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ABSTRACT

Quantum chaos and the eigenstate thermalization hypothesis are based on the as-
sumption of the validity of random matrix theory description on the spectrum and
eigenstates. They provide the foundation and descriptions for the typical dynamics
and thermalization in generic closed quantum systems. In this thesis, we investigate
situations where the systems show atypical dynamics or anomalous thermaliza-
tion, conflicting with the usual expectations from quantum chaos and eigenstate
thermalization hypothesis.

We first examine weak thermalization in a nonintegrable spin chain. The system
shows long-lived strong oscillations and relaxes to the thermal equilibrium weakly.
We identify the dynamics describable by quasiparticles and recognize the oscillation
frequency to be the quasiparticle mass gap. We also estimate the damping time for
the oscillations.

Next, we study prethermalization, a phenomenon where a system relaxes to an
intermediate almost-equilibrium stage before reaching the true thermal equilibrium.
We study a nonintegrable spin chain in the strong coupling limit, where an almost-
conserved quantity emerges and gives rise to the prethermalization.

We also study a newly proposed diagnostic for quantum chaos: out-of-time-ordered
correlators. Contrasting to the chaotic systems, we inspect their behaviors in various
noninteracting integrable models.

Finally, we dig into the quantum many-body scar states in the PXP model which
describes a Rydberg atom chain. These special states do not satisfy the random
matrix theory description nor the eigenstate thermalization hypothesis, therefore
defying quantum chaos.
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C h a p t e r 1

INTRODUCTION

From quantum chaos to the eigenstate thermalization hypothesis
“It has been said something as small as the flutter of a butterfly’s wing can ultimately
cause a typhoon halfway around the world." Though not entirely scientifically cor-
rect, thanks to themovie The Butterfly Effect (2004), such a phenomenon has become
a widely-known signature of classical chaos. More specifically, the butterfly effect
refers to the statement that a small perturbation in the initial condition will result in
an exponential divergence of the trajectory in the phase space:

∂q(t)
∂q(0) = {q(t), p}P.B. ∼ eλL t , (1.1)

where q denotes the generalized coordinate of a classical dynamical system, p is
the corresponding conjugate momentum, {A, B}P.B. is the Poisson bracket, and λL

is the Lyapunov exponent, which quantifies the rate of the exponential divergence.
Other characterizations of classical chaos such as mixing and ergodicity provide
mathematical justifications for the statistical mechanics, which is perhaps the most
ubiquitous and successful physics framework.

While chaos is mathematically well-established in classical dynamics, can it be
defined in quantum systems? On the one hand, an important ingredient for chaos
in the classical system is the nonlinearity in the equation of motions. On the
other hand, dynamics in quantum systems is entirely governed by the Schrödinger
equation, which is linear! If there is no chaos in the quantum system, how can
statistical mechanics emerge from quantum systems? Moreover, if one starts from
some pure initial state, under a closed quantum dynamics, how is it possible that a
unitary evolution takes a pure state into a thermal ensemble, which is a mixed state?

In fact, in the quantum mechanics, so far there is no unique definition of quantum
chaos. One therefore can have different definitions of quantum chaos, provided
they have some meaningful connections to the classical chaos or some intriguing
concepts.

One important advance regarding the concept of quantum chaos is pioneered by
Eugene Wigner. In a conference at the Oak Ridge National Laboratory in 1957,
Wigner wrote down his surmise (guess) for the level-spacing distribution for the
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spectrum in a nucleus. Such distribution, in a more general form, is the famous
Wigner-Dyson distribution

p(s) = Asβ exp(−Bs2) , (1.2)

where β, A, and B are constants depending on the type of the “ensemble", and s is
the “unfolded" energy level-spacing, meaning the spectrum has been transformed
such that the density of levels is unity. For example, β = 1 for systems with
time-reversal symmetry, which guarantees that one can choose a basis such that
the Hamiltonian is real-valued. On the other hand, we have β = 2 for systems
without time-reversal symmetry. This surmise is based on the postulate that, in a
complicated enough nuclear system, the spectrum will be given as if it is from a
random matrix. Based on this random matrix assumption, there are also different
properties of spectrum statistics one can derive and compare with the experiment
data. (We refer the readers to Ref. [1] for more in depth discussions regarding
the random matrix theory.) Later, Bohigas, Giannoni, and Schmit conjectured that
for Hamiltonians whose semiclassical counterparts are chaotic, their level-spacing
follows the Wigner-Dyson distribution, which is the famous BGS conjecture. On
the other hand, it was conjectured that if the Hamiltonian has an integrable classical
correspondence, its level-spacing statistics will follow Poisson distribution

p(s) = exp(−s) , (1.3)

which is called the Berry-Tabor conjecture. As more and more systems have been
verified to obey such expectations, Wigner-Dyson level-spacing statistics have be-
come a canonical diagnostic and even the definition for quantum chaos, even when
the Hamiltonian does not have a classical counterpart. It is worth mentioning that,
under the randommatrix theory description, one can also understand the eigenstates,
which essentially look like random vectors in the Hilbert space. This also predicts
the bipartite entanglement entropy of the eigenstates to scale as the volume law.

Based on the random matrix theory assumption, Srednicki proposed a ground-
breaking concept [2], now called the eigenstate thermalization hypothesis (ETH).
Conceptually, the hypothesis essentially states that closed quantum systems thermal-
ize at the level of individual eigenstates. Mathematically, it predicts the behavior
of the eigenstates in a generic chaotic system, generalized from the random matrix
theory: for any local observable Ô, we have

Omn ≡ 〈m|Ô |n〉 = O(Ē)δmn + e−S(Ē)/2 fO(Ē, ω)Rmn , (1.4)
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where |m〉 and |n〉 are the eigenstates with energies Em and En, Ē = (Em + En)/2,
ω = En − Em, S(E) is the thermodynamic entropy at energy E , and Rmn is a random
number with zero mean and unit variance. Most importantly, O(Ē) and fO(Ē, ω)
are smooth functions of their arguments. The diagonal-matrix-element part of the
hypothesis is sometimes referred to as diagonal ETH or simply ETH, while the off-
diagonal-matrix-element part is referred as off-diagonal ETH. Several numerical
works have verified ETH in various many-body systems, and it has become a
general belief that eigenstate thermalization is the mechanism which gives rise to
the statistical mechanics in quantum systems.

Let us examine some consequences of this hypothesis. Imagine starting with a
pure initial state |ψ〉, evolving under the closed quantum Hamiltonian dynamics
|ψ(t)〉 ≡ e−iHt |ψ〉. We can write the expectation value of any observable Ô as a
function of time as (in units ~ = 1)

〈O〉(t) ≡ 〈ψ |eiHtOe−iHt |ψ〉 =
∑

m

|Cm |2Omm +
∑

m,n,m

C∗mCnei(Em−En)tOmn , (1.5)

where Cm = 〈m|ψ〉 is the coefficient of the initial state expanded in the energy
eigenbasis |m〉, H |m〉 = Em |m〉. Note that the time dependence is only coming from
the off-diagonal matrix elements among the energy eigenstates Om,n. While the
details of the relaxation process depend on the observable and the Hamiltonian, let
us assume for a moment that the off-diagonal part decoheres in the long-time. We
therefore have, in the long time,

〈O〉(t) ≈
∑

m

|Cm |2Omm = Tr[ρDÔ] , (1.6)

where ρD ≡
∑

m |Cm |2 |m〉〈m| is called the diagonal ensemble. Typically, for phys-
ical initial states, |Cm |2 will peak at some energy density with convergent energy
fluctuation: σ2

H ≡ 〈ψ |H2 |ψ〉 − 〈ψ |H |ψ〉2 ∼ O(V) and therefore σH/V → 0 in the
thermodynamic limit V →∞.

The magic from the ETH is that, since Omm is a smooth function depending on the
energy, we have

Tr[ρDÔ] ≈ Tr[ρMCÔ] ≈ Tr[ρGibbsÔ] , (1.7)

where ρMC =
1
N

∑
m:Em∈[E−∆,E+∆] |m〉〈m| is themicrocanonical ensemble and ρGibbs =

1
Z
∑

m e−βEm |m〉〈m| is the canonical (Gibbs) ensemble. Therefore, statistical me-
chanics is recovered, meaning the long-time expectation values equal to the thermal
values. In fact, any ensemble with the right mean energy and convergent energy
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fluctuation will give good description for local observables in the thermodynamic
limit.

We can also see that the diagonal ensemble depends on the choice of the initial
state. If we want all initial states to thermalize, then we will need to require that
all the eigenstates satisfy ETH. One way to see this is to consider an extreme case,
where the initial state is an eigenstate. Then for this initial state to thermalize, this
eigenstate has to satisfy ETH. This requirement is also called the strong ETH, which
has been numerically verified in various models [3, 4]. In contrast, the weak ETH
can allow a vanishing fraction of the eigenstates to not satisfy ETH.

Another important feature about ETH is that it predicts the thermalization in the
strong sense (strong thermalization), meaning the expectation value is equal to the
thermal value at almost all times, without needing long-time averaging. On the
other hand, in the classical systems, we only expect the thermalization in the weak
sense (weak thermalization), meaning we only need the long-time average of the
expectation values to be equal to the thermal values. Apparently, with only diagonal
ETH, weak thermalization holds, since

Ō ≡ lim
t0→∞

1
t0

∫ t0

0
O(t) = Tr[ρDÔ] , (1.8)

and the diagonal ETH ensures it to be equal to the thermal value. In fact, conditions
on weak thermalization in quantum systems have been discussed by von Neumann.
On the other hand, if we also assume off-diagonal ETH, then we have the long-time
average of the temporal fluctuation

lim
t0→∞

1
t0

∫ t0

0
[O(t) − Ō]2 =

∑
m,n,m

|Cm |2 |Cn |2 |Omn |2

≤ max |Omn |2
∑
m,n

|Cm |2 |Cn |2 ≤ max |Omn |2 ∝ exp[−S(Ē)] , (1.9)

which typically decreases exponentially in system sizes since the density of states
exp[S(Ē)] increases exponentially in system sizes at a finite energy density. This
in fact implies that, at almost all times, O(t) = Ō. From this perspective, ETH
provides an even stronger description for the thermalization of a generic closed
quantum system. For further reviews on ETH, we refer the reader to Ref. [5].

Having seen what we would expect in the generic chaotic and thermalizing sys-
tems, in this thesis, we will explore aspects where some systems show anomalous
dynamics or thermalizations which at some level do not seem to be consistent
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with the ETH while the level-spacing statistics shows the Wigner-Dyson distribu-
tion. Furthermore, we will also study a newly proposed diagonostic of quantum
chaos — out-of-time-ordered correlators. We will study thier behaviors in several
noninteracting integrable models, as a contrast to their behaciors in other chaotic
models. In the rest of the introduction, I will give brief descriptions and summaries
of the phenomena and the problems addressed and studied in this thesis. More
detailed settings and introductions regarding the specific problems will be given in
the beginning of each chapter.

Weak Thermalization - Chapter 2
In a seminal paper [6], Bañuls, Hastings, and Cirac used infinite-time-evolved block
decimation (iTEBD) method to simulate a quench dynamics in an infinite-sized
nonintegrable one-dimensional spin chain, which is the quantum Ising model with
a longitudinal field. While the level-spacing statistics of the Hamiltonian shows
the Wigner-Dyson distribution, its quench dynamics can show drastically different
behaviors depending on the initial states. In particular, when one prepares the
initial state as all spins pointing in the y-direction, the dynamics shows expected fast
relaxation to the thermal values — the strong thermalization behavior as expected
from ETH. (See also Fig. 1.1(a).) However, if one prepares the initial state as all
spins pointing in the z-direction, the dynamics shows strong oscillations without
relaxing up to the time that can be reliably numerically calculated. It appears that
only the time-averaged values approach thermal values slowly — the behavior of
weak thermalization. Finally, when the initial state is all spins pointing in the x-
direction, the dynamics seems to not relax, or relax to a nonthermal value, a regime
called non-thermalization.

Surprisingly, in the weak thermalization region, using exact diagonalization (ED),
we are able to reproduce the iTEBD result of the quench dynamics up to a significant
portion of the time span. We therefore can try to understand such anomalous
dynamics based on the ED data. We discovered that, in the weak thermalization
region, the initial state in fact has a relative low (but nonzero) effective temperature.
Namely, the initial state has high overlaps with the bottom part of the spectrum.
Using the ED spectrum, together with the perturbation theory, we can understand the
bottom part of the spectrum as quasiparticles, and the oscillation frequency observed
can be understood as the quasiparticle mass gap. We conjecture this description to
be valid even in the thermodynamic limit, and hence also the observed dynamics in
the iTEBD calculation. Finally, we discuss some possible fates of the oscillation,
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Figure 1.1: (a) A typical strong thermalization behavior in a chaotic system. Herewe
use a spin-chain dynamics as an example. The magnetizations relax to the thermal
values in a short time. (b) Prethermalization in a spin chain. The magnetizations
relax to an intermediate almost equilibrium stage instead of the thermal equilibrium.
The intermediate almost equilibrium stage is described by the generalized Gibb’s
ensemble.

and give some estimation of the decay-time of the oscillations based on one possible
mechanism: the hard-core repulsion of the quasiparticles.

Prethermalization - Chapter 3
Prethermalization, a term first introduced by Berges et. al. [7], refers to a phe-
nomenon where a system first relaxes to an intermediate almost-equilibrium stage
before it reaches the true thermal equilibrium. There are several mechanisms that
can make the system show prethermalization, most notably due to the proximity to
the integrable point. In this thesis, we will examine prethermalization due to the
presence of some emergent almost-conserved quantity coming from some strong
coupling limit. Because of the existence of such almost-conserved quantity, one
can expect that the relaxation of this quantity will take parametrically longer time
than other quantities, resulting in an intermediate almost equilibrium stage. In
Fig. 1.1(b), we show an example of the prethermalization in a spin chain, where
the magnetization of the system relaxes to an intermediate almost-equilibrium stage
which is not described by Gibb’s ensemble.

We examine the quantum Isingmodelwith a longitudinal field, which has an approxi-
mate spin conservation law at the strong field region. We first use the “slowest opera-
tor formalism" [8] to numerically and systematically find the almost-conserved local
operator. We then also use perturbation theory to construct the almost-conserved
operator and compare it to the numerical finding. The high fidelity between the
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two results suggests that the numerical finding of the almost-conserved quantity can
indeed be understood as the perturbative construction, which can be understood as
a “dressed" total spin operator. We also verify that the system does relax to an
intermediate almost-equilibrium stage, where the system can be described by the
generalized Gibb’s ensemble including this almost-conserved quantity. Finally, we
give some mathematical statements regarding the bounds on the perturbation theory
and the thermalization time scale.

Out-of-time-ordered commutators/correlators - Chapter 4
While the level-spacing statistics focus on the properties of the spectrum, a new
diagnostic has recently emerged as a different diagnostic for quantum chaos: out-
of-time-ordered commutators (OTOCs). OTOCs are defined as the following: for
operatorsWx(t) andVy(0) sitting on positions x and y and at times t and 0 respectively,
we consider

CWV (x − y, t) ≡ 〈|[Wx(t),Vy(0)]|2〉 , (1.10)

where 〈X〉 ≡ Tr[ρX] is the expectation value with respect to some ensemble ρ and
we have assumed the translation invariance. If we expand CWV , we have

CWV (x − y, t) =〈V†y (0)W†x (t)Wx(t)Vy(0)〉 + 〈W†x (t)V†y (0)Vy(0)Wx(t)〉
−〈V†y (0)W†x (t)Vy(0)Wx(t)〉 − 〈W†x (t)V†y (0)Wx(t)Vy(0)〉 . (1.11)

Note the last two terms have anomalous time ordering and are therefore also called
out-of-time-ordered correlators (OTOCs).1 Such quantities were first examined by
Larkin and Ovchinnikov [9]. They recently attracted a great deal of attention due to
Kitaev’s study of the blackhole information paradox [10].

As mentioned, one of the motivations to study such quantities is as a diagnostic
for the butterfly effect in a quantum system at the initial or intermediate time scale.
Recall that, in Eq. (1.1), in order to detect the divergence of the trajectory under
some initial perturbation, we need to calculate {q(t), p}P.B.. A natural generalization
from canonical quantization is by promoting the Poisson bracket to the commutator,
obtaining C(t) = 〈|[x̂(t), p̂]|2〉 ∼ e2λLt , where using |A|2 ≡ A†A removes the effect
of phase cancellations when averaging.

OTOCs can also be used to detect information scrambling — a process where
the quantum information becomes delocalized, and also as a characterization of

1Here we use the abbreviation OTOC for both out-of-time-ordered commutator and out-of-time-
ordered correlator. It should be clear from the context which we are referring to. When there is a
possible confusion, we will use the specific name or notation.
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<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

100
<latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit>

80
<latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit>

60
<latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit>

40
<latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit>

20
<latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit>
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(b)
CII

XX(`, t) = 1 � ReF II
XX(`, t)
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vB = 1

CWV(x − y, t)
ballistic propagating front 
with butterfly velocity       ; 
can have front broadening

vB
saturation inside the butterfly cone: 
an indicator of scrambling

extreme short time: CWV(t) described by 
Baker–Campbell–Hausdorff expansion

x − y

Figure 1.2: An illustration of the behavior of CWV (x − y, t) in a one-dimensional
spin system. CWV (x − y, t) spreads with the butterfly velocity vB, while the front
can broaden with time. At extremely short time, CWV (x − y, t) is described by the
Baker-Campbell-Hausdorff expansion. The behavior inside the butterfly cone is an
indicator for scrambling.

the instability of the so-called thermal field double state. One signature of the
scrambling is in fact the saturation or blow-up of CWV (t) (or equivalently, small
values of the out-of-time-ordered correlators).

In many-body systems, OTOCs also quantify operator spreading or operator growth.
Consider more concretely a spin-1

2 system, exapnding the time-evolved operator
Wx(t) =

∑
S aS(t)S in the Heisenberg picture, where S runs over all Pauli-string

operators (e.g., . . . σz
jσ

x
j+1 . . . ). Then Vy serves as a “probe" in Eq. (1.10) to detect

how much Wx(t) is not commuting with Vy, therefore profiling a kind of the “shape"
of the operator Wx(t).

Initially, when t � |x − y |, we expect that Wx(t) and Vy almost commute, hence the
small CWV (x − y, t). At extremely short time, we can expand Wx(t) via Hausdorff-
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Baker-Campbell (HBC) formula

Wx(t) =
∞∑

n=0

tn

n!
Ln(Wx) , (1.12)

where L(Wx) ≡ i[H,Wx]. The leading short-time behavior is therefore coming
from the first nontrivial n such that [Vy, Ln(Wx)] , 0, which is a pure quantum
mechanical effect. Typically, the operator Wx(t) will spread with a ballistic front,
with a characteristic speed vB called the butterfly velocity. Around the operator front,
|x− y |/t∼vB, CWV (x− y, t) grows dramatically from some small value to some O(1)
value if the operators have bounded spectrum. A manifestation of quantum chaos or
quantum butterfly effect is the exponential growth form ofCWV (x−y, t) ∼ exp(−λLt)
with fixed x − y. On the other hand, recent works have proposed a more universal
description for the asymptotic behavior around the front:

C(x − y, t) ∼ exp
[
−c
(|x − y | − vBt)1+p

tp

]
(1.13)

from Ref. [11]. Alternatively, if one considers the long-time behavior ofCWV (x, y, t)
on fixed “rays" v = |x−y |t , one can describe

CWV (x − y=vt, t) ∼ exp[−λ(v)t] , (1.14)

where λ(v) is dubbed velocity-dependent Lyapunov exponent from Ref. [12]. If
these two regions connect smoothly, we have λ(v) ∼ c(v − vB)1+p. The exponent p

describes the wavefront broadening as ∼ tp/(1+p). Note that it is only when p = 0,
we have the true position independent exponential growing of CWV (x, y, t), and one
can define Lyapunov exponent in this case through OTOCs.

In this thesis, we will examine the behaviors of OTOCs in various one-dimensional
integrable spin models which can be mapped to noninteracting fermions, including
the quantum Ising model, hard-core boson models, and Luttinger liquid. As we will
see, in the short-range models, noninteracting models give t

1
3 wavefront broadening

behavior. However, one can get different wavefront behavior by engineering the
quasiparticle dispersion. Finally, we will see that the saturation or non-saturation of
CWV (x− y, t) behind the operator front in the studied models depends on the choices
of the operators.

Quantum many-body scar states - Chapter 5
Under the assumption of random matrix theory, the Wigner-Dyson distribution is a
sharp indicator of quantum chaos. Moreover, the wavefunctions will look essentially
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“random", and are expected to satisfy ETH if it is a many-body system. However,
in some systems, there can be some very special wavefunctions at highly excited
energies which do not satisfy the random matrix theory description, while other
states do. Such states are called quantum scar states.

A prototypical example of scar states in the single-particle quantum mechanics was
discovered by Hellar [13] in the stadium billiard. It was shown that the level-
spacing statistics of the highly excited states in this system obeys the Wigner-Dyson
distribution. When one plots the amplitude of the wavefunctions, most of the states
look ergodic, spreading all over the area. However, one can also find some special
wavefunctions whose amplitudes are concentrated on some closed orbits in the
corresponding classical mechanics. These special wavefunctions are examples of
the single-particle scar states.

Can chaotic many-body systems also have scar states? Recently, several works
identified somemodels which host such special non-chaotic or ETH-violating states,
now called quantummany-body scar states. Examples including the bimagnon states
in the Affleck-Kennedy-Lieb-Tasaki model [14, 15] and the η-paring states in the
Hubbard model [16]. These states are highly excited states, i.e., having finite energy
density, but exhibiting logarithmic bipartite entanglement scaling. Recall the typical
random vectors in the Hilbert space have volume-law bipartite entanglement scaling.
As a result, these states certainly do not satisfy the random matrix assumption
nor ETH. A special construction proposed by Shirashi and Mori [17] describes a
procedure to embed nonthermal states into a thermal spectrum.

The interests in scar states surges dramatically by the anomalous dynamics observed
in a Rydberg atom experiment [18]. They observe that when one prepares the
system with a charge-density-wave initial state, the quench dynamics shows strong
oscillations. However, if the initial state is a uniform state, the dynamics shows
typical thermalization behavior, despite the fact that it has the same energy density
as the charge-density-wave state. It is subsequently pointed out in Refs. [19, 20]
with strong numerical evidence that the quantum many-body scar states in the
experimentally realized model (now called PXP model) are responsible for the
dynamics. The level-spacing statistics of the PXP model show Wigner-Dyson
distribution. However, in Fig. 1.3, we can see that there are some very special states
having subthermal entanglement entropy scaling in this model, while the majority
of the states have volume-law entanglement scaling.

In the very same model, we discover several quantum many-body states that can be
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scar states: subthermal 
entanglement scaling

thermal states: 
volume-law entanglement 
scaling

Periodic boundary condition 
PXP model, L=18

Figure 1.3: Bipartite entanglement entropy of the eigenstates in the PXP model in
L = 18 and periodic boundary condition. While the majority of the states have high
entanglement entropy and in fact volume-law scaling, there are some states have
low and subthermal entanglement entropy.

expressed exactly using matrix product states. The existence of these wavefunctions
therefore analytically confirms the violation of strong-ETH in thismodel and provide
another example of exact quantum many-body scar states. The most intriguing
property of these exact scar states is their translation-symmetry breaking character,
which is never possible for a one-dimensional system in the finite temperature
thermal ensembles. The translation symmetry breaking is identified by the valence-
bond solid (VBS) order. Based on the exact scar states we discover, we also construct
variational wavefunctions to capture other scar states discovered numerically. In
particular, we propose other scar states can be essentially understood as quasiparticle
scattering states.
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C h a p t e r 2

WEAK THERMALIZATION

Despite the widely held belief that a non-integrable model will generally thermalize,
a seminal numerical work by Bañuls, Cirac, and Hastings [1] observed some un-
usual and interesting behaviors. The authors used an infinite-matrix-product-state
(infinite-MPS) technique [2] to study the following quench problem. Starting from
various initial product states, one measures local observables as a function of time
evolving under a generic non-integrable quantum spin Hamiltonian

H = −J
L∑

j=1
σz

jσ
z
j+1 − h

L∑
j=1

σz
j − g

L∑
j=1

σx
j . (2.1)

For an initial state where all spins are pointing in the ŷ direction, |Y+〉, the behavior
is consistent with the conventional thermalization wisdom. However, there are some
initial states that display apparently different behaviors. One type of behavior occurs
for initial states with spins pointing close to the ẑ direction, |Z+〉, where observables
show strong oscillations without damping for the entire time where the numerical
simulation is reliable; since the time-averaged observables apparently approach the
thermal values, this behavior was called “weak thermalization.” A subsequent work
[3] using an improved “hybrid algorithm” also found similar persistent oscillations
starting fromadifferent initial state |X−〉. On the other hand, another type of behavior
occurs for initial states close to |X+〉, where a local observable σx

j apparently does
not thermalize, also upon time-averaging.

In this chapter, we provide a simple quasiparticle explanation for the strong oscil-
lation behavior observed in the “weak thermalization” case in Ref. [1]. We focus
on the |Z+〉 initial state and argue that it is actually close to the ground state of the
above Hamiltonian, and the oscillation frequency can be essentially understood as
the quasiparticle energy above this ground state. This initial state has a finite energy
density above the ground state and hence has a finite density of such quasiparticles.
However, when the quasiparticle density is small, the quasiparticles are effectively
weakly interacting, and the oscillations in the observables can persist to long times.
Armed with this quasiparticle description of the origin of oscillations, we can then
argue that the interactions among the quasiparticles will make the oscillations decay
eventually.
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The quasiparticle description developed here also leads us to consider the following
quench problem, which is interesting on its own. We argue that the quench problem
starting from |Z+〉 can be viewed approximately as a quench from a Bose-Einstein
condensate (BEC) state evolving under a hard-core boson Hamiltonian. The observ-
able of interest can be viewed as a BEC order parameter, which exhibits the strong
oscillation.

In fact, the above quench setting is essentially close to a quench from a magnetically
ordered state in the quantum Ising chain [4–8], where it has been established that
the magnetization order parameter decays exponentially in time. The decoherence
time of the order parameter was obtained analytically, and the mechanism for the
decoherence can be understood as a destructive interference from Jordan-Wigner
fermions with all momenta that are produced by the action of the order parameter
field, which is non-local in terms of these fermions.

The BEC quench setting has been studied experimentally [9] and theoretically [10,
11]. The previous studies focused on the evolution of a BEC state with a fixed
number of particles, which is natural in experiments but also makes the evolution
of the BEC order parameter more challenging to study. Indeed, to study 〈b j(t)〉 at
time t in this setting, one needs to consider boson correlation 〈b†j (t)b j+`(t)〉 in the
limit where the separation ` → ∞ first. More specifically, under hard-core boson
Hamiltonian, the correlation function in the Jordan-Wigner fermion representation
becomes an infinite-length string operator, which is a formidable calculation without
Wick’s theorem, as is the case for simple BEC states.

We perform essentially the above correlation function calculation upon using a fur-
ther trick where we replace the simple product BEC initial state with a different state
in the same phase but satisfying Wick’s theorem for the Jordan-Wigner fermions.
Under these further choices of the initial state and the evolution Hamiltonian, we
show that the BEC order parameter 〈b j(t)〉 decays exponentially in time. We also
study how the decay rate depends on the density of particles in the initial state. From
the analogy with the quench in the quantum Ising model, we conjecture that similar
expressions as in Refs. [6, 8] for the decoherence time and the oscillation frequency
will be applicable to our BEC quench setting. We find that our numerical results
are consistent with the conjectured expressions. In particular, we find that the decay
rate (i.e., inverse decoherence time) vanishes as ρ2 ln( 1ρ) at low densities ρ.

We remark that a recent work [12] suggested a possible physics that could dra-
matically alter the conventional "light-cone" picture of the quench problem. The
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Hamiltonian Eq. (2.1) is integrable for vanishing longitudinal field, h = 0, and
thermalizes readily to the corresponding generalized Gibbs ensemble. When the
transverse field is below critical, |g | < 1, the propagating quasiparticles can be
thought of as individual domain walls in the ferromagnetic order. However, for
non-zero longitudional field, |h| > 0, these domain walls are confined, which leads
to a dramatic suppression of the light-cone propagation and the entanglement en-
tropy growth observed in Ref. [12]. For small h, the true quasiparticles above the
ground state can be thought of as "mesons," which are bound (confined) states of
two domain walls. Reference [12] calculated masses of stable such mesons for
small h, and found that observables show apparently persistent oscillations with
frequencies set by these masses. Other authors, Refs. [13, 14], also proposed that
oscillation frequencies in quantum quenches in near-critical one-dimensional (1D)
systems are determined by quasiparticle masses. In this respect, our quasiparticle
explanation of oscillations in the weak thermalization regime is close in spirit to
Refs. [12–14]. The microscopic details of the true quasiparticles are different in our
regime with fairly large both g and h parameters, but this is a quantitative rather
than qualitative difference with Ref. [12]. Our emphasis in this paper is more on
the generic statement that the low-energy spectrum can be described in terms of
particle-like excitations ("quasiparticles"), whose properties can be extracted, e.g.,
from ED studies, and that we should always think in terms of such quasiparticles
when the initial state has low energy density over the ground state. Our main devel-
opment is the (approximate) picture of the initial state as a BEC of the quasiparticles
and how this system eventually thermalizes (the "condensate" decays), which we
argue implies that the physical observables cannot have persistent oscillations at
long times.

2.1 Finite-size exact diagonalization comparison and identification of the os-
cillation frequency

To get some understanding of the observed weak thermalization behavior, we first
study the same quench protocol as in Ref. [1] using exact diagonalization (ED).
More specifically, we prepare the initial state as a product state where all spins are
pointing in the ẑ direction, |Z+〉, and study its evolution under the Hamiltonian
Eq. (2.1) with parameters J = 1 (taken as the energy unit), h = 0.5, and g = −1.05.
We consider a chain of length L with periodic boundary conditions, j + L ≡ j.
Throughout, we set ~ = 1.

Figure 2.1 shows comparisons of some local observables with the infinite-system
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Figure 2.1: (a)-(c) ED calculations of the evolution of some observables for several
system sizes compared to infinite-MPS results from Ref. [1] marked as L = ∞ (we
are grateful to the authors of Ref. [1] for sharing their data with us). For smaller L,
visible deviations from the L = ∞ results appear at smaller t, which we associate
with recurrence phenomenon in finite systems. Close agreement of our ED results
with the infinite-MPS results over a large time window allows us to identify the
frequency of the oscillations from finite-size spectra, which we argue is essentially
the quasiparticle energy at zero momentum.

results from Ref. [1]. Somewhat unexpectedly, our finite-size results for system size
L = 18 capture the infinite-system results very closely up to time t ≈ 14, which
almost covers the full time window t ≤ 18 displayed in Ref. [1]. By comparing ED
results for a range of sizes between L = 12 and L = 18, we observe that the time
trecurr(L) beyond which the measurements deviate from the infinite-system results
increases with the system size. We expect that this time is roughly the time for the
information to spread to the whole system, and beyond this time the “recurrence”
phenomenon occurs. For our largest size L = 18, the recurrence does not happen
until trecurr ≈ 14.

As a result of the close similarity between the ED and infinite-system results, we can
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Figure 2.2: Weights of the initial state |Z+〉 on the eigenstates |E〉 for our largest
ED study with L = 18. The figure only shows the weights on states with momentum
quantum number K = 0, since the Hamiltonian is translationally invariant and the
initial state has this quantum number (also, only states that are invariant under
inversion have non-zero weights). We see that even for our largest size, the majority
of the weight is still on the ground state and the first excited state, which is expected
since 〈Z+ |H |Z+〉 = −1.5L = −27 is close to E1 for this size. Insets: The system
size dependence of the weights on the ground state |E0〉 and the first excited state
|E1〉 from L = 12 to L = 18. In the thermodynamic limit, the weights on these two
states should go to zero, since |Z+〉 has finite energy density above the ground state.
Nevertheless, E1 − E0 is defined in the thermodynamic limit and has a meaning of
the quasiparticle gap, controlling oscillations of the observables as in Fig. 2.1 over
extended time interval.
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understand the oscillation behavior from our ED spectra. First of all, we observe
that the oscillation frequency is essentially equal to the energy difference between
the ground state and the first excited state. In our calculation with L = 18, this
energy difference is ∆E = E1 − E0 ≈ 3.6401. We also note that even in our largest
L = 18 system, the initial state actually has |〈ψini |ψ0〉|2 ≈ 42% weight on the ground
state and |〈ψini |ψ1〉|2 ≈ 21% weight on the first excited state, as shown in Figure 2.2.
Thus, one may think that the finite-size results are mainly determined by these large
weights.

On the other hand, in an infinite system, the initial state has a finite energy density
above the ground state. The expansion of the initial state in terms of the eigenstates
of the infinite systemwill also be dominated by eigenstates with finite energy density
above the ground state. In particular, the weights |〈ψini |ψ0〉|2 and |〈ψini |ψ1〉|2 will
decay to zero exponentially in system size. However, Ref. [1] still found oscillations
with apparently the same frequency in the infinite system. A better picture is that
the energy difference ∆E = E1 − E0 in the finite-size system can be understood
as a quasiparticle energy, which is defined also in the thermodynamic limit (in
fact, ∆E is essentially converged to the quoted digits starting from L = 10). The
ground state is the vacuum of the quasiparticles, while the first excited state has one
quasiparticle at momentum k = 0. Therefore, the oscillation frequency in the finite-
size system can be understood as the creation energy of the k = 0 quasiparticle.
Note that close to the ground state, any two states that differ by adding one such
quasiparticle will have energy difference set by this quasiparticle energy. If the
corresponding matrix element for an observable is large and if the amplitudes of
these states in |ψini〉 are significant, they will contribute to the observable with the
same oscillation frequency. Thus, this oscillation frequency is more robust than
just the energy difference between the ground and first excited states in the finite
system. We can therefore infer that the quasiparticle excitation energy is the apparent
oscillation frequency of the infinite-system calculation. (As we will see in Sec. 2.3,
this is strictly true only in the low quasiparticle density limit, while in general the
frequency will obtain density-dependent corrections.)

We can alsomake a rough estimate of the quasiparticle density in the initial state. The
average energy density is 〈Z+ |H |Z+〉/L = −J − h = −1.5. With the quasiparticle
energy ∆E = 3.6401 and ground state energy density E0/L ≈ −1.722 (estimated
from the L = 18 ED calculations and essentially converged in L to the quoted digits),
we can bound the quasiparticle density as ρ . 0.061. This clearly demonstrates that



20

the initial states in the weak thermalization regime in Ref. [1] are states close to the
low-energy part of the spectrum. We can say that in this quasiparticle description,
such initial states have low density of quasiparticles. In this case, even though the
spin model is a generic non-integrable model, the specific quench puts the system
into a regime close to integrability in terms of the low-energy quasiparticles, which
we believe is responsible for the observed weak thermalization behavior.

In statistical physics, we routinely calculate properties of many-body systems at
low (but finite) temperatures by approximating the low-energy spectrum as a gas
of non-interacting quasiparticles. It is natural to ask if this picture can be used for
studying quantum dynamics of states at low (but finite) energy density. There is
clearly some time scale over which the simple non-interacting picture gives sen-
sible results, while here we want to focus on the asymptotic long-time behavior.
A common intuition is that in a generic non-integrable case, the residual interac-
tions of the quasiparticles lead to eventual thermalization in the system, and this
approach to thermalization can be studied by some semi-classical kinetic theory for
weakly-interacting quasiparticles. Our goal in the remainder of the paper is more
modest. We want to show that the oscillations in the above weak thermalization
example eventually decay, using as much as possible only precise quantum mechan-
ical arguments. We will still be making some approximations but intuitively only
in directions that make thermalization weaker, so our findings of the eventual decay
under these approximations should translate to only stronger thermalization without
the approximations.

2.2 Perturbative picture of the quasiparticles and truncated Schrieffer-Wolff
setup for the entire spectrum and quantum dynamics

Low-energy quasiparticles
To have amore precise formulation of the quasiparticle picture, we use a perturbative
local Schrieffer-Wolff transformation [15, 16] near an exactly solvable limit where
these quasiparticles are readily identified. The corresponding SW-rotated picture
can be viewed as an effective Hamiltonian for the quasiparticles, and we can also
study the initial state and its evolution. We take

H0 = −J
L∑

j=1
σz

jσ
z
j+1 − h

L∑
j=1

σz
j (2.2)
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as our exactly solvable limit and treat

T = −g
L∑

j=1
σx

j (2.3)

as our perturbation. This is not necessarily the best perturbative starting for our
model parameters with sizable g but will suffice for the qualitative picture.

H0 is diagonal in the σz basis. Its energy levels are specified by the number
Nflip of the spin-down sites, σz

j = −1, and the number Ndw of the domain walls,
σz

jσ
z
j+1 = −1. The ground state has no spin-down sites and no domain walls, which

is the |Z+〉 state, while a state with Nflip, Ndw has energy 2hNflip + 2JNdw above the
ground state. Note that Nflip and Ndw are not completely independent. However,
what is important later is that the number of different energy “sectors" specified
by Nflip, Ndw is bounded by L2 while the total number of states is growing as 2L .
Many of the sectors are necessarily highly degenerate, particularly in the middle of
the spectrum. In cases where the density of spin-flips is small and they are well
separated from each other, we can think of an isolated spin-flip as a quasiparticle
with energy 2h + 4J, but there are also quasiparticles with more structure. Abusing
the language somewhat, we will refer to the different Nflip, Ndw sectors as having
different quasiparticle numbers.

The action of the perturbation term T changes the number of quasiparticle exci-
tations and also introduces their dynamics. The mixture of these effects is what
makes the analysis very complicated. To partially simplify the analysis, we find
a unitary transformation eiS order by order to eliminate the effect of changing the
excitation numbers, which gives us dynamical Hamiltonians that keep the number of
quasiparticle excitations fixed (i.e., act within each sector Nflip, Ndw). The detailed
calculation is presented in Sec. 2.5.

To second order, we obtain the effective Hamiltonian as

H′ = eiSHe−iS = H0 + Hhop + Hconfig + Hother , (2.4)
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with

Hhop =

(
−g2

2h
+

g2

2h + 4J

) ∑
j

P↑j−1(σ
+
j σ
−
j+1 + H.c.)P↑j+2

+

(
g2

2h
− g2

2h − 4J

) ∑
j

P↓j−1(σ
+
j σ
−
j+1 + H.c.)P↓j+2 ,

Hconfig = −
g2

2h

∑
j

(
P↑j−1σ

z
j P↓j+1 + P↓j−1σ

z
j P↑j+1

)
− g2

2h + 4J

∑
j

P↑j−1σ
z
j P↑j+1 −

g2

2h − 4J

∑
j

P↓j−1σ
z
j P↓j+1 ,

where P↑,↓j ≡ (1±σ
z
j )/2 are projectors to spin-up and spin-down states respectively

and σ±j ≡ (σx
j ± iσy

j )/2 are raising and lowering operators respectively. The Hhop

terms can be viewed as correlated hopping for the excitations. As discussed previ-
ously, our initial state |Z+〉 is close to the ground state, i.e., vacuum of quasiparticles.
Therefore, we expect the quasiparticles are effectively the down-spins, and the Hhop

terms move such flipped spins, with additional dependencies on the neighboring
spins. The Hconfig terms describe additional contributions to the “classical” energy
of the spin configuration, which can be viewed as some density-density-type interac-
tions of the quasiparticles. Note that the quasiparticles also have effective hard-core
exclusion interaction. As detailed in Appendix A, Hother contains only contributions
of order O(g3), including terms that preserve the excitation numbers and also terms
that change the excitation numbers. We will make an approximation where we drop
the Hother terms (more discussion below) and call the resulting Heff as “effective
Hamiltonian," which acts separately in each sector. Thus, by eliminating the lead-
ing excitation-number-changing effect in our original Hamiltonian and dropping the
Hother terms, the dynamics now can be roughly viewed as hard-core bosons with
hopping and interaction in the dilute limit, where σz

j = −1(+1) corresponds to the
presence (absence) of bosons.

For excitations that are widely separated spin-flips, we need to consider only the
first term in Hhop and the first and second terms in Hconfig. The single quasiparticle
energy at momentum k is readily evaluated as

εk = 2h + 4J − g2

h
+

2g2

h + 2J
−

(
g2

2h
− g2

2h + 4J

)
2 cos(k) . (2.5)

The quasiparticle energy at zero momentum, which is relevant for the oscillations
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Figure 2.3: The energy difference between the first excited state and the ground
state as a function of g. This gap can also be understood as quasiparticle excitation
energy. The ED result is from system size L = 17 (the ED gap estimates are
essentially already converged for L & 10). We also show perturbative SW result at
order O(g2), Eq. (2.6). The exact and perturbative calculations agree well at small g
and deviate more at larger g, but the qualitative picture of the quasiparticle is robust
since the gap does not close over the range of g shown.

in the quench problem of interest, is

εk=0 = 2h + 4J − 2g2

h
+

3g2

h + 2J
. (2.6)

Figure 2.3 shows the excitation energy as a function of g in the range between 0 and
−1.05. The perturbative calculation is accurate for small |g | . 0.25 but becomes
less accurate at larger |g |. In particular, this second-order calculation would give
εk=0 ≈ 1.913 at g = −1.05, while the true gap ∆E = 3.6401 is almost two times
larger. This quantitative difference is not surprising given that the assumption g �
h, J is clearly not satisfied in this case (particularly since energy denominators 2h

appear when treating the sector with one quasiparticle perturbatively in g). However,
the true gap remains large in this range of g, and the quasiparticle picture developed
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perturbatively in g remains qualitatively correct (it can be further improved if needed,
but the presented picture is already sufficient for our discussion).

By examining the low-energy ED spectra for g = −1.05, we find that the band of
states closest to the ground state is well-described by εk = εk=0 + 2Jeff[1 − cos(k)]
with Jeff ≈ 0.44. The effective hopping amplitude again differs quantitatively from
the perturbative estimate in Eq. (2.5), but our overall picture of the quasiparticles at
low energy is robust.

We finally note that the picture of weakly-interacting spin-flips is not accurate here.
Two spin flips can lower their energy by roughly 4J if they are next to each other,
i.e., there is a significant attractive interaction between them. In the SW perturbative
treatment, the next sector in energy after the single-spin-flip sector (Nflip = 1, Ndw =

2) has two flipped spins that are next to each other (Nflip = 2, Ndw = 2) but otherwise
can be anywhere on the chain. The effective Hamiltonian to second order in g gives
energy 4h + 4J + 2g2/(h + 2J) and no dispersion for these states, while of course
some dispersion will develop at higher order. In fact, by examining the low-energy
ED spectra for g = −1.05, we find the single-spin-flip band of L states covering
energy window [∆E, 5.31] above the ground state (∆E = 3.6401 is the gap), and
then another band of L states covering energy [5.90, 6.84] and separated from the
next set of states starting at ≈ 2∆E = 7.28. The second band can be viewed as
corresponding to a stable bound state of two spin-flips, which is hopping around
with an amplitude about two times smaller than the single spin-flip. On the other
hand, the states above 2∆E can be viewed as corresponding to the two-spin-flip
continuum with well-separated spin-flips. We can in principle view the bound state
as another quasiparticle in the system at low energy and now think about dilute
gas of these as well as single-spin-flip quasiparticles, adding more accuracy to the
description but also much more complexity. However, we will not use such details
below and will proceed with a more crude picture and language of quasiparticles
as if they were only single-spin-flips. This is an OK approximation at low energy
density but can become quantitatively inaccurate at somewhat higher density.

Truncated Schrieffer-Wolff transformation for dynamics
While our original motivation for using the Schrieffer-Wolff transformations was
to understand the low-energy quasiparticles, the transformation as defined acts on
the entire Hamiltonian and the entire spectrum. We can boldly try to use the
rotated H′ with the Hother terms omitted and study the quantum dynamics under this
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“effective Hamiltonian.” By doing so, we are essentially postulating an emergent
integral of motion, namely the quasiparticle number conservation, or more precisely,
preservation of the sector identities. Recent works Refs. [17, 18] conjectured
possible emergence of such integrals of motion in translationally invariant systems
as a (much weaker) analog of many-body localization physics without underlying
disorder. However, this conjecture is far from being established, and we will not try
to prove or disprove it here. If such an emergence of the new integral of motion were
true, this would likely mean absence of full thermalization in the present context, as
one would then expect "equilibration" to an appropriate generalized Gibbs ensemble
treating the new integral of motion. Nevertheless, we will see that even in this case
the oscillations in the observables still decay, i.e., the weak thermalization turns to
a more conventional thermalization at long times. If the conjecture is not true, then
our calculations in the truncated SW scheme can be viewed as providing sufficient
mechanisms for thermalization, while in the full picture without the new integral of
motion the thermalization is likely to proceed only faster.

Keeping the above remarks in mind, we now describe calculations in the truncated
SW-rotated picture. The time evolution of an observable Ô becomes

〈ψini |eiHtÔe−iHt |ψini〉 = 〈ψ′ini |eiH ′tÔ′e−iH ′t |ψ′ini〉 ,

where Ô′ = eiSÔe−iS and |ψ′ini〉 = eiS |ψini〉 are the appropriately rotated operator
and initial state.

Consider first observables in the rotated picture. For the observables that we study,(
σx

j

)′
≈ σx

j +O(g) , (2.7)(
σ

y
j

)′
≈ σy

j +O(g) , (2.8)(
σz

j

)′
≈ σz

j −
g

h

(
P↑j−1σ

x
j P↓j+1 + P↓j−1σ

x
j P↑j+1

)
− g

h + 2J
P↑j−1σ

x
j P↑j+1 −

g

h − 2J
P↓j−1σ

x
j P↓j+1 +O(g2). (2.9)

Of course,
(
σx

j

)′
has an O(1) component onto the operator σx

j that changes the
quasiparticle number by one and hence “detects” the quasiparticle energy, and
similarly for

(
σ

y
j

)′
. On the other hand, the leading contribution to

(
σz

j

)′
does not

change the quasiparticle number. However, we can see that in the rotated picture at
order O(g), this observable also contains σx

j , which detects the quasiparticle energy.
The above expressions explain why the oscillations in 〈σx

j (t)〉 and 〈σ
y
j (t)〉 in Fig. 2.1
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have roughly similar amplitudes but are shifted in phase by π/2, while the oscillation
in 〈σz

j (t)〉 has a smaller amplitude and is in phase with 〈σx
j (t)〉 [indeed, the dominant

term in
(
σz

j

)′
in the regime of low quasiparticle density is − g

h+2J P↑j−1σ
x
j P↑j+1 and

g < 0.] Thus, our quasiparticle picture of the origin of oscillations can explain
even finer details in the numerical results. Finally, we note that operators

(
σx

j

)′
and(

σ
y
j

)′
at next order contain contributions that create two spin-flips [see Eq. (2.45)

and Eq. (2.46) for explicit formulas]. Hence, when discussing observables in the
rotated SW picture, we should also consider operators that change the excitation
number by two.

Consider now the initial state in the rotated picture. Since iS is a local operator
containing spin-flip terms (see Appendix A for explicit formulas), we can think of
|ψ′ini〉 = eiS |ψini〉 roughly as a product state where the spin on each site is rotated
a little away from the ẑ-direction. In terms of hard-core bosons representing the
spin-flips (quasiparticles), this state of course has some small density of bosons,
since n j = (1 − σz

j )/2. More crucially, it is actually a Bose-Einstein condensate
(BEC) state, since the rotated spin state can be written in the boson language as,
approximately,

∏
j(α + βb†j )|0〉, where b†j ≡ (σ

x
j − iσy

j )/2 (denoted σ−j earlier and
in Appendix A).

To get a more quantitative characterization of the initial state in the rotated picture,
we calculated |ψ′ini〉 = eiS |ψini〉 for system sizes L = 6 to L = 13, using iS calculated
to second order in g from Appendix A and applying true unitary eiS. Figure 2.4
shows measurements of the boson density and also of the BEC order parameter as a
function of inverse system size 1/L. The values are essentially converged in the first
four non-zero digits. We can see that the density is roughly ρ ≈ 0.05, consistent with
our previous estimate and our picture of diluteness of quasiparticles. Furthermore,
the initial state indeed has nonzero BEC order parameter.

To gain some intuition about the truncated SW picture, we performed numerical
calculations in the truncated SW picture as follows. For more accuracy, we start
with the rotated state |ψ′ini〉 = eiS |ψini〉 and observables Ô′ = eiSÔe−iS using true
unitary eiS with iS = iS[1] + iS[2] calculated to second order in g. Note that an exact
calculation of eiS is possible on small sizes. However, for the dynamical Hamilto-
nian, we use the perturbatively developed H′ omitting Hother terms. Of course, if we
used exactly-rotated H′ = eiSHe−iS, everything would be identical to the original
calculation with the un-rotated initial state, observables, and Hamiltonian, while the
setup where we use the truncated H′ allows us to gauge the effect of the truncation.
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Figure 2.4: Properties of the SW-rotated initial state |ψ′ini〉 = eiS |ψini〉, with
iS = iS[1] + iS[2] calculated to second order in g (see Appendix A for details). The
figure shows expectation values of the particle density b†j b j ≡ (1 − σz

j )/2 and BEC
order parameter b†j ≡ (σ

x
j − iσy

j )/2. The particle density ρ ≈ 0.05 is very low and
close to the estimate based on the average energy density in the initial state and the
quasiparticle gap.

In principle, the effective Hamiltonian completely separates the different energy
scales of the original problem. Thus, the "large" energy scales h and J determine
only the spacing between the sectors and would enter only the frequency of the
oscillations, while all the processes inside each sector—kinetic energy, effect of
hard-core exclusion, and explicit interactions—are now controlled by one energy
scale O(g2) (here for the sake of simplicity we ignore the difference between effects
of h and J and imagine them as giving one energy scale).

Figure 2.5 compares the 2nd-order SW calculation described in the previous para-
graph with the ED result, for system size L = 13 and different parameters. We find
persistent oscillations on the time scales similar to those in Fig. 2.1. As shown in the
figure, for g = −0.5, the perturbative description is still roughly quantitatively ac-
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Figure 2.5: Comparisons of the dynamics from ED and 2nd-order SW for two
different parameters for system size L = 13. (a) g = −0.5. The perturbative
calculation is still quantitatively accurate at short time. The difference between
ED and SW mostly comes from the difference between the exact and perturbative
quasiparticle energy gap, resulting in the different oscillation frequencies. (b) g =
−1.05. The quantitative comparison becomes inaccurate at this parameter. For
example, the oscillation frequency in the SW calculation is almost half of the ED
calculation. Nevertheless, the SW calculation still captures the qualitative behavior
observed in the ED calculation.

curate. The oscillations are somewhat more regular, consistent with the expectation
that the truncation reduces decoherence effects. The main difference is due to the
frequency difference, as the perturbative calculation of the quasiparticle gap has a
small error compare to the ED gap. On the other hand, for g = −1.05, the SW calcu-
lation deviates significantly from the ED calculation, which is not surprising, since
the parameter g is not small anymore. Nevertheless, the ED result of g = −1.05
is still qualitatively similar to the ED result of g = −0.5, i.e., both have persistent
oscillation with frequency given by the quasiparticle energy gap. Moreover, the
quasiparticle gap has not closed at g = −1.05 as shown in Fig. 2.3. Therefore,
we conjecture that the truncated Hamiltonian obtained from SW transformation is
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still suitable to describe the dynamics, however, with the parameters understood as
the renormalized values instead of values calculated from the perturbative formula
directly.

To conclude the above discussion, the strong oscillation behavior is mainly coming
from the measurement of 〈ψ′ini |b

†
j (t)|ψ

′
ini〉 in the boson language. Effectively, this

is the evolution of the BEC order parameter with the dynamical Hamiltonian of
interacting bosons and the initial BEC state as we discussed. The fate of the
oscillations is not an entirely trivial problem, as can be seen from the following
considerations. In fact, in the extremely simplified case where the initial state has
BEC and the dynamical Hamiltonian is purely boson hopping H = −J

∑
j(B†j B j+1+

H.c.) +W
∑

j Nj =
∑

k[W − 2J cos(k)]B†k Bk without interaction and without hard-
core constraint, the evolution indeed exhibits undamped oscillation with frequency
ω = W − 2J. Note that here B j are canonical (not hard-core) bosons and Nj = B†j B j

(we used capital letters to distinguish fromhard-core bosons used in the next section).
Furthermore, allowing interactions among quasiparticles of the type typically done
in the Landau’s Fermi liquid theory, Hint = 1/(2L)∑k,p Vk,pNk Np, leads only to
shifting the oscillation frequency by an amount (1/L)∑p V0,p〈Np〉, where 〈Np〉 is
the expectation value in the initial state, but not to decay of the oscillations at long
times. Only when we allow more general interactions, we expect that the BEC order
parameter will start to damp. In the next section, we will show that already the
hard-core exclusion will lead to decrease of the oscillations at long times.

2.3 Quench of BEC state to solvable hard-core boson Hamiltonian
As discussed in the previous section, the dynamics of the quantum spin chain
after removing the excitation-changing part can be viewed as an interacting hard-
core boson problem. Even though we can obtain the quasiparticle description, the
effective problem is still very difficult to analyze due to its non-trivial interactions.
Therefore, we further simplify the problem by considering more simple initial states
and a solvable effective Hamiltonian.

Specifically, we consider the dynamical Hamiltonian

H = Weff

L∑
j=1

b†j b j − Jeff
L∑

j=1

(
b†j b j+1 + H.c.

)
, (2.10)

with the hard-core constraint (b†j )
2 = 0. We also consider periodic boundary

conditions b j+L ≡ b j to be closer to the thermodynamic limit. This Hamiltonian
can be viewed as an approximation to the effective Hamiltonian in Eq. (2.4) where
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we drop Hother and two-site and three-site interaction terms. Note that the parameter
Jeff here is not related to the spin interactions in the original spin chain but should
be viewed instead as the effective hopping amplitude of the spin-flips in Hhop; this
should not cause any confusion since in this section we will focus on the above hard-
core bosonmodel. Wewill show that even dropping these interaction terms, the BEC
order parameter will still decay. We would expect that including the dropped terms
would allow more channels for thermalization, although details of the interactions
can certainly have quantitative effects. We will discuss this approximation and the
effects of additional interactions in Sec. 2.3.

The advantage of the above simplified Hamiltonian is that it is exactly solvable.
Using Jordan-Wigner (JW) transformation, which transforms the hard-core bosons
to fermions,

b j =
©­«

j−1∏
j ′=1

eiπnj ′ª®¬ c j , (2.11)

the Hamiltonian can be rewritten in the fermionic representation as

H = Weff

L∑
j=1

c†j c j − Jeff
L−1∑
j=1

(
c†j c j+1 + H.c.

)
(2.12)

− Jeff(−1)Ntot+1
(
c†Lc1 + H.c.

)
, (2.13)

where Ntot ≡
∑L

j=1 n j is the total particle number. As is well-known, in the fermionic
representation, for sectors with even Ntot we effectively have anti-periodic boundary
conditions, while for sectors with odd Ntot we have periodic boundary conditions.
We can then use Fourier transformation ck = (1/

√
L)∑ j c je−ik j to diagonalize the

Hamiltonian H =
∑

k εkc†kck , where k = 2π(m + 1/2)/L for even-particle-number
sectors and k = 2πm/L for odd-particle-number sectors, with m = 0, 1, . . . , L − 1.
The single-particle dispersion is εk = Weff − 2Jeff cos(k).

The difference in the boundary conditions for the even and odd sectors is not im-
portant when considering the spectrum and static properties in the thermodynamic
limit. However, when considering the dynamics of observables connecting different
number-parity sectors, ignoring the boundary conditions and the resulting differ-
ences in ck used to diagonalize the even and odd sectors (ultimately related to the
string operator when connecting such sectors), results in an erroneous answer, as we
will explicitly show below. This is also the major obstacle to obtaining analytical re-
sults for 〈ψini |b†j (t)|ψini〉, with any reasonable initial state |ψini〉. On the other hand,
we can obtain a compact analytical expression for 〈ψini |b†j (t)b

†
j+1(t)|ψini〉, which
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connects sectors with the same number parity. The reason is that the Heisenberg
representation of ck(t) = ck e−iεk t only makes sense when constructing operators that
connect sectors with the same number parity.

