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ABSTRACT 

The de novo synthesis of bioactive natural products provides an opportunity to learn 

more about the mechanism of bioactivity and to develop novel chemistry that is of interest 

to the synthetic community. Herein, we describe our strategy for the total synthesis of the 

trans-fused cyclobutane containing meroterpenoid (+)-psiguadial B. Key to this strategy 

was the development of a photochemical Wolff Rearrangement with asymmetric ketene 

aminolysis. A palladium-catalyzed C–H alkenylation is used to build structural complexity, 

and we use two different epimerization strategies to perform an enantiodivergent synthesis 

of (+)-psiguadial B.  

This strategy was explored further and applied to the synthesis of chiral 

cyclobutanes through a 1,2-difunctionalization strategy, wherein a C–H arylation forges 

one carbon-carbon bond and a subsequent decarboxylative cross-coupling enables 

functionalization at the adjacent carbon. This strategy enabled the asymmetric total 

synthesis of (+)-rumphellaone A in 9 steps.  

This report also highlights the work we have conducted in the development of a 

unified strategy for the enmein-type ent-kauranoid natural product, (–)-isodocarpin. We 

detail our investigation of a convergent cross-electrophile coupling as a means to build the 

core of (–)-isodocarpin. We also discuss our development of a 1,2-addition/semi-Pinacol 

rearrangement strategy for the preparation of all-carbon quaternary centers, which can be 

elaborated to enmein-type ent-kauranoid natural product scaffolds.  

 

 

 



 xiii 

PUBLISHED CONTENT AND CONTRIBUTIONS 

1. Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E. “Enantioselective Total 
Synthesis of (+)-Psiguadial B”. J. Am. Chem. Soc. 2016, 138, 9803. DOI: 
10.1021/jacs.6b07229. This article is available online at: 
http://pubs.acs.org/doi/abs/10.1021/jacs.6b07229. Copyright © 2016 American 
Chemical Society. 

 
J.C.B. contributed to conception of the synthetic strategy, conducted the 

experiments described herein, prepared the supporting data, and participated in 

writing the manuscript. 

  

2. Chapman, L. M.; Beck, J. C.; Lacker, C. L.; Wu, L.; Reisman, S. E. “Evolution of a 
Strategy for the Enantioselective Total Synthesis of (+)-Psiguadial B”. J. Org. Chem., 
2018, 83, (11) 6066. DOI: 10.1021/acs.joc.8b00728. This article is available online 
at: http://pubs.acs.org/doi/abs/10.1021/acs.joc.8b00728. Copyright © 2018 American 
Chemical Society. 
 

J.C.B. contributed to conception of the synthetic strategy, conducted the 

experiments described herein, prepared the supporting data, and participated in 

writing the manuscript. 

 

3. Beck, J. C.; Lacker, C. L.; Chapman, L. M.; Reisman, S. E. “A Modular Approach to 
Prepare Enantioenriched Cyclobutanes: Synthesis of (+)-Rumphellaone A”. Chem. 
Sci., 2019, 10, 2315. DOI: 10.1039/C8SC05444D. This article is available online at: 
https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05444d. Copyright © 2019 The 
Royal Society of Chemistry. 
 

J.C.B. contributed to conception of the synthetic strategy, conducted the 

experiments described herein, prepared the supporting data, and participated in 

writing the manuscript. 

 

 



 xiv 

TABLE OF CONTENTS 
 
 

 

CHAPTER 1  1 

The Total Synthesis of (+)-Psiguadial B  

 

1.1 INTRODUCTION ............................................................................................ 1 

1.2 PROPOSED BIOSYNTHESIS OF THE PSIGUADIAL FAMILY ........................... 3 

1.3 SYNTHESIS OF RELATED NATURAL PRODUCTS ........................................... 5 

1.3.1 Biomimetic Strategies for Semi-Synthesis ............................................ 5 

1.3.2 Total Synthesis Efforts Toward Psiguadial B ......................................... 8 

1.4  A DE NOVO SYNTHETIC STRATEGY FOR THE TOTAL SYNTHESIS OF (+)-

PSIGUADIAL B  .............................................................................................. 9 

1.4.1 A [4+2] Cycloaddition Strategy ........................................................... 9 

1.4.2 Development of an Asymmetric Wolff Rearrangement ...................... 11 

1.4.3 A Convergent Catalytic Alkenylation ................................................ 14 

1.4.4 Investigation of the Key [4+2]  .......................................................... 17 

1.4.5 Exploring a Model Prins Cyclization [4+2]  ....................................... 19 

1.4.6 Second Generation Norrish-Yang Cyclization Strategy  ..................... 20 

1.4.7 Development of a Catalytic Conjugate Addition  .............................. 24 

1.4.8 Elaboration to a Norrish-Yang Substrate  ........................................... 26 

1.4.9 A Third Generation Strategy  ............................................................ 28 

1.4.8 Elaboration to a Norrish-Yang Substrate  ........................................... 26 

1.5  CONCLUDING REMARKS  ........................................................................... 34 

1.6 EXPERIMENTAL SECTION ............................................................................. 35 

1.6.1 Materials and Methods ..................................................................... 35 

1.6.2 Preparative Procedures and Spectroscopic Data ............................... 36 



 xv 

 1.6.2.1 Preparation of Diazoketone Substrates ................................ 36 

1.6.2.2 Small-Scale Screening Protocol ........................................... 39 

1.6.2.3 Large-scale Preparation of Enantioenriched Amides ............ 40 

1.6.2.4 Synthetic Procedures Toward (+)-Psiguadial B ..................... 54 

1.7 NOTES AND REFERENCES........................................................................... 114 

 
CHAPTER 2  118 

A Modular Approach to Synthesize Enantioenriched Cyclobutane Products 

 

2.1 INTRODUCTION ........................................................................................ 118 

2.2 REVIEW OF AMIDE DIRECTED C(SP3)–H ACTIVATION TO FORM C–C 

BONDS ....................................................................................................... 120 

2.3 THE DEVELOPMENT OF A NOVEL C(SP3)–H HETEROARYLATION 

REACTION .................................................................................................. 125 

2.4 DECARBOXYLATIVE CROSS-COUPLINGS FOR CYCLOBUTANE 

DIVERSIFICATION  .................................................................................... 135 

2.5 APPLICATIONS OF CYCLOBUTANE VICINAL DIFUNCTIONALIZATION: 

TOTAL SYNTHESIS OF (+)-RUMPEHALLONE A ......................................... 141 

2.6 CONCLUDING REMARKS ........................................................................... 146 

2.7 EXPERIMENTAL SECTION 

2.7.1 Materials and Methods ................................................................... 147 

2.7.2 Preparative Procedures and Spectroscopic Data ............................ 149 

2.7.2.1 Csp
3–H Arylation ............................................................... 149 

 2.7.2.2 Cyclobutane Derivatization .............................................. 165 

 2.7.2.3 Proof of Enantiopurity ....................................................... 178  

 2.7.2.4 Total Synthesis of (+)-rumphellaone A ............................... 179 

2.8 NOTES AND REFERENCES........................................................................... 192	



 xvi 

APPENDIX 1  195 

Spectra Relevant to Chapter 2 

 

CHAPTER 3  273 

An Introduction to the Enmein-type Ent-Kauranoids 

 

3.1 INTRODUCTION ........................................................................................ 273 

3.2 PREVIOUS SYNTHESES OF RELATED NATURAL PRODUCTS ..................... 274 

3.3 THE REISMAN LAB’S APPROACH TO THE ENT-KAURANOIDS ................. 283 

3.4 CONCLUDING REMARKS ........................................................................... 285 

3.5 NOTES AND REFERENCES........................................................................... 286	

 

CHAPTER 4  287 

A Cross-Coupling Approach for the Synthesis of the  

Enmein-Type Ent-Kauranoids 

 

4.1 INTRODUCTION ........................................................................................ 287 

4.2 SYNTHETIC STRATEGY ............................................................................... 288 

4.2.1 Retrosynthetic Analysis ................................................................... 288 

4.2.2 Reductive Cross-Coupling of Epoxides ............................................ 290 

4.2.3 Investigation of an Intramolecular Cross-Coupling .......................... 293 

4.2.3.1 Epoxy Alcohol Synthesis ................................................... 293 

4.2.3.2 [3.2.1]-Bicyclooctanoic Acid Synthesis ............................. 293 

4.2.3.3 Convergent Esterification .................................................. 294 

4.2.4 Investigation of an Intermolecular Cross-Coupling .......................... 298 

4.2.4.1 A Second Generation Retrosynthetic Analysis ................... 298 

4.2.4.2 Screening an Intermolecular Cross-Coupling ..................... 300 



 xvii 

4.3 CONCLUDING REMARKS ........................................................................... 310 

4.4 EXPERIMENTAL SECTION ........................................................................... 310 

4.4.1 Materials and Methods ................................................................... 310 

4.4.2 Preparative Procedures and Spectroscopic Data ............................. 312 

4.4.2.1 Substrate Synthesis ............................................................ 312 

4.2.2.2 Cross-Coupling Procedure ................................................ 320 

4.5 NOTES AND REFERENCES........................................................................... 321	

 

APPENDIX 2  322 

Spectra Relevant to Chapter 4 

 

CHAPTER 5  334 

A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids 

 

5.1 INTRODUCTION ........................................................................................ 334 

5.2 FIRST GENERATION SEMI-PINACOL STRATEGY ........................................ 339 

5.2.1 Retrosynthetic Analysis ................................................................... 339 

 5.2.2 Epoxy alcohol synthesis .................................................................. 341 

5.2.3 Model Semi-Pinacol Exploration ..................................................... 342 

5.2.4 Semi-Pinacol Rearrangement of a [3.2.1]-bicycle ........................... 344 

5.2.5 A Second Generation Epoxy Aldehyde ........................................... 347 

5.3 SECOND GENERATION SEMI-PINACOL STRATEGY .................................. 350 

5.3.1 Retrosynthetic Analysis ................................................................... 350 

5.3.2 Fragment Synthesis ......................................................................... 351 

5.3.3 Convergent Union of a Vinyl Iodide and Bicyclic Aldehyde ............ 353 

5.3.4 Synthesis of a Less Lewis Basic Substrate ........................................ 355 

5.4 CONCLUDING REMARKS ........................................................................... 357 



 xviii 

5.5 EXPERIMENTAL DATA ................................................................................ 358 

5.5.1 Materials and Methods ................................................................... 358 

5.5.2 General Procedures ........................................................................ 359 

5.5.3 Preparative Procedures and Spectroscopic Data  ............................ 361 

5.6 NOTES AND REFERENCES........................................................................... 405 

 

APPENDIX 3  407 

Spectra Relevant to Chapter 5 

 

ABOUT THE AUTHOR ...................................................................................... 477	

 
  



 xix 

LIST OF ABBREVIATIONS 
 

[a]D  angle of optical rotation of plane-polarized light 

Å   angstrom(s) 

p-ABSA  para-acetamidobenzenesulfonyl azide 

Ac   acetyl 

acac  acetylacetonate 

AIBN  azobisisobutyronitrile 

alk   alkyl 

aq   aqueous 

AQN  anthraquinone-1,4-diyl diether 

Ar   aryl group 

atm  atmosphere(s) 

BiOX  bi(oxazoline) 

BINAP  2,2'-bis(diphenylphosphino)-1,1'-binaphthyl 

BINOL  1,1'-bi-2,2'-naphthol 

bipy  2,2'-bipyridine 

Bn   benzyl 

Boc  tert-butoxycarbonyl 

bp   boiling point 

br   broad 

Bu   butyl 

i-Bu  iso-butyl 

n-Bu  butyl or norm-butyl 



 xx 

t-Bu  tert-butyl 

BQ   1,4-benzoquinone 

Bz   benzoyl 

c   concentration of sample for measurement of optical rotation 

13C   carbon-13 isotope 

/C   supported on activated carbon charcoal 

°C   degrees Celcius 

calc’d  calculated 

CAM  cerium ammonium molybdate 

CAN  ceric ammonium nitrate 

cat.   catalyst 

Cbz  benzyloxycarbonyl 

CD   Cinchonidine 

cf.   consult or compare to (Latin: confer) 

cis   on the same side  

cm–1  wavenumber(s) 

cod   1,5-cyclooctadiene 

CN   Cinchonine 

CoA  Coenzyme A 

conc.  concentrated 

conv.  conversion 

Cp   cyclopentadienyl 

CSA  camphor sulfonic acid 



 xxi 

Cy   cyclohexyl 

D   heat or difference 

d   chemical shift in ppm 

d   doublet 

d   deutero or dextrorotatory 

D   deuterium 

dba   dibenzylideneacetone 

DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 

DCE  1,2-dichloroethane 

DDQ  2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

de novo  starting from the beginning; anew 

DIPEA   N,N-diisopropylethylamine 

DHQ  dihydroquinine 

DHQD  dihydroquinidine 

DIBAL  diisobutylaluminum hydride 

DMAP  4-(dimethylamino)pyridine 

DME  1,2-dimethoxyethane 

DMEDA  N,N'-dimethylethylenediamine 

DMF  N,N-dimethylformamide 

DMPU  1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 

DMSO  dimethylsulfoxide 

dppe  1,2-bis(diphenylphosphino)ethane 

dppf  1,1'-bis(diphenylphosphino)ferrocene 



 xxii 

dr   diastereomeric ratio 

dtbpy  4,4'-di-tert-butyl-2,2'-bipyridine 

ee   enantiomeric excess 

E   methyl carboxylate (CO2CH3) 

E+   electrophile 

E   trans (entgegen) olefin geometry 

EDCI  N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride 

e.g.   for example (Latin: exempli gratia) 

EI   electron impact 

ent   enantiomer of 

epi   epimeric 

equiv  equivalent(s) 

ESI  electrospray ionization 

Et   ethyl 

et al.  and others (Latin: et alii) 

FAB  fast atom bombardment 

FTIR  fourier transform infrared spectroscopy 

g   gram(s) 

Grubbs-II  Grubbs’ catalyst™ 2nd generation 

h   hour(s) 

1H   proton 

[H]   reduction 

HDA  hetero-Diels–Alder 



 xxiii 

HFIP  hexafluoroisopropanol 

HG-II  Hoveyda–Grubbs’ catalyst™ 2nd generation 

HIV  human immunodeficiency virus 

HMBC  heteronuclear multiple-bond correlation spectroscopy 

HMDS  hexamethyldisilazide 

HMPA  hexamethylphosphoramide 

hv   irradiation with light 

HPLC  high performance liquid chromatography 

HRMS  high resolution mass spectrometry 

Hz   hertz 

IC50  half maximal inhibitory concentration (50%) 

i.e.   that is (Latin: id est) 

iso   isomeric 

in situ  in the reaction mixture 

J   coupling constant in Hz 

k   rate constant 

kcal  kilocalorie(s) 

kg   kilogram(s) 

L   liter or neutral ligand 

l   levorotatory 

LA   Lewis acid 

LC/MS  liquid chromatography–mass spectrometry 

LDA  lithium diisopropylamide 



 xxiv 

LED  light-emitting diode 

m   multiplet or meter(s) 

M   molar or molecular ion 

m   meta 

µ   micro 

m-CPBA  meta-chloroperbenzoic acid 

Me   methyl 

mg   milligram(s) 

MHz  megahertz 

MIC  minimum inhibitory concentration 

min  minute(s) 

mL   milliliter(s) 

MM  mixed method 

mol  mole(s) 

MOM  methoxymethyl 

Ms   methanesulfonyl (mesyl) 

MS   molecular sieves 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

m/z   mass-to-charge ratio 

NBS  N-bromosuccinimide 

ND   not determined 

NHC  N-heterocyclic carbene 

nm   nanometer(s) 



 xxv 

nM   nanomolar 

NMO  N-methylmorpholine N-oxide 

NMP  N-methyl-2-pyrrolidone 

NMR  nuclear magnetic resonance 

NOE  nuclear Overhauser effect 

NOESY  nuclear Overhauser enhancement spectroscopy 

NPh  naphthyl 

Nu—  nucleophile 

o   ortho 

o-QM  ortho-quinone methide 

[O]   oxidation 

P   peak 

p   para 

PCC  pyridinium chlorochromate 

PDC  pyridinium dichromate 

Ph   phenyl 

PhMe  toluene 

pH   hydrogen ion concentration in aqueous solution 

PHAL  1,4-phthalazinediyl diether 

PIFA  [bis(trifluoroacetoxy)iodo]benzene 

PHOX  phosphinooxazoline 

Pin   pinacol 

Piv   pivaloyl 



 xxvi 

pKa  acid dissociation constant 

pm   picometer(s) 

PMB  para-methoxybenzyl 

ppm  parts per million 

PPTS  pyridinium para-toluenesulfonate 

Pr   propyl 

i-Pr  isopropyl 

n-Pr  propyl or norm-propyl 

psi   pounds per square inch 

py   pyridine 

PyBOX  pyridine-bis(oxazoline) 

PyOx  pyridine-oxazoline 

PYR  2,5-diphenyl-4,6-pyrimidinediyl diether 

q   quartet 

QD   Quinidine 

QN   Quinine 

QuinOx  quinoline-oxazoline 

quant.  quantitative 

R   generic (alkyl) group 

RL   large group 

R   rectus 

RCM  ring-closing metathesis 

recry.  recrystallization 



 xxvii 

ref   reference 

Rf   retention factor 

rgt.   reagent 

rt   room temperature 

s   singlet or seconds 

S   sinister 

sat.   saturated 

SET  single-electron transfer 

SFC  supercritical fluid chromatography 

t   triplet 

TBAF  tetra-n-butylammonium fluoride 

TBAI  tetra-n-butylammonium iodide 

TBME  tert-butyl methyl ether 

TBS  tert-butyldimethylsilyl 

TC   thiophene-2-carboxylate 

temp  temperature 

terpy  2,2′:6′,2′′-terpyridine 

Tf   trifluoromethanesulfonyl 

TFA  trifluoroacetic acid 

THF  tetrahydrofuran 

TIPS  triisopropylsilyl 

TLC  thin layer chromatography 

TMEDA  N,N,N’,N’-tetramethylethylenediamine 



 xxviii 

TMS  trimethylsilyl 

TOF  time-of-flight 

tol   tolyl 

TPAP  tetrapropylammonium perruthenate 

trans  on the opposite side 

Ts   para-toluenesulfonyl (tosyl) 

UV   ultraviolet 

vide infra  see below 

w/v  weight per volume 

X   anionic ligand or halide 

xs   excess 

Z   cis (zusammen) olefin geometry 

 



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

1 

 

 

 

 

 

 

Chapter 1 

The Total Synthesis of (+)-Psiguadial B†  

 

1.1 INTRODUCTION 

The leaves and fruit from the flowering plant Psidium guajava have long been used 

in traditional Chinese medicine to treat a variety of ailments and maladies.1–5 Intrigued by 

this plant’s medicinal properties, isolation chemists have studied the bioactive constituents, 

and as a result have isolated a number of bioactive natural products from this shrub.1–3 

Many of these natural products are diformyl phloroglucinol containing natural products, 

bearing a highly oxygenated aryl ring attached to a terpene fragment.6–9  

Diformyl phloroglucinol meroterpenoids are a subset of this family which possess 

excellent medicinal properties.3–10 These diformyl phloroglucinol containing natural 

                                                
† Portions of this chapter were adapted from the following communication: Chapman, L. 
M.; Beck, J. C.; Lacker, C. R.; Wu, L.; Reisman, S. E. The Journal of Organic Chemistry 
2018, 83, 6066, DOI: 10.1021/acs.joc.8b00728, copyright 2018 American Chemical 
Society. The research discussed in this chapter was completed in collaboration with Dr. 
Lauren M. Chapman, a former graduate student in the Reisman Lab and Caitlin R. 
Lacker, a graduate student in the Reisman Lab. 
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products are of particular interest to biologists and chemists alike. Biologically, these 

molecules are known to possess potent anti-cancer, anti-viral, and anti-microbial activities 

(1-4, Figure 1.1).6–11 More broadly, the phloroglucinol-containing natural products are a 

large class of bioactive molecules, comprising over 700 known compounds to date.6–9 The 

compounds euglobal-In-3 (1),8 robustadial A (2)12 sideroxylonal B (3),13 and macrocarpal 

C (4, Figure 1.1),14 are just a handful of natural products from this family that possess 

intriguing bioactivity against a variety of pathogens.  

Figure 1.1. Bioactive diformyl phloroglucinol terpenes 

 

More recently, four new diformyl phloroglucinol meroterpenoids, psiguadials A–

D, were isolated from the leaves of the evergreen shrub, psidium guajava (7–10, Figure 

1.2).15,16 The psiguadials are structurally unified in that they all contain a diformyl 

phloroglucinol subunit attached to a peripheral terpene fragment, joined through an 

oxygenated heterocycle and a diaryl methane moiety. The terpene fragment of each 

molecule contains a small, strained ring with geminal-dimethyl substitution. While each of 

these molecules possesses potent antiproliferative activity, we were particularly drawn to 

psiguadial B (8), as it exhibits the most potent anti-proliferative activity of the group (IC50 

hep2G = 46 nM), and is the only member of the family containing a trans-fused 

cyclobutane ring.15 This feature contributes to a synthetically challenging, highly strained 
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4,7,6 fused framework with six stereogenic centers, including one all-carbon quaternary 

center.    

Figure 1.2. Diformyl phloroglucinol natural products with remarkable biological 

activity. 

 

1.2 PROPOSED BIOSYNTHESIS OF THE PSIGUADIAL FAMILY 
  
In their isolation report of psiguadials C and D (9–10), Shao et al. provided a 

detailed hypothesis for the biosynthesis of the psiguadial natural products.16 They propose 
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with the pendant phenol. Finally, 9 may be produced by oxidation of the trisubstituted 

olefin in 10.  

Scheme 1.1. Proposed biosynthesis of psiguadials A, C, and D (7, 9, 10) 
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trihydroxybenzophenone.19–21 The resulting compound 23 can directly cyclize to generate 

5 and 24, or can undergo a trans-annular Prins-type cyclization to forge the central bridging 

ring structure. Bridgehead cation 26 is then poised to undergo cyclization to deliver 8. 

Cramer20,21 and Lee22 have validated this biosynthetic hypothesis by semi-syntheses of 5, 

8, and 24 from β-caryophyllene (21). 

Scheme 1.2. Proposed biosynthesis of (+)-psiguadial B (8). 
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presumably through the intermediacy of 22. Stepwise Michael addition followed by 

cationic rearrangement and nucleophilic capture produced 7 and 10. Psiguadial D (10) 

could be oxidized to deliver psiguadial C (9).  

Scheme 1.3. Cramer’s biomimetic synthesis of psiguadials A, C, and D 
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Scheme 1.4. Cramer’s biomimetic semi-synthesis of psiguadial B 
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addition is exergonic and likely occurs over previously proposed Alder-ene or [4+2] 

reaction mechanisms. They experimentally observe that 5, 24, 33, and 8 do not 

interconvert under the reaction conditions and that bridgehead olefin 34 does not produce 

8, solely delivering diastereomeric 35 and 36. Any attempts to convert 35 and 36 to 

psiguadial B (8) under acid or base promoted cycloreversion were unsuccessful.   

1.3.2 Total Synthesis Efforts Toward Psiguadial B 

In February of 2017, Tanino and coworkers disclosed their progress toward a total 

synthesis of (±)-8 (Scheme 1.5).23 Their synthesis commenced with commercially available 

lactone 37. They were able to elaborate 37 to Weinreb amide 38 in 4 steps, which was then 

subjected to an alkylation protocol in which two 1,2-additions were performed to access 

TMS ether 40. Generation of the corresponding enol triflate and subsequent Kumada 

coupling and acylation delivered 41, their substrate for a key cyclization reaction. 

Treatment with Co2(CO)8 generates cation 42, which can be intercepted by the pendant 

allyl silane. A subsequent ionization initiated by loss of methanol enables an isomerization 

and trapping with chloride to deliver 45.  

With 45 in hand, SN1 substitution with 47 as the nucleophile followed by oxidative 

decomplexation of the dicobalt complex provides maleic anhydride 46 with the pendant 

aryl ether. At this point, benzylic functionalization mediated by NBS and AIBN followed 

by treatment with silica gel forges the requisite benzylic-aryl bond in 48. While this step 

completes the synthesis of the core of 8, the authors conclude their report stating that efforts 

to convert 48 to 8 are under way. It is important to note that the installation of the key trans-

fused cyclobutane remains a challenge for the Tanino group in their current strategy. To 
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the best of our knowledge, the work reviewed herein constitutes the only synthetic studies 

toward psiguadial B (8).  

Scheme 1.5. Tanino’s progress toward a total synthesis of (±)-psiguadial B 
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carbon-carbon bond would greatly simplify the synthesis of 8. In the forward sense, we 

envisioned forming the key 7-membered ring through an intramolecular Prins cyclization 

between a methyl ketal and a vinyl sulfide (49). Although the ring closure to form this 

strained system was expected to be challenging, the Prins reaction has been previously used 

for the preparation of bridging polycycles.24–26 

Scheme 1.6. First generation retrosynthesis of (+)-psiguadial B 
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proposed strategy necessitates use of a functionalized cyclic enol ether, ideally as the 

limiting reagent. At the outset of these studies, we were unaware of any reported examples 

in which cyclohexanone-derived enol ethers were employed as dienophiles in o-QMHDA 

cycloadditions; thus, the proposed studies could potentially contribute a new substrate class 

for o-QMHDA reactions. Based on stereochemical analysis of reported o-QMHDA 

cycloadditions, we anticipated that the reaction would favor the desired anti-relationship 

between C1' and C9; however, whether the stereochemistry of 50 would impart the desired 

facial selectivity in the approach of the heterodiene was less clear.28,29,32–34  

We envisioned preparing 50 through enolization of the corresponding ketone 52, 

which we planned to access through a selective C(sp3)–H alkenylation reaction between 53 

and 54. While 54 was known,35 we imagined preparing 53 through a novel Wolff 

rearrangement with asymmetric trapping of the resulting ketene in order to set the first 

stereocenter present in 8.  

1.4.2 Development of an Asymmetric Wolff Rearrangement 
 
A key question presented by the proposed retrosynthesis was how best to synthesize 

cyclobutane 53 in enantioenriched form. Elegant studies by Fu and coworkers had 

demonstrated that N-acylpyrroles can be prepared with excellent enantioselectivity from 

the reaction between aryl ketenes (e.g. 56) and 2-cyanopyrrole (57) using chiral DMAP 

catalyst 63 (Scheme 1.7a).36,37 We hypothesized that a similar transformation could be used 

to prepare 53 directly from 55 by using 8-aminoquinoline (62) as a nucleophile in the 

presence of an appropriate catalyst. While there were no examples from Fu’s work in which 

the ketene was generated in situ photochemically, a single example from Lectka showed 
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that a ketene could be generated in situ by a Wolff rearrangement, and engage in an 

enantioselective reaction (Scheme 1.7b).38  

Following a survey of chiral nucleophilic catalysts known to engage with 

ketenes,39–41 it was discovered that irradiation of a mixture of 55 and 3 equivalents of 62 in 

the presence of 50 mol % (+)-cinchonine (73) produced 53 in 61% yield, and 79% ee (Table 

1.1, entry 1). Investigation of various solvents revealed that THF provided the 

Scheme 1.7. Enantioselective reactions with ketenes and proposed transformation 
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79% ee (see Scheme 1.8). Moreover, enantiomerically pure 53 was obtained after a single 

recrystallization by layer diffusion. 

Table 1.1. Optimization and exploration of substrate scope for tandem Wolff 

rearrangement/ketene addition 

 

Although our total synthesis efforts focused on the preparation of 53, we wondered 
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enantioinduction (9–64% ee) were observed using 73 as a catalyst with these substrates 

(Table 1.1, entries 9, 17, 25, and 33). Evaluation of alternative cinchona derivatives 74–80 

revealed that synthetically useful levels of enantioselectivity could be achieved for each 

substrate, depending on the catalyst. For instance, while 74–80 produced 53 with lower 

enantioinduction (16–64% ee, entries 2–8), catalysts 77 and 76 proved optimal for the 6- 

and 7-membered analogs of 55, providing amides 69 and 70 in 71% ee (entries 13 and 20). 

When these reactions were conducted on preparative scale, the catalyst loading could be 

dropped to 20 mol %, providing cyclopentyl amide 69 (n = 2) in 81% yield and 68% ee 

and cyclohexyl amide 70 (n = 3) in 67% yield and 65% ee. On the other hand, benzo-fused 

diazoketones, 67 and 68, performed best in the presence of dimeric cinchona catalysts 80 

and 79 (entries 32 and 39). At present, a general catalyst for the tandem Wolff 

rearrangement/enantioselective addition of 8-aminoquinoline has not been identified, 

though further mechanistic investigations may inform future efforts to improve the 

generality of this reaction. 

1.4.3 A Convergent Catalytic Alkenylation  
 
Having identified conditions to prepare multigram quantities of 53 in enantiopure 

form, we were pleased to find that treatment of 53 with Pd(OAc)2 (15 mol %), Ag2CO3, 

and 3 equivalents of 54 in TBME at 90 °C smoothly effected the C(sp3)–H alkenylation 

reaction to give 81 in 75% yield on gram scale (Scheme 1.8). Exposure of 81 to DBU 

furnished the requisite trans-cyclobutane (82) via selective epimerization at C2, as 

determined by deuterium-labeling studies. It was at this stage that single crystals of trans-

cyclobutane 82 suitable for X-ray diffraction were obtained. Unfortunately, 82 was found 

to be in the incorrect enantiomeric series for elaboration to natural 8. To our dismay, this 



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

15 

problem could not be circumvented by simply employing (−)-cinchonidine (75) in the 

tandem Wolff rearrangement/asymmetric ketene addition, as this pseudoenantiomeric 

catalyst afforded (+)-53 in only 57% ee (Table 1, entry 3). Nevertheless, we elected to 

advance  (–)-53 in the interest of validating the key reactions in our retrosynthetic analysis 

as soon as possible. 

Scheme 1.8. C(sp3)–H alkenylation and quaternary center formation via conjugate 

addition 

 
To this end, attention turned to formation of the C1 quaternary center (Scheme 1.8). 
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treatment of trans-cyclobutane 82 with excess Gilman’s reagent smoothly furnished 83 and 

84 in near quantitative yield as a 2.5:1 mixture of diastereomers, respectively. Separation 

of the diastereomers by HPLC allowed single crystals of 84 to be obtained, and X-ray 

analysis unambiguously confirmed that the minor diastereomer (84) possessed the 

undesired (S) configuration of the methyl group at the C1 quaternary center, and by 

analogy, the major diastereomer (83) possessed the correct (R) configuration at C1.  

In an effort to improve the diastereoselectivity of this transformation, we turned to 

asymmetric catalysis. Fortunately, application of the conditions developed by Alexakis and 

coworkers for copper-catalyzed conjugate addition42,43 provided 83 in 62% yield and 30:1 

dr, albeit using 50 mol % [Cu(OTf)2]•PhMe and a stoichiometric equivalent of 

phosphoramidite ligand 85. Presumably, the high catalyst loading is required due to the 

presence of the highly-coordinating 8-aminoquinolinamide, which can deactivate the 

catalyst or inhibit turnover. 

Scheme 1.9. Synthesis of o-QMHDA cycloaddition reactants 
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1.4.4 Investigation of the Key [4+2] 
 
With the quaternary center secured, ketone 83 was converted to the corresponding 

dimethyl ketal 86 (Scheme 1.9), a precursor to the dienophile for the o-QMHDA reaction 

(vide infra). While phenolic aldol conditions failed to produce 51, this acid-labile o-QM 

precursor was prepared from phloroglucinol 8844,45 via the morpholine adduct (89, Scheme 

1.9b). A control experiment determined that heating of 86 to 170 °C in toluene results in 

thermal extrusion of methanol to afford a 1:1 mixture of enol ethers 90 (Scheme 1.10). 

When a mixture of 86 and 51 was heated to 170 °C for 21 h, the cycloadduct was obtained 

in 68% yield, albeit as a complex mixture of diastereomers. 

Scheme 1.10. Evaluation of the thermal o-QMHDA cycloaddition 
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Analytically pure samples of the four highest abundance diastereomers (92–95) 

were obtained by HPLC purification. Spectroscopic analysis by 2D NMR led to the 

assignment of 92 and 93 as the two major diastereomers, which bear the expected relative 

anti relationship between C9 and C1'. The formation of these products in a ~1:1 ratio 

indicates that 90 does not exert significant facial selectivity in the o-QMHDA reaction. The 

trans-fused isomer, 95, presumably results from thermal equilibration of the ketal under 

the reaction conditions.  

Scheme 1.11. Attempted auxiliary-directed cycloaddition 
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chemistry, which proceeds via bidentate coordination of heterodienes such as 96 to a chiral 

Cu(II)-BOX Lewis acid catalyst (Scheme 1.11a).46 We envisioned that chelation of the 

aminoquinoline in 90 to a Cu complex could engage 91 as depicted in Scheme 1.11b, 

thereby directing the o-QM to the top face of enol ether 90 (Scheme 1.11b). Formation of 

91 could be induced by the equivalent of triflic acid generated via complexation of 

Cu(OTf)2 with aminoquinoline.47,48  

To test this hypothesis, enol ether 90 was prepared by heating in PhMe, and after 

exchanging the solvent for CH2Cl2, Cu(OTf)2 and 51 were added. Analysis of the crude 

reaction mixture by 1H NMR revealed that although the ratio of 92:93 had improved 

relative to the thermal reaction, significant quantities of the undesired isomers, 94 and 95, 

were still formed. Moreover, this reaction suffered from lower overall yields due to rapid 

hydrolysis of 90 and reversion of 51 to phloroglucinol 88. At this stage, it was clear that 

implementation of this strategy would require a significant investment in reaction 

optimization, and we felt that such an effort would only be warranted if the proposed late-

stage Prins reaction were proved feasible. Thus, attention turned to assessing this key 

reaction in a model system. 

1.4.5 Exploring a Model Prins Cyclization 
 
To this end, the aminoquinoline auxiliary in 86 was reductively cleaved by 

treatment with Schwartz’s reagent to furnish aldehyde 101, which was homologated to 

alkyne 103 using the Ohira–Bestmann reagent (102) (Scheme 1.12). Nickel-catalyzed 

hydrothiolation49 proceeded with good regioselectivity to give vinyl sulfide 105 in low 

yield, mainly due to the facile conversion of this intermediate to a mixture of enol ethers 

104 under the reaction conditions.  
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Unfortunately, exposure of ketal 105 to a variety of Lewis acids led to hydrolysis, 

yielding ketone 107 in nearly all cases. The use of InCl3,50 however, delivered the desired 

Prins product 106 in 11% yield. Formation of the 7-membered ring was confirmed by a 

key HMBC correlation between the C12 axial proton and the distinct sp2 C7 signal at δ 140 

ppm. Although the formation of the seven-membered ring through a Prins cyclization was 

promising, our excitement was tempered by the fact that 106 was obtained in poor yield 

and challenges were encountered with reproducibility. Taken together with the significant 

diastereoselectivity issues plaguing the o-QMHDA reaction, we revised our retrosynthesis. 

Scheme 1.12. Model studies toward Prins cyclization 
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intermediate (Scheme 1.13). Benzophenones such as 108 are known to undergo 

photoexcitation upon irradiation with UV light to give triplet species (i.e. 108*) that can 

engage in Norrish type-II 1,5-hydrogen atom abstraction and subsequent radical 

recombination.54–56 In the absence of any available γ or δ-hydrogens, it was hypothesized 

that 108* could abstract a hydrogen atom from C9 to generate diradical 113.57–59 

Recombination of the carbon-centered radicals would furnish the core of 8.  

Scheme 1.13. Second generation retrosynthetic analysis 
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Moreover, this strategy was particularly appealing since it was expected that 108 

could be assembled in an expedient and convergent fashion. Benzophenone 108 was 

envisioned to be accessible from tertiary alcohol 110 via an intermolecular O-arylation 

reaction with aryl bromide 109.60–63 We reasoned that the strained 7-membered ring in 110 

could be formed by ring-closing metathesis, leading back to vinyl ketone 112, which could 

in turn be synthesized from known intermediates prepared during our studies of the C(sp3)–

H alkenylation/asymmetric Wolff rearrangement. 

With this revised retrosynthetic plan, we set out to prepare vinyl ketone 112, and to 

also address two key challenges identified in the first generation approach: 1) to lower the 

catalyst loading in the conjugate addition reaction used to set the C1 quaternary center, and 

2) to develop an epimerization sequence to prepare vinyl ketone 112 in the correct 

enantiomeric series from quinolinamide (–)-53. In terms of the latter challenge, we 

anticipated that the desired enantiomeric series could be accessed by epimerization of 

compounds derived from 53 (e.g. 81) at C5 instead of C2 (Scheme 1.14). A straightforward 

approach would involve disfavoring g-deprotonation at C2 by masking the ketone of 81 in 

order to advance to a C5 epimerization substrate. Unfortunately, these efforts proved 

unfruitful, as ketalization of 81 under a variety of conditions always resulted in rapid 

epimerization at C2 to furnish trans-cyclobutane 118 in low yields. 

Instead, it was recognized that 115 could be accessed directly by coupling 53 with 

vinyl iodide 114. To our delight, the Pd-catalyzed coupling with vinyl iodide 114 

performed even better than its enone counterpart (54), requiring only 2 equiv of 114 to 

furnish 115 in 72% yield on a gram scale. Exposure of 115 to Schwartz’s reagent effected 

reduction to the corresponding cis-aldehyde, which was epimerized at C5 by treatment with 
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KOH in methanol to give trans-aldehyde 116 in 70% yield over the two steps. Gratifyingly, 

Wittig methylenation and hydrolysis provided (+)-117, the required enantiomer for 

synthesis of natural psiguadial B (8). In addition, cross-coupling of 114 eliminated a linear 

protection step and substantially improved the material throughput. 

Scheme 1.14. Development of enantiodivergent cross-coupling strategies 
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corresponding aldehyde (ent-116), which was telescoped through a Wittig olefination and 

hydrolysis as before to afford vinyl enone (−)-117 in 58% yield over the two steps.  

1.4.7 Development of a Catalytic Conjugate Addition 
 
With the desired enantiomer of enone 117 in hand, attention turned to the 

installation of the C1 quaternary center using a catalytic asymmetric conjugate addition. 

While we were pleased we could observe high levels of the desired diastereomer using a 

chiral controller with substrate 82 (Scheme 1.8), we hypothesized that high catalyst 

loadings were necessary because the aminoquinoline was sequestering the copper and 

therefore precluding catalyst turnover. After determining that we were no longer going to 

rely on using this moiety to direct the [4+2] reaction, we reasoned that installation of the 

quaternary methyl group after cleavage of the directing group could enable the 

development of a much more efficient conjugate addition, this time on a substrate lacking 

the strongly coordinating aminoquinoline. 

Scheme 1.15. Assessing substrate-controlled diastereoselectivity 
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Initial experiments performed to investigate our ability to enhance the intrinsic 

diastereoselectivity for the conjugate addition indicated improved diastereoselectivity, 

with significantly enhanced dr with the enantiomeric ligand (ent-85) we had previously 

employed on the quinolinamidyl enone 82 (Table 1.2, entries 1–5). We hoped that 

lowering the reaction temperature would restrict the conformational freedom of the sigma 

bond linking the cyclobutane and the cyclohexene rings and improve the dr; however, we 

found that the best balance of yield and diastereoselectivity was achieved at –30 ºC 

(Table 1.2, entry 3). We hypothesize that the poorer reactivity observed at lower 

temperatures was due to decreased catalyst solubility.  

Table 1.2. Optimization and exploration a copper-catalyzed conjugate addition 
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failed to enhance the diastereoselectivity of the catalytic conjugate addition. We were 

unable to identify any conditions superior to the combination of CuTc and ent-85 at –30 

ºC, and we ultimately used these conditions to set the all carbon quaternary center for 

elaboration to psiguadial B (8). 

1.4.8 Elaboration to a Norrish-Yang Substrate 
 

Scheme 1.16. Elaboration to Norrish-Yang benzophenone 
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with ligand ent-85 (30 mol %) provided 112 in 94% yield and 19:1 dr (Scheme 1.16), 
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in a flask rather than in a vial. Addition of vinyl Grignard to ketone 112 proceeded 

uneventfully, providing alcohol 111 in excellent yield and diastereoselectivity. 
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standard conditions led to tertiary alcohol 121. After some experimentation, we found that 

the combination of Pd(OAc)2 and dppf catalyzed the intermolecular O-arylation between 

121 and aryl bromide 109, affording aryl ether 108 in 45% yield. Unfortunately, this 

transformation proved capricious, and attempts to improve the yield through further 

optimization were unsuccessful. Nevertheless, a sufficient amount of 108 was obtained to 

evaluate the key Norrish–Yang cyclization. 

Scheme 1.17. Evaluation of the Norrish-Yang cyclization 

 

With 108 in hand, we were poised to investigate the key Norrish-Yang cyclization 

event. Irradiation of 108 with 254 nm light in deoxygenated dioxane led to complete 
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products. The formation of the undesired Norrish–Yang product 123 was confirmed by 2D 
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Me
O

H

H

Me
Me

PhO

OMe

OMe108

(6.5%, 7:1 dr)

Me

5

H

H

Me
Me

O OMe

OMe
H
Ph OH

key
HMBC

123

Me H Me

Me
OOH

Ph

MeO OMe

OOH

Ph

MeO OMe
125 (28%)

major product isolated
124

not observed
by 1H NMR

Me H Me

Me
H 34

Me

H

H

Me
Me

O OMe

OMeHO Ph
H

122 (not observed)

desired pathway

113

C–O bond
fragmentation

OHO

Ph

MeO OMe

hν 
(254 nm)
dioxane
rt, 1 h

minor 
product



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

28 

observed, 123 results from the wrong regioselectivity, and was isolated in 6.5% yield—a 

result that would likely be difficult to substantially improve through reaction optimization.  

Notably, the major compound isolated from this reaction is phenol 125, which was 

obtained in 28% yield. This side product presumably arises by fragmentation of diradical 

species 113 (or the diradical resulting from H-atom abstraction at C7), wherein C–O bond 

cleavage expels enol tautomer 124; the resulting terpene-based fragment likely undergoes 

further decomposition, as alkene 34 or related compounds were not isolated. In an effort to 

investigate whether this competing pathway could be suppressed, we examined a number 

of different solvents and irradiation wavelengths in a model system, but observed rapid 

formation of phenol 125 in all cases. Having determined that the late-stage Norrish–Yang 

cyclization was an untenable strategy to complete the chroman core of 8, an alternative 

synthetic route was devised.  

1.4.9 A Third Generation Strategy 
 

While our previous strategies were unsuccessful in delivering 8, we were pleased 

to see that we had established that we could form the challenging bicyclo[4.3.1]decane 

through a ring-closing metathesis reaction and that we could forge a difficult O-aryl bond 

under transition metal catalysis. With these key findings in mind, we sought to revise our 

synthetic plan (Scheme 1.18). We simplified 8 to 126 and elected to construct the C9–C1' 

bond at an earlier stage (Scheme 1.16). Invoking a similar disconnection through the C–O 

aryl bond as in our second-generation route, it was anticipated that an intramolecular ring 

closure would prove more reliable than the challenging intermolecular arylation employed 

previously (see Scheme 1.16). This bond scission revealed aryl bromide 127, which could 
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be accessed using the established ring-closing metathesis, while the arene functionality at 

C9 could be installed via aldol condensation with vinyl ketone 112 and a suitable aldehyde.  

Scheme 1.18. Our third generation retrosynthesis 

 

In the forward sense, a methanolic solution of vinyl ketone 112 and aldehyde 129 

were treated with potassium hydroxide at elevated temperature to afford exo-enone 130 in 

92% yield (Scheme 1.19). In contrast to the previous system lacking substitution at C9 (i.e. 
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proceeded with equal efficiency on this new substrate to furnish 127 in 93% yield.   

Scheme 1.19.  Synthesis of the core of (+)-psiguadial B 

 
With the strained sesquiterpene framework secured, both the di- and trisubstituted 

olefins in 127 were hydrogenated in the presence of Crabtree’s catalyst, which engaged in 

a hydroxyl-directed reduction65,66 to establish the C9 stereocenter with 16:1 dr, providing 

134 in excellent yield. The final ring of the psiguadial framework was formed by a Cu-

catalyzed intramolecular O-arylation reaction, furnishing pentacycle 135 in 75% yield.67 
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With the successful development of a scalable and high-yielding route to 135, the 

task of appending the C1' phenyl group was now at hand. Ideally, the electron rich arene in 

135 would be engaged directly in a benzylic arylation reaction; a possible mechanism 

would involve benzylic oxidation at C1' followed by trapping with a phenyl nucleophile. 

Whereas a number of laboratories have shown that electron rich arenes can trap benzylic 

cations in simple systems,33,68–70 it was unclear whether an electronically neutral, 

unsubstituted phenyl group would be sufficiently reactive to engage as the nucleophile in 

this type of transformation. Nonetheless, we investigated this possibility with reagents 

commonly used in flavonoid chemistry (e.g. DDQ,33,70–72 Chloranil, Pb3O4, 30 

Oxone/CuSO4,69 and NOBF473,74), followed by trapping with benzene, PhMgBr, or 

PhB(OH)2, all without success (Scheme 1.20). Efforts to apply Shi’s FeCl2-catalyzed 

benzylic dehydrogenative arylation,75 or Muramatsu’s C(sp3)–H arylation using DDQ and 

PIFA76 were also unfruitful. 

Having failed to achieve a direct arylation, a stepwise protocol was employed. 

Oxidation with DDQ in the presence of ethoxyethanol71,72 afforded 137—a relatively stable 

product—which could be isolated in modest yields (Scheme 1.20). The remaining mass 

balance of the reaction consisted of side products suspected to result from over oxidation 

and elimination of the benzylic ether. A survey of reaction parameters revealed that adding 

acetonitrile as a co-solvent led to cleaner reaction profiles, albeit at the expense of 

conversion. Presumably, the acetonitrile helps stabilize the intermediate benzylic cation 

(i.e. 136), favoring more efficient trapping with ethoxyethanol over unproductive side 

reactions. Synthetically useful yields of 137 were obtained under these conditions by re-

subjecting recovered 135 to the reaction conditions a second time. 
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Table 1.3. Investigation of the C1’ phenylation 

 

With respect to the stereochemistry at C1', 137 was isolated as a 4.8:1 mixture of 
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eliminated products and complex reaction profiles (entries 3–5). Likewise, Bode’s 

conditions for the addition of aryl trifluoroborates to oxonium ions, which use BF3•OEt2 

as the Lewis acid, failed to produce 126 (entries 6 and 7).81,82 We were therefore delighted 

to obtain a near quantitative yield of 126 (in 1.7:1 dr) by treating a mixture of 137 and 

lithium diphenylcyanocuprate with BF3•OEt2 (entry 8).83,84 After some experimentation, it 

was found that the diastereoselectivity could be slightly improved to 2:1 by holding the 

reaction at –45 °C (entry 9). Although colder temperatures led to a further improvement in 

dr, this was accompanied by a lower yield (entry 10). 

As the C1' diastereomers of 126 were inseparable by silica gel chromatography, the 

mixture was subjected to pyridine hydrochloride at 200 °C, which afforded the 

corresponding demethylated products in 92% combined yield (Scheme 1.21). At this stage, 

the diastereomeric resorcinols were readily separable by column chromatography, 

providing 138 as a single diastereomer in 62% yield. Finally, the remaining two aryl 

aldehydes were simultaneously installed using Rieche formylation conditions,85–87 

delivering (+)-psiguadial B (8) in 50% yield. Synthetic 8 was found to be spectroscopically 

identical in all respects to the natural sample reported by Shao et al.15  

Scheme 1.21. Completion of the synthesis of (+)-psiguadial B 
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1.5 CONCLUDING REMARKS 

In summary, the first enantioselective total synthesis of the cytotoxic natural product, (+)-

psiguadial B (8), was achieved in 15 steps from diazoketone 55. The successful synthetic 

strategy was enabled by the implementation of a tandem photochemical Wolff 

rearrangement/asymmetric ketene addition reaction. Having developed a novel protocol 

for the enantioselective preparation of quinolinamide 53, a variety of substrates were 

evaluated and conditions were identified to prepare the corresponding 5- and 6-membered 

ring products. De novo construction of the trans-fused cyclobutane ring in 8 was 

accomplished using a strategic Pd-catalyzed C(sp3)−H alkenylation reaction, followed by 

one of two distinct epimerization strategies, which permit access to both enantiomers of 

the natural product from a single enantiomer of organocatalyst.  

In the course of this work, three different synthetic routes toward (+)-psiguadial B 

were investigated. These studies have led to the evaluation of several challenging 

transformations, including 1) an o-QMHDA cycloaddition between a highly functionalized 

enol ether and a phloroglucinol-derived o-QM; 2) a seven-membered ring-forming Prins 

cyclization; and 3) a modified Norrish–Yang cyclization. Ultimately, the strained 

sesquiterpene core was built using a remarkably efficient ring-closing metathesis, and 

elaborated through a short sequence to afford the natural product in 1.3% overall yield. We 

believe that the development of this route to 8 may enable the synthesis of unnatural 

analogs of 3, which would be difficult to access through semi-synthetic methods. 

Application of the key strategy concepts described herein to the synthesis of other trans-

cyclobutane-containing natural products are currently ongoing in our laboratory. 
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1.6 EXPERIMENTAL SECTION 

1.6.1 Materials and Methods 

General Procedures. Unless otherwise stated, reactions were performed under a 

nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene 

chloride (CH2Cl2), acetonitrile (MeCN), tert-butyl methyl ether (TBME), benzene (PhH), 

and toluene (PhMe) were dried by passing through activated alumina columns. 

Triethylamine (Et3N), N,N-diisopropylethylamine (DIPEA), and methanol (MeOH) was 

distilled over calcium hydride prior to use. Unless otherwise stated, chemicals and reagents 

were used as received. All reactions were monitored by thin-layer chromatography (TLC) 

using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by 

UV, p-anisaldehyde, or 2,4-dinitrophenylhydrazine staining. Flash column 

chromatography was performed either as described by Still et al.88 using silica gel (particle 

size 0.032-0.063) purchased from Silicycle or using pre-packaged RediSep®Rf columns on 

a CombiFlash Rf system (Teledyne ISCO Inc.). Optical rotations were measured on a Jasco 

P-2000 polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra 

were recorded on a Bruker Avance III HD with Prodigy cryoprobe (at 400 MHz and 101 

MHz respectively), a Varian 400 MR (at 400 MHz and 101 MHz, respectively), a Varian 

Inova 500 (at 500 MHz and 126 MHz, respectively), or a Varian Inova 600 (at 600 MHz 

and 150 MHz, respectively), and are reported relative to internal CHCl3 (1H, δ = 7.26) and 

CDCl3 (13C, δ = 77.1), C6H5 (1H, δ = 7.16) and C6D6 (13C, δ = 128), or d8-THF (1H, δ = 

3.58) and (13C, δ = 67.6). Data for 1H NMR spectra are reported as follows: chemical shift 

(δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier 

abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 
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br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer and are reported in frequency of absorption (cm–1). HRMS were acquired 

using an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed 

(MM) ionization mode, or obtained from the Caltech Mass Spectral Facility in fast-atom 

bombardment mode (FAB). Analytical SFC was performed with a Mettler SFC 

supercritical CO2 analytical chromatography system with a Chiralcel AD-H column (4.6 

mm x 25 cm). 

1.6.2 Preparative Procedures and Spectroscopic Data 

1.6.2.1 Preparation of Diazoketone Substrates 

 
To each of two flame-dried 1 L round-bottom flasks was added NaH (60% 

dispersion in mineral oil, 3.17 g, 79.2 mmol, 1.20 equiv) and the atmosphere was 

exchanged for N2 one time. Dry Et2O (30.0 mL) was then added via syringe and the 

suspension cooled to 0 °C. Ethyl formate (12.4 mL, 152 mmol, 2.30 equiv) was then added, 

followed by 2,2-dimethylcyclopentanone (S1)89 (7.40 g, 66.0 mmol) either neat, or as a 3.0 

M solution in Et2O. A catalytic amount of wet methanol (~100 µL) was then added and the 

reaction left to stir at 0 °C.90 Upon completion, the reaction solidifies to a chunky, white 

solid that dissolved readily upon the addition of DI H2O. At this point, both reaction 

mixtures were combined for workup: after dilution with Et2O, the layers were separated 

and the aqueous layer was washed with Et2O 3x to remove organic impurities and a small 

amount of unreacted starting material. The aqueous layer was then cooled to 0 °C and 
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acidified to pH = 3 using 5 M HCl. Et2O was then added and the acidified aqueous layer 

was extracted 6x. The combined organics were then dried over MgSO4, filtered, and 

concentrated in vacuo into a 500 mL round-bottom flask.91,92  

The crude formyl ketone S2 was taken up in CH2Cl2 (132 mL) and the solution 

cooled to –10 °C. Triethylamine (55.2 mL, 396 mmol, 5.00 equiv) was added, followed by 

solid p-ABSA1 (31.8 g, 132 mmol, 1.00 equiv) in three portions. The reaction was stirred 

for 3 hours and allowed to gradually reach 10 °C, at which point an aqueous solution of 

KOH (55.0 mL, 4 M) was added. Additional CH2Cl2 and H2O were added, the layers were 

separated and the aqueous layer extracted with CH2Cl2 until no product remains by TLC. 

The combined organics were dried over Mg2SO4, filtered, and concentrated in vacuo. The 

crude residue was purified by silica gel flash chromatography (20–30% Et2O/pentane) to 

afford 55 (17.4 g, 95% yield) as a bright yellow oil.  

1H NMR (400 MHz, CDCl3) δ 2.88 (t, J = 7.0 Hz, 2H), 1.77 (t, J = 7.2 Hz, 2H), 1.04 (d, J 

= 1.0 Hz, 6H).; 1H NMR (400 MHz, d8-THF) δ 2.94 (t, J = 7.0 Hz, 2H), 1.79 (t, J = 7.2 

Hz, 2H), 1.04 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 204.8, 56.6, 46.3, 35.7, 24.1, 21.2.; 13C NMR (101 MHz, 

d8-THF) δ 203.6, 56.1, 46.9, 36.6, 24.5, 21.9. 

FTIR (NaCl, thin film) 3754, 3414, 3332, 2962, 2934, 2892, 2869, 2672, 2642, 2578, 

2510, 2080, 1981, 1673, 1581, 1471, 1460, 1382, 1362, 1339, 1309, 1267, 1245, 1204, 

1133, 1110, 1058, 1030, 994, 977, 948, 919, 893, 780, 726, 697 cm.-1  

HRMS (MM) calc’d for C7H11N2O [M+H]+ 139.0866, found 139.0860. 
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Diazoketones 65–68 were prepared according to the above procedure. Spectroscopic data 

for 67 and 68 are consistent with that reported in the literature.93–95 

 

65: Yellow Oil, (1.76 g, 36% yield over 2 steps) 

1H NMR (400 MHz, CDCl3) δ 2.71 (t, J = 6.5 Hz, 2H), 1.82 – 1.73 (m, 2H), 

1.68 –1.61 (m, 2H), 1.15 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 200.1, 62.6, 42.0, 37.5, 26.7, 22.9, 18.5. 

FTIR (NaCl, thin film) 2943, 2864, 2082, 1626, 1472, 1449, 1381, 1342, 1317, 1275, 

1261, 1220, 1201, 1162, 1122, 1044, 1011, 910, 853, 738, 658 cm.-1  

 

HRMS (EI) calc’d for C8H12N2O [M]+ 152.0950, found 152.0956. 

 

66: Yellow Oil, (400.0 mg, 26% yield over 2 steps) 

1H NMR (400 MHz, CDCl3) δ 2.55 (ddt, J = 7.0, 4.8, 2.3 Hz, 2H), 1.75 (dt, 

J = 4.4, 2.8 Hz, 4H), 1.57 (ddt, J = 6.3, 3.4, 1.7 Hz, 2H), 1.17 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 202.2, 68.3, 47.0, 37.9, 29.5, 25.8, 25.7, 25.6. 

FTIR (NaCl, thin film) 2981, 2966, 2927, 2858, 2083, 1704, 1617, 1474. 1448, 1387. 

1364, 1350, 1324, 1272, 1251, 1231, 1203, 1147, 1113, 1057, 1020, 980, 953, 871, 845, 

736, 656 cm.-1  

HRMS (EI) calc’d for C9H14N2O [M]+ 166.1106, found 166.1095. 
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1.6.2.2 Small-scale screening protocol for enantioenriched amides 

53, 69–72. 

