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ABSTRACT

Einstein’s theory of general relativity has passed all precision tests to date. At some
length scale, however, general relativity (GR) must break down and be reconciled
with quantum mechanics in a quantum theory of gravity (a beyond-GR theory).
Binary black hole mergers probe the non-linear, highly dynamical regime of gravity,
and gravitational waves from these systems may contain signatures of such a theory.
In this thesis, we seek to make gravitational wave predictions for binary black hole
mergers in a beyond-GR theory. These predictions can then be used to perform

model-dependent tests of GR with gravitational wave detections.

We make predictions using numerical relativity, the practice of precisely numerically
solving the equations governing spacetime. This allows us to probe the behavior of
a binary black hole system through full inspiral, merger, and ringdown. We choose
to work in dynamical Chern-Simons gravity (dCS), a higher-curvature beyond-GR
effective field theory that couples spacetime curvature to a scalar field, and has
motivations in string theory and loop quantum gravity. In order to obtain a well-
posed initial value formalism, we perturb this theory around GR. We compute the
leading-order behavior of the dCS scalar field in a binary black hole merger, as well
as the leading-order dCS correction to the spacetime metric and hence gravitational
radiation. We produce the first numerical relativity beyond-GR waveforms in a

higher-curvature theory of gravity.

This thesis contains additional results, all of which harness the power of numerical
relativity to test GR. We compute black hole shadows in dCS gravity, numerically
prove the leading-order stability of rotating black holes in dCS gravity, and lay out
a formalism for determining the start time of binary black hole ringdown using

information from the strong-field region of a binary black hole simulation.
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Chapter 1

INTRODUCTION

1.1 A century of general relativity
Over one hundred years ago, Albert Einstein put forth the theory of general relativity

(GR), coupling spacetime to the matter and energy contained within [82].

In the century following this discovery, there was much progress in exploring the
properties of this classical theory. The theory was found, for example, to contain
black hole solutions [180]. Later, it was discovered that the theory contained
spinning black hole solutions [112, 197]. Swiftly, scientists began to think not only
about single black holes, but binary black hole systems. In binaries, two black holes
orbit one another, inspiraling closer together through the emission of gravitational
radiation, and ultimately merging in a violent, energetic process, to form one black
hole. Theoretically computing the gravitational radiation (or gravitational waves)
emitted by binary systems was of particular interest [135, 156]. The end of the
century saw the first precise, numerical prediction of a full gravitational waveform

from a binary black hole merger [161].

1.2 Gravity beyond general relativity

The same century, however, saw the development of quantum mechanics and quan-
tum field theory as a description of nature. If the universe is ultimately quantum,
then general relativity, a classical theory, does not fit into this picture as an appropri-
ate theory of gravity. From a quantum field theory standpoint, general relativity is
non-renormalizable. This means that in order to perform a perturbative expansion
of GR, one needs an infinite number of parameters (unlike, for example, quantum

electrodynamics, which requires only a few parameters, such as charges and masses).

This in turn led to various efforts to come up with a quantum theory of gravity. Such
a theory would behave like general relativity at low energies (much like general
relativity reduces to Newtonian gravity at low energies), but contain quantum effects
at high energies. The most notable candidates for a theory of quantum gravity are
string theory and loop quantum gravity. In string theory, in contrast to ordinary
quantum field theory, the fundamental object is a one-dimensional string, rather than

a point particle. The graviton, carrying the gravitational force, in turn corresponds
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to a given mode of a string (cf. [41]). Loop quantum gravity, on the other hand,
quantizes space and time, so that spacetime is no longer a classical field, but rather
discrete at the Planck length, ~ 10735 meters (cf. [174]).

When considering physical theories, we must think about testable predictions. Since
we know general relativity breaks down at high energies, let us consider predictions
for astrophysical systems in the strong-field, dynamical regime of gravity, such as

the merger of black holes.

Were we to directly work in a full quantum theory of gravity, these calculations
would quickly become prohibitively complicated, if one could even formulate how
to do them at all. Instead, we can work in effective field theories. These modify
the Einstein-Hilbert action of general relativity, through the inclusion of classical
terms that encompass high-energy quantum gravity effects, to produce a beyond-GR

theory.

Beyond-GR effective field theories, thus, are valid at intermediate ranges, as they
account for some high-energy effects, but not all, by virtue of being truncations at
some energy. Astrophysical systems that probe the strong-field regime of gravity,
such as binary black hole mergers, could potentially contain beyond-GR effects in

this intermediate range.

