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ABSTRACT 

 First-row transition-metals such as nickel and copper have revolutionized cross-

coupling chemistry. Their propensity to form radical intermediates from alkyl electrophiles 

has greatly expanded the scope of traditional cross-coupling reactions.  Alkyl radicals can be 

recaptured by a chiral transition-metal catalyst allowing for enantioselective bond formation. 

In general, alkyl radicals rapidly epimerize, and thus both enantiomers of a racemic mixture 

of an alkyl electrophile can be processed into the same enantiomer of product, rendering the 

overall process enantioconvergent. Herein, the development of basic bond constructions and 

the development of asymmetric reactions leveraging alkyl radical intermediates for carbon-

nitrogen and carbon-carbon bond formations are discussed. Reaction development is the 

primary focus of this work, though mechanistic insights discovered along the way are also 

detailed within. 

 Chapter 2 describes the development of an enantioconvergent alkylation of amine 

nucleophiles with alkyl electrophiles. Carbazole and indole derivatives are employed as 

nucleophiles to undergo copper-catalyzed cross-coupling with tertiary α-chloroamide 

electrophiles under visible light irradiation. Reaction optimization, scope of reactivity, 

inorganic synthesis, and mechanistic insights are described within. 

 Chapter 3 details the development of a non-asymmetric copper-catalyzed alkylation 

of aliphatic amines with unactivated alkyl electrophiles under visible light irradiation. The 

development of a novel catalytic system to circumvent the issues with the photophysical 

properties of aliphatic amine-copper complexes is discussed. Scope of reactivity and 

mechanistic investigations are detailed within. Additionally, our efforts to develop an 

asymmetric variant of this reaction are enclosed. 

 Chapter 4 discusses the development of a copper-catalyzed alkylation of N-

heterocycles with α-halolactams in the absence of light. The scope of the reactivity is detailed 

within. Mechanistic studies contained in this section suggest a unique and interesting reaction 

pathway—one that does not proceed through a radical intermediate. 
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 Chapter 5 presents a novel class of organosilane electrophiles employed in an 

enantioconvergent nickel-catalyzed cross-coupling reaction. Here, the development of the 

reaction, scope of reactivity, and initial mechanistic insights are discussed. 
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C h a p t e r  1   

INTRODUCTION 

 

1.1. Cross-Couplings with Radical Intermediates 

 First-row transition-metals, such as iron, manganese, cobalt, copper, and nickel are 

exciting starting points for the design of new transition-metal catalyzed reactions. Not only 

are they generally inexpensive due to their high earth-abundance, they often exhibit low 

toxicity compared to noble metals (e.g., ruthenium, rhodium, palladium, iridium). Moreover, 

their propensity to undergo single-electron transfer events allows access to interesting 

chemical transformations. For example, whereas palladium has a tendency to undergo two-

electron chemistry with alkyl and aryl halides, first-row transition-metals like nickel and 

copper can readily undergo single-electron transfer to an alkyl or aryl halide, generating 

highly reactive radical intermediates under unusually mild conditions (i.e., room temperature 

or lower) (Figure 1.1).1,2 In the case of secondary or tertiary alkyl halides, both enantiomers 

of electrophile can generate a common alkyl radical intermediate after single-electron 

transfer. If a chiral catalyst is employed, stereoselective bond formation could occur. Thus, 

such a system portends itself to enantioconvergent processes—where both enantiomers of a 

racemic mixture of electrophile are processed into a single enantiomer of product.  

 

Figure 1.1. Copper and nickel catalysis can generate radical intermediates that can be 

recaptured by the metal catalyst to form enantioenriched bonds.  
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 Using transition-metals like nickel and copper to generate alkyl radical 

intermediates can allow one to circumvent issues with classical methods for nucleophilic 

substitution reactions of alkyl electrophiles.1−3 For example, SN1 reactions have a number of 

inherent limitations (Figure 1.2): substrates are usually limited to tertiary electrophiles; 

competing elimination and rearrangement side-reactions of carbocation intermediates can 

occur; Lewis or Brønsted acids are often required for ionization and can quench the 

nucleophilic partner; and this reaction manifold can rarely be employed in an 

enantioconvergent fashion.4  

 

Figure 1.2. SN1 reaction and the associated limitations.  

 There are also various limitations to SN2 reactions of alkyl halide electrophiles 

(Figure 1.3):1−3 substrates are generally limited to unhindered primary or activated secondary 



 

 

3 

electrophiles; strong nucleophiles or the addition of a strong base is generally required, 

which can result in an E2 reaction with the electrophile; amine nucleophiles can readily 

undergo overalkylation; and, because this process is stereoinvertive, one enantiomer of 

electrophile can only be converted into the opposite enantiomer of product.  

 

Figure 1.3. SN2 reaction and the associated limitations.  

 A radical approach can avoid many of these limitations.1,2 For example, in contrast 

to its carbocation counterpart, alkyl radicals do not readily undergo 1,2-alkyl or 1,2-hydride 

rearrangements.5 Substitution reactions of alkyl electrophiles via radical intermediates are 

known as SH2 (homolytic substitution) reactions. However, the likelihood of an SH2 reaction 

occurring largely depends on the nucleophilic component. The generated alkyl radical must 

be able to react via atom transfer or addition into a π system with the nucleophile.5 As a 
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result, first-row nucleophiles with lone pairs (e.g., amines, alcohols, etc.) and saturated 

carbon nucleophiles are not amenable to this reactivity.  

 Transition-metal catalysis has been essential in expanding nucleophilic substitution 

reactions to aryl, alkenyl, and alkynyl electrophiles with various nucleophilic coupling 

partners.6 Typically, these transformations proceed through a common cycle of oxidative 

addition, transmetallation, and reductive elimination (Figure 1.4). Oxidative addition has 

been successful for a number of Csp2−X and Csp−X electrophiles; however, the analogous 

reaction with Csp3−X electrophiles is limited due to steric interactions with 2° and 3° 

electrophiles and competing β-hydride elimination of alkylmetal intermediates.1,2  

 

Figure 1.4. General outline of a transition-metal catalyzed cross-coupling reaction of an aryl 

electrophile with a generic nucleophilic via two-electron oxidative addition.  

 Fortunately, there are alternatives to the two-electron oxidative addition pathway that 

allow the net oxidative addition of alkyl electrophiles.7 Transition-metals can undergo two-

step oxidative addition by first generating an alkyl radical (through halide atom abstraction, 

single electron transfer, or a related process) followed by recombination of the radical and 
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transition-metal catalyst to effect the oxidative addition product.8 By exploiting the 

propensity of certain transition-metals (i.e., nickel and copper) to undergo this reactivity, the 

scope of nucleophilic substitution reactions has been greatly expanded (Figure 1.1).1,2 

Transition-metal catalysis proceeding through radical intermediates is a powerful tool in 

synthetic chemistry and is largely the focus of the chemistry discussed within this thesis. 

1.2. Photoinduced Copper Catalysis 

 Copper is privileged in its ability construct C−N bonds.9 However, high catalyst 

loadings and elevated reaction temperatures of many copper-catalyzed reactions have 

continued to be significant drawbacks—advancements in ligand design over the years have 

begun to address these issues. Alternatively, light used in conjunction with copper catalysis 

has opened to door to accessing high energy intermediates under milder conditions. 

Photoredox catalysis has been intensively studied and is commonly featured in new cross-

coupling reactions. Most reports involve catalyst systems based on ruthenium and iridium 

photocatalysts, though copper photocatalysts have recently garnered significant attention.10  

 Previously, the Peters group had studied luminescent copper species and their ability 

to partake in photoinduced electron transfer events.11 Together the Fu and Peters have 

leveraged these photoluminescent properties to probe mechanistic questions regarding the 

Ullmann coupling.12 They found copper(I)-amide complex 1.1 could mediate the formation 

of C−N bonds under UV light irradiation (eq 1.1).12 Mechanistic studies determined that the 

reaction proceeds through a radical intermediate derived from the electrophile. 
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 Since this initial study, the Fu and Peters groups have demonstrated a wide array of 

nucleophilic coupling partners able to undergo cross-coupling with both aryl and alkyl halide 

electrophiles via radical intermediates using copper photocatalysis (Figure 1.5).13 

Additionally, this reaction manifold has even been extended to the asymmetric variant and 

will be discussed in Chapter 2 (eq 1.2).13g Ongoing studies in the Fu and Peters groups are 

largely focused on studying the mechanisms of these reactions, expanding the scope of 

reactivity and developing new asymmetric transformations. 

 

Figure 1.5. Nucleophiles used in copper-catalyzed alkylation and arylation cross-coupling 

reactions that are induced by light irradiation. 

 

 Because initial studies were conducted under UV light irradiation, photoinduced C−X 

bond homolysis could not be ruled out as means to generate radical intermediates.12 

However, recently developed photoinduced copper-catalyzed reactions, such as those 

discussed within Chapters 2 and 3, have been performed under visible light 

irradiation.13g,13j−m Visible light is highly attractive, as it is lower in energy than UV light and 

therefore safer to work with and allows for greater functional group tolerance. Under such 
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conditions, C−X bond homolysis has not been shown to be possible. The Fu and Peters 

groups have shown that copper complex 1.3, used to catalyze the alkylation of carbamates 

under visible light irradiation (eq 1.3), can undergo photoexcitation and have its excited state 

quenched by an alkyl bromide—likely through a single electron transfer event.13l 

 

 

Figure 1.6. Outline of one of the possible pathways for photoinduced, copper-catalyzed 

cross-coupling reactions. 
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 Based on previous studies by the Fu and Peters groups, a general mechanism 

(outlined in Figure 1.6) can be considered where a copper(I)-nucleophile complex (1.A) can 

undergo photoexcitation to 1.B. 1.B could then undergo single electron transfer to the 

electrophile generating a radical intermediate (R•) and copper(II) species 1.C. It is not clear 

whether product is formed through recombination of  R• and 1.C to form copper(III) species 

1.D or rather directly reacts with the nucleophilic component of 1.C and releases copper(I) 

species 1.E. Mechanistic studies in the Fu and Peters are ongoing to elucidate this process.  

 Copper photocatalysis continues to be a powerful tool to construct new bonds, shows 

great promise for asymmetric reaction development and is rich in mechanistic details to 

uncover. This thesis will be primarily focused on the development of C−N bond forming 

reactions using copper and light and mechanistic studies of those transformations. Chapter 2 

will discuss the first asymmetric alkylation of an amine using a copper catalyst under visible 

light irradiation (eq 1.2). Chapter 3 will discuss the development of a novel catalytic system 

capable of coupling aliphatic amines to unactivated secondary alkyl halides under visible 

light irradiation.  Efforts to translate this reaction to the asymmetric variant will also be 

discussed. Chapter 4 will disclose a unique asymmetric, copper-catalyzed reaction to form 

C−N bonds, however, in the absence of light. 

1.3. Nickel Catalysis 

 While copper photocatalysis has been an enabling tool for Csp3−heteroatom bond 

formation, nickel catalysis is particularly adept at carbon-carbon bond formation. 

Traditionally, carbon-carbon bond formation has been dominated by palladium catalysis, but 

has been largely limited to Csp2−Csp2 bond formation.2 Efforts have been made to extend this 

reactivity to alkyl-alkyl bond constructions, but often facile β-hydride elimination of 

alkylmetal species has been limiting.
2
 However, in recent years there have been tremendous 

efforts to catalyze the formation of Csp3−Csp3 (alkyl-alkyl) bonds with alkyl electrophiles and 

organometallic nucleophiles. Particularly, there is great interest in constructing these bond 
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enantioselectively due to the growing interest in accessing chiral molecules in the 

pharmaceutical industry.14 

 A number of transition-metals (e.g., copper, palladium, manganese, iron) have been 

successful in catalyzing alkyl-alkyl cross-coupling reactions.1,2 However, nickel has been a 

standout in its versatility and ability to catalyzed enantioselective reactions with secondary 

and tertiary alkyl electrophiles.12,14,15 Initial mechanistic studies of nickel-catalyzed alkyl-

alkyl cross-coupling systems describe the formation of radicals intermediates derived from 

alkyl electrophiles, suggesting a different mechanism from that outlined in Figure 1.4.16−19 

As mentioned earlier, the formation of alkyl radicals can lend themselves to 

enantioconvergent processes. There are likely unique mechanistic nuances to each 

combination of ligand, electrophile and nucleophile, but many of the reaction developed by 

the Fu group likely follow a mechanism proposed through studies done by the Fu group for 

the nickel-catalyzed Negishi arylations of propargylic bromides (Figure 1.7).19 Here, 

nickel(I) species 1.F can abstract a halide from the electrophile generating a radical 

intermediate and nickel(II) species 1.G. Transmetallation could then occur to generate 

nickel(II)-alkyl 1.H. Upon capturing the radical intermediate, nickel(III) species 1.I can then 

reductively eliminate to form product and regenerate 1.F. 

 

Figure 1.7. General outline for nickel-catalyzed reactions proceeding through a radical 

intermediate. 
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 The Fu group has been very interested in enantioconvergent nickel-catalyzed 

alkyl-alkyl cross-couplings for a number of years. Various catalyst systems have been 

developed to target enantioconvergence through different approaches (Figure 1.8). A 

racemic electrophile can couple with an achiral organometallic nucleophile to access 

enantioenriched products. Conversely, a racemic nucleophile can react with an achiral alkyl 

electrophile to achieve a similar outcome. Coupling a racemic electrophile and a racemic 

nucleophile while controlling the stereochemical outcome of both stereocenters would be the 

ultimate goal for nickel-catalyzed alkyl-alkyl cross-couplings. 

 

Figure 1.8. Reaction paradigms of nickel-catalyzed alkyl-alkyl cross-couplings. 

 Discussed within Chapter 5 of this thesis is the development of a nickel-catalyzed 

reaction utilizing a racemic electrophile and an achiral nucleophile (Figure 1.8, top). This 

paradigm is the most well-studied in the Fu group.20 In general, a racemic alkyl electrophile 

requires a pendant directing group or a π system directly adjacent to the halide for high 

enantioselectivity (Figure 1.9). However, recent work has shown that α-trifluoromethyl20t 

and α-silyl20x electrophiles are capable of undergoing cross-coupling with high 

enantioselectivities. In the case of enantioconvergent arylations of α-trifluoromethyl alkyl 
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halides, it is unclear whether the stereoselectivity is due to the trifluoromethyl group acting 

as a directing group or as an electron-withdrawing group. However, α-halosilanes are 

unactivated alkyl electrophiles, as substitution of a carbon with a silicon does not 

significantly stabilize an adjacent radical.21 To our knowledge, the coupling of α-halosilanes 

with alkylzinc reagents is the first example of an enantioconvergent nickel-catalyzed cross-

coupling reaction with an electrophile lacking both a directing and an activating group. This 

transformation will be discussed in Chapter 5. 

 

Figure 1.9. Various classes of racemic electrophiles used in nickel-catalyzed alkyl-alkyl 

cross-couplings.  
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C h a p t e r  2   

ASYMMETRIC COPPER-CATALYZED C−N CROSS-COUPLINGS 

INDUCED BY VISIBLE LIGHT 
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2.1. Introduction 

 Photochemistry can furnish reactive intermediates that would otherwise be difficult 

to access under synthetically useful conditions. Its application in organic synthesis has 

therefore expanded rapidly during the past decades,1 most recently in the context of 

enantioselective photoredox catalysis with transition metals.2−4  With several recent 

noteworthy exceptions, each of which involves the α-functionalization of carbonyl 

compounds by a chiral iridium catalyst,5−7 the metal-catalyzed methods require two catalysts, 

a transition metal complex that undergoes photoexcitation and serves as a site for redox 

chemistry, as well as a separate chiral catalyst that effects enantioselective bond formation.  

Transition metal-free asymmetric photoredox catalysis has also been reported.8,9 

 We have been interested in photocatalytic approaches to the construction of C–N 

bonds,10 given the high value of amines in fields ranging from biology to chemistry to 

materials science.11  Whereas initial efforts to develop transition metal-catalyzed C–N cross-

coupling reactions focused on the use of aryl and alkenyl halides as the electrophilic coupling 

partner,12,13 during the past few years, alkyl halides that are not suitable substrates for classic 

SN2 reactions have emerged as useful coupling partners under the combined action of light 

and copper catalysis.14,15  To date progress has not yet been reported in the development of 
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an asymmetric variant of these reactions, and the use of copper as a photoredox catalyst16 

is uncommon by comparison with precious metals such as iridium and ruthenium.  Here we 

describe a copper-catalyzed enantioconvergent cross-coupling of racemic tertiary alkyl 

halides that is induced by visible light, a process that lies at the intersection of several 

important dimensions of modern chemical catalysis (Figure 2.1A). 

 

Figure 2.1. A photocatalytic approach to the asymmetric synthesis of amines.  (A) 

Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. (B) Outline of 

a strategy for the enantioconvergent cross-coupling of a racemic tertiary alkyl halide via a 

radical intermediate. 

 Although considerable advances have recently been reported in the development of 

enantioconvergent cross-couplings of racemic secondary alkyl electrophiles with carbon 
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nucleophiles to form C–C bonds,17−19 no highly effective methods have yet been described 

for tertiary alkyl halides, which require differentiation by the catalyst of three distinct carbon 

substituents in order to furnish high enantioselectivity.  Indeed, in the field of asymmetric 

synthesis as a whole, highly stereoselective reactions of tertiary electrophiles are relatively 

uncommon, despite the fact that fully substituted carbons are a common motif in organic 

molecules.20  We anticipated that the radical mechanism that we have postulated for C–X 

bond cleavage in the presence of copper and light (vide infra)14,15 might enable us to 

surmount this challenge, because a single, comparatively stable tertiary radical could be 

formed from a racemic mixture of electrophiles (Figure 2.1B). 

 Another issue was whether common chiral ligands such as phosphines would even 

bind to copper, much less induce high enantioselectivity in the C–N bond-forming process, 

in the presence of a much more abundant nucleophilic coupling partner.  Indeed, the 

previously described methods for photoinduced, copper-catalyzed N-alkylation had 

employed CuI as a pre-catalyst with no added ligand.14,15 

2.2. Results and Discussion 

2.2.1. Optimization 

 As a model coupling process, we examined the reaction of carbazole, a heterocycle 

that occurs in bioactive molecules, including N-tert-alkyl-substituted compounds,21,22 with 

an α-halocarbonyl compound, a class of electrophiles that has not previously been employed 

in photoinduced, copper-catalyzed cross-couplings.  Upon investigating a range of reaction 

parameters, we discovered that irradiation of the cross-coupling partners at –40 °C for 16 

hours in the presence of CuCl, a chiral phosphine (2.1), and a Brønsted base provides the 

desired product in 95% yield and 95% enantiomeric excess (ee) (Table 2.1, entry 1).  In 

contrast to our earlier studies of photoinduced, copper-catalyzed N-alkylations, this process 

operates under visible light from a blue LED (rather than an ultraviolet source) and at 

relatively low catalyst loading (1.0 mol% rather than 10 mol%); a catalyst loading of 0.25 

mol% led to only a modest loss in yield and no erosion in ee (entry 2: ~300 turnovers; 
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previously, the highest turnover number for a photoinduced, copper-catalyzed N-

alkylation was ~9).14,15 

Table 2.1. Asymmetric copper-catalyzed C−N cross-couplings induced by visible light: 

Effect of reaction parameters. 

 

 Control experiments established that copper (Table 2.1, entry 3; the alkyl halide is 

recovered quantitatively) and light (entry 4) are necessary to achieve C–N bond formation 

under these conditions.  Furthermore, essentially no C–N coupling (<1%) occurs when the 

tertiary alkyl chloride, carbazole, and LiOt-Bu are heated at 80 °C in toluene for 16 hours.  

Our concern that a phosphine (e.g., 2.1) might not bind effectively to copper in the presence 

of a stoichiometric quantity of the nucleophile appears to be unfounded, as evidenced by our 

observation of high enantiomeric excess in the C–N coupling (entry 1) and of enhanced rate 

in the presence of the ligand (ligand-accelerated catalysis23: entry 1 vs. entry 5).  From a 

practical point of view, it is worth noting that CuCl and the chiral phosphine are 

commercially available and that the process is not highly moisture-sensitive (entry 6). 
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2.2.2. Scope of Reactivity 

 We have examined the scope of this photoinduced, copper-catalyzed method for 

enantioconvergent N-alkylation by racemic tertiary alkyl halides (Figure 2.2).  For couplings 

of carbazole with N-acylindoline-derived electrophiles, good to excellent yields and 

enantioselectivities are observed with a range of substituents in the α position of the 

electrophile (entries 1–6).  In the case of α,α-dialkyl-substituted electrophiles (entries 5 and 

6), the catalyst selectively discriminates between two alkyl groups, including a methyl and 

an isobutyl group (entry 6), to furnish high ee. 

 To gain insight into the compatibility of various functional groups with these 

conditions for enantioconvergent C–N cross-couplings of tertiary alkyl halides, we have 

examined the impact of additives (1.0 equivalent) on the course of the coupling process 

depicted in Figure 2.2, entry 1.  We determined that an unactivated secondary alkyl bromide 

(cyclohexyl bromide), a ketone (2-nonanone), a secondary alcohol (5-nonanol), an ester 

(methyl octanoate), an alkene (cis- or trans-5-decene), an alkyne (5-decyne), and a nitrile 

(valeronitrile) have no adverse impact on the yield/enantioselectivity and can be recovered 

intact at the end of the cross-coupling, whereas a primary amine (3-phenylpropylamine) and 

an aldehyde (octanal) impede N-alkylation.  

 The introduction of an electron-donating or an electron-withdrawing substituent onto 

the indoline does not compromise the efficiency of the cross-coupling (Figure 2.2, entries 7 

and 8).  If desired, N-acylindolines can be transformed into primary alcohols or carboxylic 

acids.24 A variety of other α-haloamides are also suitable electrophilic cross-coupling 

partners (entries 9–11), including a Weinreb amide (entry 11), which is important in 

synthesis because it serves as a useful precursor to ketones.25 

 With respect to the nucleophilic coupling partner, substituted carbazoles are also 

suitable substrates (Figure 2.3, entries 1–5); the enantioconvergent C–N cross-coupling can 

be conducted on a gram-scale with a similar outcome (entry 2: 1.29 g of product, 94% yield, 

94% ee).  Indoles can also be employed as nucleophiles in these photoinduced, copper-  
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Figure 2.2.  Scope with respect to the electrophile (yields determined after purification).  
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catalyzed couplings, furnishing the desired product with good yield and enantioselectivity 

(entries 6–9).  Because indoles are common subunits in bioactive compounds,26 and natural 

products with a tertiary N-alkyl substituent are known,27,28 these represent a useful addition 

to the limited nitrogen nucleophiles compatible with metal-catalyzed C–N alkylations.14,15 

 

Figure 2.3.  Scope with respect to the nucleophile (yields determined after purification). 
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2.2.3. Mechanistic Insights 

 Because we are able to obtain the cross-coupling product in high yield and ee when 

using only 1.2 equivalents of a racemic electrophile, it is evident that both enantiomers of the 

electrophile can be transformed under the reaction conditions into a particular enantiomer of 

the product (enantioconvergence), although not necessarily at identical rates (kinetic 

resolution29).  To gain insight into whether a kinetic resolution was occurring, we measured 

the ee of the unreacted tertiary alkyl halide at the end of the cross-coupling depicted in Figure 

2.2, entry 1.  Our observation that the recovered electrophile is racemic suggests either that 

the enantiomeric substrates are reacting at essentially identical rates (i.e., no kinetic 

resolution) or that in situ racemization of the electrophile is occurring.  Through the use of 

enantiopure alkyl halides, we established that virtually no racemization takes place under the 

reaction conditions (eq 2.1).  These couplings with enantiopure electrophiles further establish 

that the chiral ligand very effectively controls the absolute configuration of the product, 

regardless of the stereochemistry of the starting electrophile, and that C–Cl bond cleavage is 

essentially irreversible. 

 

 An outline of a possible mechanism for photoinduced, copper-catalyzed C–N 

couplings of alkyl halides is illustrated in Figure 2.4.14,15 Irradiation of a copper–nucleophile 

complex (2.A) could lead to an excited-state adduct (2.B) that would then engage in electron 

transfer with the alkyl halide (R–X) to generate an alkyl radical; next, Nu–R bond formation 

could occur through an inner-sphere pathway involving a copper–nucleophile complex 

(2.C).  In contrast to most asymmetric photoredox reactions catalyzed by transition metals,2−4 
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a single metal (copper) appears to be responsible for both the photochemistry and the 

enantioselective bond-forming process. The binding of the nucleophile to copper in situ to 

form a copper complex that can serve as a photoreductant is important in this outline.  

 

Figure 2.4.  Outline of a possible pathway for photoinduced, copper-catalyzed C–N cross-

couplings of alkyl halides. 

 We have synthesized and crystallographically characterized a copper complex that 

includes the chiral phosphine and the carbazolide nucleophile, ((R)−2.1)2Cu(carbazolide) 

(2.2; Figure 2.5A).  The three ligands are arranged in a trigonal planar geometry around 

copper.  When complex 2.2 (1.0 mol%) is employed in place of CuCl/2.1 under our standard 

reaction conditions, the yield and the ee of the C–N cross-coupling product are essentially 

unchanged (92% yield, 94% ee; cf. Figure 2.2, entry 1: 95% yield, 95% ee).  Furthermore, 

irradiation of complex 2.2 in the presence of a stoichiometric amount of a racemic tertiary 

alkyl halide leads to C–N bond formation in good yield and with enantioselectivity that is 

comparable to the catalyzed process (Figure 2.5B; cf. Figure 2.2, entry 1: 95% ee); no 

coupling occurs in the absence of light.  Collectively, these observations are consistent with 

the suggestion that complex 2.2, or a copper/carbazolide/2.1 species that can be derived from 

2.2, is a plausible intermediate in the catalytic cycle. 
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Figure 2.5. (A) Synthesis and structural characterization of ((R)−2.1)2Cu(carbazolide) 

(thermal ellipsoids drawn at 50% probability and H atoms omitted for clarity). (B) 

Stoichiometric cross-coupling reaction with isolated ((R)−2.1)2Cu(carbazolide). 

2.3 Conclusions 

 Whereas enantioconvergent metal-catalyzed cross-couplings of racemic secondary 

alkyl halides have recently emerged as powerful tools for C–C bond construction, there has 

been little progress in corresponding C–heteroatom bond-forming processes or in the use of 

tertiary alkyl halides as coupling partners.  Herein, we have established that, with the aid of 

visible light, a copper-based chiral catalyst derived from commercially available components 

can achieve enantioconvergent C–N cross-coupling reactions of racemic tertiary alkyl 

chlorides with good to excellent enantioselectivity.  In contrast to nearly all metal-catalyzed 
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asymmetric photoredox methods described to date, which employ separate catalysts to 

effect redox chemistry and bond formation, in this method a single catalyst is responsible for 

the photochemistry and for the enantioselective bond construction.  This work stands at a 

previously unexplored intersection of asymmetric synthesis, catalysis with Earth-abundant 

metals, photoinduced processes, and cross-coupling reactions of alkyl electrophiles, each of 

which represents an important current theme in chemical synthesis.  We anticipate that our 

observations comprise the initial advances in a fertile area of asymmetric catalysis: the 

enantioconvergent synthesis of secondary and tertiary C–heteroatom bonds through 

photoinduced transition metal-catalyzed couplings of alkyl halides. 

2.4. Experimental Section 

2.4.1. General Information 

 All manipulations of air‐sensitive materials were carried out in oven-dried glassware 

using standard Schlenk or glovebox techniques under an N2 atmosphere.  Unless otherwise 

noted, chemicals were purchased from commercial suppliers and used as received.  CH2Cl2, 

THF, and toluene were purified and dried using a solvent-purification system that contained 

activated alumina.  Indoline (Aldrich), NEt3 (EMD), SOCl2 (Alfa), and SO2Cl2 (Acros) were 

distilled prior to use.  Carbazole (Aldrich) and 3-methyl-indole (Aldrich) were recrystallized.  

Ligand (S)−2.1 was purchased from Strem (>99.9% ee) and used without further purification.  

Ligand (R)−2.1 was purchased from Strem (>98.6% ee) and was purified on preparative 

HPLC in the P-oxide form using a Daicel CHIRALPAK® AD column (80% i-PrOH/hexanes, 

10.0 mL/min; (S)−2.1 oxide: 8.6 min, (R)−2.1 oxide: 24.6 min).  The enantiopure ligand 

(>99.9% ee) was then obtained by reduction in analogy to a reported procedure.30 1H and 13C 

NMR data were collected on a Bruker 400 MHz or a Varian 500 MHz spectrometer at 

ambient temperature unless otherwise noted.  HPLC analyses were carried out on an Agilent 

1100 Series system, using Daicel CHIRALCEL® columns or Daicel CHIRALPAK® 

columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm).  ATR-IR 

measurements were carried out on a Thermo Scientific Nicolet iS5 FT-IR spectrometer 
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equipped with an iD5 ATR accessory.  Blue LED lamps (32W; Kessil H150 Blue) were 

used to irradiate the reaction mixtures. 

2.4.2 Preparation of Electrophiles 

These procedures have not been optimized. 

 

 

Representative Procedure A for the Synthesis of -Chloro Amides: This is based on 

previously published procedures.31,32  The carboxylic acid (25 mmol) was dissolved in SOCl2 

(7.25 mL, 100 mmol), and the resulting solution was heated at reflux at 80 °C for 30 min 

with vigorous stirring (CaCl2 drying tube).  The mixture was allowed to cool to r.t., and then 

N-chlorosuccinimide (8.34 g, 63 mmol), SOCl2 (5 mL), and HCl (concentrated; 4 drops) 

were added.  The resulting mixture was heated at 90 °C for 2.5 h.  The mixture was then 

allowed to cool to r.t., the precipitate was removed by filtration, and the solvent was removed 

by evaporation.  The resulting liquid residue was distilled into an ice-cooled flask. 

 Next, triethylamine (4.2 mL, 30 mmol) and the -chloro acid chloride were added 

dropwise to a solution of a secondary amine (20 mmol) in CH2Cl2 (100 mL) at 0 °C.  The 

stirring was continued at 0 °C for 15 min and then at r.t. for 3 h.  Next, an aqueous solution 

of HCl (1 M; 50 mL) was added, and the organic layer was separated.  The organic phase 

was washed with water (50 mL) and brine (50 mL), dried over MgSO4, filtered, and 

concentrated under vacuum. 
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2-Chloro-1-(indolin-1-yl)-2-phenylbutan-1-one.  The title compound was prepared from 

2-phenylbutyric acid and indoline following procedure A.  The product was purified by flash 

chromatography on silica gel (0%  10% Et2O/hexanes), which furnished a colorless solid 

(88% yield over 2 steps).  The enantiomers of the title compound can be separated by 

preparative HPLC on a Daicel CHIRALPAK® AD column (3% i-PrOH/ hexanes, 10 

mL/min, internal diameter 20 mm, column length 250 mm, particle size 5 µm). 

1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 8.1 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.42 – 7.28 (m, 

3H), 7.28 – 7.19 (m, 1H), 7.14 (dd, J = 7.4, 1.3 Hz, 1H), 7.05 (td, J = 7.4, 1.1 Hz, 1H), 4.17 

(ddd, J = 10.9, 9.6, 6.5 Hz, 1H), 3.06 (ddd, J = 11.0, 9.7, 6.6 Hz, 1H), 2.93 (ddd, J = 16.1, 

9.5, 6.7 Hz, 1H), 2.73 (ddd, J = 15.9, 9.6, 6.6 Hz, 1H), 2.53 (dq, J = 14.5, 7.3 Hz, 1H), 2.30 

(dq, J = 14.5, 7.2 Hz, 1H), 0.86 (t, J = 7.3 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 168.1, 144.0, 139.0, 131.7, 128.7 (2C), 128.1, 127.5, 126.0 

(2C), 124.6, 124.5, 118.3, 76.6, 49.2, 37.8, 28.8, 8.8; 

FT-IR (ATR) 2965, 1656, 1477, 1460, 1445, 1120, 861, 761, 751, 697 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C18H19ClNO: 300.1150, found: 300.1140. 

 

 

 

2-Chloro-2-(4-chlorophenyl)-1-(indolin-1-yl)butan-1-one.  The title compound was 

prepared from 2-(4-chlorophenyl)butanoic acid and indoline following procedure A.  The 

product was purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), 

which furnished a colorless solid (34% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 8.1 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.38 – 7.32 (m, 

2H), 7.27 – 7.19 (m, 1H), 7.15 (dd, J = 7.5, 1.3 Hz, 1H), 7.06 (td, J = 7.4, 1.1 Hz, 1H), 4.17 

(ddd, J = 10.9, 9.6, 6.6 Hz, 1H), 3.10 (ddd, J = 10.9, 9.7, 6.5 Hz, 1H), 2.95 (ddd, J = 16.0, 
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9.6, 6.5 Hz, 1H), 2.77 (ddd, J = 15.9, 9.7, 6.6 Hz, 1H), 2.51 (dq, J = 14.5, 7.2 Hz, 1H), 

2.26 (dq, J = 14.5, 7.2 Hz, 1H), 0.86 (t, J = 7.2 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 167.6, 143.8, 137.8, 134.1, 131.6, 129.0 (2C), 127.6, 127.4 

(2C), 127.3, 124.6, 118.3, 75.9, 49.3, 37.7, 28.8, 8.7; 

FT-IR (ATR) 2973, 2935, 1649, 1477, 1384, 1334, 1092, 1012, 816, 759 cm-1; 

HRMS (ESI) m/z (M–Cl)+ calcd for C18H17ClNO: 298.0993, found: 298.0990. 

 

 

 

2-Chloro-2-cyclopentyl-1-(indolin-1-yl)propan-1-one.  The title compound was prepared 

from 2-cyclopentylpropanoic acid and indoline following procedure A.  The product was 

purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), which furnished 

a colorless solid (32% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 8.27 – 8.21 (m, 1H), 7.26 (tq, J = 6.8, 0.9 Hz, 2H), 7.11 (td, 

J = 7.3, 1.1 Hz, 1H), 4.62 (ddd, J = 10.8, 8.8, 6.6 Hz, 1H), 4.50 (ddd, J = 10.8, 9.0, 7.7 Hz, 

1H), 3.27 – 3.10 (m, 2H), 2.99 – 2.86 (m, 1H), 2.01 (ddtt, J = 12.6, 8.9, 6.1, 3.6 Hz, 1H), 

1.85 (s, 3H), 1.81 – 1.47 (m, 7H); 

13C NMR (101 MHz, CDCl3) δ 169.3, 144.4, 131.6, 127.4, 124.5, 124.4, 118.7, 74.4, 50.6, 

48.4, 29.5, 28.9, 28.1, 26.2, 25.9, 25.4; 

FT-IR (ATR) 2939, 2861, 1637, 1595, 1479, 1386, 1369, 1333, 1265, 1067, 904, 751, 712, 

690 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C16H21ClNO: 278.1306, found: 278.1311. 
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2-Chloro-1-(indolin-1-yl)-2,4-dimethylpentan-1-one.  The title compound was prepared 

from 2,4-dimethylpentanoic acid and indoline following procedure A.  The product was 

purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), which furnished 

a colorless solid (37% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 8.30 – 8.17 (m, 1H), 7.26 (ddt, J = 7.9, 6.8, 0.9 Hz, 2H), 7.11 

(td, J = 7.3, 1.1 Hz, 1H), 4.76 (ddd, J = 10.7, 9.2, 6.2 Hz, 1H), 4.31 (ddd, J = 10.7, 9.3, 7.4 

Hz, 1H), 3.30 – 3.08 (m, 2H), 2.25 (dd, J = 14.4, 6.8 Hz, 1H), 2.13 (dd, J = 14.4, 5.3 Hz, 

1H), 1.96 (s, 3H), 1.93 – 1.82 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 6.7 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 168.9, 144.2, 131.6, 127.5, 124.5, 124.4, 118.6, 70.3, 50.4, 

50.0, 29.8, 29.4, 25.9, 24.6, 23.3; 

FT-IR (ATR) 2963, 2870, 1635, 1596, 1476, 1393, 1377, 1259, 1171, 1068, 889, 750 672 

cm-1; 

 HRMS (ESI) m/z (M+H)+ calcd for C15H21ClNO: 266.1306, found: 266.1309. 

 

 

 

2-Chloro-1-(5-methoxyindolin-1-yl)-2-phenylbutan-1-one.  The title compound was 

prepared from 2-phenylbutyric acid and 5-methoxyindoline following procedure A.  The 

product was purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), 

which furnished a colorless solid (76% yield over 2 steps). 

1H NMR (500 MHz, CDCl3) δ 8.23 (d, J = 8.9 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.40 – 7.34 (m, 

2H), 7.35 – 7.28 (m, 1H), 6.76 (ddt, J = 8.9, 2.8, 0.8 Hz, 1H), 6.70 (ddd, J = 2.5, 1.4, 0.9 Hz, 

1H), 4.15 (ddd, J = 11.0, 9.6, 6.4 Hz, 1H), 3.78 (s, 3H), 3.05 (ddd, J = 11.0, 9.6, 6.6 Hz, 1H), 
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2.95 – 2.85 (m, 1H), 2.75 – 2.65 (m, 1H), 2.53 (dq, J = 14.5, 7.3 Hz, 1H), 2.29 (dq, J = 

14.4, 7.2 Hz, 1H), 0.86 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 167.5, 156.9, 139.2, 137.6, 133.3, 128.7 (2C), 128.0, 126.0 

(2 C), 118.9, 111.9, 110.8, 76.5, 55.8, 49.3, 37.7, 29.0, 8.8; 

FT-IR (ATR) 2933, 2833, 1640, 1594, 1485, 1385, 1267, 1191, 1032, 859, 841, 752, 699 

cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C19H21ClNO2: 330.1255, found: 330.1250. 

 

 

 

2-Chloro-1-(5-chloroindolin-1-yl)-2-phenylbutan-1-one.  The title compound was 

prepared from 2-phenylbutyric acid and 5-chloroindoline following procedure A.  The 

product was purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), 

which furnished a colorless solid (76% yield over 2 steps). 

1H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 8.7 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.40 – 7.35 (m, 

2H), 7.35 – 7.30 (m, 1H), 7.19 (ddt, J = 8.7, 2.3, 0.8 Hz, 1H), 7.09 (dt, J = 2.2, 1.1 Hz, 1H), 

4.18 (ddd, J = 11.0, 9.7, 6.5 Hz, 1H), 3.06 (ddd, J = 11.0, 9.7, 6.7 Hz, 1H), 2.96 – 2.86 (m, 

1H), 2.76 – 2.66 (m, 1H), 2.51 (dq, J = 14.5, 7.2 Hz, 1H), 2.28 (dq, J = 14.5, 7.2 Hz, 1H), 

0.86 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.2, 142.7, 138.8, 133.5, 129.4, 128.8 (2 C), 128.2, 127.4, 

125.9 (2 C), 124.7, 119.1, 76.4, 49.3, 37.7, 28.6, 8.7; 

FT-IR (ATR) 2972, 2931, 1657, 1468, 1374, 1329, 1169, 862, 836, 753, 699 cm-1; 

HRMS (ESI) m/z (M–Cl)+ calcd for C18H17ClNO: 298.0993, found: 298.0980. 
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2-Chloro-N-methyl-N,2-diphenylbutanamide.  The title compound was prepared from 2-

phenylbutyric acid and N-methylaniline following procedure A.  The product was purified 

by flash chromatography on silica gel (0%  10% Et2O/hexanes), which furnished a 

colorless oil (72% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 7.68 – 6.62 (m, 10H), 3.11 (br s, 3H), 2.46 (dt, J = 14.5, 7.1 

Hz, 1H), 2.24 (dq, J = 14.5, 7.2 Hz, 1H), 0.75 (br s, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.1, 139.8, 128.5 (5 C), 127.6 (2 C), 127.1, 125.7 (2 C), 

75.6, 40.9, 37.9, 8.6; 

FT-IR (ATR) 2975, 2937, 1652, 1594, 1492, 1445, 1363, 1273, 748, 695 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C17H19ClNO: 288.1150, found: 288.1162. 

 

 

 

2-Chloro-1-morpholino-2-phenylbutan-1-one.  The title compound was prepared from 2-

phenylbutyric acid and morpholine following procedure A.  The product was purified by 

flash chromatography on silica gel (0%  10% Et2O/hexanes), which furnished as colorless 

oil (78% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.14 (m, 5H), 3.65 – 2.45 (m, 4H), 3.33 – 3.15 (m, 

2H), 3.00 – 2.75 (m, 2H), 2.26 (dq, J = 14.5, 7.3 Hz, 1H), 2.07 (dq, J = 14.4, 7.2 Hz, 1H), 

0.67 (t, J = 7.3 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 168.9, 139.7, 128.7 (2 C), 128.1, 125.6 (2 C), 74.8, 66.8, 

65.8, 47.8, 43.7, 38.1, 8.8; 

FT-IR (ATR) 2972, 2920, 2857, 1644, 1443, 1425, 1270, 1237, 1111, 970, 864, 852, 750, 

700 cm-1; 

HRMS (ESI) m/z (M–Cl)+ calcd for C14H18NO2: 232.1338, found: 232.1346. 
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2-Chloro-2-cyclopentyl-N-methoxy-N-methylpropanamide.  The title compound was 

prepared from 2-cyclopentylpropanoic acid and N,O-dimethylhydroxylamine∙HCl following 

procedure A.  The product was purified by flash chromatography on silica gel (0%  10% 

Et2O/hexanes), which furnished a colorless oil (31% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 3.75 (s, 3H), 3.23 (s, 3H), 2.93 – 2.82 (m, 1H), 1.87 – 1.78 

(m, 1H), 1.72 (s, 3H), 1.69 – 1.48 (m, 6H), 1.48 – 1.32 (m, 1H); 

13C NMR (101 MHz, CDCl3) δ 171.8, 73.1, 60.8, 47.5, 34.4, 28.6, 28.0, 26.1, 25.9, 24.9; 

FT-IR (ATR) 2950, 2869, 1653, 1456, 1377, 1198, 998, 733, 642 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C10H19ClNO2: 220.1099, found: 220.1099. 

 

 

 

Representative Procedure B for the Synthesis of -Chloro Amides: This is based on 

previously published procedures.31,33  The carboxylic acid (5.0 mmol) was dissolved in 

SOCl2 (1.5 mL, 20 mmol), and the resulting solution was heated at reflux for 30 min with 

vigorous stirring (CaCl2 drying tube).  SO2Cl2 (4.1 g, 50 mmol) was added via a dropping 

funnel over 2 h at 85 °C, and then the mixture was heated at reflux for an additional 24 h.  

Next, the reaction mixture was allowed to cool to r.t., and the excess SOCl2 and SO2Cl2 were 

removed by distillation. 

 Next, triethylamine (1.04 mL, 7.5 mmol) and the α-chloro acid chloride were added 

dropwise to a solution of indoline (560 µL, 5.0 mmol) in CH2Cl2 (20 mL) at 0 °C.  The 

stirring was continued at 0 °C for 15 min and then at r.t. for 3 h.  Next, an aqueous solution 

of HCl (1 M; 20 mL) was added, and the organic layer was separated.  The organic phase 
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was washed with water (20 mL) and brine (20 mL), dried over MgSO4, filtered, and 

concentrated under vacuum. 

 

 

 

2-Chloro-1-(indolin-1-yl)-2,3-diphenylpropan-1-one.  The title compound was prepared 

from 2-chloro-2,3-diphenylpropanoyl chloride following procedure B.  The product was 

purified by flash chromatography on silica gel (0%  10% Et2O/hexanes), which furnished 

a colorless solid (60% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 8.1 Hz, 1H), 7.33 – 7.25 (m, 4H), 7.23 – 7.16 (m, 

2H), 7.17 – 7.12 (m, 2H), 7.11 – 7.03 (m, 3H), 6.74 – 6.66 (m, 2H), 4.15 (ddd, J = 10.9, 9.6, 

6.3 Hz, 1H), 3.78 (d, J = 14.1 Hz, 1H), 3.62 (d, J = 14.0 Hz, 1H), 3.05 (ddd, J = 10.9, 9.6, 

6.9 Hz, 1H), 2.94 (ddd, J = 16.2, 9.5, 6.8 Hz, 1H), 2.73 (ddd, J = 15.9, 9.6, 6.3 Hz, 1H); 

13C NMR (101 MHz, CDCl3) δ 168.1, 144.0, 138.2, 135.1, 131.9 (2 C), 131.7, 128.5 (2 C), 

128.3, 127.6, 127.3 (2 C), 126.8, 126.4 (2 C), 124.63, 124.60, 118.4, 75.0, 49.9, 49.3, 28.8; 

FT-IR (ATR) 3026, 1648, 1478, 1384, 1338, 1261, 953, 756, 699, 633 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C23H21ClNO: 362.1312, found: 362.1306. 

 

 

 

2-Chloro-1-(indolin-1-yl)-4-methyl-2-phenylpentan-1-one.  The title compound was 

prepared from 4-methyl-2-phenylpentanoic acid following procedure B.  The product was 

purified by flash chromatography on silica gel (0%  8% Et2O/hexanes), which furnished a 

colorless solid (52% yield over 2 steps). 
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1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 8.2 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.40 – 7.29 

(m, 3H), 7.26 – 7.19 (m, 1H), 7.17 – 7.09 (m, 1H), 7.04 (td, J = 7.4, 1.1 Hz, 1H), 4.16 (ddd, 

J = 10.8, 9.5, 6.3 Hz, 1H), 3.03 (ddd, J = 10.7, 9.6, 6.8 Hz, 1H), 2.93 (ddd, J = 16.1, 9.6, 6.7 

Hz, 1H), 2.72 (ddd, J = 15.8, 9.6, 6.3 Hz, 1H), 2.50 – 2.37 (m, 1H), 2.33 – 2.22 (m, 1H), 1.72 

(pdd, J = 6.7, 5.4, 4.5 Hz, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.50 (d, J = 6.7 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 168.3, 144.1, 139.2, 131.6, 128.8 (2 C), 128.2, 127.5, 126.1 

(2 C), 124.6, 124.4, 118.4, 75.9, 52.7, 49.2, 28.8, 24.9, 24.4, 24.3; 

FT-IR (ATR) 2956, 2868, 1656, 1599, 1479, 1387, 1338, 1266, 754, 701 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C20H23ClNO: 328.1463, found: 328.1471. 

 

 

2.4.3. Asymmetric Photoinduced, Copper-Catalyzed C−N Cross-Coupling 

 

 

Figure 2.6.  Picture of the reaction setup, running two reactions in parallel. 

General Procedure A and General Procedure B can be used interchangeably. 

 



 

 

35 

 

General Procedure A (Glovebox-Free).  A stock solution of the catalyst was prepared by 

vigorously stirring CuCl (4.9 mg, 0.050 mmol) and (S)−2.1 (21.3 mg, 0.060 mmol) in toluene 

(10.0 mL) at 60 °C for 30 min under a nitrogen atmosphere.  An oven-dried 40 mL vial 

equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under 

vacuum, and then backfilled with nitrogen.  The carbazole or indole nucleophile (0.50 mmol) 

and LiOt-Bu (60.0 mg, 0.75 mmol) were added to the vial, and then the vial was placed under 

vacuum and refilled with nitrogen (three cycles).  Next, toluene (17 mL) was added, and the 

resulting mixture was stirred for 5 min.  Then, the catalyst (1.0 mL of the stock solution) was 

added, and the reaction mixture was stirred at r.t. for 20 min.  The alkyl chloride (0.60 mmol) 

was added to an oven-dried 4 mL vial, the vial was capped, and then it was evacuated and 

backfilled with nitrogen (three cycles).  Toluene (2.0 mL) was added, and the resulting 

solution was transferred to the reaction mixture via syringe.  The reaction mixture was 

degassed by applying three freeze-pump-thaw cycles.  The reaction vial was backfilled with 

nitrogen, detached from the Schlenk line, and the holes in the septum were covered with 

grease.  The vial was placed ~5 cm from two 32W blue LED lamps, and the reaction mixture 

was irradiated at –40 °C for 16 h under a nitrogen atmosphere.  Next, the mixture was passed 

through a short plug of silica (eluant: Et2O; monitored by TLC), and the resulting solution 

was concentrated under vacuum and purified by flash chromatography (hexanes/Et2O). 

 A second run was performed using (R)−2.1. 

General Procedure B (Glovebox).  In a nitrogen-filled glovebox, a stock solution of the 

catalyst was prepared by vigorously stirring CuCl (4.9 mg, 0.050 mmol) and (S)−2.1 (21.3 

mg, 0.060 mmol) in toluene (10.0 mL) for 30 min; gentle heating by a heat gun facilitated 
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the dissolution of the components.  The carbazole or indole nucleophile (0.50 mmol) and 

LiOt-Bu (60.0 mg, 0.75 mmol) were added to a 40 mL vial, followed by a stir bar and toluene 

(17 mL).  The mixture was stirred for 5 min, and then the stock solution of the catalyst (1.0 

mL) was added, and stirring was continued for 20 min.  The alkyl chloride (0.60 mmol) was 

dissolved in toluene (2.0 mL) and added to the reaction mixture.  The vial was sealed with a 

PTFE-lined septum cap, the joint was wrapped with electrical tape, and the vial was taken 

out of the glovebox.  The vial was placed ~5 cm from two 32W blue LED lamps, and the 

reaction mixture was irradiated at –40 °C for 16 h under a nitrogen atmosphere.  Next, the 

mixture was passed through a short plug of silica (eluant: Et2O; monitored by TLC), and the 

resulting solution was concentrated under vacuum and purified by flash chromatography 

(hexanes/Et2O). 

 A second run was performed using (R)−2.1. 

 

 

 

 (S)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.2, entry 1).  The 

title compound was synthesized according to General Procedure A from carbazole (83.6 mg, 

0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (179.9 mg, 0.60 mmol).  The 

product was purified by flash chromatography (0%  7% Et2O/hexanes).  Colorless solid.  

First run: 193 mg (90% yield), 94% ee.  Second run: 196 mg (91% yield), 93% ee. 

X-ray quality crystals were obtained by slow evaporation of solvent from a saturated solution 

in hexanes of a sample synthesized with (S)−2.1. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (5% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 6.2 min 

(minor), 7.7 min (major). 
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1H NMR (500 MHz, CDCl3) δ 8.37 (dt, J = 8.2, 0.7 Hz, 1H), 8.14 – 8.11 (m, 2H), 7.60 – 

7.56 (m, 2H), 7.36 – 7.31 (m, 3H), 7.27 – 7.18 (m, 7H), 7.10 – 7.02 (m, 2H), 3.76 (ddd, J = 

10.8, 9.3, 4.0 Hz, 1H), 3.24 (dq, J = 14.2, 7.1 Hz, 1H), 3.11 (dt, J = 10.8, 9.3 Hz, 1H), 2.92 

(dq, J = 14.5, 7.3 Hz, 1H), 2.72 – 2.60 (m, 1H), 2.57 (ddd, J = 15.5, 9.2, 4.0 Hz, 1H), 0.69 (t, 

J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.6, 144.0, 141.3, 137.9, 131.9, 128.8, 128.0, 127.9, 127.4, 

125.6, 124.6, 124.5, 124.3, 120.1, 120.0, 119.1, 113.6, 74.2, 49.3, 32.3, 29.4, 10.5; 

FT-IR (ATR) 2933, 1647, 1595, 1476, 1445, 1374, 1334, 1315, 1261, 1178, 1027, 748, 723 

cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C30H27N2O: 431.2118, found: 431.2112; 

[]25
D (94% ee) = –27.1° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(S)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2,3-diphenylpropan-1-one (Figure 2.2, entry 2).  

