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ABSTRACT

A physical lens is limited in its ability to capture an image that is both high-
resolution and wide-field due to aberrations even with a sophisticated lens design.
This thesis explores computational methods that expand on the recently developed
Fourier ptychographicmicroscopy (FPM) to overcome the physical limitations. New
algorithms and imaging methods extend the computational aberration correction to
more general imaging modalities including fluorescence microscopy and incoherent
bright-field imaging so as to allow even a crude lens to perform like an ideal lens.
This paradigm shift from the lens design to computational algorithms democratizes
high-resolution imaging by making it easier to use and less complicated to build.
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C h a p t e r 1

INTRODUCTION

An imaging device allows us to capture and preserve a moment in time. Not
only is it a device of sentimental and historical values, but it is also an invaluable
tool in scientific discovery, medical diagnosis, military, and infrastructure, as it
allows us to see what would otherwise be hard or impossible to observe with the
naked eye. To name a few examples, it allows us to observe ever smaller things
(e.g., microscopy); see things that are invisible due to their transparency (e.g.,
phase imaging, infra-red imaging) or they are obscured by another object (e.g.,
CT imaging, optical phase conjugation); identify chemical structures of material
(e.g., fluorescence microscopy, X-ray diffraction); see farther (e.g., astronomy) and
identify depth (e.g., LIDAR).

Optical imaging systems invariably use lenses to form images. The earliest form of
lens dates all the way back to 750 BC [1]. A lens consists of a transparent material
with a curved surface that causes the incident light to refract and converge or diverge
as it is transmitted through it. Forming an image with lenses refers to using lenses
to refract the light originating from points on an object of interest and relay it to
points on our detector, which could be a sensor in a camera or the retinal layer of
our eye. A lens can also take the form of a flat piece of transparent material whose
light propagation speed varies with location (e.g., a gradient-index lens or a spatial
light modulator). Some other ways of focusing light include: 1) reflection, where
the beam is reflected into a point by a concave mirror; and 2) diffraction, where the
wave nature of light is used to diffract the beam into a point. These various focusing
methods are illustrated in Fig. 1.1. In this thesis, we are concerned with lenses,
which focus light using refraction. In essence, a lens applies different phase delays
on the incident light’s wavefront to influence the light’s propagation.

A microscope’s objective lens showcases the sophisticated lens design involved to
allow for tight focusing over a wide area. A single lens may be sufficient to form a
tight focus at a single location the focal distance away from the lens, but its focusing
ability degrades for other lateral regions. Multiple lens elements are incorporated
into an objective lens to overcome this limitation and allow for tightly focused spots
across a large area [9]. The product of the number of distinguishable focus spots and
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Figure 1.1: A beam of light can be focused by refraction, reflection, or diffraction.
The cross-sectional views of a lens, a GRIN lens, a concave mirror, and a Fresnel
zone plate are illustrated as examples.

the field of view (FOV) is usually referred to as the space-bandwidth product (SBP).
There is usually a limit on the maximum achievable SBP by the sophisticated lens
design since adding more optical surfaces to reduce aberrations over a larger FOV
has diminishing returns. We elaborate on this further in the following sub-sections.

Computational imaging methods, riding on the exponentially increasing computa-
tion power, are enabling capabilities that were not possible with physical lenses
alone. For example, light field cameras [7] and coded aperture photography [6, 15]
allow a user to refocus after images have been taken. In ophthalmology, a clear image
of retina at the back of the eye can be formed with optimization algorithms [4, 5, 12],
overcoming the inherent eye’s aberration computationally. There are imagingmodal-
ities that completely bypass use of lens and only use computation to perform imaging
(i.e., lensless imaging [11, 13]), but the physical lens still remains the most robust
and broadly applicable way to capture images. Not only can leveraging computa-
tional methods lead to a simpler setup that can be easily miniaturized and allow for
more flexibility (e.g., powerful cellphone camera [8]), it can also be beneficial for
certain imaging modalities like fluorescence where phototoxicity and bleaching is
of real experimental constraint.

This thesis focuses on harnessing and improving a recently developed computation-
ally imaging method, called Fourier ptychographic microscopy (FPM), to surpass
the challenges of physical optics. FPM shifts the paradigm of lens design and imag-
ing by accounting for them in the computational realm instead of making sure the
perfect image is taken at the moment of acquisition. Not only does it use simple
optical components and computational algorithms to achieve much greater SBP than
what is allowed conventionally, it also simultaneously corrects for the inherent aber-
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rations in the captured image due to the imperfections in the system or the imaging
scenario. We will detail demonstrations of how we apply this method to solve a
common problem of biological specimen imaging, incorporate it into fluorescence
imaging to obtain clearer images, and how we are able to modify the optical setup
and algorithm further to make the aberration correction method more widely appli-
cable to general optical systems. To describe further, we first need to familiarize
ourselves with several concepts and terminologies in the following section. We
review the properties of a lens as it constitutes the fundamental building block of an
optical imaging system.

1.1 Characteristics of a lens
We consider a lens made of a transparent medium, such as glass and plastic. The
lens’s medium has a different refractive index, nlens, compared to its surroundings,
usually air with nair = 1. A plane wave incident on the lens will experience some
phase delay as it propagates through the lens. A convex lens induces phase delays
that focuses the incident beam into a point, whereas a concave lens makes the beam
diverge.

Focal length
A convex lens focuses the beam to a point at a certain distance away from the lens.
This is called the focal length. The lens’s ability to focus, i.e., focusing power, is
higher with more convex surfaces of the lens, and it in turn shortens the focal length.

Numerical aperture (NA)
Numerical aperture is related to the refractive index of the medium, n, surrounding
the lens and the angle, α, subtended by the steepest focused or the collected ray
from the lens’s normal. The angular subtense can calculated by the lens’s effective
aperture diameter and the focal length. NA is defined as NA = n sinα and it
determines the extent of spatial frequency information relayed by the lens [2], as
will be described in the following chapter.

Fourier transformation
For a convex lens of focal length f , the beam profile (i.e., complex field) incident
on the lens is Fourier transformed at f away from the lens [2]. The field distribution
at f before the lens is exactly Fourier transformed at f behind the lens, while the
field at other locations before the lens is also Fourier transformed at f behind the
lens albeit with additional phase terms. Thus, the plane at f behind the lens is also
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referred to as the lens’s Fourier plane. This will be further explored in Chapter 2 and
Chapter 5. This property allows us to directly access and manipulate the Fourier
spectrum of the incident field, and it is extremely useful for image processing.

1.2 A standard microscope system
The most commonly used imaging system in science is a microscope. The series of
work illustrated in this thesis is based on an infinity-corrected microscope, which
is the standard microscope in use today. In the following section, we outline the
building blocks of a standard microscope.

4f arrangement
An infinity-corrected microscope refers to a microscope system with its optical
elements in a 4f arrangement. In such an arrangement, an objective lens is placed
its focal length ( fobj) away from the sample plane, followed by a tube lens placed
at a distance corresponding to the sum of its focal length ( ftube) and fobj from
the objective, followed by a detector plane at ftube away from the tube lens. This
is illustrated in Fig. 1.2. Because the sample plane is placed at fobj in front of
the objective lens, one has direct access to the sample’s Fourier transform at the
objective’s Fourier plane. Placing an element such as a spatial light modulator
(SLM) at this plane allows one to directly manipulate the sample’s Fourier spectrum
prior to capturing the sample’s image with a detector. Another key characteristic
of a 4f system is the fact that a point on the sample plane or the detector plane is
mapped to a collimated beam in the space between the objective and the tube lens,
often referred to as the “infinity space.” A collimated beam incident on a lens is
focused to a point on the lens’s focal plane whose lateral position is defined by the
incidence angle, invariant to the incidence location on the lens as shown in Fig. 1.2.
Therefore, the length of the infinity space can vary without degrading the image’s
intensity formed on the detector plane. The image’s phase information in the case
of a coherent imaging scheme would change, as will be described in Chapter 5.
Therefore, it is a common practice to add non-refracting optical elements such as
a polarizer and a color filter in this space, as the change in the optical path length
introduced by these elements in the infinity space will not degrade the final image.

Magnification (M)
Magnification of a microscope is straight-forward for an infinity-corrected system,
and is defined as M = ftube/ fobj. As microscopes allows for visualizing small
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Figure 1.2: A 4f system. The space between the objective lens and the tube lens is
referred to as the “infinity space” because a point in the sample plane or a detector
plane is mapped to a collimated beam in this region. For a typical microscope, the
infinity space may not necessarily be fobj + ftube as it does not have any influence on
the intensity image formation on the detector.

features, the magnification is typically above 1x, which means the objective lens has
a shorter focal length than that of the tube lens. Commercial objective lenses have
magnification values associated with them, and they are fundamentally determined
by the tube lens for which the manufacturers designed. Tube lenses’ focal lengths
are different for different microscope manufacturers. Among the most widely used
microscopes, Olympus has ftube = 180 mm while Nikon and Leica has ftube =

200 mm. The focal length of an objective for a given manufacturer can therefore be
determined by fobj = ftube/M .

Field number (FN)
Field number of an objective lens describes the lateral extent of the sample plane
transmitted by the objective. It is defined as FN = DFOVM , where DFOV is the
diameter of the field of view (FOV) on the sample plane and M is the magnification
of the objective. In an objective lens, FOV is determined by a physical or a virtual
aperture in the objective’s intermediate image plane. Therefore, the maximum FOV
one can capture with a microscope is limited by either the detector size or the
objective’s FN, whichever is smaller.

Illumination
For a non-fluorescent sample, an illumination source is projected onto the sample to
carry the sample’s field distribution through the optical system and be captured by
the detector. Illumination can be classified into two categories: spatially coherent
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illumination and spatially incoherent illumination. Spatially coherent illumination
can be described as an illumination field originating from a single monochromatic
point source. The entire extent of the illumination field incident on the sample can
be described by

ψcoh(x, y) = a(x, y)e jφ(x,y), (1.1)

where (x, y) is the spatial coordinate on the sample plane, j is the complex number,
a(x, y) is the amplitude of the field, and φcoh(x, y) is the phase of the field that
describes the relative phase delay of the wavefront. Therefore, the fields of the
sample at different points can constructively and destructively interfere with each
other as they propagate in space. One can manipulate the propagation process by
controlling both the amplitude and the phase of the illumination.

On the other hand, a spatially incoherent illumination can be considered as an
illumination field originating from multiple sources that are not correlated with
each other. It can be described by the intensity distribution:

ψincoh(x, y) = |a(x, y)|2 . (1.2)

Because it lacks phase, each point on the sample plane propagates independently
without interfering with fields originating from other points. For a fluorescent sam-
ple, the illumination is provided at the wavelength that can excite the fluorophores in
the sample to produce fluorescent signals. Regardless of the coherence of the illu-
mination, the fluorophores’ signals are only dependent on the illumination intensity
as the fluorophores are independent from each other.

Transfer function
The optical signal transmitted by a standard microscope from the sample to the
detector plane can be described as a linear process:

ψcoh(x, y) = h(x, y) ∗ s(x, y), (1.3)

where ψcoh(x, y) is the optical field at the image plane, ∗ is the convolution operator,
s(x, y) is the optical field at the sample plane, and h(x, y) is the impulse response of
the system, also known as the point-spread function (PSF) [2]. The impulse response
is related to the smallest resolvable spot of the microscope. In the spatial frequency
domain, the impulse response is described by the transfer function that defines the
bandwidth of the system. For a coherent illumination, the transfer function has
the shape of the objective’s aperture in its Fourier plane. For a circular aperture,
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the transfer function is a circular bandpass with a unit amplitude in the 2D spatial
frequency space, with the cutoff frequency of NA/λ, where λ is the wavelength of
the sample’s optical field. A coherent transfer function is often referred to as the
CTF or the pupil function. In the case of an incoherent optical field, the image
formed by the microscope is only related to the intensity of the field:

ψincoh(x, y) = |h(x, y)|2 ∗ |s(x, y)|2 . (1.4)

Thus, the PSF of an incoherent imaging system is |h(x, y)|2. In the frequency
domain, its transfer function is called the optical transfer function (OTF). By the
Fourier relationship, OTF can be found by the autocorrelation of CTF:

OTF(x, y) =
∫ ∞

−∞
CTF∗(x′, y′)CTF(x + x′, y + y′)dx′dy′, (1.5)

where the superscript ∗ indicates complex conjugation. Due to this property, OTF is
twice the width of CTF (i.e., cutoff frequency is 2NA/λ) and has a gradual cut-off
in the spatial frequency. Any aberrations due to the imperfections in the objective
lens are contained in its pupil function, and the pupil function can also vary across
the FOV of the microscope. This will be described further in the next section.

1.3 Limitations in imaging with physical lenses
A perfect aberration-free optical lens simply does not exist in reality. As such, all
optical imaging systems constructed from a finite number of optical surfaces are
going to experience some level of aberration issues. This simple fact underpins
the extraordinary amount of optical design efforts that have gone into the design of
optical imaging systems. In broad terms, optical imaging system design is largely
a complex process by which specialized optical elements and their spatial relation-
ships are chosen in order to minimize aberrations and provide an acceptable image
resolution over a desired field of view (FOV) [9]. Its limitations can be summarized
as follows: a finite space-bandwidth product, spatially varying aberrations, and
chromatic dispersion.

Finite space-bandwidth product (SBP)
A lens’s diffraction-limited focus spot is governed by the NA. The lens’s aperture
diameter can be increased to focus a beam into a tighter spot at the center, but this
comes at the expense of increased aberrations in the surrounding area. Multiple
optical surfaces can be introduced to mitigate the aberrations. The more optical
surfaces available to an optical designer, the greater the extent the aberrations can
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Objective lens Resolution SBP
(M/NA/FN) at λ = 532 nm (megapixels)
1.25x/0.04/26.5 8113 nm 21.5 MP
2x/0.08/26.5 4057 nm 33.5 MP
4x/0.16/26.5 2028 nm 33.5 MP
10x/0.3/26.5 1082 nm 18.9 MP
20x/0.5/26.5 649 nm 13.1 MP
40x/0.75/26.5 433 nm 7.4 MP
60x/0.9/26.5 361 nm 4.7 MP
100x/1.3/26.5 250 nm 3.5 MP

Table 1.1: The resolution and the space-bandwidth product of select Olympus
microscope objective lenses. Resolution here is given by Rayleigh criterion, r =
0.61λ
NA , where r is the distance from the center of a diffraction limited spot to its first
zero for a circular aperture with a given NA. SBP is calculated by dividing the area
of the circular FOV (diameter is d = FN/M) by (r/2)2, which is the pixel area that
meets the sampling requirement. The SBP remains constant for low magnification
with low NA, but it drastically decreases for high NA objectives due to the difficulty
of accounting for increasing aberrations.

beminimized. However, this physical system improvement approach for minimizing
aberrations has reached a point of diminishing returns inmodern optics. Microscope
objectives with 15 optical elements have become commercially available in recent
years [10], but it is unlikely that another order of magnitude of optical surfaces
will be supported within the confines of an objective in the foreseeable future.
Moreover, this strategy for minimizing aberration is never expected to accomplish
the task of completely zeroing out aberrations. In other words, any optical system’s
space-bandwidth product (SBP), which scales as the product of system FOV and
inverse resolution, can be expected to remain a design bound dictated by the residual
aberrations in the system. As shown in Table 1.1 [14], the decreasing SBPs of a
set of Olympus objectives with increasing NA illustrate the greater difficulty in
accounting for aberrations for smaller focus spots. FPM overcomes this limit by
computationally synthesizing the SBP of multiple images in post processing, as will
be described in the following chapter.

Spatially varying aberrations
Closely related to the finite SBP limit, a lens cannot have a perfectly diffraction-
limited spot across its entire FOV. A planar wave incident on a lens’s surface with
an angular offset with respect to the lens’s optical axis does not produce a spot with
a simple lateral shift on the other side of the lens because refraction is a non-linear



9

process. Refraction is governed by Snell’s law, which relates the light’s incident
angle, θi, at the refracting interface and the refractive index of the medium before the
interface, ni, to the refracted angle, θr , and the refractive index after the interface, nr ,
by ni sin θi = nr sin θr . For small angles, we can use the paraxial approximation of
Snell’s law, niθi = nrθr , which linearizes the relationship between the incident and
refracted angles such that a plane wave with a tilted illumination angle produces a
laterally shifted focal spot on the other side of the lens. However, this approximation
immediately breaks down for larger angles and introduces aberrations in the lens’s
focal spot [3]. Multiple lens elements can mitigate this effect, but only to a certain
extent. The spatially varying aberrations are often represented by the pupil function
that depends on different spatial locations. Aberrations can also be caused by the
sample. In a typical imaging scenario, the object to be imaged may not have a flat
surface and introduce spatially varying defocus aberration in the captured image.
In a conventional microscope system, multiple focal planes of the sample need to
be captured and patches of different focal depths need to be manually selected to
acquire an all-in-focus image. We later show that we can use FPM andmodifications
of FPM to automatically find the spatially varying pupil function and correct for it
in the captured images in post processing.

