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ABSTRACT

To understand the night sky is to understand how galaxies form their stars. Cos-
mological zoom-in simulations, which self-consistently evolve a small number of
galaxies at very high resolution by embedding them within a fully cosmological
box, have evolved over the last 25 years to a level of realism where they can begin
to tackle questions of spatially resolved star formation within galaxies. Whereas a
decade ago simulations faced difficulty in matching even global properties of ob-
served galaxies (e.g., the ratio of stellar mass to total halo mass), the state of the
art is now able to meaningfully recover resolved quantities in galaxies that were not
put into the simulations by hand (e.g., the Kennicutt-Schmidt star formation scaling
relation).

The research presented in this thesis seeks to understand how the physics of star
formation and stellar feedback from massive stars shape and regulate the interstellar
medium (ISM) within galaxies. Particularly, the focus lies on the scale of the largest
coherent structures in galaxies–the disk scale height. To explore these physics,
the cosmological zoom-in simulations of the Feedback in Realistic Environments
(FIRE) project (Hopkins, Kereš, et al., 2014; Hopkins, Wetzel, et al., 2018) are
used.

The chapters of this thesis explore various topics in spatially resolved star formation,
including: the Kennicutt-Schmidt relation (Schmidt, 1959; Kennicutt, 1998), an
empirical relation between gas surface density and star formation rates, in the FIRE-
1 simulations (Orr, Hayward, Hopkins, et al., 2018), including an examination what
set the extent of the star-forming disks in the simulations (i.e., what causes star
formation to fire up in the outskirts); an examination of the observational method of
analyzing stacks of galaxy observations, finding that temporal variations in spatially
resolved star formation rates within individual galaxies were more than enough to
bias stacking analysis of star formation rate profiles; a semi-analytic model of non-
equilibrium star formation rates, relating to the competition between the feedback
timescale associated with star formation and local dynamical times (Orr, Hayward,
and Hopkins, 2019), which explores this as a source of scatter in the Kennicutt-
Schmidt relation; and finally, investigating how gas velocity dispersions and star
formation rates relate in FIRE-2 Milky Way-mass disk galaxies, exploring whether
or not feedback is primarily driving the velocity dispersions in galaxies, and how
quickly local patches can self-regulate with star formation (Orr et al. in prep.).
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FORWARD

At the end of graduate school, I have found that it was a rather circuitous route to get
here. It was not a given that I would become a theoretical astrophysicist in the least.
Had I been asked what I was going to be in the Fall of 2010, my response would
be been, without hesitation, a “Rocket Scientist”. Over the ensuing decade, I kept
the scientist part, but moved in half-steps from the practical, albeit highly esoteric,
work of astronautical engineering towards astrophysics. This thesis represents the
culmination of that journey from engineer to scientist. I think, however, that the
reader would enjoy knowing the fall from grace, required to make a theorist, that
took place.

Arriving at the University of Southern California (USC) for college, a whole twenty-
five-minute drive away from home in leafy La Cañada Flintridge, California, I was
excited to study astronautical engineering. There was not a tremendous amount of
thought that had gone into the decision. I feel now that I had inexorably fell into
it- after all, I had grown up with countless friends whose parents had calculated
launch windows for Mars probes or designed high-gain antennas for deep space
missions, visited Caltech’s NASA Jet Propulsions Laboratory (JPL) on what were
effectively annual school-sponsored scientific pilgrimages, and somehow had gotten
to building air-pressurized water rockets from parts cobbled together from soda
bottles and OSH/Harbor Freight tools. Rockets were cool, space was captivating,
and of course I was going to major in astronautics.

I was not a great student in high school. But I did enjoy my science and math
classes. My chemistry and physics classes were the most interesting. I had taken
well to learning that the world had rules, and by following them you could build
neat things. Reflecting back on it, I am surprised that I did not fall in with the kids
in the robotics club, jumpstarting my whole arc through engineering. I was more
interested in hanging out with my friends, playing videogames, hosting frequent
LAN parties, and generally just being a teenager. It was probably better for me.

In college, however, I was a great student, at least by my standards. I just loved
my first couple of courses, especially ASTE101 with Dr. Anthony Pancotti. I
was calculating orbits for imaginary missions to Ganymede, learning about rocket
staging and the different kinds of rocket motors. That class lit a fire under me that
had not been there before. I got my first job with Dr. Pancotti, working for the
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Air Force Research Labs’ Collaborative High Altitude Flow Facility (CHAFF) on
campus in the Rapp Research Building (RRB). It would be my first experience with
research, and arguably the most important. I spent three years there, with (the future
Dr.) MatthewGilpin, trying to melt Boron with the Sun and develop far-out in-space
propulsion concepts. I do not think any other person, or experience, went so far to
convince me that research was what I wanted to do in life.

During this time, I fell into the USC Rocket Propulsion Lab (RPL)1 also housed in
RRB. Though CHAFF may have shaped me into a researcher, “rocket lab” gave me
a family at college in people like Julia Levy and Turner Topping, and taught me that
I could build anything I wanted, provided that there was some scrap material lying
around, and the lathe and mill were powered. Under Bill Murray (III) and Alec
Leverette, the first two years of USC were a whirlwind of trips to the deserts near
and far, late nights getting things unstuck or laid-up, and seeing some incredible
flight vehicles go up2. Though I would leave rocket lab in my junior year, the friends
I made and the things I learned would stick with me for the rest of college, and my
life.

Sophomore and junior years, I had decided that my technical electives for astro-
nautical engineering would be astronomy courses. I had taken the honors series of
freshman physics courses with Dr. Gene Bickers, who had really opened my eyes
to how enjoyable and varied the topics of physics could be. So, going through a
course on the solar system, and one on astrophysics, I was hooked. I got mixed up
doing helioseismology work with Dr. Ed Rhodes at the Mt. Wilson Observatory
(the 60’ solar tower), and that was really the first astronomy work that I did. I spent
the summer between my sophomore and junior years variously in CHAFF and up
Mt. Wilson. On the mountain, I was learning Bash, running the dome and its
instruments, and taking long naps.

Around this time, I had begun to lose faith in the idea that I wanted a job in aerospace.
My friends from rocket lab were graduating, and the jobs they got terrified me. My
friends had to know their stuff day in and day out, and not fly by the seat of their
pants from one project to the next like I had been doing in CHAFF and at Mt.
Wilson. But I was not quite ready to abandon engineering altogether. I had it in my
mind that I needed a “practical degree”. And so, instead of going for astronomy, I
took the half-step to physics (with an astronomy minor).

1This name was indeed a joke on NASA’s JPL, since the founding students had thought that the
“Jet” part was a bit disingenuous.

2A few even came down on parachutes.
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Late in my junior year at USC, I realized that it was rather hard to get a degree in
both engineering and physics at the same time in four years. After much agonizing,
but with my father’s encouragement, I dropped my astronautics degree3: I was
committed. I wanted to go to graduate school in physics, or maybe astronomy.

The next summer, I got an internship at JPL, with Drs. Paul Goldsmith and Jorge
Pineda studying the Taurus molecular cloud. I learned more physics of the inter-
stellar medium that summer than I ever have since. It also required me to actually
learn how to code, and write a scientific paper4. I got to walk the lab in thought, and
watch second-string rovers practice on dusty mounds of rock in the Arroyo Seco. It
was just great for someone dipping their toes into theory research.

Returning to campus in my last year of undergrad, I somehow convinced myself
that though I loved physics, especially astrophysics, I needed to do something
“practical”. So I threw myself at nanophotonics. Sure that this was what I was
going to do in graduate school, I took an EE course on the subject, wrote up an
NSF graduate fellowship proposal on it, and applied to every graduate school as an
applied physicist. I had never set foot in a nanophotonics lab, much less an optics
lab. Much to my surprise, I got into Caltech’s Applied Physics graduate program
amongst other schools.

All the prospective graduate school visits during my senior spring term excited me
to no end. Though I look back increasingly fondly on my time at USC now, in the
moment I was very happy to be ‘called up to the majors’ in terms of the schools I
was considering for my Ph.D. After much debate with my partner at the time, we
settled on going to Caltech together for our Ph.Ds.

Graduating USC that May, with an NSF Graduate Research Fellowship in hand (for
a proposed nanophotonics project), and headed up the 110 to Pasadena in the fall,
I was on top of the world. After graduation, we headed off on a family trip, which
would then become a trip with friends, across Northern and Central Europe. Two
weeks into the adventure, I said farewell to my family in Copenhagen. I also said
goodbye to my father for the last time, but I did not know it then. As we landed in
Boston for the last leg of the trip, a weeklong visit in Rhode Island, I learned that
my father had unexpectedly passed away during the night while I was in the air.

3With all my newfound time, I took a table tennis course, and a ballroom dance class with my
college girlfriend.

4Though it took the rest of my senior year, and a bit into the beginning of graduate school, a
paper did eventually come of it: Orr, Pineda, et al. (2014).
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The fallout would cover much of the first two years of graduate school. Arriving at
Caltech that fall, I found myself in misery. The light that I had from undergrad was
snuffed out, and I struggled through courses. My relationship fell apart. On top of
all this, I realized that I truly hated cleanrooms. They are cold, inhospitably dry,
without Wi-Fi or cell service several floors underground, and have the most awful
spectrum of yellow lights. This meant, amongst other things, that nanophotonics
was not for me. I was adrift in the sea of graduate school.

With some encouragement, I reached out to my old mentors at JPL, inquiring if they
knew anyone down on campus that was doing astronomy. It just so happened that
Dr. Pineda was co-leading a Keck Institute for Space Sciences (KISS) workshop
on “Bridging the Gap: Observations and Theory of Star Formation Meet on Large
and Small Scales” the next month. Jorge invited me to come to the whiskey hour at
the workshop, and meet the people attending. There, I first met my Ph.D. advisor,
Dr. Philip F. Hopkins, whom I later reached out to so as to arrange a chat about his
research; and of course, whether or not I could do a small project with him.

In the coming weeks andmonths, that small project becamemy study of the spatially
resolved Kennicutt-Schmidt relation in the FIRE (Feedback in Realistic Environ-
ments) simulations, which would take up a large fraction of the early years of
graduate school (Orr, Hayward, et al., 2018). Slowly, I dragged my way back to
a healthy mindset. In fits and starts5, I learned more about the simulations, how
to work with them, and how to run them. I even switched from applied physics to
physics, mostly symbolically, but with the (false) hope that it would save me taking
a few courses. I embraced being a theorist, with only small fits of rebellion: I got
certified in the machine shop, which I maintain makes me the first theorist in physics
in a very long time to do so, and took up fine woodworking.

The rest of this thesis tells the story from there of the burgeoning theorist, who was
once an engineer and still a bit of one at heart.

Matthew Orr May 2019
Caltech, Pasadena, CA

5One of the first times that I brought a plot to Phil, he just asked, “what did you make this with?”
I had made it using Matlab, and it was just so ugly that he could not focus on anything remotely
scientific about the figure. He implored me to try using Python to plot things.
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C h a p t e r 1

INTRODUCTION

The Big Picture: Galaxies and Their Cosmological Context
Across the vast majority of the history of the Universe, gravity has been the dom-
inant force. That hegemony began during the Dark Age of the Universe, between
decoupling approximately 400,000 years after the Big Bang, which gave us the Cos-
mic Microwave Background, and the time of the first stars, around 400 Myr into the
history of the Universe (Abel et al., 1998; Bromm et al., 1999). Recent observations
suggest that we may indeed be living through interesting times (Riess, Filippenko,
et al., 1998): the presumed largest energy component of the Universe, the source of
which remains a theoretical mystery, Dark Energy, is now taking the mantle from
gravity, causing the expansion of the Universe to accelerate, rather than continue to
slow. Gravity held the crown for about 13.3 Gyr.

In this time, gravity worked towards a singular purpose: collapsing structures on
scales large and small, amplifying the initial density perturbations of the Universe
handed down shortly after the Big Bang. This is a hierarchical process, where
the largest structures begin to collapse first, with structures within them beginning
to condense thereafter in a nested fashion. And so, a knotted web of (dark and
baryonic1) matter begins to collapse initially (Abel et al., 1998). From those cos-
mological scales, gas and dark matter is drawn into the densest regions. These are
the seeds of galaxies, that grow through cosmic time as gas and dark matter fall
into them, and gas is processed into stars (Silk, 1983; Bromm et al., 1999; Schaye
et al., 2015). Figure 1.1 shows a slice of a large-box simulation, in which galaxies
have formed and evolved in the filamentary matter overdensities in line with this
framework of hierarchical structure formation. Through the 1970s, much of our
understanding of galaxy evolution and populations stopped with the formation of
structure in the Universe, with a failure to understand why the galaxy mass function
today failed to match the self-similar solution of hierarchical collapse (Press et al.,
1974).

The fields of galaxy formation and evolution have experienced a renaissance in
1In astronomical contexts, baryonic matter encompasses not only the High Energy physicist’s

baryons (composite particles, e.g., protons and neutrons) but also all the other particles of the
Standard Model including leptons, cf., the astronomer’s definition of “metals”.
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Figure 1.1: A 100Mpc× 100Mpc× 20Mpc slice of a large-box simulation, showing
the filamentary structure of the Universe at z = 0. Color hues and intensities encode
gas temperature and density (red–hotter, blue–cooler). Insets show a 10Mpc region,
and a nested 60 kpc region, in which a 1010 M� stellar mass galaxy has formed.
Overdensities in the volume are the sites of galaxies, with gas inflows and mergers
growing them in time. Figure taken from Schaye et al. (2015, their Figure 1).
Reproduced with permission of MNRAS.
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the last two decades, as cosmologists pinned down the geometry and relative com-
position of the Universe following the careful work of the Wilkinson Microwave
AnisotropyProbe andPlanck satellitemissions, combinedwithwork on the distance-
redshift relation from Type Ia SNe, abundances and clustering of galaxies (e.g.,
baryon acoustic oscillations), and constraints on the present expansion rate of the
Universe (Hubble parameter H0) (Hinshaw et al., 2013; Planck Collaboration et al.,
2016; Riess, Macri, et al., 2016). The remaining uncertainties in the fundamental
cosmological parameters, for the purposes of understanding galaxy formation and
evolution, are largely inconsequential.

Baryons Don’t Just Sit There: Physics in Galaxies
Considering the whole volume of the Universe, gravity has ruled supreme on-
average. There are and have always been, however, pockets of resistance. Baryonic
matter fought back, and as in the cases of supernovae, sometimes quite vigorously.

So, in order to understand the process of galaxy evolution on smaller scales than the
cosmological web, we need to follow the hierarchical collapse of dark matter and
baryons down to scales within galaxies. Here, gravity is not the only force involved,
and baryonic processes can greatly affect the dynamics of matter. Within galaxies,
physical mechanisms like photoionizing radiation, winds, and supernovae (together
broadly known as feedback), the majority of which are associated with recently
formed, massive stars, fight gravitational collapse on length-scales of kiloparsecs,
e.g., spiral arm scales, down to less than a parsec, e.g., clumps within molecular
cloud complexes (Silk, 1997; Matzner, 2002; Shetty and Ostriker, 2008; Faucher-
Giguère et al., 2013; Stinson et al., 2013; Hopkins, Kereš, et al., 2014). This
involves a tremendous bridging of scales, from the largest coherent structures inside
of galaxies down to the photospheres massive stars providing the feedback, and
poses challenges to even the most imaginative theorist or competent numericist in
addressing with theory or simulations (Somerville et al., 2015).

Fundamentally, understanding how galaxies evolve in our Universe, beyond the
hierarchical collapse out of the cosmic web, reduces to the questions: How does
star formation proceed in galaxies, and what are the effects of star formation on
galaxies?

Sweating the Small Stuff: Grid-Scale Baryonic Physics in Simulations
Large-volume cosmological galaxy simulations, like Illustris or EAGLE (Vogels-
berger et al., 2014; Schaye et al., 2015; Pillepich et al., 2018), whose primary goal
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is to match population statistics of galaxies and cosmological structure on 100 Mpc
scales, necessarily treat the complex baryonic physics of galaxies at the grid scale,
in their cases, a few kiloparsecs. For dwarf galaxies, and galaxies at high redshift,
in which all of the star formation essentially occurs in a single star-forming region,
treating star formation as a single kpc-scale black/closed box is fairly successful at
predicting star formation histories and chemical abundances (Romano et al., 2013,
Escala et al. in prep.). All simulations ultimately require there to be rules applied at
the resolution scale, that account for the physics being simulated. These rules either
parameterize our ignorance through fudge factors, or use fits to the results of simu-
lations conducted on yet smaller scales. In these simulations, they tune their galaxy
physics to match galaxy-scale observations of things like Kennicutt-Schmidt or the
stellar mass–halo mass relations. The fudge factors in the large-box simulations
treat galaxies as black boxes that take in cosmological gas inflows, and appropri-
ately process it into a mass of stars and outflows. They can say very little about the
internal structure of galaxies themselves below a few kiloparsecs, or anything about
the process of star formation in molecular clouds.

Cosmological zoom-in simulations are situated between the large-box simulations
that attempt to model a non-negligible fraction of a Hubble volume, and ultra-high-
resolution simulations of individual star-forming clouds or single stars. In a real
sense, theywere amissing link between the scales atwhichmuch of the consequential
physics in the interstellar medium (ISM) occurs and cosmological scales. Zoom-
in simulations take a mid-sized cosmological volume (a few dozen Mpc) that is
run with only dark matter (so called DMO, Dark Matter Only, simulations), in
which a desired dark matter halo forms, e.g., a 1012 M�-massed halo in which a
Milky Way-like galaxy is likely to form. Once such a halo is found, the simulation
is then reset to an early time in the Universe (say, z ≈ 30), and populated with
baryonic matter at high resolution in the region (with a little breathing room) that
will collapse into that galaxy by z = 0. And so, these simulations are able to implant
highly resolved galaxies in their cosmological contexts to produce realistic artificial
galaxies (Hopkins, Kereš, et al., 2014; Wetzel et al., 2016; Hopkins, Wetzel, et al.,
2018). Zoom-in simulations are thus able to take the results of yet-more-highly
resolved simulations as rules at the resolution scale. For the FIRE-2 Milky Way
mass simulations, this scale is adaptive with the local gas density, but the minimum
force softening is now sub-parsec (Hopkins, Wetzel, et al., 2018). And their results
on kiloparsec-scales, can be taken to inform and calibrate the large-box simulations.
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Questions That Keep You (Me) Up at Night About Star Formation
My research, during the course of my graduate studies, has focused on aspects of
star formation processes and their effects within galaxies, on kiloparsec (kpc) scales.
Several questions have arisen repeatedly in each of my published, and in progress,
works. In one form or another, they have been:

1. How does the local rate of star formation scale with the local properties of the
ISM within galaxies?

2. To what extent is star formation an active process versus a passive one, i.e.,
does star formation drive or regulate itself, and the ISM writ large, or is it
primarily subject to the whims of galaxy structure and ISM dynamics.

3. On what length- and timescales is it appropriate to ask these questions? On
kiloparsec-scales the ISM has turbulent momentum and an average density
which may inform, be affected by, or drive star formation on the timescale of
galactic dynamical times, but down at the parsec scale things are different.
Stellar evolution and the properties of the ISMmatter only in the direct vicinity
of individual (or a few) stars. Scaling relations like Kennicutt-Schmidt are
simply not well defined on that spatial scale, or over timescales much shorter
than a galactic dynamical time.

These questions rake at the mystery of star formation in galaxies from several
directions: the empirical question of simply, what does star formation scale with;
questions of causality, what can or ought to be considered driving the evolution of
galaxies; and semantic arguments relating to what meaning star formation scaling
relations can be held to have under which circumstances (e.g., what is the efficiency
of star formation?).

This last question is particularly vexing, as observers rarely, perhaps only in the
star-forming regions in the nearest dwarf companions to the Milky Way, count up
young stellar objects to get star formation rates (SFRs). They measure fluxes in
different wavelength bands. These fluxes are then connected, through a chain of
reasoning with a sturdy physical basis, to the properties of the unresolved stellar
populations within spatially resolved regions of galaxies. And from this, an estimate
for the mass of young stars present (which, owing to their short lifetimes, must have
formed recently). So there is an inference of what UV flux (or Hα, 24 µm, radio
flux, etc.) in a kpc-sized pixel corresponds to what mass of young stars and thus star
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formation rates. But again, the issue often at hand is the fact that observers measure
something that is correlated with star formation, but not star formation itself; and
so, the door is open to ask when do those fluxes not mean what an astronomer thinks
they mean.

The issue of connecting what is observable, fluxes from the far reaches of the
Universe, with the “ground truths” of the conditions within galaxies, is not reserved
solely to star formation rates. The issues calibrating star formation rate tracers are
nearly one and the same with those calibrating tracers of dense2 gas in galaxies.

A theorist, however, has a perfect model universe. Galaxies are well defined. Star
formation rates are the rate at which stars form. And dense gasmasses are the amount
of gas of at least some density in a galaxy. We have no Humean3 uncertainty in our
knowledge of our models or simulations. Moreover, simultaneous ‘observations’ of
both the gaseous and stellar components of galaxies are easy4.

The Kennicutt-Schmidt (or is it Schmidt-Kennicutt?) Relation
At least since the work of Schmidt (1959), but definitely since that of Kennicutt
(1989), astronomers and astrophysicists have framed much of the star formation
process in galaxies, i.e., on scales > 100 pc, as having something to do with the
Kennicutt-Schmidt (KS, or Schmidt-Kennicutt, SK) relation (Bigiel et al., 2008;
Leroy, Walter, Brinks, et al., 2008; Dib, 2011; Ostriker et al., 2011; Faucher-
Giguère et al., 2013; Leroy, Walter, Sandstrom, et al., 2013; Shetty, Kelly, et al.,
2014; Orr, Hayward, Hopkins, et al., 2018, among others). The Kennicutt-Schmidt
relation is just the relationship between the surface density in dust and gas in a
galaxy, and the surface density of star formation. Canonically, it was found by
Kennicutt (1998) to have a scaling of Σ̇? ∝ Σ1.4gas (see Figure 1.2). The exponent
of this power law, and any other dependencies on galaxy quantities like metallicity,
gas fraction, etc., depend to varying extents on the tracers compared between the
gas surface densities, e.g., only molecular vs. atomic hydrogen, and star formation
rates, e.g., Hα vs. UV fluxes, each having different averaging timescales (Bigiel
et al., 2008; Leroy, Walter, Sandstrom, et al., 2013; Dib, Hony, et al., 2017; Orr,
Hayward, Hopkins, et al., 2018).

2Dense, here, is quite diffuse in human terms. Throughout this thesis, dense gas is taken often
to encompass any gas denser than nH = 1 cm−3 (atoms of Hydrogen per cubic centimeter).

3David Hume (1711–1776), Scottish philosopher, economist, and historian. A Treatise of Human
Nature (1739–1740).

4As long as you have included both in your model or simulation.
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Figure 1.2: Kennicutt-Schmidt relation between star-formation-rate (SFR) surface
densities and total (atomic and molecular) gas surface densities for various sets of
measurements (from Bigiel et al. 2008). Regions colored gray, green, yellow, and
red show the distribution of values from measurements of subregions of SINGS
galaxies. Other points represent a variety of star formation profiles and integrated
galaxy observations from the labelled references. The three dotted gray diagonal
lines extending from lower left to upper right reflect a constant global star forma-
tion efficiency. Figure taken from Kennicutt and Evans (2012). Reproduced with
permission of Annual Reviews.
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Figure 1.3: Observers and theorists often refer to different things when discussing
velocity dispersions. Observers (left panel) talk of linewidths in gas emission or
absorption lines, then connected to conditions in the gas, whereas theorists (right
panel) think of Gaussian velocity dispersions and gas scale heights in galaxies or
clouds directly. Left panel figure taken from Orr, Pineda, et al. (2014). Reproduced
with permission.

As a scaffold for understanding, and defining, star formation processes in galaxies,
the Kennicutt-Schmidt relation has helped astronomers address many aspects of star
formation in galaxies and continues to be an intense area of research, though these
days primarily beyond the first order, comparing the subdominant dependences
of, e.g., metallicity, gas fraction, etc., on the star formation rate (Leroy, Walter,
Sandstrom, et al., 2013; Orr, Hayward, Hopkins, et al., 2018; Gallagher et al.,
2018). Understandably, all of the proceeding chapters of this thesis relate to the
Kennicutt-Schmidt relation in some way or another.

Linewidths, Velocity Dispersions, and Turbulence, Oh My!
Observers and theorists often run in different circles. Unsurprisingly, their vocabu-
laries can be slightly different. When discussing velocity dispersions, observers are
often speaking in terms of linewidths of gas emission or absorption lines like, e.g.,
the CO J = 1 → 0 or the CII 2P3/2 →

2 P1/2 transitions (e.g., Combes et al., 1997;
Bolatto, Leroy, et al., 2008; Goldsmith et al., 2008; Pineda et al., 2010; Wilson et al.,
2011). In this case, line broadening effects, beyond intrinsic linewidths, arise from
thermal or dynamical properties of the gas along the line of sight that is emitting or
absorbing light from that atomic or molecular transition. From this, observers infer
the properties of the gas components of interest. The caveat here is that observations
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are only on solid ground when talking about the thermal or dynamical state of that
particular component of the ISM, which corresponds to that emission/absorption
line. Theorists, on the other hand, often think directly of the dynamical structure
of the gas, i.e., the true velocity dispersions of particles in a 1-D or 3-D sense
(e.g., Toomre, 1964; Dib, Bell, et al., 2006; Krumholz et al., 2016; Orr, Hayward,
and Hopkins, 2019). And often, careful modeling of which components would be
emitting or absorbing at particular transitions is not done.

This is leaving out entirely the difficulties of translating integrated intensities to total
gas masses, etc. For example, as of the time of writing this thesis, there continues
to exist a lively debate in the fields studying galaxy formation and evolution, star
formation, and the ISM about how to convert integrated line intensities of CO to
molecular gas masses in galaxies (see Bolatto, Wolfire, et al., 2013, for a recent
review).

So, there is a gulf between observations and theory, which one must be careful
to navigate when interpreting either observations, or forecasting observables from
simulations and models. Throughout this thesis, unless otherwise noted, I take the
velocity dispersions (σ) to mean true dispersions in velocity of gas in the pixels
discussed, and not as linewidths, as I have not published any linewidth predictions
from the FIRE simulations. Conveniently, this means that those velocity dispersions
can, in the context of galaxy disks and supersonic turbulence, to be directly related
to the gas disk scale heights (though H ≈ σ/Ω, where Ω is the orbital dynamical
time) and the local Mach number (M = σ/cs, where cs is the local sound speed).

1.1 Thesis Outline
The chapters in this thesis assault the questions posed, from how does star formation
scale with environment to what its roles in galaxies are. All of these investigations,
using both the FIRE simulations and semi-analytic models, ask to what extent, and
on what scales, can we consider the scalings of star formation meaningful in some
sense. The thesis is organized as follows:

• Chapter 2: Adapted from Orr, Hayward, Hopkins, et al. (2018), this chapter
explores the Kennicutt-Schmidt relation in the original FIRE simulations
(Hopkins, Kereš, et al., 2014). At the time, these simulations were among
the most highly resolved (both spatially and by particle mass) cosmological
zoom-in simulations. This allowed us to investigate in great detail how
star formation scaled on kpc-scales in the simulations, and the connections
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with observations. The chapter explores how well various scalings predict
the star formation in the simulations, and touches lightly on the question of
star formation’s role in galaxies more broadly. The work of this chapter,
particularly in understanding what fires up star formation in the simulations,
resulted in a collaboration with the MaNGA survey, studying star formation
thresholds in galaxies using their spatially resolved data (Stark et al., 2018).

• Chapter 3: This chapter is taken fromOrr, Hayward, Nelson, et al. (2017), and
is primarily a fairly specific critique of an oft-used observational technique,
stacking many similar images of different galaxies at high redshift, in order
to push down on signal-to-noise limits and be able to say something about
galaxy properties or outskirts at z & 1. It investigates stacked star formation
rate profiles in the FIRE galaxies at z ∼ 1, and follows the observational
techniques of Nelson et al. (2016). Specifically, this letter addresses the
resulting physical interpretations for galaxies at high redshift, and how one
must be careful to not bias their interpretations when taking cuts of galaxy
populations from scaling relations like the star formation main sequence.

• Chapter 4: Unlike the other chapters of this thesis, this entry is not a direct
application of the FIRE simulations, but rather a semi-analytic toy model of
time-dependent star formation in galaxy disks, borrowing fromOrr, Hayward,
and Hopkins (2019). It, being an excursion from simulations into semi-
analytic models, investigates the dynamical evolution of a feedback-regulation
model, closely related to the frameworks of both Ostriker et al. (2011) and
Faucher-Giguère et al. (2013). This chapter takes a more substantive stab
at the second question posed: what is the role of star formation in galaxy
disks? In an evasive answer, star formation is both a passive respondent
to the ambient conditions, and an active driver of the state of the gas in
galaxies. It responds to the local state of the ISM (set by, e.g., past star
formation, cosmological inflows, or galactic structure), and then moves to
bend its surroundings to its will through processes of stellar feedback. Like
the phoenix, star-forming regions rise from the ashes of their predecessors,
and die in a combustion of their own making (feedback, both as supernovae
and radiation pressure/winds), existing in galaxies in a continual cycle of
death and renewal. In a related fashion, this chapter addresses the question
of on what timescales does it make sense to consider something like the
Kennicutt-Schmidt relation within galaxies.
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• Chapter 5: This chapter consists of as-of-yet unpublished work using the
FIRE-2 simulations. These simulations are the successor to the FIRE simu-
lations, improving upon the numerics, mass resolution, and feedback physics
implemented in the original suite. Here, we explore the relationship between
the gas velocity dispersions, in both the neutral and cold and dense gas, and
the star formation rates on ∼kpc-scales within the FIRE Milky Way mass
spiral galaxies at late times z . 0.1. This work stabs at the first two questions
posed: scalings for and the role of star formation with respect to the structure
of the ISM within galaxy disks. Only briefly does it become philosophical
about timescales of meaningfulness for star formation scalings. Particularly
interesting for observers, perhaps, is that the erstwhile flat distribution of
velocity dispersions in gas, for a ∼ 3 dex range in star formation rates, be-
lies a consistent structure of gas properties scaling with star formation rates.
Self-regulation appears to rule galaxy disks, their gas component demanding
marginal stability against gravitational fragmentation and collapse. Though
the gaseous disks of these disk galaxies remembers past star formation and
feedback, that memory becomes quite hazy when searchingmore than a single
galactic dynamical time back.

Together, this opus of work constitutes both the culmination of a little more than four
years of work with Phil Hopkins and the broader FIRE collaboration, and a coherent
effort in understanding star formation processeswithin galaxies on kiloparsec-scales,
from the perspective of cosmological zoom-in simulations and semi-analyticmodels.
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C h a p t e r 2

WHAT FIRES UP STAR FORMATION: THE EMERGENCE OF
THE KENNICUTT-SCHMIDT LAW FROM FEEDBACK

Orr, M. E. et al. (2018) MNRAS 478, 3653

ABSTRACT

We present an analysis of the global and spatially resolved Kennicutt-Schmidt (KS)
star formation relation in the FIRE (Feedback In Realistic Environments) suite of
cosmological simulations, including halos with z = 0 masses ranging from 1010–
1013 M�. We show that the KS relation emerges and is robustly maintained due to
the effects of feedback on local scales regulating star-forming gas, independent of
the particular small-scale star formation prescriptions employed. We demonstrate
that the time-averaged KS relation is relatively independent of redshift and spatial
averaging scale, and that the star formation rate surface density is weakly dependent
on metallicity and inversely dependent on orbital dynamical time. At constant
star formation rate surface density, the ‘Cold & Dense’ gas surface density (gas
with T < 300 K and n > 10 cm−3, used as a proxy for the molecular gas surface
density) of the simulated galaxies is ∼0.5 dex less than observed at ∼kpc-scales.
This discrepancy may arise from underestimates of the local column density at the
particle scale for the purposes of shielding in the simulations. Finally, we show
that on scales larger than individual giant molecular clouds, the primary condition
that determines whether star formation occurs is whether a patch of the galactic
disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch
can no longer be thermally stabilized against fragmentation, it collapses, becomes
self-shielding, cools, and forms stars, regardless of epoch or environment.
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2.1 Introduction
Understanding star formation and its effects on galactic scales has been integral
to assembling the story of the growth and subsequent evolution of the baryonic
components of galaxies. Observationally, the rate at which gas is converted into
stars is characterized by the Kennicutt-Schmidt (KS) relation, which is a power law
correlation between the star formation and gas surface densities in galaxies that holds
over several orders of magnitude (Schmidt 1959; Kennicutt 1998; see Kennicutt and
Evans 2012 for a recent review).

Numerous studies of the KS relation have shown that star formation is inefficient on
galactic scales, with only a few per cent of a galaxy’s gas mass being converted to
stars per galactic free-fall time (Kennicutt, 1998; Kennicutt, Calzetti, et al., 2007;
Daddi et al., 2010; Genzel et al., 2010). Understanding what regulates the efficiency
of star formation and results in the observed KS relation is therefore key to under-
standing the formation and dynamics of galaxies. Some authors (e.g., Thompson
et al., 2005; Murray et al., 2010; Murray, 2011; Ostriker and Shetty, 2011; Faucher-
Giguère et al., 2013; Semenov et al., 2016; Hayward and Hopkins, 2017; Grudić
et al., 2018) argue that star formation is locally efficient, in the sense that tens of
per cent of the mass of a gravitationally bound gas clump within a giant molecular
cloud (GMC) can be converted into stars on the local free-fall time, and that local
stellar feedback processes–including supernovae (SNe), radiation pressure, photo-
heating, and stellar winds–must stabilize gas discs against catastrophic gravitational
collapse, thereby resulting in the low global star formation efficiencies that are ob-
served. However, others claim on both theoretical and observational grounds that
star formation is locally inefficient, with only of order a few per cent of the mass
of clumps being converted into stars on a free-fall time independent of their density
(Padoan, 1995; Krumholz and Tan, 2007; Lee et al., 2016).

In either scenario, the KS law is considered to be an emergent relation that holds
on galactic scales and results from a complex interplay of the physical processes
that trigger star formation and those that regulate it. It has also been argued and
observed that the KS relation breaks down below some length- and timescales
(Onodera et al., 2010; Schruba et al., 2010; Feldmann and Gnedin, 2011; Calzetti
et al., 2012; Kruijssen et al., 2014). Calzetti et al. (2012) found that the KS relation
breaks down due to incomplete sampling of star-forming molecular clouds’ mass
function on length-scales of less than ∼ 1 kpc. Feldmann et al. (2012) claim that this
breakdown on sub-kpc-scales occurs due to the stochastic nature of star formation
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itself. Furthermore, Kruijssen et al. (2014) argue that the various tracers of gas
column density and star formation rate surface density require averaging over some
spatial and temporal scales; consequently, when sufficiently small length-scales are
probed, a tight correlation between the star formation rate surface density and the
gas column density should not be observed. Understanding the scales where the KS
law holds therefore informs our theories of star formation as well.

On the length-scales where the KS relation does hold, the canonical power law of
the total gas relation is ΣSFR ∝ Σ1.4gas with ΣSFR being the star formation rate surface
density and Σgas being the total gas surface density (Kennicutt, 1998). However,
there has been much debate regarding the power-law index of the relation and its
physical origin; the previous literature has found KS relations ranging from highly
sublinear to quadratic (Bigiel, Leroy, Walter, Brinks, et al., 2008; Daddi et al.,
2010; Genzel et al., 2010; Feldmann et al., 2011; Feldmann et al., 2012; Narayanan
et al., 2012; Shetty, Kelly, and Bigiel, 2013; Shetty, Kelly, Rahman, et al., 2014;
Shetty, Clark, et al., 2014; Becerra et al., 2014). Some of the disagreement owes
to the particular formulation of the KS relation considered, such as whether ΣHI+H2

(total atomic + molecular hydrogen column) or ΣH2 (molecular column alone) is
employed (e.g., Rownd et al., 1999; Wong et al., 2002; Krumholz and Thompson,
2007), with the ΣH2 relation typically having slope ∼ 1. The relation may in
principle also depend on the star formation tracer used (e.g. Hα, far infrared, or
ultraviolet). Furthermore, there are questions as to whether the index depends on
spatial resolution–even on scales larger than the length scale belowwhich the relation
fails altogether–or if there are multiple tracks to the KS relation, each with different
slopes across several decades in gas surface density (Ostriker, McKee, et al., 2010;
Liu et al., 2011; Ostriker and Shetty, 2011; Feldmann et al., 2011; Feldmann et al.,
2012; Faucher-Giguère et al., 2013).

It has also been suggested that the KS relation may evolve with redshift or have a
metallicity dependence (Schaye, 2004; Bouché et al., 2007; Papadopoulos et al.,
2010; Dib, 2011; Gnedin and Kravtsov, 2011; Scoville et al., 2016). These are not
entirely independent quantities, asmetallicity generally increases as galaxies process
their gas through generations of stars over cosmic timescales. Because the presence
of metals results in more efficient gas cooling, and can thus aid in the transition from
diffuse ionized and atomic species to dense molecular gas (Hollenbach et al., 1999),
Schaye (2004) and Krumholz et al. (2009b) have argued that there is a metallicity-
dependent gas surface density cutoff below which the KS relation becomes steeper.
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Figure 2.1: Example of one of our maps, made from a Milky Way-mass simulated
galaxy at z ≈ 0 (galaxy m12i from Hopkins, Kereš, Oñorbe, et al., 2014), with 100
pc pixels. Neutral hydrogen surface density, ΣHI+H2 [M� pc−2] and instantaneous gas
star formation rate Σ̇? [M� yr−1 kpc−2] are colored in blues and reds, respectively.
Spiral arms and increasing density towards the galactic core are clearly visible,
and the instantaneous star formation rate is seen to closely trace the densest gas
structures.

