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ABSTRACT

Einstein’s theory of general relativity has passed all precision tests to date. At some
length scale, however, general relativity (GR) must break down and be reconciled
with quantum mechanics in a quantum theory of gravity (a beyond-GR theory).
Binary black hole mergers probe the non-linear, highly dynamical regime of gravity,
and gravitational waves from these systems may contain signatures of such a theory.
In this thesis, we seek to make gravitational wave predictions for binary black hole
mergers in a beyond-GR theory. These predictions can then be used to perform
model-dependent tests of GR with gravitational wave detections.

Wemake predictions using numerical relativity, the practice of precisely numerically
solving the equations governing spacetime. This allows us to probe the behavior of
a binary black hole system through full inspiral, merger, and ringdown. We choose
to work in dynamical Chern-Simons gravity (dCS), a higher-curvature beyond-GR
effective field theory that couples spacetime curvature to a scalar field, and has
motivations in string theory and loop quantum gravity. In order to obtain a well-
posed initial value formalism, we perturb this theory around GR. We compute the
leading-order behavior of the dCS scalar field in a binary black hole merger, as well
as the leading-order dCS correction to the spacetime metric and hence gravitational
radiation. We produce the first numerical relativity beyond-GR waveforms in a
higher-curvature theory of gravity.

This thesis contains additional results, all of which harness the power of numerical
relativity to test GR. We compute black hole shadows in dCS gravity, numerically
prove the leading-order stability of rotating black holes in dCS gravity, and lay out
a formalism for determining the start time of binary black hole ringdown using
information from the strong-field region of a binary black hole simulation.
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C h a p t e r 1

INTRODUCTION

1.1 A century of general relativity
Over one hundred years ago, Albert Einstein put forth the theory of general relativity
(GR), coupling spacetime to the matter and energy contained within [82].

In the century following this discovery, there was much progress in exploring the
properties of this classical theory. The theory was found, for example, to contain
black hole solutions [180]. Later, it was discovered that the theory contained
spinning black hole solutions [112, 197]. Swiftly, scientists began to think not only
about single black holes, but binary black hole systems. In binaries, two black holes
orbit one another, inspiraling closer together through the emission of gravitational
radiation, and ultimately merging in a violent, energetic process, to form one black
hole. Theoretically computing the gravitational radiation (or gravitational waves)
emitted by binary systems was of particular interest [135, 156]. The end of the
century saw the first precise, numerical prediction of a full gravitational waveform
from a binary black hole merger [161].

1.2 Gravity beyond general relativity
The same century, however, saw the development of quantum mechanics and quan-
tum field theory as a description of nature. If the universe is ultimately quantum,
then general relativity, a classical theory, does not fit into this picture as an appropri-
ate theory of gravity. From a quantum field theory standpoint, general relativity is
non-renormalizable. This means that in order to perform a perturbative expansion
of GR, one needs an infinite number of parameters (unlike, for example, quantum
electrodynamics, which requires only a few parameters, such as charges andmasses).

This in turn led to various efforts to come up with a quantum theory of gravity. Such
a theory would behave like general relativity at low energies (much like general
relativity reduces to Newtonian gravity at low energies), but contain quantum effects
at high energies. The most notable candidates for a theory of quantum gravity are
string theory and loop quantum gravity. In string theory, in contrast to ordinary
quantum field theory, the fundamental object is a one-dimensional string, rather than
a point particle. The graviton, carrying the gravitational force, in turn corresponds
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to a given mode of a string (cf. [41]). Loop quantum gravity, on the other hand,
quantizes space and time, so that spacetime is no longer a classical field, but rather
discrete at the Planck length, ∼ 10−35 meters (cf. [174]).

When considering physical theories, wemust think about testable predictions. Since
we know general relativity breaks down at high energies, let us consider predictions
for astrophysical systems in the strong-field, dynamical regime of gravity, such as
the merger of black holes.

Were we to directly work in a full quantum theory of gravity, these calculations
would quickly become prohibitively complicated, if one could even formulate how
to do them at all. Instead, we can work in effective field theories. These modify
the Einstein-Hilbert action of general relativity, through the inclusion of classical
terms that encompass high-energy quantum gravity effects, to produce a beyond-GR
theory.

Beyond-GR effective field theories, thus, are valid at intermediate ranges, as they
account for some high-energy effects, but not all, by virtue of being truncations at
some energy. Astrophysical systems that probe the strong-field regime of gravity,
such as binary black hole mergers, could potentially contain beyond-GR effects in
this intermediate range.

Let us begin looking at the form of some beyond-GR effective field theories, by
considering their (classical) actions. Let us start with the standard Einstein-Hilbert
action of general relativity, which we will write as

S =
1

16π

∫
d4x
√
−gR , (1.1)

where gab is the spacetime metric, g is its determinant, and R is the spacetime Ricci
scalar. Beyond-GR theories will modify this action, whether by adding more terms
or changing the form of the R term.

One class of effective field theories of gravity arises from considering actions with
higher-order curvature terms added to the Einstein-Hilbert action. In this picture,
general relativity becomes a lowest-order term in an action expanded in powers of
all possible curvature invariants. In particular, let us focus on terms quadratic in
the curvature (the leading-order correction). Adding quadratic-curvature terms to
the Einstein-Hilbert action makes it renormalizable [186], thus solving our original
problem. Of particular interest are the combinations

∗RR ≡ ∗Rabcd Rabcd , (1.2)
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known as the Pontryagin scalar, and

R2
GB = R2 − 4RabRab + Rabcd Rabcd , (1.3)

known as the Gauss-Bonnet scalar. Both scalars appear in low-energy realizations
of string theory [157, 18], and the Pontryagin scalar additionally appears in loop-
quantum gravity [192, 134]. Hence, these are motivated by underlying theories of
quantum gravity.

Coupling these quadratic curvature invariants to a scalar field ϑ creates a class of
quadratic gravity theories, including Einstein-dilaton-Gauss-Bonnet gravity, with
the action

S =
1

16π

∫
√
−gd4x R − 2∇aϑ∇

aϑ − V(ϑ) + α f (ϑ)R2
GB , (1.4)

for some coupling function f (ϑ) and potential V(ϑ). Here, the first term is the
familiar Einstein-Hilbert action of general relativity, the second and third terms
correspond to a canonical stress-energy tensor for the scalar field, and the last term
couples the scalar field to theGauss-Bonnet spacetime curvature scalar. The quantity
α1/2, meanwhile, is a coupling parameter with dimensions of length that determines
the truncation of the effective field theory – the length scale below which quantum
gravity effects become important.

Similarly, we can obtain dynamical Chern-Simons gravity, with the action

S =
1

16π

∫
√
−gd4xR − 2∇aϑ∇

bϑ − V(ϑ) − `2ϑ ∗RR . (1.5)

Here, the fourth term couples the scalar field to the Pontryagin curvature quantity.
The quantity ` in this case is a coupling parameter with dimensions of length that
similarly denotes the length scale below which quantum gravity effects become
important.

These theories contain terms motivated by full quantum gravity theories (namely
string theory and loop-quantum gravity), and hence serve as classical approxima-
tions to some underlying quantum theory of gravity, truncated at second-order in
curvature. One can, in theory, perform the same calculations outlined in Sec. 1.1
for these beyond-GR theories. Namely, one can make predictions for black hole
metrics, perturbations to these metrics, and the behavior of binary black holes.

1.3 Testing general relativity in the strong-field regime
These physical theories, however, are nothing without experimental evidence, and
significant effort has been made in the past century to test general relativity through
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astrophysical observations [206]. Recall that we aim to test general relativity in the
strong-field, towards a regime where quantum gravity effects could be important.

The strongest tests of general relativity were previously given by binary pulsar
systems, including the notable Hulse-Taylor Pulsar, PSR B1913+16 [106]. These
tests found consistency with Einstein’s quadrupolar formula for gravitational wave
emission at a 0.1% level and placed bounds on dipolar radiation, which does not
occur in pure GR [205, 43].

However, binary pulsar observations are relativelyweak-field compared to, for exam-
ple, the merger of black holes and neutron stars, which at once probe the largest grav-
itational potentials and highest curvatures of any available astrophysical system (cf.
Fig. 1 of [37]). Indeed, attempts to map binary pulsar observations onto constraints
on quadratic gravity theories produce a relatively weak theoretical bound [214, 212].

It would take a century after the advent of general relativity to probe gravity in the
strong-field regime. In 2015, the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) made the first detection of gravitational waves from a binary black hole
merger [10], probing the strong-field, dynamical regime of gravity for the first time.
Together, LIGO and its sister detector, Virgo, have detected gravitational waves from
ten binary black hole mergers in the O(1 − 100)M� range, and one binary neutron
star merger [9, 8], with more detections at even higher experimental sensitivity on
the way [3, 13].

Testing general relativity with gravitational wave observations: present
How can one test general relativity with gravitational wave observations? To look
at the state of the art, let us turn to some of the tests in [14], the companion analysis
testing general relativity for GW150914, the first LIGO detection [10].

One of the first tests one can perform is a simple null test, by checking the consistency
of the null hypothesis (GR in this case) with the data. For GW150914, the most-
probable GR waveform [12] was subtracted from the gravitational wave data from
each detector, leaving a residual signal. If some loud, non-degenerate, unmodeled
deviation from GR were present in the detected gravitational wave, then it would
show up as a coherent signal between the two detector residuals. If, however,
there were no deviations from GR, the residuals should contain only (uncorrelated)
noise [70]. The residuals for GW140915 were not statistically distinguishable from
noise, verifying the GR prediction for GW150914 to 4% [14].

The next null test one can perform investigates the post-merger portion of the
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detected waveform. In general relativity, by the so-called no-hair theorem, (vacuum,
asymptotically flat, stationary, axisymmetric, uncharged) black holes are completely
characterized by just two parameters – their mass and spin [132, 135, 76, 94, 111].
In GR, after a binary black hole merger, the resulting single black hole enters the
ringdown stage, where its gravitational wave spectrum is described by a linear
superposition of damped sinusoids, known as quasi-normal modes (QNMs), which
are paramterized by a damping time τ and frequency ω. By the no-hair theorem,
these modes (in GR) purely depend on the mass M and spin χ of the final black
hole. That is,

{
χ

M

}
↔

{
ω

τ

}
. (1.6)

In some beyond-GR theories, however, black holes have additional hair – that is,
there are additional parameters characterizing the ringdown stage and final remnant
beyond the mass and spin. In this case, the QNM spectrum will differ from that
predicted by GR.

While rigorously checking ringdown consistency with GR requires observing at
least two modes for a given signal [94, 111], a weaker test was performed with
GW150914 in [14], with just one mode. First, the most-probable GR waveform
matching just the inspiral part of the gravitational wave signal was found. From
the binary black hole parameters of this waveform, one can theoretically compute
what the final mass and spin of the remnant black hole should be in GR [102,
201]. This mass and spin will then give unique predictions in GR for the damping
time and frequency of the ringdown QNM spectrum. Thus, one can perform a
consistency check between these theoretically predicted QNM parameters, and the
QNM parameters measured by fitting damped sinusoids to the post-merger part of
the detected signal. For GW150914, the 90% credible regions for the measured
QNM parameters and the predicted QNM parameters for one mode overlapped, thus
showing compatibility with GR. Such a test is also a null test, in that it checks the
consistency of the signal with GR predictions (the null hypothesis), rather than using
predictions for ringdown behavior from other, competing theories.

In addition to null tests, there are parametrized tests of general relativity one can
perform with gravitational wave observations. In this case, the gravitational wave
signal is tested against waveform models that have parametrized deviations from
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GR. For example, in the Parametrized Post-Einsteinian (ppE) formalism [215, 71],
the functional forms of the amplitude and phase of the gravitational wave signal are
modified, and include some additional parameters. In [216], the authors used the
ppE framework on GW150914 data to constraint various ppE parameters (and hence
departures fromGR). One can alsomodify the analytical form of the Post-Newtonian
(PN) expansion, which describes the inspiral part of the gravitational wave signal.
Extra terms (with extra parameters) are added to each order of the expansion (either
one order at a time, or all together). In the LIGO GW150914 testing GR paper[14],
the authors tested such a modified PN expansion against GW150914 data, finding
no consistent departure from GR. These tests, however, only modify the inspiral
part of the waveform, without considering the more-energetic merger phase.

In [15], the LIGO andVirgo collaborations used all of the LIGO andVirgo events [9]
to test general relativity. In particular, they repeated the null test of subtracting the
best-match waveform, and checking that parametrized deviations in PN coefficients
were zero.1 The datawas not inconsistent with the predictions of GR, and constraints
on deviations from GR decreased by a factor of ∼ 2.

Testing general relativity with gravitational wave observations: future possi-
bilities
We can in theory perform stronger tests of gravity than null and parametrized tests
of general relativity. What if, in addition to best-match gravitational waveforms
in general relativity, we had access to best-match gravitational waveforms in a
theory beyond general relativity, such as dynamical Chern-Simons gravity? Then
we can perform parameter estimation using the method currently used for general
relativity [12] to find the best-match waveform in dynamical Chern-Simons gravity.
In particular, dCS has an additional parameter, `, which can (in theory) be measured.
Thismatch can then be compared to thematch one gets with pureGR, usingBayesian
model selection.

Parametrized tests, in a sense, do use a beyond-GR model. However, the merger
regime in this case is not well understood. In fact, in [216], the authors discussed
the theoretical implications of the GW150914 detection, including a ppE analysis,
and argued that “the true potential for GW150914 to both rule out exotic objects
and constrain physics beyond General Relativity is severely limited by the lack of

1There is a wealth of other tests of general relativity that can be performed with gravitational
wave observations. We have summarized the tests relevant for the work presented in this thesis, but
more information can be found in [43, 14, 15].
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understanding of the coalescence regime in almost all relevant modified gravity
theories."

A stronger test of gravity with gravitational wave observations then would require
the use of gravitational waveforms in a beyond-GR theory.

Let us now discuss how to generate such beyond-GR waveforms. If we wish to
perform an analysis with the same level of precision and accuracy as GR analyses,
then we need access to waveforms of comparable accuracy. The most accurate grav-
itational waveforms [2, 1] come from numerical relativity, the practice of precisely
solving the non-linear, highly-coupled partial differential equations governing the
behavior of spacetime.2 Binary black hole numerical relativity simulations, however
can take on the order of weeks or months to compute. In order to find a best-match
waveform as in [14, 12], data analysts must go through millions of waveforms. To
produce a numerical relativity simulation for each on a short timescale would be
infeasible. Thus, numerical relativity waveforms are used to calibrate waveform
models that are faster to evaluate, including the Effective-One-Body model [191]
used in [14, 12]. There is also growing interest in gravitational wave data analysis
surrogate models, waveform models with NR level accuracy that are trained on
NR waveforms [118, 49]. In each of these cases, however, we must first produce
numerical relativity gravitational waveforms.

Our goal, thus, is to produce numerical relativity gravitational waveforms in a
beyond-GR theory of gravity. This is the main topic of this thesis.

1.4 A brief introduction to numerical relativity
As stated before, numerical relativity (NR) is the practice of precisely solving the
non-linear, highly coupled partial differential equations governing the behavior of
spacetime. Without going into too much technical detail, let us take some time to
give a brief overview of the subject. For an excellent primer on NR, see [40]. We
will focus on numerical relativity in general relativity for now.

In analytical relativity, spacetime is characterized by a 4-dimensional spacetime
metric, gab. General relativity is a covariant theory, in which all expressions,
such as the Einstein field equations, hold true in any coordinate system [203, 64].
Spacetimes such as the Kerr and Schwarzschild black hole solutions are written

2Throughout this thesis, we use precisely this definition of numerical relativity. Some sources
use “numerical relativity" to mean purely solving the Einstein field equations of general relativity
numerically, including [40], while we mean solving any equations governing spacetime numerically,
including the beyond-GR equations.
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down in terms of 4-dimensional coordinates, often containing the full dependence
on a time coordinate, t [203].

In numerical relativity, we are interested in situations where the full 4-dimensional
spacetime is unknown. It is difficult, for example, to write down the entire spacetime
of two merging binary black holes. Instead, in NR, we start with some initial
conditions and evolve a spacetime. For example, we start with two black holes
sitting far apart from each other, and evolve this configuration to see what happens
with time.

In this picture, the 4-dimensional spacetime gab is decomposed into spacelike and
timelike pieces. Namely, a 4-dimensional spacetime is foliated by a set of spatial
slices {Σi}. The normal vector na to each spatial slice is timelike, and we use
this vector to move in time from slice to slice. Each slice Σi is labeled by some
coordinate time, ti. On each slice Σ of a spacetime with spacetime metric gab, the
timelike normal vector na induces a spatial metric on Σ, γab, as

γab = gab + nanb . (1.7)

We illustrate this picture in Fig. 1.1.

(a) Spacetime as seen by an analytical
relativist (with one spatial dimension
suppressed).

(b) Spacetime as seen by a numerical rel-
ativist (with one spatial dimension sup-
pressed). The unit timelike normal vec-
tor na is shown schematically here, for
one point on one slice. These is such a
vector for each point on each slice.

Figure 1.1

Now that we have sliced up the spacetime, let’s think about the form the Einstein
field equations take in this formalism, known as the 3+1 Arnowitt-Deser-Misner
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(ADM) equations [28]. The equations take the form of two elliptic constraint
equations that the metric must satisfy on each slice Σi, and two hyperbolic evolution
equations governing how the metric data evolves from slice to slice. Satisfaction
of the constraints means that the evolution is precisely solving the Einstein field
equations.

In order to perform a simulation, we generate initial data for the metric (and its first
derivatives) on an initial slice Σ0 by solving the elliptic constraint equations. Then,
these data are evolved using the hyperbolic evolution equations to obtain the metric
on all subsequent slices. We show this schematically in Fig. 1.2. This constitutes
the “simulation", and gives us the results.

Figure 1.2: Schematic of initial data and evolution formalism.

However, performing this evolution is not so simple. In order to have a stable evolu-
tion, we must have a well-posed initial value problem. In this case, given an initial
solution to a partial differential equation at some time, the solution cannot grow
faster than exponentially. This is especially important in the context of numerical
relativity, in which the numerical solutions to partial differential equations always
have some level of numerical noise. What we want to guarantee is that if we add
some numerical noise to an initial condition, we will not get a completely different
solution to the problem at some later time.

The 3+1 ADM equations, however, are not well-posed, and performing an evolution
using these equations will lead to numerical blow-up. It took some time to formulate
the equations of general relativity in such a way as to guarantee that the initial value
problem was well-posed. Some popular such formulations are the harmonic and
generalized harmonic formalisms [67, 88, 162, 161, 121]. Indeed, it took almost
four decades for the first numerical relativity simulation of a binary black hole
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merger to be successfully performed [162, 161], mainly due to choosing appropriate
evolution equations.

Recall additionally that the equations of general relativity are independent of the
choice of coordinates. However, when performing a numerical simulation on a
computational domain, we must specify a coordinate system. In particular, though
GR as a theory is gauge invariant, we must specify a gauge for our numerical
simulations. This leads to another complication – one must choose a satisfactory
gauge in which to work [40].

Binary black hole simulations have their own unique challenges, beyond choosing
appropriate evolution formulation and gauge. For example, we must determine
how to numerically deal with the black hole singularities [104]. Additionally,
while it is relatively simple to construct a computational grid for one stationary
black hole, it is not so simple to a construct a grid that will faithfully be able to
resolve two rapidly moving, merging black holes [179]. We must likewise have
methods to find the black hole horizons numerically during a simulation (if desired
or required) [98, 68, 53]. Finally, if the ultimate goal of a binary black hole
simulation is to produce a gravitational waveform prediction, we must have methods
for extracting this radiation [193, 56].

1.5 Pushing numerical relativity beyond general relativity
How does the picture of numerical relativity put forth in Sec. 1.4 change when
we work not with general relativity, but a beyond-GR theory? Let us focus, as in
this thesis, on a particular 4-dimensional theory of spacetime, namely dynamical
Chern-Simons gravity.

We still foliate the spacetime into spatial slices as in Fig. 1.1. The 3+1 ADM
equations, however, are equations for general relativity. We thus need to derive a set
of constraint equations for initial data and evolution equations in dCS. However, it
is believed that dCS does not have a well-posed initial value problem [74]. We thus
cannot perform simulations of spacetime in the full dCS theory.

However, we know from Sec. 1.3 that deviations from general relativity, in the
regime observable by gravitational waves, must be small. Thus, we can work
perturbatively around GR, and perturb the equations governing dCS around an
arbitrary GR solution, such as a binary black hole background. We expand both the
spacetime metric and the dCS scalar field in powers of the coupling parameter, and
collect the equations of motion at each order. This is known as an order-reduction
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scheme.

The key to the order-reduction scheme is that GR is a quasilinear theory: the high-
est derivatives of the metric appear linearly in Einstein’s equations. Accordingly,
at each order in perturbation theory, the equations have the same principal part
(leading-order derivative terms) as in general relativity. The principal part deter-
mines whether the equations have awell-posed initial value problem. Sincewe know
how to formulate GR in a well-posed way, we can do the same for the order-reduced
dCS equations, and obtain a well-posed evolution scheme.

At zeroth order in the coupling, we recover general relativity. At first order in the
coupling, we see our first dCS correction to GR, namely in the scalar field dynamics.
The GR background sources a leading-order dCS scalar field. At this order, there
is no dCS modification to the metric. At second order, the GR background and
the first-order dCS scalar field source a leading-order dCS metric perturbation. It
is this field we are after, as it will give us the leading-order dCS modification to a
gravitational waveform. We illustrate this system in Fig. 1.3.

In order to generate the leading-order dCS corrections to a binary black hole wave-
form, we must first be able to evolve a binary black hole system in GR (zeroth order).
This problem has long been solved [2, 1]. However, we must now begin to add dCS
modifications to the system.

Evolving the leading-order dCS scalar field
In order to obtain dCS corrections to the spacetime metric (and hence the gravi-
tational waveform), we must first evolve the leading-order dCS scalar field, which
sources this correction. This is the main objective of Chapter 2 of this thesis, where
we develop a formalism and code to evolve the leading-order dCS scalar field on an
arbitrary GR background.

We consider a variety of binary black hole systems with spin and compute (scalar)
waveforms for the scalar field. The dominant radiation pattern of the scalar field
during inspiral is quadrupolar, and we find good agreement with PN theory pre-
dictions for the inspiral phase [212]. However, unlike in PN theory, we evolve the
system through merger and ringdown. In particular, we find a burst of dipolar scalar
radiation at merger, a hitherto unknown phenomenon.

We use the scalar field to estimate the strength of the leading-order dCS correction
to the gravitational radiation. We find that were LIGO to detect a GW150914-like
system to an accuracy of 0.1 radians in the phase, the dCS coupling parameter would
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Figure 1.3: Illustration of the order-reduction scheme, which consists of perturbing
the equations of dynamical Chern-Simons gravity about a GR background (an
inspiraling, merging black hole binary in this case). The zeroth-order GR binary
black hole background sources the (leading) first-order dCS scalar field (with no
back-reaction on theGRbackground). This scalar field and theGRBBHbackground
then source the (leading) second-order dCS metric perturbation (with no back-
reaction onto the scalar field or the GR background) This in turn sources the dCS
corrections to the gravitational waves at infinity.
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be bounded by ` . O(10) km, a result eight orders of magnitude stronger than that
from solar-system tests [20].

Initial data for leading-order dCS spacetime metrics
If we wish to evolve the leading-order dCS metric perturbation sourced by the scalar
field, we must first generate initial data for this metric perturbation. This is precisely
the same step we must take for the GR background before a binary black hole
evolution (cf. Fig. 1.2). This is the main focus of Chapter 3. Here, we outline
a formalism for generating constraint-satisfying metric perturbations for a general
source, on general GR background, and explore this is in the context of dCS.

While this framework is used to generate initial data for our dCS binary evolutions,
we are also interested in looking at the leading-order dCS correction to a single,
stationary, rotating black hole spacetime. The Kerr spacetime is not a solution of
the full dCS theory. Thus, we expect the metric of a rotating black hole to differ
from that of GR. We use this initial data formalism to compute the dCS correction
to Kerr, for arbitrary spin. Since the spacetime is stationary, one slice of stationary
initial data is all we need to obtain the full spacetime.

An interesting observable we can compute from this dCS black hole spacetime is the
black hole shadow. If one were to take a picture of a black hole with a camera, the
shadow is a dark region on the image corresponding to angles at which no photons
reach the camera, because of light-bending and the presence of an event horizon.
In general relativity, for a black hole with a given mass and spin, the shadow has
a precise shape, and thus deviations from this predicted shape can be used to test
the theory [136, 164, 136, 37]. The black hole shadow is of particular interest for
the Event Horizon Telescope (EHT) [170, 85], a very long baseline interferometry
array of radio telescopes that aims to image Sgr A*, the black hole at the center of
the Milky Way galaxy, and has triumphantly imaged the black hole at the center of
the M87 galaxy [80, 81].

In Chapter 3, we compute the black hole shadow in our dCS black hole spacetime for
a variety of spins and dCS coupling parameters. We find that given the present ability
of the EHT to measure the spin of Sgr A*, the dCS corrections would be within
the margin of error due to the spin measurement, and thus not presently detectable.
However, the dCS modifications to the shape of the shadow are non-degeneratewith
GR, meaning that in the limit of tight constraints on the spin measurement and high
image resolution, one could differentiate dCS from GR.
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Evolving leading-order dCS spacetime metrics
Given the initial data for some dCS system, our goal is now to evolve this data in time
to obtain our full spacetime solution (cf. Fig. 1.2). This is the focus of Chapter 4.
Recall that our evolution equations must be well-posed in order to be able to evolve
the system. In this chapter, we derive well-posed evolution equations for a leading-
order metric perturbation with arbitrary source on an arbitrary background.

In particular, we use this formalism to evolve the leading-order dCS metric per-
turbation sourced by the leading-order dCS scalar field on a rotating black hole
background. The stability of rotating black holes in dCS is unknown [137, 90,
43]. By evolving this leading-order metric correction and showing that it remains
constant in time, we showed that rotating black holes in dCS gravity are stable to
second order.

Head-on binary black hole collisions in dCS gravity
Our next goal is to find the leading-order dCS correction to the gravitational wave-
forms from merging binary black hole systems in full numerical relativity. These
waveforms will allow us to perform the model-dependent tests of general relativity
we alluded to in Sec. 1.3.

We first consider the case of head-on collisions of binary black holes with spin.
Head-on collisions, in which black holes do not orbit one another but rather directly
smash into each other, are relatively simple systems, and they are fast simulations
to perform. A head-on collision takes a fraction (∼ 1/30) of the time is takes an
orbiting binary to merge, starting from the same initial separation. Thus, these
serve as a perfect test-bed for our dCS metric perturbation evolution scheme given
in Chapter 4.

While head-on collisions are not particularly relevant for astrophysical systems,
they do cleanly probe the quasi-normal mode spectrum of the remnant spinning
black hole [24, 23, 35, 181]. Thus, we can use the dCS correction to the gravi-
tational waveform computed from such systems to learn about leading-order dCS
modifications to the QNM spectrum of a spinning black hole.

This is the focus of Chapter 5 of this thesis. We perform binary black hole head-on
collisions for a variety of spins, and produce the first numerical relativity beyond-
GR gravitational waveforms in a higher-curvature theory of gravity. We mea-
sure the leading-order dCS corrections to the damping time and frequency of the
quasi-normal mode spectrum, and find that these increase polynomially with spin.
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Moreover, we find that for the cases we have considered, these modifications are
non-degenerate with GR.

Full beyond-GR gravitational waveforms
Having demonstrated our ability to produce beyond-GR waveforms, or focus is next
to add angular momentum to the system in order to produce beyond-GR waveforms
appropriate for LIGO and future gravitational wave detectors.

InChapter 6, we perform a numerical relativity simulation in order-reduced dCS for a
binary black hole system consistent with the inferred parameters of GW150914 [12,
126]. We produce the first beyond-GR gravitational waveforms in a higher-curvature
theory in full numerical relativity, through complete inspiral, merger, and ringdown.
We find that the ringdown QNM spectrum is modified similarly to the head-on
collision case (cf. Chapter 5), while the inspiral is modified with a beating frequency
pattern, sourced by beating between the leading-order dCS scalar field and the GR
binary black hole background (cf. Fig. 1.1).

Using numerical relativity to test the no-hair theorem
The final chapter of this thesis, Chapter 7, considers another use-case for numerical
relativity in testing general relativity.

Recall from Sec. 1.3 that one of the tests we can perform with gravitational wave
observations is a test of the no-hair theorem, which involves the ringdown portion of
the gravitational wave signal. One can also perform a test, (as in [14] for GW150914)
to simply look for the least-damped quasi-normal mode in the ringdown portion of
the signal, and check that its parameters are consistent with those predicted by GR.
Ringdown, in this case, refers precisely to the regime where the gravitational wave
can be described as a set of linear QNM perturbations on a stationary black hole
background. After merger, the spacetime around the resulting single black hole can
still potentially contain non-linearities – it takes some time after merger to settle
into the ringdown regime.

In order to perform a no-hair theorem or least-damped QNM test, we must thus
choose a portion of the post-merger gravitational waveform that is truly within this
ringdown regime. If we start our test too early in the gravitational waveform, then
our analysis will contain systematic errors from trying to model something that
is non-linear as linear. In fact, the post-merger analysis for GW150914 [14] saw
precisely such an effect. When the authors started the analysis close to merger,
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the 90% credible region for the inferred QNM parameters did not overlap with that
predicted byGR andQNMperturbation theory. However, when the analysis window
was shifted to a later time, where the ringdown description was more faithful, the
regions overlapped.

How should we choose the start time of ringdown? Past authors have used properties
of numerical relativity gravitational waveforms to estimate this regime [110, 44, 124,
33]. However, in a numerical relativity simulation, we have access not only to the
computed gravitational waveform, but also the whole spacetime itself (cf. Fig. 1.2).
Thus, when asking ourselves questions about the amount of non-linearity present in
the waveform, we can instead turn directly to the associated strong-field region in
the simulation.

In Chapter 7, we offer a numerical-relativity based approach to choosing the start
time of binary black hole ringdown. We use various algebraic and geometric
quantities put forth in [93, 187] that measure Kerrness, or closeness to a Kerr
spacetime on a given spatial slice. We present a formalism to associate the values of
the Kerrness measures to the amount of non-linearity present in the spacetime. We
see that as the post-merger numerical relativity simulation progresses, each spatial
slice gets closer and closer to a linearly perturbed Kerr spacetime, with fewer and
fewer non-linearities. We derive a prescription for then mapping this information
onto the gravitational waveform from the simulation.

The result thus gives a gravitational waveform with a measure of the amount of
non-linearity (let’s call it ε) at each time on the post-merger part of the waveform.
This ε can thus act as a systematic error measure on a ringdown analysis, for it
denotes precisely how much non-linearity is contaminating a linear analysis. We
produced such a result for the numerical relativity simulation of GW140915 used in
the LIGO detection paper [11]. Our analysis found that the start times of ringdown
chosen in the testing GR companion paper [14] were too early, as the spacetime
still contained a fair amount of non-linearity. Subsequent, independent studies on
testing GR with binary black hole ringdowns explicitly confirmed our results [123,
65, 57].

1.6 Looking forward
Our motivation for all of the projects presented in this thesis can be summarized
by the following: we know that at some length scale, general relativity must break
down and be reconciled with quantum mechanics in a beyond-GR theory of gravity.
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Figure 1.4: Schematic of the method of determining the start time of binary black
hole ringdown, as discussed in Chapter 7. Time moves from the left to the right.
The top figures show snapshots of the strong-field region around the final black hole
(denoted BH) on three spatial time-slices. We show a Kerrness measure on the on
slice, which in time settles to a value consistent with that of a linearly perturbed
Kerr spacetime. How close the strong-field region is to the linear regime can then
be mapped onto the gravitational waveform. This information on the gravitational
waveform can then be used to inform the start time of ringdown, which requires
being in a linear regime.

Merging binary black holes probe the strong-field, non-linear, dynamical regime of
gravity, and gravitational waves from these systems could perhaps contain signatures
of such a theory.

Our goal of generating precise beyond-GR gravitational waveforms using numerical
relativity is to try to probe such signatures (or show their absence) using model-
dependent tests of general relativity. Similarly, our goal of using numerical relativity
to inform the start time of binary black hole ringdown is aimed to be able to precisely
probe beyond-GR signatures in the post-merger signal.

There is much work to be done. We need to generate more dCS waveforms in order
to perform a model-dependent test of GR with gravitational wave detector data.
We must generate enough waveforms to produce a dCS surrogate model for rapid
parameter estimation (cf. Sec. 1.3). Luckily, this can be done with our present code.
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We also need our waveforms to be more accurate. Gravitational wave detectors
with higher singal-to-noise ratios (for some systems) than LIGO, such as the Laser
Interferometer Space Antenna (LISA), will come online in this century [27, 22].
Numerical relativists need to make sure that general relativity and beyond-GR
waveforms are at the level of accuracy where numerical errors in the waveform are
lower than the level of noise on the detectors. This should be feasible with future
codes [114].

We need to consider other beyond-GR theories of gravity, in addition to dynamical
Chern-Simons theory. The techniques and code that we have generated and used in
Chapters 2, 3, 4, 5, and 6 can be used for Einstein-dilaton-Gauss-Bonnet gravity
(cf. Eq. 1.4), and other higher-curvature effective field theories, by simply changing
the source term.

The past century has seen the triumph of general relativity, and perhaps the coming
century can see beyond it.



19

C h a p t e r 2

NUMERICAL BINARY BLACK HOLE MERGERS IN
DYNAMICAL CHERN-SIMONS GRAVITY: SCALAR FIELD

[1] Maria Okounkova et al. “Numerical binary black hole mergers in dynamical
Chern-Simons gravity: Scalar field”. In:Phys. Rev.D96.4 (2017), p. 044020.
doi: 10.1103/PhysRevD.96.044020. arXiv: 1705.07924 [gr-qc].

Abstract

Testing general relativity in the non-linear, dynamical, strong-field regime of gravity
is one of the major goals of gravitational wave astrophysics. Performing precision
tests of general relativity (GR) requires numerical inspiral, merger, and ringdown
waveforms for binary black hole (BBH) systems in theories beyond GR. Currently,
GR and scalar-tensor gravity are the only theories amenable to numerical simula-
tions. In this article, we present a well-posed perturbation scheme for numerically
integrating beyond-GR theories that have a continuous limit to GR. We demonstrate
this scheme by simulating BBH mergers in dynamical Chern-Simons gravity (dCS)
to linear order in the perturbation parameter. We present mode waveforms and
energy fluxes of the dCS pseudoscalar field from our numerical simulations. We
find good agreement with analytic predictions at early times, including the absence
of pseudoscalar dipole radiation. We discover new phenomenology only accessible
through numerics: a burst of dipole radiation during merger. We also quantify the
self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-
consistent LIGO detections could place on the new dCS length scale, approximately
` . O(10) km.

2.1 Introduction
General relativity has been observationally and experimentally tested for almost a
century, and has been found consistent with all precision tests to date [206]. But
no matter how well a theory has been tested, it may be invalidated at any time
when pushed to a new regime. Indeed, there are many theoretical reasons to believe
that general relativity (GR) cannot be the ultimate description of gravity, from
non-renormalizability to the black hole information problem.

https://doi.org/10.1103/PhysRevD.96.044020
http://arxiv.org/abs/1705.07924
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Moreover, from the empirical standpoint, all precision tests of GR to date have
been in the slow-motion, weak-curvature regime. With the Laser Interferometer
Gravitational Wave Observatory (LIGO) now detecting the coalescence of compact
binary systems [10, 5, 16], we finally have direct access to the non-linear, dynamical,
strong-field regime of gravity. This is an arena where GR lacks precision tests, and
it may give clues to a theory beyond GR. The LIGO collaboration has already used
the detections of GW150914, GW151226, and GW170104 to perform some tests of
GR [14, 16], but these are not yet very precise: a model-independent test gives 96%
agreement with GR.

Both black hole (BH) and neutron star (NS) binaries probe the strong-field regime.
However, NSs have the added complication that the equation of state of dense
nuclear matter is presently unknown. Until more is known about the equation of
state, we must rely on binary black holes (BBHs) for precision tests of GR. Yunes,
Yagi, and Pretorius argued [216] that the lack of understanding of BBH merger
in beyond-GR theories severely limits the ability to constrain gravitational physics
using GW150914 and GW151226. Thus, to perform tests of GR with BBHs, we
require inspiral, merger, and ringdown waveform predictions for these systems,
which can only come from numerical simulations.

To date, BBH simulations have only been performed in GR and scalar-tensor grav-
ity [43] (note that BBHs in massless scalar-tensor gravity will be identical to GR,
under ordinary initial and boundary conditions). There are a huge number of
beyond-GR theories [43], and for the vast majority of them, there is no knowledge
of whether there is a well-posed initial value formulation, a necessity for numer-
ical simulations. Indeed, there is evidence that dynamical Chern-Simons gravity,
the beyond-GR theory we use here as an example, lacks a well-posed initial value
formulation [74].

Our goal is to numerically integrate BBH inspiral, merger, and ringdown in theories
beyond GR that are viable but that do not necessarily have a well-posed initial value
problem. This goal is relevant even for those only interested in parametric, model-
independent tests, because there is presently no theory guidance for late-inspiral and
merger waveforms in theories beyond GR.

We are only interested in theories that are sufficiently “close” to GR: for a theory to
be viable, it has to be able to pass all the tests that GR has passed. This motivates an
effective field-theory (EFT) approach. We assume that there is a high-energy theory
whose low-energy limit gives GR plus “small” corrections. The effective theory
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of GR with corrections does not need to capture arbitrarily short-distance physics.
Such a theory is valid up to some cutoff, and modes shorter than this distance scale
are said to be outside of the regime of validity of the EFT. The EFT only needs to be
well-posed for the modes within the regime of validity. This can be accomplished
with perturbation theory.

We present a perturbation scheme for numerically integrating beyond-GR theories
that limit to GR. For such a theory, we perturb it about GR in powers of the small
coupling parameter. We collect equations of motion at each order in the coupling,
creating a tower of equations, with each level inheriting the same principal part
as the background GR system. The well-posedness of the initial value problem
in GR [203] thus ensures the well-posedness of this framework, even if the “full”
underlying theory may not have a well-posed initial value formulation.

In this study, we apply our perturbation framework to BBH mergers in dynamical
Chern-Simons gravity (dCS) [18] to linear order in perturbation theory. This theory
involves a pseudoscalar field coupled to the parity-oddPontryagin curvature invariant
with a small coupling parameter, and at linear order gives a scalar field evolving on
a GR BBH background.

There are a number of theoretical motivations for considering dynamical Chern-
Simons. The dCS interaction arises when cancelling gravitational anomalies in
chiral theories in curved spacetime [72, 79, 21], including the famous Green-
Schwarz anomaly cancellation in string theory [95] when compactified to four
dimensions [18, 157, 158]. DCS also arises in loop quantum gravity when the
Barbero-Immirzi parameter is allowed to be a spacetime field [192, 134]. From
an EFT standpoint, dCS is the lowest-mass-dimension correction that has a parity-
odd interaction. All other EFTs at the same mass dimension have parity-even
interactions, so the phenomenology of dCS is distinct [212]. The dCS interaction
was also included in Weinberg’s EFT of inflation [204].

From a practical standpoint, there are already a large number of dCS results in
the literature that we can compare against [214, 212, 210, 209, 211, 117, 184],
including post-Newtonian (PN) calculations for the BBH inspiral. One of the more
important results is that scalar dipole radiation is highly suppressed in dCS during
the inspiral [212]. Dipole radiation is present in scalar-tensor theory and Einstein-
dilaton-Gauss-Bonnet (EdGB), and enters with two fewer powers of the orbital
velocity (i.e. 1 PN order earlier) than the leading quadrupole radiation of GR. This
leads to gross modifications of the inspiral, but dCS avoids this problem because
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the dipole is suppressed. As a result, the perturbative treatment of dCS will be valid
for a longer period of inspiral than scalar-tensor or EdGB.

The paper is organized as follows. Sec. 2.2 covers the analytical and numerical
formalisms. More specifically, in Sec. 2.2 we introduce dynamical Chern-Simons,
and in Sec. 2.2 we present the perturbation scheme, which is valid for any theory
with a continuous limit to GR. We discuss the numerical scheme in Sec. 2.2 (some
numerical details are in the Appendix). We present the results of numerically im-
plementing this formalism in dCS on three different binary mergers in Sec. 2.3.
Sec. 2.3 reviews some previously-known analytic phenomenology of the BBH in-
spiral problem in dCS. Sec. 2.3 presents the waveform results, and 2.3 presents the
energy fluxes, both including comparison to PN. In Sec. 2.3 we use the numerical
results to assess the validity of the perturbation scheme. In Sec. 2.3 we use the
numerical results to estimate the detectability of dCS and the bounds that could be
placed by LIGO detections. We conclude and discuss in Sec. 2.4, and lay out plans
for future work.

2.2 Formalism
Throughout this paper, we set c = 1 and ~ = 1 so that [M] = [L]−1. Since there
will be more than one length scale, we explicitly include factors of the reduced
Planck mass m−2

pl = 8πG and the “bare” gravitational length GM , though quantities
in our code are non-dimensionalized with GM = 1. Latin letters in the middle of
alphabet {i, j, k, l,m, n} are (3-dimensional) spatial indices, while Latin letters in the
beginning of the alphabet {a, b, c, d} refer to (4-dimensional) spacetime indices. We
follow the sign conventions of [203], and gab refers to the 4-dimensional spacetime
metric, with signature (− + + +), and with ∇ its Levi-Civita connection.

Action and equations of motion
Themethodwe present in this paper applies to a large number of beyond-GR theories
that have a continuous limit to GR, but for concreteness we focus on dCS. We start
with the four-dimensional action

I =
∫

d4x
√
−g [LEH + Lϑ + Lint + Lmat + . . .] , (2.1)

where the omitted terms (. . .) are above the cutoff of our EFT treatment. Here
g without indices is the determinant of the metric, LEH is the Einstein-Hilbert
Lagrangian, Lϑ is the Lagrangian of a minimally coupled (pseudo-)scalar field ϑ
(also referred to in the literature as the axion), Lint is a beyond-GR interaction
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between ϑ and curvature terms, and Lmat is the Lagrangian for ordinary matter. In
this paper, we are considering a binary black hole (BBH) merger in dCS, so we
ignore Lmat.

Explicitly, these action terms are given by

LEH =
m2
pl
2 R , Lϑ = −1

2 (∂ϑ)
2 , (2.2a)

Lint = −
mpl
8 `2ϑ ∗RR . (2.2b)

Here the Ricci scalar of gab is R. With our unit system, [g] = [L]0, coordinates
carry dimensions of length, [x] = [L]1, and note that the scalar field ϑ has been
canonically normalized, [ϑ] = [L]−1. We have omitted any potential V(ϑ), so ϑ is
massless and long-ranged, as appropriate for a “gravitational” degree of freedom.
In the interaction Lagrangian Lint, the scalar field ϑ is coupled to the 4-dimensional
Pontryagin density (also known as the Chern-Pontryagin density) ∗RR,

∗RR ≡ ∗Rabcd Rabcd =
1
2ε

abe f Re f
cd Rabcd , (2.3)

where εabcd is the fully antisymmetric Levi-Civita tensor.

The coupling strength of this interaction is governed by the new parameter ` with
dimensions of length. This parameter takes on specific values if this EFT arises
from the low-energy limit of certain string theories [95] or to cancel gravitational
anomalies [21, 157, 158]. However, here we simply take it as a “small” coupling
parameter. In the limit that ` → 0, we recover general relativity with a massless,
minimally coupled scalar field.

The coupling parameter conventions vary throughout the literature. To enable
comparisons, we express the couplings of a number of works in terms of our
conventions. To put Yagi et al. [212] into our conventions, use

κYSYT =
1
2

m2
pl , αYSYT

4 = −
mpl`

2

8
, βYSYT = 1 . (2.4)

To convert Alexander and Yunes [18] into our conventions,

κAY =
1
2

m2
pl , αAY

4 = +
mpl`

2

2
, βAY = 1 . (2.5)

To compare with McNees et al. [133], use

κMSY = m−1
pl , αMSY = +

`2

2
. (2.6)
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The conventions of Stein [184] agree with ours (except for an inconsequential sign
change in the definition of ∗RR, which is compensated for by an additional sign
everywhere ∗RR appears).

Below we will perform an expansion in powers of `2. To simplify matters, we insert
a dimensionless formal order-counting parameter ε that will keep track of powers of
`2. Expanding in a dimensionless parameter ensures that field quantities at different
orders have the same length dimension.

Specifically, we replace the action in Eq. (2.1) with

Iε =
∫

d4x
√
−g [LEH + Lϑ + εLint + Lmat + . . .] , (2.7)

a one-parameter family of actions parameterized by ε. Formally, we recover the
action in Eq. (2.1) when ε = 1.

Varying the action Eq. (2.7) with respect to the scalar field, we have the sourced
wave equation

�ϑ = ε
mpl
8 `2 ∗RR , (2.8)

where � = ∇a∇
a is the d’Alembertian operator. Varying with respect to the metric

gives the corrected Einstein field equations,

m2
plGab + mplε`

2Cab = Tϑ
ab + Tmat

ab , (2.9)

where Gab is the Einstein tensor of gab, and the tensor Cab includes first and second
derivatives of ϑ, and second and third derivatives of the metric,

Cab ≡ εcde(a∇
d Rb)

c∇eϑ + ∗Rc
(ab)

d∇c∇dϑ. (2.10)

Since we are focusing on BBH mergers, Tmat
ab = 0. The scalar field’s stress-energy

tensor Tϑ
ab is given by the expression for a canonical, massless Klein-Gordon field,

Tϑ
ab = ∇aϑ∇bϑ −

1
2
gab∇cϑ∇

cϑ . (2.11)

From here forward we will drop the superscript ϑ.

The “full” system of equations for dCS is thus the pair of Eqs. (2.8) and (2.9).
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Perturbation scheme
Because Cab in Eq. (2.9) contains third derivatives of the metric, the “full” system
of equations for dCS likely lacks a well-posed initial value formulation [74]. In the
language of particle physics, this is equivalent to the appearance of ghost modes
above a certain momentum scale [77].

From the EFT point of view, though, the ghost modes and ill-posedness are nothing
more than the breakdown of the regime of validity of the theory, which should be
valid for long wavelength modes in the decoupling limit ` → 0. To excise the
ghost modes and arrive at a well-posed initial value formulation, we expand about
ε = 0, which is simply GR coupled to a massless minimally-coupled scalar field
and certainly has a well-posed initial value problem [203]. As a result, all higher
orders in ε will inherit the well-posedness of the zeroth-order theory by inheriting
the principal parts of the differential equations.

We begin this order-reduction scheme by expanding the metric and scalar field in
power series in ε,1

gab = g
(0)
ab +

∞∑
k=1

εk h(k)ab , (2.12a)

ϑ =

∞∑
k=0

εkϑ(k) . (2.12b)

Note that since ε is dimensionless, each ϑ(k) has the same units as ϑ, and similarly
for h(k)ab . This expansion is now inserted into the field equations, which are likewise
expanded in powers of ε, and we collect orders homogeneous in εk , as below. This
results in a “tower” of systems of equations that must be solved at progressively
increasing orders in ε. This scheme is quite general and should apply to any theory
that has a continuous limit to GR.