Chromatic dispersion
Most optical media have refractive index values that vary with the wavelength. Thus,
a polychromatic light beam experiences different refractive angles for its wavelength
components upon incidence at an optical interface, resulting in chromatic dispersion.
In this thesis, the optical waves of interest have narrow frequency bandwidths (i.e.,
< 20 nm) such that they are assumed to be monochromatic and free from chromatic
dispersion.

The rest of the thesis is outlined as follows. In Chapter 2, we introduce the prin-
ciple of FPM, its advantages, and limitations to lay the foundational knowledge for
understanding our endeavor in computational aberration compensation. Chapter 3
illustrates a direct use case of FPM that overcomes the challenges of a standard
microscope when capturing a wide FOV image of a sample with uneven surface.
In Chapter 4, we demonstrate appending a simple insight to the FPM procedure to
correct for aberrations in a fluorescence image with the FPM-reconstructed pupil
function. Finally, Chapter 5 describes an FPM-inspired algorithm pipeline that can
compensate for a general optical system without spatial coherence requirement of
illumination or the sample field.
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C h a p t e r 2

FOURIER PTYCHOGRAPHIC MICROSCOPY

Fourier ptychographic microscopy (FPM) is a computational coherent imaging
method developed by Zheng et al. in 2013 [24]. FPM circumvents the challenges
of adding more optical elements for improving an optical system’s performance by
recasting the problem of increasing the system’s space-bandwidth product (SBP)
as a computational problem that can be solved after image data have been ac-
quired. Rather than striving to get the highest quality images possible through an
imaging system, FPM acquires a controlled set of low-SBP images, dynamically
determines the system’s aberration characteristics computationally, and reconsti-
tutes a high-SBP, aberration-corrected image from the original controlled image set.
FPM shares its roots with ptychography [16], synthetic aperture imaging [20], and
structured illuminationmicroscopy (SIM) [3], which numerically expand the SBP of
the imaging system in the spatial or spatial frequency domain by capturing multiple
images under distinct illumination patterns and computationally synthesizing them
into a higher-SBP image. In this chapter, we will provide an overview of the basic
principles of FPM’s data acquisition and synthesis process, the advantages offered
by FPM over the standard microscope, and its limitations.

2.1 Basic principles of FPM
FPM can be divided into the image acquisition process and the computational
post-processing. Unlike the standard microscope whose captured image’s quality
is dependent on the performance of the optical system at the moment of capture,
FPM offloads the stringent requirement on the physical setup to the computational
algorithms that can correct for the system’s imperfections with mere numerical
operations. FPM’s technology makes use of two key elements: (1) the fact that
illuminating a specimen with an oblique plane wave in a microscope setup results
in laterally shifting the specimen’s Fourier spectrum in the back focal plane of the
objective lens; and (2) the ability to recover the phase information of the specimen
from its intensity image by a phase retrieval algorithm [24].
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Figure 2.1: Experimental setup of FPM. a) An LED matrix is fitted to a standard
microscope system, replacing its condenser. An LED matrix placed sufficiently far
away (∼8 cm) from the sample provides angularly varying planar illumination. The
objective lens’s backfocal plane (i.e., Fourier plane) is indicated by the yellow box.
b) Different illumination angles correspond to sampling different spatial frequency
information of the sample. c) LEDs are lit up one by one, and the pitch of the LEDs
should be small enough to satisfy the overlap requirement of the spatial spectrum
regions in the Fourier space.

Image acquisition process
In a standard FPM system, images of the sample are collected through a low-
numerical-aperture (NA) objective with the target illuminated with a series of an-
gularly varied planar or quasi-planar illumination. The sample is thin such that
it can be treated as a 2D object. An example FPM setup, as shown in Fig. 2.1,
involves a conventional microscope setup with its light source replaced by an LED
matrix. The LEDs are quasi-monochromatic sources with 10 nm bandwidth, which
for our purposes can assume to be monochromatic [4]. The light field emitted
from one LED can be approximated as a plane wave within a small region at the
sample plane because the LED is small (200 µm by 200 µm) and the large distance
(∼8 cm) between the LED and the specimen increases the spatial coherence of the
LED. The plane wave has vector components (kx, ky) associated with the oblique
illumination of the LED on the sample. Lighting up one LED causes the sample’s
Fourier spectrum to be shifted by (kx, ky) at the objective lens’s back-focal plane due
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to the Fourier relationship, and the finite numerical aperture (NA) of the objective
lens acts as a low-pass filter that transmits only a small subregion at the center of the
shifted Fourier spectrum. The low-passed Fourier component is further propagated
to the image plane and is captured by a camera. LEDs are lit up sequentially so
that the captured images contain partially overlapping Fourier subregions (at least
30% overlap [17] that together span the entire Fourier spectrum of the specimen.
The captured images are broken up into smaller tiles of spatially coherent regions,
whose dimension is given by the van Cittert-Zernike theorem: L = 0.61λz/a [8],
where λ is the LED’s center wavelength, z is the LED-to-sample distance, and a

is the radius of the LED’s active area. For example, with the LED dimension of
200 µm x 200 µm, distance between the LED matrix and the sample of 8 cm, and
the wavelength of 630 nm, the coherence length is ∼307 µm. Also, within this
dimension, the spatially varying aberrations are assumed to be constant. Each tile
is considered independently in the later reconstruction process.

Phase retrieval algorithm
As with synthetic aperture synthesizing, we then stitch the data from the collected
series in the spatial frequency domain. Unlike synthetic aperture imaging, we do
not have direct knowledge of the phase relationships between each image data set.
In FPM, we employ phase retrieval by taking advantage of the partial information
overlap amongst the image set to converge on the correct phase relationships during
the stitching process [24]. For each tile in the FOV, the phase retrieval algorithm
iteratively solves for the expanded Fourier spectrum by using the intensity images
as a constraint in the spatial domain and the objective’s finite NA as a shifting low-
pass constraint in the Fourier domain. Various phase retrieval algorithms for FPM
exist [21], but here we describe embedded pupil function recovery (EPRY) based
on the Gerchberg-Saxton algorithm that can simultaneously solve for the objective’s
pupil function in the phase retrieval process by interleaving an update step in the
algorithm [11, 19]. EPRY’s procedure is described in Fig. 2.2. The images captured
with the lowNA are labeled as Im(x) (m = 1, 2, 3, ...), the simulated lowNA complex
field as ψ(x), the synthesized sample spectrum as S(k), and the reconstructed pupil
function as P(k) where x = (x, y) and k = (kx, ky). δ is an arbitrary small value for
numerical stability in the division process.

In this process, the algorithm is able to not only generate the high-resolution complex
amplitude image of the specimen, but also separate the pupil function and the
specimen’s complex amplitude function from the image. The pupil function contains
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Figure 2.2: The embedded pupil function recovery (EPRY) algorithm. EPRY is
a phase retrieval process that can synthesize the FPM’s intensity dataset into a
complex, high SBP image and simultaneously reconstruct the pupil function of the
imaging system.

the aberrations of the microscope associated with its lens system and the defocus
caused by misalignment of the sample at the focal plane, both of which can be
dependent on the tile’s location in the FOV. Therefore, the specimen’s complex
amplitude function is an aberration-corrected, diffraction-limited complex image of
the specimen. By stitching the tiles together in the spatial domain, we obtain the
specimen’s intensity image and phase information separated from aberrations across
the entire FOV.

2.2 Advantages
Computational postprocessing of FPM presents several advantages over a conven-
tional standard microscope.

Increased space-bandwidth product
Given the FOV of the conventional objective lens, the resolution of the FPM’s
image is no longer limited by the objective’s NA but is given by the summation of
the objective’s NA and the illumination NA. For example, an FPM system with the
FOV of a 2x objective lens (13 mm diameter) and the resolution typically offered
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by a 20x objective (0.4 NA) has been achieved [24]. This is extremely valuable
for imaging microscope slides (e.g., histology samples) which typically need to
be mechanically raster scanned to generate a wide-FOV, high-resolution image for
accurate diagnosis. As an example application, we demonstrated that accurate white
blood cell counting can be performed on a blood smear slide image captured with
FPM [1].

Aberration characterization and correction
Automatic aberration compensation is perhaps the quintessential component of FPM
for achieving a higher throughput with a given lens. It overcomes the fundamental
tradeoff between the achievable FOV and resolution inherent in the physical lens
design. Not only can FPM account for the imperfections in the optical system, it
can also compensate for the aberrations induced by the sample being imaged by
the system. For example, a sample may have an uneven surface profile that places
different locations of the sample at different focal planes. We explore this further in
Chapter 3 and show that it can reconstruct a high resolution image that is in-focus
across the FOV. This particular sub-discipline of FPM has matured to the level
that it is even possible to use a very crude lens to obtain high quality images that
are typically associated with sophisticated imaging systems [6] – this drives home
the fact that correcting aberration computationally is a viable alternative to physical
correction. We describe our investigation of extending this aberration compensation
ability to imaging applications and to different microscope modalities in the later
chapters of this thesis.

Phase imaging
An image reconstructed by FPM’s phase retrieval is a complex field that contains
both amplitude and phase information of the optical field transmitted through the
sample. The phase describes the relative optical path length at different locations
that can be related to the different refractive indices or thicknesses. This is a
very valuable piece of information in imaging biological samples as most cells are
transparent. Development of a phase contrast microscope by Frits Zernike [22,
23] and a differential interference contrast microscope by Georges Nomarski [10]
revolutionized biological sciences by making cells visible without any staining
process. Recently, a digital staining method based on a deep neural network has
been demonstrated to successfully convert a label-free sample’s phase information
into a stained image from which histologists can more easily diagnose [15]. This
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eliminates the time- and resource-consuming process of staining the sample prior
to imaging. Thus, the high resolution phase imaging capability of FPM can help
increase the throughput of medical diagnosis and shed light on valuable structural
information of cells and other transparent objects.

2.3 Limitations
There are several limitations that currently prevent FPM from replacing the standard
microscope.

Thin sample limit
FPM as implemented by Zheng et al. works for a thin sample with the thickness
h within thin sample limit given by |kz | < σk0, where σ = π/(k0h) and |kz | =
max

(
k2

0 −
√

k2
0 − (k0NAobj)2, k2

0 −
√

k2
0 − (k0NAillum)2

)
[12]. The thin sample limit

roughly corresponds to the synthesized 3D PSF’s axial resolution, where the 3D
PSF can be reconstructed in the 3D spatial frequency domain by synthesizing Ewald
caps corresponding to different illumination angles [14]. For a thicker sample, its
Fourier spectrum can no longer be assumed to be two-dimensional, and a tilted planar
illumination on the sample will not simply shift the sample’s Fourier spectrum in the
objective lens’s backfocal plane. Attempting FPM’s reconstruction process on such
a sample will lead to severe artifacts that will render unusable images. There have
been several developments to address this issue, such as modeling a thick sample as
a series of multiple 2D slices [13, 18], or assuming a weakly scattering sample [5].
However, they are not robust as their assumptions are often not applicable in real
life experiments. Whereas a standard microscope still allows one to roughly section
through a thick sample by changing the focal plane, FPM would simply fail to
recover a viable image when those assumptions are not met.

Spatial coherence requirement
FPM is a coherent imaging modality. The illumination on the sample needs to
be spatially coherent for the FPM image acquisition process to capture the correct
spatial frequency information of the sample. However, there are many imaging
scenarios where providing such illumination is difficult or impossible. These sce-
narios include: 1) optical systems where the illumination on a sample is provided
via a medium with unknown index variations; 2) optical systems where space is so
confined that it is not feasible to employ optical propagation to create quasi-planar
optical fields as done with LEDs placed at a distance; and 3) optical systems where
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the optical field at the sample plane is spatially incoherent by nature (e.g., fluores-
cence emission). This makes FPM quite sensitive to the illumination arrangement,
unlike a standard microscope, which only needs a simple condenser with a ther-
mal light source, such that slightly mispositioned LEDs or a small change in the
source to sample distance can prevent FPM from rendering a correct reconstructed
image. In Chapter 5, we present a method developed off of FPM that overcomes this
strict spatial coherence requirement to allow for robust computational aberration
correction of a general optical system.

Speed
As FPM requires multiple images to generate a single image, the acquisition and
processing steps present a bottleneck in the imaging speed. Nevertheless, there have
been various efforts to address this issue such as by multiplexing the illumination
pattern to reduce the number of acquisition [19], replacing the LEDs with a high-
power laser source [2, 7], and incorporating a deep neural network to estimate FPM’s
reconstructed images from fewer frames [9]. With the rapid increase in computation
power and improvement in camera sensors, the issue of speed appears to be solvable
in the near future.
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C h a p t e r 3

HIGH-RESOLUTION, WIDE-FIELD IMAGING OF SAMPLES
WITH UNEVEN SURFACES

High SBP imaging is highly desired in various biomedical applications such as
hematology and digital pathology [3]. Typically, it is performed by mechanically
scanning the microscope slide with a high-NA objective and digitally stitching the
captured images in post-processing to create a wide-field and high-resolution image.
There can be an issue in this pipeline if the sample on the microscope slide is not
flat so that keeping the objective lens at the same focal plane would lead to some
scanned regions being out of focus. A work-around could be to have a microscopist
specify preset focal planes for different sample regions, which makes the imaging
process extremely laborious, or to capture multiple focal planes at every sample
location and pick the images at the right focus, which is highly data-inefficient.
Some microscopes incorporate an optical coherence tomography (OCT) system to
find the correct depth of the sample prior to capturing an image. In this chapter, we
illustrate how FPM can elegantly address the uneven sample issue thanks to its high
SBP imaging capability and its ability to correct for spatially varying aberrations.
The following is about our work in collaboration with Williams et al. [5] on imaging
circulating tumor cells (CTC) captured on a thin filtration membrane.

3.1 Introduction
Circulating tumor cells (CTCs) in peripheral blood have emerged in recent years
as a valuable biomarker with strong potential to improve prognosis and diagnosis
of cancer. Assaying for CTCs requires only a simple, minimally invasive blood
draw, providing a unique opportunity for repeated sampling in patients to monitor
both metastatic disease as well as therapeutic response in real time. Thus, the
enumeration of CTCs with respect to progression-free survival, overall survival,
and therapeutic response has been widely reported on in a number of solid tumor
malignancies. Among various ways to isolate CTCs, size-based isolation of CTCs
from whole blood has been attempted since 1960s [2], and has been revisited
more recently. Utilizing the well-known characteristic that the malignant cells are
larger than surrounding normal blood cells, CTCs are isolated by using microfilters
fabricated with a defined pore size, which allow for the passage of smaller blood
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cells to pass while capturing larger CTCs [1, 6]. Where the sensitivity and efficiency
of affinity-based CTC enrichment strategies rely primarily on tissue- and/or tumor-
specific cell surface bio- markers with the potential for highly variable inter tumor
expression, size-based enrichment technologies are “antigen expression-agnostic,”
allowing analysis of CTCs in tumor types with low or no target antigen expression.

With the potential to overcome the limitations accompanying other platforms, size-
based CTC enrichment strategies possess technical limitations of their own. The
most significant of these limitations is that following sample processing, the surface
of the microfilters becomes uneven with short, microscale modulations. Because
captured cells are randomly dispersed throughout the microfilter, often times mul-
tiple CTCs are present on different focal planes. This technical limitation requires
that the user must constantly change focus while viewing and imaging cells of in-
terest on the microfilter, making sample analysis labor intensive, time consuming,
and inefficient. Automated imaging systems have been developed and are widely
available on a number of microscopy platforms, and could potentially alleviate these
complications. However, such systems cannot readily be employed for CTC analysis
using filtration-based technologies due to their inability to focus multiple areas with
different focal planes within the same frame.

Further complicating this issue, when viewing microfilters under a microscope to
identify CTCs, the entire filtration area must be viewed by systematically moving up
and down the microfilter in columns (i.e., in y-axis plane), or side to side across the
microfilter in rows (i.e., x-axis plane) manually using the stage manipulator knobs.
In instances where the observer does not appropriately align adjoining columns and
or rows on the microfilter, small areas where tumor cells may reside can escape the
field of view (FOV) and fail to be counted, or single events can be counted more
than once if adjoining columns or rows are aligned slightly overlapping each other.
Without the ability to produce images for CTC analysis in an automated fashion,
the potential for inter-operator variability and inconsistent analyses between users
and collaborating institutions reviewing the same samples is dramatically increased.
These technical limitations, taken together, prevent widespread analysis of CTCs
using filtration-based CTC enrichment technologies.

