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ABSTRACT

We present a framework for the efficient, yet accurate description of general pe-
riodic truss networks based on concepts of the quasicontinuum (QC) method.
Previous research in coarse-grained truss models has focused either on simple
bar trusses or on two-dimensional beam lattices undergoing small deforma-
tions. Here, we extend the truss QC methodology to nonlinear deformations,
general periodic beam lattices, and three dimensions. We introduce geometric
nonlinearity into the model by using a corotational beam description at the
level of individual truss members. Coarse-graining is achieved by the intro-
duction of representative unit cells and a polynomial interpolation analogous
to traditional QC. General periodic lattices defined by the periodic assembly
of a single unit cell are modeled by retaining all unique degrees of freedom of
the unit cell (identified by a lattice decomposition into simple Bravais lattices)
at each macroscopic point in the simulation, and interpolating each degree
of freedom individually. We show that this interpolation scheme accurately
captures the homogenized properties of periodic truss lattices for uniform de-
formations. In order to showcase the efficiency and accuracy of the method,
we compare coarse-grained simulations to fully-resolved simulations for vari-
ous test problems, including: brittle fracture toughness prediction, static and
dynamic indentation with geometric and material nonlinearities, and uniaxial
tension of a truss lattice plate with a cylindrical hole. We also discover the
notion of stretch locking — a phenomenon where certain lattice topologies are
over-constrained, resulting in artificially stiff behavior similar to volumetric
locking in finite elements — and show that using higher-order interpolation
instead of affine interpolation significantly reduces the error in the presence
of stretch locking in 2D and 3D. Overall, the new technique shows convincing
agreement with exact, discrete results for a wide variety of lattice architec-
tures, and offers opportunities to reduce computational expenses in structural
lattice simulations and thus to efficiently extract the effective mechanical per-
formance of discrete networks.
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1

C h a p t e r 1

INTRODUCTION

1.1 Overview of Microstructured Materials

Many materials that appear to be homogeneous — both natural and en-
gineered — have a mechanical microstructure that greatly influences their
macroscopic properties. All materials have some sort of microstructure (e.g.
polymer networks, atomic grain structures), but by mechanical microstructure,
we mean structural features on a mesoscale larger than the typical microstruc-
tural scales, but on a much smaller scale than the macroscopic size of an
object. Two quintessential examples of naturally occurring materials with me-
chanical microstructure are wood and bone (see Fig. 1.1), but the properties
of other natural materials are also greatly influenced by their microstructure.
The microstructure in wood comes in the form of fibers, which give it its char-
acteristic anisotropy. On the other hand, bone has a seemingly random porous
microstructure, which can lead to isotropic macroscopic properties.

Many engineered materials also make use of microstructure to obtain certain
desirable macroscopic properties. The most common of these materials are
engineered foams. Foams can be made out of a variety of constituent materials,
but they are characterized by their cellular nature and random microstructure.

(a) Cancellous bone (b) Orthogonal slices of cedar wood along the axis of
the fibers (left), and transverse to the fibers (right).

Figure 1.1: Scanning electron micrographs of natural materials with a me-
chanical microstructure, taken from [48]
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Foams are used in many products to achieve a wide variety of reasons, including

• Cars. Car bumpers utilize plastic foams to maximize energy dissipation
in collisions.[95].

• Houses. Plastic foams are the most common thermal insulator used in
buildings[25].

• Aerospace vehicles. The strong and lightweight nature of foams make
them ideal core materials for sandwich panels commonly used in airplanes
[50].

• Mattresses. Memory foam (developed by NASA in the 1970s to im-
prove seat cushioning) is commonly used to make comfortable beds [27].

An excellent overview of mechanical, acoustic, and electrical properties of vari-
ous microstructured materials (including foams, honeycombs, and natural ma-
terials) was presented in Gibson and Ashby [48].

Even though the manufacturing of foams and other materials with random mi-
crostructure has improved and enabled engineering feats like landing a rover
on Mars1, manufacturing materials with a designed, ordered microstructure
has been out of reach until recently. The recent advances in additive manu-
facturing techniques have enabled the creation of materials with an arranged
microstructure — commonly referred to as metamaterials2 — giving engineers
the ability to design materials with virtually any microstructure.

One popular class of mechanical metamaterials are periodic truss lattices. In
part due to their manufacturability, and in part due to some of their desirable
theoretical properties, periodic truss lattices have garnered significant inter-
est in the past decade. Notably, a metal hollow microlattice manufactured
by HRL Laboratories in 2011 pushed the boundaries of ultralight materials by
creating a metamaterial that is 99.99% air [93]. There has also been pioneering
work at smaller scales. Additive manufacturing techniques have been used to

1NASA’s Mars Science Laboratory spacecraft carried the Curiosity rover to the martian
surface in 2012 using a Phenolic Impregnated Carbon Ablator (PICA) heat shield, which
inherits its desirable thermal properties in part from the microstructure of the material.

2The name metamaterials was originally used to refer to microstructured materials with
novel optical or electromagnetic properties, but has since been adopted by other fields to
refer to microstructured materials with other desirable properties (e.g. mechanical, acoustic,
or thermal).
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Figure 1.2: Examples of periodic truss lattices: Ultralight hollow metallic mi-
crolattice [93] (left), solid carbon lattice reprinted by permission from Springer
Nature: Nature Materials [12], copyright 2016 (center), and a hierarchical lat-
tice reproduced from [70](right).

manufacture polymer lattices with sub-micrometer resolution [66]. Further-
more, these polymer lattices have been coated with a thin layer of ceramic
and the polymer has been etched out, leaving an ultralight ceramic hollow
truss lattice with wall thicknesses as low as 5 nanometers [69]. In addition
to the standard periodic truss lattices, there has been interest in hierarchical
truss lattices [70, 115] (truss lattices made of truss lattices) as hierarchical
microstructures are seen in nature.

The ability to design and manufacture these multiscale materials leads directly
to two questions:

1. Given a certain microstructure and the properties of the constituent
material, what are the effective properties at the macroscale?

2. Given desired macroscopic properties, what microstructure and con-
stituent material can be used to achieve the properties?

The first question is hereby referred to as the forward problem since it requires
computing quantities given known inputs. Conversely, the second is referred
to as the inverse problem because it requires finding the inputs that give a
desired output. Since solving the inverse problem requires solving the forward
problem, the decades-old field of extracting the effective macroscopic response
of microstructured materials has recently been revitalized by the advancements
in manufacturing. The theoretical foundation for the micromechanical model-
ing of metamaterials probably began with Hill [52] calculating of the effective,
homogenized moduli of periodic linear elastic composites. Various extensions
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of homogenization theory followed, including probabilistics and wave propa-
gation [21] as well as nonlinearity [46].

While there has been significant work towards answering the forward problem,
the ability to predict the general nonlinear response of metamaterials (e.g.
buckling of truss members, densification, failure of microstructure components,
etc.) is still a challenge. This results in an expensive and slow design cycle
relying on excessive manufacturing and testing to span the design space looking
for microstructures that give desired properties. Ideally, this process could be
expedited using theoretical or computational models, such that solving the
forward problem becomes inexpensive and fast. Then these models could be
used to span the design space of microstructures, and augment the design
process to solve the inverse problem. This is the motivation for the research
in this thesis.

1.2 Outline of this Thesis

The goal of this thesis is to develop a multiscale modeling technique that can
be used to efficiently and accurately model the nonlinear mechanical response
a particular type of metamaterial: periodic truss lattices. In the remainder
of this chapter, we give an overview of truss lattices including some previous
relevant theoretical results, and the experimental literature. Chapter 2 con-
tains the fundamentals of numerical modeling of truss lattices and provides
details on popular numerical methods and their shortcomings, motivating the
research in this thesis: an extension of the quasicontinuum (QC) method to
model complex trusses. Chapter 3 outlines the QC method and formulates the
extension of the method which represents the bulk of the research. Chapter 4
is composed of multiple test cases to show the usefulness of the previously for-
mulated QC method. One of the test cases shows a disagreement between the
QC method and fully-resolved simulations when it comes to predicting the re-
sponse of some bending-dominated lattices. This motivates Chapter 5, where
the notion of stretch locking is investigated, and the previous QC formulation
is modified by using higher-order interpolation functions in order to mitigate
this phenomenon, leading to a more accurate model. In Chapter 6, the com-
putational performance of the method is discussed, and the thesis concludes
in Chapter 7.
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1.3 Finite-Sized Truss Structures

Understanding the mechanical properties of trusses starts with understanding
the differences between the bending stiffness and axial stiffness of a beam. In
an undergraduate mechanics course, we learn that the tip displacements of a
cantilevered beam corresponding to a tip load F in the axial and transverse
directions are

∆x =
FL

EA
and ∆y =

FL3

3EI
, (1.1)

respectively, where L is the length of the beam, E is the Young’s modulus
of the material, A is the cross-sectional area, and I is the moment of inertia.
If the beam has a characteristic cross-section dimension r, the area of the
beam in three dimensions is proportional to r2, while the moment of inertia is
proportional to r4. This means that the stretching and bending stiffness per
unit length of a beam in 3D satisfy

k
(3D)
stretch ∼

( r
L

)2

and k
(3D)
bend ∼

( r
L

)4

. (1.2)

Similar arguments for two-dimensional beams (where the out-of-plane thick-
ness of the beam is constant and independent of r) lead to

k
(2D)
stretch ∼

( r
L

)
and k

(2D)
bend ∼

( r
L

)3

. (1.3)

Since trusses are assumed to be composed of slender beams (i.e. beams with
r/L � 1), the axial, or stretching stiffness can be orders of magnitude larger
than the bending stiffness.

For that reason, the concept of kinematically and statically determinate struc-
tures is important to understanding the mechanical properties of trusses. A
truss structure is said to be kinematically determinate if there are no kinemati-
cally admissible deformations (excluding rigid body modes) such that no truss
member changes its length. Conversely, kinematically indeterminate trusses
are defined as structures where there exists at least one kinematically ad-
missible deformation mode (excluding rigid body modes) such that no truss
members change length. Similarly, a structure is said to be statically deter-
minate if there exist no (nonzero) stress states such that the net force on all
nodes is zero, and a statically indeterminate structure has at least one nonzero
stress state that results in zero forces on all nodes.

If the truss is statically indeterminate, the states of stress that produce a net
zero force on all nodes are called states of self-stress. If a truss is kinematically
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indeterminate, the deformation modes where no truss members change length
are called mechanisms. They are called mechanisms since the truss is able to
deform purely through bending of beams, which is orders of magnitude less
stiff than the stretching deformation modes. In fact, it is common to analyze
truss structures as pin-jointed bars, where the mechanisms are treated as zero-
energy modes. It is therefore common to refer to kinematically determinate
structures as rigid trusses, while kinematically indeterminate structures are
non-rigid.

A detailed formulation of statically and kinematically determinate truss struc-
tures is given in Pellegrino and Calladine [80], and is summarized here. Given
a truss structure with n nodes and b beams, a matrix A ∈ Rdn×b in d dimen-
sions, called the equilibrium matrix, can be used to relate the displacements
of the nodes, u, to the elongations of the beams, e, according to

ATu = e. (1.4)

By using the principle of virtual work, the matrix A can also be used to relate
the tensions in each bar, t, and the forces at each node, f , via

At = f . (1.5)

By the definitions of states of self-stress and mechanisms given above, the
states of self-stress satisfy the equation At = 0, while the mechanisms satisfy
ATu = 0. In other words, the states of self-stress form the nullspace of A,
while the mechanisms form the left nullspace of A.

Therefore, the rigidity of a truss can be determined by the dimensionality of
the left nullspace of A. If dim(null(AT )) = 3 in 2D or dim(null(AT )) = 6

in 3D, then the only mechanisms are the rigid body modes, and the truss
structure is rigid. The dimension of the left nullspace of a matrix is at least as
large as the difference between the number of rows and columns in the matrix.
This leads directly to Maxwell’s relation for the necessary condition for a truss
lattice to be rigid [44],

b ≥ 2d− 3 in 2D, and b ≥ 3d− 6 in 3D. (1.6)

Similar analysis with the states of self-stress lead to the necessary condition
for a truss to be statically determinate (i.e. there are no states of self-stress),
or

b ≤ 2d− 3 in 2D, and b ≤ 3d− 6 in 3D. (1.7)
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Figure 1.3: Examples of rigid and non-rigid truss structures. On the left, a
rigid truss structure satisfying the necessary conditions for static and kinematic
determinacy with no states of self-stress or mechanisms. In the center is a truss
structure that does not satisfy Maxwell’s inequality, and thus has a mechanism
(shown in dotted lines). On the right, a truss structure that satisfies the
necessary conditions for static and kinematic determinacy, but has both a
mechanism and a state of self-stress.

The combination of the two equations suggests that a necessary (but not suffi-
cient) condition for a truss to be both statically and kinematically determinate
is when the inequalities are satisfied as equalities. See Fig. 1.3 for examples
of rigid and non-rigid truss structures. For more information on the equilib-
rium matrix, and how the four fundamental subspaces of A relate to states of
self-stress and mechanisms, see Pellegrino and Calladine [80].

1.4 Brief Overview of Homogenization Theory

Due to the multiscale nature of periodic truss lattices, homogenization tech-
niques are used to understand the response of the effective material. One of the
most important homogenization problems for understanding the quasistatic re-
sponse of metamaterials is that of the two-scale nonlinear elasticity problem.
Since the conclusions drawn from the two-scale homogenization problem are
so important (and will be referenced throughout the thesis) we take the time
here to outline the problem, go over key results, and show how the theory can
be applied to periodic truss lattices.

The macroscale boundary value problem of a heterogeneous body Ω with statis-
tically homogeneous microstructure — represented by a representative volume
element (RVE) ΩUC — aims to identify the deformation mapping or displace-
ment field as the minimizer of the total potential energy

I[uε] =

∫
Ω

W
(x
ε
,∇uε

)
dV − L(uε) (1.8)

subject to essential boundary conditions on ∂Ω1 and traction boundary con-
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Figure 1.4: Two-scale nonlinear elasticity boundary value problem with essen-
tial boundary conditions and applied tractions T . As the characteristic size of
the unit cell ε tends towards zero, homogenization attempts to find a smooth
homogenized energy density W (∇u) to approximate the highly oscillatory en-
ergy density of the

ditions on ∂Ω2 (see Fig. 1.4). Here, W denotes the strain energy density as a
function of position x and the displacement gradient, L is the external force
potential3, and ε is a characteristic size of the RVE. That is, we have

uε = arg min
{
I[uε] | uε ∈ H1

0 (Ω)
}
, (1.9)

where H1
0 (Ω) ⊂ H1(Ω) is the set of functions satisfying the Dirichlet boundary

conditions.

Since the material’s constitutive response fluctuates on the scale of y = x/ε

whereas the boundary value problem (i.e. the geometry and any loading) varies
on the scale of x, one ideally seeks to find a homogeneous energy density
W ∗(∇u) such that Eq. (1.8) converges to the homogeneous total potential
energy

I[u] =

∫
Ω

W ∗(∇u)dV − L(u), (1.10)

in some sense. In particular, it is desired that Eq. (1.8) Γ-converges to
Eq. (1.10), which guarantees the convergence of minimizers of the functionals.
As shown in Geymonat et al. [46], if W (·,∇u) is convex, the homogenized
energy density can be computed by solving the RVE problem

W ∗(∇u) = inf

{
1

|ΩUC|

∫
ΩUC

W (y,∇u+∇v)dV | v ∈ V (ΩUC)

}
, (1.11)

with V (ΩUC) ⊂ H1(ΩUC) being the set of all periodic H1-functions on ΩUC

with zero mean, i.e.
∫

ΩUC
vdV = 0.

3In the case of Fig. 1.4, the external force potential is L(uε) =
∫
∂Ω2

T · uεdS.
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Figure 1.5: The unit cell problem with periodic boundary conditions. The
average deformation gradient of the macroscale F is applied to the unit cell,
and the fine-scale correction v is determined by minimizing the energy of the
unit cell over all periodic corrections.

In the case of linear elasticity, the energy density is convex, and Eq. (1.11) holds
(see Cioranescu and Donato [30] for a detailed discussion of homogenization
in linear elasticity). However, for finite deformations, the energy density is in
general not convex4, and the homogenized energy density is given by

W ∗(∇u) = inf
k∈Z

{
inf

{
1

|kΩUC|

∫
kΩUC

W (y,∇u+∇v)dV | v ∈ V (kΩUC)

}}
,

(1.12)
where kΩUC is a kd sized tessellation of RVEs in d dimensions.

The single RVE problem in Eq. (1.11) is not difficult to solve, and can be
thought of as affinely deforming the RVE using the deformation gradient,
then allowing a periodic displacement field across the unit cell in order for
the RVE to "relax" (see Fig. 1.5). On the other hand, Eq. (1.12) requires
performing the same computation over an unbounded number of unit cells,
which is impractical, and is one of the reasons why homogenization of solids
undergoing finite deformations is so difficult.

In order to use the aforementioned homogenization techniques for linear elastic
periodic truss lattices, the unit cell of the truss is used as the RVE. Then, the
truss members are either discretized with continuum finite elements or beam
finite elements, with the latter resulting in the discrete RVE problem

W (∇u) = inf
u,θ

{
1

|ΩUC|
∑
e∈E

We(u,θ)

}
s.t. u(X+)− u(X−) = ∇u(X+ −X−)

θ(X+)− θ(X−) = 0,

(1.13)

4In fact, a convex energy density for finite deformations violates material frame indif-
ference.
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where We is the energy of an individual beam in the truss, u and θ are the
translational and rotational dofs of the beam finite elements, andX+ andX−

represent points on opposite sides of the unit cell. Since Eq. (1.13) usually has
relatively few degrees of freedom to minimize, the homogenized energy density
can sometimes be computed analytically. This was done for some 2D linear
elastic truss lattices, and the homogenized stiffness tensors in Voigt notation
are included in Appendix A.

1.5 Properties of Periodic Truss Lattices

1.5.1 Bending- and Stretching-Dominated Lattices

The analysis of kinematically determinate truss structures was extended to
the case of an infinite periodic truss lattice in Deshpande et al. [34]. Similar
counting of the number of beams and nodes used in Maxwell’s relation for an
infinite periodic truss leads to the necessary condition that the average number
of beams connected at each node must be Z = 4 in 2D or Z = 6 in 3D in
order for a truss to be rigid. Note again that the connectivity of the truss is a
necessary, but not sufficient condition for rigidity.

Hutchinson and Fleck [54] looked at whether periodic truss lattices were able
to produce any macrosopic strain without stretching any beam by applying
Bloch boundary conditions to a unit cell. Here, the same concept is described,
but homogenization theory is used to characterize the periodic truss lattice.

If the periodic truss lattice is assumed to be linear elastic, the elasticity tensor
of the homogenized material is given by the second derivative of the homog-
enized energy density given by Eq. (1.13): C = ∂2W ∗/∂ε2. Truss lattices
can be grouped into two categories based on the eigenvalues of the elastic-
ity tensor. If the minimum eigenvalue of the elasticity tensor scales with the
stretching stiffness of a beam, this means there are no macroscopic strain pro-
ducing deformations where the beams undergo only bending (otherwise, that
deformation mode would scale like the bending stiffness of a beam, and would
be the minimum eigenvalue). On the other hand, if the homogenized elasticity
tensor has at least one eigenvalue that scales with the bending stiffness of a
beam, then a macroscopic strain-producing deformation mode exists such that
no beams are stretched. When all of the eigenvalues scale with the stretching
stiffness, the periodic truss lattice is called stretching-dominated, and when
there exists at least one eigenvalue that scales with the bending stiffness of a
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beam, it is called bending-dominated, viz.

min
‖ε‖=1

ε · Cε ∼
( r
L

)2

⇐⇒ stretching-dominated

min
‖ε‖=1

ε · Cε ∼
( r
L

)4

⇐⇒ bending-dominated
(1.14)

in 3D and

min
‖ε‖=1

ε · Cε ∼
( r
L

)
⇐⇒ stretching-dominated

min
‖ε‖=1

ε · Cε ∼
( r
L

)3

⇐⇒ bending-dominated
(1.15)

in 2D. We will use the same nomenclature of bending- and stretching-dominated
lattices to also refer to the individual strain modes, i.e. a strain mode that
has a stiffness proportional to the stretching stiffness of a beam is deemed a
stretching-dominated mode.

Instead of using the ratio r/L to describe the slenderness of the periodic truss
lattice, the relative density, ρ̄, is commonly used, which is the ratio of the
volume of solid to air in the periodic truss,

ρ̄ =

∑
b Vb

VUC
, (1.16)

where Vb is the volume of a beam, and VUC is the volume of a unit cell5. The
stiffness scaling relations for bending- and stretching-dominated unit cells are
then commonly expressed as

E∗ ∼ Eρ̄b, (1.17)

with E∗ being the smallest elastic modulus of the effective material, and b = 1

for stretching dominated lattices, and b = 3 or b = 2 in 2D or 3D respectively.

As a review, for periodic truss lattices,

kinematically determinate ⇐⇒ rigid =⇒ stretching-dominated

bending-dominated =⇒ kinematically indeterminate ⇐⇒ non-rigid.

(1.18)

Figure 1.6 gives examples of rigid, non-rigid, stretching-dominated, and bending-
dominated unit cells of periodic truss lattices.

5Equation (1.16) assumes that the truss members are slender and neglects overlaps of
the beams at truss junctions. See the supplementary materials of Meza et al. [71] for a
discussion on the higher-order terms in the relative density calculations of truss lattices.
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Stretching-DominatedBending-Dominated

Bravais Lattice

Multilattice

Figure 1.6: Categorizing lattices and bending- or stretching-dominated lattices
and as Bravais lattices or multilattices.

It is important to note here that the term bending-dominated seems to imply
that the deformation of the periodic truss lattice is dominated by the bending
of individual beams, but this is only the case for certain deformation modes.
For instance, the square lattice (see Fig. 1.6) is a bending-dominated lattice
since shear deformations are bending-dominated. However, axial strain in the
x- or y-directions are stretching-dominated modes. Similarly, the hexagon
lattice is a bending-dominated lattice but has a stretching-dominated bulk
modulus, thus the periodic lattice behaves as a nearly incompressible homog-
enized material. The entire elastic modulus tensors of select 2D periodic truss
lattices are in Appendix A.
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Commonly, periodic truss lattices are also categorized by the number of nodes
inside each unit cell of the lattice. In Deshpande et al. [34], lattices with a
single node per unit cell are said to be similarly situated. However here, they
are referred to as Bravais lattices, and truss lattices with more than one node
per unit cell are called multilattices (see Section 3.1 for more details).

1.5.2 Effective Mechanical Properties

As the stiffness of bending- and stretching-dominated lattices scale differently
with the relative density of the lattice, so do other mechanical properties.
Gibson and Ashby [48] showed that the yield strength of truss lattices also
follows a scaling law with relative density

σ∗y ∼ σyρ̄
c. (1.19)

where σ∗y is the failure stress of the homogenized material, σy is the failure
stress of the constituent material, and c = 1 for stretching-dominated lattices,
and c = 2 or c = 1.5 for bending-dominated lattices in 2D and 3D, respectively.
As is the case with the stiffness, the scaling laws apply to specific modes of
deformation, rather than the lattice as a whole.

The fracture toughness of truss lattices has also been investigated through
various theoretical and computational techniques. Most of the work on the
fracture toughness of truss lattices used expensive structural element simula-
tions [1, 29, 33, 41, 82, 89, 94, 98, 100, 106, 109]. One popular method for
determining the brittle fracture toughness of a lattice is the boundary layer
method [94], which applies the K-field displacements to the boundary of a
large notched lattice (see Fig. 1.7). On the other hand, there has been ana-
lytical work on computing the fracture toughness of lattices. Chen et al. [28]
used effective continuum material models to calculate the corresponding stress
fields around a crack tip, and Lipperman et al. [64] used the representative cell
method of Ryvkin and Nuller [91] to analytically compute the brittle fracture
toughness of infinite 2D truss lattices.

All of the work suggests the fracture toughness of a truss lattice has a power-
law scaling with the relative density

K∗IC
σy
√
L
∼ ρ̄d, (1.20)

where K∗IC is the fracture toughness of the effective material. Unlike the
stiffness and strength properties where the scaling law seems to be uniquely
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Figure 1.7: Depiction of the boundary layer method for a cellular material.
Reprinted by permission from Springer Nature: International Journal of Frac-
ture [94], copyright 2001.

determined by whether the lattice (or more specifically, deformation mode) is
bending- or stretching-dominated, the fracture toughness scaling law differs
even among lattices in the same class. For instance, the triangle lattice has a
scaling exponent of d = 1, but the kagome lattice has an exponent of d = 1/2,
and the hexagon lattice has an exponent of d = 2. For more details on the
fracture toughness of truss lattices, see Alonso and Fleck [1].