Order ε0

Zeroth order comes from taking ε → 0, which simply gives the system of GR
coupled to a massless, minimally coupled scalar field,

m2
plGab[g

(0)] = T (0)ab , (2.13a)

�(0)ϑ(0) = 0 , (2.13b)

1Note that this is not a Taylor series, since there is no factor of 1/k! in the kth term. These
factors must be tracked if using standard perturbation theory, e.g. with the xPert package [208, 58].
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where Gab[g
(0)] is the Einstein tensor of the background metric g(0), �(0) is the

associated d’Alembert operator, and T (0) is the stress-energy of ϑ(0). This system
certainly has a well-posed initial value problem.

Because of the explicit presence of ε in front of Lint in the action [Eq. (2.7)], Cab

does not appear in the metric equation (2.13a), and the Pontryagin source does not
appear on the right-hand side of the scalar equation (2.13b). These terms have been
pushed to one order higher and will appear below.

On general grounds, we expect that any initially non-vanishing scalar field will radi-
ate away within a few dynamical times. Similarly, if we start with a ϑ(0) = 0 initial
condition and impose purely outgoing boundary conditions, ϑ(0) will remain zero
throughout the entire simulation. Therefore, rather than simulating a vanishingly
small ϑ(0), we simply analytically assume that ϑ(0) = 0.

Therefore, at order O(ε0), the system will simply be

Gab[g
(0)] = 0 , (2.14)

and the solution will be

(g(0), ϑ(0)) = (gGR, 0) , (2.15)

where gGR is a GR solution to the BBH inspiral-merger-ringdown problem.

Order ε1

Continuing to linear order in ε, we find the system

m2
plG
(1)
ab [h

(1); g(0)] = −mpl`
2C(0)ab + T (1)ab , (2.16a)

�(0)ϑ(1) +�(1)ϑ(0) =
mpl
8 `2[∗RR](0) . (2.16b)

As noted above, the explicit presence of ε in the action (2.7) and equations of motion
[(2.8) and (2.9)] lead to C(0) and [∗RR](0) appearing in these ε1 equations strictly as
source terms. By construction, the principal part of this differential system is the
same as the principal part of the O(ε0) system, and thus it inherits its well-posedness
property. This is true at all higher orders in perturbation theory.

Here, G(1)[h(1); g(0)] is the linearized Einstein operator, built with the covariant
derivative ∇(0) compatible with g(0), acting on the metric deformation h(1). The
d’Alembert operator receives the correction �(1), which depends on the metric de-
formation h(1). The quantity C(0)ab is the same as the definition given in Eq. (2.10),
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evaluated on the background quantities (g(0), ϑ(0)). Similarly, [∗RR](0) is the Pon-
tryagin density evaluated on the background spacetime metric g(0). Finally, T (1)ab is
the first-order perturbation to the stress-energy tensor; since Tab is quadratic in ϑ,
T (1)ab has pieces both linear and quadratic in ϑ(0) (the quadratic-in-ϑ(0) pieces are
linear in h(1)).

The crucial property at this order is that both C(0) and T (1) are built from pieces
linear and quadratic in ϑ(0). At order O(ε0), we found that ϑ(0) = 0. Therefore,
when evaluated on the O(ε0) solution [Eq. (2.15)], these both vanish,

C(0)ab [ϑ
(0) = 0] = 0 , T (1)ab [ϑ

(0) = 0] = 0 . (2.17)

Therefore, at order O(ε1) in perturbation theory, evaluating on the background
solution, we have the system

m2
plG
(1)
ab [h

(1); g(0)] = 0 , (2.18a)

�(0)ϑ(1) =
mpl
8 `2[∗RR](0) . (2.18b)

In the metric perturbation equation (2.18a), starting with h(1) = 0 initial conditions
and imposing purely outgoing boundary conditions will enforce h(1) = 0 throughout
the entire simulation. Similarly, we can argue that small perturbations of h(1) would
radiate away on a few dynamical times, since there is no potential to confine the
metric perturbations. Once again, rather than simulating a vanishingly small field,
we will just analytically assume that h(1) = 0. Therefore, at order O(ε1), there is no
metric deformation, and the system is only Eq. (2.18b), driven by the background
system (2.14) which generates the source term [∗RR](0).

Order ε2

This perturbation scheme can be extended to any order desired. Although this paper
reports only on work extending through O(ε1), we sketch the derivation of O(ε2),
since that is the lowest order where a metric deformation is sourced.

Schematically, the system at O(ε2), after accounting for the vanishing of ϑ(0) and
h(1), is

m2
plG
(1)
ab [h

(2)] = −mpl`
2C(1)ab [ϑ

(1)] + T (2)ab [ϑ
(1), ϑ(1)] , (2.19a)

�(0)ϑ(2) = 0 . (2.19b)

The operator C(1)[ϑ(1)] is linear in its argument, and T (2)[ϑ(1), ϑ(1)] is linear in each
slot. Various other combinations have vanished. In (2.19a), vanishing source terms
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were quadratic in h(1) or built from the product of h(1) × ϑ(1). In (2.19b), `2[∗RR](1)

is proportional to h(1) and thus vanishes, as do terms such as�(1)ϑ(1) (linear in h(1))
and �(2)ϑ(0) (linear in ϑ(0)).

We leave detailed discussion of order O(ε2) to future work [144].

Summary and scaling

Let us briefly summarize the perturbative order-reduction scheme and discuss the
scaling of different orders. The system at orders ε0 and ε1 is

O(ε0) : Gab[g
(0)] = 0 , ϑ(0) = 0 , (2.20a)

O(ε1) : �(0)ϑ(1) =
mpl
8 `2[∗RR](0) , h(1) = 0 , (2.20b)

and if we were to continue to O(ε2),

O(ε2) : G(1)ab [h
(2)] = m−2

pl T eff
ab , ϑ(2) = 0 , (2.20c)

where T eff
ab may be determined from the right hand side of Eq. (2.19a).

Zeroth order (2.20a) is just vacuum GR, which has no intrinsic scale. As is very
common in numerical relativity simulations, the coordinates used in the simulation
are dimensionless and in units of the total ADMmass, Xa = xa/(GM). This means
that ∇ may be non-dimensionalized by pulling out a factor of (GM)−1, Riemann
may be non-dimensionalized by pulling out a factor of (GM)−2, etc.

Meanwhile, the new length scale and coupling parameter ` enters at first order. If
we non-dimensionalize the derivative operator and curvature tensors in Eq. (2.20b),
we will find

(GM)−2�(0)ϑ(1) =
mpl

8
`2(GM)−4[∗RR](0) . (2.21)

We therefore define the dimensionless scalar field Ψ via

ϑ(1) =
mpl

8

(
`

GM

)2
Ψ . (2.22)

Then Ψ will satisfy

�(0)Ψ = [∗RR](0) . (2.23)

Thus the analytic dependence of ϑ(1) on (`/GM) has been extracted. The solution
Ψ can later be scaled to reconstruct ϑ(1) for any allowable value of (`/GM).
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All of the results thatwe presentwill be given in terms of powers of the dimensionless
coupling (`/GM). We will also compare to known post-Newtonian results [211],
that were presented in terms of αYSYT

4 . To perform the comparison, we use the
conversion given in Eq. (2.4).

Finally, though we do not address O(ε2) simulations in this paper, we should still
study how h(2) scales with ` and (GM). Since the perturbative scheme preserves
the units of length of fields, [h(k)] = [g] = [L]0 is already dimensionless; however,
it still depends on (`/GM) in a specific way. When we move to units in which we
measure lengths and times in units of (GM), we find it is appropriate to define a
scaled metric deformation Υ via

h(2)ab ≡

(
`

GM

)4
Υab . (2.24)

Then this dimensionless quantity Υ will satisfy an equation that is schematically

∇2
Υ + L.O.T. ∼ (∇Ψ)2 + (∇Ψ)(∇R) + (∇2

Ψ)R , (2.25)

where L.O.T. stands for lower order terms, and all derivatives and curvatures are
O(ε0) dimensionless quantities.

Numerical scheme
For the order ε1 part of the order reduction scheme, our overall goal is to solve
Eq. (2.23) on a dynamical background metric. We co-evolve the metric and the
scalar field, where Eq. (2.23) is driven by Eq. (2.20a). Thewhole system is simulated
using the Spectral Einstein Code (SpEC) [198], which uses the generalized harmonic
formulation of general relativity in a first-order, constraint-damping system [121]
in order to ensure well-posedness and hence numerical stability. We have added
a scalar field module that is similarly a first-order, constraint-damping system,
following [105], as outlined in App. 2.A.

The code uses pseudospectral methods on an adaptively-refined grid [128, 189],
and thus numerical convergence with resolution of both the metric variables and the
scalar field is exponential. We demonstrate the numerical convergence of the scalar
field in App. 2.A.

The initial data for the binary black hole background is a superposition of two Kerr-
Schild black holes with a Gaussian roll-off of the conformal factor around each black
hole [129]. The initial data for the scalar field is similarly given by a superposition
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of approximate dCS solutions around isolated black holes, and is given in more
detail in Sec. 2.3.

The metric equations are evolved in a damped harmonic gauge [190, 120], with
excision boundaries just inside the apparent horizons [104, 177], and minimally-
reflective, constraint-preserving boundary conditions on the outer boundary [172].
The scalar field system, meanwhile, uses purely outgoing boundary conditionsmodi-
fied to reduce the influx of constraint violations into the computational domain [105].

The Pontryagin density source term ∗RR is computed throughout the simulation in
a 3+1 split from the available spatial quantities as outlined in App. 2.B.

2.3 Results
Background: Phenomenology of binary black hole inspirals in dCS
To give the proper context for our numerical results, we first review the previously-
known phenomenology relevant to this problem. Analytical and numerical results
are known for isolated black holes in the decoupling limit, and analytical results
are known for the binary black hole problem in the decoupling limit and at slow
velocities (v/c � 1).

Any spherically-symmetric metric will have vanishing Pontryagin density.2 Thus
the Schwarzschild solution with vanishing scalar field is already a solution to the
“full” dCS system. An isolated spinning black hole in dCS, however, is not given
by the Kerr solution of GR [61, 214, 116, 210]; the scalar field is sourced, and the
metric acquires corrections. Analytical results for the leading-order, small-coupling
corrections to the Kerr metric have been found in the slow-rotation approximation
(a � M) [214, 116, 210, 131]. Additionally, numerical results have been found for
the scalar field for general rotation [117, 183]. The leading-order correction to Kerr
is dipolar scalar hair, while the scalar monopole vanishes. This vanishing scalar
monopole means that scalar dipole radiation is heavily suppressed in dCS. At a large
radius away from an isolated black hole labeled by A, the dipolar scalar field goes

2This is straightforward to verify with a computer algebra system, using the canonical form for
a spherically symmetric metric, ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2. Since it is true in this
coordinate system, it is true in general. This is also proven in App. A of [97] following a tensorial
approach. Finally, one can appeal to a symmetry argument. If the metric is invariant under an
O(3) isometry, then the curvature tensor and ∗RR, being tensorial objects built only from g, must
also be invariant under this symmetry. Therefore, ∗RR must be a constant on each 2-sphere. The
group O(3) also contains the reflection symmetry, sending points to their antipodes. The metric is
invariant under this reflection, but ∗RR must flip sign, as it is a pseudo-scalar. But then we must have
∗RR = −∗RR, so ∗RR = 0.
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as

ϑ
(1)
A =

µi
Ani

A

R2
A

, (2.26)

where RA is the distance from black hole A, ni
A is the spatial unit vector pointing

away from BH A, and µi
A is the scalar dipole moment of the BH. This scalar dipole

moment is given by [212]

µi
A = −

5
2

mpl`
2

8
χi

A , (2.27)

where χi
A is the dimensionless spin vector of black hole A, χi

A = Ji
A/GM2

A (this
factor of G in the denominator arises from our usage of natural units, where angular
momentum is dimensionless, [J] = [L]0, in units of ~).

The dCS binary inspiral problem in the post-Newtonian regime (v � c) was first
treated by Yagi et al. [212]. When two spinning BHs with scalar dipole hair
are placed in proximity with each other, the hair is responsible for a number of
effects. First, there is a correction to the binding energy due to the dipole-dipole
interaction. Second, as the BHs orbit each other, the net quadrupole of the binary
system has a time derivative on the orbital timescale. The binary’s combined dipole
moment is also time-varying, but only on the spin-precession timescale, so it is
heavily suppressed. Thus in the far zone of the binary, the scalar field exhibits
predominantly quadrupole and higher radiation, and no l = 0 monopole radiation.

The dominant far-zone multipole moments for the scalar field have |m| = l − 1
with l ≥ 2 and the l = 1 modes radiate on the spin-precession timescale. To make
comparing to PN simpler, we are simulating aligned-spin systems, so the l = 1 mode
will in fact be non-radiative at early times. Yagi et al. [212] gave expressions for
the scalar field ϑ(1) due to spinning and non-spinning binaries, presented in terms
of symmetric tracefree (STF) tensors. In most numerical relativity work, however,
we decompose fields into spherical harmonics,

ϑ(1)FZ =
∑
lm

Ylm(θ, ϕ)ϑ
(1)FZ
l,m . (2.28)

Using [52], we convert the STF expressions from [212, 185] into spherical har-
monics at extraction radius R for a spin-aligned binary, when the post-Newtonian
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Name m1
m2

χ1 χ2 Ω0(GM) tMerger
GM

tRD
GM

mFinal
M χFinal

Spin 0.3 3.0 0.30 0.30 0.0163 5841 764 0.96 0.68
Spin 0.1 3.0 0.10 0.10 0.0164 5452 817 0.97 0.59
Spin 0.0 3.0 0.00 0.00 0.0190 3457 697 0.97 0.54

Table 2.1: Parameters of numerical runs. Each run was performed at low, medium,
and high resolutions. We give the mass ratio m1/m2 where the subscripts label
the black holes. All of the spins are aligned in the z-direction, so we give the
ẑ component of the dimensionless spin vector ®χA for each black hole. The initial
orbital frequency isΩ0. Initial orbital parameterswere chosen so that the eccentricity
was below 5 × 10−4. The time simulated to merger is tMerger, and the amount of
ringdown simulated thereafter is tRD, both in units of GM . The final mass of the
remnant black hole is mFinal, in units of M . The remnant spins are in the z-direction,
and thus we give the ẑ component χFinal of the dimensionless spin.

approximation is valid (the early inspiral), giving

ϑ
(1)FZ
1,0 =

√
4π
3

1
R2 (µ1 + µ2) , (2.29)

ϑ
(1)FZ
2,1 =

√
2π
15

1
R

(
µ1

m2
M
− µ2

m1
M

)
ω(GMω)1/3e−iφ ,

ϑ
(1)FZ
3,2 =

√
32π
105

1
R

(
µ1

m2
2

M2 + µ2
m2

1
M2

)
ω(GMω)2/3ie−2iφ .

Here φ = φ(t) is the orbital phase, ω = ω(t) = Ûφ is the orbital frequency, mA is the
mass of each black hole, M = m1 +m2 is the total mass,3 and µA is the z component
(the only component since this calculation is for a spin-aligned binary) of the scalar
dipole moment from Eq. (2.27). Note that the (1, 0) mode is time-independent (and
hence non-radiative), since we are focusing on spin-aligned systems.

The behavior of the scalar field during the late inspiral and merger was previously
unknown and is part of the motivation for the present numerical study.

Scalar field waveforms

We performed three numerical simulations in this formalism, each at low, medium,
and high numerical resolutions, with parameters given by Table 2.1. We chose three
values for the BHs’ dimensionless spins of 0.0, 0.1, and 0.3, to qualitatively see the

3In PN literature, m is often used as the total mass. We use M here in order to be consistent with
numerical relativity literature.



33

effect of spin on the physics, and to allow for comparisonwith analytical calculations.
While SpEC can simulate very high spins [177], the analytics we compare against
use the small-spin expansion and stop at linear order in spin. Therefore the O(χ2)

errors should be at most ∼ 30% of the O(χ) effects we compare against. Similarly,
while modeling spin precession is possible [148], it is not the focus of this study,
and thus we have eliminated this complication by aligning all of the spins with the
orbital angular momentum.

As mentioned in Sec. 2.3, the scalar field around an isolated, slowly spinning black
hole in dCS is approximately a dipole. We use this analytic approximation as the
basis for our initial data, as mentioned in Sec. 2.2. The initial scalar field is a
superposition of two slow-rotation dipole solutions (since all of the dimensionless
spins are ≤ 0.3), one around each black hole. We apply a boost to account for the
initial velocity of each black hole. As our scalar field evolution system is first-order
(see App. 2.A), we also initialize the variables corresponding to the spatial and time
derivatives ofΨ to the analytical derivatives of the approximate dipole solution. For
the non-spinning simulation, we set the initial value of Ψ and its derivatives to zero.

We plot mode-decomposed waveforms extracted from the highest resolution sim-
ulations of the three simulations in Figs. 2.1, 2.2, and 2.3. Each figure shows the
(l = 2,m = 2) mode of the Newman-Penrose quantity Ψ4 decomposed into spin-
weight −2 spherical harmonics, and the dominant (l,m = l − 1) modes of the scalar
ϑ(1) for l = 1, 2, 3, along with the PN comparisons from Eq. (2.29).

We immediately see that at early times, there is good qualitative agreement between
the numerical waveforms and the PN predictions, with the (l = 2,m = 1) mode
dominating, as expected. In the PN formulas of Eq. (2.29), we used the instantaneous
coordinate orbital frequency and phase calculated from the black hole trajectories
for ω and φ. Since the starting phase is arbitrary, we perform a phase alignment (by
eye) between the numerical results and the PN waveforms.

As expected, because the spins are not precessing, there is no dipole radiation at
early times. The offset away from zero seen in the (l = 1,m = 0) panel of Fig. 2.1 is
a real physical effect: it is due to the combined dipole moments of the two individual
black holes and their orbital angular momentum. After merger, the l = 1 moment
settles down to a new non-zero value (below the resolution of this figure) determined
by the spin of the final black hole, again via Eq. (2.27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered phenomenon that could not
have been computed with analytic post-Newtonian calculations. Scalar monopole
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Figure 2.1: Waveforms for simulation with spin χ = 0.3ẑ on each black hole. The
top panel shows the real part of the (l = 2,m = 2) mode of the spin-weight −2
spherical harmonic decomposition of the Newman-Penrose scalar Ψ4, extracted at
a (large enough) radius of R = 290 GM . This serves as a proxy for the gravitational
waveform. The lower three panels show the (1,0), (2,1) and (3,2) scalar spherical
harmonic modes of the scalar ϑ(1) at R = 300 GM . The numerical values from the
simulation are shown by the solid blue curves, while the PN calculations are shown
by the dashed black curves. The time axis corresponds to the approximate retarded
time (simulation time minus extraction radius) minus the merger time, which is
computed as the time of peak amplitude of Ψ(2,2)4 .
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Figure 2.2: Similar to Fig. 2.1, but with spin χ = 0.1ẑ on each BH.
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Figure 2.3: Similar to Fig. 2.1, but with no spin on either BH.
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radiation, meanwhile, is consistent with zero within the numerical errors of the
simulation.

Energy fluxes
Having solved for the scalar field ϑ(1), we can evaluate physical quantities such as its
stress-energy tensor, Eq. (2.11). From T (ϑ)ab , we can compute the energy flux through
some 2-sphere S2

R at coordinate radius R via

ÛE (ϑ) =
∫

S2
R

T (ϑ)ab nadSb . (2.30)

Here na is the timelike unit normal to the spatial slice, and dSb is the proper area
element of S2

R, i.e. dSb = Nb√γdA, where Nb is the spacelike unit normal to S2
R, γ

is the determinant of the induced 2-metric, and dA is the coordinate area element.

Like the metric and scalar field, we similarly expand T (ϑ)ab and ÛE (ϑ) in powers of ε,

T (ϑ)ab =

∞∑
k=0

εkT (ϑ,k)ab , ÛE (ϑ) =
∞∑

k=0
εk ÛE (ϑ,k) , (2.31)

where each ÛE (ϑ,k) includes the appropriate orders of both the scalar field and metric.
Since ϑ(0) = 0 and T (ϑ)ab is quadratic in ϑ, we have T (ϑ,0)ab = T (ϑ,1)ab = 0, and similarly
ÛE (ϑ,0) = ÛE (ϑ,1) = 0. The first non-vanishing order is T (ϑ,2)ab , which is given by

T (ϑ,2)ab = ∇aϑ
(1)∇bϑ

(1) −
1
2
gab∇cϑ

(1)∇cϑ(1) . (2.32)

Using the results of the simulations, we compute Tabna, interpolate it onto surfaces
of fixed coordinate radius R, compute TainaN i by contracting with the normal, and
perform spectral integration with the induced area element to obtain ÛE (ϑ,2). That is,
we compute

ÛE (ϑ,2)(R) =
∫

S2
R

T (ϑ,2)ai naN i√γdA . (2.33)

We also compute the energy flux at order (`/GM)0, which for vanishing ϑ(0) consists
purely of the background gravitational energy flux, as (c.f. [175])

ÛE (0) = lim
R→∞

R2

16πG

∫
S2
R

����∫ t

−∞

Ψ4dt′
����2 dΩ , (2.34)

where numerically we set the lower bound of the time integral to the start of the
simulation, assuming there was comparatively little radiation before the start.
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Figure 2.4: Order (`/GM)0 and (`/GM)4 energy fluxes, as a function of time,
aligned at the peak of Ψ(2,2)4 . We plot the order (`/GM)4 numerical scalar energy
flux extracted at R = 300 GM [colored solid lines; Eq. (2.33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (2.35) and (2.36)], for the highest
resolution of each simulation. We also plot the energy flux at order (`/GM)0, which
consists solely of the background gravitational radiation [Eq. (2.34)], for the spin 0.3
simulation (dot-dashed black line); the GW flux is the same order of magnitude for
all three spin configurations. The O(1) ratio between PN and numerics is likely due
to the PN fluxes only including l = 2, whereas numerical quantities are computed
with all modes up to l = 8.

We plot the numerical values of ÛE (ϑ,2)(R) and ÛE (0)(R) in Fig. 2.4, keeping (spin-
weighted) spherical harmonics up through l = 8. We check for the convergence
of the flux quantities with increasing extraction radius, and present the results at
R = 300 GM , which agree with the results at R = 200 GM .

In Fig. 2.4 we also plot a post-Newtonian approximation to ÛE (ϑ,2). This is computed
using the far-zone PN solution for ϑ(1) from [212], which only includes the l = 2
quadrupole radiation. We impose circular orbits and aligned spins, convert to our
conventions via Eq. (2.4), and re-insert the appropriate factors of G. The result for
at least one non-zero spin is

ÛE (ϑ,2)PN = −
5

1536G

(
`

GM

)4 (m2
M χ1 −

m1
M χ2

)2
(GMω)14/3 , (2.35)
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and for two non-spinning black holes,

ÛE (ϑ,2)PN = −
2

15G

(
`

GM

)4
η2 δm2

M2 (GMω)8 . (2.36)

In these expressions, χA is the dimensionless spin of black hole A, η = m1m2/M2

is the symmetric mass ratio, and δm = m1 − m2 is the mass difference.

Although the gravitational flux at order (`/GM)0 is by far the largest energy flux,
the scalar field flux at order (`/GM)4 sharply increases before merger. The spin
contributions are dominant, as the scalar flux for the spin-0 simulation is compara-
tively small until the merger, when nonlinearities become very important. At early
times, our fully numerical results qualitatively agree with the PN results of [212],
validating our and their calculations. We expect the O(1) ratio between PN and full
numerics in Fig. 2.4 stems from the PN expressions (2.35), (2.36) only including
l = 2, whereas our numerics include all modes up through l = 8.

Regime of validity
Since this method is perturbative, we expect that it breaks down, or, becomes invalid,
at some point. There are two types of breakdown. First, at every instant of time,
there is the question of whether the series converges. We expect that the series
should only converge when ` � GM , and we assess this in Sec. 2.3. Second, over
much longer times, there will be a secular drift between the perturbative solution
and the “true” solution, so that the two solutions become out of phase. We assess
the dephasing below in Sec. 2.3.

Instantaneous validity

The perturbative scheme is valid pointwise at every instant in time if the series for
the metric (2.12a) and scalar (2.12b) are convergent. Roughly, we can assess this by
comparing the magnitudes of successive terms in the series. As shown in Sec. 2.2,
up through order ε2, the metric and scalar are expanded as

gab = g
(0)
ab + ε

2h(2)ab + O(ε
3) , (2.37a)

ϑ = εϑ(1) + O(ε3) . (2.37b)

Thus we cannot assess the convergence of ϑ without going to O(ε3), but at O(ε2)

we can compare the magnitudes of g(0)ab and h(2)ab . A rough condition for convergence
is that h(2)ab

 . g(0)ab

 , (2.38)
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0.1ẑ
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Figure 2.5: Estimate of instantaneous regime of validity of perturbation theory for
each of the binary black hole configurations in this study, as a function of coordinate
time relative to merger. Perturbation theory in powers of |`/GM | is invalid in the
shaded region above each curve. The maximum allowed value of |`/GM | comes
from Eq. (2.42). The jaggedness at early times is due to p-refinement of the spectral
subdomains causing points to cross the mask outside of apparent horizons. The
jump near time of merger is due to formation of the common horizon. After merger,
the remnant black hole governs |`/GM |max. Since all simulations have comparable
remnant spins (see Table 2.1), the final values of valid |`/GM | are similar.

where ‖·‖ is an L2 norm.

The magnitude of h(2)ab depends on the strength of the coupling parameter `, as
discussed in Sec. 2.2, via h(2)ab = (`/GM)4Υab, where Υab is independent of `. Thus
we translate Eq. (2.38) into a condition on the maximum allowed value of `/GM ,

���� `

GM

����
max
∼ C

©«
g(0)ab


‖Υab‖

ª®®¬
1/4

min

, (2.39)

where C is some factor of order unity, and on the right-hand side, the ratio is
evaluated pointwise, and then the minimum is taken over the domain outside of the
apparent horizons, at each coordinate time. At values of `/GM larger than this
estimate, we expect the perturbative approach fails to converge somewhere in the
spacetime.

In these order ε1 simulations, we have not simulated Υab. We can, however, make
scaling estimates from its schematic equation of motion, Eq. (2.25). The source
term mpl`

2C(1)ab should be of the same order of magnitude as T (2)ab (which we do
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compute in the simulations), so, to within an order of magnitude, we estimate

�(0)Υ ∼ Tab[Ψ] , (2.40)
1
L2 ‖Υ

(2)
ab ‖ ∼ ‖Tab[Ψ]‖ . (2.41)

Here L is a characteristic curvature length scale, and Tab[Ψ] is shorthand for the
“stress-energy”Tab[Ψ] = ∇aΨ∇bΨ−

1
2gab(∇Ψ)

2. Therefore, we estimate the allowed
value for `/GM as

���� `

GM

����
max
∼ CL−1/2 ©«

g(0)ab


‖Tab[Ψ]‖

ª®®¬
1/4

min

. (2.42)

We plot this estimate in Fig. 2.5 for each of the spin configurations considered in
this study. During inspiral, the curvature is highest around the smaller black hole,
so we let L = min(Gm1,Gm2). After merger, we let L = GmFinal (see Table 2.1 for
values).

We can compare our estimates for the regime of validity |`/GM |max to those com-
puted in Stein [184]. Stein computed |`/Gm|max of a stationary, isolated black hole
as a function of χ of the body, using methods that are independent of ours. At late
times, we find direct agreement, at the 5% level, by setting C = (32)1/4 ≈ 2.38. At
early times, after including a factor of M/m2 to convert from |`/GM | to |`/Gm2 |,
we again find agreement. At early times, the low-spin simulation has a very large
regime of validity, because the Pontryagin density is small, and hence Chern-Simons
effects are also small. However, approaching the time of merger, orbital motion and
nonlinearities source enough energy density in the scalar field to restrict the regime
of validity of |`/GM | to order unity.

Secular validity (dephasing)

The true physical system at ε > 0 radiates energy more quickly than the GR-only
(ε = 0) solution that we are using as the background for perturbation theory. As a
result, the true solution will inspiral more quickly, so the orbital phase will have a
secularly growing deviation away from the background. A post-Newtonian scaling
estimate (see below) says that the standard solution will break down over a secular
timescale of order Tsec ∼ TGR

RR (`/GM)−2v−2, where TGR
RR is the radiation-reaction

timescale in GR. This scaling (`/GM)−2 is characteristic of singular perturbation
theory [42, 66, 89].



42

If the length of a detected gravitational waveform is long compared to the secular
breakdown time, then we will need a method to extend the secular regime of
validity of the calculation—for example, multiple-scale analysis (MSA) [42] or the
dynamical renormalization group [66, 89]. We save this issue for future work. Here,
we will estimate the dephasing time (secular breakdown time).

Let us focus on quasi-circular, adiabatic inspirals. Similarly to the scalar field and
metric variables in Eqs. (2.12a) and (2.12b), we can expand the accumulated orbital
phase φ(t) and the orbital frequency ω(t) = Ûφ(t) of the binary in powers of ε,

φ = φ(0) + εφ(1) + ε2φ(2) + O(ε3) , (2.43)

ω = ω(0) + εω(1) + ε2ω(2) + O(ε3) , (2.44)

where φ(0) corresponds to the phase of the binary in pure GR, and φ(1) contains
the dCS corrections at order ε1 and so on. Since the metric deformation at O(ε1)

vanishes, the phase correction at O(ε1) also vanishes, φ(1) = 0 = ω(1). The first
non-vanishing orbital phase correction is

∆φ ≡ φ(2) . (2.45)

We can use ∆φ to assess the secular regime of validity, and in Sec. 2.3 we will also
use it to assess the detectability of dynamical Chern-Simons.

We do not have ∆φ directly from the simulation, as we do not evolve the ε2 system.
However, we can estimate it from previously-known analytical results combined
with numerical quantities available during the simulation.

Consider the local-in-time expansion of the orbital phase correction ∆φ around any
“alignment time" t0,

∆φ(t) = ∆φ(t0) + (t − t0)
d∆φ
dt

���
t=t0

(2.46)

+
1
2
(t − t0)2

d2∆φ

dt2

���
t=t0
+ O(t − t0)3 ,

∆φ(t) = ∆φ(t0) + (t − t0)ω(2)(t0) (2.47)

+
1
2
(t − t0)2

dω(2)

dt

���
t=t0
+ O(t − t0)3 .

If our simulation had started at reference time t0, thenwewould have∆φ(t0) = 0. The
linear piece (t − t0)ω(2)(t0) corresponds to a perturbative, instantaneous frequency
shift, which is completely degenerate with a renormalization of the physical mass
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M(ε) in terms of the “bare" mass M(ε = 0). Therefore, the constant and linear
pieces of this expansion are not observable.

However, the curvature 1
2 (t − t0)2dω(2)/dt |t=t0 cannot be redefined or scaled away.

Therefore, within a sufficiently short window of time around the alignment time t0,
the deformation to the orbital phase is given by

∆φ =
1
2
(t − t0)2

dω(2)

dt

���
t=t0
+ O((t − t0)3) . (2.48)

We use this to define the perturbative secular time Tsec(t0) at any instant t0 via

1 ≈ ∆φ =
1
2

T2
sec

dω(2)

dt

���
t=t0

, (2.49)

Tsec ≡

(
1
2

dω(2)

dt

���
t=t0

)−1/2

, (2.50)

roughly the time to dephase by order one radian.

Thus we need to estimate dω(2)/dt from our simulation. Under the assumption of
quasi-circular, adiabatic orbits, there is a one-to-one correspondence between the
orbital frequency ω and orbital energy E . In other words, there exists a function of
one variable, E(ω) or ω(E). Therefore, from the chain rule, we can find the time
derivative

dω
dt
=

dω
dE

dE
dt
=

dE/dt
dE/dω

. (2.51)

This depends on the conservative sector through the frequency-dependence of orbital
energy, dE/dω, and on the dissipative sector through the radiated power, dE/dt.
Just as with the frequency, we expand the orbital energy in powers of ε,

E = E (0) + εE (1) + ε2E (2) + O(ε3) . (2.52)

We can then use this to expand Eq. (2.51) in powers of ε. The O(ε2) piece is given
by

dω(2)

dt
=

dω(0)

dt

[
dE (2)/dt
dE (0)/dt

−
dE (2)/dω
dE (0)/dω

]
. (2.53)

The prefactor dω(0)/dt is simply the background (GR) evolution of the orbital
frequency. The first term in square brackets in Eq. (2.53) comes from the dissipative
sector of the dynamics, since it depends on the radiated power dE (2)/dt. The
second term, meanwhile, comes from the conservative sector, as it depends on the
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correction to the orbital energy E (2)(ω). Both of the factors in square brackets scale
as (`/GM)4v4 [212, 211] for BBHs with spin. Plugging this scaling into Eq. (2.50)
recovers Tsec ∼ TGR

RR (`/GM)−2v−2.

We find it useful to rewrite dE (0)/dω in the second term using the chain rule (2.51)
to give

dω(2)

dt
=

dω(0)/dt
dE (0)/dt

[
dE (2)

dt
−

dω(0)

dt
dE (2)

dω

]
. (2.54)

Now we can discuss how to evaluate these factors from our numerical simulation
and previously-known analytical results. The background energy flux dE (0)/dt

comes from the numerical simulation via Eq. (2.34). We also have the background
frequency evolution dω(0)/dt from the numerical simulation, via a time derivative
of the coordinate orbital frequency.

The two O(ε2) quantities require approximations. In the dissipative sector, there are
two contributions to dE (2)/dt: the first from scalar radiation, and the second from
gravitational radiation. We expect these to be the same order of magnitude. Since
we do not have access to the gravitational radiation, we approximate that to within
an order of magnitude,

ÛE (2) ≈ ÛE (ϑ,2) , (2.55)

where ÛE (ϑ,2) was given in Eq. (2.33). This is further justified during the inspiral,
where the O(ε2) dissipative correction due to gravitational waves is higher-PN than
the scalar radiation [212].

In the conservative sector, we can approximate E (2)(ω) from a post-Newtonian
calculation [211, 185]. The (PN-approximate) correction to the orbital energy E (2)

also has two pieces: the scalar binding energy and the metric-deformation binding
energy. Again we are going to make an approximation and ignore the metric
deformation piece, approximating

E (2)(ω) ≈ E (ϑ,2)DD , (2.56)

where E (ϑ)DD is the scalar dipole-dipole interaction. After accounting for a missing
minus sign in [211, 185], this is given by

E (ϑ,2)DD = 4π
3µi

1µ
j
2n12
〈i j〉

r3
12

(2.57)

=
4π
r3

12
[3(µ1 · n12)(µ2 · n12) − (µ1 · µ2)] , (2.58)
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Figure 2.6: Estimate of secular regime of validity from dephasing time Tsec,
Eq. (2.50). The perturbative scheme is valid within a sufficiently short time
window |t − t0 | � Tsec about an alignment time t0. For longer times, multiple-
scale analysis or renormalization will be needed to extend the regime of validity.
The dephasing time is parametrically longer than the GR radiation reaction time,
Tsec ∼ TGR

RR (`/GM)−2v−2. As expected it shrinks toward merger, remaining nonzero.

where again µi
A is the scalar dipole moment given in Eq. (2.27). In our case, the

spins are in the ẑ direction, so the (µA · n12) term vanishes. To leading PN order, we
use the Kepler relation ω2 = GM/r3

12 and obtain

E (ϑ,2)DD = 4πω2(GM)−1µ1µ2 (2.59)

dE (ϑ,2)DD
dω

= 8πω(GM)−1µ1µ2 , (2.60)

where µA now refers to the ẑ component. For ω, we again use the coordinate orbital
frequency from the simulation.

To summarize this calculation: we are approximating the secular breakdown time
Tsec [Eq. (2.50)] by assuming a quasi-circular, adiabatic inspiral, and thus we com-
pute dω(2)/dt, Eq. (2.54). We approximate the dissipation ÛE (2) from only the scalar
flux, Eq. (2.55). We approximate the conservative correction E (2)(ω) from the
post-Newtonian scalar dipole-dipole interaction, Eq. (2.56).

In Fig. 2.6, we plot (`/GM)2Tsec(t0), the time to secularly dephase by about ∼ 1
radian, around various alignment times t0. We have checked that at early times,
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this numerical estimate agrees with an analytic PN estimate. As expected, Tsec is
parametrically longer than the GR radiation-reaction time. The time window for
secular validity shrinks approaching merger, but does not vanish.

The value of Tsec, and hence secular regime of validity, is smallest near merger.
For the spin 0.3 simulation, just before merger, we find the time to dephase by
about 1 radian from the GR background is Tsec ∼ 15 GM(`/GM)−2. If Advanced
LIGO detects a gravitational waveform of length, say, 200 GM , then a perturbative
calculation without MSA/renormalization would be valid for (`/GM) . 1/4. For
longer waveforms or larger values of (`/GM), MSA or renormalization would be
required. However, larger values of (`/GM) will be very close to the limit on the
instantaneous regime of validity, Fig. 2.5.

Detectability and bounds estimates
We now turn to the issue of how well Advanced LIGO/Virgo would be able to detect
or bound the effects of dynamical Chern-Simons gravity from observations of a
binary black hole merger. As we do not yet have metric waveforms [that arise at
O(ε2)], we make order-of-magnitude projections of detectability and bounds from
the dephasing estimates in the previous section.

Suppose that LIGO detects a gravitational waveform similar to one of those we have
simulated, with approximately 5 cycles of inspiral in band before merger—similar
to GW150914 [10], with a total mass approximately M ≈ 60M�. Such a detection
would come with errors due to noise and calibration uncertainty; let us define
the overall waveform phase uncertainty σφ. Let us further assume that the dCS
corrections to the full waveform are not degenerate with redefining “bare" binary
parameters. Upon detection, there are two distinct possibilities: (i) the detected
waveform is consistent with GR predictions; or (ii) the detection is inconsistent with
any point in the GR parameter space.

In the case of consistency, we would be able to place bounds on the size of `.
Crudely, we would be able to say

∆φgw = 2∆φ . σφ , (2.61)

where the factor of two comes from the gravitational wave being at twice the orbital
frequency. If we have consistency with GR, then the quadratic approximation for
∆φ in Eq. (2.48) holds.
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Figure 2.7: Estimated orbital phase difference (top) for the three different simulations
as a function of time, given by the quadratic approximation Eq. (2.48). We choose
the alignment time t0 to be when the common apparent horizon forms, the last time
when we have access to the orbital frequency. From ∆φ we can estimate how large `
must be for a detectable deviation fromGR, or project bounds on ` for GR-consistent
detections. For reference, we also plot the gravitational waveform (bottom) from
the spin 0.3 simulation, with approximately 5 cycles of inspiral before merger. This
is approximately how many cycles were seen in GW150914 [10]. The two other
simulations’ gravitational waveforms are similar.
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We plot the quadratic approximation to the orbital phase difference (relative to GR)
in Fig. 2.7. By taking the maximum value of ∆φ over the length of the waveform,
and taking into account the scaling with (`/GM)4, we can derive a projected bound
on `. For example, from the spin 0.3 simulation and M ≈ 60M�, we would find(

`

GM

)
. 0.13

( σφ
0.1

)1/4
or ` . 11 km

( σφ
0.1

)1/4
, (2.62)

and from the spin 0.1 simulation,(
`

GM

)
. 0.2

( σφ
0.1

)1/4
or ` . 18 km

( σφ
0.1

)1/4
. (2.63)

The spin 0.0 simulation would only give (`/GM) . 1.4(σφ/0.1)1/4. Such a bound
would be past the instantaneous regime of validity limit during merger for this
simulation (see Fig. 2.5). It is not internally self-consistent to use this perturbative
result to claim a constraint on the regime past perturbative validity, so conservatively,
no statement can be made. The higher spin simulations do not suffer from this
problem.

These bounds forecasts can immediately be turned around into detectability fore-
casts. We can forecast that dynamical Chern-Simons correctionswould be detectable
in an M ≈ 60M� binary with parameters consistent with our spin 0.3 simulation if
` & 11 km, and similarly for the spin 0.1 simulation if ` & 18 km.

We can draw three simple lessons on detectability and bounds from these results.
First, better phase sensitivity (smaller σφ) is an obvious way to improve the odds
of detectability, or place stronger bounds. This comes from improved detector
sensitivity, but also from higher signal-to-noise ratio (SNR) events. Second, at fixed
phase sensitivity, lower-mass events would be better than higher mass events, to a
point. Lower mass events obviously have smaller GM , but they also spend more
time in band, and thus have more time for dephasing. There is a tradeoff, though,
because lower mass events are quieter, and also because most of the dephasing
comes right before merger—so the mass must be high enough for merger to be in
band. Finally, we can easily see that higher spin systems would lead to stronger
constraints or a better chance of detecting dCS effects.

Let us compare our projected bounds to those appearing previously in the literature.
Ali-Haïmoud and Chen [20] used solar system data from Gravity Probe B and the
LAGEOS satellites to constrain the characteristic length scale to ` . 108 km. Yagi,
Yunes, and Tanaka [210] found a similar bound from table-top experiments. This is
comparable to the curvature radius in the solar system.
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Yunes and Pretorius [214] applied a precession calculation from the extreme mass-
ratio limit to PSR J0737–3039 to estimate a constraint of ` . 104 km. However,
this calculation missed some effects (such as the scalar binding energy), and the
mass ratio of PSR J0737–3039 is very close to 1. Moreover, the curvature radius at
the surface of one of the NSs in this system should be order ∼ 10 km, which means
there is room between 10−104 kmwhere ` could be large compared to the curvature
length, and thus the calculation would not be internally self-consistent. Yagi, Stein,
Yunes, and Tanaka [211] performed a more careful analysis, using post-Newtonian
theory for binary NS systems. They concluded that even PSR J0737–3039, with its
high orbital velocity and exquisite timing, would not be able to yield a constraint on
dCS for the foreseeable future, and that gravitational wave measurements would be
the best hope.

Yagi, Yunes, and Tanaka [209] used post-Newtonian calculations to project the
level of constraints that might arise from second and third generation GW detec-
tors. If next-generation detectors such as Einstein Telescope [167] were to ob-
serve binary black hole inspirals consistent with GR, then YYT project a bound
of ` . O(10 − 100) km. Second-generation ground-based detectors could place a
similar constraint. The only caveat here is that YYT use post-Newtonian estimates,
stopping at the ISCO frequency, for systems that would be seen not only in the
inspiral, but also in the merger and ringdown, where PN is invalid. The additional
SNR contributed by merger and ringdown will likely improve constraints.

Stein and Yagi [185] projected a number of constraints on ` based on both pericenter
precession in pulsar binaries and gravitational wave measurements. For a LIGO
detection of a (10+ 11)M� BBH inspiral, consistent with GR, at an SNR of 30, they
projected a bound on the order of ` . 10 km. Note that this is the same order of
magnitude as the projected bound we estimate here.

Finally, Stein [184] projected a bound based on the observations of the black hole
candidate GRO J1655–40. Assuming observations were consistent with GR, Stein
projected a constraint of ` . 22 km. However, such a constraint would require (for
example) accretion disk modeling in the presence of the dCS correction, which has
not been simulated.

2.4 Discussion and future work
In this study, we have performed the first fully nonlinear inspiral, merger, and
ringdown numerical simulations of a binary black hole system in dynamical Chern-
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Simons gravity. These are the first BBH simulations in a theory besides general
relativity and standard scalar-tensor gravity. BBH in scalar-tensor is identical to that
in GR, unless one imposes an external scalar field gradient [103, 46]. Therefore,
these are also the first numerical simulations in a theory where the BBH dynamics
differ from GR under ordinary initial and boundary conditions.

The “full” equations of motion for dCS, and many other corrections to GR, probably
lack a well-posed initial value formulation. This is not an obstacle if the corrections
are treated as being a low-energy effective field theory. In Sec. 2.2, we formulated a
perturbation scheme which guarantees a well-posed initial value problem. We stress
that this scheme is applicable not just to dCS, but also any deformation of general
relativity which has a continuous limit to GR.

We performed fully nonlinear numerical simulations through order O(ε1) in the
perturbation scheme. We simulated binaries with mass ratio q = 3 and aligned
spins with equal dimensionless spin parameters χ1 = χ2, taking on three values,
χ = 0.0, 0.1, 0.3. The background (ε0) metric radiation and perturbative (ε1) scalar
radiation waveforms are presented in Sec. 2.3. We found good agreement with PN
waveform predictions [212, 211] during the early inspiral.

We have also discovered new phenomenology in dCS. In agreement with PN predic-
tions, dCS does not suffer from dipole radiation during the early inspiral. However,
during merger, there is a burst of dipole radiation. This phenomenon can only be
studied with full numerical simulations.

We extracted energy fluxes in Sec. 2.3, finding good agreement with PN at early
times. We found that the scalar field’s O(ε2) energy flux during the inspiral was
approximately 10−6(`/GM)4 times smaller than the corresponding O(ε0) (GR) en-
ergy flux for the highest spin simulation, rising to a 10−3(`/GM)4 fraction of GR
during merger. This energy flux enters into our detectability estimate.

Since we use a perturbative scheme, it is important to understand where perturbation
theory breaks down. In Sec. 2.3, we estimated the maximum values of `/GM for the
perturbation theory to be convergent at each time during the simulation. During the
inspiral and ringdown, the regime of validity agrees with estimates from [184]. The
tightest bound on the instantaneous regime of validity comes during merger and is
comparable for spinning and non-spinning black hole mergers, close to `/GM . 1.

The additional radiation in the scalar field ϑ(1) leads to a secular drift in orbital
phase between the “true” orbital dynamics and the GR background from which we
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perturb. Therefore, even if perturbation theory is instantaneously under control, the
perturbative solution will dephase after a sufficiently long time. We numerically
estimated this dephasing time in Sec. 2.3, and it agrees with post-Newtonian scaling
at early times. At times approaching merger, the dephasing time becomes shorter,
but remains nonzero.

This dephasing calculation served as the basis for estimating detectability and pre-
dicting bounds that LIGO would be able to place on `, in Sec. 2.3. For q = 3,
M ≈ 60M�, and aligned dimensionless spins of χ1 = χ2 = 0.3, we estimated that a
GR-consistent detection would yield a bound of

` . 11 km
( σφ
0.1

)1/4
, (2.64)

where σφ is LIGO’s statistical phase uncertainty on the detected waveform, which
depends on the SNR of the detection. Conversely, any ` above this value would be
detectable by LIGO. Lower spins lead to poorer detectability and/or bounds. Better
bounds come from three places: (i) improved phase sensitivity (higher SNR), (ii)
lower mass events (while keeping merger in band), and (iii) higher spin systems.

Future work
The natural next step in this program is to continue to the order ε2 system, as outlined
in Sec. 2.2. This is the lowest order where gravitational radiation is modified, and
would involve solving for h(2)ab , which is sourced by g

(0)
ab and ϑ(1).

With the solution for the deformation to the metric h(2)ab , we will be able to directly
compare dCS predictions against LIGO data. We will also have a more complete
assessment of the convergence of the perturbation scheme.

Comparing dCS predictions against LIGO data will yield the first direct bounds on
the theory from the strong-field, dynamical regime of gravity. To do so will involve
extending GR parameter estimation [202] with one additional parameter, `, which
will be simultaneously inferred or constrained from the data.

A complete analysis would involve thorough exploration of the 7-dimensional pa-
rameter space of quasicircular BBHs (mass ratio and two spin vectors; the ` depen-
dence is analytic in the perturbative approach). For example, in this work, we have
focused on aligned-spin binaries in order to simplify comparisons with analytic pre-
dictions. The scalar energy flux in the case of misaligned binaries may be an order of
magnitude larger than in the spin-aligned case (see [212] and the erratum). Building
a surrogate waveform model [51, 50] would simultaneously allow for an efficient
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exploration of parameter space and efficient parameter estimation/constraints with
LIGO data.

