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ABSTRACT

This is an experimental and theoretical study of deep water
gravity-like waves which are induced in a liquid metal by a changing
magnetic field. The dominant feature of such waves is the emission
of Alfvén waves from the free surface. A linearized theory is derived

and compared with experiments.
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I. Introduction

When a vertical cylindrical solenoid is half filled with mercury
and the current to the solenoid is switched off or on, the free surface
of the mercury is visually observed to be set into motion by the changing
magnetic field. This thesis consists of theoretical and experimental
studies based upon this observation.

We begin by trying to develop a model for the observed surface
waves. Since the mercury column is 5 or 6 diameters long, we idealize
the geometry to that of an infinitely long cylindrical solenoid half filled
with mercury. Hence we assume that the bottom of the mercury column
plays no role in the surface oscillations. This assumption will be
verified later.

We have, as dimensional parameters of the problem (in MKSQ
units), the conductivity 0 , the magnetic permeability u , the
density p, a magnetic field strength Bo, the kinematic viscosity v,
the surface tension T, the acceleration due to gravity g, and the inner
diameter of the solenoid 2a. As is usual in magnetohydrodynamic
problems, the displacement current is neglected.

In the present case, a= .071 M, and V = 10-7 MZ/S. Hence the

Reynolds number based upon gravity speed is

Re = ,/ga% = 5x105

Hence we may ignore viscous effects, and drop v from the list of

relevant parameters.



We compute the minimum wave length, )\, of the combined

gravity and capillary waves to be (for Hg, T = .480 Newtons/meter,

A_. = ZW\;I' 2 ,012m
min pg

This corresponds to a nondimensional wave number of

o = 13.54 Kg/M).

k = 2T2 o 3
max A

For wave numbers >11(rna.x’ capillarity must be taken into account.
However, it will be shown below that the dominant wave number in the

solenoid problem is given by

kl = 3.8

Hence we may neglect surface tension effects.

Clearly, we may not ignore o or B, for if eifher is zero, there
would be no interaction between the field and the fluid. Since oscillations
are observed for quite small values of B, we must keep p and g in the
problem to provide a (gravity wave) mechanism for oscillation at low
field strength. Hence the relevant parameters are p, g, %9 , a,Bo, b .

With these parameters we form three characteristic velocities:

A diffusion speed

<
H

D uoa
The velocity of Alfven waves

v = Bo .
A NS

and a gravity speed



We define two nondimensional parameters:

The "magnetic Reynolds number"

Rmz——g‘&uca,\/é}:{ ;

For the solenoid filled with mercury described above

Rm = .08 ;

and in the experiments performed,

4 < a< 1.

Hence we consider the axisymmetric motion of the free surface
of a conducting incompressible fluid, in a deep cylindriéal tank, under
the influence of a changing magnetic field.

Since the boundary conditions at the free surface are nénlinear,
the only way to make progress in deep water problems is to linearize
(about Bo), considering the ratio of maximum wave amplitude o to wave
length, N\, to be small. This results in the classical gravity wave
theory when either a or Rm is zero.

However, even the linearized problem for arbitrary a, Rm,
appears extremely difficult with the geometry of the cylindrical tank.
This arises due to the complexity of the magnetic boundary conditions,
To see this, choose cylindrical coordinates (r, 8 , z) with Tz pointing

upwards. To lowest order, the free surface is atz = 0, 0<r<a. We

idealize the solenoid to a current sheet in the 1 direction at r = a;

)



amps
-~ o<z <+ oo. We consider a current sheet of strength I meter, which

changes by a small amount. Now, at the boundaries of fluid and the
solenoid, the tangential jump in magnetic field is equal to the current
sheet at the boundary, and B_ormal is continuous. There is no current
sheet on the free surface when the fluid has finite conductivity. Now
consider the fluid replaced by a solid conductor. With changing I,

some of the magnetic field will be pushed outside the solenoid due to
the current in the solid conductor. Hence only at z = + o0 do we know
the value of B, i.e., Bz (r = a+) = 0; Br (r = a) = 0. Hence the value of
the magnetic field at the boundaries is unknown for z finite, and the
magnetic boundary conditions are functional relations on the magnetic
field in the three regions r> a, - 00<z <0; 0<r<a, - <z <0 and
O<r<a, 0O<z<oo. This poses a formidable problem, which for given

I (t) has no simple analytic solutions. Finally, when the fluid motion is
considered coupled to the magnetic field, it appears hopeless to try to get
solutions without numerical computation.

To understand the effects of finite conductivity and field strength,
we must seek a simpler problem that avoids the complexity associated
with the walls of the solenoid. From the results of such a problem, we
should be able to construct an approximate theory based upon the fact that
Rm in the experiments and preliminary observations is small. The

problem we choose to solve for finite conductivity and field strength

is that of the response to a one dimensional pressure pulse given by

P(x,(,t) = poé(x) 8 (t)



as the disturbance propagates across an infinitely deep and wide ""ocean'
of conducting fluid. The vertical direction is lz; € = z is the equation
of the surface.

We solve this problem for fixed ¢ , Rm and then for Rm = 0,
a 2an ~ 1, which turns out to be the distinguished limit process which
applies to the experiment. Finally, we solve the solenoid problem in
this limiting case. Details of these solutions, and the experiment, are
given in appendices. Here we shall give a summary of the principal
results of these theories, and the experiment,

First it is convenient to review two relevant problems in

classical gravity wave theory.



II. Deep Water Gravity Wave Theory

This section is a brief review of two problems in deep water
gravity wave theory which are relevant to the subsequent magnetohydro-
dynamic theory. We first consider the disturbance caused by a one
dimensional pressure pulse on an infinite ocean. The disturbance is

given by
P (x,0 ,t) = Po §(x)§(t) 2.1

where P is the pressure, the upward vertical direction is Tz, and
the equation of the surface is { = z. §(x), 6§(t) are Dirac delta

functions defined by

0o o0
[ s dax=1 ;/ f(x) 8(x)dx = £(0)
- 00 = 00

1 :
length x time’

Hence § (x) 6(t) has dimensions Thus we may find

a characteristic length for the problem, A,» given by

R ”
o g P
Clearly, from its construction, )‘o can play no fundamental
role in the solution. We introduce A, in this and following problems
as a convenience, permitting use of the solutions of these problems
in the construction of the solution to the solenoid problem, where
there is a true length, the radius of the solenoid. We nondimension-

alize using )‘o’ p, g. Then the linearized equations of motion for an

inviscid incompressible flow have a harmonic velocity potential ¢:



8% N 329 - 0 2.3
2 2
9x oz

The linearized boundary conditions at the free surface are, at z = 0:

30 ¢ = 5(x)6(t) 2.4

and

-3¢ =§;_ 2.5
oz ot

As z = - 00; ¢ = 0, because the disturbance due to the surface
motion dies out far below the surface. Equations 2,3, 2.4 and
2.5 form a correctly posed problem in terms of the nondimensional
velocity potential ¢, and surface shape (.

In terms of inverse Fourier and Laplace transforms, the

solution for { may be written as

e
o :
( st .
47 = L - c kxaﬁh @/klz" LMIZ 2.6
210 4 ST+ k] J

Hence we have reduced the problem to that of finding the poles of
1 ]kl
= 2.7
H (s, k) s + [kl

and evaluating an integral over all wave numbers k. When
approximations to { are made by the methods of steepest descent

k
or stationary phase, the factor e l l “ in equation 2. 6 plays no
yp q y



role, hence for convenience we write { without the limit sign and set
z = 0 in the integrand, keeping in mind that the resulting divergent
integral is only a convenient representation of the convergent integral
of equation 2, 6.

Keeping these remarks in mind, we find that contour integration

gives

1 ° -
C .-.-——Z—T; 6/~/k coskxcos(a/Et-%)dk 2.8

We approximate equation 2.8 for large t by applying the method of

stationary phase. The point of stationary phase is given by

1/¢ 2
ko = z(;) 2.9
and we find
2
1 t . ™
S . -— 2.1
C == ;—57—2- 51n(k0x 4) .0

as

2
t /[x=o0 ; x # 0.

We see that for t/x small, we get a long wavelength disturbance;
for t/x large, a short wavelength disturbance. Considering the leading
edge of the wave to be near the x axis on an (x, t) diagram, and the
trailing edge to be near the t axis, we say that the leading edge is
composed of long waves, and the trailing edge of the wave is composed
of short waves.

We understand this result by noting that the initial disturbance

8 (x)6(t) may be viewed as a source of all frequencies and wavelengths,



and that the phas’e velocity of a gravity wave, of wavelength X\, in

deep water, is given by

Vp ~ VAN ‘ 2.

Hence long waves travel faster than short waves, and the leading edge
is composed of 1§ng waves. (For a complete discussion of this result
see Stoker, Ref. 1, p. 167)

Now, we remark that in a more complicated problem, H(s, k)
(Eq. 2.7) may not have simple algebraic zeros. If we find approxi-
mate zeros of H(s, k) for k << 1, and then apply the method of
stationary phase, we would expect the results to be valid in some
sense only when k<< 1.

The second problem is to find the resulting motion, when the

11

free surface of a vertical deep cylindrical tank of radius a is released

from an initial shape { (r, o) = f(r). Again we consider an inviscid,
incompressible fluid. We choose Tz to be along the axis of the tank,

and consider the equation of the surface to be

z = z  + C(r, t) 2,

where zo is the level of the undisturbed surface:

a
/ r(g(r, o) + z ) dr = 0, 2,
)
and r is the cylindrical radius. We nondimensionalize as before,

- replacing )\o by a. Then the equations and boundary conditions for

¢ and { are

12

13



Q2@ v 24 =

n bn_ S 2

Q|

L
o

Since no fluid flows through the wall

and at the free surface, we find, as before, for t> 0

%}r = 0

or =1

2
M + .% = 0
81:2‘ 9z
%9 . 34
T 8z ot

As z - oo, ¢ = 0.

The solution to this problem is obtained by separation of

variables. We find that

4, )

where k
n

= ) Aw cosVELE L (fna)

is the nth zero of

Jl (kn) = 0

and the A.m are given by

m

Such an expansion in Bessel functions, Jo (knr), is called a Dini

series.

- 2 f!fyl/f//://am t)dt

T o) %

(See Watson, Ref. 2, p. 576 ff).

.14

.15

.16

17

.18

.19

.20

.21
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In the magnetohydrodynamic problem of the disturbance caused
by a pressure pulse on an infinite ocean of conducting fluid, we shall
find that equation 2. 10 is an approximation to { at the leading and
trailing edges of the disturbance. In the problem with a solenoid
half filled 'with mercury, the solution comes out in a Dini series of

exactly the same form in r variation as in equation 2,19,
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III. Theory of Magnetohydrodynamic Deep Water Waves

In this section we shall discuss the results of the pressure
pulse problem described in Section II for the case of finite
conductivity and a vertical magnetic field Bo. Details of the
solution are given in Appendix I.

As in Section II, we consider a linearized problem, with the

maximum surface deflection In
wave length )

small parameters being (o/\ =

particular, we consider the magnetic field to be given by

= =1 +b , b olx)

where I’z is the vertical direction.

As in Section II, we nondimensionalize with a length \
derived from the initial conditions. We assume that the non-
dimensional velocity ¥, electric field e, current density jand
magnetic field perturbation B, are all of the same order of
magnitude. We nondimensionalize with Bo, A\, p, g, - ¢ in such

a way that Maxwell's equations become

ab
- — = &
5t curl
] = e+vx 1z

-

curl = Rm ]

divb = 0
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where, as mentioned in Section I, we have ignored the displacement
current,
Now, using equations 3.2, 3.3 and 3.4, we eliminate e and

7 to form the induction equation in terms of v and b. Itis

o 72y v

5t—~Rm+FZ_ >

where Rm = uo )\0'\/ g ko in equations 3.4, 3.6.
The linearized momentum equation is, in these non-

dimensional variables,

0V - _ 7p 40l ix1 -1
5 vp+a Rm jx 1Z 2 3.
where o = ~,——}-§-°—— . The term - 1 is the acceleration due to
N/ 1Y::4 XO z

2 - . .
gravity, p is the pressure, and a Rm(j x lz) is the linearized
Lorentz force.