Krumholz et al. (2009b) attribute the dependence to the gas column needed to self-
shield molecular gas for a given metallicity. As well gas metallicity has been argued
to weakly modulate the specific strength of stellar feedback, as SNe couple slightly
less momentum into their immediate stellar surroundings since more of their energy
is able to radiate away quickly (Cioffi et al., 1988; Martizzi, Faucher-Giguère, et
al., 2015; Richings et al., 2016). Scoville et al. (2016) found evidence of shorter
depletion timescales for molecular gas at higher redshifts for galaxies both on and
above the star formation main sequence, perhaps due to the rapid accretion required
to replenish the gas reservoirs.

Large-volume cosmological simulations often use the KS law as a sub-grid prescrip-
tion for star formation, both because of the prohibitive computational complexity
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of including all of the physics relevant on the scales of star-forming regions, and
their inability to resolve even the most massive giant molecular clouds ∼ 106 M�
(e.g., Mihos et al., 1994; Springel et al., 2003). Even idealized disk simulations that
have resolution on the order of 100 pc, but are unable to resolve a multiphase ISM,
employ star formation prescriptions that assume low star formation efficiencies a
priori or implement KS laws indirectly (Li et al., 2006; Wada et al., 2007; Schaye
and Dalla Vecchia, 2008; Richings et al., 2016). It has been shown that assuming
a power-law star formation relation on the resolution scale can imprint a power-law
relation of identical slope on the galactic scale (Gnedin, Tasker, et al., 2014), demon-
strating the importance of employing physically motivated sub-grid star formation
prescriptions that produce kpc-scale relations with the ‘correct’ slope if the relevant
physical processes cannot be treated directly. With advances in computing power,
and the ability to execute increasingly complex simulations with more physics at
higher mass resolution, cosmological simulations have only recently been able to
predict the KS relation generically as a result of the physics incorporated in the
simulations at the scales of molecular clouds (e.g., Hopkins et al., 2011; Hopkins,
Cox, et al., 2013; Hopkins, Kereš, Oñorbe, et al., 2014; Agertz and Kravtsov, 2015).

Including realistic feedback physics in simulations that resolveGMC scales is critical
to understanding the KS relation due to the multitude of competing physical effects
spanning a wide range of scales. While some simulations have argued that the KS
relation can be obtained without explicit feedback (e.g., Li et al., 2005; Li et al.,
2006; Wada et al., 2007), these generally depend on either (a) transient and short-
lived initial conditions (e.g. simulations starting from strong initial turbulence
or a smooth disk, where once turbulence decays and fragmentation runs away,
some additional source of “driving” or “GMC disruption” must be invoked), or (b)
suppressing runaway fragmentation numerically (e.g., “by hand” setting very slow
star formation efficiencies at the grid scale, or inserting explicit sub-grid models for
star formation calibrated to the KS relation on GMC or galaxy scales, or adopting
artificial/numerical pressure or temperature floors or fixed gravitational softening in
the gas that prevent densities from increasing arbitrarily). Many of these authors do
acknowledge that feedback is likely necessary to provide either the initial conditions
or grid-scale terms in their simulations, even if not explicitly included (similarly, see
e.g., Robertson et al. 2008; Colin et al. 2010; Kuhlen et al. 2012; Kraljic et al. 2014).
Indeed, a large number of subsequent, higher-resolution numerical experiments (on
scales ranging from kpc-scale “boxes” to cosmological simulations) which run for
multiple dynamical times and allow fragmentation to proceed without limit have
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consistently shown that absent feedback, the galaxy-scale KS law has a factor ∼ 100
higher normalization than observed (see e.g., Hopkins et al., 2011; Kim, Kim, et al.,
2011; Ostriker and Shetty, 2011; Shetty and Ostriker, 2012; Kim, Ostriker, and
Kim, 2013; Kim and Ostriker, 2015; Dobbs, 2015; Benincasa et al., 2016; Forbes
et al., 2016; Hu et al., 2017; Iffrig et al., 2017).

In this chapter, we explore the properties and emergence of the KS relation in the
FIRE1 (Feedback In Realistic Environments) simulations (Hopkins, Kereš, Oñorbe,
et al., 2014). Specifically, by producing mock observational maps of the spatially
resolved KS law, we investigate the form of the relation when considering several
different tracers of the star formation rate and gas surface densities, and we charac-
terize its dependence on redshift, metallicity, and pixel size. The FIRE simulations
are well suited for understanding the physical drivers of the KS relation as they
sample a variety of galactic environments and a large dynamic range in physical
quantities (chiefly, gas and star formation rate surface densities), and they directly
(albeit approximately) incorporate stellar feedback processes that may be crucial for
the emergence, and maintenance of the KS relation over cosmological timescales.
In the past, they have been used to investigate the effects of various microphysics
prescriptions on galaxy evolution, the formation of giant gas clumps at high redshift,
and the formation of galaxy discs, among other topics (Oklopčić et al., 2017; Ma
et al., 2017; Su et al., 2017).

2.2 Simulations & Analysis Methods
In the present analysis, we investigate the star formation properties of the FIRE
galaxy simulations originally presented in Hopkins, Kereš, Oñorbe, et al. (2014),
Chan et al. (2015), and Feldmann, Hopkins, et al. (2016), which used the Lagrangian
gravity + hydrodynamics solver gizmo (Hopkins, 2013) in its pressure-energy
smoothed particle hydrodynamics (P-SPH) mode (Hopkins, 2013). All of the simu-
lations employ a standard flatΛCDMcosmologywith h ≈ 0.7,ΩM = 1−ΩΛ ≈ 0.27,
and Ωb ≈ 0.046. The galaxies in the simulations analyzed in this chapter range in
z ≈ 0 halo masses from 9.5×109 to 1.4×1013 M�, and minimum baryonic particles
masses mb of 2.6 × 102 to 3.7 × 105 M�. For all of the simulations, the mass
resolution is scaled with the total mass such that the characteristic turbulent Jeans
mass is resolved. As well, the force softening is fully adaptive, scaling with the

1http://fire.northwestern.edu



24

particle density and mass as

δh ≈ 1.6 pc
( n
cm−3

)−1/3 (
m

103M�

)1/3
, (2.1)

where n is the number density of the particles, and m is the particle mass. Conse-
quently, the simulations are able to resolve a multiphase ISM, allowing for meaning-
ful ISM feedback physics. This is crucial because the vast majority of star formation
occurs in the most massive GMCs due to the shape of the GMC mass function
(Williams et al., 1997).

The stellar feedback physics implemented in these simulations include approximate
treatments ofmultiple channels of stellar feedback: radiation pressure on dust grains,
supernovae (SNe), stellar winds, and photoheating; a detailed description of the
stellar feedback model can be found in Hopkins, Kereš, Oñorbe, et al. (2014). Star
particles in the simulations each represent individual stellar populations, with known
ages, metallicities, and masses. Their spectral energy distributions, supernovae
rates, stellar wind mechanical luminosities, metal yields, etc., are calculated directly
as a function of time using the starburst99 (Leitherer et al., 1999) stellar population
synthesis models, assuming a Kroupa (2002) initial mass function (IMF).

In these simulations, the galaxy- and kpc-scale star formation efficiencies are not set
‘by hand’. Star formation is restricted to dense, molecular, self-gravitating regions
according to several criteria:

• The gas density must be above a critical threshold, ncrit ∼ 50 cm−3 in most
runs (and 5 cm−3 in those from Feldmann, Hopkins, et al., 2016).

• The molecular fraction fH2 is calculated as a function of the local column
density andmetallicity using the prescription ofKrumholz andGnedin (2011),
and the molecular gas density is used to calculate the instantaneous SFR (see
below).

• Finally, we identify self-gravitating regions using a sink particle criterion
at the resolution scale, specifically requiring α ≡ δv2δh/Gmgas(< δr) < 1
on the smallest resolved scale around each gas particle (δh being the force
softening or smoothing length).

Regions that satisfy all of the above criteria are assumed to have an instantaneous
star formation rate of

ρ̇∗ = ρmol/tff, (2.2)
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i.e. 100 percent efficiency per free-fall time. As a large fraction of the dense
(n > ncrit), molecular ( fH2 ∼ 1) gas is not gravitationally bound (α > 1) at any
given time, the global star formation efficiency ε is less than 100 percent (ε < 1)
despite the assumed local, instantaneous star formation efficiency per free-fall time
being 100 percent. We will show below that the KS relation, with its much lower
global, time-averaged star formation efficiency (ε . 0.1), emerges as a result of
stellar feedback preventing dense gas from quickly becoming self-bound, forming
stars, and disrupting gravitationally bound star-forming clumps on a timescale less
than the local free-fall time. We stress here that the emergent KS relation is not a
consequence of the star formation prescription employed in the simulations.

In Appendix 2.5 we demonstrate this explicitly. We ran several tests restarting
one of the standard FIRE simulations with varying physics and star formation
prescriptions. For any reasonable set of physics, only variation in the strength of the
feedback affected the galactic star formation rates, because the simulated galaxies
self-regulate their star formation rates via feedback. A number of independent
studies have also shown that once feedback is treated explicitly, the predicted KS
law becomes independent of the resolution-scale star formation criterion (Saitoh
et al., 2008; Federrath et al., 2012; Hopkins et al., 2012a; Hopkins, Kereš, Murray,
et al., 2013; Hopkins, Cox, et al., 2013; Hopkins, Narayanan, et al., 2013; Hopkins,
Torrey, et al., 2016; Agertz, Kravtsov, et al., 2013).

To quantify the spatially resolved KS relation in the simulations, we analyze data
from snapshots spanning redshifts z = 0 − 6. The standard FIRE snapshots from
Hopkins, Kereš, Oñorbe, et al. 2014 and the dwarf runs in Chan et al. (2015) are
roughly equipartitioned among redshift bins z ∼ 3 − 6, 2.5 − 1.5, 1.5 − 0.5, and
< 0.5, whereas the snapshots of halos from Feldmann, Hopkins, et al. (2016) have
redshifts evenly spaced between 2 < z < 6 (these were run to only z ∼ 2). To
compare the snapshots with observational constraints of the KS relation, we made
star formation rate and gas surface density maps of each snapshot’s central galaxy.
We summed the angular momentum vectors of the star particles in the main halo
of each snapshot to determine the galaxy rotation axis and projected along this axis
to generate face-on galaxy maps. The projected maps were then binned into square
pixels of varying size, ranging from 100 pc to 5 kpc on a side. Only particles within
20 kpc above or below the galaxy along the line of sight were included in the maps
(this captures all of the star-forming gas, but excludes distant galaxies projected by
chance along the same line of sight in the cosmological box). An example of the
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resulting maps can be found in Figure 2.1, which shows maps of the neutral gas
surface density and the instantaneous star formation rate surface density in them12i
simulation from Hopkins, Kereš, Oñorbe, et al. (2014), at redshift z ≈ 0 with 100
pc pixels.

Using the star particle ages, we calculated star formation rates averaged over the
previous 10 and 100 Myr, correcting for mass loss from stellar winds and other
evolutionary effects as predicted by starburst99 (Leitherer et al., 1999). We
also considered the instantaneous star formation rate of the gas particles (defined
above). A time-averaging interval of 10Myr was chosen because this approximately
corresponds to the timescale traced by recombination lines such as Hα, whereas
UV and FIR emission traces star formation over roughly the past 100 Myr (e.g.,
Kennicutt and Evans, 2012).2 The instantaneous star formation rate of the gas
particles covers a larger range of star formation rates because it is not constrained
at the low end directly by the mass resolution of our simulations; it is a continuous
quantity intrinsic to the gas particles themselves, which is sampled at each time-step
to determine if the gas particles form stars. This quantity best demonstrates the direct
consequences of feedback on the gas in situ by locally tracing the star formation
rate, whereas the other two SFR tracers are more analogous to observables.

The gas surface density tracers were also chosen on the basis of observable ana-
logues, including all gas, neutral hydrogen gas (total HI + H2 column, accounting
for metallicity and He corrected), and “Cold & Dense” gas which we specifically
define here and throughout this chapter as gas with T < 300 K and nH > 10 cm−3.
These roughly correspond to the total gas (including the ionized component), atomic
+ molecular gas (HI + H2), and cold molecular gas reservoirs observed in galax-
ies. We have opted to use the aforementioned approximation for the molecular gas
component rather than reconstruct the fH2 predicted by the Krumholz and Gnedin
(2011) model (which is not output in the snapshots) as the fH2 model assumes a
simplified geometry at the resolution scale, that can get the local optical depth quite
wrong3. We explore the differences between the Cold & Dense gas tracer and the

2Directly computing SFR indicators from the simulations (e.g., Hayward, Lanz, et al., 2014;
Sparre et al., 2015) rather than computing the SFR averaged over the past 10 or 100 Myr would
provide a more accurate comparison with the observed KS relation, but doing so would considerably
expand the scope of this work, so we leave it to a future study.

3For the purposes of our star formation criteria, however, this is not an issue for the vast majority
of cases. Due to the steepness of the exponential attenuation of the local UV field, we care only
whether, strictly speaking, the gas is optically thin or thick, but the exact value of τ is not especially
important, as any optical depth τ � 1 effectively yields exp (−τ) � 1, and τ � 1 similarly yields
exp (−τ) ≈ 1.
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Krumholz et al. (2009b) fH2 (which was the basis for Krumholz and Gnedin 2011) in
a small number of snapshots, as well as with other empirical estimators such as those
adopted in Leroy, Walter, Brinks, et al. (2008), in Appendix 2.5. A more detailed
analysis of the true molecular fraction of the gas would require a careful radiative
transfer post-processing, which we leave to a later work. Furthermore, as GIZMO
lacks a detailed implementation of any chemical network, important to determining
low-temperature cooling, and instead uses approximate cooling tables, we may get
the temperature wrong by a factor of a few below ∼ 1000 K (this error should have
no dynamical effect in the simulations as this cool gas already effectively has no
pressure compared to the bulk of the gas at higher, more reliable temperatures). Past
work by Richings et al. (2016) has indeed shown that metallicity and radiation field
on large scales have far larger effects on star formation rates than including detailed
low-temperature chemical networks.

We acknowledge that because of the rather strict density and temperature criteria,
the lack of any additional considerations, e.g., to the local UV field or the geometry
of the gas, and our “low" star formation gas density threshold of 50 cm−3, we appear
to underestimate the molecular gas column as measured by the Cold & Dense gas
tracer (and other estimators calculated at the particle scale) by up to a factor of a
dex, which is incidentally on the order of the uncertainty in the observational CO-
to-H2 conversion factor XCO (Bolatto, Wolfire, et al., 2013). This likely results in a
corresponding underestimation of the local gas depletion time and overestimation of
star formation efficiency. In Appendix 2.5, we show explicitly that the “molecular”
fraction based on the “Cold &Dense” criteria is significantly less than the molecular
gas fraction computed using two other relations for fH2 versus total neutral gas
surface density: that from Leroy, Walter, Brinks, et al. (2008) (which is based
on Blitz et al. 2006) and the relation from Krumholz et al. (2009b) applied at the
kpc-scale for total gas surface densities above their atomic-to-molecular transition
thresholds. Notably, applyingKrumholz et al. (2009b), with updates fromKrumholz
and Gnedin 2011, at the particle scale produces a similar underestimation of the
molecular gas column of∼0.5 dex like the Cold &Dense gas tracer. The difficulty of
estimating local (at the particle scale) column depths for shielding likely contributes
to the discrepancy for both the Cold & Dense gas tracer and Krumholz et al. (2009b)
fit applied at the few-pc scale.

These empirical fits for fH2 , based in part on the stellar surface densities and scale
heights and gas metallicity, suggest that the FIRE simulations are producing correct
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star formation rates for large-scale properties of the ISM, e.g., mid-plane pressure,
implying that the discrepancy in the Cold & Dense gas tracer lies with the dense
end of the gas phase structure at the particle scale, and not with kpc-scale properties
of the galaxies. However, we believe that the scaling relations based on the Cold
& Dense’ tracer are robust, since this discrepancy results in a consistent bias in
the normalization of ‘cold’ gas. Again, a more accurate calculation would involve
radiative transfer post-processing including a chemical network, which would allow
us to directly predict the molecular hydrogen fraction and XCO, which we intend to
pursue in future work.

Other quantities are calculated as the mass-weighted average in each pixel, including
the gas metallicity4 Z , the Keplerian velocity vc, and the dynamical angular velocity
Ω, defined here as

Ω =
vc

R
=

(GM (< R))1/2

R3/2 , (2.3)

where R is the galactocentric radius of the pixel and M (< R) is the total mass
enclosed within that radius (and G is the gravitational constant). These quantities
allow us to investigate the dependence of star formation on gas phase metallicity,
approximate the optical depth of star-forming regions, and relate galactic dynamical
times to star-forming regions.

In our analysis we treat pixels from all simulations and all times equally, un-
less otherwise stated. However, we wish to examine only ensembles of pix-
els with well-resolved SFR distributions. Recalling that each of our simula-
tions has a fixed baryonic particle mass, mb, we discard pixels which contain
<3 gas particles; for a pixel size l, this means only gas surface densities Σgas >
3 × 10−3M� pc−2 (mb/1000M�) (l/kpc)−2 will be considered. However, in the ex-
ample above (mb ∼ 1000M�, l ∼ kpc), the observed Kennicutt (1998) relation gives
a typical star formation surface density ΣSFR ∼ 10−7M� yr−1 kpc−2 at this minimum
Σgas, so in ∼ 10Myr, the expected number of mb ∼ 1000M� star particles formed
will be just 0.001. Obviously, the distribution of star formation rates will not, then,
be resolved (even if the simulations capture the mean star formation rate correctly,
the discrete nature of star formation means only 1 in 1000 pixels will have a star
particle, while 999 have none). Thus, to ensure that the pixels we examine from
each simulation at a given gas surface density have a well-resolved SFR distribution,
we adopt the following criteria: (1) we first calculate the mean ΣSFR per pixel from

4In this chapter, we take solar metallicity to be Z� ≈ 0.0142 when scaling metallicities (Asplund
et al., 2009).
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each simulation, for all their pixels with a given number of gas particles (fixed Σgas);
(2) we estimate the average number 〈N?(∆t)〉 of star particles this would produce
in the time ∆t (10 or 100Myr, as appropriate); (3) if this is < 1(= Nmin,?), we
discard all pixels which contain this number or fewer gas particles. For the example
above, for ∆t = 10Myr (100Myr), this requires > 500 (> 50) gas particles per pixel
for a “resolved” star formation rate. We have repeated this exercise using instead
the observed KS relation (instead of the predicted one), to estimate the resolved
thresholds, and find it gives nearly identical results. We have also verified that
changing the threshold Nmin,? by an order of magnitude in either direction does not
change any of our conclusions here; we note too that the average star formation rates
from low-resolution simulations continue to agree well with our higher-resolution
simulations down to 〈N?(∆t)〉 as low as ∼ 0.001.

We believe it important to reassert that pixels with no star formation contribute
to all of the plotted points in our KS relation. We are discarding sets of pixels
(those with and without star formation) that do not have at least one young star
particle on average at a given gas surface density, to ensure that all of our plotted
data points are drawn from well-resolved distributions of star formation (including
zero star formation) at a given gas surface density.

We are careful that this prescription does not introduce bias into our star formation
distributions at a given gas surface density. If we were to consider the distribution
of depletion time (Σgas/Σ̇?) across all gas surface densities, this method would bias
us towards shorter depletion time by discarding all the pixels below the gas surface
density that definitely produces at least one new star particle in the past 10 (or 100)
Myr. However, we are investigating the distribution of SFRs in bins of gas surface
density for ensembles of pixels from a number of individual galaxy simulations. To
do so, we examine many snapshots from each individual simulation and consider
whether the SFR distribution is well sampled by the ensemble of pixels from all of
those snapshots at a given gas surface density. If at that gas surface density in the
whole ensemble of pixels from that single simulation, there are at least N? (we have
chosen one here5) new star particles produced on average, then we believe we are
able to say something meaningful about the distribution of star formation rates in
that bin of gas surface density for that ensemble of pixels. In combining only the

5We have confirmed that this approach does not bias the average SFR surface density values by
repeating the analysis requiring only an average of N? = 0.001 star particles per pixel. In this case,
however, the distribution of SFR surface density at a given gas surface density is poorly sampled
because of Poisson noise.
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sets of pixels from individual simulations with resolved SFR distributions at a given
gas surface density, we thus avoid biasing our aggregated SFR (and by extension,
depletion time) distributions in each bin of gas surface density.

2.2.1 Observational Data
Comparing with observations, we compiled resolved KS observations from a large
number of papers at various resolution scales commensurate with our mock observa-
tional maps. For our 1 kpc “fiducial” scale maps of the KS relation, we compare our
neutral gas surface density results with a combination data from Kennicutt, Calzetti,
et al. (2007), Bigiel, Leroy, Walter, Brinks, et al. (2008), Genzel et al. (2010); we
compare our 1 kpc “Cold & Dense” gas surface density results with the appropriate
H2 results from these studies, as well as those from Verley et al. (2010). For explor-
ing the effects of pixel size, we also used these molecular gas data to compare with
our 500-pc maps, as these observations had varying resolution scales ranging from
500 pc to slightly larger than 1 kpc. For our galaxy-averaged 5 kpc maps, we used
data from Kennicutt (1998), Kennicutt, Calzetti, et al. (2007), Genzel et al. (2010),
Shapiro et al. (2010), Wei et al. (2010), Freundlich et al. (2013), Tacconi et al.
(2013) and Amorin et al. (2016). Finally, for our highest-resolution investigations
at 100 pc, we compared with high-resolution observations from Blanc et al. (2009),
and Onodera et al. (2010). For exploring the star formation efficiency in this work,
in the form of the Elmegreen-Silk relation, we compare our 1 kpc-scale maps with
observations from Kennicutt (1998) and Daddi et al. (2010).

No distinction is made between the many estimators of SFR used in the aforemen-
tioned papers; they are simply taken at face value. However, we re-calibrate XCO in
the observationally inferred ΣH2 data points across all the aforementioned resolved
KS studies with an interpolation function taken from Narayanan et al. (2012), of the
form XCO = min[4, 6.75×W−0.32CO ]×1020 cm−2/(K km s−1), independent of metallic-
ity6. To correct the quoted ΣHI+H2 measurements, we decomposed the total column
into atomic andmolecular components (the latter then being corrected in the manner
of the ΣH2’s) using data in the references themselves, where available, and assuming
a molecular fraction fit from Leroy, Walter, Brinks, et al. (2008) where necessary.
We explore the effects of variations of the assumed XCO on the (dis)agreement
with our simulations in Appendix 2.5, finding ∼ 0.5 dex uncertainty due to the
uncertainty in XCO. In the case of the Elmegreen-Silk relation observations from

6Though their full interpolation function included a metallicity dependence, we assume solar
metallicity for simplicity.
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Kennicutt (1998) and Daddi et al. (2010), being unable to separate out the dynamical
times, we recalibrate Kennicutt (1998) only to a constant XCO = 2 × 1020 cm−2/(K
km s−1), consistent with Bigiel, Leroy, Walter, Brinks, et al. (2008). Data from
Daddi et al. (2010) have not been altered due to the extensive efforts made therein
to calibrate XCO across their dataset.

2.3 KS Relation in the Simulations
2.3.1 Dependence of the KS Relation on Star Formation and Gas Tracers
Figure 2.2 demonstrates how a KS-like power-law relation self-consistently emerges
(recall that the assumed instantaneous star formation efficiency of dense, gravita-
tionally bound ‘molecular’ gas is 100 per cent per local free-fall time) in the FIRE
simulations irrespective of specific choice of star formation or gas tracer. Two of our
star formation rate tracers, the 10Myr-averaged and gas instantaneous star formation
rates, yield very similar KS relations. The points denote the median value of the
star formation rate distribution in that gas surface density bin. The thick (thin) error
bars in Figure 2.2 denote the 25–75% (5–95%) inclusion interval in the distribution
of the star formation rates of pixels in that bin of gas surface density, effectively the
±1σ (±2σ) scatter. The 1σ scatter of our 10 Myr-averaged SFR, neutral gas, KS
relation is ∼0.4 dex, in line with quoted scatters from Bigiel, Leroy, Walter, Brinks,
et al. (2008) and Leroy, Walter, Sandstrom, et al. (2013).

More restrictive gas tracers (e.g., taking gas with T < 300 K and nH > 10 cm−3,
instead of all atomic + molecular gas) yield shallower power-law slopes. This is
intuitive because by placing more restrictions on the gas column, we are taking
pixels at a given star formation rate and moving them to lower gas surface densities
(to the left) by reducing what gas contributes to the overall gas column density.
The restrictions are non-linear: at high surface densities, the gas is predominately
molecular, and added restrictions do little to change the participating gas column,
whereas at low surface densities, relatively little of the gas column may remain after
making these additional cuts. Little difference is seen between the star formation
distributions in ΣSFR − Σgas space when considering the surface densities of all gas
(including the ionized component) versus neutral gas (first and second columns of
Figure 2.2) because the contribution of ionized gas to the total gas column is small in
regions where significant star formation is occurring. In contrast, there is a marked
change in slope of the KS relation when moving from the surface density of neutral
hydrogen gas to that of Cold & Dense gas (T < 300 K, nH > 10 cm−3), with the
slope shifting from ∼ 1.7 to ∼ 1.2 for the gas instantaneous star formation rate. This
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is due to the fact that significant amounts of star formation can occur in “small”
pockets of molecular gas, relative to the overall gas column, yielding a shallower
slope than when considering neutral gas.

The neutral gas surface density KS relation in the FIRE simulations is consistent
with the corresponding spatially resolved observational data, as represented by the
shaded regions and points in the panels of Figure 2.2. No observational range
has been included for “All Gas” observations as this is not typically observed;
nevertheless, our data suggest that little change would be evident, as again, ionized
gas does not usually contribute significantly to the column of star forming gas.
There is significant, though consistent, disagreement between the simulations and
observations for our Cold & Dense gas surface density because our “Cold & Dense”
appears to underestimate the expected molecular gas surface density by ∼ 0.5 − 1
dex. In Appendix 2.5, we explore the uncertainty in the molecular gas mass estimate
by comparing the Cold & Dense gas tracer with other empirical estimators for the
molecular fraction of our pixels, such as the dependence on the mid-plane gas
pressure used in Leroy, Walter, Brinks, et al. (2008), adapted from earlier work
(Blitz et al., 2006), and the self-shielding-based method from Krumholz et al.
(2009b). There, we see that the Cold & Dense gas tracer (which is calculated on a
per-particle basis) appears to under-predictmolecular gas fractions by∼ 0.5−0.7 dex
across surface densities of 1–100 M� pc−2 compared to the kpc-averaged empirical
estimators. This suggests that although our star formation rates are appropriate given
the large-scale properties of the ISM (e.g., mid-plane pressure and dust opacity), we
are under-predicting the mass of gas at the highest densities, either by converting
it into stars too quickly as it crosses our star formation density threshold or by
incorrectly approximating the cooling and shielding properties of the densest gas.
However, as this under-prediction appears to be consistent across the range of gas
surface densities explored, we believe the form of the KS relation to be robust and
have added arrows indicating this ∼ 0.5 dex underestimate whenever results based
on the Cold & Dense gas tracer are presented. Exploring this further is beyond the
scope of this work and is the subject of a forthcoming study forward modeling dense
gas tracers in FIRE-2.

Interestingly, the distribution of star formation rates in the FIRE simulations overlaps
with that of damped Lyα systems (DLAs) observed at high redshift by Rafelski et al.
(2016). Though we appear to see analogues to these systems at 1 kpc2 pixel sizes,
we leave it to a future work to investigate the detailed physical properties of these
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systems.

Elmegreen-Silk Relation (Alternative KS Law)

Alternatively, in Figure 2.3, we probe the global efficiency of gas turning into stars
in a dynamical time according to

Σ̇? = εΣgasΩ, (2.4)

where ε represents the “star formation efficiency” on kpc scales; this relation is
known as the Elmegreen-Silk relation (Elmegreen, 1997; Silk, 1997). We see
systematic agreement with the neutral hydrogen gas surface density Elmegreen-Silk
relation in the FIRE simulations compared to observations where ε ranges between
10−3 − 1. We find kpc-averaged star formation efficiencies of ε ∼ 0.01 − 0.1
consistently for our entire range of star formation rate surface density. Dashed
black lines indicate constant efficiencies between 0.01 and 1. Without feedback, one
would expect to see ε ∼ 1.

Our efficiencies for the molecular gas formulation of the Elmegreen-Silk relation
are likely over-estimated by as much as 1 dex, at efficiencies between a few and a few
tens of percent, because of our systematic underestimation of the mass of “Cold &
Dense” gas (see also the discussion at the end of Section 2.3.1 and in Appendix 2.5).
However, since this is likely consistent across gas surface densities, we believe that
the relative constancy of global star formation efficiency ε across Σgas is robust.
Error bars of 0.5 dex (which are likely conservative) indicate this underestimation
in the Cold & Dense gas panels. Even so, we find consistency at the high end of
the observed efficiencies using the molecular gas formation of the Elmegreen-Silk
relation, where our molecular fraction finally converges to near unity.

100 Myr-Averaged Star Formation Rate

In Figure 2.4, we see a clear flattening of the 100 Myr-averaged star formation
rate surface density relative to the 10 Myr average, for neutral hydrogen columns
at low gas surface densities, Σgas . 1 M� pc−2. This is ascribable to effects
discussed in Sections 2.3.2 and 2.3.4, where individual or small numbers of young
star particles are scattered into regions of very low gas surface density that are
not actually forming stars. Moreover, dynamical changes in star-forming regions
over the averaging period (100 Myr) cause gas complexes to dissipate and produce
small numbers of star particles left in now-diffuse galactic environments. At high
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Figure 2.4: KS relation in the FIRE simulations for the 100 Myr-averaged star
formation rate in 1 kpc2 pixels, as Figure 2.2. The observational data shaded regions
and points for the neutral (atomic +molecular) gas are those fromKennicutt, Calzetti,
et al. (2007), Bigiel, Leroy, Walter, Brinks, et al. (2008), and Genzel et al. (2010) as
described in Figure 2.2, measured with ∼ 10 Myr tracers. At high Σgas, the ∼ 100
Myr average SFRs agree well with the ∼ 10 Myr observations (and by extension our
∼ 10Myr-averaged SFRs). At low Σgas, the ΣSFR from the ∼ 100Myr tracer flattens.
This appears to stem from a breakdown in the correlation between 100Myr-old stars
and the observed gas tracers, either from migration or other dynamical effects (e.g.,
mergers or strong outflow events).
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gas surface densities, Σgas > 10 M� pc−2, the 100 Myr average star formation rate
surface densities agree well with the shorter timescale estimators.

2.3.2 Pixel Size Dependence
The KS relation that we find in the FIRE simulations does not appear to have a
significant dependence on pixel size (i.e., map resolution) for pixels with sufficiently
resolved gas and star formation rate tracers (& few gas/star particles per pixel), as
shown in Figure 2.5. Over the range of pixel sizes we investigate, 100 pc - 5 kpc
(0.01 - 25 kpc2), the slope of the power law varies only weakly between ∼ 1 and
∼ 4/3. At the low end of the relation in Σgas, we expect the scatter to grow as
Poisson statistics become important when only a few star particles are present in the
pixels on average. However, because we exclude poorly sampled pixels, this simply
manifests as a lower limit to the plotted Σgas for smaller pixels sizes (see Section
2.2).

In terms of slope, our simulated relations agree with the observed relations for the
various pixel sizes considered, but again, the simulated and observed relations are
systematically offset, likely because the “Cold & Dense” gas tracer systematically
underestimates the column density of molecular gas (by ∼ 0.5 − 1 dex) relative to
that computed using the fits of Leroy, Walter, Brinks, et al. (2008) and Krumholz
et al. (2009b), as already discussed above. In addition to the shaded regions shown
in previous plots, we also compare directly with the results of Schruba et al. (2010)
and Bolatto, Leroy, et al. (2011). Schruba et al. (2010) compare the KS relation
found for varying aperture scales in M33, centered either on Hα or CO peaks.7
Their results vary weakly with pixel size, except at their smallest aperture scale ∼ 75
pc. Similarly, Bolatto, Leroy, et al. (2011) observed the KS relation in the Small
Magellanic Cloud (SMC), and averaged their results with 200 pc and 1 kpc apertures
to investigate its dependence on averaging scale. Their results are also consistent
with our simulations, considering that the “Cold & Dense” tracer underestimates
the molecular fraction by as much as a dex for surface densities above 10 M� pc−2.
We see, however, a slightly steeper KS relation at pixel sizes of 100 and 500 pc
(their data at 200 pc lie between these scales) and a slightly shallower relation at
kpc scales than Bolatto, Leroy, et al. (2011).

To compare with the global KS relation observed by a number of studies (see
Section 2.2.1 for references), we summed the total 10 Myr star formation rate and

7Schruba et al. (2010) do not tile M33 with their apertures, but this does not appear to matter
except at their smallest aperture scales.



38

−1
0

1
2

3
−4−3−2−1012

log(ΣSFR[M�yr−1
kpc−2

])
0.

1
kp

c

F
IR

E
Si

m
ul

at
io

ns
Sc

hr
ub

a+
20

10
H
α

C
en

te
re

d
Sc

hr
ub

a+
20

10
C

O
C

en
te

re
d

B
ol

at
to

+2
01

1
SM

C
20

0
pc

−1
0

1
2

3

0.
5

kp
c

F
IR

E
Si

m
ul

at
io

ns
Sc

hr
ub

a+
20

10
H
α

C
en

te
re

d
Sc

hr
ub

a+
20

10
C

O
C

en
te

re
d

B
ol

at
to

+2
01

1
SM

C
20

0
pc

−1
0

1
2

3

1
kp

c

F
IR

E
Si

m
ul

at
io

ns
Sc

hr
ub

a+
20

10
H
α

C
en

te
re

d
Sc

hr
ub

a+
20

10
C

O
C

en
te

re
d

B
ol

at
to

+2
01

1
SM

C
1

kp
c

−1
0

1
2

3

G
lo

ba
l

F
IR

E
Si

m
ul

at
io

ns

lo
g
(Σ

m
ol

[M
�

p
c−

2
])

Fi
gu

re
2.
5:

Pi
xe
ls
iz
e
de
pe
nd

en
ce

of
th
e
m
ol
ec
ul
ar
-K

S
re
la
tio

n
in

th
e
FI
R
E
si
m
ul
at
io
ns
,c
om

pa
re
d
w
ith

se
le
ct
ed

ob
se
rv
at
io
ns
.
Σ
m
ol
is

th
e
su
rf
ac
e
de
ns
ity

of
C
ol
d
&

D
en
se

ga
s;
Σ
SF

R
is
th
e
10

M
yr
-a
ve
ra
ge
d
SF

R
.P

lo
tte

d
po

in
ts
an
d
er
ro
rb

ar
sa

nd
st
yl
es

ar
e
as

in
Fi
gu

re
2.
2.

Sh
ad
ed

re
gi
on

s
an
d
po

in
ts
(s
m
al
lg

re
en

x’
s
an
d
cy
an

+’
s)

fo
rb

ot
h
50

0
pc

an
d
1
kp

c
ar
e
th
e
H
2
da
ta

us
ed

in
Fi
gu

re
2.
2,

as
a
nu

m
be
ro

f
th
e
so
ur
ce

ob
se
rv
at
io
ns

lie
be
tw
ee
n
th
os
e
tw
o
sp
at
ia
lr
es
ol
ut
io
ns
.F

or
0.
1
kp

c
da
ta
,s
ha
de
d
re
gi
on

sa
re

in
cl
us
io
n
co
nt
ou

rs
(1
00

,9
0,
50

%
)

fr
om

B
la
nc

et
al
.(
20

09
)a

nd
O
no

de
ra

et
al
.(
20

10
).

In
th
e
gl
ob

al
K
S
re
la
tio

n
pa
ne
l,
th
e
sh
ad
ed

ar
ea
s
ar
e
th
e
70

%
an
d
50

%
in
cl
us
io
n

re
gi
on

s
fo
rg

lo
ba
lm

ol
ec
ul
ar
-K

S
ob

se
rv
at
io
ns

co
m
pi
le
d
in

§2
.2
.1
.
Fo

ro
ur

gl
ob

al
K
S
re
la
tio

n,
w
e
su
m

th
e
SF

R
an
d
C
ol
d
&

D
en
se

ga
s

in
th
e
m
ap

an
d
di
vi
de

by
th
e
ar
ea

ci
rc
um

sc
rib

ed
by

th
e
st
el
la
rh

al
f-
m
as
s
ra
di
us
.
Va

rio
us

po
in
ts
ex
pl
ic
itl
y
en
um

er
at
ed

be
lo
w
th
e
pa
ne
ls

co
rr
es
po

nd
M
33

an
d
SM

C
da
ta

(f
ro
m

Sc
hr
ub

a
et

al
.,
20

10
;B

ol
at
to
,L

er
oy
,e

ta
l.,

20
11

,r
es
pe
ct
iv
el
y)
,t
es
tin

g
th
e
sc
al
e
de
pe
nd

en
ce

of
th
e
K
S
re
la
tio

n.
Th

e
FI
R
E
‘m

ol
ec
ul
ar
’K

S
re
la
tio

n
ex
hi
bi
ts
no

sy
st
em

at
ic
tre

nd
w
ith

pi
xe
ls
iz
e
de
sp
ite

dy
na
m
ic
al
pr
oc
es
se
s
th
at
m
ig
ht

be
ex
pe
ct
ed

to
br
ea
k
do
w
n
th
e
co
rr
el
at
io
ns

be
tw
ee
n
yo
un

g
st
ar
sa

nd
ga
so

n
sm

al
ls
ca
le
s(
pr
om

in
en
ta
ts
m
al
lp

ix
el
ss

iz
es
).



