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ABSTRACT

A linear theory is developed for the steady free surface flow of

a viscous fluid past a general system of submerged flow disturbances

(a point mass source and three orthogonal point forcelets). The

viscous character of the flow is approximated by using the Oseen
linearization of the Navier -Stokes equations.
Solution of the fundamental problem (point flow disturbances)

using double Fourier transforms furnishes formal representations of
all the interesting flow quantities: the wave height, the three compo-
nents of the perturbation velocity, and the dynamic pressure. Asymp-
totic expansions are presented for the 'free' or propagating parts of
the flow quantities as they would appear far downstream,

Centerplane distributions of the flow disturbance singularities
are used to model the flow about a symmetric thin ship, From the ap-
plication of the momentum theorem, general formulae are derived for
the total fluid drag on a ship in a viscous flow. These results are
then specialized for use with the Oseen equations. The wave resist-
ance formulae are of particular interest because they contain the
strengths of the three forcelet distributions as well as the mass
source distribution,

A numerical example of a wave resistance calculation is pre-
sented in which the four distribution functions are prescribed., The
results are compared to known experimental curves, | These indicate
that significant features in the character of ship wave resistance can

be qualitatively described by including the strengths of local viscous

forces acting on the body,
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NOTATION
2 kS i
b,b, = [y*+z-L¥]1%, [y*Hz+P]%; ¢ = -h in Chapters (II - IV)
B = beam of ship hull
cm(x, z) = Mo(x, z)/-;- U, mass source distribution (nondimensional)
D -1.,D 1
(cx, cy , cz) = (Xo, L Yo’ Zo)/."f pUz, forcelet distributions
(nondimensional)
1 .2
_ 1 2,2
(CX’C ’CZ) = (X,Y,Z)/z' pUi
oA
K :[ ]
D k) 5%,
p
—
F = (Xs Y’ Z)
FpFr, = U// gt, U/[/ gLl Froude number
g = acceleration of gravity
h = depth of submergence of point singularities
h(x, zi) = equation of ship hull shape
i = -1
k = transform variable
kp = approximate simple root of A(k,0) =0
L = reference length in Chapters (II-IV); £ = L/2 in
Chapter VIII,
L = length of waterline of ship
m = strength of mass source[ length® /time]

0

This list includes only symbols of general use throughout the thesis,
except where noted, The remaining nomenclature is identified as it
is introduced.
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Mo(x, z) = mass source distribution (length/time)
P =Pyt pl, hydrodynamic pressure
_ (o)
B =P + Py
P - = total pressure = p - pgz
Fl’ = €0+ (.fl » perturbation velocity
- _ —’(O) —
q1 =9 t S.I.S
T = (xz+yz)_2_
1 1
R,R = [x-EP 47"+ (2-LF]%, [(x-£)P 4y +(24LF ]2
Ry, Ry =UL/v, UL/v Reynolds number
Rv = viscous resistance (see Eq. (5.21))
va = wave resistance (see Eq. (5.20))
t
So = centerplane area of ship hull
Sz = downstream control surface (cf. Chapter V)‘
T = surface tension constant in Chapters (II-1V); draft

of ship in Chapters (V-VIII)

(u,v,w) = perturbation velocity components

U = free stream velocity, forward velocity of ship

v = total velocity - U“éx+ a:

(x,v,2) = Cartesian coordinates, Figs, (2.1) and (6.1)

Xn = distance to downstream control surfacé

(X,Y,2Z2) = point forcelet strengths (force)

(Xo’ L-IYE,ZO)z forcelet distributions for symmetrical disturbance

[ force/length?]

(a,B) = transform variables
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function appearing in the denominator of the (
solution
wave elevation, measured upward from z=0
transform variable
U/2vy
g/ U?

dynamic viscosity
kinematic viscosity
fluid density

gl /U%, gL/U* Froude number parameter

tan-l (y/x), x = rcosw, y = rsinw

945 Pg)
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I, INTRODUCTION

1. Background

Linear theories for the calculation of ship wave resistance

have thus far produced results that cannot satisfactorily predict the

measured wavemaking properties of realistic ship forms without con-
siderable empirical modification, Most of the existing work on ship
flows has been based on the assumption that the wavemaking features
of the flow can be adequately represented by potential theory. (e.g.,
see the general references: Havelock (1963), Japanese Society of
Naval Architects (1957), Kostyukov (1968), Lunde (1951), Michell
(1898), Newman (1970), and Wehausen and Laitone (1960) )*, These
potential theories predict qualitatively the presence of humps and hol-
lows in the wave resistance curve as a function of the Froude number,
but they generally fail in several important respects, The theoretical-
ly calculated wave resistance curves tend to have exaggerated humps
and hollows , while for the measured curves, these féatures are much
less pronounced, Also, there is often a large quantitative discrepancy
between theoretical results and measured curves. A common feature
indicated by the comparison between theory and experiment is a shift
in the Froude number at which a local peak or local minimum of the
wave drag occurs, This feature is usually more noticeable at low
Froude numbers, (see, for example Wigley and Lunde (1948),

Lewison (1963), Fig. 5; and Lackenby (1965), Fig. 5). A subtler

3
a name followed by a date in parentheses indicates an entry in the
list of references,
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effect is illustrated in Sharma's (1963, 1969) comparisons between
measured and theoretical wave spectra, Especially in the 1969 refer-
ence, it is evident that even for very thin ship forms, there are con-
tributions to each of the two components of the free wave spectra that
are not well predicted by the thin ship potential theory. Although the
resultant amplitude function in Sharma's (1969) work appears to be
fairly well predicted, the shifts in phase and magnitude of the com-
ponent free-wave spectra are disturbing. These effects are apparent-
ly not too serious in terms of the net wave resistance computed for
thin strut-like bodies such as those tested by Weinblum, Kendrick,
and Todd (1952), and by Sharma (1969). But the qualitative deficiency
in the thin ship potential theory becomes very important for more
realistic ship hull shapes, It is probable that potential flow results
can be improved by using higher order ship theories. (see, for
example Wehausen (1969) and his cited references), However, it

seems that these may never give a complete physical picture.

2, Effects of Viscosity

A likely source of error in unmodified potential flow calcula-
tions is the neglect of the viscous effects. Experiments by a number
of investigators have indicated that there is a measurable interaction
between viscous and wavemaking components of ship drag. See, for
example, references by J. Wu and Landweber (1963), Lackenby (1965),
Shearer and Cross (1965), Townsin (1967), and Tzou and Landweber
(1968). There is a strong motiviation to understand these effects and

to study how they can be included in a theoretical analysis of the



problem.

There are two main aspects of the viscous character of the
flow: (1) the boundary layer at the ship hull and (2) the viscous wake.
Vorticity generated at the surface of a body by viscous shecar stressces
diffuses outward and is convected downstream. The continuous pro-
duction of vorticity along the length of the solid surface causes this
rotational flow regime to grow within a thin layer whosc thickness in-
creases along the body., At the rear, the boundary layer flow from all
around the body fuses into the wake regime. The wake, though lacking
a source of new vorticity, is nevertheless a region of retarded and
rotational flow that stretches downstream behind the body. It grows
in cross-sectional area as the convective velocity defect gradually
decreases in magnitude., When the free surface is included in the
problem, the gross flow picture is basically unchanged except for the
generation of waves within the Kelvin wedge downstream of the disturb-
ance,

Unfortunately, the detailed flow picture for the ship is com-
plicated by interactions between various features of the actual flow,

The ship-generated wave system causes an undulatory pressure
variation along the body, which in turn has an influence on the growth
of the boundary layer. It also has an undulatory effcct on the magni-
tude of the local shear stress within the boundary layer. Consequently
the overall skin friction drag could be expected to display some
Froude number dependence, Wave generation, ‘and hence also wave
resistance, depends on the effective shape of the body. Variations in

the boundary layer displacement thickness change the virtual hull



shape slightly. Therefore the wave resistance could be expected to
contain some Reynolds number effecct,

There are other troublesome recal flow cffects., Flow separa-
tion near the stern of blunt ship bodies is perhaps the most difficult
problem of this type, Even disregarding separation, the extra thick
boundary layer region far aft on a ship and the presence of the rota-
tional wake can alter and diminish the effectiveness of wave production
near the stern. Streamlines of the flow are prevented from closing in
at the stern as they would in an idealized flow, The variation of thc
velocity defect across the wake can cause a complex focusing and
scattering of wave systems that further confuse the flow picture
(Lau (1968), Savitsky (1970) ). Complicated secondary flows arc also
possible, especially near the stern (Chow (1967), Gadd (1970) ).
Another important real flow phenomenon is the breaking of the bow
wave created by blunt ships., Baba (1969) has studied this effect and
has measured the accompanying resistance by means of wake profiles.

There is no question that the real ship flow is exccedingly
complicated. A detailed analysis is probably impossible. The issuc
then becomes how to model the situation approximately in order to
obtain both understanding and useful results. A number of attempts
have been made to study various aspects of the problem. Somec of
these are reviewed here.

Concerning the boundary layer influence, the effect of adding

a prescribed displacement thickness to a hull shape to model the

boundary layer has been studied by Havelock (1948), Laurentieff (1952),
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Wigley (1963), and T. Wu (1963). From the curves of wave resistance

computed for the effective hull forms, the influence of displacement
thickness along most of the length of the ship is known to be small,
This is because the slope of the virtual hull form is changed so little
by the boundary layer, However, extending the displacement thickness
beyond the stern of the hull tends to smooth out the pronounced humps
and hollows of the calculated wave resistance curves (Havelock (1948)),
It also tends to reduce the magnitude of wave resistance somewhat,
although this is probably due mostly to the virtual lengthening of the
hull,

Some research has been carried out to investigate the modifica-
tion of local skin friction by the pressure variations due to the surface
wave profile, For example, Steele and Pearce (1968) and Shearer and
Steele (1970) have presented experimental results indicating that there
is a definite undulatory behavior of the local shear stress in the flow
along ship hulls. T, Wu's (1963) approximate two-dimensional theory
includes some results that show a small Froude number effect on skin
friction,

The influence of a wake region on ship flows has also been
investigated. Milgram (1969) considered the effect on Michell's in-
tegral of an idealized wake geometry, His wake consists of a narrow
constant width semi-infinite extension of the body itself. The wake
streamlines are joined smoothly onto the hull shape, and the fluid
within the wake is supposed to move with the velocity of the ship., The

results for wave drag are similar to Havelock's (1948),



Tatinclaux (1970) and Brard (1970) have presented independent
investigations in which the wake behind a ship is simulated by a pre-
scribed volume distribution of vorticity. Tatinclaux studied the prob-
lem of an infinitely deep rotational wake behind a two-dimensional
ogive. He discussed the effect of the rotational flow region on the
wave profiles and resulting wave drag., Brard's work also is based on
the assumption that the volume distribution of vorticity inside the
combined wake and boundary layer regionis known. He used source dis -
tributions over the surface of a body shape to model the ship hull, and
has calculated general formulae for various components of total wave
resistance, including terms that depend on wake vorticity.

Beck (1970) has proposed a theory for modelling the wake
region behind a ship, using a constant width U-shaped vortex sheet
stretching to infinity., The vortex sheet is attached to the hull at some
position along the length which can be adjusted to give a total wave
resistancevwhich agrees with experimental results, The value of the
strength of the vortex sheet is related by a simple formula to the

measured viscous drag of the hull at various Froude numbers.

3. Present Study

The present work is an approach from a somewhat different
point of view. It is an investigation of a linearized approximation to
the complete viscous free-surface flow problem. The theory develop-
ed here contains the basic features of viscous flow in the sense of the

Oseen linearization, Thus, for large Reynolds numbers, the solution
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becomes asymptotically valid in the far field. One interesting feature
of this ‘approach is that it includes the possibility of relating the
properties of the viscous boundary layer and rotational wake to the
shape of the ship hull,

A brief consideration is given here to some general character-
istics of a three-dimensional turbulent wake behinci a body, where from
the present vpoint of view, the forces on the body appear merely as
concentrated flow disturbances. The Reynolds number UL/y, based
on some body length L, is assumed to be large, When the flow near
the disturbance is nearly axisymmetrical, Fig, (1.1) gives a schemat-
ic representation of the turbulent wake flow (near wake) and its even-
tual decay to a laminar wake (or far wake) for the case when the drag
force D is large compared with Y, a small yaw force. The decay
of the turbulent wake structure occurs as the scale of the turbulent
eddies gradually decreases (Townsend (1956) ). Using similarity
arguments, the half width of the wake b(x) and the mean perturbation
velocity components u,v on »the centerline can be estimated for the
fully turbulent wake region, These are indicated in the sketch. What
is important here is that for distances far enough downstream of the
disturbance, the flow is well represented by the Oseen equations,
regardless of the details closer to the body. It is this fact that justi-

' fies the use of the Oseen linearization in the present case, because our
interest is also in the far field flow regime,

The idea of studying concentrated or sivngular flow disturbances

is especially useful in linear analysis, because various fundamental
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solutions can be added together to form a composite flow. In the first
part of this thesis (Chapters II - IV), the fundamental solutions are
obtained for the free surface Oseen-flow past a set of submerged
disturbances represented by a singular mass source m and a singu-
lar force F = (X,Y,Z). Some preliminary explaﬁation is desirable
regarding these two systems of flow disturbances. The ultimate aim
of the theory is to use the mass source m and forcelet 1? as distri-
butions to simulate the flow around a ship form. The mass source
distribution acts to displace streamlines of the flow around the gross
shape of the hull outside the boundary layer, Similarly, one may
regard the forcelets (X,Y,Z) as 'sources' of fluid stresses giving
rise to the vorticity contained within the thin boundary layer and wake
region. Of course the fundamental solutions are determined here with-
out any assumptions about thinness or slenderness of the body to be
modeled, It is interesting to note that the wake flow viewed in this
way contains automatically a continuous mixture of both the 'Betz
wake sources' (Tulin (1951) ) and rotational flow properties from the
forcelets,

Sretenskii (1957) presented a result for thin ship wave resist-
ance in O.seen-flow, using only a mass source to simulate the flow
about the hull. It will be seen here that including singularities to
model the fluid shear stresses introduces new and interesting features
to the classical thin ship results,

Formal representations of the flow quantities are derived in

Chapter IIl using integral transforms, Then from the integral
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expressions, asymptotic formulae are obtained for the 'free' or prop-
agating Wavé flow quantities as they would appear far away from the
disturbance, These are discussed in Chapter IV,

In the second part of this work, the fundamental solutions are
used to model the thin ship flow problem, Using the results of the
momentum theorem discussed in Chapter V, expressions are derived
in Chapter VI for various components of ship resistance. The bound-
ary conditions and resulting integral equations for the unknown flow
disturbance functions are outlined and solved approximately in
Chapter VII, Finally, in Chapter VIII a sample numerical calculation

of the wave resistance is presented,
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II. GENERAL FORMULATION

This chapter describes a mathematical formulation of the free
surface viscous flow problem under consideration, The basic approach
is to linearize both the governing equations of fluid motion and the free
surface boundary conditions in order to reduce the real problem to one
of tractable form,

The ‘fundamental problem treated here is an extension of some
previous investigations on waves in a viscous fluid., Discussion and a
listing of the early researches on this subject are given by Wehausen
and Laitone (1960), §25. Some of the more recent work should also be
mentioned here,

The effect of viscosity on two-dimensional free surface waves
generated by disturbances was studied extensively by Wu and Messick
(1958). Detailed solutions for both the far field and near field were
obtained by a Fourier transform technique. The disturbances con-
sidered in that work were two concentrated orthogonal stresses applied
on the undisturbed free surface.

Cumberbatch (1965) extended the theory to the case of Kelvin
ship waves generated by a concentrated normal stress applied on the
free surface., He provided asymptotic results for the free surface ele-
vation far downstream of the disturbance when the Reynolds number is
large.

The case of a submerged point drag force was considered by
Lurye (1968) who solved the problem formally by a double Fourier

transform approach, but produced no solutions in terms of the physical
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variables of the problem.

Allen (1968) also dealt with the problem of Kelvin ship waves in
a viscous fluid, using Cumberbatch's work as a starting point. Instead
of concentrated stress loads, however, he considered patches of ap-
plied normal stress and discussed the relative importance of the effects
of viscosity and wave interference on the damping of the resulting wave
systems.

In the present work, the problem of the free surface viscous
flow caused by submerged singularities is attacked in a manner very
similar to Lurye's. In addition to a drag forcelet, singularities rep-
resenting a lift forcelet, a yaw forcelet, and a point mass source are

included,

1. Statement of the Fundamental Problem

Consider a point disturbance moving steaidily beneath the free
surface of an otherwise undisturbed infinitely deep half space of a vis-
cous fluid. The disturbance moves with a constant horizontal velocity
U in the -x direction at a distance h below the free surface. The
fluid has a mass density p, dynamic viscosity p, and is assumed to
be homogeous and incompressible. The acceleration of the external
gravity field is g, acting downward. This problem is equivalent (by
a Galilean transformation) to that of a uniform flow past the fixed point
disturbance,

We prescribe the disturbance in terms of a submerged mass
source of strength m and a submerged point force F = (X,Y,2)

represented by delta function singularities in the equations of
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continuity and momentum, respectively, A Cartesian coordinate sys-
tem is fixed at the free surface of the fluid, directly above the system
of point disturbances, with =z pointing up. Figure (2.1) is a sketch of
the flow geometry of the fundamental problem.

Perturbation flow quantities (velocity and pressure) are assum-
ed to vanish at infinity. In addition, the perturbatioﬁ velocities
(u,v,w), in comparison with the free stream velocity U, are assumed
to be small so that only the linear terms of these quantities are retain-
ed. The same assumption applies to the surface wave elevation { in
terms of its maximum slope. Throughout this chapter and the next,
the surface tension effect is included for completeness in the general
formulation., This effect will be dropped in the work that follows there-

after,

2, Basic Equations of Motion

We denote the total flow velocity by v = U%x + Ef = (U+tu, v, w).

-
The perturbation velocity q satisfies the continuity equation

divg = mé(x+hs ) (2.1)
Z .

where 6(5{+héz) = 8(x)8(y)6(z+h), 6(x) being the Dirac delta function,

and m the strength of the mass source. Here, EX,E , and e

y z
denote the unit vector in the x,y,z direction, respectively, The

Navier -Stokes equation for steady flow with a submerged point force of

strength F can be written as

—

(VeW)V = - -}D-V(P+pgz) Nar g 5(x+hé ) (2.2)
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AZ

Fig. (2.1) Schematic representation of the flow
disturbances for the fundamental problem. The
mass source strength m has dimensions
(length)3 / (time); the force strength components
X,Y,Z have dimensions of {(force).
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2 2 2
where V2= 8 + 9 + 9

9x? ay® o 2*

i
By assuming that the perturbation velocity q is small compared

to U, (2.2)is linearized to give the Oseen equation

8q 1 | > B s
u 5‘;{' = - -5- V(P"‘ng) + 'Uv q + E 5(x+hez) s (2. 3)
where P = p+ph is the total pressure; P, = ~pgZ being the hydrostatic

pressure and p the hydrodynamic pressure; v =/p is the kinematic

viscosity,

3. Boundary Conditions

There are three boundary conditions involving the flow variables
(:;:p;g), where { 1is the elevation of the free surface, measured up-
ward from z = 0, The flow velocity is uniform at infinity and the
kinematic and dynamic boundary conditions are to be satisfied on the
free surface,

The kinematic boundary condition states that fluid particles on
the free surface remain on it. Physically, this condition requires
that the flow velocity of a free surface particle be tangential to the

surface elevation {. Mathematically, this condition for the case of

steady flow is

[(U+u) 5?; +v % +w 53;] (z-4)=0 on z==t(x,y) . (2.4)

Linearizing this equation, and expanding various quantities about the
mean free surface z = 0 for small {, the approximate kinematic

condition becomes
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W:U.g—}%;— (Z:O) (2,5)

Now, the dynamic free surface condition specifies that the tan-
gential fluid stress be continuous across the free surface interface,
while the normal stress undergoes a jump equal to the surface tension
T times the total (or Gaussian) curvature of the surface. Assumingthat
the pressure above the free surface is a constant Pa’ and neglecting
the shear stresses in the medium above the surface, the dynamic free

surface condition reads

aX[(PL-7) - P_I]n = 0 (z=t) , (2.6)
C[(Poy -y ) - P, Inn = TK,  (z2%) (2.7)

where 6ik is the Kronecker delta; I is the identity matrix; Tk is

the component of the viscous stress tensor T

k

Tic T Hiex T o

ou. ou
. ) , (2.8)

n, is the i-th component of the unit normal to the free surface; T is
the coefficient of surface tension; and K, is the sum of the principal
curvatures

. —
K, =divn , (2.9)
which, after linearization becomes

Klx,y) = - (b #hy0) (2.10)

The unit normal to the free surface n is given by the normal-

ized gradient of the free surface function F(x,y,z) = z-{(x,y) = O,
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e (2.11)
|VE| Vel L 41 '

g0 the linearized form is

-
n =

-~

b d
ns - gxex—

e +e 2.12
L8, (2.12)
where the surface elevation { and its derivatives are all assumed to be
small. The constant pressure Pa is set equal to zero (with no loss of

generality). Further, Eqs, (2.6) and (2.7) may be linearized by ne-

du,
. . i
glecting the cross products of the small quantities t"x’z"y’ '5,;; . Then
the linearized dynamic free surface conditions are
ou ow
TXZ = O = 'J, 6-5 + ?}—{) (Z:O) N (2,13)
v ow
Tyz =0 :IJ, E-E- + '5—3; (Z:O) ’ (2_14‘)
~P+1__+TK = 0 = -p+pgl + 2y ow T 2% + oL (z=0) , (2.15)
A 3 - pg aZ axz ayz = » .

where in (2.15) we have used the fact that on z = 0, the total pressure
P = p(x,y,0) - pgbix,y).