The continuity equation

div v = 0 3.

is of course unchanged.

Equations 3. 2 through 3.8 are the linearized magnetohydro-
dynamic equations for an incompressible, inviscid fluid with
arbitrary conductivity for z< 0. For z >0, we set j= v = p=20
in equations 3. 2 through 3. 8.

For the present probiem, there are four boundary conditions

at the free surface. The equation for the free surface is

K
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it

o
(SN}
(¥e]

C(x, t) -z

The first boundary condition states that for t# 0, x= 0,

the pressure at the surface is zero. Hence
p(x, €, t) = 6(x) 6(t) 3.10

where § (x)8(t) is the pressure pulse.
The second boundary condition is that no fluid flows through

the free surface. When linearized, this condition becomes

3 0
50 = VY, (x, 0, t) 3.11

where v, is the velocity in the Tz (vertical) direction. Egquations
3.10 and 3.11 are exactly the same boundary conditions as equations
2.4 and 2.5, except that here the fluid motion is rotational, and hence
there is no longer a velocity potential.

The last two boundary conditions at the surface are on the
magnetic field. The third is that from equation 3.5, the normal
component of b is continuous across the surface. When linearized,

)4 0— ‘, = l) X, ()+ l
b ( 3 > ) ( Fy ) 3. 12

where bZ is the vertical component of b and

b (x, 0-, t) = 1lim b (x, z, t)
Z z
z$0
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The fourth surface boundary condition states that a fluid with

finite conductivity cannot support a current sheet. Hence
B (x, 0-, t) = B (x, 0+, t) 3.13
x x

Equations 3.9 through 3.13 are the boundary conditions at
the surface. To these we must add the fact that all perturbations
must die out as 2z becomes large. Hence, as z = + o0, g - 0,
andasz = -0, v =0, p+tz ~ 0andb - O,

The problem is solved by using a Fourier transform on x,
and a Laplace transform on time, and approximating the resulting
formulae for the inverse transforms, which are in the form of
double integrals over the wave number, k, and frequency, s. Due
to the fact that the function corresponding to H (s, k) in Section II
is very complicated, we can obtain simple analytic approximations
to the solution only at the leading and trailing edges of the surface.

We find that, at the leading and trailing edges of the wave,
the simplest approximation to { is equation 2.10., The nature of
such approximations is made explicit in Appendix I and Appendix II;

for example, at the trailing edge of the wave, the next approximation

to 2.10 is

S . R
¢ a7

2 t .
ast /x = o0, x # 0, and 5 = The analogous correction at

the leading edge of the wave is a change in k0 which results in
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a change in phase of { . That is,

z i 2 2 3.14b
5/}»1*) ~ -1 3(’9 m/y,(/}i// +io(z/3f/)‘ 4
T N2 X A < J
‘ 2
ast/x-=0;t, x—- o0;t /x = 0.
We may define a local magnetic Reynolds number, l}(m, based

on the local wave number k, and the local gravity wave phase velocity,
J glk . Hence Km = E—E g/k. Then at the leading edge of the wave,
R;n - o0, and thé trailing edge of the‘ wave, R~m - 0. Thus the leading
edge of the wave is a region of high conductivity effects, and the
trailing edge of the wave a region of low conductivity effects.

This means that a limit Rm - o0 is uniformly valid only
when k =~ 0 , and that a limit of Rm - 0 is uniformly valid only when
k —»00; for, whatever the conductivity, the region at the trailing edge
of the wave is one where k —» o, and the region at the leading edge of
the wave, one where k =0. Finally, these limits on Rm correctly
model the leading and trailing edges of the wave.

The reason that we nondimensionalized with a somewhat
peculiar length )\o derived from initial conditions is that only with this
nondimensionalization does the connection between wave number and
low and high conductivity limits become clear.

However, the problem has much more structure than indicated
above. This is due to the fact that the surface is an emitter of

Alfvén waves. To see this, we take the curl of equations 3.6 and 3. 7.

We get
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3B L R s)j 3.15

It 22

R d) - V) + 26 3.16
I o2

where w = curl v is the vorticity. Eliminating ® , we find that

[ 3V 3.17
Jt* d2* Rm o

T w2 T

|
it

which is the equation for Alfvén waves propagating along the
unperturbed field lines Tz. with speedq . Equations 3.15 and 3. 16
describe the production and propagation of current and vorticity.
That vorticity is produced is easy to see, for although the fluid
motion is irrotational initially, it can not remain so since the
Lorentz force in the momentum equation is non-conservative. Hence
any surface motion must produce vorticity, and hence currents,
which then propagate according to equations 3. 15 and 3.16. We find
that the vorticity may be considered as being produced at the surface
(see Appendix I).

Now the vorticity produced at the surface should have the same
local wave number, say k, as the surface deflection at the same point.
From equation 3. 15, the current produced must have the same wave
number as the vorticity.

To find the structure of the Alfvén wave emission, we consider
a given initial current j (x, 0, t) and use equation 3.17 to find out how
it propagates. At a point where the surface .has a wave number Kk,
the initial current is of the form

ix 0, 1) =~ e®X £y 3.18
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At the leading edge of the wave, k — 0. Hence J is nearly
independent of x. But if j is independent of x, equation 3.17
becomes formally identical to the equation for a sound wave in viscous
fluid. Hence we expect a plane wave front traveling with speed o ,
diffusing isotropically as a.ern. The detailed computation shows
this to be the case. At the surface, j has the same local wave
number as the surface deflection, when k - 0,

At the trailing edge of the wave, k = o0, j(x, 0, t) is a
rapidly oscillating function of x. We find that diffusion of current
is the dominant feature, and no propagation occurs. Again, ask =~ oo,
the wave numbers of the surface deflection and current j(x, 0, t) are
the same.

Finally, we seek limit processes on the conductivity, Rm,
and Alfvén speed, a , which will correctly describe both the surface
deflections and Alfvén wave structure at high and low wave numbers.,
First we consider the case of low wave number, k- . Then we
know from the discussion above, that if q and a,ZR.rn are held fixed,
we shall describe correctly the Alfvén wave propagation. But to
describe the surface deflections, we must require Rm - oo. This is
inconsistent with holding both a anda 2R:m fixed. We conclude that
such a limit does not exist for k - 0. We find that in a limit where
Rm - oo, a fixed, we must apply radiation boundary conditions at
z = - 00, in contrast with the problem formulated for Rm finite.

Next, we turn to the high wave number case., To describe the
surface deflection, we must require Rm - 0. There is no Alfvén wave

2
propagation, only diffusion of currents. We find that a Rm is again
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the parameter governing diffusion, as k - o. Hence we consider
the limit Rm = 0, aZRm ~ 1. This is the physically distinguished
limit of the problem, for it correctly describes both the Alfvén wave
structure and surface deflection as k = oo.

Finally, since the surface deflection for large k is
approximated by gravity waves, we may estimate the lowest wave
numbers occurring in the solenoid problem using the results of the
second example in Section II. There, the lowest wave number was
given by Jl(kl) = 0; k1 = 3.84. Since Rm = .08 for the solenoid
problem, and for the experiment, 1<a2Rm <5, we expect that the
limit process « ZRm ~1, Rm - 0 contains the correct
description of all effects occurring in the solenoid problem, and
hence is the correct linearized description of the problem.

The assumption that the mercury is infinitely deep is valid,

for the bottom of the mercury tank can have little influence on the

free surface when the Alfvén wave structure is diffusive.
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IV. Theory of the Limiting Case Rm -0, cx.sz.. 1

To study the properties of the distinguished limit found in
Section III, we must find the response of an infinite ocean of con-
ducting fluid to a pressure pulse. Details of the calculation are
given in Appendix II.

Under the limit process, we find the following equations for

the magnetic field
curlb = 0
divb = 0
where we are using the same nondimensional variables as Section
III. Now equations 4.1 and 4. 2 are valid both for z <0 and z> 0.

Further, at the surface, b is continuous and, as |z |=o0, 5~ 0.

Hence we conclude

P = 0 everywhere
Hence

e =0
and

j = vx lz

Thus, although the induced electric field v x B is of order one in
the limit, the conductivity is so low that the currents produced do
not affect the magnetic field.

The momentum and continuity equations are unchanged:

4.1

4.2

4.4
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—Vp + a* /Zm{&)‘,z)xTz -l 4.6

a-
<< |
"

I

o/
~

divv=0 4.7
Eliminating v = (vx, VZ) from equations 4.6 and 4. 7 results in the
following fundamental equation for the pressure:

QP +x8m ¥P -0 4.8
ot 22?

The equation expresses the damping effect of the Lorentz force

O(Z/Zm(l/x/z))(/; = -2 Rm VXTX

in the momentum equation.
-

The boundary conditions on p, v are exactly those of Section

III. Expressing them in terms of p, we have, for a surface shape

g(xs t)'Z=O 4:.9

the surface boundary conditions
p(x,0, t) = &(x)d(t) 4.10

and

: = -9 (J /{-) - -
g‘fz g_f_:xg / 4,11

As z » - 00, p+ z = 0, for the surface disturbances die out at
z = - 00,
Now equation 4. 8 with boundary conditions consisting of

equations 4.9, 4.10 and 4. 11 form a properly posed initial value
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problem. We find the solution for ( (x, t) to be, in terms of inverse

Fourier and Laplace transforms

4

Ji®) = Lom [~ L [ 0% dk

ob g ,
@ng/zk\,fa-s OP_S %

—5. 4.12
2t0 4 ] ¢ g2 \/,ZJA
o “hee iV s
Keeping in mind that we will approximate { (x, t) for large (x, t) as
in Section II, we replace equation 4. 12 by the divergent integral
. Lod .
¢ RX S
iod) = - oAk | e ds 4.13
X, 2 2
47 1+ 52 JRes
- od ~1od /K( <
where R is the parameter of the limit process
2
R = a Rm 4. 14
Now inspection of equation 4. 13 reveals that we should introduce
new coordinates
X¥* = sz
t* = Rt
s* = s/R 4,15
k¥ = k/R2
RPgx (x4, t9) = Clx, 1)

which eliminate R from the problem. In this way, we find two
different approximations for {* (x%, t¥) at the leading edge of the
wave, k% -0, and at the trailing edgé of the wave, k¥ = oo, Details

are given in Appendix II.
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V. Linearized Theory of the Solenoid Problem

In this section we discuss the lihearized theory of the solenoid
problem for the limiting case Rm= FO, asz ~ 1., As iﬁ Section IV,
we shall write the parameter of the limit processes as R = a.ZRm,

We consider an infinitely long vertical solenoid half filled
with mercury. We ask, '"What is the response of the free surface,
when the current in the solenoid undergoes a small change?'" We
begin by considering the equations for the magnetic field. For the
details see Appendix III.

Let the undisturbed free surface be givenby z = 0, 0<r<l,
where r is the radial distance and fz is parallel to the axis of the
solenoid and positive upward. We assume the motion to be axisymmetric,
5%— = 0, and nondimensionalize, as in Section II, with p, g, and a, the

inner radius of the solenoid.

The equations for the magnetic field, in the limit become
divbh = 0 5.1
curlb = 0 5.2

both for z § 0. Far above, and far below the free surface, the

magnetic field is given by

B
—B—O-~Tz+bz(t) 5.3

where bz(t) is the field due to the small change in solenoid current.

Since b is continuous atz = 0, we conclude that
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5 =b ()T for all z, O<r <1
Z z

Clearly, b = 0 for r > 1.
Thus we see the essential simplification that occurs in the
limit is that the magnetic field lines are straight.

From equation 5.4, we compute

T > - -1 J (re
~(§_%Di-=/zm€@ —/2—37}, (.;)

since we have assumed axial symmetry. Thus we find that the

nondimensional current J is:

j:;?(%zz@ -Vl

>

Hence the momentum equation becomes

%_‘ = —-—Vll? -+ R/%%%Z }9 -+ 1//(/2/)(/?} “/%

The continuity equation is unchanged.

