
Towards a Visipedia: Combining Computer Vision and
Communities of Experts

Thesis by
Grant Van Horn

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2019
Defended September 7, 2018

ii

© 2019

Grant Van Horn
ORCID: 0000-0003-2953-9651

All rights reserved

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my parents, Mathew and Mary Van Horn.
I dedicate this work to them.

I would like to thank my advisor, Pietro Perona. I hope that at least a fraction of his
curiosity for the world has worn off on me. It has been a pleasure to be a Slacker in
his lab.

I would like to thank Serge Belongie, who I consider a joint advisor. I owe most
of my opportunities from the last decade to Serge, and owe my current path in life
to his guidance. I am forever grateful that he advised me during my undergraduate
career, my Masters, and my Ph.D.

I would like to thank Steve Branson, easily my most influential mentor. From Steve,
I learned how to identify problems, how to conduct research, and how to discuss
the findings. I owe a lot to him, and I am very proud of the work we accomplished
together.

I would like to thank Jessie Barry and the rest of her team at the Cornell Lab of
Ornithology. I would also like to thank Scott Loarie and the rest of the iNaturalist
team. I am grateful that I could work on both the Merlin and iNaturalist applications
during my graduate studies, helping me connect my passion for computer science
with my passion for the outdoors.

Finally, I owe my most enjoyable moments at Caltech to the Vision Lab, and I would
like to thank all the Slackers I overlapped with: David Hall, Oisin Mac Aodha,
Matteo Ruggero Ronchi, Joe Marino, Ron Appel, Mason McGill, Sara Beery,
Alvita Tran, Natalie Bernat, Eyrun Eyjolfsdottir, Bo Chen, Krzysztof Chałupka,
Serim Ryou, Cristina Segalin, Eli Cole, Jennifer Sun, Jan Dirk Wegner, Daniel
Laumer, Michael Maire, Xavier Burgos-Artizzu, Conchi Fernandez, Louise Naud,
Michele Damian, and Genevieve Patterson.

iv

ABSTRACT

Motivated by the idea of a Visipedia, where users can search and explore by image,
this thesis presents tools and techniques for empowering expert communities through
computer vision. The collective aim of this work is to provide a scalable foundation
upon which an application like Visipedia can be built. We conduct experiments
using two highly motivated communities, the birding community and the naturalist
community, and report results and lessons on how to build the necessary components
of a Visipedia. First, we conduct experiments analyzing the behavior of state-of-the-
art computer vision classifiers on long tailed datasets. We find poor feature sharing
between classes, potentially limiting the applicability of these models and empha-
sizing the ability to intelligently direct data collection resources. Second, we devise
online crowdsourcing algorithms to make dataset collection for binary labels, multi-
class labels, keypoints, and mulit-instance bounding boxes faster, cheaper, and more
accurate. These methods jointly estimate labels, worker skills, and train computer
vision models for these tasks. Experiments show that we can achieve significant cost
savings compared to traditional data collection techniques, and that we can produce
a more accurate dataset compared to traditional data collection techniques. Third,
we present two fine-grained datasets, detail how they were constructed, and analyze
the test accuracy of state-of-the-art methods. These datasets are then used to create
applications that help users identify species in their photographs: Merlin, an app
assisting users in identifying birds species, and iNaturalist, an app that assists users
in identifying a broad variety of species. Finally, we present work aimed at reducing
the computational burden of large scale classification with the goal of creating an
application that allows users to classify tens of thousands of species in real time on
their mobile device. As a whole, the lessons learned and the techniques presented
in this thesis bring us closer to the realization of a Visipedia.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

Van Horn, Grant and Pietro Perona (2019). “Reducing Memory & Computation
Demands for Large Scale Visual Classification”.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

Van Horn, Grant, Steve Branson, Scott Loarie, et al. (2018). “Lean Multiclass
Crowdsourcing”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. Salt Lake City, UT. doi: 10.1109/cvpr.2018.00287.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

Van Horn, Grant, Oisin Mac Aodha, et al. (2018). “The iNaturalist Species Clas-
sification and Detection Dataset”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Salt Lake City, UT. doi: 10.1109/
CVPR.2018.00914.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

Branson, Steve, Grant Van Horn, and Pietro Perona (2017). “Lean Crowdsourcing:
Combining Humans and Machines in an Online System”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7474–7483.
doi: 10.1109/CVPR.2017.647.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

Van Horn, Grant and Pietro Perona (2017). “The Devil is in the Tails: Fine-grained
Classification in the Wild”. In: arXiv preprint arXiv:1709.01450. url: https:
//arxiv.org/abs/1709.01450.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

Van Horn, Grant, Steve Branson, Ryan Farrell, et al. (2015). “Building a bird
recognition app and large scale dataset with citizen scientists: The fine print
in fine-grained dataset collection”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 595–604. doi: 10.1109/CVPR.
2015.7298658.
G.V.H. participated in designing the project, developing the method, running the
experiments and writing the manuscript.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
Chapter I: Introduction . 1
Chapter II: The Devil is in the Tails: Fine-grained Classification in the Wild . 7

2.1 Abstract . 7
2.2 Introduction . 7
2.3 Related Work . 9
2.4 Experiment Setup . 11
2.5 Experiments . 13
2.6 Discussion and Conclusions . 21

Chapter III: Lean Crowdsourcing: Combining Humans and Machines in an
Online System . 29
3.1 Abstract . 29
3.2 Introduction . 29
3.3 Related Work . 31
3.4 Method . 33
3.5 Models For Common Types of Annotations 38
3.6 Binary Annotation . 38
3.7 Part Keypoint Annotation . 40
3.8 Multi-Object Bounding Box Annotations 42
3.9 Experiments . 47
3.10 Conclusion . 54

Chapter IV: Lean Multiclass Crowdsourcing 60
4.1 Abstract . 60
4.2 Introduction . 60
4.3 Related Work . 62
4.4 Multiclass Online Crowdsourcing 64
4.5 Taking Pixels into Account . 70
4.6 Experiments . 71
4.7 Conclusion . 76

Chapter V: Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection 81
5.1 Abstract . 81
5.2 Introduction . 81
5.3 Related Work . 84
5.4 Crowdsourcing with Citizen Scientists 86
5.5 NABirds . 88

vii

5.6 Annotator Comparison . 89
5.7 Measuring the Quality of Existing Datasets 91
5.8 Effect of Annotation Quality & Quantity 93
5.9 Conclusion . 96
5.10 Acknowledgments . 97

Chapter VI: The iNaturalist Species Classification and Detection Dataset . . . 101
6.1 Abstract . 101
6.2 Introduction . 101
6.3 Related Datasets . 103
6.4 Dataset Overview . 104
6.5 Experiments . 110
6.6 Conclusions and Future Work . 118

Chapter VII: Reducing Memory & Computation Demands for Large Scale
Visual Classification . 126
7.1 Abstract . 126
7.2 Introduction . 126
7.3 Related Work . 129
7.4 Taxonomic Parameter Sharing . 131
7.5 Experiments . 134
7.6 Conclusion . 141

Chapter VIII: Conclusions and Future Directions 147

1

C h a p t e r 1

INTRODUCTION

Visipedia, a community-generated visual encyclopedia, is the primarymotivator and
inspiration for the work in this thesis. The Visipedia project1 has been spearheaded
by Pietro Perona’s group at Caltech and Serge Belongie’s group, first at UCSD and
then Cornell Tech. This thesis is the most recent in a series of theses (Welinder,
2012; Branson, 2012; Wah, 2014), coming out of Perona and Belongie’s respective
groups, that attempts to make Visipedia a reality. In (Perona, 2010), Perona specifies
the vision for Visipedia, defines the users and challenges of such a system, andmuses
on its feasibility. He identifies two primary interfaces that Visipedia must provide.

First, Visipedia must provide an interface that allows users to ask visual questions.
Perona imagines an interface that can segment a photograph into its meaningful
component regions and then associates each of those regions with their correspond-
ing Wikipedia entry or to the same region in vast collections of photographs. This
would enable a user to photograph a rock pigeon and then click on the operculum
(i.e. the white, fleshy part at the base of the bill) to learn more about what purpose
that structure serves. Similarly, this type of interface would enable a user to nav-
igate to the Wikipedia page for Amanita pantherina simply from a photograph of
that fungus. Similar types of interactions could be had with photographs outside
the natural world: a photograph of a painting could be annotated with the artist’s
information; a photograph of a car engine could be annotated with the engine part
names and replacement information; a photograph of a retina could be annotated
with defects and linked to similar clinical cases.

To provide answers to the visual queries discussed in the previous paragraph, Visi-
pedia must first be made aware of the visual properties of the world and their
relationships. This is the second primary interaction with Visipedia: an interface
that allows experts to share their visual knowledge of the world. Perona imagines
an easy-to-use annotation interface that allows experts to contribute their visual
knowledge by annotating a few paradigmatic images. An ornithologist could pro-
vide information on bird morphology for a few different families. A mycologist
could provide example photographs of fungi species. A Chevrolet engineer could

1www.visipedia.org

2

provide engine part schematics. An ophthalmologist could provide example retina
images along with their prognosis. Perona emphasizes the importance of making
this interface easy and quick, as experts’ time is scarce and valuable, and annotating
all of the important regions of an image is laborious and boring.

A high degree of automation is required to power the interactions that make these
two interfaces useful. A user, with a fleeting curiosity to identify the white, fleshy bit
of a pigeon, would prefer immediate results rather than waiting for a human expert
to answer. Similarly, an ornithologist would not annotate thousands of images
with the anatomical parts of a bird. Instead, we would prefer if machines could
analyze images and immediately return results and efficiently propagate information
from tens of examples to thousands or millions of photographs. This introduces
two additional types of people that would interact with Visipedia: annotators and
machine vision researchers.

Annotators, or “eye balls for hire” (Perona, 2010), are the bridge connecting the
few samples provided by an expert to the thousands of examples required to train
modern computer vision models. Annotators could be paid crowd workers (e.g.
AmazonMechanical Turk workers), they could bemotivated enthusiasts (e.g. citizen
scientists) or they could be people taskedwith doing a few annotationswhile trying to
achieve another goal (e.g. GWAPs (Von Ahn and Dabbish, 2004) or Captchas (Von
Ahn, Maurer, et al., 2008)). In any case, their job is to propagate the expert
information to additional training data that can be used to train a computer vision
model to do the task. Machine vision researchers are responsible for designing and
implementing these computer vision models. These models are then responsible
for annotating an image with hyperlinks that allow users to answer visual questions
(i.e. clickable component regions), working with experts to efficiently incorporate
their visual knowledge, and propagating expert information to additional images
(effectively annotating the images of the web).

At this point, we have defined Visipedia as a community-generated visual encyclo-
pedia that has interfaces to answer visual questions and that enable experts to share
their visual knowledge. Annotators help propagate expert knowledge to additional
images, producing datasets that can be used to train computer visionmodels designed
by machine vision researchers. These same models power the question-answering
interface and interact with experts to efficiently incorporate their knowledge. In
(Perona, 2010), Perona discusses the challenges of actually building Visipedia from
the perspective of a computer vision researcher in 2009. He noted that computer

3

vision models at the time were not capable of performing at the level of accuracy
necessary to be useful, and that the field had not yet attempted to build such com-
plex, heterogeneous systems. In addition, he observed that self-diagnosing models
(capable of deciding when they should ask questions of humans), active incremental
learning (necessary for learning in the large scale, dynamic web environment), and
human-machine interaction were research topics largely ignored by the computer
vision research community, yet crucial for Visipedia. It has been 9 years since
Perona penned his vision, where do we stand now?

Powered by the return of convolutional neural networks (Krizhevsky, Sutskever, and
Hinton, 2012), hardware advancements and easy-to-use computational libraries (Mar-
tin Abadi et al., 2015), the computer vision field as a whole has made incredible
progress duringmy graduate studies on the tasks of image classification (Krizhevsky,
Sutskever, and Hinton, 2012), object detection (Ren et al., 2017), keypoint localiza-
tion (Chen et al., 2018), and image segmentation (He et al., 2017). Indeed, setting
aside the feasibility of collecting training data, the costs of training, and the size
of the resulting model, if a sufficiently large dataset can be collected for one the
previous tasks, then often the performance of the resulting convolutional neural
network model is adequate for production usage. Evidence of this progress can be
seen in the availability of computer vision-powered applications now available to
consumers. During my graduate career, I helped build two of these applications
(iNaturalist and Merlin), available through the Google Play Store and and Apple
App Store, that help users identify species in their photographs. The iNaturalist
app2 has a server-based computer vision classifier that can help identify 25, 000
species. The Merlin app3 has a computer vision classifier available directly on the
phone and can help users classify 2, 000 bird species. Besides mobile applications,
perhaps the most impressive sign of progress is the availability of self-driving cars
(albeit limited in their scope for now) becoming available to consumers.

Computer vision has entered an era of big data, where the ability to collect larger
datasets – larger in terms of the number of classes, the number of images per class,
and the level of annotation per image – appears to be paramount for continuing
performance improvement and expanding the set of solvable applications. However,
while the accuracy of computer visionmodels has seen a rapid improvement over the
last half-decade, our ability to collect datasets of sufficient size to train and evaluate
these models has remained essentially unchanged and presents a significant hurdle

2https://www.inaturalist.org
3http://merlin.allaboutbirds.org/

4

to expanding the availability and utility of computer vision services. Indeed, the
title of this thesis is “Towards a Visipedia,” not “Visipedia: Mission Accomplished.”
So in the interim period between (Perona, 2010) and this thesis, many of the key
challenges to actually building a Visipedia (namely the challenges associated with
annotating large datasets) were still largely ignored (excluding the contributions of
the previous theses on Visipedia). The work in this thesis, however, is aimed at
reducing the burden of collecting datasets and will hopefully lay the foundation for
building a Visipedia.

In (Perona, 2010), Perona suggested that a step towards integrating a Visipedia with
all of Wikipedia would be to focus on a well-defined domain with a community
of highly motivated enthusiasts. This is precisely what we have done by engag-
ing with the birding community through the Cornell Lab of Ornithology and the
naturalist community through iNaturalist. The following chapters, each of which
is self-contained, explore dataset properties, efficient methods of collection, and
training state-of-the-art methods for deploying classification services to these two
communities. In terms of building a broader Visipedia, the following chapters con-
tain useful information for interacting with different types of annotators, modeling
the skills of annotators and vision models, and how to reliably combine informa-
tion from multiple sources (both human and machine). Taken as whole, this thesis
is an attempt to fill in the missing pieces that provide the required automation to
make Visipedia a reality. I will briefly summarize the chapters and the relevant
contributions.

In Chapter 1, we discuss the long tail property of real world datasets and the
effect this tail has on classification performance. Experiments show that state-
of-the-art methods do not share feature learning between classes and that new
training methodologies or collecting additional data in the tail is required to improve
performance.

In Chapter 2, we devise a method for online crowdsourcing of binary labels, key-
points, and multi-instance bounding box annotations. This method is capable of
estimating worker skills and jointly trains computer vision models. We present ex-
periments that show significant cost savings and improvements in dataset accuracy
by using our model instead of traditional dataset collection techniques.

In Chapter 3, we extend our online crowdsourcing method to large-scale multiclass
annotations. Our method is capable of utilizing a taxonomy across the labels,
handling a dependence between the annotations, and jointly training a computer

5

vision system. We present experiments that show significant accuracy gains over
traditional majority vote techniques.

In Chapter 4, we present the NABirds dataset, collected by the birding community
through the Cornell Lab of Ornithology. We present experiments comparing the
annotation performance of different groups of workers on different types of tasks.
We describe the benefit of tapping into a motivated community and how to best
harness its enthusiasm. We additionally present results on dataset noise and show
that modern state-of-the-art methods are resilient to a reasonable amount of noise.

In Chapter 5, we present the iNaturalist Species Classification andDetectionDataset,
collected by the naturalist community through iNaturalist. We describe dataset col-
lection and prepping methods and evaluate state-of-the art classifiers and detectors.
In addition, we conduct a competition to motivate the computer vision research
community to explore large-scale, fine-grained classification and detection.

In Chapter 6, we analyze multiple techniques for reducing the computational bur-
den of the final fully connected layer of traditional convolutional networks. We
experiment with a novel taxonomic approach but find that a simple factorization and
training scheme allows us to reduce the amount of computation and memory by 25x
without any loss in accuracy.

Finally, in Chapter 7, I suggest directions for future work.

References

Branson, Steven (2012). “Interactive learning and prediction algorithms for com-
puter vision applications”. PhD thesis. UC San Diego.

Chen, Yilun et al. (2018). “Cascaded pyramid network for multi-person pose esti-
mation”. In: CVPR.

He, Kaiming et al. (2017). “Mask r-cnn”. In: Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE, pp. 2980–2988.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Martin Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. url: http : / /
tensorflow.org/.

Perona, Pietro (2010). “Vision of a Visipedia”. In: Proceedings of the IEEE 98.8,
pp. 1526–1534.

6

Ren, Shaoqing et al. (2017). “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: PAMI.

Von Ahn, Luis and Laura Dabbish (2004). “Labeling images with a computer
game”. In:Proceedings of the SIGCHI conference onHuman factors in computing
systems. ACM, pp. 319–326.

Von Ahn, Luis, Benjamin Maurer, et al. (2008). “recaptcha: Human-based character
recognition via web security measures”. In: Science 321.5895, pp. 1465–1468.

Wah, Catherine Lih-Lian (2014). “Leveraging Human Perception and Computer Vi-
sion Algorithms for Interactive Fine-Grained Visual Categorization”. PhD thesis.
UC San Diego.

Welinder, Nils Peter Egon (2012). “Hybrid human-machine vision systems : image
annotation using crowds, experts and machines”. PhD thesis. California Institute
of Technology.

7

C h a p t e r 2

THE DEVIL IS IN THE TAILS: FINE-GRAINED
CLASSIFICATION IN THE WILD

Van Horn, Grant and Pietro Perona (2017). “The Devil is in the Tails: Fine-grained
Classification in the Wild”. In: arXiv preprint arXiv:1709.01450. url: https:
//arxiv.org/abs/1709.01450.

2.1 Abstract
The world is long-tailed. What does this mean for computer vision and visual recog-
nition? The main two implications are: (1) the number of categories we need to
consider in applications can be very large, and (2) the number of training examples
for most categories can be very small. Current visual recognition algorithms have
achieved excellent classification accuracy. However, they require many training
examples to reach peak performance, which suggests that long-tailed distributions
will not be dealt with well. We analyze this question in the context of eBird, a large
fine-grained classification dataset and a state-of-the-art deep network classification
algorithm. We find that: (a) peak classification performance on well-represented
categories is excellent, (b) given enough data, classification performance suffers
only minimally from an increase in the number of classes, (c) classification perfor-
mance decays precipitously as the number of training examples decreases, and (d)
surprisingly, transfer learning is virtually absent in current methods. Our findings
suggest that our community should come to grips with the question of long tails.

2.2 Introduction
During the past five years we have witnessed dramatic improvement in the per-
formance of visual recognition algorithms (Russakovsky et al., 2015). Human
performance has been approached or achieved in many instances. Three concurrent
developments have enabled such progress: (a) the invention of ‘deep network’ algo-
rithmswhere visual computation is learned from the data rather than hand-crafted by
experts (Fukushima and Miyake, 1982; LeCun et al., 1989; Krizhevsky, Sutskever,
and Hinton, 2012), (b) the design and construction of large and well-annotated
datasets (Fei-Fei, Fergus, and Perona, 2004; Everingham and al., 2005; Deng et al.,
2009; Tsung-Yi Lin et al., 2014) supplying researchers with a sufficient amount of

8

(a) (b) (c)

Figure 2.1: (a) The world is long-tailed. Class frequency statistics in real world
datasets (birds, a wide array of natural species, and trees). These are long-tailed
distributions where a few classes havemany examples andmost classes have few. (b)
The 4 experimental long tail datasets used in thiswork. Wemodeled the eBird dataset
(blue curve in (a)) and created four long tail datasets by shifting the modeled eBird
dataset down (fewer images) and to the left (fewer species) by different amounts.
Classes are split into head and tail groups; images per class in the respective groups
decay exponentially. (c) Approximation of a long tail dataset. This approximation
allows us to more easily study the effects of head classes on tail class performance.

data to train learning-based algorithms, and (c) the availability of inexpensive and
ever more powerful computers, such as GPUs (Lindholm et al., 2008), for algorithm
training.

Large annotated datasets yield two additional benefits, besides supplying deep nets
with sufficient training fodder. The first is offering common performance bench-
marks that allow researchers to compare results and quickly evolve the best algo-
rithmic architectures. The second, more subtle but no less important, is providing
researchers with a compass – a definition of the visual tasks that one ought to try
and solve. Each new dataset pushes us a bit further towards solving real world
challenges. We wish to focus here on the latter aspect.

One goal of visual recognition is to enable machines to recognize objects in the
world. What does the world look like? In order to better understand the nature
of visual categorization in the wild we examined three real-world datasets: bird
species, as photographed worldwide by birders who are members of eBird (Sullivan
et al., 2009); tree species, as observed along the streets of Pasadena (Wegner
et al., 2016); and plants and animal species, as photographed by the iNaturalist
(www.inaturalist.org) community. One salient aspect of these datasets is that some
species are very frequent, while most species are represented by only few specimens
(Fig 2.1a). In a nutshell: the world is long-tailed, as previously noted in the
context of subcategories and object views (Salakhutdinov, Torralba, andTenenbaum,

9

2011; Zhu, Anguelov, and Ramanan, 2014). This is in stark contrast with current
datasets for visual classification, where specimen distribution per category is almost
uniformly distributed (see (Tsung-Yi Lin et al., 2014) Figure 5(a)).

With this observation in mind, we ask whether current state-of-the-art classification
algorithms, whose development is motivated and benchmarked by uniformly dis-
tributed datasets, deal well with the world’s long tails. Humans appear to be able to
generalize from few examples; can our algorithms do the same? Our experiments
show that the answer is no. While, when data is abundant, machine-vision classifi-
cation performance can currently rival humans, we find that this is emphatically not
the case when data is scarce for most classes, even if a few are abundant.

This work is organized as follows: In Section 2.3, we review the related work. We
then describe the datasets and training process in Section 2.4, followed by an analysis
of the experiments in Section 2.5. We summarize and conclude in Section 2.6.

2.3 Related Work
Fine-Grained Visual Classification – The vision community has released many
fine-grained datasets covering several domains such as birds (Welinder et al., 2010;
Wah et al., 2011; Berg, Liu, et al., 2014; Van Horn et al., 2015), dogs (Khosla
et al., 2011; Liu et al., 2012), airplanes (Maji et al., 2013; Vedaldi et al., 2014),
flowers (Nilsback and Zisserman, 2006), leaves (Kumar et al., 2012), trees (Wegner
et al., 2016) and cars (Krause, Stark, et al., 2013; Y.-L. Lin et al., 2014). These
datasets were constructed to be uniform, or to contain "enough" data for the task.
The recent Pasadena Trees dataset (Wegner et al., 2016) is the exception. Most fine-
grained research papers present a novel model for classification (Xu et al., 2015;
Tsung-Yu Lin, RoyChowdhury, and Maji, 2015; Farrell et al., 2011; Krause, Jin,
et al., 2015; Xie et al., 2015; Branson et al., 2014; Gavves et al., 2015; Simon
and Rodner, 2015; Göring et al., 2014; Shih et al., 2015; N. Zhang et al., 2014;
Berg and Belhumeur, 2013; Chai, Lempitsky, and Zisserman, 2013; Xiao et al.,
2015; Y. Zhang et al., 2016; Pu et al., 2014). While these methods often achieve
state-of-the-art performance at the time of being published, it is often the case
that the next generation of convolutional networks can attain the same level of
performance without any custom modifications. In this work, we use the Inception-
v3 model (Szegedy et al., 2016), pretrained on ImageNet for our experiments. Some
of the recent fine-grained papers have investigated augmenting the original datasets
with additional data from the web (Krause, Sapp, et al., 2016; Xu et al., 2015;

10

Xie et al., 2015; Van Horn et al., 2015). Krause et al. (Krause, Sapp, et al., 2016)
investigated the collection and use of a large, noisy dataset for the task of fine-grained
classification and found that off the shelf CNNmodels can readily take advantage of
these datasets to increase accuracy and reach state-of-the-art performance. Krause
et al.mention, but do not investigate, the role of the long tail distribution of training
images. In this work, we specifically investigate the effect of this long tail on the
model performance.

Imbalanced Datasets – Techniques to handle imbalanced datasets are typically
split into two regimes: algorithmic solutions and data solutions. In the first regime,
cost-sensitive learning (Elkan, 2001) is employed to force the model to adjust its
decision boundaries by incurring a non-uniform cost per misclassification; see (H.
He and Garcia, 2009) for a review of the techniques. The second regime concerns
data augmentation, achieved either through over-sampling the minority classes, un-
der sampling the majority classes, or synthetically generating new examples for the
minority classes. When using mini batch gradient descent (as we do in the experi-
ments), oversampling the minority classes is similar to weighting these classes more
than the majority classes, as in cost-sensitive learning. We conduct experiments on
over-sampling the minority classes. We also employ affine (Krizhevsky, Sutskever,
and Hinton, 2012) and photometric (Howard, 2013) transformations to synthetically
boost the number of training examples.

Transfer Learning – Transfer learning (Pan and Yang, 2010) attempts to adapt
the representations learned in one domain to another. In the era of deep networks,
the simplest form of transfer learning is using features extracted from pretrained
ImageNet (Russakovsky et al., 2015) or Places (Zhou et al., 2014) networks, see
(Sharif Razavian et al., 2014; Donahue et al., 2014). The next step is actually fine-
tuning (Girshick et al., 2014) these pretrained networks for the target task (Yosinski
et al., 2014; Agrawal, Girshick, andMalik, 2014; Oquab et al., 2014; Huh, Agrawal,
and Efros, 2016). This has become the standard method for obtaining baseline
numbers on a new target dataset and often leads to impressive results (Azizpour et
al., 2015), especially when the target dataset has sufficient training examples. More
sophisticated transfer learning methods (Long et al., 2015; Tzeng et al., 2015) are
aimed at solving the domain adaptation problem. In this work, we are specifically
interested in a single domain, which happens to contain a long tail distribution of
training data for each class. We investigate whether there is a transfer of knowledge
from the well represented classes to the sparsely represented classes.

11

Low Shot Learning – We experiment with a minimum of 10 training images
per class, which falls into the realm of low shot learning, a field concerned with
learning novel concepts from few examples. In (Wang and Hebert, 2016b), Wang
and Herbet learn a regression function from classifiers trained on small datasets to
classifiers trained on large datasets, using a fixed feature representation. Our setup
is different in that we want to allow our feature representation to adapt to the target
dataset, and we want a model that can classify both the well represented classes
and the sparsely represented classes. The recent work of Hariharan and Girshick in
(Hariharan and Girshick, n.d.) explored this setup specifically, albeit in the broad
domain of ImageNet. The authors propose a low shot learning benchmark and
implement a loss function and feature synthesis scheme to boost performance on
under represented classes. However, their results showed marginal improvement
when using a high capacity model (at 10 images per class the ResNet-50 (K. He
et al., 2016) model performed nearly as well as their proposed method). Our
work aims to study the relationship between the well represented classes and the
sparse classes, within a single domain. Metric learning tackles the low-shot learning
problem by learning a representation space where distance corresponds to similarity.
While these techniques appear promising and provide benefits beyond classification,
they do not hold up well against simple baseline networks for the specific task of
classification (Rippel et al., 2015).

2.4 Experiment Setup
Datasets
We consider three different types of datasets: uniform, long tail, and approximate
long tail. We used images from eBird (ebird.org) to construct each of these datasets.
These images are real world observations of birds captured by citizen scientists and
curated by regional experts. Each dataset consists of a training, validation, and test
split. When placing images into each split, we ensure that a photographer’s images
do not end up in multiple splits for a single species. The test set is constructed
to contain as many different photographers as possible (e.g. 30 images from 30
different photographers). The validation set is similarly constructed, and the train
set is constructed from the remaining photographers.

Uniform Datasets – The uniform datasets allow us to study the performance of the
classification model under optimal image distribution conditions. These datasets
have the same number of images per class: either 10, 100, 1K, or 10K. The total
number of classes can be either 10, 100, or 1K. We did not analyze a uniform

12

dataset with 1K classes containing 1K or 10K images each due to a lack of data
from eBird. Each smaller dataset is completely contained within the larger dataset
(e.g. the 10 class datasets are contained within the 100 class datasets, etc.). The test
and validation sets are uniform, with 30 and 10 images for each class respectively,
and remain fixed for a class across all uniform datasets.

Approx. Long Tail Datasets – To conveniently explore the effect of moving from a
uniform dataset to a long tail dataset we constructed approximate long tail datasets,
see Figure 2.1c. These datasets consist of 1K classes split into two groups: the
head classes and the tail classes. All classes within a group have the same number
of images. We study two different sized splits: a 10 head, 990 tail split and a 100
head, 900 tail split. The 10 head split can have 10, 100, 1K, or 10K images in each
head class. The 100 head split can have 10, 100, or 1K images in each head class.
The tail classes from both splits can have 10 or 100 images. We use the validation
and test sets from the 1K class uniform dataset for all of the approximate long tail
datasets. This allows us to compare the performance characteristics of the different
datasets in a reliable way, and we can use the 1K class uniform datasets as reference
points.

Long Tail Datasets – The full eBird dataset, with nearly 3 million images, is not
amenable to easy experimentation. Rather than training on the full dataset, we
would prefer to model the image distribution and use it to construct smaller, tunable
datasets, see Figure 2.1b. We did this by fitting a two-piece broken power law to the
eBird image distribution. Each class, i ∈ [1, N], is put into the head group if i <= h,
otherwise it is put into the tail group, where h is the number of head classes. Each
head class i contains y · ia1 images, where y is the number of images in the most
populous class and a1 is the power law exponent for the head classes. Each tail class
i has y · h(a1−a2) · ia2 where a2 is the power law exponent for the tail classes. We used
linear regression to determine that a1 = −0.3472 and a2 = −1.7135. We fixed the
minimum number of images for a class to be 10. This leaves us with 2 parameters
that we can vary: y, which shifts the distribution up and down, and h which shifts
the distribution left and right. We analyze four long tail datasets by selecting y from
{1K, 10K} and h from {10, 100}. Each resulting dataset consists of a different
number of classes and therefore has a different test and validation split. We keep to
the pattern of reserving 30 test images and 10 validation images for each class.

13

Model Training & Testing Details
Model – We use the Inception-v3 network (Szegedy et al., 2016), pretrained from
ILSVC 2012, as the starting point for all experiments. The Inception-v3 model
exhibits good trade-off between size of the model (27.1M parameters) and classifi-
cation accuracy on the ILSVC (78% top 1 accuracy) as compared to architectures
like AlexNet and VGG. We could have used the ResNet-50 model but opted for
Inception-v3, as it is currently being used by the eBird development team.

Training – We have a fixed training regime for each dataset. We fine-tune the
pretrained Inception-v3 network (using TensorFlow (Martin Abadi et al., 2015)) by
training all layers using a batch size of 32. Unless noted otherwise, batches are
constructed by randomly sampling from the pool of all training images. The initial
learning rate is 0.0045 and is decayed exponentially by a factor or 0.94 every 4
epochs. Training augmentation consists of taking random crops from the image
whose area can range from 10% to 100% of the image, and whose aspect ratio can
range from 0.7 to 1.33. The crop is randomly flipped and has random brightness
and saturation distortions applied.

Testing – We use the validation loss to stop the training by waiting for it to steadily
increase, signaling that the model is overfitting. We then consider all models up
to this stopping point and use the model with the highest validation accuracy for
testing. At test time, we take a center crop of the image, covering 87.5% of the
image area. We track top 1 image accuracy as the metric, as is typically used in
fine-grained classification benchmarks. Note that image accuracy is the same as
class average accuracy for datasets with uniform validation and test sets, as is the
case for all of our experiments.

2.5 Experiments
Uniform Datasets
We first study the performance characteristics of the uniform datasets. We consider
two regimes: (1) we extract feature vectors from the pretrained network and train
a linear SVM; and (2) we fine-tune the pretrained network, see Section 2.4 for the
training protocol. We use the activations of the layer before the final fully connected
layer as our features for the SVM and used the validation set to tune the penalty
parameter. Figure 2.2a plots the error achieved under these two different regimes.
We can see that fine-tuning the neural network is beneficial in all cases except the
extreme case of 10 classes with 10 images each (in which case the model overfit

14

(a) (b)

Figure 2.2: (a) Classification performance as a function of training set size on
uniform datasets. A neural network (solid lines) achieves excellent accuracy on
these uniform datasets. Performance keeps improving as the number of training
examples increases to 10K per class – each 10x increase in dataset size is rewarded
with a 2x cut in the error rate. We also see that the neural net scales extremely well
with increased number of classes, increasing error only marginally when 10x more
classes are used. Neural net performance is also compared with SVM (dashed lines)
trained on extracted ImageNet features. We see that fine-tuning the neural network
is beneficial in all cases except in the extreme case of 10 classes with 10 images
each. (b) Example misclassifications. Four of the twelve images misclassified
by the 10 class, 10K images per class model. Clockwise from top left: Osprey
misclassified as Great Blue Heron, Bald Eagle (center of image) misclassified as
Great Blue Heron, Cooper’s Hawk misclassified as Great Egret, and Ring-billed
Gull misclassified as Great Egret.

quickly, even with extensive hyperparameter sweeps). The neural network scales
incredibly well with increasing number of classes, incurring a small increase in
error for 10x increase in the number of classes. This should be expected given that
the network was designed for 1000-way ImageNet classification. At 10k images per
class, the network is achieving 96% accuracy on 10 bird species, showing that the
network can achieve high performance given enough data. For the network, a 10x
increase in data corresponds to at least a 2x error reduction. Keep in mind that the
opposite is true as well: as we remove 10x images, the error rate increases by at
least 2x. These uniform dataset results will be used as reference points for the long
tail experiments.

Uniform vs. Natural Sampling
The long tail datasets present an interesting question when it comes to creating the
training batches: should we construct batches of images such that they are sampled

15

(a) (b) (c)

Figure 2.3: Uniform vs. Natural Sampling – effect on error. Error plots for
models trained with uniform sampling and natural sampling. (a) The overall error
of both methods is roughly equivalent, with natural sampling tending to be as good
or better than uniform sampling. (b) Head classes clearly benefit from natural
sampling. (c) Tail classes tend to have the same error under both sampling regimes.

uniformly from all classes, or such that they are sampled from the natural distribution
of images? Uniformly sampling from the classes will result in a given tail image
appearing more frequently in the training batches than a given head image, i.e.,
we are oversampling the tail classes. To answer this question, we trained a model
for each of our approximate long tail datasets using both sampling methods and
compared the results. Figure 2.3 plots the error achieved with the different sampling
techniques on three different splits of the classes (all classes, the head classes, and the
tail classes). We see that both sampling methods often converge to the same error,
but the model trained with natural sampling is typically as good as or better than
the model trained with uniform sampling. Figure 2.4 visualizes the performance of
the classes under the two different sampling techniques for two different long tail
datasets. These figures highlight that the head classes clearly benefit from natural
sampling, and the center of mass of the tail classes is skewed slightly towards the
natural sampling. The results for the long tail dataset experiments in the following
sections use natural sampling.

Transferring Knowledge from the Head to the Tail
Section 2.5 showed that the Inception-v3 architecture does extremelywell on uniform
datasets, achieving 96% accuracy on the 10 class, 10K images per class dataset;
87.3% accuracy on the 100 class, 1K images per class dataset; and 71.5% accuracy
on the 1K class, 100 images per class dataset. The question we seek to answer
is: how is performance affected when we move to a long tail dataset? Figure 2.5a
summarizes our findings for the approximate long tail datasets (see Table 2.1 and
Table 2.2 for the specific performance data). Starting with a dataset of 1000 classes

16

(a) (b)

Figure 2.4: Uniform vs. Natural Sampling – effect on accuracy. We compare
the effect of uniformly sampling from classes vs. sampling from their natural image
distribution when creating training batches for long tailed datasets, Section 2.5. We
use 30 test images per class, so correct classification rate is binned into 31 bins. It is
clear that the head classes (marked as stars) benefit from the natural sampling in both
datasets. The tail classes in (a) have an average accuracy of 32.1% and 34.2% for
uniform and natural sampling respectively. The tail classes in (b) have an average
accuracy of 33.5% and 38.6% for uniform and natural sampling respectively. For
both plots, head classes have 1000 images and tail classes have 10 images.

and 10 images in each class, the top 1 accuracy across all classes is 33.2% (this is
the bottom, leftmost blue point in the figure). If we designate 10 of the classes as
head classes, and 990 classes as tail classes, what happens when we increase the
number of available training data in the head classes (traversing the bottom blue
line in Figure 2.5a)? We see that the head class accuracy approaches the peak 10
class performance of 96% accuracy (reaching 94.7%), while the tail classes have
remained near their initial performance of 33.2%.

We see a similar phenomenon even if we are more optimistic regarding the number
of available training images in the tail classes, using 100 rather than 10 (the top
blue line in Figure 2.5a). The starting accuracy across all 1000 classes, each with
100 training images, is 71.5%. As additional images are added to the head classes,
the accuracy on the head classes again approaches the peak 10 class performance
(reaching 94%) while the tail classes are stuck at 71%.

We can be optimistic in another way by moving more classes into the head, therefore
making the tail smaller. We now specify 100 classes to be in the head, leaving 900
classes for the tail (the green points in 2.5a). We see a similar phenomenon even
in this case, although we do see a slight improvement for the tail classes when the
100 head classes have 1k images each. These experiments reveal that there is very

17

(a) (b)

Figure 2.5: Transfer between head and tail in approximate long tail datasets.
(a) Head class accuracy is plotted against tail class accuracy as we vary the number
of training examples in the head and in the tail for the approximate long tail datasets.
Each point is associated with its nearest label. The labels indicate (in base 10) how
much training data was in each head class (H) and each tail class (T). Lines between
points indicate an increase in either images per head class, or images per tail class.
As we increase images in the head class by factors of 10, the performance on the
tail classes remains approximately constant. This means that there is a very poor
transfer of knowledge from the head classes to the tail classes. As we increase the
images per tail class, we see a slight loss in performance in the head classes. The
overall accuracy of the model is vastly improved though. (b) Histogram of error
rates for a long tail dataset. The same story applies here: the tail classes do not
benefit from the head classes. The overall error of the joint head and tail model is
48.6%. See Figure 2.6 for additional details.

little to no transfer learning occurring within the network. Only the classes that
receive additional training data actually see an improvement in performance, even
though all classes come from the same domain. To put it plainly, an additional 10K
bird images covering 10 bird species does nothing to help the network learn a better
representation for the remaining bird species.