 Oven-dried quartz tubes were each charged with aminoquinoline (62) (21.6 mg, 

0.150 mmol, 3.00 equiv) and catalyst (50 mol %). Inside a N2-filled glovebox, diazoketones 

55, 65–67 (0.05 mmol) were then added to each as a solution in 0.500 mL THF (excluding 

diazoketone 68, which was added as a solid outside of the glovebox). The reactions were 

then sealed with a 19/38 rubber septum around the outside of each tube and sealed with 

electrical tape. The reactions were then brought out of the glovebox and placed in a 

bottomless test tube rack in front of a Honeywell 254 nm lamp. The reactions were 

irradiated with stirring at room temperature for 18 hours. The reactions were then 

concentrated in vacuo, and the crude reaction mixtures were analyzed by 1H NMR with an 

added internal standard to determine % yield. The crude residues were purified by silica 

gel preparative TLC (2% Et2O/CH2Cl2) to provide 53, 69–72 in varying yields and 

enantiopurities. 

 

entry
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9
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MeCN
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63 
76
62
65
69
43
28
18
33
29
20

% eeb

79
50
47
59
79
74
79
75
69
79
75

62 (1 equiv)

temp °C 

25 
25
25
25
25
25
0

25
25
25
25

vessel 

quartz
quartz
quartz
quartz
quartz
quartz
quartz
quartz
quartz
vycor
pyrex

atm

N2
N2
N2
N2
N2
N2
N2
air
CO
N2
N2

N
H

O

N

N
NH2 hν (254 nm)

(+)-cinchonine (30)
(20 mol %)

solvent, temp, 24 h

O

N2
Me

Me

55

+

53

Me
Me

N

N
HO

HMeO

(+)-cinchonine (73)

a Determined by 1H NMR via integration relative to an added internal standard, 
isolated yield provided in parentheses. b Determined by SFC using a chiral 
stationary phase.
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1.6.2.3 Large-scale preparation of enantioenriched amides. 

 
To a flame-dried, 1 L quartz flask was added 8-

aminoquinoline (72) (12.9 g, 89.5 mmol, 3.00 equiv) and 

(+)-cinchonine (73) (879 mg, 2.99 mmol, 0.100 equiv). 

The flask was evacuated and backfilled with N2 three 

times and dry THF (600 mL) was then added via 

cannula. Diazoketone 55 (4.12 g, 29.8 mmol, 1.00 equiv) 

was added last via syringe and the reaction was irradiated 

with stirring using a Honeywell 254 nm lamp at room 

temperature. Reaction progress was monitored by TLC (72-168 hours are typically 

required for complete conversion on this scale, and rotation of the flask every day provided 

faster conversion).96 Upon completion, the reaction mixture was concentrated in vacuo, the 

THF (0.1 M), rt, 18 hN
NH2

0.200 mmol scale

Me
Me

O
N2

62 (3 equiv)

n

n = 1: 65
n = 2: 66

hν (254 nm)
catalyst (X mol %)

+ N
H

O

N69

MeMe

–or–
MeMe O

N
H

N
70

N

N
HO

HMeO

(–)-quinidine (76)

1
2
3
4
5
6
7
8

65
65
65
65
66
66
66
66

77 (50)
77 (30)
77 (20)
77 (10)
76 (50)
76 (30)
76 (20)
76 (10)

78 (73)
73 (81)
84 (76)
82 (81)
57 (66)
66 (71)
66 (61)
62 (61)

71
69
67
63
73
66
62
55

69
69
69
69
70
70
70
70

catalyst
(mol %)

N

N
HO

HMeO

C9-epi-quinidine (77)

entry diazo. product % yielda 
(isolated) %eeb

a Determined by 1H NMR via integration relative to an added internal 
standard, isolated yield provided in parentheses. b Determined by 
SFC using a chiral stationary phase.

N
H

O

N

N
NH2

(+)-cinchonine (10 mol %)

hν (254 nm) THF, rt (S)

O

N2
Me

Me

55

+

72 53
N

N
HO

H

 (+)-cinchonine (73)(62% yield, 79% ee)

Me
Me
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solids were taken up in CH2Cl2, and the suspension filtered. The filter cake was washed 

with CH2Cl2 three times and the filtrate was concentrated in vacuo to give a crude residue 

that was purified by silica gel flash chromatography (isocratic: 6% EtOAc/hexane) to 

provide 53 (4.69 g, 62%) as a pale-yellow solid. The enantiomeric excess was determined 

to be 79% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO2, λ = 254 nm): tR 

(major) = 4.23 min, tR (minor) = 5.64 min. ["]$%&.( = –66.0° (c = 0.560, CHCl3). 

 

Enantioenriched cyclobutane 53 was 

dissolved in a minimal amount of CH2Cl2 in a 

100 mL round-bottom flask. An equal amount of 

hexanes was carefully layered on top of the 

CH2Cl2to form a biphasic mixture. The layers 

were allowed to diffuse overnight to provide 53 as white needles. The supernatant was 

concentrated under reduced pressure and this process was repeated again to provide 

additional 53 (3.50 g total, 83% recovery of theoretical total of the desired enantiomer, 

46% overall from 55). Melting point: 66–68 ºC. 

 ["]$%&.( = –109° (c = 0.720, CHCl3).  

1H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H), 8.80 (t, J = 1.8 Hz, 1H), 8.79 (dd, J = 13.6, 

1.6 Hz, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.52 (q, J = 8.2, 7.5 Hz, 1H), 7.48 (dd, J = 8.3, 

1.6 Hz, 1H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H), 3.07 (ddd, J = 9.1, 8.2, 0.9 Hz, 1H), 2.48 (dq, 

J = 11.4, 9.4 Hz, 1H), 2.06 (dtd, J = 11.6, 8.6, 3.3 Hz, 1H), 1.85 (dt, J = 10.8, 9.1 Hz, 1H), 

1.74 (dddd, J = 10.7, 9.5, 3.3, 0.9 Hz, 1H), 1.39 (s, 3H), 1.14 (s, 3H). 
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13C NMR δ 171.8, 148.3, 138.6, 136.4, 134.7, 128.1, 127.6, 121.7, 121.3, 116.4, 51.0, 40.4, 

32.3, 30.9, 23.4, 17.4. 

FTIR (NaCl, thin film) 3353, 3047, 2952, 2861, 1685, 1595, 1577, 1526, 1485, 1460, 

1424, 1385, 1324, 1261, 1239, 1187, 1169, 1153, 825, 791,756 cm.-1  

HRMS (MM) calc’d for C16H19N2O [M+H]+ 255.1492, found 255.1501. 

 
SFC data for racemic 53: 

 

 

Enantioenriched 53 isolated directly from reaction:  
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Enantiopure 53 after a single recrystallization:  

 

 

 

 

0.2 mmol scale: Inside a N2 filled glovebox, an oven-dried quartz tube was charged with 

aminoquinoline (62) (86.5 mg, 0.600 mmol, 3.00 equiv) and (77) (32.5 mg, 0.100 mmol, 

0.500 equiv). Diazoketone (65) (33.2 mg, 0.200 mmol, 1.00 equiv) was added as a solution 

in 2.000 mL THF and the tube was sealed with a 19/38 rubber septum and secured with 

electrical tape. The reaction was removed from the glovebox and placed in a bottomless 

test tube rack in front of a Honeywell 254 nm lamp for 48 hours. The reaction mixture was 

then concentrated in vacuo. The crude residue was purified via silica gel flash 

chromatography (6% EtOAc/hexanes) to afford 69 (37.5 mg, 77% yield) as a brown oil. 

The enantiomeric excess was determined to be 71% by chiral SFC analysis (AD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR (major) = 4.28 min, tR (minor) = 5.41 min. 

 

N
NH2

77 (20 mol %)

hν (254 nm) THF, rt
65

+

62 (80% yield, 67% ee)

Me
Me

O
N2

N

9

N
HO

HMeO

C9-epi-quinidine (77)

N
H

O

N69

MeMe
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1.0 mmol scale: Inside a N2 filled glovebox, an oven-dried quartz tube was charged with 

aminoquinoline (62) (432.5 mg, 3.000 mmol, 3.00 equiv) and (77) (64.9 mg, 0.200 mmol, 

0.200 equiv). Diazoketone (65) (166.2 mg, 1.000 mmol, 1.00 equiv) was added as a 

solution in 2.50 mL THF and the tube was sealed with a 19/38 rubber septum and secured 

with electrical tape. The reaction was removed from the glovebox and placed in a 

bottomless test tube rack in front of a Honeywell 254 nm lamp for 48 hours. The reaction 

mixture was then concentrated in vacuo. The crude residue was purified via silica gel flash 

chromatography (6% EtOAc/hexanes) to afford 69 (215 mg, 80% yield) as a brown oil. 

The enantiomeric excess was determined to be 67% by chiral SFC analysis (AD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR (major) = 4.28 min, tR (minor) = 5.41 min. 

 ["]$%&.( = –32.5° (c = 2.075, CHCl3).  

1H NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 8.81 (d, J = 1.7 Hz, 1H), 8.80 (dd, J = 3.0, 1.7 

Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H), 

2.61 (t, J = 8.4 Hz, 1H), 2.38 – 2.22 (m, 1H), 2.02 (dtd, J = 13.2, 8.5, 4.4 Hz, 1H), 1.95 – 

1.82 (m, 1H), 1.79 – 1.65 (m, 2H), 1.63 – 1.57 (m, 1H), 1.31 (s, 3H), 1.01 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 173.1, 148.3, 138.6, 136.5, 134.8, 128.1, 127.6, 121.7, 

121.3, 116.4, 58.1, 43.2, 42.1, 29.7, 27.9, 24.0, 22.5.  

FTIR (NaCl, thin film) 3362, 2957, 2924, 2854, 1729, 1690, 1525, 1486, 1464, 1424, 

1381, 1325, 1262, 1164, 1145, 1132, 1072, 825, 791, 720 cm.-1  

HRMS (MM) calc’d for C17H21N2O [M+H]+ 269.1648, found 269.1645. 
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SFC data for racemic 69: 

 

Enantioenriched 69: 

 

Enantioenriched 69 using 20 mol % catalyst loading: 

 



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

46 

 

0.2 mmol scale: Inside a N2 filled glovebox, an oven-dried quartz tube was charged with 

8-aminoquinoline (62) (86.5 mg, 0.600 mmol, 3.00 equiv) and (76) (32.5 mg, 0.100 mmol, 

0.500 equiv). Diazoketone (66) (31.0 mg, 0.200 mmol, 1.00 equiv) was added as a solution 

in 2.00 mL THF and the tube was sealed with a 19/38 rubber septum and secured with 

electrical tape. The reaction was removed from the glovebox and placed in a bottomless 

test tube rack in front of a Honeywell 254 nm lamp for 48 hours. The reaction mixture was 

then concentrated in vacuo. The crude residue was purified via silica gel flash 

chromatography (6% EtOAc/hexanes) to afford 70 (33.3 mg, 59% yield) as a brown oil. 

The enantiomeric excess was determined to be 71% by chiral SFC analysis (AD-H, 2.5 

mL/min, 12% IPA in CO2, λ = 254 nm): tR (major) = 9.67 min, tR (minor) = 10.34 min. 

 

1.0 mmol scale: Inside a N2 filled glovebox, an oven-dried quartz tube was charged with 

8-aminoquinoline (62) (432.5 mg, 3.000 mmol, 3.00 equiv) and (76) (64.9 mg, 0.200 

mmol, 0.200 equiv). Diazoketone (66) (152.2 mg, 1.000 mmol, 1.00 equiv) was added as 

a solution in 2.50 mL THF and the tube was sealed with a 19/38 rubber septum and secured 

with electrical tape. The reaction was removed from the glovebox and placed in a 

bottomless test tube rack in front of a Honeywell 254 nm lamp for 48 hours. The reaction 

mixture was then concentrated in vacuo. The crude residue was purified via silica gel flash 

chromatography (6% EtOAc/hexanes) to afford 70 (189 mg, 67% yield) as a brown oil. 

N
NH2

76 (20 mol %)

hν (254 nm) THF, rt
66

+

62 (67% yield, 65% ee)

Me
Me

O
N2

N

N
HO

HMeO

quinidine (76)

MeMe

N
H

O

N
70
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The enantiomeric excess was determined to be 65% by chiral SFC analysis (AD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR (major) = 9.67 min, tR (minor) = 10.34 min. 

 ["]$%&.( = –17.3° (c = 1.68, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.79 (s, 1H), 8.82 (d, J = 1.7 Hz, 1H), 8.80 (dd, J = 2.7, 1.7 

Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H), 

2.30 (dd, J = 11.8, 3.5 Hz, 1H), 1.99 – 1.78 (m, 3H), 1.55 – 1.47 (m, 2H), 1.39 – 1.27 (m, 

3H), 1.13 (s, 3H), 1.10 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.6, 148.3, 138.6, 136.5, 134.7, 128.1, 127.6, 121.7, 

121.3, 116.5, 56.5, 41.6, 33.4, 31.5, 25.7, 25.7, 22.1, 21.2.  

FTIR (NaCl, thin film) 3364, 2956, 2923, 2852, 1729, 1691, 1523, 1486, 1462, 1424, 

1378, 1326, 1273, 1129, 1072, 825, 790 cm.-1 

HRMS (MM) calc’d for C18H23N2O [M+H]+ 283.1805, found 283.1796. 

SFC data for racemic 70: 
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Enantioenriched 70: 

 

Enatioenriched 70 using 20 mol % catalyst loading: 
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Inside a N2 filled glovebox, an oven-dried quartz tube was charged with 

aminoquinoline (62) (86.5 mg, 0.600 mmol, 3.00 equiv) and (80) (85.7 mg, 0.100 mmol, 

0.500 equiv). Diazoketone (67) (31.6 mg, 0.200 mmol, 1.00 equiv) was added as a solution 

in 0.500 mL THF and the tube was sealed with a 19/38 rubber septum and secured with 

electrical tape. The reaction was removed from the glovebox and placed in a bottomless 

test tube rack in front of a Honeywell 254 nm lamp for 18 hours. The reaction mixture was 

then concentrated in vacuo. The crude residue was purified via silica gel flash 

chromatography (0–1% Et2O/CH2Cl2) to afford 71 (21.9 mg, 40% yield) as a white solid. 

The enantiomeric excess was determined to be 34% by chiral SFC analysis (AD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR (major) = 5.06 min, tR (minor) = 6.89 min.  

["]$%&.( = –4.1° (c = 0.565, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 10.21 (s, 1H), 8.79 (dd, J = 11.5, 1.7 Hz, 1H), δ 8.78 (d, J 

= 1.7 Hz, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.54 (dd, J = 8.3, 7.2 Hz, 1H), 7.50 (dd, J = 

8.3, 1.8 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.38 – 7.29 (m, 2H), 7.22 – 7.16 (m, 1H), 4.56 (ddt, 

J = 5.8, 2.9, 0.8 Hz, 1H), 3.69 (ddd, J = 14.2, 5.7, 0.7 Hz, 1H), 3.60 (ddd, J = 14.2, 2.9, 0.8 

Hz, 1H).  

N
NH2

80 (50 mol %)

hν (254 nm) THF, rt
67

+

62 (40% yield, 34% ee)
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N2 N
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13C NMR (101 MHz, CDCl3) δ 170.6, 148.4, 144.7, 142.9, 138.7, 136.4, 134.5, 128.6, 

128.0, 127.8, 127.5, 123.5, 122.7, 121.7, 121.7, 116.5, 49.3, 35.2.  

FTIR (NaCl, thin film) 3347, 3066, 2928, 2851, 1680, 1596, 1578, 1526, 1485, 1458, 

1424, 1386, 1328, 1262, 1240, 1202, 1162, 1132, 869, 826, 791, 759, 734, 707, 679 cm.-1  

HRMS (MM) calc’d for C18H15N2O [M+H]+ 275.1179, found 275.1178. 

SFC data for racemic 71: 

 

Enantioenriched 71: 
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An oven-dried quartz tube was charged with diazoketone (68) (34.4 mg, 0.200 

mmol, 1.00 equiv). The tube was brought into a N2 filled glovebox, and subsequently 

charged with aminoquinoline (62) (86.5 mg, 0.600 mmol, 3.00 equiv) and (79) (88.1 mg, 

0.100 mmol, 0.500 equiv). The mixture was suspended in 0.500 mL THF and the tube was 

sealed with a 19/38 rubber septum and secured with electrical tape. The reaction was 

removed from the glovebox and placed in a bottomless test tube rack in front of a 

Honeywell 254 nm lamp for 48 hours. The reaction mixture was then concentrated in 

vacuo. The crude residue was purified via silica gel flash chromatography (5–10% 

EtOAc/hexanes) to afford 72 (27.1 mg, 47% yield) as a brown oil. The enantiomeric excess 

was determined to be 75% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO2, λ 

= 254 nm): tR (major) = 5.73 min, tR (minor) = 4.86 min.  

["]$%&.( = 65.0° (c = 0.91, CHCl3). 

 1H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 8.79 (dd, J = 7.1, 1.9 Hz, 1H), 8.75 (dd, J = 

4.2, 1.7 Hz, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 – 7.46 (m, 3H), 7.44 (dd, J = 8.3, 4.2 

Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 7.31 – 7.18 (m, 2H), 4.27 (dd, J = 8.4, 6.1 Hz, 1H), 3.23 

(dt, J = 15.2, 7.4 Hz, 1H), 3.09 – 2.95 (m, 1H), 2.69 – 2.48 (m, 2H).  

N
NH2

79 (50 mol %)

hν (254 nm) THF, rt
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13C NMR (101 MHz, CDCl3) δ 172.7, 148.4, 144.8, 141.5, 138.7, 136.4, 134.7, 128.0, 

127.9, 127.53, 126.9, 125.1, 125.0, 121.7, 121.7, 116.6, 54.0, 32.1, 30.4.  

FTIR (NaCl, thin film) 3347, 2957, 2923, 2852, 1728, 1689, 1524, 1484, 1461, 1424, 

1380, 1325, 1272, 1163, 1132, 1072, 826, 791, 743 cm.-1  

HRMS (MM) calc’d for C19H17N2O [M+H]+ 289.1335, found 289.1334. 

SFC data for racemic 72: 

 

Enantioenriched 72: 
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1.6.2.4 Synthetic Procedures Toward (+)-Psiguadial B. 

Preparation of cis-cyclobutane 81. 

 

To a flame-dried 150 mL pressure vessel were added cyclobutane 53 (2.87 g, 11.3 

mmol), vinyl iodide (54)97 (7.50 g, 33.8 mmol, 3.00 equiv), Pd(OAc)2 (379 mg, 1.69 mmol, 

0.150 equiv), and Ag2CO3 (3.11 g, 11.3 mmol, 1.00 equiv). The reagents were suspended 

in TBME (56.0 mL) and the vessel sealed under ambient conditions. The reaction was 

heated to 90 °C for 16 hours, then cooled to room temperature and filtered over a pad of 

celite. The filtrate was concentrated directly onto celite and purified by silica gel flash 

chromatography (20–40% EtOAc/hexane) to afford cis-cyclobutane 81 (2.95 g, 75% yield) 

as a pale yellow foam. 

	["]$%&.( = +84.4° (c = 0.350, CHCl3). 

1H NMR (500 MHz, CDCl3) δ 9.73 (s, 1H), 8.78 (dd, J = 12.4, 2.1 Hz, 1H), 8.78 (t, J = 

1.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.51 (dd, J = 8.3, 5.0 Hz, 1H), 7.50 (d, J = 0.9 

Hz, 1H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H), 6.00 (q, J = 1.6 Hz, 1H), 3.45 (ddddd, J = 10.8, 

8.5, 7.6, 2.1, 1.0 Hz, 1H), 3.27 (ddd, J = 8.8, 2.8, 0.8 Hz, 1H), 2.48 (t, J = 10.8 Hz, 1H), 

2.31 (ddd, J = 7.5, 5.7, 3.5 Hz, 2H), 2.20 (qd, J = 6.0, 5.5, 1.1 Hz, 2H), 2.01 (ddd, J = 11.0, 

8.3, 2.8 Hz, 1H), 1.95 – 1.84 (m, 2H), 1.46 (s, 3H), 1.13 (s, 3H). 

I
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Pd(OAc)2 (15 mol %)
Ag2CO3, TBME, 90 °C

(75% yield)18 19 (3 equiv) 46

+
N
H

O

N

Me
Me

N
H

O

N

O

Me
Me



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

55 

13C NMR (126 MHz, CDCl3) δ 199.5, 170.2, 166.5, 148.3, 138.4, 136.3, 134.4, 127.9, 

127.4, 124.9, 121.6, 121.5, 116.5, 56.9, 37.5, 37.5, 36.8, 35.7, 29.9, 27.8, 24.9, 22.6. 

FTIR (NaCl, thin film) 3348, 2929, 2865, 1662, 1623, 1595, 1576, 1522, 1485, 1424, 

1386, 1347, 1322, 1258, 1191, 1165, 1132, 827, 793 cm.-1 

HRMS (MM) calc’d for C22H25N2O2 [M+H]+ 349.1911, found 349.1910. 

Preparation of trans-cyclobutane 82 and spirolactam S3. 

 

To a 150 mL pressure vessel were added cis-cyclobutane 81 (2.74 g, 7.86 mmol) 

and wet CH2Cl2 (27.5 mL). The colorless solution was treated with DBU (11.7 mL, 78.6 

mmol, 10.0 equiv) and a bright yellow color was observed immediately. The vessel was 

sealed under ambient conditions and heated to 60 °C for 20 hours. The reaction mixture 

was diluted with 100 mL of water and 100 mL of CH2Cl2. The layers were separated, and 

the aqueous layer was extracted with CH2Cl2 (3 x 50 mL). The combined organic layers 

were dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by silica gel flash chromatography (isocratic: 40% EtOAc/hexane until 81 eluted 

completely, then 10% MeOH/ CH2Cl2) to afford 82 (1.74 g, 64% yield) and S3 (367 mg, 

14% yield), each as a pale yellow solid.  
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Data for trans-cyclobutane 82: 

 ["]$%&.( = –129.0° (c = 1.43, CHCl3). 

1H NMR (500 MHz, CDCl3) δ 9.68 (s, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.73 (dd, J = 

7.2, 1.8 Hz, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.52 (dd, J = 8.3, 7.2 Hz, 1H), 7.49 (dd, J 

= 8.3, 1.8 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 5.92 (q, J = 1.5 Hz, 1H), 3.58 (ddq, J = 

18.5, 8.7, 1.6, 0.8, 0.8 Hz, 1H), 2.97 (dd, J = 9.8, 0.7 Hz, 1H), 2.41 – 2.29 (m, 4H), 2.05 – 

1.92 (m, 3H), 1.85 (t, J = 10.4 Hz, 1H), 1.40 (s, 3H), 1.19 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 199.8, 169.6, 167.5, 148.3, 138.3, 136.3, 134.2, 127.9, 

127.3, 123.9, 121.7, 121.5, 116.3, 55.5, 37.5, 36.8, 36.4, 36.3, 30.7, 27.6, 23.1, 22.6. 

FTIR (NaCl, thin film) 3344, 3046, 2952, 2865, 2246, 1669, 1623, 1595, 1577, 1526, 

1485, 1461, 1424, 1323, 1346, 1326, 1292, 1253, 1191, 1161, 1133, 915, 884, 827, 792, 

757,731 cm.-1  

HRMS (MM) calc’d for C22H25N2O2 [M+H]+ 349.1911, found 349.1919. 

XRCD: A suitable crystal of C22H24N2O2 (82) was selected for analysis. All measurements 

were made on a Bruker APEX-II 

CCD with filtered Cu-Kα 

radiation at a temperature of 120 

K. Using Olex2, the structure was 

solved with the ShelXS structure solution program using Direct Methods and refined with 

the ShelXL refinement package using Least Squares minimization. The absolute 

stereochemistry was determined on the basis of the absolute structure parameter, -0.04(4).  

Data for spirolactam S3, 2.5:1 mixture of diastereomers: 

	["]$%&.( = –56.5° (c = 1.085, CHCl3). 
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1H NMR (asterisk denotes minor diast., 400 MHz, CDCl3) δ 8.92 (dd, J = 4.1, 1.8 Hz, 1H), 

8.85* (dd, J = 4.1, 1.8 Hz, 1H), 8.17 (dd, J = 8.3, 1.8 Hz, 1H), 8.13* (dd, J = 8.3, 1.8 Hz, 

1H), 7.87 (dd, J = 8.3, 1.5 Hz, 1H), 7.63 – 7.53 (m, 2H), 7.49 (dd, J = 7.2, 1.5 Hz, 1H), 

7.42 (dd, J = 8.3, 4.1 Hz, 1H), 7.37* (dd, J = 8.3, 4.1 Hz, 1H), 3.07* (ddd, J = 7.3, 3.2, 0.9 

Hz, 1H), 2.93 (dd, J = 6.0, 3.3 Hz, 1H), 2.86 (d, J = 13.2 Hz, 1H), 2.83 – 2.73 (m, 1H), 

2.53 (dt, J = 13.1, 2.4 Hz, 1H), 2.41 – 2.33 (m, 1H), 2.27 (ddq, J = 15.1, 11.3, 2.1 Hz, 1H), 

2.15 – 1.94 (m, 2H), 1.94 – 1.83 (m, 1H), 1.71 (dtd, J = 13.2, 8.6, 7.6, 3.0 Hz, 1H), 1.52 – 

1.38* (m, 1H), 1.35 (s, 3H), 1.34* (s, 3H), 1.31 (s, 3H), 1.14* (s, 3H), 1.03 (td, J = 13.7, 

4.0 Hz, 1H). 

13C NMR (major diastereomer, 101 MHz, CDCl3) δ 209.2, 175.5, 150.7, 146.3, 136.1, 

134.2, 130.7, 129.6, 129.1, 126.2, 121.9, 69.2, 53.2, 49.9, 40.7, 35.8, 34.8, 34.1, 30.2, 29.0, 

25.6, 20.1. 

13C NMR (minor diastereomer, 101 MHz, CDCl3) δ 210.0, 175.5, 150.7, 145.6, 136.0, 

134.2, 131.5, 129.6, 129.2, 126.0, 121.7, 68.9, 52.9, 49.8, 40.4, 35.0, 34.8, 34.6, 31.3, 30.0, 

26.1, 20.1. 

FTIR (NaCl, thin film) 3356, 3039, 2953, 2933, 2866, 1705, 1687, 1616, 1596, 1574, 

1525, 1496, 1472, 1426, 1391, 1341, 1312, 1279, 1250, 1223, 1134, 1124, 1038, 1027, 

905, 831, 795, 753, 664, 643 cm.-1 

HRMS (MM) calc’d for C22H25N2O2 [M+H]+ 349.1911, found 349.1916. 
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Deuterium-labeling studies to determine site of epimerization: 

 

Preparation of ketones 83 and 84 using Gilman’s reagent.  

 

To a flame-dried 100 mL flask was added copper (I) iodide (1.48 g, 7.75 mmol, 

5.00 equiv) and Et2O (15.5 mL). The resulting suspension was cooled to –40 °C and 

methyllithium (1.6 M in Et2O; 9.68 mL, 15.5 mmol, 10 equiv) was added dropwise. The 

reaction mixture was stirred at –40 °C for 2 hours before 82 (540 mg, 1.55 mmol) was 

added dropwise as a solution in 5:2 CH2Cl2/Et2O. The reaction mixture was gradually 

warmed to 0 °C over 4 hours, then quenched with saturated aqueous NH4Cl (10 mL) and 

diluted with EtOAc. NH4OH was added until all of the solid copper salts were sequestered 

and two homogenous layers remained. The aqueous layer was extracted with EtOAc (3 x 

20 mL) and the combined organics dried over MgSO4, filtered, and concentrated in vacuo. 

The crude residue was purified by silica gel flash chromatography (isocratic: 20% 
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EtOAc/Hexane) to afford a 2.5:1 mixture of 83 and 84 (543 mg, 96% yield), respectively 

as a white amorphous solid. Subsequent purification by reverse-phase HPLC using two 

Agilent Eclipse XDB-C8 5um 9.4 x 250 mm columns connected in series (gradient: 77–

85%MeCN/H2O) afforded analytically pure samples of each diastereomer, from which 84 

was crystallized. Melting point: 80–83 ºC. 

Data for minor diastereomer 84: ["]$%&.( = –25.5° (c = 1.50, CHCl3). 

1H NMR (500 MHz, CDCl3) δ 9.64 (s, 1H), 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.75 (dd, J = 

7.4, 1.6 Hz, 1H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.46 (dd, J = 8.2, 4.2 

Hz, 1H), 2.89 – 2.77 (m, 2H), 2.35 – 2.26 (m, 2H), 2.24 (d, J = 13.3 Hz, 1H), 2.09 (d, J = 

13.4 Hz, 1H), 2.07 – 1.99 (m, 1H), 1.88 – 1.77 (m, 1H), 1.72 – 1.61 (m, 3H), 1.55 – 1.48 

(m, 1H), 1.35 (s, 3H), 1.13 (s, 3H), 0.92 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 212.4, 170.6, 148.4, 138.5, 136.5, 134.6, 128.1, 127.6, 

121.7, 121.4, 116.4, 51.5, 50.8, 41.2, 39.8, 39.6, 35.2, 34.1, 33.0, 30.8, 23.7, 22.2, 21.3. 

FTIR (NaCl, thin film) 3349, 3044, 2952, 2863, 1706, 1687, 1595, 1577, 1523, 1484, 

1460, 1424, 1383, 1325, 1238, 1228, 1163, 827, 792 cm.-1 

HRMS (MM) calc’d for C23H29N2O2 [M+H]+ 365.2224, found 365.2261. 

XRCD: A suitable crystal of C23H28N2O2 (84) was selected for analysis. Low-temperature 

diffraction data (φ- and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA 

diffractometer coupled to a PHOTON 100 CMOS detector with Cu-Kα radiation (λ = 

1.54178 Å) from a IµS HB micro-focus sealed X-ray tube. All diffractometer 

manipulations, including data collection, integration, and scaling were carried out using 

the Bruker APEXII software. 
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Selective preparation of ketone 83 using copper-catalyzed conjugate addition. 

 

Inside a N2-filled glovebox, [Cu(OTf)]2•PhMe (72.4 mg, 0.140 mmol, 0.25 equiv) 

and (S,R,R) ligand 85 (302 mg, 0.560 mmol, 1.00 equiv) were added to a 25 mL flask. The 

reagents were suspended in Et2O (5.60 mL) and stirred at room temperature for 30 minutes 

before trans-cyclobutane 82 (195 mg, 0.560 mmol) was added as a solid, in one portion. 

The reaction was sealed under N2, removed from the glovebox and cooled to –30 °C under 

argon using a cryocool unit to control the temperature. Me3Al (2.0 M in heptane; 560 µL, 

1.12 mmol, 2.00 equiv) was then added dropwise, taking care to avoid an exotherm and 

the reaction mixture stirred vigorously at –30 °C for 16 hours. MeOH (1.00 mL) was then 

added to quench excess Me3Al and then the reaction was warmed to room temperature. 

The mixture was diluted with EtOAc and H2O, then the organic layer was separated. The 

aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organics dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by silica gel 
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flash chromatography (2% Et2O/CH2Cl2 until ligand/impurities elute, then 4% 

Et2O/CH2Cl2) to afford a 30:1 mixture of 83 and 84 (126 mg, 62% yield), as a white solid: 

 ["]$%&.( = –84.7° (c = 0.600, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.64 (s, 1H), 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 8.75 (dd, J = 

7.2, 1.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.45 (dd, J = 8.3, 4.2 

Hz, 1H), 2.89 – 2.76 (m, 2H), 2.36 – 2.28 (m, 2H), 2.25 (ddd, J = 12.5, 6.6, 1.1 Hz, 1H), 

2.04 (dt, J = 13.4, 2.0 Hz, 1H), 1.96 (ddq, J = 13.7, 7.0, 3.6 Hz, 1H), 1.81 (dtt, J = 13.7, 

12.0, 5.0 Hz, 1H), 1.68 – 1.62 (m, 2H), 1.62 – 1.51 (m, 2H), 1.35 (s, 3H), 1.13 (s, 3H), 0.89 

(s, 3H). 

13C NMR (101 MHz, CDCl3) δ 212.4, 170.6, 148.3, 138.5, 136.5, 134.6, 128.1, 127.5, 

121.7, 121.4, 116.4, 51.5, 50.4, 41.3, 40.9, 39.5, 35.2, 33.8, 32.6, 30.8, 23.7, 22.1, 20.8. 

FTIR (NaCl, thin film) 3351, 3047, 2954, 2870, 1708, 1688, 1524, 1485, 1460, 1424, 

1384, 1325, 1281, 1259, 1240, 1228, 1163, 919, 827, 792, 757, 732 cm.-1 

HRMS (MM) calc’d for C23H29N2O2 [M+H]+ 365.2224, found 365.2228. 

 

Preparation of dimethyl ketal 86.  

 

To a flame-dried 15 mL flask was added ketone 83 (100 mg, 0.274 mmol) and 

dissolved in freshly distilled MeOH (2.7 mL). Trimethylorthoformate (150 µL, 1.37 mmol, 

5.00 equiv) was then added, followed by p-toluenesulfonic acid monohydrate (2.60 mg, 
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0.014 mmol, 0.05 equiv). The reaction was topped with a reflux condenser and heated to 

65 °C for 1 hour, then quenched with saturated aqueous NaHCO3. The aqueous layer was 

extracted with EtOAc (3 x 5 mL), and the combined organics were dried over MgSO4, 

filtered, and concentrated in vacuo. The crude residue was purified by Florisil® flash 

chromatography (isocratic: 10% EtOAc/Hexane) to afford 86 (106 mg, 94% yield) as a 

white, foamy solid: ["]$%&.( = –83.3° (c = 1.60, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.66 (s, 1H), 8.81 (dd, J = 4.3, 1.7 Hz, 1H), 8.78 (dd, J = 

7.4, 1.6 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.44 (dd, J = 8.3, 4.2 

Hz, 1H), 3.16 (s, 3H), 3.13 (s, 3H), 2.80 (d, J = 10.0 Hz, 1H), 2.69 (q, J = 9.7 Hz, 1H), 2.01 

(ddd, J = 13.2, 3.5, 1.6 Hz, 1H), 1.74 (dt, J = 14.0, 2.4 Hz, 1H), 1.70 – 1.50 (m, 4H), 1.31 

(s, 3H), 1.28 – 1.13 (m, 4H), 1.11 (s, 3H), 1.01 (s, 3H) 

13C NMR (101 MHz, CDCl3) δ 171.0, 148.3, 138.5, 136.4, 134.7, 128.0, 127.6, 121.6, 

121.2, 116.4, 100.8, 51.3, 47.9, 47.3, 42.3, 38.6, 34.8, 34.7, 34.0, 33.3, 32.5, 30.7, 23.9, 

21.4, 18.8. 

FTIR (NaCl, thin film) 3356, 3048, 2950, 2867, 2828, 1690, 1525, 1485, 1460, 1424, 

1384, 1368, 1325, 1288, 1276, 1261, 1242, 1155, 1108, 1096, 1048, 946, 927, 826, 792, 

756, 690, 666 cm.-1 

HRMS (MM) calc’d for C24H31N2O2 [M–OCH3]+ 379.2380, found 379.2376.  
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Preparation of methyl enol ether 90. 

 

To a 15 mL thick-walled, screw top pressure vessel were added dimethyl ketal 86 

(59.8 mg, 0.146 mmol) and PhMe (5.0 mL). The tube sealed under a stream of N2. The 

reaction was heated to 170 °C in a preheated oil bath for 3.5 hours. The reaction was then 

cooled to room temperature and concentrated in vacuo to afford 90 (55.1 mg, quantitative 

yield), an inseparable ~1:1 mixture of enol ether isomers, as a foamy colorless gum: ["]$%&.( 

= –78.8° (c = 1.25, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.70 (s, 1H), 8.90 – 8.72 (m, 2H), 8.15 (dd, J = 8.2, 1.5 Hz, 

1H), 7.57 – 7.40 (m, 3H), 4.48 (s, 1H), 3.48 (s, 3H), 2.87 – 2.74 (m, 2H), 2.12 – 1.93 (m, 

2H), 1.74 – 1.57 (m, 4H), 1.48 – 1.36 (m, 1H), 1.33 (s, 3H), 1.31 – 1.27 (m, 1H), 1.12 (s, 

3H), 0.97 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.6, 171.0, 156.3, 154.3, 148.3, 148.3, 138.6, 138.5, 

136.4, 136.4, 134.8, 134.7, 128.5, 128.1, 128.1, 127.6, 126.9, 126.8, 121.7, 121.6, 121.2, 

121.2, 116.4, 116.3, 99.4, 92.1, 54.1, 53.9, 52.6, 51.5, 40.9, 40.1, 36.4, 35.4, 35.2, 34.0, 

33.5, 33.0, 32.6, 30.9, 30.8, 30.7, 29.9, 28.2, 26.1, 25.1, 24.1, 23.9, 21.2, 20.7, 19.5. 

FTIR (NaCl, thin film) 3354, 3051, 2949, 2930, 2862, 1690, 1668, 1524, 1484, 1461, 

1424, 1384, 1368, 1326, 1238, 1215, 1162, 1147, 1026, 826, 791, 756, 694 cm.-1 

HRMS (MM) calc’d for C24H31N2O2 [M+H]+ 379.2380, found 379.2395. 
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Preparation of benzhydryl morpholine 89. 

 

 To a flame-dried 100 mL round-bottom flask were added phloroglucinol 88 (1.00g, 

4.13 mmol), followed by freshly distilled MeOH (41.0 mL). Benzaldehyde (30) (421 µL, 

4.13 mmol, 1.00 equiv), morpholine (87) (361 µL, 4.13 mmol ,1.00 equiv), and 

triethylamine (576 µL, 4.13 mmol, 1.00 equiv) were then added successively via syringe 

and the reaction stirred at room temperature for 24 hours. The precipitate thus formed was 

collected by vacuum filtration and washed with MeOH (20 mL) and dried under high 

vacuum to afford analytically pure 89 (1.19 g, 69% yield) as a white powder.  

1H NMR (400 MHz, CDCl3) δ 15.34 (s, 1H), 13.16 (s, 1H), 12.53 (s, 1H), 7.45 (d, J = 7.2 

Hz, 2H), 7.34 – 7.20 (m, 3H), 4.88 (s, 1H), 3.99 (s, 3H), 3.91 (s, 3H), 3.90 – 3.40 (br m, 

4H), 3.08 (br s, 1H), 2.46 (ddd, J = 11.9, 6.2, 3.1 Hz, 2H), 2.18 (br s, 1H). 

13C NMR (101 MHz, CDCl3) δ 171.7, 166.2, 165.6, 165.1, 138.2, 128.9, 128.4, 103.8, 

96.5, 94.2, 69.0, 66.6, 52.7, 52.6. 

FTIR (NaCl, thin film) 3404 (br), 3062, 3030, 2955, 2894, 2854, 2716, 2562 (br), 2252, 

1953 (br), 1731, 1654, 1603, 1494, 1454, 1431, 1403, 1326, 1290, 1250, 1205, 1169, 1121, 

1080, 1029, 1006, 986, 942, 915, 878, 843, 825, 808, 761, 732, 700, 648 cm.-1 

HRMS (MM) calc’d for C21H24NO8 [M+H]+  418.1496, found 418.1515. 
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Preparation of fully oxidized o-QM precursor 51. 

 

To a 50 mL round-bottom flask was added benzhydryl morpholine 89 (200 mg, 

0.479 mmol), followed by a 1:1 mixture of THF/H2O (9.6 mL). p-Toluenesulfonic acid 

monohydrate (91.1 mg,  0.479 mmol, 1.00 equiv) was then added in one portion and the 

reaction was heated to 60 °C for 4 hours. Note: it is best to monitor this reaction closely by 

TLC to mitigate degradation of the product to 88, presumably via acid-mediated retro aldol. 

Upon completion, the reaction was cooled to room temperature and quenched with 

saturated aqueous NaHCO3. The reaction was diluted with EtOAc and the organic layer 

separated. The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined 

organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The crude 

residue was purified by silica gel flash chromatography (isocratic: 5% EtOAc/CH2Cl2 + 

0.5% AcOH, necessary to avoid streaking on the column). Fractions containing pure 

product were combined, washed with saturated aqueous NaHCO3, dried over MgSO4, 

filtered, and concentrated in vacuo to afford 51 (82.0 mg, 49% yield) as a white solid.  

1H NMR (400 MHz, CDCl3) δ 11.89 (s, 2H), 11.70 (s, 1H), 7.46 – 7.39 (m, 2H), 7.31 (t, 

J = 7.4 Hz, 2H), 7.26 – 7.19 (m, 1H), 6.38 – 6.23 (m, 1H), 4.09 (d, J = 11.6 Hz, 1H), 4.02 

(s, 6H). 

13C NMR (101 MHz, CDCl3) δ 170.9, 165.0, 164.7, 143.9, 128.2, 127.0, 125.6, 110.2, 

94.5, 68.1, 53.2. 
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FTIR (NaCl, thin film) 3563 (br), 3357 (br), 3085, 3058, 3028, 3006, 2956, 2851, 2749 

(br), 1727, 1655, 1623, 1599, 1492, 1434, 1333, 1318, 1245, 1201, 1170, 1129, 1039, 1026, 

972, 909, 836, 816, 733, 698, 622 cm.-1 

HRMS (MM) calc’d for C17H15O7 [M–OH]+  331.0812, found 331.0825. 

 

Preparation of tricyclic ketals 92–95 by thermal cycloaddition. 

 

 To a 15 mL thick-walled, screw top pressure vessel were added dimethyl ketal 86 

(105 mg, 0.256 mmol) and o-QM precursor 51 (98.0 mg, 0.281 mmol, 1.10 equiv). PhMe 

(4.3 mL) was then added and the tube sealed under a stream of argon. The reaction was 

heated to 170 °C in a preheated oil bath for 21 hours. The reaction was then cooled to room 

temperature and concentrated in vacuo. The crude residue was first purified by silica gel 

flash chromatography to remove separable impurities (4% EtOAc/CH2Cl2 + 0.5% AcOH) 

to afford a complex mixture of diastereomers, including 92–95 (109 mg, 68% yield). 

Analytically pure samples of the four diastereomers produced in greatest abundance (i.e. 
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92–95) were obtained by subsequent reverse-phase HPLC purification using an Agilent 

XDB-C18 5 µm 30 x 250 mm column (gradient: 83–100% MeCN/H2O). 

Chromatogram from HPLC separation:  

 

Data for 92 (peak 2): ["]$%&.( = –32.2° (c = 0.360, CHCl3) White Solid. 

1H NMR (400 MHz, CDCl3) δ 12.81 (s, 1H), 12.08 (s, 1H), 9.65 (s, 1H), 8.78 – 8.74 (m, 

2H), 8.15 (dd, J = 8.3, 1.6 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 

7.22 (d, J = 7.5 Hz, 2H), 7.14 – 7.07 (m, 3H), 3.93 (s, 3H), 3.93 (s, 3H), 3.91 (d, J = 7.8 

Hz, 1H), 3.39 (s, 3H), 2.82 – 2.76 (m, 2H), 2.12 (s, 1H), 1.86 – 1.73 (m, 2H), 1.69 – 1.49 

(m, 5H), 1.33 (s, 3H), 1.25 (d, J = 9.6 Hz, 1H), 1.10 (s, 3H), 1.05 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.4, 170.8, 169.9, 166.0, 164.7, 158.9, 148.3, 145.9, 

138.5, 136.5, 134.7, 128.1, 128.1, 127.8, 127.6, 126.0, 121.7, 121.3, 116.3, 104.2, 104.1, 

97.1, 95.7, 52.7, 52.7, 52.2, 49.0, 44.2, 41.7, 39.9, 37.7, 35.1, 35.1, 33.9, 30.8, 28.9, 24.0, 

23.5, 22.8. 
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FTIR (NaCl, thin film) 3412 (br), 3354 (br), 3059, 3022, 3006, 2951, 2928, 2864, 1731, 

1686, 1654, 1648, 1643, 1594, 1524, 1484, 1459, 1426, 1384, 1338, 1325, 1249, 1222, 

1201, 1157, 1122, 1081, 1092, 1028, 976, 945, 936, 847, 826, 792, 755, 700, 667 cm.-1 

HRMS (MM) calc’d for C41H45N2O9 [M+H]+  709.3120, found 709.3141. 

 

Data for 93 (peak 1): ["]$%&.( = –13.8° (c = 0.420, CHCl3) White Solid. 

1H NMR (400 MHz, CDCl3) δ 12.22 (s, 1H), 11.68 (s, 1H), 9.65 (s, 1H), 8.81 (dd, J = 4.2, 

1.7 Hz, 1H), 8.77 (dd, J = 7.3, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 – 7.48 (m, 

2H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.16 – 7.09 (m, 1H), 7.09 – 7.02 

(m, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.91 (s, 1H), 3.05 (s, 3H), 2.82 – 2.67 (m, 2H), 2.16 

(dd, J = 12.4, 3.5 Hz, 1H), 1.98 (d, J = 13.8 Hz, 1H), 1.76 (dd, J = 13.3, 4.1 Hz, 1H), 1.70 

– 1.39 (m, 6H), 1.32 (s, 3H), 1.12 (s, 3H), 0.96 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.0, 170.8, 169.9, 165.0, 163.1, 157.2, 148.3, 145.6, 

138.5, 136.5, 134.7, 128.1, 127.8, 127.6, 127.3, 125.6, 121.7, 121.3, 116.4, 102.4, 102.1, 

99.0, 95.3, 52.8, 52.5, 51.3, 47.8, 45.3, 41.9, 41.4, 40.1, 34.7, 34.6, 32.7, 32.6, 30.8, 27.4, 

23.8, 22.3. 

FTIR (NaCl, thin film) 3410 (br), 3355 (br), 3055, 3021, 3000, 2950, 2864, 1734, 1686, 

1654, 1643, 1599, 1524, 1484, 1460, 1426, 1384, 1336, 1326, 1279, 1247, 1225, 1163, 

1142, 1093, 1063, 988, 973, 949, 841, 826, 791, 754, 698, 667 cm.-1 

HRMS (MM) calc’d for C41H45N2O9 [M+H]+  709.3120, found 709.3119. 

 

Data for 94 (peak 3): ["]$%&.( = –98.4° (c = 0.206, CHCl3) White Solid. 
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1H NMR (400 MHz, CDCl3) δ 12.11 (s, 1H), 11.61 (s, 1H), 9.64 (s, 1H), 8.82 (dd, J = 4.3, 

1.7 Hz, 1H), 8.76 (dd, J = 7.3, 1.7 Hz, 1H), 8.16 (dd, J = 8.2, 1.7 Hz, 1H), 7.57 – 7.43 (m, 

3H), 7.30 (dd, J = 8.6, 5.1 Hz, 2H), 7.17 (s, 2H), 6.81 (s, 1H), 4.54 (d, J = 7.3 Hz, 1H), 

3.94 (s, 3H), 3.92 (s, 3H), 3.21 (s, 3H), 2.74 (q, J = 9.8 Hz, 2H), 2.10 (d, J = 13.7 Hz, 1H), 

1.97 – 1.83 (m, 1H), 1.62 (d, J = 8.9 Hz, 2H), 1.45 (d, J = 13.8 Hz, 1H), 1.32 (s, 3H), 1.29 

– 1.24 (m, 1H), 1.18 (d, J = 13.2 Hz, 1H), 1.11 (s, 3H), 1.10 – 1.06 (m, 1H), 1.04 (s, 3H), 

0.76 (dd, J = 13.1, 3.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 171.0, 170.9, 169.7, 164.9, 162.7, 158.0, 148.3, 142.2, 

138.5, 136.5, 134.7, 128.5, 128.1, 127.7, 127.6, 125.9, 121.7, 121.3, 116.4, 104.2, 102.2, 

99.3, 95.5, 52.8, 52.5, 51.3, 49.0, 43.7, 42.2, 40.3, 38.5, 34.8, 34.4, 33.0, 32.6, 30.8, 23.8, 

22.1, 21.7. 

FTIR (NaCl, thin film) 3408 (br), 3354 (br), 3059, 3022, 3009, 2952, 2868, 1738, 1732, 

1682, 1658, 1652, 1645, 1599, 1525, 1485, 1462, 1455, 1426, 1385, 1327, 1281, 1251, 

1225, 1165, 1133, 1090, 1077, 1031, 991, 946, 872, 826, 792, 755, 703 cm.-1 

HRMS (MM) calc’d for C41H45N2O9 [M+H]+  709.3120, found 709.3133. 

 

Data for 95 (peak 4): ["]$%&.( = –13.4° (c = 0.226, CHCl3) White Solid. 

1H NMR (400 MHz, CDCl3) δ 11.95 (s, 1H), 11.23 (s, 1H), 9.66 (s, 1H), 8.81 (dd, J = 4.2, 

1.7 Hz, 1H), 8.76 (dd, J = 7.3, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.55 – 7.42 (m, 

3H), 7.22 (dd, J = 7.9, 6.5 Hz, 2H), 7.18 – 7.13 (m, 1H), 7.10 (d, J = 7.4 Hz, 2H), 3.90 (s, 

3H), 3.87 (s, 3H), 3.67 (d, J = 11.0 Hz, 1H), 3.16 (s, 3H), 2.81 – 2.66 (m, 2H), 2.10 (dd, J 

= 14.2, 1.6 Hz, 1H), 1.71 (td, J = 10.8, 5.3 Hz, 1H), 1.64 (dd, J = 9.2, 2.6 Hz, 2H), 1.56 – 
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1.48 (m, 2H), 1.45 (d, J = 14.3 Hz, 1H), 1.38 – 1.32 (m, 1H), 1.31 (s, 3H), 1.21 – 1.14 (m, 

1H), 1.12 (s, 3H), 1.08 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.8, 170.8, 169.5, 164.0, 162.4, 157.4, 148.3, 145.4, 

138.5, 136.5, 134.7, 128.1, 128.1, 127.6, 125.9, 121.7, 121.3, 116.4, 108.0, 101.7, 99.6, 

95.5, 52.7, 52.5, 51.2, 49.4, 49.0, 42.0, 41.1, 36.2, 35.3, 34.8, 33.3, 32.6, 30.8, 23.8, 22.5, 

21.1. 

FTIR (NaCl, thin film) 3412 (br), 3354 (br), 3055, 3023, 3003, 2950, 2866, 1732, 1688, 

1656, 1598, 1524, 1484, 1453, 1426, 1384, 1327, 1277, 1248, 1225, 1165, 1062, 993, 954, 

925, 826, 792, 755, 702 cm.-1 

HRMS (MM) calc’d for C41H45N2O9 [M+H]+  709.3120, found 709.3139. 

 

Summary of Key NOE correlations for stereochemical assignment of 92–95: 
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Preparation of tricyclic ketals 92–95 by Cu(OTf)2-mediated cycloaddition. 

 

Inside a N2-filled glovebox, methyl enol ether 90 (17.0 mg, 0.045 mmol) and o-QM 

precursor 51 (16.4 mg, 0.047 mmol, 1.05 equiv) were added to a 1 dram vial and dissolved 

in CH2Cl2 (400 µL). Cu(OTf)2 was then added as a solid in one portion and the reaction 

immediately turns a light green color, then yellow-brown within the first 5 minutes. The 

reaction was stirred at room temperature for 1 hour, then quenched with saturated aqueous 

NaHCO3 and diluted with CHCl3. The reaction mixture was extracted with CHCl3 (3 x 1 

mL) and the organics filtered through a plug of Na2SO4 and concentrated in vacuo. The 

crude residue was analyzed by 1H NMR and determined to contain 92, 93, 94, and 95 in an 

approximate ratio of 2 : 1 : 3 : 3, respectively. For spectroscopic characterization data, see 

above. 
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Preparation of aldehyde 101. 

 

Inside a N2-filled glovebox, Schwartz’s reagent (119 mg, 0.462 mmol, 2.00 equiv) 

was added to a 10 mL flask and sealed under N2. The flask was removed from the glovebox 

and THF (1.2 mL) was added via syringe. To the milky-white suspension was added ketal 

86 (94.8 mg, 0.231mmol) as a solution in THF (1.2 mL) in a quick drip. The reaction 

immediately beings to turn yellow, eventually becoming a darker orange color over 1 hour, 

at which time the reaction was quenched by the addition of saturated aqueous NaHCO3. 

The reaction was diluted with EtOAc and the organic layer separated. The aqueous layer 

was extracted with EtOAc (2 x 5 mL) and the combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by silica gel 

flash chromatography (isocratic: 5% EtOAc/hexane + 1% Et3N) to afford 101 (36.9 mg, 

62% yield) as a pale yellow oil: ["]$%&.( = –33.1° (c = 0.500, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.70 (d, J = 3.0 Hz, 1H), 3.14 (s, 3H), 3.09 (s, 3H), 2.64 

(td, J = 9.7, 8.5 Hz, 1H), 2.58 (dd, J = 9.9, 3.0 Hz, 1H), 1.86 (ddt, J = 13.6, 4.2, 2.6 Hz, 

1H), 1.61 (t, J = 10.3 Hz, 1H), 1.57 – 1.44 (m, 4H), 1.34 – 1.18 (m, 2H), 1.16 (s, 3H), 1.14 

(s, 3H), 1.13 – 1.05 (m, 2H), 0.89 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 204.7, 100.5, 55.2, 47.6, 47.1, 39.8, 39.3, 35.7, 34.4, 

33.9, 33.0, 32.7, 31.1, 24.3, 21.7, 18.6. 

O

N
H N

H

Me
OMe

OMe

Me
Me

Cp2Zr(H)Cl

THF, rt

(63% yield)

O

H
H

Me
OMe

OMe

Me
Me

86 101



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

73 

FTIR (NaCl, thin film) 2952, 2868, 2828, 2705, 1713, 1461, 1383, 1368, 1341, 1288, 

1262, 1246, 1180, 1166, 1110, 1098, 1048, 1009, 945, 924, 823, 828 cm.-1 

HRMS (MM) calc’d for C15H25O2 [M–OCH3]+  237.1849, found 237.1855. 

 

Preparation of alkyne 103. 

 

To a 10 mL round bottom flask were added aldehyde 101 (36.0 mg, 0.134 mmol) 

and K2CO3 (37.0 mg, 0.268 mmol, 2.00 equiv). The flask was fitted with a septum and the 

atmosphere exchanged 2x for N2. Freshly distilled MeOH (1.5 mL) was then added via 

syringe and the solution cooled to 0 °C. Dimethyl-1-diazo-2-oxopropylphosphonate (38.6 

mg, 0.201 mmol, 1.50 equiv) was weighed into a tared syringe and added dropwise to the 

reaction, neat. The reaction was allowed to gradually warm to room temperature and stirred 

for 12 hours. The reaction was then diluted with Et2O, saturated aqueous NaHCO3 was 

added, and the organic layer separated. The aqueous layer was extracted with Et2O (3 x 5 

mL) and the combined organic layers were dried over MgSO4, filtered, and concentrated 

in vacuo. The crude residue was purified by Florisil® flash chromatography (isocratic: 5% 

Et2O/pentane) to afford 103 (32.9 mg, 93% yield) as a pale yellow oil: ["]$%&.( = –43.6° (c 

= 0.355, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 3.17 (s, 3H), 3.13 (s, 3H), 2.43 (dd, J = 10.1, 2.4 Hz, 1H), 

2.16 – 2.05 (m, 2H), 2.04 – 1.93 (m, 1H), 1.69 (ddd, J = 13.9, 2.8, 1.8 Hz, 1H), 1.59 – 
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1.50 (m, 2H), 1.48 (d, J = 9.6 Hz, 2H), 1.29 – 1.17 (m, 5H), 1.16 (d, J = 2.7 Hz, 4H), 1.03 

(s, 3H), 0.97 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 100.7, 85.8, 70.5, 49.1, 47.9, 47.3, 39.1, 35.2, 35.1, 34.0, 

33.5, 33.2, 33.2, 29.9, 24.8, 21.1, 18.8. 

FTIR (NaCl, thin film) 3310, 3263, 2953, 2866, 2828, 1459, 1383, 1364, 1342, 1323, 

1288, 1266, 1243, 1180, 1157, 1106, 1094, 1048, 945, 926, 858, 830, 655, 621 cm.-1 

HRMS (MM) calc’d for C16H25O2 [M–OCH3]+  233.1900, found 233.1887. 

 

Preparation of vinyl sulfides 104 and 105. 