Let us begin looking at the form of some beyond-GR effective field theories, by

considering their (classical) actions. Let us start with the standard Einstein-Hilbert

action of general relativity, which we will write as

L d*x\—gR, (1.1)
167

where g, is the spacetime metric, g is its determinant, and R is the spacetime Ricci

S

scalar. Beyond-GR theories will modify this action, whether by adding more terms

or changing the form of the R term.

One class of effective field theories of gravity arises from considering actions with
higher-order curvature terms added to the Einstein-Hilbert action. In this picture,
general relativity becomes a lowest-order term in an action expanded in powers of
all possible curvature invariants. In particular, let us focus on terms quadratic in
the curvature (the leading-order correction). Adding quadratic-curvature terms to
the Einstein-Hilbert action makes it renormalizable [186], thus solving our original

problem. Of particular interest are the combinations

*RR = *RRped s (1.2)



known as the Pontryagin scalar, and
Rig = R* — 4RpR™ + Rupca R, (1.3)

known as the Gauss-Bonnet scalar. Both scalars appear in low-energy realizations
of string theory [157, 18], and the Pontryagin scalar additionally appears in loop-
quantum gravity [192, 134]. Hence, these are motivated by underlying theories of

quantum gravity.

Coupling these quadratic curvature invariants to a scalar field @ creates a class of
quadratic gravity theories, including Einstein-dilaton-Gauss-Bonnet gravity, with

the action
1
S = o / V=gd*x R -2V, 9V*9 - V() + af ($)REg (1.4)

for some coupling function f(#) and potential V(). Here, the first term is the
familiar Einstein-Hilbert action of general relativity, the second and third terms
correspond to a canonical stress-energy tensor for the scalar field, and the last term
couples the scalar field to the Gauss-Bonnet spacetime curvature scalar. The quantity
a'/?, meanwhile, is a coupling parameter with dimensions of length that determines
the truncation of the effective field theory — the length scale below which quantum

gravity effects become important.

Similarly, we can obtain dynamical Chern-Simons gravity, with the action
1
 l6n

Here, the fourth term couples the scalar field to the Pontryagin curvature quantity.

S / V=gd*xR - 2V, 9V’9 - V(9) - (*9 "RR . (1.5)

The quantity ¢ in this case is a coupling parameter with dimensions of length that
similarly denotes the length scale below which quantum gravity effects become

important.

These theories contain terms motivated by full quantum gravity theories (namely
string theory and loop-quantum gravity), and hence serve as classical approxima-
tions to some underlying quantum theory of gravity, truncated at second-order in
curvature. One can, in theory, perform the same calculations outlined in Sec. 1.1
for these beyond-GR theories. Namely, one can make predictions for black hole

metrics, perturbations to these metrics, and the behavior of binary black holes.

1.3 Testing general relativity in the strong-field regime
These physical theories, however, are nothing without experimental evidence, and

significant effort has been made in the past century to test general relativity through
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astrophysical observations [206]. Recall that we aim to test general relativity in the

strong-field, towards a regime where quantum gravity effects could be important.

The strongest tests of general relativity were previously given by binary pulsar
systems, including the notable Hulse-Taylor Pulsar, PSR B1913+16 [106]. These
tests found consistency with Einstein’s quadrupolar formula for gravitational wave
emission at a 0.1% level and placed bounds on dipolar radiation, which does not
occur in pure GR [205, 43].

However, binary pulsar observations are relatively weak-field compared to, for exam-
ple, the merger of black holes and neutron stars, which at once probe the largest grav-
itational potentials and highest curvatures of any available astrophysical system (cf.
Fig. 1 of [37]). Indeed, attempts to map binary pulsar observations onto constraints

on quadratic gravity theories produce a relatively weak theoretical bound [214, 212].

It would take a century after the advent of general relativity to probe gravity in the
strong-field regime. In 2015, the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) made the first detection of gravitational waves from a binary black hole
merger [ 10], probing the strong-field, dynamical regime of gravity for the first time.
Together, LIGO and its sister detector, Virgo, have detected gravitational waves from
ten binary black hole mergers in the O(1 — 100) M, range, and one binary neutron
star merger [9, 8], with more detections at even higher experimental sensitivity on
the way [3, 13].

Testing general relativity with gravitational wave observations: present

How can one test general relativity with gravitational wave observations? To look
at the state of the art, let us turn to some of the tests in [14], the companion analysis
testing general relativity for GW 150914, the first LIGO detection [10].