The title compound was synthesized according to General Procedure B from carbazole (66.9 

mg, 0.40 mmol) and 2-chloro-1-(indolin-1-yl)-2,3-diphenylpropan-1-one (173.7 mg, 0.48 

mmol).  The product was purified by flash chromatography (0%  10% Et2O/hexanes).  

Colorless solid.  First run: 149 mg (76% yield), 96% ee.  Second run: 154 mg (78% yield), 

91% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 7.6 min 

(minor), 13.9 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.44 (dt, J = 8.2, 0.8 Hz, 1H), 8.11 – 8.03 (m, 2H), 7.77 – 

7.68 (m, 2H), 7.46 – 7.35 (m, 3H), 7.33 – 7.27 (m, 1H), 7.18 (t, J = 7.4 Hz, 2H), 7.13 – 7.04 

(m, 4H), 6.97 (s, 2H), 6.80 (dt, J = 8.7, 4.3 Hz, 1H), 6.69 (d, J = 4.3 Hz, 4H), 4.80 (d, J = 
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13.5 Hz, 1H), 4.01 (d, J = 13.5 Hz, 1H), 3.77 (ddd, J = 10.7, 7.8, 5.0 Hz, 1H), 3.32 (dt, J 

= 10.7, 9.3 Hz, 1H), 2.59 – 2.46 (m, 2H); 

13C NMR (126 MHz, CDCl3) δ 167.7, 144.1, 141.0, 136.5, 135.7, 131.8, 131.0, 128.9, 128.0, 

127.8, 127.3, 127.0, 126.4, 124.9, 124.5, 124.3, 124.1, 119.65, 119.56, 119.0, 113.8, 74.9, 

49.5, 42.6, 29.3; 

FT-IR (ATR) 2955, 1652, 1596, 1540, 1476, 1455, 1375, 1335, 1314, 1211, 1031, 748, 723 

cm-1; 

HRMS (FAB) m/z (M+H)+ calcd for C35H29N2O: 493.2280, found: 493.2280; 

[]25
D (96% ee) = +46.8° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(S)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-4-methyl-2-phenylpentan-1-one (Figure 2.2, 

entry 3).  The title compound was synthesized according to General Procedure B from 

carbazole (66.9 mg, 0.40 mmol) and 2-chloro-1-(indolin-1-yl)-4-methyl-2-phenylpentan-1-

one (157.4 mg, 0.48 mmol).  The product was purified by flash chromatography (0%  7% 

Et2O/hexanes).  Colorless solid.  First run: 150 mg (82% yield), 99% ee.  Second run: 149 

mg (81% yield), 99% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 0.7 mL/min); retention times for compound obtained using (S)−2.1: 6.5 min 

(minor), 7.6 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.42 (d, J = 8.1 Hz, 1H), 8.17 (dd, J = 7.5, 2.0 Hz, 2H), 7.72 

– 7.63 (m, 2H), 7.55 – 7.14 (m, 10H), 7.13 – 7.03 (m, 2H), 3.82 (ddd, J = 10.8, 9.2, 3.4 Hz, 

1H), 3.22 (dd, J = 14.2, 3.7 Hz, 1H), 3.05 (q, J = 9.9 Hz, 1H), 2.81 (dd, J = 14.1, 5.9 Hz, 1H), 

2.65 (dt, J = 15.3, 9.5 Hz, 1H), 2.55 (ddd, J = 15.4, 9.1, 3.4 Hz, 1H), 1.80 (dqd, J = 13.1, 6.6, 

3.7 Hz, 1H), 0.92 (d, J = 6.7 Hz, 3H), 0.22 (d, J = 6.6 Hz, 3H); 
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13C NMR (126 MHz, CDCl3) δ 168.5, 144.0, 140.9, 138.1, 131.8, 128.7, 127.7, 127.6, 

127.3, 125.3, 124.4, 124.3, 124.2, 120.0, 119.8, 119.0, 74.2, 49.4, 47.0, 29.3, 25.3, 25.0, 23.5; 

FT-IR (ATR) 2955, 1652, 1595, 1489, 1446, 1375, 1313, 1211, 1163, 748, 724 cm-1; 

HRMS (FAB) m/z (M+H)+ calcd for C32H31N2O: 459.2431, found: 459.2435; 

[]25
D (99% ee) = –36.7° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(S)−2-(Carbazol-9-yl)-2-(4-chlorophenyl)-1-(indolin-1-yl)butan-1-one (Figure 2.2, 

entry 4).  The title compound was synthesized according to General Procedure A from 

carbazole (83.6 mg, 0.50 mmol) and 2-chloro-2-(4-chlorophenyl)-1-(indolin-1-yl)butan-1-

one (200.5 mg, 0.60 mmol).  The product was purified by flash chromatography (0%  7% 

Et2O/hexanes).  Colorless solid.  First run: 196 mg (84% yield), 95% ee.  Second run: 200 

mg (86% yield), 90% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 7.4 min 

(minor), 9.6 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.40 (dt, J = 8.1, 0.8 Hz, 1H), 8.17 (dd, J = 7.1, 2.7 Hz, 2H), 

7.57 – 7.52 (m, 2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.23 (m, 7H), 7.14 – 7.06 (m, 2H), 3.85 

(ddd, J = 10.6, 9.4, 3.7 Hz, 1H), 3.25 (dq, J = 14.2, 7.1 Hz, 1H), 3.03 – 2.91 (m, 2H), 2.81 – 

2.68 (m, 1H), 2.59 (ddd, J = 15.6, 9.2, 3.7 Hz, 1H), 0.81 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.2, 143.8, 140.9, 137.2, 133.7, 131.6, 130.0, 128.0, 127.4, 

125.8, 124.6, 124.4, 124.2, 120.12, 120.08, 118.9, 113.3, 73.7, 49.1, 32.2, 29.2, 10.4; 

FT-IR (ATR) 2957, 1650, 1598, 1476, 1446, 1370, 1209, 1091, 838, 747, 721 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C30H26ClN2O: 465.1728, found: 465.1726; 
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[]25
D (95% ee) = –69.9° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(R)-2-(Carbazol-9-yl)-2-cyclopentyl-1-(indolin-1-yl)propan-1-one (Figure 2.2, entry 5).  

The title compound was synthesized according to General Procedure A from carbazole (83.6 

mg, 0.50 mmol) and 2-chloro-2-cyclopentyl-1-(indolin-1-yl)propan-1-one (166.7 mg, 0.60 

mmol).  The product was purified by flash chromatography (0%  7% Et2O/hexanes).  

White solid.  First run: 169 mg (83% yield), 97% ee.  Second run: 172 mg (84% yield), 98% 

ee. 

 X-ray quality crystals were obtained by slow diffusion of pentane into a saturated 

solution in benzene of a sample synthesized with (S)−2.1. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® IB column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 6.2 min 

(major), 7.0 min (minor). 

1H NMR (500 MHz, CDCl3) δ 8.51 – 8.45 (m, 1H), 8.21 – 8.08 (m, 2H), 7.94 (d, J = 8.6 Hz, 

1H), 7.61 (d, J = 8.5 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.32 (q, J = 6.3 Hz, 2H), 7.29 – 7.20 (m, 

2H), 7.09 – 7.01 (m, 2H), 3.81 (ddd, J = 10.9, 9.7, 4.0 Hz, 1H), 3.61 – 3.50 (m, 1H), 2.90 – 

2.79 (m, 1H), 2.50 – 2.46 (m, 1H), 2.45 (s, 3H), 2.43 – 2.30 (m, 2H), 1.81 – 1.63 (m, 3H), 

1.48 (d, J = 3.3 Hz, 1H), 1.42 – 1.30 (m, 2H), 0.91 – 0.82 (m, 1H); 

13C NMR (126 MHz, CDCl3) δ 173.1, 144.0, 140.7, 139.7, 131.2, 127.3, 126.1, 124.3, 124.1, 

123.7, 120.5, 119.7, 119.4, 118.1, 112.5, 111.7, 69.8, 47.7, 47.6, 29.1, 28.9, 27.7, 26.3, 24.1, 

19.9. 

FT-IR (ATR) 2959, 1645, 1595, 1476, 1443, 1391, 1375, 1314, 1222, 747, 726 cm-1; 

HRMS (FAB) m/z (M+H)+ calcd for C28H29N2O: 409.2280, found: 409.2297; 

[]25
D (97% ee) = +289° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(R)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2,4-dimethylpentan-1-one (Figure 2.2, entry 6).  

The title compound was synthesized according to General Procedure A from carbazole (83.6 

mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2,4-dimethylpentan-1-one (159.5 mg, 0.60 

mmol).  The product was purified by flash chromatography (0%  7% Et2O/hexanes).  

Colorless solid.  First run: 181 mg (91% yield), 89% ee.  Second run: 179 mg (90% yield), 

85% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® OD column (5% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 5.3 min 

(major), 9.5 min (minor). 

1H NMR (500 MHz, CDCl3) δ 8.40 (dd, J = 8.2, 0.9 Hz, 1H), 8.16 – 8.02 (m, 2H), 7.89 (d, J 

= 8.5 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.47 – 7.37 (m, 1H), 7.37 – 7.30 (m, 1H), 7.29 – 7.17 

(m, 3H), 7.05 – 6.96 (m, 2H), 3.54 (d, J = 11.9 Hz, 1H), 2.89 – 2.72 (m, 2H), 2.50 (ddd, J = 

15.0, 9.5, 4.1 Hz, 1H), 2.37 (dd, J = 14.4, 4.2 Hz, 5H), 1.68 (hd, J = 6.6, 4.2 Hz, 1H), 0.97 

(d, J = 6.7 Hz, 3H), 0.27 (d, J = 6.5 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 172.7, 143.9, 140.7, 139.8, 131.1, 127.3, 126.2, 124.3, 124.1, 

123.7, 120.5, 119.9, 119.7, 119.5, 118.1, 111.9, 111.8, 67.8, 47.4, 45.8, 28.9, 25.6, 24.4, 23.8; 

FT-IR (ATR) 2954, 1640, 1595, 1477, 1454, 1375, 1316, 1220, 1075, 750, 723 cm-1; 

HRMS (FAB) m/z (M+H)+ calcd for C27H29N2O: 397.2280, found: 397.2270; 

[]25
D (89% ee) = +202° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(Carbazol-9-yl)-1-(5-methoxyindolin-1-yl)-2-phenylbutan-1-one (Figure 2.2, 

entry 7).  The title compound was synthesized according to General Procedure A from 

carbazole (83.6 mg, 0.50 mmol) and 2-chloro-1-(5-methoxyindolin-1-yl)-2-phenylbutan-1-

one (197.9 mg, 0.60 mmol).  The product was purified by flash chromatography (0%  15% 

Et2O/hexanes).  Colorless solid.  First run: 213 mg (94% yield), 92% ee.  Second run: 208 

mg (90% yield), 92% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (5% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 10.2 min 

(minor), 14.1 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.35 (d, J = 8.9 Hz, 1H), 8.21 – 8.13 (m, 2H), 7.66 – 7.60 (m, 

2H), 7.42 – 7.33 (m, 3H), 7.31 – 7.09 (m, 6H), 6.82 (ddd, J = 8.7, 2.1, 1.3 Hz, 1H), 6.70 (dd, 

J = 2.6, 1.2 Hz, 1H), 3.82 (s, 4H), 3.30 (dq, J = 14.2, 7.1 Hz, 1H), 3.14 (dt, J = 10.8, 9.2 Hz, 

1H), 2.95 (dq, J = 14.5, 7.3 Hz, 1H), 2.67 (dtt, J = 15.6, 9.2, 1.1 Hz, 1H), 2.57 (ddd, J = 15.6, 

9.2, 3.9 Hz, 1H), 0.73 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 167.8, 156.9, 141.2, 137.9, 137.4, 133.4, 128.7, 127.9, 127.7, 

125.5, 124.2, 120.0, 119.8, 119.6, 113.6, 111.7, 110.6, 73.9, 55.6, 49.4, 32.1, 29.4, 10.4; 

FT-IR (ATR) 2927, 1642, 1594, 1488, 1445, 1374, 1297, 1181, 1031, 861, 748, 724 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C31H29N2O2: 461.2224, found: 461.2220; 

[]25
D (92% ee) = –27.5° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(Carbazol-9-yl)-1-(5-chloroindolin-1-yl)-2-phenylbutan-1-one (Figure 2.2, entry 

8).  The title compound was synthesized according to General Procedure A from carbazole 

(83.6 mg, 0.50 mmol) and 2-chloro-1-(5-chloroindolin-1-yl)-2-phenylbutan-1-one (200.5 

mg, 0.60 mmol).  The product was purified by flash chromatography (0%  10% 

Et2O/hexanes).  Colorless solid.  First run: 213 mg (91% yield), 96% ee.  Second run: 206 

mg (89% yield), 96% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 9.1 min 

(minor), 11.6 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.37 (d, J = 8.7 Hz, 1H), 8.21 – 8.14 (m, 2H), 7.66 – 7.59 (m, 

2H), 7.43 – 7.34 (m, 3H), 7.33 – 7.11 (m, 7H), 7.08 (dt, J = 2.3, 1.2 Hz, 1H), 3.82 (ddd, J = 

10.8, 9.4, 4.1 Hz, 1H), 3.29 (dq, J = 14.2, 7.1 Hz, 1H), 3.15 (dt, J = 10.9, 9.3 Hz, 1H), 2.97 

(dq, J = 14.5, 7.3 Hz, 1H), 2.67 (dtt, J = 15.7, 9.3, 1.1 Hz, 1H), 2.58 (ddd, J = 15.7, 9.3, 4.1 

Hz, 1H), 0.75 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.6, 142.5, 141.0, 137.6, 133.7, 129.5, 128.7, 128.0, 127.9, 

127.3, 125.6, 124.5, 124.2, 120.1, 120.0, 119.8, 113.2, 74.0, 49.4, 32.1, 29.0, 10.4; 

FT-IR (ATR) 2936, 1652, 1593, 1465, 1444, 1367, 1315, 1210, 1164, 819, 748, 723 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C30H26ClN2O: 465.1728, found: 465.1725; 

[]25
D (96% ee) = –16.4° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(Carbazol-9-yl)-N-methyl-N,2-diphenylbutanamide (Figure 2.2, entry 9).  The title 

compound was synthesized according to General Procedure A from carbazole (83.6 mg, 0.50 

mmol) and 2-chloro-N-methyl-N,2-diphenylbutanamide (172.7 mg, 0.60 mmol).  3.0 mL of 

the stock solution of the catalyst were used (3.0 mol% CuCl).  The product was purified by 

flash chromatography (0%  10% Et2O/hexanes).  Colorless solid.  First run: 162 mg (78% 

yield), 94% ee.  Second run: 168 mg (80% yield), 93% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (5% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 6.5 min 

(major), 9.6 min (minor). 

1H NMR (500 MHz, d6-DMSO, 80 °C) δ 8.12 (dd, J = 7.3, 1.6 Hz, 2H), 7.49 – 7.41 (m, 2H), 

7.30 (d, J = 6.8 Hz, 3H), 7.23 – 7.13 (m, 4H), 7.12 – 6.90 (m, 5H), 6.59 (s, 2H), 2.99 (s, 3H), 

2.92 – 2.78 (m, 2H), 0.74 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, d6-DMSO, 80 °C) δ 170.5, 144.4, 141.1, 140.5, 129.1, 128.8, 128.2, 

128.1, 127.1, 126.8, 125.6, 124.2, 120.1, 119.7, 113.6, 73.8, 41.3, 32.2, 10.3; 

FT-IR (ATR) 2936, 1651, 1593, 1473, 1445, 1367, 1315, 1213, 750, 723, 698 cm-1; 

HRMS (FAB) m/z (M)+• calcd for C29H26N2O: 418.2045, found: 418.2048; 

[]25
D (94% ee) = +10.0° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(S)-2-(Carbazol-9-yl)-1-morpholino-2-phenylbutan-1-one (Figure 2.2, entry 10).  The 

title compound was synthesized according to General Procedure A from carbazole (83.6 mg, 

0.50 mmol) and 2-chloro-1-morpholino-2-phenylbutan-1-one (160.7 mg, 0.60 mmol).  The 
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product was purified by flash chromatography (0%  30% Et2O/hexanes).  Colorless 

solid.  First run: 145 mg (73% yield), 90% ee.  Second run: 149 mg (75% yield), 90% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (3% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 15.4 min 

(minor), 22.9 min (major). 

1H NMR (500 MHz, d6-DMSO, 80 °C) δ 8.20 (dd, J = 7.4, 1.2 Hz, 2H), 7.47 (dd, J = 7.7, 

2.1 Hz, 2H), 7.41 – 7.33 (m, 3H), 7.30 (ddd, J = 8.6, 7.1, 1.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 

2H), 7.17 (d, J = 8.4 Hz, 2H), 3.37 – 3.22 (m, 4H), 3.09 – 2.84 (m, 6H), 0.66 (t, J = 7.2 Hz, 

3H); 

13C NMR (126 MHz, d6-DMSO, 80 °C) δ 168.9, 140.9, 139.9, 128.6, 128.3, 128.1, 125.9, 

124.2, 120.5, 120.2, 113.9, 73.4, 65.6, 45.6, 32.0, 10.4; 

FT-IR (ATR) 2923, 2855, 1635, 1592, 1475, 1417, 1315, 1269, 1228, 1112, 750, 717 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C26H27N2O2: 399.2067, found: 399.2068; 

[]25
D (90% ee) = +44.2° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(R)-2-(Carbazol-9-yl)-2-cyclopentyl-N-methoxy-N-methylpropanamide (Figure 2.2, 

entry 11).  The title compound was synthesized according to General Procedure A from 

carbazole (83.6 mg, 0.50 mmol) and 2-chloro-2-cyclopentyl-N-methoxy-N-

methylpropanamide (131.8 mg, 0.60 mmol).  5.0 mL of the stock solution of the catalyst 

were used (5.0 mol% CuCl).  The product was purified by flash chromatography (0%  7% 

Et2O/hexanes).  Sticky white solid.  First run: 127 mg (73% yield), 95% ee.  Second run: 127 

mg (73% yield), 95% ee. 
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 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 0.7 mL/min); retention times for compound obtained using (S)−2.1: 8.2 min 

(minor), 9.1 min (major). 

1H NMR (500 MHz, d6-DMSO, 80 °C) δ 8.22 – 8.08 (m, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.37 

(ddd, J = 8.8, 7.2, 1.5 Hz, 2H), 7.19 (t, J = 7.4 Hz, 2H), 3.38 (dt, J = 10.6, 7.5 Hz, 1H), 2.97 

(s, 3H), 2.52 (s, 3H), 2.27 (s, 3H), 2.14 – 2.00 (m, 1H), 1.60 – 1.52 (m, 3H), 1.43 (dt, J = 

15.4, 5.6 Hz, 1H), 1.33 – 1.18 (m, 2H), 0.75 – 0.62 (m, 1H); 

13C NMR (126 MHz, d6-DMSO, 80 °C) δ 173.5, 140.6, 126.1, 123.6, 120.3, 119.4, 112.7, 

69.0, 59.4, 46.7, 33.9, 28.9, 27.2, 26.1, 24.4, 19.1. 

FT-IR (ATR) 2939, 2865, 1644, 1592, 1473, 1445, 1372, 1317, 1223, 996, 741, 723 cm-1; 

HRMS (ESI) m/z (M)+ calcd for C22H26N2O2: 350.1994, found: 350.1987; 

[]25
D (95% ee) = +172° (c = 0.50, CHCl3, obtained with (S)−2.1). 

 

 

 

(S)-2-(3-Ethyl-carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.3, entry 

1).  The title compound was synthesized according to General Procedure A from 3-

ethylcarbazole (97.6 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one 

(179.9 mg, 0.60 mmol).  The product was purified by flash chromatography (0%  7% 

Et2O/hexanes).  Colorless solid.  First run: 215 mg (94% yield), 93% ee.  Second run: 219 

mg (96% yield), 92% ee. 

Gram-scale reaction: A solution of the catalyst was prepared by vigorously stirring CuCl 

(3.0 mg, 30 μmol) and (S)−2.1  (12.8 mg, 36 μmol) in toluene (7.2 mL) at 60 °C for 30 min 

under nitrogen.  An oven-dried 250 mL round-bottom flask equipped with a stir bar was 

capped with a septum, cooled under vacuum, and then backfilled with nitrogen.  3-

Ethylcarbazole (586 mg, 3.0 mmol) and LiOt-Bu (360 mg, 4.5 mmol) were added to the 

flask, which was then placed under vacuum and refilled with nitrogen (three cycles).  Then, 
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toluene (100 mL) was added, and the mixture was stirred for 5 min.  Next, the solution of 

catalyst was added, with the aid of toluene (0.8 mL), and the resulting mixture was stirred at 

r.t. for 20 min.  2-Chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (1.08 g, 3.6 mmol) was 

added to an oven-dried 20 mL vial, the vial was capped, and then it was evacuated and 

backfilled with nitrogen (three cycles).  Toluene (12 mL) was added, and the solution was 

transferred via syringe to the reaction mixture.  The mixture was degassed by applying three 

freeze-pump-thaw cycles.  The reaction vial was backfilled with nitrogen and then detached 

from the Schlenk line, and the holes in the septum were covered by grease.  The flask was 

placed ~5 cm from three 32W blue LED lamps, and the reaction mixture was irradiated at 

−40 °C for 16 h under a nitrogen atmosphere.  Next, the mixture was passed through a short 

plug of silica (eluent: Et2O; monitored by TLC).  The resulting solution was concentrated 

under vacuum, and the residue was purified by flash chromatography (0%  6% 

Et2O/hexanes), which furnished 1.29 g (94% yield, 94% ee) of a colorless powder. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 7.1 min 

(minor), 9.1 min (major). 

1H NMR (500 MHz, d6-DMSO, 80 °C) δ 8.24 (d, J = 8.1 Hz, 1H), 8.20 – 8.15 (m, 1H), 8.06 

– 8.00 (m, 1H), 7.58 – 7.52 (m, 2H), 7.41 – 7.30 (m, 3H), 7.22 – 7.05 (m, 7H), 7.02 (td, J = 

7.4, 1.1 Hz, 1H), 3.65 (ddd, J = 10.9, 9.4, 5.2 Hz, 1H), 3.12 (dt, J = 14.4, 7.1 Hz, 1H), 3.08 

(d, J = 1.7 Hz, 1H), 3.07 – 3.03 (m, 1H), 3.03 – 2.97 (m, 1H), 2.79 – 2.71 (m, 2H), 2.70 – 

2.54 (m, 2H), 1.28 (t, J = 7.6 Hz, 3H), 0.73 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, d6-DMSO, 80 °C) δ 169.1, 144.2, 141.4, 139.6, 139.3, 135.7, 132.1, 

128.8, 128.4, 128.2, 127.3, 126.2, 125.8, 124.9, 124.6, 124.3, 124.1, 120.5, 120.0, 119.2, 

118.4, 113.3, 113.2, 74.0, 49.2, 31.8, 29.0, 28.2, 16.1, 10.5; 

FT-IR (ATR) 2960, 1649, 1597, 1477, 1452, 1370, 1213, 875, 748, 717 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C32H31N2O: 459.2431, found: 459.2445; 

[]25
D (93% ee) = –23.2° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-1-(Indolin-1-yl)-2-(3-methoxy-carbazol-9-yl)-2-phenylbutan-1-one (Figure 2.3, 

entry 2).  The title compound was synthesized according to General Procedure A from 3-

methoxy-carbazole (98.6 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-

one (179.9 mg, 0.60 mmol).  3.0 mL of the stock solution of the catalyst were used (3.0 mol% 

CuCl).  The product was purified by flash chromatography (0%  12% Et2O/hexanes).  

Colorless solid.  First run: 221 mg (96% yield), 90% ee.  Second run: 204 mg (89% yield), 

88% ee. 

 The ee was determined by HPLC on a Daicel CHIRALCEL® OD column (2% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 9.2 min 

(major), 12.4 min (minor). 

1H NMR (500 MHz, d6-DMSO, 80 °C) δ 8.24 (d, J = 8.2 Hz, 1H), 8.22 – 8.17 (m, 1H), 7.76 

(d, J = 2.7 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.41 – 7.31 (m, 3H), 7.23 – 7.11 (m, 5H), 7.09 – 

6.98 (m, 2H), 6.87 (dd, J = 9.2, 2.7 Hz, 1H), 3.86 (s, 3H), 3.66 (ddd, J = 10.9, 9.4, 5.1 Hz, 

1H), 3.13 (dt, J = 14.1, 7.2 Hz, 1H), 3.06 – 2.96 (m, 2H), 2.73 – 2.54 (m, 2H), 0.73 (t, J = 

7.2 Hz, 3H); 

13C NMR (126 MHz, d6-DMSO, 80 °C) δ 169.2, 154.2, 144.2, 141.7, 139.3, 135.9, 132.1, 

128.8, 128.4, 128.2, 127.3, 126.0, 125.01, 124.95, 124.7, 124.1, 120.8, 119.7, 118.4, 114.8, 

114.1, 113.3, 104.0, 74.0, 56.2, 49.2, 31.8, 29.0, 10.5; 

FT-IR (ATR) 2935, 1674, 1597, 1477, 1455, 1374, 1320, 1291, 1200, 1173, 1032, 750, 717, 

699 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C31H29N2O2: 461.2224, found: 461.2225; 

[]25
D (90% ee) = –22.0° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(3-Bromo-carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.3, entry 

3).  The title compound was synthesized according to General Procedure A from 3-bromo-

carbazole (123.1 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (179.9 

mg, 0.60 mmol).  3.0 mL of the stock solution of the catalyst were used (3.0 mol% CuCl).  

The product was purified by flash chromatography (0%  7% Et2O/hexanes). Colorless 

solid.  First run: 203 mg (80% yield), 93% ee.  Second run: 210 mg (83% yield), 91% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 0.7 mL/min); retention times for compound obtained using (S)−2.1: 11.1 min 

(minor), 13.0 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.41 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 2.1 Hz, 1H), 8.14 – 8.08 

(m, 1H), 7.65 – 7.56 (m, 2H), 7.43 – 7.36 (m, 3H), 7.36 – 7.20 (m, 5H), 7.17 – 6.98 (m, 3H), 

3.76 (ddd, J = 10.8, 9.2, 4.1 Hz, 1H), 3.27 (dq, J = 14.2, 7.1 Hz, 1H), 3.15 (dt, J = 10.7, 9.2 

Hz, 1H), 2.93 (dq, J = 14.5, 7.3 Hz, 1H), 2.73 (dt, J = 15.4, 9.2 Hz, 1H), 2.64 (ddd, J = 15.5, 

9.3, 4.1 Hz, 1H), 0.72 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.2, 143.7, 141.5, 139.8, 137.4, 131.7, 128.7, 128.6, 128.1, 

128.0, 127.4, 126.3, 126.1, 124.7, 124.4, 123.1, 122.7, 120.3, 120.2, 120.0, 119.9, 118.9, 

112.9, 74.2, 49.2, 32.2, 29.3, 10.3; 

FT-IR (ATR) 2935, 1648, 1597, 1476, 1441, 1262, 1213, 1030, 868, 722, 700 cm-1; 

HRMS (ESI) m/z (M)+ calcd for C30H25
81BrN2O: 510.1130, found: 510.1136; 

[]25
D (93% ee) = –17.7° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(3,6-Diphenyl-carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.3, 

entry 4).  The title compound was synthesized according to General Procedure A from 3,6-

diphenyl-carbazole (159.7 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-

one (179.9 mg, 0.60 mmol).  The product was purified by flash chromatography (0%  10% 

Et2O/hexanes).  Colorless solid.  First run: 286 mg (98% yield), 91% ee.  Second run: 288 

mg (99% yield), 88% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 10.5 min 

(major), 11.7 min (minor). 

1H NMR (500 MHz, CDCl3) δ 8.52 – 8.45 (m, 3H), 7.82 – 7.75 (m, 4H), 7.73 – 7.68 (m, 

2H), 7.59 – 7.49 (m, 6H), 7.49 – 7.38 (m, 5H), 7.38 – 7.19 (m, 3H), 7.19 – 7.09 (m, 2H), 

3.91 (ddd, J = 10.8, 9.3, 4.0 Hz, 1H), 3.35 (dq, J = 14.2, 7.1 Hz, 1H), 3.26 (dt, J = 10.7, 9.2 

Hz, 1H), 3.04 (dq, J = 14.4, 7.2 Hz, 1H), 2.84 – 2.73 (m, 1H), 2.68 (ddd, J = 15.5, 9.3, 4.0 

Hz, 1H), 0.83 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.4, 143.9, 141.3, 141.1, 137.7, 133.3, 131.8, 128.9, 128.8, 

128.04, 127.99, 127.4, 127.2, 126.8, 125.1, 125.0, 124.6, 124.5, 119.0, 118.3, 113.8, 74.2, 

49.3, 32.4, 29.3, 10.5; 

FT-IR (ATR) 2935, 1651, 1598, 1474, 1457, 1374, 1264, 1216, 1078, 878, 756, 695 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C42H35N2O: 583.2744, found: 583.2748; 

[]25
D (91% ee) = –20.8° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-1-(indolin-1-yl)-2-(4-methoxy-carbazol-9-yl)-2-phenylbutan-1-one (Figure 2.3, 

entry 5).  The title compound was synthesized according to General Procedure A from 4-

methoxy-carbazole (98.6 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-

one (179.9 mg, 0.60 mmol).  3.0 mL of the stock solution of the catalyst were used (3.0 mol% 

CuCl).  The product was purified by flash chromatography (0%  10% Et2O/hexanes).  

Colorless solid.  First run: 196 mg (85% yield), 93% ee.  Second run: 206 mg (89% yield), 

92% ee. 

 The ee was determined by HPLC on a Daicel CHIRALCEL® OD column (1% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 6.8 min 

(major), 9.0 min (minor). 

1H NMR (500 MHz, d6-DMSO, 100 °C) δ 8.42 – 8.32 (m, 1H), 8.24 (d, J = 8.3 Hz, 1H), 7.56 

(d, J = 7.2 Hz, 2H), 7.39 – 7.30 (m, 3H), 7.23 – 7.14 (m, 5H), 7.11 (d, J = 7.4 Hz, 1H), 7.02 

(t, J = 7.4 Hz, 1H), 6.81 (dd, J = 10.8, 8.2 Hz, 2H), 4.07 (d, J = 1.3 Hz, 3H), 3.63 (td, J = 

10.0, 5.2 Hz, 1H), 3.23 – 3.01 (m, 3H), 2.62 (dtd, J = 25.4, 15.7, 15.3, 7.1 Hz, 2H), 0.77 (t, J 

= 7.2 Hz, 3H); 

13C NMR (126 MHz, d6-DMSO, 100 °C) δ 169.2, 156.4, 144.2, 142.6, 140.5, 139.4, 132.1, 

128.8, 128.3, 128.2, 127.3, 126.7, 124.90, 124.88, 124.6, 123.5, 123.3, 120.2, 118.4, 113.3, 

113.0, 106.4, 102.1, 74.3, 56.0, 49.2, 31.9, 29.0, 10.5; 

FT-IR (ATR) 2932, 1648, 1595, 1476, 1434, 1374, 1258, 1113, 1027, 749, 718 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C31H29N2O2: 461.2224, found: 461.2225; 

[]25
D (93% ee) = –27.6° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-1-(Indolin-1-yl)-2-(3-methyl-indol-1-yl)-2-phenylbutan-1-one (Figure 2.3, entry 6).  

The title compound was synthesized according to General Procedure A from 3-methyl-indole 

(65.5 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (179.9 mg, 0.60 

mmol).  5.0 mL of the stock solution of the catalyst were used (5.0 mol% CuCl).  The product 

was purified by flash chromatography (0%  7% Et2O/hexanes).  Colorless solid.  First run: 

155 mg (79% yield), 92% ee.  Second run: 156 mg (79% yield), 92% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® AD column (1% i-

PrOH/hexanes, 0.7 mL/min); retention times for compound obtained using (S)−2.1: 8.9 min 

(minor), 10.0 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.46 (dt, J = 8.3, 0.8 Hz, 1H), 7.61 (ddd, J = 7.7, 1.6, 0.7 Hz, 

1H), 7.57 – 7.52 (m, 2H), 7.48 – 7.37 (m, 3H), 7.35 (dt, J = 7.9, 0.9 Hz, 1H), 7.28 (tdd, J = 

8.2, 1.5, 0.8 Hz, 1H), 7.21 (q, J = 1.1 Hz, 1H), 7.17 – 7.10 (m, 3H), 7.10 – 7.05 (m, 1H), 3.27 

– 3.14 (m, 2H), 2.97 (dq, J = 14.4, 7.2 Hz, 1H), 2.84 – 2.76 (m, 2H), 2.66 (dq, J = 14.4, 7.2 

Hz, 1H), 2.38 (d, J = 1.1 Hz, 3H), 0.77 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 169.0, 143.9, 137.5, 136.2, 131.4, 130.0, 128.6, 128.3, 128.0, 

127.4, 124.7, 124.4, 124.3, 122.0, 119.4, 119.1, 118.4, 112.9, 111.0, 73.1, 48.4, 33.4, 28.8, 

9.9, 9.8; 

FT-IR (ATR) 2933, 1651, 1598, 1477, 1455, 1381, 1262, 1182, 1019, 739, 702 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C27H27N2O: 395.2118, found: 395.2120; 

[]25
D (92% ee) = –17.9° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(3-(2-((Tert-butyldimethylsilyl)oxy)ethyl)-indol-1-yl)-1-(indolin-1-yl)-2-phenyl-

butan-1-one (Figure 2.3, entry 7).  The title compound was synthesized according to 

General Procedure A from 3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-indole34 (35) (137.7 mg, 

0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (179.9 mg, 0.60 mmol).  5.0 

mL of the stock solution of the catalyst were used (5.0 mol% CuCl).  The product was 

purified by flash chromatography (0%  7% Et2O/hexanes).  Colorless solid.  First run: 215 

mg (80% yield), 92% ee.  Second run: 214 mg (79% yield), 92% ee. 

 The ee was determined by HPLC on a Daicel CHIRALPAK® IB column (0.5% i-

PrOH/hexanes, 0.7 mL/min); retention times for compound obtained using (S)−2.1: 8.0 min 

(minor), 8.5 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.46 (d, J = 8.2 Hz, 1H), 7.65 (dt, J = 7.8, 1.1 Hz, 1H), 7.57 

– 7.51 (m, 2H), 7.49 – 7.34 (m, 4H), 7.33 – 7.25 (m, 2H), 7.18 – 7.04 (m, 4H), 3.93 (dd, J = 

7.5, 6.1 Hz, 2H), 3.29 – 3.09 (m, 2H), 3.07 – 2.93 (m, 3H), 2.79 (t, J = 8.1 Hz, 2H), 2.65 (dq, 

J = 14.3, 7.2 Hz, 1H), 0.93 (d, J = 1.1 Hz, 9H), 0.79 (td, J = 7.2, 1.1 Hz, 3H), 0.09 (d, J = 1.1 

Hz, 6H); 

13C NMR (126 MHz, CDCl3) δ 169.0, 143.8, 137.4, 136.1, 131.4, 129.5, 128.6, 128.3, 128.0, 

127.4, 125.1, 124.3, 124.3, 122.0, 119.5, 119.2, 118.5, 113.0, 112.7, 73.1, 63.7, 48.4, 33.4, 

28.9, 28.8, 26.0, 18.3, 10.0, –5.2, –5.3; 

FT-IR (ATR) 2927, 2854, 1653, 1600, 1478, 1456, 1387, 1256, 1180, 1073, 831, 757 cm-1;  

HRMS (ESI) m/z (M+H)+ calcd for C34H43N2O2Si: 539.3088, found: 539.3091; 

[]25
D (92% ee) = –4.1° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-1-(Indolin-1-yl)-2-(5-methoxy-3-methyl-indol-1-yl)-2-phenylbutan-1-one (Figure 

2.3, entry 8).  The title compound was synthesized according to General Procedure A from 

5-methoxy-3-methyl-indole35 (36) (74.6 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-

phenylbutan-1-one (179.9 mg, 0.60 mmol).  5.0 mL of the stock solution of the catalyst were 

used (5.0 mol% CuCl).  The product was purified by flash chromatography (0%  11% 

Et2O/hexanes).  Colorless solid.  First run: 182 mg (86% yield), 88% ee.  Second run: 184 

mg (87% yield), 88% ee. 

 The ee was determined by HPLC on a Daicel CHIRALCEL® OD column (2% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 6.8 min 

(minor), 7.7 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.44 (dt, J = 8.0, 0.8 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.46 – 

7.35 (m, 3H), 7.28 (dddd, J = 8.2, 6.6, 1.6, 0.8 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.18 (d, J = 1.3 

Hz, 1H), 7.14 (ddt, J = 6.5, 1.6, 0.7 Hz, 1H), 7.07 (td, J = 7.4, 1.1 Hz, 1H), 7.03 (d, J = 2.4 

Hz, 1H), 6.76 (dd, J = 9.0, 2.6 Hz, 1H), 3.89 (s, 3H), 3.23 (q, J = 8.2 Hz, 2H), 2.91 (dq, J = 

14.4, 7.2 Hz, 1H), 2.81 (td, J = 8.0, 3.1 Hz, 2H), 2.65 (dq, J = 14.4, 7.2 Hz, 1H), 2.34 (d, J = 

1.0 Hz, 3H), 0.76 (t, J = 7.2 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 169.0, 153.9, 143.9, 137.7, 131.41, 131.38, 130.5, 128.5, 

128.3, 128.0, 127.4, 125.4, 124.4, 124.3, 118.4, 113.7, 111.8, 110.5, 100.8, 73.1, 55.7, 48.4, 

33.5, 28.8, 9.89, 9.87; 

FT-IR (ATR) 2934, 1661, 1598, 1477, 1456, 1376, 1262, 1241, 1218, 1078, 1060, 754 cm-

1; 

HRMS (ESI) m/z (M+H)+ calcd for C28H29N2O2: 425.2222, found: 425.2224; 

[]25
D (88% ee) = –15.5° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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(S)-2-(5-Fluoro-3-methyl-indol-1-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.3, 

entry 9).  The title compound was synthesized according to General Procedure A from 5-

fluoro-3-methyl-indole (74.6 mg, 0.50 mmol) and 2-chloro-1-(indolin-1-yl)-2-phenylbutan-

1-one (179.9 mg, 0.60 mmol).  5.0 mL of the stock solution of the catalyst were used (5.0 

mol% CuCl).  The product was purified by flash chromatography (0%  7% Et2O/hexanes).  

Colorless solid.  First run: 201 mg (98% yield), 94% ee.  Second run: 201 mg (97% yield), 

94% ee. 

 X-ray quality crystals were obtained by slow diffusion of pentane into a saturated 

solution in benzene of a sample synthesized with (S)−2.1. 

The ee was determined by HPLC on a Daicel CHIRALCEL® OD column (2% i-

PrOH/hexanes, 1.0 mL/min); retention times for compound obtained using (S)−2.1: 7.1 min 

(minor), 8.6 min (major). 

1H NMR (500 MHz, CDCl3) δ 8.47 – 8.39 (m, 1H), 7.56 – 7.48 (m, 2H), 7.48 – 7.36 (m, 

3H), 7.29 – 7.21 (m, 4H), 7.15 (ddq, J = 7.4, 1.7, 1.0 Hz, 1H), 7.08 (td, J = 7.4, 1.1 Hz, 1H), 

6.85 (td, J = 9.1, 2.6 Hz, 1H), 3.20 (q, J = 7.7 Hz, 2H), 2.93 (dq, J = 14.4, 7.2 Hz, 1H), 2.84 

– 2.77 (m, 2H), 2.64 (dq, J = 14.4, 7.2 Hz, 1H), 2.34 (d, J = 1.1 Hz, 3H), 0.77 (t, J = 7.2 Hz, 

3H); 

13C NMR (126 MHz, CDCl3) δ 168.8, 157.7 (d, J = 235.8 Hz), 143.8, 137.4, 132.7, 131.3, 

130.5 (d, J = 9.3 Hz), 128.5, 128.4, 128.1, 127.4, 126.3, 124.43, 124.41, 118.4, 113.5 (d, J = 

9.2 Hz), 111.0 (d, J = 4.7 Hz), 110.4 (d, J = 25.8 Hz), 104.0 (d, J = 22.9 Hz), 73.1, 48.4, 33.4, 

28.8, 9.9, 9.8; 

FT-IR (ATR) 2935, 1650, 1598, 1454, 1377, 1263, 1190, 917, 849, 754, 699 cm-1; 

HRMS (ESI) m/z (M+H)+ calcd for C27H26FN2O: 413.2024, found: 413.2023; 

[]25
D (94% ee) = –14.3° (c = 0.50, CHCl3, obtained with (S)−2.1). 
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2.4.4. Additive Effects 

 

 

 In a nitrogen-filled glovebox, a stock solution of the catalyst was prepared by 

vigorously stirring CuCl (1.0 mg, 0.010 mmol) and (S)−2.1 (4.3 mg, 0.012 mmol) in toluene 

(2.0 mL) for 30 min, with warming by a heat gun.  Carbazole (16.7 mg, 0.10 mmol), LiOt-

Bu (12.0 mg, 0.15 mmol), a stir bar, and toluene (2.8 mL) were added to a 4 mL vial.  The 

resulting mixture was stirred for 5 min, and then the stock solution of the catalyst (200 µL) 

was added, and stirring was continued for 20 min.  2-Chloro-1-(indolin-1-yl)-2-phenylbutan-

1-one (1.0 mL aliquot of a 0.12 M stock solution; 36.0 mg, 0.12 mmol) and then the additive 

(0.10 mmol) were added to the reaction mixture, and then the vial was sealed with a PTFE-

lined septum cap, taken out of the glovebox, placed ~5 cm from two 32W blue LED lamps, 

and irradiated at −40 °C for 16 h under a nitrogen atmosphere.  Next, the mixture was allowed 

to warm to r.t., and dibenzyl ether (19 µL; 0.10 mmol) was added as an internal standard.  A 

portion (~ 1.5 mL) of the reaction mixture was passed through a short silica plug to remove 

traces of copper.  The recovery of the additive was determined by GC analysis, and the yield 

of the product was determined by 1H NMR analysis, both using dibenzyl ether as an internal 

standard.  After purification by preparative TLC (17% EtOAc/hexanes), the ee was 

determined by HPLC on a Daicel CHIRALPAK® AD column (5% i-PrOH/hexanes, 1.0 

mL/min); retention times: 6.2 min (minor), 7.7 min (major). 
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Table 2.2.  Effect of additives (1.0 equiv) on cross-couplings (average of two 

experiments). 

entry additive yield (%) ee (%) 
recovered 

additive (%) 

1 cyclohexyl bromide 95 94 90 

2 2-nonanone 92 94 96 

3 5-nonanol 90 94 99 

4 methyl octanoate 92 94 98 

5 cis-5-decene 96 95 >99 

6 trans-5-decene 98 95 >99 

7 5-decyne 97 94 >99 

8 valeronitrile 94 94 80 

9 3-phenylpropylamine 7 28 87 

10 N-methyl-2-phenylethylamine 12 86 89 

11 n-octanal 40 90 4 

 

 

2.4.5. Synthesis and Reactivity of ((R)−2.1)2Cu(carbazolide). 

 

 

 

Preparation of Complex 2.2.  In a nitrogen-filled glovebox, an oven-dried 4 mL amber-

glass vial was charged with carbazole (16.7 mg, 0.10 mmol), a stir bar, and a solution of 

mesitylcopper (18.2 mg, 0.10 mmol) in benzene (400 μL).  The mixture was stirred for 10 

min, and then a solution of (R)−2.1 (70.8 mg, 0.20 mmol) in benzene (600 μL) was added.  

The resulting reaction mixture was stirred for 6 h, and then pentane (2.0 mL) was added 

dropwise.  This mixture was stirred for 1 h, during which time a white precipitate formed.  
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The white precipitate was filtered, rinsed with pentane (5 mL), and dried to give 64 mg 

(64% yield) of the desired product as a white powder. 

X-ray quality crystals were obtained by slow evaporation of solvent from a saturated solution 

in a mixture of benzene/ether/pentane. 

1H NMR (400 MHz, C6D6) δ 8.74 – 8.41 (m, 2H), 7.41 (p, J = 6.6 Hz, 4H), 7.11 (t, J = 7.5 

Hz, 4H), 7.01 – 6.80 (m, 10H), 6.74 (d, J = 7.6 Hz, 2H), 6.65 (t, J = 7.5 Hz, 2H), 5.65 (d, J 

= 7.7 Hz, 2H), 3.56 (d, J = 14.3 Hz, 2H), 3.27 (s, 2H), 2.91 – 2.53 (m, 12H), 2.16 – 1.78 (m, 

8H), 1.30 – 1.15 (m, 2H), 0.95 (t, J = 6.9 Hz, 2H); 

13C NMR (101 MHz, C6D6) δ 151.0, 147.6, 147.0, 143.1, 142.5, 132.3, 129.8, 129.6, 129.5, 

128.8, 128.6, 128.3, 126.2, 125.6, 123.5, 123.2, 123.1, 120.2, 115.0, 114.4, 61.4, 38.3, 37.6, 

30.6, 30.4, 30.1, 25.0; 

31P NMR (162 MHz, C6D6) δ –13.9. 

 

 

 

Use of Complex 2.2 as a Catalyst.  In a nitrogen-filled glovebox, a stock solution of catalyst 

was prepared by vigorously stirring complex 2.2 (1.9 mg, 2.0 μmol) in toluene (400 µL) for 

30 min.  Carbazole (16.7 mg, 0.10 mmol) and LiOt-Bu (12.0 mg, 0.15 mmol) were added to 

a 4 mL vial, followed by a stir bar and toluene (2.8 mL).  The mixture was stirred for 5 min, 

and then the stock solution of complex 2.2 (200 µL) was added, and the resulting mixture 

was stirred for 20 min.  2-Chloro-1-(indolin-1-yl)-2-phenylbutan-1-one (1.0 mL aliquot of a 

0.12 M solution in toluene; 36.0 mg, 0.12 mmol) was added to the reaction mixture, and then 

the vial was sealed with a PTFE-lined septum cap and taken out of the glovebox.  The vial 

was placed ~5 cm from two 32W blue LED lamps, and the reaction mixture was irradiated 

at −40 °C for 16 h under a nitrogen atmosphere.  Dibenzyl ether (19 µL, 0.10 mmol) was 
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added as an internal standard, and the yield was determined through analysis by 1H NMR 

spectroscopy.  (R)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one was produced in 

92% yield and 94% ee. 

 After purification by preparative TLC (17% EtOAc/hexanes), the ee was determined 

by HPLC on a Daicel CHIRALPAK® AD column (5% i-PrOH/hexanes, 1.0 mL/min); 

retention times: 6.2 min (major), 7.7 min (minor). 

 

 

 

Stoichiometric Reaction of Complex 2.2 in the Stoichiometric Reaction.  In a nitrogen-

filled glovebox, complex 2.2 (23.5 mg, 0.025 mmol), a stir bar, and toluene (3.0 mL) were 

added in turn to a 4 mL vial.  The mixture was stirred for 5 min, and then 2-chloro-1-(indolin-

1-yl)-2-phenylbutan-1-one (1.0 mL aliquot of a 0.030 M solution in toluene; 9.0 mg, 0.030 

mmol) was added.  The vial was sealed with a PTFE-lined septum cap and then taken out of 

the glovebox.  The vial was placed ~5 cm from two 32W blue LED lamps, and the reaction 

mixture was irradiated at −40 °C for 16 h under a nitrogen atmosphere.  Dibenzyl ether (19 

µL, 0.10 mmol) was added as an internal standard, and the yield was determined through 

analysis by 1H NMR spectroscopy.  (R)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-

1-one was produced in 72% yield and 92% ee. 

 After purification by preparative TLC (17% EtOAc/hexanes), the ee was determined 

by HPLC on a Daicel CHIRALPAK® AD column (5% i-PrOH/hexanes, 1.0 mL/min); 

retention times: 6.2 min (major), 7.7 min (minor). 
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2.4.6. Determination of Absolute Stereochemistry 

 

 

Figure 2.7.  Complex 2.2; structure determined by x-ray diffraction. 

 

Complex 2.2.  X-ray quality crystals were obtained by slow evaporation of solvent from a 

saturated solution of a sample in a mixture of benzene/ether/pentane.  A crystal of 

C62H54CuNP2 was selected and mounted in a nylon loop in immersion oil.  All 

measurements were made on a Bruker Photon CMOS diffractometer with filtered Mo-Kα 

radiation at a temperature of 100 K.  Using Olex236, the structure was solved with the 

ShelXS structure solution program using Direct Methods and refined with the ShelXL 

refinement package37 using Least Squares minimization.  The absolute stereochemistry 

was determined on the basis of the absolute structure parameter. 
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Figure 2.8.  Figure 2.2, entry 1; structure determined by x-ray diffraction.  One of two 

molecules in the asymmetric unit is shown. 

 

(S)-2-(Carbazol-9-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 2.2, entry 1).  X-

ray quality crystals were obtained by slow evaporation of solvent from a saturated solution 

in hexanes of a sample synthesized with (S)−2.1.  A crystal of C30H26N2O was selected and 

mounted in a nylon loop in immersion oil.  All measurements were made on a Bruker 

Photon diffractometer with filtered Cu-Kα radiation at a temperature of 100 K.  Using 

Olex236, the structure was solved with the ShelXS structure solution program using Direct 

Methods and refined with the ShelXL refinement package37 using Least Squares 

minimization.  The absolute stereochemistry was determined on the basis of the absolute 

structure parameter. 
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Figure 2.9.  Figure 2.2, Entry 5; structure determined by x-ray diffraction.  One of two 

molecules in the asymmetric unit is shown. 

 

(R)-2-(Carbazol-9-yl)-2-cyclopentyl-1-(indolin-1-yl)propan-1-one (Figure 2.2, entry 

5).  X-ray quality crystals were obtained by slow diffusion of pentane into a saturated 

solution in benzene of a sample synthesized with (S)−2.1.  A crystal of C28H28N2O was 

selected and mounted in a nylon loop in immersion oil.  All measurements were made on 

a Bruker Photon CMOS diffractometer with filtered Cu-Kα radiation at a temperature of 

100 K.  Using Olex236, the structure was solved with the ShelXS structure solution program 

using Direct Methods and refined with the ShelXL refinement package37 using Least 

Squares minimization.  The absolute stereochemistry was determined on the basis of the 

absolute structure parameter. 
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Figure 2.10.  Figure 2.3, entry 9; structure determined by x-ray diffraction.  One of two 

molecules in the asymmetric unit is shown. 