To confirm the results on the approximate long tail datasets, we experimented on
four long tail distributions modeled after the actual eBird dataset, see Section 2.4 for
details on the datasets. For these experiments, we trained three separate models, one
trained with all classes and the other two trained with the head classes or tail classes
respectively. Figures 2.5b and 2.6 show the results. We see the same recurring story:
the tail performance is not affected by the head classes. Training a model solely
on the tail classes is as good as, or even better, than training jointly with the head
classes, even though the head classes are from the same domain and are doubling
the size of the training dataset. The network is not transferring knowledge from the

18

(a) (b) (c)

Figure 2.6: Histogram of Error Rates for Long Tail Datasets. These plots com-
pare the performance of the head and tail classes trained jointly (labeled Head and
Tail respectively) vs. individually (labeled Head Only and Tail Only respectively).
The dashed histograms represent the error rates for individual models (trained ex-
clusively on the head (red) or tail (blue) classes), and the solid histograms represent
the error rates of the head and tail classes within the joint model. The vertical lines
mark the mean error rates. We see that the tail classes do not benefit from being
trained with the head classes: the mean error rate of a model trained exclusively on
the tail classes does as good or better than a model trained with both head and tail
classes. The overall joint error of the models (dominated by the tail performance)
are: 45.1% for (a), 47.1% for (b) and 49.2% for (c).

head classes to the tail classes. See Table 2.3 for the detailed results.

Dataset Images /
Head Class

Images /
Tail Class

Overall
ACC

Head
ACC

Tail
ACC

10 head classes
990 tail classes

100 100 71.5 55.7 71.6
100 10 33.7 61.3 33.4
1,000 10 34.8 89.3 34.2
10,000 10 35.4 94.7 34.8

100 head classes
900 tail classes

100 100 71.5 65.2 72.2
100 10 37.9 68.9 34.5
1000 10 43.3 86.1 38.6

Table 2.1: Top 1 accuracy for head and tail classes when going from uniform to
approximate long tail image distribution. The uniform dataset performance is the
first row for the respective datasets; the subsequent rows are approximate long tail
datasets. We see that the head classes benefit from the additional training images
(Head ACC increases), but the tail classes benefit little, if at all (Tail ACC).

Increasing Performance on the Head Classes
The experiments in Section 2.5 showed that we should not expect the tail classes to
benefit from additional head class training data. While we would ultimately like to
have a model that performs well on the head and tail classes, for the time being we
may have to be content with optimizing for the classes that have sufficient training

19

Dataset Images /
Head

Images /
Tail

Overall
ACC

Head
ACC

Tail
ACC

Tail
Isolated
ACC

∆

Error
Tail
Isolated

10 H
990 T

10 10 33.2 24.7 33.2 33.4 -
100 10 33.7 61.3 33.4 34.2 -1.2%
1,000 10 34.8 89.3 34.2 36.4 -4.5%
10,000 10 35.4 94.7 34.8 37.8 -6.6%
100 100 71.5 55.7 71.6 71.8 -
1,000 100 71.4 83.7 71.3 71.9 -0.4%
10,000 100 71.3 94 71 72.6 -2.8%

100 H
900 T

10 10 33.2 25.8 34 35 -
100 10 38 68.9 34.5 40.5 -8.5%
1,000 10 43.4 86.1 38.6 50.9 -24.5%
100 100 71.5 65.2 72.2 73.2 -
1,000 100 72.8 84.9 71.5 75.3 -7.8%

Table 2.2: Tail class performance. This table details the tail class performance in
uniform and approximate long tail datasets. In addition to showing the accuracy of
the tail classes (Tail ACC) we show the performance of tail classes in isolation from
the head classes (Tail Isolated ACC). To compute Tail Isolated ACC, we remove
all head class images from the test set and ignore the head classes when making
predictions on tail class images. These numbers reflect the situation of using the
head classes to improve the feature representation of the network. The ∆ Error Tail
Isolated column shows the decrease in error between the tail performance when the
head classes are considered (Tail ACC) and the tail performance in isolation (Tail
Isolated ACC). These numbers are a sanity check to ensure that the tail classes do
indeed benefit from a feature representation learned with the additional head class
images. The problem is that the benefit of the representation is not shared when
both the head and tail classes are considered together.

data, i.e. the head classes. In this section, we explore whether we can use the tail to
boost performance on the head classes. For each experiment, the model is trained
on all classes specified in the training regime (which may be the head classes only,
or could be the head and the tail classes), but at test time only head test images are
used and only the head class predictions are considered (e.g. a model trained for
1000 way classification will be restricted to make predictions for the 10 head classes
only).

We first analyze the performance of the head classes in a uniform dataset situation,
where we train jointly with tail classes that have the same number of training images
as the head classes. This can be considered the best case scenario for transfer
learning as the source and target datasets are from the same distribution, and there

20

Dataset
Params

Num
Tail
Classes

Overall
ACC

Head
ACC

Head
Isolated
ACC

Head
Model
ACC

Tail
ACC

Tail
Isolated
ACC

Tail
Model
ACC

h = 10
y = 1K 82 54.9 85.7 88.7 87.7 51.2 56.8 53

h = 10
y = 10K 343 52.9 89.7 94.3 92.6 51.8 53.6 52.1

h = 100
y = 1K 478 50.8 76.5 79.7 76.5 45.4 53.6 46.1

h = 100
y = 10K 2115 51.4 87.4 89.4 87 49.7 53.4 53

Table 2.3: Top 1 accuracy for the long tail datasets. This table details the results of
the long tail experiments. See Section 2.4 for information on the dataset parameters.
Three different models were trained for each dataset. 1. Whole Model This model
was trained with both the head and the tail classes. Overall top 1 accuracy can be
found in the Overall ACC column. Performance on the head and tail classes can be
found in the Head ACC and Tail ACC columns respectively. Performance on the
head and tail classes in isolation from each other can be found in the Head Isolated
ACC and Tail Isolated ACC columns respectively. 2. Head Model This model was
trained exclusively on the head classes. Overall top 1 accuracy (on the head classes
only) can be found in the Head Model ACC column. 3. Tail Model This model was
trained exclusively on the tail classes. Overall top 1 accuracy (on the tail classes
only) can be found in the Tail Model ACC column.

are many more source classes than target classes. Figure 2.7a shows the results. In
both the 10 head class situation and 100 head class situation, we see drops in error
when jointly training the head and tail (dashed lines) as compared to the head only
model (solid lines).

The next experiments explore the benefit to the head in the approximate long tail
datasets. Figures 2.7b and 2.7c show the results. We found that there is a benefit to
training with the long tail, between 6.3% and 32.5% error reduction, see Table 2.4.
The benefit of the tail typically decreases as the ratio of head images to tail images
increases. When this ratio exceeds 10, it is worse to use the tail during training.

In these experiments, we have been monitoring the performance of all classes during
training with a uniform validation set (10 images per class). This validation set is
our probe into the model, and we use it to select which iteration of the model to
use for testing. We now know that using as much tail data as possible is beneficial.
This raises the following question: can we monitor solely the head classes with the
validation set and still recover an accurate model? If the answer is yes, then we will

21

be able to place all tail images in the training set rather than holding some out for
the validation set. The results shown in Figure 2.8 show that this is possible, and
that it actually produces a more accurate model for the head classes.

Dataset Images /
Head

Images /
Tail

Head /
Tail
Image
Ratio

Head
Isolated
ACC

Head
Model
ACC

∆

Error

10 H
990 T

10 10 0.01 66.6 55.6 -24.6%
100 10 0.1 77.3 74 -12.7%
1,000 10 1.01 91.3 88.6 -23.7%
10,000 10 10.1 94.6 96 +35%
100 100 0.01 85.6 74 -44.6%
1,000 100 0.1 92.3 88.6 -32.5%
10,000 100 1.01 96.3 96 -7.5%

100 H
900 T

10 10 0.11 49 40 -15%
100 10 1.11 74 70.2 -12.8%
1,000 10 11.11 86.8 87.3 +3.9%
100 100 0.11 81.6 70.2 -38.3%
1,000 100 1.11 88.1 87.3 -6.3%

Table 2.4: Head class performance. This table details the performance of the head
classes under different training regimes. The Head Isolated ACC numbers show the
top 1 accuracy on the head class images when using a model trained with both head
and tail classes, but only makes predictions for the head classes at test time. The
Head Model ACC numbers show the top 1 accuracy for a model that was trained
exclusively on the head classes. We can see that it is beneficial to train with the tail
classes until the head to tail image ratio exceeds 10, at which point it is better to
train with the head classes only.

2.6 Discussion and Conclusions
The statistics of images in the real world are long-tailed: a few categories are highly
represented, and most categories are observed only rarely. This is in stark contrast
with the statistics of popular benchmark datasets, such as ImageNet (Deng et al.,
2009), COCO (Tsung-Yi Lin et al., 2014), and CUB200 (Wah et al., 2011), where
the training images are evenly distributed amongst classes.

We experimentally explored the performance of a state-of-the-art classification
model on approximate and realistic long-tailed datasets. We make four observations
which, we hope, will inform future research in visual classification.

First, performance is excellent, even in challenging tasks, when the number of
training images exceeds many thousands. For example, the species classification

22

(a) (b) (c)

Figure 2.7: Head class performance when using additional tail categories. Head
+ Tail 10 refers to the tail having 10 images per class; Head + Tail 100 refers to
the tail having 100 images per class. At test time we ignore tail class predictions
for models trained with extra tail classes. We see that training with additional tail
classes (dashed lines) decreases the error compared to a model trained exclusively
on the head classes (solid lines) in both uniform and long tail datasets. In the long
tail setting, the benefit is larger when the ratio of head images to tail images is
smaller. We found that if this ratio exceeds 10, then it is better to train the model
with the head classes only (right most points in (b) and (c)).

error rate is about 4% in the eBird dataset when each species is trained with 104

images (see Figure 2.2a). This is in line with the performance observed on ImageNet
and COCO, where current algorithms can rival humans.

Second, if the number of training images is sufficient, classification performance
suffers only minimally from an increase in the number of classes (see Figure 2.2a).
This is indeed good news, as we estimate that there are tens of millions of object
categories that one might eventually attempt to classify simultaneously.

Third, the number of training images is critical: classification error more than
doubles every timewe cut the number of training images by a factor of 10 (see Figure
2.2a). This is particularly important in a long-tailed regime since the tails contain
most of the categories and therefore dominate average classification performance.
For example: the largest long tail dataset from our experiments contains 550, 692
images and yields an average classification error of 48.6% (see Figure 2.5b). If
the same 550, 692 images were distributed uniformly amongst the 2215 classes, the
average error rate would be about 27% (see Fig. 2.2a). Another way to put it:
collecting the eBird dataset took a few thousand motivated birders about 1 year.
Increasing its size to the point that its top 2000 species contained at least 104 images
would take 100 years (see Figure 2.1a). This is a long time to wait for excellent
accuracy.

Fourth, on the datasets tested, transfer learning between classes is negligible with

23

Figure 2.8: Using validation data from the head classes only. This plot shows
the error achieved under different training regimes. Head Classes represents a
model trained exclusively on the head classes, with 1000 training images each. The
Head + Tail Classes, val data for Head + Tail represents a model trained with
both head and tail classes (1000 images per head class, 100 images per tail class),
and a validation set was used that had both head and tail class images. Head +
Tail Classes, val data for Head represents a model trained with both head and tail
classes (1000 images per head class, 100 images per tail class), and a validation set
that only has head class images. We can see that it is beneficial to train with the
extra tail classes, and that using the head classes exclusively in the validation set
results in the best performing model.

current classification models. Simultaneously training on well-represented classes
does little or nothing for the performance on those classes that are least represented.
The average classification accuracy of the models will be dominated by the poor tail
performance, and adding data to the head classes will not improve the situation.

Our findings highlight the importance of continued research in transfer and low shot
learning (Fei-Fei, Fergus, and Perona, 2004; Hariharan and Girshick, n.d.; Wang
and Hebert, 2016b; Wang and Hebert, 2016a) and provide baselines for future work
to compare against. When we train on uniformly distributed datasets, we sweep the
world’s long tails under the rug, and we do not make progress in addressing this
challenge. As a community, we need to face up to the long-tailed challenge and start
developing algorithms for image collections that mirror real-world statistics.

References

Agrawal, Pulkit, Ross Girshick, and Jitendra Malik (2014). “Analyzing the per-
formance of multilayer neural networks for object recognition”. In: European
Conference on Computer Vision. Springer, pp. 329–344.

24

Azizpour, Hossein et al. (2015). “From generic to specific deep representations for
visual recognition”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 36–45.

Berg, Thomas and Peter Belhumeur (2013). “POOF: Part-based one-vs.-one fea-
tures for fine-grained categorization, face verification, and attribute estimation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 955–962.

Berg, Thomas, Jiongxin Liu, et al. (2014). “Birdsnap: Large-scale fine-grained visual
categorization of birds”. In: Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on. IEEE, pp. 2019–2026.

Branson, Steve et al. (2014). “Improved Bird Species Recognition Using Pose Nor-
malized Deep Convolutional Nets.” In: BMVC. Vol. 1. 6, p. 7.

Chai, Yuning, Victor Lempitsky, and Andrew Zisserman (2013). “Symbiotic seg-
mentation and part localization for fine-grained categorization”. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 321–328.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In:
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, pp. 248–255.

Donahue, Jeff et al. (2014). “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition.” In: Icml. Vol. 32, pp. 647–655.

Elkan, Charles (2001). “The foundations of cost-sensitive learning”. In: Interna-
tional joint conference on artificial intelligence. Vol. 17. 1. LAWRENCE ERL-
BAUM ASSOCIATES LTD, pp. 973–978.

Everingham, M. and et al. (2005). “The 2005 PASCAL Visual Object Classes
Challenge”. In: First PASCAL Machine Learning Challenges Workshop, MLCW,
pp. 117–176.

Farrell, Ryan et al. (2011). “Birdlets: Subordinate categorization using volumetric
primitives and pose-normalized appearance”. In: Computer Vision (ICCV), 2011
IEEE International Conference on. IEEE, pp. 161–168.

Fei-Fei, Li, R. Fergus, and Pietro Perona (2004). “Learning Generative Visual Mod-
els From Few Training Examples: An Incremental Bayesian Approach Tested on
101 Object Categories”. In: IEEE CVPR Workshop of Generative Model Based
Vision (WGMBV).

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In: Com-
petition and cooperation in neural nets. Springer, pp. 267–285.

Gavves, Efstratios et al. (2015). “Local alignments for fine-grained categorization”.
In: International Journal of Computer Vision 111.2, pp. 191–212.

25

Girshick, Ross et al. (2014). “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In:Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587.

Göring, Christoph et al. (2014). “Nonparametric part transfer for fine-grained recog-
nition”. In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-
ference on. IEEE, pp. 2489–2496.

Hariharan, Bharath and Ross Girshick. “Low-shot Visual Recognition by Shrinking
and Hallucinating Features”. In:

He, Haibo and Edwardo A Garcia (2009). “Learning from imbalanced data”. In:
Knowledge and Data Engineering, IEEE Transactions on 21.9, pp. 1263–1284.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

Howard, Andrew G (2013). “Some improvements on deep convolutional neural
network based image classification”. In: arXiv preprint arXiv:1312.5402.

Huh,Minyoung, Pulkit Agrawal, andAlexei AEfros (2016). “Whatmakes ImageNet
good for transfer learning?” In: arXiv preprint arXiv:1608.08614.

Khosla, Aditya et al. (2011). “Novel Dataset for Fine-Grained Image Categoriza-
tion”. In: First Workshop on Fine-Grained Visual Categorization, IEEE Confer-
ence on Computer Vision and Pattern Recognition. Colorado Springs, CO.

Krause, Jonathan, Hailin Jin, et al. (2015). “Fine-grained recognition without part
annotations”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5546–5555.

Krause, Jonathan, Benjamin Sapp, et al. (2016). “The unreasonable effectiveness of
noisy data for fine-grained recognition”. In: European Conference on Computer
Vision. Springer, pp. 301–320.

Krause, Jonathan, Michael Stark, et al. (2013). “3d object representations for fine-
grained categorization”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 554–561.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Kumar,Neeraj et al. (2012). “Leafsnap:A computer vision system for automatic plant
species identification”. In: Computer Vision–ECCV 2012. Springer, pp. 502–516.

LeCun, Yann et al. (1989). “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4, pp. 541–551.

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common objects in context”. In:
ECCV.

26

Lin, Tsung-Yu, Aruni RoyChowdhury, and Subhransu Maji (2015). “Bilinear CNN
models for fine-grained visual recognition”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1449–1457.

Lin, Yen-Liang et al. (2014). “Jointly optimizing 3d model fitting and fine-grained
classification”. In: Computer Vision–ECCV 2014. Springer, pp. 466–480.

Lindholm, Erik et al. (2008). “NVIDIA Tesla: A unified graphics and computing
architecture”. In: IEEE micro 28.2.

Liu, Jiongxin et al. (2012). “Dog breed classification using part localization”. In:
Computer Vision–ECCV 2012. Springer, pp. 172–185.

Long, Mingsheng et al. (2015). “Learning Transferable Features with Deep Adap-
tation Networks.” In: ICML, pp. 97–105.

Maji, Subhransu et al. (2013). “Fine-grained visual classification of aircraft”. In:
arXiv preprint arXiv:1306.5151.

Martin Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. url: http : / /
tensorflow.org/.

Nilsback, Maria-Elena and Andrew Zisserman (2006). “A visual vocabulary for
flower classification”. In: Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Vol. 2. IEEE, pp. 1447–1454.

Oquab, Maxime et al. (2014). “Learning and transferring mid-level image repre-
sentations using convolutional neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1717–1724.

Pan, Sinno Jialin and Qiang Yang (2010). “A survey on transfer learning”. In: IEEE
Transactions on knowledge and data engineering 22.10, pp. 1345–1359.

Pu, Jian et al. (2014). “Which looks like which: Exploring inter-class relationships in
fine-grained visual categorization”. In: Computer Vision–ECCV 2014. Springer,
pp. 425–440.

Rippel, Oren et al. (2015). “Metric learning with adaptive density discrimination”.
In: ICLR.

Russakovsky, Olga et al. (2015). “Imagenet large scale visual recognition challenge”.
In: International Journal of Computer Vision 115.3, pp. 211–252.

Salakhutdinov, Ruslan, Antonio Torralba, and Josh Tenenbaum (2011). “Learning to
share visual appearance for multiclass object detection”. In: Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, pp. 1481–1488.

Sharif Razavian, Ali et al. (2014). “CNN features off-the-shelf: an astounding base-
line for recognition”. In:Proceedings of the IEEEConference on Computer Vision
and Pattern Recognition Workshops, pp. 806–813.

27

Shih, Kevin J et al. (2015). “Part Localization using Multi-Proposal Consensus for
Fine-Grained Categorization”. In: BMVC.

Simon, Marcel and Erik Rodner (2015). “Neural activation constellations: Unsuper-
vised part model discovery with convolutional networks”. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 1143–1151.

Sullivan, Brian L et al. (2009). “eBird: A citizen-based bird observation network in
the biological sciences”. In: Biological Conservation 142.10, pp. 2282–2292.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826.

Tzeng, Eric et al. (2015). “Simultaneous deep transfer across domains and tasks”. In:
Proceedings of the IEEE International Conference onComputer Vision, pp. 4068–
4076.

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset collection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

Vedaldi, Andrea et al. (2014). “Understanding objects in detail with fine-grained
attributes”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3622–3629.

Wah, Catherine et al. (2011). “The caltech-ucsd birds-200-2011 dataset”. In:

Wang, Yu-Xiong and Martial Hebert (2016a). “Learning from Small Sample Sets
by Combining Unsupervised Meta-Training with CNNs”. In: Advances in Neural
Information Processing Systems, pp. 244–252.

– (2016b). “Learning to learn: Model regression networks for easy small sample
learning”. In: European Conference on Computer Vision. Springer, pp. 616–634.

Wegner, Jan D et al. (2016). “Cataloging public objects using aerial and street-level
images-urban trees”. In:Proceedings of the IEEEConference on Computer Vision
and Pattern Recognition, pp. 6014–6023.

Welinder, Peter et al. (2010). “Caltech-UCSD birds 200”. In:

Xiao, Tianjun et al. (2015). “The application of two-level attention models in
deep convolutional neural network for fine-grained image classification”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 842–850.

Xie, Saining et al. (2015). “Hyper-class augmented and regularized deep learning
for fine-grained image classification”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2645–2654.

28

Xu, Zhe et al. (2015). “Augmenting strong supervision using web data for fine-
grained categorization”. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 2524–2532.

Yosinski, Jason et al. (2014). “How transferable are features in deep neural net-
works?” In: Advances in neural information processing systems, pp. 3320–3328.

Zhang, Ning et al. (2014). “Part-based R-CNNs for fine-grained category detection”.
In: Computer Vision–ECCV 2014. Springer, pp. 834–849.

Zhang, Yu et al. (2016). “Weakly supervised fine-grained categorization with part-
based image representation”. In: IEEE Transactions on Image Processing 25.4,
pp. 1713–1725.

Zhou, Bolei et al. (2014). “Learning deep features for scene recognition using places
database”. In: Advances in neural information processing systems, pp. 487–495.

Zhu, Xiangxin, Dragomir Anguelov, and Deva Ramanan (2014). “Capturing long-
tail distributions of object subcategories”. In:Proceedings of the IEEEConference
on Computer Vision and Pattern Recognition, pp. 915–922.

29

C h a p t e r 3

LEAN CROWDSOURCING: COMBINING HUMANS AND
MACHINES IN AN ONLINE SYSTEM

Branson, Steve, Grant Van Horn, and Pietro Perona (2017). “Lean Crowdsourcing:
Combining Humans and Machines in an Online System”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7474–7483.
doi: 10.1109/CVPR.2017.647.

3.1 Abstract
We introduce a method to greatly reduce the amount of redundant annotations
required when crowdsourcing annotations, such as bounding boxes, parts, and class
labels. For example, if two Mechanical Turkers happen to click on the same pixel
location when annotating a part in a given image–an event that is very unlikely to
occur by random chance– it is a strong indication that the location is correct. A
similar type of confidence can be obtained if a single Turker happened to agree
with a computer vision estimate. We thus incrementally collect a variable number
of worker annotations per image based on online estimates of confidence. This is
done using a sequential estimation of risk over a probabilistic model that combines
worker skill, image difficulty, and an incrementally trained computer vision model.
We develop specialized models and algorithms for binary annotation, part keypoint
annotation, and sets of bounding box annotations. We show that our method can
reduce annotation time by a factor of 4-11 for binary filtering of websearch results,
2-4 for annotation of boxes of pedestrians in images, while in many cases also
reducing annotation error. We will make an end-to-end version of our system
publicly available.

3.2 Introduction
Availability of large labeled datasets like ImageNet (Deng, Dong, et al., 2009; Lin et
al., 2014) is one of the main catalysts for recent dramatic performance improvement
in computer vision (Krizhevsky, Sutskever, and Hinton, 2012; He et al., 2015;
Szegedy, W. Liu, et al., 2015; Szegedy, Reed, et al., 2014). While sophisticated
crowdsourcing algorithms have been developed for classification (Whitehill et al.,
2009; Welinder, Branson, et al., 2010; Welinder and Perona, 2010), there is a

30

relative lack of methods and publicly available tools that use smarter crowdsourcing
algorithms for other types of annotation.

Computer
Vision

Online Model of
Worker Skill

and Crowdsourcing

Amazon
Mechanical

Turk

Human
AnnotationsDataset

2

3

5

4

6

1

Figure 3.1: A schematic of our proposed method. (1) The system is initialized with
a dataset of images. Each global step of the method will add annotations to this
dataset. (2) The computer vision system incrementally retrains using current worker
labels. (3) The crowdsourcing model updates its predictions of worker skills and
image labels and decides which images are finished based on a risk-based quality
assurance threshold. Unfinished images are sent to AmazonMechanical Turk. (4-5)
Workers on AMT annotate the images. (6) The crowdsourcing model continues to
update its predictions of worker skills and image labels, and the cycle is repeated
until all images are marked as complete.

We have developed a simple-to-use, publicly available tool that incorporates and
extends many recent advances in crowdsourcing methods to different types of an-
notation, like part annotation and multi-object bounding box annotation, and also
interfaces directly with Mechanical Turk. One key inspiration is the notion of on-
line crowdsourcing (Welinder and Perona, 2010), where instead of obtaining the
same number of annotations for all images, the parameters of the crowdsourcing
model are estimated incrementally until a desired confidence level on image labels
is achieved. We find that this type of approach is very effective for annotation
modalities such as parts and bounding boxes, if one first develops an appropriate
probabilistic model of annotation. Second, we develop and test models of worker
skill and image difficulty, which we develop for parts, bounding boxes, and binary
classification. Further, online crowdsourcing can naturally be extended by machine-
in-the-loop methods, where an incrementally-trained, computer vision predictor is
another source of information in the online crowdsourcing early stoppage criterion.

Our main contributions are: (1) an online algorithm and stopping criterion for
binary, part, and object crowdsourcing, (2) a worker skill and image difficulty
crowdsourcing model for binary, part, and object annotations, (3) incorporation of
online learning of computer vision algorithms to speedup crowdsourcing, and (4) a

31

publicly available tool that interfaces with Mechanical Turk and incorporates these
algorithms. We show that contributions 1–3 lead to significant improvements in
annotation time and/or annotation quality for each type of annotation. For binary
classification, annotation error with 1.37 workers per image is lower using our
method than when using majority vote and 15 workers per image. For bounding
boxes, our method produces lower error with 1.97 workers per image, compared
to majority vote using 7 workers per image. For parts, a variation of our system
without computer vision was used to annotate accurately a dataset of 11 semantic
parts on 55,000 images, averaging 2.3 workers per part.

We note that while incorporating computer vision in the loop speeds up annotation
time, computer vision researchers wishing to collect datasets for benchmarking
algorithms may choose to toggle off this option to avoid potential issues with bias.
At the same time, we believe that it is a very valuable feature in applied settings.
For example, a biologist may need to annotate the location of all cells in a dataset of
images, not caring if the annotations come from humans or machines, but needing
to ensure a certain level of annotation quality. Our method offers an end-to-end tool
for collecting training data, training a prediction algorithm, combining human and
machine predictions and vetting their quality, while attempting to minimize human
time. This may be a useful tool for several applications.

3.3 Related Work
Kovashka et al. (A. Kovashka et al., 2016) provide a thorough overview of crowd-
sourcing in computer vision. Sorokin and Forsyth (Sorokin and Forsyth, 2008)
proposed three methods for collecting quality annotations on crowdsourcing plat-
forms. The first is to build a gold standard set (Larlus et al., 2014) to verify work
and filter out underperforming workers. The second is to use a grading scheme
to evaluate the performance of the workers. This scheme can be accomplished by
workers grading each other through a variety of interfaces (Su, Deng, and Fei-Fei,
2012; Russakovsky, L.-J. Li, and Fei-Fei, 2015; Lin et al., 2014), workers grading
themselves through monetary incentives (Nihar Bhadresh Shah and Denny Zhou,
2015), and heuristic grading (Russell et al., 2008; Vittayakorn and J. Hays, 2011).
The third method resorts to redundantly annotating images and aggregate the results.
This has become the standard method for crowdsourcing.

There is a large body of work that explores aggregating worker answers to maximize
the accuracy of the estimated labels. Approaches that propose methods to combine

32

multiple annotations with an assurance on quality are themost similar to ourmethod.
Existing work has predominantly used the Dawid-Skene model (Dawid and Skene,
1979). The Dawid-Skene model iteratively infers the reliability of each worker and
updates the belief on the true labels. In this setup, individual tasks are assumed to
be equally difficult, and researchers often reduce the task to binary classification.
Inference algorithms for this model include (Dawid and Skene, 1979; Smyth et
al., 1995; Jin and Ghahramani, 2002; Sheng, Provost, and Ipeirotis, 2008; Ghosh,
Kale, and McAfee, 2011; Karger, Oh, and D. Shah, 2011; Q. Liu, Peng, and Ihler,
2012; Denny Zhou et al., 2012; H. Li and Yu, 2014; Y. Zhang et al., 2014; Dalvi
et al., 2013; Karger, Oh, and D. Shah, 2013; Ok et al., 2016). Some work has
focused on theoretical bounds for this setup (Karger, Oh, and D. Shah, 2011; Ghosh,
Kale, and McAfee, 2011; Gao and Dengyong Zhou, 2013; Y. Zhang et al., 2014;
Dalvi et al., 2013). (Sheng, Provost, and Ipeirotis, 2008; Tian and Zhu, 2015)
reconcile multiple annotators through majority voting and worker quality estimates.
(Welinder and Perona, 2010; Welinder, Branson, et al., 2010; Long, Hua, and
Kapoor, 2013; Wang, Ipeirotis, and Provost, 2013) jointly model labels and the
competence of the annotators. (Hua et al., 2013; Long, Hua, and Kapoor, 2013;
Long and Hua, 2015) explore the active learning regime of selecting the next data
to annotate, as well as which annotator to query. Our approach differs from these
previous methods by merging the online notion of (Welinder and Perona, 2010)
with the worker modeling of (Welinder, Branson, et al., 2010), and we incorporate a
computer vision component as well as provide the framework for performing binary
classification, bounding box and part annotations.

In online marketplaces, it is typically unrealistic to assume that all workers are
equally adept at a task. The previously listed work specifically tries to model
this. However, it is also unrealistic to assume that task difficulty is constant for all
tasks. Methods have been developed to model both worker skills and task difficulty
(Carpenter, 2008; Raykar et al., 2010; Whitehill et al., 2009; Welinder, Branson,
et al., 2010; Snow et al., 2008; Sheng, Provost, and Ipeirotis, 2008; Denny Zhou
et al., 2012; Dengyong Zhou et al., 2015), and there is a growing body of work
that moves past the Dawid-Skene model (Carpenter, 2008; Whitehill et al., 2009;
Welinder, Branson, et al., 2010; Long, Hua, and Kapoor, 2013; Wang, Ipeirotis,
and Provost, 2013; Dengyong Zhou et al., 2015; Nihar B Shah, Balakrishnan, and
Wainwright, 2016).

Our work is related to human-in-the-loop active learning. Prior work in this area

33

has contributed methods for tasks such as fine-grained image classification (Branson
et al., 2010; Wah, Branson, Perona, et al., 2011; Deng, Krause, and Fei-Fei, 2013;
Wah, VanHorn, et al., 2014), image segmentation (Rubinstein, C. Liu, and Freeman,
2012; Dutt Jain and Grauman, 2013; Gurari et al., 2015; Jain and Grauman, 2016),
attribute-based classification (A. Kovashka, Vijayanarasimhan, and Grauman, 2011;
Parkash and Parikh, 2012; Biswas and Parikh, 2013), image clustering (Lad and
Parikh, 2014), image annotation (Vijayanarasimhan and Grauman, 2009a; Vijaya-
narasimhan and Grauman, 2009b; Siddiquie and Gupta, 2010; Yao et al., 2012;
Russakovsky, L.-J. Li, and Fei-Fei, 2015), human interaction (Khodabandeh et al.,
2015) and object annotation (Vondrick, D. Patterson, and Ramanan, 2013) and seg-
mentation (Shankar Nagaraja, Schmidt, and Brox, 2015) in videos. For simplicity,
we do not incorporate an active learning component when selecting the next batch
of images to annotate or question to ask, but this can be included in our framework.

Additional methods to reduce annotation effort include better interfaces, better task
organization (Chilton et al., 2013; Deng, Russakovsky, et al., 2014; Wilber, Kwak,
and S. J. Belongie, 2014), and gamifcation (Von Ahn and Dabbish, 2004; Von Ahn
and Dabbish, 2005; Kazemzadeh et al., 2014; Deng, Krause, and Fei-Fei, 2013).

Our work is different from the previous work because we combine a worker skill
model, a task difficulty model, a computer vision component, and presenting frame-
works for binary classification, multi-instance bounding box annotation, and part
keypoint annotation. Additional methods have focused on filtering out bad workers
(Long, Hua, and Kapoor, 2013; Hua et al., 2013; Long and Hua, 2015) or com-
bining known weak and strong annotators (Chicheng Zhang and Chaudhuri, 2015;
Gurari et al., 2015; G. Patterson, G. V. H. S. Belongie, and P. P. J. Hays, 2015), or
optimizing the payment to the workers (Wang, Ipeirotis, and Provost, 2013).

3.4 Method
Let X = {xi}Ni=1 be a set of images we want to label with unknown true labels
Y = {yi}Ni=1 using a pool of imperfect crowd workers. We first describe the problem
generally, where depending on the desired application, each yi may represent a
class label, bounding box, part location, or some other type of semantic annotation.
For each image i, our goal is to recover a label ȳi that is equivalent to yi with high
probability by combining multiple redundant annotations Zi = {zi j} |Wi |

j=1 , where each
zi j is an imperfect worker label (i.e., their perception of yi), andWi is that set of
workers that annotated image i.

34

Importantly, the number of annotations |Wi | can vary significantly for different
images i. This occurs because our confidence in an estimated label ȳi will depend not
only on the number of redundant annotations |Wi |, but also on the level of agreement
between those annotations Zi, the skill level of the particular workers that annotated
i, and the agreement with a computer vision algorithm (that is incrementally trained).
For example, if two different annotators both happened to provide nearly identical
bounding box annotations for a given image–the probability of which is very small
by random chance– we could be fairly confident of their correctness. On the
other hand, we couldn’t, as a general rule, collect only two bounding boxes per
image, because workers will occasionally make mistakes. Our objective is then to
implement an online policy for choosing whether or not to augment each image with
additional annotations and to incrementally train a computer vision algorithm with
the annotations that have been collected so far.

Online Crowdsourcing
We first describe a simplified model that does not include a worker skill model or
computer vision in the loop. We will augment this simplified model in subsequent
sections. At any given time step, let Z = {Zi}Ni=1 be the set of worker annotations for
all images. We define the probability over observed images, true labels, and worker
labels as p(Y, Z) =∏

i p(yi)
(∏

j∈Wi
p(zi j |yi)

)
, where p(yi) is a prior probability over

possible labels, and p(zi j |yi) is a model of noisy worker annotations. Here we have
assumed that each worker label is independent. The maximum likelihood solution
Ȳ = arg max p(Y |Z) = arg max p(Y, Z) can be found for each image separately:

ȳi = arg max
yi

©«p(yi)
∏
j∈Wi

p(zi j |yi)
ª®¬ (3.1)

The risk R(ȳi) =
∫
yi
`(yi, ȳi)p(yi |Zi) associated with the predicted label is

R(ȳi) =

∫
yi
`(yi, ȳi)p(yi)

∏
j∈Wi

p(zi j |yi)∫
yi

p(yi)
∏

j∈Wi
p(zi j |yi)

(3.2)

where `(yi, ȳi) is the loss associated with the predicted label ȳi when the true
label is yi. A logical criterion is to accept ȳi once the risk drops below a certain
threshold R(ȳi) ≤ τε (i.e., τε is the minimum tolerable error per image). The basic
online crowdsourcing algorithm, shown in Algorithm 1, processes images in batches
(because sending images to services like Mechanical Turk is easier in batches).

35

Currently, we give priority to annotating unfinished images with the fewest number
ofworker annotation |Wi |; however, one could incorporatemore sophisticated active
learning criteria in future work. Each time a new batch is received, combined image
labels ȳi are re-estimated, and the risk criterion is used to determine whether or not
an image is finished or may require more worker annotations.

Algorithm 1 Online Crowdsourcing
1: input: unlabeled images X = {xi}Ni=1
2: Initialize unfinished/finished sets: U ← {i}Ni=1, F ← ∅
3: Initialize W̄, Ī using prior probabilities
4: repeat
5: Select a batch B ⊆ U of unfinished examples
6: For i ∈ B obtain new crowd label zi j : Zi ← Zi ∪ zi j
7: repeat .Max likelihood estimation
8: Estimate dataset-wide priors p(di), p(w j)
9: Predict true labels:

∀i, ȳi ← arg maxyi p(yi |xi, θ̄)p(Zi |yi, d̄i, W̄)
10: Predict image difficulties:

∀i, d̄i ← arg maxdi p(di)p(Zi | ȳi, di, W̄)
11: Predict worker parameters:

∀ j, w̄ j ← arg maxwj p(w j)
∏

i∈Ij
p(zi j | ȳi, d̄i,w j)

12: until Until convergence
13: Using K-fold cross-validation, train computer vision on dataset {(xi, ȳi)}i,|Wi |>0,

and calibrate probabilities p(yi |xi, θ̄k)
14: Predict true labels:

∀i, ȳi ← arg maxyi p(yi |xi, θ̄)p(Zi |yi, d̄i, W̄)
15: for i ∈ B do . Check for finished labels
16: Ri ←

∫
yi
`(yi,ȳi)p(ȳi |xi,θ̄)

∏
j∈Wi

p(zi j |yi,di,wj)∫
yi

p(ȳi |xi,θ̄)
∏

j∈Wi
p(zi j |yi,di,wj)

17: if Ri ≤ τε : F ← F ∪ i, U ← U \ i
18: end for
19: until U = ∅
20: return Y ← { ȳi}Ni=1

Adding Computer Vision
A smarter algorithm can be obtained by using the actual pixel contents xi of each
image as an additional source of information. We consider two possible approaches:
(1) a naive algorithm that treats computer vision the same way as a human worker
by appending the computer vision prediction zi,cv to the set of worker labelsWi,

36

and (2) a smarter algorithm that exploits the fact that computer vision can provide
additional information than a single label output (e.g., confidence estimates that a
bounding box occurs at each pixel location in an image).

For the smarter approach, the joint probability over observed images, true labels,
and worker labels is:

p(Y, Z, θ |X) = p(θ)
∏

i

©«p(yi |xi, θ)
∏
j∈Wi

p(zi j |yi)
ª®¬ (3.3)

where p(yi |xi, θ) is the estimate of a computer vision algorithm with parameters θ.
If θ is fixed, the predicted label ȳi for each image and its associated risk R(ȳi) can
be simply found by using the computer vision prediction p(yi |xi, θ) instead of the
prior p(yi) in Equations 3.1, 3.2.