In the next two subsections, we will consider two different initial states, both
with nonzero boson condensation, evolving under Hamiltonian Eq. (2.10). For
Weff > 2Jeff, the ground state of this Hamiltonian in the full Fock space is a trivial
Mott insulator. However, this and the value ofWeff are actually not important for the
relaxation dynamics: one can readily see that Weff only adds to the oscillation fre-
quency for processes connecting sectors with different Ntot and not to any relaxation
dynamics. The latter is determined by the spectra inside each sector, where Jeff is
the only energy scale. Of course, the properties of the initial state are also important
(e.g., which Ntot are present, the energy distribution, etc.). For illustration, we will
takeWeff = 5Jeff to see multiple oscillations before recurrence time. Given our moti-
vation for this model as a simplified effective model for quasiparticles in the original
spin problem in the regime of low quasiparticle density, we would like to consider
initial states with low average particle density. Wewill first consider higher densities
to better see qualitative behaviors, and afterwards we will return to more appropriate
parameters for the original motivation. We will consider quantities 〈ψini |b†j (t)|ψini〉
(thematter wave or the BECorder parameter) and 〈ψini |b†j (t)b

†
j+1(t)|ψini〉 (pair-boson

condensation order parameter). One motivation for considering both single- and
pair-boson operators comes from the fact that both these generically contribute to the
observables of interest in the rotated SW picture for the original spin problem, see
discussion after Eq. (2.9) and Eqs. (2.45)-(2.46) in Appendix A. An even stronger
motivation comes from intrinsic interest in the integrable hard-core boson model,
as comparing these quantities will illustrate the importance of the boundary con-
ditions on the Jordan-Wigner fermions and ultimately of the string operator when
connecting sectors with different number parity.

Initial hard-core boson BEC state as a product state
We first consider our initial state as a hard-core boson coherent state

|ψini,A〉 =
L∏

j=1
(α + βb†j )|0〉 , (2.14)

where |0〉 is the vacuum of the hard-core bosons. The normalization requires
|α |2 + |β |2 = 1. The boson density is ρ = 〈ψini,A |b†j b j |ψini,A〉 = |β |2, while the BEC
order parameter is Φ = 〈ψini,A |b†j |ψini,A〉 = β

∗α.



32

0 5 10 15 20
t

-5

-4

-3

-2

-1

0

1

2
ln

 |y
| 0 5 10 15 20

t

-0.2
0

0.2
0.4

exponential decay

�(t) Evolution

y = |�(t)|
y = |�(t)|
y = |�(t)|
y = |�(t)|
y = Re�(t)
y = Im�(t)

L = 14
L = 16
L = 18

L = 20

y

L = 20

L = 20

Je↵

Je↵Je↵t

Je↵t

Figure 2.6: (color online) ED results for Φ(t) ≡ 〈b†j (t)〉 for the hard-core boson
model, Eq. (2.10), and the product BEC state, Eq. (2.14), with average boson
density ρ = |β |2 = 0.25, for system sizes L = 14, 16, 18, 20. The parameters of
the dynamical Hamiltonian are Jeff = 1 and Weff = 5Jeff. Note that the main panel
shows ln |Φ(t)| vs Jefft, and the results strongly suggest exponential decay in t until
recurrence time: as the system size increases, the time interval over which the
exponential decay is observed also increases. Inset: linear scale for the observable.
The recurrence times where the smaller-size results peel off from the largest-size
results are roughly in agreement with those in Fig. 2.7.

Figure 2.6 shows ED results for the evolution of the BEC order parameter

Φ(t) ≡ 〈b†j (t)〉 ≡ 〈ψini,A |b
†
j (t)|ψini,A〉 (2.15)

for the initial state with average density ρ = 0.25 and system sizes up to L = 20.
From the semi-log plot, it is clear that the initial decay is exponential. At later
times, the ED results again suffer from the finite-size recurrence effect. However, as
the system size increases, we see the exponential decay over a longer time interval.
Therefore, we infer that in the thermodynamic limit the BEC order parameter decays
exponentially in time even in this integrable system.

We remark that a naive calculation that would ignore the different boundary con-
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Figure 2.7: (color online) ED results for Υ(t) ≡ 〈b†j (t)b
†
j+1(t)〉 for the same systems

as in Fig. 2.6 with average density ρ = 0.25. This observable can be also calculated
analytically using Jordan-Wigner transformation (checked against ED for small L),
allowing us to study much larger sizes and times, as illustrated here for L = 500.
Note that the main panel shows log-log plot, and the long-time behavior in the
largest system clearly has a power-law envelope with decay t−3/2, in agreement with
the analytical calculation in the text. Inset: linear scale for the observable. By
comparing data for L = 14, . . . , 20 and much larger L = 500, we can also clearly
see where the recurrences appear for the smaller sizes.

ditions for the Jordan-Wigner fermions in different number-parity sectors would
suggest a different (wrong) result. By translational invariance, the BEC order pa-
rameter is just 〈ψini,A |b†j=1(t)|ψini,A〉, and one could naively proceed

〈ψini,A |b†j=1(t)|ψini,A〉 = 〈ψini,A |c
†
j=1(t)|ψini,A〉

!!! wrong !!!
=

1
√

L

∑
k

〈ψini,A |c†k |ψini,A〉e
iεk te−ik (2.16)

=
1
L

∑
k

∑
j

〈ψini,A |c†j |ψini,A〉e
iεk teik je−ik . (2.17)

Expectation values 〈ψini,A |c†j |ψini,A〉 can be easily evaluated in the product BEC state.
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From here, the calculation is not sensitive to the details of the sum over k, which can
be turned into an integral for large L, and a standard steepest descent analysis of the
last equation would give t−

1
2 decay at large time t. However, this calculation is wrong

at the emphasized step, since there is nowell-defined fermionic quasiparticle creation
operator c†k acting between sectors with different parity. Ultimately, this is related
to the non-local character of the boson order parameter in terms of the JW fermions,
which in the translationally invariant case with periodic boundary conditions for
the bosons yields effectively different boundary conditions for the JW fermions in
the even and odd sectors. (In the case with open boundary conditions, the above
calculation focusing on the site at the left boundary would not be representative of
the infinite system, while a valid calculation with a site in the middle of the system
would have to time-evolve with the string operator.) In this case, we do not have a
simple analytical calculation of the observable even though the model is solvable by
JW fermions. A more involved analytical calculation supporting exponential decay
of Φ(t) will be presented in the next subsection.

On the other hand, Fig. 2.7 shows the evolution of

Υ(t) ≡ 〈b†j (t)b
†
j+1(t)〉 ≡ 〈ψini,A |b

†
j (t)b

†
j+1(t)|ψini,A〉 . (2.18)

We actually have a full analytical calculation of this observable and a closed-form
expression in the thermodynamic limit. Nevertheless, we still show the finite-size
ED results (which we also checked against the analytical calculations), as a reference
to compare with the results for Φ(t). We can see that this pair-boson observable
decays with a power-law envelope t−3/2 until the recurrence phenomenon sets in.
Again, as we increase the system size, the recurrence time also increases.

We present the analytical calculation in Appendix B, while here we only show the
final result in the thermodynamic limit,

Υ(t) = 2(β∗α)2
∫ π

−π

dk
2π

sin2(k)
1 + η2 − 2η cos(k)

e2iεk t , (2.19)

where η ≡ |α |2 − |β|2. The long-time behavior is controlled by extrema of εk ;
these occur at k = 0 and k = π, so we expect oscillations at two frequencies,
2εk=0/π = 2(W ∓ 2J). Since in the integrand the factor multiplying e2iεk t vanishes
at both these points, a saddle-point analysis gives power-law envelope t−3/2. Both
these frequencies and the power-law envelope are indeed observed in the numerical
calculations in Fig. 2.7.
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Comparing our numerical results for Φ(t) and Υ(t), we can confidently say that the
latter observable decays more slowly, despite being a composite operator in terms
of microscopic bosons. On the time scales where the behavior is representative of
the thermodynamic limit, the former observable decays faster than power law and
is consistent with exponential decay. We will confirm this on yet longer time scales
in the next section.

The different behaviors of the above two types of observables are based on the
differences when operators change or preserve the number parity. In a very gen-
eral consideration of a quantum evolution, any observable can be expanded in the
eigenstate basis

〈Ô(t)〉 =
∑
a,a′

x∗aOa,a′xa′ei(Ea−Ea′)t , (2.20)

where xa = 〈a|ψini〉, Oa,a′ = 〈a|Ô |a′〉, and |a〉 is an eigenstate with energy Ea.
When we consider Ô = (1/L)∑ j b†j b

†
j+1 = (1/L)

∑
k c†kc†−k eik (appropriate for

calculating Υ(t) in translationally invariant setups), it connects states that differ
by precisely two quasiparticles with opposite momenta. The energy differences
can only be εk + ε−k = 2εk . These are precisely the frequencies that appear in
Eq. (2.19) (see also derivation in Appendix B). Note that while the number of states
is exponentially large in system size, the number of different frequencies that appear
here is only linear in system size, and this is ultimately responsible for the slow
power-law “decoherence" in the observable. On the other hand, when we consider
Ô = (1/L)∑ j b†j , the mismatch between the sectors with different particle number
parity (related to b†j not being locally represented in terms of the JW fermions)
results in a much larger number of different frequencies Ea − Ea′ that appear with
non-zero matrix elements; we believe that this is responsible for the faster decay
than power law—exponential decay in this case.

To put these results in perspective, the difference in relaxation dynamics of operators
that are non-local (contain string) or local (no string) in terms of the diagonalizing
Jordan-Wigner fermions has been known in the context of quenches in the quantum
Ising chain, starting from Ref. [4] and very detailed subsequent works Refs. [5–7]
(for a recent review, see Ref. [8]). Direct analogs of ourΦ(t) andΥ(t) observables are
〈σx

j (t)〉 and 〈σ
x
j (t)σ

x
j+1(t)〉 in the quantum Ising chain H =

∑
j(−Jσx

j σ
x
j+1 − hσz

j ),
which were shown to have exponential and power-law t−3/2 envelopes respectively.
It has been also anticipated that such difference holds for other models with free-
fermion spectrum. To our knowledge, our work is the first explicit study of the
exponential decay of the order parameter in the case of the BEC to hard-core boson
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Figure 2.8: Evolution of the absolute value of the BEC order parameter |Φ(t)|
in the same setting as in Fig. 2.6 but for different average boson densities ρ in the
initial state and showing only the largest ED size L = 20 (ρ = 0.25 data is the same
as in Fig. 2.6). The measurements are normalized by their initial value in order to
compare the decay rates. We clearly see that the decay rate increases as the density
increases. The exponential decay ends at roughly Jefft ≈ 5, where the finite-size
recurrence effect shows up, indicated by the broken line (see also Fig. 2.6). Inset:
density dependence of the inverse lifetime 1/Jeffτ. The circle symbols are obtained
fromfitting the exponential decay regime Jefft ∈ [1.5, 4.5] to a function Ae−t/τ, while
the solid line is calculated from the conjectured Eq. (2.23). The inverse lifetime
decreases as density decreases, with a ρ2 log( 1ρ) dependence at small density.

quench. Our results in the present subsection are numerical, while analytical results
for this quench are not available because the time-evolved state here does not have
Wick’s theorem for the JW fermions, as emphasized in Ref. [10]. We will present
(semi)-analytical results on such a quench in the next section by starting with a
different initial state which is qualitatively in the same BEC phase but does have
Wick’s theorem (and will in fact be able to say more about the product BEC states
as well).

Having found exponential decay of the BEC order parameter for a sizable (but
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Figure 2.9: Evolution of the real part of the BEC order parameter Re[Φ(t)] for
different average boson densities ρ and showing only the largest ED size L = 20;
the systems are the same as in Fig. 2.8. Inset: density dependence of the frequency
ω obtained from fitting the exponential decay regime Jefft ∈ [1.5, 4.5] to a function
Ae−t/τ cos(ωt − α), with τ determined from Fig. 2.8. We see that the frequency
decreases towards Weff − 2Jeff = 3 as the density decreases to zero. The solid
line indicates our conjectured dependence of the oscillation frequency on density,
Eq. (2.24).

otherwise generic) average boson density ρ = 0.25 in the initial BEC state, we
believe that the same qualitative behavior will persist for all densities. We will
establish this even more firmly on much larger systems and much longer times in the
next subsection using a somewhat different realization of the initial BEC state. Here
we would like to study density dependence of the relaxation time moving towards
regime of low density, which is of interest in the original spin model. Figure 2.8
shows |Φ(t)| evolution for varying average boson density in the initial state. In
each case, we normalized the observable by its initial value in order to get a better
comparison. We can clearly see that the BEC order parameter decays faster with
increasing density. Even though we do not have an exact functional form for |Φ(t)|,
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we still select the exponential decay regime and fit it with Ae−t/τ, where the inverse
lifetime τ−1 as a function of density is shown in the inset and vanishes at low density.
A companion Fig. 2.9 shows the real part Re[Φ(t)] for the same systems, where we
can see that the frequency of oscillations also depends on the density, approaching
the k = 0 quasiparticle gap Weff − 2Jeff in the limit of low density.

The exponential decay of the order parameter was also obtained in earlier studies
of the non-equilibrium dynamics of the magnetization in the quantum Ising model
[4, 6, 19] (see also Ref. [8] for a recent review). Despite the differences in details
between the hard-core boson and Ising models, the exponential decoherence can
be attributed to the non-local nature of the observable when expressed in terms of
the Jordan-Wigner fermions, which are the non-interacting quasiparticles in both
models. The origin of the decoherence of the order parameter is the destructive
interference coming from contributions from quasiparticles at all momenta. Ref. [6]
obtained analytical formulas for the decay time and the oscillation frequency in the
quantum Ising quench from the ferromagnetic phase to the paramagnetic phase.
These formulas depend only on the mode occupation numbers of the JW fermions
in the initial state and not any other details. We conjecture that the same formulas
are valid also for our hard-core boson quench from the BEC state. We propose the
inverse decoherence time (inverse lifetime) as

τ−1 =

∫ π

−π

dk
2π

����dεk

dk

���� log |1 − 2〈nk〉| , (2.21)

where dεk/dk is the group velocity of the quasiparticle and 〈nk〉 is the mode
occupation number in the initial state, 〈nk〉 = 〈ψini |c†kck |ψini〉. For the initial
state |ψini〉 = |ψini, A〉, calculations similar to those in Appendix B give in the
thermodynamic limit

〈nk〉 =
ρ2(1 + cos k)

ρ2 + (1 − ρ)2 − (1 − 2ρ) cos k
. (2.22)

We can therefore obtain explicit density dependence of the inverse lifetime as

(Jeffτ)−1 =
16
π

ρ2(1 − ρ)2
ρ2 + (1 − ρ)2

log(1 − ρ) − log(ρ)
1 − 2ρ

. (2.23)

Note that this expression is symmetric under particle-hole transformation sending
ρ→ 1−ρ, as is expected from simple considerations about this quench. Importantly
for our applications to the original spin model, we find that at low density (Jeffτ)−1 ∼
ρ2 log( 1ρ). Inset in Fig. 2.8 compares the inverse lifetime extracted from fits of the
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time evolution in our ED systems and the conjectured expression Eq. (2.23), denoted
by circles and solid line respectively. The fairly good agreement between the two
supports our conjecture.

As for the density dependence of the frequency, based on the quantum Ising study
in Ref. [6], we can also conjecture that the frequency is given as ω = εk0 , where k0

is the wave vector such that 1 − 2〈nk0〉 = 0. We can then obtain the frequency as a
function of density as

ω(ρ) = Weff − 2Jeff
1 − 2ρ

ρ2 + (1 − ρ)2
. (2.24)

Inset of Fig. 2.9 compares the fitted frequencies from the ED study (circles) and the
above formula (solid line). The close agreement supports our conjecture.

On the other hand, the power-law decay of the pair-boson observable Υ(t) does
not depend on the density in the initial state, nor does the oscillation frequency.
This is similar to results in the quantum Ising quench for operators that do not
change the Ising quantum number [4, 6, 8] and is also another noteworthy point
of the differences between the relaxation behaviors of the single- and pair-boson
operators.

Initial hard-core boson BEC state realized as a topological superconductor of
JW fermions
The initial state used in the previous subsection does not have any special properties
like the Wick’s theorem that we could utilize to reach larger system sizes when
calculating the evolution of the BEC order parameter. In this subsection, we will
consider a different initial state which is qualitatively in the same BEC phase but
for which Wick’s theorem is valid, therefore enabling calculations for much larger
system sizes.

Specifically, consider the following hard-core boson Hamiltonian,

Hini = −J0

L∑
j=1
(b†j b j+1 + H.c.)

− ∆0

L∑
j=1
(b†j b

†
j+1 + H.c.) − µ0

L∑
j=1

b†j b j , (2.25)

with periodic boundary conditions, b j+L ≡ b j . This Hamiltonian preserves par-
ticle number parity, with the corresponding ground states in the even and odd
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parity sectors |ψg.s., even〉 and |ψg.s., odd〉. We will argue below that as long as
|µ0 | < 2|J0 |, these ground states have long-range order in the single-boson ob-
servable, i.e., lim| j− j ′ |→∞〈b†j b j ′〉 , 0. Schematically, we can indicate this long-
range order by writing 〈b†j 〉 , 0. In particular, it is actually sensible to con-
sider a superposition of |ψg.s., even〉 and |ψg.s., odd〉 and view it as a BEC of bosons,
which contains states with arbitrary particle numbers. For example, we can take
|ψini〉 = (1/

√
2)(|ψg.s., even〉 + |ψg.s., odd〉), which for J0,∆0 > 0 and appropriate

choices of the phases of |ψg.s., even/odd〉 will have positive amplitudes on all states
in the boson number basis, similarly to the state Eq. (2.14) with real and positive
parameters α and β. However, as will become clear, the details of the superposition
are not important.

The above Hamiltonian can be also exactly solved by the Jordan-Wigner transfor-
mation Eq. (2.11), which gives

Hini = −J0

L−1∑
j=1
(c†j c j+1 + H.c.) − ∆0

L−1∑
j=1
(c†j c†j+1 + H.c.)

− J0(−1)Ntot+1(c†Lc1 + H.c.)

− ∆0(−1)Ntot+1(c†Lc†1 + H.c.) − µ0

L∑
j=1

c†j c j . (2.26)

The fermions effectively have antiperiodic boundary conditions in the even number-
parity sector and periodic boundary conditions in the odd number-parity sector. Af-
ter Fourier transformation with lattice momenta k = 2π

L (m +
1
2 ), m = 0, 1, . . . , L − 1

in the even number-parity sector and k = 2π
L m in the odd number-parity sector, we

further apply Bogoliubov transformation to diagonalize the above Hamiltonian. The
Bogoliubov quasiparticles are given as γk = u∗kck + v∗kc†−k , with uk = cos(θk/2),
vk = sin(θk/2). The parameter θk is determined by tan(θk) = −2∆0 sin(k)

2J0 cos(k)+µ0
. We

can readily construct the vacuum of the Bogoliubov quasiparticles in both par-
ity subspaces; e.g., in the even-parity sector we have |ψg.s., even〉 = |vacγ,even〉 =∏

k>0

(
u∗k − v

∗
kc†kc†−k

)
|vacc〉, where |vacc〉 is the vacuum for the c fermions and k

are chosen appropriately for this number-parity.

The dynamics is governed by the hard-core boson hopping Hamiltonian Eq. (2.10).
We are interested in the time evolution of the BEC order parameter Φ(t) and will
calculate its real part, 2Re[〈b†j (t)〉] = 〈b

†
j (t) + b j(t)〉 ≡ 〈Σ j(t)〉. The site index j can

be arbitrary since the state remains translationally invariant during the evolution.
Again, exactly solving the time evolution of Σ j is very difficult due to the mismatch
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between the JW fermion boundary conditions in the even and odd sectors. In order to
remedy this obstacle, we adopt the factorization trick of McCoy et. al [20]. Instead
of considering 〈Σ j(t)〉 directly, we consider

〈Σ j(t)Σ j+`(t)〉 ≈ 〈Σ j(t)〉〈Σ j+`(t)〉 (2.27)

for separations ` � vt, where v is some characteristic velocity for the spreading of
quantum correlations. In this limit, we expect that the above approximation is very
accurate based on reasoning similar to Lieb-Robinson bound [21], although we have
not tried to prove this rigorously.

Since Σ jΣ j+` does not mix the even and odd sectors, the above trick enables us to
deal separately with the two sectors. Furthermore, it is sufficient to consider the
even sector only and calculate the quantity

R(`, t) ≡ 〈ψini,B |Σ j(t)Σ j+`(t)|ψini,B〉 , (2.28)

where we choose the initial state as |ψini,B〉 = |ψg.s.,even〉, since we expect the
contribution from |ψg.s.,odd〉 will essentially be identical in the thermodynamic limit
[6].

In the fermionic representation,

R(`, t) = 〈ψini,B |
( j+`−1∏

j ′= j

B j ′(t)A j ′+1(t)
)
|ψini,B〉 , (2.29)

where we defined Majorana fermions A j = c†j + c j and B j = c†j − c j . It is easy to
perform calculations in the Schrodinger picture of the time evolution. Thus,

|ψini,B(t)〉 = e−iHt
∏
k>0
(u∗k − v

∗
kc†kc†−k)e

iHte−iHt |vacc〉

=
∏
k>0
(u∗k − v

∗
kc†kc†−k e−i2εk t)|vacc〉

=
∏
k>0
[u∗k − v

∗
k(t)c

†
kc†−k]|vacc〉 , (2.30)

where the dynamics can be considered as an evolution of the coherence factor
vk(t) ≡ vk e2iεk t .

Since the above state can be viewed as a BCS ground state of a Hamiltonian with
the corresponding coherence factors at every instant, the Wick’s theorem holds for
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|ψini,B(t)〉 at every time t. In order to apply the Wick’s theorem, we need to evaluate
the following two-operator correlation functions:

〈Am An〉 =
1
L

∑
k

[1 − sin θk sin(2εk t)] eik(m−n) ,

〈BmBn〉 =
1
L

∑
k

[−1 − sin θk sin(2εk t)] eik(m−n) ,

〈AmBn〉 =
1
L

∑
k

[cos θk + i sin θk cos(2εk t)] eik(m−n) ,

〈Bm An〉 =
1
L

∑
k

[− cos θk + i sin θk cos(2εk t)] eik(m−n) .

For conciseness, we define Toeplitz matrices with elements [AA]m,n = 〈Am An〉 when
m , n and [AA]m,n = 0 when m = n; [BB]m,n = 〈BmBn〉 when m , n and [BB]m,n = 0
when m = n; [BA]m,n = 〈Bm An+1〉; and [AB]m,n = 〈Am+1Bn〉. [AA] and [BB] are
antisymmetric matrices while [AB] = −[BA]T . We then define a 2` × 2` matrix M

as a block Toeplitz matrix with elements(
M2m−1,2n−1 M2m−1,2n

M2m,2n−1 M2m,2n

)
=

(
[BB]m,n [BA]m,n
[AB]m,n [AA]m,n

)
, (2.31)

where m, n = 1, . . . , `. Note that the matrix M is antisymmetric. Applying Wick’s
theorem to Eq. (2.29) with j = 1, we then have R(`, t) = Pf(M), the Pfaffian of the
above matrix M .

Before discussing the time evolution, let us consider properties of the initial state
encoded in R(`, t = 0), which is a specific boson-boson correlation function in
the initial state |ψini,B〉. This correlation function exhibits two different behaviors
depending on the parameters of Hini. At t = 0, matrices [AA] and [BB] are zero, and
by rearranging the columns and rows of the matrix M , we obtain

R(`, t = 0) = (−1)`(`−1)/2Pf

(
0 [BA]

−[BA]T 0

)
= det[BA] ,

where matrix [BA] is evaluated at t = 0. Thus, R(`, t = 0) is equal to the determinant
of the Toeplitz matrix [BA]. The asymptotic behavior at large ` is given by Szegö’s
theorem [22],

lim
`→∞

R(`, t = 0) ∼ Ceλ0` , (2.32)

where C is a constant and λ0 =
∫ π

−π
dk
2π log(e−iθk e−ik). When λ0 , 0, which occurs

for |µ0 | > 2|J0 |, we have exponential decay of the correlation function. On the
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other hand, when λ0 = 0, which occurs for |µ0 | < 2|J0 |, the correlation function
approaches a non-zero constant, signaling a long-range order in the boson BEC
order parameter. Note that in terms of the Jordan-Wigner fermions, conditions
|µ0 | > 2|J0 | and |µ0 | < 2|J0 | correspond respectively to the trivial and topological
superconductor phase in the one-dimensional spinless superconductor [23, 24] (i.e.,
strong-coupling andweak-coupling superconducting phases in the sense of Read and
Green, Ref. [25]). Thus, we have analytically proven an earlier numerical finding in
Ref. [26] that the topological phase of JW fermions corresponds to the single-boson
long-range order, while the trivial phase corresponds to short-range order; both
phases clearly have long-range order in the pair-boson correlator. We then choose
our initial state to be in the regime of the weak-coupling (topological) phase of the
JW fermions, which hence has non-vanishing long-range order (BEC) in terms of
the original bosons.

After specifying the suitable initial state, we can now discuss the dynamics. Fig-
ure 2.10 shows R(`, t) calculated for various separations ` in a system with total
length L = 400. We are interested in the regime where t � `/v, where v is some
characteristic velocity for the information spreading. We unambiguously see that
R(`, t) shows an exponential decay over some time interval that increases with in-
creasing separation `. This behavior corresponds to the exponential decay of 〈Σ j(t)〉
with time, as claimed earlier for the BEC order.

On the other hand, we can also consider 〈Σ j(t)Σ j+1(t)〉, which is similar to the pair-
boson observable we considered earlier that does not change the particle number
parity. In this case,

〈Σ j(t)Σ j+1(t)〉 = [BA]1,1 = 〈B1 A2〉

=
1
L

∑
k

[− cos θk + i sin θk cos(2εk t)] e−ik . (2.33)

At long time, this approaches a constant value given by 〈b†j (t)b j+1(t)〉 + c.c.. The
time-dependent part comes from 〈b†j (t)b

†
j+1(t)〉+c.c.; upon using the steepest descent

analysis, we find oscillations at frequencies 2εk=0/π with a power law envelope t−3/2,
similar to results in the previous subsection for the product BEC initial state. We
expect similar behaviors for any fixed ` at long times t � `/v: indeed, we expect
limt→∞〈b†j (t)b j+`(t)〉 = 〈b†j b j+`〉therm. ≡ Ctherm.(`) , 0, where Ctherm.(`) decays
exponentially with `. On the other hand, we expect limt→∞〈b†j (t)b

†
j+`(t)〉 = 0,

where the approach to zero has a power-law envelope ∼ t−3/2. These predictions
are based on our expectations that at long times local observables can be described
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Figure 2.10: (color online) Numerical results for R(`, t) obtained using the Pfaffian
method; the system size is L = 400, and we consider separations ` = 25, 50, 75, and
100. The initial state is the ground state of Eq. (2.25) with parameters ∆0 = 0.60
and µ0 = −1.60, corresponding to particle density ρ = 0.25. The parameters of
the dynamical Hamiltonian are chosen as Jeff = 1 and Weff = 5. We are primarily
interested in the regime t � `/v, where v is some information-spreading velocity.
In this regime, the observable exhibits exponential decay. The time interval over
which we see the exponential decay increases as the separation ` increases.

using a generalized Gibbs ensemble which is diagonal in the particle number, and
that for large t � `/v the physics of b†j (t)b

†
j+`(t) is that of a local pair-boson creation

operator.

We thus see significant care needed when using R(`, t) to extract the behavior of
the BEC order parameter 〈b†j (t)〉 using Eq. (2.27) which holds only for t � `/v.
In Fig. 2.10 we chose to show 〈Σ j(t)Σ j+`(t)〉 with Σ j = b†j + b j so that the regime
where the sites j and j + ` start to "feel each other" is manifest by approaching
a constant due to 〈b†j (t)b j+`(t)〉 + c.c. pieces as discussed above (if we only had
〈b†j (t)b

†
j+`(t)〉 + c.c. pieces, this time scale would manifest as a crossover from the

exponential to t−3/2 decay and would be more difficult to detect).
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Figure 2.11: R(`, t) as in Fig. 2.10 but for different average densities ρ obtained by
tuning µ0 and ∆0 according to Eq. (2.35) and Eq. (2.36) respectively. We show only
the largest separation ` = 100; the full system size is L = 400 and is sufficiently
large to reflect the thermodynamic limit in L. The values are normalized by the
initial value in order to bring out the decay rate, which clearly increases as the
density increases. Insets: inverse relaxation time τ−1 of the exponential decay and
the oscillation frequency ω as a function of density, obtained from fitting the data
in the main panel to form Ae−2t/τ cos2(ωt − α) + C. The circle symbols denote
the fitted values, while the solid lines denote the conjectured forms Eq. (2.23) and
Eq. (2.24) for τ−1 and ω respectively (see text for details).
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In order to study the density dependence of the decoherence time of the long-range
order and compare with the results in the previous subsection, it is tempting to tune
the parameters of |ψini, B〉, µ0 and ∆0, such that the density and the energy density
are equal to those in |ψini, A〉. In fact, when trying to achieve this, we found that
it is possible to make the JW fermion mode distribution 〈nk〉 identical in the two
initial states in the thermodynamic limit! The mode occupation number in |ψini, B〉
is given as 〈nk〉 = |vk |2, or

〈nk〉 =
1
2

(
1 − −2J0 cos(k) − µ0√

(2J0 cos(k) + µ0)2 + [2∆ sin(k)]2

)
. (2.34)

One can easily verify that if we take

µ0 = −2
√

J2
0 − ∆

2
0 (2.35)

and
∆0 = J0

2ρ(1 − ρ)
ρ2 + (1 − ρ)2

, (2.36)

the mode occupation number will become identical to Eq. (2.22). Here we assumed
ρ < 0.5, while for ρ > 0.5 we need to take the opposite sign for µ0 in Eq. (2.35).
In retrospect, by examining the JW fermion pair-function in real-space for the
topological superconductor with the condition Eq. (2.35), we can show that the
many-body wavefunction |ψini, B〉 in the boson representation exactly coincides with
that of the BEC state Eq. (2.14) when projected to any sector with fixed particle
number. The relative weights on the different number sectors do not coincide for
|ψini, A〉 and |ψini, B〉, but this is not important in the thermodynamic limit.

Figure 2.11 shows R(`, t)with ` = 100 and system size L = 400 for several different
densities ρ = 0.05 to ρ = 0.25, with µ0 and ∆0 chosen according to Eq. (2.35) and
Eq. (2.36). We use the formula Ae−2t/τ cos2(ωt − α) + C to fit our numerical data
hence obtaining the fitted lifetime τ and frequency ω. The left inset compares the
fitted inverse lifetime τ−1 denoted by circles and the conjectured inverse lifetime
based on Eq. (2.23) denoted by solid line. The agreement between the two is fairly
good and therefore supports our conjecture. The right inset compares the fitted
frequency (denoted as circles) and the conjectured frequency (solid line) based on
Eq. (2.24). The oscillation frequency also agrees with the conjecture quite well.

We hence see that the new choice of the initial state |ψini,B〉, equipped with Wick’s
theorem, enables us to calculate the evolution formuch larger system size (essentially
in the thermodynamic limit). We therefore further confirm the exponential decay of
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Figure 2.12: (color online) Evolution of Re[Φ(t)] for the initial state |ψini, A〉
and system size L = 20 and |Re[Φ(t)]| calculated from 1

2
√

R(`, t) for the initial
state |ψini, B〉 with separation ` = 100 and system size L = 400, both with density
ρ = 0.05. The dynamical Hamiltonian has Jeff = 0.44 and Weff = 4.52, chosen to
reproduce the spin-flip quasiparticle dispersion and gap Weff − 2Jeff = ∆E = 3.64 in
the original spin problem. The relaxation times obtained by fitting the exponential
decay regime as in Fig. 2.9 and Fig. 2.11 are τA ≈ 46.5 and τB ≈ 51.0 respectively.
This means that at time t = 18—the longest time simulated in the original spin
problem—the amplitude will be roughly 0.7 of the initial value.

the BEC order parameter and provide strong numerical evidence for our conjecture
of the density dependence of the inverse lifetime and frequency.

Application to the original spin problem
Returning to the original spin problem, in order to make more quantitative com-
parisons, Fig. 2.12 shows results for the initial states |ψini, A〉 and |ψini, B〉 evolving
under the hard-core boson Hamiltonian with parameters Jeff = 0.44, Weff = 4.52,
and density ρ = 0.05. These are chosen to be close to the parameters of the spin-flip
quasiparticles of the original spin problem, cf. Sec. 2.2. By fitting the exponential
decay regime, we obtain the decoherence time τA ≈ 46.5 and τB ≈ 51.0, respec-
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tively, which are close to an estimate from Eq. (2.23) that gives τ ≈ 54.7 for these
Jeff and ρ. The long lifetime is due to the low density of the quasiparticles (due to
low energy density in the initial state), and is the primary reason of the apparent
persistent oscillation in the original spin problem. We see that up to time t = 18
simulated in the original spin problem in Ref. [1], the amplitude of interest decays
to roughly 0.7 of the initial value. The exponential decay is not easily seen in this
time range, while it becomes more clear when one goes to longer times. The L = 20
ED results in Fig. 2.12 again show recurrence phenomenon starting from about
t ∼ 15 − 20, while the Pfaffian calculation results represent the thermodynamic
limit.

We remark that Fig. 2.1 hardly shows any decay while Fig. 2.12 shows some gradual
decay already for t ≤ 18. There could be several reasons for this. The decrease from
the initial value in Fig. 2.1 is actually significant, and it could be that the first few
oscillations happened to experience stronger decrease due to some microscopics,
which then masked the more systematic decay expected at long times. In this
respect we remind that the hard-core boson model studied in this section neglected
all interactions among the quasiparticles of the spin model other than their hard-core
exclusion, see Eq. (2.4) and discussion at the end of Sec. 2.2 (and we also remind that
the BEC is only an approximation to the initial state of the quasiparticles). While
we would expect that additional interactions generically help the thermalization,
we do not know the actual quantitative effect which can depend on details and
requires more studies. We also mention that in the truncated Schrieffer-Wolff
approach the observables also obtain components on the pair-boson-type operators
and hence will have additional power-law-decaying contributions in the hard-core
boson model (which should eventually also decay exponentially once integrability-
breaking interactions are included). All such unaccounted parts could have enough
effect up to t = 18 to make the oscillation appear more persistent, while they
eventually decay at longer times. We therefore propose that if one can simulate
the original spin problem to somewhat longer time, one will eventually observe the
decay of the oscillations.

In fact, the Supplemental Material of Ref. [1] also showed a study for parameter
g = −1.5, where the observables showed visible decays, which we believe can be
understood as due to the larger particle density and hence shorter decoherence time.
Our ED calculations give energy density in the |Z+〉 state over the ground state as
(〈Z+ |H |Z+〉 − E0)/L = 0.4581 and the quasiparticle gap as E1 − E0 = 3.2041,
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so the quasiparticle density in the ground state is roughly ρ ≈ 0.143. For this
density, Eq. (2.21) gives Jeffτ ≈ 3.935. From our ED data, we can also extract
the quasiparticle hopping amplitude Jeff ≈ 0.656. This gives us τ ≈ 6, which was
already accessible in the infinite-MPS study in Ref. [1], and our estimates of the
oscillation frequency and decay time are in rough agreement with this.

We note another lesson learned from the detailed study of the relaxation of the order
parameter in the hard-core boson model. While our original stipulation was that the
oscillation frequency is set by the quasiparticle gap, we now see that it is actually
a function of the quasiparticle density, see Eq. (2.24). We should indeed expect
this generically as the quasiparticle energy is strictly defined only in the limit of
vanishing energy density, while here the initial state has a finite energy density (e.g.,
quasiparticle energies can get renormalized by their residual interactions, etc.). In
this respect, the single-boson observable shows more generic behavior even in the
integrable hard-core boson model, in contrast to the pair-boson observable whose
oscillation frequencies are independent of the density. In any case, the original spin
model at g = −1.05 is at sufficiently low energy density that the oscillation frequency
is very close to the quasiparticle gap, and we did not worry about differentiating
between these in the previous sections.

While the above discussions are based on the hard-core boson hopping Hamiltonian,
H in Eq. (2.10), we now briefly consider effects of adding more generic interactions.
To understand these, we calculated the BEC order parameter Φ(t) and the pair-
boson correlation function Υ(t) evolving under (a) Hnn = H +Wnn

∑
j n jn j+1; (b)

Hnnn = Hnn +Wnnn
∑

j n jn j+2; and (c) Heff from Eq. (2.4) upon dropping Hother. In
each case, the initial state is |ψini,A〉.

Plots Fig. 2.13 (a)-(c) show the corresponding Φ(t) and Υ(t) results for system size
L = 14 and particle density ρ = 0.05, which is close to the original spin model. On
the other hand, plots in Fig. 2.13 (d) showsΦ(t) andΥ(t) for ρ = 0.25 and system size
L = 20; this is far from the original spin model but allows us to reduce effects due
to low particle density and to focus instead on qualitative effects of interactions. We
find that the additional interaction terms do not change the qualitative exponential
decay behavior of Φ(t). This is less clear for low density, plots (a1)-(c1), but in
these cases, the effect of interactions are also quantitatively small, and we believe
the decays are still exponential at long time. On the other hand, the behavior of the
pair-boson correlation function Υ(t) changes qualitatively. The power-law decay of
Υ(t) in the hard-core boson hopping model is a consequence of the exact solution
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Figure 2.13: (color online) Comparison of the dynamics under the simplified
hard-core boson Hamiltonian H in Eq. (2.10) and under various Hamiltonians with
different additional interactions. The initial state is |ψini,A〉. (a)-(c) BEC order
parameter (left panels) and pair boson correlation function (right panels) for density
ρ = 0.05 and system size L = 14. The parameters of Heff are obtained from second-
order SW for the original spin model, and similar parameters are also used in H,
Hnn, Hnnn: Jeff = 0.88, Weff = 3.68, Wnn = −0.47, and Wnnn = 2.35 (in units of
J). The additional interactions basically introduce a small amplitude oscillation in
Φ(t). For the pair boson correlation function, the decay behavior and the oscillation
frequencies are affectedmore strongly (see text for details). (d) BEC order parameter
Φ(t) and pair-boson correlation function Υ(t) for density ρ = 0.25, system size
L = 20 and parameters Jeff = 1.0, Weff = 1.0, Wnn = −0.5, and Wnnn = 1.5 (the
results for H are identical as in Fig. 2.6 and 2.7). The additional interaction of the
JW fermions in Hnn changes the decay in Υ(t) to be faster than the previous power
law.
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in terms of the non-interacting JW fermions. From Fig. 2.13 (d2), it appears that
as we turn on the interaction of the fermions, the power-law decay behavior is
destroyed. The addtional interaction in Hnn turns Υ(t) into a faster decay; under
Hnnn, the behavior ofΥ(t) is not clear and needs more study. While we would expect
exponential decay for generic interactions, this appears to be also true for Hnn which
is still integrable; we speculate this is because the true excitations are no longer JW
fermions.

Finally, we note that for Heff, the behavior of Υ(t) is somewhat special. The reason
is that localized bound states of two spin-flip quasiparticles (i.e., two consecutive
spin-downs in the background of spin-ups) happen to be exact eigenstates of Heff,
since the correlated hopping terms just annihilate these states. Therefore, these
bound states are immobile in Heff, which can be detected by b†j b

†
j+1. As a result,

the pair-boson correlation function oscillates without decay, which is an artifact of
this second-order truncated-SW Hamiltonian. However, if we introduce dynam-
ics for these bound states, for example, considering SW transformation to higher
order, we expect the oscillations to damp. The physics of such bound states also
manifests itself in short-time enhancement of pair-boson correlations in Hnn and
Hnnn, plots Fig. 2.13 (a2)-(b2), although in these cases the hopping terms in the
Hamiltonians do move the bound states, and we expect exponential decays on long
time, similar to Fig. 2.13 (d2). Clearly, one has to consider short-distance physics
details to understand these results in the pair-boson correlation function quantita-
tively. Nevertheless, as far as observables discussed in the original spin model, since
the pair-boson contributions are sub-dominant to the single-boson contributions, we
expect the exponential decay behavior is robust under adding interactions to the
simplified hard-core boson hopping Hamiltonian.

2.4 A quick study of “non-thermalizing" initial state |X+〉
In the same spin model, Ref. [1] also found apparent “non-thermalizing" behavior
for the initial state |X+〉. This case shows much smaller oscillations than the weak
thermalization case, but apparently observables approach non-thermal values at
the longest simulation times. While we do not have as clear picture of this case
compared to the weak thermalization case, we will briefly discuss how far similar
physical reasoning can take us in the non-thermalizing case.

First of all, the initial state |X+〉 lands close to the top of the spectrum of the
original Hamiltonian, Eq. (2.1). Equivalently, it is close to the ground state of the
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Hamiltonian H̃ = −H; this is the language we adopt since we are more used to
thinking about ground states and low-energy excitations. Here, we can develop a
perturbative treatment starting with J, h � |g |, where the ground state is guaranteed
to be close to |X+〉. Such a perturbative treatment is, in fact, fairly reasonable for the
parameters of interest J = 1, h = 0.5, g = −1.05: indeed, h is smaller than g, while
for states with aligned spins the +Jσz

jσ
z
j+1 terms in H̃ are frustrated. We find that

the |X+〉 state has weight |〈Ẽ0 |X+〉|2 ≈ 23% on the ground state of H̃ for L = 18,
which is smaller than in the weak thermalization case but is still a large weight.
The average energy density in the initial state is 〈X+ |H̃ |X+〉/L − Ẽ0/L ≈ 0.28 is
somewhat larger than in the weak thermalization case.

In the perturbative picture, low-energy excitations are spins oriented in the −x̂

direction (i.e., flipped compared to the ground state |X+〉), with dispersion at leading
order εk = 2|g | + 2J cos(k). The bottom of the quasiparticle band now lies at k = π

and can be quite close to the ground state, since εk=π = 2|g | − 2J becomes small
for J approaching |g |. Our ED results indeed show a fairly small gap at k = π; the
gap is likely smaller than 0.35 in the thermodynamic limit and has strong even-odd
effect on L coinciding with whether the mesh of k-points contains π or not. This gap
is an order of magnitude smaller than the quasiparticle gap of interest in the weak
thermalization case. Of relevance to the study of translationally invariant initial
states, the gap to the lowest excitation with momentum k = 0 is larger. This gap also
has strong even-odd effect on L and is likely smaller than 1.0, which is almost four
times smaller than in the weak thermalization case. The lowest k = 0 excitation is
likely a composite of two quasiparticles near the bottom of the band at momentum
π, i.e., it is not simply a single spin-flip of the band εk = 2|g | + 2J cos(k) at k = 0.
Finally, the apparent velocity for the propagation of quantum correlations is two or
more times larger than in the weak thermalization case, as judged from the observed
much shorter recurrence times in our finite systems.

All of the above points to a more complex picture in terms of quasiparticles, which
are likely moving faster but are also less sharp due to smaller gap and stronger
mixing with multi-particle states. Hence, our intuition is that the system should
relax faster, which is indeed observed in Ref. [1]. However, we would also naively
conclude that the system will approach the "thermalized" state, contrary to what
is observed in Ref. [1] on the accessible simulation times. It is possible that the
thermalization does eventually happen, but the combined effects of the smallness
of the gap and frustrating interactions produce a complex behavior on intermediate
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time scales. At the same time, the quantum correlations spread more quickly, which
limits the accessible simulation times before entanglement increases too much in
the infinite-MPS study. A very interesting possibility would be if this system does
not thermalize in the conventional sense because of some emergent integral of
motion, perhaps of the kind discussed in Refs. [17, 18] and in our discussion of
the truncated SW picture earlier. Alternatively, it could be that it thermalizes very
slowly because of an approximate integral of motion. Since we are unable to provide
a more controlled understanding of the non-thermalizing behavior, we leave this as
an interesting open problem.

2.5 Conclusions
We studied the origin and eventual fate of strong oscillations in specific quantum
quenches in the non-integrable spin model, where the initial state has low energy
density relative to the ground state. By extrapolating our finite-size ED calculations,
we were able to interpret the oscillation frequency as the quasiparticle creation
energy. We further used SW transformation to derive the effective Hamiltonian to
have a better description of the quasiparticles at finite density. The time evolution
problem can be viewed as a quench from a dilute BEC state to an interacting hard-
core boson Hamiltonian. The oscillation signal mainly comes from the observables
changing the particle number by one.

Inspired by the finite-size EDand perturbative SWcalculations, we further simplified
the problem by considering two specific BEC initial states and the hard-core boson
Hamiltonian with hopping only. This problem is interesting on its own even without
the context of the spin problem we discussed. We considered first the initial state
as a simple product state analogous to the boson coherent state but under hard-core
constraint. The other initial state was prepared as a topological superconductor in
the Jordan-Wigner fermionic representation, which we argued has long range order
in the bosonic representation and is qualitatively in the same BEC phase as the first
state. Furthermore, Wick’s theorem is valid for this state, allowing us to obtain
results for much larger systems and longer times via the Pfaffian method.

Incidentally, we discovered that under the condition Eq. (2.35), the topological
superconductor wave function, when written in terms of bosons and projected into
a sector with a fixed particle number, has amplitudes independent of the positions
of the particles, thus becoming the initial BEC state studied in Refs. [10] and [11].
Since the restriction to fixed particle number is not important in the thermodynamic
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limit, in principle, one can study essentially the same quench problems but with the
advantage of Wick’s theorem. The bosonic two-point correlation function hence
reduces to an evaluation of a block Toeplitz determinant with 2 × 2 blocks. Such
block Toeplitz determinants are not as well studied, and we have not been able
to obtain an analytical expression in our case (e.g., some of the calculation tricks
in Ref. [6] were not directly applicable to our problem). Finding such a compact
expression for the correlation functions remains an interesting outstanding problem.

Our numerical calculations strongly suggest that the BEC order parameter 〈b†j (t)〉
decays exponentially with time. Both the decay rate and the oscillation frequency
depend on the boson density. We believe that the exponential decay originates from
the non-local nature of the boson creation operator in terms of the JW fermions.
The non-locality of the operator excites quasiparticles at all momenta, whose in-
terferences produce the exponential decay. Using analogy with quenches from the
ferromagnetic state in the quantum Ising chain [6, 8], we conjectured the inverse
lifetime as Eq. (2.21), and hence obtained explicit density dependence of the life-
time. We also conjectured that the oscillation frequency depends on the density as
Eq. (2.24). On the other hand, the pair-boson observable 〈b†j (t)b

†
j+1(t)〉 also has

oscillations but with a t−3/2 power-law decay, and the oscillation frequencies and
power-law decay behavior are independent of the density in the initial state.

As an open problem for quenches from the BEC state, it will be interesting to study
the validity of our conjectures for the decoherence time and oscillation frequency
in the specific hard-core boson hopping model. Our calculation of the different
decaying behaviors for single- and pair-boson observables can in principle be dis-
tinguished and verified in cold atom experiments such as the setting in Ref. [9], with
non-zero hopping and much stronger on-site interaction. It will also be interesting to
add integrability-preserving and integrability-breaking interactions to the hard-core
boson hopping model and study how these affect the described behaviors.

Returning to the original spin system exhibiting weak thermalization, we made
several approximations and simplifications when mapping this to the BEC quench
problem. In particular, we implicitly introduced an additional conserved quantity in
our SW treatment by dropping Hother terms that connect different sectors. Specifi-
cally, our truncated-SW Hamiltonian conserves the sector identity, or equivalently
the total quasiparticle number. An interesting possibility would be that such suc-
cessive SW transformations developed to higher orders converge, implying true
emergence of such integrals of motions in the translationally invariant system, in
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the spirit of Refs. [17, 18]. One can also view this SW transformation as a kind
of renormalization, which pushes the effect of changing the excitation numbers to
lower energy in the effective Hamiltonian, but at the expense of making the original
observables more complex. However, at present we do not know how to address
this interesting possibility in thermodynamically large systems.

Fairly conservatively, we would expect that the dropped terms in the Hamiltonian
would lead to improved thermalization, in the sense that the system is more generic
and likely to thermalize at long times. Since even without those dropped terms
and with the simplified initial state structure, we showed that the oscillation signal
still decays, we expect in the full problem the oscillations will decay in the long
time limit. Nevertheless, the decay becomes slower as we decrease the quasiparticle
density and can be particularly slow at small density. Therefore, we boldly conclude
that the oscillation will decay eventually in the weak thermalization regime, and the
apparently persistent oscillation is due to its slow decay rate as a result of the low
density of the quasiparticles.

We would also like to mention a puzzling problem regarding the |X−〉 initial state
studied in Ref. [3], which also shows the persistent oscillation behavior up to time
t = 20. This state is also on the lower end of the spectrum, butwith three times higher
energy density than the |Z+〉 state. Our naive estimation using the hard-core boson
hopping model would give us a much shorter decoherence time disagreeing with
the infinite-MPS simulation. We suspect that to get a more quantitative agreement,
we need to incorporate further details about the quasiparticle interactions, such as
those discussed at the end of Sec. 2.2. We will leave this for the future work.

Appendix A: Local Schrieffer-Wolf Transformation
We consider H0, Eq. (2.2), as our basic solvable Hamiltonian and treat T , Eq. (2.3),
as our perturbation. The latter can be decomposed as

T = T1,2 + T−1,−2 + T1,0 + T−1,0 + T1,−2 + T−1,2 , (2.37)
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with

T1,2 = −g
∑

j

P↑j−1σ
−
j P↑j+1 ,

T−1,−2 = −g
∑

j

P↑j−1σ
+
j P↑j+1 ,

T1,0 = −g
∑

j

(
P↑j−1σ

−
j P↓j+1 + P↓j−1σ

−
j P↑j+1

)
,

T−1,0 = −g
∑

j

(
P↑j−1σ

+
j P↓j+1 + P↓j−1σ

+
j P↑j+1

)
,

T1,−2 = −g
∑

j

P↓j−1σ
−
j P↓j+1 ,

T−1,2 = −g
∑

j

P↓j−1σ
+
j P↓j+1 .

Each Tm,n satisfies [H0,Tm,n] = 2(mh + nJ)Tm,n and works like a generalized ladder
operator on the energy levels of H0. Furthermore, T−m,−n = T†m,n.

We develop a perturbative local Schieffer-Wolff approach following Ref. [15]. Con-
sider a unitary transformation eiS with the generator

iS = iS[1] + iS[2] + . . . , (2.38)

where iS[k] is of order O(gk). We can expand the rotated Hamiltonian as

H′ ≡ eiSHe−iS = H0 + T + [iS[1],H0]

+ [iS[1],T] + [iS2,H0] +
1
2
[iS[1], [iS[1],H0]] +O(g3) .

The generators iS[k] are chosen order by order so as to eliminate the excitation-
number-changing part of the previous order. Specifically, we choose iS[1] such
that

T + [iS[1],H0] = 0 , (2.39)

with the solution

iS[1] =
T1,2 − T−1,−2

2h + 4J
+

T1,0 − T−1,0

2h
+

T1,−2 − T−1,2

2h − 4J
. (2.40)

To this order,
H′ = H0 +

1
2
[iS[1],T] + [iS[2],H0] +O(g3) , (2.41)

where the second term contains both excitation-number-preserving terms (i.e.,
sector-diagonal terms) and excitation-number-changing terms (i.e., sector-off-diagonal
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terms), now in second order. To eliminate the excitation-number-changing-terms to
this order, we choose iS[2] such that(

1
2
[iS[1],T]

)
sector-off-diag

+ [iS[2],H0] = 0 , (2.42)

giving us

H′ = H0 +

(
1
2
[iS[1],T]

)
sector-diag

+O(g3) . (2.43)

This is the Hamiltonian quoted in the main text, Eq. (2.4), with Hother containing
terms of order O(g3).

While we do not need explicit iS[2] to determine the effective Hamiltonian to this
order, we do use it when rotating the operators and the initial state in Sec. 2.2 in
calculations leading to Fig. 2.4. Hence we quote the solution to Eq. (2.42):

iS[2] =
(

1
4h
− 1

8J − 4h

) [T1,0,T−1,2] − H.c.
4J

+

(
1

8J − 4h
+

1
4h

) [T1,−2,T1,0] − H.c.
4J − 4h

+

(
1

4h
− 1

8J + 4h

) [T1,0,T1,2] − H.c.
4J + 4h

+

(
1

4h
+

1
8J + 4h

) [T−1,−2,T1,0] − H.c.
4J

+

(
1

8J − 4h
− 1

8J + 4h

) [T−1,2,T1,2] − H.c.
8J

+

(
1

8J + 4h
+

1
8J − 4h

) [T−1,−2,T−1,2] − H.c.
4h

. (2.44)

While in principle we can continue to obtain higher order effective Hamiltonians,
the form of the previous order will not be changed. Note that in the main text, for
the purpose of demonstrating the SW picture, we used the perturbatively truncated
H′, while we rotated the operators and the initial state using exp(iS[1] + iS[2]) (i.e.,
without further expansion of the exponential). This was actually easier to implement
and also guarantees that the operators and initial state are rotated by a unitary andwill
agree with perturbative treatment to this order (when studying dynamics, this also
assumes appropriately small elapsed time). We did not use exact unitary rotation
of the Hamiltonian since then the rotated problem would be unitarily equivalent
to the original problem, with no new information. We expect that using truncated
Hamiltonian, which in addition conserves excitation number, should make it only
more difficult to thermalize, and we indeed do not observe any faster thermalization.
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For completeness, we also present below the effective observables to first order, even
though we did not explicitly use them in the main text. To obtain the observables
in the rotated picture, we use the formula Ô′ = eiSÔe−iS = Ô + [iS[1], Ô] + O(g2).
With Ô = σx

j , σ
y
j and, σz

j , we have

(σx
j )
′ ≈ σx

j +
g

2h
(σz

j−2σ
y
j−1σ

y
j + σ

y
j σ

y
j+1σ

z
j+2 + 2P↑j−1σ

z
j P↓j+1 + 2P↓j−1σ

z
j P↑j+1)

− g

4J − 2h
(P↓j−2σ

y
j−1σ

y
j + σ

y
j σ

y
j+1P↓j+2 + 2P↓j−1σ

z
j p↓j+1)

+
g

4J + 2h
(P↑j−2σ

y
j−1σ

y
j + σ

y
j σ

y
j+1P↑j+2 − 2P↑j−1σ

z
j P↑j+1) (2.45)

(σy
j )
′ ≈ σ

y
j −

g

2h
(σz

j−2σ
y
j−1σ

x
j + σ

x
j σ

y
j+1σ

z
j+2)

+
g

4J − 2h
(P↓j−2σ

y
j−1σ

x
j + σ

x
j σ

y
j+1P↓j+2) (2.46)

− g

4J + 2h
(P↑j−2σ

y
j−1σ

x
j + σ

y
j+1P↑j+2) ,

and (σz
j )
′ as in Eq. (2.9).

Appendix B: Calculation of 〈b†j (t)b
†
j+1(t)〉, Eq. (2.19).

In this Appendix, we present details of the calculation of Υ(t) ≡ 〈b†j (t)b
†
j+1(t)〉

for the initial product BEC state. We first obtain a closed-form expression for the
observable in a finite system of length L and then derive the thermodynamic limit
Eq. (2.19). Since the Jordan-Wigner fermions have different boundary conditions
in the even- and odd-number-parity sectors, when calculating the time evolution we
split

Υ(t) = Υeven(t) + Υodd(t) , (2.47)

Υeven (odd)(t) ≡ 〈Peven (odd)b
†
j (t)b

†
j+1(t)Peven (odd)〉 ,

(2.48)

where Peven (odd) is the projector to the even- (odd-)number-parity sector.

We can use translational invariance to consider instead 〈∑ j b†j (t)b
†
j+1(t)〉/L. Keep-
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ing in mind implicit surrounding sector projectors, we can express

1
L

∑
j

b†j (t)b
†
j+1(t) =

1
L

∑
k

c†kc†−k eik ei2εk t (2.49)

=
1
L2

∑
k

eik ei2εk t
∑
j, j ′

c†j c†j ′e
ik( j− j ′) (2.50)

=
2
L2

∑
k

sin(k)ei2εk t
∑
j< j ′

sin[k( j′ − j)]c†j c†j ′ , (2.51)

where momenta k should be taken appropriately for each number-parity sector. We
also used ε−k = εk and kept only the surviving total even part in k in the last line.

Restoring the sector projectors, we now need to evaluate 〈Peven (odd)c
†
j c†j ′Peven (odd)〉

in the initial product BEC state Eq. (2.14). We can express the projectors as
Peven (odd) = (1 ± eiπNtot)/2. Writing the fermionic operators in terms of the bosonic
operators gives c†j c†j ′ = b†j

(∏ j ′−1
s= j+1 eiπns

)
b†j ′, where we assumed j < j′. We can

easily evaluate expectation values in the product BEC state and obtain

〈Peven (odd)c
†
j c†j ′Peven (odd)〉= (β∗α)2

η j ′− j−1 ± ηL−( j ′− j+1)

2
,

where we defined η ≡ 〈eiπns〉 = |α |2 − |β |2.