The standard perturbation theory approach we used here will be sufficient if we find
that the dephasing time is long compared to LIGO signals. However, if we need to
extend the secular regime of validity, some form of multiple-scale analysis [42] or
dynamical renormalization group [66, 89] approach will be required.

Finally, let us emphasize that our approach is not limited to dynamical Chern-Simons
gravity: dCS is a proof of principle. Any theory with a continuous limit to GR can be
treated with the same scheme, and reusing a large fraction of the code. In particular,
we will consider EdGB and a class of theories proposed in [83]. Switching from
dCS to another theory will only involve changing source terms that appear on the
right hand sides of the differential equations we are solving numerically.

2.A Scalar field evolution formulation
In this appendix, we discuss the numerical evolution scheme for a (massless) Klein-
Gordon field, denoted by the code variable Ψ, in greater detail. This is an update of
the system described in [105], which did not include the “γ1γ2” constraint-damping
term (see below). The basic equation we are simulating is

�Ψ = S , (2.65)

for some prescribed source term S (in this work, the source term is the Pontryagin
density ∗RR).

We first review the 3+1 ADM formalism for the foliation of a spacetime into spatial
slices, as used in numerical relativity [40]. We decompose the metric as

gab = γab − nanb , (2.66)

where gab is the spacetime metric, na is a timelike unit one-form normal to the
spatial slice with nana = −1, and γab is the induced spatial metric and projector,
with naγab = 0. In ADM variables, the timelike unit normal can be written in terms
of a lapse, α, and shift βi, as na = (α−1,−α−1βi).

We work with the Spectral Einstein Code (SpEC), which uses the generalized har-
monic formulation of general relativity, and evolves a symmetric-hyperbolic first-
order system of metric variables gab, Φiab = ∂igab and Πab = −nc∂cgab [121].
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We similarly define a set of first-order variables for the scalar field Ψ as

Φi = ∂iΨ , (2.67)

Π = −na∂aΨ = −α
−1(∂tΨ − β

i∂iΨ) . (2.68)

From these definitions and the equality of mixed partial derivatives, we can create
a system of constraints which vanish in the continuum limit, and which an accurate
evolution of the system will satisfy to within some tolerance:

C(1)i = ∂iΨ − Φi , (2.69)

C(2)i = [i j k]∂jΦk . (2.70)

In Eq. (2.70) the indices j, k are summed and [i j k] is the completely antisymmetric
Levi-Civita symbol, with [123] = +1.

The evolution equation (2.65) thus becomes a set of first-order time evolution equa-
tions for {Ψ,Φi,Π}. However, in order to prevent numerical errors in the constraints
from making the evolution unstable, we follow what is done in the metric system
and add specific multiples of the constraints to the evolution equations. These
combinations of constraints are chosen so as to ensure that the system is symmetric
hyperbolic and that the constraints are damped out, ensuring a well-posed evolution
scheme. The evolution equation for Ψ is thus

∂tΨ = − αΠ + β
m[∂mΨ + γ1(∂mΨ − Φm)] , (2.71)

where the first terms come from the definitions of Φi and Π, and the last term is a
constraint damping term with coefficient γ1. The evolution equation for Φi is

∂tΦk = − α[∂kΠ + γ2(Φk − ∂kΨ)]

− Π∂kα + β
m∂mΦk + Φm∂k β

m ,
(2.72)

where the term with γ2 is a constraint damping term, and all other terms come from
definitions of the first-order variables and equality of mixed partial derivatives.
Finally, the evolution equation for Π is

∂tΠ = αΠK + βm∂mΠ + αΦmΓ
m

+ γ1γ2β
m(∂mΨ − Φm)

− αgmn∂nΦm − g
mn
Φn∂mα

+ αS ,

(2.73)
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whereK is the trace of the extrinsic curvature, Γm ≡ gabΓm
ab is a specific contraction

of the Christoffel connection coefficients, S is the source term, and the γ1γ2 term is
the appropriate constraint-damping term to keep the system symmetric hyperbolic.

This “γ1γ2” termwas not included in the previous description [105], but it is required
if both γ1 and γ2 are non-zero. The parameters γ1 and γ2 play the same role in the
damping and characteristic analysis of this Klein-Gordon system as they do in the
generalized harmonic system [121]. Specifically, in order for the constraint C(1)i to
be damped, we must have γ2 > 0 (satisfying the constraint C(1)i implies satisfaction
of the constraintC(2)i ). The choice γ1 = −1 makes the system linearly degenerate. In
practice, we set the values of γ1 and γ2 to match those of the generalized harmonic
evolution of the metric variables, so that the characteristic speeds of the metric and
scalar field systems agree.

The scalar field variables, like the metric variables, are represented spectrally. In
order to reduce the amount of numerical noise in the system, we apply the same
filters we use for the metric variables to the scalar field system, namely filtering the
top 4 tensor spherical harmonics and using an exponential Chebyshev filter for the
radial piece.

In order to assess the accuracy of the simulations, we evaluate the constraints that the
generalized harmonic evolution system must satisfy [121], as well as the constraints
for the first-order scalar field system given by Eqs. (2.69) and (2.70). We combine
these constraints, contracting with a Euclidean metric to give a constraint energy as

C2 = C(1)i C(1)i + C(2)j C(2)j . (2.74)

Since the code is spectral, we check for exponential convergence of these constraint
energies as we increase the number of angular and radial basis functions per sub-
domain (and hence the resolution). We plot the convergence of the L∞ norm of
the constraint energies for the highest spin simulation of this study, which has the
greatest level of constraint violation, in Fig. 2.8. We find that the error decreases
exponentially with resolution. The lower spin simulations have similar qualitative
behavior.

2.B Pontryagin density in 3+1 split
Since numerical relativity computations are formulated in a 3+1 split, we must
compute the scalar field’s source term—the Pontryagin density—in terms of 3-
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Figure 2.8: Numerical error convergence for the highest spin (0.3 ẑ) simulation
performed in this study, which shows the greatest level of constraint violation. We
plot the L∞ norm of the constraint energy defined in Eq. (2.74) for the low, medium
and high numerical resolutions (adding a constant number of angular and radial basis
functions to increase resolution). Note that these constraints are not normalized, but
the relative error between the levels shows exponential convergence. The constraint
energy increases at merger, which also happens in the metric evolution system, and
is consistent with other BBH simulations.

dimensional quantities. First, it is straightforward to verify

∗RR ≡ ∗Rabcd Rabcd =
∗CabcdCabcd , (2.75)

where Cabcd is the Weyl tensor, and its left dual is ∗Cabcd ≡ 1
2ε

abe f Ce f
cd . Thus

we do not need to consider all of Riemann, but only its trace-free part, Weyl. The
Pontryagin density is completely insensitive to the Ricci part of curvature.

In a 4-dimensional numerical relativity simulation, it is especially convenient to
decompose Weyl into its electric and magnetic parts, defined as

Eab ≡ + Cacbdncnd , (2.76)

Bab ≡ −
∗Cacbdncnd . (2.77)

The minus sign in (2.77) follows the conventions of [151, 140] and the implemen-
tation in SpEC [198], though much of the literature has a plus sign. From the sym-
metries of Weyl, the two tensors Eab and Bab are both symmetric (Eab = E(ab) and
Bab = B(ab)), purely spatial (Eabna = 0 = Babna), and trace-free (Ea

a = 0 = Ba
a).

We may also write an inversion formula for Weyl in terms of Eab and Bab (thanks to



56

Alfonso García-Parrado for bringing this inversion formula to our attention),

Cabcd =
a c
b d [4Eac(γbd + nbnd) − εab

end Bce] , (2.78)

where the operator
a c
b d is a projector that imposes the symmetries of the Riemann

tensor (Rabcd = R[ab][cd] = Rcdab). Here we have the induced 3-dimensional volume
element,

εabc ≡ ndεdabc , εabcd = −4n[aεbcd] . (2.79)

For coordinate component calculations, we use the conventions where εabcd =

+
√
−g[abcd] where [abcd] is the alternating symbol, with [0123] = +1 (see

e.g. [135]). We also have εabcd = −[abcd]/
√
−g, and similar conventions for

the 3-dimensional volume element: εabc =
√
γ[abc] and εabc = [abc]/

√
γ (this

makes use of the identity √−g = α√γ).

With this above decomposition, it is easy to verify that the Pontryagin density can
be expressed simply in terms of the electric and magnetic parts of Weyl,

∗RR = −16EabBab . (2.80)

Thus all that remains is to compute Eab and Bab from other quantities. Finding these
expressions for E and B comes from the standard Gauss-Codazzi-Mainardi (GCM)
equations (see [40] for a didactic explanation). After using the GCM equations, for
the electric Weyl tensor we find

Eab = KabKc
c − Ka

cKbc +
(3)Rab (2.81)

−
1
2
γa

cγb
d (4)Rcd −

1
2
γabγ

cd (4)Rcd +
1
3
γab
(4)R .

Here (3)Rab is the spatial 3-Ricci tensorwhile (4)Rab is the 4-Ricci tensor, andKab is the
extrinsic curvature of the spacelike hypersurface. The second line of (2.81) contains
4-Ricci terms which would vanish if the 4-metric was Ricci-flat, for example if it
solves the Einstein equations in vacuum. These termswere not included in e.g. [115].

Meanwhile, for the magnetic Weyl tensor we find the simple expression

Bab = −εcd(aDcKb)
d , (2.82)

where Da is the covariant derivative induced on the 3-surface which is compatible
with the 3-metric, Daγbc = 0.
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C h a p t e r 3

NUMERICAL BLACK HOLE INITIAL DATA AND SHADOWS
IN DYNAMICAL CHERN-SIMONS GRAVITY

[1] Maria Okounkova, Mark A Scheel, and Saul A Teukolsky. “Numerical
black hole initial data and shadows in dynamical Chern–Simons gravity”.
In: Classical and Quantum Gravity 36.5 (Feb. 2019), p. 054001. doi: 10.
1088/1361-6382/aafcdf.

Abstract

We present a scheme for generating first-order metric perturbation initial data for an
arbitrary background and source. We then apply this scheme to derive metric per-
turbations in order-reduced dynamical Chern-Simons gravity (dCS). In particular,
we solve for metric perturbations on a black hole background that are sourced by a
first-order dCS scalar field. This gives us the leading-order metric perturbation to
the spacetime in dCS gravity. We then use these solutions to compute black hole
shadows in the linearly perturbed spacetime by evolving null geodesics. We present
a novel scheme to decompose the shape of the shadow into multipoles parametrized
by the spin of the background black hole and the perturbation parameter ε2. We find
that we can differentiate the presence of a pure Kerr spacetime from a spacetime
with a dCS perturbation using the shadow, allowing in part for a null-hypothesis
test of general relativity. We then consider these results in the context of the Event
Horizon Telescope.

3.1 Introduction
Einstein’s theory of general relativity (GR) has passed all precision tests to date [206].
In particular, model-independent tests using binary black hole merger data from the
Laser Interferometry Gravitational Wave Observatory (LIGO) are consistent with
GR at the 96% confidence level [16, 14, 216].

However, at some length scale, GR must be reconciled with quantum mechanics in
a theory of quantum gravity. Black holes and black hole binaries probe the strong-
field, non-linear, high-curvature regime of gravity, and thus observations of these

https://doi.org/10.1088/1361-6382/aafcdf
https://doi.org/10.1088/1361-6382/aafcdf
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systems might contain signatures of quantum gravity. Our goal is to predict these
signatures.

We know from the first LIGO detections that deviations from GR are small, and
thus rather than considering black holes in a fully quantum theory, we can calculate
their properties in effective field theories (EFTs). These theories involve adding per-
turbative quantum-gravity-motivated terms to the Einstein-Hilbert action of general
relativity. Since these theories are classical, we can hope to apply the numerical tools
used to study GR (a classical theory) to these quantum-gravity-motivated theories.

One such EFT is dynamical Chern-Simons gravity (dCS), which modifies the action
of GR through the inclusion of a scalar field coupled to spacetime curvature [18].
In particular, this theory has motivations in string theory [95], loop quantum grav-
ity [192, 134], and inflation [204]. The full effective field theory, however, most
likely does not have a well-posed initial value formulation [74]. However, we can
expand the theory around general relativity in order to guarantee a well-posed sys-
tem of equations at each order [146]. This is in part justified by the first LIGO
detection, which found deviations from GR in black hole systems to be small [14].
In a previous study, we investigated the leading-order behavior of the dCS scalar
field in a binary black hole system, quantifying the amount by which gravitational
waves in dCS gravity would differ from those in pure GR [146].

In this study, we numerically compute metric perturbations in dCS. In other words,
we calculate to leading order the modifications to a pure GR spacetime due to
the presence of the dCS scalar field. Such modifications will be required, for
example, as initial data to perform binary black hole simulations involving a dCS
metric perturbation. We thus produce and test a formalism for generating metric
perturbation initial data based on the extended conformal thin sandwich formalism
(cf. [40] for a review). Previous studies have considered such modifications, but we
present the first such formalism that can be used in the binary black hole case [214,
210, 133, 73, 62, 29].

In addition to LIGO, an instrument coming online that will have the power to
probe the strong-field regime of gravity is the Event Horizon Telescope (EHT).
The primary goal of this instrument (a very long baseline interferometry array of
radio telescopes) is to image black hole event horizons, including those of Sgr A*,
the black hole at the center of the Milky Way galaxy, and the black hole of the
center of the M87 galaxy [170, 85]. The EHT in part has the power to image the
black hole shadow, a dark region on the image corresponding to angles at which
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no photons reach the observer because of light-bending and the presence of an
event horizon. The shadow, for a black hole with a given mass and spin, has a
precise shape predicted by GR, and thus deviations from this shape can be used to
test the theory [136, 164, 136]. Since the paths of photons are determined by the
spacetime itself, resolving the shadow corresponds to directly probing the metric
of the spacetime and hence, is a metric test of GR. Moreover, predictions for black
hole shadows exist in other theories of gravity. Thus one can go beyond performing
a null-hypothesis test of GR and instead test specific theories. Additionally, since
the mass of Sgr A* is ∼ 106 M�, whereas the masses of black holes observed by
LIGO are ∼ 10 M�, the EHT probes gravity on a wholly new scale [37].

Given dCS metric perturbations, our goal is to compute the black hole shadow in
a dCS-modified spacetime, and quantify the effects (including degeneracies) on the
shape of the shadow as a function of mass, spin, and the dCS coupling parameter.
We can then estimate whether the EHT would be able to resolve these deviations.

Roadmap and conventions
This chapter is organized as follows. In Sec. 3.2, we derive and provide all of
the equations for the formalism for generating metric perturbation initial data. In
Sec. 3.3, we specifically apply this formalism to black holes in dCS gravity, present-
ing convergent initial data results. In Sec. 3.4, we present results using stationary
dCS metric perturbation initial data to calculate black hole shadows. We conclude
in Sec. 3.5.

We set G = c = 1 throughout. Quantities are given in terms of units of M , the ADM
mass of the system. Latin letters in the beginning of the alphabet {a, b, c, d . . .}
denote 4-dimensional spacetime indices, while Latin letters in the middle of the
alphabet {i, j, k, l . . .} denote 3-dimensional spatial indices. ψab refers to the space-
time metric, while gi j refers to the spatial metric from a 3+1 decomposition with
corresponding timelike unit normal one-form na (cf. [40] for a review of the 3+1
ADM formalism).

3.2 Solving for general metric perturbation initial data
Overview
In standard numerical general relativity, initial data is often generated using the
extended conformal thin sandwich formalism [69, 154, 129, 127, 149]. A thorough
review of this method is presented in [40], and a derivation is presented in [153].
This formalism decomposes the 3+1 ADMHamiltonian andmomentum constraints,



60

as well as the equation for the time derivative of the extrinsic curvature, to generate
a set of elliptic equations to numerically solve for initial data.

Recall that in the 3+1 decomposition, the constraints and time derivative of the
extrinsic curvature are given as

R + K2 − Ki jK i j = 16πρ, (3.1)

D j(K i j − gi jK) = 8πSi , (3.2)

∂tKi j = α(Ri j − 2Ki jK k
j + KKi j) − DiD jα (3.3)

− 8πα(Si j −
1
2
gi j(S − ρ)) + βk∂k Ki j + Kik∂j β

k + Kk j∂iβ
k,

where gi j is the spatial metric with corresponding covariant derivative Di, α is the
lapse, and βi is the shift. Ki j is the extrinsic curvature with trace K , and Ri j is the
spatial Ricci tensor with trace R. The matter terms ρ, Si, Si j , and S are defined with
respect to the stress-energy tensor Tab and timelike unit normal one-form na as

ρ ≡ nanbTab , (3.4)

Si ≡ −gi jnaTa j , (3.5)

Si j ≡ giag jbTab , (3.6)

S ≡ gi j Si j , (3.7)

where the time-space components of the spatial metric are given via gab ≡ ψab+nanb

for spacetime metric ψab.

The extended conformal thin sandwich formalism involves writing the spatial metric
in terms of a conformal metric ḡi j as

gi j = ψ
4ḡi j , (3.8)

where ψ is known as the conformal factor. Additionally, the time derivative of the
spatial metric is decomposed as

ui j = ∂tgi j −
2
3
gi j(−αK + Diβ

i) , (3.9)

where the function ui j is related to the time derivative of the conformal metric as

ui j = ψ
4ūi j , (3.10)

with

ūi j ≡ ∂t ḡi j . (3.11)
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In this formalism, the extrinsic curvature is decomposed into traceless and trace
parts as

Ki j = Ai j +
1
3
gi jK , (3.12)

where Ai j is the traceless part of Ki j and is conformally transformed as

Ai j = ψ
−2 Āi j , (3.13)

with

Āi j =
ψ7

2αψ
((L̄β)i j − ūi j) , (3.14)

(L̄β)i j ≡ D̄iβ j + D̄ j βi −
2
3
ḡi j D̄k β

k . (3.15)

Here, D̄i refers to the covariant derivative with respect to the conformal metric, ḡi j .

Having defined all of these quantities, we can now recast Eqs. (3.1), (3.2), and (3.3)
to give an elliptic equation for the conformal factor,

D̄2ψ −
1
8
ψ R̄ −

1
12
ψ5K2 +

1
8
ψ−7 Āi j Āi j = −2πψ5ρ, (3.16)

an elliptic equation for the shift,

(Λ̄Lβ)
i − (L̄β)i j D̄ j ln ᾱ = ᾱD̄ j(ᾱ

−1ūi j) +
4
3
ᾱψ6D̄iK + 16πᾱψ10Si , (3.17)

and an elliptic equation for αψ,

D̄2(αψ) = αψ(
7
8
ψ−8 Āi j Āi j +

5
12
ψ4K2 +

1
8

R̄ (3.18)

+ 2πψ4(ρ + 2S)) − ψ5∂tK + ψ5βiD̄iK .

Here, ᾱ ≡ ψ−6α is the densitized lapse, R̄ is the conformal Ricci scalar computed
for ḡi j , and (Λ̄Lβ)

i is the vector Laplacian (cf. [40]).

In the extended conformal thin sandwich formalism, we are freely allowed to specify

Free data: ḡi j, ūi j,K, ∂tK , (3.19)

and solve for the variables

Solved data: ψ, βi, αψ . (3.20)
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We are interested in solving for initial data for linear metric perturbations of the
form

ψab → ψab + ∆ψab . (3.21)

In order to solve for perturbed initial data, we will perturb the extended conformal
thin sandwich equations. Our overall goal is to perturb each of these equations to
linear order, which will give us elliptic equations for the perturbed variables with
the same principal part as the background equations. Throughout, we will denote
by ∆X the first-order (linear) perturbation to some variable X . We perturb each of
the variables as

ψ → ψ + ∆ψ , (3.22)

βi → βi + ∆βi , (3.23)

αψ → αψ + (α∆ψ + ∆αψ) , (3.24)

and solve for ∆ψ, the perturbation to the conformal factor, ∆βi, the perturbation to
the shift, and

∆C ≡ ∆(αψ) = α∆ψ + ∆αψ , (3.25)

the perturbation to the lapse times the conformal factor.

The equations will additionally involve perturbing metric quantities to first order,
such as

ḡi j → ḡi j + ∆ḡi j , (3.26)

ūi j → ūi j + ∆ūi j , (3.27)

K → K + ∆K , (3.28)

∂tK → ∂tK + ∂t∆K , (3.29)

where ∆ūi j ≡ ∂t∆ḡi j . We outline these terms in more detail in 3.A.

Much like we have the solved data and free data in the extended conformal thin
sandwich formalism, we will have

Perturbed free data: ∆ḡi j,∆ūi j,∆K, ∂t∆K , (3.30)

and

Perturbed solved data: ∆ψ,∆βi,∆C . (3.31)
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Perturbed initial data formalism
We now perturb Eqs. (3.16), (3.17), and (3.18) to obtain elliptic equations for ∆ψ,
∆βi, and ∆C. Each of these equations involves the perturbations to the extended
conformal thin sandwich quantities. For example, the equations will include the
first-order perturbation to Āi j (defined in Eq. (3.14)), denoted ∆Āi j . We leave the
derivations of the perturbations to all of the extended conformal thin sandwich
quantities to 3.A and present the perturbations to the elliptic equations for ∆ψ, ∆βi,
and ∆C here.

Perturbed equations

Perturbing Eq. (3.16) yields an elliptic equation for ∆ψ. We obtain

0 = −D̄2
∆ψ − ∆(D̄2)ψ (3.32)

+
1
8
∆ψ R̄ +

1
8
ψ∆R̄ +

5
12
ψ4
∆ψK2 +

1
6
ψ5K∆K

+
7
8
ψ−8

∆ψ Āi j Āi j −
1
8
ψ−7(∆Āi j Āi j + Āi j∆Āi j)

− 2π(5ψ4
∆ψρ + ψ5

∆ρ) ,

where D̄2∆ψ is the principal part of this perturbed equation.

Perturbing Eq. (3.18) yields an elliptic equation for ∆C. Since this equation is
longer, we will do it piece by piece, splitting the original expression as

0 = −D̄2(αψ)︸     ︷︷     ︸
Principal part

+αψ

(
7
8
ψ−8 Āi j Āi j +

5
12
ψ4K2 +

1
8

R̄
)

︸                                        ︷︷                                        ︸
Non-matter terms

(3.33)

−ψ5∂tK + ψ5βiD̄iK︸                   ︷︷                   ︸
Non-matter terms

+αψ2πψ4(ρ + 2S)︸               ︷︷               ︸
Matter terms

.

Perturbing theMatter terms, we obtain

∆(C Matter terms) = 2π(∆Cψ4(ρ + 2S) + 4αψψ3
∆ψ(ρ + 2S) (3.34)

+ αψψ4(∆ρ + 2∆S)) .
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Next, perturbing the Non-matter terms, we obtain

∆(C Non-matter terms) =∆C
(
7
8
ψ−8 Āi j Āi j +

5
12
ψ4K2 +

1
8

R̄
)

(3.35)

+ αψ(−7ψ−9
∆ψ Āi j Āi j +

7
8
ψ−8(∆Āi j Āi j + Āi j∆Āi j)

+
5
3
ψ3
∆ψK2 +

5
6
ψ4K∆K +

1
8
∆R̄)

− 5ψ4
∆ψ∂tK − ψ5∂t∆K

+ 5ψ4
∆ψβiD̄iK + ψ5

∆βiD̄iK + ψ5βiD̄i∆K .

Finally, for the perturbation to the principal part, we obtain

∆(C Principal part) = −D̄2(∆C) − ∆(D̄2)(αψ) , (3.36)

where the first term gives us the principal part for the perturbed equation. We
combine these terms into an overall elliptic equation for ∆C

∆(C Principal part) + ∆(C Non-matter terms) + ∆(C Matter terms) = 0 , (3.37)

where the perturbed terms are given in Eqs. (3.36), (3.34), and (3.35).

In order to complete our system of equations, we perturb Eq. (3.17) to obtain an
equation for ∆βi. In practice, we solve the momentum constraint with the principal
part

−αψD̄ j

(
1
αψ
(L̄β)i j

)
, (3.38)

where the momentum constraint has been rewritten using as

0 = −αψD̄ j

(
1
αψ
(L̄β)i j

)
(3.39)

+ D̄ j ūi j −
14αψ
ψ8 Āi j D̄ jψ − ūi j D̄ jαψ

αψ
+

4
3
αψ

ψ
D̄iK

+ 16παψψ3Si .



65

For simplicity, we split up Eq. (3.39) as

0 = −αψD̄ j

(
1
αψ
(L̄β)i j

)
︸                    ︷︷                    ︸

Principal part

(3.40)

+D̄ j ūi j −
14αψ
ψ8 Āi j D̄ jψ − ūi j D̄ jαψ

αψ
+

4
3
αψ

ψ
D̄iK︸                                                           ︷︷                                                           ︸

Non-matter terms

+16παψψ3Si︸          ︷︷          ︸
Matter terms

.

Perturbing the Matter terms, we obtain

∆(βi Matter terms) = 16π(∆Cψ3Si + 3αψψ2
∆ψSi + αψψ3

∆Si) . (3.41)

Perturbing the Non-matter terms gives

∆(βi Non-matter terms) =∆(D̄) j ūi j + D̄ j∆ūi j (3.42)

−
14∆C
ψ8 Āi j D̄ jψ +

112αψ
ψ9 ∆ψ Āi j D̄ jψ

−
14αψ
ψ8 (∆Āi j D̄ jψ + Āi j D̄ j∆ψ)

− ∆ūi j D̄ jαψ

αψ
−

ūi j

αψ
D̄ j∆C + ūi j

∆C
D̄ jαψ

(αψ)2

+
4
3
∆C
ψ

D̄iK −
4
3
αψ

ψ2 ∆ψD̄iK

+
4
3
αψ

ψ
(∆(D̄) jK + D̄i

∆K) .

Finally, perturbing the Principal part gives

∆(βi Principal part) = − αψD̄ j

(
1
αψ
((L̄∆β)i j + (∆(L̄)β)i j)

)
(3.43)

− ∆(D̄) j(L̄β)i j +
(L̄β)i j

αψ
D̄ j∆C − (L̄β)i j ∆C

(αψ)2
D̄ jαψ .

Our overall elliptic equation for ∆βi is

∆(βi Principal part) + ∆(βi Non-matter terms) + ∆(βi Matter terms) = 0 , (3.44)

where the perturbed terms are given in Eqs. (3.43), (3.41), and (3.42).

Thus, we have derived a set of three second-order, elliptic equations for ∆ψ, ∆C,
and ∆βi. We solve Eq. (3.32) for ∆ψ, Eq. (3.37) for ∆C, and Eq.(3.44) for ∆βi. The
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principal parts of all of these equations are the same as in the unperturbed extended
conformal thin sandwich equations. Thus, for numerical solutions, we can reuse the
preconditioning matrices and linearized operators that are used in the unperturbed
equations. The specific details of the numerical computation can be found in [154].

Reconstructing perturbed data

Given solutions of the equations from the previous section for ∆ψ,∆C,∆βi, as well
as the perturbed free data and background data, we now wish to reconstruct ∆gi j ,
the full perturbed spatial metric, and ∂t∆gi j , its time derivative. This allows us to
construct ∆ψab, the perturbation to the spacetime metric, and its time derivative,
∂t∆ψab. We detail this procedure in 3.B.

Constraint satisfaction

Writing down the perturbed initial data equations is only the first half of the problem.
In practice, we need to make sure that solving them produces data that satisfies the
Hamiltonian and momentum constraints. In the unperturbed case, we simply check
that Eqs. (3.1) and (3.2) are satisfied. In the perturbed case, since we are computing
a linear perturbation, we do not expect the full, non-linear constraints to be satisfied.
Rather, the first-order linearization of these constraints should hold. We thus perturb
these constraints to give

∆H ≡ ∆R + 2K∆K − ∆Ki jK i j − Ki j∆K i j − 16π∆ρ, (3.45)

for the perturbed Hamiltonian constraint, and

∆Mi ≡ ∆g
j k(D jKki − DiK j k) (3.46)

+ g j k(∆(D) jKki − ∆(D)iK j k + D j∆Kki − Di∆K j k) − 8π∆Si

for the perturbed momentum constraint. Constraint-satisfying perturbed initial data
will thus have ∆H = 0 and ∆Mi = 0.

In practice, these conditions will never be exactly satisfied, but we can check that
these quantities tend toward zero with increasing numerical resolution. In our case,
we use a spectral code [198], and thus the constraint violation converges to zero
exponentially. In order to give meaning to the level of constraint violation, we
normalize each constraint by the magnitude of the fields contained therein.
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Boundary conditions
Before solving elliptic equations for metric perturbations for a generic source ∆Tab,
we must impose boundary conditions. Specifically, we must impose conditions
on ∆ψ, ∆C, and ∆βi at spatial infinity (R → ∞). In our spectral code [198], we
excise the black hole singularities from the computational domain via a surface that
conforms to the apparent horizon (or is slightly inside the apparent horizon) [104].
Thus, for a background containing a black hole, wemust specify boundary conditions
on the excision surface. In the case of a black hole binary, there are two such excision
surfaces, one for each hole, and thus we must specify boundary conditions on each
of them.

Let us now consider the boundary conditions we would impose in the case where the
background spacetime contains a single black hole. First, the matter distribution,
and hence the source of the perturbation, should decay at least as fast as 1/R2 as
R→∞. Thus, we can choose the conditions

∆ψ |r→∞ = 0, (3.47)

∆βi |r→∞ = 0, (3.48)

∆C |r→∞ = 0 . (3.49)

These conditions agree with the perturbed boundary conditions for an isolated black
hole spacetime given in [69, 154]. In practice, we extend the (finite) outer domain
to R = 1014 M , more than sufficient to satisfy these conditions.

For conditions on the inner boundaries, which correspond to apparent horizons, we
impose the set of apparent horizon boundary conditions for ψ, α, and βi given in [69,
154]. The conditions ensure that the surface has zero expansion and has a desired
value for the spin. In our case, we can perturb these apparent horizon boundary
conditions to give conditions on ∆ψ, ∆C, and ∆βi.

Specifically, for the unperturbed boundary conditions, the condition on ψ corre-
sponds to setting the expansion of the surface to be zero, the condition on βi

corresponds to setting the spin and also setting the shear of the null rays on the
horizon to be zero, while the condition on α is physically unconstrained and can be
set with a Dirichlet condition. The condition on ψ takes the form

0 = −P̄i∂iψ − Bψ +
1
8
ψ4

αψ
(Ci j)(L̄βi j − ui j) +

ψ3

12
Ci j ḡi jK , (3.50)
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where

N ≡
√
ḡi j n̂in̂ j , (3.51)

P̄i ≡
n̂ j ḡ

i j

N
, (3.52)

with n̂i being the normal vector to the inner boundary, and

Ci j ≡ ḡi j − P̄i P̄ j , (3.53)

B ≡
1

4N
(Ci j)(∂j n̂i − Γ̄

l
i j n̂l) . (3.54)

When perturbing this condition, we must consider what to do with the perturbation
to n̂i. If we set ∆n̂i = 0, then the excision surface corresponds to a horizon for the
background, and the overall shape of the surface is not perturbed. By choosing a
non-zero ∆n̂i, we can, for example, set the expansion of the background metric plus
the first-order metric perturbation to zero, and hence have the surface correspond to
a linearly perturbed horizon. In this study, we set ∆n̂i = 0 for simplicity.

Perturbing Eq. (3.50), we thus obtain

0 = −∆P̄i∂iψ − P̄i∂i∆ψ − ∆Bψ − B∆ψ (3.55)

+
1
2
ψ3∆ψ

αψ
(Ci j)(L̄βi j − ui j)

−
1
8

ψ4

(αψ)2
∆C(Ci j)(L̄βi j − ui j)

+
1
8
ψ4

αψ
(∆Ci j)(L̄βi j − ui j)

+
1
8
ψ4

αψ
(Ci j)(∆(L̄βi j) − ∆ui j)

+
ψ2∆ψ

4
Ci j ḡi jK +

ψ3

12
∆Ci j ḡi jK +

ψ3

12
Ci j
∆ḡi jK

+
ψ3

12
Ci j ḡi j∆K
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on the excision surface, where

∆N =
1

2N
∆ḡi j n̂in̂ j , (3.56)

∆P̄i =
n̂ j∆ḡ

i j

N
−

n̂ j ḡ
i j

N2 ∆N , (3.57)

∆Ci j = ∆ḡi j − ∆P̄i P̄ j − P̄i
∆P̄ j , (3.58)

∆B = −
1

4N2∆N(Ci j)(∂j n̂i − Γ̄
l
i j n̂l) , (3.59)

+
1

4N
(∆Ci j)(∂j n̂i − Γ̄

l
i j n̂l)

+
1

4N
(Ci j)(−∆Γ̄l

i j n̂l) .

Next, the background boundary condition on βi takes the form

0 = βi −
1
ψ3

n̂ jg
i j

N
αψ − ξi (3.60)

on the inner boundary. Here, ξi is the vector

ξi = Ωx X i +ΩyY i +Ωz Z i , (3.61)

where Ωi corresponds to the components of the orbital angular momentum, and X i,
Y i, and Z i have the form

X i = (0,−z, y) , (3.62)

Y i = (z, 0,−x) , (3.63)

Z i = (−y, x, 0) . (3.64)

Now, when we perturb this condition, we must consider how to perturb Ωi. Setting
this to a non-zero value gives a spin to the metric perturbation as well.

Perturbing Eq. (3.60), we thus obtain

0 = ∆βi + 3
1
ψ4∆ψ

n̂ jg
i j

N
αψ (3.65)

−
1
ψ3

n̂ j∆g
i j

N
αψ

+
1
ψ3

n̂ jg
i j

N2 ∆Nαψ

−
1
ψ3

n̂ jg
i j

N
∆C

− ∆ξi
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on the excision surface, where ∆ξi is the vector

∆ξi = ∆Ωx X i + ∆ΩyY i + ∆Ωz Z i . (3.66)

The Dirichlet boundary condition on α, meanwhile, can be perturbed to give a
Dirichlet boundary condition on ∆C. However, we are already solving Eq. (3.55)
for ∆ψ, and thus to uncouple these equations, we can instead try to drive ∆α to some
desired value ∆αDesired on the excision surface via the Dirichlet condition

0 = ∆C − (∆ψα + ψ∆αDesired) . (3.67)

We can generalize the isolated black hole case to a binary black hole case by applying
Eqs. (3.55), (3.65), and (3.67) to each excision surface corresponding to a horizon
and applying a boost in the case of an initial velocity.

Summary
Thus, in order to generate metric perturbation initial data given some source ∆Tab

and background spacetime metric ψab, we solve the elliptic equations given in
Sec. 3.2 for ∆ψ, ∆C, and ∆βi. We then apply the formulae in Sec. 3.2 to construct
∆ψab, the perturbed spacetime metric for these variables. For the case where the
background is an isolated black hole, we can apply the perturbed version of the
horizon boundary conditions on ∆ψ, ∆C, and ∆βi given in Sec. 3.2. In order to
generate stationary data on an isolated black hole background, we choose ∆Ωi in
Eq. (3.65) to be equal to the Ωi of the background.

Note that, as outlined in Sec. 3.2, we have the freedom to choose ∆ḡi j , ∆ūi j , ∆K ,
and ∂t∆K . To simplify the calculation in the isolated black hole case, we choose
∆ḡi j = 0, and thus ∆gi j = 4ψ3∆ψḡi j . For stationarity, we choose ∆ūi j = 0 and
∂t∆K = 0 to set as many time derivatives to zero as possible. We similarly choose
∆K = 0.

3.3 Solving for metric perturbations in dCS
Order reduction scheme
We now turn to applying the method for solving for metric perturbation initial
data outlined in Sec. 3.2 to isolated black holes in dynamical Chern-Simons (dCS)
gravity. The dCS action for a metric ψab and scalar field ϑ is given by∫

d4x
√
−ψ

(
m2

pl

2
R −

1
2
(∂ϑ)2 −

mpl

8
`2ϑ ∗RR

)
, (3.68)
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where ` is a coupling constant with dimensions of length,

∗RR ≡ ∗Rabcd Rabcd (3.69)

is the Pontryagin density, where ∗Rabcd = 1
2ε

abe f Re f
cd is the dual of the Riemann

tensor and εabcd ≡ −[abcd]/
√
−ψ is the fully-antisymmetric Levi-Civita tensor, and

mpl is the Planck mass.

Varying the action in Eq. (3.68), we obtain a sourced wave equation for the scalar
field,

�ϑ =
mpl`

2

8
∗RR , (3.70)

where� ≡ ∇a∇
a is the d’Alembertian operator. For themetric, we obtain a corrected

Einstein field equation

m2
plGab + mpl`

2Cab = Tab , (3.71)

where Tab is the kinetic stress-energy tensor of ϑ,

Tab = ∇aϑ∇bϑ −
1
2
ψab∇cϑ∇

cϑ , (3.72)

and

Cab ≡ εcde(a∇
d Rb)

c∇eϑ + ∗Rc
(ab)

d∇c∇dϑ . (3.73)

Note that Cab contains third derivatives of the metric, and thus these equations of
motion must likely not have a well-posed initial value problem [74]. However, in the
perturbation limit, we can solve these equations of motion using an order reduction
scheme, expanding the metric and scalar field in powers of a parameter ε that counts
powers of `2:

ψab = ψ
(0)
ab +

∞∑
k=1

εk h(k)ab , (3.74)

ϑ =

∞∑
k=0

εkϑ(k) . (3.75)

The key is that at each order of this scheme, we will obtain equations of motion with
the same principal part as GR. Perturbing around GR is justified in part by the first
LIGO detection, which showed that deviations from GR in black hole systems are
small [14].
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At zeroth order in ε, we obtain for our equations of motion

m2
plGab[ψ

(0)] = T (0)ab , (3.76)

�(0)ϑ(0) = 0 , (3.77)

where T (0)ab is the stress-energy tensor constructed from ϑ(0). Since the zeroth order
scalar field has no source, we can take ϑ(0) = 0. This is turn means that the equation
for the metric at zeroth order is a pure GR Einstein field equation.

At first order, meanwhile, we obtain the equation

�(0)ϑ(1) =
mpl

8
`2[ ∗RR](0) (3.78)

for the first-order scalar field ϑ(1) and the equation

m2
plGab[h(1)] = −mpl`

2C(0)ab + T (1)ab (3.79)

for the first-order metric perturbation, where Gab is the Einstein-Hilbert operator
of the background acting on the metric perturbation. Here, C(0)ab is the background
value of the tensor defined in Eq. (3.73), andT (1)ab is the first-order perturbation to the
stress-energy tensor given in Eq. (3.72). However, both C(0)ab and T (1)ab are linear in
ϑ(0), which vanishes, and hence −mpl`

2C(0)ab + T (1)ab , the RHS of Eq. (3.79) vanishes,
leaving an unsourced metric perturbation,

m2
plGab[h(1)] = 0 . (3.80)

Thus, at first order in ε, h(1) = 0, there is no modification to the metric, and the
scalar field is governed by Eq. (3.78). Indeed, in [146], we evolved this ε1 system
on a binary black hole background.

We now turn to order ε2, where we obtain a metric perturbation sourced by ϑ(1).
Specifically, we obtain

m2
plGab[h(2)] = −mpl`

2C(1)ab [ϑ
(1)] + T (2)ab [ϑ

(1), ϑ(1)] . (3.81)

Here, the first term on the right-hand side is the perturbed C-tensor formed from
the background metric and the non-vanishing first-order scalar field ϑ(1) (and hence
is non-zero). The second term is the second-order perturbation to the stress-energy
tensor, quadratic in ϑ(1), and hence also non-zero.

To simplify the equations and to more easily use the results of the previous section,
it is useful to define a new variable Ψ by

ϑ(1) ≡
mpl

8
`2
Ψ , (3.82)
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which gives, at first-order

�Ψ = ∗RR . (3.83)

Here all metric variables now correspond to the background (in other words, ∗RR =

[ ∗RR](0), for example). Similarly, let ∆ψab correspond to the second-order metric
perturbation by defining

h(2)ab ≡
`4

8
∆ψab . (3.84)

The equation for the metric perturbation is thus

Gab[∆ψab] = Teff
ab (Ψ) , (3.85)

where

Teff
ab (Ψ) ≡ −Cab(Ψ) +

1
8

Tab(Ψ) . (3.86)

We can then write the C-tensor and matter terms in the form

Cab(Ψ) = εcde(a∇
d Rb)

c∇e
Ψ + ∗Rc

(ab)
d∇c∇dΨ , (3.87)

Tab(Ψ) = ∇aΨ∇bΨ −
1
2
ψab∇cΨ∇

c
Ψ . (3.88)

The first term of Cab vanishes when working on a vacuum GR background.

Thus, ∆ψab is governed by the Einstein tensor and is a perturbation off a GR
background of the form ψab → ψab + ∆ψab with source Teff

ab . Comparing this to
Eq. (3.21), we can thus use the formalism developed in Sec. 3.2 to solve for ∆ψab

sourced by Teff
ab on a black hole background.

Scalar field initial data
Before solving for ∆ψab, however, we need a scalar field Ψ on a black hole back-
ground that obeys Eq. (3.83). Moreover, in order to obtain stationary data for ∆ψab,
we require that Ψ is stationary. Rather than attempting to find an analytical solution,
we use the numerical solution for Ψ computed using the methods in [184]. This
solution is valid for any spin. However, this solution is expressed in Boyer-Lindquist
coordinates, which are singular at the horizon, and thus we transform to Kerr-Schild
coordinates. The transformation to Kerr-Schild coordinates is given, e.g., in [135].

We check that the solution for Ψ is constraint satisfying, and moreover that it is
stationary. Note that the solution given in [184] has its own inherent resolution in
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terms of the number of radial and angular basis functions. Including more radial
basis functions in this solution increases its stationarity. We interpolate the solution
onto our grid, generally with a different resolution.

Given this solution for Ψ, we then construct the perturbed source terms of Eqs.
(3.115), (3.116), (3.117), and (3.118) using ∆Tab = Teff

ab computed from Ψ via
Eq. (3.86).

dCS metric perturbation results
Given these source terms, we then apply the formalism developed in Sec. 3.2 to
solve for ∆ψab. We verify that our results are convergent by checking the perturbed
constraints given in Sec. 3.2. We solve for the data on a set of nested spherical
shells extending from the apparent horizon to R = 1014 M , all with equal numbers
of spectral collocation points. Fig. 3.1 presents the behavior of the normalized,
perturbed Hamiltonian and momentum constraints with increasing resolution. The
figure shows the exponential convergence of the constraints to zero as the numerical
resolution increases. Higher spins in Kerr-Schild coordinates require more grid
points to fully resolve the solution, and thus have a slower level of convergence.
Recall likewise that we wish to solve for stationary initial data. In practice, the
stationarity converges with increasing resolution. However, at the same numerical
resolution, a lower spin will have a greater stationarity, asmeasured by ‖∆gi j ‖/‖gi j ‖,
than a higher spin. Thus, when comparing quantities across spins in practice, we
choose resolutions that give the same level of non-stationarity to mitigate these
spin-dependent effects.

In summary, we have constraint-satisfying data for the second-order metric pertur-
bation in order-reduced dCS gravity. In Fig. 3.2, we plot the profiles for the scalar
field Ψ as well as the conformal factor ∆ψ.

The extended conformal thin sandwich formalism can potentially suffer from ill-
posedness and non-uniqueness problems if the equations do not have a positive-
definite linearization [39, 202]. In our case, however, we do not see the appearance
of non-unique solutions.

3.4 Physics with dCS metric perturbations
We now consider what physics we can extract from these solutions for ∆ψab in dCS.
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Figure 3.1: Convergence of the perturbed constraints with resolution for a metric
perturbation ∆ψab on a Kerr background with given dimensionless spin χ. We eval-
uate the constraints on the entire numerical grid. The horizontal axis is the number
of radial basis functions NR times angular basis functions NL in a representative
subdomain of our numerical grid. As this number increases, the constraint violation
exponentially converges to zero. Higher-spin black holes require more grid points
to achieve the same level of constraint satisfaction in the metric perturbation as
lower-spin black holes, just as for the unperturbed background spacetime.

Regime of validity
To second order, the perturbed metric takes the form

ψab → ψab + ε
2
∆ψab (3.89)

where ε2 determines the amplitude of the metric perturbation. For the perturbative
scheme to be valid, we require that ‖ψab‖ & ‖ε2∆ψab‖, where ‖‖ denotes the L2
norm of the field. The values of ε2 that satisfy this condition define the regime of
validity. We can measure this value of ε2 by comparing the magnitudes of ψab and
∆ψab as

ε2
max = 0.1

(
‖
ψab

∆ψab
‖

)
min

. (3.90)

Here the ratio is taken pointwise on the domain, we have chosen a constant 0.1
for the comparison, and we find a global minimum (the minimum is close to the
horizon, where the perturbation is the largest). We plot the results in Fig. 3.3, where
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Figure 3.2: Plot of the numerical solution for Ψ from [184] (left) and perturbed
conformal factor ∆ψ (right) on a spin χ = 0.6 black hole background, shown in the
y-z plane. Note that the solution is axisymmetric about the z-axis.

for lower spins, larger values of ε2 are allowed. Recall that ε counts powers of
`2/GM , and thus we can map this regime of validity result to ` as well.

Black hole shadows
One application of this initial data framework is to study modifications to the black
hole shadow. Observing black hole shadows explores an entirely new scale of
gravitational curvature and thus can test GR in a wholly new way [37]. Since
looking at the shadow effectively involves observing the behavior of test particles
(photons)moving on geodesics in the spacetime, observing the shadows of stationary
black holes serves as a metric test of GR.

EHT capabilities and previous work

Let us first review the capabilities of the Event Horizon Telescope (EHT) for de-
tecting black hole shadows. The EHT is a very long baseline interferometry array
of radio telescopes around the world that aims to generate images of the black hole
at the center of the Milky Way galaxy, Sgr A*, as well as that of the M87 galaxy,
with horizon-scale resolution. Electromagnetic images show not the actual horizon,
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Figure 3.3: Evaluation of the regime of validity as given by Eq. (3.90), for various
values of spin. The top region is not allowed by perturbation theory, while the
bottom region is allowed. The stars denote the values of χ at which we have
evaluated Eq. (3.90). We can compare this to the regime of validity figure given
in [184].

but the region external to the light ring at 3GM/c2, which serves as a probe of the
black hole shadow [85]. Resolving Sgr A* requires an angular resolution of O(10)
microarcseconds (µas) [164]. Once complete, the array should have resolutions of
up 23 µas at 230 GHz and 15 µas at 345 GHz [170]. The size of Sgr A*’s visible
event horizon is predicted to be ∼ 50 µas [84], with the photon ring contributing to
1 – 10% of the total flux [75].

Actually predicting what black hole images will look like for Sgr A* and M87,
however, requires simulating the matter around the black hole using GRMHD sim-
ulations (cf. [164] for a review). However, as the shadow only depends on the black
hole spacetime, the shadow is not affected by the presence of matter [166]. Never-
theless, observing the shadow free from obscuration due to the accretion onto the
black hole (and gravitational lensing thereof) is a technical challenge. Additionally,
interstellar scattering affects the resolution of the image [164]. In this study, we
only consider null rays and the scalar field around a black hole otherwise in vacuum
when probing the shadow, and thus do not include the matter effects.

