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Chapter 5 

A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-

Kauranoids 

 

5.1 INTRODUCTION 

While our first generation strategy approach focusing on construction of the 

enmein-type ent-kauranoid core through a cross-electrophile coupling was unsuccessful, 

we remained committed to the development of a convergent route to access 301 and related 

natural products. From a conceptual point of view, we felt that disconnection through the 

central B-ring lactone would still be the most expedient route to 301, and we thought that 

we could potentially use some of the chemistry we had previously developed in our first 

generation route toward 301. With this in mind, we became interested in employing a 1,2-

addition/semi-Pinacol rearrangement sequence to bring together two complex fragments 
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and forge the key all-carbon quaternary center we had attempted to form through a 

convergent cross-coupling.  

We drew inspiration from elegant work happening on the other side of the lab 

focused on the synthesis of the C19 diterpenoid alkaloids (500) (Scheme 5.1). Our lab’s 

strategy for the synthesis of these structurally analogous natural products involved a 

convergent fragment coupling between two complex fragments, namely epoxy ketone 503 

and an alkenyl organometallic 504. A highly selective 1,2-addition followed by subsequent 

semi-pinacol rearrangement delivered 505, which maps on beautifully to the diterpenoid 

alkaloid core. Intrigued by this approach to forging an all-carbon quaternary center between 

two highly complex fragments, we wondered if we could apply a similar strategy to the 

synthesis of the enmein-type ent-kauranoids.   

Scheme 5.1 The Reisman approach to the C19 diterpenoid alkaloids (500) 
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 We were also aware of other salient examples of type III semi-Pinacol 

rearrangements in the context of complex molecule total synthesis. We were intrigued by 

the Tanino’s group use of a type III semi-Pinacol rearrangement to forge an all-carbon 

quaternary center present in Ingenol (512) (Scheme 5.2).1 Epoxy alcohol 509 succumbs to 

a 1,2-migration upon treatment with Me3Al. In doing so, they are able to forge an all-carbon 

quaternary center and build the central 5,7,7-core of the natural product. While it takes 

them an additional 25 steps to access ingenol (512), their rapid synthesis of the core is 

notable.  

Scheme 5.2 Tanino’s synthesis of ingenol (512).  
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through a highly diastereoselective semi-Pinacol rearrangement. Of note is how the 

stereochemistry at the epoxide controls which bond migrates. While their strategy was not 

successfully applied to the total synthesis of 512, this result highlights the versatility of the 

semi-Pinacol rearrangement in total synthesis and is a good example of how the 

conformational requirements of the type III semi-Pinacol rearrangements render this 

transformation highly stereo- and regioselective. 

Scheme 5.3 Cha’s progress toward ingenol (512). 
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rearrangement forges a new carbon-nitrogen bond. This strategy uses a single Lewis acid 

to migrate two bonds, which is crucial in construction of the bicyclic lactam core 523.  

Scheme 5.4 Tu’s synthesis of stemonamine (524) 
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enantiopurity. Because of this, we hypothesized that migrations of silyl protected epoxy 

alcohols would be better in this particular transformation, to avoid the retro-aldol/aldol 

reactivity. 

Scheme 5.5 Yang’s synthesis of 296. 
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framework could be disconnected through the lactone to reveal hydroxy aldehyde 534, 

which could be elaborated to 410 in the forward sense through an oxidative lactonization.  

Scheme 5.6 Retrosynthetic analysis featuring a key semi-Pinacol rearrangement 
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derived from vinyl iodide 536—both of which we thought we could access in short order 

from intermediates we had previously prepared in our first generation strategy.   

5.2.2 Epoxy Aldehyde Synthesis 

In the forward sense, our synthesis of 537 commenced with the iodination of 4,4-

dimethyl cyclohexenone. Treatment under reported conditions with 4-DMAP as the 

catalyst delivered 538 in good yield.5 The iodoenone 538 could then be advanced through 

a CBS reduction, delivering excellent yield and enantiomeric excess of alcohol 540 

(Scheme 5.7).6 With a robust means of preparing 538 and its enantiomer, we turned our 

attention toward installing the neopentyl stereocenter. While we had initially anticipated 

using a [2,3]-Wittig-Still rearrangement from the corresponding a-alkoxysilane7 or the a-

alkoxystannane8 to carry out an anionic transposition, we were unable to achieve the 

desired reactivity on our system. 

We turned our attention toward elegant work presented by the Knochel lab in which 

they were able to perform a stereoinvertive cross-coupling mediated by copper between 

allylic phosphonates and organozinc reagents.9 While we were able to prepare the 

necessary allylic phosphonate, we didn’t observe the desired reactivity under Knochel’s 

conditions. However, we found that we could carry out an analogous reaction between an 

allylic picolinamide (541) and a silyl Grignard reagent, delivering the desired product in 

excellent yield.10–12 We could then perform a standard formylation, delivering enal 542. 

We were pleased to see that nucleophilic epoxidation delivered epoxy aldehyde 543 with 

the correct stereochemistry. While 543 was not in the correct oxidation state, we felt 
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confident that we could perform a late-stage Tamao-Fleming oxidation to convert silane 

543 to the requisite alcohol present in 537.13–16      

Scheme 5.7 A simplifying convergent strategy to access 543.  
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free rotation of the acyclic alcohol. We were delighted to see that treatment of 544 with 

TMSOTf as the Lewis acid and 2,6-ditertbutyl-4-methylpyridine afforded clean conversion 

to aldehyde 545. 

Scheme 5.8 A monocyclic semi-Pinacol model experiment 
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Interestingly, the other product we identified was 549, which could be isolated as a single 

diastereomer. It appeared that only a single isomer of 547 could be converted to 548 under 

the reaction conditions. While it is still unclear which isomer of 547 is a competent 

substrate for the migration, further investigation of the required stereochemistry for the 

migration is currently underway.  

Scheme 5.9 Migration of a camphor-derived alkene 
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protection of the aldehyde as its cyclic acetal followed by Stille cross-coupling with 

hexamethylditin and a subsequent iodination delivered 553, which was poised to undergo 

1,2-addition into our aldehyde. 

Scheme 5.10 First attempts to install and migrate a [3.2.1]-bicycle.  
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558 (Scheme 5.11). We hypothesized that a silyl protected alcohol 558 would be more 

stable under the strongly Lewis acidic conditions we knew were required to migrate large 

groups. From 558, an analogous Stille reaction delivered 559. 

Scheme 5.11 Preparation and migration of a more robust bicycle 
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treatment with TMSOTf and 2,6-Di-tert-butyl-4-methylpyridine solely delivered TMS 

protected alcohol 561. Further treatment of 561 with other Lewis acids provided us with 

either decomposition  or TMS deprotection.  

We hypothesized that our inability to migrate a [3.2.1]-bicyclooctane was due to 

the steric bulk of the adjacent silyl group. We wondered if the bulk of this group, combined 

with the increased bulk from the larger bicycle, limited the conformational flexibility of 

the cyclohexene oxide, making the necessary reactive conformation inaccessible. With this 

in mind, we turned our attention toward the modification of this group.  

5.2.5 A Second Generation Epoxy Aldehyde 

While we had initially hoped to use a Tamao-Fleming oxidation of 543 to install 

the necessary oxidation and modify the steric profile of the adjacent group, our attempts to 

functionalize the silane were unsuccessful (not shown), so we had to return to our 

picolinamide substrate 541 and identify a new cross-coupling partner that could enable 

more facile incorporation of an alcohol at this position.  

Scheme 5.12 Route to allylic alcohol 567. 
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Looking into the literature, it became clear that a silyl group with a hydrogen or an 

alkoxy group bound would be much more easily oxidized than the dimethylphenylsilyl 

group we had installed through the SN2’ chemistry.13,14 From 541, we found that we could 

install the more easily oxidizable silyl group and then subsequently perform a Tamao 

oxidation to deliver vinyl iodide 564 (Scheme 5.12).15,18–20 At this point, silylation of the 

primary alcohol, followed by formylation with DMF delivered 566. Unfortunately, 

attempts to epoxidize 566 directly were met with poor levels of diastereoselectivity (not 

shown), so we advanced enal 566 through a Luche reduction to provide allylic alcohol 567, 

which we planned to use as a substrate in a Sharpless epoxidation to access a single epoxide 

diastereomer.  

Scheme 5.13 Synthesis of epoxy aldehyde 573. 
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conversion and reaction temperatures that would give high levels of selectivity. In the 

interest in developing a scalable route to 568, we elected to pursue a more lengthy sequence 

that would circumvent this persnickety reaction.  

Allylic alcohol 567 could be treated with benzoyl chloride to access benzoate 569, 

at which point the silyl group could be removed through treatment with H2SiF6. The free 

alcohol (570) could then direct an epoxidation to give 571. This epoxy alcohol 571 could 

then be resilylated under standard conditions and the benzoyl group cleaved to give 568. 

While this is a particularly lengthy sequence, each of the reactions proceeded in excellent 

yields and enabled a scalable synthesis of 568, which could be subsequently oxidized to 

the corresponding epoxy aldehyde 573 under Stahl conditions. 

Scheme 5.14 Model 1,2-addition/migration sequences with epoxy aldehyde 573.  

 

With aldehyde 573 in hand, we turned our attention toward investigating the 
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the 1,2-additions smoothly provided epoxy alcohols 575, 578, and 581, we observed 

different outcomes in the semi-Pinacol step. Treatment of 575 under the TMSOTf 

conditions delivered a mixture of the migration product 576 and TMS protection product 

577. Interestingly, treatment of the t-Bu addition product under the same conditions 

delivered solely the TMS protection product. With a bicyclic adduct, we observed complete 

decomposition of 581.  

With these results, we remain interested in exploring the synthesis of [3.2.1]-

bicyclooctane adducts that could undergo a semi-Pinacol rearrangement to assemble the 

core of 301. In doing so, we hope to improve our synthesis of 559 to obviate the need for 

a preparative HPLC separation, and we feel that this investigation will enable development 

of catalytic reactions to assemble complex [3.2.1]-bicyclooctane structures. We are eager 

to explore additional Lewis acids as well as alternative additives that could promote the 

desired 1,2-migration with a more sterically encumbered system. 

5.3 SECOND GENERATION SEMI-PINACOL STRATEGY 

5.3.1 Retrosynthetic Analysis  

While we had learned quite a bit about the migration of alkenyl groups to generate 

all-carbon quaternary centers through a type III semi-Pinacol rearrangement, our inability 

to migrate the fragment necessary for elaboration to 301 and our difficulties associated 

with the synthesis of a bicyclic fragment warranted a retooling of our synthetic strategy.  

We wondered if we might have more success migrating a secondary alkyl group 

rather than an alkenyl group, and in doing so, identify a more direct route to synthesize a 
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bicyclic fragment. We felt we could use a similar end-game strategy to access 301 and 406 

from lactone 409 (Scheme 5.15). We felt that we could prepare lactone 409 through an 

oxidation/lactonization sequence from 582, a key intermediate that contains two all-carbon 

quaternary centers. In 582, the key bond shown in blue could be forged through a type III 

semi-Pinacol rearrangement from epoxy alcohol 583, where the secondary alkyl group 

migrates to set the all-carbon quaternary center. This could be simplified to allylic alcohol 

589, which we hoped to forge through a 1,2-addition reaction between 590 and aldehyde 

591.  

Scheme 5.15 A second generation retrosynthesis of 301 and 406. 

 

5.3.2 Fragment Synthesis 

We were pleased to see that we could readily access 592 from 564, which we had 
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fragment, our synthesis commenced from meso anhydride 593. A desymmetrization 

mediated by a cinchona alkaloid delivered half-ester 594, which could be reduced and 

lactonized to give 595, with high levels of enantioselectivity achieved in the 

desymmetrization step.21 Bicyclic lactone could be propargylated to give a single 

diastereomer of 596.22 Through modification of a known procedure, we found that we 

could achieve high levels of selectivity for the [3.2.1]-bicyclooctane (597).23 Key to the 

success of this strategy is the use of a bicyclic substrate—hydrolysis of the lactone prior to 

radical cyclization was reported to deliver significant amounts of the undesired [2.2.2]-

bicyclooctane.  