Q-

. e d
divv & 0

Upon eliminating v from equations 5.7 and 5.8, we find the
same equation for p as in Section IV except that now it has a right
hand side which is the forcing function caused by the changing

solenoid current,

_B__VZF +Z§:}7 :—*Z(/P‘E&
ot v
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The boundary conditions at the free surface are

p(x,, t) = 0 5.10
2

8¢ - 9 _

_8_tZ_~BZ 1 5.11

At the wall, vr = 0. In terms of pressure this means

_g_%(rzl,z,t)zo 5.12

Far from the free surface, the velocity must die out. As z™ - oo,

we use the momentum equations with v = 0, to find

p + z - f(r) 5.13

The solution of the mathematical problem posed by equation
5.9 with boundary conditions consisting of equations 5. 10 through
5.13 is solved by assuming a Dini series expansion in Jo (kmr) and
taking the Laplace transform of time.

As in Section IV, we define new variables

H
P
%

k*

5.14

t* = Rt

Then the solution for ( (r, t) may be written as a product of a Dini

series times convolution integrals,

Lla,t) = KE 2o (45 Ko, Z%’f) Jo (ke 1) 5.15

2 k,,°
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where

J =
1 (km) 0

and, fork * > 1,
m

i

-
4, (¢% by ) / Ablts) ¢ % mlfEBs - 1) ds
A+* F

PRI

Vé - 3//é
and for km* << 1
+* k%
% * * -3 /Q,,,) S %
gm /7—[, émj &tﬂée) = a(é%({_SJ a CO?(E)QWIS TF)J
At* de T IFnm 7
=)

The 2m are analogous to the approximations for the leading and

trailing edge of the wave in Section IV.
db

—2
dt

excites the various damped modes of the system, we get damped

Inspection of equations 5. 16 and 5. 17 shows that as

oscillations of the free surface.

5.

.16

17
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VI. Experiments

With a vertical solenoid half filled with mercury, experiments
were performed to measure the surface deflections due to a changing
current in the solenoid. The experiments were performed at GALCIT
in the magneto-fluid mechanic facility (see Ref. 3). The surface
deflection was measured by recording the varying resistance of carbon
rods grounded in the mercury, as the surface oscillated. This was
done simultaneously at four different radii, producing a recording of
the instantaneous surface shape. To induce the surface oscillations,
the solenoid was switched off or on. Details of the experiment are
presented in Appendix IV.

When the magnet was switched off, the field changed as

B = Bo e‘R/Lt 6

The field changed as

B = Bo (1 - e—M) 6.2

when the field was switched on. The field inside the solenoid
was not measurably affected by the presence of the mercury,
indicating that the limit Rm - 0 is correct,

The oscillations observed reached a nondimensional

amplitude in the center of the tank of

o™
]
~J
o
W

max
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i.e., a 5 cm. deflection in a tank of radius 7 cm.

Under these conditions, application of a linearized theory
would appear dubious, but the experimental results qualitatively
check all the features of the theory. See Appendix IV for graphical

comparisons of the theory and experiment.
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VII. Discussion of Previous Work

This section consists of a brief review of several types of
magnetohydrodynamic surface waves, and some remarks on the
shallow water theory analogous to the deep water theory presented
above.

a) General

The theory of water waves is a classical subject, with a large
literature. One recent book is that of Stoker (Ref. 1). It contains a
modern treatment of the pressure impulse problem (see Sec. II}),
and a discussion of shallow water theory which Fraenkel (Refs. 6, 7)
uses (see below), as well as many other topics.

As to magnetohydrodynamic surface waves, a survey of the
literature reveals that there are many types of magnetohydrodynamic
interactions. All authors mentioned below consider an incompressible,
inviscid fluid.

For example, Solov'ev (Ref. 4) considers a fluid (plasma) with
infinite conductivity. Outside the fluid, and parallel to its surface is a
magnetic field. The magnetic field does not penetrate the fluid.
Initially, the surface of the fluid is undisturbed, and the magnetic
pressure is constant on the surface. However, a surface deflection
causes a variation in the magnetic pressure é,t the surface of the fluid,
which under appropriate circumstances can cause the disturbance to
propagate. Solov'ev finds the circumstances under which solitary waves
can exist, for example.‘ He ignores the effects of gravity.

Another class of electro- and magneto-hydrodynamic surface

waves is considered by Melcher (Ref. 5). Consider a heavy fluid with
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zero conductivity but high dielectric constant. If a strong electric
field is applied to the fluid, the free surface of the fluid will be
stressed by the Maxwell stress due to the jump in dielectric constant.
In studying this problem, Melcher finds an electric analog to the

Alfven speed, Beo

Visp
b) Shallow Water Theory
Consider an inviscid, incompressible conducting fluid, that
is contained in a shallow disk of depth Ho, and horizontal dimension
L. We prescribe a vertical magnetic field Bo, and ask as to the
nature of the waves produced under the action of gravity, and the
effects of Bo. As in our previous work, it is convenient to form an

Alfven number and magnetic Reynolds number, based upon a

characteristic length and gravity speed. Thus, here we have

Rm = uoL g Ho 7.

Bo

vupg Ho

We derive the equations from a limit process on
€ = Ho/L — 0. The magnetohydrodynamic shallow water theory is
due to Fraenkel (Refs. 6, 7) and Lundquist (Ref. 8). Fraenkel

considers the case

Rm - 0

2
¢ Rmal as ¢ » 0 7.

As with our work, he finds this limit to be the one applicable

for experiments in mercury. In close analogy with our results, he

1

.2

3
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finds that the effect of CY-ZRm is to provide a damping term linear in
the horizontal velocity, and, in the linearized theory, that disturbances
propagate with the gravity velocity, wgHo. This theory is fairly simple,
due principally to the fact that the gravity wave theory, which Fraenkel's
~theory reduces to as aZRmH'O, does not contain dispersion in its
linearized form. In analogy with deep water theory, we expect the limit
aZRm ~ 1, Rm — 0 to be not uniformly valid for small wave numbers,
but this has not been shown.

Lundquist (Ref. 8) has studied the shallow water theory in the
case

Rm - 00, a fixed as € ~ 0 7.4

He finds that the wave velocity becomes

c :\/é‘-’z 1‘—;![/0 7.5

4§

the combined speed, familiar from the analogous compressible case.
Again, the equations are quite simple due to the lack of dispersion or
damping. Lundquist shows that his theory is valid only for small wave
numbers.

We speculate that the increase in speed from Jgﬁo to Bo

+gHo
as Rm increases, may be alternately expressed as a limit on the

wave number, and as such, may be understood by solving the linearized
problem for a finite depth Ho, and finite a , Rm, and then examining

the solution as Ho/L - 0, Hence, in contrast to the classical theory,

the shallow water magnetohydrodynamic theory is dispersive.
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Presumably, the finite depth causes a multiple reflection of the long
Alfvén waves emitted from the surface, which causes the speed of

propagation to increase.
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APPENDIX I

Theory of Magnetohydrodynamic Surface Waves

This appendix is a study of a deep water theory of magneto-
hydrodynamic gravity waves. Such a theory would describe the motion
of a liquid metal contained in the presence of an externally applied

vertical magnetic field.
The basic assumptions of the theory are: 1) the depth, d, of
the fluid is large compared to any wave length A considered; i.e.,

L 0. 2) the maximum wave amplitude {o is small compared to \;

d
i.e. the equations are linearized with (o/\ as the small parameter.
3) there is an externally applied vertical magnetic field.

Solutions are obtained for arbitrary conductivity o, and

external field strength Bo. The fluid is inviscid and incompressible.

The magnetic permeability of the fluid is that of free space.

A. Basic Equations

The linearized equations for a semi-infinite conducting,
incompressible inviscid fluid under the action of gravity and an

externally applied magnetic field are, for the case of two dimensional

motion:
a:; V BO b - —p
1 = - —_ 1b 1 - 1 .
P 31 p + m cur x1 -pgl la. 1
Vz-o -~y
= —--}3 + Bo —Q—Z la. 2

0 la. 3

ol
]

o5
ot AT ot
Y
%

la-4

<1
"
o
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where p is the fluid density, p is the permeability, o is the conductivity,

and g is the acceleration due to gravity. The displacement current is

—

neglected. lz is the vertical direction. The magnetic field is given by

B = Bol :b ; b~0 (go/\)
z
— -t 1a-5
b=5b T + b 1
z =z X %
The linearized velocity field is
Vo= v 1X + v, lz~ 0 (Co/N\) la-6
The equations are written in MKSQ units.
At the surface
€(x, t) -z = 0 , la-7
the pressure is zero:
P (Xsc ’ t) = 0 1a-8
and no fluid flows through the surface:
o€
ot = Yz tas9
The normal component of the magnetic field, bn’ is continuous
across the surface. To lowest order this means
bZ (x, 0-, t) = bz (x, 0+, t) la-10

Finally, a fluid with finite conductivity cannot support a current

sheet, hence the tangential component of the magnetic field, bt is
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continuous at the surface:
b (x, 0-, t) = b (x, 0+, t) la-11
X x

The notation bx (x, 0-, t) is explained in Section III. Equations la-7
to la-11 are the boundary conditions at the surface on equations la-1
to la-6.

Above the surface (z > 0) we obtain the equations for the
magnetic field by setting v=p = j = 0.

Atz = + oo, b = 0, for the perturbation magnetic field due

to the surface motion must die out far above the surface. Far below

the surface, all disturbances due to the surface must die out. Hence

p+pgz-¢0;;—*0

and

e d

b- 0

as z= - 00. This completes the boundary conditions for equations
la-1 through la-6.

Next, we consider the equations for current and vorticity. Let

wj = curl B la-12

w = curlv 1a-13

T=T1T j = j la-14

la-15

gl
"
4
|
€
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Taking the curl of equations la-1 and la-2 gives

2
8 . Bo & ., Vj -
5 B2 s la-16
dw 9j _ -
pgft—- Bo ‘5—2- = 0 la-17

Eliminating the vorticity gives

2. 2 2. 2.
9 g _ Bo 97 . 9_ _V__J_ la-18
3t P 5% gy MO

This equation describes the propagation of incompressible Alfvén
waves, with the usual Alfven velocity Bo , inthe T direction.

(ep z
When j is independent of x, equation la-18 is exactly analogous
to the equations for propagatian of sound waves in a viscous medium.
However, this analogy is not helpful in general, for sound propagates
isotropically, and Alfvén waves propagate along the unperturbed field
lines Tz' Further, sound waves are longitudinal and Alfvén waves are
transverse.

Due to equation la-18 we may evidently expect that any
problem concerning the surface motion of a conducting fluid in a
magnetic field will have an Alfvéen wave structure.

For the initial value problem j (%, 0, t) = f(t) 8 (x), the

solution of equation la-18 may be expressed as

s L 'kx %(\/ml
— S‘(‘ [ P4 5 T
Jgt)= L) fise Js(a db o "X+ la-19
<HT2( ~leb - 65
e
2 2 2 2
where‘\/s2 t sk o {signiﬁes that the real part of J s_+ sk /uo
a“+ s/uo a” + sfuc

is » 0 on the path of integration. Since we consider k real, this

requires that the branch cuts of equation 1a-19 run from s = 0,
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s = —kZ/p.c , and s = a,zu,o to s = - 0. In a problem concerning the
surface motion we thus will find branched solutions due to the
existence of Alfvén waves.

The most general solution for currents due to vorticity

produced at z = 0 is

& o } st e skYuo
, ' :J_( ﬂ{)écéx Sfaz(}axu;gf: 4 00
Jixt) i 5 ¢ keds 1a-20

<oy RV

where the branch cuts in the s plane are as before.

Due to the fact that the Lorentz force in the momentum
equation is not in general conservative, we must expect rotational
flow fields, and hence production of vorticity,

Hence, substitution of integrals of the form

Cnp (Clex v xll)t + pR)Z) Fll) df

— o

for an initial value problem would not be correct, unless the
contributions of the branch cut integrals are not ignored.