To address these challenges, we present the adaptation of Fourier ptychographic
microscopy (FPM) for the identification and enumeration of CTCs captured by size-
based enrichment. The use of FPM allows for the rapid generation of continuous,
high-resolution images over large areas of interest. Importantly, we also describe
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the ability to perform digital refocusing of images generated by FPM on a frame-
by-frame basis, allowing us to create focused images of frames containing cells of
interest in multiple focal planes, thus traversing the limitations in automated imaging
of uneven surfaces produced by other commercially available technologies. Here,
we present an assessment of our ability to analyze CTCs captured on a previously
described membrane microfilter device developed by Williams et al. using FPM,
evaluating the efficiency of CTC detection as well as the image quality of CTCs
generated by FPM relative to standard microscopic analysis.

3.2 Experimental setup
Membrane microfilter device for circulating tumor cell capture and character-
ization
Williams et al. have developed a membrane microfilter device for the size-based
isolation of CTCs in blood [6]. Microfilters for CTC capture and analysis are
fabricated using a precisely defined, stepwise photolithography process on parylene-
C. The actual manufacturing process is beyond the scope of this thesis. Parylene-C
provides excellent mechanical, optical, and biocompatible properties to be used
as the membrane filter. The microfilters have been demonstrated to achieve 90%
recovery rate of tumor cell isolation [6].

CTC sample preparation
SKBR-3 breast cancer cells were seeded into 5 ml of whole blood from a normal,
healthy donor at various concentrations, processed by the microfilter device, and
labeled with CK and CK45 by double marker IHC on glass microscope slides. A
total of 11 replicates of this experiment were performed. Nine normal donor blood
samples were seeded with a range of tumor cells (15 to 800), representing the lower
and upper limits of CTCs typically identified from clinical blood samples using
the microfilter device. As a negative control, two normal donor blood samples
containing no tumor cells were processed by the microfilter device.

FPM setup
The FPM setup is the same as the one in Chapter 1 and it consists of the following
components: a Olympus BX 41 microscope with 0.08 NA using a Plan APO 2x
objective lens (Olympus, Center Valley, Pennsylvania), a KAI-29050 interline CCD
camera with 5.5 µm pixel size (Eastman Kodak, Rochester, New York) attached
to a computer for image capturing and processing, and a square light-emitting
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Figure 3.1: (a) The FPM setup consists of (from the bottom) an LED matrix
for sample illumination, a microscope system with a 2x objective, and a camera
connected to a computer. (b) The Fourier spectrum point of view. The center red
subregion corresponds to the spatial frequency of the low-resolution image captured
with plane waves with kx = ky = 0. The off-center red subregion correlates to an
oblique angle illumination with wavevector (kx, ky). (c) Light from an LED at an
oblique angle corresponds to a plane wave with a k vector (kx, ky).

diode (LED) array for illumination. The LED matrix contains 32 x 32 surface-
mounted, full-color LEDs and adjacent LEDs are laterally separated by 4 mm.
The full-color LED has central wavelengths of 632 nm (red), 532 nm (green),
and 472 nm (blue), each offering a spatially coherent quasi-monochromatic source
with ∼20 nm bandwidth. When an LED on the matrix is activated, its light field
incident on the sample can be approximated as a plane wave due to the large distance
(∼8 cm) between the LED and the sample plane. The angular illumination can be
characterized by its in-plane wavevector (kx, ky) within the coordinate system, as
depicted in Fig. 3.1. Illuminating a sample with a plane wave of a wavevector in the
space domain is equivalent to shifting the center of the sample’s frequency spectrum
in the Fourier domain. Because the objective acts as a circular, low-pass filter in
Fourier domain, each captured image carries information describing a shifted small
subregion, which is geometrically defined by the pupil function of the microscope,
of the sample’s frequency spectrum. Images are captured by the camera with single
LEDs of one color activated in sequence acting as the light source, and a phase
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retrieval algorithm is used to stitch the subregions together in the Fourier domain
to form a high-resolution complex image, which contains both amplitude and phase
information. Red, green, and blue images are acquired separately by altering the
color of the LED for each set of acquisitions. Single color channels are used
individually for the entire image capturing and reconstruction process. Thus, the
procedure is conducted a total of three times for red, green, and blue channels.
These images are later combined to create a full-color image, such as the ones
shown in Fig. 3.2. In our hands, each sample takes ∼3 min to capture and 10 min to
reconstruct each of the three color channels, for a total of 39 min to produce a color
image of the entire field. For sample analysis by the observer, the complex whole
FOV image created by FPM is refocused and partitioned into a total of ∼300 tiles to
be used for CTC identification on the entire field.

3.3 Analysis of CTC images by FPM and comparison with standard mi-
croscopy

Remarks on FPM-recovered CTC images
Because of the uneven surface of the microfilter containing cells of interest, an
image taken by a standard microscope suffers from defocus. As shown in Fig. 3.2,
when some parts in the FOV are in focus [Figs. 3.2-(d1-1)], other parts can be
blurry [Fig. 3.2-(d1- 2)]. FPM with the embedded pupil function recovery (EPRY)
algorithm, as described inChapter 2, can automatically correct for this aberration [4].
When EPRY stitches the subregions in the Fourier domain, it does so by iteratively
recovering both the Fourier spectrum of the sample and the pupil function. Because
of the pupil function, which contains the aberration of the lens system and the defocus
caused by surface unevenness, the Fourier spectrumof the sample is separated during
the EPRY process. Performing an inverse Fourier transformation on the sample’s
Fourier spectrum results in an aberration-free, flattened image of the microfilter. As
shown in Fig. 3.2-(d1), the defocus is corrected automatically and the components of
the image shown in Figs. 3.2-(d1-1) and Figs. 3.2-(d1-2) are well focused. Because
the algorithm also recovers the pupil function, the sample’s depth information can
be obtained and graphed, as shown in Fig. 3.3(a). The graph shows the microfilter’s
severe surface unevenness, which requires an imaging device with different focusing
levels across the sample. FPM, with its refocusing capacity of up to 300 µm, is
able to image the entire microfilter in focus. Fig. 3.3(b1) and Fig. 3.3(c1) show
two different areas at different depth levels on the microfilter, with Fig. 3.3(b1)
being in focus and Fig. 3.3(c1) being out of focus. After applying FPMs refocusing
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Figure 3.2: (a) Full field-of-view color image of the entire microfilter containing
captured tumor cells by FPM. Magnified FPM images (b-d1) selected from different
areas of the microfilter show detailed morphology of tumor cells, where all sections
are well in focus because of the automatic EPRY-FPM program. (d2) A standard
microscope (with 40x objective) image shows the corresponding region to (d1), but
because of the uneven surface of the microfilter, subregions (d2-1) and (d2-2) cannot
be focused simultaneously. Also, its field of view is limited when compared to (d2),
as seen by the aperture’s outline at the edge of the image, in contrast to FPM’s wide
field-of-view that can provide high-resolution images of the entire micro- filtration
area.
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Figure 3.3: (a) A microfilter’s surface profile characterized by the pupil function
recovered by EPRY. The focal plane of the objective is at 150 µm. The maximum
difference in-depth across the filter is about 250 µm, which is within FPM’s refo-
cusing capacity of 300 µm. In this case, the captured microfilter image is sectioned
into 17 x 17 tiles, and EPRY iteratively characterizes each tile’s defocus level in
its high-resolution image reconstruction process. (b1)-(c2) Small subregions are
extracted from two different surface levels, showing before and after refocusing by
EPRY. (b1) is already very close to the focal plane, so there is only a minor improve-
ment after refocusing, as in (b2). (c1) is not in the focal plane and is blurry. (c2)
shows the refocused result.

algorithm, both areas are brought sharply in focus, as shown in Figs. 3.3(b2) and
Fig. 3.3(c2).

Comparison with standard microscopy
In all samples tested, captured tumor cells were enumerated first by “standard
microscopy” – Axio Imager M1 with an Apochromat 20x/0.8 NA objective lens
(Carl Zeiss Microscopy LLC, Thornwood, New York) and the tumor cell counts
were compared to enumeration done by FPM in corresponding samples.

A Pearson’s correlation between cells identified by both technologies on correspond-
ing microfilter samples was conducted to evaluate the consistency of tumor cell
identification by FPM relative to standard microscopy. As demonstrated in Fig. 3.4,
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Figure 3.4: Graph demonstrating the correlation between tumor cell count by stan-
dard microscopy (y-axis) and tumor cell count by FPM (x-axis) in corresponding
microfilter samples, where each data point represents a single trial with tumor cells
enumerated by both methods.

the R2 for tumor cells identified in corresponding microfilter samples was 0.99932,
indicating a strong correlation between tumor cells counted by both technologies.
This demonstrates FPM as a suitable imaging method that provides comparable
accuracy in tumor cell detection and enumeration to standard microscopy.
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C h a p t e r 4

CORRECTING FOR ABERRATIONS IN FLUORESCENCE
IMAGE WITH FPM-RECOVERED PUPIL FUNCTION

Due to the limitations of physical lens design, imaging systems tend to exhibit
aberrations that vary across their FOV [24]. For wide FOV microscopes (i.e.,
such as those used for gigapixel imaging via FPM [5, 14, 46, 50]), aberrations
significantly deteriorate image quality near the FOV boundary. Thus, aberration
correction becomes a critical step to consistently resolve sample features across the
entire image plane [54]. As demonstrated in prior work [34] and Chapter 3, the
coherent nature of FPM allows us to algorithmically account for the microscope’s
complex and spatially varying aberrations using a procedure termed embedded
pupil function recovery (EPRY). The output of the EPRY algorithm is both a high-
resolution estimate of a sample’s amplitude and phase (i.e., the same as FPM), along
with an estimate of the microscope’s pupil function. The same algorithm cannot
be directly applied to improve fluorescence imaging because both FPM and EPRY
only operate in coherent imaging schemes. Fluorescence is incoherent, so it does
not change in response to angularly varying illumination. However, some insights
from FPM and EPRY do in fact carry over to improve fluorescence resolution
using different illumination schemes [6]. Here, we make use of the insight that the
aberrations impacting the fluorescence image can be corrected by using the pupil
function determined by EPRY.

4.1 Introduction
Bright-field imaging is one of the most popular microscope modalities. A bright-
field microscope typically illuminates a specimen with white light and captures
an image of the transmitted light. Bright-field image contrast offers information
about sample structure [30]. In combination with phase contrast methods, one may
quantitatively measure sample absorption, thickness, and dispersion [25]. Another
increasingly important microscope modality in biology is fluorescence imaging.
Fluorescence can help visualize chemical compositions and structures at a molecu-
lar level through appropriate labeling with fluorophores [23, 43]. By illuminating a
tagged sample at the fluorophores’ excitation light and imaging at the fluorophores’
emission wavelength, biologists can easily identify labeled regions exhibiting chem-
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ical properties of interest. Combining a bright-field and fluorescence image allows
one to locate fluorescing regions relative to the specimen’s underlying structure.

In this chapter, we report a method that can simultaneously generate a high-
resolution, coherent bright-field image, along with an aberration-corrected fluo-
rescence image, across a wide imaging system field-of-view (FOV). Specifically, we
first improve bright-field image resolution using Fourier ptychographic microscopy
(FPM), a recently developed computational technique that processes a sequence of
images acquired under angularly varying illumination [53]. As a phase retrieval
method, FPM also recovers the phase information of the sample [33], and can ad-
ditionally estimate the imaging system’s aberrations [34]. Second, we then capture
a fluorescence image using the same microscope setup, and correct its aberrations
using the aberration map measured via FPM. Specifically, FPM outputs a complex
aberration map in the form of a spatially varying pupil function, with which we
compute the microscope’s spatially varying incoherent point spread function (PSF)
to use in fluorescence image deconvolution for aberration removal. The aberration
removal procedure involves deconvolution with the associated incoherent PSF us-
ing Tikhonov regularization. Since both the coherent bright-field and fluorescence
images are acquired from the same microscope in quick succession and without any
movement, we demonstrate that this direct connection between the pupil function
and incoherent PSF is accurate. We note that our deconvolution method is aimed at
correcting the aberrations in the fluorescence image caused by imperfections in the
imaging system. If done perfectly, it should allow us to render a fluorescence image
at the diffraction limit of the system.

This deconvolution is distinct from super-resolution deconvolution methods that can
reconstruct information outside the passband by incorporating a priori knowledge
of sample structure (e.g., one consisting only of lines or points [17, 19, 32, 36]) or
an infinite SNR [4, 41]. Here, we are primarily concerned with imaging unknown
biological samples, and thus make no a priori assumptions about their structures.
The combination of aberration-corrected fluorescence image and a high-resolution
bright-field image in a large FOV format makes this method potentially suitable for
applications, such as counting fluorescently tagged bacteria [28, 37], studying cell
migration dynamics [29], and tracing cell lineage [40].

The remainder of this chapter is outlined in the following manner: in Section 4.2,
we describe our algorithm for aberration characterization and aberration removal
in incoherent imaging. In Section 4.3, we demonstrate the implementation of our
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algorithm in a microscope while imaging a sample of fluorescent beads, as well as a
fixed, stained, and fluorescently tagged HeLa cell slide. We show that our approach
corrects for spatially varying aberrations to enable accurate, wide-field imaging.
In Section 4.4, we quantify how much fluorescence signal must be collected for a
successful image deconvolution. Finally, we conclude by discussing the implications
of our results.

4.2 Principle of operation
As noted above, we characterize the aberrations within our FPM setup using the
EPRY phase retrieval algorithm [34] as described in Chapter 1. Here, we offer
a short summary of it. First, FPM begins by capturing a series of low-resolution
images under varying plane wave illumination. In this FPM setup, we use an LED
array placed at a large distance behind the sample of interest for our angularly
varying illumination source. For N different LEDs, we turn on one LED at a
time and capture a unique image. For the remainder of this manuscript, we treat
the light emitted from each LED as quasi-monochromatic and spatially coherent
across the sample area. A detailed discussion of the requirements and impact of
source coherence for FPM is in [20]. Assuming the imaged sample is thin as
described in Chapter 1, an angularly varying illumination source creates a laterally
shifting sample spectrum (i.e., the Fourier transform of the complex sample) in
the back-focal plane of the objective lens. At this plane, the finite extent of the
objective lens aperture stop (connected to the lens NA) acts as a low-pass filter.
In a conventional infinity-corrected microscope objective lens, the extent of the
aperture stop defines its cutoff spatial frequency, which in turn dictates its smallest
resolvable feature at the image plane. By laterally shifting the sample spectrum
via varied LED illumination and acquiring a sequence of limited resolution images,
FPM acquires a data set that contains sufficient information to reconstruct an image
with a wider spectrum than offered by a single image. However, since the sample
spectrum is complex, and the image sensor can only record the intensity of light,
extending the sample spectrum beyond the original objective lens bandpass using the
N acquired images is not direct. To solve this inverse problem, FPM applies a phase
retrieval reconstruction algorithm [7, 8]. Several algorithms are available [10, 21, 51]
including standard non-linear solvers based upon alternating projections, which we
utilize in this work, as well as more advanced techniques [1, 42]. With careful
initialization, the alternating projection algorithm arrives at the solution with high
success rate despite not having convergence guarantees [33, 34, 46, 47, 50, 53]. All
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techniques require a certain amount of redundancy within the acquired image set.
Here, we vary the LED angles such that consecutive images, which correspond to
uniquely windowed areas of the sample spectrum, overlap by approximately 65% in
the Fourier domain. Independent of the algorithm, we will refer to the application
of phase retrieval to expand the aperture stop bandpass as Fourier ptychographic
(FP) reconstruction. In the end, we effectively increase the NA of our system
by the illumination NA defined via the maximum LED illumination angle [35].
Simultaneous to complex sample reconstruction, it is also possible to use the same
set of FPM images to iteratively determine the microscope’s pupil function. We
refer to this joint solver as EPRY [34]. The pupil function is a complex function
that summarizes a microscope’s aberrations in addition to its spatial frequency
bandpass as a variation in amplitude and phase at its aperture plane. In an aberrated
microscope, each resulting image is connected to the product of the sample spectrum
(shifted laterally for an oblique LED illumination) with the same pupil function,
which is nonzero only within the bandpass defined by the microscope’s aperture.
Using joint optimization, it is thus possible to simultaneously determine the pupil
function within FP reconstruction by splitting the iterative FPM update process
into two steps. First, EPRY may use the image data and current pupil function
estimate to update the sample spectrum estimate at all even iterations. Then, EPRY
may apply the image data and the current spectrum estimate to update the pupil
function estimate at all odd iterations. A similar joint process is also used to
simultaneously determine the amplitude and phase of the shifting probe field in X-
ray ptychography [13, 31, 44, 45], leading to a significant boost in solver accuracy.
To account for the spatially varying aberrations across the microscope’s FOV, the
captured images are segmented into small tiles, for which the aberrations can be
considered as spatially invariant within each tile [53, 54]. Here, we select a tile area
that is smaller than the entire sample, but larger than approximately 20 x 20 sensor
pixels projected onto the image plane, which helps mitigate numerical artifacts
during reconstruction. The EPRY process is simply applied separately to distinct
image sub-tiles. Image tiling separately considers different areas of sample and
image plane, thus allowing EPRY to determine a unique aberration function from
each sub-region of the microscope’s FOV.