It is convenient to split the flow quantities (-c;, p) formally into
two parts

9=9,+4d, . P=P,tP (2.16)

where (t_fo,po) represents the unbounded flow due to the mass source
m and forcelet F in a uniform stream velocity U%x with the singular-
ities located at z = -h_ The (E{: . pl) is the complementary part, defined
only in the flow region., The (E{l ,pl) problem is coupled to the first by

the free surface conditions. Substituting (2.16) into the continuity
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equation (2.1) and the Oseen equations (2, 3), the unbounded flow prob-

lem ('(-fo,po) satisfies the equations of motion

divg = mé(x+hé ) |, (2.17)
9q —»
2 o _ _]_-‘_ _F -
\% q 2K = i Vpo ;L— 6(x+hez) s {(2.18a)
where
U
K = -2-; (2.18b)

aiv = 0 (2.19)
8q.
- 1

For the present discussion, it is sufficient to state that the solution to
the unbounded Oseen flow problem (Eo, po) is known {(e.g., Lagerstrom
(1964) ). Some details of this solution are discussed in Chapter III,

To deal with the (Zj:l ,pl) problem, we first take the divergence

of Eq. (2.20) and use div<—:_[>1 = 0 to obtain
div gradplzvzplz 0 . (2.21)

We apply the curl operator twice on Eq. (2.20) and use the identity

curl grad p1 = 0 to obtain

2 0
V-ZKK

curl curlql =0 , (2.22)

Using the vector identity curl cu.rlzf1 =grad dinfli - Vza: and di.vE{: = 0,

we may rewrite (2,22) as
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2 _ 91 ga™
V2 - 2k 332)‘7 q=0 . (2.23)

Thus the equations of motion for (-c‘i:,pl) reduce to the convenient form

V2p1=o , (2.24)
ul

VZL1 v.|=0 (2.25)
w
1

ou ov Ow

1 1 ) S

5 T 3y + 53 =0 (2.26)

-2 . 9
where LI_V 2K 7 -

The connection between the component (21:, pl) and the unbound-
ed flow (Efo,po) arises entirely through the free surface conditions of

Egs. (2.13) - (2.15). In their split foi'm, these boundary conditions are

ou dw ou 8wo
—5-;— + ‘-8;1' = -5;- + T}Z (Z:O) ’ (2.27)
v dw 8vo BWO
-kt o |t W) (z=0) (2.28)

ow p ow

P
O
T tEb 2yt T )= 2 -2y 52 (220) L (2.29)

wotw = U gf-c- , (z=0) (2.30)

where T1 = T/p. These equations together with (2.24) - (2.26) com-
prise the mathematical statement for the equations governing the
component (Efl ,pl ). Also, the perturbation velocities and hydro-

dynamic pressure are required to vanish as x° +yz +z* =~ within the
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flow region, In contrast to the free surface potential flow problem,
nothing further needs to be said about the radiation condition. Inclusion

of the viscous effect guarantees that propagating free surface disturb-

ances appear only downstream of the submerged singularities, as will

be seen later.

4. Introduction of Integral Transforms

An-important formal simplification of the three-dimensional
problem is achieved by using the double Fourier transform on the

uantities, u ,v ,w , and {. The transform and its inversion used
U TR TR W

in this work are defined by

% |
Ha,p,2) = o SS e XYt vy, z)andy (2.31)
=00
w -
0,2 = g (§ OG0 pean (2.32)
. =00

assuming that |f| is integrable with respect to x and vy.

The problem may be recast in a nondimensional form using U
as the reference velocity, some characteristic length £ as the length
scale, and pU? as the reference for pressure and stresses., We

denote the dimensionless quantities by variables with underlines

X =%, p=pUip ,
£ =128 , la=a , 1B =4 , (2.33)
q=Uq °’ 1k0=1_<_o , Lk =k .

We define the dimensionless parameters Reynolds number Ry »
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Froude number Fﬂ, and Weber number w, by

Ry=Ul/v =2kt , FJZ:U/\/gz‘, leUzﬂp/T:Uzl/Tl . (2.34)

It is more convenient to use the inverse Froude number parameter

0'1 defined as

o, =gl/U*= 1/FfZ . (2.35)

Applying (2.31) to the equations of motion (2.24) - (2.26), and

incorporating the dimensionless quantitites (2, 33) - (2.35), we obtain

Vip =0 (z<0) , (2.36)
P z
e
u
-1
v T 3’1 =0 (z<0) , (2.37)
A z
w
L~
- - av?l
i i —— = < 2.38
iou +IPY + 5, =0 (z<0) , (2.38)
where
Vz :—é?— -kz ?_, = dz "kz
azz o 1 g2 e
and
2 _ .2 2 2 _ g2 2,
ko=("+87) K =@ +p +iR)a)

The transformed nondimensional free surface boundary conditions are

-+ aw - ﬁo(zsﬁ) (z =0) , (2.39)
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dv
d ! + IE_YV_ =N (OZ,E) (Z = O) ’ (2-40)
~ [?ie)aw K2\
-12_'_21 + —R—E- —a': + 0'1 + -.'\—N.-i _\YI: PO(E_,E) (E: 0) s (2,41)
~ .~ dw
ig_ll_i +ig_\_r_1 + dé =0 (z =0) , (2.42)

where the transformed version of (2, 30),

D) = o= (Wobw, ), (2.43)

has been used to eliminate g from the boundary conditions, The non-
dimensional functions ﬁo’ﬁo’ and ﬁo are assumed to be known be-

cause they depend entirely upon the transformed (Efo,po) system,

M (2,B) = -l:.a':zi’. +ig_\lo] , (2.44)
— E.-:O

~ dv ~

NO(Q,E) = "[—a? + iBw ] ) (2.45)
— _Z;:O

~ 212. d\y_ l_<.20 ~
Po(oz,E) ={1g_po "R’ = =19, - —VTI \zo] . (2.46)
Z =0

This completes the formulation of the fundamental problem,

with the mathematical statement of the nondimensional problem em-

bodied in Eqs. (2.36) - (2.42), There are four unknown functions a ,

-1
~ ~

v ,w , and Ex with four free surface boundary conditions. The fifth

s Tl

flow quantity of interest, g, can be obtained from (2.43),.
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III. FUNDAMENTAL SOLUTION

The free surface flow problem posed in Chapter II is solved
formally in this chapter. Surface tension is included only up to a cer-
tain point in order to illustrate how it affects the analytical behavior of
the Fourier integral representation, It is then dropped from further

~ consideration after Section 2 of this chapter.

1. Unbounded Flow Solution (Ej:o, po)

The solution of the unbounded singular flow problem described by
Egs. (2.17) and (2.18) is known from results found in existing literature

(e.g., Lagerstrom (1964) ). It can be written as

= | K{(x-R)
- N F |e -m. - 1 _ K(X-R) _.,‘ . )
9o = 4l R )+ v 7R ~ ZwpU (1-e HEF«VUn(R-x),(3.1)
1 d = 1 - -~
Py = Z‘T;'(PmU B -F'V)-ﬁ +um5(x+hez) , (3.2)
where
R% = x% +y% +(z+h P kK =U/2v .

Here the strength lof the forcelet, E, represents a point force acting
on the fluid with components (X,Y,Z) in the positive (x,y,z) direc-
tions respectively. For instance, a singular drag force would be writ~
ten as drag = ‘-X.

There is an interesting property regarding further splitting of
the unbounded flow component (Efo, po), a property which is common

to the component (:1: ,pl) and is fundamental to the Oseen equation,
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This property can be exploited to good effect when the ship flow is
analyzed, so it is worth reviewing here briefly,

Consider the following steady-flow Oseen equations

—_

8V__ 1 27>
UF}Em~;Vp+vVv ,

- (3.3)
divv =0 »

where U is the free stream velocity, and the total fluid velocity is
’\7 = UEX + : It has been shown (e.g., Lamb (1945), Lagerstrom
(1964) ) that any solution (;;,p) of these equations may be decomposed

uniquely into two parts: a longitudinal component (;; ,P) and a sole-

L
noidal component (:;T’ 0),
A solution of (3.3) is called a longitudinal component if the
velocity is irrotational V X :;L = 0, and it satisfies the equations
v
L 1
U=z =-5"P

div?r’L =0 (3.4)

curle =0

The viscous term in (3.4) has dropped out, since V? ;;L = grad div:L -

curl curl ;;L = 0. Hence the longitudinal component carries all the

pressure and no vorticity, and can be represented by a potential ¢
-
Vi = grade

Simultaneously, the solenoidal component, defined by
div:;,r = 0, carries all the vorticity but no pressure. It satisfics the

equations
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a?f’T L 4
U 5 = W Ve = v curl curl Vo o o
(3.5)
div ;;T =0

The notation ;;T from Lagerstrom (1964) is retained, but the name

solenoidal replaces 'transversal' to avoid confusion with the term
'transverse free surface wave system' usually associated with ship
g

Th v +v
waves, e sum Vv =V Vv
LV

Uniqueness of this splitting can be proved when the conditions at infinity

satisfies the original system (3. 3).

are specified (e.g., analogous to the present problem, ;r’ =0 and
PP, at infinity), qu proof and extensive discussion, see Lagerstrom,
et al (1949),

It should be noted that the decomposition of the perturbation
velocity -‘; = ::1’0+—c11 discussed in Chapter II is not a splitting into
longitudinal and solenoidal components. Each of Efo gnd _c-fl are them-
selves made u;; of these components,

Referring to Eqs. (3.1) and (3.2), the longitudinal and solenoidal
components are easily identified by inspection. The terms of the sole-
noidal components contain the factor eK(x-R‘), whereas the longitudinal
components do not, There are some interesting features of the longi~
tudinal component flow c—:fo . Carrying out the indicated operations,

L
we have

- 1 | m
G0 = 77 8rad[ T +

L
1 X v x (z+h) x
- == grad{- = +Y I+ 3+ 7z —200 14 S8
4mpU { R (y2 +(z+h)? ) [ R} V¢ +(z+h P [ R}

(3.6)
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The X-force has the same velocity potential part as a point sink,
whereas the Y-force and Z-force have the same velocity potential
parts as horseshoe vortices with their lifts §riented in the —€y and
-éz directions respectively (see Fig. (3.1) ).
The wake character of the Eo flow is governed by its solenoidal

component -c-_fo . For large x downstream of the origin, the radius of

the wake T, =/y* + (z+h)® has the simple equation

2 wa
e =V % , (3.7)

where the constant CW > 0 defines the scale of the effect of the wake,

CW is chosen so the wake flow quantities are diminished by a factor

e 7V, Hence the influence of the solenoidal velocity Efo is confined

T
within the paraboloidal region defined by (3.7), and is exponentially

small throughout the remaining flow regime,

2, Transform of the (ao,po) System

~

~ L o
The transform quantities U sV Wy and p, are required to
~

(o] o]
~ e

compute the :Eunctionys Mo’No’ and Po of Eqs, (2.44) - (2,46), The
nondimensional form of (;o’po) given by Eqs, (3.1) and (3.2) is ob-
tained by using the definitions in (2. 33) and the nondimensional force

and mass source coefficients defined as

x X
. = Cy |- L e C_ = 2 (3.8)
F Ly ’ L .
Cz z P Z z

In the subsequent discussions it is convenient to drop the underlines
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from the nondimensional quantities, All conversions of equations to

dimensional quantities are clearly stated in the text.

The Fourier transform of (qo,po) is determined by using the

following integral representations:

o0 -k0|z+h|
1 ~i{ox+py) 1 e
7-1-; yS‘ [ R dXdY = ——-—-—E—— N
T(X R) ~k |z+hl
1 “ioxtBy) e = e !
TT? S§ d_Xdy = ———E-l——-——— 3
‘27' (x-R)\ 4

©
SS o milax+By) ()

g1H

T In(R-x)dx dy

-k_|z+h]| -k |z+h]

e © e 1!
= - k + k } H
o 1

- {(x-R)
Z%,'T" SS' 1(ax+BY)( T )'5%7 In(R-x)dx dy

-k_|z+h] -k | z+h]
o]

_E__e ‘ e !
= = T + T s
o 1

- (x-R)
Zngg 1(0!X+F3Y)( e 7- )58; In(R-x)dx dy

-k _|z+h]
-

Rl

+e

-k | z+h|
1 ] sgn(z+h)

where

,

> (3.9)



-29-

R = /%% +y% +(z+hP?

k =Jak g2,

[e]

k = Jo? +p? HR, @

Then, for z < 0, the nondimensional (EO,I?O) are given by the follow-

ing functions of (@, , z)

T io io C
L e'kol”hl -k | z+h]| x g "k |z+h]
v, |=]iB |G T +Hi |G e ! 41 C 1 e !
N ! o 2 TR Yigw Tk
w -k -k 1 C !
o O 1 Z
(3.10)
~ -k0|z+h| Cm
p (@,B,2) = -io] Gl]e + R, §(z+h) , (3.11)

where the groups of terms Gl and Gz are functions of «,B and the

nondimensional singularity strengths C_,C ,C ,C _,
m X y‘ z

~ ~

Then the functions Mo’ﬁo’ and PO are evaluated at z = 0 in terms

of G and G.
1 2
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- -k_h RC, i, RC, ] kb
MO = 2101(}16 + [ZIOJGZ + g - z{'l_ T’rr_} € s
-k h R,C . R,C -k h
~ . o [, 1~y g ReCy A
No - ZlﬁGle +[21BG2+ 8w kx "‘8’?{‘] €
~ [a2 2ok, -k_h (3.14)
P =0 - g'
ZJ’.ozk1 Zia/kl R’ﬂcz -klh
- 1 ot
J{( R, +G‘)GZ+( R, o)s“k]e ’
1
where
kZ
v _° _ 2 _
o'=0,+ w, - o,=gl/U* W,=ULp/T

3. Solution for (&’1 SIS

The solutions for the complementary flow quantities, ; ,u ,v o,
1

v~v1 follow directly from the differential equations (2. 36) and (2.37)

El (@,B,2) = —Aekoz (z<0) (3.15)

4 (2,B,2) = B ek°z+ C ek’LZ | (z<0) (3.16)
1 u u

v (@,B,2) =B ek°z+c eklz (z<0) , (3.17)
1 v v

~ k z k z

W (@,p,2) =B_e © +C_e 1 (z<0) ,. (3.18)

where A, B ,C , B ,C ,B ,C are coefficients to be determined
u u v A" w w ;
below. These solutions vanish at infinity (z - - o) provided the real

parts of ko and k1 are positive

Re/o? +f7 >0 | Rg\/az +62 +iR;;>0 , (3.19)
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The nondimensional form of Eq. (2.19),

2 0\~
v -R,l 5 ql:RJZV_pl , (3.20)

has the following Fourier transform

a; i
Liv ig |R,P, (25 0) | (3.21)
x 4
1 dz
where
~ 2
L = d - K
1 gy2 1

Substitution of Eqs. (3.15) - (3.18) into (3.21) shows that Bu’ Bv’ BW

are related to the coefficient A by

Bu'] 1 7
BV = g A
ko
L Bw] | o

Next, the four unknown coefficients A, Cu’ CV, and CW can be reduced

to three unknowns by invoking the continuity equation. This gives

1 .
C,=7Z (BC +kC) . (3.22)

The formal solutions of Eqs. (3.15) - (3.18) thus reduce to

k =z

Fl(a,ﬁ,z) = -Ae ° (3.23)
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a(e,B,z) = Aek"Z + -j;(iBC +k C )ekiz , (3.24)
1 [24 v 1 W

T (a,8,2) = & Aekoz +C eklZ , (3.25)
1 o v

W (@,B,2) = 1:9- AekOZ+C eklZ , (3.26)
1 i W

for z< 0, Using these relations, the free surface boundary conditions
(2.39) -~ (2.41) provide a system of three linear equations in three un-

knowns A, C , and C_.
v w

2kl o'k 2iok - )
i + - }A+ 1 +o*}c =P ,
Ri o Rﬂ w o
ik? - \
2x A-Lxc +[-—-1— +ioz}C -M (3.27)
o a1 v o w o
2Bxa+xc +ipc =N
[0 O 1 v W O

/

Solution of this system along with (3.22) yields the four coefficients
. :
A, Cu’ Cv’ CW which connect the (ql,p1 ,0) | flow system to the un-

bounded flow system via the free surface conditions. The results are

-k h

o . 3 2 8igk? -k h
. e 1 }j2ia 8¢ o o
A-lOl[Gl] -HE;——-'FZ{( kZ +T{£ RZ )[Gl]e +
e} 2
1 ik; 40Pk 8iok k| -k h
tglc B+ =2 c||- Loy —9je 1 . (3.28)
11 x a y ak z k R 2
1 o 1 R,




-klh -k h
i 1
s e X €
C, = ief Gz] —-———kl + R, 5 kl +
I ( 40 kl Siakokl) -k _h < | 802 smkg -k h
+ Hdl- + [G e o= - ) e !
Z kORﬂ REZ 1 8Tl' Rﬂ Rﬂz
. 2 -
Cyip)[8er _Bikg) kR Cogren iy
+ Bﬁ?(&' B + ——-(——O——L e ! (3.29)
ﬂ R 81 2 ! )
) R
)
-k h
-k h cye 1
C_=ipg[G ] + R, L}
v 2 ) 1 L 811']:{1 )
40 k 8ick k -k h C 8iok -~k h
+ 1 '3 - 1 + O 3 [G ]e (o] + ____3_{(?_)80(2 o 1
A koRl R2 1 8wlae | R R 2
i )
C 807 Siak; klh C, 5 8k7‘k -klh
+§F(“)( ey b HR(;)( ny )e > 330
/) )
-k h c, R
Cy [G]e - Ry - —¢ +

The denominator A  is

2 4iak 4k(3) 4k kl

Ala,B) = o! —( - )+ Q , (3.32)
kR R2 R2
) )
where
k? ‘
1 _0 _ 2 2 = 2 Z -

o "01+Wg o k= 4R kl_\/af +f? +iR, @

To complete the formal solution of the free surface problem,
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the nondimensional transform of the wave clevation Z(u, ) is deter-
mined from Eq. (2.43) to yield

_ 2 o
L, B) = o [Wo(a,f),o) + 2 A+ Cw} ,

which, upon making use of (3.9), (3.28), and (3.31), gives

~, 1 |ia Zko B 1ko C—ko "
L. p) = ﬂ(g* —R;) l:cm—cx e %y T CVJ A
. 2ik k h
+Z-————T‘_R2 [Zk(cx'*‘g—c ) + ao CZ]QA (3.33)

By inserting the expressions for G and G into Eqs. (3.28) -
1 2

(3.31), the resulting solutions for the [(17 v ,& ),T) | system exhibit
1711 1

the following decomposition

~ N(O) ~ ;

_ + ) 3.34

P =P Py ( )
u 3o Y
1 1 5

gl I fel S PR , (3.35)
1 1 S
w S B
1 1 S

where [(El(o),z(o),'v?}l(o)),'ﬁl(o)] is an image flow system (singular at
X = + héz above the free surface), and [(ES,:S,’\TVS),;SJ represents
the remaining surface effect. Now, the surface flow system can be
further decomposed into two parts corresponding to the 'longitudinal'
and 'solenoidal’ components discussed earlier,

(o, v, w )] =[(w, v, ,w_ )P ]+l ,¥

(3.36)
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We have anticipated this decomposition from the form of Egs. (3.23) ~

e

(3.26). The transformed pressure P, is associated with the factor

k Z N ~ ~
e © , while the velocity transforms (u ,v ,Wl) contain the factors

k z k z LI |
! | We know from the Fourier transforms listed in Egs.
k z
3.9) that the e © terms are associated with the potential flow arts,
P P
k =z

and hence identify the longitudinal components. The e ! terms, on

e and e

the other hand, are associated with solenoidal components containing
Ry
(x-R)
eT o . R - Z 1y 122 .
Collecting these results and using the Fourier inversion formula

(2.32), the solution of (c_f1 ' P, ;8) is now summarized,

pl = ) +Ps ’ (3 37>
- N "(O) — -
Q=9 " *t4g
where
(@,p )=, .p)+(d, ,0)
S S SL S ST
The image flow system (_c-fl(o), pfo)) is
v
1 i(ox+ n -
pl(o) = o gel("‘x 5”51 dadp (3.38)
-00
i 1 . 7
) ~(o)
1 00 1
() |_ L 5" i{ax+By) | (o)
v1 = 5= e A da‘dﬁ s (3.39)
-Q0 !
) nd )
1 - - 1 -
with
k_(z-h)
~{o) _ e[ G & (3.40)
Py Bk :
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5 (0) [ia 7] o ] c ] Kk h
L k (z-h) k (z-h) | ¥ , (z-h)
sl G S 4l e e T
, | =18 Bk, B e R R
~(0o)
. ..J -kO o __k]_ _j _CZ_
(3.41)
and where
ik_
G - [-c +c + B c 4 c] , (3.42)
m x o Yy « z
ik :
H - [-C-Ec-—l—c] , (3.43)
X a Yy a zZ

The longitudinal component [(?s(x, V,Z), ps(x, v,2z)] is

+By) k (z-h) k z-k h
xy,z)—-ygdadﬁ o Y{Me i +L%e°Z 1

81 A s
(3.44)
(v, ] EX 7, | “
L %3 Jilax+By) 5| k (z-h) ® | kz-k h
v :S‘Sdadﬁ-——-————vﬁa/ e © HE |e® 1%
L T 81 A Vg Vs
W, | = Z, j
| L | N S | L s ]
(3.45)
where
. 3 2 41&'1(2‘
% =(i‘% + 401‘3\ - — °\la (@,B)] , (3.46)
s ko A RJZ
F ( 2a° k1 41o:kok1 r 8 ik;
= - + C.+5c + c |, (3.47)
Pg koRJZ Rzz |Tx 2 Ty aizl z]




The solenoidal component [E;

- ﬁdadﬁ

=00
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(x,v,2),0] is
T

r -1
| Cu_
el(axﬁy) g ekl z-koh
81 A vs
%
L s
20%k 4igk k
- 1 +
i.kz kORﬁ Riz
o
ok
1

+

s 902
(iap 402 ) 41ak0 ) [C}( Q)j
2 R 2 a’ 1
ko g RJz

> [Gle,B)]

(3.48)

(3.49)

kl(z—h)

(3.50)

(3.51)
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4igk? 4k 2K
2., % -2 et ko = e,
s 4 Rﬁ Rl \
4igk? 4%k
=@V = g(i{"‘z - 2°)[cx + g cy] +(g}—-——° L-c, (3.52)
8 £ RE Rﬂ
4k? K ik ? )
9 =(- ——9-—1-)[Cx+gc +ozl? CZ] )
Ws RlZ y 1

Finally, the free surface elevation from (3.33) is expressed in ab~

breviated form

' 7 oilaxtpy) -k_h ~kh
L(x,y) = SXdad{S —CA e + Bge , (3.53)
8n° A 5
where
ia 2ko
: Aé :(1?"1' T)[-G(Q:ﬁ)] ) : (3~54)
o 2
2k 6 ik’
Bg = —R_[{Cx t 7 CY + akl Cz] . (3.55)
8 iko
The factor Gla,B) = [-cm+cx+ o CY to— CZ} 1s a grouping of

terms which appears often throughout this work,
It may be remarked here that when surface tension effects are
omitted (T =0), and if C =C =C =0, leaving only C directed in
m "x y z
the +z direction at the free surface (h = 0), we have the special case
of a normal surface force acting at the point x,y,z = 0, If we also put

the reference length £ = U%/g, the formula for L(x,y) given above

reduces to
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( -C,) aX+I3Y)
L(x,v) SS dadf , (3.56)

where o, = 1 and WIZ -0 in A(ae,B) of (3.32)., This is a non-
dimensional version of Cumberbatch's (1965) result.

Certain symmetry properties of the free surface solution are

evident in Eqs, (3.38) - (3.55). (a) For symmetrical disturbances

Lo ~ ~ny (ol
(terms involving Cm’cx’ and CZ) ul ,w1 ,p1 , and §{ are evenin B,
and the physical flow quantities u1 ,W1 ,pl , and { are thus even in

y. The quantity ’\71 is odd in B, and hence v, is consequently odd in

y. (b) For the antisymmetrical disturbance Cy’ by the same reason-

ing, u ,vv1 ,p1 , and §{ are odd in y, and v is now even in vy.

