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ABSTRACT 

Imaging of small animals has played an indispensable role in preclinical research by 

providing high dimensional physiological, pathological, and phenotypic insights with 

clinical relevance. Yet pure optical imaging suffers from either shallow penetration (up to 

~1–2 mm) or a poor depth-to-resolution ratio (~3), and non-optical techniques for whole-

body imaging of small animals lack either spatiotemporal resolution or functional contrast. 

A stand-alone single-impulse photoacoustic computed tomography (PACT) system has been 

built, which successfully mitigates these limitations by integrating high spatiotemporal 

resolution, deep penetration, and full-view fidelity, as well as anatomical, dynamical, and 

functional contrasts. Based on hemoglobin absorption contrast, the whole-body dynamics 

and large scale brain functions of rodents have been imaged in real time. The absorption 

contrast between cytochrome and lipid has enabled PACT to resolve MRI-like whole brain 

structures. Taking advantage of the distinct absorption signature of melanin, unlabeled 

circulating melanoma cells have been tracked in real time in vivo.  

Assisted by near-infrared dyes, the perfusion processes have been visualized in rodents. By 

localizing single-dyed droplets, the spatial resolution of PACT has been improved by six-

fold in vivo. The migration of metallic-based microrobots toward the targeted regions in the 

intestines has been monitored in real time. Genetically encoded photochromic proteins 

benefit PACT in detection sensitivity and specificity. The unique photoswitching 

characteristics of different photochromic proteins allow quantitative multi-contrast imaging 

at depths. A split version of the photochromic protein has permitted PA detection of protein-

protein interactions in deep-seated tumors. The photochromic behaviors have also been 

utilized to guide photons to form an optical focus inside live tissue. As a rapidly evolving 

imaging technique, PACT promises pre-clinical applications and clinical translation. 
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C h a p t e r  1  

INTRODUCTION  

Background and Motivation  

Photoacoustic tomography (PAT), also known as optoacoustic tomography (OAT), refers to 

cross-sectional or three-dimensional (3D) imaging of a material that is based on the 

photoacoustic (PA) effect. Although Alexander Graham Bell firstly reported the PA effect 

in 1880 [1], the development of PAT took off after the advent of ultrasonic transducers, 

computers, and lasers. Typically, in PAT non-ionizing laser pulses (~ps–ns pulse width) are 

directed to the object (when radio frequency pulses are used, the technology is referred to as 

thermoacoustic tomography). Some of delivered optical energy is absorbed by the object and 

converted into heat. The heat then induces a pressure rise through thermoelastic expansion. 

The pressure rise propagates as an ultrasonic wave, which is referred to as a PA wave. The 

PA waves are detected by ultrasonic transducers and are processed by a computer to form an 

image. 

PAT is a hybrid imaging technique that combines two forms of energy—optical and acoustic 

energy. The motivation for PAT is to combine the contrast of optical absorption with the 

spatial resolution of ultrasound for deep imaging in the optical quasidiffusive or diffusive 

regime. Table 1 compares PAT with different biomedical imaging modalities, including the 

optical imaging approaches and non-optical approaches.  

PAT inherits the advantages of both optical imaging and ultrasound imaging. First, PAT is 

sensitive to the optical absorption of molecules. By preferentially exciting different 

molecules with carefully selected optical wavelengths, PAT reveals abundant contrasts based 

on the chemical compositions. Using on the endogenous absorption of hemoglobin, 

cytochrome, and DNA/RNA, PAT offers anatomical, functional, metabolic, and histologic 

imaging. By exploiting exogenous contrasts, including organic dyes, proteins, and 

nanoparticles, PAT can perform molecular and cellular imaging. Second, PAT directly 
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detects acoustic waves induced by the excitation photons, regardless of whether they are 

ballistic photons or scattered/diffused photons, thus PAT achieves far greater penetration 

than optical microscopy. More importantly, acoustic waves are much less scattered inside 

biological tissue (about three orders of magnitude weaker than optical scattering on a per unit 

path length basis); therefore, PAT can provide orders of magnitude higher spatial resolution 

deep in tissue (> 2 mm) than pure optical imaging technology. In addition, the image 

resolution and imaging depth of PAT are scalable with ultrasonic frequency within the reach 

of diffuse photons. As ultrasonic center frequency and bandwidth increase, spatial resolution 

improves at the expense of penetration. PAT has demonstrated multiscale imaging from 

organelles to small-animal whole bodies and human organs. 

Table 1． Comparison of PAT with deep-tissue (> 2 mm) imaging modalities* [2-4] 

Modality* Temporal 
resolution**  

Spatial 
resolution Throughput 

Sensitivity 
(moles of 
detected 

substance) 

Soft-
tissue 

contrast 

Functional 
contrast 

Ionizing 
Radioactivity 

X-ray CT ~0.1 s 30–100 µm Low 10−6 Low Low Yes 

MRI seconds to 
minutes 50–200 µm Low 10−9–10−6 High Moderate None 

PET/SPECT ~0.3 s 1–2 mm Low 10−15–10−14 NA High Yes 
US 

(operating at 
5 MHz) 

~ms 100–200 
µm High 10−8 Moderate Moderate None 

DOT ~ms 
Poor: 1/3 

of imaging 
depth 

High 10−12 Low High None 

PAT 
(operating at 

5 MHz) 
50 µs 100–200 

µm High 10−12 High High None 

* The high-resolution optical imaging techniques, such as multiphoton microscopy and optical coherence 

tomography, penetrate <2 mm, which are not listed in the table. 

** X-ray CT: X-ray computed tomography. MRI: magnetic resonance imaging. PET: positron emission 

tomography. SPECT: single-photon emission computed tomography. US: ultrasound. DOT: diffuse optical 

tomography.  

*** Image formation time, including signal excitation and acquisition. Changes of the object within this 

duration induce motion artifacts in the final images. 
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Photoacoustic computed tomography (PACT) 

In light of the image formation methods, PAT has two primary incarnations: inverse-

reconstruction-based photoacoustic computed tomography (PACT) [5, 6] and focused-

scanning-based photoacoustic microscopy (PAM) [7-13]. When PAT is implemented in the 

form of computed tomography, a broadened laser beam illuminates the entire tissue object. 

Ultrasonic transducers or array are placed around the object to receive the emitted acoustic 

waves simultaneously. The received PA signals are then amplified and digitized through a 

data-acquisition system. Finally, inverse digital reconstruction yields an image, which maps 

the optical absorption of the tissue.  

PACT has been primarily configured in four geometries below: linear, circular, spherical and 

planar geometry, or their scanning equivalents (Fig. 1) [14]. In this dissertation, PACT has 

been implemented mainly in the circular and linear geometry. 

 

Figure 1. Configurations of PACT [14]. (a) A linear array based PACT system, where 
optical fiber bundles flank a linear ultrasonic array for light delivery. (b) A circular/ring 
array based PACT system, where the laser beam is broadened and homogenized by an 

engineer diffuser for illumination and the PA waves are received laterally with 2π in-plane 
coverage. (c) A hemispheric array based PACT system. (d) A planar array based PACT 
system, where a 2D Fabry-Perot interferometer is used as the planar ultrasonic detector 

array. The PA signals are detected by raster scanning an interrogation beam over the 
sensing plane of the interferometer.  

Researchers first explored circular/ring array based PACT (RA-PACT) or its scanning 

equivalent in 2003; and it demonstrated the functional PA imaging of the rodent brain 
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functions through an intact scalp for the first time [15]. Triggered particularly by first 

functional PACT, the PA field experiences a rapid growth. RA-PACT provides 2π angular 

in-plane coverage, effectively mitigating the limited view artifacts [16-19]. The current state-

of-the-art RA-PACT, equipped with a 512-element full-ring ultrasonic transducer array, one-

to-one mapped amplification and digitization and advanced reconstruction algorithm, yields 

great performance of high spatiotemporal resolution, deep penetration, anatomical, 

dynamical and functional contrasts, and full-view fidelity [4], which I will detail in Chapter 

II.  

Linear array based PACT (LA-PACT) has widely usage for pre-clinical imaging and clinical 

translations. The linear ultrasonic transducer array is relatively low cost, commercially 

available with a wide bandwidth selection and convenient to use thanks to the hand-held 

operation [16, 20, 21]. One can easily convert the pre-clinical or clinical ultrasound imaging 

machines into LA-PACT by adding a laser excitation source, and then it provides both 

ultrasonic and optical contrasts. LA-PACT (1–5 MHz frequency range) has imaged tissue 

deep to 7 cm [22]. A key drawback of the LA-PACT is the limited detection view, which 

could result in missing detecting features that are perpendicular to the linear array. We can 

ameliorate this problem with the engineering described in Chapter III [23]. 

Spatial resolution of PACT with an ideal full-view detection configuration is bandwidth 

limited. Assuming that a system has a rectangular-shaped bandwidth with a cutoff frequency 

𝑓𝑓𝑐𝑐, the corresponding point spread function (PSF) can be expressed by 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅) = 𝑘𝑘𝑐𝑐3

2𝜋𝜋2
𝑗𝑗1(𝑘𝑘𝑐𝑐𝑅𝑅)
𝑘𝑘𝑐𝑐𝑅𝑅

, (1) 

where R is the radial coordinate from the point of observation, 𝑘𝑘𝑐𝑐 = 2𝜋𝜋𝑓𝑓𝑐𝑐
𝑣𝑣𝑠𝑠

= 2𝜋𝜋
𝜆𝜆𝑐𝑐

, 𝜆𝜆𝑐𝑐  is the 

corresponding wavelength at the cutoff frequency, 𝑗𝑗1 is the spherical Bessel function of the 

first kind. The full width at half maximum (FWHM) of the PSF is typically used to quantify 

the spatial resolution. It can be obtained that 3𝑗𝑗1(𝑥𝑥)
𝑥𝑥

= 0.5, when 𝑥𝑥 = 2.5. Then the FWHM 

can be computed as 
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 𝑊𝑊FWHM = 2 × 2.5
𝑘𝑘𝑐𝑐

= 2 × 2.5
2𝜋𝜋
𝜆𝜆𝑐𝑐 ≈ 0.8𝜆𝜆𝑐𝑐, (2) 

For the planar and spherical geometry, the resolutions are nearly isotropic at the center of the 

field of view, which we can estimate using Eq. (2). For the linear and circular geometry, the 

axial and lateral resolutions in the imaging plane can be derived from Eq. (2). And the 

elevational resolution for linear and circular geometry, determined typically by cylindrical 

acoustic focusing, can be written as 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ele ≈
0.71𝜆𝜆0
𝑁𝑁𝑁𝑁

, (3) 

where 𝜆𝜆0 is the central acoustic wavelength, 𝑁𝑁𝑁𝑁 is the numerical aperture of the acoustic 

lens. Typically, the NA of the acoustic lens is small (~0.1–0.2) to offer large enough depth 

of focus. Thus, the elevational resolution for linear and circular geometry is worse than the 

in-plane resolution. 

Dissertation outline 

In Chapter II, I described a stand-alone single-impulse photoacoustic computed tomography 

(SIP-PACT) along with advanced reconstruction algorithm that provides high 

spatiotemporal resolution (125-μm in-plane resolution, 50 μs / frame data acquisition and 50-

Hz frame rate), deep penetration (48-mm cross-sectional width in vivo), anatomical, 

dynamical and functional contrasts, and full-view fidelity [4].  

In Chapter III, I reported a high-resolution PACT (HR-PACT) system equipped with a high 

frequency linear transducer array for mapping the microvascular network of a whole mouse 

brain with the skull intact and studying its hemodynamic activities [23]. The linear array was 

scanned in the coronal plane to collect data from different angles, and full-view images were 

synthesized from the limited-view images in which vessels were only partially revealed. We 

investigated spontaneous neural activities in the deep brain by monitoring the concentration 

of hemoglobin in the blood vessels and observed strong interhemispherical correlations 

between several chosen functional regions, both in the cortical layer and in the deep regions. 
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We also studied neural activities during an epileptic seizure and observed the epileptic wave 

spreading around the injection site and the wave propagating in the opposite hemisphere.  

In Chapter IV, I applied the constructed PACT systems for multi-contrast imaging of 

endogenous contrasts. Multi-contrast PACT has monitored whole-body and whole-brain 

hemodynamic responses based on the oxy- and deoxy-hemoglobin contrasts [4]. Multi-

contrast PACT imaged whole brain structures based on the cytochrome and lipid contrasts 

[24]. Multi-contrast PACT also tracked circulating tumor cells based on the melanin contrast 

[4]. 

In Chapter V the constructed PACT systems were applied for multi-contrast imaging of 

exogenous contrasts. From the contrast of organic near infrared (NIR) dyes, multi-contrast 

PACT has visualized the process of dye perfusion in the mouse wholebody [4], and tracked 

flowing single dyed droplets for localization-based superresolution imaging [25]. From the 

contrast of metallic microrobots, multi-contrast PACT has monitored the migration of 

ingestible microrobotic capsules in the intestines in vivo. The combination of PACT with 

efficient reversibly switchable phytochrome photoswitching significantly enhanced the 

detection sensitivity and improved specificity [26]. The combination of the protein 

development and the decay analysis has successfully addressed the impact of unknown local 

fluence and enabled quantitative cell classification at depths [27]. A split version of the 

photochromic protein has permitted PA detection of protein-protein interactions in deep-

seated tumors. I have also utilized the photochromic behaviors to guide photons to form an 

optical focus inside live tissue [27]. 