Howwell can the edge of the shadow be detected? Psaltis et al. [166] took advantage
of the fact that the black hole shadow produces some of the steepest gradients in
an image, and applied various edge-finding algorithms to locate the shadow. In
practice, thus, it is possible to extract to an extent an edge corresponding roughly to
the black hole shadow to within ∼ 9%, assuming a given scattering kernel.
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How well can current algorithms measure the properties of the black hole shadow
of Sgr A*? Fig. 13 of Psaltis et al. [164] shows a combined posterior distribution
for the black hole quadrupole moment q and the black hole spin a for a hypothetical
observation of Sgr A*. If the black hole is Kerr, then there should be a unique point
in this space for each mass and spin on the curve q = −a2. EHT observations give
a wide curve in the q-a space, while constraints from spin measurements from stars
and pulsars around Sgr A* provide tighter constraints. Nevertheless, the spin in this
posterior can only be predicted to an accuracy of σa ∼ 0.1.

Previous studies have calculated (without considering matter effects) black hole
shadows in alternative theories of gravity (see [84] and [164] for a review). Addi-
tionally, Ref. [108] reviews the detectability of effective deviation parameters from
otherwise GR predictions.

Computing the shadow

We now compute the second-order deviation to the black hole shadow in order-
reduced dynamical Chern-Simons gravity. Recall that we have solved for a metric
perturbation ∆ψab around an isolated black hole of a given spin. We can then add it
to the background metric ψab via a coupling parameter ε2 that lies in the regime of
validity outlined in Sec. 3.4. The overall metric is thus

ψ
pert
ab ≡ ψab + ε

2
∆ψab . (3.91)

We compute the dCS black hole shadow in this metric, which will be correct to
second order. Note that since we have solved for stationary data, we only need to
evolve geodesics on one time slice to trace the shadow, as all of the slices will be
the same. Note also that since the shadow is a physical observable, we do not need
to worry about gauge effects.

To probe the shadow, we use the geodesic integration methods (and corresponding
code) outlined in [54] and [53]. We refer the reader to those papers for a technical
discussion. Schematically, we start geodesics from a camera some C = O(10)M
away from the black hole and integrate them backwards in time. The geodesics that
make it to past null infinity (which we approximate as a distance of 2C from the
black hole in order to avoid integrating geodesics to infinity) are labeled as not in the
shadow, while the geodesics that converge onto the horizon determine the edge of
the shadow. The code has built-in refinement, and with increasing resolution more
geodesics are added along the shadow edge.
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Analyzing the shadow

We now present a novel way to analyze the black hole shadow as computed from
evolving null geodesics. Note that there exist previously-proposed methods of
analyzing the shadow [17]. Given the shadow edge in the x-y plane of the camera
(also known as the image plane), parameterized as two functions x(θ) and y(θ)

where θ is the angle about some chosen center, we can Fourier decompose the
shadow edge as

x(θ) = a0 +

N∑
n=1

an cos(nθ) , (3.92)

y(θ) = b0 +

N∑
n=1

bn sin(nθ) , (3.93)

up to some number N of fitting coefficients. We define a measure of the power in
each Fourier mode as

fn ≡
√

a2
n + b2

n . (3.94)

In this procedure, one must take precautions in defining the axes and the origin for
θ. Suppose we have an image of a black hole shadow. For simplicity, assume that
the spin axis has no component normal to the plane of the camera, but has some
arbitrary orientation in that plane. Given such an image, we can find a line about
which the image has a reflection symmetry. Let this be the x-axis (in the case of
χ = 0, we can take any axis).

Next, we need to define an origin {x0, y0} in the x-y plane from which to measure
the angle θ. For y0, we can simply choose y0 = 0 since we have defined y = 0 to be
the axis of reflection symmetry. For x0, however, we need to be more careful. In the
χ = 0 case, for example, one can choose an x0 such that the decomposition has an
artificially non-zero n = 2 multipole. Thus, we choose x0 to be the point at which
the value of f2 is minimized. We show the result of this procedure in Fig. 3.4.

We also check that the values of the coefficients given in the decomposition (3.94)
converge with resolution. We show a quantitative convergence analysis in Fig. 3.5.
We check convergence for each shadow we analyze, for a given χ and ε2.

The n = 0 multipole refers to the coordinate location of the shadow center in the
plane of the camera, which is not gauge-invariant and hence not meaningful. The
n = 1 multipole corresponds to the “size" of the shadow and is proportional to
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Figure 3.4: Results of our procedure for designating the center (and hence the origin
for the angle θ) of a black hole shadow for χ = 0.9 and ε2 = 0. We find the central
value of x by minimizing the recovered n = 2 multipole for each trial value. Here,
we plot in the dashed black line the optimal value of x. We see that when x is
chosen to minimize n = 2, it also minimizes the artificial n = 0 multipole. Note
that the minimum value of the n = 2 multipole is finite, as the shadow shape is
non-spherical. Additionally, we plot the difference between the n = 1 multipole and
its maximum value, finding that it attains the maximum near but not at the optimum
center value as the shape is not exactly spherical.

both the mass of the black hole and the distance to the camera. Thus, the value
of the n = 1 multipole is not meaningful as there is a mass-distance degeneracy.
However, dividing all of the n > 1 multipoles fn by f1 gives normalized values that
are independent of the mass and distance, and in the ε2 = 0 case, only dependent
on the dimensionless spin. We have verified this numerically by changing the mass
of the black hole, and checking that the normalized n > 1 coefficients remain the
same. We thus focus our attention on the n > 1 multipoles normalized by f1, which
have physical meaning.

Now, in the presence of a nonzero ε, we still apply this same procedure (orienting on
the axis of reflection symmetry, finding the center by minimizing f2, then dividing
through by f1). Note that in this case, we expect the higher multipoles to have
a different dependence on χ and now ε. We will need to observe at least two
multipoles to perform a consistency check with the ε = 0 case, or to estimate ε and
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Figure 3.5: Convergence of the shadowmultipoles with resolution for a spin χ = 0.9
black hole for ε2 = 0. For each multipole (n = 1 to n = 5), we plot the normalized
difference of the value of the multipole from the highest resolution value (denoted
as f ∗n ), as a function of resolution. Here, the x-axis corresponds to the number of
geodesics that converge onto the horizon when integrated backwards in time, and
hence are used to image the black hole shadow. As we increase this resolution, the
normalized differences from the highest resolution value decrease. We see that the
higher multipoles, which take more geodesics to resolve, converge more slowly than
the lower multipoles.

χ if we find ε , 0.

Results

Let us now analyze the black hole shadow using the procedure outlined in this section
for various dimensionless spins χ of the background black hole and perturbation
parameters ε2. In accordance with the feasibility study shown in Fig. 13 of [164],
we concentrate our attention on spins of χ = 0.6. In Fig. 3.6, we plot the black
hole shadow for χ = 0.6 for ε2 = 0 (i.e., the shadow as predicted by GR) and
ε2 = 0.05, the maximal value allowed by the regime of validity. Additionally, we
plot the GR shadows for χ = 0.7 and χ = 0.9 black holes. We see that shifting the
spin away from 0.6 has a greater effect than adding a dCS perturbation. Given the
σa ∼ 0.1 spread in the recovered spin for the trial EHT measurement in Ref. [164],
it is informative to compare the effect of increasing χ by 0.1 versus increasing ε2
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Figure 3.6: Visualization of black hole shadows. The x- and y-axes correspond to
camera coordinates for a camera resolving the black hole, and thus are not physically
meaningful. The shape of each shadow has been normalized by its overall “size" as
given by the n = 1 multipole. Likewise, each shadow has been centered according
the procedure described in this paper. We plot the shadow for spin of χ = 0.6,
with dCS perturbation parameters ε2 = 0 and ε2 = 0.05, the maximum allowed
within the regime of validity. Zooming in, we see a difference in the two shadows.
However, increasing the spin to χ = 0.7 without a dCS perturbation (and even
χ = 0.9) has a stronger effect on the shape of the shadow. We have checked that
increasing the resolution of the shadow by integrating more geodesics has a smaller
effect than aforementioned the physical effects.

to its maximum valid value at a given χ. We see that the effect increasing ε2 on the
visual shape of the shadow is less than the effect from increasing χ.

We can quantitatively analyze the shape of the shadow by considering the values
of f2/ f1 and f3/ f1, the two dominant normalized multipoles. Considering again
spins around χ = 0.6, we plot the values of these multipoles with increasing ε2 in
Figs. 3.7a and 3.7b. We see that, for a given spin, as we increase ε2, the values of
f2/ f1 and f3/ f1 linearly deviate away from the ε2 = 0, GR prediction. Since the
shadow, with the mass normalized away, is dependent only on χ and ε2 in dCS, we
can map

{χ, ε2} → { f2/ f1, f3/ f1} , (3.95)
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Figure 3.7: Values of the f2 and f3 coefficients of the black hole shadow, as calculated
using the methods outlined in Sec. 3.4. Each coefficient is normalized by f1, which
corresponds to the size of the shadow. Each dashed line shows the ε2 = 0 value of
the coefficient, corresponding to an unperturbed GR black hole, for spins χ = 0.5,
χ = 0.6, and χ = 0.7 (as labeled on the plot). Since the shadow in GR becomes
less spherical with increasing spin, it is consistent that the f2 and f3 coefficients,
which correspond to non-spherical multipoles, increase with spin. For each spin,
we also plot the values of the multipoles when we introduce a dCS perturbation of
the form ψab + ε

2∆ψab. As we increase ε2 (up to a value given by the regime of
validity of perturbation theory), we see that these coefficients increase as well, in a
power-law fashion. We have checked that increasing the resolution of the shadow by
integrating more geodesics leads to convergent results for the multipoles and does
not affect the results on the scale presented here.

for each choice of χ and ε2.

While the mapping shown in Eq. (3.95) is unique for each {χ, ε2} pair, it may
not be invertible. In other words, degeneracies may exist such that a given pair
{ f2/ f1, f3/ f1} can be generated by more than one combination of {χ, ε2}. In
particular, this degeneracy can spoil a GR null hypothesis test using the shadow.
Suppose there exists a spin χa and ε2

a , 0 combination such that the corresponding
f2/ f1 and f3/ f1 values are equal to those of a χb and ε2

b = 0 shadow. Then, we
would not be able to distinguish a black hole with a dCS perturbation from a Kerr
black hole with a different spin.

We explore this potential degeneracy in Fig. 3.8. Using the ε2 = 0 values of f2/ f1
and f3/ f1 for various spins, we trace out a curve in this multipolar parameter space.
This curve is solely parametrized by spin χ, and any deviation away from this
curve corresponds to some additional, non-Kerr effects. We call this the “Kerr"
curve. Then, considering χ = 0.6 and neighboring spins, we consider the effect of
adding an ε2 = 0.05 dCS perturbation. We see that in the presence of ε2 , 0, the
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multipolar values deviate away from the Kerr curve. In other words, we do not have
a χ-ε2 degeneracy. This in turn makes a GR null-hypothesis test possible using dCS
shadows. On the other hand, we can also see from the figure that it may be difficult
to distinguish various {χ, ε2 , 0} pairs. However, since ε2 is a universal parameter,
observing more and more black hole shadows in practice should statistically narrow
the value.

Let us now consider these results in the context of the EHT capabilities outlined in
Sec. 3.4. We claim, given our investigation of the shape of the shadow, that precisely
quantifying χ and ε2 for Sgr A*, for example, may be infeasible with the current
EHT resolution. Given that observations can yield a spread of as much as 0.2 in the
spin, and given that we have seen that dCS effects for the maximum allowed values
of ε2 are smaller than a 0.1 increase in the spin, it will be difficult to observe such
a deviation with the EHT. However, increasing the resolution of EHT shadow edge
observations will allow us to perhaps probe these small effects, in part to perform
an analysis to check for ε2 = 0 consistency, or at least bound large values of ε2.

Suppose that an external measurement of the mass of Sgr A*was available. Because
the size of the shadow on the camera depends not only on mass but also on distance,
we would need to have a measurement of the distance of Sgr A* as well. In this
case, we would not need to normalize all of f>1 coefficients by f1, since the mass
would be known. However, the f1 multipole is independent of spin, and thus a
deviation of the f1 multipole predicted from an independent measurement of the
mass and distance of Sgr A* could point to a non-GR signature. Such an analysis
was performed, for example in [166].

On the other hand, suppose there were an independent measurement of the spin
of Sgr A* from pulsars [165], with tighter constraints than the example shown in
Ref. [164]. If χ was known precisely from pulsar measurements, then we would
simply use the value of the dominant multipole f3 to observe deviations from the
predicted value in the case of ε2 = 0. Fig. 3.7b shows the value of f3 away from its
predicted GR value for a spin of χ = 0.6, for example. Knowing precisely the value
of χ would thus allow us to constrain the value of ε2 in the ε2 - f3 space. However,
we must be careful in noting that this would only serve as a null-hypothesis test of
GR, as inferring χ from pulsar measurements (presently) assumes that GR is the
underlying model.
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Figure 3.8: Normalized black hole shadow coefficients of the n = 2 (x-axis) and n =
3 (y-axis) multipoles. These correspond to the dominant non-spherical multipoles.
The figure explores degeneracies in the χ-ε space. In the (left) panel, we plot the
coefficient values for ε2 = 0 for a variety of spins from χ = 0.5 to χ = 0.7. We
additionally plot a curve (dashed line) that we have fit for all of the ε2 = 0 coefficient
values over a broader range of spins (χ = 0.1 to χ = 0.9). This line is the Kerr
curve in the f2- f3 space. In the (right) panel, we introduce dCS perturbations. We
plot again the Kerr curve, and consider coefficient values for spins of 0.58, 0.6, and
0.62. We see that when we introduce a dCS perturbation of strength ε2 = 0.05, the
values of the coefficients deviate from the Kerr curve. The fact that the perturbed
values do not lie on the Kerr curve gives us a handle on the amount of degeneracy
in the χ-ε space. We have checked that these effects are convergent with increasing
the resolution of the shadow by integrating more geodesics.
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3.5 Conclusion
In this chapter, we have presented a method for numerically generating metric
perturbation initial data (Sec. 3.2), applied it to dynamical Chern-Simons gravity
(Sec. 3.3), and investigated black hole shadows in the presence of dCS metric
perturbations (Sec. 3.4).

The metric perturbation initial data computation is fully general, meaning that given
some metric perturbation source, background spacetime, and boundary conditions
(aswell as specifying a choice of the free data), we can produce constraint-convergent
first-order metric perturbation results. In particular, we can easily extend the dCS
initial data results for a single black hole presented in this paper to the binary
case. We can also, for example, apply this initial data formalism to explore linear
versus non-linear metric perturbations in a standard Kerr spacetime, as our metric
perturbation data is constraint-satisfying to first order (for example, to compare to
the metric perturbation data used in [78] and [47]).

Future work in this program involves evolving dCS initial metric perturbations.
This is done following the order-reduction scheme (cf. Sec.3.3 and [146]), which
guarantees well-posedness, as each order in the scheme has the same principal part
as the general relativity background. One possibility is to evolve a single spinning
black hole to see if it is stable. A second is for the binary black hole case. There,
we can evolve the metric perturbation sourced by the dCS scalar field and generate
perturbed gravitational waveforms, thus performing the next step of the program
outlined in [146].

3.A Perturbed extended conformal thin sandwich quantities
In this appendix, we derive the first-order perturbations to all of the extended
conformal thin sandwich quantities, which enter into Eqs. (3.32), (3.44), and (3.37).

First, the perturbation to the inverse of the conformal spatial metric is

∆ḡi j = −ḡik ḡ jm
∆ḡkm . (3.96)

We can use this to obtain the useful identities

∆Vi = ∆ḡi jV j + ḡi j∆V j , (3.97)

∆Fkl = ∆ḡki ḡl j Fi j + ḡki∆ḡl j Fi j + ḡki ḡl j∆Fi j , (3.98)

∆F = ∆ḡi j Fi j + ḡ
i j
∆Fi j , (3.99)

for vectors V i with perturbation ∆V i and tensor Fi j with trace F and perturbation
∆Fi j .
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The covariant derivative operator D̄ will also have a perturbation. We perturb the
Christoffel symbols corresponding to ḡi j to obtain

∆Γ̄
i
j k =

1
2
∆ḡil(∂k ḡl j + ∂j ḡlk − ∂l ḡ j k) +

1
2
ḡil(∂k∆ḡl j + ∂j∆ḡlk − ∂l∆ḡ j k) . (3.100)

This in turn gives the useful perturbed derivative identities

∆(D̄)iS = 0 , (3.101)

∆(D̄)iS = ∆ḡi j D̄ j S , (3.102)

∆(D̄2)S = ∆ḡi j∂i∂j S − ∆ḡi j
Γ̄

l
i j∂lS − ḡi j

∆Γ̄
l
i j∂lS (3.103)

∆(D̄)iV j = ∆Γ̄i
j kV k , (3.104)

∆(D̄)iVj = ∆Γ̄
k
i jVk , (3.105)

∆(D̄)iV j = ∆ḡik D̄kV j + ḡik
∆Γ̄

j
klV

l , (3.106)

∆(D̄)k Fi j = −∆Γ̄
m
kiFmj − ∆Γ̄

m
k j Fim , (3.107)

∆(D̄)k Fi j = ∆Γ̄i
kmFmj + ∆Γ̄

j
kmFim , (3.108)

for any scalars S with perturbation ∆S, vectorsV i, with perturbation ∆V i, and tensor
Fi j , with perturbation ∆Fi j . The parentheses in expressions such as ∆(D̄2)S refer to
the perturbation on just the derivative operator.

Then we can compute the perturbation to the spatial Ricci tensor as

∆R̄i j = ∂m∆Γ̄
m
i j −

1
2
(∂i∆Γ̄

m
mj + ∂j∆Γ̄

m
mi) (3.109)

+ ∆Γ̄m
i j Γ̄

n
nm − ∆Γ̄

m
inΓ̄

n
mj + Γ̄

m
i j∆Γ̄

n
nm − Γ̄

m
in∆Γ̄

n
mj .

and ∆R̄ can then be computed using Eq. (3.99).

Meanwhile, the perturbation to L̄βi j , defined in Eq. (3.15), is

∆(L̄β)i j = ∆(D̄)iβ j + D̄i
∆β j + ∆(D̄) j βi + D̄ j

∆βi (3.110)

−
2
3
∆ḡi j D̄k β

k −
2
3
ḡi j(∆(D̄)k βk + D̄k∆β)

k .

For simplicity, we can group the terms with the background derivative operators
operating on ∆βi, defining

∆(L̄β)i j = (L̄∆β)i j + (∆L̄β)i j , (3.111)
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where

(L̄∆β)i j ≡ D̄i
∆β j + D̄ j

∆βi −
2
3
ḡi j D̄k∆β

k , (3.112)

and

(∆(L̄)β)i j ≡ ∆(D̄)iβ j + ∆(D̄) j βi −
2
3
∆ḡi j D̄k β

k −
2
3
ḡi j
∆(D̄)k βk . (3.113)

Finally, the perturbation to Āi j , defined in Eq. (3.14), is

∆Āi j = 7
ψ6∆ψ

2αψ
((L̄β)i j − ūi j) −

ψ7

2(αψ)2
∆C((L̄β)i j − ūi j) (3.114)

+
ψ7

2αψ
(∆(L̄β)i j − ∆̄ui j

) .

The perturbations to the source terms given in Eqs. (3.4) (3.5) (3.6) and (3.7) are

∆ρ ≡ ∆nanbTab + na∆nbTab + nanb∆Tab , (3.115)

∆Si ≡ −∆gi jnaTa j − g
i j
∆naTa j − g

i jna
∆Ta j , (3.116)

∆Si j ≡ ∆giag jbTab + gia∆g jbTab + giag jb∆Tab , (3.117)

∆S ≡ ∆gi j Si j + g
i j
∆Si j . (3.118)

For a vacuum background (Tab = 0), these terms simplify to give

∆ρ ≡ nanbψ
acψbd

∆Tcd = nanb
∆Tab , (3.119)

∆Si ≡ −gi jna
∆Ta j , (3.120)

∆Si j ≡ ∆Ti j , (3.121)

∆S ≡ gi j
∆Si j . (3.122)

Note that all of the above terms use the background variables without applying a
conformal transformation.

3.B Reconstructing the perturbed spacetime metric
In this appendix, we detail how to reconstruct the (non-conformal) spatial metric,
∆gi j , and its time derivative, ∂t∆gi j , from the perturbed extended conformal thin
sandwich variables solved for in Sec. 3.2. This in turn allows us to construct the
perturbation to the spacetime metric, ∆ψab, and its time derivative, ∂t∆ψab.

We obtain, perturbing Eq. (3.8)
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∆gi j = ψ
4
∆ḡi j + 4ψ3

∆ψḡi j , (3.123)

and

∆gi j = ψ−4
∆ḡi j − 4ψ−5

∆ψḡi j . (3.124)

For ui j , we perturb Eq. (3.10) to give

∆ui j = ψ
4
∆ūi j + 4ψ3

∆ψūi j , (3.125)

which is in turn related to ∂t∆gi j through perturbing Eq. (3.9) to give

∆ui j = ∂t∆gi j −
2
3
∆gi j(−αK + Diβ

i) (3.126)

−
2
3
gi j(−∆αK + ∆(D)iβi − α∆K + Di∆β

i) .

Finally, the perturbed extrinsic curvature ∆Ki j can be reconstructed from ∆K and
the solved variables following Eqs. (3.12) and (3.13) as

∆Ki j = ∆Ai j +
1
3
(∆gi jK + gi j∆K) , (3.127)

where

∆Ai j = ψ
−2
∆Āi j − 2ψ−3

∆ψ Āi j . (3.128)

In addition to ∆gi j and ∂t∆gi j , some applications, such as computing the black hole
shadow, require the perturbation to the full spacetime metric ψab → ψab+∆ψab and
its time derivative ∂t∆ψab. We thus construct the spacetime metric perturbation as

∆ψab =

(
−2α∆α + ∆βmβ

m + βm∆β
m ∆βi

∆β j ∆gi j

)
. (3.129)

For the time derivative, given by applying the chain rule to the terms in Eq. (3.129),
we need to specify the time derivatives of βi, α, ∆βi, and ∆α. For the background
case, we can freely specify ∂tβ

i = 0 and ∂tα = 0 [40]. We can apply the same
principle to the perturbed data, and freely set ∂t∆α = 0 and ∂t∆β

i = 0. For a
stationary background (∂tψab = 0, where ∂t is a linear combination to Killing vector
fields), we obtain

∂t(∆βmβ
m + βm∆β

m) (3.130)

= ∂t(∆gmiβ
iβm + gmi∆β

iβm + gmiβ
i
∆βm)

= ∂t∆gmiβ
iβm ,
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and thus

∂t∆ψab =

(
∂t∆gi j β

iβ j ∂t∆gi j β
j

∂t∆gi j β
i ∂t∆gi j

)
. (3.131)
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C h a p t e r 4

EVOLVING METRIC PERTURBATIONS IN DYNAMICAL
CHERN-SIMONS GRAVITY AND THE STABILITY OF

ROTATING BLACK HOLES IN DYNAMICAL CHERN-SIMONS
GRAVITY

[1] Maria Okounkova, Mark A. Scheel, and Saul A. Teukolsky. “Evolving
Metric Perturbations in dynamical Chern-Simons Gravity”. In: Phys. Rev.
D99.4 (2019), p. 044019. doi: 10.1103/PhysRevD.99.044019. arXiv:
1811.10713 [gr-qc].

Abstract

The stability of rotating black holes in dynamical Chern-Simons gravity (dCS) is an
open question. To study this issue, we evolve the leading-order metric perturbation
in order-reduced dynamical Chern-Simons gravity. The source is the leading-
order dCS scalar field coupled to the spacetime curvature of a rotating black hole
background. We use a well-posed, constraint-preserving scheme. We find that
the leading-order metric perturbation numerically exhibits linear growth, but that
the level of this growth converges to zero with numerical resolution. This analysis
shows that spinning black holes in dCS gravity are numerically stable to leading-
order perturbations in the metric.

4.1 Introduction
Einstein’s theory of general relativity (GR) has passed all precision tests to date,
and binary black hole observations from the Laser Interferometry Gravitational
Wave Observatory (LIGO) have given a roughly 96% agreement with GR [206,
14]. At some scale, however, GR must be reconciled with quantum mechanics in a
quantum theory of gravity. Black hole systems can potentially illuminate signatures
of quantum gravity, as they probe the strong-field, non-linear, high-curvature regime
of gravity.

While several null-hypothesis and parametrized tests of GRwith LIGO observations
have been performed [14, 216], an open problem is the simulation of binary black
holes through full inspiral, merger, and ringdown in a beyond-GR theory. Waveform

https://doi.org/10.1103/PhysRevD.99.044019
http://arxiv.org/abs/1811.10713
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predictions from such simulations would allow us to performmodel-dependent tests,
and to parametrize the behavior at merger in beyond-GR theories.

From the first LIGO detections, we know that deviations from GR are presently not
detectable. It is reasonable to assume that this is because any such deviations are less
than about a 4% effect. While it is possible that the signal-to-noise ratio from the
merger itself is currently too small to rule out larger deviations at the horizon, wewill
not consider this possibility here. Accordingly, rather than simulating black holes
in a full quantum theory of gravity, we can consider effective field theories. These
modify the classical Einstein-Hilbert action of GR through the inclusion of classical
terms encompassing quantum gravity effects. One such theory is dynamical Chern-
Simons (dCS) gravity, which adds a scalar field coupled to spacetime curvature to
the Einstein-Hilbert action, and has origins in string theory, loop quantum gravity,
and inflation [18, 95, 192, 134, 204].

The well-posedness of the initial value problem in full, non-linear dCS gravity is
unknown [74]. However, we can work in an order-reduction scheme, in which we
perturb the dCS scalar field and metric about a GR background. At each order,
the equations of motion are well-posed (cf. [146]). In this study, we investigate the
behavior of the leading-order dCS metric perturbation, sourced by the leading-order
dCS scalar field coupled to the spacetime curvature of a GR background.

The stability of rotating black holes in dCS gravity is unknown [137, 90, 43]. In this
study, we numerically test the leading-order stability of rotating dCS black holes
by evolving the leading-order dCS metric perturbation on a rotating black hole GR
background. Since the background (and the leading-order dCS scalar field) are
stationary, the dCS metric perturbation should remain stationary if rotating dCS
black holes are stable.

This question of stability is of broader importance to our goal of simulating the
leading-order dCS metric perturbation of a binary black hole spacetime, in order to
produce beyond-GR gravitational waveforms. If rotating black holes in dCS are not
stable to leading order, and the metric perturbation grows in time, then we know
that we would not be able to simulate black hole binaries in this theory. Specifically,
the metric perturbations around each black hole would grow in time during inspiral,
and similarly for the final black hole after merger, thus spoiling the evolution.
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Roadmap and conventions
This chapter is organized as follows. In Sec. 4.2, we present the equations of
motion of dCS that we aim to evolve in this study. In Sec. 4.3, we derive and
present a formalism for stably evolving linear metric perturbations on an arbitrary
background, so that we may evolve the leading-order dCS metric perturbation. In
Sec. 4.4, we apply this formalism to evolve the leading-order dCSmetric perturbation
on a rotating black hole background. We discuss our findings in Sec. 4.5.

We set G = c = 1 throughout. Quantities are given in terms of units of M ,
the ADM mass of the background. Latin letters in the beginning of the alphabet
{a, b, c, d . . .} denote 4-dimensional spacetime indices, while Latin letters in the
middle of the alphabet {i, j, k, l, . . .} denote 3-dimensional spatial indices. gab

refers to the spacetime metric, while γi j refers to the spatial metric from a 3+1
decomposition with corresponding timelike unit normal one-form na (cf. [40] for a
review of the 3+1 ADM formalism).

4.2 Dynamical Chern-Simons gravity
DynamicalChern-Simons gravitymodifies theEinstein-Hilbert action ofGR through
the inclusion of a scalar field ϑ, coupled to spacetime curvature as

S ≡
∫

d4x
√
−g

(
m2

pl

2
R −

1
2
(∂ϑ)2 −

mpl

8
`2ϑ ∗RR

)
. (4.1)

The first term in the action is the familiar Einstein-Hilbert action of general relativity,
with the Planck mass denoted by mpl. The second term in the action is a kinetic term
for the scalar field. The third term, meanwhile, couples ϑ to spacetime curvature
via the Pontryagin density,

∗RR ≡ ∗Rabcd Rabcd , (4.2)

where ∗Rabcd = 1
2ε

abe f Re f
cd is the dual of the Riemann tensor, and εabcd ≡

−[abcd]/
√
−g is the fully antisymmetric Levi-Civita tensor. This coupling is gov-

erned by a coupling constant `, which has dimensions of length. ` physically
represents the length scale below which quantum gravity effects become important.
One may also include stress-energy terms in this action for additional fields (such
as matter terms in a neutron-star spacetime, for example), though we do not write
them here.
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Varying the dCS action with respect to ϑ gives a sourced wave equation for the
scalar field,

�ϑ =
mpl

8
`2 ∗RR , (4.3)

where � = ∇a∇
a is the d’Alembertian operator. Varying the action with respect to

the metric gab gives

m2
plGab + mpl`

2Cab = Tϑ
ab , (4.4)

where

Cab ≡ εcde(a∇
d Rb)

c∇eϑ + ∗Rc
(ab)

d∇c∇dϑ , (4.5)

and Tϑ
ab is the stress energy tensor for a canonical, massless Klein-Gordon field

Tϑ
ab = ∇aϑ∇bϑ −

1
2
gab∇cϑ∇

cϑ . (4.6)

It is the inclusion of Cab in Eq. (4.4) that modifies the equation of motion for the
metric from that of a metric in GR sourced by a scalar field.

Cab, as given in Eq. (4.5), contains third derivatives of the metric, thus modifying
the principal part of the equation of motion for γab from that of GR. Because of the
presence of these third-derivative terms, it is unknownwhether dCS has awell-posed
initial value formulation [74].

However, one can expand the scalar field and metric about a GR background as

gab = g0
ab +

∞∑
k=1

εk h(k)ab , (4.7)

ϑ =

∞∑
k=0

εkϑ(k) , (4.8)

where ε is an order-counting parameter. At each order in ε, one recovers an equation
of motion with the same principal part as GR. This is known as an order-reduction
scheme, and has been previously implemented in [146] and [143].

In this scheme, ε0 simply gives the Einstein field equations of general relativity for
g
(0)
ab , with no source term for ϑ(0), which we can thus set to zero. At first order, we

obtain a wave equation for the leading-order scalar field,

�(0)ϑ(1) = ∗RR(0) , (4.9)
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where �(0) is the d’Alembertian operator of the background, and RR(0) is the Pon-
tryagin density of the background. At this order, the metric perturbation h(1)ab is
unsourced, and thus we set it to zero. At order ε2, the metric perturbation h(2)ab is
sourced by the leading-order scalar field ϑ(1) coupled to spacetime curvature as

m2
plG
(0)
ab [h

(2)
ab ] = −mpl`

2C(1)ab ϑ
(1) +

1
8

T (ϑ(1))ab , (4.10)

where G(0)ab is the Einstein field equation operator of the background, and

T (ϑ(1))ab ≡ ∇a
(0)ϑ(1)∇b

(0)ϑ(1) −
1
2
g
(0)
ab∇c

(0)ϑ(1)∇c(0)ϑ(1) , (4.11)

where ∇a
(0) denotes the covariant derivative associated with g

(0)
ab . Meanwhile,

C(1)ab ≡ εcde(a∇
d (0)Rb)

c(0)∇e(0)ϑ(1) (4.12)

+ ∗Rc
(ab)

d (0)∇c
(0)∇d

(0)ϑ(1) .

Note that though C(1)ab contains third derivatives of the background metric g
(0)
ab , it

does not contain derivatives of h(2)ab , and hence does not contribute to the principal
part of Eq. (4.10). We can thus write the RHS of Eq. (4.10) in terms of an effective
stress energy tensor,

Teff
ab
(1) ≡ −mpl`

2C(1)ab ϑ
(1) +

1
8

T (ϑ(1))ab . (4.13)

Let us write Eq. (4.10) in a more illuminating way, as

m2
plG
(0)
ab [h

(2)
ab ] =

1
8

T (ϑ(1))ab (4.14)

− mpl`
2
(
εcde(a∇

d (0)Rb)
c(0)∇e(0)ϑ(1)

+ ∗Rc
(ab)

d (0)∇c
(0)∇d

(0)ϑ(1)
)
ϑ(1) .

As mentioned previously, it is the inclusion of the second term on the right-hand
side of Eq. (4.14) that differentiates the equation of motion for the leading-order
metric perturbation in dynamical Chern-Simons theory from that of a simple metric
perturbation sourced by a scalar field in general relativity.

Our goal, thus, is to evolve the leading-order metric perturbation h(2)ab , sourced by
Teff

ab
(1). Because this is the leading-order metric perturbation, we only need to work

in linear theory. We will thus develop a numerical scheme for stably evolving first-
order metric perturbations on an arbitrary GR background with arbitrary source.
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From here on, we simplify the notation, writing

h(2)ab ≡
`4

8
∆gab , ϑ(1) ≡

mpl

8
`2
Ψ , (4.15)

and thus

Teff
ab (Ψ) ≡ −Cab(Ψ) +

1
8

Tab(Ψ) , (4.16)

Cab(Ψ) ≡ εcde(a∇
d Rb)

c∇e
Ψ + ∗Rc

(ab)
d∇c∇dΨ , (4.17)

Tab(Ψ) = ∇aΨ∇bΨ −
1
2
gab∇cΨ∇

c
Ψ , (4.18)

with the overall evolution equation

G(1)ab [∆gab] = Teff
ab (Ψ) . (4.19)

4.3 Evolving metric perturbations
Our goal now is to outline a formalism to evolve the leading-ordermetric perturbation
in dCS, following Eq. (4.19). In this section, we derive a more general formalism
for evolving leading-order metric perturbations on an arbitrary GR background with
arbitrary source, which we will apply to rotating black holes in dCS in Sec. 4.4.

Generalized harmonic formalism
The formalism that we will use to evolve metric perturbations is based on the
generalized harmonic formalism [121]. This formulation is a generalization of
the well-known harmonic formulation of Einstein’s equations, and has seen great
success in evolving binary black hole mergers [87, 162, 161, 121]. This well-
posed formalism involves expressing the gauge freedom in terms of a (nearly) freely
specifiable gauge source function

Ha = gab∇c∇
c xb = −Γa , (4.20)

where Γa = gbcΓabc for the Christoffel symbol derived from gab, and ∇c is the
corresponding spacetime covariant derivative. Here, Ha is known as the gauge
source function, and is a fixed function of coordinates xa and gab (but not derivatives
of gab). In particular, setting Ha = 0 corresponds to a harmonic gauge. This
framework has seen success in numerical relativity, including the simulation of
black hole binaries [162, 161, 178].

In this study, wewill consider the first-order formulation of the generalized harmonic
formalism given in [121]. This involves evolving the spacetime metric gab, along
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with variablesΠab andΦiab corresponding to its time and spatial derivatives defined
as

Φiab ≡ ∂igab , (4.21)

Πab ≡ −nc∂cgab , (4.22)

where nc is the timelike unit normal vector to slices of constant time t.

For simplicity, we will combine these into a single 4-dimensional variable κabc,
defined as

κ0ab ≡ Πab = −nc∂cgab , (4.23)

κiab ≡ Φiab = ∂igab . (4.24)

Note that κabc does not obey the tensor transformation law.

In addition to being first order, the formalism given in [121] is also constraint-
damping. It includes terms proportional to ∂igab− κiab, for example; these terms are
chosen so that small violations of constraints are driven toward zero. Here, ∂igab is
the derivative of gab taken numerically, while κiab is the first-order variable corre-
sponding to the spatial derivative of the metric. Terms are added to the evolution
equations with (spatially-dependent) multiplicative constants γ0, γ1, γ2 to ensure
symmetric-hyperbolicity and that the relations in Eqs. (4.20), (4.23) and (4.24) are
obeyed.

The first-order, symmetric-hyperbolic, constraint-damping evolution equations for
the metric are given by

∂tgab = (1 + γ1)β
k∂kgab − ακ0ab − γ1β

iκiab , (4.25)

∂tκiab = β
k∂k κiab − α∂iκ0ab + αγ2∂igab − αγ2κiab (4.26)

+
1
2
αncndκicdκ0ab + αγ

j kncκi jcκkab ,
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and

∂tκ0ab = β
k∂k κ0ab − αγ

ki∂k κiab + γ1γ2β
k∂kgab (4.27)

+ 2αgcd(γi jκicaκ jdb − κ0caκ0db

− ge f
ΓaceΓbdf )

− 2α∇(aHb) −
1
2
αncndκ0cdκ0ab

− αncκ0ciγ
i jκ jab

+ αγ0[2δc
(anb) − gabnc](Hc + Γc)

− γ1γ2β
iκiab − 2αSab .

In the last equation, Sab is a source term related to trace-reverse of the stress-energy
tensor Tab as

Sab = 8π(Tab −
1
2

Tgab) , (4.28)

where T = gabTab. In the above, ∇aHb is defined as ∂aHb − Γ
d

abHd , as if Ha were
a one-form (which it is not).

Linearized generalized harmonic formalism
Our goal in this study is to evolve first-order metric perturbations on a GR back-
ground. Given a background {gab, κabc}, we perturb it to first order as

gab → gab + ∆gab , (4.29)

κabc → κabc + ∆κabc . (4.30)

From here on, ∆A will always refer to the linear perturbation to a variable A.

The evolution equations for∆gab and∆κabc can be derived by linearizing Eqs. (4.25),
(4.26), and (4.27), and keeping terms to first order. The resulting equations will
be a first-order formulation. The symmetric hyperbolicity of these equations is
guaranteed because the perturbation equations will have the same principal part as
the background system. The linearized system is also constraint damping, as the
associated constraint evolution system has the same linear part as in the constraint-
damping unperturbed system (cf. Eqs. 17 – 21 in [121]). More importantly, the
equations for ∆gab and ∆κabc will have the same principal part as the equations for
gab and κabc, as we shall see.

Linearizing Eqs. (4.25), (4.26), and (4.27) involves computing terms like ∆α, ∆βi,
the first-order perturbations to the lapse and shift. In the following section, we thus
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derive expressions for these terms in terms of the fundamental variables ∆gab and
∆κabc.

Linearized variables
To compute ∆gab, we can use the identity gabgbc = δ

a
c to give

∆gad = −gcdgab
∆gbc . (4.31)

For the perturbation to the lapse, ∆α, the shift, ∆βi, the lower-indexed shift, ∆βi, and
the spatial metric ∆γi j and ∆γi j , we recall that the spacetime metric is decomposed
in the 3+1 ADM formalism as

gab =
(
−α2+βlβ

l βi
βj γi j

)
(4.32)

gab =
(
−α−2 α−2βi

α−2β j γi j−α−2βiβ j

)
. (4.33)

Recall that spatial quantities are raised and lowered with γi j , the spatial metric.
When we perturb all 10 independent components of gab, we can find what all of the
linearized quantities are in terms of gab and ∆gab. We begin with perturbing g0i to
find ∆βi:

∆βi = ∆g0i . (4.34)

Similarly, we can perturb gi j to obtain:

∆γi j = ∆gi j . (4.35)

We can now use g00 to obtain

∆α =
1
2
α3
∆g00 . (4.36)

Next, using γi jγ j k = δ
i
k , we find

∆γim = −γmkγi j
∆γ j k . (4.37)

From this, we can compute ∆βi as

∆βi = ∆γi j β j + γ
i j
∆β j . (4.38)

Finally, we need to compute∆na and∆na, the perturbed time-like unit normal vector
and one-form. We can use the expressions for na and na in terms of the lapse and
shift to obtain the perturbed quantities (cf. [40]). We compute

∆na = (−∆α, 0, 0, 0) . (4.39)
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and

∆na = (−α−2
∆α, α−2

∆αβi − α−1
∆βi) . (4.40)

In order to check constraint satisfaction (as will be discussed in Sec. 4.3), we will
also need to obtain the perturbation to γb

a . We obtain (cf. Eq. 2.30 in [40]),

∆γa
b = ∆nanb + na

∆nb . (4.41)

Thus, we have obtained all of the necessary perturbed quantities to perturb the
generalized harmonic expressions as well as the constraint expressions that we can
obtain from ∆gab. In the next section, we describe the quantities that we can obtain
from ∆κabc.

Referring back to Eq. (4.27), we also need to find expressions for ∆Γabc, the first-
order perturbation to the connection compatible with gab, as well as the first-order
perturbation to its trace, ∆Γa. First, let’s compute the perturbation to ∆Γabc. By
definition,

Γabc =
1
2
(∂bgac + ∂cgab − ∂agbc) . (4.42)

However, in order to preserve hyperbolicity in the evolution equations, all in-
stances of ∂agbc appearing in Γabc are replaced with κabc according to Eqs. (4.23)
and (4.24) [121], thus giving

Γabc =
1
2

(
(1 − δ0

b)κbac + δ
0
b(−ακ0ac + β

iκiac) (4.43)

+ (1 − δ0
c )κcab + δ

0
c (−ακ0ab + β

iκiab)

− (1 − δ0
a)κabc − δ

0
a(−ακ0bc + β

iκibc)

)
where the Kronecker delta symbol δa

b picks out the spatial indices {1, 2, 3} versus
time indices {0}.

We can perturb Eq. (4.43) to give

∆Γabc =
1
2

(
(1 − δ0

b)∆κbac (4.44)

+ δ0
b(−∆ακ0ac − α∆κ0ac + ∆β

iκiac + β
i
∆κiac)

+ (1 − δ0
c )∆κcab

+ δ0
c (−∆ακ0ab − α∆κ0ab + ∆β

iκiab + β
i
∆κiab)

− (1 − δ0
a)∆κabc

− δ0
a(−∆ακ0bc − α∆κ0bc + ∆β

iκibc + β
i
∆κibc)

)
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Now, for Γa
bc ≡ gadΓdbc, we compute the corresponding perturbations (for future

use) via

∆Γ
a

bc = ∆g
ad
Γdbc + g

ad
∆Γdbc . (4.45)

For the trace of Γa ≡ gbcΓabc, we compute

∆Γa = ∆g
bc
Γabc + g

bc
∆Γabc , (4.46)

where ∆Γabc is as above, and ∆gbc is given in Eq. (4.31).

The generalized harmonic gauge source term, Ha, will also have a perturbation,
∆Ha. However, ∆Ha, like Ha, is freely specifiable, with the caveat that it can
only depend on gab and ∆gab but no derivatives of gab or ∆gab. Throughout this
study we will choose a freezing gauge condition: we set ∆Ha from the initial data
∆Ha = ∆Γa(t = 0), and keep it at this constant value throughout the evolution.

Eq. (4.27) has a ∇aHb term. Perturbing this quantity, we obtain

∆(∇aHb) = ∂a∆Hb − ∆g
cd
ΓdabHc (4.47)

− gcd(∆ΓdabHc + Γdab∆Hc) .

Perturbed initial data

Suppose we are given initial data in the form {∆gab, ∂t∆gab, ∂i∆gab}. Perturbing
Eqs. (4.23) and (4.24), we can relate ∆κabc to derivatives of ∆gab:

∆κ0ab = −∆nc∂cgab − nc∂c∆gab , (4.48)

∆κiab = ∂i∆gab , (4.49)

where ∆nc is computed from ∆gab using Eq. (4.40).

Source terms

In order to source the metric perturbation, we require a perturbation to the stress
energy tensor, ∆Tab. This will appear in the perturbed evolution equations through
∆Sab, the perturbation to Sab defined in Eq. (4.28), as

∆Sab = 8π(∆Tab −
1
2
(∆Tgab + T∆gab)) , (4.50)

∆T = ∆gabTab + g
ab
∆Tab . (4.51)
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For a vacuum background, we obtain the simpler form

∆Sab = 8π(∆Tab −
1
2
gabg

cd
∆Tcd) . (4.52)

Perturbed evolution equations
Wehave nowderived the first-order perturbations to all of the variables in Eqs. (4.25),
(4.26), and (4.27). We next perturb these equations to linear order, in order to obtain
evolution equations for ∆gab and ∆κabc.

We begin by perturbing Eq. (4.25) to obtain

∂t∆gab = (1 + γ1)(∆β
k∂kgab + β

k∂k∆gab) (4.53)

− ∆ακ0ab − α∆κ0ab

− γ1∆β
iκiab − γ1β

i
∆κiab .

Next, we perturb Eq. (4.26) to give

∂t∆κiab = ∆β
k∂k κiab + β

k∂k∆κiab (4.54)

− ∆α∂iκ0ab − α∂i∆κ0ab

+ ∆αγ2∂igab + αγ2∂i∆gab

+
1
2
∆αncndκicdκ0ab +

1
2
α∆ncndκicdκ0ab

+
1
2
αnc

∆ndκicdκ0ab +
1
2
αncnd

∆κicdκ0ab

+
1
2
αncndκicd∆κ0ab

+ ∆αγ j kncκi jcκkab + α∆γ
j kncκi jcκkab

+ αγ j k
∆ncκi jcκkab + αγ

j knc
∆κi jcκkab

+ αγ j kncκi jc∆κkab

− ∆αγ2κiab − αγ2∆κiab .
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Finally, we perturb Eq. (4.27) to obtain

∂t∆κ0ab = ∆β
k∂k κ0ab + β

k∂k∆κ0ab (4.55)

− ∆αγki∂k κiab − α∆γ
ki∂k κiab

− αγki∂k∆κiab

+ γ1γ2∆β
k∂kgab + γ1γ2β

k∂k∆gab

+ 2∆αgcd(γi jκicaκ jdb − κ0caκ0db − g
e f
ΓaceΓbdf )

+ 2α∆gcd(γi jκicaκ jdb − κ0caκ0db − g
e f
ΓaceΓbdf )

+ 2αgcd(∆γi jκicaκ jdb − ∆κ0caκ0db − ∆g
e f
ΓaceΓbdf )

+ 2αgcd(γi j
∆κicaκ jdb − κ0ca∆κ0db − g

e f
∆ΓaceΓbdf )

+ 2αgcd(γi jκica∆κ jdb − g
e f
Γace∆Γbdf )

− 2∆α∇(aHb) − 2α∆∇(aHb)

−
1
2
∆αncndκ0cdκ0ab −

1
2
α∆ncndκ0cdκ0ab

−
1
2
αnc

∆ndκ0cdκ0ab −
1
2
αncnd

∆κ0cdκ0ab

−
1
2
αncndκ0cd∆κ0ab

− ∆αncκ0ciγ
i jκ jab − α∆ncκ0ciγ

i jκ jab

− αnc
∆κ0ciγ

i jκ jab − αncκ0ci∆γ
i jκ jab

− αncκ0ciγ
i j
∆κ jab

+ ∆αγ0[2δc
(anb) − gabnc](Hc + Γc)

+ αγ0[2δc
(a∆nb) − ∆gabnc](Hc + Γc)

+ αγ0[−gab∆nc](Hc + Γc)

+ αγ0[2δc
(anb) − gabnc](∆Hc + ∆Γc)

− γ1γ2∆β
iκiab − γ1γ2β

i
∆κiab

− 2∆αSab − 2α∆Sab .