These scaling laws convey some of the most useful properties of periodic truss
lattices. For instance, a truss lattice made out of a stiff and strong bulk
material (e.g. aluminum), could be used to create an effective material with
a stiffness and strength proportional to the bulk properties and the relative
density of the lattice. If the lattice is made with sufficiently low relative density,
the metamaterial would have the same density as certain foams, but with much
higher stiffness and strength due to the designed microstructure (see Fig. 1.8).
These truss lattices open up a new area of the design space for lightweight
materials that are also strong, stiff and tough. Furthermore, periodic truss
lattices can be designed to give certain macroscopic properties (e.g. anisotropy
[104]) simply by changing the topology of the unit cell. This opens up the
possibility of using the same constituent material to manufacture multiple
metamaterials with different properties tailored for specific applications.
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Figure 1.8: Elastic moduli and yield strength of various materials. Note that
the predicted stiffness and strength of lattices made of aluminum or carbon
fiber reinforced polymers (CRFP) populate otherwise empty regions of the
material space. Reproduced from Fleck et al. [40] with permission of the
copyright holder, The Royal Society.
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C h a p t e r 2

NUMERICAL MODELING OF TRUSS STRUCTURES

2.1 High-Fidelity RVE Characterization

The analysis in Section 1.5 relies on the slender-beam assumption such that
each truss member can be modeled as a linear elastic Euler-Bernoulli beam.
However, non-slender trusses or lattices that undergo large, nonlinear deforma-
tion (e.g. buckling, plasticity, etc.) cannot be analyzed with such simple mod-
els. For this reason, some resort to using more refined microstructural models -
either using nonlinear beams (e.g. [113]) or a full continuum-level finite element
discretization of the unit cell problem in order to better understand the non-
linear constitutive response of the homogenized material [22, 71, 92, 103, 105].
The higher fidelity of continuum-level finite elements allows for the straightfor-
ward modeling of higher-order effects (e.g. nodes), material nonlinearity (e.g.
plasticity), and allows for the accurate modeling of other unit cells where beam
theory does not apply (e.g. hollow trusses, general cellular solids).

It is worth noting that if the truss structure is allowed to undergo large de-
formations and/or rotations, then the problem is no longer convex, and the
intractable k-RVE problem Eq. (1.12) must be solved to obtain the nonlinear
response of the homogeneous material. In practice, Eq. (1.12) is approxi-
mated by successively increasing k (i.e. increasing the number of unit cells in
the RVE) until the homogenized energy density does not change [113], or by
probing longer wavelength instabilities using Bloch wave boundary conditions
[56].

Meza et al. [71] performed both continuum-level finite element simulations
and simulations using structural elements of various three-dimensional truss
lattices to understand the applicability of beam theory in the linear elastic
regime to different truss lattices. The results showed that the stiffness of non-
slender or hollow lattices lattices can differ significantly from beam theory,
but the stiffness of solid slender lattices matched those of beam theory (see
Fig. 2.1).
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Figure 2.1: Computed homogenized stiffness of solid (left) and hollow shell
(right) octet truss lattices using continuum-level finite element analysis (with
the commercial code Abaqus), and structural Euler-Bernoulli and Timoshenko
beams for various relative densities. Reprinted from [71].

2.2 Fully-Resolved Simulations

In order to solve boundary value problems of finite-sized truss lattices, some
use fully-resolved finite element techniques where the entire truss geometry is
discretized either with continuum or structural finite elements. Of course, the
highest fidelity simulations are those which discretize the truss using contin-
uum finite elements (e.g. [104], or shell elements in the case of hollow lattices
[73]; see Fig. 2.2), and can be used to model geometric and material nonlinear-
ity. However, the computational cost of these simulations limits the size of the
truss that can be modeled. Recently, there has also been an effort to creating
reduced-order models of nodes of non-slender truss lattices in order to capture
the higher-order effects while keeping computational costs low, enabling the
modeling of larger lattices [81].

Simulations that use structural finite elements (e.g. with each truss member
modeled with a beam finite element) are less expensive and can be used to
model larger truss lattices [1, 29, 33, 41, 53, 78, 82, 89, 94, 100, 106, 107].
Fully-resolved structural finite element models have the ability to incorporate
geometric and material nonlinearities, as well as the ability to model more
general non-periodic truss lattices. However, the number of structural elements
that can be modeled is still limited due to the computational cost. As the sheer
number of truss members contained in such truss lattices disqualifies brute-
force modeling techniques due to extreme computational expenses, multiscale
modeling techniques become the method of choice.
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Figure 2.2: Simulation of uniaxial tension of a notched hollow octet truss
lattice modeled using shell finite elements to investigate the insensitivity of
truss lattices to flaws. Reprinted from [73].

2.3 Numerical Homogenization

One of the most common techniques for solving multiscale boundary value
problems like Eq. (1.9) is that of numerical homogenization. It attempts to
approximate solutions to the homogeneous problem in Eq. (1.10). Since finding
a closed-form solution to Eq. (1.11) (or Eq. (1.12) if the energy is nonconvex)
is generally not possible, the microscale RVE problem is solved numerically
in order to compute W ∗(∇u) or its derivatives — coupling the two scales.
Figure 2.3 gives an example of the numerical homogenization approach and
shows the coupling between scales. Since the macroscale and microscale are
treated separately, there is an inherent assumption of a separation of scales
between the micro- and macro-scale (i.e. ε � 1). Therefore, these techniques
are referred to as a hierarchical multiscale techniques.

One of the most well-known numerical homogenization techniques is the FE2

method [39, 47]. In the FE2 method, the finite element method is used to
approximate both the homogenized problem, Eq. (1.10), and the RVE problem,
Eq. (1.11) (or Eq. (1.12) is approximated if the energy density is not convex).
For trusses, the macroscale BVP is usually approximated with continuum finite
elements, while structural finite elements are used to model the truss in the
RVE [7, 76, 79, 113]. There are also some models that use a higher-order
version of the RVE problem that depends on the deformation gradient, F ,
and its gradient, thereby introducing a length scale into the problem [35, 38,
45, 61, 85, 110].
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Figure 2.3: Pictorial description of numerical homogenization reprinted from
Matouš et al. [67] with permission of the copyright holder, Elsevier. FM rep-
resents the macroscopic deformation gradient, and SM and CM represent the
macroscopic stress and tangent matrices that are returned to the macroscale
after solving the RVE problem.

Another way of thinking about these hierarchical multiscale methods is that
they aim to approximate the solution of the heterogenous fine-scale problem by
looking for solutions through asymptotic expansion. For the case of first-order
homogenization (i.e. where strain gradients are not included), the methods
look for a solution of the form [30]

uε(x) = u(x) + εv
(
x,
x

ε

)
+O(ε2), (2.1)

where u is the smooth displacement computed from the homogenized bound-
ary value problem, and v represents the fine-scale periodic oscillations com-
puted from the RVE problem.

One contention with these hierarchical multiscale methods like FE2 is that
the essential boundary conditions are only satisfied in an average sense. It is
desired to enforce uε(X) = u0(X) on the boundary, but FE2 only enforces
u(X) = u0(X). Since the average of v over a unit cell is zero, the displace-
ment field averaged over a unit cell at the boundary satisfies the essential
boundary conditions rather than the fine-scale displacement field itself. In lin-
ear elasticity, however, the energy difference between the two-scale expansion
Eq. (2.1) and the true solution is O(ε1/2) [30]. Loosely speaking, this means
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that FE2 matches the global behavior of the body, but it does not capture
boundary effects.

Similar to how the FE2 method does not satisfy boundary conditions exactly,
it also does not exactly enforce compatibility of the displacement field. For
instance, take two elements K1 and K2 in the macro-scale finite element dis-
cretization. At the edge ∂K12 between the two elements, in the two-scale ex-
pansion Eq. (2.1), we have uK1(x) = uK2(x) (due to conformity of the shape
functions on the macro-scale) but vK1(x) 6= vK2(x), since v(x) depends on
∂u
∂x

which is not necessarily the same in K1 and K2. The displacement field
is only conforming on the macro-scale, but not on the microscale. The dis-
placement field is conforming at element boundaries in the same way that it
satisfies boundary conditions: the displacement field averaged over a unit cell
is conforming. One could make similar arguments to those made above with
the boundary conditions that this lack of conformity does not incur large errors
in the solution as long as the separation of scales holds.

2.4 Quasicontinuum Method

Another multiscale modeling technique that is gaining interest in the truss lat-
tice modeling community is the Quasicontinuum (QC) method — a concurrent
multiscale technique that does not require a separation of scales. Although
originally developed to efficiently model atomic crystals [101], the QC method
has recently been applied to truss lattices [15–20, 86–88]. Unlike numerical
homogenization methods, the QC method starts from a finite-sized lattice,
then applies kinematic constraints and energy approximation techniques (also
called summation rules or sampling rules) to drastically reduce the number of
degrees of freedom (dofs) and the computational costs associated with eval-
uating the mechanical quantities. In regions of interest (e.g. large strains,
plasticity, etc.), the kinematics and the energy of the lattice are computed
exactly, while in regions of less interest, the kinematic constraints and energy
approximation techniques are used to approximate the behavior of the lattice.

The kinematic constraints in the QC method are developed by choosing repre-
sentative sites (commonly called repatoms in atomstic simulations and repn-
odes for trusses) which retain all of their dofs, and dofs of the remaining lattice
sites are interpolated from the representative sites (see Fig. 2.4). Most com-
monly, linear interpolation on a Delaunay-triangulated mesh is used, although
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Figure 2.4: The traditional QC method for atomic lattices (left) and the ex-
tension to truss lattices (right).

there have been formulations with more complex interpolation schemes such
as meshless methods [111] and higher-order interpolations [16, 114]. While
there are relatively few unique interpolation schemes, there are a wide variety
of QC techniques used to approximate the global energy of the lattice.

The first distinction of the QC methods comes from the so-called local and
nonlocal treatment of coarse-grained regions in the simulation. Local regions
of the simulation are regions where the energy of the lattice is approximated
using only the deformation gradient at a given point. Usually, this is done
using the Cauchy-Born rule — an assumption that the neighboring lattice
sites undergo affine deformation (in addition to relative shifts of the lattices in
the multilattice) defined by the deformation gradient at a point. In nonlocal
regions of the simulation, no such assumption is made, and the energy of the
lattice is computed exactly by using the true kinematics of the lattice.

The first version of the QC method proposed in Tadmor et al. [101] is a local-
nonlocal version of the QC method. In fully-resolved regions, the exact non-
local energy is computed, but in the coarse-grained regions, the Cauchy-Born
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rule is used to approximate the energy. There are also fully local versions of
the QC method where the Cauchy-Born rule is used everywhere [99]. How-
ever, these methods are extremely similar to the numerical homogenization
methods with a single atom as the unit cell, and molecular statics (MS) is
used to compute the energy of the unit cell problem (so a suitable name would
be FE-MS). Lastly, there are fully-nonlocal versions of the QC method, where
no distinction is made between the fully-resolved regions and coarse-grained
regions [2, 3, 37].

Various methods have been proposed for sampling the mechanical quanti-
ties (such as energy and forces) in the coarse-grained regions including local,
Cauchy-Born-type approximations [101], force- and energy-based summation
rules [37], cluster sampling [58], numerical quadrature [49], and combinations
of Cauchy-Born and nonlocal sampling rules [3]. It should be noted that all of
these summation rules are ad-hoc, developed for a specific interpolation rule
— usually linear interpolation on a Delaunay triangulated mesh — and do not
naturally generalize to higher-order interpolations.

Most implementations of the QC method are intended to work specifically
with Bravais lattices. That is, lattices where all atoms or nodes of a truss lie
on sites in the lattice set

ΛB =

{
X ∈ Rd

∣∣ X =
d∑
j=1

bjaj + S, bj ∈ Z

}
, (2.2)

where aj are the primitive lattice vectors, and S represents a rigid body shift
of the entire lattice. However, there are a few instances of the QC method
used for more complex atomic lattices 1 [102], which have atoms that lie on
the sites in the set

ΛM =

{
X ∈ Rd

∣∣ X =
d∑
j=1

bjaj + Sα, bj ∈ Z, 1 ≤ α ≤ nB

}
. (2.3)

This set can be described as being made up of nB Bravais lattices shifted
relative to one another by the shift vectors Sα. Therefore, it is common to
refer to these lattices as multilattices. Hexagonal close packed (HCP) crystals
are an example of an atomic multilattice, and the hexagon and kagome trusses
are examples of 2D truss multilattices (see Fig. 3.1).

1There has not been any QC formulation used for truss multilattices.
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The first implementation of the QC method for multilattices in Tadmor et al.
[102] is a local-nonlocal version of the QC method. In the fully-resolved region,
each unit cell location was given extra dofs δα, α ∈ {1, . . . , nB} representing
the relative shifts of the nB additional atoms at each unit cell site (the shift of
the first Bravais lattice was defined to be zero, δ1 = 0). However, in the coarse-
grained region, sites only contained d dofs in d dimensions, and the atomistic
equivalent of the RVE problem, Eq. (1.11), with a single unit cell was solved in
each coarse-grained element. Since the atomic interactions are non-convex, the
method was improved to approximate the atomistic equivalent of the k-RVE
problem, Eq. (1.12), using a method called cascading Cauchy-Born kinematics
[36]. Cascading Cauchy-Born kinematics uses Bloch wave techniques to probe
instabilities with wavelengths longer than a single unit cell, and allows more
unit cells to be incorporated into the RVE. This allows the local-nonlocal QC
method to capture phase transformations in the coarse-grained regions.

The extension of the traditional atomistic QC method to model truss lattices
is rather straightforward: nodes of the truss replace atoms, and finite ele-
ment beam or bar energies are used in place of inter-atomic potentials (see
Fig. 2.4). Initial studies assumed the truss members to behave as linear elas-
tic springs; later extensions included inelasticity and failure of truss members
[18, 19, 59, 86] as well as introducing rotational dofs at each node and us-
ing Euler-Bernoulli beam connections to model the stretching and bending of
truss members [16]. Concepts were further paired with the eXtended Finite
Element Method (XFEM) to track the propagation of cracks in the lattice
(see Fig. 2.5) [88]. However, all of these implementations have been limited to
local-nonlocal versions of the QC method only for trusses that can be defined
by a 2D Bravais lattice (either square or cross-braced lattices).

2.5 Shortcoming of Existing Methods

While there has been an extensive amount of work devoted to numerical mod-
eling of truss structures, there is still a gap in the modeling capabilities.

Fully-resolved continuum finite element models are the highest fidelity models
— capable of capturing strong material nonlinearity and not requiring any
assumption on the slenderness of truss members — but are extremely expensive
to solve, limiting the size of the simulation [73, 104]. Fully-resolved structural
finite element models (i.e. beam elements) use the slender beam assumption
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Figure 2.5: The QC method paired with aspects of the extended finite element
method to model the crack propagation (crack path shown in red) in a cross-
braced truss lattice. Reprinted from Rokoš et al. [88] with permission from
the copyright holder, Elsevier

to reduce the number of degrees of freedom needed to model finite-sized truss
lattices. By using sophisticated beam elements, it is even possible to model
geometric as well as material nonlinearity, and non-periodic truss lattices.
However, even though structural finite elements are inexpensive compared to
continuum-level finite element descriptions, modeling multiscale metamaterials
using structural elements is not a scalable approach.

Modeling representative volume elements using either high-fidelity continuum
finite elements or less expensive structural finite elements is useful in charac-
terizing the properties of the effective material. However, whether the RVE
computations are done "offline" to characterize the homogenized energy den-
sity or "online" in the FE2 method to solve boundary value problems, there are
problems with strong nonlinearities (stemming from the intractability of the
k-RVE problem Eq. (1.12)). Furthermore, the homogenization procedure com-
pletely fails when there are shear-band instabilities at the microscale because
there is no length scale to regularize the solution. Homogenization strategies
such as FE2 also have the additional issue of not satisfying boundary conditions
exactly and therefore do not accurately capture boundary effects.

The QC method lies in a middle ground between fully-resolved models and
hierarchical multiscale models. Since it starts with the fully-resolved model,
the QC method is able to capture significant nonlinearities (buckling, shear
bands, failure of individual trusses, etc.) and boundary effects in certain fully-
resolved regions, while the coarse-graining techniques enable the method to
scale up to truly multiscale lattices. The initial work in using the QC method
to model trusses is promising, but so far it has only been used to model
simple Bravais lattices in 2D (e.g. square, cross-braced lattices) with linearized
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kinematics.

The remainder of this thesis is dedicated to filling the gaps in existing modeling
methods by developing a formulation of the QC method to accurately model
the nonlinear response of general truss multilattices in three dimensions. The
novel fully-nonlocal multilattice formulation allows for general truss models to
be used, and will be paired with geometrically nonlinear beam descriptions to
model buckling of the truss without any separation of scales assumptions or
solving microscale RVE problems. The method will be implemented with an
adaptive refinement algorithm used to automatically improve the accuracy in
regions of interest as the simulation progresses.
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C h a p t e r 3

FUNDEMANTALS OF THE QUASICONTINUUM METHOD

A significant portion of this chapter is taken from our recent publication:

Gregory P. Phlipot and Dennis M. Kochmann. A quasicontinuum theory forthe
nonlinear mechanical response of general periodic truss lattices. Journal of the
Mechanics and Physics of Solids, 124:758 – 780, 2019. ISSN 0022-5096. doi:
https://doi.org/10.1016/j.jmps.2018.11.014. URL http://www.sciencedirect.
com/science/article/pii/S0022509618304071.

3.1 Initial Problem Statement

In this section, we outline the fully-resolved problem that will later be approx-
imated with the QC method. The purpose of this section is to give definitions
of unit cells, truss elements, nodes, and the total potential energy of the system
which will be used in the rest of the thesis.

Periodic truss lattices, i.e. cellular networks composed of beams and beam
junctions (referred to as nodes in the following), are produced by periodically
repeating a unit cell along directions A = {a1, . . . ,ad} with basis vectors
a ∈ Rd in d dimensions. A lattice Ω is defined through the set of nodes, P ,
and the set of truss members1, E , i.e. Ω = {P , E}. For convenience, the body
of interest is decomposed into a set of unit cells. A unit cell at a location Xu

(in the undeformed configuration) can be defined by the set of points, Pu, that
lie inside the volume spanned by vectors A and centered atXu (see Fig. 3.1a),
i.e.

Pu =

{
X ∈ P | X =

d∑
i=1

Xu + tiai, ti ∈
(
−1

2
,
1

2

)
for i = 1, . . . , d

}
.

(3.1)
The unit cell also contains the set of truss members that connect the points
in Pu to each other, Eu, and the set of truss members interacting with points
in neighboring unit cells, En

u .

For some truss lattices, (e.g. square, triangle) each unit cell consists of only
a single node with connections only to nodes in neighboring unit cells (i.e.

1We use the term truss members instead of bars or beams such that it can be used
regardless of the type of structural element used to model it.

http://www.sciencedirect.com/science/article/pii/S0022509618304071
http://www.sciencedirect.com/science/article/pii/S0022509618304071
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Figure 3.1: (a) Example definition of a unit cell Ωu based on its node(s) (solid
circle) and its connecting beams Enu (in this case Eu = ∅). Further shown
are examples of (b) a simple Bravais lattice (diamond) and (c) a multilattice
(hexagon, composed of two simple Bravais lattices) and their corresponding
unit cells and unit cell dofs. The dofs of all nodes inside each unit cell are
retained with ϕ denoting the generalized dofs of a truss node.

Eu = {∅}), as shown in Fig. 3.1(a,b) for the diamond lattice. In this case, the
set of nodes lie on a Bravais lattice, with the basis vectors A as the Bravais
lattice vectors. That is, the locations of the nodes lie in the set described in
Eq. (2.2).

More complex lattices (e.g. kagome or hexagon) are created with unit cells
consisting of multiple distinct nodes (see the hexagonal lattice in Fig. 3.1c). By
adopting terminology from atomistics, unit cells with multiple unique nodes
are referred to as multilattices, whose set of nodes can be described by nB

Bravais lattices, each defined by the same basis A but shifted relative to one
another by shift vectors Sα (α = 1, . . . , nB). Consequently, the complete point
set of a multilattice is given by Eq. (2.3) and copied here for clarity:

ΛM =

{
X ∈ Rd

∣∣ X =
d∑
j=1

bja
α
j + Sα, bj ∈ Z, 1 ≤ α ≤ nB

}
. (3.2)

The integer vector b = {b1, · · · , bd} represents the unit cell with nB points
in terms of the Bravais lattice vectors, and will hereby be referred to as the
Bravais coordinates of the unit cell.

In some cases, it is useful to talk about the unit cells in terms of their Bravais
coordinates rather than their cartesian coordinates. The mapping of the unit
cells from cartesian coordinates to the Bravais coordinates is written as

b = A−1(X − S1), (3.3)
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where A = [a1 . . .ad] is the matrix of Bravais vectors, and S1 is the offset of
the lattice from the origin.

As the truss network undergoes finite deformations, we track the generalized
deformed position of each node (which could include both translations and
rotations) by a mapping ϕ(X). Rotational dofs θ are required along with
translational dofs x for beam lattices subjected to bending, and from various
available options we choose rotation vectors parametrized by 2d− 3 variables
(described in detail in Section 3.2.2). We denote all generalized dofs of a unit
cell located at X i by ϕ̃(X i) = {ϕ0(X i), . . . ,ϕ

nB(X i)}; see Fig. 3.1. For
convenience, ϕ̃j(X i) will be used to denote the generalized dofs ϕ of the jth

point in the unit cell located at X i.

Assuming a variational constitutive model, the strain energy of a truss member
t ∈ E connecting the two nodes initially at X i and Xj is assumed to be given
by Wt(ϕi,ϕj) and the total potential energy of a finite-size truss network
follows as

I =
∑
t∈E

Wt − L, (3.4)

with L being the external force potential. It is worth noting here that by
assuming that the total strain energy of the lattice can be expressed as a sum
over all of the truss members in the lattice, higher-order effects in nonslender
lattices (such as nodal effects) will not be captured by this model. Therefore,
each truss member is modeled using a slender beam assumption, and the model
is not valid for nonslender lattices or hollow lattices (as is the case with all other
structural finite element simulations of truss lattices). Using the decomposition
of the domain into unit cells as described above, the energy can be rewritten
as a sum over the unit cells

I(ϕ̃) =
∑

Ωu∈Ω

Wu(ϕ̃u, ϕ̃N (u))− L(ϕ̃), Wu =
∑
t∈Eu

Wt +
1

2

∑
t∈Enu

Wt, (3.5)

where Wu is the total energy of the unit cell (composed of energy of truss
members Eu fully within Ωu and of truss members Enu connecting to neighboring
unit cells, the latter weighted by 1/2 to avoid double-counting), and ϕ̃N (u) are
the generalized dofs of the neighboring unit cells. Finally, the solution of a
quasistatic BVP is obtained from minimizing I subject to essential boundary
conditions:

inf
ϕ̃∈V
I(ϕ̃), (3.6)
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where V is the set of unit cell dofs such that they satisfy the boundary condi-
tions ϕ̃ = ϕ̃0 on ∂Ω.

3.2 Modeling Individual Truss Members

In the definition of the total potential energy of the system, it was assumed
that the beam could be modeled by having some energy Wt that depends on
the generalized dofs at the endpoints, ϕ. Here, we give some examples of what
energies can be used to model the truss members, namely bars and beams with
both material and geometric nonlinearities.

3.2.1 Bar Models

If the truss being modeled is a slender rigid truss lattice, then it may be
desirable to neglect bending of the beams, and model the truss members as
pin-jointed bars, reducing the number of dofs of the system. In this case, each
node of the truss has only translational dofs ϕ = {x}, and the elastic part of
the energy can be described by a one-dimensional material model

W bar
t (ϕ1,ϕ2)

Vb
= W (εax) , (3.7)

where Vb is the volume of the bar, εax is the axial strain of the truss member,
W (εax) is the 1D material model, and ϕ1 and ϕ2 are the dofs of the nodes of
the bar. For trusses undergoing infinitesimal displacements, linearized kine-
matics can be used, or if finite deformations are modeled, the nonlinear relation
between strain and displacements can be used

εlin
ax =

(x2 − x1) · X̂ax

L
− 1, εnl

ax =
‖x2 − x1‖

L
− 1, (3.8)

where εlin
ax and εnl

ax are the strains under linearized kinematics and nonlinear
kinematics respectively, xi are the deformed positions of the nodes of the bar,
X̂ax is a unit vector point along the axis of the bar, and L is the undeformed
length of the bar.