With the tricyclic lactone 597 in hand, we turned our attention toward the opening 

of the lactone. Unfortunately using a variety of alcohol nucleophiles delivered low levels 

of the ring opening product (598)—any conversion we observed seemed to be reversible 

and we were unable to isolate any of the hydroxy ester products. We were aware that the 

opening of the gamma lactone would be difficult, but we were pleased to see that lactone 

aminolysis delivered 599 in excellent yield.24 While we had hoped to open the lactone to 

access an ester product, we were satisfied that we could get to 599, which was in the correct 

oxidation state for elaboration to 301. With 599 in hand, we found that we could use Stahl 

oxidation conditions to provide our key aldehyde 600. We were concerned that we might 

observe epimerization to the equatorially disposed aldehyde, but it appeared that 600 was 

stable, so we turned our attention toward investigation of the 1,2-addition between 592 and 

600.  
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Scheme 5.16 Synthesis of vinyl iodide 592 and aldehyde 600 

 

   

5.3.3 Convergent Union of a Vinyl Iodide and Bicyclic Aldehyde 

 Using the conditions we had previously employed for the lithiation of vinyl iodides 
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provided a single diastereomer of 602, reacting through the lower-energy A1,3-minimized 

conformer. With a single diastereomer of 602, we were eager to begin exploring the 

feasibility of setting the all-carbon quaternary center through the envisioned semi-Pinacol 

rearrangement. 
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Scheme 5.17 Initial 1,2-addition and semi-Pinacol results 

 

 Unfortunately, treatment of 602 with TMSOTf only delivered the TMS protection 

product 603. Treatment with the stronger Lewis acid solely delivered decomposition 

products. With a significant amount of 603 in hand, we wanted to conduct a thorough 

investigation of additional Lewis acids that could be used to carry out this transformation. 
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the successful implementation of semi-Pinacol rearrangements in the literature (Table 

5.1).1–4,25,26 Unfortunately, we had difficulty tuning the desired reactivity of the Lewis 
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recovered starting material. We hypothesized that the amide present in 603 may be 
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strong Lewis acids.27–32 In the cases where we were only able to recover starting material, 

we hypothesized that the amide was sopping up the Lewis acid, preventing epoxide 

O

O

Me2N

I

Me Me

2 equiv tBuLi

THF, –78 ºC

Me
Me

MOMO

CONMe2

OH

OMOM

+
mCPBA

NaHCO3
CH2Cl2, 0 ºC

Me
Me

MOMO

CONMe2

OH
O

53% yield
92% yield

TMSOTf
2,6-dtb-4-Me-pyr
CH2Cl2, –78 ºC

75% yield

Me
Me

MOMO

CONMe2

OTMS
OTMSNTf2

2,6-dtb-4-Me-pyr

CH2Cl2 
–78 to 40 ºCH

HO

OTMS
O

Me2N

MOMO
Me

Me

592
600 601 602

603
604



Chapter 5 – A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids 

 

 

355 

activation, so we turned our attention toward the preparation of a substrate lacking a Lewis 

basic amide. 

Table 5.1. Screening of Lewis acids for the key semi-Pinacol rearrangement. 

 

  

5.3.4 Synthesis of a Less Lewis Basic Substrate 

In order to eliminate some of the issues we hypothesized were keeping us from 

successfully employing a semi-Pinacol rearrangement of 603, we turned our attention 

toward the preparation of a substrate where some of these issues would be mitigated. We 

hoped to move away from a strongly Lewis basic amide and instead were interested in 

using a substrate with a silyl protecting group instead. In doing so, we hoped that we could 
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Scheme 5.18 Synthesis of a Diol Substrate 

 

We found that treatment of 601 with NaOH in EtOH smoothly delivered lactone 

605 (Scheme 5.18). Treatment of 605 with LiAlH4 delivered diol 606. While this 
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we observed some over epoxidation, we could access some of the desired product upon 

treatment of 606 with mCPBA. Unfortunately treatment of 608 with TMSOTf resulted in 
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however, in our hands we observed poor selectivity for the desired product (611) and found 

it was nearly impossible to separate the two isomers. While we could obtain small 

quantities of the neopentyl alcohol protection product and could cleanly oxidize the 

remaining alcohol to the corresponding aldehyde 613, 1,2-addition into this aldehyde 

proved capricious and we were unable to advance this material any further. 

Scheme 5.19 Diol Desymmetrization Strategy 
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realized successfully, it would be prudent to investigate other means of assembling all-

carbon quaternary centers through transition-metal cross coupling.  

 

5.5 EXPERIMENTAL DATA 

5.5.1 Materials and Methods 

General Procedures. Unless otherwise stated, reactions were performed under a 

nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene 

chloride (CH2Cl2), acetonitrile (MeCN), tert-butyl methyl ether (TBME), benzene (PhH), 

and toluene (PhMe) were dried by passing through activated alumina columns. 

Triethylamine (Et3N), N,N-diisopropylethylamine (DIPEA), and methanol (MeOH) were 

distilled over calcium hydride prior to use. Unless otherwise stated, chemicals and reagents 

were used as received. All reactions were monitored by thin-layer chromatography (TLC) 

using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by 

UV, p-anisaldehyde, KMnO4, or CAM staining. Flash column chromatography was 

performed either as described by Still et al.33 using silica gel (particle size 0.032-0.063) 

purchased from Silicycle or using pre-packaged RediSep®Rf columns on a CombiFlash Rf 

system (Teledyne ISCO Inc.). Optical rotations were measured on a Jasco P-2000 

polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra were 

recorded on a Bruker Avance III HD with Prodigy cryoprobe (at 400 MHz and 101 MHz 

respectively), a Varian 400 MR (at 400 MHz and 101 MHz, respectively), a Varian Inova 

500 (at 500 MHz and 126 MHz, respectively), or a Varian Inova 600 (at 600 MHz and 150 
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MHz, respectively), and are reported relative to internal CHCl3 (1H, δ = 7.26) and CDCl3 

(13C, δ = 77.1), C6H5 (1H, δ = 7.16) and C6D6 (13C, δ = 128), or d8-THF (1H, δ = 3.58) and 

(13C, δ = 67.6). Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations 

are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, 

app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer 

and are reported in frequency of absorption (cm–1). HRMS were acquired using an Agilent 

6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization 

(ESI), atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode, 

or obtained from the Caltech Mass Spectral Facility in fast-atom bombardment mode 

(FAB). Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system with a Chiralcel AD-H column (4.6 mm x 25 cm). 

 

5.5.2 General Procedures 

General Procedure 1: 1,2-addition 

A flame-dried flask was charged with alkenyl iodide (1 equiv) and evacuated and back-

filled with N2 three times. The flask was charged with THF (0.1 M) and the flask was 

cooled to –78 ºC, at which point, t-BuLi (2 equiv) was added dropwise and stirred for fivec 

minutes. A separate flask was charged with aldehyde (1 equiv) and evacuated and back-

filled with N2 three times. The aldehyde was dissolved in THF (0.1 M) and cooled to –78 

ºC. The alkenyl lithium reagent was transferred to the aldehyde solution and the reaction 
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was allowed to stir for 10 minutes at –78 ºC, at which point the reaction was quenched with 

the addition of saturated NH4Cl (aq). The aqueous layer was extracted with Et2O three times, 

dried over MgSO4, filtered, and concentrated in vacuo to give a crude residue that was 

purified by silica gel chromatography. 

 

General Procedure 2: Semi-Pinacol Rearrangement 

A flame-dried flask was charged with epoxy alcohol (1 equiv) and azeotroped with PhMe 

three times. The flask was then charged with 2,6-di-tert-butyl-4-methylpyridine (3 equiv) 

and evacuated and backfilled with N2 three times. The solids were dissolved in CH2Cl2 (0.1 

M) and the reaction mixture was cooled to –78 ºC. TMSOTf (2 equiv) was added as a 

solution in CH2Cl2 dropwise, and the reaction was stirred for 30 minutes at –78 ºC. The 

reaction was then quenched upon addition of saturated NaHCO3 (aq). The mixture was 

diluted with water and the aqueous layer was extracted with CH2Cl2 three times. The 

combined organics were dried over Na2SO4 and concentrated in vacuo. The resulting crude 

residue was purified by silica gel chromatography. 

 

General Procedure 3: Stille Iodination 

A pressure flask was charged with enol triflate (1 equiv) then pumped into a N2-filled 

glovebox. The flask was charged with LiCl (6 equiv), Pd(PPh3)4 (0.05 equiv), and THF 

(0.1 M). Then hexamethylditin (1 equiv) was added as a liquid directly. The flask was 

sealed and removed from the box. The flask was heated in an oil bath at 65 ºC for 16 hours, 
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at which point the flask was cooled to 0 ºC over 30 min. The flask was opened, and NIS 

(1.3 equiv) was added in one portion. The reaction was allowed to stir at 0 ºC for 2 hours, 

at which point the solvent was removed in vacuo. The residue was suspended in MeOH 

(0.2 M) and Et2O (0.2 M). KF (5 equiv) was then added. The mixture was allowed to stir 

at room temperature for 4 hours, at which point the reaction mixture was filtered over a 

pad of Celite, eluting with Et2O. The solvent was removed in vacuo, and the crude residue 

was purified by column chromatography. 

5.5.3 Preparative Procedures and Spectroscopic Data 

 

 A flame-dried 200 mL round bottom flask was charged with 2-picolinic acid (3.22 

g, 26.2 mmol, 1.1 equiv). The acid was dissolved in CH2Cl2 (60 mL) and the flask was 

cooled to 0 ºC with an ice bath. DCC (6.38 g, 30.9 mmol, 1.3 equiv) was added as a solid 

in one portion, followed by DMAP (1.45 g, 11.9 mmol, 0.5 equiv). The cloudy mixture 

stirred at 0 ºC for 30 min, at which point 540 (6.0 g, 23.8 mmol, 1 equiv) was added as a 

solution in CH2Cl2 (40 mL) dropwise via cannula over 1 hour. Once the addition was 

complete, the reaction was allowed to stir at 0 ºC for an additional 20 minutes. The reaction 

was then warmed to room temperature and stirred at 23 ºC for 4 hours, at which point TLC 

indicated that the reaction was complete. The suspension was filtered over a pad of celite, 

eluting with 300 mL of CH2Cl2. The solvent was removed in vacuo and the crude residue 
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purified by column chromatography using silica gel (20% EtOAc/hexanes → 30% 

EtOAc/hexanes→ 40% EtOAc/hexanes) to give 541 (8.24 g, 97% yield) as an amorphous, 

colorless solid. 

Rf = 0.30 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 8.80 (ddd, J = 4.7, 1.8, 0.9 Hz, 1H), 8.17 (dt, J = 7.9, 1.1 

Hz, 1H), 7.85 (td, J = 7.7, 1.8 Hz, 1H), 7.48 (ddd, J = 7.6, 4.7, 1.2 Hz, 1H), 6.44 (d, J = 1.0 

Hz, 1H), 5.63 (td, J = 5.3, 1.1 Hz, 1H), 2.20 (dddd, J = 14.1, 9.9, 5.1, 3.5 Hz, 1H), 2.03 

(dddd, J = 14.1, 8.1, 5.3, 3.3 Hz, 1H), 1.68 (ddd, J = 13.3, 9.9, 3.3 Hz, 1H), 1.62 – 1.51 (m, 

1H), 1.09 (s, 3H), 1.04 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 164.4, 153.4, 150.3, 148.2, 137.1, 127.0, 125.5, 93.8, 

74.9, 37.4, 32.4, 28.9, 28.0, 27.1. 

HRMS (ESI-TOF, m/z): calc’d for C14H16INO2 [M+H]+: 358.0298; found: 358.0298. 

 

 

Procedure for Grignard formation:   

A 250 mL round-bottom flask was charged with magnesium turnings (851 mg, 35 

mmol, 6.2 equiv). The charged flask was briefly flame-dried under vacuum (1 minute or 

less), and allowed to cool to room temperature under vacuum. The dried magnesium was 

allowed to stir at 800 rpm under vacuum for one hour. The flask was then backfilled with 
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THF (8 mL). Chloromethylphenyldimethylsilane (4.5 mL, 25 mmol, 4.4 equiv) was added 

in one portion via syringe. The suspension was heated with a heat gun until the reaction 

began to initiate (indicated by vigorous bubbling), at which point a second portion of THF 

(8.7 mL) was added and the flask was submerged in an oil bath at 90 ºC. The reaction was 

heated at reflux for 90 minutes, at which point the flask was removed from the oil bath and 

cooled to room temperature. The Grignard reagent was titrated against 2-

hydroxybenzaldehyde phenylhydrazone in triplicate to yield a final concentration of 1.176 

M (78% yield).  

A separate 100 mL round-bottom flask was pumped into a N2-filled glovebox, 

where it was charged with CuBr•Me2S (1.75 g, 8.53 mmol, 1.5 equiv) and ZnI2 (2.73 g, 

8.53 mmol, 1.5 equiv). The flask was sealed with a septum and removed from the glovebox. 

The flask was then charged with THF (28.5 mL) and cooled to 0 ºC. The flask was charged 

with freshly prepared dimethylphenylsilylmethylmagnesium chloride (see above) (14.5 

mL, 17 mmol, 1.176 M, 3 equiv) via cannula. This mixture stirred for 30 minutes at 0 ºC 

and was then cooled to –40 ºC in a dry ice/acetone bath. Iodopicolonate 541 (2.03 g, 5.68 

mmol, 1 equiv) was then added as a solution in THF (28.5 mL) via cannula. The reaction 

was allowed to gradually warm to –10 ºC over 90 minutes, at which point the reaction was 

quenched with the addition of saturated NH4Cl (aq) solution (30 mL). The mixture was 

warmed to room temperature and diluted with water (30 mL) and pentane (100 mL). The 

aqueous layer was extracted with pentane (3 x 100 mL), and the combined organics were 

then washed with saturated NH4Cl (aq) solution (3 x 100 mL), water (2 x 100 mL), and brine 
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(100 mL). The combined organics were dried over MgSO4, filtered, and concentrated in 

vacuo to give a crude residue which was taken forward without any purification. 