39

−1 0 1 2

log(ΣgasΩ [M� yr−1 kpc−2])

−5

−4

−3

−2

−1

0

1

lo
g
(Σ

S
F

R
[M
�

y
r−

1
k
p

c−
2
])

ε =
0.1

ε =
0.0

1

Kennicutt+1998
Daddi+2010
z ∼ 3− 6

z ∼ 2

z ∼ 1

z < 0.5

Figure 2.6: Elmegreen-Silk relation binned in redshift at 1 kpc2 pixel size. Median
values of the 10 Myr average ΣSFR are plotted in bins of ΣHI+H2Ω, in the style of
Figure 2.2. Observations from Kennicutt (1998) (unfilled cyan squares) and Daddi
et al. (2010) (unfilled red circles), in addition to dotted lines representing constant
star formation efficiencies ε , are included. No significant dependence on redshift is
seen: the range of data in each bin is greater than any systematic difference between
bins.
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Figure 2.7: KS relation binned in redshift and metallicity at 1 kpc2 pixel size. In
both panels, within their respective redshift and metallicity bins, median values of
the 10 Myr average ΣSFR are plotted in bins of ΣHI+H2 , in the style of Figure 2.2.
Shaded regions and small cyan triangles denote representative observations from
Kennicutt, Calzetti, et al. (2007), Bigiel, Leroy, Walter, Brinks, et al. (2008), and
Genzel et al. (2010), and dotted lines represent the derived star formation relations,
all as described in Figure 2.2. Top Panel: Simulation snapshots binned by redshift,
with markers denoting different epochs. No significant dependence on redshift is
seen–the range of data in each bin is greater than any systematic difference between
them. BottomPanel: Pixels from snapshots binned by gas metallicity, with markers
indicating intervals in Z′ = Zgas/Z�. A weak positive correlation between ΣSFR and
metallicity is seen at all ΣHI+H2 , though the dependence is weak compared to the
scatter in each gas bin. No metallicity-dependent cutoff is evident.
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Figure 2.8: Star formation rate dependence on metallicity, binned by ΣHI+H2 at 1
kpc2 pixel size. Points are median values of the 10 Myr average ΣSFR normalized
by the average ΣSFR for a given bin in Z/Z� in each ΣHI+H2 bin. Thick (thin) error
bars denote the 25–75% (5–95%) range for resolved star formation in each bin. A
weak dependence on metallicity is seen for all gas surface densities for sub-solar
metallicities, as demonstrated by the dashed black line of slope ΣSFR ∝ Z3/14 .
But a stronger, nearly linear, dependence is seen for all gas surface densities above
solar-metallicity values, evidenced by the dashed line with slope ΣSFR ∝ Z .
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1 kpc2 pixel size. Points are median values of the 10 Myr average ΣSFR normalized
by the average ΣSFR for a given bin in Ω in each ΣHI+H2 bin. Thick (thin) error
bars denote the 25–75% (5–95%) range for resolved star formation in each bin. A
strong inverse dependence on dynamical time is seen for all gas surface densities
despite considerable scatter, as demonstrated by the dashed black line with slope
ΣSFR ∝ Ω = 1/tdyn.

Cold & Dense gas mass in each map and then divided these sums by the area
circumscribed by the stellar half-mass radius calculated for each snapshot in order
to produce analogous global KS results. Our global molecular KS relation is nearly
identical in form to that observed, but like other results involving our Cold & Dense
gas tracer, our gas surface densities appear to be underestimated by ∼ 0.5 − 0.7 dex
for Σmol & 1 M� pc2.

At our smallest pixel size (100 pc), however, none of our simulations are able to
adequately sample star formation at gas surface densities . 10 M� pc−2, given our
mass resolution; this regime is where observations exhibit the largest scatter. At
least three processes cause the correlation of the star-forming gas and young star
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particles to break down on scales less than l ∼ 500 pc. (1) The relative velocities
between star-forming gas and the young stars they produce cause them to wander
into different pixels, thus they become uncorrelated on a pixel-by-pixel basis, when
vp ∼ l/∆t. For 100 pc pixels and 10 Myr time bins, this is a relative velocity of
only ∼ 10 km s−1 (1 km s−1 for ∆t ∼ 100 Myr ), so we would expect significant
scatter to arise from this effect at the smallest pixel sizes. (2) Dynamical processes
affecting gas and star particles, like dispersion of GMCs, major mergers, or SNe,
over the time bin (i.e., 10–100 Myr) cause greater fluctuations from the power-law
average as pixel size decreases. (3)When considering small (< 1 kpc) pixels, scatter
is caused by the stochastic nature of the star formation in the simulations. Above
∼ 10 M� pc−2, the simulated and observed relations again agree in terms of slope,
but the normalization is offset by ∼ 1 dex due to the Cold & Dense gas tracer
underestimating the molecular gas fraction.

2.3.3 Redshift Independence
We find no significant redshift dependence of either the KS or Elmegreen-Silk
relations in the FIRE galaxies. The insensitivity to redshift in the simulations can be
seen in Figure 2.6 and the top panel of Figure 2.7, where the snapshots are colored
by redshift bin (z < 0.5, 0.5 − 1.5, 1.5 − 2.5, 3 − 6) and the 10 Myr-averaged ΣSFR
and neutral gas surface density are considered. Similarly, no redshift dependence
was seen for the Cold & Dense gas version of either relation; consequently, and due
to the extensively discussed issues with the Cold & Dense tracer, these results are
not shown. Some scatter is seen in the average values between redshift bins, but any
dependence on redshift is much smaller than the range of the data itself. The absence
of any redshift dependence persists for all measures of star formation rate. Though
the absolute amount of star formation varies with redshift, the correlation between
gas column and star formation rate surface density, and star formation efficiency,
remains consistent.

2.3.4 Metallicity Dependence
We see in the bottom panel of Figure 2.7 evidence of a weak dependence on
metallicity for the KS relation in the FIRE runs. For all neutral gas surface densities,
more metal-rich gas exhibits elevated star formation rates, with an admittedly large
scatter (there is significant overlap in ΣSFR range for various Z′ bins). At low gas
surface densities (∼ 1 − 10 M� pc−2), the strength of the metallicity dependence
appears to be consistent with the predictions of Krumholz et al. (2009b) and Dib
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(2011). Interestingly, none of our forms of the KS law exhibit a notable metallicity-
dependent cutoff in star formation, as somemodels predict (Krumholz et al., 2009b).
For our 10 and 100 Myr-averaged star formation rates, this may be an issue of
adequately sampling star formation rates in the “cutoff” regime of Σ̇? ∼ 10−(3−4)

M� yr−1 kpc−2. However, for the well-resolved instantaneous star formation rate,
the form of the star formation relation does not change at all for any of the metallicity
bins in the “cutoff” regime that Krumholz et al. (2009b) find. The instantaneous
star formation rate tracer, as with the averaged star formation rate tracers, presents
higher star formation rates for metal-enriched gas even at these low gas surface
densities, but the change is smooth, rather than a “threshold” effect. The metallicity
dependence does not appear to be strongly dependent on gas surface density, and
star formation rates remain consistently positively correlated with metallicity above
10 M� pc−2, differing from the model of Dib (2011), which argues for a negative
correlation owing to the metallicity dependence of pre-supernova feedback (e.g.,
momentum coupling in winds).

Figure 2.8 illustrates the strength of the metallicity dependence. Binning pixels
by gas surface density Σgas and normalizing by the average star formation rate in
each Σgas bin, we find that star formation rate surface density increases weakly with
metallicity below approximately solar metallicity and considerably stronger above
solar metallicity across all Σgas bins. This presentation of the data normalizes out
the Σgas dependence to highlight the much weaker Z dependence. A by-eye fit
of a power law with Σ̇? ∝ Z′3/14 for sub-solar metallicities and ∝ Z above solar
metallicity is plotted as a dashed black line. In the sub-solar regime, this slope
is much shallower than the slope derived later in Section 2.4.2 but on the order
of the predicted metallicity dependence of SNe feedback’s momentum injection
(ranging from ∼ 1/10 − 3/14; Cioffi et al., 1988; Martizzi, Faucher-Giguère, et al.,
2015)8. A lack of a strong dependence on gas surface density appears to indicate that
the metallicity dependence of star formation due to pre-supernova feedback effects
are subdominant compared to that of supernova feedback in the FIRE simulations
(Dib et al., 2017). Above approximately solar metallicity, a stronger, nearly linear
dependence appears. This dependence is more consistent with that derived in
Section 2.4.2, but the reasons for its appearance are unclear and warrant future

8As described in Hopkins, Kereš, Oñorbe, et al. (2014), when SNe explode in regions such that
their cooling radii will be unresolved (common in some of the lower-resolution simulations here
with particle masses & 104 M�), the ejecta are assigned a terminal momentum based on the detailed
individual explosion models from Cioffi et al. (1988), which scale as pt ∝ Z3/14. However, the
metallicity dependence in Figure 2.8 persists if we restrict only to our highest-resolution simulations.
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investigation. Though the scatter within bins is quite large, the weak (and stronger)
dependence are rather robust across all gas surface densities. A similar dependence
on metallicity was found in the Cold & Dense gas version of Figures 2.7 & 2.8, and
for brevity, we do not include them.

2.3.5 Dependence on Dynamical Time
In a similar manner to Figure 2.8, we investigate the dependence of SFR surface
density on Ω(= 1/tdyn) in Figure 2.9. Again normalizing the 10 Myr SFR surface
density to the average SFR surface density within bins of Σgas, we see a strong nearly
linear dependence of SFR surface density on Ω, as expected both for a turbulently
supported ISM, as discussed in Section 2.4.1 (see Eq. 2.6), and the thermally sup-
ported regime discussed in Section 2.4.2 (see Eq. 2.13). Interestingly this persists for
all gas surface densities, connecting the low- and high-gas-surface-density regimes.
The dependence on Ω appears to be weaker at higher gas surface densities, which
may point to an increasing prevalence of “turbulent” Toomre stability (see Eq. 2.9,
with no explicit Ω dependence).

2.4 Physical Interpretation
On the scales of tens or hundreds of millions of years, it is possible to understand star
formation as an equilibrium process (on galactic scales) in which the inputs of either
momentum injection from stellar feedback (at high gas surface density) or energy
from photoheating (at low gas surface density) balance gravitational collapse.

2.4.1 High Gas Surface Density Regime
In our analysis, there is a marked transition in the star formation rate distribution at
gas column densities above Σgas ∼ 100M� pc−2. Above this threshold, almost all the
gas forms stars on or very near theKS power law. Here, supernova feedback becomes
an increasingly important mechanism for injecting momentum into the ISM, as the
massive young stars produced are embedded in dense molecular environments to
which they can effectively couple.

A star formation relation can be derived in the limit in which the ISM is supported
against gravitational collapse by turbulent pressure (Ostriker and Shetty, 2011;
Faucher-Giguère et al., 2013; Hayward and Hopkins, 2017; Dib et al., 2017; Torrey
et al., 2017). Here, stellar feedback injects momentum into the ISM at a rate per
area proportional to Σ̇?(P?/m?), where (P?/m?) is the characteristic momentum
injected per mass of young stars formed, and is dissipated in the mass of nearby gas
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per area Σgas on some characteristic timescale related to the coherence time of the
turbulent eddies teddy, where teddy ∼ leddy/σeddy, leddy being the spatial scale of the
eddy and σeddy the turbulent velocity σT. As we are considering an approximately
disk-like environment for star formation in the high gas surface density regime, the
largest eddies will likely have length scales on the order of the disk scale height H
(Martizzi, Fielding, et al., 2016), so leddy ∼ H ∼ σT/Ω, with σT being the turbulent
velocity and Ω being the local orbital dynamical frequency. We are concerned with
the largest eddies, which contain most of the turbulent energy. Hence, the timescales
of turbulent energy dissipation scale as teddy ≈ tdiss ∼ H/σT ∼ Ω

−1. Equating these
rates of turbulent momentum injection and momentum dissipation in gas 9 , we find,

Σ̇?(P?/m?) ≈ σTΣgas/tdiss , (2.5)

substituting in our relations, this yields a star formation rate of,

Σ̇? ≈ σTΩΣgas

(
P?
m?

)−1
. (2.6)

Relating σTΩ back to the disk surface density with a modified Toomre-Q parameter
(Toomre, 1964),

Q =
κ
√

c2s + σ2
T

πGΣdisk
, (2.7)

where κ is the epicyclic frequency ∼
√
2Ω for galactic potentials, cs is the sound

speed, Σdisk ≈ Σgas +Σ? is the disk surface density. Here we include the self-gravity
contribution from the collision-less stellar component of the disk, which is correct
up to some order-unity prefactor. Assuming that we are turbulently rather than
thermally supported,

√
c2s + σ2

T ≈ σT. Substituting this in we find,

Σ̇? ≈
π
√
2

GQ
(

P?
m?

)−1
Σgas(Σgas + Σ?) . (2.8)

Adopting a fiducial value for (P?/m?) of ∼ 3000 km s−1 (e.g., Ostriker and Shetty,
2011; Faucher-Giguère et al., 2013; Kim and Ostriker, 2015; Martizzi, Faucher-

9Here lies a direct connection to the no-feedback isolated disc simulations. If star formation is
equated to the mass flux of gas into a “dense” regime times a fixed efficiency, and that dense gas
is then prevented from further star formation, we see that we expect a KS relation to arise with the
correct slope and normalization, albeit a contrived one.
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Giguère, et al., 2015), this yields

Σ̇? ≈ 3.3 × 10−2
(

P?/m?

3000 km/s

)−1
*
,

Σgas(Σgas + Σ?)

104M2
� pc−4

+
-

Q

M� yr−1 kpc−2 . (2.9)

For the gas-dominated regime, where Σgas � Σ?, we recover a quadratic relation for
star formation. Similarly, should the stellar component dominate, as may be the case
in stellar systems with older populations, a linear law in Σgas is found; this appears
to be in good agreement with the slope of the KS relation seen in the FIRE runs.

The observedweakmetallicity dependence seen in Figures 2.7& 2.8, combinedwith
the result shown in the lower left panel of Figure 2.12, which shows explicitly that
the star formation rate varies with the strength of feedback, can be partly explained
by a weak dependence of the final momentum injection from SNe feedback on the
metallicity of the surrounding gas, e.g., (P?/m?)−1 ∼ Z0.114 (Martizzi, Faucher-
Giguère, et al., 2015).

The KS relation predicted by a turbulence-supported model assuming that the stellar
surface density Σ? � Σgas, with its approximately linear power-law slope, agrees
remarkably well with the KS relation at moderately high surface density in the FIRE
simulations. Remarkably–given the simplicity of the derivation–when Equation 2.9
is used on a pixel-by-pixel basis to predict star formation rates from ΣHI+H2 and Σ?,
the predicted rates are nearly identical to the 10 Myr-averaged and instantaneous
star formation rates, extending down to ΣHI+H2 ≈ 10−1 M� pc−2.

2.4.2 Low Gas Surface Density Regime
At the other extreme of galactic environments, we consider the low gas surface
density regime in which gas is supported by thermal–rather than turbulent–pressure.
We expect this transition to occur for Σgas . 10M� pc−2 (see Schaye, 2004; Ostriker,
McKee, et al., 2010; Hayward and Hopkins, 2017, for details). In this regime, a star
formation equilibrium rate can be derived by balancing photoheating from young
stars with gas cooling. At extremely low gas surface densities, where Σgas � 1 M�
pc−2, the metagalactic UV background itself may become the predominant source of
heating, requiring no star formation at all tomaintain a thermal pressure equilibrium,
providing a physical SFR floor (Schaye, 2004; Ostriker, McKee, et al., 2010).

As derived in Ostriker, McKee, et al. (2010) as an “outer-disk” law, we can balance
photoheating with radiative gas cooling. For ionizing and photoelectric photons
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Figure 2.10: Comparison of whether self-shielding or gravitational instability de-
termines the onset of efficient star formation (see Section 2.4.3). For each radial
annulus in each galaxy (500 pc wide annuli, at each time from z = 0.5−0), we mea-
sure Q̃un−shielded

thermal (Eq. 2.15) and ΣgasZgas/Z�. We plot a heat map of the number of
pixels with each value of Q̃un−shielded

thermal and ΣgasZgas/Z�, color-coded so star-forming
annuli are red (mean Σ̇? > 10−3 M� kpc−2 yr−1) and non-star-forming annuli are
blue. Q̃un−shielded

thermal is the Toomre-Q parameter if the gas were purely thermally sup-
ported with T = 104 K; this indicates whether the gas could be thermally stabilized
against gravitational instabilities if it were not self-shielding. ΣgasZgas/Z� is a proxy
for optical depth, approximating whether or not the gas is self-shielding to ionizing
radiation. Vertical and horizontal dotted red lines indicate theQ = 1 stability thresh-
old and the self-shielding threshold derived in Krumholz et al. (2009b), respectively.
Black dotted line shows the track of varying Σgas at fixed Z′ and Ω. The onset of
star formation clearly occurs around Q̃un−shielded

thermal ∼ 1, even though the annuli are not
self-shielding–i.e., gravitational instability initiates collapse, which then produces
dense self-shielding clumps.
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dominating the gas heating, the heating rate per area is

Ėheat

l2
=

fabs βL?
l2

= fabs βεc2Σ̇? , (2.10)

where fabs(. 1) is the fraction of the emitted photoheating photons absorbed by
surrounding gas, β ∼ 0.1 is the fraction of ionizing radiation emitted by young stars
(Leitherer et al., 1999), and ε ∼ 4× 10−4 is the fraction of rest-mass energy radiated
by stars in their lifetimes. On the other hand, the cooling rate per area is

Ėcool

l2
=
ΛneniV

l2
≈
ΛZngΣgas

µ
, (2.11)

with Λ ∼ 10−22 erg s−1 cm−3 being the net cooling rate (Robertson et al., 2008); ne,
ni, and ng being the electron, ion, and gas number densities; and V ∼ l2h being the
volume of gas considered. Equating the heating and cooling rates, we find

Σ̇? ≈
ΛZngΣgas
fabsµβεc2

. (2.12)

Furthermore, we have ng = ρgas/µ ≈ Σgas/2hµ and h ≈ cs/Ω in the thermally

supported limit, as
√

c2s + σ2
T ≈ cs. Thus, we have ng ≈ ΣgasΩ/2csµ, and Σ̇?

becomes

Σ̇? ≈
ΛZΩΣ2gas

2 fabsµ2 βεc2cs
=
Σ0ZΩ

fabs

(
Σgas

Σ0

)2
, (2.13)

where Σ0 ≈ 2µ2 βεc2cs/Λ ≈ 4M� pc−2, assumingT = 104 K, for which cs ≈ 12 km
s−1. Scaling this to approximately Milky-Way values (Ω ≈ vc/R ≈ 220 km s−1/R,
Z ≈ Z�), we have

Σ̇? ≈ 1.3 × 10−3
(

Z
Z�

) (
10 kpc

R

) (
Σgas

Σ0

)2 1
fabs

M� yr−1 kpc−2 . (2.14)

The star formation rate relation for a thermally supported ISMhas the same Σ̇? ∝ Σ2gas
dependence as the turbulently supported high gas surface density regime when the
gas surface density dominates, but with an added dependence on Z and Ω. This is
similar to the relations found by Ostriker, McKee, et al. (2010) and Krumholz et al.
(2009b) at low surface densities, with their dependence on metallicity. The scaling
here is in good agreement with the FIRE runs at low gas surface densities for the
ΣHI+H2 tracer but differs from the shallower relations found by some observational
studies (Bigiel, Leroy, Walter, Blitz, et al., 2010; Roychowdhury et al., 2015).
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For low column densities, where fabs � 1 (and usually fg � 1), the fraction of
absorbed photoheating photons may go as the optical depth and thus the gas surface
density fabs ∝ (1 − exp (−τ)) ≈ τ ∝ ΣgasZ′, reducing the low gas surface density
relation to Σ̇? ∝ Σgas, degenerate in form with the relation derived for the high
gas surface density regime when fg � 1, which may explain the aforementioned
shallower observations and weak Z′ dependence seen in Figure 2.8. Similarly to
the turbulently supported regime derivation, comparing the predictive ability of
Equation 2.14 using pixel-by-pixel values of Z , Ω, and ΣHI+H2 with the measured
star formation rates, very close agreement is found for ΣHI+H2 . 10 M� pc−2, the
regime in which the relation is expected to apply (Hayward and Hopkins, 2017).

The transition between linear and quadratic dependences of the star formation rates
on the gas surface density in the KS relation, for both the low and high gas surface
density regimes may explain some of the ‘kinks’ seen in the relation by various
observers (e.g., Bigiel, Leroy, Walter, Brinks, et al., 2008).

2.4.3 Star Formation Thresholds
There remains the question of what, physically, fires up star formation in the simu-
lations in the first place. Figures 2.10 and 2.11 address this question.

Consider a radial annulus of a smooth gas disk at some large radius R. At sufficiently
large R and low densities, the disk is not self-shielding to UV radiation, and even the
metagalactic UV background is sufficient to maintain the disk at warm temperatures
T ∼ 104K. The thermal Toomre-Q parameter at this temperature:

Q̃un−shielded
thermal ≡

κ cs (104K)
πG Σdisk

≈ 1.2
(
Ω

Gyr−1

) (
M� pc−2

Σdisk

)
(2.15)

is Q̃un−shielded
thermal � 1, i.e., the disk is fully stable. In this limit, we do not expect (nor

see in our simulations) any significant star formation. In the opposite limit (in e.g.,
the centers of massive galaxies), the surface densities are high, Q̃un−shielded

thermal � 1
(i.e., thermal support, even in the warm gas, is insufficient to stabilize the disk, so
it is supersonically turbulent, with Q ∼ Qturb ∼ 1) and the gas is self-shielding. In
this limit, of course, we see efficient star formation.

What determines the transition between these two limits? It has been suggested
that when an annulus reaches a critical column density to become self-shielding, it
can suddenly cool to T � 104K, reducing the thermal pressure support of the gas
disk against fragmentation (i.e., lowering the Toomre-Q from � 1 to � 1) and so
initiating gravitational collapse and star formation (e.g., Schaye, 2004; Krumholz
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et al., 2009a). This will occur when the dust optical depth τ = Σgas κ exceeds
unity, or more accurately from Krumholz et al. (2009a), when Σgas Z′ > 27M� pc−2

(where Z′ ≡ Z/Z� reflects the assumption of a constant dust-to-metals ratio).

Alternatively, an annulus which is not self-shielding (hence at a temperatureT ∼ 104

K) will still become gravitationally unstable, when Q̃un−shielded
thermal . 1, i.e., Σdisk/Ω &

0.7 M� pc−2 Gyr. The annulus would then rapidly fragment isothermally (at
∼ 104K) at first, until individual overdensities/fragments quickly become inter-
nally self-shielding (reaching local surface densities Σgas Z′ > 27M� pc−2 as they
collapse), then cool and fragment further to form stars. During this collapse, su-
personic turbulence would be driven by gravitational instabilities and feedback to
maintain a turbulent Q ∼ 1, but the important point is that the thermal support
(Q̃un−shielded

thermal ) is insufficient.

The question is essentially which of these thresholds is reached “first.” Fig-
ure 8 examines this in our simulations by plotting all annuli in the space of
Q̃un−shielded

thermal ∝ Ω/Σdisk versus τshielding ∝ Σgas Z , and identifying those which are
and are not star-forming. Clearly, robust star formation occurs in annuli which are
not, on average, self-shielding (they have Σgas Z′ ≈ 1 − 5M� pc−2). We stress that
the small subregions where star formation is occurring within those annuli are of
course self-shielding (this is in fact required by our resolution-scale star forma-
tion model), and reach Σgas Z′ � 100M� pc−2 locally. In contrast, the onset of
star formation corresponds very closely to where Q̃un−shielded

thermal ≈ 1. This is consis-
tent with observations of star-forming spiral galaxies by Martin et al. (2001) who
found that gravitational instability thresholds were sufficient to explain the extent of
star-forming disks.

Examining Figure 2.10 further, we see that the annuli all lie on a track which
intercepts the instability threshold Q̃un−shielded

thermal ≈ 1 more than a dex below the self-
shielding threshold ΣgasZ′ ∼ 27 M� pc−2. Star formation (red pixels) is seen as
annuli cross the instability line, and the distribution then turns upwards as star for-
mation begins to enrich the annuli in Z′ without much affecting Σgas or Q̃un−shielded

thermal
instantaneously. As annuli cross into the self-shielding regime, Σgas quickly crosses
into the high-surface-density regime, and vigorous star formation results in short
depletion timescales for these annuli, preventing highly shielded, low-Q̃un−shielded

thermal
annuli from remaining long in that regime. Crossing into the self-shielded regime
appears to coincide with the rapid rise in the lower envelope of Σ̇?–these regions are
vigorously forming stars throughout and are unable to prevent themselves from cool-
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ing rapidly and fragmenting, as in Schaye (2004). Moreover, the high-Q̃un−shielded
thermal

� 10 annuli with very low ΣgasZ′ appear to come from the galactic outskirts at
several times the half-mass radii.

To verify the relative importance of gravitational instability versus self-shielding,
we also considered an idealized numerical experiment in Figure 2.11. Specifically,
we took one of our Milky Way-mass galaxy simulations (run m12i from Hopkins,
Kereš, Oñorbe, et al. 2014) and re-ran it for about ∼ 1Gyr close to z = 0 (from
z = 0.07 to z = 0), modifying the physics in the re-run. We considered two cases.

• (1) “No Self-Shielding”: In this case we disable self-shielding in our radia-
tive heating routines and do not allow any cooling below 104K.10 Clearly,
Figure 2.11 shows that gas is still able to fragment and form stars–the spatial
extent of the star formation is nearly identical to our “default” run, in fact,
indicating that cooling to T � 104K is not what determines the outer cutoff
of star formation in the disk (consistent with our argument in Figure 2.10).
The total star formation rate is also similar within 15%.

• (2) “Only Self-Shielded Gas Can Collapse”: If self-shielding always preceded
fragmentation and star formation, we should be able to disable Toomre-style
fragmentation in gas which is not self-shielding, and obtain the same result.
This is non-trivial in practice. We attempt to implement this as follows: for gas
which is self-shielding (has cooled to < 8000K and/or meets the Krumholz
et al. (2009b) criterion), the physics is “normal,” but for gas which is not self-
shielding, we add an artificial pressure term to the hydrodynamic equations
(P → Ptrue + Pfloor) where Pfloor = 4 × 10−11 (n/cm−3) (i.e. the pressure
the gas would have at 3 × 105K). The specific value is chosen to ensure the
non-shielded gas has an “effective” Toomre-Q ∼ a few (sufficient to prevent
fragmentation but not “blow up” the galaxy). When we do this, we see that
efficient star formation becomes restricted to the central ∼ kpc only (and the
total star formation rate falls by a factor ≈ 3). This central region is basically
the location of the molecular disk–i.e., the regime where the gas is entirely
molecular, since that is where the disk is uniformly self-shielding. Clearly,
this is not a good description of star formation in the “default” simulation.

10In our “no self-shielding” run, we still enforce theKrumholz et al. (2009b) requirement described
in § 2 for whether an individual gas particle is allowed to form stars, since this is (strictly speaking)
just a metallicity-dependent local surface density threshold (Σgas Z ′ > 27M� pc−2) evaluated at the
resolution scale.
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Star Formation in the Small Magellanic Cloud

The star formation threshold behavior seen in our simulations is consistent with
observations of the SMC, as measured by Bolatto, Leroy, et al. (2011) and Hony
et al. (2015). The star formation rates seen by Hony et al. (2015) agree well with
the spatially resolved KS relation when considering young star counts as a measure
of Σ̇?. Moreover, considering the metallicity and surface density of the SMC, in the
SMC body/wing, τ ∼ ΣgasZ/Z� ∼ 10 M� pc−2, and in the SMC tail, ΣgasZ/Z� ∼ 2
M� pc−2 (Oliveira, 2009; Nidever et al., 2008), the SMC body is thus not quite
at the self-shielding threshold, and the tail is certainly not. On the other hand,
when estimating Q for the SMC wing, one finds Q ∼ 2/3 and for the body Q � 1
(assuming a linearly rising rotation curve to vrot ∼ 50 km s−1 at R ∼ 3.5 kpc
found by Stanimirović et al. (2004)); hence, the SMC appears to be consistent with
gravitational instabilities triggering star formation.

2.5 Conclusions
In this chapter, we investigated the spatially resolved KS relation in the cosmological
FIRE simulations with z = 0 central halo masses ranging from 1010 M� to 1013 M�.
Our principal conclusions are the following:

• The simulated galaxies exhibit a KS-like relation with slope and scatter con-
sistent with observations. We emphasize that this relation emerges naturally
rather than being imposed ‘by hand’ because we assume an instantaneous
local star formation efficiency of 100 per cent per free-fall time, but the pre-
dicted global star formation efficiency is low, consistent with observations,
due to stellar feedback. This is true across many orders of magnitude in halo
mass and at all redshifts studied. The exact slope of the relationship between
ΣSFR and Σgas depends on the gas and star formation tracers used, but the two
quantities are tightly correlated in all cases explored.

• For the neutral hydrogen form of the relation, the simulations are observations
agree well also in terms of normalization. In contrast, for the molecular
hydrogen relation, the simulated and observed relations are systematically
offset, likely because our proxy for the molecular gas (the ‘Cold & Dense’
tracer) underestimates the truemolecular gasmass by∼ 0.5 dex for gas surface
density . 100M� pc−2.

• The time-averaged KS relation does not appear to have a significant depen-
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dence on pixel size (i.e. map resolution) for gas surface densities with suf-
ficiently resolved star formation rate distributions (i.e. above the Σgas where
the KS relation would yield at least a few young star particles per pixel given
our mass resolution; see Section 2.2), with the slope of the power law remain-
ing effectively unchanged. However, we are unable to resolve star formation
rates at gas surface densities at our smallest pixel size (100 pc), for which
observations exhibited large scatter in the KS relation (Σgas . 10 M� pc−2).

• The KS relation and star formation efficiency in the FIRE simulations is
independent of redshift. The simulations do not exhibit any metallicity-
dependent cutoff; however, the star formation rate surface density is weakly
dependent on the metallicity, on the order expected from SNe feedback’s
momentum injection dependence on metallicity (Cioffi et al., 1988; Martizzi,
Faucher-Giguère, et al., 2015).

• At the high end of gas surface density, where Σgas & 100 M� pc2 and gas
is predominantly molecular, we find that the KS relation obeyed by the sim-
ulated galaxies is consistent with injection of momentum from supernovae
balancing momentum dissipation in turbulence, or analogously, turbulent
“pressure” maintaining vertical hydrostatic equilibrium (Ostriker and Shetty,
2011; Faucher-Giguère et al., 2013; Hayward and Hopkins, 2017). This ex-
planation yields a power law independent of redshift or metallicity at high gas
surface densities, where Σ̇? ∝ ΣgasΣdisk (see §4.1). Because the disks in our
simulations are not particularly gas rich, we find a slightly steeper than linear
KS relation in this regime.

• In regions of low gas surface density (Σgas . 10 M� pc−2), characteristically
in galaxy outskirts and regions between spiral arms, our spatially resolved
KS relation agrees well with that expected from a simple local equilibrium
between photoheating from ionizing, or near-ionizing, radiation from young
stars and radiative gas cooling. This argument yields a Σ̇? ∝ ZΣ2gas power law
(see §4.2), as discussed in Ostriker, McKee, et al. (2010) and Hayward and
Hopkins (2017).

• Vigorous star formation begins as gas self-gravity overcomes the gas thermal
pressure gradient, thus making the gas Toomre-unstable. This self-gravity
driven collapse occurs around Σgas ∼ 1M� pc−2, an order of magnitude before
the gas becomes self-shielding to UV radiation, at Σgas ∼ 27 M� pc−2. Thus,
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wefind that in the FIRE simulations, star formation is triggered by gravitational
instabilities, which then cause the gas to fragment and collapse, thereby
becoming self-shielding to ionizing radiation, cooling rapidly, and forming
stars. The threshold for gravitational instability, Q ∼ Ω/Σdisk, depends only
on the density of gas and stars, i.e. the criterion for warm gas (T & 104

K) to support itself thermally against fragmentation, and subsequently star
formation, is independent of both Z and z.

Future observationswith high spatial resolution and sensitivity to low surface bright-
nesses should aid in understanding the outskirts of galactic environments where star
formation is on the brink of firing up and the surface densities of gas and stars
are near the thresholds of gravitational instability and self-shielding. This will
help determine if gravitational fragmentation–rather than self-shielding–is indeed
the primary triggering mechanism of star formation. Similarly, future work imple-
menting chemical networks and radiative transfer post-processing in cosmological
simulations will help bridge the gap between simulated tracers of star formation and
molecular gas and resolved observations.
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Robustness of Star Formation Rates to Variations in Star Formation, Cooling,
and Stellar Feedback
Here, we demonstrate the robustness of the star formation rate in the FIRE simula-
tions to reasonable changes in the implemented star formation, cooling, and stellar
feedback physics (reviewed in detail in Hopkins, Kereš, Oñorbe, et al., 2014). A
number of previous studies have consistently demonstrated the convergence of star
formation rates and the KS relation, with resolution and numerical implementa-
tions of star formation (Saitoh et al., 2008; Federrath et al., 2012; Hopkins et al.,
2012a; Hopkins, Kereš, Murray, et al., 2013; Hopkins, Cox, et al., 2013; Hopkins,
Narayanan, et al., 2013; Hopkins, Torrey, et al., 2016; Agertz, Kravtsov, et al.,
2013). In Figure 2.12, we illustrate this with a set of simple tests using the newest
version of the code (part of a more general numerical study, presented in detail in
Hopkins, Wetzel, et al., 2018). In each case, we re-start the same Milky-Way mass
simulation (m12i from Hopkins, Kereš, Oñorbe, et al., 2014, as in Section 2.4.3 in
the text), and re-run it from z = 0.07 − 0 with different numerical choices. This
ensures the initial conditions are identical; Σgas for the galaxy, for example, is fixed,
so we can simply read off from the star formation rate whether the galaxy’s location
in the KS law would change.

We compare our default star formation model, using the criteria enumerated in
Section 2.2, here with ncrit = 1000 cm−3 and ε sf = 1, where ε sf represents the local
efficiency with which gas turns into stars in a free fall time, i.e., ρ̇? = ε sf ρmol/tff ,
to variations with ε sf = 0.01 − 100, ncrit = 5 − 1000 cm−3, and turning on/off the
additional virial and molecular criteria. We find that the star formation rate (and
indeed the entire spatially resolved KS relation) is effectively the same in all cases.

The gas in the restarts responds dynamically to these changes in the star formation
prescription, as seen in Figure 2.13. Variations in ncrit allow gas to evolve to
higher/lower densities before turning into stars rapidly, seen in the rapid fall-off of
the densest gas in the various models. Changes in ε sf yield similar results, with
smaller ε sf values allowing gas to continue evolving to higher physical densities.
Removing the virial and molecular criteria appears to have the same effect as



58

100

101

SF
R

[M
�

yr
−

1 ]
ncrit = 1000cm−3, εsf = 1
No Virial/Molecular Criterion
ncrit = 5cm−3

ncrit = 100cm−3

εsf = 0.01
εsf = 100

Default Chemistry/Cooling
                          Chemistry/Cooling

0100200300400500600
Lookback Time [Myr]

100

101

SF
R

[M
�

yr
−

1 ]

Default Feedback
Weak Feedback (×1/3)
Strong Feedback (×3)

0100200300400500600
Lookback Time [Myr]

m = 5.6e4
m = 4.7e5

m = 2.8e3

Simplified

baryon
baryon
baryon

Figure 2.12: Star formation rate versus time in our MW-mass (m12i) simulation
from redshift z ≈ 0.07 − 0; the simulation was restarted at z = 0.07 and run with
varying parameters to study the effect on the star formation rate given the same
initial galaxy properties. Top Left: Effect of the resolution-scale star formation
criteria. In our “default” model, gas that is self-gravitating, molecular, and dense
(n > ncrit = 1000 cm−3) forms stars at a rate ρ̇ = ε sf ρmol/tff , with ε sf = 1.
We compare (1) removing the self-gravity & molecular restrictions, (2–3) varying
ncrit, and (4–5) varying ε sf . Bottom Left: We vary the strength of feedback by
multiplying/dividing the rates of all mechanisms per unit stellar mass by three
relative to the predictions from the stellar evolution models. Top Right: Default
physical cooling model compared with a toy model that ignores all low-temperature
cooling physics and puts all gas on a single, solar-metallicity cooling curve. Bottom
Right: Resolution effects, changing the baryonic particle mass. The results of this
figure show that only the strength of feedback significantly alters the star formation
rate at fixed Σgas, varying the sub-grid star formation law has essentially no effect.
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Figure 2.13: Gas number density CDF in our MW-mass (m12i) simulation at
redshift z ≈ 0 for the various star formation model test runs in the upper left panel of
Figure 2.12. The CDFs evolve dynamically such that the “correct” amount of dense
gas forms to support the required SFR to regulate the galaxy. In our (new) “default”
model, with the highest ncrit = 1000 cm−3more gas evolves to higher densities before
turning into stars, compared to the other SF models except for our low-efficiency
run. Removing the virial and molecular thresholds is nearly equivalent to drastically
reducing ncrit (it had ncrit = 100 cm−3) or increasing ε . Intuitively, holding ρ̇?
constant in Eq. 2.2, i.e., the SFRs converge to the ‘necessary’ value, we expect that
n ∝ ε−1/2. Indeed, we see that increasing ε by a factor of 100 moves the gas density
CDF a dex towards lower densities.

lowering the density threshold or raising the local star formation efficiency, likely
as more of the gas just above the threshold is converted to stars rapidly that is
not necessarily bound. All the while, the star formation rates in the restarts are
essentially unchanged; we see that the gas in the galaxies is dynamically evolving to
produce the ‘correct’ star formation rate to regulate itself. Detailed observations of
the gas density CDF in the Milky Way and nearby galaxies may thus help constrain
sub-grid star formation prescriptions to produce realistic gas density distributions,
without altering the overall star formation rates in the simulations.