The forces and stiffness matrix of the bar follow from the definition of the
energy:

F = VbB
T ∂W

∂εax
, K = Vb

(
BT ∂2W

(∂εax)2
B +

∂W

∂εax
C

)
, (3.9)

with
Bi =

∂εax

∂ϕi
, Cij =

∂2εax

∂ϕi∂ϕj
. (3.10)
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The second term in the expression of the stiffness matrix is commonly referred
to as the geometric stiffness, and comes about because of the nonlinear relation
between strain and displacements. For the linearized kinematic bar, C = 0.

This simple model for the truss members can be useful for creating inexpensive
simulations of stretching-dominated trusses. However, bar elements clearly fail
to model any non-rigid or bending-dominated lattice since there is no bending
stiffness in the pin-jointed model. In order to model bending-dominated lat-
tices (or have higher-fidelity models of stretching-dominated lattices), beam
finite elements must be used to model the individual members.

3.2.2 Beam Models

The simplest beam model is the Euler-Bernoulli beam with Hermite interpola-
tion. In this case, each node of the truss has translational and rotational dofs
ϕ = {x,θ}, where θ ∈ R in 2D or θ ∈ R3 in 3D. Due to the cubic interpo-
lation of displacements, the beam element captures the exact displacement of
the beam under tip loading, which suffices for modeling truss lattices, which
rarely, if ever, have loading along the length of the truss members.

The energy of an Euler-Bernoulli beam can be described in terms of the local
strain measures

εloc =

[
εax

θ̃
loc

]
, (3.11)

where εax is the axial strain of the beam, and θ̃
loc ∈ R2 in 2D and θ̃

loc ∈ R6

in 3D are the local angles of rotation per unit length of the beam around the
nodes2. The expressions for the local strains as a function of the node dofs
ϕ depend on the beam model being used (examples are given in following
sections).

The energy of an elastic Euler-Bernoulli beam can then be written as a function
of the local strain values

Wt(ϕ2,ϕ1) = Wb

(
εax, θ̃

loc
)
. (3.12)

2In three dimensions, all 6 local rotations at the nodes do not need to be kept as local
strains since the energy of the beam only depends on the difference between the twist angles
at each node. Therefore, it may be more fundamental to formulate beam energies in terms
of 5 independent local angles, but this is not done here for ease of notation
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The standard linear elastic beam energy density in terms of the local strains
can be written as

Wb(εax, θ̃
loc

) =
L

2

(
EAε2

ax +
(
θ̃

loc
)T
Dθ̃

loc
)
, (3.13)

where

D2D =

[
4EI2 2EI2

2EI2 4EI2

]
, D3D =



GJ 0 0 −GJ 0 0

0 4EI2 0 0 2EI2 0

0 0 4EI3 0 0 2EI3

−GJ 0 0 GJ 0 0

0 2EI2 0 0 4EI2 0

0 0 2EI3 0 0 4EI3


(3.14)

are the stiffness matrices for the rotational dofs in 2D and 3D, respectively,
with E and G being Young’s and the shear modulus, L is the undeformed
length of the beam, and J , I2 and I3 are the polar and area moments of
inertia.

Euler-Bernoulli Beam with Linearized Kinematics

Since the energies given above are in terms of the local rotations around each
node and the axial strain, the beam kinematics are needed in order to compute
the local strain measures from the global dofs. The simplest kinematics for
this is the standard linearized kinematics. If the undeformed configuration of
the Euler-Bernoulli beam is given by the rotation matrix R, then the local
displacements are given by

U loc = RTu (3.15)

with U loc = {uloc, vloc} or U loc = {uloc, vloc, wloc} in 2D or 3D, respectively,
being the axial and transverse displacements. Using these local displacements,
the local strain measures can be written as

εloc =

εax

θ̃loc
1

θ̃loc
2

 =
1

L

 uloc
2 − uloc

1

θ1 − (vloc
2 − vloc

1 )/L

θ2 − (vloc
2 − vloc

1 )/L

 (3.16)
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in 2D and

εloc =



εax

α̃loc
1

φ̃loc
1

ψ̃loc
1

α̃loc
2

φ̃loc
2

ψ̃loc
2


=

1

L



uloc
2 − uloc

1

α1/L

φ1 − (wloc
2 − wloc

1 )/L

ψ1 − (vloc
2 − vloc

1 )/L

α2/L

φ2 − (wloc
2 − wloc

1 )/L

ψ2 − (vloc
2 − vloc

1 )/L


(3.17)

in 3D, where θ̃
loc

= {α̃loc, φ̃loc, ψ̃loc} and θ = {α, φ, ψ} are the local and global
rotations respectively.

Given the expressions for the local strain measure, the element energy, force,
and stiffness matrices follow:

W = Wb(ε
loc), F = BT ∂W

∂εloc
, K = BT ∂2W

(∂εloc)2
B. (3.18)

with

Bij =
∂εloci
∂ϕj

. (3.19)

Note that for these linearized kinematics, there is no additional term in the
stiffness matrix since ∂2εloc/∂ϕ2 = 0.

Corotational Beam

In order to model individual truss members undergoing finite rotations while
sustaining axial and bending loads, a corotational beam may be used. Here,
a corotational beam formulation based on Crisfield [31], is outlined. For a
detailed description of the beam elements used, the reader is referred to Cr-
isfield [31, 32]. Dealing with finite rotations in 2D is relatively straightforward:
a single rotation variable θ can be used to represent the rotation. However,
in 3D there are many choices for parametrizing rotations including rotation
matrices, quaternions and rotation vectors. For this corotational formulation,
we consider the rotation vector θ = θ ê which corresponds to a rotation with
magnitude θ = |θ| around the axis defined by the unit vector ê. It can be
converted to a rotation matrix R(θ) through an exponential mapping using
Rodrigues’ formula (for θ 6= 0)

R(θ) = exp
(
S(θ)

)
= I +

sin θ

θ
S(θ) +

1− cos θ

θ2
S(θ)2, (3.20)



33

r1
u

r2

r3

u

u

1

2

1

2
ruR

r1

r2

r3

r1,1
d

r2,1
d

r3,1
d

r1,2

d

r2,2

d

r3,2

d

1 2

b
R R2

ud

R1

ud

reference frame

undeformed
configuration deformed

configurationb

b

b

R2

rd

e1

e2

e3

r2,1
r

r1,1
r

r3,1
r

r2,2
r

r1,2
r

r3,2
r

R1

rd

Figure 3.2: Kinematics of the 3D corotational beam: the linear Euler Bernoulli
beam rotates with the element frame Rb, and has small angle deflections at
each node. Superscripts r, u, d, and b stand for the (r)eference, (u)ndeformed,
(d)eformed, and (b)eam configuration, respectively.

where S(θ) is the skew-symmetric matrix (θi = θ êi denoting the ith Cartesian
component of θ)

S(θ) =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 . (3.21)

By inversion of Eq. (3.20), one arrives at the logarithmic mapping

θ = log (R(θ)) . (3.22)

The 2D and 3D corotational beam description of Crisfield [31] is based on an
element frame that continuously rotates with the underlying beam element.
The nonlinearity introduced in the element comes solely from the finite rota-
tion of the element frame, while the underlying linear Euler-Bernoulli model
assumes small deflections with respect to the rotating frame (see Fig. 3.2 for
all definitions used in the following).

The kinematics of the corotational beams is described using three different
configurations of the beam: the reference, undeformed, and deformed config-
urations (see Fig. 3.2). The reference configuration is taken as an undeformed
Euler-Bernoulli beam element that is oriented along the positive x-axis in the
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global coordinate system. The undeformed configuration represents the beam
with its orientation at the start of the simulation, and can be defined by the ro-
tation Rru, where the superscript ru signifies the rotation from the (r)eference
configuration to the (u)ndeformed configuration. The deformed configuration
represents the beam subjected to arbitrarily large displacements and rotations
at the current step in the simulation. The deformed configuration is defined by
the deformed nodal positions xi and global rotationsRrd

i of each node i, where
the superscript signifies the rotation from the (r)eference configuration to the
(d)eformed configuration. The global rotations can also be represented by the
rotation from the undeformed configuration to the deformed configurationRud

i

which is related to the other rotation matrices through

Rrd
i = Rud

i R
ru. (3.23)

Using the global positions and rotations of each node, the beam element’s
orientation Rb = [rb1, . . . , r

b
d] is defined as an average rotation of the beam. In

both 2D and 3D, rb1 is defined as the unit vector pointing from node 1 to node
2, i.e.

rb1 =
x2 − x1

|x2 − x1|
. (3.24)

For the 2D corotational beam, the second axis rb2 follows from a rotation of rb1
by π/2. For the 3D corotational beam, the second and third axes are defined
with the help of the average rotation matrix

Rav = R(θav)Rud
1 (3.25)

with θav defined as

θav =
log(Rrd

2 )− log(Rrd
1 )

2
. (3.26)

With the column representation Rav = [rav
1 , r

av
2 , r

av
3 ], the remaining two axes

of the beam coordinate system are defined as

rb2 = rav
2 −

rav
2 · rb1

2
(rb1 + rav

1 ), rb3 = rav
3 −

rav
3 · rb1

2
(rb1 + rav

1 ). (3.27)

This definition of a beam element’s frame results in a coordinate system that
is not necessarily orthogonal, but the deviation from orthogonality is small
and therefore generally neglected (see Crisfield [31] for a discussion). Lastly,
we use the global rotation at each node and the beam coordinate system to
define the local (assumed to be small) rotations. This is done by realizing that
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the global rotations of each node can be described by a small local rotation
around the undeformed configuration Rloc

i , followed by the large rotation of
the beam element (i.e. Rrd

i = RbRloc
i ). This gives the definition of the local

rotation matrices and the corresponding local rotation vectors as, respectively,

Rloc
i = (Rb)TRrd

i , θloc
i = log(Rloc

i ). (3.28)

To capture the global rotations of each node, the rotation Rru is stored in
each element, so only the rotation from the undeformed to the deformed con-
figuration must be parametrized. In 2D, this is accomplished by storing the
scalar rotation angle θ; in 3D, we choose the rotation vector θud. It should be
noted that the interpolation of our QC method calls for caution when choosing
the parametrization (e.g. the linear interpolation of rotation matrices is not
permissible as it does not necessarily result in a rotation matrix).

Since this representation describes the large global rotations in terms of small
local rotations composed with a rigid body rotation, the energy of a coro-
tational beam element is given by the classical energy of an Euler-Bernoulli
beam subject to the local rotations and the stretching of the beam axis in the
reference configuration:

W corot
e = Wb

(
‖x2 − x1‖

L
− 1,θloc

)
(3.29)

with Wb given by Eq. (3.13).

The corresponding force and stiffness matrices,

F = BT ∂Wb

∂εloc
, K = BT ∂2Wb

(∂εloc)2
B + F ·C, (3.30)

where B and C are the partial derivatives of the strains w.r.t. the global dofs
as in Eq. (3.10).

One difference between the formulation of Crisfield [31] and ours is the updat-
ing of the rotation vectors θud. Theirs used forces that are conjugate to the
spatial spin variables ν, which correspond to an infinitesimal rotation super-
imposed onto the global rotation matrix, requiring a non-additive update of
the form

R(θi+1) = R(δν)R(θi). (3.31)

However, we follow Battini and Pacoste [11] in using additive updates of the
global rotational degrees of freedom, i.e. θi+1 = θi + δθ (this results in the
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forces and stiffness matrices shown in Eq. (3.30)). We note that the change
from multiplicative updates to additive updates did not change the equilib-
rium solution nor the convergence properties when applied to the numerical
benchmark tests from Crisfield [31]. The forces and stiffness matrices conju-
gate to the additive rotation vector updates with the 3D corotational beam
element are computed using finite differences.

3.3 History-Dependent Problems

The initial fully-resolved problem statement in Eq. (3.6) is used to solve elastic
quasistatic problems. Here we show that one can easily include dynamics
and history-dependent material behavior in the variational formulation. The
resulting formulation is similar to the quasistatic problem outlined above, and
can thus be approximated using similar techniques.

3.3.1 Dissipative Materials

As shown in [72, 77], introducing history dependence through viscoplastic-
ity into the formulation of quasistatic boundary value problems can be done
while maintaining the variational formulation of the problem. The process of
introducing inelastic internal variables and discretizing the principle of maxi-
mum dissipation into an incremental variational formulation is not discussed
here (see e.g. [77, 86, 88]) but we give examples of two material nonlinearities
and how they are incorporated into the model — namely rate-independent
plasticity with isotropic hardening for bars, and brittle failure of beams.

Example: Rate-Independent Plasticity with Isotropic Hardening

As a simple example of a history-dependent material, we use a one-dimensional
rate-independent plasticity model with isotropic hardening based on the model
in Simo and Hughes [97]. We give an overview of the model here, but we refer
the reader to [97] for a more in-depth discussion.

To model rate-independent plasticity, the elastic energy density given in Eq. (3.7)
can be replaced by an incremental energy of the form

W̃ (ϕk+1, ξk+1; ξk) = We

(
ϕk+1, ξk+1; ξk

)
+Wp

(
ξk+1

)
, (3.32)

where ξ are internal variables that parametrize the inelastic deformation, Wp

represents the stored plastic energy, the subscript k + 1 denotes the values of
the variables at the new time step, and k denotes the previous time step. For
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the case of plasticity with isotropic hardening, plastic strains and accumulated
plastic strain variables (denoted by the internal variables ξ = {εp, γ}) can be
used to parametrize the plastic deformation, and

We(ϕ
k+1, ξk+1; ξk) = W (εk+1 − εkp −∆εp)

Wp(∆ξ) =

1
2
K(∆γ)2 + σy +Kγk|∆εp| if ∆γ ≥ |∆εp|

∞ otherwise,

(3.33)

are the corresponding elastic energy, and plastic work. In Eq. (3.33), σy is the
initial yield stress, K is a hardening parameter, ε is the axial bar strain, and
we use the shorthand ∆ to represent the change in a variable from state k to
k + 1.

By introducing internal variables into the problem, we now seek to identify
entire states of the system, i.e. {ϕk+1, ξk+1} that minimize the total incremen-
tal potential energy. However, since the potential only depends locally on the
internal variables, ξk+1 can be minimized at each individual element, yielding
an effective energy that only depends on the displacements

Wt(ϕ
k+1) = inf

ξk+1

{
Wt(ϕ

k+1, ξk+1; ξk)
}
. (3.34)

This unconstrained minimization problem Eq. (3.34) can be recast as an equiv-
alent constrained minimization (removing the effective constraint from the
definition of the plastic work), with Lagrange multipliers λ:

Wt(ϕ
k+1) = inf

ξk+1
sup
λ≥0

{
We(ε

k+1 − εkp −∆εp) +
1

2
K(∆γ)2

+ (σy +Kγk)|∆εp|+ λ(|∆εp| −∆γ)

}
.

(3.35)

Taking We(ε) = Eε2 to be a linear elastic material model, the resulting opti-
mality (also called Karush-Kuhn-Tucker or KKT) conditions are

0 = K∆γ − λ

0 ∈ −E(εk+1 − εkp −∆εp) + (σy +Kγk + λ) sign(∆εp)

|∆εp| −∆γ ≤ 0, λ ≥ 0, λ(|∆εp| −∆γ) = 0,

(3.36)

where the last condition is often referred to as complementary slackness. Using
the definition of the elastic predictor stress σtrial = E(ε− εkp), and rearranging
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the equations, we arrive at

λ = K∆γ

σtrial ∈ −E∆εp + (σy +Kγk + λ) sign(∆εp)

∆γ ≥ |∆εp|, λ ≥ 0, λ(|∆εp| −∆γ) = 0.

(3.37)

The complementary slackness condition leads to two cases: The first case is
when λ = 0 and ∆γ ≥ |∆εp|, and corresponds to the elastic step

λ = 0

∆γ = ∆εp = 0

|σtrial| ≤ σy +Kγk

(3.38)

and the second case corresponds to a step where plasticity occurs, and is when
∆γ = |∆εp| and λ > 0,

∆γ =
|σtrial| − σy −KγK

K − E
∆εp = ∆γ sign(σtrial).

(3.39)

This is equivalent to the isotropic hardening plasticity model and correspond-
ing update algorithm outlined in Simo and Hughes [97]. The effective energy
that only depends on the displacements (not written out explicitly here for
conciseness) has the corresponding stresses and tangent moduli (see Fig. 3.3)
depending on whether the step is elastic (superscript e) or plastic (superscript
p)

σe = σtrial σp =

(
1− ∆γE

|σtrial|

)
σtrial

Ce = E Cp =
KE

K + E
.

(3.40)

Example: Brittle Failure

In order to model brittle truss lattices (e.g. glassy carbon lattices [12, 55]), it
is desirable to model brittle failure of individual truss members. We follow
Tankasala et al. [106] in using a failure criterion where the beam fails catas-
trophically when either the average tensile stress (ATS) over the cross-section
or the maximum local tensile stress (LTS) in the cross-section reaches the yield
stress of the constituent material, σy.
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Figure 3.3: Example stress-strain curve for the plasticity model with isotropic
hardening. Reprinted by permission from Springer Nature: Springer Compu-
tational Inelasticity by J.C. Simo and T.J.R. Hughes, copyright 2000 [97].

Using the local strain values defined in Section 3.2.2, the average tensile stress
and maximum tensile stress in a 2D bar with thickness t can be expressed in
terms of the local beam strains defined in Eq. (3.11) as

σATS = Eεax σLTS = E
(
εax + max

(
|4θ̃1 + 2θ̃2|t, |2θ̃1 + 4θ̃2|t

))
(3.41)

The expressions for the maximum stress in more complicated cross-section
geometries and in 3D are more involved, and are not included here.

We use a damage parameter that can be either 0 or 1 depending on whether
the beam is intact or not as the internal variable. In other words, the elastic
energy of the beam is

W̃b(ε
loc, ξk+1) = (1− ξk+1)Wb(ε

loc). (3.42)

Unlike plasticity with isotropic hardening, we do not minimize the energy
with respect to the internal internal variable at each beam finite element to
obtain an effective displacement problem, as this can lead to undesirable re-
sults. Instead, we perform alternating minimization, where first the equilib-
rium displacements are solved for assuming everything remains elastic, then
one-by-one, beams are broken based on the value of their maximum stress.
Algorithm 1 outlines the method used to update the damage parameter in the
beams.
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Algorithm 1 Update Damage Parameter

Initialize new damage parameters ξk+1 = ξk

repeat
Solve for displacements ϕ̃k+1 = arg minϕ̃ I(ϕ̃; ξk+1)
Initialize list of trusses and max stresses, Σ = {}
for each truss element t do

Compute maximum stress σmax
t

if σmax
t > σy then

Add {σt, t} to list Σ
Get element of list with largest stress {σt∗ , t∗} = max(Σ)
Break beam, ξk+1

t∗ = 1
until Σ is empty
Move to next load step k = k + 1

3.3.2 Dynamics

The corresponding dynamic problem of Eq. (3.6) is commonly written as solv-
ing the partial differential equation

M ¨̃ϕ+
∂I
∂ϕ̃

= 03, (3.43)

where M represents the global mass matrix of the system, and ∂I/∂ϕ̃ is the
nonequilibrium force. This PDE is typically solved using either an explicit or
an implicit time integrating technique. One family of time-stepping techniques
is the popular Newmark method, which defines the dofs and velocities at the
next timestep k + 1 using the state at time k:

ϕ̃k+1 = ϕ̃k + ∆t ˙̃ϕk +
∆t2

2

(
(1− 2β)¨̃ϕk + 2β ¨̃ϕk+1

)
˙̃ϕk+1 = ˙̃ϕk + ∆t

(
(1− γ)¨̃ϕk + γ ¨̃ϕk+1

) , (3.44)

where the second derivative is defined to be

¨̃ϕk := −M−1 ∂I
∂ϕ̃

, (3.45)

and β and γ are parameters chosen by the user. The method is second order
accurate if and only if γ = 1/2 (and it also can be shown to follow from a
discretization of Hamilton’s Principle [57]), while γ < 1/2 introduces numerical
damping. Common choices for β are β = 1/4 (average acceleration), β = 1/6

(constant acceleration), and β = 0 (explicit integration).
3With a slight abuse of notation, ϕ̃ here refers to the long vector consisting of all of the

dofs of the fully-resolved truss lattice.
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The update rule can be condensed to

ϕ̃k+1 = ϕ̃pred + β∆t2 ¨̃ϕk+1

˙̃ϕk+1 = ˙̃ϕk + ∆t
(
(1− γ)¨̃ϕk + γ ¨̃ϕk+1

)
,

(3.46)

where ϕ̃pred is a predictor for the dofs at the k + 1 time step defined by

ϕ̃pred = ϕ̃k + ∆t ˙̃ϕk +
∆t2

2

(
(1− 2β) ¨̃ϕk

)
. (3.47)

It can be seen that the update equations for ϕ̃k+1 are the Euler-Lagrange
equations of the potential [57]

F(ϕ̃k+1) = I(ϕ̃k+1) +
1

2β∆t2
(
ϕ̃k+1 − ϕ̃pred)T M (

ϕ̃k+1 − ϕ̃pred) (3.48)

for β 6= 0.4

This means that the quasistatic problem Eq. (3.6) can be modified to include
the Newmark method for dynamics by adding the incremental potential

D(ϕ̃k+1) =
1

2β∆t2
(
ϕ̃k+1 − ϕ̃pred)T M (

ϕ̃k+1 − ϕ̃pred) , (3.49)

and then updating the velocities according to Eq. (3.44), which can be com-
puted using known quantities once the incremental displacement minimization
problem is solved5.

The global inertial term, D(ϕ̃k+1), can be expressed as a sum over unit cells
similar to the strain energy in the fully-resolved quasistatic problem with

D(ϕ̃k+1) =
∑

Ωu∈Ω

Du,

Du =
∑
e∈Eu

De +
1

2

∑
e∈Enu

De De =
(
ϕ̃k+1
e − ϕ̃pred

e

)T
M e

(
ϕ̃k+1
e − ϕ̃pred

e

),
(3.50)

where M e is the mass matrix of the corresponding truss finite element, ϕ̃e ⊂
{ϕ̃u, ϕ̃N (u)} represent the dofs of both nodes of the truss element, and Du
and De represent the inertial term of individual unit cells and truss members
respectively.

4For the case of β = 0, F can be multiplied by β to produce a well-defined potential for
the dynamics problem.

5If the quasistatic potential is nonconvex, then in general Eq. (3.48) may not be convex
and the minimization problem can be replaced by a stationarity condition.
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3.3.3 Effective Displacement Problem

As shown above, history-dependent problems can also be formulated within
the variational framework, and the resulting variational problem is similar to
the initial quasistatic problem of Eq. (3.6). The additional history variables
can either be minimized out pointwise (in the case of plasticity) or updated
given the new displacements (in the case of dynamics or brittle failure), leaving
an effective minimization problem that only depends on the displacements at
the next time step. For the general case of dynamic problems with internal
variables, the fully-resolved problem changes to the incremental problem,

ϕ̃ = arg min
ϕ̃∈V

Ĩ(ϕ̃) = arg min
ϕ̃∈V

{∑
Ωu∈Ω

W̃u(ϕ̃u, ϕ̃N (u))− L(ϕ̃)

}
W̃u(ϕ̃u, ϕ̃N (u)) = Wu(ϕ̃u, ϕ̃N (u)) +Du(ϕ̃u, ϕ̃N (u)),

Wu(ϕ̃u, ϕ̃N (u)) =
∑
t∈Eu

Wt(ϕ) +
1

2

∑
t∈Enu

Wt(ϕ),

(3.51)

where the implied superscript of k + 1 on the state variables is excluded for
conciseness, and dependence on the old state, {ϕk, ˙̃ϕk, ¨̃ϕk, ξk} is implicitly as-
sumed, Ĩ(ϕ̃) represents the total (possibly modified with dynamics or internal
variables) potential of the system, W̃u is the (possibly modified) potential of
each unit cell, Du represents the inertial component of the unit cell potential
(and is given by Eq. (3.50)), and Wu is the quasistatic energy of the unit cell.
For elasto-plastic trusses,

Wt(ϕ) = inf
ξ
{Wt(ϕ, ξ)} (3.52)

is the effective truss potential, such that the entire problem can be stated in
terms of only the new displacement field. For trusses undergoing brittle failure,

Wt(ϕ) = Wt(ϕ; ξ) (3.53)

is the "elastic predictor" energy of the lattice (i.e. the energy computed with
the internal variables from the previous step), and the internal variables are
updated one at a time according to Algorithm 1.