One of the first tests one can perform is a simple null test, by checking the consistency
of the null hypothesis (GR in this case) with the data. For GW150914, the most-
probable GR waveform [12] was subtracted from the gravitational wave data from
each detector, leaving a residual signal. If some loud, non-degenerate, unmodeled
deviation from GR were present in the detected gravitational wave, then it would
show up as a coherent signal between the two detector residuals. If, however,
there were no deviations from GR, the residuals should contain only (uncorrelated)
noise [70]. The residuals for GW 140915 were not statistically distinguishable from
noise, verifying the GR prediction for GW 150914 to 4% [14].

The next null test one can perform investigates the post-merger portion of the
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detected waveform. In general relativity, by the so-called no-hair theorem, (vacuum,
asymptotically flat, stationary, axisymmetric, uncharged) black holes are completely
characterized by just two parameters — their mass and spin [132, 135, 76, 94, 111].
In GR, after a binary black hole merger, the resulting single black hole enters the
ringdown stage, where its gravitational wave spectrum is described by a linear
superposition of damped sinusoids, known as quasi-normal modes (QNMs), which
are paramterized by a damping time 7 and frequency w. By the no-hair theorem,

these modes (in GR) purely depend on the mass M and spin y of the final black

hole. That is,
X w
PN ; 1.6

In some beyond-GR theories, however, black holes have additional hair — that is,
there are additional parameters characterizing the ringdown stage and final remnant
beyond the mass and spin. In this case, the QNM spectrum will differ from that
predicted by GR.

While rigorously checking ringdown consistency with GR requires observing at
least two modes for a given signal [94, 111], a weaker test was performed with
GW150914 in [14], with just one mode. First, the most-probable GR waveform
matching just the inspiral part of the gravitational wave signal was found. From
the binary black hole parameters of this waveform, one can theoretically compute
what the final mass and spin of the remnant black hole should be in GR [102,
201]. This mass and spin will then give unique predictions in GR for the damping
time and frequency of the ringdown QNM spectrum. Thus, one can perform a
consistency check between these theoretically predicted QNM parameters, and the
QNM parameters measured by fitting damped sinusoids to the post-merger part of
the detected signal. For GW 150914, the 90% credible regions for the measured
QNM parameters and the predicted QNM parameters for one mode overlapped, thus
showing compatibility with GR. Such a test is also a null test, in that it checks the
consistency of the signal with GR predictions (the null hypothesis), rather than using

predictions for ringdown behavior from other, competing theories.

In addition to null tests, there are parametrized tests of general relativity one can
perform with gravitational wave observations. In this case, the gravitational wave

signal is tested against waveform models that have parametrized deviations from
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GR. For example, in the Parametrized Post-Einsteinian (ppE) formalism [215, 71],
the functional forms of the amplitude and phase of the gravitational wave signal are
modified, and include some additional parameters. In [216], the authors used the
ppE framework on GW 150914 data to constraint various ppE parameters (and hence
departures from GR). One can also modify the analytical form of the Post-Newtonian
(PN) expansion, which describes the inspiral part of the gravitational wave signal.
Extra terms (with extra parameters) are added to each order of the expansion (either
one order at a time, or all together). In the LIGO GW 150914 testing GR paper[14],
the authors tested such a modified PN expansion against GW 150914 data, finding
no consistent departure from GR. These tests, however, only modify the inspiral

part of the waveform, without considering the more-energetic merger phase.

In [15], the LIGO and Virgo collaborations used all of the LIGO and Virgo events [9]
to test general relativity. In particular, they repeated the null test of subtracting the
best-match waveform, and checking that parametrized deviations in PN coefficients
were zero.! The data was not inconsistent with the predictions of GR, and constraints

on deviations from GR decreased by a factor of ~ 2.

Testing general relativity with gravitational wave observations: future possi-
bilities

We can in theory perform stronger tests of gravity than null and parametrized tests
of general relativity. What if, in addition to best-match gravitational waveforms
in general relativity, we had access to best-match gravitational waveforms in a
theory beyond general relativity, such as dynamical Chern-Simons gravity? Then
we can perform parameter estimation using the method currently used for general
relativity [12] to find the best-match waveform in dynamical Chern-Simons gravity.
In particular, dCS has an additional parameter, ¢, which can (in theory) be measured.
This match can then be compared to the match one gets with pure GR, using Bayesian

model selection.