4, Partial Inversion of the Formal Solution

The nondimensional image flow system of Eq. (3.38) - (3.41)

is inverted immediately by inspection, giving

[ (0} r~ 1
u C R
1 X 2 R.
(o) Ry e(T) A (‘2£) (x-R)
Vl = Cy g?r-——————l-——-—--—- 8—11_- V—-R—1-+(1-e (CF,'V).QH(R -X)
w(o) LC
L. 1 J Z .
(3.57)
(o) 1 9 = 1
pl = g Crn 7% - CF.V)-R—; s (3.58)
where

- 2 {(z-hV C. -
R =V 4y +(z-hf ,  CL = (s €, C,)

For the remaining flow quantities (qs,ps;é), it is convenient
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to introduce new transform variables (k,6) defined by
a=kcosb , B =k sinf (3.59)
and to use polar coordinates for the space variables (x,y)

X =T COSW y =r sinw (3.60)

The Fourier integral representation in (2.32) becomes

i ~ . _
f(r,w,2) = '2'1; S Sw ¥k, 0,z)e X080 “hqae | (3.61)
=TT o]

with the notations ko and kl becoming

kz = 0{2 +BZ = kz
°© (3.62)

k?

; a/a+ﬁz+iR£a:k2+ichos6

2

1}

The factor A(ae,p) in the denominator of all the integrands then be-

comes .
. ‘:Lk"‘\/kz +iR, kcos 6
2 2
Al(k,0)=0,+ < - k(cos? 6~ 2kcosf 2Ky !
£ W R 2 2
{ 4 R R
) 4
(3.63)

Considering k as a complex variable, contributions to the k-integra-

tions depend on the nature and number of the singularities of the func-

tion A(k,68). There are two branch points at Jk* +'1R£kcos 6 =0

H

i,e,, at

k=0 and k = -iRﬂcose . (3. 64)

A branch cut along the imaginary k-axis between these two points ren-

ders A(k) a single-valued analytic function in the cut k-plane., The
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branch point k = -lRl cos 8 will be along the positive or negative imag-
inary k-axis depending on the values of the polar angle 6. See Fig,
(A.1) of Appendix A,

The poles of the integrands are the zeros of the function A(k9).
Unfortunately, the roots of the equation A(k) =0 canﬁot be determined

exactly in aclosed form. However, they can be found approximately by

[y

expanding-in a power series in Rﬂ_i, for large Rﬁ . The details of
this approximation are discussed in Appendix A, There, it is also
shown (using as a guide, the reference by Wu and Messick (1958) )
that if surface tension is included there are exactly two simple zeros

of A(k) in the cut k—plané. These roots are (for R, »1)

.
i
147\12 de I)\ 5?‘,/cos6

kl(e) =\ 4 S + é)\_ , (3.65)
- 1 2g_ 1 32
cos 8 W£ sec 6 % cos* 0 _——Wz ) R2
. T
1 4- )
P 4\2 4e xzs/?' [Cos B
kZ (9) = )\z + | 2)\2 + g ) 2)\2 3/2' 9 (3-66)
(cos@- ~7— Sec G)R!Z (cos 6- -W—-—-) RZ
J J
valid in the range 0< 6< 60, where
1
_ 40'1 4
90 = cos ! W—) . A critical value of U is determined by
£
40 i
£ _ 1 =-4>UC 2(%2) . The two inviscid roots )\1 and N are
Ji 2
Wl ) 40'[
7\1(6) = —5 | cos 0 - [cos*O - Wg— . (3.67)
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Vg 2 . oy
A = .
, (6) —5- | COs B + [cos®B Wﬁ . (3.68)
Note that in the limit as T =~ 0,
)\1 - crﬂsec2 6 (gravity~-dominated term),

Kz -> W'zcos2 6 (surface-tension dominated).

The root k1 () is in the first quadrant of the k-plane, and k2 (6) is in
the fourth quédrant. Sui‘face tension introduces interesting complica-
tions to free surface flows. These have been studied in the plane
viscous flow case by Wu and Messick (1958), and by Crapper (1964) for
the Kelvin problem in inviscid potential flow. Webster (1966) explored
the influence of surface tension for potential flow ship resistance.
However, this subject is dropped fr’orn further discussion here,
Neglecting surface tension altogether (T = 0, Wz =w), and

3/2

dropping the terms of O(Rjz 7"} or smaller, it can be shown (see

Appendix A) that there is one simple zero kp(G) of A(k) = 0. Hence
throughout the remainder of this work, the single zero of the function

A(k) is taken as

- _ 40122 sec’ 6 32
kp= o,sec’ 6 + i -—-—R;-——-— + O(R, ™) (3.69)
valid for RE » 1, It is neither necessary nor desirable to carry out any
of the expansions in this work to O(R1-3/2 ). The gain in accuracy is
not worth the algebraic complexity. One of the effects of viscosity is
to move the pole off the Rek . axis into the first quadrant of the com-

plex k-plane. Not only does this introduce viscous damping effects,
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but it also removes the necessity of a radiation condition to insurc
that waves appear only downstream.,

The case of small Reynolds number flow, Rl « 1, 1is not con-
sidered in this work.

Now, neglecting all the terms smaller than O(R!l-1 ) in Fgs.
(3.46) - (3.52), and using the Fourier integral representation (3, 61),
the approximate solutions of the (Zfs,ps;f,) flow quantities are

summarized below.

‘The (:{S ,ps) system is

L
oIkT cos(f-w) .
p(r,w y2) = —g dé 5\ dk £ A oX(z h)IP Cl\/,—l\h} ,
81T A k 9) Pc; Ps
(3.70)
—us 7 AAu . -Bu 1
L ™ ) o ]
v = S‘ de \dk SIKT cos(0-w)|| o oK(z-h) B Kz -Kh
SL ) VS + vs
-T o© 81 A(k,0)
W Aw BW
I L 8] L s
(3.71)
—
The (q_ ,0) system is
8
T
SR o S
T T ikrcos(0-w) uJ Uy
€ Kz -kh K(z-h)
VS = dG dk C e + D . ,
T 8rtA(k,0) || Vs v,
-t 0
Vs C
LT L WSJ L Ve

(3.72)
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and the free surface elevation is

c0

ikr cos(f-w) _ -
t(x, w)~5 degdke A ey g "Kh (3.73)
o
where the functions A BJs’Cj D AQ,BQ(J..p,u v,w) are all
functions of (k,8), and where
K = k2+iR£kcose ;
. 3 2
A(k,6) =0, -k|cost g - 2ikcos 0] 4K 4K (3.74)
2 R‘l RZ R2
£ g
2
A= (ikzcos3 6 + fl-lf-‘:‘%‘-ﬁ-) [G(e)]
s i (3.75)
_ 2k®K cos? 9 2ik® cos 6
e
F'A h r 1 -
ug 2 .
A |=| tan8||ikkcos® 9 +2K€os"0 Ir 59y | (3.76)
v R
s 2
A -i sec @
B | [ 1 7
Us
2 3
B |= tan @ |{ 2K Kcosb [-C. -tan6C ] - 2ik cos 0 . (3.77)
v R X y R z(’
8 4 J2
B ~isec 8
w -
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C 1

u Zsz 29
°|= e EeT()
CVS tan B v (3.78)
_ 2ik’ cos 8
Cw % —w— [G(e)]
s i
DU. 1 3 2
®|= A cos 91 ¢ +tanbC ]
D tan 6 ) ¥ (3.79)
VS
D =0 |,
W
S
A =(ikcose+3-k-z- [-G(68)] ,
A Ry
, (3.80)
B, = 22X [¢ ttan6c ] 4+ 2k sectd o
with
(3.81)

G(0) = [ -C ,*C, ttan 6 Cy-ﬁ-i sec 0 Cz]

We proceed with a partial inversion of the formal solution by

computing the k-integrations indicated in (3,70) - (3.73). Consider
the general form of these integrals
T 00 ik:;o
I(r,w,z) =S‘ a6 g dk e—m-k—a-y{A(k,G)ek(Z—h)+B(kﬁ)ekz-Kh} ,
- o
(3.82)
T 0 ikgo
Kz-kh ' -
J(r,w,z)zg dao \ dk m{c:(k,e)e % +D(k,_9)eK(Z h)} ,  (3.83)
- o

where ik:o'o = ik(x cos f+y sin8), K :\/EZ +iR£k cos B . By suitable
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changes of variables and combination of terms, I can be rewritten as

‘IT
2 0 .
ikr cos(0-w)
- e K(z-h), ,, kz-Kh R
I = ZS;T d6 Re‘g dk ATRD) {Ac, + Be } ,  (3.84)

where 0 < w< 1w includes the entire range of intercest in the physical
space. The integral J can be simplified in preciscly the same fashion,
reducing to a form analogous to (3, 84).

Now, referring to Fig. (3.2 ), the appropriatc contour for the
k-integration consists of the path I‘O along the positive real axis start-
ing at € and extending out to Rk' When cos(0-w)> 0, the choice of
the contour I“O+l"1 +1"A+Y guarantees that the contribution f[rom I’ is

1
zero in the limit R, —~o, Also, since 0<w < w, the condition

k
cos(f-w) > 0 is satisfied when - % < (0-w) < ZTL - w, so that the range
of 6 is restricted to - TZT' +tw< o< -12T- . The contour in this casc en-

closes the pole kp.

When cos(6-w) < 0, the contour must be deformed to make
Imk < 0 so that the contribution from I' gocs to zero as Rk -,
2
The conditions cos(6-w) <0 and 0<w<w imply that for the contonr
I‘O+I‘Z +I‘B, the range of 6 is restricted to - -TZL <0< - % + w,
Applying the residue theorem to the closed contours discusscd

above, we obtain

S.;. S.;. g+ S+ 5+§ gk, 8)dk = Zﬂiz Residues (3.85)
rr~~ r,.yv I L
o 1 1

A B

where g(k,0) represents the integrand of (3,84). On the arc vy, we

ip . .
put k =€ ¢ , so the integral on 'k becomes an integral on ¢ between



-47 -

T
> and 0, On I‘B,

the limit ¢ -0, R

we put k = e - i\, where O<)“<Rk' Then in

k0, the integral on Fo is the desired integral I;

the contributions from I‘1 and I‘Z vanish; and the contribution from vy
also goes to zero as € =0, because the functions Ale ew, 8) and
B(ee'?,6) all vanish in that limit (see Eqs. (3.75) - (3.80) ). Rear-

ranging, we have the general result

2miF(k_,0,z) ik _r cos(0-w)
® —pm © *
T 1 p’

zZ

I(r’w’ Z) = 2Re

+
€ ' -

0
dGS‘ oM cos( (6-w) F(l)\,,e,z) (id\ ) +
o

Al
s
3
w= =
- zReS‘ deg )\rcos(9~w) (- 1):&9 ,2) @an) |, (3.86)
where
F(kfz) = [ A(k0)eZ ), B(k’e)ekz-Kh] ,

K =K(k8) = Vi +iR kcos§

80 ,sec’ 8
8A . %9 /2
D (k_#6) :[ ] = -cosze(l-l + O(R
1P % | ok R, )
v 4czzsec5 9
k =o0,sec’f +i
P 4 Rl

This result for I is split into two parts. The first integral on the

right hand side of (3,86) represents a 'free' or propagating disturbance
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I(f), while the second and third integrals represent a localized con-
tribution 1(2) (a flow disturbance that is not swept downstream). We
are primarily interested in the propagating disturbance I(f) because it
gives the dominant contribution far downstream,

The integral J of Eq. (3.83) can be integrated with respect to
k in an analogous fashion, giving a parallel result to (3. 86).

It is desirable to simplify all the terms containing the radical

\/k2p+iR k_cos b . Expanding for large Rﬁ and choosing the proper

£p
sign of \/_1_' to keep Re \/k;) +iRﬂkpcos 6 > 0, we keep only the first
term in the expansion
2 : . ' O-,QRI -"12’
\/kp HRyk cos0 = [5= sec§ (1+)+O(R,?) . (3.87)

m . . . N
For 0 very near = 5 this expansion is incorrect because then

3
6
(Ul se; )7f 1. However, as willbe seen later,the principal contribution
L 1

o Ry \’
of interest come from values of IGI < sec 1( a—£) . It can be shown

£

i

R,

that any contributions coming from values sec’ (a——
: b

™

are exponentially small and are neglected,

The results for the 'free disturbahces' (;1’(:), ps(f);é(f)

) are now
summarized. The superscript f indicates that only the propagating

parts of the flow disturbance are included (contributions from the pole

kp).
z
() __Re i =, (k) m, (k)
PS (r,w,z) = e ,n_de I—)]TEI;T{APS(kP)e +Bps(kp)e ,
W=

2 (3.88)
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[~ A . -
u(f) A T B
s w u u
L -z' S ) S
. k m (k_)
(f) Re m, | p 2 P }
v = d6 A e +1 B e ,
SL Zr T DJk ) Ve v
Ws(f) W Bw
L] L S ik L sly
P p
(3.89)
u(f) T - C = "'D =
5 ™ u u
: z ) )| (k)
(f) |_ Re S” i ™ 5
VST = Z;T— 46 —mﬁ——) CV e P+ Du e ’
e % 1 8 8
v Cy, D,,
L T L Sk L sl
P P (3.90)
z
ez, ) = Be S 48 =t (A, (k )emc’(kp)+B (k )en°( P
T Zm x D17 Lop ’
w-
z
(3.91)
with Dl‘kkp)z -sec?0[ 1+i(80,sec’0)/R,], )
m _ =ik rcos(f-w) -k h ,
o P P
o - - 2 . .
n = 1kpr cos(9-w) h\/kp+1R£kpcos 6 s
o (3.92)
m =

1

2

= ik rcos(f-w)tz\k*FiR,k cosf -k
m, 1pc ( )Z\/pllp

ik rcos(f-w)t+k (z-h) ,
p (6-w) p( )

m = ik_r cos(f-w)+k z—h\/k2 +iR,k_cos 6
P P p Ip

p .

s 2 . A
m = 1kpr cos(9-w)+(z-h)\/kp+1R£kpcos 6

-

3
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The functions Ajs’Bjs"cjs’Djs(j = p,u,v,w) are evaluated at kp(G)

» 40';sec46
Aps(kp)= io, sech - T)[G(G)] ) ’
(3.93)
, 01 " ZistecE'G
= 2 e B(1+i) -H (6} - ——m —
Bp, (kp) = 29 \zR, sec (1+1) -H(6)] R,
= —
FAu 1]
S 4 40'1‘sec“6
A = tan0| | ig?sec 8 - \ [Ge)] (3.94a)
Vs z i
A -isec®f
W
L 5] L. _
Bu‘l 1 ]

S 2\/’07 2 Zio’zsecse
Bv ~ tan @ 20‘Jz fﬁ; sec’?6(1+i)[ -Hl(O)] - —ﬁz—-——— C, )

B -isec®

] | ] | (3.94b)
Cu‘s : 2 % 5/
= 20 ,/___ sec’?(1+i)[-G (6)] ,
C tan 6 £ ZRE
Y .
s
(3.95a)
Zioisecse
c ~4

w = "—-*-R—Z—-[G(e)] )

Dus ! 4czsec40
5 |- o X, (B ©)]

O (3. 95b)
D_ =0
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20§sec4e
Ag(kp) = ioisec 9 - ———ﬁz——-———)[ -G(G)] R
. , °, 52 _ ZiO'z sec’8
B;( p) = 20, —Z_R_i sec 9(1+1)[H1(6)] + _.._.R.z_.__.__
where

G(6) = [ -C_ tC ftan 9Cy+ isec BCZ]

-

H(6) = [C +tan6C ]

C

Z

b

(3.96)
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IV. ASYMPTOTIC RESULTS FOR THE FUNDAMENTAL SOLUTION

20

6 {810

In its present form, the formal solution for (
given in Eqs. (3.88) - (3.97) does not readily exhibit any physical
features of the flow, Unfortunately, the 6-integrals involved in the
complete inversion of the solution cannot be performed exactly analyt-
ically, However, some useful asymptotic results can be obtained. In
this chapter the method of stationary phase is usedtoderive solutions

of the fundamental problem valid in the far field flow regime r » 1,

Section 1 of this chapter deals in detail with the wave elevation

L(f), and Section 2 is a summary of results for the velocity compo-
nents a’s(f).

1. Wave Elevation £z, )

The free wave system é(f) in (3.91) is split into two parts

(O 1 4, ghere

z

(£)_ Re 5‘ i k)

§1> = 5n w-d!g -DTE;Y Aé(kp)e s (4.1)

2

7

(€) _ Re i Polkp) (4.2)

; = da6 B (k )e ! ’

2 2T w_% 'D—T—lep t\Vp

and A, (k ), By (k ), and D;l (k) are given in Eqs. (3.96), (3.97).

This separation is made because there are two different oscillatory
m (k) n (k)

functions found in e and e P respectively. Evaluating

these exponentials at the pole kp, we have
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mo(kp) ‘ , 40122 sec’d 40122 sec®
e =exp|-ho,sec” 0~ rcos(f-w)-1 e h}
[ y Rﬂ Rﬁ
ifo,r)y (0, w)
Xe L °° . (4.3)
n (k) o,R 402 sec®d
o''p’_ _ 11 RS -
e = exp > sec 0 X, r cos{f-w)
7 )Ry ]
« i Gzrwo(e,w)-h --—2-~sec9 ,
e
(4.4)
where
npo(G,w) = sec? B cos(0-w) . (4.4a)

An asymptotic representation is obtained separately for each of the

two parts of (,(f).

(2) Wave Component Lff). We consider the first integral

™
) ® z i , 402 sec®8
- & - S S -
t_,l = 211_ 5‘ 1?.9 m A.é(kp)exp[ hO'ZSeC ] RE I'COS(B CD)
W e
2

= (4.5)

4ci sec’ 6 h} 1(c£r)¢o(6,w)
[ e .
)

o, )b (0, )

]

For o,r large, the dominant oscillatory function is e
and the stationary phase analysis in this case is based on the phase

function (6,w). The other oscillatory part of the integrand is
° Yy P g

409 sec® 0
exp | -1 h|, whose argument for most of the range of 6 is
Ry
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very small because R, »1, and h< 1. It should be recalled that h
is dimensionless with respect to some length £, with the underline
omitted.

Application of the method of stationary phase to an integral of
the form of Eq. (4.5) is based on the idea that the main contribution to
the value of the integral comes from a small interval centered about
the 'critical point' along 6. The critical point occurs where the rate
of change of Lp (6,w) with respect to 6 vanishes. The rapid oscil-

. ' 10'£r¢ (6,w) -
lations of the function e away from the critical point tends
to cancel out the contributions of the remaining values of 6, Points
of stationary phase or critical points are determined by solving the
equation ;-;J— . In the present case, the phase function qJO(Q,w)
is a very familiar one in the classical theory of water waves, The
details concerning its stationary points, the Taylor series expansions
about those points, and the general form of the resulting asymptotic
solutions are outlined in Appendix B.

It is evident that there are three ranges of the angle

~1
w = tan (5}’{) which must be studied separately: (1) 0<w< W

(2) w near W, and (3) w_ <wgw. The Kelvin angle is

)

W, = tan 19°28",

(a.1) 0L w< w_ . When w is strictly inside the Kelvin angle,
there are two first order stationary phase points 6 and 6, where
' 1 2

from Eq. (B.3)



-55 -

tan 8

11 -1x{1-8tan®w 46
tan 6 - 4 tanw (4.6)
2

The point 91 is a local minimum of tl»o and has a range of values

92< 91 < 0; 62 is a local maximum of \po and has the range of values
- g- < 62 < Gc. Expanding the phase function QJO(G,w) about 61 and
02 as discussed in Appendix B, and the applying principle of station-

ary phase*, we obtain the asymptotic formula validin 0 < w< w ,
c

2 sec’ 8, -hcﬂsecze.

(£) 1 Y
£\ r,0) ~ = —eed L JH(6 Ve
' 2'"'\/0'11' j=1 '/NJOGG(ej)I .

IOGisec*G.