The tile-specific pupil functions obtained from the EPRY algorithm provide an
accurate physical model of the microscope’s coherent transfer function, as detailed
in the appendix of this chapter, which means that one can also deduce from the pupil
functions a correct aberration model for an incoherent imaging scheme. Given
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that both imaging modalities originate from within the same microscope at similar
wavelengths and assuming no inter-image movement, the fluorescence image PSF
is simply given by the squared magnitude of the Fourier transform of the pupil
function [12]:

hm(x, y) =
��F−1 [

Pm( fx, fy)
] ��2 , (4.1)

where (x, y) represent the spatial coordinates of the image plane, ( fx, fy) represent
the coordinates in the aperture plane (i.e., are the Fourier conjugates of the spa-
tial coordinates), hm(x, y) is the incoherent PSF, Pm( fx, fy) is the CTF, and F−1

represents an inverse Fourier transform operation.

Our goal is to use this information to remove the aberrations from the fluorescence
image. We segment the fluorescence image into the same sub-tiles as in the FPM re-
construction process to ensure the aberration map acquired from EPRY corresponds
to the same sub-regions in the fluorescence image. We represent one tile of the
fluorescent sample as om(x, y), where m stands for the mth tile. When om(x, y) is im-
aged by an optical system, it is degraded by the possibly spatially variant incoherent
PSF, hm(x, y), before reaching the detector. The detected image intensity, im(x, y),
is further corrupted by noise, nm(x, y), originating from the sample’s background
signal, shot noise, and detector noise [11]. The imaging process can be represented
as

im(x, y) = hm(x, y) ∗ om(x, y) + nm(x, y). (4.2)

The goal of the aberration removal in fluorescence imaging is to recover the object
om(x, y) from the corrupted image signal, im(x, y). In the Fourier domain, Eq. 4.2
is represented as follows:

Im( fx, fy) = Hm( fx, fy) · Om( fx, fy) + Nm( fx, fy), (4.3)

where Im( fx, fy), Hm( fx, fy), Om( fx, fy), and Nm( fx, fy) are the Fourier transforms
of im(x, y), hm(x, y), om(x, y), and nm(x, y), respectively. Inverting Eq. 4.3 to solve
for Om( fx, fy) is an ill-posed problem due to the nature of Hm( fx, fy), also known
as the optical transfer function (OTF). Unlike the coherent transfer function, the
OTF can have numerous zeros within its bandpass and its values are very low
near the bandpass’s edges [12], which means that the sample information is lost
or overwhelmed by noise at these spatial frequencies. Various inversion methods
have been developed to account for this information loss, which typically rely
upon regularization parameters [39]. Wiener deconvolution [49] is one method



35

that attempts to determine an estimate, Õm( fx, fy), for the original object signal,
Om( fx, fy), by the following:

Õm( fx, fy) = Gm( fx, fy) · Im( fx, fy), (4.4)

where Gm( fx, fy) is an inverse filter defined as

Gm( fx, fy) =
H∗m( fx, fy)��Hm( fx, fy)

��2 + |Nm( fx, fy)|2
|Om( fx, fy)|2

. (4.5)

While it is reasonable to assume Nm( fx, fy) is flat white Gaussian noise, Om( fx, fy)
is hard to determine unless we have some prior knowledge of the sample’s spatial
distribution. For simplicity, we set

��Nm( fx, fy)
��2 /��Om( fx, fy)

��2 to a constant K [11,
38], essentially converting Gm( fx, fy) to a Tikhonov regularization algorithm [2].
K acts like a regularizer: a smaller K produces sharper details while amplifying
noise in the captured image whereas a larger K makes the algorithm more robust
to noise at the expense of details. This value is determined visually so that the
deconvolution minimizes the background noise while recovering the most detail in
the final image [38]. In the end, our final estimate of the original fluorescent object
is given by

õm(x, y) = F−1

[
H∗m( fx, fy)��Hm( fx, fy)

��2 + K
· Im( fx, fy)

]
. (4.6)

Equation 4.6 outputs the resulting image after Tikhonov regularization with our
assumed noise and sample distribution model. Gaussian noise is a reasonable as-
sumption for the noise in our system because we capture images with long exposures
for high signal-to-noise ratio. However, for photon-limited settings where Poisson
noise becomes severe and dominant, maximum likelihood deconvolution methods
that assume a Poisson imaging process would be more suitable, such as Richardson-
Lucy deconvolution [22]. We apply Eq. 4.6 for all the sub-tiles to acquire a full
FOV aberration-corrected fluorescence image.

4.3 Experimental demonstration
Fluorescent microspheres sample
To experimentally demonstrate both FPM and fluorescence image enhancement,
we use the modified 4f setup diagrammed in Fig. 4.1. Here, the 4f arrangement
consists of an f = 200 mm tube lens (ITL200, Thorlabs) and an f = 50 mm Nikon
lens (f/1.8D AF Nikkor). We also place an iris at the back-focal plane of the
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Figure 4.1: The experimental setup of joint FPM-fluorescence imaging. The 4f
setup has a camera lens, an iris at the back focal plane, and a tube lens. The filter is
included only for fluorescence imaging and FPM imaging of the same color channel.
First, raw FPM images are captured using varied-angle illumination provided by the
LED matrix. Then, a fluorescence image is captured with the illumination from the
excitation LED.

f = 50 mm lens, as shown in Fig. 4.1, to allow for a user-controllable NA. The
4f setup has an NA of NAcollection = 0.085 with an M = 3.87 magnification. The
sample is placed at the front focal plane of the f = 50 mm lens, and a CCD detector
(pixel size 5.5 µm, Prosilica GX6600) is used to capture each image. It is able to
capture an area of 6.2 mm by 9.3 mm on the sample plane, defined by the detector’s
sensor size in this setup. The setup includes two illumination sources, one for each
imaging modality. For high-resolution FPM imaging, we use an LED array placed
∼80 mm behind the sample with 32 x 32 individually addressable elements (pitch
size 4 mm), of which we only use a 15x15 segment (225 images captured in total).
The increase in NA provided by the LEDs is NAillum = 0.33. The overall system
NA is NAsys = NAcollection + NAillum = 0.33 + 0.085 = 0.415, which is a factor
of 4.9 resolution gain over the 4f setup with a single plane wave illumination. For
fluorescence imaging, we use a separate excitation LED along with an appropriate
emission filter that we insert in the optical path behind the iris. FPM raw images and
the fluorescence image are captured separately. The emission filter is present only
for capturing the fluorescence image and the FPM raw images of the same color
channel, which ensures they both image the same spectral range.

As a first experimental demonstration of our algorithm pipeline, we image a sam-
ple slide containing both 10 µm green-fluorescing microspheres and 15 µm non-
fluorescing microspheres (Fisher Scientific). First, we acquire 225 full FOV low-
resolution images under variable LED illumination (<3 seconds average exposure
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time). Only green LEDs are used for this demonstration. We focus our attention on a
single image tile in Fig. 4.2, which corresponds to a 360 µm x 360 µm region located
3.8 mm away from the center of the image FOV. From our set of 225 low-resolution
images captured under variable green LED illumination (in Fig. 4.2(a)), we apply
the EPRY algorithm for 50 iterations (5 seconds per tile) to reconstruct the intensity
and phase of the sample, along with the pupil function of the optical system (in
Fig. 4.2(b)). Note, this pupil function is only valid for this particular image tile, and
the reconstructed complex image is much sharper than the raw images due to reso-
lution improvement and aberration removal. Next, we capture a green fluorescence
image by illuminating the sample with our blue excitation LED (470 nm, Thorlabs),
in Fig. 4.2(c) (2 minutes exposure time). Both FPM images and the fluorescence
image are captured using a green band-pass filter (530 nm, 43 nm pass band) behind
the iris. The fluorescence image is severely blurred because it is captured near the
edge of the imaging system’s FOV. We can derive the incoherent PSF that charac-
terizes the fluorescence image blur, hm(x, y), from the EPRY algorithm’s computed
pupil function, Pm( fx, fy), following Eq. 4.1.

We then deconvolve the PSF-induced blur from our fluorescence image in Fig. 4.2(c)
using Eq. 4.6, which creates the sharp image in Fig. 4.2(d) (< 1 second per tile).
Deconvolution removes many of the negative effects of lens-induced aberration.
Four fluorescent beads that are challenging to resolve in the raw image are clearly
distinguishable after deconvolution. In Fig. 4.2(e), we plot the one dimensional
profile through two neighboring beads, both with raw and deconvolved data. This
plot highlights that not only does our deconvolution improve image contrast, but it
also locates the centroid of each bead with greater accuracy. Specifically, the ratio
of the lower peak to the dip between each peak is 0.946 for the raw image and 0.526
for the deconvolved result. The raw image shows the beads’ separation distance is
8.5 µm, which is 15% below the bead’s diameter of 10 µm. The deconvolved image
shows the separation of 9.9 µm, which is within the 5% tolerance value indicated
within the beads’ manufacturing specifications. We also note that the lateral shift
caused by the system’s aberrations is corrected for in the deconvolution result, as
indicated by the shift of the inter-peak dip. This is important for identifying the
correct spatial correspondence between the high-resolution FPM image and the
fluorescent sample image.
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Figure 4.2: Experimental reconstruction of an improved-resolution amplitude and
phase image, along with an aberration-corrected fluorescence image, using FPM.
(a) Series of low-resolution coherent green images captured with variable-angle
illumination from an LED matrix. (b) EPRY is applied on the low-resolution
images to generate a high-resolution, complex image of the sample, along with
the characterization of the microscope’s pupil function. (c) The pupil function is
converted into an incoherent PSF, which is the blur kernel induced to a fluorescence
image by the imaging system in the same sample region. (d) The PSF is deconvolved
from the fluorescence image using Eq. 4.6 to generate an aberration-corrected image.
(e) The one-dimensional profile of two beads, in the raw and deconvolved images,
shows improved contrast and position accuracy. (f) In the overlay of FPM and
fluorescence images, the fluorescence signal is localizedwith good centroid accuracy
after deconvolution.
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Figure 4.3: Comparison between (a) a raw image of a specific sample ROI shifted
4.63mmoff the optical axis (left), its deconvolution result (right), and (b) a raw image
captured with the same sample ROI centered on the optical axis, im(x, y). The PSF
recovered from FPM, hm(x, y), is deconvolved from the image to remove aberrations
in (a). The result shows close resemblance to the image in (b), icenter(x, y), which
we assume is minimally impacted by system aberrations.

Fluorescently tagged HeLa cells
To demonstrate the benefit of combined bright-field and fluorescence imaging with
a biological sample, we use our system to image a sample of HeLa cells stained
for both fluorescence and bright-field. The sample is a microscope slide with
90% confluent HeLa cells that are fixed, stained with Wright’s stain from Fisher
Scientific’s PROTOCOL Hema 3, and fluorescently tagged with DAPI from Life
Technologies. The sample is first imaged for FPM reconstruction by sequentially
illuminating it with the red, green, and blue channels of the 225 LEDs in our array.
We insert a bandpass filter (460 nm, 80 nm band) to capture blue illumination images
from within the same spectral range as DAPI’s fluorescence emission. Second, we
capture a blue fluorescence image by illuminating the sample with a UV LED
(365 nm, Thorlabs) at DAPI’s excitation wavelength. The sample is exposed for
21 minutes, which is the optimal time for the given sample and imaging setup as
will be detailed in Section 4.4. We then reconstruct a high-resolution FPM image,
along with a spatially varying pupil function, by repeating the EPRY algorithm on
different image sub-tiles. Finally, we apply Eq. 4.6 to deconvolve each tile of the
fluorescence image.

As a qualitative performance test of our deconvolution, we capture two fluorescence
images of the same sample region of interest (ROI), shifted to two different locations
within the optical system’s FOV. We capture one image with the ROI located at
the center of the image FOV (i.e., along the optical axis, shown in Fig. 4.3(b)).
In this region, we assume the effects of imaging system aberrations are minimal
and treat this image as the ground truth for comparison. We could deconvolve
this image with the associated PSF, which could potentially improve the image
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contrast. However, the result of Tikhonov regularization can at best only be an
estimate of the true sample function, as given by the assumption on K in Eq. 4.6.
Therefore, we do not perform deconvolution on the center image. We then capture
a second image of the same ROI after translating the sample laterally 4.63 mm
away from the center, as shown in Fig. 4.3(a). It is clear that lens aberrations more
significantly impact image quality off the optical axis, as indicated by the blurry
outlines of the DAPI-stained nuclei. The same sub-figure also shows the results
of our deconvolution, using the incoherent PSF found via FPM image capture and
post-processing of the same image tile. Deconvolution both increases the nuclei’s
contrast and highlights features that are not otherwise visible in the raw fluorescence
image to the left, such as the shape of the nuclei and their separation gaps. We can
confirm the accuracy of our deconvolution result in Fig. 4.3(a) by comparing it
with the minimally aberrated image of the same ROI in Fig. 4.3(b). We see close
agreement between all deconvolved image features, with few apparent artifacts.
Some “hot” pixels, visible as white or black dots within the raw, blurry image in
Fig. 4.3(a), lead to ringing artifacts around each after deconvolution. However, their
presence does not drastically degrade the quality of the deconvolution image.

Fig. 4.4 offers an example of combining both our resolution-improved bright-field
imaging and fluorescence imaging capabilities within a single biological application.
Here, similar to Fig. 4.3, we process low-resolution images obtained under variable-
LED illumination using the EPRY algorithm. Prior to reconstruction, the low-
resolution color images have severe aberrations because they are captured near the
edge of the FOV.We can reconstruct high-resolution, aberration-corrected full-color
FPM images to elucidate sharp image features, such as the nucleoli present in the
HeLa cells’ nuclei, cell morphology via the reconstructed phase, and boundaries
between different cells. Fig. 4.4(d) is the full FOV fluorescence image of the
HeLa sample, and Figs. 4.4(a-c) correspond to zoomed-in regions of the image to
demonstrate that we are able to obtain high resolution FPM images and aberration-
corrected fluorescence images throughout the entire image FOV. Generating a full
FOV image requires applying EPRY and deconvolution algorithms to individual
subtiles separately (∼2200 tiles, 5 seconds per tile). We can also combine the
fluorescence image with FPM data to generate a phase gradient image overlaid with
fluorescence emission. The phase gradient + fluorescence images in Figs. 4.4(a-c)
show that, with the help of the cell’s structural information provided through the
phase gradient, the fluorescent regions of HeLa cells are indeed the nuclei. It is
also possible to distinguish cells in telophase (Fig. 4.4(c) arrow) from the ones in



41

Figure 4.4: Demonstration of FPM and aberration-corrected fluorescence imaging
across different regions of a large image FOV. (a)-(c) correspond to regions labeled
in the full FOV fluorescence image in (d). With FPM, we improve bright-field
image resolution (1st and 2nd column) and characterize the spatially varying pupil
functions (6th column). Hot pixels and chromatic aberrations appearing in the
low-resolution color images are suppressed and corrected after FPM reconstruction.
We correct aberrations in the fluorescence image using each pupil function (3rd
and 4th column). The phase gradient images from FPM can be combined with
fluorescence data to elucidate the structures and the locations of the nuclei of HeLa
cells (5th column). The cell membranemorphology elucidated by the phase gradient
can differentiate between cells undergoing cytokinesis (arrow in (b)) and cells in
telophase (arrow in (c)), which is otherwise difficult to do in the fluorescence images
alone.
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the cytokinesis stage of cell mitosis (Fig. 4.4(b) arrow), by examining the cell
membrane morphology within the phase gradient image. This type of information
is missing from fluorescence data alone. It is important to note that, because the
aberrations in FPM and fluorescence imaging are corrected by functions derived
from the same pupil function, we also observe accurate spatial correspondence (i.e.,
alignment) between each imaging modality.

