ~5 times larger than that of GW150914. This will happen
sooner rather than later, with current interferometers expected to reach their design
sensitivity in a few years [64], and future instruments already being scheduled [65]
or planned [66, 67]. Our fits, being an order of magnitude more accurate (see
Fig. 6.6.1), introduce systematic errors which are expected to be relevant only at
SNRs ~50 times larger than that of GW150914. As shown above, errors are largely
dominated by the underlying NR resolution, not by our fitting procedure. The in-
clusion of self-force evolutions alongside NR in the training dataset might also be

exploited to improve extrapolation performance at g > 1; we leave this to future
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work.

Moreover, the GPR methods employed here naturally provide error estimates along
with the fitted values (some results are provided in the supplemental material [47]).
This constitutes a further key application of our results: when performing, e.g.,
consistency tests of GR [13, 14], systematic uncertainties introduced by remnant fits
can be naturally incorporated into the statistical analysis and marginalized over (cf.
Ref. [68] for a similar application of GPR and Refs. [69-73] for other applications
to GW science).

As GW astrophysics turns into a mature field, increasingly accurate tools such as
those presented here will become crucial to uncover more hidden secrets in this new

field of science.
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APPENDIX

6.A Gaussian process regression

We construct fits in this work using Gaussian process regression (GPR) [46, 75] as

implemented in scikit-learn [76].

The starting point s a training set of n observations, 7S = {(x, f(x)))|i = 1,...,n},
where x’ denotes an input vector of dimension D and f(x') is the corresponding
output. In our case, x is mass ratio and spins of the merging binary, and f(x) is the
remnant property we are fitting. Our goal is to use 7S to make predictions for the

underlying f(x) at any point x, that is not in 7S.

A Gaussian process (GP) can be thought of as a probability distribution of functions.
More formally, a GP is a collection of random variables, any finite number of which
have a joint Gaussian distribution [46]. A GP is completely specified by its mean
function m(x) and covariance function k(x,x’), i.e. f(x) ~ GP(m(x),k(x,x")).
Consider a prediction set of n, test inputs and their corresponding outputs (which
are unknown): PS = {(xi, f(x\))li = 1,...,n.}. By the definition of a GP, outputs
of 7S and PS (respectively f = {f(x)}, f. = {f(x})}) are related by a joint
Gaussian distribution

[f ] _n o

Js

where K, denotes the nxn, matrix of the covariance k(x, x,) evaluated at all pairs

KXX K.XX*

, (6.1)
Kx*x Kx*x*

b

of training and prediction points, and similarly for the other K matrices.

Eq. (6.1) provides the Bayesian prior distribution for f.. The posterior distribution
is obtained by restricting this joint prior to contain only those functions which agree

with the observed data points, i.e. [46]
PUTS) = N KKl f s K, =K Kol Ko, |- (6.2)

The mean of this posterior provides an estimator for f(x) at x,., while its width is

the prediction error.

Finally, one needs to specify the covariance (or kernel) function k(x, x"). In this
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Letter we implement the following kernel

1 [/ —xi\?

k(x,x") = 0',3 exp |~ ( ) + 0',% Oxx’ s (6.3)
j=1

where 0, ,- is the Kronecker delta. In words, we use a product between a squared

exponential kernel and a constant kernel, to which we add a white kernel term to

account for additional noise in the training data [46, 76].

GPR fit construction involves determining the D +2 hyperparameters (0%, o, and
o) which maximize the marginal likelihood of the training data under the GP
prior [46]. Local maxima are avoided by repeating the optimization with 10 different
initial guesses, obtained by sampling uniformly in log in the hyperparameter space

described below.

Before constructing the GPR fit, we pre-process the training data as follows. We
first subtract a linear fit and the mean of the resulting values. Datapoints are then
normalized by dividing by the standard deviation of the resulting values. The inverse

of these transformations is applied at the time of the fit evaluation.

For each dimension of x, we define Ax/ to be the range of the values of x in TS
and consider o; € [0.01 X Ax/,10 x Ax/]. Larger length scales are unlikely to
be relevant and smaller length scales are unlikely to be resolvable. The remaining
hyperparameters are sampled in O'If € [1072,10%] and o € [1077,1072]. These
choices are meant to be conservative and are based on prior exploration of the

typical magnitude and noise level in our pre-processed training data.

6.B Input parameter space

Fits for surfinBH3dq8 are parameterized using x = [log(g), X, xa], Where ¥ is
the spin parameter entering the GW phase at leading order [5, 77-79] in the PN

expansion,
Yeff = 4 X1zt X2z n= _1 (6.4)
¢ l+q (1+¢9)?’ '
- 38 + 113
o = Xer = 38n(x1c + o) /113 6.5)
1—76n/113

and y, is the “anti-symmetric spin”,

Xa = %(Xlz - X2z) - (6.6)
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For surfinBH7dq2 we use x = [10g(q), X1x> X1y> X> X2x» X2y Xa]- Subscripts x, y and
z refer to components specified in the coorbital frame at r =—100M. We empirically

found these parameterizations to perform more accurately than the more intuitive

choice x = [¢, x1x» le’)(lz,XvaXZanZZ]'

In the main text we describe how we evolve spins given at earlier times to t =—-100M,
using PN and NRSur7qd2. Is it worth noting that the NR spins used to train
NRSur7qd2 had some additional smoothening filters applied to them (see Eq. 6
in [12]). This introduces additional systematics when evolving spins from times

t <—100M. We verified that the resulting errors on our fits are subdominant.
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Avy [0.001 ¢]

Figure 6.B.1: Errors in surfinBH7dq2 when extrapolating to higher mass ratios, and
the spins are specified at an orbital frequency fy= 10 Hz, for a total mass M = 70M,.
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6.C Extrapolation erorrs

The right panel of Fig. 4 shows the errors in remnant quantities when extrapolating
surfinBH7dg2 to mass ratios beyond its training range (¢ < 2). These errors
are computed using the spins at + = —100M. If the spins are given at earlier
times, we expect larger extrapolation errors as this also involves extrapolation of
the NRSur7dq2 waveform model (which was also trained in the ¢ < 2 space).
Figure 6.B.1 shows the extrapolation errors when the spins are specified at at orbital
frequency fp=10Hz for a total mass M = 70M, computed by comparing against
the same NR simulations as in Fig. 4. Errors are comparable to or lower than those
of existing fits for ¢ < 3. For 3 < g < 4, our errors for the remnant spin magnitude
can become larger, but the remnant mass and kick magnitude remains as accurate

as in other fits.
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Figure 6.C.1: Errors in predicting the remnant mass, spin, kick magnitude and kick
direction for nonprecessing BBH when surfinBH3dq8 is extrapolated outside of the
training region (i.e. ¢ > 8 and y1, y2 > 0.8). Each solid symbol marks the error of
the extrapolated model against a single nonprecessing NR simulation. The legend
in the bottom-left panel displays the mass ratio and spin components of the two
BHs along the orbital angular momentum direction. Histograms of errors within the
training region (from Fig. 2) are reproduced here for comparison. The hollow square
(triangle) markers indicate the median (95" percentile) values for those errors.

Figure 6.C.1 shows errors in surfinBH3dg8 when extrapolated beyond its training
space to higher mass ratios and/or spin magnitudes (this figure complements the

results shown in Fig. 4 of the main text for surfinBH7dq2). Here we used some of the
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simulations of [50, 80-83] with ¢ > 8 and/or y1, x> > 0.8. Accuracy in the remnant
mass degrades noticeably only at high (~ 0.9) co-aligned spins. Errors in final
spin become larger at both high spins and extreme mass ratios. For counter-aligned
spins, our errors are always comparable to those found within the training region.

Errors in kick magnitude and direction appear to be insensitive to extrapolation.

6.D GPR error prediction

As stressed above and in the main body of our Letter, GPR naturally associates errors
to the estimated quantities. In this Section we test the efficacy of this prediction
by comparing the GPR errors against the out-of-sample errors. The GPR errors
shown here are evaluated using the same cross-validation data sets used to generate
the out-of-sample errors. Therefore, both error estimates are evaluated at points in

parameter space where models were not trained.

Amy [M] 10 Avg []
1073 1074
8
, 6
10~ 107°
4
2
107° 1076
Asz
107°
104
ig o1
O W [~ s, 1077 1
-10  —05 0 0.5 1.0 —-1.0  —-05 0.0 0.5 1.0

0
X1 X1z

w

Figure 6.D.1: Prediction errors for remnant mass, spin and kick for the model
surfinBH3dg8 against NR simulations. Two error estimates, as reported on the
color scale, are compared: out-of-sample errors marked with circles, and 100 GPR
errors marked with squares. We include cases where surfinBH3dg8 needs to be
extrapolated to higher mass ratios and/or spin magnitudes. The bounds of the
training parameter space are indicated as a black rectangle.

Error comparisons for surfinBH3dq8 and surfinBH7dq?2 are reported in Figs. 6.D.1

and 6.D.2, respectively. While GPR predictions miss some of the features captured
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by the “k-fold” cross validations, overall it provides faithful estimates of the fit

CITOrS.

6.E Public Python implementation

Our fits are made publicly available through the easy-to-use Python package,
surfinBH [45]. Our code is compatible with both Python 2 and Python 3. The
latest release can be installed from the Python Package Index using

pip install surfinBH

Python packages numpy [84], scipy [85], hSpy [86], scikit-learn [76], lalsuite [74],
and NRSur7dq?2 [12] are specified as dependencies and are automatically installed
if missing. surfinBH is hosted on GitHub at github.com/vijayvarma392/surfinBH,
from which development versions can be installed. Continuous integration is pro-
vided by Travis [87]

The surfinBH module can be imported in Python using

import surfinBH

Documentation is provided for each submodule of surfinBH and can be accessed

via Python’s help () function. The fit class has to be initialized using, e.g.

fit = surfinBH.LoadFits("surfinBH7dg2")

Given mass ratio and component spins, the fits and 1o~ GPR error estimates of the

remnant mass, spin vector and kick vector can be evaluated as follows:

q=1.2

chiA [0.5, 0.05, 0.3]

chiB = [-0.5, -0.05, 0.1]

mf, mf_err = fit.mf(q, chiA, chiB)

chif, chif_err = fit.chif(q, chiA, chiB)
v, vi_err = fit.vf(q, chiA, chiB)

Both the input spins as well as the remnant spin and kick vectors are assumed to be

specified in the coorbital frame at t =—-100M. Performance of surfinBH was tested


https://github.com/vijayvarma392/surfinBH
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Figure 6.D.2: Comparison between out-of-sample (left), and 10~ GPR (right) errors
for surfinBH7dq2. The axes show the magnitudes of the component spins, and the
color scale indicates the parameter error being plotted.
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on a 3.1 GHz Intel Core i5 processor by averaging over 10° evaluations at randomly
chosen points in parameter space. For surfinBH7dq2, evaluation cost of final mass
(spin) [kick] is 2.5ms (7ms) [7ms]. For surfinBH3dq8, evaluation cost of final
mass (spin) [kick] is 0.4 ms (0.4 ms) [0.6 ms].

We also allow specifying an orbital frequency (in units of rad/ M), e.g.:

omega® = 5e-3
mf, mf_err = fit.mf(q, chiA, chiB,
omega® = omega®)
chif, chif_err = fit.chif(q, chiA, chiB,
omega® = omega®)
v, vf_err = fit.vf(q, chiA, chiB,

omega® = omega®)

In this case, the component spins, as well as the final remnant spin/kick vectors are
specified in the coorbital frame at this orbital frequency. The evaluation costs are
larger when specifying an initial orbital frequency since this involves two additional
stages of spin evolution. Execution times depend on the initial frequency, the specific
PN approximant used and the time step size in the integration routine. For instance,
with omega® = 5e-3, SpinTaylorT4, and a step size of 0.1M the evaluation cost is

~(0.5s for each of the remnant quantities.

