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ABSTRACT 

Understanding the effects that ligands have on the coordination environment and 

reactivity of metal complexes is an endeavor that drives much of the field of inorganic 

chemistry. The use of ligands capable of flexible binding modes and redox states further 

enriches the chemistry of these complexes. This dissertation describes studies on metal 

complexes bearing pendant (poly)arylene donors that demonstrate hemilability and redox 

non-innocence. Within this context, conditions that result in coordination mode change 

and the multi-electron bond transformation that is made possible by the hemilability 

and/or non-innocence of the ligand are discussed. 

Chapter 2 investigates the meta-terphenyl diphosphine framework bearing a central 

phenolate donor as an anionic POP pincer on a variety of first-row transition metals. The 

circumstances under which coordination mode change from the phenolate donor to the 

arene face are investigated. Reduction of the cobalt and nickel complexes induced a 

coordination mode change from phenolate oxygen to metal-arene binding, while Lewis 

acid additives induced a coordination mode change in some iron POP complexes. 

Additionally, it was found that iron chloride POP complex initially not amendable to two-

electron reduction was cleanly reduced in the presence of Lewis acids, suggesting a role 

the Lewis acid plays in quenching the negatively charged phenolate and stabilizing the 

overall transformation. 

Chapter 3 discusses reactivity on 1,4-naphthalenediyl diphosphine molybdenum 

complexes in the context of carbon monoxide (CO) coupling. Similar to the previously 

studied phenylene system, the reductive coupling of CO can be carried out. However, the 

naphthalene system showed a distinct and exclusive selectivity for the two-electron 

reductive CO coupling to a bis(siloxy)acetylene motif, without C–O bond cleavage. This 



 
xi

difference in selectivity is proposed to be a result of accessible η4-arene binding modes 

previously not observed in the phenylene variant. Additionally, the bis(siloxy)acetylene 

complex also displays η4-binding to the central arene. Further CO catenation can be 

effected from this species, providing a metallacyclobutenone complex that bears a C3 

fragment derived completely from CO. 

In Chapter 4, the reactivity of 9,10-anthracenediyl bis(phenoxide) zirconium 

complexes is presented. The more expanded polyaromatic system with a milder reduction 

potential allowed the anthracene motif to function as a non-innocent ligand. This enabled 

facile reductive elimination of ancillary benzyl ligands on the metal center without the use 

of harsh reductants. This reduced complex was then able to oxidatively couple alkynes, 

and alkynes with nitriles. Furthermore, further insertion of an additional nitrile followed 

by reductive elimination, likely facilitated by the non-innocent anthracene motif, allowed 

for the catalytic synthesis of pyridines and pyrimidines with high yields and selectivities. 

This reactivity was further leveraged in the final Chapter of this dissertation. Chapter 5 

presents the development of a new methodology towards the synthesis of pyridine or 

pyrimidine-containing polycyclic aromatic hydrocarbons (PAHs) using polyaromatic 

alkyne and nitrile building blocks. Because conventional methods of oxidative 

cyclodehydrogenation towards N-doped nanographenes proved ineffective with these 

PAHs, a new reductive cyclization route was developed offering a complementary method 

towards the challenging synthesis of these N-doped nanographenes.  

 Appendix A briefly explores additional reactivity on the 1,4-naphthalenediyl 

diphosphine complexes with regard to nitrile activation. Appendix B explores the 

synthesis of iron complexes supported by a benzene tris(thiophenolate) ligand towards 

potential model compounds for the iron molybdenum cofactor in nitrogenase. Appendix 
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C presents preliminary studies on the 9,10-anthracenediyl bis(phenoxide) zirconium 

complex towards oxidative coupling of alkynes with CO2.  
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 This dissertation focuses on the study of  a series of  transition metal complexes 

supported by (poly)arylene-linked ligands. Although a variety of  donor sets were explored 

(phosphines, phenoxides, thiolates), they are all designed to bind rigidly to metal centers in 

order to encourage metal-arene interactions at the linker. The arylene linkers studied include 

meta-phenylene, 1,4-naphthalenediyl, and 9,10-anthracenediyl linkers with different aspects of  

the arene ligands leveraged in each case to engender novel reactivity and/or metal coordination 

environments. The range of  complexes studied demonstrate the ability of  these arylene motifs 

to function 1) as hemilabile donors, alleviating the varying electronic demands upon changes 

in the metal coordination sphere and/or redox state, and 2) as redox non-innocent ligands, 

allowing multiple electrons to be stored within the arene framework upon reductive processes 

and delivering them upon oxidation. The latter alleviates the need for the metal center to take 

on large and/or unfavorable redox state changes, mediating novel chemistries that would not 

be feasible in the absence of  said ligands. The work discussed herein seeks to address the use 

of  these functions, separately or in combination, with respect to exploring new coordination 

modes, and engendering challenging bond breaking and forming transformations. While as 

detailed background with the appropriate references is incorporated in the introduction of  

each chapter, this chapter aims to provide a more general overview of  the main concepts that 

are tackled and provide a narrative for this research. 

 The first metal-arene complex was isolated by Hein in 1919,1 but it was not until the 

1950s that definitive composition and structural assignment of  these complexes were 

obtained.2-5 Since then, the chemistry of  metal-arene complexes has burgeoned, and 

complexes on a wide variety of  metals featuring the full range of  possible hapticities (η0 to η6) 

have been reported.6-8 A central function of  ligands is to serve as a source of  electrons, filling 

vacant bonding molecular orbitals present, and thus overall stabilizing the metal complex. 
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When electron count at the metal increases, anti-bonding orbitals may become filled, often 

resulting in the dissociation of  the ligand. In that regard, hemilabile ligands that can bind 

reversibility or change their coordination modes to modulate the number of  electrons they 

donate into the metal center can help in mediating redox and coordination sphere changes at 

the metal.9-12 The change in coordination environment can also be leveraged as a switch to 

turn on and off  reactivity at a metal site.13-16 Arenes being able to change their hapticity modes 

from η0 to η6 (donating 0 to 6 electrons) allows them to function as potential hemilabile ligands. 

Hessen and coworkers reported a Ti complex supported by a cyclopentadienyl ligand featuring 

a pendant arene that is capable of  carrying out ethylene trimerization to 1-hexene (Figure 

1.1).17-18 It is proposed that the β-H transfer is mediated by an η1 to η6-binding mode change 

in the pendant arene stabilizing the Ti(II) intermediate. In contrast, in the absence of  the 

pendent arene, ethylene polymerization is observed instead.  

In our group, the use of  hemilabile arene diphosphine ligands has been interrogated 

extensively on a variety of  transition metals complexes.19-25 The flexibility of  the central arene 

donor allows the support of  not only monometallic complexes in a wide range of  oxidation 

states but also that of  multimetallic complexes. In extending the nature of  hemilability of  

these phenylene-linked diphosphine ligands, the introduction of  a phenolate linker capable of  

coordinating as two distinct types of  donors was studied with first-row transition metals 

(Chapter 2). Base off  prior observations made by Dr. Paul Kelley and Dr. Guy Edouard on 

complexes supported by a similar POP binding motif,26-27 we had evidence that a meta-phenyl 

 

Figure 1.1. β-H transfer facilitated by hemilabile pendant arene. 
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framework could support metals both on the arene face and on the phenolate oxygen upon 

C–O bond cleavage (Figure 1.2). Conditions that engendered a coordination mode change 

from phenolate O-donor to the phenolate arene donor and enable further reactivity at the 

metal center were investigated.  

The extension of  arene into polyarenes, such as naphthalene, can modify the preferred 

metal-arene binding modes by stabilizing the η4-arene interaction and result in great lability of  

the arene.28-30 This effect was investigated with 1,4-naphthalenediyl-linked diphosphine 

molybdenum complexes in the context of  both carbon monoxide (CO) coupling (Chapter 3) 

and nitrile activation (Appendix A). It was found that access to an η4-arene interaction, which 

had not been observed in the phenylene-link variant,31-32 can result in both a complete switch 

in selectivity in reductive CO coupling and subsequently allowed for a rare example of  further 

CO catenation to a C3 fragment completely derived from CO. 

 In the past few decades, the use of  redox non-innocent ligands has flourished due to 

their ability to facilitate novel and challenging multi-electron bond transformations and to 

support catalysis.33-35 This is enabled by the ability of  the ligand to function as an electron 

reservoir, due to the availability of  low-lying vacant ligand-based orbitals that are more readily 

reduced than those on the metal. In the activation of  many small molecules (N2, CO, O2) at a 

single metal site, this feature allows multi-electron transformations to occur simultaneously 

rather than stepwise by drawing reducing equivalents from both the ligand and the metal 

 
Figure 1.2. Arene to phenolate coordination mode change in arene-linked diphosphine 

complexes. 
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center. This avoids potentially high energy intermediates that would otherwise be inaccessible 

or lead to detrimental side reactivity. It was previously shown that under sufficiently reducing 

potentials, phenylene linkers can be reduced,32, 36 storing up to two electron equivalents and 

adopting a cyclohexyldienediyl-type motif.37-38 This has been used to great effect by Dr. Josh 

Buss in the group in his study of  para-terphenyl diphosphine molybdenum complexes, both 

in showing the range of  formal oxidation states that can be accessed (+VI to −III), and the 

ability for four-electron deoxygenative reductive coupling of  CO to a C2O1 product. The same 

redox non-innocence was leveraged with a 1,4-naphthalenediyl-linked diphosphine system 

(Chapter 3) as mentioned earlier towards CO coupling. It was also found that due to the more 

extended π-system, the central arene was also more amenable to reduction, allowing milder 

reductants to be used. 

 The aspects discussed above, when used in combination, led us to the study of  9,10-

anthracenediyl bis(phenoxide) in its use as hemilabile, non-innocent ligands in zirconium 

complexes (Chapter 4). In most cases of  non-innocent ligands, upon redox changes at the 

ligand, a rearrangement of  ligand-based π bonds occurs without any change in the 

coordination mode to the metal center.35, 39-41  The use of  non-innocent ligands that involve 

both a change in the redox state of  the ligand and simultaneous change in coordination 

framework at the metal is rare.  These two characteristics of  the anthracene-based ligand 

allowed for the synthesis of  formally two-electron reduced zirconium(IV) complexes, 

effectively masking a “Zr(II)” species and for the oxidative coupling of  alkynes, cocoupling 

of  alkynes with nitriles, and cocoupling of  alkynes with CO2 (Appendix C). Moreover, the 

more accessible reduction potential of  the anthracene motif  facilitated the turnover of  this 

system, catalyzing the cotrimerization of  alkynes with nitriles to either pyrimidines or 

pyridines. This methodology was then further developed in Chapter 5 towards the synthesis 
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of  nitrogen-containing polycyclic aromatic hydrocarbons (PAHs). In addition, a new strategy 

towards the planarization of  these PAHs to provide N-doped nanographenes via a reductive 

cyclization followed by oxidative dehydrogenation was developed. This represents a new route 

towards the synthesis of  atomically-precise N-doped nanographenes, which are of  great 

interest in the fields of  electronic and optical materials.42  

  Overall, this work aims to establish the multifaceted nature of  arylene donors as 

hemilabile, non-innocent motifs. Specifically, it seeks to demonstrate that while they are 

powerful tools separately, when used in a complementary nature, they allow for the challenging 

multi-electron bond transformations to be mediated or even catalyzed to yield valuable 

products such as Cn>2 species from CO, N-heterocycles, and N-doped nanographenes. 
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First-Row Transition Metal Complexes Supported                                               

by a Hemilabile meta-Terphenyl-based Anionic POP Ligand 
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ABSTRACT 

The synthesis of a novel anionic meta-terphenyl diphosphine ligand bearing a central 

aminophenolate and its subsequent metalation with a series of first-row transition metals 

halide (Cr, Mn, Fe, Co, Ni) were carried out. In all cases except Mn(II), monometallic 

complexes with the metals binding through the phenoxide and both phosphines arms 

were observed. With MnBr2, a 3:2 metal:ligand complex was obtained with a “MnBr2
” 

moiety bridging two diphosphine phenoxide bound Mn units through the phenoxide 

oxygen. Reductions of the monometallic complexes 3-6 were investigated. With cobalt 

and nickel POP complexes 5 and 6, reduction led to a binding mode change from the 

hard phenoxide to the softer central arene, binding in a η1 and η6 fashion, respectively. 

Additionally, the effects of Lewis acids and redox changes have been probed on a series 

of iron POP complexes starting from 4 and triflate analog 10. The presence of Lewis acids 

was vital for stabilizing the intermediates involved in the two-electron reduction of 

iron(II) chloride complex 4 to either AlEt3-bound complex 14 or Lewis acid-free 17 when 

BEt3 is used. While high spin complexes Fe were observed in the POP binding mode, the 

P-arene-P binding mode tended to support low-spin Fe complexes. The ability to support 

a variety of metal oxidation and coordination environments demonstrates the 

coordinative flexibility of this POP pincer ligand. 
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INTRODUCTION 

Since the early work by Shaw and coworkers on PCP pincers in the late 1970s,1-7 pincer 

ligands have garnered much interest and have been employed widely in catalysis and organic 

synthesis.8 They are characterized by their tridentate nature with three contiguous donors along 

the ligand backbone. This chelating nature often provides increased stability to their 

complexes, minimizing undesirable ligand exchange reactions. The rigid, typically meridional, 

coordination geometry the ligand enforces around the metal center also allows for better 

control of  the vacant binding site, allowing for selective small molecule binding and activation. 

Another advantage pincer ligands offer is their tunability; by changing the electronics and 

sterics of  the sidearm and central donors, and sidearm flexibility, the reactivity at the metal 

center can be rationally modified.9 

Recently, the use of  non-innocent and hemilabile pincer ligands in catalysis and small 

molecule activation has also become more prevalent via the inclusion of  moieties that function 

as pendant bases,10-11 or pendant acids.12-14 Milstein and coworkers have also shown such acid 

or base cooperativity can be engendered by aromatization/dearomatization of  the arene 

system of  the central donor upon proton transfer.15-17 Redox non-innocence of  pincer ligands 

has also been leveraged towards novel and challenging redox transformations. One example is 

redox-active pyridyl diimine ligands (PDI) employed by Chirik and coworkers wherein the 

reduction of  an Fe(II) PDI complex resulted in ligand-based rather than metal-based redox 

change.18-20  

The capability of  a ligand to provide flexible coordination modes to stabilize varying 

metal oxidation states and coordination environments has been demonstrated to imbue novel 

reactivity in transition metal complexes.21-25 In some cases, hemilabile pendant groups can also 

function as a switch, turning on and off  a catalyst by the addition or sequestration of  an 
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additive, such as an extraneous alkali metal cation.26-29 

In our group, terphenyl pincer ligand frameworks featuring both functionalized and 

non-functionalized central arene moieties have been employed in supporting a wide variety of  

mono- and multimetallic complexes.30-39 Depending on the oxidation state of  the metal centers 

and/or the ancillary ligands present, the central arene moiety is capable of  providing a range 

of  coordination modes and, in certain instances, even acts a redox-active moiety by 

functioning as an electron sink.38 Additionally, the phosphine arms are also hemilabile, coming 

off  and back on depending on the electronic requirements of  the bound metal center.39 

Owing to the divalent nature of  oxygen, they commonly feature as the central donor 

in a variety of  diphosphine pincer ligands as ethereal donors such as that in Xantphos.40-41 

However, because of  that, an anionic central oxygen donor that is bound contiguously to two 

adjacent ligand-based atoms is an impractical motif. Instead, a pincer-like POP ligand bearing 

an alkoxide or a phenoxide central O donor bound to a carbon atom that is adjacent to the 

phosphine donor arms could be envisioned. To the best of  our knowledge, there have only 

been three examples of  such POP pincer-like ligands in the literature, and their complexes 

limited to Mn, Ni, Rh, Ir, Pd and Pt (Figure 2.1).42-45 Additionally, the anionic POP motif  of  

the anthrone-based Pt complex (Figure 2.1, left) was generated post metalation via ligand-

based oxidation. More recently, Lacy and coworkers reported a POP supported Mn complex 

capable of  catalyzing a Tishchenko reaction.45 

We envisaged that the introduction of  an anionic phenolate donor in place of  the 

 

Figure 2.1. Reported complexes featuring anionic POP ligands. 
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central phenylene in a terphenyl diphosphine ligand framework could allow for novel 

coordination geometries for metal complexes and would add to the small library of  anionic 

POP motifs in the literature. Targeting a meta-terphenyl framework would allow the metal 

center to be able to access the phenolate to bind as an anionic donor, while still allowing a 

potential change in binding mode to the central arene as a P-arene-P pincer.46-48 The addition 

of  electron-rich amino group at the para position of  the central arene further favors potential 

arene binding and may allow for potential redox non-innocence by acting as a source of  

electrons, a feature that has been observed in other aminophenolate-supported complexes.49 

Herein, we report the synthesis of  the targeted m-terphenyl diphosphine ligand 

bearing a central aminophenolate moiety. Metalation was explored with first-row transition 

metal halides ranging from manganese to nickel, and their solid-state structures characterized. 

Subsequent chemical reductions were explored for a number of  the synthesized complexes 

with a change in binding mode from phenoxide to arene observed in the cobalt and nickel 

examples. Investigation in the effect of  Lewis acid coordination to the phenolate oxygen 

affecting binding modes was also investigated, and it was observed that for the Fe complex, 

the presence of  Lewis acid interaction allowed for facile reduction that would have otherwise 

resulted in decomposition.  
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RESULTS AND DISCUSSION 

Ligand Synthesis 

Our group has previously reported the synthesis of  the structurally related anisoyl m-

terphenyl diphosphine ligand, which was used in the context of  metal-mediated aryl-ether 

bond cleavage chemistry.47-48 However, in targeting the free phenol 1-H, we found the use of  

a benzyl protecting group instead of  a methyl group to be more amenable due to the greater 

compatibility of  the subsequent deprotection conditions employed in the presence of  the 

phosphine groups.  

The synthesis of  diphosphine phenol 1-H is shown in Scheme 2.1. 2,6-diiodo-4-

nitrophenol, synthesized from the iodination of  commercially available 4-nitrophenol, was 

first protected by benzylation. Suzuki coupling with 2-bromoboronic acid, followed by a 

Bechamp reduction of  the nitro group, and reductive amination with formaldehyde provided 

Scheme 2.1. Synthesis of  diphosphine aminophenol 1-H 
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the benzyl-protected terphenyl dibromide. This dibromide was then phosphinated via a 

lithium-halogen exchange and quenching with chlorodiisopropylphosphine to provide the 

benzyl-protected diphosphine. Initial efforts towards benzyl group deprotection proved to be 

particularly challenging, with conventional methods such as hydrogenation with 10 wt% Pd/C 

or Pearlman’s catalyst (Pd(OH)2/C) being ineffective in engendering benzyl cleavage. Only 

under the more forcing reducing conditions of  catalytic sodium naphthalenide was 

deprotection successfully effected to provide 1-H. Under those conditions, care also needs to 

be taken to limit the reaction time as prolonged stirring also led to detrimental reductive P–C 

bond cleavage and formation of  phosphine side products. P–C bond cleavage has been 

reported under similar conditions with alkali metals, including Na, in THF.50 

Synthesis of  first-row transition metal complexes 

Metal complexes of  Cr(III), Mn(II), Fe(II), Co(II), and Ni(II) were prepared by the 

reaction of  their corresponding metal halides with the terphenyl diphosphine phenoxide 

proligand (henceforth abbreviated as POP), formed via initial deprotonation of  1-H by benzyl 

potassium. The metalations were all carried out in THF except 3 wherein dichloromethane 

Scheme 2.2. Synthesis of  complexes 2-6 
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was used. Reprecipitation of  the residue from benzene/pentane yielded the desired metallated 

complexes as powders.  

With Mn(II) bromide, using a 1:1 stoichiometry of  ligand to metal halide did not lead 

to complete consumption of  ligand even after stirring for 12 hours. Instead of  a monometallic 

complex, a trimetallic complex 2 wherein a MnBr2 moiety bridges two MnBr(POP) units 

through the phenolate oxygen was formed (Scheme 2.2). This may stem from the slow rate of  

metalation, which in turns provide a longer window for the Mn(POP) complex to react with 

MnBr2 still present to form the bridged trimetallic species. This complex does not go on to 

react with the excess ligand to yield the targeted monometallic complexes even with extended 

stirring times. Rationally using a 3:2 ratio of  MnBr2 to 1-K led to the formation of  2 in good 

yields. In the 1H NMR spectrum, predominantly broad paramagnetically shifted peaks were 

observed for 2. This bridging moiety also suggests that the metallated phenoxide is still able 

to act as a competent Lewis base, which could be leveraged as a means to tune the electronic 

nature of  the phenoxide donor, and by extension reactivity of  the complex, by the addition 

of  extraneous Lewis acids. 

With Cr(III), Fe(II), Co(II), and Ni(II), monometallic complexes with the ligand 

binding through the phenolate oxygen and both phosphine arms were obtained from the 

respective metalations (Scheme 2.2). From the 1H NMR spectra, broad paramagnetically-

shifted peaks were observed with CrCl2(POP) (3), while slightly sharper paramagnetically-

shifted peaks were observed for FeCl(POP) (4) and CoBr(POP) (5). The 1H NMR spectra of  

NiCl(POP) (6) showed the presence of  a diamagnet, and a single resonance was observed in 

the 31P NMR at 13.57 ppm. The diamagnetic nature of  this species supports a square planar 

ligand coordination environment around a Ni(II) center.  

Solid-state characterization  
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Single crystals suitable to X-ray diffraction (XRD) of  complex 2 was obtained by slow 

vapor diffusion of  pentane into a saturated THF solution of  2 while those of  complexes 3-6 

were obtained by slow vapor diffusion of  pentane into saturated benzene solutions of  the 

complexes. The solid-state structure of  Mn(II) complex 2 is shown in Figure 2.2. A MnBr2 

moiety (Mn3, Br2, Br4) bridges two moieties of  diphosphine phenoxide-bound manganese 

bromide through Mn1/Mn2 and O1/O2. The geometry around Mn1 and Mn2 are both 

trigonal bipyramidal, with the oxygen and non-bridging bromide atoms occupying the axial 

positions. The geometry around the bridging manganese (Mn3) is a highly distorted square 

planar (τ’4 = 0.402),51 with Br2 and Br4 cis to each other. This represents a rare example of  a 

 
Figure 2.2. Solid-state structure of  2. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity. Relevant bond distances (Å) and angles(°): 

(2) Mn1–O1 2.148(3), Mn1–P1 2.6825(12), Mn1–P2 2.6928(13), Mn1–Br1 2.5370(8), Mn1–

Br2 2.6490(8), Mn2–O2 2.141(3), Mn2–P3 2.7138(12), Mn2–P4 2.6485(13), Mn2–Br3 

2.5362(8), Mn2–Br4 2.6562(8), Mn3–O1 2.0473(3), Mn3–O2 2.025(3), Mn3–Br2 2.5674(8), 

Mn3–Br4 2.5837(8), ∠P1–Mn1–P2 123.54(4), ∠P3–Mn2–P4 126.21(4), ∠Br1–Mn1–O1 

173.81(8), ∠Br3–Mn2–O2 176.96(8). 
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square planar manganese(II) motif  not ligated by a rigid ligand such as a pincer or macrocycle. 

The distortion from planarity is likely due to sterics imposed by the POP ligands, forcing the 

square planar coordination environment to twist in order to minimize the steric clash between 

phenylene arms of  opposing ligands. 

The solid-state structures of  3-6 are shown in Figure 2.3 and their relevant structural 

metrics in Table 2.1. The solid-state structure of  3 revealed a five-coordinate Cr center bound 

to both phosphine arms, the phenoxide and two chloride ligands. In contrast to five-

coordinate Mn centers in complex 2, the geometry of  about the chromium center in 3 is that 

  

 

Figure 2.3. Solid-state structures of  3-6. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity. 

3 

5 6 

4 
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of  a distorted square pyramidal (τ5 =0.24),52 with Cl1 occupying the axial position. O1 and Cl2 

lie below the basal plane with deviations of  0.648 Å and 0.332 Å, while P1 and P2 lie above 

the plane with deviations of  0.479 Å and 0.502 Å, respectively. This geometry also results in a 

rather acute C1–O1–Cr1 angle (82.25(6)°) and a relatively short Cr1–C1 distance(2.2245(12) 

Å). This suggests that there may be some amount of  delocalization of  the negative charge of  

the phenoxide into the central ring with the Cr binding to the C–O moiety through a π-bond. 

However, lack of  significant bond localization within the central ring, < 0.05 Å difference in 

C–C bonds lengths vs. 0.11 Å difference in a reported Rh cyclohexadienone complex,43 

indicates that this resonance contribution is minimal and that the short Cr1–C1, is more likely 

due to a geometrical constraint. 

The solid-state structures of  4 and 5 both showed distorted tetrahedral geometries 

about the iron and cobalt centers with τ4’ values of  0.830 and 0.844, respectively, bound to 

both phosphines, the phenoxide oxygen, and a halide ligand. Due to the geometrical constraint 

imposed by the POP ligand, the P1/P2–M1–O1 angles are contracted significantly from ideal 

in complex 4, slightly less so in complex 5. Compared with 4, the metal center in 5 also sits 

further out from the POP ligand “pocket”, as evidenced by the smaller P1–Fe1–P2 and larger 

Table 2.1. Selected structural metrics for complexes 4-7 

Distance 
(Å)/angle (°) 

4 CrCl2(POP) 5 FeCl(POP) 6 CoBr(POP) 7 NiCl(POP) 

aM1–X1 2.3006(3) 2.2502(5) 2.3832(3) 2.1778(2) 

M1–Cl2 2.3143(4) - - - 

M1–O1 1.9587(9) 1.8938(13) 1.8971(13) 1.8813(6) 

M1–P1 2.4932(4) 2.4350(6) 2.3743(5) 2.2244(3) 

M1–P2 2.5324(4) 2.4426(5) 2.3480(6) 2.2300(2) 

P1–M1–P2 156.51(1) 117.39(2) 123.90(2) 167.58(1) 

P1–M1–O1 83.74(3) 100.72(4) 97.82(4) 88.05(2) 

P2–M1–O1 85.37(3) 94.06(4) 105.05(4) 89.71(2) 

C1-O1-M1 85.25(6) 111.3(1) 104.5(1) 93.53(5) 

aX = Cl1 (4, 5, 7), Br1 (6). 
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C1–O1–Co1 angles, probably due to the larger steric profile of  bromine compared to chlorine. 

In the solid-state structure of  Ni(II) complex 6, the metal center is ligated to both 

phosphine arms, the phenoxide oxygen, and a chloride. The geometry around the Ni center is 

square planar (τ4’ = 0.098), consistent with the diamagnetic species observed by NMR 

spectroscopy. Due to the constraint the square planar geometry imposes on the Ni center, a 

short Ni1-C1 distance (2.3798(8) Å) and acute Ni1–O1–C1 angle (93.53(5)°) were observed 

in the structure, similar to that in complex 3. 

Reduction of  complexes 3-6 

We were interested to explore reductions of  monometallic complexes 3-6 in order to 

probe the ability of  the POP ligand to support variations in metal oxidation states (Scheme 

2.3). Reduction of  chromium complex 3 in THF with one equiv. of  sodium naphthalenide 

resulted in the formation of  a green-brown material that was NMR silent. Further addition of  

a second equiv. of  reductant did not result in significant changes in the NMR spectrum. Green 

crystals suitable for single-crystal XRD were grown by vapor diffusion of  pentane into a 

Scheme 2.3. Reduction of  complexes 3, 5, and 7 
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saturated benzene solution. The solid-state structure revealed the product of  reduction to be 

a monometallic Cr(II) complex (7) (Figure 2.4) generated from a one-electron reduction of  3. 

The geometry around Cr1 is square planar (τ4’ = 0.082), similar to that in Ni(II) complex 6. 

As with 6, a short Cr1–C1 distance (2.3161(3) Å) and an acute Cr1–O1–C1 angle were present. 

When CoCp2 was used instead as a reductant, free ligand was observed to form via 31P and 1H 

NMR spectroscopy, suggesting some decomposition.  

Reductions were attempted with Fe complex 4 using a variety of  reductants 

(cobaltocene, sodium naphthalenide, sodium-mercury amalgam, and potassium graphite). 

Under these conditions, intractable mixtures showing no significant paramagnetic peaks, 

accompanied by significant amounts of  free ligand, were obtained. These observations 

indicate that the reduced iron species were likely unstable and that decomposition via 

demetalation upon reduction was taking place. 

Reduction of  Co complex 5 with one equiv. of  sodium naphthalenide in a thawing 

THF solution resulted in an immediate purple to red color change and the observation of  a 

new paramagnetic species in the 1H NMR spectrum. Single crystals suitable for XRD were 

 

Figure 2.4. Solid-state structure of  7. Thermal ellipsoids shown at 50% probability. Solvent 

molecules and hydrogen atoms omitted for clarity. Relevant bond distances (Å) and angles (°): 

Cr1–O1 1.9897(7), Cr1–P1 2.4548(3), Cr1–P2 2.4644(3), Cr1–Cl1 2.3673(9), ∠Cr1–O1–C1 

88.27(5). 
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grown from vapor diffusion of  pentane into a saturated benzene solution. In the solid-state 

structure of  complex 8, an asymmetric dicobalt species is observed wherein one of  the cobalt 

centers (Co1) has lost a bromide ligand and has shifted to bind to the central arene in an η6-

fashion while the second cobalt center (Co2) is now bound to only one phosphine (P3), two 

phenoxides (O1, O2), and a bromide (Figure 2.5). Overall, this represents a one-electron 

reduction per two molecules of  5. However, repeating the reaction and allowing for extended 

stirring with the remaining reductant did not lead to further reaction, suggesting that, once 

formed, the formally Co(II) center in 8 (Co2) is stable to excess naphthalenide. The geometry 

around Co2 is tetrahedral (τ4’ = 0.877), while Co1 takes on a two-legged piano stool geometry. 

The central arene bound to Co1 is slightly puckered with C1 and C4 further away (2.258(4) - 

2.294(4) Å) and C2, C3, C5, and C6 closer to the metal center (2.058(4) – 2.098(4) Å), which 

could indicate ligand non-innocence behavior. However, the absence of  C–C bond 

  

Figure 2.5. Solid-state structure of  8. Thermal ellipsoids shown at 50% probability. Solvent

molecules, iso-propyl methyls, and hydrogen atoms omitted for clarity. Relevant bond distances

(Å) and angles (°): Co1–P1 2.1934(11), Co1–P2 2.2257(12), ∠P1–Co1–P2 110.31(4). Central 

arene bond lengths shown in Å. 
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localization within the central arene and the lack of  shortening of  C1–O1 and/or C4–N1 

would suggest that no significant redox changes are occurring at the ligand. 

Reduction of  nickel complex 6 with two equiv. of  sodium naphthalenide resulted in a 

rapid color change from deep green to brown. A new diamagnetic species was observed by 

NMR spectroscopy with a 31P resonance at 38.5 ppm. The product was revealed by single 

crystal XRD to be a nickel(0) diphosphine complex 9 (Figure 2.6). Upon reduction, the nickel 

center shifts from the phenoxide oxygen to bind to the adjacent of  the central arene (C1). Two 

POP units are present in the unit cell (space group P1̄ ) related by an inversion center. The 

two phenoxides are bridged by two sodium ions generating a diamond core.  

Lewis acid effects on ligand coordination mode 

The binding mode changes in both complexes 8 and 9 from the hard phenoxide donor 

to the softer central arene donor upon reduction of  the bound metal center demonstrates the 

coordinative flexibility of  the POP ligand to accommodate a variety of  electronic states. 

Additionally, in both examples, the binding mode changes are accompanied by the association 

 

Figure 2.6. Solid-state structure of  9 (grown). Thermal ellipsoids shown at 50% probability. 

Solvent molecules and hydrogen atoms omitted for clarity. Relevant bond distances (Å) and 

angles (°): Ni1–P1 2.1300(3), Ni1–P2 2.1469(3), Ni1–C1 2.0636(11), ∠P1–Ni1–P2 141.92(1). 
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of  a Lewis acid moiety at the phenoxide oxygen (either a Co(II) center or a sodium ion). In 

order to further probe the effects of  redox changes and presence of  Lewis acid motifs on the 

coordination mode of  this ligand framework, iron chloride complex 4 and its triflate analog 

10 were further studied in greater detail. 

 Synthesis of  triflate complex 10 was accomplished in a similar manner to complex 4 

by the reaction of  L-K with 1.1 equiv. Fe(OTf)2(MeCN)2 in THF, yielding an orange 

microcrystalline solid. Paramagnetically-shifted peaks were observed in the 1H NMR spectra 

along with a broad signal in the 19F NMR spectrum (13.2 ppm), suggesting the presence of  an 

interaction of  the triflate counterion with the metal center. To probe the solution-state 

magnetic moments, measurements were determined by the Evans method53-55 to be 4.5 µB and 

4.6 µB for 4 and 10, respectively, indicative of  a tetrahedral d6 high-spin electronic 

configurations (S = 2) in both complexes. Structural characterization by single-crystal XRD 

  

Figure 2.7. Solid-state structures (left), and central arene bond metrics (right) of 10. 

Thermal ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms

omitted for clarity. Relevant bond lengths (Å) and angles (°): Fe1–O2 1.985(2), Fe1–P1

2.4451(6), Fe1–P2 2.4451(8), Fe1–O1 1.875(1), C1–O1 1.357(2), C4–N1 1.412(3), ∠Fe1–

O1–C1 108.8(1). 
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was obtained for 10 (Figure 2.7), revealing a distorted tetrahedral geometry around the iron 

center, with binding to the phenolate, both phosphines, and the triflate, the latter being 

consistent with the broad signal observed in the 19F spectrum. the P1/2-Fe-O1 angles (~100 

°) are contracted from ideal, likely a result of  the geometrical constraints of  the POP pincer. 

The reactivities of  4 and 10 towards exogenous Lewis acids that might coordinate to 

the phenolate oxygen was investigated. We anticipate that such reactivity would weaken the 

Fe–O bond and facilitate a coordination mode change, allowing the metal center to slip to 

bind to the central arene. The reaction of  10 with trimethylaluminum (Scheme 2.4) resulted in 

the formation of  a new diamagnetic species by 1H NMR and 31P{1H} spectroscopy. A peak 

corresponding to a methyl resonance was observed at −0.5 ppm in the 1H NMR spectrum 

while a singlet at 65.09 ppm. Solid-state characterization showed the formation of  iron methyl 

complex 11 that resulted from a ligand exchange between iron and aluminium (Figure 2.8). 

The phenoxide oxygen is bound to an AlMe2OTf  group while the iron center slips to bind to 

the central arene in an η6-fashion. The central arene retains aromaticity with relatively uniform 

C–C bond distances. Slight puckering of  the central arene is present, with shorter longer Fe–

C1/C4 distances compared with the other carbons in the ring. The reaction of  10 with 

triethylaluminium did not yield an analogous iron ethyl complex (Scheme 2.4). Instead, 1H 

NMR spectroscopy revealed a new species 12 showing a triplet signal with a chemical shift of  

Scheme 2.4. Reaction of  10 with trialkylaluminiums 
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−10.25 ppm that integrated to one proton and is consistent with other reported iron hydrides 

in the literature.56 The triplet multiplicity arises from coupling with the two phosphine arms 

and displays a 2JPH value of  83.2 Hz typical of  similar reported diphosphine iron hydride 
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Figure 2.8. Solid-state structures (left), and central arene bond metrics (right) of  11 and 12. 

Thermal ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms omitted

for clarity. Relevant bond lengths (Å) and angles (°): 11 Fe1–P1 2.3132(3), Fe1–P2 2.3193(3), 

Fe1–C33 2.0529(9), C1–O1 1.319(1), C4–N1 1.350(1), ∠P1–Fe1–P2 107.14(3); 12 Fe1–P1 

Fe1–H38 1.20(6), C1–O1 1.327(4), C4–N1 1.381(4), ∠P1–Fe1–P1 104.10(6 2.251(2). 
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complexes.57 In the 31P{1H} NMR spectrum, a broad singlet was observed at 91.40 ppm, and 

upon selectively coupling the hydridic proton signal, this resonance then appears as a broad 

doublet with 2JPH of  74.2 Hz, similar to that for the corresponding hydride in the 1H NMR 

spectrum.  

Crystals suitable for single crystal XRD revealed the identity of  12 as iron hydride 

complex (Figure 2.8). The iron center that binds through the central arene moiety in an η6-

fashion, with relatively uniform C–C bond distances in the arene ring and average C–Fe 

distances of  (2.139 Å). As with 11, slight puckering of  the central arene is present, with C1/4–

Fe1 bonds being the longest (2.19-2.25 Å) and C2/6–Fe1 being the shortest (2.08 Å), likely 

due to the constraint placed upon it by the phosphine arms. From the residual electron density 

in the Fourier transform map, a hydride bound to iron could also be located. The Fe–H 

distance of  1.20(6) Å is relatively short compared to other iron hydrides in the literature but 

isn’t unique.58  

The presence of  the hydride, alongside an AlEt2OTf  group bound to the phenolate 

oxygen suggests that initial alkylation at the iron center, as with 11, is followed by a β-hydride 

elimination that generates complex 12. This was further supported by the presence of  ethylene 

gas that is formed via elimination of  the ethyl ligand, detected by 1H NMR both in the reaction 

mixture and upon vacuum transfer of  the volatile reaction products into a J-Young tube. It 

has been proposed that the availability of  empty d-orbitals facilitate β-hydride elimination in 

Fe(II) low spin complexes.59-60 This observation along with their solid-state structures agrees 

well with the diamagnetic nature and electronic configuration of  complexes 11 and 12 (pseudo-

octahedral d6 low spin). Additionally, shortening of  the C4–N1 bond distance was observed 

upon slippage of  the iron center from the phenolate oxygen to the arene (from 1.415(2) Å in 

10 to 1.350(1) Å 11 and 1.381(4) 12), suggesting contribution of  the N-lone pair into the more 
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electron deficient central arene. 

The reaction of  iron chloride complex 4 with AlEt3 did not afford the analogous 

hydride complex. Instead, a paramagnetic species was observed by 1H NMR spectroscopy. 

Solid-state characterization by single crystal XRD showed the formation of  adduct 13, wherein 

AlEt3 binds through the phenolate oxygen (Figure 2.9). The lack of  exchange with the chloride 

moiety could be attributed to the stronger coordination of  the chloride group to the iron 

center compared with the triflate group in 10. Coordination of  the Al Lewis acid to the 

phenolate did not result in a change in ligand binding mode like in 11/12, suggesting that the 

identity of  the ancillary ligand (H/alkyl vs. Cl) affects the preferred coordination mode. 

However, Al coordination at the phenolate does result in the weakening and lengthening of  

the Fe–O1 bond (from 1.8932(9) Å in 4 to 1.960(1) Å in 13), suggesting that both factors are 

significant in determining the preferred ligand binding mode. The solution-state magnetic 

moment of  4 was determined to be 4.7 µB, consistent with a d6 high spin complex (S=2), 
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Figure 2.9. Solid-state structure (left), and central arene bond metrics (right) of  13. Thermal 

ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms omitted for clarity.

Relevant bond lengths (Å) and angles (°): Fe1–P1 2.4586(4), Fe1–P2 2.4688(4), Fe1–O1

1.960(1), Fe1–Cl1 2.2279(4), C1–O1 1.386(1), C4–N1 1.383(2), ∠Fe1–O1–C1 108.20(7). 
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consistent with the solid-state structure.  

Next, investigation of  the effect of  metal oxidation state on ligand coordination mode 

of  these Lewis acid adducts was carried out. Reduction of  the iron center would be expected 

to render it a softer ion, potentially engendering a binding mode change from the hard 

phenoxide donor to the softer arene donor. As described in the previous section, reduction of  

iron chloride complex 4 under a variety of  conditions led to either decomposition to free 

ligand or NMR-silent species which have eluded further characterization. We hypothesized 

that the presence of  a Lewis acidic moiety could facilitate binding mode change by 

coordination to the anionic phenolate oxygen, quenching the negative charge resulting from a 

one-electron reduction and stabilizing the consequential slippage of  the iron center to the 

central arene. This observation is consistent with the two examples of  reduction induced 

coordination mode changes (on Co complex 8 and Ni complex 9).  

Reduction of  AlEt3 adduct 13 with one equiv. of  KC8 led to the formation of  a dark 

yellow paramagnetic product (Scheme 2.5). Slow diffusion of  pentane into a saturated THF 

solution provided dichroic yellow-brown rod-shaped crystals suitable for single crystal XRD. 

The solid-state characterization revealed the solid to be Fe(I) complex 14 (Figure 2.10). In the 

structure, the iron center is bound to both phosphines, and to the central arene in an η6-

fashion. The central arene shows relatively uniform arene C–C bond lengths. Puckering of  the 

central arene and contraction of  the C4–N1 distance similar to that in 11 and 12 were also 

observed. The coordination geometry around iron can be described as a two-legged piano 

Scheme 2.5. Stepwise reduction of  13 
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stool. There have only been two previously reported examples of  iron bound to a diphosphine 

and an untethered arene in a similar geometry,61-62 but this is the first example in which both 

the arene and phosphine moieties are part of  the same chelate. Solution-state magnetic 

susceptibility determined by the Evans method provided a value of  2.8 µB, or S = 1, an unusual 

value for a Fe(I) complex. Variable temperature (VT) Evans method63 measurement from −80 

°C to 70 °C show no significant change in its magnetic moment, suggesting that a spin-

crossover transition is not occurring between those temperatures. 