A 100 mL round-bottom flask was charged with the crude mixture and the flask 

was evacuated and back-filled with N2 three times. The residue was dissolved in THF (28.5 

mL) and the flask was cooled to –78 ºC. Then t-BuLi (6.7 mL, 1.7M, 11.4 mmol) was 

added via syringe fast dropwise. The mixture immediately became bright yellow. After 

stirring for 5 minutes, dry DMF (3.5 mL, 45.5 mmol, 8 equiv) was added. The reaction 

stirred at this temperature for 10 minutes, at which point the reaction mixture was poured 

into a 250 mL conical flask containing a mixture of KH2PO4 (4.64 g, 34.1 mmol, 6 equiv) 

in Et2O (45.5 mL) and water (45.5 mL) at 0 ºC. This biphasic mixture was stirred for five 

minutes, at which point the mixture was poured into a separatory funnel. The aqueous layer 

was extracted with Et2O (3 x 100 mL). The combined organics were dried over MgSO4, 

filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 2.5% EtOAc/hexanes→ 5% 

EtOAc/hexanes→7.5% EtOAc/hexanes) to give 542 (1.17 g, 72% yield) as a colorless oil. 

Rf = 0.66 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D25 = +95.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.18 (s, 1H), 7.51 – 7.47 (m, 2H), 7.34 – 7.30 (m, 3H), 

6.51 (t, J = 3.8 Hz, 1H), 2.42 (dtd, J = 8.0, 3.4, 1.6 Hz, 1H), 2.37 – 2.25 (m, 2H), 1.76 – 

1.65 (m, 1H), 1.23 – 1.16 (m, 1H), 1.09 – 0.99 (m, 1H), 0.90 (s, 3H), 0.74 (s, 3H), 0.57 

(dd, J = 15.0, 7.8 Hz, 1H), 0.35 – 0.31 (m, 6H). 
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13C NMR (101 MHz, CDCl3): δ 194.2, 149.0, 148.0, 133.9, 128.7, 127.7, 127.6, 36.6, 

32.3, 29.6, 28.5, 26.2, 24.7, 19.8, -1.6, -2.2. 

FTIR (NaCl, thin film, cm-1): 3720, 2953, 2913, 2352, 1682, 1424, 1248, 1112, 834, 818, 

700. 

HRMS (ESI-TOF, m/z): calc’d for C18H30NOSi [M+NH4]+: 304.2091; found: 304.2090. 

 

A 25 mL round-bottom flask was charged with enal 542 (286 mg, 1.0 mmol, 1 

equiv) and dissolved in MeOH (10 mL). The flask was cooled to 0ºC and NaOH (50 µL, 

0.3 mmol, 6M, 0.3 equiv) was added. Hydrogen peroxide (134 µL, 1.3 mmol, 30 wt%, 1.3 

equiv) was added and the reaction was allowed to stir for 2.5 hours at this temperature. The 

reaction was quenched with the addition of saturated Na2S2O3 (aq) solution (5 mL). The 

mixture was diluted with water (5 mL) and then extracted with Et2O (5 x 15 mL). The 

combined organics were dried over MgSO4, filtered, and concentrated in vacuo. The crude 

residue was purified by column chromatography using silica gel (hexanes → 5% 

EtOAc/hexanes) to give 543 (259.6 mg, 86% yield) as a pale yellow solid. 

Rf = 0.66 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D25 = +2.7° (c = 1.8, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 8.37 (s, 1H), 7.52 – 7.47 (m, 2H), 7.36 – 7.32 (m, 3H), 

3.28 (dd, J = 2.7, 1.1 Hz, 1H), 2.41 (ddd, J = 12.2, 2.5, 1.7 Hz, 1H), 2.04 (ddt, J = 15.7, 

Me
Me

O

H

PhMe2Si

H2O2, NaOH

MeOH, 0 ºC
83% yield

Me
Me

O

H
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5.7, 1.5 Hz, 1H), 1.89 – 1.75 (m, 1H), 1.39 (dt, J = 13.0, 6.7 Hz, 1H), 0.97 – 0.84 (m, 3H), 

0.84 (s, 3H), 0.78 (s, 3H), 0.28 (s, 3H), 0.25 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 200.7, 138.9, 134.1, 129.0, 127.7, 65.3, 57.7, 33.8, 31.0, 

27.8, 26.7, 26.6, 21.4, 12.9, -2.0, -2.9. 

FTIR (NaCl, thin film, cm-1): 2956, 1725, 1427, 1249, 1172, 1113, 881, 839, 814, 794, 

729, 700. 

HRMS (ESI-TOF, m/z): calc’d for C18H30O2SiN [M+NH4]+: 320.2040; found: 320.2033. 

   

 

 544 was prepared according to general procedure 1 using 543 (15.0 mg, 0.05 mmol) 

and 470 (13.2 mg, 0.05 mmol) and purified using silica gel (20% EtOAc/hexanes isocratic) 

to give 542 (15.1 mg, 69% yield) as a colorless oil. 

Rf = 0.38 (silica gel, 40% EtOAc/Hex, p-anisaldehyde). 

[α]D25 = +22.1° (c = 0.27, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 7.60 – 7.49 (m, 2H), 7.42 – 7.29 (m, 3H), 5.51 (tq, J = 3.2, 

1.4 Hz, 1H), 4.05 – 3.89 (m, 4H), 3.64 (d, J = 2.9 Hz, 1H), 3.16 (t, J = 1.9 Hz, 1H), 2.26 

(dq, J = 4.1, 1.8 Hz, 2H), 2.06 – 1.85 (m, 3H), 1.84 – 1.63 (m, 3H), 1.61 – 1.54 (m, 1H), 

1.52 (d, J = 3.6 Hz, 1H), 1.36 (td, J = 12.9, 5.7 Hz, 1H), 1.11 (dd, J = 16.0, 3.8 Hz, 1H), 

0.82 (dd, J = 16.0, 7.0 Hz, 1H), 0.75 (s, 3H), 0.71 (s, 3H), 0.35 (s, 3H), 0.34 (s, 3H). 

O

O

I 69% yield,
single 

diastereomer

Me
Me

PhMe2Si
OH

O O

O

Me
Me
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O
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13C NMR (101 MHz, CDCl3): δ 140.5, 136.5, 134.0, 128.8, 127.8, 120.3, 108.0, 79.1, 

65.4, 64.5, 58.5, 37.1, 35.5, 31.3, 31.0, 28.5, 27.1, 27.1, 26.4, 21.8, 14.0, -1.2, -1.2. 

FTIR (NaCl, thin film, cm-1): 3442, 2928, 2363, 1428, 1366, 1247, 1112, 1060, 938, 907, 

833, 824, 732, 699. 

HRMS (ESI-TOF, m/z): calc’d for C26H42NO4Si [M+NH4]+: 460.2878; found: 460.2865. 

 

 

545 was prepared according to general procedure 2 using 544 (13 mg, 0.03 mmol) 

and purified using silica gel neutralized with NH4OH (2% EtOAc/hexanes → 3% 

EtOAc/hexanes→ 4% EtOAc/hexanes)  to give 545 (9.3 mg, 62% yield) as a colorless 

solid. 

1H NMR (400 MHz, CDCl3): δ 9.96 (s, 1H), 7.58 – 7.47 (m, 2H), 7.32 (dp, J = 5.7, 1.5 

Hz, 3H), 5.26 (d, J = 3.7 Hz, 1H), 3.94 (q, J = 1.2 Hz, 4H), 3.70 (d, J = 6.7 Hz, 1H), 2.30 

– 2.19 (m, 3H), 2.06 (q, J = 7.5, 6.9 Hz, 1H), 1.91 – 1.55 (m, 5H), 1.43 (m, 2H), 1.31 (dd, 

J = 16.2, 1.8 Hz, 1H), 0.99 – 0.87 (m, 1H), 0.72 (s, 3H), 0.68 (s, 3H), 0.32 (s, 3H), 0.25 (s, 

3H), 0.07 (s, 9H). 

HRMS (ESI-TOF, m/z): calc’d for C29H47O4Si2 [M+H]+: 515.3007; found: 515.2999. 

 

Me
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547 was prepared according to general procedure 1 using 543 (30.2 mg, 0.1 mmol) 

and 546 (26.2 mg, 0.1 mmol) and purified using silica gel (hexanes → 5% 

EtOAc/hexanes→ 10% EtOAc/hexanes)  to give 547 (21.6 mg, 49% yield as a 3:1 mixture 

of diastereomers) as a colorless solid. 

Rf = 0.52 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +63.7° (c = 1.1, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 7.62 – 7.52 (m, 2H), 7.35 (td, J = 5.0, 1.9 Hz, 3H), 5.73 

(dd, J = 3.2, 1.2 Hz, 1H), 3.80 (d, J = 1.2 Hz, 1H), 3.24 (d, J = 2.0 Hz, 1H), 2.25 (t, J = 3.4 

Hz, 1H), 2.02 (ddd, J = 6.9, 3.0, 1.5 Hz, 1H), 1.88 (ddq, J = 17.1, 6.2, 1.9 Hz, 1H), 1.83 – 

1.71 (m, 2H), 1.45 – 1.30 (m, 3H), 1.29 – 1.24 (m, 1H), 1.03 (dd, J = 16.4, 3.1 Hz, 1H), 

0.91 (s, 3H), 0.88 (s, 3H), 0.85 – 0.76 (m, 1H), 0.74 (s, 3H), 0.70 (s, 3H), 0.70 (m, 1H) 

0.68 (d, J = 2.2 Hz, 3H), 0.38 (d, J = 2.2 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 149.5, 140.0, 134.0, 129.3, 129.1, 127.9, 86.6, 71.4, 66.2, 

55.5, 55.4, 55.0, 51.8, 39.4, 32.2, 31.5, 28.1, 28.0, 27.0, 25.5, 21.8, 19.7, 19.7, 13.6, 12.2, 

-1.6, -1.9. 

FTIR (NaCl, thin film, cm-1): 3472, 3068, 2952, 2872, 2360, 2341, 1699, 1386, 1248, 

1112, 836, 730, 701 

HRMS (ESI-TOF, m/z): calc’d for C28H46NO2Si [M+NH4]+: 456.3292; found: 456.3297. 

49% yield
3:1 dr

Me
Me
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 Compounds 548 and 549 were prepared according to general procedure 2, using 

epoxy alcohol 547 (18 mg, 0.04 mmol). The mixture was purified using silica gel (hexanes 

→ 2% EtOAc/hexanes→ 4% EtOAc/hexanes) to provide a mixture of 548 (5.8 mg, 38% 

yield) and 549 (6.4 mg, 52% yield).  

Characterization data for 548: 

Rf = 0.43 (silica gel, 5% EtOAc/Hex, p-anisaldehyde). 

[α]D23 = +6.6° (c = 0.3, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 10.12 (s, 1H), 7.47 (ddd, J = 5.5, 4.1, 2.3 Hz, 2H), 7.31 

(pd, J = 4.0, 3.6, 2.8 Hz, 3H), 5.70 (d, J = 3.6 Hz, 1H), 3.81 (t, J = 8.3 Hz, 1H), 2.16 (t, J 

= 3.6 Hz, 1H), 1.98 – 1.91 (m, 1H), 1.91 – 1.83 (m, 2H), 1.74 – 1.64 (m, 1H), 1.48 – 1.39 

(m, 4H), 0.94 (s, 3H), 0.89 (m, 1H), 0.79 (s, 3H), 0.72 (s, 3H), 0.70 (s, 3H), 0.64 (s, 3H), 

0.34 (s, 3H), 0.21 (s, 3H), 0.11 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 206.6, 141.4, 133.9, 133.6, 128.6, 128.6, 127.8, 62.5, 

58.0, 56.4, 51.1, 40.2, 36.0, 34.2, 32.9, 31.5, 30.5, 30.2, 27.6, 25.4, 22.8, 22.0, 20.9, 20.3, 

14.5, 13.9, 1.4. 

FTIR (NaCl, thin film, cm-1): 2952, 2876, 1713, 1454, 1364, 1291, 1250, 1111, 1250, 

1087, 1068, 838, 824, 674 

CH2Cl2, –78 ºC
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Me
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OH
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HRMS (ESI-TOF, m/z): calc’d for C31H51O2Si2 [M+H]+: 511.3422; found: 511.3430. 

 

Characterization data for 549: 

Rf = 0.45 (silica gel, 5% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.58 – 7.49 (m, 2H), 7.34 (tt, J = 3.6, 2.3 Hz, 3H), 5.72 

(dd, J = 3.2, 1.4 Hz, 1H), 4.19 – 4.12 (m, 1H), 3.24 (d, J = 1.9 Hz, 1H), 2.23 (t, J = 3.3 Hz, 

1H), 1.90 – 1.71 (m, 4H), 1.50 – 1.42 (m, 1H), 1.40 – 1.29 (m, 2H), 1.12 (dd, J = 16.4, 2.1 

Hz, 1H), 1.00 (s, 3H), 0.87 (m, 5H), 0.71 (d, J = 2.3 Hz, 6H), 0.66 (s, 3H), 0.38 (d, J = 3.0 

Hz, 6H), 0.03 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 147.8, 140.2, 133.8, 130.1, 128.9, 127.9, 73.4, 66.8, 56.2, 

55.1, 54.9, 51.6, 40.7, 32.5, 31.5, 29.9, 28.6, 27.6, 27.4, 25.4, 21.7, 19.8, 19.7, 13.6, 12.7, 

0.9, -0.9, -1.3. 

HRMS (ESI-TOF, m/z): calc’d for C31H51O2Si2 [M+H]+: 511.3422; found: 511.3414. 