All experimental procedures in this dissertation were carried out in conformity with 

laboratory animal protocols approved by the Animal Studies Committee at Washington 

University in St. Louis and the Institutional Animal Care and Use Committee at California 

Institute of Technology. 
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C h a p t e r  2  

SINGLE-IMPULSE PANORAMIC PACT (SIP-PACT) 

Introduction and motivation  

Small animals, especially rodents, are essential models for preclinical studies, and they play 

an important role in modeling human physiology and development, and in guiding the study 

of human diseases and in seeking effective treatment [2]. The ability to directly visualize 

dynamics with high spatiotemporal resolution in these small-animal models at the whole-

body scale provides insights into biological processes at the whole organism level [28]. In 

addition to high spatiotemporal resolution, the ideal non-invasive small-animal imaging 

technique should provide deep penetration, and anatomical and functional contrasts. 

Previously, small-animal whole-body imaging has typically relied on non-optical 

approaches, including magnetic resonance imaging (MRI), X-ray computed tomography (X-

ray CT), positron emission tomography (PET) or single-photon emission computed 

tomography (SPECT), and ultrasound tomography (UST) [29, 30]. Although these 

techniques provide deep penetration, they suffer from significant limitations. For example, 

adapting MRI to achieve microscopic resolution requires a costly high magnetic field and a 

long data acquisition time, ranging from seconds to minutes, too slow for imaging dynamics 

[31, 32]. X-ray CT lacks functional contrast [33]. PET/SPECT alone suffers from poor spatial 

resolution. In addition, X-ray CT and PET/SPECT use ionizing radiation, which may inhibit 

longitudinal monitoring [34]. UST does not image blood oxygenation or extravascular 

molecular contrasts [35]. To overcome all of the above limitations using one system, we need 

to develop new imaging modalities.  

Optical imaging of biological tissue employs non-carcinogenic electromagnetic waves to 

provide extraordinary structural, functional, and molecular contrasts with either endogenous 

or exogenous agents [36-38]. Unfortunately, the strong optical scattering of tissue impedes 

the application of conventional optical imaging technologies to small-animal whole-body 

imaging, which prevents high-resolution imaging beyond the optical diffusion limit of ~1–2 
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mm in depth [29]. Although diffusive optical imaging methods, such as fluorescence diffuse 

optical tomography [39], can provide centimeters of penetration, their image resolution is 

rather poor, approximately 1/3 of the depth.  

To date, photoacoustic tomography (PAT) is the only high-resolution optical imaging 

modality that breaks the optical diffusion limit [40]. In PAT, the energy of incident photons 

is absorbed by chromophores inside the tissue to be imaged and re-emitted as ultrasonic 

waves. The ultrasonic waves are subsequently detected to generate tomographic images with 

optical contrasts. Thanks to the weak scattering of ultrasound in soft tissue (about three orders 

of magnitude weaker than light scattering on a per unit path length basis in the ultrasonic 

frequency of interest), PAT enjoys superb resolution at depths, with a depth-to-resolution 

ratio of ~200 [3]. Combining the advantages of optical contrasts and acoustic detection, PAT 

holds great promise for a full-package solution of small-animal whole-body imaging. We 

have demonstrated high-speed, high-resolution functional PAM of the mouse brain in action, 

with penetration up to several millimeters [41]. PACT has provided penetration beyond 10 

mm, but with either poor temporal resolution, due to data acquisition multiplexing [26, 42, 

43], or unclearly resolved sub-organ features, due either to partial acoustic detection 

coverage [44, 45] or to sparse spatial sampling [46-48]. For high-performance small-animal 

whole-body imaging, we need to simultaneously integrate high spatiotemporal resolution, 

deep penetration, multiple contrasts, full-view fidelity, and high detection sensitivity in one 

system.  

Here, we report a significant advance in PACT technology that overcomes all the above-

mentioned limitations prevalent in both non-optical and pure optical imaging techniques. Our 

imaging technology, called single-impulse panoramic PACT (SIP-PACT), allows us to 

capture structural, functional, cellular, and molecular small-animal whole-body images with 

unprecedented speed and quality [4].  

Methods  

System construction and laser configuration 
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SIP-PACT employed a 512-element full-ring ultrasonic transducer array (Imasonic, Inc., 50-

mm ring radius, 5-MHz central frequency, more than 90% one-way bandwidth, Fig. 2) for 

2D panoramic acoustic detection. Each element has a cylindrical focus (0.2 NA, 20-mm 

element elevation size, 0.61-mm pitch, 0.1-mm inter-element spacing). A lab-made 512-

channel pre-amplifier (26-dB gain) was directly connected to the ultrasonic transducer array 

housing, with minimized connection cable length to reduce cable noise. The pre-amplified 

PA signals were digitized by a 512-channel data acquisition (DAQ) system (four 

SonixDAQs, Ultrasonix Medical ULC, 128 channels each, 40-MHz sampling rate, 12-bit 

dynamic range) with programmable amplification up to 51 dB. The digitized radio frequency 

(RF) data were first stored in the onboard buffer then transferred to a computer through USB 

2.0. A single laser pulse, sufficiently short to be treated as an impulse, excites PA waves, 

which are detected within 50 µs for 2D imaging of a cross-section. The 2D panoramic 

acoustic detection scheme provides 125-µm isotropic in-plane resolution within a field of 

view (FOV) of ~16 mm in diameter, and full-view fidelity (i.e., no partial-view artifacts) 

[49]. 

 

Figure 2. The electrical impulse response (EIR) of the SIP-PACT system. (a) The raw radio 
frequency (RF) signal from each ultrasonic transducer element corresponding to a point PA 
source at the center of the full-ring array. The black solid line represents the mean value of 
all transducer elements’ responses, and the gray region represents the standard deviation 

across the elements. (b) Fourier transform amplitude of each RF signal in (a), showing the 
bandwidth of the transducer array is about 4.55 MHz. The black solid line represents the 
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mean value of the spectral amplitude of all RF signals, and the gray region represents the 
standard deviation across the elements.  

For whole-body imaging illumination, a 1064-nm laser beam (DLS9050, Continuum, 50-Hz 

pulse repetition rate, 5–9-ns pulse width) or a 720-nm laser beam (LS-2145-LT-150, 

Symphotic Tii, 20-Hz pulse repetition rate, 12-ns pulse width) was first homogenized and 

expanded by an engineered diffuser (EDC-10-A-1r, RPC Photonics). The laser beam then 

passed through a conical lens (AX-FS-1-140-0, Del Mar Photonics) to form a ring-shaped 

light pattern, and re-focused by a lab-made optical condenser. The incident light formed a 

ring pattern on the trunk of the mouse, with the illuminated area located within the 

transducer’s elevational focal zone. For brain imaging illumination, the excitation beam was 

uniformly shined on the cortex after passing through the engineered diffuser. The laser 

fluence (8 mJ cm-2) at 630 nm, 680 nm, and 720 nm was within the American National 

Standards Institute (ANSI) safety limits for laser exposure (20 mJ cm-2 at 630 nm and 680 

nm, and 40 mJ cm-2 at 720 nm, at a 10-Hz pulse repetition rate). The laser fluence in mouse 

and rat brain imaging, and in mouse trunk imaging, was ~18 mJ cm-2 at 1064 nm, with a 50-

Hz pulse repetition rate, which is below the ANSI safety limit (at 1064 nm: 100 mJ cm-2 at a 

10-Hz pulse repetition rate, or 1 W cm-2). During the rat trunk imaging, the excitation fluence 

was ~38 mJ cm-2at 1064 nm, with a 50-Hz pulse repetition rate, which is above the ANSI 

limit. The rats were monitored periodically after imaging, and no skin damage was found. 

Two different illumination approaches have been applied respectively for imaging the mouse 

brain cortex and trunk (Fig. 3). Top illumination and side detection are used for brain cortex 

imaging, and full-ring side illumination and side detection (aligned confocally to maximize 

detection sensitivity) are used for trunk imaging.  

For two-wavelength imaging, such as in the brain oxygen saturation (sO2) mapping 

experiment (see details in Chapter V, two lasers were synchronized by a control card (sbRIO-

9626, National Instruments). The Q-switch trigger of each laser was set at a fixed delay of 

50 µs, thus one laser fired 50 µs later than the other. Since the pulses at each of the two 

wavelengths were delayed by only 50 µs, during which time the object was relatively 
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stationary in terms of most biological activities, we call the illumination essentially 

simultaneous. 

 

Figure 3. Schematics of the SIP-PACT system for (a) brain and (b) trunk imaging. During 
dual-wavelength illumination, all lasers fire at 10 Hz and the delay time between the dual-

pulse is 50 µs. For single-wavelength illumination, the 1064-nm laser fires at 50 Hz and the 
Ti: Sapphire (Ti-Sa) laser fires at 20 Hz. BC, beam combiner; CL, conical lens; MBS, 
magnetic base scanner; OC, optical condenser; USTA, (full-ring) ultrasonic transducer 

array; WT, water tank. (c) Close up of the green dashed box region in (b), which shows the 
confocal design of light delivery and PA wave detection. 

Half-time, dual-speed-of-sound PA reconstruction 

Moreover, to better reveal detailed features inside the body, we developed a half-time dual-

speed-of-sound (SOS) universal back-projection (UBP) algorithm to compensate for the 

first-order effect of acoustic inhomogeneity.  

Conventional half-time UBP assumes a uniform SOS to calculate the PA signal delay 

necessary for the reconstruction. In real applications, however, the heterogeneous acoustic 

properties of the substances within the elevational focal plane render the uniform SOS 

assumption problematic. Consequently, the resulting images always suffer from artifacts that 

cannot be removed or alleviated by image processing techniques, such as deconvolution. In 

the case of whole-body imaging, at a given elevational position, breakdown of the uniform 

SOS assumption mainly results from the dramatic acoustic property difference between the 

biological tissue and the surrounding fluid (in our case, water), whereas the SOS differences 
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among different tissue types cause only second-order effects. For example, at room 

temperature, the SOS of water, the liver, and the kidney are 1480 m s-1, 1590 m s-1, and 1570 

m s-1, respectively [49]. 

We numerically simulated the problem in 2D, using a circular numerical phantom with a 

radius of 13 mm and a uniform speed of sound of 1520 m s-1. The phantom was surrounded 

by water with an SOS of 1480 m s-1, and the whole region was bounded by a ring-shaped 

detector array with a radius of 50 mm. The phantom and the ring array were located 

concentrically, as shown in Fig.4a. Within the phantom, an optical absorption pattern 

representing a leaf skeleton was used (Fig. 4b). We used the k-Wave toolbox to generate 

PA data [50], and reconstructed images using half-time UBP with single and dual SOS. 

We compared the images reconstructed using a single uniform SOS (Fig. 4c) and the 

correct (Fig. 4d) dual-SOS map. Clearly, a single SOS reconstruction introduces splitting 

or fringing artifacts in the image (Fig. 4c, inset zoomed-in view).  

To date, many methods have been developed to solve the problem caused by SOS 

heterogeneity. These methods either rely on iterative SOS corrections [51-54] or use 

additional hardware and software to measure the SOS map [55]. Both types of approaches 

dramatically increase the complexity of signal demodulation and image reconstruction. 

Here, to improve the image quality, we used a method that imposes no additional 

computational cost. The key is to correct the first-order errors only. In doing so, we segment 

the entire region into two zones: a tissue zone and a water zone. We assume that the SOS 

is uniform within each zone, but is different across the zones. To further simplify the 

problem, we make the following two assumptions. First, the cross section of the mouse 

body is approximated by an ellipse characterized by its center position (x0, y0) and the 
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lengths of its major and minor radii (Rx, Ry). Second, refraction at the boundary of the two 

zones is negligible. In other words, rays travel straight from the field point (xs, ys) to a 

detector (xd, yd). The second assumption is sufficiently accurate, according to a simple 

geometrical analysis [49]. 

 

Figure 4. Numerical simulation results of dual-SOS reconstruction, forward data is 
generated by the k-Wave toolbox (http://www.k-wave.org/). (a) Schematic of the 

simulation. (b) The optical absorption distribution of the numerical phantom. 
Reconstructed images using universal back projection based on (c) single speed with v = 
1489.8 m s-1 and (d) dual speed with v1 = 1480 m s-1 (in water) and v2 = 1520 m s-1 (in 
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tissue), where the close-up insets show the splitting artifacts due to the mismatched speed 
of sound. 

Using these assumptions, we can calculate the sound propagation delay between any 

source-detector pairs given the SOS in the body (v1) and water (v2), (Fig. 5a). It should 

note that if a series of images are taken at, or close to, a fixed elevational position, the delay 

map is calculated only once before reconstruction. Subsequently, we can use the delay map 

generated by the dual-speed assumption to reconstruct images with no additional 

computational cost. In Fig. 5b, we illustrate the gross localization error produced by the 

single-speed assumption. In the calculation, we assumed that Rx = Ry = 10 mm, x0 = y0 = 

0, and v1 = 1570 m s-1, v2 = 1506 m s-1, and Rd = 50 mm. The PA signal generated by a 

point source, located at the position labeled by a red star in Fig. 5b, was back-projected 

along the direction piercing the source and the detector. The reconstructed position of the 

point source, according to the single-speed assumption, scatters around the correct position, 

depending on the azimuthal angle of the transducer. A splitting as large as 0.4 mm is 

observed. In Fig. 5c and 5d, we compare the images of the liver region of a mouse 

reconstructed using half-time single-speed (Fig. 5c) and half-time dual-speed (Fig. 5d) 

UBP approaches. Figure. 5c shows many artifacts, including the horseshoe-shaped 

features on the body surface (which are shown as blood vessels perpendicular to the image 

plane in Fig. 5d), and splitting of the vasculature in the upper-left and lower-right regions 

of the body. These artifacts are completely removed by the dual-speed reconstruction, as 

shown in Fig. 5d. The acquired data was reconstructed off-line using the half-time dual-

speed-of-sound universal back-projection method, and it takes ~0.1 s to reconstruct one 
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frame with 400 × 400 pixels using intel i7 CPU, which can be further accelerated by GPU 

parallel computing. 