The fact that the motion is assumed two dimensional is not
a fundamental restriction; it merely simplifies the resulting integral

representation of the solution.
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B. An Initial Value Problem

We consider the response of the fluid and magnetic field to a

one dimensional pressure pulse acting on the surface of the fluid.

The boundary condition on the pressure is

P, t) = Poa(x)a(t)

Since the Dirac delta function is defined by

chf(x)%( =t jwf(x)a((x)a@x = 7[(0)

-G

8 (x) has dimensions TE:&EEL‘ . Hence equation la-21 defines a

-]

From its construction, it is clear that )\o can play no fundamental

length

role in the solution.
We denote nondimensional quantities by (¥) , and non-

dimensionalize as follows:

B = BO(TZ+E) = Bo((Bzi—l)_fZ-%ExT)

X
(x, z, t) = (kox, )\oz,}—g—- t)

1a-21

la-21
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This nondimensionalization introduces the parameter

a = —-—?—9-———— 1a-23

Vnper,

the Alfvén number, into the momentum equation; and the magnetic

Reynolds number

Rm = uo )\O Jg Ao la-24

in the induction equation. The nondimensional equations are,

dropping the (7)'s:

a; V 2 - Py

- = - + - T -
3t p a curl b x lz 2 la-25
ab Vzb v :

9 , Y5b , 9% la-26
ot Rm Oz

7.B=0 la-27
V.v=o0 la-28

The boundary conditions on the pressure at the free surface becomes
p(x,{, t) = &(x)6(t) 1a-29

All other boundary conditions are unchanged.

Since the boundary conditions are in terms of ?,g ,» p and b
instead of j and w , we require at least two functions to solve the
problem, one of which must be rotational.

We introduce a harmonic functiond, and the magnetic
potential A; with an appropriate choice of ¢, all quantities can be

expressed simply in terms of A and ¢.
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A is defined by
E=T A =T A z t)
y ¥ y

and the perturbation magnetic field is given by

_8A . . _  aA
bxmé_z_’bz" ax

In terms of A equation la-25 is

_z =%
ot 9z
v

x .0 + aZVZA‘

8N ———

ot ox

Hence, by equations la-32, 1a-27 and 1a-28

2 2 dA
V p-a 37) =0

Hence we define ¢ to be

2 8A
_a-a—}—§—+¢—z

The velocities are found to be, by equation la-32

8vz o az BZA 8¢
ot 9z0x 9z
vy _ 208%  0¢
—— = a ._T -

ot oz Ox

Ifa

H

0, g%) would be the classical velocity potential.

1a-30

1a-31

la-32

la-33

la-34
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The vorticity is given by

*y A -
%__tl_l-o(Vé_A%_o la-35

This is exactly equation la-17. Hence, in terms of ¢, A, all the
Alfvén wave structure of the problem should be in A. Introducing

A, ¢ into the induction equation la-26 we find

2

Qs
o/

LS. SE Y

2t Rm

e

XA - ) VA _ ¢
-62 bt D(-—Ez —— BX la-36

Q.-
(49

This equation, with the fact that ¢ is harmonic
2 2
2 = b P = O
V ¢ - (5’;2 + 92_2 ) %

are the two equations to be solved. The boundary conditions at

the surface are

o(zg_/_j (X,08) + BUx,0,¢) = £ int) = oo die)

1a-37
YAt) .~ xIAK 06 _ 3d s,
5’%{ 22 X EE/X’O' / la-38

Or, upon eliminating ( from equations la-37 and la-38 we find

2

/j_f& _‘_%_)/d + D(aé%_{a%z_zju_ g_&_)/q = OF/{‘) 0/2)() la-39

The magnetic boundary conditions at the surface state that A and

LEY are continuous at z = 0. Above the surface (z> 0) A is

0z

harmonic. A, ¢ - 0 as [z|- oo.
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To find an integral representation of the solution, we form the
Fourier transform with respect to x and the Laplace transform with

respect to time, i.e.

{00 = =] v
st bx 7
 (x,2,¢) = _/_?Je Asfoj “d (s, k) db La-40
477 J_jeo |
~t X -3
@ (s k) = ]e ¢ dxezt) dtdx la-41
) o
where k is real.
||z
$ = ¥(s, k) e la-42
and, for z< 0, g'satisﬁes
~ 2 = X 2 = . /k/&
$*A - «*d A = ,S___/—/éz/} LA -k QZ/S/,&)C’_ 1a-43
J2? Rm 42%
The appropriate solution for A is
= - 52 «5/€2/Z B . I/CI'?_-
A = als,k) exp &Nu vk Bk)e X
2 a-44
0( + 5//8}’}7 2
ko{z——-Sz
For z>» 0, % is
A = B(s, k)e“klz, la-45

The representations of ¢, A given by equations la-42,

la-44 and la-45 satisfy the boundary conditions at |z | = oo.
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Transformed equation la-39 becomes

[543 )¢ « kst e 2 )F =sn _

(\W)
[\

. oA
Hence to find a, B, % we use the fact that A and =— .
4 9z are continuous

at z = 0, and equation la-46. The resulting equations for a, ¢ , B are:

a[f“"su. shl//Zm( 4 ¢ k [k( f - - ki B (@_é comt- )
0(7- + s/ Rm kzo(‘:._ $* J2
a +k % - B (A cont. )
kw-s*

(- sk 8 e ckaafse (ST < 5 e
b s*

We find the function analogous to H (s, k) in Section II to be

Hisle) = s*(s*+ llel) (Lhi+ | [s>eshk¥rm|) | e

X+ S/Rm
. 2 2/ S*+ 5Y@
2 | (s | £ e )

Solving for a, ¢ , B, we find

a - 2 klkls*?
Hs, k)

1a-48
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. =S (B (v | [ SRR
¢ H?Z/z)( Xl +1J0€’+S/ﬂm )

= zé\g //4]—- / Sz+5'éz/r‘2i')7{
H{sk) / /WZ + S/Rm >

Hence from equation la-44 we find

2 }iﬁ« R=/km| . . (k!
{1/&16 V=T (z/eu;m | %}
+ m

and finally, from equation la-38

) 1&? S +53k/kn7 <2 /k’ H5L+ﬂ52375w 2
//—é—,{;q (/0(+5//2 ( : +}“2*5/%m/$

=
i
o

N

Q\‘(
1

The equations la-47 through la-52 are an integral representation

of the solution in the sense of equation la-40.

1a-49

la-50

la-51

la-52
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C. The Limiting Case of Infinite Conductivity

Here we consider the limiting case of Rm - o, as an aid
to constructing the general solution with Rm finite. In this case,

equations la-25 through la-28 become

v \V4 2 - - -
—_— = - -1 -
5t P ta curlbx 1z ” la-53
ob _ v
- - la-54
5t 9z a-5
divb = divy = 0 la-55
v%p
the only change being the omission of the diffusion term e in

the induction equation. The boundary conditions at the free surface
and at z = + o are unchanged; atz = - o0, we can only specify that
the solution is bounded, due to the possibility of undamped Alfvén
wave propagation.

The radical

/SZ + skZ/R_m (
aZ + s/Rm

IS/G'] - +'&S“

evidently becomes

. s
where the plus sign must be chosen to have Re ‘E' >0 on the contour

of integration. The functions A, ¢ then become

~ L. 2 2/k!
A = Sk [ alkle - Ukl +5)e ¢ 1a-56
H ) J
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and

z |k |

(k"a" - sz) (x| +§-) e la-57

where H now is
2 2
H (s, k) = sz(sz-i-[kl ) (x|) +§-) -2k ke (s2+§) la-58
Finally, we find Eto be
= 1 2. 2 2
¢ = 5 (2% [klg - k| (]+ 2)) la-59

We note that now H (s, k) is a polynomial (Eq. 1a-58). Considerable

simplification results from the fact that it may be factored:

3
H(s, k) = s (s - [kla) (= +2[k[s®+ s(§l+2k7‘a)+ 2k%) 1a-60

Examination of equations la-56, 1a-57 and 1a-59 shows that

C, ¢— and A have no poles at s = 0, s = lkb, . Hence we introduce a
new function
3 x|
2 k 2
F(s,k):—sa-+2‘k|s +s(-5+2.kc:¢.)-!-2k2 la-61

~

Then ( becomes

_ K 2 + 3ET)

3 la-62
F (s, k)
and
- _ s k| z
= - (s rald) (K] 42 )e M la63
F (s, k)
and
2 = iks 2]k|e® sﬁ-(lk(+%)e‘k‘z _—y

(s - K a)F
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Now F has one real negative root, and two complex conjugate roots.

Let a(|k|), b(|), c(|k|) be real, positive functions of |k|. Then

F al(s+c)(s+a—1b)(s+a+1b) la-65

For lk[—.O

Fe 1 (s+atlkix)(s=i (lel(uza“‘llet)}/s+<‘\/”4‘(‘*Z°(‘”<')) la-66
o«
and for |k|-oo,

F o 7_(%_H)/s+/kia{(/_c'))(s+!¢a)0<(l+a')) 1a-67

-~

This completes the description of i,% » L. We next turn to the
problem of constructing approximations to ¢, A and { for large
t, x, -z. Now the most interesting physical quantities are the
surface shape {, and the magnetic field vector potential A. We

begin with A

A dsdh la-68
4/7 [ f [

Remembering that Res (K (s = Iklo()) = 0, we may use equation

la-64 and write

(ot
°? : ¢ £ 25/x
Y ['ke‘w sett 7 _dsdle 1a-69
a7 | oo (5 Tl)F

as z - - 0. Now the contour integration in equation la-69 is

performed as follows:
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For t + z/d <0, we form the contour consisting of a large
semi-circle to the right of s = 0. Letting the radius of the semi-
circle become large, the integral on the semi-circle goes to zero.

But this contour encloses no poles. Hence

A~ Ofort+z/a<0 and z- - © 1a-70

For t + z/a>0, we form the contour consisting of a
large semi-circle to the left of s = 0. This contour encloses
three poles, at s = -c, and s = -a + ib. Further, as the radius
of the semi-circle gets large, the integral on the semi-circle goes

to zero. Hence

o>

A~ fum“‘w{ Ras Alsz-c) + Resh (s -avcd) la-71
+ /ges/}w[§=—c‘"'£}§

- O

forz - - 0, andt + z/a>0. The first term in the brackets of
equation la-71 may be estimated as follows:

The dominant contribution to an integral of this form

, <, c(h]t
fM a[/@(a < / a/k.
— oo - o

occurs at ¢ (k) © 0. Using equation la-66 we find that

ATl

- oD

L rrh e”&xﬂq Ros A(s = *C)i =
_ bk (t+ 24

_LJ o lox b la-72

o /e(w édlk)
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Writing this function as a derivative with respect to X, and then

integrating by parts, we find

‘_W F‘L’Q @(.éx,y@ﬂ& {/Zes 5(S=‘C) %
2 -0 (o) - [= 4 [{"" D()
-+ J o bxdb e ok * la-73

3 Zé/ e 6 o%k)

as t, x, -z=00, and t + z4 >0.
Hence we have

FZh)
vmkm@é @bzm{% ~ X+ 2]

<
=5 .3
3” L b 1+2x*k) 37T [xﬁ%(z(ﬂijg)] = la-74

as x, -z, t ~ooand t+ z/a> 0.
Next, we turn to the residues at s = -a + ib. We assume the

dominant contribution to be when k- 0. Then to lowest order,

= -‘i_-ib= + inI . We find that

ody
/ éetéxlkgﬁej/?(ﬁ"qﬂb ilﬁ[méxcw@ﬁ+%)4kla'75
oZTr ),

—ob

under this assumption.
Fort, x- o0 and t + z/q» 0, the method of stationary

phase may be used upon equation la-75. We find

2TD< X la-76

;’,T/oo xopkzrz /Qé5/?{S,—a:t//)j ;”Hd (((‘+%/>< 7

- o
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ast, x,=00, t+ zfa>0, and

(t + zh)2
X

. To equation la-76
we amend the requirement that point of stationary phase, ko' is
small:

2
o ~ . 2
4x

Next, we turn to the surface shape, { (x, t). Assuming the
dominant contribution to {(x, t) occurs when k is small, as

t,x — oo gives

-k v st
,{m,f)~._./ ki e Xaé/e[ e’ ds

4772 o (5= ViR1 ) (S+ ATkt )
= L/jk’cwkx o Et-F)dE la-78
mJo

. 2
A _f,:___ ii_ /om(f__ - —TL—)
q T ) 72 “x

5 .
as t/x™0, t, x=00, andt /x = 0. We compare this result with

the equivalent formula for equation la-76:

A~ ?é*i/% ﬂm/[{*/) ~)
N *

We conclude that the pole at s = -c represents an Alfvéen
wave which dies off algebraically as x, t, - z increase. This term
is largest near x = 0, for t large.