Training Computer Vision:
Themain challenge is then training the computer vision system (estimating computer
vision parameters θ), given thatwe incrementally obtain newworker labels over time.
While many possible approaches could be used, in practice we retrain the computer
vision algorithm each time we obtain a new batch of labels from Mechanical Turk.
For each step, we treat the currently predicted labels ȳi for each image with at least
one worker label |Wi | ≥ 1 as training labels to an off-the-shelf computer vision
algorithm. While the predicted labels ȳi are clearly very noisy when the number of
workers per image is still small, we rely on a post-training probability calibration
step to cope with resulting noisy computer vision predictions. We use a modified
version of K-fold cross validation: for each split k, we use (K − 1)/K examples
for training and the remaining (k − 1)/K examples for probability calibration. We
filter out images with |Wi | < 1 from both training and probability calibration;
however, all 1/K images are used for outputting probability estimates p(yi |xi, θk),
including images with |Wi | = 0. This procedure ensures that estimates p(yi |xi, θk)
are produced using a model that wasn’t trained on labels from image i.

Worker Skill and Image Difficulty Model
More sophisticated methods can model the fact that some workers are more skillful
or careful than others, and some images are more difficult or ambiguous than others.
Let W = {w j}Mj=1 be parameters encoding the skill level of our pool of M crowd
workers, and let D = {di}ni=1 be parameters encoding the level of inherent difficulty
of annotating each image i (to this point, we are just defining W and D abstractly).

37

Then the joint probability is

p(Y, Z,W,D, θ |X) =
p(θ)

∏
i

(p(di)p(yi |xi, θ))
∏

j

p(w j)
∏

i, j∈Wi

p(zi j |yi, di,w j) (3.4)

where p(di) is a prior on the image difficulty, p(w j) is a prior on a worker’s
skill level, and p(zi j |yi, di,w j) models noisy worker responses as a function of the
ground truth label, image difficulty, and worker skill parameters. Let Ȳ, W̄, D̄, θ̄ =

arg maxY,W,D,θ p(Y,W,D, θ |X, Z) be the maximum likelihood solution to Eq. 3.4: In
practice, we estimate parameters using alternating maximization algorithms, where
we optimize with respect to the parameters of one image or worker at a time (often
with fast analytical solutions):

ȳi = arg max
yi

p(yi |xi, θ̄)
∏
j∈Wi

p(zi j |yi, di,w j) (3.5)

d̄i = arg max
di

p(di)
∏
j∈Wi

p(zi j |yi, di,w j) (3.6)

w̄ j = arg max
wj

p(w j)
∏
i∈Ij

p(zi j | ȳi, d̄i,w j) (3.7)

θ̄ = arg max
θ

p(θ)
∏

i

p(ȳi |xi, θ) (3.8)

where Ij is the set of images labeled by worker j. Exact computation of the risk
Ri = R(ȳi) is difficult because labels for different images are correlated through W

and θ. An estimate is to assume our approximations W̄ , Ī, and θ̄ are good enough
R(ȳi) ≈

∫
yi
`(yi, ȳi)p(yi |X, Z, θ̄, W̄, D̄)

R(ȳi) ≈

∫
yi
`(yi, ȳi)p(yi |xi, θ̄)

∏
j∈Wi

p(zi j |yi, d̄i, w̄ j)∫
yi

p(yi |xi, θ̄)
∏

j∈Wi
p(zi j |yi, d̄i, w̄ j)

such that Eq. 3.9 can be solved separately for each image i.

Considerations in designing priors:
Incorporating priors is important to make the system more robust. Due to the online
nature of the algorithm, in early batches the number of images |Ij | annotated by each
worker j is likely small, making worker skill w j difficult to estimate. Additionally,
in practice many images will satisfy the minimum risk criterion with two or less
labels |Wi | ≤ 2, making image difficulty di difficult to estimate. In practice we use
a tiered prior system. A dataset-wide worker skill prior p(w j) and image difficulty

38

prior p(di) (treating all workers and images the same) is estimated and used to
regularize per worker and per image parameters when the number of annotations
is small. As a heuristic to avoid over-estimating skills, we restrict ourselves to
considering images with at least 2 worker labels |Wi | > 1 when learning worker
skills, image difficulties, and their priors, since agreement between worker labels
is the only viable signal for estimating worker skill. We also employ a hand-coded
prior that regularizes the learned dataset-wide priors. We will describe what this
means specifically in subsequent sections when we describe each type of annotation.

3.5 Models For Common Types of Annotations
Algorithm1provides pseudo-code to implement the online crowdsourcing algorithm
for any type of annotation. Supporting a new type of annotation involves defining
how to represent true labels yi and worker annotations zi j , and implementing solvers
for inferring the (1) true labels ȳi (Eq. 3.5), (2) image difficulties d̄i (Eq. 3.6), (3)
worker skills w̄ j (Eq. 3.7), (4) computer vision parameters θ̄ (Eq. 3.8), and (5) risk
Ri associated with the predicted true label (Eq. 3.9). Although this is somewhat
involved, we note that each component 2-5 individually (though useful in practice)
could optionally be omitted. In the sections below, we detail models and algorithms
for 3 common types of annotations: class labels, part annotations, and multi-object
bounding box labels. These cover several building blocks for different annotation
types including boolean variables, continuous variables, and unordered sets.

3.6 Binary Annotation
Here, each label yi ∈ 0, 1, denotes the absence/presence of a class of interest. This
is the simplest type of annotation and has also been covered most extensively in
crowdsourcing literature, therefore we try to keep this section as simple as possible.
At the same time, many important datasets such as ImageNet (Deng, Dong, et al.,
2009) and Caltech-256 (Griffin, Holub, and Perona, 2007) are obtained by binary
filtering of image search results, and we are unaware of an existing crowdsourcing
tool that incorporates online crowdsourcingwith aworker skillmodel (not tomention
computer vision), so we believe our binary annotation tool is worthwhile.

Binary worker skill model:
Wemodel worker skill w j = [p1

j, p0
j] using two parameters representing the worker’s

skill at identifying true positives and true negatives, respectively. Here, we assume
zi j given yi is Bernoulli, such that p(zi j |yi = 1) = p1

j and p(zi j |yi = 0) = p0
j . As

39

described in Section 3.4, we use a tiered set of priors to make the system robust
in corner case settings where there are few workers or images. Ignoring worker
identity and assuming a worker label z given y is Bernoulli such that p(z |y =
1) = p1 and p(z |y = 0) = p0, we add Beta priors Beta

(
nβp0, nβ(1 − p0)

)
and

Beta
(
nβp1, nβ(1 − p1)

)
on p0

j and p1
j , respectively, where nβ is the strength of

the prior. An intuition of this is that worker j’s own labels zi j softly start to
dominate estimation of w j once she has labeled more than nβ images, otherwise
the dataset-wide priors dominate. We also place Beta priors Beta

(
nβp, nβ(1 − p)

)
on p0 and p1 to handle cases such as the first couple batches of Algorithm 1. In
our implementation, we use p = .8 as a general fairly conservative prior on binary
variables and nβ = 5. This model results in simple estimation of worker skill priors
p(w j) in line 8 of Algorithm 1 by counting the number of labels agreeing with
combined predictions:

pk =
nβp +

∑
i j 1[zi j = ȳi = k, |Wi | > 1]

nβ +
∑

i j 1[ȳi = k, |Wi | > 1] , k = 0, 1 (3.9)

where 1[] is the indicator function. Analogously, we estimate worker skills w j in
line 11 of Algorithm 1 by counting worker j’s labels that agree with combined
predictions:

pk
j =

nβpk +
∑

i∈Ij 1[zi j = ȳi = k, |Wi | > 1]
nβ +

∑
i∈Ij 1[ȳi = k, |Wi | > 1] , k = 0, 1 (3.10)

For simplicity, we decided to omit a notion of image difficulty in our binary model
after experimentally finding that our simple model was competitive with more so-
phisticated models like CUBAM (Welinder, Branson, et al., 2010) on most datasets.

Binary computer vision model:
We use a simple computer vision model based on training a linear SVM on features
from a general purpose pre-trained CNN feature extractor (our implementation uses
VGG), followed by probability calibration using Platt scaling (Platt et al., 1999)
with the validation splits described in Sec. 3.4. This results in probability estimates
p(yi |xi, θ) = σ(γ θ ·φ(xi)) for each image i, where φ(xi) is a CNN feature vector, θ is
a learned SVM weight vector, γ is probability calibration scalar from Platt scaling,
and σ() is the sigmoid function. This simple procedure is easily fast enough to run
in time less than the time to annotate a batch on Mechanical Turk and is reasonably
general purpose.

40

3.7 Part Keypoint Annotation
Part keypoint annotations are popular in computer vision and included in datasets
such as MSCOCO (Lin et al., 2014), MPII human pose (Andriluka et al., 2014),
and CUB-200-2011 (Wah, Branson, Welinder, et al., 2011). Here, each part is
typically represented as an x, y pixel location l and binary visibility variable v, such
that yi = (li, vi). While we can model v using the exact same model as for binary
classification (Section 3.6), l is a continuous variable that necessitates different
models. For simplicity, even though most datasets contain several semantic parts of
an object, we model and collect each part independently. This simplifies notation
and collection; in our experience, Mechanical Turkers tend to be faster/better at
annotating a single part in many images than multiple parts in the same image.

We first note that modeling keypoint visibility as binary classification results in two
worker skill parameters p0

j and p1
j , which correspond to the probability that the

worker thinks a part is visible when vi = 0 and vi = 1, respectively–these encode
different annotators’ tendencies and biases in annotating a part’s visibility. The
reader can refer to Eqs. 3.10 and 3.9 for computation of p0

j, p1
j and their priors.

Keypoint worker skill image difficulty model:
Let li be the true location of a keypoint in image i, while li j is the location clicked by
worker j. We assume li j is Gaussian distributed around li with variance σ2

i j . This
variance is governed by theworker’s skill or image difficultyσ2

i j = ei jσ
2
j +(1−ei j)σ2

i ,
where σ2

j represents worker noise (e.g., some workers are more precise than others)
andσ2

i represents per image noise (e.g., the precise location of a bird’s belly in a given
image maybe inherently ambiguous), and ei j is a binary variable that determines if
the variance will be governed by worker skill or image difficulty. However, worker j

sometimes makes a gross mistake and clicks somewhere very far from the Gaussian
center (e.g., worker j could be a spammer or could have accidentally clicked an
invalid location). mi j indicates whether or not j made a mistake–with probability
pm

j – in which case li j is uniformly distributed in the image. Thus

p(li j |yi, di,w j) =
∑

mi j∈0,1
p(mi j |pm

j)p(li j |li,mi j, σi j) (3.11)

where p(mi j |pm
j) = mi j pm

j +(1−mi j)(1−pm
j), p(li j |li,mi j, σi j) =

ei j
|xi | +(1−ei j)g(‖li j−

li‖2;σ2
i j), |xi | is the number of pixel locations in i, and g(x2;σ2) is the probability

density function for the normal distribution. In summary, we have 4 worker skill
parameters w j = [σj, pm

j , p0
j, p1

j] describing errors in clicking precise locations, the

41

Ground TruthPredictedWorker 1 Worker 2

Ground TruthPredictedWorker 1 Worker 2

Figure 3.2: Example part annotation sequence showing the common situation where
the responses from 2 workers correlate well and are enough for the system to mark
the images as finished.

probability of making a mistake, probabilities of correctly identifying visibility,
and one image difficulty parameter di = σi describing ambiguity of the exact
keypoint location in the image. As described in Section 3.6, we place a dataset-
wide Beta prior Beta

(
nβpm, nβ(1 − pm)

)
on pm

j , where pm is a worker agnostic
probability of making a mistake and an additional Beta prior Beta

(
nβp, nβ(1 − p)

)
on pm. Similarly, we place Scaled inverse chi-squared priors on σ2

j and σ2
i , such

that σ2
j ∼ scale − inv−χ2(nβ, σ2) and σ2

i ∼ scale − inv−χ2(nβ, σ2) where σ2 is a
dataset-wide variance in click location.

Inferring worker and image parameters:
These priors would lead to simple analytical solutions toward inferring themaximum
likelihood image difficulties (Eq. 3.6) and worker skills (Eq. 3.7), if mi j , ei j , and θ
were known. In practice, we handle latent variables mi j and ei j using expectation
maximization, with the maximization step over all worker and image parameters,
such that worker skill parameters are estimated as

σ2
i =

nβσ2 +
∑

j∈Wi
(1 − Eei j)(1 − Emi j)‖li j − li‖2

nβ + 2 +
∑

j∈Wi
(1 − Eei j)(1 − Emi j)

(3.12)

σ2
j =

nβσ2 +
∑

i∈Ij Eei j(1 − Emi j)‖li j − li‖2

n + 2 +
∑

i∈Ij Eei j(1 − Emi j)
(3.13)

pm
j =

nβpm +
∑

i∈Ij Emi j

nβ + |Ij |
(3.14)

These expressions all have intuitive meaning of being like standard empirical es-
timates of variance or binomial parameters, except that each example might be
soft-weighted by Emi j or Eei j , and nβ synthetic examples have been added from the
global prior distribution. Expectations are then

Eei j =
g j

gi + g j
, Emi j =

1/|xi |
1/|xi | + (1 − Eei j)gi + Eei jg j

gi = g(‖li j − li‖2;σ2
i), g j = g(‖li j − li‖2;σ2

j) (3.15)

42

We alternate between maximization and expectation steps, where we initialize with
Emi j = 0 (i.e., assuming an annotator didn’t make a mistake) and Eei j = .5 (i.e.,
assuming worker noise and image difficulty have equal contribution).

Inferring true labels:
Inferring ȳi (Eq. 3.5) must be done in a more brute-force way due to the presence
of the computer vision term p(yi |xi, θ). Let Xi be a vector of length |xi | that stores
a probabilistic part detection map; that is, it stores the value of p(yi |xi, θ) for each
possible value of yi. Let Zi j be a corresponding vector of length |xi | that stores the
value of p(zi j |yi, di,w j) at each pixel location (computed using Eq. 3.111). Then the
vector Yi = Xi

∏
j∈Wi
Zi j densely stores the likelihood of all possible values of yi,

where products are assumed to be computed using component-wise multiplication.
The maximum likelihood label ȳi is simply the argmax of Yi.

Computing risk:
Let Li be a vector of length |xi | that stores the loss `(yi, ȳi) for each possible
value of yi. We assume a part prediction is incorrect if its distance from ground
truth is bigger than some radius (in practice, we compute the standard deviation
of Mechanical Turker click responses on a per part basis and set the radius equal
to 2 standard deviations). The risk associated with predicted label ȳi according to
Eq. 3.9 is then Ri = L

T
i Yi/‖Yi‖1.

Computer Vision:
We can use any detection system that can produce dense detection scores for pixel
locations in the image, such as a fully convolutional CNN. The part detection scores
can be converted to probabilities using cross-validation, such that part detection
scores m(xi, li; θ) are converted to probabilities

p(yi |xi, θ) =
exp{γm(xi, yi; θ)}∑
li exp{γm(xi, yi; θ)}

(3.16)

with γ learned to maximize the likelihood on the validation set.

3.8 Multi-Object Bounding Box Annotations
Similar types of models that were used for part keypoints can be applied to other
types of continuous annotations like bounding boxes. However, a significant new
challenge is introduced if multiple objects are present in the image, such that each

1In practice, we replace ei j and mi j with Eei j and Emi j in Eq. 3.11, which corresponds to
marginalizing over latent variables ei j and mi j , instead of using maximum likelihood estimates.

43

worker may label a different number of bounding boxes and may label objects in
a different order. Checking for finished labels means ensuring not only that the
boundaries of each box are accurate, but also that there are no false negatives or
false positives.

Ground TruthWorker 1 PredictionComputer Vision

Ground TruthPredictionComputer Vision Worker 1 Worker 2

Figure 3.3: Bounding box annotation sequences. The top sequence highlights a good
case where only the computer vision system and one human are needed to finish the
image. The bottom sequence highlights the average case where two workers and the
computer vision system are needed to finish the image.

Bounding box worker skill and image difficulty model
An image annotation yi = {br

i }
|Bi |
r=1 is composed of a set of objects in the image where

box br
i is composed of x,y,x2,y2 coordinates. Worker j’s corresponding annotation

zi j = {bk
i j}
|Bi j |
k=1 is composed of a potentially different number |Bi j | of box locations

with different ordering. However, if we can predict latent assignments {ak
i j}
|Bi j |
k=1 ,

where bk
i j is worker j’s perception of true box b

aki j
i , we can model annotation of

a matched bounding box exactly as for keypoints, where 2D vectors l have been
replaced by 4D vectors b.

Thus, as for keypoints the difficulty of image i is represented by a set of bounding
box difficulties: di = {σr

i }
|Bi |
r=1, which measure to what extent the boundaries of each

object in the image are inherently ambiguous. A worker’s skill w j = {pfp
j , pfn

j , σj}
encodes the probability pfp

j that an annotated box bk
i j is a false positive (i.e., ak

i j = ∅),
the probability pfn

j that a ground truth box br
i is a false negative (i.e., ∀k, ak

i j , r), and
the worker’s variance σ2

j in annotating the exact boundary of a box is modeled as in
Section 3.7. The number of true positives ntp, false positives nfp, and false negatives
be nfn can be written as ntp =

∑|Bi j |
k=1 1[ak

i j , ∅], nfn = |Bi | − ntp, nfp = |Bi j | − ntp.
This leads to annotation probabilities

p(zi j |yi, di,w j) =
∏

k=1...Bi j,aki j,∅

g

(����baki j
i − bk

i j

����2 ;σk2

i j

)
(pfn

j)nfn(1 − pfn
j)ntp(pfp

j)
nfp(1 − pfp

j)
ntp (3.17)

44

As in the previous sections, we place dataset-wide priors on all worker and image
parameters.

Computer vision
We train a computer vision detector based on MSC-MultiBox (Szegedy, Reed, et
al., 2014), which computes a shortlist of possible object detections and associated
detection scores: {(bk

i,cv,m
k
i,cv)}

|Bi,cv |
k=1 . We choose to treat computer vision like a

worker, with learned parameters [pfp
cv, pfn

cv, σcv]. The main difference is that we
replace the false positive parameter pfp

cv with a per bounding box prediction of the
probability of correctness as a function of its detection score mk

i,cv. The shortlist of
detections is first matched to boxes in the predicted label ȳi = {br

i }
|Bi |
r=1. Let r k

i,cv be 1
or−1 if detected box bk

i,cv wasmatched or unmatched to a box in ȳi. Detection scores
are converted to probabilities using Platt scaling and the validation sets described in
Section 3.4.

0 2 4 6 8 10 12 14

Avg Number of Human Workers per Image

10-2

10-1

100

E
rr

o
r

Method Comparison
prob-worker-cv-online-.02

prob-worker-cv-online-.01

prob-worker-cv-online-.005

prob-worker-cv-naive-online

prob-worker-online

prob-online

prob-worker-cv

prob-worker

prob

majority-vote

(a) BinaryMethod Com-
parison

0 2 4 6 8 10 12 14

Annotations Per Image

0

1000

2000

3000

4000

5000

6000

7000

Im
a
g
e
 C

o
u
n
t

Number of Annotations
prob-worker-cv-online-.02

prob-worker-cv-online-.005

prob-worker-online

(b) Binary # Human An-
notations

0 Workers
Prediction: Scorpion

Ground Truth: Scorpion

1 Workers
Prediction: Scorpion

Ground Truth: Scorpion

14 Workers
Prediction: Scorpion

Ground Truth: Not Scorpion

(c) Binary Qualitative Examples

Figure 3.4: Crowdsourcing Binary Classification Annotations: (a) Comparison
of methods. Our full model prob-worker-cvonline-0.02 obtains results as good as
typical baselines with 15 workers (majority-vote and prob) using only 1.37 workers
per image on average. (b) Histogram of the number of human annotations required
for each image. (c) The image on the left represents an average annotation situation
where only the computer vision label and one worker label are needed to confidently
label the image. The image on the right (which is not a scorpion) represents a
difficult case in which many workers disagreed on the label.

Inferring true labels and assignments
We devise an approximate algorithm to solve for the maximize likelihood label ȳi

(Eq. 3.5) concurrently with solving for the best assignment variables ak
i j between

worker and ground truth bounding boxes:

ȳi, ai = arg max
yi,ai

log
∑
j∈Wi

log p(zi j |yi, di,w j) (3.18)

45

where p(zi j |yi, di,w j) is defined in Eq. 3.17. We formulate the problem as a fa-
cility location problem Erlenkotter, 1978, a type of clustering problem where the
objective is to choose a set of "facilities" to open up given that each "city" must
be connected to a single facility. One can assign custom costs for opening each
facility and connecting a given city to a given facility. Simple greedy algorithms are
known to have good approximation guarantees for some facility location problems.
In our formulation, facilities will be boxes selected to add to the predicted combined
label ȳi, and city-facility costs will be costs associated with assigning a worker
box to an opened box. Due to space limitations we omit derivation details; how-
ever, we set facility open costs Copen(bk

i j) =
∑

j∈Wi
− log pfn

j and city-facility costs
Cmatch(bk

i j, b
k ′
i j ′) = − log(1− pfn

j)+ log pfn
j − log(1− pfp

j) − log g(‖bk
i j − bk ′

i j ′‖
2;σ2

j) for
matching worker box bk

i j to facility bk ′
i j ′, while not allowing connections where

j = j′ unless k = k′, j = j′. We add a dummy facility with open cost 0,
such that cities matched to it correspond to worker boxes that are false positives:
Cmatch(bk

i j, dummy) = − log pfp
j .

Computing risk
We assume that the loss `(ȳi, yi) for annotating bounding boxes is defined as the
number of false positive bounding boxes plus the number of false negatives, where
boxes match if their area of intersection over union is at least 50%. Previously in this
section, we described a procedure for inferring assignments {ak

i j}
|Bi j |
k=1 between boxes

in each worker label zi j = {bk
i j}
|Bi j |
k=1 and predicted combined labels ȳi = {b̄r

i }
B̄i

r=1.
To simplify calculation of risk, we assume our inferred correspondences are valid.
In this case, the probability p(fp(b̄r

i)) that a box b̄r
i ∈ ȳi is a false positive can be

computed by evaluating the likelihood of worker labels with and without b̄r
i :

p(fp(b̄r
i)) =

∏
j∈Wi j

p(zi j | ȳi \ b̄r
i , di,w j)∏

j∈Wi j
p(zi j | ȳi \ b̄r

i , di,w j) +
∏

j∈Wi j
p(zi j | ȳi, di,w j)

(3.19)

=
1

1 +
∏

j∈Wi j

p(zi j | ȳi,di,wj)
p(zi j | ȳi\b̄ri ,di,wj)

(3.20)

=
1

1 +
∏

j∈Wi j
pfn

j
∏

k,aki j=r

(1−pfn
j)(1−pfp

j)g
(
bki j ;b̄

r
i ,σ

k2
i j

)
pfn
j pfp

j

(3.21)

where the second line was found by substituting in p(zi j | ȳi, di,w j) as defined in Eq.
18 of the main paper. Computing the expected number of false negatives is more
complicated, because it involves considering each possible bounding box location

46

b̄r ′
i in the image (not just in ȳi), and evaluating the relative likelihood of all worker

labels if b̄r ′
i were added ȳi, so p(fn(b̄r ′

i)) =:∏
j∈Wi j

p(zi j | ȳi ∪ b̄r ′
i , di,w j)∏

j∈Wi j
p(zi j | ȳi ∪ b̄r ′

i , di,w j) +
∏

j∈Wi j
p(zi j | ȳi, di,w j)

(3.22)

= 1 −
∏

j∈Wi j
p(zi j | ȳi, di,w j)∏

j∈Wi j
p(zi j | ȳi, di,w j) +

∏
j∈Wi j

p(zi j | ȳi ∪ b̄r ′
i , di,w j)

(3.23)

= 1 − 1

1 +
∏

j∈Wi j
pfn

j
∏

k,a′ki j =r ′
(1−pfn

j)(1−pfp
j)g

(
bki j ;b̄

r ′
i ,σ

k2
i j

)
pfn
j pfp

j

(3.24)

where a
′k
i j = r′ represents worker boxes that would be assigned to br ′

i if it existed in
the true label. To infer these assignments, we extend the facility location algorithm.
Note that in this algorithm, some worker boxes bk

i j may be assigned to the dummy
facility ak

i j = ∅, which represents worker boxes that are inferred to be false positives.
Such worker boxes could also be interpreted as providing probabilistic evidence that
a box may occur in a nearby location. We setup a second facility location problem
where we enumerate all possible values of br ′

i (in practice, we incrementally grow
a big set of all possible bounding box locations Bbig

i , adding a new one if its
intersection over union is at least 50% from all previous boxes in the set). Each
br ′

i in this set is a possible facility with open cost Copen(br ′
i) = − log

∏
j∈Wi

pfn
j ,

and each unassigned worker box bk
i j with ak

i j = ∅ is a city that can be connected

to it Cmatch(bk
i j, b

r ′
i) = − log

(
(1−pfn

j)(1−pfp
j)g

(
bki j ;b

r ′
i ,σ

k2
i j

)
pfn
j

)
. This procedure allows us to

infer assignments a
′k
i j = r′ such that evaluating Eq. 3.24 to estimate p(fn(b̄r ′

i)) is
possible. The facility location algorithm can be understood as a way of predicting
correspondences/assignments between worker boxes (since each worker may label
objects in a different order); the criterion to infer these correspondences is to
minimize the negative log-likelihood of all worker labels.

The last consideration is that predicted boxeswhere the boundaries are too inaccurate
will incur both a false positive and false negative according to our loss function.
Again assuming that assignments ak

i j between worker boxes and predicted boxes are
correct, the probability p(bnd_off(b̄r

i)) that a predicted box b̄r
i has boundaries that

47

are too far off is:

p(bnd_off(b̄r
i)) =

∫
b,IOU(b,b̄ri)>.5

∏
j k, j∈Wi,aki j=r

g(bk
i j ; b, σ2

i j)db (3.25)

≈
∫

b,
‖b−b̄r

i
‖2

‖b̄r
i
‖2

>.5

∏
j k, j∈Wi,aki j=r

g(bk
i j ; b, σ2

i j)db (3.26)

= 1 − erf
©«.5

√√√√ ∑
j k, j∈Wi,aki j=r

‖b̄r
i ‖2

σ2
i j

ª®®¬ (3.27)

where g(x; µ, σ2) is the density function of the Normal distribution and erf(x) is
the error function. In the 2nd line, we use an approximation that the region where
the intersection over union of two boxes is greater than a threshold is similar to the
region where their Euclidean distance is greater than a threshold. This enables the
integral to have a simple analytical solution.

The total risk Ri is then the expected number of false positives (computed by
summing over each br

i and computing p(fp(b̄r
i)) according to Eq. 3.21), the expected

number of false negatives (computed by summing p(fn(b̄r
i)) over all possible boxes

br ′
i in the image according to Eq. 3.24), and the expected number of true positives that

were too inaccurate to meet the area of intersection over union criterion (computed
by summing over each br

i and computing p(bnd_off(b̄r
i) using Eq. 3.27):

Ri =

|B̄i |∑
r=1

p(fp(b̄r
i)) +

|Bbig
i |∑

r ′=1
p(fn(b̄r ′

i)) +
|B̄i |∑
r=1
(1 − p(fp(b̄r

i)))p(bnd_off(b̄r
i)) (3.28)

3.9 Experiments
We used a live version of our method to collect parts for the NABirds dataset (see
Chapter 5). Additionally, we performed ablation studies on datasets for binary,
part, and bounding box annotation based on simulating results from real-life MTurk
worker annotations.

Evaluation Protocol
For each image, we collected an over-abundance of MTurk annotations per image,
which were used to simulate results by adding MTurk annotations in random order.
The online crowdsourcing algorithm chose whether or not to terminate receiving
additional annotations. For lesion studies, we crippled portions of Algorithm 1

48

as follows: (1) we removed online crowdsourcing by simply running lines 7-14
over the whole dataset with k workers per image and sweeping over choices of
k, (2) we removed the worker skill, image difficulty model by using dataset-wide
priors, and (3) we removed computer vision by using label priors p(yi) instead of
computer vision estimates p(yi |xi, θ). As a baseline, the majority-vote method in
plots 3.4a,3.5a,3.5c shows what we consider to be the most standard and commonly
used method/baseline for crowdsourcing. For binary annotation, this selects the
label with the most worker votes. For parts, it selects the median worker part
location (i.e., the one that matches the most other worker annotations with minimal
loss). The same basic method is used for bounding boxes, adding a box if the
majority of workers drew a box that could be matched to it. Figs. 3.4a,3.5a,3.5c
show results for different lesioned methods. In each method name, the tag worker
means that a worker skill and image difficulty model was used, the tag onlinemeans
that online crowdsourcing was used (with parameter τε = .005, unless a different
number appears in the method name), the tag cvnaive means that a naive method
to incorporate computer vision was used (by treating computer vision like a human
worker, see Section 3.4), and the tag cv means that computer vision probabilities
described in Section 3.6-3.7,3.8 were used.

0 1 2 3 4 5 6
Avg Number of Human Workers per Image

10-2

10-1

100

101

E
rr

o
r

Method Comparison
prob-worker-cv-online-.02

prob-worker-cv-online-.01

prob-worker-cv-online-.005

prob-worker-cv-naive-online

prob-worker-online

prob-online

prob-worker-cv

prob-worker

prob

majority-vote

(a) BBox Method
Comp

0 1 2 3 4 5 6 7
Annotations Per Image

0

200

400

600

800

1000

Im
a
g
e
 C

o
u
n
t

Number of Annotations
prob-worker-cv-online-.02

prob-worker-cv-online-.005

prob-worker-online

(b) BBox # Human
Annotations

0 1 2 3 4 5 6 7 8 9
Avg # of Human Workers per Part per Image

10-1

0.05

0.06

0.07

0.08

0.09

E
rr

o
r

Method Comparison
prob-worker-online

prob-online

prob-worker

prob

majority-vote

(c) Parts

0 1 2 3 4 5 6 7 8 9 10
Annotations Per Part

0

5000

10000

15000

20000

25000
Im

a
g
e
 C

o
u
n
t

Number of Annotations
prob-worker-online

prob-online

(d) Parts

Figure 3.5: Crowdsourcing Multi-Object Bounding Box and Part Annotations:
(a) Our full model prob-worker-cvonline-0.02 obtains slightly lower error than
majority-votewhile using only 1.97workers per image. (b)Histogram of the number
of human annotators per image. (c) The worker skill model (prob-worker) led to
10% reduction in error over the majority-vote baseline, and the online model cut
annotation time roughly in half. (d) Histogram of the number of human annotators
per part.

Binary Annotation
Wecollected 3 datasets (scorpions, beakers, and cardigan sweaters)whichwe believe
to be representative of the way datasets like ImageNet (Deng, Dong, et al., 2009)
and CUB-200-2011 (Wah, Branson, Welinder, et al., 2011) were collected. For each

49

category, we collected 4000 Flickr images by searching for the category name. 15
MTurkers per image were asked to filter search results. We obtained ground truth
labels by carefully annotating images ourselves. Fig. 3.4a summarizes performance
for the scorpion category (which is typical, see supplementary material for results
on more categories), whereas Fig. 3.4c shows qualitative examples.

The full model prob-worker-cvonline-0.02 obtained results as good as typical base-
lines with 15 workers (majority-vote and prob) using only 1.37workers per image on
average. The method prob-online corresponds to the online crowdsourcing method
of Welinder et al. (Welinder and Perona, 2010), which used 5.1 workers per im-
age and resulted in an error of 0.045; our full method prob-worker-cvonline-0.005
obtained lower error 0.041 with only 1.93 workers per image. We see that incor-
porating a worker skill model reduced converged error by about 33% (comparing
prob-worker tomajority-vote or prob). Adding online crowdsourcing roughly halved
the number of annotations required to obtain comparable error (comparing prob-
worker-online vs. prob-worker). Adding computer vision reduced the number of
annotations per image by an additional factor of 2.4 with comparable error (compar-
ing prob-worker-cvonline-0.005 to prob-worker-online). It also reduced annotations
by a factor of 1.8 compared to the naive method of using computer vision (prob-
worker-cvnaive-online), showing that using computer vision confidence estimates
is useful. Interestingly, in Fig. 3.4b we see that adding computer vision allowed
many images to be predicted confidently using no worker labels. Lastly, comparing
prob-worker-cvonline-0.02 to prob-worker-cvonline-0.005, which resulted in errors
of 0.051 and 0.041, respectively, and 1.37 vs. 1.93 workers per image, we see that
the error tolerance parameter τε offers an intuitive parameter to tradeoff annotation
time and quality.

Bounding Box Annotation
To evaluate bounding box annotation, we used a 1448 image subset of the Caltech
Roadside Pedestrian dataset (Hall and Perona, 2015). The dataset is challenging,
because it contains images of pedestrians in the wild; some images contain no
pedestrians, others contain many, pedestrians are often walking next to each other
causing overlapping bounding boxes, and some pedestrians are far away and less
than 10 pixels. We obtained ground truth annotations and 7 MTurk annotations per
image from the creators of the dataset. We incur error for all false positives and
negatives using a .5 IOU overlap criterion.

50

0 Workers
Prediction: Scorpion

Ground Truth: Scorpion

1 Workers
Prediction: Scorpion

Ground Truth: Scorpion

14 Workers
Prediction: Scorpion

Ground Truth: Not Scorpion

Figure 3.6: Binary classification sequences. The image on the left represents a best
case scenario where the computer vision is able to confidently label the image. The
image in the center represents an average annotation situation where the computer
vision label and one worker label is needed to confidently label the image. The
image on the right (which is not a scorpion) represents a difficult case in which
many workers disagreed on the label.

0 2 4 6 8 10 12 14

Avg Number of Human Workers per Image

10-2

10-1

100

E
rr

o
r

Method Comparison
prob-worker-cv-online-.02

prob-worker-cv-online-.01

prob-worker-cv-online-.005

prob-worker-cv-naive-online

prob-worker-online

prob-online

prob-worker-cv

prob-worker

prob

majority-vote

(a) BinaryMethod Comparison (Scorpi-
ons)

0 2 4 6 8 10 12 14
Avg Number of Human Workers Per Image

10-2

10-1

100

Er
ro

r

Method Comparison
prob-worker-cv-online-.02
prob-worker-cv-online-.005
prob-worker-cv-naive-online
prob-worker-online
prob-online
prob-worker-cv
prob-worker
prob
majority-vote

(b) Binary Method Comparison
(Beakers)

Figure 3.7: Crowdsourcing Binary Classification Annotations: We ran binary
classification experiments on two different datasets: scorpions and beakers, which
were selected because they are two different types of objects that pose different
challenges: scorpions are natural objects, with some grossly different objects in
search results (the band scorpions, the video game character, the motorcycle) and
some very related objects (scorpion spiders are spiders that resemble scorpions).
Beakers are man-made objects, which are often not the subject of the photo (and
thus not centered and very small in the image), and many people mistakenly tag
images of flasks and granulated cylinders as beakers. (a) Results on the Scorpion
Dataset: Our full model prob-worker-cvonline-0.02 obtains results as good as
typical baselines with 15 workers (majority-vote and prob) using only 1.37 workers
per image on average. (b) Results on the Beakers Dataset: Similar trends occur
for both beakers and scorpions

51

In Fig. 3.5a, we see that the full model prob-worker-cvonline-0.02 obtained slightly
lower error than majority-vote while using only 1.97 workers per image. This is en-
couraging, given that most publicly available crowdsourcing tools for bounding box
annotation use simple crowdsourcing methods. Incorporating a probabilistic model
(comparing prob to majority-vote) reduced the error by a factor of 2, demonstrat-
ing that it is useful to account for probabilities of false positive and false negative
boxes, and precision in drawing box boundaries. Online crowdsourcing reduced
the number of required workers per image by a factor of 1.7 without increasing
error (comparing prob-worker-online to prob-worker), while adding computer vi-
sion (method prob-worker-online-.005) reduced annotation by an additional 29%.
Examining Fig. 3.5b, we see that computer vision allowed many images to be con-
fidently annotated with a single human worker. The naive computer vision method
prob-worker-cvnaive-online performed as well as our more complicated method.

Ground TruthPredictionComputer Vision Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6

Ground TruthWorker 1 PredictionComputer Vision Ground TruthPredictionComputer Vision Worker 1 Worker 2

Figure 3.8: Bounding box annotation sequences. The top left annotation sequence
highlights a good case where only the computer vision system and one human are
needed to finish the image. The top right annotation sequence highlights the average
case where two workers and the computer vision system are needed to finish the
image. The bottom row highlights a difficult annotation sequence where workers
disagree on the number of instances, forcing the image to remain unfinished longer
than usual.

Part Annotation
To evaluate part keypoint annotation, we used the 1000 image subset of the NABirds
dataset (Van Horn et al., 2015), for which a detailed analysis comparing experts to
MTurkers was performed in (Van Horn et al., 2015). This subset contained 10
MTurker labels per image of 11 semantic keypoint locations as well as expert
part labels. Although our algorithm processed each part independently, we report
error averaged over all 11 parts, using the loss defined in Section 3.7. We did not
implement a computer vision algorithm for parts; however, a variant of our algorithm
(prob-worker-online) was used by the creators of the dataset to collect its published
part annotations (11 parts on 55,000 images), using only 2.3 worker annotations per
part on average.

52

Simulated results on the 1000 image subset are shown in Fig. 3.5c. We see that the
worker skill model (prob-worker) led to 10% reduction in error over the majority-
vote baseline, and online model cut annotation time roughly in half, with most parts
finishing with 2 worker clicks (Fig.3.4b)

Ground TruthPredictedWorker 1 Worker 2

Ground TruthPredictedWorker 1 Worker 2

Ground TruthPredictedWorker 1 Worker 2

Worker 3 Worker 4 Worker 5 Worker 6

Figure 3.9: Part annotation sequences. The two sequences on the top row are the
common situation where the responses from two workers correlate well and are
enough for the system to mark the images as finished. The annotation sequence on
the bottom row highlights a difficult situation where workers toggle back and forth
on the visibility of the wings, forcing the image to remain unfinished for longer than
usual. This toggling behavior can be attributed to task ambiguity and/or insufficient
instructions.

Worker Skills
One bonus of our algorithm is that it predicts the skill of each worker according
to a small number of semantically interpretable features. These could be used for
blocking spammers, giving bonuses to good workers, or debugging ambiguities in
the annotation task.