When calculating the expectation value of Eq. (2.51), the summation over j < j′

actually contains only a function of j′ − j. For each separation ` = j′ − j, there are
L − ` identical terms to be summed. Therefore, we now need to calculate

L−1∑̀
=1
(L − `) sin(k`)(η`−1 ± ηL−`−1)

= ±
L−1∑
s=1

s sin(ks)(ηL−s−1 ± ηs−1)

=

L−1∑
s=1

Im
[
seiks(±ηL−s−1 + ηs−1)

]
, (2.52)

where in the second line we changed the summation variable to s ≡ L − ` and also
used that kL = 2πm + π or kL = 2πm, m ∈ Z, in the even- or odd-parity sectors
respectively (upper and lower signs respectively).

The summation can be done exactly using the formula

L−1∑
s=1

sas = a
∂

∂a

L−1∑
s=1

as =
a(1 − aL)
(1 − a)2

− LaL

1 − a
, (2.53)



60

applying it with a = eikη−1 and a = eikη for the first and second parts respectively.
Putting everything together, we find

Υeven (odd)(t) = (β∗α)2
1
L2

∑
k

sin(k)ei2εk t

Im
[
eik(1 ± ηL)
(η − eik)2

+
L

η − eik +
eik(1 ± ηL)
(1 − eikη)2

± LηL−1

1 − eikη

]
,

where we again used eikL = ∓ in the even (odd) sectors respectively. The finite-
site result can be easily summed numerically at this point for any L, which is how
we obtained the corresponding data in the main text. We can also easily take the
thermodynamic limit, remembering that |η | < 1. In particular, we see that in
the thermodynamic limit, the contributions from the even- and odd-number-parity
sectors are the same, and we obtain Eq. (2.19) in the main text.
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C h a p t e r 3

PRETHERMALIZATION

Prethermalization refers to a system equilibrates to a state which is described by
a Gibbs ensemble controlled by some effective Hamiltonian (instead of the orig-
inal Hamiltonian) at some intermediate time, and truly thermalizes only at much
later time. Prethermalization has been observed and studied in many different sys-
tems. In particular, various works showed that systems with weak integrability
breaking exhibit this phenomenon [1–3]. In addition, prethermalization has been
shown rigorously to exist in periodically driven many-body systems under strong
driving frequencies using the Floquet-Magnus expansion [4, 5] and renormalization
technique [6, 7]. The latter also applies to time-independent many-body systems,
and in particular can be used to prove rigorously the presence of exponentially
long relaxation times of “particles” such as doublons in the Hubbard model in the
strong coupling limit [8–10]. There are also very recent proposals utilizing the
prethermalization to protect the edge modes in the topological superconductor [11,
12].

In fact, we can view most of the aforementioned prethermalization systems as
having quantities with hierarchically different thermalization time scales or having
different rates of dynamics. Upon time evolution, the fast degrees of freedom relax
very quickly, while the slow degrees of freedom evolve slowly during this initial
period. This results in the apparent prethermalization stage, where the slow degrees
of freedom appear to be frozen. These quantities with slow dynamics can be viewed
as quasi-conserved [13, 14]. Emergence of such a quasi-conserved quantity is what
accounts for the prethermalization stage. If such a quantity could develop an exact
conservation law, this would extend the prethermalization to infinitely long time and
would correspond to partial breakdown of the ETH, as envisioned, e.g., in Refs. [15,
16].

Motivated by this point of view, in this paper we numerically systematically search
for such hidden quasi-conserved quantities which cannot be directly identified from
the Hamiltonian itself. Following the “slowest operator formalism” introduced
in Ref. [17], we numerically construct the quasi-conserved local operator for the
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non-integrable spin model

H =
∞∑

j=−∞

(
JZ j Z j+1 + hZ j + gX j

)
, (3.1)

where X j ,Yj , and Z j denote Pauli matrices operating on site j of the one-dimensional
chain. We constrain our slowest operator to be translationally invariant and repre-
sented as a sum of local terms. We find that, in the large g limit, there exists a
quasi-conserved operator whose thermalization time scale increases exponentially
as one increases its maximum range up to some point. Furthermore, the operator
can be understood as a dressed “total spin-z operator” (for appropriately chosen
spin axes). This operator has a very slow dynamics compared to other quantities.
We also simulate the dynamics of the quantum spin chain following a quench and
confirm that this quasi-conserved quantity has a non-trivial effect. Specifically, at
intermediate times, the system equilibrates to a state which can be described by a
generalized Gibbs ensemble (GGE) that includes such a quantity as an “integral of
motion.” While our study cannot reach infinite maximum range, we find that the
rate of decrease of the slowest operator with the maximum range becomes weaker
beyond some point and starts resembling behavior observed in regimes of good
thermalization. A conservative interpretation of this behavior is that our system
shows only prethermalization with very long time scale. Nevertheless, the available
data does not rule out a more exotic possibility that the slowest operator converges
and becomes exactly conserved in the thermodynamic limit, which would indicate
breakdown of the ETH.

3.1 Method of the slowest operator
Our motivation is to numerically search for the operator that “best-commutes” with
theHamiltonian. We focus on translationally-invariantHermitian operators obtained
as sums of local terms and adopt the formalism of Ref. [17]. We restate this approach
as a problem in the operator Hilbert space as follows.

We consider traceless, and translationally-invariant operators with maximum range
M ,

Q(M) =
∞∑

j=−∞
q(M)j , (3.2)

where q(M)j is an operator with support on a region extending from site j to site
j +M − 1. We denote the space of traceless translationally-invariant operators with
maximum range M as TM . The operator space TM is a vector space, as one can
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easily verify. A natural basis for q(M)j is provided by “Pauli string operators,” i.e.,
operators of the form

∏ j+M−1
k= j Ak where Ak can be I, X , Y , or Z acting on site

k, and Ak are independent for different k. However, there is a “gauge degree of
freedom” for the representation of q(M)j . For instance, we can write H =

∑
j q j ∈ T2

using q j = JZ j Z j+1 + hZ j I j+1 + gX j I j+1 or q j = JZ j Z j+1 + hI j Z j+1 + gI j X j+1,
etc. We fix the gauge by requiring the operator Ak on the first site, k = j, to
be non-identity in every Pauli string basis vector, i.e., A j can only be X , Y , or Z ,
while Ak> j can be I, X , Y , or Z . This also automatically satisfies the tracelessness
condition. TheHermiticity condition of an operator just corresponds to the condition
of real coefficients in this basis. It is now easy to see that the dimension of TM is
dim(TM) = 3 · 4M−1.

We define the Frobenius inner product (also know as Hilbert-Schmidt inner product)
on the operator space TM as

〈Q,Q′〉 =
Tr[q†j q′j]
Tr[I⊗M] , (3.3)

where q j, q′j are understood in the above gauge acting on M sites only and I⊗M is the
identity operator also acting on M sites. One can easily see that the aforementioned
Pauli-string operators are advantageous as they form an orthonormal basis under
this inner product. The above inner product defines the norm ‖Q‖F ≡

√
〈Q,Q〉,

which we can view as an “intensive Frobenius norm” (see below). For example,
‖H‖F =

√
J2 + g2 + h2. Note that instead of the conventional definition of the

operator inner product, here we only take the local piece q j in the trace calculation
after the gauge fixing. This definition has the advantage that the norm is “intensive,”
compared to the conventional definition of Frobenius norm that would increase with
the system size. In fact, if we consider a chain of length L with periodic boundary
conditions and operators Q(M) = ∑L

j=1 q j (assuming M < L), we can easily verify
that the above inner product is simply appropriately scaled conventional Frobenius
inner product:

〈Q,Q′〉 = Tr[Q†Q′]/(L Tr[I⊗L]) . (3.4)

In other words, Eq. (3.3) is obtained from Eq. (3.4) when applied to this “gauge-
fixing” writing of the translationally-invariant operators. If one does not use the
gauge-fixing, one should use Eq. (3.4) to calculate the inner product. In what
follows, we will always use only the intensive Frobenius norm, often dropping the
descriptor “intensive” for brevity.
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A natural embedding TM ⊂ TN for M < N is obtained by the tensor product
with the identities, q(N)j = q(M)j ⊗ I j+M ⊗ · · · ⊗ I j+N−1, where

∑
j q(M)j ∈ TM and∑

j q(N)j ∈ TN . We will not emphasize the difference between
∑

j q(M)j and
∑

j q(N)j ,
since it only depends on what operator space one is considering, while the inner
product in Eq. (3.3) is independent of the embedding. We can further consider the
norm closure

⋃
M∈N TM , which is a mathematically well-defined Hilbert space.

The commutator with a fixed operator can be viewed as a linear map between the
operator spaces. We define the superoperator

adA(O) ≡ [A,O] . (3.5)

Clearly, adH is a linear map from the operator space TM to space TM+1, since H ∈ T2.
In fact, for any operator A ∈ Tr and O ∈ Ts, we have adA(O) ∈ Tr+s−1. Using the
Pauli string basis, we can write down the matrix representation B for adH , which in
general will be a 3 · 4M × 3 · 4M−1 matrix. We want to find an operator in TM that
“best commutes” with the Hamiltonian, which we define as minimizing the residual
norm ‖adH(Q(M))‖F under the constraint ‖Q(M)‖F = 1. This corresponds to finding
the smallest singular value σ0 of B, or the smallest eigenvalue λ0 of C ≡ B†B, where
λ0 = σ

2
0 . The corresponding eigenoperator is the sought-for slowest operator; we

will denote this operator as Q(M)0 and the corresponding eigenvalue as λ0(M), which
will be the squared residual norm of the slowest operator. To avoid the trivial zero-
eigenvalue solution given by the Hamiltonian itself, we add λh |H〉〈H | to C, with
large enough λh such that the slowest operator is nontrivial. Thus found operator
Q(M)0 is orthogonal to H in the Frobenius inner product.

Note that in the I-X-Y -Z Pauli-string basis, C is always a symmetric matrix with real
coefficients. This guarantees the eigenvalues to be real, and the eigenvectors can be
chosen with real amplitudes in the I-X-Y -Z Pauli-string basis. This means that the
slowest operator Q(M)0 can always be chosen to be Hermitian. In other words, we fix
the overall phase of the eigenoperator by requiring the Hermicity of the operator, up
to a minus sign.

We can argue that this defines a procedure to find a translationally invariant (quasi)-
local conserved quantity in the thermodynamic limit. Indeed, consider the limit
λ0(∞) = limM→∞ λ0(M). Since λ0(M) is a decreasing function of M bounded from

below by 0, λ0(∞) exists. If λ0(∞) = 0 and limM→∞
Q(M)0

‖Q(M)0 ‖F
exists, then we have

a normalizable operator [hence quasilocal or local if λ0(M) = 0 for some finite
M already] which commutes with the Hamiltonian. If such (quasi)local conserved
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quantity does exist, a suitable thermal equilibrium description should include this
quantity in the GGE. On the other hand, even though an arbitrary linear combination
of eigenstate projectors Â =

∑
E aE |E〉〈E | commutes with the Hamiltonian, Â can

be non-normalizable under our definition of the Frobenius norm. It is therefore not
guaranteed that λ0(∞) = 0. Furthermore, even if λ0(∞) = 0, we cannot guarantee

that the limit limM→∞
Q(M)0

‖Q(M)0 ‖F
exists. In practice, one can only find QM

0 with M

finite, but we can try to explore these questions by studying behaviors for increasing
M .

Simplifications due to symmetries
The size of the matrix C can be further reduced by using time-reversal and parity
symmetries. The time-reversal operationUT corresponds to the complex conjugation
in the Z basis; this maps Yj → U−1

T YjUT = −Yj , while leaving the other Pauli
operators unchanged. Therefore, the time-reversal-even (-odd) sector corresponds
to even (odd) number of Pauli Y operators in the Pauli string basis respectively.

The matrixC can be further simplified by utilizing the parity (i.e., mirror) symmetry
with respect to the origin. To illustrate how the parity operation UP acts on the I-
X-Y -Z Pauli-string basis, we consider an example of S =

∑
j X jYj+1Z j+2I j+3 ∈ T4.

Upon parity operation, S′ = U−1
P SUP =

∑
j X−jY−j−1Z−j−2 =

∑
j Z jYj+1X j+2, where in

the last equality we gauge-fixed the writing of S′. We see that the parity operation
UP acts on the operators in TM by reversing the order of operators in each of
the Pauli-string basis vector and gauge-fixing the expression. More specifically,
if S =

∑
j σ

µ1
j · · ·σ

µr0
j+r0−1I j+r0 · · · I j+r−1 ∈ Tr , where σµ1

j and σµr0
j+r0−1 can only be

X , Y , or Z , then U−1
P SUP =

∑
j σ

µr0
j σ

µr0−1
j+1 · · ·σ

µ1
j+r0−1I j+r0 · · · Ir−1 ∈ Tr . We can

therefore easily form the parity-even and -odd subspaces by forming O ±U−1
P OUP

basis vectors.

Algorithm
For small maximum range M ≤ 8, we exactly diagonalize the matrix C to find
the lowest eigenvalue and the slowest operator. For larger maximum range M ≥
9, iterative methods are preferred since one can construct C as a sparse matrix.
While Lanczos method is one of the standard iterative algorithms to find the lowest
eigenpair, the smallness of the relevant eigenvalues in the large g regime makes
the convergence extremely slow. Fortunately, the positive-definite character of the
matrixC enables us to adapt a conjugate-gradient-based algorithm. Here, we use the
“locally optimal block preconditioned conjugate gradient method” from Ref. [18]
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Figure 3.1: (color online) Behavior of the squared residual norm λ0(M) (in units
of J2) vs maximum range M on (a) log-log plot and (b) semi-log plot, for model
parameters J = 1.0, h = 1.5, and varying g. For small g, λ0(M) decays as power-
law in M . For large g, it first decays exponentially as one increases M , and then
turns into a slower trend at larger M . Panel (b) shows additional data from the
Schrieffer-Wolff construction of quasi-conserved quantity (see Sec. 3.3 for details),
which can be viewed as a variational bound. The residual norm µn from the SW
construction of order n, which corresponds to M = n+1 maximum range, shows a
classic asymptotic expansion behavior for the smaller g values, where it starts to
increase at large order. While this behavior is not manifest yet for the larger g values,
from the observed trends we suspect that µn will also start to increase eventually
beyond some order.

to find the lowest eigenpair.

3.2 Scaling of the squared residual norm
Figure 3.1 shows the M-dependence of the squared residual norm λ0(M) on a
log-log plot and a semilogrithmic plot. For small g, the dependence is roughly a
power law, which is consistent with the result in Ref. [17] in the regime where the
system has good ergodic behavior. On the other hand, for large g, λ0(M) first decays
exponentially with M but then turns into a slower decay at larger M . The exponential
decay was also observed in the case of such “slowest operator” construction in the
many-body localization [19]. This exponential behavior differentiates the speed of
the dynamics of this operator compared to other quantities. As one increases the
maximum range, one can optimize the residual norm exponentially better, which
also indicates longer thermalization time scale, since the residual norm is related
to the speed of the dynamics of the operator (see Sec. 3.2 below). We therefore
expect this quantity to be quasi-conserved, which can affect the thermalization of
the system.
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Interestingly, the exponential decay of λ0(M) for the slowest operator does not
continue to larger M . Instead, the decay trend seems to turn into a power law at
larger M . As discussed in the previous section, even though the scaling trend turns
into a slower decay at large M , one always gets an equal or smaller residual norm as

one increases M . If the residual norm goes to zero as M →∞ and limM→∞
Q(M)0

‖Q(M)0 ‖F
exists, then we would indeed obtain a conserved quasilocal operator. However, due
to limits on our numerical calculations, we cannot reach larger maximum range and
cannot be conclusive about the behavior of λ0(M) at large M . The eventual turn
to a slower decay (similar to behavior in the good ergodic regime g ≤ 2) may be
signaling that beyond some time the operator will thermalize. Hence, it may well
be that the observed behavior corresponds to a prethermalization phenomenon on
some intermediate time scales, where the time scale can be parametrically large.

Next-slowest operators
While the exponential scaling of the slowest operator for large g suggests that it is
quasi-conserved, one may wonder how many quasi-conserved quantities exist. To
answer this question, we further study the scaling of the squared residual norm λ(M)
of the first five slowest operators in the time-reversal and parity even (odd) sector,
denoted as “TePe” (“ToPo”) in Fig. 3.2. The operators in the “TePo” and “ToPe”
sectors have higher squared residual norms than the ones shown in the figure and
are hence less interesting and not included. Here we only show results that are
accessible using the exact diagonalization of the matrix C, or M ≤ 8.

Figure 3.2(a) shows the scaling of λ(M) for g = 1.0. Note that the slowest operator
in this case has a similar scaling trend compared to other operators. Therefore the
speed of the dynamics is not hierarchically slower than for other degrees of freedom.

On the other hand, in panels Figs. 3.2(b) and 3.2(c), the slowest operator clearly has
faster scaling than the next-slowest operators. This is another feature suggesting that
for large g, the speed of the dynamics of the slowest operator is hierarchically slower
than other operators, resulting in apparent freezing of its dynamics and hence the
prethermalization phenomenon. We conclude that in these particular cases, there
is only one quasi-conserved quantity. This differs from the proposal in Ref. [7]
that there may be two independent quasi-conserved quantities (excluding the energy
itself) in the strong coupling regime. We suspect that this difference comes from
our separation of operators into independent ones using the orthogonality in the
Frobenius inner product.
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Figure 3.2: Behavior of the squared residual norm λ(M) for the first five slowest
operators in the “TePe” and “ToPo” sectors. (a) For g = 1.0, the slowest operator in
the “TePe” sector shows similar dependence on M as the other nearby slow operators;
no particularly slow degrees of freedom exist in this case. On the other hand, in
panels (b) for g = 3.0 and (c) for g = 5.0, the slowest operator has exponential
dependence on M up to some range, while the other operators decrease more slowly
throughout, which suggests that the slowest operator has parametrically more slow
dynamics compared to other degrees of freedom.

Relation to operator norm and thermalization time scale
Minimizing the commutator [H,Q] with respect to the Frobenius norm is advanta-
geous because it can be relatively easily calculated numerically and is independent
of the system size. On the other hand, to relate the smallness of the commu-
tator to the dynamics, it is more appropriate to use the conventional operator
norm. Indeed, following Ref. [17], let us consider a quench setting where we
start from some initial state |ψini〉. Using the Heisenberg representation of ob-
servables, QH(t) ≡ eiHtQe−iHt , and denoting the expectation value of the operator
〈QH(t)〉 ≡ 〈ψini |QH(t)|ψini〉, the deviation of the expectation value from its initial
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Figure 3.3: (color online) Comparison between the residual Frobenius norm and
operator norm measures of the slowest operator Q(M)0 ; the operator is obtained
from the minimization of the residual Frobenius norm as described in Sec. 3.1.
The inverse of ‖[H,Q

(M)
0 ]‖op

‖Q(M)0 ‖op
gives the thermalization time scale of Q(M)0 . For large

coupling, cases g = 3.0 and g = 5.0, we find that the numerical values of the
residual Frobenius and operator norm measures are close to each other up to some
M and then start deviating (see text for some discussion).

value can be estimated as

|〈QH(t)〉 − 〈Q〉| =
����〈∫ t

0
dτ

dQH

dτ
(τ)

〉����
≤

∫ t

0
dτ

����〈dQH

dτ
(τ)

〉����
≤

∫ t

0
dτ‖[H,QH(τ)]‖op = t‖[H,Q]‖op , (3.6)

where we have used ‖[H,QH(τ)]‖op = ‖[H,Q]‖op for arbitrary τ, and the above
inequality holds for any initial state. If we assume that Q has unit operator norm,
we see that for 〈QH(t)〉 to deviate from its initial value by an order-one number, the
time scale is t∗ ∼ (‖[H,Q]‖op)−1. For a general not normalized Q, including the

suitable normalization gives the time scale t∗ ∼
(
‖[H,Q]‖op
‖Q‖op

)−1
.
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Figure 3.3 demonstrates the comparison between the Frobenius norm measure and
the operator norm measure of the smallness of the commutator [H,Q(M)0 ], where
the slowest operator Q(M)0 is as before obtained by minimizing the residual Frobe-
nius norm for given M . Note that the operator norm per site of a translationally
invariant operator like

∑L
j=1 q(M)j , unlike the intensive Frobenius norm defined ear-

lier, depends on the system size L and should be obtained in the thermodynamic
limit (a familiar example is the ground-state energy per site of a translationally
invariant Hamiltonian). However, we expect the size dependence to diminish for
increasing L. We confirmed this by calculating the operator norms by diagonaliz-
ing the corresponding operators on finite systems up to size L = 16, and Fig. 3.3
shows our results for the largest L; we were able to go only up to M = 9 because
the calculations became prohibitively expensive for larger M . Unlike the residual

Frobenius norm, the residual operator norm ‖[H,Q(M)0 ]‖op
‖Q(M)0 ‖op

can increase with M since
the minimization procedure is not with respect to the operator norm. This can also
potentially serve as a criterion for picking an “optimal” quasi-conserved operator
Q(M∗)0 for some M = M∗ that gives the minimum residual operator norm measure.
However, we do not observe a clear minimum of the residual operator normmeasure
for the accessible M . Nevertheless, we can already bound t∗ from below from the
M=9 data. Thus, for g = 5.0, we can bound t∗ > 5 · 103 which is already very long;
while for g = 3.0, we can bound t∗ from below by approximately t∗ > 30.

While here we were able to calculate the operator norm explicitly numerically,
it is instructive to consider the following crude bound for the prethermalization
condition obtained from the scaling of the residual Frobenius norm. First, we note
that we can write [H,Q(M)0 ] =

∑
j η j , where η j has maximum range M + 1. We

then have ‖[H,Q(M)0 ]‖op ≤
∑

j ‖η j ‖op = L‖η j ‖op ≤ L 2(M+1)/2‖[H,Q(M)0 ]‖F (recall
that here and below we use the intensive Frobenius norm). On the other hand, for
Q(M)0 =

∑
j q j , heuristically we can estimate ‖Q(M)0 ‖op ≈

∑
j ‖q
(M)
j ‖op = L‖q(M)j ‖op,

and we also have exact bound ‖q(M)j ‖op ≥ ‖Q
(M)
0 ‖F. We therefore obtain

‖[H,Q(M)0 ]‖op
‖Q(M)0 ‖op

≤ 2
M+1

2
‖[H,Q(M)0 ]‖F
‖Q(M)0 ‖F

= 2
M+1

2
√
λ0(M) , (3.7)

(which is nonrigorous bound). To maximize the thermalization time scale, we find
M̄∗ by minimizing the right-hand side and obtain a crude criterion

d log10 λ0(M)
dM

|M=M̄∗ = − log10 2 . (3.8)
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Thus, the optimal M̄∗ from this heuristic bound is determined as the point where the
magnitude of the slope of log10 λ0(M) vs M drops below value log10 2 (assuming
that the magnitude of the slope is decreasing with M , as observed in Fig. 3.1). We
expect M̄∗ ≤ M∗ (the latter defined from the true operator-norm minimization).

The above arguments also show how one may reconcile the fact that while the
Frobenius norm measure λ0(M) is always decreasing with M , the thermalization
time scale could still be finite. The actual data for the operator norm vs Frobenius
norm in Fig. 3.3 shows that the operator norm measure is numerically close to the
Frobenius norm over the available maximum range M , particularly for large g. That
is, the factor of 2 M+1

2 in the heuristic bound Eq. (3.7) between the two measures is
an overestimate, and at least over this range of M the Frobenius norm measure can
be used to bound the speed of the dynamics.

We can understand the rough agreement between the Frobenius and operator norm
measures if the operators Q(M)0 and [H,Q(M)0 ] have roughly similar “profiles” in the
operator space. Indeed, in this case, the numerators on both sides of the inequality
in Eq. (3.7) and the denominators should have similar relations, which would cancel
out in the ratio (while the overestimating factor 2 M+1

2 arose from using different limits
of the relations between the Frobenius and operator norms for the denominator and
numerator). We expect this to be particularly true when Q(M)0 is “localized” in real
space, which we indeed find in the strong coupling regime at least for the available
M—see our understanding of the slowest operator from the perturbative SW picture
in Sec. 3.3 and direct measurements of its profile in Sec. 3.4. We do start observing
some deviations between the Frobenius and operator norm measures for larger M ,
which could be indicating changing localization properties; however, the differences
are still small to reach definite conclusions.

Examining carefully all data in Fig. 3.3, we would like to point out that even though
for g = 1.0 the operator norm measure is smaller than the one for g = 3.0, it does
not imply that the system with g = 1.0 will exhibit prethermalization. For a fair
comparison of the dynamics, one also needs to compare the thermalization time
scale of Q(M)0 to other degrees of freedom in the same system. We indeed know
from the previous section, cf. Fig. 3.2, that for g = 1.0, the next-slowest operators
have comparable relaxation times to Q(M)0 and the prethermalization phenomenon
is less likely than for g = 3.0, where the slowest operator is more separated from
the rest. This could explain our findings in Sec. 3.5 of clear prethermalization at
g = 3.0 and no prethermalization at g = 1.0.
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While the residual norm provides us some bound on the thermalization time scale,
it is also important to obtain the physical meaning of the slowest operator. In the
system in the good ergodic regime studied in Ref. [17], in the nontranslationally
invariant setting, the slowest operator can be understood as dressed energy density
modulation operator. On the other hand, in the translationally invariant setting, the
slowest operator does not have simple connection to the energy density modulation
and its physical meaning remains an open question. In the MBL system, Ref. [19]
used this approach to explicitly construct the approximately conserved operators as
local integrals of motion. As we will show in the next Sec. 3.3, the slowest operator
we found in the large g regime can be understood as a dressed total spin-z operator,
coming from the solvable limit H0 =

∑
j(gX j + hZ j), which can be viewed as a

quasi-local integral of motion.

3.3 Schrieffer-Wolff Construction of Quasi-Conserved Quantity
Reference [7] used a renormalization scheme to construct an effective Hamiltonian
which commutes with H0 up to some order in small parameter, which can then be
used to describe the prethermalization dynamics. Here, we use an approach with
similar spirit but based on the local Schrieffer-Wolff (SW) transformation [20, 21]
to construct a quasi-conserved operator perturbatively. The term “local” is stressed
since the generators are solved in the form of sum of local terms, in contrast with
the “global” SW transformation, where the generators are solved using projectors of
the H0 eigenspaces [21]. The locality in particular allows us to construct the quasi-
conserved quantity numerically to high order and measure its properties exactly, in
contrast to the more abstract construction in Ref. [7]. A popular variant of a local
SW transformation was in fact proposed in Ref. [22] as a perturbative treatment of
the Hubbard model in the large U limit; this reference used generalized “ladder”
operators connecting different Hubbard sectors, and we discuss the relation to our
approach in Appendix A. Before proceeding, we briefly point some differences with
Ref. [21]. First, our setup works in the thermodynamic limit L → ∞ from the
start. More importantly, we choose the solution of Eq. (3.12) for the generator that
eliminates the off-diagonal part of Vm among all the sectors, while in Ref. [21] one
is only focusing on the off-diagonal part between the ground-state sector and other
sectors.

We first describe the specific SW transformation used here and how we numerically
construct a perturbation series for a quasi-conserved operator Ĩ(n) to n-th order. We
then calculate the squared residual norm of Ĩ(n) and the overlap between Q(M)0 and
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Ĩ(n) to demonstrate the similarity between the two operators. We will see that the
slowest operator Q(M)0 in the large g regime can be understood—at least up to the
maximum range accessible in our work—as Ĩ(n), which is essentially dressed “total
spin-z operator.”

Procedure of SW transformation
In the large-g limit, we can decompose H = H0 + εT , with H0 =

∑
j(gX j + hZ j)

being our solvable limit and εT = J
∑

j Z j Z j+1 treated as perturbation with small
parameter ε . [For example, we can define ε ≡ J/

√
g2 + h2 so that for convenience

‖T ‖F = ‖H0‖F in the intensive Frobenius norm, but the specific choice is not
important.] We construct a unitary transformation U = e−iεS1 e−iε2S2 . . . e−iεnSn ,
with Sm being Hermitian and ε-independent, such that the rotated Hamiltonian
H′ ≡ U†(H0 + εT)U commutes with H0 up to order n in the formal expansion in
ε . Stated another way, the eigenvalues of H0 define the corresponding unperturbed
sectors, and we want H′ to have only sector-diagonal terms up to order n in ε ,
while sector-off-diagonal terms are present only in higher order. If we then undo
the rotation on H0 back to the original picture, i.e., perform the inverse rotation to
define I ≡ UH0U†, we obtain an operator that commutes with H up to order n by
construction.

To be more specific, we follow Ref. [20] and consider an expansion of H′ in powers
of ε :

H′ = H0 +

n∑
m=1

εm[iadSm(H0) + Vm] + H>n , (3.9)

where V1 ≡ T and

Vm =

m∑
p=2

∑
[k1,...,kp]=m

f(k1, . . . , kp) iadSkp . . . iadSk1
(H0)

+

m−1∑
p=1

∑
[k1,...,kp]=m−1

f(k1, . . . , kp) iadSkp . . . iadSk1
(T) (3.10)

for m ≥ 2. Here we have used the notation “[k1, . . . , kp] = m” to mean the
summation conditions 1 ≤ ki ≤ n for i = 1, . . . , p and k1 + · · · + kp = m, while the
function f(k1, . . . , kp) = Θ(1 ≤ k1 ≤ . . . ≤ kp ≤ n)/[∏n

l=1 card(l)!], where Θ(•) = 1
if the condition in the argument is true and Θ(•) = 0 otherwise, and card(l) counts
the number of elements in {k1, . . . , kp} that are equal to l. By construction, each
Vm is ε-independent; it enters with a coefficient εm and is part of the m-th term in
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Eq. (3.9) for m = 1, . . . , n. Furthermore, H>n =
∑∞

m=n+1 ε
mVm collects all the terms

with ε powers higher than n.

The generators of the SW transformation are solved order by order by finding iSm

such that
iadSm(H0) + Vm = Vdiag

m , (3.11)

where we have defined Odiag as a part of an operator O that is “diagonal” in the H0

sector label; i.e., Odiag is the component of the operator that commutes with H0.
Equivalently, Odiag is the component of O in the kernel (nullspace) of adH0 . The
remainder Ooff-diag ≡ O−Odiag is the “off-diagonal” part of the operator, and can be
also viewed as a component of O orthogonal to the kernel of adH0 in the Frobenius
inner product [20]. We can solve for the generator

iSm = [adH0]−1Voff-diag
m , (3.12)

where [adH0]−1 is the pseudoinverse of adH0 . Note that iSm solving Eq. (3.11) is
determined only up to a component in the kernel of adH0 , and we make a choice here
where such component is zero, i.e., iSm is composed of only sector-off-diagonal
operators; this is common choice in the SW approach, cf. Refs. [20–22]. The
described procedure generates an effective Hamiltonian which commutes with H0

up to order n by truncating out H>n, obtaining H(n)eff = H0 +
∑n

m=1 ε
mVdiag

m .

An important property of the above SW transformation is its locality, which ensures
the representability of Sm and Vm in finite-dimensional operator spaces, making the
SW procedure programmable as operations of matrices and vectors. In fact, one can
show that for H0 ∈ T1 and T ∈ T2 we have Vm ∈ Tm+1 and Sm ∈ Tm+1, see Ref. [21]
and Proposition 3.6.1 in Appendix B.

We remark that the SW transformation generally does not converge when one takes
the n → ∞ limit. There are rigorous results for the convergence of the ground
state energy estimates for gapped Hamiltonians [20, 21] but no known results for
the ability of the SW procedure to capture the entire spectrum of interest here.
Nevertheless, the SW transformation is well-defined for any finite n and can be used
to obtain rigorous bounds on the dynamics in the spirit of Refs. [4, 5, 7]. Thus,
one can show that, for small enough ε , ‖H>n‖F < O(n2n+2εn+1), see Ref. [21] and
Theorem 3.6.1 in Appendix B. The dynamics described by H′ = H(n)eff + H>n in the
rotated picture does not truly conserve H0 but only approximately. In other words,
while H(n)eff conserves H0, the “remainder” H>n does not and is responsible for the
eventual thermalization of the dynamics, which can be very slow if ε is small.
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We can thus intuitively understand the prethermalization via this perturbative SW
construction [4, 5, 7, 12]. The solvable limit H0 defines different sectors labeled by
different integers, which can be viewed as counting the number (up to some off-set)
of some emergent “particles.” (see also Appendix A). The perturbation term εT

introduces interactions within the sectors and transitions between the sectors. The
interactions within the sectors are indeed the “diagonal” part of T . At m-th order,
the coefficient εm in the SW perturbation theory basically describes the transition
amplitude of any process with m inter-sector transitions. The generator iSm is set to
rotate the picture such that these processes are eliminated. The remaining part Vdiag

m

basically describes the processes which start and end in the same sector connected
by m times of the inter-sector transitions. The perturbation series would be conver-
gent for small enough ε if there were at most O(ecm) of such processes. However,
generically, in a translationally invariant system, there are order O(mγm) such pro-
cesses coming from combinatorial factorials in m. The exponential suppression of
the transition amplitude is then not enough to suppress the factorial factor. There-
fore, even though at high order of n, the transition amplitude is perturbatively small
O(εn), manifesting slowness of individual processes, there are, however, too many
ways of the transitions O(nγn) such that the system will eventually thermalize.

Quasi-conserved quantity by SW transformation
Once we have obtained the generators for the SW transformation, we can rotate H0

back to the original picture and obtain the quasi-conserved operator. Consider

I ≡ UH0U† = H0 +

n∑
m=1

εmIm + I>n , (3.13)

where

Im =

m∑
p=1

∑
[k1,...,kp]=m

(−1)p f(k1, . . . , kp) iadSk1
. . . iadSkp (H0) (3.14)

and I>n =
∑∞

m=n+1 ε
mIm collects all the higher-power in ε terms. We then obtain

the quasi-conserved operator I(n) = H0 +
∑n

m=1 ε
mIm. In Appendix B, we show that

I(n) ∈ Tn+1. To compare with the slowest operator, we remove the part of I(n) that is
parallel to H and normalize the resulting operator:

I(n)⊥ = I(n) − H
〈H, I(n)〉
‖H‖2F

, (3.15)

Ĩ(n) =
I(n)⊥

‖I(n)⊥‖F
. (3.16)
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For small enough ε , we can bound the squared residual norm as

µn ≡ ‖adH(Ĩ(n))‖2F ≤ O(n
4nε2n) . (3.17)

The proof of this bound and a more precise statement is in Appendix C.

Applying the previous heuristic argument for the thermalization time scale, Eq. (3.7),
we get t−1

∗ ∼ O((2ε)nn2n). If we treat the perturbation strength ε as given, and the
SW order n as an optimization parameter, then we can find that the residual operator
norm is minimized at n = n∗ = 1/(e

√
2ε). The thermalization time scale is therefore

maximized as t∗ = O(exp(
√

2
e
√
ε
)). Note that unlike Refs. [4–7], where the heating

rate is proven to be O(exp( A
ε )), we only obtain O(exp( A′√

ε
)). This can be traced back

to the estimation of the convergence radius in Appendices B and C to be ρn ∼ 1/n2,
and hence the squared residual norm µn ∼ O(n4nε2n). We suspect that a tighter
convergence radius ρn ∼ 1/n is possible (see Appendix D); hence the bound on the
thermalization time-scale could be improved to O(exp( A

ε )). Without pursuing this
tighter bound further, we leave this for future studies.

Asmentioned earlier, the locality of iSm andVm allows us to formulate this procedure
in finite-dimensional operator Hilbert spaces amenable to numerical calculations.
Figure 3.1(b) shows the squared residual norm calculated from such SWconstruction
of the quasi-conserved operator for several values of parameter g. Note that at order
n, the constructed operator has maximum range M = n + 1. The trend of µn at
large g more or less follows the trend of λ0(M), where the residual norm drops
almost exponentially in low order, and turns into a slower trend, which is possibly a
manifestation of the combinatorial factor O(nγn). While not appearing in the figure
yet for large g, we expect µn will eventually start increasing at high enough order n;
this is because in generic systems the combinatorial factors (like the ones appearing
in the previous paragraph) will win over the exponential suppression at large enough
n; such behavior of µn is observed in the g = 1 and g = 2 cases. Nevertheless,
noting that the above arguments are based on the “worst-case-scenario” analytical
bounds on the perturbatively-constructed operators, our numerical results for µn in
the larger g cases do not rule out the possibility that µn → 0. On the other hand,
unlike the perturbative construction, the numerical minimization for the slowest
operator is guaranteed to get an equal or smaller residual norm when increasing M .

Figure 3.4(a) shows the overlap between the slowest operator Q(M)0 with maximum
range M = 11 and the SW construction Ĩ(n) with order n up to 10. The overlap at
large g is almost 100%! Accordingly, we can understand the slowest operator we
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Figure 3.4: (color online) (a) The overlap between the full numerical optimization
Q(M)0 with M = 11 and the perturbative SW construction Ĩ(n) with order n = 1 to 10.
(b) One minus the overlap on the log-linear plot. At large g, the overlap between
the two operators is almost 100%, which means that the slowest operator we found
is essentially the dressed spin operator coming from the solvable limit H0. On the
other hand, for small g, the slowest operator does not look like the perturbative SW
construction operator anymore. Interestingly, there is apparently a strong change in
behavior around gc ≈ 2; however, we do not know if there is a true transition.

found in the large g limit as the translationally invariant sum of the dressed spin-z
operator, or the dressed H0. Interestingly, there appears to be a strong change in
behavior at gc ≈ 2. For g > gc, the slowest operator looks like the dressed spin-z
operator, with an exponential scaling of the residual norm for small M; on the other
hand, for g < gc, the slowest operator does not look like the dressed spin-z operator,
and its residual norm has a power-law scaling.

Note that despite the fact that the SW construction Ĩ(n) and the slowest operator
Q(M)0 have very high overlap 1−α, where α can be a very small number as shown in
Fig. 3.4(b), the difference between their squared residual norms can still be sizable.
Indeed, consider Ĩ(n) = (1−α)Q(M)0 + βη, where ‖Q(M)0 ‖F = ‖η‖F = 1 and η is some
operator perpendicular to Q(M)0 in the Frobenius inner product. The normalization
condition of Ĩ(n) gives β2 = 2α − α2, hence β = O(

√
α). The squared residual

norm of Ĩ(n) is ‖adH(Ĩ(n))‖2F = (1 − α)
2‖adH(Q(M)0 )‖

2
F + β2‖adH(η)‖2F + 2β(1 −

α)Re[〈adH(Q(M)0 ), adH(η)〉]. We can thus see that

‖adH(Ĩ(n))‖2F − ‖adH(Q(M)0 )‖
2
F ≈

≈ 2α‖adH(η)‖2F + 2
√

2αRe[〈adH(Q(M)0 ), adH(η)〉] ,

where we expressed everything in terms of the small number α and kept only terms
that are expected to dominate. Note that while ‖adH(Q(M)0 )‖F is a small number,
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no such smallness is expected for ‖adH(η)‖F since the deviation direction η is not
special in any way. Since ‖η‖F = 1, we expect that ‖adH(η)‖F is a number of order
1 in the energy units of H (and could be larger depending on the range of typical
terms in η), which could be sufficient to explain the visible difference between the
two residual norms in Fig. 3.1(b) despite the high overlap between Ĩ(n) and Q(M)0 .

3.4 Characterizing the Slowest Operators
In this section, we analyze some properties of the quasi-conserved operators that we
found in Sec. 3.1. We measure their “locality” in the operator space and in the real
space, to contrast different behaviors of the slowest operators between small g and
large g regimes.

Operator inverse participation ratio
From the previous section, we expect that for large g the quasi-conserved operator
looks like a dressed spin operator. It is therefore reasonable to expect that Q(M)0
should be a sum of a small number of Pauli string operators, analogous to the
local integrals of motion in MBL studies [19]. Using the Pauli string basis I, X ,
Y , Z (without forming the parity-invariant basis), we measure the operator inverse
participation ratio (OIPR) 1 defined as

OIPR(Q(M)0 ) =
©­«

3·4M−1∑
i=1
|ai |4

ª®¬
−1

, (3.18)

where ai’s are the amplitude of the I-X-Y -Z Pauli-string basis and we assumed
normalization

∑3·4M−1

i=1 |ai |2 = 1. The OIPR is bounded from below by 1.

Figure 3.5 shows the OIPR of the slowest operatorQ(M)0 for different g. Interestingly,
for larger g & 2, the OIPR seems to converge to a finite value at large enough M .
This behavior is consistent with our expectation that the quasi-conserved operator is
a dressed total spin operator. The convergence of the OIPR indicates locality in the
operator space. On the other hand, for small g . 2, the OIPR does not saturate but
instead grows strongly with M . This suggests that the slowest operators we found
in the ergodic regime are composed of an extensive number of the Pauli string basis
states; hence they are “delocalized” in the operator space.

1Herewe call the quantity in Eq. (3.18) “operator inverse participation ratio” so that it is consistent
with usual definition, e.g., as used in single-particle localization problems where for a normalized
wavefunction ψ(x) the inverse participation ratio is 1/∑x |ψ(x)|4; this convention is different from
that in Ref. [19].
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Figure 3.5: (color online)Operator inverse participation ratio of the slowest operator
vs maximum range M for different g. For large g & 2, the OIPR appears to converge
to a finite value, which suggests its locality in the operator space. On the other
hand, in the ergodic regime, g . 2, the OIPR does not converge and instead grows
strongly with M (the behavior on the linear-log plot suggests exponential growth).

Real-space profile of the slowest operator
In this subsection, we examine the real-space shape of the slowest operator more
closely. We define Wr as the weight of Q(M)0 on range-r operators. In other words,
we can decompose Q(M)0 =

∑M
r=1 Or , with Or being an operator with range exactly

equal to r , and define Wr = ‖Or ‖2F. The normalization condition ensures that∑
r Wr =

∑
r ‖Or ‖2F = ‖Q

(M)
0 ‖

2
F = 1. Figure 3.6(a) shows the weights Wr measured

for the slowest operator Q(M)0 with M = 12.

For large g & 2, the weight has an almost-exponential decay at small r . Fig-
ures 3.6(b)-(e) show the weights Wr for Q(M)0 at fixed g when increasing M from
M = 6 to M = 12. From the plots, we can see that for large g, the weight of
the profile is peaked on 2-local operators, which we can understand already from
the leading order SW construction, see Eq. (3.34) in Appendix A. We also see that
the exponentially decaying part of Wr at short distances is essentially converged, or
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Figure 3.6: (color online) (a) The weightWr of range-r operators contained in Q(M)0
with maximum range M = 12 for various g. For large g & 2, the weight Wr decays
exponentially at short distance r . The decay length grows as g decreases. For small
g . 2, the decay of Wr is naively better described by a Gaussian, with the curves
almost independent of g. (b)-(f) The weight Wr of range-r operators in Q(M)0 when
varying M from M = 6 to M = 12 for fixed g indicated in each panel. For large
g, the exponentially decaying part at short distances is essentially converged in M;
however, the long-distance behavior is not clear. For small g, the weight distribution
is pushed to larger r and shows significantly slower decay as a function of r when
one increases M; this suggests that these operators are not normalizable in the large
M limit.
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Figure 3.7: (color online) TEBD simulations with bond dimensions χ = 256 and
χ = 512 of the evolution of various “magnetizations” 〈Mx,y,z〉 upon quench from the
initial state |Y+〉. The Hamiltonian is given by Eq. (3.1) with parameters J = 1.0,
h = 1.5, and different g indicated in each panel. (a) Evolution of the magnetizations
for g = 1. The magnetizations appear to approach the thermal value 〈O〉th = 0
expected for any traceless observable O. (b) Evolution of the magnetizations for
g = 3. The magnetizations are approaching values described by the generalized
Gibbs ensemble that includes also the quasi-conserved operator (see text for details);
the expected prethermalized values are marked with subscript “pth.” Insets in both
panels show truncation error 1− 〈ψ(t)|ψ(t)〉 of the matrix-product states. We set the
cut-off for the χ = 256 simulation as s0 = 10−6, while for the χ = 512 simulation
the cut-off is s0 = 10−8.

independent of M . However, the “shape” of the operator at long distances is not yet
converged and is hence undetermined. Despite the fact that we can not determine the
long-distance behavior for the slowest operators due to computational limitations, it
is clear that the short-distance decay becomes slower when one decreases g.

On the other hand, for small g . 2, there is no clear exponential decay even at
short distance. In fact, for fixed g and M , the weights appear to decay faster than
exponentially (with a Gaussian-like profile). However, the overall curve shifts to
larger r as one increases M , with no apparent convergence to some fixed curve
independent of M . This suggests the non-normalizability for the limM→∞ Q(M)0
operators in the small g regime and is also consistent with the result of increasing
OIPR as one increases M , since there are more Pauli string operators involved in
Q(M)0 .

3.5 Dynamical Simulation
In order to demonstrate the effect of the quasi-conserved operator that we found in the
large g limit, we perform a quench dynamics calculation and observe an intermediate
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prethermalization state. We explicitly show that to describe the prethermalization
state, one needs to include the slowest operator in the generalized Gibbs ensemble
(GGE). We prepare the initial state as a product state with all spins pointing in
the positive-y direction, |ψ〉 = |Y+〉 at time t = 0. We evolve the state under
the Hamiltonian Eq. (3.1) as |ψ(t)〉 = e−iHt |ψ〉 and measure the evolution of the
magnetizations 〈Mµ〉(t) ≡ 1

L
∑L

j=1〈ψ(t)|σ
µ
j |ψ(t)〉/〈ψ(t)|ψ(t)〉, where µ = x, y, z.

We use time-evolved block-decimation (TEBD) method [23] to simulate the quench
dynamics in a system of length L = 128 with open boundary conditions. We use
second-order Trotter-Suzuki decomposition with Trotter step δt = 0.02, which is
sufficiently small to achieve the desired accuracy. We control truncations of theMPS
using “cut-off” s0, which means that we discard singular values smaller than s0. We
also use “bond dimension” χ, which means that we keep at most χ singular values.
Two different sets of truncation parameters are used and compared against each
other in order to estimate the effect of truncations on the MPS: s0 = 10−6, χ = 256
and s0 = 10−8, χ = 512. Figure 3.7 shows the results of the TEBD calculations. The
loss of norm (truncation error) seen in the insets is due to various truncations and
provides some measure of the accuracy of the time evolution (note that it is roughly
compensated in the magnetization measurements by normalizing at each t, so the
exhibited magnetizations are still reasonably accurate over the time range shown).

The effective inverse temperature β for any initial state |ψ〉 is determined by finding
the parameter β such that equation 〈ψ |H |ψ〉 = 1

ZTr[e−βH H] is satisfied, where
Z = Tr[e−βH]. The thermal value is defined as 〈. . . 〉th = 1

ZTr[ρth . . . ], where
ρth = e−βH is the associated Gibbs ensemble. Since 〈Y+ |H |Y+〉 = 0, it is easy to
verify that the effective inverse temperature β = 0 for this initial state. As a result,
for any traceless observable O, the thermal value 〈O〉th = 0. Hence, if the system
thermalizes, the magnetizations 〈Mµ〉(t) should approach zero.

Figure 3.7 shows the dynamical evolution of themagnetizations for parameters g = 1
and g = 3 for system size L = 128. For g = 1, even though the magnetizations have
not fully equilibrated yet on our simulation times, we can see that they are fluctuating
around zero, which is the expected thermal value. It is therefore reasonable to assume
that the magnetizations are equilibrating toward zero, and the system thermalizes,
without any prethermalization stage. On the other hand, for g = 3, it is visually clear
that 〈Mz〉(t) is approaching a sizable nonzero value. 〈Mx〉(t) is also approaching
a small nonzero value, even though it is less clear visually. The prethermalization
stage persists over our simulation time, which is consistent with our bound on t∗ in
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Sec. 3.2.

Crude features in the dynamics for g = 3 can in fact be understood easily as the
precession of the spins. If J = 0, the spins, which are pointing along y+ direction
initially, will precess under H0 persistently. The T = J

∑
j Z j Z j+1 term introduces

interactions among the spins, resulting in the decay of the precession, therefore the
damping of themagnetization oscillation. There is a simple quasiparticle description
to understand the oscillation and the decay [24]. Viewing H0 as the “total particle
number,” part of the T term introduces “hopping” of the “particles.” The oscillation
frequency can essentially be understood as the quasiparticle excitation energy. Even
if we modeled the quasiparticles using an integrable hard-core boson Hamiltonian,
the oscillations will damp eventually. However, the equilibrium value (at least at
this intermediate stage) is not described by the Gibbs ensemble.

Here we verify the conjecture that, to describe these intermediate equilibrium val-
ues, one needs to include the quasi-conserved quantity into a generalized Gibbs
ensemble (GGE). The GGE in this case is ρpth ≡ e−αHe−µQ

(M)
0 /Zpth, and Zpth ≡

Tr[e−αHe−µQ
(M)
0 ]. [Here we used the above form for the GGE rather than e−αH−µQ(M)0 ,

since the former is easier to evaluate numerically where one only needs to diago-
nalize Q(M)0 once, instead of diagonalizing αH + µQ(M)0 for each pair of (α, µ).
Furthermore, since Q(M)0 and H almost commute, we expect the two expressions
are approximately the same.] The parameters (α, µ) are determined by finding the
values satisfying the following equations

〈ψ |H |ψ〉 = 1
Zpth

Tr[Hρpth] , (3.19)

〈ψ |Q(M)0 |ψ〉 =
1

Zpth
Tr[Q(M)0 ρpth] . (3.20)

For the initial state |Y+〉, 〈Y + |H |Y+〉 = 0; while 1
L 〈Y + |Q

(M)
0 |Y+〉 = 0.63889

using Q(M=12)
0 . In fact, the “particle densities” in the initial state, 1

L 〈Y+ |Q
(M)
0 |Y+〉,

measured from M = 8 to M = 11 are within approximately 1% from the M = 12
result. Note also that since the initial state is a product state, the particle density in
a finite system of size L will be independent of L as long as L ≥ M . We then solve
for (α, µ) on the right-hand side using Newton’s method, while ρpth is evaluated
by the exact diagonalization of H and Q(M)0 for system size L = 16 and M = 8
(the largest L and M accessible with our computation resources), under periodic
boundary condition; we find (α, µ) = (−0.05155,−1.4417). We then calculate
the prethermalized GGE values as 〈Mz〉pth = −0.161045, 〈Mx〉pth = −0.0273397,
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and 〈My〉pth = 0 (by time-reversal symmetry in the effective Hamiltonian for the
prethermalized state), where 〈. . . 〉pth = 1

Zpth
Tr[ρpth . . . ]. Figure 3.7(b) shows a fair

agreement between the observed prethermal equilibrium values 〈Mµ〉(t) and the
GGE estimates 〈Mµ〉pth.

We have thus explicitly verified that the quasi-conserved operator in the large g

regime has nontrivial effects on the relaxation of the system. Furthermore, to
describe the equilibrium values at the intermediate prethermalization stage, one
needs to include this quasi-conserved operator in the generalized Gibbs ensemble.

3.6 Discussion
We numerically construct the slowest operator that is translationally invariant with
maximum range M . In the small coupling regime, the norm of the commutator of
the slowest operator with the Hamiltonian has a power-law dependence on M . On
the other hand, in the strong coupling regime, we find exponential decay at least
at small M , identifying the slowest operator as quasi-conserved operator. At larger
M , however, the decay becomes slower, possibly a power law. This may be related
to the eventual thermalization of the system, after a prethermalization stage with a
parametrically long time scale. The true behavior at large M is not certain due to
the limitations of our numerical calculations, constrained by the exponentially large
operator Hilbert space. However, from the analysis of the OIPR, it appears that the
quasi-conserved operator resides only on a very small fraction of states in the total
Hilbert space. It may therefore be possible to reduce the relevant operator Hilbert
space dimension by identifying the property of this space and by restricting studies
to only such an ansatz, which could potentially allow reaching larger maximum
range; we leave this idea for future studies.

Our TEBD calculation of the dynamics after a quench explicitly confirms the ex-
istence of the prethermalization stage for large g and further supports the GGE
construction that includes the quasi-conserved operator. From the residual Frobe-
nius norm of the quasi-conserved operator

√
λ0(M), we can heuristically provide

a lower bound on the thermalization time scale as t∗ ∼ 2−M+1
2 λ0(M)−1/2; we can

also bound the thermalization time more accurately by measuring the conventional
operator norm, t∗ ∼ (‖[H,Q(M)0 ]‖op/‖Q

(M)
0 ‖op)

−1. However, we cannot determine
the time scale of the prethermalization stage from the TEBD calculations due to the
limited accessible simulation time. Even if we could extend the TEBD calculation
to longer times, we may have to consider a different truncation scheme [25] to get
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more accurate results. A straightforward truncation of small singular values in the
MPS state does not necessary conserve the quasi-conserved quantity, and hence may
artificially decrease the prethermalization time. It would be interesting to extract the
prethermalization time scale directly from simulations or even from experiments to
compare with our heuristic argument.

Another interesting observationwhichwe still do not fully understand is the apparent
“transition” between the prethermalization and ergodic behaviors. While it is not
clear what defines the prethermalization “phase,” it appears that the different scaling
behavior of the residual norm can serve as an indicator. Furthermore, the OIPR
seems to provide a stronger signature: the OIPR of the slowest operator appears to
converge with M in the large coupling regime g ≥ 2.5, while the OIPR diverges in
the ergodic regime. Also, the operator profile appears to converge with increasing
M for g ≥ 3 while it does not converge for g ≤ 2. The persistence of this sharp
distinction between the prethermalization and ergodic behaviors to larger M or even
M →∞ deserves more study.

An exciting possibility which may be suggested by our results for g ≥ 3 is the
existence of the truly conserved quasi-local quantity [13, 15, 16], or the convergence
of the SW transformation in the n → ∞ limit. While the theoretical upper bounds
on the norms in the SW series do not prove the convergence, they do not disprove
it either. In fact, from our numerical calculations in Appendix E, the convergence
of the SW transformation might even be possible. This would imply that we
can find a (quasi-local) unitary transformation U such that U†HU commutes with
H0. A partial breakdown of ETH would be possible due to the existence of this
emergent “particle conservation” in the entire spectrum. In fact, the quantum Ising
model H =

∑
j X j + ε

∑
j Z j Z j+1 provides an example where the SW procedure

converges [12, 26]. In this case, instead of one (or few) conserved quantity, there
is a macroscopic number of conservation laws due to the model’s integrability.
Nevertheless, the SW procedure “does not know” the free fermion solution but still
converges and finds a conserved quantity, which happens to be the total number of
the Bogoliubov quasi-particles. Our intriguing results in the nonintegrable model
thus warrant further detailed studies of the convergence of the SW transformation.

In conclusion, by numerically searching for the slowest operator, we identified the
quasi-conserved operator at large coupling, which we believe is responsible for the
prethermalization behavior. The residual norm of the quasi-conserved operator
has exponential decay with its maximum range up to some point; the OIPR and
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real-space profile show that it is localized in the operator Hilbert space and real
space. By comparing with the perturbative SW construction, we concluded that
the quasi-conserved quantity is essentially the dressed total spin-z operator. Fi-
nally, by simulating the quench dynamics, we verified the conjecture that the quasi-
conserved quantity leads to prethermalization behavior. Furthermore, the apparent
equilibrium values at the prethermalization stage can be described by including the
quasi-conserved quantity in the GGE.

Appendix A: Generalized Ladder Algebra Formalism
In Ref. [22], MacDonald et. al. proposed a perturbative expansion for the electronic
Hubbard model in the large U limit using generalized ladder algebra formalism.
In fact, their transformation is a variant of a local SW transformation [20, 21].
A small difference from the SW transformation used in the present work is that
Ref. [22] constructs a unitary transformation of the form exp(iεS1 + iε2S2 + · · · +
iεnSn) rather than exp(iεS1) exp(iε2S2) . . . exp(iεnSn). This modifies Eq. (3.10) by
replacing f(k1, . . . , kp) to 1

p! , see Ref. [20]. The variant in the present paper is
slightly easier to use in numerical calculations because there are fewer terms in the
series.