 

Figure 5. Image quality improvement by dual-SOS reconstruction. (a) Definition of 
parameters used in half-time dual-speed-of-sound universal back projection. (b) Position of 

a point source back-projected using single-speed reconstruction. Color represents the in-
plane azimuthal angle of the transducer array. In the calculation, Rx = Ry = 10 mm, x0 = y0 = 

0, v1 = 1.570 m s-1 (in tissue), v2 = 1.506 m s-1 (in water), and Rd = 50 mm. The correct 
position of the point source is labeled by the red star. (c) and (d) In vivo images of a cross-

section of a mouse trunk (liver) reconstructed using half-time universal back projection 
based on (c) single speed with v = 1.520 m s-1 and (d) dual speed with v1 = 1.590 m s-1 (in 

tissue) and v2 = 1.507 m s-1 (in water). 

Results and discussion 

Label-free imaging of small-animal whole-body anatomy and dynamics 

SIP-PACT non-invasively imaged the vasculature of the brain cortex (Fig. 6a) and the 

anatomy of the internal organs within the thoracic cavity (heart, lungs; Fig. 6b and 6c) and 
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the abdominal cavity (liver, spleen, kidney, cecum, and intestine; Fig. 6, d to f), with 

detailed structures revealed by hemoglobin contrast.  

 

Figure 6. Label-free SIP-PACT of small-animal whole-body anatomy from the brain to the 
trunk. (a) Vasculature of the brain cortex; SSS, superior sagittal sinus. (b) Cross-sectional 
image of the upper thoracic cavity; HT, heart; LL, left lung; RL, right lung; ST, sternum. 

(c) Cross-sectional image of lower thoracic cavity; LV, liver; TA, thoracic aorta; VE, 
vertebra. (d) Cross-sectional image of two lobes of liver; AA, abdominal aorta; IVC, 

inferior vena cava; LLV, left lobe of liver; PV, portal vein; RLV, right lobe of liver. (e) 
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Cross-sectional image of upper abdominal cavity; IN, intestines; SC, spinal cord; SP, 
spleen; SV, splenic vein. (f) Cross-sectional imaging of lower abdominal cavity; BM, 

backbone muscles; CM, cecum; LK, left kidney; RK, right kidney. 

As with many other tomographic imaging modalities, after scanning the animal vertically 
through the confocal plane and stacking the slices of cross-sectional images, we can 
compile a three-dimensional (3D) tomogram of the mouse trunk.  

 

Figure 7. Quantification of the in-plane resolution of the SIP-PACT. (a) An image of two 
crossed tungsten wires, each with a nominal diameter of 50 µm. (b) The PA amplitude 

distribution along the red dash-dot line in (a). (c) The contrast-to-noise ratio (CNR) versus 
the shift in the sum of the original line profile shown in (b) and the shifted one. The in-

plane resolution, defined as the shift corresponding to 6-dB CNR, is 125 µm. 

 

Figure 8. Quantification of elevational resolution of SIP-PACT. (a) Simulated acoustic 
focus field in the x-z plane. (b) The PA image of a tungsten wire with a nominal diameter 
of 50 µm, projected on the x-z plane. (c) The simulated line profiles of (a) at the center of 
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the ring (indicated in (a) by the solid white arrow) and at 6.5 mm (off-center, indicated in 
(a) by the dashed white arrow). (d), as (c), but showing the measured line profiles of (b). 

The thickest section of the mouse trunk had a width of 28 mm (Fig. 6e and 6f), and the 
entire cross-section was clearly imaged with a spatial resolution of 125 µm (Figs. 7 and 8). 
At an imaging frame rate of 50 Hz, respiratory motions and heartbeats were fully captured 
at well above the Nyquist sampling rate. The substantially improved system performance 
and whole-body image quality enable SIP-PACT to complement other small-animal 
whole-body anatomical imaging modalities. 

 

Figure 9. Label-free imaging of small-animal whole-body dynamics. (a) Cross-sectional 
image of the upper thoracic cavity, where the red solid line crosses a rib, and the blue 

dashed line crosses the heart wall. (b) Line profiles in (a) versus time show the 
displacements of (upper panel) the rib during respiration and (lower panel) the heart wall 

during heartbeats. The traces of the rib and heart wall movements are identified and 
highlighted with solid red lines. (c) Fourier transforms of the rib and heart wall movements 

showing the respiratory frequency and heartbeat frequency, respectively. (d) Heartbeat 
encoded arterial network mapping overlaid on the anatomical image. (e) Cross-sections of 

the vessels highlighted by arrows in (d), showing changes associated with arterial pulse 
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propagation. (f) A zoomed-in of the dashed box in (e) shows the relative phase delay 
between the two curves of the vessels’ cross sections. 

One cross-sectional image of the thoracic cavity (Fig. 6b and Fig. 9a) displays both 

respiratory motion and heartbeats. By recording the signal changes of a rib (along the red 

solid line in Fig. 9a) and the heart wall (along the blue dashed line in Fig. 9a), we can 

identify and track the respiratory motion and heartbeats (Fig. 9b). Fourier analysis shows 

that the motion of the rib repeated at a respiratory frequency of ~1 Hz, and the motion of 

the heart wall repeated at both the respiratory frequency and a heartbeat frequency of ~5.2 

Hz (Fig. 9c) and Fig. 10).  

Within a cross-sectional view of lower abdominal cavity, the signals from arteries are 

temporally correlated due to their direct connection to the heart. The high imaging speed 

and the single-impulse acquisition capability of SIP-PACT enabled us to selectively map 

the arterial network on the whole-body cross-sectional image. By pixel-wise calculation of 

the amplitude at the heartbeat frequency, we can map the arterial network on the whole-

body cross-sectional image (Fig. 9d), where the renal arterial network of the right kidney 

is highlighted by heartbeat encoding. During systole, the aortic wall dilates due to the 

ejection of blood from the contracted left ventricle, generating a pressure wave that travels 

along the arterial tree. We selected two vertically distributed arteries from the arterial 

network (highlighted by arrows 1 and 2 in Fig. 9d) to compute the changes of the cross-

sectional areas (Fig. 9e). The close-up panel (Fig. 9f) reveals a steady phase delay, 

indicating that the changes of the cross-sectional areas are the results of the pulse wave 

propagating through the arterial network. This demonstrates that SIP-PACT can 

noninvasively map the whole-body arterial network and measure the relative pulse wave 

phase difference between arteries. This capability could provide a non-invasive and direct 

diagnostic tool for chronic coronary artery disease and chronic renal disease [56, 57]. 

In addition, the measurements of breathing motion and heartbeats also were validated by 

the pressure sensor and electrocardiography (Fig. 10). 
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Figure 10. Validation of the SIP-PACT measurement of breathing motion and heartbeats. 
The pressure sensor and electrocardiography (ECG) measurement were conducted in 

parallel with the SIP-PACT imaging on the same mouse. (a) Co-registered measurement of 
breathing motion from SIP-PACT (top) and the pressure sensor (bottom). (b) Fourier 

transform of (a), which shows the identical respiratory frequency measured by SIP-PACT 
and the pressure sensor. (c) Co-registered measurement of heartbeats from SIP-PACT (top) 

and ECG (bottom). (d) Fourier transform of (b), which shows the identical heartbeat 
frequency measured by SIP-PACT and ECG. 

Deep imaging through rat whole brain and whole body 

Revealing how our brain works is a great challenge that merits our every effort: It will not 

only illuminate the profound mysteries in science but also provide the key to understanding 

and treating neurological diseases such as Alzheimer’s and Parkinson’s. To date, most deep 

brain functional studies have been based on functional MRI (fMRI) or power Doppler 

ultrasound (fUS), and optically imaging through even a mouse brain (~6 mm in depth) with 

reasonable spatiotemporal resolution and contrast is still a hurdle. In this study, we used 

SIP-PACT to see through a rat’s whole brain. As shown in Fig. 11, the rat head was 

mounted vertically and the light was obliquely delivered to the rat cortex. A cranial window 

was opened to maximize the acoustic transmission. Taking advantage of the deep 

penetration of 1064-nm light, the full-view acoustic coverage and high detection sensitivity 



 

21 

of SIP-PACT, a coronal view of the rat whole brain (11 mm in depth) was produced with 

detailed vasculature (Fig. 12a).  

 

Figure 11. Setup for rat brain imaging. The rat head was mounted vertically during imaging 
and the light was obliquely delivered to the rat cortex. 

The brain serves as the center of the nervous system, dynamically coordinating responses 

through the functional network. The intrinsic functional connectivity (FC) across spatially 

separated brain regions can be measured through regionally correlated, spontaneous, low 

frequency (0.01–0.1 Hz) fluctuations in blood oxygenation level dependent (BOLD) 

signals with fMRI, particularly during resting-state/task-free periods (resting-state fMRI or 

rsfMRI). Similar to fMRI, SIP-PACT can also globally monitor the brain hemodynamics 

with appropriate spatiotemporal resolution and penetration. To detect the FC, we measured 

and compared the spontaneous hemodynamic responses between contralateral regions of 

the rat brain. We measured the FC of the rat whole brain in the coronal plane (~bregma -

2.16 mm), where we identified 16 functional regions (labeled in Fig. 12b) and computed 

the correlation coefficients of every pair. We also employed a seed-based method to study 

the FC (Fig. 12c). The results (Fig. 12d) show clear correlation between corresponding 

regions across the left and right hemispheres, as well as correlation between neighboring 

regions in the neocortex. These findings are consistent with previous research in both fMRI 
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and fUS [58, 59]. Most interestingly, we identified the left-right correlation between the 

deep thalamus regions (9.7 mm in depth, Fig. 12c, bottom row), which, to our best 

knowledge, has not been demonstrated at this spatial resolution. Our FC observation 

demonstrates the potential of SIP-PACT as a high-resolution imaging tool for studying 

deep brain functions in rats, which was previously difficult to accomplish using optical 

contrast, and, therefore underexplored.  

To further validate the deep penetration, an adult rat with a trunk (abdominal region) width 

of 48 mm was also imaged by SIP-PACT using side illumination. As shown in Fig. 12e 

and 12f, the internal organs, such as the left and right lobes of the liver, the kidneys, the 

spleen, the intestine, and supply vessels, are clearly revealed.  

Outlook 

SIP-PACT enables a number of new whole-body imaging capabilities, with performance 

complementary to those of the above-mentioned non-optical approaches. At a 50-Hz frame 

rate, it non-invasively images whole-body small animals, with sub-organ vasculature and 

internal organ structures clearly resolved, without any labeling. At such high spatiotemporal 

resolutions, the biological dynamics associated with heartbeats and respiration are clearly 

observed without motion artifacts. Such a capability makes possible the direct diagnosis of 

pathological changes of internal organs. As a result, our technology opens a new window for 

medical researchers to test drugs and monitor longitudinal therapy, without the harm from 

ionizing radiation in X-ray CT, PET or SPECT. Aortic pulse wave measurement and analysis 

have been widely used to study cardiovascular diseases in both clinical and preclinical 

research [56, 57]. With a frame rate of 50 Hz, SIP-PACT reveals whole-body cardiac related 

dynamics and selectively maps the whole-body arterial network in mice. Relatively steady 

phase delays between arteries within internal organs can also be computed, which indicate 

changes in the cross-sectional areas resulting from pulse wave propagation through the 

arterial network. Thus, the capability of mapping the arterial network and the relative phase 

delay distribution within each cross-section enables SIP-PACT to be a potential non-invasive 

tool for direct diagnosis of chronic coronary artery disease and chronic renal vascular disease.  
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Figure 12. Deep imaging of rat whole brain functions and whole-body anatomy. (a) Rat 
whole brain vasculature in the coronal plane. (b) Segmentations of different functional 

regions of the brain. (c) Seed-based functional connectivity analyses of RSGc (top row), 
Hippocampus (middle row), and Thalamus (bottom row) regions on both sides of the brain. 

(d) Correlation matrix of the 16 functional regions labeled in (b). Notice the correlation 
between left and right hemispheres, as well as the correlation across different regions in the 
neocortex. S1Sh, primary somatosensory–shoulder region; S1HL, primary somatosensory 
cortex–hindlimb region; M1, primary motor cortex; M2, secondary motor cortex; RSD, 

retrosplenial dysgranular cortex; RSGc, retrosplenial granular cortex; Hip, hippocampus; 
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Thal, thalamus. (e) and (f) Cross-sectional images of a rat wholebody. IN, intestine; LK, 
left kidney; LLV, left liver; RK, right kidney; RLV, right liver; SC, spinal cord; SP, spleen; 

SV, splenic vein. 

