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ABSTRACT 

Asymmetric reductive cross-electrophile coupling is a powerful method to forge 

C–C bonds and access enantioenriched small molecules, which can be further 

functionalized to access scaffolds present in natural products and bioactive 

pharmaceutical agents. However, an innate challenge of this methodology is identifying a 

chiral catalyst that achieves optimal cross-selectivity and stereocontrol. Herein, we report 

studies on the asymmetric cross-coupling of C(sp3) electrophiles, such as benzyl 

chlorides, α-chloroesters, and N-hydroxyphthalimide esters, with several classes of C(sp2) 

electrophiles.  

We describe the asymmetric Ni-catalyzed reductive cross-coupling of (hetero)aryl 

iodides and benzyl chlorides to prepare enantioenriched 1,1-diarylalkanes. As part of 

these studies, a new chiral bi(oxazoline) ligand, 4-HeptylBiOX, was developed to obtain 

products in synthetically useful yield and enantioselectivity. This novel ligand is 

demonstrated to expand the substrate scope of these stereoconvergent reductive cross-

couplings to include the asymmetric cross-coupling of α-chloroesters with aryl iodides, 

and sterically hindered N-hydroxyphthalimide esters with alkenyl bromides. Model 

studies have been initiated to study the application of these reactions toward the total 

synthesis of cylindrocyclophane natural products. 
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