><<[(cm-.cx ~-tan GJ. Cy)+cz o

" J cos(ozrtpl (OJ.) +

m
+ F sgnlv, (6]

R

+|sec8.C_ -(C__-C_-tan6.C )
iz VTm Tx iTy 4

+ Femnteg (9)] )0 +

1 1
+ Of =] + O o1, 4.7
[o‘lr ) ( (_—‘Ulr Rlalz ) ( )
where

‘ . 40£h
4"1(6):[4‘0(9"9)' Rzr Secse] ] Lpoee(e) :L!Jo(esw)[l-Ztanze] ’

g'(ej) = exp[— £ J s cos(ej -w)}

¥For a concise description of the method applied to ship waves in
potential flow, see for example Plesset and Wu (1960),
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40 2h
The influence of the oscillatory part exp {—i Rﬂ sec‘r’@] has
/] 4

now been included in the resulting wave-phase function of (4.7), but its
contribution is evaluated at the stationary points of the ¢0(9,w)
function alone. It will be seen that this approximation is a good one
everywhere in 0K w < w. except for the diverging wave system near
w= 0,

Two different wave systems are represented in the sum over
61 and 92 in Eq. (4.7). The terms arising from
exp| iclrnpo(@l,w) + i 171'] are associated with the transverse wave sys-
tem. The locus of constant phase lines of this system is determined

approximately from

402h
a£r¢o(el,w) - X, sec591 = const = G}ZCt , (4.8)
where Ct is a constant. Equation (4.8) reduces to
. ] .
X COS 01+ysm91= C,cos 91+ -—R-[— sec 91 . (4.9)
8410

Using the relationship between w and 61 determined from -yp =0
(Eq. (B.2) ), we obtain
~tan 6 ~-sin 6 cos 61

}YT = 1 = 1 . (4- 10)
(142 tanzel) (1+sin261)

Equation (4, 9) and (4.10) can be used to solve parametrically for x
and y in terms of the angle 91. The loci of crests and troughs of

the transverse wave system are
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40 h
X = thos 61(1+sin261) + R, sec491(1+sin2 61) ,
| ap 3 (4.11)
y = Ct(-sm 91 Jcos 9l + =y (=sin Gl)sec 61 ,

for OC < 91\< 0. The effect of viscosity is essentially negligible for

. h . .
this case because =— is small, For example, on the x-axis w0

R
1
and 91-> 0, so the crests and troughs are located at
4a£h
L
40,h
in which the constant = is actually negligible to the order of ac-
1

curacy maintained throughout this work,
In determining the constant Ct’ we must deal separately with

the sine and cosine parts of (4,7). For wave crests, and assuming

cC_>0,C <0,C >0, and C_ >0, C changes its value by 2m
m X y z t %,
for each successive crest according to the relations
. . 1 . N
Cosine part: G, = G_i-(zwk ZI) k=1,2,3, , (4.13a)
. . 1 o _
Sine part: C, = TTI( 21k + I) k=0,1,2, . .. .(4.13b)

Next, we deal with the terms arising from
exp[iczrupo(ez,w) -i g—] which are associated with the diverging wave
system. Following the same procedure used with the 91 ~-terms, the
loci of crests and troughs of the diverging wave system are determined

parametrically to be
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‘ 2 40 h s
_ . i 2
X = Cdcos 92(1+sm 92) + R, sec 92 (1+sin 92)
A ﬂh (4.14)
-— - 1 2 " - i 3
y = Cd( sin Gz)cos 92+ 7, (-sin Gz)sec 62 ,

for - 12T‘ < 62< 9C, where Cq is the constant for the diverging sys-
tem analogous to C,. For wave crests and using the same assumptions
as above regarding the signs of C_,C_,C_, and C_ the values of

, m’ "x’ Ty z

C4 are given by

Cosine part:  Cg = (?1[( 2mk+ };-) k=0,1,2, ,
(4.15a)
Sine part: cd=-—1—-(zﬂk+ -35-) K=-01,2, .
9y
(4.15b)

The parametric equations (4,14) are valid for 0 < w< w_. They be-
come meaningless for w =0 (along y = 0), The reason that these

equations fail for w =0, 92—> - % is that when com?uting stationary
h

40
points, the error committed by ignoring exp [-i secse} is no

Ry

longer small as 6 — - Izr- . To determine the loci of constant phase for
the diverging wave system, one would have to find the stationary phase

points of ¢1(9,w) for the complete oscillatory function
40 h

. )4 5
1c'£r[410(9,w)- R sec 6] io b (6,0)
e = e 1 ) (4.16)

This would be a fruitless exercise because the amplitude of the diverg-

ing system'clearly becomes exponentially small near w = 0 due to the

40'3 sec’ @
terms exp —1'1<J'zsec:292 “ --——-i-—-—-"— rcos(@z—w)J. The region of validity
1

of the parametric equations (4,14) is restricted to values of
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15

(Glh ~ Yy 1 i
< &< ——= | This is based on determining when sec’ 0
32R£ x 2‘/’5‘ R,C 2

. . . ol
is of order unity, with sec 92 5= as w0,
It is interesting to consider the stationary points of the total

phase function Lpl(G,w) when y = 0, From (4.16), with w = 0,

4crih s
LJ,JI(G,O) = secf - R, = sec’9 , (4.17)
aq;l 200 ,h .
(6,0) =tan6B secH|1 - sec 9] , (4.18)
90 Rﬂx
824’1 , 200 ,h . , 1000,h
(6,0) = sec’ 6|1 - sec*@|+tan“G sec 6|1~ sec46J
36 Ryx Ryx
(4.19)
1
. af Bex )y’
Stationary points occur at 6 = 0 and at 6 :;g;h(mzﬁ—) . In either
case, there exist transverse waves for x> and diverging waves
200 Ry
for x< . Our interest in this work is for x large, certainly
‘ Ry 200h
larger than =3 , SO we omit any further discussion of the
2
details of the locus of constant wave-phase for the diverging wave
o,h \f5
system when x is small and y < ET—RJZ ) X,

(a.2) Extent of wave region,

It is expected that viscosity has little effect on the angle limit-
ing the extent of the wave region, which in potential flow analysis is
the Kelvin angle w, . We can estimate the effect by expanding the value
of w= w*(r;h,Rﬂ) near the boundary w = W, and 6 = 9* near the

value Gc



' wl(r:h)
wy (rsh, Rﬂ) =w. ot '—"—RT— ) (4.20)
6_ (r,h)
. - 1
8,{r;h,R) = Gc + R, . (4.21)

The phase function 411(6,4.0) from (4.16) is written as

¢,(0,1,h)
\Pl(e,w) =¢'0(9sw) + -"——R“z———- y (4.22)
where
¢ (8,r,h) = -40 {}i)seée
fe) ? 3 - 2 r ]
and the condition of stationary phase is
(0,0) B9, g e, ‘o
B0 = 50 E; 50 ~ . (4.23)

Substituting (4.20) and (4.21) into (4.23), using the required expansions,

we obtain equations for o) by equating like orders of R, ..

i
84}0
57 (0,0, =0 , (4.24)
82'L!"o azq’o Bcpo
6c1 892 (ec:wc)"' wl L YRY:N:] (eC,wC) + -5—6——- (Gc,wc) = 0 . (4. 25)

. ‘- R -1 V2 -y 1
Equation (4. 24) is satisfied for 8 = tan (- ) , and w = tan .
c z c (Zﬁ)

It happens that Oc is alsoZ the double root of the stationary phase con-
8%y

dition when w = w_, 80 aez (Gc,wc) = 0, Solving (4. 25) for w1 , we
obtain 5
@
-7 (0.
- - c
@ (r,h) = — , (4.26)

3o (Oree)



-61-

and evaluating this ratio as indicated, we find

-20012 (}%)secsectan GC

@ (r,h) = - (0 -6 J(1+2tan 0 fan(f <o )|~ ~ 125‘ %(E)
1 cos(8 _-w_ and R c» T
(4.27)
Thus, the boundary of the wave region for y > 0 is
- 1 15 “4/n 1
w*(r;h, RI) = tan (——) - R—(?) + O(—-——) . (4,28)
2J2 /i R/

The influence of depth of submergence and viscosity is to narrow
slightly the wedge of the wave region, However, the effect is essen-
tially negligible and becomes even smaller as r increases,

(a.3) w near w_ -

At w = w_» tgl.ﬁre is a double root GC(.—. 61 = 62) of the station-
ary phase equation —5-99 = 0, All along this cusp line, the asymptotic
formula of Eq. (4.7) gives a solution with infinite amplitude, This is
not an acceptable result, and the correct asymptotic solution requires
a re-examination of the expansion of the phase function specifically
near w=w_ and 8 = GC. This expansion is discussed in Appendix B,
along with the general form of the resulting asymptotic formulae.
Repeating the type of calculation describedin detail by Plesset and Wu

(1960), we find the asymptotic solution



0'1 2 1 Rg 2

k 90 2r
-:-)’-O'h- £ [cosw-‘/-z sinw}

450
X [(cm-cx+ @ cy)+ TR% Cz]cos(czr [;:(l-ﬁm 123-82)

/2 0% h
gt E).

/ o
—g— Cz-lo(%rz R!l;_ (Cm-cx+ ‘/72 Cy)} sin

2
3

+o(-—-—-) +0

: |
, (4.29)
(aﬂr)“'3 R,* )

where A(Z°) is the Airy function, with

7° = =2 (0,2 (1-2/23) , Tew-w
w > Z c
This result could be rewritten in terms of transverse and diverging

wave systems, using the identity

) i(Q+“)
elQ:e §+

ei(Qn %) , (4.30)

where, for example, cos(ﬂ-i— %) would be associated with the cosine
transverse wave and cos(Q- g—) would represent the cosine diverging
wave system. A more careful analysis of the entire range of

0L wg W, using the method of steepest <ilescen1:>'< would show that the

; v
fsee Ursell (1960)
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constant angle in the wave-phase is w/4 on y = 0 and increases to
1T/3 at w = w .,
C
(a.4) Viscous Decay Factor,
An interesting feature of the asymptotic solutions given in (4. 7)
and-(4.29) is the exponential damping factor appearing in the amplitude

of the wave formulae. This exponential factor is

4G£Zsec59.
- -—R——-—-——J—- rcos(ej-w)
37(9_1) - e ¢ , (4.31)

-1 TV1-8tantw

4tanw

where tan Gj = , in which j = 2 corresponds to the
(=) and j =1 corresponds to the (+). The factor & can be shown to
be identical with Cumberbatch's (1965) result for the viscous damping
factor obtained by slightly different techniques,

Allen (1968) presents Cumberbatch's result in the form

-t coswB
FiR ©
F-e 171 | , (4.32)
where
4Ag
B = s
o 2
(ZAO -1)
A2 - 1 14 1 1 + V1-8tanfw
o~ Z tanw | 4tan w 4dtanw ¢

F, = Froude number = U/ ol .

-1 FV1-8tan*w

4tanw

Using the expression tan Gj = , we find that

Aé = sec? Bj . (4.33)
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Then (4, 32) yields the formula

4y (1+tan? 6,)

cos w sectf, | mmmmmed. . (4. 34)
FERE J(1+2tan0,)

g'(ej) = e J

It is a simple matter to show that Eqs, (4.31) and (4. 34) are indeed

identical, We have used the fact that szz = FQM} . For further details

concerning the influence of this viscous decay factor on the amplitudes
of the transverse and diverging wave systems, discussion can be found
in Cumberbatch (1965) and Allen {1968).

(a.5) w, <w .

When o is outside the cusp line y = 1
22
solution can be determined by integration by parts since there are no
T By

points where —5—6-9- = 0, Using the result outlined in Appendix B, we

x, the asymptotic

obtain
' ~ho céczw
(f) ~ Cscw 2
El (r,0)~ >5— e
IOO'ICSCSw 40 *h .
[cscw-cz - R! (Cm-Cx—cothy) cos R‘ﬁ csc m) +
1001csc4w 402 h ]
+{(Cm-Cx-cotwcy) + R£ ]CZ sin Rﬁ csc’wl )+
+ 0O 1)2 +O-———-—1--—-——) (4. 35)
Gir o rR3/Z ’ )

£ 72

which has an amplitude at most O( %—) .

(b) Wave Component Q(Zf).

We now turn to the integral of Eq, (4,2)
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T
Z
R R
w-
2
o R " 4025ec6 ic réb(@,w;ﬁ)
£ £ £
X exp | -h secl « w1 cos(f-w)ie ,
2 le
(4.36)
where
(6, w;h) = L]Jo(G,w) - hy/sec?H , (4.37)
R
PR
* 2012

‘The stationary phase analysis in this case is based on the combined

phase function &6,w;h). Because of the exponential factor

G,
exp [—h —-2-!-2- sec @ ] , the interesting values of h in (4. 36) are those
A R '
for which h = lrl- 201 is less than unity. Appendix C contains an ap-
i

proximate determination of the stationary phase points, the expansions
about those points, and the related asymptotic solutions based on the
assumption of small ?1 The ranges of w that must be treated sepa-
rately are the same as before,
(b.1) 0L w< w_ .

The two first order stationary points 1:1 and tz for w inside
the Kelvin angle are given approximately in (C.5), (C.6) of Appéndix

C, accurate up to O('l\’l), as
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tant tan 6 Y
1 1 N 1

1+h . (4.38)
ta,ntZ tan 92 Y

2

where tan
1,2

are the stationary points of ¢0(9,m) and
?

Y = 1 (4:.388.)

1,2 Zco:‘sw\/seCGIz[i\/l-f%tanzw} ’

]

with the subscript 1 corresponding to the (+) and 2 corresponds to

the (-). -

The asymptotic solution is

. Y2 2
gz(f)(rsw) ~ _'1—'—' <

2 5/2 T
><<[(Cx+tan1:jcy) + -R—,é— sec tjCZJCOS(Gﬁ r@(tj)+1-sgn(<l>66(tj) Y+

. _ a
+[ Cx+tantjcy] sm(crlri’(tj) + 7 sgn(cbee(tj) ))> +

1
+ O(-—-—-—-——-—-) , (4.39)
0'11'/ R!.
where

¥

- 2. ?'l 3 2
¢ee(tj)_¢o(tj,w)[1+6tan tJ. 4tantjtan(tj—w)] - 2-,,/sec tj(l + 5 tan tj

Bop(t) >0, Tgalty<o @(tj) from Eq. (4.31)

Analogous to the case of z;l(f), the transverse and diverging wave
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systems aré represented in the sum over tl and t2 in Eq, (4,39).
The transverse wave system involves the terms arising from
exp[ic’zr@(tl,w;ﬁ) + i -Z—], and the lines of constant phase are determined
from

cr‘QRJZ

crerlJo(tl,w) -h —5— sec tlz const = GﬂKt s

(4.40)

where K is a constant (different from Ct) and where tl is known ap-~
proximately in terms of 61((.0) from Eq. (4.37). An approximate para-
metric representation of the loci of crests and troughs can be obtained

by solving (4.40) together with the formula (4,10) relating « and 61.

The result is

R o~
s 2 £ 2 h .2
x:Ktcos 91(1+sm 61)+h\/% (1+sin 91)/cos 91 (1 + = Y sin 91)

in 6 2g Rﬁ . 3/2 ?1 .2 » ¢ (4.41)
y:Kt(-sm 1)cos 1+h EE;; (~s1n91)cos 61(1 + = ylsm 61]

for OC < 91< 0. The quantity Kt is a constant for any given crest or

trough, and changes by g_v_r_ from one constant-phase curve to the next,
Since 91-> 0 as w0, we find from (4.41) that along the x-

axis the transverse wave system of ?_.,z(f)(x, 0) has crests or troughs

located at

Ry
X:Kt+h '—"'—'20_1 . (4-42)

So, the location of the surface wave Qz('f) along x is shifted down-
stream of the location that would have been observed in potential flow,
‘The shift depends on the depth of submergence, the Reynolds number,
and the Froude number; it is caused by the arrival of the wake at the

free surface,



-68 -

It should be noted however that along the x-axis, the distance
between crests is still g%r— equal to the waveléngth of the waves in
potential flow,

The diverging wave system arises from terms involving
exp[io'ﬂr @(tz,wgﬁ) -i %] . Repeating the approximate solution for the
parametric equations of the loci of crests and troughs, this time for

the tz ~terms, we obtain

x:chos 6 (1+sin® @ )+h/ (1+sin8 ),/cos 6 ( y sin® 6 }

,R
3/2
y= d( s1n9)cos 9+h ﬂ_ (- sm@ cos/@ (1+ Z—Y sin® @ ),

for = Tzr. < 62< Gc, and where Kd is a constant,

?
(4.43)

(b.2) Extent of wave region,

To determine the effect of viscosity on the extent of the wave
region, we proceed as in Egs. (4.20) - {4.23). In this case, the angles
w=w, and 6 =t, are expanded near the boundary w =w_ and 8 = BC

in terms of small h
@, {rsh, Ry) = w_ + ch (4,44)

t, =0 +Hhao ) (4.45)
% c c1

After substitution of these into g-g- = 0 and expanding as necessary, it
can be shown that to O(h)
1(2\¢
-5l - (4.46)
1

Hence, the boundary of the wave region for y > 0 is



~ 1
h 4,
w,(rsh,R)) =0 - 5{%) + 0(h%) (4.47)
where
R
A
h = _}l _&£_
Fy“9y

The wedge of the wave region is thus narrowed by the influence of
viscosity and depth of submergence, However, (4,47) is valid only far
downstream (r large), and the effect diminishes rapidly as r in-
creases, ' The near field influence of viscosity on w, would require
special study and is not discussed here,
(b.3) wnear w .

When w = W, the asymptotic result given in (4, 39) breaks
down, The expansions for tant = tan 61,2[1 + i\lYl,Z] fail because

1,2
yl 2 becomes infinite along the cusp line. Using the correct approxi-
14

mate expansion for @(G,w;ﬂ) developed in Appendix C, the stationary

phase method for w near w yvields the asymptotic result

/4 {‘z'“ h/cﬂR’Z

7 o o - sect
() (3 I 1 p) c
?’,z (7) Rﬂ A'i(z'co)'%tc)e

(o,r 3

o
’ { 5/2
X [(Cx+tantccy)+ ——Rz sec tCCZ] cos(ﬂcr)

+[ C_ttan tccy] sin(Q_r) +

1 - h |
+ O ———mee | O Y g ’ 4'48
((ozr)zl%/ R, (0,2 13/ R, ) (#.48)
where

Az ) is the Airy function, ,%C) is given in Eq. (4.31),
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B

43\/? -*—2-1
w 2

1 85y 2 ~—
B I R

[1- 1;;;’_/6.?_5+ 15%52}} ,

Z = = (Gﬂr)%{&'(bz‘/_za) + }Z}(%}

B

@ -0, .;{(I-sz EEYAIE

Using the identity (4.30), this wave solution could also be written in a
form displaying transverse and diverging wave systems,
(b.4) W, <w .

For w outside the cusp line w = w_s the asymptotic formula
for i;if) would exhibit the same general character as (4, 35), having an
1

T

Iz,

amplitude in this case no large than O( ) . This is very small,

and the result is omitted here,

. 4 . =>(f)
2. Perturbation Velocity qg

It is useful to deal with the Z{éf) veloci’cy.in two parts: the

longitudinal component c—féf) and the transverse cdmponent Efs(f). The
L T
formulas for the free disturbance quantities :{éf) and E{S(f) of (3.75)
L T

and (3.76) have an obvious resemblance to the formula for (,(lf) in
(3.77), whose asymptotic results are discussed in Section 1 of this
chapter, Therefore the form of the asymptotic éolutions given pre-
viously can be carried over direétly to the solutions for the velocity

components, What follows here is a summary of final results,
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m(k ) mik) m(k),

Evaluating the exponentials e S , e 2 P e ? P and

m (k)
e * P atthe pole kp’ we obtain

m (k_) 4G£Zsec56

e ' P = expl|(z-h)o,sec?O - r cos{f-w) +

2 2
4:0')2Z sec’ o,y (6,w)
Ry

mz(kp) [ , FIRE 40'12 sec’d
e = exp|zo, sec“f-h - secO - ————— rcos(f-w) +

. 4cr£zsec59 iclr[qu(G,w)-fl/sec 6]
---—---—----—-—RJZ zle ; (4.50)

m (k_) o,R, 4012 sec®0
e > P = explz [—»— sec - hcﬂsec?‘G - —ﬁz——— r cos(f-w) +

40'12sec59 ] icir[¢o(6,w)+;‘/sec6]
-1 - hje

, (4.51)
Ry
2 5
m (k_) gRg 401 sec’ B
e ¢ P = exp{(z~h) —— sec@ - — rcos(@-w):,
L
icir[ ¢0(9,w)+(§ -E),/sec 6]
Xe , (4.52)
where
s .z Ry % - h Ry
Tr 2?2 ’ T r 2'07

All the results discussed in Appendices B and C are applicable to the
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stationary phase analysis of the phase functions appearing in Eqgs,

(4.49) - (4.52), We restrict the range of z such that

A z [ h - . -~
= ol < analogous to the similar restriction on h.
2] = | 2 =, | <1, 8

(a) 0L w< w_ . For w taken strictly inside the Kelvin angle,

we obtain the asymptotic solutions valid for z < 0 as sums over the

stationary phase points. First, the longitudinal components are

ulf)
(I; I 0'12 ZZ sec® (z-h)o sec?6
v )e
"L | Var Vo £ ] 0. !
() H =3 P
WS
B ] ;
Kuo(ej) ‘
(=, 6 cos(chQO(GjHg—sgn(\poee(ej) y) o+
(o]
N KWO(QJ) .
Suo(ej) ]

+ | s, (6) sin(cirQO(GjH%sgn(tpoee(ej))] 4

S 8.
- WO( J) | TR,
2 9/2 %1%
3] g2 sec 1°t. 20 sec?t.-h ——— sect,
“JeRs = Tt Flie J

Ly o,r JZ:I ,H@ee(tj)

[ Ku1(tj) 1

mw
Kvl(tj) cos(czrﬂl(th T sen(@gq(t;) )| +

K_ (t.)

L Tw (continued)




-73-

- -
Su‘l(tj )

+ Svl(tj) sin Glrﬂl(tj)-l-g-sgn(@ee(tj) ) e, (4.53)

S (t.)
W1J i

b

where

i - - 4
Kuo(ej) = [cm C, ta,nejcy] + (120 sec ej/R,l) [cz] ,

Kvo(ej)z[tanej]Kuo(Gj) s, ‘ (4.54)

KWO(GJ.) = [ -sec ej]suo(ej) ,

- “ ‘ 3 - -
5, (Gj) = sec BjCz (12sec QJ/RI) [Cm C, tanBjcy]

o H
svo(ej) = [tan ej]suo(ej) , {4.55)
SWO(Gj) = [ sec ej]Kuo(ej) ,

12 5f2

Kul(tj) = [Cx+tantjcy] +(20£/R1) sec tj[ cz] ,
Kvl(tj) = [tan tj]Kul(tj) , (4.56)
le(tj) =[ -sec tj]Sul(tj) ,
Sul(tj) = [Cx+tan tJ; Cy] .
Svl(tj) = [ tan tJ.]Sul(tj) , (4.57)

Sw(tj) = [ sec tj]Ku(tj) ,
1 1
and

90(9)=[¢0(6,w>+ e

(4.58)
R,

40 sec’6(z-h) ]
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40' sec 6'

91(9):{4.10(9,@) ( ) hyseco } (4.59)

The functions tan 91 7 tantlz, ¢O(e), and &(6) are given in Eqs, (4. 6),

’

(4.38), (4.40), and (4.37) respectively. Then, the solenoidal compon-

ents are

[ ()

s

R o oz 2 secgl’?"l' ~ho, sec . +z /GTERE secT
v(sf) ~ -—-—i{ £ 2 ————-———Lg—('i' e J J
T | V™2 Jor ile, (”' ]

w0
T

K _(r.) cos(airQZ(TjH%sgn(ézee('rj))) +

- s, (Tj) .

. ™
+ svz(-rj) sin|0,r@ (7 )+ ] sgn(@zee('rj) ))

R -—

20 sec® T. (z-h) -—2— secT
. ___..a.._gﬁm
Vi, 2 e

[ (T)!

sua('rj)
(T) sin(czrﬂs(TjHE-sgn(@s(Tj)) , (4.60)

SW(T)




where

and

2

2

K _(1.)=-(2 12 #2 - -
WZ( 3) ( O'ﬂ/Rz) sec 1:}[ C_."Cy tan'rjcy]

K, ('Tj) = [Cm-Cx-tan TJ.Cy-sec ’chz]

~-75

2

K, (7) = [tan'rj]Kuz('rj) ,

2

Su.z('rj) = [Cm-CX-tan’rjcy+sec7:}.Cz] ,

SVZ(TJ-) = [tan'rj]Suz(Tj) K

w
2

3

3

Sws(Tj) =0,

S (1:].) = - (Zclei )l/zsec7/27';i[c ]

SV(Tj):[tanTE]Su

z, 3

Sy (T5) = [ C, +tan chy] ,

3

®(6) = [y (6,0) + 2y sec6]

2,(0) =¥ (6,®) + (z-h)Wsech]

2 () = [xpo(e,w) -

2(6) = 2 (6)

tanT = tan 0 1 -7
nl 12[ Zle]

t =tanf [1 + (h-z
anT an 12[ ( z)ylz]

1,

(b) w near w, .

»

40 sec’d

—--%I—*(}%) +2J/secd ji ,

H
»

)

In the neighborhood of w = W,

(4.

we are

61)

L 62)

. 63)

. 64)

. 65)

. 66)

L 67)

. 68)

. 69)
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interested only in the longitudinal components, Using results ana-

logous to Egs. (4.29) and (4.48), we obtain for z < 0,

_u(f) . .
5 ‘ (o3t o
L 2 ;— (z-h)o,- £ (cosm- ‘/—2-‘ sinw)
. O 2 R Z
(£) - NEATE: A (Zo)e 2
"sL {2} Pl A®
3
© (Gﬂr)
Vs
. L*
B =
Uc1 z
NE - 11 —z) 392 9 (z-h)
Vcl cos(cﬂr —-2-(1-,/'Z'w+-2¢-w +4(z-) .___RT._ +
w
c
L. 1
USl Z
. _h)
(7 _ 11—, 352 oy (2
+ Vsl SLn(Glr -—-—(1- 2w+—2— w )-}-4(2.) Rﬂ +
w
)
L1
7/4 20 o? zo0, sec’t -h ERI sect
-[3) L L Az Fege P 2 c
2 R',e i i c
(0,7)
I~ 9
Uc |
2 40'zseC5tC
cz cos(ﬂcr+ Rg z) +
Wc
L Tz .