Constraint Equations
In order to check the numerical performance of the evolution equations given in
the previous section, we evaluate a set of four perturbed constraints that ∆gab and
∆κabc must satisfy. These functions are zero analytically, and we will check their
convergence to zero with increasing numerical resolution.
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The 1-index constraint (cf. [121]) is the gauge constraint

Ca = Ha + Γa , (4.56)

which measures the numerical accuracy of the generalized harmonic evolution (cf.
Eq. (4.20)). We perturb this to get the constraint

∆Ca ≡ ∆Ha + ∆Γa , (4.57)

where ∆Ha is the gauge source function for the metric perturbation evolution.

The 3-index constraint evaluates the difference between the numerical derivative of
gab and κiab, the first-order variable encoding the spatial derivative of the metric as

Ciab = ∂igab − κiab . (4.58)

Perturbing this, we obtain

∆Ciab = ∂i∆gab − ∆κiab . (4.59)

The 4-index constraint concerns the commutation of partial derivatives as

Ci jab ≡ 2∂[iκ j]ab . (4.60)

Perturbing this, we obtain

∆Ci jab ≡ 2∂[i∆κ j]ab . (4.61)

Finally, the 2-index constraint is derived from the Hamiltonian and momentum
constraints, as well as the 3-index constraint. The constraint and its perturbation are
too lengthy to reproduce here, and so we have written them in Appendix 4.A.

Thus, when performing an evolution, we evaluate the right-hand sides of Eqs. (4.57),
(4.59), (4.61), and (4.80), and check that they converge to zero with increasing
numerical resolution. In particular, as we use a spectral code, we expect exponential
convergence with resolution [198].

In order to show that the constraints themselves are convergent, rather than the
absolute values of the metric variables simply getting smaller, we can normalize the
constraints by the absolute values of the metric fields they contain. For example,
for a constraint of the form A + B, we normalize it by dividing by

√
A2 + B2. The

question arises of whether we should normalize the constraints pointwise, or whether
we should compute the norm of each constraint and its normalization factor over the
entire domain and then divide the norms. Since we will evolve a localized metric
perturbation, there will be regions in the domain with∆gab nearly zero, so we choose
to first compute norms and then divide them.
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Characteristic variables
All of the discussion so far has centered on fundamental variables ∆gab and ∆κabc.
However, in order to implement boundary conditions, it is useful to instead consider
characteristic fields. These can be used to measure the characteristic speeds and to
construct boundary conditions.

The characteristic fields are the eigenvectors of the principal part of the evolution
equations (cf. [121] for an example derivation). The characteristic speeds are the
corresponding eigenvalues. For the generalized harmonic system, the characteristic
variables on a surface with spatial normal vector n̂i take the form

u0
ab = gab , (4.62)

u1±
ab = κ0ab ± n̂iκiab − γ2gab , (4.63)

u2
iab = (δi

k − n̂in̂k)κkab . (4.64)

The principal parts of the linearized equations (cf. Sec 4.3) are

∂t∆gab − (1 + γ1)β
k∂k∆gab ' 0 , (4.65)

∂t∆κ0ab − β
k∂k∆κ0ab (4.66)

+ αγki∂k∆κiab − γ1γ2β
k∂k∆gab ' 0 ,

∂t∆κiab − β
k∂k∆κiab (4.67)

+ α∂i∆κ0ab − γ2α∂i∆gab ' 0 .

These are exactly those of the generalized harmonic system, and hence the char-
acteristic fields and speeds will be the same. Thus, the characteristic fields of the
linearized system are simply

∆u0
ab = ∆gab , (4.68)

∆u1±
ab = ∆κ0ab ± n̂i

∆κiab − γ2∆gab , (4.69)

∆u2
iab = (δi

k − n̂in̂k)∆κkab . (4.70)

The reverse transformation from characteristic variables to fundamental variables is
then

∆gab = ∆u0
ab , (4.71)

∆κ0ab =
1
2
(∆u1+

ab + ∆u1−
ab ) + γ2∆u0

ab , (4.72)

∆κiab =
1
2

n̂i(∆u1+
ab − ∆u1−

ab ) + ∆u2
iab . (4.73)
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As in the generalized harmonic system, the characteristic speed for ∆u0
ab is −(1 +

γ1)nk β
k , the speed for ∆u1±

ab is −nk β
k ± α, and the speed for ∆u2

iab is −nk β
k .

Boundary Conditions
In the previous section, we derived the characteristic fields for the linearized system.
In order to complete the evolution system, we must include boundary conditions
for these characteristic fields. All of our numerical evolutions include a finite outer
boundary, and we choose to use a freezing boundary condition, which sets

P(d∆u(a)/dt) = 0 , (4.74)

where∆u(a) is a perturbation to a characteristic field and P refers to the characteristic
projection onto the surface. Though more sophisticated conditions are available,
especially for computing accurate gravitational radiation (cf. [115, 172, 173]), we
find that the freezing boundary condition is sufficient for our purposes, especially
since the characteristics are initially purely outgoing (out of the computational
domain).

When simulating metric perturbations on a spacetime containing one or more black
holes, we exclude the region just inside the apparent horizon from the computational
domain [104]. This forms a topologically spherical inner boundary. However, there
should be no characteristics entering the computational domain from the horizon,
and thus we do not need to specify a condition at the inner boundary.

Code Tests
Because of the complexity of Eqs. (4.25), (4.26), and (4.27), we perform a series
of code tests. These code tests contain no new physics, but rather check that the
evolution equations have been implemented correctly. We present the results of
these tests in Appendix 4.B.
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4.4 Evolving dCS metric perturbations
We now apply the formalism given in Sec. 4.3 to dynamical Chern-Simons gravity.
Specifically, we aim to test the stability of rotating black holes in dCS by evolving
the leading-order metric perturbation, ∆gab, governed by Eq. (4.19), on a rotating
black hole background. In GR, this background is given by the Kerr metric. Recall
from Eqs. (4.16), (4.17), and (4.18), that it is precisely the inclusion of Cab(Ψ) in the
effective stress energy tensor that differentiates dynamical Chern-Simons gravity,
where the scalar field is coupled to spacetime curvature via ∗RR, from a simple
metric perturbation sourced by a scalar field in GR.

Implementation details
In [143], we derived stationary initial data for ∆gab on a Kerr background sourced
by the spacetime curvature of the Kerr background coupled to a stationary field
Ψ obeying �Ψ = ∗RR . [184]. Using these data, we construct ∆κabc following
Eqs. (4.49) and (4.48). The source term ∆Sab described in Sec. 4.3 is computed
from Ψ using Teff

ab (Ψ) in Eq. (4.16).

Our computational domain is a set of eleven nested spherical shells, with more shells
centered near the horizon and fewer shells further out. The boundary of the innermost
shell conforms to the apparent horizon of the background black hole, and the outer
boundary is at R = 200 M . We repeat simulations at three different numerical
resolutions determined by a parameter labeled "low", "medium", or "high"; each
shell has 5 radial spectral basis points and 6 angular spectral basis points at the lowest
resolution, with one more radial and angular basis point added for each increase in
our resolution parameter.

We evolve {∆gab,∆κabc} using the equations in Sec. 4.3 using a spectral code [198].
We apply filtering to the spectral scheme in order to minimize the growth of high-
frequency modes [190]. We choose damping parameters γ0 and γ2 to be larger close
to the horizon, where the metric perturbation is greatest, as shown in Fig. 4.1. We
choose γ1 = −1 as in Ref. [121].

Results
In Fig. 4.2, we present the perturbed constraint violation for a spin χ = 0.1 back-
ground using the expressions derived in Sec. 4.3. We see that the constraints remain
roughly constant in time and are exponentially convergent. We check the constraint
convergence for every simulation. Note that as we increase the spin, more spectral
coefficients are needed to achieve the same level of constraint violation.
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Figure 4.1: Constraint damping functions γ0 and γ2 used to evolve metric perturba-
tions on a Kerr background. The functions are largest where the metric perturbation
source has the highest value, and exponentially decay to R → ∞. While the func-
tions extend to R = 0, the computational domain terminates outside the apparent
horizon inner boundary (here shown by the black dashed line at R = 2 M in the case
of Schwarzschild).

In Fig. 4.3, we present the behavior of the norm of the metric perturbation with
time for χ = 0.1 for low, medium, and high resolution. We see that as we increase
resolution, ∆gab becomes more constant in time. Note that the specific value of
‖∆gab‖ (∼ 0.86 in Fig. 4.3) should be a function of χ, the spin of the back hole.
However, though expressions for this functional dependence exist in the slow and
rapid rotation limits [214, 116], and as post-Newtonian expansions [29], no closed-
form, analytical expression for the functional dependence is known.

Fig. 4.4 similarly shows the behavior of the metric perturbation for χ = 0.6. This
case is particularly interesting, as it corresponds roughly to the final spin of the post-
merger black holes in [146]. We thus conclude that were we to also simulate metric
perturbations in that study, we could stably evolve metric perturbations through
ringdown.

For a more quantitative analysis, we show the time derivative of the norm of ∆gab

in Figs. 4.5, 4.6, and 4.7, for χ = 0.1, χ = 0.6, and χ = 0.9, for three different
resolutions. Initially, there is some junk radiation (unphysical spurious radiation)
present on the domain, so the first ∼ 150 M (corresponding to the computational
domain radius) of each figure can be ignored.
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Figure 4.2: Behavior of the perturbed constraints given in Sec. 4.3 for a dCS pertur-
bation on a Kerr background with χ = 0.1. For each constraint ∆CA, we compute
the L2 norm of the constraint over the entire computational domain (‖∆C1‖ for the
1-index constraint, for example) and divide by the L2 norm of its normalization
factor (‖NA‖) (cf. Sec. 4.3). We see that the constraints remain constant in time and
are exponentially convergent with resolution.
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Figure 4.3: Metric perturbation ∆gab on a Kerr background with χ = 0.1. We
present the behavior at low, medium, and high resolutions, and find that we increase
the numerical resolution, the level of linear growth in time decreases.

0 250 500 750 1000
t/M

1.6

1.65

‖∆
g a
b‖

Low

Med

High

Figure 4.4: Similar to Fig. 4.3, but for spin of χ = 0.6. For each resolution, we use
the initial data for ∆gab we have solved for at that resolution, and hence ∆gab has
different initial values depending on resolution. We have checked that these initial
values converge to the highest-resolution result.

We see that after the junk radiation has left the domain, the normalized time deriva-
tive decreases with numerical resolution, staying at a low level of ∼ 10−6 at the
highest resolution1. Let us examine this result more carefully. The metric pertur-
bation, as shown for example in Fig. 4.3, exhibits linear growth in time. However,
the lower numerical resolutions exhibit more linear growth than higher numerical
resolutions. As shown in Fig. 4.5, we see that with increasing numerical resolution,
this linear growth converges exponentially towards zero. Thus, this linear growth is

1Higher spins require higher resolutions to achieve the same level of numerical accuracy in
Kerr-Schild coordinates, and thus the values of the time derivatives at the same numerical resolution
increase slightly with spin.
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a numerical artifact and, in the limit of infinite resolution, will be zero. Thus, we
must evolve the metric perturbation at a high enough resolution such that the linear
growth is small enough for our purposes.

How long do we need to evolve ∆gab to be confident in the stability of the field?
Practically, NR gravitational waveforms typically contain 100− 200 M of ringdown
signal [139], as did the simulations we performed in [146]. Thus, we certainly
require stability on timescales of O(100)M . Binary black hole simulation initial
data is comprised of an approximate superposition of two black hole metrics [127].
Thus, in the early inspiral, the spacetime is similar to that of two black holes, with a
dCS metric perturbation isolated around each black hole. While binary black hole
simulations typically start ∼ 5, 000 to 10, 000 M before merger (cf. [139]), at some
point in the inspiral, strong-field dynamics take over and the spacetime is no longer
a superposition of two Kerr black holes. Thus, we are interested in timescales of
O(1000)M , to be able to simulate the early inspiral. For one resolution, we have
also evolved ∆gab on a χ = 0.1 background for 10, 000 M (but only 1000M of
evolution is shown in Fig. 4.5). We find that the metric perturbation exhibits similar
behavior on these timescales (the time derivative of the perturbed metric, ∂t∆gab,
remains at a constant level for at least 10, 000 M).

Let us now discuss the origin of the linearly growing mode (a zero-frequency mode).
One possibility is that it is present in the initial data for the metric perturbation, as
it is in the spectrum of the differential operator. For the simulations shown in
Figs. 4.5, 4.6, and 4.7, the evolution for each numerical resolution has its own initial
data, which is solved for independently on a grid of that resolution. Thus, if the
presence of the mode is purely due to the initial data, we would expect different
resolutions to display various levels of linear growth, which we indeed see. To
further test this hypothesis, we can instead solve for initial data for ∆gab only at
the highest resolution, and interpolate this onto the lower-resolution grids to use for
the evolution. In Fig. 4.8, we show the results of this procedure. We see that all
three resolutions have roughly the same amount of linear growth, suggesting that
the zero-frequency mode is seeded by the initial data, rather than spontaneously
appearing during the evolution. Note that the growth is at the level of the highest
resolution, which is still finite, and hence the growth is non-zero. This in turn tells
us that in order to achieve the requisite level of numerical stability, we can use
higher-resolution initial data and perform our simulations at lower resolutions.



112

0 200 400 600 800 1000
t/M

10−9

10−8

10−7

10−6

10−5

10−4

10−3

∂
t‖∆

g a
b‖

χ = 0.1

Low

Med

High

Figure 4.5: Behavior of the derivative of the norm of the metric perturbation with
time for a background with spin χ = 0.1. We plot ∂t ‖∆gab‖, the time derivative of
the norm of the metric perturbation. Each line corresponds to a different resolution.
We see that after an initial period of junk radiation, the time derivative is convergent
towards zero with increasing numerical resolution.
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Figure 4.6: Similar to Fig. 4.5, but for spin χ = 0.6.

4.5 Results and discussion
In this chapter, we have aimed to test the stability of rotating black holes in dCS
gravity to leading order. We have worked in order-reduced dCS, in which we
perturb the dCS scalar field and metric around a GR background. We have evolved
the leading-order dCS metric perturbation, sourced by the leading-order dCS scalar
field coupled to the spacetime curvature of the GR background (Sec. 4.4). We used a
fully general, first-order, constraint-damping metric perturbation evolution scheme
based on the generalized harmonic formalism of general relativity (Sec. 4.3). We
found that the dCS metric perturbation exhibits linear growth in time, but that the
level of linear growth converges towards zero with increasing numerical resolution.

The linear stability analysis presented in this paper shows that black holes in dCS
gravity are numerically stable to leading-order perturbations in the metric. The
leading-order (first non-vanishing) metric perturbation in dCS gravity occurs at
second order, and thus the linear stability presented corresponds to stability at
second order in the dCS order-reduction scheme. Previous studies have explored
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Figure 4.7: Similar to Fig. 4.5, but for spin χ = 0.9.

the question of black hole stability in dCS gravity [137, 90, 43], but this is the first
study to explore the behavior of metric perturbations on a spinning background with
non-zero source.

Linear theory has no scale, and thus the results presented in this paper can be
applied to any coupling parameter ε2 such that, to second order, the dCS metric is
gab + ε

2∆gab. However, for the perturbative scheme to be valid, we must choose
ε2 such that ‖ε2∆gab‖ . ‖gab‖ (cf. [184] and [143] for a quantitative analysis of
allowed values of ε2).

The stability of our simulations makes us confident that we can evolve dCS metric
perturbations in a binary black hole spacetime without numerical instabilities. We
can use a superposition of the dCS scalar field initial data given in [184] and the
dCS metric perturbation initial data formalism and code used in [143] to generate
initial data for scalar field Ψ and perturbed metric variables ∆gab and ∆κabc. We can
then evolve the scalar field as we previously have in [146] and use thisΨ(t) to source
the evolution of ∆gab. While we have used a stationary gauge as determined by
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Figure 4.8: The structure of this figure is similar to that of Fig. 4.5. However, in
this case, we solve for the initial data for ∆gab purely at the “High" resolution. We
interpolate this data onto the “Low" and “Medium" resolution grids to give initial
data at these resolutions. We see that as the simulation progresses, the linear growth
in ∆gab remains at roughly the same level for all resolutions. This suggests that the
zero-frequency mode in ∆gab is present in and due to the resolution of the initial
data, rather than spontaneously appearing during the evolution.

∆Ha = ∆Γa(t = 0) in this work, we also have the option of rolling into a perturbed
damped harmonic gauge during the binary evolution (cf. [189]).

4.A Perturbed 2-index constraint
In this appendix, we derive perturbations to the generalized harmonic constraintCab.
This constraint corresponds to a combination of the Hamiltonian and momentum
constraints, and includes terms proportional to the constraintCiab (cf. Eq. (4.58)) that
are added in order to simplify the evolution equations for the constraints [121]. The
constraint Cab is defined in Eqs. 43 and 44 of [121], in which the time components
C0a are called Fa. The expressions in [121] do not contain stress-energy source
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terms, but we include these terms here. In particular,

C0a ≡ Fa − 2nbSba + naSbcg
bc , (4.75)

where Fa is the expression from [121].

In terms of the variable κabc, the spatial part of the 2-index constraint is

Cia ≡ γ
j k∂jκika −

1
2
γ j

ag
cd∂jκicd + nb∂iκ0ba (4.76)

−
1
2

nag
cd∂iκ0cd + ∂iHa +

1
2
g j

aκ jcdκie f g
cegdf

+
1
2
γ j k κ jcdκikeg

cdnena

− γ j kγmnκ jmaκikn

+
1
2
κicdκ0bena

(
gcbgde +

1
2
gbencnd

)
− κicdκ0banc

(
gbd +

1
2

nbnd
)

+
1
2
γ2

(
nag

cd − 2δc
and

)
Cicd ,

and the time part is the lengthy expression
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C0a ≡ −2nbSba + naSbcg
bc (4.77)

+
1
2
gi

ag
bc∂iκ0bc − γ

i j∂iκ0 ja − γ
i jnb∂iκ jba

+
1
2

nag
bcγi j∂iκ jbc + naγ

i j∂iHj

+ gi
aκi jbγ

j k κkcd

(
gbdnc −

1
2
gcdnb

)
− gi

anb∂iHb + γ
i jκicdκ jbag

bcnd

−
1
2

naγ
i jγmnκimcκnjdg

cd

−
1
4

naγ
i jκicdκ jbeg

cbgde +
1
4

naκ0cdκ0beg
cbgde

− γi j Hiκ0 ja − nbγi jκ0biκ0 ja

−
1
4
gi

aκicdncndκ0beg
be +

1
2

naκ0cdκ0beg
cendnb

+ gi
aκicdκ0bencnbgde − γi jκibanbκ0 jene

−
1
2
γi jκicdncndκ0 ja − γ

i j Hiκ jbanb

+ gi
aκicdHbg

bcnd

+ γ2

(
γidCida −

1
2
gi

ag
cdCicd

)
+

1
2

naκ0cdg
cdHbnb − naγ

i jκi jcHdg
cd

+
1
2

naγ
i j Hiκ jcdg

cd .

Perturbing Eq. (4.76) to obtain the perturbation to the spatial part of the 2-index
constraint, we find
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∆Cia ≡ ∆γ
j k∂jκika + γ

j k∂j∆κika −
1
2
∆γ j

ag
cd∂jκicd −

1
2
γ j

a∆g
cd∂jκicd (4.78)

−
1
2
γ j
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where ∆Cicd is the perturbed 3-index constraint as defined in Eq. (4.59).

Finally, the perturbation to the time part of the 2-index constraint is
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∆C0a ≡ −2∆nbSba − 2nb
∆Sba + ∆naSbcg

bc + na∆Sbcg
bc + naSbc∆g

bc (4.79)
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where ∆Sab is the perturbation to the source term as given by Eq. (4.50). We
combine Eqs. (4.78) and (4.79) into one overall constraint,

∆Cab = (∆C0a,∆Cia) . (4.80)

4.B Code tests
In order to have confidence in our dCS metric perturbation evolution results, we
perform a suite of tests to check the accuracy of our metric perturbation evolution
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code. For each test, we check the convergence of the perturbed constraints derived
in Sec. 4.3. Note that the results of these tests do not contain new physics, but
rather serve as a check of our implementation of the metric perturbation evolution
equations (Eqs. (4.25), (4.26), and (4.27)).

Multipolar wave evolution
We first evolve a multipolar wave in the transverse-traceless gauge on a flat back-
ground [196, 171]. This evolution takes place on a domain with only one (outer)
boundary, where we set the boundary condition given in Eq. (4.74). We wish to test
the numerical evolution against the analytic solution. However, some of the terms in
the evolution equations we are testing will vanish because the analytic solution has
symmetries. To remove these symmetries, we perform a coordinate transformation
of the form

r → ar̄ + (a0 − a)
r̄3

R2 , (4.81)

where r ≡
√

x2 + y2 + z2 in Cartesian grid coordinates, R and a0 are constants, and
a(t) is a (time-dependent) function. We add an additional coordinate translation of
the form

x̄i → x̄i + Ci , (4.82)

for some vector Ci.

We evolve an outgoing l = 2,m = 2 multipolar wave. This has a Gaussian profile,
with an initial width of 1 M , amplitude of 0.01, and center of 10 M . For the
transformations given in Eqs. (4.81) and (4.82), we choose R = 40 M , a0 = 1.3,
a(t) = 1 + 0.001t2/M2 and Ci = (2.0,−4.0, 3.0)M . We evolve on a grid of nested
spherical shells around a filled sphere, with an outer boundary of R = 35 M . Each
shell has 8 radial spectral basis functions and 4 angular spectral basis functions
at the lowest resolution, with 4 more basis functions added in each direction as
we increase resolution. We find that the perturbed constraints, shown in Fig. 4.9,
converge exponentially, and that the perturbed variables shown in Fig. 4.10 evolve
toward zero (as the data leaves the domain) in a convergent way. Additionally, we
check that our results converge to the known analytic solution.

Small data on Schwarzschild
We perform a test where we initially set each component of ∆gab to be a different
number close to machine precision (10−16) at each point on the domain, thus seeding



122

10−6

10−3

‖∆
C

1
‖/
‖N

1
‖

Low

Med

High

10−5

10−2

‖∆
C

2
‖/
‖N

2
‖

10−4

‖∆
C

3
‖/
‖N

3
‖

0 5 10
t/M

10−4

‖∆
C

4
‖/
‖N

4
‖

Figure 4.9: Constraints for evolution of a transformed multipolar wave perturbation
on flat space, as described in Sec. 4.B. For each constraint ∆CA, we compute the
L2 norm of the constraint over the entire computational domain (‖∆C1‖ for the
1-index constraint, for example) and divide by the L2 norm of its normalization
factor (‖NA‖) (cf. Sec. 4.3). We see that the constraints converge exponentially with
numerical resolution.
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Figure 4.10: Behavior of ∆gab for the multipolar wave test described in Sec. 4.B for
low, medium, and high resolution. We see that the value of the metric perturbation
decreases as the wave propagates toward R → ∞ (and leaves the computational
domain), and that with increasing resolution the behavior of the variables converges
to the highest-resolution value. We additionally plot the analytical solution for the
behavior of the multipolar wave, which sits on top of the highest-resolution result.

any instabilities that might be present. We apply filtering to the spectral scheme in
order to minimize the growth of high-frequency modes [190] and choose damping
parameters γ0 and γ2 to be larger close to the horizon. We check that as the
evolution progresses, the constraints and the values of ∆gab and ∆κabc remain
close to numerical truncation error. This in particular tests the constraint-damping
capabilities of the code. We show the behavior of the perturbed variables in Fig. 4.11.
We see that the solution remains at roundoff level. There is linear growth in ∆gab,
but the level of this growth decreases towards zero with increasing resolution.



124

0 500 1000
t/M

9× 10−17

‖∆
g a
b‖

Low

Med

High

Figure 4.11: Behavior of ∆gab for the small data on Schwarzschild test described
in Sec. 4.B. We see that with increasing time, the field with initial magnitude of
∼ 10−16 remains close to roundoff error.
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C h a p t e r 5

BINARY BLACK HOLE COLLISIONS IN DYNAMICAL
CHERN-SIMONS GRAVITY

Abstract

We produce the first numerical relativity binary black hole gravitational waveforms
in a higher-curvature theory beyond general relativity. In particular, we study
head-on collisions of binary black holes in order-reduced dynamical Chern-Simons
gravity. This is a precursor to producing beyond-general-relativity waveforms for
inspiraling binary black hole systems that are useful for gravitational wave detec-
tion. Head-on collisions are interesting in their own right, however, as they cleanly
probe the quasi-normal mode spectrum of the final black hole. We thus compute
the leading-order dynamical Chern-Simons modifications to the damping time and
frequency of the post-merger gravitational radiation. We consider equal-mass sys-
tems, with equal spins oriented along the axis of collision, resulting in remnant
black holes with spin. We find that there are modifications to the damping time and
frequency of the quasi-normal mode spectrum that behave as a power law with spin.
We discuss these results in the context of testing general relativity with gravitational
wave observations.

5.1 Introduction
At some length scale, Einstein’s theory of general relativity (GR) must break down
and be reconciledwith quantummechanics in a beyond-GR theory of gravity. Binary
black hole (BBH) mergers probe the strong-field, non-linear regime of gravity, and
gravitational waves from these systems could thus contain signatures of such a
theory. Current and future gravitational wave detectors have the power to test
GR [43], and BBH observations from LIGO and Virgo have given a roughly 96%
agreement with GR [14, 6].

These tests ofGR, however, are presently null-hypothesis and parametrized tests [216,
14], which use gravitational waveforms produced in GR with numerical relativity.
An open problem is the simulation of BBH systems through full inspiral, merger,
and ringdown in beyond-GR theories. Waveform predictions from such simulations
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would allow us to perform model-dependent tests and to parametrize the behavior
at merger in beyond-GR theories.

In this study, we consider dynamical Chern-Simons (dCS) gravity, a beyond-GR
effective field theory that adds a scalar field coupled to spacetime curvature to the
Einstein-Hilbert action, and has origins in string theory, loop quantum gravity, and
inflation [18, 95, 192, 134, 204]. Computing the evolution of a binary system
requires first specifying suitable initial conditions. Because the well-posedness of
the initial value problem in full dCS gravity is unknown [74], we work instead in a
well-posed order-reduction scheme, in which we perturb the metric and scalar field
around a GR background [146]. The leading-order modification to the spacetime
metric, and hence gravitational radiation, occurs at second order, which is precisely
the order we consider in this study, building on our previous work [146, 143, 142].

While our ultimate goal is to produce full inspiral-merger-ringdown waveforms
relevant for astrophysical BBH systems, in this study we consider the leading-order
dCS corrections to binary black hole head-on collisions. Such configurations, while
less astrophysically relevant than orbiting binaries, serve as a proof of principle for
our method of producing BBH waveforms in a beyond-GR theory [142], and are
fast and efficient to run. Head-on collisions also contain interesting science in their
own right, as they cleanly probe the quasi-normal mode (QNM) spectrum of the
post-merger gravitational radiation [24, 23, 35, 181]. In this study, we thus produce
the first BBH waveforms in a higher-curvature beyond-GR theory, and probe the
leading-order dCS modification to the QNM spectrum of a head-on BBH collision.

Roadmap and conventions
This chapter is organized as follows. We give an overview of ourmethods in Sec. 5.2,
and refer the reader to previous papers, [142] and [143], as well as Appendices 5.A
and 5.B, for technical details. We discuss fitting perturbed quasi-normal modes in
Sec. 5.3. We present and discuss our results, including quasi-normal mode fits, in
Sec. 5.4. We discuss the implications of this study on testing GR in Sec. 5.5. We
conclude in Sec. 5.6.

We set G = c = 1 throughout. Quantities are given in terms of units of M , the
sum of the Christodolou masses of the background black holes at a given relax-
ation time [56]. Latin letters in the beginning of the alphabet {a, b, c, d . . .} denote
4-dimensional spacetime indices, while Latin letters in the middle of the alphabet
{i, j, k, l, . . .} denote 3-dimensional spatial indices (present in the appendices). gab
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refers to the spacetime metric with connection Γa
bc, while γi j (used in the appen-

dices) refers to the spatial metric from a 3+1 decomposition with corresponding
timelike unit normal one-form na (cf. [40] for a review of the 3+1 ADM formalism).

5.2 Methods
Order-reduced dynamical Chern-Simons gravity
Full details about order-reduced dynamical Chern-Simons gravity and our methods
to simulate black hole spacetimes in this theory are given in [142, 143, 146]. Here
we only briefly summarize.

The full dCS action takes the form

S ≡
∫

d4x
√
−g

(
m2

pl

2
R −

1
2
(∂ϑ)2 −

mpl

8
`2ϑ ∗RR

)
. (5.1)

The first term is the Einstein-Hilbert action of GR, with the Planck mass denoted by
mpl. The second term in the action is a kinetic term for the scalar field. The third
term, meanwhile, couples ϑ to spacetime curvature via the Pontryagin density,

∗RR ≡ ∗Rabcd Rabcd , (5.2)

where ∗Rabcd = 1
2ε

abe f Re f
cd is the dual of the Riemann tensor, and εabcd ≡

−[abcd]/
√
−g is the fully antisymmetric Levi-Civita tensor. This coupling is gov-

erned by a coupling constant `, which has dimensions of length, and physically
represents the length scale below which quantum gravity effects become important.

The equations of motion for ϑ and gab have the form

�ϑ ≡ ∇a∇
aϑ =

mpl

8
`2 ∗RR , (5.3)

and

m2
plGab + mpl`

2Cab = Tϑ
ab , (5.4)

where

Cab ≡ εcde(a∇
d Rb)

c∇eϑ + ∗Rc
(ab)

d∇c∇dϑ , (5.5)

and Tϑ
ab is the stress energy tensor for a canonical, massless Klein-Gordon field

Tϑ
ab = ∇aϑ∇bϑ −

1
2
gab∇cϑ∇

cϑ . (5.6)
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Because of Cab in Eq. (5.4), the equation of motion is different from that of a metric
in GR sourced by a scalar field.

Cab, as given in Eq. (5.5), contains third derivatives of the metric, and it is thus
unknown whether dCS has a well-posed initial value formulation [74]. We work
instead in well-posed order-reduced dCS, in which we perturb the metric and scalar
field about an arbitrary GR spacetime and obtain perturbed equations of motion. In
particular, using an order-counting parameter ε, we can write

gab = g
(0)
ab +

∞∑
k=1

εk h(k)ab , (5.7)

ϑ =

∞∑
k=0

εkϑ(k) . (5.8)

Each order in ε leads to an equation of motion with the same principal part as
GR. Order ε0 gives the Einstein field equations of general relativity for g(0)ab , the
background GR metric. The leading-order dCS correction to the scalar field occurs
at order ε1 (cf. [146]) and takes the form of a sourced wave equation

�(0)ϑ(1) =
mpl

8
`2 ∗RR(0) , (5.9)

where �(0) is the d’Alembertian operator of the background and RR(0) is the Pon-
tryagin density of the background.

The leading-order dCS correction to the spacetime metric, which will produce
the leading-order dCS correction to the gravitational radiation, occurs at order ε2

(cf. [146]), and takes the linear form

m2
plG
(0)
ab [h

(2)
ab ] = −mpl`

2C(1)ab + T (ϑ(1))ab , (5.10)

where G(0)ab is the linearized Einstein field equation operator of the background, and

T (ϑ(1))ab ≡ ∇a
(0)ϑ(1)∇b

(0)ϑ(1) −
1
2
g
(0)
ab∇c

(0)ϑ(1)∇c(0)ϑ(1) , (5.11)

where ∇a
(0) denotes the covariant derivative associated with g

(0)
ab . Meanwhile,

C(1)ab ≡ εcde(a∇
d (0)Rb)

c(0)∇e(0)ϑ(1) (5.12)

+ ∗Rc
(ab)

d (0)∇c
(0)∇d

(0)ϑ(1) .
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To produce beyond-GRgravitationalwaveforms, our goal is thus to evolve Eq. (5.10),
to obtain the leading-order dCS correction to the spacetimemetric and corresponding
gravitational radiation.

Scaled variables

We can scale out the ` dependence by defining code variables

h(2)ab ≡
`4

8
∆gab , ϑ(1) ≡

mpl

8
`2
∆ϑ . (5.13)

With these substitutions, Eq. (5.9) becomes

�(0)∆ϑ = ∗RR(0) . (5.14)

Eq. (5.10) similarly becomes

G(0)ab [∆gab] = −C(1)ab (∆ϑ) +
1
8

T (1)ab (∆ϑ) . (5.15)

where T (1)ab (∆ϑ) refers to the Klein-Gordon stress-energy tensor in Eq. (5.11) com-
puted from ∆ϑ instead of ϑ(1), and C(1)ab (∆ϑ) similarly refers to the C-tensor in
Eq. (5.12) computed with ∆ϑ instead of ϑ(1).

We thus need to solve Eqs. (5.14) and (5.15) only once for each BBH background
configuration, and then multiply our results for ∆gab and ∆ϑ by appropriate powers
of `/GM and factors of 8 afterward.

Evolution
To evolve the first-order dCS metric perturbation, we evolve three systems of equa-
tions simultaneously: one for the GR background BBH spacetime, one for the scalar
field∆ϑ (cf. Eq. (5.14)) sourced by the background curvature, and one for the metric
perturbation ∆gab (cf. Eq. (5.15)), sourced by the background curvature and ∆ϑ.
We evolve all variables concurrently, on the same computational domain.

All variables are evolved using the Spectral Einstein Code [198], a pseudo-spectral
code. The GRBBH background is evolved using a well-posed generalized harmonic
formalism, with details given in [122, 178, 190, 104]. The first-order scalar field
is evolved using the formalism detailed in [146]. Finally, the metric perturbation is
evolved using the formalism given in [142], a well-posed perturbed analogue of the
generalized harmonic formalism. When evolving the metric perturbation, we have
the freedom to choose a perturbed gauge, which we choose to be a harmonic gauge.
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We give details on perturbed gauge choices in Appendix 5.A. We use the boundary
conditions detailed in [69, 172, 146, 142].

The GR BBH evolution governs the shape of the spectral domain, with an initial
grid with two excision regions (one for each black hole), and a final, post-merger
grid with one excision region [104]. The outer boundary is chosen to be ∼ 700 M .
The background GR variables govern the adaptive mesh refinement [190]. This is
justified, as high gradients in the background will source higher gradients in both
the scalar field and the metric perturbation. For all of the evolved variables, in
spherical subdomains we filter the top four tensor spherical harmonics, while we
use an exponential Chebyshev filter in the radial direction [190]. We similarly filter
the variables in subdomains with other topologies according the the prescriptions
in [190]. For the constraint damping parameters (cf. [122, 142]), we choose the
standard values for BBH simulations.

Initial data
To perform an evolution, we must generate initial data for the background (metric)
fields, the scalar field, and the metric perturbation. The background initial data for a
BBH system are given by a constraint-satisfying superposition of black hole metrics
in Kerr-Schild coordinates [127, 149]. The scalar field initial data are given by a
superposition of slow-rotation solutions [146, 214, 210]. The constraint-satisfying
initial data for ∆gab are generated using the methods outlined in [143]. For head-on
collisions, we start with a separation of 25 M , assuming that the contributions to the
gravitational radiation and energy flux from times t . 25 M are negligible.

In this study, we will consider axisymmetric configurations where the background
spins of the black holes are oriented along x̂, the axis along which they are collid-
ing. Moreover, we will choose configurations where the two spins have the same
orientation along the axis of collision so that the system has a reflection symmetry
for x → −x (recall that spin is a pseudo-vector). We illustrate this configuration
in Fig. 5.1. We consider equal mass, equal spin configurations, with dimensionless
spins χ between 0.1 and 0.8, in steps of 0.1. Kerr with χ , 0 is not a solution of
dCS, and hence the initial configurations will have a non-zero dCS metric perturba-
tion [214]. However, Schwarzschild is a solution of the theory, and hence we do not
consider χ = 0.0, as there will be no metric perturbation in that case.

As a check, we also consider the opposite configuration to Fig. 5.1, where the spins
have opposite orientations. For the equal mass, equal spin systems considered in
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Figure 5.1: The black hole configurations considered in this study. The two black
holes (denoted by spheres) merge along the x axis (as schematically shown by their
velocities, VA and VB). The black holes have equal spins, both oriented in the +x
direction, as shown schematically by the gradient on each sphere. The system,
as shown by the black arrow on the left, is fully symmetric about the x axis, and
additionally has a reflection symmetry x → −x.

this study, the final remnant in this case (for all spins) is a Schwarzschild black hole.
As Schwarzschild is a solution of dCS, there is no final dCS metric perturbation or
scalar field in the spacetime.

Wave extraction
In the order reduction scheme, Ψ4, the Newman-Penrose scalar measuring the
outgoing gravitational radiation, is expanded about a GR solution as

Ψ4 = Ψ
(0)
4 +

∞∑
k=1

εk
Ψ
(k)
4 . (5.16)

If we substitute the expanded metric given in Eq. 5.7 into the expression for Ψ4 (cf.
Sec. 5.B), we can match the terms order-by-order. Ψ(1)4 , the first-order correction,
will have pieces linear in h(1)ab . Recalling, however, that h(1)ab = 0, Ψ(1)4 vanishes.
Ψ
(2)
4 , the second-order correction, will have pieces quadratic in h(1)ab , which will

similarly vanish, and pieces linear in h(2)ab . Thus, the leading-order correction to the
gravitational radiation will be linear in the leading-order correction to the spacetime
metric.

In practice, we compute ∆Ψ4, the leading-order correction to the gravitational
radiation linear in the leading-order correction to the spacetime metric ∆gab using
the methods detailed in Appendix 5.B. The resulting waveform is related to Ψ(2)4 via
(cf. Eq. (5.13))

Ψ
(2)
4 =

`4

8
∆Ψ4 . (5.17)

Throughout the evolution, we extractΨ(0)4 and ∆Ψ on a set of topologically spherical
shells of various radii using the methods given in [193]. We similarly extract the
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scalar field ∆ϑ radiation on these spherical shells (cf. [146]). Ψ
(0)
4 and ∆Ψ4 are

then extrapolated to infinity as a power series in 1/R (where R is the radius of the
spherical shell) using the methods given in [193, 56].

5.3 Perturbations to quasi-normal modes
Once we have obtained Ψ(0)4 , the background gravitational radiation, and Ψ(2)4 , the
leading order dynamical Chern-Simons correction to the gravitational radiation,
we can begin to analyze these quantities. As discussed in Sec. 5.1, head-on BBH
collisions cleanly probe the quasi-normal mode spectrum of the post-merger space-
time. We are thus most interested in fitting for the QNM spectrum of Ψ(0)4 , and the
leading-order correction to this spectrum in Ψ(2)4 .

Quasi-normal modes in general relativity
A GR QNM waveform takes the form of a damped sinusoid

Ψ4(l,m,n)(t) = Ã(l,m,n)e−iω̃(l,m,n)t . (5.18)

Here, l and m label the spherical harmonic under consideration, while n refers to the
overtone, ordered by largest damping time. The quantities Ã and ω̃ are the complex
amplitude and frequency of the (l,m, n) mode under consideration. We can write ω̃
in terms of a real frequency, ω, and a damping time, τ, to give

ω̃ = ω − i/τ . (5.19)

Let us similarly write

Ã = Aeiθ . (5.20)

where A ≡ | Ã| is the norm of Ã, and θ is the complex phase of Ã. Then we obtain

Ψ4 = A cos(−ωt + θ)e−t/τ − iA sin(−ωt + θ)e−t/τ . (5.21)

Since the GR background gravitational radiation is comprised of QNMs, we can use
the form above to fit for Ψ(0)4 . The quantities ω(0) and τ(0) are known from pertur-
bation theory for each (l,m, n) [182]. Our fit thus determines two free parameters:
A(0), and θ(0) as

Ψ
(0)
4 = A(0) cos(−ω(0)t + θ(0))e−t/τ(0) (5.22)

− iA(0) sin(−ω(0)t + θ(0))e−t/τ(0) .
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Perturbed quasi-normal modes
Let us now consider how to fit Ψ(2)4 after the merger. The QNM frequency, damping
time, and amplitude will all be corrected from the background values as

ω = ω(0) +

∞∑
k=1

εkω(k) , τ = τ(0) +

∞∑
k=1

εkτ(k) , (5.23)

A = A(0) +
∞∑

k=1
εk A(k) , θ = θ(0) +

∞∑
k=1

εkθ(k) . (5.24)

Recall that the leading-order correction to the gravitational radiation is Ψ(2)4 , which
is linear in h(2)ab and has a coupling factor of (`/GM)4. Thus, the leading-order
correction to ω will be ω(2), as computed from a linearization of Eq. (5.18), with a
coupling factor of (`/GM)4. Ψ(2)4 , the leading-order dCS correction to the gravita-
tional radiation will thus be parametrized by and linear in {ω(2), τ(2), A(2), θ(2)}.

Let us focus on the real part of Eq. (5.22). Computing the leading-order perturbation
to this expression gives us the form

Re(Ψ(2)4 ) = A(2) cos(−ω(0)t + θ(0))e−t/τ(0) (5.25)

− θ(2)A(0) sin(−ω(0)t + θ(0))e−t/τ(0)

+ tω(2)A(0) sin(−ω(0)t + θ(0))e−t/τ(0)

+ t
τ(2)

(τ(0))2
A(0) cos(−ω(0)t + θ(0))e−t/τ(0) ,

which can be more compactly written as

s ≡ sin(−ω(0)t + θ(0)) , (5.26)

c ≡ cos(−ω(0)t + θ(0)) , (5.27)

Re(Ψ(2)4 ) = e−t/τ(0) ×

[
A(2)c − θ(2)A(0)s (5.28)

+ t A(0)
(
ω(2)s +

τ(2)

(τ(0))2
c
) ]

.

The imaginary part is similarly modified as

Im(Ψ(2)4 ) = −e−t/τ(0) ×

[
A(2)s + θ(2)A(0)c (5.29)

+ t A(0)
(
−ω(2)c +

τ(2)

(τ(0))2
s
) ]

.
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We thus see both an amplitude modification to the background QNM spectrum from
the A(2) and θ(2) terms, and a modification linear in time from theω(2) and τ(2) terms.
We fit precisely the functional form in Eqs. (5.28) and (5.29) to the Ψ(2)4 obtained
from the simulation. Our fit determines four free parameters: {A(2), θ(2), ω(2), τ(2)};
the other free parameters {A(0), θ(0)} in Eqs. (5.28) and (5.29) are determined by the
fit to Ψ(0)4 using Eq. (5.22). Note that this is different from simply fitting a damped
sinusoid to Ψ(2)4 .

Scaling
Because the simulations (cf. Sec. 5.2) are independent of the coupling parameter
`/GM , the resulting waveforms for ϑ(1) and Ψ(2)4 have the coupling scaled out. We
will thus report our results as

ϑ(1)(`/GM)−2 , Ψ
(2)
4 (`/GM)−4 , (5.30)

ω(2)(`/GM)−4 , τ(2)(`/GM)−4 , (5.31)

and so on.

Much of the QNM literature reports ω̃ in terms of its real and imaginary parts,
ω̃ = Re(ω) + iIm(ω), without invoking a damping time τ. We can transform our
results for τ into Im(ω) as

Im(ω(0)) =
1
τ(0)

. (5.32)

Similarly, given ∆τ, we can perturb the above expression to give

(Im(ω))(2) = −
1
(τ(0))2

τ(2) . (5.33)

Mass and spin definitions
Since τ(0) andω(0) are (by the no-hair theorem) dependent only on M and χ, themass
and dimensionless spin of the final black hole in GR, we should similarly expectω(2)

and τ(2) to be dependent on some final mass and final spin. In the full dCS theory,
we expect the mass and spin of a dCS black hole to be modified with respect to
those of a GR black hole (recall that Kerr is not a solution of the theory [214]). The
formulae used to compute mass and spin, because they are derived using properties
of GR (cf. [40]), may themselves be modified in the full dCS theory. If we had
access to the full theory, we could parametrize the QNM spectra in terms of χdCS

and MdCS, as well as `/GM . Since we are working in an order-reduction scheme,
we can instead linearize the formulae used to compute the spin and mass of the final
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background black hole, and compute the corrected mass and spin. In this study,
however, we choose to parametrize the QNM spectra in terms of the Christodoulou
mass and dimensionless spin of the final background black hole, which we will call
Mfinal and χfinal.

Fitting window
When fitting for Ψ(0)4 and Ψ(2)4 , we must be careful about the time window of the
post-merger waveform used for the fit. For Ψ(0)4 , if we choose a starting time tstart

too close to merger, then our assumption that each mode can be fit by a function
of the form in Eq. (5.18) breaks down [47]. The later we choose tstart, the less data
are available to perform the fit. However, in [91], the authors found that, when
including overtones, the post-merger spectrum could be fit with QNMs as early as
the peak of the gravitational waveform. We similarly fit enough overtones so that
we can faithfully choose tstart to be the peak of the gravitational waveform.

At later times in the waveform, numerical noise begins to dominate, and thus we
must be careful choosing the end of the window, tend. Choosing a time window for
the fit is complicated by the secular regime of validity of the perturbative scheme.
The form of Ψ(2)4 given in Eqs. (5.28) and (5.29) is a valid first term in a perturbative
expansion for times t < τ(0) and t < 1/ω(0). Thus, there is a trade-off in choosing
tend late enough to have enough data to compute ω(2) and τ(2), while choosing tend

early enough to still be within this regime of validity.

Particular and homogenous solutions
Ψ
(2)
4 after merger is driven by both the dCS scalar field ϑ(1), and the background

spacetime. Suppose the scalar field has decayed away such that ϑ(1) = 0 some time
after merger. Then h(2)ab would be driven by the approximately Kerr background
spacetime. In other words, it would be a metric perturbation on Kerr, and hence
should have the QNM spectrum of a pure Kerr spacetime (as does Ψ(0)4 ). The
presence of a non-zero ϑ(1), however, drives Ψ(2)4 away from this regime. In the
ϑ(1) = 0 case, Ψ(2)4 is dominated by a homogenous solution of Eq. (5.10), while
Ψ
(2)
4 , when driven by ϑ(1), is dominated by a particular solution. In the language

of solutions of linear equations, the particular solution describes the response to
driving the system with the scalar perturbation, whereas the homogeneous solution
describes the free oscillations of the perturbed final black hole.

Such post-merger behaviorwas observed in [207] for Einstein-dilaton-Gauss-Bonnet
gravity. We can use our numerical results to investigate when Ψ(2)4 is driven by a
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particular versus homogenous solution.

QNMs in full dCS gravity
In [137], the authors investigated QNMs of Schwarzschild black holes in full dCS
gravity. For zero spin, the system is well-posed, and thus can be solved in the full
theory, without working in an order-reduction or other perturbative scheme. The
radial parts of the scalar and gravitational QNMs for each mode are governed by a
set of fully coupled ODEs of the form (cf. Eqs. 2.8 and 2.9 in [137]),

d2

dr2
∗

(
ϑ

Ψ

)
=

(
V11 V12

V21 V22

) (
ϑ

Ψ

)
, (5.34)

where r∗ is a function of the radial coordinate r , ϑ is the full dCS scalar field QNM,
Ψ is the (full) dCS gravitational QNM, and the Vi j are coefficients dependent on
r and the dCS coupling parameter. Solving for QNMs of ϑ and Ψ thus involves
diagonalizing V .

In the order reduction scheme, however, h(2)ab , the leading-order dCS metric pertur-
bation does not back-react onto the scalar field ϑ(1). Thus, the QNMs of ϑ(1) are
independent of the QNMs ofΨ(2). The ODEs governing the radial part of the system
thus take the form

d2

dr2

(
ϑ(1)

Ψ(2)

)
=

(
W11 0
W21 W22

) (
ϑ(1)

Ψ(2)

)
. (5.35)

This matrix is already triangular. This distinguishes our order-reduction approach
from the approach used in [137].