Additional resources are provided in the package installation page [45]. This in-

cludes example jupyter notebooks for both models presented in this Letter.
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Chapter 7

SURROGATE MODELS FOR PRECESSING BINARY BLACK
HOLE SIMULATIONS WITH UNEQUAL MASSES

Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Davide Gerosa,
Leo Stein, Lawrence E. Kidder, and Harald P. Pfeiffer. arxiv:1905.09300.

7.1 Executive summary

Surrogate models are capable of accurately, yet cheaply reproducing numerical
relativity simulations. However, previous surrogate models of precessing binary
black holes have been restricted to nearly equal masses due to unavailability of
numerical simulations. This Chapter presents extensions of these models to more
generic mass ratios. These models are more accurate than existing models by about

an order of magnitude.

7.2 Abstract

Only numerical relativity simulations can capture the full complexities of binary
black hole mergers. These simulations, however, are prohibitively expensive for
direct data analysis applications such as parameter estimation. We present two
new fast and accurate surrogate models for the outputs of these simulations: the
first model, NRSur7dqg4, predicts the gravitational waveform and the second model,
surfinBH7dq4, predicts the properties of the remnant black hole. These models
extend previous 7-dimensional, non-eccentric precessing models to higher mass
ratios, and have been trained against 1528 simulations with mass ratios ¢ < 4 and
spin magnitudes x1, x> < 0.8, with generic spin directions. The waveform model,
NRSur7dg4, which begins about 20 orbits before merger, includes all £ < 4 spin-
weighted spherical harmonic modes, as well as the precession frame dynamics and
spin evolution of the black holes. The final black hole model, surfinBH7dq4, models
the mass, spin, and recoil kick velocity of the remnant black hole. In their regime
of validity, both models are shown to be more accurate than existing models by at
least an order of magnitude, with errors comparable to the estimated errors in the

numerical relativity simulations.


https://arxiv.org/abs/1905.09300
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7.3 Introduction

As the LIGO [1] and Virgo [2] detectors reach their design sensitivity, gravitational
wave (GW) detections [3—9] are becoming routine [10, 11]. To maximize the science
output of the data collected by the network of detectors, it is crucial to accurately
model the source of the GWs. Among the most important sources for these detectors
are binary black hole (BBH) systems, in which two black holes (BHs) lose energy
through GWs, causing them to inspiral and eventually merge.

Numerical relativity (NR) simulations are necessary to accurately model the late
inspiral and merger stages of the BBH evolution. These simulations accurately
solve Einstein’s equations to predict the evolution of the BBH spacetime. The most
important outputs of NR simulations are the gravitational waveform and the mass,

spin, and recoil kick velocity of the remnant BH left after the merger.

For interpreting detected signals, model waveforms are used to compare with de-
tector data and infer the properties of the source [12—14]. The mass and spin of the
remnant determine the black hole ringdown frequencies, which are used in testing
general relativity [15—17]. In addition, the recoil kick is astrophysically important

because it can cause the remnant BH to be ejected from its host galaxy [18-20].

Unfortunately, NR simulations are too expensive to be directly used in data anal-
ysis applications and incorporated into astrophysical models. As a result, several
approximate models that are much faster to evaluate have been developed for both
waveforms [21-31] and remnant properties [18, 19, 32-50]. These models typically
assume an underlying phenomenology based on physical motivations, and calibrate

any remaining free parameters to NR simulations.

Among BBHs, systems with BH spins that are misaligned with respect to the or-
bital angular momentum are complicated to model analytically or semi-analytically.
For these systems, the spins interact with both the orbital angular momentum and
each other, causing the system to precess about the direction of the total angular
momentum [51]. This precession is imprinted on the waveform as characteristic
modulations in the amplitude and frequency of the GWs, and can be used to extract
information about the spins of the source. One important application of the extracted

spins is to distinguish between formation channels of BBHs [52-55].

The precessing BBH problem for quasicircular orbits is parametrized by seven

parameters: the mass ratio ¢ = m;/my > 1 and two spin vectors yi», where
the index 1 (2) refers to the heavier (lighter) BH. The total mass scales out of the
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problem and does not constitute an additional parameter for modeling. The surrogate
models NRSur7dq2 [56] for the gravitational waveform, and surfinBH7dq2 [57]
for the remnant properties, were the first to model the 7—dimensional space of
generically precessing BBH systems, albeit restricted to mass ratios ¢ < 2, and
dimensionless spin magnitudes x12 < 0.8. Trained directly against numerical
simulations, these models do not need to introduce additional assumptions about the
underlying phenomenology of the waveform or remnant properties that necessarily
introduces some systematic error. Through cross-validation studies, it was shown
that both these models achieve accuracies comparable to the numerical simulations
themselves [56, 57], and as a result, are the most accurate models currently available

for precessing systems, within their parameter space of validity.

In this paper, we present extensions of the above surrogate models to larger mass
ratios. Our new surrogate models are called NRSur7dq4 and surfinBH7dq4, for
the gravitational waveform and remnant properties, respectively. They are trained
against 1528 precessing NR simulations with mass ratios g < 4, spin magnitudes

X1, X2 < 0.8, and generic spin directions.

The rest of the paper is organized as follows. Section. 7.4 covers some preliminaries
to set up the modeling problem for precessing BBH systems. Section 7.5 describes
the training simulations. Sec. 7.6 describes the NRSur7dq4 waveform surrogate
model. Section 7.7 describes the surfinBH7dq4 remnant properties surrogate model.
Section 7.8 compares these models against NR simulations to assess their accuracy.
Finally, Sec. 7.9 presents some concluding remarks. In App. 7.A we examine
how accurate these models are when extrapolated beyond mass ratio g = 4, and in

App. 7.B we investigate some features in the error distribution of the NR simulations.

7.4 Preliminaries and notation

It is convenient to combine the two polarizations of the waveform into a single
complex, dimensionless strain i = h, — ihy, and to represent the waveform on a

sphere as a sum of spin-weighted spherical harmonic modes:

oo

l
At 00) = D > Fiom() 2Yom(t, @0). (7.1
l

=2 m=—

Here Y, are the spin =—2 weighted spherical harmonics, and ¢ and ¢ are the

polar and azimuthal angles on the sky in the source frame.
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For nonprecessing systems, the direction of orbital angular momentum (L) is fixed
and the 2 direction of the source frame is chosen to be along L by convention. The
gravitational radiation is strongest along the directions parallel and antiparallel to
L. Therefore, for nonprecessing systems the quadrupole modes (¢ = 2,m = +2)
dominate the sum in Eq. (7.1), but the nonquadrupole modes can become important

at large mass ratios or ¢ close to /2 [58-67].

By contrast, for precessing systems the direction of L varies due to precession [51]
and so there is not a fixed axis along which the radiation is dominant. The standard
practice is to choose Z of the source frame along the direction of L (or the total

angular momentum) at a reference time or frequency.

Heuristically, one can think of a precessing system as a nonprecessing system with
time-dependent frame rotations applied to it. In this non-inertial frame the rotation
causes mixing of power between modes of fixed £. For example, the power of the
(2,+£2) modes leaks into the (2,+1) and (2,0) modes. This means that all £ = 2
modes can be dominant in Eq. (7.1). While this rotating-frame picture ignores some
dynamical features such as nutation, it accounts for most of the effects of precession

in the waveform.

By the same logic, one could apply a time-dependent rotation to a precessing
system such that Z always lies along L(r). In this non-inertial frame, referred to
as the coprecessing frame [68—70], the radiation is always strongest along Z, and
the (£ = 2,m = +2) modes are dominant. In fact, since most precessional effects
are accounted for by the frame rotation, the waveform in the coprecessing frame
is qualitatively similar to that of a nonprecessing system (cf. Fig. 7.4.1). This
observation has been exploited in the literature [21, 24, 27, 56, 71] to simplify the
modeling of precessing systems. Here we proceed similarly, using the coprecessing

frame described in Ref. [70] and denoting the strain in this frame as ﬁ;:;pr.

The waveform can be made even simpler, and therefore easier to model, by applying
an additional rotation about the z—axis of the coprecessing frame by an amount

equal to the instantaneous orbital phase:
ﬁg}zorb(t) — ﬁgr(:lpf(t) eim¢’(t)_ (7.2)

Here we define the orbital phase,

arg[ A5 (1)] — arg[ A5 (1)]

¢(1) = ’ 1 ’ ; (7.3)
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Figure 7.4.1: The real part of the (2,2) and (2, 1) modes of the gravitational waveform
in the inertial (top), coprecessing (middle), and coorbital (bottom) frames. In the
inertial frame, the amplitude of the (2,1) mode can be comparable to that of the
(2,2) mode. In the coprecessing frame, on the other hand, the (2,2) mode always
dominates. In addition, most effects of precession are removed by the rotation and
the waveform in the coprecessing frame resembles that of a nonprecessing system. In
the coorbital frame, finally, the waveform is further simplified and does not oscillate
about zero. Mass ratio and initial spins used to produce this figure are indicated at
the top of the plot.

using the coprecessing frame strain. The waveform ﬁ;}j’frb(t) corresponds to a new
frame, called the coorbital frame, in which the BHs are always on the x—axis, with
the heavier BH on the positive x—axis!. More importantly, the waveform in the
coorbital frame is nearly nonoscillatory, simplifying the modeling problem greatly.
Figure 7.4.1 shows an example of a waveform in the inertial, coprecessing, and

coorbital frames.

Here the BH positions are defined from the waveform at future null infinity and do not necessarily
correspond to the (gauge-dependent) coordinate BH positions in the NR simulation.
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7.5 NR simulations

Our NR simulations are performed using the Spectral Einstein Code (SpEC) [72-77]
developed by the SXS [78] collaboration.

Parameter space coverage

We use 890 precessing NR simulations used in the construction of the surrogate
models NRSur7dq2 [56] and surfinBH7dq2 [57], which provide coverage in the
q < 2 and yi, x2 < 0.8 regions of the parameter space. We also make use of 64
aligned-spin simulations with ¢ < 4 and y1, x> < 0.8 used in the construction of the
surrogate model presented in Ref. [79]. Finally, we performed 574 new simulations
with 2 < ¢ < 4, x1, x2 < 0.8 and generic spin directions—these simulations are
presented here for the first time. The parameters for the first 204 of these are
chosen based on sparse grids as detailed in Appendix A of Ref. [56]. The remaining
parameters are chosen as follows. We randomly sample 1000 points uniformly in
mass ratio, spin magnitude, and spin direction on the sphere. We compute the
distance between points a and b using the metric
a_  b\2
dszz(quq ) + Z

ie{1,2}

2

a_ b
X = x| ’ 7.4)

Ay

where Ag = 4 -1 = 3 and Ay = 0.8 are the ranges of these parameters. These
normalization factors are somewhat arbitrary, although any choice of order unity
should provide a reasonable criteria for point selection. For each sampled param-
eter, we compute the minimum distance to all previously chosen parameters. We
then add the sampled parameter maximizing this minimum distance to the set of
chosen parameters. This is done iteratively for 370 additional parameters. The new
simulations have identifiers SXS:BBH:1346-1350 and SXS:BBH:1514-2082, and
are made publicly available through the SXS public catalog [80]. The parameter
space covered by the 890+64+574=1528 NR simulations used in this work is shown
in Fig. 7.5.1. Note that not all of these are independent simulations: for 154 of these
cases we have g = 1, with y1 # x»; for each of these cases we effectively obtain an

additional simulation by exchanging the labels of the two BHs.