The reaction of  14 with an additional equiv. of  KC8 resulted in a new diamagnetic 

species 15 observed by 1H and 31P NMR spectroscopy (Scheme 2.5). Both spectra featured 

broad, poorly resolved peaks reminiscent of  the potassium phenolate salt L-K. The solid-state 

identity of  the complex was confirmed by single crystal XRD, showing the formation of  Fe(0) 

complex 15 (Figure 2.11). The iron center is observed to retain η6-binding to the central arene 

while the additional K ion coordinates to the phenoxide oxygen. The crystal structure also 
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Figure 2.10. Solid-state structures (left), and central arene bond metrics (right) of  14. Bond 

distances in Å and angles in °. Thermal ellipsoids shown at 50% probability. Solvent molecules

and hydrogen atoms omitted for clarity. Relevant bond lengths (Å) and angles (°): Fe1–P1 

2.2716(5), Fe1–P2 2.2495(4), C1–O1 1.311(2), C4–N1 1.375(2), ∠P1–Fe1–P1: 110.10(2) 
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reveals the formation of  a coordination polymer, where the amine moiety coordinates to the 

potassium ion of  an adjacent molecule, which if  similar oligomeric structures persist in 

solution may account for the peak broadening observed in the NMR spectra. 

 Exploring if  similar reactivity can be achieved with other Lewis acids. The reaction 

of  triflate complex 10 with NaHBEt3 resulted in the formation of  a Fe hydride complex 16 

that shows very similar features to 12 with a hydride triplet at -11.12 ppm (J = 80.8 Hz). Seeing 

that boron-based Lewis acids appear capable of  engendering similar reactivity, a boron analog 

of  15 was targeted. Addition of  BEt3 to iron chloride complex 4 followed by reaction with 

two equiv. KC8 resulted in the formation of  an NMR silent paramagnetic green species. Solid-

state analysis by single crystal XRD showed the formation of  Fe(0) complex 17 (Figure 2.12). 

Only a potassium ion was observed to be bound at the phenolate, in contrast to that in 15 
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Figure 2.11. Solid-state structures (left), and central arene bond metrics (right) of  15. Bond 

distances in Å and angles in °. Thermal ellipsoids shown at 50% probability. Solvent molecules

and hydrogen atoms omitted for clarity. Relevant bond lengths (Å) and angles (°): Fe1–P1 

2.2005(9), Fe1–P2 2.2086(9), C1–O1 1.352(4), C4–N1 1.434(4), ∠P1–Fe1–P1: 107.32(4) 
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where the initially coordinated Lewis acid stays bound. Although the BEt3 does not stay bound, 

it appears to be crucial in stabilizing the intermediate on route to the Fe(0) complex, since in 

its absence, significant decomposition was observed (vide supra). Notably, C1 is canted 

downwards away from the Fe center, with a significantly longer Fe–C1 (2.232(2) Å) bond 

compared to the other ring carbons. Additionally, looking at the central ring bond metrics, 

slight disruption of  the aromaticity is observed, with significantly longer C1–C2 and C1–C6 

distances. Along with a shorter C1–O1, it suggests some delocalization of  O-lone pair into 

the ring, with the negative charge spread out between C2 to C6. The subtle electronic 

difference in the iron coordination environment also results in a high-spin complex, distinct 

from 15. Further reactivity studies with boron-based Lewis acid are ongoing.  
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Figure 2.12. Solid-state structures (left), and central arene bond metrics (right) of  17. Bond 

distances in Å and angles in °. Thermal ellipsoids shown at 50% probability. Solvent molecules

and hydrogen atoms omitted for clarity. Relevant bond lengths (Å) and angles (°): Fe1–P1 

2.1800(6), Fe1–P2 2.1917(6), C1–O1 1.292(3), C4–N1 1.439(3), ∠P1–Fe1–P1: 106.29(2) 
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CONCLUSION 

The synthesis of  a novel meta-terphenyl diphosphine pincer-like proligand bearing a 

central aminophenol and subsequent metalations with first-row transition metal halides 

ranging from Cr to Ni have been demonstrated. This ligand is observed to bind to the metal 

centers via both phosphine arms and the phenoxide. The phenoxide moiety is slightly Lewis 

basic, and in the case with MnBr2, metalation resulted in the formation of  a trimanganese 

complex with a MnBr2 moiety bridging through phenoxide oxygen atoms of  two MnBr(POP) 

units. Reductions of  monometallic complexes 3-6 were carried out. With Cr(III) complex 3, a 

one-electron reduction provided monochloride Cr(II) complex 7. Reductions of  cobalt 

complex 5 and nickel complex 6 resulted in binding mode changes from the phenoxide to the 

central arene in η6 and η1 fashions, respectively. Further studies on POP-supported iron 

complexes demonstrate that aluminium-based Lewis acid coordination to the phenolate can 

effect coordination mode changes. Lewis acid coordination to the phenolate was also found 

to stabilize reduction on the iron center allowing Al-bound adducts of  Fe(I) and Fe(0) 

complexes to be isolated and characterized. With triethylborane coordination, reduction to 

Fe(0) provided borane-free Fe(0) complex, suggesting that even if  the Lewis acid does not 

ultimately stay bound, its transient coordination is still crucial for stabilizing the reduction 

and/or binding mode changes, potentially at the Fe(I) state. The coordination environment 

was found to depend on the oxidation state of  the iron center, and/or the identity of  other 

ancillary ligands bound to iron, demonstrating the flexibility of  this ligand framework. While 

the POP binding mode supports high spin Fe(II) complexes, the P-arene-P binding mode 

tends to favor the formation of  low spin Fe complexes (with some exceptions) and is capable 

of  supporting a variety of  iron oxidation states. 
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.64 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and vacuum transferred from sodium benzophenone ketyl (C6D6) or calcium 

hydride (CDCl3) before use. All solvents, once dried and degassed, were stored under an inert 

atmosphere over 4 Å molecular sieves. 2,6-diiodonitrophenol,48 benzyl potassium,65 potassium 

graphite,66 were prepared according to literature procedures. Sodium naphthalenide solution 

was prepared by stirring a THF solution of  naphthalene in the presence of  a sodium mirror 

for 30 min, filtered through a glass-fiber filter plug and used immediately. All other reagents 

were used as received. Pre-reduced Teflon-coated stir bars (prepared via stirring a Na[C10H8] 

solution overnight followed by rinsing three times with THF) were utilized in any stirred 

reaction in which KC8 or naphthalenide is employed. 1H, 13C{1H}, 19F NMR, and 31P{1H} 

NMR spectra were recorded on Varian Mercury 300 MHz or Varian 400 MHz spectrometers 

at ambient temperatures unless otherwise denoted. 1H and 13C{1H} NMR spectra are reported 

referenced internally to residual solvent peaks reported relative to tetramethylsilane. 19F NMR 

chemical shifts are referenced to an external standard of  C6F6 (-164.9 ppm). 31P NMR chemical 

shifts are referenced to an external standard of  85% H3PO4 (0.0 ppm). Fast atom 

bombardment-mass spectrometry (FAB-MS) analyses were performed with a JEOL JMS-

600H high-resolution mass spectrometer.  
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2-(benzyloxy)-1,3-diiodo-5-nitrobenzene. Modified from a previously reported 

procedure.67 To a stirred solution of  2,6-diiodo-4-nitrophenol (10.00 g, 25.6 mmol) in acetone 

(20 mL) was added anhydrous potassium carbonate (6.7 g, 48.6 mmol) then benzyl bromide 

(2.90 mL, 24.3 mmol) and the reaction refluxed until complete consumption of  benzyl 

bromide (ca. 22 h, as monitored via 1H NMR). After cooling to room temperature, the volatiles 

were removed in vacuo. The residue was partitioned in water (100 mL) and ethyl acetate (100 

mL) and the organic layer separated. The aqueous layer was extracted with ethyl acetate (2 × 

100 mL) and the combined organic extracts were washed with 3 M NaOH (3 × 100 mL) to 

remove excess phenol, then dried over magnesium sulfate, filtered, and concentrated in vacuo 

to yield a bright orange solid. Recrystallization from ethyl acetate provided the product as pale 

yellow needles in two crops (9.71 g, 83.1%). 1H NMR (300 MHz, CDCl3): δ 8.68 (s, 2H, central 

ArH), 7.65 (dd, J = 7.9, 1.7 Hz, 2H, ArH), 7.48 – 7.38 (m, 3H, ArH), 5.09 (s, 2H, CH2); 13C{1H} 

NMR (75 MHz, CDCl3): δ 163.02 (CNO2), 144.95 (aryl-C), 135.29 (aryl-C), 135.24 (aryl-C), 

129.02 (aryl-C), 128.77 (aryl-C), 90.54 (aryl-C), 75.1 (CH2); HRMS (FAB+) m/z Calcd. for 

C13H8I2NO3 [M + H]+ 479.8594, found 479.8609. 
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2-(benzyloxy)-1,3-bis(2’-bromophenyl)-5-nitrobenzene. Modified from a previously 

reported procedure.68 A mixture of  2-(benzyloxy)-1,3-diiodo-5-nitrobenzene (15.00 g, 31.2 

mmol), 2-bromophenyl boronic acid (13.78 g, 68.6 mmol), and anhydrous potassium 
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carbonate (25.90 g, 187 mmol) was suspended in a mixture of  toluene (525 mL), ethanol (150 

mL), and water (150 mL) in a Schlenk tube fitted with a screw-in Teflon stopper. The 

suspension was degassed by three freeze-pump-thaw cycles after which 

tetrakis(triphenylphosphine) palladium(0) (1.80 g, 1.56 mmol) was added under a counter flow 

of  nitrogen. The reaction flask was then sealed and warmed to 70 °C for 16 h. After cooling 

to room temperature, water (200 mL) was added and the organic layer was separated. The 

aqueous layer was extracted with dichloromethane (3 × 150 mL). The combined organic 

extracts were dried over magnesium sulfate, filtered, and then concentrated in vacuo to the 

crude product (17.9 g) as a yellow solid, which was used in the next step without further 

purification. 

The crude product can be purified by silica gel column chromatography (1:9 ethyl 

acetate:hexanes) providing 2-(benzyloxy)-1,3-bis(2’-bromophenyl)-5-nitrobenzene as a white 

solid (93.6%). 1H NMR (300 MHz, CDCl3): δ 8.22 (s, 2H, central ArH), 7.71 (d, J = 7.7 Hz, 

2H), 7.46 – 7.21 (m, 6H, ArH), 7.19 – 6.96 (m, 3H, ArH), 6.57 (s, br, 2H, ArH), 4.34 (s, 2H, 

CH2); 13C{1H} NMR (75 MHz, CDCl3): δ 159.28 (CNO2), 142.96 (aryl-C), 137.63 (aryl-C), 

136.21 (aryl-C), 135.78 (aryl-C), 133.01 (aryl-C), 131.73 (aryl-C), 130.00 (aryl-C), 128.20 (aryl-

C), 128.05 (aryl-C), 127.89 (aryl-C), 127.48 (aryl-C), 126.91 (aryl-C), 123.70 (aryl-C), 75.33 

(CH2); HRMS (FAB+) m/z Calcd. for C25H17Br2NO3 [M + H]+ 539.9633, found 539.9622. 

 

4-(benzyloxy)-3,5-bis(2’-bromophenyl)aniline. To a round bottom flask containing crude 

2-(benzyloxy)-1,3-bis(2’-bromophenyl)-5-nitrobenzene (17.9 g) suspended in ethanol (120 

mL) and water (10 mL), was added excess concentrated hydrochloric acid (7.5 mL) slowly, 
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followed by excess iron powder (7.5 g) slowly (caution: effervescence). The flask was then 

fitted with a reflux condenser and heated to reflux for 2 h. After cooling to room temperature, 

the black suspension was filtered over diatomaceous earth, and the black residue washed with 

dichloromethane (200 mL). The filtrate was then diluted with water (200 mL), the organic 

layer was separated, and the aqueous layer extracted with dichloromethane (2 × 150 mL). The 

combined organic extracts were dried over magnesium sulfate, filtered, and concentrated in 

vacuo to yield the crude product as a tacky tan solid (18.3 g), which was used in the next step 

without further purification. 

Crude product can be purified by silica gel column chromatography (1:4 ethyl acetate:hexanes) 

to yield 4-(benzyloxy)-3,5-bis(2’-bromophenyl)aniline as an pale tan solid (82.4% over 2 steps). 

1H NMR (300 MHz, CDCl3): δ 7.70 (dd, J = 8.0, 1.3 Hz, 2H, ArH), 7.41 (dd, J = 7.6, 1.9 Hz, 

2H, ArH), 7.33 (td, J = 7.5, 1.3 Hz, 2H, ArH), 7.23 (td, J = 7.5, 1.8 Hz, 2H ArH), 7.15 – 6.99 

(m, 3H, ArH), 6.65 (s, 2H, central ArH), 6.55 (s, br, 2H, ArH), 4.22 (s, 2H, CH2), 3.65 (s, br, 

2H, NH2); 13C{1H} NMR (75 MHz, CDCl3): δ 146.11 (aryl-C), 141.63 (aryl-C), 139.70 (aryl-

C), 137.06 (aryl-C), 136.14 (aryl-C), 132.60 (aryl-C), 131.98 (aryl-C), 128.87 (aryl-C), 128.08 

(aryl-C), 127.96 (aryl-C), 127.49, 126.99, 123.91, 117.69, 75.30 (CH2); HRMS (FAB+) m/z 

Calcd. for C25H19Br2NO [M + H]+ 509.9891, found 509.9915. 

 

4-(benzyloxy)-3,5-bis(2’-bromophenyl)-N,N-dimethylaniline. Modified from a 

previously reported procedure.69 To round bottom flask charged with a solution of  crude 4-

(benzyloxy)-3,5-bis(2’-bromophenyl)aniline (18.3 g) in glacial acetic acid (75 mL) was added 

paraformaldehyde (9.65 g, ca. 10 equiv.) and sodium cyanoborohydride (9.79 g, ca. 5 equiv.) 
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(caution: effervescence). The reaction was allowed to stir at room temperature for 12 h under 

a nitrogen atmosphere. The mixture was poured onto an ice (200 mL) and sodium hydroxide 

(40 g) mixture, stirring to ensure neutralization of  the acid. The mixture was then filtered, and 

the residue washed with dichloromethane. The organic layer in the filtrate was separated and 

the aqueous layer was extracted with dichloromethane (2 × 100 mL). The combined organic 

layers were dried over magnesium sulfate, filtered, and concentrated in vacuo to yield a black 

solid. Purification by silica gel column chromatography (1:9 ethyl acetate:hexanes) yields 4-

(benzyloxy)-3,5-bis(2’-bromophenyl)-N,N-dimethylaniline as a white solid (12.1 g, 72.3% over 

3 steps). 1H NMR (300 MHz, CDCl3): δ 7.75 (dd, J = 7.9, 1.3 Hz, 2H, ArH), 7.50 (dd, J = 7.7, 

1.8 Hz, 2H, ArH), 7.38 (td, J = 7.5, 1.3 Hz, 2H, ArH), 7.27 (td, J = 7.6, 1.8 Hz, 2H, ArH), 7.17 

– 7.06 (m, 3H, ArH), 6.75 (s, 2H, central ArH), 6.61 (d, br, J = 7.0 Hz, 2H, ArH), 4.28 (s, 2H, 

CH2), 3.03 (s, 6H, N(CH3)2); 13C{1H} NMR (75 MHz, CDCl3): δ 146.22 (aryl-C), 144.73 (aryl-

C), 140.33 (aryl-C), 137.21 (aryl-C), 135.82 (aryl-C), 132.64 (aryl-C), 132.13 (aryl-C), 128.80 

(aryl-C), 128.23 (aryl-C), 128.08 (aryl-C), 127.96 (aryl-C), 127.45 (aryl-C), 126.97 (aryl-C), 

124.09 (aryl-C), 115.16 (aryl-C), 75.33 (CH2), 41.08 (N(CH3)2); HRMS (FAB+) m/z Calcd. for 

C27H23Br2NO [M + H – H2]+ 536.0048, found 536.0033. 

 

4-(benzyloxy)-3,5-bis(2’-diisopropylphosphinophenyl)-N,N-dimethylaniline. Modified 

from a previously reported procedure.68 To a stirred solution of  4-(benzyloxy)-3,5-bis(2’-

bromophenyl)-N,N-dimethylaniline (12.0 g, 22.3 mmol) in diethyl ether (250 mL) at −78 °C 

was added dropwise a pentane solution of  tert-butyl lithium (55.2 mL, 1.7 M, 93.8 mmol) 

forming a pale yellow milky suspension. After stirring at −78 °C for an additional 45 minutes, 
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chlorodiisopropylphosphine (7.5 mL, 46.9 mmol) was added dropwise and the reaction was 

then allowed to warm to room temperature forming a pale yellow-orange suspension. After 

stirring 2 h at room temperature, the volatiles were removed in vacuo, and the workup was 

carried out in a nitrogen-purged wet box using degassed solvents. The residue was partitioned 

between dichloromethane (150 mL) and water (150 mL). The organic layer was separated and 

the aqueous layer extracted with dichloromethane (2 × 150 mL). The combined organic 

extracts were concentrated under vacuum yielding an oily solid that was triturated with 

methanol (30 mL), sonicating briefly to induce precipitation, filtered, washed with MeOH (2 

× 10 mL) and dried in vacuo at 60 °C overnight to provide 4-(benzyloxy)-3,5-bis(2’-

diisopropylphosphinophenyl)-N,N-dimethylaniline as an white solid (11.7 g, 85.6%). 

Atropisomers observed from NMR spectra (ca. 3:1 anti:syn based on 1H and 31P NMR 

integration). 1H NMR (300 MHz, C6D6) anti isomer: δ 7.67 (q, J = 3.9 Hz, 2H, ArH), 7.55 – 

7.44 (m, 2H, ArH), 7.28 – 7.17 (m, 3H, ArH), 6.97 – 6.89 (m, 2H, ArH), 6.76 (s, 2H, central 

ArH), 6.66 – 6.57 (m, 2H, ArH), 4.59 (d, J = 10.6 Hz, 1H, CH2), 4.37 (d, J = 10.6 Hz, 1H, 

CH2) 2.67 (s, 6H, N(CH3)2), 1.96 (dhept, 2JP,H = 38.1 Hz, 3JH,H = 7.0 Hz, 4H, CH(CH3)2), 1.14 

– 0.96 (m, 24H, CH(CH3)2); syn isomer:, 4.45 (s, 2H, CH2), 2.07 – 1.76 (m, 4H, CH(CH3)2), 

0.88– 0.88 (dd, 3JP,H = 13.1, 3JH,H 7.0 Hz, 24H, CH(CH3)2); 13C{1H} NMR (75 MHz, C6D6): δ 

148.22 (d, 1JP,C = 31.4 Hz, aryl-C), 145.93 (d, 2JP,C = 18.2 Hz, aryl-C), 138.38 (aryl-C), 137.25 

(d, 2JP,C = 17.3 Hz, aryl-C), 137.05 (d, JP,C = 2.5 Hz, aryl-C), 132.44 (aryl-C), 132.39 (aryl-C), 

131.88 (d, JP,C = 5.8 Hz, aryl-C), 131.30 (aryl-C), 128.20 (aryl-C), 127.92 (aryl-C), 127.32 (aryl-

C), 126.74 (aryl-C), 117.12 (d, JP,C = 3.5 Hz, aryl-C), 75.26 (syn CH2) 74.98 (anti CH2), 41.17 

(N(CH3)2), 26.74 (d, JP,C = 16.7 Hz, PCH(CH3)2), 24.51 (d, JP,C = 15.1 Hz, PCH(CH3)2), 21.07 

(d, JP,C = 15.5 Hz, syn PCH(CH3)2), 20.63 (d, 1JP,C = 18.3 Hz, PCH(CH3)2), 20.56 (d, JP,C = 15.6 
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Hz, PCH(CH3)2); 31P{1H} NMR (75 Hz, C6D6): δ −2.15 (s, anti isomer), −3.67 (s, syn isomer); 

HRMS (FAB+) m/z Calcd. for C39H52NOP2 [M + H]+ 612.3524, found 612.3553. 

 

2,6-bis(2’-diisopropylphosphinophenyl)-4-dimethylaminophenol (1-H). Modified from 

a previously reported procedure.70 To a solution of  4-(benzyloxy)-3,5-bis(2’-

diisopropylphosphinophenyl)-N,N-dimethylaniline (19.64 g, 32.1 mmol) in tetrahydrofuran 

(750 mL) stirring over a sodium mirror (3.70 g, 160 mmol) (made by warming sodium lumps 

in a Schlenk tube under vacuum) was added slowly a solution of  naphthalene (329 mg, 2.54 

mmol) in tetrahydrofuran (50 mL). The reaction was stirred at room temperature and reaction 

progress check via 31P NMR. After complete conversion, about 3 h, the reaction was worked 

up in a nitrogen-purged wet box using degassed solvents. The solution was decanted and the 

flask washed with tetrahydrofuran (50 mL). The washings were combined with the initial 

decanted solution and water (10 mL) added slowly leading to rapid loss of  the deep yellow-

brown color to give a yellow solution. The solvent was reduced in volume in vacuo to about 

50mL. Water (150 mL) was added, and the mixture extracted with dichloromethane (3 × 200 

mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in 

vacuo to yield a yellow viscous oil. After further drying the solid at 60 °C overnight, methanol 

(ca. 40 mL) added and stirred vigorously to induce precipitation of  the product. The precipitate 

was collected by filtration and washed with a minimal methanol (2 × 30 mL). Drying the 

residue in vacuo provided 1-H as an off-white solid. (10.99 g, 65.7%). Broad peaks due to 

atropisomers observed in 1H NMR at room temperature. 1H NMR (300 MHz, C6D6, 70 °C): 

δ 7.48 – 7.41 (m, 4H, ArH), 7.19 – 7.11 (m, 4H, ArH), 6.74 (s, 2H, central ArH), 4.97 (s, br, 
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1H, OH), 2.67 (s, 6H, N(CH3)2), 1.97 (hept, J = 6.8 Hz, 4H, CH(CH3)2), 1.05 (dd, 3JP,H = 13.8, 

3JH,H = 7.0 Hz, 12H, CH(CH3)2), 0.96 (dd, 3JP,H = 11.6, 3JH,H = 7.0 Hz, 12H, CH(CH3)2); 13C{1H} 

NMR (75 MHz, C6D6, 70 °C): δ 148.34 (aryl-C), 147.93 (aryl-C) 144.95 (aryl-C), 142.03 (aryl-

C), 136.84 (d, 1JP,C = 21.1 Hz, aryl-C), 132.53 (aryl-C), 131.87 (aryl-C), 128.88 (aryl-C), 126.99 

(aryl-C), 118.55 (aryl-C), 41.74 (N(CH3)2), 25.10 (br, PCH(CH3)2), 20.62 (d, 2JP,C = 20.4 Hz, 

PCH(CH3)2), 20.47 (d, 2JP,C = 22.9 Hz, PCH(CH3)2), 20.24 (s, br, PCH(CH3)2); 31P{1H} NMR 

(75 Hz, C6D6): δ −0.90 (s); 31P{1H} NMR (75 Hz, C6D6, 70 °C): δ 1.13 (s); HRMS (FAB+) m/z 

Calcd. for C32H46NOP2 [M + H]+ 522.3055, found 522.3035. 

 

Synthesis of  1-K. To a solution of  2,6-bis(2’-diisopropylphosphinophenyl)-4-

dimethylaminophenol (200 mg, 0.387 mmol) in tetrahydrofuran (10 mL) was added dropwise 

a solution of  benzyl potassium (52.9 mg, 0.407 mmol) in tetrahydrofuran (5 mL) at room 

temperature forming a bright yellow solution upon addition. After stirring for 10 minutes at 

room temperature, the volatiles were removed in vacuo and the residue triturated with hexanes. 

The residue was extracted benzene (3 × 10 mL), filtered through diatomaceous earth, and 

lyophilized to afford 1 as a bright yellow solid (215 mg, quantitative). 1H NMR (300 MHz, 

C6D6, 70°C): δ 7.35 (dt, J = 6.5, 2.0 Hz, 2H, ArH), 7.28 (dt, J = 6.5, 3.1 Hz, 2H, ArH), 7.05 – 

6.97 (m, 4H, ArH), 6.86 (s, 2H, central ArH), 2.78 (s, 6H, N(CH3)2), 2.00 (heptd, J = 7.0, 1.9 

Hz, 4H, CH(CH3)2), 1.08 (dd, 3JP,H = 12.4 Hz, 3JH,H = 7.0 Hz, 12H, CH(CH3)2), 0.95 (dd, br, 

3JP,H = 11.7 Hz, 3JH,H = 7.0 Hz 12H, CH(CH3)2); 13C{1H} NMR (75 MHz, C6D6, 70 °C): δ 

161.87 (aryl-C), 154.56 (d, J = 29.0 Hz, aryl-C), 139.93 (d, 1JP,C = 25.0 Hz, aryl-C), 137.02 (aryl-

C), 132.44 (aryl-C), 132.38 (aryl-C), 130.26 (aryl-C), 127.74 (aryl-C), 125.62 (aryl-C), 121.87 
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(aryl-C), 44.69 (N(CH3)2, 24.58 (br, PCH(CH3)2) 21.32 (d, 2JP,C = 16.4 Hz, PCH(CH3)2), 20.32 

(d, 2JP,C = 18.5 Hz, PCH(CH3)2); 31P{1H} NMR (121 MHz, C6D6, 70 °C) δ 2.53 (br, s). 

General work-up procedure for metalations. After stirring for the required time, the 

reaction was concentrated under vacuum. If  tetrahydrofuran was used as a solvent, the 

resulting residue was further triturated with hexanes and the volatiles removed in vacuo. The 

solid was extracted with benzene and filtered through diatomaceous earth. The filtrate was 

reduced in volume under vacuum and pentane was then added to induce precipitation. The 

precipitate was then collected by filtration and dried under reduced pressure to provide the 

complexes as powders. 
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Synthesis of  [MnBr(POP)]2MnBr2 (2). To a stirred suspension of  Mn(II) bromide (55.5 

mg, 0.258 mmol) in tetrahydrofuran (4 mL) was added a solution of  1-K (100 mg, 0.167 mmol) 

in tetrahydrofuran (3 mL) at room temperature. The reaction was allowed to stir at room 

temperature for 12 h turning from bright yellow to pale yellow before being worked up. 2 was 

obtained as a pale yellow powder (104 mg, 76.3%). 1H NMR (300 MHz, C6D6): δ 12.10 (br, s), 

10.83 (br, s), 5.21 (br, s), 3.35 (s), 2.11 (s), 1.23 (s), 1.15 (s), 0.88 (s); Anal. Calcd. 

C64H88Br4Mn3N2O2P4•2C6H6 (%): C, 53.93; H, 6.37; N, 1.86. Found: C, 54.27; H, 5.99; N, 1.67. 
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Synthesis of  CrCl2(POP) (3). To a thawing solution of  chromium(III) chloride 

tris(tetrahydrofuran) complex (35.9 mg, 0.089 mmol) in dichloromethane (5 mL) was added a 

thawing solution of  1-K (50 mg, 0.089 mmol) in dichloromethane (2 mL) with stirring. The 

solution turned deep purple upon addition and was allowed to warm to room temperature and 

stirred an additional 2 h before being worked up to provide 3 as a green-black powder (43.6 

mg 76.2%). X-ray quality crystals were grown by slow diffusion of  pentane into a benzene 

solution of  3. 1H NMR (300 MHz, C6D6): δ 13.50 (br, s), 5.18 (br, s), 3.84 (br, s), 2.11 (s), 1.21 

(s), -1.16 (br, s), -45.63 (br, s); Anal. Calcd. C32H44Cl2CrNOP2•0.5C6H6 (%): C, 61.58; H, 6.94; 

N, 2.05. Found: C, 61.21; H, 6.96; N, 2.18. 

 

Synthesis of  FeCl(POP) (4). To a suspension of  iron(II) chloride (70.4 mg, 0.555 mmol) in 

tetrahydrofuran (6 mL) was added 1-K (296 mg, 0.529 mmol) as a solution in tetrahydrofuran 

(4 mL) at room temperature with stirring. The reaction turned from bright yellow to orange-

red over about 1 h. After stirring an additional hour, the reaction was worked up to provide 4 

as an orange powder (315 mg 97.3%). X-ray quality crystals were grown by slow diffusion of  

pentane into a benzene solution of  4. 1H NMR (300 MHz, C6D6): δ 36.72 (br, s), 18.72 (s), 

12.13 (br, s), 9.42 (br, s), 7.37 (s), 7.34 (s), 7.23 (s), 3.28–1.07 (m), -1.76 (br, s); Anal. Calcd. 

C32H44ClFeNOP2 (%): C, 62.81; H, 7.25; N, 2.29. Found: C, 63.07; H, 7.42; N, 2.19. 
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Synthesis of  CoBr(POP) (5). Prepared in a similar manner as to 4 starting with cobalt (II) 

bromide affording a deep purple solid (195 mg, 82.8%). X-ray quality crystals were grown by 

slow diffusion of  pentane into a benzene solution of  6. 1H NMR (300 MHz, C6D6): δ 43.09 

(br, s), 34.66 (br, s), 18.48 (br, s), 11.73 (s); Anal. Calcd. C32H44BrCoNOP2 (%): C, 58.28; H, 

6.73; N, 2.12. Found: C, 57.94; H, 6.35; N, 1.89. 

 

Synthesis of  NiCl(POP) (6). Prepared in a similar manner as to 4 starting with nickel(II) 

chloride ethylene glycol dimethyl ether complex affording a dark green powder (78.1 mg, 

76.2%). X-ray quality crystals were grown by slow diffusion of  pentane into a benzene solution 

of  7. 1H NMR (300 MHz, C6D6): δ 7.25 – 7.10 (m, 6H, ArH), 7.00 (s, 2H, central ArH), 6.98 

(td, J = 7.4 Hz, 2H, 1.4 Hz, ArH), 2.78 (s, 6H, N(CH3)2), 2.67 – 2.58 (m, 2H, CH(CH3)2), 2.20 

– 2.05 (m, 2H, CH(CH3)2), 1.85 (app q, 3JH,H = 7.5 Hz 12H, CH(CH3)2), 1.25 (dt, 3JH,H = 8.5, 

7.4 Hz, 6H, CH(CH3)2), 0.66 (dt, J = 7.1, 5.5 Hz, 6H, CH(CH3)2); 13C{1H} NMR (101 MHz, 

C6D6): δ 148.11 (app t, JP,C = 6.9 Hz, aryl-C), 146.12 (aryl-C), 134.90 (app t, JP,C = 1.6 Hz, aryl-

C), 133.21 (app t, JP,C = 4.1 Hz, aryl-C), 131.17 (aryl-C), 130.40 (aryl-C), 128.59 (aryl-C) 125.00 

(app t, JP,C = 2.8 Hz, aryl-C), 123.19 (t, JP,C = 19.5 Hz, aryl-C), 118.68 (aryl-C), 41.76 (N(CH3)2), 

23.27 (app t, JP,C = 9.0 Hz, CH(CH3)2), 21.18 (app t, JP,C = 10.7 Hz, CH(CH3)2,), 19.59 (app dt, 

J = 8.8, 3.2 Hz, CH(CH3)2), 19.04 (app t, JP,C = 2.3 Hz, CH(CH3)2), 15.30 (app t, JP,C = 2.5 Hz, 

CH(CH3)2); 31P{1H} NMR (121 MHz, C6D6): δ 13.57 (s); Anal. calcd. for C32H44ClNNiOP2 

(%):C, 62.52; H, 7.21; N, 2.28. Found: C, 62.38; H, 6.99; N, 2.28. 



45 
 

 

Synthesis of  CrCl(POP) (7). To a vial charged with a reduced Teflon-coated stir bar and a 

solution of  3 (50 mg, 0.078 mmol) in THF (5 mL) was added dropwise a THF solution of  

sodium naphthalenide (1.1 equiv.) with stirring at room temperature forming a brown-green 

solution. After stirring an additional 2 h, the volatiles were removed in vacuo. The residue was 

triturated with hexanes and concentrated under vacuum. The resulting solid dissolved in a 

minimal amount of  benzene and reprecipitated by addition of  pentane. The suspension was 

filtered, and the solid was recrystallized in slow vapor diffusion of  pentane into a benzene 

solution providing 7 as a microcrystalline green solid after washing with pentane and drying in 

vacuo (29.5 mg, 62.5 %). Crystals suitable for single crystal XRD were obtained under similar 

crystallization conditions. Anal. calcd. for C32H44CrClNOP2 (%):C, 63.21; H, 7.29; N, 2.30. 

Found: C, 63.46; H, 7.01; N, 2.46. 

 

Synthesis of  Co(POP)CoBr(POP) (8). To a vial charged with a reduced Teflon-coated stir 

bar and a THF solution of  5 (100 mg, 0.152 mmol) was added dropwise a THF solution of  

sodium naphthalenide (1.1 equiv.) with stirring at room temperature resulting in the formation 

of  a deep red solution. After stirring an additional 2 h, the volatiles were removed under 

reduced pressure. The solid was triturated with hexanes and dried again in vacuo. The solid was 

extracted with benzene and concentrated under vacuum. The resultant red solid was 
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recrystallized from slow vapor diffusion of  pentane into a saturated benzene solution 

providing 8 as deep red crystals after washing with pentane and drying under vacuum (44.3 

mg, 47.2 %). Crystals suitable for single crystal XRD were obtained under similar 

crystallization conditions. 1H NMR (300 MHz, C6D6): δ 43.09 (br, s), 34.66 (br, s), 18.48 (br, 

s), 11.73 (s); Anal. Calcd. C64H88BrCo2N2O2P4 (%): C, 62.04; H, 7.16; N, 2.26. Found: C, 61.72; 

H, 6.98; N, 2.10. 

 

Synthesis of  Na[Ni(POP)] (9). To a vial charged with a reduced Teflon-coated stir bar and 

a solution of  6 (100 mg, 0.163 mmol) in THF (5 mL) was added dropwise a solution of  sodium 

naphthalenide (2.1 equiv.) with stirring at room temperature. The reaction turned from deep 

green to brown upon mixing. The reaction was allowed to stir an additional 2 h before the 

volatiles were removed in vacuo. The residue was triturated with hexanes and concentrated 

under vacuum. The solid was extracted with benzene, dried under vacuum, and recrystallized 

from slow diffusion of  pentane into a THF solution to provide 9 as a brown crystalline solid 

after washing with pentane and drying in vacuo (62.3 mg, 63.6%). X-ray quality crystals were 

grown by slow diffusion of  pentane into a benzene solution of  9. 1H NMR (400 MHz, C6D6): 

δ 7.37 (d, 3JH,H = 7.4 Hz, 2H, ArH), 7.07 – 6.92 (m, 6H, ArH) 6.08 (t, JP,H = 2.4 Hz, 2H, central 

ArH), 2.69 (s, 6H, N(CH3)2), 2.22 – 2.11 (m, 2H, CH(CH3)2), 1.90 (sept, 3JH,H = 7.2 Hz 2H, 

CH(CH3)2), 1.27 (app q, 3JH,H = 7.0 Hz 6H, CH(CH3)2), 1.06 (app p, 3JH,H = 6.8 Hz, 12H, 

CH(CH3)2), 0.72 (app q, 3JH,H = 7.1 Hz, 6H, CH(CH3)2); 13C{1H} NMR (101 MHz, C6D6): δ 

152.11 (aryl-C), 142.09 (app t, JP,C = 14.6 Hz, aryl-C), 139.64 (aryl-C), 130.32 (app t, JP,C = 7.3 

Hz, aryl-C), 129.74 (br, aryl-C), 128.54 (br, aryl-C), 127.33 (br, aryl-C), 124.36 (app t, JP,C = 3.0 
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Hz, aryl-C), 117.96 (br, aryl-C), 110.20(aryl-C), 43.93 (N(CH3)2), 27.88 (app t, JP,C = 7.0 Hz, 

CH(CH3)2), 20.54 (app t, JP,C = 5.6 Hz, CH(CH3)2), 20.10 (br, CH(CH3)2,), 20.02 (app dt, JP,C 

= 46.4, 2.3 Hz, CH(CH3)2), 19.22 (app t, JP,C = 6.2 Hz, CH(CH3)2); 31P{1H} NMR (162 MHz, 

C6D6): δ 38.50 (s). Anal. calcd. for C32H44NNaNiOP2 (%):C, 63.81; H, 7.36; N, 2.33. Found: C, 

63.37; H, 7.02; N, 2.02. 

 

Synthesis of  10. A solution of  1 (200 mg, 0.357 mmol) in THF (5 mL) was added to a 

suspension of  Fe(OTf)2(MeCN)2 (156 mg, 0.357 mmol) in THF (5 mL) at room temperature 

and stirred for 12 h resulting in the formation of  an orange-red solution. The volatiles were 

removed in vacuo, and the residue triturated with hexanes (10 mL) and dried under vacuum. 

The residue was extracted with benzene (20 mL) and filtered over diatomaceous earth. The 

filtrate was lyophilized to provide 10 as an orange-red powder (235.2 mg 91%). X-ray quality 

crystals were grown by slow diffusion of  pentane into a saturated benzene solution. 1H NMR 

(300 MHz, C6D6): δ 35.70, 18.71, 11.88, 9.46, 2.58, 1.86, 0.93, -2.93; 19F NMR (296 MHz, 

C6D6): δ 13.23 (br); µeff (Evans’ NMR method) = 4.8 µB. 

 

Synthesis of  12. To a solution of  triethylaluminium (4.1 μL, 0.028 mmol) in benzene (3 mL) 

was added a solution of  10 (20.0 mg, 0.028 mmol) at room temperature with stirring. The 

solution was allowed to stir for 1 h, turning from orange-red to pale yellow-brown. The 

reaction was filtered through diatomaceous earth. The filtrate was concentrated in vacuo. The 



48 
 

solid was washed with pentane, extracted with diethyl ether, and dried under vacuum to 

provide 12 as a yellow-brown powder (14.1 mg 62%). X-ray quality crystals were grown by 

slow diffusion of  pentane into a saturated diethyl ether solution. 1H NMR (300 MHz, C6D6): 

δ 8.51 (s, 2H, ArH), 7.41 (s, 2H, ArH), 7.09 (s, 2H, ArH), 7.00 (s, 2H, ArH), 3.39 (s, 2H, central 

ArH), 2.09 (s, 2H, CH(CH3)2), 1.87 (s, 6H, N(CH3)2), 1.62 (s, 2H, CH(CH3)2), 1.37 (s, 6H, 

CH2CH3), 0.89 (s, 12H, CH(CH3)2, 0.62 (s, 12H, CH(CH3)2, 0.29 (s, 4H, CH2CH3), -10.25 (t, J 

= 83.2 Hz, 1H, FeH); 31P{1H} NMR (121 MHz, C6D6) δ 91.41 (s). 

 

Synthesis of  13. To a solution of  triethylaluminium (4.8 μL, 0.033 mmol) in benzene (3 mL) 

was added a solution of  4 (20.0 mg, 0.033 mmol) at room temperature with stirring. The 

solution turned from orange-red to pale orange over about 10 min and was allowed to stir for 

1 h. The solvent volume was reduced in vacuo and pentane was added to induce precipitation. 

The precipitate was then collected via filtration and dried under vacuum to provide 4 as an 

orange powder (22.7 mg 95.6%). X-ray quality crystals were grown by slow evaporation of  a 

saturated benzene solution or from slow diffusion of  pentane into a saturated THF solution. 

1H NMR (300 MHz, C6D6): δ 25.43, 24.07, 23.32, 16.03, 12.03, 3.57, 3.04, 1.39, 0.89, -4.24; µeff 

(Evans’ NMR method) = 4.9 µB; Anal. Calcd. C38H59AlClFeNOP2 (%): C, 62.86; H, 8.19; N, 

1.93. Found: C, 63.03; H, 8.51; N, 1.57. 

 

Synthesis of  14. To a solution of  13 (20 mg, 0.028 mmol) in THF (3 mL) charged with a pre-

reduced Teflon stir bar, was added KC8 (4.1 mg, 0.030 mmol) at room temperature. The 
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solution turned from orange to deep yellow immediately and was allowed to stir for 10 min. 

The volatiles were then removed in vacuo. The residue was triturated with hexanes, extracted 

with benzene, and filtered through diatomaceous earth. The filtrate was reduced in volume in 

vacuo to provide 14 as a dark yellow powder (17.2 mg 88.4%). X-ray quality crystals were 

grown by slow diffusion of  pentane into a saturated THF solution. 
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CRYSTALLOGRAPHIC INFORMATION 

CCDC deposition numbers 1868525, 1868526, 1868527, 1868528, 1868529, 1868530, 

1868531, and 1868532 contain the supplementary crystallographic data for this paper.71 

These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Refinement Details 

 In each case, crystals were mounted on a glass fiber or MiTeGen loop using 

Paratone oil, then placed on the diffractometer under a nitrogen stream. Low temperature 

(100 K) X-ray data were obtained on a Bruker D8 VENTURE Kappa Duo PHOTON 

100 CMOS based diffractometer (Mo IμS HB micro-focus sealed X-ray tube, Kα = 

0.71073 Å OR Cu IμS HB micro-focused X-ray tube, Kα = 1.54178). All diffractometer 

manipulations, including data collection, integration, and scaling, were carried out using 

the Bruker APEXII software.72 Absorption corrections were applied using SADABS.73 

Space groups were determined on the basis of systematic absences and intensity statistics 

and the structures were solved in the Olex 2 software interface74 by intrinsic phasing using 

XT (incorporated into SHELXTL)75 and refined by full-matrix least squares on F2. All 

non-hydrogen atoms were refined using anisotropic displacement parameters, except in 

some cases with heavily distorted solvent. Hydrogen atoms were placed in the idealized 

positions and refined using a riding model. The structure was refined (weighted least-

squares refinement on F2) to convergence. Graphical representations of structures with 

50% probability thermal ellipsoids were generated using Diamond 3 visualization 

software.76 
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Special Refinement Details for 2. 2 crystallizes in a P21/c space group with one 

molecule in the asymmetric cell along with 1 cocrystallized molecule of tetrahydrofuran. 