Whether modeling quasistatic or history-dependent trusses, we will use I to
denote the total potential of the system, Wu to be the unit cell potential
(including the inertial term if performing dynamic analysis) and Wt to be the
element energy.
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3.4 The Quasicontinuum Method

The fully resolved lattice problem Eq. (3.6) is computationally expensive for
two reasons:

1. The number of dofs in the system can be extremely large, requiring
an extremely expensive solve (e.g. a large linear system solve if using
Newton’s method)

2. The computation of the energy (or equivalently, the force or stiffness
matrix) requires a sum over all unit cells in the truss.

The QC method systematically introduces kinematic constraints and energy
approximation techniques to reduce the computational costs associated with
Item 1 and Item 2.

3.4.1 Kinematic Constraints

In the spirit of the original QC method, we approximate the deformation of a
truss lattice by a reduced set of dofs. However, instead of reducing the dofs by
selecting representative nodes (analogous to the introduction of representative
atoms in the original QC method), we choose a set of Nrep � N representative
unit cells (in the following called repUCs, not to be confused with representa-
tive volume elements or unit cells commonly used in homogenization), which
retain all of their dofs.

While the dofs of the repUCs are retained, the dofs of the remaining UCs are
obtained from interpolation as in the original QC method:

ϕ̃(Xu) =

Nrep∑
r=1

Nr(Xu)ϕ̃r (3.54)

with some suitable shape functions Nr(X), and the corresponding dofs of the
repUCs, ϕ̃r. In the following, we mainly focus on using linear interpolation
on a Delaunay-triangulated mesh. The simplices of the Delaunay-triangulated
mesh will be referred to as coarse-grained or macroscopic elements in order
to differentiate them from the beam or bar elements used to model the indi-
vidual truss members within the unit cells. Note that the shape functions are
evaluated at the location Xu of unit cell u (in the reference configuration),
and not at the exact positions of each individual node inside the unit cell; see
Fig. 3.4. This means that some unit cells that lie inside — but near the edge
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0j (X )i
1j (X )i

Xi

0 1j (X ) = {j (X ),�j (X )}~
(a) mesh with interpolated dofs:

Xj

0j (X )j
1j (X )j

(b) UCs in the reference config. (c) nodal dofs within UCs

Figure 3.4: Illustration of the interpolated dofs and the recovery of nodal
dofs within individual unit cells from the interpolation: (a) shows a mesh
of coarse-grained/macroscopic elements whose vertices are repUCs that carry
dofs ϕ̃. (b) Within an element K, the dofs ϕ̃ are interpolated by evaluating
the shape functions at each unit cell location, e.g. X i or Xj (in the reference
configuration). (c) Dofs {ϕ0,ϕ1} of the two nodes within each unit cell are
recovered from the interpolated repUC dofs.

— of some macroscopic element K can contain some nodes that lie outside
of K, but still use the shape functions of K to interpolate the dofs (since the
node is contained in a unit cell that lies within K).

An equivalent way of interpreting the shape functions is by thinking of each
Bravais lattice in the multilattice being interpolated with the same shape func-
tions, but shifted relative to one another by the corresponding shift vector of
the lattice.

By imposing the kinematic constraints in Eq. (3.54), the full-resolved problem
is simplified to

inf
ϕ̃∈V h

I(ϕ̃), (3.55)

where V h now represents the (much smaller) set of dofs defined by the shape
functions Nr that satisfy the essential boundary conditions.

3.4.2 Energy Approximation

The above quasicontinuum approximation reduces the number of dofs in the
system, whereas the efficient calculation of the total energy I necessitates the
introduction of sampling rules (also referred to as summation rules) similar to
quadrature in finite elements. To this end, we select Ns � N sampling unit
cells such that

I(ϕ̃) ≈ Ih(ϕ̃) =
Ns∑
s=1

wsWs(ϕ̃)− Ls(ϕ̃) (3.56)
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with weights ws akin to quadrature weights, and Ls is the sampled external
force potential. Various summations rules have been introduced for atomistic
and truss-based QC – see e.g. [3, 17, 37, 49, 58]. In the following, we use
variants of the first-order and second-order optimal summation rules proposed
in Amelang et al. [3] modified by features from the central summation rule of
Beex et al. [17].

Before outlining the summation rules used in this thesis, we first take the time
here to go over some concepts that will be used in the formulation. The first
key concept is to notice that in the Bravais coordinates (see Eq. (3.2)), all of
the repUC’s have integer coordinates, and thus, lie on the integer lattice. The
mapping from the cartesian to Bravais coordinates is given by Eq. (3.3), and
has the jacobian J−1 = det(A) = vol(ΩUC) such that

vol(Kint) =
vol(K)

vol(ΩUC)
, (3.57)

where vol(Kint) is the "volume" of the simplex K when expressed in Bravais
coordinates.

The other important concept is that of solid angles. We define the solid angle
ωK(Y ) of a point Y with respect to element K as the fraction of a ball with
infinitesimal radius centered at Y that is inside K, i.e.

ωK(Y ) = lim
r→0

vol(B(r,Y ) ∩K)

vol(B(r,Y ))
, (3.58)

where vol(B(r,Y )) corresponds to the volume of the d-dimensional ball B
with radius r centered at Y . For example, the solid angle for a point with
respect to a triangle is

ωK(Y ) =



1 if Y is in the interior of K

1/2 if Y is on the edge of K

θ/(2π) if Y is a vertex of K

0 if Y is outside of K


, (3.59)

where θ is the angle at the vertex. The solid angle of points are useful because
the solid angle weighted sum over all of the integer points of an element with
integer coordinates Kint (i.e. all of the simplices of the mesh in Bravais coor-
dinates) can be used to approximate the volume of the element (in Bravais
coordinates)

vol(Kint) ≈
∑

Y ∈Kint∩Zd

ωKint(Y ). (3.60)
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In two dimensions, the approximation Eq. (3.60) for general integer polytopes
becomes an equality, and can be expressed as [84]

vol(Pint) = #i+
#b

2
− 1, (3.61)

where #i represents the number of lattice points on the interior of the integer
polytope Pint, and #b is the number of lattice points on the boundary of Pint.
This is commonly known as Pick’s theorem. Applying Pick’s theorem to a
triangle, one obtains

vol(Kint) = #i+
#e

2
+ 1/2, (3.62)

where #e is the number of non-vertex lattice points on the boundary (i.e.
lattice points on the edges of the triangle).

3.4.3 First-Order Summation Rule

The sampling unit cells in the first-order summation rule used here are chosen
such that all repUCs are also sampling unit cells with a weight of ws,rep = 1 (as
in [17]). In other words, each repUC’s energy is computed exactly, and it is not
used to approximate the energy of other unit cells. In order to approximate
the energy of all of the other unit cells, an additional sampling site is placed at
the barycenter of each macroscopic simplicial element, K. Unlike in Beex et al.
[17], the barycenter sampling unit cell here computes the dofs of its neighbors
using the first-order expansion

ϕ̃loc(X i) = ϕ̃(Xs) +
ϕ̃(X)

∂X

∣∣∣
X=Xs

(X i −Xs), (3.63)

where Xs is the location of the sampling unit cell, and X i is the location of
the neighboring unit cell. We note that if the lattice is a Bravais lattice, this
local approximation is equivalent to the commonly-used Cauchy-Born rule,
as in [3]. For multilattices, the Cauchy-Born rule usually consists of solving a
microscale problem to compute the energy, which differs from our formulation.
Therefore, we refer to these unit cells simply as local sampling unit cells. The
local sampling unit cell attempts to approximate the energy of the remaining
non-repUCs in the macroscopic element, and therefore its weight is chosen to
approximate the number of non-repUCs in the element K:

ws,inner =
vol(K)

vol(ΩUC)
−
∑
i=1

ωK(Xrep
i ), (3.64)
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where vol(K) and vol(ΩUC) are the volumes of the macroscopic element in
cartesian coordinates and of the unit cell, respectively, and ωK(Xrep

i ) is the
solid angle of the ith repUC. It should be noted here that since

∑
i=1 ωK(Xrep

i ) =

1/2 in 2D and the fact that vol(K)/ vol(ΩUC) is the volume of the integer sim-
plex in Bravias coordinates vol(Kint), the barycenter sampling weight naturally
goes to zero for 2D meshes in fully-resolved regions (i.e. where there are no
interior or non-vertex boundary unit cells).

However, since Pick’s theorem does not hold in higher dimensions6, the sam-
pling weight computed by Eq. (3.64) does not naturally go to zero in fully-
resolved regions in 3D. Therefore, barycenter sampling weights that fall below
a chosen threshold are manually set to zero. This results in barycenter sam-
pling unit cells only being used in non-fully-resolved regions. Figure 3.5 shows
an example lattice with sampling unit cells of the first-order summation rule
described here.

3.4.4 Second-Order Summation Rule

The second-order summation rule expands on the first-order summation rule
by adding additional sampling unit cells at the centroids of the edges or faces
of the simplices in 2D or 3D, respectively, as was done in [3]. These sampling
unit cells are given weights equal to the number of unit cells that lie exactly
on the edge (or face in 3D) excluding the boundaries.

Counting the number of unit cells on edges of triangle and faces of tetrahedra
can be done in a computational efficient manner (i.e. without enumerating all
of the unit cells), such that computing the sample unit cell weights does not
become impractical for very coarse meshes. The details of how these weights
are computed has been moved to Appendix B.

Since the second-order rule introduces more sampling unit cells, the weights
of the barycenter sampling unit cells are adjusted accordingly:

ws,inner =
vol(K)

vol(ΩUC)
−
∑
i=1

wi,edgeωK(Xedge
i )−

∑
i=1

ωK(Xrep
i ), (3.65)

where ωK(Xedge
i ) is the solid angle of the ith edge (or face in 3D) sampling

unit cell. It should be noted here that in 2D, since the edge weights exactly
6Reeve [84] showed that a higher-dimensional versions of Pick’s theorem does not exist

by demonstrating that a lattice tetrahedron can have an arbitrarily large volume without
containing any non-vertex lattice points. The example tetrahedron is commonly called
Reeve’s tetrahedron.
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Figure 3.5: First and second-order summation rules. The first-order summa-
tion rule (left) shows the vertex sampling unit cells (blue) and the local inner
sampling unit cell (red). The second-order summation rule (right) also has
edge sampling unit cells (green).

count the number of unit cells on the edges, Pick’s theorem and Eq. (3.60)
can be used to show that the barycenter sampling unit cell is exactly equal to
the number of unit cells on the interior of K. From Eq. (3.65) and (3.62), we
arrive at

ws,inner =

(
#i+

#e

2
+

1

2

)
−
(

#e

2

)
−
(

1

2

)
= #i.

(3.66)

3.4.5 Consistency of the Summation Rules

In order for a summation rule to be 0th-order consistent, the sum of the sample
unit cell weights must equal the number of unit cells in the simulation. For the
first-order summation rule in two dimensions, the sum of the sampling weights
is ∑

s

ws =
∑
K

ws,inner +
∑
rep

ws,rep

=
∑
K

(
vol(K)

vol(ΩUC)
−
∑
i=1

ωK(Xrep
i )

)
+
∑
Ωrep

ws,rep

=
vol(Ω)

vol(ΩUC)
−
∑
K

∑
i=1

ωK(Xrep
i ) +

∑
Ωrep

ws,rep

= #i+
#b

2
− 1 +

∑
∂Ω∩Ωrep

1− ωK(Xrep),

(3.67)
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where Ωrep is the set of repUCs, and ∂Ω∩Ωrep is the set of repUCs that lie on
the boundary of the geometry, so that

∑
s

ws − (#i+ #b) = −

(#b

2
− 1

)
−

∑
∂Ω∩Ωrep

1− ωK(Xrep)

 . (3.68)

In other words, the sum of sample unit cell weights differs from the total
number of unit cells by the amount of the right hand side of the equation. For
coarse meshes, The number of unit cells on the boundary, #b far outweighs
the number of repUCs on the boundary, so the difference between the sum of
the sample weights and the total number of unit cells is roughly∑

s

ws − (#i+ #b) ≈ −#b

2
. (3.69)

For large geometries where the number of boundary unit cells is small com-
pared to the number of total unit cells, the relative error approach zero, and
therefore the first-order summation rule is almost 0th-order consistent.

On the other hand, the sum of the second-order sampling weights in 2D is ex-
actly 0th-order consistent. As shown in Eq. (3.66), the barycenter weights sum
up to the number of unit cells on the interior of the coarse-grained elements,
the edge sampling unit cell weights sum up to the total number of unit cells
that lie on coarse-grained element edges, and the repUC sampling unit cells
account for the unit cells that lie on coarse-grained element vertices.

In three dimensions, neither the first-order nor the second-order summation
rule is 0th-order consistent, but similar arguments to those made for the 2D
summation rule can be used to show that the second-order summation rule
does a better job at approximating the number of unit cells in the simulation,
especially for geometries that have a significant number of unit cells on the
boundary compared to the number of interior unit cells.

It is worth noting that other popular summation rules in the QC method such
as cluster and quadrature summation rules are also not 0th-order consistent.
These methods choose the sampling weights such that the sum of the sam-
pling weights equals the volume of the domain (e.g. through volume-weighted
quadrature rules or voronoi tessellation) normalized by the volume of the unit
cell. As seen above, this causes the summation rule to underpredict the num-
ber of unit cells in the simulations (or equivalently, the energy of an affinely
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strained system), but this error becomes negligible for large domains where
the number of interior unit cells far outweighs the number of boundary unit
cells.

3.4.6 Force Artifacts

All of the summation rules used in the QC literature produce error when
approximating the total energy of the system. One way that this error can
be seen is through so-called force artifacts, i.e. forces that occur only because
of the energy approximation error. Force artifacts are most obvious when
occurring in the undeformed configuration in atomic lattices. Intuitively, they
represent the fact that the energy of the system can artificially be decreased by
taking advantage of the inexact energy approximation. The force on a given
lattice site u in the QC method can be written as

F h
u =

∂Ih

∂ϕ̃u
=
∑
s

ws
∂Wu(ϕ̃s, ϕ̃N (s))

∂ϕ̃u
=
∑
s

wsF s, (3.70)

where F s represents the force contribution from sample site s. In atomic
lattices, F s 6= 0 in the undeformed state, and therefore, it is possible that F h

u 6=
0 in perfect lattices, resulting in force artifacts called ghost forces. As shown
in Amelang et al. [3] the optimal summation rules outlined here exhibited the
smallest force artifacts when compared with other popular summation rules in
atomistic QC.

In the case of truss lattices, F s = 0 in the undeformed configuration, so ghost
forces do not appear. However, in trusses undergoing affine deformation, force
artifacts do appear analogous to ghost forces in atomistic QC.

It is common to look at the force artifacts in the QC method to gauge the
error in the summation rule, but this will not be done here. Solely looking
at force artifacts in trusses could be misleading. For example, a large force
artifact in a stretching-dominated truss lattice would not be as severe as a
large force artifact in a bending-dominated truss lattice due to the fact that
bending-dominated lattices are much softer. Furthermore, in lattices like the
square lattice that has bending- and stretching-dominated deformation modes,
the direction of the force artifacts would also affect the error in the model (i.e.
force artifacts acting in the direction of bending-dominated deformation modes
will cause larger errors that artifacts acting in the direction of stretching-
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dominated modes). For this reason, we choose to test the QC methodology
using (among others) the elastic constants test in Section 4.1.

3.5 Adaptive Refinement

A key benefit of the fully-nonlocal QC method over other concurrent scale-
bridging techniques is that no conceptual distinction is made between the
fully-resolved and coarse-grained regions, allowing for automatic adaptive re-
finement of the discretization down to the fully-resolved limit. Note that we
here constrain ourselves to adaptive refinement without coarsening (see the
discussion in Tembhekar et al. [108]). Adaptivity thus requires a refinement
criterion and a geometric refinement algorithm. We generally identify a coarse-
grained element K for refinement if it passes the refinement criterion

F (K)f(FK) > r0, (3.71)

where F (K) is some weighting function depending on the geometry of K and
f(FK) is a metric depending on the deformation gradient inside the element
(averaged over all Bravais lattices in the multilattice, each of which is constant
by the affine interpolation), and r0 defines the refinement threshold. The
specific weighting function and refinement metric are chosen based on the
lattice architecture and the problem to be simulated.

Once all coarse-grained elements have been identified for refinement, we apply
a longest-edge bisection algorithm [108] to insert new repUCs with the com-
plicating constraint that all repUCs are to be located on valid lattice sites. To
this end, we insert a new repUC at the vacant unit cell location nearest to
the mid-point of the longest edge of each element to be refined. Once all new
repUCs have been created, we recreate the element connectivity. The nodal
dofs of newly inserted repUCs are computed by interpolation from the previ-
ously existing mesh (this includes the previous velocities and accelerations if
dynamics is being modeled).

If plasticity or failure is included in the model, then the internal variables
from the previous mesh must be transferred to the updated mesh. In order to
avoid any complications with interpolating internal variables at sample unit
cell locations, the simulations either do not include refinement or use a refine-
ment criterion such that the mesh becomes fully-resolved in any regions where
material nonlinear occurs. In the latter case, the internal variables are only
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copied to the sample unit cells in the new mesh in the fully-resolved region,
and no interpolation takes place.

3.6 Comparison with FE2 and classical homogenization

The truss QC theory described above was specifically designed to accurately
capture the response of truss lattices both in the fully-resolved limit and in the
limit of large coarse-grained elements. In the fully-resolved limit, all dofs of all
unit cells are retained and the energy of each truss member is calculated ex-
actly, so that the lattice is described exactly7. However, when coarse-grained
elements are large so that a separation of scales applies between the macro-
scopic BVP and the underlying unit cell, it is less obvious that our QC method
accurately captures the truss response.

The decision to keep all of the dofs of all of the nodes inside of the unit cell as
dofs at the macroscale was inspired by homogenization. As shown in the two-
scale elasticity problem in Section 1.4, the effective response of the macroscopic
material is achieved when allowing the microstructure to "relax". By having
all of the dofs of the unit cell at each repUC site, the nodes in the unit cell are
able to shift relative to one another, allowing the microstructure to reach a
lower energy. The hope is that allowing the nodes in each unit cell to shift, we
will be able to match the relaxed energy that is predicted by homogenization
in coarse-grained regions. Of course, at this point the claim that keeping all of
the unit cell dofs at the macroscale allows the method to behave similarly to
homogenization when there is a separation of scales is unfounded, which is why
numerous tests are performed in Chapter 4 to determine the accuracy of the
method. However, it is clear that if representative nodes were used instead of
repUCs, then the affine interpolation imposed on the underlying lattice could
over-constrain bending-dominated multilattices such that they appear to be
stretching-dominated. For example, the bending-dominated hexagon unit cell
cannot undergo affine deformation (i.e. without allowing the microstructure
to relax) without stretching of the beams.

Even though the proposed QC methodology does not come with the guaran-
tees of homogenization theory when there is a separation of scales, unlike the

7By exactly we refer to exact agreement with a discrete simulation fully resolving each
individual truss member. The particular choice of the underlying discrete truss description
is not the topic here. It is assumed that the corotational beam formulation used to represent
the truss lattice members is adequate (it can easily be replaced by alternative constitutive
or kinematic descriptions on the individual beam level).
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hierarchical multiscale method, the displacements here are conforming. The
conformity of the displacements means that the computed solution lies in the
solution space of the fully-resolved problem, and that we retain an upper bound
on the energy of the original problem (i.e. up to the energy approximation by
summation rules).
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C h a p t e r 4

APPLICATIONS

A significant portion of this chapter is taken from our recent publication:

Gregory P. Phlipot and Dennis M. Kochmann. A quasicontinuum theory forthe
nonlinear mechanical response of general periodic truss lattices. Journal of the
Mechanics and Physics of Solids, 124:758 – 780, 2019. ISSN 0022-5096. doi:
https://doi.org/10.1016/j.jmps.2018.11.014. URL http://www.sciencedirect.
com/science/article/pii/S0022509618304071.

4.1 Elastic Constants

Since the linear elastic moduli of a periodic lattice generally emerge from
affine states of deformation (depending on lattice architecture possibly with
shifts in between affinely strained multiple Bravais lattices) [112], the multi-
lattice truss QC formulation introduced above is expected to reproduce the
effective, homogenized elastic moduli of, in principle, arbitrary lattice topolo-
gies. However, as was already observed in atomic lattices [3], the unstructured
coarse-graining of the QC methodology introduces errors that depend on the
mesh quality and the choice of the summation rule to approximate the strain
energy, cf. Eq. (3.56). In particular, meshes that undergo adaptive refinement
involve a wide spread in element size and quality. Therefore, it is essential to
verify the accuracy of the above truss QC scheme before preceding to more
advanced boundary value problems. As a worst-case scenario, we consider
random meshes generated by randomly selecting repUCs from the unit cells
within a lattice filling the macroscopic shape of a cube. Of course, any sen-
sible refinement algorithm, including the one outlined in Section 3.5, will not
result in random meshes but in gradually refined meshes of superior quality.
The generation of random meshes is therefore viewed as a worst-case scenario
in terms of mesh quality. If a method performs well here, it is expected to
perform even better on adaptively refined meshes. If a method fails here, then
it cannot be expected to perform well with adaptive refinement or in general
unstructured meshes.

In order to understand how the method performs at various levels of coarsen-
ing, we compute the elastic moduli of a variety of 2D and 3D lattices, using

http://www.sciencedirect.com/science/article/pii/S0022509618304071
http://www.sciencedirect.com/science/article/pii/S0022509618304071
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Figure 4.1: Unit cells of lattices with (a) square, (b) hexagon, (c) kagome,
(d) triangle, (e) star-shaped 2D, (f) cubic, (g) cuboctahedron, and (h) BCC
architecture.

meshes of various repUC densities (where by repUC density we denote the ra-
tio of repUCs to total unit cells in the simulation). Specifically, we present the
elastic moduli of the following lattices: square, hexagon, triangle, kagome, and
star-shaped lattices in 2D, and cubic, cuboctahedron, and a bcc lattice with
nearest-neighbor connectivity in 3D (see Fig. 4.1). Since the purpose of this
simulation is to investigate the method in the linear elastic regime, standard
Euler-Bernoulli beam elements with linearized kinematics are used to model
the individual truss members.

For each lattice, the elastic moduli are computed by first affinely applying
pure-shear, volumetric, and uniaxial states of strain to the translational dofs
of the periphery of a finite-size lattice. To avoid complications because of
unknown boundary conditions to be applied to the rotational dofs for given
states of affine straining, we evaluate the strain energy for the elastic modulus
extraction only in an inner block of the simulation domain (see Fig. 4.2).
This way, potential boundary effects are ensured to have decayed through a
peripheral region towards the center of the block.

The affine displacements applied to the translational dofs of the repUCs in the



56

periphery for the three load cases are given by

xshear =

1 ε 0

ε 1 0

0 0 1

X, xvol =

1 + ε
3

0 0

0 1 + ε
3

0

0 0 1 + ε
3

X, xuni =

1 + ε 0 0

0 1 0

0 0 1

X
(4.1)

in 3D, and

xshear =

[
1 ε

ε 1

]
X, xvol =

[
1 + ε

2
0

0 1 + ε
2

]
X, xuni =

[
1 + ε 0

0 1

]
X

(4.2)
in 2D. The cube is mechanically equilibrated, after which the average strain
energy of the inner block of the simulation domain (see Fig. 4.2) is computed
as a weighted sum over the sampling unit cells according to the first- and
second-order sampling rules introduced in Section 3.4.2. Since the simulation
is linear elastic, the energy is quadratic in the macroscopic strains, and the
relation between the elastic modulus and the energy is

λ =
2Eb
Vbε2

, (4.3)

where λ represents the shear, volumetric, or uniaxial strain elastic modulus,
respectively, for the three above load cases. Eb is the total energy of the sam-
pling sites inside the inner block, Vb = ws vol(ΩUC) is the volume represented
by the sampling sites with vol(ΩUC) being the volume of a single unit cell, and
ε is the applied strain in Eq. (4.1) and Eq. (4.2).

In order to understand how the method performs at various levels of coars-
ening, the elastic moduli of each lattice were computed on meshes of various
repUC densities from 1-100%. In addition, each simulation was repeated for
two different beam slenderness ratios expressed through the relative density,
viz., ρ̄ = 1% (slender beams) and ρ̄ = 20% (thicker beams). Each combination
of lattice topology, relative density, and repUC density was performed on 20

different randomly generated meshes, where the overall size of each simulation
was adjusted to keep a similar number of repUCs in all simulations.