The start time of these simulations varies between 4693M and 5234M before the
peak of the waveform amplitude, where M = m; + m; is the total Christodoulou
mass measured close to the beginning of the simulation at the “relaxation time”

[81]. The initial orbital parameters are chosen through an iterative procedure [82]
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Figure 7.5.1: Parameters of the 1528 NR simulations used in the construction of
the surrogate models in this paper. We show the distribution of mass ratio g and the
spin components in standard spherical polar coordinates (y, 6, ¢) at —4300M from
the waveform amplitude peak. The index 1 (2) refers to the heavier (lighter) BH.

such that the orbits are quasicircular; the largest eccentricity for these simulations is
9.8 x 107*, while the median value is 3.8 x 107%,
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Data extracted from simulations

We make use of the following quantities extracted from the NR simulations: the
waveform modes A, (¢), the component spins y (¢), the mass ratio ¢, and the remnant

mass my, spin y r, and kick velocity v r.

The waveform is extracted at several extraction spheres at varying finite radii from
the origin and then extrapolated to future null infinity [81, 83]. Then the extrapolated
waveforms are corrected to account for the initial drift of the center of mass [84, 85].
The time steps during the simulations are chosen nonuniformly using an adaptive
time-stepper [81]. Using cubic splines, we interpolate the real and imaginary parts of
the waveform modes to a uniform time step of 0.1/; this is dense enough to capture
all frequencies of interest, including near merger. The interpolated waveform at

future null infinity, scaled to unit mass and unit distance, is denoted as fi,,(¢) in this
paper.

The component spins y;2(f) and masses m;, are evaluated on the apparent hori-
zons [74] of the BHs. The masses at the relaxation time [81] are used to define the
mass ratio g = my /my. Unless otherwise specified, all masses in this paper are given
in units of the total mass M = m + m; at relaxation. The spins are interpolated onto

the same time array? as used for the waveform, using cubic splines.

The remnant mass my and spin x; are determined from the common apparent
horizon long after ringdown, as detailed in Ref. [81]. The remnant kick velocity
is derived from conservation of momentum, vy = —P™ /iy 7 [87]. The radiated

momentum flux P4 js integrated [88] from the strain fi,,.

Post-processing the output of NR simulations

After extracting the strain and spins from the simulations, we apply the following

post processing steps before building the surrogate models.

First, we shift the time arrays of all waveforms such that# = 0 occurs at the peak (see

Ref. [56] for how the peak is determined) of the total waveform amplitude, defined

2The waveforms at future null infinity use a time coordinate ¢ that is different from the simulation
time 7 at which the spins are measured in the near zone [81]. In this paper, we identify ¢ with 7.
While this identification is gauge-dependent, the spin directions are already gauge-dependent. We,
however, note that the spin and orbital angular momentum vectors in the damped harmonic gauge
used by SpEC agree quite well with the corresponding vectors in post-Newtonian (PN) theory [86].
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A0 = |3 lfin®)P. (7.5)
{m

Then we rotate the waveform modes such that at a reference time ty = —4300M, the

as:

inertial frame coincides with the coorbital frame. This means that the Z direction
of the inertial frame is along the principal eigenvector of the angular momentum
operator [70] at the reference time. In addition, the X direction of the inertial frame
is along the line of separation from the lighter BH to the heavier BH (in other words,
the orbital phase is zero). The spin vectors y2(#) are also transformed into the same

inertial frame.

We then truncate the waveform and spin time series by dropping all times ¢ <
—4300M to exclude the initial transients known as “junk radiation”. After the

truncation, the reference time r = —4300M is also the start time of the data.

For ¢t > —100M, the spin measurements from the apparent horizons start to become
unreliable as the horizons become highly distorted. Following Ref. [56], starting at
t =—-100M, we extend the spins to later times using PN spin evolution equations.
This evolution is done even past the merger stage, into the ringdown. We stress that
the extended spins are unphysical but are a useful parametrization to construct fits

at late times.

Finally we apply a smoothing filter (see Eq. (6) of Ref. [56]) on the spin time series
to remove fast oscillations taking place on the orbital timescale. This smoothing
helps improve the numerical stability of the ordinary differential equation (ODE)
integrations described in Sec. 7.6. Note that we use the filtered spins for the
waveform surrogate (Sec. 7.6) but not for the remnant surrogate (Sec. 7.7), for

which we just use the unfiltered spins since there are no ODE integrations involved.

7.6 Waveform surrogate

To construct the waveform surrogate, we closely follow the NRSur7dq2 model of
Ref. [56], with some modifications to adapt it to higher mass ratios. We refer to the

new waveform model as NRSur7dg4.

Coorbital frame surrogate

Modelling slowly varying functions of time, rather than oscillatory functions, in-

evitably results in higher accuracy. Therefore, we first decompose the strain into
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Figure 7.6.1: The top panel shows the real part of the (2,2) and (2,—2) modes of
the waveform in the coorbital frame. Notice that the orbital time scale oscillations
of these two modes have opposite signs. The bottom panel shows the real parts of
ﬁ2+7 , and ﬁz‘ , (cf. Eq. 7.6), we take advantage of the above fact to move most of the
oscillations from the larger to the smaller data piece.

several “data pieces”, each of which is a slowly varying function of time, and build a
surrogate for each of them. At evaluation time, we combine the various data pieces
to reconstruct the inertial frame strain. To reduce the cost of these transformations,
we first downsample the inertial frame strain onto a set of 2000 time values tl.°°°rb that
are approximately uniformly spaced in the orbital phase (using the method described
in App. B of Ref. [56]).

As described in Sec. 7.4, the waveform is simpler in the coorbital frame. A fur-
ther simplification is possible by considering combinations of m > 0 and m < 0
counterparts of a fixed £ mode:
coorb coorb *
ﬁf,m * ﬁf,—m
2

Figure 7.6.1 shows an example of the simplification obtained with this combination.

hy = (7.6)

For all m # 0 modes we model the real and imaginary parts of £ . Form = 0
modes, we directly model the real and imaginary parts of the coorbital frame strain
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ﬁg‘};frb. We construct an independent surrogate model for each of these data pieces

and refer to the combination of these models as the coorbital frame surrogate.

As described in Ref. [56], for each waveform data piece, we construct a linear basis
using singular value decomposition with an RMS tolerance of 3 x 107*. We then
construct an empirical time interpolant with the same number of empirical time
nodes as basis functions for that data piece [89-91]. The empirical time nodes are
chosen as a subset of the 2000 coorbital time values (ticoorb) and are specific to each
data piece. Finally, for each empirical time node, we construct a parametric fit for
the waveform data piece. The fits are parametrized as functions of the mass ratio
and the spins in the coorbital frame at that time. We describe our fitting procedure
in Sec. 7.6. At evaluation time, the coorbital frame spins at any time are obtained

using the dynamics surrogate described in Sec. 7.6.

Dynamics surrogate

The surrogate described in Sec. 7.6 only models the strain in the coorbital frame.

We also need to model the following quantities:

1. The orbital phase in the coprecessing frame, which is required to transform

the strain from the coorbital frame to the coprecessing frame [cf. Eq. (7.2)];

2. The quaternions describing the coprecessing frame, which are required to

transform the strain from the coprecessing frame to the inertial frame;

3. The spins as a function of time, which are used in the evaluation of the

parametric fits described in Sec. 7.6.

We refer to the model for these quantities as the dynamics surrogate. Using the

fitting method of Sec. 7.6, we first construct parametric fits for w(t), Q°°™(¢), and

X,y
,\'(lcozorb(t) at selected time nodes referred to as the dynamical time nodes t?yn. Here

)giozorb(t) are the time derivatives of the coprecessing frame spins transformed to the
coorbital frame, w(t) is d¢/dt (cf. Eq. (7.3)), and chf’yorb(t) is the angular velocity
of the coprecessing frame, transformed to the coorbital frame. These quantities
are described in more detail in Sec. III of Ref. [56]. Note that Qg""rb(t) ~ 0.
For the dynamical time nodes tflyn we chose 238 time values such that there are

approximately 10 nodes per orbit (see App. B of Ref. [56] for details).
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We use a fourth-order Adams-Bashforth scheme to integrate w(tlfiyn), Qif’yorb(tlfiyn),
and ,\'(f%orb(tfyn) over the set of dynamical time nodes thyn providing the time evolu-
. ’ . dyn . . A dyn

tion of the orbital phase ¢(z, M), the coprecessing frame quaternions Q(z,”"), and the
component spins in the coorbital frame X‘fgorb(t?yn). This involves solving a coupled
ODE as described in Sec. V of Ref. [56]. At each step of the ODE integration,
the coorbital frame spins at the current node tl.dyn are first obtained. These are then
used to evaluate the parametric fits for the derivative quantities mentioned above.
Note that the spins used in the dynamics surrogate are the filtered spins mentioned
in Sec. 7.5; this improves the accuracy of the ODE integration by making the spin

time derivatives easier to model.

Parametric fits

For the coorbital frame surrogate of Sec. 7.6, we need to construct parametric fits
at various empirical time nodes for the different data pieces. Similarly, for the
dynamics surrogate of Sec. 7.6, we need to construct fits for various time derivatives
at the dynamical time nodes t;lyn. We use the same procedure for each of these fits.
Let us refer to the data to be fitted as y(A), where A is a seven-dimensional set of

parameters.

For each of these fits, the seven parameters A must contain information on mass ratio
g and coorbital frame spins )(i%orb(t,-) at the time corresponding to the fit. Following

Ref. [57], we parametrize the fits using

coorb . coorb ~coorb . coorb . coorb coorb] (7 7)
, .

A =[log(q) X1y s Xty X s Xax Xy s Xa

where jcoorb

92, 93] in the PN expansion

is the spin parameter entering the GW phase at leading order [12, 26,

ng(%orb _ 38n(Xcoorb + X;gorb)/ 113

1z

~coorb

= , 7.8
X 1—765/113 (7.8)

q Xcoorb + Xcoorb
X = (1.9)

+4q
q

=—) 7.10
n 1+ 07 (7.10)

and yS°°™ is the “anti-symmetric spin”,

coorb __ 1 coorb

X = L(ygoor — 500y (7.11)
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We empirically found this parameterization to perform more accurately than the

more intuitive choice Aerss = [g, ¥, )(f(y’orb, XM, p 520, )(S(y)orb, X520 ] used in

Ref. [56].

Fits are constructed using the forward-stepwise greedy fitting method described in
App. A of Ref. [71]. We choose the basis functions to be a tensor product of 1D
monomials in the components of A. The components of A are first affine mapped to
the interval [—1, 1] before constructing the tensor product. We consider up to fourth
powers in log(g) and up to quadratic powers in the spin parameters. Note that fits
of Ref. [56], which were restricted to ¢ < 2, used only up to cubic powers in g.
Here we allow higher powers as we extend the dataset in the mass ratio direction to
q < 4. Itis always possible to improve the accuracy of a fit by adding more basis
functions. However, this can lead to over-fitting when the data contain some noise.
Our source of noise is mostly due to NR truncation error, but also systematic errors
such as waveform extrapolation and residual eccentricity. In order to safeguard
against over-fitting, we perform 10 trial fits, leaving a random 10% of the dataset
out as validation points in each trial, to determine the set of basis functions used in
constructing the final fit. We allow a maximum of 100 basis functions for each fit.
See App. A of Ref. [71] for more details.

Surrogate evaluation

To evaluate the surrogate, we begin with a user-specified mass ratio ¢ and spins
,\(f%"rb at the initial time r = —4300M. Note that at this time, the inertial frame
coincides with the coorbital frame. These values are used to initialize the dynamics
surrogate described in Sec. 7.6, which predicts the coprecessing frame quaternions
A dyn . dyn, . . .

("), the or(}ntal phase ¢(¢,” ") in the coprecessing frame, and the coorbital frame
spins xS3(1;>"
interpolate these quantities on to the time array for the coorbital frame surrogate
coorb  Givsi A ( +coorb coorb coorb (.coorb

1700, giving us Q(£7°°7), ¢(£7°°"), and X715 (£7°97).