For our spin Hamiltonian, the spectrum of the solvable limit H0 is composed of
different sectors labeled by different “particle” numbers. To be concrete, consider

H0 = Γ
∑

j

Z j , (3.21)

where we have rotated gX j + hZ j to the new z-direction and Γ =
√
g2 + h2. The

(rotated) perturbation T can be decomposed into T =
∑2
`=−2 T`, where T`-s are

called generalized ladder operators, with the property that [H0,T`] = 2Γ`T`. More
explicitly, defining Pj, Mj =

1
2 (X j ± iYj), we have

T+2 = t2
∑

j

Pj Pj+1 , (3.22)

T−2 = t2
∑

j

Mj Mj+1 = T†
+2 , (3.23)

T+1 = t1
∑

j

(Pj Z j+1 + Z j Pj+1) , (3.24)

T−1 = t1
∑

j

(Mj Z j+1 + Z j Mj+1) = T†
+1 , (3.25)

T0 = u0
∑

j

Z j Z j+1 + w0
∑

j

(Pj Mj+1 + Mj Pj+1) , (3.26)
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where t1 = − Jgh
Γ2 , t2 =

Jg2

Γ2 , u0 =
Jh2

Γ2 , and w0 = t2.

Let us further define

T (k)(`1, . . . , `k) ≡ T (k)[`] = T`1 . . .T`k . (3.27)

One can easily verify that these operators are also generalized ladder operators:
[H0,T (k)[`]] = 2ΓM (k)[`]T (k)[`], where M (k)[`] ≡ ∑k

i=1 ì. In particular, if M (k)[`] =
0, then T (k)[`] is in the nullspace of adH0 .

It is easy to argue that Vm can all be expressed as nested commutators of T`-s
by mathematical induction from Eq. (3.10) and Eq. (3.12), given that iSk and Vk

are all composed of nested commutators of T`-s for k < m. Assuming Vm =

(2Γ)1−m ∑
{`} C(m)[`]T (m)[`], where coefficients C(m)[`] have special structure such

that Vm is composed of nested commutators of T`-s, Eq. (3.12) gives

iSm = (2Γ)−m
∑

{`},M (m)[`],0

C(m)[`]T (m)[`]
M (m)[`]

. (3.28)

One can therefore see that it is a special type of the local SW where everything is
expressed by the generalized ladder algebra.

As an example, we work out the effective Hamiltonian and the quasi-conserved
operator to second-order. At first order, V1 = T , so we want to find iS1 such that
iadS1(H0) + T = T0. The solution is

iS1 =
1

4Γ
(T+2 − T−2) +

1
2Γ
(T+1 − T−1) . (3.29)

We therefore obtain

V2 =
1
2

iadS1iadS1(H0) + iadS1(T) =
1
2

iadS1(T0 + T)

=
1

8Γ

(
2[T+2,T0] − 2[T−2,T0] + 4[T+1,T0] − 4[T−1,T0]

− [T+2,T+1] + [T−2,T−1] + 3[T+2,T−1] − 3[T−2,T+1]
+ 2[T+2,T−2] + 4[T+1,T−1]

)
. (3.30)

The last line is the diagonal part of V2 while the rest is the off-diagonal part. At
second order, we solve for iS2 such that iadS2(H0) + V2 = Vdiag

2 ; the solution is

iS2 =
1

48Γ2

(
3[T+2,T0] + 3[T−2,T0] + 12[T+1,T0]

+ 12[T−1,T0] − [T+2,T+1] − [T−2,T−1]
+ 9[T+2,T−1] + 9[T−2,T+1]

)
. (3.31)
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We can now obtain contributions to the quasi-conserved operator as

I1 = T − T0 = T+2 + T−2 + T+1 + T−1 , (3.32)

I2 = −Vdiag
2 + iadS1(T0) =

1
4Γ

(
− [T+2,T−2] − 2[T+1,T−1]

+ [T+2 − T−2,T0] + 2[T+1 − T−1,T0]
)
. (3.33)

To compare with the slowest operator approach, we calculate the component per-
pendicular to H, which can be obtained via Eq. (3.15). For example, we find for the
leading-order SW construction,

I⊥1 = I1 −
J2g2(g2 + 4h2)

2(J2 + g2 + h2)2(g2 + h2)
H . (3.34)

This can be used to understand the 1-local and 2-local content of the slowest operator
for large g, see Fig. 3.6.

Appendix B: Bound on H>n

In this Appendix, we prove the bound on ‖H>n‖F quoted in the main text. We set the
norm of H0 as the energy unit, ‖H0‖F = Γ, and the norm of the perturbation term
as ε ‖T ‖F = εΓ, where ε is the strength of the perturbation and is used to organize
the perturbative expansion. We also assume that H0 ∈ T1 and T ∈ T2. Without
loss of generality, we assume working in the basis such that H0 = Γ

∑
j Z j , since

for any general H0 ∈ T1 one can always rotate the basis to achieve this. The results
in this appendix are parallel to the results obtained in Ref. [21] but are tailored to
our definitions of norms for translationally-invariant operators and the specific SW
procedure used; furthermore, our results are not restricted to effective Hamiltonians
in the lowest-energy sector but are valid for the entire spectrum.

We first prove the locality of the operators Sm and Vm in the SW transformation
procedure, Sec. 3.3, and of the operators Im in the quasi-conserved quantity obtained
by SW transformation, Sec. 3.3.

Proposition 3.6.1. Vm ∈ Tm+1, Sm ∈ Tm+1, and Im ∈ Tm+1.

Proof. By assumption, H0 ∈ T1, hence adH0 maps Tm to Tm. The pseudo-inverse
[adH0]−1 thus also maps from Tm to Tm. Therefore, from Eq. (3.12) it follows that
if Vm ∈ Tm+1 then Sm ∈ Tm+1. Initially, V1 = T ∈ T2 and hence S1 ∈ T2. Assume
Vk ∈ Tk+1 and Sk ∈ Tk+1 hold for k ≤ m − 1. Now consider the first term in Vm in
Eq. (3.10); we see that iadSkp . . . iadSk1

(H0) ∈ Tm+1 since k1 + · · · + kp = m. The
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second term inVm is also in Tm+1, by noticing that k1+ · · ·+ kp = m−1 andT ∈ T2 in
iadSkp . . . iadSk1

(T). By similar argument applied to Eq. (3.14), we have Im ∈ Tm+1.
The proposition is proved by mathematical induction. �

Here we introduce a different norm on the operator Hilbert space Tk which will
be technically useful in the future proofs. Consider any operator O ∈ Tk written
in the Pauli-string basis composed of I, P ≡ 1

2 (X + iY ), M ≡ 1
2 (X − iY ), and Z:

O =
∑

j
∑

a oaQa
j;k , where Qa

j;k = σ
a1
j . . . σak

j+k−1 denotes the “I-P-M-Z” string with
support on sites j to j + k − 1 with non-identity on the site j. That is, σ on each site
other than j can be one of the four operators I, P, M , or Z , while it can be only P,
M , or Z on the site j (recall that Tk consists of traceless operators, and this “gauge”
choice for writing local operators is similar to the one in the main text).

Definition 3.6.1. For O =
∑

j
∑

a oaQa
j;k ∈ Tk , the one-norm is defined as ‖O‖1 =∑

a |oa |.

Such a definition of the one-norm is in fact basis-dependent, so it is crucial that
our one-norm is understood in the basis such that H0 = Γ

∑
j Z j and operators are

expanded in the I-P-M-Z strings. These particular I-P-M-Z strings are orthogonal
but not normalized with the respect to the Frobernius inner product in Tk . In fact,
‖Qa

j;k ‖
2
F = 2−Na , where Na is the number of P and M letters in Qa

j;k .

Our one-norm can be used to bound the Frobenius norm discussed in the main text:

Proposition 3.6.2. For O ∈ Tk , we have ‖O‖F ≤ ‖O‖1 ≤
√

5 · 6k−1‖O‖F.

Proof. Indeed, writing O in the I-P-M-Z strings as O =
∑

j
∑

a oaQa
j;k , we have

‖O‖2F =
∑

a
|oa |22−Na ≤

∑
a
|oa |2 ≤

(∑
a
|oa |

)2

= ‖O‖21 .

The last inequality follows from the fact that there are more non-negative terms on
the right-hand side.

For the bound on the one-norm, using Cauchy-Schwartz inequality, we have∑
a

(
|oa | 2−

Na
2

) (
2

Na
2

)
≤

√∑
a

(
|oa | 2−

Na
2

)2
√∑

a

(
2

Na
2

)2
,

or

‖O‖1 ≤ ‖O‖F
√∑

a
2Na . (3.35)
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Remembering that the first site can only be P, M , or Z , a simple combinatorial
exercise gives

∑
a 2Na = 5 · 6k−1. �

We now present two propositions describing key properties of our one-norm that
will be used in the proof of the main bounds.

Proposition 3.6.3. IfU ∈ Tr andW ∈ Ts, then ‖adU(W)‖1 ≤ 2(r+ s−1)‖U‖1‖W ‖1.

Proof. By writing out U =
∑

j
∑

a uaQa
j;r and W =

∑
k
∑

b wbQb
k;s in the I-P-M-Z

strings, we have

‖adU(W)‖1 = ‖
∑

k

k+s−1∑
j=k−r+1

∑
a,b

uawb[Qa
j;r,Q

b
k;s]‖1 . (3.36)

Let us first consider the product Qa
j;rQb

k;s for a particular j and strings a and b. By
the multiplication rules among I, P, M , and Z , we note that Qa

j;rQb
k;s will “split”

into 2Na,b new I-P-M-Z strings, where Na,b is the number of the positions that the
letter P in Qa

j;r collides with M in Qb
k;s or M in Qa

j;r collides with P in Qb
k;s, since

PM = 1
2 (I + Z) and MP = 1

2 (I − Z). However, each such new string will carry
a factor 2−Na,b , with a plus or minus sign. Therefore, Qa

j;rQb
k;s will generate 2Na,b

new strings carrying coefficients ±uawb2−Na,b , and likewise for Qb
k;sQ

a
j;r . Upon

summing over k, each new string should be understood as “gauge-fixed” by shifting
the position such that the first non-trivial letter is at position k.

Now we consider writing out the full adU(W) in Eq. (3.36) in the I-P-M-Z
strings. Coefficient for each basis string will be some collection of the contri-
butions described above from different j, a, and b. Applying the triangle inequality
|x + y + · · · + z | ≤ |x | + |y | + · · · + |z | for each such coefficient, we then have

‖adU(W)‖1 ≤ 2
k+s−1∑

j=k−r+1

∑
a,b
|uawb2−Na,b |2Na,b

= 2(r + s − 1)‖U‖1‖W ‖1 , (3.37)

where the first factor of 2 accounts for Qa
j;rQb

k;s and Qb
k;sQ

a
j;r , and the factor of

r + s − 1 comes from the counts of j. �

Equation (3.12) establishes the relation between Sm and Vm, from which we deduce
the following Proposition:

Proposition 3.6.4. ‖Sm‖1 ≤ ‖Vm‖1
2Γ .
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Proof. First, we note that since [adH0]−1 is the pseudoinverse of adH0 , it is customary
to rewrite Eq. (3.12) as iSm = [adH0]−1Vm. The pseudoinverse of adH0 in fact can be
easily obtained as follows. To be specific, let us consider adH0 as a map from Tm+1

to Tm+1, since iSm and Vm belong to Tm+1. Also recall that we have rotated the Pauli
basis such that H0 = Γ

∑
j Z j in order to define the one-norm. The I-P-M-Z strings

are in fact (non-normalized) eigenvectors of adH0 with eigenvalues 2(NP − NM)Γ,
where NP (NM) is the number of P (M) in the I-P-M-Z string. The pseudoinverse
[adH0]−1 is thus diagonal with eigenvalues 1

2(NP−NM )Γ if NP − NM , 0 and zero if
NP − NM = 0. Therefore, assuming Vm =

∑
j
∑

a vaQa
j;m+1 in the I-P-M-Z strings,

we have

‖Sm‖1 =
∑

a:NP−NM,0

���� va
2(NP − NM)Γ

����
≤

∑
a

|va |
2Γ
=
‖Vm‖1

2Γ
. (3.38)

�

We are now ready to consider the SW-rotated Hamiltonian, Eq. (3.9). To remind
readers, H′ is obtained by an exact unitary rotation using generators iS1, . . . , iSn,
which we call n-th order SW, with specific rules for finding these generators. Equa-
tion (3.9) represents a formal expansion of H′ in powers of ε . The “potentials” Vm

in Eq. (3.10) for m ≤ n (actually, even m ≤ n + 1) are already representative of the
infinite-order SW series and do not depend on n, while the potentials for m > n

that contribute to the “remainder” H>n actually depend on n. Not to overburden the
notation, we consider n as fixed and do not put extra label on such Vm. Below, we
focus on convergence properties of the formal expansion in ε of H>n, which will
also provide a bound on its norm and inform us about locality properties of H′.

To obtain an upper bound on the norm of H>n, we need some control over the Vm

terms, especially for m > n. This is provided by the following Lemma.

Lemma 3.6.1. In the SW construction to the n-th order, for m > n, ‖Vm‖F ≤
Γ(ρn)−m, where ρn ≡ 1

263n2 .

Proof. It is convenient to define vm ≡ ‖Vm‖1 and sm ≡ ‖Sm‖1. From Eq. (3.10),
abbreviating Akp ...k1 ≡ iadSkp . . . iadSk1

(H0) and Bkp ...k1 ≡ iadSkp . . . iadSk1
(T) and
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using triangle inequality, we have

‖Vm‖F ≤ vm ≤
m∑

p=2

∑
[k1,...,kp]=m

f(k1, . . . , kp)‖ Akp ...k1 ‖1

+

m−1∑
p=1

∑
[k1,...,kp]=m−1

f(k1, . . . , kp)‖ Bkp ...k1 ‖1 .

Using Proposition (3.6.3) and the fact that Sk` ∈ Tk`+1 and k` ≤ n, we have

‖Akp ...k1 ‖1 ≤ 2p(kp + · · · + k1 + 1) . . . (k1 + 1)
× skp . . . sk1 ‖H0‖1

≤ 2p

[ p∏̀
=1
(`n + 1)

]
× skp . . . sk1 ‖H0‖1

≤ p!
(
n + 1
Γ

) p

vkp . . . vk1 ‖H0‖1

< p!
(
n + 2
Γ

) p

vkp . . . vk1 ‖H0‖1 , (3.39)

where the last inequality is taken solely to simplify later calculations. Similarly, we
have

‖Bkp ...k1 ‖1 ≤ 2p(kp + · · · + k1 + 2) . . . (k1 + 2)
× skp . . . sk1 ‖T ‖1

≤ p!
(
n + 2
Γ

) p

vkp . . . vk1 ‖T ‖1 .

Next, we use the relation
∑
[k1,...,kp]=m f(k1, . . . , kp) (•) = 1

p!
∑
[k1,...,kp]=m (•), where

(•) is any summand symmetric under permutation of indices k1, . . . , kp. We therefore
obtain

vm ≤ ‖H0‖1
m∑

p=2
cp

∑
[k1,...,kp]=m

vk1 . . . vkp

+ ‖T ‖1
m−1∑
p=1

cp
∑

[k1,...,kp]=m−1
vk1 . . . vkp , (3.40)

where c ≡ n+2
Γ
.



95

It is convenient to iteratively define another set of numbers, µm, startingwith µ1 ≡ v1,
and

µm ≡ ‖H0‖1
m∑

p=2
cp

∑
k1+···+kp=m

µk1 . . . µkp

+ ‖T ‖1
m−1∑
p=1

cp
∑

k1+···+kp=m−1
µk1 . . . µkp , (3.41)

for m ≥ 2. Note that in the summation, the condition k` ≤ n for ` = 1, . . . , p is
omitted compared to Eq. (3.40) but we are still requiring 1 ≤ k`. It is easy to show
inductively that vm ≤ µm for all m.

We can now obtain bounds on the iteratively defined µm using auxiliary Taylor series
µ(z) ≡ ∑∞

m=1 µmzm. It is easy to verify that µ(z) satisfies equation

µ = ‖H0‖1
(

1
1 − cµ

− 1 − cµ
)

+ ‖T ‖1 z
(

1
1 − cµ

− 1
)
+ v1 z . (3.42)

Indeed, by expanding the right-hand-side in powers of µ, plugging in µ(z) series, and
matching the coefficients of zm on both sides, we reproduce the iterative definition
of µm. Solving for µ as a function of z and noting v1 = ‖T ‖1, we have

µ(z) = 1 −
√

1 − 4‖T ‖1(c + ‖H0‖1c2)z
2(c + ‖H0‖1c2)

,

where we have chosen the solution such that µ(0) = 0. Clearly, µ(z) is analytic in
the disk |z | ≤ z0, where

z0 ≡
1

4‖T ‖1(c + ‖H0‖1c2)
≥ 1

263n2 ≡ ρn . (3.43)

Here the number 263 is just a conservative estimation with no special meaning other
than that the inequality holds for any n ≥ 1, and we have used the fact that ‖H0‖1 = Γ
and ‖T ‖1 ≤

√
30‖T ‖F =

√
30Γ from Prop. 3.6.2.

Furthermore, inside the disk, |µ(z)| is bounded by

|µ(z)| ≤ 1
2(c + ‖H0‖1c2)

< Γ , (3.44)

where we have made a crude bound dropping any n dependence since it will not
affect considerations of the convergence of series in m below. By Cauchy’s theorem,

µm =
1

2πi

∮
|z |=ρn

µ(z)
zm+1 dz ≤ 1

2πi

∮
|z |=ρn

���� µ(z)zm+1

���� dz

≤ Γ(ρn)−m . (3.45)
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It follows that ‖Vm‖F ≤ vm ≤ µm ≤ Γ(ρn)−m. �

It is now easy to obtain the main bound:

Theorem 3.6.1. If ε
ρn
≤ 1

2 , then ‖H>n‖F ≤ 2Γ
(
ε
ρn

)n+1
= O

(
n2ε

)n+1.

Proof. We have

‖H>n‖F ≤
∞∑

m=n+1
εm‖Vm‖F ≤ Γ

(ε/ρn)n+1

1 − ε/ρn

≤ 2Γ
(
ε

ρn

)n+1
= O

(
n2ε

)n+1
. (3.46)

�

This theorem also implies that for a fixed n, for small enough ε < ρn the local SW
transformation has convergent expansion in ε . Since the expansion in ε is closely
related to expansion in maximum range, we thus have such a convergent expansion
in maximum range for the full SW-rotated Hamiltonian (at fixed n) in our definition
of the ‖ • ‖F norm, or simply U†HU belongs to the norm closure

⋃
M∈N TM .

It is important that n is understood as fixed since the available lower bound ρn on
the convergence radius goes to zero when n → ∞. Thus, even though we can
formally define SW series developed to arbitrary order, their convergence as n→∞
is not guaranteed even for very small perturbation. Nevertheless, bounds obtained
at finite n allow us to make rigorous lower bounds on the thermalization time as
discussed in the main text. We remark that while our bounds here are sufficient
for a general nonquantitative discussion of prethermalization in the perturbative
SW picture, we suspect that they are gross overestimates even in the spirit of such
bounds. Thus a numerical evaluation of such bounds in Appendix D suggests
qualitatively tighter bounds 1/ρn ∼ O(n) and ‖H>n‖ ≤ O(nnεn), which would lead
to a parametrically different thermalization time. In any case, we emphasize that all
numerical calculations with the SW construction of the quasi-conserved quantity in
the main text are exact and do not employ any such bounds (see also Appendix E).

Appendix C: Bound on adH(Ĩ(n))
In this appendix, we give an upper bound on the squared residual norm of Ĩ(n), or
‖adH(Ĩ(n))‖2F. For the sake of simplicity, we further assume 〈H0,T〉 = 0 from now
on. Again, to bound I>n, we need some control over the Im terms.
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Lemma 3.6.2. ‖Im‖F ≤ Γ(ρn)−m, where ρn =
1

263n2 .

Proof. Analogous to Lemma 3.6.1, we have

‖Im‖1 ≤ ‖H0‖1
m∑

p=1
cp

∑
[k1,...,kp]=m

vk1 . . . vkp

≤ ‖H0‖1
m∑

p=1
cp

∑
k1+···+kp=m

µk1 . . . µkp ≡ χm . (3.47)

Consider the auxiliary Taylor series χ(z) ≡ ∑∞
m=1 χmzm. It is easy to verify that

χ(z) = ‖H0‖1
[

1
1 − cµ(z) − 1

]
. (3.48)

χ(z) is analytic in the same domain as µ(z), i.e., in the disk |z | < z0. Inside the disk,
c |µ(z)| ≤ 1/2 and |χ(z)| ≤ ‖H0‖1 = Γ. By Cauchy’s theorem,

χm =
1

2πi

∮
|z |=ρn

χ(z)
zm+1 dz ≤ Γ(ρn)−m . (3.49)

It follows that ‖Im‖F ≤ ‖Im‖1 ≤ χm ≤ Γ(ρn)−m. �

We can now find a bound on I>n:

Theorem 3.6.2. If ε
ρn
≤ 1

2 , then ‖I>n‖F ≤ 2Γ
(
ε
ρn

)n+1
.

Proof. Similarly to Theorem 3.6.1, we have

‖I>n‖F ≤
∞∑

m=n+1
εm‖Im‖F ≤ 2Γ

(
ε

ρn

)n+1
, (3.50)

provided ε/ρn ≤ 1/2. �

This theorem also assures that for fixed n and small enough ε , we have ‖I ‖F < ∞;
thus I ∈ ⋃

M∈N TM under the norm ‖ • ‖F. Stated another way, for fixed n, the
expansion in ε converges for small enough ε ; since this is essentially an expansion
in the maximum range, the produced full I is quasi-local.

We now turn to the truncation I(n) and its component I(n)⊥ perpendicular to H in the
Frobenius inner product. Since we want a normalized Ĩ(n), we first prove a lower
bound on the norm of I(n)⊥.

Lemma 3.6.3. ‖I(n)⊥‖2F ≥ αε2Γ2 + Γ2O(n6ε3), where α > 0 if Tdiag , 0.
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Proof. From Eq. (3.15), we have

‖I(n)⊥‖2F = ‖I
(n)‖2F −

|〈H, I(n)〉|2

‖H‖2F
. (3.51)

Consider ���〈I(n),H〉��� = �����〈H0,H〉 +
n∑

m=1

(
εm〈Im,H0〉 + εm+1〈Im,T〉

)�����
≤

��Γ2 + ε 〈I1,H0〉 + ε2(〈I2,H0〉 + 〈I1,T〉)
��

+

n∑
m=3

εm‖Im‖F‖H0‖F +
n∑

m=2
εm+1‖Im‖F‖T ‖F ,

where we have used 〈H0,T〉 = 0.

The overlap between I(n) and H can be calculated explicitly toO(ε2) as follows. First,
notice that I1 = −iadS1(H0) = T − Tdiag = Toff-diag. Therefore we have 〈I1,H0〉 = 0.
On the other hand, 〈I1,T〉 = ‖Toff-diag‖2F.

Consider now I2 =
1
2iadS1iadS1(H0) − iadS2(H0). Since iadS2(H0) = Vdiag

2 − V2 =

−Voff-diag
2 , we have 〈iadS2(H0),H0〉 = 0. Hence 〈I2,H0〉 = −1

2 〈adS1adS1(H0),H0〉 =
−1

2 〈adS1(H0), adS1(H0)〉 = −1
2 ‖I1‖2F = −

1
2 ‖Toff-diag‖2F, wherewehave used 〈adSm(A), B〉 =

〈A, adSm(B)〉 (which follows from hermiticity of Sm).

Combining the above calculations, we have���〈I(n),H〉��� ≤ Γ
2

(
1 + ε2 ‖T

off-diag‖2F
2Γ2

)
+ Γ

∞∑
m=3

εm(‖Im‖F + ‖Im−1‖F)

≤ Γ
2

[
1 + ε2 ‖T

off-diag‖2F
2Γ2 + 2

∞∑
m=3

(
ε

ρn

)m
]

≤ Γ
2

[
1 + ε2 ‖T

off-diag‖2F
2Γ2 + 4

(
ε

ρn

)3
]
, (3.52)

where we have used ρn < 1 and assumed ε
ρn
≤ 1

2 .

We know ‖H‖2F = Γ
2(1 + ε2), since 〈H0,T〉 = 0. Hence

|〈I(n),H〉|2

‖H‖2F
≤ Γ

2

[
1 + ε2 ‖Toff-diag‖2F

2Γ2 + 4
(
ε
ρn

)3
]2

1 + ε2

= Γ
2 [

1 − αε2 + O(n6ε3)
]
, (3.53)
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where α ≡ 1 − ‖T
off-diag‖2F
Γ2 > 0 if Tdiag , 0. If Tdiag = 0 so that α = 0, one has to

verify the negativity of the coefficient of the next order ε3. While we expect this to
be true, to simplify the discussion we made the assumption that Tdiag , 0.

Finally, we have

‖I(n)‖F = ‖UH0U† − I>n‖F ≥ ‖H0‖F − ‖I>n‖F

≥ Γ

[
1 − 2

(
ε

ρn

)n+1
]
. (3.54)

We can therefore obtain

‖I(n)⊥‖2F ≥ Γ
2 [

1 + O(n2ε)n+1]2 − Γ2 [
1 − αε2 + O(n6ε3)

]
= αε2

Γ
2 + Γ2O(n6ε3) . (3.55)

�

We now have the ingredients for bounding adH(Ĩ(n)) and can prove the following
theorem:

Theorem 3.6.3. ‖adH(Ĩ(n))‖2F =
‖adH (I(n)⊥)‖2F
‖I(n)⊥‖2F

≤ O
(
n4n+6ε2n) .

Proof. First, we note that

‖adH(I(n)⊥)‖F = ‖adH(I(n))‖F = ‖adH(I) − adH(I>n)‖F
≤ ‖adH(I)‖F + ‖adH(I>n)‖F . (3.56)

The first term can be bounded by

‖adH(I)‖F = ‖[H,UH0U†]‖F = ‖[U†HU,H0]‖F
= ‖[H>n,H0]‖F ≤ ‖[H>n,H0]‖1

≤
∞∑

m=n+1
εm‖[Vm,H0]‖1

≤
∞∑

m=n+1
εm2(m + 1)vm‖H0‖1

≤ 2Γ2
∞∑

m=n+1
(m + 1)

(
ε

ρn

)m

= 2Γ2 (n + 2)βn+1

(1 − β)2

(
1 − βn + 1

n + 2

)
≤ 8Γ2(n + 2)βn+1 , (3.57)
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where we have defined β ≡ ε
ρn

and used β ≤ 1/2.

The second term in Eq. (3.56) can be bounded as

‖adH(I>n)‖F ≤
∞∑

m=n+1
εm‖adH(Im)‖1

≤
∞∑

m=n+1
εm2(m + 2)‖H‖1‖Im‖1

≤
∞∑

m=n+1
εm2(m + 2)

√
30

√
1 + ε2Γ‖Im‖1

≤ 4
√

15Γ2
∞∑

m=n+1
(m + 2)

(
ε

ρn

)m

= 4
√

15Γ2 (n + 3)βn+1

(1 − β)2

(
1 − βn + 2

n + 3

)
≤ 16

√
15Γ2(n + 3)βn+1 , (3.58)

where we have used ‖H‖1 ≤
√

30‖H‖F =
√

30Γ
√

1 + ε2 and
√

1 + ε2 <
√

2.

Combining the above two bounds and Lemma 3.6.3, we have

‖adH(I(n)⊥)‖2F
‖I(n)⊥‖2F

≤

[
Γ2(an + b)

(
ε
ρn

)n+1
]2

αε2Γ2 + Γ2O(n6ε3)

= Γ
2O

(
n4n+6ε2n

)
, (3.59)

where a = 8 + 16
√

15, b = 16 + 48
√

15. �

Appendix D: Better bounds on ‖Vm‖ and the convergence radius using numer-
ical experiments
In Appendix B, we estimated the convergence radius ρn ∼ 1/n2, which is a lower
bound. Thiswould give the thermalization time scale to beO(exp(A/

√
ε)), where ε is

the perturbation strength. In this Appendix, we demonstrate a numerical experiment
to support the conjecture that a tighter bound ρn ∼ 1/n is possible.

Recall that when bounding vm, following Ref. [21], we used a very crude bound
of (kp + . . . k1 + 1) . . . (k1 + 1) ≤ p!(n + 1)p, see Eq. (3.39). We suspect that this
approximation, which allowed an analytical calculation of the numbers µm which
bound vm, Eq. (3.41), is however too crude and changes the leading behavior of the
convergence radius ρn. If we do not make this approximation, we can define another
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Figure 3.8: (color online) Numerical calculations of the iterative bounds on ‖Vm‖1:
(a) µ̃m generated by Eq. (3.60) and (b) µm generated by Eq. (3.41), for different SW
order n. For convenience, the one-norms of ‖H0‖1 and ‖T ‖1 are taken to be one,
which does not affect the functional dependence of the convergence radius ρn on
n. The curve m = n+1 in (b) denotes the bound on the infinite-SW ‖Vm‖1 since
Vm does not depend on n once n ≥ m−1. Insets: the inverse convergence radius
ρ−1

n as a function of n. By assuming µ̃m = An(ρn)−m, or ln(µ̃m) = ln An − m ln(ρn)
for m > n, we can extract ln(1/ρn) from the slope of ln(µ̃m) vs m and plot ρ−1

n in
the inset. For ρn extracted from µ̃m, we suspect ρ−1

n ∼ n; while for µm, we observe
ρ−1

n ∼ n2 as expected.

set of numbers µ̃m which bound vm:

µ̃m ≡
m∑

p=2

∑
[k1,...,kp]=m

f(k1, . . . , kp)

×(kp + · · · + k1 + 1) . . . (k1 + 1) µ̃k1 . . . µ̃kp

+

m−1∑
p=1

∑
[k1,...,kp]=m−1

f(k1, . . . , kp)

×(kp + · · · + k1 + 2) . . . (k1 + 2) µ̃k1 . . . µ̃kp , (3.60)

where we have assumed ‖H0‖1 = ‖T ‖1 = Γ = 1, without loss of generality.

Starting with µ̃1 ≡ v1 = 1, we can iteratively calculate µ̃m for a given n. The results
are shown in Fig. 3.8(a). Recall that Vm for m ≤ n + 1 are already independent of
n (and can be viewed as representative of the infinite-order SW procedure), while
Vm for m > n + 1 describe formal expansion in powers of ε at fixed n and form the
“remainder” H>n. The same property is shared by µ̃m, i.e., µ̃m for m ≤ n + 1 are
independent of n and appear as the limiting curve in Fig. 3.8(a), while the data for
m > n determine convergence properties of the remainder H>n. For easy reference,
we quote several numbers on the limiting curve, which are “universal” numbers under
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this bounding procedure: µ̃2 = 6, µ̃3 = 82, µ̃4 = 1695, µ̃5 = 43995, etc. Focusing
now on the remainder terms and assuming behavior µ̃m = An(ρn)−m for m > n, we
can extract the convergence radius from the slope of ln(µ̃m) = ln(An) − m ln(ρn)
vs m. The inset shows the n dependence of the inverse convergence radius (ρn)−1,
which in fact suggests ρ−1

n ∼ n.

As a comparison, in Fig. 3.8(b) we also show the same procedure applied to µm,
Eq. (3.41), with the same normalization ‖H0‖1 = ‖T ‖1 = Γ = 1. In this case, the
inverse convergence radius ρ−1

n shows n2 behavior, as expected from the analysis
in Appendix B. Note that in this case we did not treat separately m ≤ n + 1 and
m > n + 1, since we used the same n-dependent c in the iteration equation for all
m. Of course, we know that vm no longer depends on n for m ≤ n + 1, and for each
m we could use µm from the smallest SW order n satisfying this condition to bound
such infinite-SW-order vm; these are indicated as “m = n + 1” curve in Fig. 3.8(b),
and we expect such procedure to bound vm by m2m.

To conclude, we thus suspect that the lower bound on the convergence radius can
be possibly tighter than in Appendix B and is tentatively ρn ∼ 1/n, though we do
not have a rigorous mathematical proof. Related to this, the behavior of µ̃m for
m ≤ n + 1, which bounds the infinite-SW-order vm, appears to be ln(µ̃m) = m ln(m)
up to subdominant contributions, compared to ln(µm) = 2m ln(m) [this could be
crudely seen by noting that the vertical range in panel (a) in Fig. 3.9 is two times
smaller than in panel (b)].

Appendix E: Numerical results for ‖Vm‖ in a generic model
In Sec. 3.3, we defined the local SW procedure to produce an effective Hamiltonian
that commutes with H0 up to order n. The procedure gives “potentials” Vm and
the generator iSm is chosen to eliminate the off-diagonal part of Vm for m ≤ n. In
Appendix B, we provided an analytical bound ‖Vm‖F ≤ ‖Vm‖1 ≤ Γ(ρn)−m, where
the inverse convergence radius grows as 1/ρn ∼ n2. These are bounds valid for all m

but are particularly used for m > n bounding the terms in the remainder H>n, while
for m ≤ n where Vm are already independent of n we can bound ‖Vm‖1 ≤ Γ(ρm)−m.
From numerical experiments in Appendix D with more accurate bounds, we see that
the bounds in Appendix B are too crude and better bounds are possible, tentatively
with 1/ρn ∼ n.

In this appendix, we directly calculate ‖Vm‖F and ‖Vm‖1, with no approximations,
in a generic model to compare with these theoretical bounds. All numerical results
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Figure 3.9: (color online) Actual Frobenius norms and one-norms (denoted by “F”
and “one” respectively) of operators Vm that appear in the SW transformation, to be
compared with bounds in Fig. 3.8. The model is defined using H0 in Eq. (3.21) with
Γ = 1 and T in Eqs. (3.22)-(3.26) with t1 = −12/121, t2 = 16/121, u0 = 9/121,
and w0 = t2. The parameters are chosen such that ‖H0‖1 = ‖T ‖1 = 1 and the ratios
among t1, t2, w0, u0 corresponding to the case with h = 1.5 and g = 2.0 in the main
text. Note that the actual ‖Vm‖F and ‖Vm‖1 are still decreasing for the accessible m,
in stark contrast with the bounds that show very fast increase (at least mm) starting
already at m = 1.

on the SW-generated quasi-conserved operators in the main text are also obtained
with no approximations but contain all terms including all factors of εm summed
up, while the purpose of this appendix is to measure individual Vm terms for direct
comparisons with theoretical bounds. Since Sm is determined fromVm by a relatively
simple local rule and the structure of Im is similar to Vm, we expect the results for
all these operators to be qualitatively similar and will focus on the potentials Vm.
Figure 3.9 shows the numerical values of ‖Vm‖F and ‖Vm‖1, calculated for the SW-
generated potentials for the model in Appendix A taking H0 in Eq. (3.21) with Γ = 1
and T in Eqs. (3.22)-(3.26) with t1 = −12/121, t2 = 16/121, u0 = 9/121, and
w0 = t2. The parameters are chosen such that ‖H0‖1 = ‖T ‖1 = 1, while the ratios
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among t1, t2, w0, u0 are such that they correspond to the case with J = 1, h = 1.5,
and g = 2 in the main text rotated to the new basis as described in Appendix
A; to directly connect with this data point in the main text, the appropriate ε is
approximately 1.936.

Recall that theVm generated by the SWprocedure are independent of the perturbation
parameter ε but contain all information needed for evaluating series for any ε . The
above normalization of H0 andT is chosen such that we can directly comparewith the
numbers in Appendix D. The best bounds in Appendix D are very quickly increasing
already starting with m = 1, reaching values e21 ∼ 109 already for m = 8, see top
panel in Fig. 3.9 remembering that it plots logarithms of the bounds on ‖Vm‖1. On
the other hand, the actual values of ‖Vm‖1 are decreasing with m for accessible
m. This suggests that even the best theoretical upper bound on ‖Vm‖1 is a vast
overestimation. In fact, taken at face value, the numerical results in Fig. 3.9 might
even suggests the possibility of convergence of the SW procedure in some models.
A more conservative view is that the actual ‖Vm‖1 will eventually start increasing
for large enough m, and the initial decrease is due to the chosen normalization
‖H0‖1 = ‖T ‖1 = 1 where the one-norm measure is somehow less fair between the
1-local and 2-local terms. However, we emphasize that the bounds in Appendix D
are obtained for exactly the same normalization and the comparison with the bounds
in Fig. 3.9 is fair. (We needed to use the one-norm in the theoretical bounds because
we were not able to prove analogs of Props. 3.6.3 and 3.6.4 for the Frobenius norm.)
The large difference between the actual norm and the theoretical bound starts already
at m = 2, where we have verified by direct analytical calculation of the potential V2

in Eq. (3.30) that ‖V2‖1 ≈ 0.286 while the bound µ̃2 = 6.

One likely source of the overestimation is that the theoretical bounds always replace
the norm of a sum of a large number of terms by the sum of norms of the terms, while
there can bemany cancellations among the terms. More specifically, we can trace the
faster-than-exponential growth of the bounds µ̃m to factors (kp+. . . k1+1) . . . (k1+1)
in the second line of Eq. (3.60) and (kp + . . . k1 + 2) . . . (k1 + 2) in the fourth line
of Eq. (3.60), which in turn originate from the factor r + s − 1 in the bound in
Prop. 3.6.3 for a commutator of an operator in Tr and an operator in Ts. Examining
Eq. (3.36) and how it is used in the proof of Prop. 3.6.3, we see that there are
2(r + s−1) ·3 ·4r−1 ·3 ·4s−1 terms that are being collected, while the number of basis
states for writing out adU(W) ∈ Tr+s−1 is 3 · 4r+s−2. (Here for simplicity we ignore
generation of multiple strings from products Qa

j;rQb
k;s.) Thus, an amplitude for
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each basis state will have roughly 6(r + s − 1) contributions. If these contributions
all came with the same sign, we would indeed obtain the bound in Prop. 3.6.3.
However, different contributions can come with different signs depending on details
of various commutators. If these signs were uncorrelated, it would be natural to
replace 6(r + s − 1) by

√
6(r + s − 1) when estimating a typical amplitude in the

operator string basis, and such a replacement could potentially bring the bound on
the growth of ‖Vm‖1 frommm to amuch slowermm/2. Thus, such cancellations, while
still not preventing eventual thermalization, could potentially lead to parametrically
longer relaxation times as a function of ε .2

Interestingly, there can be additional suppression of the growth of the bounds µ̃m

when we consider more carefully the bound in Prop. 3.6.4. Indeed, the denominator
in Prop. 3.6.4 represents the smallest possible energy difference between the energy
sectors of H0. However, at m-th order, Vm consists of pieces that have m of elemen-
tary (i.e., from the bare perturbation T) raising or lowering steps on the H0 sector
label. We may then guess that a typical term in Vm would be raising or lowering the
H0 sector label by roughly

√
m, so for estimating a typical contribution we could

replace the denominator 2Γ in Prop. 3.6.4 with 2Γ
√

m. However, we caution that the
discussed cancellations and suppressions compared to the earlier bounds implicitly
assume lack of structure among the various complicated terms, hence random-walk-
type estimates. If there is a structure that would lead to some sign or magnitude bias
among the terms, this could possibly arrest the discussed suppressions. Our numer-
ical experiment in Fig. 3.9 where we have not seen faster-than-exponential growth
yet, together with the speculative arguments above, suggest that the convergence of
the SW procedure is an open question worth further explorations. Even if eventually
the convergence radius vanishes, we clearly expect strong quantitative and perhaps
qualitative modifications of how this happens, which would also have implications
for estimates of the relaxation times.
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C h a p t e r 4

OUT-OF-TIME ORDERED CORRELATORS IN THE
NONINTERACTING INTEGRABLE MODELS

First discussed by Larkin and Ovchinnikov [1] and recently revived by Kitaev [2,
3], the out-of-time-ordered commutator/correlator (OTOC) has attracted a lot of
attention in the physics community across many different fields, including quantum
information, high-energy physics, and condensed matter physics. Consider

CWV (t) ≡
1
2
〈[W(t),V]†[W(t),V]〉

=
1
2

[
〈V†W(t)†W(t)V〉 + 〈W(t)†V†VW(t)〉

−〈W(t)†V†W(t)V〉 − 〈V†W(t)†VW(t)〉
]
,

where 〈O〉 ≡ Tr[e−βHO]/Tr[e−βH]denotes the thermal average andW(t) ≡ eiHtWe−iHt

is the Heisenberg evolution of the operator W . We see that the last line involves
operators with unusual time ordering, hence the name “OTOC.” In particular, if W

andV are Hermitian and unitary (e.g., Pauli matrices), then CWV (t) = 1−ReFWV (t),
where FWV (t) ≡ 〈W(t)VW(t)V〉.

There are several aspects about this object which make it interesting to study. First
of all, such C(t) is a possible diagnostic for quantum chaos. In classical physics,
one hallmark of chaos is that a small difference in the initial condition results in an
exponential deviation of the trajectory—the famous “butterfly effect.” Denoting q

as the generalized coordinate of the classical system in the language of Hamiltonian
dynamics, the butterfly effect can be diagnosed from the behavior | ∂q(t)

∂q(0) | ∼ eλLt ,
where λL is the Lyapunov exponent. The object ∂q(t)

∂q(0) can be calculated from the
Poisson bracket {q(t), p}P.B. [4, 5]. A natural generalization of this diagnostic to
quantum systems is by promoting the Poisson bracket to a commutator. Therefore,
the behavior of the objectC(t) = 〈|[x(t), p]|2〉 ∼ e2λLt is an immediate generalization
of the classical chaos to quantum systems, where using |A|2 ≡ A†A removes the
effect of phase cancellations when averaging. Unlike classical systems where λL

can be arbitrarily large, in quantum systems it was argued [4, 6] that under some
natural assumptions λL is bounded by 2π/β (assuming the unit ~ = 1), where β is
the inverse temperature of the system.
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Several works have used this diagnostic to argue for the existence of quantum
butterfly effect [7–10] and extract the Lyapunov exponent, with examples including
the O(N)model [11], fermionic models with critical Fermi surface [12], and weakly
diffusive metals [13]. On the other hand, some systems, for example Luttinger
liquids [14] and many-body localized systems [15–19], do not show the exponential
growth and are hence characterized as less chaotic or as slow scramblers. Also, some
works have shown that in certain Hamiltonians, the exponent extracted from OTOC
does not match the classical counterpart of the semiclassical limit [20, 21]. For
systems with bounded local Hilbert space and Hamiltonians with local interactions,
a work [22] proposed that the density-OTOC is a more suitable diagnostic.

Another perspective on the OTOC is that it demonstrates the instability of the
“thermal field double state” and the scrambling of information [4, 23, 24]. It is
expected that if F(t) is small [or C(t) is large] in the long-time limit, the system
is scrambled; while large F(t) [small C(t)] signals absence of scrambling. This
also leads to a more sophisticated quantum information-theoretical definition of
scrambling [25]. There are also some considerations regarding the quasiprobability
behind the OTOC [26, 27]. Several works used holographic description to show the
nontriviality of the OTOC [23, 28]. A conformal field theory calculation showed
agreement with the holographic calculations [24].

From the operator point of view, C(t) is a measure of operator spreading. Let us
consider a 1d quantum spin-1/2 chain for concreteness, and assume W operates on
site i (denoted asWi) whileV operates on site j (denoted asVj) which we will treat as
a “probe" and will vary its position. The Heisenberg-evolved operator Wi(t) can be
written in the basis of Pauli-string operators,Wi(t) =

∑
S aS(t)S, where S runs over all

Pauli-strings (e.g., . . . σx
0σ

z
1σ

z
2 . . . ) and aS(t) denotes the corresponding amplitudes.

Then, at infinite temperature, C(t) = 2
∑′

S |aS(t)|2, where the primed summation is
over the Pauli-strings with nontrivial commutation with Vj , or [S,Vj] , 0, and for
concreteness we assumed that such [S,Vj] is a Pauli string itself (times 2), as is the
case where the “probing” Vj is a single-site Pauli operator. Therefore, by examining
Vj at different positions, one can quantify to some degree howWi(t) is spread over the
space. Recent calculations in the case of the time evolution given by local random
quantum gates show nontrivial operator spreading and OTOC growth [29–34].

For systems whose evolution is described by a local Hamiltonian dynamics or a
local quantum circuit, a description has recently emerged that operators spread with
a front ballistically, with a velocity vB dubbed “butterfly velocity.” For systems
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governed by a local Hamiltonian, outside the light cone, at very short time, the
commutator function exhibits a position-dependent power-law growth in time, which
can be understood using Baker-Campbell-Hausdorff expansion of the Heisenberg
evolution of operators [35–38].

While operators spread with a ballistic velocity, the front itself can broaden. It has
been proposed recently [38] that the functional form of the wavefront has a universal
description

C(`, t) ∼ exp
[
−c
(` − vBt)1+p

tp

]
. (4.1)

(One has to also carefully specify the window around the wavefront where such
a description is valid.) Another characterization is to examine long-time behavior
along fixed-velocity rays [39]. For systems governed by local Hamiltonians, outside
the light cone, v > vB, one expects

C(` = vt, t) ∼ exp[−λ(v)t] , (4.2)

where λ(v) is dubbed a “velocity-dependent” Lyapunov exponent.

Note that strictly speaking, the above two proposals, Eqs. (4.1) and (4.2), are
describing different asymptotic regimes. However, if the two descriptions can
be connected smoothly, then one obtains λ(v) = c(v − vB)1+p. The exponent p

describes wavefront broadening as ∼ tp/(1+p) [39]. For example, for the random
circuit model [29, 31], we have p = 1 corresponding to ∼ t1/2 spreading. For
models with a noninteracting fermionic quasiparticle description [37–39], we have
p = 1/2 and ∼ t1/3 spreading. Finally, for one-dimensional (1D) chains of coupled
Sachdev-Ye-Kitaev quantum dots and models with a large-N limit, p = 0 and the
wavefront does not broaden but shows an exponential growth at fixed ` and increasing
t, which is reminiscent of the classical chaos—the butterfly effect [38–43]. While
the existence of a well-defined exponential growth regime for local Hamiltonians
with bounded local Hilbert spaces is still an outstanding question (with emerging
thinking that there is probably no such regime), a recent work [44] has reported an
exponential growth near the wavefront in spin models with long-range interactions.

While most of the works focus on the OTOC diagnosing scrambling in chaotic
systems, it is also interesting to consider its behavior in nonchaotic or integrable
systems. From the operator spreading and information scrambling point of view,
the OTOC in integrable systems could still be interesting and reveal some nontrivial
aspects. We therefore study in detail the OTOCs in the quantum Ising chain, hard-
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core boson models with short-range and long-range hoppings and Luttinger liquid
model.

4.1 Quantum Ising model
Here we study the OTOCs in the quantum Ising chain

H = − J
2

©­«
L−1∑
j=0

σz
jσ

z
j+1 + g

L−1∑
j=0

σx
j
ª®¬ , (4.3)

with periodic boundary condition. The specific choice of couplings is such that
at the T = 0 quantum critical point, g = 1, the maximal quasiparticle velocity is
vB = J, which is also the butterfly velocity and we will also set J = 1. We will
focus on the case where W and V are single-site Pauli matrices whose positions we
can vary. We will be interested in the quantities

Cµν(`, t) ≡
1
2
〈|[σµ

`
(t), σν

0 ]|
2〉 = 1 − ReFµν(`, t) , (4.4)

where µ, ν = x, y, z, and Fµν(`, t) = 〈σµ
`
(t)σν

0σ
µ
`
(t)σν

0 〉. Using lattice transla-
tion and mirror (i.e., j → − j) symmetries, one can easily show that Cµν(`, t) =
1
2 〈|[σ

µ
0 (t), σ

ν
`
]|2〉. In some occasions, it is more natural to consider the latter expres-

sion.

In particular, we will focus on Fxx(`, t), Fzz(`, t), and Fzx(`, t), as they represent
three different types of behavior of the OTOC in the quantum Ising chain. The
model is solved using Jordan-Wigner (JW) fermions. In terms of these, some
spin operators are local and some become nonlocal (i.e., contain string operator),
and the three OTOCs correspond to different combinations of local and nonlocal
operators. Previous studies [45] have shown that there is a qualitative distinction
between the dynamical correlation functions in the two cases. For operators that
are local in terms of the JW fermions, the correlations show power-law decay in
time at any temperature. On the other hand, correlations of nonlocal operators
decay exponentially in time. Thus, the nonlocal operators exhibit behavior that is
closer to generic (i.e., nonintegrable) “thermal” behavior, in contrast to the local
operators. Similar distinction has also been observed in quench settings [46–48],
where operators that are local in the JW fermions approach their limiting values in
a power-law fashion (“slow thermalization”), while for the nonlocal operators the
approach is exponential in time (“fast thermalization”); in both cases, the limiting
values are described by a generalized Gibbs ensemble appropriate for this integrable
model. It is therefore interesting to see if such qualitatively different behavior has
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any nontrivial correspondence in the OTOC calculations. Indeed, we observe that
the OTOC composed with local operators shows no sign of scrambling, namely
limt→∞ Fxx(`, t) = 1 (which is the same as the value at t = 0) and the approach is
t−1 power law. On the other hand, the OTOC composed with nonlocal operators
shows the signature of scrambling, limt→∞ Fzz(`, t) → 0. However, we find that the
long-time behavior of Fzz(`, t) is a very slow t−1/4 power law; this is a departure
from the exponential decays found in the dynamical correlation and quench settings
described above and shows that the OTOC encodes some different aspects; the very
slow decay is also highly unusual and not fully understood.

We consider the quantum Ising model, Eq. (4.3), on a finite chain with periodic
boundary conditions used to minimize boundary effects. We diagonalize the model
via Jordan-Wigner transformation and subsequent Bogoliubov transformation [45].
In the fermionic representation, the spin operators are written as σx

j = 1−2c†j c j and
σz

j = −
∏

j ′< j(1 − 2c†j ′c j ′)(c j + c†j ). We therefore obtain

H = HNSP+ + HRP− , (4.5)

HNS/R = − J
2

L−1∑
j=0

(
c†j c j+1 + c†j+1c j + c†j c†j+1 + c j+1c j − 2gc†j c j + g

)
, (4.6)

where P± = [1 ± (−1)Ntot]/2 are the projectors to even/odd fermion number parity
sectors, with Ntot =

∑L−1
j=0 c†j c j the total fermion number; HNS is understood with

c j+L = −c j boundary conditions (Neveu-Schwarz boundary conditions), while in
HR we have c j+L = c j (Ramond boundary conditions). We then use appropriate
Fourier transform ck =

1√
L

∑
j c je−ik j for each Hamiltonian HNS/R and Bogoliubov

transformation γk = ukck − iwkc†−k , diagonalizing HNS/R =
∑

k∈KNS/R εk(γ†kγk − 1
2 ),

where KNS = { (2n+1)π
L |n = 0, . . . , (L−1)} and KR = { 2nπ

L |n = 0, . . . , (L−1)}; the
quasiparticle dispersion is εk = J(1 + g2 − 2g cos k)1/2. This diagonalization is
achieved by choosing the coherence factors as uk = cos(θk/2) and wk = sin(θk/2),
where tan(θk) = sin(k)/[g − cos(k)].

When making connections with the spin model, particularly when dealing with the
string operators, it will be convenient to use Majorana representation. We will
follow Ref. [45] and introduce Majorana fermions A j ≡ c†j + c j and B j = c†j − c j .

The OTOCs can thus be expressed as fermionic correlation functions. The thermal
ensemble grants the Wick’s theorem, which allows us to express all the correlation
functions using two-point correlation functions. However, the different fermion
boundary conditions in the different fermion-number-parity sectors result in some
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complications in the calculation of dynamical correlation functions, and a more
sophisticated treatment is needed. We will carefully state the procedure below and
in the subsequent sections for the specific OTOCs. To prepare for such discussion,
we here introduce some notations which will be useful later.

To enable free-fermion calculations, we introduce thermal ensembles corresponding
to the two types of boundary conditions, ZNS/R ≡ Tr(e−βHNS/R) and 〈O〉NS/R ≡
Tr(e−βHNS/RO)/ZNS/R. Note that the trace in each case is defined over the full Fock
space, i.e., including both parity sectors, even though HNS/R originally arose in
the even/odd parity sectors. These ensembles are introduced because the Wick’s
theorem only holds for an ensemble defined with respect to a quadratic Hamiltonian
that is fixed over the full Fock space. To evaluate the thermal average with respect
to the spin Hamiltonian H, we recall Eq. (4.5) and use

〈O〉 = ZNS
Z
〈OP+〉NS +

ZR
Z
〈OP−〉R . (4.7)

Since P± = [1± (−1)Ntot]/2, we will have to calculate 〈O〉NS/R and 〈O(−1)Ntot〉NS/R.

We are interested in situations where O in Eq. (4.7) is composed of several time
evolved operators, O = Q1(t1)Q2(t2) . . . , where Q(t) = eiHtQe−iHt . To be able
to use free-fermion calculations and Wick’s theorem, it is crucial to require that
each Q1,Q2, . . . , does not change the fermion parity. In this case, considering, e.g.,
the operator in the first term in Eq. (4.7), we have: OP+ = Q1(t1)Q2(t2) . . . P+ =
QNS

1 (t1)Q
NS
2 (t2) . . . P+, where QNS(t) ≡ eiHNStQe−iHNSt . At this point, we can evalu-

ate

〈OP+〉NS = 〈QNS
1 (t1)Q

NS
2 (t2) . . . P+〉NS

= [〈QNS
1 (t1)Q

NS
2 (t2) . . . 〉NS + 〈Q

NS
1 (t1)Q

NS
2 (t2) . . . (−1)Ntot〉NS]/2 . (4.8)

For each term in the last expression, both the the density matrix and the time
evolution are determined by HNS viewed over the full Fock space (i.e., including
both parity sectors), thus enabling free-fermion calculations. Similar considerations
apply to the calculation of 〈OP−〉R, which can be expressed entirely in terms of free
fermions with Hamiltonian HR over the full Fock space. We will often abuse the
notation by dropping the labels “NS” or “R” in QNS(t) or QR(t) for brevity where
the precise meaning can be recovered from the context.

In the thermodynamic limit, one in fact expects 〈O(−1)Ntot〉NS/R → 0 and 〈O〉NS =
〈O〉R = 〈O〉. While for all the calculations one can in principle just evaluate 〈O〉NS
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or 〈O〉R and take the thermodynamical limit, in this paper we calculate exact finite-
size Fµν(`, t) [and hence Cµν(`, t)] using Eq. (4.7) so that we can compare the results
against exact diagonalization of the spin system at small system sizes to ensure the
correctness.

To study the behavior of Cµν(`, t) around the wavefront in more detail, or more
specifically, to examine if the wavefront has the functional formCµν(`, t) ∼ e−λ(`−ct),
we will also study the function Gµν(`, t) = ∂ ln Cµν(`, t)/∂t, which characterizes the
onset of the scrambling [40] if there is one and the spreading of the operator
wavefront [29, 31, 49]. When discussing the analytical results and the calculation
of Gµν(`, t), we consider only the part 〈O〉NS.

The crucial ingredients to obtain all the correlation functions are the two-point
Majorana correlation functions, which we list in Appendix A. In all the calculations
of the OTOC, we will need to use the numerical values of Z , ZNS, and ZR. The
partition sums ZNS and ZR can be calculated easily by ZNS/R =

∑
ENS/R e−βENS/R ,

where ENS/R denotes the eigenenergies of HNS/R. Note again that here we consider
HNS acting on the full fermion Fock space including both even and odd parity sectors
and performs free-fermion calculation of ZNS, and similarly treats HR to calculate
ZR. On the other hand, the calculation of Z is nontrivial as it involves the projectors
to the different sectors, and its details are presented in Appendix A.

4.2 Quantum Ising Model: XX OTOC
First, we discuss the commutator functionCxx(`, t) = 1−ReFxx(`, t). In the fermionic
representation, σx

`
= A`B`. Therefore we have

Fxx(`, t) = 〈A`(t)B`(t)A0B0 A`(t)B`(t)A0B0〉 . (4.9)

Note that we need to use Eq. (4.7) and evaluate both 〈OP+〉NS and 〈OP−〉R. While
these expectation values can be evaluated using Wick’s theorem, the calculation is
simplified when cast in the form of Pfaffians of anitsymmetric matrices. We present
details in Appendix B.