Discussion and Failure Cases
All crowdsourcing methods resulted in some degree of error when crowd labels
converged to something different than expert labels. The most common reason was
ambiguous images. For example, most MTurkers incorrectly thought scorpion spi-
ders (a type of spider resembling scorpions) were actual scorpions. Visibility of a
part annotation can become ambiguous as an object rotates from frontal to rear view.
However, all variants of our method (with and without computer vision, with and
without online crowdsourcing) resulted in higher quality annotations than majority
vote (which is commonly used for many computer vision datasets). Improvement
in annotation quality came primarily from modeling worker skill. Online crowd-
sourcing can increase annotation errors; however, it does so with an interpretable
parameter for trading off annotation time and error. Computer vision also reduces
annotation time, with greater gains coming as dataset size increases. However, we

53

0.0 0.2 0.4 0.6 0.8 1.0
Prob Correct Given Present

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
 C

o
rr

e
ct

 G
iv

e
n
 N

o
t

P
re

se
n
t

Worker Skill

(a) Worker Skills for Binary Classi-
fication

Location Sigma

0.0
0.2

0.4
0.6

0.8
1.0

Pr
ob M

ist
ake

0.0

0.2
0.4

0.6
0.8

1.0

P
ro

b
 V

is
 C

o
rr

e
ct

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Worker Skill

(b) Worker Skills for Part Annota-
tions

Prob False Positive

0.0
0.2

0.4
0.6

0.8
1.0 Boundary

 S
igm

a

0.0

0.2
0.4

0.6
0.8

1.0

P
ro

b
 F

a
ls

e
 N

e
g
a
ti

v
e

0.05

0.00

0.05

0.10

0.15

0.20

Worker Skill

(c) Worker Skills for Bounding Box
Annotations

Figure 3.10: InferredWorker Skills: These plots easily surface worker capabilities
and can inform researchers on the difficulty of their task and help debug ambiguous
tasks. (a) On the scorpion dataset (binary classification), most workers on this
task can tell fairly accurately when a scorpion is not present; however, there is a
large spread in worker miss rate, possibly due to less careful workers in picking
out smaller or more ambiguous objects. (b) On the bird dataset (part annotation),
workers tend to be highly accurate when annotating parts. Visibility issues are often
due to left/right part mistakes or when a part is partially (self) occluded. (c) On
the pedestrian dataset (bounding box annotation), workers tend to not hallucinate
people (low false positive), however there is a chance that they miss a (probably
small) instance.

54

note that in some cases, adding computer vision in the loop might be inappropriate
for research datasets due to bias toward certain algorithms. We allow it to be toggled
on or off in our source code.

3.10 Conclusion
In this work, we introduced crowdsourcing algorithms and online tools for collecting
binary, part, and bounding box annotations. We showed that each component of
the system–a worker skill / image difficulty model, an online stoppage criterion for
collecting a variable number of annotations per image, and integration of computer
vision in the loop– led to significant reductions in annotation time and/or annotation
error for each type of annotation. In future work, we plan to extend the approach
to other types of annotation, like segmentation and video, use inferred worker skill
parameters to block spammers, choose which worker should annotate an image,
and incorporate active learning criteria to choose which images to annotate next or
choose between different types of user interfaces.

Acknowledgments
This paper was inspired by work from and earlier collaborations with PeterWelinder
and Boris Babenko. Much thanks to Pall Gunnarsson for helping to develop an early
version of the method. Thank you to David Hall for supplying data for bounding
box experiments. This work was supported by a Google Focused Research Award
and Office of Naval Research MURI N000141010933.

References

Andriluka, Mykhaylo et al. (2014). “2D Human Pose Estimation: New Benchmark
and State of the Art Analysis”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Biswas, Arijit and Devi Parikh (2013). “Simultaneous active learning of classifiers
& attributes via relative feedback”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 644–651.

Branson, Steve et al. (2010). “Visual recognition with humans in the loop”. In:
European Conference on Computer Vision. Springer, pp. 438–451.

Carpenter, Bob (2008). “Multilevel bayesian models of categorical data annotation”.
In: Unpublished manuscript.

Chilton, Lydia B et al. (2013). “Cascade: Crowdsourcing taxonomy creation”. In:
Proceedings of the SIGCHI Conference onHuman Factors in Computing Systems.
ACM, pp. 1999–2008.

55

Dalvi, Nilesh et al. (2013). “Aggregating crowdsourced binary ratings”. In: Proceed-
ings of the 22nd international conference on World Wide Web. ACM, pp. 285–
294.

Dawid, Alexander Philip and Allan M Skene (1979). “Maximum likelihood esti-
mation of observer error-rates using the EM algorithm”. In: Applied statistics,
pp. 20–28.

Deng, Jia, Wei Dong, et al. (2009). “Imagenet: A large-scale hierarchical image
database”. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, pp. 248–255.

Deng, Jia, Jonathan Krause, and Li Fei-Fei (2013). “Fine-grained crowdsourcing for
fine-grained recognition”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587.

Deng, Jia, Olga Russakovsky, et al. (2014). “Scalable multi-label annotation”. In:
Proceedings of the SIGCHI Conference onHuman Factors in Computing Systems.
ACM, pp. 3099–3102.

Dutt Jain, Suyog and Kristen Grauman (2013). “Predicting sufficient annotation
strength for interactive foreground segmentation”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1313–1320.

Erlenkotter, Donald (1978). “A dual-based procedure for uncapacitated facility lo-
cation”. In: Operations Research 26.6, pp. 992–1009.

Gao,Chao andDengyongZhou (2013). “Minimax optimal convergence rates for esti-
mating ground truth fromcrowdsourced labels”. In:arXiv preprint arXiv:1310.5764.

Ghosh, Arpita, Satyen Kale, and Preston McAfee (2011). “Who moderates the
moderators?: crowdsourcing abuse detection in user-generated content”. In: Pro-
ceedings of the 12th ACM conference on Electronic commerce. ACM, pp. 167–
176.

Griffin, Gregory, Alex Holub, and Pietro Perona (2007). “Caltech-256 object cate-
gory dataset”. In:

Gurari, Danna et al. (2015). “How to collect segmentations for biomedical images?
A benchmark evaluating the performance of experts, crowdsourced non-experts,
and algorithms”. In: 2015 IEEE Winter Conference on Applications of Computer
Vision. IEEE, pp. 1169–1176.

Hall, David and Pietro Perona (2015). “Fine-grained classification of pedestrians in
video: Benchmark and state of the art”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5482–5491.

He, Kaiming et al. (2015). “Deep residual learning for image recognition”. In: arXiv
preprint arXiv:1512.03385.

56

Hua, Gang et al. (2013). “Collaborative active learning of a kernel machine ensem-
ble for recognition”. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1209–1216.

Jain, Suyog Dutt and Kristen Grauman (2016). “Active Image Segmentation Propa-
gation”. In: CVPR.

Jin, Rong and Zoubin Ghahramani (2002). “Learning with multiple labels”. In:
Advances in neural information processing systems, pp. 897–904.

Karger, David R, Sewoong Oh, and Devavrat Shah (2011). “Iterative learning for
reliable crowdsourcing systems”. In: Advances in neural information processing
systems, pp. 1953–1961.

– (2013). “Efficient crowdsourcing formulti-class labeling”. In:ACMSIGMETRICS
Performance Evaluation Review 41.1, pp. 81–92.

Kazemzadeh, Sahar et al. (2014). “ReferItGame:Referring toObjects in Photographs
of Natural Scenes.” In: EMNLP, pp. 787–798.

Khodabandeh, Mehran et al. (2015). “Discovering human interactions in videos
with limited data labeling”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 9–18.

Kovashka, Adriana, Sudheendra Vijayanarasimhan, and Kristen Grauman (2011).
“Actively selecting annotations among objects and attributes”. In: 2011 Interna-
tional Conference on Computer Vision. IEEE, pp. 1403–1410.

Kovashka, A. et al. (2016). “Crowdsourcing in Computer Vision”. In: ArXiv e-
prints. arXiv: 1611.02145 [cs.CV]. url: %7Bhttps://arxiv.org/abs/
1611.02145%7D.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Lad, Shrenik and Devi Parikh (2014). “Interactively guiding semi-supervised clus-
tering via attribute-based explanations”. In: European Conference on Computer
Vision. Springer, pp. 333–349.

Larlus, Diane et al. (2014). “Generating Gold Questions for Difficult Visual Recog-
nition Tasks”. In:

Li, Hongwei and Bin Yu (2014). “Error rate bounds and iterative weighted majority
voting for crowdsourcing”. In: arXiv preprint arXiv:1411.4086.

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common objects in context”. In:
ECCV.

Liu, Qiang, Jian Peng, and Alexander T Ihler (2012). “Variational inference for
crowdsourcing”. In:Advances inNeural InformationProcessing Systems, pp. 692–
700.

57

Long, Chengjiang and Gang Hua (2015). “Multi-class multi-annotator active learn-
ing with robust Gaussian Process for visual recognition”. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2839–2847.

Long, Chengjiang, Gang Hua, and Ashish Kapoor (2013). “Active visual recogni-
tion with expertise estimation in crowdsourcing”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 3000–3007.

Ok, Jungseul et al. (2016). “Optimality of Belief Propagation for Crowdsourced
Classification”. In: arXiv preprint arXiv:1602.03619.

Parkash, Amar and Devi Parikh (2012). “Attributes for classifier feedback”. In:
European Conference on Computer Vision. Springer, pp. 354–368.

Patterson, Genevieve, Grant Van Horn2 Serge Belongie, and Pietro Perona2 James
Hays (2015). “Tropel: Crowdsourcing Detectors with Minimal Training”. In:
Third AAAI Conference on Human Computation and Crowdsourcing.

Platt, John et al. (1999). “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods”. In: Advances in large margin
classifiers 10.3, pp. 61–74.

Raykar, Vikas C et al. (2010). “Learning from crowds”. In: Journal of Machine
Learning Research 11.Apr, pp. 1297–1322.

Rubinstein, Michael, Ce Liu, and William T Freeman (2012). “Annotation propa-
gation in large image databases via dense image correspondence”. In: European
Conference on Computer Vision. Springer, pp. 85–99.

Russakovsky, Olga, Li-Jia Li, and Li Fei-Fei (2015). “Best of both worlds: human-
machine collaboration for object annotation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 2121–2131.

Russell, Bryan C et al. (2008). “LabelMe: a database and web-based tool for image
annotation”. In: International journal of computer vision 77.1-3, pp. 157–173.

Shah, Nihar B, Sivaraman Balakrishnan, and Martin J Wainwright (2016). “A
permutation-based model for crowd labeling: Optimal estimation and robust-
ness”. In: arXiv preprint arXiv:1606.09632.

Shah, Nihar Bhadresh and Denny Zhou (2015). “Double or nothing: Multiplicative
incentive mechanisms for crowdsourcing”. In: Advances in Neural Information
Processing Systems, pp. 1–9.

Shankar Nagaraja, Naveen, Frank R Schmidt, and Thomas Brox (2015). “Video
Segmentation with Just a Few Strokes”. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3235–3243.

Sheng, Victor S, Foster Provost, and Panagiotis G Ipeirotis (2008). “Get another
label? improving data quality and data mining using multiple, noisy labelers”. In:
Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp. 614–622.

58

Siddiquie, Behjat and Abhinav Gupta (2010). “Beyond active noun tagging: Model-
ing contextual interactions for multi-class active learning”. In: Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp. 2979–
2986.

Smyth, Padhraic et al. (1995). “Inferring ground truth from subjective labelling of
venus images”. In:

Snow, Rion et al. (2008). “Cheap and fast—but is it good?: evaluating non-expert
annotations for natural language tasks”. In: Proceedings of the conference on
empiricalmethods in natural language processing. Association forComputational
Linguistics, pp. 254–263.

Sorokin, Alexander and David Forsyth (2008). “Utility data annotation with amazon
mechanical turk”. In: Urbana 51.61, p. 820.

Su, Hao, Jia Deng, and Li Fei-Fei (2012). “Crowdsourcing annotations for visual ob-
ject detection”. In:Workshops at the Twenty-Sixth AAAI Conference on Artificial
Intelligence.

Szegedy, Christian, Wei Liu, et al. (2015). “Going deeper with convolutions”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1–9.

Szegedy, Christian, Scott Reed, et al. (2014). “Scalable, high-quality object detec-
tion”. In: arXiv preprint arXiv:1412.1441.

Tian, Tian and Jun Zhu (2015). “Max-margin majority voting for learning from
crowds”. In: Advances in Neural Information Processing Systems, pp. 1621–
1629.

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset collection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

Vijayanarasimhan, Sudheendra and Kristen Grauman (2009a). “Multi-level active
prediction of useful image annotations for recognition”. In: Advances in Neural
Information Processing Systems, pp. 1705–1712.

– (2009b). “What’s it going to cost you?: Predicting effort vs. informativeness for
multi-label image annotations”. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, pp. 2262–2269.

Vittayakorn, Sirion and James Hays (2011). “Quality Assessment for Crowdsourced
Object Annotations.” In: BMVC, pp. 1–11.

Von Ahn, Luis and Laura Dabbish (2004). “Labeling images with a computer
game”. In:Proceedings of the SIGCHI conference onHuman factors in computing
systems. ACM, pp. 319–326.

59

Von Ahn, Luis and Laura Dabbish (2005). “ESP: Labeling Images with a Com-
puter Game.” In: AAAI spring symposium: Knowledge collection from volunteer
contributors. Vol. 2.

Vondrick, Carl, Donald Patterson, and Deva Ramanan (2013). “Efficiently scaling
up crowdsourced video annotation”. In: International Journal of Computer Vision
101.1, pp. 184–204.

Wah, Catherine, Steve Branson, Pietro Perona, et al. (2011). “Multiclass recognition
and part localization with humans in the loop”. In: 2011 International Conference
on Computer Vision. IEEE, pp. 2524–2531.

Wah, Catherine, Steve Branson, Peter Welinder, et al. (2011). “The caltech-ucsd
birds-200-2011 dataset”. In:

Wah, Catherine, Grant Van Horn, et al. (2014). “Similarity comparisons for inter-
active fine-grained categorization”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 859–866.

Wang, Jing, PanagiotisG Ipeirotis, andFoster Provost (2013). “Quality-based pricing
for crowdsourced workers”. In:

Welinder, Peter, Steve Branson, et al. (2010). “The multidimensional wisdom of
crowds”. In: Advances in neural information processing systems, pp. 2424–2432.

Welinder, Peter and Pietro Perona (2010). “Online crowdsourcing: rating annotators
and obtaining cost-effective labels”. In:

Whitehill, Jacob et al. (2009). “Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise”. In: Advances in neural information
processing systems, pp. 2035–2043.

Wilber, Michael J, Iljung S Kwak, and Serge J Belongie (2014). “Cost-effective
hits for relative similarity comparisons”. In: Second AAAI Conference on Human
Computation and Crowdsourcing.

Yao, Angela et al. (2012). “Interactive object detection”. In: Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp. 3242–3249.

Zhang, Chicheng and Kamalika Chaudhuri (2015). “Active learning from weak
and strong labelers”. In: Advances in Neural Information Processing Systems,
pp. 703–711.

Zhang, Yuchen et al. (2014). “Spectral methods meet EM: A provably optimal
algorithm for crowdsourcing”. In: Advances in neural information processing
systems, pp. 1260–1268.

Zhou, Dengyong et al. (2015). “Regularizedminimax conditional entropy for crowd-
sourcing”. In: arXiv preprint arXiv:1503.07240.

Zhou, Denny et al. (2012). “Learning from the wisdom of crowds by minimax
entropy”. In: Advances in Neural Information Processing Systems, pp. 2195–
2203.

60

C h a p t e r 4

LEAN MULTICLASS CROWDSOURCING

Van Horn, Grant et al. (2018). “Lean Multiclass Crowdsourcing”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake
City, UT. doi: 10.1109/cvpr.2018.00287.

4.1 Abstract
We introduce a method for efficiently crowdsourcing multiclass annotations in chal-
lenging, real world image datasets. Our method is designed to minimize the number
of human annotations that are necessary to achieve a desired level of confidence on
class labels. It is based on combining models of worker behavior with computer
vision. Our method is general: it can handle a large number of classes, worker labels
that come from a taxonomy rather than a flat list, and can model the dependence of
labels when workers can see a history of previous annotations. Our method may
be used as a drop-in replacement for the majority vote algorithms used in online
crowdsourcing services that aggregate multiple human annotations into a final con-
solidated label. In experiments conducted on two real-life applications, we find that
our method can reduce the number of required annotations by as much as a factor
of 5.4 and can reduce the residual annotation error by up to 90% when compared
with majority voting. Furthermore, the online risk estimates of the models may be
used to sort the annotated collection and minimize subsequent expert review effort.

4.2 Introduction
Multiclass crowdsourcing is emerging as an important technique in science and
industry. For example, a growing number of websites support sharing observations
(photographs) of specimens from the natural world and facilitate collaborative,
community-driven identification of those observations. Websites such as iNatu-
ralist, eBird, Mushroom Observer, HerpMapper, and LepSnap accumulate large
collections of images and identifications, often using majority voting to produce
the final species label. Ultimately, this information is aggregated into datasets
(e.g. GBIF (Ueda, 2017)) that enable global biodiversity studies (Sullivan et al.,
2014). Thus, the label accuracy of these datasets can have a direct impact on sci-
ence, conservation, and policy. Thanks to the recent dramatic improvements in our

61

SE

t

Snowy Egret

Great Egret

GE

©mikewitkowski

SE

t

Snowy Egret

Great Egret

GE

©mikewitkowski

Figure 4.1: iNaturalist Community Identification. A user uploads image xi (top-
left) with an initial species prediction zi1 = Great Egret (GE), one out of 1.5k North
American bird species. Later, two additional users (potentially alerted that a GE
has been spotted) come along and, after inspecting the image and the previous
identifications, contribute their subjective identifications of the bird species zi2 =
GE and zi3 = GE, agreeing with the uploader. Finally, a fourth user provides a
different identification zi4 = Snowy Egret (SE). In the plot below the images, two
models (red, green) integrate the information differently, with the y axis representing
likelihood of SE vs. GE. Majority voting (yellow arrow) simply tallies the vote, and
GE is the chosen answer after four votes. Our model (blue arrow) continuously
analyzes the users’ skills across other observations and is therefore capable of
updating the likelihood of the predicted label much more frequently. Knowing that
the fourth user is highly skilled on these taxa, our model overrides previous users
and predicts SE. The underlying ground truth answer is indeed SE. In this work, we
design and compare several models that estimate user skill and use it to weigh votes
appropriately. (View on iNat: https://www.inaturalist.org/observations/4599411)

field (Krizhevsky, Sutskever, and Hinton, 2012; He et al., 2015; Szegedy et al.,
2016; Huang et al., 2017), observations collected by these websites can be used
to train classification services (e.g. see merlin.allaboutbirds.org and inaturalist.org),
helping novices label their observations. The result is an even larger collection of
observations, but with potentially noisier labels, as the number of people taking
photos and submitting observations far outpaces the speed at which experts can
verify them. The benefits of a simple algorithm like majority vote are lost when the
skill of the people contributing labels is uncertain. Thus, there is need for improved
methods to integrate multiple identifications into a final label.

Figure 4.1 shows a real example of a user’s observation on iNaturalist, a sequence of
identifications from the community, and how the current species label is computed

62

using majority voting. The structure of these interactions present three challenges
that have not been tackled by priorwork on combiningmulticlass annotations (Denny
Zhou et al., 2012; Karger, Oh, and D. Shah, 2013; Vempaty, L. R. Varshney, and
P. K. Varshney, 2014; Dengyong Zhou et al., 2014; Y. Zhang et al., 2014; Tian and
Zhu, 2015; J. Zhang et al., 2016): (1) iNaturalist has a tree structured taxonomy of
labels rather than a flat list, allowing users to provide labels at varying depths of
the taxonomy depending on their confidence; (2) identifiers get to see the history of
previous identifications for an observation, so their identification is not independent
of previous identifiers; and (3) the number of species under consideration is huge,
currently at ∼130,000 but potentially reaching 8M (Mora et al., 2011).

We propose a newmethod for aggregating multiple multiclass labels. Our method is
based on models of worker behavior and can replace majority vote in websites like
iNaturalist, and in more traditional data labeling services (e.g. Amazon Mechanical
Turk). We show that our models are more accurate than majority voting (reducing
error by 90% on data from iNaturalist), and when combined with a computer vision
system, can drastically reduce the number of labels required per image (e.g. by
a factor of 5.4 on crowdsourced data). Our main contribution is a method for
multiclass annotation tasks that (1) can be used in online crowdsourcing, (2) can
handle large numbers of classes, (3) can handle a taxonomy of labels allowing
workers to respond at coarser levels than leaf nodes, and (4) can handle mutually
dependent worker labels.

4.3 Related Work
Kovashka et al. (Kovashka et al., 2016) provide a thorough review of crowdsourcing
techniques for computer vision. The Dawid-Skene (DS) model (Dawid and Skene,
1979) is the standard probabilistic model for multiclass label inference frommultiple
annotations. That model assumes each worker has a latent confusion matrix that
captures the probability of annotating a class correctly (the diagonal entries) and
the probability of confusing two classes (the off diagonal entries). The DS model
iteratively infers the reliability of each worker and updates the belief of the true
labels, using Expectation-Maximization as the inference algorithm. Alternate infer-
ence algorithms for the DS model are based on spectral methods (Ghosh, Kale, and
McAfee, 2011; Dalvi et al., 2013; Karger, Oh, and D. Shah, 2011; Karger, Oh, and
D. Shah, 2013; Karger, Oh, and D. Shah, 2014; Y. Zhang et al., 2014), belief propa-
gation (Liu, Peng, and Ihler, 2012; Ok et al., 2016), expectation maximization (Liu,
Peng, and Ihler, 2012; Y. Zhang et al., 2014), maximum entropy (Denny Zhou et al.,

63

2012; Dengyong Zhou et al., 2014), weighted majority voting (Littlestone and War-
muth, 1994; Li, Yu, and Dengyong Zhou, 2013), and max-margin (Tian and Zhu,
2015). Alternatives to the DS model have also been proposed (Smyth et al., 1995;
Jin and Ghahramani, 2002; Whitehill et al., 2009; Welinder et al., 2010; Raykar
et al., 2010; Tang and Lease, 2011; Kamar, Hacker, and Horvitz, 2012; J. Zhang
et al., 2016; Branson, Van Horn, and Perona, 2017; Chen et al., 2017). Further work
based on active learning tackles noisy labelers (Long, Hua, and Kapoor, 2013) and
task allocation to minimize the monetary cost of dataset construction (Karger, Oh,
and D. Shah, 2013; Karger, Oh, and D. Shah, 2014; N. B. Shah and Denny Zhou,
2015).

Multiclass tasks, as opposed to binary tasks, are explored by (Denny Zhou et al.,
2012; Karger, Oh, and D. Shah, 2013; Vempaty, L. R. Varshney, and P. K. Varshney,
2014; Dengyong Zhou et al., 2014; Y. Zhang et al., 2014; Tian and Zhu, 2015; J.
Zhang et al., 2016; Chen et al., 2017). Zhou et al. use entropy maximization to
model both worker confusions and task difficulties for multiclass Denny Zhou et al.,
2012 and ordinal (Dengyong Zhou et al., 2014) data. Similarly, Chen et al. (Chen
et al., 2017) use max-margin techniques to further improve results for ordinal tasks.
Karger et al. (Karger, Oh, andD. Shah, 2013) use an iterative algorithmby converting
k-class tasks into k − 1 binary tasks but make assumptions on the number of items
and workers. Vempaty et al. (Vempaty, L. R. Varshney, and P. K. Varshney, 2014)
also convert k-class tasks into binary tasks, but take a coding theoretic approach
to estimate labels. Zhang et al. (Y. Zhang et al., 2014) use spectral methods to
initialize the EM inference algorithm of the Dawid-Skene model, while Tian et
al. (Tian and Zhu, 2015) fuse a max-margin estimator and the Dawid-Skene model.
Zhang et al. (J. Zhang et al., 2016) create probabilistic features for each item and use
a clustering algorithm to assign them their final labels, however they do not produce
an estimate of worker skill. All of the previous approaches assume that annotations
are independent. We differentiate our work by handling both independent and
dependent annotations collected by sites like iNaturalist. Furthermore, we explore
the challenges of “large-scale”multiclass taskmodeling where the number of classes
is nearly 10× larger than the prior art has explored. Our work also handles taxonomic
modeling of the classes and non-leaf node worker annotations. See Table 4.2 for a
performance comparison of our model to prior art.

Final label quality between independent and dependent crowdsourcing tasks is
studied by Little et al. (Little et al., 2010), but without modeling workers. The

64

work of Branson et al. (Branson, Van Horn, and Perona, 2017) is the closest to ours,
as we adapt their framework to multiclass annotation, which they did not investigate.
Furthermore, we explore taxonomic multiclass annotations to reduce the number of
parameters. Additionally, we develop models that do not depend on the assumption
that worker annotations are independent, and we are thus able to handle mutually
dependent annotations where each worker can see previous labels.

4.4 Multiclass Online Crowdsourcing
Given a set of worker annotations Z for a dataset of images X , the probabilistic
framework of Branson et al. (Branson, Van Horn, and Perona, 2017) jointly models
worker skill W , image difficultly D, ground truth labels Y , and computer vision
system parameters θ. A tiered prior system is used to make the system more
robust by regularizing the per worker skill and image difficulty priors. Alternating
maximization is used for parameter estimation. The Bayesian risk R(ȳi) (see Eq.1
from (Branson, Van Horn, and Perona, 2017)) can be computed for each predicted
label, providing an intuitive online stopping criteria (i.e. the model can “retire”
images as soon as their risk is below a threshold τε). In this work, we extend this
framework by implementingmultiplemodels ofworker skill for the task ofmulticlass
annotation for independent and dependent worker labels. For our experiments, we
removed the image difficulty part of the framework and focused solely on modeling
workers and their labels. Section 4.4 constructs worker skill models when the labels
Z are independent, and Section 4.4 constructs worker skill models when the labels
Z are dependent.

Independent Labels
Let xi be the ith image, which contains an object with class label yi ∈ {1, . . . ,C}
(e.g., species). Suppose a set of workersWi independently specify their guess at
the class of image i, such that for each j ∈ Wi, zi j is worker j’s guess at yi. In
this situation, identifiers from Figure 4.1 would not get to observe preceding users’
guesses. Let w j be some set of parameters encoding worker j’s skill at predicting
classes. In this notation, if the class yi is unknown, we can estimate the probability
of each possible class given the set Zi = {zi j} j∈Wi of worker guesses:

p(yi |Zi) =
p(yi)

∏
j∈Wi

p(zi j |yi,w j)∑C
y=1 p(y)∏ j∈Wi

p(zi j |y,w j)
(4.1)

where p(yi) is the prior class probability and p(zi j |yi,w j) is a model of imperfect
human guesses. The following sections discuss possible models for p(zi j |yi,w j),

65

N
am

e
In
te
rp

re
ta
tio

n
M
od

el
Ex

pr
es
sio

n
#
Pa

ra
m
s

Pa
ra
m
s

Fo
r

Bi
rd
s

Fl
at

Si
ng

le
Bi
no

-
m
ia
l

Pr
ob

ab
ili
ty

of
be
in
g
co
rr
ec
ti
s

th
e
sa
m
e
fo
ra

ll
sp
ec
ie
s

z
=

y
is

bi
no

m
ia
lw

ith
th
e
sa
m
e
pa
ra
m
et
er
sr
e-

ga
rd
le
ss

of
y

p(
z|
y
)=

{ m
if

z
=
y

(1
−

m
)p
(z
)

ot
he

rw
is

e
1

1

Fl
at

Pe
r
C
la
ss

Bi
-

no
m
ia
l

Pr
ob

ab
ili
ty

of
be
in
g

co
rr
ec
t

fo
re

ac
h
sp
ec
ie
s

se
pa
ra
te
ly

Fo
r
ea
ch

va
lu
e
y
=

c,
z
=
y
is
bi
no

m
ia
l

p(
z|
y
)=

{ M
(y
)

if
z
=
y

(1
−

M
(y
))p
(z
)

ot
he

rw
is

e
C

1,
57

2

Fl
at

Pe
r

C
la
ss

M
ul
tin

om
ia
l

C
on

fu
si
on

pr
ob

ab
ili
ty

ov
er

ea
ch

pa
ir

of
sp
ec
ie
s

Fo
re

ac
h
va
lu
e
y
=

c,
z

is
m
ul
tin

om
ia
l

p(
z|
y
)=

M
(y
,z
)

C
2

2,
47

1,
18

4

Ta
xo
no

m
ic

Si
ng

le
Bi
no

m
ia
l

Pr
ob

ab
ili
ty

of
be
in
g
co
rr
ec
ti
s

th
e

sa
m
e

fo
r

ea
ch

sp
ec
ie
s
in

a
ge
nu

s

zl
=

y
l |z

l−
1
=

y
l−

1

is
bi
no

m
ia
l

w
ith

th
e

sa
m
e

pa
ra
m
et
er
s

re
-

ga
rd
le
ss

of
y
l

p(
z|
y
)=

∏ l
p(

zl
|y
l)

p(
zl
|y
l)
=

{ m
y
l−

1
if

zl
=
y
l

(1
−

m
y
l−

1
)p
(z
l)

ot
he

rw
is

e

|N
|−

C
38

3

Ta
xo
no

m
ic

Pe
r

C
la
ss

Bi
no

m
ia
l

Pr
ob

ab
ili
ty

of
be
in
g

co
rr
ec
t

fo
re

ac
h
sp
ec
ie
s

se
pa
ra
te
ly

Fo
r
ea
ch

va
lu
e
y
l
=

c,
zl
=

y
l |z

l−
1
=

y
l−

1
is

bi
no

m
ia
l

p(
z|
y
)=

∏ l
p(

zl
|y
l)

p(
zl
|y
l)

=
{ M

y
l−

1
(y

l)
if

zl
=
y
l

(1
−

M
y
l−

1
(y

l))
p(

z)
ot

he
rw

is
e

|N
|

19
55

Ta
xo
no

m
ic

Pe
r

C
la
ss

M
ul
tin

om
ia
l

C
on

fu
si
on

pr
ob

ab
ili
ty

fo
r

ea
ch

pa
ir

of
sp
ec
ie
s

in
a

ge
nu

s

Fo
r
ea
ch

va
lu
e
y
l
=

c,
zl
|zl
−1
=
y
l−

1
is
m
ul
ti-

no
m
ia
l

p(
z|
y
)=

∏ l
p(

zl
|y
l)

p(
zl
|y
l)
=

M
y
l−

1
(y

l ,
zl
)

∑
n
∈N
|ch

ild
re

n(
n)
|2

22
,4
72

Ta
bl
e
4.
1:

D
iff
er
en
to

pt
io
ns

fo
rm

od
el
in
g
w
or
ke
rs
ki
ll
gi
ve
n
a
ta
xo
no

m
y
of

cl
as
se
s.

N
is
th
e
se
to

fn
od

es
in

th
e
ta
xo
no

m
ic
tre

e,
C
is
th
e

nu
m
be
ro

fl
ea
fn

od
es

(i.
e.
cl
as
sl
ab
el
s)
.T

he
la
st
co
lu
m
n
sh
ow

st
he

nu
m
be
ro

fr
es
ul
tin

g
pa
ra
m
et
er
sw

he
n
m
od

el
in
g
th
e
1,
57

2
sp
ec
ie
so

f
N
or
th
A
m
er
ic
an

bi
rd
sa

nd
th
ei
rt
ax
on

om
y
fr
om

th
ei
N
at
ur
al
ist

da
ta
ba
se
,f
or

a
si
ng
le
wo

rk
er
.M

ul
tin

om
ia
lm

od
el
sh

av
es

ig
ni
fic

an
tly

m
or
e

pa
ra
m
et
er
s
bu

tc
an

m
od

el
co
m
m
on

ly
co
nf
us
ed

cl
as
se
s.

Ta
xo
no

m
ic

m
et
ho

ds
ha
ve

th
e
be
ne
fit

of
su
pp

or
tin

g
no

n-
sp
ec
ie
s-
le
ve
lh

um
an

re
sp
on

se
s,
m
od

el
in
g
sk
ill

at
ce
rta

in
ta
xa
,a
nd

re
du

ci
ng

th
e
nu

m
be
ro

fp
ar
am

et
er
sf
or

m
ul
tin

om
ia
lm

od
el
s.

66

which are also summarized in Table 4.1.

Flat Models

Flat Single Binomial: One simple way to model worker skills is with a single
parameter that captures the worker’s probability of providing a correct answer,
regardless of the class label. We assume that the probability of a worker being
correct m j follows a Bernoulli distribution, with other responses having probability
proportional to class priors:

p(zi j |yi,w j) =

m j if zi j = yi

(1 − m j)p(zi j) otherwise
(4.2)

To prevent over fitting in low data situations, we place a beta prior Beta(nβpc, nβ(1−
pc)) on m j , where nβ is the strength of the prior. pc represents the probability of any
worker providing a correct label, and is estimated by pooling all worker annotations
together. We also place a beta prior Beta(nβp, nβ(1− p)) on pc, with p acting as our
prior belief on worker performance. Estimating the worker skills is done by counting
the number of times their response agrees with the predicted label, weighted by the
prior strength:

m j =
nβpc +

∑
i∈Ij 1[zi j = ȳi, |Wi | > 1] − 1

nβ +
∑

i∈Ij 1[ȳi, |Wi | > 1] − 2
(4.3)

where 1[·] is the indicator function, Ij are the images labeled by worker j, and ȳi is
our current label prediction for image i. The pooled prior pc is estimated similarly.

Flat Per Class Binomial: Rather than learning a single skill parameter m across
all classes, we can learn a separate binomial model for each value of y, resulting in
a skill vector Mj for each worker:

p(zi j |yi,w j) =

Mj(yi) if zi j = yi

(1 − Mj(yi))p(zi j) otherwise
(4.4)

Similar to the single binomial model, we employ a tiered prior system by adding a
per class beta prior Beta(nβpy, nβ(1 − py)) on Mj(y). We place a generic beta prior
Beta(nβp, nβ(1− p)) on py to encode our prior belief that a worker is correct on any
class. Estimating the worker skill parameters Mj(y) and the pooled priors py for
class y is done in the same way as the single binomial model.

67

Flat Per Class Multinomial: A more sophisticated model of p(zi j |yi,w j) could
assume w j encodes a C × C confusion matrix M j , where an entry M j(m, n) de-
notes person j’s probability of predicting class n when the true class is m. Here,
p(zi j |yi,w j) = M j(yi, zi j); the model is assuming p(zi j |yi = c,w j) is a multinomial
distribution with parameters µc

j = [M j(c, 1), ...,M j(c,C)] for each value of c. We
will place Dirichlet priors Dir(nβαc) on µc

j , where nβ is the strength of the prior,
and αc is estimated by pooling across all workers. We will also place a Dirichlet
prior Dir(nβα) on αc, with α acting as a global hyper-parameter that provides the
likelihood of any worker labeling a class correctly. Because the Dirichlet distribu-
tion is the conjugate prior of the multinomial distribution, the computation of each
entry k from 1 . . .C in the skill vector µc

j for a single worker j and each class c is
done by counting agreements:

µc
j,k =

nβαc
k +

∑
i∈Ij 1[zi j = k, ȳi = k, |Wi | > 1] − 1

nβαc
0 +

∑
i∈Ij 1[ȳi = k, |Wi | > 1] − C

(4.5)

Where αc
0 =

∑
k α

c
k . The pooled worker parameters αc are estimated in a similar

way.

Taxonomic Models

Multinomial models are useful because they model commonly confused classes,
however they have far more parameters than the binomial models. These models
quickly become intractable as the total number of classes C gets large. For example,
if there are 104 classes, we would be attempting to estimate a matrix M j with
108 entries for each worker j. This is statistically and computationally intractable.
However, when the number of classes gets large, there often exists a taxonomy used
to organize them (e.g. the Linnaean taxonomy for biological classification). We can
use this taxonomy to reduce the number of parameters in a multinomial model.

Taxonomic Per Class Multinomial: We will assume a taxonomy of classes that
is L levels deep and associate a confusion matrix with each node in the taxonomy
(e.g., if we know the genus of an observation from iNaturalist, assume each worker
has a confusion matrix among species within that genus). For the taxonomic model,
let yl

i denote the node in the taxonomy at level l that class yi belongs to, such
that y0

i is the root node and yL
i is the leaf node (i.e., species label). Similarly, let

zl
i j denote the node in the taxonomy at level l that class zi j belongs to. In this

model, p(zl
i j |y

l
i ,w j, y

l−1
i = zl−1

i j) = Myl−1
i

j (y
l
i , z

l
i j), where Myl−1

i

j is a confusion matrix
associated with node yl−1

i in the taxonomy; the assumption is that for each value of

68

yl
i , zl

i j is multinomial with a vector Myl−1
i

j (y
l
i , :) of parameters of size equal to the

number of child nodes. The term yl−1
i = zl−1

i j denotes the condition that the parent
node classification is known. Suppose, however, that worker j is wrong about both
the species and genus. We must also model p(zl

i j |y
l
i ,w j, y

l−1
i , zl−1

i j). In our model
we assume that worker j predicts each class zl

i j with some probability irrespective

of the true class (i.e. p(zl
i j |y

l
i ,w j, y

l−1
i , zl−1

i j) = N
zl−1
i j

j (z
l
i j) is multinomial with

a parameter for each possible child node). The taxonomic model results in the
following values that can be plugged into Equation 4.1:

p(zi j |yi,w j) =
L∏

l=1
p(zl

i j |y
l
i ,w j), (4.6)

p(zl
i j |y

l
i ,w j) =

Myl−1

i

j (y
l
i , z

l
i j) if y

l−1
i = zl−1

i j

N
zl−1
i j

j (z
l
i j) otherwise

(4.7)

Note that in totality, for each node n in the taxonomy, we have associated a confusion
matrix Mn

j with a row for each child of n, and a vector of probabilities Nn
j with an

entry for each child. If the taxonomy is relatively balanced, this model has far
fewer parameters than the flat multinomial model (linear in the number of classes
rather than quadratic). To make estimating worker parameters more robust, we will
again make use of a tiered system of priors (e.g. Dirichlet priors on all multinomial
parameters) that are computed by pooling across all workers at each node. However,
if this is still too many parameters, we can fall back to modeling the probability that
a person is correct as a binomial distribution with a parameter per child node (i.e. the
taxonomic per class binomial model), or even just one parameter for all children
(i.e. the taxonomic single binomialmodel), assuming other class responses zl

i j , yl
i

have probability proportional to their priors. See Table 4.1 for an overview of all
models.

Taxonomic Predictions

Thus far, we have assumed that a worker always predicts a class of the finest possible
granularity (i.e. species level). An alternate UI can allow a worker to predict an
internal node in the taxonomy if unsure of the exact class, i.e. applying the “hedging
your bets” Deng et al., 2012 method to human classifiers. In Figure 4.1, this would
be akin to one of the identifiers specifying the family Ardeidae, which includes both
Snowy Egret and Great Egret. Let level(zi j) be the level of this prediction. Note
that zl

i j is valid only for l ≤ level(z j). The taxonomic model in Section 4.4 works

69

after an update of Equation 4.6 to p(zi j |yi,w j) =
∏level(zi j)

l=1 p(zl
i j |y

l
i ,w j). This works

even if different workers provide different levels of taxonomic predictions.