 

 Inside a N2-filled glovebox, THF (400 µL) was added to a 1 dram vial containing 

alkyne 103 (12.4 mg, 0.047 mmol), followed by Ni(acac)2 as a stock solution in THF (0.10 

M, 70 µL, 0.007 mmol, 0.15 equiv). The reaction was stirred for 10 minutes at room 

temperature before thiophenol (10 µL, 0.094 mmol, 2.00 equiv) was added neat. The 

reaction was sealed with a Teflon cap and heated to 60 ° C in a preheated aluminum block 

inside the glovebox. After 3 hours, the reaction was cooled to room temperature and diluted 

with CH2Cl2. The reaction mixture was filtered over a small pad of Celite, washed with 

CH2Cl2 until the filtrate runs colorless, and concentrated in vacuo. The crude residue was 

taken up in EtOAc and shaken with 5M NaOH (to remove excess thiophenol). The organic 
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layer was then filtered through a plug of Na2SO4, concentrated, and purified by silica gel 

preparative TLC (5% EtOAc/hexane + 1% Et3N) to afford 104 (8.50 mg, 53% yield) and 

105 (2.7 mg, 15% yield) each as colorless oils.  

Data for ketal 105: ["]$%&.( = +12.3° (c = 0.115, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.42 (dd, J = 8.1, 1.6 Hz, 2H), 7.36 – 7.28 (m, 3H), 5.17 (d, 

J = 1.3 Hz, 1H), 4.96 (s, 1H), 3.17 (s, 3H), 3.13 (s, 3H), 2.51 (d, J = 10.2 Hz, 1H), 2.26 (q, 

J = 9.7 Hz, 1H), 2.04 – 1.92 (m, 1H), 1.65 (ddd, J = 13.8, 2.8, 1.6 Hz, 1H), 1.50 (ddd, J = 

9.6, 7.0, 3.7 Hz, 2H), 1.45 – 1.39 (m, 2H), 1.21 – 1.12 (m, 4H), 1.11 (s, 3H), 0.98 (s, 3H), 

0.91 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 145.9, 133.8, 133.4, 129.2, 127.9, 111.6, 100.8, 49.4, 47.9, 

47.3, 45.1, 39.7, 35.6, 34.8, 34.6, 33.2, 32.4, 30.6, 23.2, 21.7, 18.9. 

FTIR (NaCl, thin film) 2950, 2863, 2827, 1610, 1583, 1476, 1459, 1439, 1379, 1364, 

1322, 1274, 1260, 1247, 1178, 1145, 1130, 1100, 1083, 1049, 1024, 946, 926, 856, 831, 

822, 747, 691 cm.-1 

HRMS (MM) calc’d for C22H31OS [M–OCH3]+  343.2090, found 343.2073. 

Data for enol ether 104: ["]$%&.( = –11.0° (c = 0.982, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.46 – 7.36 (m, 2H), 7.36 – 7.27 (m, 3H), 5.23 – 4.84 (m, 

2H), 4.63 – 4.29 (m, 1H), 3.40 (s, 3H), 2.58 – 2.50 (m, 1H), 2.40 (dq, J = 34.9, 9.5 Hz, 

1H), 2.11 – 1.91 (m, 3H), 1.64 (ddd, J = 15.0, 5.9, 2.4 Hz, 2H), 1.48 – 1.40 (m, 2H), 1.39 

– 1.30 (m, 1H), 1.11 (d, J = 9.9 Hz, 3H), 1.00 (d, J = 2.4 Hz, 3H), 0.83 (d, J = 21.0 Hz, 

4H). 

13C NMR (101 MHz, CDCl3) δ 155.3, 154.4, 146.0, 145.9, 133.8, 133.5, 133.4, 133.3, 

129.2, 129.1, 127.9, 127.7, 112.3, 111.1, 100.6, 92.0, 54.1, 53.9, 50.2, 49.5, 43.5, 40.9, 
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37.7, 36.1, 35.1, 35.1, 34.5, 34.1, 32.9, 32.6, 31.6, 30.6, 30.5, 28.2, 25.8, 23.3, 23.2, 22.0, 

20.8, 19.4. 

FTIR (NaCl, thin film) 3061, 2991, 2950, 2930, 2862, 2843, 1667, 1609, 1583, 1476, 

1460, 1453, 1440, 1380, 1366, 1251, 1215, 1148, 1066, 1024, 940, 817, 747, 691 cm.-1 

HRMS (MM) calc’d for C22H31OS [M+H]+  343.2090, found 343.2087. 

Preparation of bridged bicycle 106. 

 

 Inside a N2-filled glovebox, CH2Cl2 was added to a 1 dram vial containing 105 

(9.30 mg, 0.025 mmol), followed by InCl3 (5.49 mg, 0.025 mmol, 1.00 equiv). The reaction 

was stirred at room temperature for 2 hours, then quenched with saturated aqueous 

NaHCO3 and diluted with CH2Cl2. The reaction was extracted with CH2Cl2 (3 x 500 µL), 

the combined organics filtered a plug of Na2SO4, and concentrated in vacuo. The crude 

residue was purified by silica gel flash chromatography (40–60% CH2Cl2/hexane) to afford 

106 (0.900 mg, 11% yield) as a colorless oil, with the remaining mass balance accounted 

for by ketone 107, as determined by crude 1H NMR.  

Data for bridged bicycle 66: ["]$%&.( = +58.2° (c = 0.053, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.36 (m, 2H), 7.30 (ddd, J = 8.3, 7.1, 0.8 Hz, 2H), 

7.24 – 7.18 (m, 1H), 5.52 (dd, J = 2.8, 1.7 Hz, 1H), 3.18 (s, 3H), 2.91 – 2.81 (m, 1H), 2.00 

– 1.72 (m, 5H), 1.66 (ddd, J = 11.6, 6.8, 3.5 Hz, 1H), 1.44 – 1.37 (m, 2H), 1.35 (dd, J = 
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12.3, 1.7 Hz, 1H), 1.29 (m, 1H), 1.28 (s, 3H), 1.19 (dd, J = 14.1, 7.0 Hz, 1H), 1.00 (s, 3H), 

0.80 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 139.7, 139.6, 135.0, 131.7, 129.2, 127.2, 80.6, 52.4, 50.2, 

49.2, 48.6, 40.1, 38.3, 36.2, 33.7, 31.3, 31.2, 28.9, 22.4, 21.2. 

FTIR (NaCl, thin film) 3062, 2945, 2927, 2860, 2820, 1734, 1718, 1701, 1654, 1583, 

1560, 1476, 1458, 1438, 1370, 1294, 1254, 1232, 1151, 1086, 1066, 1024, 950, 870, 840, 

800, 743, 690 cm.-1 

HRMS (MM) calc’d for C22H31OS [M+H]+  343.2090, found 343.2077. 

Data for ketone 107: ["]$%&.( = +31.6° (c = 0.100, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 8.1, 1.6 Hz, 2H), 7.40 – 7.32 (m, 3H), 5.13 (d, 

J = 1.3 Hz, 1H), 4.98 (s, 1H), 2.53 (d, J = 10.1 Hz, 1H), 2.38 (td, J = 10.0, 8.9 Hz, 1H), 

2.32 – 2.23 (m, 2H), 2.17 (d, J = 13.6 Hz, 1H), 2.02 (dt, J = 13.4, 1.9 Hz, 1H), 1.93 – 1.90 

(m, 1H), 1.82 (dddd, J = 9.7, 8.1, 3.9, 2.3 Hz, 1H), 1.57 (q, J = 4.4 Hz, 1H), 1.49 – 1.44 

(m, 1H), 1.44 – 1.33 (m, 2H), 1.16 (s, 3H), 1.03 (s, 3H), 0.82 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 212.6, 145.5, 134.1, 133.0, 129.3, 128.2, 111.4, 51.1, 49.8, 

43.1, 41.3, 40.3, 35.1, 34.2, 32.5, 30.6, 23.1, 22.1, 21.8. 

FTIR (NaCl, thin film) 3059, 2953, 2927, 2860, 1711, 1680, 1611, 1583, 1476, 1461, 

1440, 1381, 1364, 1347, 1311, 1283, 1253, 1228, 1151, 1087, 1067, 1024, 890, 855, 749, 

692 cm.-1 

HRMS (MM) calc’d for C21H29OS [M+H]+  329.1934, found 329.1943. 
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Preparation of protected iodide 114.  

 

Inside a N2-filled glove box, a 250 mL round bottom flask was charged with 

TMSOTf (0.410 mL, 0.230 mmol, 0.010 equiv) and CH2Cl2 (20.0 mL). The flask was 

sealed, removed from the glove box, and placed under a N2 atmosphere. The reaction 

mixture was cooled to –78 ºC, and 1,2-bistrimethylsilyloxyethane (11.0 mL, 45.0 mmol, 

2.00 equiv) was added via syringe. (Note: best results were obtained when 1,2-

bistrimethylsilyloxyethane was sparged with argon for 30 min prior to addition). Vinyl 

iodide 54 (5.00 g, 22.5 mmol, 1.00 equiv) was added to the flask dropwise as a solution in 

CH2Cl2 (20.0 mL), via cannula transfer. An additional portion of CH2Cl2 (5.00 mL) was 

used to complete the transfer. The colorless reaction mixture was allowed to stir at –78 ºC 

for 1 hour, at which point the reaction mixture was warmed to 0 ºC. The reaction mixture 

became yellow immediately upon warming and was allowed to warm to room temperature 

over 16 hours. The reaction mixture became dark orange and was quenched with the 

addition of DIPEA (11.0 mL), at which point the reaction became yellow. The mixture was 

poured into a separatory funnel and diluted with saturated NaHCO3 solution. The aqueous 

layer was extracted three times with CH2Cl2. The organic layers were combined, dried over 

a 1:1 mixture of anhydrous K2CO3 and Na2SO4, filtered, and concentrated to provide a 

yellow residue that was purified by flash silica gel chromatography (5% EtOAc, 1% 

TMSO
OTMS

O

I
54

I
114

OO

TMSOTf, CH2Cl2
 –78 °C to rt

(60% yield)
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Et3N/hexane – 20% EtOAc, 1% Et3N/hexane) to provide 114 (3.61 g, 60% yield) as a 8:1 

mixture of olefin isomers, as a pale yellow oil. 

1H NMR (400 MHz, CDCl3) δ 6.34 (tt, J = 4.0, 1.9 Hz, 1H), 3.98 (p, J = 1.7 Hz, 4H), 2.72 

(q, J = 2.3 Hz, 2H), 2.36 – 2.22 (m, 2H), 1.77 (t, J = 6.5 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 136.6, 108.1, 91.1, 64.7, 49.3, 30.2, 27.5. 

FTIR (NaCl, thin film) 3040, 2955, 2934, 2881, 2836, 2684, 1637, 1474, 1443, 1429, 

1418, 1360, 1330, 1300, 1243, 1207, 1142, 1114, 1076, 1058, 1021, 970, 948, 889, 848, 

827, 776, 738, 662 cm.-1 

HRMS (FAB) calc’d for C8H11IO2 [M]+ 266.9876, found 266.9888. 

Preparation of cis-dioxolane 115.  

 

A 100 mL, thick-walled pressure vessel was charged with Pd(OAc)2 (132 mg, 0.590 

mmol, 0.150 equiv), Ag2CO3 (1.08 g, 3.93 mmol, 1.00 equiv), and 53 (1.00 g, 3.93 mmol, 

1.00 equiv). Vinyl iodide 114 (2.09 g, 7.86 mmol, 2.00 equiv) was then added to the flask 

as a solution in TBME (19.7 mL). The reaction vessel was sealed with a screw top under 

ambient conditions and heated to 90 ºC in an oil bath. The heterogeneous reaction mixture 

is olive green upon addition of vinyl iodide. After heating for five minutes, the reaction 

mixture became black. After 16 hours, the flask was removed from the oil bath and allowed 

to cool to room temperature. The reaction mixture was filtered over a pad of celite and the 

N
H
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N
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N
H N
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filter cake was washed with CH2Cl2. The filtrate was concentrated, and the crude orange 

residue was purified by flash silica gel chromatography (30% EtOAc, 1% Et3N/hexane–

35% EtOAc, + 1% Et3N/hexane) to provide 115 (1.11 g, 72% yield) as a white 

foam:	["]$%&.( = –29.3° (c = 1.95, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 9.87 (s, 1H), 8.81 (ddd, J = 24.2, 7.3, 1.5 Hz, 2H), 8.13 (dd, 

J = 8.3, 1.7 Hz, 1H), 7.49 (td, J = 8.2, 7.5, 6.6 Hz, 1H), 7.45 (dd, J = 8.3, 1.6 Hz, 1H), 7.42 

(dd, J = 8.3, 4.2 Hz, 1H), 5.65 (dd, J = 17.8, 9.1 Hz, 1H), 4.03 – 3.81 (m, 2H), 3.76 – 3.64 

(m, 2H), 3.25 (q, J = 9.1, 8.2 Hz, 1H), 3.05 (dd, J = 8.7, 2.8 Hz, 1H), 2.46 (t, J = 10.9 Hz, 

1H), 2.40 – 2.23 (m, 2H), 2.19 (dt, J = 16.5, 2.1 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.93 (ddd, 

J = 11.1, 8.3, 2.9 Hz, 1H), 1.71 – 1.59 (m, 1H), 1.57 – 1.48 (m, 1H), 1.40 (s, 3H), 1.11 (s, 

3H). 

13C NMR (101 MHz, CDCl3) δ 171.0, 147.9, 138.7, 136.3, 134.9, 134.8, 127.9, 127.5, 

121.4, 121.2, 120.8, 116.6, 108.3, 64.3, 64.1, 55.9, 37.2, 37.1, 36.7, 35.4, 30.8, 30.2, 25.1, 

24.4. 

FTIR (NaCl, thin film) 3357, 3300, 3043, 3006, 2952, 2928, 2881, 1685, 1664, 1596, 

1577, 1523, 1485, 1460, 1424, 1385, 1324, 1255, 1208, 1160, 1132, 1106, 1060, 1039, 

1020, 947, 846, 826, 792, 755, 666 cm.-1 

HRMS (MM) calc’d for C24H29N2O3 [M+H]+ 393.2173, found 393.2183. 

Preparation of trans-aldehyde 116. 
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Inside a N2-filled glove box, a 250 mL round bottom flask was charged with 

Schwartz’s reagent (2.30 g, 8.92 mmol, 2.06 equiv) and THF (22.3 mL). Cis-dioxolane 115 

(1.70 g, 4.32 mmol, 1.00 equiv) was added to the flask as a solution in THF (22.3 mL). 

The flask was sealed, removed from the glove box and put under a N2 atmosphere. The 

flask was covered with aluminum foil and allowed to stir for one hour, at which point the 

reaction was quenched with the addition of saturated NaHCO3 solution. (Note, it is 

important that the quench be conducted very quickly to avoid decomposition of excess 

Schwartz’s reagent and formation of HCl). The reaction mixture was diluted with EtOAc 

and the organic layer separated. The aqueous layer was filtered through a pad of celite and 

sand and then extracted 5x with EtOAc. The combined organics were dried over anhydrous 

Na2SO4, filtered, and concentrated to provide a yellow residue that was purified by flash 

silica gel chromatography (15% EtOAc, 1% Et3N/hexanes) to provide S4 (755 mg, 3.01 

mmol) as a yellow oil as a 1.8:1 (cis/trans) mixture of diastereomers at C5. The oil was 

concentrated directly into a 200 mL round bottom flask and dissolved in wet MeOH (60.0 

mL). The flask was then charged with KOH (3.36 g, 59.9 mmol, 20.0 equiv) and the 

mixture allowed to stir for 1 hour at room temperature. The mixture was then concentrated 

to a volume of ~3 mL and diluted with pH 7 buffer. A pale yellow precipitate formed upon 

addition of buffer. The solution was slowly acidified using dilute citric acid until pH 7 was 

achieved. The mixture was then poured into a separatory funnel and extracted 3x with 

EtOAc. The combined organics were dried over anhydrous Na2SO4, filtered, and 

concentrated to provide trans-aldehyde 116 (755 mg, 70% over 2 steps) as a mixture of 

olefin isomers. The yellow oil was analytically pure and used directly in the next step: 



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

82 

["]$%&.( = +35.2° (c = 0.295, CHCl3). Note: it is recommended that the aldehyde be used 

immediately in the next step to avoid decomposition. 

1H NMR (400 MHz, CDCl3) δ 9.76 (t, J = 2.2 Hz, 1H), 5.37 (dt, J = 3.8, 1.9 Hz, 1H), 3.97 

(dd, J = 2.5, 1.3 Hz, 4H), 3.14 (q, J = 9.2 Hz, 1H), 2.73 (dt, J = 10.0, 2.1 Hz, 1H), 2.22 (dp, 

J = 6.5, 2.1 Hz, 2H), 2.16 – 1.97 (m, 2H), 1.77 (ddd, J = 15.5, 9.4, 2.0 Hz, 2H), 1.69 (td, J 

= 6.5, 2.1 Hz, 2H), 1.24 (s, 3H), 1.14 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 203.2, 137.1, 118.8, 108.3, 64.4, 59.5, 37.3, 37.1, 36.7, 

34.3, 31.2, 30.7, 24.0, 24.0. 

FTIR (NaCl, thin film) 2954, 2929, 2896, 2873, 2707, 1712, 1670, 1577, 1522, 1461,1449, 

1434, 1420, 1383, 1367, 1340, 1312, 1297, 1249, 1209, 1179, 1103, 1059, 1039, 1018, 

948, 846, 793 cm.-1 

HRMS (MM) calc’d for C15H23O3 [M+H]+ 251.1642, found 251.1645. 

Preparation of vinyl enone (+)-117 

 

A 250 mL round bottom flask was charged with trans-aldehyde, 116 (720 mg, 2.88 

mmol, 1.00 equiv). The flask was evacuated and backfilled three times with N2 and charged 

with toluene (2.30 mL). The flask was then charged with freshly prepared ylide solution 

(36.0 mL, 0.4 M, 5.00 equiv) and the reaction mixture was allowed to stir for 30 minutes 

at room temperature. The reaction was quenched with the addition of saturated NaHCO3 

solution (10.0 mL). The organic layer was separated and the aqueous layer extracted 3x 

Ph3P CH2
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with Et2O. The combined organics were concentrated and dissolved in a 1:1 mixture of 

THF and 5M HCl (28 mL.0). The reaction mixture was allowed to stir over 16 hours, at 

which point the mixture was diluted with Et2O and water. The layers were separated and 

the aqueous layer extracted 3x with Et2O. The combined organics were dried over 

anhydrous MgSO4, filtered, and concentrated. The crude yellow residue was purified by 

flash silica gel chromatography (20–30% Et2O/pentane) to provide (+)-117 (520 mg, 88%) 

as a pale yellow oil: ["]$%&.( = +102° (c = 0.705, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 5.84 (q, J = 1.6 Hz, 1H), 5.81 (dddt, J = 16.8, 10.6, 7.9, 0.5, 

0.5 Hz, 1H), 5.04 (qd, J = 1.9, 1.0 Hz, 1H), 5.01 (ddd, J = 10.8, 1.9, 1.1 Hz, 1H), 2.88 (q, 

J = 9.7, 9.1, 9.0 Hz, 1H), 2.48 (ddq, J = 9.8, 7.9, 1.0 Hz, 1H), 2.34 (t, J = 7.0, 6.5 Hz, 2H), 

2.20 (qdd, J = 6.0, 1.5, 0.8 Hz, 2H), 1.95 (dt, J = 7.7, 6.1 Hz, 2H), 1.85 (ddd, J = 10.8, 8.3, 

0.8 Hz, 1H), 1.67 (t, J = 10.3 Hz, 1H), 1.05 (s, 3H), 1.04 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 200.1, 168.8, 137.4, 123.4, 116.1, 53.8, 41.1, 37.5, 37.3, 

36.0, 30.0, 27.9, 23.1, 22.6. 

FTIR (NaCl, thin film) 3320, 3076, 3039, 2953, 2934, 2891, 2866, 2827, 1671, 1622, 

1456, 1428, 1417, 1382, 1368, 1346, 1324, 1290, 1251, 1191, 1124, 995, 968, 942, 912, 

886, 755 cm.-1 

HRMS (MM) calc’d for C14H21O [M+H]+ 205.1587, found 205.1587. 

Preparation of Wittig ylide.  

Inside a N2-filled glovebox, methyltriphenylphosphonium bromide (22.2 g, 62.1 

mmol) and KOt-Bu (7.36 g, 65.6 mmol, 1.06 equiv) were added to a flame-dried 500 mL 

round-bottom flask and sealed under nitrogen. The flask was brought out of the box and 



Chapter 1 – The Total Synthesis of (+)-Psiguadial B  
  

84 

dry PhMe (155 mL) was added via syringe. The flask was fitted with a reflux condenser 

under a stream of N2 and heated to 110 °C for 4 hours, at which time the reaction was 

cooled to room temperature and the salts were allowed to settle for 3 hours before the 

bright yellow supernatant (~0.40 M salt-free ylide) was used for the methylenation of 

aldehydes S4 and S6 (vide infra).  

Preparation of trans-dioxolanes 118 & S5. 

 

To a flame-dried 200 mL round-bottom flask was added trans-cyclobutane 82 (2.59 

g, 7.43 mmol) and the atmosphere was exchanged for N2 three times. Dry PhMe (74 mL) 

was then added, followed by ethylene glycol (16.6 mL, 297 mmol, 40.0 equiv) and 

trimethyl orthoformate (2.44 mL, 22.3 mmol, 3.00 equiv) via syringe. Finally, p-

toluenesulfonic acid monohydrate (141 mg, 0.743 mmol, 0.10 equiv) was added as a solid 

in one portion under a stream of N2. The reaction mixture was heated to 80 ºC for 15 hours, 

at which point the reaction mixture was cooled to room temperature and quenched with a 

saturated solution of aqueous NaHCO3. The layers were separated and the aqueous layer 

was extracted with EtOAc three times. The combined organic extracts were dried over 

anhydrous MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by 

silica gel flash chromatography (isocratic: 20% EtOAc/hexane  + 1% Et3N) to afford trans-

dioxolanes 118 and S5 (2.50 g, 86% yield) as a partially separable mixture of 

82
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inconsequential olefin isomers. An analytically pure sample of the major dioxolane (118) 

was obtained and a representative spectrum of the mixture as used in the next step is also 

provided.  

Data for 118 (major product, peak 1): ["]$%&.( = –80.5° (c = 1.40, CHCl3) 

1H NMR (400 MHz, CDCl3) δ 9.71 (s, 1H),  8.78 (dd, J = 11.0, 1.6 Hz, 1H), 8.78 (d, J = 

1.6 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.50 (dt, J = 15.8, 8.2, 7.5 Hz, 2H), 7.47 (dd, J 

= 8.3, 1.6 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 5.54 (dt, J = 3.6, 1.8 Hz, 1H), 3.96 (q, J 

= 4.4, 3.9 Hz, 4H), 3.30 (q, J = 9.4 Hz, 1H), 2.88 (d, J = 9.8 Hz, 1H), 2.25 (d, J = 2.8 Hz, 

4H), 1.87 (dd, J = 10.5, 8.6 Hz, 1H), 1.81 – 1.61 (m, 3H), 1.36 (s, 3H), 1.17 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 170.7, 148.2, 138.4, 137.3, 136.3, 134.6, 127.9, 127.4, 

121.6, 121.2, 119.1, 116.3, 108.4, 64.4, 55.2, 36.7, 36.7, 36.4, 36.1, 30.9, 30.8, 24.1, 23.4. 

FTIR (NaCl, thin film) 3350, 3046, 2952, 2929, 2893, 2839, 1686, 1596, 1578, 1525, 

1485, 1460, 1424, 1383, 1368, 1326, 1248, 1209, 1161, 1102, 1059, 1021, 948, 826, 792, 

756 cm.-1 

HRMS (MM) calc’d for C24H29N2O3 [M+H]+ 393.2173, found 393.2188. 

Preparation of vinyl enone (–)-117. 

 

Inside a N2-filled glovebox, two flame-dried 200 mL round-bottom flasks were 

each charged with Schwartz’s reagent (1.60 g, 6.21 mmol, 2.04 equiv) and sealed under 
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N2. The flasks were removed from the glovebox and THF (15.5 mL) was added to each via 

syringe. To each of the milky-white suspensions was added a mixture of trans-dioxolanes 

118 and S5 (1.19 g, 3.04 mmol) as a solution in THF (16.0 mL) in a quick drip at room 

temperature. The mixtures immediately began to turn yellow, darkening to orange over the 

course of 1 hour, at which point the reactions were quenched with saturated aqueous 

NaHCO3 and combined together. The layers were separated and the aqueous layer was 

extracted twice with EtOAc. The combined organic layers were washed twice with 100 mL 

of a 0.6 M aqueous solution of CuSO4 to remove the liberated 8-aminoquinoline. The 

organic layer was then dried over MgSO4, filtered, and concentrated in vacuo. The crude 

aldehyde (S6, 1.70 g) was dissolved in dry PhMe (20 mL) and treated with freshly prepared 

ylide (80 mL, 32.0 mmol, 5.26 equiv) at room temperature. The reaction was stirred for 2 

hours and monitored by TLC. Upon complete conversion, the reaction was cooled to 0 °C 

and quenched with 5 M HCl. The layers were separated and the aqueous layer was extracted 

twice with Et2O. The combined organic layers were concentrated in vacuo and the solvent 

replaced with THF (30 mL). The dioxolane was hydrolyzed by stirring vigorously with 5 

M HCl for 8 hours, at which time Et2O was added and the layers separated. The aqueous 

layer was extracted twice with Et2O and the combined organics washed with aqueous 

NaHCO3, dried over MgSO4, and concentrated in vacuo. The crude residue was purified 

by silica gel flash chromatography (isocratic: 30% Et2O/hexanes) to afford vinyl enone (–

)-117 (715 mg, 58% yield over 2 steps) as a clear oil: ["]$%&.( = –100° (c = 1.02, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 5.84 (q, J = 1.5 Hz, 1H), 5.81 (dddt, J = 16.8, 10.6, 7.9, 0.5, 

0.5 Hz, 1H), 5.04 (qd, J = 1.9, 1.0 Hz, 1H), 5.01 (ddd, J = 10.4, 2.0, 1.1 Hz, 1H), 2.88 (q, 

J = 9.7, 9.1, 9.0 Hz, 1H), 2.48 (ddq, J = 9.8, 7.9, 1.0 Hz, 1H), 2.34 (t, J = 7.0, 6.5 Hz, 2H), 
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2.21 (qdd, J = 5.9, 1.5, 0.8 Hz, 2H), 1.95 (dt, J = 7.7, 6.1 Hz, 2H), 1.85 (ddd, J = 10.7, 8.3, 

0.8 Hz, 1H), 1.67 (t, J = 10.4 Hz, 1H), 1.05 (s, 3H), 1.04 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 200.1, 168.7, 137.4, 123.4, 116.1, 53.8, 41.1, 37.5, 37.3, 

36.0, 30.0, 27.9, 23.1, 22.6. 

FTIR (NaCl, thin film) 3320, 3076, 3039, 2953, 2934, 2891, 2866, 2827, 1671, 1622, 

1456, 1428, 1417, 1382, 1368, 1346, 1324, 1290, 1251, 1191, 1124, 995, 968, 942, 912, 

886, 755 cm.-1 

HRMS (MM) calc’d for C14H21O [M+H]+ 205.1587, found 205.1587.  

Preparation of vinyl ketone 112.  

 

Inside a N2-filled glovebox, CuTC (105 mg, 0.551 mmol, 0.150 equiv) and ligand 

(R,S,S) ent-85 (594 mg, 1.10 mmol, 0.30 equiv) were added to a flame dried 100 mL round-

bottom flask. The reagents were suspended in Et2O (18.0 mL) and stirred at room 

temperature for 30 minutes before vinyl enone (+)-117 (750 mg, 3.67 mmol) was added as 

a solution in Et2O (18.0 mL). The reaction was sealed under N2, removed from the 

glovebox and placed under a balloon atmosphere of argon. The reaction mixture was 

allowed to equilibrate to –35 °C for 5 minutes using a cryocool unit to maintain the 

temperature. Me3Al (2.0 M in heptane; 3.67 mL, 7.34 mmol, 2.00 equiv) was then added 

dropwise and the reaction stirred at  –35 °C for 17 hours, at which point wet MeOH (5 mL) 

was slowly added to quench excess Me3Al. The mixture was warmed to room temperature, 
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filtered over a plug of silica gel, and washed thoroughly with Et2O and CH2Cl2 (until no 

product remained in eluent). The filtrate was concentrated in vacuo and the crude residue 

purified by silica gel flash chromatography (isocratic: 20% hexane/CH2Cl2) to afford vinyl 

ketone 112 (760 mg, 94% yield) as a 19:1 mixture of inseparable diastereomers at C1, 

colorless oil. Note: this 19:1 mixture is carried through the next three reactions, and a single 

diastereomer at C1 is isolable after the ring-closing metathesis: ["]$%&.( = +37.6° (c = 1.05, 

CHCl3).  

1H NMR (400 MHz, C6D6) δ 5.68 (ddd, J = 16.9, 10.5, 8.6 Hz, 1H), 4.96 (qd, J = 2.2, 0.8 

Hz, 1H), 4.93 (ddd, J = 11.3, 2.2, 0.8 Hz, 1H), 2.20 (ddt, J = 9.6, 8.6, 0.9 Hz, 1H), 2.11 

(dtt, J = 13.9, 4.8, 1.4 Hz, 1H), 1.92 (dd, J = 3.3, 1.7 Hz, 2H), 1.90 – 1.79 (m, 2H), 1.50 – 

1.40 (m, 2H), 1.31 – 1.21 (m, 2H), 1.21 – 1.13 (m, 1H), 0.99 (dtt, J = 13.4, 4.7, 4.5, 1.5, 

1.1 Hz, 1H), 0.94 (s, 3H), 0.93 (s, 3H), 0.66 (s, 3H). 

1H NMR (400 MHz, CDCl3) δ 5.74 (ddd, J = 17.1, 10.3, 8.7 Hz, 1H), 5.08 – 4.81 (m, 2H), 

2.33 (ddd, J = 9.6, 8.7, 0.9 Hz, 1H), 2.30 – 2.19 (m, 2H), 2.16 (d, J = 13.5 Hz, 1H), 2.07 

(td, J = 10.1, 8.5 Hz, 1H), 1.99 (dt, J = 13.4, 1.8 Hz, 1H), 1.90 (ddq, J = 14.0, 6.2, 4.7 Hz, 

1H), 1.85 – 1.72 (m, 1H), 1.56 (ddd, J = 13.6, 11.1, 4.4 Hz, 1H), 1.51 – 1.34 (m, 3H), 0.98 

(s, 3H), 0.97 (s, 3H), 0.83 (s, 3H). 

13C NMR (101 MHz, C6D6) δ 209.3, 139.9, 115.3, 51.0, 49.5, 45.2, 41.2, 39.7, 34.7, 33.9, 

32.9, 30.1, 23.7, 22.1, 21.8. 

13C NMR (101 MHz, CDCl3) δ 212.8, 139.6, 115.3, 51.2, 49.5, 45.2, 41.3, 40.1, 34.8, 34.0, 

33.0, 30.1, 23.7, 22.1, 21.8. 

FTIR (NaCl, thin film) 3075, 2953, 2873, 1713, 1633, 1460, 1422, 1382, 1368, 1312, 

1285, 1253, 1228, 1172, 1049, 995, 910 cm.-1  
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HRMS (FAB) calc’d for C15H24O [M]+ 221.1900, found 221.1897. 

 

Preparation of divinyl alcohol 111.  

 

 To a 15 mL round-bottom flask was added vinyl ketone 112 (91.0 mg, 0.413 mmol) 

and the atmosphere was exchanged 3x for N2. Dry THF (4.10 mL) was then added via 

syringe and the reaction cooled to –30 °C using a closely monitored acetone/CO2 bath. 

Vinylmagnesium bromide (2.06 mL, 1.0 M in THF, 2.06 mmol, 5.00 equiv) was then added 

dropwise. The reaction was maintained at –30 °C for 30 minutes, then quenched at that 

temperature with saturated aqueous NaH2PO4. The reaction mixture was diluted with Et2O 

and the layers separated. The aqueous layer was extracted with Et2O (2 x 5 mL) and the 

combined organics were dried over Mg2SO4, filtered, and concentrated in vacuo. The crude 

residue was purified by silica gel flash chromatography (10% EtOAc/hexane) to afford 111 

(92.7 mg, 91% yield) as a colorless oil: ["]$%&.( = +54.4° (c = 1.75, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 5.88 (dd, J = 17.3, 10.6 Hz, 1H), 5.75 (ddd, J = 17.1, 10.2, 

8.7 Hz, 1H), 5.18 (dd, J = 17.3, 1.3 Hz, 1H), 5.01 – 4.85 (m, 3H), 2.32 (t, J = 9.3 Hz, 1H), 

1.92 (q, J = 9.6 Hz, 1H), 1.82 (qt, J = 13.5, 3.4 Hz, 1H), 1.55 (dddd, J = 14.0, 5.3, 3.5, 1.9 

Hz, 1H), 1.48 (dq, J = 13.8, 3.5 Hz, 1H), 1.45 – 1.39 (m, 2H), 1.35 (dd, J = 13.5, 4.0 Hz, 

1H), 1.31 – 1.22 (m, 3H), 1.16 – 1.11 (m, 1H), 1.11 (s, 1H), 1.06 (s, 3H), 0.97 (s, 3H), 0.97 

(s, 3H). 

Me
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13C NMR (101 MHz, CDCl3) δ 148.1, 140.6, 114.6, 110.5, 73.1, 49.0, 48.0, 45.0, 37.6, 

34.6, 34.3, 33.9, 32.8, 30.1, 23.8, 22.7, 17.8. 

FTIR (NaCl, thin film) 3601, 3452 (br), 3077, 2996, 2950, 2932, 2865, 1635, 1459, 1441, 

1413, 1380, 1367, 1343, 1291, 1275, 1250, 1200, 1170, 1081, 1058, 994, 974, 909, 858, 

846, 666 cm.-1  

HRMS (ESI) calc’d for C17H27 [M–OH]+ 231.2107, found 231.2101. 

 

Preparation of allylic alcohol 110.  

 

A 50 mL round-bottom flask containing divinyl alcohol 111 (88.0 mg, 0.355 mmol) 

was pumped into a N2-filled glovebox where Hoveyda–Grubbs second-generation catalyst 

(22.2 mg, 0.035 mmol, 0.100 equiv) was added. The flask was sealed under nitrogen, 

removed from the glovebox and dry benzene (17.7 mL) was added via syringe. The green 

reaction mixture was heated to 80 °C for 3.5 hours, and then cooled to room temperature. 

Ethyl vinyl ether was added to inactivate the catalyst and stirred for 15 minutes before the 

reaction mixture was concentrated in vacuo. The crude residue was purified by silica gel 

flash chromatography (isocratic: 30% Et2O/hexane) to afford allylic alcohol 110 (72.5 mg, 

93% yield) as a pale yellow oil and a single diastereomer at C1: ["]$%&.( = –62.9° (c = 2.67, 

CHCl3). 

1H NMR (400 MHz, CDCl3) δ 5.84 (dd, J = 10.9, 2.5 Hz, 1H), 5.15 (ddd, J = 11.0, 2.9, 2.2 

Hz, 1H), 2.41 (dt, J = 11.6, 2.7 Hz, 1H), 2.09 (td, J = 11.5, 10.7, 7.9 Hz, 2H), 1.69 (ddd, J 

Me
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(93% yield)
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= 13.0, 3.2, 1.1 Hz, 1H), 1.64 (s, 1H), 1.63 – 1.56 (m, 2H), 1.54 – 1.41 (m, 2H), 1.34 – 1.25 

(m, 2H), 1.15 (dd, J = 12.8, 2.2 Hz, 1H), 1.12 – 1.06 (m, 1H), 1.05 (s, 3H), 1.03 (s, 3H), 

0.87 (s, 3H).   

13C NMR (101 MHz, CDCl3) δ 134.1, 132.5, 75.1, 49.9, 45.3, 43.9, 39.0, 38.1, 37.8, 35.0, 

32.6, 30.9, 26.9, 21.3, 20.2. 

FTIR (NaCl, thin film) 3350 (br), 3004, 2948, 2930, 2866, 1460, 1443, 1369, 1380, 1366, 

1329, 1270, 1256, 1238, 1175, 1106, 1044, 1030, 999, 973, 958, 925, 875, 864, 766, 723 

cm.-1 

HRMS (MM) calc’d for C15H23 [M–OH]+ 203.1794, found 203.1790. 

 

Preparation of tertiary alcohol 121.  

 

 To a 100 mL round-bottom flask were added allylic alcohol 110 (107 mg, 0.486 

mmol) and Pd/C (103 mg, 10% by weight, 0.097 mmol, 0.200 equiv). The flask was fitted 

with a septum and the atmosphere exchanged 1x for N2. MeOH (9.7 mL) was then added 

via syringe and the reaction placed under a balloon atmosphere of H2 (purged through a 

needle for 30 seconds). The reaction was stirred vigorously at room temperature for 2.5 

hours, at which time the atmosphere was purged with argon. The reaction mixture was 

filtered over celite, washed thoroughly with Et2O, and the filtrate concentrated in vacuo. 

The crude residue was purified by silica gel flash chromatography (isocratic: 40% 

Me
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Et2O/pentane) to afford 121 (101 mg, 94% yield) as a colorless oil: ["]$%&.( = +6.37° (c = 

0.800, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 1.97 (ddd, J = 11.8, 10.7, 7.9 Hz, 1H), 1.86 – 1.78 (m, 1H), 

1.78 – 1.68 (m, 3H), 1.67 (d, J = 0.8 Hz, 3H), 1.51 – 1.39 (m, 2H), 1.34 (dt, J = 3.5, 2.0 

Hz, 1H), 1.33 – 1.22 (m, 4H), 1.15 – 1.04 (m, 1H), 1.02 (d, J = 12.8 Hz, 1H), 0.97 (s, 3H), 

0.96 (s, 3H), 0.80 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 74.0, 50.2, 46.3, 40.3, 40.1, 39.7, 38.2, 36.4, 34.6, 32.8, 

30.7, 27.1, 22.7, 20.9, 20.7. 

FTIR (NaCl, thin film) 3368 (br), 2948, 2927, 2863, 1460, 1443, 1384, 1364, 1332, 1288, 

1249, 1217, 1183, 1124, 1102, 1050, 1022, 993, 976, 936, 918, 873, 862 cm.-1 

HRMS (ESI) calc’d for C15H25 [M–OH]+ 205.1951, found 205.1951. 

 

Preparation of benzophenone 108. 

 

 Inside a N2-filled glovebox, to a 1 dram vial containing tertiary alcohol 121 (14.4 

mg, 0.065 mmol) were added Pd(OAc)2 (4.36 mg, 0.019 mmol, 0.300 equiv), dppf (21.6 

mg, 0.039 mmol, 0.600 equiv), and NaH (95%, 3.11 mg, 0.130 mmol, 2.00 equiv). PhMe 

(650 µL) was then added and the orange reaction mixture stirred at room temperature for 

5 minutes before aryl bromide 109 (22.8 mg, 0.071 mmol, 1.10 equiv) was added as a solid 

in one portion. The reaction was sealed with a Teflon cap and heated to 110 °C in a 

preheated aluminum block inside the glovebox. After 13.5 hours, the reaction was cooled 
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to room temperature, diluted with EtOAc, and saturated aqueous Na2HPO4 was added. The 

layers were separated and the aqueous layer was extracted with EtOAc until the organic 

layer was colorless. The combined organics were filtered over a plug of celite and Na2SO4. 

The filtrate was concentrated in vacuo and the crude residue purified by silica gel flash 

chromatography (isocratic: 30% hexane/CH2Cl2 + 1% EtOAc) to afford 108 (13.4 mg, 45% 

yield) as a milky white gum: ["]$%&.( = +1.27° (c = 0.345, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.86 – 7.76 (m, 2H), 7.51 (tt, J = 7.5, 2.7 Hz, 1H), 7.44 – 

7.35 (m, 2H), 6.29 (d, J = 2.1 Hz, 1H), 6.23 (d, J = 2.1 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 

1.90 (ddd, J = 12.0, 10.7, 7.9 Hz, 1H), 1.78 (d, J = 2.3 Hz, 1H), 1.73 (t, J = 6.5 Hz, 2H), 

1.68 (dt, J = 13.0, 2.3 Hz, 1H), 1.65 – 1.57 (m, 1H), 1.55 – 1.45 (m, 2H), 1.45 – 1.35 (m, 

3H), 1.27 – 1.23 (m, 2H), 1.22 – 1.11 (m, 2H), 1.04 (d, J = 12.9 Hz, 1H), 0.92 (s, 3H), 0.91 

(s, 3H), 0.69 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 196.0, 161.3, 158.7, 155.2, 138.8, 132.8, 129.6, 128.3, 

116.8, 100.3, 92.5, 86.9, 55.9, 55.6, 47.6, 45.6, 39.7, 37.5, 36.8, 36.2, 36.1, 34.6, 32.7, 30.7, 

27.1, 22.5, 20.9, 20.5. 

FTIR (NaCl, thin film) 3059, 2948, 2930, 2861, 1671, 1601, 1582, 1458, 1451, 1438, 

1420, 1364, 1335, 1312, 1266, 1216, 1199, 1157, 1138, 1107, 1052, 1015, 998, 948, 917, 

843, 819, 802, 721, 702, 689 cm.-1 

HRMS (MM) calc’d for C30H38NaO4 [M+Na]+ 485.2662, found 485.2672. 
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Preparation of Norrish–Yang product 123  

 

 To a 13 x 100 quartz test tube was added benzophenone 108 (15.5 mg, 0.034 mmol). 

The tube was fitted with a 19/38 rubber septum and the atmosphere was exchanged 3 x for 

N2. Rigorously degassed dioxane (4.70 mL, freeze-pump-thawed 3x) was then added via 

syringe and the tube was sealed with electrical tape. The reaction was then placed in a 

bottomless test tube rack in front of a Honeywell 254 nm lamp and irradiated for 1 hour at 

room temperature. The reaction mixture was transferred to a cone-bottom flask and 

concentrated in vacuo. The crude residue was purified by silica gel preparative TLC (30% 

hexane/CH2Cl2 + 1% EtOAc) to afford 125 (2.4 mg, 28% yield) as a white solid and 123 

(1.00 mg, 6.5% yield) as a colorless oil: ["]$%&.( = +13.8° (c = 0.050, CHCl3). Note: an 

additional ~18% yield of a complex mixture of products is also isolated as a single band. 

Although this mixture generally appears similar to 123 by 1H NMR, definitive 

characterization was not achieved.  

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.26 (m, 1H), 7.24 – 7.09 (m, 4H), 6.11 (dd, J = 2.5, 

1.1 Hz, 1H), 6.01 (dd, J = 2.4, 1.2 Hz, 1H), 3.95 (d, J = 1.1 Hz, 1H), 3.78 (d, J = 1.2 Hz, 

3H), 3.35 (d, J = 1.1 Hz, 3H), 2.65 (dd, J = 12.7, 3.5 Hz, 1H), 2.62 – 2.52 (m, 1H), 2.40 (t, 

J = 14.4 Hz, 1H), 2.26 (q, J = 10.4 Hz, 1H), 2.11 – 1.90 (m, 1H), 1.86 (d, J = 13.0 Hz, 1H), 

1.83 – 1.72 (m, 1H), 1.69 – 1.57 (m, 1H), 1.43 – 1.34 (m, 2H), 1.30 – 1.09 (m, 4H), 0.80 

(s, 3H), 0.78 (s, 3H), 0.75 (s, 3H), 0.50 (dt, J = 14.5, 4.2 Hz, 1H). 
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13C NMR (101 MHz, CDCl3) δ 160.5, 158.8, 154.3, 149.3, 127.4, 126.1, 125.8, 111.4, 

94.2, 93.5, 80.6, 74.6, 55.6, 55.4, 48.5, 48.1, 44.0, 37.3, 36.8, 35.7, 35.5, 34.6, 33.2, 30.5, 

26.4, 25.0, 20.6, 20.4. 

FTIR (NaCl, thin film) 3542 (br), 3312, 3187 (br), 2960, 2924, 2854, 1738, 1726, 1710, 

1666, 1614, 1592, 1492, 1462, 1453, 1445, 1423, 1376, 1366, 1351, 1332, 1261, 1215, 

1203, 1150, 1112, 1045, 1020, 865, 800, 736, 702, 664 cm.-1 

HRMS (MM) calc’d for C30H37O3 [M–OH]+ 445.2737, found 445.2729. 

Preparation of exo-enone 130. 

 

To a 200 mL round-bottom flask were added vinyl ketone 112 (884 mg, 4.01 

mmol), aryl aldehyde 129 (1.08 g, 4.41 mmol, 1.10 equiv), and KOH (1.13 g, 20.1 mmol, 

5.00 equiv). Freshly distilled MeOH (40.1 mL) was then added, the flask fitted with a reflux 

condenser under ambient conditions and heated to 80 °C for 12 hours. At completion, the 

volume of MeOH was reduced in vacuo and the reaction quenched with a saturated solution 

of aqueous NH4Cl. Et2O was added and the layers were separated. The aqueous layer was 

extracted twice with Et2O and the combined organic layers were dried over MgSO4, 

filtered, and concentrated in vacuo. The crude residue was purified by silica gel flash 

Me
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chromatography (isocratic: 20% Et2O/hexane) to afford exo-enone 130 (1.66 g, 92% yield) 

as an off-white solid: ["]$%&.( = +11.4° (c = 1.08, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.11 (t, J = 2.0 Hz, 1H), 6.75 (d, J = 2.3 Hz, 1H), 6.40 (d, 

J = 2.3 Hz, 1H), 5.74 (ddd, J = 17.1, 10.3, 8.6 Hz, 1H), 4.95 (ddd, J = 24.7, 2.1, 0.8 Hz, 

1H), 4.94 (td, J = 2.3, 0.8 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 2.44 – 2.20 (m, 5H), 2.12 (td, 

J = 10.0, 8.5 Hz, 1H), 1.55 (ddd, J = 13.3, 10.3, 6.0 Hz, 1H), 1.50 (ddd, J = 10.7, 8.4, 0.6 

Hz, 1H), 1.45 (d, J = 10.4 Hz, 1H), 1.38 (dtd, J = 11.0, 5.0, 2.1 Hz, 1H), 0.99 (s, 3H), 0.98 

(s, 3H), 0.93 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.2, 160.8, 158.6, 139.6, 139.2, 130.5, 125.1, 118.7, 

115.3, 109.0, 98.1, 55.8, 55.7, 50.3, 49.4, 45.0, 36.5, 34.9, 33.2, 32.5, 30.1, 24.7, 23.7, 22.6. 

FTIR (NaCl, thin film) 3073, 2952, 2863, 1686, 1599, 1558, 1482, 1461, 1435, 1407, 

1381, 1367, 1303, 1259, 1214, 1153, 1051, 1035, 996, 938, 911, 960, 831, 795 cm.-1 

HRMS (MM) calc’d for C24H32BrO3 [M+H]+ 447.1529, found 447.1520. 

Preparation of divinyl alcohols 128 and S7.  

 

 A 100 mL round-bottom flask was flame dried under vacuum and backfilled with 

N2. Dry THF (21.2 mL) was then added, followed by freshly prepared vinyllithium as a 

solution in THF (8.42 mL, 0.756 M, 3.00 equiv). The solution was cooled to –78 °C and 

(3 equiv)
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exo-enone 130 (928 mg, 2.07 mmol) was taken up in 5.0 mL THF and added dropwise over 

5 minutes. After 40 minutes, the reaction was quenched with a saturated solution of NH4Cl 

and warmed to room temperature. The mixture was diluted with Et2O and the layers were 

separated. The aqueous layer was extracted twice with Et2O and the combined organic 

layers were dried over MgSO4, filtered, and concentrated in vacuo. The crude residue was 

purified by silica gel flash chromatography (30% hexane/CH2Cl2 + 1% EtOAc until 

unreacted 130 and S7 elute, then 5% EtOAc/CH2Cl2) to afford 128 (536 mg, 54%) as a 

thick, colorless oil, S7 (260 mg, 26%) as a thick, colorless oil, and recovered 130 (164 mg, 

18%). 

Preparation of vinyllithium:  

 THF (38.0 mL) was added to a flame-dried 200 mL round-bottom flask under N2, 

followed by tetravinyl tin (2.10 mL, 11.5 mmol). The solution was cooled to –78 °C and 

n-BuLi (17.3 mL, 2.5 M in hexanes, 43.3 mmol, 3.76 equiv) was added dropwise. The 

reaction was stirred for 20 minutes at  –78 °C, then lifted out of the ice bath and allowed 

to warm to room temperature. The reaction was allowed to stir at room temperature for at 

least 2 hours before use, provides a ~0.756 M solution of vinyllithium (note: highest yields 

for 1,2-addition are obtained after stirring for 6 hours, at which time the mixture should be 

slightly milky grey in appearance).  

Data for 128 (major diastereomer, peak 2):	["]$%&.( = –23.8° (c = 1.07, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.73 (d, J = 2.3 Hz, 1H), 6.40 (d, J = 2.3 Hz, 1H), 6.19 (dd, 

J = 17.2, 10.6 Hz, 1H), 6.04 (d, J = 1.5 Hz, 1H), 5.77 (ddd, J = 17.1, 10.2, 8.9 Hz, 1H), 

5.46 (dd, J = 17.3, 1.6 Hz, 1H), 5.21 (dd, J = 10.6, 1.5 Hz, 1H), 4.92 (dddd, J = 17.0, 14.0, 

2.2, 0.8 Hz, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 2.40 – 2.22 (m, 2H), 2.07 (q, J = 9.6 Hz, 1H), 
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1.92 (dt, J = 14.3, 4.5 Hz, 1H), 1.51 (q, J = 14.0, 13.3 Hz, 2H), 1.44 (d, J = 12.7 Hz, 1H), 

1.41 (d, J = 9.4 Hz, 2H), 1.35 – 1.17 (m, 2H), 1.12 (s, 3H), 0.97 (d, J = 1.2 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 159.7, 158.3, 146.6, 145.3, 140.5, 125.3, 120.4, 119.7, 

114.8, 112.9, 108.5, 98.1, 76.1, 55.8, 55.7, 49.3, 47.0, 46.1, 34.7, 34.6, 34.4, 33.1, 30.0, 

23.8, 23.4, 22.9. 

FTIR (NaCl, thin film) 3424 (br) 3001, 2950, 2930, 2858, 2832, 1599, 1560, 1483, 1459, 

1434, 1406, 1379, 1366, 1301, 1268, 1210, 1145, 1053, 1037, 994, 910, 879, 811 cm.-1 

HRMS (MM) calc’d for C26H34BrO2 [M–OH]+ 457.1742, found 457.1744. 

 

Data for S7 (minor diastereomer, peak 1): ["]$%&.( = –34.2° (c = 1.03, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 2.4 Hz, 1H), 6.42 (d, J = 2.3 Hz, 1H), 6.23 (d, 

J = 1.4 Hz, 1H), 6.09 (dd, J = 17.4, 10.3 Hz, 1H), 5.77 (ddd, J = 17.2, 10.2, 8.7 Hz, 1H), 

5.48 (dd, J = 17.4, 1.5 Hz, 1H), 5.16 (dd, J = 10.3, 1.5 Hz, 1H), 4.93 (dddd, J = 18.0, 15.2, 

2.2, 0.8 Hz, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 2.35 (t, J = 9.3 Hz, 1H), 2.15 – 2.02 (m, 2H), 

1.90 (dddd, J = 14.3, 12.8, 4.4, 1.6 Hz, 1H), 1.77 – 1.65 (m, 2H), 1.59 (d, J = 13.2 Hz, 1H), 

1.49 – 1.41 (m, 2H), 1.34 (td, J = 12.8, 4.3 Hz, 1H), 1.11 (dtd, J = 12.6, 4.0, 1.9 Hz, 1H), 

0.97 (d, J = 1.1 Hz, 6H), 0.89 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.6, 158.4, 146.2, 144.9, 140.6, 125.4, 120.9, 117.9, 

115.6, 114.8, 108.4, 98.1, 75.8, 55.8, 55.7, 49.6, 49.1, 46.5, 35.6, 34.9, 34.5, 33.1, 30.1, 

25.0, 23.8, 22.3. 

FTIR (NaCl, thin film) 3451 (br) 3073, 2998, 2951, 2934, 2858, 1630, 1560, 1560, 1482, 

1461, 1434, 1406, 1380, 1366, 1301, 1266, 1211, 1150, 1038, 996, 936, 909, 884, 830, 813 

cm.-1  
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HRMS (MM) calc’d for C26H34BrO2 [M–OH]+ 457.1742, found 457.1744. 

Preparation of allylic alcohol 127.  

 

A 250 mL round-bottom flask containing divinyl alcohol 128 (807 mg, 1.70 mmol) 

was pumped into a N2-filled glovebox where Hoveyda–Grubbs second-generation catalyst 

(106 mg, 0.170 mmol, 0.100 equiv) and 1,4-benzoquinone (18.4 mg, 0.170 mmol, 0.100 

equiv) were added. The flask was sealed under nitrogen, removed from the glovebox, and 

dry benzene (85.0 mL) was added via syringe. The green reaction mixture was heated to 

80 °C for 12 hours, then cooled to room temperature. Ethyl vinyl ether was added to 

inactivate the catalyst and stirred for 15 minutes before the reaction mixture was 

concentrated in vacuo. The crude residue was purified by silica gel flash chromatography 

(20–30% Et2O/hexane) to afford allylic alcohol 127 (704 mg, 93%) as a white foam and a 

single diastereomer at C1: ["]$%&.( = +95.5° (c = 0.815, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.74 (d, J = 2.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 6.32 (d, 

J = 1.7 Hz, 1H), 5.84 (dd, J = 10.8, 2.4 Hz, 1H), 5.34 (ddd, J = 10.8, 2.8, 2.1 Hz, 1H), 3.79 

(s, 3H), 3.74 (s, 3H), 2.53 (dt, J = 11.6, 2.6 Hz, 1H), 2.37 (td, J = 11.2, 7.9 Hz, 1H), 2.28 

(dd, J = 12.8, 2.3 Hz, 1H), 2.18 (dddd, J = 15.1, 11.0, 6.0, 1.9 Hz, 1H), 2.08 (ddd, J = 15.1, 
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5.2, 3.6 Hz, 1H), 1.75 (s, 1H), 1.60 – 1.46 (m, 2H), 1.41 (dd, J = 12.9, 2.2 Hz, 1H), 1.37 – 

1.22 (m, 2H), 1.08 (s, 3H), 1.06 (s, 3H), 0.90 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.6, 158.5, 147.7, 134.6, 131.6, 125.5, 120.8, 116.3, 

108.5, 98.2, 76.7, 55.9, 55.7, 50.9, 45.4, 43.4, 38.3, 37.5, 35.1, 32.3, 30.9, 26.2, 24.5, 21.5. 

FTIR (NaCl, thin film) 3422 (br) 3002, 2949, 2930, 2862, 1599, 1562, 1481, 1462, 1455, 

1434, 1405, 1366, 1302, 1267, 1211, 1149, 1037, 1015, 979, 938, 870, 858, 830, 813, 772, 

755 cm.-1 

HRMS (MM) calc’d for C24H30BrO2 [M–OH]+ 429.1429, found 429.1429. 

Preparation of aryl bromides 134 and S8.  

 

Inside a N2-filled glovebox, Crabtree’s catalyst (59.6 mg, 0.074 mmol, 0.05 equiv) 

was added to a 100 mL round-bottom flask containing allylic alcohol 127 (663 mg, 1.48 

mmol). CH2Cl2 (14.8 mL) was added and the flask was placed inside a steel bomb, which 

was closed under nitrogen and brought out of the glovebox. The pressure gauge was 

quickly attached and all bolts on the bomb tightened with a wrench. The bomb was 

connected to a H2 inlet and the vessel purged with 250 psi H2 three times before being 

charged to 500 psi. The reaction was stirred at room temperature for 3 hours, at which time 

H2 was vented from the reaction. CH2Cl2 was removed in vacuo and the crude residue 

127

H2 (500 psi), CH2Cl2

(95% total yield, 16:1 dr)
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purified by silica gel flash chromatography (isocratic: 40% Et2O/hexane) to afford aryl 

bromides 134 (599 mg, 90%) and S8 (37.4 mg, 5%) as white, crystalline solids. 

Data for 134 (major diastereomer, peak 2): ["]$%&.( = –20.5° (c = 0.900, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.70 (d, J = 2.4 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 3.79 (s, 

3H), 3.77 (s, 3H), 3.03 (dd, J = 13.2, 2.7 Hz, 1H), 2.61 (dd, J = 13.2, 10.0 Hz, 1H), 2.08 

(ddd, J = 11.9, 10.6, 7.9 Hz, 1H), 1.95 (ddd, J = 13.8, 10.4, 3.6 Hz, 1H), 1.83 (dd, J = 12.8, 

2.6 Hz, 1H), 1.78 – 1.57 (m, 4H), 1.57 – 1.34 (m, 5H), 1.34 – 1.23 (m, 2H), 1.01 (s, 3H), 

0.99 (s, 3H), 0.96 (dd, J = 12.9, 5.6 Hz, 2H), 0.77 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 158.9, 158.9, 125.9, 122.8, 108.9, 98.4, 76.2, 55.9, 55.6, 

51.7, 50.1, 45.4, 38.7, 38.0, 36.0, 35.0, 33.9, 33.3, 30.8, 28.5, 26.6, 26.3, 21.3, 21.0. 