The errors in the elastic moduli computed using truss QC (compared to the
elastic moduli obtained from fully-resolved simulations) are summarized in
Fig. 4.3 and Fig. 4.4. Overall, our truss QC method with optimal summation
rules does an excellent job at predicting the elastic moduli in the fully-resolved
limit (repUC density of 100%) and in the large-element limit (vanishing repUC
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Figure 4.2: Representative, randomly coarse-grained truss QC simulations in
2D and 3D for the elastic constant calculation: (left) a coarse-grained hexagon
lattice with 30% repUC density and (right) a bcc lattice with 10% repUC
density. Affine boundary conditions are applied to the translational dofs on
the outer faces of the block, and the energy of all sample unit cells inside the
yellow box is used to calculate the elastic modulus (the large region in between
removes any boundary layer effects).

density). Simulations with intermediate repUC densities show errors, with
apparent variations between different lattice topologies and relative densities.
Largest errors (all less than 6%) appear above repUC densities above 60%,
which amounts to regions being close to fully refined and which also agrees
with observations found on random atomistic QC discretizations [3]. In the
regions near full resolution, the second-order summation rule shows less error
than the first-order rule, but there is a tradeoff with computational expense
since it requires the use of more sampling unit cells.

Indeed, it can be expected that simulations with a slightly coarsened mesh and
an approximate summation rule do not perfectly match the fully resolved data,
as the energy-based QC summation rules are known to generate force artifacts
that lead to errors. However, the same simulations performed on uniformly
coarsened meshes produce the exact elastic constants for all configurations
tested, again analogous to atomistic QC [3]. This confirms that the errors in
Fig. 4.3 and Fig. 4.4 are expected to be larger than those occurring in most
simulations with more structured, better conditioned meshes.

Finally, in order to isolate the error source, the above simulations were per-
formed with an exact energy summation (i.e. unit cell positions are still being
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2D Lattice Moduli Errors
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Figure 4.3: Errors in the linear elastic bulk, shear, and uniaxial moduli of
2D lattices at 20% (solid markers) and 1% (hollow markers) relative density,
computed by coarse-grained truss QC simulations with the first-order (left)
and second-order (right) optimal summation rule and random repUC selection
for each level of repUC density. Markers correspond to the average error from
20 randomly coarsened meshes, and the bars represent the standard deviations
of the errors.
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3D Lattice Moduli Errors
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Figure 4.4: Errors in the linear elastic bulk, shear, and uniaxial moduli of
3D lattices at 20% (solid markers) and 1% (hollow markers) relative density,
computed by coarse-grained truss QC simulations with the first-order (left)
and second-order (right) optimal summation rule and random repUC selection
for each level of repUC density. Markers correspond to the average error from
20 randomly coarsened meshes, and the bars represent the standard deviations
of the errors.
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interpolated but the total energy is calculated exactly from all unit cells in the
simulation). Across all tested relative densities, lattice topologies, and repUC
densities, this yields the exact elastic constants (even with randomly placed
unit cells), which shows that the errors reported can be solely attributed to
the approximation of the energy, and not the QC interpolation scheme.

4.2 Boundary Layer Method

Calculating the fracture toughness of truss lattices is a prime example to
demonstrate the efficiency and accuracy of the truss QC method. Unlike prior
techniques, truss QC allows us to restrict full resolution to those regions of in-
terest near the crack tip while efficiently coarse-graining the remaining domain,
thus easily admitting the application of remote boundary conditions.

We base our investigation on a coarse-grained version of boundary layer analy-
sis proposed by Schmidt and Fleck [94] to compute the brittle fracture tough-
ness of multiple lattice topologies, and we compare the results to those obtained
by brute-force discrete lattice calculation. Boundary layer analysis consists of
applying displacements corresponding to the K-field of an equivalent contin-
uum to the periphery of a large, notched lattice. Since the lattices are not nec-
essarily isotropic, the expressions for the K-Field displacements of anisotropic
media from Sih et al. [96] are used (not written out here for conciseness).
Brittle fracture is assumed to occur when the maximum tensile stress of any
beam near the notch tip reaches the tensile strength of the constituent mate-
rial within the linear elastic regime (so that linear Euler-Bernoulli beams with
linearized kinematics can be used to model individual truss members).

For comparison, Schmidt and Fleck [94] conducted boundary layer analyses
on circular meshes with a radius of about 85l; Quintana Alonso and Fleck [82]
and Romijn and Fleck [89] used square meshes with dimensions 600l × 600l

and Tankasala et al. [106] used square meshes with dimensions 500l × 500l,
where l is the length of a beam in the lattice (all beams in the lattices have the
same length). Here, we start with an initial fully-resolved region of 16l × 16l,
surrounded by 6 regions of 6 cells, each region coarsened by a factor of two
compared to the previous region for total grid size of 768l×768l (see Fig. 4.5).

We use the adaptive refinement described in Section 3.5 with the weighting
function

F (K) = vol(K)1/d, (4.4)
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where d = 2 is the spatial dimension, and the refinement metric based on
the second invariant of the average deformation gradient of the coarse-grained
elements,

f(F ) = I2(F ) =
1

2

(
(trF )2 − tr(F 2)

)
. (4.5)

The second invariant criterion was already used in the traditional QC method
of atomistic lattices [58], where it quantifies the amount of shear inside the
element, ultimately leading to dislocation nucleation/motion (so that the re-
finemen threshold r0 was related to the Burgers vector). Here, this criterion
is chosen as a general measure of the localized deformation.

The refinement tolerance is repeatedly decreased, thereby increasing the total
number of dofs in the simulation. The maximum tensile stress near the notch
tip and the total energy of the system are monitored for convergence of the
simulation. Fully-resolved simulations were performed for comparison.

We perform coarse-grained simulations of the triangle, hexagon, kagome, and
star-shaped truss lattices undergoing Mode I loading. Following others that
have performed boundary layer analysis, we use the elastic constants of Quintana-
Alonso et al. [83] for the triangle, kagome, and hexagon lattices, which cor-
respond to a first-order approximation of the homogenized elastic constants
in terms of slenderness ratio (i.e. higher-order bending terms are neglected
for stretching-dominated lattices). For the star-shaped lattice, which has not
been studied before, we use the first-order approximation of the elastic con-
stants which we calculated. For the exact elastic constants for each lattice, see
Appendix A.

Figure 4.7 and Fig. 4.8 illustrate the convergence of the maximum tensile stress
and of the total energy of the system towards the exact values obtained from
fully-resolved simulations. Apparently, the accuracy of the coarse-grained and
adaptively refined simulations drastically varies based on lattice topology and
relative density; and one generally expects the error to decrease with increasing
repUC density. The unrefined kagome lattice simulations show large errors
in the maximum tensile stress and energy, which are greatly reduced by the
adaptive refinement of the mesh while still using only a small fraction of all
dofs in the lattice. Furthermore, the refinement procedure fully refines the
mesh along the shear bands that emanate from the crack tip in the fully-
resolved simulation (see Fig. 4.5). This demonstrates the effectiveness of the
adaptive QC method. While the coarse-grained simulation displays significant
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(a) Unrefined truss QC mesh.

(b) Adaptively refined truss QC mesh.

Figure 4.5: Coarse-grained kagome lattice in 2D with a pre-existing crack
undergoing mode-I loading, simulated by truss QC with adaptive mesh refine-
ment. The colors correspond to the (normalized) maximum tensile stresses in
the beams.



63

Figure 4.6: Fully-resolved simulation of the 2D kagome lattice undergoing
mode 1 loading. The colors correspond to the (normalized) maximum tensile
stresses in the beams.

errors (because boundary-layer effects coming from the crack tip interfere with
the coarse regions), the refinement technique enlarges the fully-resolved region
only where necessary and effectively reduces the error. The triangle lattice
shows small errors in the energy and maximum stress even in the unrefined
case, suggesting that the boundary layer effects from the crack tip are highly
local, so that no refinement is needed.

The star and hexagon lattices show considerable errors for the unrefined mesh.
Interestingly, while the error decreases as the mesh is refined, the errors do
not decrease to reasonably small values as in the previous cases. It is worth
noting that the hexagon lattice has a bending-dominated Young’s modulus
(E ∼ ρ̄3) and a stretching-dominated bulk modulus (κ ∼ ρ̄), meaning that
for low relative densities the effective response is nearly incompressible (see
Appendix A). Since we are using linear interpolation on a triangulated mesh, it
is possible that we are seeing volumetric locking as in finite elements1. If this is
the case, then the large errors could be attributed to the nearly incompressible
nature of the hexagon lattice.

1In the finite element method, fully-integrated Langrange finite elements (which would
be analogous to the QC formulation here) are known to behave overly stiff when simulating
nearly incompressible materials, and even lock in the incompressible limit.
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Figure 4.7: Convergence of the maximum strut tensile stress near the notch
tip (left) and of the total energy (right) as compared to the fully-resolved
simulation for coarse-grained truss QC fracture simulations of a (top) kagome
lattice, (bottom) triangle lattice in 2D. Insets visualize the adaptively refined
QC representation at the indicated repUC densities.

However, the challenges with the star-shaped lattice cannot be explained by
volumetric locking, since both bulk and Young moduli of the effective contin-
uum are bending-dominated. On the other hand, when the beams are slender,
they act as if they are inextensible, since all macroscopic deformation can be
accommodated by the bending of individual beams, which comes with sig-
nificantly lower strain energy. The fact that we considerably overpredict the
energy of the star-shaped lattice (and that the discrepancy increases as we de-
crease the relative density) suggests that the linear interpolation of the dofs of
each individual Bravais lattice does not allow the multilattice to accommodate
the macroscopic deformation without the stretching of beams. In other words,
if we think of the beams as inextensible members, then the linear interpolation
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Figure 4.8: Convergence of the maximum strut tensile stress near the notch tip
(left) and of the total energy (right) as compared to the fully-resolved simula-
tion for coarse-grained truss QC fracture simulations of a (top) hexagon lattice,
(bottom) star-shaped lattice in 2D. Insets visualize the adaptively refined QC
representation at the indicated repUC densities.

described in Section 3.4.1 leaves the lattice overconstrained for non-uniform
deformation (recall that in Section 4.1 we showed that this interpolation per-
forms well for uniform deformation). This overconstraining of the lattice is
investigated in more detail in Chapter 5, where we propose and test a solution
that mitigates the errors.

It should be noted that the excellent prediction of the elastic constants for
the hexagon and star-shaped lattices in Section 4.1 and the overprediction
of the energy (and therefore, the stiffness) of the lattices in this section do
not contradict each other. The elastic constants simulations showed that the
proposed kinematic constraints were able to match the true solution for uni-
form deformations, while alternative formulations may be preferable for more
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complex non-uniform deformations. This is analogous to how fully-integrated
standard Lagrangian FE passes the patch test, but can massively overpredict
the stiffness of incompressible materials undergoing more complicated defor-
mations.

4.3 Indentation

In order to test the geometric nonlinear capabilities of truss QC, we perform
adaptive indentation simulations on 2D and 3D multilattices. Indentation is
chosen because it features highly localized deformation, buckling of beams in
compression, a non-trivial onset of localization, and it has been used as a
standard benchmark in classical QC [59]. We use the nonlinear corotational
beams described in Section 3.2.2. The indenter is modeled using an energetic
penalty, viz. by applying an external force potential

Ls =
Ns∑
s=1

ws
∑
p∈Ωs

κ (|xp − xc| −R)3 , (4.6)

where κ is a force constant, and R and xc are the radius and center of the
spherical indenter, respectively. The QC representation is fully-resolved where
there is contact between the truss and the indenter, so the external force
represents a penalty for each node in the truss lattice that penetrates the
spherical indenter. It should be noted that while the contact between the
truss nodes and the indenter is modeled, the contact between individual truss
members is not taken into account.

For comparison purposes, the 2D and 3D indentation simulations were re-
peated with the following settings:

• fully-resolved with corotational beams,

• fully-resolved with linear Euler-Bernoulli beams,

• truss QC with corotational beams, no refinement,

• truss QC with corotational beams, adaptive refinement.

The fully-resolved simulations with corotational beams are the highest fidelity
model, and are thus used as the “exact” solution. Simulations with linear beam
elements are used to demonstrate the drastic difference in predicted behavior
when geometric nonlinearity is taken into account. Lastly, the two coarse-
grained simulations are used to demonstrate the accuracy of truss QC and to



67

Figure 4.9: Initial geometry for the fully-resolved (left) and coarse-grained
(right) 2D kagome lattice before indentation.

show the importance of adaptive refinement. The adaptive refinement tech-
nique of Section 3.5 is used with the same weighting function and refinement
criterion used in Section 4.2 (given by Eq. (4.4) and Eq. (4.5)).

In 2D, we simulate indentation into a kagome lattice with relative density
ρ̄ = 35% (t/L ≈ 0.20 where t is the thickness of the truss member), which is
tessellated to fill a square of side length 240L (see Fig. 4.9). This results in
a lattice with roughly 35,000 nodes and 107,000 corotational beam elements.
The coarse-grained mesh is created by having an initially fully-resolved region
of size 32L× 32L where the indenter makes contact, and gradually coarsening
away to fill the domain resulting in a mesh with roughly 1,900 nodes (≈ 5.3% of
the fully-resolved simulation). The indenter has radius R = 60L and indents
into the lattice a distance of 20L over 50 equal load steps. The refinement
algorithm uses a tolerance of r0 = 0.075L.

The obtained load-displacement curve is found in Fig. 4.10. The indenter
force (F ) is normalized with respect to Young’s modulus E and truss length
L, while the indenter displacement d is normalized with respect to the truss
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length L. Comparing the fully-resolved corotational beam simulations to the
linear Euler-Bernoulli beam simulations illustrates that significant geometric
nonlinearity occurs during the simulation, justifying the use of corotational
beams. Furthermore, the difference between the unrefined and refined truss
QC simulations portrays the need for adaptive mesh refinement as the deforma-
tion becomes more severe. Most importantly, the refined truss QC simulation
shows convincing agreement with the exact solution, even at significant inden-
tation depths. The adaptively refined simulation behaves slightly stiffer than
the fully-resolved simulations, which is expected since the interpolation was
chosen such that truss QC overpredicts the energy of the exact solution.

Figure 4.10 shows the repUC density of the simulation during refinement along
with snapshots of the coarse-grained truss at various load steps. Those snap-
shots indicate that geometric nonlinearity in the simulation is to a considerable
part due to the buckling of truss members underneath the indenter; adaptive
refinement expands the fully-resolved region as necessary to capture this lo-
calized buckling.

In 3D, a kagome lattice with relative density ρ̄ = 10% (r/L ≈ 0.122 where
r is the radius of the truss member with circular cross-section) is tessellated
to fill a cube of side length 35L (see Fig. 4.11). This results in a lattice with
roughly 44,000 nodes and 130,000 corotational beam elements. The truss QC
simulation starts with a mesh containing 1,600 nodes (≈ 3.5% of the fully-
resolved simulation). The indenter has radius R = 5L and indents into the
lattice a distance of 6L over 50 equal load steps. Refinement uses a tolerance
of r0 = 0.04L.

The 3D results – while being similar to those results of the 2D lattice above –
demonstrate the power of the 3D truss QC theory and implementation. The
normalized load-displacement curve and the adaptive refinement results are
shown in Fig. 4.12. Significant nonlinearity is observed in the simulation, and
adaptive refinement is necessary and successful in accurately predicting the
response of the lattice. The adaptive truss QC simulation agrees well with
the exact solution (even though not quite as well as in 2D). However, the
main features of the simulation such as the initialization of buckling near the
indenter and the general post-buckling behavior match well.
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FR Euler-Bernoulli

Figure 4.10: (a) Normalized load-displacement curves for the indentation into
a 2D kagome lattice, (b) the repUC density as the simulation progresses,
and the final deformed configurations of the (c) fully-resolved Euler-Bernoulli
beam, (d) fully-resolved corotational beam, and (e) adaptively refined coro-
tational beam simulations. The colors of beams correspond to the maximum
tensile stress in each beam normalized by Young’s modulus.
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Figure 4.11: (a) Initial geometry for the fully-resolved and (b) coarse-grained
truss QC of a 3D kagome lattice before indentation.

4.4 Dynamic Indentation

In this section, we test our formulation of the QC method modeling history-
dependent truss lattices. We perform dynamic simulations of a 2D triangle
truss lattice subject to a cylindrical indenter moving at a constant velocity2.
The geometry of the truss lattice is a 192 × 152 rectangle, with each truss
having a length L = 1 (see Fig. 4.13). The indenter is taken to have a radius
of r = 30, and moves a distance d = 10 into the lattice over a time period
of t = 200. We use the variational formulation of the Newmark method
outlined in Section 3.3.2 with constants β = 1/4 and γ = 1/2 (corresponding
to the second-order accurate average acceleration method) and a time step of
∆t = 1. To model the individual truss members, we use the corotational beams
described in Section 3.2.2 paired with the brittle failure model in Section 3.3.1
using the average tensile stress (ATS) as the yield criterion. The corotational

2This is equivalent to modeling the impact of a cylinder with infinite mass.
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Adaptive Mesh Refinement for 3D Kagome Indentation

Figure 4.12: Normalized load-displacement curve for the indentation of a 3D
kagome lattice (top left), the repUC density as the simulation progresses (top
right), and the slices of the final deformed configurations of the fully-resolved
(bottom left) and adaptively refined (bottom right) simulations with average
axial strain contours.
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Figure 4.13: Geometry of the coarse-grained dynamic indentation simulation.
The left shows the initial coarse-grained truss lattice with the mesh and sample
unit cells.

beams are taken to have the lumped mass matrix

M =
ρAL

2



1

1 0
L2

12

1

0 1
L2

12


, (4.7)

where A and L are the cross-sectional area and beam length respectively. The
triangle lattice is taken to have a relative density ρ̄ = 10%, and the constituent
material is given a density of ρ = 1. The Young’s modulus of the constituent
material is E = 10, and the yield strength used in the failure criterion is
σy = 0.3. We use the process of solving the elastic system and failing one
beam at a time described in Algorithm 1.

The problem was simulated using the QC method with the first-order sum-
mation rule described in Section 3.4.2. The mesh was adaptively refined using
the general refinement framework outlined in Section 3.5, with the weighting
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function
F (K) = Le(K), (4.8)

where Le(K) is the length of the longest edge of K, and the refinement metric

f(F ) = max
‖X̂‖=1

‖FX̂‖ − 1 (4.9)

was used to mark elements for refinement. Equation (4.9) represents the maxi-
mum possible axial strain of any truss member inside the macroscopic element.
In order to assure that failure of beams only occurs in fully-resolved regions,
we use a refinement threshold of r0 = 0.05.

Snapshots of the adaptively refined coarse-grained simulation are compared
with the fully-resolved simulation in Fig. 4.14. It can be seen that the overall
behavior of the truss is the same in both simulations. In both cases, a region
underneath the indenter catastrophically fails, and a long crack propagates
through the truss lattice. We note that the onset of failure in the coarse-
grained simulation occurs in the exact same location and only two load steps
earlier than the fully resolved simulation. The fact that the exact failure
pattern does not match in the two simulations is expected; the process of
failing beams one at a time breaks the symmetry in the problem, and even
numerical noise could result in different crack propagation patters (similar to
how exact dislocation motion in atomistics often is not repeatable).

From Fig. 4.14, it is clear that the propagation of the crack in both the QC and
the fully-resolved simulations move at the same speed. The average rupture
speed of the longest crack (calculated by computing the distance and time
it took to travel from initiation to interacting with the bottom boundary) in
both simulations was found to be vr ≈ 1.59. Using the homogenized elastic
constants and average density of the truss lattice, the longitudinal and shear
wave speeds of the effective material are

cl =

√
E∗(1− ν∗)

(1 + ν∗)(1− 2ν∗)ρ∗
=
√

5 cs =

√
µ∗

ρ∗
=

√
5

2
. (4.10)

Interestingly, the rupture speed is somewhere in between the shear and longitu-
dinal wave speed of the homogeneous material. For mode I crack propagation,
the maximum rupture speed of a crack is the Rayleigh wave speed, cR < cs

[43]. However, the greatest mode II rupture speed predicted by dynamic frac-
ture mechanics is vmax

r =
√

2cs ≈ 1.58 [42], which is very close to (and within
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Figure 4.14: Snapshots of the truss lattice: coarse-grained (left) and fully-
resolved (right). Colors correspond to the maximum stress in each beam, and
the broken beams are not shown.
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the approximation error of) the computed rupture speed of vr ≈ 1.59. In the
fracture mechanics field, this phenomenon is called supershear rupture since
the crack travels faster than the shear wave speed, and has been observed both
in the lab [90] and in nature during earthquakes [24].

While the overall behavior of the lattice matches in both cases, there are signifi-
cant discrepancies in the way elastic waves behave between the two simulations.
Figure 4.15 consists of the deformed meshes colored by the magnitude of the ac-
celeration at various pre-rupture times to show how the elastic waves created
by the indenter propagate throughout the coarse-grained and fully-resolved
truss. The fully-resolved simulations show the longitudinal waves propagat-
ing throughout the body along with Rayleigh waves confined near the upper
boundary (and some reverberations from the truss bouncing off the indenter).
Initially, when the elastic waves are contained in the fully-resolved region, the
coarse-grained simulation expectedly matches the fully-resolved simulation.
However, when the elastic waves reach the boundaries of the coarser mesh,
the high-frequency components of the waves are artificially reflected back into
the fine domain. By the time the elastic waves reach the coarsest region of
the domain, the waves have dispersed to the point where they are no longer
recognizable.

The fact that the elastic waves bounce off mesh boundaries is not unique
to the QC method; the same effect has been known to occur in dynamic
finite element simulations with non-uniform meshes [13, 14]. Although not
seen in the simulations here, wave reflections could potentially trap energy in
fully-resolved regions and cause excess damage. While there has been many
proposed ways to deal with this spurious reflection, it is not a focus of this
thesis and is left for future work.

4.5 Hole in Plate Made of an Elasto-Plastic Truss Lattice

We proceed to assess the performance and accuracy of the proposed QC
method applied to three dimensional truss lattices undergoing inelastic de-
formations. The test case is the classic cylindrical hole in a large plate being
stretched in-plane. The specimen (see Fig. 4.16), is an octet truss lattice plate
with a unit cell size of 1 (resulting in truss lengths L =

√
2/2) with a thickness

of 9 unit cells, and width and length of 96 unit cells in each direction. All unit
cells within a radius of 8 units from the center are removed from the geometry
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Figure 4.15: Magnitude of the acceleration in the coarse-grained (left) and
fully-resolved (right) simulations at various time steps before failure of the
truss lattice. The elastic waves can be seen artificially bounding off mesh
boundaries in the coarse-grained simulations.
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Figure 4.16: Cylindrical hole in octet lattice plate. The fully-resolved truss
lattice (left) and the coarse-grained mesh (right)

to create the cylindrical hole3. The resulting geometry is a plate that has
roughly 100,000 unit cells, 400,000 nodes, and 2,000,000 truss members.

Since the octet lattice is a rigid, stretching-dominated lattice, we model the
individual truss members with large rotations bars, using the isotropic hard-
ening plasticity model described in Section 3.3.1. The constituent material is
taken to have a linear elastic regime with Young’s modulus E = 10, and initial
yield stress of σy = 2 with a hardening constant of K = 10/99 such that the
plastic modulus is H = 1. The truss has a relative density of ρ̄ = 10%, and
the plate undergoes a macroscopic strain of 20% over 20 equal load steps.

The repUCs were chosen by creating a fully resolved 30×30×9 unit cell block
around the hole, then uniformly coarsening away from the hole to reach the
specimen dimensions of 96×96×9. The coarse-grained simulation by compari-
son consisted of roughly 10, 500 repUCs, and 42, 000 nodes. The coarse-grained
simulations were performed using both the first-order and second-order sum-
mation rules described in Section 3.4.2. Figure 4.17 shows the macroscopic
stress-strain relation (where the stress is taken as the average force at the ends
normalized by the area) predicted by the coarse-grained and fully-resolved
simulations.

It is clear from the figure that the second-order summation rule matches the
fully-resolved simulation better than the first-order rule. This is because the
plate is only 9 unit cells thick, and as mentioned in Section 3.4.2, the first-

3The hole that is created is not exactly cylindrical. Since the full cubic unit cells are
removed from the geometry, the hole has jagged edges and only approximates a cylindrical
hole.
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Figure 4.17: Average stress-strain relation for the octet truss hole-in-plate
extension simulations with first- and second-order summation rules, compared
with the fully-resolved simulation. The insets are colored by the axial stress in
each bar in the specimen at macroscopic strain values of ε = 0.08 and ε = 0.20.

order summation rule poorly approximates the number of unit cells in thin
geometries (i.e. where there are many boundary unit cells compared with the
total number of unit cells). On the other hand, the second-order summation
rule, which does a better job at approximating the number of unit cells that lie
on the boundary of the geometry, matches the fully-resolved simulation almost
perfectly.