 

(S)-2-(5-Fluoro-3-methyl-indol-1-yl)-1-(indolin-1-yl)-2-phenylbutan-1-one (Figure 

2.3, entry 9).  X-ray quality crystals were obtained by slow diffusion of pentane into a 

saturated solution in benzene of a sample synthesized with (S)−2.1.  A crystal of 

C27H25FN2O was selected and mounted in a nylon loop in immersion oil.  All 

measurements were made on a Bruker Photon diffractometer with filtered Cu-Kα radiation 

at a temperature of 100 K.  Using Olex236, the structure was solved with the ShelXS 

structure solution program using Direct Methods and refined with the ShelXL refinement 

package37 using Least Squares minimization.  The absolute stereochemistry was 

determined on the basis of the absolute structure parameter.   
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C h a p t e r  3   

COPPER-CATALYZED ALKYLATION OF ALIPHATIC AMINES 

INDUCED BY VISIBLE LIGHT 

Adapted in part with permission from: 
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3.1. Introduction 

 Because amines are a privileged functional group in bioactive molecules,1 the 

development of more versatile methods for their synthesis is an important objective.2 

Whereas the alkylation of an amine by an alkyl halide via an SN2 pathway is a classic 

transformation, at the same time the process represents an ongoing challenge in synthesis.3 

Thus, rather than the desired C–N bond formation, undesired pathways such as E2 reactions 

and over-alkylation often intervene.  Furthermore, because SN2 reactions are sensitive to 

steric effects, unactivated secondary and tertiary alkyl halides oftentimes do not serve as 

useful electrophilic partners.  Due in part to these limitations, an array of methods other than 

the substitution reaction of an amine with an alkyl halide have been developed in order to 

selectively and efficiently introduce an alkyl group to an amine.2 

 Whereas transition-metal catalysis has been pursued very extensively to address the 

challenge of effecting substitution reactions of aryl halides by nitrogen nucleophiles,4 until 

recently there were essentially no systematic investigations of corresponding metal-catalyzed 

substitution reactions of alkyl halides.5 During the past few years, this deficiency has begun 

to be addressed, including through our work on photoinduced, copper-catalyzed processes 

(carbazoles, carboxamides, and indoles as nucleophiles)6,7 and a study by Hartwig on 

palladium-catalyzed reactions (benzophenone imines as nucleophiles).8 
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 Nevertheless, to date a general method for transition-metal-catalyzed substitution 

of an alkyl halide by an aliphatic amine, which can be regarded as the prototypical nitrogen 

nucleophile, has not been described.  In this study, we report a photoinduced, copper-

catalyzed process that achieves the selective mono-alkylation of an array of aliphatic amines 

with unactivated secondary alkyl halides under mild conditions (–10 °C; eq 3.1). 

 In earlier work, we have described a variety of coupling reactions of nucleophiles 

with organic (aryl, alkenyl, alkynyl, and alkyl) electrophiles that are induced by light and 

catalyzed by copper;6,9 an outline of one of the possible pathways for such processes is 

provided in Figure 3.1.10,11 To date, all of our reported couplings have employed nucleophiles 

wherein the nucleophilic site is part of a π system (N: carbazole, indole, and imidazole; S: 

aryl thiol; O: phenol; C: cyanide).  On the other hand, our initial efforts to utilize nucleophiles 

that lack this feature were unsuccessful.  For example, under conditions in which carbazole6a 

and cyclohexanecarboxamide6b undergo alkylation by an unactivated secondary halide in 

good yield, the corresponding alkylation of a primary aliphatic amine does not proceed (eq 

3.2 and eq 3.3).  Having the nucleophilic site incorporated within a π system might be 

important for any of a variety of reasons, including determining the viability of the initial 

photoexcitation (3.A → 3.B in Figure 3.1)12 and/or of electron transfer from that excited state 

to the electrophile to generate a copper(II) complex (3.B → 3.C).13 

 



 

 

68 

 

 

 While examining the functional-group compatibility of a method that we had 

developed for photoinduced, copper-catalyzed arylations of phenols,9d we discovered that 

the presence of 1.0 equiv of an aliphatic amine additive unexpectedly leads to predominant 

N-arylation of the aliphatic amine, rather than O-arylation of the phenol (eq 3.4; in the 

absence of n-BuNH2: 80% yield of PhO–Ar). 

 

 One of the possible pathways by which phenol might enable the photoinduced, 

copper-catalyzed cross-coupling of an aliphatic amine is depicted in Figure 3.2.  Thus, 

photoexcitation of a copper(I)–phenoxide complex (3.E → 3.F) and then electron transfer to 

an electrophile (R–X) affords a copper(II)–phenoxide (3.G) and an organic radical (R•).  

Ligand exchange of the copper(II)–phenoxide with an amine (NH2R) leads to a copper(II)–

amido (3.H)14 that engages in C–N bond formation with the organic radical to furnish the 
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cross-coupling product (R–NHR) and a copper(I) complex (3.I).15 Ligand substitution then 

regenerates a copper(I)–phenoxide complex (3.E). 

 

Figure 3.1.  Outline of one of the possible pathways for photoinduced, copper-catalyzed 

coupling reactions. 

 

Figure 3.2.  Simplified outline of one of the possible pathways for the photoinduced, copper-

catalyzed coupling of an aliphatic amine in the presence of a phenol. 
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3.2. Results and Discussion 

3.2.1. Optimization 

 Given the paucity of systematic studies of metal-catalyzed substitution reactions of 

unactivated alkyl halides by aliphatic amines, we attempted to exploit our initial observation 

(eq 3.4) to devise a photoinduced, copper-catalyzed process that would address this 

deficiency.  Indeed, building on this lead result, we have been able to develop a method that 

achieves the selective mono-alkylation of a primary aliphatic amine by an unactivated 

secondary alkyl halide under mild conditions (–10 °C) in good yield (92%). 

 Control reactions establish that essentially none of the coupling product is generated 

in the absence of CuI, rac-BINOL, light, or BTPP (Table 3.1, entries 2−6).  A variety of 

copper(I) and copper(II) sources furnish a good yield of the desired secondary amine, 

whereas copper nanopowder does not (entries 7–11).  N-Alkylation proceeds less efficiently 

in the presence of less BINOL (entries 12 and 13) and when BINOL is replaced with related 

ligands (entries 14 and 15).  The use of other Brønsted bases (entries 16 and 17), a smaller 

excess of electrophile or BTPP (entries 18 and 19), or a lower catalyst loading (entry 20; no 

further reaction after 24 h) also leads to significantly lower yields.  Under our standard 

conditions, other cyclohexyl electrophiles (bromide, chloride, and tosylate) do not serve as 

suitable coupling partners (entries 21–23).  Cross-coupling does occur in the presence of a 

small amount of air or water, although less effectively (entries 24 and 25). 
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Table 3.1. Photoinduced, copper-catalyzed coupling of an aliphatic amine with an 

unactivated secondary alkyl iodide: Effect of reaction parameters. 
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3.2.2. Scope of Reactivity 

 An array of unactivated secondary alkyl iodides, both cyclic and acyclic, serve as 

suitable electrophiles in this photoinduced, copper-catalyzed mono-alkylation of aliphatic 

amines (Table 5.2).16 The efficiency of the coupling is sensitive to steric effects, with more 

hindered electrophiles furnishing more modest yields (entries 6 and 7).  Saturated oxygen 

and sulfur heterocycles are compatible with the reaction conditions (entries 8 and 9), and C–

N bond formation can be achieved with excellent diastereoselectivity (entries 11 and 12; 

>20:1).  In a gram-scale reaction, the alkylation illustrated in entry 1 proceeds in good yield 

with 10% CuI/20% BINOL (1.32 g, 81%). 

Table 3.2.  Scope with respect to the electrophile. 
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 Although many unactivated primary alkyl halides can serve as useful electrophiles 

in SN2 reactions, neopentyl halides typically are rather poor substrates.17 Nevertheless, the 

combination of a CuI/BINOL catalyst and blue-LED irradiation enables the alkylation of an 

aliphatic amine by neopentyl iodide in good yield at –10 °C (eq 3.5).  In contrast, a simple 

SN2 reaction proceeds very slowly even at 100 °C, and the addition of CuI/BINOL is not 

beneficial (eq 3.5). 

 

 We have also examined the scope of this photoinduced, copper-catalyzed N-

alkylation with respect to the nucleophile (Table 3.3).  Thus, the efficiency of C–N bond 

formation does not appear to be highly sensitive to the steric demand of the aliphatic amine 

(entries 1 and 2).  The method is compatible with a variety of functional groups, including 

an ether, an acetal, an aryl chloride, an aryl bromide, a furan, and a thiophene (entries 3–10). 

 Through an additive study, we have further assessed the functional-group 

compatibility of this method.  For the coupling illustrated in entry 1 of Table 3.2, the addition 

of 1.0 equiv of an alcohol (5-nonanol), an alkyne (5-decyne), an ester (methyl octanoate), a 

ketone (2-nonanone), a cis olefin (cis-5-decene), and a trans olefin (trans-5-decene) has little 

impact on N-alkylation (>75% yield), and the additive is virtually unaffected (>90% 

recovery).  On the other hand, the addition of a nitroalkane (nitrocyclopentane) or an 

aldehyde (cyclohexanecarboxaldehyde) impede coupling (<5% and 51% yield, 

respectively). 
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 If desired, N-protection of the secondary amine can be effected in situ in good 

yield.  For example, upon completion of the alkylation illustrated in entry 1 of Table 3.2, 

direct trifluoroacetylation followed by purification provides the TFA-protected amine in 

86% yield.  Similarly, a 73% yield of the purified carbamate can be obtained after in situ 

protection with Boc2O. 

Table 3.3.  Scope with respect to the nucleophile. 
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3.2.3. Mechanistic Insights 

 Although reaction development is the primary focus of this investigation, we have 

also carried out preliminary mechanistic studies; as mentioned earlier, one of the possible 

pathways for this process is outlined in Figure 3.2.  With regard to the identity of the primary 

photoreductant, ESI–MS of a reaction mixture after partial conversion reveals the presence 

of copper(I)–binaphtholate complex 3.E’; alternatively, deprotonated BINOL itself could 

also fill this role.18,19  The illustrated mechanism includes d9 copper(II) complexes as 

intermediates, and we have indeed detected such species via EPR spectroscopy by sampling 

a catalyzed coupling at partial conversion; at least two copper(II) species are evident 

(hyperfine coupling to copper), which together account for ~60% of the total copper that is 

present in the reaction mixture. 

 

According to the pathway depicted in Figure 3.2, C–N bond formation occurs through out-

of-cage coupling of an organic radical (R•) with a copper(II)–amido complex.15 Consistent 

with this hypothesis, the addition of TEMPO (1.5 equiv) to a reaction mixture leads to the 

formation of a TEMPO adduct (eq 3.6). 
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3.3. Conclusions 

 In summary, we have determined that the combination of visible light and a copper 

catalyst provides the first general method for the transition-metal-catalyzed alkylation of 

aliphatic amines by unactivated secondary alkyl halides.  This process addresses some of the 

deficiencies of the classic SN2 approach, including its need for reactive electrophiles and its 

propensity for over-alkylation.  With respect to our efforts to expand photoinduced, copper-

catalyzed coupling reactions, this represents our first success with nucleophiles wherein the 

nucleophilic site is not part of a π system.  With our optimized method, C–N bond formation 

proceeds without significant over-alkylation (<1%) under mild conditions (–10 °C) in the 

presence of a variety of functional groups, upon irradiation by blue-LED lamps of a catalyst 

derived from commercially available components.  A preliminary mechanistic study is 

consistent with the formation of an alkyl radical that engages in out-of-cage C–N bond 

formation.  Our future work will focus on expanding photoinduced, copper-catalyzed 

couplings to other classes of non-conjugated nucleophiles, as well as on elucidating the 

mechanisms of these processes. 

3.4. Development of an Asymmetric Variant 

 Translating the alkylation of aliphatic amines into an asymmetric variant is an 

interesting and important challenge, as it would allow for the formation of α-chiral amines 

from easily available racemic alkyl halides. α-Chiral amines are a particularly important class 

of molecules, as they are featured in many bioactive molecules, ligands, and natural products. 

This chiral functional group plays a role to impart unique and medically relevant biological 

activity in a variety of organic small molecules (Figure 3.3). For example, tamsulosin 

(Flomax™) is used to treat enlarged prostates and sertraline (Zoloft™) is used as an 

antidepressant. Due to the privileged bioactivity of α-chiral amines, there has been intense 

focus on reaction development to access these products in high ee.20,21 Despite the vast and 

impressive contributions to this field, to the best of our knowledge there has only been one 

report of an asymmetric alkylation of an amine with an alkyl halide electrophile (see Chapter 

2).6c However, that reaction is limited by the utility of N-alkylated indoles and carbazoles. 
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Ideally, a transformation that could couple a simple alkyl amine (e.g., 3-

phenylpropylamine) and a racemic mixture of an unactivated alkyl halide with high 

enantioconvergence would be highly desirable. To this end, the reactivity discussed earlier 

in this chapter has been employed in an attempt to achieve such a transformation by 

leveraging the axial chirality of BINOL ligands and copper photocatalysis. 

 

Figure 3.3.  Selected examples of α-chiral amines show diverse and important biological 

activity.  

 Initial optimization aimed at achieving enantioinduction focused on identifying a 

promising yet general class of alkyl electrophile. Minor modifications to the conditions 

shown in Table 3.1 enabled an acyclic secondary alkyl iodide that was previously applicable 

in the racemic variant (Table 3.2, entry 3) to undergo cross-coupling with 3-

phenylpropylamine with modest ee (Table 3.4, entry 1; 50% yield, 28% ee). Control 

reactions (not shown) confirmed the reaction required a copper catalyst, BINOL, and light. 

This initial result was encouraging that we may able achieve enantioconvergent amine 

alkylation under straightforward conditions with commercially available reagents using 

copper photocatalysis. However, due to the yield and low ee, a kinetic resolution of the 
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electrophile has not been ruled out. Other classes of electrophiles were assessed under 

these conditions (Table 3.4). While alkyl bromides are not amenable (entries 2, 7, and 8), 

some variations to the alkyl iodide are tolerated, although they result in either a loss in yield, 

ee, or both. The catalytic system is sensitive to sterics, as increasing steric bulk on either side 

of the iodide results in lower yield and ee (entries 3 and 4). Using different directing groups 

such as a Lewis basic tertiary amine (entry 5), sulfonamide (entry 9), or carbamate (entry 10) 

resulted in racemic product, or no product at all. Using a benzylic iodide did result in a high 

yield of product, but with little ee (entry 6),  

Table 3.4.  Copper-catalyzed asymmetric alkylation of aliphatic amines: initial conditions 

and substrate identification. 
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 Optimization efforts then turned towards the identification of a more suitable 

ligand system. Various 3,3’-disusbtituted BINOL’s and other aromatic diols were assessed 

(Figure 3.4A). While none of the ligands tested were able to improve ee’s, enantioenriched 

product was still obtained. Further testing of additional BINOL derivatives, including 6,’6- 

 

  

Figure 3.4.  Selected examples of ligand screened for enantioinduction in the copper-

catalyzed asymmetric alkylation of aliphatic amines. (A) Diol-based ligands. (B) Phosphine-

based ligands. 
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disubstituted variants, should be carried out in the future.22 Phosphine ligands, which had 

proven competent with ongoing projects the Fu group, were also tested (Figure 3.4B). 

Representative examples shown did not result in enantioenriched cross-coupling product, 

though (R)−3.6 resulted in high yields. Possibly, Cu/3.6 could serve as a photocatalyst to 

generate alkyl radicals, and a second Cu/ligand combination could construct the bond 

enantioselectively. 

 

 

Figure 3.5.  Ligand screened for enantioinduction in the copper-catalyzed asymmetric 

alkylation of aliphatic amines using a copper/phosphine photocatalyst. 
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 To this end, a number of ligands were screened in the presence of a catalytic 

amount of (R)−3.6 (Figure 3.5). Interestingly, product with ee was obtained with two ligands.  

 (R)−BINOL again achieved product in good yield and modest ee, but there appeared to be 

no advantage over using BINOL on its own. On the other hand, (S,S)−3.10 was able to form 

product in 13% yield and 20% ee. This is particularly interesting because a copper/(S,S)−3.10 

complex should lack the photophysical properties required to undergo photoexcitation under 

visible light irradiation. This result suggests cooperative mechanism where a copper/(R)−3.6 

complex may be serving a photocatalyst and a separate copper/(S,S)−3.10 complex may be 

serving as a bond-forming catalyst.. Further screening of this ligand class (1,2-diaryl-1,2-

ethylenediamines) may prove to be a fruitful avenue for further optimization. 

 Further parameterization was performed extensively. Metal-to-ligand ratio, 

stoichiometry, temperature, solvent, base, additive, light source, copper precatalyst, and 

catalyst loading were all modified to some degree and ultimately resulted in minor 

modifications to the conditions with limited improved in ee (eq 3.7).  As mentioned earlier, 

variation of the ligand system may be the most promising path forward. Specifically, BINOL 

derivatives and a copper/phosphine/diamine system have shown some potential for further 

optimization. A final note from Dante for those seeking to finish developing this reaction:  

Lasciate ogne speranza, voi ch'entrate, for once the reaction is optimized you will still have 

to purify the products. 
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3.5. Experimental Section 

3.5.1. General Information 

 

 All manipulations of air‐sensitive materials were carried out in oven-dried glassware 

under an N2 atmosphere using standard Schlenk or glovebox techniques.  3-

Phenylpropylamine (Alfa Aesar), cyclohexanemethylamine (Acros), cyclohexylamine 

(Sigma-Aldrich), 2-phenoxyethylamine (Alfa Aesar), 3-methoxypropylamine (Sigma-

Aldrich), tetrahydrofurfurylamine (Sigma-Aldrich), 2,2-dimethoxyethylamine (Sigma-

Aldrich), and 4-chlorophenethylamine (Acros), 4-bromophenethylamine (Oakwood), 

furfurylamine (Sigma-Aldrich), and thiophene-2-ethylamine (Oakwood) were distilled prior 

to use.  Et2O, CH2Cl2, and CH3CN were purified and dried using a solvent-purification 

system that contained activated alumina under argon.  CuI (99.999% trace metal basis, 

Sigma-Aldrich), rac-BINOL (Oakwood), BTPP (tert-butylimino-

tri(pyrrolidino)phosphorane, Sigma-Aldrich), DMF (anhydrous, 99.8%, Sigma-Aldrich), 

iodocyclohexane (Oakwood), 4-iodotetrahydro-2H-pyran (Combi-Blocks), 1-iodo-2-2-

dimethylpropane (Sigma-Aldrich), 1,3,5-trimethoxybenzene (≥99%, Sigma-Aldrich), and 

tetradecane (≥99%, Sigma-Aldrich) were used as received. 1H, 13C, and 31P NMR data were 

collected on a Bruker 400 MHz or a Varian 500 MHz spectrometer at ambient temperature 

unless otherwise noted.  FT-IR measurements were carried out on a Thermo Scientific 

Nicolet iS5 FT-IR spectrometer equipped with an iD5 ATR accessory.  HRMS and LRMS 

were acquired using an Agilent 6850 GC, a JEOL JMS-600H MS in fast atom bombardment 

(FAB) ionization mode, or an Agilent 6200 Series TOF MS with an Agilent G1978A 

Multimode source in electrospray ionization (ESI) or atmospheric pressure chemical 

ionization (APCI) mode.  GC analyses were obtained on an Agilent 6890N GC.  Flash 

column chromatography was performed using silica gel (SiliaFlash® P60, particle size 40-63 

μm, Silicycle) or using basic alumina (Brockmann I, particle size 50-200 μm, Acros).  Blue 

LED lamps (34 W; Kessil H150-Blue) were used to irradiate the reaction mixtures. 
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3.5.2. Preparation of Electrophiles 

 

The yields have not been optimized. 

General Procedure A.23,24 PPh3 (1.50 equiv) and imidazole (1.50 equiv) were dissolved in 

CH2Cl2 (~0.3 m), and the resulting solution was cooled to 0 °C.  At this temperature, iodine 

(1.50 equiv) was added slowly in portions, and the resulting mixture was stirred for 10 min.  

Next, the alcohol (1.00 equiv) was added, and the resulting mixture was allowed to warm to 

room temperature and stirred overnight.  Then, the reaction mixture was poured into hexanes 

(~3 times the volume of the reaction mixture) and filtered.  The filtrate was concentrated in 

vacuo, and the residue was purified by flash chromatography on silica gel to afford the pure 

product. 

 

 

(2-Iodopropoxy)benzene.  The title compound was synthesized according to General 

Procedure A from 1-phenoxypropan-2-ol (1.50 g, 9.86 mmol), PPh3 (3.88 g, 14.8 mmol), 

imidazole (1.00 g, 14.8 mmol), and iodine (3.75 g, 14.8 mmol).  The product was purified 

by flash chromatography with silica gel (95:5 → 80:20 hexanes/Et2O).  Colorless liquid; 

1.64 g (63% yield). 

1H NMR (400 MHz, CDCl3) δ 7.36 – 7.25 (m, 2H), 6.99 (td, J = 7.3, 1.1 Hz, 1H), 6.91 (dd, 

J = 7.7, 1.1 Hz, 2H), 4.46 – 4.30 (m, 1H), 4.25 (dd, J = 10.0, 5.5 Hz, 1H), 4.05 (dd, J = 10.0, 

7.8 Hz, 1H), 2.01 (d, J = 6.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 158.1, 129.7, 121.5, 114.9, 74.9, 24.9, 22.4. 

FT-IR (neat) 3039, 2970, 2921, 2867, 1598, 1587, 1495, 1455, 1381, 1300, 1240, 1172, 1138, 

1104, 1076, 1050, 1030, 1014, 994, 882, 815, 753, 691, 630 cm–1. 

HRMS (FAB) m/z (M)+ calcd for C9H11IO: 261.9855, found: 261.9842. 
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tert-Butyl(2-iodobutoxy)dimethylsilane.  The title compound was synthesized according to 

General Procedure A from 1-((tert-butyldimethylsilyl)oxy)butan-2-ol25 (3.00 g, 14.2 mmol), 

PPh3 (5.60 g, 21.4 mmol), imidazole (1.45 g, 21.4 mmol), and iodine (5.42 g, 21.4 mmol).  

The product was purified by flash chromatography with silica gel (95:5 → 80:20 

hexanes/Et2O).  Colorless liquid; 2.66 g (60% yield). 

1H NMR (400 MHz, CDCl3) δ 4.09 – 3.99 (m, 1H), 3.88 (dd, J = 10.6, 5.3 Hz, 1H), 3.74 (dd, 

J = 10.6, 7.9 Hz, 1H), 2.01 – 1.84 (m, 1H), 1.81 – 1.63 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H), 0.90 

(s, 9H), 0.07 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 68.7, 40.5, 29.2, 26.0, 18.5, 14.0, –5.1, –5.2. 

FT-IR (neat) 2956, 2929, 2884, 2857, 1471, 1462, 1254, 1137, 1103, 1078, 838, 814, 777 

cm–1. 

HRMS (FAB) m/z (M+H−H2)
+ calcd for C10H22IOSi: 313.0485, found: 313.0484. 

 

 

 

tert-Butyl((2-iodo-4-methylpentyl)oxy)dimethylsilane.  The title compound was 

synthesized according to General Procedure A from 1-((tert-butyldimethylsilyl)oxy)-4-

methylpentan-2-ol (2.00 g, 8.3 mmol), PPh3 (3.3 g, 12.5 mmol), imidazole (0.85 g, 

12.5 mmol), and iodine (3.2 g, 12.5 mmol).  The product was purified by flash 

chromatography with silica gel (hexanes).  Colorless liquid; 1.82 g (64% yield). 

1H NMR (400 MHz, CDCl3) δ 4.15 – 4.04 (m, 1H), 3.88 (dd, J = 10.7, 5.4 Hz, 1H), 3.73 (dd, 

J = 10.6, 7.2 Hz, 1H), 1.92 – 1.77 (m, 1H), 1.78 – 1.64 (m, 1H), 1.61 – 1.51 (m, 1H), 0.96 

(d, J = 6.6 Hz, 3H), 0.91 (s, 9H), 0.86 (d, J = 6.5 Hz, 3H), 0.08 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 69.6, 45.3, 37.1, 28.3, 26.0, 23.3, 21.0, 18.5, –5.0, –5.1. 

FT-IR (neat) 2955, 2928, 2857, 1470, 1386, 1253, 1140, 1121, 1085, 1035, 1005, 834, 811, 

775, 668 cm–1. 

HRMS (FAB) m/z (M+H)+ calcd for C12H28IOSi: 343.0949, found: 343.0952. 
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(1-Iodoethyl)cyclohexane.  The title compound was synthesized according to General 

Procedure A from 1-cyclohexylethan-1-ol26 (3.38 g, 25.6 mmol), PPh3 (10.1 g, 38.4 mmol), 

imidazole (2.61 g, 38.4 mmol), and iodine (9.7 g, 38.4 mmol).  The product was purified by 

flash chromatography with silica gel (hexanes).  Colorless liquid; 2.13 g (35% yield). 

1H NMR (400 MHz, CDCl3) δ 4.22 (qd, J = 7.0, 3.9 Hz, 1H), 1.90 (d, J = 7.0 Hz, 3H), 1.88 

– 1.80 (m, 1H), 1.80 – 1.69 (m, 3H), 1.69 – 1.59 (m, 1H), 1.37 – 1.21 (m, 2H), 1.21 – 0.92 

(m, 4H). 

13C NMR (101 MHz, CDCl3) δ 46.7, 40.5, 32.1, 31.6, 26.4, 26.1, 26.0. 

FT-IR (neat) 2981, 2925, 2852, 1448, 1377, 1295, 1236, 1196, 1164, 1145 cm–1. 

HRMS (GC) m/z (M)+ calcd for C8H15I: 238.0219, found: 238.0194. 

 

 

 

4-Iodotetrahydro-2H-thiopyran.  The title compound was synthesized according to 

General Procedure A from tetrahydro-2H-thiopyran-4-ol27 (2.00g, 16.9 mmol), PPh3 (6.66 g, 

25.4 mmol), imidazole (1.73 g, 25.4 mmol), and iodine (6.4 g, 25.4 mmol).  The product was 

purified by flash chromatography with silica gel (hexanes).  Colorless liquid; 1.80 g (47% 

yield). 

1H NMR (400 MHz, CDCl3) δ 4.55 – 4.40 (m, 1H), 2.90 – 2.74 (m, 2H), 2.65 – 2.45 (m, 

2H), 2.40 – 2.15 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 38.8, 31.0, 28.1. 

FT-IR (neat) 2909, 2820, 1441, 1423, 1349, 1268, 1238, 1211, 1200, 1124, 990, 943, 905, 

816, 671, 643 cm–1. 

HRMS (FAB) m/z (M)+ calcd for C5H9IS: 227.9470, found: 227.9450. 
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(3aS,4R,5R,5aS,8aR,8bS)-4-Iodo-5-methoxy-2,2,7,7-tetramethylhexahydrobenzo[1,2-

d:3,4-d']bis([1,3]dioxole).  According to a literature procedure,28 PPh3 (1.39 g, 5.30 mmol) 

and imidazole (0.36 g, 5.30 mmol) were suspended in toluene (12 mL) at room temperature.  

Then, iodine (1.35 g, 5.30 mmol) was added slowly in portions, and the resulting mixture 

was stirred for 10 min.  Next, 1,2:5,6-di-O-isopropylidene-D-chiro-inositol (1.00 g, 

3.54 mmol) was added, and the resulting mixture was refluxed overnight.  Then, the reaction 

mixture was allowed to cool to room temperature and poured into a mixture of CH2Cl2 (25 

mL) and a saturated solution of NaHCO3 (25 mL).  After separation of the organic layer, the 

aqueous layer was extracted with CH2Cl2 (2 x 20 mL).  The combined organic layers were 

dried (Na2SO4), the solvent was removed in vacuo, and the residue was purified by flash 

chromatography with silica gel (2:1 hexanes/EtOAc).  Crystalline solid; 1.19 g (89% yield, 

dr >20:1). 

 

3.5.3. Copper-Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light 

 

 

Figure 3.6. Photograph of the reaction setup for the copper-catalyzed alkylation of aliphatic 

amines induced by visible light. 
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General Procedure.  CuI (6.7 mg, 0.035 mmol), rac-BINOL (20.1 mg, 0.070 mmol), and a 

stir bar were added to an oven-dried 20 mL vial.  The vial was sealed with a septum cap, and 

then it was evacuated and backfilled with nitrogen (three cycles).  DMF (1.0 mL), CH3CN 

(4.0 mL), and BTPP (428 μL, 1.40 mmol) were added in turn.  The mixture was stirred for 

5 min, in order to dissolve the BTPP.  Next, the amine (0.70 mmol) was added, followed by 

the alkyl iodide (1.05 mmol).  The septum cap was covered with vacuum grease, the vial was 

detached from the Schlenk line, and the puncture holes were covered with vacuum grease.  

The vial was then placed, freely moving, in an isopropanol bath cooled to −10 °C by an 

immersion cooler.  The reaction mixture was stirred at −10 °C for 5 min, and then it was 

irradiated with three 34 W Kessil blue LED lamps, placed ~5 cm away, for 24 h.  After the 

reaction was complete, the reaction mixture was transferred to a 250 mL round-bottom flask 

with the aid of CH2Cl2.  Next, basic alumina was added to the flask, and then the solvent was 

removed by rotary evaporation and then placement under high vacuum, at which time a free-

flowing powder was obtained.  Products were visualized with a KMnO4 stain on silica-gel 

TLC plates using solvent systems composed of hexane/EtOAc/7 N NH3 in MeOH; traces of 

DMF and NEt3 (used in purification) are usually visible after staining. 

 

Protection as the Trifluoroacetamide Derivative. This procedure was used in two 

instances (Table 3.3, entries 4 and 6) to facilitate isolation and purification (volatility).  After 

the reaction was complete, the grease was wiped from the septum cap, and the vial was placed 

under a positive pressure of nitrogen on a Schlenk line and allowed to warm to room 

temperature.  Pyridine (310 μL, 3.85 mmol) and then trifluoroacetic anhydride (495 μL, 

3.50 mmol) were added.  After 10 min, the nitrogen inlet was removed, and the reaction 

mixture was stirred at room temperature for 3 h.  Next, the reaction mixture was transferred 

to a 250 mL round-bottom flask with the aid of CH2Cl2, silica gel was added to the flask, and 
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then the solvent was removed by rotary evaporation and then placed under high vacuum, 

at which time a free-flowing powder was obtained. 

 

 

 

N-(3-Phenylpropyl)cyclohexanamine (Table 3.2, entry 1).  The title compound was 

synthesized according to the General Procedure from 3-phenylpropylamine (99 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  The product was purified by flash 

chromatography with basic alumina (8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First 

run: 122 mg (80% yield).  Second run: 123 mg (80% yield). 

Gram Scale Reaction.  CuI (143 mg, 0.750 mmol), rac-BINOL (429 mg, 1.50 mmol), and 

a cross-shaped stir bar were added to an oven-dried 100 mL round-bottom flask.  The flask 

was sealed with a septum and then evacuated and backfilled with nitrogen (on a Schlenk line; 

three cycles).  DMF (11.0 mL), CH3CN (44.0 mL), and BTPP (4.59 mL, 15.0 mmol) were 

added in turn.  The mixture was allowed to stir for 10 min, to solubilize the BTPP.  Then, 3-

phenylpropylamine (1.07 mL, 7.5 mmol) was added, followed by iodocyclohexane (1.46 

mL, 11.3 mmol).  The septum was covered with vacuum grease, the flask was detached from 

the Schlenk line, and the puncture holes were covered with vacuum grease.  The flask was 

then fixed in an isopropanol bath cooled to −10 °C with an immersion cooler.  The reaction 

mixture was stirred at −10 °C for 10 min, and then it was irradiated with four 34 W Kessil 

blue LED lamps, placed ~5 cm away, for 40 h.  After the reaction was complete, the reaction 

mixture was transferred to a 500 mL round-bottom flask with the aid of CH2Cl2.  Next, basic 

alumina was added to the flask, and then the solvent was removed by rotary evaporation and 

then placement under high vacuum, at which time a free-flowing powder was obtained.  The 

residue was partially purified by flash chromatography with basic alumina (8:1:0.01 

hexanes/EtOAc/NEt3).  The residue was then transferred to a 50 mL flask, concentrated, and 

placed under high vacuum for 4 h to remove traces of DMF.  The residue was then purified 

by twice distilling with a Büchi Kugelrohr distillation apparatus (190 °C at 750 mTorr).  Pale 

yellow oil; 1.32 g (81% yield). 
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1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.21 (d, J = 7.0 Hz, 3H), 2.73 – 2.62 

(m, 4H), 2.41 (tt, J = 10.5, 3.7 Hz, 1H), 1.93 – 1.79 (m, 4H), 1.79 – 1.69 (m, 2H), 1.69 – 1.59 

(m, 1H), 1.47 (s, 1H), 1.32 – 1.13 (m, 3H), 1.12 – 1.01 (m, 2H).  The 1H NMR spectrum 

matches the spectrum reported in the literature.29 

 

 

 

N-(3-Phenylpropyl)butan-2-amine (Table 3.2, entry 2).  The title compound was 

synthesized according to the General Procedure from 3-phenylpropylamine (99 μL, 

0.70 mmol) and 2-iodobutane (124 μL, 1.05 mmol).  The product was purified by flash 

chromatography with basic alumina (8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First 

run: 91 mg (68% yield).  Second run: 95 mg (71% yield). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.24 – 7.17 (m, 3H), 2.73 – 2.51 (m, 

5H), 1.90 – 1.79 (m, 2H), 1.56 – 1.44 (m, 2H), 1.38 – 1.25 (m, 1H), 1.04 (d, J = 6.3 Hz, 3H), 

0.90 (t, J = 7.5 Hz, 3H).  The 1H NMR spectrum matches the spectrum reported in the 

literature.30 

 

 

 

N-(1-Phenoxypropan-2-yl)-3-phenylpropan-1-amine (Table 3.2, entry 3).  The title 

compound was synthesized according to the General Procedure from 3-phenylpropylamine 

(99 μL, 0.70 mmol) and (2-iodopropoxy)benzene (276 mg, 1.05 mmol).  The product was 

purified by flash chromatography with basic alumina (first column: 8:1:0.01 

hexanes/EtOAc/NEt3; second column: 3:1:0.01 hexanes/EtOAc/NEt3 → 100% EtOAc).  

Pale yellow oil.  First run: 126 mg (67% yield).  Second run: 119 mg (63% yield). 

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.24 (m, 4H), 7.23 – 7.09 (m, 3H), 7.03 – 6.81 (m, 

3H), 3.87 (dd, J = 9.1, 4.6 Hz, 1H), 3.82 (dd, J = 9.1, 6.8 Hz, 1H), 3.15 – 3.03 (m, 1H), 2.80 

– 2.59 (m, 4H), 1.95 – 1.71 (m, 2H), 1.56 (s, 1H), 1.15 (d, J = 6.5 Hz, 3H). 
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13C NMR (101 MHz, CDCl3) δ 159.0, 142.2, 129.6, 128.42, 128.35, 125.9, 120.9, 114.7, 

72.0, 52.5, 46.8, 33.8, 32.1, 17.6. 

FR-IR (neat) 3026, 2925, 2858, 1599, 1586, 1495, 1454, 1371, 1337, 1299, 1170, 1078, 

1036, 1001, 881, 813, 750, 711 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C18H24NO: 270.1852, found: 270.1852. 

 

 

 

N-(1-((tert-Butyldimethylsilyl)oxy)propan-2-yl)-3-phenylpropan-1-amine (Table 3.2, 

entry 4).  The title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and tert-butyl(2-iodopropoxy)dimethylsilane31,32 

(316 mg, 1.05 mmol).  The product was purified by flash chromatography with basic alumina 

(8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 157 mg (72% yield).  Second 

run: 164 mg (76% yield). 

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.16 (m, 3H), 3.59 – 3.38 (m, 

2H), 2.80 – 2.65 (m, 4H), 2.59 (ddd, J = 11.2, 7.8, 6.6 Hz, 1H), 1.85 (qdd, J = 7.9, 6.4, 4.8 

Hz, 2H), 1.63 (s, 1H), 0.99 (d, J = 6.4 Hz, 3H), 0.92 (s, 9H), 0.08 (d, J = 1.2 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 142.3, 128.5, 128.5, 125.9, 67.5, 54.8, 46.9, 33.8, 32.2, 26.1, 

18.4, 17.0, –5.2, –5.3. 

FT-IR (neat) 3026, 2954, 2928, 2856, 1496, 1471, 1462, 1454, 1388, 1361, 1251, 1089, 1030, 

1006, 842, 814, 774, 744, 697, 667 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C18H34NOSi: 308.2404, found: 308.2398. 

 

 

 

1-((tert-Butyldimethylsilyl)oxy)-N-(3-phenylpropyl)butan-2-amine (Table 3.2, entry 5).  

The title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and tert-butyl(2-iodobutoxy)dimethylsilane 
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(331 mg, 1.05 mmol).  The product was purified by flash chromatography with basic 

alumina (8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 127 mg (56% yield).  

Second run: 121 mg (54% yield). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 3.70 – 3.41 (m, 

2H), 2.78 – 2.56 (m, 4H), 2.56 – 2.47 (m, 1H), 1.90 – 1.76 (m, 2H), 1.57 (s, 1H), 1.52 – 1.32 

(m, 2H), 0.92 (d, J = 2.0 Hz, 12H), 0.08 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 142.4, 128.5, 128.4, 125.8, 64.7, 60.8, 46.9, 33.8, 32.3, 26.1, 

24.1, 18.4, 10.5, –5.2, –5.3. 

FT-IR (neat) 3027, 2955, 2928, 2856, 1496, 1471, 1462, 1388, 1361, 1251, 1088, 1006, 938, 

884, 813, 774, 743, 697, 668 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C19H36NOSi: 322.2561, found: 322.2567. 

 

 

 

1-((tert-Butyldimethylsilyl)oxy)-4-methyl-N-(3-phenylpropyl)pentan-2-amine (Table 

3.2, entry 6).  The title compound was synthesized according to the General Procedure from 

3-phenylpropylamine (99 μL, 0.70 mmol) and tert-butyl((2-iodo-4-

methylpentyl)oxy)dimethyl-silane (361 mg, 1.05 mmol).  The product was purified by flash 

chromatography with basic alumina (10:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First 

run: 86 mg (35% yield).  Second run: 33 mg (33% yield). 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 3.59 (dd, J = 10.0, 

4.3 Hz, 1H), 3.42 (dd, J = 10.0, 6.5 Hz, 1H), 2.75 – 2.44 (m, 5H), 1.86 – 1.75 (m, 2H), 1.71 

– 1.55 (m, 1H), 1.48 (s, 1H), 1.30 – 1.12 (m, 2H), 1.01 – 0.74 (m, 15H), 0.05 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 142.4, 128.5, 128.4, 125.8, 65.2, 57.3, 46.8, 41.2, 33.8, 32.3, 

26.1, 25.2, 23.4, 23.0, 18.4, –5.2, –5.3. 

FT-IR (neat) 3027, 2953, 2927, 2856, 1496, 1471, 1384, 1361, 1251, 1087, 1006, 936, 834, 

812, 774, 743, 697, 668 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C21H40NOSi: 350.2874, found: 350.2874. 
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N-(1-Cyclohexylethyl)-3-phenylpropan-1-amine (Table 3.2, entry 7).  The title 

compound was synthesized according to the General Procedure from 3-phenylpropylamine 

(99 μL, 0.70 mmol) and (1-iodoethyl)cyclohexane (251 mg, 1.05 mmol).  Catalyst loading: 

10% CuI and 20% rac-BINOL.  The product was purified by flash chromatography with 

basic alumina (10:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 72 mg (42% 

yield).  Second run: 69 mg (40% yield). 

1H NMR (400 MHz, CDCl3) δ 7.24 – 7.17 (m, 2H), 7.14 – 7.07 (m, 3H), 2.66 – 2.54 (m, 

3H), 2.47 (dt, J = 11.4, 7.2 Hz, 1H), 2.34 (qd, J = 6.5, 5.0 Hz, 1H), 1.77 – 1.63 (m, 4H), 1.63 

– 1.54 (m, 3H), 1.29 – 0.97 (m, 5H), 0.96 – 0.83 (m, 5H). 

13C NMR (101 MHz, CDCl3) δ 142.4, 128.5, 128.4, 125.8, 57.9, 47.2, 43.0, 33.9, 32.2, 30.1, 

28.1, 26.9, 26.8, 26.6, 16.9. 

FT-IR (neat) 3062, 3026, 2923, 2851, 1603, 1496, 1450, 1371, 1156, 1030, 745, 698 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C17H28N: 246.2216, found: 246.2218. 

 

 

 

N-(3-Phenylpropyl)tetrahydro-2H-pyran-4-amine (Table 3.2, entry 8).  The title 

compound was synthesized according to the General Procedure from 3-phenylpropylamine 

(99 μL, 0.70 mmol) and 4-iodotetrahydro-2H-pyran (224 mg, 1.05 mmol).  The product was 

purified by flash chromatography with basic alumina (3:1:0.01 hexanes/EtOAc/NEt3).  Pale 

yellow oil.  First run: 129 mg (84% yield).  Second run: 123 mg (80% yield). 

1H NMR (400 MHz, CDCl3) δ 7.35 – 7.28 (m, 2H), 7.21 (dtd, J = 8.4, 3.3, 2.8, 1.8 Hz, 3H), 

4.09 – 3.90 (m, 2H), 3.40 (td, J = 11.7, 2.2 Hz, 2H), 2.81 – 2.46 (m, 5H), 1.98 – 1.78 (m, 

4H), 1.52 – 1.11 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.1, 128.37, 128.36, 125.9, 67.0, 54.2, 46.1, 34.0, 33.8, 

32.1. 
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FT-IR (neat) 3061, 2932, 2842, 1603, 1495, 1466, 1453, 1365, 1234, 1143, 1093, 1010, 

981, 865, 817, 745, 712, 625 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H22NO: 220.1696, found: 220.1695. 

 

 

 

N-(3-Phenylpropyl)tetrahydro-2H-thiopyran-4-amine (Table 3.2, entry 9).  The title 

compound was synthesized according to the General Procedure from 3-phenylpropylamine 

(99 μL, 0.70 mmol) and 4-iodotetrahydro-2H-thiopyran (240 mg, 1.05 mmol).  Catalyst 

loading: 10% CuI and 20% rac-BINOL.  The product was purified by flash chromatography 

with basic alumina (5:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 91 mg (55% 

yield).  Second run: 93 mg (56% yield). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.21 (ddt, J = 8.1, 3.4, 1.5 Hz, 3H), 2.79 

– 2.56 (m, 8H), 2.45 (tt, J = 10.3, 3.4 Hz, 1H), 2.20 – 2.11 (m, 2H), 1.83 (dtd, J = 9.0, 7.6, 

6.6 Hz, 2H), 1.51 (dtd, J = 13.1, 10.2, 4.7 Hz, 2H), 0.91 (s, 1H). 

13C NMR (101 MHz, CDCl3) δ 142.2, 128.38, 128.35, 125.9, 56.2, 46.3, 34.9, 33.8, 32.2, 

27.8. 

FT-IR (neat) 3052, 3018, 2903, 2850, 1606, 1493, 1450, 1423, 1338, 1272, 1218, 1200, 1124, 

998, 948, 915, 815, 671 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H22NS: 236.1467, found: 236.1465. 

 

 

 

(1R*,4R*)-4-(tert-Butyl)-N-(3-phenylpropyl)cyclohexan-1-amine (Table 3.2, entry 10).  

The title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and 1-(tert-butyl)-4-iodocyclohexane33 (cis/trans 

5:1; 281 mg, 1.05 mmol).  The product was purified by flash chromatography with basic 
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alumina (8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 97 mg (51% yield, dr 

>20:1).  Second run: 107 mg (56% yield, dr >20:1). 

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 2.68 (ddd, J = 7.9, 

6.8, 2.7 Hz, 4H), 2.39 – 2.29  (m, 1H), 2.01 – 1.92 (m, 2H), 1.90 – 1.66 (m, 5H), 1.10 – 0.98 

(m, 5H), 0.86 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 142.4, 128.5, 128.4, 125.9, 57.4, 48.0, 46.9, 34.2, 34.0, 32.5, 

32.3, 27.8, 26.3. 

FT-IR (neat) 3026, 2938, 2858, 1452, 1364, 745, 699 cm–1. 

HRMS (FAB) m/z (M)+ calcd for C19H31N: 273.2457, found: 273.2467. 

 

 

 

(3aR,4S,5S,5aR,8aR,8bR)-5-Methoxy-2,2,7,7-tetramethyl-N-(3-

phenylpropyl)hexahydro-benzo[1,2-d:3,4-d']bis([1,3]dioxole)-4-amine (Table 3.2, entry 

11).  The title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (161 μL, 0.70 mmol) and (3aS,4R,5R,5aS,8aR,8bS)-4-iodo-5-methoxy-

2,2,7,7-tetramethylhexahydrobenzo[1,2-d:3,4-d']bis([1,3]dioxole) (α/β >20:1; 269 mg, 

0.70 mmol).  Catalyst loading: 10% CuI and 20% rac-BINOL; reaction time: 48 h.  The 

product was purified by flash chromatography with basic alumina (10:1:0.01 → 5:1:0.01 

hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 170 mg (62% yield, dr >20:1).  Second 

run: 165 mg (60% yield, dr >20:1). 

1H NMR (400 MHz, CDCl3) δ 7.32 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 4.26 – 4.16 (m, 

2H), 4.16 – 4.06 (m, 2H), 3.55 (s, 3H), 3.22 (dd, J = 11.7, 6.3 Hz, 1H), 2.93 – 2.84 (m, 1H), 

2.78 – 2.63 (m, 4H), 1.98 (s, 1H), 1.91 – 1.80 (m, 2H), 1.53 (s, 3H), 1.51 (s, 3H), 1.37 (s, 

3H), 1.34 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 142.3, 128.5, 128.4, 125.8, 110.0, 109.9, 80.3, 80.2, 80.0, 

77.6, 77.2, 59.4, 59.0, 47.6, 33.7, 32.1, 28.0, 27.9, 25.5, 25.4. 

FT-IR (neat) 3328, 2986, 2934, 1603, 1496, 1454, 1380, 1370, 1245, 1214, 1160, 1110, 1090, 

976 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C22H34NO5: 392.2431, found: 392.2441. 

 

 

 

N-(Cyclohexylmethyl)cyclohexanamine (Table 3.3, entry 1).  The title compound was 

synthesized according to the General Procedure from cyclohexanemethylamine (91 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 10% CuI (13.3 mg, 0.070 

mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The product was purified by flash 

chromatography with basic alumina (12:1:0.01 → 6:1:0.01 hexanes/EtOAc/NEt3).  Pale 

yellow oil.  First run: 112 mg (82% yield).  Second run: 115 mg (84% yield). 

1H NMR (400 MHz, CDCl3) δ 2.46 (d, J = 6.7 Hz, 2H), 2.42 – 2.32 (m, 1H), 1.94 – 1.83 (m, 

2H), 1.78 – 1.59 (m, 8H), 1.49 – 1.37 (m, 1H), 1.31 – 1.00 (m, 9H), 0.97 – 0.83 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 56.9, 53.8, 38.2, 33.7, 31.6, 26.7, 26.2, 26.1, 25.2. 

FT-IR (neat) 2922, 2851, 1448, 1129 cm–1. 

HRMS (FAB) m/z (M+H)+ calcd for C13H26N: 196.2065, found: 196.2067. 

 

 

 

Dicyclohexylamine (Table 3.3, entry 2).  The title compound was synthesized according to 

the General Procedure from cyclohexylamine (80 μL, 0.70 mmol) and iodocyclohexane 

(136 μL, 1.05 mmol) using 10% CuI (13.3 mg, 0.070 mmol) and 20% rac-BINOL (40.1 mg, 

0.140 mmol).  The product was purified by flash chromatography with basic alumina 



 

 

96 

(15:1:0.01 → 6:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 93 mg (73% 

yield).  Second run: 88 mg (69% yield). 

1H NMR (400 MHz, CDCl3) δ 2.56 (tt, J = 10.6, 3.8 Hz, 2H), 1.87 (ddt, J = 15.1, 6.3, 2.8 

Hz, 4H), 1.80 – 1.67 (m, 4H), 1.62 (dpd, J = 12.1, 3.3, 1.5 Hz, 2H), 1.32 – 1.10 (m, 6H), 1.09 

– 0.97 (m, 4H), 0.86 (s, 1H).  The 1H NMR spectrum matches the spectrum reported in the 

literature.34 

 

 

 

N-(2-Phenoxyethyl)cyclohexanamine (Table 3.3, entry 3).  The title compound was 

synthesized according to the General Procedure from 2-phenoxyethylamine (92 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 10% CuI (13.3 mg, 0.070 

mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The product was purified by flash 

chromatography with basic alumina (first column: 8:1:0.01 hexanes/EtOAc/NEt3; second 

column: 3:1:0.01 → 0:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 94 mg (61% 

yield).  Second run: 94 mg (61% yield). 

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.25 (m, 2H), 7.01 – 6.90 (m, 3H), 4.09 (t, J = 5.3 Hz, 

2H), 3.05 (t, J = 5.3 Hz, 2H), 2.51 (tt, J = 10.5, 3.8 Hz, 1H), 2.00 – 1.90 (m, 2H), 1.85 – 1.73 

(m, 2H), 1.70 – 1.61 (m, 1H), 1.58 (s, 1H), 1.34 – 1.08 (m, 5H). 

13C NMR (101 MHz, CDCl3) δ 159.0, 129.6, 120.9, 114.7, 67.7, 56.8, 46.1, 33.7, 26.3, 25.2. 

FT-IR (neat) 2924, 2851, 1599, 1587, 1496, 1458, 1242, 1171, 1135, 1079, 1042, 883, 800, 

751, 690 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H22NO: 220.1696, found: 220.1693. 

 

 

 



 

 

97 

 

N-Cyclohexyl-2,2,2-trifluoro-N-(3-methoxypropyl)acetamide (Table 3.3, entry 4).  The 

title compound was synthesized according to the General Procedure from 3-

methoxypropylamine (76 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 

10% CuI (13.3 mg, 0.070 mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The reaction 

mixture was then subjected to in situ protection.  The product was purified by flash 

chromatography with silica gel (95:5 → 80:20 hexanes/EtOAc).  Pale yellow oil.  First run: 

151 mg (81% yield).  Second run: 163 mg (87% yield). 

1H NMR (500 MHz, d6-DMSO, 130 °C) δ 3.77 – 3.65 (m, 1H), 3.41 (s, 4H), 3.28 (d, J = 4.8 

Hz, 3H), 1.83 (q, J = 6.8 Hz, 4H), 1.77 – 1.59 (m, 5H), 1.42 – 1.27 (m, 2H), 1.19 (td, J = 

12.6, 5.9 Hz, 1H). 

13C NMR (126 MHz, d6-DMSO, 130 °C) δ 156.2 (q, J = 34.6 Hz), 117.1 (q, J = 288.7 Hz), 

70.1, 58.4, 58.2, 41.9, 30.8, 29.6, 25.8, 25.1. 

FT-IR (neat) 2934, 2860, 1682, 1447, 1257, 1207, 1184, 1117, 1030, 998, 896, 758, 705 cm–

1. 

HRMS (ESI) m/z (M+H)+ calcd for C12H21F3NO2: 268.1519, found: 268.1503. 

 

 

 

N-((Tetrahydrofuran-2-yl)methyl)cyclohexanamine (Table 3.3, entry 5).  The title 

compound was synthesized according to the General Procedure from 

tetrahydrofurfurylamine (72 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) 

using 10% CuI (13.3 mg, 0.070 mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The 

product was purified by flash chromatography with basic alumina (3:1:0.01 → 1:1:0.01 

hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 77 mg (60% yield).  Second run: 76 mg 

(59% yield). 
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1H NMR (400 MHz, CDCl3) δ 3.99 (dtd, J = 7.7, 6.9, 3.7 Hz, 1H), 3.86 (dt, J = 8.3, 6.6 

Hz, 1H), 3.76 (dt, J = 8.2, 6.8 Hz, 1H), 2.75 (dd, J = 11.7, 3.8 Hz, 1H), 2.64 (dd, J = 11.8, 

8.1 Hz, 1H), 2.43 (tt, J = 10.4, 3.8 Hz, 1H), 2.01 – 1.86 (m, 5H), 1.74 (dt, J = 13.2, 3.9 Hz, 

2H), 1.65 – 1.48 (m, 3H), 1.30 – 1.06 (m, 5H). 