FTIR (NaCl, thin film) 3474 (br), 3000, 2946, 2930, 2862, 1603, 1568, 1482, 1461, 1435, 

1410, 1294, 1272, 1212, 1198, 1151, 1130, 1054, 1038, 999, 937, 876, 831, 756 cm.-1  

HRMS (MM) calc’d for C24H34BrO2 [M–OH]+ 433.1737, found 433.1685. 

 

Data for S8 (minor diastereomer, peak 1): ["]$%&.( = –27.7° (c = 0.950, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.72 (d, J = 2.5 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 3.80 (s, 

3H), 3.78 (s, 3H), 2.85 (dd, J = 13.6, 5.8 Hz, 1H), 2.59 (dd, J = 13.6, 8.1 Hz, 1H), 2.29 

(dddd, J = 11.4, 8.0, 5.8, 3.5 Hz, 1H), 1.98 (ddd, J = 11.0, 9.4, 6.7 Hz, 2H), 1.80 – 1.52 (m, 

4H), 1.52 – 1.37 (m, 4H), 1.37 – 1.26 (m, 4H), 1.25 (s, 1H), 0.94 (s, 6H), 0.78 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 158.9, 158.5, 126.1, 123.0, 109.2, 98.3, 75.2, 55.8, 55.7, 

49.3, 46.4, 45.4, 41.0, 38.5, 36.9, 36.6, 33.8, 30.5, 30.4, 29.2, 27.6, 24.2, 24.1, 21.5. 
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FTIR (NaCl, thin film) 3482 (br), 2998, 2945, 2928, 2859, 1690, 1648, 1602, 1567, 1482, 

1459, 1435, 1409, 1381, 1364, 1294, 1273, 1211, 1198, 1154, 1134, 1051, 1039, 973, 937, 

830, 809, 756. 

HRMS (MM) calc’d for C24H35BrO3Na [M+Na]+ 475.1818, found 475.1858. 

Preparation of pentacycle 135.  

 

 Aryl bromide 134 (274 mg, 0.607 mmol) was added to each of two 20 mL 

scintillation vials and pumped inside a N2-filled glovebox, where CuI (23.1 mg, 0.121 

mmol, 0.200 equiv), 2,2'-bipyridine (18.9, 0.121 mmol, 0.200 equiv), and KOt-Bu (204, 

1.82 mmol, 3.00 equiv) were added as solids to each. Dry DMF (6.10 mL) was then added, 

the reaction sealed under N2 with a Teflon screw-cap and heated to 120 °C in a pre-heated 

aluminum block inside the glovebox for 3.5 hours. After cooling to room temperature, the 

reaction mixtures were combined and loaded directly onto a short silica gel column, pre-

equilibrated with 5% Et2O/hexane. The column was eluted with 5% Et2O/hexane 

(isocratic) to afford pentacycle 135 (339 mg, 75%) as a white solid: ["]$%&.( = +42.4° (c = 

1.08, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.02 (d, J = 2.4 Hz, 1H), 6.00 (d, J = 2.4 Hz, 1H), 3.77 (s, 

3H), 3.74 (s, 3H), 2.55 (dd, J = 16.6, 4.0 Hz, 1H), 2.20 – 2.03 (m, 2H), 1.97 (dd, J = 12.6, 

134
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(75% yield)
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2.3 Hz, 1H), 1.77 (dddd, J = 18.7, 9.0, 7.4, 4.8 Hz, 2H), 1.69 – 1.55 (m, 4H), 1.52 – 1.41 

(m, 3H), 1.32 (t, J = 10.7, 9.6 Hz, 2H), 1.32 – 1.20 (m, 1H), 1.17 (dd, J = 12.6, 1.1 Hz, 

1H), 0.99 (s, 3H), 0.97 (s, 3H), 0.86 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.5, 158.3, 154.4, 104.5, 94.2, 90.8, 79.9, 55.5, 55.4, 

48.0, 44.3, 40.9, 38.0, 36.9, 35.6, 35.1, 33.5, 30.8, 28.4, 27.1, 26.5, 22.8, 20.9, 19.9. 

FTIR (NaCl, thin film) 2995, 2945, 2928, 2862, 2843, 1617, 1589, 1494, 1460, 1420, 

1363, 1288, 1215, 1201, 1186, 1164, 1145, 1108, 1074, 1054, 1033, 1008, 942, 928, 810 

cm.-1 

HRMS (MM) calc’d for C24H35O3 [M+H]+ 371.2581, found 371.2578. 

Preparation of benzylic ethers 137 and S9. 

 

To a flame-dried 25 mL round-bottom flask was added pentacycle 135 (80.0 mg, 

0.216 mmol) and the atmosphere exchanged three times for argon. A 1:1 mixture of dry 

MeCN/CH2Cl2 (6.40 mL) was then added, followed by ethoxyethanol (1.54 mL) via 

syringe and the solution cooled to 0 °C. A previously prepared stock solution of DDQ in 

dry MeCN (0.860 mL, 0.508 M, 2.00 equiv) was then added dropwise. The reaction turned 

grey/blue immediately upon addition of DDQ and slowly turned green-blue by the end of 

addition. Once the addition was complete, the reaction was lifted from the ice bath and 

gradually warmed to room temperature. The color became an olive green-brown after 1 

1:1 CH2Cl2/MeCN
0 °C to rt

(60% yield, 2 cycles, 4.8:1 dr)
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hour, indicating the reaction had stalled at ~50% conversion (as judged by TLC). At this 

point, the reaction was quenched with a saturated solution of aqueous NaHCO3 and stirred 

vigorously for 10 minutes before the layers were separated. The aqueous layer was 

extracted twice more with CH2Cl2 and the combined organic layers were washed with one 

portion of DI H2O, dried over Na2SO4, filtered and concentrated in vacuo. The crude 

residue was purified by silica gel flash chromatography: SiO2 was first deactivated by 

applying a few drops of aqueous NH4OH (28%) to the top of a dry column and equilibrating 

with 100 mL of 5% Et2O/hexane. The crude residue was then applied and eluted with fresh 

5% Et2O/hexane until unreacted 135 elutes completely, then 20% Et2O/hexane until 

complete elution of second diastereomer to afford a mixture of 137 and S9 (41.0 mg, 41% 

yield) as a colorless, foamy residue, and recovered starting material 135 (40.8 mg, 51%). 

The recovered starting material was re-subjected to the reaction conditions described above 

to afford additional 137 and S9 (18.8 mg, 60% total over 2 cycles) and 135 (15.2 mg, 74% 

overall brsm). Analytically pure samples of 137 and S9 were obtained by silica gel 

preparative TLC (30% Et2O, 1% Et3N/hexane) and a representative spectrum of the 

mixture as used in the next step is also provided.  

Data for 95 (major diastereomer, peak 1): ["]$%&.( = +43.5° (c = 0.815, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.01 (d, J = 2.4 Hz, 1H), 5.94 (d, J = 2.3 Hz, 1H), 4.27 (d, 

J = 3.3 Hz, 1H), 3.98 (dt, J = 9.8, 4.9 Hz, 1H), 3.81 (dd, J = 10.9, 5.1 Hz, 1H), 3.79 (s, 3H), 

3.73 (s, 3H), 3.58 (dd, J = 5.9, 4.9 Hz, 2H), 3.53 (q, J = 7.0 Hz, 2H), 2.48 – 2.36 (m, 1H), 

2.21 (qd, J = 14.4, 4.1 Hz, 1H), 2.10 (ddd, J = 12.2, 10.7, 7.9 Hz, 1H), 2.00 (dd, J = 12.7, 

2.3 Hz, 1H), 1.79 – 1.61 (m, 3H), 1.59 – 1.41 (m, 4H), 1.42 – 1.20 (m, 4H), 1.20 (t, J = 7.0 

Hz, 3H), 0.99 (s, 3H), 0.98 (s, 3H), 0.86 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 161.1, 159.7, 154.7, 106.6, 93.8, 91.2, 80.5, 72.1, 71.4, 

70.5, 66.7, 55.4, 55.4, 49.3, 47.6, 46.1, 39.4, 39.3, 36.3, 34.8, 33.5, 32.4, 30.8, 26.8, 23.1, 

22.3, 20.8, 15.4. 

FTIR (NaCl, thin film) 2948, 2930, 2864, 1614, 1589, 1491,1462, 1438, 1424, 1365, 1353, 

1332, 1320, 1287, 1215, 1202, 1189, 1166, 1148, 1109, 1053, 1033, 1005, 951, 921, 866, 

811, 731, 638 cm.-1 

HRMS (MM) calc’d for C24H33O3 [M–O(CH2)2OEt]+ 369.2424, found 369.2430. 

 
Data for S9 (minor diastereomer, peak 2): ["]$%&.( = +29.6° (c = 0.230, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.02 (d, J = 2.4 Hz, 1H), 5.92 (d, J = 2.4 Hz, 1H), 4.30 (d, 

J = 10.4 Hz, 1H), 3.78 (s, 3H), 3.75 (ddd, J = 9.1, 3.0, 1.3 Hz, 1H), 3.73 (s, 3H), 3.58 – 

3.45 (m, 5H), 2.24 – 2.04 (m, 2H), 1.92 (ddt, J = 14.7, 9.9, 3.2 Hz, 2H), 1.80 – 1.64 (m, 

2H), 1.65 – 1.40 (m, 5H), 1.36 – 1.19 (m, 4H), 1.19 (t, J = 7.0 Hz, 3H), 0.97 (s, 3H), 0.96 

(s, 3H), 0.86 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 161.0, 160.0, 155.9, 105.8, 94.2, 91.7, 81.7, 73.4, 70.5, 

67.8, 66.7, 55.5, 55.4, 48.2, 47.2, 44.4, 37.8, 37.2, 35.6, 35.1, 33.2, 30.8, 28.4, 26.4, 23.7, 

20.9, 20.4, 15.4. 

FTIR (NaCl, thin film) 2947, 2934, 2864, 1613, 1587, 1490, 1459, 1438, 1421, 1364, 

1349, 1312, 1288, 1267, 1245, 1216, 1202, 1147, 1107, 1054, 1034, 1002, 973, 943, 868. 

812, 736, 636 cm.-1 

HRMS (MM) calc’d for C24H33O3 [M–O(CH2)2OEt]+ 369.2424, found 369.2427. 
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Preparation of diarylmethanes 126 and S10.  

 

 A 10 mL round-bottom flask containing CuCN (11.9 mg, 0.133 mmol, 2.05 equiv) 

was flame-dried under vacuum. After cooling to room temperature, the flask was backfilled 

with argon and dry Et2O (2.70 mL) was added via syringe. The suspension was cooled to 

–78 °C under argon and PhLi (0.140 mL, 1.9 M in dibutyl ether, 0.266 mmol, 4.09 equiv) 

was added dropwise. After stirring at –78 °C for 5 minutes, the reaction was warmed to 0 

°C and stirred for an additional 30 minutes. The higher-order cuprate was then cooled back 

to –78 °C and the 4.8:1 mixture of benzylic ethers 137 and S9 (30.0 mg, 0.065 mmol) was 

as a solution in Et2O (1.00 mL). The reaction was stirred for 1-2 minutes before BF3•OEt2 

(0.160 mL, 1.30 mmol, 20.0 equiv) was added dropwise via syringe. The reaction was 

stirred at –78 °C for 10 minutes, then quickly transferred to a pre-equilibrated bath at –55 

°C, which was allowed to –50 °C over 5 minutes, then maintained at or just below –45 °C 

for another 30 minutes. The reaction was checked for completion by TLC, then quenched 

with aqueous NaHCO3 and warmed to room temperature. The layers were separated and 

the aqueous layer extracted twice with Et2O. The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by silica gel 

flash chromatography (isocratic: 5% Et2O/hexane) to afford diarylmethanes 126 and S10 
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(26.3 mg, 90%) as a 2:1 inseparable mixture, white solid: ["]$%&.(  = +2.08° (c = 1.23, 

CHCl3). 

1H NMR (2:1 dr, asterisk denotes minor diastereomer, 400 MHz, CDCl3) δ 7.24 – 6.96 (m, 

5H), 6.10* (d, J = 2.4 Hz, 1H), 6.07 (d, J = 2.5 Hz, 1H), 6.03* (d, J = 2.4 Hz, 1H), 5.93 (d, 

J = 2.4 Hz, 1H), 4.10* (d, J = 6.4 Hz, 1H), 3.79* (s, 3H), 3.76 (s, 3H), 3.46* (s, 3H), 3.47 

(d, J = 11.3 Hz, 1H), 3.20 (s, 3H), 2.23 – 2.06 (m, 1H), 2.00 (dd, J = 12.7, 2.4 Hz, 1H), 

1.93* (dd, J = 12.6, 2.5 Hz, 1H), 1.88 – 1.73 (m, 2H), 1.73 – 1.60 (m, 3H), 1.55 – 1.41 (m, 

4H), 1.39 – 1.26 (m, 5H), 1.20 (q, J = 13.1, 12.1 Hz, 1H), 1.00 (s, 3H), 0.99 (s, 3H), 0.92* 

(s, 3H), 0.83 (s, 3H), 0.82* (s, 3H), 0.74* (s, 3H). 

13C NMR (126, major diastereomer, 101 MHz, CDCl3) δ 160.0, 159.2, 155.2, 146.7, 129.8, 

127.7, 125.4, 109.2, 94.5, 92.7, 80.4, 55.3, 55.2, 50.7, 48.1, 44.3, 41.9, 37.9, 36.9, 35.6, 

35.1, 33.3, 30.8, 28.2, 26.3, 24.3, 20.9, 20.2. 

13C NMR (S9, minor diastereomer 101 MHz, CDCl3) δ 160.1, 159.2, 155.1, 141.5, 128.9, 

127.0, 125.5, 106.4, 94.1, 91.5, 80.7, 55.6, 55.4, 50.0, 45.8, 44.3, 39.3, 38.5, 36.7, 35.5, 

35.0, 33.2, 32.7, 30.8, 26.2, 25.8, 20.9, 20.4. 

FTIR (NaCl, thin film) 3081, 3059, 3025, 2998, 2948, 2934, 2864, 2843, 1614, 1588, 

1490,1460, 1454, 1440, 1420, 1364, 1307, 1288, 1274, 1249, 1216, 1202, 1166, 1148, 

1123, 1105, 1076, 1054, 1033, 1005, 943, 870, 811, 759, 740, 701 cm.-1 

HRMS (MM) calc’d for C30H39O3 [M+H]+ 447.2894, found 447.2905.  
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Preparation of resorcinols 138 and S11.  

 

 Solid pyridine•HCl (1.44 g, 12.5 mmol, 307 equiv) was weighed into each of two 

2-dram vials, containing a 2:1 mixture of diarylmethanes 126 and S10 (18.2 mg, 0.041 

mmol). The vials were sealed with a Teflon screw-cap under a stream of argon and heated 

to 200 °C in a pre-heated aluminum block for 2.5 hours. (Note: it is important to choose a 

vial/heating block combination that will cover the entire volume of the solid to ensure that 

it stays completely melted during the course of the reaction). The reactions were cooled to 

room temperature, during which time the mixture solidified. The crude solids were 

dissolved in DI H2O, and combined by pipetting dropwise into an Erlenmeyer flask 

containing a saturated solution of aqueous NaHCO3. EtOAc was then added and the layers 

were separated. The aqueous layer was extracted three times with EtOAc and the combined 

organic layers were dried over MgSO4 and concentrated in vacuo. The crude residue was 

purified by silica gel flash chromatography (isocratic: 10% EtOAc, 1% AcOH/hexane) to 

separate resorcinols 138 and S11. The concentrated fractions for each diastereomer 

(initially a pale orange oil) were each passed through another short plug of silica gel 

(eluting with 20% EtOAc/heaxnes) to remove residual AcOH and remaining trace 

impurities to afford 138 (21.3 mg, 62%) and S11 (10.3 mg, 30%) as white solids.  

Data for 138 (major diastereomer, peak 1): ["]$%&.( = –28.2° (c = 0.475, CHCl3). 
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1H NMR (400 MHz, CDCl3) δ 7.44 – 7.26 (m, 5H), 6.00 (d, J = 2.6 Hz, 1H), 5.88 (d, J = 

2.6 Hz, 1H), 4.73 (s, 1H), 4.46 (s, 1H), 3.49 (d, J = 11.4 Hz, 1H), 2.16 (ddd, J = 12.3, 10.4, 

7.9 Hz, 1H), 2.01 (dd, J = 12.8, 2.3 Hz, 1H), 1.85 – 1.58 (m, 4H), 1.54 – 1.44 (m, 2H), 1.44 

– 1.30 (m, 4H), 1.28 (m, 1H), 1.18 (d, J = 12.9 Hz, 1H), 1.10 – 1.03 (m, 1H), 1.00 (s, 3H), 

0.99 (s, 3H), 0.85 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 156.1, 155.8, 155.4, 142.3, 128.0, 106.3, 97.7, 96.8, 80.1, 

50.5, 48.1, 44.2, 41.8, 37.8, 36.9, 35.6, 35.2, 33.3, 30.8, 28.6, 26.3, 24.0, 20.9, 20.0. 

FTIR (NaCl, thin film) 3511 (br), 3386 (br), 3060, 3024, 2948, 2928, 2863, 1702, 1627, 

1598, 1509, 1492, 1459, 1364, 1349, 1320, 1272, 1248, 1228, 1166, 1138, 1087, 1072, 

1057, 1034, 1014, 925, 869, 831, 761, 738, 703, 667, 638, 571, 516 cm.-1 

HRMS (MM) calc’d for C28H35O3 [M+H]+ 419.2581, found 419.2591. 

 

Data for S11 (minor diastereomer, peak 2): ["]$%&.( = +26.7° (c = 0.180, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.21 (m, 5H), 6.02 (d, J = 2.5 Hz, 1H), 5.96 (d, J = 

2.5 Hz, 1H), 4.73 (s, 1H), 4.30 (s, 1H), 4.00 (d, J = 7.0 Hz, 1H), 2.16 (ddd, J = 12.5, 7.0, 

3.9 Hz, 1H), 1.93 (dd, J = 12.7, 2.3 Hz, 2H), 1.79 (ddd, J = 12.3, 10.3, 7.8 Hz, 1H), 1.66 

(ddd, J = 12.4, 8.7, 5.4 Hz, 1H), 1.57 – 1.43 (m, 5H), 1.39 – 1.28 (m, 4H), 1.23 – 1.12 (m, 

3H), 1.09 – 0.95 (m, 2H), 0.91 (s, 3H), 0.82 (s, 3H), 0.75 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 156.2, 155.7, 155.4, 138.6, 127.4, 104.8, 97.6, 95.9, 80.4, 

49.7, 45.6, 44.2, 39.6, 38.3, 36.6, 35.4, 35.1, 33.2, 32.0, 30.8, 29.9, 26.1, 25.4, 20.8, 20.3. 

FTIR (NaCl, thin film) 3385 (br), 3027, 2949, 2925, 2857, 1624, 1600, 1508, 1493, 1459, 

1452, 1377, 1364, 1247, 1190, 1163, 1143, 1086, 1055, 1034, 1015, 925, 826, 761, 721, 

701 cm.-1 
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HRMS (MM) calc’d for C28H35O3 [M+H]+ 419.2581, 419.2595. 

Preparation of (+)-psiguadial B (8).  

 

 To a 2-dram vial was added resorcinol 138 (15.4 mg, 0.037 mmol) and the 

atmosphere exchanged three times for N2. CH2Cl2 (1.30 mL) was then added via syringe, 

followed by dichloromethyl methyl ether (0.083 mL, 0.920 mmol, 25.0 equiv). The 

solution was cooled to –78 °C and a freshly prepared stock solution of TiCl4 (0.190 mL, 

0.912 M in CH2Cl2, 0.173 mmol, 4.68 equiv) was added dropwise. The reaction 

immediately turned dark red. The reaction was stirred at –78 °C for 5 minutes, then warmed 

to room temperature and stirred for an additional 3 hours and 40 minutes. DI H2O (2.00 

mL) was then added via syringe and the reaction stirred vigorously for 15 minutes before 

the layers were separated. The aqueous layer was extracted five times with CH2Cl2 and the 

combined organic layers were filtered over a plug of Na2SO4 and concentrated in vacuo. 

The crude residue was purified by silica gel flash chromatography (isocratic: 2% 

EtOAc/hexane + 1% AcOH) to afford (+)-psiguadial B (8) (8.7 mg, 50%) as an ivory solid. 

Note: 3 is streaky on SiO2 and after an initial concentrated band elutes, approximately 12% 

of the product is contained in the following very dilute fractions. The natural product is 

weakly UV active, but can also be visualized by TLC using 2,4-dinitrophenylhydrazine 

stain. 

Me

H

H

Me
Me

O OH

OH
H

Ph

CH2Cl2, –78 °C to rt;
then, H2O

(50% yield)
138

Me

H

H

Me
Me

O OH

OH
H

Ph

CHO

CHO

(+)-psiguadial B (8)
HepG2 IC50 = 46 nM

Cl Cl

OMe

,  TiCl4
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["]$%&.( = +94.0° (c = 0.265, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 13.51 (s, 1H), 13.04 (s, 1H), 10.07 (s, 2H), 7.26 (dd, J = 

14.6, 1.5 Hz, 2H), 7.23 – 7.17 (m, 1H), 7.10 (br s, 2H), 3.49 (d, J = 11.5 Hz, 1H), 2.20 – 

2.12 (m, 1H), 2.09 (dd, J = 12.7, 2.4 Hz, 1H), 1.92 (ddd, J = 14.9, 12.8, 4.2 Hz, 1H), 1.82 

(ddd, J = 12.3, 8.8, 5.6 Hz, 1H), 1.73 – 1.59 (m, 3H), 1.53 – 1.44 (m, 1H), 1.49 (ddd, J = 

11.6, 8.1, 2.9 Hz, 2H), 1.44 – 1.29 (m, 4H), 1.05 (dd, J = 7.6, 5.8 Hz, 1H), 1.02 (s, 3H), 

1.00 (s, 3H), 0.85 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 192.3, 191.5, 169.6, 168.5, 163.5, 143.4, 128.2, 126.2, 

105.7, 104.6, 104.1, 84.1, 50.0, 47.4, 44.0, 40.4, 37.6, 36.9, 35.4, 35.1, 33.4, 30.6, 29.3, 

26.1, 23.9, 20.7, 20.1. 

FTIR (NaCl, thin film) 3026, 2945, 2926, 2864, 2720, 1633, 1603, 1493, 1437, 1382, 

1363, 1300, 1270, 1251, 1231, 1184, 1154, 1143, 1031, 1006, 976, 926, 917, 875, 851, 

840, 824, 768, 701, 636, 618, 606, 564 cm.-1 

HRMS (MM) calc’d for C30H35O5 [M+H]+ 475.2479, found 475.2487. 
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(+)-psiguadial B (8) carbon numbering as reported by Shao et al.15  

 

Comparison of 1H NMR spectral data for natural and synthetic (+)-psiguadial B (3). 

carbon 
number 

Natural (+)-psiguadial B 
1H NMR, 500 MHz, CDCl3 

Synthetic (+)-psiguadial B 
1H NMR, 400 MHz, CDCl3 

5'-OH δ 13.51 (s, 1H) δ 13.51 (s, 1H) 
7'-OH 13.04 (s, 1H) 13.04 (s, 1H) 
14', 15' 10.08 (s, 2H) 10.07 (s, 2H) 
9', 13' 7.23 (2H) 7.26 (dd, J = 14.6, 1.5 Hz, 2H) 

11' 7.18 (3H) 7.23 – 7.17 (m, 1H) 
10', 12' – 7.10 (br m, 2H) 

1' 3.49 (d, J = 11.5 Hz, 1H) 3.49 (d, J = 11.5 Hz, 1H) 
2 2.16 (1H) 2.20 – 2.12 (m, 1H) 
12 2.08 (1H) 2.09 (dd, J = 12.7, 2.4 Hz, 1H) 

7 1.93 (1H) 
1.92 (ddd, J = 14.9, 12.8, 4.2 Hz, 

1H) 

5 1.82 (m, 1H) 
1.82 (ddd, J = 12.3, 8.8, 5.6 Hz, 

1H) 
9 1.68 (1H) 1.73 – 1.59 (m, 3H) 
6 1.65 (1H) – 
7 1.58 (m, 1H) – 
3 1.52 (1H) 1.53 – 1.44 (m, 1H) 

10 1.49 (m, 2H) 
1.49 (ddd, J = 11.6, 8.1, 2.9 Hz, 

2H) 
6, 11 1.41 (2H) – 

3 1.37 (1H) 1.44 – 1.29 (m, 4H) 
12 1.29 (1H)  – 
11 1.10 (1H) 1.05 (dd, J = 7.6, 5.8 Hz, 1H) 
13 1.02 (s, 3H) 1.02 (s, 3H) 
14 1.01 (s, 3H) 1.00 (s, 3H) 
15 0.86 (s, 3H) 0.85 (s, 3H) 

Me
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Comparison of 13C NMR spectroscopic data for natural and synthetic (+)-psiguadial 

B (8). 

carbon 
number 

Natural (+)-psiguadial B 

13C NMR, 125 MHz, CDCl3 
Synthetic (+)-psiguadial B 
13C NMR, 101 MHz, CDCl3 D 

15' 192.3 192.3 0.0 
14' 191.4 191.5 0.1 
7' 169.6 169.6 0.0 
5' 168.5 168.5 0.0 
3' 163.5 163.5 0.0 
8' 143.4 143.4 0.0 

9', 11', 13' 128.2 128.2 0.0 
10', 12' 126.2 126.2 0.0 

2' 105.7 105.7 0.0 
4' 104.6 104.6 0.0 
6' 104.2 104.1 –0.1 
8 84.1 84.1 0.0 
9 50.0 50.0 0.0 

12 47.5 47.4 –0.1 
5 44.1 44.0 –0.1 
1' 40.4 40.4 0.0 
11 37.6 37.6 0.0 
2 37.0 36.9 –0.1 
3 35.5 35.4 –0.1 
4 35.1 35.1 0.0 
1 33.4 33.4 0.0 

13 30.6 30.6 0.0 
7 29.4 29.3 –0.1 

15 26.1 26.1 0.0 
10 23.9 23.9 0.0 
14 20.7 20.7 0.0 
6 20.1 20.1 0.0 
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Chapter 2 

A Modular Approach to Synthesize Enantioenriched Cyclobutane 

Products† 

 

2.1 INTRODUCTION 

Having established a novel methodology for the asymmetric synthesis of 55 for 

application to the synthesis of (+)-psiguadial B (8), we wondered if we could potentially 

leverage this versatile building block to further explore the preparation of trans-fused 

cyclobutane containing products. The cyclobutane structural motif is present in a variety 

of natural products and pharmaceutical molecules (Scheme 2.1).1–7 Cyclobutanes are also 

versatile synthetic intermediates, as the ring strain inherent to these structures engenders 

                                                
† Portions of this chapter were adapted from the following communication: Beck, J. C.; Lacker, C. R.; 
Chapman, L. M.; Reisman, S. E. Chem. Sci. 2019, 10, 2315., DOI: 10.1039/C8SC05444D, copyright 2019 
Royal Society of Chemistry. The research discussed in this chapter was completed in collaboration with 
Caitlin R. Lacker, a graduate student in the Reisman Lab as well as Dr. Lauren M. Chapman, a former 
graduate student in the Reisman Lab. 
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them with unique reactivity that can be leveraged in a variety of transformations to build 

complex frameworks. 8–11  [2+2] cycloaddition reactions represent the most extensively 

developed approach to construct cyclobutanes, and recent advances have given rise to 

elegant enantioselective reactions.12–17 An alternative strategy is to prepare a versatile 

cyclobutane building block, and then use C–H functionalization or cross-coupling 

chemistry to elaborate the scaffold in a modular fashion.18–27 In this latter approach, a single 

enantioenriched intermediate can quickly be converted to a variety of more functionalized 

structures.      

Scheme 2.1 Bioactive cyclobutane-containing products and our strategy for 

cyclobutane vicinal difunctionalization.  

 

We recently reported the synthesis of 8 which featured a tandem Wolff-

rearrangement/asymmetric ketene addition to prepare enantioenriched 8-

aminoquinolinamide 53.28,29 In the course of our investigation, we became acutely aware 

of the limitations and difficulties associated with the synthesis of functionalized 

cyclobutanes as well as the community’s interest in more methods for their preparation.  
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Given the short synthesis of 53 from commercial starting materials, we became interested 

in further applications of this chiral building block. Specifically, we envisioned that 

directed C–H arylation could enable diversification at the b-position, while hydrolysis of 

the 8-aminoquinolinamide followed by decarboxylative radical cross-coupling could 

enable diversification at the a-position. Herein, we describe the development of this 

strategy commencing from lynchpin 53 that has enabled the synthesis of a library of vicinal 

difunctionalized cyclobutanes and our efforts to apply this strategy to the synthesis of 142.  

 

2.2 REVIEW OF AMIDE DIRECTED C(sp3)–H ACTIVATION TO 

FORM C–C BONDS 

At the outset of our investigation focused on the synthesis of 8, we were intrigued 

by reports detailing the use of an aminoquinolinamide directing group to perform 

palladium-catalyzed C–H functionalization of aliphatic C–H bonds. Having developed a 

novel Wolff Rearrangement with asymmetric trapping of the ketene to install the 

quinolinamide and set the first stereocenter in a single step, we hypothesized that we could 

utilize this quinolinamide-directed methodology to perform functionalization of a 

cyclobutane.  

Notably in 2005, Daugulis and co-workers reported the arylation of a C(sp3)–H 

bond under palladium catalysis, utilizing aryl iodides 147 as the cross-coupling partners 

with silver acetate added to presumably turn over the catalyst (Scheme 2.2a).30 This pivotal 

disclosure was further expanded upon to include additional directing groups enabling C–

H functionalization without the addition of stoichiometric silver salts and provided 
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examples of cross-coupling with additional aryl as well as alkyl iodides 152 (Scheme 

2.2b).31 

Scheme 2.2 Precedent for aminoquinolinamide-directed C–H activation.  

 

We were also intrigued by an early report from the Shuto group in which they were 

able to activate substituted cyclopropanes utilizing the same quinolinamide directing 

group, forging all-carbon quaternary centers using a similar Pd(II) catalyst system (Scheme 

2.2c).32 In their system, they were able to access all-carbon quaternary centers through 

activation of the tertiary cyclopropyl methine. This example demonstrated the feasibility 

of building sterically encumbered systems with the quinolinamide auxiliary. 
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Particularly notable for use in our synthesis was a disclosure from Rao and 

coworkers in 2015 in which they report functionalization of a methylene group with a 

variety of alkenyl iodides (Scheme 2.2d).33 We were excited to see their use of iodides 

such as 54 utilized in their system, as these types of unsaturated ketone products mapped 

on well for our synthesis of 8.  

Scheme 2.3 Chen synthesis of celogentin C.  
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158 was used as the limiting reagent, as typically the aryl iodide is used in excess.  Their 

key indole intermediate 159 can be advanced an additional 10 steps to access the 

macrocyclic natural product 160. Their synthesis elegantly leverages the intrinsic 

selectivity for b-functionalization of these amino quinolinamides. 

A report in 2011 from the Baran lab further demonstrated the utility of C–H 

activation in the context of natural product total synthesis (Scheme 2.4).18 They were able 

to prepare 161 in three steps from commercially available methyl coumalate as a racemic 

mixture, at which point they were poised to perform their first C–H activation event.  

Scheme 2.4 Baran synthesis of piperarborenine B.  
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Epimerization of 163 delivered 164, which underwent a second C–H arylation reaction, 

this time with aryl iodide 165 as the cross-coupling partner. Arylation directed by the 

aminothioanisole delivered a single diastereomer of 166, which was advanced three 

additional steps to provide piperarborenine B (167). This synthesis demonstrated the 

feasibility of using palladium catalysis to activate cyclobutyl methylenes in a C–H 

activation event. While their synthesis was limited by their use of racemic starting material, 

their high levels of diastereoselectivity indicated that we could generate a library of 

enantioenriched cyclobutanes by starting with a chiral cyclobutamide substrate. The Baran 

lab subsequently published a full paper detailing additional C–H functionalization 

strategies to access similar natural products.21 

Scheme 2.5 Maimone synthesis of podophyllotoxin. 
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preparation of cyclobutanol 168, which can be made in two steps from commercial 

material. Four additional steps delivered acetonide 169 containing the key 

aminothioanisole directing group. This substrate can undergo C–H activation with 2 

equivalents of 162, delivering 170 in modest yield. The arylated was subjected to 

hydrolysis of the acetonide, during which epimerization of the secondary alcohol and 

lactonization occured concomitantly to deliver 172. The utility of the C–H activation is 

highlighted by the brevity of their synthesis, enabling the synthesis of 172 in just 7 steps 

from commercial material.  

 

2.3 THE DEVELOPMENT OF A NOVEL C(sp3)–H 

HETEROARYLATION REACTION 

While C(sp3)–H bond arylation has been explored by several groups, the 

corresponding heteroarylation reaction remains widely underdeveloped. At the outset of 

this investigation, we were only aware of one other report in which a heterocycle was used 

to direct a heteroarylation reaction.36  

In 2016, the Bull lab published an aminoquinolinamide directed C(sp3)–H 

activation reaction (Scheme 2.6).36 By utilizing chiral piperidines, pyrrolidines, and 

tetrahydrofurans, they could perform a site-selective and diastereoselective heteroarylation 

with 2-chloro-5-iodopyridine (174) as the cross-coupling partner. While they were able to 

achieve excellent yields of the coupled products with a Cbz-protected piperidine 178 or the 

tetrahydrofuran-containing quinolinamide 176, their substrates containing Boc-protected 

piperidines 173 and Boc-protected pyrrolidines 180 were coupled in lower yields (Scheme 
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2.6). Notably, their reactions enabled the formation of enantioenriched products by starting 

from the chiral pool. 

Scheme 2.6 Bull’s heteroarylation of pyrrolidines, tetrahydrofurans, and piperidines. 
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activation reactions highlighting both the power of C–H activation as a strategy for the 

synthesis of chiral cyclic products as well as the difficulties associated with the utilization 

of heteroaryl moieties in cross-coupling reactions (Scheme 2.7). In 2018, the Yu group 
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amides 182 and aryl iodides 193 using a chiral mono-N-protected aminomethyl oxazoline 

(MPAO) ligand 191 (Scheme 2.7a).27 While they had previously reported the use of the 

related chiral mono-N-protected a-amino-O-methylhydroxamic acid (MPAHA) ligands to 

promote cross-couplings between cyclobutyl carboxylic amides and aryl boron reagents,22 

the development of this reaction utilizing the MPAO ligand class enabled entry into a 

Pd(II)/Pd(IV) catalytic cycle, improving the scope of substrates tolerated in the reaction.  

Scheme 2.7 Yu’s C–H activation of cyclobutanes and cyclopropanes. 
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While their reaction notably enables the enantioselective arylation of cyclobutyl 

carboxylic amides, only two nitrogen-containing aryl iodides are employed in their 

reaction, both of which proceed in only modest yield. 

In 2018, the Yu group reported an additional C–H activation reaction to access 

chiral carbocycles using carboxylic acid substrates (Scheme 2.7b).37 The use of free 

carboxylic acids in these reactions had previously been limited due to the low reactivity 

associated with the weak directing ability of the carboxylic acid as well as the 

conformationally flexibility of the acid in comparison to the rigidified amide substrates. 

However, this reaction was enabled by the development of the monoprotected aminoethyl 

amine (MPAAM) ligand class 192, allowing for enantioselective C(sp3)–H 

functionalization of free carboxylic acids 185. While this report represents an immense 

achievement in the field of C–H activation, their initial report was limited to cyclopropyl 

carboxylic acids and did not include the cross-coupling of any nitrogen-containing 

heterocycles.  

In early 2019, the Yu lab reported a subsequent report in which they were able to 

expand the breadth of their reaction to encompass the direct cross-coupling of cyclobutyl 

carboxylic acids 188 with aryl boronate esters 189 (Scheme 2.7c).38 Key to this reaction 

was the use of an aryl boronate rather than an aryl iodide coupling partner, presumably 

changing the mechanism from a Pd(II)/Pd(IV) catalytic cycle to a Pd(0)/Pd(II) catalytic 

cycle. They report a single cross-coupling with a heteroaryl boronate ester 189, again 

highlighting the difficulties associated with using Lewis basic cross-coupling partners in 

directed C–H functionalization reactions. 
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After extensive optimization and exploration of a C–H activation for two different 

substrates en route to 8, we hypothesized that we could expand the scope of this reaction 

to encompass the cross-coupling of additional electrophiles. With a robust means of 

preparing 53, we became interested in identifying cross-coupling conditions that could 

enable the formation of a library of vicinal disubstituted cyclobutanes from our lynchpin 

53 (Scheme 2.8). We hypothesized that the efficiency with which both 54 and 114 could 

be coupled with 53 with excellent site- and diastereoselectivity indicated that this particular 

scaffold was privileged in this type of transformation and warranted further exploration.       

Scheme 2.8 Our modular approach to prepare chiral disubstituted cyclobutanes. 
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heteroarylated cyclobutanes (195–201) in good yields (Table 2.1). Under these reaction 

conditions, we could isolate good yields of pyridine-containing cyclobutanes (195–198) 

with varying substitution on the arene. We were pleased to see that an indolyl iodide was 

a competent cross-coupling partner in this reaction (199) as was a piperazyl pyridine (200) 

and a piperidyl pyrimidine (201). We were particularly excited by products such as 200 

and 201, which contain five nitrogen atoms within the molecule.  

Table 2.1. Cyclobutamide heteroarylation 
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platform, we became interested in exploring the feasibility of incorporating additional aryl 
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both electron withdrawing (205–206, 208–210) as well as electron donating groups (202–

204).   

Table 2.2. Cyclobutamide arylation 

 

While the reaction worked with excellent efficiency and selectivity for a variety of 

substrates, we identified key limitations of this transformation. Unfortunately, attempts to 

lower the catalyst loading (7.5 mol %) or using only 1 equivalent of the aryl iodide 

decreased the yields by about 30% across the board. While some substrates could be 

adequately cross-coupled at lower temperatures, we found that 90ºC worked for most of 

the substrates we explored.   
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general reaction conditions. C–H activation reactions between 53 and pyridyl iodides with 
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pyrrole (213) or a methoxy group at the 2-position (214) also did not work well under these 

reaction conditions. 

Table 2.3. Poorer performing substrates 

 

 In an attempt to broaden the scope of this reaction, we investigated the feasibility 

of using aryl triflates as the coupling partners, as we reasoned these might be more 

appealing due to their ease of handling; however, under the conditions developed for the 

cross-coupling of aryl and heteroaryl iodides, only starting material was observed (Scheme 

2.9). Expansion of this methodology to encompass the cross-coupling of alternative classes 

of electrophiles was not further explored, but it would be prudent to look at additional 

additives as well as alternative solvents and palladium precatalysts.  

Scheme 2.9 Unsuccessful attempts to use aryl triflates in the cross-coupling reaction. 
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 While we almost exclusively observed monofunctionalization of cyclobutane 53, it 

is of note that one substrate that we investigated delivered bisarylated product. Treatment 

of 53 with two equivalents of 218 under the standard reaction conditions delivered 

significant quantities of bis-arylated product 220 (Scheme 2.10). 2D NMR experiments 

indicated that the site of arylation was the beta-disposed methyl group. To the best of our 

knowledge, this was the only substrate that delivered any quantity of bis-arylated product 

under our developed reaction conditions.    

Scheme 2.10 Observed bis-arylation. 
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Scheme 2.11 Probing alternative bisarylation substrates. 
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canonical peptide coupling conditions, delivering 226 as the trans-fused cyclobutamide. 

To our surprise, treatment of 226 with our standard C–H activation conditions delivered a 

tri-arylated product 227. While we were unsure of how synthetically useful this particular 

reaction would be due to the need to cleave and reinstall the auxiliary and our inability to 
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control or predict the bisarylation event, we were pleased to see that these scaffolds were 

amenable to further modulation. Satisfied with the excellent yields and 

diastereoselectivities we were able to observe with a variety of aryl and heteroaryl 

substrates, we became interested in identifying other means of modulating the cyclobutane 

scaffold.  

Scheme 2.12 A sequential C–H arylation strategy. 
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(Scheme 2.1). During our investigation, the Baran lab disclosed a similar strategy designed 

to build vicinal difunctionalization using a decarboxylative cross-coupling strategy,23 

indicating the feasibility of  a decarboxylative cross-coupling approach to diversify 

cyclobutane products.  

The use of carboxylic acids and redox-active esters in decarboxylative cross-

coupling reactions has emerged as a powerful strategy in the construction of carbon-carbon 

bonds (Scheme 2.13). In 2014, Doyle and MacMillan reported the decarboxylative cross-

coupling between aliphatic carboxylic acids (228) and aryl bromides (229) under 

nickel/iridium dual catalysis (Scheme 2.13a).40 The iridium photocatalyst is thought to 

generate an alkyl radical which can be captured by the nickel catalyst and engaged in a 

nickel-catalyzed cross-coupling reaction. The MacMillan lab also reported a 

decarboxylative Giese-type addition, using the same iridium catalyst (Scheme 2.13b).41 

Decarboxylation of acids such as 231 is proposed to generate radical intermediates 

that can be trapped by a Michael acceptor (232) to access adducts such as 233. The 

following year, MacMillan and co-workers reported a decarboxylative alkenylation 

reaction, using the aforementioned iridium/nickel dual-catalysis system (Scheme 2.13c).42 

They could engage alkyl acids such as 234 in cross-coupling reactions with alkenyl 

bromides 235 to access cross-coupled products 236. MacMillan later reported a 

decarboxylative cross-coupling between carboxylic acids 235 and alkyl bromides 237 to 

give adducts such as 238, again using the combination of iridium and nickel catalysis to 

generate alkylated adducts (Scheme 2.13d).43 
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Scheme 2.13 Direct decarboxylative cross-coupling reactions of free acids. 
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Scheme 2.14 Examples of decarboxylative couplings using NHP esters. 

 

I+
NiBr2(dtbbpy) (7 mol %)

Zn0 (2 equiv)
DMA, 23 ºC

N
Boc

a) Weix (2016)

c) Weix (2017)

65% yield
b) Baran (2016)

NiCl2•glyme (20 mol %)
dtbbpy (40 mol %)

THF/DMF (3:2), 25 ºC

62% yield

d) Reisman (2017)

80% yield
96% ee

O

O
N

O

ON

O

O
N

O

O

LiCl•ClZn

+

OMe

OMe

Me

Me
Me

O

O
N

O

O

+
Br

TIPS NiBr2•(dme) (10 mol %)
dtbbpy (10 mol %)

Mn (3 equiv)
LiBr (1 equiv)
DMA, 25 ºC

Me

Me
Me

TIPS

86% yield

Ph
O

O
N

O

OMe
Br

OMe
+

NaI (0.5 equiv)
TMSBr (1.0 equiv)
DMA, –7 ºC, 16 h

N

OO

N

250
(10 mol %)

Ni
Br Br OMe

Ph

Me

e) Fu (2017)

Boc

86% yield

Et
O

O
N

O

OBu

+

e) Aggarwal (2017)

N

Ir[dF(CF3)ppy]2(dtbbpy)PF6
(2 mol %)

Me

TFA (2 equiv)
DMA, blue LEDs, 25 ºC

N

Me

Et

Bu

O

O
N

O

OBocN

B2cat2

DMA, Blue LEDs;
then, pinacol Et3N

B

BocN
O

O
MeMe

Me
Me

e) Baran (2017)

O

O
N

O

OTsN

Cl Cl

Cl

Cl

Ni(acac)2•xH2O (10 mol %)
bpy (10 mol %)
THF/DMF, 25 ºC

ClZn+
TsN

87% yield

60% yield2 equiv

239
240 241

242
243 244

245 246 247

248 249 251

252 253 254

255 256

257 258 259



Chapter 2 – A Modular Approach to Synthesize Enantioenriched Cyclobutane Products 

 

139 

The Weix lab expanded their methodology to include the cross-coupling of alkynyl 

bromides (246), again using the NHP ester (245) as a versatile cross-coupling partner 

(Scheme 2.14c).47 Our lab has also explored the asymmetric cross-coupling of these NHP 

esters (248) with styrenyl bromides (249) to access enantioenriched benzylic styrenes (251) 

in excellent yield enantioselectivity (Scheme 2.14d).48 Groups have also explored 

activation of NHP esters using irradiation to perform additional cross-coupling reactions, 

including a decarboxylative Menisci reaction49 and a decarboxylative borylation (Scheme 

2.14e).50 

With this precedent in mind, we hypothesized that we could leverage our arylated 

cyclobutamide products to perform a subsequent cross-coupling reaction, further 

diversifying these chiral cyclobutane products (Scheme 2.1). We were excited by the 

abundance of C–C bond activation strategies that had been reported, and we were eager to 

explore some of these methodologies with our arylation products. To this end, facile 

hydrolysis enabled gram-scale synthesis of 223 (Scheme 2.15). To diversify the products 

through functional group interconversion, we were pleased to see that reduction of the acid 

to the primary alcohol 260 could be achieved by generating borane in situ, and the 

corresponding aldehyde 261 could be prepared through a Stahl oxidation.51 Alternatively, 

223 could be converted to the corresponding acid chloride and engaged in a nickel-

catalyzed reductive cross-coupling with iodocyclohexane (262) to access ketone 263.52 In 

keeping with our goal of quickly building complex, chiral cyclobutane products, we were 

particularly interested in using the free carboxylic acid as a cross-coupling partner. 
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Unfortunately, any attempts to engage the free carboxylic acid in direct decarboxylative 

couplings were unsuccessful.53  

Scheme 2.15 Selected transformations of key acid 223. 
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good yield as a single diastereomer.45 Similarly, NHP ester 264 underwent Ni-catalyzed 

Me
Me

O

N
H

207

Me

N

Me
Me OH

O

Me

NaOH, EtOH
130 °C

>99% yield 223

Me
Me

Me

N

Me

1. (COCl)2, DMF
    CH2Cl2
    0 to 23 ºC
2. NiCl2•dme
    (5 mol %)
    dtbbpy 
    (5.5 mol %) 
    Mn0, DMA, 0 ºC

NiCl2•glyme 
(20 mol %)

dtbbpy 
(40 mol %)

DMF/THF (2:3)

75% yield
NiBr2•dme 
(10 mol %)

dtbbpy 
(10 mol %)

I

262, 1.5 equiv

Me
Me

O

Me

263

74% yield
(2 steps)

NaBH4, I2
THF, 70 °C
>95% yield

Me
Me

HO

Me

Me
Me H

Me

O
Cu(MeCN)4OTf
4,4’-MeObpy

ABNO, NMI
MeCN, O2
87% yield

NHPI, EDC
DMAP
CH2Cl2

82% yield

Me
Me NHP

O

Me

Me
Me

Me

OMe

265ZnCl•LiClMeO

Zn0, DMA

OMe

Br
249

Me
Me

Me

OMe

56% yield

TFA (2 equiv)
DMA

blue LEDs

[Ir] (2 mol %)
lepidine (253)

(1.5 equiv)

54% yield

B2cat2, DMA, 
blue LEDs;

then NEt3 
pinacol

Me
Me

Bpin

Me

261 260

264
268

243

266
267



Chapter 2 – A Modular Approach to Synthesize Enantioenriched Cyclobutane Products 

 

141 

reductive alkenylation with styrenyl bromide 249 to furnish cyclobutane 266 in 56% 

yield.44,48 Photoinduced decarboxylative Minisci type arylation of 264 under photoredox 

catalysis delivered quinoline 267,49 and borylation of 264 proceeded smoothly to afford 

boronic ester 268.50  

 

2.5 APPLICATIONS OF CYCLOBUTANE VICINAL 

DIFUNCTIONALIZATION: TOTAL SYNTHESIS OF (+)-

RUMPEHALLONE A 

  To further demonstrate the utility of this cyclobutane difunctionalization 

strategy, we designed and executed a synthesis of the natural product (+)-

rumphellaone A (142). (+)-Rumphellaone A (142) was isolated in 2010 from the 

gorgonian coral, Rumphella antipathies and possesses anti-proliferative activity 

against human T-cell acute lymphoblastic leukemia tumor cells.7 Having previously 

targeted the trans-fused cyclobutane-containing natural product, (+)-psiguadial B 

(8), we felt that applying our difunctionalization strategy in a total synthesis would 

elegantly tie together different areas of research within our lab. 

  (+)-rumphellaone A (142) has been the target of a number of total syntheses 

reported to date. The Kuwahara lab reported an elegant synthesis of (+)-

rumphellaone A (142) commencing from methyl isobutyrate (Scheme 2.16).54,55 

Epoxy nitrile 271 can be prepared in short order, using the Sharpless epoxidation 

protocol to establish the first stereocenter. TBS protection followed by epoxy-nitrile 

cyclization in the 4-exo-tet manifold provides 272, which can be elaborated in three 
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steps to enone 275. Three additional steps delivers 276, which can be hydrogenated 

and lactonized to deliver (+)-rumphellaone A (142) in 18 steps total. 

Scheme 2.16 Kuwahara’s 2012 synthesis of (+)-rumphellaone A. 

 

  We were also aware of a synthetic campaign from the Echavarren lab in 

which they were able to carry out a total synthesis of (+)-rumphellaone A (142) 
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chiral catalyst. The cycloaddition product 279 can be hydrogenated and then 
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controller. Hydroboration followed by an oxidation with chromic acid delivers the 

natural product 142.  
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Scheme 2.17 Echavarren’s 2017 synthesis of (+)-rumphellaone A. 
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reaction with methyl vinyl ketone under photoredox catalysis provided 285 in 50% 

yield over two steps. 

Scheme 2.18 Our retrosynthesis of (+)-rumphellaone A and proof of concept 

experiments. 
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control.54–56,59 Given that the C8 diastereomers were inseparable by column 

chromatography, high diastereoselectivity for this methyl addition was important.  

Scheme 2.19 A divergent methylation approach to (+)-rumphellaone A and epi-C8-

rumphellaone A. 
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(Scheme 2.20). One possible explanation is that 290 is formed by ligand exchange of the 

carboxylic acid of 286 with (iPrO)3TiMe followed by intramolecular delivery of the methyl 

nucleophile in 290, providing 288. Alternatively, we hypothesize that 287 results from 

intermolecular addition of Ti(Me)4, without the assistance of chelation.   

Scheme 2.20 Stereochemical rationale for divergent methylation of 5-

hydroxybutenolides. 
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enantioenriched cyclobutanes. We have prepared a number of heteroarylated and arylated 

cyclobutane products and demonstrated that we could derivatize them through subsequent 

C–C bond activation-based cross-coupling reactions. We further illustrated the utility of 

this method in a 9-step synthesis of (+)-rumphellaone A (142). We anticipate that this 

general strategy could enable the expedient synthesis of additional natural products and 

other bioactive molecules. 

2.7 EXPERIMENTAL SECTION 

2.7.1 Materials and Methods 

General Procedures. Unless otherwise stated, reactions were performed under a 

nitrogen atmosphere using freshly dried solvents. Methylene chloride (CH2Cl2), diethyl 

ether (Et2O), tetrahydrofuran (THF), 1,4-dioxane, tert-butyl methyl ether (TBME), and 

toluene (PhMe) were dried by passing through activated alumina columns. Methanol 

(MeOH) was distilled over calcium hydride. Acetonitrile (MeCN), tert-butanol (t-BuOH), 

anhydrous N,N-dimethylformamide (DMF), anhydrous N,N-dimethylacetamide (DMA), 

chloroform (CHCl3), and absolute ethanol (EtOH) were used as received from Fisher 

Scientific. Methyl vinyl ketone was dried over K2CO3 and CaCl2 and then distilled 

immediately prior to use. K2HPO4 was flame-dried under vacuum and dried at 0.200 Torr 

overnight and stored in a dessicator. Aryl iodides were purchased from Sigma-Aldrich or 

Combi-Blocks or prepared according to literature procedures. NiBr2•dme and NiCl2•dme 

were purchased from Strem and stored in a N2-filled glovebox. Zinc dust and Pd(OAc)2 

were purchased from Strem and stored in a dessicator. Ir[dF(CF3)ppy]2(dtbbpy)PF6 was 

purchased from Oakwood chemicals and used as received. Pd(PPh3)4 and Cs2CO3 were 
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purchased from Sigma-Aldrich and stored in a N2-filled glovebox. All other commercially 

obtained reagents were purchased from Sigma-Aldrich and used as received unless 

specifically indicated. Photochemical reactions were conducted using either Kessil 

A160WE blue LED lamps positioned 3–6 cm from the reactions using a computer fan to 

keep the reactions at ambient temperature, or 12W blue LED strips lining a beaker wrapped 

in aluminum foil . Yields of arylation reactions reported are an average of two runs. All 

reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 

F254 pre-coated plates (0.25 mm). Silica gel and basic alumina column chromatography 

was performed as described by Still et al.63 using silica gel (particle size 0.032–0.063) 

purchased from Silicycle and aluminum oxide (activated, basic, Brockmann I, 58 Å pore 

size, powder) purchased from Sigma-Aldrich. 1H and 13C NMR were recorded on a Varian 

Inova 500 (at 500 MHz and 125 MHz respectively) or a Bruker Avance III HD with 

Prodigy cyroprobe (at 400 MHz and 101 MHz respectively). 19F NMR spectra were 

recorded on a Varian Inova 400 (at 376 MHz). NMR data is reported relative to internal 

chloroform (1H, δ = 7.26, 13C, δ = 77.2) or to internal methanol (1H, δ = 3.31, 13C, δ = 49.0) 

and PhCF3 (19F, δ = –63.7).  Data for 1H NMR spectra are reported as follows: chemical 

shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier 

abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 

IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported 

in frequency of absorption (cm–1). HRMS were acquired using either an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode. 
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Specific optical rotations were recorded on a Jasco P-2000 polarimeter using a 100 mm 

cell. 

2.7.2 Preparative Procedures and Spectroscopic Data 

2.7.2.1 Csp
3–H Arylation 

General Procedure: 

On the bench-top, a 2-dram vial equipped with a stir bar was charged with 

Pd(OAc)2 (15 mol %, 0.03 mmol), Ag2CO3 (1 equiv, 0.2 mmol), cyclobutamide (4) (1 

equiv, 0.2 mmol), and aryl iodide (2 equiv, 0.4 mmol). TBME (0.2 M, 1 mL) was added to 

the vial, then the vial was sealed with a Teflon cap and electrical tape and submerged in an 

oil bath at 90 °C. After approximately 5 minutes for aryl iodide substrates and 30 minutes 

for heteroaryl iodide substrates, the olive-green mixture became black. The reaction 

mixture was stirred at 90 °C additional 16 hours, at which point the vial is allowed to cool 

to room temperature over 15 minutes. The black reaction mixture was diluted with CH2Cl2 

and filtered over a pad of 20 grams of tightly packed celite. The celite plug was eluted with 

an additional 100 mL of CH2Cl2. Following this, the resultant orange solution was 

concentrated in vacuo and subsequently purified by silica gel column chromatography to 

give the arylated cyclobutane products. (Note: some substrates required purification with 

basic alumina as the stationary phase).  
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Characterization Data for Arylation Products: 

195 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

2-fluoro-3-iodopyridine (2 equiv, 89.2 mg, 0.4 mmol). The crude 

residue was purified by column chromatography using silica gel 

basified with 4 mL of aqueous ammonium hydroxide (10% EtOAc/2% Et3N/88% hexanes 

→ 15% EtOAc/2% Et3N/83% hexanes → 20% EtOAc/2% Et3N/78% hexanes → 35% 

EtOAc/2% Et3N/63% hexanes) to give a white foam. 

Run 1: (56.1 mg, 80%), Run 2: (56.4 mg, 81%) 

Rf = 0.22 (silica gel, 20% EtOAc/Hex, UV, p-Anisaldehyde). 