There is additional solvent disorder which could not be satisfactorily modeled and was 

masked in Olex2. The volume of the solvent accessible void space was found to be 203.5 

Å3 in which 47.3 e- were located. 

Special Refinement Details for 4. 4 crystallizes in a P21/c space group with one 

molecule in the asymmetric cell along with 0.5 cocrystallized molecules of pentane. The 

pentane molecule is disordered and lies along a symmetry element. It was assigned an 

occupancy of 0.5 and placed in part -1. 

Special Refinement Details for 5. 5 crystallizes in a P21/c space group with one 

molecule in the asymmetric cell. There is additional solvent disorder which could not be 

satisfactorily modeled and was masked in Olex2. The volume of the solvent accessible 

void space was found to be 274.6 Å3 in which 39.9 e- were located. 

Special Refinement Details for 6. 6 crystallizes in a P-1 space group with one molecule 

in the asymmetric cell along with a cocrystallized molecule of benzene. The benzene 

molecule is disordered over two positions (59% and 41%). 

Special Refinement Details for 8. 8 crystallizes in a C2/c space group with one molecule 

in the asymmetric cell and a cocrystallized molecule of benzene. There is additional 

solvent disorder which could not be satisfactorily modeled and was masked in Olex2. The 

volume of the solvent accessible void space was found to be 726.7 Å3 in which 123.8 e- 

were located. 

Special Refinement Details for 9. 9 crystallizes in a P21/n space group with one 

molecule in the asymmetric cell. There is additional solvent disorder which could not be 
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satisfactorily modeled and was masked in Olex2. The volume of the solvent accessible 

void space was found to be 249.9 Å3 in which 100.4 e- were located
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Table 2.2. Crystal data and structure refinement for 2, 3, 4, and 5 

 2 3 4 5

CCDC 
Number71 

1868525 1868526 186857 1868528 

Empirical 
formula 

C68H96Br4Mn3N2

O3P4 
C32H44Cl2CrNOP2

C34.5H47.5ClFeNO
P2 

C32H44BrCoNOP2

Formula 
weight 1597.80 643.52 645.47 659.46 

Temperature/
K 100.0 100.15 100.0 100.15 

Crystal system monoclinic monoclinic monoclinic monoclinic 
Space group P21/c P21/c P21/c P21/c 

a/Å 12.7338(4) 12.7224(6) 20.653(2) 20.7193(14) 
b/Å 18.6052(5) 12.0619(6) 14.0103(13) 13.9728(10) 
c/Å 30.8375(8) 21.4128(11) 12.0635(9) 12.1197(9) 
α/° 90 90 90 90 
β/° 92.2200(10) 102.756(2) 95.005(3) 94.999(4) 
γ/° 90 90 90 90 

Volume/Å3 7300.4(4) 3204.8(3) 3477.3(5) 3495.4(4) 
Z 4 4 4 4 

ρcalcg/cm3 1.454 1.334 1.233 1.253 
μ/mm-1 7.887 0.649 0.629 1.748 
Crystal 

size/mm3 0.2 × 0.11 × 0.02 0.23 × 0.17 × 0.14 0.4 × 0.3 × 0.2 0.4 × 0.3 × 0.1 

Radiation 
CuKα (λ = 
1.54178) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

2Θ range/° 5.548 to 159.352 4.71 to 66.336 3.518 to 66.344 3.52 to 72.634 
GOF 1.037 1.042 1.055 1.019 

R1,a wR2
b [I>2 

σ(I)] 0.0505, 0.1031 0.0354, 0.0786 0.0442, 0.1132 0.0419, 0.0913 

aR1 = Σ||F0| − |Fc||/Σ|F0|. b wR2 = [Σ[w(F0
2−Fc

2)2]/Σ[w(F0
2)2]1/2 
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Table 2.3. Crystal data and structure refinement for 6, 7, 8, and 9 

 6 7 8 9 
CCDC 

Number71 
1868529 1868530 1868531 1868532 

Empirical 
formula 

C38H50ClNNiOP
2 

C32H44ClCrNOP2
C74H100BrCo2N2O
2P4 

C32H44NNaNiOP2

Formula 
weight 

692.89 608.07 1371.20 602.32 

Temperature/
K 

100.15 99.99 100.02 99.98 

Crystal system triclinic monoclinic monoclinic monoclinic 
Space group P-1 P21/c C2/c P21/n 

a/Å 8.8347(5) 19.2768(10) 32.8193(12) 10.9895(11) 
b/Å 10.6981(6) 11.2697(5) 21.4610(8) 23.516(2) 
c/Å 19.9640(12) 14.7713(7) 24.2762(9) 13.3967(13) 
α/° 87.183(2) 90 90 90 
β/° 87.712(2) 105.519(2) 117.7800(10) 107.834(4) 
γ/° 69.332(2) 90 90 90 

Volume/Å3 1762.80(18) 3092.0(3) 15127.9(10) 3295.8(6) 
Z 2 4 8 4 

ρcalcg/cm3 1.305 1.306 1.204 1.214 
μ/mm-1 0.747 0.585 1.093 0.723 
Crystal 

size/mm3 
0.44 × 0.3 × 0.2 0.3 × 0.2 × 0.1 0.21 × 0.17 × 0.14 0.23 × 0.23 × 0.15

Radiation MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

2Θ range/° 4.93 to 80.5 4.766 to 79.972 4.616 to 61.028 5.212 to 74.798 
GOF 1.031 1.038 1.036 1.062 

R1,a wR2
b [I>2 

σ(I)] 
0.0364, 0.0758 0.0447, 0.0873 0.0610, 0.1361 0.0411, 0.0975 

aR1 = Σ||F0| − |Fc||/Σ|F0|. b wR2 = [Σ[w(F0
2−Fc

2)2]/Σ[w(F0
2)2]1/2 
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CHAPTER 3 
 

1,4-Naphthalenediyl-Linked Diphosphine Molybdenum Complexes: Catenation 

of Carbon Monoxide to a C3 Product at a Single Metal Site  
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ABSTRACT 

The synthesis and characterization of a series of naphthalenediyl-diphosphine 

molybdenum complexes are reported. Dicarbonyl complex 3 can be reduced and 

quenched with Me3SiCl to yield symmetric bis(siloxy)acetylene complex 5 displaying η4-

arene binding demonstrating exclusive C–C coupling, distinct from the phenylene-linked 

analog. This selectivity is proposed to be a result of the greater propensity for η4-arene 

interaction with the naphthalenediyl-linker. Additionally, further CO catenation can be 

engendered from 5 under mild conditions, providing metallacyclobutenone complex 6, 

with a C3 organic fragment entirely derived from CO. 
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INTRODUCTION 

With the increasing levels of  anthropogenic carbon dioxide (CO2) coupled with the 

dwindling global reserves of  fossil fuels, significant efforts have been focused on seeking out 

CO2-neutral means of  energy production.1-3 Synthesis gas, a mixture of  carbon monoxide 

(CO) and hydrogen (H2), is readily derived from natural gas, coal, or biomass and poses an 

attractive alternative.4 It is utilized in the Fisher–Tropsch (F–T) process, which generates a 

Schultz-Flory distribution of  hydrocarbons.5 Increasing the selectivity of  the process is of  

much interest, and although many homogenous organometallic systems have been reported 

for the selective generation of  C2 products,6-11 the generation of  higher homologs is still more 

desirable as their properties better resemble fuels employed in the current energy 

infrastructure.12 Moreover, besides the F–T process,4-5, 13 CO electroreduction on Cu 

electrodes14 and CO reduction by nitrogenases15-16 all result in a distribution of  products that 

include C>2 products.  

Insight into the nature of  species capable of  enchainment of  more than two carbons 

is of  interest for future catalyst design.17-27 Despite that, there has only been one reported 

example of  sequential catenation of  CO to a C2 product and then to C3 and C4 products 

employing cooperative reactivity of  W(CO)6 and an Al(I) reductant (Figure 3.1).28 Previous 

work in our group has demonstrated that single-site Mo complexes supported by a para-

terphenyl diphosphine ligand are capable of  reductive coupling of  CO via two distinct 

pathways, either with or without C–O bond cleavage preceding C–C bond formation, 

depending on temperature. 29-30 However, further sequential catenation of  the C2 products at 

these complexes has not been observed. We postulated that modification of  the central arene 

donor may allow new pathways of  CO catenation to be uncovered.  
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It has been reported that extension of  arene ligands (benzene to naphthalene or 

anthracene) on metal-arene complexes can significantly increase the lability of  the arene and 

alter the reactivity at the metal center.31-33 Chromium bis(naphthalene) has been shown to 

display much higher substitutional lability compared to its benzene analog .34-35 In a series of  

(η6-arene)Mo(PMe3)3 complexes (arene = benzene, naphthalene or anthracene), only with 

anthracene was oxidative addition of  H2 at the metal center observed, accompanied by a η6-

to-η4 ring slip (Figure 3.2).36 Additional computational studies in that report proposed that this 

increased propensity for ring slippage stems from the increasingly favorable η4- vs. η6-arene 

interaction with lengthening of  the aromatic system. In order to seek out novel CO catenation 

pathways and/or products that similar Mo diphosphine complexes may engender as a result 

hapticity changes at the basal arene, we set out to target a diphosphine with a naphthalene-

based arene donor. 

  

 

Figure 3.2. Reversible oxidative addition of  H2 to anthracene-supported Mo complex 

facilitated by anthracene ring-slippage. 

Figure 3.1. Sequential CO catenation of  a C3-containing complex to a C4-containing 

complex. 
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RESULTS AND DISCUSSION 

 Naphthalenediyl-linked diphosphine 1 can be synthesized in an analogous manner to 

previously reported phenylene-linked variant starting from 1,4-diiodonaphthalene.37 

Metalation of  1 with Mo(CO)3(MeCN)3 provided tricarbonyl complex 2 along a minor amount 

(~5%) of  a monocarbonyl species which cleanly converts to 2 when stirred under one 

atmosphere of  CO (Scheme 3.1). Neither the formation of  the monocarbonyl complex nor 

its conversion back to the tricarbonyl complex was observed in the phenylene-linked system. 

This conversion may be attributed to the more accessible η4-binding mode facilitating η2-to-η6 

ring slippage and concomitant loss of  two CO ligands. Single crystal X-ray diffraction (XRD) 

analysis of  2 confirmed η2-binding to the edge carbons of  the naphthalenediyl linker (Figure 

3.3). Mild disruption of  the central arene aromaticity is observed, with shortening of  the C2–

Scheme 3.1. Synthesis and reactivity of  naphthalenediyl-linked diphosphine molybdenum 

complexes 
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C3 bond and lengthening of  the C1–C2 and C3–C4 bonds compared to those in free 

naphthalene (Figure 3.4).38 

 Oxidative decarbonylation by the reaction of  2 with two equiv. silver 

trifluoromethanesulfonate yielded dicationic dicarbonyl complex 3 as orange microcrystals. 

The solid-state structure of  3 displays η6-binding to the central arene, maintaining an 18-

electron count at the metal center (Figure 3.3). Significant changes in the C–C bond lengths 

of  the outer ring of  the naphthalene, such as localized double bond character in C6–C7 and 

C8–C9, suggest disruption of  aromaticity (Figure 3.4). In contrast, aromaticity is mostly 

maintained in the core Mo-bound ring.  
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Figure 3.3. Solid-state structures of  2 and 3. Thermal ellipsoids shown at 50% probability. 

Solvent molecules, counterions, and hydrogen atoms omitted for clarity. 

Figure 3.4. Naphthalene and naphthalenediyl linker bond metrics of  complexes 2 and 3. 
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 Four-electron reduction of  3 with 4.2 equiv. KC8 provided an asymmetric species 

spectroscopically analogous to previously dianionic phenylene-linked complex, suggesting 

dissociation of  one of  the trans-spanning phosphines.30 Infrared (IR) spectroscopy showed 

highly-activated C=O stretches 1678 and 1580 cm-1. Expecting the naphthalenediyl linker to 

be more readily reduced than the phenylene-linked analog,39 the use of  milder reductants was 

investigated. Compared to the phenylene-linked complex which required the use of  potassium 

naphthalenide (-3.05 V vs Fc) to access, it was found that 3 could be reduced to the dianionic 

state with potassium anthracenide (−2.47 V vs. Fc), a shift of  almost +0.6 V less reducing.40 

 Quenching the dianionic species with chlorotrimethylsilane (Me3SiCl) affords 

asymmetric species 4. The 1H and 31P{1H} NMR spectroscopy of  4 is consistent with a 

complex possessing a free phosphine arm, and with a bound bis(siloxy)acetylene ligand formed 

from C–C coupling of  the two carbonyl ligands. In contrast with the phenylene-linked system 

wherein C–O bond cleavage was observed prior to C–C bond formation, exclusive C–C 

coupling without C–O bond cleavage was observed.30 The observed difference in selectivity 

upon quenching may be due to several reasons: 1) the less electron-rich (less reducing) nature 

of  the dianionic naphthalenediyl-linked species vs. phenylene and/or 2) the availability of  

more accessible η4-arene bound transition states or intermediates in the naphthalenediyl-linked 

system. These differences may result in the C–O cleavage step to become inaccessible, leading 

to exclusive C–C bond formation observed. 

Because 4 converts to a new symmetric complex 5 even at −35 °C, over days, or at 90 

°C, over about an hour, solid-state characterization of  4 was not obtained. Complex 5 displays 

a broad 31P resonance at 76.7 ppm suggestive of  a fluxional process and renders both acetylene 

carbons equivalent in the 13C NMR. Solid-state characterization confirmed the identity of  5 to 

be a bis(siloxy)acetylene complex with molybdenum binding to both phosphines and 
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interacting with the central arene in an η4-fashion (Figure 3.5). The phosphine arms appear to 

be twisted with the bis(siloxy)acetylene off  leaning off  to one side. The Mo center is also off-

center with a significantly shorter Mo–C1 distance (2.2481(9)Å) compared to Mo–C4 

(2.4341(9)Å). This asymmetry, if  maintained in the solution state, would be consistent with 

the broadness of  the NMR features. A significant deviation of  the naphthalenediyl linker from 

planarity is observed (41° angle between the C1C2C3C4 and C1C4C5C10 planes), consistent 

with previously reported η4-bound naphthalene complexes.41-42 C1–C10 and C4–C5 distances 

are indicative of  single bond character while aromaticity is maintained in the outer ring, with 

relatively similar C–C bond distances (Figure 3.6). The conversion of  4 to 5 is likely facilitated 

by the increased propensity for η4-arene binding in the naphthalenediyl vs. the phenylene 

linker, as the latter does not exhibit such a transformation nor have an η4-arene binding mode. 

Figure 3.5. Solid-state structures of  5 and 6. Thermal ellipsoids shown at 50% probability. 

Solvent molecules, counterions, and hydrogen atoms omitted for clarity. 
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In order to further investigate the origin of  selectivity towards exclusive C–C coupling 

vs. C–O cleavage preceding C–C coupling, the synthesis of  complexes supported by a 1,4-

cyclohexadienediyl-linked diphosphine was targeted. Conveniently, the synthesis of  neutral 

dicarbonyl complex 8 can be achieved by reduction of  dication 7 followed with quenching 

with an acid (Scheme 3.2). 31P{1H} NMR revealed a singlet at 82.4 ppm while 1H NMR 

spectrum showed coupling multiplets at 2.77 and 2.29 ppm that integrated to two protons 

each, consistent with the cyclohexadiene methylene protons and formal arene hydrogenation 

at adjacent carbons. When complex 8 was reduced by two electrons followed by quenching 

with Me3SiCl, a bis(siloxy)acetylene complex 9 was afforded. Similar to 6, a broad signal was 

Scheme 3.2. Synthesis and reactivity of  cyclohexadienediyl-diphosphine Mo complexes 

  

 

Figure 3.6. Naphthalenediyl linker bond metrics of  complexes 5 and 6. 
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observed in the 31P{1H} NMR spectrum. Since the electron richness of  the reduced phenylene 

linker would be expected to lie between that of  the naphthalenediyl and the cyclohexadienediyl 

linkers, it strongly suggests that the observed selectivity originates from the ability of  the 

central ligand to support an η4-binding mode during quenching, which both the 

naphthalenediyl and the cyclohexadienediyl have in common.  

Bis(siloxy)acetylene complex 5, with the C2 product still metal-bound, posed to be a 

good starting point for the generation of  C≥3 products through further CO catenation. Stirring 

a benzene solution of  5 under one atmosphere of  CO at room temperature overnight resulted 

in a brown to red-brown color change. 31P{1H} NMR spectroscopy showed the formation of  

a new species 6 with a chemical shift at 56.1 ppm. In order to further probe the identity of  

this species, 5 was treated with 13CO. Two enhanced resonances were observed in the 13C NMR 

spectrum at 232.93 ppm and 225.15 ppm. Their triplet of  doublets splitting pattern, alongside 

the observation of  a doublet of  doublets splitting pattern of  the 31P resonance, indicated the 

incorporation of  two isotopically-enriched CO molecules into 6-13C. Crystallization of  6 from 

slow evaporation of  a saturated pentane solution provided single crystals suitable for XRD. 

The solid-state structure confirmed the incorporation of  two CO molecules to yield 

metallacyclobutenone complex 6. The molybdenum center displays η4-arene binding to the 

central arene, maintaining an 18-electron count, and corroborates the NMR spectroscopic 

data. The C37–C38 distance of  1.366(1)Å is consistent with a C–C double bond. The insertion 

of  CO relieves steric strain near the metal center, previously caused by the Me3Si group, 

resulting in a much more symmetric coordination environment. This, to the best of  our 

knowledge, is the first example of  further CO catenation of  a CO-derived C2 fragment to a 

C3 product at a single metal site. 

With the similar coordination environment at Mo of  5 and 9, further CO catenation 
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with 9 was explored. Using 13CO-derived bis(siloxy)acetylene complex 9-13C, treatment with 

13CO results in the formation of  CO inserted complex 10-13C showing rich coupling 

information in both the 13C and 31P{1H} spectra (Figure 3.7), resulting from scalar coupling 

between the four S = ½ 13C atoms derived from CO and the two S = ½ phosphine ligands. 

 

Figure 3.7. Experimental (top) and simulated (bottom) partial 13C{1H} (126 MHz, 25 °C, 

C6D6) and 31P{1H} (202 MHz, 25 °C, C6D6) NMR spectra of  11-13C. 

 

Figure 3.8. Truncated preliminary solid-state structure of  10. Thermal ellipsoids are shown 

at the 50% probability level. Hydrogen atoms, phenylene linkers, and phosphine isopropyl 

groups are omitted for clarity. 
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The solubility of  10 prohibited growth of  high-quality single crystals, but allowed for the 

collection of  a preliminary structure via slow evaporation of  a pentane solution at −35 °C 

(Figure 3.8). The signals A, B, C, D and E in Figure 3.7 correspond to C34, C33, C32, C31 

and P1/2 in Figure 3.8, respectively, and corroborates the spectroscopic data, supporting the 

formation of  the observed metallacyclobutenone. 
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CONCLUSION 

 A series of  naphthalenediyl-linked Mo complexes have been synthesized and 

characterized. Reduction of  the dicarbonyl complex 3 followed by Me3SiCl quenching resulted 

in reductive CO coupling to a bis(siloxy)acetylene complex 5. This selectivity is proposed to 

be due to the ability of  the central arene donor to support η4-binding modes that were not 

accessible on the phenylene-linked system. Exposure of  5 to one atmosphere of  CO results 

in further CO catenation to give metallacyclobutenone complex 6 that features a C3 fragment 

complete derived from CO and represents a functional-group rich building block. Efforts to 

liberate this organic motif  are underway. Should these efforts prove successful, a synthetic 

cycle for the conversion of  CO to reduced C3 motifs will be targeted. 
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.43 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories. C6D6 was vacuum transferred from sodium benzophenone ketyl before use and 

CD3CN was stirred over calcium hydride and vacuum distilled before use. All solvents, once 

dried and degassed, were stored under a nitrogen atmosphere over 4 Å molecular sieves. 1,4-

dibromonaphthalene,44 Mo(CO)3(MeCN)3,45 and potassium graphite,46 and 7,37 were prepared 

according to literature procedures. Potassium naphthalenide and potassium anthracenide 

solutions were prepared by stirring a THF solution of  either naphthalene or anthracene in the 

presence of  a potassium mirror for 30 minutes then filtered through a glass-fiber filter plug 

and used immediately. Pre-reduced Teflon-coated stir bars (prepared via stirring a Na[C10H8] 

solution overnight followed by rinsing three times with THF) were utilized in any stirred 

reaction in which KC8, K[C10H8], K[C14H12] were employed as reagents. Naphthalene 

(sublimed under N2), anthracene (sublimed under N2), chlorotrimethylsilane (dried over CaH2 

and distilled prior to use), sodium metal (washed with hexanes), and potassium metal (washed 

with hexanes) were purified before use. All other reagents were used as received. 1H, 13C{1H}, 

19F, and 31P{H} NMR spectra were recorded on Varian Mercury 300 MHz or Varian 400 MHz 

spectrometers at ambient temperatures unless otherwise denoted. 1H and 13C{1H} NMR 

spectra are reported referenced internally to residual solvent peaks reported relative to 

tetramethylsilane. 19F NMR chemical shifts are referenced to an external standard of  C6F6 (-

164.9 ppm). 31P{H} NMR chemical shifts are referenced to an external standard of  H3PO4 
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(0.0 ppm). Fast atom bombardment-mass spectrometry (FAB-MS) analyses were performed 

with a JEOL JMS-600H high-resolution mass spectrometer. 

 

1,4-diiodonaphthalene. Adapted from a previously reported procedure.47 To a solution of  

1,4-dibromonaphthalene (10 g, 35.0 mmol) in diethyl ether (100 mL) cooled to – 35°C was 

added, dropwise, a solution of  tert-butyl lithium in pentane (92 mL,1.9 M, 175 mmol). After 

complete addition, the reaction was allowed to warm to room temperature and stirred for 1 

hour. The resulting suspension was cooled to 0 °C and iodine (22.2 g, 87.5 mmol) was added 

slowly under a counter flow of  nitrogen. After complete addition, the dark brown solution 

was allowed to warm to room temperature and stirred for an additional 15 minutes. The 

reaction was diluted with diethyl ether (100 mL) and washed thrice with a 25% Na2S2O3 

solution. The organic layer was dried over MgSO4, filtered, and concentrated in vacuo to yield 

the crude product. The crude solid was passed through a silica plug, eluting with CH2Cl2, and 

the volatiles removed under vacuum once again. Recrystallization of  the solid from boiling 

ethanol provided golden needles that were collected via filtration, washed with cold ethanol, 

and dried in vacuo (9.78 g, 73%). 1H NMR characterization matches the reported literature 

values.  

 

1,4-bis(2-bromophenyl)naphthalene. A Schlenk tube fitted with a screw-in Teflon stopper 

was charged with 1,4-diiodonaphthalene (9.0 g, 23.7 mmol), 2-bromophenylboronic acid 
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(10.0g, 50.0 mmol), and anhydrous potassium carbonate (19.6 g, 142 mmol) suspended in a 

mixture of  toluene (350 mL), ethanol (100 mL), and water (100 mL). The suspension was 

degassed via three freeze-pump-thaw cycles, after which tetrakis(triphenylphosphine) 

palladium(0) (1.37 g, 1.19 mmol) was added under a counter flow of  nitrogen. The flask was 

sealed and heated to 70 °C for 8 h with stirring. After cooling to room temperature, water (200 

mL) was added and the organic layer separated. The aqueous layer was extracted with CH2Cl2 

(2 × 200 mL). The organic extracts were combined and dried over MgSO4, filtered, and 

concentrated in vacuo. The crude yellow oil was precipitated by trituration in MeOH (150 mL) 

overnight, collected via filtration, and dried in vacuo to yield the product as a pale yellow 

powder (10.0 g, 96 %). 1H NMR (400 MHz, CDCl3): δ 7.77 (d, 3JH,H = 8.1 Hz, 2H, ArH), 7.55 

(dd, 3JH,H = 6.4 Hz, 4JH,H = 3.4 Hz, 2H, ArH), 7.50 – 7.40 (m, 8H, ArH), 7.34 (ddd, 3JH,H = 7.8, 

6.6 Hz, 4JH,H = 2.4 Hz, 2H); 13C{1H} NMR (101 MHz, CDCl3): δ 141.44 (aryl-C), 139.31 (aryl-

C), 132.88 (aryl-C), 132.37 (aryl-C), 131.71 (aryl-C), 129.31 (aryl-C), 127.33 (aryl-C), 126.49 

(aryl-C), 126.43 (aryl-C), 126.15 (aryl-C), 124.49 (aryl-C); HRMS (FAB+) m/z Calcd. for 

C22H14Br2 [M]+ 437.9442, found 437.9426. 

 

1,4-bis(2-(diisopropylphosphanyl)phenyl)naphthalene (1). To a stirred solution of  1,4-

bis(2-bromophenyl)naphthalene (23.6 g, 53.9 mmol) in tetrahydrofuran (300 mL) cooled to 

−78 °C was added, dropwise, a pentane solution of  tert-butyl lithium (119 mL, 1.9 M, 226 

mmol). The reaction was allowed to warm to room temperature and stirred for 1 h. The 

reaction was cooled to −78 °C and chlorodiisopropylphosphine (17.8 mL, 113 mmol) was 

then added dropwise. The reaction was allowed to warm to room temperature and stirred for 
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an additional 2 h. The pale yellow solution was concentrated in vacuo and the subsequent 

workup was carried out in a nitrogen-purged wet box using degassed solvents. The residue 

was taken up in CH2Cl2 (200 mL) and water (200 mL). The organic layer was separated and 

the aqueous layer extracted with CH2Cl2 (2 × 200 mL). The combined extracts were 

concentrated under vacuum. The resultant sticky solid was triturated from methanol (100 mL), 

filtered, and dried in vacuo to yield the product as a pale yellow solid (22.5 g, 81.4 %). 1H NMR 

(400 MHz, C6D6): δ 7.59 (dd, 3JH,H = 6.5 Hz, 4JH,H = 3.4 Hz, 2H, ArH), 7.47 (dt, 3JH,H = 7.8 Hz, 

4JH,H = 1.6 Hz, 2H, ArH), 7.41 (s, 2H, ArH), 7.21 – 7.06 (m, 8H, ArH), 1.87 (heptd, 3JH,H = 7.0 

Hz, 2JP,H 3.9 Hz, 2H, CH(CH3)2), 1.78 (hept, 3JH,H = 6.9 Hz, 2H, CH(CH3)2), 0.98 (dd, 3JP,H = 

14.2, 3JH,H 7.0 Hz, 6H, CH3), 0.94 (dd, 3JP,H = 10.2 Hz, 3JH,H = 7.0 Hz, 6H, CH3), 0.86 (dd, 3JP,H 

= 12.3 Hz, 3JH,H = 6.9 Hz, 6H, CH3), 0.80 (dd, 3JP,H = 14.5 Hz, 3JH,H 6.9 Hz, 6H, CH3); 13C{1H} 

NMR (101 MHz, C6D6): δ 149.32 (d, J = 31.6 Hz, aryl-C), 140.52 (d, J = 6.6 Hz, aryl-C), 137.36 

(d, J = 22.0 Hz, aryl-C), 133.38 (d, J = 1.9 Hz, aryl-C), 132.63 (d, J = 3.4 Hz, aryl-C), 131.87 

(d, J = 5.7 Hz, aryl-C), 128.55 (d, J = 1.0 Hz, aryl-C), 127.73 (d, J = 0.9 Hz, aryl-C), 127.65 (d, 

J = 3.2 Hz, aryl-C), 125.35 (aryl-C), 26.09 (d, J = 16.5 Hz, PCH(CH3)2), 24.33 (d, J = 14.9 Hz, 

PCH(CH3)2), 20.98 (d, J = 18.9 Hz, CH3), 20.45 (d, J = 13.8 Hz, CH3), 20.38 (d, J = 21.9 Hz, 

CH3), 19.76 (d, J = 8.5 Hz, CH3); 31P{1H} NMR (162 Hz, C6D6): δ -5.62(s); HRMS (FAB+) 

m/z Calcd. for C34H43P2 [M+H]+ 513.2840, found 513.2828. 

iPr2P PiPr2Mo

OC

CO
CO

PiPr2
iPr2P

1) Mo(CO)3(MeCN)3
PhMe, 110 °C, 12 h

2) CO (1 atm), rt, 1 h

21  

Synthesis of  2. To a Schlenk tube charged with a Teflon-coated stir bar was added 1,4-bis(2-

(diisopropylphosphanyl)phenyl)naphthalene (200 mg, 0.39 mmol), Mo(CO)3(MeCN)3 (118 

mg, 0.39 mmol), and toluene (10 mL). The tube was sealed and heated to 110 °C for 12 hours. 
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After cooling to room temperature, the resulting deep red solution was degassed and placed 

under 1 atm of  CO. After stirring an additional 1 hour, the volatiles were removed in vacuo. 

The residue was washed with hexanes (10 mL), extracted with benzene, filtered over 

diatomaceous earth, and lyophilized to yield 2 as a dark purple-red solid (246 mg, 91 %). 

Crystals suitable for single crystal XRD were grown by slow diffusion of  pentane into a 

saturated THF solution of  2. 1H NMR (400 MHz, C6D6): δ 7.98 (dd, J = 6.6, 3.3 Hz, 2H, ArH), 

7.47 (dq, J = 6.9, 2.0 Hz, 2H, ArH), 7.40 (dq, J = 7.6, 1.8 Hz, 2H, ArH), 7.17 – 7.08 (m, 6H, 

ArH), 6.54 (app t, J = 2.9 Hz, 2H ArH), 2.56 (ddt, J = 13.5, 10.3, 6.7 Hz, 2H, CH(CH3)2), 2.22 

– 2.06 (m, 2H, CH(CH3)2), 1.67 – 1.58 (m, 6H, CH(CH3)2), 1.28 (app q, J = 7.1 Hz, 6H, 

CH(CH3)2), 1.05 – 0.96 (m, 6H, CH(CH3)2), 0.73 (app q, J = 6.9 Hz, 6H, CH(CH3)2); 13C{1H} 

NMR (101 MHz, C6D6): δ 220.77 (t, JP,C = 10.0 Hz, Mo−CO), 215.62 (t, JP,C = 8.6 Hz, 

Mo−CO), 211.30 (t, JP,C = 10.0 Hz, Mo−CO), 147.35 (app t, J = 7.4 Hz, aryl-C), 135.17 (app 

t, J = 4.0 Hz), 133.69 (app t, J = 9.3 Hz, aryl-C), 131.56 (aryl-C), 131.40(aryl-C), 131.09 (app 

t, J = 2.2 Hz, aryl-C), 128.38 (d, J = 6.2 Hz, aryl-C), 128.16 (d, J = 5.7 Hz, aryl-C), 127.94 (aryl-

C), 126.45 (d, J = 5.9 Hz, aryl-C), 100.32 (central aryl-CH), 35.36 (t, J = 9.2 Hz, CH(CH3)2), 

32.50 (t, J = 8.9 Hz, CH(CH3)2), 21.14 (app t, J = 2.5 Hz, CH(CH3)2), 19.91 (app t, J = 4.2 Hz, 

CH(CH3)2), 19.73(CH(CH3)2), 19.69 (app t, J = 2.0 Hz, CH(CH3)2); 31P{1H} NMR (162 MHz, 

C6D6): δ 46.89 (s); Anal. calcd. for C37H42MoO3P2 (%):C, 64.16; H, 6.11. Found: C, 63.99; H, 

6.02. 
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Synthesis of  3. To a stirred solution of  2 (4.00g, 5.77 mmol) in THF (50 mL), was added a 

solution of  AgOTf  (2.97 g, 11.5 mmol) in THF (30 mL). The reaction was allowed to stir at 

room temperature for 4 hours (extended stirring results in the formation of  poly(THF)). The 

reaction was filtered over diatomaceous earth, the filtrate discarded, and the grey brown 

residue was extracted with MeCN (3 × 50 mL). The combined extracts were reduced in volume 

to about 20 mL and diethyl ether (150 mL) was added to induce precipitation. The product 

was collected via filtration and dried at 60 °C in vacuo to provide 3 as an orange 

microcrystalline solid (4.81 g, 86 %). Crystals suitable for single crystal XRD were grown by 

slow diffusion of  diethyl ether into a saturated acetonitrile solution of  3. 1H NMR (400 MHz, 

CD3CN): δ 8.03 – 7.90 (m, 6H, ArH), 7.88 (dd, J = 6.8, 3.2 Hz, 2H, ArH), 7.83 (dd, J = 7.8, 

2.3 Hz, 2H, ArH), 7.37 – 7.26 (m, 4H, ArH), 3.33 – 3.18 (m, 4H, CH(CH3)2), 1.39 (dd, J = 

16.0, 6.9 Hz, 6H, CH(CH3)2), 1.22 (dd, J = 13.1, 5.5 Hz, 6H, CH(CH3)2), 1.18 (dd, J = 11.1, 

5.4 Hz, 6H, CH(CH3)2), 0.98 (dd, J = 18.7, 7.0 Hz, 6H, CH(CH3)2); 13C{1H} NMR (101 MHz, 

CD3CN): δ 223.17 (t, JP,C = 24.7 Hz, Mo−CO), 222.62 (t, JP,C = 22.9 Hz, Mo−CO), 140.14 (dd, 

J = 8.2, 5.9 Hz, aryl-C), 137.42 (aryl-C), 136.97 (app t, J = 3.7 Hz, aryl-C), 136.29 – 135.67 (m, 

aryl-C), 135.14 (app t, J = 1.3 Hz, aryl-C), 134.88 (aryl-C), 132.52 (app t, J = 3.4 Hz, aryl-C), 

130.13 (d, J = 5.8 Hz, aryl-C), 128.33 (aryl-C), 122.12 (q, 1JF,C = 321.0 Hz, CF3), 114.52 (aryl-

C), 103.27 (central aryl-CH), 30.03 – 29.40 (m, CH(CH3)2), 18.87 (CH(CH3)2), 18.50 

(CH(CH3)2), 18.33 (app t, J = 2.0 Hz, CH(CH3)2), 18.23 (app t, J = 1.6 Hz, CH(CH3)2); 31P{1H} 

NMR (162 MHz, CD3CN): δ 72.50 (s); 19F NMR (372 MHz, CD3CN): δ -79.25 (s); Anal. calcd. 

for C38H42F6MoO8P2S2 (%):C, 47.41; H, 4.40. Found: C, 47.56; H, 4.48. 
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Synthesis of  5. To a stirred suspension of  3 (1.00 g, 1.03 mmol) in THF (50 mL), was added 

KC8 (590 mg, 4.36 mmol) and allowed to stir at room temperature for 10 minutes, during 

which a deep red color developed. The reaction was then frozen in the cold well in the 

glovebox cooled with liquid nitrogen. The flask was removed from the cold well and 

trimethylsilyl chloride (0.8 mL, 6.23 mmol) was then added while thawing. The reaction was 

then allowed to warm to room temperature and stirred an additional hour, after which the 

volatiles were removed in vacuo. The residue was extracted with pentane and filtered over 

diatomaceous earth. The filtrate was concentrated under vacuum and the residue taken up in 

benzene (20 mL) and transferred to a Schlenk tube fitted with a screw-in Teflon stopcock. 

The flask was then sealed and warmed to 90 °C for 1 h. The reaction was cooled to room 

temperature and lyophilized to provide a dark brown powder. Recrystallization from slow 

evaporation of  a saturated pentane solution at –35 °C yielded dark brown crystalline blocks 

(507 mg, 60%). Crystals suitable for single crystal XRD were grown similarly. 1H NMR (300 

MHz, C6D6): δ 7.39 (br dq, J = 7.4, 1.3 Hz, 2H, ArH), 7.13 (br d, J = 6.2 Hz, 2H, ArH), 7.00 

(tt, J = 7.7, 1.2 Hz, 2H, ArH), 6.91 (tt, J = 7.4, 1.3 Hz, 2H, ArH), 6.66 (dd, J = 5.3, 3.2 Hz, 

2H, ArH), 6.52 (dd, J = 5.4, 3.2 Hz, 2H), 5.69 (s, 2H, central ArH), 2.71 (dp, J = 18.2, 6.6 Hz, 

2H, CH(CH3)2), 2.17 (hept, J = 7.1, 6.6 Hz, 2H, CH(CH3)2), 1.39 (dt, J = 12.1, 5.4 Hz, 12H, 

CH(CH3)2), 1.19 (dd, J = 12.5, 7.1 Hz, 6H, CH(CH3)2), 0.92 (dd, J = 12.2, 7.1 Hz, 6H, 

CH(CH3)2), 0.13 (s, 18H, Si(CH3)3); 13C{1H} NMR (75 MHz, C6D6): δ 212.17 (br s, COSiMe3), 

150.58 (d, J = 21.7 Hz, aryl-C), 146.19 (d, J = 3.7 Hz, aryl-C), 144.80 (br d, J = 36.7 Hz, aryl-
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C) , 129.10 (d, J = 1.6 Hz, aryl-C), 128.27 (aryl-C), 127.90 (aryl-C), 125.62 (d, J = 5.1 Hz, aryl-

C), 121.86 (aryl-C), 120.52 (br s, aryl-C), 86.95 (br s, central aryl-C), 83.12 (br s, central aryl-

C), 29.47 (br s, CH(CH3)2), 28.07 (d, J = 15.5 Hz, CH(CH3)2), 22.47 (d, J = 10.1 Hz, CH(CH3)2), 

22.48 (d, J = 8.5 Hz, CH(CH3)2), 19.89 (CH(CH3)2), 18.91 (CH(CH3)2), 0.89 (Si(CH3)3); 31P{1H} 

NMR (121 MHz, C6D6): δ 76.73 (s); Anal. calcd. for C42H60MoO2P2Si2 (%):C, 62.20; H, 7.46. 

Found: C, 62.34; H, 7.65. 

 

Synthesis of  6. A solution of  5 (100 mg, 0.123 mmol) in benzene (2 mL) was placed under 1 

atm of  CO and stirred for 9 h. The volatiles were then removed in vacuo to yield 6 as a red 

brown powder (106 mg, 99 %). Crystals suitable for single crystal XRD were grown by slow 

evaporation of  a saturated pentane solution at −35 °C. 1H NMR (300 MHz, C6D6): δ 7.54 (dq, 

J = 7.7, 1.4 Hz, 2H, ArH), 7.16 – 7.12 (m, 2H, ArH), 7.04 (t, J = 7.1 Hz, 2H, ArH), 6.98 (t, J 

= 7.1 Hz, 2H, ArH), 6.78 (dd, J = 5.5, 3.3 Hz, 2H), 6.38 (dd, J = 5.5, 3.2 Hz, 2H, ArH), 5.57 

(t, 3JPH = 1.5 Hz, 2H, central ArH), 2.68 (hept, J = 7.0 Hz, 2H, CH(CH3)2), 2.55 – 2.41 (m, 2H, 

CH(CH3)2), 1.84 – 1.74 (m, 6H, CH(CH3)2), 1.23 – 1.15 (m, 6H, CH(CH3)2), 1.15 – 1.07 (m, 

6H, CH(CH3)2), 0.81 – 0.72 (m, 6H, CH(CH3)2), 0.36 (s, 9H Si(CH3)3), 0.18 (s, 9H, Si(CH3)3); 

13C{1H} NMR (75 MHz, C6D6): δ 232.99 (C≡O), 225.19 (C=O), 187.13 (COSiMe3), 148.10 

(app t, J = 12.0 Hz, aryl-C), 142.99 (aryl-C), 140.07 (app t, J = 4.6 Hz, aryl-C), 138.99 (app t, J 

= 13.9 Hz, COSiMe3), 131.10 (aryl-C), 129.86 (app t, J = 4.9 Hz, aryl-C), 128.81 (aryl-C), 

128.59 (aryl-C), 127.03 (app t, J = 1.6 Hz, aryl-C), 123.26 (aryl-C), 120.64 (aryl-C), 92.90 

(central aryl-C), 83.02 (central aryl-C), 31.17 (t, J = 10.8 Hz, CH(CH3)2), 20.75 (CH(CH3)2), 

20.40 t, J = 2.7 Hz, (CH(CH3)2), 19.38 (CH(CH3)2), 18.87 (t, J = 2.9 Hz, CH(CH3)2), 2.33 
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(Si(CH3)3), 1.94 (Si(CH3)3); 31P{1H} NMR (121 MHz, C6D6): δ 56.10 (s); Anal. calcd. for 

C44H60MoO4P2Si2 (%):C, 60.95; H, 6.98. Found: C, 60.61; H, 6.97. 

. 
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CRYSTALLOGRAPHIC INFORMATION 

 CCDC deposition numbers 1909081, 1909082, 1909083 and 1909084 contain the 

supplementary crystallographic data for this paper.48 These data can be obtained free of  charge 

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Refinement Details  

In each case, crystals were mounted on a glass fiber or MiTeGen loop using Paratone 

oil, then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS based 

diffractometer (Mo IμS HB micro-focus sealed X-ray tube, Kα = 0.71073 Å OR Cu IμS HB 

micro-focused X-ray tube, Kα = 1.54178). All diffractometer manipulations, including data 

collection, integration, and scaling were carried out using the Bruker APEXII software.49 

Absorption corrections were applied using SADABS.50 Space groups were determined on the 

basis of  systematic absences and intensity statistics and the structures were solved in the Olex 

2 software interface51 by intrinsic phasing using XT (incorporated into SHELXTL)52 and 

refined by full-matrix least squares on F2. All non-hydrogen atoms were refined using 

anisotropic displacement parameters, except in some cases with heavily distorted solvent. 