4.4 Quantifying the adequate amount of fluorescence signal for deconvolution
We observe that the quality of our deconvolution results is proportional to the signal-
to-noise ratio (SNR) of the input images. As noted previously, Eq. 4.6 is based on
Gaussian noise model; thus, applying it on an image dominated by Poisson noise
will not result in successful deconvolution. It is important to investigate at what
SNR level our method can start yielding accurate deconvolved images. Although we
can image the DAPI fluorescence dye (used to stain our HeLa cells in Fig. 4.3 and
Fig. 4.4) for an extended period of timewithout photobleaching to obtain a high SNR,
many fluorescence dyes are not as robust [30, 43]. For a weakly fluorescing sample
(e.g., low fluorophore concentration), one needs to extend the detector exposure
time and runs into the risk of photobleaching the sample before the end of an image
capturing process. Thus, the system’s parameters need to be adjusted appropriately
to image the sample before photobleaching occurs. Also, to our knowledge, this is the
first published work to demonstrate deconvolution of fluorescence images with the
aberration function derived from an iterative computational method using coherent
microscopy. All aforementioned reasons prompted us to conduct further analysis on
our deconvolution method. In the following paragraphs, we systematically analyze
how an imaging system’s parameters play a role in the fluorescence image capturing
process and quantify how much fluorescence signal is required for our system to
offer good deconvolution results. In a CCD detector, photons hitting the sensor
generate electrons in each pixel. In the readout process, the number of electrons
are converted into a discrete photon count value, S, by a gain factor, g. S includes
various kinds of noise, σs, such as dark current, read noise, quantization noise, and
shot noise [18]. The per-pixel SNR is then given by

SNR =
S
σ
. (4.7)

We assume shot noise, which originates from the quantum nature of light, to be the
dominant noise and ignore others for simplicity of our analysis. Further assuming
our CCD’s gain to be g = 1, S is directly related to σs by: σs =

√
〈S〉 [18], where
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〈S〉 is the average pixel count. Thus, SNR increases with an increase in signal value
(i.e., SNR =

√
〈S〉 ).

To determine a threshold SNR of fluorescence signal needed for successful decon-
volution, we capture multiple fluorescence images of the region in Fig. 4.3 (i.e.,
4.63 mm away from center), each with a different exposure time. An increase in
exposure time leads to an increase in S registered by our detector’s pixels for the
fluorescent nuclei of HeLa cells. Since each HeLa nucleus has a different fluores-
cence signal level due to different amount of bound DAPI molecules, we select one
representative HeLa nucleus within the ROI for quantifying signals in this study.
Specifically, we use a small uniform region within the nucleus, as indicated by the
yellow box in Fig. 4.5(b), to calculate average SNR values. As we vary the exposure
time, t, from 45 seconds to 37.5 minutes, SNR varies from 3.46 to 24.16. We then
deconvolve each variable exposure image im(u; t) via Eq. 4.6 with the same decon-
volution filter to create a set of sharpened reconstructions, õm(u; t). We compare
each of these sharpened images to a reference image, icenter(u), created again by cen-
tering the same image ROI along the optical axis. We assume this centered image
is a minimally aberrated, and thus a useful comparison benchmark. It has a much
greater SNR (SNR = 41.14) compared to the off-center images. Note that õm(u; t) is
the estimate of the sample function, om(u), and icenter(u) is the convolution of om(u)
with the incoherent PSF of the center FOV (which is only minimally aberrated),
hcenter(u), as given by Eq. 4.2 (assuming ncenter(u) ∼ 0 for a high SNR). We do
not apply Tikhonov regularization to icenter(u) to obtain õcenter(u) because õcenter(u)
would at best only be an estimation for the true sample function om(u), especially
without the knowledge of the sample’s spatial frequency distribution, Om( fx, fy),
and the exact noise distribution,Nm( fx, fy), as indicated in Eq. 4.5. Thus, we treat
icenter(u) as the ground truth in our analysis. In order to quantify the accuracy of
õm(u; t), we convolve õm(u; t) with hcenter(u) to generate ĩm(u; t) for appropriate
quantitative comparison between the estimated and the ground truth sample func-
tion. We then compare each ĩm(u; t) with icenter(u) by computing their normalized
mean square error (NMSE) [9], which is a function of exposure time, t:

NMSE(t) =
Σu

��icenter(u) − αt ĩm(u; t)
��2

Σu |icenter(u)|2
. (4.8)

Here, u = (x, y), and αt is given by

αt =
Σuicenter(u)ĩ∗m(u; t)
Σu

��ĩm(u; t)
��2 , (4.9)
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Figure 4.5: (a) Normalized mean square error (NMSE) of the raw, im(u; t), and
deconvolved image, ĩm(u; t), in Fig. 4.3(a) is plotted against the detector exposure
time. Higher exposure is equivalent to higher SNR of the captured image. NMSE
starts to plateau for both raw and deconvolved images after about 21 min of exposure
(raw image SNR = 18.1) as indicated by the green broken line, with the deconvolved
image’s NMSE = 0.0057 being 31% lower than the raw image’s NMSE = 0.0083.
(b) Example images of the ROI used for this study. The reference image is generated
by centering the ROI and capturing with our imaging system. We use the area inside
the small yellow box to quantify the SNR. Raw images are captured with varying
exposure time (45 sec and 21 min shown here) while the ROI is 4.63 mm away
from the center. We use the same small area in each raw image to quantify its SNR.
Deconvolved images are generated by applying Eq. 4.6 to the raw images. Longer
exposure provides better SNR images and deconvolution results.

which allows for NMSE metric to be invariant to a constant multiplicative factor
between images being compared. For a quantitative validation of the improvement
in image quality after our deconvolution algorithm, we also calculate the NMSE be-
tween the raw away-from-center images, im(u; t), and the reference image, icenter(u).
As shown in Fig. 4.5, the deconvolved images are able to consistently provide lower
NMSE values than do the raw images, with NMSE reduced by 31% in the plateau
region (NMSE = 0.0057 versus 0.0087). Both plots start to plateau at about t =
21 min, at which the SNR in the raw captured image is SNR = 18.1. We set this as
the adequate SNR value of a fluorescence image for successful deconvolution.

We then quantify how much fluorescence a sample needs to emit for our particular
imaging system to obtain the adequate SNR image. This quantity can guide the
sample preparation process and the imaging system setup so that the sample’s



45

bound fluorophore concentration level and the imaging system’s parameters are
made suitable for successful fluorescence image deconvolution. Assuming that the
DAPI fluorophores in the nucleus of interest emit n photons per area isotropically
(i.e., spherical wavefront from each point on the nucleus), the proportion entering
our system, nm, with the given numerical aperture, NA, can be determined by
calculating how much fraction of the spherical area is captured by the system. NA
limits the light acceptance angle and results in capturing a section of the sphere, a
spherical cap [48]. The ratio of the spherical cap to the total spherical area is equal
to m = (1 −

√
1 − (NA/ni)2)/2, where ni is the index of refraction of the medium

between the sample and the imaging lens. For our system, ni = 1, so it is omitted
in subsequent calculations. The photons reach our CCD detector and are converted
into electrons with the conversion ratio determined by the quantum efficiency, q (q =
46% at λ = 470 nm for our system). With the magnification of our imaging system,
M = 3.87, CCD gain assumed to be g = 1, and the pixel area, p = 30.25 µm2, the
output signal for a pixel is given by

S =
nmpq

M
=

npq(1 −
√

1 − NA2)
2M

. (4.10)

We look at a uniform region within a HeLa nucleus, so S = 〈S〉. Thus, our average
SNR is given by

SNR =
〈S〉√
〈S〉
=
√

n

√
pq(1 −

√
1 − NA2)

2M
. (4.11)

Rearranging for n, we find:

n = SNR2 2M

pq(1 −
√

1 − NA2)
. (4.12)

Substituting the values for our system parameters, the number of photons per area
required for an adequate SNR in our system is n = 50400 photons/µm2. This
condition allows for our deconvolution algorithm to achieve an accurate result with
a low NMSE value. The fluorescent sample needs to be exposed for an adequate
amount of time to satisfy the n requirement. For a sample that cannot provide
this much signal either due to photobleaching or restrictions on exposure time, the
system parameters need to be adjusted appropriately according to Eq. 4.4 to achieve
a similar SNR level.
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4.5 Discussion
In summary, we have developed an FPM system capable of generating a wide-field,
aberration-corrected fluorescence image with correct spatial correspondence to the
high-resolution FPM image. It utilizes the spatially varying pupil function from
EPRY algorithm to correct for the aberrations in the fluorescence image. The result-
ing color intensity image, phase image, and the fluorescence image can be combined
to provide multiple layers of information about the sample’s morphology, chemical
properties, and functions. The wide FOV fluorescence and high-resolution bright-
field image can be beneficial to various biological imaging studies including, but not
limited to, cell lineage tracing, counting bacteria, and cell migration. For imaging
scenarios requiring the use of a higher NA objective lens, the same algorithm may
be used with the FPM setup adjusted accordingly by simply varying the distance
of the LED matrix to the sample to allow for steeper angles of illumination, as
demonstrated in [35].

The advantages of this aberration-removalmethodwith the same pupil function from
FPM over other deconvolution methods are the following: 1) deconvolution by the
PSF obtained from FPM allows for proper overlap between the fluorescence image
and the FPM image. This is important when overlaying the two images, especially
when the pupil function has large asymmetric aberrations in different regions of the
FOV. Asymmetric aberrations cause a noticeable lateral shift in the images. Since
the presented deconvolution method uses the incoherent PSF determined directly
from the pupil function obtained from EPRY, both the fluorescence image and
FPM’s high-resolution coherent image can be corrected for aberrations with the
same amount of lateral shift. Other deconvolution methods that do not use the pupil
function characterized by FPM, such as blind deconvolution, would not be able to
generate a corrected image with the proper lateral shift because the methods do not
account for the absolute location of the image [26], meaning that the deconvolved
image can have any arbitrary lateral shift as its solution. Without the same lateral
shift for FPM and fluorescence images, the direct overlay of the images will not
have the correct spatial correspondence between them. 2) Because the system can
characterize the PSF of the fluorescence image, one can refer to the vast amount of
literatures on non-blind deconvolution methods to deconvolve the aberrations from
the image. Various high-fidelity and noise-robust methods, such as Ref. [27, 52],
can be implemented once the PSF is known.

The disadvantage of this method is that it requires a whole set of coherent images
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to be acquired with an array of coherent light sources of the same wavelength as the
fluorescent signals in order to correct for the aberration in the fluorescence image.
Not only is this data intensive, but it also requires additional set of light sources for
each fluorescence color channel. In Chapter 5, we will discuss another variation of
FPM that can address these issues.

4.6 Appendix
It is necessary to verify that EPRY is able to recover a physically accurate model
of the microscope’s pupil function. Although Ref. [34] shows that EPRY algorithm
converges to the actual pupil function in computer simulations, it only demonstrates
the algorithm’s robustness in experiments via visual inspection of reconstructed
sample images. Here, we proceed to confirm that it converges to the correct pupil
function in real imaging situations by comparing the generated pupil function with
that obtained from another pupil function recovery method. We crosscheck EPRY
with an alternative method capable of characterizing spatially varying aberrations
of an imaging system as described in Ref. [54]. Its principle is based on a phase-
retrieval technique on a sample via phase diversity introduced by imaging the sample
at various defocus planes [3, 15, 16]. The basic procedure is as follows. The sample
has identical targets, such as microspheres, distributed uniformly across the imaging
FOV. A target at the center of the FOV is considered to be minimally aberrated by
the imaging system. Its complex function obtained via the phase retrieval technique
is therefore treated as the ground truth of the target’s complex field. The aberration
function of any region of the imaging system’s FOV can be recovered using the
defocus image stack of a target in that certain area and the target’s ground truth. The
aberration function with a given number of parameters can be optimized for those
parameters with a pattern search algorithm byminimizing the difference between the
measured defocus image stack and a simulated defocus stack. The latter is generated
by applying the aberration function on the ground truth target and propagating at the
same defocus planes as the measured stack. The aberration function that minimizes
the difference provides an accurate description of the pupil function in that region
of the imaging system’s FOV.

For an experimental implementation of this method, we use the same modified 4f
setup diagrammed in Fig. 4.1 without the excitation LED.We replace the LED array
with a collimated green LED beam to illuminate the sample at a perpendicular angle
for this procedure, as shown in Fig. 4.6(a).
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Figure 4.6: The variations in experimental setup for comparing the two different
pupil function recover methods. (a) Collimated light source illuminates the sample
perpendicularly, and the sample is brought to different defocus planes in the defocus
diversity-based pupil recovery method. (b) LEDs of varied illumination angles act
as the light source in FPM setup. EPRY algorithm jointly solves for the sample
spectrum and the pupil function using sample images captured under different LED
illumination angles.

We use a microscope slide sample consisting of uniformly distributed 3 µm and
15 µm diameter microspheres (Fisher Scientific) immersed in oil and sealed with
a coverslip as our target. The sample is brought to 17 different defocus planes,
∆z away from the focal plane of the microscope, where ∆z ranges from -400 µm
to +400 µm with 50 µm steps. We select a 3 µm diameter bead at the center of
the microscope’s FOV as the ground truth and apply the defocus diversity phase
retrieval process to obtain its complex function. We choose one 3 µm bead from
different regions in the microscope’s FOV, and apply the aforementioned pattern
search optimization algorithm to determine the pupil functions in those regions.
We optimize the pupil functions for 8 parameters corresponding to the first, second,
third, and fourth order Zernike modes, which are namely x-tilt, y-tilt, x-astigmatism,
y-astigmatism, defocus, x-coma, y-coma, and spherical aberration.

The experimental setup for EPRY is as follows. The setup is identical as above except
for a 32 x 32 individually addressable RGB LED array (4 mm pitch) replacing the
collimated light source, as shown in Fig. 4.6(b). We place the LED array ∼80 mm
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Figure 4.7: Full FOV image of a sample of microspheres with associated pupil func-
tions in 3 different sub-regions. The red box indicates the pupil function recovered
by EPRYwhile the blue box stands for defocus diversity-based pupil function recov-
ery method. The two pupil estimation methods correlate well throughout different
regions of the FOV.

below the sample, and use a 15 x 15 segment in the acquisition process (225 images
captured in total). Only green LEDs were used for this procedure. We segment
the full FOV into sub-tiles, and reconstruct both the pupil function and the high-
resolution sample function specific to each tile. In agreement with our assumption,
the central FOV shows minimal aberrations. For accurate comparisons between
the two aberration characterization methods, we normalize all the pupil functions
obtained by EPRY by the center tile’s pupil function. We compare these to the pupil
functions in corresponding regions obtained from the defocus diversity method, of
which 3 pairs are plotted in Fig. 4.7. We only include the second, third, and fourth
order Zernike modes in this comparison. The first order Zernike modes, namely the
x-tilt and y-tilt, merely produce lateral shifts in a captured image, so they are not
considered as aberrations.

We observe that the recovered pupil functions from the two methods correlate
well across the FOV. Slight discrepancies can be attributed to imperfections in the
collimation of LED and misalignment between the sample’s defocus axis and the
microscope’s optical axis in Fig. 4.6(a)’s setup. We conclude that the pupil function
generated by EPRY is an accurate physical description of the imaging system, which
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can be subsequently appropriated for fluorescence imaging.
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C h a p t e r 5

CORRECTING FOR ABERRATIONS IN A GENERAL OPTICAL
SYSTEM

Up to this chapter, FPM’s ability to determine and correct aberration has been
limited to optical setups with a well-defined, spatially coherent field on the sample
plane [4–6, 21, 36, 42, 44–46, 48, 52]. However, the removal of spatial coherence
constraints is vitally important in allowing us to apply computational aberration
correction to a broader number of imaging scenarios. These scenarios include: 1)
optical systems where the illumination on a sample is provided via a medium with
unknown index variations; 2) optical systems where space is so confined that it is
not feasible to employ optical propagation to create quasi-planar optical fields; 3)
optical systems where the optical field at the sample plane is spatially incoherent by
nature (e.g., fluorescence emission). In this chapter, we show how we developed a
computational imaging method capable of reconstructing an optical system’s pupil
function by adapting the FPM’s alternating projections to an incoherent imaging
modality. The reconstructed pupil function can then be deconvolved from the
aberrated image to recover the latent high-resolution image.

5.1 Introduction
A perfect aberration-free optical lens simply does not exist in reality. As such, all
optical imaging systems constructed from a finite number of optical surfaces are
going to experience some level of aberration issues. This simple fact underpins
the extraordinary amount of optical design efforts that have gone into the design of
optical imaging systems. Reiterating from Chapter 1, optical imaging system design
is largely a complex process by which specialized optical elements and their spatial
relationships are chosen in order to minimize aberrations and provide an acceptable
image resolution over a desired field of view (FOV) [29]. The more optical surfaces
available to the designer, the greater the extent the aberrations can be minimized.
However, this physical system improvement approach for minimizing aberrations
has reached a point of diminishing returns in modern optics. Microscope objectives
with 15 optical elements have become commercially available in recent years [32],
but it is unlikely that another order ofmagnitude of optical surfaces will be supported
within the confines of an objective in the foreseeable future. Moreover, this strategy
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for minimizing aberration is never expected to accomplish the task of completely
zeroing out aberrations. In other words, any optical system’s space-bandwidth
product (SBP), which scales as the product of system FOV and inverse resolution,
can be expected to remain a design bound dictated by the residual aberrations in the
system.