As an additional comparison, Fig. 4.18 shows the equivalent plastic strains
in the bars near the hole in the fully-resolved and coarse-grained simulations.
Even though the QC method uses roughly 1/10 of the dofs of the fully-resolved
simulation, the plastic strains near the hole match the fully-resolved simulation
well. This is another example of where the QC method is powerful: the global
quantities (i.e. average stress) and the stress concentrations and other local
quantities are accurately captured in regions of interest using a fraction of the
dofs needed for the fully-resolved simulation.
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(a) Coarse-grained with first-order summation rule.
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(b) Coarse-grained with second-order summation rule

(c) Fully-resolved

Figure 4.18: Plastic strains near the cylindrical hole at 20% macroscopic
strain for the coarse-grained simulations with first-order summation rule (top),
second-order summation rule (middle), and the fully-resolved simulation (bot-
tom). The maximum plastic strains are 0.597 (coarse-grained, first-order
summation) 0.632 (coarse-grained, second-order summation), and 0.627 (fully-
resolved).
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C h a p t e r 5

HIGHER-ORDER QUASICONTINUUM TECHNIQUES AND
STRETCH LOCKING

As seen in the fracture toughness simulations in Section 4.2, the QC method
developed in Chapter 3 can display inaccuracies when modeling the response
of bending-dominated multilattices. The inability of the method to model
bending-dominated lattices is theorized to occur because the kinematic con-
straints overconstrain the lattice such that the bending-dominated lattice can-
not undergo inhomogeneous deformations without stretching individual beams.
Therefore, it is desirable to extend the QC method using higher-order interpo-
lation (and corresponding higher-order summation rules) towards improving
the predicted response of bending-dominated multilattices. Before formulating
the higher-order method in Section 5.2, we take a closer look at the locking
phenomenon in Section 5.1 by using a test case common in finite elements. Fi-
nally, we test the newly-developed method in Section 5.3 in simulations where
locking is known to occur.

5.1 Stretch Locking

When extending the existing Bravais lattice QC method for trusses to multilat-
tices, some of the bending-dominated lattices were seen to exhibit a locking be-
havior that is similar to volumetric locking in finite elements (see Section 4.2).
In the finite element method, volumetric locking occurs in all fully-integrated
Lagrange finite elements when modeling (nearly) incompressible materials. It
occurs because the piecewise polynomial interpolation of displacements is not
a sufficiently rich basis to approximate the (nearly) deviatoric strains of the
true solution.

In the QC method for trusses, locking is not due to the near-incompressibility
of a lattice (e.g. the hexagonal lattice), since it is also seen in lattices topolo-
gies where all deformation modes of the homogenized material are bending-
dominated (e.g. the star-shaped lattice). Therefore, the locking is theorized to
occur because of the near-inextensibility of the truss members (i.e. the axial
stiffness is orders of magnitudes greater than the bending stiffness) for bending-
dominated lattices, and thus, we refer to this locking as stretch locking. Here
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Figure 5.1: Traditional Cook’s membrane geometry (left) and the correspond-
ing hexagon lattice membrane (right) with each truss member having a length
of L = 1.

we investigate the truss lattice equivalent of Cook’s membrane problem, which
is a well-known test case for volumetric locking in finite elements.

Cook’s membrane consists of the geometry shown in Fig. 5.1 with the left side
of the membrane held fixed, and a distributed load placed on the right side of
the membrane. The truss lattice equivalent problem is constructed by filling
Cook’s membrane geometry with a given truss topology with specified truss
length L (see Fig. 5.1). On the left side of the membrane, one node in each unit
cell is held fixed, and similarly on the right side of the membrane; a vertical
external force is placed on one node in each unit cell on the boundary.

We perform truss lattice versions of Cook’s membrane problem using the QC
method outlined in Chapter 3 with several two-dimensional lattice topologies:
square, triangle, hexagon, kagome, and star-shaped. Each lattice is scaled
such that the length of an individual beam is L = 1/10, and the beam was
modeled using linearized Euler-Bernoulli beams described in Section 3.2.2.
The fully-resolved problem is simulated and compared with coarse-grained
simulations where the mesh is coarsened by choosing every nth unit cell as
a repUC, n = {2, 3, 4, 6, 8} (see Fig. 5.2) 1. In order to monitor the locking

1Since this is a 2D simulation, choosing every nth unit cell results in a simulation with
an approximate repUC density of 1/n2.
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phenomenon, the strain energy of the lattice is used as a metric2.

Figure 5.3 shows the strain energy (normalized with respect to the fully-
resolved strain energy) of the coarse-grained simulations for the various truss
lattice topologies with relative density ρ̄ = 1%. The square, triangle, and
kagome lattices do not exhibit stretch locking; as the repUC density is de-
creased, the strain energy in the simulation closely approximates the strain en-
ergy in the fully-resolved simulation. However, it is clear that the hexagon and
star-shaped lattices — the only two bending-dominated multilattice topologies
— do exhibit locking since the normalized strain energy immediately drops
upon coarsening. The fact that this happens for both the hexagon (nearly in-
compressible homogenized effective material) and the star-shaped (all modes
bending-dominated) lattices signifies that this is not due to volumetric locking
like in finite elements, but to stretch locking.

Figure 5.4 shows how changing the relative density of the truss lattices effects
the locking phenomenon. In both lattices, as the relative density increases
(and the difference between stretching and bending stiffness decreases), the
locking becomes less severe. This is further evidence that the locking occurs
because the interpolation of the dofs over-constrains the system such that
bending-dominated lattices cannot undergo inhomogeneous deformation with-
out stretching individual beams.

5.2 Higher-Order Interpolation and Summation Rules

Most implementations of the QC method resort to using linear interpolation
of the dofs in coarse-grained regions. However, there have been some for-
mulations using alternative interpolations such as meshless methods [60] and
quadratic and/or cubic Hermite interpolation [16, 114] to model 2D plate-like
lattices. In particular, the higher order QC method of Beex et al. [16] is rel-
evant because the authors used cubic interpolation of translational dofs and
quadratic interpolation of rotational dofs in coarse-grained areas to model in-
and out-of-plane bending of a 2D lattice plate. The method in [16], inspired by
plate finite element shape functions, was developed specifically to model the

2Since the problem is linear elastic, the total strain energy at equilibrium is equal to
half the work done by the external forces, 1/2F ·u on the right hand side of the membrane
due to Clapeyron’s theorem [65]. The force on the right hand side is constant and in the
vertical direction, so comparing the strain energy of the lattice is equivalent to comparing
the average vertical displacements on the right hand side.
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Figure 5.2: Example meshes for the coarse-grained truss lattice Cook’s mem-
brane simulations. Full resolution (top), coarsening of n = 4 (bottom left), and
coarsening of n = 8 (bottom right) of the 2D kagome lattice.
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Figure 5.3: Normalized strain energy of truss lattice versions of Cook’s mem-
brane problem for various 2D truss topologies with relative density ρ̄ = 1%.
Insets show the deformed fully-resolved and coarse-grained (with repUC den-
sity of 1/9) simulations of the hexagon(top) and star-shaped (bottom) lattices,
colored by the displacements normalized by the maximum displacement of the
fully-resolved truss.
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Figure 5.4: Strain energy of the hexagon and star-shaped lattices at relative
densities of ρ̄ = 10% and ρ̄ = 1%.

Figure 5.5: An example of higher-order interpolation QC used to model bend-
ing of planar lattices (left, reprinted from [16] with permission of the copyright
holder, Elsevier), and an example of a quadratic tetrahedron in the QC method
used to model a "lattice continuum" (right).

bending of a "lattice plate" rather than a "lattice continuum". This chapter is
devoted to developing a higher-order QC method for the latter (see Fig. 5.5).

It should also be noted that in [16], the higher-order QC technique had a num-
ber of undesirable properties which the technique outlined here will not share.
In order to model out-of-plane bending, the translational and rotational dofs of
the lattice were interpolated using cubic and quadratic shape functions, respec-
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tively, leading to different representative sites for translational and rotational
dofs (and, therefore, different meshes). In addition, the representative sites
did not lie on valid lattice sites3. Furthermore, the kinematic constraints that
were introduced resulted in a non-conforming triangulation at the boundary
of the fully-resolved region and the coarse-grained region. The higher-order
QC method outlined in this chapter will be shown to result in a conforming
mesh throughout the entire domain with identical representative sites for all
dofs.

5.2.1 Kinematics

Just like the QC formulation with affine shape functions are analogous to
linear triangles and tetrahedra in finite elements, it is desired to create higher-
order QC elements using the interpolation functions of higher-order simplicial
elements in finite elements. In order to do so, we need to take some care in
choosing repUCs to create higher-order meshes while maintaining the fact that
all repUCs lie on valid lattice sites.

The task of choosing repUCs can be rephrased by choosing locations in the
domain with integer Bravais coordinates, i.e. choosing points from the set{

X | X ∈ Ω and Xrep =
d∑
i=1

ciai + S0, ci ∈ Z

}
, (5.1)

where S0 is some global offset vector. In order to construct a conforming
mesh of second-order Lagrange finite elements4 where all repUCs lie on valid
lattice sites, we first select unit cells that lie on sites with Bravais coordinates
ci/2 ∈ Z. In other words, the vertex repUCs would be placed on sites with
even Bravais coordinates. These lattice sites are used to create a first-order
mesh. Then, the repUCs corresponding to the mid-edge nodes of the quadratic
Lagrange finite element are placed in the mesh. The locations of these repUCs
come from an affine mapping of the parent Lagrange element, and have the
locations {

X | X = Xj +
1

2
(Xj −Xk), Xj,Xk ∈ Kv,

}
, (5.2)

3While there is nothing intrinsically wrong about not having representative sites lie on
valid lattice sites, it is not desirable since the sites lose their physical significance, and can
cause problems if paired with automatic refinement (e.g. zero energy modes appearing due
to more representative sites than underlying lattice sites).

4While the formulation outlined here can be used for interpolation of an arbitrary degree,
we restrict ourselves here to quadratic interpolation.
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where Kv are the vertex repUCs of element K. When writing out the vertex
repUC locations in terms of their Bravais coordinates ci,j and ci,k, i.e.

X =
d∑
i=1

ci,jai +
1

2
(ci,j − ci,k)ai =

d∑
i=1

(
ci,j −

ci,k
2

)
ai, (5.3)

it is clear that the newly added repUCs also lie on valid lattice sites. The
vertex repUCs were chosen such that ci,k/2 ∈ Z, so the Bravais coordinates of
the new sites (ci,j − ci,k/2) ∈ Z as well.

Once all of the vertex and mid-edge repUCs are created, the kinematic inter-
polation is given by

ϕ̃(Xu) =

Nrep∑
r=1

Nr(Xu)ϕ̃r, (5.4)

where Nr(Xu) are quadratic Lagrangian shape functions.

It is worth noting here that, in the fully-resolved region, it makes no difference
whether quadratic or linear interpolation is used. Since every unit cell is a
repUC and the energy is computed exactly in these regions, the shape func-
tions are only evaluated at the repUC locations. If linear elements are used
adjacent to quadratic elements in the fully-resolved region, the nonconformity
of the shape functions do not effect the conformity of the truss dofs at the
lattice sites. Therefore, it is possible to use linear elements with quadratic
(or higher-order) elements in fully-resolved regions without having to worry
about nonconformity. Fig. 5.6 gives an example of a higher-order mesh with
the repUCs highlighted. Most of the mesh uses quadratic interpolation, but
in the bottom left corner, linear elements are used to demonstrate how the
choice of interpolation in the fully-resolved region is inconsequential.

5.2.2 Energy Approximation

Most of the summation rules in the literature are developed specifically for
linear interpolation on a triangulated mesh, and do not naturally extend to
higher-order interpolations. The exception to this are the quadrature summa-
tions rules that place a quadrature sampling unit cell at Gaussian quadrature
points in all of the coarse-grained simplices, with weights given by

w = wg vol(∆)
vol(K)

vol(ΩUC)
, (5.5)
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Figure 5.6: Example of the proposed higher-order interpolation strategy ap-
plied to a square lattice. The underlying truss lattice (grey) is approximated
using the repUCs (blue) connected by the mesh (black).

where wg is the Gaussian quadrature weight, vol(∆) = 1/2 or 1/6 in 2D or 3D,
respectively, is the volume of the unit simplex, and vol(K) and vol(ΩUC) are
the volumes of the coarse-grained element and unit cell, respectively. The first-
order approximation Eq. (3.63) is used to generate the positions of the neighbor
unit cell locations at the quadrature points, meaning quadrature sampling
results in a local-nonlocal version of QC. The idea behind these quadrature
rules is that, as the coarse-grained elements become large, the finite sum over
the containing unit cells converges to an integral over the element, for which
Gaussian quadrature is suitable.

However, as will be shown later, this summation rule can have considerable
errors in moderately coarsened regions. Therefore, we propose a new summa-
tion rule based on the second-order summation rule described in Section 3.4.2
that retains nonlocal sampling unit cells in the coarse-grained regions. In two
dimensions, the proposed summation rule for quadratic interpolation is anal-
ogous to the previously outlined second-order summation rule. Each vertex
repUC is also a sample unit cell with a weight of 1. The edge sample unit cells
(which now coincide with the mid-edge repUCs in the quadratic interpolation)
have weights equal to the number of unit cells that lie on the edge. And lastly,
there is a local sample unit cell at the barycenter of each coarse-grained ele-
ment with a weight equal to the number of unit cells that lie on the interior
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of the triangle (see Appendix B for details on how the weights are computed).

On the other hand, the second-order summation rule in three dimensions does
not naturally extend to quadratic interpolation as the face sample unit cells lie
on the faces of the tetrahedron rather than the edges, where the new repUCs
are placed. So, we propose a summation rule similar to the second-order
optimal summation rule where edge sample unit cells are used instead of face
sample unit cells. Therefore, the proposed three-dimensional summation rule
is one where each vertex repUC is a sample unit cell with a weight of 1, each
mid-edge repUC is a sample unit cell with a weight equal to the number of
unit cells on the edge (see Appendix B for details on how this is computed),
and there is a local sample unit cell at the barycenter of each macroscopic
element with the weight

ws,inner =
vol(K)

vol(ΩUC)
−
∑
i=1

ωK(Xrep
i )−

∑
i=1

wi,edgeωK(Xedge
i ), (5.6)

where ωK(Xedge
i ) is the solid angle of the edge sample unit cell.

5.3 Performance of Higher-Order Methods

5.3.1 Elastic Constants Revisited

In order to test the combination of the quadratic interpolation and higher-
order summations rules, we perform the exact same elastic constants tests of
Section 4.1 with the newly introduced kinematics and energy approximation.
For comparison purposes, the elastic constants tests are performed using both
the quadrature summation rule and the slightly modified optimal summation
rule described in Section 5.2.2. The errors in the predicted elastic constants
are shown in Fig. 5.7 and Fig. 5.8.

As can be seen from the figures, the errors associated with the higher-order
QC formulation are larger than errors seen with affine interpolation. The
quadrature summation rule in two dimensions exhibits significant errors for
all lattice topologies near the fully-resolved limit. However, the second-order
summation rule is considerably more accurate (although less accurate than
when used with linear interpolation) near full-resolution, and correctly matches
the homogenized elastic moduli in both the fully-resolved and extremely coarse
limits. In three dimensions, the accuracy of the quadrature and modified
optimal summation rules are similar. Both summation rules have a larger
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2D Lattice Moduli Errors
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Figure 5.7: Errors in the linear elastic bulk, shear, and uniaxial moduli of
2D lattices at 20% (solid markers) and 1% (hollow markers) relative density,
computed by coarse-grained truss QC simulations with quadratic interpolation
paired with quadrature (left) and optimal (right) summation rules and random
repUC selection for each level of repUC density. Markers correspond to the
average error from 20 randomly coarsened meshes, and the bars represent the
standard deviations of the errors.
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3D Lattice Moduli Errors
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Figure 5.8: Errors in the linear elastic bulk, shear, and uniaxial moduli of
3D lattices at 20% (solid markers) and 1% (hollow markers) relative density,
computed by coarse-grained truss QC simulations with quadratic interpolation
paired with quadrature (left) and optimal (right) summation rules and random
repUC selection for each level of repUC density. Markers correspond to the
average error from 20 randomly coarsened meshes, and the bars represent the
standard deviations of the errors.
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error than in two dimensions, but the modified optimal summation rule is
slightly more accurate near full resolution.

As in the linear interpolation case, all of the errors can be attributed purely
to the error introduced in the summation rule. When the elastic constant sim-
ulations were performed using an exact summation rule, or when the meshes
were uniformly coarsened, all of the errors were negligible. Therefore, the er-
rors seen in Fig. 5.7 and Fig. 5.8 represent worse case scenarios, and much
lower errors are expected in practice.

5.3.2 Cooks Membrane Revisited

To see how the higher-order interpolation and summation rules outlined in
Section 5.2 perform, we revisit Cook’s membrane simulation described in Sec-
tion 5.1, but using the higher-order method. We expect that with the quadratic
interpolation, the underlying lattice will be less constrained, and thus bending-
dominated multilattices will be able to undergo inhomogeneous deformations
without exhibiting stretch locking.

Since the Bravais lattice and stretching-dominated unit cells did not show
any stretch locking in the first-order Cook’s membrane simulations, here we
focus on the bending-dominated multilattices: the star-shaped and hexagon
lattices. To exaggerate stretch locking in the problem, the simulations were
performed with each lattice having a low relative density of ρ̄ = 1%. The
quadratic meshes were created in a similar manner to the first-order meshes
in Section 5.1, but using the method of first choosing "even" repUCs for the
vertices, then adding the mid-edge repUCs afterwards as described in Sec-
tion 5.2.1. For direct comparison, the linear and quadratic interpolation sim-
ulations were performed using the exact same repUCs; only the connectivity
and order of interpolation is different. The simulations were performed using
both the second-order summation rule, and an exact summation rule where
every unit cell is used as a sample unit cell. This is done to show that any
differences seen here are purely due to the quadratic interpolation rather than
errors in energy approximation.

Figure 5.9 shows the strain energy of the Cook’s membrane simulations of
the star-shaped and hexagon lattices for various repUC densities using the
quadratic interpolation. The results using linear interpolation from Section 5.1
are also copied here for comparison purposes.
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Figure 5.9: Normalized strain energy of the Cook’s membrane simulations of
the hexagon (top) and star-shaped (bottom) lattices with relative density of
ρ̄ = 1%. The insets show the deformed membranes and are colored by the
magnitude of displacements (normalized by the maximum displacement of the
fully-resolved simulation).
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The most obvious and notable aspect of Fig. 5.9 is that neither the hexagon
nor star-shaped lattices exhibit stretch locking when using the quadratic inter-
polation. The strain energies in both lattices closely match the strain energy
of the fully-resolved simulations until the meshes become exceedingly coarse.
Furthermore, it is clear that the improved performance is not due to the energy
approximation (as is the case with reduced integration in finite elements), but
is directly tied to the kinematics.

A surprising aspect of Fig. 5.9 is that the the hexagon lattice — a lattice that
results in a nearly incompressible effective material — does not show any lock-
ing. If a hexagon lattice Cook’s membrane problem was simulated using FE2

or homogenization techniques using fully-integrated Lagrange elements, the
membrane would exhibit volumetric locking. More sophisticated techniques
such as reduced integration, B-bar methods, or other multi-field variational
methods (e.g. Hellinger-Reissner or Hu-Washizu principles) would need to be
employed to accurately model the membrane. However, here we show that,
when all of the dofs of the multilattice are kept at the macroscale, it is possi-
ble to accurately model nearly incompressible effective materials without using
multiple fields or reduced integration.

5.3.3 Boundary Layer Revisited

In Section 4.2, it was seen that the adaptive QC versions of the boundary layer
method for predicting the brittle fracture toughness of 2D lattices was accu-
rate for the triangle and kagome lattices but was inaccurate for the hexagon
and star-shaped lattices due to stretch locking. Here, we revisit the adaptive
boundary layer method simulations for the hexagon and star-shaped lattice
using the quadratic interpolation and higher-order summation rule described
in Section 5.2.

The geometry and boundary conditions are almost identical to the those in
Section 4.2, with the small difference being the notch width. Since the ge-
ometry is created by first creating vertex repUCs that lie on sites with even
Bravais coordinates, the resolution in creating the geometry is two unit cells.
Therefore, the notch in the lattices here have a width of two unit cells rather
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than notches with a width of one unit cell as in Section 4.2 5. The simulations
are performed with a slender truss with relative density ρ̄ = 1% in order to
emphasize any stretch locking that would occur.

The refinement algorithm used here with quadratic interpolation is analogous
to the refinement algorithm outlined in Section 3.5 and used in the affine in-
terpolation simulations in Section 4.2. One difference is that the refinement
algorithm searches for new vertex repUCs, so that the new repUC locations
are chosen to be at the nearest "even" (in Bravais coordinates) unit cell lo-
cations to the midpoint of the longest element edges. The other modification
is that we use the average deformation gradient across the quadratic simplex
when computing the refinement metric. We use the average deformation gra-
dient since it is not constant in each macroscopic element as it is with affine
interpolation.

Since relatively large errors were seen in the elastic constants section, the
simulations here are performed with quadratic interpolation using both the
higher-order summation rule described in Section 5.2, but also with an exact
summation rule where the energy is computed with a sum over all beams in the
simulation. Figure 5.10 shows the error in strain energy and in the maximum
stress at the notch tip for the hexagon and star-shaped lattices as the quadratic
mesh is refined using the second invariant refinement criterion. Clearly, the
quadratic interpolation performs significantly better at approximating the true
solution than the linear interpolation in Section 4.2. The errors in energy and
maximum tensile stress near the notch tip are significantly lower even with the
extremely coarse original mesh, showing that the stretch locking is mitigated.

Even though stretch locking is not an issue when using quadratic interpolation,
there is some undesirable behavior in the convergence plots. The most obvious
issue is that, while the strain energy of the star lattice converges to the fully-
resolved case, the maximum tensile stress near the notch tip still has a large
error at repUC densities greather than 10%. This is attributed to the naïve
criterion being used for the mesh refinement. Possibly using goal-oriented
refinement technique as in [68] could be used to improve the convergence of
the maximum stress, but it is outside the scope of this thesis.

5The same adaptive QC simulations using linear interpolation were performed on the
hexagon and star-shaped lattices with this larger notch and showed similar behavior to those
with the smaller notch. Any improvement seen in the section is therefore not due to the
slight change in geometry, and can be attributed to the change in the kinematic constraints.
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Figure 5.10: Convergence of the strain energy and maximum tensile stress in a
strut near the notch tip for the hexagon and star-shaped lattice coarse-grained
boundary layer simulations using the quadratic interpolation and the optimal
(blue) and exact (orange) summation rules.

The other unusual behavior in the convergence plots is the fact that the error
in strain energy for the hexagon lattice increases as the mesh is refined when
the optimal summation rule is used. This error is due to the fact that the sum-
mation rule (as shown in Section 5.3.1) accurately approximates the energy of
the lattice in extremely coarse regions and in fully-resolved regions, but is not
as accurate in moderately coarsened regions. Therefore, as the mesh is refined
and more of the domain enters this moderately coarsened region, the kine-
matics become more accurate, but the error due to the energy approximation
increases.
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Figure 5.11: A lattice block with distributed shear load placed on the top.
The cube is made by tessellating either the tetrakaidecahedron(top right) or
the 3D star-shaped (bottom right) unit cell.

5.3.4 Lattice Block With Distributed Shear Load

In the previous sections, the higher-order QC method was shown to mitigate
stretch locking for two-dimensional test problems. Here, we test the formu-
lation for three dimensional bending-dominated multilattices. Specifically, we
perform shear tests on the tetrakaidecahedron lattice and a three-dimensional
version of the 2D star-shaped lattice (see Fig. 5.11). The tetrakaidecahedron is
a bending-dominated multilattice that has a stretching-dominated bulk mod-
ulus, and thus behaves like an incompressible effective material. On the other
hand, all of the macroscopic deformation modes of 3D star-shaped lattice are
bending-dominated (including volumetric deformation).

For both lattice topologies, a unit cell with side length equal to 1 (each truss
member has length L =

√
2/4 for the tetrakaidecahedron and L = 3/4 for

the 3D star-shaped lattice) is tessellated in a 36× 36× 36 cube to create the
geometry shown in Fig. 5.11. A constant distributed load is placed over the
top of the lattice block (i.e. applied to all nodes in the unit cells on the top
surface of the block) in the (1, 0, 1) direction, as shown in Fig. 5.11. In order
to exaggerate stretch locking, both lattices are taken to have a relative density
of ρ̄ = 1%. The translational and rotational dofs of the bottom of the lattice
are fixed in place.