Photoacoustic imaging has already demonstrated its capability of functional brain imaging 

in rodents with exquisite sensitivity and high resolution at depths beyond the optical diffusion 

limit [41, 60, 61]. Now SIP-PACT has further extended the functional brain imaging depth 

to the rat whole brain (~10 mm in depth), which has not been demonstrated with optical 

contrast and spatiotemporal resolution as fine as SIP-PACT provides. However, to reach the 

ultimate goal of imaging single neuron action potentials at the whole brain level, great efforts 

are needed to further improve the spatiotemporal resolution, sensitivity, and voltage-sensitive 

PA contrast agents. 
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C h a p t e r  3  

LINEAR-ARRAY BASED FULL-VIEW HIGH-RESOLUTION PACT 

Introduction and motivation  

In recent years, advanced imaging methodologies with increased spatial and temporal 

resolution have augmented our understanding of brain functions. Optical imaging techniques, 

such as optical coherence tomography and multiphoton microscopy, have also been 

demonstrated for imaging neural activity with cellular and subcellular resolution [62, 63], 

but the shallow penetration limits their observation to only the cortical layer (~1–2 mm). 

PACT detects ultrasonic waves generated by diffused photons and retrieves the absorption 

distribution through an inverse algorithm, allowing an imaging depth of up to several 

centimeters. SIP-PACT, operating at 5 MHz with 1064 nm illumination, has imaged through 

the rat whole brain. However, the spatial resolution of SIP-PACT is 125 µm, leaving detailed 

brain features unresolved. In addition, the high-frequency (>15 MHz) versions of the circular 

array used in SIP-PACT are commercially unavailable. The linear ultrasonic transducer array 

is relatively low cost, commercially available with a wide bandwidth selection and 

convenient to use thanks to the hand-held operation. A linear array with 21-MHz central 

frequency was used to achieve high-resolution imaging of the mouse brain. To eliminate the 

limited-view issue, the linear array was scanned in the coronal plane to collect signals from 

different angles, and full-view images were synthesized from the limited-view images in 

which vessels were only partially revealed [23]. 

Methods 

Figure 13 shows the schematic setup of linear-array based full-view PACT for mouse brain 

imaging. In this work, 6–8 week-old female mice (Swiss Webster, Invigo) were used. Prior 

to imaging, the hair on the head of the mouse was removed by a depilatory cream. The mouse 

was then mounted onto a holder with its head fixed by a nose cone and a tooth bar. A rubber 

tube connecting the nose cone and an isoflurane vaporizer was used to deliver oxygen and 
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anesthetic gas. The temperature of the mouse holder was regulated by a controller. The scalp 

of the mouse was removed, and ultrasound gel was applied before imaging. The mouse was 

placed beneath the water tank, within an imaging window with dimensions of 8 cm × 10 cm. 

The imaging window was covered with plastic film at the bottom of the water tank, and the 

tank was filled with water for ultrasound coupling. A 5-cm-wide window in one side of the 

tank wall allowed laser beam access to the mouse head. The laser beam used for exciting 

ultrasonic waves was provided by a Nd:YAG laser (Quantel, Brillant B, 4–6 ns pulse duration, 

10 Hz repetition rate). The laser beam was expanded and homogenized by an engineered 

diffuser (EDC-5-A-2 s, RPC Photonics, Inc.), resulting in a 2 cm-diameter illumination area 

on the mouse head. With a pulse energy of 200 mJ, the optical fluence on the head surface 

was 64 mJ cm-2, which is below the ANSI safety limit of 100 mJ cm-2 at 1064 nm.  

 

Figure 13 Schematic setup of linear-array based full-view PACT for mouse brain imaging. 

The excited PA waves were detected by a focused linear transducer array (LZ250, 

VisualSonics) consisting of 256 elements. The linear array had a one-way bandwidth of 11 

MHz around the central frequency of 21 MHz, providing a lateral resolution of 75 microns. 

The numerical aperture of the transducer array is 0.1, yielding a sectioning thickness of about 

0.5 mm within the depth of focus, which covers the whole mouse brain. The detected signals 
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were first amplified by homemade pre-amplifiers (256 channels, 26 dB gain per channel) and 

then digitalized by a customized 256-channel data acquisition system (National Instruments, 

Customized PXI system, 14 bits) at a sampling rate of 250 MHz. The features within the 

imaging plane were reconstructed using the filtered universal back-projection algorithm [64].  

 

Figure 14. Coronal plane PACT of a mouse brain through the intact skull (Bregma −1.0 
mm). (a-e) Limited-view images reconstructed at view angles of –76, –36, 0, 36 and 76 

degrees, respectively. Each of these images was averaged over 200 acquisitions. (f) Full-
view planar image combined from the 39 limited-view images. The scale bar is 2 mm. 

To map the vessels in the coronal plane, the mouse was mounted with its cortical plane 

horizontal to the bottom of the water tank, and the linear array was oriented in the coronal 

plane, as shown in Fig. 13. The surface of the linear array was about 1 cm away from the top 

of the head, and the diffused laser beam was obliquely incident on the head. The pulsed laser 

at 1064 nm was used to excite the PA waves, which came predominantly from 

oxyhemoglobin, a dominant chromophore in the blood stream. Due to the limited view of 

the linear array, only vessels normal to the acoustic axis could be reconstructed, but the 

vessels with their orientation deviated from the axis were almost invisible [65]. Figure 14a-

e show reconstructed images of a typical coronal plane recorded from several representative 

view angles, each averaged over 200 acquisitions. To solve this limited-view problem, the 
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linear array was mounted on a rotary stage with its rotational axis centered at the mouse brain. 

The linear array was then scanned around the brain without changing the laser illumination 

to record images at view angles ranging from –76 to 76 degrees, with a step size of 4 degrees. 

The reconstructed bipolar images were converted into unipolar images by Hilbert 

transformation along each view’s acoustic axis [16]. The processed images were then rotated 

back to recover the vascular distribution in the global coordinate system in which the brain 

was fixed, and the rotated images were summed to form a full-view unipolar image, as shown 

in Fig. 14f. The full-view image demonstrated that the PACT system equipped with the high 

frequency linear array can provide high resolution and deep penetration imaging of a whole 

mouse brain.  

Results and discussion 

Resting-state functional connectivity of the mouse whole brain 

Since light at the chosen laser wavelength is weakly absorbed in biological tissue, and 

changes in the concentrations of hemoglobin and other absorbers during neural activities are 

generally small, the local optical fluence in the mouse brain is assumed to be temporally 

invariant, enabling the PACT system to study the hemodynamic activities in the deep brain. 

As a first demonstration, we used our linear-array PACT system to study the resting-state 

functional connectivity (RSFC) in the coronal plane of a mouse brain. RSFC measures the 

temporal correlation of the low frequency, spontaneous hemodynamic fluctuations among 

spatially separated but functionally related regions in the brain [66, 67]. The alteration in the 

functional connectivity properties is usually an indicator of such brain disorders as 

depression, Alzheimer’s disease, and schizophrenia [68-70]. To explore the functional 

connectivity of a mouse brain in resting state, the linear array was fixed with its axis normal 

to the cortical plane, and 6000 images were acquired at a frame rate of 10 Hz. This study 

again used 6–8 week-old female ND4 Swiss Webster mice (Invigo), anesthetized with 0.8% 

(vol/vol) isoflurane at an air flow rate of 0.8 L/min, a dose does not alter the functional 

connectivity patterns [71]. The PA signals due to scattered photons from the transducer 

surface were used to correct the fluctuations in the total laser pulse energy. Every set of 10 



 

29 

images was averaged to improve the signal-to-noise (SNR) ratio, and the resulting 600 

images over a 10-minute acquisition were analyzed with a seed-based approach [72, 73]. 

Basically, the reconstructed images were first filtered by a 2-D Gaussian smoothing kernel 

with standard deviation of 6 pixels. Then a band pass filter with a window of 0.009-0.08 Hz 

was applied on the time series of the images to reduce the effects caused by heart beating and 

breathing [73]. Finally, a seed was chosen and the temporal correlations of its PA signal with 

that of each pixel in the image were calculated. A high coefficient in the correlation map 

indicates a region that is functionally related to the seed region. The correlation maps for 

representative regions in the mouse brain were superimposed on the synthesized anatomic 

image obtained as described above.  

 

Figure 15. Functional connectivity in a mouse brain acquired by a linear-array based full-
view PACT. (a-d) The correlation maps calculated at four representative functional regions 

(black circles) are overlaid onto the anatomic image that was synthesized from multiple 
limited-view images (Bregma −1.0 mm). The scale bar is 2 mm. S1HL, somatosensory 1, 
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hindlimb region; HIP, hippocampal region; TH, thalamus; RHP, retrohippocampal region. 
(e) Time series of the filtered PA signals of a pair of correlated regions as marked in (a). 

The red and blue curves are corresponding to the points marked in white and black circles, 
respectively. Amplitudes are normalized to the maximum. 

As shown in Fig. 15a-d, strong interhemispherical correlations were observed in the chosen 

functional regions, including the somatosensory, hippocampal, thalamic and 

retrohippocampal regions. The high correlations in the contralateral hemisphere were mostly 

from the regions symmetrically opposed to the seeds. Figure 15e also shows the time series 

of the filtered PA signals of a pair of correlated regions marked by white and black circles in 

Fig. 15a, displaying strong correlation in their fluctuations.  

Epileptiform activities of the mouse brain 

PACT using a high frequency transducer array allows studying the hemodynamics in the 

mouse brain with high spatial and temporal resolutions. To demonstrate this capability, we 

used our linear-array PACT system to study epilepsy in a mouse model. An epileptic seizure 

in a mouse was induced by injection of 4-aminopyridine, a potassium channel blocker. A 

hole with a diameter of 1 mm was drilled in the skull prior to imaging, and 2 μl of 4-

aminopyridine solution at a concentration of 15 mM was injected into the brain through a 30 

gauge needle. After the injection, the neural activities were imaged with the linear array fixed 

at an angle of 30 degrees. The images were acquired at a frame rate of 10 Hz, and every ten 

images were averaged into one, resulting in a temporal resolution of 1 s. The PA signal from 

the transducer surface due to scattered photons was used to correct the fluctuations in the 

total laser pulse energy. The fractional changes in the PA amplitude at different times after 

the injection are shown in Fig. 16. As indicated, an increase in the PA amplitude was initially 

observed at the injection site and then spread out. Even more interesting, epileptic wave 

propagation was also observed in the opposite hemisphere.  
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Figure 16. Epileptiform activities of a mouse brain during a seizure. The fractional changes 
in the PA amplitude at different times after the injection of 4-aminopyridine solution are 
superimposed on the anatomic image (Bregma –1.0 mm). The scale bar is 2 mm, and the 

arrow indicates the injection site. 

Discussion 

In summary, we have built a linear-array PACT system for imaging a whole mouse brain 

through the intact skull and for studying hemodynamic activities with high spatial resolution 

and deep penetration. The linear array was scanned in the coronal plane to collect images at 

different angles. Combing the limited-view images into a full-view image revealed the 

microvascular network in the brain. We investigated spontaneous neural activities in the deep 

brain by monitoring the concentration of hemoglobin in the blood vessels and observed 

strong interhemispherical correlations between chosen functional regions, both in the cortex 

and in the deep region. We also used linear-array PACT to study epilepsy in the mouse brain 

induced by an injection of a potassium channel blocker. We observed the epileptic wave 

spreading around the injection site and a corresponding wave propagating in the opposite 

hemisphere.  

The imaging frame rate of our functional PACT system is lower than that of functional 
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ultrasound imaging [59, 74]; however, we can circumvent this limitation by employing a 

higher repetition-rate laser for PA excitation. On the other hand, PACT utilizes a different 

contrast mechanism from ultrasound imaging. Ultrasound tomography images the 

mechanical properties of soft tissue, and has poor extravascular molecular contrasts. On the 

basis of the optical absorption of biomolecules, PACT enables molecular imaging by 

matching the excitation optical wavelength with the absorption peaks of the targeted 

molecules [75, 76], and thus provides high image contrast. Moreover, PACT can measure 

the concentration and oxygen saturation (sO2) of hemoglobin, which are closely related to 

brain activities but cannot be revealed by ultrasound imaging [77, 78]. 

  



 

33 

C h a p t e r  4  

MULTI-CONTRAST PACT WITH ENDOGENOUS CONTRASTS 

Monitoring largescale hemodynamic responses 

By taking advantage of the difference between the oxy- and deoxy-hemoglobin absorption 

spectra (Fig. 17), we can image whole-body oxygenation dynamics by exciting PA waves 

alternately with two optimal wavelengths [4]. In order to systemically modulate the oxygen 

saturation of hemoglobin (sO2), we manipulated the oxygen concentration in the inhalation 

gas. 

 

Figure 17. (a) The absorption spectra of oxy-hemoglobin (HbO2) and deoxy-hemoglobin 
(HbR), and the absorption ratio of deoxy-hemoglobin to oxy-hemoglobin (HbR/HbO2). (b) 

Fractional changes of blood’s absorption coefficient (µa) corresponding to the blood sO2 
change (d(Δµa/µa) / d(sO2)) with visible and NIR light illumination. Wavelengths from 626 
nm to 720 nm provide an sO2 sensitive imaging window for SIP-PACT (highlighted by the 

gray area). 

By illuminating the mouse brain from the top (Fig. 3a) with two laser pulses of different 

wavelengths at a biologically negligible delay (50 µs), we noninvasively imaged both the 

cortical vasculature and the sO2 of the cortical vessels in vivo (Fig. 18a and 18b). In this 

experiment, a mixture of 95% oxygen and 5% nitrogen was initially used with gaseous 

isoflurane for anesthesia. During the oxygen challenge, the mixture was switched to 5% 
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oxygen and 95% nitrogen for 3 minutes (4.5 minutes for whole-body oxygen challenge), 

and then switched back to the initial concentration to end the challenge. We estimated the 

systemic sO2 change by averaging signals over the superior sagittal sinus, the central vessel 

shown in color in Fig. 18a and 18b. Variations in sO2 (Fig. 18c), derived from changes of 

oxy- and deoxy-hemoglobin concentrations (Fig. 18d), were observed following the 

manipulation of the inhalation oxygen concentration. The sO2 drop resulting from hypoxia 

is manifestly slower than its recovery, consistent with previous observations [51, 79]. 