13C NMR (101 MHz, CDCl3) δ 78.6, 67.8, 57.0, 51.7, 33.6, 33.5, 29.4, 26.2, 25.7, 25.09, 

25.07. 

FT-IR (neat) 2923, 2851, 1673, 1449, 1368, 1258, 1183, 1139, 1068, 1018, 919, 889, 843, 

788, 742 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C11H22NO: 184.1696, found: 184.1698. 

 

 

 

N-Cyclohexyl-N-(2,2-dimethoxyethyl)-2,2,2-trifluoroacetamide (Table 3.3, entry 6).  

The title compound was synthesized according to the General Procedure from 2,2-

dimethoxyethylamine (76 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 

10% CuI (13.3 mg, 0.070 mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The reaction 

mixture was then subjected to in situ protection.  The product was purified by flash 

chromatography with silica gel (95:5 → 80:20 hexanes/EtOAc/NEt3).  Pale yellow oil.  First 

run: 147 mg (74% yield).  Second run: 150 mg (76% yield). 

1H NMR (500 MHz, d6-DMSO, 100 °C) δ 4.56 (t, J = 4.9 Hz, 1H), 3.64 (p, J = 7.5 Hz, 1H), 

3.43 (d, J = 5.0 Hz, 2H), 3.35 (d, J = 2.0 Hz, 6H), 1.81 (d, J = 13.5 Hz, 2H), 1.77 – 1.66 (m, 

4H), 1.61 (dt, J = 13.2, 3.2 Hz, 1H), 1.34 – 1.23 (m, 2H), 1.15 (ddt, J = 16.3, 12.9, 6.5 Hz, 

1H). 

13C NMR (126 MHz, d6-DMSO, 100 °C) δ 156.7 (d, J = 34.3 Hz), 117.0 (d, J = 289.1 Hz), 

102.9, 58.7, 55.2, 47.0, 30.9, 25.9, 25.1. 

FT-IR (neat) 2936, 2858, 1684, 1447, 1257, 1211, 1187, 1137, 1122, 1077, 1032, 981, 896, 

809, 759, 711 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C12H21F3NO3: 284.1468, found: 284.1494. 
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N-(4-Chlorophenethyl)cyclohexanamine (Table 3.3, entry 7).  The title compound was 

synthesized according to the General Procedure from 4-chlorophenethylamine (98 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 10% CuI (13.3 mg, 0.070 

mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The product was purified by flash 

chromatography with basic alumina (3:1:0.01 → 1:1:0.01 hexanes/EtOAc/NEt3).  Pale 

yellow oil.  First run: 102 mg (61% yield).  Second run: 111 mg (67% yield). 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.25 (m, 2H), 7.18 – 7.13 (m, 2H), 2.97 – 2.74 (m, 

4H), 2.44 (tt, J = 10.5, 3.8 Hz, 1H), 1.93 – 1.81 (m, 2H), 1.79 – 1.68 (m, 2H), 1.67 – 1.57 

(m, 1H), 1.32 – 1.03 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 138.6, 131.8, 130.0, 128.5, 56.8, 48.1, 36.0, 33.6, 26.1, 25.1.  

FT-IR (neat) 2924, 2851, 1491, 1448, 1406, 1363, 1347, 1125, 1091, 1015, 889, 834, 809, 

714, 667, 630 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H21ClN: 238.1357, found: 238.1352. 

 

 

 

N-(4-Bromophenethyl)cyclohexanamine (Table 3.3, entry 8).  The title compound was 

synthesized according to the General Procedure from 4-bromophenethylamine (109 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  The product was purified by flash 

chromatography with basic alumina (3:1:0.01 → 1:1:0.01 hexanes/EtOAc/NEt3).  Pale 

yellow oil.  First run: 103 mg (52% yield).  Second run: 104 mg (53% yield). 

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.38 (m, 2H), 7.16 – 7.07 (m, 2H), 2.97 – 2.86 (m, 

2H), 2.76 (t, J = 7.2 Hz, 2H), 2.43 (tt, J = 10.5, 3.8 Hz, 1H), 1.92 – 1.84 (m, 2H), 1.73 (dt, J 

= 13.4, 3.7 Hz, 2H), 1.66 – 1.59 (m, 1H), 1.36 – 1.12 (m, 4H), 1.11 – 1.00 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 139.2, 131.5, 130.4, 119.9, 56.7, 48.0, 36.1, 33.6, 26.1, 25.1. 
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FT-IR (neat) 2930, 2853, 1488, 1449, 1127, 1072, 1011, 808 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H21
79BrN: 282.0852, found: 282.0849.  

 

 

 

N-(Furan-2-ylmethyl)cyclohexanamine (Table 3.3, entry 9).  The title compound was 

synthesized according to the General Procedure from furfurylamine (72 μL, 0.70 mmol) and 

iodocyclohexane (136 μL, 1.05 mmol).  The product was purified by flash chromatography 

with basic alumina (6:1:0.01 → 1:2:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 

64 mg (55% yield).  Second run: 64 mg (52% yield). 

1H NMR (400 MHz, CDCl3) δ 7.34 (dd, J = 1.9, 0.9 Hz, 1H), 6.30 (dd, J = 3.2, 1.8 Hz, 1H), 

6.17 – 6.10 (m, 1H), 3.80 (d, J = 0.7 Hz, 2H), 2.44 (tt, J = 10.4, 3.8 Hz, 1H), 1.94 – 1.82 (m, 

2H), 1.76 – 1.67 (m, 2H), 1.64 – 1.54 (m, 1H), 1.40 (s, 1H), 1.29 – 1.07 (m, 5H). 

13C NMR (101 MHz, CDCl3) δ 154.4, 141.6, 110.1, 106.5, 55.8, 43.4, 33.4, 26.1, 25.0. 

FT-IR (neat) 2924, 2852, 1505, 1449, 1370, 1345, 1147, 1117, 1074, 1010, 919, 885, 803, 

727 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C11H18NO: 180.1383, found: 180.1382. 

 

 

 

N-(2-(Thiophen-2-yl)ethyl)cyclohexanamine (Table 3.3, entry 10).  The title compound 

was synthesized according to the General Procedure from thiophene-2-ethylamine (82 μL, 

0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol) using 10% CuI (13.3 mg, 0.070 

mmol) and 20% rac-BINOL (40.1 mg, 0.140 mmol).  The product was purified by flash 

chromatography with basic alumina (6:1:0.01 → 1:1:0.01 hexanes/EtOAc/NEt3).  Pale 

yellow oil.  First run: 117 mg (80% yield).  Second run: 117 mg (80% yield). 
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1H NMR (400 MHz, CDCl3) δ 7.14 (dd, J = 5.1, 1.2 Hz, 1H), 6.93 (dd, J = 5.1, 3.4 Hz, 

1H), 6.84 (dt, J = 3.5, 1.1 Hz, 1H), 3.06 – 2.87 (m, 4H), 2.44 (tt, J = 10.5, 3.8 Hz, 1H), 1.91 

– 1.81 (m, 2H), 1.76 – 1.67 (m, 2H), 1.66 – 1.57 (m, 1H), 1.28 – 1.01 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 142.8, 126.8, 124.9, 123.5, 56.6, 48.3, 33.6, 30.8, 26.2, 25.1. 

FT-IR (neat) 2923, 2850, 1447, 1364, 1258, 1126, 1041, 889, 848, 820, 689 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C12H20NS: 210.1311, found: 210.1310. 

 

3.5.4. Reactions with Neopentyl Iodide 

 

 In a nitrogen-filled glovebox, an oven-dried 4 mL vial was charged with a stir bar 

and, when applicable, CuI (3.8 mg, 0.020 mmol) and rac-BINOL (11.5 mg, 0.0400 mmol).  

DMF (0.3 mL), CH3CN (1.1 mL), and BTPP (122 μL, 0.400 mmol) were added in turn.  The 

reaction mixture was allowed to stir for 5 min, to solubilize the BTPP.  Then, 3-

phenylpropylamine (28.5 μL, 0.200 mmol) was added, followed by neopentyl iodide (40 μL, 

0.30 mmol).  The vial was immediately sealed with a PTFE-lined vial cap and then removed 

from the glovebox.   

 Entries 1 and 2: The vial was placed upside-down in a fixed position in an 

isopropanol bath cooled to −10 °C with an immersion cooler.  The reaction mixture was 

stirred at −10 °C for 5 min, and then, if applicable, it was irradiated with a single 34 W Kessil 

blue LED lamp from ~3 cm away for 24 h.  

 Entries 3 and 4: The vial was placed in a 100 °C oil bath for 24 h. 

1H NMR analysis.  A 20 mL vial was charged with a known amount of 1,3,5-

trimethoxybenzene.  The reaction vessel was uncapped, diluted with CH2Cl2 (~2 mL), 

recapped, and shaken.  Then, the mixture was passed through a plug of basic alumina into 

the 20 mL vial containing the internal standard.  The reaction vessel was washed three times 

with EtOAc (~4 mL), and the washings were passed through a plug of basic alumina into the 

20 mL vial.  The filtered reaction mixture was concentrated and then placed under high 

vacuum for 2 h in order to remove most of the DMF. 
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2,2-Dimethyl-N-(3-phenylpropyl)propan-1-amine.  The title compound was synthesized 

according to the General Procedure from 3-phenylpropylamine (99 μL, 0.70 mmol) and 1-

iodo-2,2-dimethylpropane (140 μL, 1.05 mmol).  Catalyst loading: 10% CuI and 20% rac-

BINOL; reaction time: 48 h.  The product was purified by flash chromatography with basic 

alumina (8:1:0.01 hexanes/EtOAc/NEt3).  Pale yellow oil.  First run: 101 mg (70% yield).  

Second run: 99 mg (69% yield). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.26 – 7.17 (m, 3H), 2.74 – 2.62 (m, 

4H), 2.36 (s, 2H), 1.91 – 1.79 (m, 2H), 0.93 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 142.5, 128.5, 128.4, 125.8, 62.5, 50.6, 33.8, 31.8, 31.5, 28.0. 

FT-IR (neat) 3026, 2949, 2863, 2809, 1496, 1463, 1453, 1361, 1125, 1030, 907, 742, 

710 cm–1. 

HRMS (ESI/APCI) m/z (M+H)+ calcd for C14H24N: 206.1903, found: 206.1896. 

 

3.5.5. TEMPO Trapping Experiment 

 

 In a nitrogen-filled glovebox, an oven-dried 4 mL vial was charged with CuI (1.9 mg, 

0.010 mmol), rac-BINOL (5.7 mg, 0.020 mmol), and a stir bar.  DMF (0.3 mL), CH3CN 

(1.1 mL), and BTPP (122 μL, 0.400 mmol) were added in turn.  The reaction mixture was 

allowed to stir for 5 min, to solubilize the BTPP.  Then, 3-phenylpropylamine (28.5 μL, 

0.200 mmol) was added, followed by iodocyclohexane (39.0 μL, 0.302 mmol) and TEMPO 

(47 mg, 0.30 mmol).  Next, the vial was immediately sealed with a PTFE-lined vial cap, 

removed from the glovebox, and placed upside-down in a fixed position in an isopropanol 

bath cooled to −10 °C with an immersion cooler.  After stirring for 5 min at −10 °C, the 

reaction mixture was irradiated with a single 34 W Kessil blue LED lamp, placed ~3 cm 

away, for 24 h.  The experiment was run four times: twice for GC analysis (to determine the 

yield of the TEMPO adduct) and twice for 1H NMR analysis (to determine the yield of the 

product). 
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GC analysis.  Tetradecane (52.0 μL, 0.200 mmol) was added to the reaction mixture, and 

then the mixture was diluted with CH2Cl2 (~2 mL).  An aliquot (~200 μL) of the reaction 

mixture was passed through a plug of silica gel, followed by EtOAc (~1 mL).  The filtrate 

was then analyzed by GC. 

1H NMR analysis.  A 20 mL vial was charged with a known amount of 1,3,5-

trimethoxybenzene.  The reaction vessel was uncapped, diluted with CH2Cl2 (~2 mL), 

recapped, and shaken.  Then, the mixture was passed through a plug of basic alumina into 

the 20 mL vial containing the internal standard.  The reaction vessel was washed three times 

with EtOAc (~4 mL), and the washings were passed through a plug of basic alumina into the 

20 mL vial.  The filtered reaction mixture was concentrated and then placed under high 

vacuum for 2 h in order to remove most of the DMF. 

 

3.5.6. Additive Effects 

 

 

 

 In a nitrogen-filled glovebox, an oven-dried 4 mL vial was charged with CuI (1.9 mg, 

0.010 mmol), rac-BINOL (5.7 mg, 0.020 mmol), and a stir bar.  DMF (0.3 mL), CH3CN 

(1.1 mL), and BTPP (122 μL, 0.400 mmol) were added in turn.  The reaction mixture was 

allowed to stir for 5 min, to solubilize the BTPP.  Then, 3-phenylpropylamine (28.5 μL, 

0.200 mmol) was added, followed by iodocyclohexane (39.0 μL, 0.302 mmol) and the 

additive (0.200 mmol).  Next, the vial was immediately sealed with a PTFE-lined vial cap, 

removed from the glovebox, and placed upside-down in a fixed position in an isopropanol 

bath cooled to −10 °C with an immersion cooler.  After stirring for 5 min at −10 °C, the 

reaction mixture was irradiated with a single 34 W Kessil blue LED lamp, placed ~3 cm 

away, for 24 h.  For each additive, four reactions were run: two for GC analysis (to determine 
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the amount of additive remaining) and two for 1H NMR analysis (to determine the yield 

of the product). 

GC analysis.  Tetradecane (52.0 μL, 0.200 mmol) was added to the reaction mixture, and 

then the mixture was diluted with CH2Cl2 (~2 mL).  An aliquot (~200 μL) of the reaction 

mixture was passed through a plug of silica gel, followed by EtOAc (~1 mL).  The filtrate 

was then analyzed by GC. 

1H NMR analysis.  A 20 mL vial was charged with a known amount of 1,3,5-

trimethoxybenzene.  The reaction vessel was uncapped, diluted with CH2Cl2 (~2 mL), 

recapped, and shaken.  Then, the mixture was passed through a plug of basic alumina into 

the 20 mL vial containing the internal standard.  The reaction vessel was washed three times 

with EtOAc (~4 mL), and the washings were passed through a plug of basic alumina into the 

20 mL vial.  The filtered reaction mixture was concentrated and then placed under high 

vacuum for 2 h in order to remove most of the DMF. 

 

Table 3.5.  Effect of additives (average of two experiments). 

Entry Additive Remaining Additive (%) Yield (%) 

1 cis-5-decene 97 92 

2 trans-5-decene 95 92 

3 5-nonanol 92 90 

4 5-decyne 97 87 

5 methyl octanoate 98 84 

6 2-nonanone >99 78 

7 iodobenzene 61 100 

8 N-methylpyrrolidone 99 90 

9 pyridine 88 66 

10 cyclohexanecarboxaldehyde 44 51 

11 nitrocyclopentane − <1 
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3.5.7. N-Protection of the Amine 

 

The yields have not been optimized. 

 

Table 3.6.  N-Protection of the amine. 

Entry Protecting Group Yield (%) 

1 Trifluoroacetamide 86 

2 Boc 73 

3 Troc 68 

4 Tosyl 64 

5 Nosyl 56 

 

 

 

N-Cyclohexyl-2,2,2-trifluoro-N-(3-phenylpropyl)acetamide (Table 3.6, entry 1).  The 

title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  After 

the N-alkylation was complete, the reaction mixture was allowed to warm to room 

temperature.  Next, pyridine (310 μL, 3.87 mmol) and TFAA (500 μL, 3.51 mmol) were 

added, and the resulting mixture was stirred at room temperature for 5 h.  Then, the reaction 

mixture was transferred to a 250 mL round-bottom flask with the aid of CH2Cl2, silica gel 

was added to the flask, and the solvent was removed by rotary evaporation.  The product was 

purified by flash chromatography with silica gel (90:10 → 50:50 hexanes/Et2O).  Colorless 

oil.  First run: 188 mg (86% yield).  Second run: 189 mg (86% yield). 

1H NMR (500 MHz, d6-DMSO, 130 °C) δ 7.29 (t, J = 7.7 Hz, 2H), 7.25 – 7.16 (m, 3H), 3.70 

(td, J = 11.6, 5.4 Hz, 1H), 3.43 – 3.27 (m, 2H), 2.65 (t, J = 7.6 Hz, 2H), 1.91 (t, J = 7.8 Hz, 

2H), 1.81 (dt, J = 13.4, 3.5 Hz, 2H), 1.75 – 1.50 (m, 5H), 1.38 – 1.26 (m, 2H), 1.21 – 1.08 

(m, 1H). 
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13C NMR (126 MHz, d6-DMSO, 130 °C) δ 156.1 (q, J = 34.3 Hz), 141.5, 128.7, 128.6, 

126.2, 117.1 (q, J = 288.8 Hz), 58.3, 44.1, 33.1, 30.8, 25.8, 25.1. 

FT-IR (neat) 2935, 2859, 1679, 1497, 1453, 1257, 1207, 1181, 1132, 1084, 1030, 996, 896, 

749, 698 cm–1. 

LRMS (ESI) m/z (M+H)+ calcd for C17H23F3NO: 314.2, found: 314.1. 

 

 

 

tert-Butyl cyclohexyl(3-phenylpropyl)carbamate (Table 3.6, entry 2).  The title 

compound was synthesized according to the General Procedure from 3-phenylpropylamine 

(99 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  After the N-alkylation was 

complete, the reaction mixture was allowed to warm to room temperature.  Next, Boc2O 

(764 mg, 3.50 mmol) and 4-DMAP (86 mg, 0.70 mmol) were added, and the resulting 

mixture was stirred at room temperature for 24 h.  Then, the reaction mixture was transferred 

to a 250 mL round-bottom flask with the aid of CH2Cl2, silica gel was added to the flask, and 

the solvent was removed by rotary evaporation.  The product was purified by flash 

chromatography with silica gel (95:5 → 50:50 hexanes/Et2O).  Colorless oil. First run: 

162 mg (73% yield).  Second run: 161 mg (73% yield). 

1H NMR (500 MHz, d6-DMSO, 70 °C) δ 7.27 (dd, J = 7.9, 7.1 Hz, 2H), 7.22 – 7.13 (m, 3H), 

3.60 (s, 1H), 3.11 – 3.04 (m, 2H), 2.56 (t, J = 7.7 Hz, 2H), 1.82 – 1.69 (m, 4H), 1.65 – 1.54 

(m, 3H), 1.48 – 1.39 (m, 2H), 1.38 (s, 9H), 1.24 (qt, J = 13.1, 3.6 Hz, 2H), 1.04 (qt, J = 13.0, 

3.7 Hz, 1H). 

13C NMR (126 MHz, d6-DMSO, 70 °C) δ 154.9, 142.2, 128.65, 128.57, 126.1, 78.6, 56.0, 

43.4, 33.3, 32.3, 31.2, 28.6, 26.2, 25.6. 

FT-IR (neat) 2973, 2930, 2856, 1720, 1687, 1497, 1453, 1410, 1390, 1364, 1298, 1273, 1254, 

1159, 1101, 1076, 908, 894, 869, 774, 749, 698 cm–1. 

HRMS (FAB) m/z (M+H)+ calcd for C20H32NO2: 318.2433, found: 318.2433. 
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2,2,2-Trichloroethyl cyclohexyl(3-phenylpropyl)carbamate (Table 3.6, entry 3).  The 

title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  After 

the N-alkylation was complete, the reaction mixture was allowed to warm to room 

temperature.  Next, pyridine (310 μL, 3.87 mmol) and TrocCl (742 mg, 3.50 mmol) were 

added, and the resulting mixture was stirred at room temperature for 24 h.  Then, the reaction 

mixture was transferred to a 250 mL round-bottom flask with the aid of CH2Cl2, silica gel 

was added to the flask, and the solvent was removed by rotary evaporation.  The product was 

purified by flash chromatography with silica gel (95:5 → 50:50 hexanes/Et2O).  Pale yellow 

oil.  First run: 193 mg (70% yield).  Second run: 180 mg (65% yield). 

1H NMR (500 MHz, d6-DMSO, 100 °C) δ 7.30 – 7.24 (m, 2H), 7.23 – 7.14 (m, 3H), 4.82 (s, 

2H), 3.69 (tt, J = 12.0, 3.8 Hz, 1H), 3.26 (ddd, J = 9.6, 6.8, 1.6 Hz, 2H), 2.62 (t, J = 7.8 Hz, 

2H), 1.89 (t, J = 7.6 Hz, 2H), 1.80 – 1.67 (m, 4H), 1.64 – 1.49 (m, 3H), 1.36 – 1.22 (m, 2H), 

1.10 (ddt, J = 16.8, 13.1, 6.5 Hz, 1H). 

13C NMR (126 MHz, d6-DMSO, 100 °C) δ 153.9, 142.0, 128.65, 128.57, 126.1, 96.8, 74.8, 

57.4, 44.3, 33.2, 31.7, 31.0, 26.1, 25.4. 

FT-IR (neat) 2931, 2855, 1712, 1471, 1452, 1418, 1297, 1242, 1168, 1119, 1058, 761, 750, 

719, 699 cm–1. 

LRMS (ESI) m/z (M+H)+ calcd for C18H25Cl3NO2: 392.1, found: 392.1. 

 

 

 

N-Cyclohexyl-4-methyl-N-(3-phenylpropyl)benzenesulfonamide (Table 3.6, entry 4).  

The title compound was synthesized according to the General Procedure from 3-
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phenylpropylamine (99 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  

After the N-alkylation was complete, the reaction mixture was allowed to warm to room 

temperature.  Next, CH2Cl2 (5 mL), aqueous NaOH (2 N, 2.5 mL), and TsCl (666 mg, 

3.50 mmol) were added, and the resulting mixture was stirred at room temperature for 18 h.  

Then, the reaction mixture was transferred to a 250 mL round-bottom flask with the aid of 

CH2Cl2, silica gel was added to the flask, and the solvent was removed by rotary evaporation.  

The product was purified by flash chromatography with silica gel (100:0 → 75:25 

hexanes/EtOAc).  White solid.  First run: 163 mg (63% yield).  Second run: 167 mg (64% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.71 – 7.63 (m, 2H), 7.31 – 7.24 (m, 4H), 7.22 – 7.16 (m, 

3H), 3.61 (tt, J = 11.3, 3.5 Hz, 1H), 3.18 – 3.04 (m, 2H), 2.61 (t, J = 7.8 Hz, 2H), 2.41 (s, 

3H), 2.08 – 1.90 (m, 2H), 1.70 (d, J = 8.7 Hz, 2H), 1.63 – 1.51 (m, 4H), 1.36 – 1.16 (m, 4H).  

The 1H NMR spectrum matches the spectrum reported in the literature.35 

 

 

 

N-Cyclohexyl-4-nitro-N-(3-phenylpropyl)benzenesulfonamide (Table 3.6, entry 5).  The 

title compound was synthesized according to the General Procedure from 3-

phenylpropylamine (99 μL, 0.70 mmol) and iodocyclohexane (136 μL, 1.05 mmol).  After 

the N-alkylation was complete, the reaction mixture was allowed to warm to room 

temperature.  Next, CH2Cl2 (5 mL), NEt3 (540 μL, 3.87 mmol), and 4-nitrobenzenesulfonyl 

chloride (708 mg, 3.50 mmol) were added, and the resulting mixture was stirred at room 

temperature for 18 h.  Then, the reaction mixture was transferred to a 250 mL round-bottom 

flask with the aid of CH2Cl2, silica gel was added to the flask, and the solvent was removed 

by rotary evaporation.  The product was purified by flash chromatography with silica gel 

(100:0 → 75:25 hexanes/EtOAc).  White solid.  First run: 154 mg (55% yield).  Second run: 

158 mg (56% yield). 
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1H NMR (400 MHz, CDCl3) δ 8.34 – 8.28 (m, 2H), 7.98 – 7.89 (m, 2H), 7.33 – 7.28 (m, 

2H), 7.24 – 7.15 (m, 3H), 3.74 – 3.55 (m, 1H), 3.20 – 3.08 (m, 2H), 2.63 (t, J = 7.6 Hz, 2H), 

2.07 – 1.93 (m, 2H), 1.82 – 1.71 (m, 2H), 1.60 (d, J = 15.6 Hz, 4H), 1.26 (q, J = 10.5, 9.3 

Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 149.8, 147.5, 141.0, 128.6, 128.5, 128.1, 126.3, 124.4, 58.7, 

43.8, 33.21, 33.16, 32.0, 26.1, 25.3. 

FT-IR (neat) 2932, 2858, 1603, 1524, 1495, 1469, 1451, 1340, 1322, 1306, 1280, 1211, 1169, 

1153, 1121, 1086, 1055, 1029, 1013, 982, 896, 821, 750, 742, 733, 700, 615 cm–1. 

LRMS (ESI) m/z (M+H)+ calcd for C21H27N2O4S: 403.2, found: 403.1. 

 

3.5.8.  Data on SN2 Reactions 

 

 In a nitrogen-filled glovebox, an oven-dried 4 mL vial was charged with base (when 

LiOtBu or KH was used as base; 0.400 mmol) and a stir bar. DMF (0.3 mL), CH3CN (1.1 

mL), and base (when BTPP was used as base; 0.400 mmol) were added in turn. The reaction 

mixture was allowed to stir for 5 min to solubilize the base. Then, 3-phenylpropylamine (28.5 

µL, 0.200 mmol) was added, followed by iodocyclohexane (39.0 µL, 0.302 mmol). The base-

free reactions used an excess of 3-phenylpropylamine (57.0 µL, 0.401 mmol) relative to 

iodocyclohexane (26.0 µL, 0.201 mmol). Next, the vial was immediately sealed with a 

PTFE-lined vial cap, removed from the glovebox, and stirred at the indicated temperature for 

24 h. For each reaction at each temperature, four reactions were run: two for GC analysis (to 

determine the amount of remaining electrophile) and two for 1 H NMR analysis (to 

determine the yield of the product).  

GC analysis. Tetradecane (52.0 µL, 0.200 mmol) was added to the reaction mixture, and 

then the mixture was diluted with CH2Cl2 (~2 mL). An aliquot (~200 µL) of the reaction 

mixture was passed through a plug of silica gel, followed by EtOAc (~1 mL). The filtrate 

was then analyzed by GC.  

1H NMR analysis. A 20 mL vial was charged with a known amount of 1,3,5- 

trimethoxybenzene. The reaction vessel was uncapped, diluted with CH2Cl2 (~2 mL), 

recapped, and shaken. Then, the mixture was passed through a plug of basic alumina into the 
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20 mL vial containing the internal standard. The reaction vessel was washed three times 

with EtOAc (~4 mL), and the washings were passed through a plug of basic alumina into the 

20 mL vial. The filtered reaction mixture was concentrated and then placed under high 

vacuum for 2 h in order to remove most of the DMF. 

Table 3.7. Reactivity of substrates under metal- and light-free conditions to assess the 

viability of an SN2 reaction. 
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3.5.9. Asymmetric Reaction Procedure and Analysis 

 

 

 

 In a nitrogen-filled glovebox, an oven-dried 4 mL vial was charged with CuI (3.8 mg, 

0.020 mmol), (S)−BINOL (8.9 mg, 0.030 mmol) and a stir bar. DME (0.70 mL), DMF (0.70 

mL), then BTPP (122 μL, 0.400 mmol) were added and the reaction mixture was allowed to 

stir for 10 min to homogenize the reaction mixture. At this point the reaction mixture should 

appear yellow-orange and homogenous. Then, 3-phenylpropylamine (28.5 µL, 0.200 mmol) 

was added, followed by (2-iodopropoxy)benzene (79 mg ≈ 49 µL, 0.30 mmol). Next, the vial 

was immediately sealed with a PTFE-lined vial cap, removed from the glovebox, and placed 

upside-down in a fixed position in an isopropanol bath cooled to −30 °C with an immersion 

cooler.  After stirring for 5 min at −30 °C, the reaction mixture was irradiated with 34 W 

Kessil blue LED lamps (one lamp per four reactions), placed ~3 cm away, for 24 h.  

 Dibenzyl ether (20.0 µL, 0.105 mmol) was added to the reaction mixture, and then 

the mixture was diluted with CH2Cl2 (~2 mL) and left to stir for 5 mins to warm to r.t. The 

entire reaction mixture was passed through a plug of basic alumina into a 20 mL vial. The 

reaction vial was then washed with ca. 2 mL CH2Cl2 and passed through the same alumina 

plug into the same 20 mL vial; this was repeated an additional three times. The filtered 

reaction mixture was concentrated to 1−2 mL and a ca. 0.5 mL aliquot was used to determine 

yield by 1H NMR analysis versus the dibenzyl ether internal standard. To the remaining 

concentrate, ca. 10 mL of CH2Cl2 was added, followed by NEt3 (~60 μL, ~0.44 mmol), TsCl 

(~77 mg, ~0.40 mmol) and a stir bar. The mixture was stirred at r.t. for 4 h, then the reaction 

mixture was concentrated. After purification by preparative TLC (1:4 EtOAc/hexanes, Rf ≈ 

0.5), the ee was determined via SFC on a CHIRALPAK AD-H column (15% i-PrOH in 
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supercritical CO2, 3.5 mL/min) with tr = 8.3 min (major (S,)–BINOL), 9.2 min (major 

(R)–BINOL). 
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C h a p t e r  4   

ASYMMETRIC COPPER-CATALYZED ALKYLATION OF N-

HETEROCYCLES UNDER LIGHT-FREE CONDITIONS 

4.1 Introduction 

 Amines can be found in a myriad of natural products, pharmaceuticals, 

agrochemicals, and polymers.1 Their prevalence and importance in the chemical world has 

been underscored by the wide range of methods to access these compounds, notably, through 

the formation of carbon-nitrogen bonds.  In particular, the stereocontrolled synthesis of α-

chiral amines is of high value, due their ubiquity in biological systems and among 

medicinally relevant compounds.1 The majority of methods to access α-chiral amines rely on 

the application of unsaturated prochiral precursors.2 The most prominent approaches 

belonging to this group are additions into or reductions of imines and enamides3 and 

hydroaminations4 of olefins. There are only a handful of asymmetric methods that directly 

construct the bond between a nitrogen and a saturated alkyl moiety, and those are almost 

exclusively limited to processes involving C–H activation.5 

 

 Transition-metal catalysis has been a powerful tool for the construction of carbon-

nitrogen bonds. However, in contrast to the well-established approaches to construct Csp2–N 

bonds between aryl and alkenyl halides with amines,6 the analogous Csp3–N bond formation 
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with alkyl halides is underdeveloped (eq 4.1).7 Recent progress has been made with 

transition-metal catalysis to overcome the limitations often associated with Csp3–N cross-

coupling reactions; namely, base-mediated E2 reactions of electrophiles and β-hydride 

elimination of alkylmetal intermediates.8 To this end, our group has reported a series of 

photoinduced copper-catalyzed coupling reactions of amine nucleophiles with alkyl halide 

electrophiles (eq 4.2).9 Notably, our group has recently demonstrated that even 

stereoconvergent transition-metal catalyzed alkylation of amines can be achieved using 

copper photocatalysis (eq 4.3).10 

 

 Herein, we describe the development of a cross-coupling reaction between nitrogen-

containing heterocycles and racemic α-halolactams catalyzed by a chiral copper catalyst in 

the absence of light (eq 4.4). This is in contrast to our previous copper-catalyzed 

stereoconvergent amine alkylation, where visible light irradiation was essential for bond 
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fomation.10 In light of the paucity of methods to form Csp3−N bonds stereoconvergently, 

developing conceptually distinct methods is of high practical value, as this may lead to 

additional strategies to access chiral amines. Moreover, the reaction illustrated in eq 4.4 

delivers α-aminolactams, which are common motifs in many bioactive molecules.11 

4.2. Results and Discussion 

4.2.1. Optimization 

 We began investigations toward the asymmetric cross-coupling between N-phenyl-

3-iodopyrrolidin-2-one and 3-methylindole building on our previous conditions for other 

photoinduced copper-catalyzed reactions.9,10 However, we established that superior results 

could be achieved in the absence of UV or visible light irradiation. Under the optimized 

conditions shown in Table 4.1, coupling proceeds in high yield and high ee (entry 1; 84% 

yield, and 87% ee). Control reactions established mesitylcopper(I), phosphine 4.1, and 

cesium carbonate are all essential components of the reaction (entries 2−5).12 Mesitylcopper 

is superior to the other catalyst precursors, likely due to its solubility in m-xylene (entries 

6−8).  Only 4.1 provides exceptional yield and ee compared to other related phosphines 

ligands (entries 9−11).13 Lowering the catalyst loading or altering the ligand-to-metal ratio 

is deleterious to the reaction (entries 13 and 14). This transformation is particularly sensitive 

to the solubility and strength of the base additive (entries 15−18).  At an elevated temperature 

(entry 19; 35°C), product is formed quantitatively without any asymmetric induction. 

Conversely, at a lower temperature (entry 20; 10°C), fewer turnovers are observed. A key 

factor for product formation and stereocontrol is that cesium carbonate is sparingly soluble 

in m-xylene under the optimized conditions (i.e., at higher temperatures, too much base is 

present in solution and racemizes product and at lower temperatures not enough base is 

available to turn over the catalytic cycle). On the other hand, this factor is likely the cause of 

extended reaction times (72 h) and of the requirement of using base in excess (entry 18). 

Other modifications to reaction conditions, such as concentration or electrophile 

stoichiometry result to lower yields or ee’s (entries 21−24). Finally, it was found that the 

reaction is not highly sensitive to either air or water (entries 25 and 26). 
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Table 4.1.  Effect of reaction parameters.  
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4.2.2. Scope of Reactivity 

 With the optimized reaction conditions in hand, we explored the scope of this 

asymmetric copper-catalyzed C–N cross-coupling with respect to the electrophile (Table 

4.2). Both iodide and bromide-containing 5-memebered lactam electrophiles are capable of 

undergoing cross-coupling, however the latter needs to be used in a larger excess in order to 

achieve high yield of the isolated product (entries 1−3). A variety of N-substituted 3-

iodopyrrolidin-2-ones can be transformed into the corresponding products in good yields and 

good ee’s. The substituent at the amide position (R in Table 4.2) does not have a significant 

impact on the reactivity and stereoselectivity and it can be either aryl or alkyl (entries 1−7). 

The reaction also works for 6-membered lactams (entries 8 and 9).14  

Table 4.2.  Scope with respect to α-halolactams. 
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 We have also examined reactions with an electrophile containing an additional chiral 

center with a predefined configuration adjacent to the amide nitrogen. When a 1:1 mixture 

of enantiopure diastereomers of this electrophile was subjected to the reaction conditions 

using opposite enantiomers of 4.1, different diastereomers of the product were formed with 

high selectivity in each case (eq 4.5 and 4.6). These results demonstrate that the 

stereoselectivity of the reaction is predominantly controlled by chiral catalyst.      

 Next, we turned our attention to the exploration of the scope with respect to the 

nucleophilic coupling partner (Table 4.3). Indole, indoline, and carbazole derivatives can be 

used in this reaction to achieve the desired C–N coupled products.  Indoles with a C3 

substituent typically perform well under these conditions (entries 1, 2, 5, and 6), while 

indoles lacking this kind of substitution afford reduced yields due to competing C–C 

coupling at that position (entries 3, 4, and 7).  Bulkier nucleophiles tend to give higher ee’s, 

likely due to their ability to inherently improve enantioselectivity and impede racemization 

of the products (entries 10−13).  An array of functional groups, such as nitriles, halides, 

ethers, alkenes, and secondary amides are tolerated under these conditions.  Moreover, a non-

aromatic amine, indoline, can also be employed as the substrate in the C–N coupling, giving 

the product in high enantioselectivity (entry 13). On a gram scale, the reaction depicted in 

entry 10 proceeds in 85% yield (1.06 g of isolated product) and 92% ee. In addition, 
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essentially all of (R)−4.1 can be recovered after the oxidation to the corresponding 

phosphine oxide (see Experimental Section). 

Table 4.3.  Scope with respect to N-heterocycles. 
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4.2.3. Mechanistic Insights 

 To gain insight into the mechanism of this transformation we conducted time-course 

experiments following the reactions of both iodide- and bromide-containing electrophiles 

(Table 4.2, entries 1 and 2). It was observed that the ee of the unreacted alkyl bromide 

increases throughout the reaction, indicating this electrophile undergoes a kinetic resolution 

(see Figure 4.4 in Experimental Section). This explains the necessity of using a higher excess 

of α-bromolactam to achieve high yields, since with only 1.5 equiv of this electrophile, the 

theoretical amount of product is limited to 75% (Table 4.2, entry 2 vs. 3). On the other hand, 

it is clear that both enantiomers of the alkyl iodide are being converted into the major 

enantiomer of product based on the yield and ee. These results indicate alkyl iodide 

electrophiles are undergoing a stereoconvergent reaction with this catalyst system. Our 

observation that the alkyl iodide illustrated in Table 4.2, entry 1 undergoes an initial increase 

in ee which is then is racemized over the course of the reaction suggests a dynamic kinetic 

resolution process is operative (see Figure 4.6 in Experimental Section). Likely, racemization 

of the α-iodolactam occurs via a facile SN2 exchange of the iodide in the α position as iodide 

salts are generated over the course of the reaction. 

 In an effort to identify catalytic species in this reaction, we were able to synthesize 

and crystallographically characterize a bis-4.1-ligated copper(I) species (eq 4.7). When 

(R,R)−4.5 is used catalytically in place of the copper catalyst and ligand (eq 4.8), cross-

coupling between 3-methylindole and 3-iodo-1-phenylpyrrolidin-2-one occurs in similar 

yield and ee to the unmodified conditions (74% yield, 90% ee; c.f. Table 4.1, entry 1: 84% 

yield, 87% ee). When a stoichiometric amount of (R,R)−4.5 reacts with 3-iodo-1-

phenylpyrrolidin-2-one, the C–N coupling product is again formed in similar yield and ee 

(eq 4.9; 94% yield, 87% ee). In addition, we have examined the dependence of the ee of the 

product on the ee of the chiral ligand. For both 3-bromo- and 3-iodo-1-phenylpyrrolidin-2-

ones, the reactions exhibit a slight positive non-linear effect (see Figure 4.7 in Experimental 

Section). These results suggest (R,R)−4.5 is likely an intermediate in the catalytic cycle. 
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 To gain insight into the C–N bond-forming step, separate enantiomers of 3-bromo-

1-phenylpyrrolidin-2-one were reacted with complex (R,R)−4.5.15 For either enantiomer of 

alkyl bromide, a stereospecific inversion of the configuration at the α position was observed 

(Table 4.4; absolute configuration of the electrophiles and the products were unambiguously 

determined by x-ray crystallography). These finding are consistent with reports by Kambe 

and Liu who have shown inversion of configuration in copper-catalyzed Kumada couplings 

of alkyl halides and tosylates.16 These experiments also show that opposite enantiomers of 

α-bromolactam indeed react at different rates with (R,R)−4.5. In addition, intermolecular 

competition experiments determined the relative rates of three electronically distinct 5-

substituted 3-methylindoles, which indicated that electron-rich nucleophiles react faster than 

electron-poor nucleophiles (eq 4.10).17,18 
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Table 4.4.  Stereochemical course of the stoichiometric C–N coupling. 

 

 

 Based on these results, we propose two possible catalytic cycles for the copper-

catalyzed asymmetric C–N coupling illustrated in Figure 4.1. Copper(I) amide complex 4.5 

(represented as 4.A) could preferentially react with one enantiomer of the electrophile 

resulting in a kinetic resolution. In the case of α-iodolactams, a dynamic kinetic resolution 

via in situ racemization at the α position renders the reaction stereoconvergent. There are two 

possible pathways in which the C–N bond formation may occur, both of them complying 

with our experimental findings. The reaction may proceed through an enantioselective SN2 
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reaction between 4.A and the electrophile, leading directly to the product with inverted 

configuration and releasing 4.B (Figure 4.1A). On the other hand, a stepwise oxidative 

addition/reductive elimination sequence may operate with the involvement of copper(III) 

intermediates such as 4.C (Figure 4.1B). The overall stereospecific inversion (Table 4.4)  

 

 

Figure 4.1. (A) Outline of a proposed mechanism involving an enantioselective SN2 reaction. 

Bottom: (B) Outline of a proposed mechanism involving an enantioselective oxidative 

addition/reductive elimination pathway. 
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implies that oxidative addition proceeds in an enantioselective SN2 manner and 

subsequently, the stereochemical configuration of the alkyl moiety remains intact. 

Alternatively, an enantioselective concerted oxidative addition could occur where the 

stereochemistry at the α position inverted through an O-bound copper(III) enolate.19 For 

either the direct SN2 or oxidative addition/reductive elimination pathway, the copper(I)-

amide complex bearing a more electron-rich nucleophile is expected to react faster, however 

in the latter case only if oxidative addition is slower than reductive elimination. Both catalytic 

cycles are closed by a ligand substitution of copper halide complex 4.B, releasing halide salts 

that can racemize the electrophile when X = I. 

4.3 Conclusions 

 We have developed an asymmetric stereoconvergent C–N cross-coupling of α-

halolactams and heterocyclic amines using copper catalysis under light-free condition. This 

work is complementary to photoinduced copper-catalyzed alkylations previously reported by 

our group.  This method constitutes a straightforward entry to biologically important amino 

acid analogs in an enantioenriched form. Mechanistic investigations disclose that racemic 

alkyl iodide electrophiles undergo a dynamic kinetic resolution rendering the reaction 

stereoconvergent whereas alkyl bromides undergo a simple kinetic resolution. During the 

bond formation, a stereospecific inversion of the configuration at the α carbon takes place. 

Additionally, a bis-phosphine ligated copper(I)-amide complex has been identified as a likely 

catalytic species. Future work will be focused on adopting this reactivity to a broader class 

of nucleophiles.  

4.4. Experimental Section 

4.4.1. General Information 

 SITCP ligands [(R)− or (S)−4.1] and mesitylcopper were purchased from Strem 

Chemicals.  Cesium carbonate (99.995%) and α-hydroxy-γ-butyrolactone were purchased 

from Acros Organics.  m-Xylene (anhydrous, >99%) and 2,4-dibromobutyryl chloride were 
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purchased from Sigma-Aldrich.  Indole, indoline and carbazole derivatives were 

purchased from Sigma-Aldrich, AK Scientific, Oakwood Chemicals, or AstaTech.  Unless 

otherwise noted, all materials were purchased from commercial suppliers and used as 

received. Silicycle SiliaFlash® P60 Silica gel (particle size 40–63 nm) was used for flash 

chromatography.  Biotage® KP-C18-HS support gel (particle size 30–90 μm) was used for 

reverse-phase flash chromatography.  Preparative thin-layer chromatography (TLC) was 

performed on EDM/Merck TLC Silica gel 60 F254 pre-coated plates (0.25 mm).  1H, 13C, and 

31P NMR spectra were recorded on a Bruker Ascend 400 (at 400 MHz, 101 MHz and 162 

MHz, respectively), with CHCl3 (
1H, δ = 7.26) and CDCl3 (13C, δ = 77.0) as internal 

references relative to Me4Si external reference and with 85% H3PO4 (
31P) external reference.  

13C NMR spectra of phosphorus-containing compounds were recorded on a Varian Inova 

600 (at 151 MHz) using 1H and 31P decoupling.  Data for 1H NMR spectra are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). 

Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q 

= quartet, m = multiplet, br = broad, app = apparent.)  IR spectra were recorded on a Perkin 

Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates and are 

reported in frequency of absorption (cm-1).  Optical rotations were measured on a Jasco P-

2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell.  

HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A 

Multimode source in electrospray ionization (ESI) mode and JEOL MSRoute JMS-600H 

mass spectrometer using fast atom bombardment (FAB).  Analytical HPLC analyses were 

carried out using an Agilent 1100 Series system with Daicel CHIRALPAK® columns 

(internal diameter 4.6 mm, column length 25.0 cm, particle size 5 μm). Analytical SFC was 

performed with a Thar SFC supercritical CO2 analytical chromatography system with 

CHIRALPAK® columns (internal diameter 10 mm, column length 25.0 cm, particle size 5 

μm).  Microwave-assisted syntheses were performed on a Biotage® Initiator 2.5 microwave 

reactor.  Preparative HPLC separations were carried out using an Agilent 1100 Series system 

with a Daicel CHIRALPAK® IC column (internal diameter 2.0 cm, column length 25.0 cm, 

particle size 5 μm). 
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4.4.2. Preparation of Electrophiles 

General Procedures for the Synthesis of α-Iodo-γ-Lactams and α-Bromo-γ-Lactams.   

The yields have not been optimized.  

 Route A: α-Iodo-γ-lactams and α-bromo-γ-lactams were synthesized from α-

hydroxy-γ-butyrolactone γ-lactone in a two-step sequence (Scheme 4.1). In the first step, α-

hydroxy-γ-butyrolactone (10.0 mmol), amine (12.0 mmol, 1.2 equiv.) and p-toluenesulfonic 

acid (1.0 mmol, 10 mol%) were placed in a 10 mL microwave vial and stirred for 10 minutes 

at 220 ○C in a microwave reaction. Crude reaction mixture was dissolved in 200 mL of 

dichloromethane and washed with 5 M HCl solution, followed by saturated NaHCO3 

solution and brine. Organic layers were combined, dried over magnesium sulfate, and 

concentrated to give α-hydroxy-γ-lactam, which was used without further purification in the 

subsequent step. In the second step triphenylphosphine (13.0 mmol, 1.3 equiv.) was 

dissolved in 100 mL of dichloromethane. Resulting solution was cooled down to 0 ○C and 

iodine or bromine (12.0 mmol, 1.2 equiv.) was added. After 10 minutes of stirring, imidazole 

(13.0 mmol, 1.3 equiv.) and α-hydroxy-γ-lactam (10.0 mmol) were added. Reaction mixture 

was slowly warmed up to room temperature and stirred for 4 hours. Reaction mixture was 

washed with water and the organic layer was dried over magnesium sulfate, concentrated 

and crude product was purified by column chromatography using hexanes: diethyl ether 

solvent system. 

 Route B: In the first step of the reaction, 2,4-dibromobutyryl chloride (10.0 mmol) 

was added slowly to a suspension of amine (10.0 mmol, 1.0 equiv.) and potassium phosphate 

tribasic (5.0 mmol, 0.5 equiv.) in 50 mL of acetonitrile at 0 ○C. Reaction was stirred for 1 

hour, then 2 mL of 50% NaOH solution was added and stirred overnight. Crude reaction 

mixture was filtered, solid was washed with 100 mL of dichloromethane and combined 

filtrate was concentrated. Residue was purified by column chromatography using hexanes: 

diethyl ether solvent system. In the next step, α-bromo-γ-lactam (10.0 mmol) was subjected 

to a suspension of NaI (15.0 mmol, 1.5 equiv.) in 50 mL of acetone. After 2 hours, reaction 
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was concentrated and residue was purified by column chromatography using hexanes: 

diethyl ether solvent system. 

 

 

Scheme 4.1.  Synthesis of α-halo-γ-lactam electrophiles. 

 

 

(3S)-3-Bromo-1-phenylpyrrolidin-2-one and (3R)-3-Bromo-1-phenylpyrrolidin-2-one.  

The racemic mixture of the title products was prepared similarly to the procedure described 

in literature20 (Route B, Scheme 4.1).  Pure enantiomers of title compound were obtained 

from the racemate by separation on preparative Diacel CHIRALPAK® IC column; 45% i-

PrOH in hexanes, 10.0 mL/min flow-rate; retention times: 24.9 min (S-enantiomer), 32.8 min 

(R-enantiomer). 

1H NMR (400 MHz, CDCl3) δ 7.73 – 7.61 (m, 2H), 7.50 – 7.34 (m, 2H), 7.27 – 7.18 (m, 

1H), 4.62 (dd, J = 7.0, 2.8 Hz, 1H), 4.09 (ddd, J = 9.8, 7.9, 6.6 Hz, 1H), 3.86 (ddd, J = 10.1, 

7.8, 2.6 Hz, 1H), 2.88 – 2.61 (m, 1H), 2.49 (ddt, J = 14.3, 6.6, 2.7 Hz, 1H).  

(S)-enantiomer [α]25
D (100% ee): 117.4° (c = 1.0, CHCl3) 
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(R)-enantiomer [α]25
D (100% ee): –118.5° (c = 1.0, CHCl3) 

 

 

 

3-Iodo-1-phenylpyrrolidin-2-one. The compound was prepared according to the general 

procedure (Route B, Scheme 4.1, second step) from 3-bromo-1-phenylpyrrolidin-2-one.  

After purification by flash chromatography (30→60% Et2O in hexanes) the title compound 

was isolated as a white solid in 85% yield.  

1H NMR (400 MHz, CDCl3) δ 7.89 – 7.55 (m, 2H), 7.55 – 7.35 (m, 2H), 7.26 – 7.13 (m, 

1H), 4.75 (dd, J = 7.1, 2.0 Hz, 1H), 3.97 (ddd, J = 9.9, 8.7, 6.3 Hz, 1H), 3.77 (ddd, J = 9.8, 

7.7, 1.9 Hz, 1H), 2.83 – 2.52 (m, 1H), 2.41 (ddt, J = 14.4, 6.2, 1.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 171.4, 139.1, 129.0, 125.3, 120.00, 47.3, 31.4, 20.9. 

FT-IR: 2946, 1694, 1597, 1494, 1476, 1393, 1300, 1224, 1116, 1035, 875, 762 cm-1. 

HRMS: m/z 287.9878 ([M+H]+, C10H11INO+ calcd. 287.9885). 

 

 

 

1-Benzyl-3-iodopyrrolidin-2-one. The compound was prepared according to the general 

procedure (Route A, Scheme 4.1) from α-hydroxy-γ-butyrolactone and benzyl amine. After 

purification by flash chromatography (30→90% Et2O in hexanes) the title compound was 

isolated as yellow oil in 51% yield over 2 steps. 1H NMR data of the intermediate α-hydroxy-

γ-lactam was identical to previously reported data.21 

1H NMR (400 MHz, CDCl3) δ 7.45 – 7.09 (m, 5H), 4.60 (dd, J = 7.3, 1.9 Hz, 1H), 4.53 (d, J 

= 14.7 Hz, 1H), 4.39 (d, J = 14.7 Hz, 1H), 3.28 (ddd, J = 10.2, 8.4, 6.3 Hz, 1H), 3.11 (ddd, J 

= 9.9, 7.8, 1.8 Hz, 1H), 2.55 – 2.38 (m, 1H), 2.24 (ddt, J = 14.5, 6.4, 1.8 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 172.5, 135.7, 128.8, 128.1, 127.8, 47.3, 45.2, 31.7, 19.8. 

FT-IR: 3026, 2916, 1690, 1494, 1423, 1358, 1306, 1267, 1125, 1082, 1028, 878, 751 cm-1. 
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HRMS: m/z 302.0045 ([M+H]+, C11H13INO+ calcd. 302.0042). 