(continued)
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40”12 secs‘cC
+{V sm(ﬂcr + B z) ,

(4.70)
i

where

U= [CpumCpt J-;_ c,] + @ ir c)

VCI: [-/E‘/Z]UC ,

(4.71)
1
W, =[-/372]u,

1 1

J2
¢, TELG,) - aasrathoy e o B )

v, = [-j?/z]uS , (4.72)
1 1

w = 32U,
1 1

_ , 1j2 52
U, = [Cx+tantccy] + (20, /R, }'*sec tc[ C

Z
2

]

V.= [tantC]Uc (4.73)
2 2

W =[-sect U
Cz [ s

H

2

2

US; [ C_ttan tccy]

Vs; [tantC]USz , (4.74)

W _=[sect JU
s c? Ve
2 2

2

and where the notations associated with (4. 29)'and (4.48) apply here,
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and are not repeated.

(c) W, <wg m. With no stationary points in the range
W, <wg m for any of the phase functions of Eqs. (4,49) - (4,52), the
integrals of (3.75) and (3,76) can be performed asymptotically by

integration by parts. The results would all have amplitudes at most

O(-i—) or O( ! ] , and would resemble the solution (4.35). These
R,r
2

results are omitted here,
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V. MOMENTUM THEOREM

The principles of conservation of mass and conservation of
momentum are used to obtain a general formula for the forces acting
on a body moving on the free surface of a viscous fluid. For this cal~
culation we require knowledge of certain flow quantities measured at
control surfaces far away from the body. This is consistent with the
approximations already introduced into the problem., In particular,
the Oseen linearization is fully justifiable in the far field for UL/v »1,

where L, is the characteristic length of the body.

1. Conservation of Momentum

Consider a uniform stream of velocity U moving past a ship
in the free surface of a viscous fluid, We take the coordinates as
shown in Fig. (5.1). A control surface S fixed in space with respect
to the x,y,z coordinate system encloses a volume ¥ of the viscous
incompressible fluid. In this view, the fluid flows into the volume
through Sl, is disturbed by the ship and then flows out of S carrying
the superposed perturbation velocities. The surface S consists of
all the boundaries of the fluid within %, It includes the wetted surface

of the body S, and the fluid free surface S_..

B FS
Conservation of momentum is a statement of Newton's law for
the fluid system. It is convenient to use the tensor component form of

the momentum equation (a repeated subscript indicates summation over

a =1,2,3). In the case of steady flow, we have
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Fig. (5.1) Definition sketch for the control volume ¥
contained by S, For the derivation of the final resistance
formula (Eqs, (5.20) and (5.21) ), the surfaces S S , and
Sb are withdrawn to infinity.
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0= -S p V,(V_n_)dS +S [-Ps, +7, ]n ds +§ ngb)dv L (5.1)
S S 2
where Vi is the i-th component of the total velocity (U+4u,v,w); P
is the total pressure; n, is a component of ;;, the outward normal to
S; LE is the viscous stress tensor component; F(ib) is the gravity
body force per‘u'nit mass of fluid; and dS,d¥ are elemental surface

area and volume, respectively,

8Vi Bva
Tia:u( on+ xi) ’

(b) 8:{3
¥ 7 .

b + SFS+ SB

S=S +S +S +S +S
1 2 3 4
The force exerted on the body by the fluid in the direction éi is denoted

by Fi’ and can be computed by integrating the pressure and shear

stress over the body surface S

B
8V, A
F, =§ [Pé.m-u T—X’a + E-—Xi }nads , (5.3)
S
B

where n, is normal to SB and points into the body. Upon substituting

(5. 3) into (5.2),

ox
_ - 3
Fi = S‘ ( 4 Exi)d'V‘ - S pVi(Vana)dS— g [Pni—p

Al S z

3Vi 3V0Z
T—xa + E_—Xj_ )na] ds |,

(5.4)
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where

Z= S—SB FS+S

=5 +5 + S +8 .
1+z S3+4 b

2, Conditions on the Boundary Surfaces of S

Let us suppose that the boundary surfaces S3 ,S* , and Sb
coincide, respectively, with the two sides and bottom of a towing tank.
Later it is shown that if these surfaces are withdrawn to infinity, the
resulting resistance formula is the same. For the present, we con-
sider the S3 ,S4 , and Sb to be material surfaces located at a dis-
tance sufficiently far away from the body. The physical boundary con-

ditions used to simplify (5.4) are outlined below,

(2) On the material surfaces 83 ,S4 , and Sb. The no-slip
condition must be applied on all material surfaces
Vi =0 on 83’34"Sb {5.5)

This means that the second integral of (5.4) is zero for these portions
of S. Next, we anticipate calculating the total resistance on the body,

F1 =R, with i =1 in (5,4). We note that the outward normals on 53

S4, and Sb are ‘éz -2 , and ‘é3 respectively. For these surfaces the

2
pressure terms in the third integral on the right in (5.4) are all zero

(for i=1)

g (P6 Jnds=0 (5.6)
S +S 4S8
3 4 D

since n = 0 on these surfaces.
. ‘

(b) The no-slip condition is also applied on the body surface,
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SB. This eliminates the contribution from SB from the second
integral in (5, 4).
(c) On the free surface SFS' There are two conditions to be

satisfied on the free surface, repeated here from Chapter II. The

have

kinematic condition specifies that the fluid particles in the SFS
velocities tangent to the free surface shape
Voznoz =0 on x3:§,(x1,xz) . (5.7)

The dynamic boundary condition states that, in the absence of surface

tension, the stress is continuous across S so that with zero pres-

FS’
sure above the SFS’ and for i=1,2,3,
BVi BVa
Pn.i" H(&-; + b )na =0 on Y,(xl,xz) . (5.8)

Equations (5,7) and (5, 8) together eliminate the third integral in (5.4),

computed over SFS’

3. Resistance Formula

To calculate the drag, we put i =1, and use the boundary

conditions to obtain

]
F1 =R :S (-pg B—)Z?)dv -S- [p(Utuff + P - Tn](-dydz) +
V

S
1

- S [p(U+u)2 + P - 'Tu]dydz +

S
2

+S ‘ledxdz+§ le(-dXdz)+S 'rm(-dxdy) . (5.9)

83 84 Sb
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The first integral vanishes, All the shear stress terms on 53’54’Sb
are negligibly small since these boundary surfaces are outside the
wake region, Upstream on Sl, the perturbation velocity u and
dynamic pressure p are both small compared to their wave region
values, and hence can be ignored., The viscous stress term

T =2l -g-% is even smaller than u on Sl.

11

Using the boundary conditions on 53’54’Sb’ SB’ and SFS’

the continuity equation

i o
§pV°ndS:0 (5.10)
S
reduces to
g p(U+u)dy dz .—:S pUdydz . (5.11)
S S
2 1

Separating out the hydrostatic pressure -pgz from P = p - pgz, and

using the results above, the resistance formula becomes

R :S (-pgz)dydz +§ (pgz)dy d= -S [p+ pu(U+tu) - 'Tu]dydz s

S S S
, 2 2 (5.12)
where '
& o L 4
S. dy dz :S‘ dyS‘ dz ; S dy dz :S dy§ dz ,
S1 - -H Sz -5 -H

& = half width of tank

H = depth of tank.

The first two integrals combine to give
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A 4 g
1
S‘ dyg pgzdz:-z—pgg‘gzdy . (5.13)
~b o -
S S
2 2

We make use of the splitting of the perturbation velocities into longi-
tudinal and solenoidal components, ::; = aL + EfT. Then the group of
terms in the third integral of Eq. (5.12) is written as

- — 2 -
p + pu(U+u) 'Tu =p + puLU +pu’y + [puT(U+uT+2uL) 'ru]

(5.14)

Out side the wake, where U is exponentially small, we can legitimate-~
ly apply the Bernoulli equation for the longitudinal components which
carry the pressure p. It is known that the components Up sV, Wy
contain terms that are O(R-}z_) near z = 0 because of the free surface
effect. This justifies the inclusion of the squares of the velocity

components

p+17p[(U+u)z+vz+Wz]:%-pUz , (5.15)

so that at the downstream station x = XD’

1
p+puLU+puzL:- T2.p(vZL+w2L-uZL) . (5.16)

The group of terms [puT(U+uT+2uL) - 'rn] is negligibly small out-
side the wake,

Within the wake, the pressure is still carried by the longitudi-
nal components, and the group of terms neglected outside the wake
cannot be omitted without more careful study, The resistance formula

(5.12) becomes
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L t %
R:%pg‘g gzdy-l--;—pS‘ S‘ (V],z—‘ +W21J'ui)dydz+
b8 “H -
Sz (x:xD) (SZ - Zwake)

1
.S'S.{pUuT+puT(uT+uL)+puLuT- 5 p(vi +Wi -uf)J—'ru} dydz , (56.17)

Z;wake(xsz)

where X " is the area of the wake at station x =x_. We note that
wake D

the second integral can be extended through the wake region, since the
only velocity components which contribute to that integral at the far

D

wi-ui ). The integral of -pUuT over the wake area is the familiar

downstream station x._ are the longitudinal components %p(vi+

viscous dissipation term. The remaining quadratic terms are negli-

gible everywhere in the wake area Z‘,W except possibly near the

| ake’
free surface z = 0, in which region the terms pu; By Or pu,f_?‘[, can
give contributions comparable with u? because of the surface stress

L

condition, After combining terms as noted above, we arrive at the

resistance formula

& ¢ &
1 1
R:-z-pgS ¢? dy+zp§ g(vi+wi-ui)dydz+
-b ~-H -4
Sz (x:xD) SZ(X:XD)
- SS {pUuT + puT(uT+2uL) - 'rn}dy dz . (5.18)
zwa.ke (xsz)

The expression (5,18) can be further simplified to a form more
appropriate for theoretical calculation of ship resistance, Suppose

that the surfaces 53,54, and S, are withdrawn to infinity. Instead
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of specifying the conditions pertinent to a material surface as in (5. 5),
we need only observe that the velocities Vi . these surfaces (v and
w) are negligibly small in the limit, The same is true for the dynamic
pressure p on these surfaces, while the hydrostatic pressure simply
cancels out as before except for the contributions from S1 and SZ .
The shear stress terms appearing in (5, 9) are vanishingly small in
‘the limit. So the development of the resistance formula proceeds
exactly as previously, The downstream control surface SZ now ex-
tends to infinity laterally and down into the fluid, and is located at a

large but finite value x =x The second integral in (5.18) is ap-

D
proximated as follows
00 0 o
= 2
S. dySgdz(vL+wL uL) g dyg dz(v? +W uL) .
®'s

2

because the neglected term would be of order O(Quﬁ ).

Since the solenoidal component u,_, is exponentially small out-

T
side the wake, the integration of—pUuT across the wake in the third
integral of (5,18) is extended to infinity, The final result for the un-
restricted flow resistance formula is then divided formally into two

general components: total wave resistance RW and viscous resist-

ance R
v

R=R_+R_ , (5.19)

where

Q o0 o]
1 2, 1 2
th_ > pgS. L (x=x)dy + > pS dyS dz[vL+wL L] , (5.20)
-0
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' [o]
R, = -pr dy§ u(x=x)dz - gS‘ [puT(uT+2uL)-TUJ(_dy dz.(5.21)

=X
- - D
© « wake

It may appear that this splitting confines the influence of viscosity to
the viscous resistance component Rv' There are, however, formal
interaction effects present in each of these components, This means
that there is an influence of viscosity on certain terms of th, and
also that undulatory free surface effects appear in Rv' We assert

that these interactions exist without further comment here, These

effects are dealt with more explicitly in Chapter VI,
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VI. DRAG ON THIN SHIPS

The fundamental flow solution and the resistance formulae
based on the momentum consideration of the far flow field, are brought

together to produce a theory for Oseen-flow ship resistance,

1. Modelling the Flow Around Thin Ships

Consider the problem of the uniform flow past a thin ship with
a given hull shape. The flow has a constant velocity U far upstream,
and is steady in the frame of reference moving with the ship, A
Cartesian coordinate system is fixed to the body with x pointing in
the direction of the uniform stream and z positive upwards., The
wetted surface area of the hull SB has the projected area S0 on the

x-z plane. With a total waterline length I, maximum beam B, and

draft T, the hull form is symmetric and prescribed by

y =% h(x, z) (x,z in So) , (6.1)

where the centerplane area SO is contained within the bounding rec-
tangle 0<x< L, -T<z<0,
The fundamental physical parameters of this flow are the

Froude number and Reynolds number based on the length L1,

. _ -2
Froude number: Fp = U/J/gL and o = gL/U? = K L=F 7,

_ 2
where «k_=g/U* (6.2)

Reynolds number: R, =UL/v

Surface tension effects are ignored, and our interest here centers on
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the case R; » 1.

Suppose now that the singularity systems* discussed in
Chapters II and III are distributed on centerplane area So‘ We denote
these dimensional distributions by subscript zero, with Mo(x, z) as
the mass source distribution. The distributions Mo(x, z), Xo(x, z),
and Zo(x,>z) represent symmetrical flow disturbances with respect to
y. But a simple yawlet distribution Yo(x, z) causes an antisymmet-
rical flow disturbance, and hence cannot be used directly for a sym-
metrical ship form. A satisfactory distribution is obtained by ar-
ranging two yawlet singularities antisymmetrically and letting the
distance between them approach zero, The resulting double-yawlet
distribution is denoted by YoD(x,z) and is represented schematically
in Fig. (6.1), Velocity components for the symmetric flow disturb-
ance YoD(x,z) are derived by replacing Yo(x,z) by -Yz(x,z) —éé—
in all of the previous results,

The problem is made nondimensional, using as reference quan-

_tities the velocity U and the length L, Preséure and stress are non-
dimensionalized by pUz. Nondimensional forms of the singularity
distribution functions are denoted by a small bold ¢ with the ap-

propriate subscript m,x,y, or =z,

Mo(x,z)
Cm(X, z) = T ) » (6.3)

* .
One might be tempted to call the fundamental solutions 'Havelock
Oseenlets, ' from their similarity to the classical Havelock sources,
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Yo(X,y,~2)==Yo(X,y, 2)

Fig. (6.1) Schematic representation of the symmetric
double-yawlet flow disturbance Y?(x, z), The hull shape

to be modelled by all four distributions is symmetric,
given by y = zh(x, z).
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o
prr

e, (x,2) X_(x, 2)

cI;(x,z) = 7 1U2 L-IYB(X,Z) . (6.4)
5 P

q:z(x,z) 2 _ZO(X. z)

The centerplane area S0 in the nondimensional problem is bounded
by the rectangle 0<x <1, - T/L<2z< 0, The underlines for dimen-
sionless variables are omitted,

Ih terms of integrals over the centerplane area So’ the non-
dimensional perturbation velocities are written out immediately from

s - = —>(o),6 =

the results of Chapter 1II. We use the splitting q = q, + Q +aq_.
The basic flow Efo and the image flow El’fo) are separated into their

longitudinal and solenoidal components,

-

Basic flow: 21) =?1> +_c-1>
(&) OL OT
— < -
. _ﬁ” gl V{- = (cF-vun<R-<x-g>} : (6.5)
S‘o
R
L
[ (x-£)-R]
s o +
S‘SI LF R
RL [

( 3 (X-g)-R] —
+v[ (SpeV)in (R-(x-f;))} ., (6.6 )

where now
D 9
v By ¢z) ) (6.7 )

and

R =\[(X‘§)2-FYZ+(Z'4)Z ’ V:('sgzs 5%.—’ '58;
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The image flow a_:(o) is represented by the same equations with (z-{)
replaced by (z+4{) and R replaced by Rl. Appendix D contains a
listing of the three components of ;o with the indicated differentia-
tions in (6.5) and (6.6) carried out in full,

The wave elevation { and the E;S -velocity components to be

used in calculating the linearized ship resistance are

k[ (x-£ )cos 6+y sin 6]
Lix,v) _S\ dGS‘dkS‘S‘ dgdé AT {ekgAgﬂeKC‘Bg} ’

(6.8 )
-us 3
L T 0 . -
ik[ (x~£ )cos O+y sin 6]
SL 8Tl'2 ( ) )
W
b L—
;—A - "B .
ug us
X {ek(z%) AV + ekz+K§ BV } , (6.9 )
s S
AW BW
L s— - S"‘
ik[ (x~£ )cos 6+y sin 6]
v (e yo2) = §d9§ dkﬁ dgd; AT
y {eKZHd“’C b K ) } , (6.10)
u u
s s
where
K =K +iR_kcos§ (6.11)

L
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: 2
A(k,0) =0. - k| cos® - 2ikcos b}, 4 4K (6.12)
L RL R. 2 R 2
L L
The coefficients in the integral representations are
2
A,gz(ikcose + -Z-lf-—)[ c_ - ¢_+i(k sin®6 sec 0 eP-sech ¢ Yoo, (6.13)
RL m x y z
2k 2 Dy , 2iklsecO
B§~-§1K[cx 1k51nesececyl+T—-— ¢, (6.14)
(A, 1 [ 17
io!
s 3 2
A, |=| tane||iccos® o4 2 co8 8
v R
s L
AW L.-i secG_
- s_‘
X [-e_+ c_-i(ksin®6 cP-sech ¢ )] (6.15)
m x y z ’ ’
- r -
FBus 1
2 2 1.3
B =| tan6 -%-ILII%—CP—S—-Q[-«: +ik sin®0 sec q:D]-iﬂ%;—-—-—of’—e ¢ ,
v L X y L z
B -isec@
| WSJ N . (6.16)
2 2
C = -Z—k—w[ c_ - ¢_+i(k sin0 sec § cP-sech ¢ o, (6.17)
u R m x y z
s L
2
D, = ilic_%g__e_ [ ¢ ~iksin?6 sec b cD] . (6.18)
s . L X Y .

Applying the general resistance formulae (5,20) and (5. 21) to
the particular case at hand, the nondimensional versions of wavemaking

resistance RW and viscous resistance Rv are
t
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Rw o o0 00
t 2 ‘ 2 2
11----—2-2_0'1“31 ¢ (,xD,y)dy+§ dzg [Vs +wzs -’ } dy ,
z UL -00 -0 b L L L

X=X

D
(6.19)
o0
R
v (o)
:—ZS dzg u  tu4u dy +
z-i pUR LA [ °t It STE )
~00 -00 X=X
D
-2 S'S‘ [ZuTuL-i—uzT} dydz , (6.20)
> X:XD

wake
where the shear stress '7'11 in (5.21) is neglected in these calculations.
The wave elevation and longitudinal velocity components appearing in

(6.19) are the'free' or wavemaking flow quantities with the superscript

f omitted.

2. Calculation of the Wave Resistance

When computing the wave resistance from (6.19), the squares

of the flow quantities {,u_ ,v_,w are to be integrated with
*L L SL

respect to y and z over the infinite half space S2 at the downstream

station x = X The details of these tedious calculations are some~

what repetitious, So as an example, only the integral

o 0

g dzg uzs dy is discussed. The remaining three integrals follow
L

-0 =00

in similar fashion,

First, we use a result described in Chapter III to rewrite u

L
as
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™

z - eik[ (x~£)cos B+y sin 6]
uy ty,2) = | aore | ax ([ azer
°L Yn o 8 41 A(K, 0)
7z o

X{ek(z+z-‘)A 4ok Kby } . (6.21)
u U.S

s
Far downstream we have that (x-£)» 1, Also, only the free-wave

disturbance part of u (from the residue contribution of the pole kp)
L
is required to compute the wave resistance. The function u is

L
squared and integrated with respect to y, After the order of integra-

tions is interchanged, there results

o
2 -
‘S‘ u SLdy =
=00 T
Z 2 ik (x-£)cos @
f s (s
-5 47 Dl(kp) S,
k k_ z+{K(k
X e p(z+§.)A +e pZ o p)B X
Ys Ys
k
p
T

ik_ (x-§ )cos 6
' 21Ti p1 ! 1
X d6Re —————_ d§ df e

r ' 4¢*D(k ) S 1t

- 1 pl o

i A e .
u u O

k, (242) ke 4K )
° s S
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where
o i(k sinf+k sin0
( D D I)Y
IO: e d‘y (6.23)
00
, 4oisec59 , 4Gisec50
k (0)=0_sec0 +i —=—— |, k (0)=0_sec?d+i —ct 1
P L RL P, 1 L 1 R.L
k ) =\K:+iR_ k 6 , Kk )=yKHR.k ) 6.24
K( p) \/ D iRy pcos ( pl) \/tp1 iR, plcos L ( )
SG?Lsec3 g 802:[_Jsec391
1/D(k_)= ~sec?0[1+i , 1/D(k_)=-sec®d |1 +i —=2—],
1 p RL P 1 RL

After substituting \ = O'Lseczelsine , Wwe rewrite the exponent in
1

(6.23) as
ik sin0 + kplsinel) =i(v-n) (6.25)
where
— .- 2 3
)\o = -0 sec 6sin6 (6.26)
The integral (6. 23) simplifies to
Py
Io=‘§ e dy:Z'rré()\-)\o) , (6.27)
-0

where &(\ -)\0) is the delta function of Dirac., Considering 61 = 61()\ ),

we find that
‘ cos’0 (\)
del = 12
o‘L(1+sm 91()\) )

an . (6.28)

With cos 61()\0) = cos 8, sinGl()\o) = -sinf, we have



and

1 . 80Lsec36
[Dl(kp(ko),GI(Ko)] = =~sec“6(1 +1i T

We use the known property of the delta function to compute the

Gl-integration in (6.22), The result is

T
Z , ikp(x-g )cos 6
1 S cos’ 8 SS . e
- a6 —S2% 9  pe \\atari
2mo L _127_ [1+sin?6] S Dl(kp)
o

k_(z45) k zHK(k )
e P A (k_ )+e P PR (k)
ug P us P

ik (x-£ )cos @
S‘S e P 1

X Re df;ldlgll BT

S 1P

o

k(240 ) k_z+, K(k_)

1N k p 1 p . 29
o Bp) ¥ e B, (k;) (6.29)

e

In carrying out the indicated operations in (6.29), it is convenient to
organize the results in terms of orders of magnitude of the factor

R, -E, where R, is assumed large throughout. The exponential
L L g g p

exp{t \/kz+iRLk cos 8 } is treated as in the fundamental solution of
Chapter III, with o, ’Rl replaced by O, RL respectively, After

simplification, the integral (6.29 ) becomes
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T
0 A 2
. 03L sec® 6 chLsec 6
us dy = '-Tr-r— ———-—-—,—-z—-*—- e
o L o [ 1+8in®6]