Dependent Labels
In Section 4.4, we assumed each worker independently guesses the class of image i.
We now turn to the situation described in Figure 4.1: a user submits an observation
xi and an initial identification zi, j1

i
, where j t

i denotes the tth worker that labeled
image i. A notification of the observation is sent to users that have subscribed to
the taxa zi, j1

i
or to that particular geographic region (the rest of the community is

not explicitly notified but can find the observation when browsing the site). Each
subsequent identifier j t

i , t > 1 can see the details of the observation xi and all
identifications made by previous users Ht−1

i = {zi, j1
i
, zi, j2

i
, ..., zi, j t−1

i
}. Users can

assess the experience of a previous identifier j by viewing all of their observations
X j and all of their identifications Z j . Additionally, users are able to discuss the
identifications through comments.

In this setting, we can adapt Equation 4.1 to

p(yi |Zi) = p(yi |H |Wi |
i)

=
p(yi)

∏|Wi |
t=1 p(zi, j ti

|yi,Ht−1
i ,w j ti

)∑C
y=1 p(y)∏|Wi |

t=1 p(zi, j ti
|y,Ht−1

i ,w j ti
)

(4.8)

There are many possible choices for modeling p(zi, j ti
|yi,Ht−1

i ,w j ti
). The simplest

option assumes each worker ignores all prior responses; i.e., p(zi, j ti
|yi,Ht−1

i ,w j ti
) =

p(zi, j ti
|yi,w j ti

). In practice, however, worker j t
i ’s response will probably be biased

toward agreeing with prior responses Ht−1
i , making a prediction combining both

evidence from analyzing prior responses and from observing the image itself. The
weight of this evidence should increase with the number of prior responses and
could vary based on worker j t

i ’s assessment of other worker’s skill levels. In our
model, we assume that worker j t

i weights each possible response zi, j ti
(worker j t

i ’s
perception of the class of image i) with a term p j ti

(Ht−1
i |zi, j ti

) (worker j t
i ’s perception

of the probability of prior responses given that class). p(zi, j ti
|yi,Ht−1

i ,w j ti
) can then

be expressed as:

p(zi, j ti
|yi,Ht−1

i ,w j ti
) =

p(zi, j ti
,Ht−1

i |yi,w j ti
)

p(Ht−1
i |yi,w j ti

)

=
p(zi, j ti

|yi,w j ti
)p j ti
(Ht−1

i |zi, j ti
,w j ti
)∑

z p(z |yi,w j ti
)p j ti
(Ht−1

i |z,w j ti
)

(4.9)

70

where p(zi, j ti
|yi,w j ti

) is modeled using a method described in Section 4.4. Worker
j t
i might choose to treat each prior response as independent sources of information

p j ti
(Ht−1

i |zi, j ti
,w j ti
) = ∏t−1

s=1 p j ti
(zi, jsi |zi, j ti

,w
j ti
jsi
) where we have used the notation w

j
k

to denote parameters for worker j’s perception of worker k’s skill. Alternatively,
worker j may choose to account for the fact that earlier responses were also biased
by prior responses using similar assumptions to those we made in Equation 4.9,
resulting in a recursive definition/computation of p j ti

(Ht−1
i |zi, j ti

,w j ti
) =

pjt
i
(z

i, jt−1
i
|zi, jt

i
,w

jt
i

jt−1
i

)p
jt−1
i
(Ht−2

i |zi, jt−1
i

,w
jt−1
i

jt−2
i

)∑
z pjt

i
(z |zi, jt

i
,w

jt
i

jt−1
i

)p
jt−1
i
(Ht−2

i |z,w
jt−1
i

jt−2
i

)
if t > 1

p j ti
(zi, j t−1

i
|zi, j ti

,w
j ti
j t−1
i

) if t = 1

(4.10)

The last choice to make is how to model probabilities of the form p j(zk |z j,w
j
k) (i.e.

worker j’s perception of worker k’s responses). One model that keeps the number
of parameters low is a binomial distribution: worker j assumes other workers are
correct with probability ρ j ; when they are incorrect, they respond proportionally to
class priors:

p j(zk |z j,w
j
k) =

ρ j if zk = z j

(1 − ρ j)p(z j) otherwise
(4.11)

Here, ρ j is a learned parameter expressing worker j’s trust in the responses of other
workers.

4.5 Taking Pixels into Account
Rather than relying on class priors p(yi), we can make use of a computer vision
model with parameters θ that can predict the probability of each class occurring in
each image xi ∈ X . This results in an update to Equation 4.1, changing p(yi) to
p(yi |xi, θ). We use a computer vision model similar to the general purpose binary
computer vision system trained by Branson et al. (Branson, Van Horn, and Perona,
2017). We extract “PreLogit” features φ(xi) from an Inception-v3 (Szegedy et al.,
2016) CNN for each image i, and use these features (fixed for all iterations) to train
the weights θ of a linear SVM (using a one-vs-rest strategy), followed by probability
calibration using Platt scaling (Platt et al., 1999). We use stratified cross-validation
to construct training and validation splits that contain at least one sample from each
class. This results in probability estimates p(yi |xi, θ) = σ(γ θ ·φ(xi)), where γ is the
probability calibration scalar from Platt scaling, and σ(·) is the sigmoid function.
Fine-tuning a CNN on each iteration would lead to better performance (Agrawal,

71

Method Label Error Rate
(%)

(Ghosh, Kale, and McAfee, 2011), (Dalvi et al., 2013) 27.78
Majority Vote 24.07
Flat Multinomial,(Dawid and Skene, 1979), (Welinder et
al., 2010),(Karger, Oh, and D. Shah, 2013)

11.11

Flat Multinomial-CV, (Tian and Zhu, 2015), (Y. Zhang et
al., 2014)*

10.19

Table 4.2: Label error rates of different worker skill models on the binary Bluebird
dataset (Welinder et al., 2010) after receiving all 4,212 annotations. Our methods
(FlatMultinomial, andFlatMultinomial-CV) are competitivewith othermethods.
*(Y. Zhang et al., 2014) mistakenly reported 10.09.

Girshick, and Malik, 2014; Oquab et al., 2014; Yosinski et al., 2014) but is out of
scope.

4.6 Experiments
We evaluate the proposed models on data collected from paid workers through
Amazon Mechanical Turk (MTurk) and from non-paid citizen scientists who are
members of the Cornell Lab of Ornithology (Lab of O) or iNaturalist (iNat). We
follow a similar evaluation protocol to (Branson, Van Horn, and Perona, 2017) and
use Algorithm 1 from that work to run the experiments. For models that assume
worker labels are independent, we simulate multiple trials by adding worker labels
in random order. For lesion studies, we simply turn off parts of the model by
preventing those parts from updating. The tag prob-worker means that a global
prior is computed across all workers, and per worker skill model was used; the tag
online means that online crowdsourcing was used (with risk threshold parameter
τε = .02), and the tag cvmeans that computer vision probabilities were used instead
of class priors. Bluebirds To gauge the effectiveness of our model against prior
work, we run our models on the binary bluebird dataset from (Welinder et al., 2010).
This dataset has a total of 108 images and 39 MTurkers labeled every image for a
total of 4,212 annotations. Table 4.2 has the final label error rates of different worker
skill models when all annotations are made available. Our offline, flat multinomial
models are competitive with other offline methods.

NABirds This experiment was designed to test our models in a traditional dataset
collection situation where labeling tasks are posted to a crowdsourcing website and

72

1 10 202 4 6 8
Avg Number of Human Workers Per Image

1

0.1

Er
ro

r

Flat Single Binomial Model

(a)

1 10 202 4 6 8
Avg Number of Human Workers Per Image

1

0.1

Er
ro

r

Flat Per Class Binomial Model

majority-vote
prob-worker
prob-worker-cv
prob-worker-cv-online

MTurker
CTurker
Combined

(b)

1 10 202 4 6 8
Avg Number of Human Workers Per Image

1

0.1

Er
ro

r

Flat Per Class Multinomial Model

Combined-Prior

(c)

Figure 4.2: Crowdsourcing Multiclass Labels with MTurkers and CTurkers:
These figures show results from our flat models on a dataset of 69 species of birds
with labels from AmazonMechanical Turk workers (MTukers) and citizen scientists
(CTurkers). Each model was run on a dataset that consisted of: just MTurkers
(squares), just CTurkers (triangles) or a combination of the two (circles). When
our full framework is used (prob-worker-cv-online, green lines) we can achieve the
same error as majority vote (red lines) with much fewer labels per image. When we
use our framework in an offline setting (prob-worker-cv and prob-worker, orange
and blue curves), we can achieve a lower error than majority vote with the same
number of labels. When initialized with generic priors, the single binomial model
achieves the lowest error, followed by the per class binomial and the multinomial
model. However, if domain knowledge is used to initialize the global priors to more
reasonable values, the multinomial model can achieve impressively low error (the
star lines in (c)).

responses are collected independently. We constructed a labeling interface that
showed workers a sequence of 10 images and asked them to classify each image
into one of 69 different bird species by using an auto complete box or by browsing a
gallery of representative photos for each species. We used 998 images, all sampled
from either shorebird or sparrow species, from the NABirds dataset (Van Horn et
al., 2015). We collected responses from both MTurkers and citizen scientists from
the Lab of O (CTurkers). Figure 4.3a shows the contribution of annotations from
the workers. We had a total of 86 MTurkers provide 9,391 labels and a total of
202 CTurkers provide 5,300 labels. For these experiments, we made the gallery of
example images (3 to 5 images per species) available to the computer vision system
during training. This ensured that we could construct at least 3 cross validation
splits when calibrating the computer vision probabilities in the early stages of the
algorithm.

All models were initialized with uniform class priors, a probability of 0.5 that an
MTurker will label a class correctly, and a probability of 0.8 that a CTurker will label

73

100 101 102

Workers

101

102

103

Nu
m

be
r o

f A
nn

ot
at

io
ns

Worker Annotations
CTurker
MTurker

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Empirical GT Probability Correct

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 P
ro

ba
bi

lit
y

Co
rre

ct

Worker Skills
CTurker
MTurker

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Prob Correct on Shorebirds

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 P
ro

b
Co

rre
ct

 o
n

Sp
ar

ro
ws

Worker Taxonomic Skills
CTurker
MTurker

(c)

Figure 4.3: MTurker and CTurkerWorker Analysis: Figure (a) shows the contri-
bution of labels per worker from MTurkers and CTurkers. On average we have less
than one label from each worker for each of the 69 classes, emphasizing the need to
pool data across workers for use as priors. Figure (b) shows the predicted probability
of a worker providing a correct label m j plotted against the empirical ground truth
probability for the single binomial prob-worker-cv model from 4.2a. The size of
each dot is proportional to the number of annotations that worker contributed to
the dataset. Solid lines mark the priors. We can see that the model’s predictions
correlate well with the empirical ground truths. Figure (c) shows the predicted
worker skill for correctly labeling the species of a sparrow vs. correctly labeling
the species of a shorebird. These skill estimates came from a taxonomic binomial
model with one subtree corresponding to sparrows and the other corresponding to
shorebirds. In real applications, we can use these skill estimates to direct images to
proficient labelers.

a class correctly. This means the global Dirichlet priors (used in the multinomial
models) had a value of 0.8 at the true class index and 0.003 otherwise for the
CTurkers. These are highly conservative priors. For each of our three flat models
we conducted three experiments: usingMTurk data only, using CTurk data only, and
using both MTurk and CTurk data together (“Combined” in the plots). Figure 4.2
shows the results. First, we note that when a computer vision system is utilized in an
online fashion (prob-worker-cv-online), we see a significant decrease in the average
number of labels per image to reach the same performance as majority vote using
all of the data (e.g. a 5.4× decrease in the single binomial combined setting). In
the offline setting (prob-worker-cv), the computer vision models decrease the final
error compared to majority vote (e.g. 25% decrease in error in the single binomial
combined setting). When considering our probabilistic model without computer
vision (prob-worker) the single binomial model consistently achieved the lowest
error, followed by the binomial per class model and then the multinomial model.
This is not unexpected, as we anticipated the larger capacity models to struggle with

74

the sparseness of data (i.e. on average we had 0.75 labels per class per worker in
the combined setting). However, the fact that they approach similar performance to
the single binomial model highlights the usefulness of our tiered prior system and
the ability to pool data across all of the workers. Our global prior initializations
are purposefully on the conservative side, however in a real application setting,
a user of this framework can initialize the priors using domain knowledge or a
small amount of ground truth data. Figure 4.2c shows the dramatic effect of using
more informative priors in the combined setting (prob-worker-cv and prob-worker
in the Combined-Prior setting). These models were initialized with priors that were
computed on a small held out set of worker annotations with ground truth labels and
achieved the lowest error (0.03, for prob-worker-cv, a 79% decrease from majority
vote) on the dataset.

Figure 4.3b shows the predicted m j values learned by the single binomial model
plotted against the empirical ground truth in the combined setting. We can see that
the model’s predictions correlate well with the empirical estimates, with increasing
precision as the number of annotations increases (size of the dots). To further
investigate the worker skills, we constructed a simple 2 level taxonomy and placed
the shorebirds and sparrows in their own flat subtrees. By running our taxonomic
binomial model, we are able to learn a skill for each group separately, rendered in
Figure 4.3c. We can see that both MTurkers and CTurkers have a higher probability
of predicting shorebirds correctly than sparrows. In real applications, we can use
these skill estimates to direct images to proficient labelers.

iNaturalist This experiment was designed to test our models in a classification
situation that mimics the real world scenario of websites like iNat, see Figure 4.1.
We obtained a database export from iNat and cleaned the data using the following
three steps: (1) we select observations and identifications from a subset of the
taxonomy (e.g. species of birds); (2) for each observation, we keep only the first
identification from each user (i.e. we do not allow users to change their minds); and
(3) to facilitate experiments, we keep all observations that have a ground truth label
at the species level (i.e. leaf nodes of the taxonomy). For the experiments presented
below, after performing the previous steps, we selected a subset of 30 species of
birds and 1000 observations from each species to analyze. In this 30k image subset
we have 5,643 workers that provided a total of 98,849 labels; Figure 4.4c shows the
distribution of worker annotations. The taxonomy associated with these 30 species
consisted of 44 nodes with a max depth of 3. For these experiments we did not

75

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg Number of Human Workers Per Image

10 3

10 2

10 1

Er
ro

r

Single Binomial Model

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg Number of Human Workers Per Image

10 3

10 2

10 1

Er
ro

r

Per Class Multinomial Model
majority-vote
prob-worker
prob-worker-dep
prob-worker-tax
prob-worker-tax-dep

(b)

100 101 102 103

Workers

100

101

102

103

Nu
m

be
r o

f A
nn

ot
at

io
ns

iNat Worker Annotations

(c)

10 3 10 2 10 1 100

Empirical GT Probability of Error
10 3

10 2

10 1

100

Pr
ed

ict
ed

 P
ro

ba
bi

lit
y

of
 E

rro
r

iNat Worker Skills

(d)

Figure 4.4: iNaturalist Birds Figures (a) and (b) show the errors achieved on a
dataset of 30 bird species from iNaturalist for the single binomial and multinomial
models respectively. Each model was evaluated in several configurations: “prob-
worker” assumes a flat list of species. “prob-worker-tax” takes advantage of a
taxonomy across the species, allowing workers to provide non-leaf node annotations
and reducing the number of parameters in the multinomial model from 900 to 167.
“prob-worker-dep” assumes a flat list of species, but models the dependence between
the worker labels. “prob-worker-tax-dep” uses a taxonomy across the species and
models the dependence between worker labels. All models did at least as well as
majority vote, with dependence modeling providing a significant decrease in error.
The lowest error was achieved by the multinomial prob-worker-tax-dep model that
was capable of modeling species confusions and label dependencies, decreasing
error by 90% compared to majority vote. Figure (c) shows the distribution of labels
per worker, emphasizing a long tail of worker contributions. Figure (d) shows the
predicted probability of error (1 −m j) for each worker plotted against the empirical
ground truth probability of error for the single binomial prob-worker-dep model,
with the radius of a dot proportional to the number of annotations contributed by
that worker. The solid blue line is the global prior value. More active identifiers
are less likely to make errors, and our model skill estimates correlate well with the
empirical ground truths.

utilize a computer vision system. Class priors were initialized to be uniform, skill
priors were initialized assuming that iNat users are 80% correct. Worker labels are
added to the images sequentially by their time stamp, so only a single pass through
the data is possible.

Figures 4.4a and 4.4b show the results for our single binomial and multinomial
models respectively. For each model we used flat and taxonomic (-tax) versions,
andwe turned on (-dep) and off label dependencemodeling, for a total of 4 variations
of each model. We can see that all of our models are at least as good as majority
vote. Adding dependencemodeling to the flat models provides a significant decrease
in error: a 59% decrease for the flat single binomial model, and an 85% decrease
for the flat multinomial model. The taxonomic single binomial model (with 14

76

parameters per worker) did slightly worse than the flat single binomial model (with
1 parameter per worker). However, the taxonomic multinomial model (with 167
parameters per worker) decreased error by 36% compared to the flat multinomial
model (with 900 parameters per worker). Finally, adding dependence modeling
to the taxonomic models provided a further decrease in error, with the taxonomic
multinomial model performing the best and decreasing error by 90% over majority
vote, corresponding to 28 total errors. While a majority of those errors were true
mistakes, an inspection of a few revealed errors in the ground truth labels of the
iNat dataset. Figure 4.1 is actually an example of one of those mistakes. Further,
the observation (https://tinyurl.com/ycu92cas) associated with the second “riskiest”
image (using the computed Bayes risk of the predicted label R(ȳi)) turned out
to be another mistake, advocating the use of these models as a way of sorting
the observations for expert review. Figure 4.4d shows the predicted probability
of a worker labeling incorrectly (1 − m j) for the flat single binomial model with
dependencemodeling fromFigure 4.4a. We can see that themodel’s skill predictions
correlate well with the empirical ground truth skills.

4.7 Conclusion
We introduced new multiclass annotation models that can be used in the online
crowdsourcing framework of Branson et al. (Branson, Van Horn, and Perona, 2017).
We explored several variants of a worker skill model using a variety of parameteriza-
tions and we showed how to harness a taxonomy to reduce the number of parameters
when the number of classes is large. As an additional benefit, our taxonomic models
are capable of processing worker labels from anywhere in the taxonomy rather than
just leaf nodes. Finally, we presented techniques for modeling the dependence of
worker labels in tasks where workers can see a prior history of identifications. Our
models consistently outperformmajority vote, either reaching a similar error with far
fewer annotations or achieving a lower error with the same number of annotations.
Future work involves modeling “schools of thought” among workers and using their
skill estimates to explore human teaching.

Acknowledgments
This work was supported by a Google Focused Research Award. We thank Oisin
Mac Aodha for useful discussions.

77

References

Agrawal, Pulkit, Ross Girshick, and Jitendra Malik (2014). “Analyzing the per-
formance of multilayer neural networks for object recognition”. In: European
Conference on Computer Vision. Springer, pp. 329–344.

Branson, Steve, Grant Van Horn, and Pietro Perona (2017). “Lean Crowdsourcing:
Combining Humans and Machines in an Online System”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7474–7483.
doi: 10.1109/CVPR.2017.647.

Chen, Guangyong et al. (2017). “Learning to Aggregate Ordinal Labels by Maxi-
mizing Separating Width”. In: International Conference on Machine Learning,
pp. 787–796.

Dalvi, Nilesh et al. (2013). “Aggregating crowdsourced binary ratings”. In: Proceed-
ings of the 22nd international conference on World Wide Web. ACM, pp. 285–
294.

Dawid, Alexander Philip and Allan M Skene (1979). “Maximum likelihood esti-
mation of observer error-rates using the EM algorithm”. In: Applied statistics,
pp. 20–28.

Deng, Jia et al. (2012). “Hedging your bets: Optimizing accuracy-specificity trade-
offs in large scale visual recognition”. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on. IEEE, pp. 3450–3457.

Ghosh, Arpita, Satyen Kale, and Preston McAfee (2011). “Who moderates the
moderators?: crowdsourcing abuse detection in user-generated content”. In: Pro-
ceedings of the 12th ACM conference on Electronic commerce. ACM, pp. 167–
176.

He, Kaiming et al. (2015). “Deep residual learning for image recognition”. In: arXiv
preprint arXiv:1512.03385.

Huang, Gao et al. (2017). “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Jin, Rong and Zoubin Ghahramani (2002). “Learning with multiple labels”. In:
Advances in neural information processing systems, pp. 897–904.

Kamar, Ece, Severin Hacker, and Eric Horvitz (2012). “Combining human and
machine intelligence in large-scale crowdsourcing”. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems-Volume
1. International Foundation for Autonomous Agents and Multiagent Systems,
pp. 467–474.

Karger, David R, Sewoong Oh, and Devavrat Shah (2011). “Iterative learning for
reliable crowdsourcing systems”. In: Advances in neural information processing
systems, pp. 1953–1961.

78

Karger, David R, Sewoong Oh, and Devavrat Shah (2013). “Efficient crowdsourcing
for multi-class labeling”. In: ACMSIGMETRICS Performance Evaluation Review
41.1, pp. 81–92.

– (2014). “Budget-optimal task allocation for reliable crowdsourcing systems”. In:
Operations Research 62.1, pp. 1–24.

Kovashka, A. et al. (2016). “Crowdsourcing in Computer Vision”. In: ArXiv e-
prints. arXiv: 1611.02145 [cs.CV]. url: %7Bhttps://arxiv.org/abs/
1611.02145%7D.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Li, Hongwei, Bin Yu, and Dengyong Zhou (2013). “Error rate analysis of labeling by
crowdsourcing”. In: ICML Workshop: Machine Learning Meets Crowdsourcing.
Atalanta, Georgia, USA.

Little, Greg et al. (2010). “Exploring iterative and parallel human computation pro-
cesses”. In: Proceedings of the ACM SIGKDD workshop on human computation.
ACM, pp. 68–76.

Littlestone, Nick and Manfred K Warmuth (1994). “The weighted majority algo-
rithm”. In: Information and computation 108.2, pp. 212–261.

Liu, Qiang, Jian Peng, and Alexander T Ihler (2012). “Variational inference for
crowdsourcing”. In:Advances inNeural InformationProcessing Systems, pp. 692–
700.

Long, Chengjiang, Gang Hua, and Ashish Kapoor (2013). “Active visual recogni-
tion with expertise estimation in crowdsourcing”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 3000–3007.

Mora, Camilo et al. (2011). “Howmany species are there on Earth and in the ocean?”
In: PLoS biology 9.8, e1001127.

Ok, Jungseul et al. (2016). “Optimality of Belief Propagation for Crowdsourced
Classification”. In: arXiv preprint arXiv:1602.03619.

Oquab, Maxime et al. (2014). “Learning and transferring mid-level image repre-
sentations using convolutional neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1717–1724.

Platt, John et al. (1999). “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods”. In: Advances in large margin
classifiers 10.3, pp. 61–74.

Raykar, Vikas C et al. (2010). “Learning from crowds”. In: Journal of Machine
Learning Research 11.Apr, pp. 1297–1322.

Shah, Nihar Bhadresh and Denny Zhou (2015). “Double or nothing: Multiplicative
incentive mechanisms for crowdsourcing”. In: Advances in Neural Information
Processing Systems, pp. 1–9.

79

Smyth, Padhraic et al. (1995). “Inferring ground truth from subjective labelling of
venus images”. In:

Sullivan, Brian L et al. (2014). “The eBird enterprise: an integrated approach to
development and application of citizen science”. In: Biological Conservation
169, pp. 31–40.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826.

Tang, Wei and Matthew Lease (2011). “Semi-supervised consensus labeling for
crowdsourcing”. In: SIGIR 2011 workshop on crowdsourcing for information
retrieval (CIR), pp. 1–6.

Tian, Tian and Jun Zhu (2015). “Max-margin majority voting for learning from
crowds”. In: Advances in Neural Information Processing Systems, pp. 1621–
1629.

Ueda, K (2017). “iNaturalist Research-grade Observations via GBIF.org.” In: url:
https://doi.org/10.15468/ab3s5x.

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset collection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

Vempaty, Aditya, Lav RVarshney, and PramodKVarshney (2014). “Reliable crowd-
sourcing for multi-class labeling using coding theory”. In: IEEE Journal of Se-
lected Topics in Signal Processing 8.4, pp. 667–679.

Welinder, Peter et al. (2010). “The multidimensional wisdom of crowds”. In: Ad-
vances in neural information processing systems, pp. 2424–2432.

Whitehill, Jacob et al. (2009). “Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise”. In: Advances in neural information
processing systems, pp. 2035–2043.

Yosinski, Jason et al. (2014). “How transferable are features in deep neural net-
works?” In: Advances in neural information processing systems, pp. 3320–3328.

Zhang, Jing et al. (2016). “Multi-class ground truth inference in crowdsourcing
with clustering”. In: IEEE Transactions on Knowledge and Data Engineering
28.4, pp. 1080–1085.

Zhang, Yuchen et al. (2014). “Spectral methods meet EM: A provably optimal
algorithm for crowdsourcing”. In: Advances in neural information processing
systems, pp. 1260–1268.

Zhou, Dengyong et al. (2014). “Aggregating Ordinal Labels from Crowds by Mini-
max Conditional Entropy.” In: ICML, pp. 262–270.

80

Zhou, Denny et al. (2012). “Learning from the wisdom of crowds by minimax
entropy”. In: Advances in Neural Information Processing Systems, pp. 2195–
2203.

81

C h a p t e r 5

BUILDING A BIRD RECOGNITION APP AND LARGE SCALE
DATASET WITH CITIZEN SCIENTISTS: THE FINE PRINT IN

FINE-GRAINED DATASET COLLECTION

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset collection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

5.1 Abstract
We introduce tools and methodologies to collect high quality, large scale, fine-
grained, computer vision datasets using citizen scientists – crowd annotators who
are passionate and knowledgeable about specific domains such as birds or airplanes.
We worked with citizen scientists and domain experts to collect NABirds, a new
high quality dataset containing 48,562 images of North American birds with 555
categories, part annotations and bounding boxes. We find that citizen scientists
are significantly more accurate than Mechanical Turkers at zero cost. We worked
with bird experts to measure the quality of popular datasets like CUB-200-2011 and
ImageNet and found class label error rates of at least 4%. Nevertheless, we found
that learning algorithms are surprisingly robust to annotation errors, and this level
of training data corruption can lead to an acceptably small increase in test error
if the training set has sufficient size. At the same time, we found that an expert-
curated high quality test set like NABirds is necessary to accurately measure the
performance of fine-grained computer vision systems. We used NABirds to train a
publicly available bird recognition service deployed on the web site of the Cornell
Lab of Ornithology.1

5.2 Introduction
Computer vision systems – catalyzed by the availability of new, larger scale datasets
like ImageNet (Jia Deng, Dong, et al., 2009) – have recently obtained remarkable
performance at object recognition (Krizhevsky, Sutskever, and Hinton, 2012; Taig-
man et al., 2014) and detection (Girshick et al., 2013). Computer vision has entered

1merlin.allaboutbirds.org

82

an era of big data, where the ability to collect larger datasets – larger in terms of
the number of classes, the number of images per class, and the level of annotation
per image – appears to be paramount for continuing performance improvement and
expanding the set of solvable applications.

Unfortunately, expanding datasets in this fashion introduces new challenges beyond
just increasing the amount of human labor required. As we increase the number
of classes of interest, classes become more fine-grained and difficult to distinguish
for the average person (and the average annotator), more ambiguous, and less likely
to obey an assumption of mutual exclusion. The annotation process becomes more
challenging, requiring an increasing amount of skill and knowledge. Dataset quality
appears to be at direct odds with dataset size.

In this chapter, we introduce tools and methodologies for constructing large, high
quality computer vision datasets, based on tapping into an alternate pool of crowd
annotators – citizen scientists. Citizen scientists are nonprofessional scientists or
enthusiasts in a particular domain such as birds, insects, plants, airplanes, shoes, or
architecture. Citizen scientists contribute annotations with the understanding that
their expertise and passion in a domain of interest can help build tools that will be
of service to a community of peers. Unlike workers on Mechanical Turk, citizen
scientists are unpaid. Despite this, they produce higher quality annotations due to
their greater expertise and the absence of spammers. Additionally, citizen scientists
can help define and organically grow the set of classes and its taxonomic structure
to match the interests of real users in a domain of interest. Whereas datasets like
ImageNet (J. Deng et al., 2009) and CUB-200-2011 (Wah et al., 2011) have been
valuable in fostering the development of computer vision algorithms, the particular
set of categories chosen is somewhat arbitrary and of limited use to real applications.

Figure 5.1: Merlin Photo ID: a publicly available tool for bird species classification
built with the help of citizen scientists. The user uploaded a picture of a bird, and
server-side computer vision algorithms identified it as an immature Cooper’s Hawk.

83

The drawback of using citizen scientists instead of Mechanical Turkers is that the
throughput of collecting annotations may be lower, and computer vision researchers
must take the time to figure out how to partner with different communities for each
domain.

We collected a large dataset of 48, 562 images over 555 categories of birds with
part annotations and bounding boxes for each image, using a combination of citizen
scientists, experts, and Mechanical Turkers. We used this dataset to build a publicly
available application for bird species classification. In this chapter, we provide
details and analysis of our experiences with the hope that they will be useful and
informative for other researchers in computer vision working on collecting larger
fine-grained image datasets. We address questions like: what is the relative skill
level of different types of annotators (MTurkers, citizen scientists, and experts)
for different types of annotations (fine-grained categories and parts)? What are
the resulting implications in terms of annotation quality, annotation cost, human
annotator time, and the time it takes a requester to finish a dataset? Which types of
annotations are suitable for different pools of annotators? What types of annotation
GUIs are best for each respective pool of annotators? How important is annotation
quality for the accuracy of learned computer vision algorithms? How significant are
the quality issues in existing datasets like CUB-200-2011 and ImageNet, and what
impact has that had on computer vision performance?

We summarize our contributions below:

1. Methodologies to collect high quality, fine-grained computer vision datasets
using a new type of crowd annotators: citizen scientists.

2. NABirds: a large, high quality dataset of 555 categories curated by experts.

3. Merlin Photo ID: a publicly available tool for bird species classification.

4. Detailed analysis of annotation quality, time, cost, and throughput of MTurk-
ers, citizen scientists, and experts for fine-grained category and part annota-
tions.

5. Analysis of the annotation quality of the popular datasets CUB-200 and Ima-
geNet.

6. Empirical analysis of the effect that annotation quality has when training
state-of-the-art computer vision algorithms for categorization.

84

A high-level summary of our findings is: (a) citizen scientists have 2-4 times
lower error rates than MTurkers at fine-grained bird annotation, while annotating
images faster and at zero cost. Over 500 citizen scientists annotated images in
our dataset – if we can expand beyond the domain of birds, the pool of possible
citizen scientist annotators is massive. (b) A curation-based interface for visualizing
and manipulating the full dataset can further improve the speed and accuracy of
citizen scientists and experts. (c) Even when averaging answers from 10 MTurkers
together, MTurkers have a more than 30% error-rate at 37-way bird classification.
(d) The general high quality of Flickr search results (84% accurate when searching
for a particular species) greatly mitigates the errors of MTurkers when collecting
fine-grained datasets. (e) MTurkers are as accurate and fast as citizen scientists
at collecting part location annotations. (f) MTurkers have faster throughput in
collecting annotations than citizen scientists; however, using citizen scientists it is
still realistic to annotate a dataset of around 100k images in a domain like birds in
around 1 week. (g) At least 4% of images in CUB-200-2011 and ImageNet have
incorrect class labels, and numerous other issues including inconsistencies in the
taxonomic structure, biases in terms of which imageswere selected, and the presence
of duplicate images. (h) Despite these problems, these datasets are still effective for
computer vision research; when training CNN-based computer vision algorithms
with corrupted labels, the resulting increase in test error is surprisingly low and
significantly less than the level of corruption. (i) A consequence of findings (a),
(d), and (h) is that training computer vision algorithms on unfiltered Flickr search
results (with no annotation) can often outperform algorithms trained when filtering
by MTurker majority vote.

5.3 Related Work
Crowdsourcing with Mechanical Turk
Amazon’s Mechanical Turk (AMT) has been an invaluable tool that has allowed
researchers to collect datasets of significantly larger size and scope than previously
possible (Sorokin and Forsyth, 2008; J. Deng et al., 2009; Lin et al., 2014). AMT
makes it easy to outsource simple annotation tasks to a large pool of workers. Al-
though these workers will usually be non-experts, for many tasks it has been shown
that repeated labeling of examples by multiple non-expert workers can produce high
quality labels (Sheng, Provost, and Ipeirotis, 2008; Welinder and Pietro Perona,
2010; Ipeirotis, Provost, et al., 2013). Annotation of fine-grained categories is a
possible counter-example, where the average annotator may have little to no prior

85

knowledge to make a reasonable guess at fine-grained labels. For example, the aver-
age worker has little to no prior knowledge as to what type of bird a "Semipalmated
Plover" is, and her ability to provide a useful guess is largely dependent on the efforts
of the dataset collector to provide useful instructions or illustrative examples. Since
our objective is to collect datasets of thousands of classes, generating high quality
instructions for each category is difficult or infeasible.

Crowdsourcing with expertise estimation
A possible solution is to try to automatically identify the subset of workers who
have adequate expertise for fine-grained classification (Welinder, Branson, et al.,
2010; Whitehill et al., 2009; Raykar et al., 2009; Long, Hua, and Kapoor, 2013).
Although such models are promising, it seems likely that the subset of Mechanical
Turkers with expertise in a particular fine-grained domain is small enough to make
such methods impractical or challenging.

Games with a purpose
Games with a purpose target alternate crowds of workers that are incentivized by
construction of annotation tasks that also provide some entertainment value. Notable
examples include the ESP Game (Von Ahn, 2006), reCAPTCHA (Von Ahn et al.,
2008), and BubbleBank (Jia Deng, Krause, and Fei-Fei, 2013). A partial inspiration
to our work was Quizz (Ipeirotis and Gabrilovich, 2014), a system to tap into new,
larger pools of unpaid annotators using Google AdWords to help find and recruit
workers with the applicable expertise.2 A limitation of games with a purpose is that
they require some artistry to design tools that can engage users.

Citizen science
The success of Wikipedia is another major inspiration to our work, where citizen
scientists have collaborated to generate a large, high qualityweb-based encyclopedia.
Studies have shown that citizen scientists are incentivized by altruism, sense of
community, and reciprocity (Kuznetsov, 2006; Nov, 2007; Yang and Lai, 2010), and
such incentives can lead to higher quality work than monetary incentives (Gneezy
and Rustichini, 2000).

2The viability of this approach remains to be seen, as our attempt to test it was foiled by a
misunderstanding with the AdWords team.

86

Datasets
Progress in object recognition has been accelerated by dataset construction. These
advances are fueled both by the release and availability of each dataset but also
by subsequent competitions on them. Key datasets/competitions in object recog-
nition include Caltech-101 (Fei-Fei, Fergus, and Pietro Perona, 2006), Caltech-
256 (Griffin, Holub, and P Perona, 2007), Pascal VOC (Everingham et al., 2010),
and ImageNet/ILSVRC (J. Deng et al., 2009; Russakovsky et al., 2014).

Fine-grained object recognition is no exception to this trend. Various domains have
already had datasets introduced includingBirds (the CUB-200 (Wah et al., 2011) and
recently announced Birdsnap (T. Berg et al., 2014) datasets), Flowers (Nilsback and
Zisserman, 2008; Angelova and Zhu, 2013), Dogs and Cats (Khosla et al., 2011;
Parkhi et al., 2011; Liu et al., 2012), Stoneflies (Martinez-Munoz et al., 2009),
Butterflies (Lazebnik, Schmid, and Ponce, 2004), and Fish (Boom et al., 2014)
along with man-made domains such as Airplanes (Maji et al., 2013), Cars (Krause
et al., 2013), and Shoes (T. L. Berg, A. C. Berg, and Shih, 2010).

5.4 Crowdsourcing with Citizen Scientists
The communities of enthusiasts for a taxon are an untapped work force and partner
for vision researchers. The individuals comprising these communities tend to be
very knowledgeable about the taxon. Even those that are novices make up for
their lack of knowledge with passion and dedication. These characteristics make
these communities a fundamentally different work force than the typical paid crowd
workers. When building a large, fine-grained dataset, they can be utilized to curate
images with a level of accuracy that would be extremely costly with paid crowd
workers, see Section 5.6. There is a mutual benefit as the taxon communities gain
from having a direct influence on the construction of the dataset. They know their
taxon, and their community, better than vision researchers, and so they can ensure
that the resulting datasets are directed towards solving real world problems.

A connectionmust be establishedwith these communities before they can be utilized.
We worked with ornithologists at the Cornell Lab of Ornithology to build NABirds.
The Lab of Ornithology provided a perfect conduit to tap into the large citizen
scientist community surrounding birds. Our partners at the Lab of Ornithology
described that the birding community, and perhaps many other taxon communities,
can be segmented into several different groups, each with their own particular
benefits. We built custom tools to take advantage of each of the segments.

87

Experts
Experts are the professionals of the community, and our partners at the Lab of
Ornithology served this role. Figure 5.4 is an example of an expert management
tool (Vibe3) and was designed to let expert users quickly and efficiently curate
images and manipulate the taxonomy of a large dataset. Beyond simple image
storage, tagging, and sharing, the benefit of this tool is that it lets the experts define
the dataset taxonomy as they see fit, and allows for the dynamic changing of the
taxonomy as the need arises. For NABirds, an interesting result of this flexibility
is that bird species were further subdivided into “visual categories." A “visual
category" marks a sex or age or plumage attribute of the species that results in
a visually distinctive difference from other members within the same species, see
Figure 5.2. This type of knowledge of visual variances at the species level would
have been difficult to capture without the help of someone knowledgeable about the
domain.

Citizen Scientist Experts
After the experts, these individuals of the community are the top tier, most skilled
members. They have the confidence and experience to identify easily confused
classes of the taxonomy. For the birding community, these individuals were iden-
tified by their participation in eBird, a resource that allows birders to record and
analyze their bird sightings.4 Figure 5.3a shows a tool that allows these members
to take bird quizzes. The tool presents the user with a series of images and requests
the species labels. The user can supply the label using the autocomplete box, or, if
they are not sure, they can browse through a gallery of possible answers. At the end
of the quiz, their answers can be compared with other expert answers.

3vibe.visipedia.org
4ebird.org

Figure 5.2: Two species of hawks from the NABirds dataset are separated into 6
categories based on their visual attributes.