As with the Cook’s membrane simulation, the block is coarse-grained in a
uniform fashion using both linear and quadratic interpolation paired with both
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Figure 5.12: Strain energy in the coarse-grained QC simulations of the
tetrakaidecahedron lattice block undergoing a distributed shear load across
the top surface. The insets show the deformed configurations of all of the
sampling unit cells, and are color-coded based on the displacements.

the optimal summation rules and exact summation rules for comparison with
the fully-resolved simulation. The total strain energy in the lattice is computed
for each simulation to be used as a metric for stretch locking. Figure 5.12 and
Fig. 5.13 show the strain energy in the lattices as computed by the linear and
quadratic versions of the QC method at various repUC densities.

Similar to the 2D Cook’s membrane simulations, the response of the 3D
bending-dominated multilattices are overly stiff when using linear interpo-
lation. The tetrakaidecahedron lattice block behaves almost twice as stiff as
the fully-resolved simulation when using every 6th unit cell as a repUC in each
direction, while the coarse-grained 3D star-shaped lattice with linear inter-
polation is almost 10 times as stiff. However, when quadratic interpolation is
used with an exact summation rule, the terakaidecahedron and 3D star-shaped
lattices had strain energies above 0.8 times the fully-resolved simulation, which
suggests that stretch locking does not occur with quadratic interpolation.
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3D Star Lattice Block Shear

Figure 5.13: Strain energy in the coarse-grained QC simulations of the 3D
star-shaped lattice block undergoing a distributed shear load across the top
surface. The insets show the deformed configurations of all of the sampling
unit cells, and are color-coded based on the displacements.

For both the tetrakaidecahedron and 3D star-shaped lattices, the optimal sum-
mation rule developed in Section 5.2.2 begins to disagree with the fully-resolved
sampling at low repUC densities. This is because the 36 × 36 × 36 unit cell
geometry has a significant number of unit cells that lie on the boundary of the
mesh (≈ 1/6 of the unit cells lie on the boundary), which are not properly ac-
counted for with the summation rule. In the second-order optimal summation
rule for linear interpolation, face sampling unit cells were chosen with weights
to account for unit cells on the boundaries. However, the summation rule in
Section 5.2.2 moved the face sampling unit cells to the element edges and they
only account for unit cells that lie on element edges, not faces. Therefore, the
summation rule does a poor job at approximating the number of unit cells in
geometries with a significant number of boundary unit cells when compared to
inner unit cells. The under-weighting of the summation rule results in a more
compliant behavior, which is seen by the larger strain energies at lower repUC
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densities. Improved summation rules that better approximate the boundary
unit cells could be used to minimize this error, but it is outside the scope of
this thesis.

As with the hexagon lattice in the Cook’s membrane simulation, the quadratically-
interpolated coarse-grained simulations of the nearly-incompressible tetrakaidec-
ahedron lattice matched the fully-resolved simulation well even for very coarse
meshes. If this lattice was to be modeled using numerical homogenization
techniques (e.g. the FE2 method), more sophisticated techniques to suppress
volumetric locking (e.g. reduced integration, B-bar methods) would be needed
to accurately model the lattice. Here, we retain accuracy without resorting to
using these techniques.
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C h a p t e r 6

NUMERICAL CONSIDERATIONS

6.1 Structure of a Simulation

The QC method presented in this thesis was implemented in an in-house
object-oriented finite element code. In this chapter, we give an overview of
the implementation, and the computational costs are discussed. We include
the flow chart Fig. 6.1 to give the reader a high level outline of the structure
of a simulation.

6.1.1 Setting up the Problem

After choosing the lattice topology, structural element to model each truss
member, as well as the underlying material model, repUCs must be chosen
and mesh created. The periodic vectors of the lattice topology are used as
basis vectors for potential repUC locations, i.e. the unit cell locations are
chosen from points in the set in Eq. (2.2) with {a1, . . . ,ad} being the periodic
vectors of the lattice topology.

For the simulations presented in this thesis, the repUC locations are either
chosen such that there is a roughly uniform distribution of repUCs across the
domain (e.g. Fig. 5.1), or such that there is a small fully-resolved region, and
the mesh gradually coarsens away from this region (e.g. Fig. 4.11). If quadratic
interpolation is used, only the vertex repUCs are chosen at this stage.

After the repUC locations are chosen, the meshing library CGAL [51] is used
to create the element connectivity of a simplicial mesh of the convex hull of the
repUCs. If the desired geometry is nonconvex, then various techniques (includ-
ing adding additional points and manually deleting some elements) outlined
in Amelang [2] are used to create the nonconvex geometry.

If the quadratic interpolation formulation of Section 5.2 is used, then additional
repUCs are placed at the midpoint of each simplicial element edge. Finally,
the mesh consisting of all of the repUCs, the element connectivity, and the
shape functions is created. This mesh is used throughout the QC simulation
to determine the kinematics (e.g. nonzero shape function values) for unit cells.
This mesh is identical to a typical finite element mesh, except the nodes of the
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Figure 6.1: Program flow chart.

mesh are the repUC locations, and the dofs at each mesh node consist of all
of the dofs of the repUC.

6.1.2 Populating Sampling Unit Cells

After all of the kinematics are set up, the locations and weights of the sam-
pling unit cells are computed for energy calculation. Unlike the finite element
method where Gaussian quadrature and isoparametric mapping can be used
to determine the weights and locations of the quadrature points a-priori, all of
the weights and locations of the sampling unit cells in the QC method must be
computed after the kinematics are defined in order to set up the simulation.

Regardless of the summation rule being used, the corresponding locations and
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weights of the sampling unit cells are computed. After all of the sampling unit
cell locations are chosen, the corresponding structural elements that are used
to model the truss members in each sampling unit cell must be created. These
sampling truss members store the following properties:

• sampling weight, wt

• the lattice index of each node (i.e. which lattice in the multilattice each
node is connected to). As in Section 3.1, the superscript j is used to
denote the lattice index (e.g. ϕj(X i) are the dofs of the jth node of the
multilattice at the unit cell location X i).

• nonzero shape functions at each node Nr(X i). Both the global indices
of the nonzero shape functions, denoted by the set

supp(Xj) = {r | Nr(Xj) 6= 0} (6.1)

and the shape function values themselves Nr(X i), r ∈ supp(X1) ∪
supp(X2) are stored. This is such that the dofs of the endpoints of
the truss member can be efficiently computed from

ϕj(X i) =
∑

r∈supp(Xi)

Nr(X i)ϕ
j
r, (6.2)

where ϕjr are the dofs of the rth repUC.

For truss members that connect nodes within the same unit cell (i.e. the set
Eu defined in Section 3.1), the weight is equal to the unit cell sampling weight
(wt = ws), and the two nodes of the truss member have the same non-zero
shape functions and shape function values. For truss members that are con-
nected to nodes in neighboring unit cells (i.e. the set Enu ), the sampling weight
of the truss element is half of the sample unit cell weight wt = ws/2 (to
avoid double counting) and the nonzero shape functions depend on whether
the sampling unit cell is a local sampling unit cell or not. If it is a local sam-
pling unit cell, then the dofs of the neighboring unit cell are defined by the
first-order Taylor expansion of the dofs at the sampling unit cell location as
in Eq. (3.63), and therefore both nodes of the truss share the same nonzero
shape functions (i.e. supp(X1) = supp(X2)). Writing the dofs of the nodes of
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the truss element in terms of their nonzero shape functions and repUC dofs,
one obtains

ϕjloc(X i) =
∑

r∈supp(Xs)

(
Nr(Xs) +

∂Nr(X)

∂X

∣∣∣
X=Xs

(X i −Xs)

)
ϕjr, (6.3)

where Xs and X i are the positions of the sampling unit cell and its neighbor,
respectively. Therefore, nodes of the truss members in local sampling unit
cells are taken to have the fictitious shape function values

Ñr(X i) = Nr(Xs) +
∂Nr(X)

∂X

∣∣∣
X=Xs

(X i −Xs). (6.4)

If the sampling unit cell is not a local sampling unit cell and the fully-nonlocal
energy is computed, then the two nodes of the truss member could poten-
tially have different nonzero shape functions (e.g. if the truss element crosses
boundaries of the macroscopic mesh as in Fig. 6.2). It is also possible that the
potential adjacent unit cell could not be in the simulation (e.g. if the sampling
unit cell is on the boundary of the domain), in which case the truss elements
that would be connected to that neighboring unit cell are ignored.

The fact that the two nodes of the truss member could lie in different mesh
elements is a fundemental difference between the nonlocal QC method and
finite element method used for solving partial differential equations. In the fi-
nite element method, the local energy is usually sampled at quadrature points,
and can be computed given the dofs of the nodes of the element that contains
the quadrature point. However, the repUC dofs needed in order to compute
the energy of a sampling truss element in the nonlocal QC method are not
defined by a the repUCs of a macroscopic element (see, e.g. the green truss
members in Fig. 6.2). However, it is possible to lump sampling truss members
into sets with the same nonzero shape function indices (i.e. with identical sup-
port supp(X1) ∪ supp(X2), see Fig. 6.2), such that the energy of the system
can be expressed as a sum over these so-called energy sampling elements :

Ih(ϕ̃) =
∑
e∈Es

∑
t∈e

wtWt

 ∑
r∈supp(X1)

Nr(X1)ϕjr,
∑

r∈supp(X2)

Nr(X2)ϕjr

 , (6.5)

where Es is the set of energy sampling elements, and X1 and X2 are the
locations of the unit cells that contain the two nodes of the truss member.

In Section 3.1, we expressed the energy of the system as a sum over unit cells to
draw the comparison to atomistics and develop the QC framework. However,
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Figure 6.2: Examples of sampling truss elements (with small nodes) and their
corresponding energy sampling elements (with larger nodes). The colors of the
truss members match the nodes of the mesh needed to compute the energy of
the truss member (i.e. the repUCs with nonzero shape functions at the truss
member nodes). The number of nonzero shape functions can vary - examples
of truss members with 1 (green), 2 (yellow), 3 (red), and 4 (blue) repUC
dependencies are shown.

it is more convenient to express the energy as in Eq. (6.5) for implementation
in a finite element code. By organizing things in this manner, these energy
sampling elements act just like traditional finite elements, except the energy
sampling elements form an overlapping mesh (distinct from the mesh used for
kinematics), and the truss members are used in lieu of quadrature points.

6.1.3 Assembling the Global Quantities

Although there are algorithms that can be used to minimize an energy poten-
tial using only the energy itself, it is desirable to use information coming from
first- and second-order derivatives of the energy with respect to the global
dofs (i.e. the force and stiffness matrices respectively) to minimize the en-
ergy in a more efficient manner (see Section 6.1.5 for more information on
solvers being used). Here, we give algorithms used to assemble the global
energy (Algorithm 2), force (Algorithm 3), and stiffness (Algorithm 4) of the
simulation (without applying boundary conditions, which will be discussed in
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Section 6.1.4).

In the algorithms, we use subscripts for global quantities (e.g. F r, Kr1,r2) to
refer to the sub-vector or sub-matrix of the global vector or stiffness matrix
corresponding to the repUC indices r. Similarly, we use superscripts (e.g. F p,
Kp1,p2) to refer to the sub-vectors or sub-matrices related to the dofs of the
pth Bravais lattice in the multilattice.

Algorithm 2 Compute Global Energy
W = 0;
for each energy sampling element Es do
for each truss member t in Es do
for each point p of t do

Get dofs at point, ϕj(Xp) =
∑

r∈supp(Xp) Nr(Xp)ϕ
j
r.

Calculate truss energy Wt(ϕ
j(X1),ϕj(X2))

W ← W + wtWt

Add energy contribution from external forces

Algorithm 3 Compute Global Force Vector
F= 0
for each energy sampling element Es do
for each sampling truss member t in Es do
for each point p of t do

Get dofs at point, ϕj(Xp) =
∑

r∈supp(Xp) Nr(Xp)ϕ
j
r.

Calculate truss force F t(ϕ
j(X1),ϕj(X2))

for each node p of t do
for each repUC, r ∈ supp(p) do
F p
r ← F p

r + wtNr(Xp)F t

Add force contribution from external forces

6.1.4 Treatment of Boundary Conditions

Essential boundary conditions can be treated numerically in two ways. That
is, the boundary conditions ϕ̃d = ϕ̃0 can be treated as strict constraints, or the
constraint can be included into the optimization problem using Lagrange mul-
tipliers. The former will be referred to as strong enforcement of the boundary
conditions and is equivalent to the problem

min
s.t.ϕ̃d=ϕ̃0

{I(ϕ̃i)}, (6.6)
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Algorithm 4 Compute Global Tangent Matrix
K= 0
for each energy sampling element Es do
for each sampling truss member t in Es do
for each point p of t do

Get dofs at point, ϕj(Xp) =
∑

r∈supp(Xp) Nr(Xp)ϕ
j
r.

Calculate stiffness matrix, Kt(ϕ
j(X1),ϕj(X2))

for each node p1 of t do
for each node p2 of t do
for each repUC r1 ∈ supp(p1) do
for each repUC r2 ∈ supp(p2) do
Kp1,p2

r1,r2
←Kp1,p2

r1,r2
+ wtNr1(Xp1)Nr2(Xp2)K

p1,p2
t

Add stiffness contribution from external forces

while the latter is referred to as weak enforcement of the boundary conditions
and is associated with the problem

min
ϕ

max
λ
{I(ϕ̃) +

∑
d

λTd (ϕ̃d − ϕ̃0)}, 1 (6.7)

where λd are the Lagrange multipliers. We note that Eq. (6.6) and Eq. (6.7)
have the same solutions, but have differences when it comes to numerical
implementation. For the remainder of this section, we will use the notation
that the set of dofs are partition based on whether they have a (d)irichlet
boundary condition or they are (f)ree (i.e. ϕ̃T = {ϕ̃Td , ϕ̃Tf }).

Strong Enforcement of Boundary Conditions

When treating the essential boundary conditions as constraints, then a trial set
of displacements given to the solver (e.g. an initial guess in an iterative solver)
should exactly satisfy the boundary conditions. If that is not the case, the
solver would need to manually change the trial displacement field to satisfy the
boundary conditions2. When using a force-based solve (e.g. steepest descent)
this can be achieved by changing the solution vector ϕ̃ and force vector F
with

ϕ̃ =

[
ϕ̃0

ϕ̃f

]
, F =

[
0

F f

]
. (6.8)

1A constant could also be included in the lagrange multiplier term such that it becomes∑
d Cdλd(ϕ̃d − ϕ̃0), which may be tuned such that the system is well-conditioned. This is

left out of the analysis for simplicity, but all of the analysis that follows does not depend on
Cd = 1.

2Or, the solver could throw an out-of-domain error.
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Or if a higher-order solver such as Newton’s method is used, the constraints
can be enforced by zeroing out rows and columns in the stiffness matrix K
and editing the force vector as follows:[

I 0

0 Kff

][
∆ϕ̃d

∆ϕ̃f

]
= −

[
0

F f

]
. (6.9)

Of course, in this case it is not even necessary to assemble the stiffness matrix
and forces for the dofs with dirichlet boundary conditions, as the linear system
Kff∆ϕ̃f = −F f can be solved to determine the update to the solution vector.

While this method has some desirable properties — namely that it retains the
symmetry of the stiffness matrix and enforces the dirichlet boundary conditions
exactly — it is not always desirable since it is difficult to supply the solver
with good initial guesses that exactly satisfy the boundary conditions. And if
the supplied initial guess does not exactly match the boundary conditions, the
manually modified guess ϕ̃T = {ϕ̃T0 , ϕ̃Tf } could be poor and lead to suboptimal
convergence. For example, in a simulation with multiple load steps like the
hole-in-plate problem of Section 4.5, using the solution from the previously
converged load step as the initial guess for the current load step would result
in a modified solution vector where all of the change in deformation between
load steps is carried by the truss members at the edges of the plate. The
1% macroscopic strain difference between load steps would result in each end
of the plate moving by an amount roughly equal to the length of a truss
member, such that the axial strains in the bars near the boundaries would be
roughly 100% in the modified solution vector. If the truss members are highly
nonlinear (with geometric and/or material nonlinear), iterative solvers could
have trouble converging from such a highly deformed state.

Weak Enforcement of Boundary Conditions

Weak enforcement of the boundary conditions have the advantages over the
strong enforcement that it does not require a trial solution to exactly match
boundary conditions. However, it appears that the system that needs to be
solved is larger since the Lagrange multipliers are included as dofs, but we
will show that this can be avoided in some circumstances. If an algorithm like
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Newton’s method is used, the linear system to be solved isKdd Kdf I

Kfd Kff 0

I 0 0


∆ϕ̃d

∆ϕ̃f

∆λ

 = −

F d + λ

F f

ϕ̃d − ϕ̃0

 . (6.10)

Notice that the Lagrange multipliers are not needed to be computed explicitly
if only the dofs of the truss are desired, and the subsystem[

Kfd Kff

I 0

][
∆ϕ̃d

∆ϕ̃f

]
= −

[
F f

ϕ̃d − ϕ̃0

]
(6.11)

can be solved instead. This system can be further reduced by analytically
solving for ∆ϕ̃d and substituting back into the equation to obtain

Kff∆ϕ̃f = −F f +Kfd(ϕ̃d − ϕ̃0). (6.12)

Notice that this linear system that needs to be solved for the update in the
solution field is the same size as the reduced system when using the strong
enforcement of boundary conditions, but requires the additional (relatively
small) cost of evaluating the extra term Kfd(ϕ̃d − ϕ̃0). However, the benefit
from fact that the algorithm can handle any solution vector as an initial guess
far outweighs the the drawback of having to compute the extra term. Using
the example of the hole-in-plate simulation of Section 4.5, the solution vector
from the previously converged step could be used as an initial guess for the
current load step without highly deforming the truss members at the plate
edges, leading to much better convergence of the nonlinear solver. For that
reason, we use the weak enforcement of boundary conditions when minimizing
the total potential energy of the system.

6.1.5 Solving the System

In order to find the minimizers of the QC-approximated energy (3.56), we lever-
age solvers and optimization techniques provided by PETSc/TAO [8–10]. The
global energy, forces, and tangent stiffness computed using Algorithms 2 to 4,
and modified by enforcing boundary conditions in a weak fashion (see above),
are passed to PETSc/Tao to use their suite of preconditioners and (non)linear
solvers. The workhorse of the PETSc/TAO package is Newton’s method paired
with either a direct linear solver (e.g. LU or Cholesky decomposition) or a
preconditioned Krylov solver (e.g. algabraic-multigrid-preconditioned gmres
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solver) and a line search. PETSc also comes with many other tools including
matrix-free solvers, Quasi-Newton methods, and the ability to combine various
linear and nonlinear solvers and preconditioners [26].

For reasonably sized linear problems, we found that using the reduced system
Eq. (6.12) paired with the Cholesky decomposition solver provided by MUMPS
[4, 5]3 offered a very robust and efficient solver.

However, for extremely large linear systems, like those seen in the 3D vol-
umetric locking test in Section 5.3.4 in which the direct solver required too
much memory, we found other preconditioners to be useful. In particular, the
method of iteratively solving the for displacements and rotations of the truss
separately (called the fieldsplit preconditioner in PETSc) was used to solve
the large linear systems4.

For stretching-dominated bravais lattices (e.g. triangle lattice), the algebraic
multigrid preconditioner in PETSc proved to be a very efficient precondi-
tioner for iterative linear solvers5. However, we were unsuccessful in getting
the algebraic multigrid preconditioner to yield good convergence properties
for bending-dominated lattices or multilattices (e.g. square, hexagon, kagome,
tetrakaidecahedron, etc.). Algebraic multigrid uses heuristics that are known
to yield sub-par convergence for ill-conditioned systems like those seen in
anisotropic or nearly-incompressible elasticity, so it is not surprising that the
black-box preconditioner is not well-suited for the ill-conditioned systems seen
in truss modeling.

For weakly nonlinear problems where the global stiffness matrix does not dras-
tically change throughout the simulation (e.g. the hole-in-plate in Section 4.5),
we found that using the inverse of the undeformed stiffness matrix as a pre-
conditioner for a nonlinear iterative solver — namely, the ngmres solver —
proved to be an efficient solving technique6. This is achieved by computing
the cholesky decomposition of the original undeformed stiffness matrix K0

3PETSc runtime options: "-pc_type redistribute -redistribute_pc_type cholesky -
redistribute_pc_factor_mat_solver_type mumps"

4PETSc runtime options: "-pc_type redistribute -redistribute_pc_type fieldsplit -
redistribute_pc_fieldsplit_factor_mat_solver_type mumps" -pc_fieldsplit_0_fields "in-
dices_of_translational_dofs" -pc_fieldsplit_1_fields "indices_of_rotational_dofs"

5PETSc runtime options: "-pc_type gamg"
6Petsc runtime options: -snes_type ngmres -npc_snes_type newtonls -

npc_snes_lag_jacobian 100000 -snes_lag_jacobian_persists -npc_pc_type redistribute
-npc_redistribute_pc_type cholesky -npc_redistribute_pc_factor_mat_solver_type
mumps
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once, then using the modified residual F̃ = K−1
0 (F ) as the input to the non-

linear solver for the rest of the simulation.

For extremely nonlinear problems (e.g. the indentation of the 3D kagome lat-
tice in Section 4.3), we found that Newton’s method paired a direct LU solver
provided by MUMPS and the line search algorithm of Moré and Thuente [75]
in the TAO package provided a very robust solution strategy where most other
solvers seemed to fail to converge. This combination of direct solver and ro-
bust line search was able to deal with the buckling of beams, and provides the
guarantee that the converged solution is a minimum, rather than an unstable
stationary point, of the total potential energy.

6.1.6 Remeshing and Updating State

As mentioned in Section 3.5, we are able to refine our mesh if it undergoes
severe deformation by marking elements for refinement, then placing new re-
pUCs at the nearest valid lattice site to the midpoint of the longest edge of
the element. However, we do not have the ability to manipulate the existing
connectivity to incorporate the new repUC locations, so we delete all connec-
tivity, remesh the entire geometry, rebuild the sampling elements, and then
continue with the solve. Once the system is at equilibrium and no refinement
has occurred, the state of the system is updated. In the case of dynamics, the
previous displacements, velocities and accelerations are stored, and for plastic-
ity, the new internal variables are stored. When simulating the brittle failure
of beams, only a single beam is failed during this step, then the simulation
re-enters the equilibrium-refinement loop (described in Algorithm 1). Once
all of the internal variables are updated and the system is at equilibrium, the
simulation progresses to the next load step.

6.2 Computational Costs

As mentioned in Section 3.4, the QC method reduced the computational cost of
lattice simulations in two ways: it reduces 1) the number of dofs in the system,
and 2) the cost of computing energetic quantities (energy, force, stiffness).
Although related, both of these aspects reduce the computational cost (both
memory and runtimes) in different ways.
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6.2.1 Assembling the System

By choosing repUCs to parametrize the displacements of the entire lattice,
the number of dofs in system is reduced by a factor of the repUC density7.
The size of the global force vector is therefore reduced by a factor of repUC
density. The overall dimensions of the global stiffness matrix are also reduced
by a factor of repUC density, but the memory required by the sparse matrix
depends on the number of nonzeros in the matrix, not the number of rows
and column of the matrix. Depending on the summation rule being used, the
number of nonzeros of the global stiffness matrix (related to the connectivity
of the energy sampling elements defined in Section 6.1.2) can vary greatly.

For example, take the square truss lattice modeled with beam finite elements
such that each node has 3 dofs. In the fully-resolved simulation, each unit cell
on the interior of the domain is connected to exactly 4 other unit cells (up,
down, left, and right). The maximum number of nonzero components in the
rows corresponding to this unit cell is therefore 15 (the 3 components in the
diagonal portion of the matrix plus the 4× 3 components stemming from the
truss elements connecting the unit cell to it’s neighbors). However, if a nonlo-
cal version of the QC method is used to model the square lattice, it is possible
that a unit cell is directly coupled with more than just its 4 closest neigh-
bors. If a sample unit cell location is chosen such that sample truss elements
cross element boundaries, a single truss element could single handedly couple
the unit cell to 4 other unit cells (e.g. the green sampling truss members in
Fig. 6.2), resulting in more nonzeros per row than the fully-resolved simulation.
This effect is even more pronounced in three dimensions and with higher-order
interpolations. For the simulation of the tetrakaidecahedron lattice with dis-
tributed shear load in Section 5.3.4, the maximum number of nonzero entries
in the stiffness matrix in a given row increased by a factor of 65 (from 15 to
975) when using the quadratic interpolation instead of full resolution.