In Figure 2.12, we also vary our cooling model, replacing all low-temperature
cooling physicswith a single cooling rate, putting all gas on a single, solar-metallicity
cooling curve, and removing the molecular star formation requirement. We see that
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there is no effect on the star formation rate; we similarly find no effect on the outflow
rate or global morphology. Details of the phase structure, of course, differ, but
these have no large dynamical effect, consistent with various previous studies that
have found that almost all gas in galaxies is supersonically turbulent and has cooling
times much shorter than their dynamical times (Hopkins et al., 2011; Hopkins et al.,
2012b; Glover et al., 2012).

We also explicitly consider the mass resolution convergence by up- and down-
sampling the particle distribution with particle splitting/merging. We find that the
star formation rate is nearly identical over ∼ 2.5 dex in mass resolution, even a
factor of ∼ 10 lower resolution compared to our “standard FIRE” resolution. This is
consistent with our argument in Section 2.2 that we only need to marginally resolve
the Toomre scale to achieve convergence in the star formation rate because the most
massive clouds dominate star formation (Williams et al., 1997).

As seen in the bottom left panel of Figure 2.12, variation in the strength of feedback
per mass of young stars is the only effective means of changing the star formation
rate. As galaxies self-regulate for a given level of feedback, changing the strength
of feedback systematically results in higher star formation rates for lower levels of
feedback per star and vice versa. This is consistent with our scalings in Section 2.4.

Various Molecular Gas Mass Proxies in the FIRE Simulations
As compared to the neutral gas (atomic and molecular) mass, predicting the molec-
ular mass in the FIRE simulations alone is difficult, as cooling and self-shielding are
calculated using approximate look-up tables and are not done fully self-consistently
with radiative transfer at the particle scale (see Hopkins, Kereš, Oñorbe, et al., 2014,
for details of the numerical implementation of cooling and shielding effects in FIRE-
1). For reasons presented in Appendix 2.5, getting the cooling and shielding even
grossly incorrect in the coolest, densest gas generally has no dynamical effect on the
simulations but does greatly affect the high-density tail of the gas volumetric-density
distribution. Similarly, the gas density threshold for star formation and the instanta-
neous local star formation efficiency assumed affect the time that gas spends at the
highest resolvable densities (see Figure 2.13). What truly constitutes molecular gas
in the simulations, or what would be observed as such, requires careful forwardmod-
eling of the chemical abundances and molecular line emission. That, coupled with
large uncertainties in the gas phase structure at low temperatures and its dependence
on the aforementioned grid/particle-scale star formation and cooling prescriptions
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Figure 2.14: Comparison of three of proxies for the molecular gas surface density
in the KS relation at 1 kpc2 from a subset of the galaxy simulations presented in
this work from z ≈ 0.2 − 0. Points, error bars, and shaded regions are in the style
of Fig. 2.2. The Cold & Dense (< 300 K and > 10 cm−3) tracer is calculated at
the particle level, whereas the H2 masses predicted by the fits from Leroy, Walter,
Brinks, et al. (2008) and Krumholz et al. (2009b) are calculated using the kpc-
averaged quantities in the mapped pixels. We also apply the Krumholz et al. (2009b)
fit directly to the gas particles themselves, as is done in calculating the SFRs in FIRE.
The molecular-KS relations obtained when using the Leroy, Walter, Brinks, et al.
(2008) and Krumholz et al. (2009b) fits at the pixel scale are more consistent with
observations than when the Cold & Dense tracer is used, or when the Krumholz
et al. (2009b) fit is applied at the particle scale. At fixed SFR surface density, these
particle-level tracers yield molecular gas surface densities ∼ 0.5 dex lower than
those obtained using kpc-scale fits. This result suggests that the FIRE simulations
are producing ‘correct’ SFRs given the large-scale properties of the ISM (mid-plane
pressure and dust opacity), but insufficient gas is able to remain in or reach the highest
resolvable densities in the simulations. Other proxies for the molecular gas mass,
including a warmer temperature cut (3000 K), yield molecular fractions between
the extremal cases presented here. These results suggest a ∼ 0.5 dex uncertainty
in our estimates of molecular gas surface density, with the Cold & Dense tracer
systematically biased low.



62

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

log(Σneut [M� pc−2])

−2

−1

0

1

2

lo
g
(Σ

C
&

D
[M
�

p
c−

2
])

fH2

=
1

fH2

=
0.3

3

fH2

=
0.1

KMT + 09 Z ′ = 0.1

KMT + 09 Z ′ = 1.0

KMT + 09 Z ′ = 2.5
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0.1 (Z ≈ Z�) in the FIRE simulations, with pixel sizes of 1 kpc. Colored (yellow, red,
green, blue) contours indicate (95-, 90-, 70-, 50-)th-percentile-inclusion contours of
the data. Black (dashed, dash-dotted, dotted) lines represents fH2 = (1, 0.33, 0.1).
Colored lines (cyan, black, magenta) represent fH2 molecular fraction fits for various
metallicities (Z/Z� = 0.1, 1.0, 2.5) from Krumholz et al. (2009b). The core of
the “molecular fraction” (as represented by ΣC&D/Σneut) has a steeply rising slope
between 0.5 < log Σneut < 1.0. However, the Cold & Dense fraction does not
converge to unity as quickly as the fits from Krumholz et al. (2009b) at solar
metallicities and has a tail of high fractions to lower gas surface densities, below
their metallicity-dependent thresholds.
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leaves us with crude, though physically motivated, proxies for molecular gas masses
in the simulations. In this work, we have used a conservative estimator for molecular
gas, our Cold & Dense (T < 300 K and nH > 10 cm−3) gas tracer. We compare this
explicitly with two other empirical estimators for molecular gas at the kpc-scale,
and one other local (e.g., few pc) estimate, in Figure 2.14. There, we compare an
estimator from Leroy, Walter, Brinks, et al. (2008), for which the molecular fraction
is taken to be directly proportional to the mid-plane pressure of the ISM, which
is calculated using both the gas and stellar surface densities and dynamical times
(see Blitz et al., 2006, from which they adapt their empirical estimator), and fits for
the molecular fraction from Krumholz et al. (2009b) relating to local dust opacity
applied both at the pixel (kpc) and at the particle (pc) scale.

The two empirical estimators lie roughly 0.5 dex above the Cold & Dense gas
tracer at all gas surface densities and are in better concordance with observations,
uncertainties in them notwithstanding (see Appendix 2.5). Due to the steepness of
the Krumholz et al. (2009b) fitting function at the atomic-to-molecular transition,
∼ 10M� pc−2, very few kpc-scale pixels contribute to the data shown (becausemany
kpc-scale pixels have log ΣH2 � −1), indicating the necessity of assuming clumping
factors when applying these fits on scales larger than GMCs themselves in low-gas
surface density environments (e.g., disk outskirts). This ∼ 0.5 dex discrepancy
indicates three things: (1) the FIRE simulations do appear to produce correct SFRs
for the large-scale pressure of the ISM, (2) the SFRs are in concordance with
those expected given the large-scale optical depths of the ISM, and (3) the FIRE-
1 simulations appear to either produce insufficient high-density gas or consume
high-density gas more quickly than expected. Points (1) and (2) lend credence to
trusting the large-scale structure and dynamics of the ISM and the FIRE simulations;
however, point (3) indicates that we have not yet converged on producing a realistic
phase structure of the ISM at the highest densities near our resolution limits (noting
that in FIRE-1 the gas density threshold for star formation is ∼ 50 cm−2, quite low
compared to the densities of PDRs and the critical density of 12COHollenbach et al.,
1999). We compared several other estimators for the molecular fraction, including
a less stringent temperature cut (T < 3000 K) and a stellar surface density fit
(ΣH2/ΣHI ∝ Σ?) also explored in Leroy, Walter, Brinks, et al. (2008), but omit them
for clarity as they all lay between the extremal values of the Cold & Dense tracer at
the low end and the Leroy, Walter, Brinks, et al. (2008)/Blitz et al. (2006) empirical
pressure and Krumholz et al. (2009b) opacity fits at the high end. Reconstructing
the fH2 fraction of the particles themselves using the fits of Krumholz and Gnedin
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(2011) used in GIZMO (also seen in the figure), however agrees more closely
(underestimating only by ∼ 0.1 dex) with the Cold & Dense gas tracer. The fact
that the same estimator applied at the pc- and kpc-scales can produce results with
0.5 − 0.7 dex differences likely owes to point (3) and the difficulties in estimating
the local column depths for shielding. Throughout the main body of this chapter,
we use the Cold & Dense tracer as a lower limit on the molecular gas column
and acknowledge a ∼ 0.5 dex uncertainty in our dense gas tracer, dependent on
our choice of proxy in order to most fairly show the range of tension between our
results and observations given that choice. In Figures 2.2, 2.3 & 2.5, we use arrows
to indicate how shifting the molecular gas surface densities based on the Cold &
Dense tracer 0.5 dex higher would bring the simulations and observations in closer
agreement.

We explicitly compare the approximate molecular fraction versus neutral gas surface
density relation obtained using the Cold&Dense gas proxy (T < 300K and nH > 10
cm−3) to fits from Krumholz et al. (2009b), with 1 kpc pixels. A plot of ΣC&D, the
Cold & Dense gas surface density, versus Σneut, the total neutral gas (HI + H2)
surface density for gas with approximately solar metallicity (Z�±0.1 dex), is shown
in Figure 2.15. Compared to the steep atomic-to-molecular transition thresholds
found by Krumholz et al. (2009b), the ratio ΣC&D/Σneut converges much more
slowly to unity (only near ∼ 100 M� pc−2). The bulk of pixels (∼ 70%) lie below
fH2 = 0.33, thus indicating that the Cold & Dense gas tracer is likely consistently
underestimating the molecular fraction by 0.5 − 1 dex for Σgas > 10 M� pc−2. For
gas surface densities between 1 − 10 M� pc−2, it is unclear how much of the high
values for the molecular fractions at low gas surface densities is due to beam-filling
(i.e., cloud-counting) effects, and it is unclear whether the Cold & Dense gas tracer
is over- or underestimating the molecular fractions there.

Uncertainty in XCO for Observed ΣH2 and Tension with Simulations
All of the observations to which we compare our results infer molecular hydrogen
masses from CO emission using a single- or bimodal-CO-to-H2 conversion factor,
XCO, which is used to convert from CO linewidth W(12C16O J = 1 → 0) to H2

column density N(H2) using the following relation:

N(H2) = XCOW(12C16O J = 1→ 0) , (2.16)

The value of XCO is on the order of 1020 cm−2/(K km s−1) (see Bolatto, Wolfire,
et al., 2013, for a review on the XCO conversion factor), but there is tremendous
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disagreement about the exact value it takes and its dependences on surface density,
metallicity, and other parameters. As a result, we find it necessary to understand
the extent to which the observational data can vary for differing, but reasonable,
assumptions about XCO. Figure 2.16 shows how various choices for the value of
XCO affect the tension between observations and our “standard" tracers of atomic
+ molecular (ΣHI+H2) and Cold & Dense (∼ ΣH2) gas surface density. We compare
three conversion factors: (left column) a “star-forming disk" XCO = 2×1020 cm−2/(K
km s−1), a value widely adopted for low-redshift observations of Milky-Way like
galaxies (Strong et al., 1996; Dame et al., 2001; Bigiel, Leroy, Walter, Brinks, et al.,
2008; Genzel et al., 2010; Shapiro et al., 2010; Wei et al., 2010; Tacconi et al., 2013;
Amorin et al., 2016); (middle column) a “starburst" XCO = XCO, disk/3.2 which is
a factor of 3.2 smaller than the disk conversion factor, owing to the fact that at
high gas surface densities in extreme star-forming systems the disk XCO predicts
gas masses in excess of observed dynamical masses, which is a known problem for
ULIRG observations (Solomon, Downes, et al., 1997; Downes et al., 1998; Solomon
and Vanden Bout, 2005; Bothwell et al., 2010); and (right column) a variable XCO

interpolation function based on Narayanan et al. (2012). We take the form of the
Narayanan et al. (2012) interpolation function to be

XCO = min[4, 6.75 ×W−0.32CO ] × 1020
cm−2

Kkm s−1
, (2.17)

which is identical to that presented in their work11, assuming a solar gas metallicity
(see Ostriker and Shetty, 2011, for a comparable interpolation function). We recal-
ibrate all of the observations enumerated in Section 2.2.1 for the KS relation using
the XCO value predicted using Eq. (2.17). To correct the ΣHI+H2 measurements,
we decomposed the total column into atomic and molecular components (the latter
then being corrected in the manner of the ΣH2 values) using data from the refer-
ences themselves, where available, or assuming a molecular fraction fit from Leroy,
Walter, Brinks, et al. (2008) when necessary.

In Appendix 2.5, we demonstrated that the ratio of Cold & Dense tracer to the
neutral hydrogen surface density slowly converges to one above ∼ 10 M� pc−2 and
hovers ∼ 0.5 dex below other empirical fits and the neutral gas surface density in
the KS plane until & 100 M� pc−2. Considering this, adopting the disk XCO leads
to large disagreement at the highest gas surface densities, which we believe our
molecular gas surface density proxy is nearly converged for (and other studies of the

11It is noted that their normalization/maximum XCO is twice that of the “star-forming disk" XCO
factor.
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FIRE simulations have shown that the centers of our Milky Way-mass galaxies are
not outliers in terms of gas surface density or star formation rate, Hopkins, Kereš,
Oñorbe, et al., 2014; Hopkins, Torrey, et al., 2016; Torrey et al., 2017), whereas a
purely “starburst" XCO seems to suggest our simulations are over-predicting neutral
gas surface densities by ∼ 0.5 dex everywhere but at the most extreme gas surface
densities. Given that there is little support for either of these values of XCO holding
for all gas surface densities, it is reasonable to use an interpolation function, such as
that of Narayanan et al. (2012), for the range of observations.

Otherwise, between the disk and starburst XCO factors a ∼ 0.5 dex uncertainty
exists, before even considering reasonable additional factor of a few differences in
those values themselves (Bolatto, Wolfire, et al., 2013). This level of variation is
on the order of the difference between extremal estimators of our molecular gas
masses (see the difference between the Cold & Dense tracer and the Krumholz et al.
2009b relation applied to individual pixels shown in Figure 2.14). Although the
Cold & Dense gas tracer is clearly a conservative estimate of the molecular gas mass
in the simulations and more careful forward-modeling of CO emission is clearly
necessary (motivating a future work), the uncertainty in the observational value of
XCO makes it difficult to determine the absolute level of (dis)agreement between
observations and simulations (all simulations, not just the FIRE simulations) at the
∼ 0.5 − 1 dex level. As a result, in order to attempt to compare the results from
FIRE on an appropriate footing with the observations throughout this chapter, which
both cover a parameter space of star formation rates and gas surface densities in
both the “star-forming disk" and “starburst" regimes, we recalibrate the compiled
observations with the Narayanan et al. (2012) XCO interpolation function.
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C h a p t e r 3

STACKED STAR FORMATION RATE PROFILES OF BURSTY
GALAXIES EXHIBIT ‘COHERENT’ STAR FORMATION

“Stacking is Hacking” – Dr. Christopher C. Hayward

Orr, M. E. et al. (2017) ApJ 849, L2

ABSTRACT

In a recent work based on 3200 stacked Hα maps of galaxies at z ∼ 1, Nelson et
al. find evidence for ‘coherent star formation’: the stacked SFR profiles of galaxies
above (below) the ‘star formation main sequence’ (MS) are above (below) that of
galaxies on the MS at all radii. One might interpret this result as inconsistent with
highly bursty star formation and evidence that galaxies evolve smoothly along the
MS rather than crossing it many times. We analyze six simulated galaxies at z ∼ 1
from the Feedback in Realistic Environments (FIRE) project in a manner analogous
to the observations to test whether the above interpretations are correct. The trends
in stacked SFR profiles are qualitatively consistent with those observed. However,
SFR profiles of individual galaxies aremuchmore complex than the stacked profiles:
the former can be flat or even peak at large radii because of the highly clustered
nature of star formation in the simulations. Moreover, the SFR profiles of individual
galaxies above (below) the MS are not systematically above (below) those of MS
galaxies at all radii. We conclude that the time-averaged coherent star formation
evident in stacks of observed galaxies is consistent with highly bursty, clumpy star
formation of individual galaxies and is not evidence that galaxies evolve smoothly
along the MS.
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3.1 Introduction
Given that star formation is one of the fundamental processes driving galaxy for-
mation, it is crucial to understand what governs star formation, both on local and
galactic scales. One of the open questions regarding star formation on galactic
scales is whether it is coherent in space and/or time because of, e.g., gas accretion or
environmental effects or highly stochastic because of, e.g., violent stellar feedback.
The relatively tight correlation found between the star formation rate (SFR) and stel-
lar mass (M∗) of actively star-forming galaxies at a range of redshifts (Brinchmann
et al., 2004; Noeske et al., 2007; Peng et al., 2010; Wuyts et al., 2011), commonly
referred to as the star formation main sequence (MS), is sometimes taken as evi-
dence of the former. In particular, some authors argue that galaxies evolve smoothly
along the sequence (rather than cross it), as is typically the case in large-volume
cosmological simulations (such as those of the Illustris and EAGLE projects; Vo-
gelsberger et al. 2014; Schaye et al. 2015) that rely on sub-grid ISM models. In
such simulations, galaxies maintain their positions relative to the locus of the MS
for � 100-Myr timescales (Sparre, Hayward, Springel, et al., 2015; Schaye et al.,
2015). However, high-resolution cosmological zoom-in simulations that include
explicit multi-channel stellar feedback suggest that star formation is very bursty in
some regimes (due to the clustered nature of star formation, violent stellar feedback,
galactic fountains, and stochastic gas inflow), including at high redshift. This bursti-
ness causes galaxy-scale star formation to be a chaotic process in which galaxies
cross the MS many times rather than evolve smoothly along it (Hopkins et al., 2014;
Muratov et al., 2015; Sparre, Hayward, Feldmann, et al., 2017; Faucher-Giguère,
2018).

Recent works (e.g., Nelson, van Dokkum, Förster Schreiber, et al., 2016; González
Delgado et al., 2016) have investigated the average radial SFR profile of galaxies at a
given mass and redshift by stacking Hα maps of hundreds to thousands of galaxies.
In particular, this work is motivated by the work of Nelson, van Dokkum, Förster
Schreiber, et al. (2016), who, based on a stacking analysis of 3200 galaxies, found
evidence for what they term ‘coherent star formation’: at a given mass and redshift,
galaxies above (below) the MS have stacked SFR profiles above (below) those of
MS galaxies at all radii; in contrast, their stellar mass profiles are nearly identical.
This might be interpreted as evidence for smooth evolution of galaxies along and
parallel to the MS, with coherent elevation (suppression) of star formation at all
radii for galaxies above (below) the MS. In other words, galaxies above (below) the
main sequence remain above (below) the main sequence for long periods of time.
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This scenario is seemingly inconsistent with very bursty star formation, i.e., SFR
variations of an order of magnitude or more on timescales . 100 Myr.

To determinewhether highly bursty star formation is consistent with the observations
of Nelson, van Dokkum, Förster Schreiber, et al. (2016), we investigate the radial
SFR, stellar mass, and specific SFR (sSFR) surface density profiles of simulated
galaxies from the Feedback in Realistic Environments (FIRE) project1. We analyze
the simulated galaxies in a manner analogous to the observations to understand
the differences amongst the profiles of galaxies that lie above, on, and below the
MS, and we compare individual galaxy profiles with the stacked profiles. We
show that despite the star formation in the FIRE galaxies being highly bursty at the
redshifts of interest,2 which causes them to cross the MS many times rather than
evolve parallel to it, the stacked profiles exhibit trends similar to those observed.
Consequently, we conclude that the time-averaged coherent star formation evident in
stacks of observed galaxies is consistent with highly bursty, clumpy star formation of
individual galaxies and is not (necessarily) evidence that galaxies evolve smoothly
along the MS.

3.2 Methods
We investigate the radial star formation profiles of a selection of the FIRE-1 galaxy
simulations originally presented in Hopkins et al. (2014) and Chan et al. (2015),
which were run using gizmo (Hopkins, 2015) in its pressure-energy smoothed par-
ticle hydrodynamics (P-SPH) mode (Hopkins, 2013). The physics, source code,
and all numerical parameters are identical to those in all other FIRE-1 simulations.
The simulations incorporate cooling from 10 − 1010K, including atomic, molec-
ular, and metal-line cooling processes and accounting for photo-heating by a UV
background (Faucher-Giguère et al., 2009), in addition to self-shielding. Stars form
only in dense (n & 50 cm−3), self-gravitating, self-shielding, molecular gas. Multi-
channel stellar feedback from supernovae, radiation pressure from massive stars,
stellar winds, and photo-ionization/heating is treated explicitly based on the outputs
of the starburst99 (Leitherer et al., 1999) stellar evolution models, assuming a
Kroupa (2002) IMF. The stellar and gas masses and stellar half-mass radii of the
simulations analyzed here at z ≈ 1 are presented in Table 3.1.

1http://fire.northwestern.edu
2In the FIRE simulations, galaxies with M∗ & 1010 M� exhibit highly bursty star formation at

high redshift and transition to steady star formation at z . 1; lower mass galaxies always exhibit
bursty star formation (Sparre, Hayward, Feldmann, et al., 2017).
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Figure 3.2: Tracks of two individual galaxy runs from each M? bin (individually
colored) in the SFR-M? plane for 0.7 < z < 1.5. Ṁ? is the 100 Myr-averaged
SFR within the central 20 kpc of each main halo; M? is calculated within the same
aperture. Solid blue (green) lines indicate the star formation main sequence (MS) in
the redshift interval 0.5 < z < 1.0 (1.0 < z < 1.5) found by Whitaker et al. (2014);
the shaded regions represent the intrinsic scatter of 0.2 dex found by Speagle et al.
(2014). The dashed colored boxes indicate the cuts used in this work to classify
galaxies as above (blue), on (black), or below (red) the MS. At these redshifts, FIRE
galaxies have rapidly changing SFRs and do not evolve parallel to the MS but rather
cross it many times.
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Figure 3.3: Stacked SFR (top row), sSFR (middle row), and neutral gas (bottom
row) surface density profiles (binned into 1 kpc annuli) for two stellar mass bins,
8.4 < log(M?/M�) < 9.4 (left column) and 9.6 < log(M?/M�) < 10.2 (right
column), for 0.7 < z < 1.5. Prior to stacking, in each mass bin, the galaxies have
been separated according to their position relative to the MS: above (blue dashed
line), on (black solid), or below (red dash-dotted). The SFR, sSFR, and Σgas profiles
generally decrease monotonically with radius. Moreover, the stacked profiles of
galaxies above (below) the MS are above (below) those of MS galaxies at nearly all
radii.
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Figure 3.4: Top: SFR surface density profiles of randomly selected individual
snapshots (at 0.7 < z < 1.5) with 9.6 < log(M?/M�) < 10.2, including those
above (blue dashed), on (black solid), and below (red dash-dotted) the MS (four
of each type). Error bars have been omitted for clarity. The (10 Myr-averaged)
SFR profiles of galaxies above (below) the MS are not systematically above (below)
those of MS galaxies. Moreover, in some cases, the profiles peak at large radii.
Bottom: Consistent results are seen for randomly selected snapshots of a single
galaxy run,m12v, in the same redshift and mass bins. Stacking reflects the fact that
star formation in the simulated galaxies is coherent in a time-averaged sense even
though individual galaxies evolve in a bursty manner and not parallel to the MS.
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Table 3.1: Simulation Properties at z = 1

Name M? Mgas Rhalf
(109M�) (109M�) (kpc)

m11h383† 1.1 2.3 2.9
m11 0.81 2.3 5.4
m11v 1.7 1.2 5.9
m12q 13 2.3 3.3
m12i 12 6.8 5.4
m12v 13 2.7 6.4
(1) Name: simulation designation.
(2–3) M?,Mgas: Stellar & gas masses in maps.
(4) Rhalf: Stellar half-mass radius.
† Except for m11h383 (Chan et al., 2015),
all simulations are from Hopkins et al. (2014).

To probe the radial SFR profiles in the simulations, we use spatially resolved face-
on projected maps of SFR and stellar mass surface density from simulated galaxies
spanning redshifts z = 0.7 − 1.5 produced by Orr et al. (2017). To compare the
snapshots with the observations of Nelson, van Dokkum, Förster Schreiber, et al.
(2016), we use maps with 1 kpc2 pixels centered on the centers of the stellar
mass distributions in the snapshots. 10 Myr-averaged SFR maps are computed by
summing the stellar mass in young (< 10Myr) star particles in each pixel, correcting
for the mass lost due to stellar evolution effects using starburst99 (Leitherer et al.,
1999), and dividing by 10 Myr. This time interval approximately corresponds to the
timescale traced by recombination lines such as Hα (Kennicutt et al., 2012).

3.3 Results
Fig. 3.1 shows several individual SFR surface density maps and the result of stacking
many maps from the same M? bin, in addition to their respective radially averaged
SFR and stellar mass surface density profiles. The top row shows three of the 10
Myr-averaged SFR maps of the m12v central galaxy from Hopkins et al. (2014) at
z ≈ 1.4, with M∗ ∼ 1010 M�, with 1 kpc pixel sizes, and their associated radially
averaged SFR and stellar mass surface density profiles. The SFR profiles of the
galaxy vary considerably from z = 1.42− 1.36 and are not always centrally peaked.
The bottom row shows the result of stacking the SFR maps of 205 snapshots in
total, from three distinct galaxies (∼ 70 from each, with ∆z = 0.01 spacing3) in the
9.6 < log(M?/M�) < 10.2 stellar mass bin. For all radial profiles shown in this

3For 0.7 < z < 1.5, the snapshot spacing of ∆z = 0.01 corresponds to time spacing of 25 − 56
Myr.
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work, we compute the error bars by bootstrap resampling the pixels in the annuli
following Nelson, van Dokkum, Förster Schreiber, et al. (2016). In the stacked map,
we see a much smoother and more azimuthally symmetric spatial distribution, and
the corresponding radially averaged profiles are smoother, monotonically decreasing
functions of radius. Here, by averaging hundreds of snapshots of galaxies of similar
mass, we recover the fact that the simulated galaxies have higher gas densities in
their centers, and thus form more stars there on average. However, the SFR profiles
of individual galaxies at a given time can differ dramatically from the stacked profile.
In contrast, the stacked stellar mass profile is fairly representative of the individual
profiles.

Fig. 3.2 shows tracks of four simulated galaxies in the SFR-M? plane for 0.7 <

z < 1.5; the 100 Myr-averaged SFR is employed. The observed MS (Whitaker
et al., 2014) and scatter (Speagle et al., 2014) in two redshift bins intersecting this
interval are shown. In this redshift andmass range, the individual simulated galaxies
experience significant (sometimes order of magnitude or more), rapid (timescales
. 100 Myr) SFR variations (see Sparre, Hayward, Feldmann, et al. 2017 for a
detailed study) and clearly do not evolve parallel to the MS.4

Following Nelson, van Dokkum, Förster Schreiber, et al. (2016), we label individual
snapshots as being above, below, or on an MS determined by the distribution of the
galaxy-integrated 100 Myr-averaged SFRs in a given M? bin (because Nelson, van
Dokkum, Förster Schreiber, et al. 2016 classify galaxies relative to theMS according
to their UV+IR SFRs, and for actively star-forming galaxies, this indicator traces the
SFR over the past ∼ 100 Myr; Kennicutt et al. 2012; Hayward, Lanz, et al. 2014).
For a given M? bin, we rank the galaxies by SFR and consider the median value to
be the locus of the MS. We then employ the same SFR cuts as Nelson, van Dokkum,
Förster Schreiber, et al. (2016), defining galaxy snapshots within ±0.4 dex of the
median SFR to be on the MS and those +0.4− 1.2 dex and −(0.4− 0.8) dex away to
be above and below the MS, respectively. These cuts are represented by the dashed
colored boxes in Fig. 3.2.

We then stack individual galaxy maps according to their position with respect to the
MS in two bins of M∗, producing average SFR, specific SFR, and neutral gas (atomic
+ molecular) surface density profiles, which are presented in Fig. 3.3. We see that
for both M? bins, the stacked SFR profile of galaxies above (below) the MS is above

4The galaxies’ stellar masses do not increase monotonically in time because the stellar mass is
computed within a radius of 20 kpc from the halo center; when satellites leave the aperture, the total
stellar mass can decrease.
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(below) the SFR profile of galaxies on the MS at nearly all radii, i.e., star formation
appears to be coherently enhanced (suppressed) at nearly all radii in galaxies above
(below) the MS. Moreover, the stacked SFR profiles exhibit a similar approximately
exponential shape, peaking in the center and declining with radius, regardless of
position with respect to the MS. The stacked stellar mass surface density profiles
are nearly identical in each M? bin for all classes of galaxies, so we do not show
them. The sSFR surface density profiles in Fig. 3.3 also exhibit a clear separation
by class. The neutral gas surface density profiles also vary systematically across the
MS, but the difference between above- and below-MS galaxies is considerably less
than for the sSFR profiles. We note that the results of Fig. 3.3 do not qualitatively
change when the maps are re-normalized by their half-mass radii before stacking,
indicating that these results are somewhat robust to evolution within the redshift
interval and to the particular manner of stacking. We conclude that coherent star
formation is apparent in the stacked SFR profiles despite the underlying galaxies
exhibiting very bursty star formation and often having their total SFRs dominated
by individual off-center clumps.

One apparent tension between the observations and simulations is that in the sim-
ulations, the sSFR profiles are generally centrally peaked, whereas the stacked Hα
equivalent width profiles of observed galaxies are flat (Nelson, van Dokkum, Förster
Schreiber, et al., 2016; Tacchella et al., 2017). This tension may be partially due to
dust attenuation (see Nelson, van Dokkum, Momcheva, et al. 2016), especially for
above-MS galaxies, which may have significant central dust-obscured star formation
(Wuyts et al., 2011; Hemmati et al., 2015). However, it is not clear that correct-
ing for dust would resolve the discrepancy, especially for lower mass galaxies, and
this issue deserves further attention. Another possible reason is that in low-mass
galaxies, our centering on the stellar center of mass likely differs from the centering
in the observations (based on light), which is likely affected by lumpy/irregular
morphologies and local variations in mass-to-light ratio; this effect may cause the
observed stacked profiles to be artificially flat.

To connect the stacked SFR profiles with those of individual galaxies at a given time,
we examine a randomly chosen sub-sample of the individual radial SFR profiles in
the 9.6 < log(M?/M�) < 10.2 stellar mass bin in the top panel of Fig. 3.4.5
Although galaxies classified as above the MS have greater 100 Myr-averaged SFR
values than those on or below the MS, there is significant crossing of the (10 Myr-

5Not all of the profiles reach the centers of the galaxies because some have identically zero SFR
at their centers.
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averaged) SFR profiles at modest galactocentric radii, i.e., the SFR profiles of
individual galaxies above (below) the MS are typically not systematically above
(below) those of MS galaxies. There does not appear to be significant differences in
the forms of SFR profiles amongst these classes of galaxies in the FIRE simulations;
only their relative normalization differs, a feature that Nelson, van Dokkum, Förster
Schreiber, et al. (2016) describe as ‘coherent star formation’. By selecting galaxies
above (or below) the MS, we tend to select galaxies just as they are forming many
stars in a burst (are in a relatively quiescent period). The bottom panel of Fig. 3.4,
which shows radial SFR profiles of a single galaxy (m12v from Hopkins et al.,
2014) at different randomly drawn times within the redshift interval 0.7 < z < 1.5
(four each above, on and below the MS), reinforces this conclusion. The galaxy’s
SFR profile varies rapidly with time, and there is no clear dependence on the total
SFR (i.e., position relative to the MS).

3.4 Summary and discussion
We have analyzed the individual and stacked SFR maps and profiles of a sample of
simulated galaxies from the FIRE project in a manner analogous to the observational
analysis of Nelson, van Dokkum, Förster Schreiber, et al. (2016). Despite the FIRE
galaxies exhibiting large variations in SFR on ∼ 10− 100 Myr timescales and often
having their SFRs concentrated in a few massive off-center clumps, their stacked
SFR profiles exhibit spatial coherent star formation in a time- and azimuthally
averaged sense. Moreover, individual SFR profiles in the FIRE simulations often
look nothing like the stacked profiles. A similar effect has been seen in observations:
Fig. 4 of Nelson, van Dokkum, Förster Schreiber, et al. (2016), for example, shows
that the individual Hα maps combined into stacks exhibit a variety of different
morphologies. Moreover, the stacked SFR profiles of simulated galaxies above
(below) the MS are above (below) those of the MS galaxies at all radii. This is
consistent with the observations of Nelson, van Dokkum, Förster Schreiber, et al.
(2016), indicating that in simulations with resolved ISM and bursty stellar feedback,
star formation can still be coherent in a time-averaged sense. We stress that in the
mass and redshift ranges considered, the FIRE galaxies cross the MS many times
throughout their evolution due to their highly bursty star formation histories; thus,
one should not interpret the appearance of coherent star formation in stacked SFR
profiles as evidence that galaxies maintain their positions relative to the MS for long
periods of time.

There are two main lessons from this analysis. First, although stacking recovers
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the time-averaged spatial coherence of star formation in the simulations, it hides the
chaotic, incoherent nature of star formation on kiloparsec-scales. In the simulations,
the SFR is on average higher in the centers of galaxies, owing to galaxies typically
having centrally peaked gas surface density profiles; the stacked profiles recover this
average behavior. However, the bursty nature of star formation in the FIRE galaxies,
in which the SFR at a given time can be dominated by a few short-lived (∼ 20 Myr;
Oklopčić et al., 2017; Sparre, Hayward, Feldmann, et al., 2017; Faucher-Giguère,
2018) massive clumps of star formation at various galactocentric radii, is obscured
by the stacking procedure. We indeed find that the stacking analysismakes stochastic
enhancements in the SFR frommassive clumps, which are often located significantly
off-center, indistinguishable from global enhancements in the SFR across the disc;
this possibility was noted in Nelson, van Dokkum, Förster Schreiber, et al. (2016).

Second, the simulations discussed here provide insight into what causes galaxies to
be above or below the MS. In Fig. 3.4, we see that galaxies selected to be above the
MS have preferentially recently formed several massive clumps of stars; this is true
whether the SFR is averaged over 10 or 100Myr (i.e., whether Hα- or UV+IR-based
SFRs are used). Conversely, galaxies below the MS are unlikely to have formed
many massive clumps within the past ∼ 100 Myr and rather are likely to be in a low-
sSFR period, which can last for a few 100s of Myr in the simulations (Muratov et al.,
2015; Sparre, Hayward, Feldmann, et al., 2017); if they have formed a few clumps,
the associated SFRs are not as high as in the above-MS galaxies. Moreover, on
average, the below-MS galaxies tend to have lower SFRs at all radii than above-MS
galaxies (but this is not true of the individual profiles) because these galaxies have,
on average, lower gas surface densities (Fig. 3.3) than the above-MS galaxies (owing
to stochasticity in gas accretion from both the IGM and galactic fountains and/or
recent strong outflows driven by stellar feedback; Muratov et al. 2015; Anglés-
Alcázar et al. 2017; Hayward and Hopkins 2017). However, in the simulations,
these differences are stochastic rather than long-lived, as evident from the bottom
panel of Fig. 3.4, and the FIRE galaxies can cross the MS multiple times within 100
Myr (Fig. 3.2; see also Sparre, Hayward, Feldmann, et al., 2017). Note, however,
that the galaxies considered here are of relatively low stellar mass (M? . 1010 M�),
and more massive simulated galaxies tend to exhibit less bursty star formation and
smoother mass, metallicity, and SFR profiles, especially at low redshift (Sparre,
Hayward, Feldmann, et al., 2017; Ma et al., 2017).