88

(a) Quiz Annotation GUI (b) Part Annotation GUI

Figure 5.3: (a) This interface was used to collect category labels on images. Users
could either use the autocomplete box or scroll through a gallery of possible birds.
(b) This interface was used to collect part annotations on the images. Users were
asked to mark the visibility and location of 11 parts. See Section 5.4 and 5.4

Figure 5.4: Expert interface for rapid and efficient curation of images, and easy
modification of the taxonomy. The taxonomy is displayed on the left and is similar
to a file system structure. See Section 5.4.

Citizen Scientist Turkers
This is a large, passionate segment of the community motivated to help their cause.
This segment is not necessarily as skilled in difficult identification tasks, but they
are capable of assisting in other ways. Figure 5.3b shows a part annotation task that
we deployed to this segment. The task was to simply click on all parts of the bird.
The size of this population should not be underestimated. Depending on how these
communities are reached, this population could be larger than the audience reached
in typical crowdsourcing platforms.

5.5 NABirds
Weused a combination of experts, citizen scientists, andMTurkers to buildNABirds,
a new bird dataset of 555 categories with a total of 48, 562 images. Members from
the birding community provided the images, the experts of the community curated
the images, and a combination of CTurkers andMTurkers annotated 11 bird parts on
every image along with bounding boxes. This dataset is free to use for the research
community.

89

The taxonomy for this dataset contains 1011 nodes, and the categories cover themost
commonNorth American birds. These leaf categories were specifically chosen to al-
low for the creation of bird identification tools to help novice birders. Improvements
on classification or detection accuracy by vision researchers will have a straight-
forward and meaningful impact on the birding community and their identification
tools.

We used techniques from (Branson et al., 2014) to baseline performance on this
dataset. Using Caffe and the fc6 layer features extracted from the entire image, we
achieved an accuracy of 35.7%. Using the best performing technique from (Branson
et al., 2014) with ground truth part locations, we achieved an accuracy of 75%.

5.6 Annotator Comparison
In this section, we compare annotations performed by Amazon Mechanical Turk
workers (MTurkers) with citizen scientists reached through the Lab of Ornithol-
ogy’s Facebook page. The goal of these experiments was to quantify the followings
aspects of annotation tasks: (1) Annotation Error: The fraction of incorrect an-
notations; (2) Annotation Time: The average amount of human time required per
annotation; (3) Annotation Cost: The average cost in dollars required per annota-
tion; (4) Annotation Throughput: The average number of annotations obtainable
per second, this scales with the total size of the pool of annotators.

In order to compare the skill levels of different annotator groups directly, we chose
a common user interface that we considered to be appropriate for both citizen
scientists and MTurkers. For category labeling tasks, we used the quiz tool that was
discussed in Section 5.4. Each question presented the user with an image of a bird
and requested the species label. To make the task feasible for MTurkers, we allowed
users to browse through galleries of each possible species and limited the space of
possible answers to < 40 categories. Each quiz was focused on a particular group
of birds, either sparrows or shorebirds. Random chance was 1 / 37 for the sparrows
and 1 / 32 for the shorebirds. At the end of the quiz, users were given a score (the
number of correct answers) and could view their results. Figure 5.3a shows our
interface. We targeted the citizen scientist experts by posting the quizzes on the
eBird Facebook page.

Figure 5.5 shows the distribution of scores achieved by the two different worker
groups on the two different bird groups. Not surprisingly, citizen scientists had
better performance on the classification task than MTurkers; however we were

90

uncertain as to whether or not averaging a large number of MTukers could yield
comparable performance. Figure 5.6a plots the time taken to achieve a certain error
rate by combining multiple annotators for the same image using majority voting.
From this figure, we can see that citizen scientists not only have a lower median time
per image (about 8 seconds vs. 19 seconds), but that one citizen scientist expert
label is more accurate than the average of 10 MTurker labels. We note that we are
using a simple-as-possible (but commonly used) crowdsourcing method, and the
performance ofMTurkers could likely be improved bymore sophisticated techniques
such as CUBAM (Welinder, Branson, et al., 2010). However, the magnitude of
difference in the two groups and overall large error rate of MTurkers led us to
believe that the problem could not be solved simply using better crowdsourcing
models.

Figure 5.6c measures the raw throughput of the workers, highlighting the size of
the MTurk worker pool. With citizen scientists, we noticed a spike of participation
when the annotation task was first posted on Facebook, and then a quick tapering off
of participation. Finally, Figure 5.6b measures the cost associated with the different
levels of error; citizen scientists were unpaid.

We performed a similar analysis with part annotations. For this task, we used the
tool shown in Figure 5.3b. Workers from the two different groups were given an
image and asked to specify the visibility and position of 11 different bird parts. We
targeted the citizen scientist Turkers with this task by posting the tool on the Lab of
Ornithology’s Facebook page. The interface for the tool was kept the same between
the workers. Figures 5.7a, 5.7b, and 5.7c detail the results of this test. From
Figure 5.7a, we can see there is not a difference between the obtainable quality from
the two worker groups, and that MTurkers tended to be faster at the task. Figure 5.7c
again reveals that the raw throughput of Mturkers is larger than that of the citizen
scientists. The primary benefit of using citizen scientists for this particular case is
made clear by their zero cost in Figure 5.7b.

Summary
From these results, we can see that there are clear distinctions between the two
different worker pools. Citizen scientists are clearly more capable at labeling fine-
grained categories than MTurkers. However, the raw throughput of MTurk means
that you can finish annotating your dataset sooner than when using citizen scientists.
If the annotation task does not require much domain knowledge (such as part

91

(a) Sparrow Quiz Scores (b) Shorebird Quiz Scores

Figure 5.5: Histogram of quiz scores. Each quiz has 10 images, a perfect score is
10. (a) Score distributions for the sparrow quizzes. Random chance per image is
2.7%. (b) Score distributions for the shorebird quizzes. Random chance per image
is 3.1%. See Section 5.6.

4 12 20 28 36 44 52
Annotation Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rr

o
r

1x

5x
10x

1x

5x1x

3x

MTurkers

Citizen Scientists

Citizen Scientists + Vibe

(a) Annotation Time

$0 $40 $80 $120 $160 $200
Annotation Cost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rr

o
r

MTurkers

Citizen Scientists

Citizen Scientists + Vibe

(b) Annotation Cost

0 24 48 72 96 120 144
Time (hours)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

A
n
n
o
ta

ti
o
n
s

C
o
m

p
le

te
d

MTurkers

Citizen Scientists

(c) Throughput

Figure 5.6: Category Labeling Tasks: workers used the quiz interface (see Fig-
ure 5.3a) to label the species of birds in images. (a) Citizen scientists are more
accurate and faster for each image than MTurkers. If the citizen scientists use an
expert interface (Vibe), then they are even faster and more accurate. (b) Citizen
scientists are not compensated monetarily, they donate their time to the task. (c)
The total throughput of MTurk is still greater, meaning you can finish annotating
your dataset sooner, however this comes at a monetary cost. See Section 5.6.

annotation), then MTurkers can perform on par with citizen scientists. Gathering
fine-grained category labels withMTurk should be done with care, as we have shown
that naive averaging of labels does not converge to the correct label. Finally, the cost
savings of using citizen scientists can be significant when the number of annotation
tasks grows.

5.7 Measuring the Quality of Existing Datasets
CUB-200-2011 (Wah et al., 2011) and ImageNet (J. Deng et al., 2009) are two pop-
ular datasets with fine-grained categories. Both of these datasets were collected by
downloading images from web searches and curating them with Amazon Mechani-
cal Turk. Given the results in the previous section, we were interested in analyzing

92

4 12 20 28 36
Annotation Time (hours)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Er
ro

r (
Av

e

In
co

rre
ct

 P
ar

ts
)

1x

5x

10x

1x

5x

MTurkers
Citizen Scientists

(a) Annotation Time

$20 $60 $100 $140 $180 $220 $260
Annotation Cost ($)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Er
ro

r (
Av

e

In
co

rre
ct

 P
ar

ts
)

1x

5x

1x

5x

MTurkers
Citizen Scientists

(b) Annotation Cost

0.0 1.0 2.0 3.0
Time (hours)

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

An
no

ta
tio

ns
 C

om
pl

et
ed

MTurkers
Citizen Scientists

(c) Throughput

Figure 5.7: Parts annotation tasks: workers used the interface in Figure 5.3b
to label the visibility and location of 11 parts. (a) For this task, as opposed to
the category labeling task, citizen scientists and MTurkers perform comparable on
individual images. (b) Citizen scientists donate their time and are not compensated
monetarily. (c) The raw throughput of MTurk is greater than that of the citizen
scientists, meaning you can finish your total annotation tasks sooner, but this comes
at a cost. See Section 5.6.

the errors present in these datasets. With the help of experts from the Cornell Lab of
Ornithology, we examined these datasets, specifically the bird categories, for false
positives.

CUB-200-2011:
The CUB-200-2011 dataset has 200 classes, each with roughly 60 images. Experts
went through the entire dataset and identified a total of 494 errors, about 4.4%
of the entire dataset. There was a total of 252 images that did not belong in the
dataset because their category was not represented, and a total of 242 images that
needed to be moved to existing categories. Beyond this 4.4% percent error, an
additional potential concern comes from dataset bias issues. CUB was collected
by performing a Flickr image search for each species, then using MTurkers to filter
results. A consequence is that the most difficult images tended to be excluded from
the dataset altogether. By having experts annotate the raw Flickr search results,
we found that on average 11.6% of correct images of each species were incorrectly
filtered out of the dataset. See Section 5.8 for additional analysis.

ImageNet:
There are 59 bird categories in ImageNet, eachwith about 1300 images in the training
set. Table 5.1 shows the false positive counts for a subset of these categories. In
addition to these numbers, it was our general impression that error rate of ImageNet
is probably at least as high as CUB-200 within fine-grained categories; for example,
the synset “ruffed grouse, partridge, Bonasa umbellus" had overlapping definition

93

and image content with the synset “partridge" beyond what was quantified in our
analysis.

Category Training Images False Positives
magpie 1300 11
kite 1294 260
dowitcher 1298 70
albatross, mollymark 1300 92
quail 1300 19
ptarmigan 1300 5
ruffed grouse, par-
tridge, Bonasa um-
bellus

1300 69

prairie chicken,
prairie grouse,
prairie fowl

1300 52

partridge 1300 55

Table 5.1: False positives from ImageNet LSVRC dataset.

5.8 Effect of Annotation Quality & Quantity

100 101 102 103

log(Number of Categories)

0.10

0.30

0.50
0.70
0.90

lo
g
(C

la
ss

if
ic

a
ti

o
n
 E

rr
o
r)

5% corruption

15% corruption

50% corruption

Pure

(a) Image level features,
train+test corruption

100 101 102 103

log(Number of Categories)

0.10

0.30

0.50
0.70
0.90

lo
g
(C

la
ss

if
ic

a
ti

o
n
 E

rr
o
r)

5% corruption

15% corruption

50% corruption

Pure

(b) Image level features, train
corruption only

100 101 102 103

log(Dataset Size)

0.10

0.20

0.30

0.40

0.50
lo

g
(C

la
ss

if
ic

a
ti

o
n
 E

rr
o
r)

0.05 corruption

0.15 corruption

0.50 corruption

Pure

(c) Localized features, train
corruption only

Figure 5.8: Analysis of error degradation with corrupted training labels: (a) Both
the training and testing sets are corrupted. There is a significant difference when
compared to the clean data. (b) Only the training set is corrupted. The induced
classification error is much less than the corruption level. (c) Only the training set
is corrupted but more part localized features are utilized. The induced classification
error is still much less than the corruption level. See Section 5.8

In this section, we analyze the effect of data quality and quantity on learned vision
systems. Does the 4%+ error in CUB and ImageNet actually matter? We begin
with simulated label corruption experiments to quantify reduction in classification
accuracy for different levels of error in Section 5.8, then perform studies on real
corrupted data using an expert-vetted version of CUB in Section 5.8.

94

Label Corruption Experiments
In this experiment, we attempted to measure the effect of dataset quality by cor-
rupting the image labels of the NABirds dataset. We speculated that if an image of
true class X is incorrectly labeled as class Y , the effect might be larger if class Y is
included as a category in the dataset (i.e., CUB and ImageNet include only a small
subset of real bird species). We thus simulated class subsets by randomly picking
N ≤ 555 categories to comprise our sample dataset. Then, we randomly sampled
M images from the N selected categories and corrupted these images by swapping
their labels with another image randomly selected from all 555 categories of the
original NABirds dataset. We used this corrupted dataset of N categories to build
a classifier. Note that as the number of categories N within the dataset increases,
the probability that a corrupted label is actually in the dataset increases. Figure 5.8
plots the results of this experiment for different configurations. We summarize our
conclusions below.

5-10% Training error was tolerable
Figures 5.8b and 5.8c analyze the situation where only the training set is corrupted,
and the ground truth testing set remains pure. We see that the increase in classifica-
tion error due to 5% and even 15% corruption is remarkably low–much smaller than
5% and 15%. This result held regardless of the number of classes or computer vision
algorithm. This suggests that the level of annotation error in CUB and ImageNet
(≈ 5%) might not be a big deal.

Obtaining a clean test set was important
On the other hand, one cannot accurately measure the performance of computer
vision algorithms without a high quality test set, as demonstrated in Figure 5.8a,
which measures performance when the test set is also corrupted. There is clearly a
significant drop in performance with even 5% corruption. This highlights a potential
problem with CUB and ImageNet, where train and test sets are equally corrupted.

Effect of computer vision algorithm
Figure 5.8b uses computer vision algorithms based on raw image-level CNN-fc6
features (obtaining an accuracy of 35% on 555 categories) while Figure 5.8c uses
a more sophisticated method (Branson et al., 2014) based on pose normalization
and features from multiple CNN layers (obtaining an accuracy of 74% on 555
categories). Label corruption caused similar additive increases in test error for both

95

methods; however, this was a much higher percentage of the total test error for the
higher performing method.

Error Analysis on Real CUB-200-2011 Labels
The results from the previous section were obtained on simulated label corruptions.
We performed additional analysis on real annotation errors on CUB-200-2011.
CUB-200-2011 was collected by performing Flickr image search queries for each
species and filtering the results using votes frommultiple MTurkers. We had experts
provide ground truth labels for all Flickr search results on 40 randomly selected
categories. In Figure 5.9, we compare different possible strategies for constructing
a training set based on thresholding the number of MTurk votes. Each method
resulted in a different training set size and level of precision and recall. For each
training set, we measured the accuracy of a computer vision classifier on a common,
expert-vetted test set. The classifier was based on CNN-fc6 features from bounding
box regions. Results are summarized below:

Dataset Images ACC
vote 0 6475 0.78
vote 1 6467 0.78
vote 2 6080 0.77
vote 3 5002 0.77
vote 4 3410 0.75
vote 5 1277 0.68
expert 5257 0.78

Precision

R
ec
al
l

Figure 5.9: Different datasets can be built up when modifying the MTurker agree-
ment requirement. Increasing the agreement requirement results in a dataset with
low numbers of false positives and lower amounts of training data due to a high
number of false negatives. A classifier trained on all the images performs as well or
better than the datasets that attempt to clean up the data. See Section 5.8.

The level of training error in CUB was tolerable
The results were consistent with those predicted by the simulated label corruption
experiments, where a 5-15% error rate in the training errors yielded only a very small
(roughly 1%) increase in test error. This provides comfort that CUB-200-2011 and
ImageNet are still useful despite label errors. We emphasize though that an error
free test set is still necessary–this is still an advantage of NABirds over CUB and
ImageNet.

96

Keeping all Flickr images without any MTurk curation does surprisingly well
This “free dataset" was as good as the expert dataset and slightly better than the
MTurk curated datasets. The raw Flickr image search results had a reasonably
high precision of 81%. Keeping all images resulted in more training images than
the MTurk and expert filtered datasets. If we look at the voter agreement and the
corresponding dataset training sizes, we see that having high MTurk agreement
results in much smaller training set sizes and a correspondingly low recall.

Quantity can be more important than quality
This underlines the point that having a large training set is extremely important,
and having strict requirements on annotation quality can come at the expense of
reducing training set size. We randomly reduced the size of the training set within
the 40 class dataset and measured performance of each resulting computer vision
classifier. The results are shown in Table 5.2; we see that classification accuracy is
more sensitive to training set size than it was to label corruption (see Figures 5.8b
and 5.9).

Scale
Size

1 1/2 1/4 1/8 1/16 1/32 1/64

ACC .77 .73 .676 .612 .517 .43 .353

Table 5.2: Classification accuracy with reduced training set size. See Section 5.8.

Similar results when scaling to more classes
One caveat is that the above results were obtained on a 40 class subset, which was
the limit of what was reasonable to ask of experts to annotate all Flickr image
search results. It is possible that annotation quality becomes more important as the
number of classes in the dataset grows. To test this, we had experts go through
all 200 classes in CUB-200-2011, annotating all images that were included in the
dataset (see Section 5.7). We obtained a similar result as on the 40-class subset,
where the expert filtered dataset performed at about the same level as the original
CUB-200-2011 trainset that contains 4-5% error. These results are consistent with
simulated label corruption experiments in Figure 5.8b.

5.9 Conclusion
We introduced tools for crowdsourcing computer vision annotations using citizen
scientists. In collecting a new expert-curated dataset of 48,562 images over 555
categories, we found that citizen scientists provide significantly higher quality la-

97

bels than Mechanical Turk workers, and found that Turkers have alarmingly poor
performance annotating fine-grained classes. This has resulted in error rates of
over 4% in fine-grained categories in popular datasets like CUB-200-2011 and Im-
ageNet. Despite this, we found that learning algorithms based on CNN features and
part localization were surprisingly robust to mislabeled training examples as long
as the error rate is not too high, and we would like to emphasize that ImageNet and
CUB-200-2011 are still very useful and relevant datasets for research in computer
vision.

Our results so far have focused on experiences in a single domain (birds) and have
resulted in a new publicly available tool for bird species identification. We are
currently working on expanding to other types of categories such as shoes and
Lepidoptera. Given that over 500 citizen scientists helped provide high quality
annotations in just a single domain, working with citizen scientists has potential to
generate datasets of unprecedented size and quality while encouraging the landscape
of computer vision research to shape around the interests of end users.

5.10 Acknowledgments
We would like to thank Nathan Goldberg, Ben Barkley, Brendan Fogarty, Graham
Montgomery, and Nathaniel Hernandez for assisting with the user experiments.
We appreciate the feedback and general guidance from Miyoko Chu, Steve Kelling,
ChrisWood, and Alex Chang. This work was supported in part by a Google Focused
Research Award, the Jacobs Technion-Cornell Joint Research Fund, and Office of
Naval Research MURI N000141010933.

References

Angelova, Anelia and Shenghuo Zhu (2013). “Efficient Object Detection and Seg-
mentation for Fine-Grained Recognition”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Berg, Tamara L, Alexander C Berg, and Jonathan Shih (2010). “Automatic attribute
discovery and characterization from noisy web data”. In: European Conference
on Computer Vision. Springer, pp. 663–676.

Berg, Thomas et al. (2014). “Birdsnap: Large-Scale Fine-Grained Visual Catego-
rization of Birds”. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 2019–2026. isbn: 978-1-4799-5118-5. doi: 10.1109/
CVPR.2014.259. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6909656.

98

Boom, Bastiaan J. et al. (2014). “A research tool for long-term and continuous
analysis of fish assemblage in coral-reefs using underwater camera footage”.
In: Ecological Informatics 23, pp. 83–97. issn: 15749541. doi: 10.1016/j.
ecoinf.2013.10.006. url: http://www.sciencedirect.com/science/
article/pii/S1574954113001003.

Branson, Steve et al. (2014). “Bird Species Categorization Using Pose Normalized
Deep Convolutional Nets”. In: arXiv preprint arXiv:1406.2952.

Deng, Jia, Wei Dong, et al. (2009). “Imagenet: A large-scale hierarchical image
database”. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, pp. 248–255.

Deng, Jia, Jonathan Krause, and Li Fei-Fei (2013). “Fine-grained crowdsourcing for
fine-grained recognition”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587.

Deng, J. et al. (2009). “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09.

Everingham,M. et al. (2010). “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88.2, pp. 303–338.

Fei-Fei, Li, Robert Fergus, and Pietro Perona (2006). “One-shot learning of object
categories”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 28.4, pp. 594–611.

Girshick, Ross et al. (2013). “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: arXiv preprint arXiv:1311.2524.

Gneezy, Uri and Aldo Rustichini (2000). “Pay enough or don’t pay at all”. In:
Quarterly journal of economics, pp. 791–810.

Griffin, G, A Holub, and P Perona (2007). Caltech-256 Object Category Dataset.
Tech. rep. CNS-TR-2007-001. California Institute of Technology. url: http:
//authors.library.caltech.edu/7694.

Ipeirotis, Panagiotis G. and Evgeniy Gabrilovich (2014). “Quizz: targeted crowd-
sourcing with a billion (potential) users”. In: pp. 143–154. doi: 10 . 1145 /
2566486 . 2567988. url: http : / / dl . acm . org / citation . cfm ? id =
2566486.2567988.

Ipeirotis, Panagiotis G., Foster Provost, et al. (2013). “Repeated labeling using mul-
tiple noisy labelers”. In: Data Mining and Knowledge Discovery 28.2, pp. 402–
441. issn: 1384-5810. doi: 10.1007/s10618- 013- 0306- 1. url: http:
//link.springer.com/10.1007/s10618-013-0306-1.

Khosla, Aditya et al. (2011). “Novel Dataset for Fine-Grained Image Categoriza-
tion”. In: First Workshop on Fine-Grained Visual Categorization, IEEE Confer-
ence on Computer Vision and Pattern Recognition. Colorado Springs, CO.

99

Krause, Jonathan et al. (2013). “Collecting a Large-Scale Dataset of Fine-Grained
Cars”. In: Second Workshop on Fine-Grained Visual Categorization (FGVC2).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Kuznetsov, Stacey (2006). “Motivations of contributors to Wikipedia”. In: ACM
SIGCAS computers and society 36.2, p. 1.

Lazebnik, S., C. Schmid, and Jean Ponce (2004). “Semi-LocalAffineParts forObject
Recognition”. In: Proc. BMVC. doi:10.5244/C.18.98, pp. 98.1–98.10. isbn: 1-
901725-25-1.

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common objects in context”. In:
ECCV.

Liu, Jiongxin et al. (2012). “Dog Breed Classification Using Part Localization.” In:
ECCV.

Long, Chengjiang, Gang Hua, and Ashish Kapoor (2013). “Active Visual Recogni-
tion with Expertise Estimation in Crowdsourcing”. In: 2013 IEEE International
Conference on Computer Vision. IEEE, pp. 3000–3007. isbn: 978-1-4799-2840-
8. doi: 10.1109/ICCV.2013.373. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6751484.

Maji, S. et al. (2013). Fine-Grained Visual Classification of Aircraft. Tech. rep.
arXiv: 1306.5151 [cs-cv].

Martinez-Munoz, G. et al. (2009). “Dictionary-free categorization of very similar
objects via stacked evidence trees”. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, pp. 549–556. isbn: 978-1-4244-3992-8.
doi: 10.1109/CVPR.2009.5206574. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5206574.

Nilsback, M-E. and A. Zisserman (2008). “Automated Flower Classification over a
LargeNumber of Classes”. In:Proceedings of the IndianConference onComputer
Vision, Graphics and Image Processing.

Nov, Oded (2007). “What motivates wikipedians?” In: Communications of the ACM
50.11, pp. 60–64.

Parkhi, Omkar M et al. (2011). “The truth about cats and dogs”. In: ICCV.

Raykar, Vikas C et al. (2009). “Supervised learning from multiple experts: whom to
trust when everyone lies a bit”. In: Proceedings of the 26th Annual international
conference on machine learning. ACM, pp. 889–896.

Russakovsky, Olga et al. (2014). ImageNet Large Scale Visual Recognition Chal-
lenge. eprint: arXiv:1409.0575.

100

Sheng, Victor S., Foster Provost, and Panagiotis G. Ipeirotis (2008). “Get another
label? improving data quality and data mining using multiple, noisy labelers”. In:
Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD 08. New York, New York, USA: ACM Press,
p. 614. isbn: 9781605581934. doi: 10.1145/1401890.1401965. url: http:
//dl.acm.org/citation.cfm?id=1401890.1401965.

Sorokin, Alexander andDavid Forsyth (2008). “Utility data annotationwithAmazon
Mechanical Turk”. In: 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops. IEEE, pp. 1–8. isbn: 978-1-4244-
2339-2. doi: 10.1109/CVPRW.2008.4562953. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4562953.

Taigman, Yaniv et al. (2014). “Deepface: Closing the gap to human-level perfor-
mance in face verification”. In:Computer Vision andPattern Recognition (CVPR),
2014 IEEE Conference on. IEEE, pp. 1701–1708.

Von Ahn, Luis (2006). “Games with a purpose”. In: Computer 39.6, pp. 92–94.

Von Ahn, Luis et al. (2008). “recaptcha: Human-based character recognition via
web security measures”. In: Science 321.5895, pp. 1465–1468.

Wah, C. et al. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Tech. rep. CNS-
TR-2011-001. California Institute of Technology.

Welinder, Peter, Steve Branson, et al. (2010). “The Multidimensional Wisdom of
Crowds”. In: Advances in Neural Information Processing Systems 23. Ed. by J D
Lafferty et al. Curran Associates, Inc., pp. 2424–2432. url: http://papers.
nips.cc/paper/4074-the-multidimensional-wisdom-of-crowds.pdf.

Welinder, Peter and Pietro Perona (2010). “Online crowdsourcing: Rating annotators
and obtaining cost-effective labels”. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops. IEEE, pp. 25–32.
isbn: 978-1-4244-7029-7. doi: 10.1109/CVPRW.2010.5543189. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5543189.

Whitehill, Jacob et al. (2009). “Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise”. In: Advances in neural information
processing systems, pp. 2035–2043.

Yang, Heng-Li and Cheng-Yu Lai (2010). “Motivations of Wikipedia content con-
tributors”. In: Computers in Human Behavior 26.6, pp. 1377–1383.

101

C h a p t e r 6

THE INATURALIST SPECIES CLASSIFICATION AND
DETECTION DATASET

Van Horn, Grant et al. (2018). “The iNaturalist Species Classification and Detection
Dataset”. In:Proceedings of the IEEEConference onComputer Vision andPattern
Recognition. Salt Lake City, UT. doi: 10.1109/CVPR.2018.00914.

6.1 Abstract
Existing image classification datasets used in computer vision tend to have a uni-
form distribution of images across object categories. In contrast, the natural world
is heavily imbalanced, as some species are more abundant and easier to photograph
than others. To encourage further progress in challenging real world conditions,
we present the iNaturalist species classification and detection dataset, consisting of
859, 000 images from over 5, 000 different species of plants and animals. It fea-
tures visually similar species captured in a wide variety of situations, from all over
the world. Images were collected with different camera types, have varying image
quality, feature a large class imbalance, and have been verified by multiple citizen
scientists. We discuss the collection of the dataset and present extensive baseline
experiments using state-of-the-art computer vision classification and detectionmod-
els. Results show that current non-ensemble based methods achieve only 67% top
one classification accuracy, illustrating the difficulty of the dataset. Specifically, we
observe poor results for classes with small numbers of training examples, suggesting
more attention is needed in low-shot learning.

6.2 Introduction
Performance on existing image classification benchmarks such as (Russakovsky
et al., 2015) is close to being saturated by the current generation of classification
algorithms (He et al., 2016; Szegedy, Vanhoucke, et al., 2016; Szegedy, Ioffe, et al.,
2016; Xie et al., 2017). However, the number of training images is crucial. If one
reduces the number of training images per category, performance typically suffers. It
may be tempting to try and acquiremore training data for the classeswith few images,
but this is often impractical, or even impossible, in many application domains. We
argue that class imbalance is a property of the real world, and computer vision

102

Figure 6.1: Two visually similar species from the iNat2017 dataset. Through close
inspection, we can see that the ladybug on the left has two spots while the one on
the right has seven.

models should be able to deal with it. Motivated by this problem, we introduce
the iNaturalist Classification and Detection Dataset (iNat2017). Just like the real
world, it exhibits a large class imbalance, as some species are much more likely to
be observed.

It is estimated that the natural world contains several million species with around
1.2 million of these having already been formally described (Mora et al., 2011).
For some species, it may only be possible to determine the species via genetics
or by dissection. For the rest, visual identification in the wild, while possible,
can be extremely challenging. This can be due to the sheer number of visually
similar categories that an individual would be required to remember along with the
challenging inter-class similarity; see Fig. 6.1. As a result, there is a critical need for
robust and accurate automated tools to scale up biodiversity monitoring on a global
scale (Cardinale et al., 2012).

The iNat2017 dataset is comprised of images and labels from the citizen science
website iNaturalist1. The site allows naturalists to map and share photographic
observations of biodiversity across the globe. Each observation consists of a date,
location, images, and labels containing the name of the species present in the images.
As of November 2017, iNaturalist has collected over 6.6 million observations from
127,000 species. From this, there are close to 12,000 species that have been observed
by at least twenty people and have had their species ID confirmed by multiple
annotators.

The goal of iNat2017 is to push the state-of-the-art in image classification and
1www.inaturalist.org

103

detection for ‘in the wild’ data featuring large numbers of imbalanced, fine-grained,
categories. iNat2017 contains over 5,000 species, with a combined training and
validation set of 675,000 images, 183,000 test images, and over 560,000 manually
created bounding boxes. It is free from one of the main selection biases that are
encountered in many existing computer vision datasets - as opposed to being scraped
from the web, all images have been collected and then verified by multiple citizen
scientists. It features many visually similar species captured in a wide variety of
situations from all over the world. We outline how the dataset was collected and
report extensive baseline performance for state-of-the-art classification and detection
algorithms. Our results indicate that iNat2017 is challenging for current models due
to its imbalanced nature and will serve as a good experimental platform for future
advances in our field.

6.3 Related Datasets
In this section, we review existing image classification datasets commonly used in
computer vision. Our focus is on large scale, fine-grained, object categories as
opposed to datasets that feature common everyday objects, e.g. (Fei-Fei, Fergus,
and Perona, 2007; Everingham et al., 2010; T.-Y. Lin et al., 2014). Fine-grained
classification problems typically exhibit two distinguishing differences from their
coarse-grained counter parts. First, there tends to be only a small number of domain
experts that are capable of making the classifications. Second, as we move down
the spectrum of granularity, the number of instances in each class becomes smaller.
This motivates the need for automated systems that are capable of discriminating
between large numbers of potentially visually similar categories with small numbers
of training examples for some categories. In the extreme, face identification can be
viewed as an instance of fine-grained classification, and many existing benchmark
datasets with long tail distributions exist e.g. (G. B. Huang et al., 2007; Omkar
M Parkhi, Vedaldi, Zisserman, et al., 2015; Guo et al., 2016; Cao et al., 2017).
However, due to the underlying geometric similarity between faces, current state-
of-the-art approaches for face identification tend to perform a large amount of face
specific pre-processing (Taigman et al., 2014; Schroff, Kalenichenko, and Philbin,
2015; Omkar M Parkhi, Vedaldi, Zisserman, et al., 2015).

The vision community has released many fine-grained datasets covering several
domains such as birds (Welinder et al., 2010; Wah et al., 2011; Berg et al., 2014;
Van Horn et al., 2015; Krause, Sapp, et al., 2016), dogs (Khosla et al., 2011; O. M.
Parkhi et al., 2012; J. Liu et al., 2012), airplanes (Maji et al., 2013; Vedaldi et al.,

104

2014), flowers (Nilsback and Zisserman, 2006), leaves (Kumar et al., 2012), food
(Hou, Y. Feng, and Wang, 2017), trees (Wegner et al., 2016), and cars (Krause,
Stark, et al., 2013; Y.-L. Lin et al., 2014; Yang et al., 2015; Gebru et al., 2017).
ImageNet (Russakovsky et al., 2015) is not typically advertised as a fine-grained
dataset, yet it contains several groups of fine-grained classes, including about 60 bird
species and about 120 dog breeds. In Table 6.1, we summarize the statistics of some
of the most common datasets. With the exception of a small number e.g.(Krause,
Sapp, et al., 2016; Gebru et al., 2017), many of these datasets were typically
constructed to have an approximately uniform distribution of images across the
different categories. In addition, many of these datasetswere created by searching the
internet with automated web crawlers and as a result, can contain a large proportion
of incorrect images e.g.(Krause, Sapp, et al., 2016). Even manually vetted datasets
such as ImageNet (Russakovsky et al., 2015) have been reported to contain up to 4%
error for some fine-grained categories (Van Horn et al., 2015). While current deep
models are robust to label noise at training time, it is still very important to have
clean validation and test sets to be able to quantify performance (Van Horn et al.,
2015; Rolnick et al., 2017).

Unlikeweb scraped datasets (Krause, Sapp, et al., 2016; Krasin et al., 2016;Wilber et
al., 2017; Hou, Y. Feng, andWang, 2017), the annotations in iNat2017 represent the
consensus of informed enthusiasts. Images of natural species tend to be challenging,
as individuals from the same species can differ in appearance due to sex and age and
may also appear in different environments. Depending on the particular species,
they can also be very challenging to photograph in the wild. In contrast, mass-
produced, man-made object categories are typically identical up to nuisance factors,
i.e. they only differ in terms of pose, lighting, or color, but not necessarily in their
underlying object shape or appearance (Yu and Grauman, 2014; Gebru et al., 2017;
Zhang et al., 2017).

6.4 Dataset Overview
In this section, we describe the details of the dataset, including how we collected
the image data (Section 6.4), how we constructed the train, validation and test splits
(Section 6.4), how we vetted the test split (Section 6.4), and how we collected
bounding boxes (Section 6.4). Future researchers may find our experience useful
when constructing their own datasets.

105

Dataset Name # Train # Classes Imbalance
Flowers 102 (Nilsback and Zisserman, 2006) 1,020 102 1.00
Aircraft (Maji et al., 2013) 3,334 100 1.03
Oxford Pets (O. M. Parkhi et al., 2012) 3,680 37 1.08
DogSnap (J. Liu et al., 2012) 4,776 133 2.85
CUB 200-2011 (Wah et al., 2011) 5,994 200 1.03
Stanford Cars (Krause, Stark, et al., 2013) 8,144 196 2.83
Stanford Dogs (Khosla et al., 2011) 12,000 120 1.00
Urban Trees (Wegner et al., 2016) 14,572 18 7.51
NABirds (Van Horn et al., 2015) 23,929 555 15.00
LeafSnap∗ (Kumar et al., 2012) 30,866 185 8.00
CompCars∗ (Yang et al., 2015) 136,727 1,716 10.15
VegFru∗ (Hou, Y. Feng, and Wang, 2017) 160,731 292 8.00
Census Cars (Gebru et al., 2017) 512,765 2,675 10.00
ILSVRC2012 (Russakovsky et al., 2015) 1,281,167 1,000 1.78
iNat2017 579,184 5,089 435.44

Table 6.1: Summary of popular general and fine-grained computer vision classifi-
cation datasets. ‘Imbalance’ represents the number of images in the largest class
divided by the number of images in the smallest. While susceptible to outliers,
it gives an indication of the imbalance found in many common datasets. ∗Total
number of train, validation, and test images.

Dataset Collection
iNat2017 was collected in collaboration with iNaturalist, a citizen science effort that
allows naturalists to map and share observations of biodiversity across the globe
through a custom made web portal and mobile apps. Observations, submitted by
observers, consist of images, descriptions, location and time data, and community
identifications. If the community reaches a consensus on the taxa in the observation,
then a “research-grade” label is applied to the observation. iNaturalist makes an
archive of research-grade observation data available to the environmental science
community via the Global Biodiversity Information Facility (GBIF) (Ueda, 2017).
Only research-grade labels at genus, species, or lower are included in this archive.
These archives contain the necessary information to reconstruct which photographs
belong to each observation, which observations belong to each observer, as well as
the taxonomic hierarchy relating the taxa. These archives are refreshed on a rolling
basis, and the iNat2017 dataset was created by processing the archive from October
3rd, 2016.

106

Super-Class Class Train Val BBoxes
Plantae 2,101 158,407 38,206 -
Insecta 1,021 100,479 18,076 125,679
Aves 964 214,295 21,226 311,669
Reptilia 289 35,201 5,680 42,351
Mammalia 186 29,333 3,490 35,222
Fungi 121 5,826 1,780 -
Amphibia 115 15,318 2,385 18,281
Mollusca 93 7,536 1,841 10,821
Animalia 77 5,228 1,362 8,536
Arachnida 56 4,873 1,086 5,826
Actinopterygii 53 1,982 637 3,382
Chromista 9 398 144 -
Protozoa 4 308 73 -
Total 5,089 579,184 95,986 561,767

Table 6.2: Number of images, classes, and bounding boxes in iNat2017 broken
down by super-class. ‘Animalia’ is a catch-all category that contains species that
do not fit in the other super-classes. Bounding boxes were collected for nine of the
super-classes. In addition, the public and private test sets contain 90,427 and 92,280
images, respectively.

Dataset Construction
The complete GBIF archive had 54k classes (genus level taxa and below), with
1.1M observations and a total of 1.6M images. However, over 19k of those classes
contained only one observation. In order to construct train, validation, and test
splits that contained samples from all classes, we chose to employ a taxa selection
criterion: we required that a taxa have at least 20 observations, submitted from
at least 20 unique observers (i.e. one observation from each of the 20 unique
observers). This criterion limited the candidate set to 5,089 taxa coming from 13
super-classes, see Table 6.2.

The next step was to partition the images from these taxa into the train, validation,
and test splits. For each of the selected taxa, we sorted the observers by their
number of observations (fewest first), selected the first 40% of observers to be in
the test split, with the remaining 60% to be in the “train-val” split. By partitioning
the observers in this way and subsequently placing all of their photographs into
one split or the other, we ensure that the behavior of a particular user (e.g. camera
equipment, location, background, etc.) is contained within a single split, and not
available as a useful source of information for classification on the other split for
a specific taxa. Note that a particular observer may be put in the test split for one

107

0 1000 2000 3000 4000 5000
Sorted Species

101

102

103

N
u
m

b
e
r

o
f

Tr
a
in

in
g

 I
m

a
g

e
s

Figure 6.2: Distribution of training images per species. iNat2017 contains a large
imbalance between classes, where the top 1% most populated classes contain over
16% of training images.

taxa, but the “train-val” split for another taxa. By first sorting the observers by
their number of observations, we ensure that the test split contains a high number
of unique observers and therefore a high degree of variability. To be concrete, at
this point, for a taxa that has exactly 20 unique observers (the minimum allowed), 8
observers would be placed in the the test split, and the remaining 12 observers would
be placed in the “train-val” split. Rather than release all test images, we randomly
sampled ∼183,000 to be included in the final dataset. The remaining test images
were held in reserve in case we encountered unforeseen problems with the dataset.