Figure 4.1 shows the numerical results for Cxx(`, t) at various time slices. We can
immediately identify the velocity of the wavefront as c = 1, which is the maximum
of the quasiparticle group velocity vk = ∂εk/∂k and is also the butterfly velocity
vB = c. In the present case, the OTOC function is “shell-like.” That is, inside
the timelike region, in the long-time limit, Cxx(`, t) → 0, indicating no scrambling.
More precisely, as far as characterizing the operator spreading ofσx(t), the vanishing
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Figure 4.1: (color online) The function Cxx(`, t) for the quantum Ising chain at the
critical point, g = 1, at infinite temperature (inverse temperature β = 0); the system
size is L = 512. We show data as a function of ` at fixed time t, for t in steps of
∆t = 2 marked along the right border; here and in all figures, the energy unit J in
Eq. (4.3) is set to 1. The traces at fixed t are shifted in the y direction by 0.025t thus
offering three-dimensional-like visualization. For every t that is a multiple of 10,
we mark the trace with red color for easier reading of the data. The light cone can
be readily identified and corresponds to the maximal quasiparticle group velocity
c = maxk

dεk
dk = J = 1. In the timelike region, Cxx(`, t) approaches zero in the

long-time limit, indicating the absence of “scrambling.”

of the Cxx OTOC in the long-time limit suggests that expansion of σx(t) in terms
of Pauli strings does not contain many σy or σz operators “in the middle” of the
strings. This can be indeed seen from the explicit expressions for σx(t) in Appendix
E.

“Universal” early-time growth with separation-dependent power law
Before the light cone reaches, we can argue that there is a “universal” power-law
growth of Cxx(`, t) ∼ t2(2`−1). Indeed, consider W = σx

0 and V = σx
`
. The

Heisenberg evolution W(t) at short time can be expanded via Hausdorff-Baker-
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Campbell (HBC) formula

W(t) =
∞∑

n=0

tn

n!
Ln(W) , (4.10)

where L(W) ≡ i[H,W]. It is easy to check that for these W and V , the small-
est n such that [Ln(W),V] , 0 is n = 2` − 1, and the nonzero contribution
to the commutator comes from the piece in Ln(W) that reaches site `, namely
J2`−1g`−1σ

y
0σ

x
1 . . . σ

x
`−1σ

z
`
. Therefore, the leading order behavior is

Cxx(`, t) ≈
2(Jt)4`−2g2`−2

[(2` − 1)!]2
, (4.11)

which is also shown in Fig. 4.2 and captures well the exact calculation in this regime.
We expect that such an argument based on the HBC formula is in fact very general
and not related to any integrability of the model [14, 50, 51]. We thus expect such
power-law growth with position-dependent power to be “universal,” present also in
nonintegrable systems, as long as one is considering systems with bounded on-site
Hilbert spaces and Hamiltonians with local interactions. Such a power-law growth
is indeed also observed in the XXZ model [14]. However, we emphasize that this
is just a quantum mechanical effect before the light cone reaches and should not be
identified as a signature of scrambling or lack of it.

Lastly, we note that if we fix time t and take the separation ` to large values,
the commutator function Cxx(`, t) decays faster than the exponential function in `,
namely Cxx(`, t) ∼ exp[a(t)` − 4` ln `], where a(t) is some number that depends on
t.

Behavior around the wavefront
To examine the behavior of Cxx(`, t) around the wavefront more closely, we study
the function

Gxx(`, t) ≡
∂ ln Cxx(`, t)

∂t
. (4.12)

We can calculate this in a way that avoids numerical differentiation (see Appendix
B for details) and present the results in Fig. 4.3. We see that before the oscillation
sets in, Gxx(`, t) shows very strong ` dependence. On the other hand, the inset in
Fig. 4.3 demonstrates that Gxx(`, t) shows essentially no temperature dependence.
We conclude that the behavior near this wavefront does not show the “exponential
divergence” that could be associated with the “butterfly effect,” and we can exclude
the possibility of any temperature-dependent description of the wavefront. Thinking
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Figure 4.2: (color online) The function Cxx(`, t) for several fixed separations `
at short time before the light cone reaches (i.e., spacelike separation between the
operators). The growth of the commutator is compared to the “universal” power-law
behavior given by≈ 2t2(2`−1)/[(2`−1)!]2; note that there is essentially no temperature
dependence in this regime.

about possible other descriptions of the wavefront, we do not clearly see a paramet-
rically large time window where we could sharply distinguish this transition region
behavior from the short-time and long-time behaviors. While we see that the onset
of oscillations (more precisely, onset of nonmonotonic behavior) happens at larger
t − `/c when ` is increased, at present we do not know if there is any asymptotic
functional form in a well-defined window to describe the wavefront. Thus we also
note that the frequency of oscillations vanishes as one approaches the `/t = c ray,
so the later “onset” of oscillations for larger ` could be related to this. In any
case, we can definitely tell that any “universal” description needs to be essentially
temperature-independent.

Note added: After the publication of this result, two papers [38, 39] appeared that
proposed a universal functional form for the OTOC around the wavefront. We verify
that the proposed wavefront description [39] indeed holds for Fxx(`, t) in Fig. 4.4.
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Figure 4.3: The derivative function Gxx(`, t) ≡ ∂ ln Cxx(`, t)/∂t around the wave-
front. Before the oscillation sets in, Gxx(`, t) has very strong ` dependence, for
which we do not know any universal description. Inset: Gxx(`, t) for fixed ` = 40
and several different inverse temperatures β, illustrating that there is basically no
temperature dependence around the wavefront.

Specifically, on rays with fixed velocity outside the light cone, (x = vt, t) with
v > c, we have verified that the OTOC has exponential decay ∼ exp[−λ(v)t] at long
times, with λ(v) vanishing as (v − c)3/2 as v → c. Furthermore, the broadening
we observed near the wavefront (seen, e.g., in the movement of the first oscillation
feature inside the light cone for increasing ` in Figs. 4.3.

Universal long-time decay with t−1 power law
The limiting value of Fxx(`, t) for fixed ` but t → ∞ can be easily shown to be
one. Indeed, considering all the Wick contractions in Eq. (4.9), we see that if the
contraction has any nonequal time correlation function, this term will be zero since
all the fermionic correlation functions go to zero in the t → ∞ limit. We therefore
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Figure 4.4: The behavior of the commutator function Cxx(`, t) = 1 − ReFxx(`, t)
along the ray ` = vt. (Recall σx is local in JW fermions.) The parameters are
g = 1, β = 0 and L = 512. The function displays a exponential decay at the long
times. The short-time behavior in the log-linear plot maybe a manifestation of some
power-law factor. For the figure at the right-hand side, I fit Cxx(`, t) to Ce−µxx(v)t

at the long-time region where it looks a straight line in the log-linear plot. The
behavior of µxx(v) ∼ (v − c) 3

2 .

have

Fxx(`,∞) = 〈A`(∞)B`(∞)A`(∞)B`(∞)〉〈A0B0 A0B0〉

=
(
〈A0B0〉2 + 1 + 〈A0B0〉〈B0 A0〉

)2
= 1 .

We conclude that Cxx(`,∞) = 0, which is a signature of no scrambling.

The long time behavior of Cxx(`, t) is shown in Fig. 4.5 for different separations
` and different inverse temperatures β. The data suggests universal t−1 behavior
independent of ` and β. We can indeed understand this from the stationary phase
approximation for the fermionic correlation functions. The standard stationary phase
approximation applied to the fermionic correlation functions gives t−1/2 decay at
long times. The full Wick contraction for Eq. (4.9) is complicated but can be
obtained by simplifying the calculation of the Pfaffian, see Appendix B for details.
From this, we can identify the dominant behavior at fixed ` and long time:

Czz(`, t) ∼
(
1 − 〈A0B0〉2

) 2
π |ε′′π |t

, (4.13)

where ε′′k is the second derivative of εk with respect to k (for g = 1 considered here,
|ε′′π | = J/2 = 1/2). Note that in this expression the temperature dependence enters
only in the expectation value 〈A0B0〉 = 〈σx

0 〉, which is zero at infinite temperature
and approaches value 0.7698 at zero temperature (so that the coefficient of the t−1

decay is always nonzero). We can recognize that the t−1 decay comes from two pairs
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Figure 4.5: Long-time behavior of Cxx(`, t) in the timelike region; note the log-log
scale. The data is shown as a function of t at fixed `, where on the horizontal axis we
show the time elapsed after the wavefront passes. Panel (a) shows several different
separations ` and is at infinite temperature; the inset shows the same data on the
linear-linear scale. Panel (b) shows several different temperatures at fixed separation
` = 20. In all cases, we observe power-law decay t−1, which can be understood
from the long-time behavior of the fermion correlation functions.

of unequal-time contractions and two pairs of equal-time contractions. Appendix
E provides qualitative understanding of this long-time behavior directly from the
operator spreading picture. We also note that the above calculations and qualitative
results hold for all g and nonzero temperatures.

It is interesting to compare theOTOCbehaviorwith results for dynamical correlation
functions as well as for thermalization of such spin observable in quench settings.
The dynamical correlation function 〈σx

`
(t)σx

0 〉 = 〈A`(t)B`(t)A0B0〉 approaches
〈σx

0 〉
2 in the long-time with t−1 power-law. Indeed, this power law comes from

simple calculation, 〈σx
`
(t)σx

0 〉 − 〈σ
x
0 〉

2 = 〈A`(t)B0〉〈B`(t)A0〉 − 〈A`(t)A0〉〈B`(t)B0〉,
and is ultimately related to the long-time behavior of the fermion dynamical corre-
lation function. However, we note that details of the contraction pieces (i.e., how
“fractions” of the spin operator get contracted) is different here compared to the
OTOC calculation, even though the long-time t−1 power law is similar. Let us now
consider quench setting where one starts with some initial state |ψini〉 (e.g., a product
state or a ground state at some other parameter g′ , g) and then evolves under the
present Hamiltonian. Here one finds that 〈ψini |σx

0 (t)|ψini〉 decays as t−3/2 to its
equilibrium value in the long-time limit [48]. Generally, it is clear that the OTOC,
dynamical correlation function, and behavior under quench, probe different aspects
of the Heisenberg-evolved operator σx

0 (t) (see also Appendix E).
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4.3 Quantum Ising Model: ZZ OTOC
In this section, we discuss the commutator function Czz(`, t) = 1 − ReFzz(`, t).
The new feature here is that σz

`
is nonlocal in terms of the JW fermions and

furthermore changes the fermion parity. While one canwriteσz
`
= −(∏ j<` A j B j)A`,

its Heisenberg evolution σz
`
(t) cannot be obtained from the simple free-fermion

Heisenberg evolution of the fermions A j(t) and B j(t). The reason is that the original
spin Hamiltonian in the fermionic language is in fact composed of projections into
two different fermion-parity sectors, with different free-fermion Hamiltonian used
in each sector. The operator σz

`
, however, changes the fermion-parity, while the

Heisenberg evolution of the fermion operators are simple only when working with
a fixed free-fermion Hamiltonian over the full Fock space. Therefore, we need a
more sophisticated treatment when calculating the dynamical quantities.

Following McCoy and Abraham [52], we “double” the OTOC and consider the
following quantity

Γzz(`, t; L) ≡ 〈σz
L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
〉 , (4.14)

where by periodic boundary conditions site L − ` ≡ −` will be “close” to site 0 (and
site L/2−` will be “close” to site L/2). Consider large enough L such that L/2 � `

and L/2 � vt for some characteristic velocity v (here v ≤ c = 1). Invoking the
Lieb-Robinson bound and the cluster property [52], we have

Γzz(`, t; L) ≈ 〈σz
L
2
(t)σz

L
2−̀
σz

L
2
(t)σz

L
2−̀
〉〈σz

L−̀ (t)σ
z
0σ

z
L−̀ (t)σ

z
0〉

= Fzz(`, t)Fzz(−`, t) = F2
zz(`, t) , (4.15)

where we have used the mirror symmetry Fzz(−`, t) = Fzz(`, t). The advantage of
introducing the function Γzz(`, t; L) is that σz(t) operators come in pairs that do not
change the fermion parity, which allows expressing the evolution using fixed free-
fermion Hamiltonians, so the full function can be calculated via Wick’s theorem
in terms of the JW fermions. Again, the evaluations of the Wick’s theorem can
be conveniently formulated as Pfaffians of appropriate antisymmetric matrices. We
present the details in Appendix C.

Figure 4.6 shows Czz(`, t) at g = 1.0, β = 0, calculated using the above procedure
on a system of size L = 512. Note that since we can only calculate F2

zz(`, t),
we recover the sign of ReFzz(`, t) by requiring “continuity” of the “derivative”
D`Fzz(`, t) ≡ Fzz(` + 1, t) − Fzz(`, t) and the known value of ReFzz(`, t) ≈ 1 in
the spacelike region ` � ct. We have verified such recovery of the sign also by
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examining continuity of ∂t Fzz(`, t) as we vary t. As in our study of Cxx(`, t) in
Fig. 4.1, we can immediately identify the light cone velocity as the maximal group
velocity of the quasiparticles. On the other hand, we also observe that Czz(`, t)
approaches a nonzero value inside the light cone at long times. In fact, in the
inset of Fig. 4.10(a), we can see that ReFzz(`, t) approaches zero in the long-time
limit, and hence Czz(`, t) approaches 1. Thus Czz(`, t) has a “ball-like” structure,
in contrast to the “shell-like” Cxx(`, t). We interpret this property of Czz(`, t) as a
signature of some scrambling of the information in the system. From the operator
spreading point of view, this behavior corresponds to σz

0 (t) having a lot of weight
on Pauli-strings with “random” σµ

`
in the middle of the strings; more precisely, the

infinite-temperature Czz(`, t) approaching 1 corresponds to the weight of the strings
that haveσµ

`
= σx orσy approaching 1/2 of the total weight, a kind of “scrambling.”

Early-time behavior of Czz(`, t)
The early-time growth ofCzz(`, t) can be also understood by the argument employing
the HBC expansion, Eq. (4.10). In this case, for W = σz

0 and V = σz
`
, the smallest

n such that [Ln(W),V] , 0 is n = 2` + 1; the corresponding piece in Ln[W] is
−J2`+1g`+1σx

0σ
x
1 . . . σ

x
`−1σ

y

`
. This gives us

Czz(`, t) ≈ 2
(Jt)2(2`+1)g2(`+1)

[(2` + 1)!]2
. (4.16)

In Fig. 4.7, we compare the above formula and the numerical results for Czz(`, t).
We see that the short-time behavior is well captured by this argument.

Behavior of Czz(`, t) around the wavefront
Here we investigate the behavior of Czz(`, t) around the wavefront. Again, we study
the derivative function

Gzz(`, t) ≡
∂ ln Czz(`, t)

∂t
. (4.17)

Details of the calculation that avoids numerical differentiation are presented in Ap-
pendix C. In principle, ifCzz(`, t) has the Lyapunov behavior, namely the exponential
growth around the wavefront, we should be able to extract this from Gzz(`, t = t0),
where t0 = `/c is the characteristic wavefront passage time defined using analyti-
cally known maximal group velocity c = 1. In Fig. 4.8, we see that Gzz(`, t) is well
described by a linear function λ0 + λ1(t − `/c) around the wave front. However, the
parameters λ0(`) and λ1(`) have a strong dependence on ` but very weak dependence
on β. It is therefore not clear if we should view this functional form as a well defined
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Figure 4.6: (color online) The function Czz(`, t) = 1 − ReFzz(`, t) for the critical
Ising chain (g = 1) at infinite temperature (β = 0), evaluated using the “doubling
trick,” Eq. (4.15), on a periodic chain of length L = 512. Here we restore the
sign of ReFzz(`, t) from Re

√
Γzz(`, t; L) by requiring “continuity” of the “derivative”

D`ReFzz(`, t) = ReFzz(` + 1, t) − ReFzz(`, t) (see text for details). We show data as
a function of ` at fixed t, with time steps ∆t = 2. The traces at fixed t are shifted
by 0.1t in the y-direction for 3D-like visualization; every t that is multiple of 10
is marked with red color for easier tracing. Similarly to Cxx(`, t) in Fig. 4.1, we
can readily identify the light cone and associate it with the maximal quasiparticle
velocity c = 1. UnlikeCxx(`, t), in the timelike regionCzz(`, t) approaches a nonzero
value close to 1 at long times. In other words, Fzz(`, t) approaches value close to
zero, which suggests scrambling of the information.
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Figure 4.7: (color online) The short-time behavior of Czz(`, t) examined for several
separations ` and different inverse temperatures β; the system is the same as in
Fig. 4.6. The early-time growth of Czz(`, t) is well described by the “universal”
power-law given by ≈ 2t4`+2/[(2` + 1)!]2.

asymptotic description and identify λ0 as the Lyapunov exponent. One possibil-
ity is that when ` is large, λ0 approaches a finite value while λ1 approaches zero,
therefore it is well-defined when ` → ∞ with `/t ∼ c fixed. In this case, around
the wavefront, we could say that Czz(`, t) ∼ exp[λ0(t − `/c)]. However, we do not
seem to have a parametrically large window exhibiting such behavior that could
be clearly separated from the short-time and long-time regimes. Furthermore, any
such Lyapunov exponent extracted from our data would be essentially temperature-
independent, which would not be consistent with existing proposals. We do see that
the onset of oscillations (which in our mind cuts off any asymptotic description of
the wavefront behavior) is pushed to larger t − `/c for larger `, but we do not know
if there is any asymptotic functional description to this. If there is, then similarly
to the Cxx wavefront in Fig. 4.3, the description should be essentially temperature
independent.

Following the proposals in Refs. [38, 39], we verify the wavefront broadening
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Figure 4.8: The derivative function Gzz(`, t) ≡ ∂ ln Czz(`, t)/∂t around the wave-
front. (a) Gzz(`, t) as a function of time for several different separations `, where the
horizontal axis shows time measured relative to the “exact” wavefront passage time
defined from the knownmaximal group velocity c = 1; this data shows shows strong
` dependence. Around t − `/c = 0, the behavior of Gzz(`, t) is well approximated by
a linear function. We fit Gzz(`, t) to λ0 + λ1(t − `/c) in the region t − `/c ∈ [−3, 3]
and show the resulting parameters g0 and g1 for different ` in the inset. (b) Gzz(`, t)
for fixed ` = 40 at different inverse temperatures β; we see that such wavefront
characterization does not show strong temperature dependence.

functional form of Czz(`, t) in Fig. 4.9. The OTOC Czz(`, t) again has exponential
decay ∼ exp[−λ(v)t] at long times, with λ(v) vanishing as (v − c)3/2 as v → c.
The broadening we observed near the wavefront is consistent with the proposed
broadening ∼ t1/3 ∼ `1/3.

Unusual slow t−1/4 power-law at long time
An analytical treatment of Czz(`, t) is very difficult since it involves analyzing the
Pfaffian of a large matrix with essentially infinite dimension in the thermodynamic
limit L → ∞. Here, we analyze it by examining the numerical results in Fig. 4.10.
As before, the data is for the critical Ising chain coupling, g = 1, and the calculations
are done for system size L = 512. The horizontal axis shows t−`/c. We focus on the
long-time behavior of the OTOC Fzz(`, t) after the wavefront passes. We discover
that, while Fzz(`, t) approaches zero in the long-time limit, the approach is described
by an oscillating function with a slow power-law envelope t−1/4. This long-time
power-law behavior is independent of the separation ` or the inverse temperature β.
It is worth mentioning that the finite-temperature calculation for the Ising conformal
field theory [24] gives the same limiting value as our lattice calculation. However,
our t−1/4 power-law approach behavior is not described by the conformal field theory.
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Figure 4.9: The behavior of the commutator function Czz(`, t) = 1 − ReFzz(`, t)
along the ray ` = vt. (Recall σz is nonlocal in JW fermions.) The parameters
are g = 1, β = 0 and L = 512. The function displays a exponential decay at the
long times. The short-time behavior is different from Cxx . For the figure at the
right-hand side, Czz(`, t) is fitted to Ce−µzz(v)t at the long-time region. The behavior
of µzz(v) ∼ (v − c) 3

2 . Surprisingly, the long-time behavior of Czz is very similar to
Cxx . The numerical values of µzz(v) and µxx(v) are very close.

We can further examine the oscillations by following a specific ray t = `/v for
varying v. We show this in Fig. 4.10(c), where we find a single oscillation frequency
for each such ray and show its dependence on v in the inset. We conjecture
that the frequency is determined by some “stationary phase” approximation on
a propagation factor exp(ik` − iεk t). This would give the oscillation frequency as
ω(v) = εk0 − k0v, where k0 is the momentum such that the quasiparticle group
velocity ∂εk/∂k |k=k0 = v. For v = 0, this gives ω(v = 0) = εk=π = 2, which is
the frequency where the quasiparticle group velocity is zero. The oscillations in
panels Fig. 4.10(a) and 4.10(b), where we analyze the limit t →∞ at fixed ` which
corresponds to v = 0, indeed appear to approach this frequency. However, at present
we do not have an analytical understanding of this “stationary phase” conjecture and
of the observed t−1/4 power law. We leave this most interesting and mysterious
observation as an open question.

In contrast, the dynamical correlation function 〈σz
`
(t)σz

0〉 decays exponentially in
t and ` as long as the temperature is nonzero [45, 53–57]. The decay length and
coherence time depend on the parameter regime (g and β). At infinite temperature,
the correlation function has a singular behavior 〈σz

`
(t)σz

0〉 = δ`,0e−t2 [58], consistent
with vanishing correlation length and coherence time. Similarly, calculations in
quench settings found that 〈ψini |σz

0 (t)|ψini〉 decays exponentially as well [47, 48].
We thus see that there is a qualitative difference between the long-time behaviors
of the OTOC and of the dynamical correlations as well as thermalization of the
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Figure 4.10: (color online) Long-time behavior of |ReFzz(`, t)| in the timelike
region (i.e., after the wavefront passes) at (a) different separations and (b) different
inverse temperatures. (a) For different separations and β = 0, in the long-time limit,
|ReFzz(`, t)| shows t−

1
4 decay. Inset: Linear plot of ReFzz(`, t), where we fixed the

sign by requiring continuity of the derivative Dt Fzz(`, t) ≡ Fzz(`, t + ∆t) − Fzz(`, t),
where ∆t is the time step in the numerical calculation. (b) The temperature only
affects the coefficient of the power-law decay; in the long-time limit, the decay is still
t−1/4. (c) ReFzz(`, t) along several different rays `/t = v = const inside the timelike
region, where for each v we observe single oscillation frequency that depends on
v. Inset: Comparison of the frequency fitted from from the numerical calculations
(red dots) and from the “stationary phase” conjecture (blue line) ω(v) = εk0 − k0v,
∂kε |k0 = v, described in the main text.

σz operator. This indicates that the OTOC captures some different aspects of the
physics, and this finding deserved further understanding.

4.4 Quantum Ising Model: ZX OTOC
Lastly, we discuss the function Czx(`, t). In the JW fermion language, here we have
both a nonlocal operator and a local operator. As in the case of Czz(`, t), σz changes
the fermion parity sector. Therefore, we need to use the “doubling trick.” We
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consider the following function:

Γzx(`, t; L) ≡ 〈σz
L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
〉 .

For large enough system size such that L/2 � `, L/2 � ct, and using the cluster
property and invoking the Lieb-Robinson bound, we have

Γzx(`, t; L) ≈ 〈σz
L
2
(t)σx

L
2−̀
σz

L
2
(t)σx

L
2−̀
〉〈σz

L−̀ (t)σ
x
0σ

z
L−̀ (t)σ

x
0 〉

= Fzx(`, t)Fzx(−`, t) = F2
zx(`, t) . (4.18)

In the last line, we have used translational invariance and the mirror symmetry
which gives Fzx(−`, t) = Fzx(`, t). We can now express Γzx(`, t; L) in terms of
the JW fermions evolving under fixed free-fermion Hamiltonians and reduce the
calculations to Pfaffians as detailed in Appendix D.

Figure 4.11 shows Czx(`, t) at g = 1.0, β = 0, calculated using system size L =

512. After the wavefront passes, Czx(`, t) approaches a nonzero value in the long-
time limit. In fact, ReFzx(`, t) approaches a negative value. We identify this
behavior as some “partial scrambling,” since ReFzx does not approach 1 (“absence
of scrambling”) or 0 (“total scrambling”).

Early-time behavior of Czx(`, t)
The short-time behavior of Czx(`, t) before the wavefront reaches is again described
by the “universal” power law with position-dependent exponent. In this case with
W = σx

0 and V = σz
`
, the smallest n such that [Ln(W),V] , 0 is n = 2`, and the

corresponding term in Ln[W] is −J2`g`σ
y
0σ

x
1 . . . σ

x
`−1σ

y

`
. We thus have the leading

behavior
Czx(`, t) ≈

2(Jt)4`g2`

[(2`)!]2
. (4.19)

In Fig. 4.12, we compare the exact numerical results with this leading-order predic-
tion at short time and find good agreement.

Behavior of Czx(`, t) around the wavefront
Here we also investigate the behavior of Czx(`, t) around the wavefront. We study
the derivative function

Gzx(`, t) ≡
∂ ln Czx(`, t)

∂t
; (4.20)

the details of the calculation are presented in Appendix D. Figure 4.13 shows the
results around the wavefront defined by c = 1. Similarly to our earlier findings for
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Figure 4.11: (color online) The function Czx(`, t) for the same critical Ising chain
as in Figs. 4.1 and 4.6. The traces at fixed t are shifted by 0.025t in the y-direction
for 3D-like visualization; every t that is a multiple of 10 is marked with red color
for easier tracing. We can readily indentify the light cone and the corresponding
velocity c = 1. In the timelike region, Czx(`, t) approaches a nonzero value larger
than 1 in the long-time limit, i.e., Fzx(`, t) approaches a negative value.

Gxx(`, t) and Gzz(`, t), we see that Gzx(`, t) has strong ` dependence but essentially
no β dependence. Again, we do not seem to have a parametrically large window
around the wavefront that can be sharply separated from the short-time and long-
time behaviors, andwe definitely do not have any temperature-dependent asymptotic
functional description.

Long-time behavior of Czx(`, t)
Figure 4.14 shows the long-time behavior of the OTOC Fzx(`, t). We can see that
Fzx approaches some nonzero value. Unlike our results for Fxx or Fzz, the approach
of the Fzx to the limiting value has a very strong ` dependence, and we have not been
able to identify a “universal” long-time description of this behavior. Furthermore,
the limiting value of Fzx(`, t) when t → ∞ appears to have strong β dependence,
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Figure 4.12: (color online) The short-time behavior of Czx(`, t) for several separa-
tions ` and different inverse temperatures β; the system is the same as in Fig. 4.11.
The early-time growth of Czx(`, t) is well described by the “universal” power law
≈ 2t4`/[(2`)!]2.

contributing to our difficulty of finding universal description.

4.5 Discussions of the results in the quantum Ising model
In this paper, we studied the behavior of the OTOC in the integrable quantum Ising
model. We focused on three different OTOCs, which are representative of different
combinations of two different types of operators in terms of the JW fermions. In
all cases, we can clearly identify the light cone velocity, which is given by the
maximum group velocity of the quasiparticles. We also argued that before the
wavefront reaches, the OTOCs have “universal” power-law growth with position-
dependent power. This can be understood from the Hausdorff-Baker-Campbell
expansion of the Heisenberg evolution of the operators. We expect that such early-
time power-law growth should also hold in nonintegrable models, as long as one
has bounded local Hilbert space and local Hamiltonian.

On the other hand, the long-time behaviors are different for the different OTOC
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Figure 4.13: The derivative function Gzx(`, t) ≡ ∂ ln Czx(`, t)/∂t around the wave-
front. Gzx(`, t) has very strong ` dependence and no apparent universal description.
Inset: Gzx(`, t) for fixed ` = 40 and several inverse temperatures β; there is essen-
tially no temperature dependence.

0 50 100 150

−0.5

0

0.5

1

 
 
 

(a)

0 50 100 150

−0.5

0

0.5

1

 

 
 
 
 

(b)

Figure 4.14: (color online) Long-time behavior of ReFzx(`, t) after the wavefront
passes. (a) For different separations ` at β = 0, the limiting value as t →∞ appears
to be the same, but the approach behavior has a strong ` dependence becoming more
slow for larger `. (b) For different inverse temperatures β at fixed ` = 20, we see
that both the limiting value and the approach behavior have significant temperature
dependence.
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types. The first type is represented by Cxx(`, t), which involves only operators
that are local in terms of the JW fermions. The OTOC can be calculated using a
finite number of Wick contractions in the fermionic language. The limiting value
of Cxx(`, t) is zero when t → ∞, which is a hallmark of absence of information
scrambling. The approach is given by t−1 power-law at long time, which can be
understood from the stationary phase approximation for the fermion correlation
function. This power law persists at any temperature and also at any parameter g of
the Ising model. We expect that OTOCs composed of operators that are local in JW
fermions will have similar behavior.

The second type is represented by Czz(`, t), which involves only operators that are
nonlocal in terms of the JW fermions (these operators contain “string” operator when
fermionizing the spin model). Due to this nonlocal character, the OTOC calculation
involves O(L) Wick contractions. In the long-time limit, Fzz(`, t) approaches zero
[Czz(`, t) approaches 1], which is a signature of scrambling. Interestingly, the
approach is a very slow power-law t−1/4. While we can tentatively identify the
frequency of oscillations that are present in the long-time behavior as coming from
the stationary phase approximation, it is not clear how the t−1/4 arises.

The aforementioned t−1/4 behavior of Fzz(`, t) is found at g = 1 and any β. One
immediate question is whether this behavior depends on g. We performed such
studies, although the results are not easy to interpret with available system sizes.
For g > 1, Fzz(`, t) appears to approach zero with a faster decay than t−1/4. We
observe oscillations with multiple frequencies, which makes it difficult to identify
the precise power-law decay. On the other hand, for g < 1, the decay has both
oscillating and nonoscillating components, which makes the identification of the
long-time behavior even more difficult, but the decay appears to be also faster than
t−1/4. Thus, for both g > 1 and g < 1 we seem to find power-law decay faster than
for the “critical” coupling g = 1. At present, we do not understand the origin of
this qualitative difference, which persists all the way to infinite temperature. We
can only speculate that the full many-body spectrum of the g = 1 Ising chain has
something special about it compared to g , 1, even though the thermodynamic
phase transition occurs only at zero temperature.

The last type of the OTOC behavior is represented by Czx(`, t) and involves both
local and nonlocal operators in terms of the JW fermions. However, the long-time
behavior of Czx(`, t) has a very strong ` dependence, while the limiting value also
has a β dependence. Because of this, we have not been able to find a “universal”



133

(`-independent) description for Czx(`, t) in the long-time limit.

For each of the three types of OTOCs, we tried to study the behavior around the
wavefront by considering the time derivative of the logarithm of the corresponding
Cµν(`, t) function. In all cases, we found a strong ` dependence and very weak β
dependence. Incidentally, such derivative Gzz(`, t) can be well described by a linear
function around the wavefront, but we do not know if there is some significance
to this. However, we cannot find any parametrically large time window that would
enable the exponential-growth description of the wavefront, and we can confidently
exclude possibility of any temperature-dependent asymptotic description.

We conclude with some open questions and future directions. The main unresolved
issue in the present paper is finding better physical understanding of the long-
time behavior of the Czz(`, t) commutator function. Recent studies [32] argued
that OTOCs in random quantum circuit models with a conserved charge have a
power-law approach in the long-time limit due to a diffusive charge spreading. Our
quantum Ising chain, besides the global Z2 symmetry, is also integrable and has
many integrals of motion, and it would be interesting to understand if there is a more
direct relation between the long-time OTOC behaviors and the integrals of motion.
We would also like to study OTOCs in other spin models that map to free fermions,
in particular, with U(1) global symmetry [59]. More generally, we would like to
understand OTOCs in other integrable models that do not map to free fermions, and
also effects of weak integrability breaking. Another interesting direction is to study
integrable models with long-range interactions. The model in this paper is short-
ranged and does not show any Lyapunov growth behavior near the wavefront. There
appears to be mounting evidence that even nonintegrable models but with local
interactions and bounded on-site Hilbert spaces do not have a precisely-defined
exponential Lyapunov growth regime near the wavefront. A very recent study [51]
proposed that such an exponential growth behavior can be found in nonintegrable
models with long-range interactions. It would be interesting to explore if integrable
models with long-range couplings may also exhibit the exponential growth regime.

AppendixA:Majorana two-point functions and partition sumof the spinmodel
Before we proceed, we remind the reader that in this appendix and in Appendices
B, C, and D, the time-dependent operators are understood as evolved under the
corresponding free-fermion Hamiltonians HNS/R as explained in the main text after
Eq. (4.7) and determined by the label of the ensemble used, 〈. . . 〉NS/R.
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We now list the Majorana two-point correlation functions, which are ingredients in
the applications of the Wick’s theorem:

〈Am(t)An〉NS/R =
1
L

∑
k∈KNS/R

e−ik(m−n)[
cos(εk t) − i sin(εk t) tanh

(
βεk

2

)]
,

〈Am(t)Bn〉NS/R =
1
L

∑
k∈KNS/R

e−ik(m−n)e−iθk[
cos(εk t) tanh

(
βεk

2

)
− i sin(εk t)

]
,

〈Bm(t)An〉NS/R =
−1
L

∑
k∈KNS/R

e−ik(m−n)eiθk[
cos(εk t) tanh

(
βεk

2

)
− i sin(εk t)

]
,

〈Bm(t)Bn〉NS/R =
−1
L

∑
k∈KNS/R

e−ik(m−n)[
cos(εk t) − i sin(εk t) tanh

(
βεk

2

)]
.

The equal-time correlations are thus 〈Am An〉NS/R = −〈BmBn〉NS/R = δmn, 〈AmBn〉NS/R =
1
L
∑

k∈KNS/R e−ik(m−n)e−iθk tanh(βεk/2), and 〈Bm An〉NS/R = −〈AnBm〉NS/R.

We define matrices [AANS/R](t) with matrix elements [AANS/R]mn (t) ≡ 〈Am(t)An〉NS/R
and analogously for [ABNS/R]mn (t), [BANS/R]mn (t) and [BBNS/R]mn (t). We also use [I] and
[0] to denote identity and zero matrices. For simplicity, the equal-time correlators
are denoted by omitting the time argument. We also use [AANS/R]m=i: j

n=k:l (t) to represent
the submatrix of [AANS/R](t) with row index from i to j and column index from k to
l. We will frequently omit NS/R in [AANS/R](t) and other matrices since it will be
clear from the context which matrix is used.

As we mentioned in the main text, the calculation of the partition function Z of the
spin model is less straightforward as it involves the projectors. Specifically, we have

Z = Tr(e−βHNSP+) + Tr(e−βHRP−) , (4.21)

where P± = [1 ± (−1)Ntot]/2. We therefore have

Z = ZNS
1 + 〈(−1)Ntot〉NS

2
+ ZR

1 − 〈(−1)Ntot〉R
2

. (4.22)
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In the Majorana fermion language,

(−1)Ntot = (−1)L(L−1)/2
L−1∏
j=0

A j

L−1∏
j=0

B j . (4.23)

Defining DNS/R = [ABNS/R]m=0:L−1
n=0:L−1 and

FNS/R =

(
0 DNS/R

−DT
NS/R 0

)
, (4.24)

we have by Wick’s theorem (recalling that equal-time contractions 〈Am An〉NS/R and
〈BmBn〉NS/R vanish for m , n):

〈(−1)Ntot〉NS/R = (−1)L(L−1)/2Pf(FNS/R)
= det(DNS/R) . (4.25)

Appendix B: Pfaffian calculation of Fxx(`, t)
In this appendix, we present details of the calculation of Fxx(`, t) for the spin chain
with periodic boundary conditions using the Pfaffian method. We define 2 × 2
matrices

Rxx
NS/R =

(
0 [AB]00

−[AB]00 0

)
,

Sxx
NS/R =

(
[AA]`0(t) [AB]

`
0(t)

[BA]`0(t) [BB]
`
0(t)

)
,

U xx
NS/R =

(
[AA]0

`
(−t) [BA]0

`
(−t)

[AB]0
`
(−t) [BB]0

`
(−t)

)
,

J xx =

(
1 0
0 −1

)
;

4 × 4 matrices

M xx
NS/R =

(
Rxx
NS/R Sxx

NS/R
−(Sxx

NS/R)
T Rxx

NS/R

)
,

N xx
NS/R =

(
J xx+Rxx

NS/R Sxx
NS/R

(U xx
NS/R)

T J xx+Rxx
NS/R

)
;

8 × 8 matrix

Φ
xx
NS/R =

(
M xx

NS/R N xx
NS/R

−(N xx
NS/R)

T M xx
NS/R

)
;
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and 4 × 2L matrix

Qxx
NS/R =

©­­­­­«
[AA]`n=0:L−1(t) [AB]

`
n=0:L−1(t)

[BA]`n=0:L−1(t) [BB]
`
n=0:L−1(t)

[I]0n=0:L−1 [0]0n=0:L−1
[0]0n=0:L−1 −[I]0n=0:L−1

ª®®®®®¬
.

Applying Wick’s theorem, we have

〈σx
` (t)σ

x
0σ

x
` (t)σ

x
0 〉NS/R = Pf(Φxx

NS/R) ,
〈σx

` (t)σ
x
0σ

x
` (t)σ

x
0 (−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf
©­­«

M xx
NS/R N xx

NS/R Qxx
NS/R

−(N xx
NS/R)

T M xx
NS/R Qxx

NS/R
−(Qxx

NS/R)
T −(Qxx

NS/R)
T FNS/R

ª®®®¬ .

In the thermodynamic limit, we expect 〈σx
`
(t)σx

0σ
x
`
(t)σx

0 〉 = 〈σ
x
`
(t)σx

0σ
x
`
(t)σx

0 〉NS/R.

To obtain a compact analytical result, we focus on 〈σx
`
(t)σx

0σ
x
`
(t)σx

0 〉NS. The
Pfaffian can be simplified as follows (we omit the labels “xx” and “NS” for brevity):

Pf

©­­­­­«
R S J+R S

−ST R UT J+R

−J+R −U R S

−ST −J+R −ST R

ª®®®®®¬
= Pf

©­­­­­«
R S J+R 0
−ST R UT J

−J+R −U R S+U

0 −J −(ST+UT) 0

ª®®®®®¬
= Pf

©­­­­­«
R S J 0
−ST R ST+UT J

−J −(S+U) 0 S+U

0 −J −(ST+UT) 0

ª®®®®®¬
= Pf

©­­­­­«
R S J 0
−ST R 0 J

−J 0 0 S+U

0 −J −(ST+UT) 0

ª®®®®®¬
.

The matrix S +U is

S +U = 2

(
Re〈A`(t)A0〉 i Im〈A`(t)B0〉
i Im〈B`(t)A0〉 Re〈B`(t)B0〉

)
,
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and we therefore obtain

Fxx(`, t) = 1 + 2i 〈B`(t)A0〉 Im〈B`(t)A0〉
+ 2i 〈A`(t)B0〉 Im〈A`(t)B0〉
− 2〈A`(t)A0〉 Re〈A`(t)A0〉
− 2〈B`(t)B0〉 Re〈B`(t)B0〉
− 4〈A0B0〉2 Re〈A`(t)A0〉 Re〈B`(t)B0〉
+ 4〈A`(t)A0〉 〈B`(t)B0〉 Im〈A`(t)B0〉 Im〈B`(t)A0〉
+ 4〈A`(t)A0〉 〈B`(t)B0〉 Re〈A`(t)A0〉 Re〈B`(t)B0〉
− 4〈A`(t)B0〉 〈B`(t)A0〉 Im〈A`(t)B0〉 Im〈B`(t)A0〉
− 4〈A`(t)B0〉 〈B`(t)A0〉 Re〈A`(t)A0〉 Re〈B`(t)B0〉 .

We can identify the leading behavior as

ReFxx(`, t) ∼ 1 − 2
[
(Im〈B`(t)A0〉)2 + (Im〈A`(t)B0〉)2

+(Re〈A`(t)A0〉)2 + (Re〈B`(t)B0〉)2
]

− 4〈A0B0〉2 [Im〈A`(t)B0〉 Im〈B`(t)A0〉
+Re〈A`(t)A0〉 Re〈B`(t)B0〉] .

(4.26)

If we follow the ray `/t = v, where |v | < c, in the long-time limit, we can use the
stationary phase approximation and obtain

Re〈A`(t)A0〉 ∼
√

1
2πε′′k0

t
cos

(
ω0t − π

4

)
,

Re〈B`(t)B0〉 ∼ −
√

1
2πε′′k0

t
cos

(
ω0t − π

4

)
,

Im〈A`(t)B0〉 ∼ −
√

1
2πε′′k0

t
sin

(
ω0t − θk0 −

π

4

)
,

Im〈B`(t)A0〉 ∼
√

1
2πε′′k0

t
sin

(
ω0t + θk0 −

π

4

)
.

Here k0 is the wavevector satisfying dεk/dk |k0 = v, and ω0 ≡ εk0 − k0v is the
frequency. In particular, if we fix ` and consider long-time limit, this effectively
corresponds to v = 0 and gives k0 = π and θπ = 0. In this case we find that
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the limiting behavior of ReFxx(`, t) is t−1 decay without oscillation, and we obtain
Eq. (4.13) quoted in the main text.

To calculate Gxx(`, t) ≡ ∂ ln Cxx(`,t)
∂t , we use

Gxx(`, t) =
−1

1 − RePf[Φxx
NS]

Re
(dPf[Φxx

NS]
dt

)
, (4.27)

where the derivative of the Pfaffian can be calculated as

dPf[Φxx
NS]

dt
=

1
2
Pf[Φxx

NS]Tr
[
(Φxx

NS)
−1 dΦxx

NS
dt

]
. (4.28)

The difference between results obtained using “NS” and “R” boundary conditions
is very small for large enough systems.

Appendix C: Pfaffian calculation of Fzz(`, t)
Here we present details of the calculation of Fzz(`, t). The “doubled” OTOC
Γzz(`, t; L), Eq. (4.14), can be written in terms of the JW fermions as

Γzz(`, t; L) =
〈©­«

L−̀−1∏
j= L

2

B j(t)Aj+1(t)
ª®®¬
©­«

L
2−̀−1∏
j=0

B j A j+1
ª®¬

©­«
L−̀−1∏
j= L

2

B j(t)A j+1(t)
ª®®¬
©­«

L
2−̀−1∏
j=0

B j A j+1
ª®¬
〉
.

We again need to calculate both “RS” and “N” pieces. We define (L −2`)× (L −2`)
matrices

Rzz
NS/R =

©­­«
[0] [AB]m=1: L2−̀

n=0: L2−̀−1

[BA]m=0: L2−̀−1
n=1: L2−̀

[0]

ª®®¬ ,
Szz
NS/R =

©­­«
[AA]m=

L
2 :L−̀−1

n=0: L2−̀−1
(t) [AB]m=1+ L

2 :L−̀
n=0: L2−̀−1

(t)

[BA]m=
L
2 :L−̀−1

n=1: L2−̀
(t) [BB]m=

L
2 :L−̀−1

n=0: L2−̀−1
(t)

ª®®¬ ,
Uzz
NS/R =

©­­«
[AA]m=

L
2 :L−̀−1

n=0: L2−̀−1
(−t) [BA]m=1+ L

2 :L−̀
n=0: L2−̀−1

(−t)

[AB]m=
L
2 :L−̀−1

n=1: L2−̀
(−t) [BB]m=

L
2 :L−̀−1

n=0: L2−̀−1
(−t)

ª®®¬ ,
J zz =

(
[I] [0]
[0] −[I]

)
,
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where [I] and [0] are ( L2 −`) × (
L
2 −`) unit and zero matrices respectively. We then

construct 2(L − 2`) × 2(L − 2`) matrices

M zz
NS/R =

(
Rzz
NS/R Szz

NS/R
−(Szz

NS/R)
T Rzz

NS/R

)
,

N zz
NS/R =

(
J zz+Rzz

NS/R Szz
NS/R

(Uzz
NS/R)

T J zz+Rzz
NS/R

)
,

and 4(L − 2`) × 4(L − 2`) matrix

Φ
zz
NS/R =

(
M zz

NS/R N zz
NS/R

−(N zz
NS/R)

T M zz
NS/R

)
.

Finally, we also define 2(L − 2`) × 2L matrix

Qzz
NS/R =

©­­­­­­«
[AA]m=1+L2 :L−̀

n=0:L−1 (t) [AB]m=1+L2 :L−̀
n=0:L−1 (t)

[BA]m=
L
2 :L−̀−1

n=0:L−1 (t) [BB]m=
L
2 :L−̀−1

n=0:L−1 (t)
[I]m=0: L2−̀−1

n=0:L−1 [AB]m=1: L2−̀
n=0:L−1

[BA]m=0: L2−̀−1
n=0:L−1 −[I]m=0: L2−̀−1

n=0:L−1

ª®®®®®®¬
.

We can now compactly write the results of applying the Wick’s theorem:

〈σz
L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
〉NS/R

= Pf(Φzz
NS/R) ,

〈σz
L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
z
0σ

z
L
2−̀
(−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf
©­­«

M zz
NS/R N zz

NS/R Qzz
NS/R

−(N zz
NS/R)

T M zz
NS/R Qzz

NS/R
−(Qzz

NS/R)
T −(Qzz

NS/R)
T FNS/R

ª®®®¬ .

We evaluate these numerically and combine to obtain the Czz results for the spin
system with periodic boundary conditions presented in the main text.

To calculate Gzz(`, t) ≡ ∂ ln Czz(`,t)
∂t , we use

Gzz(`, t) =
∓1

1 ∓ Re
√
Pf[Φzz

NS]
Re

©­­«
d
√
Pf[Φzz

NS]

dt

ª®®¬ ,
where the upper/lower sign corresponds to the upper/lower sign inReFzz = ±Re

√
Pf[Φzz

NS]
respectively (recall from the main text that we are calculating Pf[Φzz

NS] ≈ F2
zz and
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recover the sign when taking the square-root by continuity in parameters t and `).
We calculate the derivative of the Pfaffian in the standard way,

dPf[Φzz
NS]

dt
=

1
2
Pf[Φzz

NS]Tr
[
(Φzz

NS)
−1 dΦzz

NS
dt

]
.

Again, there is essentially no difference between results from NS sector and from
both sectors in the thermodynamic limit.

Appendix D: Pfaffian calculation of Fzx(`, t)
Here we present details of the calculation of Fzx(`, t). The “doubled” OTOC
Γzx(`, t; L), Eq. (4.18), can be written in terms of the JW fermions as

Γzx(`, t; L) =
〈©­«

L−̀−1∏
j=L/2

B j(t)A j+1(t)
ª®¬ A0 A L

2−̀
B0B L

2−̀

©­«
L−̀−1∏
j=L/2

B j(t)A j+1(t)
ª®¬ A0 A L

2−̀
B0B L

2−̀

〉
.

We define (L − 2` + 4) × (L − 2` + 4) matrices

M zx
NS/R =

©­­­­­­­­­­­­­­­­­­«

[0] [AB]m=1: L2 −̀
n=0: L2 −̀ −1

[AA]m=1+L2 :L−̀
n=0 (t) [AA]m=1+ L

2 :L−̀
n= L

2 −̀
(t) [AB]m=1+ L

2 :L−̀
n=0 (t) [AB]m=1+ L

2 :L−̀
n= L

2 −̀
(t)

[BA]m=0: L2 −̀ −1
n=1: L2 −̀

[0] [BA]m=
L
2 :L−̀ −1

n=0 (t) [BA]m=
L
2 :L−̀ −1

n= L
2 −̀

(t) [BB]m=
L
2 :L−̀ −1

n=0 (t) [BB]m=
L
2 :L−̀ −1

n= L
2 −̀

(t)

−[AA]m=0
n=1+ L

2 :L−̀
(t) −[BA]m=0

n= L
2 :L−̀ −1

(t) 0 0 [AB]m=0
n=0 [AB]m=0

n= L
2 −̀

−[AA]m=
L
2 −̀

n=1+ L
2 :L−̀

(t) −[BA]m=
L
2 −̀

n= L
2 :L−̀ −1

(t) 0 0 [AB]m=
L
2 −̀

n=0 [AB]m=0
n=0

−[AB]m=0
n=1+ L

2 :L−̀
(t) −[BB]m=0

n= L
2 :L−̀ −1

(t) −[AB]m=0
n=0 −[AB]m=

L
2 −̀

n=0 0 0

−[AB]m=
L
2 −̀

n=1+ L
2 :L−̀

(t) −[BB]m=
L
2 −̀

n= L
2 :L−̀ −1

(t) −[AB]m=0
n= L

2 −̀
−[AB]m=0

n=0 0 0

ª®®®®®®®®®®®®®®®®®®¬

,

N zx
NS/R =

©­­­­­­­­­­­­­­­­­­«

[I] [AB]m=1: L2 −̀
n=0: L2 −̀ −1

[AA]m=1+ L
2 :L−̀

n=0 (t) [AA]m=1+ L
2 :L−̀

n= L
2 −̀

(t) [AB]m=1+ L
2 :L−̀

n=0 (t) [AB]m=1+ L
2 :L−̀

n= L
2 −̀

(t)

[BA]m=0: L2 −̀ −1
n=1: L2 −̀

−[I] [BA]m=
L
2 :L−̀ −1

n=0 (t) [BA]m=
L
2 :L−̀ −1

n= L
2 −̀

(t) [BB]m=
L
2 :L−̀ −1

n=0 (t) [BB]m=
L
2 :L−̀ −1

n= L
2 −̀

(t)

[AA]m=0
n=1+ L

2 :L−̀
(−t) [AB]m=0

n= L
2 :L−̀ −1

(−t) 1 0 [AB]m=0
n=0 [AB]m=0

n= L
2 −̀

[AA]m=
L
2 −̀

n=1+ L
2 :L−̀

(−t) [AB]m=
L
2 −̀

n= L
2 :L−̀ −1

(−t) 0 1 [AB]m=
L
2 −̀

n=0 [AB]m=0
n=0

[BA]m=0
n=1+ L

2 :L−̀
(−t) [BB]m=0

n= L
2 :L−̀ −1

(−t) [BA]m=0
n=0 [BA]m=

L
2 −̀

n=0 −1 0

[BA]m=
L
2 −̀

n=1+ L
2 :L−̀

(−t) [BB]m=
L
2 −̀

n= L
2 :L−̀ −1

(−t) [BA]m=0
n= L

2 −̀
[BA]m=0

n=0 0 −1

ª®®®®®®®®®®®®®®®®®®¬

,

and combine these to form 2(L − 2` + 4) × 2(L − 2` + 4) matrix

Φ
zx
NS/R =

(
M zx

NS/R N zx
NS/R

−(N zx
NS/R)

T M zx
NS/R

)
;
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finally, we also define (L − 2` + 4) × 2L matrix

Qzx
NS/R =

©­­­­­­­­­­­«

[AA]m=1+L2 :L−̀
n=0:L−1 (t) [AB]m=1+L2 :L−̀

n=0:L−1 (t)
[BA]m=

L
2 :L−̀−1

n=0:L−1 (t) [BB]m=
L
2 :L−̀−1

n=0:L−1 (t)
[I]m=0

n=0:L−1 [AB]m=0
n=0:L−1

[I]m=
L
2−̀

n=0:L−1 [AB]m=
L
2−̀

n=0:L−1
[BA]m=0

n=0:L−1 −[I]m=0
n=0:L−1

[BA]m=
L
2−̀

n=0:L−1 −[I]m=
L
2−̀

n=0:L−1

ª®®®®®®®®®®®¬
.

We can now write the result of applying the Wick’s theorem to the calculation of
Γzx as

〈σz
L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
〉NS/R

= Pf[Φzx
NS/R] ,

〈σz
L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
σz

L
2
(t)σz

L−̀ (t)σ
x
0σ

x
L
2−̀
(−1)Ntot〉NS/R

= (−1)
L(L−1)

2 Pf
©­­«

M zx
NS/R N zx

NS/R Qzx
NS/R

−(N zx
NS/R)

T M zx
NS/R Qzx

NS/R
−(Qzx

NS/R)
T −(Qzx

NS/R)
T FNS/R

ª®®®¬ .

To calculate Gzx(`, t) ≡ ∂ ln Czx(`,t)
∂t , we use

Gzx(`, t) =
∓1

1 ∓ Re
√
Pf[Φzx

NS]
Re

©­­«
d
√
Pf[Φzx

NS]

dt

ª®®¬ ,
where the upper/lower signs correspond to the upper/lower sign inReFzx = ±Re

√
Pf[Φzx

NS]
respectively (the correct sign is determined using continuity considerations). The
derivative of the Pfaffian can be calculated as dPf[Φzx

NS]
dt = 1

2Pf[Φ
zx
NS]Tr[(Φ

zx
NS)
−1 dΦzx

NS
dt ].

Appendix E: Exact Heisenberg evolution of σx(t)
Following Ref. [58], we can obtain a compact expression for the Heisenberg evolu-
tion of σx

j (t) under the quantum Ising Hamiltonian, Eq. (4.3), at the critical coupling
g = 1. With this in hand, we can in fact gain more intuition about the commutator
functions Cxx(`, t) and Czx(`, t) at β = 0 from the operator spreading point of view.
We defineMajorana fermions P2 j = (

∏ j−1
j ′=−∞ σ

x
j ′)σ

z
j and P2 j+1 = −(

∏ j−1
j ′=−∞ σ

x
j ′)σ

y
j .

(Note that these are simply related to the Majoranas in the main text and the previ-
ous appendices by A j = −P2 j and B j = iP2 j+1; the convenience of Pn’s is that the
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critical Ising model gives a Majorana chain that is invariant under translation by one
Majorana, n→ n+1.) We have [58]

Pn(t) =
∑

k

Pn+k J−k(2t) =
∑

m

PmJn−m(2t) , (4.29)

σx
0 (t) =

∑
m,m′

iPmPm′J−m+1(2t)J−m′(2t) , (4.30)

where Jn is the n-th order Bessel function of the first kind.

The summation is over all integers m and m′ and this expression holds in an infinite
system. We can reorganize the summation over m and m′ into a summation over
ordered pairs,

σx
0 (t) =

∑
m<m′

iPmPm′Fm,m′(2t) , (4.31)

where
Fm,m′(2t) ≡ J−m+1(2t)J−m′(2t) − J−m′+1(2t)J−m(2t) . (4.32)

Note that Fm,m′(2t) = −Fm′,m(2t) is antisymmetric. The summation terms in
Eq. (4.30) with m=m′ give zero since∑

m

J−m+1J−m = −
∑

m

Jm−1Jm = −
∑̃

m

J−m̃J−m̃+1 = 0 ,

where we first used the property J−n = (−1)nJn and then changed the summation
variable.

Note that the operator iPmPm′ in terms of spin operators is basically a Pauli string
of the form σy/zσxσx . . . σxσxσy/z, i.e., with σx in the middle and σy or σz

at the string ends depending on the parities of m and m′; the only exception is
iP2 j P2 j+1 = −σx

j . We can now easily see that the Heisenberg evolution of σx
0 (t)

is composed of such Pauli-strings iPmPm′ with amplitudes Fm,m′(2t). This already
provides a rough idea of the “shape” of the commutator functions Cxx(`, t) and
Czx(`, t). Indeed, since σx

`
does not commute with iPmPm′ only when ` coincides

with one of the ends of the string, we expectCxx to have the “shell-like” structure [50]
described in the main text. On the other hand, σz

`
does not commute with iPmPm′

when ` is anywhere inside the string, and this explains the “dome-like” structure of
Czx .

We can supplement these qualitative observations with precise calculations. The
terms in the commutator [σx

0 (t), σ
x
`
] are nonzero when the boundary of the string

iPmPm′ hits site `, which gives us m = 2` or m = 2`+1 or m′ = 2` or m′ = 2`+1,
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excluding the case (m = 2`,m′ = 2`+1). The commutator function Cxx(`, t) at
infinite temperature is easily obtained as the Frobenius norm of [σx

0 (t), σ
x
`
] (divided

by 2). We therefore have

Cxx(`, t) = 2

[ ∑
m′>2`+1

|F2`,m′(2t)|2 +
∑

m′>2`+1
|F2`+1,m′(2t)|2

+
∑

m<2`
|Fm,2`(2t)|2 +

∑
m<2`
|Fm,2`+1(2t)|2]

]
.

With such an expression in hand, we can reproduce the qualitative behaviorCxx(`, t) ∼
1/t at long times inside the timelike region, t � `/c. Indeed, it is not difficult to
see that

Fm,m′(2t) ≈ 1
πt

cos
[π

2
(m − m′ − 1)

]
, for |m|, |m′| � t , (4.33)

while Fm,m′(2t) decays quickly once |m| or |m′| exceeds number of order t. This
means that the above expression for Cxx(`, t) contains of order t terms of magnitude
of order 1/t2, hence Cxx(`, t) ∼ 1/t. A more sophisticated analysis is needed to
obtain the amplitude as well as subleading terms, and the treatment in Appendix B
provides an alternative derivation giving this data more directly (with the additional
benefit of being easily applicable also at finite temperature). Nevertheless, we find
the operator spreading analysis in the present appendix enlightening.