X{Pcosxo_ +Q sinx_ +

2
o
1, . -1
+ RL [(Jx-gle)cos x0_+(Kx+glJy)sme] + O(RL )} , (6.30)
where
X = X0 sec 6 , g = GLsinZG sec’d . (6.31)

The O(RL-I ) terms in these equations involve long expressions with
many cross products, but these are negligible compared with the terms
retained above. In Eq. (6.30), the quantities P’Q’Jx’Kx’Jy and KY

are all functions of (0,x):

402 sec*6 2
P T(g -X)+§ O'Lsec 6
=§§d§d§ e
Q S
o
cos§ ‘Sin§0
X< c - «:x] sing,_ +sec 6] cz—GLseczesinZG e ] cos&,o) ,
(6.32)
40'ZLsec49 GLRL -
7, R, X)Ly sech
J :S‘Sdgd!; e L
Kj S,
cos§R+sin§,R singR-cosf,R
ch cos§0+ sing(7 s (6.33)

cosLR-sinLR sint_,R+cos QR



-100-

where
D
j = x, and c, =¢ s ,
j=xy 5=5%y (6:6)
and
. R )
— - LL
go. - gGLsece ? LR. "'c: ——z-—_' sec 6

The distribution functions e_(£,5), e (£,%), cYD(g,g), and ¢_(£,%)
are as yet unknown,

00
Similar calculations are performed for g gzdy, and S‘v; dy,
00 -0 o =
and g wzs dy with results analogous to (6.30), After performing the
L
=00

indicated operations in (6.19) for each of the four integrals, then ex-
panding the result about the limit for RL very large, we obtain the

result for the nondimensional wave resistance

_r@), (Y (o) -1
th_ RW + RW + RWD + O(RL ) (6. 34)
The basic wave resistance components are
T
Re) % (s e
—I—;JT:L—Z— = E;T- S sec 6[ PZO+Q0]d0 ) (6.35)
zP o
m
R o o Sz ,
- 2 30 qi2
1 = sec O{P [J. -0_.sec’fsinfdK_ ] +
Z'pUZLZ L RL o o "x, L Yo
30 cind
+ QO[KXO+cLsec 6 sin GJYO]} , (6.36)

where
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.
Po e l_’,oLseczﬂ OS5,
B 5‘3 dg d{, C [ C -C J
0 moox gin g
o SO )
-sin gg
+ sec O] a:Z-GLsecz(') sinZ()c?] } , (6.37)
cous §
o)

-1

0
- 2
—,/GLRLseCG §d§ cj(é,O){l cos§0+ 0 singo_} , (6.38)
o

. D
where = x, and c. = ¢ _(x,z).
_ j y j=y y( )

The damped wave resistance component is

R(o) o2

T
A

= L S‘sece P2+Qz]d9 s (6.39)
9

XXd

H

5 pUz Lz

where the functions P and Q are given in Eqs. (6.32), and thc angle
Gv is a function of Reynolds number, Froudec number, and the distance

X

D
C F* R 4
6 = sec {-—EL_L +1} (6.40)
D

The constant CO is typically less than 1., Viscous dissipation of the

. . . o S
wave system 1s contained in the damped component R( ) , and it is

D)
principally the diverging wave system that is most allectod,
. (o) ) . . . .
It is noted that RW has the same positive functional form as

Havelock's (1963, p. 374) familiar form for thin ships. Converting to

dimensional variables, with oy = KOL, we find that the result for
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Rf;’) from BEq. (6.35) is
v

z £}
R‘():)_._B_&S sec36[on +on 10 (6.41)

nU“o m m

where from (6.37), in dimensional variables,

Po . 2 cos
m K sec
(k & secB)dE dt . (6.42)
Q = S:S‘ Mo(gsg)e © sin o
°m So

For potential flow, the hull kinematic boundary condition for thin ships

gives

Mo(x,z) = 2U % , (6.43)

where y ==xh(x,z) is the hull shape and Mo( x,z) is the distribution
of sources and sinks on the centerplane. So. Therefore in the limit of

potential flow, R(O)

W correctly yields the classical wave resistance.

3. Calculation of the Viscous Resistance

Turning now to the nondimensional viscous resistance formula
of Eq. (6.20), ‘we use the fact that the u-velocity is evenin y to

obtain
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R b (o)
i v :-—4§sz uo+u +u } dy +
5 pU°L’ ) T T T
-~Q0 O X=X
D
-ZSX [ZuTuLJruT} dydz , (6.44)
X=X
D
wake

where u and u(o) are given in Eq., (D.5) of Appendix D, and u
o 1 : S
is given in (6,10), The total viscous resistance is then scparated into

four components

R =R +R_+R_+R (6.45)
v v v v v
o 1 2 3
where
R o} 00
patg - fo ] v e
P o0 (e ] X=X
D
R
A g
ZPUL z, )
222 :-Z‘SS [ ] e (6.48)
pUL .
waKe, *D
RV3
e L O o
z P -0 o Tx:xD

We consider the Rv part first, The fact that RL is assum-
o
ed large is used to good advantage in reducing (6.46 ) to a relatively

compact expression, As these calculations are long and somewhat

repetitious, only a sample is included here, Taking the [irst term in
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a of Eq. (D.5), we consider the integral
T
o
[(x-£)-R]
Jan (e 55 g e [ e
-0 O

By expanding for large (x-f£), and interchanging orders of integration,

this becomes

Sgdéd@ Q % (Y +(z~L)?) L y2a(oot
c gdzgdy R [1-—2’.—1?;__}
" b wesd Z et P
(6.51)
Performing the necessary integrals, we find that
c 3 ¢,
=S‘S‘—§- dgdg -ngd§d§+Ja o (6.52)
So S
where
R_.¢ 2 32
J:S‘S.Lx[w(i:-g—)l-ﬁ —X—-é-l+
a 2 (x-E) RL o (x-£ )2 RL o .
o
2
o ER:‘E)S/ I ]df;dg , (6.53)
(x-§)* \ "l !
where
< 55
e ‘ ]
o o
The analogous term from u(o) is
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0 0 L
—5 | lx-£)R
(o o ggdgdg o TIeeR)
-0 0 "
c_ 3¢ dbdt ;
= §) 3 aar - f SR, ) a (6.54)
S S
o
where J  is given in (6.57). Then
I+1, =S‘§f§_ d«€.<-lt;+oRlX ) . (6.55)
1 L'D

O

When these tedious, but straightforward calculations are per-
formed for all the terms of U and ul(o), we find that the cD
. T T
terms cancel out, and the viscous drag component in (6.46 ) becomes

approximately

R

\ c (§,8) ,6,8) i rEan -
T =-4 \\dtd - e W7 +
> pUL? SS : 4F R, (xE)

O X=X

+ 0O

Rixp

(6.56)
This is further simplified by expanding (x—g)}i for large x, and
expanding mz(g,;) around { = 0 so that the { -integral for the c -
term cé.n be estimated, The final result for the basic viscous resist~

ance in nondimensional variables is
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Z

+ O

1 )
R . (6057)
L D

pUsz X‘g ¢ (,£)dEdt + O
z

So the cx—term is the most important term of Rv , and the minus
o
sign is correct, since a positive drag is represented by a negative

X-force on the fluid. In terms of dimensional variables, Eq, (6.62)

becomes
= - \\ X (£,0)dEd + O 0 , =t ) . (6.58)
S.S °© Ry " Ri*p

Next we deal with RV and RV of Eqs, (6.47) and (6.48),

1 2
respectively. These terms arise solely because of the presence of
the free surface, and might be better termed as the two parts of a

viscous 'free surface wake-drag.' In an unbounded flow these compo-

nents would be zero, Keeping only the most important terms in u

L
and U and noting that U is exponentially small outside the wake,
we approximate the integration over Ewake in (6.47) and (6.48) as
follows

0 00
ES pldydz = ZS dz§ [us (u, +u1‘°).)} dy ,  (6.59)
L "r r
Wake B © *=Xp
o 00
S:S‘ [w? ] dydz = 25 sz{u +u :! dy . (6.60)
Zyake ® o © X=Xp
The u and u(o) are strictly rotational parts of u and u(o),
o, 1. O 1

(see Eq. (7.28)).
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Expanding the individual terms for large (x-f£) and performing the
indicated integrations approximately, we obtain the non-dimensional

expressions for the free surface wake-drag

R

™
v ZGL RL z

I 12 — = TR § df secb gdg g‘d@l@X(éls O){
pU*L m D3 S, S,

z

e (6, 0)-¢ (8, 0)]cos(o (x -E)secd) +

+ sec O] a:z(§ , 0)—(O‘LSec29 sinze)mi?(g, 0}] sin(O'L(xD-g)sec 9)},(6. 61)

and
R 2
Vz -1 IRL
.i__{J_;IJ;_ =~ -(4\/Z1T ) -SEE[ S‘mx(é,O)dg} . (662)
zP . S,

The fourth component of viscous resistance is Rv from Eq.
3
(6.49) It is also clearly a free surface contribution. Using (6.10),
and after considerable simplification, the expression reduces to

2
) 40'Lx D

Rv3 ZO'L S"S‘ : o.Lt;’ RL [
= dEdi e { ~-{c_ ~c_)sin(o x)+
lszsz RL . m X L

o

+¢Zcos(0'Lx)] cos(cL§ ) +

+[ (cm—a:x)cos(O‘LxHo:Z sin(ch)] sin(ch )}x—x . (6.63)
D

. -1 .
Being of order O(RL ), this term may be neglected in comparison

with the contribution of the other terms,
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4, Discussion

The principal results of the foregoing analysis indicate that the
total resistance of a thin ship in Oseen~flow can be expressed approxi-
mately as

R =~ [R(O)

srMWyREY LR +R +R ] (6.64)
W W wW v v v

D o 1 2

where the main w‘ave resistance terms R(O), R(l), and R (o) arc
w W W
are given in Eqs, (6.35), (6.36), and (6.39). The three most important

viscous resistance components Rv , R, and Rv are given in Eqs,
© 1 2
(6.57), (6.61), and (6.62) respectively. R represeats the basic
I O
form of the viscous dissipation drag which the ship hull would experi-

ence even in the absence of the free surface. All the remaining terms
in (6.64) display explicitly the influence of the free surface. Of these,
the most important term is RS) of Eq. (6.35), Which represents the
drag due to the propagating fre¢ surface disturbances as viewed at a
far distance from the ship hull, In the limit X ™o,

ance is represented by the constant R = Rs;)) + RV . In any actual

o
experimental determination of the resistance components (e.g., by

the total resist-

wake surveys and by transverse wave height analysis) the physical
measurements are always taken at some finite distance aft of body,

The terms R\(;) , Rv’ and RV indicate the possible influence of the
D 1 2

distance Xy on the measured quahtities,

Boundary layer and wake interaction effects are included formal-

ly in the wave resistance terms by the presence of the forcelet distribu~

tions c_, q:D and ¢_ in the functions P , Q »y J. , and K.
Z 0 o ) J

x‘y’

O O
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Within the context of this linearized theory, the physical meaning of
the forcelet distributions can be inferred from their relationship to the
shear stresses Tyx and Tyz“ It can be shown that, in terms of non-

dimensional variables

T = -

= Tk 2) - g oDl 2)] (6.65)

y

pHi—-'
%

x
1

1
yz = I cz(x,z) . (6.66)
Of course all four distribution functions are interrelated, and they
depend ultimately on the shape of the hull through the physical boundary
conditions, The boundary conditions themselves.are discussed in

Chapter VII.
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VIiI. OSEEN-FLOW BOUNDARY VALUE PROBLEM

The physical boundary conditions are used here to set up inte-
gral equatiéns for the four unknown distributions Mo(g,t_',), Xo(e’;, L),
Y?(g,é), and ZO(&,,?‘,). Certain primary features have already been
assumed about these functions, All four of them are nonzero only on
the centgrplane area So‘ This means that the total flow disturbance,
in addition to being very thin laterally, is of finite extent in the x ~ and
z-directions, If any of the functions have singularities within the region
So’ these are assumed to integrable, Thus, all the functions P,Q, Jj’
Kj of Eqs. (6.32) and (6.33) remain bounded and well defined.

It is important that the boundary conditions be consistent with
the flow linearization as it applies near the body. The equations pre-
sented here represent a linear approximation to flow that is laminar
and attached. Of course the actual boundary layer on a ship is tur-
bulent for most of the length of the hull, and flow separation often oc-
curs near the stern, especially for large block coefficient ship hulls.
Even though the approximate conditions developed here do not apply to
the turbulent ship flow directly they can provide approximate results
that form a guide for an 'indirect solution.' In an indirect calculation,
the mass source and forcelet distributions are prescribed, and then
the general resistance formulae are used to compute the resulting
drag. This approach is useful for investigating the relative impor-
tance of the various forcelet distributions; énd an example of such a

computation is discussed in Chapter VIII,

Ideally, the system of boundary conditions on the ship hull
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should be sufficient to solve for MO,XO,Y‘?, ZO, using as the only
input the shape of the body. This is called the 'direct problem;' and

an approximate zeroth order solution is given below in Section 4.

1. Physical Boundary Conditions

Two types of boundary conditions are to be satisfied on and
near the surface of the hull,

(a2) No-slip Conditions, In a viscous flow, the fluid immediate-

ly adjacent to the body has zero velocity relative to the solid surface.
If the hull shape given .by y =% h(x,z) is thin, then to the desired
ordef of accuracy the linearized boundary conditions are to be satis-
fied on the centerplane region, in the limit as y = 0. The no-slip

conditions are

(o), . (o)
u=u_ +u_ +u Fu +u_ =-0U (y =0) , (7.1)
°;, °r 'p, ¢ 8
v=v_ +v, +v(o)+v(o)+vs =0 (y=0) , (7.2)
L T ‘L T |
W= W + W +w(o)+ w(o)+ W = 0 (y =0) , (7.3)

L °r 'L It
for (x,z) in the region So‘ In these, the EIS components are known
in terms of Fourier integral representations, and the components of
)

dor 9 are given in detail in Appendix D.

(b). Kinematic Condition, The conditions of (7.1)-(7.2)are deter-~

mined by Taylor expansions of the velocities about y=0. The linearized
no-slip condition (7. 2) has a second consequence that may be regarded as
a singular expansion or boundary layer limitas y = 0, We define a dis-

placement thickness & in the usual way (Schlichting (1960) )
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U+tu
U

1 - d"’! s (74)

e QYO
o -
o]

where n is defined in the sketch of Fig. (7.1), Vo is a value of n

greater than the boundary layer thickness, and the x-perturbation
velocity is u = u, + ul(o) +u_. Then for the flow to be tangential to the

virtual body shape Yy = hix,z) + 6>'<, the kinematic condition reads

v(x, Vo z)

Utulx,y ,2)

- % [h(x,z) +67] . (7.5)

This may be simplified in several ways, We neglect the perturbation
quantity u(x,yv, z) compared with U in the denominator of the left
hand side, Also, the linearized version of this condition is to be
satisfied on the centerplane y = 0. However, the velocity v is eval-
udted at Y, > 0, This is a point which lies outside the viscous-domi-~
nated region, where the flow is governed mainly by the longitudinal
velocity component (—l)L' Therefore we approximate the v(x, Y z)

in (7.5) by the component v._(x,0,z).

L
The expression for §% in (7.4) is also simplified by exploit-
ing the splitting of the flow quantities into longitﬁdinal and solenoidal
components. The upper limit Vo of the integral in (7.4) is extended
to infinity after replacing the total perturbation velocity u by the
rotational part of the solenoidal component, This is permissable be-

cause the solenoidal component is exponentially small outside the

viscous-dominated region,

The linearized kinematic boundary condition at the outer edge
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of the boundary layer becomes
v {x,y>0,2)=U 2 [hix,z) + 6*(}{ z)] (7.6)
L ’y Y - ax ] E ) .

where the linearized displacement thickness is

o]

% .1 (o)

8" (x,z) = ﬁS‘[uor+ulr+uST] dy . (7.7)
(o] Y:O

2. The Integral Equations

For convenience, the conditions (7.1) - (7.3) and (7.6) are
made dimensionless using the quantities described in Chapter VI,
Section 1, The underlines are omitted.

(a) No-slip Conditions, We consider first the details of the

conditions in Eqgs. (7.1) - (7.3). The linearizing approximation y -0
affords some simplification in the rather long equations of the no-slip

condition, Referring to Appendix D for the full expressions of UV,

and W, We focus our attention on the terms that appear to go to zero

as y >0, If these same terms contain R =\/(x-§ )2 +yz +(z-L )Z or
b? = y* + (z-L ) in the denominator, then they are singular at y = 0,
£ =x, §{ =z and must be treated more carefully.

In the u-equation, (7.1), only the ¢?-terms have singular
parts. As an example of the technique for handling these terms, we

consider the following integral from one of the terms of U
T
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R
R 2 (7&)[(?4'5)'1{]
I=1nn53‘§%?i cD@,é)L§E)~EL— e 2 (7.8)
y=0g Ty bR
o]

As y >0, the contribution to this integral comes entirely from an in-
finitesimal patch centered at the point £ =x, { = z within the region
So. Therefore the function ¢?(§,Z_.) is expanded about the point § =x,
{ ==z and a:?(x,z) is taken outside the integral. Then it is convenient

to change the variables of integration, using the substitution

(£-x) = yA cos 8 (L - 2z) =y\ sin 6 (7.9)
The integlj'al in (7.8) becomes
R
- [y VR
e dX\

(N241)

cD(x,z) ‘S.a/y X
I =1lim ‘RL —X—g?r——
o .

y—=>0
|

R
T - (TL— yk) cos 6
X S‘ 2 ae (7.10)

(14N % sin?0)

|
where a is the small finite radius of a circular patch about the sin-

\
gular point, In the limit y =~ 0, the upper limit of the \ -integral be-

comes infinite, and after performing the elementary integrals we obtain

RLD

L= o= e €,0) . (7.11)

This same procedure is also used to obtain the results
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R
1
day Dy (R0 Get) (- | |2 (680 -R]
h_ri‘ogg“s'r y‘g’“(‘? u(l " )
y=>0¢ b? R’
(0]
- Q%%l nggugz) . (7.12)
TRL[ £)-R]
( _3)-R
lim Sxidgig c2ie, 1) 3V5 1-e - ) -0 | (7.13)

(o)

The contribution from the u1

by replacing R by R1 and b by bl. Then the result for 11 is

L
e (Catar b, [BL) 2 S5 e-6)-R ]
H";EESK y (&5 ;%_?» e Yoo, (7.14)

since R1 =\/(x-§ ) +y2 +(z+L )2‘ and b: = [yz + (z+4)*] do not vanish for
values of £,{ ranging inside of So' The ul(o) terms corresponding

to (7.12) and (7.13) also give zero contributions,

In the v-equation of (7,2), every termof v_ ,v ,v (O) and
°p’ o ip)
V(o) must be treated using a procedure similar to that outlined above.

1
T
Only those terms giving non-zero contributions are listed here

¢ (x,z)

lim SS‘§%§§- ¢nﬁg,g)(§?)= m (7.15)

y>0g

L
L(x-§)-R] R
lim S\g dgdt" L¢?(§:§)('§;‘) C(T) = 711_1 a:i?(x,z) A(7.16)

term corresponding to (7,8) is obtained
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R
L
2 —= [ (x~£)-R]
g0 S Br Ty b?R R b )
(o]
R
S c?(x,z) , (7.17)

The vs(x,y, z) term in (7.2) is expressed in terms of a double Fourier
transform, and it can be shown to give a vanishing contribution on the
centerplane y = 0 because it is odd in vy,

In the w-equation of (7. 3), all the terms appearing to go to zero
as y >0 give vanishing contributions,

The complete nondimensional no-slip conditions of (7.1) - (7. 3)
become
u- equati.on:

R

L
—=[(x-£)-R ]
dédg (x-£) , (x-£) (x-£) 2
éSK W{mm[ R * R ]-mx ;3 (l-e +
o 1 R
L
. (x_g)(l_e(—z—)[(x-g)-Rl] )
X R3
1
R R

+c¢ — -2 +¢ ~—jl-e +

Yy r3 Yy Ri
R R
(z-1) (—zL-)[ (x-£)-R] (248 ) (713-)[ (x-£)-R ]
-c, 5 1-e -c, ; l-e ‘ +
R \ Rl
(Hx-6)-r) Rpe R - Reva
[ T % T)'R(l' (xé)) D(“zl—')g; *
e e .
Z R? {cont'd)
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R R
R bl e R
1
)
Rlz
+(9+1T)R e (x z) +u(x,0,z)= -1 , (7.18)
v-equation:
e N S I A

w=-equation:

RL
S‘S‘d&dé{ [(z 4) (z+§.)}+ < (z-g)(l_e(—-z—)[(x—g)-R]

R3
1

R
L
te z+g)(1_e(—z—)[(x-€) R]
X R3 .
1
R
L
+ a:Dl:- (1+ (x-g)) (x-£) }( l-e(T)[(x £)-R] s
(z-L 7 (2-4)R
R
+ ¢D[_ 2 (1+ (x=E)]_ _(x-£) }(1_6(7}4[ (x-g)-Rl] ,
S A N 2

R
b [ e )] o (—%)Hx-&)—R])
(z-L )

gt s,

{cont'd)
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+e(R )[(x—g)-R][ If{ N CX(iL_) ‘ZP:f)+¢f(E;L)(z-§,>R (1+ (Xzf) )+
o[ 2] -
l+e( )[(X-g)-RI][RI{:Q ve, _Ele_._) (;:é) +¢?(E{"%)rﬂlﬂl’€?+ (Xf-{lg)) "
3
<, [S8) L )]
tw_(%,0,2) =0 . | (7.20)

The velocity components us(x, 0,z) and ws(x, 0,z) have the Fourier

integral representations

A B
S‘degdkﬁ‘dgdg elk(xkg)e‘;“e Jlzig) [ )| kettk| s|,
o S A B

c D

+eZK+k{'" ° +e(z+§ K ° s (7.21)

W W
s s

where the notation is identical with that given previously in Eqs. (6.15 )~

(6.18 ).