To construct the separate train and validation splits for each taxa from the “train-val”
split, we again partition on the observers. For each taxa, we sort the observers by
increasing observation counts and repeatedly add observers to the validation split
until either of the following conditions occurs: (1) the total number of photographs
in the validation set exceeds 30, or (2) 33% of the available photographs in the
“train-val” set for the taxa have been added to the validation set. The remaining
observers and all of their photographs are added to the train split. To be concrete,
and continuing the example from above, exactly 4 images would be placed in the
validation split, and the remaining 8 images would be placed in the train split for a
taxa with 20 unique observers. This results in a validation split that has at least 4
and at most ∼30 images for each class (the last observer added to the validation split
for a taxa may push the number of photographs above 30), and a train split that has

108

Figure 6.3: Sample bounding box annotations. Annotators were asked to annotate
up to 10 instances of a super-class, as opposed to the fine-grained class, in each
image.

at least 8 images for each class. See Fig. 6.2 for the distribution of train images per
class.

At this point we have the final image splits, with a total of 579,184 training images,
95,986 validation images, and 182,707 test images. All images were resized to
have a max dimension of 800px. Sample images from the dataset can be viewed in
Fig. 6.11. The iNat2017 dataset is available from our project website2.

Test Set Verification

Each observation on iNaturalist is made up of one or more images that provide
evidence that the taxon was present. Therefore, a small percentage of images may
not contain the taxon of interest but instead can include footprints, feces, and habitat
shots. Unfortunately, iNaturalist does not distinguish between these types of images
in the GBIF export, so we crowdsourced the verification of three super-classes
(Mammalia, Aves, and Reptilia) that might exhibit these “non-instance” images.
We found that less than 1.1% of the test set images for Aves and Reptilia had non-
instance images. The fraction was higher for Mammalia due to the prevalence of
footprint and feces images, and we filtered these images out of the test set. The
training and validation images were not filtered.

2https://github.com/visipedia/inat_comp/tree/master/2017

109

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative bbox size

0.00

0.02

0.04

0.06

0.08
Fr

eq
ue

nc
y

Mammalia
Aves
Mollusca
Insecta
Arachnida

Reptilia
Amphibia
Animalia
Actinopterygii

Figure 6.4: The distribution of relative bounding box sizes (calculated by√
wbbox × hbbox/

√
wimg × himg) in the training set, per super-class. Most objects

are relatively small or medium sized.

Bounding Box Annotation
Bounding boxes were collected on 9 out of the 13 super-classes (see Table 6.2),
totaling 2,854 classes. Due to the inherent difficultly of asking non-expert crowd
annotators to both recognize and box specific fine-grained classes, we instructed
annotators to instead box all instances of the associated super-class for a taxon
(e.g. “Box all Birds” rather than “Box all Red-winged Black Birds”). We col-
lected super-class boxes only on taxa that are part of that super-class. For some
super-classes (e.g. Mollusca), there are images containing taxa which are unfamiliar
to many of the annotators (e.g. Fig. 6.3(a)). For those cases, we instructed the
annotators to box the prominent objects in the images.

The task instructions specified to draw boxes tightly around all parts of the animal
(including legs, horns, antennas, etc.). If the animal is occluded, the annotators were
instructed to draw the box around the visible parts (e.g. Fig. 6.3(b)). In cases where
the animal is blurry or small (e.g. Fig. 6.3(c) and (d)), the following rule-of-thumb
was used: “if you are confident that it is an animal from the requested super-class,
regardless of size, blurriness or occlusion, put a box around it.” For images with
multiple instances of the super-class, all of them are boxed, up to a limit of 10
(Fig. 6.3(f)), and bounding boxes may overlap (Fig. 6.3(e)). We observe that 12%
of images have more than 1 instance and 1.3% have more than 5. If the instances are
physically connected (e.g. the mussels in Fig. 6.3(g)), then only one box is placed
around them.

110

Bounding boxes were not collected on the Plantae, Fungi, Protozoa, or Chromista
super-classes because these super-classes exhibit properties that make it difficult
to box the individual instances (e.g. close up of trees, bushes, kelp, etc.). An
alternate form of pixel annotations, potentially from a more specialized group of
crowd workers, may be more appropriate for these classes.

Under the above guidelines, 561,767 bounding boxes were obtained from 449,313
images in the training and validation sets. Following the size conventions of
COCO T.-Y. Lin et al., 2014, the iNat2017 dataset is composed of 5.7% small
instances (area < 322), 23.6% medium instances (322 ≤ area ≤ 962), and 70.7%
large instances (area > 962), with area computed as 50% of the annotated bounding
box area (since segmentation masks were not collected). Figure 6.4 shows the dis-
tribution of relative bounding box sizes, indicating that a majority of instances are
relatively small and medium sized.

6.5 Experiments
In this section, we compare the performance of state-of-the-art classification and
detection models on iNat2017.

Classification Results
To characterize the classification difficulty of iNat2017, we ran experimentswith sev-
eral state-of-the-art deep network architectures, including ResNets (He et al., 2016),
Inception V3 (Szegedy, Vanhoucke, et al., 2016), Inception ResNet V2 (Szegedy,
Ioffe, et al., 2016), and MobileNet (Howard et al., 2017). During training, random
cropping with aspect ratio augmentation (Szegedy, W. Liu, et al., 2015) was used.
Training batches of size 32 were created by uniformly sampling from all available
training images as opposed to sampling uniformly from the classes. We fine-tuned
all networks from ImageNet pre-trained weights with a learning rate of 0.0045,
decayed exponentially by 0.94 every 4 epochs, and RMSProp optimization with
momentum and decay both set to 0.9. Training and testing were performed with an
image size of 299 × 299, with a single centered crop at test time.

Table 6.3 summarizes the top-1 and top-5 accuracy of the models. From the
Inception family, we see that the higher capacity Inception ResNet V2 outperforms
the Inception V3 network. The addition of the Squeeze-and-Excitation (SE) blocks
(Hu, Shen, and G. Sun, 2017) further improves performance for both models by a
small amount. ResNets performed worse on iNat2017 compared to the Inception
architectures, likely due to over-fitting on categories with a small number of training

111
bf Validation Public Test Private Test

Top1 Top5 Top1 Top5 Top1 Top5
IncResNetV2 SE 67.3 87.5 68.5 88.2 67.7 87.9
IncResNetV2 67.1 87.5 68.3 88.0 67.8 87.8
IncV3 SE 65.0 85.9 66.3 86.7 65.2 86.3
IncV3 64.2 85.2 65.5 86.1 64.8 85.7
ResNet152 drp 62.6 84.5 64.2 85.5 63.1 85.1
ResNet101 drp 60.9 83.1 62.4 84.1 61.4 83.6
ResNet152 59.0 80.5 60.6 81.7 59.7 81.3
ResNet101 58.4 80.0 59.9 81.2 59.1 80.9
MobileNet V1 52.9 75.4 54.4 76.8 53.7 76.3

Table 6.3: Classification results for various CNNs trained on only the training
set, using a single center crop at test time. Unlike some current datasets where
performance is near saturation, iNat2017 still poses a challenge for state-of-the-art
classifiers.

images. We found that adding a 0.5 probability dropout layer (drp) could improve
the performance of ResNets. MobileNet, designed to efficiently run on embedded
devices, had the lowest performance.

Overall, the Inception ResNetV2 SE was the best performing model. As a com-
parison, this model achieves a single crop top-1 and top-5 accuracy of 80.2% and
95.21% respectively on the ILSVRC 2012 (Russakovsky et al., 2015) validation
set (Szegedy, Ioffe, et al., 2016), as opposed to 67.74% and 87.89% on iNat2017,
highlighting the comparative difficulty of the iNat2017 dataset. A more detailed
super-class level breakdown is available in Table 6.4 for the Inception ResNetV2
SE model. We can see that the Reptilia super-class (with 289 classes) was the most
difficult with an average top-1 accuracy of 45.87%, while the Protozoa super-class
(with 4 classes) had the highest accuracy at 89.19%. Viewed as a collection of
fine-grained datasets (one for each super-class), we can see that the iNat2017 dataset
exhibits highly variable classification difficulty.

In Figure 6.5, we plot the top one public test set accuracy against the number of
training images for each class from the Inception ResNet V2 SE model. We see
that as the number of training images per class increases, so does the test accuracy.
However, we still observe a large variance in accuracy for classes with a similar
amount of training data, revealing opportunities for algorithmic improvements in
both the low data and high data regimes.

112
Super-Class Avg Train Public Test

Top1 Top5
Plantae 75.4 69.5 87.1
Insecta 98.4 77.1 93.4
Aves 222.3 67.3 88.0
Reptilia 121.8 45.9 80.9
Mammalia 157.7 61.4 85.1
Fungi 48.1 74.0 92.3
Amphibia 67.9 51.2 81.0
Mollusca 81.0 72.4 90.9
Animalia 67.9 73.8 91.1
Arachnida 87.0 71.5 88.8
Actinopterygii 37.4 70.8 86.3
Chromista 44.2 73.8 92.4
Protozoa 77.0 89.2 96.0

Table 6.4: Super-class level accuracy (computed by averaging across all species
within each super-class) for the best performing model Inception ResNetV2 SE (Hu,
Shen, and G. Sun, 2017). “Avg Train” indicates the average number of training
images per class for each super-class. We observe a large difference in performance
across the different super-classes.

Additional Classification Results
We performed an experiment to understand if there was any relationship between
real world animal size and prediction accuracy. Using existing records for bird
(Lislevand, Figuerola, and Székely, 2007) and mammal (Jones et al., 2009) body
sizes, we assigned a mass to each of the classes in iNat2017 that overlapped with
these datasets. For a given species, mass will vary due to the life stage or gender
of the particular individual. Here, we simply take the average value. This resulted
in data for 795 species, from the small Allen’s hummingbird (Selasphorus sasin)
to the large Humpback whale (Megaptera novaeangliae). In Figure 6.6, we can see
that median accuracy decreases as the mass of the species increases. These results
are preliminary, but reinforce the observation that it can be challenging for humans
to take good photographs of larger mammals. More analysis of these failure cases
may allow us to produce better, species-specific, instructions for the photographers
on iNaturalist.

The IUCNRed List of Vulnerable Species monitors and evaluates the extinction risk
of thousands of species and subspecies (Baillie, Hilton-Taylor, and Stuart, 2004). In
Figure 6.7, we plot the Red List status of 1,568 species from the iNat2017 dataset.
We see that the vast majority of the species are in the ‘Least Concern’ category and
that test accuracy decreases as the threatened status increases. This can perhaps be

113
4 465 2602 778 590 438 145 53 14

Binned Number of Training Images

5-
10

10-
20

20-
50

50-
100

100-
200

200-
500

500-
1K

1K-
2K

2K-
4K

Te
st

 A
cc

u
ra

cy

0

20

40

60

80

100

Figure 6.5: Top one public test set accuracy per class for IncResNet V2 SE (Hu,
Shen, and G. Sun, 2017). Each box plot represents classes grouped by the number
of training images. The number of classes for each bin is written on top of each box
plot. Performance improves with the number of training images, but the challenge
is how to maintain high accuracy with fewer images.

Binned Mass (KG)

Te
st

 A
cc

u
ra

cy

0

20

40

60

80

100

339

259
167

30

0.0-
0.1

0.1-
1.0

1.0-
100

100-
40K

Figure 6.6: Top one public test set accuracy per class for (Szegedy, Ioffe, et al.,
2016) for a subset of 795 classes of birds and mammals binned according to mass.
The number of classes appears to the bottom right of each box.

explained by the reduced number of images for these species in the dataset.

Finally, in Figure 6.8 we examine the relationship between the number of images
and the validation accuracy. The median number of training images per class for
our entire training set is 41. For this experiment, we capped the maximum number
of training images per class to 10, 20, 50, or all, and trained a separate Inception V3

114

Te
st

 A
cc

u
ra

cy

0

20

40

60

80

100

IUCN Red List Status

1433

65

36

31

3

Least
Concern

Near
Threatened

Vulnerable Endangered Critically
Endangered

Figure 6.7: Top one public test set accuracy for (Szegedy, Ioffe, et al., 2016) for
a subset of 1,568 species binned according to their IUCN Red List of Threatened
Species status (Baillie, Hilton-Taylor, and Stuart, 2004). The number of classes
appears to the bottom right of each box.

for each case. This corresponds to starting with 50,000 for the case of 10 images
per class and then doubling the total amount of training data each time. For each
species, we randomly selected the images up until the maximum amount. As noted
in the main paper, more attention is needed to improve performance in the low data
regime.

105 106

Number of train images

30

40

50

60

70

80

90

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy

10 ims per class

20 ims per class

50 ims per class

all train

top5

top1

Figure 6.8: As the maximum number of training images per class increases, so does
the accuracy. However, we observe diminishing returns as the number of images
increases. Results are plotted on the validation set for the Inception V3 network
(Szegedy, Vanhoucke, et al., 2016).

115

iNat2017 Competition Results
From April to mid July 2017, we ran a public challenge on the machine learning
competition platform Kaggle3 using iNat2017. Similar to the classification tasks in
(Russakovsky et al., 2015), we used the top five accuracy metric to rank competitors.
We used this metric as some species can only be disambiguated with additional data
provided by the observer, such as location or date. Additionally, in a small number
of cases, multiple species may appear in the same image (e.g. a bee on a flower).
Overall, there were 32 submissions and we display the final results for the top five
teams in Table 6.5.

The top performing entry from GMV consisted of an ensemble of Inception V4 and
Inception ResNet V2 networks Szegedy, Ioffe, et al., 2016. Each model was first
initialized on the ImageNet-1K dataset and then finetunedwith the iNat2017 training
set along with 90% of the validation set, utilizing data augmentation at training time.
The remaining 10% of the validation set was used for evaluation. To compensate for
the imbalanced training data, the models were further fine-tuned on the 90% subset
of the validation data that has a more balanced distribution. To address small object
size in the dataset, inference was performed on 560 × 560 resolution images using
twelve crops per image at test time.

The additional training data amounts to 15% of the original training set, which,
along with the ensembling, multiple test crops, and higher resolution, account for
the improved 81.58% top 1 public accuracy compared to our best performing single
model which achieved 68.53%.

Rank Team name Public Test Private Test
Top1 Top5 Top1 Top5

1 GMV 81.58 95.19 81.28 95.13
2 Terry 77.18 93.60 76.76 93.50
3 Not hotdog 77.04 93.13 76.56 93.01
4 UncleCat 77.64 93.06 77.44 92.97
5 DLUT_VLG 76.75 93.04 76.19 92.96

Table 6.5: Final public challenge leaderboard results. ‘Rank’ indicates the final
position of the team out of 32 competitors. These results are typically ensemble
models, trained with higher input resolution, with the validation set as additional
training data.

3www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017

116

Detection Results
To characterize the detection difficulty of iNat2017, we adopt Faster-RCNN (Ren
et al., 2017) for its state-of-the-art performance as an object detection setup (which
jointly predicts object bounding boxes along with class labels). We use a Ten-
sorFlow (Abadi et al., 2016) implementation of Faster-RCNN with default hyper-
parameters (J. Huang et al., 2017). Each model is trained with 0.9 momentum and
asynchronously optimized on 9 GPUs to expedite experiments. We use an Incep-
tion V3 network, initialized from ImageNet, as the backbone for our Faster-RCNN
models. Finally, each input image is resized to have 600 pixels as the short edge
while maintaining the aspect ratio.

As discussed in Section 6.4, we collected bounding boxes on 9 of the 13 super-
classes, translating to a total of 2,854 classes with bounding boxes. In the following
experiments, we only consider performance on this subset of classes. Additionally,
we report performance on the validation set in place of the test set, and we only
evaluate on images that contained a single instance. Images that contained only
evidence of the species’ presence and images that contained multiple instances were
excluded. We evaluate the models using the detection metrics from COCO (T.-Y.
Lin et al., 2014).

We first study the performance of fine-grained localization and classification by
training the Faster-RCNN model on the 2,854 class subset. Figure 6.10 shows some
sample detection results. Table 6.6 provides the break down in performance for
each super-class, where super-class performance is computed by taking an average
across all classes within the super-class. The precision-recall curves (again at the
super-class level) for 0.5 IoU are displayed in Figure 6.9. Across all super-classes
we achieve a comprehensive average precision (AP) of 43.5. Again the Reptilia
super-class proved to be the most difficult, with an AP of 21.3 and an AUC of 0.315.
At the other end of the spectrum, we achieved an AP of 49.4 for Insecta and an
AUC of 0.677. Similar to the classification results, when viewed as a a collection
of datasets (one for each super-class), we see that iNat2017 exhibits highly variable
detection difficulty, posing a challenge to researchers to build improved detectors
that work across a broad group of fine-grained classes.

Next we explored the effect of label granularity on detection performance. We
trained two more Faster-RCNN models, one trained to detect super classes rather
fine-grained classes (so 9 classes in total), and another model trained with all
labels pooled together, resulting in a generic object / not object detector. Table 6.7

117

shows the resulting AP scores for the three models when evaluated at different
granularities. When evaluated on the coarser granularity, detectors trained on finer-
grained categories have lower detection performance when compared with detectors
trained at coarser labels. The performance of the 2,854-class detector is particularly
poor on super-class recognition and object localization. This suggests that the Faster-
RCNN algorithm has plenty of room for improvements on end-to-end fine-grained
detection tasks.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Insecta (0.677)
Aves (0.670)
Arachnida (0.664)
Animalia (0.557)
Actinopterygii (0.521)
Mollusca (0.500)
Mammalia (0.486)
Amphibia (0.402)
Reptilia (0.315)

Figure 6.9: Precision-Recall curvewith 0.5 IoU for each super-class, where theArea-
Under-Curve (AUC) corresponds to AP50 in Table 6.6. Super-class performance is
calculated by averaging across all fine-grained classes. We can see that building a
detector that works well for all super-classes in iNat2017 will be a challenge.

Additional Detection Results
In Table 6.8, we investigate detector performance for the 2,854-class model across
different bounding box sizes using the size conventions of the COCO dataset (T.-Y.
Lin et al., 2014). As expected, performance is directly correlated with size, where

118
AP AP50 AP75 AR1 AR10

Insecta 49.4 67.7 59.3 64.5 64.9
Aves 49.5 67.0 59.1 63.3 63.6
Reptilia 21.3 31.5 24.9 44.0 44.8
Mammalia 33.3 48.6 39.1 49.8 50.6
Amphibia 28.7 40.2 35.0 52.0 52.3
Mollusca 34.8 50.0 41.6 52.0 53.0
Animalia 35.6 55.7 40.8 48.3 50.5
Arachnida 43.9 66.4 49.6 57.3 58.6
Actinopterygii 35.0 52.1 41.6 49.1 49.6
Overall 43.5 60.2 51.8 59.3 59.8

Table 6.6: Super-class-level Average Precision (AP) and Average Recall (AR)
for object detection, where AP, AP50 and AP75 denotes AP@[IoU=.50:.05:.95],
AP@[IoU=.50] and AP@[IoU=.75] respectively; AR1 and AR10 denotes AR given
1 detection and 10 detections per image.

Training Evaluation
2854-class 9-super-class 1-generic

2854-class 43.5 55.6 63.7
9-super-class - 65.8 76.7
1-generic - - 78.5

Table 6.7: Detection performance (AP@[IoU=.50:.05:.95]) with different training
and evaluation class granularity. Using finer-grained class labels during training
has a negative impact on coarser-grained super-class detection. This presents an
opportunity for new detection algorithms that maintain precision at the fine-grained
level.

smaller objects are more difficult to detect. However, examining Table 6.9, we can
see that total number of these small instances is low for most super-classes.

6.6 Conclusions and Future Work
We present the iNat2017 dataset, in contrast to many existing computer vision
datasets it is: (1) unbiased, in that it was collected by non-computer vision re-
searchers for a well defined purpose; (2) more representative of real-world chal-
lenges than previous datasets; (3) represents a long-tail classification problem; and
(4) is useful in conservation and field biology. The introduction of iNat2017 en-
ables us to study two important questions in a real world setting: (1) do long-tailed
datasets present intrinsic challenges; and (2) do our computer vision systems ex-
hibit transfer learning from the well-represented categories to the least represented
ones. While our baseline classification and detection results are encouraging, from

119

Chaetodon lunula(1.00)

Chaetodon lunula(0.98)

Anaxyrus fowleri(0.95)

Pseudacris regilla(0.58)
Setophaga petechia(0.91)

Orcinus orca(0.99) Rabdotus dealbatus(0.92)
Sylvilagus audubonii(0.97)

Equus quagga(1.00)
Equus quagga(0.98)

Zalophus californianus(0.88)

Megaptera novaeangliae(0.74)

Hippodamia convergens(0.83)
Phalacrocorax auritus(0.54)

Figure 6.10: Sample detection results for the 2,854-class model that was evaluated
across all validation images. Green boxes represent correct species level detections,
while reds are mistakes. The bottom row depicts some failure cases. We see that
small objects pose a challenge for classification, even when localized well.

our experiments we see that state-of-the-art computer vision models have room to
improve when applied to large imbalanced datasets. Small, efficient models de-
signed for mobile applications and embedded devices have even more room for
improvement (Howard et al., 2017).

Unlike traditional, researcher-collected datasets, the iNat2017 dataset has the oppor-
tunity to grow with the iNaturalist community. Currently, every 1.7 hours another
species passes the 20 unique observer threshold, making it available for inclusion
in the dataset (already up to 12k as of November 2017, up from 5k when we started
work on the dataset). Thus, the current challenges of the dataset (long tail with
sparse data) will only become more relevant.

In the future we plan to investigate additional annotations such as sex and life stage
attributes, habitat tags, and pixel level labels for the four super-classes that were
challenging to annotate. We also plan to explore the “open-world problem” where
the test set contains classes that were never seen during training. This direction
would encourage new error measures that incorporate taxonomic rank (Mittal et al.,
2012; Yan et al., 2015). Finally, we expect this dataset to be useful in studying
how to teach fine-grained visual categories to humans (Singla et al., 2014; Johns,

120

A
ct
in
o

A
m
ph

ib
A
ni
m
al

A
ra
ch
n

Av
es

C
hr
om

i
Fu

ng
i

In
se
ct

M
am

m
al

M
ol
lu
s

Pl
an
ta

Pr
ot
oz

Re
pt
il

Figure 6.11: Example images from the training set. Each row displays randomly
selected images from each of the 13 different super-classes. For ease of visualization
we show the center crop of each image.

121
APS APM APL ARS ARM ARL

Insecta 13.4 34.7 51.8 13.5 38.9 67.7
Aves 11.5 41.7 55.1 13.3 49.2 69.9
Reptilia 0.0 12.4 22.0 0.0 16.3 46.5
Mammalia 6.7 27.8 37.1 9.0 36.1 55.8
Amphibia 0.0 23.2 29.9 0.0 28.7 54.9
Mollusca 17.5 30.8 35.8 17.5 33.6 55.9
Animalia 24.0 22.7 37.1 26.7 28.2 52.0
Arachnida 16.2 32.9 46.5 16.2 38.5 61.6
Actinopterygii 5.0 16.3 36.1 5.0 17.9 51.1
Overall 11.0 34.7 46.7 12.5 40.7 63.7

Table 6.8: Super-class level Average Precision (AP) and Average Recall (AR) with
respect to object sizes. S, M and, L denote small (area < 322), medium (322 ≤ area
≤ 962) and, large (area > 962) objects. The AP for each super-class is calculated by
averaging the results for all species belonging to it. Best and worst performance for
each metric are marked by green and red, respectively.

Small Medium Large
Insecta 445 2432 16429
Aves 2375 8898 16239
Reptilia 32 400 5426
Mammalia 280 1068 2751
Amphibia 20 253 2172
Mollusca 74 466 1709
Animalia 72 414 1404
Arachnida 12 152 909
Actinopterygii 32 144 634

Table 6.9: The number of super-class instances at each bounding box size in the
validation set. While AP and AR is low for some super-classes at a particular size
(see Table 6.8), the actual number of instances at that size may also be low.

Mac Aodha, and Brostow, 2015), and plan to experiment with models of human
learning.

Acknowledgments. Thisworkwas supported by aGoogle FocusedResearchAward.
We would like to thank: Scott Loarie and Ken-ichi Ueda from iNaturalist; Steve
Branson, David Rolnick, Weijun Wang, and Nathan Frey for their help with the
dataset; Wendy Kan and Maggie Demkin from Kaggle; the iNat2017 competitors,
and the FGVC2017 workshop organizers. We also thank NVIDIA and AmazonWeb
Services for their donations.

122

References

Abadi, Martin et al. (2016). “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems”. In: arXiv preprint arXiv:1603.04467.

Baillie, Jonathan, Craig Hilton-Taylor, and Simon N Stuart (2004). 2004 IUCN red
list of threatened species: a global species assessment. IUCN.

Berg, Thomas et al. (2014). “Birdsnap: Large-scale fine-grained visual categoriza-
tion of birds”. In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on. IEEE, pp. 2019–2026.

Cao, Qiong et al. (2017). “VGGFace2: A dataset for recognising faces across pose
and age”. In: arXiv preprint arXiv:1710.08092.

Cardinale, Bradley J et al. (2012). “Biodiversity loss and its impact on humanity”.
In: Nature.

Everingham, Mark et al. (2010). “The pascal visual object classes (voc) challenge”.
In: IJCV.

Fei-Fei, Li, Rob Fergus, and Pietro Perona (2007). “Learning generative visual
models from few training examples: An incremental Bayesian approach tested on
101 object categories”. In: CVIU.

Gebru, Timnit et al. (2017). “Fine-grained car detection for visual census estima-
tion”. In: AAAI.

Guo, Yandong et al. (2016). “Ms-celeb-1m: A dataset and benchmark for large-scale
face recognition”. In: ECCV.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

Hou, Saihui, Yushan Feng, and Zilei Wang (2017). “VegFru: A Domain-Specific
Dataset for Fine-grained Visual Categorization”. In: ICCV.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861.

Hu, Jie, Li Shen, and Gang Sun (2017). “Squeeze-and-Excitation Networks”. In:
arXiv preprint arXiv:1709.01507.

Huang, Gary B. et al. (2007). Labeled Faces in the Wild: A Database for Study-
ing Face Recognition in Unconstrained Environments. Tech. rep. University of
Massachusetts, Amherst.

Huang, Jonathan et al. (2017). “Speed/accuracy trade-offs for modern convolutional
object detectors”. In: CVPR.

Johns, Edward, Oisin Mac Aodha, and Gabriel J Brostow (2015). “Becoming the
expert-interactive multi-class machine teaching”. In: CVPR.

123

Jones, Kate E et al. (2009). “PanTHERIA: a species-level database of life history,
ecology, and geography of extant and recently extinct mammals”. In: Ecology.

Khosla, Aditya et al. (2011). “Novel Dataset for Fine-Grained Image Categoriza-
tion”. In: First Workshop on Fine-Grained Visual Categorization, IEEE Confer-
ence on Computer Vision and Pattern Recognition. Colorado Springs, CO.

Krasin, I et al. (2016). “OpenImages: A public dataset for large-scale multi-label
and multiclass image classification”. In: Dataset available from https://github.
com/openimages.

Krause, Jonathan, Benjamin Sapp, et al. (2016). “The unreasonable effectiveness of
noisy data for fine-grained recognition”. In: European Conference on Computer
Vision. Springer, pp. 301–320.

Krause, Jonathan, Michael Stark, et al. (2013). “3d object representations for fine-
grained categorization”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 554–561.

Kumar,Neeraj et al. (2012). “Leafsnap:A computer vision system for automatic plant
species identification”. In: Computer Vision–ECCV 2012. Springer, pp. 502–516.

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common objects in context”. In:
ECCV.

Lin, Yen-Liang et al. (2014). “Jointly optimizing 3d model fitting and fine-grained
classification”. In: Computer Vision–ECCV 2014. Springer, pp. 466–480.

Lislevand, Terje, Jordi Figuerola, and Tamás Székely (2007). “Avian body sizes in
relation to fecundity, mating system, display behavior, and resource sharing”. In:
Ecology.

Liu, Jiongxin et al. (2012). “Dog breed classification using part localization”. In:
Computer Vision–ECCV 2012. Springer, pp. 172–185.

Maji, Subhransu et al. (2013). “Fine-grained visual classification of aircraft”. In:
arXiv preprint arXiv:1306.5151.

Mittal, Arpit et al. (2012). “Taxonomic multi-class prediction and person layout
using efficient structured ranking”. In: ECCV.

Mora, Camilo et al. (2011). “Howmany species are there on Earth and in the ocean?”
In: PLoS biology 9.8, e1001127.

Nilsback, Maria-Elena and Andrew Zisserman (2006). “A visual vocabulary for
flower classification”. In: Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Vol. 2. IEEE, pp. 1447–1454.

Parkhi, O. M. et al. (2012). “Cats and Dogs”. In: CVPR.

Parkhi, Omkar M, Andrea Vedaldi, Andrew Zisserman, et al. (2015). “Deep Face
Recognition.” In: BMVC.

124

Ren, Shaoqing et al. (2017). “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: PAMI.

Rolnick, David et al. (2017). “Deep Learning is Robust to Massive Label Noise”.
In: arXiv preprint arXiv:1705.10694.

Russakovsky, Olga et al. (2015). “Imagenet large scale visual recognition challenge”.
In: International Journal of Computer Vision 115.3, pp. 211–252.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A
unified embedding for face recognition and clustering”. In: CVPR.

Singla, Adish et al. (2014). “Near-Optimally Teaching the Crowd to Classify.” In:
ICML.

Szegedy, Christian, Sergey Ioffe, et al. (2016). “Inception-v4, inception-resnet and
the impact of residual connections on learning”. In: arXiv preprint arXiv:1602.07261.

Szegedy, Christian, Wei Liu, et al. (2015). “Going deeper with convolutions”. In:
CVPR.

Szegedy, Christian, Vincent Vanhoucke, et al. (2016). “Rethinking the inception
architecture for computer vision”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826.

Taigman, Yaniv et al. (2014). “Deepface: Closing the gap to human-level perfor-
mance in face verification”. In:Computer Vision andPattern Recognition (CVPR),
2014 IEEE Conference on. IEEE, pp. 1701–1708.

Ueda, K (2017). “iNaturalist Research-grade Observations via GBIF.org.” In: url:
https://doi.org/10.15468/ab3s5x.

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset collection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

Vedaldi, Andrea et al. (2014). “Understanding objects in detail with fine-grained
attributes”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3622–3629.

Wah, Catherine et al. (2011). “The caltech-ucsd birds-200-2011 dataset”. In:

Wegner, Jan D et al. (2016). “Cataloging public objects using aerial and street-level
images-urban trees”. In:Proceedings of the IEEEConference on Computer Vision
and Pattern Recognition, pp. 6014–6023.

Welinder, Peter et al. (2010). “Caltech-UCSD birds 200”. In:

Wilber, Michael J et al. (2017). “BAM! The Behance Artistic Media Dataset for
Recognition Beyond Photography”. In: ICCV.

Xie, Saining et al. (2017). “Aggregated residual transformations for deep neural
networks”. In: CVPR.

125

Yan, Zhicheng et al. (2015). “HD-CNN: hierarchical deep convolutional neural
networks for large scale visual recognition”. In: ICCV.

Yang, Linjie et al. (2015). “A large-scale car dataset for fine-grained categorization
and verification”. In: CVPR.

Yu, Aron and Kristen Grauman (2014). “Fine-grained visual comparisons with local
learning”. In: CVPR.

Zhang, Xiao et al. (2017). “The iMaterialist Challenge 2017 Dataset”. In: FGVC
Workshop at CVPR.

126

C h a p t e r 7

REDUCING MEMORY & COMPUTATION DEMANDS FOR
LARGE SCALE VISUAL CLASSIFICATION

Van Horn, Grant and Pietro Perona (2019). “Reducing Memory & Computation
Demands for Large Scale Visual Classification”.

7.1 Abstract
The computational and storage costs of state-of-the-art deep networks that are de-
signed for large scale visual classification (>1K categories) is dominated by the
fully-connected classification layers. This makes deployment problematic on mo-
bile devices, where app download size and power efficient execution is critical. In
this work we analyze different techniques aimed at reducing this bottleneck and
present a new technique, Taxonomic Parameter Sharing, that utilizes a taxonomy
to share parameters among the classes. Our experiments on the iNaturalist dataset
show that a simple tactic of jointly training a standard fully connected layer along
with a rank factorized layer can result in a 25x reduction in memory and compu-
tation in the classification layer without any loss in top-1 accuracy. The standard
fully connected layer can be discarded at test time. For a task with 8k classes, this
reduces the floating point memory requirements of the final layer from 64MB to
2.6MBwhen using a feature vector of size 2048. Our Taxonomic Parameter Sharing
approach is competitive in the regime where reduced parameter count is important
during both training and testing.

7.2 Introduction
Deep convolutional neural networks (DCNN) have dramatically improved perfor-
mance of computer vision systems. This includes decreases in error rates on aca-
demic benchmark datasets (Krizhevsky, Sutskever, and G. E. Hinton, 2012), fast and
accurate retrieval performance on consumer devices (Howard et al., 2017), niche
computer vision apps (Van Horn, Branson, et al., 2015), and rapidly improving self
driving cars. A remaining obstacle to the ubiquitous adoption of DCNNs are the
computational, energetic and memory costs of running the networks on portable
wireless devices.

127

Figure 7.1: Large Scale Visual Classification: This work is motivated by a specific
application problem: allow a user to point their phone’s camera at wildlife and
classify it in real time without requiring a network connection. The model is trained
with data collected by the citizen science website iNaturalist (https://inaturalist.org)
and the number of species grows daily, totalling over 30k in January 2019. Important
aspects of this application is themodel size (which directly impacts the app download
size), the execution time (which directly impacts user interaction), model efficiency
(which directly impacts battery life) and the classification accuracy of the model
(which directly impacts user satisfaction).

Two approaches have been proposed for reducing the computational and memory
requirements of the network. The first focuses on reducing the precision of the
networkweights and activations by quantizing their values (i.e. representing numbers
with fewer bits) (Asanovic and Morgan, 1991; Vanhoucke, Senior, and M. Z. Mao,
2011; Yunchao Gong et al., 2014; Courbariaux, Y. Bengio, and David, 2015; Han,
H. Mao, and Dally, 2016; Rastegari et al., 2016). Besides reducing storage, if
appropriate hardware is designed (Jouppi et al., 2017) the execution time and power
can be reduced as well.

The second focuses on reducing the number of operations in the network. This is
accomplished in four different ways. 1. By designing efficient network architec-
tures (Mamalet and Garcia, 2012; J. Jin, Dundar, and Culurciello, 2014; Szegedy

128

et al., 2016; Howard et al., 2017; Sandler et al., 2018; Zhang et al., 2018; X. Jin
et al., 2018) (e.g. replacing 7x7 convolution blocks with sequences of 3x3 blocks).
Similar to this are works that employ structured efficient linear layers (Yang et al.,
2015; Cheng et al., 2015; Sindhwani, T. Sainath, and Kumar, 2015; Moczulski et al.,
2015; Hoffer, Hubara, and Soudry, 2018) that allow for fast matrix multiplication
with fewer parameters. Note that “convolutional networks” are themselves a means
of parameter efficiency when compared to fully connected layers, locally connected
features (Coates, Ng, and Lee, 2011) and tiled convolutional networks (Gregor
and LeCun, 2010). 2. Through network pruning (Hassibi and Stork, 1993; LeCun,
Denker, and Solla, 1990; Han, Pool, et al., 2015; Guo, Yao, and Chen, 2016; Alvarez
and Salzmann, 2016; Zhou, Alvarez, and Porikli, 2016; H. Li et al., 2017), where
redundant weights (and therefore operations) are post-hoc removed from trained
network. 3. Through knowledge distillation (Buciluǎ, Caruana, and Niculescu-
Mizil, 2006; Ba and Caruana, 2014; G. Hinton, Vinyals, and J. Dean, 2014) where
a smaller network is trained on the logits or softmax output of a larger network or
an ensemble of networks. 4. Through filter factorization and decomposition tech-
niques (Masana et al., 2017; Jaderberg, Vedaldi, and Zisserman, 2014; Mamalet and
Garcia, 2012; Denton et al., 2014; Lebedev et al., 2014; Ba and Caruana, 2014) or
rank restrictions(Xue, J. Li, and Yifan Gong, 2013; Denil et al., 2013; T. N. Sainath
et al., 2013) to speed up a network and reduce memory usage.

Here we focus on the computational and storage costs of networks that classify
thousands of categories, see Figure 7.1. This regime is often referred to as “Large-
Scale Visual Classification” (LSVC). In LSVC computational and memory costs are
dominated by the fully connected classification layer, which scales linearly with the
number of classes. When the number of classes becomes sufficiently large, this
final layer becomes the memory bottleneck of the network, and its multiply-add
operations dominate computational costs. For example, consider a task with 8k
classes and a backbone DCNN architecture that produces a 2k dimension feature
vector. The fully connected layer for this setup has 16Mparameters. If 32 bit floating
point values are used, then this matrix consumes 64MB of memory, and takes 16M
multiply-add operations to project the feature vector into class logits. Attempting
to quantize the representation to 8 bits will only reduce the size by a factor 4, and
will not reduce the number of multiply-add operations. Now consider the training
regime where a batch size of 32, 64, or 128 is used; the memory demands balloon
to over 8GB for a batch size of 128. We aim for dramatic cost reduction.

129

A straightforward tactic for reducing the cost is to factorize the fully connected
layer into two lower rank matrices. In our experiments we explore the performance
differences when we factorize as a post processing step, while training, and while
fine-tuning. We also investigate the effects of jointly training a full sized layer
along side a rank factorized layer. These techniques represent the simplest, easiest
to implement tactics and we find that they can result in good performance. In
addition to these strong baseline experiments, we propose a new architecture for
the fully connected last layer of the network. This new architecture is composed
of multiple fully connected layers whose outputs are parsed to navigate a taxonomy
over the classes. We call this technique Taxonomic Parameter Sharing (TPS), andwe
demonstrate that it achieves competitive accuracy with much lower cost compared
to the standard fully connected layer.