Parametrized tests, in a sense, do use a beyond-GR model. However, the merger
regime in this case is not well understood. In fact, in [216], the authors discussed
the theoretical implications of the GW 150914 detection, including a ppE analysis,
and argued that “the true potential for GW150914 to both rule out exotic objects

and constrain physics beyond General Relativity is severely limited by the lack of

I'There is a wealth of other tests of general relativity that can be performed with gravitational
wave observations. We have summarized the tests relevant for the work presented in this thesis, but
more information can be found in [43, 14, 15].
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understanding of the coalescence regime in almost all relevant modified gravity

theories."

A stronger test of gravity with gravitational wave observations then would require

the use of gravitational waveforms in a beyond-GR theory.

Let us now discuss how to generate such beyond-GR waveforms. If we wish to
perform an analysis with the same level of precision and accuracy as GR analyses,
then we need access to waveforms of comparable accuracy. The most accurate grav-
itational waveforms [2, 1] come from numerical relativity, the practice of precisely
solving the non-linear, highly-coupled partial differential equations governing the
behavior of spacetime.? Binary black hole numerical relativity simulations, however
can take on the order of weeks or months to compute. In order to find a best-match
waveform as in [14, 12], data analysts must go through millions of waveforms. To
produce a numerical relativity simulation for each on a short timescale would be
infeasible. Thus, numerical relativity waveforms are used to calibrate waveform
models that are faster to evaluate, including the Effective-One-Body model [191]
used in [14, 12]. There is also growing interest in gravitational wave data analysis
surrogate models, waveform models with NR level accuracy that are trained on
NR waveforms [118, 49]. In each of these cases, however, we must first produce

numerical relativity gravitational waveforms.

Our goal, thus, is to produce numerical relativity gravitational waveforms in a

beyond-GR theory of gravity. This is the main topic of this thesis.

1.4 A brief introduction to numerical relativity

As stated before, numerical relativity (NR) is the practice of precisely solving the
non-linear, highly coupled partial differential equations governing the behavior of
spacetime. Without going into too much technical detail, let us take some time to
give a brief overview of the subject. For an excellent primer on NR, see [40]. We

will focus on numerical relativity in general relativity for now.

In analytical relativity, spacetime is characterized by a 4-dimensional spacetime
metric, g,». General relativity is a covariant theory, in which all expressions,
such as the Einstein field equations, hold true in any coordinate system [203, 64].

Spacetimes such as the Kerr and Schwarzschild black hole solutions are written

2Throughout this thesis, we use precisely this definition of numerical relativity. Some sources
use “numerical relativity" to mean purely solving the Einstein field equations of general relativity
numerically, including [40], while we mean solving any equations governing spacetime numerically,
including the beyond-GR equations.
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down in terms of 4-dimensional coordinates, often containing the full dependence

on a time coordinate, ¢ [203].

In numerical relativity, we are interested in situations where the full 4-dimensional
spacetime is unknown. It is difficult, for example, to write down the entire spacetime
of two merging binary black holes. Instead, in NR, we start with some initial
conditions and evolve a spacetime. For example, we start with two black holes
sitting far apart from each other, and evolve this configuration to see what happens

with time.

In this picture, the 4-dimensional spacetime g,; is decomposed into spacelike and
timelike pieces. Namely, a 4-dimensional spacetime is foliated by a set of spatial
slices {X;}. The normal vector n* to each spatial slice is timelike, and we use
this vector to move in time from slice to slice. Each slice %; is labeled by some
coordinate time, #;. On each slice X of a spacetime with spacetime metric g5, the

timelike normal vector n“ induces a spatial metric on X, y,p, as
Yab = &ab + Nallp - (1.7)

We illustrate this picture in Fig. 1.1.

gab

(a) Spacetime as seen by an analytical (b) Spacetime as seen by a numerical rel-
relativist (with one spatial dimension ativist (with one spatial dimension sup-
suppressed). pressed). The unit timelike normal vec-

tor n® is shown schematically here, for
one point on one slice. These is such a
vector for each point on each slice.

Figure 1.1

Now that we have sliced up the spacetime, let’s think about the form the Einstein

field equations take in this formalism, known as the 3+1 Arnowitt-Deser-Misner
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(ADM) equations [28]. The equations take the form of two elliptic constraint
equations that the metric must satisfy on each slice ¥;, and two hyperbolic evolution
equations governing how the metric data evolves from slice to slice. Satisfaction
of the constraints means that the evolution is precisely solving the Einstein field

equations.