The issue of aberrations in simpler optical systems with few optical surfaces is,
unsurprisingly, more pronounced. The eye is a very good example of such an
optical system. While it does a fair job of conveying external scenes onto our retinal
layer, its optical quality is actually quite poor. When a clinician desires a high
resolution image of the retinal layer itself for diagnostic purposes, the human eye
lens and cornea aberrationswould have to be somehow corrected or compensated for.
The prevalent approach by which this is currently done is through the use of adaptive
optics (AO) [12, 49]. This is in effect a sophisticated way of physically correcting
aberrations where complex physical optical elements are used to compensate for
the aberrations of the lens and cornea. AO forms a guide star on the retina and
uses a wavefront detector (e.g., Shack-Hartmann sensor) and a compensation device
(e.g., deformable mirror) to correct for the aberrations affecting the guide star and a
small region around it as it is under similar aberrations. This region is known as the
isoplanatic patch [10] and its size varies depending on the severity of aberrations. To
image a larger area beyond the isoplanatic patch, AO needs to be raster-scanned [3].
Since AO correction is fast (e.g., <500 ms [17]), it is still possible to obtain images
of multiple isoplanatic patches quickly. However, the AO system can be complicated
as it requires the active feedback loop between the wavefront measurement device
and the compensation device and needs a separate guide star for the correction
process [30].

The primary objective of this chapter is to report a novel generalized optical mea-
surement system and computational approach to determine and correct aberrations
in optical systems. It first reconstructs an optical system’s pupil function by adapting
the FPM’s alternating projections as used in overlapped Fourier coding [18] to an
incoherent imagingmodality, which overcomes the spatial coherence requirement of
the original pupil function recovery procedure of FPM. It can then recover the high
resolution image latent in an aberrated image via deconvolution. The deconvolution
is made robust to noise by using coded apertures to capture images [54]. This com-
putational approach is coupled to a general optical scheme designed to efficiently
collect the type of images required by the computational approach. We term this
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method: coded-aperture-based correction of aberration obtained from overlapped
Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imag-
ing scenarios where aberration is present and where providing a spatially coherent
illumination is very challenging or impossible. CACAO-FB ultimately allows for
an aberrated imaging system to achieve diffraction-limited performance over a wide
FOV by casting optical design complexity to computational algorithms in post-
processing.

CACAO-FB is substantially different from other recent efforts aimed at aberration
compensation. Broadly speaking, these efforts can be divided into two major
categories: blind and heuristic aberration recovery. Blind recovery minimizes
a cost function, typically an image sharpness metric or a maximum-likelihood
function, over a search space, usually the coefficient space of Zernike orthonormal
basis [1, 9, 16, 39, 40, 43], to arrive at the optimal aberration function. However,
blind recovery is prone to converging towards multiple local minima, and requires
the aberrated sample image to be a complex field because blind aberration recovery
with intensity-only sample image is extremely prone to noise for any aberrations [16]
other than simple ones such as a cameramotion blur or a defocus blur [25]. Heuristic
recovery algorithms rely on several assumptions, such as assuming that the captured
complex-field sample image has diffuse distribution in its Fourier spectrum such
that each sub-region in the Fourier domain encodes the local aberrated wavefront
information [11, 14, 23, 24]. Thus, heuristic methods are limited to specific types
of samples and their performance is highly sample dependent.

CACAO-FB is capable of achieving a robust aberration recovery performance in a
generalized and broadly applicable format. In Section 5.2, we describe the principle
of CACAO-FB. In Section 5.3, we report the demonstration of CACAO-FB with a
crude lens and an eye model as imaging systems of interest. Finally, in Section 5.4,
we demonstrate the potential of using CACAO-FB for retinal imaging in an in vivo
experiment on a rhesus macaque’s eye, and discuss the current challenges it needs to
address to become a viable alternative to other AO retinal imagers. We summarize
our findings and discuss future directions in Section 5.5.

5.2 Principle of CACAO-FB
To best understand the overall operation of the CACAO-FB processing, we start by
examining the optical scheme (see Fig. 5.1). Suppose we start with an unknown
optical system of interest (target system). This target system consists of a lens
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Figure 5.1: Optical architecture of CACAO-FB. CACAO-FB system consists of 3
tube lenses (L1, L2, and L3) to relay the image from the target system for analysis.
The target system consists of an unknown lens and an unknown sample with spatially
incoherent field. CACAO-FB system has access to the conjugate plane of the target
system’s pupil that can be arbitrarily modulated with binary patterns using a spatial
light modulator. The images captured by CACAO-FB system is intensity-only. f0,
f1, f2, and f3 are the focal lengths of the unknown lens, L1, L2, and L3, respectively.
d is an arbitrary distance smaller than f3.

(unknown lens) placed approximately at its focal length in front of a target sample
(unknown sample). The sample is illuminated incoherently. For simplicity in this
thought experiment, we will consider the illumination to occur in the transmission
mode. The CACAO-FB system collects light from the target system using relay
lenses L1, L2, and L3, and an aperture mask in the pupil plane, which is the
conjugate plane of the target system’s pupil with coordinates (u, v), that can be
modulated into different patterns. Our objective is to resolve the sample at high
resolution. It should be clear from this target system description that our ability to
achieve the objective is confounded by the presence of the unknown lens and its
unknown aberrations. A good example of such a system is the eye: the retinal layer
is the unknown sample, and the lens and cornea can be represented by the unknown
lens.

From this thought experiment, we can see that, to accomplish our objective, we
would need to first determine the aberration characteristics of the unknown lens and
then use the information to somehow correct out the aberration effects from the final
rendered image. CACAO-FB does this by using 3 primary computational imaging
algorithmic components that operate in sequence: 1) local aberration recovery with
blur estimation, 2) full aberration recovery with FP-based alternating projections
algorithm, and 3) latent image recovery by deconvolution with coded apertures.
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The first two steps determine the target system’s aberrations, and the third step
generates an aberration-corrected image. This pipeline is summarized in Fig. 5.2.
The sample plane, which has coordinates (x, y), is divided into small tiles within
which the aberration can be assumed to be spatially invariant, and CACAO-FB
processes each corresponding tile on its image plane, which has coordinates (ξ, η),
to recover a high resolution image of the sample tile. In the following analysis,
we focus our attention to one tile, t. CACAO-FB begins by capturing a series of
images with varying mask patterns in its pupil plane, which has coordinates (u, v).
The patterns consist of two kinds: a set of small circular apertures, Wm(u, v), that
collectively spans the pupil of the unknown lens; and a set of big apertures, An(u, v),
that includes coded apertures and a full circular aperture with their diameters equal
to the unknown lens’s pupil’s size. m and n are integers ranging from 1 to the total
number of the respective aperture. The images captured withWm(u, v) are labeled as
im,t(ξ, η), and they encode the local aberration of the unknown lens’s pupil function
in their point spread functions (PSF). The blur estimation algorithm extracts these
PSFs, bm,t(ξ, η). These intensity values of the spatially filtered pupil function
can be synthesized into the full pupil function, Pt(u, v), with FP-based alternating
projections algorithm. The images captured with An(u, v), labeled φn,t(ξ, η), are
processed with the reconstructed pupil function and the knowledge of the mask
patterns to generate the latent, aberration-free image of the sample, ot(x, y).

The next 4 sub-sectionswill explain themathematicalmodel of the image acquisition
process and the 3 imaging algorithmic components in detail.

Image acquisition principle of CACAO-FB system
We consider a point on the unknown sample, s(x, y), and how it propagates to the
camera plane to be imaged. On the sample plane, a unit amplitude point source at
(x0, y0) can be described by

U0(x, y; x0, y0) = δ(x − x0, y − y0), (5.1)

where U0(x, y; x0, y0) is the complex field of the point on the sample plane, and
δ(x − x0, y − y0) is the Dirac delta function describing the point located at (x0, y0)

We then use Fresnel propagation to propagate it to the unknown lens’s plane and
apply the phase delay caused by the unknown lens assuming an idealized thin lens
with the estimated focal length f0 (Eqs. (5.7-5.8) of Appendix). Any discrepancy
from the ideal is incorporated into the pupil function, P(u, v; x0, y0), which is usually
a circular bandpass filter with a uniformmodulus and some phasemodulation. Thus,
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Figure 5.2: Outline of CACAO-FB pipeline. a) The captured images are broken
into small tiles of isoplanatic patches (i.e., aberration is spatially invariant within
each tile). b) Data acquisition and post-processing for estimating the pupil func-
tion, Pt(u, v). Limited-aperture images, im,t(ξ, η), are captured with small masks,
Wm(u, v), applied at the pupil plane. Local PSFs, bm,t(ξ, η), are determined by
the blur estimation procedure, Algorithm 1. These PSFs are synthesized into the
full-aperture pupil function, Pt(u, v), with Fourier-ptychography-based alternating
projections algorithm, Algorithm 2. c) Data acquisition with big masks, An(u, v),
at the pupil plane. d) The recovered Pt(u, v) from b) and the big-aperture images
φn,t(ξ, η) from c) are used for deconvolution, Algorithm 3, to recover the latent
aberration-free intensity distribution of the sample, ot(x, y).
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the field right after passing through the unknown lens is

UF(u, v; x0, y0) = P(u, v; x0, y0) exp
[
− j

2π
λ f0
(x0u + y0v)

]
, (5.2)

where λ is the wavelength of the field, and (u, v) are the coordinates of both the
plane right after the unknown lens and the CACAO-FB system’s aperture plane as
these planes are conjugate to each other. Thus, we refer to the aperture plane as the
pupil plane. The spatially varying nature of a lens’s aberration is captured by the
pupil function’s dependence on (x0, y0). We divide our sample into small tiles of
isoplanatic patches (e.g., t = 1, 2, 3, ...) and confine our analysis to one tiled region,
t, on the sample plane that contains (x0, y0) and other points in its vicinity such that
the spatially varying aberration can be assumed to be constant in the analysis that
follows (i.e., P(u, v; x0, y0) = Pt(u, v)). This is a common strategy for processing
spatially variant aberration in a wide FOV imaging [15, 53]. We can see from Eq.
(5.2) that the field emerging from the unknown lens is essentially its pupil function
with additional phase gradient term defined by the point source’s location on the
sample plane.

At the pupil plane, a user-defined aperture mask, M(u, v), is applied to produce

U′F(u, v; x0, y0) = M(u, v)Pt(u, v) exp
[
− j

2π
λ f0
(x0u + y0v)

]
, (5.3)

where we dropped the constant factor CF(x0, y0). After further propagation to
the camera plane (Eqs. (5.10-5.14) of Appendix), we obtain the intensity pattern,
iPSF,t(ξ, η), that describes the mapping of a point on the sample to the camera plane:

iPSF,t(ξ, η; x0, y0) = |F {M(u, v)Pt(u, v)} (ξ, η) ∗ δ(ξ +
x0
λ f0

, η +
y0
λ f0
)|2

= ht(ξ +
x0
λ f0

, η +
y0
λ f0
), (5.4)

where ht(ξ, η) = |F {M(u, v)Pt(u, v)} (ξ, η)|2 is the intensity of the PSF of the
combined system in Fig. 5.1 for a given aperture mask M(u, v) and within the
isoplanatic patch t. We observe from Eq. (5.4) that PSFs for different point source
locations are related to each other by simple lateral shifts, such that an image, it(ξ, η),
captured by this system of an unknown sample function within the isoplanatic patch,
st(x, y), can be represented by

it(ξ, η) = ht(ξ, η) ∗ |st(ξ, η)|2 = ht(ξ, η) ∗ ot(ξ, η), (5.5)

where ot(ξ, η) is the intensity of st(ξ, η), ∗ is the convolution operator, and we ignore
the coordinate scaling for simplicity. This equation demonstrates that the image
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captured by the detector is a convolution of the sample’s intensity field with a PSF
associated with the sub-region of the pupil function defined by an arbitrary mask at
the pupil plane. This insight allows us to capture images of the sample under the
influence of PSFs that originate from different sub-regions of the pupil. We have
aperture masks of varying shapes and sizes, mainly categorized into small masks
and big masks. Small masks sample small regions of the pupil function to be used
for reconstructing the pupil function, as will be described in detail in the following
sections. Big masks include a mask corresponding to the full pupil size and several
coded apertures that encode the pupil function to assist in the latent image recovery
by deconvolution. To avoid confusion, we label the mth small mask, its associated
PSF in isoplanatic patch t, and the image captured with it asWm(u, v), bm,t(ξ, η), and
im,t(ξ, η), respectively; and the nth big mask (coded aperture or a full aperture), its
associated PSF, and the image captured with it as An(u, v), hn,t(ξ, η), and φn,t(ξ, η),
respectively.

CACAO-FB system captures im,t(ξ, η)’s and φn,t(ξ, η)’s in the data acquisition pro-
cess, and these data are relayed to post-processing algorithms to recover ot(ξ, η),
the underlying aberration-free image of the sample. The algorithm pipeline begins
with the blur estimation algorithm using im,t(ξ, η)’s as described below. In all the
following simulations, there are one full aperture and 4 coded apertures, An(u, v),
with the diameter of 4.5 mm; 64 small masks, Wm(u, v), with the diameter of 1 mm;
an unknown lens, L1, and L2 with the focal length of f0 = f1 = f2 = 100 mm; a tube
lens with the focal length of f3 = 200 mm; an image sensor with the pixel size of
6.5 µm (3.25 µm effective pixel size); and a spatially incoherent illumination with
the wavelength of 520 nm.

Local aberration recovery with blur estimation
The blur function, bm,t(ξ, η), associated with the small mask,Wm(u, v), applied to the
pupil, Pt(u, v), is also referred to as the local PSF, and it contains valuable information
about the target system’s pupil function that we wish to recover. The size ofWm(u, v)
is set small enough such that Wm(u, v) applied to a region on Pt(u, v) shows a local
phase map that resembles a linear phase gradient, as shown in Fig. 5.3 b1). In such
case, the associated bm,t(ξ, η) approximates a diffraction-limited spot with a spatial
shift given by the phase gradient. Wm(u, v) applied to other regions on Pt(u, v)
may have bm,t(ξ, η) whose shape deviates from a spot if the masked region contains
more severe aberrations, as shown in Fig. 5.3 b2-3). In general, the aberration at or
near the center of an imaging lens is minimal, and it becomes severe near the edge
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Figure 5.3: Simulating image acquisition with different small masks at the pupil
plane. a) The full pupil function masked by the lens’s NA-limited aperture. Differ-
ently masked regions of the pupil, b1-3), give rise to different blur kernels, c1-3),
which allows us to capture images of the sample under the influence of different
PSFs. Only the phase is plotted for Pt(u, v) and Pm,t(u, v)’s, and their apertures
are marked by the black boundaries. W1(u, v), W45(u, v), and W52(u, v) are 3 small
masks from a spiraling-out scanning sequence.

Figure 5.4: Flowchart of Algorithm 1: blur estimation algorithm for determining
local PSFs from images captured with small apertures, Wm,t(u, v)
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of the aperture because the lens’s design poorly approximates the parabolic shape
away from the optical axis [13]. Thus, the image captured with the center mask,
i1,t(ξ, η), is mostly aberration-free with its PSF defined by the diffraction-limited
spot associated with the mask’s aperture size. Other im,t(ξ, η)’s have the same
frequency bandlimit as i1,t(ξ, η), but are under the influence of additional aberration
encapsulated by their local PSFs, bm,t(ξ, η)’s.

We adopt an image-pair-based blur estimation algorithm widely used in computa-
tional photography discipline to determine bm,t(ξ, η). In this algorithm, one of the
image pair is assumed to be blur-free while the other is blurred [28, 51]. The blur
kernel can be estimated by an iterative PSF estimation method, which is iterative
Tikhonov deconvolution [35] in Fourier domain, adopting update scheme in Yuan’s
blur estimation algorithm [51] and adjusting the step size to be proportional to
|I1,t(u, v)|/|I1,t(u, v)|max for robustness to noise [38], where I1,t(u, v) is the Fourier
spectrum of i1,t(ξ, η). The blur estimation process is described in Algorithm 1 as
shown in Fig. 5.4.

The recovered bm,t(ξ, η)’s are the intensity information of the different masked
pupil regions’ Fourier transforms. They can be synthesized into the full pupil
function, Pt(u, v), using FP-based alternating projections algorithm, as described in
the following section.

Full aberration recovery with Fourier-ptychography-based alternating projec-
tions algorithm
FP uses alternating projections algorithm to synthesize a sample’s Fourier spectrum
from a series of intensity images of the sample captured by scanning an aperture
on its Fourier spectrum [18, 52]. In our implementation, the full pupil’s com-
plex field, Pt(u, v), is the desired Fourier spectrum to be synthesized, and the local
PSFs, bm,t(ξ, η)’s, are the aperture-scanned intensity images to be used for FP-based
alternating projections, as shown in the bottom half of Fig. 5.2 b). Therefore, re-
constructing the pupil function from a series of local PSFs’ intensity information in
our algorithm is completely analogous to reconstructing the complex spatial spec-
trum of a sample from a series of its low-passed images. The FP-based alternating
projections algorithm is Algorithm 2, and it is described in Fig. 5.5.