For the commutator functionCzx(`, t), we can equivalently consider [σx
0 (t), σ

z
`
]. The

nonzero contributions come from the iPmPm′ pieces of σx
0 (t) with (m ≤ 2`,m′ ≥

2` + 1). This gives us

Czx(`, t) = 2
∑

m≤2`,m′≥2`+1
|Fm,m′(2t)|2 . (4.34)

Using this expression, we can readily understand the finding in the main text that
Czx(`, t) approaches a nonzero value at long times inside the timelike region, t �
`/c. Indeed, from the behavior of Fm,m′(2t) noted earlier, we can see that in the
above sum there are of order t2 terms of magnitude of order 1/t2, and hence the
nonzero value of the sum in the long-time limit. Note that the “operator spreading”
derivation here is much simpler than the formal Pfaffian derivation in Appendix
D and gives us almost a closed-form expression for this commutator function at
infinite temperature. On the other hand, the Pfaffian derivation has the advantage of
working readily also at finite temperature.

Lastly, we can see different information “extracted” from the σx(t) in other dy-
namical calculations discussed at the end of Sec. 4.2. For example, the dynamical



144

correlation function at infinite temperature is simply [58]

〈σx
0 (t)σ

x
` 〉 = −F2`,2`+1(2t) ≈ 1

πt
. (4.35)

We see that the origin of the specific long-time power law behavior in the dynam-
ical correlation function and the OTOC is indeed very different from the operator
spreading point of view.

4.6 Hard-core boson and Luttinger liquid models
Consider a Hamiltonian defined on lattice sites i = −L/2 + 1, . . . , L/2, where we
have assumed that the number of sites L is even for simplicity:

H =
∑
i< j

Ji j

[
b†i

(
ei π

∑j−1
r=i+1 nr

)
b j + H.c.

]
− µ

∑
i

ni , (4.36)

with open boundary conditions and real couplings Ji j ; also, ni ≡ b†i bi is the boson
number operator. The boson operators are hard-core bosons commuting on different
sites. The choice of the Hamiltonian is such that under the JW transformation
b j = (

∏ j−1
r=−L/2+1 ei πnr )c j , the Hamiltonian becomes

H =
∑
i< j

Ji j

(
c†i c j + H.c.

)
− µ

∑
i

ni . (4.37)

The first model we consider is the “short-range hopping” model (various quantities
defined and calculated in this model will be labeled by “I”), defined by

JIi j = −
vB

2
(δi= j−1 + δi= j+1) . (4.38)

The Hamiltonian can be diagonalized by the transformation

ck =

√
2

L + 1

L/2∑
j=−L/2+1

sin(k j̄)c j , (4.39)

where j̄ ≡ j+L/2 and {k = nπ
L+1 , n = 1, . . . , L}. We obtain H =

∑
k ε

I(k)c†kck ,
where the dispersion ε I(k) = −vB cos(k) − µ. The coupling is chosen such that the
maximum group velocity vmax = max|∂εk/∂k | = vB. We choose vB = 1 as our
energy unit and throughout set ~ = 1.

For the secondmodel (with quantities labeled by “II,”), we artificially “straighten” the
dispersion, making it as ε II(k) = J |k | − µ for k ∈ [−π, π]. For general k′ < [−π, π],
ε II(k′) = ε II(k) where k = k′ + 2πm, with m some integer such that k ∈ [−π, π]. In
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real space, JIIi j =
2

L+1
∑

kn(ε II(kn) + µ) sin(knī) sin(kn j̄). In the thermodynamic limit
L →∞, for points in the bulk, we have

JIIi j =
vB

π

[(−1)|i− j | − 1]
|i − j |2

. (4.40)

We will focus on the cases where µ is tuned such that the ground state is in the
gapless phase (quasi-long-range ordered).

Finally, we will also compare the results to the Luttinger liquid model [60–62]
(quantities labeled by “III”), defined as

HIII =
vB

2π

∫ L

0
dx

[
g(πΠ̂)2 + 1

g
(∂x θ̂)2

]
, (4.41)

where we set the characteristic velocity as vB. As we will see later, this will indeed
be the butterfly velocity. θ̂(x) is related to the density operator defined as

n(x) = d0 + ρ0(x) + d2W(x) , (4.42)

where ρ0(x) ≡ −∂x θ̂(x)/π and

W(x) ≡ ei2πd0 xV−2(x) + e−i2πd0 xV2(x) , (4.43)

and Vm(x) ≡ eimθ̂(x) is the vertex operator, while d0 = kF/π is the density of the
system, and d2 is some constant to be determined. Π̂(x) is the conjugate momentum
to θ̂(x), satisfying [Π̂(x), θ̂(x′)] = −i δ(x − x′). Since we are studying bosonic
models, we will also consider the boson creation field

ψ†B(x) ∼ ei φ̂(x) , (4.44)

where the field φ̂(x) is the phase field defined by the relation Π̂(x) = −∂x φ̂/π. To
be concrete, here we use periodic boundary conditions, θ̂(x + L) = θ̂(x). However,
as most of our calculations will be taken in the thermodynamic limit, the choice of
the boundary conditions will not matter.

The Luttinger liquid model can be diagonalized as follows. We define Fourier
modes θk =

1√
L

∫ L
0 dxe−ik x θ̂(x) and Πk =

1√
L

∫ L
0 dxe−ik xΠ̂(x), and find HIII =

vB
2π

∑
k(π2gΠ−kΠk +

k2

g θ−kθk). We can identify ωk = vB |k | and m = 1
πvBg

as in a

harmonic oscillator. We now define ladder operators bk =

√
mωk

2 (θk +
i

mωk
Πk) and

b†k =
√

mωk

2 (θ−k − i
mωk

Π−k), which satisfy canonical boson commutation relations
[bk, bk ′] = 0, [bk, b

†
k ′] = δk,k ′. The Hamiltonian becomes HIII =

∑
k ωk(b†k bk +

1
2 ),

and the fields θ̂(x) and φ̂(x) can be expressed as linear combinations of the eigenmode
operators bk and b†k .
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4.7 Hard-core boson and Luttinger liquid models: Density-density OTOC
We first consider the density-density OTOC Fnn(`, t) [and the squared commutator
Cnn(`, t)], where ni ≡ b†i bi. The density-density OTOC in fact can be calculated
analytically and relatively easily in the lattice models since the operators can be
expressed using few JW fermion operators. Detailed calculations are presented in
Appendix F for the lattice models and Appendix G for the Luttinger liquid model.

Density-density OTOC in the lattice models
In the lattice models, we find

Cnn(`, t) = |A(`, t)|2
(
[〈n`〉 + 〈n0〉]/2 − 〈n`〉〈n0〉

− Re
[
〈c†0(t)c`〉〈c0(t)c†` 〉

] )
, (4.45)

where

A(`, t) ≡
∫ π

−π

dk
2π

ei (k`−εk t) (4.46)

is a specific fermion evolution function [which appears, e.g., in the anti-commutator
for the fermion fields, {c0(t), c†` } = A(`, t)]. At infinite temperature (β = 0),
Cnn(`, t) = 1

4 (|A(`, t)|2 − |A(`, t)|4).

For the short-range hopping model, ε Ik = −vB cos(k) − µ, we have

|AI(`, t)|2 = J`(vBt)2 , (4.47)

where Jn(t) is the Bessel function of order n and vB = vmax. We first consider
behavior near the wavefront. Bessel functions have so-called “transition regions”
when the order of the Bessel function and the argument are close [63], here vBt =

` + O(t1/3), which corresponds precisely to the wavefront region of interest to us.
In this region, we can write

CI
nn(`, t) ∼ f

[
(` − vBt)3/2

t1/2

]
. (4.48)

More precisely, the asymptotic expansion for the Bessel functions needed here is
taking `, vBt to be very large while keeping |` − vBt |/t1/3 fixed, and it can be found
in Eq. (3.1) in Ref. [63]. In the regime |` − vBt |/t1/3 � 1 this connects with the
saddle-point analysis of Ref. [38], which gives

CI
nn(`, t) ∼ exp[−c

(` − vBt)3/2

t1/2 ] . (4.49)
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On the other hand, following the approach of Ref. [39], on the fixed-velocity rays
`(v) = vt with v > vB (i.e., outside the light cone), we find CI

nn(` = vt, t) ∼
exp[−λ(v)t], where λ ∼ (v − vB)3/2 for small v − vB; the precise asymptotic for the
Bessel functions needed here is the Debye’s expansion [63] where we take `, vBt

large while keeping (` − vBt)/t = v − vB > 0 fixed. According to Ref. [63], the
transition region’s asymptotic expansion is accurate for ` − vBt � t2/3, while the
Debye’s expansion is accurate for ` − vBt � t1/3, so there is an adequate overlap
between the two and hence a smooth crossover from the wavefront region to the
ray region. We remark that while we used the properties of the Bessel functions as
appropriate for the specific dispersion ε(k) = −vB cos(k)− µ, the properties near the
wavefront originate from behavior of ε(k) near the maximal group velocity, which is
generic, and we expect qualitatively similar wavefront properties for any dispersion.

We also mention behavior at long times inside the light cone, t � `/vB, which
follows from the familiar long-time asymptotics of the Bessel functions: Cnn(`, t)
has oscillatory decay back to zero with envelope ∼ t−1. Again, the long-time
behavior holds also for generetic dispersion, but here it is controlled by the extrema
of ε(k) itself.

Turning to the long-range model, we have

|AII(`, t)|2 = 2
π2

[
1 − (−1)` cos(πvBt)

] (vBt)2[
`2 − (vBt)2

]2 . (4.50)

The commutator function Cnn(`, t) grows as t2 at short time, rises sharply at the
wavefront, and then decays back to zero as t−2 inside the light cone. Moreover, the
wavefront does not broaden with time. Indeed, consider ` = vBt + δ`, where δ` �
vBt is the small deviation from the wavefront. In this region, we have CII

nn(`, t) ∼
(vBt)2

(2vBt+δ`)2(δ`)2 ∼ (δ`)
−2, which is valid when δ` is O(1) deviation. Comparing to the

typical scaling form [38, 39] of the wavefront Cnn(`, t) ∼ f (δ`/tα), we have α = 0,
which formally corresponds to the absence of the wavefront broadening. On the
other hand, if we follow the rays ` = vt, v > vB, we have CII

nn(`, t) ∼
v2
B

(v2−v2
B)2t2 , which

decays as t−2 power law at long times. Therefore, we cannot define the velocity-
dependent Lyapunov exponent here. This is not surprising, since the Lieb-Robinson
bound does not necessarily hold in this model.

We now show that in the long-range model, outside the lightcone, the early-time
(perturbative) region essentially extends to the “ray” region—more precisely, the
regime where one follows rays ` = vt with v � vB. Consider the long-range
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hopping model in terms of Pauli-matrices X , Y , and Z , i.e., mapping hard-core
bosons spins, with n = (1 + Z)/2. Introducing short-hand notation Z̄i = −Zi and
the string operatorZi, j =

∏ j
m=i Z̄m, we write

HII =
1
2

∑
i< j

Ji j[XiZi+1, j−1X j + YiZi+1, j−1Yj]

− 1
2

∑
i

µ(Ii + Zi) . (4.51)

Consider theBaker-Campbell-Hausdorff expansionW0(t) =
∑∞

n=0
(it)n
n! Ln(W0), where

L(W) ≡ [H,W]. The power-law growth of the commutator function is determined
by the lowest-order nonzero commutator [Ln(W0),V`]. Due to the long-range nature
of the Hamiltonian HII, already the first order [L(n0), n`] = 1

4 [L(Z0), Z`] is nonzero.
More specifically, we have

L(Z0) =
∑
j>0

J0 jZ1, j−1(−iY0X j + iX0Yj)

+
∑
j<0

Jj0Zj+1,−1(−iX jY0 + iYj X0) , (4.52)

giving us (assuming ` > 0 for concreteness)

[L(Z0), Z`] = −2J0,`Z1,`−1(Y0Ỳ + X0X`) . (4.53)

The leading contribution to the commutator function is thus

CII
nn(`, t) ≈

t2

32
〈|[L(Z0), Z`]|2〉 =

(vBt)2
2π2`4 [1 − (−1)`] , (4.54)

where in the last equation we specialized to infinite temperature for simplicity. For
very short time vBt � 1, this expression matches with the asymptotic behavior
of the exact result, Cnn(`, t) = 1

4 (|A(`, t)|2 − |A(`, t)|4) ≈
1
4 |A(`, t)|2 and using

Eq. (4.50). In fact, we can also see that this asymptotic also extends “qualitatively”
to the regime when we follow the rays ` = vt � 1 but with v � vB, giving us
CII

nn(` = vt, t) ∼ v2
B/(2π2v4t2) (here “qualitatively” means ignoring oscillations in

time, which of course such Hausdorff-Campbell-Baker expansion cannot capture).

Density-density OTOC in the Luttinger-liquid model
Here we present the result for the density-density OTOC in the Luttinger liquid,
while we give the detailed calculation in Appendix G. The non-oscillating part of
this OTOC was considered in Ref. [36]. We consider the density operator defined in
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H(`, t)
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Figure 4.15: Numerical integration results for the function H(x, t) enteringCIII
nn (`, t),

see Eqs. (4.55) and (4.57), using momentum cutoff Λ = π. We can see that e−H(`,t)

decays exponentially inside the light cone; furthermore, for such ` and β, the
numerical value is negligible compared to 1.

Eq. (4.42). To compare with the lattice models more closely, we choose to regularize
the theory by a hard-cutoff Λ, instead of a soft cutoff e−α |k | factor in the integration
over momentum k used in Ref. [36].

The result for the commutator function is

CIII
nn (`, t) =

g2

2π4 N2(`, t) (4.55)

+ 2d4
2 [4 + 2 cos(4πρ0`)e−2gH(`,t)] sin2[2gG(`, t)]

− d2
2

4g
π2 cos(2πρ0`)e−2gH(`,t)N(`, t) sin2[2gG(`, t)] ,
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where

N(`, t) =
∫ Λ

0
dkk cos(k`) sin(vBkt)

=
sin[Λ(vBt − `)]

2(vBt − `)2
− Λ cos[Λ(vBt − `)]

2(vBt − `)

+
sin[Λ(vBt + `)]

2(vBt + `)2
− Λ cos[Λ(vBt + `)]

2(vBt + `) ,

(4.56)

H(`, t) =
∫ Λ

0

dk
k
[2 f (vBk) + 1][1 − cos(k`) cos(vBkt)] , (4.57)

with f (ε) = 1/(eβε − 1) being Bose-Einstein distribution, and

G(`, t) =
∫ Λ

0

dk
k

cos(k`) sin(vBkt) (4.58)

=
1
2
[Si(Λt+) + Si(Λt−)] , (4.59)

where Si(x) ≡
∫ x

0 dy sin(y)/y, and we have abbreviated t± = vBt ± `.

The above expressions are defined through the hard cutoff regularization. (For
results of the soft cutoff regularization, see Ref. [36] and Appendix G and H.) First,
we note that H(`, t) is the only temperature-dependent piece; it grows linearly with
` outside the light cone, t < `/vB, and grows linearly with t inside the light cone,
t > `/vB, as shown in Fig. 4.15. Therefore e−gH decays exponentially when either
` or t are large, and can be safely neglected when discussing asymptotic behaviors.

We first consider short times, t � `/vB. It is easy to see that in this regime N2(`, t)
grows as t2. More specifically, we have

N(`, t) ∼ vBt
∫ Λ

0
dkk2 cos(k`)

= vBt
(
2Λ cos(Λ`)

`2 +
(−2 + `2Λ2) sin(Λ`)

`3

)
.

For the cutoff Λ = π and recalling that ` is an integer, we have N(`, t)2 ∼ (vBt)2/`4,
which in fact matches with the short-time behavior of the long-range hopping
model. However, for a generic cutoff, we would obtain the leading contribution
N(`, t)2 ∼ (vBt)2/`2.
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We also need to consider the contribution from sin2[2gG(`, t)] at the short time.
This can be obtained from the behavior of G(`, t), where at the short time

G(`, t) ∼ sin(Λ`)
`

vBt

− 2Λ` cos(Λ`) + (−2 + Λ2`2) sin(Λ`)
6`3 (vBt)3 . (4.60)

For the choice Λ = π, we have sin2[2gG(`, t)] ∼ 4g2π2(vBt)6/(9`4); while for
generic Λ, we have sin2[2gG(`, t)] ∼ 4g2 sin2(Λ`)(vBt)2/`2. We therefore see that,
in general, CIII

nn (`, t) ∼ t2 at the short time, with the coefficient which is a function
of ` whose behavior depends on the cutoff Λ, and special Λ = π provides a good
match with our long-range model also in the `-dependence of the coefficient.

After the wavefront passes, in the infinite time limit,

CIII
nn (`,∞) = 8d4

2 sin2[2gG(`,∞)] ≤ 8d4
2 . (4.61)

For the lattice models, the commutator function is bounded by Cnn ≤ 2, so we
choose d2 = 1/

√
2 such that the bounds match between the Luttinger liquid model

and the lattice models. Also noting that G(`,∞) = π/2, we have CIII
nn → 2 sin2(gπ).

For the “non-interacting” (i.e., free-fermion) model, g = 1 and CIII
nn → 0, which

agrees with results in the lattice models.

The long-time behavior of N2(`, t) can be obtained easily as

N2(`, t) ∼ Λ2 cos2(ΛvBt) cos2(Λ`)/(vBt)2 .

To analyze sin2[2gG(`, t)] at the long time, we first note the asymptotic expansion
of

G(`, t) ∼ π

2
− cos(ΛvBt) cos(Λ`)

ΛvBt

− sin(ΛvBt) cos(Λ`)
(ΛvBt)2

, (4.62)

where we used that Si(x) ∼ π/2 − cos(x)/x − sin(x)/x2 + O(x−3) at large x. We
therefore have

sin2[2gG(`, t)] ∼ sin2(gπ) − 2g sin(2gπ) cos(Λ`)cos(ΛvBt)
ΛvBt

+ 4g2 cos(2gπ) cos2(Λ`)cos2(ΛvBt)
(ΛvBt)2

− 2g sin(2gπ) cos(Λ`)sin(ΛvBt)
(ΛvBt)2

. (4.63)



152

Therefore, for the free-fermion point g = 1, we have that CIII
nn (`, t) vanishes as ∼ t−2

at long times. On the other hand, if g is not an integer, we have that CIII
nn (`, t)

approaches a non-zero value, with the approach ∼ t−1. The t−2 behavior is in fact
also seen in the long-range hoppingmodel, but not in the short-range hoppingmodel.

Lastly, we note that the wavefront does not broaden in the Luttinger liquid model,
which is also the case in the long-range hopping model. This can be seen from the
fact that CIII

nn (`, t) depends on ` and t only via combinations vBt ± `. In this case,
when one considers the behavior around the wavefront, writing ` = vBt + δ`, the
dependence on δ` has no scaling with time, which corresponds to the wavefront that
does not broaden with time. This is expected to be general feature in relativistic
theories, and it is reproduced by our long-range hoppingmodel with the straightened
dispersion curve with finite band width.

4.8 Hard-core boson models: Boson-boson OTOC
In this section, we study the OTOC in the short-range and long-range hopping
models for operators W0 = X0 and V` = X`, where X j ≡ b†j + b j is the combination
of boson creation and annihilation operators. [X j is simply the Pauli spin matrix
σx

j when the hard-core bosons are mapped to spin-1/2-s and is convenient since it is
both Hermitian and unitary, see our discussion on Eqs. (4.1)]. The above operator
becomes nonlocal in terms of the JW fermions. The calculations hence become
intricate and analytical results for different asymptotic regimes are difficult to obtain.
Thus we evaluate the OTOC numerically from the full analytical expression as a
Pfaffian and present results here, while we present details of the setup of calculation
in Appendix I. In Fig. 4.16, we show the overall picture of CX X(`, t) for both the
short-range and long-range hard core boson models. We clearly observe a ballistic
wavefront with butterfly velocity vB = 1. Furthermore, the commutator function
saturates to a non-zero value inside the light cone, which indicates that X0(t) is
evolving into a nonlocal operator, spreading throughout inside the light cone. This
behavior is in contrast to the density-density OTOC, where the commutator function
goes back to zero deep inside the light cone. In the quantum Ising model which we
studied earlier in Ref. [37], this type of operator that is non-local in terms of the JW
fermions also shows saturation to a non-zero value in the commutator function.

Below, we examine in detail behavior of CX X(`, t) in different regimes.
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<latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit>

60
<latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit>

40
<latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit>

20
<latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit><latexit sha1_base64="7lyLJ9mQsuG5mx4faw16r3wT4nk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqnlv17q8qjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOn3jPA=</latexit>

t
<latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit>

CI
XX(`, t) = 1 � ReF I

XX(`, t)
<latexit sha1_base64="lCkfW006aAYSNh8EOuwKok6ULD8=">AAACJ3icdVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6UYED0FsUskMTQ03lJmvQsdL8RwzB/48Vf8SKoiB79EzvLQRMtaCiq6vH6lRMIrtCyPo3EzOzc/EJyMbW0vLK6ll7fKCs/lAxKzBe+rDpUgeAelJCjgGoggbqOgIrTKwz8yh1IxX3vBvsBNFza8XibM4paaqZPC82oWo1vozrCPUaXcZytgxB7uHti74+0a4jP/ws10xkrZw1hThN7TDJkjGIz/VJv+Sx0wUMmqFI12wqwEVGJnAmIU/VQQUBZj3agpqlHXVCNaHhnbO5opWW2famfh+ZQ/TkRUVepvuvopEuxqya9gfiXVwuxfdyIuBeECB4bLWqHwkTfHJRmtrgEhqKvCWWS67+arEslZairTekS7MmTp0n5IGdbOfvqMJM/G9eRJFtkm2SJTY5InlyQIikRRh7IE3klb8aj8Wy8Gx+jaMIYz2ySXzC+vgECgKad</latexit><latexit sha1_base64="lCkfW006aAYSNh8EOuwKok6ULD8=">AAACJ3icdVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6UYED0FsUskMTQ03lJmvQsdL8RwzB/48Vf8SKoiB79EzvLQRMtaCiq6vH6lRMIrtCyPo3EzOzc/EJyMbW0vLK6ll7fKCs/lAxKzBe+rDpUgeAelJCjgGoggbqOgIrTKwz8yh1IxX3vBvsBNFza8XibM4paaqZPC82oWo1vozrCPUaXcZytgxB7uHti74+0a4jP/ws10xkrZw1hThN7TDJkjGIz/VJv+Sx0wUMmqFI12wqwEVGJnAmIU/VQQUBZj3agpqlHXVCNaHhnbO5opWW2famfh+ZQ/TkRUVepvuvopEuxqya9gfiXVwuxfdyIuBeECB4bLWqHwkTfHJRmtrgEhqKvCWWS67+arEslZairTekS7MmTp0n5IGdbOfvqMJM/G9eRJFtkm2SJTY5InlyQIikRRh7IE3klb8aj8Wy8Gx+jaMIYz2ySXzC+vgECgKad</latexit><latexit sha1_base64="lCkfW006aAYSNh8EOuwKok6ULD8=">AAACJ3icdVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6UYED0FsUskMTQ03lJmvQsdL8RwzB/48Vf8SKoiB79EzvLQRMtaCiq6vH6lRMIrtCyPo3EzOzc/EJyMbW0vLK6ll7fKCs/lAxKzBe+rDpUgeAelJCjgGoggbqOgIrTKwz8yh1IxX3vBvsBNFza8XibM4paaqZPC82oWo1vozrCPUaXcZytgxB7uHti74+0a4jP/ws10xkrZw1hThN7TDJkjGIz/VJv+Sx0wUMmqFI12wqwEVGJnAmIU/VQQUBZj3agpqlHXVCNaHhnbO5opWW2famfh+ZQ/TkRUVepvuvopEuxqya9gfiXVwuxfdyIuBeECB4bLWqHwkTfHJRmtrgEhqKvCWWS67+arEslZairTekS7MmTp0n5IGdbOfvqMJM/G9eRJFtkm2SJTY5InlyQIikRRh7IE3klb8aj8Wy8Gx+jaMIYz2ySXzC+vgECgKad</latexit><latexit sha1_base64="lCkfW006aAYSNh8EOuwKok6ULD8=">AAACJ3icdVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6UYED0FsUskMTQ03lJmvQsdL8RwzB/48Vf8SKoiB79EzvLQRMtaCiq6vH6lRMIrtCyPo3EzOzc/EJyMbW0vLK6ll7fKCs/lAxKzBe+rDpUgeAelJCjgGoggbqOgIrTKwz8yh1IxX3vBvsBNFza8XibM4paaqZPC82oWo1vozrCPUaXcZytgxB7uHti74+0a4jP/ws10xkrZw1hThN7TDJkjGIz/VJv+Sx0wUMmqFI12wqwEVGJnAmIU/VQQUBZj3agpqlHXVCNaHhnbO5opWW2famfh+ZQ/TkRUVepvuvopEuxqya9gfiXVwuxfdyIuBeECB4bLWqHwkTfHJRmtrgEhqKvCWWS67+arEslZairTekS7MmTp0n5IGdbOfvqMJM/G9eRJFtkm2SJTY5InlyQIikRRh7IE3klb8aj8Wy8Gx+jaMIYz2ySXzC+vgECgKad</latexit>

(a)
vB = 1

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

100
<latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit><latexit sha1_base64="2QV4Y/REj3Xj6ZCgWjU+dnO/Zyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoMegF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTKUwltJvr7C2vrG5Vdwu7ezu7R+UD4+aJsk0xwZPZKLbITMohcKGFVZiO9XI4lBiKxzdzvzWE2ojEvVoxykGMRsoEQnOrJMefEp75Qqt0jnIKvFzUoEc9V75q9tPeBajslwyYzo+TW0wYdoKLnFa6mYGU8ZHbIAdRxWL0QST+alTcuaUPokS7UpZMld/T0xYbMw4Dl1nzOzQLHsz8T+vk9noOpgIlWYWFV8sijJJbEJmf5O+0MitHDvCuBbuVsKHTDNuXTolF4K//PIqaV5UfVr17y8rtZs8jiKcwCmcgw9XUIM7qEMDOAzgGV7hzZPei/fufSxaC14+cwx/4H3+AFaIjSk=</latexit>

80
<latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit><latexit sha1_base64="zvXaZLpe+96RPyR/pSPlNSFgs+Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpoe4OyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzVh3c+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtK+qnlv17q8rjZs8jiKcwTlcggc1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+APMVjPY=</latexit>

60
<latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit><latexit sha1_base64="xPuTFFPhnpGU8yfhlHp+JoAGFeg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qnlv17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AfALjPQ=</latexit>

40
<latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit><latexit sha1_base64="V3PElZ8f8IryAJ2po8w92pXwtMs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzV3UK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimG134mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9VPbfq3dcqjZs8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AO0BjPI=</latexit>

20
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vB = 1

Figure 4.16: The overall picture of CX X(`, t) calculated in (a) model I and (b)
model II, with L = 512, β = 0, and J = 1. (At infinite temperature, the systems
are at half-filling for any µ.) We have shifted each trace by 0.05t to create a 3D-like
visualization; also, for every time t that is a multiple of 20, we plot the trace with red
color for easy reference. The saturation to a non-zero value inside the light cone is a
characteristic of scrambling; it indicates that X0(t) evolves into a nonlocal operator,
in contrast to the time-evolved density operator.

Velocity-dependent Lyapunov exponent and wavefront broadening analysis in
the short-range hopping model
In the short-range hopping model, it is well understood that in the early-time regime,
the commutator function has a position dependent power-law growth which can
be understood from the Hausdorff-Campbell-Baker expansion [35–38] (see also
Table 4.1). We therefore skip the discussion of this regime in the short-range
hopping model and focus on the behavior around the wavefront.

References [38] and [39] proposed that for the noninteracting free fermion mod-
els, the wavefront broadens as t1/3. This can be verified by either examining the
long-time behavior along different fixed-velocity rays ` = vt with v > vB, or by
studying scaling collapse of C(`, t) near the wavefront. In Fig. 4.17(a), we show
the t1/3 broadening by the scaling collapse analysis. Furthermore, in Fig. 4.17(b),
we extracted the velocity-dependent Lyapunov exponent, which shows (v − vB)3/2

scaling, corresponding to the proposed t1/3 wavefront broadening. Note that, unlike
the case of the density-density OTOC (or OTOCs composed of few fermion oper-
ators considered in Refs. [38] and [39]), the boson-boson OTOC does not have a
simple analytical expression where the saddle-point analysis can be applied easily.
However, the wavefront broadening still has the same characteristic behavior despite
the presence of the fermionic strings. Finally, we note that our numerical results
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t

Figure 4.17: (a) The commutator function CI
X X(`, t) of the short-range model

around the wave front, for several ` (negative ` correspond to points to the left of the
origin in our chain with sites labeled −L/2 + 1, . . . , 0, . . . , L/2; the string that runs
from the left boundary is shorter for these points than for positive `). The systems
size is L = 512 and the inverse temperature is β = 0. Inset: scaling collapse
demonstrating that around the wavefront, C I

X X(` = vt, t) ∼ exp[−λ(`− vBt)3/2/t1/2].
(b) The commutator function C I

X X(` = vt, t) along different rays ` = vt, for the same
system as in panel (a). Inset: the velocity-dependent Lyapunov exponent extracted
by fitting the numerical data to C(` = vt, t) = A exp[−λ(v)t]. For velocities close
to the butterfly velocity but outside the light cone, v > vB, we observe the relation
λ(v) ∼ (v − vB)3/2.

show that the above descriptions are essentially temperature independent.

From early-time region to early-growth region in the long-range hoppingmodel
The situation with the wavefront broadening in the long-range hopping model is
rather different from the short-range model, as we have already seen in the density-
density OTOC. In Fig. 4.18, we plot CII

X X(`, t) for different fixed `. In this case, as
we will argue in more detail below, the perturbative (Hausdorff-Baker-Campbell)
expansion gives us t2 power-law growth at short time due to the long-range hopping;
this is shown in the inset of Fig. 4.18. Also, the early-time region connects to the
early-growth region near the wavefront rather abruptly. In fact, one can identify an
O(1) window around the wavefront where the t2 growth stops and transits into the
early-growth region. We therefore conclude that in the long-range hopping model,
the wavefront has little to no broadening.

We now provide the details of the early-time region. Recall the Hamiltonian HII

in the spin variables written in Eq. (4.51). In the early-time (perturbative) regime,
consider the expansion X0(t) =

∑∞
n=0

(it)n
n! Ln(X0), where L(A) ≡ [H, A]. The power-
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law growth of the commutator function is determined by the lowest-order nonzero
commutator [Ln(X0), X`]. Since HII is long-ranged, n = 1 immediately “connects”
X0 and X`, giving us t2 growth. However, there are in fact many terms that contribute
to the amplitude of the t2 growth. By writing out

L(X0) = −i
∑

i<0, j>0
Ji jZi+1,−1Y0Z1, j−1(Xi X j + YiYj)

+ i
∑
j>0

J0 jZ0, j−1Yj + i
∑
i<0

Ji0YiZi+1,0 − iµY0 ,

we have (assuming ` > 0 for concreteness)

[L(X0), X`] = −2J0,`Z0,`

−2
∑

i<0, j>`
Ji jZi+1,−1Y0Z1,`−1Ỳ Z`+1, j−1(Xi X j + YiYj)

+2
∑
j>`

J0 jZ0,`−1Ỳ Z`+1, j−1Yj + 2
∑
i<0

Ji`YiZi+1,−1Y0Z1,` .

The leading order is therefore

CII
X X(`, t) ∼ 4t2(

∑
i<0, j>`

J2
i j +

∑
j>`

J2
0 j + J2

0,`/2) , (4.64)

where in the thermodynamic limit J2
i j =

2v2
B

π2
[1−(−1)i−j ]
|i− j |4 . Hence, we estimateCX X(`, t) ∼

t2

`2 (1+O(`−1)), which is valid for vBt � 1 � `. (Note that unlike the density-density
OTOC, the early-time region does not extend into the “ray” region.)

Long-time behavior of boson-boson OTOC
Since a simple expression for FX X(`, t) is not easily obtainable, we study the long-
time behavior numerically. Figure 4.19 plots the long time behavior of FX X(`, t)
in the short-range hopping model and the long-range hopping model. It is clear
that both cases show power-law decay. For the short-range model, we conclude that
the power-law is close to t−1/2, with the system size L = 512 already having little
finite size effect. On the other hand, for the long-range model, we observe much
stronger finite size effect (which is indeed expected). For example, for L = 512,
we see the power-law is close to t−0.75, while it is close to t−0.85 for our largest size
L = 1024 shown in Fig. 4.18(b). Extracting the power-law exponent numerically
is thus challenging due to the finite-size effect, as well as due to the mixing with
other power-laws and the presence of the oscillations. We conjecture that in the
thermodynamic limit, the power-law approach is t−1, as predicted in the Luttinger
liquid model, see Sec. 4.9.
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<latexit sha1_base64="jL9JjaYTZL5mMeofE5P8ifOtSO0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0sWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilTs+IiOBDrV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExhIeIZXeHMenRfn3flYtBacfOYY/sD5/AF2S4+T</latexit><latexit sha1_base64="jL9JjaYTZL5mMeofE5P8ifOtSO0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0sWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilTs+IiOBDrV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExhIeIZXeHMenRfn3flYtBacfOYY/sD5/AF2S4+T</latexit><latexit sha1_base64="jL9JjaYTZL5mMeofE5P8ifOtSO0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0sWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilTs+IiOBDrV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExhIeIZXeHMenRfn3flYtBacfOYY/sD5/AF2S4+T</latexit><latexit sha1_base64="jL9JjaYTZL5mMeofE5P8ifOtSO0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0sWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilTs+IiOBDrV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExhIeIZXeHMenRfn3flYtBacfOYY/sD5/AF2S4+T</latexit>

CII
XX(`, t) = 1 � ReF II

XX(`, t)
<latexit sha1_base64="oeS93X/oUZC+uB2zveW8TnjRVe8=">AAACKXicbVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6EYEDMLYpZIImhp/OSNOlZ6H4jhmF+x4u/4kVBUa/+iJ1FiNGChqKqHq9fOYHgCi3rw0jMzS8sLiWXUyura+sb6c2tivJDyaDMfOHLmkMVCO5BGTkKqAUSqOsIqDr9wtCv3oFU3PducBBA06Vdj3c4o6ilVjpfuI0aCPcYFYtx3IpqtTjbACEOcP/MPhw71xBfjJzp6E+qlc5YOWsE8y+xJyRDJii10i+Nts9CFzxkgipVt60AmxGVyJmAONUIFQSU9WkX6pp61AXVjEaXxuaeVtpmx5f6eWiO1OmJiLpKDVxHJ12KPTXrDcX/vHqIndNmxL0gRPDYeFEnFCb65rA2s80lMBQDTSiTXP/VZD0qKUNdbkqXYM+e/JdUjnK2lbOvjjP580kdSbJDdkmW2OSE5MklKZEyYeSBPJFX8mY8Gs/Gu/E5jiaMycw2+QXj6xtWGKdD</latexit><latexit sha1_base64="oeS93X/oUZC+uB2zveW8TnjRVe8=">AAACKXicbVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6EYEDMLYpZIImhp/OSNOlZ6H4jhmF+x4u/4kVBUa/+iJ1FiNGChqKqHq9fOYHgCi3rw0jMzS8sLiWXUyura+sb6c2tivJDyaDMfOHLmkMVCO5BGTkKqAUSqOsIqDr9wtCv3oFU3PducBBA06Vdj3c4o6ilVjpfuI0aCPcYFYtx3IpqtTjbACEOcP/MPhw71xBfjJzp6E+qlc5YOWsE8y+xJyRDJii10i+Nts9CFzxkgipVt60AmxGVyJmAONUIFQSU9WkX6pp61AXVjEaXxuaeVtpmx5f6eWiO1OmJiLpKDVxHJ12KPTXrDcX/vHqIndNmxL0gRPDYeFEnFCb65rA2s80lMBQDTSiTXP/VZD0qKUNdbkqXYM+e/JdUjnK2lbOvjjP580kdSbJDdkmW2OSE5MklKZEyYeSBPJFX8mY8Gs/Gu/E5jiaMycw2+QXj6xtWGKdD</latexit><latexit sha1_base64="oeS93X/oUZC+uB2zveW8TnjRVe8=">AAACKXicbVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6EYEDMLYpZIImhp/OSNOlZ6H4jhmF+x4u/4kVBUa/+iJ1FiNGChqKqHq9fOYHgCi3rw0jMzS8sLiWXUyura+sb6c2tivJDyaDMfOHLmkMVCO5BGTkKqAUSqOsIqDr9wtCv3oFU3PducBBA06Vdj3c4o6ilVjpfuI0aCPcYFYtx3IpqtTjbACEOcP/MPhw71xBfjJzp6E+qlc5YOWsE8y+xJyRDJii10i+Nts9CFzxkgipVt60AmxGVyJmAONUIFQSU9WkX6pp61AXVjEaXxuaeVtpmx5f6eWiO1OmJiLpKDVxHJ12KPTXrDcX/vHqIndNmxL0gRPDYeFEnFCb65rA2s80lMBQDTSiTXP/VZD0qKUNdbkqXYM+e/JdUjnK2lbOvjjP580kdSbJDdkmW2OSE5MklKZEyYeSBPJFX8mY8Gs/Gu/E5jiaMycw2+QXj6xtWGKdD</latexit><latexit sha1_base64="oeS93X/oUZC+uB2zveW8TnjRVe8=">AAACKXicbVDJSgNBFOyJW4xb1KOXwSBE0DAjgl6EYEDMLYpZIImhp/OSNOlZ6H4jhmF+x4u/4kVBUa/+iJ1FiNGChqKqHq9fOYHgCi3rw0jMzS8sLiWXUyura+sb6c2tivJDyaDMfOHLmkMVCO5BGTkKqAUSqOsIqDr9wtCv3oFU3PducBBA06Vdj3c4o6ilVjpfuI0aCPcYFYtx3IpqtTjbACEOcP/MPhw71xBfjJzp6E+qlc5YOWsE8y+xJyRDJii10i+Nts9CFzxkgipVt60AmxGVyJmAONUIFQSU9WkX6pp61AXVjEaXxuaeVtpmx5f6eWiO1OmJiLpKDVxHJ12KPTXrDcX/vHqIndNmxL0gRPDYeFEnFCb65rA2s80lMBQDTSiTXP/VZD0qKUNdbkqXYM+e/JdUjnK2lbOvjjP580kdSbJDdkmW2OSE5MklKZEyYeSBPJFX8mY8Gs/Gu/E5jiaMycw2+QXj6xtWGKdD</latexit>

early-time region

early-growth 
region

t − |ℓ | /vB

Figure 4.18: The commutator function CX X(`, t) in the long-range hopping model
for several fixed `. One can see that the early-time HCB region connects to the
early-growth region rather abruptly. The window of the early-growth region always
stays as O(1). Inset: demonstration of the t2 power-law growth in the HCB region.

ReF I
XX(`, t)

<latexit sha1_base64="m0qiVgZAXFoydovgHZ4c+zzhePQ=">AAACC3icbVDLSgNBEJyNrxhfUY9elgQhgoRdEfQYFERvUUyykMRldtJJhsw+mOkVw7J3L/6KFw+KePUHvPk3Th4HTSxoKKq66e7yIsEVWta3kVlYXFpeya7m1tY3Nrfy2zt1FcaSQY2FIpSORxUIHkANOQpwIgnU9wQ0vMH5yG/cg1Q8DG5xGEHbp72AdzmjqCU3X2ghPGByA+mFmzhOepdMhKs0LbVAiEM8cPNFq2yNYc4Te0qKZIqqm/9qdUIW+xAgE1Sppm1F2E6oRM4EpLlWrCCibEB70NQ0oD6odjL+JTX3tdIxu6HUFaA5Vn9PJNRXauh7utOn2Fez3kj8z2vG2D1tJzyIYoSATRZ1Y2FiaI6CMTtcAkMx1IQyyfWtJutTSRnq+HI6BHv25XlSPyrbVtm+Pi5WzqZxZMkeKZASsckJqZBLUiU1wsgjeSav5M14Ml6Md+Nj0poxpjO75A+Mzx+akZte</latexit><latexit sha1_base64="m0qiVgZAXFoydovgHZ4c+zzhePQ=">AAACC3icbVDLSgNBEJyNrxhfUY9elgQhgoRdEfQYFERvUUyykMRldtJJhsw+mOkVw7J3L/6KFw+KePUHvPk3Th4HTSxoKKq66e7yIsEVWta3kVlYXFpeya7m1tY3Nrfy2zt1FcaSQY2FIpSORxUIHkANOQpwIgnU9wQ0vMH5yG/cg1Q8DG5xGEHbp72AdzmjqCU3X2ghPGByA+mFmzhOepdMhKs0LbVAiEM8cPNFq2yNYc4Te0qKZIqqm/9qdUIW+xAgE1Sppm1F2E6oRM4EpLlWrCCibEB70NQ0oD6odjL+JTX3tdIxu6HUFaA5Vn9PJNRXauh7utOn2Fez3kj8z2vG2D1tJzyIYoSATRZ1Y2FiaI6CMTtcAkMx1IQyyfWtJutTSRnq+HI6BHv25XlSPyrbVtm+Pi5WzqZxZMkeKZASsckJqZBLUiU1wsgjeSav5M14Ml6Md+Nj0poxpjO75A+Mzx+akZte</latexit><latexit sha1_base64="m0qiVgZAXFoydovgHZ4c+zzhePQ=">AAACC3icbVDLSgNBEJyNrxhfUY9elgQhgoRdEfQYFERvUUyykMRldtJJhsw+mOkVw7J3L/6KFw+KePUHvPk3Th4HTSxoKKq66e7yIsEVWta3kVlYXFpeya7m1tY3Nrfy2zt1FcaSQY2FIpSORxUIHkANOQpwIgnU9wQ0vMH5yG/cg1Q8DG5xGEHbp72AdzmjqCU3X2ghPGByA+mFmzhOepdMhKs0LbVAiEM8cPNFq2yNYc4Te0qKZIqqm/9qdUIW+xAgE1Sppm1F2E6oRM4EpLlWrCCibEB70NQ0oD6odjL+JTX3tdIxu6HUFaA5Vn9PJNRXauh7utOn2Fez3kj8z2vG2D1tJzyIYoSATRZ1Y2FiaI6CMTtcAkMx1IQyyfWtJutTSRnq+HI6BHv25XlSPyrbVtm+Pi5WzqZxZMkeKZASsckJqZBLUiU1wsgjeSav5M14Ml6Md+Nj0poxpjO75A+Mzx+akZte</latexit><latexit sha1_base64="m0qiVgZAXFoydovgHZ4c+zzhePQ=">AAACC3icbVDLSgNBEJyNrxhfUY9elgQhgoRdEfQYFERvUUyykMRldtJJhsw+mOkVw7J3L/6KFw+KePUHvPk3Th4HTSxoKKq66e7yIsEVWta3kVlYXFpeya7m1tY3Nrfy2zt1FcaSQY2FIpSORxUIHkANOQpwIgnU9wQ0vMH5yG/cg1Q8DG5xGEHbp72AdzmjqCU3X2ghPGByA+mFmzhOepdMhKs0LbVAiEM8cPNFq2yNYc4Te0qKZIqqm/9qdUIW+xAgE1Sppm1F2E6oRM4EpLlWrCCibEB70NQ0oD6odjL+JTX3tdIxu6HUFaA5Vn9PJNRXauh7utOn2Fez3kj8z2vG2D1tJzyIYoSATRZ1Y2FiaI6CMTtcAkMx1IQyyfWtJutTSRnq+HI6BHv25XlSPyrbVtm+Pi5WzqZxZMkeKZASsckJqZBLUiU1wsgjeSav5M14Ml6Md+Nj0poxpjO75A+Mzx+akZte</latexit>

t�1/2
<latexit sha1_base64="ojQGVAd50H76zXOqhu2spbsTEW4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgxbgbBD0GvXiMYB6QrGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3Uz95hPXRkTqHscx90M6UKIvGEUrtfAhPfPOK5NuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/5adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZc8ve3UWpep3FkYcjOIZT8OASqnALNagDAwnP8ApvzqPz4rw7H/PWnJPNHMIfOJ8/FEyPUw==</latexit><latexit sha1_base64="ojQGVAd50H76zXOqhu2spbsTEW4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgxbgbBD0GvXiMYB6QrGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3Uz95hPXRkTqHscx90M6UKIvGEUrtfAhPfPOK5NuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/5adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZc8ve3UWpep3FkYcjOIZT8OASqnALNagDAwnP8ApvzqPz4rw7H/PWnJPNHMIfOJ8/FEyPUw==</latexit><latexit sha1_base64="ojQGVAd50H76zXOqhu2spbsTEW4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgxbgbBD0GvXiMYB6QrGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3Uz95hPXRkTqHscx90M6UKIvGEUrtfAhPfPOK5NuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/5adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZc8ve3UWpep3FkYcjOIZT8OASqnALNagDAwnP8ApvzqPz4rw7H/PWnJPNHMIfOJ8/FEyPUw==</latexit><latexit sha1_base64="ojQGVAd50H76zXOqhu2spbsTEW4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgxbgbBD0GvXiMYB6QrGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3Uz95hPXRkTqHscx90M6UKIvGEUrtfAhPfPOK5NuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/5adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZc8ve3UWpep3FkYcjOIZT8OASqnALNagDAwnP8ApvzqPz4rw7H/PWnJPNHMIfOJ8/FEyPUw==</latexit>

(a)

L = 512
<latexit sha1_base64="kfbujInaZPwqiwwo9oiyFiJY9xU=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl1QtBGCNhYWEbwkkBxhb7OXLNnbO3bnhBDyG2wsFLH1B9n5b9wkV2jig4HHezPMzAtTKQy67rezsrq2vrFZ2Cpu7+zu7ZcODhsmyTTjPktkolshNVwKxX0UKHkr1ZzGoeTNcHg79ZtPXBuRqEccpTyIaV+JSDCKVvLvry+8ardUdivuDGSZeDkpQ456t/TV6SUsi7lCJqkxbc9NMRhTjYJJPil2MsNTyoa0z9uWKhpzE4xnx07IqVV6JEq0LYVkpv6eGNPYmFEc2s6Y4sAselPxP6+dYXQVjIVKM+SKzRdFmSSYkOnnpCc0ZyhHllCmhb2VsAHVlKHNp2hD8BZfXiaNasVzK97Debl2k8dRgGM4gTPw4BJqcAd18IGBgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wd8mY3N</latexit><latexit sha1_base64="kfbujInaZPwqiwwo9oiyFiJY9xU=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl1QtBGCNhYWEbwkkBxhb7OXLNnbO3bnhBDyG2wsFLH1B9n5b9wkV2jig4HHezPMzAtTKQy67rezsrq2vrFZ2Cpu7+zu7ZcODhsmyTTjPktkolshNVwKxX0UKHkr1ZzGoeTNcHg79ZtPXBuRqEccpTyIaV+JSDCKVvLvry+8ardUdivuDGSZeDkpQ456t/TV6SUsi7lCJqkxbc9NMRhTjYJJPil2MsNTyoa0z9uWKhpzE4xnx07IqVV6JEq0LYVkpv6eGNPYmFEc2s6Y4sAselPxP6+dYXQVjIVKM+SKzRdFmSSYkOnnpCc0ZyhHllCmhb2VsAHVlKHNp2hD8BZfXiaNasVzK97Debl2k8dRgGM4gTPw4BJqcAd18IGBgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wd8mY3N</latexit><latexit sha1_base64="kfbujInaZPwqiwwo9oiyFiJY9xU=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl1QtBGCNhYWEbwkkBxhb7OXLNnbO3bnhBDyG2wsFLH1B9n5b9wkV2jig4HHezPMzAtTKQy67rezsrq2vrFZ2Cpu7+zu7ZcODhsmyTTjPktkolshNVwKxX0UKHkr1ZzGoeTNcHg79ZtPXBuRqEccpTyIaV+JSDCKVvLvry+8ardUdivuDGSZeDkpQ456t/TV6SUsi7lCJqkxbc9NMRhTjYJJPil2MsNTyoa0z9uWKhpzE4xnx07IqVV6JEq0LYVkpv6eGNPYmFEc2s6Y4sAselPxP6+dYXQVjIVKM+SKzRdFmSSYkOnnpCc0ZyhHllCmhb2VsAHVlKHNp2hD8BZfXiaNasVzK97Debl2k8dRgGM4gTPw4BJqcAd18IGBgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wd8mY3N</latexit><latexit sha1_base64="kfbujInaZPwqiwwo9oiyFiJY9xU=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl1QtBGCNhYWEbwkkBxhb7OXLNnbO3bnhBDyG2wsFLH1B9n5b9wkV2jig4HHezPMzAtTKQy67rezsrq2vrFZ2Cpu7+zu7ZcODhsmyTTjPktkolshNVwKxX0UKHkr1ZzGoeTNcHg79ZtPXBuRqEccpTyIaV+JSDCKVvLvry+8ardUdivuDGSZeDkpQ456t/TV6SUsi7lCJqkxbc9NMRhTjYJJPil2MsNTyoa0z9uWKhpzE4xnx07IqVV6JEq0LYVkpv6eGNPYmFEc2s6Y4sAselPxP6+dYXQVjIVKM+SKzRdFmSSYkOnnpCc0ZyhHllCmhb2VsAHVlKHNp2hD8BZfXiaNasVzK97Debl2k8dRgGM4gTPw4BJqcAd18IGBgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wd8mY3N</latexit>

t − |ℓ | /vB

ReF II
XX(`, t)

<latexit sha1_base64="S5SHMwoKb0vAX8gKZ4dETqT4dio=">AAACDHicbVDLSgNBEJyNrxhfUY9eFoMQQcKuCHoMCmJuUUyykMQwO+kkQ2YfzPSKYdkP8OKvePGgiFc/wJt/4yTZgyYWDBRV1fR0uaHgCi3r28gsLC4tr2RXc2vrG5tb+e2dugoiyaDGAhFIx6UKBPehhhwFOKEE6rkCGu7wYuw37kEqHvi3OAqh7dG+z3ucUdRSJ19oITxgfAPJZSd2nOQungqVSpIUWyDEER7qlFWyJjDniZ2SAklR7eS/Wt2ARR74yARVqmlbIbZjKpEzAUmuFSkIKRvSPjQ19akHqh1PjknMA610zV4g9fPRnKi/J2LqKTXyXJ30KA7UrDcW//OaEfbO2jH3wwjBZ9NFvUiYGJjjZswul8BQjDShTHL9V5MNqKQMdX85XYI9e/I8qR+XbKtkX58UyudpHVmyR/ZJkdjklJTJFamSGmHkkTyTV/JmPBkvxrvxMY1mjHRml/yB8fkDOz6bsQ==</latexit><latexit sha1_base64="S5SHMwoKb0vAX8gKZ4dETqT4dio=">AAACDHicbVDLSgNBEJyNrxhfUY9eFoMQQcKuCHoMCmJuUUyykMQwO+kkQ2YfzPSKYdkP8OKvePGgiFc/wJt/4yTZgyYWDBRV1fR0uaHgCi3r28gsLC4tr2RXc2vrG5tb+e2dugoiyaDGAhFIx6UKBPehhhwFOKEE6rkCGu7wYuw37kEqHvi3OAqh7dG+z3ucUdRSJ19oITxgfAPJZSd2nOQungqVSpIUWyDEER7qlFWyJjDniZ2SAklR7eS/Wt2ARR74yARVqmlbIbZjKpEzAUmuFSkIKRvSPjQ19akHqh1PjknMA610zV4g9fPRnKi/J2LqKTXyXJ30KA7UrDcW//OaEfbO2jH3wwjBZ9NFvUiYGJjjZswul8BQjDShTHL9V5MNqKQMdX85XYI9e/I8qR+XbKtkX58UyudpHVmyR/ZJkdjklJTJFamSGmHkkTyTV/JmPBkvxrvxMY1mjHRml/yB8fkDOz6bsQ==</latexit><latexit sha1_base64="S5SHMwoKb0vAX8gKZ4dETqT4dio=">AAACDHicbVDLSgNBEJyNrxhfUY9eFoMQQcKuCHoMCmJuUUyykMQwO+kkQ2YfzPSKYdkP8OKvePGgiFc/wJt/4yTZgyYWDBRV1fR0uaHgCi3r28gsLC4tr2RXc2vrG5tb+e2dugoiyaDGAhFIx6UKBPehhhwFOKEE6rkCGu7wYuw37kEqHvi3OAqh7dG+z3ucUdRSJ19oITxgfAPJZSd2nOQungqVSpIUWyDEER7qlFWyJjDniZ2SAklR7eS/Wt2ARR74yARVqmlbIbZjKpEzAUmuFSkIKRvSPjQ19akHqh1PjknMA610zV4g9fPRnKi/J2LqKTXyXJ30KA7UrDcW//OaEfbO2jH3wwjBZ9NFvUiYGJjjZswul8BQjDShTHL9V5MNqKQMdX85XYI9e/I8qR+XbKtkX58UyudpHVmyR/ZJkdjklJTJFamSGmHkkTyTV/JmPBkvxrvxMY1mjHRml/yB8fkDOz6bsQ==</latexit><latexit sha1_base64="S5SHMwoKb0vAX8gKZ4dETqT4dio=">AAACDHicbVDLSgNBEJyNrxhfUY9eFoMQQcKuCHoMCmJuUUyykMQwO+kkQ2YfzPSKYdkP8OKvePGgiFc/wJt/4yTZgyYWDBRV1fR0uaHgCi3r28gsLC4tr2RXc2vrG5tb+e2dugoiyaDGAhFIx6UKBPehhhwFOKEE6rkCGu7wYuw37kEqHvi3OAqh7dG+z3ucUdRSJ19oITxgfAPJZSd2nOQungqVSpIUWyDEER7qlFWyJjDniZ2SAklR7eS/Wt2ARR74yARVqmlbIbZjKpEzAUmuFSkIKRvSPjQ19akHqh1PjknMA610zV4g9fPRnKi/J2LqKTXyXJ30KA7UrDcW//OaEfbO2jH3wwjBZ9NFvUiYGJjjZswul8BQjDShTHL9V5MNqKQMdX85XYI9e/I8qR+XbKtkX58UyudpHVmyR/ZJkdjklJTJFamSGmHkkTyTV/JmPBkvxrvxMY1mjHRml/yB8fkDOz6bsQ==</latexit>

(b)

t�0.85
<latexit sha1_base64="djHtE9Yv+gFN1ftneD57J88Jblw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBi8uuKPZY9OKxgv2Qdi3ZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqt56o0iyW92ac0EDggWQRI9hY6cE8ZmeeW72c9MoVz/VmQMvEz0kFctR75a9uPyapoNIQjrXu+F5iggwrwwink1I31TTBZIQHtGOpxILqIJsdPEEnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5OaqBpkTCapoZLMF0UpRyZG0+9RnylKDB9bgoli9lZEhlhhYmxGJRuCv/jyMmmeu77n+ncXldp1HkcRjuAYTsGHK6jBLdShAQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH5Hoj5Y=</latexit><latexit sha1_base64="djHtE9Yv+gFN1ftneD57J88Jblw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBi8uuKPZY9OKxgv2Qdi3ZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqt56o0iyW92ac0EDggWQRI9hY6cE8ZmeeW72c9MoVz/VmQMvEz0kFctR75a9uPyapoNIQjrXu+F5iggwrwwink1I31TTBZIQHtGOpxILqIJsdPEEnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5OaqBpkTCapoZLMF0UpRyZG0+9RnylKDB9bgoli9lZEhlhhYmxGJRuCv/jyMmmeu77n+ncXldp1HkcRjuAYTsGHK6jBLdShAQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH5Hoj5Y=</latexit><latexit sha1_base64="djHtE9Yv+gFN1ftneD57J88Jblw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBi8uuKPZY9OKxgv2Qdi3ZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqt56o0iyW92ac0EDggWQRI9hY6cE8ZmeeW72c9MoVz/VmQMvEz0kFctR75a9uPyapoNIQjrXu+F5iggwrwwink1I31TTBZIQHtGOpxILqIJsdPEEnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5OaqBpkTCapoZLMF0UpRyZG0+9RnylKDB9bgoli9lZEhlhhYmxGJRuCv/jyMmmeu77n+ncXldp1HkcRjuAYTsGHK6jBLdShAQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH5Hoj5Y=</latexit><latexit sha1_base64="djHtE9Yv+gFN1ftneD57J88Jblw=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBi8uuKPZY9OKxgv2Qdi3ZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqt56o0iyW92ac0EDggWQRI9hY6cE8ZmeeW72c9MoVz/VmQMvEz0kFctR75a9uPyapoNIQjrXu+F5iggwrwwink1I31TTBZIQHtGOpxILqIJsdPEEnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5OaqBpkTCapoZLMF0UpRyZG0+9RnylKDB9bgoli9lZEhlhhYmxGJRuCv/jyMmmeu77n+ncXldp1HkcRjuAYTsGHK6jBLdShAQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH5Hoj5Y=</latexit>

L = 1024
<latexit sha1_base64="5DZEWFXOrtj9+WuLVuqCmqf9cv0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CQBshaGNhEcF8QHKEvc1esmZv99jdE8KR/2BjoYit/8fOf+NecoUmPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58KitZaIIbRHJpeoGWFPOBG0ZZjjtxoriKOC0E0xuMr/zRJVmUjyYaUz9CI8ECxnBxkrtuyvPrdUH5YpbdedAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nAEdV+Or92hs6sMkShVLaEQXP190SKI62nUWA7I2zGetnLxP+8XmLCSz9lIk4MFWSxKEw4MhJlr6MhU5QYPrUEE8XsrYiMscLE2IBKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgwcX0IBbaEILCDzCM7zCmyOdF+fd+Vi0Fpx85hj+wPn8AenUjgY=</latexit><latexit sha1_base64="5DZEWFXOrtj9+WuLVuqCmqf9cv0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CQBshaGNhEcF8QHKEvc1esmZv99jdE8KR/2BjoYit/8fOf+NecoUmPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58KitZaIIbRHJpeoGWFPOBG0ZZjjtxoriKOC0E0xuMr/zRJVmUjyYaUz9CI8ECxnBxkrtuyvPrdUH5YpbdedAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nAEdV+Or92hs6sMkShVLaEQXP190SKI62nUWA7I2zGetnLxP+8XmLCSz9lIk4MFWSxKEw4MhJlr6MhU5QYPrUEE8XsrYiMscLE2IBKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgwcX0IBbaEILCDzCM7zCmyOdF+fd+Vi0Fpx85hj+wPn8AenUjgY=</latexit><latexit sha1_base64="5DZEWFXOrtj9+WuLVuqCmqf9cv0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CQBshaGNhEcF8QHKEvc1esmZv99jdE8KR/2BjoYit/8fOf+NecoUmPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58KitZaIIbRHJpeoGWFPOBG0ZZjjtxoriKOC0E0xuMr/zRJVmUjyYaUz9CI8ECxnBxkrtuyvPrdUH5YpbdedAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nAEdV+Or92hs6sMkShVLaEQXP190SKI62nUWA7I2zGetnLxP+8XmLCSz9lIk4MFWSxKEw4MhJlr6MhU5QYPrUEE8XsrYiMscLE2IBKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgwcX0IBbaEILCDzCM7zCmyOdF+fd+Vi0Fpx85hj+wPn8AenUjgY=</latexit><latexit sha1_base64="5DZEWFXOrtj9+WuLVuqCmqf9cv0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CQBshaGNhEcF8QHKEvc1esmZv99jdE8KR/2BjoYit/8fOf+NecoUmPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58KitZaIIbRHJpeoGWFPOBG0ZZjjtxoriKOC0E0xuMr/zRJVmUjyYaUz9CI8ECxnBxkrtuyvPrdUH5YpbdedAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nAEdV+Or92hs6sMkShVLaEQXP190SKI62nUWA7I2zGetnLxP+8XmLCSz9lIk4MFWSxKEw4MhJlr6MhU5QYPrUEE8XsrYiMscLE2IBKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgwcX0IBbaEILCDzCM7zCmyOdF+fd+Vi0Fpx85hj+wPn8AenUjgY=</latexit>

t − |ℓ | /vB

Figure 4.19: The long-time power-law decay t−α of ReFX X(`, t) in (a) the short-
range hopping model and (b) the long-range hopping model. The numerical results
suggest that the exponents are close to αI ≈ 0.5 and αII ≈ 0.85, respectively.
However, we conjecture that αII approaches 1 in the thermodynamic limit (see the
text).
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To conclude, we see that the long-time power-law depends on the nature of the
quasiparticle dispersion, and is different between the generic case corresponding
to short-range hopping and the completely straightened case corresponding to the
specific long-range hopping. Interestingly, in the quantum Ising case which we
studied in Ref. [37], similar “chaotic” OTOC (i.e., OTOC for operator that contains
string operator in terms of the JW fermions) shows yet a different t−0.25 power
law; understanding this and the power law in the nearest-neighbor hard-core boson
hopping model are outstanding questions.