 

 

 A 2-dram vial was charged with 440 (19.4 mg, 0.1 mmol, 1 equiv). The vial was 

evacuated and back-filled with nitrogen three times. The ester was dissolved in THF (500 

µL) and cooled to –78 ºC. Then a solution of freshly prepared LDA (160 µL, 1.2 equiv, 

0.75M) was added dropwise. The reaction was stirred at this temperature for 30 minutes, 

at which point Comins’ reagent (45.2 mg, 0.115 mmol, 1.15 equiv) was added as a solid in 

THF, –78 ºC

LDA, Comins’
Reagent

75% yield

O

TfO

MeO

O

O

MeO

440 550
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one portion. After 4 hours, the reaction was warmed to room temperature and quenched by 

addition of water (2 mL). The mixture was diluted with saturated NH4Cl (aq) (2 mL) and 

extracted with Et2O (3 x 5 mL). The combined organics were washed with 3M NaOH (10 

mL), filtered through a plug of Na2SO4 and then concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (hexanes → 5% EtOAc/hexanes) 

to give 550 (23.7 mg, 73% yield) as an amorphous, colorless solid. 

Rf = 0.67 (silica gel, 30% EtOAc/Hex, KMnO4). 

[α]D22 = –1.3° (c = 1.0, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.61 (dd, J = 4.9, 2.7 Hz, 1H), 5.06 (p, J = 1.3 Hz, 1H), 

5.04 – 5.01 (m, 1H), 3.77 (s, 3H), 3.09 – 2.93 (m, 2H), 2.88 (dt, J = 16.4, 2.9 Hz, 1H), 2.59 

(ddd, J = 17.5, 4.3, 2.7 Hz, 1H), 2.25 – 2.04 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 171.2, 151.9, 149.5, 118.5 (q, JC–F = 320 Hz), 115.6, 

109.5, 54.0, 52.6, 44.1, 41.1, 39.7, 34.9. 

19F NMR (282 MHz, CDCl3): δ –74.5 

FTIR (NaCl, thin film, cm-1): 2958, 1745, 1670, 1420, 1292, 1244, 1215, 1165, 1143, 

1077, 1043, 888, 862, 605. 

HRMS (ESI-TOF, m/z): calc’d for C13H16F3O5S [M+H]+: 327.0509; found: 327.0513. 
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 A 25 mL round-bottom flask was charged with 550 (160 mg, 0.47 mmol, 1 equiv). 

The flask was evacuated and back-filled with N2 three times, then charged with CH2Cl2 

(4.7 mL, 0.1 M). The flask was cooled to –78 ºC, and DIBAL (84 µL, 0.47 mmol, 1 equiv) 

was added dropwise via syringe. The reaction stirred at –78 ºC for 20 minutes, at which 

point, the reaction was quenched with Rochelle’s salt (aq) (5 mL) and warmed to room 

temperature. The mixture stirred vigorously for an hour, and then the aqueous layer was 

extracted with CH2Cl2 (3 x 15 mL). The combined organics were dried over Na2SO4, 

filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (3% EtOAc/hexanes → 20% EtOAc/hexanes) to give 551 

(102 mg, 37% yield) as a colorless oil. 

Rf = 0.68 (silica gel, 30% EtOAc/Hex, KMnO4). 

1H NMR (600 MHz, CDCl3): δ 9.83 (d, J = 1.0 Hz, 1H), 5.73 (dd, J = 4.7, 2.8 Hz, 1H), 

5.11 (s, 1H), 5.07 (s, 1H), 3.04 (s, 1H), 2.92 (d, J = 16.2 Hz, 1H), 2.85 (dd, J = 16.2, 3.0 

Hz, 1H), 2.60 (dt, J = 17.7, 3.7 Hz, 1H), 2.26 – 2.15 (m, 1H), 2.08 – 2.04 (m, 1H), 2.01 

(dd, J = 10.9, 5.3 Hz, 1H). 
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 A 2-dram vial was charged with 551 (80 mg, 0.26 mmol, 1 equiv) and azeotroped 

with PhMe (3 x 1 mL). The vial was evacuated and back-filled three times with N2. The 

vial was then charged with CH2Cl2 (2.25 mL), followed by 1,2-bistrimethysilyloxyethane 

(95 µL, 0.39 mmol, 1.5 equiv). The vial was cooled to –78 ºC, then TMSOTf (24 µL, 0.13 

mmol) was added as a solution in CH2Cl2 (250 µL). The vial was allowed to warm to –20 

ºC over the course of 2 hours, at which point the TLC showed complete conversion. The 

reaction was quenched with the addition of dry Hünig’s base (500 µL). The crude mixture 

was concentrated in vacuo, and the crude residue was purified by column chromatography 

using silica gel (3% EtOAc/hexanes → 5% EtOAc/hexanes) to give 552 (28.1 mg, 44% 

yield) as a colorless oil. 

Rf = 0.16 (silica gel, 5% EtOAc/Hex, KMnO4). 

1H NMR (600 MHz, CDCl3): δ 5.64 – 5.48 (m, 1H), 5.04 (dt, J = 2.8, 1.3 Hz, 1H), 5.01 

(s, 1H), 5.00 – 4.97 (m, 1H), 4.11 – 4.06 (m, 1H), 3.98 (q, J = 6.8 Hz, 1H), 3.93 (td, J = 

7.2, 5.1 Hz, 1H), 3.88 (q, J = 7.1 Hz, 1H), 2.96 – 2.87 (m, 2H), 2.56 – 2.49 (m, 2H), 2.17 

– 2.07 (m, 1H), 1.98 (ddd, J = 10.9, 5.6, 1.1 Hz, 1H), 1.86 (dd, J = 10.9, 2.7 Hz, 1H). 

 

 

O

TfO

H

TMSO
OTMS

TfO

O

O

60% yield

 
CH2Cl2, –78 ºC

TMSOTf

551 552



Chapter 5 – A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids 

 

 

374 

 

 Vinyl iodide 553 was prepared according to general procedure 3, using 552 (25 mg, 

0.07 mmol, 1 equiv) as the substrate. The crude residue was purified by column 

chromatography using silica gel (2% EtOAc/hexanes → 3% EtOAc/hexanes) to give 553 

(18.1 mg, 77% yield) as a colorless oil. 

Rf = 0.23 (silica gel, 5% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.26 (ddd, J = 4.8, 2.5, 1.0 Hz, 1H), 5.11 (d, J = 0.7 Hz, 

1H), 5.01 (ddt, J = 3.0, 2.0, 1.0 Hz, 1H), 4.94 (tp, J = 1.7, 0.8 Hz, 1H), 4.04 – 3.99 (m, 1H), 

3.99 – 3.92 (m, 3H), 2.97 – 2.90 (m, 1H), 2.54 (ddd, J = 17.2, 4.3, 2.5 Hz, 1H), 2.50 (ddtd, 

J = 15.8, 2.7, 1.7, 1.0 Hz, 1H), 2.45 – 2.40 (m, 1H), 2.06 (ddd, J = 11.0, 5.7, 1.6 Hz, 1H), 

2.04 – 1.99 (m, 1H), 1.88 (dd, J = 10.9, 2.5 Hz, 1H). 

 

 

 Epoxy alcohol 554 was prepared according to general procedure 1, using 543 (10 

mg, 0.03 mmol) and 553 (11 mg, 0.03 mmol). The mixture was purified using silica gel 

(hexanes → 5% EtOAc/hexanes→ 10% EtOAc/hexanes) to provide 554 (11.6 mg, 69% 

yield).  

Rf = 0.42 (silica gel, 15% EtOAc/Hex, p-anisaldehyde). 
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1H NMR (600 MHz, CDCl3): δ 7.58 – 7.51 (m, 2H), 7.36 – 7.29 (m, 3H), 5.71 (ddt, J = 

4.5, 2.3, 1.0 Hz, 1H), 5.17 (s, 1H), 4.93 (ddt, J = 3.0, 2.0, 1.1 Hz, 1H), 4.83 (dq, J = 2.2, 

1.3 Hz, 1H), 4.59 (d, J = 4.7 Hz, 1H), 3.88 – 3.81 (m, 2H), 3.76 – 3.71 (m, 1H), 3.71 – 3.65 

(m, 1H), 3.30 (dd, J = 2.8, 1.4 Hz, 1H), 2.81 (d, J = 5.3 Hz, 1H), 2.53 (dt, J = 16.1, 2.7 Hz, 

1H), 2.45 (dd, J = 16.1, 2.1 Hz, 1H), 2.38 – 2.30 (m, 1H), 2.09 (ddd, J = 8.4, 2.3, 1.3 Hz, 

1H), 2.02 – 1.94 (m, 2H), 1.89 (ddt, J = 15.5, 5.6, 2.2 Hz, 1H), 1.77 (dddd, J = 15.5, 11.6, 

6.3, 2.8 Hz, 1H), 1.45 – 1.40 (m, 1H), 1.18 – 1.11 (m, 1H), 0.92 – 0.84 (m, 1H), 0.83 (s, 

3H), 0.80 – 0.71 (m, 1H), 0.67 (s, 3H), 0.37 (s, 2H), 0.36 (s, 2H). 

 

 

 

 

A 50 mL round-bottom flask was charged with 550 (400 mg, 1.18 mmol, 1 equiv). 

The flask was evacuated and back-filled with N2 three times, then charged with CH2Cl2 

(11.8 mL, 0.1 M). The flask was cooled to 0 ºC, and DIBAL (630 µL, 3.53 mmol, 3 equiv) 

was added dropwise via syringe. The reaction stirred at 0 ºC for 1 hour, at which point, the 

reaction was quenched with 1M HCl (4 mL) and warmed to room temperature. The mixture 

was diluted with water (10 mL) and the aqueous layer was extracted with CH2Cl2 (3 x 20 

mL). The combined organics were dried over Na2SO4, filtered, and concentrated in vacuo. 

O

TfO

MeO
DIBAL

CH2Cl2, 0ºC
93% yield TfO

HO

550 557
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The crude residue was purified by column chromatography using silica gel (20% 

Et2O/hexanes → 30% Et2O/hexanes) to give 557 (343 mg, 93% yield) as a colorless oil. 

Rf = 0.22 (silica gel, 20% Et2O/hexanes, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.59 (dd, J = 4.6, 2.8 Hz, 1H), 5.05 (q, J = 1.5 Hz, 1H), 

4.98 (s, 1H), 4.00 (d, J = 11.3 Hz, 1H), 3.61 (d, J = 11.3 Hz, 1H), 2.93 (d, J = 5.1 Hz, 1H), 

2.74 (ddq, J = 15.9, 2.7, 1.4 Hz, 1H), 2.56 (ddd, J = 17.4, 4.3, 2.8 Hz, 1H), 2.27 (dt, J = 

15.9, 2.8 Hz, 1H), 2.21 – 2.07 (m, 1H), 2.03 (dd, J = 11.0, 2.8 Hz, 1H), 1.85 (ddd, J = 11.0, 

5.5, 1.1 Hz, 1H), 1.74 (s, 1H). 

19F NMR (282 MHz, CDCl3): δ –74.3. 

 

 

A 25 mL round-bottom flask was charged with 557 (150 mg, 0.48 mmol, 1.0 equiv) 

and imidazole (65 mg, 0.96 mmol, 2.0 equiv). The solids were dissolved in DMF (5 mL) 

and then TBSCl (87 mg, 0.576 mmol, 1.2 equiv) was added as a solid. The flask was then 

heated to 65 ºC and allowed to stir for 16 hours at this temperature, at which point the flask 

was removed from the oil bath and allowed to cool to room temperature. The reaction was 

quenched with the addition of water (5 mL) and then diluted with hexanes (25 mL) and 

additional water (20 mL). The aqueous layer was extracted with hexanes (3 x 25 mL), and 

the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

TfO

HO
TBSCl, imid

DMF, 65 ºC
93% yield TfO

TBSO

557 558
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purified by column chromatography using silica gel (hexanes → 3% Et2O/hexanes) to give 

558 (189 mg, 93% yield) as a colorless oil. 

Rf = 0.90 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

1H NMR (500 MHz, CDCl3): δ 5.53 (ddd, J = 4.6, 2.7, 0.8 Hz, 1H), 5.03 (ddt, J = 2.8, 1.9, 

0.9 Hz, 1H), 4.96 (tp, J = 1.6, 0.7 Hz, 1H), 3.90 (d, J = 10.1 Hz, 1H), 3.54 (d, J = 10.1 Hz, 

1H), 2.97 – 2.83 (m, 1H), 2.74 – 2.60 (m, 1H), 2.54 (ddd, J = 17.2, 4.4, 2.7 Hz, 1H), 2.31 

(dt, J = 15.8, 2.7 Hz, 1H), 2.11 (dddt, J = 17.4, 4.7, 2.1, 1.0 Hz, 1H), 1.97 – 1.84 (m, 3H), 

0.89 (s, 9H), 0.05 (s, 6H). 

 

 

 Iodide 559 could be prepared according to general procedure 3, using 558 (115 mg, 

0.269 mmol, 1 equiv) as the subtrate. The mixture was purified using silica gel (hexanes) 

to provide 559 (83.4 mg, 77% yield). 