Practical considerations
To perform these fits, we use scipy.optimize.curvefit [109], a non-linear
least-squares method. We fit a sum of overtones to each mode (l,m). We can
shift Ψ(0)4 and Ψ(2)4 to align at the peaks for each mode, effectively setting ∆θ(2)

to zero. We compute errors in our estimates of the parameters by considering the
fitted values for a medium numerical resolution simulation and a high numerical
resolution simulation (for the same initial configuration).

5.4 Results
Waveforms
During each simulation, we extract Ψ(0)4 , the Newman-Penrose scalar measuring
the outgoing gravitational radiation of the background spacetime, decomposed into
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spin-weight −2 spherical harmonics labelled by (l,m). Similarly, we extract and
decompose Ψ(2)4 , the leading-order dCS correction to the gravitational radiation.
Since the computational domain is of finite extent, both quantities are extrapolated
to R→∞. We additionally extract ϑ(1), the scalar field, decomposed into spherical
harmonics. In all cases, the spherical harmonics are oriented along the collision
axis of the black holes, which we will call x̂.

We show the dominant modes of Ψ(0)4 for a representational case with χ = 0.1x̂

in Fig. 5.2. We similarly show the dominant modes of Ψ(2)4 for this configuration
in Fig. 5.3. Recall that the physical gravitational radiation includes a coupling
factor (`/GM)4, which is scaled out in the numerical computation, and thus we
report the waveforms as (`/GM)−4Ψ

(2)
4 . This configuration is axisymmetric about

the x̂ axis, and thus we expect only m = 0 modes to be excited. Since the spins
have the same orientation, there is reflection symmetry about the ŷ − ẑ plane,
so we expect only the l = even modes to be excited. Recall that we can write
Ψ
(0)
4 = Re(Ψ(0)4 )e+ + iIm(Ψ(0)4 )e×, where the polarization tensor e+ is symmetric in

z → −z and e× is anti-symmetric in z → −z (for propagration along x). Since the
configuration has an x → −x reflection symmetry, there should be power only in the
real part of Ψ(0)4 . On the other hand, for Ψ(2)4 , there is an excitation in the imaginary
part of the dominant modes; we will discuss this in more detail in Sec. 5.4.

Finally, we plot the dominant modes of ϑ(1), the leading-order dCS scalar field for
this configuration in Fig. 5.4. Because the scalar field around each black hole takes
the form of a dipole oriented around x̂ (cf. [210]), and the spins are pointing in the
same direction (cf. Fig. 5.1), we expect power only in the odd l modes. Because of
the axisymmetry of the configuration, we expect only the m = 0 modes to be excited.
We see the (1, 0)mode asymptotes to a value that corresponds to the remnant dipolar
profile of the scalar field on the final black hole.

Regime of validity
As discussed in Sec. 5.2, the leading-order scalar field ∆ϑ and metric perturbation
∆gab as computed from the code are independent of the coupling constant `/GM . In
order to make our results physically meaningful, we must multiply the leading-order
scalar field by (`/GM)2 and the leading-order metric correction by (`/GM)4. Sim-
ilarly, we must multiply the computed leading-order correction to the gravitational
radiation, ∆Ψ, by a factor of (`/GM)4.

Recall, however, that the order-reduction scheme is perturbative. The modifications
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Figure 5.2: Dominant modes of the background gravitational radiation, shown in
terms of the Newman-Penrose scalar Ψ(0)4 (scaled with radius r) for a head-on
collision with χ = 0.1 along the axis of the collision (cf. Fig. 5.1). Each color
corresponds to a different mode. For each mode and color, the solid lines represent
the absolute value of the real part of the mode, while there is no power in the
imaginary part. We resolve up to the l = 6 mode. We choose the reference time
tpeak to correspond to the peak time of the (2, 0) mode of Ψ(0)4 .

to the spacetime must actually form a convergent perturbation series around GR.
We thus require that gab, the background metric, have a larger magnitude than h(2)ab

at each point in the spacetime:

‖h(2)ab ‖ ∼ C‖g(0)ab ‖ , (5.36)

for some tolerance C. This gives an instantaneous regime of validity. Following
Eq. (5.15), we can compute

1
8
(`/GM)4‖∆gab‖ ∼ C‖g(0)ab ‖ (5.37)

and hence ���� `

GM

����
max
∼ C1/4

(
8 ‖gab‖

‖∆gab‖

)1/4

min
(5.38)

In practice, the ratio is taken point-wise on the computational domain. We choose
C = 0.1 as a rough tolerance.
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Figure 5.3: Same as Fig. 5.2, but for the leading-order dCS gravitational radiation,
Ψ
(2)
4 , with the dCS coupling factor (`/GM)4 scaled out. Here, there is power in

the imaginary part of each mode, which we show with dashed lines. tpeak is again
chosen to correspond to the peak time of the (2, 0) mode of Ψ(0)4 .

We show the regime of validity for a ®χ = 0.7x̂ head-on collision in Fig. 5.5. `/GM

takes its smallest allowed value in the strong-field region, outside the apparent
horizon of each black hole. We see that closer to merger, where there is power in the
metric perturbation, the maximal allowed value of `/GM decreases. After merger,
the maximal allowed value of `/GM increases as the dCS metric perturbation
partially radiates away, and the final constant value is governed by the strength of
the dCS metric perturbation around the final black hole.

We show the behavior of the minimum allowed value of `/GM , over the entire
simulation, as a function of final dimensionless spin χfinal in Fig. 5.6. The regime
of validity decreases with spin, as the magnitude of ∆gab increases with spin.
This scaling serves as a proxy for the allowed values of `/GM when considering
gravitational waveforms.

Quasi-normal mode fits
We perform the quasi-normal mode fits detailed in Sec. 5.3 to Ψ(0)4 and Ψ(2)4 . We
fit three overtones to each (l,m) mode. For Ψ(0)4 , we use the perturbation theory
results for ω(0), the GR QNM frequency, and τ(0), the GR damping time [182], and
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Figure 5.4: Same as Fig. 5.2, but for the leading-order dCS scalar field ϑ(1), with the
coupling (`/GM)2 scaled out. We show the dominantly excited modes of the scalar
field. Because the scalar field is extracted at finite radius, the time axis corresponds
to the time relative to merger, corrected by the finite extraction radius. The (1, 0)
mode, asymptotes to a value corresponding to the dipolar profile of the scalar field
around the remnant black hole.

fit for the the QNM amplitudes (cf. Eq. (5.22)). From Ψ
(2)
4 , we extract ω(2), the

leading-order dCS correction to the QNM frequency, and τ(2), the leading-order
correction to the QNM damping time, as well as the leading-order corrections to the
QNM amplitudes (cf. Eqs. (5.28) and (5.29)). We tabulate all of our fit results in
Tables 5.1 and 5.2.

We show representative fits in Fig. 5.7. We find that for head-on collisions, we
can most successfully fit each mode from the peak of the waveform using three
overtones. We set tend = 25 M after the peak. We take a closer look at this fit in
Fig. 5.8, where we give an illustration of this linear-in-time behavior ofΨ(2)4 . We see
that the coefficients of the sine and cosine terms are lines, which range over about
an order of magnitude over the time fitting window.

For each of the configurations, the final Christodolou mass of the background
spacetime is Mfinal = 0.9896. However, χfinal, the final background spin, varies with
configuration, and we include these values in Tables 5.1 and 5.2.

We plot the values of τ(2)
(2,0,0)(`/GM)−4, the leading-order dCS correction to the
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Figure 5.5: The instantaneous regime of validity for a head-on ®χ = 0.7x̂ collision,
as a function of coordinate time from merger. On each slice of the simulation,
we compute `/GM , the maximum allowed value of the dCS coupling constant
according to Eq. (5.38). The blue region above the dashed line corresponds to the
values of the coupling constant that are not allowed by perturbation theory. Note
that this coupling constant appears as `2 in the dCS action (cf. Eq. (5.1)), and as `4

in front of the leading-order dCS modification to the gravitational radiation.
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Figure 5.6: Behavior of the regime of validity with the dimensionless spin χfinal of
the final background black hole. We compute theminimum of `/GM (cf. Eq. (5.38))
over each simulation. The coupling constant achieves its minimum allowed value
during the merger phase, and thus this regime of validity is a conservative estimate.
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Figure 5.7: Fits for Ψ(2)4 , the leading-order dCS gravitational radiation, using the
formulae in Eqs. (5.28) and (5.29), for a configuration with χ = 0.1 on each hole.
Each panel corresponds to one of the dominant modes of the radiation, fit to the
three least-damped overtones. The solid colored lines correspond to the real part of
Ψ
(2)
4 . We perform a fit for Ψ(2)4 , shown in thick dashed colored lines. For reference,

we have plotted the real part of Ψ(0)4 (multiplied by a factor to make it easier to see
in this figure) in dashed grey. The QNM fit to Ψ(0)4 is shown by the solid, thick grey
line.
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Figure 5.8: The linear-in-time pieces of Ψ(2)4 , the leading-order dCS modification
to the waveform for least-damped overtone of the (2, 0) mode. The grey line
corresponds to Ψ(2)4 as given by the numerical relativity simulation. Because Ψ(2)4
has an overall factor of e−t/τ(0) , we multiply this factor out, showing Ψ(2)4 × et/τ(0)

in the thick, solid blue line. We show the fit to Ψ(2)4 , similarly multiplied by this
factor, in the dashed blue line sitting right on top. The resulting waveform then only
depends on factors of the form (a+ bt) cos(ω(0)t+ θ(0)), (c+ dt) sin(ω(0)t+ θ(0)). We
separate the sine and cosine terms, showing each in a solid maroon and pink line.
We then divide out these terms by sine and cosine, leaving only the linear-in-time
(a + bt) and (c + dt) behavior (shown in the corresponding dashed lines).

damping time of the least-damped (2, 0) mode of the gravitational radiation, and
ω
(2)
(2,0,0)(`/GM)−4, the leading-order dCS correction to the frequency, as functions

of χfinal in Figs. 5.9 and 5.10. We see that τ(2)(`/GM)−4 and ω(2)(`/GM)−4 behave
as a power law with spin. This behavior can be expected by considering analytical
results in dCS theory. In the slow-rotation approximation, the horizon (and hence
the light ring) is modified at quadratic order in spin [210], while containing no
modifications at first order in spin [214]. We additionally plot τ(2)(`/GM)−4 and
ω(2)(`/GM)−4 for the (4, 0, 0)mode in Figs. 5.11 and 5.12. Again, we see that these
quantities behave as a power law with spin.
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Figure 5.9: Fitted τ(2)
(2,0,0), the leading-order dCSmodification, with the dCS coupling

scaled out, to the (2, 0, 0)mode QNM damping time, as a function of dimensionless
spin χfinal of the final background black hole. The error bars on the quantity are
computed by considering τ(2) for numerical simulations with different resolutions
(cf. 5.4). We see that τ(2) increases as a power law with spin. Note that these
large values of τ(2)(`/GM)−4 must be multiplied by a small, appropriate value of
(`/GM)4 to have physical meaning.

Let us consider the sources of error in these computations. In each of Figs. 5.9 and
5.11, as well as the tabulated values in Tables 5.1 and 5.2, the error bars on a fitted
quantity Q are computed by comparing the value of Q for two simulations with
different numerical resolutions (cf. Sec. 5.4). The error bars on the fits for τ(2), and
ω(2) increase with l, being lowest for the (2, 0)mode, and highest for the (6, 0)mode.
Higher modes are more difficult to resolve numerically [198, 178], and thus it takes
higher resolution for the error bars on the (6, 0) mode to decrease to those on the
(2, 0)mode at lower resolution. The errors also increase with the spin of the system.
This is because it is more difficult to resolve higher spin systems numerically [129,
128].
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Figure 5.10: Fitted ω(2)
(2,0,0), the leading-order dCS modification, with the dCS cou-

pling scaled out, to the (2, 0, 0)modeQNM frequency, as a function of dimensionless
spin χfinal of the final background black hole. The error bars on the quantity are
computed by considering ω(2) for numerical simulations with different resolutions
(cf. 5.4). We see that ω(2) increases as a power law with spin. Note that these
large values of ω(2)(`/GM)−4 must be multiplied by a small, appropriate value of
(`/GM)4 to have physical meaning.

Particular and homogeneous solutions
There is interesting behavior later on in the Ψ(2)4 waveforms. As we can see from
Fig. 5.3, for example, there is a kink that occurs in Ψ(2)4 around 40 M after the peak
time (in the (2, 0)mode). This kink is convergent with resolution and is present with
and without adaptive mesh refinement. Later in the waveform, after the kink, both
Ψ
(2)
4 and Ψ(0)4 are well-described by damped sinusoids, and have the same decay

time and frequency. In other words, Ψ(2)4 has the same QNM spectrum as Ψ(0)4 , a
QNM perturbation on a pure Kerr spacetime. This suggests that Ψ(2)4 switches from
being dominantly driven by the dCS scalar field, to being dominantly driven by the
GR background, as postulated in Sec. 5.3. In other words, the early post-merger
dCS waveform correction is dominated by a particular solution, whereas later it is
dominated by a homogeneous solution.
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Figure 5.11: Similar to Fig. 5.9, but for τ(2)
(4,0,0), the leading-order dCS modification

to the QNM damping time of the (4, 0) mode of the gravitational radiation.

We illustrate this behavior schematically in Fig. 5.13. We consider the slopes of the
logarithms of Ψ(0)4 and Ψ(2)4 , which is equivalent to finding a decay time for each.
Note that this is not the same as the perturbed fits for Ψ(2)4 given in Eqs. (5.28)
and (5.29), which we use to extract τ(2) and ω(2). After the kink, the decay times are
the same. In other words, the leading order dCS modification to the gravitational
radiation is the same as a GR QNM spectrum on Kerr.

We can corroborate this interpretation by looking at the scalar field in the strong field
region, whose dynamics drives the radiative part of h(2)ab . As the scalar field settles
down, it no longer the dominant source driving h(2)ab , and the metric perturbation is
dominantly driven by the Kerr background. However, making this interpretation
more precise would be tricky: we must keep in mind that mapping between the
strong-field region and a gravitational waveform at infinity requires utmost care
(cf. [47]).
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Figure 5.12: Similar to Fig. 5.10, but forω(2)
(4,0,0), the leading-order dCSmodification

to the QNM frequency of the (4, 0) mode of the gravitational radiation.

5.5 Implications for testing general relativity
Let us now discuss this work in the context of testing GR with gravitational wave
observations. Suppose that we were to observe a post-merger gravitational wave,
given by Ψ4. To third-order accuracy, we can model this wave as

Ψ4 = Ψ
(0)
4 + Ψ

(2)
4 + O((`/GM)6) . (5.39)

If we were to fit a damped exponential as in Eq. (5.18) to the observed Ψ4 (without
using a modified functional form like Eq. (5.28)), to leading order the ω and τ of
this fit would be

ω(l,m,n) = ω
(0)
(l,m,n) + ω

(2)
(l,m,n) + O((`/GM)6) . (5.40)

From perturbation theory, we know the GR values ω(0)
(l,m.n) and τ

(0)
(l,m,n) for each

{χfinal, Mfinal}. From the numerical methods presented in this study, given a
{χfinal, Mfinal}, we can also compute theoretical values in dCS for (`/GM)−4ω

(2)
(l,m,n)

and (`/GM)−4τ
(2)
(l,m,n).

Let us first suppose that ` = 0, meaning that there is no modification from GR.
In GR, assuming the no-hair theorem is true, the frequency and damping time for
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Figure 5.13: The real parts of Ψ(2)4 (with the dCS coupling scaled out) and Ψ(0)4
after merger for χ = 0.1x̂. We fit a line to the peaks of the gravitational waveform
during various stages of the post-merger waveform (black for Ψ(2)4 , blue for Ψ(0)4 ).
Early on in the waveform, Ψ(2)4 and Ψ(0)4 have different damping times if modeled
by damped sinusoids, whereas later in the waveform, they have the same damping
time. This suggests that at late times, Ψ(2)4 is well-modeled as a QNM on a pure
Kerr background.

each mode of ringdown should be parametrized purely by the mass, Mfinal, and spin,
χfinal, of the final black hole. Given two observed modes, we can check that the
fitted ω(l,m,n) = ω

(0)
(l,m,n) and τ(l,m,n) = τ

(0)
(l,m,n) are consistent with the predicted GR

values for Mfinal and χfinal [43, 94, 14, 111, 216].

Checking non-degeneracy: projected
Now let us consider the degeneracy of dCS modifications to GR. Consider the 4-
dimensional parameter space P of {Mω(0), τ(0)/M, Mω(2), τ(2)/M} for a givenmode.
GR solutions exist purely in the Mω(0) − τ(0)/M 2-dimensional submanifold SGR of
this space, with coordinates {Mfinal, χfinal} on the manifold. Suppose at some point
(M1, χ1) on SGR, we introduce a dCS deviation with some coupling (`/GM)4. In
other words, we will have

ω(χ1, M1) = ω
(0)(χ1, M1) + (`/GM)4∆ω(χ1, M1) , (5.41)

τ(χ1, M1) = τ
(0)(χ1, M1) + (`/GM)4∆τ(χ1, M1) , (5.42)
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χ1,2 χfinal
(`/GM)−4

ω
(2)
(2,0,0)Mfinal

(`/GM)−4

ω
(2)
(2,0,1)Mfinal

(`/GM)−4

ω
(2)
(2,0,2)Mfinal

(`/GM)−4

τ
(2)
(2,0,0)/Mfinal

(`/GM)−4

τ
(2)
(2,0,1)/Mfinal

(`/GM)−4

τ
(2)
(2,0,2)/Mfinal

(`/GM)4

0.1 0.05106 6.(1) × 10−3 −1.0(1) × 10−1−2.1(3) × 100−4.4(2) × 100 8.(1) × 100 3.1(4) × 101 1.26 × 10−1

0.2 0.1021 4.1(2) × 10−2−6.9(5) × 10−1−1.3(5) × 101−2.8(1) × 101 5.4(2) × 101 1.9(1) × 102 3.01 × 10−2

0.3 0.1532 1.1(5) × 10−1 −1.9(5) × 100 −3.5(2) × 101−7.5(7) × 101 1.3(1) × 102 5.1(1) × 102 1.18 × 10−2

0.4 0.2042 2.6(5) × 10−1 −6.1(2) × 100 −7.0(2) × 101−1.4(4) × 102 3.0(1) × 102 1.0(5) × 103 5.68 × 10−3

0.5 0.2553 4.9(6) × 10−1 −1.1(6) × 101 −1.2(5) × 102−2.7(1) × 102 5.6(1) × 102 1.9(1) × 103 2.97 × 10−3

0.6 0.3062 8.9(2) × 10−1 −2.1(1) × 101 −2.2(1) × 102−4.8(3) × 102 9.7(2) × 102 3.4(2) × 103 1.61 × 10−3

0.7 0.3574 1.5(2) × 100 −4.1(1) × 101 −3.8(1) × 102−8.2(4) × 102 1.6(2) × 103 5.7(3) × 103 8.79 × 10−4

Table 5.1: Fitted QNM parameters for each head-on collision configuration consid-
ered in this study. All configurations have mass ratio q = 1 and final background
Christodolou mass Mfinal = 0.9896. The first column corresponds to the (equal)
initial spins of the background black holes, which are oriented in the same direction
along the axis of collision (cf. Fig. 5.1). The second column corresponds to the
dimensionless spin χfinal of the final background black hole. The third, fourth, and
fifth columns correspond to the leading-order dCS correction to the QNM frequency
of the (2, 0)mode, ω(2)

(2,0) (multiplied by the final background mass, and with the dCS
coupling scaled out), for the n = 0, 1, 2 overtones. The sixth, seventh, and eighth
column similarly correspond to τ(2)

(2,0), the leading-order dCS correction to the QNM
damping time (divided by the final background mass and with the dCS coupling
scaled out) for the n = 0, 1, 2 overtones. We provide a maximum allowed value of
(`/GM)4 for each configuration (cf. Sec. 5.4) in the last column. In order to be
physically meaningful, the dCS QNM parameters must be multiplied by this factor

χ1,2 χfinal
(`/GM)−4

ω
(2)
(4,0,0)Mfinal

(`/GM)−4

ω
(2)
(4,0,1)Mfinal

(`/GM)−4

ω
(2)
(4,0,2)Mfinal

(`/GM)−4

τ
(2)
(4,0,0)/Mfinal

(`/GM)−4

τ
(2)
(4,0,1)/Mfinal

(`/GM)−4

τ
(2)
(4,0,2)/Mfinal

(`/GM)4

0.1 0.05106−1.2(5) × 10−2 4.(2) × 10−2 8.5(1) × 10−2 1.(3) × 100 −7.(1) × 10−1−6.(3) × 10−1 1.26 × 10−1

0.2 0.1021 −6.(2) × 10−2 2.(2) × 10−1 4.8(8) × 10−1 1.(1) × 101 −5.(1) × 100 −4.2(7) × 100 3.01 × 10−2

0.3 0.1532 −1.5(4) × 10−1 5.(5) × 10−1 1.2(2) × 100 3.(4) × 101 −1.2(4) × 101−1.0(3) × 101 1.18 × 10−2

0.4 0.2042 −3.(1) × 10−1 1.(1) × 100 2.5(6) × 100 8.(9) × 101 −2.8(1) × 101−2.2(6) × 101 5.68 × 10−3

0.5 0.2553 −5.(2) × 10−1 1.(2) × 100 4.(1) × 100 1.(1) × 102 −5.6(2) × 101 −4.(1) × 101 2.97 × 10−3

0.6 0.3062 −9.(6) × 10−1 2.(3) × 100 7.(2) × 100 3.(3) × 102 −1.0(1) × 102 −8.(1) × 101 1.61 × 10−3

0.7 0.3574 −1.4(7) × 100 2.(8) × 100 1.2(5) × 101 8.(5) × 102 −1.8(1) × 102−1.6(3) × 102 8.79 × 10−4

Table 5.2: Same as Table 5.1, but for the (4, 0) mode.

where we have explicitly written out the dependence on the coupling constant with
∆ω ≡ (`/GM)−4ω(2) and ∆τ ≡ (`/GM)−4τ(2). If dCS modifications and GR are
degenerate, then this modification will move purely within SGR. However, if dCS
modifications and GR are non-degenerate, then the new point will be off SGR in
P. The dCS modifications will form a 3-dimensional submanifold of P, SdCS, with
coordinates {Mfinal, χfinal, `/GM}.

Let us now consider this statement in the context of our numerical results. For
simplicity, let us first consider holding Mfinal constant in the comparisons. In
Fig. 5.14, we plot values of Mfinalω(2,0,0) and τ(2,0,0)/Mfinal for various spins. We
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Figure 5.14: Probing degeneracy of GR and dCS-corrected QNM spectra. We
show the values of Mfinalω and τ/Mfinal for the (2, 0, 0) mode of the post-merger
gravitational radiation. If there is no dCS modification, i.e. ` = 0, then for fixed
final mass Mfinal, the GR QNM solutions form a curve parametrized by χfinal in
the plane. We show this line in dashed pink. For each χfinal, we introduce a dCS
modification using the ω(2) and τ(2) that we have computed in this study. This
modification depends on the coupling parameter (`/GM) and thus forms a line
parametrized by (`/GM) in the Mfinalω − τ/Mfinal plane. We show these lines for
each χfinal (labelled by the values of the final dimensionless spin) in solid maroon
lines. Here we choose a conservative maximum value of (`/GM)4 = 10−4 for each
spin. We see that this modification does not purely lie along the GR solution, and
hence GR and dCS-corrected QNM spectra are non-degenerate.

similarly plot Mfinalω(4,0,0) and τ(4,0,0)/Mfinal in Fig. 5.15. For ` = 0, we can use
perturbation theory to compute the values of ω = ω(0) and τ = τ(0) in GR. Holding
Mfinal fixed, the GR solutions form a curve LGR in the ω − τ plane, parametrized by
χfinal.
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Figure 5.15: Same as Fig. 5.14, but for the (4, 0, 0) mode of the gravitational
radiation.

Now let us introduce ` , 0. For each simulation that we have performed, with a
given χfinal (recall all of the Mfinal are equal), we compute ω(χfinal) and τ(χfinal)

via Eqs. (5.41) and (5.42) using our results for ∆ω = (`/GM)−4ω(2) and ∆τ =
(`/GM)−4τ(2). This computation requires specifying a value of (`/GM). If we
vary (`/GM) over an allowed range (cf. Sec. 5.4), for each χfinal we obtain a line
LdCS(χfinal) in the Mfinalω − τ/Mfinal plane parametrized by (`/GM).

If the dCS corrections to the quasi-normal mode spectrum were degenerate with
GR, then LdCS(χfinal) would lie purely along LGR. In other words, the resulting
QNM spectrum for χfinal would be degenerate with that of GR for some other spin
χ′. However, we see in Figs. 5.14 and 5.15 that in all cases LdCS(χfinal) does not lie
purely along LGR, meaning that the QNM spectra are non-degenerate. This in turn
means that dCS modifications to QNM spectra can in principle be observed (in the
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limit of infinite signal-to-noise ratio).

Note that we have held Mfinal fixed, given that all of our simulations have the same
final mass. If we allowed Mfinal to vary as well, then we would have to carefully
consider the full space P parametrized by {Mω(0), τ(0)/M, Mω(2), τ(2)/M}, and ask
whether the dCS solutions deviate from the Mω(0) − τ(0)/M submanifold SGR.

Checking non-degeneracy: full case
We can perform a more rigorous analysis, checking for full degeneracy, rather than
the simpler check that holds Mfinal fixed. Let us think about the 3-dimensional space
p with coordinates {χ, M, ε2} (where ε is our dCS order-reduction parameter).
Suppose we observe k QNMs, which gives us 2k quantities (ω and τ for each
mode). Let q be the 2k-dimensional space q with these coordinates.

Let us consider the map φ : p→ q, which maps each set of parameters {χ, M, ε2}

to the QNM values. The image φ(p) will form a 3-dimensional submanifold of
q, and the tangent space of the image will be spanned by the pushforwards of
{∂/∂ χ, ∂/∂M, ∂/∂ε2}. That is, {φ∗∂/∂ χ, φ∗∂/∂M, φ∗∂/∂ε

2}.

Non-degeneracy in this context means that the dimension of the span of

{φ∗∂/∂ χ, φ∗∂/∂M, φ∗∂/∂ε
2} (5.43)

is 3. This can be checked by looking at the rank of the 3 × 2k dimensional matrix

D ≡


| | |
| | |

φ∗
∂
∂ χ φ∗

∂
∂M φ∗

∂
∂ε2

| | |
| | |

 . (5.44)

Let us consider how to evaluate this matrix, working at ε2 = 0 for each χfinal and
Mfinal for which we have performed a head-on collision. Suppose we are considering
some mode with QNM frequency ωlmn and damping time τlmn. This will give us
two rows in the matrix D.

Let us first compute

∂

∂ χ
ωlmn =

1
Mfinal

∂

∂ χ
(ωlmnMfinal) , (5.45)

∂

∂ χ
τlmn = Mfinal

∂

∂ χ
(τlmn/Mfinal) (5.46)
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This can be done by computing the values of ωlmnMfinal and τlmn/Mfinal from per-
turbation theory [182], varying only χ around χfinal, and then taking a numerical
derivative. We work with a step-size of 10−10, which is comparable to the accuracy
of [182].

Now let us compute the ∂/∂M column. For fixed χfinal and `4 = 0, the dependence
on M is

d
dM

ωlmn =
−ωlmn

Mfinal
, (5.47)

d
dM

τlmn = τlmnMfinal . (5.48)

Finally, for the last column, for fixed χfinal, Mfinal, we have

d
dε2ωlmn =

∆ωlmn

Mfinal
,

d
dε2 τlmn = ∆τlmnMfinal (5.49)

where ∆ωlmn and ∆τlmn are the quantities we compute from our numerical fits.

We put the matrix D together with these values. Note that the ω rows all have a
factor of 1/Mfinal, while the τ rows have a factor of Mfinal. We evaluate the rank
of this matrix using a singular-value decomposition (SVD) [109]. For all values
of {χfinal, Mfinal} in our head-on collisions dataset, we find that the rank of D is 3.
The lowest singular value is 10−2 − 10−1, while the condition numbers (the 2-norm,
computed from the SVD) are of order 103.

5.6 Conclusion
In this study, we have produced the first beyond-GRBBH gravitational waveforms in
full numerical relativity for a higher-curvature theory. We have considered head-on
collisions of BBHs in dynamical Chern-Simons gravity. While these are not likely
to be astrophysically relevant configurations, they serve as a proof of principle of
our ability to produce beyond-GR waveforms [142]. Future work in this program
thus involves adding initial orbital angular momentum to the system and producing
beyond-GR gravitational waveforms for inspiraling systems. We have previously
evolved the leading order dCS scalar field for an inspiraling BBH background [146],
and can use our (fully-general) methods given in [143] and [142] to produce initial
data for and evolve an inspiraling BBH system.

We have also studied modifications to the post-merger BBH head-on collision QNM
spectra. We found that at leading order, the damping time of each QNM receives
a modification that increases with the spin of the final black hole in a power law.
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The frequency of each QNM receives a similar modification. When performing
inspiraling BBH simulations, we can repeat the analysis outlined in this paper
to learn about the dCS modification to the QNM spectrum of an astrophysically
revelant system. These results can then be applied to beyond-GR tests of BBH
ringdowns [14, 216].

5.A Choosing a perturbed gauge
Throughout this appendix, as well as Appendix 5.B, we use the notation developed
in [142], and standard 3+1 ADM decomposition notation [40]. Recall that gab refers
to the 4-dimensional spacetime metric, while γi j refers to the 3-dimensional spatial
metric. ∆Q is the leading-order perturbation to quantity Q.

The generalized harmonic evolution for the background follows from the equation

Γa = −Ha , (5.50)

where Γa ≡ gbcΓbca, and Ha is known as the gauge source function (cf. [122] for
more details). Throughout the evolution, the gauge constraint,

Ca ≡ Ha + Γa = 0 , (5.51)

must be satisfied.

When generating initial data for gab and ∂tgab, we are free to choose ∂tα and ∂tβ
i,

the initial time derivatives of the lapse and shift. These quantities appear in Γa, so
choosing them is equivalent to choosing initial values of Ha, via Eq. (5.51). For
example, for initial data in equilibrium, we can set ∂tα = 0 and ∂tβ

i = 0, and
set Ha to initially satisfy Eq. (5.51). Alternatively, we can choose to work in a
certain gauge, such as harmonic gauge with Ha = 0, and set ∂tα and ∂tβ

i to satisfy
Eq. (5.51).

As the evolution progresses, we can either leave Ha fixed, or continuously “roll" it
into a different gauge, with the restriction that it contains only up to first derivatives
of gab to ensure well-posedness. In practice, for BBH in GR, we work in a damped
harmonic gauge, with Ha specified using the methods given in [190].

The perturbed generalized harmonic evolution takes a similar form as Eq. (5.50),
with

∆Γa = −∆Ha , (5.52)
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where ∆Γa is the first-order perturbation to Γa, and ∆Ha is a perturbed gauge source
function. Similar to Eq. (5.51), we have a perturbed gauge constraint,

∆Ca ≡ ∆Γa + ∆Ha = 0 . (5.53)

At the start of the evolution, we similarly have the freedom to choose ∆Ha, provided
that it contains no higher than first derivatives of ∆gab, and satisfies the perturbed
gauge constraint Eq. (5.53). When solving for perturbed initial data (cf. [143]), we
similarly have the freedom to choose ∂t∆α and ∂t∆β

i, the time derivatives of the
perturbed lapse and shift. An easy choice, for example, is to work in a perturbed
harmonic gauge,

∆Ha = 0 . (5.54)

Let us nowwork out how to set ∂t∆α and ∂t∆β
i in order to satisfy Eq. (5.53) for some

desired perturbed gauge source function ∆Ha. Let us first consider the unperturbed
case, setting ∂tα and ∂tβ

i for some gauge source function Ha. We will work with
the κabc variable, which is the fundamental variable encoding the spatial and time
derivatives of the metric (cf. [142]) as

κiab ≡ ∂igab , (5.55)

κ0ab ≡ −nc∂cgab , (5.56)

where nc denotes the timelike unit normal vector. We can use our freedom to set
∂tβ

i and ∂tα to modify κabc to satisfy Γa = −Ha as

κ00i = −αHi + β
k κ0ki − αγ

j k
Γi j k −

1
2
αnanbκiab , (5.57)

where Γi j k is the spatial Christoffel symbol of the first kind, and

κ000 = −2αH0 + 2β j(κ00 j + αHj) (5.58)

− β j βk κ0 j k − α
2γ j k κ0 j k − 2α2γ j knaκ j ka ,

where κ00 j in the above expression is given by Eq. (5.57). We can then use this
modified κabc to compute Γa and ensure that Eq. (5.51) is satisfied for Ha = Ha.

Perturbing Eqs. (5.57) and (5.58), we can get an expression for a modified ∆κabc to
satisfy Eq. (5.53) for some desired perturbed gauge source function ∆Ha. We thus
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obtain

∆κ00i = −∆αHi − α∆Hi (5.59)

+ ∆βk κ0ki + β
k
∆κ0ki

− ∆αγ j k
Γi j k − α∆γ

j k
Γi j k − αγ

j k
∆Γi j k

−
1
2
∆αnanbκiab −

1
2
α∆nanbκiab

−
1
2
αna

∆nbκiab −
1
2
αnanb

∆κiab ,

and

∆κ000 = −2∆αH0 − 2α∆H0 (5.60)

+ 2∆β j(κ00 j + αHj)

+ 2β j(∆κ00 j + ∆αHj + α∆Hj)

− ∆β j βk κ0 j k − β
j
∆βk κ0 j k − β

j βk
∆κ0 j k

− 2α∆αγ j k κ0 j k − α
2
∆γ j k κ0 j k − α

2γ j k
∆κ0 j k

− 4α∆αγ j knaκ j ka − 2α2
∆γ j knaκ j ka

− 2α2γ j k
∆naκ j ka − 2α2γ j kna

∆κ j ka .

Note that this computation also uses the gauge source function of the background,
Ha. Assuming that the background is in a satisfactory gauge, we set Ha to the initial
background gauge source function. All of the perturbed quantities in Eqs. (5.59)
and (5.60) are given in [142].

In this study, we choose to work in a perturbed harmonic gauge, with ∆Ha = 0.

5.B Computing perturbed gravitational radiation
The outgoing gravitational radiation of a spacetime is encoded in the Newman-
Penrose scalar Ψ4. In order to compute the leading-order correction to the binary
black hole background radiation due to the metric perturbation ∆gab, we need to
compute ∆Ψ4, the leading-order correction to Ψ4.

Ψ4, a scalar, is computed on a topologically spherical surface from a rank-two tensor
Ui j , contracted with a tetrad (in our case, a coordinate tetrad that converges to a
quasi-Kinnersley tetrad at large radii). Ui j on a surface with normal vector n̂i takes
the form

Ui j = (Pm
i Pn

j −
1
2

Pi j Pmn)(Emn − εm
kl n̂l Bkn) , (5.61)
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where Ei j is the electric Weyl tensor, Bi j is the magnetic Weyl tensor, εi j k is the
(spatial) Levi-Civita tensor, and the projection operators are given by

Pi j = γi j − n̂in̂ j , (5.62)

Pi j = γi j − n̂in̂ j , (5.63)

Pi
j = γ

i
j − n̂in̂ j . (5.64)

Here, the vector n̂i and the one form n̂i are normalized using N ≡
√
γi jnin j with

ni = γi jn j .

In order to perturb Ψ4, let us write the electric and magnetic Weyl tensors in
Eq. (5.61) in terms of the extrinsic curvature Ki j ,

Ui j = (Pm
i Pn

j −
1
2

Pi j Pmn)× (5.65)(
Rmn + γ

kl(KmnKkl − Kmk Kln)

− n̂k(Dk Kmn − D(mKn)k)

)
,

where Ri j is the spatial Ricci tensor, and Di is the spatial covariant derivative
associated with γi j .

Perturbing Eq. (5.65), we obtain

∆Ui j = (Pm
i Pn

j −
1
2

Pi j Pmn)× (5.66)(
∆Rmn + ∆γ

kl(KmnKkl − Kmk Kln)

+ γkl(∆KmnKkl + Kmn∆Kkl

− ∆Kmk Kln − Kmk∆Kln)

− n̂k(∆(Dk Kmn) − ∆(D(mKn)k)

− ∆n̂k(Dk Kmn − D(mKn)k)

)
+ (∆Pm

i Pn
j + Pm

i ∆Pn
j

−
1
2
∆Pi j Pmn −

1
2

Pi j∆Pmn) ×Umn .

All of the perturbed quantities ∆gi j,∆Ki j,∆(Dk Ki j), and ∆Ri j are given in terms of
the perturbation to the spatial metric, ∆γi j = ∆gi j , its spatial derivative ∂k∆γi j =

∂k∆gab, and its time derivative, ∂t∆γi j = ∂t∆gi j in [143]. Note that since we
use a first-order scheme, we have access to ∆gab, ∂c∆gab throughout the evolution
(cf. [142]).
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Let us now work through the perturbations to the normal vectors and projection
operators. Because we want the perturbation to the gravitational radiation to be
extracted on the same surface as the background gravitational radiation, we will
hold the unnormalized one-form to the surface, ni, fixed. That is, ∆ni = 0. From
this, we can then compute

∆N = ∆(γi jnin j)
1/2 =

1
2
∆γi jnin j(γ

i jnin j)
−1/2 (5.67)

=
1

2N
∆γi jnin j ,

and

∆n̂i = −
ni

N2∆N = −
n̂i

N
∆N , (5.68)

∆ni = ∆γi jn j = ∆γ
i j n̂ j N , (5.69)

∆n̂i =
∆ni

N
−

ni

N2∆N (5.70)

=
∆γi jn j

N
−

ni

N2∆N

= ∆γi j n̂ j −
n̂i

N
∆N .

We can then perturb the projection operators,

∆Pi j = ∆γi j − ∆n̂in̂ j − n̂i
∆n̂ j , (5.71)

∆Pi j = ∆γi j − ∆n̂in̂ j − n̂i∆n̂ j , (5.72)

∆Pi
j = ∆γ

i
j − ∆n̂in̂ j − n̂i

∆n̂ j , (5.73)

where ∆γi
j = ∆γ

ikγk j + γ
ik∆γk j .

Once we obtain ∆Umn, we use the same tetrad to generate ∆Ψ4 from ∆Ui j as we do
for Ψ4.
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C h a p t e r 6

NUMERICAL RELATIVITY SIMULATION OF GW150914
BEYOND GENERAL RELATIVITY

Abstract

We produce the first numerical relativity gravitational waveform from an inspiraling
binary black hole system in a higher-curvature theory beyond general relativity. We
simulate a system with parameters consistent with GW150914, in order-reduced
dynamical Chern-Simons gravity through full inspiral, merger, and ringdown. We
compute the leading-order dynamical Chern-Simons correction to the gravitational
radiation. We find that the dynamical Chern-Simons correction to the inspiral
part of the gravitational waveform exhibits a beating frequency pattern, sourced
by the leading-order dynamical Chern-Simons scalar field and binary black hole
background. We additionaly compute the leading-order dynamical Chern-Simons
modifications to the post-merger quasi-normal mode spectrum.

6.1 Introduction
Binary black hole mergers probe the strong-field, non-linear regime of gravity, and
thus serve as test beds for Einstein’s theory of general relativity. At some length
scale, general relativity (GR) must break down and be reconciled with quantum
mechanics in a theory beyond general relativity. While GR has been consistent with
all weak-field tests to date [206], gravitational wave signatures fromBBHs, by virtue
of probing the strong-field region of gravity, may contain signatures of a beyond-GR
theory.

GW150914, the first binary black hole observation by LIGO, was found to have a
roughly 96% agreement with GR [6, 12], within statistical uncertainties. The final
remnant’s mass and spin were consistent with GR predictions [14], and the dominant
ringdown quasi-normal mode was consistent with GR predictions. The inspiral part
of the signal was further tested against waveform models containing parametrized
deviations from GR [12]. These are all null-hypothesis and parametrized tests.

As Yunes et al. argue in [216], the potential for GW150914 to test beyond-GR
physics is severly limited by the lack of understanding of BBH coalescences in
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beyond-GR theories. In other words, in order to most effectively test GR, we must
have access to BBHwaveforms not only in GR, but also in beyond-GR theories. The
most accurate BBH waveforms in GR come from numerical relativity, the practice
of precisely numerically solving the equations governing spacetime. Our goal is
thus to produce beyond-GR waveforms in numerical relativity.

In this study, we will consider dynamical Chern-Simons (dCS) gravity, a beyond-
GR effective field theory that adds a scalar field coupled to spacetime curvature to
the Einstein-Hilbert action of GR, and has origins in string theory, loop quantum
gravity, and inflation [18, 95, 192, 134, 204]. The action of this theory takes the
form

S ≡
∫

d4x
√
−g

(
m2

pl

2
R −

1
2
(∂ϑ)2 −

mpl

8
`2ϑ ∗RR

)
, (6.1)

where gab is the spacetime metric, mpl is the Planck mass, and ϑ is the dCS scalar
field, which couples to spacetime curvature via the Pontryagin density, ∗RR ≡
∗Rabcd Rabcd . This coupling is governed by a constant `, which has dimensions of
length, and physically represents the length scale below which quantum gravity
effects become important.

The well-posedness of the initial value problem in full dCS gravity is unknown [74],
and we work instead in a well-posed order-reduction scheme, in which we perturb
the metric and scalar field around a GR background [146]. The leading-order dCS
scalar field occurs at first order in this perturbative expansion, while the leading-
order dCS modification to the spacetime metric occurs at second-order. Our goal
is to compute the leading (second)-order dCS modification to the GR gravitational
radiation of a BBH background.

We have previously computed the leading-order dCS modification to the gravita-
tional radiation in BBH head-on collisions [145]. In this study, we use the methods
of [145] to revisit GW150914 and compute the leading-order dCS modification to
the gravitational radiation for this system.

Conventions
Please refer to [145, 142, 143, 146] for additional technical details of the order-
reduction scheme, leading-order dCS scalar field evolution, and initial data genera-
tion for and evolution of the leading-order dCS correction to the spacetime metric.
Quantities are given in terms of units of M , the sum of the Christodolou masses of
the background black holes at a given relaxation time [56].
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6.2 Results
Simulation parameters
While there is a distribution ofmass and spin parameters consistentwithGW150914 [12,
118], we choose to use the parameters of SXS:BBH:0305, as given in the Simu-
lating eXtreme Spacetimes (SXS) catalog [188]. This simulation was used in Fig.
1 of the GW150914 detection paper [10], as well a host of follow-up studies [126,
47, 91]. The simulation has relaxed dimensionless spins (measured 640 M into
the simulation) χA = 0.330ẑ and χB = −0.440ẑ, aligned and anti-aligned with the
orbital angular momentum, and relaxed masses of 0.5497 M and 0.4502 M , leading
to a mass ratio of 1.221. The relaxed eccentricity is ∼ 7 × 10−4. The black holes
merge at t = 3688 M , forming a common horizon after ∼ 15 orbits. The remnant
has final Christodolou mass 0.9525 M and dimensionless spin 0.692 purely in the ẑ

direction.

Waveforms
In order-reduced dCS, the gravitational radiation encoded in the Newman-Penrose
scalar Ψ4 is modified from the GR value Ψ(0)4 as (cf. [145])

Ψ4 = Ψ
(0)
4 + Ψ

(2)
4 + O(`

6) , (6.2)

where Ψ(2)4 is the leading-order dCS correction to the gravitational radiation, which
occurs at second-order in the order reduction scheme.

We compute and decompose Ψ(0)4 and Ψ(2)4 into a basis of spin weight −2 spherical
harmonics labelled by (l,m) [193, 56]. The dominant modes of Ψ(0)4 are (2, 2) and
(3, 3). We plot these modes in Fig. 6.1.

We similarly plot the (2, 2) mode of Ψ(2)4 , the leading-order dCS correction to the
gravitational radiation, and the subdominant (3, 3) mode in Fig. 6.2. As discussed
in [145], the leading-order dCS modification to the spacetime metric, as computed
from the simulation, is independent of the coupling parameter `. To be physically
meaningful, the result must be multiplied by a factor of (`/GM)4. We thus present
all of our results as (`/GM)−4Ψ

(2)
4 , with the coupling scaled out.

For completeness, we present the dominant (2, 1) and (3, 2) modes of the leading-
order dCS scalar field ϑ(1), decomposed into spherical harmonics and scaled out
by the coupling (`/GM)2 in Fig. 6.3. We similarly present the (1, 0) mode, which
is non-radiative until merger, in Fig. 6.4. These mode excitations are consistent
with the results that we saw in [146], where we evolved the ϑ(1) in a variety of
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Figure 6.1: GR background gravitational radiation, given by the Newman-Penrose
scalar Ψ(0)4 , as a function of simulation coordinate time. We show the (2, 2) mode
(top), the dominant mode of the background gravitational radiation for this con-
figuration (cf. Sec. 6.2) and the subdominant (3, 3) mode (bottom). We separate
the inspiral and ringdown parts in this figure in order to give a closer look at each
behavior.

BBH backgrounds. These results are similarly consistent with the PN waveforms
for ϑ(1) computed in [212], where the (l, l − 1) modes are dominant. The numerical
background Pontryagin density, ∗RR(0), which sources ϑ(1) similarly has excitations
in the (l, l − 1) modes.

Regime of validity
Instantaneous regime of validity

Since we work in a perturbative scheme, there is a maximum value that the coupling
`/GM is allowed to take so that the leading-order correction to the spacetime metric



163

2500 2750 3000 3250 3500
t/M

−100

−50

0

50

100

(`
/G
M

)−
4 r

Ψ
(2

)
4

(2
,

2)

3700 3800
t/M

−20000

−10000

0

10000

20000

2600 2800 3000 3200 3400 3600
t/M

−5

0

5

10

(`
/G
M

)−
4 r

Ψ
(2

)
4

(3
,

3)

3700 3750 3800 3850
t/M

−4000

−2000

0

2000

4000

Figure 6.2: Leading-order dCS correction to the gravitational radiation, Ψ(2)4 . We
show the (2, 2) mode (top), the dominant mode of the background gravitational
radiation for this configuration (cf. Sec. 6.2), and the subdominant (3, 3) mode
(bottom). We separate the inspiral and ringdown parts in this figure in order to
give a closer look at each behavior. Note that the (small) dCS coupling, (`/GM)4

is scaled out, and to have physical meaning, these (large) values must be multiplied
by appropriate values of this coupling constant (cf. Sec. 6.2).
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Figure 6.3: Leading-order dCS scalar field, ϑ(1), decomposed into spherical har-
monics. We show the dominant (2, 1) (top) and (3, 2) (bottom) modes. We separate
the inspiral and ringdown parts in this figure in order to give a closer look at each
behavior. Note that the dCS coupling, (`/GM)2 is scaled out, and to have physical
meaning, these values must be multiplied by appropriate values of this coupling
constant.

is smaller than the background metric. This is known as an instantaneous regime
of validity and is computed using the formalism in [145]. We show the regime of
validity for this GW150914 simulation in Fig. 6.5. `/GM attains its minimum value
at merger, where strong-field effects play a significant role.

dCS modification to the inspiral
Let us take a closer look at the inspiral part of the Ψ(2)4 waveforms, which we zoom
into in Fig. 6.6. In the GR case (cf. Fig. 6.1), there is one frequency governing the
inspiral. However, we see in the (2, 2) mode of Ψ(2)4 that there are two frequencies
(with two distinct peak amplitudes). In the (3, 3) mode, we see three frequencies
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Figure 6.4: (1, 0) mode of the leading-order dCS scalar field, ϑ(1). As previously
found in [146], this mode is non-radiative throughout the inspiral but shows a burst
of dipolar radiation at merger.
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Figure 6.5: Instantaneous regime of validity as a function of simulation coordinate
time. The vertical axis corresponds to the maximum allowed value of the dCS
coupling constant `/GM by perturbation theory. The dashed black line separates the
region excluded by perturbation theory (light blue) from that allowed by perturbation
theory (white). We see that the allowed value of `/GM decreases as the system
approaches merger.
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Figure 6.6: Zoomed-in view of the dominant modes of Ψ(2)4 during the inspiral. We
see that the (2, 2)mode (top) has two distinct frequencies, with a large peak followed
by a smaller peak followed by a large peak again in a n A-B-A-B type pattern. The
(3, 3) mode (bottom), meanwhile, has three distinct frequencies, with a large peak
followed by a small peak followed by a medium peak, in an A-B-C-A-B-C type
pattern.