 

 

 

3-Iodo-1-(4-methoxyphenyl)pyrrolidin-2-one. The compound was prepared according to 

the general procedure (Route B, Scheme 4.1) from 2,4-dibromobutyryl chloride and p-

anisidine.  After purification by flash chromatography (30→70% Et2O in hexanes) the title 

compound was isolated as a white solid in 48% yield over 2 steps.  1H NMR data of the 

intermediate 3-bromo-1-phenylpyrrolidin-2-one was identical to previously reported data.22   

1H NMR (400 MHz, CDCl3) δ 7.59 – 7.37 (m, 2H), 7.01 – 6.84 (m, 2H), 4.71 (dd, J = 7.1, 

2.0 Hz, 1H), 3.89 (ddd, J = 10.0, 8.7, 6.2 Hz, 1H), 3.81 (s, 3H), 3.69 (ddd, J = 9.8, 7.7, 1.9 

Hz, 1H), 2.75 – 2.49 (m, 1H), 2.37 (ddt, J = 14.5, 6.3, 1.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 171.1, 157.1, 132.3, 121.8, 114.2, 55.5, 47.8, 31.5, 21.1. 

FT-IR: 2915, 1698, 1512, 1463, 1395, 1369, 1290, 1248, 1178, 1099, 1031, 828, 740 cm-1. 

HRMS: m/z 317.9985 ([M+H]+, C11H13INO2
+ calcd. 317.9991). 

 

 

 

3-Iodo-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one. The compound was prepared 

according to the general procedure (Route B, Scheme 4.1) from 2,4-dibromobutyryl chloride 

and 4-(trifluoromethyl)aniline. After purification by flash chromatography (20→50% Et2O 

in hexanes) the title compound was isolated as a yellow solid in 53% yield over 2 steps.  1H 

NMR data of the intermediate 3-trifluoro-1-phenylpyrrolidin-2-one was identical to 

previously reported data.20  

1H NMR (400 MHz, CDCl3) δ 7.97 – 7.73 (m, 2H), 7.77 – 7.55 (m, 2H), 4.77 (dd, J = 7.0, 

2.1 Hz, 1H), 4.00 (td, J = 9.3, 6.3 Hz, 1H), 3.81 (ddd, J = 9.8, 7.7, 1.9 Hz, 1H), 2.87 – 2.48 

(m, 1H), 2.43 (ddt, J = 14.5, 6.3, 2.0 Hz, 1H). 
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13C NMR (101 MHz, CDCl3) δ 171.9, 142.5, 126.7 (q, J = 32.8 Hz), 126.2 (q, J = 3.8 

Hz), 124.0 (q, J = 271.6 Hz), 119.4, 47.0, 31.1, 20.0. 

FT-IR: 2883, 1703, 1614, 1520, 1479, 1428, 1390, 1320, 1303, 1224, 1120, 1069, 1018, 879, 

839 cm-1. 

HRMS: m/z 355.9756 ([M+H]+, C11H10F3INO+ calcd. 355.9759). 

 

 

 

3-Iodo-1-(3-phenylpropyl)pyrrolidin-2-one. The compound was prepared according to the 

general procedure (Route A, Scheme 4.1, second step) from 3-hydroxy-1-(3-

phenylpropyl)pyrrolidin-2-one. After purification by flash chromatography (40→80% Et2O 

in hexanes) the title compound was isolated as yellow oil in 65% yield. 

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.09 (m, 5H), 4.54 (dd, J = 7.1, 1.8 Hz, 1H), 3.51 – 

3.39 (m, 2H), 3.29 (dt, J = 13.8, 7.1 Hz, 1H), 3.20 (ddd, J = 9.8, 7.7, 1.7 Hz, 1H), 2.80 – 2.55 

(m, 2H), 2.52 – 2.31 (m, 1H), 2.26 (ddt, J = 14.4, 6.3, 1.8 Hz, 1H), 1.93 (p, J = 7.5 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 172.6, 141.3, 128.5, 128.3, 126.1, 45.7, 43.0, 33.0, 31.8, 28.6, 

20.2. 

FT-IR: 3056, 2929, 1691, 1590, 1483, 1435, 1308, 1279, 1194, 1118, 1070, 1028, 997, 880, 

754, 722 cm-1. 

HRMS: m/z 330.0354 ([M+H]+, C13H17INO+ calcd. 330.0355). 

 

 

 

 

Diastereomers are not assigned to either set of the following data. They are formed in a 1:1 

mixture and were used as such in eq 4.5 and eq 4.6. However, they can be separated by 

column chromatography. 
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3-Iodo-1-(1-phenylethyl)pyrrolidin-2-one (diastereomer I). The compound was prepared 

according to the general procedure (Route A, Scheme 4.1) from α-hydroxy-γ-butyrolactone 

and (S)-1-phenylethylamine. After purification by flash chromatography (30→80% Et2O in 

hexanes) the title compound was isolated as white solid in 27% yield over 2 steps. 

 1H NMR (400 MHz, CDCl3) δ 7.50 – 7.29 (m, 5H), 5.46 (q, J = 7.1 Hz, 1H), 4.59 (dd, J = 

6.8, 1.8 Hz, 1H), 3.53 – 3.17 (m, 1H), 3.05 – 2.72 (m, 1H), 2.42 – 2.06 (m, 2H), 1.55 (d, J = 

7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 172.1, 139.7, 128.6, 127.7, 127.1, 50.0, 41.0, 31.7, 20.9, 14.8. 

FT-IR: 3025, 2969, 2934, 1670, 1478, 1440, 1425, 1344, 1309, 1282, 1227, 1178, 1129, 

1053, 784, 701 cm-1. 

[α]25
D (100% ee): –109.8° (c = 1.0, CHCl3).  

HRMS: m/z 316.0196 ([M+H]+, C12H15INO+ calcd. 316.0198). 

 

3-Iodo-1-(1-phenylethyl)pyrrolidin-2-one (diastereomer II).  The compound was 

prepared according to the general procedure (Route A, Scheme 4.1) from α-hydroxy-γ-

lactone and (S)-1-phenylethanamine. After purification by flash chromatography (30→80% 

Et2O in hexanes) the title compound was isolated as white solid in 29% yield over 2 steps.  

1H NMR (400 MHz, CDCl3) δ 7.50 – 7.29 (m, 5H), 5.50 (q, J = 7.1 Hz, 1H), 4.61 (dd, J = 

7.2, 1.9 Hz, 1H), 3.22 – 3.09 (m, 1H), 3.00 – 2.84 (m, 1H), 2.62 – 2.38 (m, 1H), 2.20 (ddt, J 

= 14.4, 6.3, 1.8 Hz, 1H), 1.60 (d, J = 7.1 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ 172.0, 139.1, 128.7, 127.7, 127.1, 49.5, 41.0, 31.7, 20.6, 16.2. 

FT-IR: 3027, 2982, 2875, 1673, 1485, 1449, 1419, 1346, 1305, 1277, 1223, 1178, 1117, 877, 

699, 657 cm-1. 

[α]25
D (100% ee): –139.6° (c = 1.0, CHCl3).  

HRMS: m/z 316.0189 ([M+H]+, C12H15INO+ calcd. 316.0198). 

 

General Procedure for the Synthesis of α-Iodo-δ-Lactams.  α-Iodo-δ-lactams were 

synthesized from δ-lactone in a three-step sequence (Scheme 4.2).  The yields have not been 

optimized. In the first step δ-lactone (10.0 mmol), amine (12.0 mmol, 1.2 equiv.) and p-
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toluenesulfonic acid (1.0 mmol, 10 mol%) were placed in a 10 mL microwave vial and 

stirred for 10 minutes at 220 ○C in a microwave reactor.  Crude reaction mixture was 

dissolved in 200 mL of dichloromethane and washed with 5 M HCl solution, followed by 

saturated NaHCO3 solution and brine.  Organic layers were combined, dried over magnesium 

sulfate, and concentrated.  Residue was purified by column chromatography using hexanes: 

diethyl ether solvent system to give δ-lactam.  In the second step, δ-lactam (10.0 mmol) 

dissolved in 200 mL of THF was cooled down to −78 ○C.  Next, 11.0 mL of s-BuLi (1.0 M 

in hexanes) was added.  Reaction was stirred for 30 minutes then temperature was decreased 

to −100 ○C and bromine (10.0 mmol, 1.0 equiv.) was added drop-wise over 2 minutes.  

Reaction was immediately quenched (at −100 ○C) with 10 mL of water. Reaction mixture 

was slowly warmed up to rt, washed with aqueous solution of sodium thiosulfate then 

ammonium chloride. Organic layers were combined and dried over magnesium sulfate, 

concentrated and residue was purified by column chromatography using hexanes: diethyl 

ether solvent system.  In the next step α-bromo- δ-lactam (10.0 mmol) was subjected to a 

suspension of NaI (15.0 mmol, 1.0 equiv.) in 50 mL of acetone.  After 2 hours reaction was 

concentrated and residue was purified by column chromatography using hexanes:Et2O 

solvent system. 

 

 

 

Scheme 4.2.  Synthesis of α-iodo-δ-lactam electrophiles. 
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3-Iodo-1-phenylpiperidin-2-one.  The compound was prepared according to the general 

procedure (Scheme 4.2) from δ-lactone and aniline.  In the first step 1-phenylpiperidin-2-one 

was obtained in 58% yield.  In the second step, after purification by flash chromatography 

(50→90% Et2O in hexanes), 3-bromo-1-phenylpiperidin-2-one23 was obtained in 53% yield. 

After purification from the last step by flash chromatography (50→90% Et2O in hexanes), 

the title product was obtained in 92% yield as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.49 – 7.37 (m, 2H), 7.31 – 7.24 (m, 3H), 5.00 (ddd, J = 4.7, 

3.2, 1.4 Hz, 1H), 3.94 (ddd, J = 12.1, 10.9, 5.0 Hz, 1H), 3.76 (dddd, J = 12.2, 5.7, 3.3, 1.4 

Hz, 1H), 2.60 – 2.40 (m, 1H), 2.42 – 2.29 (m, 1H), 2.32 – 2.17 (m, 1H), 2.05 – 1.92 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 167.9, 142.9, 129.1, 127.0, 125.6, 51.2, 32.74, 23.5, 21.0. 

FT-IR: 2946, 1651, 1595, 1492, 1417, 1346, 1310, 1240, 1173, 763 cm-1. 

HRMS: m/z 302.0051 ([M+H]+, C11H13INO+ calcd. 302.0042). 

 

 

 

3-Iodo-1-(4-methoxyphenyl)piperidin-2-one. The compound was prepared according to 

the general procedure (Scheme 4.2, third step) from 3-bromo-1-(4-methoxyphenyl)piperidin-

2-one. After purification by flash chromatography (50→100% Et2O in hexanes), the title 

product was obtained in 71% yield as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.23 – 7.10 (m, 2H), 7.03 – 6.78 (m, 2H), 4.99 (ddd, J = 4.7, 

3.1, 1.4 Hz, 1H), 3.89 (ddd, J = 12.3, 10.9, 5.0 Hz, 1H), 3.83 (s, 3H), 3.76 – 3.67 (m, 1H), 

2.55 – 2.39 (m, 1H), 2.39 – 2.29 (m, 1H), 2.29 – 2.14 (m, 1H), 2.07 – 1.92 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 168.0, 158.2, 135.7, 126.8, 114.4, 55.5, 51.5, 32.7, 23.6, 21.0. 

FT-IR: 2953, 2833, 1651, 1605, 1510, 1440, 1345, 1317, 1298, 1241, 1173, 1148, 1032, 830 

cm-1. 
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HRMS: m/z 332.0160 ([M+H]+, C12H15INO2
+ calcd. 332.0147). 

 

4.4.3. Copper-Catalyzed Asymmetric Csp3−N Couplings 

 

 

General Procedure for Asymmetric Copper-Catalyzed Csp3−N couplings.  In a nitrogen-

atmosphere glovebox, an oven-dried 4 mL amber-glass vial was charged with nucleophile 

(0.250 mmol) and solution of mesitylcopper24 (4.6 mg, 0.025 mmol) in 500 μL and a stir bar 

were added and the vial was closed with a screw cap. After stirring for 10 min, solution of 

(R)−4.125 [(R)−4.1] ligand (17.7 mg, 0.050 mmol) in 500 μL of m-xylene was added and the 

vial was recapped. After stirring for additional 10 min, α-iodolactam (108.0 mg, 0.375 mmol) 

was added. After the reaction mixture became homogenous (ca. 5 min), Cs2CO3
26 (147.0 mg, 

0.45 mmol) was added. The vial was recapped and wrapped entirely with electrical tape to 

prevent access of light. The reaction vessel was removed from the glovebox and the reaction 

mixture was stirred vigorously (1500 rpm; adequate stirring is necessary to achieve full 

conversion) at 23-26 ○C (exact reaction temperature is indicated below, exceeding 26 ○C 

leads to lowered ee; see below for the description of an experimental setup used to maintain 

the reaction temperature).  After the time indicated below, the crude reaction mixture was 

directly transferred to the top of a chromatography column. The reaction vial was 

additionally consecutively washed with toluene (2 mL) and dichloromethane (1 mL) and the 

washings were also applied on the column. The product was purified by column 

chromatography using solvent system given below. 

 To avoid overheating the reaction mixture by the stir-plate, while ensuring efficient 

stirring, following experimental setup was used: the reaction vessel was suspended 3 mm 
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over the stir-plate, and a small fan was placed 40 cm above the reaction vessel (Figure 

4.2). The temperature was controlled with a thermometer placed next to the vial. 

 

 

Figure 4.2.  Reaction setup of copper-catalyzed asymmetric C−N coupling. 

 

 

 

3-(3-Methyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.2, entries 1−3). The 

compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 

mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 
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(147 mg, 0.45 mmol). The reaction was run for 72 hours at 23-25 ○C.  After purification 

by flash chromatography (20→50% Et2O in hexanes) and reverse phase chromatography 

(0→60% MeOH in H2O) the title compound was isolated as a white solid in 72% yield (52 

mg) and 86% ee.  The second run was performed with (S)−4.1. The product was isolated as 

a white solid in 74% yield (54 mg) and 89% ee. HPLC analysis of the product: Diacel 

CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 

22.5 min (minor), 26.5 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.91 – 7.67 (m, 2H), 7.62-7.60 (m, 1H), 7.53 – 7.35 (m, 2H), 

7.30- 7.27 (m, 1H), 7.27 – 7.21 (m, 2H), 7.16 (m, 1H), 6.97 (q, J = 1.1 Hz, 1H), 5.31 (dd, J 

= 10.1, 8.7 Hz, 1H), 4.06 – 3.96 (m, 2H), 2.88 – 2.74 (m, 1H), 2.53 – 2.37 (m, 1H), 2.36 (d, 

J = 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 169.8, 139.1, 136.4, 129.3, 129.1, 125.2, 123.4, 121.9, 119.8, 

119.4, 119.3, 112.4, 109.1, 57.9, 45.0, 26.5, 9.7. 

FT-IR: 3045, 2915, 1704, 1598, 1500, 1462, 1394, 1370, 1307, 1237, 1199, 758, 739, 691 

cm-1. 

[α]25
D (86% ee): –53.8° (c = 1.0, CHCl3).  

HRMS: m/z 291.1492 ([M+H]+, C19H19N2O
+ calcd. 291.1497). 

The title compound was also prepared with 3-bromo-1-phenylpyrrolidin-2-one (90.0 mg, 

0.375 mmol) was isolated in 58% yield (42 mg) and 88% ee with (R)−4.1 and in 63% yield 

(46 mg) and 87% ee with (S)−4.1 

The title compound was also prepared with 3-bromo-1-phenylpyrrolidin-2-one (120 mg, 0.50 

mmol) was isolated in 83% yield (60 mg) and 88% ee with (R)−4.1 and in 87% yield (63 

mg) and 86% ee with (S)−4.1. 

 

 

 

1-(4-Methoxyphenyl)-3-(3-methyl-1H-indol-1-yl)pyrrolidin-2-one (Table 4.2, entry 4).  

The compound was prepared according to the General Procedure from 3-iodo-1-(4-
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methoxyphenyl)pyrrolidin-2-one (119 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 

mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 equiv. of 

Cs2CO3 (179 mg, 0.55 mmol). The reaction was run for 72 hours at 23-25 ○C.  After 

purification by flash chromatography (20→80% Et2O in hexanes) and reverse phase 

chromatography (0→70% MeOH in H2O) the title compound was isolated as a white solid 

in 83% yield (66 mg) and 90% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 72% yield (58 mg) and 92% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IA column; 30% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 27.3 min (minor), 31.4 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.72 – 7.58 (m, 3H), 7.37 – 7.11 (m, 3H), 7.03 – 6.91 (m, 

3H), 5.27 (dd, J = 9.9, 8.7 Hz, 1H), 4.02 – 3.89 (m, 2H), 3.85 (s, 3H), 2.85 – 2.69 (m, 1H), 

2.47 – 2.29 (m, 1H), 2.36 (d, J = 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 169.4, 157.0, 136.4, 132.3, 129.3, 123.4, 121.8, 121.5, 119.3, 

119.2, 114.2, 112.1, 109.1, 57.7, 55.5, 45.3, 26.5, 9.7. 

FT-IR: 3049, 2915, 1697, 1512, 1463, 1395, 1290, 1249, 1179, 1032, 828, 740 cm-1. 

[α]25
D (90% ee): –59.8° (c = 1.0, CHCl3).  

HRMS: m/z 321.1598 ([M+H]+, C20H21N2O2
+ calcd. 321.1603). 

 

 

 

3-(3-Methyl-1H-indol-1-yl)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (Table 4.2, 

entry 5).  The compound was prepared according to the General Procedure from 3-iodo-1-

(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (133 mg, 0.375 mmol) and 3-methyl-1H-indole 

(32.8 mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 

equiv. of Cs2CO3 (147 mg, 0.45 mmol). The reaction was run for 72 hours at 23-25 ○C.  After 

purification by flash chromatography (20→60% Et2O in hexanes) and reverse phase 

chromatography (0→80% MeOH in H2O) the title compound was isolated as a white solid 

in 75% yield (67 mg) and 90% ee. The second run was performed with (S)−4.1. The product 
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was isolated as a white solid in 71% yield (64 mg) and 91% ee. HPLC analysis of the 

product: Diacel CHIRALPAK® IA column; 20% i-PrOH in hexanes, 1.0 mL/min flow-rate; 

retention times: 16.7 min (major), 23.3 min (minor). 

1H NMR (400 MHz, CDCl3) δ 7.96 – 7.87 (m, 2H), 7.75 – 7.66 (m, 2H), 7.66 – 7.59 (m, 

1H), 7.34 – 7.13 (m, 2H), 6.95 (q, J = 1.1 Hz, 1H), 5.33 (dd, J = 10.4, 8.8 Hz, 1H), 4.11 – 

3.97 (m, 2H), 2.91 – 2.78 (m, 1H), 2.56 – 2.42 (m, 1H), 2.36 (d, J = 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.3, 141.9, 136.4, 129.3, 126.3, 123.1, 122.0, 119.5, 119.4, 

119.2, 112.4, 109.0, 57.8, 44.7, 26.2, 9.7 (2 carbons signals are overlapping). 

FT-IR: 2920, 1712, 1614, 1520, 1463, 1389, 1322, 1237, 1197, 1165, 1120, 1069, 1015, 840, 

740 cm-1. 

[α]25
D (90% ee): –39.8° (c = 1.0, CHCl3).  

HRMS: m/z 359.1371 ([M+H]+, C20H18F3N2O
+ calcd. 359.1371). 

 

 

 

1-Benzyl-3-(3-methyl-1H-indol-1-yl)pyrrolidin-2-one (Table 4.2, entry 6).  The 

compound was prepared according to the General Procedure from 1-benzyl-3-

iodopyrrolidin-2-one (113 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 mmol), 

using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 equiv. of Cs2CO3 (179 mg, 

0.55 mmol). The reaction was run for 72 hours at 23-25 ○C.  After purification by flash 

chromatography (20→80% Et2O in hexanes) and reverse phase chromatography (0→100% 

MeOH in H2O) the title compound was isolated as a white solid in 76% yield (58 mg) and 

90% ee. The second run was performed with (S)−4.1. The product was isolated as a white 

solid in 67% yield (51 mg) and 90% ee. HPLC analysis of the product: Diacel 

CHIRALPAK® IA column; hexanes:2-propanol/50:50, 1.0 mL/min flow-rate; retention 

times: 7.9 min (minor), 9.7 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.57 (m, 1H), 7.48 – 7.27 (m, 5H), 7.27 – 7.09 (m, 

3H), 6.90 (q, J = 1.1 Hz, 1H), 5.16 (t, J = 9.1 Hz, 1H), 4.71 (d, J = 14.5 Hz, 1H), 4.55 (d, J 
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= 14.5 Hz, 1H), 3.50 – 3.29 (m, 2H), 2.69 – 2.55 (m, 1H), 2.36 (d, J = 1.1 Hz, 3H), 2.17 

(~dq, J = 13.2, 8.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 170.5, 136.4, 135.9, 129.3, 128.9, 128.5, 128.0, 123.4, 121.7, 

119.3, 119.1, 112.0, 109.1, 56.8, 47.5, 43.3, 26.5, 9.7. 

FT-IR: 3028, 2917, 1697, 1494, 1461, 1439, 1357, 1289, 1256, 1233, 739, 700cm-1. 

[α]25
D (90% ee): –4.2° (c = 1.0, CHCl3).  

HRMS: m/z 305.1650 ([M+H]+, C20H21N2O
+ calcd. 305.1654). 

 

 

 

3-(3-Methyl-1H-indol-1-yl)-1-(3-phenylpropyl)pyrrolidin-2-one (Table 4.2, entry 7).  

The compound was prepared according to the General Procedure from 3-iodo-1-(3-

phenylpropyl)pyrrolidin-2-one (123 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 

0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 equiv. of 

Cs2CO3 (180 mg, 0.55 mmol). The reaction was run for 48 hours at 23-25 ○C.  After 

purification by flash chromatography (35→100% Et2O in hexanes) and reverse phase 

chromatography (0→70% MeOH in H2O) the title compound was isolated as yellow oil in 

85% yield (71 mg) and 83% ee. The second run was performed with (S)−4.1. The product 

was isolated as yellow oil in 76% yield (63 mg) and 81% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IA column; 50% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 12.5 min (minor), 13.6 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.68 – 7.56 (m, 1H), 7.45 – 7.33 (m, 2H), 7.33 – 7.20 (m, 

5H), 7.21 – 7.10 (m, 1H), 6.89 (q, J = 1.1 Hz, 1H), 5.05 (t, J = 9.1 Hz, 1H), 3.59 – 3.37 (m, 

4H), 2.83 – 2.69 (m, 2H), 2.67 – 2.51 (m, 1H), 2.37 (d, J = 1.2 Hz, 3H), 2.23 – 2.06 (m, 1H), 

2.09 – 1.91 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 170.6, 141.2, 136.5, 129.3, 128.6, 128.4, 126.2, 123.4, 121.7, 

119.3, 119.1, 111.9, 109.1, 56.8, 43.9, 43.2, 33.3, 28.8, 26.8, 9.8. 
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FT-IR: 3053, 3025, 2926, 2859, 1698, 1494, 1462, 1386, 1368, 1292, 1233, 1199, 739, 

700 cm-1. 

[α]25
D (83% ee): –42.0° (c = 1.0, CHCl3).  

HRMS: m/z 333.1965 ([M+H]+, C22H25N2O
+ calcd. 333.1967). 

 

 

 

3-(3-methyl-1H-indol-1-yl)-1-phenylpiperidin-2-one (Table 4.2, entry 8).  The 

compound was prepared according to the General Procedure from 1-phenyl-3-iodopiperidin-

2-one (113 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 mmol), using 10 mol% 

of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 (147 mg, 0.45 mmol).  

The reaction was run for 48 hours at 23-25 ○C.  After purification by flash chromatography 

(20→80% Et2O in hexanes) and reverse phase chromatography (0→70% MeOH in H2O) the 

title compound was isolated as a white solid in 89% yield (68 mg) and 80% ee. The second 

run was performed with (S)−4.1. The product was isolated as a white solid in 86% yield (65 

mg) and 80% ee. HPLC analysis of the product: Diacel CHIRALPAK® AD column; 30% i-

PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 13.7 min (major), 16.9 min (minor). 

1H NMR (500 MHz, CDCl3) δ 7.61 – 7.56 (m, 1H), 7.49 – 7.41 (m, 2H), 7.41 – 7.35 (m, 

2H), 7.35 – 7.31 (m, 2H), 7.26 – 7.18 (m, 1H), 7.16 – 7.08 (m, 1H), 6.96 (q, J = 1.2 Hz, 1H), 

5.17 (t, J = 8.2 Hz, 1H), 4.12 – 3.92 (m, 1H), 3.90 – 3.76 (m, 1H), 2.51 – 2.42 (m, 2H), 2.37 

(d, J = 1.1 Hz, 3H), 2.30 – 2.11 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 167.3, 142.6, 136.5, 129.13, 129.09, 126.9, 125.9, 124.0, 

121.6, 119.2, 118.9, 111.3, 109.2, 56.7, 51.5, 28.8, 21.9, 9.7. 

FT-IR: 3049, 2916, 2861, 1660, 1594, 1493, 1462, 1422, 1351, 1327, 1224, 1190, 759, 737, 

694 cm-1. 

[α]25
D (80% ee): –3.2° (c = 1.0, CHCl3).  

HRMS: m/z 305.1649 ([M+H]+, C20H21N2O
+ calcd. 305.1654). 
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1-(4-Methoxyphenyl)-3-(3-methyl-1H-indol-1-yl)piperidin-2-one (Table 4.2, entry 9).  

The compound was prepared according to the General Procedure from 1-(4-methoxyphenyl)-

3-iodopiperidin-2-one (124 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 mmol), 

using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 equiv. of Cs2CO3 (179 mg, 

0.55 mmol). The reaction was run for 72 hours at 23-25 ○C.  After purification by flash 

chromatography (0→10% MeOH in CH2Cl2) and reverse phase chromatography (0→50% 

MeOH in H2O) the title compound was isolated as a white solid in 78% yield (66 mg) and 

89% ee. The second run was performed with (S)−4.1. The product was isolated as a white 

solid in 69% yield (58 mg) and 87% ee. HPLC analysis of the product: Diacel 

CHIRALPAK® IA column; 50% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 

10.6 min (major), 15.7 min (minor). 

1H NMR (400 MHz, CDCl3) δ 7.60 (dt, J = 7.8, 1.0 Hz, 1H), 7.40 – 7.20 (m, 4H), 7.14 (d, J 

= 1.0 Hz, 1H), 7.04 – 6.88 (m, 3H), 5.12 (t, J = 8.1 Hz, 1H), 3.94 – 3.84 (m, 1H), 3.81 (s, 

3H), 3.81 – 3.71 (m, 1H), 2.47 – 2.38 (m, 2H), 2.36 (d, J = 1.1 Hz, 3H), 2.23 – 2.10 (m, 2H). 

 13C NMR (101 MHz, CDCl3) δ 167.4, 158.2, 136.5, 135.6, 129.1, 127.1, 124.1, 121.6, 119.2, 

118.9, 114.4, 111.1, 109.3, 56.7, 55.5, 51.9, 28.8, 21.9, 9.8. 

FT-IR: 3046, 2933, 2835, 1660, 1607, 1510, 1462, 1326, 1296, 1240, 1189, 1032, 829, 738 

cm-1. 

[α]25
D (89% ee): –1.8° (c = 1.0, CHCl3).  

HRMS: m/z 335.1755 ([M+H]+, C21H23N2O2
+ calcd. 335.1760). 
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3-(3-Isopropyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 1).  The 

compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 3-isopropyl-1H-indole (39.8 mg, 0.25 

mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 

(147 mg, 0.45 mmol). The reaction was run for 72 hours at 23-25 ○C.  After purification by 

flash chromatography (35% Et2O in hexanes) and reverse phase chromatography (0→75% 

MeOH in H2O) the title compound was isolated as a white solid in 82% yield (65 mg) and 

89% ee. The second run was performed with (S)−4.1. The product was isolated as a white 

solid in 86% yield (68 mg) and 91% ee. HPLC analysis of the product: Diacel 

CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 

9.5 min (minor), 12.3 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.84 – 7.73 (m, 2H), 7.74 – 7.63 (m, 1H), 7.50 – 7.42 (m, 

2H), 7.34 – 7.19 (m, 3H), 7.18 – 7.09 (m, 1H), 6.94 (d, J = 0.9 Hz, 1H), 5.31 (dd, J = 10.3, 

8.8 Hz, 1H), 4.40 – 3.59 (m, 2H), 3.24 (hd, J = 6.8, 0.9 Hz, 1H), 2.80 (dddd, J = 13.0, 8.8, 

5.6, 3.4 Hz, 1H), 2.44 (ddt, J = 13.0, 10.3, 9.2 Hz, 1H), 1.39 (d, J = 6.8, 3H),1.37 (d, J = 6.8, 

3H). 

13C NMR (101 MHz, CDCl3) δ 169.7, 139.1, 136.7, 129.1, 128.0, 125.3, 124.2, 121.8, 121.2, 

119.9, 119.8, 119.1, 109.3, 58.0, 45.0, 26.3, 25.6, 23.30, 23.26. 

FT-IR: 3046, 2958, 2868, 1706, 1598, 1495, 1462, 1395, 1307, 1226, 1198, 758, 739, 690 

cm-1. 

[α]25
D (89% ee): –50.8° (c = 1.0, CHCl3).  

HRMS: m/z 319.1805 ([M+H]+, C21H23N2O
+ calcd. 319.1810). 
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3-(3-Allyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 2).  The compound 

was prepared according to the General Procedure from 3-iodo-1-phenylpyrrolidin-2-one 

(108 mg, 0.375 mmol) and 3-allyl-1H-indole (39.3 mg, 0.25 mmol), using 10 mol% of 

mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 (147 mg, 0.45 mmol). The 

reaction was run for 72 hours at 23-24 ○C.  After purification by flash chromatography (35% 

Et2O in hexanes) and reverse phase chromatography (0→75% MeOH in H2O) the title 

compound was isolated as yellow oil in 89% yield (70 mg) and 87% ee. The second run was 

performed with (S)−4.1. The product was isolated as yellow oil in 98% yield (78 mg) and 

87% ee. HPLC analysis of the product: Diacel CHIRALPAK® IC column; 35% i-PrOH in 

hexanes, 1.0 mL/min flow-rate; retention times: 14.5 min (minor), 17.0 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.80 – 7.74 (m, 2H), 7.64 (dt, J = 7.8, 1.0 Hz, 1H), 7.49 – 

7.42 (m, 2H), 7.32 (dt, J = 8.3, 1.0 Hz, 1H), 7.28 – 7.20 (m, 2H), 7.15 (ddd, J = 8.0, 7.0, 1.1 

Hz, 1H), 6.99 (s, 1H), 6.10 (ddt, J = 16.6, 10.0, 6.5 Hz, 1H), 5.32 (dd, J = 10.2, 8.7 Hz, 1H), 

5.20 (dq, J = 17.0, 1.7 Hz, 1H), 5.14 – 5.06 (m, 1H), 4.02 (dd, J = 9.2, 4.6 Hz, 2H), 3.55 (dq, 

J = 6.5, 1.4 Hz, 2H), 2.81 (ddt, J = 13.2, 8.9, 4.5 Hz, 1H), 2.44 (ddt, J = 13.0, 10.3, 9.2 Hz, 

1H). 

13C NMR (101 MHz, CDCl3) δ 169.8, 139.1, 137.2, 136.6, 129.1, 128.5, 125.3, 123.6, 122.0, 

119.8, 119.6, 119.4, 115.4, 114.8, 109.4, 58.0, 44.9, 30.0, 26.3. 

FT-IR: 3057, 2923, 1704, 1638, 1598, 1500, 1462, 1395, 1308, 1225, 1177, 1113, 995, 912, 

758, 740 cm-1. 

[α]25
D (87% ee): –53.0° (c = 1.0, CHCl3).  

HRMS: m/z 317.1647 ([M+H]+, C21H21N2O
+ calcd. 317.1654). 
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3-(1H-Indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 3).  The compound was 

prepared according to the General Procedure from 3-iodo-1-phenylpyrrolidin-2-one (108 

mg, 0.375 mmol) and indole (29.3 mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 

mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 (147 mg, 0.45 mmol). The reaction was run for 

72 h at 25-26 ○C.  After purification by flash chromatography (35→60% Et2O in hexanes) 

the title compound was isolated as a white solid in 54% yield (37 mg) and 83% ee. The 

second run was performed with (S)−4.1. The product was isolated as a white solid in 49% 

yield (34 mg) and 83% ee. HPLC analysis of the product: Diacel CHIRALPAK® IC column; 

35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 28.4 min (minor), 35.1 min 

(major). 

1H NMR (400 MHz, CDCl3) δ 7.82 – 7.73 (m, 2H), 7.73 – 7.65 (m, 1H), 7.55 – 7.40 (m, 

2H), 7.37 – 7.33 (m, 1H), 7.29 – 7.21 (m, 2H), 7.21 – 7.12 (m, 2H), 6.63 (d, J = 3.2 Hz, 1H), 

5.33 (dd, J = 10.1, 8.7 Hz, 1H), 4.19 – 3.85 (m, 2H), 2.98 – 2.63 (m, 1H), 2.45 (dq, J = 12.9, 

8.7 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 169.5, 139.0, 136.0, 129.1, 129.0, 126.1, 125.3, 121.9, 121.3, 

119.9, 119.8, 109.4, 102.9, 58.2, 45.0, 26.4. 

FT-IR: 3048, 2952, 1701, 1597, 1496, 1480, 1460, 1396, 1310, 1226, 1199, 759, 741, 690 

cm-1. 

[α]25
D (83% ee): –55.0° (c = 1.0, CHCl3).  

HRMS: m/z 277.1339 ([M+H]+, C18H17N2O
+ calcd. 277.1341). 

 

 

 

3-(5-Fluoro-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 4).  The 

compound was prepared according to the General Procedure from 3-iodo-1-
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phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 5-fluoro-1H-indole (33.8 mg, 0.25 

mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 

(147 mg, 0.45 mmol). The reaction was run for 72 hours at 25-26 ○C.  After purification by 

flash chromatography (30→65% Et2O in hexanes) the title compound was isolated as a white 

solid in 52% yield (38 mg) and 83% ee. The second run was performed with (S)−4.1. The 

product was isolated as a white solid in 54% yield (35 mg) and 84% ee. HPLC analysis of 

the product: Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-

rate; retention times: 14.6 min (minor), 18.6 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.92 – 7.67 (m, 2H), 7.59 – 7.40 (m, 2H), 7.38 – 7.11 (m, 

4H), 7.07 – 6.90 (m, 1H), 6.57 (d, J = 3.3, 1H), 5.29 (dd, J = 10.2, 8.7 Hz, 1H), 4.20 – 3.83 

(m, 2H), 2.92 – 2.70 (m, 1H), 2.56 – 2.35 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 169.2, 158.1 (d, J = 234.8 Hz), 138.9, 132.6, 129.4 (d, J = 

10.2 Hz), 129.1, 127.7, 125.4, 119.8, 110.3(d, J = 26.4 Hz), 110.0 (d, J = 9.7 Hz), 106.1(d, J 

= 23.3 Hz), 102.9 (d, J = 4.7 Hz), 58.4, 45.0, 26.4. 

FT-IR: 3065, 2923, 1704, 1597, 1495, 1482, 1449, 1399, 1309, 1222, 1117, 949, 758, 690 

cm-1. 

[α]25
D (83% ee): –33.7° (c = 1.0, CHCl3).  

HRMS: m/z 295.1241 ([M+H]+, C18H16FN2O
+ calcd. 295.1247). 

 

 

 

3-(5-Bromo-3-methyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 5).  

The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 5-bromo-3-methyl-1H-indole (52.2 mg, 

0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of 

Cs2CO3 (147 mg, 0.45 mmol). The reaction was run for 48 hours at 24-25 ○C.  After 

purification by flash chromatography (25→75% Et2O in hexanes) the title compound was 
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isolated as a white solid in 74% yield (68 mg) and 87% ee. The second run was performed 

with (S)−4.1. The product was isolated as a white solid in 65% yield (60 mg) and 90% ee. 

HPLC analysis of the product: Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 

1.0 mL/min flow-rate; retention times: 15.3 min (minor), 17.1 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.77 – 7.70 (m, 3H), 7.58 – 7.38 (m, 2H), 7.38 – 7.20 (m, 

2H), 7.20 – 7.12 (m, 1H), 6.96 (q, J = 1.2 Hz, 1H), 5.21 (dd, J = 10.2, 8.7 Hz, 1H), 4.13 – 

3.86 (m, 2H), 2.89 – 2.67 (m, 1H), 2.55 – 2.33 (m, 1H), 2.31 (d, J = 1.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 169.4, 138.9, 135.1, 131.0, 129.1, 125.4, 124.7, 124.6, 122.0, 

119.8, 112.6, 111.8, 110.7, 58.0, 44.9, 26.3, 9.6. 

FT-IR: 2917, 1700, 1598, 1494, 1458, 1394, 1307, 1225, 1199, 786, 758, 691 cm-1. 

[α]25
D (87% ee): –22.9° (c = 1.0, CHCl3).  

HRMS: m/z 369.0593 ([M+H]+, C19H18BrN2O
+ calcd. 369.0603). 

 

 

 

3-(5-Methoxy-3-methyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 6).  

The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 5-methoxy-3-methyl-1H-indole (40.0 

mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 equiv. of 

Cs2CO3 (180 mg, 0.55 mmol). The reaction was run for 72 hours at 24-25 ○C.  After 

purification by flash chromatography (25→85% Et2O in hexanes) the title compound was 

isolated as a white solid in 86% yield (69 mg) and 91% ee. The second run was performed 

with (S)−4.1. The product was isolated as a white solid in 83% yield (66 mg) and 90% ee. 

HPLC analysis of the product: Diacel CHIRALPAK® IA column; 50% i-PrOH in hexanes, 

1.0 mL/min flow-rate; retention times: 10.0 min (minor), 31.0 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.89 – 7.68 (m, 2H), 7.59 – 7.37 (m, 2H), 7.28 – 7.21 (m, 

1H), 7.19 (d, J = 8.8 Hz, 1H), 7.05 (d, J = 2.4 Hz, 1H), 6.95 (d, J = 1.2 Hz, 1H), 6.90 (dd, J 
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= 8.8, 2.5 Hz, 1H), 5.22 (dd, J = 10.2, 8.7 Hz, 1H), 4.04 – 3.94 (m, 2H), 3.90 (s, 3H), 2.89 

– 2.64 (m, 1H), 2.52 – 2.33 (m, 1H), 2.33 (d, J = 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 169.8, 154.0, 139.1, 131.6, 129.7, 129.1, 125.2, 124.2, 119.8, 

112.0, 111.6, 109.9, 101.3, 58.1, 56.0, 45.0, 26.4, 9.8. 

FT-IR: 2933, 1704, 1597, 1487, 1457, 1395, 1309, 1244, 1221, 1100, 1047, 759 cm-1. 

[α]25
D (90% ee): –74.8° (c = 1.0, CHCl3).  

HRMS: m/z 321.1592 ([M+H]+, C20H21N2O2
+ calcd. 321.1603). 

 

 

 

3-(4-methyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 7).  The 

compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 4-methyl-1H-indole (32.8 mg, 0.25 

mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 

(147 mg, 0.45 mmol).  The reaction was run for 48 hours at 23-25 ○C.  After purification by 

flash chromatography (0→60% Et2O in hexanes) the title compound was isolated as a white 

solid in 59% yield (43 mg) and 91% ee. The second run was performed with (S)−4.1. The 

product was isolated as a white solid in 58% yield (42 mg) and 91% ee. HPLC analysis of 

the product: Diacel CHIRALPAK® IB column; 20% i-PrOH in hexanes, 1.0 mL/min flow-

rate; retention times: 4.5min (minor), 5.1 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.81 – 7.74 (m, 2H), 7.49 – 7.42 (m, 2H), 7.27 – 7.11 (m, 

4H), 6.99 – 6.93 (m, 1H), 6.64 (dd, J = 3.3, 0.8 Hz, 1H), 5.34 (dd, J = 10.1, 8.7 Hz, 1H), 4.09 

– 3.98 (m, 2H), 2.88 – 2.79 (m, 1H), 2.59 (s, 3H), 2.53 – 2.41 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 169.5, 139.0, 135.7, 130.8, 129.1, 128.8, 125.4, 125.3, 122.1, 

120.2, 119.8, 107.0, 101.4, 58.3, 45.0, 26.5, 18.7. 

FT-IR: 3045, 2917, 1703, 1598, 1492, 1458, 1397, 1307, 1226, 749, 690 cm-1. 

[α]25
D (91% ee): –3.2° (c = 1.0, CHCl3).  

HRMS: m/z 291.1487 ([M+H]+, C19H19N2O
+ calcd. 291.1497). 
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2-(1-(2-Oxo-1-phenylpyrrolidin-3-yl)-1H-indol-3-yl)acetonitrile (Table 4.3, entry 8).  

The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 2-(1H-indol-3-yl)acetonitrile (39.0 mg, 

0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.0 equiv. of 

Cs2CO3 (81.5 mg, 0.25 mmol).  The reaction was run for 48 hours at 23-25 ○C.  After 

purification by flash chromatography (50→100% Et2O in hexanes) the title compound was 

isolated as yellow oil in 55% yield (43 mg) and 86% ee. The second run was performed with 

(S)−4.1. The product was isolated as yellow oil in 52% yield (41 mg) and 88% ee. HPLC 

analysis of the product: Diacel CHIRALPAK® IC column; 50% i-PrOH in hexanes, 1.0 

mL/min flow-rate; retention times: 15.4 min (minor), 48.1 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.79 – 7.70 (m, 2H), 7.65 – 7.59 (m, 1H), 7.51 – 7.42 (m, 

2H), 7.39 – 7.20 (m, 5H), 5.33 (dd, J = 10.4, 8.7 Hz, 1H), 4.11 – 3.94 (m, 2H), 3.86 (d, J = 

1.1 Hz, 2H), 2.95 – 2.72 (m, 1H), 2.59 – 2.30 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 169.1, 138.8, 136.5, 129.1, 127.0, 125.5, 124.6, 122.9, 120.5, 

119.9, 118.7, 118.1, 109.8, 105.0, 58.1, 45.0, 26.5, 14.5. 

FT-IR: 3050, 2922, 2248, 1700, 1597, 1495, 1464, 1398, 1307, 1226, 1205, 1178, 742, 692 

cm-1. 

[α]25
D (86% ee): –44.1° (c = 1.0, CHCl3).  

HRMS: m/z 316.1443 ([M+H]+, C20H18N3O
+ calcd. 316.1450). 
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N-(2-(5-Methoxy-1-(2-oxo-1-phenylpyrrolidin-3-yl)-1H-indol-3-yl)ethyl)acetamide 

(Table 4.3, entry 9).  The compound was prepared according to the General Procedure from 

3-iodo-1-phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and N-acetyl-5-methoxytryptamine 

(58.1 mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 2.2 

equiv. of Cs2CO3 (179 mg, 0.55 mmol).  The reaction was run for 72 hours at 25-26 ○C.  

After purification by flash chromatography (0→15% MeOH in CH2Cl2) and reverse phase 

chromatography (0→70% MeOH in H2O) the title compound was isolated as a white solid 

in 57% yield (56 mg) and 86% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 54% yield (53 mg) and 83% ee. SFC analysis of the product: 

Diacel CHIRALPAK® IC column; 50% MeOH in CO2, 3.0 mL/min flow-rate; retention 

times: 5.1 min (minor), 5.9 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.84 – 7.68 (m, 2H), 7.54 – 7.41 (m, 2H), 7.28 – 7.18 (m, 

2H), 7.10 – 7.06 (d, J = 2.4 Hz, 1H), 7.00 (s, 1H), 6.91 (dd, J = 8.9, 2.5 Hz, 1H), 5.66 (br s, 

1H), 5.24 (dd, J = 10.2, 8.7 Hz, 1H), 4.11 – 3.93 (m, 2H), 3.88 (s, 3H), 3.76 – 3.46 (m, 2H), 

3.11 – 2.87 (m, 2H), 2.88 – 2.76 (m, 1H), 2.52 – 2.37 (m, 1H), 1.95 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.1, 169.6, 154.3, 138.9, 131.7, 129.1, 128.9, 125.4, 124.7, 

119.8, 112.9, 112.4, 110.3, 101.1, 58.3, 56.0, 45.0, 39.7, 26.4, 25.3, 23.4. 

FT-IR: 3305, 3065, 2934, 1703, 1651, 1597, 1548, 1485, 1452, 1396, 1307, 1223, 1176, 

1030, 760, 692 cm-1. 

[α]25
D (86% ee): –29.2° (c = 1.0, CHCl3).  

HRMS: m/z 392.1973 ([M+H]+, C23H26N3O3
+ calcd. 392.1974). 
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3-(3-Methoxy-9H-carbazol-9-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 10).  The 

title compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 3-methoxy-9H-carbazole (49.3 mg, 0.25 

mmol), using (R)−4.1, and 1.8 equiv. of Cs2CO3 (147 mg, 0.45 mmol). The reaction was run 

for 60 h at 23-25 ○C. After purification by flash chromatography (25→80% Et2O in hexanes) 

the title compound was obtained as a white solid in 79% yield (70 mg) and 96% ee. The 

second run was performed with (S)−4.1. The product was isolated as a white solid in 84% 

yield (75 mg) and 97% ee. HPLC analysis of the product: Diacel CHIRALPAK® IA column; 

50% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times: 13.6 min (minor), 41.6 min 

(major). 

1H NMR (400 MHz, CDCl3) δ 8.13 – 8.06 (m, 1H), 7.87 – 7.76 (m, 2H), 7.63 (d, J = 2.5 Hz, 

1H), 7.57 – 7.39 (m, 3H), 7.37 – 7.18 (m, 4H), 7.08 (dd, J = 8.9, 2.5 Hz, 1H), 5.54 (dd, J = 

10.8, 9.3 Hz, 1H), 4.32 – 3.97 (m, 2H), 3.95 (s, 3H), 2.74 – 2.52 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 169.4, 154.1, 139.2, 129.1, 125.8, 125.3, 124.2, 123.6, 120.5, 

119.7, 119.2, 114.8, 110.0, 109.3, 103.7, 56.2, 56.2, 44.9, 23.3. (2 carbons are missing due 

to overlap) 

FT-IR: 3049, 2952, 2831, 1704, 1597, 1490, 1462, 1405, 1306, 1201, 1081, 1032, 744, 689 

cm-1. 

[α]25
D (96% ee): –88.8° (c = 1.0, CHCl3).  

HRMS: m/z 357.1598 ([M+H]+, C23H21N2O2
+ calcd. 357.1603). 

Gram-scale Reaction.  The title compound was prepared as above from 3-iodo-1-

phenylpyrrolidin-2-one (1.51 g, 5.25 mmol) and 3-methoxy-9H-carbazole (690 mg, 3.50 

mmol), using (S)−4.1, and 2.5 equiv. of Cs2CO3 (2.85 g, 8.75 mmol). The reaction was run 

for 90 h at 23-25 ○C.  The product was isolated as a white solid in 85% yield (1.06 g) and 

92% ee.  See Section 4.4.4 for details of 4.1 recovery. 
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3-(3,6-Di-tert-butyl-9H-carbazol-9-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 12).  

The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 3,6-di-tert-butyl-9H-carbazole (69.9 mg, 

0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of 

Cs2CO3 (147 mg, 0.45 mmol).  The reaction was run for 72 hours at 23-25 ○C.  After 

purification by flash chromatography (0→50% Et2O in hexanes) and reverse phase 

chromatography (0→80% MeOH in H2O) the title compound was isolated as a white solid 

in 79% yield (87 mg) and 94% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 81% yield (89 mg) and 95% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IC column; 15% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 15.4 min (minor), 48.1 min (major). 

1H NMR (400 MHz, CDCl3) δ 8.15 (m 0.6 Hz, 2H), 7.87 – 7.79 (m, 2H), 7.56 – 7.42 (m, 

4H), 7.33 – 7.17 (m, 3H), 5.58 (dd, J = 10.5, 9.6 Hz, 1H), 4.12 – 4.02 (m, 2H), 2.73 – 2.63 

(m, 1H), 1.48 (s, 18H). 

13C NMR (101 MHz, CDCl3) δ 169.5, 142.4, 139.3, 129.1, 125.2, 123.5, 119.8, 116.6, 56.1, 

44.9, 34.7, 32.0, 23.4 (3 carbons are missing due to overlap). 

FT-IR: 3046, 2959, 1708, 1598, 1491, 1477, 1404, 1392, 1362, 1308, 1262, 1167, 804, 757, 

691 cm-1. 

[α]25
D (94% ee): –84.2° (c = 1.0, CHCl3).  

HRMS: m/z 439.2743 ([M+H]+, C30H35N2O
+ calcd. 439.2749). 
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3-(2,3-Dihydrocyclopenta[b]indol-4(1H)-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 

12).  The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 1,2,3,4-tetrahydrocyclopenta[b]indole 

(39.3 mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 

equiv. of Cs2CO3 (147 mg, 0.45 mmol).  The reaction was run for 72 hours at 23-25 ○C.  

After purification by flash chromatography (25→55% Et2O in hexanes) and reverse phase 

chromatography (0→75% MeOH in H2O) the title compound was isolated as a white solid 

in 67% yield (53 mg) and 97% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 64% yield (51 mg) and 96% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IB column; 20% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 22.4 min (minor), 40.6min (major). 

1H NMR (400 MHz, CDCl3) δ 7.79 – 7.66 (m, 2H), 7.64 – 7.39 (m, 3H), 7.36 – 7.19 (m, 

2H), 7.19 – 7.06 (m, 2H), 5.26 (dd, J = 10.4, 8.9 Hz, 1H), 3.95 (m, 2H), 3.05 – 2.78 (m, 4H), 

2.71 (m, 1H), 2.58 (m 2H), 2.39 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 169.8, 144.9, 141.0, 139.2, 129.1, 125.2, 125.1, 120.4, 120.1, 

119.8, 119.5, 119.0, 109.5, 57.1, 44.9, 28.6, 26.1, 26.0, 24.4. 

FT-IR: 3045, 2951, 2850, 1706, 1597, 1495, 1456, 1402, 1375, 1307, 738, 690 cm-1. 

[α]25
D (97% ee): –86.2° (c = 1.0, CHCl3).  

HRMS: m/z 317.1648 ([M+H]+, C21H21N2O
+ calcd. 317.1654). 
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3-(3,4-Dihydro-1H-carbazol-9(2H)-yl)-1-phenylpyrrolidin-2-one (Table 4.3, entry 13).  

The compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 2,3,4,9-tetrahydro-1H-carbazole (42.8 

mg, 0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of 

Cs2CO3 (147 mg, 0.45 mmol).  The reaction was run for 72 hours at 23-25 ○C.  After 

purification by flash chromatography (0→5% MeOH in CH2Cl2) and reverse phase 

chromatography (0→100% MeOH in H2O) the title compound was isolated as a white solid 

in 72% yield (59 mg) and 98% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 66% yield (55 mg) and 97% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 14.5 min (minor), 27.9 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.83 – 7.72 (m, 2H), 7.55 – 7.40 (m, 3H), 7.28 – 7.21 (m, 

1H), 7.21 – 7.07 (m, 3H), 5.25 (s, 1H), 4.22 – 3.84 (m, 2H), 3.07 – 2.70 (m, 4H), 2.71 – 2.42 

(m, 2H), 22.17 – 1.73 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 169.9, 139.2, 129.1, 125.2, 121.0, 119.8, 119.2, 118.3, 56.0, 

44.8, 23.3, 23.0, 21.1 (7 carbons are missing due to overlap). 