 

Figure 18. SIP-PACT of mouse whole-body oxygenation dynamics. sO2 mapping of mouse 
cortical vasculatures during (a) hyperoxia and (b) hypoxia. (c) Brain sO2 changes during 

oxygen challenges, the gray rectangle outlines the challenge periods. (d). Changes in 
concentrations of oxy-hemoglobin and deoxy-hemoglobin during oxygen challenges, the 

gray rectangle outlines the challenge periods. (e) Fractional changes in blood oxygen level 
in the cross-sectional image of the lower abdominal cavity. (f) Normalized PA amplitude, 

corresponding to blood oxygen level, in internal organs during hyperoxia and hypoxia, 
where the hollow bars represent the baseline amplitudes and the solid bars represent the 
plateau amplitudes during challenge (n = 50, error bars are s.e.m.). The p values were 

calculated by paired Student’s t-test.  

BOLD MRI, with wide use for functional studies in both animal models and humans, is 

sensitive primarily to the concentration of deoxy-hemoglobin [80, 81]. Similar to BOLD 
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MRI, SIP-PACT can also map the trunk’s hemodynamic response to a change in oxygen 

supply by using a single deoxy-hemoglobin sensitive wavelength for excitation, but at a 

higher imaging speed and greater sensitivity than those of BOLD MRI. After we switched 

the oxygen concentration from 95% to 5%, the whole-body oxygenation levels changed 

accordingly (Fig. 18e). Because deoxy-hemoglobin has a much stronger molar optical 

absorption than oxy-hemoglobin at the excitation wavelength of 720 nm, the PA signal 

changes reflected mainly the whole-body deoxy-hemoglobin concentration changes. In 

Fig. 18e, yellow represents a positive relative PA signal change, which means a decrease 

in sO2, while blue shows a negative relative PA signal change, meaning that sO2 increased. 

When a global shortage of oxygen occurs, the whole-body sO2 should drop accordingly. 

We observed a relative sO2 decrease in most of the organs, such as the brain, liver, and 

kidney, and an sO2 increase in some organs, such as the cecum (Fig. 18f and Fig. 19). 

These observations might be explained as follows: Once global hypoxia occurs, the animal 

adjusts its whole-body metabolic activity to survive the challenge. The vital organs, such 

as the brain, heart, and kidney, must maintain their basic functions with normal metabolic 

activities, so their maintained oxygen consumption under hypoxia leads to an sO2 drop 

[82]. Because some other organs, such as the cecum, reduce their metabolic activity to save 

oxygen for other vital organs, a reduced oxygen extraction fraction leads to an sO2 increase 

within those organs [83-85]. For the first time, to our knowledge, we have 

photoacoustically imaged the dynamics of whole-body oxygenation distribution across 

internal organs with great detail in vivo and without labeling. 
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Figure 19. Fractional changes of blood oxygen levels in the cross-section of (a) the lower 
abdominal cavity during oxygen challenge and (b) the liver during oxygen challenge. 

Imaging brain structures 

From Fig. 20a we can see that at the removal of hemoglobin from the tissue, cytochrome 

becomes the dominant absorber in the visible region. In a mouse brain, by dry weight, gray 

matter has 55% protein and 33% lipid, white matter has 55% lipid and 40% protein, and 

myelin has 70% lipid and 29% protein [86]. Thus the difference in protein/lipid 

concentrations can be utilized to differentiate the brain structures [24]. To remove the 

hemoglobin, we used saline perfusion. As shown in Fig. 20b, with 600 nm light illumination, 

a PACT image acquired on the brain surface shows rich cortical vasculature. Signals from 

major vessels, such the superior sagittal sinus, are so strong that their shadows even appear 

in the deep brain image (Fig. 20c). Consequently, even though different brain structures have 

different cytochrome and lipid concentrations, which might provide us with structural 

contrast, we still cannot differentiate them in the deep brain image. 

 

Figure 20. Label free PA imaging. (a) Absorption coefficient spectra of endogenous tissue 
chromophores at typical concentrations in the human body (Adapted from 

http://omlc.ogi.edu/spectra and http://www.ucl.ac.uk/medphys/research/borl/intro/spectra ) (b) In vivo 
imaging of the mouse brain cortex through the intact skull (imaging depth: 0.5 mm beneath 

the skull surface). (c) In vivo imaging of the deep mouse brain (imaging depth: 3.0 mm 
beneath the skull surface). 

Saline perfused mice were prepared by the Hope Center Animal Surgery Core at Washington 

University, following the standard mouse transcardial perfusion protocol. Blood was 

http://omlc.ogi.edu/spectra/
http://www.ucl.ac.uk/medphys/research/borl/intro/spectra
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removed from the body tissue by pumping phosphate-buffered saline into the left ventricle 

and draining the blood from the aorta, which was cut with scissors. After 4-5 minutes, the 

fluid exiting the aorta was clear and the liver had turned white. At this point most of the blood 

in the body had been replaced with saline. We then dissected the head and placed it into 10% 

paraformaldehyde (PFA) solution for preservation. After 24 hours of fixation in 10% PFA, 

we embedded the head in 3% agar gel for imaging. 

Figure 21a shows a label-free PACT image (from 2.8 mm below the brain surface) of a 

saline-perfused mouse brain. To better illustrate different regions, we segmented Fig. 21a 

per the PA amplitude, and labeled different segmentations (Fig. 21b). For comparison, we 

chose one slice of a 3D high-resolution (50 µm in plane resolution) MRI image, with its 

structural segmentation superimposed as colored lines (Fig. 21c) [87], as a gold standard. 

The mouse brain PACT image shows a nearly perfect match with the MRI image. Different 

brain structures are clearly identified, including the central gray, cerebellum, cerebral 

aqueduct, corpus callosum, hippocampus, hypothalamus, inferior colliculus, neocortex, 

olfactory bulb, and ventricles. To our knowledge, this is the first time that PACT has clearly 

shown deep structures of the brain with rich contrast among different brain tissue, with the 

brain intact and without any labeling.  

 

Figure 21. PACT of the saline perfused mouse brain without the skull. (a) Cross-sectional 
PACT image of the mouse brain at 2.8 mm depth, clearly resolving the structure of the 



 

38 

brain. (b) Segmented and annotated image from (a). (c) One slice of a 3D high-resolution 
MRI image with its structural segmentation superimposed as colored lines, chosen as a 

gold standard for validation of PACT (Courtesy of Frontiers in Neuroscience) [87].  

To find the optimal wavelength for imaging brain structures and to verify the origin of 

contrasts, we varied the laser wavelength from 480 nm to 680 nm with a 20 nm interval. 

Figure 22 shows the spectral PACT images of a mouse brain at one selected depth (2.8 mm 

below the brain surface). A quantitative spectral analysis is discussed in detail in the 

following sections.  

 

Figure 22. Spectral PACT of a mouse brain at 2.8 mm depth.  

After the removal of blood, the remaining dominant chromophores are nuclei (DNA and 

RNA), water, cytochrome, and lipid. DNA and RNA have a strong absorption in the 

ultraviolet band (240 nm – 280 nm). However, in the visible light band (420 nm – 680 nm), 

their absorption is negligible and is 102 – 103  times weaker than that of cytochrome [88]. 

Water contents in various brain tissue are very similar [89], and thus probably provide a 

javascript:void(0);
javascript:void(0);
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relatively constant background in PACT images. Thus, the structural contrast should mainly 

come from cytochrome/lipid distribution. Each pixel in a single-wavelength PACT image 

represents a combined contribution from M optical absorbers with known molar extinction 

coefficient spectra ma  and unknown concentrations cm (m = 1, 2, …, N). Then the spectral 

decomposition equation can be expressed as  

 𝜇𝜇𝑎𝑎(𝜆𝜆𝑛𝑛) = ∑ 𝑎𝑎𝑚𝑚(𝜆𝜆𝑛𝑛)𝑐𝑐𝑚𝑚, 𝑚𝑚 = 1,2, … ,𝑁𝑁𝑀𝑀
𝑚𝑚=1 , (4) 

where λn is the nth wavelength used for PA excitation. Based on the known extinction 

coefficients, the concentrations of the optical absorbers can be quantified. In the following 

spectral analysis, we assume that differences between the Grüneisen parameters of different 

types of cytochromes are negligible, which was validated in a previous report [90]. 

 

Figure 23. Spectral analysis of the origin of optical absorption in the brain. (a) Cross-
section imaged at 600 nm wavelength at 2.8 mm depth as part of the 3D brain imaging, 
with red outlined areas segmented for analysis. (b) Measured PA spectrum and least-

squares fit with a mixture of cytochromes b and c. (c) Histology image of one horizontal 
section slice stained with hematoxylin and eosin (H&E). 

In mammals, the brain performs numerous computationally intensive tasks, such as 

information processing, perception, motion control, and learning, and thus consumes a large 

amount of energy in proportion to its volume. Mitochondria, the energy source, populate the 

cytoplasm of mammalian cells, including neurons, which rely on mitochondrial energy 

production for survival [91]. The absorption sources of the mitochondria are mainly 
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cytochromes b and c [90, 92]. Moreover, myelin has a high concentration of lipid, which has 

orders of magnitude weaker absorption than that of cytochrome over the spectral range of 

480-680 nm. Thus the existence of myelin would further sharpen the contrast of cytochrome. 

Therefore, the distributions of chromophores map the brain with vivid contrast in PACT 

images. 

Figure 23a shows the optical absorption contrast in one cross section (2.8 mm below the 

brain surface) based on the joint reconstruction approach. The spectral PA responses 

(normalized by the laser fluence) of the neocortex area encircled by the red line in Fig. 23a 

are plotted in Fig. 23b (labeled by circles). The neocortex consists of gray matter, or neuronal 

cell bodies and unmyelinated fibers. The high concentration of mitochondria in neuronal cell 

bodies might be responsible for the optical absorption. Because the absorption sources in 

mitochondria are mainly cytochromes b and c [90, 92], the PA spectrum of the red outlined 

area was fitted according to Eq. (4) with a mixture of 65 ± 12% (molar ratio, mean ± standard 

error) cytochrome b and 35 ± 9% cytochrome c, which is in agreement with the measured 

concentration of cytochrome in mitochondria [90]. The squared 2-norm of the residual is 

0.003. The accuracy of spectral analysis, however, is subject to the possible presence of other 

neglected absorbing proteins (such as cytochrome p450, nitric oxide synthases, and 

myeloperoxidase) with similar spectra. Absorption from other sources, such as water, 

flavoproteins, nicotinamide adenine dinucleotide, or other neglected hemeproteins, is orders 

of magnitude weaker than cytochrome, and was removed as a constant background during 

the fitting. A hematoxylin and eosin (H&E) stained histology image (Fig. 23c) of a horizontal 

brain section is presented as a validation of the optical absorber, where pink represents the 

proteins in the cytoplasm and blue represents DNA/RNA in nuclei. In the H&E stained 

histology image, the brain structure contrast from cytoplasm distribution matches with the 

absorption contrast based PACT brain structure image, whereas the optical absorption from 

DNA/RNA is negligible under visible light illumination. This comparison between our 

PACT image and the H&E stained histology image further validates that the structural 

contrast is mainly caused by proteins in cytoplasm.  
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Figure 24. Analysis of the origins of the contrast. (a) Cross-section imaged at 600 nm 
wavelength at 2.8 mm depth selected from the 3D brain images, with brown outlined areas 

segmented for analysis. (b) Close-up of the region inside the brown square in (a). (c) 
Comparison of the measured AR between the granular cell layer and the cerebellar white 
matter and the AR between cytochrome and fat. (d) Histology image of one horizontal 

section slice stained with luxol fast blue. (e) Close-up of the region inside the brown square 
in (d). 

To further confirm that structural contrast comes mainly from cytochrome and lipid, another 

area in the cerebellum (Fig. 24a) was segmented for spectral analysis. In a close-up image 

(Fig. 24b), white and black stripes correspond to cerebellar white matter and the granular 

layer, respectively [93, 94]. The cerebellar white matter, made up largely of myelinated nerve 

fibers, has a high concentration of lipid, and the granular layer has a high concentration of 

cytochrome. We calculated the absorption ratio (AR) between the granular cell layer and the 

cerebellar white matter as follows:  

 𝐴𝐴𝐴𝐴 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔)

, (5) 

Here 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 is the PA amplitude of the cerebellar white matter region, and 𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 is the PA 

amplitude of the granular layer region. We compare the result with the AR of cytochrome to 

lipid, which is obtained by taking the ratio point by point between the cytochrome absorption 

spectrum and the lipid absorption spectrum shown in Fig. 20a. The two results match well 

with each other (Fig. 24c), which indicates that the contrast of the PACT image of the saline-

perfused brain comes mainly from cytochrome and lipid. To confirm the presence of lipid, a 
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horizontal brain section was stained with luxol fast blue (Fig. 24d), which is a commonly 

used to observe myelin. Comparing the cerebellum of the mouse brain in Fig. 24a and b with 

Fig. 24d and e, the cerebellar white matter structures match well with each other. Combined 

with the conclusion from Fig. 23, Fig. 24d tells us that the absorption difference between 

myelin and cytochrome sharpens PACT image contrast. A potential future study would focus 

on directly imaging lipid in the mouse brain by employing infrared light around 1200 nm 

and 1700 nm, which are the C-H bond absorption peaks [95]. 