(with three distinct peak amplitudes).

These patterns look like characteristic beats, and we conjecture that the interference
comes from the background and the scalar field, both of which source leading-order
correction to the metric. In Fig. 6.7, we show the Ψ(0)4 waveform and the ϑ(1)

waveform overlaid on the Ψ(2)4 waveform for a given l. We see that the peaks in the
l = 2 case align with a ratio of 1 : 2, while in the l = 3 case, they align with a ratio
of 2 : 3. We see similar patterns in other spin configurations, for example with a
mass ratio q = 1 and spins of 0.1 both in the +ẑ direction.
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Figure 6.7: Ψ(0)4 , ϑ(0), and Ψ(2)4 , aligned by peak and overlaid on one another. We
show the l = 2 modes (with m = 2 for the gravitational waveforms and m = 1 for
the scalar waveform) in the top panel, and the l = 3 modes (with m = 3 for the
gravitational waveforms and m = 2 for the scalar waveform) in the bottom panel.
We see an interference ratio of 1/2 in the top panel, and 2/3 in the bottom panel.

dCS modification to the ringdown
Let us now consider the dCSmodifications to the ringdown portion of the waveform.
Following the analysis detailed in [145], we fit Ψ(0)4 of each mode to obtain the
background GR QNM frequency, ω(0), and damping time, τ(0). We similarly fit
Ψ
(2)
4 using the functional form based on the linearization of a damped exponential

to obtain ω(2) and τ(2), the leading-order dCS corrections to the QNM frequency
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Figure 6.8: QNM fits to the post-merger gravitational radiation, for the dominant
(2, 2) (top) and (3, 3) (bottom) modes. We show the GR background gravitational
radiation, Ψ(0)4 , by a dashed blue line, and show a fitted damped exponential by
the overlayed solid, thick line. We show leading-order dCS correction to the post-
merger gravitational radiation in the dashed pink line. The overlayed solid pink line
shows our fit to the leading-order modification to the QNM spectrum (cf. [145] for
the exact functional form).

and damping time. We show these fits for the dominant (2, 2) and (3, 3) modes of
the gravitational radiation in Fig. 6.8.

6.3 Conclusion
In this study, we have revisited GW150914, the first LIGO binary black hole grav-
itational wave detection, and have computed the leading-order correction to the
gravitational radiation in dynamical Chern-Simons gravity. This is the first nu-
merical relativity simulation of a BBH system in a higher-curvature theory beyond
general relativity through full inspiral, merger, and ringdown. We have found that
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the leading-order dCS correction to the inspiral part of the waveform exhibits a
frequency beating pattern sourced by the GR background and the dCS scalar field.
We have additionally computed the leading-order dCS corrections to the ringdown
QNM spectrum.

Future work in this program includes performing dCS simulations for further LIGO
and Virgo detections [9]. In order to allow for beyond-GR parameter estimation,
we also aim to produce surrogate model for the modified waveforms [118, 50]. The
methods outlined in [146, 143, 142, 145] can be applied to other higher-curvature
beyond-GR theories, including Einstein-dilaton-Gauss-Bonnet gravity, where the
leading-order scalar field modification has previously been computed [207].
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C h a p t e r 7

ON CHOOSING THE START TIME OF BINARY BLACK HOLE
RINGDOWN

[1] Swetha Bhagwat et al. “On choosing the start time of binary black hole
ringdowns”. In: Phys. Rev. D97.10 (2018), p. 104065. doi: 10.1103/
PhysRevD.97.104065. arXiv: 1711.00926 [gr-qc].

Abstract

The final stage of a binary black hole merger is ringdown, in which the system is
described by a Kerr black hole with quasinormal mode perturbations. It is far from
straightforward to identify the time at which the ringdown begins. Yet determining
this time is important for precision tests of the general theory of relativity that
compare an observed signal with quasinormal mode descriptions of the ringdown,
such as tests of the no-hair theorem. We present an algorithmic method to analyze
the choice of ringdown start time in the observed waveform. This method is based
on determining how close the strong field is to a Kerr black hole (Kerrness). Using
numerical relativity simulations, we characterize the Kerrness of the strong-field
region close to the black hole using a set of local, gauge-invariant geometric and
algebraic conditions that measure local isometry to Kerr. We produce a map that
associates each time in the gravitational waveform with a value of each of these
Kerrness measures; this map is produced by following outgoing null characteristics
from the strong and near-field regions to the wave zone. We perform this analysis
on a numerical relativity simulation with parameters consistent with GW150914-
the first gravitational wave detection. We find that the choice of ringdown start
time of 3 ms after merger used in the GW150914 study [14] to test general relativity
corresponds to a high dimensionless perturbation amplitude of ∼ 7.5 × 10−3 in
the strong-field region. This suggests that in higher signal-to-noise detections, one
would need to start analyzing the signal at a later time for studies that depend on the
validity of black hole perturbation theory.

7.1 Introduction
The quasi-normal mode (QNM) spectrum seen during the ringdown of a perturbed
black hole (BH) is determined by the Teukolsky equation; it carries the signature

https://doi.org/10.1103/PhysRevD.97.104065
https://doi.org/10.1103/PhysRevD.97.104065
http://arxiv.org/abs/1711.00926
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of the BH potential along with the BH horizon and asymptotic boundary condi-
tions [194, 159, 195]. The recent detections of binary black hole (BBH) gravita-
tional wave (GW) signals by LIGO (the Laser Interferometer Gravitational-Wave
Observatory) [10, 5, 4, 16, 7] allow us to begin to probe this QNM signature [14].
The QNM spectrum in a gravitational-wave observation allows us to perform tests of
the no-hair theorem. This theorem states that vacuum, asymptotically flat, station-
ary, axisymmetric, uncharged BHs are completely characterized by two parameters:
the mass and the spin [132, 135, 76, 94, 111]. This allows us to constrain modified
theories of gravity that violate the no-hair theorem [43, 216]. Observing the QNM
spectrum in GWs can be used to validate the BH uniqueness theorem. This theo-
rem states that the exterior geometry of a vacuum, asymptotically flat, stationary,
axisymmetric, uncharged BH must be Kerr [132, 130].

However, testing the no-hair and uniqueness theorems relies on observing GWs
from the QNM perturbative regime (without additional transients remaining from
the inspiral). This requires an appropriate choice of start time of this regime.1 Iden-
tifying this time in the signal is mathematically an ill-defined problem, since QNMs
form an incomplete and non-orthogonal basis [141, 200]. Hence, the conventions
for choosing the start time of the ringdown have varied in the literature. Berti et
al. [44] and Baibhav et al. [33] chose the start time based on maximizing the energy
contained in the QNM. London et al. [124] used 10 M after the peak of the dominant
mode of Ψ4 (the Newman-Penrose scalar that encodes outgoing radiation) for fitting
to NR waveforms.2 Kamaretsos et al. [110] chose 10 M after the peak luminosity of
the dominant mode of the waveform, while Thrane et al. [199] proposed a loudness-
dependent start time. In the GW150914 testing general relativity (GR) paper [14],
different start times were used to perform the QNM analysis shown in Fig. 5 of that
paper, and the results were consistent with GR when the start time was picked as
3 ms (or later) after the merger.

None of these methods use information from the strong field to motivate the start
times. The strong field refers to the region near the BHs (typically within a radius
of few M), where the scale of the curvature is much smaller than the wavelength of
a gravitational wave. In this paper, we develop an algorithmic method for validating
choices of the start time of ringdown using strong-field features. Specifically,

1While conventions in the literature vary, in this paper, by “ringdown", we explicitly mean the
part of the post-merger gravitational waveform that can be described in terms of QNMs.

2 Since vacuum GR is a scale-invariant theory, it is convenient to express distance and time in
terms of source mass by setting G = c = 1. Explicitly, 1 M = MBH × G/c3 seconds, where MBH is
the mass of the BH.
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we measure the Kerrness, or closeness to Kerr, in the strong-field region of an
NR simulation ringdown, and use null characteristics to map Kerrness onto the
GW at asymptotic future null infinity, I+. We then demonstrate this method on a
GW150914-like system. However, this method is generic, and this procedure can
be carried out for any BBH system.

Determining Kerrness in the strong-field regime is non-trivial, since one needs a
coordinate-invariant way of identifying a metric as Kerr. Necessary and sufficient
conditions for a gauge-invariant characterization of local isometry to aKerrmanifold
were proposed byGarcía-Parrado Gómez-Lobo in [93].3 We use this set of algebraic
and geometric conditions to provide a numerical measure of Kerrness. Previous
studies have used multipole moments of the BH apparent horizon [152], horizon
spin measurement comparisons [178], or Petrov classification [34, 59, 150] to
characterize ringdown spacetimes. Our work is the first set of conditions that
completely characterizes a spacetime as isometric to a Kerr manifold. We study the
violation of these conditions post-merger in the strong field of a BBH simulation.

Connecting the strong-field region to the wave zone is a challenge, as the simula-
tion gauge is different from the gauge in which GWs are observed. There is no
straightforward way to transform between these gauges. Furthermore, establishing
simultaneity between events is not possible in the GR framework, and thus there is
no direct map between an event in the strong-field region and a point on the wave-
form. We therefore devise a scheme to approximately associate the two frames. The
association used in this study is of a cause-effect nature: we follow the outgoing
null characteristics from the strong-field region to the wave zone using a Cauchy
Characteristic Extraction scheme (CCE) [100, 101, 99], and associate events in the
strong field to the wave zone. However, given that GR is a nonlinear theory, the
source associated with a particular feature in the GW signal may not be well lo-
calized in the spacetime. Nevertheless, one would expect that the source dynamics
that dominantly contribute to certain features in the waveform be localizable to a
certain extent. Several such approximate localizations have been performed in linear
perturbation theory [163, 63].

This paper is organized as follows. Sec. 7.2 presents the theoretical methods used in
this paper, and Sec. 7.3 discusses their implementation in NR simulations. Sec. 7.4
then presents and discusses the results of applying thesemethods to anNR simulation
with GW150914-like parameters. We conclude in Sec. 7.5. Figs. 7.15 and 7.22

3Throughout this text, isometry refers to the smoothmapping ofmanifolds equippedwithmetrics.
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are the flagship figures, presenting our major results. The results are quantitatively
summarized in Table 7.3.

Conventions

We work with the standard 3+1 decomposition of NR (cf. [40] for an introduction).
In this paper, gab refers to the spacetime metric, na refers to the timelike unit normal
vector, γi j refers to the spatial metric on each slice, Di is the covariant derivative with
respect to γi j , and Ki j refers to the extrinsic curvature. We set G = c = 1 and express
all quantities in terms of M , the sum of the Christodoulou Masses of the two BHs at
the start of the simulation. Latin letters at the start of the alphabet, {a, b, c, d}, refer to
(4-dimensional) spacetime indices, while Latin letters in the middle of the alphabet,
{i, j, k, l,m, n} are (3-dimensional) spatial indices. We denote complex conjugation
by an overbar (e.g. Ā). To avoid confusion among the multiple meanings of “data"
in this paper, we refer to the vacuum data {γi j,Ki j} on a spatial slice simply as “a
slice".4 Similarly, rather than being purely geometric, a “slicing" in our case is a
foliation equipped with a coordinate chart.

7.2 Theory
Characterizing strong-field Kerrness
First, we explain our method of measuring Kerrness in the strong-field region
and develop a method to map it onto I+. Secs. 7.2 and 7.2 discuss theoretically
characterizing Kerrness in the strong-field region, while Secs. 7.2, 7.2, and 7.2
discuss mapping strong-field information onto the wave zone via null characteristics.

Overview and historical background

Our overall goal in this section is to evaluate Kerrness: how close a numerical BH
ringdown spacetime is to being locally isometric to the Kerr spacetime. In order to
evaluate the Kerrness of a spacetime, we first need a set of theoretical conditions
to evaluate whether a spacetime is isometric to Kerr. We can then turn these
conditions into a set of measures, where deviation from zero indicates being farther
from being locally isometric to Kerr. In a numerical simulation, one would evaluate
these measures on spatial slices of a simulation. To characterize Kerrness in the
strong-field region, one needs local quantifiers evaluated close to the BH, as opposed
to looking at regions far away, which are contaminated by gravitational radiation.

4Vacuum data means that the spatial metric, γi j , and the extrinsic curvature Ki j satisfy a set of
constraint equations corresponding to the decomposition of the vacuum Einstein equations.
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Figure 7.1: The set of conditions for a slice to be locally isometric to Kerr. The
nodes refer to the resulting type of spacetime when the conditions on each edge,
given by their name and equation in the text, are met. For example, a spacetime must
meet all four of the conditions specified in the edge from Algebraically Special to
Petrov Type D to belong to the type D subset of algebraically special spacetimes. In
numerical applications, the failure of these Kerrness conditions to be met gives a set
of respective Kerrness measures, where larger measures denote greater deviation
from Kerr. For each measure, we give Nd , the number of numerical derivatives
beyond the first derivatives of the metric needed to evaluate it, which corresponds
to the numerical noise level in the measure, with higher derivative powers giving
more numerical noise.



175

Consequently, we seek a point-wise measure and do not use global measures on a
slice such as those proposed in [30, 32, 31].

Uniquely characterizing a spacetime as Kerr has been historically challenging—
until recently, one could only classify spacetimes up to a Petrov type, which gives
a weaker classification that admits several manifolds besides Kerr. The Petrov
classification uses algebraic properties of the Weyl tensor Cabcd based on the four
principal null directions (PNDs), by solving the eigenbivector problem (cf. [187]
for a review)

1
2

Cab
cd Xcd = λXab , (7.1)

where eigenbivectors Xab
(α)

have eigenvalues λ(α). The degeneracies of the PNDs
give a unique algebraic classification of a spacetime. A spacetime with no repeated
PNDs is fully general (Petrov Type I). A spacetime with at least one repeated PND is
algebraically special. The Kerr metric belongs to a particular class of algebraically
special spacetimes, the set of type D spacetimes, which have two double PNDs. A
necessary condition for the manifold to be locally isometric to Kerr is to be type D.

Campanelli et al. [59] used this approach to analyze a numerical BBH ringdown.
They determined the degeneracies between the PNDs by solving the eigenbivector
problem and measuring the difference between eigenvalues. Their analysis found
that the spacetimefirst numerically settled to type II,which has only one double PND,
and then to type D. Owen [150] later showed that this measure was sensitive to the
choice of tetrad used to compute the Weyl scalars needed to solve the characteristic
equation. He proposed a new measure, less-sensitive to the choice of tetrad, and
showed that the spacetime settled to type D without first settling to type II.

A type D spacetime can then be shown to be locally isometric to Kerr through
additional conditions. Kerr belongs to the Kerr-NUT subset of type D spacetimes.
One needs to show that a spacetime is Kerr-NUT and then constrain the acceleration
and the NUT parameters. We give more information on Kerr-NUT spacetimes
and the various parameters in Appendix 7.A. Ref. [59] investigated the asymptotic
behavior of the acceleration and the NUT parameter on a BBH simulation and
showed they were constrained to be those of Kerr.

In this study, we do not solve the eigenbivector problem, but rather use a set of local
algebraic and geometric conditions recently proposed by García-Parrado Gómez-
Lobo [93] to show that a spacetime is locally isometric to Kerr. These conditions
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are formulated in a fully covariant way and thus avoid the complications in [59]
and [150] due to tetrad choice.

Necessary and sufficient Kerrness conditions

To characterize a spatial Cauchy slice as isometric to Kerr, we first check if the
slice is algebraically special. Next, we use two geometric conditions to check for
the existence of Killing vectors (KVs) on the slice, and we impose two algebraic
conditions to verify that the slice containing the KVs is type D. Then, we check the
properties of the KVs and further classify the slice into the Kerr-NUT subfamily. Fi-
nally, imposing conditions on the acceleration and NUT parameters, we completely
characterize the slice as locally isometric to Kerr. These conditions are summarized
in Fig. 7.1.

All algebraic conditions are expressed in terms of electric and magnetic parts of the
Weyl tensor, Cabcd , as

Eab ≡ +Cacbdncnd , (7.2)

Bab ≡ −
∗Cacbdncnd , (7.3)

where the left dual of the Weyl tensor is defined as ∗Cabcd ≡ 1
2ε

abe f Ce f
cd . For a

vacuum spacetime, these spatial tensors can be more readily evaluated on a slice as

Ei j = Ki jK k
k − Ki

k K j k +
(3)Ri j , (7.4)

Bi j = −εkl(iDk K l
j) , (7.5)

where (3)Ri j is the spatial Ricci tensor evaluated from γi j . These can be combined
into a complex quantity as

Ei j ≡
1
2

(
Ei j − iBi j

)
. (7.6)

In [93], the algebraic condition for a slice to be locally algebraically special is given
in Eq. 85 as

Speciality Index: 6b2 − a3 = 0 , (7.7)

where

a ≡ 16Ei jE
i j ,

b ≡ −64Ek
i E

i jE j k .
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This condition is equivalent to the speciality index in the Petrov classification liter-
ature (cf. Eq. 4.13 of [187]).

Recall that algebraic speciality corresponds to having one double PND, and hence
is a weaker condition than being type D, which corresponds to having two double
PNDs. A necessary algebraic condition for a slice to be type D is given in Theorem 4
of [93] as

Type D 1 :
a
12
γi j −

b
a
Ei j − 4Ei

kE j k = 0 , (7.8)

which makes use of 4-dimensional algebraic conditions proven in [86] and orthog-
onally splits these onto the spatial slice. Here we have called the condition “Type D
1" purely for bookkeeping purposes, in order to label each of the type D conditions.

The three sufficient conditions for a slice to be type D consist of two geometric
conditions involving KVs and one algebraic condition which also includes the KV.
As proven in Theorem 2 of [93], a vacuum type D spacetime has a complex KV
field ξa which satisfies an algebraic condition

Ξab =
27
2
w

11
3 ξaξb , (7.9)

where Ξab is derived from the Weyl tensor, and

w ≡ −
b

2a
. (7.10)

However, one must show that a KV field exists on the slice in the first place, and
then that it satisfies the properties given in Eq. (7.9). The necessary and sufficient
geometric conditions for a slice to contain a KV field are known as Killing Initial
Data (KID), and for a vector ξa = Yna + Y a, are given as

Type D 3 : D(iYj) − YKi j = 0 , (7.11)

Type D 4 : DiD jY − LY lKi j (7.12)

− Y ((3)Ri j + KKi j − 2KilK l
j) = 0 .

Satisfying these conditions guarantees that a KV field exists on the slice—note that
these two conditions say nothing so far about type D.
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We can then relate this KV field ξa to the condition on the KV in a type D spacetime
given in Eq. (7.9) by requiring

Type D 2 : Epj(Ω
2 +ΩlΩ

l) , (7.13)

− 2Ωl
(
iEk
(pε j)lkΩ + El(pΩ j)

)
+ γpj

(
1
2
wΩ2 +Ωl

(
−

1
2
wΩl + ElkΩ

k
))

+
1
2
wΩpΩ j −

27
2
w11/3YpYj = 0 ,

where Eq. (7.13) is the orthogonal splitting of Eq. (7.9), and

Ω j ≡ Dkw , (7.14)

Ω ≡ K j kE j k − wK − 16i
w

a
E j kεkpl DlE

p
j ,

Y ≡ (wΩ jΩ
j + 2E j kΩ

j
Ω

k)1/2w−11/6 ,

Yj ≡
Ω(2E j kΩ

k + wΩ j) − 2iε j klEp
lΩpΩk

27Yw11/3 .

This procedure is shown in Theorem 6 of [93].5

Type D 3 and Type D 4 are independent geometric conditions that depend on the
complex KV ξa and show that the slice is KID. Type D 1 is a purely algebraic
condition that informs us of the behavior of the PNDs. Type D 2 ties in the
algebraic and geometric conditions, thereby completing the classification into type
D. Speciality Index, meanwhile, is an independent algebraic condition.

In order to then show that an algebraically special, type D slice is locally isometric to
Kerr, wemust also show that it belongs to theKerr-NUT subset of typeD spacetimes.
Kerr-NUT spacetimes have the symmetry property of two commuting KVs [187] -
one spacelike and timelike, and thus if we impose this geometric condition on KV
ξa as defined above, we arrive at the condition given in Theorem 8 of [93],6

Kerr 1 : Im(YȲj) = 0 . (7.15)

In order to further show that a slice is locally isometric to Kerr, we must place
constraints on the parameters characterizing Kerr-NUT spacetimes. We summarize

5The Type D 2 condition has a + in the second term where [93] has a −. The sign error has been
confirmed by the author of [93]. Similarly, The factor of 1

27 in the definition of Yj is not included
in [93], but is in the corresponding Mathematica notebook [92].

6However, this has a typographical error (confirmed by the author [92]), and should include Ȳj ,
the complex conjugate, as given Eq. (7.15).
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the parameters involved in Type D spacetimes in Appendix 7.A. We require that λ,
the NUT parameter, vanish, and ε , which is related to the acceleration of the BH, be
greater than zero. These conditions are given in Theorem 8 of [93] as

Kerr 2 : Z3w̄8 ∈ R− , (7.16)

for the condition λ = 0, where Z ≡ ∇aw∇
aw, and

Kerr 3 : −|Z |2 + 18Re(w3 Z̄) > 0 , (7.17)

for ε > 0. However, the above expression only holds outside of the ergoregion [92]
in Kerr. This condition is thus impractical to use in the this study, since it involves
finding the ergoregion, and masking this region would introduce high levels of
numerical error within a spectral code.

Thus, for a slice to be locally isometric to Kerr, it must satisfy all of the above
conditions, which are summarized in Fig. 7.1. Since the vacuum spacetime at the
start of a ringdownmaybe fully general, the left hand sides of theKerrness conditions
will not necessarily be zero on some slices. Instead, the Kerrness conditions turn
into a set of Kerrness measures, where larger deviation from zero indicates a larger
deviation from being isometric to Kerr.

Connecting strong-field information to I+

Motivation

Having characterized the Kerrness in the strong-field region, we connect this in-
formation to the GWs at I+. We develop a framework to map the evolution of the
Kerrness measures computed during a post-merger simulation to the evolution of
the post-merger waveform in the asymptotic frame. This provides a procedure to
validate the choices of start time of ringdown when analyzing a gravitational-wave
signal.

Just after the two BHs merge, the newly formed BH is expected to be highly
distorted. The dynamics of the BH can be explained only via a full numerical
simulation. At I+, where the GWs are observed, these strong-field dynamics are
responsible for features in a small region close to the peak of the GW amplitude.
Once the excitation amplitude in the strong-field region decays to a level when linear
perturbation theory is valid the spacetime dynamics and the associated waveform is
governed by the Teukolsky equation [194, 159, 195]. At I+, the waveform appears as
a sum of exponentially damped sinusoids with a specific QNM frequency spectrum
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Figure 7.2: Prescription for connecting the strong-field information to the asymptotic
frame dynamics. The colored cylinder represents the region of spacetime that is
evolved by the Cauchy code. The vertical green line within the cylinder indicates the
direction of coordinate time. The horizontal lines represent time slices. The details
of the location of time slices depend on the gauge choice. The pink boundary of the
cylinder depicts the worldtube from where the CCE is performed. The purple lines
with unit slope illustrate the null characteristics along which the information on the
worldtube is propagated to (the solid blue line) I+. In our procedure of associating
information in the source frame with the asymptotic frame, we identify all the points
along a characteristic by an equivalence. The solid green line in the cylinder acts as
a source to the waveform feature at τ0 observed at I+.
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(with power-law tails that are usually very weak). Beyond this rough picture, the
association of the specifics in the strong-field dynamics to the waveform is not well
understood, especially during the merger and post-merger phases.

Understanding this association is crucial because several strong-field tests of GR
rely on BH perturbation theory and thus, on identifying the perturbative regime in
the waveform. These tests include the no-hair theorem test, consistency tests of the
QNM spectrum with the inspiral parameters, and the area theorem test. The start
of ringdown in the GW is mathematically ill-defined as damped sinusoids form an
incomplete and non-orthogonal basis [141, 200]. Therefore, it is important that
we validate the choices of start times in the data analysis of ringdown guided by
the strong-field information, where the validity of perturbation theory can be better
understood.

Conceptual challenges

Mathematically, GR being a non-linear theory does not allow for unambiguous
localization of sources of GWs. However, to a certain extent, one expects that the
dominant source of a particular feature in the wave zone be localizable to a relatively
small region of the spacetime in the past light cone. For instance, studies like [163,
113] identify the dominant source for the peak of the waveform during the plunge
of a test particle into a Schwarzschild BH with the particle crossing the light-ring.7
Furthermore, the last few cycles of the BBH GW signal are associated with the
dynamics of a linearly perturbed BH [197, 36, 60]. However, one needs to bear in
mind that these studies are performed using linear perturbation theory where such
localizations are better defined. For example, if one adds a massive particle instead
of a test particle in the former case and makes the problem non-linear, one would
get some additional source contributions from self-force, thus making the source
localization trickier.

In the case of BBHpost-merger, identifying specific events as a source of the features
in the waveform cannot be done unambiguously owing to the non-linear dynamics
from merger. However, drawing intuition from analytical linear perturbation theory,
we expect the region within the support of the analytical effective BH potential to
contribute significantly to the waveform at I+. Thus, we argue that even in a non-

7The light-ring is the orbit of a massless particle around the BH, which corresponds to the peak
of the BH potential located at 3 M in Boyer-Lindquist coordinates for a Schwarzschild BH.
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linear case, a small region in the spacetime around the BH containing the strong-field
dynamics, can be associated as a dominant source of features in the GW.

Another challenge in performing this association is that the notion of simultaneity
in GR is not absolute, which means that all spacelike slicings of the spacetime are
equally valid. In numerical simulations however, we have to make a gauge choice.
In our case, this choice is made by the Cauchy evolution code. The spatial features
corresponding to a particular timeslice are gauge dependent. We choose to monitor
the Kerrness on a spatial coordinate 2-sphere in the strong-field region, instead of
computing a volume integral over the source region in a timeslice.8

We attempt to present a mathematically rigorous validation for the start time of
RD. However, we caution the reader that this association may be affected by gauge
choices, and in particular, is dependent on the radius of the 2-sphere we monitor,
especially in the strong-field region.

Forming a source-effect association via null characteristics

Given these challenges, we propose the following association scheme. We evaluate
theNewman-Penrose scalarΨ4, whichmeasures the outgoing gravitational radiation,
on a given slice of the simulation. Ψ4 is obtained from the Weyl tensor as

Ψ4 ≡ −Cabcd kam̄bkcm̄d , (7.18)

where ka is a radially ingoing null vector, and the complex vector ma is formed
from spatial vectors orthogonal to the radially ingoing and outgoing null vectors
(cf. [40] for more detail). By looking at Ψ4 evaluated on the simulation, we infer
a 2-sphere radius that lies within the strong-field region, containing and generating
significant radiative fields. This 2-sphere acts like an effective source for the GW
seen at I+. We evaluate a surface integral of the Kerrness measures at each time
slice during the ringdown on this 2-sphere. Then, we connect the evolution of the
Kerrness measures on this surface to the associated features in the GW by following
the outgoing null characteristics emanating from this 2-sphere. The details of this
procedure are described below.

The GWs emanating from a source propagate to I+ along outgoing null rays (since
the spacetime is curved, a small portion of GWs also travel inside the light cone).
We utilize this in constructing an association between strong-field information and

8By doing so, the gauge effect is limited to uncertainty of picking the 2-sphere, thereby avoiding
contribution of gauge effects through the entire volume region.
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the features on the GW.We associate a feature on the GW to a 2-sphere in the strong-
field region at a given time (in the simulation coordinates) if they lie on the same
outgoing null hypersurface. This 2-sphere can thus be interpreted as an effective
source producing the point on the waveform. The choice of 2-sphere should be
close to the region generating GWs rather than farther out, as we are interested
in monitoring the region with a strong support of the BH potential. Measuring
Kerrness of such a surface would give an insight into validity of perturbation theory
in the region that acts as a dominant source of the GWs.

A framework that is naturally suited for such connections is Cauchy Characteristic
Extraction (CCE). CCE foliates the spacetime into a family of outgoing null hyper-
surfaces and formulates Einstein’s equations as an initial-boundary value problem
in a 2+2 characteristic decomposition. The mathematical details of this formalism
can be found in [48, 99]. CCE performs a characteristic evolution using the metric
data on a timelike boundary of the Cauchy region (known as the worldtube), and
propagates it to I+. At I+ the radiation information is obtained as the Bondi news
functionN [55]. The GW strain can then be obtained fromN by a time integration,

h(t) =
∫ t

−∞

N(t′)dt′ . (7.19)

A key feature of this scheme is that each point at I+ corresponds to a null hypersur-
face, which in turn corresponds to a particular (coordinate) time label on the world
tube.

We can thus associate the average of the Kerrness on a 2-sphere to spherical har-
monic modes at I+. We choose to average the quantities, rather than modally
decompose them, in order to obtain a single number, which makes the interpretation
and presentation of results easier. We illustrate this in Fig. 7.2. Here, τ0 marks a
specific timeslice (horizontal solid green line) in the Cauchy evolution region in a
gauge chosen by the Cauchy code. The intersection of this timeslice with the world-
tube boundary is a spatial (topological) 2-sphere. The information on this 2-sphere
is propagated to I+ along a null hypersurface labeled (solid purple line) as τ0. The
radiation feature carries the time stamp τ0 at I+, which, roughly speaking, arises
from the 2-sphere defined by the intersection of timeslice τ0 and the worldtube in
the simulation and thus, we identify them to be associated.

Having established a framework to associate information on a 2-sphere in the strong-
field region to the waveform at I+, we now discuss the choice of the 2-sphere
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used in this study. Motivated by analytical studies of test particles plunging into
Schwarzschild BHs [163, 113], one might want to inspect the 2-sphere associated
with the peak of effective BH potential. However, locating it during the merger in a
numerical simulation is non-trivial (if at all well-defined) and is beyond the scope
of this paper. Furthermore, CCE cannot be performed from an arbitrarily small
worldtube close to the horizon. This limitation arises because CCE is formulated
in light-cone coordinates. In the regions very close to the horizon, light-cone
coordinates can form caustics, leading to coordinate singularities. Because of these
constraints, we choose the worldtube radius corresponding to the smallest coordinate
2-sphere that is accessible to our procedure, but we visually verify that it contains
strong-field dynamics by plotting Ψ4 in Figs. 7.16.

Inferring perturbation amplitudes via Kerrness
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Figure 7.3: Envelope function from Eq. (7.21), for two choices of width and falloff
parameters, {W, F}. We show how the envelope parameters affect an extraction
radius of R = 5 M (marked by the dashed black line). For our chosen values of
{W = 6 M, F = 8}, the envelope is at∼ 1 and R = 5 M , while for {W = 3 M, F = 8},
the envelope affects the perturbation amplitude at R = 5 M . We have checked that
using a smaller envelope does not change the qualitative behavior of our results.

In order to give physical meaning to the values of the Kerrness measures outlined
in Sec. 7.2, we can compare their values (on a post-merger spacetime, for example)
to those on a single BH with a known analytic perturbation. Specifically, we can
compare the Kerrness measures during ringdown to those on a l = m = 2 spheroidal
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Figure 7.4: Behavior of absolute Kerrness measures with perturbation amplitude ε.
We compute this on an l = m = 2 QNM perturbed Kerr BH with the same mass
and spin as the final remnant in the BBH simulation we consider in this paper. We
average each measure on a coordinate 2-sphere of R = 5 M . Note that we do not
plot Type D 4 due to the high level of numerical noise in the measure, but it behaves
similarly to Type D 3. The behavior is initially quadratic with ε for all measures. At
larger amplitudes ε ≥ 5 × 10−3, Type D 2, D 3, D 4 and Kerr 1 show higher-power
dependence, and hence non-linearity. We show this εcrit ∼ 5 × 10−3 by a dashed
vertical line. The lines between the points are only used to visually connect them
(rather than being fits).

QNM perturbed Kerr BH of the same final mass and spin, with varying dimen-
sionless perturbation amplitude ε. This will provide a true physical comparison,
as linearly-perturbed type D spacetimes are fully generic type I, and thus the Ker-
rness measures on the perturbed spacetime are expected to be nonzero [26]. This
comparison will allow us to infer the perturbation amplitude to which a particular
coordinate time corresponds. We can then map this inferred amplitude onto the
waveform using the methods in Sec. 7.2.

Given the initial masses and spins, we can generate initial data for a perturbed BH
(including all the relevant modes). In this study, we choose to use the initial data
consisting of only (2,2) mode as this is the dominant mode of the system. We have
fitting formula for relative mode amplitudes in the perturbative regime, and thus we
can extract an overall amplitude factor and call that ε.
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Kerrness measures on perturbed metrics

The perturbedmetric is generated on a single slice for each ε by solving theTeukolsky
equation and reconstructing the metric perturbation hab using a Hertz-potential
formalism [213, 125] (cf. [197] for a general review). The resulting perturbation
hab is then added to the background metric to give

g̃ab = gKerr
ab + εhab , (7.20)

which is correct to linear order. The constraint equations for the metric g̃ab are then
solved to give a fully constraint-satisfying metric gab in Kerr-Schild coordinates
using the extended conformal thin-sandwich formalism (cf. [40]). This introduces
some nonlinear effects into the perturbedmetric. Furthermore, the asymptotic radial
behavior leads to blow-up of the solution at large radii [147]. Thus, before solving
for gab, we multiply hab by an envelope of the form

fEnvelope(R) = exp[−((R − r+)/W)F/2] , (7.21)

where r+ is the radius of the outer horizon of the BH, W is the width, and F

is the falloff of the envelope. Since the mapping of the Kerrness measures onto
the waveform occurs at R = 5 M , as will be discussed in Sec. 7.3, and the horizon
typically has outer radius R+ ∼ 1.7 M , we chooseW = 6 M to give fEnvelope(5 M) ∼ 1
so as to minimally affect the perturbation at the extraction radius. Additionally, we
choose F = 8 in order to counteract the steep growth of the perturbation with radius.
We plot the envelope in Fig. 7.3. In practice, the metric perturbation is generated
using an extension of the code used in East et al. [78], but with the QNM solution
rather than an ingoing GW solution and using the full radial dependence.

Fig. 7.4 shows the behavior of the Kerrness measures averaged on a 2-sphere of
R = 5 M with ε on a BH of the same final mass and spin as the simulation outlined
in Sec. 7.3. The theoretical behavior of the Kerrness measures with perturbation
amplitude is unknown [92, 107], and thus this is the first (numerical) computation
of the behavior. We first check that the measures converge to finite values with
numerical resolution, thus representing real physical values. The Kerrness measures
increase quadratically for small ε, then show higher-order effects for large ε. Type
D 2 grows to (best-fit) quartic, Type D 3 and Kerr 1 become cubic, while Speciality
and Type D 1 remain quadratic at ε ∼ 10−2, the largest amplitude for which we can
solve for gab before violating the constraints. In particular, the steep increase of the
Type D 3 and Kerr 1 measures, which come from geometric conditions on KVs,



187

indicates that at large enough perturbation amplitude, the slice fails to have even an
approximate KV. Since the perturbation we are introducing is not axisymmetric, it
makes sense that at large ε the slice loses this KV symmetry.

The linear perturbation regime corresponds to the region where the measures in-
crease quadratically with ε, while the non-linear regime approximately begins where
one can see higher-power behavior. In this case, we see the transition from quadratic
behavior around εcritical ∼ 5 × 10−3, suggesting that this is the approximate start of
the nonlinear regime. In practice, one can normalize all of the ε values in this paper
by εcritical. However, we do not do this for readability of the figures.

However, there are some sources of error in the gab analysis. The areal radius of
the perturbed metric on a coordinate 2-sphere of radius R = 5 M changes slightly
with perturbation amplitude, changing by 10−2 M between ε = 10−6 and 10−2.
Thus, a coordinate-radius measure comparison does not happen on exactly the
same 2-sphere. Solving for gab changes the values of the mass and spin from the
parameters used in creating gKerr

ab . At the largest perturbation amplitude ε = 10−2,
the dimensionless spin changes by .003, while the mass changes by .008 M . We
keep these errors in mind when computing the Kerrness values of the strong-field
region in terms of ε and mapping them to the waveform for the binary case in
Sec. 7.4.

Mapping onto the waveform

A perturbation amplitude ε is associated with each timeslice of a post-merger
spacetime in the strong-field region by the procedure described above. Since the
procedure developed in 7.2 allows us to associate simulation timeslices with the
gravitational waveform at I+, we can map the perturbation amplitude associated
with each timeslice to the corresponding parts of the waveform at I+. This gives
an insight into deciding which portion of the waveform at I+ can be modeled as
being generated by linearly perturbed Kerr manifold, thus providing validation of
start times chosen in data analysis that rely on perturbative description of Kerr.

Outline of method
For quick reference, we now concisely provide an outline of the algorithmic pro-
cedure developed in this paper. This also serves as a step-by-step plan that we can
apply to future BBH detections.
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1. Performing an NR simulation with waveform parameters inferred from pa-
rameter estimation, and saving the metric data,

2. Generating worldtube data for various extraction radii and performing CCE
from the inner-most possible radius,

3. Evaluating the Kerrness measures on the metric data at this radius for BBH
ringdown,

4. Evaluating the Kerrness measures on QNM perturbed data with the same final
mass and spin, and inferring corresponding perturbation amplitude from the
Kerrness values,

5. Mapping the Kerrness measures and inferred perturbation amplitudes to the
waveform via null-characteristics,

6. Using these results to validate choices for the start time of ringdown in detector
data analysis.

Measuring Kerrness on the horizon
In addition to local measures throughout a spatial slice discussed in Sec. 7.2, Ker-
rness can also be evaluated on the post-merger apparent horizon (AH). Owen de-
scribes a multipolar horizon analysis in [152], finding that the multipolar structure
of a final BBH remnant was that of Kerr. Probing the multipolar structure also
serves as a test of the no-hair theorem [197].

This formalism involves computing the mass multipole moments Iα of the horizon
as

Iα =
∮

yαRdA , (7.22)

where R is the scalar curvature of the horizon, dA is the metric volume element on
the AH, and α labels generalized (non-axisymmetric) scalar spherical harmonics yα.
These generalized spherical harmonics are computed from the eigenvalue problem

∆yα = λ(α)yα , (7.23)

where ∆ is the operator ∆ ≡ gAB∇A∇B on the AH, and λ is its eigenvalue. In
analogy with axisymmetric spherical harmonics Ylm, an effective l is defined for the
eigenvalues as

λ = −
leff(leff + 1)

r2 , (7.24)
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where r is the areal radius of the horizon. Since the leff values are time-dependent,
we refer to a given multipole by its final value.

As discussed in [152], the multipole moments that are zero on a Kerr BH either
immediately vanish due to the symmetry of the AH, or decay to zero from their
excited values as the remnant BH settles to Kerr. The multipole moments that
do not vanish on Kerr are functions of the mass and spin, and reach these values
with increasing coordinate time. We use the code implemented and tested in [152]
to compute the multipole moments. However, since the multipole moments are
features of the horizon, we cannot map their behavior onto the waveform at I+.
Moreover, CCE cannot be performed close to the horizon, as discussed in Sec. 7.2.
Nevertheless, we can compare the qualitative behavior of the multipole moments
with those of the Kerrness measures as done in Sec. 7.4.

7.3 Numerical implementation
Description of simulation
We apply the methods outlined Sec. 7.2 to the numerical simulation presented in
Fig. 1 of [10], with similar parameters to GW150914, the first LIGO detection.
The simulation is performed, and the methods are applied using SpEC, the Spectral
Einstein Code. The waveforms and parameters are available in SXS:BBH:0305
in the SXS Public Catalog [1]. The simulation has initial mass ratio q = 1.221,
and dimensionless spins χA = (0, 0, 0.33) and χB = (0, 0,−0.44). The initial
orbital frequency is Ω0 = 0.017. The final (post-merger) BH has dimensionless
spin χC ' (0, 0, 0.69) (within numerical error, as measured using the techniques
in [178]) and mass 0.952 M . The inspiral proceeds for 3694.4 M until the formation
of a fully-resolved common AH. The visible part of the post-merger waveform on a
linear scale has a temporal duration of ∼ 61 M .

Within a BBH simulation, the metric equations are evolved in a damped harmonic
gauge [190, 120], with excision boundaries just inside the apparent horizons [104,
177] and minimally-reflective, constraint-preserving boundary conditions on the
outer boundary [172]. The spectral grid used during the inspiral of the simulation
has an excised region for each BH. Once a common AH forms, the simulation
proceeds for a few M before switching to a new grid, in which there is one excision
region for the new AH [104]. For this simulation, the grid-switch happens at
3696.9 M . For more information on the code, see [126].
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Implementation of Kerrness measures
We discuss the numerical implementation of the Kerrness measures outlined in
Sec. 7.2 and summarized in Fig. 7.1, on an NR BBH post-merger. Note that these
measures will not be zero even on a numerical Kerr spacetime, due to the resolution
of the simulation.

20 40 60
Numerical Resolution, 3

√
N

10−8

10−6

10−4

10−2

100

‖ζ
‖/
‖ζ

0‖
in

V
ol

u
m

e

Speciality Index
Type D 1
Type D 2
Type D 3
Type D 4
Kerr 1
Kerr 2

Figure 7.5: Convergence of Kerrness measures on a numerical BH in Kerr-Schild
coordinates with dimensionless spin χ = (0.2, 0.3, 0.4). We observe exponential
convergence towards the theoretical value of zero with numerical resolution. For
each measure ζ , we present ‖ζ ‖/‖ζ0‖, the L2 norm over the spatial slice normalized
by the L2 norm of the lowest resolution. The resolution is expressed 3√N , where N
is the number of spectral collocation points in the domain.

In order to quantify the Kerrness measures at each point, we convert the complex
tensors into scalars. We contract a tensor Ai j , a vector Bi, and a scalar C as

SA = Ai j Āi j SB = Bi B̄i SC = CC̄ , (7.25)

where raising and lowering occurs using the spatial metric γi j .9 Throughout the rest
of the paper, all of the measures will refer to their respective scalars generated using
Eq. (7.25).

Because our simulations are performed using spectral methods, we expect errors to
converge exponentially with increasing numerical resolution [160]. In Fig. 7.5, we

9The Kerr 2 measure given in Eq. (7.16) requires that the imaginary part be zero, while the real
part be ≥ 0. Hence, when evaluating Kerr 2, we measure the deviation of the imaginary part from
zero, and the deviation of the real part from being positive (hence only including negative values).
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plot the Kerrness measures as a function of resolution for a single Kerr black hole;
we see that the measures decay exponentially towards zero as expected.

SpEC solves a first-order formulation of the Einstein equations, and therefore evolves
both the spacetime metric and variables corresponding to its time and spatial deriva-
tives [121]. The metric and first derivatives are available to the accuracy of the
numerical simulation on each slice. Kerrness measures that require additional
numerical derivatives, however, will have greater numerical noise and a higher nu-
merical noise floor. The highest numerical order derivative needed to evaluate each
measure is given in Fig. 7.1. Type D 4, which requires four numerical derivatives, is
the noisiest measure and has a higher noise floor than the other measures, as shown
in Fig. 7.5.

Map from source to I+ - implementation
In our study, we use a CCE implementation in SpEC (cf. [38], in prep). This
implementation uses a no ingoing and outgoing radiation condition on the initial
null hypersurface of the characteristic evolution. This means that the code treats
the spacetime outside the worldtube as initially free of any gravitational radiation
from the past.10 Usually the CCE worldtube is placed at a large radius, and the
CCE evolution begins at the start of the numerical simulation during early inspiral.
However, here we begin CCE only at the merger portion of the Cauchy evolution,
and in addition, we place the CCE worldtube at a very small radius. This means that
extracted waveform does not contain contribution coming from the inspiral part of
the dynamics.

By decreasing the radius of the extraction worldtube progressively by 1 M , we find
the smallest radius of the worldtube that our procedure can be applied to occurs at
a coordinate radius of R = 5 M . For a radius of R = 3 M , the CCE procedure can
not be performed, presumably due to the formation of caustics. At R = 4 M , we get
a very glitchy and unreliable extraction of the news function.

However, performing the CCE from such small radii gives rise to an additional
complication. Since time stamps on thewaveform at I+ are induced by the simulation
coordinates, the news function obtained is not necessarily in an inertial gauge. In
a standard CCE scheme, a gauge transformation is applied to the news function in
order to obtain it in an inertial gauge. To preserve the map between the time in

10During the Cauchy evolution, we perform the evolution with a boundary of R ≈ 670 M and we
do not neglect the backscatter from the region outside of the CCE extraction radius.
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Figure 7.6: The l = m = 2 mode of the news function seen at I+ extracted from
worldtube boundaries of R = 5 M , 32 M , 64 M , 80 M , 96 M and 128 M . The
horizontal axis corresponds to the time stamps associated with the news function
corresponding to CCE from R = 128 M . The top panel shows the real part and the
bottompanel shows the imaginary part of the news function. The alignment of news
functions has been done such that the overlap is maximized. The transformation that
changes the gauge from a non-inertial to an inertial observer has not been applied to
any of the extractions. All of the extractions beginning with R = 32 M seem to agree
with one another (to the point of overlapping with the R = 128 M line). Notice that
the amplitude of the news function extracted from R = 5 M deviates from the other
extractions, especially in the first cycle. Nevertheless, the phase evolution between
the news function from extraction radii seem to agree. The primary goal of this
figure is to compare the extracted waveforms at R = 5 M and R = 128 M . Thus, we
have bolded and boxed these lines.
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ror we introduce by - a) not performing the final gauge transformation, b) imposing
no-ingoing condition for CCE.
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simulation gauge and the time coordinate on the extracted news function, we do not
perform this gauge transformation. We see the effect of the gauge transformation
in the waveform at I+ as a mixing of mode amplitudes. The effect is very small
when the worldtube boundary for CCE is large i.e., lies in the weak field region. For
instance, for a worldtube boundary of R = 128 M the effect of this transformation is
negligible. To confirm this, we compute the overlap O between the news extracted
from R = 128 M with and without the gauge transformation. The overlap O is
defined as:

O =
〈
Ñ1 |Ñ2

〉
=

∫ ∞

−∞

Ñ1( f )Ñ∗2 ( f )

|Ñ1 | |Ñ2 |
df , (7.26)

where Ñ1,2 is the frequency domain Fourier-transformed news function, and ∗ de-
notes complex conjugation for ease of readability, and | | is the norm [25].