(b) Kinematic Condition, Now we consider the linearized con-

dition of Eq. (7.6). The longitudinal component of the v-velocity has

three parts
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v(0)+v
°1, 11,

L=V - (7.22)

where the Vo is written out in Eq, (D.3) of Appendix D, When use

L
is made of the substitutions (7.9), the following results are obtained

[e,(x,2) - ¢ (x,2)] , (7.23)

'N

3

»Oﬂ B [e_(E,0)-c (t,0)] E{L -

S’S‘dgdg " 4)[ZY(Z L) 1y L)) y(x-gxz-m]: o . (7.24)

Y"’O b? R

The contributions of the ¢;) terms to the component v, (x,y—>0,z)
L
are obtained by integrating by parts, and can be shown to be equal to

zero provided that the function cc}]?(x, z) vanishes at the endpoints of
the region So

SJ,D(Xmin z) = my(xmax 2) =0 . (7.25)

All the terms of vl(o) vanish as y -0, as does the contribution from
L
Ve (x,0,z). Hence the nondimensional kinematic boundary condition
L

(7.6) reduces to

%:[ cm(x,z) - ¢x(x,z)] = -sgz[h(x,z) + 6*(x,z)] , (7.26)

which bears a strong resemblance to the familiar kinematic condition

in potential theory. The displacement thickness 6 is also a function

of the distributions L ¢£), ¢, through the velocity components U s

o T
uf ) , and u_ . In the nondimensional form,
r T
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00

é*(x,z) = - S‘ [uo + u(o)+ u lday (7.27)

T 1y T
o

where the rotational velocity (uO + u(lo)) is

r r
(2L et )-R]
x-5)-R
(u 1~+ (:)) égdgff -z R_ch(%—{+§%—) +
C
(RL 1 (x-£)y, 1 (x-£)
e ¢x{§(1- = )+-R-l-(1- Ny )] +
R' -
o5 oP ]2 s )
R
43 ) sl g
1 1 1
+(I;L) ¢Z[<zl;2;) . (:;;)} ’ (7.28)

1

and u is given in Eq. (6.14),
T

3. Shear Stress and the Forcelet Distributions

The forcelet distributions c_ ¢D, and ¢ are shown here to
have definite physical interpretations. Intuitively, one feels that they
should be related to the fluid shear stresses acting over the surface of
the body, and this is indeed the case. The linearized approximations
to the horizontal and vertical shear stress components are obtained in

the limit as y =~ 0, and for x,z ranging inside the centerplane area

So' When 'TYX and T , are made dimensionless by pU?, the general

y.a
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expressions in the nondimensional variables are

0
'TYX = REZ[% (Uo+u1(0)+lls) + -5-): (VO+VI(O)+VS)] (y ‘()) s (7.2())
i ) (o), 0 (o), . 3
'7'yz = ﬁZ[W WO+W1 +WS) + BE— (VO‘*‘V1 lVS)] (y 0) . (7. ’())

Using the substitutions (7.9), and performing the limiting opcrations
for all the derivatives indicated in (7.29) and (7, 30), we obtain the fol-

lowing nondimensional results

TYX = - -IZ[CBX(X,Z) - % m?(x,z)] s (7.31)
1 19
TYZ == 4’ GZ(X’Z) ’ (7--""‘)

where use has again been made of the provision that a*l? vanishes at

the endpoints of the region SO (see Eq. (7.25) ).

4. Approximate Solution for MO,XO,YOD, and Z_

The Oseen-flow boundary value problem for the four non-

dimensional distributions T Qs <1:y , and ¢ is contained in the four
X 7

integral equations (7.18), (7.19), (7.20), and (7.26). As they stand,
these equations are too complicated to solve by any other means than
by an extensive numerical procedure. Howev‘exj, it is questionable
whether the result from such a calculation would actually justify the
cost and effort involved. For the present, some interesting results

can be obtained from an approximate solution,

In this section it is useful to convert all the flow quantitics
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back to their dimensional forms, The conversion is based on the
reference length 1., the reference velocity U, and the coefficients
defined in Eqs. (6.3 ) and (6.4 ). For example, the dimensional version
of the kinematic condition (7. 26) becomes

X, (x,2) ) \
[MO(X’Z) - —-——PTU.——} =20 g}z[h(X,Z) + 6 (X,Z)] ,(7,33)

where the singularities are distributed over the region So’ for which
0<x< L, - T<=z<0. The solution obtained here is essentially an

iterative one, and is begun by assuming that (7. 33) can be split as fol~

lows
oh
Mo(x,z) = 2U = (7.34)
and

-[—O—pu—’%= 20 2 6% . (7.35)

Further, we assume that the zeroth order solution for Xo(x, z) is
equal to twice the laminar shear stress function (to agree with Eq.

(6.67) for laminar flow), Then

X (x z)
[ (0<x< L) , (7.36)
V \F

where A_ = -(.664)U for the flat plate shear stress. From the

dimensional version of Eq. (7.19), we can solve immediately for the

Y]oa(x, z) distribution

¥D(x,2) 4 ,
[""p'UL' s - IR, Mok ?) (7.37)
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Now all that remains for the completion of the approximate
solution is to determine the vertical force distribution Zo(x, z). This
can be accomplished by considering an approximate version of the no-

slip condition (7.18), In that equation, we neglect the contributions

from the terms involving ( 1 - ,

R RL

[l x-6)-R] =5 [x-£)-R

e , 11 -e 1

1- 9-(;&—)) , and ¢ (1 - g-x—-—g—)) as being small compared with the
R x R1

remaining terms, Also, the velocity component us(x, 0,z) is omitted

X

for this zeroth order solution, Among the remaining terms, there are

|28 (e-t)-R]

groups of functions containing the exponential factors e

(521‘}[ (x-§)-R]

and e . We note that for these particular terms, the
range of the integration variable § > x gives an exponentially small
contribution because RL is so large, Therefore for the viscous
dominated terms, the full § -integration is approximated by the partial
range 0<g<x, Converting to dimensional quantities and using the

results and approximations discussed above, Eq. (7.18) reduces to

L 0 ‘
gdg g a Mo(g,g)[m-f) p &)
o

' S
X R (z-L ) D

o gdge e - 52 L e e
) -RL(z+§)2 D

e T 2 -3 LI e
m{(9+n) !

- — Mo(x,z)= - 470 . (7.38)
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Upon substitution of the known functions xo(g,g) and Y?(g, L) into
(7.38), expanding for large (x-f£), and after performing the {~in-
tegrations on the approximated i‘ntegrands, we find that the integral

equation reduces to

Fy (x,2) - x{otm) M_(x,2) + 47U +

WA -———CE———{:1+erf B }+
x§\/€(x_§' zX-E)

2 |rL ¢ dg B d d§ Zo(g’z) B Zxﬁ-E;
- ?’R—LS‘ (—}Iﬁ? Mo(g,z)erfc /G;E —g (x-&)[ i ]e Lo
o o _
(7.39)
where
L o)
Fy (%, 2) :5 dt Sdg Mo(g,g)[(’;’g) + (;;g)] , (7.40)
o -T 1
(T+z)"‘RL
B = S » 1, exceptfor z very near -T
It has been necessary to assume that YOD(x, -z) = -Y?(x, z) and

Zo(x, -z) = Zo(x, z). Equation (7.39) is a Volterra integral equation
containing integrals of the convolution type. After applying the Laplace
transform (Churchill (1958) ), Eq. (7.39) reduces to an algebraic
expression in the transform variable S. The transform of the un-

known function Zo(x, z) is Zo(s, z) =8| Zo(x, z)] = e-stO(x, z)dx,
o
The transforms of the functions involving erfc ’-}E{— are performed ap-~

proximately for large B. After solving for 'Z-O(s, z) and applying the
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inverse transform, we find the result valid for -T <z < 0,

[ Zo(x,z)] 4LMO(x,z)

50 TRt T

L

- 1 = 2 —
+ 58 1 ___.1.___[-2— FM(s,z) + ;U— Tré9+1r) Mo(s,z) +

VT A_(1-KHF) >] , (7.41)

where o@—l{ } indicates the inverse Laplace transform:; Ko(y\[_s_'),
Kl(y\/—s_') are modified Bessel functions; vy = 2\/_5' = (T+z) RL/L; AX
is a coefficient associated with Xo(x,z) (see Eq. (7.36) ); the functions
fM(s, z) and 1\7Io(s,z) are Laplace transforms of (7.40) and the
Mo(x,z) distribution respectively. This approximate solution for
Z _(x,z) is not valid for z = -T, because near that point the approxi-

(o] 2

(T+z)RL

mations used earlier for large 8 = —IT would fail. A more
detailed and complicated solution for z near =~-T is not undertaken

here. Even the approximate solution of (7.41) cannot be fully in-

verted in terms of elementary functions,
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VIII. AN EXAMPLE OF THE COMPUTATION

OF WAVE RESISTANCE

Results from an example of the numerical calculation of the
wave resistance are presented in this chapter. This computation has
been undertaken in the spirit of an indirect problem. That is, two of
the four singularity distributions have been prescribed and varied
somewhat arbitrarily. This means that the flow being modelled here
is not necessarily the flow about the hull shape indicated by the mass
source distribution. The sole purpose of these calculations is to
indicate in a preliminary way the qualitative effects of the forcelet
distributions upon the wave resistance results derived in Chapter VI,

For this example, we consider only the wave resistance com-

(o)

ponent RW

given in the form Eq. (6.35). Rewriting the formula in

dimensional variables, we have that

i
, Z
Rf:):.ﬂﬂ_ sec®0[B?+ Q2]a6 (8.1)
Ut
o
where
Fo LKosecze X cos§
:Sydﬁ dg e M -(_.(_)) K +
o ipU .
(N S s1n§'IC
© D -sin§
+ secG(E-c—)) -0 _sec fsi z6(—-——Y0 ) ‘ 8.2
pUl L R i o ,»  (8.2)

ng

where gK = (§K°sec 6y . (8.3)
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We recall that the result in (8.1) has been determined from a momen-
tum consideration of the various flow quantities measured at the down-
stream station x = Xy where Xn is supposed to be large but finite,
As they appear in the expression (8, 2), the forcelet distribution func-
tions xo(g,?;), YOD(g, £), and Zo(é,?;) merely represent some flow
disturbances occurring upstream of the control surface SZ (cf.
Chapter V). Nowhere in the derivation of (8.1) is there a limitation
imposed on the detailed near-field behavior of these functions. There-
fore, it is interesting to consider forcelet distributions that might ap-
proximate turbulent flow shear stresses along the body. It should be
noted that such distributions would not arise from the boundary con-
ditions discussed in Chapter VII. Those equations apply strictly to the
Oseen approximation of laminar flow,

The mass source distribution Mo(x, z) is determined principal-
ly from the slope of the hull function, although in fact the four distribu-
tion functions are all interrelated as indicated in the equations (7.18),
(7.19), (7.20), and (7.26). To provide some corrimon*ground for
comparison between computed and experimental Wave resistance, the
present calculations are based on a simple mathematical hull form.
The simplest of Wigley's model shapes is appropriate because it has
been used in numerous experimental investigations (e.g., more
recently Gadd and Hogben (1963), Shearer and Cross (1965), Lackenby
(1965) ). It has also been used in some theoretical comparisons of
interest here (Gadd (1968) and Beck (1970) ). The offsets of the Wigley

hull form are given by the equation
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B
y=h(E, L) =% =

2 gZ
1-__)(1 - -_) , (L <E<L, ~T<{<0)(8.4)
22 T

where B is the total beam, £ is the half length L/2, and T is the
draft.
The prescribed singularity distributions used for this example

are given as follows

_ 8UB ¢?
M, (£,L) = 2U ( ———), (8.5)
55 L? T? '
X (g’g)1 1/5
o __(L0753)U | L
[ Y T el (8.6)
- L
Y.L (A [a.) g
o . v _ UB _ &
[ SOT " " o Mol 8 =t == }g(l . (8.7)
- L L
Z (6, 8)] A
[ > . (B E (ry) (8.8)
pU ] RLI/S 12 ] T2

for -2 <gE<{L, - T<{(< 0, and where AY and Az are constants
that can be varied in numerical experiments with a computer program
used to calculate the wave resistance. The form of Eq. (8.6) is based
on a simple splitting of the kinematic boundary condition of Eq. (7. 33),
such that the Xs distribution may be thought of as being related to
the approximate turbulent boundary layer displacement thickness 6*
by
- E‘-? = 2U 267, “

[58]=2v gr o0 .9

The constant (0.0753) appearing in (8.6) has been determined by

using the approximation in Eq, (6.58) for the viscous resistance,
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va is given here in dimensional variables

(o]
Ji
2
§d§§X &, = & 094)"‘;5” . (8.10)
-T  -f

Choosing the constant as indicated gives fairly good agreement be-

tween (8.10) and the viscous resistance curve in Fig. 7 of Lackenby
(1965) for the Reynolds number range considered. For the Y]o? and
Z0 distributions, convenient simple expressions are assumed here

for ease of computation of the integrals IPO and Qo. The YE dis~

tribution resembles the result of (7.37) with R

~1/5
L

L-l replaced by

R

For purposes of this discussion, the functions I% and QO are

written in the abbreviated form

]PO(G) = -

(308 (3 ) 5 LOTIW 5 )

1 RL1I5 L1/5

A Ay (8 1
+ L (SUB)GLsec39 sinZG[Hs]+ 2 (OUB) sec6[HSZ], (8.11)

RLllS 12 R ifs 12
Q (6) = - gg_B_ ] + .0753)U [J 1+
o 12 R 15 Ll
L
Ay [8UB 3.2 A, |8UB
- ——l}'—( )O'Lsec 0sin®0] HC] - -————( )sec e[ HCZ]
R ¥ R Y1 g2

(8.12)

The functions Hc’ Hs’Jf JZ, HCZ, and HSZ are given by the follow-

ing integrals
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H | > Lk sec?B g2 L cos S;K

= S‘dt_,e --;)S‘ ( . d¢ (8.13)
LHS_I ) T 4 sin§
—Jl- Lk sec?6 I cos

- ‘gdge g ( Klae (8.14)
3, “r e+t M5 | sint
L -
HCZ o 2 1 cosé

Lk sec“6
- Sd@e ° (T-L) | g2 & ., (8.15)

| HSZ e T? i, sin§ .

where E,K is given in (8, 3).

In the inviscid limit RL =+ ow, the function HC -+ 0 and thus

I%(O,x) -+ 0, Hence, for the hull function of Eq. (8.4), only the Qo
function would contribute to the inviscid wave resistance because
0h/9t is odd in §£.

After squaring the functions IPo and Qo’ we split the wave

(o)

resistance component RW into a sum of three parts,

(o) _
Ry =Ry *t RW.+ Ry s ' (8.16)
o i W
where m
pGLA:n i
R_ = 5 sec?6[H2 + H2]dO (8.17)
W
o wl?
2p0’ A A
R = - gdesec 8¢(H-T +H:J ) +
W, 1/5 c 5 2
o
A A
+ A secG(H HSZ - H HCZ) +

X
{cont'd)
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+ ———}—-—[A o sec395in29(J-H -J'H )+ A secO(J-HCZ-J-HSZ )+
y L 2 C 1 s z 2 1

15
Ry
A A A
- _.‘ZKZ__Ln. GLsec4GSin29(Hsa HSZ + H - HCZ)] , (8.18)
X
™
pO"2 AZ Z‘
R = —L X 5 df sec®0<(J% + J%) +
W wLZR. 2P 1 2
L o
AZ A? A% A
+ L2 (oLsec3esin29)2(H2C+ H2) + 2 2 [(HCZP+ (HSZ)?],
A AL

(8.19)

where A =8UB/L?, A_=(.0753)U/L"%; and where the forcelet
strength parameters AY and AZ are dimensionless constants. The

R, is essentially the potential flow wave resistance due to the mass
o

source distribution. . . . .
u t t RWi is the interaction wave resistance due to

cross products of the mass source term and the forcelet terms in the

functions IPO and Qd' Rw is the wave resistance due to the squares
of all the forcelet terms.WWhile Rw and RW are always positive
the interaction component Rw. displc;,ys an und‘:fllatory behavior with
Froude number, and can take (lan positive or negative values depend-

H

ing on the choice of the cénstants AY and A

To facilitate the numerical computation of the ]integrals in
Eqs. (8.17) - (8.19), it is convenieﬁt to use a new variable of
integration t =tan6, A computer program has been written to cal-

culate the wave resistance integrals for a variety of test cases. The
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results presented here are for the Froude number range

0.2< FL < 0.35. For comparison purposes, the same hull dimensions

as those used by Gadd (1968) and Beck (1970) are also used here,

namely
L =22 = 20,0 ft,
B = 2.0 ft,
T =1,25 ft.
SB - wetted surface area = 59,52 ft* .

5
The kinematic viscosity was taken as v =1.22X 10~ ft?*/sec.

Nondimensional drag coefficients CW ,CW and CW are
' o i w

formed by dividing respectively the drag quantities (8.17), (8.18), and

(8.19)by 3 pUSy. |
It is interesting to display some of the results of this present

work in a form used by Sharma (1960) for comparing his experimental

data with potential theory results. With the substitution

u=tan0b secH in (8.1) and (8.2) the dimensional functions IPO and Qo

can be shown to be related to Sharma's free-wave spectra functions

G(u) and F(u) by the following expressions

4k % sec?d

Glu(8)] = —= P (6) , (8.20)
TU(2sec?6-1)
4K® sec?d

Flu(6)] = — QO(G) ¥ (8.21)

TU(2sec?6-1)
Figure (8.1) shows a comparison between (a) experimental

wave resistance (cf. Lackenby (1965) or Gadd (1968) ), (b) potential
(o)

W

theory' wave resistance, and (c) the present results for C calculated
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from Eqs. (8.15) - (8.18) with values of Ay =0.05 and A =+1.0.
In Fig. (8.2), the wave resistance components Cw. and CW are
plotted, showing that when AZ remains constant, 11:he intera:’;ion
wave resistance Cw. oscillates with Froude number. It is noted that
in Fig. (8.2) the Cwl. curve reaches local maxima at Froude numbers
0.21, 0,25, and O. 321. If at these same three points the sign of AZ
is reversed (so that AZ = -1.0), the results are indicated by the
points @ in both Fig. (8.1) and (8.2). The interesting feature of
these graphs is not so much the comparison in magnitude of the wave
resistance curves, but rather the qualitative variation with the Froude
number, The shifts in the locations of the humps and hollows of
C$) as a function of the Froude number seem to accord well with the
experimental curve,

| Figures (8.3) - (8.6) are plots of the free-wave spectra G(u)
and F(u) ‘at selected Froude numbers (see Eqs. (8. 20) and (8.21) ).

Both Fig. (8.3) and (8.4) are for F. = 0.25. The case Az =1.0 is

L
shown in Fig. (8.3), and the case AZ = -1.0 is plotted in Fig. (8.4).

The two remaining figures for ¥F. = 0,275 and 0.35 are both for

L
AZ = 1.0, In all of these graphs of free wave spectra, the potential
theory would predict that G(u) = 0.

There is no particular benefit from investigating the indirect
problem much further, Extensive computation of all the resistance
components for the case of laminar flow must await the complete

solution of the boundary value problem of Chapter VII. For the more

interesting case of turbulent flow, the experimental determination of
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shear stress distributions can supply definitive information about the
X5 YOD, and Z, functions. The usefulness of this theory can only
be judged conclusively on how well the derived resistance formulae

provide a framework for interpreting experimental results.
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F(u) AND G{u)

04 —

FREE WAVE SPECTRA,

0 2 4 6 8 10 12

TRANSVERSE WAVE NUMBER, u =secé tanf
Fig. (8.3) Free-=wave spectra at FL = 0,25 (0. = 16,0) with

. L
the forcelet strength parameters AY = 0,05, Az =1.0,

AMPLITUDE, /F2+ G2
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FREE WAVE SPECTRA ,

AMPLITUDE ,

-139-
0.2 ?

Fig. (8.4) Free-wave spectra at FL = 0,25 (O'L =16,0)
with the forcelet strength parameters AY = 0,05, Az = -1

. 0.
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Fig, (8.5) Free-wave spectra at FL = 0,275 (O'L =13,2)

with the forcelet strength parameters Ay = 0,05, AZ =1,0,
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0.2

and G(u)
(@]

F(u)

FREE WAVE SPECTRA

AMPLITUDE , ~/ F2 + G°

TRANSVERSE WAVE NUMBER, u =sec8 tonf
Fig, (8.6) Free-wave spectra at FL = 0,35 (0'I = 8,16)

with the forcelet strength parameters A = 0,05 A=1.0
Y ’ P 3 °
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SUMMARY AND DISCUSSION

The work presented in this thesis is divided into two basic
parts. In the first part, the complete linearized problem of free sur-
face viscous flow past submerged disturbances is formulated and
solved formally by use of double Fourier transforms, The funda~-
mental solutions thus obtained are in themselves interesting because
they represent the general Oseen-flow analogy to Havelock's sub-
merged sources., Expressions for the free surface flow quantities

~N S

w v1 ,W1 ,p1 , and { in transform variables are given in Chapter III

in Egs. (3.40) - (3.55). In those equations the complete transformed
solutions for the velocity and pressure components (qs, ;s) contain
terms up to and including order R;Z .

Inversion of the transformed solution, valid for the far flow
regime, is performed approximately using the method of stationary
phase, This provides results in terms of the physical variables of
the problem for the propagating parts of the wave height and velocity
components, All the terms smaller than O(Rzl) are neglected,
where R, is assumed large throughout. It is found that the total
free wave height L(f) may be split into two parts gff) and Y,éf) cor-
responding to the two oscillatory functions exp[ iO'irLlJo] and
exp[ iclré] respectively, At least in the far field (r»1, h<1), it is
not surprising that the major features of the viscous flow are pertur-
bations about the classical potential flow results,

For Ll(f), the familiar phase function ¢0(e,w) of free surface

potential theory (Appendix B) provides the stationary points.
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Asymptotic formulae for C,l(f) are given in Eqs, (4.7) and (4.29).
For t_,z(f), the influence of the depth of submergence and

viscosity interact to give the modified phase function @(O,w;ﬁ) (see

Appendix C). Results are presented that show that the gif) terms

suffer a very rapid diminution when the depth of submergence is in-

creased, because of the factor exp| -h\/GZRﬂ sec8/2 |. The asymp-
totic results for ééf) are found in Egs, (4.39) and (4,48). The solu-
tions for both C,l and 7;2 indicate that there will be a region along the
trace of the disturbance where the diverging wave especially is severe-~
ly damped by viscosity.

Analogous asymptotic results for the propagating parts of the
velocities (YSL are summarized in Eqs, (4.53) and (4, 70); and for
EIST, the results are given in Eq. (4.60), |
Further work on the inversion of the fundamental scolutions
could deal with, for example, the details of the near field and local
disturbance flow quantities, and possibly with a solution for the QZ
wave component for moderate or large h.

The second basic part of the thesis begins in Chapter V where
the momentum theorem is used to obtain a result for the total drag
experienced by a ship in a viscous fluid, The final expression is
written in a form appropriate to the Oseen-flow velocity splitting,
The resistance formula contains terms that can be identified with the
wave resistance, viscous dissipation drag, and components that may

be grouped under the heading of free surface wake-~drag.

Modelling the flow around thin ships is approximated by
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centerplane distributions of the mass source and Oseenlet singularities.
Formulae are derived for each of the components of drag in terms of
the strengths of the four distribution functions. The principal result
of these calculations is the wave resistance formulae for RW pre-
sented in Eqs. (6.35) and (6.36). From (6.35) it is evident that the
strengths of the forcelet distributions enter into the first order wave
resistance. Rg) can usually be neglected compared to RE;)).
Integral equations for the four distribution functions are deriv-
ed using the physical boundary conditions. The forcelet distributions

X YD Zo are shown to be related directly to the fluid shear stress-

o’ "o’
es acting on the body surface (Eqs. (7.31) and (7,32) ). An approxi-
mate solution is obtained for the four distributions, although the result
for Zo cannot be completed in terms of elementary functions.