) at the dynamic time nodes tl.dyn. We then use cubic splines to

The coorbital frame surrogate described in Sec. 7.6 is used to predict the strain in
the coorbital frame. This involves evaluating the fits at the empirical time nodes for
this surrogate using /\(fg"rb(tfoorb) and ¢g. Then, the orbital phase ¢(tlf’°°rb) is used to
transform the strain from the coorbital frame to the coprecessing frame (cf. Eq. 7.2).
Finally, the coprecessing frame quaternions Q(tfoorb) are used to transform the strain
from the coprecessing frame to the inertial frame (this involves Wigner matrices,

see App. A of Ref. [70]). This gives us ﬁgm(tl.coorb), which is interpolated onto any
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required time array ¢ using cubic splines to get Az, (t).

7.7 Remnant surrogate

To construct the remnant properties surrogate, we closely follow the surfinBH7dq2
model of Ref. [57]. We refer to the new model presented here as surfinBH7dg4.

We model the remnant mass my, spin x , and kick velocity v s. Before constructing
the fits, s and vy are transformed into the coorbital frame at r = —100M. We
model each component of the vectors independently. The fits are parametrized by
the same A of Eq. (7.7), but using the component spins at t = —100M. Unlike the
waveform surrogate case, we do not filter out orbital-timescale oscillations. The
filtered spins were found to be necessary for the accuracy of the time integration in
Sec. 7.6, which is not necessary here because the remnant properties can evaluated

from the BBH parameters at a single time t=—-100M.

All fits are performed using Gaussian Process Regression (GPR), as described in the
supplementary materials of Ref. [57]. We find that GPR fitting is, in most cases, more
accurate but also significantly more expensive than the polynomial fitting method
described in Sec. 7.6. GPR becomes impractical to use for the waveform surrogate
as there are hundreds of fits that need to be evaluated to generate the waveform.
For the remnant fits, however, the additional cost of GPR is acceptable because one
is only fitting 7 quantities (m, xr,vs). In addition, GPR naturally provides error
estimates which can be useful in data analysis applications. The efficacy of the
GPR error estimate in reproducing the underlying error of the surrogate models was

investigated thoroughly in the supplementary materials of Ref. [57].

Although surfinBH7dqg4 is parameterized internally by input spins specified in the
coorbital frame at r = —100M, we allow the user to specify input spins at earlier
times, and in the inertial frame; this case is handled by two additional layers of
spin evolution. Given the inertial-frame input spins at an initial orbital frequency
Jo, we first evolve the spins using a post-Newtonian (PN) approximant — 3.5PN
SpinTaylorT4 [86, 94, 95] — until we reach the domain of validity of the more
accurate NRSur7dq4 (r = —4300M from the peak). We then use the dynamics
surrogate of NRSur7dg4 to evolve the spins until #=—100M. These spins are then
transformed to the coorbital frame and used to evaluate the remnant fits. Thus, spins
can be specified at any given orbital frequency and are evolved consistently before
estimating the final BH properties. Note that NRSur7dq4 uses the filtered spins,
while surfinBH7dq4 expects unfiltered spins at + = —100M, but we find that the
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errors introduced by this discrepancy are negligible compared to the errors due to

PN spin evolution.

7.8 Results

We evaluate the accuracy of our new surrogate models by comparing against the
waveform and remnant properties from the NR simulations used in this work. For
this, we perform a 20-fold cross-validation study to compute “out-of-sample” errors
as follows. We first randomly divide the 1528 training simulations into 20 groups
of ~76 simulations each. For each group, we build a trial surrogate using the ~1452
remaining training simulations and test against these ~76 validation ones, which

may include points on the boundary of the training set.

Waveform surrogate errors

To estimate the difference between two waveforms, A; and A, we use the mismatch

MM=1- (. o) , (7.12)
NS
fos By (£)R(f)
A, b)Y = — = )
< ) 2> 4Re /f'min Sl’l(f) df’ (7 13)

where ﬁ( f) indicates the Fourier transform of the complex strain £(z), * indicates a
complex conjugation, Re indicates the real part, and S,(f) is the one-sided power
spectral density of a GW detector. We taper the time domain waveform using a
Planck window [96], and then zero-pad to the nearest power of two. We further
zero-pad the waveform to increase the length by a factor of eight before performing
the Fourier transform. The tapering at the start of the waveform is done over 1.5
cycles of the (2,2) mode. The tapering at the end is done over the last 30M. Note
that our model contains times up to 100M after the peak of the waveform amplitude,
and the signal has essentially died down by the last 30M. We take fnin to be twice
the waveform angular velocity (as defined by Ref. [97]) at the end of the initial
tapering window, and f.x is chosen to be 4 times the waveform angular velocity
at t = 0; the extra factor of 4 is chosen to resolve up to m = 4 spherical-harmonic
modes, with an extra margin of a factor of 2. We compute mismatches with a
flat noise curve (S, = 1) as well as with the Advanced-LIGO design sensitivity
noise curve [98]. Mismatches are computed following the procedure described in

Appendix D of Ref. [71]. In particular, we optimize over shifts in time, polarization
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angle, and initial orbital phase. Both plus and cross polarizations are treated on an
equal footing by using a two-detector setup where one detector sees only the plus
and the other only the cross polarization. We compute the mismatches at 37 points
uniformly distributed on the sky in the source frame, and we use all available modes

of a given waveform model.
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Figure 7.8.1: Mismatches for NRSur7dq4 and SEOBNRv3 models, when compared
against precessing NR simulations using all £ < 5 modes with mass ratios g < 4,
and spin magnitudes xi, y2 < 0.8. The NRSur7dq4 errors shown are out-of-
sample errors. Also shown are the NR resolution errors. Mismatches are computed
at several sky locations using all available modes for each model: ¢ < 4 for
NRSur7dg4, and ¢ = 2 for SEOBNRv3. The NR error is computed using all
¢ < 5 modes from the two highest available resolutions. Left panel: Mismatches
computed using a flat noise curve. The square (triangle) markers at the top indicate
the median (95th percentile) values. Right panel: Mismatches computed using the
Advanced LIGO design sensitivity noise curve, as a function of total mass. The
dashed (solid) lines indicate the median (95th percentile) values over different NR
simulations and points in the sky.

Figure 7.8.1 summarizes the out-of-sample mismatches for NRSur7dq4 against the
NR waveforms. In the left panel we show mismatches computed using a flat noise
curve. We compare this with the truncation error in the NR waveforms themselves,
estimated by computing the mismatch between the two highest available resolutions
of each NR simulation. The errors in the surrogate model are well within the
estimated truncation errors of the NR simulations. In addition, we also show the
errors for the waveform model SEOBNRv3 [24, 31], which also includes spin
precession effects 3. The surrogate errors are at least an order of magnitude lower
than those of SEOBNRV3.

3Note that SEOBNRv3 spins are specified at a reference frequency, rather than a time before
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Apart from SEOBNRV3, another model commonly used in data analysis applica-
tions is IMRPhemomPv2 [27]. IMRPhemomPv2 was shown to be comparable in
accuracy to SEOBNRvV3 in Ref. [56], at least in order of magnitude. Therefore, for
simplicity, we do not show comparisons of IMRPhemomPv2 to NR here. Note that
updated versions of both SEOBNRv3 (based on Ref. [22]) and IMRPhemomPv2
(see Ref. [21]) are under development, but are not currently available publicly. We
note that these models are calibrated only against aligned-spin NR simulations, us-
ing a much smaller set of simulations than our model. Both these factors contribute
to the accuracy of these models. On the other hand, these models are expected to
be valid for larger mass ratios and spin magnitudes than our model, although their

accuracy in that region is unknown due to lack of sufficient number of simulations.

We note that the NR truncation mismatch distribution in the left panel of Fig. 7.8.1
has a tail extending to MM ~ 0.1. We find that these cases occur when the spins
of the two highest resolutions of the simulation are inconsistent with each other
because of unresolved effects during junk-radiation emission, meaning that the two
resolutions represent different physical systems. This means that comparing the
resolutions for these cases gives us an error estimate that is too conservative and
does not reflect the actual truncation error of the simulations. We expect the actual
truncation error to be closer to the errors reproduced by the surrogate model (which
is trained on the high resolution data set) in Fig. 7.8.1. Evidence for these claims is

provided in App. 7.B.

The right panel of Fig. 7.8.1 shows mismatches computed using the Advanced LIGO
design sensitivity noise curve [98]. In this case, results depend on the total mass
M of the system. Consequently, we show the median and 95th percentile values
at different M, rather than full histograms. Once again, the surrogate errors are
comparable to those of the NR simulations, and are at least an order of magnitude
lower than that of SEOBNRv3. Over the mass range 50 — 200M, mismatches for
NRSur7dq4 are always < 8 x 1072 at the 95 percentile level.

Fig. 7.8.2 shows a comparison of waveforms computed via NRSur7dq4, SEOB-
NRv3, and NR for the cases that lead to the largest error for NRSur7dq2 and
SEOBNRUV3 in the left panel of Fig. 7.8.1. The surrogate shows reasonable agree-
ment with NR, even for its worst case, while SEOBNRv3 shows a noticeably larger

deviation in both cases.

merger. We choose the reference frequency such that the waveform begins at ¢+ = —4300M before
the waveform amplitude peak (as defined in Eq. 7.5).
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Figure 7.8.2: The plus polarization of the waveforms for the cases that result in the
largest mismatch for NRSur7dqg4 (top) and SEOBNRv3 (bottom) in the left panel
of Fig. 7.8.1. We also show the corresponding NR waveforms. Each waveform is
projected using all available modes for that model, along the direction that results in
the largest mismatch for NRSur7dq4 (SEOBNRv3) in the top (bottom) panel. Note
that NRSur7dqg4 is evaluated using trial surrogates that are not trained using these
cases. The binary parameters and the direction in the source frame are indicated
in the figure text. All waveforms are time shifted such that the peak of the total
amplitude occurs at t = 0 [using all available modes, according to Eq. (7.5)]. The
waveform modes are then rotated to have their orbital angular momentum aligned
with the z-axis, and such that the orbital phase is equal to zero at t = —4300M.

In Figs. 7.8.1 and 7.8.2 we use all available modes for NRSur7dq4 and SEOBNRV3.
NRSur7dg4 models all modes ¢ < 4, while SEOBNRvV3 models only the £ = 2
modes. For the NR waveforms in Figs. 7.8.1 and 7.8.2, we include all modes ¢ < 5
to account for the error due to neglecting £ > 4 modes in NRSur7dq4. To better
understand what fraction of the SEOBNRV3 error comes from neglecting modes
with £ > 2, we repeat the calculations leading to the SEOBNRv3 histogram in the
left panel of Fig. 7.8.1 in Fig. 7.8.3, while restricting all waveforms to £ = 2. While
there is a noticeable move towards lower mismatches when restricted to £ = 2, the
median and 95th percentile values change only marginally, suggesting that the main

error source for SEOBNRv3 are the £ = 2 modes themselves.
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Figure 7.8.3: Same as the left panel of Fig. 7.8.1 but using only ¢ = 2 modes for NR
when compared to SEOBNRvV3. The blue histogram from the left panel of Fig. 7.8.1,
where SEOBNRV3 is compared to NR with all £ < 5 modes, is reproduced here
for comparison. The square (triangle) markers at the top indicate the median (95th
percentile) values.