[α]D25 = +60.8° (c = 0.415, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.66 (s, 1H), 8.77 (dd, J = 4.3, 1.7 Hz, 1H), 8.54 (dd, J = 

7.0, 2.1 Hz, 1H), 8.09 (dd, J = 8.3, 1.7 Hz, 1H), 7.96 (ddt, J = 4.9, 2.0, 1.0 Hz, 1H), 7.72 

(ddq, J = 9.9, 7.5, 1.2, 0.7 Hz, 1H), 7.45 – 7.34 (m, 3H), 7.15 (ddd, J = 7.1, 4.9, 1.9 Hz, 

1H), 3.99 (dtd, J = 11.0, 8.6, 1.1 Hz, 1H), 3.44 (ddt, J = 8.4, 2.5, 1.3 Hz, 1H), 2.76 (t, J = 

10.7 Hz, 1H), 2.11 (ddd, J = 10.4, 8.4, 3.0 Hz, 1H), 1.53 (s, 3H), 1.19 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.2, 161.5 (d, JC–F = 237 Hz), 148.2, 144.6 (d, JC–F = 

14.7 Hz), 139.3 (d, JC–F = 6.1 Hz), 138.4, 136.3, 134.4, 127.9, 127.3, 124.2 (d, JC–F = 31.2 

Hz), 121.6, 121.4, 121.3 (d, JC–F = 4.0 Hz), 116.4, 57.0, 36.4 (d, JC–F = 14.8 Hz), 30.8, 

30.7, 29.8, 25.0. 

 19F NMR (376 MHz, CDCl3): δ -71.52 (d, J = 10.1 Hz).        
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FTIR (NaCl, thin film, cm-1): 3355, 3058, 2954, 2930, 2866, 1682, 1605, 1577, 1524, 

1486, 1431, 1388, 1372, 1324, 1261, 1240, 1162, 1132, 1112, 826, 793, 758. 

HRMS (ESI-TOF, m/z): calc’d for C21H21FN3O [M+H]+: 350.1663; found: 350.1659. 

196 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

5-iodo-2-chloropyridine (2 equiv, 95.8 mg, 0.4 mmol). The crude 

residue was purified by column chromatography using basic alumina 

as the stationary phase (0 → 1% MeOH/CH2Cl2) to give a colorless foam. 

Run 1: (50.6 mg, 69%), Run 2: (49.7 mg, 68%) 

Rf = 0.24 (silica gel, 40% EtOAc/Hex, UV). 

[α]D25 = +81.1° (c = 4.3, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 9.64 (s, 1H), 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.58 (dd, J = 

6.8, 2.2 Hz, 1H), 8.22 (dt, J = 2.6, 0.8 Hz, 1H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 (ddd, J 

= 8.2, 2.5, 0.9 Hz, 1H), 7.46 – 7.38 (m, 3H), 7.17 (d, J = 8.2 Hz, 1H), 3.96 (q, J = 11.0, 8.5 

Hz, 1H), 3.38 (ddd, J = 8.5, 3.0, 0.8 Hz, 1H), 2.76 (t, J = 10.7 Hz, 1H), 2.15 (ddd, J = 10.4, 

8.5, 3.0 Hz, 1H), 1.52 (s, 3H), 1.22 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 169.8, 148.8, 148.5, 148.1, 138.3, 137.7, 136.5, 136.3, 

134.2, 127.9, 127.4, 123.5, 121.7, 121.6, 116.5, 57.4, 37.4, 36.3, 33.3, 29.8, 29.8, 25.0. 

FTIR (NaCl, thin film, cm-1): 3350, 2954, 1682, 1524, 1485, 1460, 1424, 1386, 1324, 

1260, 1162, 1133, 1104, 826, 792, 755, 666. 

HRMS (ESI-TOF, m/z): calc’d for C21H21ClN3O [M+H]+: 366.1368; found: 366.1370. 
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197 
Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 5-iodo-2-

trifluoromethylpyridine (2 equiv, 95.8 mg, 0.4 mmol). The crude 

residue was purified by column chromatography using silica gel 

basified with 5 mL of aqueous ammonium hydroxide (5% EtOAc/2% 

Et3N/93% hexanes → 10% EtOAc/2% Et3N/88% hexanes → 15% EtOAc/2% Et3N/83% 

hexanes → 20% EtOAc/2% Et3N/78% hexanes) to give a pale, yellow foam. 

Run 1: (71.6 mg, 90%), Run 2: (68.2 mg, 85%) 

Rf = 0.19 (silica gel, 20% EtOAc/Hex, UV). 

[α]D25 = +67.7° (c = 4.2, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.61 (s, 1H), 8.69 (dd, J = 4.2, 1.7 Hz, 1H), 8.52 – 8.41 

(m, 2H), 8.04 (dd, J = 8.3, 1.7 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.46 (dd, J = 8.1, 0.7 Hz, 1H), 

7.41 – 7.28 (m, 3H), 3.95 (q, J = 11.0, 8.5 Hz, 1H), 3.37 (ddd, J = 8.4, 2.9, 0.9 Hz, 1H), 

2.73 (t, J = 10.7 Hz, 1H), 2.12 (ddd, J = 10.4, 8.5, 3.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3): δ 169.7, 148.8, 148.2, 145.5 (q, JC–F = 35 Hz), 141.2, 138.3, 

136.5, 135.7, 134.1, 128.0, 127.4, 123.2, 121.7, 120.5, 119.9, 119.9, 119.8, 119.8, 116.5, 

57.4, 37.3, 36.5, 33.7, 29.8, 25.0. 

19F NMR (282 MHz, CDCl3): δ –68.6. 

FTIR (NaCl, thin film, cm-1): 3351, 2957, 1682, 1524, 1486, 1425, 1387, 1340, 1261, 

1164, 1134, 1088, 1030, 826, 792, 756, 667. 

HRMS (ESI-TOF, m/z): calc’d for C22H21F3N3O [M+H]+: 400.1631; found: 400.1621. 
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198 
Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 5-iodo-2-

methoxypyridine (2 equiv, 94.0 mg, 0.4 mmol). The crude residue 

was purified by column chromatography using silica gel basified with 

4 mL of aqueous ammonium hydroxide (10% EtOAc/2% Et3N/88% 

hexanes → 15% EtOAc/2% Et3N/83% hexanes → 20% EtOAc/2% Et3N/78% hexanes → 

30% EtOAc/2% Et3N/68% hexanes) to give a white solid. 

Run 1: (34.9 mg, 48%), Run 2: (36.1 mg, 50%) 

Rf = 0.14 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +61.1° (c = 0.415, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.60 (s, 1H), 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.62 (dd, J = 

5.3, 3.7 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 8.01 (dt, J = 2.5, 0.9 Hz, 1H), 7.54 (ddd, J 

= 8.6, 2.5, 0.7 Hz, 1H), 7.46 – 7.39 (m, 3H), 6.61 (dd, J = 8.6, 0.7 Hz, 1H), 3.96 (qd, J = 

11.0, 8.6, 1.1 Hz, 1H), 3.84 (s, 3H), 3.33 (ddd, J = 8.7, 2.9, 0.8 Hz, 1H), 2.76 (t, J = 10.8 

Hz, 1H), 2.14 (ddd, J = 10.4, 8.6, 3.0 Hz, 1H), 1.51 (s, 3H), 1.23 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.3, 162.7, 148.1, 145.3, 138.4, 138.0, 136.4, 134.5, 

129.6, 128.0, 127.5, 121.6, 121.4, 116.5, 110.1, 57.6, 53.4, 37.7, 36.1, 33.4, 30.1, 25.1. 

FTIR (NaCl, thin film, cm-1): 3352, 2922, 2850, 2351, 1682, 1606, 1574, 1523, 1494, 

1486, 1424, 1385, 1324, 1285, 1259, 1160, 1132, 1032, 826, 792, 756. 

HRMS (ESI-TOF, m/z): calc’d for C22H24N3O2 [M+H]+: 362.1863; found: 362.1856 
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199 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

6-iodo-N-Boc-indole (2 equiv, 137 mg, 0.4 mmol). The crude residue 

was purified by column chromatography (10% → 15% 

EtOAc/hexanes) to give a colorless foam. 

Run 1: (56.1 mg, 60%), Run 2: (62.8 mg, 67%) 

Rf = 0.36 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +114.7° (c = 5.7, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.64 (s, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.60 (dd, J = 

6.3, 2.8 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 8.03 (s, 1H), 7.47 (d, J = 3.7 Hz, 1H), 7.43 

– 7.32 (m, 4H), 7.09 (dt, J = 8.1, 1.1 Hz, 1H), 6.44 (dd, J = 3.7, 0.8 Hz, 1H), 4.19 (dt, J = 

10.9, 8.6 Hz, 1H), 3.44 (dd, J = 8.7, 2.9 Hz, 1H), 2.85 (t, J = 10.7 Hz, 1H), 2.25 (ddd, J = 

10.3, 8.6, 3.0 Hz, 1H), 1.61 (s, 9H), 1.54 (s, 3H), 1.23 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.6, 150.0, 147.9, 138.6, 138.4, 136.3, 135.5, 134.7, 

128.7, 127.9, 127.5, 125.3, 121.6, 121.5, 121.1, 120.5, 116.5, 113.4, 107.4, 83.4, 57.9, 38.2, 

36.4, 35.9, 30.2, 28.3, 25.3. 

FTIR (NaCl, thin film, cm-1): 3358, 3008, 2954, 2929, 2866, 1730, 1686, 1618, 1578, 

1523, 1485, 1424, 1386, 1370, 1338, 1253, 1214, 1151, 117, 1077, 1022, 826, 816, 756. 

HRMS (ESI-TOF, m/z): calc’d for C29H32N3O3 [M+H]+: 470.2438; found: 470.2449. 
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200 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-(5-iodopyrin-2-yl)piperazine-1-carboxylic acid tert-butyl ester (2 

equiv, 156 mg, 0.4 mmol). The crude residue was purified by column 

chromatography using silica gel basified with 5 mL of aqueous 

ammonium hydroxide (20% EtOAc/2% Et3N/78% hexanes → 30% EtOAc/2% Et3N/68% 

hexanes → 40% EtOAc/2% Et3N/58% hexanes) to give a pale, yellow foam. 

Run 1: (79.9 mg, 77%), Run 2: (84.6 mg, 82%) 

Rf = 0.27 (silica gel, 40% EtOAc/Hex, UV, p-anisaldehyde).[α]D
25 = +69.2° (c = 5.1, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 9.58 (s, 1H), 8.74 (dd, J = 4.2, 1.7 Hz, 1H), 8.62 (p, J = 

4.4 Hz, 1H), 8.10 (dd, J = 8.2, 1.7 Hz, 1H), 8.06 (dt, J = 2.5, 0.8 Hz, 1H), 7.50 (ddd, J = 

8.7, 2.5, 0.7 Hz, 1H), 7.46 – 7.37 (m, 3H), 6.53 (dd, J = 8.8, 0.8 Hz, 1H), 3.93 (dt, J = 11.0, 

8.6 Hz, 1H), 3.45 (dd, J = 6.6, 3.5 Hz, 4H), 3.39 (dd, J = 6.3, 3.6 Hz, 4H), 3.30 (dd, J = 

8.4, 2.9 Hz, 1H), 2.74 (t, J = 10.8 Hz, 1H), 2.10 (ddd, J = 10.4, 8.5, 2.9 Hz, 1H), 1.51 (s, 

4H), 1.47 (s, 9H), 1.24 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.4, 158.0, 154.9, 148.0, 146.8, 138.4, 137.0, 136.4, 

134.5, 127.9, 127.4, 126.4, 121.6, 121.2, 116.4, 106.9, 79.9, 57.7, 45.5, 37.6, 35.9, 33.5, 

30.1, 28.5, 25.1. 

FTIR (NaCl, thin film, cm-1): 3357, 3007, 2973, 2928, 2864, 2360, 1686, 1605, 1560, 

1524, 1486, 1424, 1391, 1324, 1241, 1166, 1129, 1084, 1000, 934, 864, 826, 792, 756, 

686, 666. 

HRMS (ESI-TOF, m/z): calc’d for C30H38N5O3 [M+H]+: 516.2969; found: 516.2955. 
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201 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

5-iodo-2-(1-piperidinyl)pyrimidine (2 equiv, 116 mg, 0.4 mmol). The 

crude residue was purified by column chromatography using silica 

gel basified with 5 mL of aqueous ammonium hydroxide (10% 

EtOAc/2% Et3N/88% hexanes → 20% EtOAc/2% Et3N/78% hexanes → 30% EtOAc/2% 

Et3N/68% hexanes) to give a pale yellow foam. 

Run 1: (63.0 mg, 76%), Run 2: (60.6 mg, 73%) 

Rf = 0.44 (silica gel, 40% EtOAc/Hex, UV). 

[α]D25 = +83.3° (c = 3.1, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.59 (s, 1H), 8.74 (dd, J = 4.2, 1.7 Hz, 1H), 8.67 (dd, J = 

6.6, 2.4 Hz, 1H), 8.25 (s, 2H), 8.10 (dd, J = 8.2, 1.7 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.40 

(dd, J = 8.2, 4.2 Hz, 2H), 3.81 (dt, J = 11.0, 8.6 Hz, 1H), 3.67 (dd, J = 6.2, 4.9 Hz, 4H), 

3.27 (dd, J = 8.6, 2.9 Hz, 1H), 2.74 (t, J = 10.8 Hz, 1H), 2.07 (ddd, J = 10.6, 8.5, 2.9 Hz, 

1H), 1.60 (p, J = 5.5 Hz, 2H), 1.52 (qd, J = 5.6, 5.1, 2.3 Hz, 4H), 1.49 (s, 3H), 1.24 (s, 

3H). 

13C NMR (101 MHz, CDCl3): δ 170.2, 160.8, 157.1, 148.1, 138.4, 136.4, 134.5, 127.9, 

127.5, 121.6, 121.3, 120.8, 116.5, 57.4, 45.0, 37.3, 36.1, 31.8, 30.0, 25.8, 25.1, 25.0. 

FTIR (NaCl, thin film, cm-1): 3355, 2031, 2853, 1682, 1603, 1524, 1485, 1462, 1447, 

1366, 1324, 1274, 1256, 1160, 1025, 946, 826, 792, 754. 

HRMS (ESI-TOF, m/z): calc’d for C25H30N5O [M+H]+: 416.2445; found: 416.2440. 
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202 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 2-

iodoanisole (2 equiv, 93.6 mg, 0.4 mmol). The crude residue was 

purified by column chromatography (10 → 15 → 20% 

EtOAc/Hexanes) to give a colorless foam. 

Run 1: (54.4 mg, 75%), Run 2: (61.2 mg, 84%) 

Rf = 0.48 (silica gel, 30% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +84.8° (c = 3.3, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.57 (s, 1H), 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.60 (dd, J = 

4.9, 4.2 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.24 (dt, J = 7.4, 1.5 

Hz, 1H), 7.09 (dddd, J = 8.2, 7.4, 1.8, 0.8 Hz, 1H), 6.96 (tdd, J = 7.5, 1.1, 0.4 Hz, 1H), 6.61 

(dd, J = 8.1, 1.1 Hz, 1H), 4.09 – 3.95 (m, 1H), 3.62 (s, 3H), 3.46 (ddd, J = 8.6, 2.9, 0.8 Hz, 

1H), 2.74 (t, J = 10.8 Hz, 1H), 2.13 (ddd, J = 10.4, 8.4, 2.9 Hz, 1H), 1.53 (s, 3H), 1.22 (s, 

3H). 

 13C NMR (101 MHz, CDCl3):  δ 171.13, 157.19, 147.90, 138.41, 136.31, 134.88, 130.18, 

127.92, 127.66, 127.54, 127.00, 121.45, 120.75, 120.43, 116.27, 109.43, 58.05, 55.05, 

37.10, 35.89, 32.81, 30.33, 25.14. 

FTIR (NaCl, thin film, cm-1): 3366, 2952, 5927, 2863, 2361, 1685, 1523, 1485, 1464, 

1424, 1324, 1241, 1161, 1132, 1161, 1029, 826, 792, 751. 

HRMS (ESI-TOF, m/z): calc’d for C23H25N2O2 [M+H]+: 361.1911; found: 361.1925. 
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203 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

3-iodoanisole (2 equiv, 93.6 mg, 0.4 mmol). The crude residue was 

purified by column chromatography (10 → 15 → 20% 

EtOAc/Hexanes) to give a white solid. 

Run 1: (59.0 mg, 82%), Run 2: (58.3 mg, 81%) 

Rf = 0.36 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +61.6° (c = 0.4, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.62 (s, 1H), 8.75 (dd, J = 4.2, 1.7 Hz, 1H), 8.64 (p, J = 

4.3 Hz, 1H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.13 (t, J = 7.9 Hz, 1H), 

6.82 (ddt, J = 7.6, 1.8, 1.0 Hz, 1H), 6.77 (dt, J = 2.7, 1.3 Hz, 1H), 6.63 (ddt, J = 8.2, 2.6, 

0.9 Hz, 1H), 4.03 (dtd, J = 11.0, 8.6, 1.1 Hz, 1H), 3.67 (s, 3H), 3.39 (ddd, J = 8.7, 2.9, 0.8 

Hz, 1H), 2.76 (t, J = 10.7 Hz, 1H), 2.16 (ddd, J = 10.4, 8.5, 3.0 Hz, 1H), 1.51 (s, 3H), 1.22 

(s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.5, 159.5, 148.0, 143.7, 138.4, 136.4, 134.6, 129.1, 

127.9, 127.5, 121.5, 121.2, 119.1, 116.5, 112.3, 111.3, 57.7, 55.1, 37.8, 36.0, 35.8, 30.2, 

25.1. 

FTIR (NaCl, thin film, cm-1): 3357, 2952, 2925, 1684, 1600, 1582, 1521, 1485, 1424, 

1386, 1323, 1259, 1160, 1049, 878, 826, 790, 756, 694. 

HRMS (ESI-TOF, m/z): calc’d for C23H25N2O2 [M+H]+: 361.1911; found: 361.1915. 
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204 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-iodoanisole (2 equiv, 93.6 mg, 0.4 mmol). The crude residue was 

purified by column chromatography (10 → 15% EtOAc/Hexanes) to 

give a white, amorphous solid. 

Run 1: (47.7 mg, 66%), Run 2: (51.2 mg, 71%) 

Rf = 0.23 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +59.8° (c = 1.3, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.58 (s, 1H), 8.75 (dd, J = 4.2, 1.7 Hz, 1H), 8.63 (p, J = 

4.4 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.20 – 7.13 (m, 2H), 6.80 

– 6.73 (m, 2H), 4.00 (q, J = 11.1, 8.6 Hz, 1H), 3.70 (s, 3H), 3.34 (ddd, J = 8.7, 3.0, 0.8 Hz, 

1H), 2.75 (t, J = 10.8 Hz, 1H), 2.13 (ddd, J = 10.4, 8.6, 3.0 Hz, 1H), 1.51 (s, 3H), 1.23 (s, 

3H). 

13C NMR (101 MHz, CDCl3): δ 170.6, 157.7, 148.0, 138.4, 136.4, 134.6, 133.7, 127.9, 

127.5, 121.5, 121.1, 116.5, 113.6, 57.7, 55.3, 37.9, 35.7, 35.5, 30.2, 25.2. 

FTIR (NaCl, thin film, cm-1): 2926, 2361, 1685, 1523, 1485, 1288, 1324, 1247, 1160, 

1038, 826, 772. 

HRMS (ESI-TOF, m/z): calc’d for C23H25N2O2 [M+H]+: 361.1911; found: 361.1921. 

205 
Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

2-iodobenzonitrile (2 equiv, 91.8 mg, 0.4 mmol). The crude residue 

was purified by column chromatography (10 → 15% 

EtOAc/Hexanes) to give a pale, yellow foam. 
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Run 1: (57.6 mg, 81%), Run 2: (64.7 mg, 91%) 

Rf = 0.55 (silica gel, 30% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = –24.4° (c = 5.4, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.76 (s, 1H), 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 8.53 (dd, J = 

7.4, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 (td, J = 8.0, 7.6, 1.2 Hz, 1H), 7.51 – 

7.35 (m, 5H), 7.21 (tdd, J = 7.6, 1.3, 0.7 Hz, 1H), 4.21 (dt, J = 11.1, 8.3, 7.8 Hz, 1H), 3.74 

(ddd, J = 8.3, 3.0, 0.8 Hz, 1H), 2.87 (t, J = 10.7 Hz, 1H), 2.16 (ddd, J = 10.4, 8.3, 3.1 Hz, 

1H), 1.57 (s, 3H), 1.20 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.0, 148.3, 146.9, 138.5, 136.3, 134.5, 132.6, 128.1, 

127.9, 127.2, 126.3, 121.7, 121.4, 118.8, 116.3, 110.6, 57.7, 36.6, 36.1, 35.2, 29.8, 25.1. 

FTIR (NaCl, thin film, cm-1): 3353, 2954, 2361, 2222, 1683, 1523, 1485, 1424, 1388, 

1323, 1260, 1161, 826, 791, 755, 668. 

HRMS (ESI-TOF, m/z): calc’d for C23H21N3O [M+H]+: 356.1757; found: 356.1773. 

 

206 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-iodobenzonitrile (2 equiv, 91.8 mg, 0.4 mmol). The crude residue 

was purified by column chromatography (10 → 15 → 20 →25 % 

EtOAc/Hexanes) to give a pale, yellow foam. 

Run 1: (50.5 mg, 71%), Run 2: (53.3 mg, 75%) 

Rf = 0.32 (silica gel, 30% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +102.7° (c = 5.1, CHCl3). 
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1H NMR (400 MHz, CDCl3): δ 9.66 (s, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.56 (dd, J = 

7.2, 1.8 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.50 (dt, J = 8.3, 1.8 Hz, 2H), 7.49 – 7.37 

(m, 3H), 7.33 – 7.24 (m, 2H), 4.02 (dt, J = 10.8, 8.3 Hz, 1H), 3.43 (ddd, J = 8.5, 3.0, 0.8 

Hz, 1H), 2.77 (t, J = 10.7 Hz, 1H), 2.18 (ddd, J = 10.4, 8.5, 3.0 Hz, 1H), 1.53 (s, 3H), 1.20 

(s, 3H). 

13C NMR (101 MHz, CDCl3): δ 169.9, 148.4, 148.2, 138.3, 136.5, 134.2, 131.9, 128.0, 

127.5, 127.3, 121.7, 121.6, 119.5, 116.5, 109.3, 57.7, 37.5, 36.1, 36.0, 29.9, 25.0. 

FTIR (NaCl, thin film, cm-1): 3353, 2954, 2930, 2361, 2226, 1684, 1608, 1524, 1486, 

1424, 1288, 1323, 1161, 826, 792, 755, 668. 

HRMS (ESI-TOF, m/z): calc’d for C23H22N3O [M+H]+: 356.1757; found: 356.1752. 

 

207 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-iodotoluene (2 equiv, 87.2 mg, 0.4 mmol). The crude residue was 

purified by column chromatography (10 → 15 → 20% 

EtOAc/Hexanes) to give a white, amorphous solid. 

Run 1: (54.1 mg, 79%), Run 2: (55.9 mg, 81%) 

Rf = 0.29 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +54.2° (c = 2.0, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.60 (s, 1H), 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.65 (h, J = 

4.2 Hz, 1H), 8.11 (dd, J = 8.2, 1.7 Hz, 1H), 7.50 – 7.36 (m, 3H), 7.14 (d, J = 7.8 Hz, 2H), 

7.02 (d, J = 7.4 Hz, 2H), 4.01 (td, J = 10.8, 8.1 Hz, 1H), 3.37 (ddd, J = 8.7, 2.9, 0.8 Hz, 
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1H), 2.76 (t, J = 10.8 Hz, 1H), 2.24 (s, 3H), 2.14 (ddd, J = 10.4, 8.6, 2.9 Hz, 1H), 1.51 (s, 

3H), 1.22 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.6, 148.0, 138.7, 138.4, 136.4, 135.0, 134.7, 128.9, 

127.9, 127.5, 126.7, 121.5, 121.1, 116.5, 57.7, 37.8, 35.8, 35.7, 30.2, 25.2, 21.2. 

FTIR (NaCl, thin film, cm-1): 3360, 2924, 2359, 1686, 1522 1485, 1424, 1386, 1324, 

1160, 826, 792. 

HRMS (ESI-TOF, m/z): calc’d for C23H25N2O [M+H]+: 345.1961; found: 345.1971. 

208 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

3-iodotrifluorotoluene (2 equiv, 109.1 mg, 0.4 mmol). The crude 

residue was purified by column chromatography (10% 

EtOAc/Hexanes) to give a colorless oil. 

Run 1: (67.7 mg, 85%), Run 2: (62.9 mg, 79%) 

Rf = 0.23 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +47.3° (c = 3.3, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.63 (s, 1H), 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.57 (dd, J = 

6.6, 2.4 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.50 – 7.36 (m, 5H), 7.39 – 7.26 (m, 2H), 

4.05 (dt, J = 11.0, 8.7 Hz, 1H), 3.42 (ddd, J = 8.6, 3.0, 0.8 Hz, 1H), 2.80 (t, J = 10.8 Hz, 

1H), 2.20 (ddd, J = 10.4, 8.5, 3.0 Hz, 1H), 1.53 (s, 3H), 1.23 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 170.2, 148.2, 143.2, 138.5, 136.6, 134.5, 130.4 (q, JC–F = 

32 Hz), 130.3, 128.5, 128.1, 127.6, 125.9, 123.7 (q, JC–F = 3.7 Hz), 123.2, 122.8 (q, JC–F = 

3.8 Hz), 121.7, 121.5, 116.6, 57.8, 37.8, 36.1, 36.0, 30.2, 30.0, 25.2. 
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19F NMR (376 MHz, CDCl3) δ -63.50. 

FTIR (NaCl, thin film, cm-1): 3355, 2931, 2360, 1684, 1523, 1486, 1425, 1388, 1324, 

1162, 1122, 1072, 901, 826, 793, 756, 701, 659. 

HRMS (ESI-TOF, m/z): calc’d for C23H22F3N2O [M+H]+: 399.1679; found: 399.1679. 

 

209 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-iodoacetophenone (2 equiv, 98.7 mg, 0.4 mmol). The crude residue 

was purified by column chromatography (20% EtOAc/Hexanes) to 

give a white, amorphous solid. 

Run 1: (57.3 mg, 77%), Run 2: (56.6 mg, 76%) 

Rf = 0.41 (silica gel, 40% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +95.0° (c = 3.0, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.73 (s, 1H), 8.85 (dd, J = 4.3, 1.7 Hz, 1H), 8.66 (dd, J = 

7.1, 1.8 Hz, 1H), 8.20 (dd, J = 8.3, 1.7 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.51 (dd, J = 8.5, 4.1 

Hz, 2H), 7.48 (q, J = 9.2, 8.2, 8.2 Hz, 1H), 7.39 – 7.33 (m, 2H), 4.12 (td, J = 11.3, 9.7, 8.4 

Hz, 1H), 3.51 (ddd, J = 8.6, 2.9, 0.8 Hz, 1H), 2.88 (t, J = 10.7 Hz, 1H), 2.58 (s, 3H), 2.26 

(ddd, J = 10.3, 8.5, 3.0 Hz, 1H), 1.61 (s, 3H), 1.29 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 198.1, 170.1, 148.5, 148.1, 138.4, 136.5, 134.8, 134.4, 

128.4, 128.0, 127.5, 126.7, 121.6, 121.4, 116.5, 57.8, 37.7, 36.1, 36.0, 30.0, 26.7, 25.1. 

FTIR (NaCl, thin film, cm-1): 3354, 2954, 2928, 2866, 1678, 1606, 1523, 1485, 1424, 

1387, 1323, 1267, 1161, 956, 826, 792, 754, 657. 
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HRMS (ESI-TOF, m/z): calc’d for C24H25N2O2 [M+H]+: 373.1911; found: 373.1900. 

 

210 

Prepared from cyclobutamide 53 (1 equiv, 50.8 mg, 0.2 mmol) and 

4-iodo-1-indanone (2 equiv, 103.5 mg, 0.4 mmol). The crude residue 

was purified by column chromatography (30% EtOAc/Hexanes) to 

give a pale, yellow foam. 

Run 1: (43.4 mg, 56%), Run 2: (39.7 mg, 52%) 

Rf = 0.32 (silica gel, 40% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = +2.0° (c = 5.0, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.57 (s, 1H), 8.74 (dd, J = 4.3, 1.7 Hz, 1H), 8.54 (dd, J = 

7.1, 2.0 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 (ddt, J = 17.3, 7.6, 1.1 Hz, 2H), 7.46 

– 7.33 (m, 4H), 4.07 (dt, J = 11.2, 8.4 Hz, 1H), 3.47 (ddd, J = 8.4, 3.0, 0.9 Hz, 1H), 3.10 

(ddd, J = 17.1, 7.8, 3.8 Hz, 1H), 2.98 (ddd, J = 17.1, 7.6, 3.9 Hz, 1H), 2.92 (t, J = 10.8 Hz, 

1H), 2.57 (dddd, J = 32.0, 19.4, 7.8, 3.7 Hz, 2H), 2.18 (ddd, J = 10.5, 8.4, 3.1 Hz, 1H), 1.58 

(s, 3H), 1.23 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 207.3, 170.1, 153.3, 148.1, 139.5, 138.3, 136.8, 136.5, 

134.2, 132.9, 127.9, 127.5, 127.4, 121.6, 121.5, 121.4, 116.6, 57.2, 37.0, 36.5, 36.2, 34.1, 

30.1, 25.2, 25.1. 

FTIR (NaCl, thin film, cm-1): 3353, 3012, 2954, 2927, 2866, 2359, 1709, 1587, 1523, 

1485, 1425, 1386, 1324, 1265, 1162, 1055, 827, 790, 754, 666. 

HRMS (ESI-TOF, m/z): calc’d for C25H25N2O2 [M+H]+: 385.1911; found: 385.1921. 
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2.7.2.2 Cyclobutane Derivatization 

 

A 48 mL pressure flask was charged with cis-cyclobutamide 207 (693 mg, 2.01 

mmol, 1.00 equiv), sodium hydroxide (1.21 g, 30.2 mmol, 15 equiv), and absolute ethanol 

(8.5 mL, 0.24 M). The flask was sealed and placed in a pre-heated oil bath (130 ºC) and 

stirred for 18 h. The reaction mixture was cooled to room temperature, and the solvent was 

removed in vacuo. The crude residue was diluted with 1 M aq HCl (38 mL) and EtOAc (38 

mL). The organic and aqueous layers were separated, and the organic layer was washed 

with 1 M HCl (2 x 38 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude reddish solid was purified by silica gel flash 

chromatography (15 → 20% EtOAc/hexanes) to afford 223 as an off-white solid (443 mg, 

99% yield).  

Rf = 0.31 (silica gel, 20% EtOAc/Hexanes, p-anisaldehyde) 

[α]D25 = +123.6° (c = 0.28, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 7.13 (d, J = 1.1 Hz, 4H), 3.74 (q, J = 9.8 Hz, 1H), 2.91 

(dd, J = 10.0, 0.8 Hz, 1H), 2.32 (s, 3H), 2.11 (ddd, J = 10.9, 8.9, 0.9 Hz, 1H), 1.95 (t, J = 

10.5 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 178.8, 140.7, 135.9, 129.2, 126.6, 55.2, 39.4, 36.6, 35.1, 

30.6, 23.6, 21.2. 
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FTIR (NaCl, thin film, cm-1): 3021, 2957, 2927, 2867, 2731, 2647,1699, 1516, 1464, 

1421 1370, 1281, 1238, 1162 1118, 937, 806, 716. 

HRMS (ESI-TOF, m/z): calc’d for C14H22NO2 [M+NH4]+: 236.1645; found: 236.1645. 

Acid reduction to provide 260. 

 

A 2-dram vial containing a stir bar was charged with 223 (87 mg, 0.400 mmol, 1.00 

equiv) and NaBH4 (37.8 mg, 1.00 mmol, 2.5 equiv). The vial was then evacuated and 

backfilled with N2 three times. THF (3.0 mL) was added and the reaction mixture was 

cooled to 0 °C. I2 (121.8 mg, 0.480 mmol, 1.2 equiv) was then added as a solution in THF 

(1 mL) dropwise. The vial was then sealed with a Teflon-lined cap, placed in a pre-heated 

oil bath (70 ºC), and allowed to stir overnight. Once the reaction was complete, the reaction 

was cooled to room temperature and quenched with MeOH until bubbling stopped and the 

reaction mixture turned clear. The reaction mixture was concentrated, then treated with 

20% KOH (4 mL) and allowed to stir for 5 h at room temperature. The aqueous layer was 

then extracted with EtOAc (6 x 5 mL). The combined organic layers were dried over 

Na2SO4 and concentrated to afford 260 (82.2 mg, quant yield) as a white solid which was 

carried forward without further purification.  

Rf = 0.38 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +57.0° (c = 0.42, CHCl3).  
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1H NMR (400 MHz, CDCl3): δ 7.18 – 7.08 (m, 4H), 3.75 (qd, J = 11.0, 7.2 Hz, 2H), 3.06 

(q, J = 9.5 Hz, 1H), 2.34 (s, 3H), 2.28 (dddd, J = 9.4, 8.3, 6.1, 0.7 Hz, 1H), 2.05 (ddd, J = 

10.8, 8.7, 0.8 Hz, 1H), 1.82 (t, J = 10.3 Hz, 1H), 1.21 (s, 6H). 

13C NMR (101 MHz, CDCl3): δ 141.9, 135.6, 129.1, 126.7, 63.6, 53.9, 40.6, 37.6, 33.7, 

31.4, 22.5, 21.1. 

FTIR (NaCl, thin film, cm-1): 3248, 2954, 2926, 2896, 2864, 1896, 1514, 1453, 1413, 

1379, 1368, 1326, 1260, 1218, 1190, 1110, 1092, 1033, 1013, 812, 772. 

HRMS (ESI-TOF, m/z): calc’d for C14H24NO [M+NH4]+: 222.1852; found: 222.1846.  

 

Oxidation of 260 to prepare aldehyde 261 

 

260 (0.400 mmol, 1.00 equiv) was dissolved in 1.2 mL MeCN in a 20 mL 

scintillation vial. In a separate vial, Cu(MeCN)4OTf (7.5 mg, 0.02 mmol, 0.05 equiv) and 

4,4’-MeObpy (4.3 mg, 0.02 mmol, 0.05 equiv)) were dissolved in 0.4 mL MeCN and 

allowed to stir until the solution turned an opaque blue. To this vial was added a solution 

of ABNO (0.6 mg, 0.004 mmol, 0.01 equiv) and N-methylimidazole (3.3 mg, 0.04 mmol, 

0.10 equiv) in 0.4 mL MeCN. Once the catalyst solution turned green, it was added to the 

reaction mixuture and allowed to stir open to air. After 3 h and 6 h, additional portions of 

catalyst (Cu(MeCN)4OTf (7.5 mg, 0.02 mmol, 0.05 equiv), 4,4’-MeObpy (4.3 mg, 0.02 

mmol, 0.05 equiv) ABNO (0.6 mg, 0.004 mmol, 0.01 equiv), and N-methylimidazole (3.3 
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mg, 0.04 mmol, 0.10 equiv) dissolved in 0.8 mL MeCN) were added. After the addition at 

6 h, the reaction vessel was sealed with a rubber septum and the reaction mixture was 

sparged with O2(g) and allowed to stir under an O2 atmosphere for an additional 15.5 h. 

When the reaction was judged to be done by TLC, the reaction mixture was filtered over a 

short silica plug, eluting with 20% EtOAc/hexanes, and the resulting solution was 

concentrated in vacuo to give 261 as a brown oil (71.1 mg, 87% yield). 

Rf = 0.69 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

 [α]D25 = +62.9° (c = 1.66, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 9.86 (d, J = 1.6 Hz, 1H), 7.21 – 7.01 (m, 5H), 3.88 (q, J = 

9.6 Hz, 1H), 2.97 (ddd, J = 9.7, 1.7, 0.9 Hz, 1H), 2.34 (s, 3H), 2.12 (ddt, J = 10.5, 8.9, 0.8 

Hz, 1H), 2.02 (t, J = 10.5 Hz, 1H), 1.36 (s, 3H), 1.26 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 203.0, 140.8, 135.8, 129.1, 129.1, 126.5, 126.5, 62.5, 

39.9, 37.5, 33.0, 31.3, 24.0, 23.6, 21.1, 21.1. 

FTIR (NaCl, thin film, cm-1): 3248, 2954, 2926, 2896, 2864, 1896, 1514, 1453, 1413, 

1379, 1368, 1326, 1260, 1218, 1190, 1110, 1092, 1033, 1013, 812, 772. 

HRMS (ESI-TOF, m/z): calc’d for C14H22NO [M+NH4]+: 220.1696; found: 220.1691. 

 

Cross-coupling to prepare cyclohexyl ketone 263. 
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A 1-dram vial containing a stir bar was charged with carboxylic acid 223 (87.3 mg, 

0.400 mmol, 1 equiv). The vial was sealed with a septum vial cap and tape and was 

evacuated and backfilled with N2 three times. CH2Cl2 (0.8 mL, 0.5 M) and 2 drops DMF 

were added, and the reaction mixture was cooled to 0 °C. Oxalyl chloride (0.050 mL, 0.560 

mmol, 1.4 equiv) was then added dropwise. Once the addition was complete, the reaction 

was allowed to stir at room temperature for 1 h, at which point the solvent was removed in 

vacuo to afford acid chloride S12 as a crude oil. S12 was taken forward without further 

purification.  

1H NMR (400 MHz, CDCl3): δ 7.16 – 7.06 (m, 4H), 3.79 (q, J = 9.7 Hz, 1H), 3.29 (dd, J 

= 9.8, 0.9 Hz, 1H), 2.33 (s, 3H), 2.11 (ddd, J = 10.9, 9.1, 1.0 Hz, 1H), 2.01 – 1.88 (m, 1H), 

1.41 (s, 3H), 1.31 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 173.3, 139.2, 136.5, 129.4, 126.5, 66.1, 39.0, 37.0, 30.0, 

23.2, 21.2.  

A flame-dried 1-dram vial containing a 2-dram stir bar (tested before to ensure it 

would stir) was charged with NiCl2•dme (4.4 mg, 0.020 mmol, 0.05 equiv), dtbbpy (5.9 

mg, 0.022 mmol, 0.055 equiv), and Mn° powder (65.9 mg, 1.20 mmol, 3.00 equiv). The 

vial was sealed with a septa and tape and evacuated and backfilled with N2 three times. 0.6 

mL DMA was then added, and the reaction mixture was stirred vigorously (~1300 rpm) 

for about 30 min. The mixture became a dark black color. The reaction mixture was then 

cooled to 0 °C in an ice bath. Iodocyclohexane (0.078 mL, 0.600 mmol, 1.50 equiv) was 

then added, followed by freshly prepared acid chloride S12 (94.7 mg, 0.400 mmol, 1.0 

equiv) dissolved in 0.8 mL DMA. The sealed vial was then placed in a cryocool set to 0 °C 
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and allowed to stir for 16 h. The reaction mixture was then quenched with 1.0 mL H2O and 

extracted with CH2Cl2 (4 x 2.0 mL). The combined organic layers were filtered through a 

Na2SO4 plug and concentrated in vacuo. The resulting crude oil was purified by silica gel 

flash chromatography (0 → 5% EtOAc/hexanes) to afford 263 as a pale yellow, clear oil 

(84.6 mg, 74% yield over 2 steps).  

Rf = 0.76 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +17.1° (c = 2.247, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 7.11 – 7.05 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 3.85 (q, J = 

9.6 Hz, 1H), 3.13 (dd, J = 9.6, 0.8 Hz, 1H), 2.31 (s, 3H), 2.21 (tt, J = 11.3, 3.3 Hz, 1H), 

2.02 (ddd, J = 10.6, 8.8, 0.8 Hz, 1H), 1.92 (t, J = 10.5 Hz, 1H), 1.88 – 1.62 (m, 3H), 1.44 

(tdd, J = 13.0, 11.4, 3.6 Hz, 1H), 1.34 (s, 3H), 1.31 – 1.11 (m, 4H), 1.06 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 212.7, 141.7, 135.5, 129.1, 126.5, 60.9, 50.8, 39.1, 37.4, 

33.2, 31.3, 29.6, 26.9, 26.3, 26.0, 25.5, 24.0, 21.1. 

FTIR (NaCl, thin film, cm-1):  3380, 3048, 3020, 2929, 2855, 1894, 1698, 1515, 1449, 

1370, 1331, 1288, 1244, 1183, 1145, 1066, 1021m 994, 952, 892, 829, 805, 759. 

HRMS (ESI-TOF, m/z): calc’d for C20H32NO [M+NH4]+: 302.2478; found: 302.2470.  

 

Synthesis of NHP-ester 264 

 

N-hydroxyphthalimide

Me
Me

O

OH

Me

DMAP, EDC
(78% yield)
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A 20 mL vial was charged with carboxylic acid 223 (208.9 mg, 0.957 mmol, 1.00 

equiv), N-hydroxyphthalimide (156.1 mg, 0.957 mmol, 1.00 equiv), and 4-

dimethylaminopyridine (11.7 mg, 0.096 mmol, 0.10 equiv). The vial was sealed with a 

rubber septum and evacuated and backfilled with N2 three times. The solids were dissolved 

in CH2Cl2 (4 mL), and then EDC (201.8 mg, 1.05 mmol, 1.10 equiv) was added as a slurry 

in CH2Cl2 (1.3 mL). The reaction mixture was allowed to stir for 23 hours at room 

temperature. The reaction mixture was then transferred to a flask containing EtOAc (50 

mL), and the resulting solids were removed by filtration. The filtrate was concentrated in 

vacuo and the crude oil was purified by silica gel flash chromatography (15 → 40% 

EtOAc/hexanes) to afford 264 as a white solid (272.8 mg, 78% yield).  

Rf = 0.46 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +100.5° (c = 0.42, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 7.94 – 7.83 (m, 2H), 7.83 – 7.73 (m, 2H), 7.14 (s, 4H), 

3.87 (q, J = 9.8 Hz, 1H), 3.21 (dd, J = 9.9, 0.9 Hz, 1H), 2.33 (s, 3H), 2.20 (ddd, J = 10.8, 

8.9, 0.9 Hz, 1H), 2.08 (t, J = 10.5 Hz, 1H), 1.42 (s, 3H), 1.39 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 168.9, 162.2, 139.7, 136.3, 134.8, 129.3, 129.1, 126.5, 

124.0, 52.5, 39.6, 37.5, 35.3, 30.5, 23.7, 21.2. 

FTIR (NaCl, thin film, cm-1): 3520, 3022, 2959, 2927, 2868, 1808, 1794, 1745, 1615, 

1516, 1467, 1368, 1274, 1186, 1132, 1081, 1016, 972, 878, 811, 786, 696.  

HRMS (ESI-TOF, m/z): calc’d for C22H21NO4 [M+NH4]+: 381.1809; found: 381.1814. 
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Nickel-catalyzed arylation of 264. 

 

A 25 mL round bottom flask was charged with 264 (109 mg, 0.300 mmol, 1.00 

equiv), NiCl2•dme (13.2 mg, 0.060 mmol, 0.20 equiv), and dtbbpy (32.2 mg, 0.120 mmol, 

0.40 equiv). The flask was sealed with a septum and then evacuated and backfilled with 

argon three times. DMF was then added (3.2 mL), forming a green solution. Freshly 

prepared aryl zinc reagent 243 (4.8 mL, 0.90 mmol, 3.0 equiv, 0.19 M in THF) was then 

added and the solution turned red. The reaction was allowed to stir for 18 h, at which point 

the reaction was quenched with 1 M HCl (10 mL) and diluted with EtOAc (10 mL). The 

organic and aqueous layers were separated, and the organic layer was washed with water 

(10 mL) and brine (10 mL). The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo to afford a red oil. The crude material was then purified by silica gel 

flash chromatography (2.5 → 25% PhMe/hexanes) to afford 265 as a clear oil (63 mg, 75% 

yield).  

Rf = 0.77 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +195° (c = 0.42, CHCl3).  

1H NMR (500 MHz, CDCl3): δ 7.26 – 7.17 (m, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J 

= 7.9 Hz, 2H), 6.81 (ddt, J = 7.6, 1.7, 0.9 Hz, 1H), 6.80 – 6.71 (m, 2H), 3.79 (s, 3H), 3.32 

264
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Me

Me

OMe
Me

Me
O
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O
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O
NiCl2•dme (20 mol %)

dtbbpy (40 mol %)
DMF/THF (2:3), rt

MeO ZnCl•LiCl

3 equiv

(75% yield)
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(d, J = 10.4 Hz, 1H), 2.30 (s, 3H), 2.16 (ddd, J = 10.3, 8.5, 0.7 Hz, 1H), 1.90 (t, J = 10.1 

Hz, 1H), 1.28 (s, 3H), 0.88 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 159.6, 142.8, 142.1, 135.5, 129.1, 129.0, 126.6, 120.0, 

113.6, 111.0, 56.7, 55.2, 40.2, 37.4, 37.2, 30.9, 23.3, 21.1. 

FTIR (NaCl, thin film, cm-1): 3014, 2947, 2859, 1596, 1514, 1490, 1458, 1428, 1371, 

1318, 1292, 1252, 1166, 1040, 832, 808, 797, 694.  

HRMS (ESI-TOF, m/z): calc’d for C15H25O3 [M+H]+: 281.1900; found: 281.1899.  

 

Reductive alkenylation of 264 

 

A 1-dram vial containing a 2-dram stir bar was charged with NHP ester 264 (75.7 

mg, 0.208 mmol, 1.00 equiv) and vinyl bromide 249 (63.9 mg, 0.300 mmol, 1.50 equiv). 

A separate ½-dram vial containing a stir bar was charged with dtbbpy (5.4 mg, 0.020 mmol, 

0.10 equiv). Both vials were brought into a N2 filled glovebox. The vial containing dtbbpy 

was charged with NiBr2•dme (6.2 mg, 0.020 mmol, 0.10 equiv) and DMA (0.200 mL, 1.0 

M) and allowed to stir for 10 minutes. The vial containing 264 and 249 was charged with 

Zn powder (25.4 mg, 0.400 mmol, 2.00 equiv). Once the catalyst solution prestir was 

complete, the catalyst solution was added to the reaction vial via pipette. The vial was then 

Me
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O
N

O

O
Me

Me

Me

Zn, DMA

MeO

Br
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sealed with a Teflon-lined cap, removed from the glovebox, placed in a pre-heated oil bath 

(28 °C), and allowed to stir for 15 h. Once the reaction was complete, the reaction mixture 

was diluted with Et2O and passed through a short silica plug, eluting with Et2O. The 

material was concentrated onto celite in vacuo, and the resulting powder was purified by 

silica gel flash chromatography (0 → 30% PhMe/hexanes) to afford 266 as a white solid 

(34.1 mg, 56% yield). 

Rf = 0.71 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +238° (c = 1.66, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 7.35 – 7.28 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 

8.0 Hz, 2H), 6.89 – 6.83 (m, 2H), 6.34 (d, J = 15.8 Hz, 1H), 6.22 (dd, J = 15.8, 7.8 Hz, 

1H), 3.81 (s, 3H), 3.41 (q, J = 9.5 Hz, 1H), 2.73 (ddt, J = 9.5, 7.7, 0.9 Hz, 1H), 2.33 (s, 

3H), 2.11 (ddd, J = 10.7, 8.5, 0.8 Hz, 1H), 1.87 (t, J = 10.3 Hz, 1H), 1.18 (s, 3H), 1.16 (s, 

3H). 

13C NMR (101 MHz, CDCl3): δ 158.9, 142.3, 135.3, 130.7, 130.0, 129.0, 128.1, 127.3, 

126.6, 114.0, 55.9, 55.4, 40.0, 39.6, 36.9, 30.4, 23.6, 21.2.  

FTIR (NaCl, thin film, cm-1): 2999, 2951, 2921, 2860, 1607, 1511, 1462, 1370, 1249, 

1174, 1106, 1036, 966, 806. 

HRMS (ESI-TOF, m/z): calc’d for C22H27O [M+H]+: 307.2056; found: 307.2062.  
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Decarboxylative heteroarylation of 264 

 

A flame-dried 2-dram vial was charged with NHP ester 264 (72.7, mg, 0.200 mmol, 

1.00 equiv) and Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.5 mg, 0.004 mmol, 0.02 equiv). The vial 

was evacuated and backfilled with Ar three times.  DMA (2.0 mL, 0.1 M) and lepidine 

(43.0 mg, 0.300 mmol, 1.50 equiv) were then added, and the reaction mixture was cooled 

to 0 °C and sparged with Ar for 10 minutes. The reaction vial was removed from the ice 

bath, trifluoroacetic acid (30.6 µL, 0.400 mmol, 2.00 equiv) was added, and the reaction 

mixture was allowed to stir in front of a 34W blue LED lamp (~3 cm from the lamp). The 

reaction was monitored by TLC (20% EtOAc/hexanes). Once the reaction was complete 

(~4 h), the reaction was quenched with 1 mL NEt3 and 2 mL H2O. The aqueous layer was 

extracted with EtOAc (3 mL x 4), and the combined organics were washed with 1 M LiCl. 

The organic layer was then dried with Na2SO4, filtered, and concentrated onto celite in 

vacuo, and the resulting powder was purified by silica gel flash chromatography (0 → 5% 

EtOAc/hexanes) to afford 267 as a yellow solid (34.1 mg, 54% yield). 

Rf = 0.76 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +305° (c = 1.47, CHCl3).  
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1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 8.4 Hz, 1H), 7.95 (dd, J = 8.3, 1.4 Hz, 1H), 

7.67 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 7.50 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.21 (d, J = 7.9 

Hz, 2H), 7.08 (d, J = 8.1 Hz, 3H), 4.39 (q, J = 9.7 Hz, 1H), 3.52 (d, J = 10.1 Hz, 1H), 2.67 

(s, 3H), 2.30 (s, 3H), 2.20 (dd, J = 10.4, 8.8 Hz, 1H), 2.04 (t, J = 10.3 Hz, 1H), 1.39 (s, 

3H), 0.89 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 13C NMR (101 MHz, CDCl3) δ 160.6, 148.0, 143.4, 142.6, 

135.2, 130.2, 129.0, 128.9, 128.8, 128.7, 127.1, 126.9, 126.8, 125.4, 123.7, 121.7, 59.1, 

39.7, 37.9, 35.4, 31.2, 23.7, 21.1, 18.9. 

FTIR (NaCl, thin film, cm-1): 3428, 3950, 2925, 2360, 1603, 1558, 1514, 1446, 1379, 

1260, 1176, 1162, 1034, 809, 756. 

HRMS (ESI-TOF, m/z): calc’d for C23H26N [M+H]+: 316.2060; found: 316.2063.  

 

Decarboxylative borylation of 264 

 

A flame-dried 2-dram vial was charged with NHP ester 264 (72.7, mg, 0.200 mmol, 

1.00 equiv) and B2cat2 (59.5 mg, 0.250 mmol, 1.25 equiv). The vial was evacuated and 

backfilled with Ar three times.  DMA (2.0 mL, 0.1 M) was then added, and the reaction 

mixture was cooled to 0 °C and sparged with Ar for 10 minutes. The reaction vial was 

removed from the ice bath and suspended inside a large beaker lined with 12W blue LED 
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strips and covered with foil. After 21 h, pinacol (94.5 mg, 0.800 mmol, 4.00 equiv) was 

added as a solution in NEt3 (700 µL, 5.04 mmol, 25.2 equiv). After 2 h, the reaction was 

quenched with H2O, saturated aqueous NH4Cl, and EtOAc. The organic and aqueous layers 

were separated, and the aqueous layer was extracted with EtOAc (2 mL x 3). The combined 

organics were then dried with Na2SO4, filtered, and concentrated onto celite in vacuo, and 

the resulting powder was purified by silica gel flash chromatography (0 → 5% 

EtOAc/hexanes) to afford 268 as a white solid (35.1 mg, 58% yield). 

Rf = 0.81 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +77.5° (c = 1.47, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 7.09 (s, 4H), 3.53 (td, J = 10.2, 8.2 Hz, 1H), 2.31 (s, 3H), 

2.13 (ddd, J = 10.6, 8.2, 0.8 Hz, 1H), 2.02 (t, J = 10.3 Hz, 1H), 1.68 (d, J = 10.5 Hz, 1H), 

1.26 (s, 6H), 1.24 (d, J = 1.1 Hz, 9H), 1.16 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 144.1, 134.9, 128.9, 126.3, 83.2, 42.9, 34.3, 34.0, 32.4, 

26.6, 25.3, 24.9, 21.1. (Note: the resonance from the carbon attached to the boron was not 

visible).  

FTIR (NaCl, thin film, cm-1): 3444, 2980, 2922, 2946, 2862, 2728, 1898, 1652, 1514, 

1462, 1414, 1380, 1363, 1345, 1329, 1275, 1237, 1143, 1112, 1080, 1020, 967, 854, 809, 

730. 

HRMS (ESI-TOF, m/z): calc’d for C19H29BO2Na [M+Na]+: 323.2158; found: 323.2174.  
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2.7.2.3 Proof of Enantiopurity 

210, racemic sample. Chiral SFC: (OD-H, 2.5 mL/min, 20% IPA in CO2, λ = 254 nm): 
tR(minor) = 9.7 min, tR(major) = 11.1 min. 

 

 
210, enantioenriched sample. Chiral SFC: (OD-H, 2.5 mL/min, 20% IPA in CO2, λ = 254 
nm): tR(minor) = 9.7 min, tR(major) = 11.1 min. 
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2.7.2.4 Total Synthesis of (+)-rumphellaone A 

 

A 48 mL pressure flask was charged with cyclobutamide 53 (400 mg, 1.57 mmol, 

1.00 equiv), Ag2CO3 (434 mg, 1.57 mmol, 1.00 equiv), and Pd(OAc)2 (26.5 mg, 0.118 

mmol, 7.5 mol %) followed by TMS-iodofuran 218 (834 mg, 3.15 mmol, 2.00 equiv). The 

mixture was then suspended in TBME (8.0 mL, 0.2 M). The vessel was sealed under 

ambient conditions and placed in a pre-heated oil bath (70 ºC). After about 10 minutes, the 

olive-green mixture becomes black, and the reaction mixture is stirred for an additional 18 

hours. The reaction mixture was then concentrated, diluted with toluene (3 mL), and loaded 

directly onto a silica gel column (0 → 20% EtOAc/hexanes) to afford 219 as a clear yellow 

oil (556 mg, 90% yield). 

Rf = 0.56 (silica gel, 20% EtOAc/Hex, UV, p-anisaldehyde). 

[α]D25 = –57.2° (c = 1.22, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 9.61 (s, 1H), 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.68 (dd, J = 

6.7, 2.3 Hz, 1H), 8.11 (dd, J = 8.2, 1.7 Hz, 1H), 7.48 – 7.39 (m, 3H), 6.48 (d, J = 3.1 Hz, 

1H), 6.23 (dd, J = 3.2, 1.1 Hz, 1H), 4.07 – 3.94 (m, 1H), 3.34 (ddd, J = 9.0, 2.2, 0.8 Hz, 

1H), 2.61 – 2.50 (m, 1H), 2.19 (ddd, J = 11.0, 8.9, 2.3 Hz, 1H), 1.45 (s, 3H), 1.32 (s, 3H), 

-0.08 (s, 9H).  
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13C NMR (101 MHz, CDCl3): δ 170.1, 160.1, 158.7, 148.0, 138.5, 136.3, 134.8, 127.9, 

127.6, 127.5, 121.5, 121.2, 121.1, 120.5, 120.5, 116.5, 106.8, 55.8, 38.1, 36.6, 32.3, 30.9, 

30.7, 30.7, 24.9, –1.8. 

FTIR (NaCl, thin film, cm-1): 3360, 3109, 3049, 2954, 2866, 2613, 1944, 1878, 1687, 

1595, 1578, 1522, 1485, 1424, 1385, 1324, 1249, 1161, 1131, 1009, 924, 842, 791, 757. 

HRMS (ESI-TOF, m/z): calc’d for C23H29N2O2Si [M+H]+: 392.1993; found: 393.1990. 

 

 

A 15 mL pressure flask was charged with cis-cyclobutamide 219 (532 mg, 1.36 

mmol, 1.00 equiv), sodium hydroxide (813 mg, 20.33 mmol, 15 equiv), and absolute 

ethanol (5.7 mL, 0.24 M). The flask was sealed and placed in a pre-heated oil bath (130 

ºC) and stirred for 18 h. The solvent was then concentrated in vacuo, and the crude residue 

was diluted with 1 M HCl (20 mL) and EtOAc (20 mL). The organic layer was separated 

and washed with 1 M HCl (2 x 20 mL). At this point, the aqueous layers should be yellow, 

and the organic layer should be faint brown. The combined aqueous layers were extracted 

with EtOAc (25 mL), and the second organic layer was washed with 1 M HCl (25 mL) 

until it was free of 8-aminoquinoline as indicated by TLC (usually 1-2 times). The organic 

layers were combined, dried over MgSO4, filtered, and concentrated in vacuo. The crude 

reddish solid was purified by silica gel flash chromatography (20 → 40 % EtOAc/hexanes) 

to afford 284 as an off-white solid (250 mg, 96 % yield). 
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Rf = 0.5 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D25 = +133.0° (c = 0.85, CHCl3).  