Rf = 0.54 (silica gel, hexanes, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.22 (ddd, J = 4.5, 2.5, 0.9 Hz, 1H), 4.99 (ddt, J = 2.8, 1.8, 

1.0 Hz, 1H), 4.92 (dd, J = 2.3, 1.2 Hz, 1H), 3.68 (d, J = 9.9 Hz, 1H), 3.51 (d, J = 9.9 Hz, 

1H), 2.91 (d, J = 5.7 Hz, 1H), 2.52 (ddd, J = 17.1, 4.4, 2.5 Hz, 1H), 2.33 (dtd, J = 15.8, 2.6, 

1.3 Hz, 1H), 2.21 (dt, J = 15.8, 2.8 Hz, 1H), 2.05 – 1.94 (m, 2H), 1.89 (dd, J = 11.0, 2.6 

Hz, 1H), 0.91 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). 

 

TfO

TBSO

I

TBSO

558 559

Pd(PPh3)4, LiCl

Me6Sn2, THF, 65 ºC;
then, NIS, 0 ºC

77% yield
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 Inside a N2-filled glovebox, a 2-dram vial was charged with Ni(cod)2 (4.3 

mg, 0.016 mmol, 5 mol %) and NaI (70.1 mg, 0.468 mmol, 1.5 equiv). The vial was then 

charged with THF (1.2 mL), DMA (0.6 mL), and enol triflate 558 (133 mg, 0.311 mmol, 

1 equiv) as a solution in THF (1.2 mL). The vial was sealed and removed from the 

glovebox. The reaction stirred on the bench for 16 hours, at which point the reaction was 

quenched with the addition of water (3 mL). The mixture was diluted with additional water 

(5 mL) and Et2O (5 mL). The aqueous layer was extracted with Et2O (3 x 10 mL) and the 

combined organics were washed with water (25 mL). The combined organics were dried 

over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 1% Et2O/hexanes) to give 559 (88 mg, 70% 

yield) as a colorless oil. See above for characterization data for 559. 

 

 

Alcohol 560 was prepared according to general procedure 1, using 543 (30.2 mg, 

0.1 mmol) and 559 (40.4 mg, 0.1 mmol). The mixture was purified using silica gel (hexanes 

→ 2.5% EtOAc/hexanes) to provide 560 (27.7 mg, 48% yield). 

Rf = 0.87 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

TfO

TBSO
Ni(cod)2 (5 mol%)

NaI (1.5 equiv)
4:1 THF/DMA, 23 ºC

70% yield I

TBSO

558 559

I

TBSO
Me
Me

PhMe2Si
OH

O

TBS
O

559 560

tBuLi

THF, –78 ºC

Me
Me

PhMe2Si
O

O
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+
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1H NMR (600 MHz, CDCl3): δ 7.61 – 7.49 (m, 2H), 7.39 – 7.31 (m, 3H), 5.59 (t, J = 3.3 

Hz, 1H), 4.92 (s, 1H), 4.82 (s, 1H), 3.90 (d, J = 3.9 Hz, 1H), 3.80 (d, J = 10.0 Hz, 1H), 3.52 

(d, J = 10.0 Hz, 1H), 3.31 (d, J = 2.5 Hz, 1H), 2.78 (d, J = 5.1 Hz, 1H), 2.45 (dt, J = 16.1, 

2.7 Hz, 1H), 2.36 (dt, J = 17.3, 3.3 Hz, 1H), 2.29 (d, J = 15.4 Hz, 1H), 2.05 – 1.85 (m, 4H), 

1.86 – 1.73 (m, 2H), 1.48 (dd, J = 10.7, 2.5 Hz, 1H), 1.38 (td, J = 12.6, 5.8 Hz, 1H), 1.05 

(dd, J = 16.3, 2.8 Hz, 1H), 0.91 (s, 9H), 0.84 (s, 3H), 0.80 – 0.72 (m, 1H), 0.69 (s, 3H), 

0.35 (d, J = 4.5 Hz, 6H), 0.07 (d, J = 10.8 Hz, 6H). 

 

 

A 500 mL round-bottom flask was pumped into a N2-filled glovebox, where it was 

charged with CuBr•Me2S (3.27 g, 15.9 mmol, 1.5 equiv) and ZnI2 (5.08 g, 15.9 mmol, 1.5 

equiv). The flask was sealed with a septum and removed from the glovebox. The flask was 

then charged with THF (53 mL) and cooled to 0 ºC. The flask was charged with freshly 

prepared isopropoxydimethylsilylmethylmagnesium chloride20 (55 mL, 31.8 mmol, 0.578 

M, 3 equiv) via cannula. This mixture stirred for 30 minutes at 0 ºC and was then cooled 

to –40 ºC in a dry ice/acetone bath. Iodopicolonate 541 (3.78 g, 10.6 mmol, 1 equiv) was 

then added as a solution in THF (53 mL) via cannula. The reaction was allowed to gradually 

warm to –10 ºC over 3 hours, at which point the reaction was quenched with the addition 

of saturated NH4Cl (aq) solution (30 mL). The mixture was warmed to room temperature 

and diluted with water (100 mL) and Et2O (100 mL). The aqueous layer was extracted with 

O

Me
Me I

O
N

CuBr•Me2S, ZnI2
Me2(OiPr)SiCH2MgCl

THF, –40 to –10 ºC

I

Me Me

Si
OiPr

Me Me

83% yield541 563
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Et2O (3 x 150 mL), and the combined organics were then washed with saturated NH4Cl (aq) 

solution (200 mL), saturated NaHCO3 (aq) (200 mL), water (200 mL) and brine (200 mL). 

The combined organics were dried over MgSO4, filtered, and concentrated in vacuo to give 

a crude residue which was purified using silica gel (hexanes → 6% Et2O/hexanes) to 

provide 563 (3.18 g, 83% yield). 

Rf = 0.90 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.15 (dd, J = 4.5, 3.3 Hz, 1H), 4.04 (hept, J = 6.0 Hz, 1H), 

2.28 (dddd, J = 6.6, 3.7, 1.8, 0.9 Hz, 1H), 2.20 – 1.97 (m, 2H), 1.62 – 1.56 (m, 1H), 1.16 

(dd, J = 6.1, 1.4 Hz, 6H), 1.00 (s, 3H), 0.93 (s, 3H), 0.89 – 0.79 (m, 2H), 0.21 (d, J = 8.8 

Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 134.9, 109.0, 65.0, 52.6, 35.3, 29.2, 28.7, 27.3, 27.2, 26.0, 

20.4, 0.3, 0.0. 

FTIR (NaCl, thin film, cm-1): 2970, 2920, 2874, 1631, 1464, 1450, 1366, 1251, 1172, 

1130, 1028, 931, 886, 838, 822. 

HRMS (ESI-TOF, m/z): calc’d for C14H28IOSi [M+H]+: 367.0949; found: 367.0959. 

 

 

 A 25 mL round-bottom flask was charged with 563 (750 mg, 2.05 mmol, 1 equiv) 

followed by KHCO3 (205 mg, 2.05 mmol, 1 equiv) and MeOH (2 mL). Then a solution of 

TBAF (4.1 mL, 4.09 mmol, 1 M in THF, 2 equiv) was added to the flask. At this point, 

I

Me Me

Si
OiPr

Me Me
KHCO3, H2O2

TBAF
I

Me Me

THF/MeOH, 50 ºC
70% yield

OH

563 564
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aqueous hydrogen peroxide (390 µL, 6.82 mmol, 50 wt%, 3.3 equiv) was added to the 

flask. The flask was added to a pre-heated oil bath at 50 ºC and left open to the atmosphere. 

After 90 minutes, TLC indicated complete consumption of starting material and formation 

of a much more polar product. The flask was removed from the oil bath and quenched with 

the addition of saturated Na2S2O3 (aq) (10 mL). The mixture was diluted with Et2O (5 mL) 

and the biphasic mixture was allowed to stir for an additional 30 min. The aqueous phase 

was extracted with Et2O (3 x 10 mL), and the combined organics were washed with 

saturated Na2S2O3 (aq) (30 mL), saturated NaHCO3 (aq) (30 mL), and brine (30 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo to give a crude 

residue which was purified using silica gel (10% Et2O/hexanes → 20% Et2O/hexanes) to 

provide 564 (387 mg, 70% yield). 

Rf = 0.57 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 6.59 – 6.54 (m, 1H), 3.94 (dt, J = 12.0, 4.1 Hz, 1H), 3.81 

(ddd, J = 12.0, 8.7, 2.4 Hz, 1H), 2.15 – 2.08 (m, 2H), 2.02 (dh, J = 3.6, 1.2 Hz, 1H), 1.75 

(ddd, J = 13.3, 10.0, 6.7 Hz, 1H), 1.30 (td, J = 8.5, 5.2 Hz, 2H), 1.07 (s, 4H), 1.01 (s, 4H). 

13C NMR (101 MHz, CDCl3): δ 140.7, 100.0, 62.1, 58.6, 34.5, 31.7, 28.1, 27.9, 27.2. 

HRMS (ESI-TOF, m/z): calc’d for C9H19INO [M+NH4]+: 284.0506; found: 284.0495. 
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A 2-dram vial was charged with 564 (266 mg, 1.0 mmol, 1.0 equiv) and imidazole 

(136 mg, 2.0 mmol, 2.0 equiv). The solids were dissolved in DMF (5 mL) and then TBSCl 

(181 mg, 1.2 mmol, 1.2 equiv) was added as a solid. The vial was sealed and the reaction 

was allowed to stir at room temperature for 16 hours, at which point the reaction was 

quenched with the addition of water (2 mL) and then diluted with hexanes (10 mL) and 

additional water (5 mL). The aqueous layer was extracted with hexanes (3 x 10 mL), and 

the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). The organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by column chromatography using silica gel (hexanes) to give 565 (286 mg, 75% 

yield) as a colorless oil. 

Rf = 0.90 (silica gel, 10% Et2O/Hex, UV and p-anisaldehyde). 

[α]D24 = +76.8° (c = 0.20, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 6.49 – 6.34 (m, 1H), 3.88 – 3.71 (m, 2H), 2.17 – 1.96 (m, 

2H), 1.92 (dtt, J = 3.7, 2.3, 1.1 Hz, 1H), 1.85 (ddd, J = 13.0, 10.9, 6.5 Hz, 1H), 1.22 – 1.14 

(m, 1H), 1.04 (s, 3H), 0.98 (s, 3H), 0.88 (s, 9H), 0.07 (d, J = 2.1 Hz, 5H). 

13C NMR (101 MHz, CDCl3): δ 139.1, 101.5, 62.1, 58.7, 34.6, 31.1, 28.5, 27.8, 27.2, 26.0, 

18.3, -5.2, -5.2. 

FTIR (NaCl, thin film, cm-1): 2954, 2927, 1634, 1470, 1389, 1362, 1256, 1111, 1138, 

1034, 998, 883, 837, 776. 

TBSCl
Imidazole

DMF
75% yield

564

Me
Me
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HRMS (FAB, m/z): calc’d for C15H28IOSi [M–H]+: 379.0955; found: 379.0962. 

 

 

A 50 mL round-bottom flask was charged with 565 (1.16 g, 3.05 mmol, 1 equiv) 

and the flask was evacuated and back-filled with N2 three times. The iodide was dissolved 

in THF (15.2 mL) and the flask was cooled to –78 ºC. Then t-BuLi (4 mL, 1.5M, 6.0 mmol, 

2 equiv) was added via syringe fast dropwise. The mixture immediately became bright 

yellow. After stirring for 5 minutes, dry DMF (1.89 mL, 24.4 mmol, 8 equiv) was added. 

The reaction stirred at this temperature for 10 minutes, at which point the reaction mixture 

was poured into a 250 mL conical flask containing a mixture of KH2PO4 (2.49 g, 18.3 

mmol, 6 equiv) in Et2O (24 mL) and water (24 mL) at 0 ºC. This biphasic mixture was 

stirred for five minutes, at which point the mixture was poured into a separatory funnel. 

The aqueous layer was extracted with Et2O (3 x 50 mL). The combined organics were dried 

over MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by column 

chromatography using silica gel (hexanes → 5% EtOAc/hexanes→10% EtOAc/hexanes) 

to give 566 (676 mg, 78% yield) as a colorless oil. 

Rf = 0.59 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D23 = +78.8° (c = 1.5, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.43 (s, 1H), 6.88 (dd, J = 4.2, 3.0 Hz, 1H), 3.76 (dd, J = 

10.5, 2.8 Hz, 1H), 3.68 (dd, J = 10.6, 3.8 Hz, 1H), 2.44 – 2.26 (m, 2H), 2.28 – 2.19 (m, 

tBuLi, DMF
THF, –78 ºC
78% yield

Me
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2H), 2.01 (ddd, J = 13.2, 10.2, 7.1 Hz, 1H), 1.27 – 1.19 (m, 1H), 1.06 (s, 3H), 0.81 (s, 8H), 

0.78 (s, 3H), -0.03 (s, 3H), -0.09 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 194.6, 153.3, 141.5, 61.9, 43.4, 32.1, 31.3, 27.8, 27.6, 

25.9, 24.7, 18.2, -5.5, -5.5. 

FTIR (NaCl, thin film, cm-1): 2956, 2929, 2358, 1687, 1644, 1471, 1254, 1136, 1103, 

1031, 996, 838, 776, 688. 