Remnant surrogate errors

We evaluate the accuracy of the remnant surrogate surfinBH7dq4 by comparing
against the NR simulations through a cross-validation study as in Sec. 7.8. Out-
of-sample errors for the remnant properties predicted by surfinBH7dq4 are shown
in Fig. 7.8.4. 95th percentile errors are ~5x10™*M for mass, ~2x 1073 for spin
magnitude, ~4 x 1073 radians for spin direction, ~4 x 10~ ¢ for kick magnitude,
and ~0.2 radians for kick direction. Our errors are at the same level as the NR
resolution error, estimated by comparing the two highest NR resolutions. The largest
errors in the kick direction can be of order ~1 radian. The bottom-right panel of
Fig. 7.8.4 shows the joint distribution of kick magnitude and kick direction error for
surfinBH7dq4, showing that direction errors are larger at low kick magnitudes. Our
error in Kick direction is below ~0.2 radians whenever vy 2 2 X 10-3¢.

We also compare the performance of our fits against several existing fitting formulae
for remnant mass, spin, and kick which we denote as follows: HBMR ([32, 33] with
ny =ny=3), UIB [34], HL [35], HLZ [36], and CLZM ([37—41] as summarized in
[42]). To partially account for spin precession, these fits are corrected as described
in Ref. [99] and used in current LIGO/Virgo analyses [6, 100]: spins are evolved
using PN from relaxation to the Schwarzschild innermost stable circular orbit, and
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Figure 7.8.4: Error histograms for surfinBH7dqg4 for the remnant mass, spin mag-
nitude, spin direction, kick magnitude, and kick direction for precessing BBH with
mass ratios ¢ < 4 and spin magnitudes y1, y2 < 0.8. The direction error is the angle
between the predicted vector and a fiducial vector, taken to be the high-resolution
NR case and indicated by *. Square (triangle) markers indicate median (95th per-
centile) values. Also shown are the NR resolution errors and errors for different
existing fitting formulae. In the bottom-right panel we show the joint distribution
of kick magnitude and kick-direction error.
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final UIB and HL spins are post-processed by adding the sum of the in-plane spins
in quadrature. Figure 7.8.4 shows that our procedure to predict remnant mass, spin
magnitude, and kick magnitude for precessing systems is more accurate than these

existing fits by at least an order of magnitude.

Our fits appear to outperform the NR simulations when estimating the spin direction.
Once again, this is due to the post-junk-radiation initial spins of the two highest
resolutions being inconsistent with each other for some of our simulations, so that
different resolutions represent different physical systems (cf. App. 7.B). Therefore,
the errors estimated by comparing the two highest resolutions is a poor estimate of
the actual truncation error for these cases. The actual truncation error is likely to be

close to the errors reproduced by the surrogate.
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Figure 7.8.5: Errors for surfinBH7dg4 in predicting remnant properties when spins
are specified at an orbital frequency of fy=10Hz. For four different total masses,
we compute the differences between the surrogate prediction of various remnant
properties with the value obtained in the NR simulation. For each mass, these
differences are shown as a vertical histogram. Note that the distributions in these
plots are normalized to have a fixed height, not fixed area.

The surfinBH7dq4 fits in Fig. 7.8.4 are evaluated using the NR spins at r =—-100M
as inputs. In typical applications, one may have access to the spins only at the
start of the waveform, rather than at rt = —100M. For this case, as described in
Sec. 7.7, we use a combination of PN and NRSur7dg4 to evolve the spins from

any given starting frequency to t = —100M. These spins are then used to evaluate
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the surfinBH7dqg4 fits. Thus, spins can be specified at any given orbital frequency

and are evolved consistently before estimating the final BH properties. This is a
crucial improvement (introduced by Ref. [57]) over previous results, which, being
calibrated solely to non-precessing systems, suffer from ambiguities regarding the

time/frequency at which spins are defined.

Figure 7.8.5 shows the errors in surfinBH7dgq4 when the spins are specified at an
orbital frequency fp=10Hz. These errors are computed by comparing against 23
long NR (3 x 10°M to 10°M in length) simulations [81] with mass ratios ¢ < 4 and
generically oriented spins with magnitudes y1, y2 ~ 0.5. None of these simulations
were used to train the fits. Longer PN evolutions are needed at lower total masses,
and the errors are therefore larger. These errors will decrease with an improved spin
evolution procedure. Note, however, that our predictions are still more accurate than

those of existing fitting formulae (cf. Fig. 7.8.4).

7.9 Conclusion

We present new NR surrogate models for precessing BBH systems with generic
spins and unequal masses. In particular, we model the two most-used outputs of NR
simulations: the gravitational waveform and the properties (mass, spin, and recoil
kick) of the final BH formed after the merger. Trained against 1528 NR simulations
with mass ratios ¢ < 4, spin magnitudes yi» < 0.8, and generic spin directions,
both these models are shown to reproduce the NR simulations with accuracies

comparable to those of the simulations themselves.

The waveform model, NRSur7dg4, includes all spin-weighted spherical harmonic
modes up to £ = 4. The precession frame dynamics and spin evolution of the BHs
are also modeled as byproducts. Through a cross-validation study, we show that the
mismatches for NRSur7dqg4 against NR computed with the Advanced LIGO design
sensitivity noise curve are always < 8 x 1073 at the 95 percentile level over the mass
range 50 —200M,,. This is at least an order of magnitude improvement over existing
waveform models. Compared to NRSur7dq2 [56], which was trained on g < 2, the
new NRSur7dg4 model extends the range of accessible mass ratios while being just

as accurate as the NRSur7dq2 model over their common domain of applicability.

For the final BH model, surfinBH7dg4, the 95th percentile errors are ~5x10~*M for
mass, ~2x1073 for spin magnitude, ~4x10~% ¢ for kick magnitude. Once again, these
are lower than that of existing models by at least an order of magnitude. In addition,

we also model the spin and kick directions. Moreover, the GPR methods employed
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here naturally provide error estimates along with the fitted values. These uncertainty
estimates can be incorporated into data analysis applications to marginalize over

systematic uncertainties.

Future work

In App. 7.A we test the performance of these surrogate models when extrapolated
outside their training range to ¢ = 6. We find that our models degrade significantly
at these mass ratios, but suitable precessing simulations are currently not available
for testing at intermediate mass ratios 4 < g < 6. In general, we advice caution with
extrapolation. A natural improvement of both NRSur7dq4 and surfinBH7dqg4 is to
extend their range of validity with new training simulations at higher mass ratios
and spin magnitudes. We note, however, that both these regimes are increasingly
expensive to model in NR.

140 — | NRSur7dqg4
_ + GW150914
<1208 | GW151012
= 100 b + GW151226
® + GW170104
g o + GW170608
= ——- + GW170729
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Figure 7.9.1: The shaded region shows the regime of validity of the (2,2) mode
of NRSur7dg4 with a starting frequency of 20 Hz. Also shown are the parameter
ranges for the 10 BBH signals seen by LIGO and Virgo during the first two observing
runs [9]. The markers indicate the median values of the marginalized posteriors for
the detector frame total mass M and mass ratio q. The error bars indicate the range
between the Sth percentile and 95th percentile values of the posteriors.

Another important limitation of these models is that they are restricted to the same
length as the NR simulations (starting time of ~ 4300M before the peak or about 20
orbits). For LIGO, assuming a starting GW frequency of 20 Hz, the (2, 2) mode of

the surrogate is valid for total masses M > 66 M. This number, however, depends



206

on the mass ratio. Fig. 7.9.1 shows the mass range of validity of NRSur7dq4 as
a function of mass ratio. We compare this with the parameters of the 10 BBH
detections seen by LIGO and Virgo in the first two observing runs [9]. NRSur7dq4
sufficiently covers the posterior spread of most but not all of these detections, the
main limitation being the number of orbits covered by the model. However, see

Ref. [101] for an example of NR surrogates used in data analysis with GW signals.

A promising avenue to extend the length of the waveforms is to “hybridize” the
simulations using PN waveforms in the early inspiral. This approach already was
found to be successful for the case of aligned-spin BBH [79], but still needs to be
generalized to precessing spins. Furthermore, it is not clear if the current length
of the NR simulations is sufficient to guarantee good attachment of the PN and NR

waveforms for precessing BBH.

Despite these limitations, in their regime of validity, the models presented in the
paper are the most accurate models currently available for precessing BBHs. As
shown in this paper, our models rival the accuracy of the NR simulations, while
being very cheap to evaluate. As more and more BBHs are detected at higher signal-
to-noise ratios, fast yet accurate models such as these will contribute to turning GW

astronomy into high precision science.
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APPENDIX

7.A Evaluating surrogates at larger mass ratios

In this Appendix we assess the performance of the NRSur7dq4 and surfinBH7dq4
models when evaluated at mass ratio ¢ = 6. Doing so is effectively an extrapolation
because g = 6 is outside the training range of the surrogates (¢ < 4). Figure 7.A.1
shows the errors for NRSur7dq4 when compared against 100 NR simulations with
g = 6 and generically precessing spins with magnitudes y1, y2 < 0.8. These simu-
lations have been assigned the identifiers SXS:BBH:2164 - SXS:BBH:2263, and are
made publicly available through the SXS public catalog [80]. The mismatches are
computed in the same manner as in the left panel of Fig. 7.8.1, which we reproduce

here for comparison.
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Figure 7.A.1: Mismatch histogram when extrapolating the NRSur7dq4 waveform
model to mass ratio ¢ = 6. The mismatches are computed using a flat noise curve.
The training range errors from the left panel of Fig. 7.8.1 are reproduced here for
comparison. The square (triangle) markers indicate median (95th percentile) values.

Similarly, Fig. 7.A.2 shows the performance of surfinBH7dq4 when extrapolating
to g = 6. We show the errors when the fits are evaluated using the NR spins at
t=—100M as well as when the spins are specified at the start of the NR simulations.
In the latter case, we use the extrapolated dynamics surrogate of NRSur7dq4 to
evolve the spins to t=—100M and then evaluate the fits. We reproduce the training

range errors from Fig. 7.8.4 for comparison.
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Figure 7.A.2: Error histograms of the remnant mass, spin magnitude and kick
magnitude when extrapolating surfinBH7dq4 to mass ratio ¢ = 6. The training
range errors from Fig. 7.8.4 are reproduced here for comparison. We show errors
using the NR spins at t = —-100M (yellow) as well as the initial NR spins (blue) as
inputs for the model. The square (triangle) markers indicate median (95th percentile)
values.
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We find that both surrogate models degrade significantly when extrapolated to g = 6
and we do not recommend their usage for such mass ratios. Unfortunately, we do
not have enough suitable precessing simulations with 4 < g < 6 with which to test
at what mass ratio the degradation becomes significant. We leave these tests, as well
as extending the models to larger mass ratios by adding NR simulations, to future

work.

7.B  On the high mismatch tail in NR errors
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Figure 7.B.1: Dependence of the NR resolution error on the difference in the
relaxation-time spins of the two highest resolutions (labeled HiRes and MedRes).
The horizontal (vertical) axis shows the difference between the spin of the heavier
(lighter) BH. The colors show the largest (flat noise) mismatch between the wave-
forms of the two resolutions over different points in the sky. Large mismatches
occur when the difference between the relaxation-time spins of the two resolutions
is large.

The histogram of NR errors in the left panel of Fig. 7.8.1 shows a significant
tail to the right, i.e. at large mismatches. In Sec. 7.8, this tail was attributed to
different resolutions of the same NR simulation having different physical parameters,
namely the “initial” spins, which are measured at the relaxation time [81] after the
poorly-resolved junk-radiation transients have settled. In this Appendix we provide
some evidence for this claim. Figure 7.B.1 shows the maximum mismatch (with
a flat noise curve) over points in the sky versus the difference in the relaxation-
time dimensionless spins between the two highest resolutions. We refer to the

two highest resolutions as HiRes and MedRes, and their corresponding relaxation-
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time dimensionless spins are denoted by (,\/{ﬁReS, ,\/ghReS) and (/\/yedRes, X;‘/IedRes),
respectively. We note that the largest mismatch occurs when the spin difference is
largest between the two resolutions. For a significant fraction of the simulations the
spins can be different by about 0.1; for these cases the two resolutions essentially
represent two different physical systems, so the difference in waveforms between the

two resolutions fails to be a good estimate of the truncation error in the simulations.
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Figure 7.B.2: Mismatch histograms for NRSur7dq4 when compared against the
two highest available NR simulations (referred to as HiRes and MedRes). Also
shown are mismatches between the two resolutions (labeled NR). The “NRSur7dq4
vs HiRes” and NR errors are the same as the red and black histograms, respectively,
in the left panel of Fig. 7.8.1. These are flat noise mismatches, computed at several
points in the sky. The square (triangle) markers indicate median (95th percentile)
values.