4.9 Luttinger liquid model: Boson-boson OTOC
In this section, we discuss the calculation of the boson-boson OTOC in the Luttinger
liquid model and the agreements and disagreements with the ones obtained in the
lattice models. Here we consider the operator X(x, t) = c(eiφ(x,t) + e−iφ(x,t)), which
resembles the sum of the boson creation and annihilation operators as considered
in the previous section. The constant c will be fixed later. We again consider the
commutator functionCX X(`, t) = 1

2 〈[X(`, t), X(0, 0)]†[X(`, t), X(0, 0)]〉. To calculate
it, we consider the Schwinger function in the Euclidean path integral [abbreviating
ri = (xi, τi)]

FE
X X({ri}) = 〈X(r1)X(r2)X(r3)X(r4)〉

=
∑

pi=±,
∑

i pi=0
〈ei(∑4

i=1 piφi)〉 (4.65)

=
∑

pi=±,
∑

i pi=0
exp

[
1

2g

∑
i< j

pi p jK(ri − r j)
]
,

where

K(r) ≡
∫ Λ

0

dk
k

2 f (vBk)[1 − cos(k x) cosh(vBkτ)]

+

∫ Λ

0

dk
k
[1 − cos(k x)e−vBk |τ |] , (4.66)

with f (ε) = 1/(eβε − 1) denoting the Bose-Einstein distribution function. Again,
to compare with the lattice systems at finite temperature, we choose to regularize
the theory with a hard cutoff Λ. The |τ | symbol is to be understood as |τ | = τ if
Re(τ) > 0 and |τ | = −τ if Re(τ) < 0. To obtain the functions in the real time, we
need the analytical continuations limε→0+ K(x, τ → ±ε + it) = H(x, t) ∓ iG(x, t),
where H(x, t) and G(x, t) are defined in Eqs. (4.57) and (4.58), respectively.
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t
<latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit>

1 � cos(G(`, t))
<latexit sha1_base64="Hdrzhm24KOCZ7j1SuM9Kj1h6tAQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahBS2JCHosetBjBfsBTSib7aRdutkNuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0wYVdp1v63cyura+kZ+s7C1vbO7Zxf3m0qkkkCDCCZkO8QKGOXQ0FQzaCcScBwyaIXD66nfegCpqOD3epRAEOM+pxElWBupaxe9U58IVb4p+8DYia5UunbJrbozOMvEy0gJZah37S+/J0gaA9eEYaU6npvoYIylpoTBpOCnChJMhrgPHUM5jkEF49npE+fYKD0nEtIU185M/T0xxrFSozg0nTHWA7XoTcX/vE6qo8tgTHmSauBkvihKmaOFM83B6VEJRLORIZhIam51yABLTLRJq2BC8BZfXibNs6rnVr2781LtKosjjw7RESojD12gGrpFddRABD2iZ/SK3qwn68V6tz7mrTkrmzlAf2B9/gDnj5J2</latexit><latexit sha1_base64="Hdrzhm24KOCZ7j1SuM9Kj1h6tAQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahBS2JCHosetBjBfsBTSib7aRdutkNuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0wYVdp1v63cyura+kZ+s7C1vbO7Zxf3m0qkkkCDCCZkO8QKGOXQ0FQzaCcScBwyaIXD66nfegCpqOD3epRAEOM+pxElWBupaxe9U58IVb4p+8DYia5UunbJrbozOMvEy0gJZah37S+/J0gaA9eEYaU6npvoYIylpoTBpOCnChJMhrgPHUM5jkEF49npE+fYKD0nEtIU185M/T0xxrFSozg0nTHWA7XoTcX/vE6qo8tgTHmSauBkvihKmaOFM83B6VEJRLORIZhIam51yABLTLRJq2BC8BZfXibNs6rnVr2781LtKosjjw7RESojD12gGrpFddRABD2iZ/SK3qwn68V6tz7mrTkrmzlAf2B9/gDnj5J2</latexit><latexit sha1_base64="Hdrzhm24KOCZ7j1SuM9Kj1h6tAQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahBS2JCHosetBjBfsBTSib7aRdutkNuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0wYVdp1v63cyura+kZ+s7C1vbO7Zxf3m0qkkkCDCCZkO8QKGOXQ0FQzaCcScBwyaIXD66nfegCpqOD3epRAEOM+pxElWBupaxe9U58IVb4p+8DYia5UunbJrbozOMvEy0gJZah37S+/J0gaA9eEYaU6npvoYIylpoTBpOCnChJMhrgPHUM5jkEF49npE+fYKD0nEtIU185M/T0xxrFSozg0nTHWA7XoTcX/vE6qo8tgTHmSauBkvihKmaOFM83B6VEJRLORIZhIam51yABLTLRJq2BC8BZfXibNs6rnVr2781LtKosjjw7RESojD12gGrpFddRABD2iZ/SK3qwn68V6tz7mrTkrmzlAf2B9/gDnj5J2</latexit><latexit sha1_base64="Hdrzhm24KOCZ7j1SuM9Kj1h6tAQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRahBS2JCHosetBjBfsBTSib7aRdutkNuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0wYVdp1v63cyura+kZ+s7C1vbO7Zxf3m0qkkkCDCCZkO8QKGOXQ0FQzaCcScBwyaIXD66nfegCpqOD3epRAEOM+pxElWBupaxe9U58IVb4p+8DYia5UunbJrbozOMvEy0gJZah37S+/J0gaA9eEYaU6npvoYIylpoTBpOCnChJMhrgPHUM5jkEF49npE+fYKD0nEtIU185M/T0xxrFSozg0nTHWA7XoTcX/vE6qo8tgTHmSauBkvihKmaOFM83B6VEJRLORIZhIam51yABLTLRJq2BC8BZfXibNs6rnVr2781LtKosjjw7RESojD12gGrpFddRABD2iZ/SK3qwn68V6tz7mrTkrmzlAf2B9/gDnj5J2</latexit>

(a)
Early growth region
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cos(G(`, t))
<latexit sha1_base64="Zbh9zV13SuvDPXU3vEV7Vakpwcg=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEILUhJRNBj0YMeK9gPaELZbCft0k027G6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T44bCuRSgotKriQ3YAo4CyGlmaaQzeRQKKAQycY38z8ziNIxUT8oCcJ+BEZxixklGgj9e2yR4Wq3lY94PxM12p9u+LUnTnwKnFzUkE5mn37yxsImkYQa8qJUj3XSbSfEakZ5TAteamChNAxGULP0JhEoPxsfvgUnxplgEMhTcUaz9XfExmJlJpEgemMiB6pZW8m/uf1Uh1e+RmLk1RDTBeLwpRjLfAsBTxgEqjmE0MIlczciumISEK1yapkQnCXX14l7fO669Td+4tK4zqPo4iO0QmqIhddoga6Q03UQhSl6Bm9ojfryXqx3q2PRWvBymeO0B9Ynz8JJJIE</latexit><latexit sha1_base64="Zbh9zV13SuvDPXU3vEV7Vakpwcg=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEILUhJRNBj0YMeK9gPaELZbCft0k027G6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T44bCuRSgotKriQ3YAo4CyGlmaaQzeRQKKAQycY38z8ziNIxUT8oCcJ+BEZxixklGgj9e2yR4Wq3lY94PxM12p9u+LUnTnwKnFzUkE5mn37yxsImkYQa8qJUj3XSbSfEakZ5TAteamChNAxGULP0JhEoPxsfvgUnxplgEMhTcUaz9XfExmJlJpEgemMiB6pZW8m/uf1Uh1e+RmLk1RDTBeLwpRjLfAsBTxgEqjmE0MIlczciumISEK1yapkQnCXX14l7fO669Td+4tK4zqPo4iO0QmqIhddoga6Q03UQhSl6Bm9ojfryXqx3q2PRWvBymeO0B9Ynz8JJJIE</latexit><latexit sha1_base64="Zbh9zV13SuvDPXU3vEV7Vakpwcg=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEILUhJRNBj0YMeK9gPaELZbCft0k027G6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T44bCuRSgotKriQ3YAo4CyGlmaaQzeRQKKAQycY38z8ziNIxUT8oCcJ+BEZxixklGgj9e2yR4Wq3lY94PxM12p9u+LUnTnwKnFzUkE5mn37yxsImkYQa8qJUj3XSbSfEakZ5TAteamChNAxGULP0JhEoPxsfvgUnxplgEMhTcUaz9XfExmJlJpEgemMiB6pZW8m/uf1Uh1e+RmLk1RDTBeLwpRjLfAsBTxgEqjmE0MIlczciumISEK1yapkQnCXX14l7fO669Td+4tK4zqPo4iO0QmqIhddoga6Q03UQhSl6Bm9ojfryXqx3q2PRWvBymeO0B9Ynz8JJJIE</latexit><latexit sha1_base64="Zbh9zV13SuvDPXU3vEV7Vakpwcg=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEILUhJRNBj0YMeK9gPaELZbCft0k027G6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKa+sbm1vF7dLO7t5+2T44bCuRSgotKriQ3YAo4CyGlmaaQzeRQKKAQycY38z8ziNIxUT8oCcJ+BEZxixklGgj9e2yR4Wq3lY94PxM12p9u+LUnTnwKnFzUkE5mn37yxsImkYQa8qJUj3XSbSfEakZ5TAteamChNAxGULP0JhEoPxsfvgUnxplgEMhTcUaz9XfExmJlJpEgemMiB6pZW8m/uf1Uh1e+RmLk1RDTBeLwpRjLfAsBTxgEqjmE0MIlczciumISEK1yapkQnCXX14l7fO669Td+4tK4zqPo4iO0QmqIhddoga6Q03UQhSl6Bm9ojfryXqx3q2PRWvBymeO0B9Ynz8JJJIE</latexit>

t�1
<latexit sha1_base64="PczxgUtFUZWXpWYVXRT9GbPGDw4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oY9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2J1j+OE+xEdKBEKRtFKTXzIzrxJr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9m1E3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk76QnOGcmwJZVrYWwkbUk0Z2oBKNgRv8eVl0jyvem7Vu7uo1K7zOIpwBMdwCh5cQg1uoQ4NYPAIz/AKb07svDjvzse8teDkM4fwB87nDzN1jt4=</latexit><latexit sha1_base64="PczxgUtFUZWXpWYVXRT9GbPGDw4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oY9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2J1j+OE+xEdKBEKRtFKTXzIzrxJr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9m1E3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk76QnOGcmwJZVrYWwkbUk0Z2oBKNgRv8eVl0jyvem7Vu7uo1K7zOIpwBMdwCh5cQg1uoQ4NYPAIz/AKb07svDjvzse8teDkM4fwB87nDzN1jt4=</latexit><latexit sha1_base64="PczxgUtFUZWXpWYVXRT9GbPGDw4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oY9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2J1j+OE+xEdKBEKRtFKTXzIzrxJr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9m1E3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk76QnOGcmwJZVrYWwkbUk0Z2oBKNgRv8eVl0jyvem7Vu7uo1K7zOIpwBMdwCh5cQg1uoQ4NYPAIz/AKb07svDjvzse8teDkM4fwB87nDzN1jt4=</latexit><latexit sha1_base64="PczxgUtFUZWXpWYVXRT9GbPGDw4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oY9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2J1j+OE+xEdKBEKRtFKTXzIzrxJr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9m1E3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk76QnOGcmwJZVrYWwkbUk0Z2oBKNgRv8eVl0jyvem7Vu7uo1K7zOIpwBMdwCh5cQg1uoQ4NYPAIz/AKb07svDjvzse8teDkM4fwB87nDzN1jt4=</latexit>

(b)
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Figure 4.20: (a) The dominant part of the commutator function CIII
X X(`, t) ≈

1 − cos[G(`, t)] in the Luttinger model with g = 1 (“free-fermion” value). (b) The
long-time approach is described by the t−1 power law.

Using suitable combinations of the analytical continuations, we have

CIII
X X(`, t) = c4

[
8 + 4e−

2
g H(`,t)

]
sin2

[
G(`, t)

2g

]
. (4.67)

We can fix the constant c as follows. The factor e−2H(`,t)/g decays exponentially to
zero at long time. Therefore, the limiting value of the commutator function inside
the light cone is CIII

X X(`, t → ∞) = 8c4 sin2[G(`,∞)/(2g)] ≤ 8c4. For the lattice
models, CX X(`, t) ≤ 2. We then fix c = 1/

√
2 so that the maximal possible value

matches with the lattice models.

The integral that gives G(x, t) in Eq. (4.58) is convergent even if we set Λ = ∞. In
this case, G(x, t) = π

4 (sign(vBt − x)+ sign(vBt + x)) → π
2 when t →∞. This means

that CX X(`, t) → 1 inside the light cone, which coincide with the result in the lattice
models. If we put the cutoff at Λ = ∞, the wavefront becomes a step function, and
the long time behavior is described by exp[−2H(x, t)/g] (which in fact approaches
zero when Λ→∞). A more realistic approach (i.e., closer to the lattice models) is
to have a finite cutoffΛ. As we will see, introducing the finite cutoff indeed changes
the behavior CX X(`, t) around the wavefront and its asymptote in the long time.

Figure 4.20 shows results with finite cutoff Λ = π for the case with the Luttinger
parameter g = 1 (which corresponds to non-interacting fermions). In the figure, we
ignored the exp[−2H(`, t)/g] since it is numerically negligible and does not affect
the behavior of CX X(`, t), as explained in Fig. 4.15. One can see that the presence of
the finite cutoff indeed modifies the shape of the wavefront (early-growth region),
which is no longer the simple step function. However, the time window of the
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early-growth is always O(1), which is indeed similar to the case of the lattice model
with long-range hopping. Moreover, in this case as well the wavefront does not
broaden, which can be also seen from the fact that CIII

X X(`, t) is a function of vBt ± `
only. Making a more detailed comparison of Fig. 4.20(a) and

G(`, t) ≈ π/4 + Si[Λ(vBt − `)]/2 (4.68)

in this early-growth region, vBt ∼ ` � 1, we note that the shape of the wavefront
is indeed converging as ` increases. The precipitous drop when going away from
the wavefront for vBt < ` but still in the early growth region is due to numerical
“accident:” here G(`, t) oscillates around 0, hence the strong drop in 1−cos[G(`, t)],
and the next largest value happens to be small by accident.

Before the wavefront is reached, CX X(`, t) has a fixed power-law growth ∼ t2 for any
`, which is also similar to the early-time (perturbative) region in the long-ranged
hopping hard-core bosonmodel. To be more specific, recalling the early time behav-
ior of G(`, t) in Eq. (4.60), similarly we have sin2[G(`, t)/(2g)] ∼ π2(vBt)6/(36g2`4)
for the choice Λ = π; while for a generic Λ, we have

sin2[G(`, t)/(2g)] ∼ sin2(Λ`)(vBt)2/(4g2`2) .

Note that in this case, one has to choose generic cut-off to match the early-time
growth power law in the long-range hopping model.

We note that the long-time power-law approach is also due to the presence of the
finite cutoff. Recalling the long-time behavior of G(`, t) in Eq. (4.62), we have

sin2
[
G(`, t)

2g

]
∼ sin2

(
π

4g

)
− sin

(
π

2g

)
cos(Λ`)cos(ΛvBt)

2g(ΛvBt)

+ cos
(
π

2g

)
cos2(Λ`) cos2(ΛvBt)

4g2(ΛvBt)2

− sin
(
π

2g

)
cos(Λ`) sin(ΛvBt)

2g(ΛvBt)2
. (4.69)

Therefore, for general g , 1/(2m), where m is some integer, we haveCIII
X X(`, t) ∼ t−1

at long time; this includes the non-interacting model g = 1 [in the special cases with
g = 1/(2m),m ∈ Z, we have CIII

X X(`, t) ∼ t−2]. We speculate that this agrees with the
long-range hard-core boson model in the thermodynamic limit. We therefore see
that, while not in all the details, the Luttinger liquid model can capture a great deal
of the OTOC behavior in the long-range hopping hardcore boson model.



160

Density-density
OTOC Early-time Wavefront

Broadening
Long time ap-
proach

Model I t2`/(`!)2 t
1
3 t−1

Model II t2/`4 No (i.e., t0) t−2

Model III(a) t2/`4 No t−2

Model III(b) t2/`2 No t−2

Boson-boson
OTOC Early-time Wavefront

Broadening
Long time ap-
proach

Model I t2`/(`!)2 t
1
3 t−

1
2

Model II t2/`2 No t−1

Model III(a) t6/`4 No t−1

Model III(b) t2/`2 No t−1

Table 4.1: Summary of the main results for the three models in the different
regimes. Model I is the nearest-neighbor lattice model; model II is the long-range
hopping lattice model; and model III is the continuum Luttinger liquid model. The
results for model III are quoted with the Luttinger parameter g = 1 corresponding
to noninteracting fermions and (a) cutoff Λ = π and (b) generic cutoff Λ , π.

4.10 Discussions of the results in theHard-core boson and the Luttinger liquid
models

We studied the OTOCs in the hard-core boson models with short-range hopping and
with long-range hopping where we artificially straighten the fermionic quasiparticle
dispersion. We compared these models to the Luttinger-liquid model with hard
cutoff regularization, which mimics the finite band width in the lattice models.

The density-density commutator function exhibits “non-scrambling” behavior (i.e.,
it approaches zero in the long-time limit) in all three models. In the short-range
hopping model, the wavefront broadens as t1/3, which can be verified using the
asymptotic properties of the Bessel functions in the so-called “transition region.” On
the other hand, in the long-range hopping model and the Luttinger-liquid model, we
find that the wavefront does not broaden; there is also no well-defined “exponential
growth” (i.e., “butterfly effect”) regime since the wavefront width is finite (and the
width is also cutoff-dependent in the Luttinger-liquid model).

Before the wavefront reaches, the long-range model and the Luttinger-liquid model
both show t2 growth. The t2 growth in the long-range model can be understood
using the perturbative early-time expansion and is due to the fact that all sites “talk”
to each other via the long-range couplings. The coefficient of the t2 growth as
a function of ` can be carried out according to the perturbative expansion. The
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fact that we find similar early-time behavior in the Luttinger-liquid model suggests
that it should be regarded as representing bosons with long-range couplings. We
therefore see that this “light-cone leakage" phenomenon [64] might be a very general
feature for long-range models. The short-range model, on the other hand, shows
position-dependent power-law growth in the early-time regime described by the
perturbative expansion. After the wavefront passes, both the long-range model and
the Luttinger-liquid model show t−2 decay, while the short-range model shows t−1

decay.

Turning to the boson-boson commutator function, the calculations aremore complex
in the lattice models (since the boson operator contains a string operator when
expressed in terms of the JW fermions) and require numerical calculations, while
they are still analytically tractable in the Luttinger-liquid model. We find that the
boson-boson commutator function shows saturation inside the light cone in all free
models. Such a characteristic “scrambling” behavior reflects the fact that the boson
operator turns into a highly nonlocal operator under the Heisenberg evolution. In the
short-range hopping model, we found the t1/3 wavefront broadening by wavefront
scaling collapse and by extracting the velocity-dependent Lyapunov exponent. In
the long-range hopping model, we find a nonbroadening wavefront, which is also the
case in the Luttinger-liquid model; in both cases, one cannot define a parametrically
large window to describe the wavefront behavior asymptotically [while the sharp
onset in the Luttinger-liquid model in Fig. 4.20 is reminiscent of an exponentially
growing wavefront, we emphasize that this is a numerical accident for the simple
function describing the wavefront at long times, Eq. (4.68)]. As far as the wavefront
broadening is concerned, in all free models, the boson-boson and density-density
OTOCs thus show similar broadening behavior. After the wavefront passes, the
boson-boson OTOC approaches its limiting value as t−1 in the long-range model
and the Luttinger-liquid model, while the approach is t−0.5 in the short-range model.

We thus see that, despite the integrability of the models, different operators can
still show different behaviors in the OTOC. It was argued that in rational conformal
theories, the t = ∞ values of the OTOCs are solely determined by the topological
data associatedwith the operators in themodels [65]. While we do not expect the full
conformal symmetry in the lattice models at finite temperature, the topological data
might still be present, resulting in the same t = ∞ values of the OTOCs independent
of the details of the dynamics. On the other hand, the character of the wavefront
broadening and the long-time power-law approach depends on the details of the
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dispersion relations of the quasiparticles. In particular, one lesson from our study
is that the conformal field theories cannot be used to described such properties of
short-range models at finite temperatures.

Lastly, we mention some outstanding questions. While a seemingly simple descrip-
tion appears to exist for the boson-boson OTOC results, we could not acquire a more
analytical understanding due to its intricacy. Thus, it will indeed be valuable if one
can obtain some analytical understanding regarding the long-time asymptotic or the
wavefront behavior, which we only obtained numerically. We have also shown the
feasibility of reconciling theOTOCs of the hard-core bosonmodel with a completely
straightened quasiparticle dispersion to the OTOCs in the linear-Luttinger liquid. It
may therefore be possible to match the behavior of OTOCs of the short-range boson
model and of a “nonlinear” Luttinger liquid (i.e., theory that includes some “band
curvature” effects) [66], which is worth pursuing. The quasiparticle description
behind the systems we studied in this paper are noninteracting fermions. Another
question is how the details of the OTOC change when one adds interactions, and
what role the integrability plays. A recent work [67] has shown that in an interacting
integrable Floquet system, the OTOCs have diffusive wavefront broadening, similar
to the random unitary circuit model. On the other hand, little is known for inte-
grable Hamiltonian systems that do not have a description in terms of free particles
(e.g., models where the Jordan-Wigner fermions are interacting). A robust study
on such systems such as the XXZ chain will be valuable for a deeper understand-
ing of OTOCs and operator spreading in high-energy, quantum-information, and
condensed-matter communities.

Appendix F: Calculation of the density-density OTOC in the lattice models
Here we present detailed calculations for the density-density OTOC in the short-
range and long-range hopping models. Directly calculating the “commutator-
squared” |[n0(t), n`]|2 using the Hamiltonian formalism and the explicit Heisenberg
evolution of the operators is in fact easier than calculating the expanded four terms
individually. However, here we will carry out the calculations using path-integral
formalism and obtain all the terms individually. Such approach parallels OTOC
calculations in field theories, and the Luttinger liquid model is one example that we
want to compare and contrast.
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We define

Cnn(`, t) =
1
2
〈[n0(t), n`]†[n0(t), n`]〉

=
1
2
[F1(`, t) + F2(`, t) − F3(`, t) − F4(`, t)] ,

where

F1(`, t) = 〈n` n0(t) n0(t) n`〉 ,
F2(`, t) = 〈n0(t) n` n` n0(t)〉 ,
F3(`, t) = 〈n0(t) n` n0(t) n`〉 ,
F4(`, t) = 〈n` n0(t) n` n0(t)〉 .

Now consider the Jordan-Wigner fermion model formulated in the Euclidean path
integral over Grassmann fields, Z =

∫
D[η̄, η]e−S[η̄,η], where

S =
∫ β

0
dτ

∑
i j

η̄i[δi j∂τ + Ji j]η j . (4.70)

The standard method of calculating OTOC is to calculate the Schwinger func-
tions and do the analytical continuation to the Wightmann functions. Consider the
Schwinger function

F(E)(`; τ1, τ2, τ3, τ4) = 〈Tτ{n`(τ1)n`(τ2)n0(τ3)n0(τ4)}〉 . (4.71)

The required Wightmann functions are obtained by

F1(`, t) = F(E)(`; ε1, ε4, ε2 + it, ε3 + it) ,
F2(`, t) = F(E)(`; ε2, ε3, ε1 + it, ε4 + it) ,
F3(`, t) = F(E)(`; ε2, ε4, ε1 + it, ε3 + it) ,
F4(`, t) = F(E)(`; ε1, ε3, ε2 + it, ε4 + it) ,

where the εi’s are taken to the limit of 0+ in the order of ε1 > ε2 > ε3 > ε4 > 0.
The Schwinger function is in fact an eight-point fermion correlation function

F(E)(`; τ1, τ2, τ3, τ4) = 〈η`(τ1)η`(τ2)η0(τ3)η0(τ4)η̄`(τ1 + δ)η̄`(τ2 + δ)η̄0(τ3 + δ)η̄0(τ4 + δ)〉

= det


〈n`〉 〈η`(τ1)η̄`(τ2)〉 〈η`(τ1)η̄0(τ3)〉 〈η`(τ1)η̄0(τ4)〉

〈η`(τ2)η̄`(τ1)〉 〈n`〉 〈η`(τ2)η̄0(τ3)〉 〈η`(τ2)η̄0(τ4)〉
〈η0(τ3)η̄`(τ1)〉 〈η0(τ3)η̄`(τ2)〉 〈n0〉 〈η0(τ3)η̄0(τ4)〉
〈η0(τ4)η̄`(τ1)〉 〈η0(τ4)η̄`(τ2)〉 〈η0(τ4)η̄0(τ3)〉 〈n0〉


.

Note that in the first line, δ is a positive infinitesimal smaller than all εi, i.e., δ < εi,
i = 1, . . . , 4; in the second line, δ has been taken to be 0+.



164

We can now obtain the Wightmann functions. We have

F1 = det


〈n`〉 〈n`〉 − 1 −〈c`c†0(t)〉 −〈c`c

†
0(t)〉

〈n`〉 〈n`〉 〈c†0(t)c`〉 〈c†0(t)c`〉
〈c†
`
c0(t)〉 −〈c0(t)c†` 〉 〈n0〉 〈n0〉 − 1

〈c†
`
c0(t)〉 −〈c0(t)c†` 〉 〈n0〉 〈n0〉


,

= 〈n`〉〈n0〉 + 〈n`〉|A(`, t)|2 − |〈c0(t)†c`〉|2 , (4.72)

where A(`, t) = 〈c†
`
c0(t) + c0(t)c†` 〉 =

1
L
∑

k eik`−iε(k)t is just the fermion evolution
function. Note that it is completely independent of the temperature.

Next, we have

F2 = det


〈n`〉 〈n`〉 − 1 〈c†0(t)c`〉 −〈c`c

†
0(t)〉

〈n`〉 〈n`〉 〈c†0(t)c`〉 −〈c`c
†
0(t)〉

−〈c0(t)c†` 〉 −〈c0(t)c†` 〉 〈n0〉 〈n0〉 − 1
〈c†
`
c0(t)〉 〈c†

`
c0(t)〉 〈n0〉 〈n0〉


,

= 〈n`〉〈n0〉 + 〈n0〉|A(`, t)|2 − |〈c0(t)†c`〉|2 , (4.73)

and

F3 = det


〈n`〉 〈n`〉 − 1 〈c†0(t)c`〉 −〈c`c

†
0(t)〉

〈n`〉 〈n`〉 〈c†0(t)c`〉 〈c†0(t)c`〉
−〈c0(t)c†` 〉 −〈c0(t)c†` 〉 〈n0〉 〈n0〉 − 1
〈c†
`
c0(t)〉 −〈c0(t)c†` 〉 〈n0〉 〈n0〉


,

= (|A(`, t)|2 + 1)(〈n`〉〈n0〉 + 〈c†0(t)c`〉〈c0(t)c†` 〉)
− A(`, t)〈c†0(t)c`〉 . (4.74)

Finally, we use

F4 = F∗3 = (|A(`, t)|2 + 1)(〈n`〉〈n0〉 + 〈c†` c0(t)〉〈c`c†0(t)〉)
− A∗(`, t)〈c†

`
c0(t)〉 . (4.75)

Combining everything, we have

Cnn(`, t) = |A(`, t)|2
{
(〈n`〉 + 〈n0〉)/2 − 〈n`〉〈n0〉

− Re[〈c†0(t)c`〉〈c0(t)c†` 〉]
}
. (4.76)

It is easy to see that the most important part of Cnn(`, t) is the temperature-
independent factor |A(`, t)|2. Indeed, the first line in the {. . . } is a non-zero constant
[equal to d(1− d) where d is the density], while the second line decays both in sep-
aration ` and in time t.
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Appendix G: Calculation of the density-density OTOC in the Luttinger liquid
model
In this section, we present detailed calculations for the density-density OTOC. The
non-oscillation component of the density-density OTOCwas calculated in Ref. [36].
In fact, it is the dominant contribution for Cnn(`, t). Here, for the completeness, we
also include the q = 2kF component of Cnn(`, t) and use the path-integral formalism
instead of the Hamiltonian formalism.

The density operator in consideration is defined in Sec. 4.6. Here we repeat the
definition for reader’s convenience.

n(x) = d0 + ρ0(x) + d2W(x) , (4.77)

where ρ0(x) ≡ −∂x θ̂(x)/π and

W(x) ≡ ei2πd0 xV−2(x) + e−i2πd0 xV2(x) , (4.78)

with the abbreviation Vm(x) ≡ eimθ̂(x), d0 = kF/π denoting the density, and d2 is
some constant determined by microscopic details of the model.

We therefore have

Cnn(`, t) = Cρ0ρ0(`, t) + d4
2CWW (`, t)

+ d2
2Cρ0W (`, t) + d2

2CWρ0(`, t)
+ d2

2Cρ0ρ0WW (`, t) + d2
2Cρ0WWρ0(`, t) , (4.79)

where we have abbreviated

Cρ0ρ0WW (`, t) ≡
1
2
〈[ρ0(x, t), ρ0(0)]†[W(x, t),W(0)]〉 + H.c. ,

Cρ0WWρ0(`, t) ≡
1
2
〈[ρ0(x, t),W(0)]†[W(x, t), ρ0(0)]〉 + H.c. .

To calculate the various commutator functions, we first consider the Schwinger
functions and then analytically continue to the desired combinations.

First, we consider Cρ0ρ0(`, t). Abbreviating r ≡ (x, τ), we define (with the hard-
cutoff Λ)

D(r) =
∫ Λ

0
dkk2 fB(vBk) cosh(vBkτ) cos(k x)

+

∫ Λ

0
dkk cos(k x)e−|τ |vk . (4.80)
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(For the soft-cutoff version, one integrates k from 0 to∞ with an extra factor e−αk .)
We in fact have ∂x1∂x2 〈θ1θ2〉 = gD(r12)/2, where we have abbreviated θ j ≡ θ(r j)
and ri j ≡ (xi − x j, τi − τj). We then consider the Schwinger function

Fρ0ρ0 ≡ π−4〈θ1θ2θ3θ4〉 (4.81)

=
g2

4π4 [D(r12)D(r34) + D(r13)D(r24) + D(r14)D(r23)] ,

by Wick’s theorem. To obtain the functions after analytical continuation, we have

D(x, τ → it ± 0+) = M(x, t) ∓ iN(x, t) , (4.82)

where

M(x, t) =
∫ Λ

0
dkk[2 fB(vBk) + 1] cos(k x) cos(vBkt)

N(x, t) =
∫ Λ

0
dkk cos(k x) sin(vBkt) . (4.83)

We also note that D(0) = 0 and N(x,−t) = −N(x, t). (Again, one can also consider
the soft-cutoff regularization, with integrand k = 0 to∞ with an extra factor e−αk .)

We therefore obtain Cρ0ρ0(`, t) via analytical continuation (with the order ε1 > ε2 >

ε3 > ε4 → 0) as

2Cρ0ρ0(`, t) = Fρ0ρ0(x1= x4=0, x2= x3= x; τ1=ε1, τ2=ε2+it, τ3=ε3+it, τ4=ε4)
+ Fρ0ρ0(x1= x4= x, x2= x3=0; τ1=ε1+it, τ2=ε2, τ3=ε3, τ4=ε4+it)
− Fρ0ρ0(x1= x3= x, x2= x4=0; τ1=ε1+it, τ2=ε2, τ3=ε3+it, τ4=ε4)
− Fρ0ρ0(x1= x3=0, x2= x4= x; τ1=ε1, τ2=ε2+it, τ3=ε3, τ4=ε4+it)

=
g2

π4 N2(x, t) . (4.84)

For the soft-cutoff version, we have

N(x, t) = α(vt − x)
[(vt − x)2 + α2]2

+
α(vt + x)

[(vt + x)2 + α2]2
, (4.85)

hence recovering the result in Ref. [36]. For the hard-cutoff version, we have
Eq. (4.56) in the main text.

Next we calculate CWW (`, t). The Schwinger function to consider in this case is

FWW = 〈exp(2i(p1θ1 + p2θ2 + p3θ3 + p4θ4))〉
= exp[2g

∑
i< j

pi p jK(ri j)] , (4.86)
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and the analytical continuation K(x, τ = it ± 0+) = H(x, t) ∓ iG(x, t). We expand

CWW (`, t) = CV2V−2(`, t) + CV−2V2(`, t)
+ CV−2V−2(`, t) + CV2V2(`, t)
+ e−i4πρ0`Ca(`, t)
+ ei4πρ0`Cb(`, t) , (4.87)

where

Ca(`, t) =
1
2
〈[V−2(`, t),V2(0)]†[V2(`, t),V−2(0)]〉

Cb(`, t) =
1
2
〈[V2(`, t),V−2(0)]†[V−2(`, t),V2(0)]〉 .

Suitable combinations of the analytical continuations give us

CV−2V2(`, t) = CV−2V2(`, t) = CV−2V−2(`, t) = CV2V2(`, t)
= 2 sin2(2gG(`, t)) , (4.88)

and

Ca(`, t) = Cb(`, t)
= 2 exp[−8gH(`, t)] sin2[2gG(`, t)] .

So we have

CWW (`, t) = 2[4 + 2 cos(4πρ0`) exp(−8gH)] sin2(2gG) .

Note that for the soft-cutoff version,

G(`, t) = 1
2
(arctan(vt + `

α
) + arctan(vt − `

α
)) , (4.89)

recovering the result of CV−2V2(`, t) in Ref. [36].

Finally, we present the calculations ofCn0w(`, t),CWn0(`, t),Cρ0ρ0WW (`, t),Cρ0WWρ0(`, t).
The relevant Schwinger function in this case is

Fρ0ρ0WW = π−2∂x1∂x2 〈θ1θ2W(r3)W(r4)〉 .
=

g

π2 D(r12) exp[2gF(r34)] cos(2πρ0x34)
(4.90)

We therefore obtain, upon analytical continuations,

Cρ0W (`, t) = CWρ0(`, t) = 0

Cρ0ρ0WW (`, t) =
−4g
π2 cos(2πρ0`)e−2gH N(`, t) sin2(2gG(`, t))

Cρ0WWρ0(`, t) = 0 .

Collecting all the pieces, we obtain the result Eq. (4.55) in the main text.
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Appendix H: Comparison of G(`, t) in hard-cutoff and soft-cutoff regulariza-
tions
For the readers’ benefit, here we collect and compare the behavior of the function
G(`, t) in different regions of interest for the two regularization schemes. We
denote G(`, t;Λ) the function defined via the hard-cutoff regularization and given in
Eq. (4.58), while G(`, t;α) is the function defined via the soft-cutoff regularization,
given in Ref. [36] or Eq. (4.89).

In the short-time region t � 1/(vBΛ) or t � α/vB, we have the behavior

G(`, t;Λ) ∼ vBt
sin(Λ`)

`

+ (vBt)3 2Λ` cos(Λ`) + (−2 + Λ2`2) sin(Λ`)
6`3 ;

G(`, t;α) ∼ vBt
α

α2 + `2 − (vBt)3α(α
2 − 3`2)

3(α2 + `2)3
.

In the region where one follows the rays ` = vt, and v > vB, or around the wavefront,

G(`, t;Λ) ∼ π

4
+

1
2
Si[Λ(vBt − `)] ;

G(`, t;α) ∼ π

4
+

1
2

arctan
(
vBt − `
α

)
,

both showing non-broadening wavefront behavior.

Finally, in the long-time region, t � `/vB,

G(`, t;Λ) ∼ π

2
− cos(ΛvBt) cos(Λ`)

ΛvBt

− sin(ΛvBt) cos(Λ`)
(ΛvBt)2

;

G(`, t;α) ∼ π

2
− α

vBt
+O(t−3) .

We therefore see that in all the cases of interest, the hard-cutoff and soft-cutoff
expressions are not qualitatively different except for oscillating factors for the hard
cutoff. We used the hard cutoff to compare with our fully controlled lattice calcu-
lation in the long-range hopping model, since such cutoff mimics the finite band
width in the lattice models.

Appendix I: Calculation of the boson-boson OTOC in the hard-core boson
models
To compute the commutator function, it suffices to calculate the OTOC FX X(`, t) =
〈X0(t)X`(0)X0(t)X`(0)〉. For simplicity, we denote the left end-point of the lattice
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as e ≡ −L/2+1. Defining the fermions A j = c†j + c j and B j = c†j − c j , we can
express

FX X(`, t) = 〈(Ae(t) . . . A0(t)Be(t) . . . B−1(t)
Ae . . . A`Be . . . B`−1)2〉 , (4.91)

and calculate it by Wick’s theorem.

We need the following two-point correlation functions involving operators A and B:

〈An(t)Am〉 = −〈Bn(t)Bm〉

=
2

L + 1

∑
k

sin(kn) sin(km)

× [cos(εk t) − i sin(εk t) tanh( βεk

2
)] ,

〈An(t)Bm〉 = −〈Bn(t)Am〉

=
2

L + 1

∑
k

sin(kn) sin(km)

× [cos(εk t) tanh( βεk

2
) − i sin(εk t)] ,

where the summation is running through the set k = pπ/(L + 1), p = 1 . . . L.

We define [AA](t)n=a:b
m=c:d as a matrix with matrix elements 〈An(t)Am〉, having row

index n from a to b and column index m from c to d, and similarly for [AB](t),
[BA](t), and [BB](t). We will need also t = 0 correlation functions [AB](0) and
[BA](0), which we will denote as [AB] and [BA], i.e., by simply omitting the time
argument. We also denote the identity matrix as [I] and the zero matrix as [0], with
their sizes specified implicitly according to the context.

Now define matrices

S =

©­­­­­«
[0] [AB]n=e:0

m=e:−1 [AA](t)n=e:0
m=e:` [AB](t)

n=e:0
m=e:`−1

− [0] [BA](t)n=e:−1
m=1:` [BB](t)n=e:−1

m=1:`−1
− − [0] [AB]n=e:0

m=e:−1
− − − [0]

ª®®®®®¬
,

where the rest of the matrix elements are defined such that ST = −S, and

R =

©­­­­­«
[I] [AB]n=e:0

m=e:−1 [AA](t)n=e:0
m=e:` [AB](t)

n=e:0
m=e:`−1

[BA]n=e:−1
m=e:0 −[I] [BA](t)n=e:−1

m=1:` [BB](t)n=e:−1
m=1:`−1

[AA](−t)n=e:`
m=e:0 [AB](−t)n=e:`

m=e:−1 [I] [AB]n=e:0
m=e:−1

[BA](−t)n=e:`−1
m=e:0 [BB](−t)n=e:`−1

m=e:−1 [BA]n=e:`−1
m=1:` −[I]

ª®®®®®¬
.
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Using Wick’s theorem, we then have

FX X = Pf

[
S R

−RT S

]
, (4.92)

where Pf[Q] evaluates the Pfaffian of an antisymmetric matrix Q.
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C h a p t e r 5

QUANTUMMANY-BODY SCAR STATES

Understanding quantum thermalization in isolated systems has attracted a lot of
attention, due to both developments in cold atom experiments and fundamental the-
oretical interest. The eigenstate thermalization hypothesis (ETH) has emerged as a
paradigmatic mechanism for quantum thermalization [1, 2]. ETH postulates that a
generic many-body system thermalizes at the level of individual eigenstates: eigen-
states at the same energy density give the same expectation values of “local-enough"
observables. The strong version of the ETH requires this on every eigenstate. While
an analytical proof is elusive, many numerical studies provided strong corrobora-
tions [3–6]. However, some systems showed atypical dynamics [7, 8] due to special
low-energy states [9–11].

A recent Rydberg cold atom experiment [12] hinted at a new scenario, where the
system exhibited atypical quench dynamics starting from a charge density wave
(CDW) state at effective temperature T = ∞. In contrast, a uniform initial state
with the same energy density showed the expected thermalization behavior. Refer-
ences [13, 14] proposed that this phenomenon is related to the presence of special
eigenstates–quantummany-body scar states–which violate the ETH in the otherwise
thermal spectrum, analogous to the nonergodic single-particle scar wavefunctions
inside the chaotic single-particle spectrum [15].

Another nonintegrable system hosting nonthermal eigenstates is the Affleck-Lieb-
Kennedy-Tasakimodel [16]. Reference [17] constructed families of exact eigenstates
in thismodel. Usingmatrix product states (MPS), furthermore, Ref. [18] showed that
these exact eigenstates with a finite energy density have logarithmic entanglement
scaling in the subsystem size. These papers thus provided an important analytical
demonstration of exact scar states that violate the ETH [19]. Other works [20,
21] also proposed a special construction to embed nonthermal eigenstates into the
many-body spectrum.

Remarkably, in the same Rydberg atom Hamiltonian studied in Refs. [12–14, 22,
23], we have discovered some exact scar states with a finite bond dimension at
energy density corresponding to T = ∞. Our exact MPS description shows that
these exact scar states have constant entanglement scaling and are, hence, even more
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“nonthermal” than the exact scar states at a finite energy density in Refs. [17, 18].
Furthermore, these exact scar states break the lattice translation symmetry, despite
being at T = ∞. Thus, the strong ETH is violated in the Rydberg atom chain. Using
a “single-mode approximation” (SMA) and generaizing it to a “multimode approxi-
mation" (MMA) on top of our exact scar states, we also find good approximations to
nearby scar states, potentially relating the existence of other scar states to our exact
states.

5.1 Constrained Hilbert space and the PXP model
Consider Rydberg atoms on a chain with L sites, and denote |0〉 as the atomic ground
state and |1〉 as the Rydberg excitation. The Rydberg blockade prohibits states with
| . . . 11 . . .〉 on any two neighboring sites [12]. Despite the resulting non-tensor-
product structure of the Hilbert space, one can still have the ETH concept [24].

The dynamics of this system is described by the so-called PXP model:

H =
L−1∑
j=2

Pj−1X j Pj+1 + H1 + HL , (5.1)

where P = |0〉〈0| is the projector to the Rydberg atom ground state and X =

|0〉〈1|+ |1〉〈0| describes transitions between the ground and excited states. (Previous
works [25–28] studied low-energy states of related Hamiltonians.) For periodic
boundary conditions (PBC), we have H1 = PL X1P2 and HL = PL−1XLP1, while
for open boundary conditions (OBC), H1 = X1P2 and HL = PL−1XL . For PBC,
the Hamiltonian has translation symmetry Tx and inversion symmetry I, while for
OBC, there is only inversion symmetry relative to the midpoint, I : j → L− j+1.
Furthermore, one can define “particle-hole transformation” Cph =

∏
j Z j , where

Z = |1〉〈1| − |0〉〈0|. This satisfies CphHC−1
ph = −H, which guarantees that the

spectrum is symmetric around zero energy; moreover, the intertwining of Cph with
the inversion symmetry produces exponentially many zero-energy eigenstates [14,
29].

The above Hamiltonian, despite its simple appearance, is not trivially solvable.
While its level-spacing statistics indicates its nonintegrability [14], a recentwork [23]
has suggested that it could be a deformation from some integrable Hamiltonian.

Inspired by Ref. [17], we inspected entanglement spectra of eigenstates of the PXP

model for OBC and discovered eigenstates at E = ±
√

2 with a finite bond dimension.
We then reverse-engineered a simple MPS representation for these eigenstates and
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further identified two more exact eigenstates with E = 0 for OBC and two exact
eigenstates at E = 0 for PBC. Hence, these states analytically demonstrate that
the PXP Hamiltonian violates the strong ETH and are therefore exact quantum
many-body scar states.

5.2 Exact scar states in the periodic boundary condition
These eigenstates exist for even L (assumed throughout) and are expressed using
MPSs. We define 2 × 3 and 3 × 2 matrices

B0 =

(
1 0 0
0 1 0

)
, B1 =

√
2

(
0 0 0
1 0 1

)
, (5.2)

C0 =
©­­«
0 −1
1 0
0 0

ª®®®¬ , C1 =
√

2
©­­«

1 0
0 0
−1 0

ª®®®¬ . (5.3)

Two (unnormalized) exact scar states for PBC can be expressed as

|Φ1〉 =
∑
{σ}

Tr[Bσ1Cσ2 . . . BσL−1CσL ]|σ1 . . . σL〉 , (5.4)

and |Φ2〉 = Tx |Φ1〉, where σj = 0 or 1. The wavefunctions satisfy the constraints
since B1C1 = 02×2 and C1B1 = 03×3. Since these states are at E = 0, their effective
temperature is T = ∞.

The norm of the states is 〈Φi |Φi〉 = 3Lb+2+(−1)Lb , where Lb ≡ L/2. The two states
are not orthogonal and have overlap 〈Φ1 |Φ2〉 = 2[(

√
2 − 1)Lb + (−1)Lb (

√
2 + 1)Lb ];

however, they are linearly independent for Lb > 3 [for Lb ≤ 3, we happen to have
|Φ2〉 = (−1)Lb |Φ1〉]. For Lb > 3, the states |Φ1,2〉 in fact break the translation
symmetry Tx , while by construction they are invariant under T2

x . One can form
degenerate states |ΦK=0/π〉 = |Φ1〉 ± |Φ2〉 that carry definite momenta 0 and π,
which can be viewed as a finite-size signature of the Tx breaking that appears in the
thermodynamic limit.

Proof of exact scar states in PBC
Here we prove that H |Φ1〉 = 0. To prove this, it is easier to work in the blocked
reformulation of theHamiltonian: We block two sites 2b−1, 2b into one “block-site",
with allowed block states (00), (10), and (01) denotes asO, L, and R respectively; the
Rydberg constraint further disallows configurations with RL on consecutive blocks.
The number of blocks is Lb = L/2, and recall that throughout we assume that L
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is even. In the blocked representation, the Hamiltonian can be written as a sum of
two-body terms:

H =
Lb∑

b=1
hb,b+1 ,

hb,b+1 = (|R〉〈O | + |O〉〈R|)b ⊗ (I − |L〉〈L |)b+1

+ (I − |R〉〈R|)b ⊗ (|L〉〈O | + |O〉〈L |)b+1 . (5.5)

The state |Φ1〉 can be written in the blocked representation as an MPS of bond
dimension 2, namely

|Φ1〉 =
∑
{s}

Tr[As1 . . . AsLb ]|s1 . . . sLb
〉 , (5.6)

where we have introduced blocked matrices A(σ1σ2) = Bσ1Cσ2 . Explicitly,

AO =

(
0 −1
1 0

)
, AR =

(√
2 0

0 0

)
, AL =

(
0 0
0 −
√

2

)
. (5.7)

One can easily check that AR AL = 0, so the state satisfies the Rydberg constraint
between the blocks. Interestingly, these matrices also satisfy AL AR = 0, so this state
also disallows LR on consecutive blocks.

We first examine how the genuinely two-body part of the Hamiltonian term hb,b+1,
namely h(2)b,b+1 ≡ −(|R〉〈O |+|O〉〈R|)b⊗(|L〉〈L |)b+1−(|R〉〈R|)b⊗(|L〉〈O |+|O〉〈L |)b+1

operates on |Φ1〉. The special property AR AL = 0 leaves us only the part−(|R〉〈O |)b⊗
(|L〉〈L |)b+1−(|R〉〈R|)b⊗(|L〉〈O |)b+1. It is easy to check that thematrices also satisfy
AO AL + AR AO = 0, and hence we conclude that h(2)b,b+1 |Φ1〉 = 0.

We now collect the one-body parts of the Hamiltonian and after convenient grouping
obtain:

H′ =
Lb∑

b=1

(
|R〉〈O | + |O〉〈R| + |L〉〈O | + |O〉〈L |

)
b
. (5.8)

Consider action of a term associated with block b on |Φ1〉:(
|R〉〈O |+ |O〉〈R|+ |L〉〈O |+ |O〉〈L |

)
b
|Φ1〉 =

∑
{s}

Tr[As1 . . . Fsb . . . AsLb ]|s1 . . . sLb
〉 ,

(5.9)
where

FO =

(√
2 0

0 −
√

2

)
, FR = FL =

(
0 −1
1 0

)
. (5.10)
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Therefore, we have

H |Φ1〉 = H′|Φ1〉 =
Lb∑

b=1

∑
{s}

Tr[As1 . . . Fsb . . . AsLb ]|s1 . . . sLb
〉 . (5.11)

It is easy to verify that Fs = X As − As X , where X = 1√
2
σx . Substituting this in

Eq. (5.11), we therefore see that H |Φ1〉 = 0. The fact that |Φ2〉 is also an eigenstate
follows from the translational invariance of the Hamiltonian: H |Φ2〉 = HTx |Φ1〉 =
TxH |Φ1〉 = 0.

It is instructive to see an alternative proof how the sum of the one-body terms
H′ annihilates Φ1 (which will be also useful later for developing intuition about
our single-mode approximation constructed on top of |Φ1〉). To this end, we first
transform to the basis diagonalizing the one-body terms. On each block-site, the
eigenvalues are

√
2, −
√

2, and 0, and the corresponding eigenvectors are

|+〉b ≡
1
2

(
|R〉 + |L〉 +

√
2|O〉

)
b
,

|−〉b ≡
1
2

(
|R〉 + |L〉 −

√
2|O〉

)
b
,

|0〉b ≡
1
√

2
(|R〉 − |L〉)b . (5.12)

Hence we have

H′ =
√

2
Lb∑

b=1

(
|+〉〈+| − |−〉〈−|

)
b
=
√

2(N+ − N−) , (5.13)

where N± ≡
∑Lb

b=1(|±〉〈±|)b simply count numbers of + vs − states on the block-
site lattice.

In the new basis, we can write |Φ1〉 as an MPS with matrices

A± = V
1
2

(
AR + AL ±

√
2AO

)
V−1 ,

A0 = V
1
√

2

(
AR − AL

)
V−1 ,

where it was also convenient to perform an additional gauge transformation with

V = 1√
2

(
1 1
1 −1

)
. The resulting matrices are

A+ =

(
0
√

2
0 0

)
, A− =

(
0 0√
2 0

)
, A0 =

(
1 0
0 1

)
. (5.14)
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Using properties (A+)2 = (A−)2 = 0, A+A− = diag(2, 0), and the fact that A0 is
identity matrix, it is now easy to expand |Φ1〉 in the±, 0 basis. In particular, we see
that for basis vectors with non-trivial contributions to |Φ1〉, each +must be followed
by −, with possibly intervening 0’s in any number. This immediately implies that
in each such basis vector we have N+ = N−; hence, |Φ1〉 is indeed annihilated by the
sum of the one-body terms H′.

It is interesting to note that there is a precise relation between our exact eigenstate
|Φ1〉 in the blocked representation and the celebrated AKLT state in a spin-1 chain.
Specifically, we can perform the following gauge transformation

Tr[As1 As2 As3 As4 . . . ] = Tr[As1UU−1 As2 As3UU−1 As4 . . . ]
= Tr[(A′)s1(A′′)s2(A′)s3(A′′)s4 . . . ]

with U = σx Pauli matrix and (A′)s = AsU, (A′′)s = U−1 As. The matrices (A′)s

are precisely the matrices used in an MPS representation of the AKLT state with
identification s = O, R, L as Sz = 0, 1,−1 in the spin-1 chain, while the matrices
(A′′)s become the same as (A′)s after a unitary transformation on the physical states
that interchanges L and R states. Unfortunately, the Hamiltonians in the Rydberg
problem and in the AKLT problem appear to be drastically different. Most notably,
the Rydberg Hamiltonian has a nontrivial translation symmetry Tx by one Rydberg
atom, while the AKLT Hamiltonian “knows” only about T2

x which is the simple
translation symmetry by one block in the blocked variables. Also, the AKLT
Hamiltonian has continuous spin rotation symmetry and is a sum of local terms
that individually annihilate the AKLT state, which is not the case for the Rydberg
Hamiltonian and our exact eigenstate. So far, we have not been able to utilize
knowledge about the AKLT Hamiltonian in the Rydberg problem.