Hydrogen atoms were placed in the idealized positions and refined using a riding model. The 

structure was refined (weighed least-squares refinement on F2) to convergence. Graphical 

representations of  structures with 50% probability thermal ellipsoids were generated using 

Diamond 3 visualization software.53  
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Table 3.1. Crystal data and structure refinement for 2, 3, 5, and 6 

 2 3 5 6 
CCDC 

Number48 1909081 1909082 1909083 1909084 

Empirical 
formula 

C37H42MoO3P2
C40H45F6MoNO8P

2S2 
C42H60MoO2P2Si2 C44H60MoO4P2Si2

Formula 
weight 

692.58 1003.77 810.96 866.98 

Temperature/
K 

100.0 100 100.15 100.15 

Crystal system monoclinic monoclinic triclinic monoclinic 
Space group P21/c P21/n P-1 P21/n 

a/Å 28.7301(7) 11.1859(5) 9.4793(7) 10.2194(3) 
b/Å 12.2177(3) 20.4880(9) 11.1917(8) 22.9968(6) 
c/Å 19.9479(5) 18.9117(8) 21.4257(15) 19.0948(5) 
α/° 90 90 85.339(4) 90 
β/° 108.7030(10) 95.489(2) 89.506(4) 104.4620(10) 
γ/° 90 90 67.848(3) 90 

Volume/Å3 6632.3(3) 4314.2(3) 2097.7(3) 4345.3(2) 
Z 8 4 2 4 

ρcalcg/cm3 1.387 1.545 1.284 1.325 
μ/mm-1 0.527 0.553 0.479 0.471 
Crystal 

size/mm3 
0.2 × 0.2 × 0.1 0.3 × 0.2 × 0.2 0.45 × 0.384 × 

0.12 
0.23 × 0.18 × 

0.16 

Radiation MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

2Θ range/° 4.48 to 61.056 4.164 to 75.49 3.944 to 95.846 5.432 to 90.668
GOF 1.032 1.035 1.305 1.036 

R1,a wR2
b [I>2 

σ(I)] 
0.0294, 0.0641 0.0341, 0.0803 0.0443, 0.1063 0.0353, 0.0693 

aR1 = Σ||F0| − |Fc||/Σ|F0|. b wR2 = [Σ[w(F0
2−Fc

2)2]/Σ[w(F0
2)2]1/2 
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CHAPTER 4 
 

Oxidative Coupling with Zr(IV) Supported by a Non-Innocent             

Anthracene-Based Ligand: Application to the Catalytic Cocoupling of                          

Alkynes and Nitriles to N-heteroaromatics 

 

 

 

 

 

 

 

 

 

This work was published in part as: 

J. Am. Chem. Soc. 2018, 140, 11906.  



86 
 

ABSTRACT 

We report the synthesis and reactivity of Zr complexes supported by a 9,10-

anthracenediyl-linked bis(phenoxide) ligand, L. ZrIVLBn2 (1) undergoes facile photolytic 

reduction with concomitant formation of bibenzyl and ZrIVL(THF)3 (2), which displays a 

two-electron reduced anthracene moiety. Leveraging ligand-stored reducing equivalents, 

2 promotes the oxidative coupling of internal and terminal alkynes to isolable 

zirconacyclopentadiene complexes, demonstrating the reversible utilization of anthracene 

as a redox reservoir. With diphenylacetylene under CO, cyclopentadienone is formed 

stoichiometrically. 2 is competent for the catalytic formation of pyrimidines from alkynes 

and nitriles. Mechanistic studies suggest that selectivity for pyrimidine originates from the 

preferred formation of an azazirconacyclopentadiene intermediate, which reacts 

preferentially with nitriles over alkynes. Formation of zirconacyclopentadiene can be 

biased with the use of tethered diynes, which upon coupling with nitriles affords fused-

ring pyridines.  
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INTRODUCTION 

 The use of  redox-active ligands has expanded the reaction toolkit for chemists, 

mediating challenging multi-electron chemical transformations not usually observed in their 

absence.1-3 On early metals such as Zr, for which redox-neutral processes like olefin 

polymerization are prevalent, redox-active ligands can facilitate new reactivity.4-8 Typically, 

transformations involving redox non-innocent ligands result in formal changes of  the ligand 

redox state without substantial changes in ligand coordination mode. Ligands that may change 

the coordination environment around the metal are expected to result in more facile reactivity 

if  adapted to the electronic and steric demands of  the metal center.  

 Our group and others have demonstrated the utility of  labile and redox non-innocent 

pendant arene ligands in the development of  new chemical reactivity, including CO cleavage 

and coupling, metal phosphide formation and coupling, metal nitride CO coupling, cross-

coupling chemistry, and CO2 activation.9-18 In most of  these systems, the arene ligands are 

based on substituted benzene, requiring very negative potentials for formal reduction. Due to 

a smaller loss of  aromaticity in its π-system,19 anthracene displays a more accessible reduction 

potential,20 allowing for the formation of  a dianionic state that coordinates metal ions at the 

bridgehead positions,21-26 though such transition metal complexes are very rare.27-29 We 

envisioned that the anthracene motif  will promote novel reactivity by functioning as a 

reductively non-innocent ligand at milder potentials than benzene, facilitating redox chemistry 

at the pendant arene. Additionally, the formation of  new bonds to the metal filling 

coordination sites opened during reactions such as reductive elimination is expected to 

facilitate reaction turnover and catalysis (Figure 4.1). 

 

Figure 4.1. Non-innocent anthracene moiety facilitating reductive elimination. 
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RESULTS AND DISCUSSION 

 Syn-9,10-anthracenediyl-linked bis(phenol) (LH2) was synthesized from commercially 

available starting materials in six steps (Scheme 4.1). The presence of  the anthracenediyl linker 

results in hindered rotation of  the phenols. The second Negishi coupling results in the 

exclusive formation of  the anti-isomer. Upon acid-catalyzed deprotection, isolation of  the 

desired syn-isomer is achieved by thermal isomerization followed by separation via column 

chromatography. Metalation by protonolysis of  tetrabenzyl zirconium (ZrBn4) with LH2 

Scheme 4.1. Synthesis bis(phenol) proligand LH2 
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provides bis(benzyl) complex 1 (Scheme 4.2). Single-crystal X-ray diffraction (XRD) studies 

revealed long distances between Zr and the anthracene group which correlate with the C-C 

distances in the arene to suggest no significant interaction of  the metal with the anthracene π-

system (Figure 4.2). The ligand forms a distorted tetrahedral geometry around Zr1, with an 

additional weak interaction from C61 (2.520(2)Å) from one of  the benzyl ligands. 

 Toward promoting reductive elimination from 1, photolysis was investigated.30 After 

18 h irradiation, 1H NMR spectroscopy shows the loss of  the benzylic signal in 1, and the 

formation of  bibenzyl and a new species, 2 (Scheme 4.2). The solid-state structure of  2 (Figure 

Scheme 4.2. Synthesis and reactivity of  bis(phenoxide) zirconium complexes with pendant 

anthracene 
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4.3) shows coordination to Zr of  the two phenoxide donors, three THF molecules and the 

anthracene linker. The anthracene motif  binds in an η4 fashion, displaying short contacts to 

C1, C2, C7, and C8, with Zr–C distances in the range of  2.432(1)–2.525(1) Å indicative of  

strong interactions. These are slightly longer than the Zr-benzyl distances in 1 (2.257(2)-

2.272(2) Å). Significant lengthening of  the C1–C2, C1–14, C7–C8, and C8–C9 bonds suggests 

disruption of  aromaticity in the central arene. Overall, the structural parameters observed are 

consistent with a two-electron reduced anthracene motif.21-25 Although oxidatively or 

photolytically induced C–C reductive eliminations have been reported at Zr(IV),7, 30-34 such 

transformations are rare, and the reduced metal species can undergo undesired side reactivity 

such as C–H activation.30 

 To determine whether a unimolecular pathway, via a concerted (Scheme 4.3, a) or 

homolytic cleavage/radical cage (b) mechanism, or an intermolecular free radical pathway (c) 

was in operation, a labeling crossover experiment was carried out. Photolysis of  a mixture of  

    

Figure 4.2. Solid-state structure and central ring bond metrics of  1. Bond distances in Å. 

Thermal ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms omitted

for clarity. 
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1 and LZr(CD2C6D5) (1-d14) is expected to result in the formation of  bibenzyl-d0 and bibenzyl-

d14 for pathways a and b, while a 1:2:1 statistical mixture of  bibenzyl-d0, bibenzyl-d7, and 

bibenzyl-d14 would result from pathway c, assuming benzyl group exchange does not occur 

under photolytic conditions prior to the formation of  2. The mixture obtained from the 

photolysis of  a 1:1 ratio of  1 and 1-d14, obtained from the metalation of  LH2 with 

Zr(CD2C6D5)4, was analyzed via gas chromatography-mass spectroscopy (GC-MS). An 

authentic sample of  bibenzyl-d0 has a retention time of  9.74 min and a parent fragment peak 

Scheme 4.3. Potential pathways for formation for photolysis of 1 

    
Figure 4.3. Solid-state structure and central ring bond metrics of  2. Bond distances in Å. 

Thermal ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms omitted

for clarity. 
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at m/z=182.1, while that of  bibenzyl-d14, obtained from the photolysis of  1-d14, has a retention 

time of  9.69 min and a major fragment peak at m/z=196.3. The GC-MS analysis showed that 

besides bibenzyl-d0 and -d14 isotopomers, a new species with an intermediate retention time 

of  9.71 min and a major fragment peak at m/z=189.1 corresponding to bidenzyl-d7 was 

observed (Figure 4.4), consistent with pathway c being in operation, though this does not rule 

out the potential of  pre-reduction scrambling of  the benzyl ligands.30 

 Complex 2, although formally displaying a Zr(IV) center, stores two reducing 

equivalents in the anthracene motif. The possibility of  2 performing anthracene-based redox 

chemistry was investigated towards the oxidative cyclometalation of  alkynes, a reaction with 

precedent for Zr(II).35-38 Heating a solution of  2 with diphenylacetylene (two equiv.) at 90 °C 

led to a red-to-yellow color change and formation of  a 1:2 Zr:alkyne species (3a) by 1H NMR 

spectroscopy. The solid-state structure of  3a shows the formation of  a 

zirconacyclopentadiene by the oxidative coupling of  two alkynes with two reducing 

equivalents originating from the ligand (Figure 4.5). Within the zirconacyclopentadiene ring, 

localized double bonds at C58–C59 (1.357(2) Å) and C60–C61 (1.354(3) Å) are observed.  

 With examples of  both reductive and oxidative C–C bond formation involving redox 

at the pendant anthracene, substrates with potential for regeneration of  a masked Zr(II) 

Figure 4.4. GC-MS trace of  bibenzyl products observed from reductive elimination of  a 1:1 

mixture of  1 and 1-d14. 

bibenzyl-d14
bibenzyl-d7

bibenzyl-d0
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complex were probed. Extended heating of  3a in the presence of  excess diphenylacetylene 

did not effect further reactivity, likely due to steric constraints. Treatment of  in situ-generated 

3a with CO at 90 °C results in the formation of  a new major species assigned as 4, a 1:1 adduct 

between zirconium and a tetraphenylcyclopentadienone (CPD) molecule (Scheme 4.2). 

Independent synthesis by mixing one equiv. CPD with 2 resulting in a matching 1H NMR 

spectrum support this assignment. The synthesis of  cyclopentadienones via [2+2+1] coupling 

of  two alkynes and CO has been reported but is limited to mid-to-late transition metal 

complexes.39-42 CO insertion into zirconacyclopentadiene has not been reported, to our 

knowledge, though related systems involving CO-alkyne chemistry are known for Zr.43-46 

Conceptually related, the catalytic aza-Pauson-Khand reaction involving Ti-imido complexes 

and alkynes to afford pyrroles, with diazenes acting as a nitrene source has been reported.47 

Although turnover was not achieved for CPD formation, this reaction demonstrates that the 

coupling of  three substrates is possible, with an overall process that requires both oxidation 

 
Figure 4.5. Solid-state structure of  3a. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity. 



94 
 

and reduction of  the anthracene moiety.  

 To examine if  a sterically more open zirconacyclopentadiene promotes further 

reactivity, terminal alkyne phenylacetylene was tested as a substrate. Addition of  two equiv. 

phenylacetylene to 2 in benzene at room temperature led to a rapid red-to-yellow color change. 

Based on 1H NMR spectroscopy, the new species (3b) was assigned as a 

zirconacyclopentadiene complex structurally analogous to 3a (Scheme 4.2). Coupling of  

terminal alkynes by zirconium is rare,48-51 primarily attributed to incompatibility of  the acidic 

acetylenic proton with low-valent Zr(II) species and/or precursors.52 

 Heating 3b in benzene to 90 °C in the presence of  excess phenylacetylene did not 

result in further insertion. However, in the presence of  CO, instead of  formation 

diphenylcyclopentadienone complex analogous to that 4, triphenylbenzene products were 

instead observed by GC-MS. Probing other unsaturated substrates, heating of  3b in the 

presence of  one equiv. of  p-tolunitrile (TolCN) and two equiv. of  phenylacetylene led to the 

almost complete consumption of  TolCN after one hour, with complex 3b still present (1H 

NMR spectroscopy). GC-MS analysis showed the formation of  a mixture of  homo- and 

heterotrimerized products, suggesting that 2 may be a competent precatalyst for the 

cotrimerization of  alkynes with nitriles.  

 To further investigate this reactivity, benzonitrile and phenylacetylene were chosen as 

model substrates. A mixture of  alkyne was heated at 90 °C with excess nitrile (7.5 equiv.), to 

disfavor potential alkyne trimerization,53 in the presence of  5 mol% of  2. After two hours, 

highly selective formation of  2,4,6-triphenylpyrimidine (6a) was observed, in 53% yield (Table 

4.1, entry 1). GC-MS and NMR analysis showed no detectable formation of  triphenylbenzene 

or triphenyltriazine, and minimal triphenylpyridine (<2%).  

 Pyrimidines feature in a wide variety of  active pharmaceuticals and natural products, 
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and as ligands in coordination complexes.54-58 Syntheses of  pyrimidines via the highly efficient 

and atom-economical [2+2+2] cycloaddition route59-61 have been scarce.62-71 This has been 

attributed to the difficulty in the incorporation of  multiple nitrogen atoms via cycloaddition 

due to the more reactive nature of  alkynes compared to nitriles,72 even when employing the 

nitrile as solvent.73-74 Of  those, many are either stoichiometric or require high catalyst loadings 

(≥20%),65-68 nitriles as solvents,69-70 or tethered alkyne-nitrile substrates.71 The observation of  

catalytic cycloaddition involving a nitrile is particularly notable for an early metal. Although 

there are several systems for pyridine synthesis based on Zr in combination with Ni75 or Cu,76 

and Ti,77-79 these reactions are not catalytic, likely due to the strong binding of  the nitrogen 

moiety to the highly Lewis acidic metal center. For the present catalyst, the propensity of  the 

anthracene moiety to accept reducing equivalents is proposed to facilitate reductive cyclization, 

promoting turnover. 

 Optimization of  the catalytic pyrimidine synthesis was carried out. Increasing the 

reaction temperature to 105 °C in toluene led to quantitative yields of  6a, with longer reaction 

Table 4.1. Cycloaddition of  phenyl acetylene with benzonitrile under various conditions 

 

entry [2]/mol % nitrile 
(equiv.) 

time/h aPhCCH 
consumed/ %

bselectivity/% 

6a 6a' 6a" 

1c 5 7.5 2 53 98 2 nd 

2 5 7.5 1 >99 59 1 40 

3 5 7.5 0.5 >99 99 1 nd 

4 5 6 1 >99 99 1 nd 

5 5 3 5 98 97 3 nd 

6 5 2 8 79 95 5 nd 

7 5 0.2 8 7 55 45 nd 

8 3 6 5 95 98 2 nd 
abased on GC-MS analysis, averaged over 2 runs; bbased on 1H NMR integration, 
averaged over 2 runs; cran at 90 °C in benzene; nd: not detected by GC-MS 
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times leading to triazine formation after alkyne substrate has been consumed (Table 4.1, entries 

2 and 3). The nitrile excess can be reduced without appreciable loss in selectivity but results in 

slower conversions (entries 4 and 5). Even at the stoichiometric ratio of  2:1 PhCN:PhCCH, 

high selectivity for pyrimidine (94%) is retained, albeit with a lower yield of  ~80% (entry 6). 

Notably, despite excess alkyne present (1:5 PhCN:PhCCH), the pyrimidine product is still 

favored over the pyridine product. Catalyst loading can be lowered to 3 mol% while providing 

similarly high yields and selectivities after five hours (entry 8). Control experiments ran with 

simple Zr complexes (ZrBn4, ZrCl4, and ZrBn2Cl2) reduced by Mg(THF)3(anthracenide), or 

with KC8 or photolytically in the presence of  anthracene, did not result in catalysis. 

 Using the optimized conditions (Table 4.1, entry 4), the scope of  pyrimidine synthesis 

was explored (Table 4.2). Internal dialkyl alkyne 5-decyne provides 6b quantitatively, while 

diphenylacetylene is not competent. Terminal alkyl alkynes (see Table 4.4) did not produce any 

cotrimerized products detectable by GC-MS, with the exception of  trimethylsilylacetylene, 

Table 4.2. Substrate scope of  cycloaddition of  alkynes with nitriles to pyrimidines 

 
aProducts (6) and yields/% 
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which quantitatively afforded 6c. A variety of  nitriles were also found to be competent for 

catalysis (Table 4.2, 6d, 6e, and 6f) though arylnitriles with O or N-containing substituents and 

alkyl nitriles (see Table 4.4) did not lead to cyclotrimerized products. Addition of  an equimolar 

amount of  acetonitrile to PhCN under optimized conditions completely shuts down the 

generation of  6a, suggesting that it acts as a strong inhibitor, likely through competitive 

binding to the metal.  

 To gain insight into the mechanistic basis of  product selectivity, the synthesis of  

azazirconacycle 5, a potential catalytic intermediate, was targeted (Scheme 4.2). Addition of  

two equiv. TolCN followed by one equiv. PhCCH to 2 results in the formation of  

azazirconacycle 5. A stable species was formed upon addition of  two equiv. nitrile to 2, with 

the displacement of  THF. The identity of  this species could either be a bis(nitrile) adduct or a 

diazazirconacyclopentadiene complex, but was not further characterized. XRD studies took 

 
Figure 4.6. Solid-state structure of  5. Thermal ellipsoids shown at 50% probability. Solvent 

molecules and hydrogen atoms omitted for clarity. Relevant bond distances (Å): Zr1–O1 

1.984(7), Zr1–O2 1.981(7), Zr1–C57 2.27(1), Zr1–N1 2.043(9), C57–C58 1.34(1), C58–C59 

1.46(2), C59–N1 1.27(1) 
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advantage of  the distinct aryl groups in 5 to unambiguously assign N-coordination to Zr and 

2,4-diaryl substitution (Figure 4.6). Although an initial reversible formation of  a nitrile-nitrile 

coupled complex of  the type previously reported for group IV metals80-82 could not be ruled 

out, in the presence of  both nitrile and alkyne, complex 5 is the major Zr-containing product. 

Stoichiometric reactions carried out from the isolated (aza)zirconacycles, 3b and 5, provide 

insight into catalytically relevant pathways (Scheme 4.4). The reaction of  3b or 5 at 90 °C with 

PhCN results in pyridine or pyrimidine formation by 1H NMR spectroscopy (Figure 4.7), 

respectively, while neither complex reacts in the presence of  additional PhCCH (vide supra and 

Figure 4.7). The GC-MS analysis of  the reaction of  5 with PhCN showed predominantly the 

formation of  pyrimidine with mixed aryl substituents, with the minor formation of  2,4,6-

triphenylpyrimidine and 6-phenyl-2,4-di(tolyl)pyrimidine, indicating that the coupling of  

alkyne and nitrile is reversible, but is slow relative to pyrimidine formation. Based on the 

selectivity in catalysis, pathway B is strongly favored over pathway A, leading to the high 

selectivities observed. The preference for the formation of  5 rather than 3b from a mixture 

of  nitrile and alkyne is likely due to the precoordination of  nitrile. The small amount of  

Scheme 4.4. Stoichiometric reactions involving catalytically relevant species 
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pyridine byproduct results from the formation of  3b as a minor component through Pathway 

A. 

5.65.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.6
f1 (ppm)  

 Towards expanding the scope of  products beyond pyrimidines, the reactivity of  

tethered diynes was explored. We postulated that the use of  tethered diynes as substrates will 

favor the formation of  a zirconacyclopentadiene invoked in pathway A (Scheme 4.4) as a route 

towards fused ring pyridines. The [2+2+2] cycloaddition of  two alkyne motifs with a nitrile to 

yield pyridines represents a powerful method towards the efficient and atom-economical 

synthesis of  functionally-rich pyridine motifs.61, 79, 83-86 Despite that, the catalytic synthesis of  

pyridines via [2+2+2] cycloaddition reactions have focused primarily on late-transition metals. 

The use of  early metals such as zirconium and titanium have been limited to stoichiometric 

examples that either rely on a second metal (Ni/Cu) that functions as a surrogate for the 

organic fragment,75-76 or the incorporation of  a leaving group in the organic framework,77-79 in 

order to overcome the strong binding affinity of  the nitrogen moiety to the highly Lewis acidic 

Zr/Ti center. To the best of  our knowledge, there are no Zr-based systems capable of  catalytic 

Figure 4.7. NMR spectra of  stoichiometric reactions of  3a and 5 with phenylacetylene or 

benzonitrile. Pyrimidine product circled in green, pyridine product circled in red. 
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synthesis of  pyridines from alkynes and nitriles. 

 The reaction of  2 with 1,6-heptadiyne resulted in the formation of  a new species 

within 30 min at room temperature that was assigned to zirconacyclopentadiene complex 7a 

(Scheme 4.5). Further reaction of  7a with benzonitrile led to the formation of  expected fused 

ring pyridine 8a as confirmed by both 1H NMR spectroscopy and GC-MS analysis. O-

containing propargyl ether was also tested and similarly resulted in the initial formation of  

zirconacyclopentadiene complex 7b and upon further reaction with benzonitrile afforded the 

expected pyridine product (8b). 

 Catalytic synthesis of  pyridines from these tethered diynes was explored. Propargyl 

ether as a substrate was found to not be competent for the catalytic synthesis of  O-containing 

fused ring pyridine 8b, likely due to catalyst poisoning by substrate or product (functioning 

similarly to a THF ligand). In contrast, the reaction of  1,6-heptadiyne with one equivalent of  

benzonitrile with 5 mol% 2 led to modest yields of  8a either after several days at room 

temperature or several hours at 105 °C (Table 4.3, entries 1 and 2). It was found that beyond 

the first few hours at 105 °C, catalytic activity ceases, with longer reactions times not resulting 

in any improvement in yields (entry 3). Increasing the equivalents of  nitrile was found to 

improve the yields. Raising the number of  nitrile equivalents from 1 to 5 then to 10 was found 

to improve yields to ~75%. With 10 equiv. nitrile, a further increase in catalyst loading did not 

appear to have a significant effect on pyridine yields (Entry 7). The significant rates of  

Scheme 4.5. Stoichiometric reactions with tethered diynes and benzonitrile 
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reactions when an excess of  nitrile is increased suggests that the rate-limiting step was final 

nitrile insertion into 7a via pathway A (vide supra). Notably, even in the presence of  a significant 

excess of  nitrile, exclusive synthesis of  pyridine with no formation of  pyrimidine and triazine 

products are detected in these catalytic runs. 

  

Table 4.3. Cycloaddition of  1,6-heptadiyne with benzonitrile under various conditions 

 

entry 2/mol % nitrile 
(equiv.) 

temperature/ 
°C 

time/h ayield/ % 

1 5 1 rt 96 56 

2 5 1 105 4 41 

3 5 1 105 12 38 

4 5 5 105 4 55 

5 5 5 60b 24 49 

6 5 10 60b 24 74 

7 10 10 60b 24 75 

8 5 10 105 4 74 
abased on 1H NMR integration with 1,3,5-trimethoxybenzene standard, bran 
in benzene 
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CONCLUSION 

 We have synthesized and characterized a series of  zirconium complexes supported by 

a bis(phenoxide) ligand displaying a 9,10-anthracenediyl motif. The ligand exhibits both redox 

non-innocence and hemilability, facilitating two-electron chemistry at a Zr(IV) center such as 

the photolytic reductive elimination of  bibenzyl, oxidative coupling of  unsaturated organic 

substrates such as alkynes and nitriles and their subsequent reductive elimination to CPD or 

N-containing heterocycles. We have demonstrated an efficient Zr-catalyzed three-component 

[2+2+2] cycloaddition of  alkynes and arylnitriles to selectively afford tri- and tetra-substituted 

pyrimidines. The catalyst displays excellent selectivity even without the use of  excess nitrile. 

When tethered diynes were used as substrates, coupling with arylnitriles selectively afforded 

fused-ring pyridine products. With 1,6-heptadiyne, catalytic synthesis of  3-phenyl-6,7-dihydro-

5H-cyclopenta[c]pyridine could be realized. The ability of  this Zr catalyst to turnover, in 

contrast to other early metal systems, is proposed to stem from the ability of  the anthracene 

motif  to promote redox chemistry and product dissociation. Given the established efficient 

stoichiometric oxidative coupling chemistry characteristic of  Zr,36, 87-88 the development of  

new types of  catalysis based on it is of  interest for a variety of  applications. 
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.89 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and C6D6 vacuum transferred from sodium benzophenone ketyl before use. All 

solvents, once dried and degassed, were stored under a nitrogen atmosphere over 4 Å 

molecular sieves. Sodium hydride dispersion in oil was washed with multiple times with 

hexanes and dried in vacuo before used. 4-tert-butyl-2,6-dibromophenol,90 chloromethyl 

methyl ether solution,91 tetrabenzylzirconium,92 and Mg(THF)3(C14H10)93 were prepared 

according to literature procedures. Alkynes and nitriles used were either sublimed under 

reduced pressure or distilled from calcium hydride before use. All other reagents were used as 

received. 1H, 13C{1H}, and 19F NMR spectra were recorded on Varian Mercury 300 MHz or 

Varian 400 MHz spectrometers at ambient temperatures unless otherwise denoted. 1H and 

13C{1H} NMR spectra are reported referenced internally to residual solvent peaks reported 

relative to tetramethylsilane. 19F NMR chemical shifts are referenced to an external standard 

of  C6F6 (-164.9 ppm). Fast atom bombardment-mass spectrometry (FAB-MS) analyses were 

performed with a JEOL JMS-600H high-resolution mass spectrometer. Gas chromatography-

mass spectrometry (GC-MS) were performed with on an Agilent 6890A instrument using an 

HP-5MS column (30 m length, 0.25 mm diameter, 0.50 μm film) and an Agilent 5973N mass-

selective EI detector. Photolyses were conducted using an Oriel Instruments arc lamp housing 

and an Osram 75 W Xe arc lamp set to a current of  5.4 A. 
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1,3-dibromo-5-(tert-butyl)-2-(methoxymethoxy)benzene. To a solution of  2,6-dibromo-

4-(tert-butyl)phenol (100 g, 325 mmol) in THF (500 mL) at 0 °C was added portion-wise NaH 

(11.7 g, 487 mmol) slowly (caution: effervescence). After stirring for an additional 30 min, a 

toluene solution of  chloromethyl methyl ether (232 mL, 487 mmol, 2.1 M) was added slowly 

at 0 °C. After complete addition, the reaction was allowed to warm up to room temperature 

and stirred an additional 2 h. The reaction was quenched by the slow addition of  water (50 

mL) and was then concentrated to ca. 200 mL under vacuum. The remaining suspension was 

partitioned between water (300 mL) and CH2Cl2 (200 mL). The organic layer was separated 

and the aqueous layer extracted with CH2Cl2 (2 × 200 mL). The combined organic extracts 

were then dried over MgSO4, filtered, and concentrated in vacuo to provide a pale yellow oil 

(106.8 g, 98.4%). The product was further dried by stirring over calcium hydride and filtering 

before using in the next step. 1H NMR (400 MHz, CDCl3): δ 7.50 (s, 2H, ArH), 5.15 (s, 2H, 

CH2), 3.72 (s, 3H, OCH3), 1.28 (s, 9H, C(CH3)3); 13C{1H} NMR (101 MHz, CDCl3): δ 150.28 

(aryl-C), 149.13 (aryl-C), 130.20 (aryl-C), 118.02 (aryl-C), 99.66 (CH2), 58.58 (OCH3), 34.72 

(C(CH3)3), 31.26 (C(CH3)3); HRMS (FAB+) m/z Calcd. for C12H16Br2O2 [(M + H) – H2]+ 

350.9418, found 350.9406. 
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3-bromo-5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-1,1'-biphenyl. A Schlenk 

flask fitted with a screw-in Teflon stopper was charged with a solution of  2-bromomesitylene 

(24.1 mL, 157 mmol) in THF (500 mL) and cooled to –78 °C. A pentane solution of  tert-

butyllithium (174 mL, 1.9 M, 331 mmol) was added dropwise via cannula. The reaction was 

allowed to warm to room temperature and stirred for 1 h forming an orange solution. The 

reaction was then brought into an N2-purged glovebox and ZnCl2 (15.1 g, 110 mmol) was 

added slowly to the reaction resulting in the loss of  the orange coloration. The mixture was 

allowed to stir at room temperature for 30 min. 1,3-dibromo-5-(tert-butyl)-2-

(methoxymethoxy)benzene (50.0 g, 142 mmol) and Pd(PPh3)4 (1.82 g, 1.57 mmol) was added, 

the flask sealed and warmed to 70 °C for 36 h. After cooling to room temperature, water (50 

mL) was added to quench the reaction, and the mixture concentrated in vacuo to about 100 

mL. The resulting suspension was taken up in CH2Cl2 (200 mL) and filtered through a silica 

gel plug, eluting further with CH2Cl2. The filtrate was then washed with water (2 × 200 mL), 

dried over MgSO4, filtered, and concentrated in vacuo to afford the crude product as a pale 

yellow oil. The crude mixture can be purified via Kugelrohr distillation, providing the desired 

product as a viscous colorless oil that crystallizes on standing (41.2 g, 74.1%). 1H NMR (400 

MHz, CDCl3): δ 7.56 (d, 4JH,H = 2.2 Hz, 1H, ArH), 7.06 (d, 4JH,H = 2.2 Hz, 1H, ArH) 6.94 (s, 

2H, ArH) 4.70 (s, 2H, CH2), 2.99 (s, 3H, OCH3), 2.32 (s, 3H, ArCH3), 2.05 (s, 6H, ArCH3) 

1.30 (s, 9H, C(CH3)3); 13C{1H} NMR (101 MHz, CDCl3): δ 149.23 (aryl-C), 148.72 (aryl-C), 

137.18 (aryl-C), 136.83 (aryl-C), 135.43 (aryl-C; coincidental overlap), 129.34 (aryl-C), 128.31 

(aryl-C), 128.14 (aryl-C), 117.64 (aryl-C), 98.67 (CH2), 56.88 (OCH3), 34.64 (C(CH3)3), 31.44 

(C(CH3)3), 21.18 (ArCH3), 20.72 (ArCH3); HRMS (FAB+) m/z Calcd. for C21H27BrO2 [(M + 

H) – H2]+ 391.1096, found 391.1099. 
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Anti-9,10-bis(5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-

yl)anthracene. A Schlenk flask fitted with a screw-in Teflon stopper was charged with a 

solution of  3-bromo-5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-1,1'-biphenyl (20.0 

g, 50.1 mmol) in THF (200 mL) and cooled to –78 °C. A pentane solution of  tert-butyllithium 

(56.5 mL, 1.9 M, 107 mmol) was added dropwise via cannula. The reaction was allowed to 

warm to room temperature and stirred for 1 h forming a dark orange solution. The reaction 

was then brought into an N2-purged and ZnCl2 (4.89 g, 35.9 mmol) was added slowly to the 

reaction resulting in the formation of  a cloudy pale yellow mixture. The reaction was allowed 

to stir at room temperature for 30 min after which 9,10-dibromoanthracene (7.73 g, 23.0 

mmol) and Pd(PPh3)4 (591 mg, 0.51 mmol) were added. The flask was sealed and warmed to 

70 °C for 48 h. After cooling to room temperature, water (20 mL) was added to quench the 

reaction, and the mixture concentrated in vacuo to about 50 mL. The resulting suspension was 

taken up in CH2Cl2 (200 mL) and filtered through a silica gel plug, eluting further with CH2Cl2. 

The filtrate was then washed with water (2 × 200 mL), dried over MgSO4, filtered, and 

concentrated in vacuo to afford the crude product as a sticky yellow solid which was triturated 

in MeOH (250 mL) with aid of  sonication, filtered and dried in vacuo to provide the product 

as a pale yellow powder (16.2 g, 88.2%). 1H NMR (400 MHz, CDCl3): δ 7.77 (app dd, JH,H = 

6.8, 3.3 Hz, 4H, anth–H), 7.38 (app dd, JH,H = 6.8, 3.3 Hz, 4H, anth–H), 7.33 (d, 4JH,H = 2.5 

Hz, 2H, ArH), 7.27 (d, 4JH,H = 2.5 Hz, 2H, ArH), 6.97 (s, 4H, ArH), 4.06 (s, 4H, CH2), 2.33 (s, 
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6H, ArCH3), 2.27 (s, 12H, ArCH3), 2.10 (s, 6H, OCH3), 1.35 (s, 18H, C(CH3)3); 13C{1H} NMR 

(101 MHz, CDCl3): δ 151.09 (aryl-C), 147.11 (aryl-C), 136.94 (aryl-C), 136.78 (aryl-C), 136.27 

(aryl-C), 134.72 (aryl-C), 134.29 (aryl-C), 132.29 (aryl-C), 130.34 (aryl-C), 129.11 (aryl-C), 

128.64 (aryl-C), 128.15 (aryl-C), 127.18 (aryl-C), 125.25 (aryl-C), 97.98 (CH2), 55.42 (OCH3), 

34.70 (C(CH3)3), 31.72 (C(CH3)3), 21.21 (ArCH3), 21.04 (ArCH3); HRMS (FAB+) m/z Calcd. 

for C56H62O4 [M]+ 798.4648, found 798.4674. 

 

Anti-3,3''-(anthracene-9,10-diyl)bis(5-(tert-butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-

ol). A Schlenk flask fitted with a screw-in Teflon stopper was charged with anti-9,10-bis(5-

(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)anthracene (15.0 g, 18.8 

mmol), MeOH (100 mL) and CH2Cl2 (200 mL). Concentrated aqueous HCl (20 mL) was 

added, the flask sealed and heated to 45 °C, monitoring the progress of  the reaction via 1H 

NMR spectroscopy. After complete deprotection at about 6 h, the reaction was cooled and 

concentrated in vacuo. The suspension was taken up in CH2Cl2 (250 mL) and washed with 

H2O (2 × 200 mL) and then saturated aqueous NaHCO3 (100 mL). The organic fraction was 

dried over MgSO4, filtered, and concentrated under reduced pressure to provide the product 

as a pale yellow solid (13.2 g, 98.9%). 1H NMR (400 MHz, CDCl3): δ 7.80 (app dd, JH,H = 6.8, 

3.3 Hz, 4H, anth–H), 7.41 (app dd, JH,H = 6.8, 3.0 Hz, 4H, anth–H), 7.34 (d, 4JH,H = 2.5 Hz, 

2H, ArH), 7.27 (d, 4JH,H = 2.5 Hz, 2H, ArH), 7.03 (s, 4H, ArH), 4.47 (s, 2H, OH), 2.35 (s, 6H, 

ArCH3), 2.22 (s, 12H, ArCH3), 1.35 (s, 18H, C(CH3)3); 13C{1H} NMR (101 MHz, CDCl3): δ 
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148.56 (aryl-C), 143.58 (aryl-C), 137.67 (aryl-C), 137.50 (aryl-C), 133.68 (aryl-C), 133.28 (aryl-

C), 130.73 (aryl-C), 128.76 (aryl-C), 128.68 (aryl-C), 127.64 (aryl-C), 126.94 (aryl-C), 126.54 

(aryl-C), 125.72 (aryl-C), 124.03 (aryl-C), 34.55 (C(CH3)3), 31.86 (C(CH3)3), 21.28 (ArCH3), 

20.67 (ArCH3); HRMS (FAB+) m/z Calcd. for C52H54O2 [M]+ 710.4124, found 710.4142. 

 

 

Syn-3,3''-(anthracene-9,10-diyl)bis(5-(tert-butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-

ol) (LH2). A suspension of  the anti atropisomer (13.0 g) in degassed xylenes (80 mL) was 

heated to reflux under N2 for 6 h, after which the yellow solution was cooled to room 

temperature and the volatiles removed in vacuo. The isomeric mixture was separated by silica 

gel column chromatography, eluting first with 1:4 CH2Cl2:hexanes to separate the anti-isomer, 

and then 1:3:16 EtOAc:CH2Cl2:hexanes to obtain the desired syn-isomer LH2 as a white to 

pale yellow solid after drying in vacuo (6.08 g 46.8%). The anti-isomer obtained (6.31 g, 48.5%) 

can be further isomerized and separated again by silica gel column chromatography to provide 

more desired syn-isomer. 1H NMR (400 MHz, CDCl3): δ 7.81 (app dd, JH,H = 6.8, 3.2 Hz, 4H, 

anth–H), 7.43 (dd, JH,H = 6.8, 3.2 Hz, 4H, anth–H), 7.31 (d, 4JH,H = 2.5 Hz, 2H, ArH), 7.28 (d, 

4JH,H = 2.5 Hz, 2H, ArH), 7.01 (s, 4H, ArH), 4.50 (s, 2H, OH), 2.34 (s, 6H, ArCH3), 2.21 (s, 

12H, ArCH3), 1.35 (s, 18H, C(CH3)3); 13C{1H} NMR (101 MHz, CDCl3): δ 148.59 (aryl-C), 

143.50 (aryl-C), 137.62 (aryl-C), 137.42 (aryl-C), 133.77 (aryl-C), 133.35 (aryl-C), 130.75 (aryl-

C), 128.65 (aryl-C), 128.62 (aryl-C), 127.74 (aryl-C), 126.93 (aryl-C), 126.60 (aryl-C), 125.79 

(aryl-C), 123.92 (aryl-C), 34.53 (C(CH3)3), 31.85 (C(CH3)3), 21.27 (ArCH3), 20.69 (ArCH3); 

HRMS (FAB+) m/z Calcd. for C52H54O2 [M]+ 710.4124, found 710.4089. 
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Synthesis of  1. All manipulations for this reaction until the workup was carried out in the 

glovebox in the absence of  light to the extent possible. To a thawing solution of  

tetrabenzylzirconium (320.5 mg, 0.703 mmol) in toluene (20 mL) was added a thawing solution 

of  LH2 (500 mg, 0.703 mmol) in toluene (10 mL) with stirring. The reaction was allowed to 

warm up to room temperature and stirred an additional 2 h, forming a yellow solution. The 

solution was filtered through a pad of  diatomaceous earth and volatiles were removed in vacuo 

to afford 2 as a yellow solid (681 mg 98.6%). X-Ray quality single crystals were grown by slow 

diffusion of  pentane into a saturated toluene solution at –35 °C. 1H NMR (400 MHz, C6D6): 

δ 8.06 (app dd, JH,H = 6.7, 3.2 Hz, 4H, anth–H), 7.95 (d, 4JH,H = 2.6 Hz, 2H, ArH), 7.20 (d, 4JH,H 

= 2.5 Hz, 2H, ArH), 7.12 (app dd, J = 6.7, 3.2 Hz, 4H, anth–H), 6.80 (s, 4H, MesH), 6.78 – 

6.66 (m, 6H, ArH), 5.86 (d, J = 7.2 Hz, 4H, ArH), 2.21 (s, 6H, ArCH3), 2.09 (s, 12H, ArCH3), 

1.38 (s, 18H, C(CH3)3), 0.87 (s, 4H, PhCH2); 13C{1H} NMR (101 MHz, C6D6): δ 157.10 (aryl-

C), 143.83 (aryl-C), 139.69 (aryl-C), 137.13 (aryl-C), 136.68 (aryl-C), 136.35 (aryl-C), 134.58 

(aryl-C), 131.62 (aryl-C), 131.47 (aryl-C), 130.75 (aryl-C), 130.44 (aryl-C), 128.44 (aryl-C), 

127.82 (aryl-C), 127.75 (aryl-C), 126.75 (aryl-C), 126.37 (aryl-C), 124.69 (aryl-C), 123.85 (aryl-

C), 59.46 (PhCH2), 34.55 (C(CH3)3), 31.93 (C(CH3)3), 21.36 (ArCH3), 21.19 (ArCH3); Anal. 