Figure 7.B.1 suggests that the high NR mismatch tail of Fig. 7.8.1 is artificially
large, and if the two resolutions were to correspond to the same physical system,
the tail would be shorter. We test this in Fig. 7.B.2, where we compare the surro-
gate against the MedRes simulations, but use the spins of the MedRes simulation
(ledRes, yMedRes) 16 evaluate the surrogate. The surrogate mismatches against the
HiRes simulations as well as the NR resolution mismatches (HiRes vs MedRes) are
reproduced from Fig. 7.8.1 for comparison. We note that the surrogate mismatches
when compared against the MedRes simulations always lie below ~ 1072 and do
not have the high mismatch tail seen for the NR resolution mismatches. In this
test, we are treating the surrogate, which is trained on the HiRes simulations, as

a proxy for the HiRes dataset. Evaluating the surrogate with the parameters of a
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MedRes simulation is treated as a proxy for performing the HiRes simulation with
the same parameters. Therefore, the green histogram in Fig. 7.B.2 can be treated as
the “true” resolution error when the parameters of the resolutions are the same. As
expected for this case, this estimate of the resolution error agrees with the errors for

the surrogate model (red histogram).

Together, Figs. 7.B.1 and 7.B.2 show that the high NR mismatch tail in the left
panel of Fig. 7.8.1 is due to the difference in the parameters of the different NR
resolutions. We believe this difference arises from spurious initial transients known
as “junk radiation”. These transients result from initial data that do not precisely
represent a snapshot of a binary that has evolved from ¢ = —co. The transients
quickly leave the simulation domain after about one or two binary orbits. It is
computationally expensive to resolve the high spatial and temporal frequencies of
the transients, so we typically choose not to resolve these transients at all, and
instead we simply discard the initial part of the waveform. Because some of the
transients carry energy and angular momentum down the BHs, the masses and
spins are modified, so we measure “initial” masses and spins at a relaxation time
[81] deemed sufficiently late that the transients have decayed away. Because we do
not fully resolve the transients, their effect on the masses and spins are not always

convergent with resolution.

This issue should ideally be resolved with improved, junk-free initial data (see
Ref. [102] for steps in this direction). In the meantime, we propose a change
in how SpEC performs different resolutions for the same simulation. Currently,
initial data are constructed by solving the Einstein constraint equations [74, 103].
The same constraint-satisfying initial data are then interpolated onto several grids of
different resolution, and Einstein’s equations are evolved on each grid independently.
Our proposal is to first evolve the initial data using the high resolution grid until the
transients leave the simulation domain, and then interpolate the data at that time onto
grids of lower resolution, and evolve Einstein’s equations on these lower-resolution
grids independently. This way all resolutions start with the same initial data at a
time after transients have decayed away instead of at the start of the simulation, and

the masses and spins of the black holes should be convergent.

This proposal is tested in Fig. 7.B.3 for the case leading to the largest NR mismatch
in the left panel of Fig. 7.8.1. We perform the resolution branching at t ~ 1000M
after the start of the high resolution simulation. The outer boundary is at ~ 600M

and this is sufficient time for junk radiation to leave the simulation domain. We find
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Figure 7.B.3: NR resolution mismatches for the simulation leading to the largest
NR mismatch in the left panel of Fig. 7.8.1. The different samples in the histogram
correspond to comparisons at different angles on the sky. The blue histogram shows
the current resolution errors when the two resolutions start with the same initial data
at the start of the simulation. All points in the blue histogram are the same as those
included in the left panel of Fig. 7.8.1. The green histogram shows the resolution
errors for the same case when the two resolutions start with the same initial data
at ~ 1000M after start, at which point the junk radiation has left the simulation
domain.

that the mismatches decrease significantly when the resolution branching is done

post-junk, as the resolutions now correspond to the same physical system.
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Chapter 8

THE BINARY BLACK HOLE EXPLORER: ON-THE-FLY
VISUALIZATIONS OF PRECESSING BINARY BLACK HOLES

Vijay Varma, Leo C. Stein, and Davide Gerosa, Classical and Quantum Gravity, 36,
095007 (2019), arxiv:1811.06552.

8.1 Executive summary

An important application of numerical relativity simulations is in visualizing the
complex dynamics of a black hole merger. However, these simulations are very
expensive, taking a month on a supercomputer. This Chapter presents a Python
visualization package based on numerical relativity surrogate models. These models
are very accurate yet cheap, meaning that the visualizations can be generated within
a few seconds on a laptop. This demonstrates the power of surrogate models: from

supercomputers to your laptop!

8.2 Abstract

Binary black hole mergers are of great interest to the astrophysics community, not
least because of their promise to test general relativity in the highly dynamic, strong
field regime. Detections of gravitational waves from these sources by LIGO and
Virgo have garnered widespread media and public attention. Among these sources,
precessing systems (with misaligned black-hole spin/orbital angular momentum)
are of particular interest because of the rich dynamics they offer. However, these
systems are, in turn, more complex compared to nonprecessing systems, making
them harder to model or develop intuition about. Visualizations of numerical
simulations of precessing systems provide a means to understand and gain insights
about these systems. However, since these simulations are very expensive, they can
only be performed at a small number of points in parameter space. We present
binaryBHexp, a tool that makes use of surrogate models of numerical simulations
to generate on-the-fly interactive visualizations of precessing binary black holes.
These visualizations can be generated in a few seconds, and at any point in the 7-
dimensional parameter space of the underlying surrogate models. With illustrative

examples, we demonstrate how this tool can be used to learn about precessing binary
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black hole systems.

8.3 Introduction

The merger of two black holes (BHs) is one of the most violent events in the Universe.
In the span of a few seconds, the incredible amount of energy ~109MeV [1] is
liberated in gravitational waves (GWs). These “ripples in spacetime” travel across
the Universe at the speed of light to our detectors, providing us unique insights into

these spectacular astrophysical events.

The first direct detection [1] of GWs from a BH merger was achieved in 2015 by
the LIGO [2] twin detectors. This is one of the greatest achievements in modern
science, crowning decades of theoretical and experimental efforts in gravitational
physics. The detection of GWs not only earned the 2017 Nobel Prize in physics [3],
but also sparked an unprecedented interest in science among the general public. For

a few days, BHs were on the front pages of most newspapers in the world!

Despite the immense technical difficulties in detecting them, astrophysical BHs are
remarkably simple objects, characterized only by their mass and spin. From far
away they can be thought of as the analogs of Newtonian point masses in Einstein’s
general relativity (GR). Near a BH, departures from Newtonian gravity such as the
event horizon, gravitational lensing, gravitational time dilation, frame dragging, etc,

become apparent.

When in a binary system, the departure is even more drastic. First, there are no
stable binary orbits in GR: emission of GWs takes away energy, angular momentum,
and linear momentum from the system, causing the binary’s orbit to shrink. Second,
in Newtonian gravity, a point-mass binary orbit that starts in the equatorial plane
remains in the equatorial plane. In GR, on the other hand, if the BH spins are
misaligned with respect to the orbital angular momentum, relativistic spin-spin and
spin-orbit couplings cause the system to precess [4—7]. Much like a top whose spin
axis is misaligned with the orbital angular momentum, the spins and the orbital
angular momentum oscillate about the direction of the total angular momentum.
This precession is imprinted on the observed gravitational waves as characteristic

modulations of amplitude and frequency.

The evolution of a binary BH system can be divided into three stages: inspiral,
merger, and ringdown. During the inspiral, the BHs gradually approach each other

due to loss of energy and angular momentum to GWs. As they get closer, they
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eventually coalesce and merge. After the merger, one is left with a single, but highly
distorted, BH. In the final stage, called ringdown, all these perturbations (‘“‘hairs”)
are radiated away and the remnant settles down to its final steady state. The remnant
BH is characterized entirely by it mass, spin, and recoil velocity (or “kick”). These
properties are associated with the asymptotic conservation laws of energy, angular

momentum, and linear momentum, respectively.

Modeling GWs emitted during all three stages is crucial to interpreting observations
from detectors like LIGO [2] and Virgo [8]. The merger phase, in particular, can only
be captured accurately with expensive numerical-relativity (NR) simulations (see
e.g. Ref. [9] for a review). Obtaining a single merger waveform prediction might
take months of computational time on powerful supercomputers. Visualizations [10]
of these simulations have been instrumental in disseminating GW discoveries for
outreach and educational purposes. To some extent, experts in the field also rely on
visual products to develop intuition and illuminate future directions for research. In
particular, visualizations of precessing binary BHs can give valuable insights into
their complex dynamics. Available visualizations directly rely on NR simulations,
and are therefore restricted to the small number of configurations which have been
simulated. Generating a new visualization at a generic point in parameter space

would involve a new, expensive NR simulation.

In this paper, we present the “binary Black Hole explorer” (surfinBH): a new tool
to generate on-the-fly, yet accurate, interactive visualizations of precessing binary
black hole evolutions with arbitrary parameters. We rely on recent NR surrogate
models. Trained against several hundreds of numerical simulations, these models
have been shown to accurately model both the emitted gravitational waveform [11]
and the BH remnant properties [12] of precessing binary BH systems. With our
easy-to-install-and-use Python package, one can generate visualizations within a few
seconds on a standard, off-the-shelf, laptop computer. Some examples are available
at vijayvarma392.github.io/binaryBHexp.

Figure 8.3.1 shows snapshots from a visualization generated with surfinBH. During
the inspiral, both radiation reaction and spin precession are at play. While the
separation shrinks because of GW emission, the orientations of the spins, and the

orbital angular momentum, all vary in time. The GW emission frequency gradually
-3/2 -1
12 12°
separation, producing a distinctive “chirp” where both frequency and amplitude

scales as f ~ r,,’'", and amplitude scales as h ~ r;,, where ry is the binary

sweep up over time. GW's are emitted in two polarizations, 4, and hy, as predicted
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Figure 8.3.1: Snapshots during the inspiral (top-left), post-ringdown (top-right),
and intermediate (bottom) stages of a precessing binary BH evolution. Each BH
horizon is represented by an oblate spheroid. The arrows on the BHs indicate the
spin vectors; the larger the spin the longer the arrow. The arrow centered at the
origin indicates the orbital angular momentum. On the bottom plane, we show
the plus polarization of GWs, as seen by an observer at each point. Red (blue)
colors indicate positive (negative) values. Notice the quadrupolar nature of the
emitted waves. The subplots at the bottom of each panel show GW plus and cross
polarizations, as seen by a far-away observer viewing from the camera viewing
angle. The time to the peak of the waveform amplitude is indicated in the figure
text as well as the slider in the bottom subplots. This animation is available at
vijayvarma392.github.io/binaryBHexp/#prec_bbh.
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by Einstein’s GR. As explored later, the relative amplitude of the two polarizations
crucially depends on orientation of the observer with respect to the binary. Spin
precession causes amplitude modulations during the inspiral phase, which are also
dependent on the observer orientation. After merger, the component BHs are
replaced by a remnant BH, whose properties are determined by conservation laws,
as mentioned above. The merger process emits copious gravitational radiation, and

corresponds to the peak amplitude of the waveform.