Finally, in the example of the numerical computation of the

wave resistance component RE:), reasonable functions for the
distribution functions have been sﬁpplied, and the strengths were
varied in computer calculations, The results of these numerical
experiments should be viewed as preliminary. It is a promising
indication that the positions of the humps and hollows of the computed
R.,S:) curve as a function of the Froude number are shifted to a close
correspondence with the known experimental curve, Also, by vary-
ing the sign of the vertical forcelet parameter Az’ the exaggerated
humps of the R\(;) curve can essentially be eliminated (see Fig. (8.1).

Apparently the vertical forcelet exerts a strong influence on the be-

havior of R, - This adds some evidence to the general feeling that
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the three-dimensional character of the viscous flow has important
consequences in terms of ship wave resistance.
Extensions to this work could include: (1) a numerical solu-

. D
tion for Mo’ Xo’ Y0

, and Zo from the boundary conditions of
Chapter VII. At best this calculation would be an approximate solu-
tion of laminar attached flow., (2) By placing forcelet distributions
on the body surface, a second order theory could be developed that
would include the possibility of modelling asymmetrical hull shapes,

Work along these lines would have to involve second order corrections

to the free surface conditions as well,
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APPENDIX A

Analytic Properties of the Function A(k,8)

The function A appears in the denominator of all the inte-
grands of the Fourier integral representations of the flow quantities

(EIS,PS;Q). In its general form,

2
] Ziki) 4kf)k
A(a,@):o‘-k_a_ =3 - 1

(A.1)
s
o} ) Rﬂ
where
kZ
°'=°1+‘W% , ko=\/a2+132 , k= KHRe , 0,=gl/U

W, = pUR/T ! = convenient reference length

Cumberbatch (1965) has investigated the singularities of this function
in the case of zero surface tension (W, =),

In the present work, and for the time be‘ing keeping T # 0, it
is more convenient to deal with A in terms of the polar coordinates

@ =kcosf, B =ksinf, Then we have

. 2
A(k6)=0 -k-z— - k| cos?6- 2ik cos 0=~ ilgz_ - i}—k—-\/kZHchos@
1 £ W R 2 2 £
i /4 R, R,

(A.2)

There are two branch points at k = 0 and at k = -i Ricos 8, and the
k-plane is cut along the imaginary axis between these two points to
keep A a single-valued function of the complex variable k (see Fig.
(A.1) ).

The function A(k,0) has the same analytic form as the

analogous function studied first by Wu and Messick (1958) for the
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Imk
[

Simple pole
2 .8
40, 5ec”f
kp= oy sec?0 + | —L"~

-r<g<-%

(-—izicose-Ohk;

iR
° Ok; =(_4_2L cos8 +0)

(0 -~ le COSG

T™T>8 >%F -F<6<T

Fig. (A.1) The singularities of the function A(k,6) in the finite
k-plane, including the effects of surface tension, Branch points
are indicated by ® , poles are indicated by ® . The special roots

k-; are on the branch cut,

Imk
Okp
Re k
k';=-iorlsec 6 ©
-sRecosG
-T<6<%

Fig. (A.2) The singularities of the function A(k,0) for zero

surface tension,
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two-dimensional case. That referenceis used here as a guide to show

that A(k ,0) has exactly two simple zeros k() and k (#) in the
2

40,sec>0 !
entire cut k-plane provided that —R is not cqual to

9y
\/ sec?6 +1 + 1, Itis assumed that o LR, , W, arc all real and
Wg 2070 g

positive, The branch cut is removed by using the transformation

chos O(7-1y

k = = ; (A.3)

This maps the entire cut k-plane conformally into the region I'rl 21

of the complex 7T-plane. Substituting (A.3) into (A.2) lcads to

160 <4
A(k(T),0) = 1 L sec?6 1 + —T—(—V"T‘[:—l—)—-
16 sec?6 7 Rlz 2
RZ |
L 2icos 6
& (T-1%(7 +HiTP +7-1) ) . (A.4)

Just as in Wu and Messick (1958) this plainly shows that A has a
triple pole at T = 0 and five zeros in the entire 7T-plane,

On the unit circle ]Tl =1, the equation A(k(7),0) = 0 has
two particular solutions, When 7 =1 1, Eq. (A.4) gives

2

160 ,sec?0 L + 8cos 8 4

1
= ~w =0 , (A.5)
Ji RE Rl Wl
so that
40 !
1 _ cos’f L 4q T
—-—Rg ‘_ 1——01 1+ Wz sec*8 +1 s (A.6)

where the signs are taken to keep Ri - positive and real. These

particular solutions represent a special relationship between o,,R

£

Wl » and 6. It may be shown that these solutions are simple zecros

of A by expanding (A.4) around 7 =% 1, Transferring back to the
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cut k-plane, these points are found to be located on either side of the

branch cut at

ksﬂ-i-'——z-—-——-;o s (A.7)

corresponding to

40 ,sec’ 0 40 sectf
—_—— = \f1 +

L
These special roots are indicated in Fig. (A.1).

Aside from the special values of o Rﬂ_ , Wﬁ , 60 determined by

IE
(A. 6), the parameters are such that A(k(7),6) has no zeros on the
circle l'rl =1 and hence no zeros on the cut in the k~plane, Using
the properties of analytic functions (Churchill (1960) ) it may be shown
that because of the pole of A(T,0) of order three at T = 0, there are
also three zeros inside l'rl = 1. Then since there is a total of five
zeros of A(k(T),8) in the entire 7-plane, there must be only two
zeros outside l'r| =1, Transforming back into the k-plane, this
means that there are just two roots in the entire cut k-plane except

when 0y Ry, W and 6 are related by (A.6).

22 7L
The two roots of A(kle) = 0 cannot be determined exactly,

but are found approximately in the present case by expanding around

the inviscid roots., For R!_ -+w, Egq. (A.2) becomes

K2 2 _
G£+-Wz -kcos®6 =0 |, (A, 8)

for which the two roots are denoted by )\1(9;0'1, WE) and )\2(6;02, Wi)
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W[ 2 / 4 %9y ‘
xlz-z-cosencose— - ,
- (A.9)
Wi 2 / 4 401’--'
)\z: -Zn--cos 8 + COSG-_WE .
We may restrict our attention to the case - g- <8< % » 8ince the

values of 6 outside this interval merely give the same information in

complex conjugate form. Provided the surface tension T # 0, the

4a
roots )\1 and )\z will remain purely real for the case 7 £1 when
2
- 90 <6< 60, where the critical angle 00 is
1
40,14
-1 4
60 = cos -V‘Tl_) . (A.10)
40
If surface tension is the dominant influence, then 5 > 1, and the
4

@ interval for real roots )\1, )\2 is reduced to zero because 90 = 0,
The roots kl(G;Gl , Wf_ ’Rl) and kz‘e?"z’Wsz) are expanded

about \ , )\,'z for R, large as follows

k=)\+a—RL+a 13/ +o(1)
A i
~ 1 1 1
kz— )\z+ﬁ1 ® tP, = O z) ’ (A.11)
4 RA R‘2

After substitution of these expansions into A= 0 and solving for «

@ Bl, Bz we find that

- T

i
i4)\:‘cos 6 4e I}c“/‘" VYcos 6 I
o~ 1 ——
k= + — + 3/2( — +O(Rz} (A.12)
R,|cos® 0= = R cos“0 =~ 2
4 Wﬁ 4 W]




T
i4\2%cos 6 4e 1—Zi;f‘?"/cos 6 1
k= + 2 < + 2 o o(-; ) (A.13)
R, | cos?0- ——-?1—) 3/"“(cos —-—E—) Rﬁ
Z( WE W.E

The root k1 is in the first quadrant of the complex k-plane and kz is

in the fourth.

Now, in the limit of vanishing surface tension (W,=>w), the

2
inviscid roots reduce to
lim\ =0, sec?8 (gravity dominated) (A.14)
T—0 !
lim \ = chosze (surface tension dominated) . (A, 15)
T->0

In the main body of the thesis we are interested in the case of negligible
surface tension, The results above indicate that for the case of
Wl >, the two simple zeros of (A,12) and (A.13) reduce to one

simple finite zero in the cut k-plane,

™
. 40'2£sec59 4e E-O'E’/ secla/z 1
k (6;0,,R,)=0,sec?0 +i - +o--},
(A.16)

For all the main results of the thesis work, it is sufficient to use only

the first two terms of this expansion,

It is interesting to observe what happens to the special roots

k: when Wﬂ*oo. From (A.6) and (A.7), we see that in the limit of

zero surface tension, the root k: associated with
40'£sec29 40 ! .
1+ W sectf - 1 corresponds to R, = 0 or the inviscid

R, 2
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case, for which there is one simple zero in the cut k-plane, The root

3
k_  in the same limit corresponds to 1 = gos 8 , and it is located
s Rﬂ ZcrJz

along the left side of the cut at

k; = - i0,sec?0 - 0 | (A.17)
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APPENDIX B

Phase Function LIJO(Q,w)
and Related Asymptotic Representations

The phase function L|Jo(6,w) is

LpO(G,w) = sec?0 cos(6-w) , (B.1)

where x =rcosw, y = r sinw, Points of stationary phase are deter-
8y
mined from the solution of 5'6_0 = 0, and are therefore given by

(2 tanw)tan®6 + tan6 + tanw = 0 | (B.2)

The roots are

tan 91 _ =1+ V1-8tanw

4 tanw ’ (B.3)

tan 6
2
and these are real provided

1 -8tan*w >0 (B.4)

Hence for the stationary points to remain on the path of integration in

(4.5), the angle w must be inside the wedge 0< w< w_, Where w_

is the Kelvin angle

w =tan” —I ®19°28' | (B.5)
2\/2

When w = @, the two roots 91, 92 coalesce to the same value

6=6=6_, (B.6)

where
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Rewriting Eq. (B.2), we have that for 6 = 61, 92 the locus of points

corresponding to stationary phase is given by

tanw = - —tanf , (B.8)
1+2 tan®6
and thus
2
5%-(tanw) = ~sec’d [1-2tan%6] . (B.9)

(1+2 tan?0)?
. )
When 6 = GC, we find that 55 {tanw) = 0,
The second derivative of the phase function, evaluated at the
stationary points is

aﬁpo

96?2

(8) = sec?8 cos(f-w)[ 1-2 tan?8] at 91, 9z . (B.10)

This function appears explicitly in certain of the asymptotic expansion

8%y
formulas, and the sign of - 2 (61 or 62) has a direct bearing on the
00
character of the constant phase lines of the wave system. We find
that
az\‘Jo aZLl"o
(6)y>0 and (6)<o . (B.11)
862 1 892 2

The point 91 is associated with the transverse free surface wave
system (the phase function is concave upward) and 92 gives the
diverging wave system (Lpo(ez;.o) is concave downward)., The principal
features of these results are displayed in Figs. (B.1) and (B. 2).

For values of w within or on the wedge 0 w< mc, there are



|
3
! | 1 J:—G
8, l-'g-
l

Fig, (B.1) Locus of stationary phase points from Eq. (B.8). For
a given w, the stationary points are 6 and 6, These points
coalesce when w = w,- ! 2

y,(0,w)

|

Vwo(e,wm

\

\ ,(8,0<w < w)

Rl o T T —

g
Fig. (B.2) The phase function ¢ _(6,w) = sec’0 cos(0-w), The

stationary phase points appear as local extrema of the (9)
curve, In the special case w =0, ¥ (6) sec @,



~156 -

two interesting limits: w =0 and w .

(a) As w—>0
tanf »>-w , tan 0 —>-_.E_
1 2 2w
- ()= -
61 0 s 92 3
(B.12)
INCHOES b8, w) >
4y 92y
2 (6,0)>1 © + .
o> ! 962
(b) As W,
/2
1:a.n61 tan92= tanec =- >
l'po(ec’wc) 2@
(B.13)
92y
2 (e W ) =0
862 C C

(1) When applying the method of stationary phase for
0 w< W, the phase function qJO(G,w) is expanded in a Taylor series

about the first order stationary points 61 and 92 .

9%y

‘ 1 o}
6 near 91 ) 410(9,‘0) = 410(91,@) = > hy (91,0)(9'91)2 (B.14)
1 a"wo 2
# near 92 , q;o(G,w) = 410(92,00) + = Py (ez’w)(e-ez)‘ , (B.15)

9%y
where o

~ (6,w) is given by (B.10). If the original integral to be
86

evaluated has the form
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™

icrﬁqu (6, w)
I=Re5\ F(8)e © e (B.16)

oo T
2
where F(0) is a slowly varying function of 6, and Lpo(@,w) is the

S
function discussed above, it can be shown that for large o

21‘
> : b0y g senle, (9)) 1
I~R z F(6.) m < +0
e'_1 j ILPO (9.)] o,T (cﬁr)
)= 06 (B.17)

(2) Now when w = W the first order stationary phase analysis
9% 9 02
Yo (6) -~ Yo (ts))-»,cm_Lpo (6 ) =0 in the
0% 1 ppr 2 c
asymptotic result (B.17). The point 6 = GC is a double root of Eq.

breaks down because

(B.2) and represents a stationary point of order two. The situation

is remedied by expanding the phase function about GC and w_, includ~-

ing terms up to order (w-wc)z and (G—GC)3 .
From Appendix C, the result for the phase function
20, wih, Ry) =4 (6,0) - hi/secd
is specialized to the present case by putting h =0 in Eq. (C.14),

The correct expansion for q;o(G,w) in the neighborhood of w = w

9:9 is
C

b (6,0) = \/_g (1-JE‘5-32.52)+3;U-3/?502+J.12.€3 . (B.18)

where g-6 - GC w

%
see, for example Erdelyi (1956),
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This result is the same as the formula obtained by Plesset and Wu

(1960), If the original integral to be evaluated for w near w

has
the form (B.16), the asymptotic expansion for o, r large is
i(crlr)‘/g[l- +-1--1-o"37g
I~ReF(6 ) / A(Z)e (—-— ,
(@, r)‘/3
(B.19)
where A.(Z') is the Airy function” " with argument
7° - 2 )2135(1 2/2%) . (B.20)
w \/?

(3) For @, <wg m there are no stationary phase points of
¢o(9,w) on the path of integration, and the asymptotic behavior of
integrals of the form (B.16) can be calculated by integration by parts.
As in Eq, (4.5), the type of integrand functions represented by F(0)

in (B.16) are such that F(B = -g-) = 0, and we find that

[ i F(O=w- f)] 1 .2 ( )
I ~Re + O —— s B.21
(Gir) cscw (Glr)

o, r W (O=w- = ,w)
since —-g-(e-w- —) = csczw e L °© 2 = 1. Hence for w

outside the cusp line w = w. the wave amplitudes are at most O(:_—)

**see Plesset and Wu (1960).
seslesk

see Abramowitz and Stegun (1964), p. 447,
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APPENDIX C

Phase Function @(G,w;fz) and Related Asymptotic Representations

When viscosity is included in the analysis of free surface flows,
certain of the terms in the integrands of the 0-integrals contain the

oscillating function exp[ i(O'lr)Q] . The phase function
(6, w;h) =Lpo(0,w) - hfsech (C.1)

contains the parameter h which depends on depth of submergence,
Reynolds number, and Froude number

R
h A
= Tm, (c.2)

2
We shall assume that although the Reynolds number Rl is very large,
the interesting range of h: is so small and r is to be taken far enough
downstream that h is assumed to be a small number, h< 1.
The points of staiionary phase are determined from the zeros
of g-‘g- = 0:

-~

(2tanw)tan®d + tan 6 + tanw - P— tan 6 =0 (C. 3)

cos w(1+tan?6)¥

For 0 w< @ it is reasonable to expect that ® will have two first

order stationary points similar to \Lto. To find these roots approximate-
ly, we expand around the point 61 ) (cf. Appendix B) as follows:

tanf = tan® +h taneg ] (C.4)
1,2 1,2

1 ]

Substituting (C.4) into (C.3), expanding powers of ﬂ, and neglecting .

terms of order h? or smaller, we obtain the functions ta.ncplt2 by
’
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equating like powers of h. The two real roots of Eq. (C.3) are the

stationary points of ® and are denoted by 6 = t1 . We find that

- h ‘ .5
tantl,z‘ tanel’z[1 + hY1,z] ) (C.5)
where
-1+ \/1 -8tan®w
tanf = T , (C.6)
1,2 ttan w
- L , (C.7)

Y 2
1,2 2cosw,fsec 912'[:&: J1-8tan’w ]
?

with the subscript 1 corresponding to the (+) and 2 corresponds to
the (-). These expressions are valid inside 0< w< w s and they
fail when w .. A separate approximation must be undertaken for
w near w_.

The second derivative of the phase function can be simplified to

the form
2
8 B0, w; h) tIJ (9 w){1+6tan®*0-4tan 8 tan(f-w)} - z,/sec@ (1+ 2—tan 6)
562
(C.8)
and it may be shown that
2 2g
?_‘Il(t wh)>0 and -S———(t wh)<0 (C.9)
6% 962
A

parallel to the results for

pp (6,w) at the points 6 and 6
respectively. The root t1 is associated with the transverse wave
system, and tz corresponds to the diverging wave system,

(1) For 0 w< w_, Wwe use Taylor series expansions about

the stationary points 6 = t1 and 'cZ as in (B.14) and (B.15).
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Application of the method of stationary phase to an integral of the form

v
z i(cﬂr)d)(e,w;ﬁ)
J = ReS F(6)e a8 (C.10)

oo T
zZ
result in an asymptotic representation for J given by the formula
(B.17) of Appendix B with ¢ (6.) replaced by &,,(t.), 8. replaced
Ogg J 06" j
by tj’ etc,

(2) In the neighborhood of the cusp line w = @, the first order
stationary phase approximation for @ is no longer valid. The expan-
sions of the stationary points 1:1 » become infinite, This is resolved by

)

forcing Qee(e,wc;ﬁ) = 0 at some new point 6 = tc' To approximate

the root, we expand about the critical point GC
tanB:tan9C+ﬂtan¢C . (C.11)

The new second order stationary point is found to be
tant_ = - —2-(1 -h ( ) ] . (C.12)

For w near w_ we expand @(G,w;?l) about 6 :tc and w =W

1 923

@0, wh)-@(t w, h)+ ) )+ l (6~ )Z
92
(o4
3 ‘ 3 o
+ (0-t Plw-w )+ 6-t Nw-w )2 C.13
3T b6 aw'c ¢ ¢ 3T Sosw (Ot o) ( )

neglecting terms of order (w-wc)’, (G-tc)4, and higher,

It is found that
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L 1
wo.cim = {023 s B 3] o
+[35a1 + ozzJU+ 51(—3ﬁ)c’392+ ﬂ%} , (C.14)
where \/_‘ .
W22 3
=( 1- 5 (5] )
@, = 2(?) (G.15)

B, = (“h‘z?—( ))

Cf( 83\/—‘( ))

and T=-06-t
c

s E:w-w
C

When h =0, the result in Eq. (C.14) reduces to the correct expan-
sion of the phase function QJO(G,w) about w = w, and 0= GC. The
formula for h = 0 is given in Eq. (B.18) of Appendix B,

We assume that the integral to be evaluated asymptotically has

the form (C.10). It can be shown using results of (B.19) that

1
J ~Re F(t )f e, r)1'3[1 +h 83f( )4]A1(2w)
Xexp{iolr @[{1- 25+ Lk ‘?-)-hf(?)"lf( 15‘/?$+ {’%52)}

2
+ O(-&—i}—)g , (C.16)

where
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1
3, 2 —, . hy21%r, 85/2-
ﬁ(%r)s{wu-zﬁw) AT

Z =
w

When wc-< w < m, the asymptotic behavior of the integrals con-

taining expl i(0'£r)<b] can be found by integration by parts. As with

¢0(9,w), in this range of w there are no stationary phase points on
the path of integration,

The result is

J~Re[( i F(9=“" %)

o,r) 1-
J csctw

(C.18)
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APPENDIX D

-

Velocity Components 9q q( °) due to Distributed Singularities

The components of the basic unbounded flow ve-iocity ::l’o(x, v, 2)
for a symmetrical hull shape are listed here for reference. These
equations contain the four nondimensional distributions cm(g, L),

e (£,0), ¢$(g,;), ¢ (£,4) (cf. Chapter VI). AlL the indicated differ -
entations in Eqs, (6.9) - (6.10) are carried out in full, and the expres-
sions are dimensionless with the underlines omitted,

The velocities are divided into longitudinal and solenoidal

components
q. =49 q . .
o OL o
Longitudinal components Zfo
L
o (xy.2) _gd&dg{ (), (o),
op, ®x 3
R
2
s L (1 e (Z'f) (D.2)
Yy g R? R

O I I P

_3y(x-b) , 4y (xE) | 3y (xt )} ‘e [zwz-;) (14 b8, yleo)at
b? R b* R b? R® L pt R b? R®

(D. 3)
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. b y,z>_§§d%d4{ ) )

[ R

g Hx-E)yi(z-t) | (x-ENz-b) | 3(x-£)yi(z-t)| |
b*R® b2 R? b? R®

+¢Z[(1+ (-t )(2(z-c)2 1 +<x-&)<j-c)2J}

b? b? R

(D. 4)

Solenoidal components ;Io :
T

L
Yo, (x,y,2 S‘S. S A {RLCX +¢x[(x-—§) +
- o]
o ) ]

Vz 1), XL 24)}} (D. 5)
R

L
Cat deay 7 [(x-€)-R] D
) g dedt Rpe) L+

Al 2

)

W

+ cx[l;- +(£12£-) -{-} +

(cont'd)
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K(H b)) | & 2 8y’) , 3y(e-g) 4y’ (x-£) _ 3y3<x-&>> .

B b? R? b*R> b? R®
R ) R, \2
[l e e 2 ) 2

+ “z[' ZS;iZ £) {1+ (x- %)) y{x-ENz-L) _(R )y(z -4) (1+ X~ &)ﬂ}

bz R3 bz
(D. 6)
L[ (xet)-R]
x-5)-R]|R. ¢
W (x,%z):SS—-g-—dgi‘: e 2 { LI‘{Z +
S
| R
(z-%) L) (z-t)
P A )
(1+(x g)HZ(z t) _ 8y° (z 2-L)) 4x-E)y*(z-8)
b4R3
, xe8)z-t) 3(x £)y” <z-c>>
b2 R?
R 2 2
L) (z-£) {(x-£) 2y \_ (x-E)y
+(z )bzR [(H =3 ”1' bz) o ]]J“
(x-£) 2(z- ) 1 (x-£)(z-L )
+¢z[(l+ =3 )(— ” +-}3—;)-————-—-—-—b2 3 +
(z-t) -£)
(z ) szR |1+ &5 )}} (D.7)
In these equations, R = (x-«‘;)z+y‘7‘+(z-§)Z and bz=y2+(z-3;)z, so that

R® = (x-£)+ b2,
The image flow system q( o) is represented by the same

equations with (z-{) replaced by (z+{), and thus with R replaced

by R‘:‘: (x-£P+y?+(z+)? and b® replaced by bf=y2+(z+§.)z.
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