HRMS (ESI-TOF, m/z): calc’d for C16H31O2Si [M+H]+: 283.2088; found: 283.2094. 

 

 

 A 2-dram vial was charged with enal 566 (30 mg, 0.106 mmol, 1 equiv). The enal 

was dissolved in MeOH (350 µL) and the vial was cooled to 0 ºC. Freshly ground 

CeCl3•7H2O (39.5 mg, 0.106 mmol, 1 equiv) was added to the vial in one portion, and the 

yellow mixture was allowed to stir for 10 minutes. Then NaBH4 (5 mg, 0.127 mmol, 1.2 

equiv) was added as a solid. The reaction stirred at 0 ºC for 30 minutes, at which point the 

reaction was quenched with brine (1 mL). The mixture was diluted with water (2 mL) and 

Et2O (4 mL). The aqueous layer was extracted with Et2O (3 x 5 mL) and the combined 

organics were dried over MgSO4, filtered, and concentrated in vacuo. The crude residue 

was purified by column chromatography using silica gel (10% Et2O/hexanes → 30% 

Et2O/hexanes) to give 567 (28.6 mg, 95% yield) as a colorless oil.  

Rf = 0.42 (silica gel, 15% EtOAc/Hex, p-anisaldehyde). 

Me
Me
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[α]D24 = +73.4° (c = 1.1, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.70 (td, J = 3.6, 1.1 Hz, 1H), 4.25 – 4.08 (m, 1H), 4.02 – 

3.82 (m, 2H), 3.56 (dd, J = 10.0, 8.1 Hz, 1H), 3.39 (t, J = 6.5 Hz, 1H), 2.12 – 1.91 (m, 3H), 

1.50 – 1.36 (m, 1H), 1.35 – 1.19 (m, 1H), 0.95 (s, 3H), 0.90 (s, 9H), 0.87 (s, 3H), 0.09 (s, 

6H). 

13C NMR (101 MHz, CDCl3): δ 138.8, 125.2, 67.8, 64.4, 48.8, 34.0, 31.6, 28.4, 26.0, 25.2, 

22.9, 18.4, -5.3, -5.4. 

FTIR (NaCl, thin film, cm-1): 3347, 2956, 2928, 2859, 2360, 1471, 1389, 1362, 1256, 

1105, 1055, 1006, 938, 892, 882, 838, 776, 668. 

HRMS (ESI-TOF, m/z): calc’d for C16H33O2Si [M+H]+: 285.2250; found: 285.2238. 

 

 

 A 50 mL round-bottom flask was charged with alcohol 567 (300 mg, 10.5 mmol, 1 

equiv) and dissolved in CH2Cl2 (21 mL). The flask was cooled to 0 ºC, and Et3N (1.5 mL, 

10.5 mmol, 10 equiv) was added via syringe. Benzoyl chloride (366 µL, 3.15 mmol, 3 

equiv) was added via syringe fast dropwise, then DMAP (65 mg, 0.528 mmol, 0.5 equiv) 

was added in one portion. The reaction stirred at 0 ºC for 1 hour, at which point the reaction 

mixture was pipetted onto a preequilibrated silica plug, eluting with 20% EtOAc/hexanes 

(200 mL). The volatiles were removed in vacuo, and the crude residue was purified by 

OH

OTBS

Me
Me

BzCl, DMAP

Et3N, CH2Cl2
0 to 23 ºC

OBz

OTBS

Me
Me

95% yield
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column chromatography using silica gel (hexanes → 4% EtOAc/hexanes) to give 569 (388 

mg, 95% yield) as a colorless oil.    

Rf = 0.52 (silica gel, 10% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D22 = +36.1° (c = 0.73, CHCl3). 

1H NMR (600 MHz, CDCl3): δ 8.04 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.44 (t, 

J = 7.6 Hz, 2H), 5.88 (d, J = 3.6 Hz, 1H), 4.89 (d, J = 12.3 Hz, 1H), 4.75 (d, J = 12.3 Hz, 

1H), 3.79 (dd, J = 10.5, 4.6 Hz, 1H), 3.70 (dd, J = 10.5, 4.6 Hz, 1H), 2.17 – 1.97 (m, 2H), 

1.92 (d, J = 4.7 Hz, 1H), 1.68 (dt, J = 13.1, 8.3 Hz, 1H), 1.21 (dt, J = 13.2, 4.9 Hz, 1H), 

1.00 (s, 3H), 0.93 (s, 3H), 0.87 (s, 9H), 0.03 (d, J = 4.8 Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 166.6, 133.3, 132.9, 130.7, 129.7, 128.5, 127.7, 68.6, 

63.1, 47.9, 32.2, 31.7, 27.7, 27.6, 26.0, 23.1, 18.3, -5.3, -5.4. 

FTIR (neat, cm-1): 2953, 2927, 2855, 1719, 1471, 1268, 1106, 1069, 835, 774, 709.  

HRMS (ESI-TOF, m/z): calc’d for C23H37O3Si [M+H]+: 389.2506; found: 389.2504. 

 

 

 A 25 mL round-bottom flask was charged with 269 (385 mg, 0.966 mmol, 1 equiv). 

Acetonitrile (9.7 mL) was added to the flask, and the mixture was cooled to 0 ºC with an 

ice bath. H2SiF6 (2.3 mL, 4.82 mmol, 5 equiv, 25 wt %) was added to the flask, and the 

mixture was allowed to stir at 0 ºC for 4 hours, at which point TLC showed complete 

consumption of starting material. The reaction was quenched with the addition of saturated 
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NaHCO3 (aq) (20 mL). The mixture was diluted with water (20 mL) and the aqueous layer 

was extracted with EtOAc (3 x 40 mL). The combined organics were dried over MgSO4, 

filtered, and concentrated in vacuo to provide 570 (263 mg, 99% yield) as a colorless oil. 

Rf = 0.52 (silica gel, 30% EtOAc/Hex, UV and p-anisaldehyde). 

[α]D25 = +50.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 8.09 – 8.00 (m, 2H), 7.62 – 7.52 (m, 1H), 7.45 (dd, J = 

8.4, 7.0 Hz, 2H), 6.01 (t, J = 3.7 Hz, 1H), 4.91 (dq, J = 12.4, 1.8 Hz, 1H), 4.75 (dd, J = 

12.4, 1.1 Hz, 1H), 3.98 – 3.72 (m, 2H), 2.11 (ddtd, J = 8.4, 5.0, 3.2, 1.6 Hz, 2H), 1.88 (d, 

J = 4.1 Hz, 1H), 1.69 (dt, J = 13.4, 8.5 Hz, 1H), 1.57 (s, 2H), 1.25 (dtd, J = 13.4, 4.8, 4.3, 

1.4 Hz, 1H), 1.05 (s, 3H), 0.92 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 166.7, 133.2, 132.0, 130.4, 129.7, 129.5, 128.6, 68.4, 

62.5, 48.5, 32.2, 31.8, 27.8, 27.6, 23.1. 

FTIR (neat, cm-1): 3019, 2359, 1712, 1245, 1193, 1111, 1026, 720. 

HRMS (ESI-TOF, m/z): calc’d for C17H23O3 [M+H]+: 275.1638; found: 275.1642. 

 

 

A 50 mL round-bottom flask was charged with alcohol 570 (265 mg, 0.97 mmol, 1 

equiv) and CH2Cl2 (9.7 mL) then cooled to 0 ºC. To the reaction mixture was added 

mCPBA (200 mg, 1.16 mmol, 1.2 equiv, 99% mCPBA) in one portion. The reaction was 

allowed to stir at 0 ºC for 2.5 hours, at which point TLC indicated that the starting material 
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had been consumed. The reaction was quenched with saturated Na2S2O3 (aq) (8 mL) and  

saturated NaHCO3 (aq) (4 mL). The biphasic mixture was diluted with water (5 mL) and 

CH2Cl2 (10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL), and the 

combined organics were washed with saturated Na2S2O3 (aq) (30 mL), saturated NaHCO3 

(aq) (30 mL), and brine (30 mL). The organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (10% EtOAc/hexanes → 25% EtOAc/hexanes) to give 571 (252 mg, 90% yield) 

as a colorless solid. 

Rf = 0.38 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +50.5° (c = 0.44, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 8.12 – 7.97 (m, 2H), 7.58 (ddt, J = 7.9, 6.9, 1.4 Hz, 1H), 

7.53 – 7.37 (m, 2H), 4.49 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.7 Hz, 1H), 3.99 (dt, J = 11.4, 

3.9 Hz, 1H), 3.92 – 3.76 (m, 1H), 3.30 (t, J = 1.9 Hz, 1H), 2.39 (t, J = 6.2 Hz, 1H), 2.02 

(ddt, J = 15.7, 6.0, 1.6 Hz, 1H), 1.90 (dddd, J = 15.7, 12.4, 6.4, 2.4 Hz, 1H), 1.80 (ddd, J = 

7.4, 4.2, 1.5 Hz, 1H), 1.66 – 1.58 (m, 1H), 1.00 (dd, J = 9.1, 7.1 Hz, 1H), 0.96 (s, 3H), 0.93 

(s, 3H). 

13C NMR (101 MHz, CDCl3): δ 166.4, 133.4, 129.8, 129.8, 128.6, 68.1, 62.1, 59.8, 57.7, 

44.2, 30.3, 28.6, 28.0, 27.2, 21.4. 

FTIR (neat, cm-1):  3019, 2359, 1718, 1451, 1272, 1215, 1115, 727, 712, 668. 

HRMS (ESI-TOF, m/z): calc’d for C17H23O4 [M+H]+: 291.1591; found: 291.1577. 
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A 50 mL round-bottom flask was charged with 571 (240 mg, 0.826 mmol, 1 equiv) 

and imidazole (113 mg, 1.65 mmol, 2 equiv). The solids were dissolved in DMF (8.3 mL) 

and then TBSCl (150 mg, 0.99 mmol, 1.2 equiv) was added as a solid. The flask was sealed 

and the reaction was allowed to stir at room temperature for 16 hours, at which point the 

reaction was quenched with the addition of water (10 mL) and then diluted with hexanes 

(10 mL) and additional water (5 mL). The aqueous layer was extracted with hexanes (3 x 

10 mL), and the combined organics were washed with saturated NH4Cl (aq) (3 x 50 mL). 

The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo.  

The crude epoxy benzoate was added to a 50 mL round-bottom flask and dissolved 

in MeOH (14 mL). To the reaction mixture was added K2CO3 (1.15 g, 8.3 mmol, 12 equiv). 

The reaction stirred vigorously (800 rpm) for 40 minutes, at which point the reaction was 

quenched with the addition of saturated NH4Cl (aq) (50 mL). The aqueous layer was 

extracted with Et2O (3 x 50 mL). The combined organics were dried over MgSO4, filtered, 

and concentrated in vacuo to provide 568 (263 mg, 93% yield over two steps) as a colorless 

oil. 

Rf = 0.58 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +59.8° (c = 0.21, CHCl3). 

1H NMR (500 MHz, CDCl3): δ 3.86 (dd, J = 11.8, 4.3 Hz, 1H), 3.72 (ddd, J = 8.9, 4.9, 0.5 

Hz, 1H), 3.62 (dd, J = 10.2, 8.9 Hz, 1H), 3.53 (dd, J = 6.2, 4.3 Hz, 1H), 3.39 (dd, J = 11.8, 
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6.1 Hz, 1H), 3.14 (t, J = 1.9 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.83 (dddd, J = 15.6, 12.1, 6.5, 

2.6 Hz, 1H), 1.37 – 1.24 (m, 1H), 0.92 (s, 9H), 0.91 (s, 3H), 0.85 (s, 3H), 0.12 (d, J = 5.1 

Hz, 6H). 

13C NMR (126 MHz, CDCl3):  δ 67.6, 61.6, 61.2, 55.8, 45.2, 30.1, 28.3, 27.7, 27.7, 26.0, 

21.5, 18.5, -5.4, -5.4. 

FTIR (neat, cm-1): 3752, 2927, 2359, 2340, 2161, 1684, 1675, 1576, 1506, 1040, 837, 

775. 

HRMS (ESI-TOF, m/z): calc’d for C16H33O3Si [M+H]+: 301.2193; found: 301.2195. 

 

 

 A 25 mL round-bottom flask was charged with epoxy alcohol 568 (160 mg, 0.533 

mmol, 1 equiv) and dissolved in wet acetonitrile (11 mL). To this solution was added Stahl 

solution (135 µL, containing 0.2M bpy, 0.04M ABNO, and 0.4M NMI in MeCN) followed 

by [Cu(MeCN)4]OTf (10 mg, 0.027 mmol, 0.05 mol %). The solution was sparged with a 

balloon of O2 for 10 minutes and then allowed to stir open to air for 3.5 hours. The reaction 

mixture was then filtered through a SiO2 plug, eluting with 20% EtOAc/hexanes (100 mL). 

The volatiles were removed in vacuo to provide 573 (143 mg, 90% yield) as a light yellow 

oil.  