We find that very bursty star formation is consistent with spatially coherent star for-
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mation in stacked images. We thus caution against interpreting such time-averaged
coherent star formation as evidence that galaxies maintain their positions relative
to the MS owing to, e.g., systematic differences in gas accretion rates and thus gas
fractions. A crucial next step is to place observational constraints on the timescale
over which galaxies oscillate across the main sequence, perhaps via measurement
of SFR tracers that probe different timescales (e.g., Guo et al., 2016). Although
our analysis does not rule out the possibility that galaxies maintain their positions
relative to the MS for long periods of time, it demonstrates that simulations in which
this is not the case yield stacked SFR profiles consistent with those observed, includ-
ing spatially coherent star formation in a time-averaged sense. More generally, our
analysis demonstrates that simulations are a valuable tool that can help understand
behaviors of individual galaxies that may be masked in stacked observations.
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C h a p t e r 4

A SIMPLE NON-EQUILIBRIUM FEEDBACK MODEL FOR
GALAXY-SCALE STAR FORMATION: DELAYED FEEDBACK

AND SFR SCATTER

Orr, M. E., Hayward, C. C., & Hopkins, P. F. (2019) MNRAS 486, 4724

ABSTRACT

We explore a class of simple non-equilibrium star formation models within the
framework of a feedback-regulated model of the ISM, applicable to kiloparsec-scale
resolved star formation relations (e.g., Kennicutt-Schmidt). Combining a Toomre-
Q-dependent local star formation efficiency per free-fall time with a model for
delayed feedback, we are able to match the normalization and scatter of resolved
star formation scaling relations. In particular, this simple model suggests that large
(∼dex) variations in star formation rates (SFRs) on kiloparsec-scales may be due
to the fact that supernova feedback is not instantaneous following star formation.
The scatter in SFRs at constant gas surface density in a galaxy then depends on
the properties of feedback and when we observe its star-forming regions at various
points throughout their collapse/star formation “cycles”. This has the following
important observational consequences: (1) the scatter and normalization of the
Kennicutt-Schmidt relation are relatively insensitive to the local (small-scale) star
formation efficiency, (2) but depletion times and velocity dispersions in the gas
are; (3) the scatter in and normalization of the Kennicutt-Schmidt relation is a
sensitive probe of the feedback timescale and strength; (4) even in a model where
Q̃gas deterministically dictates star formation locally, time evolution, variation in
local conditions (e.g., gas fractions and dynamical times), and variations between
galaxies can destroy much of the observable correlation between SFR and Q̃gas in
resolved galaxy surveys. Additionally, this model exhibits large scatter in SFRs
at low gas surface densities, in agreement with observations of flat outer HI disk
velocity dispersion profiles.
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4.1 Introduction
One of the fundamental characteristics of star formation is that it is globally ineffi-
cient: galaxies convert only a few per cent of their cold gas reservoirs into stars per
dynamical time (Kennicutt, Calzetti, et al., 2007). As to why this is the case, there
are two broad frameworks for regulating star formation in galaxies: dynamics and
feedback. Dynamical regulation argues that stars form as rapidly as they are able,
but that dynamical processes such as turbulent shear, differential rotation, or gas
expansion behind spiral arms govern the fraction of gas with conditions favorable to
star formation (Saitoh et al., 2008; Robertson et al., 2012; Elmegreen and Hunter,
2015; Semenov et al., 2017). In this regime, star formation efficiency (SFE) is low
locally, in complement with its global value. Feedback regulation argues instead
that star formation could be locally highly efficient in regions which are actually col-
lapsing without local feedback present, but that stellar feedback (usually in addition
to dynamical processes), in the form of ionizing radiation or supernova explosions,
heat and stir the interstellar medium (ISM), preventing further star formation in most
regions and times (Thompson et al., 2005; Murray et al., 2010; Ostriker, McKee,
et al., 2010; Shetty et al., 2012; Hopkins, Kereš, et al., 2014; Kim et al., 2015b;
Hopkins, Wetzel, et al., 2018, among others).

Within the framework of feedback regulation there have been several related models
describing various star formation ‘laws’, including the “outer disk”model of Ostriker
and Shetty (2011), the “two-zone” theory of Faucher-Giguère et al. (2013), and
radiation pressure supported models like Thompson et al. (2005), to name a few.
Particular focus has been laid on models involving turbulent support of the ISM, as
thermal heating processes become relatively ineffective at regulating star formation
for gas surface densities above∼10M� pc−2, where a self-shielded component of the
ISM necessarily develops (Schaye, 2004; Krumholz et al., 2009a; Krumholz et al.,
2009b; Hayward et al., 2017). Broadly, turbulently regulated models incorporate
some metallicity dependence (often having to do with the metallicity dependence of
the efficiency of SNe momentum coupling, Martizzi et al. 2015), local gas fraction
(or stellar surface density, Ostriker and Shetty 2011), or local gas scale height
dependence (Faucher-Giguère et al., 2013), in setting the equilibrium star formation
rate.

These models have found general agreement with the mean observed star forma-
tion rates (either galaxy-integrated or as a function of radius) in nearby galaxies.
However, observational studies of the spatially resolved (at ∼kpc-scales) Kennicutt-
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Schmidt relation have apparently characteristic ±2σ scatters of ∼ 1 − 2 dex in star
formation rates at constant gas surface densities (Bigiel, Leroy, Walter, Brinks, et
al., 2008; Leroy, Walter, Brinks, et al., 2008; Bigiel, Leroy, Walter, Blitz, et al.,
2010; Leroy, Walter, Sandstrom, et al., 2013; Leroy, Schinnerer, et al., 2017), with
a similar scatter having been seen in cosmological simulations (Orr et al., 2018).
Generally, these variations in star formation rates (SFRs) within individual galax-
ies at constant gas surface density are not readily explained by local variations in
metallicity. For instance, at fixed galactocentric radii in discs, gas metallicity is
seen to vary at . 0.1 dex levels (Ho et al., 2017), whereas gas surface densities
can vary by more than 2 dex, requiring SFE ∝ Z20 (not seen observationally, or
having a theoretical basis for being the case) to explain SFR variations independent
of gas surface densities. Nor are metallicity gradients large enough to explain the
scatter, as generally gas surface densities fall far more quickly than metallicities (Ma
et al., 2017). Gas fractions, too, appear lacking in their ability to drive large scatter
in SFRs at constant gas surface density within galaxies (Leroy, Walter, Sandstrom,
et al., 2013).

This large scatter could suggest that we are still missing some critical physics in
our models, or observationally our inferred star formation rates and gas surface
densities are introducing much larger errors than usually appreciated. From the side
of theory, that we are roughly matching star formation rate distributions, and their
scatter in particular, in cosmological simulations is heartening (Orr et al., 2018) and
suggests the feedback physics included in simulations like those of Hopkins, Kereš,
et al. (2014) and Hopkins, Wetzel, et al. (2018) or Agertz and Kravtsov (2015) are
close to sufficient. On the side of observations, there remains work to be done
in converging on conversion factors between luminosities or line widths, and star
formation rates and gas masses but it is unlikely that these factors randomly vary by
∼ 2 dex in neighboring kpc patches of ISM (Kennicutt and Evans, 2012; Narayanan
et al., 2012; Bolatto et al., 2013).

Another possible resolution is that rather than star formation being locked to a ‘law’
dependent on gas surface density, there is some intrinsic uncertainty to it (Schruba et
al., 2010; Calzetti et al., 2012; Kruijssen and Longmore, 2014; Kruijssen, Schruba,
et al., 2018). Kruijssen and Longmore (2014) argue that star formation relations like
that of the Kennicutt-Schmidt relation must necessarily break down on some scale
due to the overlap (or lack thereof) both temporally and spatially between tracers
of dense gas and star formation, and that scatter in these relations is a necessary
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consequence. But to what extent does the framework of feedback regulation itself
provide an intrinsic scatter to the predicted equilibrium star formation rates? After
all, feedback is not instantaneouswith star formation, as ionizing radiation is injected
for upwards of 10 Myr (Leitherer et al., 1999), supernova feedback is not felt for
the first ∼ 5 Myr, and then continues stochastically for ∼ 30 Myr (Agertz, Kravtsov,
et al., 2013). The timescales for feedback injection are not coincidentally on the
order of the lifetimes of star-forming regions themselves in the feedback-regulated
model (Oklopčić et al., 2017; Semenov et al., 2018; Grudić et al., 2018). Star
formation equilibrium need not be expected, even at the 106 M� giant molecular
cloud (GMC) scale.

Indeed others (Benincasa et al., 2016; Torrey et al., 2017; Semenov et al., 2018) have
argued that while star formation might be in static equilibrium (i.e., steady state) in
some averaged sense, that it is locally in some dynamical equilibriumwhere the ISM
is in a constant cycle of collapse, star formation, and cloud destruction/feedback.
It is thus never instantaneously in local equilibrium, and is constantly oscillating
between those phases (Benincasa et al., 2016; Semenov et al., 2017; Semenov et al.,
2018).

In this chapter, within the framework of feedback regulation, we explore a simple
non-equilibrium star formation model, which expands upon these previous works.
Critically, we explore models wherein there is a non-trivial delay time, with respect
to the local dynamical time, between the formation of young stars and the injection of
the bulk of their feedback into the ISM.We investigate the results of including a time
dependence between the criteria for star formation being met, and its effects being
felt- in particular, the ability to explain significant (∼dex) scatter in star formation
rates in resolved galaxy scaling relations. We explore how this ultimately leads to
scatter in the Kennicutt-Schmidt relation, but also a number of non-intuitive effects
for observed galaxy scalings of quantities that enter the model.

4.2 Model
In a previous work (Orr et al., 2018), we explored the ability of turbulent energy
injection, in the form of the effects of Type II SNe, to explain the equilibrium value of
the Kennicutt-Schmidt relation in the FIRE simulations at gas surface densities & 10
M� pc−2 (similar in derivation to Ostriker and Shetty, 2011; Faucher-Giguère et al.,
2013; Hayward et al., 2017). The predicted equilibriumwas in good agreement with
themedian values seen in the simulations, whichwere themselves in good agreement
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Table 4.1: Summary of variables used in this chapter

Symbol Definition
Σ̇? Star formation rate surface density
Σg Total gas surface density
fsf Gas mass fraction in star-forming phase
fg Fraction of disk mass in gas
ρ0 Disk mid-plane volume mass density
td Delay timescale for the injection of feedback
δtd Period of feedback injection
α Slope of power law for delay-time distribution of

Type II SNe
H Gas scale height
G Newtonian gravitational constant
P/m? Characteristic feedback momentum per mass of

stars formed
teddy Eddy (disk scale height) crossing time
〈ε sf〉 Average star formation efficiency per eddy time

(here, GMC-scale average value)
ε̄ sf Star formation efficiency per orbital

dynamical time
Q̃gas Modified Toomre-Q gas stability parameter
Ω Local orbital dynamical time
σ Turbulent gas velocity dispersion (3-D)

with the observed atomic+molecular formulation of the Kennicutt-Schmidt relation.
However, the ±2σ scatter seen, on the order of ∼ 1.5−2 dex, was not fully explained
by local environmental variations, e.g., metallicity, dynamical time, or stellar surface
density. There appeared to be an intrinsic scatter of &dex to the star formation rate
distribution seen at any given gas surface density.

To explore the physical processes that cause scatter in resolved star formation scaling
relations in disk environments within individual galaxies, let us consider a patch
of the ISM where the turbulent velocity dispersion is taken to be roughly isotropic,
where we assume

σ2 = σ2
R + σ

2
z + σ

2
φ ≈ 3σ2

R , (4.1)

or σ ≈
√
3σR where σ is the overall gas velocity dispersion, and the subscripted σ’s

denote the velocity dispersions in the radial, vertical (i.e., line-of-sight in face-on
galaxies), and tangential directions, respectively.

In the framework of a supersonic turbulent cascade, the largest eddies carry the bulk
of the energy and momentum to first order, and we can take the momentum per area
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in the turbulent/random motion of the gas to be the velocity dispersion at the largest
scale (here, the gas disk scale height H) times the gas mass surface density Σg, that
is Pturb = Σgσ. The timescale for the dissipation tdiss of this turbulent momentum1

is roughly the (twice) eddy turnover time teddy, which is teddy ≈ H/σz. If we assume
that the gas disk is embedded in the potential of stellar disk with a larger scale height,
as is seen in the Milky Way with the thin gas disk having a characteristic height
of ∼ 100 pc embedded within the larger ∼ 300 pc stellar scale height (Gilmore
et al., 1983; Scoville et al., 1987), and that the gravitational acceleration near the
mid-plane due to the local disk mass itself is of the form 4πGρ0z, where ρ0 is
the mid-plane density (gas + stars), and the external potential2 introduces a vertical
acceleration component of v2c z/R2 = Ω2z (where Ω ≡ vc/R), then the vertical (z)
density profile is a Gaussian with a characteristic scale height of

H =
σz

Ω +
√
4πGρ0

. (4.2)

So, tdiss ≈ 2teddy ≈ 2H/σz ≈ 2/(Ω +
√
4πGρ0). In the absence of stellar feedback,

the turbulent momentum of this patch of the ISMwould be expected to exponentially
decay as

Ṗturb = −Σgσ/tdiss = −Pturb(Ω +
√
4πGρ0)/2 , (4.3)

which admits a solution for gas velocity dispersions of

σ(t) = σ0 exp (−t(Ω +
√
4πGρ0)/2) . (4.4)

4.2.1 Equilibrium Model of Instantaneous Feedback Injection in Disk Envi-
ronments

However, feedback from massive stars acts to inject momentum back into the ISM
at the largest scales (i.e., disk scale heights, Padoan et al., 2016). Taking the
characteristic momentum injected per mass of young stars formed to be P/m?, we
can establish an equilibrium for σ if we balance the rate of momentum injection

1In Faucher-Giguère et al. (2013), they assume that turbulent energy dissipates in an eddy-
crossing time. However, if Eturb ∼ P2

turb
/2Σg and Σg is constant, then Ėturb ∼ Pturb Ṗturb/Σg .

The exponential turbulent energy dissipation rate Ėturb ∼ −Eturb/teddy becomes Pturb Ṗturb/Σg ∼
−P2

turb
/2Σgteddy, reducing to Ṗturb ∼ −Pturb/2teddy, i.e., that the turbulent momentum decays

approximately in twice an eddy crossing time. For consistency, and since SNe are momentum-
conserving, we adopt a momentum-centric focus throughout the chapter.

2Here, the local dark matter contribution is implicitly included, whereas it is ignored for sim-
plicity in the disk self-gravity acceleration term as the baryonic component dominates the thin disk
mass in galaxies. Our model could be extended to gas-rich dwarfs or high-redshift galaxies with
poorly defined disks, but would require a different formulation of gas scale-lengths/heights.
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from feedback, Σ̇?P/m?, with the turbulence dissipation rate in Eq. 4.3, that is,(
P

m?

)
Σ̇? = Σgσ(Ω +

√
4πGρ0)/2 . (4.5)

Arguing that star-forming disks are marginally stable against gravitational instabili-
ties, we invoke a modified3 Toomre-Q criterion dictating instantaneous gas stability
(Toomre, 1964),

Q̃gas =

√
2σRΩ

πGΣdisk
, (4.6)

where Σdisk = Σg + γΣ? is the mid-plane surface density, including the stellar
component (with the factor γ accounting for the effective fraction of stellar mass
within a gas scale height, γ = 1 − exp(−H/H?)). We substitute this Toomre-Q into
Eq. 4.5 for σ, recovering the Kennicutt-Schmidt relation for a turbulently supported
ISM,

Σ̇? = πGQ̃gas

√
3
8
ΣgΣdisk

P/m?

*
,
1 +

√
4πGρ0

Ω
+
-
. (4.7)

Further, we can calculate the “global star formation efficiency”, i.e., the fraction of
the gas mass converted to stars per orbital dynamical time, ε̄ sf ≡ Σ̇?/ΣgΩ, to be

ε̄ sf = πGQ̃gas

√
3
8
Σdisk (Ω +

√
4πGρ0)

(P/m?)Ω2 . (4.8)

If we take Q̃gas to be a constant, assuming a value near or slightly below one, and
consider the case in which the disk is not strongly self-gravitating (likely, with the
marginal stability of Q̃gas ≈ 1), such that Ω >>

√
4πGρ0; these two relations boil

down to a description of gas surface density and mass fraction and a representation
of the ratio of disk surface density to inverse dynamical time, respectively:

Σ̇? = πG

√
3
8
ΣgΣdisk

P/m?
& ε̄ sf = πG

√
3
8
Σdisk

ΩP/m?
. (4.9)

One deficiency of this model of feedback regulation lies in the calibration of the
strength of feedback to isolated Type II SNe simulations (e.g., Kim et al., 2015a;
Martizzi et al., 2015). Generally, this overlooks the variation in effective feedback
coupling due to the local environment. Especially for predictions regarding the line-
of-sight velocity dispersions, the potential saturation or “venting” of feedback after

3This is not the “real” two component Toomre-Q (Rafikov, 2001), but is a much-simplified
version that is sufficiently accurate for our purposes (using the full two-component Q makes little
difference to our numerical calculations but prevents us from writing simple analytic expressions).
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SNe remnants (super-bubbles or otherwise) break out of the disk plane (Fielding,
Quataert, McCourt, et al., 2017), or the enhanced momentum injection efficiency
of spatially clustered SNe (Gentry et al., 2019), are possible concerns. We do not
explore the effects of feedback saturation or SNe (spatial) clustering here, but they
warrant further exploration within the framework of simple analytic models (these
effects are self-consistently handled in galaxy simulations that resolve gas disks and
supernova remnants in the snowplow phase).

4.2.2 Non-equilibrium Model of Feedback Injection in Disk Environments
The model derived in §4.2.1 is an equilibrium model, which assumes that feedback
injection is statically balanced with the dynamical/dissipation rate. However, we
might consider here that the departures from equilibrium occurring on the feedback
delay timescale are important for setting the scatter seen in Σ̇? at constant Σg in the
Kennicutt-Schmidt relation, and at constant ΣgΩ for the Elmegreen-Silk relation,
as well as in σz–Σ̇? space. We will explicitly consider only delayed feedback (i.e.,
Type II SNe) in this model.4

Rather than holding the turbulent velocity dispersion σ constant in time, we allow
it to vary, defining the behavior of its derivative σ̇ as,

σ̇ = σ̇SNe − σ/teddy , (4.10)

where σ̇SNe is the term explicitly following the current injection of SNe feedback
momentum due to past star formation (see Eq. 4.11, below), and the σ/teddy term
accounts for the exponential decay of supersonic turbulence on roughly an eddy-
crossing time (Eq. 4.3). We ignore the fraction of turbulent momentum “locked
away” into stars (equivalent to a σΣ̇g term) as the term is negligible with the
depletion time of gas typically on the order of ∼Gyr in galaxies (Leroy, Walter,
Brinks, et al., 2008; Leroy, Walter, Sandstrom, et al., 2013).

Developing a form for σ̇SNe, we consider that Type II SNe feedback from a given
star formation event is injected after a delay time td , and over a period δtd , cor-
responding to the lifetime of the most massive star formed, and the time until the

4Although prompt feedback (e.g., radiation pressure and stellar winds) injects a similar amount
of momentum per mass of young stars over their lifetimes (Agertz, Kravtsov, et al., 2013), the
‘characteristic’ velocity at which this momentum couples to the ISM on large scales is lower by a
factor of 20 or so, compared to SNe feedback (Murray et al., 2010; Faucher-Giguère et al., 2013).
As we consider here the ability of feedback to regulate the disk scale properties that regulate star
formation from the top down, we neglect explicitly treating the prompt feedback effects in our model.
Instead, we implicitly incorporate its effects regulating the efficiencies of cloud-scale, < 100 pc, star
formation in our “GMC-scale” star formation efficiency model (Grudić et al., 2018).
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least massive star to undergo core-collapse does so thereafter. Furthermore, con-
volving the number of stars of a given mass with their lifetimes produces a shallow
power-law distribution in time over which SNe occur after a star formation event,
such that dNSN II/dt ∝ t−α (see Appendix 4.5 for a more detailed derivation). These
quantities, td , δtd , and α, are reasonably known (see Appendix 4.5), and we adopt
fiducial values in this chapter of 5 Myr, 30 Myr, and 0.46, respectively. As such, the
governing equation for σ̇SNe takes the form

Σgσ̇SNe = (P/m?) χ
∫ td+δtd

td

Σ̇?(t − t′)
t′α

dt′ , (4.11)

where P/m? here is the momentum injected by Type II SNe event per mass of
young stars (as opposed to from all sources of feedback as in § 4.2.1), and χ is
a normalization factor such that for a constant star formation rate Σ̇? the equation
reduces to Σgσ̇SNe = (P/m?)Σ̇?. We adopt a fiducial value of P/m? = 3000 km/s
(the same value adopted by the FIRE simulations of Hopkins, Kereš, et al., 2014;
Hopkins, Wetzel, et al., 2018), and explore the effects of varying the strength of
SNe feedback in § 4.3.1.

It is then necessary to formulate amodel for the rate at which star formation proceeds,
as a function of the current state of the ISM, as we now consider Σ̇? to drive σ̇,
rather than being purely in a static equilibrium with the turbulent dissipation.

Taking the large-scale marginal gas stability as a key parameter in setting the current
rate of star formation, we invoke a simple “two-phase” model of the ISM, which
is instantaneously dependent on the Toomre-Q parameter of the gas disk. Let us
assume that some fraction of the gas is in a star-forming phase fsf (i.e., marginally
gravitationally bound gas), with the remaining mass in a non-star-forming phase.
As explored analytically by Hopkins (2013), supersonic turbulence drives parcels
of gas to randomly walk in log-density space such that a fraction (here, fsf) are
driven to sufficient densities such that local collapse (i.e., leakage) occurs even if
the global value of Q̃gas exceeds the critical threshold for gravitational instabilities
Q05. Following the rationale of Faucher-Giguère et al. (2013, see their Appendix C),
adapting the calculations of Hopkins (2013), we argue that the mass fraction of gas
susceptible to gravitational collapse ( fsf), which subsequently would be considered
in some stage of star-forming, is functionally dependent on Toomre-Q, with an

5This is just a formal calculation of the log-normal density distribution of gas in supersonic
turbulence. It is to say: turbulence is able to dynamically replenish the fraction of gas in a log-
normal density distribution that is above some critical threshold for self-gravity and collapse.
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adopted power-law form of,

fsf (Q̃gas) = f 0sf *
,

Q0

Q̃gas
+
-

β

, (4.12)

for values Q̃gas > Q0, and is a constant f 0sf for Q̃gas < Q0, where f 0sf is the maximal
fraction of gas in the star-forming phase, Q0 represents the Toomre-Q stability
threshold, and β accounts for the “stiffness” of that threshold. Further, as Q̃gas

evolves (in this model, through evolution purely in σ) smoothly in time, the roll-on
(or off, if σ̇ > 0) can also be thought to implicitly parameterize our ignorance in
how and at what rate GMCs assemble (for σ̇ > 0, this can approximate ionizing
radiation and winds dispersing dense material). In Hopkins (2013), the stiffness of
the instability threshold (∼ β, here) was inversely dependent on the Mach number
M of the turbulence–intuitive, as larger Mach numbers yield a broader log-normal
density distribution, increasing the amount of gas above a given density relative to
themean gas density, hence softening the effective gravitational instability threshold.
Here, takingM ∼ σ/cs, where cs is the speed of sound for ∼ 300 K molecular gas,
and Q̃gas ∼ constant, we thus haveM ∝ σ ∝ Σg. And so, in our model at a given
gas surface density we adopt a stiffness β = −2 log(Σg/M�pc−2) + 6, proportional
to the Mach number-dependent stiffness fit by (Faucher-Giguère et al., 2013), and
substantiated by the observational findings relating Σg and M of Federrath et al.
(2017).

Arguing that a ∼kpc-sized patch of the ISM likely incorporates a large enough
number of .100 pc clouds so as to approach an average behavior in terms of their
individual evolutionary states (Schruba et al., 2010; Calzetti et al., 2012; Kruijssen
and Longmore, 2014), we then adopt a ∼kpc-scale star formation rate of

Σ̇?(t) = 〈ε sf〉 fsf (Q̃gas(t))Σg/teddy (4.13)

where fsf (Q̃gas(t))Σg is the mass of gas in the star-forming state (per area), 〈ε sf〉 is
the average star formation efficiency per eddy-crossing time (fiducially, 0.025, in
line with cloud-scale efficiencies discussed in Elmegreen, 2018), and teddy is the
eddy-crossing time. As the quickest instabilities to grow are at the largest scales,
the largest being that of the disk scale height itself, the effective free-fall time of
gas at the mid-plane density is equivalent to the eddy crossing time teddy up to
an order-unity factor (since t f f ∼ 1/

√
Gρ0 ∼ teddy). Again, emphasizing that we

defined our efficiency 〈ε sf〉 (taken to be a constant) as a kpc-scale average quantity,
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Table 4.2: Fiducial Model Parameters and Disk Conditions
Parameter Quantity Fiducial Value
Toomre-Q Threshold Q0 1.0
Max. star-forming fraction f 0sf 0.3
Average SF efficiency 〈ε sf〉 0.025
Feedback Strength P/m? 3000 km/s
Feedback Delay Time td 5 Myr
Feedback Duration δtd 30 Myr
Power law slope of Type II α 0.46
SNe delay time distribution
Orbital Dynamical Time Ω 35 Gyr−1
Disk Gas Fraction fg 0.33
Stellar Thick Disk Fraction f thick 0.33
Stellar Disk height (thin) Hthin,? 350 pc
Stellar Disk height (thick) Hthick,? 1000 pc

〈ε sf〉 ≡
〈
Ṁ?teddy/MGMC

〉
where MGMC = fsf (Q̃gas(t))Mg. It is analogous to aGMC-

scale average star formation efficiency, and as such is unable to distinguish between
high- or low-efficiency star formation modes on smaller scales (e.g., efficiencies
calculated on the basis of higher density gas tracers like HCN Kauffmann et al.,
2017; Onus et al., 2018).

The fiducial values of the physical quantities and common initial conditions included
in the evolution of our model–essentially the behavior of the PDE for σ, Eq. 4.10,
are enumerated in Table 4.2. The initial condition of the gas in the model, in all
cases presented here, is taken to be Q̃gas(t = 0) = Q0 + 1 (and its corresponding
velocity dispersion σ) for the given Σg, embedded within static stellar disk with thin
and thick components having scale heights of 350 and 1000 pc, respectively, and a
relative mass fraction f thick ≡ Σthick,?/(Σthick,? + Σthin,?) = 0.33.

Connecting Σ̇?, Σg with Observables

Except for the nearest star-forming regions, (where young star counts or protostellar
cores can be used as proxies), observers rarely have true estimates for the ‘instanta-
neous’ star formation rate of a star-forming region. As such, we must connect our
‘instantaneous’ star formation rate with observables like Hα or IR flux, which are
used as average measures of star formation over a recent period of time ∼ 2−4 Myr.
For this reason, when we make attempts to compare with observational star forma-
tion relations, we average the instantaneous star formation rate Σ̇? over the last 3
Myr (see Appendix 4.5 for how our results vary with the averaging window). To
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compare our gas surface densities with observations, we take our gas mass surface
density Σg to be the atomic+molecular hydrogen gas, correcting them for Helium
mass with a factor of 0.75.

In panels where we plot the Kennicutt-Schmidt relation, we compare results of our
simple model with resolved Kennicutt-Schmidt observations from Bigiel, Leroy,
Walter, Brinks, et al. (2008) (light and dark grey shaded regions in background). We
correct the gas surface densities in their data with a variable XCO fit from Narayanan
et al. (2012). Where we plot depletion time against gas stability (Toomre-Q), we
compare with the results of Leroy, Walter, Brinks, et al. (2008) (light and dark
grey shaded regions in background). For the gas velocity dispersion–star formation
rate panels, we present data from the SAMI IFU survey of kpc-scale resolved
observations of star forming disks of Zhou et al. (2017). As well, we include HI
velocity dispersion data of spiral disks from Ianjamasimanana, de Blok, Walter,
Heald, et al. (2015) from the THINGS survey. These data correspond to velocity
dispersion–gas surface density observations, lacking direct SFR data. However,
given that they are at low gas surface density (Σg < 10 M� pc−2), we take their
results to correspond to a range of SFRs for the low gas surface density region in
the Bigiel, Leroy, Walter, Brinks, et al. (2008) dataset. They are thus presented as a
5 − 12 km/s band ranging in log(Σ̇?/M� yr−1 kpc−2) from -2 to -5, constraining the
low velocity dispersion, low-SFR region for our models.

4.3 Results
The simple model produces relatively stable cycles of star formation, inflation and
decay of gas velocity dispersions, and variation in the values of the Toomre-Q
parameter, as seen in Figure 4.1 for our set of fiducial values of physical parameters,
with disk surface densities and conditions chosen to match the solar circle (Σg = 15
M� pc−2, Σ? = 35 M� pc−2, and Ω = 35 Gyr−1 McKee et al., 2015). As star
formation is slow and inefficient (gas depletion times are & Gyr here), and given the
fact that we do not include some gas outflow term, we do not allow Σg or Σ? to vary
in the model. And so, Q̃gas and σz are in phase throughout their cycles, by definition
since Q̃gas ∝ σz here, ignoring the relatively weak sigma-dependent γ term in front
of Σ? in Σdisk. Moreover, given the relative stiffness of the star formation threshold
in Toomre-Q (for Σg = 15 M� pc−2, the ‘stiffness’ of fsf (Q̃gas) is β ∼ 4.6), star
formation commences and is arrested by feedback before Q̃gas reaches Q0(= 1),
after which the delayed effects of feedback play out, driving Q̃gas and the velocity
dispersions to their maximal values before the cycle starts anew. The instantaneous
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Figure 4.1: Logarithmic values of star formation rate surface density (solid blue line;
3-Myr-averaged rate), local Q̃gas (dash-dotted red line), and gas velocity dispersion
(dotted green line, units: km/s) for a period of five dynamical times in our fiducial
model gas patch (for fiducial model parameters, see Table 4.2) with Σg = 15 M�
pc−2 and Σ? = 35 M� pc−2. The SFR and velocity dispersion maintain stable,
albeit slowly decaying, cycles after approximately one dynamical time τdyn ∼ Ω−1 ∼
30 Myr.

star formation rate (not shown) is nearly completely out of phase with the velocity
dispersions and Toomre-Q, rising sharply as Q̃gas falls and falls nearly as quickly as
it rises. The “observable” quantity, the 3 Myr-averaged star formation rate (cf. the
Hα SFR tracer), shows how the “observed” star formation rates rise by ∼dex as Q̃gas

approaches its minimal value, before falling as the effects of SNe feedback are felt
later in the star formation episode.

Variations in the overall strength of feedback, the timing of feedback, and star
formation prescription all affect the shape and magnitudes of the star formation
cycles in the model, but largely the aforementioned picture holds so long as the
timescale of feedback relative to the dynamical time of the system is short but
not effectively instantaneous, and that the magnitude of feedback is insufficient to
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totally disrupt the system. This therefore applies to both galactic centers and in
the outskirts of disks, even where the dynamical time is quite long compared to
feedback timescales, so long as the ISM is turbulently regulated.

Figure 4.2 shows the extent of the star formation cycles in the fiducial model across
∼dex in Σg in the Kennicutt-Schmidt, depletion time—stability, and star formation
rate—gas velocity dispersion relations. Results in this figure, and throughout the
chapter, are plotted as box-and-whiskers in the KS panel represent the median,
interquartile region, and 5–95% data range of individual models run at a given Σg.
Figure 4.2 was run for a range in log Σg = 0.8−1.675 with log Σg steps of 0.125 dex,
all other figures use a range of log Σg = 0.8−1.55 with 0.25 dex log Σg steps, where
Σg is expressed in units of M� pc−2. Points in other panels (gas velocity dispersion
and depletion time–stability relations) are sampled time-steps from those models
(seen as clearly separated families of colored points in right panel of Figure 4.2).

At low Σg, the model exhibits increasingly large scatter6 as the effects of feedback
from peak star formation rates contribute significantly to the overall momentum
budget of the disk (cf. § 4.4.2), producing a larger scatter to in SFRs for KS, and a
spur to long depletion times and ‘high’ Toomre-Qs. In σ–Σ̇? space, this is seen as a
flattening of the relation, covering broad ranges in Σ̇? with little change in σ. This
is broadly in agreement with observations of HI disks in galaxy outskirts having
flat velocity dispersion profiles (Ianjamasimanana, de Blok, Walter, and Heald,
2012; Ianjamasimanana, de Blok, Walter, Heald, et al., 2015). The large velocity
dispersions in gas seen above Σ̇? ≈ 10−2 M� yr−1 kpc−2 reflect the fact that feedback
is simultaneously able to drive outflows and turbulence in the cold ISM at these
SFRs (Hayward et al., 2017). However, in a multiphase ISM, these high dispersions
σz would not appear in the cold ISM turbulence as this feedback would instead drive
outflows (and thus dispersions in the warm neutral and ionized gas components).

Counter-intuitively–but of central importance to observers–when this model is ap-
plied to galaxies as awhole (i.e., many . kpc-patches), the relatively tight correlation
between Toomre-Q (or gas σz) and resolved star formation rates within individually
evolving patches may be smoothed out by variations in, e.g., local gas fractions, dy-
namical times, star formation efficiencies, or strength of feedback (i.e., the amount
of momentum coupled into the cold phase of the ISM per mass of young stars),
which may shift subsets of the distribution (cf., later sections of this chapter), effec-

6Regions in an “off”/low-SFR mode of the cycle may likely be counted as entirely non-star
forming in observations, dependent on flux thresholds, given their very low SFRs.
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tively widening it on galaxy scales to the relatively broad distribution observed by
Leroy, Walter, Brinks, et al. (2008). This argument holding for Σ̇? . 10−2 M� yr−1

kpc−2, above which outflows would be possible, the presence of which may affect
interpretations of distributions in depletion time–Toomre-Q (and σz here would no
longer strictly encapsulate turbulence in the cold ISM, Hayward et al., 2017).

4.3.1 Variations in the Strength and Timing of Feedback
Figure 4.3 explores the effects on this model due to variations in the strength, delay
time, and duration of feedback.

Feedback Strength P/m?

The left column of Figure 4.3 shows the effects of varying the overall strength of
feedback, P/m?, in our fiducial model: we plot both the Kennicutt-Schmidt relation
(relating gas mass and star formation rate surface densities) and the gas velocity
dispersion–SFR relation. As demonstrated extensively in previous works exploring
the feedback-regulated regime, variation in the overall strength of feedback primar-
ily effects the equilibrium star formation rates where gas self-regulates: stronger
(weaker) feedback yields lower (higher) overall star formation rates (Hopkins et al.,
2011; Hopkins et al., 2012; Shetty et al., 2012; Agertz, Kravtsov, et al., 2013;
Hopkins, Kereš, et al., 2014; Orr et al., 2018). By construction, this model follows
this paradigm. Interestingly, stronger feedback (per mass of young stars) appears to
result in smaller scatter in star formation rates. As the star formation timescales,
and the absolute magnitude of momentum injected by feedback, are held roughly
constant between models, this can be explained as keeping the relative variance in
turbulence constant across the star formation cycles. Hence, if ∆σ ∝ P/m?∆Σ̇?,
stronger feedback produces smaller variance in turbulence for smaller variance in
Σ̇?.

At low star formation rates, the model is not strongly constrained to high or low
feedback strengths by the spiral galaxyHI velocity dispersion dataset of the THINGS
survey (Ianjamasimanana, de Blok, Walter, Heald, et al., 2015). However, the
higher-SFR, higher-velocity dispersion data from Zhou et al. (2017) do constrain
this model in the P/m? ∼ 3000 − 6000 km/s range.
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Figure 4.3: Effects on the Kennicutt-Schmidt (top row) and gas velocity dispersion–
SFR (bottom row) relations due to variations (columns) in the overall strength
(P/m?), delay time (td) and duration (δtd) of SNe feedback in the fiducial model for
3 < tΩ < 8. Background shaded regions (observations) and dashed lines (constant
depletion times) are in the style of Figure 4.2. (Top row) Box-and-whiskers for the
model at a given Σg are offset from the central value to show differences between
model parameters; (bottom row) colored points are sampled time-points from
models at a given Σg, but no offsets are introduced. (Left) Raising (lowering)
the overall strength of feedback per mass of stars formed, P/m?, systematically
lowers (raises) the peak/integrated star formation rates in the KS relation and raises
(lowers) the gas velocity dispersion distribution at a given Σ̇?. Scatter in SFRs are
also inversely affected. (Middle) The delay timescale before the first SNe feedback
is injected, td , is a strong factor in determining the departures from SF equilibrium
and their magnitudes. Longer delays produce larger departures from equilibrium.
(Right)Varying the period over which SNe momentum is injected by a single stellar
population, δtd , affects the responsiveness of feedback to local ISM conditions.
Longer durations weaken the ability of feedback to respond quickly to the ISM
conditions, resulting in more scatter in SFRs at constant Σg.
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Figure 4.4: Effects on the Kennicutt-Schmidt (top row) and depletion time–stability
(bottom row) relations due to variations (columns) in the Toomre-Q threshold
(Q0), maximal star-forming phase fraction ( f 0sf), and average local star formation
efficiency (〈ε sf〉). Plotted quantities and observational data regions are in the style of
Figure 4.3. (Left) Shifting Q0 = 1→ 2 moves the distributions in depletion time—
stability space by ∼ 0.3 dex, effectively renormalizing the velocity dispersions
for an otherwise-constant KS relations. The scatter in SFR grows with smaller
Q0; as feedback injection accounts for a larger fraction of the ISM momentum
budget (normalized by Q0), and star formation episodes are less stable cycles than
explosive events (see §4.4.2). (Middle)Varying the maximum fraction of gas in the
star-forming phase f 0sf is largely unimportant to the KS relation, as long as it does
not “choke” the amount of gas that would otherwise enter the star-forming phase, but
shifts distributions in depletion time—stability space: lower maximum star-forming
fractions require lower values of Q̃gas (i.e., higher gas densities) to achieve the same
SFR. (Right) Higher local star formation efficiencies 〈ε sf〉 steepen the peak SFRs in
the KS relation and shift the distributions in depletion time–stability space (higher
efficiencies mean smaller quantities of unstable gas yield the same SFR), and appear
to reduce scatter in KS.
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Feedback Delay Time td and Duration δtd

The middle and right columns of Figure 4.3 show the effects of varying the delay
timescale td for the first SN feedback (i.e., the lifetime of the most massive star
formed in a star formation event, plus the time required to propagate the SNe
remnant into the ISM and drive turbulence), and the duration of SN feedback δtd

(i.e., the difference in stellar lifetimes between the least and most massive stars to
undergo a Type II SN in a star formation event). The scatter in star formation rates
is directly affected by the delay time td , with shorter delays producing less scatter
in star formation rates. Longer delay times allow for gas to over-produce stars to a
greater extent before feedback is felt, hence larger departures from star formation
equilibrium. Physically reasonable values of td ∼ 4−6Myr, with a t−0.46 weighting,
are generally capable of driving &dex variations in star formation rates.