Even though the number of nonzeros per row of the stiffness matrix can in-
crease when the truss is coarse-grained, the increase is one that is relatively
constant (i.e. it does not depend on how coarse the mesh is nor does it scale
with the number of sampling unit cells). As a result, it is not obvious whether
coarsening the truss by a small degree will increase or decrease the total num-
ber of nonzeros in the matrix. However, when a significantly low repUC density

7As a reminder, the repUC density is the ratio of the number of repUCs to total number
of unit cells in the simulation: Nr/NUC.
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is used, the decrease in the number of rows of the outpaces the increase in the
number of nonzeros per row, leading to an overall decrease in the number of
nonzeros in the matrix.

On the other hand, the computational time it takes to assemble the quantities
is directly tied to the efficiency of the summation rule. As seen in Algorithms 2
to 4, the assembly requires the sum over all of the sample unit cells (or equiv-
alently, over the sample truss elements), and therefore, the cost of assembling
these quantities is governed by the sample unit cell density8.

6.2.2 Solving the System

The reduction in computational cost of the QC method also can also greatly
depend on the solver being that is used to minimize the energy.

For atomic lattice computations, it is common to use force-based solvers (e.g.
steepest descent, nonlinear conjugate gradient, fast interial relaxation engine
[23]). When using these types of solvers, the majority of the computation
time is spent computing forces, and thus the overall run time of the simulation
depends on the time it takes to assemble the global force vector and the number
of iterations the solver needs to converge. As mentioned above, the time it
takes to assemble of the global force vector scales linearly with the number
of sampling unit cells (i.e. uses O(Ns) operations). The convergence of the
solver on the other hand depends on the number of unknowns. In practice,
iterative solvers can be used to achieve approximate solutions in roughly a
constant number of iterations, with each iteration using O(Ns) operations to
assemble the force vector and O(Nr) operations to update the solution vector.
Usually, the time spent assembling the force vector dominates over the time
spent updating the solution vector, and therefore the speed-up associated with
force-based solvers depends highly on the sample unit cell density.

For truss lattice computations, unpreconditioned iterative methods like those
commonly used in atomistics become unusable because the poorly conditioned
nature of the problem results in terrible convergence properties. Instead,
we use matrix-based solvers like such as Newton methods. When solving a
problem with matrix-based solvers, the computational advantages of the QC
method are realized in different ways.

8Similar to the repUC density, the sample unit cell density is the ratio of the number of
sampling unit cells to total number of unit cells in the simulation: Ns/NUC.
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For instance, when using a Newton-Raphson iteration with a direct solver, the
memory savings become more significant, especially with the global stiffness
matrix. When the QC method is used with a sufficiently coarse mesh, the
memory required to store the sparse global stiffness matrix is reduced. While
the number of nonzeros per row can increase due to extra coupling of repUCs
from sampling unit cells (but in general does not increase with the number of
sample unit cells), the number of rows of the stiffness matrix (and therefore the
total number of nonzeros) is governed by the number of repUCs. The number
of repUCs therefore drives the memory required to store the global stiffness
matrix, and more importantly, the memory required for the direct solver.

Since the time it takes to solve a linear system increases with an increase
in the number of nonzeros in the matrix, the number of repUCs also drives
the computation time of the linear solve. Unlike matrix-free methods, the
direct linear solve usually dominates the simulation time since it typically
takes longer to solve the system than it does to assemble it. This leads to the
conclusion that the speed-up associated with the QC method when a Newton-
Raphson solver is used will bemore dependent on the repUC density. Of course,
this depends on a reasonable summation rule where the number of sample unit
cells is of the same order as the number of repUCs. If an exact summation
rule is used in a very coarse simulation, then the time it takes to assemble
the system could begin to dominate the computation time, and using a less
expensive summation rule could significantly improve simulation times.

6.2.3 Conclusions

As discussed above, the computational savings associated with the QC method
are complicated and depend heavily on the choice of interpolation and energy
approximation rules, but also on the choice of solver being used. However,
the following rule of thumb is useful in estimating the computational savings:
If a solver is being used that relies heavily on force computations, the speed
up will be closely related to the sample unit cell density, but if a solver that
relies on linear solves is used, the speed up will be closely related to repUC
density. Since most of the truss lattice problems investigated in this thesis
are ill-conditioned, we relied heavily on matrix-based solvers, and thus the
computational savings were closely related to the repUC density.

Even though the exact benefits of the QC method are nuanced, we give the



115

Fully-Resolved Coarse-Grained
RepUC Density 1

(
1
2

)3 (
1
3

)3 (
1
6

)3

Assembly 8 sec 19 sec 7 sec 1.5 sec
Linear Solve 1282 sec 1931 sec 177 sec 8.5 sec
Total 1390 sec 1950 sec 184 sec 10 sec

Table 6.1: Time (in seconds) spent assembling and solving the lattice block
shear simulations in Section 5.3.4 with quadratic interpolation. Simulations
were performed on a machine with an Intel Xeon CPU E5-2650 processor using
12 cores with 1 MPI process per core.

time spent in different portions of the code for two of the example problems in
this thesis in order to give the reader an idea of the computational speed-up
in different scenarios. Namely, we look at

1. The block under distributed shear load in Section 5.3.4. As mentioned
above, the linear system was solved by iteratively solving for the trans-
lational and rotational dofs separately using direct solvers (Cholesky
decomposition) for each sub-solve. This is an example of a problem that
relies heavily on direct linear solves, and less so on assembly of global
force vectors and stiffness matrices.

2. The dynamic indentation of the triangle lattice with failure in Sec-
tion 4.4. Each load step was solved using Newton’s method paired with
an algebraic-multigrid-preconditioned gmres linear iterative solver and
a line search. In contrast to the distributed shear simulation, this non-
linear solving scheme relied heavily on force and stiffness computations.
The algebraic multigrid preconditioner provided efficiently linear solves,
and much of the time was spent performing line searches to determine
the step size. The simulation also is a good example because it contains
the additional cost of performing adaptive refinement.

The run times of the two simulations are in Table 6.1 and Table 6.2.

For the lattice block shearing simulations in Section 5.3.4, the run time of the
simulation depends heavily on the repUC density. The lattice that is coarsened
by a factor of 2 in each direction (leading to a repUC density of 1/23) actually
takes twice as long to assemble the global stiffness matrix, and roughly 1.5
times as long to solve the system. This is due to the fact that the number of
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Fully-Resolved Coarse-Grained
Assembly 3296 sec 1312 sec

Linear Solve 1744 sec 292 sec
Total Solve 5040 sec 1604 sec
Remeshing N/A 289 sec

Table 6.2: Time (in seconds) spent in different parts of the code for the dy-
namic indentation simulations in Section 4.4. "Total Solve" represents the
total time in the nonlinear solver (i.e. assembling systems, solving linear sys-
tems, and performing line searches). Simulations were performed serially on a
machine with an Intel Xeon CPU E5-2650 processor.

nonzeros per row significantly increases when coarsening the mesh, requiring
a larger linear system to be assembled and solved. However, when the mesh is
coarsened enough, the stiffness matrix becomes much smaller than the fully-
resolved system and can be solved extremely quickly. For the coarsest mesh,
the simulation took less than 1% of the time of the fully-resolved simulation.

However, for the dynamic indentation simulations, most of the time was spent
assembling the system. Since the sampling unit cell density is always greater
than the repUC density, the time spent in the linear solve portion of the
simulation was reduced more than the time spent in assembly. Furthermore,
we see that the cost associated with global remeshing and rebuilding all of the
sampling unit cells was a small portion of the run time in the serial simulation.
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C h a p t e r 7

DISCUSSION AND OUTLOOK

7.1 Accomplishments

We have extended the fully-nonlocal quasicontinuum method to describe mul-
tilattice truss topologies in 2D and 3D by introducing a new interpolation
scheme by which the dofs of each Bravais lattice in the multilattice are re-
tained at the macroscale and are interpolated in coarse-grained regions. We
have also introduced geometrically nonlinear deformation into the truss QC
methodology by using corotational beams for the description of individual
truss members. A natural extension of the optimal summation rule of Ame-
lang et al. [3] to multilattice systems was used to efficiently sample the energy
of the coarse-grained lattices. We introduced the concept of stretch lock-
ing — a phenomenon analogous to volumetric locking in finite elements that
causes the QC method to significantly overpredict the stiffness of bending-
dominate multilattices — as well as proposed a solution to the problem by
using quadratic interpolation. The method was numerically implemented in a
code with adaptive mesh refinement to automatically improve the resolution
of the QC discretization where necessary and to capture localized deformation.

We have tested this framework’s ability to correctly model the effective elas-
tic properties of various 2D and 3D lattices by uniformly deforming coarse-
grained truss lattice blocks and comparing the effective elastic constants to
those predicted by homogenization theory. When using an exact summation
rule (where every unit cell in the simulation is a sampling unit cell), we found
that the interpolation was able to exactly match the homogenization theory
for all coarsened meshes. When the interpolation was paired with the opti-
mal summation rule on randomly coarsened samples, small, acceptable errors
were present in the predicted behavior in moderately coarsened meshes due
to energy sampling errors that arise in all known sampling rules for the QC
method.

Furthermore, we tested the new truss QC theory and the adaptive refinement
routine with more complex deformations by performing coarse-grained ver-
sions of Boundary Layer Method simulations, which were previously used to
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predict the brittle fracture toughness of various lattice topologies. The QC
method with affine shape functions performs excellently for the triangle and
kagome lattices; the maximum stress near the notch tip and total energy of
the system matches the fully-resolved simulations within a few percent, while
using only a small fraction of the dofs. The hexagon and star-shaped lattices
did not show such agreement with the fully-resolved simulations when affine
interpolation was used, leading to the discovery and subsequent investigation
of stretch locking. Once quadratic interpolation was determined to mitigate
stretch locking, the coarse-grained Boundary Layer Method simulations of the
hexagon and star-shaped lattices were repeated using quadratic interpolation,
and showed excellent agreement with the fully-resolved simulations.

We tested the geometric nonlinear capabilities of the new methods with in-
dentation simulations on 2D and 3D kagome multilattices with nonlinear coro-
tational beams to model individual truss members, and adaptive refinement
to improve the mesh as the deformation becomes severe. We found that both
the inclusion of geometric nonlinearity and adaptive mesh refinement was nec-
essary to match the behavior seen in the fully-resolved nonlinear simulations.
Most importantly, we found that the coarse-grained simulations matched the
fully-resolved simulations well while only using a fraction of the dofs.

We tested the QC methodology with material nonlinearity by performing ten-
sile simulations of an elasto-plastic octet truss plate with a cylindrical hole
in the center. We found that when using the higher-order summation rule to
better approximate the energy near the boundaries of the domain, the coarse-
grained methods were able to approximate both the global force-displacement
behavior as well as the local plasticity near the cylindrical hole.

We investigated the dynamic response of truss lattice by simulating the dy-
namic rupture of an elastic-brittle triangle truss lattice when impacted by a
cylindrical indenter. The overall behavior of the coarse-grained simulation
matched the fully-resolve simulation, including the supershear rupture speed
of the propagating crack.

We used Cook’s membrane, a common volumetric locking benchmark test
used in finite elements, to investigate the newly discovered stretch locking
that takes place in bending-dominated multilattices. We found that stretch
locking can be mitigated by using quadratic interpolation rather than linear
simplex elements, and outlined a method to create higher-order meshes with
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consistent interpolation along with a set of summation rules in 2D and 3D
that can be used to approximate the energy.

7.2 Future Work

Although much has been accomplished in this thesis, there are still many areas
of research that would be useful in maturing the QC method for truss lattices
and increase its applicability. Some of these areas include:

• Dynamics As shown in Section 4.4, the coarse-graining techniques of
the QC method produce spurious elastic wave reflections due to the non-
uniformity of the mesh in dynamic problems. For methods where there is
a distinction between fully-resolved regions and coarse-grained regions,
it is possible to artificially dampen high spatial-frequency waves at the
boundary of the regions to mitigate the elastic waves from reflecting back
into the fully-resolved region. However, for the fully-nonlocal version of
the QC method, where no such distinction is made, it is not clear how to
solve this issue, and would be a good topic for future research. Of course,
if the material that the truss is fabricated out of has high damping, then
when damping is included in the model, the high-frequency waves would
decay relatively fast, and the wave reflections would cause less of an
issue.

Another limitation of the dynamics formulation presented in this thesis is
related to the time scale needed to resolve high-frequency vibrations. For
multiscale truss lattices, the period of oscillation of a single truss member
can be many orders of magnitude smaller than the time scales related
to external loading. While a suitable implicit dynamics scheme can be
unconditionally stable even for large time steps, a small ∆t is needed
to model vibrations in the truss lattice. Kulkarni et al. [62] introduced
a remedy to this issue for modeling atomic lattices (called hotQC ), by
introducing entropy and temperature variables at each atomic site to
describe the high-frequency vibrations of each atom. Similar techniques
could be applied to truss lattices to model e.g. the mechanical response
of a truss lattice in a sandwich core on a launch vehicle or airplane, where
significant vibrations could effect the behavior of the lattice.

• Summation Rules Unlike the finite element method which uses Gaus-
sian quadrature with its guarantees for integrating the energy exactly
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for polynomials up to a certain degree, the QC method has no equiv-
alent summation rule. This has resulted in many ad-hoc rules (e.g.
[3, 17, 37, 49, 58]) that all have significant flaws. As discussed in Sec-
tion 3.4.2, almost all of these rules are not 0th-order accurate, and intro-
duce spurious force artifacts even in simple configurations (undeformed
configuration for atomic lattices, and affinely deformed configurations for
truss lattices). Developing summation rules with similar guarantees to
Gaussian quadrature could be impractical for atomic simulations. Both
the nonlinearity and the large number of interactions stemming from
the long-range nature of inter-atomic potentials intuitively would seem
to require a large number of sampling interactions to ensure such a guar-
antee. Since force-based solvers are typically used to solve for equilibrium
of atomic ensembles, the large number of sample interactions would most
likely be prohibitively expensive. However, for truss lattice with their
short-range interactions and relatively few neighbors, it may be possible
to develop summation rules that offer similar guarantees to Gaussian
quadrature without being prohibitively expensive. Furthermore, if the
system is solved with matrix-based solvers, the increase is computational
cost stemming from a more accurate summation rule may not hinder the
performance of the method by a significant amount. Beex et al. [17]
outlined a summation rule that exactly reproduced the energy of a lat-
tice, but it was still expensive (all atoms within a certain distance of
the element boundaries were taken as sample atoms), and only works for
affine shape functions. Further work on summation rules can be used
to reduce the error associated with energy approximation, especially in
regions near fully-resolved sections.

• Goal-oriented Refinement The adaptive refinement techniques used
in this thesis are ad-hoc. The second-invariant refinement metric was
used because it was expected that large shear deformations would occur
in the regions of interest (e.g. localized shear near the notch tip in Sec-
tion 4.2 and buckling near the indenter in Section 4.3), and the maximum
elongation criterion was used in Section 4.4 such that the QC mesh would
be fully-resolved to capture individual elements breaking. Goal-oriented
mesh adaptation stemming from a posteriori error approximation (e.g.
[6, 68]) could be used to provide a more robust refinement technique.
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• Local Refinement Due to Amdahl’s law1, the computational scalabil-
ity of the fully-nonlocal adaptive QC method depends on the ability to
local refine the mesh without having to regenerate the global mesh (and
subsequently, all of the sampling unit cells). Tembhekar et al. [108] intro-
duced a local refinement algorithm based on longest-edge bisection, but
was only implemented in two dimensions. As mentioned in Tembhekar
et al. [108], the extension to three dimensions requires a constrained 3D
mesh generator that is not currently available.

• Mesh Coarsening From the perspective of computational efficiency,
the ability to coarsen the mesh in uninteresting regions is just as im-
portant as refining the mesh in interesting regions. In particular, for
dynamic simulations, it may be possible to refine the mesh in front of
an elastic wave and coarsen the mesh behind it to retain accuracy of the
simulation without having fully-resolve the entire simulation.

• Sophisticated Truss Models This simulations in this thesis were the
first QC simulations to utilize geometrically nonlinear beams to model
buckling of truss members. However, the structural finite element models
used here have their limitations. For example, while the corotational
framework defined in Section 3.2.2 can be paired with any underlying
beam element that depends on the axial strain and local rotations of
the nodes, we have restricted ourselves to model either linear elastic or
brittle Euler-Bernoulli beams. In order to model more complex material
behavior (e.g. nonlinear elastic polymers, metal plasticity, etc.), more
sophisticated underlying beam elements are needed (e.g. [63]).

Additionally, as shown in Meza et al. [71], Portela et al. [81], many of
the hollow or non-slender truss lattices that are currently being manufac-
tured cannot be accurately approximated with structural finite elements.
Higher-order effects coming from finite-sized nodes begin to appear in
truss lattices with higher relative density. It is possible that reduced
order node models like those developed in Portela et al. [81] could be

1Amdahl’s law is a formula that can be used to predict the theoretical speed-up of
parallel program, but it is commonly used to show that the run time of a partially-parallel
code is bounded by above by the run time of the serial portion of the code, regardless of
the speed-up in the parallel section. In this context, it refers to the fact that the need to
perform global mesh refinement serially hinders the speed-up of the otherwise parallel code.
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used in conjunction with structural finite elements in the QC method to
provide a more accurate description of the underlying truss lattice.

• Contact As outlined in Gibson and Ashby [48], there are three dis-
tinct regimes in the stress-strain response of cellular solids undergoing
compression: 1) initial linear elastic response, 2) a long collapse plateau
where the stress remains relatively constant due to buckling or yielding
of the microstructure, and 3) densification where the solid dramatically
stiffens due to contact of the microstructure. The QC formulation in this
thesis is able to model the first two regimes by including material and
geometric nonlinearity, but it is unable to capture densification of the
truss lattice due to inter-element contact. Since period truss lattices are
ideal candidates for absorbing large amount of energy in case of impact,
contact between truss members must be taken into account to accurately
model the large compressive strains and densification that would be seen
in impact scenarios.

Overall, the research presented in this thesis extends the quasicontinuum
method in various directions. The fully-nonlocal multilattice formulation es-
tablishes a novel method for modeling periodic truss multilattices using a wide
variety of models for truss members. The framework developed here can sim-
ulate the nonlinear mechanical response of large periodic truss lattices in an
efficient manner, and can be used to aid in the design of new metamaterials.
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A p p e n d i x A

EFFECTIVE ELASTIC CONSTANTS OF PERIODIC TRUSS
LATTICES

For comparison, we here report the homogenized stiffness tensors of the various
2D truss lattices in Voigt notation as functions of the relative density ρ̄. These
stiffness tensors were calculated by solving the unit cell problem with periodic
boundary conditions, i.e., we compute

Cijkl =
W

∂εij ∂εkl
, (A.1)

where

W (ε) = inf
U ,θ

{
1

|ΩUC|
∑
e∈E

We(U ,θ)

∣∣∣∣ U+ −U− = ε(X+ −X−), θ+ − θ− = 0

}
,

(A.2)
where + and − represent nodes on opposite sides of the UC boundary ∂ΩUC,
(X+ −X−) is the vector that points from the − side to the + side between
pairs of boundary nodes, U and θ denote the vectors of displacement and
rotational dofs, respectively. The thus obtained effective stiffness tensors of
the lattice architectures in this study are listed below (with E denoting the
base material’s Young modulus and ρ̄ the relative density). Unfortunately,
the analogous expressions for the 3D truss lattices could not be computed in
closed form due to their complexity.

A.0.1 Triangle lattice

CVoigt =



Eρ̄(ρ̄2+36)
96

−Eρ̄(ρ̄2−12)
96

0

−Eρ̄(ρ̄2−12)
96

Eρ̄(ρ̄2+36)
96

0

0 0
Eρ̄(ρ̄2+12)

96


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A.0.2 2D kagome lattice

CVoigt =



Eρ̄(ρ̄2+18)
48

−Eρ̄(ρ̄2−6)
48

0

−Eρ̄(ρ̄2−6)
48

Eρ̄(ρ̄2+18)
48

0

0 0
Eρ̄(ρ̄2+6)

48


A.0.3 Square Lattice

CVoigt =



Eρ̄
2

0 0

0 Eρ̄
2

0

0 0 Eρ̄3
4


A.0.4 Hexagon lattice

CVoigt =



Eρ̄(9ρ̄2+4)
4(3ρ̄2+4)

Eρ̄(4−3ρ̄2)
4(3ρ̄2+4)

0

Eρ̄(4−3ρ̄2)
4(3ρ̄2+4)

Eρ̄(9ρ̄2+4)
4(3ρ̄2+4)

0

0 0 3Eρ̄3
6ρ̄2+8


A.0.5 Star lattice

CVoigt =



8Eρ̄3
16ρ̄2+25

0 0

0 8Eρ̄3
16ρ̄2+25

0

0 0 Eρ̄3
ρ̄2+100


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A p p e n d i x B

CALCULATING SAMPLE UNIT CELL WEIGHTS IN 3D

In two dimensions, the number of unit cells that lie on element edges can
efficiently be calculated when working in Bravais coordinates. The task of
counting unit cells on an edge of the element is equivalent to counting the
number of lattice points that intersect a line with integer end points b(1) and
b(2), which can be computed with

w
(2D)
s,edge = gcd(b

(2)
1 − b

(1)
1 , b

(2)
2 − b

(1)
2 ), (B.1)

where gcd(z1, z2) is the greatest common divisor of z1 and z2, b
(j)
k represents

the kth coordinate of the jth endpoint.

Counting the the number of unit cells on the edges of tetrahedra can similarly
be expressed as the number of integer points intersecting a line connecting two
points b(1) and b(2) on the 3D integer lattice (corresponding to the unit cell
locations of the element vertices in Bravais coordinates). This is given by the
expression

w
(3D)
s,edge = gcd(b

(2)
1 − b

(1)
1 , b

(2)
2 − b

(1)
2 , b

(2)
3 − b

(1)
3 ). (B.2)

Counting the number of unit cells on faces of tetrahedra in 3D is more challeng-
ing. When the unit cells are expressed in terms of their Bravais coordinates,
the faces of the tetrahedra correspond to triangles with integer coordinates
embedded in a 3D space. These triangles lie on a planar lattice Λ defined by
the intersection of the plane of the triangle and the 3D integer lattice, but
Λ 6= Zd. In order to compute the number of lattice points in Λ that lie on
the interior of the triangle face, it is first necessary to find basis vectors for Λ,
then perform another change of coordinates using the basis vectors of Λ to ex-
press the triangle as an integer triangle on an integer lattice. Then computing
the number of unit cells that lie on the face can be computed using the same
methods that are used to compute the inner sample unit cell weight in the 2D
summation rule (i.e. using Pick’s theorem).

In order to have cleaner notation, we note that an integer triangle in 3D space
(i.e. a face of a tetrahedron element in Bravais coordinates) can trivially be
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translated to the origin such that it has vertices {0,Y (2),Y (3)} (Y (2), Y (3) ∈
Z3) without changing the number of integer points that intersect the face. The
triangle lies on the plane which can be defined by the normal vector

n = Y (2) × Y (3). (B.3)

The lattice on the plane of the triangle face is described by all of the integer
solutions of the equation

n · Y = 0, Y ∈ Z3, (B.4)

which is a linear diophantine equation that can be solved with a known algo-
rithm (see [74]). The solutions to this equation can be parametrized by two
non-unique vectors λ1,λ2 ∈ Z3 (i.e. basis vectors for the lattice) such that

Y = Z1λ1 + Z2λ2, Z1, Z2 ∈ Z (B.5)

are all of the solutions to Eq. (B.4). The first basis vector can be chosen to be

λ1 =
{−n2, n1, 0}
gcd(n2, n1)

. (B.6)

The second basis vector can be computed by first finding Ỹ1 and Ỹ2 such that

n1Ỹ1 + n2Ỹ1 = gcd(n1, n2) = ñ (B.7)

using the Euclidean algorithm, with ni being the components of n. Then it
can be seen that the second basis vector can be written as

λ2 =
{n3Ỹ1, n̂3Ỹ2,− gcd(n1, n2)}

gcd(n3Ỹ1, n3Ỹ2, n1, n2)
. (B.8)

Then, the vertices of the triangle face can be expressed with the integer coor-
dinates on the integer lattice, {0,Z(1),Z(2)}, with Z(i) ∈ Z2 satisfying

Y (i) = Z
(i)
1 λ1 + Z

(i)
2 λ2. (B.9)

Finally, the equations (B.1) and (3.62) can be used to compute the number of
integer points on the interior of the triangle, which corresponds to the weight
of the sampling unit cell on the tetrahedron face.
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