Tracking of circulating melanoma tumor cells 

Circulating tumor cells (CTCs) have been regarded as an important pathway and a potential 

indicator for tumor metastasis, a hallmark of tumor malignancy [96, 97]. Tracking the fate 

of metastasizing cancer cells in vivo is vitally important to the study of early extravasation, 

early angiogenesis, and treatment of cancer [98]. In this study, we targeted melanoma, a 

skin cancer which was expected to cause an estimated 10,130 fatalities in the United States 

in 2016 [99], and demonstrated that our SIP-PACT system could monitor melanoma 

migration in the entire mouse cortical vasculature in vivo [4].  

 

Figure 25. Detection of melanoma cells in blood in vitro. (a) Spectra of whole blood (85% 
sO2) and melanosome, and the absorption ratio of melanosome and whole blood, which 

peaks at 680 nm. The melanosome to blood contrast can be maximized with 680-nm 
excitation. (b) Image of a tube (300 µm in diameter) filled with the mixture of blood and 
melanoma cells (106 cells in 2 mL of bovine blood). The mixture of blood and melanoma 
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cells is driven by a syringe to flow through the tube. The melanoma cells (or cluster) are 
highlighted by the yellow arrows. (c–e) Time trace plot of each pixel along the red dashed 
line in (b). The space-time domain slope in (c–e) were computed by linear fitting as ~0.67 

mm s-1, representing the flow speed of melanoma cells. 

Melanin has a much stronger optical absorption at around 680 nm than hemoglobin does 

(Fig. 25). Hence, we used SIP-PACT with 680-nm laser excitation to capture the migration 

of intra-arterially injected melanoma cancer cells along cortical vessels in real-time, with 

high contrast and without any labeling. We should note that the injected melanoma cells 

could present in the bloodstream in the form of both single cells and CTC clusters, 

contributing to the strong signals in our images. A motion-contrast image created from 

signals before (Fig. 26a) and after CTC injection and overlaid on the vascular image shows 

the melanoma cancer cells (Fig. 26b), where colors represent the CTCs’ flow directions. 

The movements of melanoma cancer cells in the yellow dashed box region in Fig. 26a are 

visualized in Fig. 26c, where the melanoma cells in the current frame are highlighted in 

red, those in the previous frames are shown in green, and the flow path of each cell is 

marked by an orange dashed line. By tracking the melanoma cells in real time and 

analyzing the movement of flowing melanoma cells in the spatiotemporal frequency 

domain, we can compute the flow rate of the cancer cells, which is smaller than the cerebral 

blood flow rate [100, 101]. We extracted the time traces of each pixel along the red dashed 

line in Fig. 26a, and plotted the signals as an image in the space-time domain (Fig. 26d). 

By taking the two-dimensional Fourier transformation of this image, we mapped lines with 

the same slope in the space-time domain onto a single line in the spatiotemporal frequency 

domain (Fig. 26e), simplifying the calculation of the flow speed and providing better 

accuracy. The flow speed of the melanoma cells was computed by linear fitting to be 0.65 

mm/s. Applying this method with a sliding window, we were able to visualize CTC flow 

speed distributions in multiple vessels of the brain (Fig. 26f).  

We visualized the flowing of melanoma cancer cells in both cortical arteries (Fig. 27) and 

veins. We also observed occasionally ceased motion of melanoma cells, which might be a 

possible sign of the homing of metastasizing cancer cells (Fig. 28).  
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Figure 26. Label-free tracking of CTCs in the mouse brain in vivo. (a) Baseline cortical 
vasculature before the injection of melanoma cancer cells, under 680-nm excitation. (b) PA 

imaging of the mouse cortex after injection of melanoma cancer cells, where colors 
represent CTCs’ flow direction. Flow speed is radially encoded in the color disk by hue 

saturation (a greater radius indicates faster) (c) Tracking the flowing of cancer cells, where 
red highlights the moving cancer cells in the current frame, yellow crosses show their 

initial positions, and the orange dashed lines represent the CTCs’ flowing traces. (d) Time 
trace plot of each pixel along the red dashed line in (a). (e) 2D Fourier transform of (d), 
which maps lines with the same slope in the space-time domain onto a single line in the 
spatiotemporal frequency domain. The slope of the red dashed line, computed by linear 

fitting as 0.65 mm s-1, represents the flow speed of CTCs. The spectral amplitude values 
were normalized according to the maximum value, and were saturated at 0.15 for display 

purposes. (f) Flow speed distribution of CTCs in segmented cortical vessels. 

SIP-PACT has demonstrated the ability to track unlabeled circulating melanoma cancer 

cells in vivo in the mouse brain. This capability might provide new insights into metastasis 

research, which can potentially be used to better tailor cancer therapies in the future. 
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Figure 27. Flowing of melanoma cells in cortical arteries. (a) PA image of the mouse brain 
cortex after injection of melanoma cancer cells. (b) The time trace plot of each pixel along 

an artery (the red dashed line in (a)). (c) 2D Fourier transform of (b), which maps lines with 
the same slope in the space-time domain onto a single line in the spatiotemporal frequency 

domain. The slope of the red dashed line, computed by linear fitting as 10.0 mm s-1, 
represents the flow speed of CTCs, which is higher than that in veins. 

 

Figure 28. In vivo observation of CTCs whose motion in mouse cortex has ceased. (a) The 
PA image of the mouse brain cortex after injection of melanoma cancer cells. (b) 

Displacement versus time trace plot of the finally ceased CTCs, where the red line is the 
displacement of the center position of the non-moving CTCs, and the plateau of the red line 

represents where and when the CTCs ceased moving. (c) Zoomed-in images of the white 
dashed box in (a), where the yellow crosses represent the initial center position of the 
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tracked CTC, the red patches label its central position in the current frames, and the orange 
dashed lines represent the CTCs’ flowing traces. 
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C h a p t e r  5  

MULTI-CONTRAST PACT WITH EXOGENOUS CONTRASTS 

PACT of organic near-infrared dyes 

Visualization of the whole-body dye perfusion  

An NIR dye (FHI 104422P, Fabricolor Holding Int'l LLC) that has much higher optical 

absorption at 1064 nm than blood does (Fig. 29) can be used for visualization of the perfusion 

process in vivo [4]. 

 

Figure 29. Comparison of absorption of the NIR dye and bovine blood (90% sO2) at 1064 
nm. The NIR dye (0.5% mass concentration in deionized water) and bovine blood are filled 
in silicone tubes (600 µm diameter), which is embedded in agar. (a) PA image of the two 
tubes filled with NIR dye and bovine blood, with 1064-nm illumination. The signals from 
blood are amplified by 3-fold for improved display. (b) Line profile of the yellow dashed 

line in (a), showing that the NIR dye has 19.8-fold more absorption than blood at 1064 nm. 
Thus the absorption coefficient of the dye solution is 74.7 cm–1. 

After an intra-arterial injection of the NIR dye, the dye perfusion in both the mouse brain and 
internal organs were visualized by SIP-PACT (Figs. 30 and 31) [4]. We thus have 
demonstrated SIP-PACT’s potential for molecular imaging once the dye is functionalized. 
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Figure 30. Visualization of dye perfusion in the mouse brain. (a) Images of the mouse 
cortex after the injection of dye solution at different times. (b) The total PA signal of the 

mouse brain greatly increases after the injection of dye solution. 
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Figure 31. Visualization of whole-body dye perfusion. (a–f) Cross-sectional images of the 
lower abdominal cavity at different times after injection of dye solution, showing that dye 
molecules perfused to both kidneys and the intestinal region. IN, intestine; LK, left kidney; 

RK, right kidney; SP, spleen. 

Superresolution PACT by localization of single dyed droplets 

The spatial resolution of PACT is fundamentally limited by acoustic diffraction and, thus, by 

the acoustic wavelength in tissue. Although finer resolution can be realized by detecting 

higher frequency ultrasound, the associated increase in ultrasound attenuation decreases the 

penetration depth [102, 103]. Inspired by superresolution fluorescence imaging techniques, 
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such as photoactivation localization microscopy (PALM) and stochastic optical 

reconstruction microscopy (STORM) [104, 105], several techniques have been used to break 

the acoustic diffraction limit in PACT. One such technique utilized the PA signal fluctuations 

that were induced by either speckle illumination or flowing absorbers [106, 107]. More 

recently, superresolution PA imaging has also been demonstrated by the localization of 

flowing microbeads [108, 109]. However, none of these techniques have been successfully 

applied to in vivo imaging. The main disadvantage of the fluctuation-based technique is that 

the speckle contrast becomes too low for detection in deep tissue due to the orders of 

magnitude smaller size of the fully developed speckle grains compared to the detection 

acoustic wavelength. Moreover, one of the main drawbacks of the bead-based localization 

technique is that solid beads can jam small blood vessels and block blood flow, thereby 

impeding in vivo applications. Here, we used flowing single dyed droplets for localization to 

enhance the spatial resolution [25]. 

The droplets were prepared by mixing oil-dissolved dye (IR-780) with water. The molar 

absorption coefficient of the IR-780 iodide dye solution is 300 times higher than that of 

hemoglobin (80% oxy-hemoglobin and 20% deoxy-hemoglobin) at 780 nm (Fig. 32). Based 

on the normal hemoglobin concentration (150 g L-1) in whole blood and the gram-molecular 

weight of hemoglobin (64,500 g mole-1) [110], the absorption coefficient of the dye solution 

at 2 mM is approximately 260 times higher than that of whole blood. 
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Figure 32. Absorption spectra of HbO2, HbR, and IR-780 dye solution as well as the 
absorption coefficient ratio of IR-780 to hemoglobin (80% HbO2 and 20% HbR). 

In the in vivo study, droplets were used to improve the spatial resolution in PACT of a mouse 

brain vasculature. The mouse brain was initially imaged using hemoglobin as the endogenous 

optical contrast. The laser was tuned to 780 nm, and the pulsed energy was set to 100 mJ. 

The optical fluence on the head surface was 30 mJ cm-2. The reconstructed image based on 

hemoglobin contrast is shown in Fig. 33a. To quantify the spatial resolution, we plotted the 

profile of the PA amplitude along the dashed line, where a small vessel began to bifurcate 

into two. The distance between the two peaks in Fig. 33b corresponds to a spatial resolution 

of approximately 150 µm. Then, the brain was continuously imaged, while droplets were 

injected into the heart through the catheter. Fig. 33c shows a droplet that is flowing in a 

vessel over time. The droplet flow direction and speed were quantified from the time-lapse 

images. Due to the high droplet flow speed and the relatively low imaging frame rate (20 

Hz), droplets sometimes traveled through a vessel in only a few imaging time points. 

Therefore, the spatial resolution of the flow speed mapping is low. As shown in Fig. 33d, the 

droplet flow speed in the cortex was 1.3-7.5 mm s-1, which well accords with the previously 

reported blood flow speed in the cortex [111, 112]. The flow speed that was determined in 

this way was extracted from multiple droplets; some droplets flowed even faster and reached 

26 mm s-1 in some vessels. Interestingly, the droplets in the upper and lower parts of the 

superior sagittal sinus flowed in opposite directions; a possible reason is that vessels from 

different depths that had different flow directions overlapped with each other.  
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Figure 33. Tracking of single dyed droplets in the brain in vivo. (a) A unipolar image of the 
baseline cortical vasculature that was acquired prior to the injection of droplets. (b) A 

profile of the PA amplitude along the dashed line in (a). (c) The flow of a droplet (orange 
dot) in brain vessels, which was tracked over time. The droplet images were overlaid on the 

baseline vascular image in the region that is bounded by the dashed rectangle in (a). The 
dotted red circles indicate the initial locations of the droplets, and the dashed arrows 

indicate the flow pathway and direction. (d) The droplet flow velocities for several cortical 
vessels. The colors indicate the flow speeds, and the arrows indicate the flow directions. 

The scale bars are 2, 1 and 2 mm in (a), (c) and (d), respectively. 

The extracted images of single droplets were analyzed by 2-D Gaussian fitting, and their 

centers were identified. In total, approximately 220,000 droplets were localized during the 

half-hour data acquisition, and their centers were used to construct a superresolution image. 

Fig. 34a and b show the images of the cortical-layer vessels that were obtained via 

conventional PACT and superresolution PACT, respectively. Compared with Fig. 34a, Fig. 

34b shows substantial improvements in spatial resolution. Figure 34c shows the amplitude 

profiles the dotted lines in Fig. 34a and b. In the superresolution image, the vessels appear 

sharper, and the closely neighboring vessels can be resolved. The droplet-localization 

technique not only improves the PACT resolution but also lights up the vessels that are 

otherwise obscured by the blood background. Figure. 34d and e show the magnified images 
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of the regions that are bounded by dotted rectangles in Fig. 34a and b, respectively. While 

no features can be readily identified in the conventional image (Fig. 34d), the superresolution 

image displays bifurcated vessels (Fig. 34e). The amplitude profiles along the dotted lines 

are shown in Fig. 34f, according to which the two vessels, which are separated by 25 µm, 

can be resolved by the droplet-localization technique. These results suggest that the spatial 

resolution of PACT has been improved by a factor of 6 by the localization of single droplets. 