The poles at s = -a + ib are more interesting. They represent
a surface wave analogous to an ordinary gravity wave, which, as it
propagates across the surface, emits Alfvén waves of the same
frequency. This emission process causes the surface wave to be

damped, which in turns damps the Alfvén wave. Hence the interaction
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represented by a surface wave emitting an Alfven wave causes damping.
Evidently the complexity of F(s, k) is due to the complicated nature of
this interaction.

For Rm finite, we must add diffusion to the abox}e picture. This
changes the effect of radiation damping on the surface wave. Also, we
expect the sharp wave front att + z/a = 0 to be smeared out, due to

diffusion.
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2 + s kZ/Rm

2 s
¢ * Rm

D. The Functions H(s, k) and d's

We turn now to the case of Rm finite. Then instead of a
dispersion relation F(s, k) (Eq. la-61) which is a polynomial in s
and k, we have a more complicated function, H(s, k) given by

equation la-47. Since
H (s, k) = H(s, -k) = H (s, ‘k‘)

we may as well consider k2 0. The branch cuts which occur due

to the radical

2
s + s klem
a2+s/R.m

must be chosen such that, on the contour of integration, s =1 + iw,

1 = const > 0; we have

2
s +sk2/Rm > 0.

Re .
a.Z + s/Rm

Equation la-79 determines uniquely the branch cuts to be as

follows: from s =0, s = - kZ/R_m and s = G.ZRm, the branch cuts
run along Res< 0, Ims = 0 to s = - co. With this choice of branch
cuts, and k positive, we may drop the bars on k and the radical

and write equation la-47 as:

1a-79

m 5+sé/(m
His,k) = S(S7+k)(k + MS 7 "2/“(/5 (/ 1a-80
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Following the structure of the case of Rmm - o, we should first
determine the number of zeros of H (s, k). Since H (s, k) is not a
polynomial, this is not a simple job. There are no simple conformal
mappings s = £f(68) which map the branch cuts into the unit circle and
keep s = f(0) an analytic function of 6. Setting H (s, k) = 0, and
squaring out the radical gives a tenth order polynomial; hence H
must have at most ten zeros. Examination of H (s, k) = 0 for
Ims = 0 reveals that there are three real zeros of H. In addition,
H has two zeros which are comélex conjugate. Hence, in general,
H has at least five zeros. From the case Rm - oo, we expect that
H has only five zeros, but this is not proven..

Two of the real zeros of H (s, k) are trivial in that E, %and %

do not have poles at these points. They are

s=0and s = ]k]a 1a-81

For construction of approximate solutions, it is necessary to
know the zeros of H(s, k) for large and small k. These are, in

addition to those of equation la-81:

For k- 0
S = -2lktx + O(éz) Z
S = lki(ir2atk))  + Ok”) S la-82
For k - oo
S = -kl + O
S - lm w01kl +O(l;/‘7fz7 la-83
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This completes the discussion of H (s, k).

' s
We next turn to study the radical,/ >

2 2
+ sk /Rm . The

a + s/Rm

conductivity, Rm, appears only in this radical. Consider the

limiting cases k- 0, k- oo with O(s) between Of Ikl) and‘ O(k):

and

i 2 2
lim + sk /Rm

z =k
k- ooVa + s/Rm

O(/k) < s <O(Kk)

a, Rm fixed

1 sz+sk2/R.m
1mg Vi =
a + s/Rm

k-0

glw

O(k) < s< O(yk)

We may formally produce the same results by considering

and

1i 2
tm fs + s kK/Rm _ 4
Rm-0 a2+s/Rm

a, 5, k fixed

alw

i 2 2
lim j; + sk /Rm =
Rm — o a2+s/Rm

a, 5, k fixed

Thus, the zeros of H(s, k) which are such that O(s) is between

la-84

1a-85

1a-86

1a-87
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O( Jk) and O(k) as k = o0 or k= 0 must agree to first order, when k

lim H
is small or large, with the approximate zeros formed by Rt;n -0 and

lim H
Rm -~ oo

Reviewing the case of Rm - o0, we see that the éomplex Zeros
which represent a traveling surface wave emitting an Alfvén wave
are of this class. Hence, for the surface-wave emission coupling we
may expect, from equations la-84 through 1a-87, that certain portions
of the surface wave are regions of high effective conductivity, and other

portions are regions of low effective conductivity.



56

E. The Alfvén Wave Structure

We consider, as in the case of Rm - 00, only the part of the
magnetic vector potential A which contains the Alfvén wave structure.
In doing this we recall that A has no pole at s = lk [a,. From equations

la-44, 13-48 and la-51 we have:

- o PO ‘Ez?;m
lex L 2 st %Josﬁ 4-S SZm
A= L Jpe™ih| stk & e ds la-88
4T N,k
v e

In equation 1a-88 we have neglected the harmonic part of A,

as it plays no role in the Alfvén wave structure.

We next wish to show that there is a critical wave number, k,

such that for k > k, diffusion is the dominant feature of equation 1a-88,

and for k >k, wave propagation is a feature of the equation. To find k,

2 2
we note that for k /Rm< a Rm, there is a region in the complex s

2
s” 4+ s k"/Rm < 0.

of + s/Rm
of the line s = - k /Rm. If A has a pole in this region, then for small

This region lies to the left

plane such that Ref

k, its structure is like that of a wave propagating down. Clearly, all

the poles of A for Rm — oo fall in this class. .
2 2
2 2
On the other hand, for k /Rm>» g Rm, Re/ SZ * sk /Rm > 0
a + s/Rm

in the left half plane. Hence any pole of A represents a disturbance
with exponential decay or algebraic decay in z. Under these circum-

stances there is no wave propagation. Hence we set

k = a Rm 1a-89
For this value of k, the term —_— is exactly 90 degrees out of
2.2 ot

phase with the term a——z—‘ in equation la-36, the governing
9z

equation of A.
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Now we turn to asymptotic approximations for A. First we
consider t, z ~o. From the above discussion, we need only consider
three cases: k-0, k= k and k -00. In these cases we shall evaluate:

(o0

F(LZ) = | $? sf 21}:7#—-——“115?;?"”
20 7_?@- € iZm e 1a-90

~los
by using the method of steepest descent. . With this done, we shall
quantiiatively examine
& z‘éx
A = L [Tibe T Fh)dh
ATT
-t
For k -0, we write
—
%(s) = st + 2 l{ S*+ sk¥/ey,
S T

as

%(5} = st + 2S5
Vot + S/R

The dominant saddle point is when |s| << 1:

[y =0=t+2(1-£i5 )

Hence

So = 2a%Km [++24)
Z

Then lso |<< 1 implies

=-z/a

Hence

5, = ,zo_«{}_ﬁ__m (t+424) la-91
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Then we find

fi(s ) = —
" 2a°Rm la-92
Hence the path of steepest descent is parallel to the Ims axis,
and goes through s = s,
Hence we find
— 2 [+ 20 )% 20%Em
- X ’
Lim Flh) ~ L /2:_(3@/44 S ¢ 1a-93
% afr ¥t M k)
Equation 1a-93 describes the propagation of a plane Alfvén wave
propagating with a speed « , and diffusing istropically about the
wave front.
For k=k, f(s) becomes
f(s) = st + z,/s Rm la-94
The saddle point is
= 2
s,= (%) Rm 1a-95
We find
3
f'(s ) = 2t
° z Rm
hence the path of steepest descent is parallel to the Ims axis, and
runs through s = 5, Hence
Ty 57
> L [Rm 2R g 2 5
Flk) = ,,L\/.?iTt z]" e 2 ~ | 1a-96
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as -z, t oo. Equation la-96 describes the '"propagation’ of a

. . . . t .
diffusive hump, which has a maximum at z =|5—— , the velocity

Rm
. . dz 1 . . .
of the maximum is at = TR Hence there is no definite

speed of propagation, and no Alfvén wave.

For k oo, t(s) becomes

( S
f(s) = st + zk aZRm + s 1a-97

For z/t ~O(l) as - z,t— o, and k—~o0, we find the saddle point

to be
(- z) k ¢°Rm
= |2 kq fan
and
£ (s ) =i 12-99
(-z)ka Rm
7t

Hence, the path of steepest descent is again parallel to the Ims

axis passing through s = 5, We find

{ /.?_"fszfm
Zwm F(/Z) ~ { [ ’i‘jﬁ >/¢ckie\/ < 5: 1a-100
b= 202me L tot*Rim H(ss, k)
Equation la-100 also describes a diffusive hump whose maximum
2 2/3
is located at z = (_SE a Rm) for large k, and this maximum
k

travels with a velocity

dz _ 2 aszJ 2’3(1) 1/3
dt 3 8k t
The equations 1la-93, 1a-96 and 1a-100 serve to clarify the nature of

k. Turning to the integral
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LT

i j?&x Frk) ckdle = L rém/ex Fli)dle

-~

we see that if for some value of x, t, z this integral has its main
contribution for 0 < k <k, then the result will be an Alfvén wave

propagating down with some x variation. If the main contribution

to the integral comes for k< k <o, there will be no Alfvén wave
propagation.

Clearly, the limit Rm —o00 can only be valid for wave numbers

6

less than k = gRm. For mercury at 10, 000 gauss, ke — .
meters

Next, we assume that the dominant contribution to A comes
R

when k »0. In this case A has poles at s = - 2| k|q, s = 1\“k| (1 +2a2|k!),

2
and s = - i“kl(l + 2q |k|) (Eq. 1a-82). For the three poles, equations
l1a-84 through 1a-87 apply, hence we may use the results of the previous

section on Rm —~ oo (Eqs. la-74 and 1a-76).

A~ ax X[+ 24) b BT ol o)’ ) 1a-101
3T [X2+4-c<1/{—+&/5<)1]3/1 212X X 7 X g

t+ z/h 0
— .

as x, t—oo; t + zh>0; and

The approximations (Eq. la-101l) were derived under the
assumption that the dominant contribution to A occurs for k- 0.
This assumption fixed the region of validity of the resulting
approximations in(x, z, t) space.

We now turn to the case where A has its dominant contribution
for k- 0. Reviewing equation la-83, we see that only the poles

- aZRm

at s = 7 + 1“ k| can meet this requirement.
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In this case

°‘° _CLm’® ke
Aw—*ﬁ[g_ snkxdb ¢ T  wolEte
o ke

. 2
This integral may be approximated, for z fixed, x, t =00, and t /x~ o0,
by the method of stationary phase. The point of stationary phase is
kg —2 » @
4x
. L. . t 2
Hence the approximation is valid for 3 " ©asx t -0, t x -0,

z.x~0, z/t= 0. We find, under these conditions that

oezﬁm'é 3 'l_',z.é.
- . / . 2
A~o F {i/ : ,om/ g e 1a-102

Before discussing the physical interpretation of these approximations
to the Alfvén wave structure we find analogous results for the surface

shape, ¢ (x,t).
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F. The Surface Shape

The surface shape is given by equation la-52

o0

L8O
ckx st w¥e S+ S LY R
c_ o ln 20245k SE R _ g2 (| ) dsdike
4(“’/(’) et i k) é x? + SR 6=+ iem
/

- J.foo

1a-103

Since we have only an x,t variation, the approximations to { (x, t)
are straightforward. For k- 0, E has poles at s éjVﬁ(-] , the
denominator cancels all the other zeros of H. Let{ (x,t) have its
dominant contribution for k- 0. Then, from equations la-84,
1a-85, 1a-86, 1a-87 and the previous discussion, it follows that {
is given by the same formula, to lowest order in t/x, as was

derived for Rm - oo. This is equation 1a-78

(X4 a_,__ - 2
4xt) T 4m% oy 12-78

as t/x -»0. t,x =00, and tZ/x—o 0. We conclude that the leading
edge of the surface wave, and its resulting Alfvén wave structure
(Eq. la-101) are a region of high conductivity effects.