Rf = 0.64 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 
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[α]D22 = +64.1° (c = 2.8, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.02 (s, 1H), 3.68 (ddd, J = 8.8, 5.6, 0.6 Hz, 1H), 3.49 (dd, 

J = 11.0, 8.8 Hz, 1H), 3.41 (d, J = 1.9 Hz, 1H), 2.64 (ddd, J = 11.0, 5.5, 1.5 Hz, 1H), 2.08 

(dddd, J = 15.5, 5.3, 2.3, 1.7 Hz, 1H), 1.87 (dddd, J = 15.6, 12.3, 5.8, 2.2 Hz, 1H), 1.49 – 

1.36 (m, 1H), 1.01 – 0.90 (m, 1H), 0.89 (s, 3H), 0.86 (s, 3H), 0.85 (s, 9H), 0.03 (d, J = 6.8 

Hz, 6H). 

13C NMR (101 MHz, CDCl3): δ 200.5, 63.3, 60.5, 56.8, 42.1, 28.8, 28.6, 28.1, 27.0, 26.0, 

21.3, 18.3, -5.4. 

FTIR (neat, cm-1):  2955, 2928, 2856, 2359, 1730, 1506, 1472, 1109, 1082, 1256, 1109, 

1082, 837, 776. 

HRMS (ESI-TOF, m/z): calc’d for C16H31O3Si [M+H]+: 299.2037; found: 299.2030. 

 

 

Epoxy alcohol 575 was prepared according to general procedure 1, using 573 (15 mg, 0.10 

mmol) and 470 (26.6 mg, 0.10 mmol, 2 equiv). The mixture was purified using silica gel 

(10% EtOAc/hexanes → 30% EtOAc/hexanes) to provide 575 (17.5 mg, 80% yield). 

Rf = 0.24 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +35.4° (c = 0.35, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 5.85 (tq, J = 3.3, 1.4 Hz, 1H), 5.60 (d, J = 2.5 Hz, 1H), 

3.94 (dd, J = 3.7, 1.5 Hz, 4H), 3.69 (dd, J = 8.7, 4.9 Hz, 1H), 3.59 (dd, J = 11.0, 8.7 Hz, 
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1H), 3.56 – 3.50 (m, 1H), 3.16 (t, J = 1.9 Hz, 1H), 2.40 – 2.19 (m, 3H), 2.11 (dddd, J = 

15.9, 10.9, 5.0, 1.9 Hz, 2H), 1.98 (ddt, J = 15.5, 5.9, 1.6 Hz, 1H), 1.88 – 1.79 (m, 1H), 1.74 

(ddt, J = 8.6, 6.4, 1.1 Hz, 2H), 0.95 (s, 9H), 0.88 (qd, J = 7.3, 6.5, 2.5 Hz, 2H), 0.82 (s, 3H), 

0.79 (s, 3H), 0.16 (s, 3H), 0.15 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 136.8, 121.4, 108.2, 80.1, 64.4, 64.3, 62.2, 61.7, 57.0, 

41.5, 35.6, 31.3, 29.6, 28.2, 28.1, 27.5, 26.6, 26.0, 21.5, 18.5, -5.5, -5.5. 

FTIR (neat, cm-1): 3372, 2953, 2927, 2856, 2360, 1700, 1113, 1084, 1060, 836, 777, 733.  

HRMS (ESI-TOF, m/z): calc’d for C24H43O5Si [M+H]+: 439.2874; found: 439.2854. 

 

 

 Alcohol 578 was prepared according to general procedure 1 with 573 (15 mg, 0.05 

mmol) and t-BuLi (67 µL, 0.10 mmol, 1.7M, 2 equiv) as the organolithium reagent. The 

crude residue was purified using silica gel chromatography (hexanes → 10% 

EtOAc/hexanes) to provide 576 (6.8 mg, 37% yield).  

Rf = 0.53 (silica gel, 10% EtOAc/Hex, p-anisaldehyde). 

[α]D22 = +60.6° (c = 0.30, CHCl3). 

1H NMR (600 MHz, CDCl3): δ 5.34 (d, J = 2.3 Hz, 1H), 3.73 (dd, J = 9.1, 4.9 Hz, 1H), 

3.66 (td, J = 9.5, 9.0, 1.0 Hz, 1H), 3.16 (d, J = 1.9 Hz, 1H), 2.75 (d, J = 2.1 Hz, 1H), 2.21 

(ddd, J = 10.2, 5.0, 1.3 Hz, 1H), 1.98 (ddt, J = 15.5, 5.5, 2.0 Hz, 1H), 1.87 (dddd, J = 15.4, 

12.4, 6.1, 2.2 Hz, 1H), 1.43 (d, J = 1.0 Hz, 1H), 1.37 (td, J = 12.9, 5.5 Hz, 1H), 1.02 (s, 
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4H), 1.00 (d, J = 1.0 Hz, 9H), 0.96 (d, J = 1.0 Hz, 9H), 0.84 (s, 3H), 0.16 (d, J = 2.8 Hz, 

6H). 

13C NMR (101 MHz, CDCl3): δ 85.9, 62.5, 61.8, 57.9, 43.4, 36.1, 30.6, 29.3, 28.7, 28.3, 

27.4, 26.1, 21.4, 18.7. 

FTIR (neat, cm-1): 3360, 2929, 2858, 2359, 1388, 1069, 906, 836, 730. 

HRMS (ESI-TOF, m/z): calc’d for C20H41O3Si [M+H]+: 357.2819; found: 357.2813. 

 

 

Epoxide 579 was prepared according to general procedure 2, using 578 (6 mg, 

0.017 mmol) as the substrate. The mixture was purified using preparative TLC (10% 

Et2O/hexanes) to provide 579 (3 mg, 89% NMR yield). 

Rf = 0.79 (silica gel, 20% EtOAc/Hex, UV). 

[α]D23 = –5.1° (c = 0.25, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 4.14 (dd, J = 10.6, 2.3 Hz, 1H), 3.53 – 3.42 (m, 1H), 2.96 

(t, J = 2.2 Hz, 1H), 2.83 (s, 1H), 2.10 (dt, J = 8.0, 1.8 Hz, 1H), 1.92 – 1.79 (m, 2H), 1.47 – 

1.40 (m, 3H), 0.99 (s, 3H), 0.97 (s, 9H), 0.92 (s, 3H), 0.90 – 0.81 (m, 2H), 0.16 (s, 9H), 

0.11 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 88.7, 62.9, 62.3, 58.5, 45.2, 36.0, 31.4, 29.7, 29.4, 28.0, 

27.6, 21.6, 1.0, 0.0. 

FTIR (NaCl, thin film, cm-1): 2922, 2362, 1382, 1035, 826, 810, 708, 683. 
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HRMS (ESI-TOF, m/z): calc’d for C20H43O3Si2 [M+H]+: 387.2745; found: 387.2746. 

 

 

 Epoxide 581 was prepared according to general procedure 1, using 573 (15 mg, 

0.05 mmol) and 546 (26.2 mg, 0.10 mmol, 2 equiv). The mixture was purified using silica 

gel (hexanes → 5% EtOAc/hexanes) to provide 581 (17 mg, 42% NMR yield of major 

diastereomer). 

Rf = 0.52 (silica gel, 20% Et2O/Hex, p-anisaldehyde). 

[α]D23 = +21.0° (c = 0.85, CHCl3). 

HRMS (ESI-TOF, m/z): calc’d for for C26H47O3Si [M+H]+: 435.3289; found: 435.3285. 

 

 

A 50 mL round-bottom flask was charged with 564 (380 mg, 1.43 mmol, 1 equiv). 

The flask was evacuated and backfilled with N2 three times and then DMF (7 mL) was 

added via syringe. To the reaction mixture was added TBAI (264 mg, 0.71 mmol, 0.5 

equiv) followed by Hünig’s base (1.5 mL, 8.57 mmol, 6 equiv). The reaction was cooled 

to 0 ºC, at which point MOMCl (325 µL, 4.29 mmol, 3 equiv) was added dropwise via 

syringe. The reaction stirred at 0 ºC for 15 minutes and was then warmed to room 
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temperature, where it stirred for an additional 16 hours, when TLC indicated that starting 

material had been consumed. The reaction was quenched with the addition of 1M NaOH 

(10 mL). The mixture was diluted with water (20 mL) and extracted with Et2O (3 x 20 mL). 

The combined organics were washed with 1M NaOH (50 mL), water (50 mL), and 

saturated NH4Cl (aq) (2 x 50 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (4% Et2O/hexanes → 5% Et2O/hexanes) to give 592 (408 mg, 90% yield) as a 

colorless oil. 

Rf = 0.74 (silica gel, 25% Et2O/Hex, UV and p-anisaldehyde). 

[α]D22 = +70.2° (c = 0.42, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 6.46 – 6.41 (m, 1H), 4.68 – 4.56 (m, 2H), 3.76 – 3.66 

(m, 2H), 3.39 (s, 3H), 2.14 – 2.04 (m, 3H), 1.70 (ddd, J = 13.2, 9.9, 7.2 Hz, 1H), 1.30 – 

1.20 (m, 1H), 1.04 (s, 3H), 1.01 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 139.2, 100.9, 96.8, 67.5, 56.9, 55.7, 34.5, 31.2, 28.2, 

27.6, 27.1. 

FTIR (NaCl, thin film, cm-1): 2923, 2878, 1629, 1460, 1387, 1317, 1250, 1210, 1150, 

1111, 1071, 1039, 962, 917. 

HRMS (ESI-TOF, m/z): calc’d for C11H19IO2 [M–H]+: 309.0352; found: 309.0362. 
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A 2-dram vial was charged with amido alcohol 599 (8 mg, 0.358 mmol, 1 equiv) 

and dissolved in wet acetonitrile (700 µL). To this solution was added Stahl solution (9 µL, 

containing 0.2M bpy, 0.04M ABNO, and 0.4M NMI in MeCN) followed by 

[Cu(MeCN)4]OTf (0.7 mg, 0.0018 mmol, 0.05 mol %). The solution was allowed to stir 

open to air for 30 minutes. The reaction mixture was diluted with water (1 mL) and EtOAc 

(1 mL). The aqueous layer was extracted with EtOAc (3 x 1 mL), and the combined 

organics were washed with brine (3 mL), with saturated NH4Cl (aq) (3 mL), and brine (3 

mL). The organic layer was filtered over a plug of Na2SO4, and the volatiles were removed 

in vacuo to provide 600 (4.5 mg, 72% yield). 

Rf = 0.68 (silica gel, 20% MeOH/CH2Cl2, I2 and p-anisaldehyde). 

[α]D22 = –14.7° (c = 0.42, CHCl3). 

1H NMR (400 MHz, CDCl3): δ 9.69 (d, J = 1.0 Hz, 1H), 4.94 – 4.89 (m, 1H), 4.89 – 4.85 

(m, 1H), 3.06 (d, J = 6.0 Hz, 7H), 2.84 – 2.70 (m, 2H), 2.70 – 2.59 (m, 2H), 2.13 (dtd, J = 

12.0, 5.9, 3.1 Hz, 2H), 1.79 – 1.64 (m, 2H), 1.64 – 1.42 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 203.4, 174.4, 152.8, 105.8, 53.1, 51.6, 41.7, 41.2, 39.8, 

37.8, 30.3, 19.0. 

FTIR (NaCl, thin film, cm-1): 3480, 3421, 3239, 2938, 2210, 1714, 1618, 1412, 1045, 

970, 878, 786, 660. 

HRMS (ESI-TOF, m/z): calc’d for C13H19NO2 [M+H]+: 222.1475; found: 222.1473. 

85% yield
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Allylic alcohol 601 was prepared according to general procedure 1, using 592 (22 

mg, 0.10 mmol, 1 equiv) and 600 (31 mg, 0.10 mmol, 1 equiv). The crude residue was 

purified using silica gel (30% EtOAc/hexanes → 50% EtOAc/hexanes) to provide 601 

(21.3 mg, 53% yield). Slow evaporation from hexanes enabled the preparation of crystals 

of quality that could be used for single crystal X-ray diffraction to establish connectivity 

(but not for publication). 

Rf = 0.29 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.90 – 5.73 (m, 1H), 4.85 (tt, J = 2.5, 1.0 Hz, 1H), 4.79 

(d, J = 1.8 Hz, 1H), 4.53 (d, J = 1.1 Hz, 2H), 4.24 (dt, J = 3.3, 1.6 Hz, 1H), 3.50 (dd, J = 

10.2, 5.7 Hz, 1H), 3.38 – 3.28 (m, 4H), 3.08 (s, 3H), 2.93 (s, 3H), 2.63 (m, 3H), 2.59 – 2.50 

(m, 1H), 2.10 – 1.99 (m, 2H), 1.89 – 1.77 (m, 4H), 1.76 (d, J = 5.8 Hz, 1H), 1.58 – 1.45 

(m, 2H), 1.28 – 1.12 (m, 2H), 0.97 (s, 3H), 0.80 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 176.4, 155.0, 141.0, 121.0, 104.3, 96.9, 73.4, 69.5, 55.7, 

55.3, 46.6, 42.5, 37.9, 31.9, 31.7, 31.2, 28.5, 26.8, 22.6, 17.1. 
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A 25 mL round-bottom flask was charged with allylic alcohol 601 (140 mg, 0.345 

mmol, 1 equiv), NaHCO3 (64 mg, 0.759 mmol, 2.2 equiv), and CH2Cl2 (6.8 mL) then 

cooled to 0 ºC. To the reaction mixture was added mCPBA (200 mg, 1.16 mmol, 1.2 equiv, 

99% mCPBA) in one portion. The reaction was allowed to stir at 0 ºC for 15 minutes, at 

which point TLC indicated that the starting material had been consumed. The reaction was 

quenched with saturated Na2S2O3 (aq) (15 mL). The biphasic mixture was diluted with water 

(5 mL) and CH2Cl2 (10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL), 

and the combined organics were washed with saturated Na2S2O3 (aq) (30 mL), saturated 

NaHCO3 (aq) (30 mL), and brine (30 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated in vacuo. The crude residue was purified by column chromatography 

using silica gel (20% EtOAc/hexanes → 60% EtOAc/hexanes) to give 602 (252 mg, 90% 

yield) as a colorless solid. 