In order to perform a simulation, we generate initial data for the metric (and its first
derivatives) on an initial slice Xy by solving the elliptic constraint equations. Then,
these data are evolved using the hyperbolic evolution equations to obtain the metric
on all subsequent slices. We show this schematically in Fig. 1.2. This constitutes
the “simulation”, and gives us the results.

a

AL

evolution [hyperbolic]

-~
;'
4

S .- . . . ,
o initial dalia_[.e_lhptlc]//
._-___-_‘——"— Seal

£

Figure 1.2: Schematic of initial data and evolution formalism.

However, performing this evolution is not so simple. In order to have a stable evolu-
tion, we must have a well-posed initial value problem. In this case, given an initial
solution to a partial differential equation at some time, the solution cannot grow
faster than exponentially. This is especially important in the context of numerical
relativity, in which the numerical solutions to partial differential equations always
have some level of numerical noise. What we want to guarantee is that if we add
some numerical noise to an initial condition, we will not get a completely different

solution to the problem at some later time.

The 3+1 ADM equations, however, are not well-posed, and performing an evolution
using these equations will lead to numerical blow-up. It took some time to formulate
the equations of general relativity in such a way as to guarantee that the initial value
problem was well-posed. Some popular such formulations are the harmonic and
generalized harmonic formalisms [67, 88, 162, 161, 121]. Indeed, it took almost

four decades for the first numerical relativity simulation of a binary black hole
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merger to be successfully performed [162, 161], mainly due to choosing appropriate

evolution equations.

Recall additionally that the equations of general relativity are independent of the
choice of coordinates. However, when performing a numerical simulation on a
computational domain, we must specify a coordinate system. In particular, though
GR as a theory is gauge invariant, we must specify a gauge for our numerical
simulations. This leads to another complication — one must choose a satisfactory

gauge in which to work [40].

Binary black hole simulations have their own unique challenges, beyond choosing
appropriate evolution formulation and gauge. For example, we must determine
how to numerically deal with the black hole singularities [104]. Additionally,
while it is relatively simple to construct a computational grid for one stationary
black hole, it is not so simple to a construct a grid that will faithfully be able to
resolve two rapidly moving, merging black holes [179]. We must likewise have
methods to find the black hole horizons numerically during a simulation (if desired
or required) [98, 68, 53]. Finally, if the ultimate goal of a binary black hole
simulation is to produce a gravitational waveform prediction, we must have methods

for extracting this radiation [193, 56].

1.5 Pushing numerical relativity beyond general relativity

How does the picture of numerical relativity put forth in Sec. 1.4 change when
we work not with general relativity, but a beyond-GR theory? Let us focus, as in
this thesis, on a particular 4-dimensional theory of spacetime, namely dynamical

Chern-Simons gravity.

We still foliate the spacetime into spatial slices as in Fig. 1.1. The 3+1 ADM
equations, however, are equations for general relativity. We thus need to derive a set
of constraint equations for initial data and evolution equations in dCS. However, it
is believed that dCS does not have a well-posed initial value problem [74]. We thus
cannot perform simulations of spacetime in the full dCS theory.

However, we know from Sec. 1.3 that deviations from general relativity, in the
regime observable by gravitational waves, must be small. Thus, we can work
perturbatively around GR, and perturb the equations governing dCS around an
arbitrary GR solution, such as a binary black hole background. We expand both the
spacetime metric and the dCS scalar field in powers of the coupling parameter, and

collect the equations of motion at each order. This is known as an order-reduction
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scheme.

The key to the order-reduction scheme is that GR is a quasilinear theory: the high-
est derivatives of the metric appear linearly in Einstein’s equations. Accordingly,
at each order in perturbation theory, the equations have the same principal part
(leading-order derivative terms) as in general relativity. The principal part deter-
mines whether the equations have a well-posed initial value problem. Since we know
how to formulate GR in a well-posed way, we can do the same for the order-reduced

dCS equations, and obtain a well-posed evolution scheme.

At zeroth order in the coupling, we recover general relativity. At first order in the
coupling, we see our first dCS correction to GR, namely in the scalar field dynamics.
The GR background sources a leading-order dCS scalar field. At this order, there
is no dCS modification to the metric. At second order, the GR background and
the first-order dCS scalar field source a leading-order dCS metric perturbation. It
is this field we are after, as it will give us the leading-order dCS modification to a

gravitational waveform. We illustrate this system in Fig. 1.3.