FT-IR: 3046, 2929, 2838, 1705, 1597, 1495, 1464, 1401, 1375, 1309, 1226, 758, 738, 692 

cm-1. 

[α]25
D (98% ee): –94.2° (c = 1.0, CHCl3).  

HRMS: m/z 331.1806 ([M+H]+, C22H23N2O
+ calcd. 331.1810). 
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1-Phenyl-3-(6-(trifluoromethyl)indolin-1-yl)pyrrolidin-2-one (Table 4.3, entry 14).  The 

compound was prepared according to the General Procedure from 3-iodo-1-

phenylpyrrolidin-2-one (108 mg, 0.375 mmol) and 6-(trifluoromethyl)indoline (46.8 mg, 

0.25 mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.5 equiv. of 

Cs2CO3 (122 mg, 0.375 mmol).  The reaction was run for 48 hours at 25-26 ○C.  After 

purification by flash chromatography (10→100% Et2O in hexanes) and reverse phase 

chromatography (0→75% MeOH in H2O) the title compound was isolated as a white solid 

in 69% yield (60 mg) and 86% ee. The second run was performed with (S)−4.1. The product 

was isolated as a white solid in 59% yield (51 mg) and 90% ee. HPLC analysis of the product: 

Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention 

times: 7.9 min (minor), 10.1 min (major). 

1H NMR (400 MHz, CDCl3) δ 7.73 – 7.65 (m, 2H), 7.47 – 7.32 (m, 2H), 7.25 – 7.18 (m, 

1H), 7.18 – 7.12 (m, 1H), 7.00 – 6.87 (m, 1H), 6.72 – 6.64 (m, 1H), 4.63 (dd, J = 10.5, 8.6 

Hz, 1H), 4.12 – 3.79 (m, 2H), 3.79 – 3.49 (m, 2H), 3.24 – 3.00 (m, 2H), 2.63 – 2.37 (m, 1H), 

2.39 – 2.11 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 170.4, 151.2, 139.1, 133.9, 129.8 (q, J = 31.5 Hz), 129.0, 

125.1, 124.6, 124.6 (q, J = 272.1 Hz), 119.7, 115.2 (q, J = 4.2 Hz), 103.1 (q, J = 3.9 Hz), 

58.4, 48.5, 45.0, 28.2, 20.8. 

FT-IR: 3045, 2954, 2853, 1698, 1614, 1598, 1497, 1450, 1402, 1316, 1286, 1160, 1115, 

1059, 760, 691 cm-1. 

[α]25
D (86% ee): –11.5° (c = 1.0, CHCl3).  

HRMS: m/z 347.1365 ([M+H]+, C19H18F3N2O
+ calcd. 347.1371). 
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(3R)-3-(3-Methyl-1H-indol-1-yl)-1-((1S)-1-phenylethyl)pyrrolidin-2-one.  The 

compound was prepared according to the General Procedure from 3-iodo-1-((S)-1-

phenylethyl)pyrrolidin-2-one (118 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 

mmol), using 10 mol% of mesitylcopper and 20 mol% of (R)−4.1 and 1.8 equiv. of Cs2CO3 

(147 mg, 0.45 mmol).  After purification by flash chromatography (20→60% Et2O in 

hexanes) and reverse phase chromatography (0→90% MeOH in H2O) the title compound 

was isolated as a white solid in 64% yield (51 mg) and 15:85 dr and again in 61% yield (49 

mg) and 15:85 dr. The second run was performed with (S)−4.1. The product was isolated as 

a white solid in 68% yield (54 mg) and 94:6 dr and again in 70% yield (56 mg) and 94:6 dr. 

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.56 (m, 1H), 7.45 – 7.30 (m, 5H), 7.27 – 7.18 (m, 

2H), 7.18 – 7.10 (m, 1H), 6.89 (t, J = 1.1 Hz, 1H), 5.69 (q, J = 7.1 Hz, 1H), 5.10 (t, J = 8.9 

Hz, 1H), 3.63 – 3.37 (m, 1H), 3.06 (dt, J = 10.0, 7.8 Hz, 1H), 2.62 – 2.44 (m, 1H), 2.35 (d, J 

= 1.1 Hz, 3H), 2.23 – 2.08 (m, 1H), 1.71 (d, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.1, 139.6, 136.5, 129.4, 128.8, 128.0, 127.4, 123.5, 121.8, 

119.3, 119.2, 111.8, 109.3, 57.3, 50.2, 39.4, 26.5, 16.3, 9.8. 

FT-IR: 3050, 2974, 1695, 1490, 1457, 1424, 1283, 1234, 1014, 778, 739cm-1. 

[α]25
D (100% ee): –171.0° (c = 1.0, CHCl3).  

HRMS: m/z 319.1807 ([M+H]+, C21H23N2O
+ calcd. 319.1810). 

 

 

 

(3S)-3-(3-Methyl-1H-indol-1-yl)-1-((1S)-1-phenylethyl)pyrrolidin-2-one.  The 

compound was prepared according to the General Procedure from 3-iodo-1-((S)-1-

phenylethyl)pyrrolidin-2-one (118 mg, 0.375 mmol) and 3-methyl-1H-indole (32.8 mg, 0.25 
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mmol), using 10 mol% of mesitylcopper and 20 mol% of (S)−4.1 and 1.8 equiv. of 

Cs2CO3 (147 mg, 0.45 mmol).  After purification by flash chromatography (20→60% Et2O 

in hexanes) and reverse phase chromatography (0→90% MeOH in H2O). The product was 

isolated as a white solid in 68% yield (54 mg) and 94:6 dr and again in 70% yield (56 mg) 

and 94:6 dr. 

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.52 (m, 1H), 7.52 – 7.41 (m, 4H), 7.41 – 7.32 (m, 

1H), 7.22 – 7.08 (m, 3H), 6.82 (d, J = 1.2 Hz, 1H), 5.68 (q, J = 7.1 Hz, 1H), 5.16 (t, J = 9.1 

Hz, 1H), 3.53 – 3.41 (m, 1H), 3.26 – 3.12 (m, 1H), 2.65 – 2.55 (m, 1H), 2.32 (d, J = 1.1 Hz, 

3H), 2.17 – 2.00 (m, 1H), 1.64 (d, J = 7.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.1, 139.6, 136.3, 129.3, 128.8, 127.9, 127.2, 123.5, 121.7, 

119.3, 119.1, 111.8, 109.2, 57.3, 49.9, 39.1, 26.5, 16.1, 9.7. 

FT-IR: 3050, 2976, 1693, 1494, 1462, 1428, 1353, 1285, 1219, 1015, 781, 739 cm-1. 

[α]25
D (100% ee): –175° (c = 1.0, CHCl3).  

HRMS: m/z 319.1804 ([M+H]+, C21H23N2O
+ calcd. 319.1810). 

 

4.4.4. 4.1 Recovery 

 

 

 

Recovery of (S)−4.1 Oxide.  After column chromatography of the gram-scale reaction, 

fraction suspected to contain 4.1 and 4.1 oxide were collected and concentrated.  Care was 

taken to avoid fractions containing remaining electrophile.  Residue was dissolved in 20 mL 

of MeOH and cooled to °C.  Next, 200 μL of H2O2 was added.  Reaction mixture was warmed 

to room temperature and stirred for 1 hour then concentrated.  Residue was purified by flash 

chromatography (0→15% MeOH in Et2O) to afford (S)−4.1 oxide a yellow solid in 94% 

recovery (243 mg).   
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1H {31P} NMR (400 MHz, CDCl3) δ 7.60 – 7.46 (m, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.31 – 

7.26 (m, 2H), 7.26 – 7.14 (m, 4H), 6.92 (t, J = 7.5 Hz, 1H), 6.24 (d, J = 7.5 Hz, 1H), 3.81 (d, 

J = 13.8 Hz, 1H), 3.65 (d, J = 13.9 Hz, 1H), 3.08 (ddd, J = 17.7, 11.5, 6.7 Hz, 2H), 2.94 (ddd, 

J = 15.9, 10.8, 8.2 Hz, 2H), 2.81 (ddd, J = 28.2, 13.8, 1.7 Hz, 2H), 2.33 (dd, J = 12.4, 6.6 Hz, 

1H), 2.25 (dd, J = 12.4, 6.6 Hz, 1H), 2.00 (dtdd, J = 36.4, 11.9, 7.3, 3.1 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ. 

31P {1H} NMR (162 MHz, CDCl3) δ 35.65 

FT-IR: 3054, 2945, 2850, 1703, 1591, 1468, 1452, 1435, 1405, 1306, 1257, 1223, 1213, 

1177, 1106, 1061, 848, 822, 804, 752 cm-1. 

[α]25
D (100% ee): –39.8° (c = 1.0, CHCl3).  

HRMS: m/z 371.1567 ([M+H]+, C25H24PO+ calcd. 371.1565). 

 

 

 

Recycling of (S)−4.1.  Reduction of 4.1 oxide has been adapted from a previously reported 

literature procedure.27 In a nitrogen-atmosphere glovebox, (S)−4.1 oxide was dissolved in 

toluene (0.03 M) in a sealed flask then triethylamine (7.0 equiv.) was added.  Trichlorosilane 

(5.0 equiv.) was then added dropwise to the reaction mixture.  Reaction mixture was stirred 

at 110 °C for 16 hours under nitrogen atmosphere outside of the glovebox.  To quench the 

reaction a degassed KOH solution (5.0 M in water) was added dropwise to the reaction 

mixture inside of a nitrogen-atmosphere glovebox.  The flask was resealed with septum and 

needle vent prior to addition of KOH solution to prevent over-pressurization of the flask.  

After stirring for 20 minutes, the organic layer was separated by pipette extraction and 

benzene was used to extract the aqueous phase.  The organic layers we collected and 

concentrated.  Residue was dissolved in benzene and filtered through a silicia gel-filled 
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pipette using benzene to wash the product through.  The filtrate was concentrated and 

isolated as a white solid. 1H NMR data was identical to previously reported data.28 

 

4.4.5. Mechanistic Studies 

 

 

 

Enantiomeric Excess of Product and α-Bromo-γ-Lactam Electrophile During the 

Course of the Reaction.  In a nitrogen-atmosphere glovebox, an oven-dried 4 mL amber-

glass vial was charged with 3-methyl-1H-indole (0.20 mmol) and solution of mesitylcopper 

(3.6 mg, 0.02 mmol) in 200 μL of m-xylene.  A stir bar was added and the vial was closed 

with a screw cap. After stirring for 10 minutes, a solution of (S)4.1 (14.1 mg, 0.04 mmol) 

and internal standard (4,4′-di-tert-butylbiphenyl, 26.6 mg, 0.10 mmol) in 680 μL of m-xylene 

was added and the vial was recapped.  After stirring for additional 10 minutes, α-bromo-γ-

lactam (72.0 mg, 0.30 mmol) was added.  When the reaction mixture became homogenous 

(ca. 5 minutes), cesium carbonate (97.7 mg, 0.30 mmol) was added.  The vial was recapped 

and wrapped entirely with electrical tape to prevent access of light. The reaction mixture was 

stirred vigorously at 24 ○C in the glovebox.  Aliquots were taken from reaction mixture at 

different reaction times and were immediately quenched by dilution with 2 mL of 

dichloromethane followed by filtration.  The composition of each sample was determined by 

1H NMR analysis.  Pure samples of product and electrophile were obtained by preparative 

TLC (silica gel, 40→60% Et2O in hexanes). The ee’s were determined by HPLC Diacel 

CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times 

for product: 22.5 min (major), 26.5 min (minor); retention times for electrophile 12.8 min 

(major) and 17.0 min (minor). 
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Figure 4.3. 1H NMR yield and remaining electrophile as a function of time. 

 

 

 

Figure 4.4. Enantiomeric excess of product and remaining electrophile as a function of time. 
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Enantiomeric Excess of Product and α-Iodo-γ-Lactam Electrophile During the Course 

of the Reaction.  In a nitrogen-atmosphere glovebox, an oven-dried 4 mL amber-glass vial 

was charged with 3-methyl-1H-indole (0.20 mmol) and solution of mesitylcopper (3.6 mg, 

0.02 mmol) in 200 μL of m-xylene.  A stir bar was added and the vial was closed with a 

screw cap. After stirring for 10 minutes, a solution of (S)4.1  (14.1 mg, 0.04 mmol) and 

internal standard (4,4′-di-tert-butylbiphenyl, 26.6 mg, 0.10 mmol) in 680 μL of m-xylene was 

added and the vial was recapped.  After stirring for additional 10 minutes, α-iodo-γ-lactam 

(86.1 mg, 0.30 mmol) was added.  When the reaction mixture became homogenous (ca. 5 

minutes), cesium carbonate (97.7 mg, 0.30 mmol) was added.  The vial was recapped and 

wrapped entirely with electrical tape to prevent access of light. The reaction mixture was 

stirred vigorously at 24 ○C in the glovebox.  Aliquots were taken from reaction mixture at 

different reaction times and were immediately quenched by dilution with 2 mL of 

dichloromethane followed by filtration.  The composition of each sample was determined by 

1H NMR analysis.  Pure samples of product and electrophile were obtained by preparative 

TLC (silica gel, 40→60% Et2O in hexanes). The ee’s were determined by HPLC Diacel 

CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times 

for product: 22.5 min (major), 26.5 min (minor); retention times for electrophile 13.9 min 

(major) and 15.0 min (minor). 
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Figure 4.5. 1H NMR yield of and remaining electrophile as a function of time. 

 

 

Figure 4.6. Enantiomeric excess of product and remaining electrophileas a function of time. 
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Preparation of (R,R)−4.5 Complex.  In a nitrogen-atmosphere glovebox, an oven-dried 4 

mL amber-glass vial was charged with 3-methyl-1H-indole (16.4 mg, 0.125 mmol), a stir 

bar, and a solution of mesitylcopper (22.8 mg, 0.125 mmol) in 500 μL of benzene.  After 

stirring for 10 minutes, a solution of (R)−4.1 (88.5 mg, 0.25 mmol) in 1.5 mL of benzene was 

added.  After stirring for 16 hours, the reaction was concentrated to ca. 0.25 mL and added 

2.0 mL of pentane was added dropwise.  After stirring for 1 hour, a white precipitate of crude 

complex was filtered, rinsed with 5 mL of pentane, and dried to give 65% yield (73 mg) of 

product as a white powder.  X-Ray quality crystals were obtained by slow evaporation of 

solvent from a saturated solution of sample in a benzene/ether/pentane mixture.   

1H NMR (400 MHz, C6D6) δ 8.01 (d, J = 7.6 Hz, 1H), 7.40 – 7.27 (m, 1H), 7.15 – 6.79 (m, 

21H), 6.65 (t, J = 7.5 Hz, 2H), 5.70 (d, J = 7.5 Hz, 2H), 3.32 (d, J = 14.0 Hz, 2H), 3.24 (t, J 

= 11.1 Hz, 2H), 2.88 (d, J = 12.0 Hz, 2H), 2.78 – 2.66 (m, 4H), 2.70 (s, 3H), 2.63 – 2.51 (m, 

4H), 2.38 (d, J = 14.0 Hz, 2H), 1.94 (ddd, J = 24.8, 12.2, 6.5 Hz, 4H), 1.87 – 1.69 (m, 4H). 

13C NMR (101 MHz, C6D6) δ 147.6 , 147.4 , 147.1 , 142.9 , 142.6 , 135.8, 132.9 (d, J = 13.3 

Hz), 132.1 (d, J = 15.3 Hz), 131.2 , 130.5 , 129.9 , 129.6 , 128.8, 128.6 , 126.3 , 123.2 (d, J 

= 20.3 Hz), 117.8 (d, J = 19.4 Hz), 115.7 (d, J = 19.4 Hz), 108.1 , 61.4 , 38.0 (d, J = 47.9 

Hz?), 30.6 , 30.2 (d, J = 17.6 Hz), 25.3 (d, J = 7.4 Hz), 10.7. 
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Catalytic Competence of (R,R)−4.5.  In a nitrogen-atmosphere glovebox, an oven-dried 4 

mL amber-glass vial was charged with 3-methyl-1H-indole (0.09 mmol), a stir bar, and a 

solution of (R,R)−4.5 (9.0 mg, 0.01 mmol) in 200 μL of d8-toluene, then the vial was closed 

with a screw cap. After stirring for 10 minutes, α-iodo-γ-lactam (43.1 mg, 0.15 mmol) and 

internal standard (4,4′-di-tert-butylbiphenyl, 9.8 mg, 0.037 mmol) were added.  After the 

reaction mixture became homogenous (ca. 5 minutes), cesium carbonate (58.7 mg, 0.18 

mmol) was added.  The vial was recapped and wrapped entirely with electrical tape to prevent 

access of light.  The reaction mixture was stirred vigorously at 24 ○C in the glovebox.  After 

72 hours, the crude reaction mixture was filtered through a syringe filter.  An aliquot of 50 

μL of filtrate was used for 1H NMR analysis.  Pure sample of product and remaining 

electrophile were obtained by preparative TLC (silica gel, 40% Et2O in hexanes). The ee was 

determined by HPLC Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 

mL/min flow-rate; retention times for product: 22.5 min (minor), 26.5 min (major); retention 

times for electrophile 13.9 min (minor) and 15.0 min (major). 

The above reaction was done in duplicate giving; run 1: 73% yield and 90% ee of product, 

3% ee of remaining electrophile; run 2: 75% yield and 90% ee, 3% ee of remaining 

electrophile. 
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Stoichiometric Competence of (R,R)−4.5. In a nitrogen-atmosphere glovebox, an oven-

dried 4 mL amber-glass vial was charged with (R,R)−4.5 (9.0 mg, 0.01 mmol), a stir bar and 

a solution of α-iodo-γ-lactam (5.7 mg, 0.02 mmol) and internal standard (4,4′-di-tert-

butylbiphenyl, 4.8 mg, 0.018 mmol) in 150 μL of d8-toluene then the vial was closed with a 

screw cap.  Reaction mixture was stirred vigorously for 15 minutes at 24 ○C in the glovebox.  

After this, the crude reaction mixture was removed from the glovebox, diluted with 2 mL of 

d1-chloroform and filtered through a syringe filter.  An aliquot of 50 μL of filtrate was used 

for 1H NMR analysis.  Pure sample of product and remaining electrophile were obtained by 

preparative TLC (silica gel, 40% Et2O in hexanes).  The ee was determined by HPLC Diacel 

CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; retention times 

for product: 22.5 min (minor), 26.5 min (major); retention times for electrophile 13.9 min 

(minor) and 15.0 min (major). 1H NMR and HPLC analysis showed 94% yield, 87% product 

ee and 68% ee of remaining starting material. 

 

Inversion of Configuration at α-Center.  In a nitrogen-atmosphere glovebox, two parallel 

reactions were prepared.  Two oven-dried 4 mL amber-glass vials were charged with 

(R,R)−4.5 (9.0 mg, 0.01 mmol), a stir bar. A solution of (S)-α-bromo-γ-lactam (3.6 mg, 0.015 

mmol) and internal standard(4,4′-di-tert-butylbiphenyl, 3.9 mg, 0.015 mmol) in 150 μL of 

d8-toluene was added to the first vial and a solution of (R)-α-bromo-γ-lactam (3.6 mg, 0.015 

mmol) and internal standard (4,4′-di-tert-butylbiphenyl, 3.9 mg, 0.015 mmol) in 150 μL of 

d8-toluene was added to the second vial. Vials were closed with a screw cap. Reaction 

mixtures were stirred vigorously for 4 hours at 24 ○C in glovebox.  Aliquots were taken from 

reaction mixtures at different reaction times and were immediately quenched by dilution with 
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2 mL of dichloromethane and filtered through a syringe filter.  The composition of each 

sample was determined by 1H NMR analysis.   Pure samples of product and electrophile were 

obtained by preparative TLC (silica gel, 40% Et2O in hexanes). Their ee’s were determined 

by HPLC Diacel CHIRALPAK® IC column; 35% i-PrOH in hexanes, 1.0 mL/min flow-rate; 

retention times for: (S)-product 22.5 min, (R)-product 26.5 min; retention times for (S)-

electrophile 12.8 min and (S)-electrophile 17.0 min. See Table 4.4 for results. 

 

 

Non-linear Effects: General Procedure. In a nitrogen-atmosphere glovebox, an oven-dried 

4 mL amber-glass vial was charged with a 50 μL aliquot containing 3-methyl-1H-indole 

(0.05 mmol), mesitylcopper (0.005 mmol) and internal standard (4,4′-di-tert-butylbiphenyl, 

0.011 mmol) in m-xylene taken from a stock solution.  A 100 μL aliquot containing 4.1 of 

known ee (0.01 mmol) in m-xylene was taken from a stock solution was then added. The vial 

was charged with a stir bar and stirred for 10 minutes. After this time, a solution α-iodo-γ-

lactam or α-bromo-γ-lactam (0.075 mmol) in 150 μL of m-xylene was added. The vial was 

recapped and wrapped entirely with electrical tape to prevent access of light. The reaction 

mixture was stirred vigorously for 4 hours at 24 ○C in glovebox. After this time, the crude 

reaction mixture was removed from the glovebox, diluted with 2 mL of d1-chloroform, and 

filtered through syringe filter. An aliquot of 50 μL of filtrate was used for 1H NMR analysis.  

Pure sample of product was obtained by preparative TLC (silica gel, 40% Et2O in hexanes). 
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The ee was determined by HPLC Diacel CHIRALPAK® IC column; 35% i-PrOH in 

hexanes, 1.0 mL/min flow-rate; retention times for product: 22.5 min (minor), 26.5 min 

(major). This study was performed with 24 parallel reactions containing different ee’s of 4.1 

and α-iodo-γ-lactam (12 reactions) or α-bromo-γ-lactam (12 reactions). The precise ee of 4.1 

in each reaction was determined by HPLC Diacel CHIRALPAK® AD column; 40% i-PrOH 

in hexanes, 1.0 mL/min flow-rate; retention times for: (S)−4.1 5.0 min, (R)−4.1 15.4 min. 

 

Figure 4.7. Non-linear effects study: a) Blue Plot: dependence of ee of product on ee of 4.1 

in reaction with racemic α-iodo-γ-lactam, b) Red Plot: dependence of ee of product on ee of 

4.1 in reaction with racemic α-bromo-γ-lactam. Yield of all reactions in this study were 

9−10%. 
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Stoichiometric Competition Studies I.  In a nitrogen-atmosphere glovebox, an oven-dried 

4 mL amber-glass vial was charged with 3-methyl-1H-indole (1.1 mg, 0.0083 mmol), 5-

bromo-3-methyl-1H-indole (1.7 mg, 0.0083 mmol), 5-methoxy-3-methyl-1H-indole (1.3 

mg, 0.0083 mmol), a stir bar and a solution of mesitylcopper (4.6 mg, 0.025 mmol) in 200 

μL m-xylene then closed with a screw cap. After stirring for 10 minutes, a solution of (S)−4.1 

(17.7 mg, 0.05 mmol) and internal standard (4,4′-di-tert-butylbiphenyl, 4.4 mg, 0.017 mmol) 

in 200 μL of m-xylene was added and the vial was recapped. After stirring for additional 10 

minutes, (R)-α-bromo-γ-lactam (3.0 mg, 0.0125 mmol) was added and the vial was recapped 

and wrapped entirely with electrical tape to prevent access of light. Reaction mixture was 

stirred vigorously at 24 ○C in the glovebox.  Aliquots were taken from reaction mixture at 

different reaction times and were immediately quenched by dilution with 2 mL of 

dichloromethane and filtered through a syringe filter. The composition of each sample was 

determined by LCMS and 1H NMR analysis. Quantitative analysis was done from integrating 

signals from an Agilent 1290 UHPLC-LCMS (5→95% acetonitrile in H2O) at 280 nm; 

retentions times: 5-methoxy-3-methyl-1H-indole (4.6) 3.5 min, 3-methyl-1H-indole (4.7) 3.8 

min, 5-bromo-3-methyl-1H-indole (4.8) 5.0 min, (S)-3-(5-methoxy-3-methyl-1H-indol-1-

yl)-1-phenylpyrrolidin-2-one (4.9) 5.3 min, (S)-3-(3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.10) 5.5 min, (S)-3-(5-bromo-3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.11) 6.3 min, 4,4′-di-tert-butylbiphenyl (IS) 9.1 min. Selectivity 

was determined by relative rates (kX/kH) calculated using the relationship described by Ingold 

and Shaw shown below.29 cH(t=0) is initial conc. of 3-methyl-1H-indole and cH is conc. of 3-

methyl-1H-indole at a given time. cx and cx(t=0) denote conc. of 5-substituted-3-methyl-1H-

indole. 
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Table 4.5. Integral areas of LC-MS analysis. 

 LC-MS Area % (UV at 280 nm) 

Time (min) 4.6 4.7 4.8 4.9 4.10 4.11 IS 

0 24.92 21.37 16.91 n/a n/a n/a 36.80 

5 7.95 13.35 14.7 19.30 8.70 1.18 34.84 

10 10.04 15.00 15.61 15.72 6.64 0.72 36.29 

15 3.70 9.60 13.2 24.7 13.03 1.50 34.28 

20 4.23 10.1 13.45 24.18 12.31 1.48 34.25 

30 7.68 13.12 15.53 19.42 8.47 1.00 34.80 

24 h 1.25 5.86 12.96 28.86 18.10 3.43 29.54 

 

Table 4.6. Integral areas of LC-MS analysis divided by integral of the internal standard. 

 LC-MS Area/IS (UV at 280 nm) 

Time (min) 4.6 4.7 4.8 4.9 4.10 4.11 

0 0.68 0.58 0.46 n/a n/a n/a 

5 0.28 0.41 0.43 0.43 0.18 0.03 

10 0.23 0.38 0.42 0.55 0.25 0.02 

15 0.11 0.28 0.39 0.72 0.38 0.04 

20 0.12 0.29 0.39 0.71 0.36 0.04 

30 0.22 0.38 0.45 0.56 0.24 0.03 

24 h 0.04 0.20 0.44 0.98 0.61 0.12 
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Table 4.7. Relative rates for 5-substituted 3-methylindole nucleophiles. 

Time (min) 
     

0 0.62 0.23 0.03 2.70 0.12 

5 0.90 0.34 0.07 2.63 0.19 

10 1.09 0.42 0.09 2.62 0.21 

15 1.84 0.73 0.18 2.52 0.24 

20 1.70 0.68 0.16 2.51 0.23 

30 1.12 0.43 0.03 2.60 0.07 

24 h 2.77 1.07 0.05 2.58 0.04 

 

kBr/kH = 0.23      kOMe/kH = 2.54 

 

 

 

Stoichiometric Competition Studies II. In a nitrogen-atmosphere glovebox, an oven-dried 

4 mL amber-glass vial was charged with 3-methyl-1H-indole (3.3 mg, 0.025 mmol), 5-

bromo-3-methyl-1H-indole (5.2 mg, 0.025 mmol), 5-methoxy-3-methyl-1H-indole (4.2 mg, 

0.025 mmol), a stir bar and a solution of mesitylcopper (4.6 mg, 0.025 mmol) in 200 μL m-

xylene then closed with a screw cap. After stirring for 10 minutes, a solution of (S)−4.1 (17.7 

mg, 0.05 mmol) and internal standard (4,4′-di-tert-butylbiphenyl, 4.4 mg, 0.017 mmol) in 

200 μL of m-xylene was added and the vial was recapped. After stirring for additional 10 
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minutes, (R)-α-bromo-γ-lactam (6.0 mg, 0.025 mmol) in 600 μL of m-xylene was added 

and the vial was recapped and wrapped entirely with electrical tape to prevent access of light. 

Reaction mixture was stirred vigorously at 24 ○C in the glovebox.  Aliquots were taken from 

reaction mixture at different reaction times and were immediately quenched by dilution with 

2 mL of dichloromethane and filtered through a syringe filter. The composition of each 

sample was determined by LCMS and 1H NMR analysis. Quantitative analysis was done 

from integrating signals from Agilent 1290 UHPLC-LCMS (5→95% acetonitrile in H2O) at 

280 nm; retentions times: 5-methoxy-3-methyl-1H-indole (4.6) 3.5 min, 3-methyl-1H-indole 

(4.7) 3.8 min, 5-bromo-3-methyl-1H-indole (4.8) 5.0 min, (S)-3-(5-methoxy-3-methyl-1H-

indol-1-yl)-1-phenylpyrrolidin-2-one (4.9) 5.3 min, (S)-3-(3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.10) 5.5 min, (S)-3-(5-bromo-3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.11) 6.3 min, 4,4′-di-tert-butylbiphenyl (IS) 9.1 min. 

kOMe/kH = 2.16      kBr/kH = 0.59 

 

 

Catalytic Competition Studies. In a nitrogen-atmosphere glovebox, an oven-dried 4 mL 

amber-glass vial was charged with 3-methyl-1H-indole (6.6 mg, 0.05 mmol), 5-bromo-3-

methyl-1H-indole (10.4 mg, 0.05 mmol), 5-methoxy-3-methyl-1H-indole (8.4 mg, 0.05 

mmol), a stir bar and a solution of mesitylcopper (0.9 mg, 0.005 mmol) in 200 μL of m-

xylene then closed with a screw cap. After stirring for 10 minutes, a solution of (S)−4.1 (3.5 

mg, 0.01 mmol) and internal standard (4,4′-di-tert-butylbiphenyl, 6.8 mg, 0.026 mmol) in 

200 μL of m-xylene was added and the vial was recapped. After stirring for additional 10 
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minutes, (R)-α-bromo-γ-lactam (12.0 mg, 0.05 mmol) in 600 μL of m-xylene was added.  

After stirring for 4 minutes, cesium carbonate (32.6 mg, 0.10 mmol) was added and the vial 

was recapped and wrapped entirely with electrical tape to prevent access of light. Reaction 

mixture was stirred vigorously at 24 ○C in the glovebox.  Aliquots were taken from reaction 

mixture at different reaction times and were immediately quenched by dilution with 2 mL of 

dichloromethane and filtered through a syringe filter. The composition of each sample was 

determined by LCMS and 1H NMR analysis. Quantitative analysis was done from integrating 

signals from Agilent 1290 UHPLC-LCMS (5→95% acetonitrile in H2O) at 280 nm; 

retentions times: 5-methoxy-3-methyl-1H-indole (4.6) 3.5 min, 3-methyl-1H-indole (4.7) 3.8 

min, 5-bromo-3-methyl-1H-indole (4.8) 5.0 min, (S)-3-(5-methoxy-3-methyl-1H-indol-1-

yl)-1-phenylpyrrolidin-2-one (4.9) 5.3 min, (S)-3-(3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.10) 5.5 min, (S)-3-(5-bromo-3-methyl-1H-indol-1-yl)-1-

phenylpyrrolidin-2-one (4.11) 6.3 min, 4,4′-di-tert-butylbiphenyl (IS) 9.1 min. 

kOMe/kH = 2.03      kBr/kH = 0.88 
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4.4.6. Determination of Absolute Stereochemistry 

 

 

 

(R,R)−4.5.  A suitable crystal for X-ray crystallography was grown by slow evaporation of 

solvent from a saturated solution of sample in a benzene/pentane mixture.    

Disordered solvent omitted for clarity 

 Low-temperature diffraction data (-and -scans) were collected on a Bruker AXS 

D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo 

K radiation ( = 0.71073 Å) from an IμS micro-source for the structure of compound 

P15143. The structure was solved by direct methods using SHELXS and refined against F2 

on all data by full-matrix least squares with SHELXL-2014 using established refinement 

techniques.30 All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were 

included into the model at geometrically calculated positions and refined using a riding 

model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times 
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the U value of the atoms they are linked to (1.5 times for methyl groups). All disordered 

atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and 

displacement parameters as well as rigid bond restraints for anisotropic displacement 

parameters.  

 (R,R)−4.5 crystallizes in the tetragonal space group P43 with one molecule in the 

asymmetric unit along with half a molecule of pentane. The pentane molecule is located near 

a crystallographic 43-screw axis. It was modeled as a disorder with two unique components 

in addition to the components generated by the 43-screw axis.  

 

 

One of two molecules in the asymmetric unit shown 

(3R)-1-(4-Methoxyphenyl)-3-(3-methyl-1H-indol-1-yl)pyrrolidin-2-one.  A suitable 

crystal for X-ray crystallography was grown by vapor diffusion with diethyl ether and 

hexane.   

 A crystal of C20H20N2O2 was selected and mounted in a nylon loop in immersion oil. 

All measurements were made on a Bruker Photon diffractometer with filtered Cu-Kα 

radiation at a temperature of 100 K. Using Olex231, the structure was solved with the ShelXS 

structure solution program using Direct Methods and refined with the ShelXL refinement 
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package30 using Least Squares minimization. The absolute stereochemistry was 

determined on the basis of the absolute structure parameter. 

 

 

(3S)-3-(3-Methyl-1H-indol-1-yl)-1-phenylpyrrolidin-2-one.  A suitable crystal for X-ray 

crystallography was grown by vapor diffusion with diethyl ether and hexane. 

The more-ordered of two molecules in the asymmetric unit shown 

 A crystal of C19H18N2O was selected and mounted in a nylon loop in immersion oil. 

All measurements were made on a Bruker Photon diffractometer with filtered Cu-Kα 

radiation at a temperature of 100 K. Using Olex231, the structure was solved with the ShelXS 

structure solution program using Direct Methods and refined with the ShelXL refinement 

package30 using Least Squares minimization. All disordered atoms were refined with the help 

of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as 

rigid bond restraints for anisotropic displacement parameters. The absolute stereochemistry 

was determined on the basis of the absolute structure parameter. 
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(3S)-3-(3,4-dihydro-1H-carbazol-9(2H)-yl)-1-phenylpyrrolidin-2-one.  A suitable crystal 

for X-ray crystallography was grown by vapor diffusion with diethyl ether and hexane. 

 A crystal of C22H22N2O was selected and mounted in a nylon loop in immersion oil. 

All measurements were made on a Bruker Photon diffractometer with filtered Cu-Kα 

radiation at a temperature of 100 K. Using Olex231, the structure was solved with the ShelXS 

structure solution program using Direct Methods and refined with the ShelXL refinement 

package30 using Least Squares minimization. The absolute stereochemistry was determined 

on the basis of the absolute structure parameter. 
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(3S)-3-Bromo-1-phenylpyrrolidin-2-one.  A suitable crystal for X-ray crystallography was 

grown by vapor diffusion with isopropanol and hexane. 

 A crystal of C10H10BrNO was selected and mounted in a nylon loop in immersion 

oil. All measurements were made on a Bruker APEX2 diffractometer with filtered Mo-Kα 

radiation at a temperature of 100 K. Using Olex231, the structure was solved with the ShelXS 

structure solution program using Direct Methods and refined with the ShelXL refinement 

package30 using Least Squares minimization. The absolute stereochemistry was determined 

on the basis of the absolute structure parameter. 

4.5. Notes and References 

1. (a) Amines: Synthesis, Properties and Applications, S. A. Lawrence, Ed.; Cambridge 

University Press: Cambridge, 2004; (b) Ricci, A. in Amino Group Chemistry. From 

Synthesis to the Life Sciences, Ricci, A. Ed.; Wiley-VCH: Weinheim, 2008. 

2. Chiral Amine Synthesis; Nugent, T. C. Ed.; Wiley–VCH: Weinheim, 2010. 

3. For recent reviews of asymmetric reductions of imines and enamides, see: (a) Nugent, T. 

C.; Mohamed, E.-S. Adv. Synth. Catal. 2010, 352, 753–819. (b) Kobayashi, S.; Mori, Y.; 

Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626–2704. (c) Xie, J.-H.; Zhu, S.-F.; 



 

 

180 

Zhou, Q.-L. Chem. Rev. 2011, 111, 1713–1760. (d) Wang, C.; Xiao, J. Top. Curr. 

Chem. 2013, 343, 261−282. 

4. For recent reviews of asymmetric hydroaminations, see: (a) Huang, L.; Arndt, M.; 

Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596–2697. (b) Soradova, 

Z.; Sebesta, R. ChemCatChem 2016, 8, 1–9. (c) Pirnot, M. T.; Wang, Y.-M.; Buchwald, 

S. L. Angew. Chem. Int. Ed. 2016, 55, 48–57. 

5. For recent reviews of asymmetric C−H aminations, see: (a) Collet, F.; Lescot, C.; Dauban, 

P. Chem. Soc. Rev. 2011, 40, 1926–1936. (b) Lebel, H.; Trudel, C.; Spitz, C. Chem. 

Commun. 2012, 48, 7799–7801. (c) Gephart, R. T.; Warren, T. H. Organometallics 2012, 

31, 7728–7752. (d) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173–6214. (e) Park, Y.; 

Kim, Y.; Chang, C. Chem. Rev. 2017, 117, 9247–9301. 

6. For recent reviews of transition-metal catalyzed cross-couplings reactions to form Csp2−N 

bonds, see: (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 2, 27–50. (b) Qiao, J. X.; 

Lam, P. Y. S. Synthesis 2011, 2011, 829–856. (c) Beletskaya, I. P.; Cheprakov, A. V. 

Organometallics 2012, 31, 7753–7808 (d) Bariwal, J.; Eycken, E. V. der. Chem. Soc. 

Rev. 2013, 42, 9283–9303. (e) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301. (e) 

Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 

43, 3525–3550. (f) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564–

12649.  

7. For early examples of reactions of unactivated alkyl electrophiles (all are primary alkyl 

bromides) that proceed in the presence of a substoichiometric quantity of a transition 

metal, see: (a) Kozuka, M.; Tsuchida, T.; Mitani, M. Tetrahedron Lett. 2005, 46, 

4527−4530. (b) Tu, X.; Fu, X.; Jiang, Q.; Liu, Z.; Chen, G. Dyes Pigm. 2011, 88, 39−43. 

(c) Aydin, A.; Kaya, I. Electrochim. Acta 2012, 65, 104−114. 

8. For examples of transition-metal catalyzed reactions between amines and alkyl 

electrophiles, see: (a) Peacock, D. M.; Roos, C. B.; Hartwig, J. F. ACS Cent. Sci. 2016, 

2, 647−652. (b) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature 2018, 559, 83–88. 

(c) Mao, R.; Balon, J.; Hu, X. Angew. Chem. Int. Ed. 2018, 57, 9501–9504. 

9. For examples of photoinduced copper-catalyzed alkylation of amines from our group, see: 

(a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647–651. (b) 



 

 

181 

Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Angew. Chem. 

Int. Ed. 2013, 52, 5129–5133. (c) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. 

C.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 2162–2167. (d) Zhao, W.; Wurz, R. P.; Peters, 

J. P.; Fu, G. C. J. Am. Chem. Soc., 2017, 139, 12153–12156. (e) Matier, C. D.; Schwaben, 

J.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc., 2017, 139, 17707–17710. (f) Ahn, J. M.; 

Peters, J. C.; Fu, G. C. J. Am. Chem. Soc., 2017, 139, 18101–18106. 

10. Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. 

Science 2016, 351, 681–684. 

11. (a) Thorsett, E. D.; Harris, E. E.; Aster, S. D.; Peterson, E. R.; Snyder, J. P.; Springer, J. 

P.; Hirshfield, J.; Tristram, E. W.; Patchett, A. A. J. Med. Chem. 1986, 29, 251−260. (b) 

Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Ha-Uong, T.; Minami, N. K.; Owens, T. 

D.; Tamura, S. Y.; Goldman, E. A.; Siev, D. V.; Ardecky, R. J.; Carpenter, S. H.; Ge, Y.; 

Richard, B. M.; Nolan, T. G.; Håkanson, K.; Tulinsky, A.; Nutt, R. F.; Ripka, W. C. J. 

Med. Chem. 1996, 39, 4531−4536. (c) Tamura, S. Y.; Goldman, E. A.; Brunck, T. K.; 

Ripka, W. C.; Edward Semple, J. Bioorg. Med. Chem. Lett. 1997, 7, 331−336. (d) Bell, 

I. M.; Gallicchio, S. N.; Abrams, M.; Beese, L. S.; Beshore, D. C.; Bhimnathwala, H.; 

Bogusky, M. J.; Buser, C. A.; Culberson, J. C.; Davide, J.; Ellis-Hutchings, M.; 

Fernandes, C.; Gibbs, J. B.; Graham, S. L.; Hamilton, K. A.; Hartman, G. D.; Heimbrook, 

D. C.; Homnick, C. F.; Huber, H. E.; Huff, J. R.; Kassahun, K.; Koblan, K. S.; Kohl, N. 

E.; Lobell, R. B.; Lynch, Joseph J.; Robinson, R.; Rodrigues, A. D.; Taylor, J. S.; Walsh, 

E. S.; Williams, T. M.; Zartman, C. B. J. Med. Chem. 2002, 45, 2388−2409. (e) Kemp, 

J. A.; Leeson, P. D. Trends Pharmacol. Sci. 1993, 14, 20−25. 

12. It was found in the absence of a copper catalyst the electrophile reacts with (R)−4.1 in m-

xylene at room temperature to form a 1:1 mixture of diastereomers of the corresponding 

phosphonium salt. A similar salt could not be detected by 31P NMR analysis in an 

unmodified reaction mixture (Table 4.1, entry 1).  When the isolated phosphonium salt 

(mixture of diastereomers) was used in place of the electrophile in the C–N cross-

coupling (without catalyst), no product formation was observed. 



 

 

182 

13. (a) Phosphine 4.1 is commercially available from Strem Chemicals. (b) For the 

original synthesis of 4.1 see: Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. 

Org. Lett. 2005, 7, 2333−2335.  

14. (a) Under the optimized conditions, 5-membered lactams containing chloride, tosylate, 

and mesylate leaving groups did not undergo conversion, while the one with nonaflate 

provided high yield but low ee. (b) 3-Iodopyrrolidin-2-ones with bulkier R groups, such 

as 2,6-diisopropylphenyl and 2,4,6-trimethylphenyl, afforded low yields. (c) 3-Iodo-4,4-

dimethyl-1-phenylpyrrolidin-2-one and acyclic α-iodoamides gave low yields (<5%). (d) 

7-Membered α-iodolactam gave predominantly the elimination product. 

15. To avoid complications with the racemization of the starting material, 3-bromo-1-

phenylpyrrolidin-2-one was used in these experiments. 

16. (a) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N. Angew. Chem. Int. Ed. 

2007, 46, 2086−2089. (b) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; 

Chen, H.-H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 11124−11127. 

17. To avoid additional complications with the kinetic resolution and the racemization of the 

starting material, an enantiopure matched 3-bromo-1-phenylpyrrolidin-2-one was used 

in these experiments. For the details of the calculation of the relative rates, see the 

supporting information. 

18. In a catalytic competition reaction with these three differently 5-substituted 3-

methylindoles a similar selectivity trend was observed. This result suggests that the 

selectivity in the catalytic reaction is predominantly governed by the intrinsic relative 

reactivities of the complexes of type 4.5, and not by the relative rates of the deprotonation 

of the nucleophiles or the relative stability of these complexes. Due to the heterogeneity 

of the reaction mixture, we have not been able to perform meaningful kinetics studies. 

19. Huang, Z.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 1028 –1032. 

20. Lin, X.; Chen, W.; Qiu, Z.; Guo, L.; Zhu, W.; Li, W.; Wang, Z.; Zhang, W.; Zhang, Z.; 

Rong, Y.; Zhang, M.; Yu, L.; Zhong, S.; Zhao, R.; Wu, X.; Wong, J. C.; Tang, G., J. 

Med. Chem. 2015, 58, 2809−2820. 

21. Kamal, A.; Ramana, K. V.; Ramana, A. V.; Babu, A. H Tetrahedron: Asymmetry 2003, 

14, 2587−2594. 



 

 

183 

22. Sedlák, M.; Hanusek, J.; Macháček, V.; Hejtmánková, L. J. Heterocyc. Chem. 2002, 

39, 1105−1107. 

23. Okawara, T.; Matsuda, T.; Furukawa, M.  Chem. Pharm. Bull. 1982, 30, 1225−1233. 

24. Mesitylcopper was prepared using procedure described previously in literature: Tsuda, 

T.; Yazawa, T.; Watanabe, K.; Fujii, T.; Saegusa, T. J. Org. Chem.  1981, 46, 192−194. 

25. (R)-SITCP [(R)−4.1] and (S)-SITCP [(S)−4.1] were purchased from Strem Chemicals. 

26. Cs2CO3 used in all experiments was of 99.995% purity. 

27. Wu, H.-C.; Yu, J.-Q.; Spencer, J. B. Org. Lett. 2004, 6, 4675−4678. 

28. Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333−2335. 

29. (a) Ingold, C. K.; Shaw, F. R. J. Chem. Soc. 1927, 2918−2926.  (b) Yau, H. M.; Croft, A. 

K.; Harper, J. B. Chem. Comm. 2012, 48, 8937−8939. 

30. Sheldrick, G. M. Acta. Crystallogr. A. 2008, 64, 112. 

31. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J Appl 

Crystallogr. 2009, 42, 339.  



 

 

184 

C h a p t e r  5   

ENANTIOCONVERGENT CROSS-COUPLINGS OF ALKYL 

ELECTROPHILES: THE CATALYTIC ASYMMETRIC SYNTHESIS OF 

ORGANOSILANES 

Adapted with permission from: 

Schwarzwalder, G. M.‡; Matier, C. D.‡; Fu, G. C. Enantioconvergent Cross-Coupling of 

Alkyl Electrophiles: The Catalytic Asymmetric Synthesis of Organosilanes. Angew. 

Chem. Int. Ed. 2019, 58, 3571–3574. doi: 10.1002/anie.201814208 

© 2019 John Wiley and Sons 

5.1 Introduction 

 Significant progress has been described in the development of methods for the 

synthesis of carbon–carbon bonds through enantioconvergent substitution reactions of 

racemic alkyl electrophiles with carbon nucleophiles.1–3 To date, high enantioselectivity has 

only been observed in cross-couplings wherein the electrophile bears either a directing group 

(5.I) or a p/π orbital proximal to the leaving group (5.II) (Figure 5.1).4 

 

Figure 5.1.  Background: Racemic electrophiles used in enantioconvergent cross-couplings.  

5.I and 5.II: Prior work. 5.III: This study. 
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 We have been interested in expanding the scope of enantioconvergent cross-

couplings to include electrophiles that lack either of the features illustrated in 5.I and 5.II 

(Figure 5.1).  An example of such an electrophile is α-halosilane 5.III,[5,6] enantioconvergent 

cross-coupling of which would provide chiral organosilanes.  Chiral organosilanes (e.g., 5.17 

and 5.28) are of interest in fields such as medicinal chemistry, since replacement of carbon 

with silicon can lead to improved pharmacological properties (e.g., enhanced lipophilicity 

and potency) without element-specific toxicity due to the presence of silicon;9 to date, there 

are limited methods for the direct catalytic asymmetric synthesis of such organosilanes.10,11  

In this report, we establish that a chiral nickel catalyst can achieve the asymmetric synthesis 

of organosilanes via the cross-coupling of racemic α-halosilanes with alkylzinc reagents 

under simple and mild conditions (eq 5.1), thereby demonstrating that enantioconvergent 

cross-couplings are possible with electrophiles that lack both a directing group and a 

proximal p/π orbital (Figure 5.1). 
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5.2 Results and Discussion 

5.2.1. Optimization 

Table 5.1.  Effect of reaction parameters. 

 

 Upon examining a range of reaction parameters, we determined that NiBr2diglyme 

and a chiral pybox ligand (5.3) can accomplish the enantioconvergent Negishi cross-coupling 

illustrated in Table 1 in good yield and high ee (78% yield, 92% ee; entry 1).  In the absence 

of NiBr2diglyme, virtually no carbon–carbon bond formation is observed (entry 2), whereas 

in the absence of ligand 5.3, the coupling proceeds in low yield (entry 3).  When the reaction 
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is run under an atmosphere of air or in the presence of water, formation of product is 

inefficient, although the ee is good (entries 4 and 5).  Other ligands, including representative 

examples of classes of ligands that have been useful in other nickel-catalyzed 

enantioconvergent cross-couplings,1 are less effective than ligand 5.3 (entries 6–9).   

 

Table 5.2.  Scope with respect to the electrophile. 
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Although the corresponding alkyl iodide cross-couples with fairly good yield and ee 

under these conditions (entry 10), use of the alkyl chloride leads to essentially no carbon–

carbon bond formation (entry 11).  A lower catalyst loading can be employed with only a 

small loss in yield and no loss in enantioselectivity (entry 12). 

5.2.2. Scope of Reactivity 

 α-Bromosilanes that bear a variety of functional groups serve as suitable electrophiles 

in these nickel-catalyzed enantioconvergent cross-couplings (Table 5.2).  Thus, an alkene, 

ether, or an aryl chloride, as well as a saturated or an unsaturated oxygen or nitrogen 

heterocycle, can be present, with little impact on ee.  Although branching in the α position of 

the alkyl group of the electrophile inhibits cross-coupling, branching in the β position is 

tolerated (entries 7–9).  The enantioconvergent coupling proceeds with an array of 

substituents on silicon, with lower yields observed as the steric demand of the electrophile 

increases (entries 11–14).12 

Table 5.3.  Scope with respect to the nucleophile. 
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 Organozinc reagents that include various functional groups, such as an alkyl 

fluoride, an ether, a nitrile, and an ester, can be employed as nucleophiles in these nickel-

catalyzed enantioconvergent cross-couplings (entries 1–5 of Table 5.3).  The cross-coupling 

is sensitive to steric effects–while branching at the γ position is tolerated (entry 6), little 

carbon–carbon bond formation occurs if there is branching at the α or the β position.   On a 

gram scale, the coupling illustrated in entry 2 proceeds in 88% ee and 89% yield (1.66 g of 

product).13 

5.2.3. Mechanistic Insights 

 Our working hypothesis is that this process may be following a pathway analogous 

to that elucidated for nickel/pybox-catalyzed enantioconvergent Negishi arylations of 

propargylic halides, wherein nickel complex 5.C is the predominant resting state of nickel 

during catalysis, and complexes 5.A, 5.B, and 5.D do not accumulate (Figure 5.2).14 

Consistent with this suggestion, ESI–MS analysis of a cross-coupling (the model reaction in 

Table 5.1) at partial conversion reveals a strong signal at m/z = 488.2, consistent with the  

 

 

Figure 5.2.  Outline of a possible mechanism. 
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presence of [L*Ni–R1]+ (5.C in Figure 5.2; L* = 5.3; R1 = 2-(1,3-dioxolan-2-yl)ethyl; 

exact mass: 488.2).  Similarly, the EPR spectrum of a reaction at partial conversion indicates 

that odd-electron nickel intermediates such as 5.A or 5.D do not accumulate to a significant 

(>2%) extent. 

 An enantioenriched α-bromosilane does not racemize under the standard conditions 

(eq 5.2),15,16 indicating that C–Br bond cleavage is irreversible and that the chiral catalyst is 

processing both enantiomers of the electrophile in the stereoconvergent coupling of a racemic 

electrophile (no dynamic kinetic resolution).  When an enantioconvergent cross-coupling of 

a racemic electrophile is stopped at partial conversion, the unreacted electrophile is still 

racemic, indicating that the chiral catalyst is not discriminating between the enantiomeric 

electrophiles (no kinetic resolution).17 

 

5.3. Conclusions 

 Thus, we have expanded the scope of enantioconvergent cross-couplings beyond 

electrophiles that bear a directing group or a p/π orbital proximal to the leaving group.  