7.3 Related Work
Matrix Factorization
Our analysis of factorizing the final fully connected layer is related to the works of
Sainath et al. (T. N. Sainath et al., 2013) and Denton et al. (Denton et al., 2014).
Sainath et al. (T. N. Sainath et al., 2013) explored factorizing the final matrix to make
training more efficient while preserving accuracy. We expand upon their work and
focus specifically on test time efficiency by investigating factorized layers that are
fine-tuned from or jointly trained with a non-factorized fully connected layer. Our
experiments reveal that a 25x reduction in the final layer parameter count can be
achieved without a loss in accuracy. Denton et al. (Denton et al., 2014) also focus on
test time efficiency and present results on factorized fully connected layers (see Table
2 in (Denton et al., 2014)). We expand upon their work by investigating various
techniques for training the factorized layers, provide a more thorough analysis of
performance, and show that the parameters in the classification layer can be reduced
by 25x, as opposed to their 8x findings.

Large-Scale Classification
In the realm of large scale classification (Deng, Dong, et al., 2009; Thomee et
al., 2016; Krasin et al., 2017; Van Horn, Mac Aodha, et al., 2018) our work is
related to methods that utilize a hierarchy to trade off concept specificity versus
accuracy (Deng, Berg, et al., 2010; Deng, Krause, et al., 2012; Ordonez et al., 2013)
and methods that use the hierarchy to learn experts on subsets of the classes (Yan
et al., 2015; Ahmed, Baig, and Torresani, 2016). Most relevant are methods aimed

130

at reducing the computational bottleneck of the softmax layer of a neural network.
These methods have been explored mainly along three directions.

The first direction is that of hierarchical models (Morin and Y. Bengio, 2005;
Mikolov et al., 2013; Yan et al., 2015) (for SVM approaches see (Griffin and Perona,
2008; Marszałek and Schmid, 2008; Gao and Koller, 2011)). In these approaches
a classifier is learned at each internal node of a taxonomic tree built on top of the
class labels, which could be as simple as a two layer “course-to-fine” hierarchy. This
increases the memory requirements of the model (the number of classes to classify
has increased) but the computational requirements decreases to that of traversing
to a leaf node. A similar approach is undertaken by (S. Bengio, Weston, and
Grangier, 2010; Deng, Satheesh, et al., 2011; Liu et al., 2013) where the authors
build a label tree over the classes, allowing for a reduction in both memory and
computation demands. Our TPS approach is different in that instead of repeatedly
dividing leaf nodes to learn a label tree we encode an existing tree structure. While
at first this seems like a step backwards, the use of a semantic tree in our approach
allows us to utilize additional training data not available to other algorithms and
to provide interpretable taxonomic predictions. Further, our method is achieves
memory reduction in addition to computation reduction.

The second direction of research utilizes Locality Sensitive Hashing (Gionis, Indyk,
Motwani, et al., 1999) to find the k-nearest rows of the weight matrix and then
approximate the softmax output by using only the dot products between those k
vectors and the feature vector. Vijayanarasimhan et al. (Vijayanarasimhan et al.,
2015), building on the work of (Yagnik et al., 2011; T. Dean et al., 2013), introduce
this hashing logic into both the training and inference executions of the model. The
related works of (Mussmann and Ermon, 2016; Mussmann, Levy, and Ermon, 2017;
Levy, Chan, and Ermon, 2018) have continued to explore this route, particularly
for natural language processing. These methods can significantly decrease the
computational cost of evaluating the softmax layer. However, the full weight matrix
still needs to be made accessible. The hashing layers and random memory accesses
that are necessary for these methods complicate GPU utilization.

The third direction of research (Krizhevsky and G. E. Hinton, 2011; Weston, S.
Bengio, and Usunier, 2011) also utilizes hashing but do so in the context of k-
nearest-neighbor search in an embedding space. These methods learn an embedding
space representation (typically using a ranking loss), project the training data into
this embedding space, and use k-nearest-neighbors via hashing to classify images

131

at inference time. The computation bottleneck is alleviated with these methods,
but the memory requirements is increased due to storage of the embedded training
images.

A similar theme with all of these works is that the reduction in computational com-
plexity of evaluating the softmax layer requires increasing the memory requirements
of the model or adding complex logic to the training or inference portions of the
model, or both. We contribute a new technique that can both reduce the computation
and memory requirements of the model, while still being simple.

7.4 Taxonomic Parameter Sharing

Figure 7.2: Taxonomic Parameter Sharing: In this visual example our method
converts an original classification problem over 16 classes to 3 3-way classification
problems by using a taxonomy over the original classes, a 1.7x reduction. At
each level in the original taxonomy, we construct a new classification problem by
binning the sibling nodes into distinct “buckets”. Nodes can be randomly assigned
to “buckets”, or a distance metric and a more sophisticated assignment function can
be used. Note that all sibling nodes from the original taxonomy are placed into
separate “buckets” for the new classification problem. During training, all of the
images from all of the nodes in a given “bucket” are combined together to train a
given new class. This format make it trivial to include additional inner node training
data from the original taxonomy. Each new classifier is trained jointly, receiving
the same feature vector from the backbone DCNN (so 3 classification “heads” are
trained in this example). At test time, all of the new classifiers are run, and a
prediction on the original classes is obtained in the following way: (1) The red
classifier is run, producing a prediction for either $, #, or @. The green classifier is
then run, and the most likely bucket that contains a child of the ancestor prediction
is selected. Finally this process is repeated for the blue classifier, which selects a
leaf node from the original taxonomy.

132

Our Taxonomic Parameter Sharing (TPS) method is a simple, greedy algorithm that
utilizes a taxonomy over N classes to construct a collection of new classification
problems C. The combined classification results from C can be used to predict the
original N classes. Assume we have a taxonomy with L levels, where a node’s level
is the distance from it to the root node, and all leaf nodes are on the same level.
Traditionally, a taxonomy is utilized by training a classifier at each inner node of the
taxonomy to disambiguate that node’s children. This increases the total number of
classification tasks, but during test time we only need to traverse to a leaf node using
the classification results from L classifiers. This can be far faster than evaluating one
classifier over all leaf nodes. The motivation behind the TPS algorithm is to try to
maintain the reduction in test time computation and reduce the total memory usage
as well. We do this by grouping non-sibling nodes at the same level into new “super”
classes. Therefore, we have exactly 1 classifier responsible for making predictions
at each level. This is how the TPS algorithm reduces the memory demands while
still requiring only L classifications to make a prediction.

Algorithm 2 provides an overview of the process of creating the new classification
problems and Figure 7.2 provides a visual description. Given a taxonomy T our
algorithm proceeds to process each level of the taxonomy independently. For each
level l, we collect all the nodes at that level (i.e. all nodes at distance l from the
root node) and first determine the largest number of siblings smax (i.e. the largest
number of nodes at level l that share the same parent). We then construct a new
classification problem with nl classes where nl ≥ smax. We then assign all nodes
at level l to one of the new classes. The algorithm is called Taxonomic Parameter
Sharing because we are requiring multiple nodes at a given level in the taxonomy
to share parameters. Next we provide two different methods for picking nl and
assigning the nodes to classes. We then describe how classification results on the
new classes can be used to produce classes over the original N classes. And we
finish this section with additional benefits of the proposed algorithm.

Random Assignment
The simplest assignment strategy is to randomly assign each node at level l to one
of the new classes nl . Sibling nodes can be handled by grouping them together and
sampling class assignments without replacement, so that it is guaranteed that no two
siblings are assigned to the same class. Choosing the number of classes can be done
greedily by taking nl = smax. This produces the smallest classification problem for
this level. Increasing nl increases the number of classes that must be classified, but

133

Algorithm 2 Taxonomic Parameter Sharing
1: input: taxonomy T with levels L
2: for l ∈ L do
3: smax ← max sibling count at level l
4: Construct new classification problem Cl of size |Cl | ≥ smax
5: Assign each node at level l to one of the new classes such that no sibling

nodes are assigned to the same class.
6: end for
7: return C = {Cl ∀ l} . The new classification problems.

can also make the classification problem easier.

Facility Location Assignment
A more sophisticated assignment strategy is to determine the node assignment and
number of classes nl for level l jointly. This can be done by posing the problem as
a facility location problem (Erlenkotter, 1978) and using a greedy approximation
algorithm (Jain, Mahdian, and Saberi, 2002) to solve it. In this setup the cities
are the nodes at level l and the facilities that are opened to service the cities
correspond to the new classes. We can enforce that sibling nodes at level l cannot
be assigned to the same facility. Facility location problems require a notion of
distance between the cities and in our experiments we use the euclidean distance
computed between averaged training feature vectors for each class (extracted from
an ImageNet Inception-v3 model (Szegedy et al., 2016)). Alternatively, domain
specific or application specific knowledge can be used to specify the distance of the
nodes. Facility location problems also require a cost of opening a facility. This
cost value is directly related to the final size of the new classification task, with a
larger cost producing fewer opened facilities. We employed large cost values in our
experiments so that the resulting number of classes is small.

Classification
We can convert the classification results on the new collection of classification tasks
C for a test image to a classification of the original N classes using the taxonomy
T . We start from the root node of T and choose the highest scoring class from n1.
Note that because all nodes at level l = 1 are siblings, the highest scoring class from
n1 corresponds to a unique node in the taxonomy, call this node t1. We choose t1
as our prediction for level l = 1. For level l = 2, we examine the results of n2 and
consider only those classes that contain children of t1. Because all sibling nodes

134

are assigned to unique classes in n2, we can simply choose the child corresponding
with the highest scoring class from n2. We repeat this process until we reach a leaf
node, which will correspond to one of the original N classes. Note that conditional
probabilities can be computed by multiplying the class probabilities as we traverse
from the root node to a leaf node. Also, there is nothing preventing us from
computing the conditional probability of all leaf nodes (no additional classifications
need to be done), providing the full distribution across all of the original N classes.

Inner Node Training Data
The Taxonomic Parameter Sharing algorithmmakes it easy to include in the training
set data that is not labeled at the species level, but rather at the genus or other
level. These images, classified to level l, can simply be used to train all classifiers
corresponding to levels ≤ l. See Sec. 7.5 for details.

7.5 Experiments

Figure 7.3: iNaturalist Images: Example images from the iNaturalist 2018 com-
petition dataset. Each column contains two different species from the same genus.
These species pairs are often confused by the classifier. From left to right: A. hetzi
and A. chalcodes, P. thoas and P. rumiko, S. jello and S. barracuda, L. alleni and L.
californicus. Image credits from left to right, top to bottom: cullen, Roberto Gon-
zalez, Ian Banks, Francisco Farriols Sarabia, CK Kelly, Francisco Farriols Sarabia,
Marisa Agarwal, mbalame99

Dataset
We conduct experiments using an augmented version of the iNaturalist 2018 com-
petition dataset 1, see Figure 7.3. The iNaturalist 2018 dataset consists of 8, 142
species, however, due to a taxonomy conflict with the taxonomy hosted on inatural-
ist.org, we removed 4 species from the dataset (classes 330, 5150, 119, 120) and we

1https://github.com/visipedia/inat_comp

135

merged class 5185 with 5188 and class 6184 with 6185, resulting in 8, 136 species
and a taxonomy with complete ancestry paths (consisting of Kingdom, Phylum,
Class, Order, Family, and Genus ancestors for all species), see Table 7.1 for the
number of nodes and the maximum sibling counts at each taxonomic rank (we use
the terms “rank” and “level” interchangeably). Our augmented dataset contained all
of the iNaturalist 2018 dataset images (for the 8, 136 species included), which are
all identified to species.

To explore the utility of training with non-leaf node data we augmented the dataset to
include images identified to a courser node. These additional images were chosen by
the following procedure: starting from genus nodes and continuing up to ancestors
nodes, for each node n we sum the images in the descendants of n and attempt to
include additional images identified to n until the total number of images is 1k. Note
that when we are augmenting n we do not include images identified to descendants
of n, we only include those images that the iNaturalist community identified at
n. This procedure resulted in an additional 969, 095 images added to the dataset,
for a total of 1, 406, 529 training images. See Table 7.1 for a break down of how
many additional images were included at each rank. Note that no additional images
identified to species were included. We report accuracy metrics using the validation
set from the iNaturalist 2018 dataset. All of the validation images are identified to
species. In the following sections, performance numbers on the validation set refer
to the percentage of images correctly identified when the model gets one guess.

Kingdom Phylum Class Order Family Genus Species
of Nodes 6 20 54 275 1114 4420 8136
Max Siblings 6 9 7 39 73 173 28
Images 215 680 2, 006 18, 993 162, 806 784, 395 437, 434
Total Images 1, 406, 529 1, 406, 314 1, 405, 634 1, 403, 628 1, 384, 635 1, 221, 829 437, 434

Table 7.1: Taxonomy & Image Statistics: Our iNaturalist taxonomy is composed
of 8, 136 species nodes, each with a Kingdom, Phylum, Class, Order, Family, and
Genus ancestor. The non-taxonomic experiments use only the species training
images. The taxonomic experiments use the species training images along with
additional inner node data. The TPS models can use either just species data or can
be trained with the additional inner node data as well. For the randomly assigned
TPSmodels, the “Max Siblings” row provides the size of the respective classification
problem at each level in the taxonomy. The “Total Images” row is a cumulative count
of training data at a particular level along with the training data at lower levels.

136

Backbone Architecture
We use an Inception-V3 (Szegedy et al., 2016) backbone architecture for all exper-
iments. Image inputs are resized to 299x299 and basic image augmentations are
employed. The model is trained using RMSProp with a batch size of 32, an initial
learning rate of 0.0045 decayed by 0.94 every 4 epochs, batch normalization, and a
small l2 regularization is applied to all weights. Training is monitored by plotting
the training and validation performance and early stopping is employed. The output
feature dimension is 2048. Unless otherwise stated, all experiments started from an
ImageNet pretrained model.

Figure 7.4: Validation Accuracy vs Test Time Parameter Count: This plot
summarizes our experiments on the iNaturalist 2018 dataset. The open symbols
represent experiments that make use of only species-level labels, and did not make
use of inner node data (Sec. 7.5). The filled symbols represent experiments that did
make use of both species-level and inner node data (Sec. 7.5). � symbols repre-
sent l2 regularized fully connect or factorized experiments. © symbols represent
l1 regularized fully connected experiments. 4 symbols represent our Taxonomic
Parameter Sharing (TPS) model (Sec. 7.5). Red experiments are baselines of the re-
spective models. Blue experiments take a trained model from a red experiment and
factorize the fully connected classification layer using SVD (Sec. 7.5 and Sec. 7.5).
Green experiments train factorized matrices of the form 2048× k and k ×8136 from
scratch (Sec. 7.5). Orange experiments fine-tune factorized matrices of the form
2048×k and k×8136, starting from a fully trained baseline model (Sec. 7.5). Purple
experiments jointly train standard fully connected layers and factorizedmatrices (i.e.
multiple classification heads)(Sec. 7.5 and Sec. 7.5). Jointly training a standard fully
connected layer along with a factorized version (purple curves) provides the best
parameter reduction to accuracy loss. Jointly training a rank 64 factorized matrix
reduces the parameters in the classification layer by 25x (at test time) and results in
no loss in accuracy.

137

Non-Taxonomic Models
The models used in this section do not make use of a taxonomy nor any of the
additional training available on the inner nodes.

Baseline

Our baselinemethod simply trains a fully connected layer of equal size to the number
of species, resulting in a matrix of size 2048 × 8136 with 16, 662, 528 parameters.
Note that we do not include the bias in the parameter count for any of the models.
This “off the shelf” model achieves a top-1 accuracy of 60.5 ± 1.7. We will use
these values as baselines for the rest of the methods. This model represents an
“out-of-the-box” solution.

l1 Regularization

In these experiments we took our baseline model and regularized the last fully
connected layer using an l1 penalty. This penalty encourages weights to be 0, so
it is the optimizer that is tasked with increasing the sparsity of the last layer. We
experimented with varying regularization strengths of 4−4, 4−5, and 4−6, resulting in
top-1 accuracy scores of 8.82, 51.21, and 62.12. If we clip all weight values whose
absolute value is less than 1−7, then these models would produce sparse final fully
connected layers with 16, 199, 031, 7, 096, 449, and 13, 149, 137 respectively. We
can see that 4−4 was too strong of a regularization and resulted in a model that could
not converge, while a smaller l1 regularization like 4−6 resulted in a high performing
model, but with only a (hypothetical) factor of 1.26x savings in memory.

SVD

In these experiments we took our baseline model (fully trained) and factorized
the last matrix using SVD, producing three lower rank matrices UΣVT . We then
classified each validation image using the factorized model. We experimented with
the following lower rank values: 64, 128, 256, 512, and 1024. Figure 7.4 plots the
accuracy and parameter counts of these models. We can see that small rank values
produce desired reduction in the number of parameters, but the accuracy takes a
significant hit, with a rank 64 factorization resulting in a top-1 accuracy of 37.71.

138

Matrix Factorization

In these experiments, as opposed to doing an SVD post processing operation on a
trained matrix, we train a factorized fully connected layer, composed of two lower
rank matrices of size 2048 × k and k × 8136. We experimented with the following
rank values k ∈ {16, 32, 64}. Figure 7.4 plots the accuracy and parameter counts of
these models (blue curve, non-filled squares). Note that these models were trained
from an ImageNet model. We can see that this is a simple method that results in
a significant decrease in parameters while maintaining reasonable accuracy. This
result was similarly mentioned by Denton et al. (Denton et al., 2014)), see Section
5 of their work.

Matrix Factorization Fine-tuning

In these experiments we take the trained baseline model and replace the large
fully connected layer with randomly initialized factorized matrices (of the form
2048 × k and k × 8136). We then fine-tune only the factorized matrices, leaving
the backbone network untouched. We experimented with the following rank values
k ∈ {16, 32, 64}. Figure 7.4 plots the accuracy and parameter counts of thesemodels
(orange curve, non-filled squares). We can see that we can effectively recover
the performance of the baseline model with much fewer parameters (651, 776 vs
16, 662, 528 for rank 64). However, performance does drop for even lower rank
values (39.3 top-1 accuracy for rank 16).

Baseline + Matrix Factorization Joint Training

In these experiments we jointly train a baseline model (i.e. fully connected layer
of size 2048 × 8136) along with a factorized fully connected layer, composed
of two lower rank matrices of size 2048 × k and k × 8136. To be specific, the
backbone produces a feature vector of size 2048 which is fed into two different
“classification heads”, one that is a standard fully connected layer and one that
is a factorized version of a fully connected layer. Losses are computed for both
outputs and are added equally. We experimented with the following rank values
k ∈ {16, 32, 64}. Figure 7.4 plots the accuracy and parameter counts of thesemodels
(purple curve, non-filled squares). We can see that this method recovers a high
performing factorized layer for low rank factorizations, performing as well or better
than the fine-tuned factorizations. We can also see that the factorized performance
for low rank values (k = 32 and k = 16) still results in good performance (57.5

139

and 53 top-1 accuracy, respectively). A rank k = 16 factorization results in a 102x
savings in weights and computations .

Taxonomic Models
The models in this section make use of the taxonomy for training, and some make
use of the taxonomy for classification. It will be clear from the context which models
make use of the additional training data at the inner nodes during training.

Baseline

Our baseline model utilizes the taxonomy by training a separate fully connected
layer for each of the 7 taxonomic ranks, see Table 7.1 for details on the number
of nodes at each rank. During training, this model uses 2048 × 14, 025 ≈ 28M
parameters for the classification layer. Once this model is trained, we keep only the
species classifier and remove the other classifiers for testing. Using the additional
inner node training data, our taxonomic baseline species classifier achieves a top-1
accuracy of 70.0. Note that while at test time this model has the same number of
parameters in the classification layer as the non-taxonomic baseline, during training
this taxonomic baseline requires 1.7x more parameters.

SVD

In this experiment we decompose the fully connected layer of the species classifier
from the taxonomic model using SVD. We experimented with the following rank
values k ∈ {64, 128, 256, 512, 1024}. Figure 7.4 plots the accuracy and parameter
counts of these models (blue curve, filled squares). Similar to the non-taxonomic
baseline, we can see that accuracy is well maintained for large rank values (i.e.
k = 1024) but falls off for smaller rank values (i.e. k = 64) that produce the desired
large decreases in parameters.

Baseline + Matrix Factorization Joint Training

In this experiment we trained a taxonomic baseline model (i.e. 7 fully connected
layers for each of the ranks) plus an additional factorized species model. We then
classified the validation images use the factorized species classifier. We experi-
mented with the following rank values k ∈ {32, 64}. Figure 7.4 plots the accuracy
and parameter counts of these models (purple curve, filled squares). Similar to
the non-taxonomic experiments, we can see the benefit of doing this joint training,

140

where we recover essentially the same performance of the baseline model but use
far fewer parameters.

Taxonomic Parameter Sharing

In these experiments we analyze the performance of TPS models. Using a random
assignment method to the fewest number of classes possible (see Table 7.1 for the
max siblings at each level), the TPS model achieves a top-1 accuracy of 51.2 using
a total of 686, 080 parameters (a reduction in parameters by 24.3x compared to the
baseline). This is better accuracy than the 47.75 accuracy of the trained matrix
factorization of rank k = 64 method (with 651, 776 parameters), with both methods
starting froman ImageNet pretrainedmodel. We achieved similar performance using
the facility location assignment algorithm to bin the nodes into the new classification
problems. Unlike the previousmethods, incorporating additional inner node training
data requires no additional parameters during training. The additional training data
increased the performance of the randomly assigned TPS model to 55.9.

The TPS model makes predictions in a hierarchical manner, meaning that it is
affected by mistakes made at ancestor classifiers. To put the TPS model’s perfor-
mance into context, we can compare it to the baseline (full rank) taxonomic model
that makes it predictions via hierarchical predictions (i.e. predict Kingdom before
predicting Phylum, etc.) as opposed to only species classifications. The baseline
taxonomic model trained without additional data achieves a top-1 accuracy of 54.2
using hierarchical predictions. The baseline taxonomic model trained with addi-
tional data achieves a top-1 accuracy of 59.8 using hierarchical predictions. Using
these values as upper limits of performance, we can see that the TPS models are
within 94% and 93% of these limits when trained without and with the additional
data, respectively, but use 24.3x fewer parameters.

Observations
We note a few observations from these experiments. First, it is advantageous
to be able to train a standard fully connected layer because the minimum found
by this over-parameterized layer is better than what can be discovered by a more
parameter constrained layer. Second, either fine-tuning a factorized layer from a
model trained with a standard fully connected layer, or (more preferably) jointly
training a factorized layer with the standard fully connected layer, enables the
factorized layer to achieve a performance comparable to the fully connected layer

141

but with drastically fewer parameters. Being able to jointly train the factorized layer
means that only one training pass needs to be done. Third, if the number of classes
is too large to train a standard fully connected layer, or training a standard fully
connected layer is simply too slow, then the TPS algorithm can achieve as good or
better performance than a factorized method. The TPS algorithm gets the additional
benefit of being able to include additional inner node training data at no additional
parameter expense.

7.6 Conclusion
In this work we analyzed several different methods for reducing the computation
and memory requirements of the classification layer, including the novel Taxonomic
Parameter Sharing algorithm. We used the large-scale iNaturalist 2018 competition
dataset to conduct the experiments and arrived at several interesting findings. Likely
the most interesting and useful for general practitioners is the fact that one can
jointly train a factorized classification matrix with the regular fully connected layer
to produce a test time model that maintains the same accuracy, yet uses 25x fewer
parameters. This is a big savings when considering the usage of DCNN in mobile
applications, where users are wary of large download sizes, and power consumption
is a top concern.

For future work we plan on exploring an even larger class space, for the natural
world this will take us to over one million species. Towards this end it will be
beneficial to take into account the work on dynamic routing in networks (McGill
and Perona, 2017). Having one layer responsible for hundreds of thousands or
millions of classes seems undesirable. Exploring how networks can organize their
knowledge into clusters and dynamically access that knowledge based on the input
seems like a more manageable way forward.

References

Ahmed, Karim, Mohammad Haris Baig, and Lorenzo Torresani (2016). “Network
of experts for large-scale image categorization”. In: European Conference on
Computer Vision. Springer, pp. 516–532.

Alvarez, Jose M and Mathieu Salzmann (2016). “Learning the number of neu-
rons in deep networks”. In: Advances in Neural Information Processing Systems,
pp. 2270–2278.

Asanovic, Krste and Nelson Morgan (1991). Experimental determination of pre-
cision requirements for back-propagation training of artificial neural networks.
International Computer Science Institute.

142

Ba, Jimmy and Rich Caruana (2014). “Do deep nets really need to be deep?” In:
Advances in neural information processing systems, pp. 2654–2662.

Bengio, Samy, Jason Weston, and David Grangier (2010). “Label embedding trees
for large multi-class tasks”. In: Advances in Neural Information Processing Sys-
tems, pp. 163–171.

Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model
compression”. In: Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, pp. 535–541.

Cheng, Yu et al. (2015). “An exploration of parameter redundancy in deep networks
with circulant projections”. In:Proceedings of the IEEE International Conference
on Computer Vision, pp. 2857–2865.

Coates, Adam, Andrew Ng, and Honglak Lee (2011). “An analysis of single-layer
networks in unsupervised feature learning”. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pp. 215–223.

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David (2015). “Binarycon-
nect: Training deep neural networks with binary weights during propagations”.
In: Advances in neural information processing systems, pp. 3123–3131.

Dean, Thomas et al. (2013). “Fast, accurate detection of 100,000 object classes on
a single machine”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1814–1821.

Deng, Jia, Alexander C Berg, et al. (2010). “What does classifying more than 10,000
image categories tell us?” In: European conference on computer vision. Springer,
pp. 71–84.

Deng, Jia, Wei Dong, et al. (2009). “Imagenet: A large-scale hierarchical image
database”. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, pp. 248–255.

Deng, Jia, Jonathan Krause, et al. (2012). “Hedging your bets: Optimizing accuracy-
specificity trade-offs in large scale visual recognition”. In: Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp. 3450–3457.

Deng, Jia, Sanjeev Satheesh, et al. (2011). “Fast and balanced: Efficient label tree
learning for large scale object recognition”. In: Advances in Neural Information
Processing Systems, pp. 567–575.

Denil, Misha et al. (2013). “Predicting parameters in deep learning”. In: Advances
in neural information processing systems, pp. 2148–2156.

Denton, Emily L et al. (2014). “Exploiting linear structure within convolutional
networks for efficient evaluation”. In: Advances in neural information processing
systems, pp. 1269–1277.

Erlenkotter, Donald (1978). “A dual-based procedure for uncapacitated facility lo-
cation”. In: Operations Research 26.6, pp. 992–1009.

143

Gao, Tianshi and Daphne Koller (2011). “Discriminative learning of relaxed hierar-
chy for large-scale visual recognition”. In: Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, pp. 2072–2079.

Gionis, Aristides, Piotr Indyk, Rajeev Motwani, et al. (1999). “Similarity search in
high dimensions via hashing”. In: Vldb. Vol. 99. 6, pp. 518–529.

Gong, Yunchao et al. (2014). “Compressing deep convolutional networks using
vector quantization”. In: arXiv preprint arXiv:1412.6115.

Gregor, Karo andYann LeCun (2010). “Emergence of complex-like cells in a tempo-
ral product networkwith local receptive fields”. In: arXiv preprint arXiv:1006.0448.

Griffin, Gregory and Pietro Perona (2008). “Learning and using taxonomies for
fast visual categorization”. In: Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, pp. 1–8.

Guo, Yiwen, Anbang Yao, and Yurong Chen (2016). “Dynamic network surgery for
efficient dnns”. In:Advances InNeural InformationProcessing Systems, pp. 1379–
1387.

Han, Song, Huizi Mao, and William J Dally (2016). “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huffman
coding”. In: ICLR.

Han, Song, Jeff Pool, et al. (2015). “Learning both weights and connections for
efficient neural network”. In: Advances in neural information processing systems,
pp. 1135–1143.

Hassibi, Babak and David G Stork (1993). “Second order derivatives for network
pruning: Optimal brain surgeon”. In: Advances in neural information processing
systems, pp. 164–171.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2014). “Distilling the knowledge in
a neural network”. In: NIPS Deep Learning Workshop.

Hoffer, Elad, Itay Hubara, and Daniel Soudry (2018). “Fix your classifier: the
marginal value of training the lastweight layer”. In: arXiv preprint arXiv:1801.04540.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861.

Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman (2014). “Speeding up
convolutional neural networks with low rank expansions”. In: arXiv preprint
arXiv:1405.3866.

Jain, Kamal, Mohammad Mahdian, and Amin Saberi (2002). “A new greedy ap-
proach for facility location problems”. In: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing. ACM, pp. 731–740.

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello (2014). “Flattened con-
volutional neural networks for feedforward acceleration”. In: arXiv preprint
arXiv:1412.5474.

144

Jin, Xiaojie et al. (2018). “WSNet: Compact and Efficient Networks ThroughWeight
Sampling”. In: International Conference on Machine Learning, pp. 2357–2366.

Jouppi, Norman P et al. (2017). “In-datacenter performance analysis of a tensor
processing unit”. In:Computer Architecture (ISCA), 2017ACM/IEEE44thAnnual
International Symposium on. IEEE, pp. 1–12.

Krasin, Ivan et al. (2017). “OpenImages: A public dataset for large-scale multi-label
and multi-class image classification.” In:

Krizhevsky, Alex and Geoffrey E Hinton (2011). “Using very deep autoencoders for
content-based image retrieval.” In: ESANN.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Lebedev, Vadim et al. (2014). “Speeding-up convolutional neural networks using
fine-tuned cp-decomposition”. In: arXiv preprint arXiv:1412.6553.

LeCun, Yann, John S Denker, and Sara A Solla (1990). “Optimal brain damage”.
In: Advances in neural information processing systems, pp. 598–605.

Levy, Daniel, Danlu Chan, and Stefano Ermon (2018). “LSH Softmax: Sub-Linear
Learning and Inference of the Softmax Layer in Deep Architectures”. In:

Li, Hao et al. (2017). “Pruning Filters for Efficient ConvNets”. In: International
Conference on Learning Representations.

Liu, Baoyuan et al. (2013). “Probabilistic label trees for efficient large scale image
classification”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 843–850.

Mamalet, Franck and Christophe Garcia (2012). “Simplifying convnets for fast
learning”. In: International Conference on Artificial Neural Networks. Springer,
pp. 58–65.

Marszałek, Marcin and Cordelia Schmid (2008). “Constructing category hierarchies
for visual recognition”. In: European conference on computer vision. Springer,
pp. 479–491.

Masana, Marc et al. (2017). “Domain-Adaptive Deep Network Compression”. In:
The IEEE International Conference on Computer Vision (ICCV).

McGill,Mason and Pietro Perona (2017). “Deciding how to decide:Dynamic routing
in artificial neural networks”. In: Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70. JMLR. org, pp. 2363–2372.

Mikolov, Tomas et al. (2013). “Distributed representations of words and phrases and
their compositionality”. In: Advances in neural information processing systems,
pp. 3111–3119.

Moczulski, Marcin et al. (2015). “ACDC: A structured efficient linear layer”. In:
arXiv preprint arXiv:1511.05946.

145

Morin, Frederic and Yoshua Bengio (2005). “Hierarchical probabilistic neural net-
work language model.” In: Aistats. Vol. 5. Citeseer, pp. 246–252.

Mussmann, Stephen and Stefano Ermon (2016). “Learning and inference via maxi-
mum inner product search”. In: International Conference on Machine Learning,
pp. 2587–2596.

Mussmann, Stephen, Daniel Levy, and Stefano Ermon (2017). “Fast amortized
inference and learning in log-linear models with randomly perturbed nearest
neighbor search”. In: arXiv preprint arXiv:1707.03372.

Ordonez, Vicente et al. (2013). “From large scale image categorization to entry-level
categories”. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2768–2775.

Rastegari, Mohammad et al. (2016). “Xnor-net: Imagenet classification using binary
convolutional neural networks”. In: European Conference on Computer Vision.
Springer, pp. 525–542.

Sainath, TaraN et al. (2013). “Low-rankmatrix factorization for deep neural network
training with high-dimensional output targets”. In: Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE, pp. 6655–
6659.

Sandler, Mark et al. (2018). “MobileNetV2: Inverted Residuals and Linear Bottle-
necks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520.

Sindhwani, Vikas, Tara Sainath, and Sanjiv Kumar (2015). “Structured transforms
for small-footprint deep learning”. In:Advances in Neural Information Processing
Systems, pp. 3088–3096.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826.

Thomee, Bart et al. (2016). “YFCC100M: The new data in multimedia research”.
In: Communications of the ACM 59.2, pp. 64–73.

Van Horn, Grant, Steve Branson, et al. (2015). “Building a bird recognition app and
large scale dataset with citizen scientists: The fine print in fine-grained dataset
collection”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 595–604. doi: 10.1109/CVPR.2015.7298658.

Van Horn, Grant, Oisin Mac Aodha, et al. (2018). “The inaturalist species clas-
sification and detection dataset”. In: Computer Vision and Pattern Recognition
(CVPR).

Vanhoucke, Vincent, Andrew Senior, and Mark Z Mao (2011). “Improving the
speed of neural networks on CPUs”. In: Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop. Vol. 1. Citeseer, p. 4.

146

Vijayanarasimhan, Sudheendra et al. (2015). “Deep networks with large output
spaces”. In:Workshop for International Conference on Learning Representations.

Weston, Jason, Samy Bengio, and Nicolas Usunier (2011). “Wsabie: Scaling up to
large vocabulary image annotation”. In: IJCAI. Vol. 11, pp. 2764–2770.

Xue, Jian, Jinyu Li, and Yifan Gong (2013). “Restructuring of deep neural network
acoustic models with singular value decomposition.” In: Interspeech, pp. 2365–
2369.

Yagnik, Jay et al. (2011). “The power of comparative reasoning”. In: Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE, pp. 2431–2438.

Yan, Zhicheng et al. (2015). “HD-CNN: hierarchical deep convolutional neural
networks for large scale visual recognition”. In: ICCV.

Yang, Zichao et al. (2015). “Deep fried convnets”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1476–1483.

Zhang, Xiangyu et al. (2018). “ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition.

Zhou, Hao, Jose M Alvarez, and Fatih Porikli (2016). “Less is more: Towards
compact cnns”. In: European Conference on Computer Vision. Springer, pp. 662–
677.

147

C h a p t e r 8

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, motivated by the desire to build Visipedia, I, along with my coauthors,
have contributed work aimed at improving our ability to collect computer vision
datasets. Using iNaturalist and the Cornell Lab of Ornithology as case studies,
we have explored how to interact with motivated enthusiasts, experts, and paid
crowdworkers to collect and combine the necessary data to train computer vision
models to answer visual questions. While the current applications help users around
the world, there is still plenty of work to be done before we can achieve the vision
of Visipedia laid out by Perona (Perona, 2010).

The Merlin and iNaturalist apps are image classification apps. They process the
whole image, or a region selected by the user, and return a list of candidate species.
This is the behavior expected by the user, but it is far from the behavior envisioned
by Perona. The image does not become interactive and therefore does not allow the
user to readily answer additional visual questions past, “What species is this?” I
would argue it is not computer vision models (Krizhevsky, Sutskever, and Hinton,
2012; Ren et al., 2017; He et al., 2017) or efficient annotation tools (Branson,
Van Horn, and Perona, 2017) that are missing, rather it is collecting the right type
of data and conveniently rendering the information for the user. Essentially, we are
still missing the two important interfaces that Visipedia must provide: an interface
that allows experts to share their knowledge, and an interface that allows users to
answer visual questions.

The expert interface must allow experts to easily contribute their knowledge. I
would imagine that this type of interface would let experts browse a taxonomy of
annotation types (imagine a taxonomy of objects and options for annotating different
parts of those objects), giving them the ability to add additional nodes and options as
needed, and encouraging them to annotate at the finest possible level. Annotations
could be simple keypoints, boxes, lines, segmentations, or any one of the standard
drawing tools now available on mapping interfaces or image editing interfaces. A
more complicated, but more powerful, annotation interface would let the expert
mark the correspondences with a 3D model of the object (in addition to allowing
them to create the 3D models). This would allow structure and constraints to be

148

enforced in a vision model, and would also allow future annotations to be efficiently
propagated (e.g. interpolate between two existing parts to annotate a third part that
occurs between them). Interesting academic questions that arise here include: (1)
how to select which images to ask the expert to annotate under the constraints
of time, expert cost, and expected gain; (2) when to ask the expert to refine the
taxonomy of annotations or 3D models due to ambiguity; and (3) how to propagate
information down the taxonomy when new subtrees are added.

The question-answering interface is more devious than it seems at first. In Perona’s
vision (Perona, 2010), there are many automata that can annotate an image. How
should we decide which automata to use when processing an image from a user?
Given a collection of automata’s output, how can we combine their information and
render it on the image? I believe a taxonomy will help us here too. Rather than
an image being analyzed once, I think it should be analyzed repeatedly based on
the interactions of the user. If an image contains a hummingbird eating the nectar
of a flower, rather than immediately covering the image with tens or hundreds of
clickable regions, the user should be able to provide their intention by clicking
on the bird or the flower. Then the component regions of that object should be
rendered. This process should continue until the user has clicked on the hyperlink
for a component region (taking them to Wikipedia). Interesting academic questions
that arise here include: (1) how to manage a taxonomy of automata capable of
producing component regions for an image (i.e. mitigate duplicates or conflicts);
(2) how to efficiently traverse the taxonomy of automata when processing an image;
and (3) how to assist the user when their target region of the image never becomes
clickable or the rendered components are inaccurate.

The third academic question from the previous paragraph is relevant to the current
versions of the Merlin and iNaturalist apps. Often, the list of results returned by the
classifiers contains the correct species, however it the user’s job to sift through the
example images to identify the match. This process could be drastically improved
by designing better human-machine interfaces. The human visual system is very
powerful, and can often augment the capabilities of the vision classifier, yet it is
currently ignored. Returning to a twenty questions style interface would help users
resolve ambiguous situations or continue their search in the wake of failed automata
results. Taking the work from Branson et al. (Branson, Van Horn, Wah, et al., 2014)
and updating it for use with convolutional networks and taxonomies would be a
useful step forward.

149

References

Branson, Steve, Grant Van Horn, and Pietro Perona (2017). “Lean Crowdsourcing:
Combining Humans and Machines in an Online System”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7474–7483.
doi: 10.1109/CVPR.2017.647.

Branson, Steve, Grant Van Horn, Catherine Wah, et al. (2014). “The ignorant led by
the blind: A hybrid human–machine vision system for fine-grained categoriza-
tion”. In: International Journal of Computer Vision 108.1-2, pp. 3–29.

He, Kaiming et al. (2017). “Mask r-cnn”. In: Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE, pp. 2980–2988.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: NIPS.

Perona, Pietro (2010). “Vision of a Visipedia”. In: Proceedings of the IEEE 98.8,
pp. 1526–1534.

Ren, Shaoqing et al. (2017). “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: PAMI.