In order to generate the leading-order dCS corrections to a binary black hole wave-
form, we must first be able to evolve a binary black hole system in GR (zeroth order).
This problem has long been solved [2, 1]. However, we must now begin to add dCS

modifications to the system.

Evolving the leading-order dCS scalar field

In order to obtain dCS corrections to the spacetime metric (and hence the gravi-
tational waveform), we must first evolve the leading-order dCS scalar field, which
sources this correction. This is the main objective of Chapter 2 of this thesis, where
we develop a formalism and code to evolve the leading-order dCS scalar field on an

arbitrary GR background.

We consider a variety of binary black hole systems with spin and compute (scalar)
waveforms for the scalar field. The dominant radiation pattern of the scalar field
during inspiral is quadrupolar, and we find good agreement with PN theory pre-
dictions for the inspiral phase [212]. However, unlike in PN theory, we evolve the
system through merger and ringdown. In particular, we find a burst of dipolar scalar

radiation at merger, a hitherto unknown phenomenon.

We use the scalar field to estimate the strength of the leading-order dCS correction
to the gravitational radiation. We find that were LIGO to detect a GW150914-like

system to an accuracy of 0.1 radians in the phase, the dCS coupling parameter would
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Figure 1.3: Illustration of the order-reduction scheme, which consists of perturbing
the equations of dynamical Chern-Simons gravity about a GR background (an
inspiraling, merging black hole binary in this case). The zeroth-order GR binary
black hole background sources the (leading) first-order dCS scalar field (with no
back-reaction on the GR background). This scalar field and the GR BBH background
then source the (leading) second-order dCS metric perturbation (with no back-

reaction onto the scalar field or the GR background) This in turn sources the dCS
corrections to the gravitational waves at infinity.
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be bounded by £ < O(10) km, a result eight orders of magnitude stronger than that

from solar-system tests [20].

Initial data for leading-order dCS spacetime metrics

If we wish to evolve the leading-order dCS metric perturbation sourced by the scalar
field, we must first generate initial data for this metric perturbation. This is precisely
the same step we must take for the GR background before a binary black hole
evolution (cf. Fig. 1.2). This is the main focus of Chapter 3. Here, we outline
a formalism for generating constraint-satisfying metric perturbations for a general

source, on general GR background, and explore this is in the context of dCS.

While this framework is used to generate initial data for our dCS binary evolutions,
we are also interested in looking at the leading-order dCS correction to a single,
stationary, rotating black hole spacetime. The Kerr spacetime is not a solution of
the full dCS theory. Thus, we expect the metric of a rotating black hole to differ
from that of GR. We use this initial data formalism to compute the dCS correction
to Kerr, for arbitrary spin. Since the spacetime is stationary, one slice of stationary

initial data is all we need to obtain the full spacetime.

An interesting observable we can compute from this dCS black hole spacetime is the
black hole shadow. If one were to take a picture of a black hole with a camera, the
shadow is a dark region on the image corresponding to angles at which no photons
reach the camera, because of light-bending and the presence of an event horizon.
In general relativity, for a black hole with a given mass and spin, the shadow has
a precise shape, and thus deviations from this predicted shape can be used to test
the theory [136, 164, 136, 37]. The black hole shadow is of particular interest for
the Event Horizon Telescope (EHT) [170, 85], a very long baseline interferometry
array of radio telescopes that aims to image Sgr A*, the black hole at the center of
the Milky Way galaxy, and has triumphantly imaged the black hole at the center of
the M87 galaxy [80, 81].

In Chapter 3, we compute the black hole shadow in our dCS black hole spacetime for
a variety of spins and dCS coupling parameters. We find that given the present ability
of the EHT to measure the spin of Sgr A*, the dCS corrections would be within
the margin of error due to the spin measurement, and thus not presently detectable.
However, the dCS modifications to the shape of the shadow are non-degenerate with
GR, meaning that in the limit of tight constraints on the spin measurement and high

image resolution, one could differentiate dCS from GR.
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Evolving leading-order dCS spacetime metrics

Given the initial data for some dCS system, our goal is now to evolve this data in time
to obtain our full spacetime solution (cf. Fig. 1.2). This is the focus of Chapter 4.
Recall that our evolution equations must be well-posed in order to be able to evolve
the system. In this chapter, we derive well-posed evolution equations for a leading-

order metric perturbation with arbitrary source on an arbitrary background.