1H NMR (400 MHz, CHCl3): δ 7.32 (dd, J = 1.9, 0.9 Hz, 1H), 6.28 (dd, J = 3.2, 1.8 Hz, 

1H), 6.05 (dt, J = 3.2, 0.8 Hz, 1H), 3.72 (q, J = 9.5 Hz, 1H), 3.11 – 3.02 (m, 1H), 2.12 – 

1.95 (m, 2H), 1.30 (s, 3H), 1.19 (s, 3H). 

 13C NMR (101 MHz, CDCl3): δ 178.3, 156.6, 141.5, 110.3, 105.0, 53.2, 38.3, 36.8, 30.4, 

29.2, 23.4.  

FTIR (NaCl, thin film, cm-1): 3119, 2993, 2956, 2869, 1722, 1682, 1604, 1506, 1461, 

1411, 1390, 1371, 1276, 1224, 1208, 1175, 1161, 1104, 1067, 1008, 946, 918, 884, 850, 

804, 743, 730, 695. 

HRMS (ESI-TOF, m/z): calc’d for C11H15O3 [M+H]+: 195.1016; found: 195.1019. 

 

 

A 100 mL flame-dried, round-bottom flask was charged with carboxylic acid 284 

(342 mg, 1.76 mmol, 1.00 equiv), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (19.7 mg, 0.0176 mmol, 

0.01 equiv), and K2HPO4 (368 mg, 1.76 mmol, 1.00 equiv). The flask was evacuated and 

backfilled with N2 three times.  DMF (17.6 mL, 0.1 M) and freshly distilled methyl vinyl 

ketone (144 µL, 1.76 mmol, 1.0 equiv) were then added, and the reaction mixture was 

sparged with Ar for 5 minutes. The reaction flask was placed about 5 cm from a 34W blue 

284
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LED lamp and was allowed to stir at room temperature under N2. After 42 h, the reaction 

was quenched with sat aq NaHCO3 and extracted with EtOAc (75 mL x 3). The combined 

organics were then dried with MgSO4, filtered, and concentrated in vacuo to afford the 

product as a crude oil, which was then purified by silica gel flash chromatography (3 → 

10% EtOAc/hexanes) to afford 285 as a white solid (201 mg, 52% yield). 

Rf = 0.79 (silica gel, 20% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +57.8° (c = 1.07, CHCl3).  

1H NMR (400 MHz, CDCl3): δ 7.30 (dd, J = 1.8, 0.9 Hz, 1H), 6.27 (dd, J = 3.1, 1.9 Hz, 

1H), 5.97 (dt, J = 3.2, 0.7 Hz, 1H), 2.97 (td, J = 9.6, 8.5 Hz, 1H), 2.41 – 2.21 (m, 2H), 2.09 

– 1.97 (m, 4H), 1.93 (ddd, J = 10.7, 8.5, 0.7 Hz, 1H), 1.88 – 1.79 (m, 1H), 1.74 – 1.59 (m, 

2H), 1.11 (s, 3H), 1.08 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 209.1, 158.9, 140.9, 110.3, 104.0, 50.4, 41.5, 39.0, 34.6, 

34.3, 30.6, 30.1, 24.2, 22.3. 

FTIR (NaCl, thin film, cm-1): 3114, 2953, 2933, 2863, 1717, 1593, 1506, 1451, 1411, 

1368, 1360, 1235, 1159, 1150, 1009, 799, 729. 

HRMS (ESI-TOF, m/z): calc’d for C14H20O2Na [M+Na]+: 243.1356; found: 243.1359.  

 

A 50 mL round bottom flask was charged with carboxylic acid 284 (200 mg, 1.03 

mmol, 1.00 equiv) and was evacuated and backfilled with N2 three times. 5:1 tBuOH/H2O 

(5.2 mL, 0.2 M) was added. Once the starting material was fully dissolved, NaH2PO4•H2O 

284
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(213 mg, 1.54 mmol, 1.50 equiv) was added in one portion, followed by NaClO2 (349 mg, 

3.09 mmol, 3.00 equiv, 80%). The suspension turned bright yellow within the first 10-15 

minutes. The reaction mixture was allowed to stir 2–3 hours, at which point the yellow 

color dissipated and no more starting material was observed by TLC. The reaction mixture 

was concentrated in vacuo, and the resulting solids were solubilized with a mixture of 

EtOAc and minimal H2O. This crude mixture was concentrated onto 4 g SiO2. The powder 

was applied to a silica gel column and purified by flash silica gel chromatography (0 → 

5% MeOH/CH2Cl2, followed by flushing with 50% MeOH/CH2Cl2) to afford 286 as a 

white solid (151 mg, 65% yield, 93% pure by qNMR).   

Rf = 0.20 (silica gel, 10% MeOH/CH2Cl2, UV, p-anisaldehyde) 

[α]D25 +62.6° (c = 0.22, MeOH).   

1H NMR (400 MHz, MeOD-d4): δ 7.27 (d, J = 5.9 Hz, 1H), 6.12 (d, J = 5.8 Hz, 1H), 2.92 

(q, J = 9.4 Hz, 1H), 2.72 (d, J = 9.6 Hz, 1H), 1.80 (t, J = 10.3 Hz, 1H), 1.70 (dd, J = 11.0, 

9.0 Hz, 1H), 1.20 (s, 3H), 1.10 (s, 3H). 

13C NMR (101 MHz, MeOD-d4): δ 175.7, 172.9, 155.7, 123.6, 51.5, 49.5, 37.8, 37.1, 36.9, 

36.2, 33.7, 30.4, 30.3, 24.1, 23.7.  

FTIR (NaCl, thin film, cm-1): 3098, 2960, 2871, 1726, 1416, 1373, 1280, 1255, 1187, 

1160, 1114, 1032, 1007, 935, 852, 829, 713. 

HRMS (ESI-TOF, m/z): calc’d for C11H16O5 [M+H]+: 227.0919; found: 227.0922. 
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A 50 mL round bottom flask was flame-dried under vacuum and then back-filled 

with N2. The flask was charged with CH2Cl2 (5 mL) and cooled to –78 ºC, at which point, 

TiCl4 (142 µL, 1.33 mmol, 6.00 equiv) was added. The flask was then charged with MeLi 

(1.5 M in Et2O; 4.00 mL, 5.30 mmol, ~24 equiv) dropwise via syringe, until the color of 

the solution changed from dark brown, to bright orange, and finally to dark green. The 

resulting solution was stirred for 1h at –78 ºC. A flame-dried 50 mL pear-shaped (pointed) 

flask was charged with 286 (49.0 mg, 0.217 mmol, 1.00 equiv) and then evacuated and 

backfilled with N2 three times. The substrate was dissolved in CH2Cl2 (23 mL) and 

sonicated to dissolve any particulates. The solution was cooled to –78 ºC, then added to the 

reaction flask via a slow cannula transfer. If the addition proceeds too quickly or the 

solution of starting material is not sufficiently cooled, the reaction will favor the undesired 

diastereomer. The flask containing 286 was rinsed with 2 mL CH2Cl2 to complete the 

transfer. The resulting mixture was allowed to stir at –78 ºC. After 4 h the reaction was 

quenched with 1 M HCl (20 mL), allowed to warm to 23 °C, and stirred for 30 minutes 

during which time the aqueous layer became blue/green. The organic and aqueous layers 

were separated, and the aqueous layer was extracted with EtOAc (20 mL x 4), dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by silica gel 

flash chromatography (0 → 10% MeOH/CH2Cl2) to afford 287 as a white solid (29 mg, 

9:1 dr, 60% yield).  
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Rf = 0.43 (silica gel, 10% MeOH/CH2Cl2, UV, p-anisaldehyde) 

[α]D25 = +43.0° (c = 0.46, CHCl3).   

1H NMR (400 MHz, CDCl3): 7.23 (d, J = 5.6 Hz, 1H), 6.01 (d, J = 5.6 Hz, 1H), 3.48 (s, 

1H), 2.99 (dd, J = 9.4, 0.8 Hz, 1H), 2.92 – 2.78 (m, 1H), 1.46 – 1.41 (m, 1H), 1.39 (s, 3H), 

1.35 (dd, J = 11.1, 9.9 Hz, 1H), 1.20 (s, 3H), 1.10 (s, 3H). 

 13C NMR (101 MHz, CDCl3): δ 178.3, 172.9, 172.8, 158.8, 121.1, 88.5, 49.1, 47.1, 36.4, 

35.6, 35.5, 32.1, 29.9, 23.8, 21.7.  

FTIR (NaCl, thin film, cm-1): 3087, 2958, 2869, 1737, 1600, 1463, 1453, 1403, 1380, 

1372, 1305, 1280, 1266, 1218, 1183, 1163, 1136, 1093, 1037, 961, 924, 880, 852, 824, 

728, 711, 658. 

HRMS (ESI-TOF, m/z): calc’d for C12H20NO4 [M+NH4]+: 242.1387; found: 242.1394. 

 

 

A flame-dried 50 mL round bottom flask was backfilled with N2 and charged with 

THF (5 mL). The flask was cooled to –78 °C and (i-PrO)3TiCl (1 M solution in hexanes; 

1.33 mL, 1.33 mmol, 6.00 equiv) was added. MeLi (1.6 M solution in ether; 0.83 mL, 1.33 

mmol, 6.00 equiv) was then added dropwise. This mixture was allowed to stir at –78 °C 

for 1 h. 286 (50 mg, 0.221 mmol, 1.00 equiv) was then added as a solution in THF (5.5 

mL). The reaction mixture was slowly warmed to 23 °C over 21h. The reaction was then 

carefully quenched with 1 M HCl (11 mL) and stirred vigorously for 30 min. The organic 

(iPrO)3TiCl (6 equiv)
MeLi (6 equiv)

THF (0.02 M)
 –78ºC to rt, 21 h

(76% yield, 22:1 dr)
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and aqueous layers were then separated, and the aqueous layer was extracted with EtOAc 

(12 mL x 4). The combined organic layers were dried over MgSO4, filtered, and 

concentrated in vacuo. The crude reaction mixture was purified by silica gel flash 

chromatography (0 → 4% MeOH/CH2Cl2) to afford 288 (37.5 mg, 76% yield, 22:1 dr)  

Rf = 0.43 (silica gel, 10% MeOH/CH2Cl2, UV, p-anisaldehyde) 

[α]D25 = +120.4° (c = 1.20, CHCl3).   

1H NMR (500 MHz, CDCl3): δ 7.29 (d, J = 5.6 Hz, 1H), 5.97 (d, J = 5.6 Hz, 1H), 2.79 

(td, J = 9.9, 8.9 Hz, 1H), 2.39 (dd, J = 9.8, 0.8 Hz, 1H), 1.93 (t, J = 10.4 Hz, 1H), 1.78 

(ddd, J = 10.8, 8.9, 1.0 Hz, 1H), 1.39 (s, 3H), 1.21 (s, 3H), 1.11 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 177.4, 172.9, 159.5, 120.5, 88.4, 46.9, 36.8, 35.5, 33.5, 

29.9, 23.6, 21.6. 

FTIR (NaCl, thin film, cm-1): 3091, 2936, 2958, 1869, 1741, 1702, 1464, 1454, 1417, 

1371, 1282, 1247, 1208, 1166, 1119, 1090, 1051, 956, 912, 820, 727, 661.  

HRMS (ESI-TOF, m/z): calc’d for C12H20NO4 [M+NH4]+: 242.1387; found: 242.1390. 

 

 

A 2-dram vial was charged with lactone 287 (29 mg, 0.129 mmol, 1.00 equiv) and 

Pd/C (10% by weight, 47 mg, 0.044 mmol, 0.34 equiv). The vial was then evacuated and 

backfilled with N2 three times. The solids were suspended in MeOH (1.4 mL, 0.095 M), 

and the reaction mixture was sparged with a balloon of H2 for 20 minutes at 0°C, at which 
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point the balloon was replaced with a fresh balloon, and the reaction was allowed to warm 

to room temperature. The reaction mixture was then stirred for 7 h under an atmosphere of 

H2. Once the reaction was complete, the reaction mixture was sparged with argon for 20 

minutes, diluted with EtOAc (15 mL), and filtered through celite, and concentrated in 

vacuo. The crude residue was then purified by silica gel flash chromatography (5% 

MeOH/CH2Cl2) to afford S13 (25 mg, 88% yield) as a white solid. 

Rf = 0.44 (silica gel, 10% MeOH/CH2Cl2, p-anisaldehyde) 

[α]D25 = +76.3° (c = 0.72, CHCl3).   

1H NMR (400 MHz, CDCl3): δ 2.91 (d, J = 9.7 Hz, 1H), 2.72 (t, J = 9.5 Hz, 1H), 2.70 – 

2.59 (m, 1H), 2.53 (ddd, J = 18.2, 9.6, 5.0 Hz, 1H), 2.04 – 1.86 (m, 2H), 1.67 (s, 1H), 1.65 

(s, 1H), 1.30 (s, 3H), 1.22 (s, 3H), 1.11 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 178.4, 177.1, 86.3, 86.3, 48.7, 39.1, 35.3, 32.6, 30.9, 29.9, 

29.3, 24.0, 23.7. 

FTIR (NaCl, thin film, cm-1): 2958, 2934, 2869, 1773, 1736, 1702, 1459, 1420, 1382, 

1369, 1283, 1248, 1166, 1142, 1077, 940, 914, 802, 646.  

HRMS (ESI-TOF, m/z): calc’d for C12H22NO4 [M+NH4]+: 244.1543; found: 244.1541. 

 

288 (31.0 mg, 0.138 mmol, 1.00 equiv) was subjected to analogous conditions to afford 

S14 (32.2 mg, quant yield), which was taken forward without further purification.  

Rf = 0.44 (silica gel, 10% MeOH/CH2Cl2, p-Anisaldehyde) 
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[α]D25 = +51.2° (c = 0.53, CHCl3).   

1H NMR (400 MHz, CDCl3): δ 2.78 – 2.56 (m, 3H), 2.50 (ddd, J = 18.1, 9.9, 4.9 Hz, 1H), 

2.17 – 2.06 (m, 1H), 1.91 (ddd, J = 13.1, 10.0, 4.9 Hz, 1H), 1.81 (td, J = 9.8, 1.2 Hz, 1H), 

1.71 (dd, J = 10.8, 8.0 Hz, 1H), 1.29 (s, 3H), 1.21 (s, 3H), 1.11 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 178.4, 177.2, 86.5, 48.1, 39.2, 35.5, 33.6, 30.9, 29.9, 29.3, 

23.9, 23.7.  

FTIR (NaCl, thin film, cm-1): 2958, 2869, 1770, 1738, 1732, 1704, 1699, 1463, 1422, 

1383, 1369, 1283, 1245, 1222, 1165, 1138, 1075, 1002, 965, 941, 914, 802, 757, 711, 648.  

HRMS (ESI-TOF, m/z): calc’d for C12H22NO4 [M+NH4]+: 244.1543; found: 244.1537. 

 

 

To a 2 dram vial charged with saturated lactone S13 (16 mg, 0.0707 mmol, 1.00 

equiv) was added Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.8 mg, 0.0007 mmol, 0.01 equiv) and 

K2HPO4 (14.8 mg, 0.0849 mmol, 1.20 equiv). The reaction vessel was evacuated and 

backfilled with N2 three times. DMF (0.71 mL, 0.1 M) was then added, and the reaction 

mixture was cooled to 0 °C and sparged with argon for 15 minutes. Freshly distilled methyl 

vinyl ketone (7.2 µL, 0.0884 mmol, 1.25 equiv) was then added, and the reaction vessel 

was placed between two 34W blue LEDs (~5-6 cm away from each lamp) and stirred for 

24 h with a small fan to keep the reactions at 23 ºC. Once complete, the reaction was diluted 
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with sat. aq. NaHCO3 (0.8 mL) and EtOAc (0.8 mL). The layers were separated, and the 

aqueous layer was extracted with EtOAc (4 x 1 mL). The combined organic layers were 

washed with 1 M LiCl (5 mL). The organic layer was then dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude material was purified by silica gel flash chromatography 

(20 → 40% EtOAc/hexanes) to afford pure (+)-rumphellaone A (142) (15 mg, 78% yield) 

as a yellow solid.  

Rf = 0.27 (silica gel, 40% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +43.4° (c = 0.35, CHCl3).   

1H NMR (400 MHz, CDCl3): δ 2.63 (ddd, J =18.1, 10.0, 8.9 Hz, 1H), 2.53 (ddd, J = 18.1, 

10.0, 5.0 Hz, 1H), 2.36 (t, J = 7.9 Hz, 2H), 2.12 (s, 3H), 2.09 – 2.02 (m, 2H), 2.03 – 1.97 

(m, 1H), 1.90 (ddd, J = 10.2, 9.6, 5.3 Hz, 2H), 1.88 – 1.81 (m, 1H), 1.69 – 1.61 (m, 2H), 

1.57 (ddd, J = 10.8, 8.6, 0.8 Hz, 1H), 1.42 (t, J = 10.3 Hz, 1H), 1.31 (s, 3H), 1.06 (s, 3H), 

1.03 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 208.8, 177.1, 87.4, 44.6, 44.4, 42.1, 33.7, 33.1, 31.1, 30.8, 

30.1, 29.3, 25.2, 25.0, 22.6. 

FTIR (NaCl, thin film, cm-1): 2953, 2929, 2865, 1770, 1715, 1455, 1366, 1250, 1162, 

1124, 1077, 938, 803, 645. 

HRMS (ESI-TOF, m/z): calc’d for C15H25O3 [M+H]+: 253.1798; found: 253.1799. 
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S14 (15.0 mg, 0.066 mmol, 1.00 equiv) was subjected to an analogous procedure 

to afford epi-C8-rumphellaone A (289) (8.1 mg, 52% yield) as a white solid. 

Rf = 0.33 (silica gel, 40% EtOAc/Hexanes, UV, p-anisaldehyde) 

[α]D25 = +38.5° (c = 0.41, CHCl3).   

1H NMR (400 MHz, CDCl3): δ 2.63 – 2.56 (m, 2H), 2.39 (dd, J = 8.6, 6.6 Hz, 2H), 2.13 

(s, 3H), 2.10 – 1.96 (m, 2H), 1.90 (ddd, J = 13.0, 8.8, 7.2 Hz, 1H), 1.78 (tdd, J = 9.2, 6.6, 

0.8 Hz, 1H), 1.71 – 1.57 (m, 3H), 1.51 (t, J = 10.4 Hz, 1H), 1.29 (s, 3H), 1.06 (s, 3H), 1.03 

(s, 3H). 

13C NMR (101 MHz, CDCl3): δ 208.7, 177.1, 87.3, 44.6, 44.1, 41.9, 34.5, 33.4, 31.6, 31.1, 

30.2, 29.3, 25.0, 24.0, 22.6. 

FTIR (NaCl, thin film, cm-1): 2952, 2932, 2865, 1769, 1715, 1455, 1422, 1365, 1234, 

1169, 1155, 1075, 963, 939, 801, 647. 

HRMS (ESI-TOF, m/z): calc’d for C15H25O3 [M+H]+: 253.1798; found: 253.1799. 
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Comparison of 1H NMR spectroscopic data for natural and synthetic (+)-

rumphellaone A (142)  

 

Carbon 
Number 

Natural (+)-rumphellaone A  
1H 400 MHz, CDCl3 

Synthetic (+)-rumphellaone A  
1H 400 MHz, CDCl3 

1 
1.91 (ddd, J = 10.0, 9.2, 5.6 Hz, 

2H) 1.90 (ddd, J = 10.2, 9.6, 5.3 Hz, 2H) 
2 1.67 (m, 2H) 1.65 (m, 2H) 
3 2.37 (t, J = 8.0 Hz, 2H) 2.36 (t, J = 7.9 Hz, 2H) 

6a 
2.63 (ddd, J = 18.0, 9.6, 8.8 Hz, 

1H) 2.63 (ddd, J =18.1, 10.0, 8.9 Hz, 1H) 

6b 
2.54 (ddd, J = 18.0, 10.0, 4.8 Hz, 

1H) 
2.53 (ddd, J = 18.1, 10.0, 5.0 Hz, 

1H) 
7⍺ 1.84 (m, 1H) 1.84 (m, 1H) 
7β 2.01 (m, 1H) 2.01 (m, 1H) 
9 2.06 (ddd, 10.4, 10.0, 10.0 Hz, 2H) 2.06 (m, 2H) 

10⍺ 1.57 (dd, J = 10.0, 10.0 Hz, 1H) 1.57 (ddd, J = 10.8, 8.6, 0.8 Hz, 1H) 
10β 1.42 (dd, J = 10.4, 10.0 Hz, 1H)) 1.42 (t, J = 10.3 Hz, 1H) 
12 2.13 (s, 3H) 2.12 (s, 3H) 
13 1.31 (s, 3H) 1.31 (s, 3H) 
14 1.03 (s, 3H) 1.03 (s, 3H) 
15 1.07 (s, 3H) 1.06 (s, 3H) 

 

Me
Me

O
H

OMe

Me

O

(+)-rumphellaone A (142)

1 2
3 4

12
15

14
11

10  9

8

13 7
6

5



Chapter 2 – A Modular Approach to Synthesize Enantioenriched Cyclobutane Products 

 

192 

Comparison of 13C NMR spectroscopic data for natural and synthetic (+)-
rumphellaone A (142). 

 

Carbon 
Number 

Natural (+)-rumphellaone 
A 13C 100 MHz, CDCl3 

Synthetic (+)-rumphellaone 
A 13C 101 MHz, CDCl3 Δ 

1 44.5 44.6 0.1 
2 25.1 25.2 0.1 
3 42.0 42.1 0.1 
4 208.6 208.8 0.2 
5 177.0 177.1 0.1 
6 29.2 29.3 0.1 
7 30.6 30.8 0.2 
8 87.2 87.4 0.2 
9 44.3 44.4 0.1 
10 33.6 33.7 0.1 
11 33.0 33.1 0.1 
12 29.9 30.1 0.2 
13 24.9 25.0 0.1 
14 22.5 22.6 0.1 
15 30.9 31.1 0.2 
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Chapter 3 

An Introduction to the Enmein-type Ent-Kauranoids 

 

3.1 INTRODUCTION 

Extracts from plants of the Isodon species have been used for centuries in traditional 

Chinese medicine.1 In an effort to identify the bioactive chemical constituents, over 1,000 

novel diterpenoids have been isolated from these plants and characterized to date.11 

Compounds such as trichorabdal A (293),2 adenanthin (299),3 and isodocarpin (301)4 have 

demonstrated potent antibacterial, anti-inflammatory, and antitumor activities, and since 

their identification in the 1960s have become the focus of study for both chemists and 

biologists (Scheme 3.1). For example, 299 was shown to selectively inhibit two isoforms 

of peroxiredoxin enzymes and prolong survival in murine models of acute promyelocytic 

leukemia.3 Ent-kauranoids possessing the exocyclic enone moiety are thought to have 

enhanced biological activity through covalent modification of target proteins.5 It is 

hypothesized that molecules in this class arise biosynthetically from common progenitors 
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and all contain a caged polycyclic core bearing varying oxidation patterns (Figure 1).11 

However, the wide range of biological activity in this family of natural products suggests 

that the stereochemical and regiochemical oxidation patterns embedded within the core of 

these compounds impart significant changes to their bioactivity. Despite the intriguing 

biological properties of these highly oxygenated terpenes, there have been few successful 

total syntheses of this class of natural products. 

Scheme 3.1 Representative examples of bioactive ent-kauranoids.  

 

3.2 PREVIOUS SYNTHESES OF RELATED NATURAL PRODUCTS 

Several research groups have made contributions to the total synthesis of Isodon 

diterpenoids. In 1974, Fujita and coworkers disclosed a biomimetic synthesis of enmein 

(300) (Scheme 3.2).5–7 Diol 302 can be accessed in 24 steps from commercial material as 

a racemate. From diol 302, two additional steps provides 303. Diol 303 can be elaborated 

to lactone 304, which can be derivatized to access 305 in six additional steps. From 305, it 

takes the Fujita lab an additional eleven steps to finally access 300, in a largely linear 

synthesis.  
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Scheme 3.2 Fujita synthesis of enmein (300).  

 

Notably, their synthesis could only be rendered asymmetric through a semi-

synthetic route, in which they use plant materials to isolate a single enantiomer of 302. 

With enantioenriched 302, Fujita and coworkers could carry out their established route to 

access enmein (300) as a single enantiomer. 

Scheme 3.3 Mander’s synthesis of 15-desoxyeffusin (311).  

 

In 1986, Mander reported a series of studies toward the total synthesis of effusin 

(297) (Scheme 3.3).8,9 A key intramolecular arene alkylation of α-diazoketone 307 was 

used to construct the bridging bicyclo[3.2.1]octane moiety present in 308. Tricycle 308 
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could be advanced three steps to build a second all-carbon quaternary center present in 309. 

This vinylogous ester 309 could be elaborated to 15-desoxyeffusin (311) in an additional 

22 steps; however, any attempts to oxidize the C15 methylene proved unsuccessful.  

Scheme 3.4 Thomson’s synthesis of sculponeatin N (319). 

 

In 2014, the Thomson lab reported a total synthesis of sculponeatin N (319), starting 

from 312, which can be prepared in three steps from commercial material (Scheme 3.4).10 

Acrylate 312 can be advanced two additional steps to access diene 313, which undergoes 

a key Nazarov cyclization to form the cyclopentenone moiety in 314. Three additional steps 

enables the installation of three olefins present in 315, which can be subjected to a ring 

closing metathesis cascade to prepare 316. With 316 in hand, oxidation and triflation 

provides 317, which is then poised to undergo elimination and a subsequent radical 
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cyclization to form the key [3.2.1]-bicycle of 318. Sculponeatin N (319) can be accessed 

in six additional steps, forming 319 in 19 steps from commercial material. 

Scheme 3.5 Yang’s synthesis of maoecrystal V (296). 

 

Several research groups have targeted maoecrystal V (296) since its structural 

elucidation in 2004.11 The first successful total synthesis of 296 was completed in 2010 by 

Yang and coworkers (Scheme 3.5).12 Their synthesis commences with b-ketoester 320. 

Treatment with aryl lead reagent 321 enables an a-arylation reaction. Ketone 322 can be 

elaborated to diazoester 323 in two additional steps. A key intramolecular O–H insertion 

reaction creates the C–O bond present in 324, which can be elaborated in two additional 
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steps to provide enone 325. A Wessely oxidative acetoxylation followed by an 

intramolecular thermal [4+2] cycloaddition provides 326. With the key carbon skeleton 

intact, Yang and co-workers are tasked with oxidative manipulation of the framework. Four 

steps are required to install the allylic alcohol and to remove the acetoxy group at C16 to 

provide 327. From 327, an oxidation mediated by DMP and a catalytic reduction of the 

bicycle produces epi-C16-maoecrystal V (328). A final epimerization delivers 296. 

Scheme 3.6 Danishefsky’s synthesis of maoecrystal V (296). 

 

The Danishefsky lab also completed a synthesis of 296 in 2012 (Scheme 3.6).13 

Key to their strategy was an intramolecular Diels-Alder between an unsaturated sulfone 

and a pendant silyl dienol ether 331. Following elimination, they are able to establish the 

key carbo skeleton in 332. From here, it takes them three steps to install the necessary 
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oxidation at the bridgehead and then 14 steps to deliver the central tetrahydrofuran 334. 

From here, modification of A and E rings can be carried out in nine additional steps, 

delivering 296.   

Scheme 3.7 Zakarian’s synthesis of maoecrystal V (296). 

 

The first asymmetric synthesis of 296 was reported in 2014 by Zakarian and 

coworkers (Scheme 3.7).14 Their synthesis commences with a Mitsunobu reaction between 
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337 and 338. They can then elaborate 339 in four additional steps, delivering key diazoester 

341. With 341 in hand, they are poised to examine their key C–H insertion reaction—they 

determined that using a chiral diazo mandelamide delivered their 2,3-dihydrobenzofuran 

in high yields with low levels of erosion of ee. Methanolysis with concomitant 

epimerization delivers 343. Zakarian and coworkers are then able to elaborate 343 to vinyl 

silyl ether 344, which can be subjected to a thermal, intramolecular [4+2] reaction to build 

the key [2.2.2]-bicycle. Cleavage of the C–Si bond along with reduction and installation of 

the acyl selenide delivers 346. The key acyl selenide 346 can be subjected to a radical 

cyclization reaction to install the central lactone ring of 347. Nine additional steps are 

required to forge the cyclohexenone A ring as well as the additional methyl group on the 

[2.2.2]-bicycle, furnishing 296 in 28 steps from commercial material.  

Scheme 3.8 Thomson’s synthesis of maoecrystal V (296). 
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Thomson and coworkers also recently reported an asymmetric synthesis of 296 

(Scheme 3.8).15 Their synthesis starts from 4,4-dimethylcyclohexenone (348). The first 

stereocenter is set through an asymmetric Sharpless epoxidation. The aryl bromide is 

subsequently installed through a TfOH promoted etherification reaction, providing 349. At 

this point, a key intramolecular Heck cyclization delivers the all-carbon quaternary center 

of 350. The resultant phenol is then subjected to an oxidative cyclodearomatization reaction 

to deliver 351. With 351 in hand, Thomson and coworkers advance this intermediate three 

additional steps, including an intermolecular Diels-Alder with nitroethylene to provide 

352, building the central [2.2.2]-bicycle. With the skeletal framework assembled, they turn 

their attention toward oxidative manipulation of 352. Four steps allows for reduction of the 

bicycle, oxidation of the nitro group and installation of the alpha-disposed methyl group to 

provide 353. Allylic oxidation of 353 delivers 354, at which point a low-yielding and 

poorly selective remote C–H oxidation  provides a mixture of 296 and 355.      

Scheme 3.9 Baran’s synthesis of maoecrystal V (296).  
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Baran’s lab recently disclosed a convergent total synthesis of 296 (Scheme 3.9).16 

Their route involves synthesis of a [3.2.1]-bicycle (357) through an intramolecular Sakurai 

allylation. Their key 1,2-addition is then carried out between a Grignard reagent prepared 

from 358 and 357. Subsequent treatment of the 1,2-adduct with acid promotes a pinacol 

rearrangement to convert the [3.2.1]-bicycle to the requisite [2.2.2]-bicycle present in 359. 

Two additional steps provides the key central lactone in 360, with three additional steps 

required to convert 360 to 296. Their strategy is highly convergent and vastly improved 

upon prior syntheses of 296. With a robust synthetic route to access ample quantities of 

296, Baran and coworkers disappointingly observed limited biological activity against a 

number of cancer cell lines, despite compelling preliminary biological data reported in the 

literature.11 This discovery highlights the value of total synthesis as a tool to access 

bioactive molecules for extensive biological study. 

Scheme 3.10 Dong’s synthesis of enmein (300). 
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cycloaddition between 361 and 362, delivering a single diastereomer of 363. The 

stereochemistry is notably controlled by the chiral auxiliary present in 361. Two additional 

steps including a Birch reduction delivers 364, which is advanced through four steps to 

deliver 365. The vinyl bromide 365 can be used as a radical precursor to close the final 

[3.2.1]-bicycle present in 366. Unfortunately, manipulation of the stereochemistry and 

oxidation of the carboskeleton requires an additional eight steps before they can access 

300. While the end of their synthesis requires substantial functional group interconversions, 

this synthesis represents a vast improvement over the synthesis of 300 presented by Fujita.  

3.3 THE REISMAN LAB’S APPROACH TO THE ENT-KAURANOIDS 

Our lab has also worked extensively in the field of ent-kauranoid total synthesis. 

We felt that both the structural complexity as well as the biological activity of these natural 

products make them formidable targets for a total synthesis endeavor. In 2011, our lab 

reported a total synthesis of maoecrystal Z (292) commencing from g-cyclogeraniol (367) 

(Scheme 3.11).18 A silylation followed by a selective epoxidation delivers 368, a 3:1 

mixture of diastereomers. Our lab determined that both diastereomers could be taken 

forward through an epoxide homolysis mediated by Cp2TiCl with a Giese-type addition to 

trifluoroethylacrylate delivers lactone 369. At this point, 369 could be alkylated with alkyl 

iodide 370. Lactone 371 was then advanced three steps to deliver aldehyde 372, which is 

poised to undergo a key reductive cyclization. Treatment with in situ generated SmBr2 

delivers a single diastereomer of tetracycle 373, in which two key bonds have been formed. 

With the key carbocyclic core assembled, attention turned toward the installation of the 
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requisite acetates and installation of the enal moiety. Bis acylation of 373 followed by three 

additional steps delivers maoecrystal Z (292) in only 12 steps from 367.  

Scheme 3.11 Reisman’s synthesis of maoecrystal Z (292). 

 

 Having developed a rapid and scalable approach to 292, our lab became interested 

in using an analogous strategy to target other ent-kauranoids within this family of natural 

products. Again commencing from 367, seven analogous steps delivered unsaturated 

lactone 375, bearing a silyloxy group rather than an aldehyde on the cyclohexane ring 

(Scheme 3.12).19,20 From here, a reductive cyclization to forge one key bond provided 376, 

again as a single diastereomer. With 376 in hand, attention turned toward the construction 

of the requisite [3.2.1]-bicycle present in 293 and 294. Protection of the secondary alcohol 

and conversion to the corresponding silyl ketene acetal delivered 377, which was then 

poised to undergo an oxidative cyclization. After substantial optimization, we found that 
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treatment of 377 with stoichiometric Pd(OAc)2 with AcOH as an additive in DMSO in the 

presence of O2 provided good yields of 378, a key intermediate. We found that 378 could 

be diverted to two different natural products. Ketone 378 could be converted to 293 in four 

steps from commercial and could be converted to 294 in six steps from commercial, 

completing the synthesis.  

Scheme 3.12 Reisman’s syntheses of trichorabdal A (293) and longikaurin E (295). 
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demonstrate the difficulties and shortcomings inherent in natural product total synthesis, 

and as such, continued synthetic campaigns will continue to be instructive and informative.    
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Chapter 4 

A Cross-Coupling Approach for the Synthesis of the  

Enmein-Type Ent-Kauranoids† 

 

4.1 INTRODUCTION 

While there have been a number of elegant syntheses of ent-kauranoid natural 

products by our group and others, we felt that the compelling structure and promising 

biological activity of these natural products warranted further investigation. While there 

have been several creative strategies toward the synthesis of these natural products, we felt 

that a more convergent assembly of the kauranoid core would greatly improve upon the 

existing strategies. A convergent and easily diversifiable synthetic approach to these 

natural products will allow access to several of these highly oxygenated terpenes and 

enable an in-depth investigation of the structure-activity relationship (SAR). 

                                                
† The research discussed in this chapter was completed in collaboration with Kelsey E. Poremba, a graduate 
student in the Reisman Lab. 
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4.2 SYNTHETIC STRATEGY 

4.2.1 Retrosynthetic Analysis 

In considering the structure of the enmein-type ent-kauranoids (e.g. 301), we 

identified the central B-ring lactone as a strategic ring forging junction for two bicyclic 

systems. Conceptually, we thought to cleave the molecule through the B ring, revealing 

two fragments of similar size and complexity (402 & 403) (Scheme 4.1a). We were excited 

at the prospect of using an epoxy alcohol (402) as our A/C-ring fragment, as we felt that 

we could apply reductive cyclization chemistry our lab had investigated in the total 

syntheses of 292, 293, and 295 (Scheme 4.1b).1–3 Our lab found that reductive opening of 

epoxide 368, followed by intermolecular trapping by Michael acceptor 404 could enable 

spirocycle formation, delivering 369 in excellent yield as a single diastereomer. 

Scheme 4.1 A simplifying convergent strategy to access 301.  
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catalyzed intermolecular epoxide alkenylation to join the two fragments (Scheme 4.1a). 

This transformation would leverage a similar carbon-centered radical intermediate our lab 

used in prior syntheses, but would seek to increase the convergence and modularity of the 

synthesis through the direct coupling of a bicyclic alkenyl triflate (403). In addition, this 

convergent coupling strategy would allow us to vary the oxidation pattern on either 

fragment, thereby providing modular access to other seco-ent-kauranoids. 

Scheme 4.2 First generation retrosynthesis of the enmein-type ent-kauranoids.  
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anti-Markovnikov hydration of tetracycle 410. Disconnection of 410 through the central 

B-ring lactone would greatly simplify our strategy. We hypothesized that we could prepare 

410 through formation of the key C–C bond (shown in blue) via an intramolecular, 

reductive-epoxide opening/cross-coupling reaction of 412. The substrate for this key 

cyclization reaction could be obtained through ester bond formation between two 

appropriately functionalized building blocks: epoxy alcohol 413 and [3.2.1]-bicyclooctane 

414. While previous studies toward the synthesis of 6,7-seco-ent-kauranoids have relied 

upon linear syntheses, this convergent coupling strategy will provide an efficient and 

expedient preparation of these oxygenated terpenoids with a modular approach that will 

potentially allow for the introduction of varying functionality on each coupling fragment.   

4.2.2 Reductive Cross-Coupling of Epoxides 

In addition to the work our lab has done in the field of reductive cross-electrophile 

coupling,4–9, we were also inspired by a number of reactions reported by the Weix and 

Gong groups that could be explored further to achieve our desired cross-coupling. In 2014, 

Weix and coworkers reported a cross-coupling reaction enabled by nickel and titanium co-

catalysis, providing the Markovnikov reductive arylation products between epoxides and 

aryl halides (Scheme 4.3a).10 In 2015, they expanded upon this methodology; by using a 

chiral titanocene, they could render this transformation asymmetric, enabling a 

desymmetrization of cyclic meso-epoxides (Scheme 4.3b).11 It is of note that in this 

reaction they were able to successfully employ alkenyl bromides and alkenyl triflates as 

cross-coupling partners, providing encouraging precedent for our desired transformation.  
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Scheme 4.3 Precedent for desired cross-electrophile coupling.  

 

Although the epoxide coupling we have proposed has not yet been employed to 

form quaternary centers, Gong and coworkers have demonstrated that quaternary centers 

can be generated through related Ni-catalyzed reductive cross-coupling reactions (Scheme 
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product synthesis.  
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Scheme 4.4 Mechanistic proposal for reductive cross-coupling.  

 

A proposed mechanism for the Ni/Ti co-catalyzed reductive cross-coupling of 
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4.2.3 Investigation of an Intramolecular Cross-oupling 

4.2.3.1 Epoxy Alcohol Synthesis 

In our preliminary studies, we developed a first-generation synthesis of epoxide 

413, shown in Scheme 4.5. Our synthesis commenced with material from the chiral pool. 

Epoxidation of �-cyclogeraniol (433) using mCPBA as the oxidant delivered a single 

diastereomer of the epoxy alcohol 434, which could be silylated under standard conditions 

to provide 435.13 Epoxide opening utilizing LiTMP and Et2AlCl afforded allylic alcohol 

436 as a single isomer. At this point, a second epoxidation using mCPBA delivered 413, 

completing the synthesis of the first coupling fragment. The stereochemistry of the epoxide 

was determined through 2D NMR experiments. This sequence has been performed on a 

multi-gram scale to deliver ample quantities of enantiopure 413.  

Scheme 4.5 Synthetic route to epoxy alcohol 413.  
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adapted work from the Snider lab in which structurally-complex bicyclo[3.2.1]octanes 

could be prepared by a radical polyene cyclization (Scheme 4.6).14  

Scheme 4.6 Synthesis of a bicyclo[3.2.1]octanoic acid.  
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and any attempts to increase the temperature or add additional DMAP resulted in 

decomposition of starting material. 

Scheme 4.7 Initial attempts at a convergent esterification.  
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isobutyl chloroformate (entry 3) and preparation of the acid chloride (entry 4) resulted in 

decomposition of starting material.  

Table 4.1. Esterification with a model system. 
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unable to isolate the desired product, 448 (Table 4.2). We observed solely protodetriflation 

to provide 450 with manganese as the reductant (Table 4.2, entry 1). With other reductants, 

such as Zn0 and Sm0, we observed protodetriflation as well as allylic alcohol 449. After 

careful review of these results, we hypothesized that the ester linkage may be problematic 

in this particular transformation.  

Table 4.2. Intramolecular cross-coupling screen. 
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Scheme 4.9 Mechanistic hypothesis for intramolecular cross-coupling.  

 

4.2.4 Investigation of an Intermolecular Cross-coupling 

4.2.4.1 A Second Generation Retrosynthetic Analysis 
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Scheme 4.10 A second generation retrosynthesis.  

 

While we had already successfully completed a synthesis of epoxy alcohol 413, we 

elected to begin our investigation of this key cross-coupling with a model system for the 

other cross-coupling partner. We were aware that this would be a difficult reaction to 

develop, as we knew that reductive cross-couplings with epoxides had not yet been used to 

generate all-carbon quaternary centers. As such, we felt it would be best to begin with a 

less complex system. At this point, it was unclear which alkenyl electrophiles would be 
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intensive classical resolution, so working with a more easily accessible cross-coupling 

partner would be ideal. 

4.2.4.2 Screening an Intermolecular Cross-coupling 

We were pleased to see that we could readily access an enol triflate, alkenyl 

bromide, and alkenyl iodide from cyclohexanone 458 using a known Stille cross-coupling 

(Scheme 4.11).18 While Weix’s reaction worked with enol triflates and alkenyl bromides 

(Scheme 4.3), we were excited by the prospect of being able to carefully tune the reactivity 

of the alkenyl electrophile.    

Scheme 4.11 Synthesis of model C(sp2) electrophiles.  

 

 With 458 in hand, we were eager to begin exploring the feasibility of an 

intermolecular cross-coupling. We began our investigations using epoxy alcohol 413 and 

enol triflate 458 as the cross-coupling partners and explored different combinations of 

pyridine ligands and heterogeneous reductants (Table 4.3). We found that when we used 

dtbpy, terpy, or phen as the ligand, we observed significant amounts of the epoxide 

reduction product 462, regardless of which reductant was employed. Interestingly, we 

found that the C(sp2) coupling partner was fully consumed with dtbpy or phen as the ligand, 
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not observing any formation of 461, we were pleased to see that under the reaction 

conditions we explored, we were observing engagement of both electrophiles, and so we 

turned our attention to exploring the more reactive alkenyl iodide (460) in the reaction.  

Table 4.3. Cross-coupling between an epoxy alcohol and a cyclic enol triflate. 

  

 Unfortunately, we observed similar results when we used alkenyl iodide 460 as the 

C(sp2) coupling partner (Table 4.4); however, we were never able to recover the alkenyl 

iodide—instead our mass balance shifted toward the protodeiodinated product 464 (entries 

1–6). All three ligands delivered significant quantities of the epoxide reduction product 

462, regardless of which reductant was used.  
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through incorporation of a bis(oxazoline) ligand, as we felt a wider bite angle could 

facilitate the cross-coupling of more sterically-hindered electrophiles.  

Table 4.4. Cross-coupling between an epoxy alcohol and a cyclic enol triflate. 

 

 With this in mind, we began exploring the intermolecular cross-coupling between 
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Table 4.5. Ligand screening for intermolecular cross-coupling. 

 

 Disappointed that we did not observe the desired reactivity by tuning the employed 

ligand, we chose to examine the epoxide substrate. We hypothesized that the reduction 

product 462 was forming due to the slow radical capture by the sterically hindered nickel 

catalyst, resulting in a high steady state concentration of a radical intermediate, which could 

be reduced a second time prior to capture by the nickel. In an attempt to stabilize the radical 

intermediate, we prepared 465, with an adjacent ketone that we believed could stabilize the 

intermediate radical species (Scheme 4.12).  
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Scheme 4.12 A resonance-stabilized intermediate.  

 

 With a stabilized substrate in hand, we returned to the Weix conditions hoping to 

now observe the desired reactivity. Unfortunately, none of the pyridine ligands we tried 

provided the desired alkenylated product (Table 4.6). Interestingly, we observed a new side 

product, which we identified as the elimination product, producing an exocyclic enone 469 

in each of the reactions we examined. However, when we used the enol triflate (458) with 

the epoxy ketone (465) rather than the epoxy alcohol (413), we observed little to none of 

the divinyl side-product (463). The rest of the mass balance was starting material and 

decomposition.  
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 We hypothesized that while we had increased the stability of the resulting radical, 

enol radical reduction was outcompeting radical capture by the nickel catalyst, and instead 

of being reduced again and protonated, 467 was reduced to give enolate 470 and eliminated 

to produce 469 (Scheme 4.13). Based on the lack of divinyl produced here, we wondered 

if the equivalent of hydroxide that was generated from the elimination was inhibiting the 

catalyst, making it difficult for the catalyst to engage with the enol triflate electrophile.   

Scheme 4.13 Hypothesized formation of side product 469. 

 

 After exploring the cross-coupling between the epoxy ketone 465 and cyclic enol 

triflate 458, we also looked at analogous reactions with the more reactive alkenyl iodide 

(460), hoping that by employing a more reactive cross-coupling partner, we would observe 

better reactivity. Unfortunately, under these conditions, we observed a very similar mass 

balance, with formation of enone 469 observed in each reaction (Table 4.7). With regard 

to the C(sp2) cross-coupling partner, we observed some formation of the divinyl side-

product with the dtbpy ligand (entries 1–2), substantial formation of the divinyl product 

with the phen ligand (entries 5–6), and only alkenyl iodide with the terpy ligand (entries 

3–4). With these findings, it seemed as though using an epoxide substrate designed to 
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Table 4.7. Cross-coupling between an epoxy alcohol and a cyclic alkenyl iodide 

 

 Unable to produce the desired product with any of the conditions we explored, we 

wondered if returning to an epoxide that had been reduced in situ and engaged in a radical 

addition reaction would be instructive. In our lab’s synthesis of 292, we treated 368 with a 

stoichiometric reductant and trapped the resulting radical in a Giese-type addition reaction 

to forge an all-carbon quaternary center (Scheme 4.1b). While the enmein-type ent-

kauranoids require oxidation on the cyclohexane framework, we wondered if we could use 

368 as a substrate to get a handle on some of the chemistry.  
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we were able to recover significant amounts of starting material, with none of the reduction 
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Table 4.8. Cross-coupling of a less oxidized epoxide with a cyclic enol triflate. 

 

 Disappointingly, we observed almost identical results with alkenyl iodide 460 in 
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balance with regard to the epoxide partner was just starting material.  For the alkenyl cross-

coupling partner, when we used MeCN or dioxane, we observed little to no conversion of 

the enol triflate electrophile (458) (entries 6 and 8). However, for each of the other solvents 

we explored, we saw complete conversion to the divinyl side product (463). 

Table 4.9. Cross-coupling of a less oxidized epoxide with a cyclic alkenyl iodide. 

  

While there were certainly additional solvents we could explore in hopes of fine 
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by using a nickel catalyst that had been used to construct all-carbon quaternary centers in 

the reductive manifold, we could potentially forge the desired carbon-carbon bond using 

an epoxide as one of the electrophiles.   

Table 4.10. Solvent screen 
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Table 4.11. Using the Gong conditions on our system 

 

4.3 CONCLUDING REMARKS 

After extensive exploration of both the intramolecular as well as the intermolecular 

cross-electrophile couplings of epoxide-containing substrates, we concluded that while 

simplifying and interesting, this strategy was not going to be viable in the context of the 

synthesis of the enmein-type ent-kauranoids. With this in mind, we turned our attention 

toward other approaches we could employ using some of the lessons we had learned 

throughout this investigation. 
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(MeCN), tert-butanol (t-BuOH), anhydrous N,N-dimethylformamide (DMF), anhydrous 

N,N-dimethylacetamide (DMA), chloroform (CHCl3), and absolute ethanol (EtOH) were 

used as received from Fisher Scientific. NiBr2•dme and Ni(cod)2 were purchased from 

Strem and stored in a N2-filled glovebox. Zinc dust and Mangenese powder were purchased 

from Strem and stored in a dessicator. All other commercially obtained reagents were 

purchased from Sigma-Aldrich and used as received unless specifically indicated. All 

reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 

F254 pre-coated plates (0.25 mm). Silica gel and basic alumina column chromatography 

was performed as described by Still et al.19 using silica gel (particle size 0.032–0.063) 

purchased from Silicycle and aluminum oxide (activated, basic, Brockmann I, 58 Å pore 

size, powder) purchased from Sigma-Aldrich. 1H and 13C NMR were recorded on a Varian 

Inova 600 (at 600 MHz), a Varian Inova 500 (at 500 MHz and 125 MHz respectively) or a 

Bruker Avance III HD with Prodigy cyroprobe (at 400 MHz and 101 MHz respectively). 

19F NMR spectra were recorded on a Varian Inova 400 (at 376 MHz). NMR data is reported 

relative to internal chloroform (1H, δ = 7.26, 13C, δ = 77.2) or to internal methanol (1H, δ = 

3.31, 13C, δ = 49.0) and PhCF3 (19F, δ = –63.7).  Data for 1H NMR spectra are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). 

Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet. IR spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer and are reported in frequency of absorption (cm–1). HRMS were acquired 

using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed 
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(MM) ionization mode. Specific optical rotations were recorded on a Jasco P-2000 

polarimeter using a 100 mm cell. 

4.4.2 Preparative Procedures and Spectroscopic Data 

4.4.2.1 Substrate Synthesis 

Preparation of epoxy alcohol 413. 

 

 A 100 mL round bottom flask was charged with 436 (3.24 g, 11.4 mmol, 1 equiv). 

Then CH2Cl2 (57 mL, 0.2 M) was added, and the reaction mixture was cooled to 0 ºC. 

NaHCO3 (4.783 g, 56.9 mmol, 5 equiv) was added in one portion followed by mCPBA 

(3.93 g, 17.1 mmol, 1.5 equiv, 75% mCPBA by weight). The reaction was allowed to stir 

for 2 minutes before it was quenched with saturated Na2S2O3 (aq) (25 mL) followed by 

saturated NaHCO3 (aq) (10 mL) and warmed to room temperature. The biphasic mixture 

was diluted with water (50 mL) and CH2Cl2 (50 mL). The aqueous phase was extracted 

with CH2Cl2 (3 x 50 mL). The combined organics were washed with saturated Na2S2O3 (aq) 

(100 mL), saturated NaHCO3 (aq) (3 x 100 mL), then brine (100 mL). The combined 

organics were dried over MgSO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (10% EtOAc/hexanes → 15% 

EtOAc/hexanes) to give 413 (2.70 g, 79% yield) as an amorphous white solid.  

Rf = 0.37 (silica gel, 20% EtOAc/Hex, CAM). 

[α]D23 = –17.5° (c = 0.65, CHCl3). 

OTBS

OH

Me
Me

mCPBA
NaHCO3

CH2Cl2, 0 ºC

Me

Me
TBSO

OH

O

79% yield
436 413
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1H NMR (400 MHz, CDCl3): δ 3.75 (dd, J = 10.5, 3.6 Hz, 1H), 3.63 (dd, J = 10.6, 4.1 

Hz, 1H), 3.55 – 3.39 (m, 1H), 2.91 (d, J = 4.8 Hz, 1H), 2.69 (d, J = 4.8 Hz, 1H), 2.06 – 

1.91 (m, 1H), 1.73 – 1.59 (m, 2H), 1.38 – 1.24 (m, 2H), 1.08 (s, 3H), 0.99 (s, 3H), 0.93 

(s, 9H), 0.08 (d, J = 2.7 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 70.8, 61.0, 50.4, 48.7, 35.1, 29.9, 29.7, 28.4, 26.0, 26.0, 

24.8, 18.2, -5.4, -5.6. 

FTIR (NaCl, thin film, cm-1): 3430, 2929, 2856, 1472, 1257, 1084, 837, 775. 

HRMS (ESI-TOF, m/z): calc’d for C16H33O3Si [M+H]+: 301.2193; found: 301.2196. 

 

Preparation of b-ketoester 440. 

 

 

 A flame-dried 250 mL round bottom flask was charged with freshly ground 

Mn(OAc)3•2H2O (3 equiv, 12.3 g, 45.9 mmol) and Cu(OAc)2•H2O (0.75 equiv, 2.29 g, 

11.5 mmol). The flask was evacuated and back-filled with argon three times. The combined 

salts were suspended in degassed AcOH (75 mL, degassed by sparging with argon for 30 

min). A separate flame-dried 50 mL pear-shaped flask was charged with 439 (3.00 g, 15.3 

mmol, 1.0 equiv). This flask was evacuated and back-filled with argon three times, and 

then charged with degassed AcOH (12 mL, degassed by sparging with argon for 30 min). 

The solution of 439 was transferred to the 250 mL round bottom flask via cannula transfer 

Mn(OAc)3•2H2O
Cu(OAc)2•H2O

AcOH, 23 ºC
41-45% yield

MeO

O O

439

OO
MeO

440
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over the course of 20 minutes. The reaction mixture was allowed to stir for five hours, at 

which point the mixture was filtered over a pad of silica gel. The pad was washed with 

EtOAc (400 mL). The resulting blue solution was concentrated in vacuo, and then 

azeotroped with hexanes (3 x 100 mL) to remove some of the AcOH. The resulting blue 

solution was diluted with a 1:1 mixture of Et2O/hexanes (300 mL), then washed with 

saturated NH4Cl (aq) (150 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (5% EtOAc/hexanes → 10% EtOAc/hexanes, increasing by 1% EtOAc every 2 

column volumes) to give 440 (1.18 g, 40% yield) as an amorphous pink solid with 

characterization data consistent with reports from Snider and coworkers.14  

 

The enantiomers of 440 could be separated by chiral preparative HPLC. (IC, 20 x 250 mm, 

200 µL injections, 10 mL/min, 20% IPA in hexanes, λ = 210 nm): tR (–) = 23.72 min, tR (+) 

= 26.16 min.  

 

  

OO
MeO

(–)-440, P1
tR = 23.72 min

OO
MeO

(+)-440, P2
tR = 26.16 min

[α]D
23 = –173.0° 

(c = 0.55, CHCl3).
[α]D

23 = +219.5° 
(c = 0.48, CHCl3).
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Preparation of acid 414. 

 

 

 A 25 mL round bottom flask was charged with 440 (58.3 mg, 0.3 mmol, 1.0 equiv) 

and dissolved in THF (1 mL). The flask was submerged in an ice bath, and LiOH (22 mg, 

0.9 mmol, 3.0 equiv) was added as a solution in water (1 mL). The reaction was stirred for 

1.5 hours, at which point TLC indicated that no more starting material remained. The 

reaction was quenched with the addition of 5M HCl (600 µL). The mixture was diluted 

with water (3 mL) and then extracted with EtOAc (5 x 5 mL). The combined organics were 

dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by 

column chromatography using silica gel (1% AcOH/1% MeOH/CH2Cl2 → 1% AcOH/2% 

MeOH/CH2Cl2) → 1% AcOH/3% MeOH/CH2Cl2 to give 414 (39.6 mg, 73% yield) as an 

amorphous colorless solid.  

**While we were able to use either (S) or (R) phenethylamine to perform a classical 

resolution to access each enantiomer of 414, this procedure was irreproducible. We elected 

to separate 440 by chiral preparative HPLC and hydrolyze each ester separately. 

Characterization data for each enantiomer of 414 is included below.  

OO
MeO

(–)-440, P1
tR = 23.72 min

OO
HO
(–)-414

H2O/THF 1:1

LiOH

75% yield
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1H NMR (400 MHz, CDCl3): δ 10.64 (s, 1H), 5.09 (d, J = 2.2 Hz, 1H), 5.03 (s, 1H), 2.91 

(dt, J = 18.0, 2.5 Hz, 2H), 2.71 (d, J = 17.7 Hz, 1H), 2.51 (ddd, J = 16.3, 11.5, 8.9 Hz, 

1H), 2.40 (ddd, J = 16.3, 5.8, 2.1 Hz, 1H), 2.33 (ddd, J = 12.4, 5.1, 2.4 Hz, 1H), 2.03 (d, J 

= 12.2 Hz, 1H), 1.88 (ddd, J = 11.8, 6.1, 2.9 Hz, 2H). 

13C NMR (101 MHz, CDCl3): δ 209.8, 176.2, 150.2, 108.1, 63.7, 41.7, 40.9, 39.6, 35.3, 

33.4. 

FTIR (NaCl, thin film, cm-1): 2939, 1719, 1419, 1241, 1165, 1120, 1062, 899, 738. 

HRMS (ESI-TOF, m/z): calc’d for C10H16NO3 [M+NH4]+: 198.1125; found: 198.1120. 