In a similar vein, shorter feedback durations, δtd , cause effectively burstier overall
feedback and, as such, drive larger scatters in star formation rates. For reasonable
feedback durations of ∼30 Myr (roughly the difference between the lifetimes of an
8 M� and 40 M� star) the model converges on ∼dex scatter in star formation rates.
Longer durations smooth out feedback to the extent that it is equivalent in effect to
lowering the overall strength of feedback P/m?.

4.3.2 Variations in Star Formation Rate Model
To bake a strüdel, one must first cook the filling. Analogously, in order to generate
stellar feedback in a model, one must first produce stars. The local star formation
rate implemented in this model, Eq. 4.13, has two principle components that we
investigate. Namely, the gas fraction in the star-forming phase fsf (Q̃gas;Q0, f 0sf, β)
(Eq. 4.12), and the average local star formation efficiency per free-fall time 〈ε sf〉.

Varying the star formation model (i.e., the local efficiency of star formation and
the Toomre-Q threshold for the onset of gravitational fragmentation/star formation)
has larger systematic effects on the results of our model in depletion time–stability
space compared to the effects of reasonable variations in the feedback implemented
demonstrated in the previous subsection.

Toomre-Q Threshold for Star Formation Q0

The left column of Figure 4.4 demonstrates the effects of the particular choice of
the Toomre-Q threshold Q0 on the Kennicutt-Schmidt and depletion time–Toomre-
Q relations. For physically reasonable values, the threshold sets the values of
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the equilibrium velocity dispersions that the models oscillate about and thus the
average magnitude of turbulent momentum in ISM. Along with the overall strength
of feedback, the value of the gravitational instabilities threshold is the parameter
that most strongly affects the normalization of the Kennicutt-Schmidt relation in our
model.

Larger values ofQ0 produce less scatter in the Kennicutt-Schmidt relation, asQ0 sets
the overall amount of turbulent momentum in the ISM (Pturb,0 ∼ Σgσ(Q̃gas = Q0))
where star formation occurs and thus dictates the extent to which star formation
events can perturb the ISM at a given Σg (see § 4.4.2 for more rationale). When
Q0 = 0.5, the model breaks down, as feedback is able to at least double the
momentum in the ISM after every star formation episode. For values of Q0 where
the model holds reasonably well (Q0 & 1), doubling Q0 = 1 → 2 produces an
expected ∼ 0.3 dex shift in the Toomre-Q distribution without greatly affecting
depletion times (beyond a slight tightening of the SFR distribution): gas is still able
to self-regulate (cf. the predictions of Krumholz and Burkhart, 2016).

As Q0 ≈ 1 is a physically motivated value for the local gravitational stability
threshold of the ISM (Toomre, 1964), and that other similar formulations of stability
parameters differ only by an order-unity factor in their thresholds for gravitational
fragmentation (Rafikov, 2001; Kim et al., 2007), we explore only a range in Q0 of
0.5− 2. Generally speaking, this is not a new constraint on Q0, but rather shows the
physical effect of varying the equilibrium level of turbulence on this non-equilibrium
model (a “robustness check” of sorts).

Variations in the Maximum Star-forming Fraction f 0sf

In this model, we consider that at the onset of disk scale height gravitational instabili-
ties (Q̃gas = Q0), there is amaximummass fraction f 0sf of the ISMparticipating in star
formation. Such a constant has been adopted before in analytic models of feedback
regulation in disks (Faucher-Giguère et al., 2013). As seen in the middle column
of Figure 4.4, we see that so long as this factor f 0sf does not ‘choke’ the fraction of
material in the star-forming phase, variations have rather small effects qualitatively.
This ‘choking’ appears to occur at high gas surface densities where choices of small
maximal fractions ∼ 0.1 clip the maximum SFRs achieved, whereas larger values of
fsf do not appear to be the limiting factor on setting maximal SFRs (see the abrupt
flattening of f 0sf = 0.1 points in Figure 4.4 at short depletion times). Larger values
of f 0sf move the distributions in depletion time–stability space to shorter depletion
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times and higher Toomre-Q values; this is the result of renormalizing the “leakage”
curve the model follows as Q̃gas evolves (Eq. 4.12).

Variations in Instantaneous Star Formation Efficiency 〈ε sf〉

The right columnof Figure 4.4 shows howvariations from 〈ε sf〉 = 0.01 to 〈ε sf〉 = 0.1,
motivated by observational bounds (Lee et al., 2016), affect the Kennicutt-Schmidt
relation, and gas depletion times and stability (Toomre-Q). Interestingly, variations in
the local efficiency over a dex change the maximal star formation rates by . 0.5 dex.
In the feedback regulated regime7, so long as the local efficiency factor is above that
required to produce enough stars to inject the appropriate amount of feedback in the
ISM to achieve equilibrium, 〈ε sf〉 should not affect the large-scale, time-averaged
star formation rates. However, lower star formation efficiencies do mean that gas
must collapse to higher surface densities (i.e., reduced free-fall times) to counteract
smaller local efficiencies in order to maintain the momentum balance. More, as the
gas collapses further, but does not produce more momentum in feedback overall (to
first order), the distributions in depletion time–stability space shift, requiring a less
stable ISM generally to support the same SFRs with lower star formation efficiencies
(moving by ∼ 0.3 dex in Q̃gas for a dex change in 〈ε sf〉).

Though the effect appears less pronounced at high Σg, for Σg . 10 M� pc−2, lower
local star formation efficiencies produce larger scatter in star formation rates. This is
in part due to the increasing steepness of the unstable gas fraction fsf (Q̃gas), and the
ability of gas to overshoot equilibrium star formation rates as the arresting effects of
feedback are not felt in sufficient amounts at higher velocity dispersions (i.e., larger
Q̃gas’s).

Given the degeneracy of the effects of variations in local star formation efficiency
and the strength, delay and duration of feedback, on the Kennicutt-Schmidt relation,
that relation may not be a sensitive probe of smaller scale star formation efficiency.
Instead, observations in depletion time–stability (Toomre-Q) space have a greater
ability to distinguish between low and high local star formation efficiencies in
the framework of feedback regulation. Given the definitional difficulties of a star
formation efficiency in this model (i.e., that fsf and 〈ε sf〉 could be defined together),
measurements of the depletion time–stability relation in similar patches of the ISM
may be useful in quantifying “the maximally participating fraction” of the ISM in

7See Semenov et al. (2018) for a recent discussion of the relative differences between feedback-
regulated and dynamics-regulated star formation.
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Table 4.3: Properties of Mock Galaxies for Figure 4.5

Mock Σg,0 Σ?,0 Rg vc 〈ε sf〉
Galaxy (M�/pc2) (M�/pc2) (kpc) (km/s)
Blue 100 1000 6 300 0.01
Green 50 500 6 300 0.025
Red 125 800 10 275 0.025

Purple 125 1000 6 290 0.075
Notes: Σg,0 & Σ?,0 are central gas and stellar surface
densities for exponential disks, with scale lengths Rg & R?.
R? = 3 kpc for all mock galaxies. vc is the (flat) circular
velocity, used for Ω = vc/R. 〈ε sf〉 is varied within
observational bounds ∼ 0.01 − 0.1 (Lee et al., 2016).

star formation events. To that end, given our fiducial assumption of fsf = 0.3, our
model favors low cloud-scale average star formation efficiencies 〈ε sf〉 ∼ 0.01 − 0.1,
as the depletion time–stability constraints otherwise exclude 〈ε sf〉 & 0.1 for our
fiducial model.

4.3.3 Reproducing Resolved Galaxy Relations
So far we have considered the star formation cycles of only individual patches of
gas. Given that local galaxies (z . 0.1), unlike their high-z progenitors, cannot be
modeled as a single star-forming HII region, we build a snapshot of a star-forming
galaxy with our model by sampling many patches of a gas disk to understand the
global distribution of star formation rates and velocity dispersions. We consider
here a few exponential disks of gas and stars. Table 4.3 summarizes the properties
of these toy galaxies. We then discretize these disks into cartesian grids of 750
pc-sized pixels, extending 24 kpc on a side, sampling their surface densities at their
centers. For each of these points, we run our model with our fiducial parameters (see
Table 4.2), except for the cases where we have varied the small-scale star formation
efficiency 〈ε sf〉, and randomly sample one time-step to find our star formation rates,
gas surface densities and velocity dispersions. In two cases here, to highlight galaxy
to galaxy variation in GMC properties, we have chosen to vary the small-scale star
formation efficiency within the bounds of observations (Lee et al., 2016). Ignored
here, too, is the variance in Σg at constant radius (e.g., spiral arm features) that
may contribute to variance in SFE (Gallagher et al., 2018). The results of this are
seen in Figure 4.5, where we plot the resulting Kennicutt-Schmidt, gas velocity
dispersion–SFR, and depletion time–Toomre-Q relations. We compare our model
mock galaxy distributions (light & dark colored shaded regions) with resolved
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Figure 4.5: Comparison of the KS, gas velocity and Toomre-Q distributions of the
non-equilibriummodel (brightly colored shaded regions) drawn frommock galaxies.
Plotted quantities and observational data contours are in the style of Figure 4.2. Mock
galaxies are exponential profiles of gas and stars, whose properties are summarized
in Table 4.3. The galaxies are sampled at 750 pc resolution for radii 5 < R < 17 kpc,
and a random time-point is chosen in the 3 < Ωt < 8 range for the non-equilibrium
model with those local conditions. Dark and light shaded regions indicate 50 and
90 % inclusion regions for the model pixel distributions. Mock distributions have
significant overlap with observations in each panel, and together tile a significant
portion of the observational data with modest changes in galaxy properties and star
formation efficiencies.
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galaxy observations like previous figures, and find good agreement between this
simple model and data. To enable comparison, the central surface densities, scale-
lengths, and orbital velocities used in our mock galaxy model were chosen to be
comparablewithMilkyWay-mass spiral star-forming galaxies. We do not plot pixels
in our model with R < 5 kpc, as these regions are unlikely to be modeled correctly as
independent patches following cycles in star formation rate–gas velocity dispersion
space (cf., the central molecular zone of the Milky Way), given the omission of
various dynamical effects like gas migration and cloud-cloud collisions (Semenov
et al., 2017; Semenov et al., 2018).

The Kennicutt-Schmidt relation produced by our models in this way find good
agreement with the ‘regulated disk’ regime of Bigiel, Leroy, Walter, Brinks, et
al. (2008). These models produce a floor in velocity dispersions as a function of
star formation rate that is somewhat lower at higher star formation rates (& 10−2

M� pc−2) that is somewhat below Zhou et al. (2017). However, given the simple
structure of our mock galaxies, it is unclear if this a matter of the dynamical times
or ratio of thin to thick stellar disk components being unrealistic, or a problem with
the model. Moreover, the general scatter in velocity dispersions agrees with that of
the observations, using reasonably inferred parameter values. Lacking outflows, or
some sub-grid model for local ISM heating, this model may not correctly capture
the leading-edge (in SFR for a given σz) of the velocity dispersion relation, where
the ISM can be disrupted by outflow events.

Observing the depletion time–stability relation of the mock galaxies in the bottom
panel of Figure 4.5, the variations (radially) across and between the galaxies affect
the normalization of the star formation-turbulence cycles of the individual patches.
This results in a widening of the relation within each galaxy, as observed on ∼kpc-
scales. Galaxy to galaxy variations in gas and stellar properties, and variations in
the star formation efficiencies of GMCs, cause the pixel distributions from the mock
galaxies to tile the observational space. Though there is still a correlation between
the quantities as observed in a single mock galaxy, the correlation is much weaker
taken on the whole. Observationally, this may present difficulties in producing a
depletion time–stability relation, given that galaxy to galaxy variations in dynamical
time and ratios of gaseous and stellar disk scale lengths will result in each galaxy
distribution having slightly different normalizations in the depletion time–stability
plane, smearing out the signal further through stacking.

Spatially resolved observations of an individual galaxy may indeed see fairly tight
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correlation between depletion time and Toomre-Q, the exact slope and normalization
of which will depend on the disk structure and GMC properties (here, assumed to be
related to the ‘small-scale’ star formation efficiency 〈ε sf〉). However, this is assuming
that the star formation parameters are not changing significantly across individual
galaxies, e.g., small-scale star formation efficiencies having gas surface density
dependencies (Grudić et al., 2018), and again that there are not significant variations
in Σg between independently evolving ISM patches at constant galactocentric radius.

Non-equilibrium star formation rates, therefore, appear to produce an avenue for
explaining ∼1-dex scatter in star formation rates in the Kennicutt-Schmidt relation,
and scatter in the spatially resolved gas velocity dispersion–SFR relation. And
although dynamical evolution of star-forming patches may obscure the relation
between depletion time and stability somewhat, the variations in the disk properties
across and between galaxies are more likely the reason for difficulties observing a
tight correlation between Toomre-Q and SFRs (Leroy, Walter, Brinks, et al., 2008).

4.4 Discussion
4.4.1 The “Instantaneous” Feedback Timescales Limit
Much of this work focuses on the case where the feedback delay timescales td

and td + δtd are within an order of magnitude of the local dynamical time of the
galaxy 1/Ω (or for strongly self-gravitating disks, 1/

√
4πGρ0). In the case where td

and δtd � 1/Ω, however, star formation and feedback can be treated as occurring
“instantaneously” after a delay time td , compressing all SNe and prompt feedback
into a spike at td . We too can consider the case when the star formation threshold is
very sharp, i.e., β → ∞ such that Eq. 4.12 becomes

fsf (Q̃gas) = θ(Q0 − Q̃gas) f 0sf , (4.14)

where θ(Q0 − Q̃gas) is the Heaviside step function at the star formation threshold of
Q̃gas = Q0. In this setting, the turbulent velocity dispersion σ is not allowed to fall
much below the threshold value atQ0, since feedback acts effectively instantaneously
once star formation begins to occur.

Thus, the amount of star formation that occurs in a star formation episode is just the
amount that can form in one feedback timescale. So, we form a surface density of
stars per event

∆Σ? = 〈ε sf〉 f 0sfΣgtd/teddy . (4.15)

Interestingly, the amount of stars formed has no (direct) relation to the absolute
strength of feedback, so long as the amount of momentum eventually injected back
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into the ISM from this mass of stars is enough to at least momentarily halt additional
star formation. The time between star formation events is dependent on the fact that
each event will pump up the turbulent velocity dispersion by ∆σ = (P/m?)∆Σ?/Σg.
This extra momentum, above that required strictly to maintain stability, takes a time
tcycle to decay back down to the star formation threshold σ(Q̃gas = Q0) of

tcycle = ln(1 + ∆σ/σ(Q̃gas = Q0))/Ω . (4.16)

It is worth noting, that for the outskirts of galaxies, where the quantity tdΩ is likely to
be small as we assumed (1/Ω being the dominant component of the local dynamical
time, thanks to exponentially falling disk surface densities), galaxy disks are seen
to have relatively constant HI disk velocity dispersions (Tamburro et al., 2009), and
so we expect the ratio of ∆σ/σ(Q̃gas = Q0) to be small. Thus, we can approximate
tcycle as tcycle ≈ ∆σ/σ(Q̃gas = Q0)Ω.

And so the average star formation rate over a star formation cycle8 is ¯̇Σ? = ∆Σ?/tcycle.
Explicitly,

¯̇Σ? ≈
ΣgΩσ(Q̃gas = Q0)

P/m?
. (4.17)

The average efficiency of star formation per dynamical time is then

ε̄ sf =
¯̇Σ?
ΣgΩ

≈
σ(Q̃gas = Q0)

P/m?
. (4.18)

Neither the average star formation rate nor the average star formation efficiency have
an explicit dependence on the “small-scale” (GMC-scale) star formation efficiency
(here, 〈ε sf〉) or eddy-crossing/free-fall time teddy, or feedback delay timescale td

(provided tdΩ � 1), so long as the amount of stars formed in a star formation episode
injects enough momentum to regulate the ISM but not enough to fully disrupt it (i.e.,
drive Q̃gas to � 1). Unsurprisingly, this is identical to the result of § 4.2.1, though
we are considering a case of extreme dis-equilibrium. This is complementary
to the picture of feedback regulation in Semenov et al. (2018), where low star
formation efficiencies produce high duty cycles of star formation- after all, less stars
formed means ∆σ/σ(Q̃gas = Q0) will be smaller. Plugging in ‘typical’ values for
σ(Q̃gas = Q0) ≈ 15− 45 km/s and P/m? ≈ 3000 km/s yields a global, averaged star
formation efficiency of ε̄ sf ≈ 0.005 − 0.015. These are not altogether unreasonable
values for the star formation efficiency in the outskirts of galaxies (Bigiel, Leroy,

8This is identical to averaging it over a dynamical time, as then we have a star formation rate of
∆Σ?Ω/Ωtcycle = ∆Σ?/tcycle .
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Walter, Blitz, et al., 2010), and in agreement with themedian values of star formation
efficiencies of our fiducial model. This provides a reasonable mechanism, reliant
on averaging non-equilibrium star formation episodes, for regulating local star
formation (of any efficiency) to global inefficiency on galactic dynamical timescales.

4.4.2 Low Gas Surface Density Regime/Limit
Seen clearly across the Kennicutt-Schmidt panels of Figures 4.3 and 4.4, the delayed
feedback model drives large ∼ 2 dex scatter in SFRs for gas surface densities
. 10 M� pc−2. As the gas surface density falls below 10 M� pc−2, two processes
dovetail to make our feedback-regulated turbulent disk model break down.

Below ∼ 10 M� pc−2, the gas disk transitions from a supersonic(turbulently sup-
ported) molecular disk, to a transonic atomic disk (with non-negligible thermal
support), as the sound speed of 6000 K gas is almost but not quite sufficient with
cs ∼ 6 km/s to maintain Q̃gas ∼ 1 (i.e., providing nearly half of the required sup-
port). In these circumstances, stirring due to supernovae no longer dominates as
the sole process stabilizing the ISM on kpc-scales, and the maintenance of thermal
support in a two-phase medium becomes necessary to include. The thermal support
component, and its connection to stellar feedback, is not included in the model, as
it would require modeling the molecular gas fraction fH2 and gas cooling, which is
beyond the scope of this work. Further, given the increasingly two-phase nature of
the ISM at low Σg, the treatment of the star-forming fraction fsf (Q̃gas) as a simple
power law may break down, contributing to a change in kpc-scale star formation
efficiencies (Schaye, 2004; Krumholz et al., 2009b; Krumholz, Burkhart, et al.,
2018). Additional considerations at low gas surface densities include the ability of
gas self-gravity (not included) to drive sufficient turbulence in the outer HI disks
(Agertz, Lake, et al., 2009).

On the other hand, for the “lightest” cold, turbulently supported disks with surface
densities ∼ 10 M� pc−2, SNe feedback from star formation events can inject sig-
nificant fractions of the turbulent momentum in the disk. Take a star formation
event at a gas surface density of 10 M� pc−2, where our fiducial model reaches
peaks star formation rates of Σ̇? ∼ 10−2.5 M� kpc−2 yr−1 for ∼ 107 yr (cf., plau-
sible GMC lifetimes) producing ∼ 104.5 M� kpc−2 of stars. These young stars
then result in a SNe density of ∼ 102.5 kpc−2 in the proceeding ∼ 40 Myr (given
a rate of a single SNe per 100 M� of stars formed; Ostriker, McKee, et al., 2010).
At a momentum per Type II SNe of ∼ 3 × 105 M� km/s (Martizzi et al., 2015),
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this is a turbulent momentum injection of ∼ 108 M� km/s kpc−2. For a ∼ 10 M�
pc−2 gas disk, with Q̃gas ∼ 1 (σ ∼ 10 km/s), the total turbulent gas momentum
is ∼ Σgσ(Q̃gas ∼ 1) ∼ 108 M� km/s kpc−2. As the momentum injected is a
non-negligible (tens of percent approaching unity, with uncertainty regarding the
feedback budget per SNe Fielding, Quataert, and Martizzi 2018, Gentry et al. 2019)
fraction of the momentum contained in the turbulence field of the whole disk patch,
feedback is increasingly disruptive to the disk structure. This is more or less the
difference between SNe clusters blowing holes in the ISM (dominating), versus
churning or stirring it (perturbations).

And so, given that our model does not capture the feedback, star formation and
gas physics of the transition from a predominantly atomic ISM with non-negligible
thermal support to a turbulently supported, molecularly dominated one, this model
exhibits increasingly disruptive star formation events at low gas surface densities.
It is not clear, on the basis of this model alone, the extent to which growing scatter
(& 2 dex) in star formation rates due to the time-lag of feedback injection are to
be expected for low (. 10 M� pc−2) gas surface density regions. Broadly, this is
exemplary of the difficulties in modeling the variety of star formation environments
within galaxies with a single, simple model.

4.5 Conclusions
In this chapter, we developed a simple, non-equilibrium model of star formation
in the context of sub-kpc patches of disk galaxies (cf. local disk scale heights)
and explored its ability to explain the scalings and scatter in galaxy star formation
relations. Our principal conclusions are as follows:

• The local strength of feedback P/m?, in addition to setting the normalization
of the KS relation, itself may contribute to setting the scatter in observed
SFRs. If the variance in turbulent momentum is roughly constant through star
formation events, then the variance in SFRs is inversely proportional to P/m?

through ∆σ ∝ P/m?∆Σ̇?.

• Longer delay times between star formation and the injection of feedback td

and overall injection intervals δtd are able to drive larger departures from star
formation equilibrium. This occurs because the ISM is able to “overshoot”
and over-produce stars to a greater extent, and the subsequent feedback events
drive larger velocity dispersions (Toomre-Qs). Delay times on the order of
4-6 Myr produce ∼dex scatter in SFRs.
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• The relative steepness of the gravitational instabilities threshold and the
timescale of feedback injection may together explain the large range of SFRs
seen at low Σg with little variance in velocity dispersions in outer HI disk
velocity dispersion profiles (e.g., spiral galaxy HI disks in the THINGS sur-
vey, Ianjamasimanana, de Blok, Walter, and Heald, 2012; Ianjamasimanana,
de Blok, Walter, Heald, et al., 2015).

• This model predicts a correlated depletion time–Toomre-Q relation for indi-
vidual galaxies (cf., bottom panel of Figure 4.5). However, within individual
galaxies a degree of scatter is introduced as the normalization and slope of
the locally tightly evolving relation varies across disks with the changing disk
properties. Further smearing of this relation is introduced in galaxy surveys
by stacking different galaxies with altogether different disk and GMC proper-
ties (with their attendant differing slopes and normalizations of the depletion
time–stability relation).

The proposed non-equilibrium star formation model can explain the observed ∼
1 dex scatter in resolved star formation scaling relations. More so than the effects
of metallicity or variations in gas fraction, non-equilibrium states of star formation
can explain large variations in average star formation rates (e.g., Hα-inferred SFRs).
This arises due to the fact that the interplay of bursty feedback, injected over some
finite timescale, and the roughly smooth dissipation of turbulence (on ∼kpc-scales)
struggles to find a stable balance on timescales of tens of Myrs.

Careful spatially resolved observations of individual star-forming galaxies may be
able to identify a depletion time–Toomre-Q relation, provided that the effects of
variations in gas fraction at constant radius and changes in star formation efficiency
within GMC across the disks can be accounted for. Indeed, the slope and normal-
ization of this relation may even inform on the small-scale star formation efficiency
within those specific galaxies.

Future work using resolved galaxy surveys, like the MaNGA and SAMI surveys, at
the sub-kpc-scalemay help to elucidate the extent to which the scatter in resolved star
formation rates correlates with dynamical conditions at the disk scale. The ability
to marshal statistically significant samples of star-forming regions with similar
physical conditions may make it possible to disentangle potentially confounding
local quantities such as metallicity or gas fraction.
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Parameters of Supernova Feedback
The lifetimes of massive (8–40 M�) stars that are the progenitors of Type II SNe
events are fairly well constrained for our purposes. Furthermore, the slope of
the massive end of the stellar initial mass function (IMF) is also well known (see
Krumholz, 2014; Offner et al., 2014, and references therein). Together, these
constraints put a strong prior on the parameter space to be explored by this model,
in terms of the delay time to the first effects of SNe feedback being felt, how long
feedback events last, and the relative distribution of feedback injection in time after
a star formation event.

From stellar evolution theory, the main sequence lifetimes of the most massive stars
in the local universe range from approximately 4.5 to 38 Myr for 40 to 8 M� stars
(Raiteri et al., 1996). We take the lifetime of a 40M� star as a bound for theminimum
delay time to the first SNe feedback effects in our model td . Admittedly, longer delay
times by perhaps a factor of two are not unreasonable given the (un)likelihood of
forming themost massive star first in a local star formation episode, in addition to the
various effects of rotation and binarity. On the other hand, there is a broader absolute
range in the time for the last Type II SNe to go off of 30–49 Myr (approximately
factor of two uncertainty), given the uncertainty in the lower mass limit for Type II
SNe progenitors of 8 ± 1 M� (Smartt, 2009).

To constrain the distribution in time of Type II SNe events from a star formation
episode (between the most and least massive progenitor’s endpoints), i.e., dNSN/dt,
we combine the IMF slope dN/dM? and the mass dependence of main sequence
lifetimes (specifically dt/dM?). Taking the lifetimes of massive stars to be propor-
tional to their mass-to-light ratios t(M?) ∝ M?/L? and with L? ∝ M3.5

? , we have
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t(M?) ∝ M−2.5? (or M? ∝ t−2/5) and thus dM?/dt ∝ t−7/5 (Böhm-Vitense, 1992).
From the slope of the high-mass end of the IMF, we take the canonical Salpeter IMF
slope of -2.35, i.e., dN/dM? ∝ M−2.35? , and in terms of their stellar lifetimes dN/dM?

is then ∝ t4.7/5. Combining these arguments, we yield a power-law distribution of,

dNSN

dt
=

dN
dM?

dM?

dt
∝ t−0.46 , (4.19)

which is fairly weak (though not flat) in time, as the shorter lifetimes of the most
massive stars nearly balance out with their relative rarity.

For the purposes of this study, we thus adopt an initial delay time of td = 5 Myr, a
feedback episode period of δtd = 30Myr, and a time-weighting of dNSN/dt ∝ t−0.46.

What About SFR Averaging Timescales?
Observationally, the “instantaneous” star formation rate of a region is ill-defined.
YSO counts are perhaps the closest proxy to an true instantaneous star formation
rate, but even they have a spread in their lifetimes (hence the averaging timescale of
SFRs inferred) of as little as 0.5 Myr for 0/I YSOs to being a Myr or more removed
from the star formation event itself in the case of Class II YSOs (Evans et al., 2014;
Heyer et al., 2016). As such, any model of non-equilibrium star formation must
be convolved with an averaging timescale for the observable tracer. In the case
of Hα or IR flux, we are averaging over a ∼ 2 − 4 Myr timescale, for tracers like
the FUV flux, that timescale is significantly longer (∼ 30 Myr). Hence, variability
in star formation rates on timescales shorter than the averaging timescale of the
particular tracer investigated will be smoothed out. We investigate the effects of
particular choices of averaging period ∆TSFR in Figure 4.6, wherein we convolve
the instantaneous star formation rates produced by our model (Eq. 4.13) with a
2–10 Myr wide time-averaging window ∆TSFR. Specifically choosing this timescale
to be a proxy for the Hα and IR flux-inferred star formation rates, to show how the
variations in SFR over the cycle are smoothed out. Increasing the averaging window
blunts the star formation rate maxima achieved, as the peak in the star formation
cycle is smoothed to some degree. The particular choice of averaging window does
not alter the predictions of the model with respect to Σgas or σz. The averaging
effects on Σ̇? are relatively small as ∆TSFRΩ ∼ 0.1 in our fiducial model, and so the
averaging window constitutes only a fraction of a star formation cycle. Throughout
the main body of the text, we adopt a canonical 3 Myr averaging window for our
star formation tracer for simplicity.



119

0.6 0.8 1.0 1.2 1.4 1.6 1.8

log(Σgas [M� pc−2])

−4

−3

−2

−1
lo

g
(Σ̇

?
[M
�

y
r−

1
k
p

c−
2
])

−5 −4 −3 −2 −1

log(Σ̇? [M� yr−1 kpc−2])

0

15

30

45

60

75

σ
z

[k
m

s−
1
]

∆TSFR = 2 Myr

∆TSFR = 3 Myr

∆TSFR = 5 Myr

∆TSFR = 10 Myr

Figure 4.6: Effects of variation in the star formation averaging period on the model
KS and gas velocity dispersions for fiducial model parameters. Observational (KS)
data and plotted quantities are in the style of Figure 4.3. For reasonable choices
of averaging period between 2–10 Myr (cf., the Hα tracer timescale and timescales
thereabouts), little to no effect is seen on the average star formation rate distributions.
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C h a p t e r 5

SPATIALLY RESOLVED GAS VELOCITY DISPERSIONS AND
STAR FORMATION RATES IN DISK ENVIRONMENTS OF

COSMOLOGICAL SIMULATIONS

ABSTRACT

We present an analysis of the sub-kpc spatially resolved line-of-sight velocity dis-
persion and star formation rate relation in the FIRE-2 (Feedback in Realistic Envi-
ronments) suite of cosmological zoom-in simulations. We specifically investigate
the relation between gas velocity dispersions (σ) and star formation rates (SFRs)
in Milky Way-mass (1010 − 1011 M� in stellar mass) spiral galaxies at late times
(z < 0.1). In agreement with observations, we find a relatively flat relationship,
with velocity dispersions remaining approximately constant (≈ 15 − 30 km/s in
neutral gas) across 3 dex in star formation rates. We find that: (1) higher dense
gas fractions relate to higher SFRs at constant σ, (2) higher SFRs over 100 Myr
timescales correlate with higher σ, but (3) only when recent (. 10 Myr) SFRs are
low, (4) dense gas depletion times are short when gas is predominately cold & dense,
or when very little of the ISM is, and (5) the outer contours of the σ-Σ̇? relation
appear to correspond with regimes where significant fractions of the ISM can be
expelled in outflows. Finally, there is evidence in the simulations for on-off modes
of star formation corresponding to feedback injection timescales of 10–100 Myr,
where SFRs over and undershoot equilibrium SFR predictions.
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Star formation in the local universe (at z ≈ 0) is dominated by spiral galaxies of
approximately Milky Way-mass with stellar masses of ∼ 1010 − 1011 M� (Brinch-
mann et al., 2004; Behroozi et al., 2013). A hallmark of these disk galaxies at late
times is the stability of their disks, and relatively constant global star formation rates
over the last several billion years (Ma et al., 2017; Simons et al., 2017). To under-
stand how star-forming galaxies have evolved for half the history of the Universe is
thus to understand how star formation and ISM dynamics occur and evolve in disk
environments.

As with many endeavors in the study of star formation, the path in understanding
star formation in disk environments leads back to early work in our own Milky-Way
by Schmidt (1959). In that work, the rate of star formation was first estimated by
comparing the local scale heights of the HI disk and the thin stellar disk. This work
evolved over the ensuing decades into the well known, and argued over, Kennicutt-
Schmidt relation correlating the global neutral gas and star formation rate surface
densities (Kennicutt 1989, and see Kennicutt and Evans 2012 for a recent review).
This relation is fairly tight (. a dex) over several decades in galaxy surface densities.

The advent of high-resolution galaxy studies advanced the global Kennicutt-Schmidt
relation into the resolvedKennicutt-Schmidt relation (Bigiel et al., 2008; Leroy,Wal-
ter, Brinks, et al., 2008). Down to scales of individual molecular clouds (∼100 pc),
the relation has survived in some form or another (Leroy, Walter, Sandstrom, et
al., 2013). However, even on kiloparsec-scales, numerous studies have explored
the spatial and temporal averaging of star formation and gas tracers upon which
the Kennicutt-Schmidt relation, and associated Elmegreen-Silk relation, the “ef-
ficiency” counterpart to Kennicutt-Schmidt that compares the star formation rate
surface density Σ̇? to the gas surface density times the local orbital dynamical time
ΣgΩ, rely (Schruba et al., 2010; Calzetti et al., 2012; Kruijssen et al., 2014). Much
of this has sought to understand the ∼dex scatter in Kennicutt-Schmidt at constant
gas surface density (or scatter in gas surface density at constant SFR). Theoretical
work has explored and treated star formation as an equilibrium process (Thompson
et al., 2005; Ostriker et al., 2011; Faucher-Giguère et al., 2013; Hayward et al.,
2017). The hierarchy of timescales involved provided motivation: star formation,
and the bulk of stellar feedback, occurs on the timescale of a few million years or
fewer (tens at most), but the dynamical times of galaxies can be on the order of
100 Myr. If galaxies are to have long-lived coherent structures (e.g., spiral arms),
star formation must either be in equilibrium with those structures or be unable to
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greatly affect them. The scatter seen in the Kennicutt-Schmidt and Elmegreen-Silk
relations has long been viewed as “the weather” of variations in local conditions and
differing resulting star formation equilibria.

In particular, the local gas scale height, relating back to the mid-plane density of
gas in the galaxy disks, is seen as a particularly important variable in setting the
star formation rate locally within galaxies, through both the free-fall time of the
gas, where tff ∼ 1/

√
Gρ ∼

√
h/GΣ, and the stability of the gas against gravita-

tional fragmentation and collapse. The stability of neutral gas against gravitational
fragmentation and collapse is a key factor, relating to the velocity dispersions in
galaxies. Often, a (modified) Toomre-Q parameter (Toomre, 1964) is invoked, with
a form similar to:

Q̃gas ≡

√
2σzΩ

πG(Σg + γΣ?)
, (5.1)

where σz is the vertical (line-of-sight, mass-weighted) velocity dispersion in the
gas, Ω the dynamical angular velocity (Ω = vc/R), G the Newtonian gravitational
constant, and (Σg + γΣ?) being the effective disk surface density, where Σg is the
neutral (atomic + molecular) gas surface density and the γΣ? represents the fraction
of the stellar component within the gas disk scale height (and thus contributing to
the self-gravity of the disk)1. It is often assumed that the turbulence field is roughly
isotropic on a disk scale height, so the in-plane turbulence in a disk (that used for
the ‘classical’ Toomre-Q parameter) is equivalent to the line-of-sight component,
thus σR ≈ σz.

For gas in galaxies with Q̃gas . 1, there is insufficient (turbulent) support to prevent
fragmentation and gravitational collapse. This gas is then collapsing to form stars,
removing it from the gas reservoir. Those stars then inject feedback to the remaining
gas to stabilize it. On the other hand, gas with large values of Q̃gas is likely to be
dynamically expanding or in the midst of an outflow event. In the event that this gas
is not being actively driven to yet larger values of Q̃gas, it is expected that the gas
dissipates its turbulence rapidly on a disk-crossing time, driving to Q̃gas = 1. And
so, for the purposes of supersonically turbulent disks, we expect that gas ought to
converge to a Q̃gas ≈ 1.

The rate at which marginally unstable gas (with Q̃gas . 1) in galaxies ought to form
stars is theoretically uncertain. Some feedback-regulation arguments, specifically

1For all subsequent calculations of Q̃gas in this work, we calculate the γ factor assuming that
the stellar component has an exponential scale height, and thus is γ = 1 − exp (−σz,gas/σz,?), to
simplify direct calculations of this factor in comparisons with observations.
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that feedback from young stars balances the gravitational weight of the ISM, are
completely agnostic to the velocity dispersions or specific value of Toomre-Q (Os-
triker et al., 2011). On the other hand, arguments like those of Faucher-Giguère et al.
(2013), reason that feedback injection rates must balance turbulence dissipation (at
its decay rate of ∼ ΣσΩ), and thus Σ̇? ∝ Q̃gas. When the equilibrium Q̃gas ≈ 1 is
true, this identical in scaling to that of (Ostriker et al., 2011). Other theories arguing
that star formation occurs with a constant low efficiency per free-fall time in the disk
predict a Σ̇? ∝ Q̃−1gas scaling (Krumholz and Burkhart, 2016).