It is possible to improve droplet-localization PACT further. First, dyed droplets with higher 

optical absorption would increase the spatial resolution due to the inverse relationship 

between the localization precision and the CNR of single droplets [113]. Thus, 

photoacoustically brighter dye at a longer wavelength (1.0–1.7 µm) would enable 

superresolution imaging of the vasculature in deeper tissue. Second, the sizes of the droplets 

are dispersed in this work, and many small droplets generated a background in the PACT 

images, thereby degrading the localization precision. This problem could be circumvented 

by generating mono-dispersed droplets using a microfluidic device [114]. Third, some 

droplets displayed moon-like shapes, which was probably due to their deviation from the 

focal plane of the transducers; thus, 2-D Gaussian fitting to these images produced a bias in 

their center estimation. An estimator with less bias is required for processing the images of 

these droplets. Fourth, the current imaging frame rate is 20 Hz, which is limited by the laser 

repetition rate. Although the droplets move slowly in terms of absolute speed (1.3–7.5 mm 

s-1), they move fast on a superresolution scale, i.e., the droplets displace 1/2 of the 

superresolution pixel width (25 µm/2) over a short time interval. Capturing the minute 

displacement accurately requires high frame rates. Moreover, a high frame rate can 

effectively reduce the data acquisition time and facilitate the removal of the artifacts that 

resulted from the limited number of localized droplets. We expect the droplet-localization 

PACT to find wide applications in imaging blood vessels and monitoring targeted drug 

delivery in deep tissue. 
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Figure 34. Superresolution imaging of the mouse brain cortex. (a) A unipolar image of the 
cortical layer that was acquired by conventional PACT using hemoglobin as the contrast. 
(b) A superresolution PACT image of the cortical layer by localizing single droplets. (c) 
Amplitude profiles of the conventional image (blue dashed line) and the superresolution 

image (red solid line) along the dotted lines that are shown in (a) and (b). (d and e) 
Magnified images of the regions that are bounded by dotted rectangles in (a) and (b). (f) 

Amplitude profiles along the dotted lines in (d) and (e), where the red solid line 
corresponds to the profile from the superresolution image, the blue dashed line corresponds 
to the profile from the conventional image, and the vertical black dashed lines indicate the 

locations of the two vessels. 

PACT of microparticles—metallic microrobots 

Recently, tremendous progress in synthetic micro/nanomotors in diverse environment has 

been made for potential biomedical applications. However, existing micro/nanomotor 

platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we 

present a SIP-PACT guided investigation of micromotors in intestines in vivo. The 

micromotors capsules (MCs) are stable in the stomach, and the micromotors exhibit 

efficient propulsion in various biofluids once released from the MCs.  
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Figure 35. PA characterization of the MCs. (a) PACT images of Mg particles, blood, and 
MCs in silicone rubber tubes with laser wavelengths at 720, 750, and 870 nm, respectively. 
Scale bar, 500 μm. (b) PACT spectra of MCs (red line), blood (blue line), and Mg particles 
(black line), respectively. (c and d) PACT images (c) and the corresponding PA amplitude 
(d) of the MCs with different micromotor loading amount, and the dependence of the PA 
amplitude on the fluence of NIR light illumination (inset in d). Scale bar in c, 500 μm. (e) 
Dependence of PA amplitude of the MCs (red line) and blood (black line) on the depth of 

tissue, and the normalized PA amplitude and fluorescence intensity of the MCs under tissue 
(inset). Norm., normalized; amp., amplitude; Fl., fluorescence; int., intensity. 

For deep tissue imaging in vivo, it is crucial that the MCs should have higher optical 

absorption than that of the blood background. As shown in Fig. 35a, the MCs exhibit strong 

PA contrast within the NIR wavelength region, ranging from 720 to 890 nm. In order to 

quantitatively assess the optical absorption of the MCs, we extracted amplitude values from 

above PA images and subsequently calibrated with optical absorption of hemoglobin [115, 

116]. At the wavelength of 750 nm, the MCs display the highest PA amplitude (Fig. 35b). 

The PA signals of the MCs peak at 750 nm with an amplitude of 15.3. The bare Mg particles 

display a similar PA spectrum, with a lower PA peak with an amplitude of 10.0 at 750 nm. 

The higher PA amplitude of the MCs than that of bare Mg particles indicates that the Au 

layer significantly improves the imaging sensitivity owing to its strong optical absorption 
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in the NIR wavelength region (Fig. 35b) [117, 118]. In addition, the approximate 3-fold 

increase in PA amplitudes of the MCs (compared to that of the whole blood) provides 

sufficient contrast for PACT to detect in vivo using 750-nm illumination. Fig. 35c and d 

show the PA images and the corresponding PA amplitudes of single MCs with different 

concentrations of micromotors. The dependence of the PA amplitude on the NIR light 

fluence was also investigated. As expected, the PA amplitude of the micromotors almost 

linearly increases with the NIR light fluence (Fig. 35d, inset). We also studied the 

maximum detectable depth of MCs using PACT (Fig. 35e). The fluorescence intensity of 

micromotors dramatically decreased when covered by thin tissue (0.7–2.4 mm in thickness) 

and became undetectable quickly (Fig. 35e, inset). By contrast, PACT can image the 

micromotors inside tissue deep to ~7 cm (Fig. 35e), which reveals that the key advantage 

of PACT lies in the high spatial resolution and high molecular contrast imaging inside deep 

tissue [4]. 

The movement of a swarm of MCs was monitored in vivo by the PACT. The MCs were 

dispersed in pure water and then orally administered into 5–6-week old nude mice. The mice 

were subsequently anesthetized and the lower abdominal cavity was aligned with the 

imaging plane of the ultrasonic transducer array for longitudinal imaging. PACT images 

were captured at a frame rate of 2 Hz for ~8 hours. As shown in Fig. 36a, the blood vessels 

and background tissue are shown in gray and MCs in intestines are highlighted in color. 

During the imaging period of the first 6 hours, the MCs migrated for ~1.2 cm, roughly 15% 

of the length of the entire small intestine. After 5 hours, the PA signals of some MCs faded 

away as they moved downstream in intestines that were outside of the imaging plane. The 

moving speed of the swarm MCs in intestines and the movements induced by respiratory 

motion were quantified (Fig. 36b–d,). As shown in Fig. 36b–d, the abrupt motion caused by 

respiration is much faster than real migration of the MCs. Despite the respiration-induced 

movement, PACT can distinguish the signals from the slowly migrating MCs in intestines. 

These results indicate that PACT can precisely monitor and track the locations of the MCs 

in the deep tissue in vivo. 
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Figure 36. PACT evaluation of the MC dynamics in vivo. (a) The time-lapse PACT images 
of the MCs in intestines for 7.5 hours. The MCs migrating in the intestine are shown in 

color, the mouse tissue is shown in gray. Scale bar, 2 mm. (b and c) The movement 
displacement caused by the migration of the MCs in the intestine (b) and by the respiration 

motion of the mouse (c). (d) Comparison of the speeds of the MC migration and the 
respiration-induced movement. 

PACT has visualized the migration of MCs toward the targeted regions in intestines in vivo, 

which provides a real-time navigation of the MCs for precise control and promises practical 

biomedical applications, such as drug delivery. 

PACT of genetically encoded photoswitchable proteins 

Enhancing detection sensitivity and specificity 

By using reporter genes expressed in targeted biological processes, optical imaging has 

provided valuable information for biomedical studies [119, 120]. PAT is inherently suited 

for molecular imaging by using genetically encoded probes that are either fluorescent or not, 

such as fluorescent proteins (FPs) and non-fluorescent pigments [121, 122]. Most notably, 

PAT of the genetically encoded probes typically has strong background signals from 



 

58 

hemoglobin which exhibits wideband absorption spectrum that overlap with those of the 

probes [121-123]. Accurate spectral unmixing of these biomolecules is prevented by highly 

wavelength-dependent light attenuation in tissue at depths [124]. To overcome these 

limitations, optically probes with the following characteristics are highly desired in PAT: (i) 

Genetically encodable expression, (ii) spectral properties that allow light penetration to deep 

tissue and robust unmixing from other endogenous biomolecules, (iii) light-sensing 

chromophores that are naturally present in tissue, (iv) orthogonality to mammalian cell 

metabolism and low cytotoxicity. Fortunately, bacterial phytochromes (BphPs), among the 

very few light-sensing protein classes, can meet these criteria [26]. 

BphPs are photoreceptors sensitive to 600–800 nm light [125], a wavelength range that 

partially falls into the deep-penetration optical window in tissue [126]. BphPs consist of a 

photosensory core module and an output effector domain (Fig. 37a). The unique spectral 

properties of BphPs are defined by a covalently attached chromophore, biliverdin IXα (BV) 

[127], a product of enzymatic heme degradation (Fig. 37b). BV is abundant in mammalian 

cells [128]. Covalent binding of BV with the photosensory module is autocatalytic without 

any additional cofactors [129]. Inside a chromophore binding pocket, BV can adopt two 

conformational states, Pfr and Pr, which differ in the conformation of the C15/16 double 

bond between the C and D pyrrole rings (Fig. 37c) [130]. Photoisomerization of the D ring 

results in absorption shift towards the NIR region. For unbound BV molecules in cells, 

photoisomerization occurs around the central methane bridge with a short lifetime (on the 

level of milliseconds), resulting in virtually the same absorption spectra as that in the ground 

state (Fig. 37d).  
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Figure 37. Structure and photochemical properties of RpBphP1 bacterial phytochrome. (a) 
Organization of a monomer subunit of RpBphP1. (b) Enzymatic synthesis of BV from a 

heme. (c) Photoswitchings of a BV chromophore from the Pfr state to the Pr state, and vice 
versa, induced by NIR (~730-790 nm) light and far-red (~630-690 nm) light illumination, 
respectively. The photoswitchings result from the out-of-plane rotation (black arrows) of 
the D-ring of BV about the adjacent C15/16 double bond between the C and D pyrrole 

rings. (d) Absorption spectra of unbound BV photoisomerization in solution measured by a 
standard spectrophotometer. There is virtually no change in the spectra after 5 min 

illumination at 630 nm and 780 nm. 

RpBphP1 phytochrome from the bacterium Rhodopseudomonas palustris (referred to as 

BphP1) has a natural photochromic behavior: it adopts a Pfr state as the ground state, and 

undergoes the Pfr→Pr photoconversion upon 730–790 nm light illumination and the Pr→Pfr 

photoconversion upon 630–690 nm light illumination. From here on, we choose the Pfr state 

of BphP1 as the ON state, and the Pr state as the OFF state, and used 780 nm light for Pfr→Pr 

200 400 600 800
0.00

0.05

0.10

0.15

0.20

0.25
Ground state
After 630 nm illumination
After 780 nm illumination

Wavelength (nm)

Ab
so

rb
an

ce
 (A

.U
.)

(d) Biliverdin photoisomerization

Biliverdin (BV)

heme
oxygenase

heme BV

(b)RpBphP1 structure

PHYGAFPAS

Cys

Biliverdin chromophore photoswitching

Trans conformation:
Pfr state

Cis conformation:
Pr state

Biliverdin chromophore formation

Effector domains

(a)

(c)

Absorbing at 730-790 nm

Absorbing at 630-690 nm



 

60 

photoconversion and 630 nm light for Pr→Pfr photoconversion. The molar extinction 

coefficients of the ON state BphP1 at 780 nm and of the OFF-state at 630 nm are respectively 

~70-fold and ~40-fold higher than that of HbO2 (Fig. 38a). We first studied the reversible 

photoswitching of BphP1 between the ON and OFF states by measuring its optical 

absorbance at 780 nm (Online Methods). The optical absorbance shows an exponential decay 

from ON to OFF under 780 nm switching illumination, and an exponential recovery from 

OFF to ON under 630 nm switching illumination, multiple switching cycles did not cause 

photobleaching of BphP1 (Fig. 38b).  

 

Figure 38. Optical properties of reversible photoswitching of BphP1. (a) Molar extinction 
spectra of HbO2, HbR, Pfr (ON) and Pr (OFF) state BphP1. (b) Absorbance of BphP1 at 
780 nm, switched off with 780 nm light illumination and then switched on with 630 nm 

light illumination. 

We used U87 human glioblastoma cells to stably express BphP1. Because BphP1 is non-

fluorescent, we used a plasmid containing an internal ribosome entry site between BphP1 

and EGFP. Both genes were translated from a single bicistronic mRNA (Fig. 39a). The co-

expressed EGFP was utilized for selecting stable BphP1-expressing cells, for studying the 

cytotoxicity of BphP1, and for histologically validating the PA imaging. We imaged BphP1-

expressing U87 cells and whole bovine blood embedded in scattering media (1% intralipid, 

10% gelatin, and 2% oxygenated bovine blood in distilled water; absorption coefficient of 

0.1 cm-1; reduced scattering coefficient of ~10 cm-1) at 10 mm depth using PACT. The PA 

images acquired before and after the photoswitching both had strong background signals, 

resulting in poor image contrast of the U87 cells (Fig. 39b). However, the differential image, 

averaged over 20 switching cycles, largely removed the non-switchable background signals 
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and achieved a 50-fold enhancement in CNR (Fig. 39c). Multiple switching cycles did not 

cause detectable photobleaching of the cells (Fig. 39d). By gradually decreasing the number 

of U87 cells, we observed a noise-equivalent detection sensitivity of ~20 cells by using 

differential PA imaging (Fig. 40a). 