Assuming { to have a dominant contribution when k ~ 00, we
find that { only has poles at s = -g_.zzl_l_r_n_ + 1.\/]_12_] Then, to lowest

order, we find, by contour integration and the method of stationary

phase, that

ﬂw/ la-104
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as t/x -»06. X,t— oo and tz/x—» 00; to first order in x/t. With this
éurface deflection we associate the Alfvén wave structure of
equation la-103. We conclude that the trailing edge of the surface
wave (and its Alfvén wave structure, by Eqs. la-84 through 1a-87)
is a region of low conductivity effects. Equations la-78 and la-104

complete our study of { (x, t).
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G. Conclusions

Herein we construct a physical picture of the response to a
pressure pulse. The statements for x/t ~1 are deduced from the
behavior of the solution for x/t -o0 and x/t -0, as x,t-00. We
shall only be concerned with x,t large.

We begin by considering the surface shape. For x/t-0,
C (x, t) oscillates, in the second approximation, as a gravity wave with
slightly higher frequency. In the region where x/t- o, (x, t) behaves
as if the fluid had very high confiuctivity. We may define a local R..'m
based upon the local wave length and phase velocity. Then for
x/t =00, R:'n — 00,

Now as x/t decreases, so does I{m, and ¢ gets a damping factor.
This damping factor increases monotonically a; x/t and R:n decrease,
until for x/t- 0, it has reached the value e -2_%_:11_1: . The frequency
is slightly lower than that of a gravity wave for x/t -»0. Hence R;n -0 as
x/t— 0. Therefore the trailing edge of the surface wave is one of low
effective conductivity.

Associated with this gravity-like surface wave is an Alfvén
wave structure. For x/t. oo, it consists of nearly plane Alfvén
waves emitted from the surface. As these waves propagate down,
they diffuse as asz- The wave number of these Alfvén waves is
the same as the local surface wave number where they were emitted.
Now, as %/t decreases, the wave number of the Alfvén wave structure
decreases, until at a point where k = 1:, the diffusion across field

lines is as rapid as the propagation along field lines, and hence the

Alfvén structure becomes purely diffusive. If we view the surface as
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having a local complex frequency, then the Alfvén structure has this
same frequency. Therefore the Alfvén structure gets a damping factor
as x/t decreases. For x/t -0 this damping factor has increased to

2
e —a._%_m__:c’ and the Alfvén structure is purely diffusive, with a
diffusive factor aZRm.

Hence, as the surface wave propagates over the surface, it emits
an Alfvén wave with the same local frequency and wave number which
propagates down as an Alfvén wave or as a diffusive wave, depending
upon whether k §£ This emission causes the surface to be damped,
which is turn damps the Alfvén wave emitted.

Near the origin, x = 0, there is an Alfvén wave propagating
down. The wave front of this Alfvén wave is smeared out due to
diffusion.

Next, we study the effect of interchanging the limit process k-0
with a fixed, Rm -o00; and k- oo with Rm- 0, a.ern fixed.

Consider only the surface shape { (x, t). We compare the
results obtained by letting k = 0. with those obtained by letting Rm - oo
with @ fixed. In the next appendix, Appendix II, it will be shown that
such processes as k -+ 0 produce approximations to {(x, t) which are
expansions of the phase and damping of ((x, t) for x/t large. The
limit process Rm —oo, fixed produces the same residues as the

limit k -0 to O(kS/Z). The disagreement occurs first in the damping,

6
which is O(t—s) as x/t =o0; x, t- o0.
x

Similarly, the limit k - o0 produces an expansion of the phase
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and damping of ( (x, t) for small x/t as x, t= o0, The limit Rm =0,
. 1 .
aZR,m fixed produces the same residues to O (E)' Here again, the
error occurs first in the damping factor, which is O (t—z-) as %-—* 0;
X

x, t=00.
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APPENDIX II. The Limiting Case Rm — 0, G.ZRm ~1
The Response to a Pressure Pulse

In this appendix we formulate the same problem as in Appendix I
for the limit Rm -0, GZRm“'l. We use the simple results of this
problem to.clarify the mathematical nature of the approximations made
in Appendix I.

From previous remarks, we know this limit to be valid for
k>>l: = g Rm, and it is a distinguished limit in the sense that it
preserves the Alfvén wave structure of the surface emission.

The solution to this limiting case differs from the solution
described in Appendix I only in the fact that Alfvén wave propagation
is absent. In particular, the solution contains branch cuts due to the
Alfven structure., These facts, plus the simplicity of the solution,
make it an ideal model for an analysis of the approximations constructed
under the assumption that k= 0 or k= oo gives the dominant contribution
to certain double integrals.

With the nondimensionalization of Appendix I, under the limit

2 g
process g Rm~ 1, Rm -0, the equations are, for z <0:

.g..? = -Vp -{—q,ZRm 3}{ Tz- i'z Za-1
7% = 0 2a-2
vV.b =0 2a-3

o= ¢€ - vx—iy 2a-4
ng = - curl;’ 2a-5
v.v =0 2a-6
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and for z >0,

2.,

Vo 2a-17

It
o

7.5 2a-8

L]
<

-

The boundary conditions are unchanged. Since b is continuous at
z= 0, and b— 0 for |z | =, we conclude from equations 2a-2, 2a-3

and 2a-7, 2a-8 that

b =0 2a-9
Hence by 2a-6
E' = 0 2a-10
Hence
j s -v 2a-11
- .
Thus the momentum equation may be written as
av 2 - =
— = -Vp - - -
ot p - @ Rm Vxlx 1z 2a-12

Hence the magnetic interaction with the fluid is expressed solely

by a damping term in the horizontal momentum equation due to the
fact that the conducting fluid moves across the field lines. Using
equations 2a-6, 2a-12 to eliminate the velocity we find the governing

partial differential equation to be

H
o

%—; v% + RIE 2a-13

where

R = a Rm 2a-14



69

is the parameter of the limit process.
In terms of the pressure, the boundary conditions may be

written as

p(x, ¢, t) = §(x) slt) la-29
8¢ _(?..E + 1} 2a-15
ot 0z x, 0, t

on the surface. Far below the surface

-?_Ezl-]_ =0 asz— - o 2a-16

These are the boundary conditions of the problem. We recall that
the Mo used to nondimensionalize these equations plays no significant
role in the solution. The same is true for large x, t if a real length
a were given by boundary conditions near x= 0, t = 0,

The solution to the problem may be obtained by applying
Fourier and Laplace transforms. We write the solution in terms of
the inverse transforms. We may perform the computation using
equations 2a-13, 2a-15, 2a-16 and 1a-29, or take the limit of the
solution for Rm finite (Appendix I). Since the Alfvén wave structure
(diffusion) has been adequately discussed for this case in Appendix I,

we consider the surface shape only. We have

{0

N (e t llef E,ST.—
fot) = ng-—i‘ J { b C*J ’4500/2} 2ao17

2to . 1+ 3% (RS
-t RV T3

{ s
zkkllg 1= .
We assert that the factor e KR+ for z small and negative

plays the role of a convergence factor in equation 2a-17; we may
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interchange the lim with lim . This may be seen as follows:
z40 x, t= 00
consider p (x, z, t). By contour integration over the s integral,

and application of the method of steepest descent over the k

integral, we may construct an approximation to p (x, z, t) for

z lkl y———
. . v
%X, t *o0, and z fixed. In such a computation, e R+s
. . i st .
is a slowly varying factor compared to e 1kx or e . Henceit

plays no role in the approximation by steepest descent. Therefore,
if {(x, t) for %, t— o0 is computed from the approximation to p (x, t)
by equation 2a-15, it will be found that we get the same result as if
the order of limits were interchanged in equation 2a-17.

Hence, for the following construction of approximations to
C(x, t) for x, t— o0, we replace equation 2a-17 by the divergent
integral obtained by setting z = O({in Eq. 2a-17).

We eliminate R in equation 2a-17 by making the transformation:

s = Rs

kK* = k/R2

t" = t/R 2a-18
x =x/R2

¢ = RY

+
Substituting equation 2a-18 into 2a-17 and dropping the () signs,

we have

ee [éo( 6 J
4()(/f/ ——4~/—~/’ / Cﬂk 2a-19
T (o |4 5P 1//,Ls
Ikl
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which may be written as
)

> ¢
Aigt] = - J——Jhcwéx A 5.’,_ f e’ ds ? 2a-20
S

The branch cuts run from s = 1 and s = 0 to s = - 00.

Considering equation 2a-20, we may proceed in two ways:
we may write ¢ as g; of another integral, and perform the k
integratioﬁ. Then we would approximate the resulting s integral
by the method of steepest descent.. Or, we may perform the s
integration first, and then approximate the k integral by the method
of steepest descent. Due to the complexity of the resulting s integral

when the k integral is done first, the latter approach is simplest.

We evaluate

L | &  ds 2a-21

by contour integration. Now

k + s s
has only two zeros:

§ = -y (|k|) ti w(lkl); Rey,w> 0; Imy,w = 0
Hence, the residues of 2a-21 give terms like:

-y t +iwt
F(k) e 2a-23
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The branch cut contribution is
| )7'(' — .
a { e 772/’-:*” el 2a-24
© k) _

N 75//«77)

which may be shown to be

- O/——;— ) as t -00, k# 0 2a-25
k¢t

by substituting u = nt in equation 2a-24. Hence we find that the

contribution to ( (x, t) from the branch cut contribution is

~“0 ——--——1-——-} as x, t =00 2a-26
2 5/2
x t

by using the convergent representation (Eq. 2a-17) for ((x, t).
We restrict our attention now to the contributioh of the residues

(Eq. 2a-23): these give for { (x, t), terms like

?F W) e -ikx -y (|k|)t + iw (k] )t

0

dk 2a-27
Now the integrand has a sharp maximum where

f1(k) = 0 2a-28

where f(k) is given by
f(k) 2= 1ikx -yt + iwt 2a 29

The point (or points) at which f'(k) = 0 we call ko(x, t). Then we

define the phase b(x, t) of ((x, t), as x, t—=o00, as

b (x, t) = Im (k) 2a-30



73

and the dampingof (x, t) as

a (x, t) = Re f(ko) as x, t- o0 2a-31

Clearly a and b exist for all t/x if and only if, for all k,
¢ has contributions from residues due to poles located at s =2y + iw.
In the present case, these are the only residues which contribute to
¢ this is not essential.

We construct approximations to a(x, t) and b(x, t) for t/x large
or small, as t, x = o0, by using approximations to the residues for
k-0 or k- o0o.

For k- oo, the poles are located at

1 1 . 3 1
s = ——4- + TE 'i‘ 1\/1( "—I-Z— + O(K) 23.—32

Using equation 2a-32, and performing the contour integration, and
finally using the technique of stationary phase on the resulting k

integral, we find that

1 ¢ 3
kozz__Z+T6—+O(%§ 2a-33
X
and hence
. - a(xt)
A0t) ~ z;_’_ A ¢ o (bix,t) ~iIJ 2a-34
1 22l

2
as x, t =00, t /x -0, and t/x=-00. a (x, t) and b (x, t) are

given by
1 1 x? x>
a (x, t)~-;¥t+§?+o[_2.) 2a-35
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t2 3x 2

b(x, )"z + 37 * 0(£t_)

as x, t— o, t/x - 00.