The rest of the paper is organized as follows. Sec. 8.4 describes methods and
approximations employed to generate visualizations such as Fig. 8.3.1. In Sec. 8.5,
we demonstrate the power of this tool with several examples aimed at exploring
known phenomenology in BH dynamics. Sec. 8.6 describes code implementation

and usage. Finally, we provide concluding remarks in Sec. 8.7.

8.4 Methods
Preliminaries

We start with some definitions, referring the reader to standard GR and GW textbooks
for more details [13-18]. Throughout this paper, we use geometric units with
G=c=1.

Anisolated astrophysical BH is characterized entirely by its mass m and spin angular
momentum S = ym?. yx is the dimensionless spin, with magnitude y < 1, and

a = ym is the Kerr parameter.

A quasicircular precessing binary BH system is characterized by seven intrinsic
parameters: mass ratio g = mj/mjy, and two spin vectors Y1, 2. Here, subscript 1
(2) corresponds to the heavier (lighter) of the two BHs. The total mass of the system
M = my + my can be scaled out. Therefore, throughout this paper, all length and
time quantities are in units of M. Similarly, all frequency quantities are in units of
1/M. After the merger takes place, the remnant BH is characterized by its mass m ,

spin y y and recoil velocity v .

If the BH spins are (anti-)aligned with respect to the orbital angular momentum L,
the emitted GWs have monotonically increasing amplitude and frequency. Instead,
if the component spins are misaligned with respect to L, couplings between the
momenta L, S, and S, cause them to precess about the direction of the total angular
momentum J = L + 8| +S,. GW amplitude and frequency are not monotonic, and

their modulations strongly depend on the viewing angle [4]. This complexity can
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Figure 8.4.1: Example of the real part of the (£ = 2,m = 1) spin-weighted spherical
harmonic mode (see Sec. 8.4) of the GW for a precessing black hole binary, in the
inertial (top) and coprecessing (bottom) frames. ¢t = 0 corresponds to the peak of
the waveform amplitude.

be in part removed by moving into a non-inertial reference frame which tracks the
direction of L [19-21]. In this coprecessing frame, the waveform looks nearly as
simple as that of a nonprecessing source (cf. bottom panel of Fig. 8.4.1), and can be

modeled with methods developed to study nonprecessing systems.

Surrogate models

NR surrogate models provide a fast-but-accurate method to model GW signals. We
use a model developed by Blackman et al. [11] named NRSur7dq2 to predict both
the waveform and the BH spin dynamics. NRSur7dq2 was trained against 886
NR simulations in the 7-dimensional parameter space of mass ratios ¢ < 2, and
dimensionless spin magnitudes yi, x> < 0.8. NRSur7dq2 predicts both the emitted
GWs and the associated BH spin dynamics. In particular, it models four important
quantities that we make use of in this work: (i) the waveform modes #/;,, expanded
in spin-weighted spherical harmonics (cf. Sec. 8.4); (ii) the unit quaternions Q(t)
describing the rotation between the coprecessing frame and a specified inertial
frame; (iii) the orbital phase in the coprecessing frame ¢ ; and (iv) the precession

of component spins Y1, y2 over time.
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Modeling the BH remnant’s properties is performed with the surrogate surfinBH7dq2 [12],
which was also trained on the same set of NR simulations. This model takes in mass
ratio ¢ and component spin vectors Y1, x2 at a given orbital frequency, and models

the remnant mass my, spin vector y r, and kick vector v .

Black-hole shapes

In our visualizations, we represent BH horizons with ellipsoids of revolution. The
axis of symmetry is along the instantaneous spin of the BH. The polar (along the

axis) and the equatorial (orthogonal to the axis) horizon radii are set to

— — 2
Tpol = T+, requi—\/r++a25 8.1)

where r, = m + Vm? — a2. Ipol and reqyi correspond to the Kerr-Schild [18, 22]
coordinate distances from the BH center to the pole/equator of the horizon. Note that
numerical simulations use a different coordinate system, meaning the BH shapes
would be different even for an isolated BH. However, this captures the azimuthal

symmetry and oblate nature seen in most coordinate systems.

This approximation, however, neglects much of the interesting phenomenology of
event horizons (EHs) of BHs in binaries [15, 23, 24]. Event horizons are defined
globally, so the locations of EHs cannot be determined without knowing the entire
future development of a spacetime. Most NR simulations track the location of
apparent horizons (AHs) [15], which can be defined locally. Both EHs and AHs
of orbiting BHs are deformed by the tidal field of the other BH. This distortion
becomes very strong close to merger, where the shape of the two event horizons
do not resemble, even vaguely, that of ellipsoids (see e.g. [25]). Improving our
representation of EH shapes requires building surrogate models for the morphology

of the EH/AH, which is an interesting avenue for future work.

In addition, we assume the masses of the BHs are constant during the evolution.
While the masses in an NR simulation can change due to in-falling energy through
GWs, this is a very small effect (4PN (Post Newtonian) higher than leading orbital
energy loss [26—28]) that is safely ignored in current waveform models including
NRSur7dq2.

Component black-hole spin evolution

The two spins Y1, x2 are modeled using NRSur7dq2. These are known to agree well

with NR simulations and are crucial for the accuracy of that waveform model [11].
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Note, however, that the spins modeled by NRSur7dq2 have had an additional smooth-
ing filter applied to remove short-timescale oscillations [11]. This approximation
propagates to our visualizations. Similarly to the masses of the BHs, we assume the
spin magnitudes are constant during the evolution. In-falling angular momentum
in the form of GWs can alter the spin magnitudes, but this is also a very small
effect (4PN higher than leading angular-momentum loss [27, 28]) that is ignored by
current waveform models including NRSur7dq?2.

Spins are represented as arrows centered at the BH centers, that are proportional to
the Kerr parameter a of each BH. More specifically, the length is set to 10a, and the
direction is along @. The exaggeration of the magnitude is necessary to make the

spin vectors clearly visible during the evolution; more on this in the next section.

Orbital angular momentum

NRSur7dq2 only predicts the unit rotation quaternion Q(f) and not the magnitude
L. The (time dependent) direction of orbital plane is inferred from Q(¢) and is
orthogonal to the z-axis of the coprecessing frame. For the magnitude L, we
implement the Newtonian expression

= Mzﬁ (Mwor) ™3, (8.2)

where wqr, is the orbital frequency, as derived from the orbital phase in the copre-

cessing frame modeled by NRSur7dq2,

d
Wory = ‘fl‘t’rb . (8.3)

In our visualizations, the angular momentum is indicated by an arrow at the origin.
Its magnitude is rescaled to 12L. This factor is arbitrary and it is chosen to make

the arrow clearly visible.

Note that it is not appropriate to compare an arrow for orbital angular momentum
L o« M? to those representing the Kerr parameters a,a, « M because they have
different dimensions. The choice of representing a, rather than the S o« M? was
made to allow all arrows to be clearly visible throughout the inspiral for generic
locations in the parameter space (i.e. different mass ratios). However, we provide
an option to represent S for the spin arrows (cf. Sec. 8.6), in which case the arrow
magnitudes are set to 12S. This makes the arrow on the smaller BH barely visible

in some cases, but allows direct comparison of the spin arrows to the orbital angular
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momentum arrow. This could be informative for gaining intuition about peculiar
spin phenomena like transitional precession [4, 29], spin orbit resonances [30],
large nutations [31, 32] and precessional instabilities [33]. This phenomenology is
currently beyond the scope of the surrogate we used, but is being actively researched
with NR simulations [34, 35] and lies within the realm of future hybridized surrogate

models (see e.g. [36]).

Component black-hole trajectories

The gauge symmetry of GR is broken in an NR simulation, since one necessarily
has to specify a set of coordinates to represent the solution on a computer. The BH
trajectories extracted from numerical simulations are, therefore, inherently gauge

dependent.

In the construction of NRSur7dq2 [11] quantities like Q(r) and ¢ are obtained
from the GWs extrapolated to future null infinity, not from numerical simulations’

BH coordinates.

In our visualizations, we reconstruct the trajectories of the BHs using the dynamics
predicted by NRSur7dg2 and some PN arguments. In particular, one needs the
separation between the BHs as a function of the orbital frequency, ri2(werb), With
the orbital frequency defined as in Eq. (8.3). The separation rj>(web) is modeled
using the 3.5PN expressions reported in Eq. (4.3) of Ref. [37], along with the 2PN
spin-spin term from Eq. (4.13) of Ref. [5].

Let us write the coprecessing frame coordinates as (x, y’, z"). The trajectories in the
coprecessing frame, where the orbital plane is orthogonal to the z’—axis, are given
by

X| = 71COS orp X}, = =12 COS Porb

yll = r1 8in Porp yé = —r2 Sin Porp (8.4)
/ [

;=0 z,=0

where r; (rp) indicates the coordinate separation from the origin to the primary

(secondary) BH center. We use the Newtonian relations

r = % 12, r = % 12, (8.5)

to enforce the Newtonian center-of-mass of the binary to be at the origin. This

ignores the fact that true center of mass during inspiral and merger oscillates about
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Figure 8.4.2: Comparison of the coordinate trajectories of the heavier BH for a
precessing binary BH, between NR, and our approximation using NRSur7dq2 and
PN. ¢t = 0 corresponds to the peak of the waveform amplitude. The mass ratio, and
spins at = —4500M are shown at the top of the plot.

the origin due to linear momentum carried away in GW. However, this correction
would be too small to be noticeable on the scale of our visualizations (see e.g. Fig. 2
of [38]).

Given the trajectories in the coprecessing frame, the trajectories in the inertial frame
are obtained by a quaternion transformation with the time-dependent rotation (unit)
quaternions Q(r) (for a brief introduction to quaternions in this context, see e.g.
App. A of [39]). Treating the Euclidean positions as purely imaginary quaternions,

the transformation is
xi =0 x 07'(). (8.6)

Figure 8.4.2 compares the trajectories predicted by our method to the gauge-

dependent ones extracted from an NR simulation. Our approximate trajectories
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turn out to be remarkably close to the NR trajectories. The dominant deviations are
due to the PN formulae being in harmonic gauge, whereas the NR simulations use

the damped harmonic gauge [40].

Gravitational waves

NR simulations predict the entire spacetime metric of a binary BH evolution. How-
ever, the full metric is usually discarded because most applications (notably GW

observations) only require the gravitational waves as seen by an observer far away.

Indeed, splitting the metric into GWs and a non-oscillatory part can only be well
defined in the wave zone, which is at distances r much larger than the gravitational
wavelength A. Let us suppose we are in a spacetime that is approximately Minkowski
space, with a metric perturbation #,p, in the transverse-tracefree (TT) gauge [41].
We define a spherical polar coordinate system (z,r, 6, ¢) with the binary center-of-
mass at the origin. The z axis (6 = 0) of this coordinate system is parallel to L at
some reference time/frequency. The x axis lies along the line of separation from the
lighter BH to the heavier BH at this time/frequency, and the y axis completes the

triad.

The spherically outgoing gravitational wave is typically converted into a spin-weight
—2 complex scalar by contracting & = hgpm®m®, where m® = (eg + iég)/ V2 is an

2a sa

element of a complex null dyad [ 18] along with its conjugate m“; and where é%, ¢% are

0° ¢
the standard unit vectors in the 6 and ¢ directions, respectively. The gravitational-

wave strain £ is then decomposed as

o £
h(ta r’ 8’ ¢) = Z Z —2Y€m(9’ ¢) hfm(t’ r) s (87)
=2 m=—¢
where _,Y,, are the s = -2 spin-weighted spherical harmonics [42]. The functions

h¢,, are referred to as the modes of the GWs.