In particular, we use this formalism to evolve the leading-order dCS metric per-
turbation sourced by the leading-order dCS scalar field on a rotating black hole
background. The stability of rotating black holes in dCS is unknown [137, 90,
43]. By evolving this leading-order metric correction and showing that it remains
constant in time, we showed that rotating black holes in dCS gravity are stable to

second order.

Head-on binary black hole collisions in dCS gravity

Our next goal is to find the leading-order dCS correction to the gravitational wave-
forms from merging binary black hole systems in full numerical relativity. These
waveforms will allow us to perform the model-dependent tests of general relativity

we alluded to in Sec. 1.3.

We first consider the case of head-on collisions of binary black holes with spin.
Head-on collisions, in which black holes do not orbit one another but rather directly
smash into each other, are relatively simple systems, and they are fast simulations
to perform. A head-on collision takes a fraction (~ 1/30) of the time is takes an
orbiting binary to merge, starting from the same initial separation. Thus, these
serve as a perfect test-bed for our dCS metric perturbation evolution scheme given
in Chapter 4.

While head-on collisions are not particularly relevant for astrophysical systems,
they do cleanly probe the quasi-normal mode spectrum of the remnant spinning
black hole [24, 23, 35, 181]. Thus, we can use the dCS correction to the gravi-
tational waveform computed from such systems to learn about leading-order dCS

modifications to the QNM spectrum of a spinning black hole.

This is the focus of Chapter 5 of this thesis. We perform binary black hole head-on
collisions for a variety of spins, and produce the first numerical relativity beyond-
GR gravitational waveforms in a higher-curvature theory of gravity. We mea-
sure the leading-order dCS corrections to the damping time and frequency of the

quasi-normal mode spectrum, and find that these increase polynomially with spin.
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Moreover, we find that for the cases we have considered, these modifications are

non-degenerate with GR.

Full beyond-GR gravitational waveforms
Having demonstrated our ability to produce beyond-GR waveforms, or focus is next
to add angular momentum to the system in order to produce beyond-GR waveforms

appropriate for LIGO and future gravitational wave detectors.

In Chapter 6, we perform a numerical relativity simulation in order-reduced dCS for a
binary black hole system consistent with the inferred parameters of GW 150914 [12,
126]. We produce the first beyond-GR gravitational waveforms in a higher-curvature
theory in full numerical relativity, through complete inspiral, merger, and ringdown.
We find that the ringdown QNM spectrum is modified similarly to the head-on
collision case (cf. Chapter 5), while the inspiral is modified with a beating frequency
pattern, sourced by beating between the leading-order dCS scalar field and the GR
binary black hole background (cf. Fig. 1.1).

Using numerical relativity to test the no-hair theorem
The final chapter of this thesis, Chapter 7, considers another use-case for numerical

relativity in testing general relativity.

Recall from Sec. 1.3 that one of the tests we can perform with gravitational wave
observations is a test of the no-hair theorem, which involves the ringdown portion of
the gravitational wave signal. One can also perform a test, (asin [14] for GW150914)
to simply look for the least-damped quasi-normal mode in the ringdown portion of
the signal, and check that its parameters are consistent with those predicted by GR.
Ringdown, in this case, refers precisely to the regime where the gravitational wave
can be described as a set of linear QNM perturbations on a stationary black hole
background. After merger, the spacetime around the resulting single black hole can
still potentially contain non-linearities — it takes some time after merger to settle

into the ringdown regime.

In order to perform a no-hair theorem or least-damped QNM test, we must thus
choose a portion of the post-merger gravitational waveform that is truly within this
ringdown regime. If we start our test too early in the gravitational waveform, then
our analysis will contain systematic errors from trying to model something that
is non-linear as linear. In fact, the post-merger analysis for GW150914 [14] saw

precisely such an effect. When the authors started the analysis close to merger,
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the 90% credible region for the inferred QNM parameters did not overlap with that
predicted by GR and QNM perturbation theory. However, when the analysis window
was shifted to a later time, where the ringdown description was more faithful, the

regions overlapped.

How should we choose the start time of ringdown? Past authors have used properties
of numerical relativity gravitational waveforms to estimate this regime [1 10, 44, 124,
33]. However, in a numerical relativity simulation, we have access not only to the
computed gravitational waveform, but also the whole spacetime itself (cf. Fig. 1.2).
Thus, when asking ourselves questions about the amount of non-linearity present in
the waveform, we can instead turn directly to the associated strong-field region in

the simulation.