Specifically, we have determined that a chiral nickel/pybox catalyst can achieve 

stereoconvergent cross-couplings of racemic α-bromosilanes with alkylzinc reagents under 

simple and mild conditions to afford enantioenriched organosilanes, a useful family of target 

compounds.  Our mechanistic observations indicate that the chiral catalyst reacts with both 

enantiomers of the electrophile, without kinetic resolution, to provide the enantioenriched 

product via irreversible C–Br bond cleavage.  This work sets the stage for substantial 

enlargement of the range of racemic electrophiles that can be employed in enantioconvergent 

cross-couplings, free of the need for a directing group or p/π conjugation. 
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5.4. Experimental Section 

5.4.1 General Information 

 All manipulations of air‐sensitive materials were carried out in oven-dried glassware 

under an Ar or N2 atmosphere using standard Schlenk or glovebox techniques. Glovebox 

manipulations were carried out under N2 atmosphere. THF and CH2Cl2 were purified and 

dried using a solvent purification system that contained activated alumina under argon. 

Unless otherwise noted, all commercially available reagents were used as received, including 

NiBr2•diglyme (Sigma-Aldrich) and DMA (anhydrous, 99.8%, Sigma-Aldrich). 1H and 13C 

NMR data were collected on a Bruker 400 MHz, a Varian 300 MHz, or a Varian 500 MHz 

spectrometer at ambient temperature unless otherwise noted and are reported in terms of 

chemical shift (δ ppm) relative to residual CHCl3 (δ 7.26 ppm, 1H NMR; δ 77.36 ppm, 13C 

NMR). Data for NMR are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, 

p = pentet, sept = septuplet, m = multiplet, br = broad. IR spectra were obtained on a Perkin 

Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and reported in 

frequency of absorption (cm-1). HR-MS were acquired by the Caltech Mass Spectral Facility 

using a JEOL JMS-600H MS in fast atom bombardment (FAB+) or electron ionization (EI+) 

mode, or using a Waters LCT Premier XE TOF MS in electrospray ionization (ESI+) mode. 

LC-MS were obtained on an Agilent 5975C GC/MSD System in electron ionization (EI+) 

mode. Optical rotations were measured on a Jasco P-2000 polarimeter operating on the 

sodium D-line (589 nm) using a 100 mm pathlength cell. Analytical SFC was performed on 

a Mettler SFC supercritical CO2 analytical chromatography system utilizing CHIRALPAK 

(AD-H, IC-3) or CHIRALCEL (OD-H, OJ) columns (4.6 mm x 25 cm) obtained from Daicel 

Chemical Industries, Ltd. Preparative SFC was performed on a JASCO SFC supercritical 

CO2 preparative chromatography system utilizing a CHIRALPAK AD-H column (10 mm x 

250 cm) obtained from Daicel Chemical Industries, Ltd. GC analyses were obtained on an 

Agilent 6890N GC.  Flash column chromatography was performed using silica gel 

(SiliaFlash® P60, particle size 40-63 μm, Silicycle). Thin-layer chromatography (TLC) and 

preparatory TLC was performed using Merck silica gel 60 F254 pre-coated plates (0.25 mm) 
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and visualized by UV fluorescence quenching and KMnO4 staining. X-ray 

crystallographic analysis was obtained from the Caltech X-Ray Crystallography Facility 

using a Bruker APEX-II CCD diffractometer. ESI–MS experiments were conducted by 

direct injection using a Thermo Scientific LTQ linear ion trap mass spectrometer. X-band 

EPR measurements were collected with a Bruker EMX spectrometer. EPR simulation was 

conducted using EasySpin.18 

5.4.2. Preparation of (R,R)− or (S,S)−5.3. 

 

 

2,6-Bis(isobutyl-2-oxazolin-2-yl)pyridine. The title compound was prepared by a literature 

known procedure from D- or L-lecuinol (1.0 g, 8.6 mmol).19 Isolated 0.78 g (51% yield) of 

white, flaky solid after recrystallization from heptane. 

1H NMR (300 MHz, CDCl3) δ 8.16 (d, J = 7.8 Hz, 2H), 7.85 (dd, J = 8.2, 7.5 Hz, 1H), 4.61 

(dd, J = 9.5, 8.1 Hz, 2H), 4.48 – 4.33 (m, 2H), 4.09 (t, J = 8.2 Hz, 2H), 1.86 (dq, J = 13.3, 6.7 

Hz, 2H), 1.73 (dt, J = 13.5, 6.8 Hz, 2H), 1.39 (dt, J = 13.3, 7.2 Hz, 2H), 0.97 (t, J = 6.3 Hz, 

12H). 

This data corresponds to the literature reported spectrum.19 

 

  



 

 

193 

5.4.3. Preparation of Nucleophiles 

 

Preparation of Alkylzinc Reagents. An oven-dried 40 mL vial was charged with Zn0
 

powder (3.0 equiv) and a cross-shaped stir bar. The vial was then sealed with a pierceable 

septum cap and placed under vacuum on a Schlenk line.  The vial was then heated with a 

heat gun for ca. 4 mins and then allowed to cool to room temperature under vacuum. The 

Schlenk line was turned to static and the reaction vial was fitted with an Ar-filled balloon. 

The Schlenk line was then opened to allow argon to purge through the system for 15 mins. 

Next, the Schlenk line was removed and anhydrous DMA was added (total volume of DMA 

should be 1.0 mL per 1.0 mmol of alkyl bromide, including solvent used in the next step). 

To a stirring suspension of Zn0 powder was added a solution of I2 (0.050 equiv in 1.0 mL 

DMA) and the mixture was allowed to stir until the yellow color dissipated. Then, alkyl 

bromide (1.0 equiv) was added, vacuum grease was applied to the outside of the septum to 

avoid leakage, and the reaction mixture was warmed to 50 °C and stirred for 16 h. After 

cooling to room temperature, the Ar-filled balloon is removed and the crude reaction mixture 

was brought into an N2 atmosphere glovebox. The suspension was passed through syringe 

filters to remove residual zinc powder. The alkylzinc bromide solution can be titrated with a 

known amount of I2 in 1.0 mL THF. 

 Note: The alkylzinc bromide solutions can become viscous. Filtering first through a 

1-micron syringe filter and then a 0.45-micron syringe filter makes filtration easier. Often, 

the 0.45-micron syringe filters become clogged, therefore 2-3 may be required. The 

appearance of alkylzinc bromide solutions can range from nearly colorless to dark red or 

dark green solutions. Ideal alkylzinc bromide concentrations should range from 0.70 M to 

1.0 M. 
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4.2.4. Preparation of Electrophiles  

The yields have not been optimized. 

 

 

Chloro(ethyl)diphenylsilane. The title compound was prepared by a literature known 

procedure from dichlorodiphenylsilane (52.6 mL, 250 mmol).20 Isolated 19.4 g (31% yield) 

of colorless oil after vacuum distillation. 

LR‐MS (EI+) m/z [M]+• calcd for C14H16ClSi: 246.1, found: 246.1, 219.1, 217.1, 183.1. 

This data corresponds to the literature reported mass spectrum.20 

 

 

 

Preparation of aldehyde precursors. Aldehydes that were not commercially available were 

prepared from a literature known procedure.21 

 

 

 

3-(4-Methoxyphenyl)propanal. The title compound was prepared from 3-(4-

methoxyphenyl)propan-1-ol (2.5 mL, 15 mmol). The title compound was purified by flash 

chromatography with silica gel (10% EtOAc in hexanes). Isolated 2.3 g (92% yield) of 

colorless oil. 

1H NMR (300 MHz, CDCl3) δ 9.81 (t, J = 1.4 Hz, 1H), 7.16 – 7.06 (m, 2H), 6.89 – 6.77 (m, 

2H), 3.78 (d, J = 0.7 Hz, 3H), 2.91 (t, J = 7.3 Hz, 2H), 2.80 – 2.69 (m, 2H). 
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This data corresponds to the literature reported spectrum.22 

 

 

 

3-(4-Chlorophenyl)propanal. The title compound was prepared from 3-(4-

chlorophenyl)propan-1-ol (3.4 g, 20 mmol). The title compound was purified by flash 

chromatography with silica gel (5 → 10% EtOAc in hexanes). Isolated 2.5 g (74% yield) of 

pale yellow oil. 

1H NMR (300 MHz, CDCl3) δ 9.81 (t, J = 1.3 Hz, 1H), 7.30 – 7.20 (m, 2H), 7.16 – 7.08 (m, 

2H), 3.00 – 2.88 (m, 2H), 2.84 – 2.68 (m, 2H). 

This data corresponds to the literature reported spectrum.23 

 

 

 

2-Cyclohexylacetaldehyde. The title compound was prepared from 2-cyclohexylethan-1-ol 

(4.2 mL, 30 mmol). The title compound was then nominally pure after workup and used 

without further purification in General Procedure A.  

1H NMR (300 MHz, CDCl3) δ 9.75 (t, J = 2.4 Hz, 1H), 2.29 (dd, J = 6.8, 2.3 Hz, 2H), 1.99 – 

1.79 (m, 1H), 1.77 – 1.59 (m, 5H), 1.38 – 0.92 (m, 5H). 

This data corresponds to the literature reported spectrum.24 

 

 

 

General Procedure A: Preparation of α-Hydroxysilanes. Procedure for substrates 

containing at least one aryl substituents on the silyl group. A flame-dried round bottom flask 

was charged with a glass-covered magnetic stirring bar, Li0 metal pellets (2.3 equiv), and 
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R3SiCl (if solid) and then sealed with a rubber septum cap.  The flask was then evacuated 

and backfilled with an Ar-filled balloon three times. THF (1.0 M with respect to R3SiCl) was 

then added followed by R3SiCl (if liquid) as a steady stream.  The resulting mixture was 

stirred for 16 h at room temperature (note: after ca. 20 mins of stirring, the reaction mixture 

will rapidly turn dark green or brown).  

A solution of aldehyde (0.75 equiv) was prepared in THF (0.38 M with respect to aldehyde) 

in a flame-dried round bottom flask under N2 atmosphere. The resulting solution was cooled 

to −78 °C and the previously generated lithiathed silane solution was then added dropwise. 

The reaction mixture was then warmed to room temperature and stirred for 16 h. The mixture 

was quenched with saturated NH4Cl solution (1.0 mL per 1.0 mmol of R3SiCl) and extracted 

with EtOAc three times. Organic phases were collected, dried with MgSO4, filtered, 

concentrated and the resulting α-hydroxysilane was purified with flash chromatography. α-

Hydroxysilane can be monitored via TLC using KMnO4 stain. 

 

 

 

1-(Ethyldiphenylsilyl)hexan-1-ol. The title compound was synthesized according to 

General Procedure A from n-hexanal (0.83 mL, 6.8 mmol) and chloro(ethyl)diphenylsilane 

(2.2 g, 9.0 mmol). The product was purified by flash chromatography with silica gel (2 → 

5% EtOAc in hexanes).  Isolated 1.6 g (76% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.66–7.53 (m, 4H), 7.47–7.31 (m, 6H), 3.98 (dd, J = 9.4, 3.2 

Hz, 1H), 1.66–1.52 (m, 3H), 1.38–1.11 (m, 8H), 1.06 (t, J = 7.8 Hz, 3H), 0.87 (t, J = 6.9 Hz, 

3H); 

13C NMR (101 MHz, CDCl3) δ 135.8, 135.7, 134.1, 133.9, 129.8, 129.7, 128.17, 128.16, 

64.2, 33.8, 31.8, 26.9, 22.9, 14.3, 7.8, 3.1; 

FT‐IR (thin flim) 3368, 3070, 2962, 1428, 1261, 1094, 1030, 863 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C20H27OSi: 311.1831, found: 311.1835. 
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1-(Ethyldiphenylsilyl)-2-phenylethan-1-ol. The title compound was synthesized according 

to General Procedure A from 2-phenylacetaldehyde (0.60 mL, 5.1 mmol) and 

chloro(ethyl)diphenylsilane (1.7 g, 6.8 mmol). The product was purified by flash 

chromatography with silica gel (0 → 6% EtOAc in hexanes).  Isolated 0.41 g (36% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.69 – 7.63 (m, 4H), 7.44 – 7.37 (m, 6H), 7.33 – 7.27 (m, 

2H), 7.25 – 7.18 (m, 3H), 4.16 (dd, J = 12.0, 2.7 Hz, 1H), 2.93 (dd, J = 14.0, 2.7 Hz, 1H), 

2.76 (dd, J = 14.0, 11.9 Hz, 1H), 1.53 (s, 1H), 1.27 – 1.17 (m, 2H), 1.08 (t, J = 7.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 139.9, 135.29, 135.85, 134.6, 134.01, 133.97, 129.93, 

129.91, 129.4, 128.9, 128.31, 128.28, 128.25, 126.8, 65.4, 40.3, 7.9, 3.2. 

FT‐IR (thin flim) 3546, 3068, 2913, 1454, 1428, 1260, 1111, 1012, 856 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+ calcd for C22H25OSi: 333.1675, found: 333.1646. 

 

 

 

1-(Ethyldiphenylsilyl)pent-4-en-1-ol. The title compound was synthesized according to 

General Procedure A from pent-4-enal (0.50 mL, 5.1 mmol) and 

chloro(ethyl)diphenylsilane (1.7 g, 6.8 mmol). The product was purified by flash 

chromatography with silica gel (2 → 4% EtOAc in hexanes).  Isolated 0.42 g (27% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ δ 7.65 – 7.54 (m, 4H), 7.47 – 7.33 (m, 6H), 5.95 – 5.73 (m, 

1H), 5.04 (dq, J = 17.1, 1.7 Hz, 1H), 4.98 (ddt, J = 10.1, 2.1, 1.2 Hz, 1H), 4.07 – 3.94 (m, 

1H), 2.44 – 2.25 (m, 1H), 2.15 (dtdd, J = 14.5, 7.4, 2.6, 1.3 Hz, 1H), 1.77 – 1.66 (m, 2H), 

1.30 – 1.10 (m, 3H), 1.05 (t, J = 7.6 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 138.9, 135.9, 135.8, 135.0, 134.0, 133.9, 129.92, 129.89j, 

128.3, 115.5, 63.7, 33.1, 31.7, 7.9, 3.1; 

FT‐IR (thin flim) 3436, 3069, 2958, 1428, 1261, 1111, 1011, 912 cm‐1; 
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HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C19H23OSi: 295.1518, found: 295.1515. 

 

 

 

 1-(Ethyldiphenylsilyl)-3-phenylpropan-1-ol. The title compound was synthesized 

according to General Procedure A from 3-phenylpropanal (0.99 mL g, 7.5 mmol) and 

chloro(ethyl)diphenylsilane (2.5 g, 10 mmol). The product was purified by flash 

chromatography with silica gel (5 → 10% EtOAc in hexanes).  Isolated 1.2 g (46% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.62 – 7.52 (m, 4H), 7.46 – 7.33 (m, 6H), 7.31 – 7.25 (m, 

2H), 7.22 – 7.13 (m, 3H), 3.99 (ddd, J = 9.8, 5.3, 3.9 Hz, 1H), 2.94 (ddd, J = 14.1, 8.6, 5.8 

Hz, 1H), 2.66 (ddd, J = 13.6, 8.7, 7.3 Hz, 1H), 2.00 – 1.84 (m, 2H), 1.19 – 1.10 (m, 3H),1.03 

(t, J = 7.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.3, 135.85, 135.79, 133.84, 133.76, 130.0, 129.9, 128.9, 

128.7, 128.3, 128.3, 126.1, 63.6, 35.8, 33.6, 7.8, 3.1. 

FT‐IR (thin flim) 3568, 3447, 3067, 2954, 1602, 1496, 1454, 1428, 1379, 1232, 1190, 1111, 

1027, 955, 914 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C23H25OSi: 345.1669, found: 345.1668. 

 

 

 

1-(Ethyldiphenylsilyl)-3-(4-methoxyphenyl)propan-1-ol. The title compound was 

synthesized according to General Procedure A from 3-(4-methoxyphenyl)propanal (1.1 g, 

6.8 mmol) and chloro(ethyl)diphenylsilane (2.2 g, 9.0 mmol). The product was purified by 

flash chromatography with silica gel (5 → 15% EtOAc in hexanes).  Isolated 2.2 g (87% 

yield) of colorless oil. 
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1H NMR (400 MHz, CDCl3) δ 7.61–7.51 (m, 4H), 7.45–7.33 (m, 6H), 7.11–7.04 (m, 2H), 

6.85–6.79 (m, 2H), 3.97 (dt, J = 9.8, 4.9 Hz, 1H), 3.79 (s, 3H), 2.87 (ddd, J = 13.9, 8.2, 6.1 

Hz, 1H), 2.61 (dt, J = 13.8, 8.2 Hz, 1H), 1.94–1.83 (m, 2H), 1.20–1.11 (m, 2H), 1.02 (t, J = 

7.7 Hz, 3H). Alcohol proton not observed. 

13C NMR (101 MHz, CDCl3) δ 158.0, 135.8, 135.7, 134.2, 133.8, 133.7, 129.83, 129.81, 

129.7, 128.22, 128.21, 114.0, 63.4, 55.5, 35.8, 32.5, 7.8, 3.0. 

FT‐IR (thin flim) 3448, 3068, 2954, 1611, 1517, 1458, 1427, 1300, 1246, 1177, 1110, 1035, 

808 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C24H27SiO2: 375.1780, found: 375.17890. 

 

 

 

3-(4-Chlorophenyl)-1-(ethyldiphenylsilyl)propan-1-ol. The title compound was 

synthesized according to General Procedure A from 3-(4-chlorophenyl)propanal (1.1 g, 6.8 

mmol) and chloro(ethyl)diphenylsilane (2.2 g, 9.0 mmol). The product was purified by flash 

chromatography with silica gel (5 → 7% EtOAc in hexanes).  Isolated 1.1 g (44% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.60–7.51 (m, 4H), 7.43–7.33 (m, 6H), 7.23 (d, J = 8.4 Hz, 

2H), 7.08 (d, J = 8.4 Hz, 2H), 3.94 (q, J = 6.3 Hz, 1H), 2.90 (dt, J = 14.0, 7.1 Hz, 1H), 2.64 

(dt, J = 14.0, 8.4 Hz, 1H), 1.93–1.82 (m, 2H), 1.19–1.12 (m, 3H), 1.02 (t, J = 7.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 140.6, 135.71, 135.66, 133.6, 133.5, 131.7, 130.2, 129.93, 

129.91, 128.7, 128.28, 128.27, 63.2, 35.5, 32.7, 7.7, 3.0. 

FT‐IR (thin flim) 3434, 3068, 2956, 1492, 1428, 1260, 1111, 1092, 1015, 808 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C23H24ClOSi: 379.1285, found: 379.1288. 
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2-Cyclohexyl-1-(ethyldiphenylsilyl)ethan-1-ol. The title compound was synthesized 

according to General Procedure A from 2-cyclohexylacetaldehyde (0.82 g, 6.5 mmol) and 

chloro(ethyl)diphenylsilane (2.14 g, 8.66 mmol). The product was purified by flash 

chromatography with silica gel (0 → 5% EtOAc in hexanes).  Isolated 2.24 g (>99% yield, 

nominally pure) of a pale yellow oil. 

1H NMR (300 MHz, CDCl3) δ 7.67–7.51 (m, 4H), 7.46–7.31 (m, 6H), 4.15 (ddd, J = 11.4, 

5.6, 2.2 Hz, 1H), 1.90 (d, J = 12.5 Hz, 1H), 1.78–1.45 (m, 7H), 1.42–1.34 (m, 1H), 1.23–1.11 

(m, 4H), 1.08–0.99 (m, 5H), 0.83–0.68 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 135.8, 135.7, 134.0, 133.9, 129.74, 129.71, 128.2, 128.1, 

60.8, 41.4, 34.9, 34.1, 32.1, 26.9, 26.7, 26.4, 7.7, 3.0. 

FT‐IR (thin flim) 3445, 3069, 2913, 1427, 1236, 1189, 1110, 1013, 872 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+ calcd for C22H31OSi: 339.2144, found: 339.2153. 

 

 

 

1-(Ethyldiphenylsilyl)-2-(tetrahydro-2H-pyran-4-yl)ethan-1-ol. The title compound was 

synthesized according to General Procedure A from 2-(tetrahydro-2H-pyran-4-

yl)acetaldehyde (0.87 g, 6.75 mmol) and chloro(ethyl)diphenylsilane (2.22 g, 9.00 mmol). 

The product was purified by flash chromatography with silica gel (20 → 40% EtOAc in 

hexanes).  Isolated 1.55 g (67% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.64–7.54 (m, 4H), 7.44–7.34 (m, 6H), 4.14 (ddd, J = 12.0, 

5.8, 2.4 Hz, 1H), 3.96 (ddd, J = 11.3, 4.3, 1.6 Hz, 1H), 3.91 (ddd, J = 11.3, 4.5, 1.6 Hz, 2H), 

3.36 (tdd, J = 11.7, 7.8, 2.2 Hz, 2H), 1.89–1.73 (m, 2H), 1.63–1.56 (m, 1H), 1.54–1.46 (m, 

1H), 1.41 (ddd, J = 14.4, 9.7, 2.3 Hz, 1H), 1.36–1.28 (m, 1H), 1.20–1.13 (m, 2H), 1.05 (t, J 

= 7.7 Hz, 3H), 1.00 (d, J = 6.0 Hz, 1H); 
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13C NMR (101 MHz, CDCl3) δ 135.63, 135.57, 133.6, 133.4, 129.83, 129.80, 128.184, 

128.176, 68.24, 68.18, 60.2, 40.7, 34.3, 32.0, 31.5, 7.6, 2.8. 

FT‐IR (thin flim) 3436, 3068, 2913, 1724, 1428, 1386, 1300, 1261, 1190, 1110, 1013, 872 

cm‐1; 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C21H27O2Si: 339.1780, found: 339.1774. 

 

 

 

Tert-butyl 4-(2-(ethyldiphenylsilyl)-2-hydroxyethyl)piperidine-1-carboxylate. The title 

compound was synthesized according to General Procedure A from tert-butyl 4-(2-

oxoethyl)piperidine-1-carboxylate (1.53 g, 6.75 mmol) and chloro(ethyl)diphenylsilane 

(2.22 g, 9.00 mmol). The product was purified by flash chromatography with silica gel (20 

→ 30% EtOAc in hexanes).  Isolated 2.40 g (81% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.62–7.53 (m, 4H), 7.46–7.32 (m, 6H), 4.12 (ddd, J = 12.0, 

5.8, 2.2 Hz, 1H), 4.08 (br s, 2H), 2.66 (t, J = 10.6 Hz, 2H), 1.84 (d, J = 12.5 Hz, 1H), 1.79–

1.67 (m, 1H), 1.64–1.50 (m, 2H), 1.44 (s, 9H), 1.39 (ddd, J = 14.4, 9.8, 2.2 Hz, 1H), 1.21–

1.08 (m, 3H), 1.04 (t, J = 7.6 Hz, 3H), 1.07–1.01 (m, 1H), 1.01–0.95 (m, 1H); 

13C NMR (101 MHz, CDCl3) δ 155.1, 135.7, 135.6, 133.6, 133.5, 129.92, 129.89, 128.3, 

79.4, 60.6, 44.2 (br), 40.4, 33.5, 32.6, 31.1, 28.7, 7.7, 2.9; 

FT‐IR (thin flim) 3447, 3069, 2916, 1694, 1668, 1428, 1366, 1279, 1246, 1167, 1111, 1011, 

974, 974, 869 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+ calcd for C26H38NSiO3: 440.2621, found: 440.2632. 
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1-(Ethyldiphenylsilyl)-3-(5-methylfuran-2-yl)propan-1-ol. The title compound was 

synthesized according to General Procedure A from 3-(5-methylfuran-2-yl)propanal (0.95 

mL, 7.1 mmol) and chloro(ethyl)diphenylsilane (2.4 g, 9.5 mmol). The product was purified 

by flash chromatography with silica gel (5 → 10% EtOAc in hexanes).  Isolated 1.9 g (77% 

yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.66–7.51 (m, 4H), 7.48–7.30 (m, 6H), 5.88–5.80 (m, 2H), 

3.98 (dd, J = 11.5, 2.6 Hz, 1H), 2.85 (ddd, J = 13.6, 8.2, 5.2 Hz, 1H), 2.69 (dt, J = 15.5, 7.8 

Hz, 1H), 2.27 (s, 3H), 2.03–1.92 (m, 1H), 1.91–1.78 (m, 1H), 1.44 (s, br, 1H), 1.23–1.13 (m, 

2H), 1.04 (t, J = 7.8 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 154.0, 150.6, 135.73, 135.67, 133.73, 133.67, 129.82, 

129.79, 128.19, 128.18, 106.1, 106.0, 63.3, 32.4, 25.7, 13.8, 7.7, 3.0; 

FT‐IR (thin flim) 3293, 3070, 2959, 1590, 1458, 1428, 1261, 1118, 1012, 829 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+ calcd for C22H27O2Si: 351.1780, found: 351.1782. 

 

 

 

 1-(Methyldiphenylsilyl)-3-phenylpropan-1-ol. The title compound was synthesized 

according to General Procedure A from 3-phenylpropanal (1.4 mL, 11 mmol) and 

chloro(methyl)diphenylsilane (2.4 mL, 14 mmol). The product was purified by flash 

chromatography with silica gel (5 → 10% EtOAc in hexanes). Isolated 2.1 g (73% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.57 – 7.49 (m, 4H), 7.46 – 7.32 (m, 6H), 7.31 – 7.25 (m, 

2H), 7.22 – 7.14 (m, 3H), 3.93 (dd, J = 8.9, 5.3 Hz, 1H), 2.95 (ddd, J = 14.1, 8.5, 6.4 Hz, 1H), 

2.66 (dt, J = 13.6, 8.1 Hz, 1H), 2.02 – 1.85 (m, 2H), 1.19 (s, 1H), 0.61 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 142.3, 135.4, 135.3, 135.1, 134.8, 130.0, 129.96, 128.9, 

128.7, 128.37, 128.36, 126.1, 64.2, 35.5, 33.6, -6.4. 

FT‐IR (thin flim) 3566, 3443, 3068, 2924, 1602, 1496, 1454, 1428,1253, 1112, 1028, 914 

cm‐1; 

HR‐MS (FAB+) m/z [M+H]+ calcd for C22H25OSi: 333.1675, found: 333.1680. 

 

 

 

3-Phenyl-1-(trimethylsilyl)propan-1-one.  The title compound was synthesized according 

to a literature procedure from 3-phenylpropanal (6.6 mL, 50 mmol). Isolated 1.8 g (18% 

yield over 3 steps) of a pale yellow oil.25 

1H NMR (300 MHz, CDCl3) δ 7.32 – 7.23 (m, 2H), 7.22 – 7.14 (m, 3H), 2.98 – 2.76 (m, 

4H), 0.19 (d, J = 0.7 Hz, 9H). 

This data corresponds to the literature reported spectrum.25 

 

 

 

General Procedure B: Preparation of α-Dithiane Silanes. Procedure for substrates 

lacking aryl substituents on the silyl group. α-Dithiane silanes were prepared from a literature 

known procedure.26 
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(1,3-Dithian-2-yl)triethylsilane. The title compound was synthesized according to General 

Procedure B from chlorotriethylsilane (16.8 mL, 100 mmol). The product was purified by 

high vacuum distillation.  Isolated 16.9 g (87% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 3.82 (s, 1H), 2.94 – 2.83 (m, 2H), 2.78 – 2.66 (m, 2H), 2.18 

– 1.95 (m, 2H), 1.01 (t, J = 7.9 Hz, 9H), 0.70 (q, J = 7.9, 6H). 

13C NMR (101 MHz, CDCl3) δ 32.5, 31.8, 26.8, 7.8, 2.5.  

FT‐IR (thin flim) 2951, 2875, 1458, 1420, 1260, 1240, 1163, 1084, 1019, 778 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C10H21S2Si: 233.0854, found: 233.0846. 

 

 

 

Tert-butyl(1,3-dithian-2-yl)dimethylsilane. The title compound was synthesized according 

to General Procedure B from tert-butyl(chloro)dimethylsilane (15.1 g, 100 mmol). The 

product was purified by high vacuum distillation.  Isolated 16.2 g (83 yield) of a pale purple 

oil. 

1H NMR (300 MHz, CDCl3) δ 3.80 (s, 1H), 2.98 – 2.76 (m, 2H), 2.69 (ddd, J = 14.0, 4.1, 3.1 

Hz, 2H), 2.17 – 1.90 (m, 2H), 0.96 (d, J = 0.6 Hz, 9H), 0.10 (d, J = 0.5 Hz, 6H). 

This data corresponds to the literature reported spectrum.27 

 

 

 

General Procedure C: Preparation of Acyl Silanes. Procedure for substrates lacking aryl 

substituents on the silyl group. The alkylation of α-dithiane silanes was done according to a 
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literature known procedure.28 In a flame-dried round bottom flask, n-BuLi (1.05 equiv) 

was added dropwise to a stirring solution of α-dithiane silane (1.00 equiv) in THF (0.4 M 

with respect to α-dithiane silane) at room temperature under N2 atmosphere. The solution 

was then stirred for 10 mins at room temperature and then cooled to −40 °C. Then, (2-

bromoethyl)benzene (1.10 equiv) was added dropwise. The reaction mixture was then 

warmed to room temperature and left to stir for an additional 2 h.  The reaction was then 

quenched with saturated NH4Cl solution, extracted with Et2O three times, and the organic 

phases were collected, dried with MgSO4, filtered and concentrated.  The crude material was 

then used in the next step without further purification. 

 The deprotection of α-alkyl-α-dithiane silanes was done according to a literature 

known prodcedure.25 In a round bottom flask, crude α-alkyl-α-dithiane silane was dissolved 

in a 4:1 mixture of THF/H2O (0.9 M with respect to α-dithiane silane). The solution was 

cooled to 0 °C, and CaCO3 (15.6 equiv) was added followed by I2 (12.0 equiv), which was 

added in portions. The reaction was warmed to room temperature and stirred for 16 h. The 

reaction was quench by added Et2O (15 mL per mmol of α-dithiane silane) and saturated 

Na2S2O3 solution. The biphasic mixture was filtered through Celite and placed in a separatory 

funnel (note: if iodine color still remains, wash with additional saturated Na2S2O3 solution). 

The organic layer was separated, dried with MgSO4, filtered, and concentrated.  The acyl 

silane can be used in General Procedure D without further purification. 

 

 

 

3-Phenyl-1-(triethylsilyl)propan-1-one. The title compound was synthesized according to 

General Procedure C from (1,3-dithian-2-yl)triethylsilane (2.2 g, 9.2 mmol). The product 

was purified by flash chromatography with silica gel (0 → 3% EtOAc in hexanes).  Isolated 

1.1 g (48% yield over two steps) of colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.31 – 7.24 (m, 2H),  7.22 – 7.13 (m, 3H), 2.95 – 2.76 (m, 

4H), 0.96 (t, J = 7.8 Hz, 9H), 0.73 (q, J = 7.9 Hz, 6H). 

This data corresponds to the literature reported spectrum.29 
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1-(Tert-butyldimethylsilyl)-3-phenylpropan-1-one. The title compound was synthesized 

according to General Procedure C from tert-butyl(1,3-dithian-2-yl)dimethylsilane (4.0 g, 

17.1 mmol). The product was purified by flash chromatography with silica gel (0 → 2% 

EtOAc in hexanes).  Isolated 4.25 g (>99% yield of nominally pure material over two steps) 

of white solid. 

1H NMR (300 MHz, CDCl3) δ 7.40 – 7.30 (m, 2H), 7.30 – 7.20 (m, 3H), 3.07 – 2.78 (m, 

4H), 0.99 (s, 9H), 0.25 (s, 6H). 

This data corresponds to the literature reported spectrum.30 

 

 

 

General Procedure D: Reduction of Acyl Silanes. Procedure for substrates lacking aryl 

substituents on the silyl group. In a round bottom flask with charged with a stir bar, slowly 

dissolve LiAlH4 (4.9 equiv) in THF (ca. 40 mL per mmol of acyl silane) at 0 °C and stir for 

10 mins. Dissolve acyl silane in THF (ca. 1.5 mL per mmol of acyl silane) and add with a 

gentle, steady stream to the LiAlH4 solution at 0 °C. Warm the reaction mixture to room 

temperature and stir for 3 h. The reaction was then quenched and worked up using the Feiser 

method. 

 

 

 

3-Phenyl-1-(trimethylsilyl)propan-1-ol. The title compound was synthesized according to 

General Procedure D from 3-phenyl-1-(trimethylsilyl)propan-1-one (1.8 g, 8.9 mmol). The 

product was purified by flash chromatography with silica gel (5 → 10% EtOAc in hexanes).  

Isolated 1.8 g (92% yield) of colorless oil. 
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1H NMR (400 MHz, CDCl3) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 3.39 – 3.29 (m, 

1H), 2.99 – 2.87 (m, 1H), 2.71 – 2.61 (m, 1H), 1.91 – 1.74 (m, 2H), 1.11 (s, 1H), 0.05 (s, 

9H). 

This data corresponds to the literature reported spectrum.31 

 

 

 

3-Phenyl-1-(triethylsilyl)propan-1-ol. The title compound was synthesized according to 

General Procedure D from 3-phenyl-1-(triethylsilyl)propan-1-one (1.1 g, 4.4 mmol). The 

product was purified by flash chromatography with silica gel (5% EtOAc in hexanes).  

Isolated 0.82 g (75% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.12 (m, 3H), 3.51 (dd, J = 11.2, 

2.9 Hz, 1H), 2.96 (ddd, J = 13.7, 9.8, 5.0 Hz, 1H), 2.66 (tdd, J = 13.6, 8.7, 6.9 Hz, 1H), 1.96 

– 1.75 (m, 2H), 1.50 (s, 1H), 1.03 – 0.93 (m, 9H), 0.68 – 0.49 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 140.6, 126.83, 126.77, 124.1, 62.5, 34.3, 31.9, 5.9, 0.0. 

FT‐IR (thin flim) 3448, 3026, 2953, 1708, 1604, 1496, 1455, 1415, 1260, 1239, 1018, 912 

cm‐1; 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C15H25OSi: 249.1675, found: 249.1679. 

 

 

 

1-(Tert-butyldimethylsilyl)-3-phenylpropan-1-ol. The title compound was synthesized 

according to General Procedure D from 1-(tert-butyldimethylsilyl)-3-phenylpropan-1-one 

(3.5 g, 14 mmol). The product was purified by flash chromatography with silica gel (0 → 

15% EtOAc in hexanes). Isolated 2.4 g (67% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ δ 7.34 – 7.27 (m, 2H), 7.25 – 7.15 (m, 3H), 3.53 (dd, J = 9.8, 

4.2 Hz, 1H), 2.96 (ddd, J = 13.6, 9.0, 6.0 Hz, 1H), 2.65 (ddd, J = 13.5, 8.9, 7.2 Hz, 1H), 1.96 

– 1.77 (m, 2H), 1.08 (s, 1H), 0.94 (s, 9H), 0.02 (s, 3H), -0.04 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 142.6, 128.82, 128.77, 126.2, 64.4, 36.7, 33.8, 27.4, 17.1, 

-7.2, -8.2. 

FT‐IR (thin flim) 3467, 3027, 2954, 1604, 1496, 1471, 1362, 1255, 1024, 914, 832 cm‐1; 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C15H25OSi: 249.1675, found: 249.1673. 

 

 

 

General Procedure E: Preparation of α-Bromosilanes. PPh3 (1.50 equiv) and imidazole 

(1.50 equiv) were dissolved in CH2Cl2, and the resulting solution was cooled to 0 °C.  At this 

temperature, I2 (1.50 equiv) was added in portions, and the resulting mixture was stirred for 

10 min. Next, α-hydroxysilane (1.00 equiv) was added, and the resulting mixture was 

allowed to warm to room temperature and stirred overnight.  Then, the reaction mixture was 

quenched with H2O. The product was extracted with EtOAc, dried with Na2SO4, filtered, 

and concentrated.  The filtrate was concentrated in vacuo, and the residue was purified by 

flash chromatography on silica gel to afford the pure product. 

 

 

 

(1-Bromohexyl)(ethyl)diphenylsilane. The title compound was synthesized according to 

General Procedure E from 1-(ethyldiphenylsilyl)hexan-1-ol (1.6 g, 5.1 mmol). The product 

was purified by flash chromatography with silica gel (2 → 5% EtOAc in hexanes).  Isolated 

1.5 g (76% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.66–7.54 (m, 4H), 7.49–7.34 (m, 6H), 3.81 (dd, J = 11.9, 2.7 

Hz, 1H), 1.94–1.81 (m, 1H), 1.79–1.62 (m, 2H), 1.47–1.35 (m, 1H), 1.35–1.22 (m, 5H), 

1.22–1.12 (m, 1H), 1.04 (t, J = 7.8 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 136.0, 135.8, 133.5, 133.0, 130.0, 129.9, 128.1, 128.0, 41.2, 

33.6, 31.1, 29.1, 22.8, 14.3, 7.6, 4.4. 

FT‐IR (thin flim) 3070, 2959, 1458, 1428, 1261, 1106, 1029, 802 cm‐1. 
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HR‐MS (FAB+) m/z [M]+• calcd for C20H27Si79Br: 374.1065, found: 374.1060. 

 

 

 

(1-Bromo-2-phenylethyl)(ethyl)diphenylsilane. The title compound was synthesized 

according to General Procedure E from 1-(ethyldiphenylsilyl)-2-phenylethan-1-ol (0.70 g, 

2.1 mmol). The product was purified by flash chromatography with silica gel (20% CHCl3 

in hexanes).  Isolated 0.64 g (76% yield) of colorless oil 

1H NMR (400 MHz, CDCl3) δ 7.74 – 7.60 (m, 4H), 7.52 – 7.38 (m, 6H), 7.32 – 7.21 (m, 

3H), 7.20 – 7.15 (m, 2H), 3.98 (dd, J = 12.3, 2.7 Hz, 1H), 3.36 (dd, J = 15.2, 2.6 Hz, 1H), 

2.86 (dd, J = 15.1, 12.3 Hz, 1H), 1.41 – 1.19 (m, 2H), 1.13 – 0.99 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 140.4, 136.1, 135.9, 133.2, 132.7, 130.3, 130.2, 129.1, 128.6, 

128.4, 128.3, 126.9, 40.9, 40.0, 7.7, 4.6. 

FT‐IR (thin flim) 3068, 2962, 1588, 1496, 1454, 1427, 1261, 1105, 1030, 801 cm‐1. 

HR‐MS (FAB+) m/z [M]+• calcd for C22H23Si79Br: 394.0752, found: 394.0762. 

 

 

 

(1-Bromopent-4-en-1-yl)(ethyl)diphenylsilane. The title compound was synthesized 

according to General Procedure E from 1-(ethyldiphenylsilyl)pent-4-en-1-ol (1.1 g, 3.6 

mmol). The product was purified by flash chromatography with silica gel (5 → 20% CHCl3 

in hexanes).  Isolated 0.87 g (68% yield) of colorless oil 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.55 (m, 4H), 7.48 – 7.35 (m, 6H), 5.72 (dddd, J = 

17.1, 10.1, 7.7, 5.9 Hz, 1H), 5.11 – 4.98 (m, 2H), 3.83 (dd, J = 12.3, 2.5 Hz, 1H), 2.49 – 2.33 

(m, 1H), 2.27 – 2.15 (m, 1H), 2.01 – 1.89 (m, 1H), 1.80 (dddd, J = 14.9, 12.3, 7.8, 4.5 Hz, 

1H), 1.36 – 1.19 (m, 2H), 1.07 – 0.98 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 137.3, 136.1, 135.9, 133.4, 132.9, 130.13, 130.08, 128.24, 

128.18, 116.5, 40.0, 33.2, 32.8, 7.6, 4.5. 
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FT‐IR (thin flim) 3070, 2961, 1640, 1589, 1488, 1428, 1261, 1110, 1028, 916, 803 cm‐1. 

HR‐MS (FAB+) m/z [M]+• calcd for C19H23Si79Br: 358.0752, found: 358.0746. 

 

 

 

(1-Bromo-3-phenylpropyl)(ethyl)diphenylsilane. The title compound was synthesized 

according to General Procedure E from 1-(ethyldiphenylsilyl)-3-phenylpropan-1-ol (1.2 g, 

3.5 mmol). The product was purified by flash chromatography with silica gel (0 → 5% 

EtOAc in hexanes). Isolated 1.1 g (75% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.59 – 7.53 (m, 2H), 7.49 – 7.26 (m, 10H), 7.25 – 7.19 (m, 

1H), 7.18 – 7.11 (m, 2H), 3.72 (dd, J = 12.2, 2.2 Hz, 1H), 3.00 (ddd, J = 13.8, 7.9, 4.3 Hz, 

1H), 2.73 (dt, J = 13.6, 8.1 Hz, 1H), 2.24 – 2.11 (m, 1H), 2.01 (dddd, J = 15.0, 12.1, 7.8, 4.3 

Hz, 1H), 1.31 – 1.16 (m, 2H), 1.03 – 0.88 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 140.8, 135.7, 135.5, 133.0, 132.4, 129.8, 129.7, 128.8, 128.4, 

127.87, 127.86, 126.1, 39.3, 35.1, 34.7, 7.2, 4.2. 

FT‐IR (thin flim) 3069, 2961, 1589, 1496, 1454, 1428, 1261, 1110, 802 cm‐1. 

HR‐MS (FAB+) m/z [M−C2H5]
+• calcd for C21H20Si79Br: 379.0518, found: 379.0504. 

 

 

 

(1-Bromo-3-(4-methoxyphenyl)propyl)(ethyl)diphenylsilane. The title compound was 

synthesized according to General Procedure E from 1-(ethyldiphenylsilyl)-3-(4-

methoxyphenyl)propan-1-ol (2.2 g, 5.8 mmol). The product was purified by flash 

chromatography with silica gel (0 → 5% EtOAc in hexanes).  Isolated 1.7 g (65% yield) of 

colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.65–7.58 (m, 2H), 7.55–7.49 (m, 2H), 7.49–7.34 (m, 6H), 

7.17–7.08 (m, 2H), 6.93–6.85 (m, 2H), 3.84 (s, 3H), 3.77 (dd, J = 12.1, 2.3 Hz, 1H), 2.97 
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(ddd, J = 13.6, 7.4, 4.3 Hz, 1H), 2.74 (dt, J = 13.8, 8.2 Hz, 1H), 2.19 (dtd, J = 15.1, 7.8, 

2.2 Hz, 1H), 2.03 (dddd, J = 15.0, 12.0, 7.6, 4.3 Hz, 1H), 1.39–1.24 (m, 2H), 1.03 (t, J = 7.7 

Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 158.2, 135.9, 135.7, 133.2, 133.0, 132.6, 130.00, 129.95, 

129.9, 128.1, 128.0, 114.0, 55.4, 39.5, 35.5, 33.9, 7.5, 4.4. 

FT‐IR (thin flim) 3070, 2955, 1611, 1512, 1428, 1301, 1427, 1177, 1111, 1037, 807 cm‐1. 

HR‐MS (FAB+) m/z [M]+• calcd for C23H29Si2
81Br: 440.0991, found: 440.0997. 

 

 

 

(1-Bromo-3-(4-chlorophenyl)propyl)(ethyl)diphenylsilane. The title compound was 

synthesized according to General Procedure E from 3-(4-chlorophenyl)-1-

(ethyldiphenylsilyl)propan-1-ol (1.1 g, 3.0 mmol). The product was purified by flash 

chromatography with silica gel (5 → 10% EtOAc in hexanes).  Isolated 0.63 g (48% yield) 

of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.60–7.54 (m, 2H), 7.49–7.32 (m, 8H), 7.26 (d, J = 8.4 Hz, 

2H), 7.08 (d, J = 8.4 Hz, 2H), 3.67 (dd, J = 12.2, 2.3 Hz, 1H), 2.95 (ddd, J = 13.7, 7.6, 4.2 

Hz, 1H), 2.72 (dt, J = 13.8, 8.0 Hz, 1H), 2.13 (dddd, J = 15.1, 8.6, 7.7, 2.2 Hz, 1H), 1.99 

(dddd, J = 15.1, 12.1, 7.6, 4.3 Hz, 1H), 1.31–1.21 (m, 2H), 0.99 (t, J = 7.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 139.4, 135.9, 135.7, 133.1, 132.5, 132.1, 130.4, 130.1, 130.0, 

128.8, 128.14, 128.12, 39.2, 35.1, 34.2, 7.5, 4.3. 

FT‐IR (thin flim) 3069, 2955, 1589, 1492, 1428, 1262, 1218, 1152, 1112, 1015, 998, 956, 

843, 812 cm‐1. 

HR‐MS (FAB+) m/z [M–Br]+• calcd for C23H24ClSi: 363.1336, found: 363.1333. 
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(1-Bromo-2-cyclohexylethyl)(ethyl)diphenylsilane. The title compound was synthesized 

according to General Procedure E from 2-cyclohexyl-1-(ethyldiphenylsilyl)ethan-1-ol (2.2 

g, 6.6 mmol). The product was purified by flash chromatography with silica gel (0 → 5% 

EtOAc in hexanes). Isolated 1.6 g (59% yield) of colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.65–7.48 (m, 4H), 7.45–7.33 (m, 6H), 3.96 (dd, J = 12.4, 2.1 

Hz, 1H), 1.92 (d, J = 12.5 Hz, 1H), 1.78–1.59 (m, 5H), 1.59–1.47 (m, 1H),1.33–1.07 (m, 

6H), 1.02 (t, J = 7.8 Hz, 3H), 0.93–0.80 (m, 1H), 0.71 (qd, J = 12.4, 3.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 136.0, 135.8, 133.5, 132.9, 130.0, 129.9, 128.1, 128.0, 40.9, 

37.8, 35.7, 34.3, 31.2, 26.8, 26.5, 26.2, 7.5, 4.4. 

FT‐IR (thin flim) 3069, 2923, 1589, 1488, 1448, 1428, 1261, 1110, 1029, 803 cm‐1. 

HR‐MS (EI+) m/z [M]+• calcd for C22H29Si79Br: 400.1222, found: 400.1251. 

 

 

 

(1-Bromo-2-(tetrahydro-2H-pyran-4-yl)ethyl)(ethyl)diphenylsilane. The title compound 

was synthesized according to General Procedure E from 1-(ethyldiphenylsilyl)-2-

(tetrahydro-2H-pyran-4-yl)ethan-1-ol (1.6 g, 4.6 mmol). The product was purified by flash 

chromatography with silica gel (3 → 5% EtOAc in hexanes). Isolated 1.3 g (68% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.63–7.53 (m, 4H), 7.48–7.34 (m, 6H), 3.98 (dd, J = 11.4, 4.2 

Hz, 1H), 3.92 (dd, J = 12.9, 2.3 Hz, 1H), 3.89 (dd, J = 11.4, 4.4 Hz, 1H), 3.38 (dtd, J = 16.8, 

11.9, 2.3 Hz, 2H), 1.99–1.85 (m, 1H), 1.84–1.70 (m, 2H), 1.62 (ddd, J = 15.0, 10.0, 2.4 Hz, 

1H), 1.49–1.40 (m, 1H), 1.34–1.18 (m, 3H), 1.11 (td, J = 12.1, 4.5 Hz, 1H), 1.02 (t, J = 7.8 

Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 136.0, 135.8, 133.2, 132.6, 130.1, 130.0, 128.2, 128.1, 68.2, 

68.1, 40.3, 36.7, 33.7, 33.2, 31.2, 7.5, 4.4. 
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FT‐IR (thin flim) 3070, 2929, 1428, 1190, 1111, 1012, 849 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C21H26OSi79Br: 401.0936, found: 401.0918. 

 

 

 

Tert-butyl 4-(2-bromo-2-(ethyldiphenylsilyl)ethyl)piperidine-1-carboxylate. The title 

compound was synthesized according to General Procedure E from tert-butyl 4-(2-

(ethyldiphenylsilyl)-2-hydroxyethyl)piperidine-1-carboxylate (2.4 g, 5.5 mmol). The 

product was purified by flash chromatography with silica gel (3 → 7% EtOAc in hexanes). 

Isolated 2.0 g (74% yield) of colorless oil 

1H NMR (400 MHz, CDCl3) δ 7.64–7.53 (m, 4H), 7.48–7.36 (m, 6H), 4.13 (br s, 1H), 4.04 

(br s, 1H), 3.92 (dd, J = 12.8, 2.1 Hz, 1H), 2.69 (q, J = 11.5 Hz, 2H), 1.95–1.73 (m, 3H), 1.60 

(ddd, J = 14.8, 9.7, 2.2 Hz, 1H), 1.55–1.47 (m, 1H), 1.45 (s, 9H), 1.32–1.24 (m, 2H), 1.16–

1.06 (m, 1H), 1.03 (t, J = 7.9 Hz, 3H), 0.96–0.89 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 155.0, 135.9, 135.7, 133.1, 132.5, 130.1, 130.0, 128.2, 128.1, 

79.5, 43.9 (br), 40.0, 37.0, 34.3, 32.9, 30.2, 28.7, 7.5, 4.3. Two carbon signals are overlapping 

(α-amino methylenes, 43.9 ppm). 

FT‐IR (thin flim) 3070, 2931, 1694, 1428, 1365, 1261, 1162, 1111, 1026, 865 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C26H35NO2Si79Br: 500.1620, found: 500.1618. 

 

 

 

(1-Bromo-3-(5-methylfuran-2-yl)propyl)(ethyl)diphenylsilane. The title compound was 

synthesized according to General Procedure E from 1-(ethyldiphenylsilyl)-3-(5-

methylfuran-2-yl)propan-1-ol (1.9 g, 5.5 mmol). The product was purified by flash 
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chromatography with silica gel (0 → 5% EtOAc in hexanes). Isolated 1.1 g (50% yield) 

of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.63–7.55 (m, 2H), 7.55–7.48 (m, 2H), 7.48–7.30 (m, 6H), 

5.94–5.80 (m, 2H), 3.76 (dd, J = 12.4, 2.0 Hz, 1H), 2.90 (ddd, J = 15.1, 7.0, 4.5 Hz, 1H), 2.77 

(ddd, J = 15.7, 8.6, 7.4 Hz, 1H), 2.31–2.20 (m, 1H), 2.26 (s, 3H), 1.92 (dddd, J = 15.1, 12.4, 

7.1, 4.2 Hz, 1H), 1.31–1.24 (m, 2H), 0.99 (t, J = 7.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 152.7, 150.9, 136.0, 135.8, 133.2, 132.6, 130.05, 129.96, 

128.10, 128.08, 107.0, 106.1, 39.4, 32.3, 27.4, 13.8, 7.4, 4.4. 

FT‐IR (thin flim) 3070, 2960, 1568, 1428, 1261, 1109, 1020, 800 cm‐1. 

HR‐MS (FAB+) m/z [M+H] +• calcd for C22H25OSi79Br: 412.0858, found: 412.0840. 

 

 

 

(1-Bromo-3-phenylpropyl)(methyl)diphenylsilane. The title compound was synthesized 

according to General Procedure E from 1-(methyldiphenylsilyl)-3-phenylpropan-1-ol (1.0 

g, 3.7 mmol). The product was purified by flash chromatography with silica gel (0 → 5% 

EtOAc in hexanes).  Isolated 1.0 g (70% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ δ 7.55 – 7.48 (m, 4H), 7.46 – 7.27 (m, 8H), 7.24 – 7.17 (m, 

1H), 7.17 – 7.10 (m, 2H), 3.68 (dd, J = 11.8, 2.7 Hz, 1H), 3.01 (ddd, J = 12.9, 8.0, 4.4 Hz, 

1H), 2.77 – 2.69 (m, 1H), 2.23 – 1.97 (m, 2H), 0.71 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 141.1, 135.4, 135.3, 134.6, 134.33, 134.28, 130.13, 130.07, 

129.1, 128.8, 128.3, 128.2, 128.1, 126.4, 40.7, 35.4, 35.1, -5.2. 