 

Synthesis of ester 443. 

 

  A 25 mL round bottom flask was charged with (+)-414 (210 mg, 1.16 mmol, 1.0 

equiv). The acid was azeotroped with PhMe (3 x 10 mL), then the flask was evacuated and 

back-filled with N2 three times. The flask was then charged with THF (6 mL) and Et3N 

(244 µL, 1.75 mmol, 1.5 equiv). A solution of 2,4,6-trichlorobenzoyl chloride (446) (426 

mg, 1.75 mmol, 1.5 equiv) was added as a solution in THF (3 mL) dropwise. After 3 hours, 

the reaction mixture was concentrated in vacuo, and the resulting residue was azeotroped 

OO
HO
(–)-414

OO
HO

[α]D
23 = –102.7° 

(c = 0.85, CHCl3).

(+)-414
[α]D

23 = +282.0° 
(c = 0.45, CHCl3).

Me

Me

O
TBSO O O

O1. 446
    Et3N, THF

2. 413, DMAP
    Et3N, CH2Cl2
    0 to 23 ºC

OO
HO

75% yield(+)-414 443

OHMe

Me
TBSO O

413

+
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with PhMe (3 x 10 mL). The residue was then dried under high vacuum for five minutes, 

at which point 413 (350 mg, 1.16 mmol, 1 equiv) was added as a solution in benzene (3 

mL), followed by DMAP (285 mg, 2.33 mmol, 2 equiv) as a solution in benzene (3 mL). 

The flask was then placed in a preheated oil bath and heated to 80 ºC. The mixture stirred 

for 1 hour, at which point the flask was removed from the oil bath and the reaction mixture 

allowed to cool to room temperature. The mixture quenched with the addition saturated 

NaHCO3 (aq) (15 mL). The resulting mixture was diluted with water (15 mL) and EtOAc 

(15 mL). The aqueous layer was extracted with EtOAc (5 x 15 mL), and the combined 

organics were dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (5% EtOAc/hexanes → 6% 

EtOAc/hexanes) to give 443 (409 mg, 76% yield) as an amorphous, colorless solid. 

 

Rf = 0.60 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +51.5° (c = 0.27, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.10 (d, J = 2.5 Hz, 1H), 5.03 (d, J = 2.1 Hz, 1H), 4.78 

(dd, J = 7.6, 4.4 Hz, 1H), 3.75 – 3.58 (m, 2H), 3.00 – 2.87 (m, 1H), 2.86 – 2.66 (m, 4H), 

2.50 (ddd, J = 16.0, 11.9, 8.7 Hz, 1H), 2.35 (dd, J = 16.0, 6.0 Hz, 1H), 2.25 (ddd, J = 12.4, 

5.0, 2.7 Hz, 1H), 2.14 – 1.97 (m, 2H), 1.94 – 1.81 (m, 2H), 1.80 – 1.69 (m, 1H), 1.58 (d, J 

= 4.0 Hz, 1H), 1.10 (s, 3H), 0.99 (s, 3H), 0.86 (s, 9H), 0.02 (s, 3H), 0.02 (s, 3H). 

 

13C NMR (101 MHz, CDCl3): δ 207.3, 170.3, 150.3, 108.2, 73.2, 64.5, 59.9, 58.1, 51.4, 

49.3, 41.6, 40.3, 38.8, 35.3, 34.7, 33.5, 29.0, 26.4, 26.0, 25.4, 18.2, -5.3, -5.4. 
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FTIR (NaCl, thin film, cm-1): 2955, 2858, 1743, 1715, 1472, 1291, 1258, 1156, 1061, 

938, 838, 776. 

HRMS (ESI-TOF, m/z): calc’d for C26H42O5Si [M+H]+: 463.2874; found: 463.2868. 

 

Synthesis of enol triflate 447. 

 

 

 A 2-dram vial was charged with 443 (46.2 mg, 0.100 mmol, 1 equiv). The vial was 

evacuated and back-filled with nitrogen three times. The ester was dissolved in THF (500 

µL) and cooled to –78 ºC. Then a solution of freshly prepared LDA (160 µL, 1.2 equiv, 

0.75M) was added dropwise. The reaction was stirred at this temperature for 30 minutes, 

at which point Comins’ reagent (45.2 mg, 0.115 mmol, 1.15 equiv) was added as a solid in 

one portion. After 4 hours, the reaction was warmed to room temperature and quenched by 

addition of water (2 mL). The mixture was diluted with saturated NH4Cl (aq) (2 mL) and 

extracted with Et2O (3 x 5 mL). The combined organics were washed with 3M NaOH (10 

mL), pushed through a plug of Na2SO4, and then concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (hexanes → 5% EtOAc/hexanes) 

to give 447 (45.6 mg, 77% yield) as an amorphous, colorless solid. 

Rf = 0.63 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +10.2° (c = 2.3, CHCl3). 

Me

Me

O
TBSO O O

O

Me

Me

O
TBSO O TfO

OLDA, Comins’
Reagent

THF, –78 ºC
77% yield

443 447
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1H NMR (400 MHz, CDCl3): δ 5.62 (dd, J = 4.8, 2.7 Hz, 1H), 5.12 – 4.96 (m, 2H), 4.79 

(dd, J = 7.8, 4.4 Hz, 1H), 3.80 – 3.59 (m, 2H), 3.04 (dd, J = 16.4, 2.1 Hz, 1H), 2.95 (d, J = 

4.5 Hz, 1H), 2.89 – 2.71 (m, 3H), 2.57 (ddd, J = 17.6, 4.3, 2.7 Hz, 1H), 2.23 – 2.10 (m, 

3H), 2.11 – 1.95 (m, 1H), 1.85 – 1.67 (m, 1H), 1.54 (ddd, J = 13.8, 8.0, 4.1 Hz, 2H), 1.10 

(s, 3H), 1.02 (s, 3H), 0.86 (s, 9H), 0.01 (s, 6H). 

13C NMR (101 MHz, CDCl3): δ 169.5, 151.8, 149.5, 125.7, 118.0 (JC–F = 320 Hz)  115.9, 

109.6, 73.9, 59.9, 58.1, 54.4, 51.4, 49.0, 43.6, 41.4, 39.3, 34.9, 34.7, 30.5, 29.8, 29.0, 26.2, 

26.0, 18.2, -5.4, -5.5. 

19F NMR (282 MHz, CDCl3): –73.6 

FTIR (NaCl, thin film, cm-1): 2929, 1743, 1420, 1292, 1236, 1213, 1164, 1143, 1079, 

1046, 840, 775, 648 

HRMS (ESI-TOF, m/z): calc’d for C27H45F3NO7SSi [M+NH4]+: 612.2633; found: 

612.2622. 

 

Synthesis of epoxy ketone 465. 

 

 A 25 mL round bottom flask was charged with 4Å molecular sieves and flame-

dried under vacuum for 3 minutes. The flask was allowed to cool under vacuum, and then 

back-filled with nitrogen at room temperature. Epoxy alcohol 413 (150 mg, 0.5 mmol, 1.0 

equiv) was added, followed by NMO (88 mg, 0.75 mmol, 1.5 equiv). The solids were 

dissolved in CH2Cl2 (2.5 mL), and then the mixture was cooled to 0 ºC. TPAP (17.6 mg, 

TPAP, NMO

mol sieves
CH2Cl2, 0 to 23 ºC

80% yield

O
Me

Me
TBSO

OH
O

Me

Me
TBSO

O

413 465
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0.05 mmol, 0.10 equiv) was added in one portion. The reaction stirred at this temperature 

for one hour, at which point the flask was removed from the ice bath and allowed to stir at 

room temperature for 30 min. The mixture was pipetted directly onto an equilibrated silica 

gel column and purified directly via column chromatography (hexanes → 10% 

EtOAc/hexanes) to give 465 (119 mg, 80% yield) as a thick, colorless oil. 

Rf = 0.53 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 3.82 (dd, J = 10.6, 3.1 Hz, 1H), 3.70 (dd, J = 10.6, 3.7 Hz, 

1H), 3.15 (d, J = 5.9 Hz, 1H), 2.86 (d, J = 5.9 Hz, 1H), 2.61 (ddd, J = 17.1, 8.6, 6.4 Hz, 

1H), 2.48 (ddd, J = 17.1, 6.7, 6.2 Hz, 1H), 2.06 (ddd, J = 13.4, 8.6, 6.1 Hz, 1H), 1.68 (dtd, 

J = 13.3, 6.5, 1.2 Hz, 1H), 1.62 – 1.51 (m, 1H), 1.25 (s, 3H), 1.16 (s, 3H), 0.86 (s, 9H), 

0.04 (s, 3H), 0.01 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 206.1, 61.3, 60.2, 51.9, 50.6, 37.4, 37.3, 34.4, 28.9, 

28.9, 26.2, 18.5, -5.4, -5.4. 

 

4.4.2.2 Cross-Coupling Procedure 

General Procedure for Cross-Couplings: 

 A 1-dram vial was charged with Et3N•HCl, ligand, and reductant (if solid). The vial 

was then brought into a N2-filled glovebox. Inside the box, the vial was charged with 

TiCp2Cl2 and then the nickel precatalyst. The vial was then charged with substrate(s) as a 

solution. The vials were sealed with a Teflon cap and brought out of the glovebox. The 

reactions were allowed to stir overnight at room temperature at 800 rpm. After 16 hours, 

the reactions were diluted with 20% EtOAc/Hexanes and pushed through a 6 cm plug of 
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SiO2 gel, eluting with 10 mL of 20% EtOAc/Hexanes. The solvent was removed in vacuo, 

and 1,2,4,5-tetrachloro-3-nitrobenzene was added. The yields of each product were 

determined by 1H-NMR spectroscopy.    
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Chapter 5 

A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-

Kauranoids 

 

5.1 INTRODUCTION 

While our first generation strategy approach focusing on construction of the 

enmein-type ent-kauranoid core through a cross-electrophile coupling was unsuccessful, 

we remained committed to the development of a convergent route to access 301 and related 

natural products. From a conceptual point of view, we felt that disconnection through the 

central B-ring lactone would still be the most expedient route to 301, and we thought that 

we could potentially use some of the chemistry we had previously developed in our first 

generation route toward 301. With this in mind, we became interested in employing a 1,2-

addition/semi-Pinacol rearrangement sequence to bring together two complex fragments 
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and forge the key all-carbon quaternary center we had attempted to form through a 

convergent cross-coupling.  

We drew inspiration from elegant work happening on the other side of the lab 

focused on the synthesis of the C19 diterpenoid alkaloids (500) (Scheme 5.1). Our lab’s 

strategy for the synthesis of these structurally analogous natural products involved a 

convergent fragment coupling between two complex fragments, namely epoxy ketone 503 

and an alkenyl organometallic 504. A highly selective 1,2-addition followed by subsequent 

semi-pinacol rearrangement delivered 505, which maps on beautifully to the diterpenoid 

alkaloid core. Intrigued by this approach to forging an all-carbon quaternary center between 

two highly complex fragments, we wondered if we could apply a similar strategy to the 

synthesis of the enmein-type ent-kauranoids.   

Scheme 5.1 The Reisman approach to the C19 diterpenoid alkaloids (500) 
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 We were also aware of other salient examples of type III semi-Pinacol 

rearrangements in the context of complex molecule total synthesis. We were intrigued by 

the Tanino’s group use of a type III semi-Pinacol rearrangement to forge an all-carbon 

quaternary center present in Ingenol (512) (Scheme 5.2).1 Epoxy alcohol 509 succumbs to 

a 1,2-migration upon treatment with Me3Al. In doing so, they are able to forge an all-carbon 

quaternary center and build the central 5,7,7-core of the natural product. While it takes 

them an additional 25 steps to access ingenol (512), their rapid synthesis of the core is 

notable.  

Scheme 5.2 Tanino’s synthesis of ingenol (512).  

 

 The Cha lab reported a distinct strategy in the progress toward their synthesis of 

Ingenol (512), using a different type III semi-Pinacol rearrangement (Scheme 5.3).2,3 They 

first generate a 7-membered ring containing a tertiary alcohol 514. From here, a directed 

epoxidation delivers 515, which is poised to undergo a key semi-Pinacol rearrangement to 

forge the carbocyclic skeleton of ingenol (512). Treatment of 515 with Me3Al delivers 517, 
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through a highly diastereoselective semi-Pinacol rearrangement. Of note is how the 

stereochemistry at the epoxide controls which bond migrates. While their strategy was not 

successfully applied to the total synthesis of 512, this result highlights the versatility of the 

semi-Pinacol rearrangement in total synthesis and is a good example of how the 

conformational requirements of the type III semi-Pinacol rearrangements render this 

transformation highly stereo- and regioselective. 

Scheme 5.3 Cha’s progress toward ingenol (512). 

 

 Another elegant example of a type III semi-Pinacol rearrangement comes from the 

Tu lab in their impressive synthesis of stemonamine (524) (Scheme 5.4).4 Their synthesis 

commences from azido enone 518, which can be elaborated in three steps to silyl protected 

epoxy alcohol 519. Treatment of 519 with TiCl4 initiates an impressive cascade. First, a 

type III semi-Pinacol rearrangement delivers 521, forming an all-carbon quaternary center. 

This intermediate 521 is then poised to undergo a subsequent reaction—the pendant azide 

can then add into the ketone, generating a diazonium ion 522, and a second semi-Pinacol 
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rearrangement forges a new carbon-nitrogen bond. This strategy uses a single Lewis acid 

to migrate two bonds, which is crucial in construction of the bicyclic lactam core 523.  

Scheme 5.4 Tu’s synthesis of stemonamine (524) 

 

 Of particular interest was a report from Yang and coworkers in their total synthesis 

of maoecrystal V (296) (Scheme 5.5). Diene 526 can be accessed in four steps from 525. 

From here, the first stereocenter can be established through a Sharpless epoxidation, giving 

epoxy alcohol 527 in excellent yield and enantioselectivity. Two additional steps delivers 

epoxy alcohol 528, which is their substrate for a semi-Pinacol rearrangement. Treatment 

with diethylaluminum chloride followed by a reduction provides access to 529; however, 

they observed significant erosion in enantiopurity. This is thought to occur through a retro-

aldol/aldol process, wherein semi-Pinacol rearrangement delivers 531. Hydroxy aldehyde 

531 can then undergo a retro-aldol to give formyl enol 532, which is achiral. Aldol reaction 
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enantiopurity. Because of this, we hypothesized that migrations of silyl protected epoxy 

alcohols would be better in this particular transformation, to avoid the retro-aldol/aldol 

reactivity. 

Scheme 5.5 Yang’s synthesis of 296. 
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framework could be disconnected through the lactone to reveal hydroxy aldehyde 534, 

which could be elaborated to 410 in the forward sense through an oxidative lactonization.  

Scheme 5.6 Retrosynthetic analysis featuring a key semi-Pinacol rearrangement 

 

 The synthesis of 534 could be achieved through a type III semi-Pinacol 
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derived from vinyl iodide 536—both of which we thought we could access in short order 

from intermediates we had previously prepared in our first generation strategy.   

5.2.2 Epoxy Aldehyde Synthesis 

In the forward sense, our synthesis of 537 commenced with the iodination of 4,4-

dimethyl cyclohexenone. Treatment under reported conditions with 4-DMAP as the 

catalyst delivered 538 in good yield.5 The iodoenone 538 could then be advanced through 

a CBS reduction, delivering excellent yield and enantiomeric excess of alcohol 540 

(Scheme 5.7).6 With a robust means of preparing 538 and its enantiomer, we turned our 

attention toward installing the neopentyl stereocenter. While we had initially anticipated 

using a [2,3]-Wittig-Still rearrangement from the corresponding a-alkoxysilane7 or the a-

alkoxystannane8 to carry out an anionic transposition, we were unable to achieve the 

desired reactivity on our system. 

We turned our attention toward elegant work presented by the Knochel lab in which 

they were able to perform a stereoinvertive cross-coupling mediated by copper between 

allylic phosphonates and organozinc reagents.9 While we were able to prepare the 

necessary allylic phosphonate, we didn’t observe the desired reactivity under Knochel’s 

conditions. However, we found that we could carry out an analogous reaction between an 

allylic picolinamide (541) and a silyl Grignard reagent, delivering the desired product in 

excellent yield.10–12 We could then perform a standard formylation, delivering enal 542. 

We were pleased to see that nucleophilic epoxidation delivered epoxy aldehyde 543 with 

the correct stereochemistry. While 543 was not in the correct oxidation state, we felt 
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confident that we could perform a late-stage Tamao-Fleming oxidation to convert silane 

543 to the requisite alcohol present in 537.13–16      

Scheme 5.7 A simplifying convergent strategy to access 543.  

 

5.2.3 Model Semi-Pinacol Exploration 

With a robust means of preparing 543, we turned our attention toward ascertaining 
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free rotation of the acyclic alcohol. We were delighted to see that treatment of 544 with 

TMSOTf as the Lewis acid and 2,6-ditertbutyl-4-methylpyridine afforded clean conversion 

to aldehyde 545. 

Scheme 5.8 A monocyclic semi-Pinacol model experiment 
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Interestingly, the other product we identified was 549, which could be isolated as a single 

diastereomer. It appeared that only a single isomer of 547 could be converted to 548 under 

the reaction conditions. While it is still unclear which isomer of 547 is a competent 

substrate for the migration, further investigation of the required stereochemistry for the 

migration is currently underway.  

Scheme 5.9 Migration of a camphor-derived alkene 
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protection of the aldehyde as its cyclic acetal followed by Stille cross-coupling with 

hexamethylditin and a subsequent iodination delivered 553, which was poised to undergo 

1,2-addition into our aldehyde. 

Scheme 5.10 First attempts to install and migrate a [3.2.1]-bicycle.  
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558 (Scheme 5.11). We hypothesized that a silyl protected alcohol 558 would be more 

stable under the strongly Lewis acidic conditions we knew were required to migrate large 

groups. From 558, an analogous Stille reaction delivered 559. 

Scheme 5.11 Preparation and migration of a more robust bicycle 
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treatment with TMSOTf and 2,6-Di-tert-butyl-4-methylpyridine solely delivered TMS 

protected alcohol 561. Further treatment of 561 with other Lewis acids provided us with 

either decomposition  or TMS deprotection.  

We hypothesized that our inability to migrate a [3.2.1]-bicyclooctane was due to 

the steric bulk of the adjacent silyl group. We wondered if the bulk of this group, combined 

with the increased bulk from the larger bicycle, limited the conformational flexibility of 

the cyclohexene oxide, making the necessary reactive conformation inaccessible. With this 

in mind, we turned our attention toward the modification of this group.  

5.2.5 A Second Generation Epoxy Aldehyde 

While we had initially hoped to use a Tamao-Fleming oxidation of 543 to install 

the necessary oxidation and modify the steric profile of the adjacent group, our attempts to 

functionalize the silane were unsuccessful (not shown), so we had to return to our 

picolinamide substrate 541 and identify a new cross-coupling partner that could enable 

more facile incorporation of an alcohol at this position.  

Scheme 5.12 Route to allylic alcohol 567. 
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Looking into the literature, it became clear that a silyl group with a hydrogen or an 

alkoxy group bound would be much more easily oxidized than the dimethylphenylsilyl 

group we had installed through the SN2’ chemistry.13,14 From 541, we found that we could 

install the more easily oxidizable silyl group and then subsequently perform a Tamao 

oxidation to deliver vinyl iodide 564 (Scheme 5.12).15,18–20 At this point, silylation of the 

primary alcohol, followed by formylation with DMF delivered 566. Unfortunately, 

attempts to epoxidize 566 directly were met with poor levels of diastereoselectivity (not 

shown), so we advanced enal 566 through a Luche reduction to provide allylic alcohol 567, 

which we planned to use as a substrate in a Sharpless epoxidation to access a single epoxide 

diastereomer.  

Scheme 5.13 Synthesis of epoxy aldehyde 573. 
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conversion and reaction temperatures that would give high levels of selectivity. In the 

interest in developing a scalable route to 568, we elected to pursue a more lengthy sequence 

that would circumvent this persnickety reaction.  

Allylic alcohol 567 could be treated with benzoyl chloride to access benzoate 569, 

at which point the silyl group could be removed through treatment with H2SiF6. The free 

alcohol (570) could then direct an epoxidation to give 571. This epoxy alcohol 571 could 

then be resilylated under standard conditions and the benzoyl group cleaved to give 568. 

While this is a particularly lengthy sequence, each of the reactions proceeded in excellent 

yields and enabled a scalable synthesis of 568, which could be subsequently oxidized to 

the corresponding epoxy aldehyde 573 under Stahl conditions. 

Scheme 5.14 Model 1,2-addition/migration sequences with epoxy aldehyde 573.  
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the 1,2-additions smoothly provided epoxy alcohols 575, 578, and 581, we observed 

different outcomes in the semi-Pinacol step. Treatment of 575 under the TMSOTf 

conditions delivered a mixture of the migration product 576 and TMS protection product 

577. Interestingly, treatment of the t-Bu addition product under the same conditions 

delivered solely the TMS protection product. With a bicyclic adduct, we observed complete 

decomposition of 581.  

With these results, we remain interested in exploring the synthesis of [3.2.1]-

bicyclooctane adducts that could undergo a semi-Pinacol rearrangement to assemble the 

core of 301. In doing so, we hope to improve our synthesis of 559 to obviate the need for 

a preparative HPLC separation, and we feel that this investigation will enable development 

of catalytic reactions to assemble complex [3.2.1]-bicyclooctane structures. We are eager 

to explore additional Lewis acids as well as alternative additives that could promote the 

desired 1,2-migration with a more sterically encumbered system. 

5.3 SECOND GENERATION SEMI-PINACOL STRATEGY 

5.3.1 Retrosynthetic Analysis  

While we had learned quite a bit about the migration of alkenyl groups to generate 

all-carbon quaternary centers through a type III semi-Pinacol rearrangement, our inability 

to migrate the fragment necessary for elaboration to 301 and our difficulties associated 

with the synthesis of a bicyclic fragment warranted a retooling of our synthetic strategy.  

We wondered if we might have more success migrating a secondary alkyl group 

rather than an alkenyl group, and in doing so, identify a more direct route to synthesize a 
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bicyclic fragment. We felt we could use a similar end-game strategy to access 301 and 406 

from lactone 409 (Scheme 5.15). We felt that we could prepare lactone 409 through an 

oxidation/lactonization sequence from 582, a key intermediate that contains two all-carbon 

quaternary centers. In 582, the key bond shown in blue could be forged through a type III 

semi-Pinacol rearrangement from epoxy alcohol 583, where the secondary alkyl group 

migrates to set the all-carbon quaternary center. This could be simplified to allylic alcohol 

589, which we hoped to forge through a 1,2-addition reaction between 590 and aldehyde 

591.  

Scheme 5.15 A second generation retrosynthesis of 301 and 406. 
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fragment, our synthesis commenced from meso anhydride 593. A desymmetrization 

mediated by a cinchona alkaloid delivered half-ester 594, which could be reduced and 

lactonized to give 595, with high levels of enantioselectivity achieved in the 

desymmetrization step.21 Bicyclic lactone could be propargylated to give a single 

diastereomer of 596.22 Through modification of a known procedure, we found that we 

could achieve high levels of selectivity for the [3.2.1]-bicyclooctane (597).23 Key to the 

success of this strategy is the use of a bicyclic substrate—hydrolysis of the lactone prior to 

radical cyclization was reported to deliver significant amounts of the undesired [2.2.2]-

bicyclooctane.  

With the tricyclic lactone 597 in hand, we turned our attention toward the opening 

of the lactone. Unfortunately using a variety of alcohol nucleophiles delivered low levels 

of the ring opening product (598)—any conversion we observed seemed to be reversible 

and we were unable to isolate any of the hydroxy ester products. We were aware that the 

opening of the gamma lactone would be difficult, but we were pleased to see that lactone 

aminolysis delivered 599 in excellent yield.24 While we had hoped to open the lactone to 

access an ester product, we were satisfied that we could get to 599, which was in the correct 

oxidation state for elaboration to 301. With 599 in hand, we found that we could use Stahl 

oxidation conditions to provide our key aldehyde 600. We were concerned that we might 

observe epimerization to the equatorially disposed aldehyde, but it appeared that 600 was 

stable, so we turned our attention toward investigation of the 1,2-addition between 592 and 

600.  
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Scheme 5.16 Synthesis of vinyl iodide 592 and aldehyde 600 
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Scheme 5.17 Initial 1,2-addition and semi-Pinacol results 
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activation, so we turned our attention toward the preparation of a substrate lacking a Lewis 

basic amide. 

Table 5.1. Screening of Lewis acids for the key semi-Pinacol rearrangement. 
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Scheme 5.18 Synthesis of a Diol Substrate 
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however, in our hands we observed poor selectivity for the desired product (611) and found 

it was nearly impossible to separate the two isomers. While we could obtain small 

quantities of the neopentyl alcohol protection product and could cleanly oxidize the 

remaining alcohol to the corresponding aldehyde 613, 1,2-addition into this aldehyde 

proved capricious and we were unable to advance this material any further. 

Scheme 5.19 Diol Desymmetrization Strategy 
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realized successfully, it would be prudent to investigate other means of assembling all-

carbon quaternary centers through transition-metal cross coupling.  

 

5.5 EXPERIMENTAL DATA 

5.5.1 Materials and Methods 

General Procedures. Unless otherwise stated, reactions were performed under a 

nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene 

chloride (CH2Cl2), acetonitrile (MeCN), tert-butyl methyl ether (TBME), benzene (PhH), 

and toluene (PhMe) were dried by passing through activated alumina columns. 

Triethylamine (Et3N), N,N-diisopropylethylamine (DIPEA), and methanol (MeOH) were 

distilled over calcium hydride prior to use. Unless otherwise stated, chemicals and reagents 

were used as received. All reactions were monitored by thin-layer chromatography (TLC) 

using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by 

UV, p-anisaldehyde, KMnO4, or CAM staining. Flash column chromatography was 

performed either as described by Still et al.33 using silica gel (particle size 0.032-0.063) 

purchased from Silicycle or using pre-packaged RediSep®Rf columns on a CombiFlash Rf 

system (Teledyne ISCO Inc.). Optical rotations were measured on a Jasco P-2000 

polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra were 

recorded on a Bruker Avance III HD with Prodigy cryoprobe (at 400 MHz and 101 MHz 

respectively), a Varian 400 MR (at 400 MHz and 101 MHz, respectively), a Varian Inova 

500 (at 500 MHz and 126 MHz, respectively), or a Varian Inova 600 (at 600 MHz and 150 
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MHz, respectively), and are reported relative to internal CHCl3 (1H, δ = 7.26) and CDCl3 

(13C, δ = 77.1), C6H5 (1H, δ = 7.16) and C6D6 (13C, δ = 128), or d8-THF (1H, δ = 3.58) and 

(13C, δ = 67.6). Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations 

are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, 

app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer 

and are reported in frequency of absorption (cm–1). HRMS were acquired using an Agilent 

6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization 

(ESI), atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode, 

or obtained from the Caltech Mass Spectral Facility in fast-atom bombardment mode 

(FAB). Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system with a Chiralcel AD-H column (4.6 mm x 25 cm). 

 

5.5.2 General Procedures 

General Procedure 1: 1,2-addition 

A flame-dried flask was charged with alkenyl iodide (1 equiv) and evacuated and back-

filled with N2 three times. The flask was charged with THF (0.1 M) and the flask was 

cooled to –78 ºC, at which point, t-BuLi (2 equiv) was added dropwise and stirred for fivec 

minutes. A separate flask was charged with aldehyde (1 equiv) and evacuated and back-

filled with N2 three times. The aldehyde was dissolved in THF (0.1 M) and cooled to –78 

ºC. The alkenyl lithium reagent was transferred to the aldehyde solution and the reaction 
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was allowed to stir for 10 minutes at –78 ºC, at which point the reaction was quenched with 

the addition of saturated NH4Cl (aq). The aqueous layer was extracted with Et2O three times, 

dried over MgSO4, filtered, and concentrated in vacuo to give a crude residue that was 

purified by silica gel chromatography. 

 

General Procedure 2: Semi-Pinacol Rearrangement 

A flame-dried flask was charged with epoxy alcohol (1 equiv) and azeotroped with PhMe 

three times. The flask was then charged with 2,6-di-tert-butyl-4-methylpyridine (3 equiv) 

and evacuated and backfilled with N2 three times. The solids were dissolved in CH2Cl2 (0.1 

M) and the reaction mixture was cooled to –78 ºC. TMSOTf (2 equiv) was added as a 

solution in CH2Cl2 dropwise, and the reaction was stirred for 30 minutes at –78 ºC. The 

reaction was then quenched upon addition of saturated NaHCO3 (aq). The mixture was 

diluted with water and the aqueous layer was extracted with CH2Cl2 three times. The 

combined organics were dried over Na2SO4 and concentrated in vacuo. The resulting crude 

residue was purified by silica gel chromatography. 

 

General Procedure 3: Stille Iodination 

A pressure flask was charged with enol triflate (1 equiv) then pumped into a N2-filled 

glovebox. The flask was charged with LiCl (6 equiv), Pd(PPh3)4 (0.05 equiv), and THF 

(0.1 M). Then hexamethylditin (1 equiv) was added as a liquid directly. The flask was 

sealed and removed from the box. The flask was heated in an oil bath at 65 ºC for 16 hours, 
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at which point the flask was cooled to 0 ºC over 30 min. The flask was opened, and NIS 

(1.3 equiv) was added in one portion. The reaction was allowed to stir at 0 ºC for 2 hours, 

at which point the solvent was removed in vacuo. The residue was suspended in MeOH 

(0.2 M) and Et2O (0.2 M). KF (5 equiv) was then added. The mixture was allowed to stir 

at room temperature for 4 hours, at which point the reaction mixture was filtered over a 

pad of Celite, eluting with Et2O. The solvent was removed in vacuo, and the crude residue 

was purified by column chromatography. 

5.5.3 Preparative Procedures and Spectroscopic Data 

 

 A flame-dried 200 mL round bottom flask was charged with 2-picolinic acid (3.22 

g, 26.2 mmol, 1.1 equiv). The acid was dissolved in CH2Cl2 (60 mL) and the flask was 

cooled to 0 ºC with an ice bath. DCC (6.38 g, 30.9 mmol, 1.3 equiv) was added as a solid 

in one portion, followed by DMAP (1.45 g, 11.9 mmol, 0.5 equiv). The cloudy mixture 

stirred at 0 ºC for 30 min, at which point 540 (6.0 g, 23.8 mmol, 1 equiv) was added as a 

solution in CH2Cl2 (40 mL) dropwise via cannula over 1 hour. Once the addition was 

complete, the reaction was allowed to stir at 0 ºC for an additional 20 minutes. The reaction 

was then warmed to room temperature and stirred at 23 ºC for 4 hours, at which point TLC 

indicated that the reaction was complete. The suspension was filtered over a pad of celite, 

eluting with 300 mL of CH2Cl2. The solvent was removed in vacuo and the crude residue 

540

Me
Me I

OH

97% yield

O

Me
Me I

O
N

picolinic acid
DCC

DMAP, CH2Cl2
0 to 23 ºC

541
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purified by column chromatography using silica gel (20% EtOAc/hexanes → 30% 

EtOAc/hexanes→ 40% EtOAc/hexanes) to give 541 (8.24 g, 97% yield) as an amorphous, 

colorless solid. 

Rf = 0.30 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 8.80 (ddd, J = 4.7, 1.8, 0.9 Hz, 1H), 8.17 (dt, J = 7.9, 1.1 

Hz, 1H), 7.85 (td, J = 7.7, 1.8 Hz, 1H), 7.48 (ddd, J = 7.6, 4.7, 1.2 Hz, 1H), 6.44 (d, J = 1.0 

Hz, 1H), 5.63 (td, J = 5.3, 1.1 Hz, 1H), 2.20 (dddd, J = 14.1, 9.9, 5.1, 3.5 Hz, 1H), 2.03 

(dddd, J = 14.1, 8.1, 5.3, 3.3 Hz, 1H), 1.68 (ddd, J = 13.3, 9.9, 3.3 Hz, 1H), 1.62 – 1.51 (m, 

1H), 1.09 (s, 3H), 1.04 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 164.4, 153.4, 150.3, 148.2, 137.1, 127.0, 125.5, 93.8, 

74.9, 37.4, 32.4, 28.9, 28.0, 27.1. 

HRMS (ESI-TOF, m/z): calc’d for C14H16INO2 [M+H]+: 358.0298; found: 358.0298. 

 

 

Procedure for Grignard formation:   

A 250 mL round-bottom flask was charged with magnesium turnings (851 mg, 35 

mmol, 6.2 equiv). The charged flask was briefly flame-dried under vacuum (1 minute or 

less), and allowed to cool to room temperature under vacuum. The dried magnesium was 

allowed to stir at 800 rpm under vacuum for one hour. The flask was then backfilled with 

1. CuBr•Me2S, ZnI2
    PhMe2SiCH2MgCl
    THF, –40 to –10 ºC

2. tBuLi, THF, –78 ºC;
    then, DMF

72% yield
over 2 steps

Me
Me

O

H

PhMe2Si

O

Me
Me I

O
N

541 542
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THF (8 mL). Chloromethylphenyldimethylsilane (4.5 mL, 25 mmol, 4.4 equiv) was added 

in one portion via syringe. The suspension was heated with a heat gun until the reaction 

began to initiate (indicated by vigorous bubbling), at which point a second portion of THF 

(8.7 mL) was added and the flask was submerged in an oil bath at 90 ºC. The reaction was 

heated at reflux for 90 minutes, at which point the flask was removed from the oil bath and 

cooled to room temperature. The Grignard reagent was titrated against 2-

hydroxybenzaldehyde phenylhydrazone in triplicate to yield a final concentration of 1.176 

M (78% yield).  

A separate 100 mL round-bottom flask was pumped into a N2-filled glovebox, 

where it was charged with CuBr•Me2S (1.75 g, 8.53 mmol, 1.5 equiv) and ZnI2 (2.73 g, 

8.53 mmol, 1.5 equiv). The flask was sealed with a septum and removed from the glovebox. 

The flask was then charged with THF (28.5 mL) and cooled to 0 ºC. The flask was charged 

with freshly prepared dimethylphenylsilylmethylmagnesium chloride (see above) (14.5 

mL, 17 mmol, 1.176 M, 3 equiv) via cannula. This mixture stirred for 30 minutes at 0 ºC 

and was then cooled to –40 ºC in a dry ice/acetone bath. Iodopicolonate 541 (2.03 g, 5.68 

mmol, 1 equiv) was then added as a solution in THF (28.5 mL) via cannula. The reaction 

was allowed to gradually warm to –10 ºC over 90 minutes, at which point the reaction was 

quenched with the addition of saturated NH4Cl (aq) solution (30 mL). The mixture was 

warmed to room temperature and diluted with water (30 mL) and pentane (100 mL). The 

aqueous layer was extracted with pentane (3 x 100 mL), and the combined organics were 

then washed with saturated NH4Cl (aq) solution (3 x 100 mL), water (2 x 100 mL), and brine 
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(100 mL). The combined organics were dried over MgSO4, filtered, and concentrated in 

vacuo to give a crude residue which was taken forward without any purification. 

A 100 mL round-bottom flask was charged with the crude mixture and the flask 

was evacuated and back-filled with N2 three times. The residue was dissolved in THF (28.5 

mL) and the flask was cooled to –78 ºC. Then t-BuLi (6.7 mL, 1.7M, 11.4 mmol) was 

added via syringe fast dropwise. The mixture immediately became bright yellow. After 

stirring for 5 minutes, dry DMF (3.5 mL, 45.5 mmol, 8 equiv) was added. The reaction 

stirred at this temperature for 10 minutes, at which point the reaction mixture was poured 

into a 250 mL conical flask containing a mixture of KH2PO4 (4.64 g, 34.1 mmol, 6 equiv) 

in Et2O (45.5 mL) and water (45.5 mL) at 0 ºC. This biphasic mixture was stirred for five 

minutes, at which point the mixture was poured into a separatory funnel. The aqueous layer 

was extracted with Et2O (3 x 100 mL). The combined organics were dried over MgSO4, 

filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 2.5% EtOAc/hexanes→ 5% 

EtOAc/hexanes→7.5% EtOAc/hexanes) to give 542 (1.17 g, 72% yield) as a colorless oil. 

Rf = 0.66 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D25 = +95.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.18 (s, 1H), 7.51 – 7.47 (m, 2H), 7.34 – 7.30 (m, 3H), 

6.51 (t, J = 3.8 Hz, 1H), 2.42 (dtd, J = 8.0, 3.4, 1.6 Hz, 1H), 2.37 – 2.25 (m, 2H), 1.76 – 

1.65 (m, 1H), 1.23 – 1.16 (m, 1H), 1.09 – 0.99 (m, 1H), 0.90 (s, 3H), 0.74 (s, 3H), 0.57 

(dd, J = 15.0, 7.8 Hz, 1H), 0.35 – 0.31 (m, 6H). 
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13C NMR (101 MHz, CDCl3): δ 194.2, 149.0, 148.0, 133.9, 128.7, 127.7, 127.6, 36.6, 

32.3, 29.6, 28.5, 26.2, 24.7, 19.8, -1.6, -2.2. 

FTIR (NaCl, thin film, cm-1): 3720, 2953, 2913, 2352, 1682, 1424, 1248, 1112, 834, 818, 

700. 

HRMS (ESI-TOF, m/z): calc’d for C18H30NOSi [M+NH4]+: 304.2091; found: 304.2090. 

 

A 25 mL round-bottom flask was charged with enal 542 (286 mg, 1.0 mmol, 1 

equiv) and dissolved in MeOH (10 mL). The flask was cooled to 0ºC and NaOH (50 µL, 

0.3 mmol, 6M, 0.3 equiv) was added. Hydrogen peroxide (134 µL, 1.3 mmol, 30 wt%, 1.3 

equiv) was added and the reaction was allowed to stir for 2.5 hours at this temperature. The 

reaction was quenched with the addition of saturated Na2S2O3 (aq) solution (5 mL). The 

mixture was diluted with water (5 mL) and then extracted with Et2O (5 x 15 mL). The 

combined organics were dried over MgSO4, filtered, and concentrated in vacuo. The crude 

residue was purified by column chromatography using silica gel (hexanes → 5% 

EtOAc/hexanes) to give 543 (259.6 mg, 86% yield) as a pale yellow solid. 

Rf = 0.66 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D25 = +2.7° (c = 1.8, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 8.37 (s, 1H), 7.52 – 7.47 (m, 2H), 7.36 – 7.32 (m, 3H), 

3.28 (dd, J = 2.7, 1.1 Hz, 1H), 2.41 (ddd, J = 12.2, 2.5, 1.7 Hz, 1H), 2.04 (ddt, J = 15.7, 

Me
Me

O

H

PhMe2Si

H2O2, NaOH

MeOH, 0 ºC
83% yield

Me
Me

O

H

PhMe2Si

O

543542
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5.7, 1.5 Hz, 1H), 1.89 – 1.75 (m, 1H), 1.39 (dt, J = 13.0, 6.7 Hz, 1H), 0.97 – 0.84 (m, 3H), 

0.84 (s, 3H), 0.78 (s, 3H), 0.28 (s, 3H), 0.25 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 200.7, 138.9, 134.1, 129.0, 127.7, 65.3, 57.7, 33.8, 31.0, 

27.8, 26.7, 26.6, 21.4, 12.9, -2.0, -2.9. 

FTIR (NaCl, thin film, cm-1): 2956, 1725, 1427, 1249, 1172, 1113, 881, 839, 814, 794, 

729, 700. 

HRMS (ESI-TOF, m/z): calc’d for C18H30O2SiN [M+NH4]+: 320.2040; found: 320.2033. 

   

 

 544 was prepared according to general procedure 1 using 543 (15.0 mg, 0.05 mmol) 

and 470 (13.2 mg, 0.05 mmol) and purified using silica gel (20% EtOAc/hexanes isocratic) 

to give 542 (15.1 mg, 69% yield) as a colorless oil. 

Rf = 0.38 (silica gel, 40% EtOAc/Hex, p-anisaldehyde). 

[α]D25 = +22.1° (c = 0.27, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 7.60 – 7.49 (m, 2H), 7.42 – 7.29 (m, 3H), 5.51 (tq, J = 3.2, 

1.4 Hz, 1H), 4.05 – 3.89 (m, 4H), 3.64 (d, J = 2.9 Hz, 1H), 3.16 (t, J = 1.9 Hz, 1H), 2.26 

(dq, J = 4.1, 1.8 Hz, 2H), 2.06 – 1.85 (m, 3H), 1.84 – 1.63 (m, 3H), 1.61 – 1.54 (m, 1H), 

1.52 (d, J = 3.6 Hz, 1H), 1.36 (td, J = 12.9, 5.7 Hz, 1H), 1.11 (dd, J = 16.0, 3.8 Hz, 1H), 

0.82 (dd, J = 16.0, 7.0 Hz, 1H), 0.75 (s, 3H), 0.71 (s, 3H), 0.35 (s, 3H), 0.34 (s, 3H). 

O

O

I 69% yield,
single 

diastereomer

Me
Me

PhMe2Si
OH

O O

O

Me
Me

PhMe2Si
O

O
H t-BuLi

THF, –78 ºC
+
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13C NMR (101 MHz, CDCl3): δ 140.5, 136.5, 134.0, 128.8, 127.8, 120.3, 108.0, 79.1, 

65.4, 64.5, 58.5, 37.1, 35.5, 31.3, 31.0, 28.5, 27.1, 27.1, 26.4, 21.8, 14.0, -1.2, -1.2. 

FTIR (NaCl, thin film, cm-1): 3442, 2928, 2363, 1428, 1366, 1247, 1112, 1060, 938, 907, 

833, 824, 732, 699. 

HRMS (ESI-TOF, m/z): calc’d for C26H42NO4Si [M+NH4]+: 460.2878; found: 460.2865. 

 

 

545 was prepared according to general procedure 2 using 544 (13 mg, 0.03 mmol) 

and purified using silica gel neutralized with NH4OH (2% EtOAc/hexanes → 3% 

EtOAc/hexanes→ 4% EtOAc/hexanes)  to give 545 (9.3 mg, 62% yield) as a colorless 

solid. 

1H NMR (400 MHz, CDCl3): δ 9.96 (s, 1H), 7.58 – 7.47 (m, 2H), 7.32 (dp, J = 5.7, 1.5 

Hz, 3H), 5.26 (d, J = 3.7 Hz, 1H), 3.94 (q, J = 1.2 Hz, 4H), 3.70 (d, J = 6.7 Hz, 1H), 2.30 

– 2.19 (m, 3H), 2.06 (q, J = 7.5, 6.9 Hz, 1H), 1.91 – 1.55 (m, 5H), 1.43 (m, 2H), 1.31 (dd, 

J = 16.2, 1.8 Hz, 1H), 0.99 – 0.87 (m, 1H), 0.72 (s, 3H), 0.68 (s, 3H), 0.32 (s, 3H), 0.25 (s, 

3H), 0.07 (s, 9H). 

HRMS (ESI-TOF, m/z): calc’d for C29H47O4Si2 [M+H]+: 515.3007; found: 515.2999. 

 

Me

MePhMe2Si
H

OTMS

O

O
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547 was prepared according to general procedure 1 using 543 (30.2 mg, 0.1 mmol) 

and 546 (26.2 mg, 0.1 mmol) and purified using silica gel (hexanes → 5% 

EtOAc/hexanes→ 10% EtOAc/hexanes)  to give 547 (21.6 mg, 49% yield as a 3:1 mixture 

of diastereomers) as a colorless solid. 

Rf = 0.52 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +63.7° (c = 1.1, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 7.62 – 7.52 (m, 2H), 7.35 (td, J = 5.0, 1.9 Hz, 3H), 5.73 

(dd, J = 3.2, 1.2 Hz, 1H), 3.80 (d, J = 1.2 Hz, 1H), 3.24 (d, J = 2.0 Hz, 1H), 2.25 (t, J = 3.4 

Hz, 1H), 2.02 (ddd, J = 6.9, 3.0, 1.5 Hz, 1H), 1.88 (ddq, J = 17.1, 6.2, 1.9 Hz, 1H), 1.83 – 

1.71 (m, 2H), 1.45 – 1.30 (m, 3H), 1.29 – 1.24 (m, 1H), 1.03 (dd, J = 16.4, 3.1 Hz, 1H), 

0.91 (s, 3H), 0.88 (s, 3H), 0.85 – 0.76 (m, 1H), 0.74 (s, 3H), 0.70 (s, 3H), 0.70 (m, 1H) 

0.68 (d, J = 2.2 Hz, 3H), 0.38 (d, J = 2.2 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 149.5, 140.0, 134.0, 129.3, 129.1, 127.9, 86.6, 71.4, 66.2, 

55.5, 55.4, 55.0, 51.8, 39.4, 32.2, 31.5, 28.1, 28.0, 27.0, 25.5, 21.8, 19.7, 19.7, 13.6, 12.2, 

-1.6, -1.9. 

FTIR (NaCl, thin film, cm-1): 3472, 3068, 2952, 2872, 2360, 2341, 1699, 1386, 1248, 

1112, 836, 730, 701 

HRMS (ESI-TOF, m/z): calc’d for C28H46NO2Si [M+NH4]+: 456.3292; found: 456.3297. 

49% yield
3:1 dr

Me
Me

PhMe2Si
OH

OMe
Me

PhMe2Si
O

O
H t-BuLi

THF, –78 ºC
+

Me
Me Me

I
Me

Me Me
543 546 547



Chapter 5 – A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids 

 

 

369 

 

 

 Compounds 548 and 549 were prepared according to general procedure 2, using 

epoxy alcohol 547 (18 mg, 0.04 mmol). The mixture was purified using silica gel (hexanes 

→ 2% EtOAc/hexanes→ 4% EtOAc/hexanes) to provide a mixture of 548 (5.8 mg, 38% 

yield) and 549 (6.4 mg, 52% yield).  

Characterization data for 548: 

Rf = 0.43 (silica gel, 5% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +6.6° (c = 0.3, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 10.12 (s, 1H), 7.47 (ddd, J = 5.5, 4.1, 2.3 Hz, 2H), 7.31 

(pd, J = 4.0, 3.6, 2.8 Hz, 3H), 5.70 (d, J = 3.6 Hz, 1H), 3.81 (t, J = 8.3 Hz, 1H), 2.16 (t, J 

= 3.6 Hz, 1H), 1.98 – 1.91 (m, 1H), 1.91 – 1.83 (m, 2H), 1.74 – 1.64 (m, 1H), 1.48 – 1.39 

(m, 4H), 0.94 (s, 3H), 0.89 (m, 1H), 0.79 (s, 3H), 0.72 (s, 3H), 0.70 (s, 3H), 0.64 (s, 3H), 

0.34 (s, 3H), 0.21 (s, 3H), 0.11 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 206.6, 141.4, 133.9, 133.6, 128.6, 128.6, 127.8, 62.5, 

58.0, 56.4, 51.1, 40.2, 36.0, 34.2, 32.9, 31.5, 30.5, 30.2, 27.6, 25.4, 22.8, 22.0, 20.9, 20.3, 

14.5, 13.9, 1.4. 

FTIR (NaCl, thin film, cm-1): 2952, 2876, 1713, 1454, 1364, 1291, 1250, 1111, 1250, 

1087, 1068, 838, 824, 674 

CH2Cl2, –78 ºC

TMSOTf
2,6-Di-tert-butyl-
4-methylpyridineMe

Me

PhMe2Si
OH

O

38% yield

Me

Me Me

Me
Me
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HRMS (ESI-TOF, m/z): calc’d for C31H51O2Si2 [M+H]+: 511.3422; found: 511.3430. 

 

Characterization data for 549: 

Rf = 0.45 (silica gel, 5% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.58 – 7.49 (m, 2H), 7.34 (tt, J = 3.6, 2.3 Hz, 3H), 5.72 

(dd, J = 3.2, 1.4 Hz, 1H), 4.19 – 4.12 (m, 1H), 3.24 (d, J = 1.9 Hz, 1H), 2.23 (t, J = 3.3 Hz, 

1H), 1.90 – 1.71 (m, 4H), 1.50 – 1.42 (m, 1H), 1.40 – 1.29 (m, 2H), 1.12 (dd, J = 16.4, 2.1 

Hz, 1H), 1.00 (s, 3H), 0.87 (m, 5H), 0.71 (d, J = 2.3 Hz, 6H), 0.66 (s, 3H), 0.38 (d, J = 3.0 

Hz, 6H), 0.03 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 147.8, 140.2, 133.8, 130.1, 128.9, 127.9, 73.4, 66.8, 56.2, 

55.1, 54.9, 51.6, 40.7, 32.5, 31.5, 29.9, 28.6, 27.6, 27.4, 25.4, 21.7, 19.8, 19.7, 13.6, 12.7, 

0.9, -0.9, -1.3. 

HRMS (ESI-TOF, m/z): calc’d for C31H51O2Si2 [M+H]+: 511.3422; found: 511.3414. 

 

 

 A 2-dram vial was charged with 440 (19.4 mg, 0.1 mmol, 1 equiv). The vial was 

evacuated and back-filled with nitrogen three times. The ester was dissolved in THF (500 

µL) and cooled to –78 ºC. Then a solution of freshly prepared LDA (160 µL, 1.2 equiv, 

0.75M) was added dropwise. The reaction was stirred at this temperature for 30 minutes, 

at which point Comins’ reagent (45.2 mg, 0.115 mmol, 1.15 equiv) was added as a solid in 

THF, –78 ºC

LDA, Comins’
Reagent

75% yield

O

TfO

MeO

O

O

MeO
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one portion. After 4 hours, the reaction was warmed to room temperature and quenched by 

addition of water (2 mL). The mixture was diluted with saturated NH4Cl (aq) (2 mL) and 

extracted with Et2O (3 x 5 mL). The combined organics were washed with 3M NaOH (10 

mL), filtered through a plug of Na2SO4 and then concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (hexanes → 5% EtOAc/hexanes) 

to give 550 (23.7 mg, 73% yield) as an amorphous, colorless solid. 

Rf = 0.67 (silica gel, 30% EtOAc/Hex, KMnO4). 

[α]D22 = –1.3° (c = 1.0, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.61 (dd, J = 4.9, 2.7 Hz, 1H), 5.06 (p, J = 1.3 Hz, 1H), 

5.04 – 5.01 (m, 1H), 3.77 (s, 3H), 3.09 – 2.93 (m, 2H), 2.88 (dt, J = 16.4, 2.9 Hz, 1H), 2.59 

(ddd, J = 17.5, 4.3, 2.7 Hz, 1H), 2.25 – 2.04 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 171.2, 151.9, 149.5, 118.5 (q, JC–F = 320 Hz), 115.6, 

109.5, 54.0, 52.6, 44.1, 41.1, 39.7, 34.9. 

19F NMR (282 MHz, CDCl3): δ –74.5 

FTIR (NaCl, thin film, cm-1): 2958, 1745, 1670, 1420, 1292, 1244, 1215, 1165, 1143, 

1077, 1043, 888, 862, 605. 

HRMS (ESI-TOF, m/z): calc’d for C13H16F3O5S [M+H]+: 327.0509; found: 327.0513. 
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 A 25 mL round-bottom flask was charged with 550 (160 mg, 0.47 mmol, 1 equiv). 

The flask was evacuated and back-filled with N2 three times, then charged with CH2Cl2 

(4.7 mL, 0.1 M). The flask was cooled to –78 ºC, and DIBAL (84 µL, 0.47 mmol, 1 equiv) 

was added dropwise via syringe. The reaction stirred at –78 ºC for 20 minutes, at which 

point, the reaction was quenched with Rochelle’s salt (aq) (5 mL) and warmed to room 

temperature. The mixture stirred vigorously for an hour, and then the aqueous layer was 

extracted with CH2Cl2 (3 x 15 mL). The combined organics were dried over Na2SO4, 

filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (3% EtOAc/hexanes → 20% EtOAc/hexanes) to give 551 

(102 mg, 37% yield) as a colorless oil. 

Rf = 0.68 (silica gel, 30% EtOAc/Hex, KMnO4). 

1H NMR (600 MHz, CDCl3): δ 9.83 (d, J = 1.0 Hz, 1H), 5.73 (dd, J = 4.7, 2.8 Hz, 1H), 

5.11 (s, 1H), 5.07 (s, 1H), 3.04 (s, 1H), 2.92 (d, J = 16.2 Hz, 1H), 2.85 (dd, J = 16.2, 3.0 

Hz, 1H), 2.60 (dt, J = 17.7, 3.7 Hz, 1H), 2.26 – 2.15 (m, 1H), 2.08 – 2.04 (m, 1H), 2.01 

(dd, J = 10.9, 5.3 Hz, 1H). 

 

 

O

TfO

MeO
DIBAL

CH2Cl2, –78ºC
37% yield

O
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 A 2-dram vial was charged with 551 (80 mg, 0.26 mmol, 1 equiv) and azeotroped 

with PhMe (3 x 1 mL). The vial was evacuated and back-filled three times with N2. The 

vial was then charged with CH2Cl2 (2.25 mL), followed by 1,2-bistrimethysilyloxyethane 

(95 µL, 0.39 mmol, 1.5 equiv). The vial was cooled to –78 ºC, then TMSOTf (24 µL, 0.13 

mmol) was added as a solution in CH2Cl2 (250 µL). The vial was allowed to warm to –20 

ºC over the course of 2 hours, at which point the TLC showed complete conversion. The 

reaction was quenched with the addition of dry Hünig’s base (500 µL). The crude mixture 

was concentrated in vacuo, and the crude residue was purified by column chromatography 

using silica gel (3% EtOAc/hexanes → 5% EtOAc/hexanes) to give 552 (28.1 mg, 44% 

yield) as a colorless oil. 

Rf = 0.16 (silica gel, 5% EtOAc/Hex, KMnO4). 

1H NMR (600 MHz, CDCl3): δ 5.64 – 5.48 (m, 1H), 5.04 (dt, J = 2.8, 1.3 Hz, 1H), 5.01 

(s, 1H), 5.00 – 4.97 (m, 1H), 4.11 – 4.06 (m, 1H), 3.98 (q, J = 6.8 Hz, 1H), 3.93 (td, J = 

7.2, 5.1 Hz, 1H), 3.88 (q, J = 7.1 Hz, 1H), 2.96 – 2.87 (m, 2H), 2.56 – 2.49 (m, 2H), 2.17 

– 2.07 (m, 1H), 1.98 (ddd, J = 10.9, 5.6, 1.1 Hz, 1H), 1.86 (dd, J = 10.9, 2.7 Hz, 1H). 

 

 

O

TfO

H
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OTMS
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O
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60% yield
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 Vinyl iodide 553 was prepared according to general procedure 3, using 552 (25 mg, 

0.07 mmol, 1 equiv) as the substrate. The crude residue was purified by column 

chromatography using silica gel (2% EtOAc/hexanes → 3% EtOAc/hexanes) to give 553 

(18.1 mg, 77% yield) as a colorless oil. 

Rf = 0.23 (silica gel, 5% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.26 (ddd, J = 4.8, 2.5, 1.0 Hz, 1H), 5.11 (d, J = 0.7 Hz, 

1H), 5.01 (ddt, J = 3.0, 2.0, 1.0 Hz, 1H), 4.94 (tp, J = 1.7, 0.8 Hz, 1H), 4.04 – 3.99 (m, 1H), 

3.99 – 3.92 (m, 3H), 2.97 – 2.90 (m, 1H), 2.54 (ddd, J = 17.2, 4.3, 2.5 Hz, 1H), 2.50 (ddtd, 

J = 15.8, 2.7, 1.7, 1.0 Hz, 1H), 2.45 – 2.40 (m, 1H), 2.06 (ddd, J = 11.0, 5.7, 1.6 Hz, 1H), 

2.04 – 1.99 (m, 1H), 1.88 (dd, J = 10.9, 2.5 Hz, 1H). 

 

 

 Epoxy alcohol 554 was prepared according to general procedure 1, using 543 (10 

mg, 0.03 mmol) and 553 (11 mg, 0.03 mmol). The mixture was purified using silica gel 

(hexanes → 5% EtOAc/hexanes→ 10% EtOAc/hexanes) to provide 554 (11.6 mg, 69% 

yield).  

Rf = 0.42 (silica gel, 15% EtOAc/Hex, p-anisaldehyde). 