In Chapter 7, we offer a numerical-relativity based approach to choosing the start
time of binary black hole ringdown. We use various algebraic and geometric
quantities put forth in [93, 187] that measure Kerrness, or closeness to a Kerr
spacetime on a given spatial slice. We present a formalism to associate the values of
the Kerrness measures to the amount of non-linearity present in the spacetime. We
see that as the post-merger numerical relativity simulation progresses, each spatial
slice gets closer and closer to a linearly perturbed Kerr spacetime, with fewer and
fewer non-linearities. We derive a prescription for then mapping this information

onto the gravitational waveform from the simulation.

The result thus gives a gravitational waveform with a measure of the amount of
non-linearity (let’s call it £) at each time on the post-merger part of the waveform.
This € can thus act as a systematic error measure on a ringdown analysis, for it
denotes precisely how much non-linearity is contaminating a linear analysis. We
produced such a result for the numerical relativity simulation of GW 140915 used in
the LIGO detection paper [ 1]. Our analysis found that the start times of ringdown
chosen in the testing GR companion paper [14] were too early, as the spacetime
still contained a fair amount of non-linearity. Subsequent, independent studies on
testing GR with binary black hole ringdowns explicitly confirmed our results [123,
65, 571.

1.6 Looking forward
Our motivation for all of the projects presented in this thesis can be summarized
by the following: we know that at some length scale, general relativity must break

down and be reconciled with quantum mechanics in a beyond-GR theory of gravity.
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Figure 1.4: Schematic of the method of determining the start time of binary black
hole ringdown, as discussed in Chapter 7. Time moves from the left to the right.
The top figures show snapshots of the strong-field region around the final black hole
(denoted BH) on three spatial time-slices. We show a Kerrness measure on the on
slice, which in time settles to a value consistent with that of a linearly perturbed
Kerr spacetime. How close the strong-field region is to the linear regime can then
be mapped onto the gravitational waveform. This information on the gravitational
waveform can then be used to inform the start time of ringdown, which requires
being in a linear regime.

Merging binary black holes probe the strong-field, non-linear, dynamical regime of
gravity, and gravitational waves from these systems could perhaps contain signatures

of such a theory.

Our goal of generating precise beyond-GR gravitational waveforms using numerical
relativity is to try to probe such signatures (or show their absence) using model-
dependent tests of general relativity. Similarly, our goal of using numerical relativity
to inform the start time of binary black hole ringdown is aimed to be able to precisely

probe beyond-GR signatures in the post-merger signal.

There is much work to be done. We need to generate more dCS waveforms in order
to perform a model-dependent test of GR with gravitational wave detector data.
We must generate enough waveforms to produce a dCS surrogate model for rapid

parameter estimation (cf. Sec. 1.3). Luckily, this can be done with our present code.
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We also need our waveforms to be more accurate. Gravitational wave detectors
with higher singal-to-noise ratios (for some systems) than LIGO, such as the Laser
Interferometer Space Antenna (LISA), will come online in this century [27, 22].
Numerical relativists need to make sure that general relativity and beyond-GR
waveforms are at the level of accuracy where numerical errors in the waveform are
lower than the level of noise on the detectors. This should be feasible with future
codes [114].

We need to consider other beyond-GR theories of gravity, in addition to dynamical
Chern-Simons theory. The techniques and code that we have generated and used in
Chapters 2, 3, 4, 5, and 6 can be used for Einstein-dilaton-Gauss-Bonnet gravity
(cf. Eq. 1.4), and other higher-curvature effective field theories, by simply changing

the source term.

The past century has seen the triumph of general relativity, and perhaps the coming
century can see beyond it.
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Chapter 2

NUMERICAL BINARY BLACK HOLE MERGERS IN
DYNAMICAL CHERN-SIMONS GRAVITY: SCALAR FIELD

[1] Maria Okounkova et al. “Numerical binary black hole mergers in dynamical
Chern-Simons gravity: Scalar field”. In: Phys. Rev. D96.4 (2017), p. 044020.
porl: 10.1103/PhysRevD.96.044020. arXiv: 1705.07924 [gr-qc].

Abstract

Testing general relativity in the non-linear, dynamical, strong-field regime of gravity
is one of the major goals of gravitational wave astrophysics. Performing precision
tests of general relativity (GR) requires numerical inspiral, merger, and ringdown
waveforms for binary black hole (BBH) systems in theories beyond GR. Currently,
GR and scalar-tensor gravity are the only theories amenable to numerical simula-
tions. In this article, we present a well-posed perturbation scheme for numerically
in