"For k- 0, the poles are located at

Using equation 2a-37, we find an approximation to the residues.
Applying the method of steepest descent to the resulting integrals
over k, we find that equal contributions come from the terms with
exponents (exp[ ikx + e -2-13-2 k 2/3 t]) and (expl -ikx e—z%i- k2/3
Deforming the path of integration to a path of steepest descent in the
first integral exactly cancels the same deformation in the second

integral. We find:

For x, t-o0, t/x-0,

4 a(x, t)
8 t
GG )~ -7 5 /E) ©

where
3 5 7
. 4t 16 t t
a(x, t) "2‘7'—2‘25 75'+O(—6)
X x X
5
t
b (X, t)" 0{—?)
X
and

2a-36

t]).

2a-38

2a-39

2a-40

2a-41
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We conclude that the leading edge of the wave is a diffusing
depression which gradually changes into an oscillatory motion as t/x
increases.

‘There is a distinguised set of coordinates t, x, { which
eliminate the parameter R = a.ZR,m from the problem.

Approximations constructed by assuming that the dominant
contribution to { comes for k small or large, produce expansions
of { , andits damping and phase, for t/x small or large.

In Appendix I, the approximations to { were constructed in
the above manner, as was the Alfven wave structure emitted from the
surface. We conclude that such approximations are mathematically
meaningful if a and b exist for all t/x. This depends on whether or not E'
has poles at s equal to a complex conjugate function of k. Due to the
complicated algebraic structure of g:' (Eq. la-52), this is not
mathematically obvious. However, physically, it is clear that E-
must have such poles, for only through such poles are gravity-like
oscillations of the surface produced, and this gravity effect acts on’

all wave numbers.
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APPENDIX III

The Solenoid Problem

In this appendix we consider an infinitely long, vertical,
cylindrical solenoid, half filled with mercury. We ask, "What is
the response of the free surface, when the solenoid current is changed
slightly? "

Let the inner radius of the solenoid be a, the initial current Io,
and the final current il. Let X?i, P, B, J and E be the dimensional
velocity, pressure, magnetic field, current density and electric field
respectively. We choose cylindrical coordinates (R, 9, Z) with the
Z axis parallel to the axis of the solenoid and positive upward. R = a
is the equation for the wall of the solenoid, and the free surface of the
mercury is initially at Z = 0. We assume the motion to be axisymmetric.

We introduce nondimensional quantities as follows:

(R, 8, Z2) = a(r, 8, z) 3a-1
T = time = /_;Z- t 3a-2
W o= l/;é s 3a-3
E = /ag Bo e 3a-4
B = Bolk ' 3a-5
P = pgap 3a-6
7 = alga Bo? 3a-7

The parameters of the problem are:

Rm = uc aVag 3a-8
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= —-—-___B:g.._— 3&-9
Vopga
2
R = a Rm 3a-10

We have nondimensionalized with the density p, the acceleration

due to gravity bg, the inner radius of the solenoid a, the magnetic
permeability w , the conductivity ¢ , and the initial magnetic field
Bo, due to Io. As discussed in the Introduction, we consider an
inviscid, incompressible fluid without surface tension. Rm is the
magnetic Reynolds number, o the Alfvén number.

We linearize with the small parameter

Io -1

€ = ———-——1 _ 3a-11
Io
Then
Z: = Tz +B 3a-12

-

and —1:;, s e, Vv are considered of order Ofe).

As discussed in Section III, we consider the limit process
Rm =0, G-ZRm 1, applied to the linearized equations. First, we
consider the equations and boundary conditions on the magnetic field.

<
For either z» 0, as Rm — 0, we have

divh = 0 3a-13
curlg = 0 3a-14

andatz::-l_— 0, r < 1;
b= T b, 3a-15



78

where bz(t) is the perturbation field due to the change in solenoid
current. Since b is continuous at z = 0, and harmonic for all z,

it follows that

B=T b(t), r<l, allz
zZ zZ
3a-16
b= 0, r >1, all z

The complexitl:y of the magnetic boundary conditions in the
solenoid problem with finite Rm was discussed in the Introduction.
The great simplification (Eq. 3a-16) here is due to the limit Rm - 0.

In Sections IV and V, we derived the governing equation for the

pressure as Rm -0, R fixed.

2

5 2 8% ib, 2
5T p + R -é—? s - R—-——z—’ R = a Rm 3a-~17
Z dt

Equation 3a-18 is a consequence of equation 3a-16, the continuity

and momentum equations,

Consider the nondimensional surface to be
((r, t) ~2=0 3a-18

Then, at the surface, the fluid pressure is zero, hence

p(r,g,t) =0 3a-19
and no fluid flows through the surface;

9¢ . /-gﬁ - 1) 32-20
ot z (r.€, t)

At the wall of the solenoid, the radial velocity must be zero; this



79

means that

6p)
or r=1, z< 0, t=0 3a-21

Far below the surface, the effects of the surface die out, while
the effects of the changing magnetic field, and hydrostatic pressure

remain. Hence, as z— -0

p—~f(r, t) -z 3a-22

db
With a given —a-t—z—, equations 3a-17 to 3a-22 pose an initial value

problem. We proceed as follows: as z- - oo,using equation 3a-22,

we find the equation for p to be

2
db
] 19 9 Z _ v
8 T3 5P = TR —7 Ja23
Hence p may be written as
r2 d
p = ¢ - Z - "'Z- R m— bz(t) 33."24
where p- f(t) as z- - 0. ¢ satisfies
) 2 82¢
E_E_Vcb +R——T=O 3a-25
9z

Next, we introduce the Laplace transform:

® -st
p (r, z, s) = d/ e p (r, z, t) dt.
3a-26
st..

1 ioo
p (r, z, t) B 5= f e p(r, z, s)ds
-ioo
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Applying the transform, we find

r2 é—};z
iz - 3a-27
z - R I a

o |
n
&

where ¢ f(s) as z — - o0; and & satisfies

2 2
1 8 0 _— ] _ 9 _
s =~ 3% I‘—ar ¢+———2¢ +R———2-¢=0 3a-28
oz 8z

ap -
—?}rzl, a5 =0 32-29
E(rré: S) = 0 38.—30
2- 9D
sC (v, 8) = (-2 - 1)(r5 . 3a-31

To satisfy 3a-29, we expand ¢ and p in Dini Series (see Watson,

Ref. 2).
Then ¢ is
oo —_—
£ = Z f (=) Jollem 1) ) illewm ) =0, 3a-34
m=c ” '
The fm satisfy
fo = f (s)
52 kzms 3a-35
g;z fm T RTs fm = 0

The appropriate solution is

§ = Gl v ) Cpls) enp(2h [z ) lbnr) 5036

W=y



81

To find the correct expansion for p, we use the Dini series expansion for

2
T

M= o2 4 42 J (&m/lj ) I //(M)ZQ 3837
3 b T em)
Hence we find the representation for p to be
7o Co o+ ; Con () 2tp (2o J 2= ) Ta [l )
: - 3a-38

— o
-R a&/_@ v 5 Llkma)
+ 4+ (3 £
orer s Jo (o)
Equation 3a-38 satisfies the boundary conditions at r = 1, z < 0; and at
z= - 00, r<l. There remain the boundary conditions at the free
surface. In view of the form of equation 3a-38, we expand ¢ in a

Dini series also:

f E(s) T lhwn) |, lhm)=0 3039

Because
f}f/wmc//z =0 = Eols)
0

3a-39 is summed from m = 1.
Using equations 3a-38 and 3s5-39, and equations 3a-30 and 3a-31,
we find two algebraic equations which determine the C-rn’ fm' They

are
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{ - 5(4’/7%}2 wm-z/d[@) m) E,, =—o  3a-40
and
- an (s) /é,,,;//___s‘_m = S? EM 3a-41
ZH S

To obtain equations 3a-40 and 3a-41, we substitute { into equations
3a-30 and 3a-31 and expand the exponentials in kmf E——_—i——s— , keeping
only the first terms.

Solving, we find
Ca = _/Z_/ 5/144_— 3a-42

and

KM(/)/gj — ”£ ¢ (ﬁ{é}) j; [’é"””) 3a-43
e (] iz//gii) éml ]/o/km}
Vel S

Hence we obtain the following expression for( :

fnt) =+ } & Tlbwr) o [ € s s
Loby Tlh,) T E B T
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As in Appendix I and Appendix II, the branch cuts lie along the
negative real s axis and go from s = - Rand s =0, to s =-00.

With this choice of cuts, the integral
(o0

{
P =J_,j e® Fs)ds

LIt

exists. To eliminate R from the integral in 3a-44, we introduce

new variables (see Appendix II)

st o= 2 3a-45
t¥ = Rt
k* = k /R2

m m

Then the integral in equation 3a-44 becomes

. Led 5#_‘_* — « .
—_/g_ [ ¢ — 0_}";& JS = KM/Z[ ) 3a-46
e ¥ «

QT e 1# i—g‘l/%‘%‘é dt

d . d
- - < t%) = 1, i.e. S b (t¥) = 5(t%).
Consider first T bz (t*) i.e. on b, (t*) = §5(t*). Then

we have to consider

wf *

2 S +«

12 / < g 3a-47
21 | S¥: Urs*

>

Now the function

+* *2
& + 5 I/Lti"

S*)(
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has two zeros, of the form (see Appendix II)

* = =Vl ) o+ swliky) 32-48

Wherey, w > 0. The contour integration of 3a-47 thus jrields

L Xlky ) t*
e cos(wt'= T | + Qo , ) 3a-49

3 *

R* K
w (k)

where Q(k*m, t*) is the result of integration around the branch cuts.

- 1‘
Q Ly t*) = 2é] ’ 5 An 3a-50
et %773//~’7J

The general solution for arbitrary bz(t) is obtained by forming

the convolution integral:

+¥* -
4, [+*) = Y c/éi_/zz*_g)}(g_r}/scos(ws~_r_r)+9 ZA@S 3a-51
A ™

Now consider the term in brackets as R-0: as R— 0, k¥ -*oo,
and Q -0. Further -y- Ol ...\/k —-6- Hence equation 3a-51

becomes

’Zm /%V = ~/\7%,; G/A /{,5)/ e~ F (os(/E—s s~77]} 32-52

Z5 7z
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Since a term inside the brackets like cos (\/E;m s - -;—) would denote
the response of the rnth gravity mode of surface oscillations, we see
that the first term in the brackets of equation 3a-52 is the mth damped
normal mode of the system. Thus, in equation 3a-51, this term is the
response of the mth damped normal mode of the surface, analogous to
the gravity mode cos ( (/l-t;‘m t* - —g- ) when R = 0. The second term

in the brackets is, for large t*, monotonic decreasing to zero in t¥,
for non-oscillatory bz(t*). It is due to the Alfvén wave structure in
the problem.

In general, the surface shape is given by

fnt) = N G () R Jllmn) 3a-53
m =) ém?- J;,UQVVI)

where Lm(t*) is given by 3a-51. This completes the theoretical

solution to the solenoid problem.



86

APPENDIX IV

EXPERIMENTS

A. Introduction

The experiments used mercury as the conducting fluid; the
conductivity of mercury is ¢ = 1.04 x lO8 mhos/meter. The
permeability of mercury is very nearly that of free space. The
solenoid is 1 meter high with an ID of 15 cm. This gives a
magnetic Reynolds number of Rm = pga,/ag = .08. The mercury
filled the solenoid to a depth of about 70 cm. The surface motion
was measured with graphite pencil lead resistors, and the magnet
current was read from a shunt. The surface deflection at four
points and the magnet current were recorded on oscilloscope
photographs.

The probes used to measure the surface deflection consisted
of three joined pieces of TEC 5H drafting leads. The joints were made
by making a tight coil of tinned soft copper wire over a number 46 drill,
then removing the drill, sliding the lead ends to be joined into the coil,
and soldefing the joint with the leads aligned. Finally, the joints were
coated with spoxy for insulation. In this way, we were able to construct
graphite rods of about 100 Q resistance which were 15 inches long,

1 .
. 077 inches in diameter, and parallel to within —— inches. When such

64
a rod has one end grounded in the mercury, its resistance was found
to change linearly and repeatably (within 1 per cent) as the depth of the

lead in the mercury changed. From this change in resistance a voltage
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was produced which was recorded by an oscilloscope. Figure 1
shows the circuit.