FT‐IR (thin flim) 3069, 2962, 1603, 1589, 1496, 1454, 1428, 1260, 1113, 1029, 998 cm‐1. 

HR‐MS (FAB+) m/z [M−C6H6]
+• calcd for C16H17Si79Br: 316.0283, found: 316.0296. 
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(1-Bromo-3-phenylpropyl)trimethylsilane. The title compound was synthesized 

according to General Procedure E from 3-phenyl-1-(trimethylsilyl)propan-1-ol (1.7 g, 7.9 

mmol). The product was purified by flash chromatography with silica gel (0 → 1% EtOAc 

in hexanes).  Isolated 1.8 g (84% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.36 – 7.28 (m, 2H), 7.27 – 7.20 (m, 3H), 3.23 (dd, J = 11.5, 

3.3 Hz, 1H), 3.08 (ddd, J = 13.3, 8.4, 4.7 Hz, 1H), 2.76 (ddd, J = 13.6, 8.7, 7.6 Hz, 1H), 2.17 

– 1.94 (m, 2H), 0.15 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 141.5, 129.0, 128.8, 126.3, 44.6, 35.54, 35.46, –2.7. 

FT‐IR (thin flim) 3027, 2955, 1604, 1496, 1454, 1250, 1110, 1075, 1030, 867, 840 cm‐1. 

HR‐MS (EI+) m/z [M]+• calcd for C12H19Si79Br: 270.0439, found: 270.0419. 

 

 

 

(1-Bromo-3-phenylpropyl)triethylsilane. The title compound was synthesized according 

to General Procedure E from 3-phenyl-1-(triethylsilyl)propan-1-ol (3.1 g, 12 mmol). The 

product was purified by flash chromatography with silica gel (0 → 2% EtOAc in hexanes).  

Isolated 2.7 g (70% yield) of colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 3.37 – 3.27 (m, 

1H), 3.07 (ddd, J = 13.3, 7.3, 5.5 Hz, 1H), 2.71 (dt, J = 13.6, 8.1 Hz, 1H), 2.14 – 1.98 (m, 

2H), 0.96 (t, J = 7.9 Hz, 9H), 0.68 (q, J = 7.4, 6H). 

13C NMR (101 MHz, CDCl3) δ 141.5, 129.0, 128.8, 126.3, 42.1, 35.9, 35.7, 7.8, 2.9. 

FT‐IR (thin flim) 3027, 2955, 1604, 1496, 1454, 1415, 1260, 1096, 1019, 804 cm‐1; 

HR‐MS (FAB+) m/z [M]+• calcd for C15H25Si79Br: 312.0909, found: 312.0918. 

 

 

 

(1-Bromo-3-phenylpropyl)(tert-butyl)dimethylsilane. The title compound was 

synthesized according to General Procedure E from 1-(tert-butyldimethylsilyl)-3-
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phenylpropan-1-ol (2.00 g, 8.00 mmol). The product was purified by flash 

chromatography with silica gel (0 → 1% EtOAc in hexanes).  Isolated 1.94 g (77% yield) of 

colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.25 – 7.18 (m, 3H), 3.34 (dd, J = 11.8, 

2.8 Hz, 1H), 3.07 (ddd, J = 13.3, 8.5, 4.5 Hz, 1H), 2.74 (ddd, J = 13.5, 8.7, 7.6 Hz, 1H), 2.22 

– 1.96 (m, 2H), 0.93 (s, 9H), 0.13 (s, 1H), 0.07 (s, 1H). 

 

5.4.5. Nickel-Catalyzed Alkyl-Alkyl Cross-Couplings 

 

 

 

General Procedure.  An oven-dried 4-mL vial was charged with α-bromosilane (0.500 

mmol), then NiBr2•diglyme (15.4 mg, 0.0500 mmol), then (R,R)− or (S,S)−5.3 (21.4 mg, 

0.0650 mmol). Next, an oven-dried stirbar was added and the reaction vial was capped with 

a pierceable septum-cap and sealed with electrical tape. The reaction vial was placed under 

high vacuum on a Schlenk line for 10 mins. The Schlenk line was turned to static and the 

reaction vial was fitted with an Ar-filled balloon. The Schlenk line was then opened to allow 

argon to purge through the system for 15 mins.  Next, the Schlenk line was removed and 

anhydrous DMA (2.1 mL) was added. The reaction mixture was then allowed to stir for 15 

min, after which it appears as a cloudy orange solution.  Significant oxygen contamination 

will cause the reaction mixture to appear nearly colorless; we do not recommend proceeding 

if the reaction mixture is not orange. Then alkylzinc bromide solution (0.600 mmol; 

concentration of alkylzinc bromide solutions between 0.70 M and 1.00 M are recommended) 

was added as a gentle stream turning the reaction mixture a dark red-black/brown color. 

Significant oxygen contamination will usually cause the reaction mixture to appear bright 
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red. Vacuum grease was then liberally applied to the top of the septum-cap, the argon 

balloon was removed, and the vacuum grease was gently pressed onto of the cap to avoid 

leakage. The reaction was then stirred for 20 hours at room temperature at ca. 800 rpm. The 

reaction mixture then then directly transferred to a silica gel column for purification without 

any additional workup. 

 Note: Our research lab uses N2 in our Schlenk system; N2 attached to the Schlenk 

system is turned off for the duration of the reaction setup. We have found an N2 atmosphere 

leads to lower and less reproducible yields. 

 

 

 

(1-(1,3-Dioxolan-2-yl)octan-3-yl)(ethyl)diphenylsilane (Table 5.2, entry 1).  The title 

compound was synthesized according to the General Procedure from (1-

bromohexyl)(ethyl)diphenylsilane (188 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-

yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash chromatography with 

silica gel (0 → 3% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 122 mg (62% yield), + 90% ee; (R,R)–5.3: 133 mg (67% yield), – 91% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (5% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 3.2 min (major (S,S)–5.3), 3.7 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.58–7.47 (m, 4H), 7.42–7.29 (m, 6H), 4.73 (t, J = 4.5 Hz, 

1H), 3.97–3.85 (m, 2H), 3.85–3.75 (m, 2H), 1.79–1.65 (m, 2H), 1.65–1.50 (m, 2H), 1.49–

1.38 (m, 1H), 1.38–1.25 (m, 3H), 1.25–1.13 (m, 5H), 1.13–1.06 (m, 2H), 0.96 (t, J = 7.7 Hz, 

3H), 0.82 (t, J = 6.9 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 135.8, 135.70, 135.68, 135.6, 129.22, 129.21, 127.89, 

127.88, 105.0, 65.01, 64.99, 34.1, 32.4, 30.0, 29.5, 24.5, 23.0, 22.8, 14.3, 7.9, 4.5. 

FT‐IR (thin flim) 3068, 2953, 2929, 2973, 1456, 1428, 1140, 1109, 1036, 1036, 944 cm‐1. 
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HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C25H35O2Si: 395.2406, found: 395.2392. 

[α]23
D = – 0.8 (c = 0.725, CHCl3); + 90% ee from (S,S)–5.3. 

[α]23
D = + 0.1 (c = 0.670, CHCl3); – 91% ee from (R,R)–5.3. 

 

 

 

(4-(1,3-Dioxolan-2-yl)-1-phenylbutan-2-yl)(ethyl)diphenylsilane (Table 5.2, entry 2).  

The title compound was synthesized according to the General Procedure from (1-bromo-2-

phenylethyl)(ethyl)diphenylsilane (198 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-

yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash chromatography with 

silica gel (10 → 15% EtOAc in hexanes).  Colorless waxy solid. 

(S,S)–5.3: 136 mg (65% yield), + 93% ee; (R,R)–5.3: 135 mg (65% yield), – 94% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALPAK IC-3 column (2% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 13.6 min (major (S,S)–5.3), 16.2  min (major 

(R,R)–5.3). 

1H NMR (400 MHz, CDCl3) δ 7.61 – 7.54 (m, 4H), 7.43 – 7.34 (m, 6H), 7.25 – 7.20 (m, 

2H), 7.17 – 7.12 (m, 3H), 4.59 (t, J = 4.6 Hz, 1H), 3.87 – 3.77 (m, 2H), 3.77 – 3.68 (m, 2H), 

2.93 (dd, J = 14.1, 3.9 Hz, 1H), 2.46 (dd, J = 14.1, 10.1 Hz, 1H), 1.76 – 1.62 (m, 2H), 1.50 – 

1.39 (m, 3H), 1.06 (q, J = 7.3 Hz, 2H), 0.93 (t, J = 7.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.7, 135.50, 135.46, 135.0, 134.9, 129.2, 128.78, 128.77, 

128.2, 127.80, 127.79, 125.7, 104.7, 64.7, 64.6, 36.4, 33.6, 25.1, 24.0, 7.6, 4.3. 

FT‐IR (thin flim) 3023, 2952, 2874, 1601, 1495, 1493, 1427, 1134, 1108, 1030, 944 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C27H31O2Si: 415.2093, found: 415.2073. 

[α]23
D = – 1.4 (c = 0.495, CHCl3); + 93% ee from (S,S)–5.3. 

[α]23
D = + 0.8 (c = 0.490, CHCl3); – 94% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)hept-6-en-3-yl)(ethyl)diphenylsilane (Table 5.2, entry 3).  The title 

compound was synthesized according to the General Procedure from (1-bromopent-4-en-1-

yl)(ethyl)diphenylsilane (180 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-yl)ethyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel 

(5% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 100 mg (53% yield), – 90% ee; (R,R)–5.3: 104 mg (55% yield), + 92% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (7% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 7.0 min (major (S,S)–5.3), 3.5 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.58 – 7.48 (m, 4H), 7.42 – 7.31 (m, 6H), 5.71 (ddt, J = 17.0, 

10.2, 6.7 Hz, 1H), 4.98 – 4.86 (m, 2H), 4.74 (t, J = 4.5 Hz, 1H), 3.96 – 3.84 (m, 2H), 3.87 – 

3.74 (m, 2H), 2.16 – 2.04 (m, 1H), 2.03 – 1.92 (m, 1H), 1.79 – 1.63 (m, 3H), 1.62 – 1.53 (m, 

1H), 1.51 – 1.37 (m, 2H), 1.37 – 1.29 (m, 1H), 1.12 (q, J = 7.8 Hz, 2H), 0.96 (t, J = 7.7 Hz, 

3H). 

13C NMR (101 MHz, CDCl3) δ 139.0, 135.59, 135.55, 135.4, 135.3, 129.22, 129.20, 127.85, 

127.84, 114.7, 104.9, 64.93, 64.90, 33.9, 33.6, 29.4, 24.1, 22.2, 7.8, 4.3. 

FT‐IR (thin flim) 3069, 2952, 2925, 2875, 1427, 1415, 1139, 1108, 1038, 998, 911 cm‐1. 

HR‐MS (ESI+) m/z [M+Na]+ calcd for C24H32O2SiNa: 403.2069, found: 403.2066. 

[α]23
D = + 4.0 (c = 0.715, CHCl3); – 90% ee from (S,S)–5.3. 

[α]23
D = – 4.1 (c = 0.620, CHCl3); + 92% ee from (R,R)–5.3. 
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 (1-(1,3-Dioxolan-2-yl)-5-phenylpentan-3-yl)(ethyl)diphenylsilane (Table 5.2, entry 4).  

The title compound was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-

yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash chromatography with 

silica gel (0 → 5% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 163 mg (76% yield), – 94% ee; (R,R)–5.3: 153 mg (71% yield), + 92% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (35% i‐PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 6.8 min (major (S,S)–5.3), 4.4  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.57–7.44 (m, 4H), 7.42–7.29 (m, 6H), 7.26–7.20 (m, 2H), 

7.16 (tt, J = 7.3, 1.3 Hz, 1H), 7.05 (d, J = 7.5 Hz, 2H), 4.76 (t, J = 4.6 Hz, 1H), 3.98–3.87 (m, 

2H), 3.87–3.77 (m, 2H), 2.64 (ddd, J = 13.5, 10.6, 5.0 Hz, 1H), 2.48 (ddd, J = 13.5, 10.6, 6.4 

Hz, 1H), 1.89 (dddd, J = 14.0, 10.7, 6.4, 4.4 Hz, 1H), 1.84–1.68 (m, 2H), 1.68–1.47 (m, 3H), 

1.37 (tt, J = 7.9, 4.4 Hz, 1H), 1.17–1.08 (m, 2H), 0.95 (t, J = 7.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.8, 135.7, 135.6, 135.5, 135.3, 129.4, 129.3, 128.7, 128.5, 

127.98, 127.95, 125.9, 104.9, 65.04, 65.01, 35.9, 33.9, 32.2, 24.2, 22.5, 7.9, 4.4. 

FT‐IR (thin flim) 3068, 3023, 2950, 2874, 1602, 1495, 1454, 1427, 1133, 1108, 1030, 944 

cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C28H33O2Si: 429.2250, found: 429.2257. 

[α]23
D = + 7.5 (c = 0.540, CHCl3); – 94% ee from (S,S)–5.3. 

[α]23
D = – 6.9 (c = 0.530, CHCl3); + 92% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)-5-(4-methoxyphenyl)pentan-3-yl)(ethyl)diphenylsilane (Table 

5.2, entry 5).  The title compound was synthesized according to the General Procedure from 

(1-bromo-3-(4-methoxyphenyl)propyl)(ethyl)diphenylsilane (220 mg, 0.500 mmol) and (2-

(1,3-dioxolan-2-yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash 

chromatography with silica gel (0 → 5% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 199 mg (86% yield), – 90% ee; (R,R)–5.3: 199 mg (86% yield), + 93% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (40% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 8.1 min (major (S,S)–5.3), 4.5  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.57–7.45 (m, 4H), 7.42–7.30 (m, 6H), 6.97 (d, J = 8.4 Hz, 

2H), 6.79 (d, J = 8.4 Hz, 2H), 4.76 (t, J = 4.6 Hz, 1H), 3.97–3.87 (m, 2H), 3.87–3.79 (m, 2H), 

3.78 (s, 3H), 2.59 (ddd, J = 13.7, 10.5, 5.0 Hz, 1H), 2.44 (ddd, J = 13.7, 10.5, 6.4 Hz, 1H), 

1.92–1.68 (m, 3H), 1.66–1.49 (m, 3H), 1.36 (ddd, J = 11.8, 7.6, 4.3 Hz, 1H), 1.17–1.08 (m, 

2H), 0.96 (t, J = 7.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 157.8, 135.7, 135.6, 135.5, 135.4, 134.9, 129.6, 129.33, 

129.29, 128.0, 127.9, 113.9, 104.9, 65.04, 65.01, 55.5, 34.9, 33.9, 32.4, 24.2, 22.4, 7.9, 4.4. 

FT‐IR (thin flim) 3068, 2951, 2875, 1611, 1512, 1458, 1300, 1246, 1177, 1133, 1109, 1037, 

945, 821 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C29H35O3Si: 459.2356, found: 459.2345. 

[α]23
D = + 11.9 (c = 0.520, CHCl3); – 90% ee from (S,S)–5.3. 

[α]23
D = – 11.7 (c = 0.605, CHCl3); + 93% ee from (R,R)–5.3. 
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(1-(4-Chlorophenyl)-5-(1,3-dioxolan-2-yl)pentan-3-yl)(ethyl)diphenylsilane (Table 5.2, 

entry 6).  The title compound was synthesized according to the General Procedure from (1-

bromo-3-(4-chlorophenyl)propyl)(ethyl)diphenylsilane (222 mg, 0.500 mmol) and (2-(1,3-

dioxolan-2-yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash 

chromatography with silica gel (0 → 5% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 116 mg (50% yield), – 90% ee; (R,R)–5.3: 140 mg (60% yield), + 92% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (35% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 10.7 min (major (S,S)–5.3), 4.8 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.56–7.44 (m, 4H), 7.43–7.29 (m, 6H), 7.20 (d, J = 8.3 Hz, 

2H), 6.95 (d, J = 8.3 Hz, 2H), 4.76 (t, J = 4.6 Hz, 1H), 3.98–3.87 (m, 2H), 3.87–3.77 (m, 2H), 

2.60 (ddd, J = 13.7, 10.3, 5.1 Hz, 1H), 2.45 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 1.92–1.67 (m, 

3H), 1.66–1.46 (m, 3H), 1.34 (ddt, J = 8.7, 7.6, 4.5 Hz, 1H), 1.16–1.08 (m, 2H), 0.96 (t, J = 

7.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 141.2, 135.7, 135.6, 135.4, 135.2, 131.5, 130.0, 129.42, 

129.38, 128.5, 128.02, 128.00, 104.8, 65.1, 65.0, 35.1, 33.9, 32.2, 24.2, 22.4, 7.9, 4.4. 

FT‐IR (thin flim) 3068, 2950, 2874, 1491, 1427, 1134, 1108, 1037, 1014, 808 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C28H32O2SiCl: 463.1860, found: 463.1869. 

[α]23
D = + 14.8 (c = 0.470, CHCl3); – 90% ee from (S,S)–5.3. 

[α]23
D = – 15.7 (c = 0.600, CHCl3); + 92% ee from (R,R)–5.3. 
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(1-Cyclohexyl-4-(1,3-dioxolan-2-yl)butan-2-yl)(ethyl)diphenylsilane (Table 5.2, entry 

7).  The title compound was synthesized according to the General Procedure from (1-bromo-

2-cyclohexylethyl)(ethyl)diphenylsilane (201 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-

yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash chromatography with 

silica gel (0 → 3% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 132 mg (62% yield), + 90% ee; (R,R)–5.3: 119 mg (56% yield), – 91% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (5% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 4.7 min (major (S,S)–5.3), 5.6 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.58–7.49 (m, 4H), 7.42–7.31 (m, 6H), 4.71 (t, J = 4.6 Hz, 

1H), 3.95–3.85 (m, 2H), 3.85–3.75 (m, 2H), 1.78 (d, J = 13.0 Hz, 1H), 1.74–1.53 (m, 7H), 

1.48–1.32 (m, 3H), 1.30–1.07 (m, 7H), 0.96 (t, J = 7.7 Hz, 3H), 0.88–0.64 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 135.74, 135.67, 135.66, 135.6, 129.22, 129.19, 127.88, 

127.86, 105.0, 65.0, 38.2, 36.4, 34.6, 34.0, 32.9, 26.9, 26.65, 26.57, 24.9, 19.3, 7.9, 4.4. Two 

carbon signals are overlapping (dioxolanyl methylenes, 65.0 ppm). 

FT‐IR (thin flim) 3068, 2922, 2851, 1448, 1428, 1260, 1229, 1131, 1108, 1033, 945 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C27H37O2Si: 421.2563, found: 421.2576. 

[α]23
D = – 4.1 (c = 0.485, CHCl3); + 90% ee from (S,S)–5.3. 

[α]23
D = + 3.8 (c = 0.600, CHCl3); – 91% ee from (R,R)–5.3. 
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(4-(1,3-Dioxolan-2-yl)-1-(tetrahydro-2H-pyran-4-yl)butan-2-yl)(ethyl)diphenylsilane 

(Table 5.2, entry 8).  The title compound was synthesized according to the General 

Procedure from (1-bromo-2-(tetrahydro-2H-pyran-4-yl)ethyl)(ethyl)diphenylsilane (202 

mg, 0.500 mmol) and (2-(1,3-dioxolan-2-yl)ethyl)zinc bromide (0.600 mmol). The product 

was purified by flash chromatography with silica gel (5 → 15% EtOAc in hexanes).  

Colorless oil. 

(S,S)–5.3: 136 mg (64% yield), – 91% ee; (R,R)–5.3: 150 mg (71% yield), + 92% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (10% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 23.6 min (major (S,S)–5.3), 3.4  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.57–7.47 (m, 4H), 7.42–7.30 (m, 6H), 4.71 (t, J = 4.6 Hz, 

1H), 3.96–3.74 (m, 6H), 3.25 (tdd, J = 11.4, 9.3, 2.2 Hz, 2H), 1.78–1.52 (m, 4H), 1.51–1.36 

(m, 5H), 1.30–1.15 (m, 2H), 1.14–1.03 (m, 3H), 0.95 (t, J = 7.7 Hz, 3H). 

13C NMR (101 MHz CDCl3) δ 135.7, 135.6, 135.4, 135.2, 129.39, 129.36, 127.98, 127.97, 

104.9, 68.33, 68.30, 65.024, 65.016, 37.7, 34.2, 34.0, 33.8, 32.8, 24.8, 19.0, 7.9, 4.3. 

FT‐IR (thin flim) 3069, 2928, 2876, 1427, 1236, 1131, 1108, 1091, 1015, 982 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+ calcd for C26H37O3Si: 425.2512, found: 425.2527. 

[α]23
D = – 4.8 (c = 0.525, CHCl3); – 91% ee from (S,S)–5.3. 

[α]23
D = + 5.6 (c = 0.610, CHCl3); + 92% ee from (R,R)–5.3. 
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Tert-butyl 4-(4-(1,3-dioxolan-2-yl)-2-(ethyldiphenylsilyl)butyl)piperidine-1-

carboxylate (Table 5.2, entry 9).  The title compound was synthesized according to the 

General Procedure from tert-butyl 4-(2-bromo-2-(ethyldiphenylsilyl)ethyl)piperidine-1-

carboxylatediphenylsilane (251 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-yl)ethyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel (5 

→ 15% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 178 mg (68% yield), – 90% ee; (R,R)–5.3: 180 mg (69% yield), + 90% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALPAK AD-H column (10% i-

PrOH in supercritical CO2, 3.5 mL/min) with tr = 4.6 min (major (S,S)–5.3), 3.9 min (major 

(R,R)–5.3). 

1H NMR (500 MHz, d6-DMSO, 75 °C) δ 6.98 – 6.88 (m, 4H), 6.85 – 6.75 (m, 7H), 4.16 – 

3.96 (m, 1H), 3.23 – 3.07 (m, 4H), 2.02 – 1.88 (m, 4H), 1.10 – 1.01 (m, 2H), 1.00 – 0.74 (m, 

16H), 0.69 – 0.59 (m, 1H), 0.53 (q, J = 8.0, 2.5 Hz, 2H), 0.37 (t, J = 7.6 Hz, 3H), 0.32 – 0.13 

(m, 2H) 

13C NMR (126 MHz, d6-DMSO, 75 °C) δ 154.5, 135.7, 135.63, 135.56, 135.50, 129.68, 

129.66, 128.34, 128.33, 104.4, 79.0, 64.75, 64.72, 44.2 (br), 37.5, 34.9, 33.9, 33.1, 32.0, 28.8, 

25.2, 19.8, 8.1, 4.0. Two carbon signals are overlapping (α-amino methylenes, 44.2 ppm). 

FT‐IR (thin flim) 3069, 2929, 2875, 1693, 1427, 1365, 1281, 1241, 1169, 1109, 1033, 947 

cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C31H44O4NSi: 522.3040, found: 522.3051. 

[α]23
D = + 8.2 (c = 0.555, CHCl3); – 90% ee from (S,S)–5.3. 

[α]23
D = – 9.2 (c = 0.520, CHCl3); + 90% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)-5-(5-methylfuran-2-yl)pentan-3-yl)(ethyl)diphenylsilane (Table 

5.2, entry 10).  The title compound was synthesized according to the General Procedure 

from (1-bromo-3-(5-methylfuran-2-yl)propyl)(ethyl)diphenylsilane (207 mg, 0.500 mmol) 

and (2-(1,3-dioxolan-2-yl)ethyl)zinc bromide (0.600 mmol). The product was purified by 

flash chromatography with silica gel (0 → 5% EtOAc in hexanes).  Pale yellow oil. 

(S,S)–5.3: 152 mg (70% yield), – 89% ee; (R,R)–5.3: 158 mg (73% yield), + 91% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (15% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 11.6 min (major (S,S)–5.3), 8.1 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.54–7.45 (m, 4H), 7.41–7.30 (m, 6H), 5.82 (dd, J = 3.0, 1.0 

Hz, 1H), 5.76 (d, J = 3.0 Hz, 1H), 4.73 (t, J = 4.6 Hz, 1H), 3.95–3.85 (m, 2H), 3.85–3.75 (m, 

2H), 2.60 (ddd, J = 14.7, 9.3, 5.4 Hz, 1H), 2.50 (ddd, J = 15.8, 8.7, 7.2 Hz, 1H), 2.24 (d, J = 

0.6 Hz, 3H), 1.93 (dddd, J = 13.8, 9.3, 7.0, 4.3 Hz, 1H), 1.80–1.56 (m, 4H), 1.52–1.40 (m, 

1H), 1.34 (ddt, J = 8.4, 7.2, 4.3 Hz, 1H), 1.11 (q, J = 7.8 Hz, 2H), 0.94 (t, J = 7.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 154.4, 150.4, 135.7, 135.6, 135.4, 135.3, 129.4, 129.3, 

127.97, 125.95, 105.9, 105.8, 104.9, 65.03, 65.00, 33.9, 28.6, 27.8, 24.1, 21.9, 13.8, 7.9, 4.4. 

FT‐IR (thin flim) 3068, 2951, 2875, 1568, 1427, 1218, 1134, 1108, 1021, 943 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C27H33O3Si: 433.2199, found: 433.2181. 

[α]23
D = – 3.8 (c = 0.575, CHCl3); – 89% ee from (S,S)–5.3. 

[α]23
D = + 0.3 (c = 0.510, CHCl3); + 91% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)-5-phenylpentan-3-yl)(methyl)diphenylsilane (Table 5.2, entry 

11).  The title compound was synthesized according to the General Procedure from (1-

bromo-3-phenylpropyl)(methyl)diphenylsilane (198 mg, 0.500 mmol) and (2-(1,3-dioxolan-

2-yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash chromatography 

with silica gel (0 → 7% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 163 mg (78% yield), – 86% ee; (R,R)–5.3: 170 mg (82% yield), + 84% ee. 

HPLC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (15% i-PrOH 

in hexane, 3.5 mL/min) with tr = 8.7 min (major (S,S)–5.3), 4.4 min (major (R,R)–5.3). 

1H NMR (400 MHz, CDCl3) δ 7.58 – 7.47 (m, 4H), 7.43 – 7.30 (m, 6H), 7.26 – 7.21 (m, 

2H), 7.20 – 7.13 (m, 1H), 7.07 – 6.98 (m, 2H), 4.76 (t, J = 4.3 Hz, 1H), 4.00 – 3.87 (m, 2H), 

3.86 – 3.75 (m, 2H), 2.64 (ddd, J = 13.4, 10.5, 5.2 Hz, 1H), 2.47 (ddd, J = 13.4, 10.5, 6.3 Hz, 

1H), 1.95 – 1.57 (m, 6H), 1.35 (tt, J = 7.2, 4.7 Hz, 1H), 0.61 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.8, 137.0, 136.8, 135.02, 134.95, 129.35, 129.32, 128.7, 

128.4, 128.03, 128.02, 125.9, 104.9, 65.01, 64.99, 35.7, 33.7, 32.2, 24.2, 23.4, -5.1. 

FT‐IR (thin flim) 3067, 3023, 2924, 2858, 1602, 1495, 1454, 1427, 1252, 1133, 1110, 1038, 

944, 873 cm‐1. 

HR‐MS (ESI+) m/z [M+H]+–H2 calcd for C27H31O2Si: 415.2093, found: 415.2083; 

[α]23
D = – 5.3 (c = 0.530, CHCl3); – 86% ee from (S,S)–5.3. 

[α]23
D = + 6.3 (c = 0.675, CHCl3); + 84% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)-5-phenylpentan-3-yl)trimethylsilane (Table 5.2, entry 12).  The 

title compound was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)trimethylsilane (137 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-yl)ethyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel (0 

→ 2% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 114 mg (78% yield), + 86% ee; (R,R)–5.3: 121 mg (83% yield), – 84% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALPAK AD-H column (2% i-

PrOH in supercritical CO2, 3.5 mL/min) with tr = 2.5 min (major (S,S)–5.3), 2.8 min (major 

(R,R)–5.3). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.25 (m, 2H), 7.21 – 7.15 (m, 3H), 4.84 (t, J = 4.7 Hz, 

1H), 4.03 – 3.94 (m, 2H), 3.92 – 3.81 (m, 2H), 2.70 (ddd, J = 13.5, 10.9, 5.3 Hz, 1H), 2.56 

(ddd, J = 13.5, 10.9, 6.0 Hz, 1H), 1.82 – 1.45 (m, 6H), 0.67 (tt, J = 7.4, 5.1 Hz, 1H), 0.03 (s, 

9H). 

13C NMR (101 MHz, CDCl3) δ 143.2, 128.6, 128.5, 125.9, 105.1, 65.08, 65.06, 35.7, 33.5, 

32.0, 25.5, 24.0, -1.9. 

FT‐IR (thin flim) 3026, 2950, 2859, 1603, 1496, 1454, 1407, 1248, 1135, 1092, 1040, 944, 

855, 834 cm‐1. 

HR‐MS (ESI+) m/z [M+H]+–H2 calcd for C17H27O2Si: 291.1780, found: 291.1782. 

[α]23
D = – 6.7 (c = 0.680, CHCl3); + 86% ee from (S,S)–5.3. 

[α]23
D = + 7.8 (c = 0.725, CHCl3); – 84% ee from (R,R)–5.3. 
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(1-(1,3-Dioxolan-2-yl)-5-phenylpentan-3-yl)triethylsilane (Table 5.2, entry 13).  The title 

compound was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)triethylsilane (157 mg, 0.500 mmol) and (2-(1,3-dioxolan-2-yl)ethyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel (0 

→ 5% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 77 mg (46% yield), + 92% ee; (R,R)–5.3: 92 mg (55% yield), – 89% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (1% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 6.1 min (major (S,S)–5.3), 7.3  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.23 (m, 2H), 7.21 – 7.12 (m, 3H), 4.83 (t, J = 4.7 Hz, 

1H), 4.07 – 3.92 (m, 2H), 3.91 – 3.79 (m, 2H), 2.71 (ddd, J = 13.4, 11.0, 5.1 Hz, 1H), 2.54 

(ddd, J = 13.4, 10.9, 5.9 Hz, 1H), 1.84 – 1.44 (m, 6H), 0.94 (t, J = 7.9 Hz, 9H), 0.80 – 0.76 

(m, 1H), 0.58 (q, J = 8.1 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 143.2, 128.6, 128.5, 125.9, 105.1, 65.11, 65.08, 36.1, 34.0, 

32.3, 24.2, 22.7, 8.0, 3.1. 

FT‐IR (thin flim) 3026, 2951, 2910, 2874, 1496, 1454, 1413, 1238, 11i37, 1092, 1040, 1016, 

944, 872 cm‐1. 

HR‐MS (ESI+) m/z [M+H]+–H2 calcd for C20H33O2Si: 333.2250, found: 333.2250. 

[α]23
D = – 7.0 (c = 0.490, CHCl3); + 92% ee from (S,S)–5.3. 

[α]23
D = + 8.1 (c = 0.530, CHCl3); – 89% ee from (R,R)–5.3. 

 

 

 



 

 

230 

 

(1-(1,3-Dioxolan-2-yl)-5-phenylpentan-3-yl)(tert-butyl)dimethylsilane (Table 5.2, entry 

14).  The title compound was synthesized according to the General Procedure from (1-

bromo-3-phenylpropyl)(tert-butyl)dimethylsilane (157 mg, 0.500 mmol) and (2-(1,3-

dioxolan-2-yl)ethyl)zinc bromide (0.600 mmol). The product was purified by flash 

chromatography with silica gel (0 → 2% EtOAc in hexanes).  Colorless oil. 

(S,S)–5.3: 46 mg (27% yield), + 84% ee; (R,R)–5.3: 39 mg (23% yield), – 85% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (1% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 3.4 min (major (S,S)–5.3), 3.8  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.24 (m, 2H), 7.22 – 7.15 (m, 3H), 4.84 (t, J = 4.4 Hz, 

1H), 4.04 – 3.94 (m, 2H), 3.92 – 3.80 (m, 2H), 2.71 (ddd, J = 13.4, 11.1, 5.0 Hz, 1H), 2.54 

(ddd, J = 13.5, 11.0, 5.9 Hz, 1H), 1.89 – 1.47 (m, 6H), 0.89 (s, 9H), 0.87 – 0.81 (m, 1H), -

0.01 (s, 6H).  

13C NMR (101 MHz, CDCl3) δ 143.1, 128.6, 128.5, 125.9, 105.1, 65.11, 65.08, 35.6, 33.4, 

32.4, 27.5, 24.2, 22.4, 17.7, -6.0. Two carbon signals are overlapping (silyl methyls, -6.0 

ppm). 

FT‐IR (thin flim) 3026, 2953, 2928, 2856, 1496, 1471, 1409, 1362, 1250, 1138, 1040, 941, 

837, 806 cm‐1. 

HR‐MS (ESI+) m/z [M+H]+–H2 calcd for C20H33O2Si: 333.2250, found: 333.2235. 

[α]23
D = – 5.5 (c = 0.740, CHCl3); + 84% ee from (S,S)–5.3. 

[α]23
D = + 5.9 (c = 0.565, CHCl3); – 85% ee from (R,R)–5.3. 
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Ethyl(8-fluoro-1-phenyloctan-3-yl)diphenylsilane (Table 5.3, entry 1).  The title 

compound was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (5-fluoropentyl)zinc bromide 

(0.600 mmol). The product was purified by flash chromatography with silica gel (0 → 25% 

CH2Cl2 in hexanes).  Colorless oil. 

(S,S)–5.3: 125 mg (58% yield), – 87% ee; (R,R)–5.3: 118 mg (55% yield), + 87% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (20% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 6.8 min (major (S,S)–5.3), 5.5 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.55 – 7.46 (m, 4H), 7.43 – 7.31 (m, 6H), 7.28 – 7.22 (m, 

2H), 7.20 – 7.14 (m, 1H), 7.09 – 7.02 (m, 2H), 4.38 (dt, J = 47.3, 6.2 Hz, 2H), 2.64 (ddd, J = 

13.4, 10.6, 5.2 Hz, 1H), 2.50 (ddd, J = 13.4, 10.4, 6.3 Hz, 1H), 1.90 (dddd, J = 13.8, 10.6, 

6.3, 4.3 Hz, 1H), 1.71 – 1.56 (m, 4H), 1.47 – 1.22 (m, 6H), 1.12 (q, J = 7.8 Hz, 2H), 0.97 (t, 

J = 7.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.7, 135.45, 135.42, 135.40, 134.9, 129.09, 129.07, 128.5, 

128.3, 127.74, 127.72, 125.7, 84.2 (d, J = 164.1 Hz), 35.9, 32.2, 30.3 (d, J = 19.4 Hz), 29.8, 

29.1, 25.5 (d, J = 5.5 Hz), 22.4, 7.7, 4.3. 

FT‐IR (thin flim) 3024, 2932, 2857, 1455, 1428, 1108, 1010 cm‐1. 

HR‐MS (ESI+) m/z [M+Na]+ calcd for C28H35SiFNa: 441.2390, found: 441.2390. 

[α]23
D = + 8.1 (c = 0.695, CHCl3); – 87% ee from (S,S)–5.3. 

[α]23
D = – 9.2 (c = 0.675, CHCl3); + 87% ee from (R,R)–5.3. 

 

 

 

Ethyl(6-phenoxy-1-phenylhexan-3-yl)diphenylsilane (Table 5.3, entry 2).  The title 

compound was synthesized according to the General Procedure from (1-bromo-3-
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phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (3-phenoxypropyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel: 

column #1 (0 → 2% EtOAc in hexanes); column #2 (20 → 40% CH2Cl2 in hexanes).  

Colorless oil. 

(S,S)–5.3: 193 mg (83% yield), + 87% ee; (R,R)–5.3: 182 mg (78% yield), – 89% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OD-H column (30% i-

PrOH in supercritical CO2, 3.5 mL/min) with tr = 3.0 min (major (S,S)–5.3), 3.8  min (major 

(R,R)–5.3). 

1H NMR (400 MHz, CDCl3) δ 7.59–7.47 (m, 4H), 7.44–7.32 (m, 6H), 7.31–7.22 (m, 4H), 

7.17 (tt, J = 7.3, 1.3 Hz, 1H), 7.10–7.03 (m, 2H), 6.94 (tt, J = 7.3, 1.0 Hz, 1H), 6.90–6.83 (m, 

2H), 3.94–3.81 (m, 2H), 2.66 (ddd, J = 13.6, 10.6, 5.2 Hz, 1H), 2.52 (ddd, J = 13.6, 10.4, 6.4 

Hz, 1H), 2.00–1.49 (m, 6H), 1.41 (tt, J = 7.7, 4.4 Hz, 1H), 1.20–1.10 (m, 2H), 0.97 (t, J = 7.8 

Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.2, 142.8, 135.7, 135.6, 135.5, 135.4, 129.6, 129.4, 129.3, 

128.7, 128.5, 128.00, 127.98, 125.9, 120.7, 114.7, 67.9, 35.9, 32.3, 29.2, 26.3, 22.3, 7.9, 4.4. 

FT‐IR (thin flim) 3067, 3024, 2930, 2873, 1600, 1586, 1496, 1469, 1427, 1301, 1244, 1172, 

1108, 1080, 1030 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C32H35OSi: 463.2457, found: 463.2457. 

[α]23
D = – 0.6 (c = 0.595, CHCl3); + 87% ee from (S,S)–5.3. 

[α]23
D = + 0.6 (c = 0.510, CHCl3); – 89% ee from (R,R)–5.3. 

Gram-Scale Reaction. An oven-dried 20-mL vial was charged with (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (1.64 g, 4.00 mmol), then NiBr2•diglyme (123 mg, 0.400 

mmol), then (S,S)−5.3 (171 mg, 0.520 mmol). Next, an oven-dried stirbar was added and the 

reaction vial was capped with a pierceable septum-cap and sealed with electrical tape. The 

reaction vial was placed under high vacuum on a Schlenk line for 10 mins. The Schlenk line 

was turned to static and the reaction vial was fitted with an Ar-filled balloon. The Schlenk 

line was then opened to allow argon to purge through the system for 15 mins.  Next, the 

Schlenk line was removed and anhydrous DMA (8.8 mL) was added (reaction is at a higher 

concentration on the gram-scale, c = 0.45 M). The reaction mixture was then allowed to stir 

for 15 min, after which it appeared as a cloudy orange solution.  Then (3-phenoxypropyl)zinc 
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bromide (4.80 mmol) solution was added as a gentle stream, turning the reaction mixture 

a dark red-black/brown color. Vacuum grease was then liberally applied to the top of the 

septum-cap, the argon balloon was removed, and the vacuum grease was gently pressed onto 

of the cap to avoid leakage. The reaction was then stirred for 20 hours at room temperature 

at ca. 800 rpm. The reaction mixture was then purified by flash chromatography with silica 

gel: column #1 (0 → 2% EtOAc in hexanes); column #2 (20 → 40% CH2Cl2 in hexanes).  

Isolated 1.66 g (89% yield), + 88% ee, of colorless oil. 

 

 

 

Tert-butyl((4-(ethyldiphenylsilyl)-6-phenylhexyl)oxy)dimethylsilane (Table 5.3, entry 

3).  The title compound was synthesized according to the General Procedure from (1-bromo-

3-phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (3-((tert-

butyldimethylsilyl)oxy)propyl)zinc bromide (0.600 mmol). The product was purified by 

flash chromatography with silica gel (0 → 20% CH2Cl2 in hexanes).  Colorless oil. 

(S,S)–5.3: 164 mg (65% yield), – 87% ee; (R,R)–5.3: 182 mg (73% yield), + 88% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (10% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 3.4 min (major (S,S)–5.3), 2.3 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.57–7.45 (m, 4H), 7.41–7.30 (m, 6H), 7.27–7.21 (m, 2H), 

7.20–7.13 (m, 1H), 7.08–7.02 (m, 2H), 3.54 (t, J = 6.0 Hz, 2H), 2.64 (ddd, J = 13.3, 10.8, 5.1 

Hz, 1H), 2.49 (13.3, 10.5, 6.4 Hz, 1H), 1.89 (dddd, J = 14.0, 10.7, 6.4, 4.3 Hz, 1H), 1.76–

1.56 (m, 3H), 1.53–1.39 (m, 2H), 1.39–1.31 (m, 1H), 1.12 (q, J = 7.8 Hz, 2H), 0.96 (t, J = 

7.8 Hz, 3H), 0.88 (s, 9H), 0.02 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 143.0, 135.70, 135.68, 135.64, 135.60, 129.3, 129.2, 128.7, 

128.5, 127.94, 127.93, 125.8, 63.6, 36.0, 33.0, 32.4, 26.23, 26.22, 22.5, 18.6, 7.9, 4.5, -5.00, 

-5.02. 
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FT‐IR (thin flim) 3068, 3025, 2953, 2929, 2856, 1462, 1427, 1386, 1255, 1107, 1008, 

953, 836 cm‐1. 

HR‐MS (ESI+) m/z [M+Na]+ calcd for C32H46OSi2Na: 525.2985, found: 525.2969. 

[α]23
D = + 7.2 (c = 0.755, CHCl3); – 87% ee from (S,S)–5.3. 

[α]23
D = – 6.4 (c = 0.635, CHCl3); + 88% ee from (R,R)–5.3. 

 

 

 

5-(Ethyldiphenylsilyl)-7-phenylheptanenitrile (Table 5.3, entry 4).  The title compound 

was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (3-cyanopropyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel (3 

→ 5% EtOAc in hexanes.  Colorless oil. 

(S,S)–5.3: 108 mg (54% yield), + 88% ee; (R,R)–5.3: 93 mg (47% yield), – 86% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (45% MeOH 

in supercritical CO2, 3.5 mL/min) with tr = 7.2 min (major (S,S)–5.3), 19.7 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.58–7.45 (m, 4H), 7.45–7.31 (m, 6H), 7.29–7.23 (m, 2H), 

7.22–7.14 (m, 1H), 7.11–7.02 (m, 2H), 2.63 (ddd, J = 13.7, 10.1, 5.4 Hz, 1H), 2.51 (ddd, J = 

13.7, 10.1, 6.6 Hz, 1H), 2.28–2.12 (m, 2H), 1.93 (dddd, J = 14.2, 10.6, 6.6, 4.4 Hz, 1H), 

1.80–1.71 (m, 1H), 1.70–1.58 (m, 2H), 1.58–1.47 (m, 2H), 1.38–1.28 (m, 1H), 1.13 (q, J = 

7.8 Hz, 2H), 0.97 (t, J = 7.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.4, 135.6, 135.53, 134.95, 134.9, 129.57, 129.55, 128.7, 

128.6, 128.14, 128.11, 126.1, 119.9, 35.8, 32.0, 29.5, 25.4, 22.3, 17.6, 7.9, 4.3. 

FT‐IR (thin flim) 3067, 3024, 2931, 2873, 2244, 1454, 1427, 1108, 1010 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C27H30NSi: 396.2148, found: 396.2142. 

[α]23
D = + 10.6 (c = 0.485, CHCl3); + 88% ee from (S,S)–5.3. 

[α]23
D = – 10.8 (c = 0.485, CHCl3); – 86% ee from (R,R)–5.3. 
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Ethyl 7-(ethyldiphenylsilyl)-9-phenylnonanoate (Table 5.3, entry 5).  The title compound 

was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and (6-ethoxy-6-oxohexyl)zinc 

bromide (0.600 mmol). The product was purified by flash chromatography with silica gel: 

column #1 (0 → 5% EtOAc in hexanes); column #2 (30 → 60% CH2Cl2 in hexanes).  

Colorless oil. 

(S,S)–5.3: 142 mg (60% yield), – 88% ee; (R,R)–5.3: 136 mg (58% yield), + 86% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (20% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 13.9 min (major (S,S)–5.3), 9.5  min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.54 – 7.46 (m, 4H), 7.41 – 7.30 (m, 6H), 7.27 – 7.22 (m, 

2H), 7.20 – 7.13 (m, 1H), 7.08 – 7.03 (m, 2H), 4.12 (q, J = 7.1 Hz, 2H), 2.62 (ddd, J = 13.4, 

10.6, 5.1 Hz, 1H), 2.48 (ddd, J = 13.5, 10.4, 6.3 Hz, 1H), 2.23 (t, J = 7.6 Hz, 2H), 1.88 (dddd, 

J = 13.7, 10.5, 6.3, 4.2 Hz, 1H), 1.67 – 1.51 (m, 4H), 1.44 – 1.19 (m, 9H), 1.11 (q, J = 7.4 

Hz, 2H), 0.95 (t, J = 7.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 174.0, 142.8, 135.61, 135.54, 135.52, 129.19, 129.16, 128.6, 

128.4, 127.84, 127.82, 125.8, 60.3, 36.0, 34.5, 32.3, 29.9, 29.6, 29.3, 25.0, 22.6, 14.4, 7.8, 

4.4. Two carbon signals are overlapping (aryl carbons, unidentifiable).  

FT‐IR (thin flim) 3068, 3024, 2930, 2856, 1735, 1454, 1427, 1373, 1180, 1108, 1030 cm‐1. 

HR‐MS (FAB+) m/z [M+H]+–H2 calcd for C31H39O2Si: 471.2719, found: 471.2732. 

[α]23
D = + 4.5 (c = 0.525, CHCl3); – 88% ee from (S,S)–5.3. 

[α]23
D = – 4.9 (c = 0.595, CHCl3); + 86% ee from (R,R)–5.3. 
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Ethyl(6-methyl-1-phenylheptan-3-yl)diphenylsilane (Table 5.3, entry 6).  The title 

compound was synthesized according to the General Procedure from (1-bromo-3-

phenylpropyl)(ethyl)diphenylsilane (205 mg, 0.500 mmol) and isopentylzinc bromide (0.600 

mmol). The product was purified by flash chromatography with silica gel (0 → 5% CH2Cl2 

in hexanes).  Colorless oil. 

(S,S)–5.3: 129 mg (65% yield), + 91% ee; (R,R)–5.3: 132 mg (66% yield), – 91% ee. 

SFC analysis: The ee was determined via SFC on a CHIRALCEL OJ column (15% i-PrOH 

in supercritical CO2, 3.5 mL/min) with tr = 3.5 min (major (S,S)–5.3), 5.1 min (major (R,R)–

5.3). 

1H NMR (400 MHz, CDCl3) δ 7.56–7.45 (m, 4H), 7.41–7.30 (m, 6H), 7.27–7.21 (m, 2H), 

7.16 (tt, J = 7.3, 1.3 Hz, 1H), 7.09–7.03 (m, 2H), 2.63 (ddd, J = 13.5, 10.7, 5.0 Hz, 1H), 2.48 

(ddd, J = 13.5, 10.5, 6.3 Hz, 1H), 1.88 (dddd, J = 14.0, 10.6, 6.4, 4.3 Hz, 1H), 1.71–1.56 (m, 

2H), 1.50–1.33 (m, 2H), 1.33–1.20 (m, 2H), 1.19–1.06 (m, 3H), 0.96 (t, J = 7.8 Hz, 3H), 0.81 

(t, J = 6.6 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 143.0, 135.85, 135.76, 135.7, 135.6, 129.24, 129.22, 128.7, 

128.4, 127.90, 127.89, 125.8, 39.1, 36.1, 32.5, 28.6, 27.7, 23.0, 22.9, 22.7, 8.0, 4.5. 

FT‐IR (thin flim) 3068, 3025, 2953, 2925, 2872, 1496, 1458, 1427, 1108, 1010 cm‐1. 

HR‐MS (ESI+) m/z [M+H]+–H2 calcd for C28H35Si: 399.2508, found: 399.2499. 

[α]23
D = + 10.6 (c = 0.600, CHCl3); + 91% ee from (S,S)–5.3. 

[α]23
D = – 11.5 (c = 0.600, CHCl3); – 91% ee from (R,R)–5.3. 

 

5.4.6. Enantioenriched Electrophile Experiments 

 

Procedure for Enantioenriched Electrophile Experiments. (1-Bromo-3-

phenylpropyl)(ethyl)diphenylsilane was separated via preparative-scale SFC on a 

CHIRALPAK AD-H column (2% i-PrOH, 4.0 mL/min) with tr = 3.9 min, 5.0 min. In a N2 
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atmosphere glovebox, an oven-dried 4-mL vial was charged with rac-, (+)-, or (−)-(1-

bromo-3-phenylpropyl)(ethyl)diphenylsilane (29 mg, 0.070 mmol), then NiBr2•diglyme (2.5 

mg, 0.0070 mmol), then (S,S)−5.3 (3.0 mg, 0.0091 mmol). Next, an oven-dried stirbar was 

added followed by anhydrous DMA (0.3 mL), and the reaction was stirred for 10 mins. Then, 

(2-(1,3-dioxolan-2-yl)ethyl)zinc bromide (0.084 mmol) was added, the vial was capped and 

removed from the glovebox. The vial cap was sealed with electrical tape and allowed to stir 

at room temperature for 30 mins. After 30 mins, EtOH (0.20 mL) was added and allowed to 

stir for 10 mins to quench the reaction. Then tetradecane (internal standard for GC analysis, 

20 μL), hexanes (0.50 mL), and Et2O (2.0 mL) were added. The mixture was then passed 

through a short silica plug into a test tube, flushing with Et2O. An aliquot of the filtrate was 

taken for GC analysis. The remaining filtrate was the concentrated and ca. 2 mL of H2O and 

ca. 1 mL of 1:1 hexanes/Et2O mixture were added and the test tube was capped and 

thoroughly shaken. The organic layer was extracted and placed on a preparative TLC plate 

to separate starting electrophile and product (eluent 50:1 hexanes/Et2O, electrophile: rf ~ 0.6; 

product: rf ~ 0.2). 

SFC analysis of remaining electrophile: The ee was determined via SFC on a CHIRALCEL 

OJ column (3% i-PrOH in supercritical CO2, 3.5 mL/min) with tr = 4.6 min, 5.6 min. 

SFC analysis of product: The ee was determined via SFC on a CHIRALCEL OJ column 

35% i-PrOH in supercritical CO2, 3.5 mL/min) with tr = 6.8 min (major (S,S)–5.3), 4.4  min 

(minor (S,S)–5.3). 
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5.4.7. Determination of Absolute Stereochemistry 

 

 

 

 The absolute configuration of (R)-ethyl(6-phenoxy-1-phenylhexan-3-

yl)diphenylsilane (Table 5.3, entry 2) was determined after an enantiospecific Fleming-

Tamao oxidation32 to yield (R)-6-phenoxy-1-phenylhexan-3-ol. The absolute configuration 

of this molecule has previously been determined by single crystal x-ray diffraction.33 

Comparison of HPLC data determined absolute configuration.  HPLC analysis: The ee was 



 

 

239 

determined via HPLC on a CHIRALPAK AS-H column (3% i-PrOH in hexanes, 1.0 

mL/min) with tr = 19.5 min (major (S,S)–5.3), 14.4  min (major (R,R)–5.3).  

 

 

 

 

 

 (S)-(4-(1,3-dioxolan-2-yl)-1-phenylbutan-2-yl)(ethyl)diphenylsilane (Table 5.2, entry 

2). Single crystals were obtained with (S,S)−5.3 after slow evaporation from Et2O. The 
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crystal was kept at 99.95 K during data collection. Using Olex234, the structure was 

solved with the XT35 structure solution program using intrinsic phasing and refined with the 

ShelXL36 refinement package using least squares minimization. 
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