From the structure of the flat-space d’Alembertian operator, we can see that at large
distances, /1 is dominated by a piece decaying as ~ 1/r along lines of constant
retarded time ¢,,; = t — r [43]. This motivates how waves are extracted from NR.
First, (rhe,,) is evaluated on spheres of various radii in the computational domain.

This is then extrapolated to future null infinity, defining

(rhem)(t) = rli_)n(}or he(t —r,r). (8.8)
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NRSur7dq2 only models these extrapolated GW modes, (/)™ .

One can evaluate the GWs at any particular orientation in the source frame at r — oo
by applying Eq. (8.7) to (rh¢y,)(t). This is used to generate the waveform time
series in the bottom subplots of our animations (cf. Fig. 8.3.1), where we show the
plus iy = R(h) and cross hy = —3J(h) polarizations. We use all the spin-weighted
spherical harmonic modes provided by NRSur7dq2,i.e. 2 < £ <4 and |m| < €.

Since the full metric is not available in the bulk, we approximate it from (rh).
When showing GWs on the bottom plane of our visualizations (cf. Fig. 8.3.1), we
approximate the strain as

()1, 0.8)

r

h(t,r,0,¢) ~

(8.9)

This neglects curved-background effects such as tails, and higher order 1/r correc-
tions, so this approximation is only valid at large r. More work would be needed
to recover the higher powers of 1/r, but it is technically possible (see Eq. (2.53a)
of [43]). The default position of the bottom-plane is quite close to the binary;

moving it farther out improves this approximation.

Post merger phase

In NR simulations, a common apparent horizon typically forms at a retarded time
close to the peak of the waveform A% = 2itm |hem|?.  This is taken to be the
definition of the time of merger. We therefore shift the time variable ¢ such that
t =0 corresponds to max; A. Att > 0, the two component BHs are replaced by a
single remnant. The final mass, spin, and kick of the remnant are predicted using
surfinBH7dqg2 [12].

Mass and spins of the remnant are used to draw a horizon ellipsoid and spin arrow as
specified in Sec. 8.4 and Sec. 8.4. The remnant BH horizon is expected to be highly
distorted at the common horizon formation time. We ignore this effect and simply

represent the remnant BH by an ellipsoid of constant shape from # =0 onwards.

During a BH inspiral and merger, linear momentum emitted in GW's causes motion
of the binary’s center of mass (cf. e.g. Ref. [38] and references therein). In practice,
however, linear momentum flux is negligible at early times and the “kick” is only
accumulated over the last few cycles before merger. Here we make the additional
simplification of neglecting this effect, and assume that the remnant is formed at the

origin and receives all of its kick velocity instantaneously. However, as mentioned
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before, this correction would be at a scale that is not noticeable in our visualizations
(cf. Fig. 2 of [38]).

Time steps and displayed text

To better highlight different phases of the evolution, we use a non-uniform time step.
The time step between frames at ¢+ < 75M is chosen to obtain 30 frames for each
orbit. The animation, therefore, is artificially slowed down close to merger, so that
the entire dynamics is easier to observe. After the ringdown stage, the animation is
sped up to better illustrate the final kick. The current time is displayed in the figure
text, as well as indicated by the blue vertical slider in the bottom waveform subplot
(cf. Fig. 8.3.1).

The figure text at the top-left of the main visualization panel shows the parameters
of the binary (remnant). At times ¢ < 0, these are the mass ratio and instantaneous

spin components. Mass, spin and kick of the remnant BH are shown after merger.

8.5 Explorations

We now provide additional examples that demonstrate the power and utility of our

visualizations.

Waveform projection

Figure 8.4.3 shows a visualization of a precessing binary BH, when we also vary
the camera viewing angle during the evolution. The polarization content and the
morphology of the waveform therefore strongly depend on the direction of the line
of sight, which can be understood as follows. From Eq. (8.7), the observer viewing
angles (6, ¢) affect the relative weights with which the waveform modes #,, are
combined into the strain 4. Note that the standard quadrupole formula for GW
emission only contains the dominant £ =|m|=2 modes, while here we use all modes
with £ < 4.

The GW amplitude is strongest along the direction of L. This is evident from the
bottom panel of Fig. 8.4.3, where the direction of L aligns with the observer’s view-
ing angle (i.e., the binary is face-on). On the other hand (top-left panel of Fig. 8.4.3)
the GW amplitude is at its least when the observer viewing angle is orthogonal to
L (edge-on). The contribution of higher harmonics ¢ > 2 to Eq. (8.7) also depends

on observer viewing angle. For face-on binaries, the GWs are strongly dominated
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Figure 8.4.3: Visualization of a precessing binary black hole system where we
also vary the camera viewing angle during the inspiral. Notice how the waveform
structure in the bottom subplots changes based on whether the viewing angle is
edge-on (top-left), intermediate (top-right), or face-on (bottom). This animation is
available at vijayvarma392.github.io/binaryBHexp/#prec_bbh_rotating_camera.
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by the quadrupolar modes. Going from face-on to edge-on, the contribution of the

quadrupolar modes decreases and that of the nonquadrupolar modes increases.

One can also infer the polarization content of the GWs from the waveform panel.
If there is a +90° phase shift between h, = R(h) and hx = —3(h), the GWs
are circularly polarized. The bottom panel of Fig. 8.4.3, which is mostly face-on,
shows almost perfect circular polarization, deviating due to precession of the orbital
plane. For comparison, when /4, and hy are proportional with a real constant of
proportionality, the GW has a linear polarization (this includes the simpler case
where one of the two polarizations vanishes). The top-left panel of Fig. 8.4.3, where
the system is (almost) edge-on, exhibits (almost) linear polarization at many times
throughout the inspiral. Again the deviations are due to precession of the orbital
plane. The modulation is more noticeable for nearly edge-on precessing systems,
since one of the polarizations can temporarily vanish as the system precesses through

perfectly edge-on configurations.

Orbital hang-up effect

Apart from precession, the BH spins have other important effects on the evolution of
binaries. One such effect is the so called orbital hang-up effect [44—46] which delays
or prompts the merger of the BHs based on the sign of the BH spin component along
the orbital angular momentum, S - L, where S is one of S; or S,. This spin-orbit
coupling is a 1.5 PN effect that effectively acts as an additional repulsion (attraction)
when the sign of S - L is positive (negative). This means that binaries that have spins
that are aligned (anti-aligned) with L will merge slower (faster) than nonspinning
binaries, when starting from the same orbital frequency. This is analogous to the
location of the innermost stable circular orbits of Kerr BHs, which is at a smaller

(larger) radius for co-(counter-)rotating particles.

This is demonstrated in Fig. 8.5.1, which shows an aligned, nonspinning and an
anti-aligned binary, starting at the same orbital frequency. Unlike the rest of the
animations discussed in this paper, here we use a constant time step between the
frames of the movie (rather than a fixed 30 frames per orbit), and set + = 0 at
the start of the waveform (rather than at the peak). Due to the orbital hang-up
effect, the anti-aligned binary merges first, followed by the nonspinning system, and
finally the aligned system. In addition, the aligned (anti-aligned) binary radiates
more (less) energy due to its prolonged (shortened) evolution, and the final mass is

therefore smaller (larger) than the nonspinning case. The interaction between spin
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Figure 8.5.1: Visualization of the orbital hang-up effect. We show three nonprecess-
ing systems with equal masses, and equal spins. In the left (right) column, both spins
are aligned (anti-aligned) with L, with magnitude 0.8. The middle column shows a
nonspinning binary. All three systems start at an orbital frequency of 0.018 rad/M.
Due to orbital hang-up effect, the length of the waveform is longer (shorter) for the
aligned case compared to the nonspinning case (see the bottom subplots showing
the waveform). Time flows downwards (labeled at the left), and each row corre-
sponds to a fixed time since the start of the animation. This animation is available
at vijayvarma392.github.io/binaryBHexp/#hangup.
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and orbital angular momentum also determines the remnant spin in a non-trivial
way: the aligned (anti-aligned) case results in the largest (smallest) remnant spin

magnitude.

The orbital hang-up effect can also be explained heuristically using the cosmic
censorship conjecture. For the aligned-spin binary in Fig. 8.5.1, the initial magnitude
of total angular momentum is given by J = L + m% X1+ mg X2. Using L from
Eq. (8.2) with wep = 0.018 rad/M, we get J ~ 1.35M?2. This is larger than the
maximum allowed spin angular momentum for a Kerr BH, M2. On the other hand,
for the anti-aligned case we have J = L — m% X1 — mg x> ~ 0.55M?, which is well
within the limit. So, the aligned binary must radiate at least 0.35M? of its total
angular momentum in the form of GWs before it can merge, in order to not violate

cosmic censorship. The anti-aligned case can therefore merge faster.

Super-kick

Next, we consider a binary BH in the so-called super-kick configuration. Anisotropic
emission of GWs causes a net flux of linear momentum, which imparts a kick to
the remnant BH. Some degree of asymmetry is necessary for a nonzero kick [47].
For instance the kick vanishes by symmetry during the merger of an equal-mass,
nonspinning binary BH system. Strongly precessing binary BHs have been found to
generate the highest kicks [48—50]. Some of these systems have kicks large enough

to escape from even the most massive galaxies in the Universe [51, 52].

In particular, a vary large kick (up to ~ 3000 km/s) is imparted to BHs merging
with spins lying in the orbital plane and anti-parallel to each other. These are the
so-called super-kicks first discovered in 2007 [48, 49], by means of NR simulations.
The largest kicks observed in numerical simulations to date are the so-called hangup-
kicks [50], where the spins have non-zero components perpendicular to the orbital
plane, but the in plane spins are anti-parallel. We will refer to all configurations
where the spins near merger are coplanar, and their orbital plane projections are
anti-parallel, as super-kick configurations. Crucially, large kicks are only found if

the spins are in these fine-tuned configurations “near merger.”

For this reason, generating visualizations of BH super-kicks from simulations can
be challenging. The spins are usually specified at the start of the simulations and
several attempts are necessary to find the specific initial conditions that will result
in co-planar spins near merger. With our tool, on the other hand, one can specify the

spins at any time/frequency, including close to merger. Generating a visualization of
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Figure 8.5.2: Evolution of a super-kick configuration. Time flows from left to right
and from top to bottom, as shown at the bottom left of each panel. The top-left panel
shows a snapshot taken in the early inspiral. In the top-right panel, the two BHs
are about to merge and the spins are are seen to be in a super-kick configuration.
The bottom-left snapshot is taken at the time at which the peak of the waveform
hits the bottom plane where the GW pattern is shown. After merger (bottom-right
panel), the final BH is imparted a kick of ~ 3000 km/s (note that we speed up the
animation after the ringdown by increasing the time steps to 100M). This animation
is available at vijayvarma392.github.io/binaryBHexp/#super_kick.
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a system in a super-kick configuration is as easy as any other location in parameter
space. This is shown in Fig. 8.5.2. The remnant reaches a final velocity of ~ 10~2¢
(~ 3000km/s), in agreement with [48-50].
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Figure 8.5.3: Sinusoidal dependence of the kick magnitude on the angle between
spins close to merger. Five different cases are shown (left to right), with equal masses
and equal spins. Both spins are confined to the orbital plane, and are anti-parallel
to each other, but with a different angle in the plane « (labeled at top), specified at
t=—100M. Time flows downwards (labeled at left). The bottom panels show the
sinusoidal dependence of the final kick magnitude on the initial orbital phase. This
animation is available at vijayvarma392.github.io/binaryBHexp/#sine_kicks.

Sinusoidal kick dependence

As suggested above, the remnant kick is quite sensitive to the angle between the
spins close to merger. In particular, the component of the kick parallel to the orbital
angular momentum has been found to depend sinusoidally on the orbital phase [38,
53]. Fig. 8.5.3 demonstrates this effect. All five different cases have equal-mass

BHs, with anti-parallel spins lying in the orbital plane at# = —100M. Each evolution
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