The frequency response of the probes was estimated as higher
than 1000 cycles/sec. The major error in such a transducer comes
from the trace width on the oscilloscope, and from the induction effects
of the probe as it responds to the changing magnetic field. The latter
effects were of significance for short times only, and calibrated
corrections were obtained by repeating the experiments with the
Battery E (see Fig. 1) disconnected. The probes were aligned to the
centerline of the solenoid to within about -i% inch. Figure 2 shows
the arrangement of mounting the probes. Radial symmetry of the
surface motion was observed visually, hence the probes were placed in
one plane for convenience. The spacing is shown in Figure 2.

The magnet circuit is shown in Figure 3; the voltage across a
calibrated shunt (30 mv at 1500 amps) was recorded to give the magnetic
current. A 250 cycle filter was used to remove the high frequency
noise of the MG set, which was in poor condition at the time of the
experiments. At the beginning and end of each run, the initial and
final current was read from the ammeter on the control panel of the
MG set. Since the magnetic field in the solenoid was calibrated with
this meter, the initial and final values of the field in the solenoid were
known to within 1 per cent.

With this equipment, to produce a g—? large enough to have

measurable surface wave amplitudes, it is necessary to switch on or

off the MG set. This produces an exponentially rising or decaying
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magnetic field.

However, there is no doubt that hydromagnetic surface waves
exist when formed by a small change in current. If the magnet
current is raised slowly, and if a small sudden change in current
occurs, a ripple is visually observed on the mercury surface. The
amplitude of such a disturbance is very small.

Experiments were done with initial or final field strengths from
2000 to 10000 gauss; below 4000 gauss the amplitude of the surface
motion was too small to record accurately. Above from 9000 gauss
it was thought that the impulsive loading or unloading could damage

the MG set, so only exploratory data were obtained in this region.
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B. Description of the Data

Six experiments were analyzed in detail. These consisted of
the response of the surface due to the exponentially rising or decaying
magnetic field, for three values of the initial or final field strength.

The magnetic field strength varied between 4000 and 9000 gauss.
Exploratory runs for higher and lower field strengths were also
obtained; but all features of the latter data appear in the six runs
mentioned above. The description of the data includes a graphical
representation of the surface motion, and a discussion of the magnet
current and magnetic field.

From measuring the magnetic field directly with a coil inside the
large magnet connected through an integrating circuit to an oscilloscope,
we find that when the magnet is switched off, the field decays exponentially
with a half time of 0.045 + 0002 sec. When the current is switched on,
the field rises exponentially as {1 - exp(—)\t)} » and the half time for
this rise is 0.119 +0.001 sec. Comparing the field when the solenoid
is filled with mercury, and empty, we find that the presence of the
mercury does not change the magnetic field.

_Due to a ground shift as the magnet is switched on and off, the
current traces show an initial rise or fall of about 30 per cent, However,
the decay times agree: for switching off, the half time found from the
current traces is 0.47 + 0.003 sec, and for switching on, 0.11 +0.001 sec.
The switching on rise time is a property of the MG set; the decay time,
a property of the magnetic switching circuit (which agrees with the

calculated decay time for the magnet circuit).
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When the magnet current is switched off, the maximum surface
deflection occurs in the center of the tank at .20 sec after the switching
process. The maximum is followed by damped, roughly sinusoidal
oscillations. The amplitude of the maximum deflection increases steadily
as the initial field strength increases, until an amplitude of nearly 5 cm
is reached, at which time the maximum has become a sharp, rather
than a sinusoidal rounded peak, indicating the presence of nonlinear
effects. At the time of the first maximum, the magnetic field has decayed
to about 6 per cent of its initial value. See Figures 4, 5, and 6.

When the magnet current is switched on, the maximum amplitude
is about . 20 cm; it occurs about . 20 sec after the switching process.
The oscillations following the first maximum are strongly damped.

As the final field strength increases, the damping increases, with the
higher field strengths producing over-critical damping. At the lowest
field strength for which the amplitude of the surface motion was
measurable, the center region of the surface made one complete cycle
before being damped. The best sensitivity of the surface probes with
maximum available amplification is about .02 cm in the absence of
induction corrections and noise. Hence the data for switching on the
magnet are not very accurate, See Figures 7, 8, and 9.

In both cases of switching off and on, the induction corrections
were large at time t = 0; the corrected value of the surface deflection
being the difference between two large numbers. Hence the initial part
of the surface motion has a large error. This error is negligible after
about . 20 sec in all cases. The noise is represented on the graphs as
the trace width; generally 1 of the trace width would be a fair

5

estimate of the error due to noise.
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C. Comparison of Theory and Experiment

In this section we shall use the theory derived in Appendix III as
a description of the phenomena observed in the experiment. However,
since the experimental surface oscillations were caused by an
exponentially rising or falling magnetic field, we first must decide
which conditions we shall linearize about, in order to apply the
linearized theory of Appendix III. We choose to linearize about the
initial magnetic field strength for the switching off experiments; and
the final magnetic field strength for the switching on experiments.
Hence Bo is the non-zero initial or final magnetic field in the switching
process. With this choice, the only formal difference between the
equation for the surface deflection in the switching off and on cases is
a change in sign, and the half time for the switching érocess.

Next, we wish to find a simple approximation to equations 3a-51
and 3a-53. We proceed as follows: For the six runs described in the
previous section, with the linearization described above, R varies
between one and five. The dominant term in € (r, t) is the one due to
the lowest eigen value, k- All other terms may be considered as
corrections to this one. Since k; = 3. 84, for the six runs in question,
kl* = k1/R2 varies between —1—% < kl* <3.8. We desire approximations
in this range of kl*. We shall consider only the term due to k1 in
€ (r, t). Now in this term, the second term in the brackets of equation
3a-51 is

_t*é

(b, (F5=9) QUsihy) ds
| 7

o]
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Now Q(s) is monotonic decreasing with increasing s. Hence for
exponential bz(t*) this term has at most one maximum, and is non-
oscillatory. Since we are interested mainly in the character of the
surface oscillations, we ignore this term in Q. Thus we get the

following approximation to the surface motion:

* . 3, % ‘ys
Ll ) = -R ty Jalk, Q)f dab (" s);e costws-1)§ds  #a-]
- Z- w
4= Jo(k)
where _]‘D is the Bessel function of the first kind, of order zero;

vy and w are the real and imaginary parts of the zeros of

2

¥ .
3 +52/Lti. =0 . s=-Yriw 4a-2
: .

the physical time T is

/5 e 4a-3

r is the nondimensional cylinder radius; and

¥ * )%
j%éj = 1‘"—/\\ Qﬁé/j/“/\ %J 4a-4

where

/\% - \/f ——i—/o < 45-5
Rt
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In equation 4a-4, the plus sign describes the switching on process and

the minus sign the switching off process. In equation 4a-5,r is the

appropriate half time for the switching process.

R = a®Bm = 0;_5:/2
> 7

3 . . .
For k1*> To 2% approximation toy , w is

. 3
k o =
T 1/k1 16

N

Here, R must be smaller than

R </_13.°.(3.84) £ 3.5

This includes four out of the six runs.

R is, of course

45-6

4a-7

Using equation 4a-7, we may integrate equation 4a-1 to find

i F

4/4 z"*/ = ”'/gé J/é&.)/{ [€ AméJ—@ 40,,,[4*57‘ {—)]J a-8

b Llh) [~ 5 UL by,

/6

/{%‘—,—

<t

where

and the plus sign of equation 4a-8 refers to the switching off case, the

minus sign to the switching on case.
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For small field strengths, Bo is small, hence R is small, and
kl* large. From equation 4a-8 we see that in this case, the amplitude

of the oscillations increases as

max §(0, t¥) =~ consthZx ~)\Bo4 4a-9

as Bo increases. As Bo increases, the frequency of oscillation

_— 3 \fgk 2_ 2
- ' . __ Rt 1 _ 3 ¢ Bo
w = l/g/a t/3.84 TA =\ — 1% 7— 4a-10
decreases. The oscillations are damped as
- % RVg/a ~ - Bo® ' 4a-11

as Bo increases. From equation 4a-9, we see that the amplitude
increases as the half time of the switching kprocess 'r~—){— decreases.
Now consider Figure 10, a nondimensional plot of the
experimental and theoretical results for ¢ (0, t*),V for the switching off
run at the (low) initial field strength of 4800 gauss. The theoretical
curve was computed from equations 3a-51 and 3a-53 with no approxi-

mations. At the time of the first positive peak ing (0, t*), the

magnetic field has decayed to 6 per cent of its initial value,
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For t¥* <2, the experimental data are inaccurate due to induction
corrections.

Figure 11 shows a similar comparison for g’(O, t*) for a switching
on run. The final field strength is 4700 gauss. Here the theoretical
amplitudes are far too large initially, due to the linearization about the
final field strength. Notice that the theoretical amplitude is 10 times
the experimental amplitude. The experimental amplitudes of the surface
.oscillations correspond roughly to a linearization about -é— the final
field strength.

Finally, the fact that B was unchanged by the presence or
absence of mercury in the solenoid indicates that the limit Rm -0
and the resulting approximation B = B_(t) are valid. Interactions with
the changing field and surface motion are of a magnitude predicted by
the theory when it was applicable. Hence holding a,Z’Rm ~11is also
valid.

We conclude that the discrepancies between theory and experiment
are due to the linearization.

However, the linearized theory contains qualitatively all the
features of the experimental results.

To understand the above statements, we must modify the
linearized theory to take into account the large changes in a.ZRm = R.
dR(T) is of the same size as db . Hence we can not obtain a rigorously

dT dt

correct modification of the linearized theory by considering R(T) to

vary ""slowly' (compared to -glte ) with time. Hence we seek an

empirical modification of the linearized theory.

We argue as follows: At any time, the mercury in the solenoid



96

oscillates in a set of damped normal modes. We expect that the
characteristics of these normal modes depend only on the instantaneous
value of R. Thus the frequency, damping and phase of the first normal

mode are given by

{

. 3 2
w = Jg/a \/ 3.84 - 15 R(T) 4a-12
1
y = -3 R(T)/gla 4a-13
) = tan -1 /—m—————(T) ) 4a-14
A -y (T)

for R(T) «3.5. \ is given by

4a-15

where r is the half time of the switching process.

However, the amplitude at time To depends on the time history
of the forcing function and the surface response for all times 0 < T< To'
Hence we may not in general compute the amplitude from the
instantaneous value of R.

Denoting the amplitude of the first mode by A(T), and using the

above ideas, we write

2, (T) = A(T) (e sine + e YT gin (oT - @) 4a-16

1

where v,0,0 are now given by equations 4a-12 through 4a-14. Now
we recognize that when R = 0, there is no coupling between the magnetic

field and the surface motion. Hence

=z 0 for R = 0 4a-17

s
i
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Hence, for the switching off process
A = const for T >2 T say. 4a-18

Coﬁputations, with A = const, for the switching off cas‘e, show
that equation 4a-16 gives very nearly the correct phase and
frequency up to T = .4 sec; this corresponds to t* = 7 in Figure 10.
We describe the small amplitudes of the switching on process
by saying that A(T) rises very slowly from its zero value at T = 0,
This is expected, for if A were given by the instantaneous value of

R, A~B4.
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TABLE I

TABLE OF EXPERIMENTAL RUNS

Initial or Final

Initial or Final

Fig. T

No. (sec) Current Field Strength |Switching

(amps) Bo (Webers/m?2)

4 0.047 430 .4800 Off

5 0.047 600 6700 Off

6 0.047 760 8500 Off

7 O.11 422 4700 On

8 0.1l 630 .7000 On

9 0.1 840 .9400 On

C is non-dimensional surface shape at r=0.

The non-dimensional trace width is =0.04 .

Times are in seconds * 0.005.
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EXPERIMENTAL SURFACE DEFLECTIONS
FIG. 4a
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EXPERIMENTAL SURFACE DEFLECTIONS
FIG.6a
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