Star-forming regions themselves have avoided the large-scale equilibrium framework
from the perspective of the “small-scale” star formation and ISM communities.
Studies of local star-forming complexes like Orion and Taurus do not see star
formation in equilibrium, rather it is seen as a dynamic and often destructive (for the
molecular clouds themselves) process (Goldsmith and Li, 2005; Goldsmith, Li, and
Krčo, 2007; Pineda, Goldsmith, et al., 2010). Equilibria in molecular clouds reside
on a smaller scale in clouds, in the form of the PDR chemistry that traces internal
dense structures like cores and filaments from which young stars form (Goldsmith,
Heyer, et al., 2008; Orr, Pineda, et al., 2014; Xu et al., 2016), as significant cloud
evolution occurs over only a few free-fall times (Grudić et al., 2018).

And so, in spite of the arguments for Q̃gas → 1 convergence on large scales, non-
equilibrium star formation on the scale of giant molecular clouds (GMCs, & 100
pc) has been argued as a source of scatter in star formation rates seen in Kennicutt-
Schmidt (Benincasa et al., 2016; Torrey et al., 2017; Sparre et al., 2017; Orr,
Hayward, and Hopkins, 2019). Recent work by Torrey et al. (2017) to understand
how the outflows and “breathing modes” of central molecular regions are tied to star
formation show that non-equilibrium star formation rates, on timescales of tens of
millions of years, arise naturally from the competition between the stellar feedback
and dynamical timescales involved as. Further work by Benincasa et al. (2016) and
Orr, Hayward, and Hopkins (2019) have explored the dynamical and star formation
rate responses in the ISM of disk environments to changing velocity dispersions and
feedback injection on the timescales of tens of Myr.

Observationally, much of the work understanding the velocity dispersion structure
of gas in local galaxies and their relationship with local star formation rates has been
focused on the HII regions of those galaxies (Larson, 1981; Gallagher and Hunter,
1983; Rozas, Sabalisck, et al., 1998; Rozas, Richer, et al., 2006; Zhou et al., 2017).
This is in part due to the relative difficulty in adequately measuring at high velocity-
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space resolution the velocity structure of the colder, fainter dense molecular gas
tracers like CO or HCN.Modern IFU surveys are just now beginning to report on the
galaxy-wide, spatially resolved velocity structure and surface density distributions
in the cold, dense molecular gas (Leroy, Schinnerer, et al., 2017; Gallagher, Leroy,
Bigiel, Cormier, Jiménez-Donaire, Ostriker, et al., 2018; Gallagher, Leroy, Bigiel,
Cormier, Jiménez-Donaire, Hughes, et al., 2018; Sun et al., 2018; Querejeta et
al., 2019). Much of this recent work has focused on how dense gas fractions and
the mid-plane pressure of the ISM correlate with star formation efficiencies, and
whether or not variations in these quantities can explain the variations seen in star
formation rates across the galaxies as a whole.

Cosmological zoom-in simulations have reached the state that they are beginning
to resolve the ISM on scales within GMC complexes, with sub-parsec spatial res-
olution and mass resolutions reaching sub-103 M� (Hopkins, Kereš, et al., 2014;
Wetzel et al., 2016; Hopkins, Wetzel, et al., 2018). Given the ability to resolve
ISM dynamics on the scales within star-forming regions, recent work by Orr, Hay-
ward, Hopkins, et al. (2018) has explored the spatially resolved properties of the
Kennicutt-Schmidt relation and its dependences on local gas properties in the FIRE
simulations. Another investigation of the FIRE suite by El-Badry et al. (2018) inves-
tigated the kinematic andmorphological properties of gas within galaxies. However,
neither study explicitly explored the connection between the spatially resolved gas
kinematics (velocity dispersions) and the local star formation rates, leaving open
the question of whether or not scatter in star formation rates within these simulated
galaxies can be understood by variations in the instantaneous properties of the gas
kinematics on kpc scales.

In this work, we explore the relationship between various spatially resolved (250
and 750 pc pixel sizes) measures of gas velocity dispersion and star formation
rates that have direct observational proxies using the FIRE-2 cosmological zoom-
in simulations. We explore the dependences of the velocity dispersions and star
formation rates in Milky Way-like disk environments on local physical quantities
in the simulated galaxies, like gas stability (Toomre-Q, Eq. 5.1), gas fractions, etc.,
and compare where possible with observational datasets.
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Table 5.1: Summary of z ≈ 0 properties of the FIRE-2 Milky Way-like galaxies
used in this work

Name log( M?

M� ) log( Mgas
M� ) R?,1/2

kpc
Rgas,1/2
kpc

vc
km/s*

m12b 10.8 10.3 2.7 9.4 266
m12c 10.7 10.3 3.4 8.6 232
m12f 10.8 10.4 3.9 11.6 248
m12i 10.7 10.3 2.9 9.8 232
m12m 10.9 10.4 5.0 10.2 283
m12r 10.2 10.0 4.7 9.9 156
m12w 10.6 9.8 3.1 3.1 244
Note: all quantities measured within a 30 kpc cubic aperture.
*Circular velocities evaluated at Rgas,1/2.

5.1 Simulations & Analysis Methods
5.1.1 FIRE-2 Simulations
The simulations used in this chapter were run with the gravity+hydrodynamics
code GIZMO (Hopkins, 2015), and comprise the core FIRE-2 Milky Way-mass spiral
galaxies (Hopkins, Wetzel, et al., 2018). Specifically, the simulations were run
with a mesh-free Lagrangian Godunov (meshless finite mass, MFM) method that
is second-order accurate and maintains many of the advantages of traditional SPH
codes, while avoiding some of the traditional SPH code issues, e.g., struggling to
accurately capture shocks, for which grid-based codes have been better in the past.

A brief summary of the z = 0 properties of the galaxy simulations used here are
included in Table 5.1. These simulations all have a minimum baryonic particle mass
of mb,min = 7100 M�, and minimum adaptive force softening lengths of 0.27 pc
(m12m, m12r, m12w), 0.5 pc (m12c) and 0.7 pc (m12b, m12f, m12i). As these
softening lengths are adaptive, it is useful to note that the typical/median softening
length within the disk in one of the runs at z = 0, m12i, is h ∼ 20 − 40 pc. The
minimum length-scales considered in this work are on the order of hundreds of
parsecs, and so are about three orders of magnitude above the minimum resolvable
scales in the simulations. All of the simulations employ a standard flat ΛCDM
cosmology with h ≈ 0.7, ΩM = 1 −ΩΛ ≈ 0.27, and Ωb ≈ 0.046.

Star Formation Prescription in FIRE-2

As in FIRE-1 (Hopkins, Kereš, et al., 2014), star formation is allowed to proceed
in the gas that is dense, molecular, and gravitationally bound in the simulations.
However, a newly imposed (since FIRE-1) requirement that the gas is also Jeans
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unstable is included. Formally, these requirements for star formation are:

• Density threshold: gas particles must have densities n > 103 cm−3. Generally
this is not a terribly stringent requirement. Its value does, however, affect the
shape of the gas density PDF.

• Molecular/self-shielded: adopting the fitting functions of Krumholz and
Gnedin (2011) for the molecular fraction of a given column of gas, assuming
a local Sobolev approximation and accounting for the metallicity of the gas
we calculate a molecular fraction fmol. The gas that is forming stars must
be molecular/self-shielded, and so ρmol = fmolρgas is the mass reservoir of
star-forming gas on a per-particle basis. Due to the high density threshold
(n = 103 cm−3), this requirement is almost always superseded by the den-
sity and gravitationally bound requirements as dense, bound gas is almost
completely molecular in nature.

• Jeans unstable: gas is required to have a particle mass below the maximum
thermal Jeans mass, to ensure that any resolved, massive self-gravitating
objects which should collapse coherently are followed self-consistently and
not simply turned into stars. In practice, this criterion is almost always met
when the others are.

• Gravitationally bound: locally, the gas must have a virial parameter αvir ≡

(δv2 + c2s )δr/Gmgas(< δr) = [| |∇ ⊗ v | |2i + (cs,i/hi)2]/(8πGρi) < 1, where
δv = | |∇⊗v | |ihi and cs are the kinetic and thermal energy, respectively, within
the smoothing scale δr → hi around the particle (⊗ is the outer product). This
is the most stringent of the criteria, disallowing unbound gas from forming
stars.

In the event that all of these criteria are met for a gas particle, the particle is turned
into stars probabilistically at a rate ρ̇? = ρmol/tff where tff is the local free-fall
time. It is stressed that this is the rate that locally self-gravitating clumps form
stars, which is generally a small fraction of the overall dense gas mass in the
simulations. The efficiency of dense gas in converting to stars per free-fall time in
GMCs (∼ 1 − −10%) and per galactic dynamical time in the FIRE simulations has
been explored extensively (Hopkins, Kereš, et al., 2014; Orr, Hayward, Hopkins,
et al., 2018), and found to be in agreement with observed efficiencies (Bigiel et al.,
2008; Leroy, Walter, Brinks, et al., 2008; Lee et al., 2016).
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Feedback Physics Implemented FIRE-2

The stellar feedback physics implemented in FIRE-2 are identical to those of FIRE-
1, with updates only to accuracy and improved algorithmic implementations. Once
a star particle is formed, it is treated as a single stellar population with known age,
metallicity, andmass. The physics include: supernovae (Type Ia and II), stellar mass
loss (OB/AGB-star winds), photoionization and photoelectric heating, and radiation
pressure. Detailed descriptions of these physics and their implementation can be
found in (Hopkins, Wetzel, et al., 2018). All feedback quantities are taken from
standard stellar population models (STARBURST99, Leitherer et al. 1999), assuming a
Kroupa 2002 IMF.

5.1.2 Mapping out FIRE-2: Resolved ‘Observations’ of the Simulations
In order to investigate line-of-sight velocity dispersions in the FIRE-2 simulations
(hereafter, simply FIRE), and their relation to local star formation rates, we generate
mock observational maps from a set of snapshots with z . 0.1 of a number of
Milky Way-mass simulations from Hopkins, Wetzel, et al. (2018). We produce
these maps in the manner of Orr, Hayward, Hopkins, et al. (2018), by centering
on the stellar centers of mass and projecting the galaxies face-on with respect to
the angular momentum of their stellar components. The particles in these projected
snapshots are then binned into square pixels, varying from 100 pc to 750 pc on a side.
The maps themselves are 30 kpc on a side, and integrate particle properties only
30 kpc along the line-of-sight. By integrating only 30 kpc along the line-of-sight,
we include the relevant components of the ISM and stellar populations in our maps,
and exclude distant galaxies which might lie along the line-of-sight by chance in the
cosmological box.

We generate star formation rate tracers analogous to observational measures of star
formation by calculating the average star formation rates over the past 10 and 100
Myr using the star particle ages, with,

ΣSFR =
M?(age < ∆t)

ηl2∆t
, (5.2)

where M?(age is the summedmass of all star particles in the pixel with ages less than
the averaging window ∆t, l2 being the pixel size (in kpc), and η is a factor correcting
for mass loss from stellar winds and evolutionary effects using predictions from
STARBURST99 (Leitherer et al., 1999), with values of 0.85 and 0.70 for the∆t =10Myr
and 100Myr timescales, respectively. The 10 and 100Myr intervals were chosen for
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their approximate correspondence with the timescales traced by recombination lines
likeHα, and emission in theUV and FIR, respectively (Kennicutt and Evans, 2012)2.
The instantaneous star formation rate of the gas particles, as described above, is also
considered as a tracer of in situ star formation rates. The instantaneous star formation
rate of the gas particles is distinct from the time-averaged star formation rates, as it
is a continuous quantity intrinsic to the gas particles themselves, which is sampled at
each time-step per the star formation prescription described in § 5.1.1 to determine if
the gas particles form stars. This allows us to interrogate the conditions under which
star formation is proceeding in our simulations in situ, and investigate how feedback
is called upon to regulate the dense ISM. This quantity demonstrates both how the
stage is set initially for star formation, and the direct consequences of feedback
from recent star formation on the gas by locally indicating whether star formation
continues to proceed, whereas the other two SFR tracers are more analogous to
observables.

To understand the structure and source of the turbulent support in the ISM of these
galaxy simulations, we calculate themass-averaged line-of-sight velocity dispersions
σz for various components of the ISM. In this work, we focus on two components,
the total neutral gas column Σgas, which is a combination of atomic and molecular
gas, and the “cold & dense” gas with T < 500 K and nH > 1 cm−3. The latter gas
reservoir taken as a proxy for the cold molecular gas in the simulations following
the methodology of Orr, Hayward, Hopkins, et al. (2018) but with a more liberal
higher temperature cut for what constitutes “cold” in the ISM. The intention with
these two proxies are to match (ignoring a Helium mass-correction of ≈ 0.76) the
velocity dispersions in the combined HI + H2 and H2 gas, respectively.

In addition to calculating the star formation rates in each pixel and the velocity
dispersions of the various components of the ISM in the FIRE snapshots, we also
calculate the mass surface densities of these gas components as well as the stellar
surface density to understand the resolved galactic structure. We also calculate the
dynamical angular velocity Ω in each pixel, defined here as

Ω =
vc

R
=

(GM (< R))1/2

R3/2 , (5.3)

where R is the galactocentric radius of the pixel and M(< R) is the total mass
enclosed within that radius (and G is the gravitational constant).

2Post-processing the snapshots to model Hα or UV fluxes would make for a more direct compar-
ison to observations, but accounting for the complexities involved, that is beyond the scope of this
work.
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These quantities allow us to investigate the dependence of star formation on the local
gas properties, and relate galactic dynamical times and structure to star-forming
regions. In our analysis we treat pixels from all simulations and all times equally,
unless otherwise stated. Fiducially, we present our data at 750 pc pixel sizes for
comparison with large-scale IFU surveys.

5.1.3 Comparison to Observations
While exploring the relationship between gas line-of-sight velocity dispersions and
star formation rates, we compare our simulations with studies with resolved obser-
vations of HII region and resolved HCN-traced gas line-of-sight velocity dispersions
in star-forming galaxies. Zhou et al. (2017) provide a comparison dataset at ∼kpc-
scales from the SAMI IFU survey (Cortese et al., 2014), relating HII region velocity
dispersions to Hα-inferred SFRs. We compare this data to our neutral gas velocity
dispersion and 10 Myr-averaged SFR tracers. With our higher-resolution pixel at
250 pc, we take data fromRozas, Richer, et al. (2006, HII region velocity dispersions)
for comparison with neutral gas velocity dispersions in FIRE, and from Querejeta
et al. (2019, HCN-traced gas velocity dispersions and dense gas depletion times) for
comparison with our cold & dense gas dataset.

5.2 Spatially Resolved Velocity Structure and SFRs in FIRE
Broadly speaking, the velocity dispersions and star formation rates seen in the FIRE
Milky Way-massed spirals agree well with similar resolved observations of local
disk galaxies (Rozas, Richer, et al., 2006; Zhou et al., 2017; Querejeta et al., 2019).
Across all seven of our m12 galaxies, 95% of the pixels (that also have had recent
star formation according to either the 10 Myr or 100 Myr average star formation rate
tracer) have velocity dispersions in the neutral gas of 10–50 km/s. m12w is distinct
in this sample, both morphologically, and having higher velocity dispersions (it is
discussed in more detail in § 5.2.1).

Figures 5.1 and 5.2 show the z = 0 snapshots of the sevenm12 galaxies (by row), for
a number of resolved physical quantities (by column) at a pixel size scale of 250 pc.
By and large, we see that the galaxies are dominated by regions with low (< 40 km/s,
blue shades, first column) velocity dispersions, with pockets of high-dispersion gas.
And although correlated by formulation, it is not easy to see structures traced by the
low or high values of Toomre-Q (gravitational stability, Eq. 5.1, second column) in
velocity dispersions. However, it is easily seen in several cases that regions with the
shortest depletion times (as calculated with the 100 Myr SFR tracer, third column)
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Figure 5.1: Maps of star formation and gas quantities in the FIRE galaxies (m12b-
m12i, rows) at z = 0 with 250 pc pixel size. Maps depict the central 30 kpc
on a side of the galaxies, face-on. Regions with no data are colored light grey.
Left column: shaded by neutral (atomic + molecular) gas velocity dispersions.
Majority of spiral structures correspond to low σz . 40 km/s dispersions, with
interspersed high-dispersion structure. Center left column: shaded by turbulent
gas stability, Q̃gas. Bluer regions (Q̃gas < 2) are at least marginally unstable. Spiral
structure clearly visible as marginally stable and unstable regions. Center right
column: pixels shaded by gas depletion time, calculated with the 100Myr-averaged
SFR. Several large (∼kpc) regions with short depletion times correspond with large
bubbles of high-Q̃gas, indicative of SNe super-bubbles. Right column: shaded by
ηburst ≡ (Σ̇?,10Myr − Σ̇?,100Myr)/(Σ̇?,10Myr + Σ̇?,100Myr), cf. Figs. 5.11 & 5.12. Redder
(bluer) regions indicate more past (current) star formation relative to current (past)
star formation. Much of the area of the galaxies are covered by regions with past
star formation, indicating that feedback momentum injection is relatively smoothly
spread across the galaxies on ∼ 100 Myr timescales. Bluer regions of high 10 Myr
SFR correlate with current GMC structures in the galaxies.
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Figure 5.2: Identical in style and plotted quantities to Fig. 5.1, but for FIRE sim-
ulations: m12m, m12r, and m12w at z = 0. Galaxy m12w is the least gas rich
and most compact in its gas disk of the sample. Unlike the other more extended
disks in the sample, m12w consists entirely (in gas) of a ∼ 3 kpc in radius dense,
gravitationally unstable, nuclear gas disk.

do correspond to regions of high Toomre-Q. Lastly (fourth column), a measure of the
“burstiness” of star formation ηburst = (Σ̇?,10Myr − Σ̇?,100Myr)/(Σ̇?,10Myr + Σ̇?,100Myr),
shows that the galaxies are dominated in area by regions that have formed stars in
the past 100 Myr (and thus, for the most part, those stars have injected all their
feedback already) but have had little or no star formation in the past 10 Myr. Given
the small size of the regions with significant 10 Myr star formation rates, this result
is somewhat smoothed on 750 pc scales, which we fiducially present in this study.

5.2.1 Line of Sight Velocity Dispersions and Star Formation Rates
Figure 5.3 shows the line-of-sight velocity dispersion structure as a function of the
10 Myr-averaged star formation rate at low redshift, z . 0.1, on 750 pc scales in
the individual galaxy simulations (including two dwarf galaxies, m11h and m11q,
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Figure 5.3: Spatially resolved (750 pc pixel size) gas velocity dispersions and star
formation rate surface densities in individual FIRE galaxies for z . 0.1. Gas velocity
dispersions are the standard deviation of the line-of-sight velocities in gas. Shaded
regions depict neutral gas (atomic + molecular), with ‘cold & dense’ T < 500 K and
n > 1 cm−3 gas in unfilled contours. Star formation rates are the 10 Myr-averaged
rates. Across ∼3 dex in star formation rates, the gas velocity dispersions are nearly
constant, with a rising lower envelope for dispersions at a given star formation
rate. The two dwarf galaxies (m11q and m11h), not having strong disks or large
extents, do not show the same characteristic relation. Their data are not included in
subsequent figures.

that are otherwise excluded from the analysis of the Milky Way-massed spirals).
Two differently weighted velocity dispersions are plotted: the neutral (atomic +
molecular) gas mass-weighted dispersions in (blue) colored contours, and the “cold
& dense” (T < 500 K, nH > 1 cm−3) gas mass-weighted dispersions in unfilled
contours. The cold and dense gas dispersions have a very similar structure in σz-
SFR space, albeit with a lower overall normalization indicative of its dynamically
colder state.

By and large, all of the Milky Way mass spirals (those with them12 signifier) have
similar structures in their dispersions-SFRs phase space. There is little variation in
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the structure of the dispersions across ∼ 3 dex in SFRs, with the exception of a rising
lower envelope in velocity dispersions with SFR. m12w stands out with regards to
the other simulations in its velocity dispersion structure. However, visually (bottom
row, Fig. 5.2), this galaxy appears morphologically distinct in its gas disk with a
∼ 3 kpc radius gravitationally fragmenting nuclear gas disk, lacking the ∼ 10 kpc
radial extent of the other simulations at z = 0. To a lesser extent, m12r also stands
out: visually, it has an irregularly structured gas disk at z = 0 compared to the other
spirals, but does not have as compact a gas distribution as m12w.

Stacking together the data from all the snapshots of the Milky Way-massed FIRE
spirals, we can see the velocity dispersion–SFR relation in the simulations for
variously weighted tracers of gas velocity dispersion and star formation rate in
Figure 5.4. The extent of the data to low star formation rates in each panel is mass
resolution limited, with lower limits of ΣSFR ≈ 10−2.8, 10−3.75 M� yr−1 kpc−2 for the
(750 pc)2 pixels, with minimum baryonic masses of 7100 M� at 10 Myr and 100
Myr (with their associated evolutionally mass correction factors), respectively. For
the gas instantaneous star formation rate, the minimum star formation rate for a pixel
with one gas 7100 M� particle at the density threshold is ΣSFR = Mmin/(l2tff,1000) =
10−2.04 M� yr−1 kpc−2 for 750 pc pixels, where tff,1000 is the free-fall time for gas
with a density of 103 cm−3.

Generally, the core of the distributions for the neutral (atomic + molecular) gas and
cold & dense gas velocity dispersions are all between 15–40 km/s and 10–30 km/s,
respectively. There is a tail in the distributions to ≈ 60 km/s and ≈ 45 km/s for
the 95% data inclusion regions for their respective ISM components. For the Milky
Way-like rotational velocities vc ≈ 240 km/s of these simulations, the dispersion
ratios are σz/vc ≈ 0.06 − 0.25 and 0.04 − 0.19 in the gas (respective to ∼ 95% of
the two ISM components). That is to say broadly, the disks are thin in the FIRE
m12 simulations.

We compare directly with the SAMI IFU data of Zhou et al. (2017) in the top center
panel of Figure 5.4, for our 10 Myr averaged star formation rate and neutral gas
velocity dispersion data. Their data has complete overlap with our 75% inclusion
region (and nearly total overlap with our 50% region). Our inclusion of m12w,
with its fairly ‘hot’ disk is a large part of the spray to higher velocity dispersions
in the FIRE data. As well, given the fact that we have no difficulty in orienting
our galaxies face-on, and thus that beam-smearing and inclination effects in the
line-of-sight velocity dispersions are negligible, we do not throw out pixels with
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velocity gradients as done in Zhou et al. (2017).

The distributions all have increasing velocity dispersions as a function of star for-
mation rates. However, the effect is fairly weak, with the most visible case being
with the 100 Myr star formation rate tracer. Universal, however, is the rising lower
envelope of velocity dispersions as a function of star formation rate. The nature of
this lower envelope is explored in § 5.2.6.

5.2.2 Velocity Dispersions and Mass Surface Densities
Figure 5.5 shows how the line-of-sight velocity dispersions relate to the various
(gas, stellar, gas + stellar) mass surface densities in the galaxies. Like in Figure 5.3,
the neutral (atomic + molecular) velocity dispersions are plotted in (blue) shaded
contours, and the “cold& dense” gas velocity dispersions are plotted in unfilled, grey
contours. Generally, the neutral gas velocity dispersions exhibit less scatter at higher
gas surface densities. This may be explained by the fact that high surface density
gas disks are more self-bound gravitationally, resulting in shorter gas scale heights
and thus eddy turnover times for a given σz. If supersonic turbulence typically runs
down on an eddy turnover time, then high velocity dispersions would be quickly
dissipated in the ISM. For surface densities including the stellar component (center
and right panels) the velocity dispersions peak in the range of Σ = 10 − 102 M�
pc−2. This may be an inflection point between velocity dispersions driving large
scale heights and the self-gravity of the disks increasing the rate of turbulence
dissipation in the ISM.

Like the velocity dispersion–SFR relations in Figure 5.4, the velocity dispersions
have a lower envelope of dispersions for a given surface density. This lower limit can
be rationalized as a stability limit. For dispersions below a certain value, the ISM
would be gravitationally unstable to fragmentation, and thus collapse, turning into
stars, both removing that gas from the dispersion relation and also causing feedback
that will drive turbulence in the remaining at least marginally stable gas.

For all mass surface densities, the “cold & dense” gas velocity dispersions generally
risewith surface density, though always have a lower overall normalization compared
to the neutral gas velocity dispersions. This is in line with the fact that the mass
fraction of “cold& dense” gas is rising, and that it is a dynamically colder component
of the ISM. The rapid increase in velocity dispersions in the cold & dense gas
between Σgas ≈ 1–10 M� pc−2 overlaps with the HI to H2 transition threshold
generally discussed in the literature (Krumholz, McKee, et al., 2008; Sternberg
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et al., 2014; Pineda, Langer, et al., 2017).

5.2.3 Gas Fractions and Dense Gas Fractions
The top panel of Figure 5.6 depicts the dependence of the σz–SFR relation on the
mass fraction of cold & dense gas in the neutral (atomic + molecular) ISM. This is
a rough proxy for the molecular gas fraction on ∼kpc scales. Here we clearly see
that for a given amount of turbulence (velocity dispersion) more molecularly rich
gas has higher star formation rates on average. This is not surprising, considering
that star formation occurs predominantly in cold and dense gas in molecular clouds.

However, this may appear as a bias in observations that correlate star formation
rates with velocity dispersions that are pegged to the dynamics of dense gas regions.
Observations may be more correlated with the dense gas tracers, e.g., CO line-
widths, given the difficulty in measuring HI on small (∼ 100) scales to combine
with dense gas measurements to get a full accounting of the turbulent momentum
in the ISM on kpc-scales. For example, this may arise when combining datasets of
low-star formation rate spirals with higher redshift starburst systems (Lehnert et al.,
2009; Zhou et al., 2017), where each dataset may comprise of the most dense gas
rich systems and thus a steep upturn in velocity dispersions appears for Σ̇? ∼ 10−1

M� yr−1 kpc−2.

The overall gas fraction, fg = Σg/(Σg + Σ?), is another factor that clearly affects
the normalization of the velocity dispersion for a given star formation rate. Here,
in the middle panel of Figure 5.6, we see there is little variation in average gas
fractions for a given amount of turbulence (velocity dispersion). Instead, at a given
star formation rate, lower gas fractions yield larger turbulence velocity dispersions
across 3 dex in SFRs. At lower gas fractions, for a given amount of gas (presumably,
here SFRs still correlate with gas surface densities), a larger stellar component in
the disk produces a deeper potential well for the gas to stabilize itself in. Just as
larger Σg require higher σz in Eq. 5.1, so does larger Σ?.

As neutral (atomic + molecular) gas fractions approach zero at the highest velocity
dispersions (σz > 100 km/s), it is evident in these galaxies that an appreciable
fraction of the gas is becoming ionized and is in a hot, usually outflowing state, and
thus no longer either neutral in nature, nor in any equilibrium state.
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5.2.4 Velocity Dispersions and Gas Stability
The bottom panel of Figure 5.6 shows the velocity dispersion–SFR relation colored
by the average gas stability (our modified Toomre-Q, Eq. 5.1). The average trend
is similar to the trend in cold and dense gas fraction and star formation rates: less
stable gas is both more predominantly cold and dense in nature, and has higher star
formation rates for a given amount of turbulence (velocity dispersion). Interestingly,
the trend follows aσ ∝ Σ̇∼1/6? relation for constant Q̃gas (see the cyan line for Q̃gas = 1,
with its ∼1/6 slope). This power-law slope is shallower than expected for a feedback-
regulated, turbulent star formation environment, as derived inEq. 5.5, suggesting that
a simple turbulently regulated feedback framework alone is insufficient to describe
theσ-Σ̇? relation, and processes that raiseσ at lowSFR (e.g., non-negligible thermal
support) or depress it at high SFR (e.g., momentum going into outflows or a hot
ISM phase instead of σ) are required at a minimum.

As well, all of the velocity dispersions calculated for the neutral gas are in excess
of ∼ 10 km/s, above the sound speed for 8000 K atomic gas cs ≈ 6 km/s. This is in
line with many observations of the star-forming ISM, where few, if any, star-forming
regions are purely thermally supported even at the lowest star formation rate surface
densities (Stilp, Dalcanton, Warren, et al., 2013; Stilp, Dalcanton, Skillman, et al.,
2013).

5.2.5 Velocity Dispersions and SFR Timescales
Figure 5.7 investigates the dependence of the velocity dispersion–SFR relation, when
considering the 10 Myr average star formation rate, on alternative star formation
tracers. Here we see that all gas that has had star formation in the past 10 Myr, has
by construction a non-zero 100 Myr averaged star formation rate, but not all gas has
a non-zero instantaneous (current) star formation rate.

The instantaneous star formation rate (top panel) has a high degree of correlation
with the 10 Myr-averaged star formation rate, unsurprising given that the 10 Myr
timescale is fairly short compared to the dynamical times of the gas disks. However,
there is a corner of σz–Σ̇? space cut out of the data set for instantaneous star
formation rates, corresponding to the region with Q̃gas & 3 in the bottom panel of
Figure 5.6. The lack of regions with current (instantaneously) star formation for
high (very stable) values of Q̃gas is expected, after all, the regions are currently
stabilized against fragmentation. The fact that this disappears from the 10 Myr
star formation rate dataset is suggestive that star-forming regions in some cases
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are able to regulate and inject sufficient stabilizing feedback momentum on sub-10
Myr timescales, which correlates with both the timescale for the bulk of ionizing
radiation from massive stars, and the first (few) SNe in a GMC.

Probing star formation rates on 100Myr vs. 10Myr timescales provide an interesting
test of the feedback-regulation picture, where longer star formation rate tracers
are sensitive to regions that have already injected all, or a significant fraction, of
their feedback budget. Thus, shorter timescale tracers are indicative of the current
demands of the ISM, feedback-wise, whereas longer tracers should trace the more-
averaged history of the momentum balance in the ISM. The bottom panel shows
this, where at low recent (10 Myr) star formation rates, the amount of star formation
that has occurred in the past 100 Myr is strongly correlated with the amount of
turbulence (velocity dispersions) seen in the ISM. However, at high recent star
formation rates, both the dynamical times of the regions become shorter (thus
leaving little room temporally for on-off star formation modes) and the velocity
dispersions are compressed into a smaller range for a given 10 Myr star formation
rate. Given this, the 100 Myr tracer has little correlation with very high recent
star formation rates, the ISM ‘forgets’ its feedback history when there are high
recent/current rates of star formation.

5.2.6 Velocity Dispersions and Outflow-prone Fractions
In previous sections, we explored how the velocity dispersion–SFR relation depends
on properties of the gas and star formation. However, only two quantities clearly
correlated with ‘edges’ in the relation: the (neutral) gas fractions and gas stability
(Q̃gas). Naturally, regions that approach having no neutral gas ( fg → 0) will no
longer be able to support star formation. As well, patches of the galaxy can only
be so unstable (Q̃gas → 0). The third edge in the relation here, that of a minimum
star formation rate, is resolution limited, and not indicative of a physical cutoff in
star formation rates. However, there was not a clear reason physically for either the
fg → 0 or the Q̃g → 0 edge to occur where they did, in terms of the normalization
of σz. Figure 5.8 explores the role of an outflow threshold in setting the limits of the
turbulence in the ISM for a given star formation rate and recent history. Rescaling
the velocity dispersions by their ratios to the local circular velocity in the galaxy,
as is often discussed when considering galactic outflows, we see first that the vast
majority (> 75 % by area) of the galaxies have disk aspect ratios vc/σz between
∼ 4 − 20. They have, by and large, thin disks over most of their areas.
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Figure 5.7: Spatially resolved (750 pc pixel size) velocity dispersions in neutral
(atomic + molecular) gas and 10 Myr average SFRs with 750 pc pixel size, in gas
with surface densities > 0.1 M� pc−2, colored by alternative timescale SFR tracers.
Grey outlines indicate extent of 95% and 75%of data. Top: shaded by instantaneous
star formation rate of the gas particles (average of all pixels at that point in ΣSFR−σz
space). By nature of both having short effective averaging timescales, the gas’
instantaneous and 10 Myr-averaged SFRs are highly correlated on 750 pc scales,
turning over slightly as high 10 Myr-averaged SFRs are approached for a given
velocity dispersion. Bottom: shaded by (average in ΣSFR − σz space) 100 Myr
averaged SFR. For low-10 Myr-averaged SFRs, 100 Myr-averaged SFRs correlate
strongly with velocity dispersions, the gas retains an imprint of past (perhaps cyclic)
star formation. But for high-10Myr average SFRs the two SFR tracers are correlated
more strongly with each other.
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We consider the threshold for outflows to occur to be that of Hayward et al. (2017)
, where there is a surface density threshold in the gas for which a given amount of
feedback per area in time (P/m?)Σ̇? can accelerate that patch of gas to the local
escape velocity in a coherence time (roughly equivalent to an eddy-crossing time).
This threshold, Eq. 5 in Hayward et al. (2017), is Σg < (P/m?)Σ̇?/

√
2RΩ2. In

Figure 5.8, we shade the (σz/vc)-Σ̇? relation by the fraction of pixels that have gas
surface densities below this threshold and thus find themselves ‘outflow-prone’ at
that position in (σz/vc)-Σ̇? space. Interestingly, the different edges of the (σz/vc)-Σ̇?
relation for neutral gas velocity dispersions and the 10Myr star formation rate tracer,
excluding the mass resolution limit, map to the regimes where significant fractions
of gas become outflow-prone depending on the different timescale star formation
tracers. As the coherence time is on the order of the eddy-crossing time, all of the
star formation tracer timescales are equal or less than this (∼ 100 Myr), so they each
are integrating in parts the feedback events that end up driving outflows.

Focusing on the material that is outflow-prone when considering the instantaneous
SFR, it appears that the hard-limit in the velocity dispersion–SFR relation at constant
σ is set by the amount of momentum that the ISM can absorb before appreciable
fractions of it are blown out efficiently. On short (< 10 Myr) timescales, as per the
discussion in § 5.3.1, it is reasonable to consider σ constant or only very slowly
varying as star formation fires up. On the other extreme of our star formation tracer
timescales, when we consider the outflow fractions as calculated by the 100 Myr
tracer, we see that the outflow-prone material traces the most extreme σz/vc, above
log(σz/vc) ≥ −0.5. this is understandable, as on 100 Myr timescales, feedback is
able to pump velocity dispersions on disk scales, and regions that are marginally
outflow-prone and still have any gas left will have the highest velocity dispersions.
The outflow fraction approaching unity for 100Myr timescale star formation rates in
disk environments thus provides a physical reason for the top edge of the (σz/vc)-Σ̇?
relation.

The 10MyrSFR tracer prediction, lying between these twonatural extreme timescales,
connects the two limits, rounding the corner from the state where feedback has not
yet been felt to that where most of it has been deposited.

5.2.7 Velocity Dispersions and Depletions Times
Figure 5.9 explores how gas depletion times vary across the velocity dispersion–SFR
relation for both 250 pc and 750 pc pixel sizes. We explore both how the depletion
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time of the cold & dense gas and of all neutral gas vary with their respective velocity
dispersions for the 10 Myr averaged tracer of star formation. Here we directly
compare with three observational datasets: two HII velocity dispersions and Hα
SFR studies (Rozas, Richer, et al., 2006; Zhou et al., 2017), and one of the velocity
dispersions and depletion times in HCN (tracing very cold and dense gas, Querejeta
et al. 2019). Neither the Rozas, Richer, et al. (2006) nor the Zhou et al. (2017)
datasets include gas depletion time estimates, and so only constrain the extent of our
σ-SFR relation. With these, we find good agreement.

TheQuerejeta et al. (2019) data, however, did includemeasurements of the depletion
time of the dense gas. We compare our cold & dense depletion time data directly
against the ΣSFR/ΣHCN with the same colorbar, and find very good qualitative agree-
ment3. Particularly interesting for comparison with the Querejeta et al. (2019) data,
there are two distinct regions (bluer) with shorter dense gas depletion times on 250
pc scales: (1) low velocity dispersions for a given 10 Myr-averaged SFR, which is
the scaling that their observational dataset covers, and (2) high 10 Myr-averaged
SFRs and high & 30 km/s dense gas velocity dispersions, which their dataset did not
trace. This is not seen as strongly in the 750 pc dataset, but does exist to a weaker
extent with τdep = Σg/ΣSFR falling to ∼ 108.5 yr at low velocity dispersions.

5.2.8 ISM Component Momenta and Depletion Times
Previous works have explored the connection between the dynamical state of the
dense gas in galaxies, and its star formation efficiency (Leroy, Walter, Brinks,
et al., 2008; Faucher-Giguère et al., 2013; Gallagher, Leroy, Bigiel, Cormier,
Jiménez-Donaire, Ostriker, et al., 2018; Orr, Hayward, Hopkins, et al., 2018; Orr,
Hayward, and Hopkins, 2019). In particular, the stability of the molecular gas
against gravitational fragmentation has been zeroed in on as a key driver of the
star formation rates in dense gas. Figure 5.10 explores the relation between the
magnitude of the turbulent momentum in the “cold & dense” gas phase and various
measures of depletion time. Here we estimate the amount of turbulent momentum
carried by the less dense atomic component of the ISM as simply the difference
between the momentum (per unit area) carried in the whole neutral gas phase,
Pgas ≈ Σgσz, and that of the cold and dense phase, PC&D ≈ ΣC&Dσz,C&D. For the
neutral (atomic + molecular) gas depletion time, calculated by the 10 Myr average

3The reader may be forgiven for believing the Querejeta et al. (2019) data to be presented as
unfilled circles on top of the FIRE dataset, instead of being colored by their local ΣSFR/ΣHCN, as the
depletion times agree closely with the FIRE dataset.
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Figure 5.9: Spatially resolved (750 pc pixel size) velocity dispersions in Cold &
Dense gas (top) and neutral (atomic + molecular) gas (bottom) and 10 Myr average
SFRs with 750 pc pixel size, in gas with surface densities > 0.1 M� pc−2, colored
by respective gas depletion timescale using the 10 Myr SFR tracer. Grey outlines
indicate extent of 95%and 75%of data. Top: shaded by depletion time of theCold&
Dense gas (average of all pixels at that point in ΣSFR−σz,C&D space). Cold & Dense
gas velocity dispersions are weakly correlated with cold and dense gas depletion
times, only near the lower envelope of velocity dispersions for a given 10 Myr SFR
are lower dispersions correlated with shorter depletion times. Bottom: shaded by
(average in ΣSFR −σz space) neutral gas depletion time. Velocity dispersions in the
neutral gas are weakly correlated with gas depletion times, with a slight dependence
only at higher SFRs.
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SFR tracer, larger amounts of dense gas momentum correlate with shorter depletion
times. Considering the depletion time of the cold and dense gas alone (center
panel), ΣSFR/ΣC&D, there are two phases with short depletion time (cf., top right
panel of Figure 5.9). In one case, it follows the overall neutral component, when
large quantities of turbulent momentum are carried in the cold and dense phase,
overlapping with the regions where the ISM is predominantly molecular in nature.