FP-based alternating projections algorithm requires that the scanned apertures dur-
ing image acquisition have at least 30% overlap [41] for successful phase retrieval.
Thus, the updating bm,t(ξ, η) in Algorithm 2 are ordered in a spiral-out pattern, each
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Figure 5.5: Flowchart of Algorithm 2: Fourier-ptychography-based alternating
projections algorithm for reconstructing the unknown lens’s pupil function, Pt(u, v)

having an associated aperture Wm(u, v) that partially overlaps (40% by area) with
the previous one’s aperture. The influence of the overlap on the reconstruction is
illustrated in Fig. 5.17 of Appendix. For the simulated pupil diameter of 4.5 mm,
there are 64 Wm(u, v)’s of 1-mm diameter to span the pupil with 40% overlap.

We simulate the image acquisition by an aberrated imaging system and our pupil
function reconstruction process in Fig. 5.6. Algorithm1 and 2 are able to estimate the
local PSFs from the 64 images captured with the small masks, Wm(u, v), (Fig. 5.6c))
and reconstruct the complex pupil function, Pt(u, v), successfully (Fig. 5.6e)). A
simple Fourier transformation of Pt(u, v) generates the PSF of the aberrated imaging
system. On a Macbook Pro with 2.5 GHz Intel Core i7 and 16 GB of RAM, it takes
2 minutes for Algorithm 1 and 20 seconds for Algorithm 2 to operate on the 64
images (1000 by 1000 pixels) taken with Wm(u, v). To gauge our method’s perfor-
mance among other computational blur estimation methods, we attempt PSF recon-
struction with two blind deconvolution algorithms. One is MATLAB’s deconvblind
which is a standard blind deconvolution algorithm based on the accelerated, damped
Richardson-Lucy algorithm, and the other is the state-of-the-art blind blur kernel
recovery method based on variational Bayesian approach by Fergus et al. [8, 27].
They both operate on a single blurred image (Fig. 5.6d)) to simultaneously extract
the blur function and the latent image (Fig. 5.6f)). For our purpose, we compare the
reconstructed PSFs to gauge the performance. As shown in Fig. 5.6f), the recon-
structed blur kernels by MATLAB and Fergus et al. both show poor fidelity to the
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Figure 5.6: Simulation of our pupil function recovery procedure and a comparison
with blind deconvolution algorithms. a) The Siemens star pattern used in the
simulation. b) The system’s pupil function and the associated PSF. c) A series
of images, im,t(ξ, η)’s captured with small masks, Wm(u, v), applied to the pupil
function. d) An image captured with the full-pupil-sized mask, An(u, v), on the pupil
function, which simulates the general imaging scenario by an aberrated imaging
system. e) The system’s pupil function and PSF recovered by our procedure. They
show high fidelity to the original functions in b). f) Blur functions recovered by
MATLAB’s and Fergus et al.’s blind deconvolution algorithm, respectively. They
both show poor reconstructions compared to the recovered PSF in e).

true PSF. This clearly demonstrates the effectiveness of our algorithm pipeline in
reconstructing a complicated PSF which would otherwise be impossible to recover
by a blind deconvolution method. The absolute limit of our aberration reconstruc-
tion method, assuming an unlimited photon budget, is essentially determined by
the number of pixels inside the defined full aperture. However, in real life settings
with limited photon budget and a dynamic sample, the smallest subaperture we can
use to segment the full aperture is determined by the allowable exposure time and
the shot-noise-limited condition of the camera. One has to consider the number of
photons required by the camera for the signal to overcome the camera noise and the
length of exposure permissible to capture a static image of the sample.

Latent image recovery by deconvolution with coded apertures
With the knowledge of the pupil function obtained from Algorithm 1 and 2, it is
possible to recover ot(x, y) from the aberrated image φt(ξ, η) taken with the full
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pupil aperture. In the Fourier domain, the image’s spectrum is represented as:
Φt(u, v) = Ht(u, v)Ot(u, v), where Ht(u, v) and Ot(u, v) are the spatial spectrum of
ht(ξ, η) and ot(x, y), respectively. Ht(u, v) is also called the optical transfer function
(OTF) of the optical system and, by Fourier relation, is an auto-correlation of the
pupil function, Pt(u, v). In the presence of severe aberrations, the OTF may have
values at or close to zero for many spatial frequency regions within the bandpass, as
shown in Fig. 5.7. These are due to the phase gradients with opposite slopes found in
an aberrated pupil function, whichmay produce values at or close to zero in the auto-
correlation process. Thus, the division of Φt(u, v) by Ht(u, v) during deconvolution
will amplify noise at these spatial frequency regions since the information there has
been lost in the image acquisition process. This is an ill-posed inverse problem.

There are several deconvolution methods that attempt to address the ill-posed prob-
lem by using a regularizer [35] or a priori knowledge of the sample, such as by
assuming sparsity in its total variation [2, 26]. However, due to their inherent as-
sumptions, these methods work well only on a limited range of samples, and the
parameters defining the a priori knowledge need to be manually tuned to produce
successful results. Fundamentally, they do not have the information in the spatial
frequency regions where the OTF is zero, and the a priori knowledge attempts to
fill in the missing gaps. Wavefront coding using a phase mask in the Fourier plane
has been demonstrated to remove the null regions in the OTF such that a subsequent
deconvolution by the pre-calibrated PSF can recover the latent image [7, 22, 33, 34].
We adopt a similar method called coded aperture proposed by Zhou et al. [54] that
uses an amplitude mask in the Fourier domain to achieve the same goal. With the
amplitude-modulating SLM already in the optical system, using the amplitude mask
over a phase mask is preferred. Combined with the knowledge of the pupil function
reconstructed by Algorithm 1 and 2, no a priori knowledge is required to recover
the latent image via deconvolution. A coded aperture designed by Zhou et al. at
the pupil plane with a defocus aberration can generate a PSF whose OTF does not
have zero values within its NA-limited bandpass. The particular coded aperture
is generated by a genetic algorithm which searches for a binary mask pattern that
maximizes its OTF’s spatial frequency content’s modulus. The optimum aperture’s
pattern is different depending on the amount of noise in the imaging condition. We
choose the pattern as shown in Fig. 5.7 since it performs well across various noise
levels [54].

The pupil function in our imaging scenario does not only consist of defocus, as
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Figure 5.7: Simulation that demonstrates the benefit of coded-aperture-based decon-
volution. a1-5)Masked pupil functions obtained bymasking the same pupil function
with the full circular aperture and coded apertures under different rotation angles
(0◦, 45◦, 90◦, 135◦), their associated OTFs along one spatial frequency axis, and
captured images. Each coded aperture is able to shift the null regions of the OTF to
different locations. b) Comparison between the OTF of a circular-aperture-masked
pupil function and the summed OTFs of the circular- and coded-aperture-masked
pupil functions. Null regions in the frequency spectrum are mitigated in the summed
OTF, which allows all the frequency content of the sample within the bandlimit to
be captured with the imaging system. The OTF of an ideal pupil function is also
plotted. c1) Deconvolved image with only a circular aperture shows poor recovery
with artifacts corresponding to the missing frequency contents in the OTF’s null
regions. c2) A recovered image using one coded aperture only. Reconstruction is
better than c1), but still has some artifacts. c3) A recovered image using circular and
multiple coded apertures is free of artifacts since it does not have missing frequency
contents.
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Figure 5.8: Flowchart of Algorithm 3: iterative Tikhonov regularization for
recovering the latent sample image, ot(x, y), from aberrated images. Here,
Φn,t(u, v) = F{φn,t(ξ, η)}(u, v).

the imaging lenses have severe aberrations. Therefore, our pupil function can have
an unsymmetrical phase profile unlike the defocus aberration’s symmetric bullseye
phase profile. Thus, rotating the coded aperture can generate PSFs with differ-
ent spatial frequency distribution, resulting in a different PSF shape beyond the
mere rotation of the PSF. Therefore, in the data capturing procedure, we capture
a series of images with a sequence of big masks, An(u, v), consisting of 4 coded
apertures and a standard circular aperture at the pupil plane, as represented in
Fig. 5.2 c). This ensures that we obtain all spatial frequency information within
the NA-limited bandpass. The PSF associated with each An(u, v) applied to Pt(u, v)
is easily obtained by hn,t(ξ, η) = |F−1 {An(u, v)Pt(u, v)} (ξ, η)|2, and its OTF by
Hn,t(u, v) = F

{
hn,t(ξ, η)

}
(u, v). With the measured full and coded aperture images,

φn,t(ξ, η)’s, and the knowledge of the OTFs, we perform a combined deconvolution
using iterative Tikhonov regularization, similar to Algorithm 1, to recover the ob-
ject’s intensity distribution, ot(x, y), as described by Algorithm 3 in Fig. 5.8 and
represented in Fig. 5.2 d).

A simulated deconvolution procedure with the coded aperture on a Siemens star
pattern is shown in Fig. 5.7. The combined OTF of a circular aperture and the
coded aperture at 4 rotation angles is able to eliminate the null regions found in the
circular-aperture-only OTF and thus produce a superior deconvolution result. The
deconvolution performance across different frequency components is correlated to
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the combined OTF’s modulus. We observe that the signal-to-noise ratio (SNR) of at
least 40 in the initial aberrated image produces a deconvolution result with minimal
artifacts. On aMacbook Pro with 2.5 GHz Intel Core i7 and 16 GB of RAM, it takes
2 seconds for Algorithm 3 to process the 5 images (1000 by 1000 pixels) taken with
An(u, v) (1 full aperture, 4 coded apertures) to generate the deconvolution result.

5.3 Experimental demonstration on artificial samples
Demonstration of CACAO-FB on a crude lens
The CACAO-FB prototype system’s setup is simple, as shown in Fig. 5.9. It consists
of a pair of 2-inch, f = 100 mm achromatic doublets (AC508-100-A from Thorlabs)
to relay the surface of an imaging lens of interest to the surface of the ferroelectric
liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) (SXGA-3DM-HB
from 4DD). A polarized beam splitter (PBS) (PBS251 from Thorlabs) lies in front of
the SLM to enable binary modulation of the SLM. A polarizer (LPVISE100-A from
Thorlabs) is placed after the PBS to further filter the polarized light to compensate
for the PBS’s low extinction ratio in reflection. A f = 200 mm tube lens (TTL200-A
from Thorlabs) Fourier transforms the modulated light and images it on a sCMOS
camera (PCOedge 5.5 CL from PCO). To determine the orientation of the SLMwith
respect to the Fourier space in our computational process, we us a phase-only target,
such as a microbead sample, illuminated by a collimated laser source to perform
an overlapped-Fourier-coding phase retrieval [18]. With the correct orientation, the
reconstructed complex field should have the expected amplitude and phase. The
imaging system to be surveyed is placed in front of the CACAO-FB system at the
first relay lens’s focal length. The imaging system consists of a crude lens and a
sample it is supposed to image. The crude lens in our experiment is a +6D trial lens
(26 mm diameter, f = 130 mm) from an inexpensive trial lens set (TOWOO TW-104
TRIAL LENS SET). A resolution target is placed at less than the lens’s focal length
away to introduce more aberration into the system. The sample is flood-illuminated
by a monochromatic LED light source (520 nm, UHP-Microscope-LED-520 from
Prizmatix) filtered with a 10-nm-bandpass filter.

The relayed lens surface is modulated with various binary patterns by the SLM. The
SLM displays a full aperture (5.5 mm diameter), a coded aperture rotated at 0◦, 45◦,
90◦, and 135◦ with the maximum diameter matching the full aperture, and a series
of limited apertures (1 mm diameter) shifted to different positions in a spiraling-out
pattern within the full aperture dimension. The camera’s exposure is triggered by the
SLM for synchronization. Another trigger signal for enabling the camera to begin a
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Figure 5.9: Experimental setup of imaging a sample with a crude lens (i.e., unknown
lens). Sample is illuminated by a monochromatic LED (520 nm), and the lens’
surface is imaged onto the SLM by a 1:1 lens relay. The part of light modulated
by the SLM is reflected by the PBS and is further filtered by a polarizer to account
for PBS’s low extinction ratio in reflection (1:20). Pupil-modulated image of the
sample is captured on the sCMOS camera. L: lens; P: polarizer; PBS: polarizing
beam splitter.

capture sequence is provided by a data acquisition board (NI ELVIS II fromNational
Instrument) which a user can control withMATLAB.Multiple images for each SLM
aperture are captured and summed together to increase their signal-to-noise ratio
(SNR). The full-aperture image has SNR=51, with other aperture-scanned images
having SNR approximately proportional to the square root of their relative aperture
area. SNR is estimated by calculating the mean and variance values in a uniformly
bright patch on the image.

To quantify the resolution performance of CACAO-FB, we image a Siemens star
pattern with the crude +6D lens. The pattern consists of 40 line pairs radiating
from the center such that the periodicity along a circle increases with increasing
radius. The smallest circle along which the periodic structure is barely resolvable
determines the resolution limit of the optical system [19]. For the focal length
of 130 mm, the aperture diameter of 5.5 mm, and the illumination wavelength
of 520 nm, the expected resolution is between λ/NA = 24.6 µm (coherent) and
λ/(2NA) = 12.3 µm (incoherent) periodicity, defined by the spatial frequency cut-
off in the coherent and incoherent transfer functions, respectively. As shown in
Fig. 5.10, CACAO-FB can resolve features up to 19.6 µm periodicity, which is
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Figure 5.10: Resolution performance measured by imaging a Siemens star target. a)
A crude lens has optical aberration that prevents resolving the Siemens star’s features.
b) CACAO-FB is able to computationally remove the aberration and resolve 19.6 µm
periodicity feature size, which lies between the coherent and incoherent resolution
limit given by the focal length of 130 mm, the aperture diameter of 5.5 mm, and
the illumination wavelength of 520 nm. c) Pupil function recovered by CACAO-FB
used for removing the aberration. d) The PSF associated with the pupil function. e)
Intensity values from the circular traces on a) and b) that correspond to the minimum
resolvable feature size of 19.6 µm periodicity. The Siemens star’s spokes are not
visible in the raw image’s trace, whereas 40 cycles are clearly resolvable in the
deconvolved result’s trace.

within the expected resolution limit.

The +6D lens is expected to have poor imaging performance that varies across
its FOV since it is an inexpensive single element lens. We image a sample slide
consisting of an array of USAF targets and select 3 tiled regions, each containing
a USAF target pattern, to demonstrate CACAO-FB’s ability to address spatially
variant aberration in its latent image recovery procedure. As shown in Fig. 5.11,
the recovered PSFs in the three different regions are drastically different, which
demonstrates the spatially variant nature of the aberration. Deconvolving each region
with the corresponding PSF can successfully recover the latent image. The expected
resolution limits as calculated above correspond to a range betweenGroup 5 Element
3 (24.8 µm periodicity) and Group 6 Element 3 (12.4 µm periodicity). Features
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Figure 5.11: Spatially varying aberrations compensation result on a grid of USAF
target. a) the full FOV captured by our camera with the full circular aperture at
5.5 mm displayed on the SLM. Each small region denoted by b-d1) had a different
aberration map as indicated by varying pupil function and PSFs. Spatially vary-
ing aberrations are adequately compensated in post-processing as shown by the
deconvolution results b-d2).

up to Group 5 Element 5 (19.68 µm periodicity) are resolved after deconvolution
as shown in Fig. 5.11, which matches closely with the resolution determined by the
Siemens star pattern.

Demonstration of CACAO-FB on an eye model
We use an eye model from Ocular Instruments to simulate an in vivo retinal imaging
experiment. We embed a cut-out USAF resolution target (2015a USAF from Ready
Optics) on the model’s retina, and fill the model’s chamber with de-ionized water,
as shown in Fig. 5.12. We make adjustments to our CACAO-FB system as shown in
Fig. 5.13 to accommodate the different imaging scenario. First, it has to illuminate
the retina in a reflection geometry via the same optical path as imaging. A polarized
beam splitter (PBS) is used to provide illumination such that the specular reflection
from the eye’s cornea, which mostly maintains the s-polarization from the PBS,
is filtered out of the imaging optical path. The scattered light from the retina
is depolarized and can partially transmit through the PBS. The light source is a
fiber-coupled laser diode (520 nm) (NUGM01T from DTR’s Laser Shop) which
is made spatially incoherent by propagating through a 111-meter-long, 600-µm-
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Figure 5.12: Eye model with a USAF target embedded on the retinal plane. a) A
cut-out piece of glass of USAF target is attached on the retina of the eye model. The
lid simulates the cornea and also houses a lens element behind it. b) The model is
filled with water with no air bubbles in its optical path. c) The water-filled model is
secured by screwing it in its case.

core-diameter multimode fiber (FP600URT from Thorlabs), following the method
in Ref. [37]. The laser diode is triggered such that it is on only during camera
exposure. Images are captured at 50 Hz, ensuring that the flashing illumination’s
frequency lies outside of the range that can cause photosensitive epilepsy in humans
(i.e., between 15 and 20 Hz [31]). We add a pupil camera that outputs the image
of the eye’s pupil with fiduciary marks for aligning the eye’s pupil with our SLM.
Finally, a motion-reference camera (MRC) that has the identical optical path as
the encoded-image camera (EIC) aside from pupil-modulation by SLM is added
to the system to account for an in vivo eye’s motion between image frames. The
amount of light split between the MRC and EIC can be controlled by the PBS and a
quarter-wave plate before the SLM.