Calcd. C66H66O2Zr (%): C, 80.69; H, 6.77. Found: C, 80.84; H, 6.62. 
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Synthesis of  2. A solution of  1 (1.00 g, 1.02 mmol) in THF (80 mL) was irradiated with light 

from a Xe arc lamp (75 W) with stirring. After 24 h, the volatiles were removed in vacuo, and 

the residue triturated with hexanes twice. Pentane (10 mL) was added and cooled to –35 °C 

overnight to allow precipitation. The suspension was filtered and the residue washed with cold 

pentane (5 mL), and then room temperature pentane (2 × 3 mL). The residue was extracted 

with diethyl ether and dried in vacuo to provide 2 as a deep red solid (587 mg 56.9%). X-ray 

quality single crystals were grown by cooling a saturated pentane to –35 °C. 1H NMR (400 

MHz, C6D6): δ 7.88 (d, 4JH,H = 2.5 Hz, 2H, ArH), 7.34 (app dd, JH.H = 5.7, 3.3 Hz, 4H, anth–

H), 7.15 (d, 4JH,H = 2.5 Hz, 2H, ArH), 6.90 (app dd, JH,H = 5.7, 3.2 Hz, 4H, anth–H), 6.82 (s, 

4H, MesH), 3.61 – 3.54 (m, 8H, THF-OCH2), 3.18 – 3.11 (m, 4H, THF), 2.20 (s, 6H, ArCH3), 

2.16 (s, 12H, ArCH3), 1.42 (s, 18H, C(CH3)3), 1.08 (m, 12H, THF-CH2); 13C{1H} NMR (101 

MHz, C6D6): δ 161.54 (aryl-C), 140.71 (aryl-C), 140.40 (aryl-C), 139.39 (aryl-C), 136.78 (aryl-

C), 135.71 (aryl-C), 135.11 (aryl-C), 127.50 (aryl-C), 126.42 (aryl-C), 128.30 (aryl-C), 124.22 

(2C, aryl-C), 123.12 (aryl-C), 94.78 (Zr-C), 73.82 (THF-OCH2), 69.55 (THF-OCH2), 34.44 

(C(CH3)3), 32.38 (C(CH3)3), 25.39 (THF-CH2), 24.80 (THF-CH2), 21.45 (ArCH3), 21.16 

(ArCH3). Anal. Calcd. C64H73O5Zr (%): C, 75.85; H, 7.26. Found: C, 75.48; H, 6.97. 
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Synthesis of  3a. A solution of  2 (100 mg, 0.0986 mmol) and diphenylacetylene (35.2 mg, 

0.197 mmol) in benzene (5 mL) was heated to 90 °C with stirring for 3 h. After cooling to 

room temperature, the volatiles were removed in vacuo. The residue was washed with cold 

pentane, extracted with benzene, and filtered through diatomaceous earth. Drying under 

vacuum provided 3a as a yellow solid (89.6 mg 74.0%). X-ray quality single crystals were grown 

by slow diffusion of  pentane into a saturated toluene solution at –35 °C. 1H NMR (400 MHz, 

C6D6): δ 8.01 (app dd, JH,H = 6.7, 3.3 Hz, 2H, anth–H), 7.94 (d, 4JH,H = 2.5 Hz, 2H, ArH), 7.92 

(app dd, JH,H = 6.8, 3.2 Hz, 2H, anth–H), 7.45 (d, 4JH,H = 2.6 Hz, 2H, ArH), 7.29 (s, 2H, MesH), 

7.02 (s, 2H, MesH), 6.88 – 6.49 (m, 22H, ArH), 5.46 (d, 3JH,H = 7.5 Hz, 2H, ArH), 3.00 (s, 6H, 

ArCH3), 2.71 (s, br, 4H, THF-OCH2), 2.35 (s, 6H, ArCH3), 2.08 (s, 6H, ArCH3), 1.43 (s, 18H, 

C(CH3)3), 0.37 (s, br, 4H, THF-CH2). 13C{1H} NMR (101 MHz, C6D6): δ 197.61 (ZrC), 193.83 

(ZrC), 159.82 (ZrC(Ph)C), 157.29 (aryl-C), 154.70 (ZrC(Ph)C), 149.30 (aryl-C), 148.74 (aryl-

C), 143.06 (aryl-C), 142.23 (aryl-C), 142.10 (aryl-C), 138.96 (aryl-C), 136.98 (aryl-C), 136.36 

(aryl-C), 135.83 (aryl-C), 133.42 (aryl-C), 131.35 (aryl-C), 131.19 (aryl-C), 130.38 (aryl-C), 

130.32 (aryl-C), 130.04 (aryl-C), 129.56 (aryl-C), 128.90 (aryl-C), 128.75 (aryl-C), 128.22 (aryl-

C), 128.01 (aryl-C), 127.42 (aryl-C), 127.33 (aryl-C), 127.06 (aryl-C), 126.53 (aryl-C), 126.26 

(aryl-C), 126.13 (aryl-C), 125.91 (aryl-C), 125.27 (aryl-C), 124.78 (aryl-C), 124.62 (aryl-C), 

124.53 (aryl-C), 124.41 (aryl-C), 122.69 (aryl-C), 122.40 (aryl-C), 70.68 (THF-OCH2), 34.61 

(C(CH3)3), 32.00 (C(CH3)3), 23.72 (THF-OCH2CH2), 22.66 (ArCH3), 21.40 (ArCH3), 21.28 

(ArCH3); Anal. Calcd. C84H79O3Zr (%): C, 82.17; H, 6.49. Found: C, 81.98; H, 6.72. 
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Synthesis of  3b. Phenylacetylene (22 µL, 0.20 mmol) was added to a stirred solution of  2 

(100 mg, 0.099 mmol) in benzene (5 mL) at room temperature resulting in red-brown to a 

yellow-brown color change. After 10 min, the volatiles were removed in vacuo and the residue 

extracted with pentane and filtered over diatomaceous earth. Drying under reduced pressure 

provided 3b as an orange powder (77.6 mg, 73.3%). X-ray quality single crystals were grown 

by slow diffusion of  pentane into a saturated benzene solution at room temperature. 1H NMR 

(400 MHz, C6D6): δ 8.28 (app dd, JH,H = 6.8, 3.3 Hz, 2H, anth–H), 7.96 (d, 4JH,H = 2.5 Hz, 2H, 

ArH), 7.41 (d, J = 7.7 Hz, 2H, ArH), 7.36 (d, 4JH,H = 2.6 Hz, 2H, ArH), 7.28 – 7.19 (m, 5H, 

ArH), 7.09 (t, J = 7.7 Hz, 1H, ArH), 7.04 (d, 4JH,H = 4.3 Hz, 1H, ZrCH), 6.96 (t, J = 7.4 Hz, 

2H), 6.91 (s, 2H, MesH), 6.90 (s, 2H, MesH), 6.88 – 6.81 (m, 3H), 6.22 (d, 4JH,H = 4.5 Hz, 1H, 

ZrC(Ph)CH), 5.87 (d, 3JH,H = 7.3 Hz, 2H, ArH), 2.52 (app t, br, 3JH,H = 5.7 Hz, 4H, THF-

OCH2), 2.39 (s, 6H, ArCH3), 2.24 (s, 6H, ArCH3), 2.10 (s, 6H, ArCH3), 1.44 (s, 18H, C(CH3)3), 

0.51 (app t, br, 3JH,H = 5.7 Hz, 4H, THF-CH2); 13C{1H} NMR (101 MHz, C6D6): δ 199.14 

(ZrC), 188.17 (ZrC), 156.93 (aryl-C), 155.93 (ZrC(Ph)), 150.75 (aryl-C), 146.99 (ZrCH), 143.97 

(aryl-C), 142.80 (aryl-C), 139.24 (aryl-C), 136.58 (aryl-C), 136.45 (aryl-C), 135.32 (aryl-C), 

135.04 (aryl-C), 131.91 (aryl-C), 131.26 (aryl-C), 131.18 (aryl-C), 130.08 (aryl-C), 129.04 (aryl-

C), 128.59 (aryl-C), 128.06 (aryl-C), 127.56 (aryl-C), 127.51 (aryl-C), 127.49 (aryl-C), 126.93 

(aryl-C), 126.63 (aryl-C), 126.46 (aryl-C), 125.96 (aryl-C), 125.70 (aryl-C), 125.45 (aryl-C), 

124.47 (aryl-C), 123.24 (aryl-C), 70.52 (THF-OCH2), 34.61 (C(CH3)3), 32.06 (C(CH3)3), 24.43 

(THF-OCH2CH2), 21.31 (ArCH3), 21.28 (ArCH3), 21.07 (ArCH3); Anal. Calcd. C72H71O3Zr 

(%): C, 80.40; H, 6.65. Found: C, 80.67; H, 6.74. 
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Synthesis of  4. Method A: A J. Young NMR tube charged with a solution of  2 (20.0 mg, 

0.197 mmol) and diphenylacetylene (7.0 mg, 0.039 mmol) in C6D6 (0.6 mL) was heated to 90 

°C. After 2 h, the atmosphere in the tube was degassed and replaced with CO (1 atm) and the 

tube was heated for an additional 9 h after which 1H NMR spectroscopy showed that the 

major product matched that of  4 synthesized via method B. Method B: To a solution of  2 

(100 mg, 0.099 mmol) in benzene (5 mL) was added tetraphenylcyclopentadienone (37.9 mg, 

0.099 mmol) at room temperature resulting in a red to yellow-brown color change. After 10 

min, the volatiles were removed in vacuo and the solid residue washed with pentane and dried 

under reduced pressure to provide 4 as a dark brown powder (92.6 mg, 68.0%). 1H NMR (400 

MHz, C6D6): δ 7.93 – 7.89 (m, 6H, overlapping anth–H and ArH), 7.56 (dd, JH,H = 8.2, 1.3 Hz, 

4H, ArH), 7.33 (d, 4JH,H = 2.6 Hz, 2H, ArH), 7.20 (dd, JH,H = 8.0, 1.3 Hz, 4H, ArH), 7.08 (s, 

4H, ArH), 7.04 (t, 3JH,H = 7.6 Hz, 4H, ArH), 6.92 – 6.83 (m, 6H, ArH), 6.83 (dd, JH,H = 6.7, 3.3 

Hz, 4H, ArH), 6.65 (t, 3JH,H = 7.3 Hz, 2H, ArH), 2.83 (t, 3JH,H = 6.6 Hz, 8H, THF-OCH2), 2.36 

(s, 6H, ArCH3), 2.22 (s, 12H, ArCH3), 1.36 (s, 18H, C(CH3)3), 0.61 (d, 3JH,H = 6.1 Hz, 8H, THF-

CH2); 13C{1H} NMR (101 MHz, C6D6): δ 156.95 (C=O), 144.31 (aryl-C), 143.70 (aryl-C), 

142.48 (aryl-C), 137.87 (aryl-C), 136.14 (aryl-C), 134.57 (aryl-C), 133.49 (aryl-C), 132.87 (aryl-

C), 131.88 (aryl-C), 131.35 (aryl-C), 131.28 (aryl-C), 130.22 (aryl-C), 129.99 (aryl-C), 129.05 

(aryl-C), 128.59 (aryl-C), 127.19 (aryl-C), 126.66 (aryl-C), 125.69 (aryl-C), 125.23 (aryl-C), 

124.92 (aryl-C), 122.89 (aryl-C), 120.83 (aryl-C), 118.86 (PhC), 110.21 (PhC), 73.46 (THF-
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OCH2), 34.56 (C(CH3)3), 31.81 (C(CH3)3), 22.90 (THF-OCH2CH2), 21.59 (ArCH3), 21.46 

(ArCH3); Anal. Calcd. C89H86O5Zr (%): C, 80.56; H, 6.53. Found: C, 80.32; H, 6.28. 

 

Synthesis of  5. p-Tolunitrile (23.2 mg, 0.198 mmol) was added to a solution of  2 (100 mg, 

0.099 mmol) in benzene (5 mL) at room temperature resulting in the immediate formation of  

a deep purple solution. After 5 min, the volatiles were removed in vacuo. The resulting solid 

was taken up in benzene (5 mL) and phenylacetylene (10.8 µL, 0.099 mmol) was added 

forming a red-orange solution. After stirring an additional 10 min, the reaction was 

concentrated under vacuum and the residue washed with cold pentane and dried to provide 5 

as a red brown solid (76.8 mg, 71.4%). X-ray quality single crystals were grown by slow 

diffusion of  pentane into a saturated benzene solution at room temperature. 1H NMR (400 

MHz, C6D6): δ 8.34 (app dd, JH,H = 6.8, 3.2 Hz, 2H, anth–H), 8.05 (app dd, JH,H = 6.7, 3.3 Hz, 

2H), 7.99 (d, 4JH,H = 2.5 Hz, 2H, ArH), 7.67 (d, 2JH,H = 8.1 Hz, 2H, Tol–H), 7.47 (app dd, JH,H 

= 6.8, 3.3 Hz, 2H), 7.35 (d, J = 2.5 Hz, 2H, ArH), 7.28 (s, 1H, alkenyl–H), 7.04 (d, 2JH,H = 8.0 

Hz, 2H, Tol–H), 6.97 (t, 2JH,H = 7.6 Hz, 2H, ArH), 6.91 (s, 2H, MesH), 6.87 (m, 3H, anth–H 

and ArH), 6.83 (s, 2H, MesH), 5.84 (dd, JHH = 8.1, 1.4 Hz, 2H, ArH), 2.63 – 2.55 (m, 4H, 

THF-CH2), 2.24 (s, 6H, ArCH3), 2.23 (s, 6H, ArCH3), 2.16 (s, 3H, ArCH3), 2.11 (s, 6H, ArCH3), 

1.44 (s, 18H, C(CH3)3), 0.57 – 0.47 (m, 4H, THF-CH2); 13C{1H} NMR (101 MHz, CDCl3): δ 

210.36, 177.99, 156.96, 150.94, 147.50, 142.07, 140.20, 139.05, 136.75, 136.28, 135.59, 135.46, 

135.06, 131.76, 130.85, 129.83, 129.62, 129.59, 128.97, 128.87, 128.43, 128.30, 127.95, 127.61, 

127.54, 126.98, 126.77, 125.32, 124.78, 124.53, 70.92 (THF-OCH2), 34.59 (C(CH3)3), 32.11 
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(C(CH3)3), 24.52 (THF-OCH2CH2), 21.48 (ArCH3), 21.28 (ArCH3), 21.25 (ArCH3), 20.81 

(ArCH3); Anal. Calcd. C72H72NO3Zr (%): C, 79.30; H, 6.65; N, 1.28. Found: C, 79.63; H, 6.41; 

N, 1.66. 

 

General Setup for Screening of  Conditions for Catalytic 1,3,5-Triphenylpyrimidine 

Synthesis. In the glovebox, stock solutions of  nitrile, alkyne, 1-adamantane (internal 

standard), and 2 in the appropriate solvent were measured with syringes and added in that 

order to a vial equipped with a Teflon-coated stir bar, additional solvent was added to ensure 

total volume of  the reaction was 3 mL. The vial was capped with a PTFE-lined septum cap, 

taken out of  the box, and placed into a preheated heating block at the appropriate temperature. 

After the reaction time, the reaction was cooled to room temperature and quenched by 

exposure to air with stirring. A small volume was taken, filtered through a pad of  silica gel, 

and eluted with CH2Cl2 for GC-MS analysis. Parallel runs were also set up in the absence of  

1-adamantane to obtain isolated yields. 

 

2,4,6-Triphenylpyrimidine (6a).69 Synthesized using the general setup using phenylacetylene 

(10.8 µL, 0.0987 mmol), benzonitrile (61.0 µL, 0.592 mmol) and 2 (5.0 mg, 4.9 µmol) in 

toluene (3 mL), and purified via silica gel column chromatography (5% EtOAc/hexanes). 

White solid. First run 28.8 mg (95%). Second run 28.5 mg (94%). 
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4,5-dibutyl-2,6-diphenylpyrimidine (6b).69 Synthesized using the general setup using 5-

decyne (17.8 µL, 0.0987 mmol), benzonitrile (61.0 µL, 0.592 mmol) and 2 (5.0 mg, 4.9 µmol) 

in toluene (3 mL), and purified via silica gel column chromatography (5% CH2Cl2/hexanes). 

White solid. First run 32.8 mg (96%) Second Run 32.6 mg (96%). 

 

2,4-diphenyl-6-(trimethylsilyl)pyrimidine (6c). Synthesized using the general setup using 

trimethylsilylacetylene (14.1 µL, 0.0987 mmol), benzonitrile (61.0 µL, 0.592 mmol) and 2 (5.0 

mg, 4.9 µmol) in toluene (3 mL), and purified via silica gel column chromatography (5% 

CH2Cl2, 1% triethylamine in hexanes). White solid. First run 29.2 mg (97%) Second Run 28.9 

mg (96%). 1H NMR (400 MHz, CDCl3): δ 8.80 (dd, J = 8.1, 1.6 Hz, 1H), 8.67 (dd, J = 8.0, 1.8 

Hz, 2H), 8.24 (dd, J = 7.8, 1.8 Hz, 2H), 7.78 (s, 1H), 7.66 – 7.46 (m, 5H), 0.43 (s, 9H); 13C{1H} 

NMR (101 MHz, CDCl3): δ 178.35, 171.78, 163.32, 161.71, 138.68, 137.89, 136.39, 132.63, 

130.67, 130.46, 129.10, 128.98, 128.77, 128.51, 128.49, 127.36, 119.46, -2.02; HRMS (FAB+) 

m/z Calcd. for C19H21SiN2 [M+H]+ 305.1474, found 305.1465. 
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6-phenyl-2,4-di(p-tolyl)pyrimidine (6d).94 Synthesized using the general setup using 

phenylacetylene (10.8 µL, 0.0987 mmol), p-tolunitrile (69.4 mg, 0.592 mmol) and 2 (5.0 mg, 

4.9 µmol) in toluene (3 mL), and purified via silica gel column chromatography (5% 

EtOAc/hexanes). White solid. First run 31.9 mg (96%) Second Run 31.7 mg (95%). 

 

2,4-di(4-fluorophenyl)-6-phenylpyrimidine (6e). Synthesized using the general setup using 

phenylacetylene (10.8 µL, 0.0987 mmol), 4-fluorobenzonitrile (71.7 mg, 0.592 mmol) and 2 

(5.0 mg, 4.9 µmol) in toluene (3 mL), and purified via silica gel column chromatography (5% 

EtOAc/hexanes). White solid. First run 33.0 mg (97%) Second Run 32.9 mg (97%). 1H NMR 

(400 MHz, CDCl3): δ 8.75 – 8.67 (m, 2H), 8.31 – 8.23 (m, 4H), 7.94 (s, 1H), 7.59 – 7.54 (m, 

3H), 7.28 – 7.18 (m, 4H); 13C{1H} NMR (101 MHz, CDCl3): δ 165.00, 164.95 (d, 1JCF = 235.7 

Hz), 164.86 (d, 1JCF = 229.9 Hz), 163.63 163.50, 137.42, 134.30 (d, 4JCF = 3.0 Hz), 133.65 (d, 

4JCF = 3.1 Hz), 131.07, 130.68 (d, 3JCF = 8.7 Hz), 129.41 (d, 3JCF = 8.7 Hz), 129.09, 127.38, 

116.11 (d, 2JCF = 21.8 Hz), 115.52 (d, 2JCF = 21.6 Hz), 109.90; 19F NMR (376 MHz, CDCl3): δ 

109.80 (m), 110.55 (m); HRMS (FAB+) m/z Calcd. for C22H15F2N2 [M+H]+ 345.1203, found 

345.1206. 
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6-phenyl-2,4-bis[4-(trifluromethyl)phenyl]pyrimidine (6f). Synthesized using the general 

setup using phenylacetylene (10.8 µL, 0.0987 mmol), 4-(trifluoromethyl)benzonitrile (101.3 

mg, 0.592 mmol) and 2 (5.0 mg, 4.9 µmol) in toluene (3 mL), and purified via silica gel column 

chromatography (3% EtOAc/hexanes). White solid. First run 37.4 mg (85%) Second Run 38.1 

mg (87%). 1H NMR (400 MHz, CDCl3): δ 8.79 (d, 3JHH = 8.4 Hz, 2H), 8.36 (d, 3JHH = 8.2 Hz, 

2H), 8.29 – 8.24 (m, 2H), 8.04 (s, 1H), 7.82 (d, 3JHH = 8.3 Hz, 2H), 7.78 (d, 3JHH = 8.3 Hz, 2H), 

7.60 – 7.56 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3): δ 165.56, 163.60, 163.53, 141.17 (q, 

4JCF = 1.1 Hz), 140.65 (q, 4JCF = 1.2 Hz)136.92, 136.92, 132.79 (q, 2JCF = 32.6 Hz), 132.55 (q, 

2JCF = 32.3 Hz), 131.46, 129.22, 128.88, 127.76, 127.44, 126.07 (q, 3JCF = 3.7 Hz), 125.57 (q, 

3JCF = 3.7 Hz), 122.97, 122.72, 111.31; 19F NMR (376 MHz, CDCl3): δ 62.66 (s), 62.77 (s). 

 

Catalytic controls 

Photoreduction of  ZrBn4 in the presence of  anthracene. A quartz Schlenk tube was 

charged with a Teflon-coated stir bar, ZrBn4 (50.0 mg, 0.110 mmol), anthracene (19.6 mg, 

0.110 mmol) and tetrahydrofuran (1 mL). The flask was sealed and irradiated with light from 

a Xe arc lamp (75 W) with stirring at room temperature for 12 h, forming a deep red-brown 

suspension. The volatiles were removed in vacuo. 5 mg of  the crude solid was then tested 

under the general catalytic conditions in place of  2.  
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Photoreduction of  ZrBn2Cl2 in the presence of  anthracene. A thawing THF solution (0.5 

mL) of  ZrBn4 (25.0 mg, 0.055 mmol) was added to a thawing THF suspension (0.5 mL) of  

ZrCl4 (12.8 mg, 0.055 mmol) with stirring. After warming the mixture to room temperature 

the suspension was transferred to a quartz Schlenk tube was and anthracene (19.6 mg, 0.110 

mmol) added. The flask was sealed and irradiated with light from a Xe arc lamp (75 W) with 

stirring at room temperature for 12 h forming a deep red-brown solution. The volatiles were 

removed in vacuo. 5 mg of  the crude solid was then tested under the general catalytic 

conditions in place of  2. 

 

Reduction of  ZrCl4 by Mg(THF)3(C14H10). Mg(THF)3(C14H10) (35.7 mg, 0.0859 mmol) was 

added to a thawing suspension of  ZrCl4 (20.0 mg, 0.0859 mmol) and was allowed to warm to 

room temperature turning from orange to yellow then brown-green. After 10 min at room 

temperature, the volatiles were removed under reduced pressure and the residue extracted with 

benzene. Concentration of  the filtrate provided an off-white solid. 5 mg of  the crude solid 

was then tested under the general catalytic conditions in place of  2. 

 

In-situ reduction of  ZrCl4 by Mg(THF)3(C14H10). Following the general setup for catalysis, 

using ZrCl4 in place of  2, Mg(THF)3(C14H10) (2.3 mg) was added as the last step before sealing 

and heating the mixture. 

 

In-situ reduction of  ZrCl4 by KC8 in the presence of  anthracene. Following the general 

setup for catalysis, using ZrCl4 in place of  2, anthracene (0.9 mg) and then KC8 (0.7 mg) was 

added as the last step before sealing and heating the mixture. 
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Stoichiometric reactions from preformed (aza)zirconacyclopentadienes 3b and 5. To a 

solution of  3b or 5 (20.0 mg) in C6D6 (0.5 mL) in a J. Young tube was added either 

phenylacetylene or benzonitrile (5 equiv.). The tube was sealed and heated in an oil bath at 90 

°C for 1 h. 

 

Figure 4.8. GC-MS chromatograph from the reaction of  5 with benzonitrile (5 equiv.) after 

1 h heating at 90 °C. 

 

Figure 4.9. GC-MS chromatograph from the reaction of  3b with benzonitrile (5 equiv.) after 

1 h heating at 90 °C 
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Table 4.4. Additional substrates screened under optimized catalytic conditionsa 

Entry Alkyne Nitrile Productsb (Yieldsc) 

1   
nd 

2  
 

(<5%) 

3   
nd 

4   
nd 

5   nd 

6   

(<5%) 

7   nd 

8   nd 

9   
(<5%) 

10   nd 

11   nd 

12   
(37%) 

aoptimized conditions: 6:1 nitrile:alkyne, 5 mol% 3a, toluene (3 mL), 105 °C, 1h; bnd: not 
detected by GC-MS; cyields approximated from GC-MS based on PhCCH or PhCN 
consumption.  
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General Setup for Catalytic Pyridine Synthesis. In the glovebox, stock solutions of 

nitrile, diyne, and 2 in the appropriate solvent were measured with syringes and added in 

that order to a Schlenk tube equipped with a screw-down Teflon pin and a Teflon-coated 

stir bar, additional solvent was added to ensure the total volume of the reaction was 3 

mL. The tube was sealed, taken out of the box, and placed into a preheated oil bath at 

the appropriate temperature. After the reaction time, the tube was cooled to room 

temperature and quenched by exposure to air with stirring. The entire reaction was 

concentrated in vacuo and 1,3,5-trimethoxybenzene was added as an NMR standard. The 

mixture was taken up in a small volume of CDCl3 ensuring homogeneity and 1H NMR 

recorded.  
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CRYSTALLOGRAPHIC INFORMATION 

 CCDC deposition numbers 1853068, 1853069, 1853070 and 1869798 contain the 

supplementary crystallographic data for this paper.95 These data can be obtained free of  charge 

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Refinement Details  

In each case, crystals were mounted on a glass fiber or MiTeGen loop using Paratone 

oil, then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS based 

diffractometer (Mo IμS HB micro-focus sealed X-ray tube, Kα = 0.71073 Å OR Cu IμS HB 

micro-focused X-ray tube, Kα = 1.54178). All diffractometer manipulations, including data 

collection, integration, and scaling were carried out using the Bruker APEXII software.96 

Absorption corrections were applied using SADABS.97 Space groups were determined on the 

basis of  systematic absences and intensity statistics and the structures were solved in the Olex 

2 software interface98 by intrinsic phasing using XT (incorporated into SHELXTL)99 and 

refined by full-matrix least squares on F2. All non-hydrogen atoms were refined using 

anisotropic displacement parameters, except in some cases with heavily distorted solvent. 

Hydrogen atoms were placed in the idealized positions and refined using a riding model. The 

structure was refined (weighted least-squares refinement on F2) to convergence. Graphical 

representations of  structures with 50% probability thermal ellipsoids were generated using 

Diamond 3 visualization software.100 
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Table 4.5. Crystal data and structure refinement for 1, 2, 3a, and 5 

 1 2 3a 5 
CCDC 

Number95 1853068 1853069 1853070 
1869798 

Empirical 
formula 

C71H78O2Zr C72.44H93.75O6.57Zr C92.42H96.5O3Zr C77H85NO3Zr 

Formula 
weight 

1054.55 1160.69 1346.44 1163.67 

Temperature/
K 

100.15 100 100.0 100.02 

Crystal system triclinic triclinic triclinic monoclinic 
Space group P-1 P-1 P-1 P21/c 

a/Å 11.101(4) 12.4092(6) 12.350(2) 13.2545(11) 
b/Å 12.844(4) 12.7750(8) 12.845(2) 25.037(2) 
c/Å 21.787(7) 20.5948(17) 27.404(4) 19.9334(16) 
α/° 101.462(14) 93.281(3) 78.961(7) 90 
β/° 99.260(9) 103.293(4) 80.374(5) 107.996(3) 
γ/° 93.809(11) 99.373(3) 63.052(12) 90 

Volume/Å3 2989.4(17) 3119.7(4) 3787.6(11) 6291.2(9) 
Z 2 2 2 4 

ρcalcg/cm3 1.172 1.236 1.181 1.229 
μ/mm-1 0.227 0.229 0.195 1.803 
Crystal 

size/mm3 
0.4 × 0.2 × 0.1 0.22 × 0.16 × 

0.11 
0.25 × 0.25 × 

0.09 
0.09 × 0.05 × 

0.03 

Radiation MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

CuKα (λ = 
1.54178) 

2Θ range/° 4.698 to 61.314 4.398 to 73.656 4.58 to 69.918 5.848 to 105.636
GOF 1.057 1.038 1.147 1.065 

R1,a wR2
b [I>2 

σ(I)] 
0.0396, 0.0990 0.0423, 0.0902 0.0661, 0.1721 0.0979, 0.2382 

aR1 = Σ||F0| − |Fc||/Σ|F0|. b wR2 = [Σ[w(F0
2−Fc

2)2]/Σ[w(F0
2)2]1/2 
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CHAPTER 5 
 

Synthesis of N-doped Nanographenes through Zirconium Catalysis and 

Reductive Cyclization 
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ABSTRACT 

The synthesis and study of atomically-precise N-doped nanographenes for their 

use as electronic and optical materials are of much interest. However, methods towards 

their synthesis remain limited. Herein we report the Zr-catalyzed synthesis of a variety of 

pyridine-containing and pyrimidine-containing aromatic systems via coupling of alkynes 

and nitriles in good yields. This methodology offers an alternative route towards large 

asymmetric N-containing aromatic systems from simple alkyne and nitrile building blocks. 

These molecules can then be cyclized to N-doped nanographenes via an initial reductive 

cyclization step followed by oxidative dehydrogenation. This represents the first reported 

use of this methodology toward the synthesis of N-doped nanographenes. Additionally, 

full structural characterization of these N-doped nanographenes both in solution and in 

the solid state has also been carried out.  
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INTRODUCTION 

The incorporation of  nitrogen moieties into polycyclic aromatic hydrocarbons (PAHs) 

has attracted much interest, especially in their use as electronic or nonlinear optical materials.1-

3 Additionally, the ability to synthesize atomically-precise nanographenes (e.g. nanoribbons) 

provides scientists with avenues to tune their bandgaps, expanding their use in digital 

electronics.4-7 The presence of  these nitrogen moieties also enable these frameworks to 

function as ligands to metal centers,8-9 some of  which display oxygen-reduction reaction 

activity.10-11 The controlled incorporation of  nitrogen moieties into PAHs still remains a 

significant challenge.12-13 Current syntheses of  these nitrogen-containing PAHs from a 

bottom-up approach often involve either a Diels-Alder [2+4] cycloaddition of  alkynes with 

cyclopentadienones bearing N-heterocyclic substitutions,14 or [2+2+2] cyclotrimerization of  

N-heterocycle-substituted acetylenes.15 The use of  [2+2+2] heterocyclization of  alkynes with 

nitriles towards nitrogen-containing PAHs is far less explored even though it offers a more 

modular synthesis towards structurally complex asymmetric PAHs.16 The scarcity of  its use is 

likely due to regio- and chemoselectivity issues when asymmetric substrates are employed, 

leading to complicated mixtures and/or poor yields.17-18 

We have previously reported zirconium complex 1 to be competent in the [2+2+2] 

cotrimerization of  alkynes and nitriles to yield tri- and tetra-substituted pyrimidines with 

exclusive regio- and chemoselectivities (Scheme 5.1).19 Additionally, we recently found that 1 

was also a competent catalyst for the coupling of  1,6-heptadiyne with benzonitrile to yield a 

fused-ring pyridine product (see Chapter 4). The non-innocent nature of  the anthracenediyl 

Scheme 5.1. Catalytic synthesis of  N-heteroaromatics by complex 1  
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linker is proposed to be key in these transformations by acting both as an electron sink and a 

hemilabile donor, facilitating the turnover of  intermediates that contain strong Zr–N bonds. 

We postulated that these methodologies can be extended towards the synthesis of  N-

containing PAHs through the judicious choice of  polyaromatic alkyne and nitrile substrates. 

This would allow for the rapid and modular synthesis of  large, complex N-containing PAHs 

from simple alkyne and nitrile building blocks. 
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RESULTS AND DISCUSSION 

1. Synthesis of  Pyridine-containing PAHs  

 Leveraging the 1-catalyzed pyridine synthesis we previously developed (see Chapter 4), 

the synthesis of  polyaromatic compounds bearing a central pyridine motif  was targeted. By 

using the basic motif  of  2,2'-diethynylbiphenyl and 2-phenyl benzonitrile, the one-step 

catalytic synthesis of  a complex pyridine-containing polyaromatic can be envisioned (Scheme 

5.2). Upon, further oxidative cyclodehydrogenation, an N-doped nanographene may be 

prepared. Further expansion of  the PAH will be targeted by the use of  asymmetric variants 

of  biphenyldiyne by substitution of  an additional arene motif  on one of  the alkynes (Scheme 

5.2). The use of  biphenyldiynes to build up triphenylene-based polyaromatic molecules or 

natural products have been reported.20-21 Additionally, dialkyl substituted biphenyldiyne motifs 

with internal alkynes have been used in the dicyclopentadienyl zirconium-mediated synthesis 

of  expanded helicenes.22  

 Initial studies and optimizations were carried out on 2,2′-bis(ethynyl)1,1'-biphenyl, 2a, 

Scheme 5.2. Proposed synthesis of  pyridine-containing nanographenes. Atoms originating 

from alkyne and nitrile are colored red and blue, respectively. Bonds formed on oxidative

cyclodehydrogenation are colored pink. 
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and 2-phenyl benzonitrile, 3a, as model substrates (Table 5.1). By varying the catalyst loading, 

it was found that an increase from 5 mol% to 10 mol% loading resulted in a significant increase 

in yields (entries 1 and 2), while a further increase to 15 mol% loading led to marginal 

improvements (entry 3). Reducing the nitrile excess to 5 equiv. relative to diyne led to a loss in 

yields (entry 4), while a further increase to 25 equiv. did not significantly improve yields (entry 

5). As with the previously discussed pyridine synthesis, reaction times can be significantly 

shortened at elevated temperatures of  105 °C (entry 6). Using these optimized conditions, the 

reaction was scaled up 20-fold, with provided isolated yields of  74%. Additionally, prior to 

purification, the excess nitrile used in the catalysis can be recovered by sublimation or 

Kugelrohr distillation in a practically quantitative amount (>98%). While it was observed that 

no starting material was present after the reaction under the optimized conditions, attempts 

to identify side-products in these reactions have not yielded conclusive results 

 Expanding on the initial substrate scope and the potential size of  the PAHs, the 

synthesis of  asymmetric phenyl-substituted biphenyldiyne 2b was targeted. We initially 

Table 5.1. Optimization of  1-catalyzed coupling of  2a with 3a 

1

PhMe
CN

N

+

Conditions

2a 3a 4aa  

entry a1/mol %
nitrile 

(equiv.) 
temperature/ 

°C 
time/h byield/ % 

1 5 10 60 24 29 

2 10 10 60 24 52 

3 15 10 60 24 57 

4 10 5 60 24 31 

5 10 25 60 24 59 

6 10 10 105 4 50 
aconditions: 4.9 μmol (1), 3 mL PhMe; bbased on 1H NMR integration with 1,3,5-
trimethoxybenzene standard
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approached the synthesis of  this compound via Sonogashira coupling of  2a with iodobenzene. 

However, poor selectivity resulted in the formation of  mixtures of  starting, mono-coupled, 

and di-coupled diynes, which proved challenging to separate. Step-wise coupling of  

trimethylsilylacetylene followed by phenylacetylene (or in reverse) with 2-bromo-2'-

iodobiphenyl led to a mixture of  products including a significant amount of  substituted 

phenanthrenes.23 The successful synthesis of  2b was realized via Negishi coupling of  each 

half  of  the biphenyl motif  followed by trimethylsilyl group deprotection (Scheme 5.3). Using 

similar conditions described before, 2b can be catalytically coupled with 3a to afford 4ba in 

moderate yields (64%) (Scheme 5.3). The slight reduction in yield may be due to the sterically 

more challenging internal alkyne present in 2b. In the previously reported pyrimidine 

synthesis, sterically comparable diphenylacetylene was not a competent substrate.19 

 Oxidative cyclodehydrogenation of  4aa was initially probed with commonly employed 

Scholl reaction conditions.15, 24-26 Several reaction conditions tried, such as (i) 

FeCl3/CH3NO2/CH2Cl2, (ii) AlCl3/CuCl2/CS2, and (iii) CF3SO3H/DDQ ( 2,3-Dichloro-5,6-

dicyano-1,4-benzoquinone), did not result in significant reactivity with 4aa. The Scholl 

reaction is suggested to take place via the generation of  a proposed radical cation or arenium 

cation.27-28 The more electron-deficient nature of  the pyridine motif  and the absence of  

resonance-stabilizing groups may preclude the generation of  such species. In contrast, it has 

been reported that pyridine and pyrimidine motifs can be reductively dimerized by the initial 

Scheme 5.3. Synthesis of  asymmetric biphenyldiyne 2b and subsequent coupling with 3a 
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generation of  a radical anion in the presence of  a reducing alkali metal, followed by subsequent 

oxidation to afford the neutral dimeric bipyridine or bipyrimidine species.29-31 We postulated 

that this route may better activate the electron-deficient pyridine motif  towards initial coupling 

with the neighboring arene moiety. If  this route proves to be successful, it may offer an 

alternative strategy of  cyclodehydrogenation of  similar N-containing PAHs.  

 A variety of  alkali metal-based reductants such as sodium, sodium-mercury amalgam, 

potassium and sodium-potassium alloy (NaK) were tested towards the reduction of  4aa. 

Amongst those, it was found that only potassium or NaK was sufficiently reducing towards 

4aa resulting in an intense darkening minutes after addition of  a THF solution of  4aa. After 

stirring at room temperature for 48 hours, the deep purple-black suspension was quenched 

with isopropanol (iPrOH). Following oxidation via a variety of  methods including bubbling 

air, bubbling O2 and addition of  DDQ, the presence of  a copious amount of  precipitate was 

observed. The precipitate was found to be insoluble in a variety of  common NMR solvents, 

and what was observed in solution was only a trace amount of  unreacted 4aa. Recognizing 

that upon planarization, strong π-π stacking interactions between the cyclized molecules may 

result in poor solubility, we turned to target diynes 2c and 2d that contained solubilizing 

groups that would additionally mitigate these stacking effects, allowing the products to retain 

some solubility in organic solvents (Figure 5.1).32 

 Tert-butyl substituted iodobromobenzene was synthesized via initial bromination of  

 
Figure 5.1. Biphenyldiynes 2c and 2d containing solubilizing groups. 
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4-tert-butylaniline followed by a Sandmeyer reaction to install the iodo group. Subsequently, 

symmetric diyne 2c and asymmetric diyne 2d, substituted with a 4-tert-butyl phenyl group, can 

be accessed via similar routes discussed previously. 

 Coupling of  2c with 3a under the optimized catalytic conditions provided pyridine 

4ca with similar yields (82%) (Scheme 5.4). Reduction of  4ca with a K0 mirror over 48 hours, 

followed by a protic quench with iPrOH and oxidation with DDQ provided a pale yellow solid 

after work up that was moderately soluble in CDCl3. From the 1H NMR, the clean formation 

of  a new species, 5ca, was observed. Most of  the resonances, both in the aromatic and 

aliphatic regions, are observed to shift downfield compared to 4ca (Figure 5.2). The singlet 

that was could initially be assigned to the proton meta to the pyridine nitrogen is no longer 

present in 5ca. Additionally, integrating the peaks observed in the aromatic region of  5ca, 13 

aromatic protons can be accounted for, consistent with the formation of  two new aryl-aryl 

C−C bonds and loss of  four protons compared to 4ca. 

Scheme 5.4. Synthesis pyridine-containing N-doped nanographenes 
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 Recrystallization of  5ca by slow evaporation of  a saturated CHCl3 solution provided 

crystals suitable for single crystal X-ray diffraction (XRD). The solid-state structure of  5ca 

confirmed our initial assignment of  5ca as planarized N-doped nanographene containing 30 

π-electrons (Figure 5.3). From the side view, it is apparent that there is a slight curvature in the 

π-system, ranging from 8.0-10.3° between planes. Similar curvatures or twists have been 

observed in previously reported comparably-sized PAH systems33-35 When the unit cell is 

grown, π-π stacking is observed between molecules of  4ca with the bulky tert-butyl groups on 

alternating ends of  stacked units. The π-π stacking distance is approximately 3.33 Å with the 

minimum interplane C−C distances at 3.463(3) Å which in the range of  that reported for 

graphite.36 This method of  reductive cyclodehydrogenation, to the best of  our knowledge, is 

Figure 5.2. NMR spectra of  4ca and 5ca. 
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the first example of  it use towards the generation of  N-doped nanographenes. It offers a 

powerful route, complementary to the more precedented oxidative cyclodehydrogenation,14, 24, 

28 or solid surface routes,37-38 towards the challenging syntheses of  these N-doped 

nanographenes. 

 Analogously, 4da, with an additional phenyl substituent, can be accessed by 1-catalyzed 

coupling of  the asymmetric diyne 2d with nitrile 3a in moderate yields (56%) (Scheme 5.4). 

Reduction of  4da with potassium for 48 hours followed by a protic quench with iPrOH and 

 

Figure 5.3. Solid-state structure of  5ca. Top view of  one of  two molecules in asymmetric 

cell (top), side-on view showing stacking (bottom). Thermal ellipsoids shown at 50% 

probability. Nitrogen atoms shown in blue. Hydrogen atoms omitted for clarity. 

N1 

N1 

N1 

N1 

N1 
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oxidation with DDQ provided a new yellow species, 5da, after workup. From the 1H NMR, 

similar downfield shifts were observed compared to 4da along with the loss of  the singlet that 

was assigned to the proton on the pyridine ring. Solid-state studies on crystals grown from a 

saturated chloroform solution of  5da confirmed the successful cyclodehydrogenation and 

planarization of  4da to give an N-doped PAH containing 36 π-electrons (Figure 5.4). From 

the side-on view, very slight curvature is observed, and as with 5ca, the bulky tert-butyl groups 

are oriented towards opposite ends between the stacked layers. The minimum C−C contact 

between layers is 3.507(5) Å with interlayer distances of  about 3.39 Å, both slightly elongated 

 

Figure 5.4. Solid-state structure of  5da. Top view of  one of  two molecules in asymmetric 

cell (top), side-on view showing stacking (bottom). Thermal ellipsoids shown at 50% 

probability. Nitrogen atoms shown in blue. Hydrogen atoms omitted for clarity. 
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 N1 
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compared to 5ca. In addition to 5ca and 5da, the evidence for the synthesis of  naphthyl-

substituted 4cb and subsequent cyclodehydrogenation to 5cb has also been obtained from 1H 

NMR spectroscopy and recrystallization attempts are ongoing towards obtaining solid-state 

characterization for 5cb (Scheme 5.4). 