We find that the mismatch, 1 − O, is ∼ 10−6. This overlap computation uses only
the merger and post-merger parts of the news function for the dominant (l = m = 2)
spin-weighted spherical mode. However, for a worldtube radius of R = 5 M , there
could be significant amplitude deviations between the waveforms in the simulation-
coordinate-induced gauge and the inertial gauge. Because of technical difficulties
in the code implementation, we could not apply the gauge transformation to an
extraction from R = 5M and quantify the difference.

Furthermore, before the non-inertial to inertial gauge transformation, every point on
I+ at the same timestamp on thewaveform corresponds to the same null hypersurface
and therefore to the same simulation coordinate time. After the transformation,
this is no longer true: the waveform seen at different sky directions with the same
timestamp on thewaveform corresponds to different null hypersurfaces and therefore
different values of simulation coordinate time. This happens because the choice of
the 2-sphere is gauge-dependent. Therefore, we omit the gauge transformation, as
the aim in this paper is to connect the near-zone to the wave zone, requiring us to
retain the timestamps.

Additionally, the initial no-ingoing radiation condition neglects gravitational ra-
diation coming from the inspiral. This may be significant for extraction done at
small radii, where the initial CCE null hypersurface connects the strong-field region
close to merger to I+ and may contain significant radiation from the inspiral. This
could contribute towards the discrepancy between the R = 128 M and R = 5 M

waveforms.



195

To assess this difference, we compare the news function obtained by extraction
performed from R = 5 M with the extractions performed from the worldtubes of
larger radii, all without the gauge transformation. The result of this is presented in
Figure 7.6. We observe that all the extractions from radii greater than 32 M converge
with radius, indicating that the effect of the gauge transformation is insignificant
at these radii. Further, the extraction from R = 5 M has a significant amplitude
discrepancy with the other extractions, particularly in its first cycle. Therefore, we
would ideally wish to map the strong-field information computed on the 2-sphere at
a coordinate radius of R = 5 M on the news function that has been extracted from a
larger radius like R = 128 M .

We do this mapping in two steps. First, we map the strong-field information
computed on the 2-sphere at a coordinate radius of R = 5 M onto the CCE performed
from a worldtube of R = 5 M using the framework described above. Next, we note
that the phase evolution of extraction from R = 5 M agrees with the extractions
from larger radii.11 We verify this in Fig. 7.7. Then we align the news function
extracted from R = 5 M to the extraction from larger radii as shown in Fig. 7.6. The
alignment is done such that the overlap O between the CCE extracted news function
from different world tube radii is maximized. The maximum normalized O between
the news function extracted from R = 128 M and R = 5 M is 0.82. Incidentally, this
alignment is equivalent to aligning the real part of the news function at its global
minima (or global maxima of the absolute value). Table 7.1 lists the time shifts that
have been applied in order to align the news function extracted from a radius Ri with
extraction done at R = 128 M .

Worldtube radius Alignment shift wrt R = 128 M
R = 5 M 132.5 M

R = 32 M 96.5 M
R = 64 M 62.5 M
R = 128 M 0 M

Table 7.1: The shift in the time axis performed to align the news functions ex-
tracted from different radii in Fig. 7.6. The alignment has been done such that the
overlap between the news function extracted from different worldtube radii with the
extraction from R = 128 M is maximized.

Using this alignment, we map the time stamps on the R = 5 M to those on R =

128 M . From this, we infer the mapping of strong-field information at R = 5 M on
11The time-derivative of the phase gives the instantaneous frequency of the gravitational radiation.
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to the extraction done from R = 128 M , thus mapping the strong-field information
onto the news function as seen in near inertial gauge.

We summarize our algorithm for mapping the strong-field information onto the news
function:

1. PerformCCE fromworldtubewith radius of the 2-sphere that lies in the strong-
field region (whose evolution you wish to map on to the news function seen at
I+) without the final non-inertial to inertial gauge transformation. The time
stamps on this extracted news function are induced by the time coordinates
in the simulation, thus providing a natural map between the evolution of the
strong-field region and the wave zone.

2. PerformCCE from a largeworldtube radius where the effect of the non-inertial
to inertial gauge transformation is negligible.

3. Align the news functions obtained in steps 1 and 2 such that the overlap
between the waveform is maximized.

4. Use this alignment to map the time stamps of the news function extracted in
step 1 to that in step 2. The 2-sphere chosen in step 1 at the timeslice marked
with the simulation time coordinate can be associated as the dominant source
of the feature at I+ with the same time stamp.

7.4 Results
Wenow present the results of performing the analysis outlined in Secs. 7.2 and 7.3 on
the GW150914-like simulation detailed in Sec. 7.3. Sec. 7.4 presents the behavior
of the multipole moments of the AH, which provides a comparison for the Kerrness
measures on the simulation volume. Sec. 7.4 discusses the results of evaluating
the Kerrness measures on the post-merger spacetime and mapping them onto the
waveform at I+, presenting them in terms of the percentage decrease from their peak
values. Sec. 7.4 presents the results of comparing the Kerrness measures on the
post-merger spacetime to values on perturbed data, in order to infer the perturbation
amplitude in the strong-field region, and mapping them onto the waveform, present-
ing them in terms of the inferred perturbation amplitude ε. The percentage decrease
from the peak value and ε can then be used to estimate the overall level of Kerrness
and validate choices for the start time of ringdown. Finally, in Sec. 7.4, we discuss
the implications of these results on analyzing ringdown in GW data, and in Sec. 7.4,
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we compare our results to the ringdown start times chosen in the GW150914 testing
GR study [14].

Horizon behavior and multipolar analysis on BBH ringdown
As a first measure of Kerrness, we apply the horizon multipolar analysis outlined
in [152] and summarized in Sec. 7.2 to the simulation described in Sec. 7.3. Fig. 7.8
presents the behavior of the AH. The areal mass of the AH, given by

√
A/16π where

A is the proper area of the AH, sharply settles to a final value. The minimum and
maximum radii are initially noisy, as the AH is initially peanut shaped, but they
decrease exponentially with coordinate time, showing a settling of the AH to the
final state. However, the radii are coordinate-dependent measures, and thus to check
if the BH settles to Kerr it is more instructive to look at the AH multipole moments.

Fig. 7.8 shows the behavior of the initially non-vanishing quadrupole and hexade-
cupole moments, labeled by their corresponding leff at the final time, as given in
Eq. (7.24). The quadrupole moments correspond to leff ∼ 2 and the hexadecapole
moments correspond to leff ∼ 4. The multipole moments behave as expected for
a generic simulation remnant settling to a Kerr BH. As explained in [152], two
of the five quadrupole moments immediately vanish by reflection symmetry, while
two others exponentially go to zero (eventually hitting a numerical noise floor) as
the final remnant settles to Kerr. Four of the nine possible hexadecupole moments
immediately vanish from reflection symmetry, while four go exponentially to zero
as the remnant settles to Kerr. Note that the l = 1 and l = 3 moments vanish on
Kerr due to symmetry. As in [152], one quadrupole moment (leff = 2.1) and one
hexadecupole moment (leff = 4.17), both corresponding to m = 0, do not vanish,
but rather attain a constant value in line with that of a Kerr BH of the same final
mass and spin.

The multipolar behavior thus confirms that the final state of the AH is that of
a Kerr BH. This serves as an independent test of Kerrness, and thus one would
expect the Kerrness measures presented in Sec. 7.2 to also show the strong-field
region exponentially settling to Kerr. This also serves as numerical evidence for BH
uniqueness, as the final remnant of a BBH merger is indeed Kerr, as also discussed
in [152]. Similarly, since the final multipolar structure can be described completely
by the mass and spin, this serves as numerical validation of the no-hair theorem.



198

10−8

10−6

10−4

10−2

|ζ
−
ζ fi

n
al
|/ζ

fin
al

Areal Mass

Min R

Max R

3700 3800 3900
t/M

10−10

10−8

10−6

10−4

10−2

100

M
as

s
M

u
lt

ip
ol

es

leff

1.90
1.90
2.10
3.77

3.77
4.08
4.08
4.17

Figure 7.8: Settling of the post-merger AH as a function of coordinate time. The
top panel shows the areal mass quickly attaining a constant value and the minimum
and maximum radii R of the horizon exponentially settling to final values. Each
quantity ζ is presented as |ζ − ζfinal |/ζfinal where ζfinal is the value at the final time
of the simulation. The bottom panel shows the behavior of the initially excited AH
mass multipoles, labeled by the leff given in Eq. (7.24) at the final time. The initially
excited quadruple moments (leff ∼ 2) are shown by the dashed lines, while the
initially excited hexadecupole moments (leff ∼ 4) are shown by the solid lines. As
discussed in the text, two of the quadropule moments and four of the hexadecupole
moments, as well as the l ∼ 1 and l ∼ 3 moments immediately vanish due to
symmetry. Thus, we do not plot them in this figure. The excited multipoles either
exponentially decay or reach constant values consistent with the values expected for
Kerr [152].
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Figure 7.9: Behavior of absolute Kerrness measures with coordinate time on BBH
post-merger spacetime. The measures are averaged on a variety of concentric nested
coordinate 2-spheres of radii R around the BH, as indicated by the colors. Larger
values within each subplot mean that the 2-sphere is farther from being locally
isometric to Kerr. For measures that involve higher-order numerical derivatives,
we present the results only at radii where they are at least somewhat well resolved.
All plots, however, include R = 5 M , the radius we use to map Kerrness onto the
waveform. Type D 4 is particularly noisy, as it contains the highest number of nu-
merical derivatives. The measures exponentially decay as the spacetime approaches
Kerr, ultimately reaching a numerical noise floor. We observe that the peak of each
measure moves outwards with radius, indicating propagation of non-Kerrness.

Measuring and mapping Kerrness onto the waveform
The goal in this section is to validate choices of the start time of ringdown using
Kerrness measures on the GW150914-like system described in Sec. 7.3. We now
present the results of evaluating the Kerrness measures outlined in Secs. 7.2 and 7.3
(and summarized in Fig. 7.1) in the strong-field region and mapping them onto the
waveform at I+ using the procedure given in 7.3. These measures are evaluated
point-wise on each slice, and we map the value on a 2-sphere at a radius of R = 5 M

onto the news function. Recall that larger values of the Kerrness measures indicate
greater deviation from being locally isometric to Kerr.

Fig. 7.9 shows the Kerrness measures averaged at various coordinate radii on each
slice of the post-merger spacetime, presented as a function of coordinate time.
All of the measures decay exponentially toward zero, showing that the spacetime
approaches an isometry to Kerr. This confirms the results of the multipolar analysis
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in Sec. 7.4. Additionally, this serves as a numerical verification of BH uniqueness,
as the final state of a BBH merger is isometric to Kerr. The behavior of the
measures at large radii (such as R = 128 M in this case) is especially interesting to
the question of BH uniqueness, which is particularly concerned with the domain of
outer communication [107].

Fig. 7.10 shows the behavior of the Speciality Index, an algebraic measure (Type
D 1) and a geometric measure (Kerr 1) in the volume, as a function of increasing
coordinate time. We see a distinct quadrupolar pattern in all our measures (the
equatorial plane has a modal pattern that corresponds to |m| = 2), consistent with
the dominant mode of gravitational radiation. Furthermore, the Speciality Index and
Type D 1measures, which determine properties of the PNDs, settle first further from
the BH, while the geometric Kerr 1 measure, which is determined by properties of
the KV, first settles closer to the BH.

The Kerr 2 measure, which constrains the NUT parameter, is effectively constant
throughout the ringdown, as shown in Fig. 7.11. Since the NUT parameter is one of
the hairs of a generic type D manifold, Fig. 7.11 confirms that a NUT charge is not
generated during a BBH merger. We thus do not include it further in our analysis.

Of these measures, two are algebraic constraints—Type D 1 and Type D 2—and
three are geometric constraints on the KV, Type D 3, Type D 4, and Kerr 1. In
Fig. 7.9, we see that all the algebraic measures decay in a similar fashion and all
the geometric measures decay similarly. Type D 4, which requires 4 numerical
derivatives, is visibly noisier than the other measures. This measure checks if the
vector identified as (Y,Yj) satisfies the Killing equation and is crucial for a rigorous
mathematical characterization of Kerr manifold. However, all geometric measures
depend on the same Killing vector, and we observe that Type D 4 has a similar decay
property as Type D 3 and Kerr 1. Thus, we do not include the noisier Type D 4 in
our analysis, rather treating Type D 3 as a proxy for both.

Each measure at each radius in Fig. 7.9 eventually reaches a floor. This is confirmed
to be a numerical noise floor in Fig. 7.12, where the floor is shown to exponentially
converge to zero with numerical resolution. The radial behavior of the Kerrness
measures stems from the radial behavior of theWeyl tensor and themetric quantities.
For example, for a stationary background, Ei j ∼ R−3 and Bi j ∼ R−4, and thus
Speciality Index given in Eq. (7.7) should be ∼ R−18, which we indeed observe.

The analysis outlined in Sec. 7.3 requires the Kerrness measures to be extracted
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Figure 7.10: Absolute Kerrness measures on slices of the BBH post-merger space-
time. The data is presented in the equatorial plane, with the gray region correspond-
ing to the excised BH. The black circles correspond to coordinate radii R = 5 M
and R = 10 M . The columns correspond to Speciality Index, Type D 1, and Kerr
1, and the rows (from top to bottom) correspond to coordinate times at which the
each measure at R = 5 M achieves 100%, 30%, 10%, and 1% of the combined peak
value. The quadrupolar pattern (with |m| = 2) in all three measures is consistent
with the dominant quadrupolar radiation (recall that these are absolute measures,
and hence do not distinguish between positive and negative values). Notice that the
algebraic measures—Speciality Index and Type D 1—settle outward-in, whereas
Kerr 1, a geometric measure, settles inward-out. Additionally, the structures in the
measures are visible even at 1% of the peak value. We can compare these measures
to Ψ4 (in Figs. 7.16) to infer their sensitivity to the spacetime curvature features.
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Figure 7.11: Kerr 2 measure throughout the post-merger BBH simulation, averaged
on a variety of coordinate 2-spheres of radius R. The values remain relatively
constant and low, indicating that no NUT charge is gained during ringdown.

at R = 5 M in order to map them to the news function. Fig. 7.10 shows that the
Kerrness measures have strong support at R = 5 M , thus justifying the choice of
radius as being in the near field.12

The Kerrness measures quantify the violation of the conditions for a manifold to
be isometric to Kerr and therefore, they need not have the same dimensions and
sensitivities. Thus, one cannot compare the absolute magnitudes of these measures
with each other and directly translate their value into statements on validity of start
time of perturbative regime. In order to normalize and combine them into an overall
measure of Kerrness, we use the concomitant percentage decrease from their peak
values.

We present the percentage decrease of each of these measures from their peak values
mapped on to the news function in Fig. 7.13 and Fig. 7.14. In the bottom panels of
these figures, the news function is plotted as a function of time. On the same time
axis, the top panel depicts the corresponding evolution of the Kerrness measure in
the strong-field region. The waveform feature in the bottom panel at a particular
time coordinate is associated to the timeslice carrying the same time label, via
source-effect association outlined in Sec. 7.2. In the bottom panel, the Kerrness
value at this time characterizes the deviation from Kerr.

12The measures at R = 3 M in Fig. 7.9 behave similarly to those at R = 5 M indicating that
R = 3 M also behaves like the near field region, but unfortunately we have not been able to perform
CCE from this small a radius.
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Figure 7.12: Exponential convergence of the noise floor of each Kerrness measure
on the final timestep of the BBH simulation. Each measure ζ is presented as an
average over a 2-sphere of R = 5 M (where the measures have settled to a noise
floor), normalized by |ζ0 |, the average of the lowest resolution. The resolution
is indicated by 3√N , where N is the number of spectral collocation points. The
convergence to zero shows that the noise floor observed in Fig. 7.9 is a numerical
noise floor, rather than real a physical artifact. We have also tested this convergence
behavior on a 2-sphere R = 5 M and verified that the behavior is consistent (although
more noisy).
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Figure 7.13: Connecting the Kerrness measures in the strong-field to dynamics at I+
using the procedure described in Sec. 7.3 on the BBH post-merger. The left panels
map the algebraic measures and the right panels map the geometric measures on
to the news function. The top panel within each subplot corresponds to a Kerrness
measure in the strong-field, while the bottom panel shows the news function at I+.
The purpose of plotting the news function directly below each Kerrness measure is
to emphasize that the top and bottom panels are mapped to the same time axis. The
dashed lines of different colors indicate the % decrease from the peak value of the
respective Kerrness measures. The horizontal axis corresponds to the simulation
coordinate time induced on the news function extracted from a world tube radius of
R = 128 M . Furthermore, unlike the strong-field result plots that aim at rigorous
characterization of isometry to Kerr, here we aim at providing insight into validating
the start time of ringdown for data analysis. Therefore, these plots are on linear scale
as opposed to logarithmic scale. Notice that the curves on the left panel decay more
slowly than those on the right; Type D 1 is the slowest to decay, closely followed by
Type D 2. Also, recall that we cannot compare the magnitude of the top part of each
of these panels as they are dimensionally different.
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Figure 7.14: This figure is similar to Fig. 7.13 but for Speciality Index. We plot this
separately as it is an independent measure and decays rapidly compared to the other
measures. Further, we do not indicate the 1% of peak line because of numerical
noise (cf. Fig. 7.9), which leads to unreliable root finding for time of percentage
decrease.

In these figures, we delineate 6 lines marking the percentage decrease from the peak
value of each of the Kerrness measures as a function of time—both in the strong-
field region and on the news function at I+. As stated before, these measures have
different decay properties and so do not decay to a particular percentage of their
peak value at the same time. The difference between the time at which measures
decay to a particular percent is tabulated in Table 7.2.

% of peak value Spread in time Combined % Time
100 % 12 M 1.5 M
50 % 9.8 M 11 M
30 % 9 M 14.7 M
10 % 8.3 M 21.7 M
5 % 8.7 M 25.9 M
1 % 6.1 M 35.3 M

Table 7.2: The spread in the time for given% of the peak value of Kerrness measures
computed using all the measures. The combined % time refers to the value of the
dashed lines in Fig. 7.15 and corresponds to the time at which all the measures have
at least decayed to the indicated % relative to the time at which the peak amplitude
of news function occurs.

We present the combined percentage decrease from the peak value on the news
function in Fig. 7.15. The shaded bands correspond to spread in percentage decay
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Figure 7.15: The concomitant decrease of all of our Kerrness measures. The dashed
lines indicate the time at which all the measures decay to at least the indicated %
of peak. The bands color the region in which different measures decrease to the
indicated % of peak. Notice that there is about half a cycle spread in each of these
bands. Therefore, the dashed lines provide a conservative idea of the validity of
the choice of the start time for data analysis. We have specifically included the
spread of these bands as a quantifier of error bounds in the statements of validity
made further in this paper. Furthermore, one could shrink the right boundary of
these shaded bands if one combines the Kerrness measures with appropriate weights
based on their sensitivity to the spacetime curvature and the final remnant’s effective
potential.

on the news function. The widths of these bands are given in Table 7.2. The solid
line at the end of each band marks the time when all these measures have decayed
to the indicated percentages, and this can be used to conservatively choose the start
time.

Furthermore, in this figure, we do not include the Speciality Index. The Speciality
Index is an independent measure that quantifies if the manifold is algebraically
special. Since this is the weakest condition in our Kerrness characterization scheme,
we see that it gets satisfied earliest on the post-merger simulation from Fig. 7.14.
The 1% of peak line which occurs unexpectedly late arises because of numerical
reasons. We assert this by looking at the nearly flat nature of Speciality Index curves
in Fig. 7.9 at late times, very close to the numerical noise floor.

We observe that all measures decay to ∼ 50% of their peak value within half a cycle
from the peak of the news function. Further, in approximately one cycle, all the
measures are reduced to ∼ 30% of their peak values. The spread in each of the
bands is about ∼ 10 M when we include all the Kerrness measures in computing the
band, and this shrinks to ∼ 6 M when we exclude Speciality Index.

We combine the measures with equal weights, thereby presenting a conservative
result. Furthermore, we have repeated our analysis with larger worldtube radii and
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confirmed that our results for the spread do not change significantly. For instance,
using R = 128 M results in a time shift of about+4 M relative to the R = 5 M results,
and this positive time shift monotonically decreases with radius for R = 32, 64 and
80 M .

Estimating and mapping the perturbation amplitude onto the waveform
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Figure 7.16: Ψ4 in on the x-axis (in the equatorial plane) for both a single BH with
an l = m = 2 perturbation of amplitude ε = 7.5 × 10−3 (top panel) and ε = 10−3

(bottom panel), and for the BBH ringdown at times that achieve the same Kerrness.
For all cases, Kerrness is matched on a coordinate 2-sphere of R = 5 M . The x-axis
of the plot shows the radius, and includes the data within the Gaussian envelope
of width R = 8 M , as described in Fig. 7.3. Note that this is only meant to show
qualitative agreement between Ψ4 on both slices, as the quantity is still subject to
coordinate tetrad effects in the strong-field region. Notice that although the two
systems look similar, the mapping does have some imperfections. Recall, however,
that it is ultimately the invariant Kerrness measures that determine the mapping
between the perturbation amplitude and the BBH merger-ringdown time.

In order to provide a physical understanding for the values of the measures in the
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strong-field region shown in Figs. 7.9 and 7.10, we can compare the values to those
on an initial slice of a perturbed Kerr BH with the same final mass and spin as
the BBH simulation, as outlined in Sec. 7.2. We can then map the inferred strong-
field perturbation amplitude ε onto the waveform using the procedure outlined in
Secs. 7.2 and 7.3. This procedure involves the following steps:

1. Generate perturbed Kerr manifolds for a range of amplitudes ε.

2. Compute the Kerrness measures at R = 5 M on these slices.

3. Compute the Kerrness measures at R = 5 M on the post-merger BBH simula-
tion (verifying that the gauge-invariant areal radii of the R = 5 M coordinate
2-spheres are approximately (within 0.01 M in our case) equal for the single-
BH and the BBH case). If the areal radii do not match, then choose a different
surface on the perturbation slice such that the two areal radii agree.

4. Identify the coordinate time in the post-merger BBH simulation at which the
Kerrness measures at R = 5 M agree with those on the perturbed Kerr slice
for a given ε — this gives a crossing time for this ε.

5. Use this crossing time to map the inferred ε onto the waveform.

Fig. 7.17 shows the inferred ε for the BBH ringdown simulation as a function of
coordinate time in the simulation. The gauge-invariant areal radii at R = 5 M on
the BBH simulation slices and on the metric perturbation are within 10−2 M . The
values of the Kerrness measures on the perturbed data vary quadratically with ε,
as shown in Fig. 7.4. At higher values of ε, they obtain higher-power dependence,
as discussed in Sec. 7.2. Each Kerrness measure decays through various ε as the
simulation progresses. Type D 1 and Type D 2, the two algebraic conditions, have
comparable crossing times for a given ε, while the two geometric KV conditions,
Type D 3 and Kerr 1, also have comparable crossing times. Speciality Index crosses
around 10 M before the other measures, in part because it is a weaker condition that
the others. Each crossing time has an intrinsic 2 M spread due to sampling, and
not all measures cross each ε due to numerical noise floors, leading to spreads in
crossing time.

In Fig. 7.16, we qualitatively check the spacetime features by comparing Ψ4 corre-
sponding to ε = 7.5 × 10−3 and 10−3 on the perturbed Kerr metric with the cor-
responding timeslice during the post-merger simulation. The crossing time spread
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Figure 7.17: Comparison of the Kerrness measures during the BBH post-merger
to the values of the Kerrness measures on an l = m = 2 QNM perturbed Kerr
BH of various perturbation amplitudes ε, with the same mass and spin parameters.
The measures are averaged on a 2-sphere of coordinate radius R = 5 M , which
corresponds to comparable areal radii of ∼ 2.59 M in both systems. The measures
evaluated on the BBH slices are shown by solid black lines, decaying as a function
of time. The Kerrness measures for the perturbed metric are presented as horizontal
dashed red lines, one for each ε. The times at which the BBH curves intersect the
Kerrness values for a given ε Kerr perturbation give a scale for the BBH Kerrness
measures as the post-merger progresses. These times, known as crossing times are
then mapped onto the waveform, and used to validate the start time of ringdown.
Note that the measures have different crossing times. The time axes are shifted to
agree with the timestamps of the GW at R = 128 M , as explained in Table 7.1.

for a particular ε arises because of the imperfect mapping between an analytically
perturbed Kerr BH and the post-merger spacetime. Therefore, unlike in an ideal
mapping, the combined crossing times will have a spread. In particular, the differ-
ence in the features between the post-merger and the perturbed Kerr slice indicates a
difference in symmetry and explains the larger spread in the crossing time between
the KV-dependent measures. We see that the spread in the combined crossing times
using only algebraic measures is much smaller than when we include the geometric
measures.

We next map the inferred perturbation amplitude to the news function, using a
procedure similar to the one in the previous section, and present the result in
Fig. 7.18. The top panel of the figure indicates the crossing time for the Speciality
Index, the middle panel for the algebraic measures, and the bottom panel shows
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Figure 7.18: Mapping the inferred perturbation amplitude close to the BH onto the
news function. The top panel shows the spread in the crossing times computed
using just the Speciality Index, the middle panel uses only the algebraic measures
and the bottom panel utilizes only the geometric measures. Notice that amplitudes
larger than 2 × 10−3 do cross the post-merger timeslices when computed using the
geometric measures and that the crossing time spreads in them are relatively large,
suggesting a difference in the symmetry of a perturbed Kerr metric and the post-
merger BBH spacetime. However, this does not seem to be reflected when we just
consider the algebraic measures as they have a relatively small spread in the crossing
time. The spread in the crossing time of the Speciality Index is equal to the sampling
rate.
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that for geometric measures. The spread in the crossing time for the algebraic
measures decreases from ∼ 6 M at the start, to our sampling rate, 2 M . This occurs
because at the very start of post-merger, the system is not yet in a perturbative regime
and therefore, our mapping contains a larger error. Geometric measures are more
drastically affected by the imperfections in the mapping, indicating the differences
in the symmetries of the two systems. On including the geometric measures, the
crossing time spreads to ∼ 8 M . We confirm that the spread of the crossing times
calculated using the algebraic measures is always contained within the spread of
crossing times calculated using the geometric measures.

As the signal decays from the peak to a barely-visible amplitude on a linear scale
(∼ 3 − 4 cycles) at I+, the corresponding perturbation in the strong-field region
decreases by an order of magnitude. The peak of the news function corresponds
to a perturbation amplitude of ∼ 7.5 × 10−3. Further, it takes about 2 cycles in the
wave zone for the perturbation amplitude to decay to half its peak value. Also, by
the time the perturbation amplitude decays by an order of magnitude, there is hardly
any power left in the signal.

Implication of the start time on data analysis
From news to h

In order to compare the Kerrness measures on the GW to the loss in signal-to-noise
ratio (SNR) at the times used in [14], we must first calculate the strain h from the
news function, and then calculate the merger time. As outlined in Sec. 7.3, h can
be calculated by integrating the CCE news function. One can also independently
calculate h using the Regge-Wheeler-Zerilli (RWZ) (cf. [173] for details on the
method) [169, 217, 218, 138] method and then extrapolating it in powers of the
extraction radius (cf. [56] for details). The RWZmethod and extrapolation have been
implemented and tested in SpEC [56, 193], and the strain calculated by this method
was presented in the GW150914 detection paper [10]. This method, however, has a
different retarded time axis [56] than the CCE news function. Thus, we differentiate
the RWZ strain to get a news function, and shift it to align in phase with the CCE
news function. We check the CCE results by comparing the output of the two
methods, presenting the results in Fig. 7.19.

In the GW150914 testing GR study [14], tmerger is defined as the point at which the
quadrature sum of the h× and h+ polarizations of the most-probable, or maximum a
posteriori (MAP) waveform, produced by Effective-One-Body (SEOBNRv4) tem-
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plate [168] is maximal. For this study, we use the l = m = 2 spin-weighted spherical
harmonic mode of the MAP waveform, as this is the least-damped QNM. In this
study, rather than using the EOBNR waveform, we calculate tmerger based on the
time of maximum amplitude of the time-shifted RWZ strain, as

tmerger ≡ {t |h2(t) = max
t ′
(h2(t′))} , (7.27)

where

h2 ≡ Real(h)2 + Imag(h)2 . (7.28)

We find tmerger = 3839.0 ± 0.1 M .
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Figure 7.19: Comparison between the strain h calculated using CCE and RWZ
methods. All waveforms are presented in terms of the l = m = 2 mode. We use the
fact that the strain is the integral of the news function to crosscheck the methods.
The top panel shows the CCE news functionNCCE compared to ÛhRWZ, the derivative
of the RWZ strain. The bottom panel shows hCCE, the integral of the CCE news
function, compared to the RWZ strain hRWZ. We find good agreement until late
times, when hCCE begins to drift, likely due to the numerical integration scheme
used.
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Figure 7.20: The top panel of this figure shows the percentage decrease of SNR
from the peak value. The % SNR is set to 100 at tmerger. For this plot, we
evaluate Eq. (7.29) with varying lower bounds for the integration. The dashed
horizontal lines correspond to {80, 60, 40, 20}% SNR. On the same plot, we mark
the perturbation amplitude bands for a direct comparison between perturbation
amplitude and statistical error. Notice that by the time the perturbation amplitude
near the BH decreases by an order of magnitude, there is only a few percent of
SNR left in the signal, emphasizing the sharp trade-off between the systematic
biases arising from modeling the post-merger as perturbed Kerr and the statistical
uncertainty arising due to exponentially decay of signal amplitude. The bottom
panel shows the total energy radiated in units of M during the merger-ringdown.
This is calculated by integrating Eq. (7.31). Again, we have plotted the concomitant
percentage decrease of the Kerrness measures from their peak values for an easy
comparison between the statistical and systematic errors associated with the choice
of the start time of ringdown. In particular, the constant settling in the total radiated
energy occurs between the time when the Kerrness measures have decayed to 5−1%
of their peak values, implying that at these times the GW is very weak in amplitude.
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No. of cycles % SNR % Kerrness ε/10−3

peak 60 100 7.5
1
2 cycle 30 - 40 40 - 50 7.5
1 cycle 20 - 25 35 - 30 5

1 1
2 cycles 10 - 20 8 - 12 3.5
2 cycles ∼ 10 7 - 5 2 - 2.5
2 1

2 cycles < 10 ∼ 1 1 - 2
3 cycles < 5 < 1 0.5 - 1

Table 7.3: Summary of our results. The first column counts the number of cycles
from the peak of the news function. The second column presents the drop in SNR
with start time chosen in the data analysis. SNR is normalized to have 100% when
the data analysis starts at the peak of the waveform (h(t)) i.e., at 3839 M . The third
column shows the concomitant percentage decrease in the Kerrness measures from
the peak value (similar to Fig. 7.15). Further, in the last column, we present the
perturbation amplitude inferred by the crossing times computed with Type D 1 and
D 2 measures (similar to middle panel of Fig. 7.18.)
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Figure 7.21: Spread in estimation of dominantmode frequency as a function of SNR.
We present the spread, σ f in the estimation of frequency calculated using Fisher
information matrix formalism. We should the increase in spread with decreasing
SNR, providing the rough intuition on the implication of Fig. 7.20 on parameter
estimation.

Start time and the SNR

While picking too early a start time for an analysis that relies on being in ringdown
gives inaccurate and biased results, picking a start time too late leads to a large
statistical error. Since the amplitude of the signal decays exponentially with time,
the SNR in ringdown decreases as exponential-squared with the start time. Con-
sequently, the spread in the posteriors during estimation of ringdown parameters,
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which goes inversely proportional to match-filtered SNR, increases and gives rise to
large statistical uncertainties. Therefore, one must chose an optimal middle ground
considering both these factors.

In the top panel of Fig. 7.20, we show the percentage decrease in match-filtered
SNR with the start time of the ringdown. A match-filtered SNR is a noise-weighted
scalar product between the signal and the template and is defined as

SNR = 4
∫ ∞

0

h̃∗1( f
′)h̃2( f ′)

Sh( f ′)
df ′ = 〈h1 |h2〉 , (7.29)

where ∗ denotes complex conjugation for ease of readability. Here, h1(t) corresponds
to a ringdown waveform that is tapered at tmerger and acts as a signal. We filter this
against the template, h2(t), which is tapered with varying start time. Further, Sh( f )

corresponds to power spectral density (PSD) of aLIGO at design sensitivity [119].
However, since we present our results in terms of ratios, our analysis remains valid to
any detector noise curve. Then, a Fourier transform is taken to evaluate Eq. (7.29).
Here we use only the l = m = 2 spin-weighted spherical harmonic mode of the RWZ
strain waveform computed in Sec. 7.4. The system is considered to be optimally
oriented with respect to the detector for this calculation.

The tapering is done with a tanh window function defined as

W(t) = tanh[α0(t − t0)]/2 . (7.30)

t0 is the time around which the tapering is centered, and it is set to the start time
of the perturbative regime. α0 is set to 10 in making the top panel of Fig. 7.20.
Furthermore, we confirm that our results do not change significantly with the tuning
parameter α0 using α0 = {2, 5, 10, 20}M−1.

We then present percentage decrease of SNR in the top panel of Fig. 7.20 by
defining 100% for start time at tmerger. Further, on this same plot, we also indicate
the amplitude of perturbation in the strong-field region (as calculated using the
algebraic measures) at the start time, giving an insight into how statistical and
systematic errors vary with the choice of start time.

The bottom panel of Fig. 7.20 presents the total energy radiated through the merger-
ringdown as a function of time. This indicates the strength of GW signal and is
calculated by integrating [175]

dE
dt
= lim

r→∞

r2

16π

∮ ����∫ t

−∞

Ψ4dt′
����2 dΩ . (7.31)
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Furthermore, on the same plot, we mark the percentage decrease of the Kerrness
measures from their peak values, providing a comparison between the strength of the
signal left for performing the analysis versus Kerrness evaluated in the strong-field
region.

To impress the sharp trade-off in systematic and statistical uncertainties in choosing
the start time of the ringdown and, to provide an intuition of implication of Fig. 7.20,
we present the spread in estimation of dominant QNM frequency, f22 in Fig. 7.21.
For this, we calculate the spread using the Fisher information matrix formalism
similar to that in Eq. 4.1a of [45], for a GW150914-like system. In particular, we
set f22 to 253.7 Hz and the quality factor, Q22 to 3.2. However, we emphasize that
this is a rough estimate intended only to provide intuition and, we plan to follow this
up by a rigorous Bayesian parameter estimation in the future.

We present the interplay between the systematic and statistical uncertainty concisely
in Table 7.3. Furthermore, we find that by the time the news function peaks, the SNR
has already dropped down to 60%. However, at this time, the algebraic Kerrness
measures are at their peak value. We also observe that by about a cycle of news
function, there is less than 20 percent SNR left in the signal. Therefore, there
seems to be a sharp trade-off between the systematic modeling error and statistical
uncertainties.

Comparison with GW150914 testing GR paper
The test of consistency of ringdown of the GW150914 signal with the analytically
predicted QNM frequency is given in Fig. 5 of [14]. The analysis chooses various
start times of ringdown, namely tmerger + 0, 1, 3, 5, 6.5 ms. At a start time of
tmerger + 3 ms (or later), parameter estimation of the dominant QNM in ringdown is
consistent with predictions using initial masses and spins.

A time of 3 ms for the system corresponds to 9.4 M from tmerger. In our analysis,
tmerger = 3839 M (cf. Eq. (7.27)), while the peak of the news function occurs at
3846 M . Thus, 3 ms corresponds to 2.4 M after the peak of the news function. In
this region, as shown in Fig. 7.22, the perturbation amplitude is & 7.5 × 10−3.
Our analysis indicates that this corresponds to a relatively large deviation from
Kerr. Recall that Fig. 7.4 suggests that ε = 5 × 10−3 is the approximate start of the
nonlinear regime.

With a start time of tmerger + 3 ms, the SNR was about 8.5, and the spread in the
estimate of QNM frequency was roughly 40 Hz [14]. Because of this low SNR and
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Figure 7.22: Comparison of the times chosen in the testing GR study of
GW150914 [14]. Here, we make statements about their validity to perform tests
that rely on the perturbative nature of the BH. Specifically, we propose that a plot
of this nature be done for future detections, especially if the SNR is high, to gain
an insight into the inferred strong-field perturbation amplitudes corresponding to
different choices of ringdown start time. The dotted line in the top panel shows
different choices of start time for performing tests on the detector data. The bot-
tom panel shows what each time choice corresponds to in the simulation gauge.
Although a practical choice of start time to perform tests like no-hair theorem tests
should be decided based on the interplay between the statistical and systematic un-
certainty, a plot of this nature gives significant understanding of the results of such
tests. For instance, in the case of GW150914, had the signal been much louder than
what we observed, this plot suggests that we could get biased results due to large
inferred perturbation amplitude in the strong-field leading to errors in modeling the
post-merger as a perturbed BH at 3 ms.
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high spread, the GW150914 testing GR analysis may not have been sensitive to the
large non-Kerrness we see close to the BH. However, in the case of higher SNR,
where the analysis is sensitive to the systematics of the ringdown model, our study
suggests picking a later start time.

Our analysis uses geometric and algebraic conditions to identify isometry to Kerr.
However, these conditions do not directly measure the deviation of the curvature BH
potential from that of Kerr. Since the QNM are intrinsic tests of the BH potential
along with the boundary conditions, deviation of QNM frequencies will depend on
details of the BH potential, and thus are not directly quantified in our measures.
Additionally, the parameters used in this study correspond to SXS:BBH:0305 wave-
form used in the GW150914 detection paper [10], which are slightly different from
those of the MAP waveform used in the testing GR paper.

7.5 Conclusion
In this study, we present a method for validating choices of the time at which a
BBH GW signal can be considered to enter the ringdown stage. This is done by
computing algebraic and geometric measures of Kerrness in the strong-field region
of an NR simulation of a BBH ringdown, and then associating each point on the
asymptotic-frame waveform with a particular value of these Kerrness measures.
Thus, for each point on the asymptotic-frame waveform there is an estimate for
how close the BH spacetime is to Kerr spacetime. This is the first time this set
of measures, proposed in [93], is evaluated in the strong-field region. This is also
the first time measures of Kerrness in the strong-field region are mapped onto the
waveform. We outline this method in Secs. 7.2 and 7.3, and implement this analysis
in Sec. 7.4 on a GW150914-like NR simulation.

We observe that after merger, the Kerrness measures of a BBH ringdown simulation
decrease exponentially with coordinate time in the simulation, eventually settling
to a numerical noise floor, as shown in Fig. 7.9. This decay is consistent with
measuring Kerrness using multipole moments of the apparent horizon, as in Fig. 7.8
and [152]. In all cases, the measures on the final slice of the simulation indicate
that the final remnant is a Kerr BH, thus providing numerical consistency with the
BH uniqueness theorem. Moreover, we find that the final state in the multipolar
analysis depends just on mass and spin, which serves as a confirmation of the no-hair
theorem in the strong-field region. Additionally, as shown in Fig. 7.10, the Kerrness
measures have a quadrupolar (with |m| = 2) structure consistent with the dominant
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gravitational radiation. The geometric measures, which rely on the existence of a
Killing vector field, first decay to zero close to the horizon, then later they decay at
larger radii as gravitational radiation propagates out. On the other hand, algebraic
measures, which depend on principal null directions, first decay to zero at larger
radii, before decaying near the BH. We also see that the NUT parameter remains
zero during merger and ringdown, as shown in Fig. 7.11.

These gauge-independent Kerrness measures are crucial to the nonlinear stability
analysis of Kerr, as they quantify the deviation from being isometric to Kerr. The
analytical behavior of these measures with perturbation amplitude is unknown [107,
92]. Through this study, we provide insights into their numerical behavior in
Fig. 7.4. We find that all of these measures scale quadratically with ε for low am-
plitude perturbations, but acquire higher-order nonlinearities for larger perturbation
amplitudes. Furthermore, in Figs. 7.9 and 7.10, we provide the radial behavior of
these measures, up to a large radius of R = 128 M . For a BBH simulation, we
track these measures starting from merger, where linear perturbation theory is not
expected to hold. Despite the large initial excitation, our study shows that the BBH
ringdown simulation evolves to a final Kerr state, providing a numerical validation
of the nonlinear stability of Kerr.

To connect the Kerrness measures in the strong-field region to the asymptotic
waveform at I+, we use CCE, which evolves Einstein’s equations on a foliation of
outgoing null hypersurfaces. A null characteristic evolution can be done only in a
region free from caustics. We demonstrate that CCE results using a worldtube at
R = 5 M are consistent with those done from larger radii. This implies that during
ringdown, caustics only exist very close to the BH. Furthermore, we show that the
map between the strong-field region and the wave zone can be extended all the way
in to R = 5 M .

Although caustics do not form, we see in Figs. 7.10 and 7.16 strong features in
the curvature quantity Ψ4 in the region enclosed by R ∼ 10 M . This implies that
our extraction radius choice of R = 5 M lies within the strong-field and within the
support of the BH potential.

In Fig. 7.13, we label each point of the BBH ringdown waveform with the percent-
age decrease of the Kerrness measures in the strong-field region relative to their
maximum values. In order to give a physical interpretation of the values of the Ker-
rness measures, we compare them throughout the post-merger spacetime to those
evaluated on a l = m = 2 QNM perturbed Kerr BH of the same final mass and
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spin. From this we infer the amplitude of BH perturbation during ringdown and
map onto a particular point in the BBH ringdown waveform; this is marked on the
BBH ringdown waveform in Fig. 7.18.

As the BBH simulation proceeds after merger, the strong-field region starts look-
ing like Kerr, indicating the validity of perturbative analysis. However, as time
progresses, the amplitude of the ringdown decreases, leading to a rapid decay in
SNR in a GW detection. We find that by the time the Kerrness measures decrease
to 50% of their peak values, there is only about 20% SNR left in the signal. In
terms of perturbation amplitude close to the BH, this maps to an amplitude be-
tween 7.5 − 5 × 10−3. This occurs after 1 − 1.5 cycles of the news function, which
corresponds to ∼ 16.4 M after tmerger. Additionally, we find that the start time of
ringdown used in [14], tmerger + 3 ms, corresponds to an amplitude of 7.5 × 10−3.
Our results also agree with the start time proposed in [176]. In future detections
with higher SNR, where the statistical noise is significantly smaller, one may need
to choose a later start time to perform precision tests of GR such as no-hair theorem
tests.

A future extension to this project would be to investigate methods that allow us to
perform similar source-asymptotic frame associations for smaller radii. For instance,
the light ring would be an interesting region to monitor, as it is crucial to the QNM
structure. This can perhaps be done numerically through ray-tracing methods such
as those used in [53] and [54] to understand the evolution of the peak of the BH
potential (if it forms). Another possible technique could be to try performing CCE
from smaller radii after the high amplitude of the initial excitation has reduced.
Additionally, being able to perform this association at smaller radii would allow one
to understand the propagation of perturbations very close to the BH horizon onto
the waveform; these are expected to be redshifted and appear on the waveform with
a large time delay.

Another avenue of future work would be investigating the effects of implementing a
more realistic condition on the initial null hypersurface by relaxing the no-ingoing-
waves condition used in performing CCE. In addition, we can study the trade-off
involved in choosing an earlier ringdown time, which will decrease the spread in
recovered ringdown parameter posterior distributions and increase the systematic
errors that arise because of deviations from Kerr in the strong-field region.

The methods used in this paper can be applied to future BBH detections in order to
guide the choice of the start time of ringdown. For the sake of quick reference to the
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procedure described in this paper, we concisely enumerated the steps in Sec. 7.2.
Note that the results of this paper approximately hold for any equal mass system
with an appropriate mass rescaling (cf. footnote 2) and effective spin near zero.
The analysis presented, however, is fully generic and holds for all spins and masses.
Our method would better allow one to perform precision tests of GR that depend on
being in perturbative regime, such as tests of the no-hair theorem and area theorem.
With this procedure, we provide an algorithmic way to check whether an unexpected
deviation in a QNM analysis is due to not being in the perturbative regime, rather
than due to a violation of GR or corresponding theorems.

For future detections, we plan to repeat this analysis using an NR simulation with
the MAP waveform parameters.

7.A Kerr-NUT parameters
In this appendix, we provide a review of the parameters of the Kerr-NUT solution.
The Kerr family of vacuum solutions is unique when one imposes axisymmetry,
stationarity and regularity on the BH horizon along with asymptotic flatness. How-
ever, if one allows for generalization by relaxing the asymptotic flatness condition,
one arrives at a family of solutions called Kerr-NUT. This solution is a part of
the broader family of Einstein-Maxwell type D solutions. This generalized family
of spacetimes is parameterized by 6 parameters (potentially 7 if one includes the
cosmological constant Λ). In Table 7.4, we summarize the parameters, as well as
their physical meaning and symbols used in various texts.

The general Einstein-Maxwell Type D solution (including cosmological constant
Λ) has the form given in Eq. 21.11 of [187], with parameters m, l, γ, ε, e, and
g. m refers to the mass parameter (closely related to the mass of the BH), γ is
related to the angular momentum parameter a (closely related to the spin of the
BH), ε is related to the acceleration b, e is the electric charge, g is the magnetic
charge, and l is known as the NUT parameter. As outlined in [155], the mass and
the NUT parameter form a complex quantity, as do the angular momentum and the
acceleration, similarly to the electric and magnetic charges. In [155], ε and γ do
not appear in the curvature quantities, and are called kinematical parameters, while
the others are dynamical parameters.

As shown in Table 21.1 of [187], setting all of the parameters to zero except for m, a

(and hence γ and ε), and e yields the Kerr-Newman solution, while also setting a = 0
yields the Reissner-Nordstrom solution. Kerr-Taub-NUT metrics, meanwhile, are
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parametrized by mass, spin, and l, with l , 0, and are thought to be unphysical [19].
The vacuum BBH case considered in this study, meanwhile, sets e = 0 and g = 0,
since there are no electric or magnetic charges at the start of the simulation, and no
sourcing of them during the simulation.

An accelerating and rotating BH with a NUT charge will have non-zero m, l, a,
and b, with a > l. A Kerr solution with a NUT charge will then have b = 0. An
accelerating and rotating BH, meanwhile, will have l = 0. Finally, the Kerr solution
has both l = 0 and b = 0. An illustration of this is provided in Fig. 1 of [96].
The condition l = 0 gives the Kerr 2 condition considered in this paper, given in
Eq. (7.16).

After setting l = 0, the parameters m, ε and γ are related to the mass and spin of a
BH are as follows,

mass =
m

ε
3
2

and spin =
2
√
|γ |

ε
. (7.32)

Since, ε > 0 and m > 0 for a Kerr BH, the condition that b = 0 gives ε > 0, which
corresponds to the Kerr 3 condition given in Eq. (7.17).
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Cosmological constant Λ λ

Mass parameter m µ m m
NUT parameter l λ n n
Angular momentum parameter γ γ γ k
Acceleration parameter ε ε ε ε

Electric charge e e e
Magnetic charge g g g

Table 7.4: Parameters of the family of the Einstein-Maxwell type D solutions,
presented with physical meanings in the rows and naming conventions in various
literature in the columns. These parameters do not measure the physical quantities
directly but are intimately connected to the physical quantities they describe. For
instance, Eq. (7.32) shows how the mass and spin of a BH are related to the mass
parameter and the angular momentum parameter.
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