In Fig. 5.14, the recovered images show severe spatially varying aberrations of the
eye model, but good deconvolution performance throughout the FOV, nonetheless.
The tile size is set such that it is the biggest tile that could produce an aberration-free
image, judged visually. The full aperture in this scenario had 4.5-mm diameter, and
its associated aberrated image had SNR of 126.

In this imaging scenario, the blur kernels of the limited-aperture images had a
significant impact on the deconvolution result, as shown in Fig. 5.15. The aberration
of the eyemodelwas severe such that the retrieved blur kernels of the limited-aperture
images had distinct shapes in addition to lateral shifts. We observe a much better
deconvolution result with the reconstructed pupil that takes blur kernels’ shapes
into account compared to the one that does not. The latter is analogous to Shack-
Hartmann wavefront sensing method, which only identifies the centroid of each blur
kernel to estimate the aberration. Thus, this demonstrates the importance of the blur
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Figure 5.13: Experimental setup of imaging an eye model and an in vivo eye.
Illumination is provided by a fiber-coupled laser diode (520 nm), and the eye’s pupil
is imaged onto the SLM by a 1:1 lens relay. The sample is slightly defocused from
the focal length of the crude lens to add additional aberration into the system. Pupil
alignment camera provides fiduciary to the user for adequate alignment of the pupil
on the SLM. PBS2 helpswith removing corneal reflection. Motion-reference camera
is synchronized with encoded-image camera to capture images not modulated by
the SLM. BS: beam splitter; L: lens; M: mirror; P: polarizer; PBS: polarized beam
splitter; QWP: quarter-wave plate.

kernel estimation step in our algorithm and the distinct difference of our aberration
reconstruction from other wavefront sensing methods.

5.4 Adapting CACAO-FB to an in vivo experiment on the eye of a rhesus
macaque

The same setup as for imaging the model eye is used for the in vivo experiment on
a rhesus macaque’s eye. The animal is anesthetized with 8-10 mg/kg ketamine and
0.02 mg/kg dexdomitor IM. 2 drops of tropicamide (0.5-1%) are placed on the eye to
dilate the pupil. To keep the eye open for imaging, a sanitized speculum is be placed
between the eyelids. A topical anesthetic (proparacaine 0.5%) is applied to the eye
to prevent any irritation from the speculum placement. A rigid gas permeable lens
is placed on the eye to ensure that the cornea stays moist throughout imaging. The
light intensity is kept below a level of 50 mW/cm2 on the retina in accordance with
ANSI recommended safe light dosage.
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Figure 5.14: CACAO-FB result of imaging the USAF target in the eye model. a)
Raw image (2560 x 1080 pixels) averaged over 12 frames captured with the full
circular aperture at 4.5 mm. The pupil function and PSF in each boxed region show
the spatially varying aberrations. b-d) Deconvolution results show sharp features
of the USAF target. The uneven background is from the rough surface of the eye
model’s retina.

Due to the safety limitation on the illumination power, the captured images of the
retina has low SNR (e.g., the full-aperture image has SNR = 7.5). We increase the
SNR by capturing multiple redundant frames (213 frames for An(u, v)’s, 4 frames
for Wm(u, v)’s) and adding them together (Fig. 5.19 of Appendix). Thus, a long
sequence of images (∼45 seconds) has to be captured, and these images with weak
retinal signals have to be registered for motion prior to CACAO-FB since the eye has
residual motion even under anesthesia. Due to a long averaging window, aberration
of high temporal frequency is washed out, but we still expect to be able to resolve
the photoreceptors albeit at a lower contrast [17]. Motion registration includes both
translation and rotation, and these operations needs to be done such that they do not
apply any spatial filter that may alter the images’ spatial frequency spectra. Rotation
is performed with fast discrete sinc-interpolation [50] which is a series of Fourier
transform operations that can be accelerated by GPU programming. The frames
from the motion-reference camera are used for the registration process (Fig. 5.18 of
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Figure 5.15: Showing the importance of masked pupil kernel shape determination
for successful deconvolution. a1-3) limited PSFs determined only by considering
their centroids. b) Recovered aberration and deconvolution result obtained with
centroid-only limited PSFs. Some features of USAF are distorted. c1-3) limited
PSFs determined with the blur estimation algorithm. d) Recovered aberration and
deconvolution result obtained with the blur-estimated local PSFs. No distortions in
the image are present, and more features of the USAF target are resolved.

Appendix). A center region with half the dimensions of the full frame is selected
from one of the frames as a template for registration. Normalized cross-correlation
(NCC) value is found between the template and each frame [47] for every rotation
angle (-1.5 to 1.5 degrees, 0.0015 degrees step size). The set of rotation angle and
lateral shift values that produces the maximum NCC value, at a pixel resolution, for
each frame corresponds to the motion registration parameters for that frame and the
corresponding encoded-image camera’s frame. The registration parameters for all
the frames are applied to the images of the encoded-image camera, and the images
are grouped by different apertures to be summed together (Fig. 5.19 of Appendix).

The deconvolution result is shown in Fig. 5.16. Although the sensor size of 2560
x 2160 pixels is used for capturing raw images, the resultant averaged images are
only 1262 x 1614 pixels after the motion registration. The input full-aperture image
had SNR=109. Photoreceptors are much better resolved after aberration removal.
We expect the entire visible region to have an even spread of photoreceptors, but we
observe well-resolved photoreceptors mostly in the brighter regions. This may be
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Figure 5.16: CACAO-FB result from imaging an in vivo eye of a rhesus macaque.
a) Raw image averaged over 213 frames captured with 4.5 mm full circular aperture.
b) Deconvolution result using the c) pupil function reconstructed by CACAO-FB
procedure. d) PSF associated with the pupil function.

due to the lower SNR in the darker regions leading to poorer deconvolution result.
We cannot capture more frames of the retina to further increase the SNR because
the animal’s eye’s gaze drifts over time and the original visible patch of the retina
is shifted out of our system’s FOV. Furthermore, non-uniform specular reflections
from the retina add noise to part of the captured data, leading to sub-optimal latent
image recovery by CACAO-FB algorithm pipeline.

5.5 Discussion
Wedeveloped a novelmethod to characterize the aberration of an imaging system and
recover an aberration-free latent image of an underlying sample in post-processing.
It does not require the coherent illumination necessary in other computational,
aberration-compensating imaging methods. It does not need separate wavefront de-
tection and correction devices found in many conventional adaptive optics systems
as the hardware complexities are off-loaded to the software regime that can har-
ness the ever-increasing computational power. Its principle is based on incoherent
imaging, which obviates sensitivity issues such as phase fluctuations and incident
angles associated with coherent imaging, and allows for characterizing an integrated
optical system where the sample plane is only accessible via the target system’s lens.
Our demonstrations of CACAO-FB on sub-optimal lenses in benchtop and in vivo
experiments show its viability in a broad range of imaging scenarios. Its simple
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hardware setup is also a key advantage over other aberration-correction methods
that may allow for its wide adoption.

More severe aberration can be addressed readily by shrinking the scanned aperture
size on the SLM so that the aberration within each windowed pupil function remains
low-order. This comes at the expense of the acquisition speed as more images need
to be captured to cover the same pupil diameter.

If the masks on the pupil are shrunk smaller with no overlap, this pupil masking
process becomes a Shack-Hartmann (SH) sensing method. This illustrates the key
advantages of our scheme over a SH sensor: using bigger masks allows for a fewer
number of image acquisitions and increases the images’ SNR. A bigger mask of an
aberrated pupil no longer encodes for a simple shifted spot in the spatial domain
as would be the case for a SH sensor, but rather a blur kernel as shown in Fig. 5.3.
Therefore, reconstructing the blur kernels of the limited aperture images is critical
for CACAO-FB’s performance, as is demonstrated in Fig. 5.15.

Using an aperture mask in the Fourier plane discards a significant amount of photons
in the image acquisition process. One possible way to improve the photon efficiency
of our system would be to use a phase mask instead of an amplitude mask to code
the Fourier plane as has been demonstrated in Ref. [34] to remove nulls in the OTF
of an aberrated imaging system.

Although the recovered retinal image in Section 5.4 is not on par with what one can
achieve with a typical AO retinal imager, it showcases the proof of concept of using
CACAO-FB to correct for aberrations in a general optical system. There are several
challenges of imaging an eye in vivo eye that can be addressed in future works to
allow CACAO-FB to be a viable alternative to AO retinal imagers. First, increasing
the SNR by averaging multiple retinal images of the rhesus macaque’s eye in vivo
is challenging as its gaze continues to drift even under general anesthesia. There is
a finite number of frames we can capture before the original patch of retina shifts
out of our system’s FOV. Imaging a human subject would be less susceptible to
this issue as an operator can instruct the subject to focus on a target and maintain
the same patch of the retina within the system’s FOV as done in Ref. [17]. The
small lateral shifts between captured frames due to the eye’s saccade can be digitally
registered prior to averaging. Using a different wavelength invisible to the eye will
allow the subject to maintain his/her gaze throughout an extended acquisition time.
Second, non-uniform specular reflections from the retinal layer corrupt the captured
images. The flood illumination provided on the retina through the pupil does not
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have sufficient angular coverage to even out the specular reflections such that some
images capturedwith a small aperture contained specular reflectionswhile others did
not. A flood illumination with a wider divergence angle can mitigate this problem.

On the other hand, our method will be able to provide a readily viable solution
for imaging static targets such as wide FOV imaging of fluorescent samples under
sample- and system-induced aberrations since the fluorescent signals are inherently
spatially incoherent andCACAO-FB principle can be applied to the imaging process.
With its simple optical setup, we believe CACAO-FB can be easily incorporated
into many existing imaging systems to compensate for the limitations of the physical
optics design.

5.6 Appendix
Mathematical derivation of capturing images with pupil plane modulation
We consider a point on the unknown sample, s(x, y), and how it propagates to the
camera plane to be imaged. On the sample plane, a point source at (x0, y0)may have
an amplitude and phase C, and it can be described by

U0(x, y; x0, y0) = Cδ(x − x0, y − y0). (5.6)

We then use Fresnel propagation:

U1(u, v; x0, y0)

=
exp

[
j π
λ f0
(u2 + v2)

]
jλ f0

∫ ∞

−∞
Cδ(x − x0, y − y0)

exp
[
j
π

λ f0
(x2 + y2)

]
exp

[
− j

2π
λ f0
(xu + yv)

]
dxdy

= C
exp

[
j π
λ f0
(u2 + v2)

]
jλ f0

exp
[
j
π

λ f0
(x2

0 + y2
0)

]
exp

[
− j

2π
λ f0
(x0u + y0v)

]
(5.7)

and apply the phase delay associated with an idealized thin lens [13] having an esti-
mated focal length f0 for the unknown lens, exp

[
− j π

λ f0
(u2 + v2)

]
, and any discrep-

ancy from the ideal is incorporated into the pupil function, P(u, v; x0, y0) = Pt(u, v),
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where t = 0 is the isoplanatic patch around (x0, y0):

U2(u, v; x0, y0)

=
C

jλ f0
exp

[
j
π

λ f0
(x2

0 + y2
0)

]
exp

[
− j

2π
λ f0
(x0u + y0v)

]
Pt(u, v)

= C2(x0, y0)Pt(u, v) exp
[
− j

2π
λ f0
(x0u + y0v)

]
, (5.8)

where we set C2(x0, y0) = C/( jλ f0) exp
[
jπ/(λ f0)(x2

0 + y2
0)

]
. Eq. (5.8) is Eq. (2)

of the main article.

U2(u, v; x0, y0) is relayed to the pupil plane in Fig. 1 without any additional phase
term by the 4f system formed by L1 and L2 [13]. The relayed field may be magnified
by the factor f2/ f1, but here we assume nomagnification. We apply a mask, M(u, v),
to the field:

U′2(u, v; x0, y0)

= M(u, v)C2(x0, y0)Pt(u, v) exp
[
− j

2π
λ f0
(x0u + y0v)

]
(5.9)

and propagate it by distance d using angular spectrum to the surface of L3:

U3(s, t; x0, y0) = F−1{F
{
U′2(u, v; x0, y0)

}
exp

[
− j

2πd
λ

√
1 − (λ fx)2 − (λ fy)2

]
}(s, t), (5.10)

where (s, t) are the coordinates on the L3’s plane. We then apply the phase delay
associated with L3, exp

[
− j π

λ f3
(s2 + t2)

]
, and propagate the field by f3 to the camera

plane:
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Set C4(ξ′, η′) = exp
[
jπλ f3(ξ′2 + η′2)

]
/( jλ f3) and (ξ′, η′) = (ξ, η)/(λ f3):

U′4(ξ
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where ∗ is the convolution operator.

Set C4(ξ′, η′) exp
[
− j 2πd

λ

√
1 − (λξ′)2 − (λη′)2

]
C2(x0, y0) as C5(ξ′, η′; x0, y0):

U′4(ξ
′, η′; x0, y0)

= C5(ξ′, η′; x0, y0)[F{M(u, v)Pt(u, v)}(ξ′, η′)

∗ δ(ξ′ + x0
λ f0

, η′ +
y0
λ f0
)]

= C5(ξ′, η′; x0, y0)F{M(u, v)Pt(u, v)}(ξ′ +
x0
λ f0

, η′ +
y0
λ f0
). (5.13)

This is the complex field incident on the camera from the point source located at
(x0, y0). It is the PSF of the system, and we observe that it simply shifts laterally for
different (x, y) coordinates. Therefore, the image on the camera sensor can be calcu-
lated by a convolution between U′4(ξ

′, η′; x0, y0) and the sample field within the iso-
planatic patch, st(x, y). However, the phase term inC5(ξ′, η′; x0, y0) can have a signif-
icant impact on the captured images. In our incoherent imaging scenario, the phase
relationship between the points on the sample plane during the capturing process is ir-
relevant. So, we can define an intensity PSF, ht(ξ, η) = |F {M(u, v)Pt(u, v)} (ξ, η)|2,
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Figure 5.17: The influence of the limited masks’ overlap ratio on the pupil function
recovery. The recovery becomes poor below 30% overlap.

to describe the intensity of the U′4(ξ
′, η′; x0, y0) captured by the camera:��U′4(ξ′, η′; x0, y0)
��2

= |C5(ξ′, η′; x0, y0)|2 ht(ξ′ +
x0
λ f0

, η′ +
y0
λ f0
)

=
C

λ2 f0 f3
ht(ξ′ +

x0
λ f0

, η′ +
y0
λ f0
). (5.14)

The complicated phase fluctuations embedded in C5(ξ′, η′; x0, y0) become no longer
relevant. Dropping the constants and neglecting coordinate scaling, the image of
the unknown sample captured by the camera becomes a convolution of ht(ξ, η) with
the sample distribution, st , as described by Eq. (5) of the main article.

Limited aperture overlap requirement for pupil function reconstruction
Given the ground truth pupil function 5 mm in diameter and the limited mask
diameter of 1 mm, the area overlap between contiguous masks are varied from
10% to 60% in simulation. In spatial domain, all images are captured satisfying
the Nyquist criterion. The simulation is identical to Fig. 6’s data acquisition
and reconstruction using Algorithm 1 and 2. As shown in Fig. 5.17, the recovery
becomes poor below 30% overlap as observed by disconnected fringe patterns, and
eventually contains holes in regions where there was no mask coverage.
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Figure 5.18: Motion-reference camera images registered for rotation and translation.
Only 4 representative frames are shown.

Figure 5.19: Raw full aperture image. a) 1 frame and b) a sum of 213 frames.

Increasing SNR by averaging over multiple frames
In processing the data from the in-vivo experiment, motion-reference camera images
are first registered for rotation and translation, as shown in Fig. 5.18, and these
registration values are taken into account when summing multiple frames captured
with the same SLM aperture pattern.

An example of a single frame of full aperture image is shown in Fig. 5.19, and the
same aperture image after summing 213 frames.

Due to the photon-starved imaging condition, it is imperative to account for the
detector noise in the captured images. We use two-point radiometric calibration to
account for the fixed pattern noise and inhomogeneous sensitivity of our imaging
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sensor [20]:

I′(ξ, η) = I(ξ, η) − B(ξ, η)
R(ξ, η) − B(ξ, η), (5.15)

where (ξ, η) are the coordinates on the camera sensor’s plane, I′(ξ, η) is the desired
calibrated image, I(ξ, η) is the input image, B(ξ, η) is the dark image captured with
the sensor blocked from light, and R(ξ, η) is a reference image captured with the
sensor capturing an image of an opal diffuser.
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