1.2 Dipyridine synthesis with dinitriles and tetraynes 

 With the methodology suitable for the synthesis of  a variety of  pyridine containing 

nanographenes, the rapid expansion of  the potential size of  their π-systems was sought out 

Scheme 5.5. Proposed synthesis of  dipyridine-containing nanographenes. Atoms originating 

from alkyne and nitrile are colored red and blue, respectively. Bonds formed on oxidative

cyclodehydrogenation are colored pink. 
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through the targeted synthesis of  their “dimeric” variants. We envisioned that by employing 

dinitriles and tetraynes, larger, multi N-doped nanographenes may be accessed using this 

methodology (Scheme 5.5). Tetrayne 2e can be obtained, following deprotection, through 

Negishi coupling of  trimethylsilyl-protected 2-bromo-4-tert-butylphenylacetylene with 

phenylene-bridged diyne 1,4-bis((2-bromo-4-(tert-butyl)phenyl)ethynyl)benzene. The latter is 

readily synthesized by Sonogashira coupling between 2-bromo-4-tert-butyliodobenzene and 

1,4-diethynylbenzene. Under the standard catalytic conditions with 3a, 1H NMR of  the 

product is consistent with the formation of  bis(pyridine) 4ea. The presence of  broad NMR 

feature suggests a potential fluxional process that arises from hindered bond rotation. Work 

in the reductive cyclization of  4ea is currently ongoing. 

Table 5.2. Optimization of  catalytic conditions for 2c with 2,2'-dicyanobiphenyl 

 

entry a1/mol % 
nitrile 

(equiv.) 
temperature/ °C time/h 

aratio of 
4cc:4'cc:2c 

1 10 5 105 4 1 : 6.8 : 25 

2 50 0.6 105 8 1 : nd : 0.1 

3c 10 0.6 105 8 1 : 0.6 : 2.3 

4 10 0.6 140d 8 1 : 0.8 : 5.1 

5 40 0.6 105 8 1 : 0.04 : 0.1 

6 30 0.6 105 8 1 : 0.1 : 0.2 
aconditions: 4.9 μmol (1), 3 mL PhMe; bbased on 1H NMR integration; cran at 30-fold concentration; dran 
in m-xyxlenes; nd: not detected. 
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 The use of  dinitriles as substrates will hypothetically allow for the generation of  more 

expansive PAHs. However, unlike tetrayne substrates, dinitrile substrates pose a problem under 

the standard catalytic conditions, which requires a 10-fold excess of  nitrile. The reaction of  2c 

with 2,2'-biphenyldicarbonitrile (3c) under these conditions resulted in the predominant 

formation of  the monopyridine product 4'cc (Table 5.2, entry 1). Several conditions were 

explored in order to circumvent the need for excess nitrile. With 0.6 equiv. dinitrile (1.2 equiv. 

nitrile group per diyne), it was found that increasing the catalyst loading to 50 mol% led to 

exclusive formation of  4cc, while either increasing the concentration of  the reaction or 

running the reaction at higher temperatures led to moderately improved selectivity towards 

4cc over 4'cc but displayed poor conversions. Reducing the catalyst loading to 40% and 30% 

showed marginal losses in selectivity, yielding approximately 4% and 10% of  4'cc, respectively. 

Eventually, a 35% catalyst loading was chosen as our optimized conditions for catalytic 

dipyridine synthesis from dinitriles. Notably, under all these conditions, there was no evidence 

for the intramolecular coupling of  the dinitrile to yield a diazazirconacyclopentadiene 

intermediate and subsequently a pyrazine ring upon alkyne coupling. Such transformations 

have been reported in other “reduced” early metal complexes.16 Reductive cyclization of  4cc 

is currently underway. Additionally, the syntheses of  dicyanobenzenes 3d and 3e are also 

currently being targeted. 

2. Synthesis of  Pyrimidine-containing PAHs 

 In addition to pyridine-containing PAHs, we wanted to leverage the powerful 

methodology previously developed for the synthesis of  pyrimidines by the [2+2+2] 

cotrimerization of  two nitriles with an alkyne to synthesize pyrimidine-containing PAHs.19 We 

envisioned that catalytic cotrimerization of  terphenyldiyne 2f with benzonitrile, 3f, will 

generate dipyrimidine PAH 4ff, which upon oxidative cyclodehydrogenation will yield 4N-
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doped nanographene 5ff (Scheme 5.6). Larger variants may be accessed by extension of  the 

substrates, for example using tetraphenyldiyne and 4-phenyl benzonitrile. 

 2f can be synthesized via Suzuki coupling of  phenylene-1,4-diboronic acid with 

trimethylsilyl-protected 2-bromophenylacetylene followed by base-mediated deprotection. 

Using the optimized conditions for pyrimidine synthesis, the reaction of  2f with a 12-fold 

excess of  3f at 105 °C for one hour provided a new species along with some starting material. 

Longer reaction times did not significantly improve conversion. Further analysis of  this 

species by 1H NMR spectroscopy showed the presence of  a resonance at 2.72 ppm, consistent 

with an alkynyl proton, but distinct from 2f. Furthermore, integration of  the aromatic region 

Scheme 5.6. Proposed synthesis of  dipyrimidine-containing nanographenes. Atoms 

originating from alkyne and nitrile are colored red and blue, respectively. Bonds formed on 

oxidative cyclodehydrogenation are colored pink. 
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supported the presence of  22 aromatic protons. Both observations provide evidence for the 

assignment of  this species as 4'ff, a monopyrimidine formed from the cyclization of  one of  

the alkyne arms of  2f with two equivalents of  3f (Scheme 5.7).  

 The lack of  formation of  the dipyrimidine product 4ff could be due to a few reasons. 

4'ff may be sparingly soluble under the reaction conditions impeding the second 

cotrimerization. Alternatively, the dipyrimidine product 4ff may be insoluble in the NMR 

solvent, preventing observation in the solution state. Another potential reason for the absence 

of  4ff is due to steric reasons. Taking a closer look at the solid-state structure of  previously 

reported azazirconacyclopentadiene (see chapter 4, Figure 4.6),19 a key intermediate for the 

synthesis of  pyridines in this system, the phenyl ring that originated from the alkyne lies 

perpendicularly to zirconacyclopentadiene ring, likely to minimize steric repulsion with the 

adjacent alkenyl proton (on C58) and neighboring THF ligand. It is likely that upon the 

formation of  4'ff, the second alkyne becomes sterically inaccessible to the zirconium center 

due to the steric pressure exerted by the newly formed proximal triarylpyrimdine motif.  

 We postulated that the use of  tetraphenyl diyne 2g should alleviate the steric issue by 

situating the bulky group further away from the catalytic site. 2g was synthesized in an 

analogous fashion as 2f starting from [1,1'-biphenyl]-4,4'-diyldiboronic acid. Gratifyingly, the 

reaction of  2g and 3f with 10 mol% 1 in toluene at 105 °C for four hours led to the clean 

Scheme 5.7. Formation of  4'df under standard catalytic conditions 
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formation of  desired dipyrimidine product 4gf in moderate yields (61%) (Scheme 5.8). This 

12 PhCN (3f)
1 (10 mol%)

PhMe
105 °C, 1 h

2g
4gf

N N

NN

1 (10 mol%)

PhMe
105 °C, 1 h

CN12

4'gg

NN 3g

observation, along with the generation of  exclusively monopyrimidine product 4'gg when 4-

phenyl benzonitrile 3g was used, supports the steric argument for the product distributions in 

these systems. 

 A variety of  Scholl reaction conditions (FeCl3/CH3NO2/CH2Cl2, AlCl3/CuCl2/CS2, 

and CF3SO3H/DDQ) were tested to oxidatively cyclodehydrogenate 4gf. However, intractable 

mixtures after workup were obtained. From the reaction with CF3SO3H/DDQ, a diprotonated 

4gf (based off  of  charge balance with triflates), co-crystallized with two DDQ molecules, was 

Scheme 5.8. Reaction of  2e with 3f or 3g under standard catalytic conditions 

 

Figure 5.5. Preliminary solid-state structure of  [4gf-(H)2]2+. Nitrogen atoms shown in blue.

Hydrogen atoms, counter anions, solvent, and cocrystallized DDQ omitted for clarity. 
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obtained, providing an approximate structure of  4gf in the solid state (Figure 5.5). 

 In order to minimize the likelihood of  forming sparingly soluble nanographene after 

cyclodehydrogenation, synthesis of  3-tert-butyl benzonitrile (3h) was targeted. With the bulkier 

nitrile, doubling the catalyst loading to 20% was necessary for complete conversion of  starting 

materials, providing dipyrimidine, 4gh, in yields of  60%. Unfortunately, under the same Scholl 

oxidative conditions, no reaction was observed. Likewise, under similar reductive cyclization 

conditions (K0
 or NaK followed by protic quench and reoxidation with DDQ) employed for 

pyridine polyaromatics in the previous section, no significant reactivity was observed with 4gh.  

 The palladium-catalyzed intramolecular coupling of  aryl chlorides with arenes has 

been reported for the synthesis of  an azacorannulene and curved N-containing 

“Buckybowls”.39-40 In order to examine if  such a method would be effective for our system, 

the use of  a nitrile or an alkyne substrate with strategically-placed chlorides was targeted. 

Attempted catalytic cotrimerization of  2g with 2,3-dichlorobenzonitrile 3i did not lead to any 

pyrimidine formation under the standard conditions. This may be due to potential poisoning 

of  the catalyst by the large excess, 120 equiv. vs. catalyst, of  halogenated nitrile present. 

Instead, placement of  chlorides on the alkyne coupling partner, used in a smaller excess, was 

targeted. Dichloro-substituted alkyne 2h was synthesized and used in the catalytic coupling 

with 3h to afford pyrimidine 4hh in good yields (72%) (Scheme 5.9).  

Scheme 5.9. Catalytic synthesis of  4hh 
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 Using the Pd-catalyzed cyclization conditions reported previously with 4hh, however, 

resulted in an intractable mixture by 1H NMR spectroscopy. It was hypothesized that 

subjecting 4hh to reductive conditions in the presence of  an alkali metal may allow for the 

reduction of  the dichlorophenyl group that may then couple productively with the adjacent 

rings. Addition of  4hh as a thawing THF solution to potassium and allowing to stir for 48 

hours before quenching with iPrOH and oxidizing with DDQ provided a new major species 

5hh as a crude mixture. This species also formed as a minor product in the Pd reaction. 

Purification by silica gel chromatography allowed for the isolation of  this species. From the 

1H NMR (Figure 5.6), a significant downfield shift of  all the peaks with respect to 4hh was 

observed. Similar shifts have been observed in the pyridine-containing nanographenes 

discussed previously. Additionally, if  hydrodehalogenation had simply occurred, it would be 

expected that the NMR spectrum to have similar chemical shifts that of  4gh, a rough 

approximation of  a “dimer” of  4hh. However, both species show significantly different 

resonances in both the aromatic and the aliphatic regions (Figure 5.6).  

 As the solid-state characterization of  this species had initially eluded us, we turned to 

other techniques commonly employed for characterization of  these nanographene products. 

From the 1H NMR spectrum, integration of  the aromatic region also revealed the presence 

of  13 aromatic protons. Additionally, using Distortionless Enhancement by Polarization 

Scheme 5.10. Reductive cyclization of  4hh 
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Transfer (DEPT) NMR pulse sequence which suppresses quaternary carbons, the presence of  

13 aromatic C–H carbons is confirmed. With fast atom bombardment mass spectrometry, the 

presence of  a species with a parent peak of  m/z 549.3289 was also detected. All these 

observations are consistent with successful cyclization to provide the desired pyrimidine-

containing nanographene 5hh (Scheme 5.10). A preliminary solid-state structure was obtained 

(Figure 5.7), as due to the nature of  the crystal growth, sufficiently large crystals could not be 

obtained to provide full structural characterization. The mechanism of  this ring closing is 

unlikely to be the same as that observed with the pyridine-containing PAHs. Instead, the 

potential generation of  a benzyne intermediate in the presence of  the reducing potassium 

followed by intramolecular [2+4] cycloaddition may have taken placed.41-42 Following oxidative 

dehydrogenation, 5hh is afforded. With definitive evidence for the successful cyclization, 

ongoing efforts are currently underway to synthesize the halogenation variant of  2g in order 

Figure 5.6. 1H NMR spectra of  4hh (blue), 5hh (green), and 4gh (red). 
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to target the synthesis of  bis(pyrimidine)-containing nanographenes. 

 

 

 

 

  

 

Figure 5.7. Preliminary solid-state structure of  5hh. Nitrogen atoms shown in blue. 

Hydrogen atoms omitted for clarity. 
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CONCLUSION 

 The catalytic synthesis of  a variety of  nitrogen-containing PAHs featuring pyridine or 

pyrimidine motifs using a zirconium complex supported by a non-innocent anthracenediyl 

motif  has been demonstrated. This methodology allows for the rapid and divergent synthesis 

of  a variety of  PAHs by the coupling of  either symmetric or asymmetric biphenyldiynes with 

a range of  arylnitriles. Additionally, further expanded PAHs can be afforded using dinitriles 

and tetraynes, effectively building “dimeric” variants of  the initially synthesized PAHs. 

Additionally, we have developed a new methodology towards the dehydrocyclization of  

pyridine-containing PAHs to planar N-doped nanographenes under reductive conditions in 

the presence of  K0. Following a protic quench and reoxidation by DDQ, N-doped 

nanographene products can be obtained in excellent yields. This new method offers an 

alternative, complementary route to the more common oxidative cyclodehydrogenation routes 

reported previously. For pyrimidine-containing PAHs that cannot be initially dehydrogenated 

via this route, the strategic installation of  chloride groups at key ring-closing junctions allowed 

for successful cyclization under the same conditions. Ongoing work is currently focused on 

further expanding the scope of  N-doped nanographenes that can be synthesized and studying 

their optical properties.  
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.43 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and C6D6 vacuum transferred from sodium benzophenone ketyl before use. All 

solvents, once dried and degassed, were stored under a nitrogen atmosphere over 4 Å 

molecular sieves. 2-phenyl benzonitrile (3a),44 2,2′-bis(ethynyl)-1,1′-biphenyl (2a),45 1,19 ((2-

bromophenyl)ethynyl)trimethylsilane,45 were prepared according to literature procedures. Pre-

reduced Teflon-coated stir bars (prepared via stirring a Na[C10H8] solution overnight followed 

by rinsing three times with THF) were utilized in any stirred reaction in which K0 or NaK 

were employed as reagents. Alkynes and nitriles purchased were either sublimed under reduced 

pressure or distilled from calcium hydride before use as substrates for cotrimerization. 

Triethylamine was degassed and distilled from calcium hydride before use. All other reagents 

were used as received. 1H, 13C{1H}, and 19F NMR spectra were recorded on Varian Mercury 

300 MHz or Varian 400 MHz spectrometers at ambient temperatures unless otherwise 

denoted. 1H and 13C{1H} NMR spectra are reported referenced internally to residual solvent 

peaks reported relative to tetramethylsilane. Fast atom bombardment-mass spectrometry 

(FAB-MS) analyses were performed with a JEOL JMS-600H high-resolution mass 

spectrometer. 

 

Experimental 
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1-bromo-2-(2-naphthyl)benzene.46 A Schlenk tube fitted with a screw-in Teflon stopper was 

charged with 2-bromoiodobenzene (3.0 mL g, 23.4 mmol), 2-naphthylboronic acid (4.02 g, 

23.4 mmol) and anhydrous potassium carbonate (8.07 g, 58.4 mmol) suspended in a mixture 

of  toluene (210 mL), ethanol (60 mL) and water (60 mL). The suspension was degassed via 

three freeze-pump-thaw cycles, after which tetrakis(triphenylphosphine) palladium(0) (1.35 g, 

1.17 mmol) was added under a counter flow of  nitrogen. The flask was sealed and heated to 

70 °C for 8 h with stirring. After cooling to room temperature, water (100 mL) was added and 

the organic layer separated. The aqueous layer was extracted with CH2Cl2 (2 × 100 mL). The 

organic extracts were combined and dried over MgSO4, filtered, and concentrated in vacuo. 

The crude yellow oil was purified via silica gel column chromatography (eluent: hexanes) yield 

the product as a white solid (6.03 g, 91 %). 1H NMR (300 MHz, CDCl3): δ 7.93 – 7.84 (m, 4H), 

7.74 – 7.69 (m, 1H), 7.57 (dd, J = 8.5, 1.8 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.45 – 7.36 (m, 2H), 

7.28 – 7.21 (m, 1H). 

 

General procedure for the synthesis of  arylnitriles from arylbromides.  

Adapted from a previously reported procedure.44 In a Schlenk flask fitted with a screw-in 

Teflon stopper was charged with NaCN (1.2 equiv.), KI (20 mol%) and CuI (10 mol%). The 

flask was then evacuated and refilled with nitrogen three times before dry, degassed toluene 

(to give a 1.3 M solution of  arylbromide) was added. N,N-dimethylethylenediamine (1 equiv.) 

followed by arylbromide (1 equiv.) was then add. The flask was sealed and heated to 130 °C 
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and stirred for 24 h. After the reaction was complete, it was allowed to cool to room 

temperature and 30% NH4OH added. The mixture was then extracted with ethyl acetate, dried 

over MgSO4, filter and concentrated in vacuo to yield the desired nitrile after purification by 

silica gel column chromatography. Cyanide containing waste can be decontaminated using a 

solution of  NaOCl in water (CLOROX bleach). See: Lunn, G.; Sansone, E. B. Destruction of  

Hazardous Chemicals in the Laboratory, 2nd ed., Wiley & Sons: New York, 1994; pp 133-138. 

 

2-(naphthalen-2-yl)benzonitrile (3b).47 Purified by silica gel column chromatography 

(eluent: hexanes → 10% EtOAc in hexanes) then sublimed in vacuo. Colorless solid (1.01 g, 

84%). 1H NMR (300 MHz, CDCl3): δ 8.05 (d, J = 1.1 Hz, 1H, ArH), 7.98 (d, J = 8.5 Hz, 1H, 

ArH), 7.96 – 7.87 (m, 2H, ArH), 7.81 (dtd, J = 7.7, 1.2, 0.5 Hz, 1H, ArH), 7.73 – 7.60 (m, 3H, 

ArH), 7.59 – 7.52 (m, 2H, ArH), 7.47 (dddd, J = 7.8, 7.1, 1.6, 0.9 Hz, 1H, ArH). 

 

1,1'-biphenyl-2,2'-dicarbonitrile.48 Recrystallized from hot EtOAc. Pale brown needles (0.96 

g, 80%). 1H NMR (300 MHz, CDCl3): δ 7.86 – 7.82 (m, 2H), 7.73 (ddd, J = 7.9, 7.4, 1.4 Hz, 

2H), 7.61 – 7.54 (m, 4H). 

 

3-tert-butylbenzonitrile (3h).49 Purified by silica gel column chromatography (3% 

EtOAc:hexanes). Colorless oil (6.43g, 86%). 1H NMR (300 MHz, CDCl3): δ 7.66 (ddd, J = 2.1, 

1.5, 0.7 Hz, 1H, ArH), 7.62 (ddd, J = 7.8, 2.0, 1.4 Hz, 1H, ArH), 7.47 (dt, J = 7.6, 1.5 Hz, 1H, 

ArH), 7.39 (td, J = 7.7, 0.7 Hz, 1H, ArH), 1.32 (s, 9H, CH3). 
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2-Bromo-4-tert-butylaniline. Modified from a previous procedure.50 To a solution of  4-tert-

butylaniline (20.0 g, 134 mmol) in CH2Cl2 (600 mL) was added N-bromosuccinimide (25.2 g, 

142 mmol) in portions over 15 minutes. The reaction was allowed to stir at room temperature 

for 1 h and then the volatiles were removed in vacuo. The crude oily suspension was passed 

through a silica gel plug and eluted with hexanes. Concentration of  the eluent provided 2-

bromo-4-tert-butylaniline as a pale pink oil (27.7 g, 91%). 1H NMR (300 MHz, CDCl3): δ 7.41 

(d, J = 2.2 Hz, 1H, ArH), 7.14 (dd, J = 8.3, 2.2 Hz, 1H, ArH), 6.73 (d, J = 8.3 Hz, 1H, ArH), 

3.94 (br s, 2H, NH2), 1.27 (s, 9H, CH3). 

 

2-Bromo-4-tert-butyliodobenzene. Modified from a previous procedure.51 2-Bromo-4-tert-

butylaniline (27.0 g, 118 mmol) was taken up in a mixture of  H2O (500 mL) and concentrated 

aqueous H2SO4 (60 mL) and cooled to 0 °C. A solution of  sodium nitrite (10.6 g, 154 mmol) 

in H2O (20 mL) was added dropwise to the reaction at 0 °C. After stirring for an hour at 0 °C, 

a solution of  potassium iodide (29.5 g, 177 mmol) in H2O was then added slowly at 0 °C 

(caution: effervescence). After complete addition, the reaction was allowed to warm to room 

temperature and stirred overnight. Saturated aqueous sodium metabisulfite was added till no 

addition decolorization was observed and stirred for 20 minutes. The reaction was then 

extracted with EtOAc (3 × 150 mL) and the combined extracted washed with H2O (300 mL), 

dried over MgSO4, filtered, and concentrated in vacuo to yield a dark brown oil. Purification 

via silica gel column chromatography (eluent: hexanes) to provide 2-bromo-4-tert-

butyliodobenzene as a colorless oil (31.1 g, 78%). 1H NMR (300 MHz, CDCl3): δ 7.75 (d, J = 
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8.3 Hz, 1H, ArH), 7.62 (d, J = 2.3 Hz, 1H, ArH), 7.02 (dd, J = 8.4, 2.3 Hz, 1H, ArH), 1.28 (s, 

9H, CH3). 

 

General conditions for Sonogashira coupling 

Modified from a previous procedure.52 To a Schlenk flask fitted with a screw-in Teflon stopper 

was added a solution of  aryl iodide (1.0 equiv.) in 1:1 mixture of  Et3N and THF (0.8 M), 

tetrakis(triphenylphosphine) palladium(0) (5 mol%), and copper(I) iodide (10 mol%). Terminal 

alkyne (1.1 equiv.) was then introduced via syringe through a septum under N2 or added as a 

solid under N2 counter flow. The reaction was sealed and warmed to 40 °C for 6 to 12 h. After 

cooling to room temperature the reaction was filtered through a pad of  silica gel and eluted 

with EtOAc. The eluent was concentrated in vacuo and the crude product purified via silica 

gel column chromatography. 

 

((2-bromophenyl)ethynyl)trimethylsilane.53 Purified via silica gel column chromatography 

(eluent: hexanes) to provide 1-bromo-2-(phenylethynyl)benzene as a colorless oil (2.46 g, 

quant.). 1H NMR (300 MHz, CDCl3): 7.57 (dd, J = 7.9, 1.3 Hz, 1H, ArH), 7.49 (dd, J = 7.6, 

1.8 Hz, 1H, ArH), 7.24 (td, J = 7.6, 1.3 Hz, 1H, ArH), 7.15 (td, J = 7.6, 1.8 Hz, 1H, ArH), 0.27 

(s, 9H, CH3). 

Br  
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1-bromo-2-(phenylethynyl)benzene.54 Purified via silica gel column chromatography 

(eluent: hexanes) to provide 1-bromo-2-(phenylethynyl)benzene as a colorless oil (2.38 g, 

95%). 1H NMR (300 MHz, CDCl3): 7.64 – 7.54 (m, 4H, ArH), 7.40 – 7.34 (m, 3H, ArH), 7.30 

(td, J = 7.6, 1.3 Hz, 1H, ArH), 7.18 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H, ArH). 

 

((2-Bromo-4-(tert-butyl)phenyl)ethynyl)trimethylsilane.52 Purified via silica gel column 

chromatography (eluent: hexanes) to provide ((2-Bromo-4-(tert-

butyl)phenyl)ethynyl)trimethylsilane as a yellow oil (5.9 g, 81%). 1H NMR (300 MHz, CDCl3): 

δ 7.57 (d, J = 1.8 Hz, 1H, ArH), 7.41 (d, J = 8.2 Hz, 1H, ArH), 7.24 (dd, J = 8.2, 1.8 Hz, 1H, 

ArH), 1.29 (s, 9H, C(CH3)3), 0.27 (s, 9H, Si(CH3)3). 

 

2-bromo-4-(tert-butyl)-1-((4-(tert-butyl)phenyl)ethynyl)benzene.55 Purified via silica gel 

column chromatography (eluent: hexanes) to provide 2-bromo-4-(tert-butyl)-1-((4-(tert-

butyl)phenyl)ethynyl)benzene as a white solid (6.9 g, 79%) 1H NMR (300 MHz, CDCl3): δ 7.62 

(d, J = 1.9 Hz, 1H, ArH), 7.54 – 7.49 (m, 2H, ArH), 7.48 (d, J = 8.2 Hz, 1H, ArH), 7.41 – 7.36 

(m, 2H, ArH), 7.30 (dd, J = 8.2, 1.9 Hz, 1H, ArH), 1.33 (s, 9H, C(CH3)3), 1.32 (s, 9H, C(CH3)3). 

 

1,4-bis((2-bromo-4-(tert-butyl)phenyl)ethynyl)benzene. Purified via silica gel column 

chromatography (eluent: 2%EtOAc:hexanes). Yellow solid (4.5 g, 70%) 1H NMR (300 MHz, 
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CDCl3): δ 7.62 (d, J = 1.8 Hz, 2H, ArH), 7.55 (s, 4H, central ArH), 7.48 (d, J = 8.2 Hz, 2H, 

ArH), 7.31 (dd, J = 8.2, 1.9 Hz, 2H, ArH), 1.32 (s, 18H, CH3). 

 

5,5'-di-tert-butyl-2,2'-diethynyl-1,1'-biphenyl (2c). Adapted from a previously reported 

procedure.45 To a solution of  ((2-Bromo-4-(tert-butyl)phenyl)ethynyl)trimethylsilane (5.5 g, 

17.8 mmol) in THF (60 mL) at −78 °C was added dropwise nBuLi (12.2 mL, 1.6 M in hexanes) 

and allowed to stir at −78 °C for an hour. Copper(II) chloride (3.1 g, 23.1 mmol) was then 

added under a counter flow of  N2. The mixture was allowed to warm to room temperature 

and stirred overnight. The reaction was quenched by the addition of  H2O (10 mL) and then 

reduced in volume in vacuo. 10% aqueous NH4OH (50 mL) was added and then extracted 

with EtOAc (3 × 100 mL) The organic extracts were washed with H2O (100 mL), dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was taken up in MeOH (60 

mL) and THF (60 mL) and potassium carbonate (9.8 g, 70.9 mmol) was added and stirred 

overnight. The volatiles were removed and in vacuo the residue was partitioned between H2O 

(100 mL) and EtOAc (100 mL). The aqueous phase was extracted with EtOAc (2 × 100 mL) 

and the combined extract dried over MgSO4, filtered, and dried under reduced pressure. 

Purification by silica gel column chromatography (eluent: hexanes → 10% CH2Cl2:hexanes) 

provided 5,5'-di-tert-butyl-2,2'-diethynyl-1,1'-biphenyl as a white solid (1.82 g, 65.1 % over 2 

steps). 1H NMR (300 MHz, CDCl3): δ 7.61 (d, J = 2.0 Hz, 2H, ArH), 7.57 (d, J = 8.2 Hz, 2H, 

ArH), 7.34 (dd, J = 8.2, 2.1 Hz, 2H, ArH), 2.93 (s, 2H, C≡CH), 1.34 (s, 18H, CH3). 
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General procedures for Negishi coupling and deprotection towards asymmetric diynes 

A Schlenk flask fitted with a screw-in Teflon stopper was charged with a solution of  aryl 

bromide (1.0 equiv) in THF (0.4 M) and cooled to –78 °C. A 1.9M pentane solution of  tert-

butyllithium (2.1 equiv.) was added dropwise via cannula. The reaction was allowed to warm 

to room temperature and stirred for 1 h. The reaction was then brought into a N2-purged 

glovebox and ZnCl2 (0.7 equiv.) was added slowly in portions to the reaction. The mixture was 

allowed to stir at room temperature for 30 min. the second aryl bromide (0.95 equiv.) and 

Pd(PPh3)4 (2 mol%) was added, the flask sealed and warmed to 70 °C for 22 h. After cooling 

to room temperature, water was added to quench the reaction, and the reaction volume 

reduced in vacuo. The resulting suspension was taken up in CH2Cl2 and filtered through a silica 

gel plug, eluting further with CH2Cl2. The filtrate was then washed with water, dried over 

MgSO4, filtered, and concentrated under reduced pressure. The crude mixture was taken up 

in MeOH and THF and to that suspension, potassium carbonate (2 equiv.) was added and 

then allowed to stir at room temperature for 12 h. The volatiles were then removed under 

reduced pressure and the residue was partitioned between H2O and EtOAc. The aqueous 

phase was extracted with EtOAc and the combined extract dried over MgSO4, filtered, and 

concentrated in vacuo to yield the crude product that was purified by silica gel column 

chromatography. 
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2-ethynyl-2'-(phenylethynyl)-1,1'-biphenyl (2b). Purified by silica gel column 

chromatography (eluent: 2% EtOAc:hexanes). Viscous yellow oil (3.78 g, 80% over 2 steps). 

1H NMR (300 MHz, CDCl3): δ 7.70 – 7.60 (m, 2H, ArH), 7.54 – 7.32 (m, 6H, ArH), 7.31 – 

7.20 (m, 5H, ArH), 2.97 (s, 1H, C≡CH). 

 

5,5'-di-tert-butyl-2-((4-(tert-butyl)phenyl)ethynyl)-2'-ethynyl-1,1'-biphenyl (2d). 

Purified by silica gel column chromatography (eluent: 2% EtOAc:hexanes). Light brown solid 

(6.65 g, 84% over 2 steps). 1H NMR (300 MHz, CDCl3): δ 7.61 – 7.58 (m, 3H, ArH), 7.57 (s, 

1H, ArH), 7.37 (ddd, J = 8.2, 2.0, 1.4 Hz, 2H, ArH), 7.31 – 7.10 (m, 4H, ArH), 2.92 (s, 1H, 

C≡CH), 1.36 (s, 9H, CH3), 1.31 (s, 9H, CH3), 1.28 (s, 9H, CH3). 

 

1,4-bis((5,5'-di-tert-butyl-2'-ethynyl-[1,1'-biphenyl]-2-yl)ethynyl)benzene (2e). Purified 

by silica gel column chromatography (eluent: 3%EtOAc:hexanes). Off  white solid. 1H NMR 

(300 MHz, CDCl3): δ 7.61 (d, J = 2.1 Hz, 2H, ArH), 7.60 – 7.54 (m, 6H), 7.38 (t, J = 2.0 Hz, 

2H, ArH), 7.35 (t, J = 2.1 Hz, 2H, ArH), 7.06 (s, 4H, central ArH), 2.92 (s, 2H, C≡CH), 1.35 

(s, 18H, CH3), 1.27 (s, 18H, CH3). 
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5'-(tert-butyl)-2,3-dichloro-2'-ethynyl-1,1'-biphenyl (2h). Purified by silica gel column 

chromatography (eluent: hexanes). Pale yellow oil (8.0 g, 78% over 2 steps). 1H NMR (300 

MHz, CDCl3): δ 7.57 (dd, J = 8.2, 0.6 Hz, 1H ArH), 7.50 (dd, J = 7.0, 2.6 Hz, 1H, ArH), 7.41 

(dd, J = 8.2, 2.1 Hz, 1H, ArH), 7.32 – 7.30 (m, 1H, ArH), 7.29 (d, J = 1.5 Hz, 1H, ArH), 7.27 

(d, J = 6.1 Hz, 1H, ArH), 2.93 (s, 1H, C≡CH), 1.35 (s, 9H, CH3). 

 

General screening procedure for the catalytic synthesis of  pyridines PAHs from 

alkynes and nitriles 

To a Schlenk flask charged with toluene (2 mL), diyne (49.3 μmol) nitrile (0.493 mmol) and a 

Teflon-coated stir bar was added a toluene solution of  1 (5 mg, 4.93 μmol), adjusting total 

volume of  the reaction to 3 mL. The flask was then sealed and heated to the appropriate 

temperature for the desired reaction time. The reaction was allowed to cool to room 

temperature, and the volatiles removed in vacuo. 1,3,5-trimethoxhybenzene was added at this 

stage if  needed as an internal standard and an NMR taken to determine NMR yields. 

 

General procedure for the preparative scale catalytic synthesis of  pyridines PAHs from 

alkynes and nitriles 

The same procedure as with the screening with the exception of  the use of  between 50 to 100 

mg 1, with the diyne and nitrile substrates scaled accordingly and that half  the scaled amount 

of  solvent was used. After removal of  the volatiles, the crude material was sublimed or 

Kugelrohr distilled to remove the bulk of  the excess nitrile present. Further purification of  
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the crude residue was carried out via silica gel column chromatography to provide the deisred 

product.  

 

Synthesis of  4aa. Purified by silica gel column chromatography (5% EtOAc:hexanes). White 

solid (279 mg, 74%). 1H NMR (300 MHz, CDCl3): δ 9.97 (s, 1H, NCH), 8.78 – 8.71 (m, 1H, 

ArH), 8.67 – 8.58 (m, 2H, ArH), 8.04 (s, 1H, NCCH), 8.00 – 7.92 (m, 2H, ArH), 7.75 – 7.66 

(m, 3H, ArH), 7.62 – 7.52 (m, 4H, ArH), 7.33 – 7.28 (m, 2H, ArH), 7.24 – 7.17 (m, 2H). 

 

Synthesis of  4ba. Purified by silica gel column chromatography (5% EtOAc:hexanes). White 

solid (279 mg, 74%). 1H NMR (300 MHz, CDCl3): δ 8.58 (d, J = 8.2 Hz, 1H, ArH), 8.50 (d, J 

= 8.2 Hz, 1H, ArH), 8.15 (s, 1H, NCCH), 8.09 (d, J = 8.4 Hz, 1H, ArH), 8.07 – 8.02 (m, 1H, 

ArH), 7.76 (d, J = 8.5 Hz, 1H, ArH), 7.74 – 7.68 (m, 1H, ArH), 7.61 – 7.45 (m, 5H, ArH), 7.38 

(d, J = 1.0 Hz, 5H, v), 7.32 (d, J = 0.9 Hz, 5H, ArH), 7.12 (ddt, J = 8.3, 7.0, 1.2 Hz, 1H, ArH). 
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Synthesis of  4ca. Purified by silica gel column chromatography (4% EtOAc:hexanes → 8% 

EtOAc:hexanes). White solid (401 mg, 82%). 1H NMR (300 MHz, CDCl3): δ 9.91 (s, 1H, 

NCH), 8.66 (d, J = 8.7 Hz, 1H, ArH), 8.62 (t, J = 2.0 Hz, 2H), 8.00 (s, 1H, NCCH), 7.98 – 

7.90 (m, 2H, ArH), 7.77 (dd, J = 8.6, 1.9 Hz, 1H, ArH), 7.59 (dd, J = 8.6, 2.0 Hz, 1H, ArH), 

7.57 – 7.48 (m, 2H, ArH), 7.37 (d, J = 0.6 Hz, 2H, ArH), 7.32 – 7.16 (m, 4H, ArH), 1.51 (s, 

9H, CH3), 1.49 (s, 9H, CH3). 

 

Synthesis of  4da. Purified by silica gel column chromatography (4% EtOAc:hexanes → 8% 

EtOAc:hexanes). Pale brown solid (346 mg, 56%). 1H NMR (300 MHz, CDCl3): δ 8.58 (d, J = 

2.0 Hz, 1H, ArH), 8.49 (d, J = 2.1 Hz, 1H, ArH), 8.09 (s, 1H, NCCH), 8.05 – 7.99 (m, 2H, 

ArH), 7.78 (d, J = 8.9 Hz, 1H, ArH), 7.63 (dd, J = 8.6, 1.9 Hz, 1H, ArH), 7.58 – 7.47 (m, 3H, 

ArH), 7.42 – 7.36 (m, 2H, ArH), 7.33 – 7.27 (m, 7H, ArH), 7.18 (dd, J = 8.9, 2.0 Hz, 1H, 

ArH), 1.51 (s, 9H, CH3), 1.43 (s, 9H, CH3), 1.37 (s, 9H, CH3). 

 

General procedure for oxidative dehydrogenation 

To a 20 mL scintillation vial in a glove box was smeared some potassium metal (~30 mg) on 

its walls and then charged with a reduced Teflon-coated stir bar and THF (2 mL). To that, was 

added a solution of  4 (20 mg) in THF (~2 mL). The vial was then sealed and stirred at room 

temperature for two days, after which it was removed from the box. The reaction was decanted 

from excess potassium and then quenched by slow dropwise addition of  isopropanol until the 



165 
 

intense coloration faded to a light yellow-brown solution. To that, DDQ was added in small 

portions as a solid until a persistent deep red color is observed (~40 mg) and the reaction 

allowed to stir for 30 min. After the volatiles were removed in vacuo, the residue was taken up 

in chloroform and water (3 mL each). The chloroform layer was separated and the aqueous 

layer extracted with additional chloroform (2 × 2 mL). The combined organic extracts were 

washed with water (3 mL) until no significant color is observed in the washes. The extracts 

were then dried over MgSO4, filtered, and dried under vacuum to yield 5.  

 

Synthesis of  5ca. Yellow solid (19.8 mg, quant.). Single crystals suitable for XRD were grown 

by slow evaporation of  a chloroform solution of  5ca. 1H NMR (300 MHz, CDCl3): δ 10.13 

(s, 1H, NCH), 9.38 – 9.31 (m, 1H, ArH), 8.96 – 8.87 (m, 2H, ArH), 8.80 (d, J = 7.0 Hz, 1H, 

ArH), 8.81 – 8.73 (m, 2H, ArH), 8.67 (d, J = 7.9 Hz, 1H, ArH), 8.60 – 8.53 (m, 1H, ArH), 7.93 

(t, J = 8.0 Hz, 1H, ArH), 7.87 (dd, J = 8.7, 1.8 Hz, 1H, ArH), 7.78 – 7.67 (m, 2H, ArH), 1.73 

(s, 9H, CH3), 1.63 (s, 9H, CH3); 13C{1H} NMR (101 MHz, CDCl3): δ 151.20, 150.80, 143.92, 

143.86, 142.06, 131.18, 131.08, 130.97, 130.78, 130.18, 130.03, 129.31, 128.66, 127.78, 127.17, 

126.93, 126.57, 126.20, 125.37, 123.24, 122.94, 121.96, 121.75, 120.95, 120.75, 119.52, 119.08, 

118.60, 116.34, 36.01 (C(CH3)3), 35.43 (C(CH3)3), 32.06 (C(CH3)3), 31.67 (C(CH3)3). 
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Synthesis of  5da. Recrystallized from vapor diffusion of  hexanes into a saturated chloroform 

solution. Yellow solid (17.8 mg, 90%). 1H NMR (300 MHz, CDCl3): δ 9.81 – 9.75 (m, 2H, 

ArH), 9.07 (s, 1H, ArH), 9.07 – 8.99 (m, 3H, ArH), 8.86 (s, 1H, ArH), 8.84 (d, J = 5.6 Hz, 1H, 

ArH), 8.78 (d, J = 8.1 Hz, 1H, ArH), 8.68 (d, J = 7.7 Hz, 1H, ArH), 8.02 (dd, J = 8.5, 1.9 Hz, 

1H, ArH), 7.96 (t, J = 7.9 Hz, 1H, ArH), 7.91 – 7.74 (m, 2H, ArH), 1.79 (s, 9H, CH3), 1.78 (s, 

9H, CH3), 1.69 (s, 9H, CH3). 

 

General synthesis of  polyphenyl diynes. 

A Schlenk tube fitted with a screw-in Teflon stopper was charged with 1,4-diiodonaphthalene 

(3.8 mmol, 1.0 equiv.), ((2-bromophenyl)ethynyl)trimethylsilane (2.1 equiv.) and anhydrous 

potassium carbonate (6 equiv.) suspended in a mixture of  toluene (70 mL), ethanol (20 mL) 

and water (20 mL). The suspension was degassed via three freeze-pump-thaw cycles, after 

which tetrakis(triphenylphosphine) palladium(0) (10 mol%) was added under a counter flow 

of  nitrogen. The flask was sealed and heated to 70 °C for 24 h with stirring. After cooling to 

room temperature, water (50 mL) was added and the organic layer separated. The aqueous 

layer was extracted with CH2Cl2 (2 × 50 mL). The organic extracts were combined and dried 
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over MgSO4, filtered, and concentrated in vacuo. The crude yellow oil was taken up in MeOH 

and THF and K2CO3 (~4 equiv.) was added and stirred at room temperature overnight. Water 

(50 mL) was added to quench the reaction ad the volume was reduced in vacuo. The crude 

aqueous mixture was extracted with CH2Cl2 (3 × 50 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure affording the crude product which can be further 

purified via silica gel column chromatography. 

 

2,2''-diethynyl-1,1':4',1''-terphenyl (2f). Purified by silica gel column chromatography (2% 

EtOAc:hexanes). Pale orange solid (681 mg, 65% over 2 steps). 1H NMR (300 MHz, CDCl3): 

7.68 (s, 4H, central ArH), 7.66 – 7.62 (m, 2H, ArH), 7.49 – 7.40 (m, 4H, ArH), 7.35 – 7.29 (m, 

2H, ArH), 3.09 (s, 2H, C≡CH). 