Calculations of norms and overlaps of |Φ1〉 and |Φ2〉
Calculations with the MPS state |Φ1〉 simplify in the blocked representation intro-
duced previously. They heavily use the associated transfer matrix defined as

EA =
∑

s

(As)∗ ⊗ As =

©­­­­­«
2 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 2

ª®®®®®¬
, (5.15)
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and we immediately get

Em
A =

1
2

©­­­­­«
1 + 3m 0 0 −1 + 3m

0 1 + (−1)m −1 + (−1)m 0
0 −1 + (−1)m 1 + (−1)m 0

−1 + 3m 0 0 1 + 3m

ª®®®®®¬
. (5.16)

The norm of the state is 〈Φ1 |Φ1〉 = Tr[E Lb

A ] = 3Lb+2+(−1)Lb . Since |Φ2〉 = Tx |Φ1〉,
we have 〈Φ2 |Φ2〉 = 〈Φ1 |Φ1〉.

To calculate the overlap between |Φ1〉 and |Φ2〉 used in the main text, it is convenient
to introduce blocked matrices D(σ1σ2) = Cσ1 Bσ2 . Specifically,

DO =
©­­«
0 −1 0
1 0 0
0 0 0

ª®®®¬ , DR =
©­­«
−
√

2 0 −
√

2
0 0 0
0 0 0

ª®®®¬ , DL =
©­­«
√

2 0 0
0 0 0
−
√

2 0 0

ª®®®¬ . (5.17)

To calculate 〈Φ1 |Φ2〉, we need the transfer matrix

EAD =
∑

s

(As)∗ ⊗ Ds =

(√
2DR −DO

DO −
√

2DL

)
, (5.18)

which is a 6 × 6 matrix with eigenvalues −
√

2−1, −
√

2−1, 0, 0,
√

2−1, and
√

2−1.
We therefore obtain 〈Φ1 |Φ2〉 = Tr[E Lb

AD] = 2[(
√

2 − 1)Lb + (−1)Lb (
√

2 + 1)Lb ].

Translation symmetry breaking and symmetry properties
Let us examine properties of the state |Φ1〉 (properties of |Φ2〉 simply follow). First,
the breaking of Tx in this state cannot be detected by any one-site observable, since
the one-site reduced density matrices are the same for all sites, ρone-site = 2

3 |0〉〈0| +
1
3 |1〉〈1| in the thermodynamic limit. In particular, for the Rydberg excitation number
n j = |1〉〈1|, we have 〈Φ1 |n j |Φ1〉/〈Φ1 |Φ1〉 = 1

3 . This violates the ETH, since, at
T = ∞, the Gibbs ensemble predicts 〈n j〉T=∞ = (1 + φ2)−1 ≈ 0.2764, where
φ = (1 +

√
5)/2 is the golden ratio.

On the other hand, two-site observables can detect the Tx breaking, as can be seen
from the corresponding reduced density matrices for subsystems [1, 2] and [2, 3] in
the |Φ1〉 state:

ρtwo-site[1,2] =
1
3
(|00〉〈00| + |01〉〈01| + |10〉〈10|) , (5.19)

ρtwo-site[2,3] =
1
3
(|00〉〈00| + |01〉〈01| + |10〉〈10|) − 1

9
(|01〉〈10| + |10〉〈01|) . (5.20)
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In particular, we see that |0 j1 j+1〉〈1 j0 j+1 | + H.c. has expectation value 0 for j odd
and −2/9 for j even.

Obtaining the one-site reduced density matrix of the exact states in PBC is a simple
exercise in MPS calculations. For concreteness, let us consider |Φ1〉. We define
generalized transfer matrices Eσσ′

B ≡ (Bσ)∗ ⊗ Bσ′ and Eσσ′

C ≡ (Cσ)∗ ⊗ Cσ′. The
ordinary transfer matrices EB and EC defined earlier are related to these as EB =∑
σ Eσσ

B and EC =
∑
σ Eσσ

C . We can now obtain the matrix elements of the one-site
density matrix on the odd sites as 〈σ′|ρone-site[1] |σ〉 = Tr[Eσσ′

B ECE Lb−1
A ]/Tr[E Lb

A ].
We find

ρone-site[1] =
2 · 3Lb−1 + 1 + (−1)Lb

Z
|0〉〈0| + 3Lb−1 + 1

Z
|1〉〈1| , (5.21)

where Z = 3Lb + 2 + (−1)Lb On the even sites, the matrix elements are given as

〈σ′|ρone-site[2] |σ〉 = Tr[EBEσσ′

C E Lb−1
A ]/Tr[E Lb

A ] . (5.22)

It is easy to verify that we indeed have ρone-site[1] = ρone-site[2] . For even Lb, the one-site
density matrix is ρone-site[1] = ρone-site[2] = 2

3 |0〉〈0| +
1
3 |1〉〈1|; while for odd Lb, it is

essentially the same but with an exponentially small correction.

For the two-site reduced densitymatrix on sites 1 and 2, thematrix elements are given
as 〈σ′1σ

′
2 |ρ

two-site
[1,2] |σ1σ2〉 = Tr[E (σ1σ2)(σ′1σ

′
2)

A E Lb−1
A ]/Tr[E Lb

A ], where E
(σ1σ2)(σ′1σ

′
2)

A =

(A(σ1σ2))∗ ⊗ A(σ
′
1σ
′
2), giving us

ρtwo-site[1,2] =
3Lb−1 + (−1)Lb

Z
|00〉〈00| + 3Lb−1 + 1

Z
(|01〉〈01| + |10〉〈10|)

+
−1 + (−1)Lb

3Z
(|01〉〈10| + |10〉〈01|) . (5.23)

On sites 2 and 3, the matrix elements of the two-site reduced density matrix are
〈σ′2σ

′
3 |ρ

two-site
[2,3] |σ2σ3〉 = Tr[EBE

(σ2σ3)(σ′2σ
′
3)

D ECE Lb−2
A ]/Tr[E Lb

A ], whereE
(σ2σ3)(σ′2σ

′
3)

D ≡
(Cσ2 Bσ3)∗ ⊗ (Cσ′2 Bσ′3). We find

ρtwo-site[2,3] =
3Lb−1 + (−1)Lb

Z
|00〉〈00| + 3Lb−1 + 1

Z
(|01〉〈01| + |10〉〈10|)

+
1 − 3Lb−2

Z
(|01〉〈10| + |10〉〈01|) . (5.24)

As discussed, one-site observables cannot detect translation symmetry breaking,
while the two-site observable |0 j1 j+1〉〈1 j0 j+1 | + H.c. can detect the Tx breaking.
Another common observable in experiment and numerical studies—“domain wall
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number” Pj Pj+1—has expectation value 1/3 for any j (and L →∞) and hence does
not detect the translation symmetry breaking. Interestingly, the Gibbs ensemble in
the thermodynamic limit gives 〈Pj Pj+1〉T=∞ = φ/(φ + 2) ≈ 0.4472, which again
directly shows the non-ETH behavior of |Φ1〉.

For L even, the inversion I : j → L − j + 1 is relative to a bond center and is not
broken. In the MPS representation, we have

I |Φ1〉 =
∑
{σ}

Tr[Bσ1
I Cσ2

I . . . BσL−1
I CσL

I ]|σ1 . . . σL〉 , (5.25)

where Bσ
I ≡ [C

σ]T andCσ
I ≡ [B

σ]T . Consider nowa 2×2matrix XI ≡ iσy and a 3×3
matrixYI ≡ diag(−1,−1, 1). These satisfy XI Bσ

I Y−1
I = Bσ andYICσ

I X−1
I = −Cσ and

give us an MPS gauge transformation that proves I |Φ1〉 = (−1)Lb |Φ1〉. For |Φ2〉 ≡
Tx |Φ1〉, note that since ITx = T−1

x I and T2
x |Φi〉 = |Φi〉, we have I |Φ2〉 = (−1)Lb |Φ2〉.

While Cph is not a symmetry of H, our states are in fact eigenstates of Cph. Indeed,
in terms of MPS,

Cph |Φ1〉 =
∑
{σ}

Tr[Bσ1
c Cσ2

c . . . BσL−1
c CσL

c ]|σ1 . . . σL〉 , (5.26)

where B0
c = −B0, B1

c = B1,C0
c = −C0, andC1

c = C1. Consider a 2×2matrix Xc ≡ σz

and a 3 × 3 matrix Yc ≡ diag(−1, 1,−1). Then applying the gauge transformation
XcBσ

c Y−1
c = Bσ, YcCσ

c X−1
c = −Cσ proves Cph |Φ1〉 = (−1)Lb |Φ1〉. For |Φ2〉, noting

that CphTx = TxCph, we conclude that Cph |Φ2〉 = (−1)Lb |Φ2〉.

5.3 Exact scar states in the open boundary condition
We also found exact scar states for OBC with the same bulk MPSs. Defining
“boundary vectors” v1 = (1, 1)T and v2 = (1,−1)T , we can write four exact scar
states

|Γα,β〉 =
∑
{σ}

vT
αBσ1Cσ2 . . . BσL−1CσLvβ |σ1 . . . σL〉 , (5.27)

where α, β ∈ {1, 2}. The eigenenergies are E = 0 for |Γα,α〉, E =
√

2 for |Γ1,2〉, and
E = −

√
2 for |Γ2,1〉.
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Proof of exact eigenstates in OBC
Here we prove that |Γα,β〉 are eigenstates in OBC. In this case, the Hamiltonian in
the blocked form is

H =
Lb−1∑
b=1

hb,b+1 + hleft + hright ,

hleft =(|L〉〈O | + |O〉〈L |)b=1 , hright = (|R〉〈O | + |O〉〈R|)b=Lb
, (5.28)

with the “bulk” hb,b+1 given in Eq. (5.5).

We can write the states in the blocked representation as

|Γα,β〉 =
∑
{s}

vT
αAs1 . . . AsLb vβ |s1 . . . sLb

〉 .

Similar to the case in PBC, the genuinely two-body part of hb,b+1 annihilates these
states, h(2)b,b+1 |Γα,β〉 = 0. We therefore have

H |Γα,β〉 = H′|Γα,β〉 =
Lb∑

b=1

∑
{s}

vT
αAs1 . . . Fsb . . . AsLb vβ |s1 . . . sLb

〉 , (5.29)

where H′ is the sum of one-body terms defined in Eq. (5.8), and matrices Fs are
defined in Eq. (5.10). We can again substitute Fs = X As − As X , with X = 1√

2
σx ,

and obtain

H |Γα,β〉 =
∑
{s}
(vT
αX As1 . . . AsLb vβ − vT

αAs1 . . . AsLb Xvβ)|s1 . . . sLb
〉

= − 1
√

2
[(−1)α − (−1)β]|Γα,β〉 , (5.30)

where in the last equality we used X = XT and Xvα = −(−1)α 1√
2
vα. Thus, |Γ1,1〉

and |Γ2,2〉 are eigenstates with energy 0, while |Γ1,2〉 and |Γ2,1〉 have energy
√

2 and
−
√

2 respectively.

It is interesting to note that Γα,β are also eigenstates of H′ defined in Eq. (5.8).
From the diagonalization of H′ in Eq. (5.13), any eigenstate of H′ must have energy
which is an integer multiple of

√
2. However, the fact that H |Γα,β〉 = H′|Γα,β〉 only

guarantees that H′|Γα,β〉 satisfy the Rydberg constraints, and we needed additional
arguments to show that |Γα,β〉 are eigenstates of H′.

As an alternative proof, we can also write the OBC states |Γα,β〉 in the ±, 0 basis
introduced in Eq. (5.12). Convenient MPS matrices in this basis are given in
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(c) L = 18 open boundary condition

E

|⟨E |Z(+)
2 ⟩ |2

|⟨Γ1,2 |Z(+)
2 ⟩ |2 , |⟨Γ2,1 |Z(+)

2 ⟩ |2

(a)

(b)

j

j

L = 50

L = 50

⟨Xj⟩1,1
⟨Xj⟩2,2

⟨Xj⟩1,2
⟨Xj⟩2,1

|⟨E |Z(−)
2 ⟩ |2

Figure 5.1: (a)(b) Energy density profiles 〈X j〉α,β in the four exact eigenstates |Γα,β〉
in the OBC system of size L = 50. (c)Towers of the Z2 scar states for OBC found
in ED. The positions of the exact scar states |Γ1,2〉 and |Γ2,1〉 are marked with stars.

Eq. (5.14), and the corresponding termination vectors (obtained using the gauge
transformation that produced the convenient matrices) are ṽ1 = Vv1 = (

√
2, 0)T and

ṽ2 = Vv2 = (0,
√

2)T . It is now easy to see that for a product basis vector to be
present in the expansion of |Γα,β〉, the leftmost non-0 block-site must have+ if α = 1
and− if α = 2, while the rightmost non-0 site must have− if β = 1 and + if β = 2.
Similar to the case in PBC, properties (A+)2 = (A−)2 = 0 and A0 = 1 imply that
the +’s and−’s must alternate while allowing intervening 0’s. Hence, we conclude
that N+ − N− = 0 for the |Γα,α〉 states, while N+ − N− = 1 or −1 for the |Γ1,2〉 or
|Γ2,1〉 respectively, which reproduces the eigenvalues under H′ obtained earlier.

Edge excitations in the OBC exact scar states
It is interesting to examine the energy density profiles. Figures 5.1(a) and 5.1(b)
show 〈X j〉α,β ≡ 〈Γα,β |X j |Γα,β〉/〈Γα,β |Γα,β〉 in each state. We can see that there are
localized “energy lumps” at the edges of the chain. The profiles decay exponentially
into the bulk with decay length 2 ln(3). The integrated energy over each lump is
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√

2/2 or −
√

2/2 depending on the termination, which can be thought as representing
different “edge states.”

It is an easy exercise in MPS calculations to obtain expectation values of the local
energy 〈X j〉α,β ≡ 〈Γα,β |X j |Γα,β〉/〈Γα,β |Γα,β〉 in the OBC exact eigenstates. The
essential ingredients are generalized transfer matrices EXB = B0 ⊗ B1+B1 ⊗ B0 and
EXC = C0⊗C1+C1⊗C0, as well as ordinary transfermatrices EB = B0⊗B0+B1⊗B1

and EC = C0 ⊗ C0 + C1 ⊗ C1, where we have already used the fact that all our
matrices Bσ,Cσ are real. Note that EBEC = EA, which is the transfer matrix
used in the blocked formulation and given in Eq. (5.15). We also define boundary
vectors eα = vα ⊗ vα, where α = 1, 2 (here also using that our vectors vα are real).
Parameterizing our terminations as vα = (1, (−1)α−1), α = 1, 2, we obtain the norms
as

〈Γα,β |Γα,β〉 = eT
αE Lb

A eβ = 2
[
(−1)Lb+α+β + 3Lb

]
. (5.31)

For the energy calculations, at site j = 2b − 1, b = 1 . . . Lb, we have

〈Γα,β |X j |Γα,β〉 = eT
αEb−1

A EXBECE Lb−b
A eβ ,

while at site j = 2b, we have

〈Γα,β |X j |Γα,β〉 = eT
αEb−1

A EBEXCE Lb−b
A eβ .

We obtain

〈X2b−1〉α,β =〈X2b〉α,β

=

√
2

1 + (−1)Lb+α+β3−Lb

[
(−1)α(−1)b3−b + (−1)β(−1)Lb−b3−Lb+b−1

]
.

(5.32)

These are plotted in Fig. 5.1. Interestingly, we can relate these states that differ by
their terminations only at one edge by an action of a local two-site operator near that
edge. For example,

|Γ1,2〉 = 1[1,...,L−2] ⊗
( 1
√

2
|00〉〈01| − 1

√
2
|00〉〈10| + |01〉〈01| − |10〉〈10|

)
[L−1,L]

|Γ1,1〉 .

(However, note that the operator achieving this is not unique.)

It is easy to check that the expectation value of the total energy 〈H〉α,β =
∑L

j=1〈X j〉α,β
is 0 if α = β, while 〈H〉1,2 =

√
2 and 〈H〉2,1 = −

√
2. In fact, the states are exact

eigenstates and these expectation values are the corresponding eigenvalues, as we
showed in Sec. 5.3.
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Symmetry properties of the OBC exact scar states
The symmetry properties of |Γα,β〉 can be derived in a similar fashion as for PBC.
In particular, we have I |Γ1,2〉 = (−1)Lb−1 |Γ1,2〉 and I |Γ2,1〉 = (−1)Lb−1 |Γ2,1〉; while
I |Γ1,1〉 = (−1)Lb |Γ2,2〉 and I |Γ2,2〉 = (−1)Lb |Γ1,1〉. Under the inversion,

I |Γα,β〉 =
∑
{σ}

vT
βBσ1

I Cσ2
I . . . BσL−1

I CσL

I vα |σ1 . . . σL〉 . (5.33)

Recall that v1 = (1, 1)T and v2 = (1,−1)T . We can perform the same gauge
transformation as in PBC using matrices XI andYI . The boundary vectors transform
as XIv1 = v2 and XIv2 = −v1, and using also X−1

I = XT
I , we conclude that

I |Γ1,2〉 = (−1)Lb−1 |Γ1,2〉 and I |Γ2,1〉 = (−1)Lb−1 |Γ2,1〉; while I |Γ1,1〉 = (−1)Lb |Γ2,2〉
and I |Γ2,2〉 = (−1)Lb |Γ1,1〉.

As for the particle-hole transformation, we obtain Cph |Γ1,2〉 = (−1)Lb |Γ2,1〉 and
Cph |Γ1,1〉 = (−1)Lb |Γ2,2〉. The fact that |Γ1,2〉 and |Γ2,1〉 are eigenstates of I means
that they can be nondegenerate, which is what we found in exact diagonalization
(ED). As expected, these E = ±

√
2 scar states are related by Cph. Since they

are nondegenerate, their finite bond dimensions are not related to the exponential
degeneracy of the E = 0 sector. Their existence again demonstrates the violation
of the ETH, even without worrying about potential subtleties in the degenerate
space [29].

5.4 Entanglement entropies of the exact scar states
We can also calculate entanglement in |Γα,β〉 for any cut and system size [18, 30].
To obtain the entanglement spectrum for the states |Γα,β〉, we follow the procedure
in Refs. [17, 18, 30]. First, we consider the entanglement cut between the sites 2b

and 2b+ 1. We form 2 × 2 Gram matrix L2×2 reshaped from eT
αEb

A and 2 × 2 Gram
matrix R2×2 reshaped from E Lb−b

A eβ, and then obtain an effective matrix

S2×2 =
L2×2R2×2
〈Γα,β |Γα,β〉

=
1
2

©­«
1 (−1)α+13Lb−b+(−1)β+13b

(−1)Lb+α+β+3Lb

(−1)α+13Lb−b+(−1)β+13b
(−1)Lb+α+β+3Lb

1
ª®¬ (5.34)

whose eigenvalues are the same as eigenvalues of the reduced density matrix. We
therefore obtain the entanglement spectrum as

s1,2 =
1
2

(
1 ± (−1)α+13Lb−b + (−1)β+13b

(−1)Lb+α+β + 3Lb

)
. (5.35)

For large subsystem size b and in the thermodynamic limit, e.g., where we take
Lb → ∞, b → ∞, while fixing the ratio b/Lb = f < 1, or where we take
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Lb → ∞ first and then b→ ∞, the entanglement spectrum approaches s1,2 → 1/2
independent of the terminations.

For the entanglement cut between sites 2b + 1 and 2b + 2, we need 3 × 3 Gram
matrix L3×3 reshaped from eT

αEb
AEB and 3 × 3 Gram matrix R3×3 reshaped from

ECE Lb−b−1
A eβ. The effective matrix that reproduces the entanglement spectrum is

S3×3 =
L3×3R3×3
〈Γα,β |Γα,β〉

=
1

3Lb + (−1)Lb+α+β

×
©­­­«

5
6 · 3

Lb + 1
2 · (−1)Lb+α+β 1

6 · (−1)1+b [(−1)α · 3Lb−b + 9 · (−1)Lb+β · 3b ] −3Lb−1

1
2 · (−1)1+b [(−1)α · 3Lb−b + (−1)Lb+β · 3b ] 1

6 · 3
Lb + 1

2 · (−1)Lb+α+β (−1)b+α · 3Lb−b−1

3Lb−1 (−1)1+β+Lb−b · 3b 0

ª®®®¬ .
(5.36)

The entanglement spectrum at any finite Lb, b can be obtained from the eigenvalues
of the above matrix. For large b and in the thermodynamic limit, we have

S →
©­­«

5
6 0 −1

3
0 1

6 0
1
3 0 0

ª®®®¬ , (5.37)

which gives the entanglement spectrum 2/3, 1/6 and 1/6.

Therefore, in the thermodynamic limit, across a cut between C2b and B2b+1 (bond-
dimension D = 2 cut), we have the squared Schmidt values 1/2 and 1/2, which
gives the von Neumann entanglement entropy SOBC,D=2

vN = ln 2. Cutting instead
across B2b+1 and C2b+2 (D = 3), the squared Schmidt values are 2/3, 1/6, and 1/6,
and SOBC,D=3

vN = −2
3 ln(23 ) −

1
3 ln(16 ) ≈ 0.868.

For the states |Φi〉 in PBC and a large subregion, there are two entanglement cuts,
and the entanglement entropy will be the sum of the OBC entropies associated with
each cut (and will remain finite in the thermodynamic limit). We can then predict
that for the states |ΦK=0/π〉, the entanglement entropy will be SPBC

vN = SOBC,D=2
vN +

SOBC,D=3
vN + ln 2 ≈ 2.254.

5.5 Single mode approximation andmultimode approximations for other pri-
mary scar states

Turner et. al. [13, 14] focused on the PXP model with PBC and identified a
set of quantum many-body scar states (called Z2 scar states) through the overlap
of eigenstates |E〉 with the CDW states |Z2〉 = |10 . . . 10〉 or |Z′2〉 = |01 . . . 01〉.
The most prominent such scar states have the largest overlap and the smallest
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E

L = 26
periodic boundary condition

− |⟨E |Z(+)
2 ⟩ |2 − |⟨E |Z(−)

2 ⟩ |2

|⟨E |Ξ1⟩ |2

63%

78%

89%
92%

92%
90%

86%
79%

72%
62%

50%

32%

|⟨E |Ξ5⟩ |2

|⟨E |Ξ7⟩ |2

|⟨E |Ξ9⟩ |2

|⟨E |Ξ11⟩ |2

|⟨E |Ξ3⟩ |2 |⟨E |Ξ2⟩ |2

|⟨E |Ξ4⟩ |2

|⟨E |Ξ6⟩ |2

|⟨E |Ξ8⟩ |2

|⟨E |Ξ10⟩ |2

|⟨E |Ξ12⟩ |2
|⟨E |Ξ13⟩ |2

9%

Figure 5.2: Overlaps of the SMA and MMA wavefunctions with the eigenstates in
the PBC system with L = 26. We also list the overlaps with the primary Z2 scar
states. The Z2 scar states are identified through the overlaps with the |Z (+)2 〉 or |Z

(−)
2 〉

states (for more clarity, we show negatives of these overlaps).

entanglement entropy compared to nearby states, but there are also “bands" (or
“towers") of weaker scar states close to each primary one. (See also Fig. 1.3.) The
consecutive primary scar states have an almost equal energy separation of ≈ 1.33.
The scar states and this frequency were proposed to be responsible for the strong
oscillations observed in quenches from the |Z2〉 state.

It is convenient to consider states |Z (±)2 〉 = (|Z2〉 ± |Z′2〉)/
√

2, which have inversion
quantum numbers I=1 and I=−1 and carry momenta K=0 and K=π respectively,
if in PBC. For Lb even, the Z2 scar states at energy E ≈ 0 are found to have I = 1
(and K=0 in PBC), while for Lb odd they have I=−1 (and K=π). For a fixed Lb, I

(and K in PBC) alternate between these values when going from one primary scar
state to the next (and are the same within the band of weaker scar states associated
with each primary state). This is illustrated in Figs. 5.1(c) and 5.2.

Turner et. al. [13, 14] proposed to approximate the primary scar states using “for-
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ward scattering approximation" (FSA) starting from the Z2 state. We propose an
alternative picture starting from our exact E = 0 states.

First, we note that our exact E = 0 scar states are, in fact, representative of the nearby
scar states. For instance, at L = 26, the nearby E ≈ ±1.34 scar states have average
Rydberg excitation number 〈E |n j |E〉 ≈ 0.3476 while 〈ΦK=π |n j |ΦK=π〉 ≈ 0.3355.
Second, we note that for OBC, the exact scar states |Γ1,2〉 and |Γ2,1〉, while not being
the primary Z2 scar states, belong to the first non-zero-energy towers of scar states,
as shown in Fig. 5.1(c). Furthermore, we can understand these exact E = ±

√
2

scar states as “edge excitations” on top of the E = 0 states |Γα,α〉. We therefore
conjecture that for the PBC system as well, the nearby scar states can be understood
as quasiparticle excitations on top of the “vacuum" |Φi〉.

Motivated by these observations, we construct variational wavefunctions using
SMA [31, 32] and generalize it to MMA on top of our exact |Φi〉 states and aimed
to capture the nearby scar states. We start with the following SMA wavefunction
|Ξ1〉 = [|M1〉 − (−1)LbTx |M1〉]/ξ1, where

|M1〉=
∑
{σ}

Lb∑
b=1

Tr[Bσ1Cσ2. . .Mσ2b−1σ2b. . .CσL ]|σ1. . .σL〉, (5.38)

and ξ1 provides normalization 〈Ξ1 |Ξ1〉 = 1. The matrices

M00 =

(
1 0
0 1

)
, M01 =

(
µ1 0
µ2 0

)
, M10 =

(
0 0
−µ2 µ1

)
are chosen such that the wavefunction satisfies the Rydberg-blockaded constraint
and I |M1〉 = (−1)Lb−1 |M1〉, hence I |Ξ1〉 = (−1)Lb−1 |Ξ1〉 (see Ref. [zotero-1083]).
We have also chosen the translation quantum number of |Ξ1〉 to be (−1)Lb−1, which
matches the symmetry sector of the first E , 0 scar state overlapping with the Z2

CDW. To make |Ξ1〉 as close to an eigenstate as possible, we minimize the energy
variance σ2

H(µ1, µ2) = 〈Ξ1 |H2 |Ξ1〉 − 〈Ξ1 |H |Ξ1〉2 at fixed L. At L = 26, we find
optimal parameters µ1 = −1.0876 and µ2 = −0.6344, which give σ2

H = 0.0263 and
the average energy 〈Ξ1 |H |Ξ1〉 = −1.3147. Remarkably, the optimized state has over
63% overlap with the primary Z2 scar state at E ≈ −1.3386 found in ED, as shown
in Fig. 5.2. It is easy to check that µ′1 = −µ1, µ

′
2 = µ2 gives |Ξ′1〉 = (−1)Lb−1Cph |Ξ1〉,

which captures the scar state with E ≈ 1.3386.

To capture other primary scar states and support our picture of quasiparticle excita-
tions, we examine the following MMA wavefunctions

|Ξn〉 = [|Mn〉 + (−1)Lb+nTx |Mn〉]/ξn , (5.39)
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where

|Mn〉 =
∑
{σ}

Lb∑′

b1,...,bn=1
Tr[Bσ1Cσ2 . . . Mσ2b1−1σ2b1 . . .

. . . Mσ2bn−1σ2bn . . . BσL−1CσL ]|σ1 . . . σL〉 , (5.40)

and the summation is constrained to have all bi distinct and ξn is the normalization
factor. Such an |Mn〉 describes some n-particle scattering state and is the most
primitive construction where we simply try hard-core exclusion of the particles.
For simplicity, we will take M from the optimization of |Ξ1〉. Moreover, |Ξn〉
has quantum numbers Tx = (−1)Lb+n and I = (−1)Lb+n, matching the symmetry
structure of the Z2 scar states. Unexpectedly, Fig. 5.2 shows that the overlaps of
such simplest MMA wavefunctions and the primary scar states become better with
more quasiparticles, up to about n ≈ Lb/2, while for larger n the overlaps start to
decrease. The poorer performance for n > Lb/2 is not surprising: For example, for
n = Lb, the state |MLb

〉 =
⊗Lb

b=1 |0〉2b−1(|0〉+µ1 |1〉)2b+
⊗Lb

b=1(|0〉+µ1 |1〉)2b−1 |0〉2b−⊗Lb

b=1 |0〉|0〉, therefore |ΞLb
〉 ∼ |MLb

〉 but has spontaneous Tx symmetry breaking
and is only a crude approximation to the true nondegenerate fully symmetric ground
state. Our MMA states with n close to Lb are similarly expected to be only crude
approximations to the actual primary scar states and are seen to be spread over several
nearby scar states. On the other hand, the performance of the states with n < Lb/2
is truly remarkable. Typically, when adding more quasiparticles without further
optimizations, such MMA states become worse with the number of particles added,
while our MMA have better overlaps with the primary scar states. Furthermore, our
MMA states perform better than the FSA states for 2 ≤ n ' Lb/2. For reference,
at L = 26, the FSA states have overlap 69% with the scar states E ≈ ±1.33 and
68% − 72%, overlaps on the consecutive primary scar states respectively. This
suggests that our exact eigenstates at E = 0 provide a better starting point for
understanding the scar states in the PXP model.

Let us further discuss these results. |Ξ1〉 and |Ξ′1〉 ∼ Cph |Ξ1〉 can be viewed as
representing “elementary quasiparticles" with energies ε− ≈ −1.31 and ε+ = −ε−;
these particles also carry inversion quantum number −1. It is then natural to expect
strong oscillations with frequency ε+ in observables that flip the inversion quantum
number. (Observables in experiment and numerics that do not flip I will show
frequency 2ε+.) Indeed, even though the overlaps of the Z2 initial state with the
primary scar states decrease exponentially with the system size, the “quasiparticle
creation operators” can also act on many more states, always “adding” roughly ε±.
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This argument resembles the quasiparticle explanation [9] of strong oscillations in
the “weak thermalization" regime in Ref. [7], where the initial state happened to be
near the ground state. The differences here are that the initial Z2 state is at T = ∞
but is “close” to our special eigenstates |Φi〉, and that the quasiparticles here can
carry both positive and negative energies.

By the repeated application of the SMA construction that gave us the |Ξ1〉 and |Ξ′1〉
states, we also expect additional stateswith energies E ≈ (n+−n−)ε+, n+, n− ∈ N. We
have demonstrated the (n+, n−) = (0, n) branch explicitly in Fig. 5.2. Interestingly,
the same energy mε+ can be obtained in multiple ways, which may explain the bands
of weaker scar states near the primary states.

Further details of SMA for the E ≈ ±1.33 scar states with I = (−1)Lb−1

For ease of reference, we remind the construction and then explain more details
behind it: |Ξ1〉 = (|M1〉 − (−1)LbTx |M1〉)/ξ1, where ξ1 provides normalization
〈Ξ1 |Ξ1〉 = 1 and

|M1〉 =
Lb∑

b=1
Tr[Bσ1Cσ2 . . . Mσ2b−1σ2b . . . BσL−1CσL ]|σ1 . . . σL〉 , (5.41)

with

M00 =

(
1 0
0 1

)
, M01 =

(
µ1 0
µ2 0

)
, M10 =

(
0 0
−µ2 µ1

)
, M11 = 02×2 .

We have chosen the “excitation” matrices M to satisfy M01B1 = 02×3 and C1M10 =

03×2 so that the wavefunction automatically satisfies the Rydberg blockade con-
straint. Furthermore, we have required that the matrices give the inversion quan-
tum number opposite to the exact E = 0 eigenstate |Φ1〉: By examining the ac-
tion of I on |M1〉 in the MPS language similar to Eq. (5.25) and utilizing the
same gauge transformation used in the discussion after Eq. (5.25), we see that
the desired inversion quantum number is achieved by requiring XI M s

I X−1
I = M s,

where M00
I ≡ (M00)T, M01

I ≡ (M10)T, M10
I ≡ (M01)T . Satisfying these con-

ditions leads to the ansatz with two parameters µ1 and µ2 shown above. In
principle, the SMA wavefunction has a “gauge redundancy”, i.e., property that
Mσ1σ2 → Mσ1σ2 + [W, Bσ1Cσ2] does not change |M1〉 for arbitrary 2 × 2 matrix W .
We need to consider this redundancy to find the set of truly independent parameters.
In the present case, it happens that the above ansatz for the excitation matrices has
independent parameters already. Hence, the gauge redundancy does not reduce the
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number of the independent parameters. The optimal parameters are obtained by
minimizing the energy fluctuation σ2

H ≡ 〈Ξ1 |H2 |Ξ1〉 − 〈Ξ1 |H |Ξ1〉2. The resulting
optimal state is presented in Fig. 5.3.

We also note that by choosing µ′1 = −µ1 and µ′2 = µ2, we can obtain the opposite-
energy counterpart, |Ξ′1〉 ∼ Cph |Ξ1〉. This can be seen using the gauge transformation
introduced in the discussion of the action of Cph on the exact eigenstate |Φ1〉 and
noting that the corresponding excitation matrices satisfy (M′)s = XcM s

c X−1
c , where

M00
c ≡ M00, M01

c ≡ −M01, M10
c ≡ −M10.

Finally, we can provide some intuition for the energetics of the SMA ansatz by
working in the blocked language used in Sec. 5.2 utilizing the±, 0 basis introduced
in Eq. (5.12). Recall that in this basis |Φ1〉 is conveniently written using MPS
matrices in Eq. (5.14). We can easily obtain excitationmatrices in this representation
by following the same steps that produced Eq. (5.14); we find

M+ =
µ1 +
√

2
2

(
1 0
0 1

)
, M− =

µ1 −
√

2
2

(
1 0
0 1

)
, M0 =

1
√

2

(
µ2 µ1 + µ2

µ1 − µ2 −µ2

)
.

(5.42)

We can now examine a wavefunction obtained by placing such an excitation on
one block-site b. The wavefunction has a part with sb = +, originating from M+,
which on the rest of the system is basically Tr[AA . . . A] and hence contains only
configurations with equal numbers of + and − block-sites. Hence, this part is an
eigenstate of H′ introduced in Sec. 5.2, see Eqs. (5.8) and (5.13), with eigenvalue√

2. Similarly, a part of the wavefunction with sb = −, originating from M−, on
the rest of the system contains only configurations with equal numbers of + and −
block-sites; hence, this part is an eigenstate of H′ with eigenvalue −

√
2. Note that

the amplitudes of the two parts are proportional to (µ1 +
√

2)/2 and (µ1 −
√

2)/2
respectively, and for the optimal parameters µ1 ≈ −1.09, µ2 ≈ −0.63 used in the
main text, the latter amplitude is significantly larger.

We now examine a part of the wavefunction with sb = 0, originating from M0,
which we further subdivide as follows. The upper-left subpart µ2/

√
2 in M0 by

itself requires that on the rest of the system we have equal numbers of +’s and
−’s, and the first such site to the right of b must be +. Similarly, the lower-right
subpart −µ2/

√
2 in M0 by itself requires that on the rest of the system we have

equal numbers of +’s and −’s, and the first such site to the right of b must be
−. Each of these cases gives an eigenstate of H′ with eigenvalue 0. Next, the
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lower-left subpart (µ1 − µ2)/
√

2 in M0 by itself requires configurations on the rest
of the system to be of the form . . .+ . . .− . . .+ . . . , where “. . . ” can contain any
number of 0’s. Such configurations contain one more + compared to −, which
gives an eigenstate of H′ with eigenvalue

√
2. Similarly, the upper-right subpart

(µ1 + µ2)/
√

2 in M0 by itself requires configurations on the rest of the system to
be of the form . . .− . . .+ . . .− . . . , i.e., contain one less + compared to −, which
gives an eigenstate of H′ with eigenvalue −

√
2.

We can now use the fact that the expectation value of H in this wavefunction
coincides with the expectation value of H′, since the genuinely two-body parts in
the writing of H in Sec. 5.2 connect to outside of the Rydberg-constrained Hilbert
space. (As a side remark, we can obtain the action of H on this wavefunction by
first acting with H′ and then projecting into the Rydberg Hilbert space; in particular,
one can see that such an excitation wavefunction is no longer exact eigenstate of H.)
By examining contributions to the expectation value of H′ from the above parts of
the wavefunction, we can roughly understand the value of the trial energy ≈ −1.31
obtained using these excitation matrices in the main text. Also, we can see that
changing the sign of µ1 gives a trial state with opposite energy, in agreement with
the formal argument using Cph given earlier.

Note that in the main text we formed plane wave superpositions of such localized
excitations, and in the analysis here we are not attempting a quantitative match with
the numerical results. Also note that while this analysis provides a rough intuition
for the trial energies, in the main text we optimized the SMA ansatz by minimizing
the variance, for which we have less intuition. Nevertheless, the above arguments
provide an approximate picture where adding an excitation is like acting with a
ladder operator raising or lowering eigenvalues of H′ in Eq. (5.13), and developing
this picture more precisely may provide a better understanding of the scar states in
the PXP model away from E = 0.

SMA for the E ≈ ±2.66 scar states with I = (−1)Lb

While we showed the multi-mode approximation (MMA) to capture other Z2 scar
states, here we can also try to use the SMA but with the symmetry quantum numbers
Tx = (−1)Lb and I = (−1)Lb . Specifically, we can write an SMA wavefunction with
such quantum numbers as |Ξ̃1〉 = (|M̃1〉 + (−1)LbTx |M̃1〉)/ξ̃1, where again ξ̃1 is the
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normalization factor and |M̃1〉 has the same form as in Eq. (5.41) but with matrices

M̃00 =

( √
2 −

√
2µ̃1√

2µ̃1 −
√

2

)
, M̃01 =

(
−µ̃1 0
−1 0

)
, M̃10 =

(
0 0
−1 µ̃1

)
.

Similarly to the construction of |M1〉, we have chosen the matrices M̃ s to satisfy
M̃01B1 = 02×3 and C1M̃10 = 03×2 but with XI M̃ s

I X−1
I = −M̃ s to give the same

inversion quantum number as |Φi〉. We have also used the SMA gauge redundancy,
M̃σ1σ2 → M̃σ1σ2 + [W, Bσ1Cσ2], to identify the truly independent parameters. Fi-
nally, the number of the independent parameters was reduced by one by requiring
|M̃1〉 to be orthogonal to |Φ1〉 in the thermodynamic limit (we did not need to do
this for |M1〉 since it has different inversion quantum number and is automatically
orthogonal to |Φ1〉).

The optimal parameter µ̃1 is obtained by minimizing the energy fluctuation; using
system of length L = 26, we find µ̃1 = 0.89285, 〈Ξ̃1 |H |Ξ̃1〉 = −2.4572 and
〈Ξ̃1 |H2 |Ξ̃1〉 − 〈Ξ̃1 |H |Ξ̃1〉2 = 0.3219. To obtain the positive energy counterpart,
we can choose µ̃′1 = −µ̃1, which gives |Ξ̃′1〉 ∼ Cph |Ξ̃1〉 (the argument is essentially
identical to that for |Ξ′1〉 ∼ Cph |Ξ1〉 at the end of the previous subsection). The
overlap of |Ξ̃1〉 with the eigenstates is plotted in Fig. 5.3. While this state still has
majority of the weight on the primary scar state with E ≈ −2.66, the overlap is
significantly worse than the multi-particle ansatz |Ξ2〉 presented in the main text.
The wavefunction |Ξ̃1〉 can be loosely viewed as a bound state of two quasiparticles,
while |Ξ2〉 can be viewed as a scattering state of two quasiparticles. These results
suggest that the scar states are better understood as essentially free quasiparticle
states rather than bound states of quasiparticles.

“Bond-dimension-3" SMA
The SMA wavefunctions |Ξ1〉 and |Ξ̃1〉 are constructed by “exciting" the matrices
B and C consecutively, where the “quasiparicle excitation" matrix M has bond-
dimension 2. We therefore call these wavefunctions “bond-dimension-2" ansatzes.
On the other hand, one can also think of excitations on consecutive matrices C

and B, which will give the quasiparticle excitation matrix with bond-dimension
3. Such ansatzes will have more variational parameters and can potentially be
better approximations. The bond-dimension-3 SMA capturing the E ≈ ±1.33
scar states with quantum numbers Tx = (−1)Lb−1 and I = (−1)Lb−1 is |Υ1〉 =
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(|N1〉 − (−1)LbTx |N1〉)/υ1, where υ1 is the normalization factor and

|N1〉 =
Lb∑

b=1
Tr[Bσ1Cσ2 . . . Bσ2b−1 Nσ2bσ2b+1Cσ2b+2 . . . BσL−1CσL ]|σ1 . . . σL〉 , (5.43)

with

N00 =
©­­«
1 +
√

2 ν7 0 2
√

2 ν6

0 1 −
√

2 ν7 2
√

2 ν5

−2
√

2 ν6 2
√

2 ν5 ν1

ª®®®¬ , N01 =
©­­«

ν2 2ν6 ν2

ν6 + ν7 ν3 ν6 + ν7

ν2 − ν5 ν4 ν2 − ν5

ª®®®¬ ,
N10 =

©­­«
ν2 ν6 + ν7 −ν2 − ν5

2ν6 ν3 −ν4

−ν2 −ν6 − ν7 ν2 + ν5

ª®®®¬ .

We obtained these matrices by requiring N01C1 = 03×2, B1N10 = 02×3 to ensure
the Rydberg constraints. To obtain the desired inversion quantum number, we also
required YI N s

I Y−1
I = N s, where N00

I ≡ (N
00)T , N01

I ≡ (N
10)T , N10

I ≡ (N
01)T , and

YI is the matrix for the gauge transformation used in our discussion of I. Finally,
we also used the SMA gauge redundancy, Nσ1σ2 → Nσ1σ2 + [W,Cσ1 Bσ2], to find
truly independent parameters as shown above. For system size L = 26, we find the
optimal parameters ν1 = 0.507183, ν2 = 0.60202, ν3 = 0.625366, ν4 = 0.264115,
ν5 = −0.00128607, ν6 = 0.0228075, and ν7 = 0.42342. The trial energy is
〈Υ1 |H |Υ1〉 = 1.3396 and the energy fluctuation is 〈Υ1 |H2 |Υ1〉 − 〈Υ1 |H |Υ1〉2 =
0.007201, which is a more accurate approximation than the |Ξ1〉 SMA state in the
main text. We can see from Fig. 5.3 that the overlap with the primary Z2 scar state
with energy E ≈ 1.33 is 66%, which is higher than the bond-dimension-2 ansatz
|Ξ1〉. To obtain the negative energy counterpart, one can simply change the signs
of ν2,3,5 and obtain |Υ′1〉 ∼ Cph |Υ1〉, which is deduced by applying the discussion of
Cph and using (N′)s = YcN s

cY−1
c , where N00

c ≡ N00, N01
c ≡ −N01, N10

c ≡ −N10.

Similarly, we can construct the bond-dimension-3 SMA in the symmetry sector
Tx = (−1)Lb and I = (−1)Lb as |Υ̃1〉 = (|Ñ1〉 + (−1)LbTx |Ñ1〉)/υ̃1, where υ̃1 is the
normalization factor and |Ñ1〉 has the same form as in Eq. (5.43) but with matrices

Ñ00 =
©­­«

0 2
√

2 2
√

2 ν̃4

−2
√

2 0 2
√

2 ν̃3

2
√

2 ν̃4 −2
√

2 ν̃3 0

ª®®®¬ , Ñ01 =
©­­«
−1 −2ν̃4 −1
ν̃4 ν̃1 ν̃4

−1 + ν̃3 ν̃2 −1 + ν̃3

ª®®®¬ ,
Ñ10 =

©­­«
1 −ν̃4 −1 − ν̃3

2ν̃4 −ν̃1 ν̃2

−1 ν̃4 1 + ν̃3

ª®®®¬ .
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L = 26
periodic boundary condition

− |⟨E |Z(+)
2 ⟩ |2

− |⟨E |Z(−)
2 ⟩ |2

|⟨E |Ξ1⟩ |2

|⟨E | Ξ̃1⟩ |2
|⟨E |Υ1⟩ |2

|⟨E | Υ̃1⟩ |2
63% 66%

26%
32%

Figure 5.3: Overlaps of the SMA wavefunctions with eigenstates in the PBC chain
of length L = 26. Here the SMA wavefunctions are constructed using “bond-
dimension 2" (|Ξ1〉 and |Ξ̃1〉) and “bond-dimension 3" (|Υ1〉 and |Υ̃1〉) ansatzes,
with choices producing different symmetry sectors. The red lines and the non-tilde
states label the K = 0, I = 1 sector; while the blue lines and the tilded states label
the K = π, I = −1 sector.

In addition to satisfying the Rydberg constraint and giving the inversion quantum
number I = (−1)Lb , the matrices are chosen such that |Υ̃1〉 is orthogonal to |Φ1〉 in
the thermodynamic limit. Using system size L = 26, we find the optimal parameters
ν̃1 = 2.59334, ν̃2 = 1.48065, ν̃3 = 0.0615383, and ν̃4 = −0.992914, with the trial
energy 〈Υ̃1 |H |Υ̃1〉 = 2.5594, and energy fluctuation 〈Υ̃1 |H2 |Υ̃1〉 − 〈Υ̃1 |H |Υ̃1〉2 =
0.18591. To obtain the corresponding negative-energy trial state |Υ̃′1〉 ∼ Cph |Υ̃1〉,
one changes the signs of ν̃2 and ν̃4. We again see from Fig. 5.3 that the overlap with
the Z2 primary scar state at E ≈ 2.66 is higher than the bond-dimension-2 ansatz
|Ξ̃1〉, but significantly worse than the MMA wavefunction |Ξ2〉.

In fact, we can again construct the corresponding “bond-dimension-3" MMA wave-
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functions: |Υn〉 = (|Nn〉 + (−1)Lb+nTx |Nn〉)/υn, where

|Nn〉 =
Lb∑′

b1,...,bn=1
Tr[Bσ1Cσ2 . . . Nσ2b1σ2b1+1 . . . Nσ2bnσ2bn+1 . . . BσL−1CσL ]|σ1 . . . σL〉 ,

(5.44)

the summation is constrained to have all bi distinct, and υn is the normalization
factor. We take the N matrices from the optimal result of |Υ1〉 and examine the
overlaps of |Υn〉 with the eigenstates, in particular, with the Z2 primary scar states
in Fig. 5.4. Similar to the bond-dimension-2 results presented in the main text,
these bond-dimension-3 MMA wavefunctions have symmetry quantum numbers
Tx = I = (−1)Lb+n and, remarkably, capture the primary scar states with even higher
fidelity with more quasiparticles, up to n ≈ Lb/4. In this case, even the ground
state and the primary scar states near the ground state are approximated fairly well
compared to the results from the bond-dimension-2 ansatzes |Ξn〉.

Comparison with the forward scattering approximation
Herewe followRefs. [13, 14] to construct the foward scattering approximation (FSA)
and compare with our alternative picture. Our main goal is to compare performance
of our multi-mode approximations (MMA) on top of the exact E = 0 states and
the FSA, in order to argue that our exact states and approximate quasiparticle
constructions on top of these are relevant for the Z2 scar states. In the FSA, one
constructs a “variational" subspace, where one starts from |Z2〉 ≡ |10 . . . 10〉 and
operates with H+ ≡ ∑

j∈even Pj−1σ
+
j Pj+1+

∑
j∈odd Pj−1σ

−
j Pj+1 to form basis vectors

|n〉 = (H+)n |Z2〉/‖(H+)n |Z2〉‖ for n = 0, 1, . . . , L. It is easy to see that |L〉 = |Z′2〉 ≡
|01 . . . 01〉. One then projects the full Hamiltonian into this subspace and obtains
an effective Hamiltonain HFSA, which is an (L + 1) × (L + 1) matrix with basis |n〉.
By construction, HFSA is bidiagonal. Diagonalzing HFSA = SEFSAS†, one obtains
“variational" energies EFSA,i and approximate wavefunctions |FSAi〉 =

∑L
n=0 Sni |n〉,

where i = 0, 1, . . . , L.

We show the overlaps between the FSAwavefunctions and the eigenstates, |〈E |FSAi〉|2,
for i = 0, 1, . . . , L in Fig. 5.5. We also quote the overlap values on the “matching”
primary Z2 scar states, i.e., between |FSAi〉 and the i-th primary scar state, with both
sets of states assumed ordered by energy. In general, the FSA provides very good
approximations for the primary Z2 scar states, and, in particular, an extremely good
approximation for the ground state and the scar state closest to the ground state.

It is interesting to note that the FSA variational space and the FSA states |FSAi〉
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− |⟨E |Z(+)
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L = 26
periodic boundary condition

E
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Figure 5.4: Overlaps between the MMA wavefunctions |Υn〉 with eigenstates in
the PBC chain with L = 26. The quasiparticle N matrices are chosen from the
optimal “bond-dimension 3" SMA wavefunction. These wavefunctions represent
the simplest scattering states of the quasiparticles with hard-core exclusions.

generated by the above procedure do not respect the translation and inversion sym-
metries of the Hamiltonian. Instead, they mix the K = 0, I = 1 and K = π, I = −1
sectors. However, each individual |FSAi〉 state generally has a very high weight on
a particular symmetry sector. In principle, one can fix this completely by including
the symmetry-related counterparts in the variational basis, but we have not done
such an embellishment and only followed the original procedure in Refs. [13, 14].
On the other hand, our trial SMA and MMA wavefunctions are constructed with
definite symmetry quantum numbers from the outset.

Size dependence of the bipartite entanglement entropy of SMA and MMA
In this section, we discuss the bipartite entanglement entropy scaling of the SMA
and MMA wavefunctions comparing with the ED results. In Fig. 5.6, we show the
bipartite entanglement entropy at small system sizes reachable by ED, obtained for
chains in PBC for dividing the system into halves. For the primary scar states at
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98%
99%

89%

81%
76%

74%

73%
72%

71%

71%

70%

68%
69%

87%

E

|⟨E |FSAi⟩ |2 L = 26
periodic boundary condition

K = 0, I = 1
K = π, I = − 1

Figure 5.5: Overlaps between the FSA wavefunctions, |FSAi〉, i = 0, 1, . . . , L, and
the eigenstates in the PBC chain with L = 26. The red lines are in the K = 0,
I = 1 sector, while the blue lines are in the K = π, I = −1 sector. |FSAi〉 has the
largest overlap with the i-th Z2 scar state, and this value is listed for easy reference
for i = 0, 1, . . . , L/2.

E ≈ −1.33 and E ≈ −2.66, their entanglement entropies show seeming logarithmic
scaling, and are conjectured in Ref. [14] to have such scaling in the thermodynamic
limit. On the other hand, the “vacuum" wavefunction of the quasiparticles, |Ξ0〉 ≡
[|Φ1〉 + (−1)Lb |Φ2〉]/ξ0 (i.e., properly normalized exact E = 0 eigenstate with
appropriate 0 or π momentum depending on Lb = L/2), has constant entanglement
scaling in the thermodynamic limit with the saturation value S ≈ 2.254, see the main
text for details. Since they add only a finite number of quasiparticles, the SMA and
MMAwavefunctions |Ξ1〉 and |Ξ2〉 are also expected to have constant entanglement
scaling in the thermodynamic limit. However, as we can see from Fig. 5.6, the
vacuum |Ξ0〉 and the SMA and MMA |Ξ1,2〉 wavefunctions also show apparent
logarithmic entanglement scaling and bound the entanglement of the primary scar
states at the available small system sizes. It is also noteworthy that in our SMA
and MMA wavefunctions, adding quasiparticles in fact decreases the entanglement
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Figure 5.6: Bipartite entanglement entropies of the exact eigenstates and the vari-
ational SMA and MMA states. The primary scar states with E ≈ −1.33 and
E ≈ −2.66 show what appears to be logarithmic scaling for the available system
sizes L. The “vacuum" |Ξ0〉 ≡ [|Φ1〉 + (−1)Lb |Φ2〉]/ξ0 (i.e., exact E = 0 wavefunc-
tion with appropriate momentum) and the SMA/MMA |Ξ1〉 and |Ξ2〉 are expected
to have constant entanglement scaling at large L, while they also show apparent
logarithmic scaling at these small system sizes. Note that for the optimal SMA and
MMAwe found, adding quasiparticles in fact decreases the entnaglement entropies.

entropy; this is contrary to common intuition about adding quasiparticles on top of a
ground state, but it can happen in formal MPS states and depends on the properties
of the “excitation” matrices.

If the SMA and MMA wavefunctions are qualitatively true asymptotic descriptions
for the primary scar states, then the seeming logarithmic entanglement scaling of the
ED results could be simply finite-size effect, and to see such constant scaling behav-
ior, one may need to go to much larger system sizes. However, while the statements
about our exact E = 0 scar states are exact, the SMA and MMA wavefunctions are
only approximations to the ED scars. One needs to study if it is possible to construct
convergent improvements of the SMA and MMA states and their true properties
in the thermodynamic limit, which is a non-trivial question given the surrounding
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eigenstates forming apparently thermal background. We hope that addressing this
question will help understanding stability of the scar states in the thermodynamic
limit and in the presence of generic perturbations, while the presented entanglement
data is meant to show that the available system sizes are still not sufficient to dis-
tinguish between constant or logarithmic entanglement scaling in the primary scar
states.

Diagonalizing the Hamiltonian in the variational space spanned by |Ξn〉
While increasing the number of variational parameters is one way to improve the
ansatzes, we can also improve the trial states starting with |Ξn〉 in the same spirit as
the FSA improves on the states constructed using (H+)n |Z2〉. That is, we can treat the
span of |Ξn〉, n = 1, . . . , Lb as the “variational subspace" and project the Hamiltonian
into this variational space (recall that Lb = L/2, and here n runs over the negative-
energy MMA states). More specifically, we obtain an Lb× Lb effective Hamiltonian
Heff with matrix elements [Heff]nm = 〈Ξn |H |Ξm〉 and the overlap matrix B with
matrix elements [B]nm = 〈Ξn |Ξm〉. (Note that these matrices in fact are in block-
diagonal form due to the symmetries.) We then solve the generalized eigenvalue
problem Heff®v(i) = λi B®v(i), obtaining the improved wavefunctions

∑Lb

n=1 ®v
(i)
n |Ξn〉, for

i = 1, . . . , Lb.

Figure 5.7 shows the overlap between the improved trial states and the eigenstates
at L = 26. We see that the improvements are mainly on the approximations on the
scar states close to the ground state and the ground state; while the approximations
to the scar states close to the middle of the spectrum are not affected much. This is
expected, since, as one can see from a careful inspection of Fig. 2 in the main text,
|Ξn〉’s with n & Lb/2 have high weights on usually two primary scar states. The
diagonalization procedure within this variational subspace therefore can be better
isolated and improve approximations to the corresponding scar states.

To conclude, we see that, qualitatively, the primary scar states can bewell understood
as free quasiparticles, at least for our finite system sizes. An immediate question is
if such a description survives for much larger sizes or even in the thermodynamic
limit. We already see that some systematic improvements of the approximations
can be achieved by increasing the number of variational parameters, as in the bond-
dimension-3 SMA or allowing superpositions of the MMA states as in the present
section. Some immediate improvements could be achieved also by allowing the
variational parameters to vary in each individual MMA state rather than simply
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L = 26 periodic boundary condition
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Figure 5.7: Improving the “bond-dimension 2" multiparticle wavefunction by di-
agonalizing the projected Hamiltonian in the “variational subspace" {|Ξn〉|, n =
1 . . . 13}. Such procedure improves the approximations on the ground states and
scar states near the ground state.

using the values from the optimal SMA state, and by allowing superpositions of
different families of the already constructed states, such as the SMA |Ξ̃1〉 and the
MMA |Ξ2〉 for the E ≈ −2.66 scar states, etc. A more systematic approach is to
increase the excitation block size and study convergence to the exact scar states.
In particular, we hope that this can tell whether the scar states truly survive in the
thermodynamic limit even when they do not have exact closed-form expressions as
happens in more fine-tuned models. This is left for future work.

5.6 Outlook
We discovered exact scar states in the Rydberg-blockaded atom chain at T = ∞
that explicitly violate the strong ETH and have constant entanglement scaling in the
subsystem size. Our exact states show translation symmetry breaking, which implies
twofold degeneracy for PBC. The exact scar states for OBC have the same bulk as
for PBC and can have different edge terminations leading to different eigenenergies,
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including nondegenerate energies.

By constructing quasiparticles on top of the exact scar states, we capture the primary
Z2 scar states with high fidelity. Systematic improvements for capturing the primary
scar states, as well as study bands of weaker scar states are therefore warranted.
For example, even for the SMA, is there a convergent construction that reproduces
the first primary Z2 scar state and proves its ETH-violating properties? It is also
interesting to understand the pattern of scar states in the PXP model more generally
and how it compares with other instances of exact scar states [17, 18, 20]. Studying
additional models with exact scar states and their stability to perturbations would be
beneficial for both of these questions. We leave such explorations for future work.
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