Rf = 0.57 (silica gel, 80% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, DMSO-d6): δ 4.81 (s, 1H), 4.79 – 4.73 (m, 1H), 4.54 – 4.43 (m, 2H), 

4.23 – 4.12 (m, 1H), 3.65 (d, J = 3.3 Hz, 1H), 3.35 (s, 2H), 3.24 (s, 3H), 3.21 (s, 1H), 3.04 

(s, 3H), 2.79 (s, 3H), 2.71 (d, J = 17.3 Hz, 1H), 2.45 (d, J = 2.5 Hz, 1H), 2.41 (d, J = 2.6 

Hz, 1H), 2.18 (s, 1H), 2.14 (d, J = 6.5 Hz, 1H), 1.91 (tq, J = 6.2, 3.8, 3.1 Hz, 1H), 1.81 (dd, 
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J = 15.4, 5.6 Hz, 1H), 1.78 – 1.66 (m, 1H), 1.58 (tt, J = 12.9, 6.0 Hz, 3H), 1.50 (d, J = 5.3 

Hz, 2H), 1.33 – 1.25 (m, 2H), 0.83 (s, 6H). 

HRMS (ESI-TOF, m/z): calc’d for C24H43N2O5 [M+NH4]+: 439.3166; found: 439.3185. 

 

 

Epoxide 603 was prepared according to general procedure 2, using 602 (90 mg, 

0.213 mmol) as the substrate. The mixture was purified using silica gel (10% 

EtOAc/Hexanes → 30% EtOAc/hexanes) to provide 603 (79.1 mg, 75% yield). 

 

General Procedure 4: Lewis acid Screen 

 An oven-dried 1-dram vial was pumped into the glove box and charged with a 

Lewis acid (3 equiv). The vial was sealed and removed from the glovebox, then CH2Cl2 

(100 µL) was added. The vial was cooled to 0 ºC and 603 (0.01 mmol) was added as a 

solution in CH2Cl2 (100 µL). After two hours, the mixture was filtered over a pad of silica 

gel eluting with 20% EtOAc/Hexanes (10 mL). The volatiles were removed in vacuo and 

analyzed by TLC and NMR. 
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 A 2-dram vial was charged with alcohol 601 (25 mg, 0.0616 mmol, 1 equiv) 

and then NaOH (37 mg, 0.925 mmol, 15 equiv). EtOH (600 µL) was then added and the 

vial was sealed with a Teflon cap. The mixture was heated to 130 ºC and stirred for 10 

minutes. The vial was removed from the heating block and cooled to room temperature. 

1M HCl was added (1.2 mL) and the reaction stirred for 1 hour. The mixture was then 

diluted with water (1 mL) and extracted with EtOAc (5 x 2 mL). The combined organics 

were filtered over a SiO2 plug and the volatiles removed in vacuo. The crude residue was 

Me
Me
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H

HO
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purified by column chromatography using silica gel (5% EtOAc/hexanes → 25% 

EtOAc/hexanes) to give 605 (10.7 mg, 48% yield) as a colorless solid. 

Rf = 0.69 (silica gel, 80% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 5.79 – 5.71 (m, 1H), 5.26 (d, J = 9.6 Hz, 1H), 5.00 (q, J = 

3.6, 2.4 Hz, 1H), 4.83 (s, 1H), 4.63 – 4.52 (m, 2H), 3.67 (dd, J = 10.4, 4.4 Hz, 1H), 3.52 – 

3.43 (m, 1H), 3.36 (s, 3H), 2.80 (dt, J = 16.1, 2.9 Hz, 1H), 2.73 (dd, J = 9.1, 4.5 Hz, 1H), 

2.51 (td, J = 10.6, 7.4 Hz, 1H), 2.28 (d, J = 14.0 Hz, 1H), 2.18 – 2.01 (m, 2H), 1.79 (d, J = 

5.0 Hz, 1H), 1.73 (dd, J = 11.2, 2.6 Hz, 1H), 1.68 (dd, J = 11.2, 4.6 Hz, 1H), 1.49 (dddt, J 

= 13.5, 9.5, 6.3, 3.3 Hz, 3H), 1.39 – 1.30 (m, 1H), 1.21 (t, J = 7.0 Hz, 1H), 0.99 (s, 3H), 

0.95 (s, 3H), 0.91 – 0.85 (m, 1H). 

 

 

A 2-dram vial was charged directly with lactone 605 (10 mg, 0.027 mmol, 1 equiv). 

The vial was evacuated and backfilled with N2 3 times. THF (270 µL) was added to the 

vial, then the reaction mixture was cooled to 0 ºC. A solution of LiAlH4 (110 µL, 0.11 

mmol, 1M in THF, 4 equiv) was then added to the vial, and the reaction was allowed to stir 

for 20 minutes at this temperature. The reaction was quenched with 1M HCl (500 µL). The 

aqueous layer was extracted with EtOAc (3 x 1 mL) and the combined organics were 

filtered over a plug of Na2SO4. The volatiles were removed in vacuo, and the crude residue 
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was purified by column chromatography using silica gel (20% EtOAc/hexanes → 30% 

EtOAc/hexanes) to give 606 (7.3 mg, 72% yield) as a colorless oil. 

Rf = 0.29 (silica gel, 30% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.78 (td, J = 3.7, 1.4 Hz, 1H), 4.83 (ddt, J = 3.1, 2.3, 1.1 

Hz, 1H), 4.78 (qd, J = 1.9, 1.0 Hz, 1H), 4.74 (s, 1H), 4.64 (d, J = 6.6 Hz, 1H), 4.59 (d, J = 

6.6 Hz, 1H), 4.11 – 4.01 (m, 1H), 3.76 (dd, J = 9.9, 4.2 Hz, 1H), 3.41 (dd, J = 9.9, 5.8 Hz, 

1H), 3.36 (s, 4H), 2.75 (t, J = 6.4 Hz, 1H), 2.67 (d, J = 4.9 Hz, 1H), 2.43 (dq, J = 17.0, 2.3 

Hz, 1H), 2.28 (dt, J = 17.0, 2.7 Hz, 1H), 2.08 (ddd, J = 17.2, 8.7, 5.7 Hz, 3H), 1.88 – 1.75 

(m, 3H), 1.60 (q, J = 5.9 Hz, 3H), 1.52 – 1.35 (m, 3H), 0.99 (s, 3H), 0.84 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 156.3, 142.8, 119.8, 103.5, 96.5, 72.7, 70.9, 69.4, 55.7, 

48.1, 45.7, 45.0, 43.3, 39.4, 36.2, 33.5, 31.9, 31.5, 28.4, 26.7, 22.8, 16.9. 

HRMS (ESI-TOF, m/z): calc’d for C22H36NaO4 [M+Na]+: 387.2506; found: 387.2524 

 

 

A 2-dram vial was charged with allylic alcohol 606 (10 mg, 0.0275 mmol, 1 equiv), 

NaHCO3 (5 mg, 0.0604 mmol, 2.2 equiv), and CH2Cl2 (275 µL) then cooled to 0 ºC. To 

the reaction mixture was added mCPBA (5.2 mg, 0.0302 mmol, 1.1 equiv, 99% mCPBA) 

in one portion. The reaction was allowed to stir at 0 ºC for 30 minutes, at which point TLC 

indicated that the starting material had been consumed. The reaction was quenched with 
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saturated Na2S2O3 (aq) (1 mL). The biphasic mixture was diluted with water (1 mL) and 

CH2Cl2 (1 mL). The aqueous phase was extracted with CH2Cl2 (3 x 1 mL), and the 

combined organics were washed with saturated Na2S2O3 (aq) (3 mL), saturated NaHCO3 (aq) 

(3 mL), and brine (3 mL). The organic layer was filtered over a Na2SO4 plug and 

concentrated in vacuo. The crude residue was purified by column chromatography using 

silica gel (20% EtOAc/hexanes → 50% EtOAc/hexanes) to give 608 (5.1 mg, 49% yield) 

as a colorless solid. 

Rf = 0.62 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 4.83 (tt, J = 3.0, 2.3, 1.0 Hz, 1H), 4.78 (d, J = 2.1 Hz, 1H), 

4.66 (d, J = 6.5 Hz, 1H), 4.61 (d, J = 6.5 Hz, 1H), 4.36 (s, 1H), 4.02 (d, J = 11.6 Hz, 1H), 

3.68 – 3.61 (m, 2H), 3.56 (d, J = 2.1 Hz, 1H), 3.38 (s, 3H), 3.35 (d, J = 11.6 Hz, 1H), 2.64 

(q, J = 4.1 Hz, 1H), 2.44 (dq, J = 17.1, 2.4 Hz, 1H), 2.34 – 2.23 (m, 1H), 2.13 (s, 1H), 2.09 

– 1.94 (m, 4H), 1.92 – 1.79 (m, 1H), 1.65 – 1.54 (m, 2H), 0.88 (s, 6H). 

13C NMR (101 MHz, CDCl3): δ 156.3, 103.5, 96.7, 70.0, 69.3, 67.1, 64.1, 55.8, 55.6, 48.1, 

44.6, 43.3, 42.1, 37.6, 35.8, 33.1, 30.4, 29.9, 28.9, 27.7, 27.7, 21.3, 19.2. 

HRMS (ESI-TOF, m/z): calc’d for C22H40NO5 [M+H]+: 398.2901; found: 398.2896. 
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Epoxide 609 was prepared according to general procedure 2, using 608 (10 mg, 

0.026 mmol) as the substrate. The mixture was purified using silica gel (2% Et2O/hexanes 

→ 10% Et2O/hexanes) to provide 609 (10.3 mg, 75% yield). 

Rf = 0.71 (silica gel, 20% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 4.80 (s, 1H), 4.75 (s, 1H), 4.66 – 4.56 (m, 2H), 4.38 (s, 

1H), 3.83 (d, J = 10.1 Hz, 1H), 3.59 – 3.50 (m, 2H), 3.37 (s, 3H), 3.30 (d, J = 2.7 Hz, 2H), 

2.62 (s, 1H), 2.27 – 2.19 (m, 2H), 2.06 – 1.97 (m, 2H), 1.95 – 1.87 (m, 2H), 1.84 (dd, J = 

10.5, 2.0 Hz, 1H), 1.76 (tdd, J = 15.0, 6.1, 2.1 Hz, 1H), 1.62 – 1.55 (m, 2H), 1.50 (tt, J = 

13.4, 6.5 Hz, 1H), 1.43 – 1.31 (m, 2H), 1.12 (dd, J = 10.9, 5.3 Hz, 1H), 0.84 (d, J = 5.2 Hz, 

6H). 

13C NMR (101 MHz, CDCl3): δ 156.7, 102.9, 97.0, 71.5, 68.4, 67.3, 63.1, 55.4, 52.9, 47.9, 

44.5, 43.9, 41.4, 38.6, 34.6, 33.0, 30.5, 30.3, 29.9, 28.5, 28.2, 27.2, 21.4, 19.4, 1.2, –0.4. 

HRMS (ESI-TOF, m/z): calc’d for C28H52O5Si2 [M+H]+: 525.3426; found: 525.3402. 

 

 

A 25 mL round-bottom flask was charged directly with lactone 597 (100 mg, 0.561 

mmol, 1 equiv). The flask was evacuated and backfilled with N2 3 times. THF (5.6 mL) 

was added to the flask, then the reaction mixture was cooled to 0 ºC. A solution of LiAlH4 

(2.25 mL, 2.24 mmol, 1M in THF, 4 equiv) was then added to the flask, and the reaction 
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was allowed to stir for 20 minutes at this temperature. The reaction was quenched with 1M 

HCl (2 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined 

organics were filtered over a plug of Na2SO4. The volatiles were removed in vacuo to give 

610 (85.1 mg, 83% yield) as a colorless oil. 

Rf = 0.12 (silica gel, 50% EtOAc/Hex, p-anisaldehyde). 

1H NMR (600 MHz, CDCl3): δ 4.85 (ddt, J = 3.2, 2.2, 1.0 Hz, 1H), 4.80 (d, J = 2.2 Hz, 

1H), 4.00 (dd, J = 10.9, 8.5 Hz, 1H), 3.68 (d, J = 11.3 Hz, 1H), 3.58 (dd, J = 10.9, 4.2 Hz, 

1H), 3.52 (d, J = 11.3 Hz, 1H), 2.75 (s, 1H), 2.66 (d, J = 5.3 Hz, 1H), 2.44 (s, 1H), 2.37 

(dt, J = 17.1, 2.4 Hz, 1H), 2.16 (dt, J = 16.9, 2.7 Hz, 1H), 1.92 – 1.75 (m, 3H), 1.65 – 1.51 

(m, 2H), 1.35 – 1.27 (m, 2H). 
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