 

2,2'''-diethynyl-1,1':4',1'':4'',1'''-quaterphenyl (2g). Purified by silica gel column 

chromatography (3% EtOAc:hexanes) Yellow solid. (897 mg, 67% over 2 steps). 1H NMR 

(300 MHz, CDCl3): δ 7.78 – 7.62 (m, 10H, ArH), 7.47 – 7.43 (m, 4H, ArH), 7.39 – 7.29 (m, 

2H, ArH), 3.10 (s, 2H, C≡CH). 
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General screening procedure for the catalytic synthesis of  pyrimidines PAHs from 

alkynes and nitriles 

To a Schlenk flask charged with toluene (2 mL), diyne (49.3 μmol) nitrile (0.592 mmol) and a 

Teflon-coated stir bar was added a toluene solution of  1 (5 mg, 4.93 μmol), adjusting total 

volume of  the reaction to 3 mL. The flask was then sealed and heated to the appropriate 

temperature for the desired reaction time. The reaction was allowed to cool to room 

temperature, and the volatiles removed in vacuo. 1,3,5-trimethoxhybenzene was added at this 

stage if  needed as an internal standard and an NMR taken to determine NMR yields. 

 

General procedure for the preparative scale catalytic synthesis of  pyrimidines PAHs 

from alkynes and nitriles 

The same procedure as with the screening with the exception of  the use of  between 50 to 100 

mg 1, with the diyne and nitrile substrates, and solvent scaled accordingly. After removal of  

the volatiles, the crude material was sublimed or Kugelrohr distilled to remove the bulk of  the 

excess nitrile present. Further purification of  the crude residue was carried out via silica gel 

column chromatography to provide the desired product.  

 

N
N

N
N
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Synthesis of  4gg. Purified by silica gel column chromatography (3% EtOAc:hexanes). Pale 

yellow solid (232 mg, 61%). 1H NMR (300 MHz, CDCl3): δ 8.62 – 8.50 (m, 4H, ArH), 8.14 – 

8.07 (m, 2H, ArH), 7.85 – 7.78 (m, 6H, ArH), 7.62 – 7.57 (m, 6H, ArH), 7.56 – 7.46 (m, 10H, 

ArH), 7.43 – 7.19 (m, 10H, ArH). 

  

Synthesis of  4gh. Purified by silica gel column chromatography (3% EtOAc:hexanes). Pale 

yellow solid (296 mg, 60%). 1H NMR (300 MHz, CDCl3): δ 8.73 – 8.69 (m, 2H, ArH), 8.36 

(ddd, J = 7.6, 1.7, 1.2 Hz, 2H, ArH), 8.09 (t, J = 1.8 Hz, 2H, ArH), 8.08 – 8.04 (m, 2H, ArH), 

7.63 – 7.57 (m, 6H, ArH)), 7.56 – 7.49 (m, 8H, ArH)), 7.45 – 7.37 (m, 8H, ArH)), 7.31 (s, 2H, 

ArH)), 7.21 (t, J = 7.7 Hz, 2H, ArH), 1.43 (s, 18H, CH3), 1.29 (s, 18H, CH3). 

 

Synthesis of  4hh. Purified by silica gel column chromatography (2% EtOAc:hexanes). Pale 

yellow solid (385 mg, 63%). 1H NMR (300 MHz, CDCl3): δ 8.64 (t, J = 1.6 Hz, 1H, ArH), 8.20 

(ddd, J = 7.6, 1.7, 1.2 Hz, 1H, ArH), 8.12 (td, J = 1.9, 0.5 Hz, 1H, ArH), 7.95 (d, J = 8.2 Hz, 

1H, ArH), 7.77 (ddd, J = 7.6, 1.8, 1.2 Hz, 1H, ArH), 7.69 – 7.60 (m, 2H, ArH), 7.55 – 7.49 (m, 
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2H, ArH), 7.45 – 7.37 (m, 4H, ArH), 7.16 (d, J = 3.5 Hz, 1H, ArH), 7.13 (t, J = 7.6 Hz, 1H), 

1.42 (s, 9H, CH3), 1.41 (s, 9H, CH3), 1.39 (s, 9H, CH3). 

 

Synthesis of  5hh. Purified by silica gel column chromatography (2% EtOAc:hexanes). Pale 

yellow solid. 1H NMR (300 MHz, CDCl3): δ 9.74 (d, J = 2.2 Hz, 1H), 9.59 (d, J = 8.6 Hz, 1H), 

9.21 – 9.17 (m, 1H), 8.98 (d, J = 8.0 Hz, 1H), 8.94 (d, J = 7.8 Hz, 1H), 8.89 – 8.84 (m, 2H), 

8.78 (d, J = 8.7 Hz, 1H), 8.13 (t, J = 8.0 Hz, 1H), 8.02 (dd, J = 8.7, 2.3 Hz, 1H), 7.97 (dd, J = 

8.5, 1.8 Hz, 1H), 7.65 – 7.58 (m, 2H), 1.61 (s, 9H), 1.59 (s, 9H), 1.55 (s, 9H); HRMS (FAB+) 

m/z Calcd. for C40H41N2 [M + H]+ 549.3270, found 549.3289. 
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CRYSTALLOGRAPHIC INFORMATION 

 CCDC deposition numbers contain the supplementary crystallographic data for this 

paper.56 These data can be obtained free of  charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Refinement Details 

In each case, crystals were mounted on a glass fiber or MiTeGen loop using Paratone 

oil, then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS based 

diffractometer (Mo IμS HB micro-focus sealed X-ray tube, Kα = 0.71073 Å OR Cu IμS HB 

micro-focused X-ray tube, Kα = 1.54178). All diffractometer manipulations, including data 

collection, integration, and scaling were carried out using the Bruker APEXII software.57 

Absorption corrections were applied using SADABS.58 Space groups were determined on the 

basis of  systematic absences and intensity statistics and the structures were solved in the Olex 

2 software interface59 by intrinsic phasing using XT (incorporated into SHELXTL)60 and 

refined by full-matrix least squares on F2. All non-hydrogen atoms were refined using 

anisotropic displacement parameters, except in some cases with heavily distorted solvent. 

Hydrogen atoms were placed in the idealized positions and refined using a riding model. The 

structure was refined (weighted least-squares refinement on F2) to convergence. Graphical 

representations of  structures with 50% probability thermal ellipsoids were generated using 

Diamond 3 visualization software.61  
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Table 5.3. Crystal data and structure refinement for 5ca, 5da 

 5ca 5da   
CCDC 

Number56 - -   

Empirical 
formula 

C37H31N C47H40N   

Formula 
weight 

489.63 618.8   

Temperature/
K 

99.98 100   

Crystal system triclinic triclinic   
Space group P-1 P-1   

a/Å 10.601(14) 7.1911(11)   
b/Å 12.732(11) 15.912(3)   
c/Å 19.527(17) 16.170(2)   
α/° 101.04(4) 65.690(8)   
β/° 101.85(4) 77.356(10)   
γ/° 93.10(5) 89.487(10)   

Volume/Å3 2520(5) 1638.4(5)   
Z 4 2   

ρcalcg/cm3 1.291 1.254   
μ/mm-1 0.074 0.54   
Crystal 

size/mm3 
0.18 × 0.12 × 

0.10 
0.23 × 0.18 × 

0.16 
  

Radiation MoKα 
(λ=0.71073) 

CuKα (λ = 
1.54178) 

  

2Θ range/° 3.538 to 69.024 10.366 to 144.47   
GOF 1.051 1.075   

R1,a wR2
b [I>2 

σ(I)] 
0.0855, 0.1745 R1 = 0.0887, 

wR2 = 0.2711 
  

aR1 = Σ||F0| − |Fc||/Σ|F0|. b wR2 = [Σ[w(F0
2−Fc

2)2]/Σ[w(F0
2)2]1/2 
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Synthesis of Carbonyl-free Molybdenum Arylene Diphosphine Complexes: 

Observations of Nitrile Activation and Coupling 
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ABSTRACT 

The synthesis and characterization of a series of naphthalenediyl-linked diphosphine 

molybdenum complexes are reported. Photolytic decarbonylation of previously discussed 

Mo(II) dicarbonyl complex provided a tris(acetonitrile) complex 3 displaying η4-arene 

interaction. Two-electron reduction of 3 provides the dinitrogen complex 4 along with 

acetonitrile complex 5 and enediiminato complex 6 formed from the four-electron 

coupling of two acetonitrile ligands. One electron reduction of 3 also yields diamagnetic 

diimido complex 7 which forms from the two-electron coupling of acetonitrile. With the 

bulkier nitrile, a similar coupling is not observed; instead, upon one-electron reduction 

solid-state structural determination showed the presence of mix nitrile complexes 

displaying bent and linear Mo-N-C angles, suggesting the presence of radical character on 

the nitrile carbon. 
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INTRODUCTION 

The activation of small molecules such as CO and N2 often involve the need for 

multi-electron transformation to break the C≡O and N≡N bonds.1-6 Hence, the study of 

metal-mediated multi-electron bond-forming and bond-cleavage is crucial for the 

understanding and development of new catalysts. In Chapter 3, the study of naphthalene-

linked teraryl diphosphine towards CO coupling was investigated. Two-electron reductive 

coupling of two CO molecules to a bis(siloxy)acetylene motif was demonstrated. In the 

phenylene-linked system, the four-electron reductive coupling of CO, involving both 

C≡O bond cleavage and C–C bond formation, was also achieved.5-6 The synthesis of 

carbonyl-free complexes is also of interest in the activation of other small molecules. The 

phenylene-linked molybdenum complex has been previously reported for the 

dehydrogenation of ammonia borane.7 Herein, we report the unusual reactivity of 

acetonitrile adducts of naphthalenediyl-linked diphosphine molybdenum complexes upon 

reduction, forming both two-electron coupled and four-electron coupled dimers. 
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RESULTS AND DISCUSSION  

In order to investigate further reactivity on the Mo naphthalenediyl diphosphine 

system, a carbonyl-free complex was targeted. Using an analogous route as the previously 

reported phenylene-linked complex, photolytic decarbonylation was carried out with 

dicarbonyl bis(triflate) complex 1. Photolysis of 1 in acetonitrile, degassing the liberated 

CO periodically, led to orange to brown color change over the course of 3 days. From 

the 31P NMR, growth of two intermediate species at 61.7 and 58.5 ppm, with the former 

predominantly formed first, while the latter growing in over time along with the 

completely decarbonylated product (56.9 ppm).  

Preliminary solid-state structural analysis of both the intermediates and the 

product provided confirmed on the identities monocarbonyls 2a and 2b, while full 

structural characterization was obtained for carbonyl-free tris(acetonitrile) complex 3 

(Figure A.1). All three complexes display η4-binding to the central arene and are bound 

to three additional ancillary ligands (CO and/or acetonitrile), distinct from the phenylene 

Scheme A.1. Photolytic decarbonylation of  1 
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system where η6-binding is observed in both the monocarbonyl and bis(acetonitrile) 

complexes.7 These observations are consistent with those made in Chapter 3, where the 

naphthalene donor displayed a greater propensity to engage in η4 interactions with the 

molybdenum center. In the structure of 3, η4-binding significantly disrupts the central 

arene aromaticity, with elongation of C1−C10 and C4−C5 bod distances, while the outer 

ring of the naphthalene remains aromatic, with relatively uniform C−C bond distances.  

Reduction of the complex 3 was carried out to target a Mo(0) dinitrogen complex 

that is observed with phenylene-linked variant.7 Complex 3 was stirred with magnesium 

turnings as a solution in acetonitrile and formed a green suspension over several hours. 

The 31P NMR spectrum of the solid after filtration showed three distinct phosphorous 

resonances at 84.9, 80.2, and 72.4 ppm, with the peak at 80.2 being in the smallest 

proportion. Repeated dissolution of the solid in benzene followed by removal of the 

   

Figure A.1. Solid-state structure (left), and central arene bond metrics (right) for 3. Only one 

of  two asymmetric units shown. Thermal ellipsoids shown at 50% probability. Solvent 

molecules, counter anions, and hydrogen atoms omitted for clarity. Relevant bond lengths:

Mo1–P1: 2.582(1), Mo1–P2: 2.588(1), Mo1–N1: 2.114(3), Mo1–N2: 2.160(4), Mo1–N3: 

2.147(4). 
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volatiles under vacuum resulted in the gradual conversion of the species at 84.9 ppm to 

that at 72.4 ppm, which is consistent with former being a complex bearing an acetonitrile 

ligand that converts, by repeated evacuations, to latter that bears fewer or no acetonitrile 

ligands. This equilibrium was supported by the reverse transformation observed upon 

addition of acetonitrile to a benzene solution of the mixture. Solid-state characterization 

confirmed the identity of the species at 72.4 ppm in the 31P NMR to be dinitrogen 

complex 4 (Figure A.2). The molybdenum center takes on a three-legged piano-stool 

coordination and displays η6-binding to the central arene. The N−N IR stretching 

frequency of 1973 cm-1 is similar to previously reported phenylene diphosphine Mo 

dinitrogen complex (2020 cm-1).7 

Likely owing to its lower solubility, single crystals of the minor species that 

displayed a 31P NMR resonance at 80.2 ppm could be obtained. Solid-state 

characterization showed that this species was, in fact, a dimeric Mo(0/0) complex 6 

   

Figure A.2. Solid-state structure (left), and central arene bond metrics (right) for 4. Only one 

of  two asymmetric units shown. Thermal ellipsoids shown at 50% probability. Solvent 

molecules, counter anions, and hydrogen atoms omitted for clarity. Relevant bond lengths:

Mo1–P1: 2.4739(5), Mo1–P2: 2.4833(5), Mo1–N1: 1.985(1), N1−N2: 1.129(1). 
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bridged by two acetonitrile molecules that have coupled at the nitrile carbon (Figure A.3). 

The average C−C bond distance between the coupled acetonitrile is 1.36(1) Å, consistent 

with a C−C double bond, and the average bond C−N distance of 1.38(1) Å is consistent 

with a C−N single bond. These metrics are consistent with the four-electron coupling of 

Scheme A.2. Reduction of  3; 31P NMR shifts of  products indicated 

 

Figure A.3. Solid-state structure of  6. Only one of  four asymmetric units shown. Thermal 

ellipsoids shown at 50% probability. Solvent molecules, counter anions, and hydrogen atoms 

omitted for clarity. 
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two acetonitrile ligands (Scheme A.2). This enediimido motif is relatively rare in the 

literature, with only five other structurally characterized examples on Ti, W, and Ta, and 

none on Mo.8-12 The practically linear Mo-N-C angle (~177 °) also suggests a dative 

donation of the N lone pair to Mo, formally forming a Mo−N triple bond (average 1.79(1) 

Å). The molybdenum center also shows η4-binding to the arene, retaining an 18-electron 

count. The nature of the naphthalene-based ligand to encourage η4-arene interactions may 

be key in the formation of 6 as the analogous species is not observed in the phenylene-

linked system.  

 Attempts to circumvent the formation of this coupled species during the 

reduction process by substitution with a bulkier nitrile, tert-butyl cyanide (tBuCN) by 

heating of a 1,4-dioxane solution of 3 with tBuCN led to no reactivity and by photolysis 

in the presence of tBuCN led to what appeared by 31P NMR spectroscopy as a mixture of 

Mo(nitrile)3 complexes. 

A Mo(I) acetonitrile complex was also targeted. It was found that 1.1 equiv. 

cobaltocene (CoCp2) cleanly reduces 2 to a new diamagnetic species 7. When KC8 is used 

instead, species 7 is also observed along with a small amount of 6. Additionally, 7 can also 

be accessed by either one-electron oxidation of comproportionation when Mo(0) 

complex 4 is mixed with Mo(II) complex 3. The diamagnetic nature of 7 led us to assign 

its identity as a two-electron coupled diiminato complex with Mo(I) centers 

Scheme A.3. One-electron reduction of  3 
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antiferromagnetically coupled (Scheme A.3). Structural characterization of 8 has not been 

obtained to confirm this assignment. Attempting to rationally synthesize 6 by the step-

wise reduction of 2 to 8 first, using CoCp2, and then an additional equiv. of KC8 still led 

to the predominant formation of 4 and a small amount of 6. To verify if 7 is indeed the 

bulk of the material present after the one-electron reduction, instead of a paramagnetic 

uncoupled Mo(I) species, the reaction with one equiv. CoCp2 was run with PPh3 as an 

internal standard. Based on the integration values, 7 indeed makes up the bulk of the 

material present. This observation suggests that the formation of 4 upon the next 

reduction result from the breaking up of the C–C bond between the dimido ligand to 

regenerate the acetonitrile adduct which is then reduced to 5 that then exchanges the 

acetonitrile ligand for dinitrogen to yield 4. 

To probe if similar reactivity can be extended to other nitriles, the synthesis and 

oxidation of butyronitrile (PrCN) adduct were carried out. The reaction of 5 with 50 

equiv. PrCN led to a new species at 82.0 ppm, within the same region as the acetonitrile 

adduct. Subsequent oxidation of this new species with one equiv. AgOTf led to the 

formation of a paramagnetic species 8. Structural characterization of 8 confirmed its 

assignment as a Mo(I) PrCN adduct (Figure A.4). Notably, the nitrile is disordered over 

two positions, one with a linear N-C-C angle (175.8(3)°) at 77% occupancy and a minor 

Scheme A.4. Synthesis and reduction of  PrCN adduct 
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component that displays a bent N-C-C angle (125.1(7)°) at 23% occupancy. The presence 

of the bent nitrile ligand likely indicates the present on some amount of radical character 

on the carbon, which might explain the coupling that was observed in 6 and 7 that is first 

formed through the radical-radical coupling of the acetonitrile ligands. The bulkier propyl 

group may preclude the formation of the coupled species. A shorter Mo1–N1' bond 

(1.959(8) Å) compared to Mo1–N1 (2.072(2) Å) and a longer N1'–C bond (1.26(1) Å) vs. 

N1–C bond (1.156(3) Å) also support the assignment of partial radical character on the 

nitrile carbon. 

 

 

Figure A.4. Solid-state structure of  8 showing linear nitrile (top) and bent nitrile (bottom).

Thermal ellipsoids shown at 50% probability. Solvent molecules, counter anions, and hydrogen 

atoms omitted for clarity.  
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CONCLUSION 

A series of carbonyl-free naphthalenediyl-diphosphine molybdenum complexes 

have been synthesized and characterized. Consistent with the greater propensity of the 

naphthalene linker to bind metal center in an η4-fashion, a tris(acetonitrile) complex (3) 

was obtained upon photolysis of dicarbonyl complex 1. Further reduction of this complex 

by Mg0 provided an equilibrium mixture of Mo0 dinitrogen adduct 4 and acetonitrile 

adduct 5, which can be interconverted by removal or addition of MeCN. Addition a third 

minor product was observed and assigned to be a Mo(0) dimer bridged by an enediimido 

ligand formed from the four-electron coupling of two acetonitrile ligands. When the 

Mo(I) acetonitrile complex was targeted a diamagnetic species assigned to be a dimer 

bridge by a diiminato ligand formed from the two-electron coupling of two acetonitrile 

molecules. When the analogous PrCN Mo(I) complex was synthesized, no coupling was 

observed, potentially due to the bulkier nitrile. From XRD, in one of the contributing 

components in a positional disorder, a minor (23%) structure showed the nitrile group 

bent at the nitrile carbon, suggesting some radical character on the carbon. This 

observation was also corroborated by the shortening of the Mo–N and elongation of the 

N–C bond distances. Detailed studies for the activation and coupling of nitriles is 

currently ongoing.   
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.13 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and C6D6 vacuum transferred from sodium benzophenone ketyl before use. All 

solvents, once dried and degassed, were stored under a nitrogen atmosphere over 4 Å 

molecular sieves. All other reagents were used as received. 1H, 13C{1H}, and 19F NMR spectra 

were recorded on Varian Mercury 300 MHz or Varian 400 MHz spectrometers at ambient 

temperatures unless otherwise denoted. 1H and 13C{1H} NMR spectra are reported referenced 

internally to residual solvent peaks reported relative to tetramethylsilane. Photolyses were 

conducted using an Oriel Instruments arc lamp housing and an Osram 75 W Xe arc lamp set 

to a current of  5.4 A or a 450 W Xe/Hg lamp. 

 

Synthesis of 3. A solution of 1 in acetonitrile is degassed by briefly placing under vacuum 

and is then photolyzed for 3 days, repeating the degassing process several times 

throughout the reaction time. The solution slow turned from orange to brown over the 

time. Concentration the reaction in vacuo provided 3 as a brown solid. 1H NMR (400 

MHz, CD3CN): δ 7.69 – 7.61 (m, 2H), 7.60 – 7.49 (m, 6H), 6.61 – 6.55 (m, 2H), 6.51 – 

6.43 (m, 4H), 3.28 (pd, J = 7.1, 2.5 Hz, 2H), 3.01 (tt, J = 14.0, 7.2 Hz, 2H), 1.29 – 1.21 

(m, 6H), 1.18 – 1.11 (m, 6H), 1.08 – 1.00 (m, 6H), 0.86 – 0.78 (m, 6H); 13C NMR (101 

MHz, CD3CN): δ 137.45, 135.15, 134.88, 132.54, 130.13 (t, J = 5.3 Hz), 128.34, 116.00, 

114.55, 103.24, 94.76, 29.72, 29.60, 18.86, 18.51, 18.32, 18.22; 31P{1H} NMR (162 MHz, 
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CD3CN): δ 56.93; 19F NMR (376 MHz, CD3CN) δ -79.29. 

Synthesis of 4. To a solution of 3 in acetonitrile was added magnesium turnings and 

stirred 2 h at room temperature. The green suspension formed was filtered over 

diatomaceous earth and washed with minimal acetonitrile. The solids were then extracted 

with benzene and lyophilized to a green solid. The solid was dissolved in benzene again 

and lyophilized twice more to provide 4 as a green solid. 
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Appendix B 
 

Design and Synthesis of Tris(thiophenolate)benzene Iron Complexes As 

Potential Nitrogenase FeMoco Models   
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ABSTRACT 

The synthesis of a novel tris(thiophenolate)benzene ligand is reported. Metalations with 

iron precursors generated dimeric “Fe2L2” structures with either a dianionic ligand, with 

a free thiol arm, or a trianionic ligand. In the latter case potassium counterions present 

were observed to be forming sandwich-type motifs between aryl groups on different 

ligand molecules. Sequestration of the ions with 18-crown-6 allowed for the synthesis of 

a monomeric iron tris(thiophenolate) complex.  
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GENERAL INTRODUCTION 

Nitrogenases are enzymes found in certain strains of bacteria that converted 

dinitrogen (N2) to ammonia (NH3), a key step of nitrogen fixation.1 Of these enzymes, 

the MoFe-nitrogenase is the most common and features an iron-molybdenum cofactor 

(FeMoco) active site, which is an iron and sulfur-rich cluster (Fe7MoS9).2-5 It is 

hypothesized by many that N2 binds at one of the “belt” irons that feature a FeS3C 

coordination environment which is followed by Fe–C bond elongation or dissociate.6-8 

Other binding motifs, such as dissociation of one of the thiolates, have also been 

proposed.9-11  

In order to better understand the potential iron coordination environment 

necessary for N2 coordination, we postulated that a tris(thiophenolate) ligand bearing a 

central benzene donor might be a viable framework to model either binding modes. In 

Chapter 2, we’ve demonstrated that structural similar arene diphosphine iron complexes 

can bind in an η6-fashion to the central arene. Holland and coworkers have also reported 

the use of an arene bis(thiophenolate) to supported an N2-bound reduced iron center that 

displays significant interaction with the two of the carbons in the central arene. Herein 

we report the design and synthesis of a tris(thiophenolate) ligand bearing a central arene 

donor capable of binding irons in a variety of protic states and coordination 

environments.  
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RESULTS AND DISCUSSION 

1. Ligand Synthesis  

The synthesis of the target ligand was based on a related framework previously 

reported. In that synthesis an ortho-lithiation was carried out on a fluoroarene that 

generated a benzyne intermediate, which was then quenched with an aryl Grignard, 

installing both the an arene group and leaving the ipso position as a carbanion prime for 

further functionalization.9  1,3,5-tris(2-fluorophenyl)benzene was synthesized in one-step 

from the dehydrative trimerization of 2-fluoroacetophenone in the presence of 

trifluoromethanesulfonic acid adapted from a previous report to the tribromide analogue 

(Scheme B.1).12 From the trifluoride, ortho-lithiation of each phenylene arm at low 

Scheme B.1. Synthesis of  LH3 
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temperature, followed by addition of mesityl magnesium bromide, provide presumably, 

the “tri-Grignard” species which can then be quenched with bromine to yield the 

trimesityl-substituted tribromide. Subsequently, a lithium-halogen exchange, quenching 

with elemental sulfur (S8) followed by reduction with lithium aluminium hydride (LiAlH4), 

the targeted tris(thiophenol) LH3 can be obtained after a protic workup. The synthesis of 

LH3 can also be streamlined, albeit with a small loss in overall yield, by quenching the 

“tri-Grignard” species with S8 followed by reduction by LiAlH4 followed by a protic 

quench to afford LH3 directly. 

Initial metalation studies targeted the use of various iron precursors (FeCl2, FeCl3 

and Fe[N(SiMe3)2]2) with varying stoichiometric. Using potassium benzyl as a base, a 

variety of ligand protic states were also explored for metalations. The two most promising 

metalations were obtained with 1:1 LH3:Fe[N(SiMe3)2]2, and 1:1 LHK2:FeCl2, both of 

which gave identical species 1 by 1H NMR, with the latter being a slightly cleaner reaction 

(Scheme B.2). Single crystals grown from the slow vapor diffusion of pentane into a 

saturated benzene solution of the reaction with FeCl2 were suitable for X-ray diffraction 

(XRD). The solid-state structure revealed the formation of a bis(thiolate) iron complex 

with a free thiol arm, which is the expected based on the metalation stoichiometry (Figure 

Scheme B.2. Metalation LH3 to afford 1 
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B.1). In the asymmetric unit, a single iron center is observed to be binding to two thiolate 

donors on the same ligand and displaying a short Fe–C contact to one of the carbons at 

the central arene (2.285(2) Å), though still significantly longer than that found in FeMoCo 

(2.01 Å).3 When the asymmetric unit is grown, the full structure is that of a diiron 

complex. One of the two thiolates serves as a bridging ligand between the two iron 

centers. The Fe–Fe distance of 2.7601(8) Å is within the range of diiron complexes with 

a diamond core featuring bridging thiolates on separate ligands and is indicative of 

relatively weak interaction.  

In order to try to access a C3-symmetric monoiron complex wherein all three 

thiolate donors are bound, deprotonation of the third thiol arm in 1 was attempted but 

Figure B.1. Solid-state structure of  1. Asymmetric unit (left) and grown structure (right).

Thermal ellipsoids shown at 50% probability. Solvent molecules and hydrogen atoms omitted

for clarity. Relevant bond lengths: Fe–Fe: 2.7601(8), Fe–Sterm: 2.2533(7), Fe–Sbridg: 2.3341(7), 

Fe–S’bridg: 2.3278(7), Fe–C1: 2.285(2). 
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has thus far been unsuccessful. Reduction with a variety of strong reductants (potassium 

graphite (KC8) or potassium naphthalenide) has also led to the formation of intractable 

mixtures. Crystals grown from the reduction of 1 with 4.4 equiv potassium naphthalenide 

led to the formation of potassium clusters supported by the thiolate ligand (K6L2), with 

no iron present. Deprotonation with KBn and reduction with KC8 also led to the 

formation of various other potassium thiolate clusters.  

Addition of a thawing THF solution of monodeprotonated LH2K to a thawing 

solution of Fe[N(SiMe3)2]2 and allowing it to warm to room temperature resulted in the 

formation of species 2 as red-orange crystals (Scheme B.3). In C6D6, the 1NMR of 2 did 

Figure B.2. 1H NMR spectra of  2 in C6D6 (top) and CD3CN (bottom). 

Scheme B.2. Metalation LH3 to afford 2 
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not show any distinct paramagnetically shifted peaks. However, in CD3CN, distinct 

paramagnetically shifted peaks were observed (Figure B.2). XRD studies of the crystals 

obtained the structure of complex 2 to be an iron dimer after growing the asymmetric 

unit (Figure B.3). All three thiols have been deprotonated and are iron bound. Each ligand 

has a thiolate arm bound to adjacent iron center while the third bridges between the two. 

A long Fe–Fe distance of 3.703(8) Å, suggesting no interaction. No significant interaction 

of the iron centers with the central arene is observed. Potassium ions are observed to be 

sandwiched between two mesityl groups on two different ligands, with weak interactions 

with the non-bridging thiolates. 

Probing the flexibility of the dimeric framework of 2, protonation studies to target 

1 was carried out but were unsuccessful, suggesting that upon protonation, the need for 

a large reorganization likely results in decomposition of the dimer. Postulating that the 

sandwiched potassium atoms may be holding the two ligand units together, we set out to 

 

Figure B.3. Solid-state structure of  2 (grown). Thermal ellipsoids shown at 50% probability. 

Solvent molecules and hydrogen atoms omitted for clarity. Relevant bond lengths: Fe–Fe: 

3.703(1), Fe1–S1': 2.405(1), Fe1–S2: 2.385(1), Fe1–S3: 2.428(1). 
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investigate if a monometallic complex can be obtained when the potassium atoms are 

abstracted from that binding pocket. Addition of two equiv. of 18-crown-6 to 2 resulted 

in the formation of a new species 3 by 1H NMR showing sharp paramagnetically shifted 

peaks. Single crystal XRD studies revealed that indeed upon sequestration of the 

potassium ions by the crown ether, a monometallic species is obtained (Figure B.4). In 

this structure, no significant interaction of iron with the central arene carbons is observed, 

but it is in the pocket poised to interact with the arene moiety upon redox changes.  

In some of the decomposition products that we had obtained preliminary 

structural characterization on, we have observed that the complexes were able to 

accommodate a bridging atom between the iron centers. Therefore, the rational synthesis 

of dimeric iron complexes supported by this ligand framework bridged by a light 

atom/group (O, OH, S, SH) was explored. The reaction of 2 with either [Bu4N][OH] or 

KOH resulted in the formation of very similar new paramagnetic species with sharp peaks 

in the 1H NMR spectra. Oxidation with iodosobenzene and reaction with water also lead 

 

Figure B.4. Solid-state structure of  3. Thermal ellipsoids shown at 50% probability. Solvent 

molecules and hydrogen atoms omitted for clarity. Relevant bond lengths: Fe–S: 2.3402(8); 

2.3436(8); 2.357(1) Fe1–Cavg: 2.745. 
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to the formation of new paramagnetic species. Unfortunately, solid-state characterization 

of these products has not been obtained. 

Reduction reactions have been probed with 2 and 3 in targeting a formally iron(0) 

complex. Reductions under a variety of conditions, with or without the addition of 18-

crown-6 to chelate additional potassium ions, have been attempted. However, these 

reactions often led to broad paramagnetic signals or NMR silent species. Solid-state 

characterization of these complexes has also, thus far, eluded us. 
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CONCLUSION 

In summary, the synthesis and characterization of a series of iron complexes 

supported by novel benzene tris(thiophenol) proligand have been reported. Depending 

on the extent of deprotonation of the proligand and the precursor used, the synthesis of 

iron dimers featuring either a free thiophenol, as in complex 1, or with three anionic 

thiophenolate donors, as in complex 2. However, interconversion between 1 and 2 by 

deprotonation or protonation could not be realized, potentially due to the large 

organization of the ligand framework. Sequestration of the potassium ions in 2, initially 

sandwiched between flanking mesityl groups, allowed for the isolation of monoiron 

complex 3.   
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.13 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and C6D6 vacuum transferred from sodium benzophenone ketyl before use. All 

solvents, once dried and degassed, were stored under a nitrogen atmosphere over 4 Å 

molecular sieves.  Elemental sulfur was purchased from Strem Chemicals (99.999%).  All other 

reagents were used as received. 1H, 13C{1H}, and 19F NMR spectra were recorded on Varian 

Mercury 300 MHz or Varian 400 MHz spectrometers at ambient temperatures unless 

otherwise denoted. 1H and 13C{1H} NMR spectra are reported referenced internally to residual 

solvent peaks reported relative to tetramethylsilane. Fast atom bombardment-mass 

spectrometry (FAB-MS) analyses were performed with a JEOL JMS-600H high-resolution 

mass spectrometer. Gas chromatography-mass spectrometry (GC-MS) were performed with 

on an Agilent 6890A instrument using an HP-5MS column (30 m length, 0.25 mm diameter, 

0.50 μm film) and an Agilent 5973N mass-selective EI detector. Photolyses were conducted 

using an Oriel Instruments arc lamp housing and an Osram 75 W Xe arc lamp set to a current 

of  5.4 A. 
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1,3,5-tris(2’-fluorophenyl)benzene. Modified from a previously reported procedure.12 A 

neat mixture of  2-fluoroacetophenone (100 g, 0.724 mol) and trifluoromethanesulfonic acid 

(25g, 0.167 mol) was stirred at 120 °C for 6 h. Upon cooling to room temperature, a brown 

solid was formed. The solid was broken up with a mortar and pestle and washed with H2O (3 

× 200 mL), MeOH (5 × 100 mL) during which a free-flowing green-brown powder was 

observed to form on the frit during filtration. This powder was washed with minimal Et2O (2 

× 50 mL) and dried in vacuo to yield 1,3,5-tris(2’-fluorophenyl)benzene as a green-brown 

powder (52.3 g, 60.1 %). 1H NMR (300 MHz, CDCl3): δ  7.77 (app q, J = 1.1 Hz, 3H), 7.56 

(td, J = 7.7, 1.9 Hz, 3H), 7.42 – 7.31 (m, 3H), 7.29 – 7.16 (m, 6H). 

 

1,3,5-tris(3’-mesityl-2’-thiophenyl)benzene (LH3). Mesitylmagnesium bromide was 

prepared by addition of  2-bromomesitylene (4.25 mL, 27.7 mmol) to a stirred THF suspension 

(30 mL) of  magnesium turnings (1.35 g, 55.5 mmol), pre-activated by warming with 1,2-

dibromoethane (~0.1 mL), in THF (30 mL) with gentle heating to initiate Grignard formation. 

The reaction was then warmed to reflux for 2 h yielding a pale brown solution. To a stirred 

solution of  1,3,5-tris(2’-fluorophenyl)benzene (2.00 g, 5.55 mmol) in THF (40 mL) at −78 °C 
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was added dropwise a cyclohexane solution of  sBuLi (13.0 mL, 1.4 M, 19.6 mmol). The 

reaction was allowed to stir at −78 °C for 20 min. The mesitylmagnesium bromide solution 

prepared earlier was then added dropwise to the reaction at −78 °C. After complete addition, 

the reaction was allowed to warm to room temperature and then heated to reflux for 3 h. The 

flask was then cool back to −78 °C, and sulfur powder (2.13 g, 66.4 mmol) was added in one 

portion. The reaction was allowed to warm to room temperature and stirred for 30 min then 

cooled to 0 °C. LiAlH4 (2.11 g, 55.5 mmol) was added slowly as a solid (caution: effervescence) 

and the reaction was warmed to room temperature and stirred an additional 3 h. The flask was 

cooled to 0 °C again and concentrated aqueous HCl was added dropwise (caution: 

effervescence) until a grey precipitate was observed to form and settle and the pH was ca. 2. 

NaCl (ca. 25 g) and hexanes (50 mL) was added and stirred vigorously. The orange-brown 

supernatant was decanted and the residue extracted with CH2Cl2 (2 × 100 mL). The 

supernatant and extracts were combined and dried over MgSO4, filtered, and concentrated in 

vacuo to yield a dark brown oil. Kugelrohr distillation to remove residual MesSH followed by 

purification by silica gel column chromatography (2% EtOAc:hexanes) provide LH3 as a white 

solid (0.96 g, 23%) 1H NMR (300 MHz, CDCl3): δ 7.59 (s, 3H, central ArH), 7.34 (dd, J = 7.6, 

1.6 Hz, 3H, ArH), 7.22 (d, J = 7.5 Hz, 3H, ArH), 7.04 (dd, J = 7.5, 1.6 Hz, 3H, ArH), 6.98 (s, 

6H, MesH), 3.39 (s, 3H, SH), 2.34 (s, 9H, ArCH3), 2.03 (s, 18H, ArCH3). 
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Synthesis of 1. To a solution of LH3 (30.0 mg) in THF (3 mL) was added KBn (10.3 mg) 

as a solid. The mixture was allowed to stir for 10 min before being added to a suspension 

of FeCl2 (5.0 mg) in THF (2 mL) and stirred for 1 hour. The volatiles were removed in 

vacuo to yield 1 as a yellow solid. 

 

Synthesis of 2. To a solution of LH3 (200 mg) in THF (10 mL) was added KBn (68.7 

mg) as a solid. The mixture was allowed to stir for 10 min before being frozen in the cold 

well. This was then added thawing, to a thawing solution of Fe[N(SiMe3)2] in THF 

(10mL). The reaction was allowed to warm to room temperature and stirred for 2 h 

forming an orange suspension. Pentane (50 mL) was added and the suspension filtered, 

washed with additional pentane, and dried in vacuo to yield 2 (180 mg). 

 

Synthesis of 3. To a thawing solution of 2 in THF was added a THF solution of 18-

crown-6 (2.1 equiv.). The reaction was allowed to warm to room temperature and stirred 

an additional 1 h. Removal of volatiles in vacuo provided 3 as an orange solid. 
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Appendix C 
 

Metal Complexes Supported by 1,9-Anthracenediyl-Linked [O,O]-Pincers 

Towards the Coupling of Unsaturated Organic Fragments with CO2 
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ABSTRACT 

Reported herein is reactivity of coupling of alkynes with CO2 on a zirconium complex 

supported by a non-innocent 9,10-anthracenediyl-linked bis(phenoxide). Depending on 

the bulk of the alkyne, either 5-membered or 7-membered zirconalactones can be 

synthesized. Additionally, we have demonstrated that this bis(phenoxide) ligand 

framework is also capable of supporting vanadium (III) complexes, on route to either 

targeting cationic complexes upon protonolysis or halide abstraction, or reduced to 

neutral V(II) complexes. The synthesis of a monoanionic variant of ligand featuring an 

ethereal donor one arm has also been accomplished and metalation studies on zirconium 

are also reported.  
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GENERAL INTRODUCTION 

In Chapters 4 and 5, it was demonstrated that zirconium complex 1 supported by 

a 1,9-anthracenediyl-linked bis(phenoxide) ligand was capable in coupling a variety of 

unsaturated organic molecules such as nitriles with alkynes, and alkynes with carbon 

monoxide (CO). We hypothesized that this chemistry may be extended to coupling of 

other unsaturated heteroatom-containing small molecules, and with carbon dioxide (CO2) 

or CO. Previous reports by the Kawaguchi group, have shown that structurally similar 

phenylene-linked bis(phenoxide) zirconium complexes are reactive towards CO2 and CS2,1 

although catalytic turnover of the products of these reactions was not reported. The use 

of CO2 as a C1 feedstock is attractive as it is abundant, renewable and nontoxic.2-3 

However, due to its high thermodynamic and kinetic stability, the facile incorporation of 

CO2 into organic molecules has remained a challenge.4-8 Strategies to overcome that 

stability include the use of high pressures, high temperatures, harsh conditions such as 

alkyllithiums and Grignard reagents, or a combination of the above. Although early 

transition metal complexes have been studied for CO2 activation, the high metal 

oxophilicity renders most of these systems stoichiometric.9 

Based off of the chemistry that has been developed on the zirconium 

bis(phenoxide) system, the synthesis of vanadium complexes on the bis(phenoxide) ligand 

was of interest in order to access complexes of difference oxidation states and overall 

charge. This may allow for novel reactivity to be uncovered in terms of either making the 

complex more reactivity towards unsaturated substrates (in the case of a cationic 

complex) or facilitating reductive elimination of the metallocycle formed upon coupling 

(in the case of an anionic complex).  In the same vein, ligand modifications to target a 

monoanionic variant are also of interest. With Group IV metals, cationic complexes can 
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be targeted. In the presence of the more electron-deficient metal center, enhanced 

reactivity towards less reactive unsaturated olefins may be viable towards oligomerization 

and/or polymerization, which has not been observed with the bis(phenoxide) complexes. 
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RESULTS AND DISCUSSION 

The coupling of alkynes with CO2 was investigated. Such a transformation can 

offer a rapid and atom-efficient route towards (Scheme C.1). Acrylates and their 

substituted variants are highly valued commodity chemicals for their wide use as 

monomers in the manufacture of plastics, coatings, adhesives, and paints.10 Current 

methods of synthesis typically involve either the esterification of the analogous acid,11 

which is derived from the two-stage oxidation of the olefin precursor, or carbalkoxylation 

of acetylene in the presence of CO and alcohol in the Reppe process.12-13 The 

carboxylation of alkynes, rather than olefins,14-17 provides the opportunity for further 

functionalization of the organic fragment, but remains relatively underexplored, with 

many prior reports employing protic sources for product release.18-21 Additionally, the use 

of CO2 offers the benefit of a nontoxic alternative to functionalization by CO. Previous 

examples of early metal mediated coupling of CO2 and alkynes to obtain substituted α,β-

unsaturated carboxylic acids are not catalytic.9, 22 An alternative coupling pathway for 

Scheme C.1. Proposed Zr-catalyzed coupling of  alkynes with CO2 
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alkynes and CO2 results in the synthesis of 2-pyrones, a common motif in natural 

products,23-26 a versatile precursor in organic synthesis,27-31 and a monomer for 

biodegradable polymer synthesis.32-33 Despite significant progress in the metal-catalyzed 

synthesis of 2-pyrones,34-36 the use of the atom-economical [2+2+2] cycloaddition route, 

with CO2 and alkynes as feedstocks, has been less explored.37-40 

The reaction of 1 under one atmosphere of CO2 in the absence of alkyne resulted 

in the formation of a complex mixture of products by 1H NMR spectroscopy, further 

heating of that mixture mainly led to significant decomposition to an intractable mixture. 