On the other hand, the dense gas depletion times also become short in regions where
only a small fraction of the ISM is cold and dense (and its contribution to the overall
turbulent momentum is low). This latter case occurs further out in galactic outskirts
where the ISM is considerably more diffuse, but requires some stabilizing feedback.
There, the ISM evolves to produce just enough dense gas to form stars, but it is
relatively rapidly consumed in the process.

Interestingly, regions with the longest cold and dense gas depletion times overlap
significantly with the regions of lowest specific star formation rate (sSFR, right
panel). In these regions, the turbulent momentum is predominantly (a factor of ∼ 10
or so greater) carried by the cold and dense phase of the ISM.

In all the panels, there is a spray to low ‘atomic’ phase gas momentum as the
momentum in the cold and dense phase reaches ≈ 102.5 M� km/s pc−2. This
corresponds to the HI-to-H2 phase transition in the ISM, as the median σz ≈ 101.3

km/s, where the atomic component becomes volume filling and does not necessarily
contain a large fraction of the mass or momentum. And so, as the ISM becomes
predominantly molecular in a surface density sense, that molecular component also
becomes the primary carrier of momentum in the ISM.

5.2.9 Gas Stability, Star Formation Timescales, and Depletion Times
Figure 5.11 plots the predicted velocity dispersions in each pixel, assuming Q̃gas = 1
versus the measured σz, and colors the relation by average gas fractions, outflow-
prone fractions (calculated with the 100 Myr tracer) and ηburst = (Σ̇?,10Myr −

Σ̇?,100Myr)/(Σ̇?,10Myr + Σ̇?,100Myr), a measure of the star formation bursty-ness. If
all the patches of the galaxies had Q̃gas = 1, then the whole dataset would fall on
the dotted Q̃gas = 1 line, so the plots show how these quantities vary with how far
from equilibrium the regions are. A much smaller fraction of gas finds itself with
Q̃gas < 1, than between 1–10. The data is bounded nicely on the σz . 8 km/s end,
where we expect the atomic phase of the ISM to provide non-negligible thermal
support with cs ≈ 8 km/s, thus providing a floor to σz. Whereas the predicted
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Q̃gas can fall to arbitrarily low values, and any amount of thermal support may be
sufficient to stabilize the gas.

In the simulations, regions with Q̃gas < 1 are on-average gas rich with fg > 0.5.
The most stable regions, with required support σz (Q̃gas = 1) > cs ≈ 8 km/s are the
least gas rich with higher values of σz having fg → 0 on-average.

Related to this, the middle panel shows the outflow-prone fraction when considering
the 100 Myr average star formation rate. These high velocity dispersion, low
gas fraction regions are by and large the only areas with significant outflow-prone
fractions. This suggests that significant feedback events over 100 Myr timescales
have had a chance to drive these dispersions to high values, i.e., Q̃gas � 1. Evidently,
these regions do not just have high velocity dispersions because they have deep disk
potentials with high Σ?, though these quantities are correlated to some extent.

Finally, looking at an indicator of how bursty star formation is, i.e., the relative
amount of star formation occurring now versus the recent past, ηburst, we see that
the Q̃gas = 1 threshold is a demarcating line between an abundance of current
star formation as compared to the past (bluer shades representing more recent star
formation) and vice versa. This falls squarely in line with the idea that vigorous
star formation occurs in the ISM when the gas is gravitationally unstable against
fragmentation, and collapses on the Toomre scale (here, the disk scale height).

Exploring this last aspect further, Figure 5.12 shows how the gas depletion time
(calculated by the time for neutral gas consumption with two different star formation
tracers, the gas instantaneous and 10 Myr average star formation rate) correlates
with gas stability using Q̃gas. The relation is shaded by the star formation burst
indicator ηburst. Importantly, we exclude gas outside 3 kpc < R < 10 kpc, and with
Σg < 0.1 M� pc−2, as it is either not shielded and likely has significant thermal
support, or is at radii with a rising rotation curve and has significant shear across
the 750 pc pixels, thus Q̃gas being a poor representation of gas stability.

When considering the instantaneous star formation rate gas depletion time, we
see that Q̃gas alone is a good predictor of ηburst with less stable regions having
significant present relative to past star formation. Notably, there are few regions with
ηburst . −0.5, i.e., pixels that have significant instantaneous (current) star formation
and have recent star formation histories dominated by past (10 Myr< tago < 100
Myr) star formation.

On the other hand, the 10 Myr average star formation rate gas depletion time panel
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shows two clearly separated in depletion time regimes: (1) short depletion times
are dominated by regions with more recent versus past star formation (ηburst > 0.5)
and are on-average less stable (Q̃gas is ∼ 0.3 dex lower), and (2) long-depletion
time regions have slightly higher values of Q̃gas on-average, and are dominated by
past versus recent star formation. This agrees with recent work by Orr, Hayward,
and Hopkins (2019), where on-off cycles of star formation can be driven on 1/Ω
timescales by feedback fromType II SNe and their∼ 40Myr delay-time distribution.

5.3 Discussion
5.3.1 A Hierarchy of Timescales: Why is σz-Σ̇? So Flat?
It is notable that for three dex in (10 Myr averaged) star formation rates, σz hardly
budges, the lower envelope in velocity dispersions notwithstanding. This however,
like the discussion regarding scatter in the resolved Kennicutt-Schmidt relation at
high spatial resolution (Schruba et al., 2010; Kruijssen et al., 2014; Orr, Hayward,
and Hopkins, 2019), may be understood through a discussion of a hierarchy of
timescales. Within the framework of supersonic turbulence dominating the velocity
dispersions, the turbulent momentum in a patch of the ISM is decaying on an eddy-
crossing time teddy ∼ 2/Ω, and so σ̇z ∼ −2σzΩ. For the Milky Way-like galaxies
explored here Ω = vc/R ∼ 250 km/s /10 kpc ∼ 25 Gyr−1, thus teddy ∼ 80 Myr.
This is far longer than the free-fall time for a GMC with a mean density of n = 100
cm−3, tff =

√
3π/32Gmpn ≈ 5 Myr. As a result, while σz is only able to slowly

evolve as turbulence is dissipating, short timescale tracers of star formation are able
to light up from zero and wick back out again before the effects of feedback are
felt in the disk scale height scale velocity dispersions (of course, ‘prompt’ feedback
like winds and ionizing radiation are locally felt immediately). Considering that
the feedback momentum from supernovae are meted out over a period of ∼ 5 − 40
Myr (to say, tfb = 40 Myr) since the formation of massive stars, it is understandable
that some evolution in σz is seen for σ-Σ̇? when considering the 100 Myr averaged
star formation rate tracer, as it incorporates the effects of injecting feedback on the
disk scale height scale velocity dispersions. This is picture is especially true when
considering the gas instantaneous star formation rate, where there is effectively
no evolution in the velocity dispersions as the star formation rate flits on and off.
Instantaneous star formation rates do not appear to have any correlationwith velocity
dispersions in the ISM (barring the slight lower envelope in velocity dispersions for a
given instantaneous SFR, seen more strongly for the 10 and 100Myr SFR relations).
The distribution of velocity dispersions is simply smeared out across the range of
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star formation rates are they rapidly rise and fall. And so, it is expected that we see a
flat distribution in velocity dispersion, and a slightly positive slope in it, for 10 Myr
and 100 Myr tracers of star formation, respectively, with a hierarchy of timescales:
tff � 10 Myr < tfb < 100 Myr ∼ teddy ∼ 1/Ω.

5.3.2 What Drives Velocity Dispersions (Theoretically)?
There have been a number of attempts at understanding the relationship theoretically
between star formation rates locally and the gas structure of the disk (i.e., scale
heights, velocity dispersions, etc.). Often, these have been viewed through the
lens of star formation as an equilibrium process in galaxies (e.g., Ostriker et al.,
2011; Faucher-Giguère et al., 2013; Hayward et al., 2017), given the fact that the
most massive stars form and live only for a fraction of a galactic dynamical time.
However, some work has sought to understand how non-equilibrium models of star
formation might behave in Milky Way-like disk environments, when gas dynamical
and stellar feedback timescales are on a comparable footing (Benincasa et al., 2016;
Orr, Hayward, and Hopkins, 2019).

Generally, models of star formation in disks invoke feedback as a regulator of
either the gravitational weight of disks, or the momentum in the cold turbulent
ISM. However, there are classes of models where star formation is the result of
disk/galactic structure, and does not appreciably act as a regulator of large-scale
(∼kpc) ISM structure.

These scalings can be grouped into several categories:

1. Feedback Balances Gravity: The feedback from stars balances the weight of
the disk (e.g., Ostriker et al., 2011). The weight of a disk being approximately
described as π

2GΣg (Σg + γΣ?), where the γ term again is the fraction of the
stellar surface density within a gas scale height. This is balanced with the
feedback momentum (P/m?)Σ̇?. Thus,(

P
m?

)
Σ̇? ≈

π

2
GΣg (Σg + γΣ?) . (5.4)

This is agnostic to the actual velocity dispersion or scale height of the gas
disk4. Often, however, it is connected by invoking Q̃gas ∼ σΩ/Σdisk ∼ 1. In
which case, the result is identical to the next feedback-related scaling. Barring

4Only indirectly, in the relative difference in scale heights between the gaseous and stellar disks
does the gas scale height (∼ σz/Ω) enter in γ.
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that, this feedback-regulated formulation actually makes no prediction directly
as to the velocity dispersions or turbulence in the disk.

2. Turbulent Momentum Injection Balances Dissipation: The rate of feed-
back momentum injected by massive stars balances the rate of turbulence
dissipation in the supersonic ISM (e.g., Faucher-Giguère et al., 2013; Hay-
ward et al., 2017). Here, turbulent momentum is argued to decay on an
eddy (disk) crossing time. where Pturb ∼ Σgσ and so Ṗturb ∼ −ΣgσΩ/2.
this balances with feedback injection at a rate of (P/m?)Σ̇?. Together,
(P/m?)Σ̇? ≈

√
3ΣgσzΩ/2. Or,

σz,FB ≈
2
√
3

(P/m?)Σ̇?
ΩΣg

. (5.5)

This, and often the argument that disks regulate themselves to Q̃gas ≈ 1, does
a fairly good job matching observations of the Kennicutt-Schmidt relation,
and so this and the previous formulation are often conflated as the feedback-
regulated model.

3. Constant (Low) Efficiency Star Formation: Star formation proceeds at a
constant efficiency per free-fall time in a marginally unstable Toomre disk
(e.g., Krumholz, Dekel, et al., 2012; Salim et al., 2015). Here, Σ̇? = εffΣg/tff ,
where εff ≈ 0.01, and tff is derived arguing that vertical hydrostatic equilib-
rium is maintained in the disk with the mid-plane disk pressure being:

Pmidplane = ρσ
2 ≈

π

2
GΣg (Σg + γΣ?) . (5.6)

this results in a scaling for the constant-efficiency star formation rate of:

σz,εff ≈
4εffGΣg

√
Σg (Σg + γΣ?)

3Σ̇?
, (5.7)

which has a reciprocal slope in Σ̇? from the feedback-regulated model.

4. Accretion Driven Turbulence/Star Formation: The gravitational potential
energy of in-falling gas is converted to turbulent motions, i.e., σ, and gas
migrates through the disk to the centers of galaxies, all while star formation is
occurring (Klessen et al., 2010; Krumholz and Burkert, 2010; Cacciato et al.,
2012). Following the work of Krumholz and Burkert (2010), if star formation
occurs with fixed low efficiency, and the disk maintains a steady state with
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accreted gas moving radially towards the center, then the velocity dispersions
in this accretion powered model will scale with star formation as:

σz,acc ∝
ε2ff f 2gΩ

4Ṁacc

GΣ̇2?
, (5.8)

where Ṁacc is the rate that gas accretes onto the galaxy disk. This scaling
has the velocity dispersions fall even more rapidly with rising SFRs than the
low-efficiency model (iii).

Figure 5.13 shows the result of using the local surface densities, dynamical times,
etc., in the spatially resolved FIRE data to predict the velocity dispersions in the
gas using both the feedback-regulated (ii) and the constant-efficiency (iii) models.
This is compared against the actual velocity dispersions calculated in these pixels
in the cold and dense gas. We do not compare the accretion powered model (iv), as
its predicted velocity dispersions fall off even more rapidly than the (just) constant-
efficiency model and so finds significant disagreement with the simulations in a
spatially resolved sense.

Although the first panel suggests that both models do equally poorly in agreeing
with the actual dispersions on a pixel-by-pixel basis, we see that they each find ∼dex
disagreement with the data in different star formation regimes (due to their reciprocal
slopes in scaling with Σ̇?). The middle panel shows that the feedback-regulated
picture over-predicts σz at high Σ̇?, by ∼0.5 dex, whereas the constant-efficiency
model under-predicts by close to a dex there. At high star formation rates, as per
§ 5.2.6 and the work of Hayward et al. (2017), it is likely unfair to argue that all
of the momentum goes into the velocity dispersions of the cold molecular medium.
Rather, some outflowing material or heating of the ISM is warranted, and ought
to carry away some of the momentum budget, and this framework naturally then
overestimates the velocity dispersion in this regime. On the other hand, the constant
efficiency model significantly under-predicts σz, and would most easily be rectified
by arguing that εff rises with Σg (cf., Grudić et al. 2018).

At the other extreme, for low Σ̇?, the feedback-regulated framework under-predicts
σz by ∼ 0.5 dex, with the constant-efficiency model over-predicting it by about the
same amount. In this case, the picture of the ISM as a purely turbulently supported
medium breaks down, and the ISM begins to have significant (but not sufficient)
thermal support from the atomic phase (T ≈ 8000 K, cs ≈ 6 km/s). Including the
thermal component cs in quadrature with the turbulent scaling predictions would
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not significantly affect the constant-efficiency model, as it predicts tens of km/s of
dispersions at the low end of star formation, but would bring the feedback-regulated
model into closer agreement.

In summary, both the feedback-regulated and constant efficiency models appear to
produce similar disagreement with the velocity dispersions seen in FIRE (and in
turn, due to the good agreement of FIRE with observations, reality). However, there
are reasonable physical arguments that may alleviate discrepancies at high and low
star formation rates for the feedback-regulated model. These physical effects do not
aid the constant-efficiency model (and in fact would only add to its tension).

5.4 Summary & Conclusions
In this chapter, we explored the properties of the various spatially resolved (fiducially,
750 pc) line-of-sight gas velocity dispersions, and their relationships with different
star formation rate tracers and gas stability. These properties were investigated
in the context of face-on ‘observations’ of the Milky Way massed disk galaxies
(M? ≈ 1010.2 − 1010.9 M� at z ≈ 0) of the FIRE cosmological zoom-in simulations,
and found to be in good agreementwith resolved observations of local spiral galaxies.
Our principal results are as follows:

• Velocity dispersions in neutral (atomic + molecular) gas are nearly constant
across 3 dex in 10 Myr average star formation rates, distributed between
≈ 15−30 km/s in our sample of simulated Milky Way-mass spirals (Fig. 5.4).
There exists a lower envelope in velocity dispersions for neutral gas, which is
especially pronounced in the cold & dense gas, at constant Σ̇?.

• In regions with low recent (≤10Myr) star formation rates, velocity dispersions
correlate with past (.100 Myr) star formation rates (Fig. 5.7). This coincides
with the timescale over which past star formation events will have injected all
their feedback momentum into the ISM. At high recent star formation rates,
the ISM in these galaxies does not appreciably ‘remember’ past star formation
activity.

• The outer contours of the σz-Σ̇? relation corresponds to conditions where
the ISM is hosting star formation rates (over different timescales) sufficiency
high to expel significant fractions of the ISM as outflows/galactic fountains
(Fig. 5.8). In other words, the ISM can only sustain so much feedback
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over 10–100 Myr timescales, without being driven out as outflows/galactic
fountains.

• Dense gas depletion times (Σg,C&D/Σ̇?) are shortest in the cases where either
a small fraction of the ISM is dense (thus, nearly all the dense gas is involved
in star formation) or where gas surface densities are high and nearly all of the
ISM is cold and dense (Figs. 5.9 & 5.10).

• There is evidence for on-off cycles of star formation in the disks (Fig. 5.12):
less gravitationally stable patches of ISM with little past (∼ 10 − −100 Myr
ago) star formation have the shortest gas depletion times/most vigorous current
(. 10 Myr) star formation rates, and conversely, more gravitationally stable
regions with long gas depletion times have had star formation/feedback events
in the recent past (10–100 Myr ago).

• The FIRE-2 simulations, and observations, show that regions with higher Σ̇?
tend to have higher σz, while models with constant efficiency star formation
predict that such regions should have lower σz. This is in broad agreement
with feedback-regulated models that predict SFRs should scale positively with
velocity dispersions.

The velocity dispersion structure of the FIRE Milky Way-massed spirals dovetails
with our general understanding of gas disks in the turbulently supported framework
of disk structure stability. By and large, the dispersions seen and their attendant star
formation rates are consistent with the feedback regulated model of star formation
(cf.,§ 5.3.2).

The differing timescales traced by various proxies for star formation rates (e.g., Hα
fluxes tracing . 10 Myr vs. UV fluxes tracing . 100 Myr timescales) and the
dynamical times involved for the evolution of turbulent gas linewidths (disk/eddy-
crossing times) are a frequent difficulty in interpreting studies of velocity dispersions
and star formation rates in galaxies. However, they also pose a unique opportunity
to study the dynamical evolution of the ISM over those timescales. We have
seen evidence in the relative flatness of the σz-Σ̇? relation for star formation rates
over 10 Myr timescales that the ISM can respond relatively quickly in terms of
firing up/turning off star formation compared to the actual driving/decay rate of gas
turbulence. Further, between the present dynamical state of gas, and current star
formation rates, in regions with high or low past star formation rates in the FIRE
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spirals present evidence of the regulation timescales of feedback injection, and
vigorous on-off cycles of star formation occurring over ∼ 10−−100 Myr timescales
and ∼kpc length-scales.

Future work, both from the modeling side of simulations, where theorists may
explicitly model dense molecular gas line emission and linewidths to allow for more
direct comparisons with IFU observations, and on the observational side with more
complete censuses of spatially resolved galactic gas structures and star formation
rates in on-going IFU surveys, will only help uncover the connections between the
local gas dynamics on kpc-scales and star formation in disk environments.
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C h a p t e r 6

SUMMARY & FUTURE WORK

6.1 Synopsis Overview & Past Work
My research has sought to understand how the physics of star formation, stellar feed-
back from massive stars, and gas cooling physics shape and regulate the interstellar
medium within galaxies. Particularly, my focus has lain on the scale of the largest
coherent structures in galaxies–the disk scale height in Milky Way-mass galaxies.
To explore these physics, I have primarily used cosmological zoom-in simulations,
specifically those of the FIRE project (Hopkins, Kereš, et al., 2014; Wetzel et al.,
2016; Hopkins, Wetzel, et al., 2018). Cosmological zoom-in simulations, which
evolve cosmologically-sized volumes but focus their computational power on a small
region of that volume, have reached a point that they can answer questions tied to
star formation and the ISM, combining a cosmological context and realistic environ-
ments in which entire galaxies form with high-resolution zoom-in regions that allow
for detailed, meaningful studies of the gas and stellar populations within galaxies
at the parsec scale. State-of-the-art simulations are now able to match resolved
quantities within galaxies, and I have worked to understand what processes work to
regulate the internal dynamics of galaxies to produce this concordance.

Many of my first-author projects, turned thesis chapters, have focused on exploring
spatially resolved star formation in cosmological zoom-in simulations. My work
probes the intersection of cosmological simulations and observed star formation
scaling relations and tracers of dense gas. The past several years of research,
presented here as thesis chapters, can be seen as connected by a consistent thread of
projects:

6.1.1 Kennicutt-Schmidt on FIRE
The FIRE simulations (Hopkins, Kereš, et al., 2014) were among the first cosmo-
logical simulations to reach the mass resolutions required to study star formation on
sub-kiloparsec-scales, and thus follow the fragmentation and collapse of gas, rather
than impose a pressure/density floor. As my first independent project, I conducted
a study of the spatially resolved Kennicutt-Schmidt relation (Schmidt, 1959; Ken-
nicutt, 1998), which is an empirical relation between gas surface density and star
formation rates, in the FIRE simulations (Orr, Hayward, Hopkins, et al., 2018).
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The goal was to study and understand the emergent nature of the scaling relation,
as the star formation prescription in FIRE at the particle scale does not include it
a priori. I developed a pipeline to produce spatially resolved maps of simulation
snapshots, yielding star formation rates, and properties of the gas in the galaxies at
100 parsec to kiloparsec resolution. Examining the emergent star formation relation
in a dozen distinct simulations with several hundred snapshots of each, we were
able to explore various formulations of the Kennicutt-Schmidt relation (comparing
different tracers of star formation rate and gas surface densities), and their depen-
dencies on metallicity, local dynamical times, and redshift evolution. We found that
the Kennicutt-Schmidt relation in FIRE agrees well with both the normalization and
scatter found in observations (Bigiel et al., 2008; Leroy, Walter, Brinks, et al., 2008;
Leroy, Walter, Sandstrom, et al., 2013). The scatter in star formation rates at con-
stant gas surface density, interestingly, was not fully explained by local variations in
quantities like metallicity or dynamical time, suggesting that some intrinsic scatter
arises due to the evolutionary state of individual star forming regions (see, e.g.,
Schruba et al., 2010; Kruijssen and Longmore, 2014)—this was explored further in
Orr, Hayward, and Hopkins (2019), and continues to be an area of interest for me.

6.1.2 What fires up Star formation?
As part of studying the Kennicutt-Schmidt relation in the FIRE simulations, the
question arose: what set the extent of the star-forming disks in the simulations (i.e.,
what causes star formation to fire up in the outskirts)? A number of arguments
had existed relating to star formation thresholds in galaxies (Martin et al., 2001;
Schaye, 2004; Krumholz et al., 2005; McKee et al., 2007; Shetty and Ostriker, 2008;
Semenov et al., 2016). With twomain arguments, that either marginal stability in the
gas against gravitational fragmentation was key or that gas cooling and opacity were
for setting the onset of star formation. In Orr, Hayward, Hopkins, et al. (2018), we
explored the relative gravitational stability, quantified with the Toomre-Q parameter
(Toomre, 1964), and opacity (as a proxy for the molecular state) of the gas where
star formation occurred in the FIRE simulations. We found definitively that star
formation occurred where gas was first unable to maintain marginal stability with
thermal support alone in galaxies, and that star formation occurred as a matter of
course to provide additional required turbulent support. In collaboration with the
MaNGA galaxy survey (Bundy et al., 2015), we found this also to be the case in
observations, with the onset of gravitational instabilities corresponding to breaks in
star formation rate profiles in disk galaxies (Stark et al., 2018).
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6.1.3 Stacking is Hacking
Current observations of star formation in the high-redshift (z ∼ 1) universe are
limited by low signal-to-noise and spatial resolutions at 1 kpc or larger (Nelson et al.,
2016). Observers have therefore developed a number of observational techniques
to address low signal-to-noise and pull out radial profiles in galaxies, including
stacking observations of many galaxies (Nelson et al., 2016; González Delgado
et al., 2016; Liu et al., 2018). In order to explore the difficulties and pitfalls of
analyzing stacks of galaxy observations, I collaborated with Dr. Erica Nelson,
whose own work uses the stacking technique, to conduct an identical analysis of
z ∼ 1 spatially resolved star formation maps from my Kennicutt-Schmidt study
(Orr, Hayward, Nelson, et al., 2017). Our primary findings indicated that temporal
variations in spatially resolved star formation rates within individual galaxies were
more than enough to bias analysis of stacks of star formation rate profiles chosen to
be above or below the star formation rate main sequence, a scaling relation between
observed star formation rates Ṁ? and stellar masses M? (Brinchmann et al., 2004;
Wuyts et al., 2011). The letter (chapter) ended up being a cautionary tale, warning
that care need be taken in choosing how to stack galaxy observations and interpreting
results from stacking.

6.1.4 Delayed Feedback & SFR Scatter
Understanding why star formation rates exhibited ∼dex scatters even at constant gas
surface density piqued my interest through my work with the Kennicutt-Schmidt
relation. I found it particularly intriguing that comparing the expected star formation
rate from turbulent-regulation theories (e.g., Ostriker et al., 2011; Faucher-Giguère
et al., 2013) matched the average star formation rates seen in the distributions,
considering the local conditions, but failed to explain the scatter consistently. In
exploring the velocity dispersions in the gas, as part of an on-going project involving
the FIRE-2 simulations, I began to analytically explore the effects of non-negligible
delay times between star formation and feedback injection. The comparability of
free-fall times in GMCs (few Myr), the lifetimes of massive stars (∼ 3 − −40 Myr),
and disk-crossing times (∼10 Myr) suggested that no process could be considered to
be “instantaneous” and that any equilibria reached would be cyclic and not static (cf.,
a harmonic oscillator in a dynamical equilibrium). This has led to a work in press,
Orr, Hayward, and Hopkins (2019), that identifies this feedback delay time as a key
parameter in driving local (kpc-scale) cycles in star formation and for reasonable
values of the delay time, I can reproduce the scatter (∼dex variability), an aspect
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missed in previous formulations of turbulence regulation (Benincasa et al., 2016).

6.1.5 Spatially Resolved Gas Velocity Dispersion–SFR Scaling Relations
Velocity dispersions (i.e., linewidths) in various gas tracers (e.g., CO or hydrogen
recombination lines) have been used as measures of line-of-sight structure, and
turbulent or thermal energy in the ISM (Lehnert et al., 2009; Bolatto et al., 2013;
Zhou et al., 2017). For this reason, there is the natural question: how is star
formation connected with either vertical structure or the turbulent energy in the
ISM at any given time? I have explored how gas velocity dispersions and star
formation rates relate in snapshots of Milky Way mass disk galaxies in the FIRE-2
simulations (Hopkins, Wetzel, et al., 2018), using the spatially resolved mapping
machinery developed for the Kennicutt-Schmidt project. I am especially interested
in the extent to which star formation is able to drive kpc-sized patches of disks away
from marginal stability (i.e, Toomre’s Q ∼ 1). The FIRE-2 simulations appear to
not depart far from stability, and understanding why this occurs and how quickly
local patches can regulate themselves, is a focus of that work.

6.2 Future Work: Signatures of Star Formation and Feedback Physics in
Spatially Resolved Synthetic Observations

6.2.1 Motivation
The fields of star formation and galaxy evolution are now in the age of highly
spatially resolved galaxy studies and surveys that yield the spectra of thousands of
galaxies at sub-kiloparsec (kpc) resolution (e.g., Schinnerer et al., 2013; Bundy et
al., 2015). With the tremendous throughput of data, we are faced with the quandary
of how these observations connect to the underlying ground truths of galaxies, e.g.,
how well do various gas emission lines trace star formation on kpc-scales, or what
are the signatures of different star formation and feedback theories buried in these
high-dimensional datasets? Cosmological zoom-in simulations have evolved over
the last 25 years to a level of realism where they can begin to tackle these questions
(e.g., Katz et al., 1996; Hopkins, Wetzel, et al., 2018). Whereas a decade ago
simulations faced difficulty in matching even global properties of observed galaxies
(e.g., the ratio of stellar mass to total halo mass), the state of the art is now able
to meaningfully recover resolved quantities in galaxies that were not put into the
simulations by hand (e.g., the Kennicutt-Schmidt star formation scaling relation, see
Figure 6.1 for an example of this in the FIRE simulations, Orr, Hayward, Hopkins,
et al., 2018). However, there remains a gap between simulations and observations.
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Theorists typically report physical quantities taken directly from their simulations,
while observers must derive the underlying properties from, e.g., linewidths and
luminosities by making a wide array of assumptions about molecular and atomic
processes, and the dynamical state of the gas.

In order to address the gap, I have developed a pipeline for producing spatially
resolved spectral maps of cosmological zoom-in simulations, so as to be able to
directly compare spatially resolved luminosities and linewidths predicted by simula-
tions with those from observations. In my future work, I will explore the signatures
of variations in star formation, feedback (e.g., cosmic rays, supernovae, radiation
pressure, photoionization, etc.), and gas physics in resolved galaxy scaling relations,
and probe various observables (e.g., CO or C+ emission) to constrain those physics.

6.2.2 Future Research Directions
Producing sub-kpc-scale line-emission maps of simulatedMilkyWay-mass galaxies
requires accurate chemical abundances, a realistic radiation field, and an accurate
accounting of how the radiation propagates. I will therefore post-process the sim-
ulations using the CHIMES chemistry solver (Richings et al., 2014b; Richings et al.,
2014a) to produce equilibrium chemical abundances, using a modern stellar popula-
tion model to supply realistic radiation fields for the chemistry and dust temperatures
(e.g., FSPS, Conroy, Gunn, et al., 2009; Conroy, White, et al., 2010), and (3) use a
3D Monte Carlo radiative transfer code (RADMC3D, Dullemond et al. in prep.) to
follow the photons out of the galaxy to the observer. My pipeline predicts equi-
librium chemical abundances from the local gas shielding column, radiation field,
and the density and temperature of the nearby gas, and thus tracks the effects of star
formation/feedback/gas physics self-consistently. Figure 6.2 shows an example of a
spatially resolved CO J = 1→ 0 line-emission datacube produced by this pipeline.
I will leverage this machinery to make resolved submillimeter line emission maps
of a variety of commonly observed species (e.g., CO, 13CO, C, C+, N+). Because
RADMC3D even handles line-transfer (i.e. emission/absorption at specific frequen-
cies), I will also calculate recombination lines such as Hα that are commonly used
to estimate star formation rates on short timescales.

Ultimately, my pipeline will yield spatially resolved multi-wavelength emission
maps from simulations, enabling detailed studies of dense gas and star formation
tracers. I will use these maps to validate empirical conversion factors between
observed and inferred quantities, investigate in what ways state-of-the-art cosmo-
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a

b

c

Figure 6.2: Early science result from the synthetic observations pipeline. Example
of synthetic CO map from a Milky Way mass spiral galaxy from the FIRE project
(Hopkins, Wetzel, et al., 2018). Counter-clockwise from top left, (a) Slice of CO
line emission in the galaxy (face-on) at 100 pc resolution. Spiral features and central
gas region are clearly visible (units, kpc), (b) slice in velocity space (units, km/s and
kpc), showing velocity structure of CO emission through the center of the galaxy,
(c) example of a CO line profile taken from a point along one of the spiral arms,
with a clear double peaked feature.

logical zoom-in simulations are either able or unable to reproduce current kpc-scale
observations, and explore the observational signatures of various physics. For ex-
ample, by using a low-redshift snapshot from a cosmological zoom-in simulation
as initial conditions for runs that vary the prescriptions for star formation and feed-
back, I will investigate how those variations impact observables from an otherwise
identical galaxy, e.g., the ratio between observed CO emission and gas mass (i.e.,
the observer’s XCO factor). I will leverage my pipeline for observing simulations,
together with exploring the parameter space of star formation and feedback physics
through simulation restarts, to see how, and to what extent, various resolved galaxy
scaling relations constrain theory. I will directly address questions in star and
galaxy formation, e.g.: What is the relative balance between radiative and mechan-
ical feedback in star-forming regions? How do gravity and stellar feedback together
regulate star formation rates? Mywork will focus on identifying clean observational
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tests to answer these questions.

Three proposed thrusts using zoom-in simulations and synthetic observations are as
follows:

6.2.3 Strand I: XCO and CO-DarkGas Fractions in Cosmological Simulations
It is extremely difficult to observe H2 directly, so observers use a litany of molecular
gas tracers, e.g. CO and HCN, to infer the gas masses and dynamics in the dense,
predominantly molecular ISM (Hollenbach et al., 1999). Among the gas tracers,
CO has become a gold standard, due to its brightness, lack of confounding nearby
lines, and because it traces ‘low’ density (∼10–103 cm−3) gas (Bolatto et al., 2013).
However, given its strength, CO is almost always optically thick, such that we cannot
observe emission deep within a galaxy–presenting difficulties in mapping what is
essentially emission from a surface into an estimate for the volume (and therefore
mass) of dense gas. The conversion factor between the observed emission and the
gas mass is the observer’s XCO (the basis of which relies on a chain of reasoning
regarding virialized clouds and collisionally excited CO), and has a large amount of
uncertainty associated with it (Pineda et al., 2010; Bolatto et al., 2013; Clark et al.,
2015). Moreover, several authors have pointed out that not all H2 has associated CO
emission (perhaps due to evolutionary effects in star-forming regions owing to the
relative ease of CO destruction by ionizing radiation), such that some fraction of the
gas may be “CO-dark” (e.g., Liszt et al., 2012; Shetty, Kelly, et al., 2014; Tang et
al., 2016). Using cosmological zoom-in simulations and my synthetic observations
pipeline, I will produce detailed maps of both the CO emission and of the total dense
gas (mapping the HI and H2 directly), yielding a self-consistent determination of
the normalization and scatter in the simulated XCO, and estimates of the CO-dark
gas fractions. Further, with simulations varying the low-temperature gas cooling,
shielding, and feedback physics, I will explore how sensitive XCO and the CO-dark
gas fractions are to different choices in the implemented physics.

6.2.4 Strand II: Spatial and Temporal Correlations Between Star formation
& Gas Tracers

In the past decade, observers have begun to explore the spatial correlation between
tracers of star formation and dense gas (Schruba et al., 2010; Kruijssen and Long-
more, 2014; Kruijssen, Schruba, et al., 2018, Leroy et al. in prep.). Though various
scaling relations have canonically been plotting two tracers against each other (e.g.
formulations of Kennicutt-Schmidt), the information encoded in the spatial corre-
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lation or anti-correlation between tracers has been argued to indicate evidence of
dynamical evolution of the ISM. For example, regions with dense gas tracers evolve
into regions with star formation tracers (with quickly fading dense gas tracers)–so,
on some scale there is an expected anti-correlation between the two, the “uncertainty
principle for star formation” (Schruba et al., 2010; Kruijssen and Longmore, 2014;
Orr, Hayward, and Hopkins, 2019). I will take full advantage of the unique power
of simulations to explore both high spatial resolution and temporal evolution by
producing maps of dense gas and star formation tracers from individual galaxies
that are closely spaced in time. I will disentangle the cross-correlations between
spatial and temporal variations in gas and star formation rate tracers, elucidating the
ways that variations in ISM conditions across a galaxy are related (or not) with how
individual star-forming regions evolve.

6.2.5 Strand III: Signatures of Star Formation and Feedback Physics on Scal-
ing Relations

How star formation proceeds, and its dependence on conditions at the sub-parsec
level (i.e. local virial criterion,Mach number, gas density) remains uncertain (Martin
et al., 2001; Krumholz et al., 2005; Hopkins, Narayanan, et al., 2013; Somerville
et al., 2015). Surprisingly, simulations indicate that global star formation rates (and
the spatially resolved distributions to some not fully explored extent) are not very
sensitive to at least some of these local conditions, as the ISM self-regulates its phase
structure (Orr, Hayward, Hopkins, et al., 2018; Orr, Hayward, and Hopkins, 2019).
However, the exact correlation between how tracers of dense gas and star formation
rates evolve with variations in star formation thresholds and physics (e.g., high- or
low-star-formation efficiency per free-fall time) has not been studied. Nor is it fully
understood how sensitive different scaling relations (observed at ∼kpc-scales) are
to various parsec-scale physics. I will vary the star formation and feedback physics
in the simulations (e.g., the balance between radiative and mechanical feedback, the
overall strength of feedback, and the timescales over which it is injected into the
ISM), and then employmy synthetic observations pipeline. Comparing the synthetic
observations against each other and against observational datasets, I will explore
how star formation scaling relations can distinguish between various models of star
formation and feedback, and constrain current and future theories of star formation
with their predicted observable consequences.
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6.2.6 Summary
In order to glean all that we can from sub-kpc resolution observations, we must
both understand the signatures of star formation and feedback physics in the observ-
ables, and the extent to which those observables are reflective of the ground truth in
galaxies. To address these points, I have developed a pipeline to produce spatially
resolved synthetic observations of cosmological simulations, allowing me to both
validate empirical observational relations and investigate the observational signa-
tures of star formation and feedback physics in resolved galaxy scaling relations.
The gap between observations and theory will most easily be closed through careful
and diligent work, by observers with an ear for theory and theorists with an eye on
the observables.
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