TfO

O

O
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Me6Sn2, THF, 65 ºC;
then, NIS, 0 ºC
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1H NMR (600 MHz, CDCl3): δ 7.58 – 7.51 (m, 2H), 7.36 – 7.29 (m, 3H), 5.71 (ddt, J = 

4.5, 2.3, 1.0 Hz, 1H), 5.17 (s, 1H), 4.93 (ddt, J = 3.0, 2.0, 1.1 Hz, 1H), 4.83 (dq, J = 2.2, 

1.3 Hz, 1H), 4.59 (d, J = 4.7 Hz, 1H), 3.88 – 3.81 (m, 2H), 3.76 – 3.71 (m, 1H), 3.71 – 3.65 

(m, 1H), 3.30 (dd, J = 2.8, 1.4 Hz, 1H), 2.81 (d, J = 5.3 Hz, 1H), 2.53 (dt, J = 16.1, 2.7 Hz, 

1H), 2.45 (dd, J = 16.1, 2.1 Hz, 1H), 2.38 – 2.30 (m, 1H), 2.09 (ddd, J = 8.4, 2.3, 1.3 Hz, 

1H), 2.02 – 1.94 (m, 2H), 1.89 (ddt, J = 15.5, 5.6, 2.2 Hz, 1H), 1.77 (dddd, J = 15.5, 11.6, 

6.3, 2.8 Hz, 1H), 1.45 – 1.40 (m, 1H), 1.18 – 1.11 (m, 1H), 0.92 – 0.84 (m, 1H), 0.83 (s, 

3H), 0.80 – 0.71 (m, 1H), 0.67 (s, 3H), 0.37 (s, 2H), 0.36 (s, 2H). 

 

 

 

 

A 50 mL round-bottom flask was charged with 550 (400 mg, 1.18 mmol, 1 equiv). 

The flask was evacuated and back-filled with N2 three times, then charged with CH2Cl2 

(11.8 mL, 0.1 M). The flask was cooled to 0 ºC, and DIBAL (630 µL, 3.53 mmol, 3 equiv) 

was added dropwise via syringe. The reaction stirred at 0 ºC for 1 hour, at which point, the 

reaction was quenched with 1M HCl (4 mL) and warmed to room temperature. The mixture 

was diluted with water (10 mL) and the aqueous layer was extracted with CH2Cl2 (3 x 20 

mL). The combined organics were dried over Na2SO4, filtered, and concentrated in vacuo. 

O

TfO

MeO
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The crude residue was purified by column chromatography using silica gel (20% 

Et2O/hexanes → 30% Et2O/hexanes) to give 557 (343 mg, 93% yield) as a colorless oil. 

Rf = 0.22 (silica gel, 20% Et2O/hexanes, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.59 (dd, J = 4.6, 2.8 Hz, 1H), 5.05 (q, J = 1.5 Hz, 1H), 

4.98 (s, 1H), 4.00 (d, J = 11.3 Hz, 1H), 3.61 (d, J = 11.3 Hz, 1H), 2.93 (d, J = 5.1 Hz, 1H), 

2.74 (ddq, J = 15.9, 2.7, 1.4 Hz, 1H), 2.56 (ddd, J = 17.4, 4.3, 2.8 Hz, 1H), 2.27 (dt, J = 

15.9, 2.8 Hz, 1H), 2.21 – 2.07 (m, 1H), 2.03 (dd, J = 11.0, 2.8 Hz, 1H), 1.85 (ddd, J = 11.0, 

5.5, 1.1 Hz, 1H), 1.74 (s, 1H). 

19F NMR (282 MHz, CDCl3): δ –74.3. 

 

 

A 25 mL round-bottom flask was charged with 557 (150 mg, 0.48 mmol, 1.0 equiv) 

and imidazole (65 mg, 0.96 mmol, 2.0 equiv). The solids were dissolved in DMF (5 mL) 

and then TBSCl (87 mg, 0.576 mmol, 1.2 equiv) was added as a solid. The flask was then 

heated to 65 ºC and allowed to stir for 16 hours at this temperature, at which point the flask 

was removed from the oil bath and allowed to cool to room temperature. The reaction was 

quenched with the addition of water (5 mL) and then diluted with hexanes (25 mL) and 

additional water (20 mL). The aqueous layer was extracted with hexanes (3 x 25 mL), and 

the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

TfO

HO
TBSCl, imid

DMF, 65 ºC
93% yield TfO
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purified by column chromatography using silica gel (hexanes → 3% Et2O/hexanes) to give 

558 (189 mg, 93% yield) as a colorless oil. 

Rf = 0.90 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

1H NMR (500 MHz, CDCl3): δ 5.53 (ddd, J = 4.6, 2.7, 0.8 Hz, 1H), 5.03 (ddt, J = 2.8, 1.9, 

0.9 Hz, 1H), 4.96 (tp, J = 1.6, 0.7 Hz, 1H), 3.90 (d, J = 10.1 Hz, 1H), 3.54 (d, J = 10.1 Hz, 

1H), 2.97 – 2.83 (m, 1H), 2.74 – 2.60 (m, 1H), 2.54 (ddd, J = 17.2, 4.4, 2.7 Hz, 1H), 2.31 

(dt, J = 15.8, 2.7 Hz, 1H), 2.11 (dddt, J = 17.4, 4.7, 2.1, 1.0 Hz, 1H), 1.97 – 1.84 (m, 3H), 

0.89 (s, 9H), 0.05 (s, 6H). 

 

 

 Iodide 559 could be prepared according to general procedure 3, using 558 (115 mg, 

0.269 mmol, 1 equiv) as the subtrate. The mixture was purified using silica gel (hexanes) 

to provide 559 (83.4 mg, 77% yield). 

Rf = 0.54 (silica gel, hexanes, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.22 (ddd, J = 4.5, 2.5, 0.9 Hz, 1H), 4.99 (ddt, J = 2.8, 1.8, 

1.0 Hz, 1H), 4.92 (dd, J = 2.3, 1.2 Hz, 1H), 3.68 (d, J = 9.9 Hz, 1H), 3.51 (d, J = 9.9 Hz, 

1H), 2.91 (d, J = 5.7 Hz, 1H), 2.52 (ddd, J = 17.1, 4.4, 2.5 Hz, 1H), 2.33 (dtd, J = 15.8, 2.6, 

1.3 Hz, 1H), 2.21 (dt, J = 15.8, 2.8 Hz, 1H), 2.05 – 1.94 (m, 2H), 1.89 (dd, J = 11.0, 2.6 

Hz, 1H), 0.91 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). 

 

TfO
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 Inside a N2-filled glovebox, a 2-dram vial was charged with Ni(cod)2 (4.3 

mg, 0.016 mmol, 5 mol %) and NaI (70.1 mg, 0.468 mmol, 1.5 equiv). The vial was then 

charged with THF (1.2 mL), DMA (0.6 mL), and enol triflate 558 (133 mg, 0.311 mmol, 

1 equiv) as a solution in THF (1.2 mL). The vial was sealed and removed from the 

glovebox. The reaction stirred on the bench for 16 hours, at which point the reaction was 

quenched with the addition of water (3 mL). The mixture was diluted with additional water 

(5 mL) and Et2O (5 mL). The aqueous layer was extracted with Et2O (3 x 10 mL) and the 

combined organics were washed with water (25 mL). The combined organics were dried 

over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 1% Et2O/hexanes) to give 559 (88 mg, 70% 

yield) as a colorless oil. See above for characterization data for 559. 

 

 

Alcohol 560 was prepared according to general procedure 1, using 543 (30.2 mg, 

0.1 mmol) and 559 (40.4 mg, 0.1 mmol). The mixture was purified using silica gel (hexanes 

→ 2.5% EtOAc/hexanes) to provide 560 (27.7 mg, 48% yield). 

Rf = 0.87 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 
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1H NMR (600 MHz, CDCl3): δ 7.61 – 7.49 (m, 2H), 7.39 – 7.31 (m, 3H), 5.59 (t, J = 3.3 

Hz, 1H), 4.92 (s, 1H), 4.82 (s, 1H), 3.90 (d, J = 3.9 Hz, 1H), 3.80 (d, J = 10.0 Hz, 1H), 3.52 

(d, J = 10.0 Hz, 1H), 3.31 (d, J = 2.5 Hz, 1H), 2.78 (d, J = 5.1 Hz, 1H), 2.45 (dt, J = 16.1, 

2.7 Hz, 1H), 2.36 (dt, J = 17.3, 3.3 Hz, 1H), 2.29 (d, J = 15.4 Hz, 1H), 2.05 – 1.85 (m, 4H), 

1.86 – 1.73 (m, 2H), 1.48 (dd, J = 10.7, 2.5 Hz, 1H), 1.38 (td, J = 12.6, 5.8 Hz, 1H), 1.05 

(dd, J = 16.3, 2.8 Hz, 1H), 0.91 (s, 9H), 0.84 (s, 3H), 0.80 – 0.72 (m, 1H), 0.69 (s, 3H), 

0.35 (d, J = 4.5 Hz, 6H), 0.07 (d, J = 10.8 Hz, 6H). 

 

 

A 500 mL round-bottom flask was pumped into a N2-filled glovebox, where it was 

charged with CuBr•Me2S (3.27 g, 15.9 mmol, 1.5 equiv) and ZnI2 (5.08 g, 15.9 mmol, 1.5 

equiv). The flask was sealed with a septum and removed from the glovebox. The flask was 

then charged with THF (53 mL) and cooled to 0 ºC. The flask was charged with freshly 

prepared isopropoxydimethylsilylmethylmagnesium chloride20 (55 mL, 31.8 mmol, 0.578 

M, 3 equiv) via cannula. This mixture stirred for 30 minutes at 0 ºC and was then cooled 

to –40 ºC in a dry ice/acetone bath. Iodopicolonate 541 (3.78 g, 10.6 mmol, 1 equiv) was 

then added as a solution in THF (53 mL) via cannula. The reaction was allowed to gradually 

warm to –10 ºC over 3 hours, at which point the reaction was quenched with the addition 

of saturated NH4Cl (aq) solution (30 mL). The mixture was warmed to room temperature 

and diluted with water (100 mL) and Et2O (100 mL). The aqueous layer was extracted with 

O

Me
Me I

O
N

CuBr•Me2S, ZnI2
Me2(OiPr)SiCH2MgCl

THF, –40 to –10 ºC

I

Me Me
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Et2O (3 x 150 mL), and the combined organics were then washed with saturated NH4Cl (aq) 

solution (200 mL), saturated NaHCO3 (aq) (200 mL), water (200 mL) and brine (200 mL). 

The combined organics were dried over MgSO4, filtered, and concentrated in vacuo to give 

a crude residue which was purified using silica gel (hexanes → 6% Et2O/hexanes) to 

provide 563 (3.18 g, 83% yield). 

Rf = 0.90 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.15 (dd, J = 4.5, 3.3 Hz, 1H), 4.04 (hept, J = 6.0 Hz, 1H), 

2.28 (dddd, J = 6.6, 3.7, 1.8, 0.9 Hz, 1H), 2.20 – 1.97 (m, 2H), 1.62 – 1.56 (m, 1H), 1.16 

(dd, J = 6.1, 1.4 Hz, 6H), 1.00 (s, 3H), 0.93 (s, 3H), 0.89 – 0.79 (m, 2H), 0.21 (d, J = 8.8 

Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 134.9, 109.0, 65.0, 52.6, 35.3, 29.2, 28.7, 27.3, 27.2, 26.0, 

20.4, 0.3, 0.0. 

FTIR (NaCl, thin film, cm-1): 2970, 2920, 2874, 1631, 1464, 1450, 1366, 1251, 1172, 

1130, 1028, 931, 886, 838, 822. 

HRMS (ESI-TOF, m/z): calc’d for C14H28IOSi [M+H]+: 367.0949; found: 367.0959. 

 

 

 A 25 mL round-bottom flask was charged with 563 (750 mg, 2.05 mmol, 1 equiv) 

followed by KHCO3 (205 mg, 2.05 mmol, 1 equiv) and MeOH (2 mL). Then a solution of 

TBAF (4.1 mL, 4.09 mmol, 1 M in THF, 2 equiv) was added to the flask. At this point, 

I

Me Me
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Me Me
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70% yield
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aqueous hydrogen peroxide (390 µL, 6.82 mmol, 50 wt%, 3.3 equiv) was added to the 

flask. The flask was added to a pre-heated oil bath at 50 ºC and left open to the atmosphere. 

After 90 minutes, TLC indicated complete consumption of starting material and formation 

of a much more polar product. The flask was removed from the oil bath and quenched with 

the addition of saturated Na2S2O3 (aq) (10 mL). The mixture was diluted with Et2O (5 mL) 

and the biphasic mixture was allowed to stir for an additional 30 min. The aqueous phase 

was extracted with Et2O (3 x 10 mL), and the combined organics were washed with 

saturated Na2S2O3 (aq) (30 mL), saturated NaHCO3 (aq) (30 mL), and brine (30 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo to give a crude 

residue which was purified using silica gel (10% Et2O/hexanes → 20% Et2O/hexanes) to 

provide 564 (387 mg, 70% yield). 

Rf = 0.57 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.59 – 6.54 (m, 1H), 3.94 (dt, J = 12.0, 4.1 Hz, 1H), 3.81 

(ddd, J = 12.0, 8.7, 2.4 Hz, 1H), 2.15 – 2.08 (m, 2H), 2.02 (dh, J = 3.6, 1.2 Hz, 1H), 1.75 

(ddd, J = 13.3, 10.0, 6.7 Hz, 1H), 1.30 (td, J = 8.5, 5.2 Hz, 2H), 1.07 (s, 4H), 1.01 (s, 4H). 

13C NMR (101 MHz, CDCl3): δ 140.7, 100.0, 62.1, 58.6, 34.5, 31.7, 28.1, 27.9, 27.2. 

HRMS (ESI-TOF, m/z): calc’d for C9H19INO [M+NH4]+: 284.0506; found: 284.0495. 
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A 2-dram vial was charged with 564 (266 mg, 1.0 mmol, 1.0 equiv) and imidazole 

(136 mg, 2.0 mmol, 2.0 equiv). The solids were dissolved in DMF (5 mL) and then TBSCl 

(181 mg, 1.2 mmol, 1.2 equiv) was added as a solid. The vial was sealed and the reaction 

was allowed to stir at room temperature for 16 hours, at which point the reaction was 

quenched with the addition of water (2 mL) and then diluted with hexanes (10 mL) and 

additional water (5 mL). The aqueous layer was extracted with hexanes (3 x 10 mL), and 

the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by column chromatography using silica gel (hexanes) to give 565 (286 mg, 75% 

yield) as a colorless oil. 

Rf = 0.90 (silica gel, 10% Et2O/Hex, UV and p-anisaldehyde). 

[α]D24 = +76.8° (c = 0.20, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 6.49 – 6.34 (m, 1H), 3.88 – 3.71 (m, 2H), 2.17 – 1.96 (m, 

2H), 1.92 (dtt, J = 3.7, 2.3, 1.1 Hz, 1H), 1.85 (ddd, J = 13.0, 10.9, 6.5 Hz, 1H), 1.22 – 1.14 

(m, 1H), 1.04 (s, 3H), 0.98 (s, 3H), 0.88 (s, 9H), 0.07 (d, J = 2.1 Hz, 5H). 

13C NMR (101 MHz, CDCl3): δ 139.1, 101.5, 62.1, 58.7, 34.6, 31.1, 28.5, 27.8, 27.2, 26.0, 

18.3, -5.2, -5.2. 

FTIR (NaCl, thin film, cm-1): 2954, 2927, 1634, 1470, 1389, 1362, 1256, 1111, 1138, 

1034, 998, 883, 837, 776. 
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HRMS (FAB, m/z): calc’d for C15H28IOSi [M–H]+: 379.0955; found: 379.0962. 

 

 

A 50 mL round-bottom flask was charged with 565 (1.16 g, 3.05 mmol, 1 equiv) 

and the flask was evacuated and back-filled with N2 three times. The iodide was dissolved 

in THF (15.2 mL) and the flask was cooled to –78 ºC. Then t-BuLi (4 mL, 1.5M, 6.0 mmol, 

2 equiv) was added via syringe fast dropwise. The mixture immediately became bright 

yellow. After stirring for 5 minutes, dry DMF (1.89 mL, 24.4 mmol, 8 equiv) was added. 

The reaction stirred at this temperature for 10 minutes, at which point the reaction mixture 

was poured into a 250 mL conical flask containing a mixture of KH2PO4 (2.49 g, 18.3 

mmol, 6 equiv) in Et2O (24 mL) and water (24 mL) at 0 ºC. This biphasic mixture was 

stirred for five minutes, at which point the mixture was poured into a separatory funnel. 

The aqueous layer was extracted with Et2O (3 x 50 mL). The combined organics were dried 

over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 5% EtOAc/hexanes→10% EtOAc/hexanes) 

to give 566 (676 mg, 78% yield) as a colorless oil. 

Rf = 0.59 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D23 = +78.8° (c = 1.5, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.43 (s, 1H), 6.88 (dd, J = 4.2, 3.0 Hz, 1H), 3.76 (dd, J = 

10.5, 2.8 Hz, 1H), 3.68 (dd, J = 10.6, 3.8 Hz, 1H), 2.44 – 2.26 (m, 2H), 2.28 – 2.19 (m, 

tBuLi, DMF
THF, –78 ºC
78% yield
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2H), 2.01 (ddd, J = 13.2, 10.2, 7.1 Hz, 1H), 1.27 – 1.19 (m, 1H), 1.06 (s, 3H), 0.81 (s, 8H), 

0.78 (s, 3H), -0.03 (s, 3H), -0.09 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 194.6, 153.3, 141.5, 61.9, 43.4, 32.1, 31.3, 27.8, 27.6, 

25.9, 24.7, 18.2, -5.5, -5.5. 

FTIR (NaCl, thin film, cm-1): 2956, 2929, 2358, 1687, 1644, 1471, 1254, 1136, 1103, 

1031, 996, 838, 776, 688. 

HRMS (ESI-TOF, m/z): calc’d for C16H31O2Si [M+H]+: 283.2088; found: 283.2094. 

 

 

 A 2-dram vial was charged with enal 566 (30 mg, 0.106 mmol, 1 equiv). The enal 

was dissolved in MeOH (350 µL) and the vial was cooled to 0 ºC. Freshly ground 

CeCl3•7H2O (39.5 mg, 0.106 mmol, 1 equiv) was added to the vial in one portion, and the 

yellow mixture was allowed to stir for 10 minutes. Then NaBH4 (5 mg, 0.127 mmol, 1.2 

equiv) was added as a solid. The reaction stirred at 0 ºC for 30 minutes, at which point the 

reaction was quenched with brine (1 mL). The mixture was diluted with water (2 mL) and 

Et2O (4 mL). The aqueous layer was extracted with Et2O (3 x 5 mL) and the combined 

organics were dried over MgSO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (10% Et2O/hexanes → 30% 

Et2O/hexanes) to give 567 (28.6 mg, 95% yield) as a colorless oil.  

Rf = 0.42 (silica gel, 15% EtOAc/Hex, p-anisaldehyde). 

Me
Me
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[α]D24 = +73.4° (c = 1.1, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.70 (td, J = 3.6, 1.1 Hz, 1H), 4.25 – 4.08 (m, 1H), 4.02 – 

3.82 (m, 2H), 3.56 (dd, J = 10.0, 8.1 Hz, 1H), 3.39 (t, J = 6.5 Hz, 1H), 2.12 – 1.91 (m, 3H), 

1.50 – 1.36 (m, 1H), 1.35 – 1.19 (m, 1H), 0.95 (s, 3H), 0.90 (s, 9H), 0.87 (s, 3H), 0.09 (s, 

6H). 

13C NMR (101 MHz, CDCl3): δ 138.8, 125.2, 67.8, 64.4, 48.8, 34.0, 31.6, 28.4, 26.0, 25.2, 

22.9, 18.4, -5.3, -5.4. 

FTIR (NaCl, thin film, cm-1): 3347, 2956, 2928, 2859, 2360, 1471, 1389, 1362, 1256, 

1105, 1055, 1006, 938, 892, 882, 838, 776, 668. 

HRMS (ESI-TOF, m/z): calc’d for C16H33O2Si [M+H]+: 285.2250; found: 285.2238. 

 

 

 A 50 mL round-bottom flask was charged with alcohol 567 (300 mg, 10.5 mmol, 1 

equiv) and dissolved in CH2Cl2 (21 mL). The flask was cooled to 0 ºC, and Et3N (1.5 mL, 

10.5 mmol, 10 equiv) was added via syringe. Benzoyl chloride (366 µL, 3.15 mmol, 3 

equiv) was added via syringe fast dropwise, then DMAP (65 mg, 0.528 mmol, 0.5 equiv) 

was added in one portion. The reaction stirred at 0 ºC for 1 hour, at which point the reaction 

mixture was pipetted onto a preequilibrated silica plug, eluting with 20% EtOAc/hexanes 

(200 mL). The volatiles were removed in vacuo, and the crude residue was purified by 
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Me
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column chromatography using silica gel (hexanes → 4% EtOAc/hexanes) to give 569 (388 

mg, 95% yield) as a colorless oil.    

Rf = 0.52 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D22 = +36.1° (c = 0.73, CHCl3). 

1H NMR (600 MHz, CDCl3): δ 8.04 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.44 (t, 

J = 7.6 Hz, 2H), 5.88 (d, J = 3.6 Hz, 1H), 4.89 (d, J = 12.3 Hz, 1H), 4.75 (d, J = 12.3 Hz, 

1H), 3.79 (dd, J = 10.5, 4.6 Hz, 1H), 3.70 (dd, J = 10.5, 4.6 Hz, 1H), 2.17 – 1.97 (m, 2H), 

1.92 (d, J = 4.7 Hz, 1H), 1.68 (dt, J = 13.1, 8.3 Hz, 1H), 1.21 (dt, J = 13.2, 4.9 Hz, 1H), 

1.00 (s, 3H), 0.93 (s, 3H), 0.87 (s, 9H), 0.03 (d, J = 4.8 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 166.6, 133.3, 132.9, 130.7, 129.7, 128.5, 127.7, 68.6, 

63.1, 47.9, 32.2, 31.7, 27.7, 27.6, 26.0, 23.1, 18.3, -5.3, -5.4. 

FTIR (neat, cm-1): 2953, 2927, 2855, 1719, 1471, 1268, 1106, 1069, 835, 774, 709.  

HRMS (ESI-TOF, m/z): calc’d for C23H37O3Si [M+H]+: 389.2506; found: 389.2504. 

 

 

 A 25 mL round-bottom flask was charged with 269 (385 mg, 0.966 mmol, 1 equiv). 

Acetonitrile (9.7 mL) was added to the flask, and the mixture was cooled to 0 ºC with an 

ice bath. H2SiF6 (2.3 mL, 4.82 mmol, 5 equiv, 25 wt %) was added to the flask, and the 

mixture was allowed to stir at 0 ºC for 4 hours, at which point TLC showed complete 

consumption of starting material. The reaction was quenched with the addition of saturated 
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NaHCO3 (aq) (20 mL). The mixture was diluted with water (20 mL) and the aqueous layer 

was extracted with EtOAc (3 x 40 mL). The combined organics were dried over MgSO4, 

filtered, and concentrated in vacuo to provide 570 (263 mg, 99% yield) as a colorless oil. 

Rf = 0.52 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D25 = +50.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 8.09 – 8.00 (m, 2H), 7.62 – 7.52 (m, 1H), 7.45 (dd, J = 

8.4, 7.0 Hz, 2H), 6.01 (t, J = 3.7 Hz, 1H), 4.91 (dq, J = 12.4, 1.8 Hz, 1H), 4.75 (dd, J = 

12.4, 1.1 Hz, 1H), 3.98 – 3.72 (m, 2H), 2.11 (ddtd, J = 8.4, 5.0, 3.2, 1.6 Hz, 2H), 1.88 (d, 

J = 4.1 Hz, 1H), 1.69 (dt, J = 13.4, 8.5 Hz, 1H), 1.57 (s, 2H), 1.25 (dtd, J = 13.4, 4.8, 4.3, 

1.4 Hz, 1H), 1.05 (s, 3H), 0.92 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 166.7, 133.2, 132.0, 130.4, 129.7, 129.5, 128.6, 68.4, 

62.5, 48.5, 32.2, 31.8, 27.8, 27.6, 23.1. 

FTIR (neat, cm-1): 3019, 2359, 1712, 1245, 1193, 1111, 1026, 720. 

HRMS (ESI-TOF, m/z): calc’d for C17H23O3 [M+H]+: 275.1638; found: 275.1642. 

 

 

A 50 mL round-bottom flask was charged with alcohol 570 (265 mg, 0.97 mmol, 1 

equiv) and CH2Cl2 (9.7 mL) then cooled to 0 ºC. To the reaction mixture was added 

mCPBA (200 mg, 1.16 mmol, 1.2 equiv, 99% mCPBA) in one portion. The reaction was 

allowed to stir at 0 ºC for 2.5 hours, at which point TLC indicated that the starting material 
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had been consumed. The reaction was quenched with saturated Na2S2O3 (aq) (8 mL) and  

saturated NaHCO3 (aq) (4 mL). The biphasic mixture was diluted with water (5 mL) and 

CH2Cl2 (10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL), and the 

combined organics were washed with saturated Na2S2O3 (aq) (30 mL), saturated NaHCO3 

(aq) (30 mL), and brine (30 mL). The organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (10% EtOAc/hexanes → 25% EtOAc/hexanes) to give 571 (252 mg, 90% yield) 

as a colorless solid. 

Rf = 0.38 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +50.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 8.12 – 7.97 (m, 2H), 7.58 (ddt, J = 7.9, 6.9, 1.4 Hz, 1H), 

7.53 – 7.37 (m, 2H), 4.49 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.7 Hz, 1H), 3.99 (dt, J = 11.4, 

3.9 Hz, 1H), 3.92 – 3.76 (m, 1H), 3.30 (t, J = 1.9 Hz, 1H), 2.39 (t, J = 6.2 Hz, 1H), 2.02 

(ddt, J = 15.7, 6.0, 1.6 Hz, 1H), 1.90 (dddd, J = 15.7, 12.4, 6.4, 2.4 Hz, 1H), 1.80 (ddd, J = 

7.4, 4.2, 1.5 Hz, 1H), 1.66 – 1.58 (m, 1H), 1.00 (dd, J = 9.1, 7.1 Hz, 1H), 0.96 (s, 3H), 0.93 

(s, 3H). 

13C NMR (101 MHz, CDCl3): δ 166.4, 133.4, 129.8, 129.8, 128.6, 68.1, 62.1, 59.8, 57.7, 

44.2, 30.3, 28.6, 28.0, 27.2, 21.4. 

FTIR (neat, cm-1):  3019, 2359, 1718, 1451, 1272, 1215, 1115, 727, 712, 668. 

HRMS (ESI-TOF, m/z): calc’d for C17H23O4 [M+H]+: 291.1591; found: 291.1577. 
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A 50 mL round-bottom flask was charged with 571 (240 mg, 0.826 mmol, 1 equiv) 

and imidazole (113 mg, 1.65 mmol, 2 equiv). The solids were dissolved in DMF (8.3 mL) 

and then TBSCl (150 mg, 0.99 mmol, 1.2 equiv) was added as a solid. The flask was sealed 

and the reaction was allowed to stir at room temperature for 16 hours, at which point the 

reaction was quenched with the addition of water (10 mL) and then diluted with hexanes 

(10 mL) and additional water (5 mL). The aqueous layer was extracted with hexanes (3 x 

10 mL), and the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). 

The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo.  

The crude epoxy benzoate was added to a 50 mL round-bottom flask and dissolved 

in MeOH (14 mL). To the reaction mixture was added K2CO3 (1.15 g, 8.3 mmol, 12 equiv). 

The reaction stirred vigorously (800 rpm) for 40 minutes, at which point the reaction was 

quenched with the addition of saturated NH4Cl (aq) (50 mL). The aqueous layer was 

extracted with Et2O (3 x 50 mL). The combined organics were dried over MgSO4, filtered, 

and concentrated in vacuo to provide 568 (263 mg, 93% yield over two steps) as a colorless 

oil. 

Rf = 0.58 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +59.8° (c = 0.21, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 3.86 (dd, J = 11.8, 4.3 Hz, 1H), 3.72 (ddd, J = 8.9, 4.9, 0.5 

Hz, 1H), 3.62 (dd, J = 10.2, 8.9 Hz, 1H), 3.53 (dd, J = 6.2, 4.3 Hz, 1H), 3.39 (dd, J = 11.8, 
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6.1 Hz, 1H), 3.14 (t, J = 1.9 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.83 (dddd, J = 15.6, 12.1, 6.5, 

2.6 Hz, 1H), 1.37 – 1.24 (m, 1H), 0.92 (s, 9H), 0.91 (s, 3H), 0.85 (s, 3H), 0.12 (d, J = 5.1 

Hz, 6H). 

13C NMR (126 MHz, CDCl3):  δ 67.6, 61.6, 61.2, 55.8, 45.2, 30.1, 28.3, 27.7, 27.7, 26.0, 

21.5, 18.5, -5.4, -5.4. 

FTIR (neat, cm-1): 3752, 2927, 2359, 2340, 2161, 1684, 1675, 1576, 1506, 1040, 837, 

775. 

HRMS (ESI-TOF, m/z): calc’d for C16H33O3Si [M+H]+: 301.2193; found: 301.2195. 

 

 

 A 25 mL round-bottom flask was charged with epoxy alcohol 568 (160 mg, 0.533 

mmol, 1 equiv) and dissolved in wet acetonitrile (11 mL). To this solution was added Stahl 

solution (135 µL, containing 0.2M bpy, 0.04M ABNO, and 0.4M NMI in MeCN) followed 

by [Cu(MeCN)4]OTf (10 mg, 0.027 mmol, 0.05 mol %). The solution was sparged with a 

balloon of O2 for 10 minutes and then allowed to stir open to air for 3.5 hours. The reaction 

mixture was then filtered through a SiO2 plug, eluting with 20% EtOAc/hexanes (100 mL). 

The volatiles were removed in vacuo to provide 573 (143 mg, 90% yield) as a light yellow 

oil.  

Rf = 0.64 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 
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[α]D22 = +64.1° (c = 2.8, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.02 (s, 1H), 3.68 (ddd, J = 8.8, 5.6, 0.6 Hz, 1H), 3.49 (dd, 

J = 11.0, 8.8 Hz, 1H), 3.41 (d, J = 1.9 Hz, 1H), 2.64 (ddd, J = 11.0, 5.5, 1.5 Hz, 1H), 2.08 

(dddd, J = 15.5, 5.3, 2.3, 1.7 Hz, 1H), 1.87 (dddd, J = 15.6, 12.3, 5.8, 2.2 Hz, 1H), 1.49 – 

1.36 (m, 1H), 1.01 – 0.90 (m, 1H), 0.89 (s, 3H), 0.86 (s, 3H), 0.85 (s, 9H), 0.03 (d, J = 6.8 

Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 200.5, 63.3, 60.5, 56.8, 42.1, 28.8, 28.6, 28.1, 27.0, 26.0, 

21.3, 18.3, -5.4. 

FTIR (neat, cm-1):  2955, 2928, 2856, 2359, 1730, 1506, 1472, 1109, 1082, 1256, 1109, 

1082, 837, 776. 

HRMS (ESI-TOF, m/z): calc’d for C16H31O3Si [M+H]+: 299.2037; found: 299.2030. 

 

 

Epoxy alcohol 575 was prepared according to general procedure 1, using 573 (15 mg, 0.10 

mmol) and 470 (26.6 mg, 0.10 mmol, 2 equiv). The mixture was purified using silica gel 

(10% EtOAc/hexanes → 30% EtOAc/hexanes) to provide 575 (17.5 mg, 80% yield). 

Rf = 0.24 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +35.4° (c = 0.35, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.85 (tq, J = 3.3, 1.4 Hz, 1H), 5.60 (d, J = 2.5 Hz, 1H), 

3.94 (dd, J = 3.7, 1.5 Hz, 4H), 3.69 (dd, J = 8.7, 4.9 Hz, 1H), 3.59 (dd, J = 11.0, 8.7 Hz, 
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1H), 3.56 – 3.50 (m, 1H), 3.16 (t, J = 1.9 Hz, 1H), 2.40 – 2.19 (m, 3H), 2.11 (dddd, J = 

15.9, 10.9, 5.0, 1.9 Hz, 2H), 1.98 (ddt, J = 15.5, 5.9, 1.6 Hz, 1H), 1.88 – 1.79 (m, 1H), 1.74 

(ddt, J = 8.6, 6.4, 1.1 Hz, 2H), 0.95 (s, 9H), 0.88 (qd, J = 7.3, 6.5, 2.5 Hz, 2H), 0.82 (s, 3H), 

0.79 (s, 3H), 0.16 (s, 3H), 0.15 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 136.8, 121.4, 108.2, 80.1, 64.4, 64.3, 62.2, 61.7, 57.0, 

41.5, 35.6, 31.3, 29.6, 28.2, 28.1, 27.5, 26.6, 26.0, 21.5, 18.5, -5.5, -5.5. 

FTIR (neat, cm-1): 3372, 2953, 2927, 2856, 2360, 1700, 1113, 1084, 1060, 836, 777, 733.  

HRMS (ESI-TOF, m/z): calc’d for C24H43O5Si [M+H]+: 439.2874; found: 439.2854. 

 

 

 Alcohol 578 was prepared according to general procedure 1 with 573 (15 mg, 0.05 

mmol) and t-BuLi (67 µL, 0.10 mmol, 1.7M, 2 equiv) as the organolithium reagent. The 

crude residue was purified using silica gel chromatography (hexanes → 10% 

EtOAc/hexanes) to provide 576 (6.8 mg, 37% yield).  

Rf = 0.53 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +60.6° (c = 0.30, CHCl3). 

1H NMR (600 MHz, CDCl3): δ 5.34 (d, J = 2.3 Hz, 1H), 3.73 (dd, J = 9.1, 4.9 Hz, 1H), 

3.66 (td, J = 9.5, 9.0, 1.0 Hz, 1H), 3.16 (d, J = 1.9 Hz, 1H), 2.75 (d, J = 2.1 Hz, 1H), 2.21 

(ddd, J = 10.2, 5.0, 1.3 Hz, 1H), 1.98 (ddt, J = 15.5, 5.5, 2.0 Hz, 1H), 1.87 (dddd, J = 15.4, 

12.4, 6.1, 2.2 Hz, 1H), 1.43 (d, J = 1.0 Hz, 1H), 1.37 (td, J = 12.9, 5.5 Hz, 1H), 1.02 (s, 
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4H), 1.00 (d, J = 1.0 Hz, 9H), 0.96 (d, J = 1.0 Hz, 9H), 0.84 (s, 3H), 0.16 (d, J = 2.8 Hz, 

6H). 

13C NMR (101 MHz, CDCl3): δ 85.9, 62.5, 61.8, 57.9, 43.4, 36.1, 30.6, 29.3, 28.7, 28.3, 

27.4, 26.1, 21.4, 18.7. 

FTIR (neat, cm-1): 3360, 2929, 2858, 2359, 1388, 1069, 906, 836, 730. 

HRMS (ESI-TOF, m/z): calc’d for C20H41O3Si [M+H]+: 357.2819; found: 357.2813. 

 

 

Epoxide 579 was prepared according to general procedure 2, using 578 (6 mg, 

0.017 mmol) as the substrate. The mixture was purified using preparative TLC (10% 

Et2O/hexanes) to provide 579 (3 mg, 89% NMR yield). 

Rf = 0.79 (silica gel, 20% EtOAc/Hex, UV). 

[α]D23 = –5.1° (c = 0.25, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 4.14 (dd, J = 10.6, 2.3 Hz, 1H), 3.53 – 3.42 (m, 1H), 2.96 

(t, J = 2.2 Hz, 1H), 2.83 (s, 1H), 2.10 (dt, J = 8.0, 1.8 Hz, 1H), 1.92 – 1.79 (m, 2H), 1.47 – 

1.40 (m, 3H), 0.99 (s, 3H), 0.97 (s, 9H), 0.92 (s, 3H), 0.90 – 0.81 (m, 2H), 0.16 (s, 9H), 

0.11 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 88.7, 62.9, 62.3, 58.5, 45.2, 36.0, 31.4, 29.7, 29.4, 28.0, 

27.6, 21.6, 1.0, 0.0. 

FTIR (NaCl, thin film, cm-1): 2922, 2362, 1382, 1035, 826, 810, 708, 683. 
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HRMS (ESI-TOF, m/z): calc’d for C20H43O3Si2 [M+H]+: 387.2745; found: 387.2746. 

 

 

 Epoxide 581 was prepared according to general procedure 1, using 573 (15 mg, 

0.05 mmol) and 546 (26.2 mg, 0.10 mmol, 2 equiv). The mixture was purified using silica 

gel (hexanes → 5% EtOAc/hexanes) to provide 581 (17 mg, 42% NMR yield of major 

diastereomer). 

Rf = 0.52 (silica gel, 20% Et2O/Hex, p-anisaldehyde). 

[α]D23 = +21.0° (c = 0.85, CHCl3). 

HRMS (ESI-TOF, m/z): calc’d for for C26H47O3Si [M+H]+: 435.3289; found: 435.3285. 

 

 

A 50 mL round-bottom flask was charged with 564 (380 mg, 1.43 mmol, 1 equiv). 

The flask was evacuated and backfilled with N2 three times and then DMF (7 mL) was 

added via syringe. To the reaction mixture was added TBAI (264 mg, 0.71 mmol, 0.5 

equiv) followed by Hünig’s base (1.5 mL, 8.57 mmol, 6 equiv). The reaction was cooled 

to 0 ºC, at which point MOMCl (325 µL, 4.29 mmol, 3 equiv) was added dropwise via 

syringe. The reaction stirred at 0 ºC for 15 minutes and was then warmed to room 
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temperature, where it stirred for an additional 16 hours, when TLC indicated that starting 

material had been consumed. The reaction was quenched with the addition of 1M NaOH 

(10 mL). The mixture was diluted with water (20 mL) and extracted with Et2O (3 x 20 mL). 

The combined organics were washed with 1M NaOH (50 mL), water (50 mL), and 

saturated NH4Cl (aq) (2 x 50 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (4% Et2O/hexanes → 5% Et2O/hexanes) to give 592 (408 mg, 90% yield) as a 

colorless oil. 

Rf = 0.74 (silica gel, 25% Et2O/Hex, UV and p-anisaldehyde). 

[α]D22 = +70.2° (c = 0.42, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 6.46 – 6.41 (m, 1H), 4.68 – 4.56 (m, 2H), 3.76 – 3.66 

(m, 2H), 3.39 (s, 3H), 2.14 – 2.04 (m, 3H), 1.70 (ddd, J = 13.2, 9.9, 7.2 Hz, 1H), 1.30 – 

1.20 (m, 1H), 1.04 (s, 3H), 1.01 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 139.2, 100.9, 96.8, 67.5, 56.9, 55.7, 34.5, 31.2, 28.2, 

27.6, 27.1. 

FTIR (NaCl, thin film, cm-1): 2923, 2878, 1629, 1460, 1387, 1317, 1250, 1210, 1150, 

1111, 1071, 1039, 962, 917. 

HRMS (ESI-TOF, m/z): calc’d for C11H19IO2 [M–H]+: 309.0352; found: 309.0362. 
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A 2-dram vial was charged with amido alcohol 599 (8 mg, 0.358 mmol, 1 equiv) 

and dissolved in wet acetonitrile (700 µL). To this solution was added Stahl solution (9 µL, 

containing 0.2M bpy, 0.04M ABNO, and 0.4M NMI in MeCN) followed by 

[Cu(MeCN)4]OTf (0.7 mg, 0.0018 mmol, 0.05 mol %). The solution was allowed to stir 

open to air for 30 minutes. The reaction mixture was diluted with water (1 mL) and EtOAc 

(1 mL). The aqueous layer was extracted with EtOAc (3 x 1 mL), and the combined 

organics were washed with brine (3 mL), with saturated NH4Cl (aq) (3 mL), and brine (3 

mL). The organic layer was filtered over a plug of Na2SO4, and the volatiles were removed 

in vacuo to provide 600 (4.5 mg, 72% yield). 

Rf = 0.68 (silica gel, 20% MeOH/CH2Cl2, I2 and p-anisaldehyde). 

[α]D22 = –14.7° (c = 0.42, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.69 (d, J = 1.0 Hz, 1H), 4.94 – 4.89 (m, 1H), 4.89 – 4.85 

(m, 1H), 3.06 (d, J = 6.0 Hz, 7H), 2.84 – 2.70 (m, 2H), 2.70 – 2.59 (m, 2H), 2.13 (dtd, J = 

12.0, 5.9, 3.1 Hz, 2H), 1.79 – 1.64 (m, 2H), 1.64 – 1.42 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 203.4, 174.4, 152.8, 105.8, 53.1, 51.6, 41.7, 41.2, 39.8, 

37.8, 30.3, 19.0. 

FTIR (NaCl, thin film, cm-1): 3480, 3421, 3239, 2938, 2210, 1714, 1618, 1412, 1045, 

970, 878, 786, 660. 

HRMS (ESI-TOF, m/z): calc’d for C13H19NO2 [M+H]+: 222.1475; found: 222.1473. 

85% yield

[Cu(MeCN)4]OTf 
bpy, ABNO, NMI

MeCN, 23 ºC, air

O

HO

Me2N

O

O
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Allylic alcohol 601 was prepared according to general procedure 1, using 592 (22 

mg, 0.10 mmol, 1 equiv) and 600 (31 mg, 0.10 mmol, 1 equiv). The crude residue was 

purified using silica gel (30% EtOAc/hexanes → 50% EtOAc/hexanes) to provide 601 

(21.3 mg, 53% yield). Slow evaporation from hexanes enabled the preparation of crystals 

of quality that could be used for single crystal X-ray diffraction to establish connectivity 

(but not for publication). 

Rf = 0.29 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.90 – 5.73 (m, 1H), 4.85 (tt, J = 2.5, 1.0 Hz, 1H), 4.79 

(d, J = 1.8 Hz, 1H), 4.53 (d, J = 1.1 Hz, 2H), 4.24 (dt, J = 3.3, 1.6 Hz, 1H), 3.50 (dd, J = 

10.2, 5.7 Hz, 1H), 3.38 – 3.28 (m, 4H), 3.08 (s, 3H), 2.93 (s, 3H), 2.63 (m, 3H), 2.59 – 2.50 

(m, 1H), 2.10 – 1.99 (m, 2H), 1.89 – 1.77 (m, 4H), 1.76 (d, J = 5.8 Hz, 1H), 1.58 – 1.45 

(m, 2H), 1.28 – 1.12 (m, 2H), 0.97 (s, 3H), 0.80 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 176.4, 155.0, 141.0, 121.0, 104.3, 96.9, 73.4, 69.5, 55.7, 

55.3, 46.6, 42.5, 37.9, 31.9, 31.7, 31.2, 28.5, 26.8, 22.6, 17.1. 

 

  

O

O

Me2N

I

Me Me

2 equiv tBuLi

THF, –78 ºC

Me
Me

MOMO

CONMe2

OH

OMOM

+
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A 25 mL round-bottom flask was charged with allylic alcohol 601 (140 mg, 0.345 

mmol, 1 equiv), NaHCO3 (64 mg, 0.759 mmol, 2.2 equiv), and CH2Cl2 (6.8 mL) then 

cooled to 0 ºC. To the reaction mixture was added mCPBA (200 mg, 1.16 mmol, 1.2 equiv, 

99% mCPBA) in one portion. The reaction was allowed to stir at 0 ºC for 15 minutes, at 

which point TLC indicated that the starting material had been consumed. The reaction was 

quenched with saturated Na2S2O3 (aq) (15 mL). The biphasic mixture was diluted with water 

(5 mL) and CH2Cl2 (10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL), 

and the combined organics were washed with saturated Na2S2O3 (aq) (30 mL), saturated 

NaHCO3 (aq) (30 mL), and brine (30 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated in vacuo. The crude residue was purified by column chromatography 

using silica gel (20% EtOAc/hexanes → 60% EtOAc/hexanes) to give 602 (252 mg, 90% 

yield) as a colorless solid. 

Rf = 0.57 (silica gel, 80% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, DMSO-d6): δ 4.81 (s, 1H), 4.79 – 4.73 (m, 1H), 4.54 – 4.43 (m, 2H), 

4.23 – 4.12 (m, 1H), 3.65 (d, J = 3.3 Hz, 1H), 3.35 (s, 2H), 3.24 (s, 3H), 3.21 (s, 1H), 3.04 

(s, 3H), 2.79 (s, 3H), 2.71 (d, J = 17.3 Hz, 1H), 2.45 (d, J = 2.5 Hz, 1H), 2.41 (d, J = 2.6 

Hz, 1H), 2.18 (s, 1H), 2.14 (d, J = 6.5 Hz, 1H), 1.91 (tq, J = 6.2, 3.8, 3.1 Hz, 1H), 1.81 (dd, 

Me
Me

MOMO

CONMe2

OH mCPBA

NaHCO3
CH2Cl2, 0 ºC

Me
Me

MOMO

CONMe2

OH
O

92% yield
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J = 15.4, 5.6 Hz, 1H), 1.78 – 1.66 (m, 1H), 1.58 (tt, J = 12.9, 6.0 Hz, 3H), 1.50 (d, J = 5.3 

Hz, 2H), 1.33 – 1.25 (m, 2H), 0.83 (s, 6H). 

HRMS (ESI-TOF, m/z): calc’d for C24H43N2O5 [M+NH4]+: 439.3166; found: 439.3185. 

 

 

Epoxide 603 was prepared according to general procedure 2, using 602 (90 mg, 

0.213 mmol) as the substrate. The mixture was purified using silica gel (10% 

EtOAc/Hexanes → 30% EtOAc/hexanes) to provide 603 (79.1 mg, 75% yield). 

 

General Procedure 4: Lewis acid Screen 

 An oven-dried 1-dram vial was pumped into the glove box and charged with a 

Lewis acid (3 equiv). The vial was sealed and removed from the glovebox, then CH2Cl2 

(100 µL) was added. The vial was cooled to 0 ºC and 603 (0.01 mmol) was added as a 

solution in CH2Cl2 (100 µL). After two hours, the mixture was filtered over a pad of silica 

gel eluting with 20% EtOAc/Hexanes (10 mL). The volatiles were removed in vacuo and 

analyzed by TLC and NMR. 

Me
Me

MOMO

CONMe2

OH
O

602

TMSOTf
2,6-dtb-4-Me-pyr
CH2Cl2, –78 ºC

75% yield

Me
Me

MOMO

CONMe2

OH
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 A 2-dram vial was charged with alcohol 601 (25 mg, 0.0616 mmol, 1 equiv) 

and then NaOH (37 mg, 0.925 mmol, 15 equiv). EtOH (600 µL) was then added and the 

vial was sealed with a Teflon cap. The mixture was heated to 130 ºC and stirred for 10 

minutes. The vial was removed from the heating block and cooled to room temperature. 

1M HCl was added (1.2 mL) and the reaction stirred for 1 hour. The mixture was then 

diluted with water (1 mL) and extracted with EtOAc (5 x 2 mL). The combined organics 

were filtered over a SiO2 plug and the volatiles removed in vacuo. The crude residue was 

Me
Me

MOMO

CONMe2

OTMS
O

Lewis Acids

CH2Cl2, 0 ºC
H

HO
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O
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purified by column chromatography using silica gel (5% EtOAc/hexanes → 25% 

EtOAc/hexanes) to give 605 (10.7 mg, 48% yield) as a colorless solid. 

Rf = 0.69 (silica gel, 80% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 5.79 – 5.71 (m, 1H), 5.26 (d, J = 9.6 Hz, 1H), 5.00 (q, J = 

3.6, 2.4 Hz, 1H), 4.83 (s, 1H), 4.63 – 4.52 (m, 2H), 3.67 (dd, J = 10.4, 4.4 Hz, 1H), 3.52 – 

3.43 (m, 1H), 3.36 (s, 3H), 2.80 (dt, J = 16.1, 2.9 Hz, 1H), 2.73 (dd, J = 9.1, 4.5 Hz, 1H), 

2.51 (td, J = 10.6, 7.4 Hz, 1H), 2.28 (d, J = 14.0 Hz, 1H), 2.18 – 2.01 (m, 2H), 1.79 (d, J = 

5.0 Hz, 1H), 1.73 (dd, J = 11.2, 2.6 Hz, 1H), 1.68 (dd, J = 11.2, 4.6 Hz, 1H), 1.49 (dddt, J 

= 13.5, 9.5, 6.3, 3.3 Hz, 3H), 1.39 – 1.30 (m, 1H), 1.21 (t, J = 7.0 Hz, 1H), 0.99 (s, 3H), 

0.95 (s, 3H), 0.91 – 0.85 (m, 1H). 

 

 

A 2-dram vial was charged directly with lactone 605 (10 mg, 0.027 mmol, 1 equiv). 

The vial was evacuated and backfilled with N2 3 times. THF (270 µL) was added to the 

vial, then the reaction mixture was cooled to 0 ºC. A solution of LiAlH4 (110 µL, 0.11 

mmol, 1M in THF, 4 equiv) was then added to the vial, and the reaction was allowed to stir 

for 20 minutes at this temperature. The reaction was quenched with 1M HCl (500 µL). The 

aqueous layer was extracted with EtOAc (3 x 1 mL) and the combined organics were 

filtered over a plug of Na2SO4. The volatiles were removed in vacuo, and the crude residue 

Me
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was purified by column chromatography using silica gel (20% EtOAc/hexanes → 30% 

EtOAc/hexanes) to give 606 (7.3 mg, 72% yield) as a colorless oil. 

Rf = 0.29 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.78 (td, J = 3.7, 1.4 Hz, 1H), 4.83 (ddt, J = 3.1, 2.3, 1.1 

Hz, 1H), 4.78 (qd, J = 1.9, 1.0 Hz, 1H), 4.74 (s, 1H), 4.64 (d, J = 6.6 Hz, 1H), 4.59 (d, J = 

6.6 Hz, 1H), 4.11 – 4.01 (m, 1H), 3.76 (dd, J = 9.9, 4.2 Hz, 1H), 3.41 (dd, J = 9.9, 5.8 Hz, 

1H), 3.36 (s, 4H), 2.75 (t, J = 6.4 Hz, 1H), 2.67 (d, J = 4.9 Hz, 1H), 2.43 (dq, J = 17.0, 2.3 

Hz, 1H), 2.28 (dt, J = 17.0, 2.7 Hz, 1H), 2.08 (ddd, J = 17.2, 8.7, 5.7 Hz, 3H), 1.88 – 1.75 

(m, 3H), 1.60 (q, J = 5.9 Hz, 3H), 1.52 – 1.35 (m, 3H), 0.99 (s, 3H), 0.84 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 156.3, 142.8, 119.8, 103.5, 96.5, 72.7, 70.9, 69.4, 55.7, 

48.1, 45.7, 45.0, 43.3, 39.4, 36.2, 33.5, 31.9, 31.5, 28.4, 26.7, 22.8, 16.9. 

HRMS (ESI-TOF, m/z): calc’d for C22H36NaO4 [M+Na]+: 387.2506; found: 387.2524 

 

 

A 2-dram vial was charged with allylic alcohol 606 (10 mg, 0.0275 mmol, 1 equiv), 

NaHCO3 (5 mg, 0.0604 mmol, 2.2 equiv), and CH2Cl2 (275 µL) then cooled to 0 ºC. To 

the reaction mixture was added mCPBA (5.2 mg, 0.0302 mmol, 1.1 equiv, 99% mCPBA) 

in one portion. The reaction was allowed to stir at 0 ºC for 30 minutes, at which point TLC 

indicated that the starting material had been consumed. The reaction was quenched with 

Me
Me

MOMO

HO
OH

606

Me
Me

MOMO

HO
OH

O

49% yield
608

mCPBA

NaHCO3
CH2Cl2, 0 ºC



Chapter 5 – A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids 

 

 

403 

saturated Na2S2O3 (aq) (1 mL). The biphasic mixture was diluted with water (1 mL) and 

CH2Cl2 (1 mL). The aqueous phase was extracted with CH2Cl2 (3 x 1 mL), and the 

combined organics were washed with saturated Na2S2O3 (aq) (3 mL), saturated NaHCO3 (aq) 

(3 mL), and brine (3 mL). The organic layer was filtered over a Na2SO4 plug and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (20% EtOAc/hexanes → 50% EtOAc/hexanes) to give 608 (5.1 mg, 49% yield) 

as a colorless solid. 

Rf = 0.62 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 4.83 (tt, J = 3.0, 2.3, 1.0 Hz, 1H), 4.78 (d, J = 2.1 Hz, 1H), 

4.66 (d, J = 6.5 Hz, 1H), 4.61 (d, J = 6.5 Hz, 1H), 4.36 (s, 1H), 4.02 (d, J = 11.6 Hz, 1H), 

3.68 – 3.61 (m, 2H), 3.56 (d, J = 2.1 Hz, 1H), 3.38 (s, 3H), 3.35 (d, J = 11.6 Hz, 1H), 2.64 

(q, J = 4.1 Hz, 1H), 2.44 (dq, J = 17.1, 2.4 Hz, 1H), 2.34 – 2.23 (m, 1H), 2.13 (s, 1H), 2.09 

– 1.94 (m, 4H), 1.92 – 1.79 (m, 1H), 1.65 – 1.54 (m, 2H), 0.88 (s, 6H). 

13C NMR (101 MHz, CDCl3): δ 156.3, 103.5, 96.7, 70.0, 69.3, 67.1, 64.1, 55.8, 55.6, 48.1, 

44.6, 43.3, 42.1, 37.6, 35.8, 33.1, 30.4, 29.9, 28.9, 27.7, 27.7, 21.3, 19.2. 

HRMS (ESI-TOF, m/z): calc’d for C22H40NO5 [M+H]+: 398.2901; found: 398.2896. 
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Epoxide 609 was prepared according to general procedure 2, using 608 (10 mg, 

0.026 mmol) as the substrate. The mixture was purified using silica gel (2% Et2O/hexanes 

→ 10% Et2O/hexanes) to provide 609 (10.3 mg, 75% yield). 

Rf = 0.71 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 4.80 (s, 1H), 4.75 (s, 1H), 4.66 – 4.56 (m, 2H), 4.38 (s, 

1H), 3.83 (d, J = 10.1 Hz, 1H), 3.59 – 3.50 (m, 2H), 3.37 (s, 3H), 3.30 (d, J = 2.7 Hz, 2H), 

2.62 (s, 1H), 2.27 – 2.19 (m, 2H), 2.06 – 1.97 (m, 2H), 1.95 – 1.87 (m, 2H), 1.84 (dd, J = 

10.5, 2.0 Hz, 1H), 1.76 (tdd, J = 15.0, 6.1, 2.1 Hz, 1H), 1.62 – 1.55 (m, 2H), 1.50 (tt, J = 

13.4, 6.5 Hz, 1H), 1.43 – 1.31 (m, 2H), 1.12 (dd, J = 10.9, 5.3 Hz, 1H), 0.84 (d, J = 5.2 Hz, 

6H). 

13C NMR (101 MHz, CDCl3): δ 156.7, 102.9, 97.0, 71.5, 68.4, 67.3, 63.1, 55.4, 52.9, 47.9, 

44.5, 43.9, 41.4, 38.6, 34.6, 33.0, 30.5, 30.3, 29.9, 28.5, 28.2, 27.2, 21.4, 19.4, 1.2, –0.4. 

HRMS (ESI-TOF, m/z): calc’d for C28H52O5Si2 [M+H]+: 525.3426; found: 525.3402. 

 

 

A 25 mL round-bottom flask was charged directly with lactone 597 (100 mg, 0.561 

mmol, 1 equiv). The flask was evacuated and backfilled with N2 3 times. THF (5.6 mL) 

was added to the flask, then the reaction mixture was cooled to 0 ºC. A solution of LiAlH4 

(2.25 mL, 2.24 mmol, 1M in THF, 4 equiv) was then added to the flask, and the reaction 
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was allowed to stir for 20 minutes at this temperature. The reaction was quenched with 1M 

HCl (2 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined 

organics were filtered over a plug of Na2SO4. The volatiles were removed in vacuo to give 

610 (85.1 mg, 83% yield) as a colorless oil. 

Rf = 0.12 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 4.85 (ddt, J = 3.2, 2.2, 1.0 Hz, 1H), 4.80 (d, J = 2.2 Hz, 

1H), 4.00 (dd, J = 10.9, 8.5 Hz, 1H), 3.68 (d, J = 11.3 Hz, 1H), 3.58 (dd, J = 10.9, 4.2 Hz, 

1H), 3.52 (d, J = 11.3 Hz, 1H), 2.75 (s, 1H), 2.66 (d, J = 5.3 Hz, 1H), 2.44 (s, 1H), 2.37 

(dt, J = 17.1, 2.4 Hz, 1H), 2.16 (dt, J = 16.9, 2.7 Hz, 1H), 1.92 – 1.75 (m, 3H), 1.65 – 1.51 

(m, 2H), 1.35 – 1.27 (m, 2H). 
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