Towards targeting the 5-membered metallalactone by the coupling of a single molecule 

of alkyne and CO2, use of internal alkyne diphenylacetylene was selected. Based on 

previous observation, the reaction of 1 with the bulkier diphenylacetylene at room 

temperature leads to the initial formation of a 1:1 Zr:alkyne adduct 2, with the tetraphenyl 

zirconacyclopentadiene complex 3 only forming on heating in the presence of additional 

alkyne (Scheme C.2). 

Placing in-situ formed 2 under one atmosphere of CO2 resulted in the formation 

of a new major species 4 by 1H NMR spectroscopy (Scheme C.3). Three distinct 1:1:1 

singlets were observed in the mesityl methyl region, suggesting the formation of a species 

lacking front-back symmetry. No zirconacyclopentadiene 3 was observed from the NMR. 

Group 4 metallalactones have been reported and are proposed to form through CO2 

Scheme C.2. Stepwise reaction of  1 with diphenylacetylene 
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insertion into an η2-alkyne complex.9, 41-45 Recrystallization of 4 by vapor diffusion of 

pentane into a saturated benzene solution provided yellow crystals suitable for single 

crystal X-ray diffraction (XRD). The solid-state structure revealed the identity of complex 

4 to be the targeted unsaturated zirconalactone formed from the coupling of 

diphenylacetylene with CO2 (Figure C.1). The CO2 motif is inserted trans to the THF 

ligand, potentially through the displacement of the other THF ligand present.  The short 

C2A–C3A distance (1.356(2) Å) is consistent with a carbon-carbon double bond. 

Scheme C.3. Reactivity of  2 with CO2 
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Figure C.1. Solid-state structure of  4. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity; relevant bond distances (Å): O3 – C1A: 

1.335 (3), C1A – C2A: 1.512 (3), C2A – C3A: 1.356 (2), C1A – O4: 1.207(3). 
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To allow for catalytic turnover, removal of the organic fragment from the metal 

center in a reductive fashion was targeted. Given the strength of Zr–O bonds (~180 kcal 

mol-1),46 this step will likely be the most challenging aspect of the proposed catalytic cycle. 

It is anticipated that a combination of strong O–E bond (E = Si or B, ~191 and 193 kcal 

mol-1, respectively) and propensity for reductive elimination due to the presence of the 

pendant anthracene will drive the reaction toward the release of acrylate. A variety of 

silanes and disilanes (Et3SiH, Ph2SiH2, PhSiH3, Me3SiSiMe3) were initially tested. No 

reaction was observed with all these reagents after extended heating at 90 °C. Further 

increasing the reaction temperature to 140 °C in m-xylene resulted in decomposition to 

free ligand. No desired silicon-containing organic fragments were detected via GC-MS. 

Borane 9-borabicyclo(3.3.1)nonane (9-BBN) and diborane bis(catecholato)diboron 

(B2cat2) resulted in the formation of intractable mixtures, with no desired products 

detected by GC-MS. 

The synthesis of a 7-membered metallalactone complex was also targeted as a 

route towards 2-pyrones and longer chain acrylates (Scheme C.1). Additionally, it was 

postulated that the formation of a 7-membered metallocycle may facilitate product release 

and due to its less favorable ring size compared to 4. The reaction of tetraphenyl 

zirconacyclopentadiene complex 3 with CO2 was tested. Unfortunately, heating a benzene 

solution of 3 at 90 °C in the presence of one atmosphere of CO2 overnight did not lead 

to any appreciable change in the 1H NMR spectrum. The use of harsher conditions, such 

as higher temperature or higher CO2 pressures, however, have not been pursued. In 

contrast, the reaction of zirconacyclopentadiene complex 5, afforded from the coupling 

of two equiv. of the less bulky phenylacetylene, with one atmosphere CO2 at room 

temperature resulted in the formation of a new major species 6 based on 1H NMR 
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spectroscopy (Scheme C.4). Although attempts to characterize this species in the solid-

state has thus far been unsuccessful, infrared (IR) spectroscopy showed the presence of 

an absorption at 1662 cm-1, consistent with a C=O stretch of a carboxylate (Figure C.2).43 

This evidence, along with that from the 1H NMR spectrum led to assign 6 as a 

zirconalactone complex that we had set out to target.  

Product release from complex 6 by reductive elimination to provide diphenyl 

substituted 2-pyrone was investigated. Heating of 6 to 90°C, unfortunately, led to the 

Scheme C.4. Reactivity of  5 with CO2 
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formation of a complex mixture by 1H NMR spectroscopy with some 6 still present after 

one hour. Gas chromatography-mass spectrometry (GC-MS) analysis of the mixture did 

not detect the presence of the desired 2-pyrone product. Instead, diphenylbutadiene was 

detected suggesting CO2 deinsertion had occurred prior to or upon decomposition. 

Carrying out the reaction in the presence of an excess of both alkyne and CO2 did not 

lead to the significant formation of any coupled species by GC-MS analysis. Photolysis of 

6 led to the formation of broad intractable peaks by 1H NMR with only phenylacetylene 

detected by GC-MS analysis. Silanes (Ph2SiH2, PhSiH3, Me3SiSiMe3) and boranes (9-BBN, 

B2cat2) were investigated towards engendering product functionalization and release. In 

all cases, no significant reaction was observed at room temperature, but subsequent 

heating led to the formation of a complex mixture resembling that observed heating 6 by 

itself. By GC-MS, in the case with silanes or (di)boranes, some hydrosilylated or 

hydroborylated/diborylated products of phenylacetylene and its dimer were observed. 

Targeting the synthesis of other heterocycles such as pyrroles,47 the use of organic 

azides were explored. The reaction of 1 with 1 equiv. of 1-azidoadamantane (AdN3) 

resulted in the evolution of a gas (most likely N2) and the formation of a new species 7 

that we assign to an imido complex (Scheme C.5). Addition of 2 equiv. of phenylacetylene 

to the formation of a new asymmetric species and does not significantly change after 

extended heating at 90 °C. However, by GC-MS, no pyrrole product was detected. 

Instead, predominantly phenylacetylene and adamantylamine were observed. The reaction 

Scheme C.5. Reactivity of  1 with AdN3 
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of AdN3 with 5 only led to decomposition to an intractable mixture upon extended 

heating. 

   The synthesis of vanadium complexes supported by the anthracenediyl 

bisphenoxide complexes was also briefly explored (Scheme C.6). Metalation with 

VMes3(THF) in toluene led to the formation of a green-brown species 8 displaying broad 

paramagnetically-shifted peaks in the 1H NMR spectrum. Recrystallization of this species 

from slow diffusion of pentane into a saturated benzene solution provided crystals 

suitable for single crystal XRD. The solid-state structure showed 8 to be a vanadium 

mesityl complex supported by the ligand and bound to an addition THF ligand (Figure 

C.3). 

Metalation with VCl3(THF)3 was pursued. Initial deprotonation of the bis(phenol) 

ligand with two equiv. potassium benzyl (KBn) in toluene to generate the bis(phenoxide) 

followed by addition to a suspension of VCl3(THF)3 in THF provided a brown product 9 

(Scheme C.6) that was mostly silent by 1H NMR spectroscopy, displaying only one small 

 

Figure C.3. Solid-state structure of  8. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity 
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paramagnetically-shifted peak at around 14 ppm. Single crystals suitable for XRD reveal 

the structure of 9 to be that shown in Figure C.4. Compared to 8, an additional THF 

ligand is bound to the vanadium center, likely due to both the more sterically open and 

the more electron-poor metal center in 9. 

Protonolysis of 8 by Brookhart’s acid or halide abstraction of 9 with silver 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (AgBArF24) was attempted to target a 

cationic complex, but have eluded solid-state characterization. 1-electron reduction of 9 

 

Figure C.4. Solid-state structure of  9. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity 

Scheme C.6. Synthesis of  vanadium bis(phenoxide) complexes 
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has also been attempted, and even though solid-state characterization to determine the 

structure of this reduced species has not been obtained, it has shown to be active in the 

coupling of phenylacetylene, with diphenylbutadiene and triphenylbenzene detected by 

GC-MS. 9, on the other hand, did not display this reactivity with phenylacetylene. 

The synthesis of an anthracenediyl-linked monoanionic ligand featuring a 

phenoxide donor and an ether donor was targeted (Scheme C.7). The choice to install a 

2,6-dimethoxybenzene donor was to avoid the need for separation of syn and anti-

isomers. Proligand 10 was synthesized in three steps from the common precursor used 

for the previously reported bis(phenol) proligand synthesis.  

Metalation of proligand 10 was carried out by the addition of a thawing toluene 

solution of 10 to a thawing toluene solution of ZrBn4 (Scheme C.8) then warmed to room 

temperature and stirred for an additional two hours. From the 1H NMR spectrum, a new 

Scheme C.7. Synthesis of  monoanionic monophenoxide ligand 
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species 11 was observed, with the loss of phenolic proton alongside the presence of a 

chemical resonance at 0.93 ppm that integrates to 6 protons, and is consistent with the 

chemical shift of the methylene protons on a zirconium-benzyl motif, suggesting that 

three benzyl groups are present in this new species. Solid-state characterization of 11 

confirmed our initial assignment. Complex 11 has a phenoxide-bound zirconium center 

with three benzyl groups bound in a tetrahedral geometry (Figure C.5). No significant 

interaction with the ether groups was present. Further reactivity with 11 has not been 

explored at this point. 

 

 

  

 

Figure C.5. Solid-state structure of  11. Thermal ellipsoids shown at 50% probability. Solvent

molecules and hydrogen atoms omitted for clarity 
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CONCLUSION 

The coupling of alkynes with CO2 is demonstrated on anthracenediyl-link 

bis(phenoxide) zirconium complexes to provide zirconalactone complexes. With bulkier 

diphenylacetylene, a 5-membered zirconalactone was formed, while with phenylacetylene, 

a 7-membered zirconalactone is afforded. Various silanes, disilane, borane, and diborane 

electrophiles have been tested with these lactones in order to engender organic product 

release but have thus far been unsuccessful. The synthesis of vanadium (III) complexes 

supported on this bis(phenoxide) ligand has also been achieved and characterized. 

Attempted protonolysis of mesityl complex 8 or halide abstraction of chloride 9 led to 

paramagnetic species which have eluded solid-state characterization. The synthesis of a 

monophenol proligand featuring an ether donor has also been synthesized. Metalation 

with ZrBn4 provided a tris(benzyl) complex 11.   
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EXPERIMENTAL SECTION 

General Considerations 

 Unless otherwise specified, all operations involving air- or water-sensitive reagents 

were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk 

and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried by 

the method of  Grubbs.48 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories and C6D6 vacuum transferred from sodium benzophenone ketyl before use. All 

solvents, once dried and degassed, were stored under a nitrogen atmosphere over 4 Å 

molecular sieves. 1,49 3,49 and 5,49 syn-3,3''-(anthracene-9,10-diyl)bis(5-(tert-butyl)-2',4',6'-

trimethyl-[1,1'-biphenyl]-2-ol),49 V(Mes)3(THF),50 3-bromo-5-(tert-butyl)-2-

(methoxymethoxy)-2',4',6'-trimethyl-1,1'-biphenyl,49, tetrabenzylzirconium,51 were prepared 

according to literature procedures. Alkynes and nitriles used were either sublimed under 

reduced pressure or distilled from calcium hydride before use. All other reagents were used as 

received. 1H, 13C{1H}, and 19F NMR spectra were recorded on Varian Mercury 300 MHz or 

Varian 400 MHz spectrometers at ambient temperatures unless otherwise denoted. 1H and 

13C{1H} NMR spectra are reported referenced internally to residual solvent peaks reported 

relative to tetramethylsilane. Fast atom bombardment-mass spectrometry (FAB-MS) analyses 

were performed with a JEOL JMS-600H high-resolution mass spectrometer. Gas 

chromatography-mass spectrometry (GC-MS) were performed with on an Agilent 6890A 

instrument using an HP-5MS column (30 m length, 0.25 mm diameter, 0.50 μm film) and an 

Agilent 5973N mass-selective EI detector. Photolyses were conducted using an Oriel 

Instruments arc lamp housing and an Osram 75 W Xe arc lamp set to a current of  5.4 A. 
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Synthesis of 4. A J-Young tube was charged with 1 (20 mg) and phenylacetylene (3.5 mg, 

1 equiv.) and allowed to mix for overnight for form 2. The tube was then degassed by 2 

freeze-pump-thaw cycles and CO2 (1 atm) was introduced and stirred for 2 hours at room 

temperature. Remove of volatiles yielded complex 6 as a yellow-orange solid. 1H NMR 

(300 MHz, C6D6): δ 8.12 (dd, J = 6.7, 3.3 Hz, 2H), 8.06 (dd, J = 6.8, 3.3 Hz, 2H), 7.93 (d, 

J = 2.5 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.44 – 7.37 (m, 4H), 7.29 – 6.56 (m, 10H), 5.44 (dd, 

J = 8.2, 1.4 Hz, 2H), 2.64 – 2.56 (m, 4H), 2.45 (s, 6H), 2.18 (s, 6H), 2.05 (s, 6H), 1.43 (s, 

18H), 0.40 – 0.31 (m, 4H). 
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Synthesis of 6. A J-Young tube was charged with 1 (20 mg) and phenylacetylene (4.3 μL, 

2 equiv.) and allowed to mix for 10 min. The tube was then degassed by 2 freeze-pump-

thaw cycles and CO2 (1 atm) was introduced and stirred for 1 hour at room temperature. 

Remove of volatiles yielded complex 6 as an orange solid. 1H NMR (300 MHz, C6D6): δ 

8.23 (dd, J = 6.8, 3.2 Hz, 2H), 8.11 (dd, J = 6.8, 3.3 Hz, 2H), 7.96 (d, J = 2.6 Hz, 2H), 

7.80 (dd, J = 6.8, 3.2 Hz, 2H), 7.32 (d, J = 2.6 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.02 – 6.97 

(m, 3H), 6.95 – 6.72 (m, 10H), 6.43 (d, J = 0.8 Hz, 1H), 6.34 (d, J = 0.8 Hz, 1H), 5.63 – 
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5.57 (m, 2H), 2.70 – 2.59 (m, 4H), 2.38 (s, 6H), 2.08 (s, 6H), 2.06 (s, 6H), 1.41 (s, 18H), 

0.46 – 0.35 (m, 4H). 
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Synthesis of 7. To a solution of 1 (20 mg) in benzene (2 mL) was added 1-

azidoadamantane (1 equiv.). The reaction was allow to stir for 10 minutes and volatiles 

were removed in vacuo to yield 7 1H NMR (300 MHz, C6D6): δ 8.11 (dd, J = 6.7, 3.2 Hz, 

4H), 7.93 (d, J = 2.7 Hz, 2H), 7.36 (d, J = 2.7 Hz, 2H), 7.14 – 6.92 (m, 8H), 3.26 – 3.18 

(m, 8H), 2.24 (s, 6H), 2.24 (s, 12H) 1.60 – 1.52 (m, 3H), 1.45 (s, 18H), 1.43 – 1.31 (m, 

6H), 1.11 – 1.06 (m, 8H), 0.92 (d, J = 2.8 Hz, 6H). 

 

Synthesis of 8. A vial charged with a Teflon-coated stir bar and syn-3,3''-(anthracene-

9,10-diyl)bis(5-(tert-butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol) (50.0 mg) in THF (1 mL) 

was frozen in the cold well in a glove box. Allowing to warm till thawing, a solution of 

V(Mes)3(THF) (33.7 mg, 1equiv.) in THF (5 mL) was added slowly. The reaction was 

allowed to warm to room temperate stirring for an additional 2 h turning into a green-

brown color. After removal of the volatiles under vacuum, the residue was triturated with 

hexanes. The residue was extracted with benzene and dried in vacuo to yield 8. 
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Synthesis of 9. To a vial charged with a Teflon-coated stir bar and syn-3,3''-(anthracene-

9,10-diyl)bis(5-(tert-butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol) (50.0 mg) in toluene (2 

mL) was added a suspension of KBn (19.2 mg, 2.1 equiv.) in toluene, resulting in the 

formation of a bright yellow solution that slowly turned dark brown. That solution was 

frozen and then added as a thawing solution to a thawing suspension of VCl3(THF)3 (26.1 

mg, 1 equiv.) and allowed to warm to room temperature and stirred 2 h. After removal of 

the volatiles under vacuum, the residue was triturated with hexanes. The resulting solid 

was extracted with benzene and dried in vacuo to yield yellow-brown 9. 

 

9-bromo-10-(5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-

3-yl)anthracene. A Schlenk flask fitted with a screw-in Teflon stopper was charged with 

a solution of 3-bromo-5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-1,1'-biphenyl 

(5.0 g) in THF (50 mL) and cooled to –78 °C. A pentane solution of tert-butyllithium 

(14.2 mL, 1.9 M) was added dropwise via cannula. The reaction was allowed to warm to 

room temperature and stirred for 1 h forming a dark orange solution. The reaction was 

then brought into an N2-purged and ZnCl2 (1.22 g) was added slowly to the reaction, 

resulting in the formation of a cloudy pale yellow mixture. The reaction was allowed to 
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stir at room temperature for 30 min after which 9,10-dibromoanthracene (3.86 g) and 

Pd(PPh3)4 (148 mg) were added. The flask was sealed and warmed to 70 °C for 48 h. After 

cooling to room temperature, water (5 mL) was added to quench the reaction, and the 

mixture concentrated in vacuo to about 15 mL. The resulting suspension was taken up in 

CH2Cl2 (50 mL) and filtered through a silica gel plug, eluting further with CH2Cl2. The 

filtrate was then washed with water (2 × 50 mL), dried over MgSO4, filtered, and 

concentrated in vacuo to afford the crude product as a sticky yellow solid which was 

triturated in MeOH (80 mL) with aid of sonication, filtered, and dried in vacuo to provide 

the product as a pale yellow powder (5.92 g). 1H NMR (300 MHz, CDCl3): δ 8.64 – 8.59 

(m, 2H), 7.81 – 7.75 (m, 2H), 7.65 – 7.58 (m, 2H), 7.45 (ddd, J = 8.8, 6.5, 1.2 Hz, 2H), 

7.35 (dd, J = 2.6, 0.6 Hz, 1H), 7.30 (dt, J = 2.6, 0.6 Hz, 1H), 6.98 (s, 2H), 4.00 (s, 2H), 

2.33 (s, 3H), 2.26 (s, 6H), 1.97 (s, 3H), 1.35 (s, 9H).  

 

9-(5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)-10-

(2,6-dimethoxyphenyl)anthracene. A Schlenk flask fitted with a screw-in Teflon 

stopper was charged with a solution of 1,3-dimethoxybenzene (0.70 mL) in THF (20 mL) 

and cooled to –78 °C. A hexanes solution of n-butyllithium (2.2 mL, 2.5 M) was added 

dropwise via syringe. The reaction was allowed to warm to room temperature and stirred 

for 1 h. The reaction was then brought into an N2-purged and ZnCl2 (511 mg) was added 

slowly to the reaction resulting in the formation of a cloudy pale yellow mixture. The 

reaction was allowed to stir at room temperature for 30 min after which 9-bromo-10-(5-

(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)anthracene (2.0 g) 
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and Pd(PPh3)4 (45 mg) was added. The flask was sealed and warmed to 70 °C for 48 h. 

After cooling to room temperature, water (2 mL) was added to quench the reaction, and 

the mixture concentrated in vacuo to about 5 mL. The resulting suspension was taken up 

in CH2Cl2 (15 mL) and filtered through a silica gel plug, eluting further with CH2Cl2. The 

filtrate was then washed with water (2 × 15 mL), dried over MgSO4, filtered, and 

concentrated in vacuo to afford the crude product which was purified via silica gel column 

chromatography as a pale yellow powder (1.8 g). 1H NMR (300 MHz, CDCl3): δ 7.78 (ddd, 

J = 8.7, 1.5, 0.8 Hz, 2H), 7.61 (ddd, J = 8.4, 1.6, 0.7 Hz, 2H), 7.49 – 7.46 (m, 1H), 7.41 – 

7.27 (m, 5H), 6.96 (q, J = 0.7 Hz, 2H), 6.81 (ddd, J = 19.2, 8.4, 0.8 Hz, 2H), 4.04 (s, 2H), 

3.64 (s, 3H), 3.44 (s, 3H), 2.32 (s, 3H), 2.26 (s, 6H), 1.82 (s, 3H), 1.37 (s, 9H). 

 

Synthesis of 10. A Schlenk flask fitted with a screw-in Teflon stopper was charged with 

9-(5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)-10-(2,6-

dimethoxyphenyl)anthracene (1.8 g, 18.8 mmol), MeOH (50 mL) and CH2Cl2 (10 mL). 

Concentrated aqueous HCl (5 mL) was added, the flask sealed and heated to 45 °C, 

monitoring the progress of the reaction via 1H NMR spectroscopy. After complete 

deprotection, about 6 h, the reaction was cooled and concentrated in vacuo. The 

suspension was taken up in CH2Cl2 (250 mL) and washed with H2O (2 × 200 mL) and 

then saturated aqueous NaHCO3 (100 mL). The organic fraction was dried over MgSO4, 

filtered, and concentrated under reduced pressure to provide the product as a pale yellow 

solid (1.55 g, 93%). 1H NMR (300 MHz, C6D6): δ 8.14 – 7.95 (m, 4H), 7.32 (t, J = 8.4 Hz, 
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1H), 7.28 (d, J = 2.5 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.25 – 7.08 (m, 5H). 6.82 (q, J = 

0.8 Hz, 2H), 6.50 (dq, J = 8.5, 0.9 Hz, 2H), 4.31 (s, 1H), 3.00 (s, 3H), 2.96 (s, 3H), 2.23 

(s, 6H), 2.12 (s, 3H), 1.16 (s, 9H). 

 

Synthesis of 11. A vial charged with a Teflon-coated stir bar and 10 (50.0 mg) in toluene 

(1 mL) was frozen in the cold well in a glove box. Allowing to warm till thawing, it was 

added to a thawing solution of ZrBn4 (33.7 mg, 1equiv.) in toluene (3 mL). The reaction 

was allowed to warm to room temperate stirring for an additional 2 h. After removal of 

the volatiles under vacuum, the residue was extracted with benzene and dried in vacuo to 

yield 11. Recrystallized from toluene/pentane vapor diffusion in the freezer. 1H NMR 

(300 MHz, C6D6): δ 8.22 (d, J = 8.7 Hz, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.38 – 7.14 (m, 

6H), 6.94 (s, 2H), 6.84 – 6.66 (m, 8H), 6.46 (d, J = 8.4 Hz, 2H), 5.80 (d, J = 7.0 Hz, 6H), 

2.98 (s, 3H), 2.95 (s, 3H), 2.44 (s, 6H), 2.18 (s, 3H), 1.18 (s, 9H), 0.88 (s, 6H). 
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CHAPTER 2 

 

Figure D.1. 1H NMR spectrum (300 MHz, CDCl3) of 2-(benzyloxy)-1,3-diiodo-5-nitrobenzene. 

 

Figure D.2. 13C{1H} NMR spectrum (75 MHz, CDCl3) of 2-(benzyloxy)-1,3-diiodo-5-
nitrobenzene. 

 

Figure D.3. 1H NMR spectrum (300 MHz, CDCl3) of 2-(benzyloxy)-1,3-bis(2’-bromophenyl)-5-
nitrobenzene. 

H2O 
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Figure D.4. 13C{1H} NMR spectrum (75 MHz, CDCl3) of 2-(benzyloxy)-1,3-bis(2’-
bromophenyl)-5-nitrobenzene. 

 

Figure D.5. 1H NMR spectrum (300 MHz, CDCl3) of 4-(benzyloxy)-3,5-bis(2’-
bromophenyl)aniline.

 

Figure D.6. 13C{1H} NMR spectrum (75 MHz, CDCl3) of 4-(benzyloxy)-3,5-bis(2’-
bromophenyl)aniline. 
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Figure D.7. 1H NMR spectrum (300 MHz, CDCl3) of 4-(benzyloxy)-3,5-bis(2’-bromophenyl)-
N,N-dimethylaniline. 

 

Figure D.8. 13C{1H} NMR spectrum (75 MHz, CDCl3) of 4-(benzyloxy)-3,5-bis(2’-
bromophenyl)-N,N-dimethylaniline. 

 

Figure D.9. 1H NMR spectrum (300 MHz, C6D6) of 4-(benzyloxy)-3,5-bis(2’-
diisopropylphosphinophenyl)-N,N-dimethylaniline. 
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Figure D.10. 13C{1H} NMR spectrum (75 MHz, C6D6) of 4-(benzyloxy)-3,5-bis(2’-
diisopropylphosphinophenyl)-N,N-dimethylaniline. 

 

Figure D.11. HSQC NMR spectrum (C6D6) of 4-(benzyloxy)-3,5-bis(2’-
diisopropylphosphinophenyl)-N,N-dimethylaniline. 

 

Figure D.12. 31P{1H} NMR spectrum (121 MHz, C6D6) of 4-(benzyloxy)-3,5-bis(2’-
diisopropylphosphinophenyl)-N,N-dimethylaniline. 



237 

 

Figure D.13. 1H NMR spectrum (300 MHz, C6D6, 70 °C) of 2,6-bis(2’-
diisopropylphosphinophenyl)-4-dimethylaminophenol (1-H). 

 

Figure D.14. 13C{1H} NMR spectrum (75 MHz, C6D6, 70 °C) of 2,6-bis(2’-
diisopropylphosphinophenyl)-4-dimethylaminophenol (1-H).  

 

Figure D.15. HSQC NMR spectrum (C6D6) of 2,6-bis(2’-diisopropylphosphinophenyl)-4-
dimethylaminophenol (1-H).  
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Figure D.16. 31P{1H} NMR spectrum (121 MHz, C6D6, 70 °C) of 2,6-bis(2’-
diisopropylphosphinophenyl)-4-dimethylaminophenol (1-H). 

 

Figure D.17. 1H NMR spectrum (300 MHz, C6D6, 70 °C) of 1-K. 

 

Figure D.18. 13C{1H} NMR spectrum (75 MHz, C6D6, 70 °C) of 1-K. 
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Figure D.19. HSQC NMR spectrum (C6D6) of 1-K.  

 

Figure D.20. 31P{1H} NMR spectrum (121 MHz, C6D6, 70 °C) of 1-K. 

 

Figure D.21. 1H NMR spectrum (300 MHz, C6D6) of 2. 
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Figure D.22. 1H NMR spectrum (300 MHz, C6D6) of 3 (trace hexanes and THF present). 

 

Figure D.23. 1H NMR spectrum (300 MHz, C6D6) of 4 (trace hexanes and THF present). 

 

Figure D.24. 1H NMR spectrum (300 MHz, C6D6) of 5 (trace THF and hexanes present). 



241 

 

Figure D.25. 1H NMR spectrum (300 MHz, C6D6) of 6. 

 

Figure D.26. 13C{1H} NMR spectrum (75 MHz, C6D6) of 6. 

 

Figure D.27. 31P{1H} NMR spectrum (121 MHz, C6D6) of 6. 
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Figure D.28. 1H NMR spectrum (300 MHz, C6D6) of 8. 

 

 

Figure D.29. 1H NMR spectrum (400 MHz, C6D6) of 9. 

 

Figure D.30. 13C{1H} NMR spectrum (101 MHz, C6D6) of 9. 
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Figure D.31. 31P{1H} NMR spectrum (162 MHz, C6D6) of 9. 

 

Figure D.32. 1H NMR spectrum (300 MHz, C6D6) of 12. 

 

Figure D.33. 31P{1H} NMR spectrum (126 MHz, C6D6) of 12. 
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Figure D.34. 19F NMR spectrum (296 MHz, C6D6) of 12. 

 

Figure D.35. 1H NMR spectrum (300 MHz, C6D6) of 13. 

 

Figure D.36. 1H NMR spectrum (300 MHz, C6D6) of 14. 
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Figure D.37. 1H NMR spectrum (300 MHz, C6D6) of 15. 

 

Figure D.38. 31P{1H} NMR spectrum (126 MHz, C6D6) of 15. 

 

Figure D.39. 1H NMR spectrum (300 MHz, C6D6) of 16. 
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Figure D.40. 31P{1H} NMR spectrum (126 MHz, C6D6) of 16. 
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CHAPTER 3 

 

Figure D.41. 1H NMR spectrum (400 MHz, CDCl3) of  1,4-bis(2-bromophenyl)naphthalene. 

 

Figure D.42. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  1,4-bis(2-bromophenyl)naphthalene. 

 

Figure D.43. 1H NMR spectrum (400 MHz, C6D6) of  1. 
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Figure D.44. 13C{1H} NMR spectrum (101 MHz, C6D6) of  1. 

 

Figure D.45. 31P{1H} NMR spectrum (162 MHz, C6D6) of  1. 

 

Figure D.46. 1H NMR spectrum (400 MHz, CDCl3) of  2. 
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Figure D.47. 13C{1H} NMR spectrum (101MHz, CDCl3) of  2. 

 

Figure D.48. 31P{1H} NMR spectrum (162 MHz, C6D6) of   2. 

 

Figure D.49. 1H NMR spectrum (400 MHz, CD3CN) of  3. 
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Figure D.50. 13C{1H} NMR spectrum (101 MHz, CD3CN) of  3. 

 

Figure D.51. 31P{1H} NMR spectrum (162 MHz, CD3CN) of  3. 

 

Figure D.52. 19F NMR spectrum (376 MHz, CD3CN) of  3. 
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Figure D.53. 1H NMR spectrum (300 MHz, C6D6) of  5. 

 

Figure D.54. 13C{1H} NMR spectrum (75 MHz, C6D6) of  5. 

 

Figure D.55. 31P{1H} NMR spectrum (121 MHz, C6D6) of  5. 
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Figure D.56. 1H NMR spectrum (300 MHz, C6D6) of  6. 

 

Figure D.57. 13C{1H} NMR spectrum (75 MHz, C6D6) of  6. 

 

Figure D.58. 31P{1H} NMR spectrum (121 MHz, C6D6) of  6. 
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Figure D.59. 31P{1H} and 13C{1H} NMR spectra (121 MHz, C6D6) of  6-13C. 
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CHAPTER 4 

 

Figure D.60. 1H NMR spectrum (400 MHz, CDCl3) of  1,3-dibromo-5-(tert-butyl)-2-
(methoxymethoxy)benzene. 

 

Figure D.61. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  1,3-dibromo-5-(tert-butyl)-2-
(methoxymethoxy)benzene. 

 

Figure D.62. 1H NMR spectrum (400 MHz, CDCl3) of  3-bromo-5-(tert-butyl)-2-(methoxymethoxy)-
2',4',6'-trimethyl-1,1'-biphenyl. 
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Figure D.63. 13C{1H} NMR spectrum (101MHz, CDCl3) of  3-bromo-5-(tert-butyl)-2-
(methoxymethoxy)-2',4',6'-trimethyl-1,1'-biphenyl. 

 

Figure D.64. 1H NMR spectrum (400 MHz, CDCl3) of  anti-9,10-bis(5-(tert-butyl)-2-
(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)anthracene. 

 

Figure D.65. 13C{1H} NMR spectrum (101MHz, CDCl3) of  anti-9,10-bis(5-(tert-butyl)-2-
(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)anthracene. 
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Figure D.66. HSQC NMR spectrum of  anti-9,10-bis(5-(tert-butyl)-2-(methoxymethoxy)-2',4',6'-
trimethyl-[1,1'-biphenyl]-3-yl)anthracene. 

 

Figure D.67. 1H NMR spectrum (400 MHz, CDCl3) of  anti-3,3''-(anthracene-9,10-diyl)bis(5-(tert-
butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol). 

 

Figure D.68. 13C{1H} NMR spectrum (101MHz, CDCl3) of  anti-3,3''-(anthracene-9,10-diyl)bis(5-
(tert-butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol). 
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Figure D.69. 1H NMR spectrum (400 MHz, CDCl3) of  syn-3,3''-(anthracene-9,10-diyl)bis(5-(tert-
butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol) (LH2). 

 

Figure D.70. 13C{1H} NMR spectrum (101MHz, CDCl3) of  syn-3,3''-(anthracene-9,10-diyl)bis(5-(tert-
butyl)-2',4',6'-trimethyl-[1,1'-biphenyl]-2-ol) (LH2). 

 

Figure D.71. 1H NMR spectrum (400 MHz, C6D6) of  1. 
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Figure D.72. 13C{1H} NMR spectrum (101MHz, C6D6) of  1. 

 

Figure D.73. 1H NMR spectrum (400 MHz, C6D6) of  2. 

 

Figure D.74. 13C{1H} NMR spectrum (101MHz, C6D6) of  2. 



259 

  

Figure D.75. 1H NMR spectrum (400 MHz, C6D6) of  3a. 

 

Figure D.76. 13C{1H} NMR spectrum (101MHz, C6D6) of  3a. 

 

Figure D.77. 1H NMR spectrum (400 MHz, C6D6) of  3b. 
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Figure D.78. 13C{1H} NMR spectrum (101MHz, C6D6) of  3b. 

 

Figure D.79. 1H NMR spectrum (400 MHz, C6D6) of  4. 

 

Figure D.80. 13C{1H} NMR spectrum (101MHz, C6D6) of  4. 
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Figure D.81. 1H NMR spectrum (400 MHz, C6D6) of  5. 

 

Figure D.82. 13C{1H} NMR spectrum (101MHz, C6D6) of  5. 

 

Figure D.83. 1H NMR spectrum (400 MHz, CDCl3) of  6a. 

* 

HMDSO 
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Figure D.84. 1H NMR spectrum (400 MHz, CDCl3) of  6b. 

 

Figure D.85. 1H NMR spectrum (400 MHz, CDCl3) of  6c. 

 

Figure D.86. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  6c. 
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Figure D.87. 1H NMR spectrum (400 MHz, CDCl3) of  6d. 

 

Figure D.88. 1H NMR spectrum (400 MHz, CDCl3) of  6e. 

 

Figure D.89. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  6e. 
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Figure D.90. 19F NMR spectrum (376 MHz, CDCl3) of  6e.  

 

Figure D.91. 1H NMR spectrum (400 MHz, CDCl3) of  6f. 

 

Figure D.92. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  6f. 
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Figure D.93. 19F NMR spectrum (376 MHz, CDCl3) of  6f. 

  

triazine 
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CHAPTER 5 

 

Figure D.94. 1H NMR spectrum (300 MHz, CDCl3) of  1-bromo-2-(2-naphthyl)benzene. 

 

Figure D.95. 1H NMR spectrum (300 MHz, CDCl3) of  2-(naphthalen-2-yl)benzonitrile (3b). 

 

Figure D.96. 1H NMR spectrum (300 MHz, CDCl3) of  1,1'-biphenyl-2,2'-dicarbonitrile (3c). 



267 

 

Figure D.97. 1H NMR spectrum (300 MHz, CDCl3) of  3-tert-butylbenzonitrile (3h). 

 

Figure D.98. 1H NMR spectrum (300 MHz, CDCl3) of  2-bromo-4-tert-butylaniline 

 

Figure D.99. 1H NMR spectrum (300 MHz, CDCl3) of  2-bromo-4-tert-butyliodobenzene. 
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Figure D.100. 1H NMR spectrum (300 MHz, CDCl3) of  ((2-bromophenyl)ethynyl)trimethylsilane. 

 

Figure D.101. 1H NMR spectrum (300 MHz, CDCl3) of  1-bromo-2-(phenylethynyl)benzene. 

 

Figure D.102. 1H NMR spectrum (300 MHz, CDCl3) of  ((2-Bromo-4-(tert-
butyl)phenyl)ethynyl)trimethylsilane. 
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Figure D.103. 1H NMR spectrum (300 MHz, CDCl3) of  2-bromo-4-(tert-butyl)-1-((4-(tert-
butyl)phenyl)ethynyl)benzene. 

 

Figure D.104. 1H NMR spectrum (300 MHz, CDCl3) of  1,4-bis((2-bromo-4-(tert-
butyl)phenyl)ethynyl)benzene. 

 

Figure D.105. 1H NMR spectrum (300 MHz, CDCl3) of  5,5'-di-tert-butyl-2,2'-diethynyl-1,1'-biphenyl 
(2c). 
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Figure D.106. 1H NMR spectrum (300 MHz, CDCl3) of  2-ethynyl-2'-(phenylethynyl)-1,1'-biphenyl 
(2b). 

 

Figure D.107. 1H NMR spectrum (300 MHz, CDCl3) of  5,5'-di-tert-butyl-2-((4-(tert-
butyl)phenyl)ethynyl)-2'-ethynyl-1,1'-biphenyl (2d). 

 

Figure D.108. 1H NMR spectrum (300 MHz, CDCl3) of  1,4-bis((5,5'-di-tert-butyl-2'-ethynyl-[1,1'-
biphenyl]-2-yl)ethynyl)benzene (2e). 
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Figure D.109. 1H NMR spectrum (300 MHz, CDCl3) of  5'-(tert-butyl)-2,3-dichloro-2'-ethynyl-1,1'-
biphenyl (2h). 

 

Figure D.110. 1H NMR spectrum (300 MHz, CDCl3) of  4aa. 

 

Figure D.111. 1H NMR spectrum (300 MHz, CDCl3) of  4ba. 
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Figure D.112. 1H NMR spectrum (300 MHz, CDCl3) of  4ca. 

 

Figure D.113. 1H NMR spectrum (300 MHz, CDCl3) of  4da. 

 

Figure D.114. 1H NMR spectrum (300 MHz, CDCl3) of  5ca. 
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Figure D.115. COSY NMR spectrum (300 MHz, CDCl3) of  5ca. 

 

Figure D.116. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  5ca. 

 

Figure D.117. HSQC NMR spectrum (CDCl3) of  5ca. 
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Figure D.118. HMBC spectrum (CDCl3) of  5ca. 

 

Figure D.119. 1H NMR spectrum (300 MHz, CDCl3) of  5da. 

 

Figure D.120. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  5da. 
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Figure D.121. HSQC spectrum (CDCl3) of  5da. 

 

Figure D.122. HMBC spectrum (CDCl3) of  5da. 

 

Figure D.123. 1H NMR spectrum (300 MHz, CDCl3) of  2,2''-diethynyl-1,1':4',1''-terphenyl (2d). 
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Figure D.124. 1H NMR spectrum (300 MHz, CDCl3) of  2,2''-diethynyl-1,1':4',1''-terphenyl (2e). 

 

Figure D.125. 1H NMR spectrum (300 MHz, CDCl3) of  4gf. 
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Figure D.126. 1H NMR spectrum (300 MHz, CDCl3) of  4gh. 

 

Figure D.127. 1H NMR spectrum (300 MHz, CDCl3) of  4hh. 

 

Figure D.128. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  4hh. 

 

Figure D.129. DEPT NMR spectrum (101 MHz, CDCl3) of  4hh. 
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Figure D.130. HSQC NMR (CDCl3) of  4hh. 

 

Figure D.131. HMBC NMR (CDCl3) of  4hh. 
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APPENDIX A 

 

Figure D.132. 1H NMR spectrum (400 MHz, CDCl3) of  2. 

 

Figure D.133. 13C{1H} NMR spectrum (101 MHz, CDCl3) of  2. 

 

Figure D.134. 31P{1H} NMR spectrum (162 MHz, C6D6) of 2. 
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Figure D.135. 19F NMR spectrum (376 MHz, CDCl3) of  2. 

 

Figure D.136. 1H NMR spectrum (300 MHz, CDCl3) of  4. 

 

Figure D.137. 31P{1H} NMR spectrum (121 MHz, C6D6) of 4. 
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APPENDIX B 

 

Figure D.138. 1H NMR spectrum (300 MHz, CDCl3) of 1,3,5-tris(2’-fluorophenyl)benzene. 

 

Figure D.139. 1H NMR spectrum (300 MHz, CDCl3) of LH3. 

 

Figure D.140. 1H NMR spectrum (300 MHz, C6D6) of 1. 
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Figure D.141. 1H NMR spectrum (300 MHz, CD3CN) of 2. 

 

Figure D.142. 1H NMR spectrum (300 MHz, CD3CN) of 3. 
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APPENDIX C 

 

Figure D.143. 1H NMR spectrum (300 MHz, C6D6) of 4. 

 

Figure D.144. 1H NMR spectrum (300 MHz, C6D6) of 6. 

 

Figure D.145. 1H NMR spectrum (300 MHz, C6D6) of 7. 
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Figure D.146. 1H NMR spectrum (300 MHz, C6D6) of 8. 

 

Figure D.147. 1H NMR spectrum (300 MHz, C6D6) of 9. 

 

Figure D.148. 1H NMR spectrum (300 MHz, CDCl3) of 9-bromo-10-(5-(tert-butyl)-2-
(methoxymethoxy)-2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)anthracene. 
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Figure D.149. 1H NMR spectrum (300 MHz, CDCl3) of 9-(5-(tert-butyl)-2-(methoxymethoxy)-
2',4',6'-trimethyl-[1,1'-biphenyl]-3-yl)-10-(2,6-dimethoxyphenyl)anthracene. 

 

Figure D.150. 1H NMR spectrum (300 MHz, CDCl3) of 10. 

 

Figure D.151. 1H NMR spectrum (300 MHz, C6D6) of 11. 
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“This is how you do it: you sit down at the keyboard and you put  
one word after the other until it’s done. It’s that easy, and that hard.”  

 
– Neil Gaiman 
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