 

Figure 39. PACT of BphP1-expressing U87 cells at 10 mm depth. (a) Fluorescence 
microscopic image of the BphP1-expressing U87 cells, where EGFP was co-expressed, 

providing the fluorescence signal. (b) PA images of U87 cells and HbO2 placed at 10 mm 
depth in scattering media mixed with blood to provide background signal. The differential 
image effectively eliminates the background signals and clearly shows the U87 cells that 
are otherwise not detectable in the ON and OFF state images. (c) Contrast to noise ratio 

quantified from the ON state, OFF state, and differential (Diff) PA images. (d) PA signals 
of BphP1-expressing U87 cells observed over 10 photoswitching cycles. 

We next evaluated photoswitching of BphP1 using PACT. We imaged a mouse one week 

after injection of 106 BphP1-expressing U87 cells into the left kidney. Major organs, 

including the skin, kidneys, spleen, bladder, and spinal cord, could be delineated with strong 

signals from blood (Fig. 40b). However, the U87 tumor in the left kidney, overwhelmed by 

the blood signals, could not be detected. After 20-cycle photoswitching, the differential PA 

image clearly showed the tumor at a depth up to ~8 mm, with an average CNR of ~20 (Fig. 
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40c). The photoswitchable tumor had different signals in the ON and OFF state images, while 

the non-switchable background signals from blood were virtually identical (Fig. 40d). After 

PA imaging, the tumor was histologically confirmed (Fig. 40e). The superior sensitivity of 

BphP1-based PACT was further demonstrated by imaging an otherwise undetectable U87 

tumor in a mouse brain, at ~3 mm depth beneath the scalp surface (Fig. 40f).  

 

Figure 40. Deep PACT of genetically encoded reversibly switchable BphP1 in vivo. (a) PA 
CNR of BphP1-expressing U87 cells embedded at 10 mm depth versus increasing cell 
counts. (b) In vivo whole-body PACT images of the kidney region of a nude mouse, 

acquired one week after injection of ~106 BphP1-expressing U87 cells into the left kidney. 
The ON and OFF state PA images clearly show the major blood-enriched internal organs, 

including the left kidney (LK), right kidney (RK), spinal cord (SC), renal vein (RV), 
bladder (BL), and spleen (SP). The differential image clearly reveals the tumor in the left 

kidney. (c) An overlay of the U87 tumor (shown in color) in the left kidney and the blood-
dominated OFF state image (shown in gray). (d) Normalized signal profiles of the ON 

state, OFF state, and differential images along the white dashed line in (b). (e) A 
representative H&E histological image of the harvested left kidney, showing the tumor 

region. (f) Deep PACT of a mouse brain U87 tumor expressing BphP1. The tumor (shown 
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in color) was ~3 mm beneath the scalp surface. A global threshold was applied to all the 
differential images with a threshold level at three times the noise level. 

Structurally, BphP proteins consist of a photosensory core module (PCM) and various so-

called effector domains (Fig. 41) [131-133]. The PAS (Per-ARNT-Sim), GAF (cGMP 

phosphodiesterase/adenylate cyclase/FhlA), and PHY (phytochrome-specific) protein 

domains connected with α-helix linkers form the PCM, which typically has a molecular 

weight of 55-58 kDa. The previously describe RpBphP1 consists of the PCM and two 

additional effector domains, named the PAS/PAC and HOS domains, and forms a dimer 

[134]. Moreover, the HOS domain of one monomer interacts with the PCM of another 

monomer in the dimer. Because of its high molecular weight of ~82 kDa, RpBphP1 exhibits 

a limited folding efficiency and low expression level in mammalian cells. Attempts to delete 

the HOS domain resulted in the loss of photochromic behavior, suggesting that 

photoswitching requires HOS binding to PCM. This finding was surprising, because in some 

BphPs, deletion of the effector domains does not affect reversible photoswitching, and only 

further truncation of the PHY domain starts to impair it [135, 136]. A PCM part of the 

DrBphP phytochrome from Deinococcus radiodurans (termed DrBphP-PCM below) does 

not interact with effector domains, preserves photochromism without effector domains, and 

is 1.5 times smaller than RpBphP1 (Fig. 41). These features make it an attractive template 

for engineering advanced PA probes [137].  
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Figure 41. Development of a 1.5-fold smaller photochromic probe for PA imaging. 
Monomers (shown) of naturally dimeric bacterial phytochromes (BphPs) share a common 
domain structure. It is represented here by the photosensory core module (PCM), formed 
by the PAS-GAF-PHY domain triad, and output domains. BV is covalently bound with 

conservative cysteine from the PAS domain and secured to a chromophore-binding pocket 
in the GAF domain. The molecular weight of the BphPs monomer is ~80 kDa. RpBphP1, 

consists of the regular PCM and the output PAS/PAS and HOS domains. The domain 
organization of BphP from Deinococcus radiodurans, DrBphP, is comprised of the PCM 
and the output histidine kinase (HisK) domain. We truncated full-length DrBphP to its 

PCM and called the result DrBphP-PCM, achieving a 1.5-fold reduction in the molecular 
weight of the PA probe. 

To characterize DrBphP-PCM as a PA probe and compare it with RpBphP1, we upgraded 

SIP-PACT for real-time reversible photoswitching, detection of photoswitching rates, and 

imaging. In order to image RpBphP1, DrBphP-PCM proteins, we combined a Ti:Sapphire 

laser and an optical parametric oscillator (OPO) for illumination. These two lasers were 

synchronized and triggered by an FPGA-based controller. Due to the high imaging speed of 

SIP-PACT, we are able to capture the entire photoswitching process of the BphPs in real 

time, which enables temporal frequency analysis—frequency lock-in reconstruction (LIR). 

The result is a better CNR in the images of BphPs, and a reduction in the impacts of motion 

(e.g., from respiration and heart beating) during in vivo imaging.  

 

Figure 42. Spectral and PA characterization of the DrBphP-PCM. (a) Molar extinction 
spectra of HbO2, HbR, Pfr (ON) and Pr (OFF) state of DrBphP-PCM and RpBphP1. (b) 



 

65 

Schematic of the whole-body PACT system. BC, beam combiner; CL, conical lens; DAQ, 
data acquisition unit; ED, engineering diffuser; M, mirror; OC, optical condenser; P, prism; 

PC, personal computer; pre-A, pre-amplifier; USTA, ultrasonic transducer array. L1, the 
Ti:Sapphire laser. L2, the optical parametric oscillator (OPO) laser. (c) Time sequence of 

photoswitching and imaging of BphPs (pop., population). (d) Absorbance of DrBphP-PCM 
at 780 nm. (e) PA images of BphPs and hemoglobin in clear media. Left column: ON state 

PA image of BphPs and hemoglobin, middle column: LIR images of BphPs and 
hemoglobin; right column, decay constant encoded image showing a reliable separation of 
DrBphP-PCM, RpBphP1, and hemoglobin. Scale bar, 500 µm. (f) PA signal changes upon 
780 nm light illumination and their fits. (g) The switching ratio of BphPs and hemoglobin, 
defined as the PA amplitude ratio between the ON and OFF states, in both clear media (0 

mm in depth) and scattering media (12 mm in depth); error bars are s.e.m. (n = 40). 

We first measured the molar extinction coefficients for the ON states and the OFF states of 

DrBphP-PCM and RpBphP1. The ratios between the extinction coefficients of the ON state 

(Pfr form) at 780 nm and the OFF state (Pr form) at 630 nm of DrBphP-PCM and RpBphP1 

were 9.9 and 4.1, respectively (Fig. 42a). We employed 780 nm light for PA imaging and 

photoswitching the BphPs to the OFF state, and used 630 nm light to switch the BphPs back 

to the ON state (Fig. 42b). The laser fluence on the sample surface at both wavelengths did 

not exceed 12 mJ cm−2, which is below the ANSI safety limit [138]. The imaging and 

photoswitching time sequences are shown in Fig. 42c. The change in RpBphP1 absorbance 

at 780 nm between the ON and OFF states was about four times, similar to earlier 

observations [139]. The changes in DrBphP-PCM absorbance at 780 nm between the ON 

and OFF states were two times larger than that of RpBphP1 (Fig. 42d), which resulted in 

higher PA imaging contrast (Table 2).  

Tubes filled with DrBphP-PCM (~30 µM), hemoglobin (bovine blood with 90% oxygen 

saturation, sO2) and RpBphP1 (~30 µM), respectively, were first embedded in clear gelatin 

(Fig. 42e). Although hemoglobin has the highest contrast in the ON state images (Fig. 42e, 

left column), in LIR, where a pixel-wise extraction of amplitudes of the harmonics of the 

illumination modulation frequency, both DrBphP-PCM and RpBphP1 signals stand out (Fig. 

42e, middle column). The LIR method successfully separated the PA signals from two BphPs 

from the non-photoswitchable blood signals, even with 2.5 times higher CNR than previous 

differential method [139]. Typically, a threshold level of four times the noise level, estimated 
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as the standard deviation of the background signal outside the imaged region, was globally 

applied to the PA LIR images. Compared to RpBphP1, DrBphP-PCM took about three times 

longer time to photoswitch from the ON-state to the OFF-state (Fig. 42f and Table 2). This 

photochemical feature enabled separating the PA signals of DrBphP-PCM and RpBphP1 by 

measuring the signal decay constants during imaging. Moreover, since hemoglobin is non-

photoswitchable, its decay constant was close to zero, making it even more distinguishable 

from the BphP-based probes in RS-SIP-PACT (Fig. 42e, right column). The ON-to-OFF 

photoswitching rate (decay constant) here is defined as the reciprocal of the time it takes for 

the PA signal from the protein to drop to 1/e of its maximum. The ON-to-OFF 

photoswitching rates of DrBphP-PCM and RpBphP1 were 0.54 s–1 and 1.56 s–1 respectively, 

as measured at a laser fluence of 4 mJ cm–2 at 780 nm (Table 2).  

We further compared the reversible photoswitching of both BphPs in scattering media at 

depths using 780 nm illumination. Tubes filled as before were embedded at a depth of 12 

mm inside a scattering medium (10% gelatin and 1% intralipid in distilled water; reduced 

scattering coefficient of ~10 cm−1) [140]. We defined the photoswitching ratio as the ratio of 

the measured PA-signal amplitude of BphPs in the ON state to that in the OFF state. In both 

the clear medium (0 mm in depth) and scattering medium (12 mm in depth), DrBphP-PCM 

exhibited 2 times better photoswitching ratio than RpBphP1 (Fig. 42g). 
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Table 2. Spectral and PA properties of RpBphP1 and DrBphP-PCM in vitro. 

Protein 
Photo 

switching 
state 

Maximum 
absorption 
wavelength 

(nm) 

Maximum 
emission 

wavelength 
(nm) 

Molar 
extinction 
coefficient 
(M–1 cm–1) 

Fluoresce
nce 

quantum 
yield (%) 

PA 
excitation 

wavelengtha 
(nm) 

ON-to-OFF 
photoswitching 

rateb (s-1) 

PA signal-
to-noise 

ratioc 

PA switching 
ratiod 

Temporal 
frequency 
PA image 

CNRe 

0 mm 
depth 

12 
mm 

depth 

0 mm 
depth 

12 mm 
depth 

0 mm 
depth 

12 mm 
depth 

RpBphP1 
Pfr (ON) 756 none 78,300 none 

780 1.56 501.4 
±15.3 

15.2 
±0.3 

4.3 
±0.2 

2.3 
±0.2 

380.3 
±12.0 

21.3 
±0.2 Pr (OFF) 678 n.d. 87,500 n.d. 

DrBphP-
PCM 

Pfr (ON) 750 none 59,200 none 
780 0.54 636.2 

±17.2 
25.4 
±1.3 

8.7 
±1.5 

4.7 
±1.2 

550.4 
±16.0 

38.3 
±0.3 Pr (OFF) 700 720 98,000 2.9% 

aThe laser fluence was 8 mJ cm–2. The wavelengths were chosen on the basis of the absorption of the proteins and the power spectra of 

the lasers. bThe ON-to-OFF photoswitching rate is defined as the reciprocal of the time when the PA signal drops to 1/e of its maximum, 

measured at a a laser fluence of 4 mJ cm–2. cThe protein concentration was 30 µM, and the reduced scattering coefficient of the scattering 

media was ~10 cm–1. Data are reported as mean ± s.d. dThe switching ratio is the ratio of the PA signal amplitudes acquired in the ON 

and the OFF states. Data are reported as mean ± s.d. The hemoglobin concentration was 2.3 mM. Data are reported as mean ± s.d. 
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We next used SIP-PACT to image the HEK-293 cells expressing both BphPs in equimolar 

quantities from a single plasmid and the U87 cells expressing only DrBphP-PCM. For each 

measurement voxel, we reasonably assumed that the local fluence was uniform within that 

voxel, because the 1/e optical penetration depth for NIR light is far greater than the voxel 

length. Experimental results showed that the photoswitching signals from HEK-293 cells 

expressing both BphPs contained two decay components, while the signals from U87 cells 

expressing DrBphP-PCM exhibited only one decay component, regardless of local fluence. 

To reliably separate the two types of tumors inside deep tissue in vivo, we applied this 

labeling strategy to the liver tumors. We first injected U87 cells expressing DrBphP-PCM 

(0.5×106) into the right lobe of the mouse liver and waited 5 days to allow the injected U87 

cells to grow. After the waiting period, we injected HEK-293 cells expressing both BphPs 

(8×106) into the left lobe of the liver. At two hours post injection, we then imaged the tumor-

bearing mouse (n = 3). The lock-in reconstructed (LIR) image clearly resolved the two 

tumors (Fig. 43a), where BphP signals are shown in color and the background blood signals 

are shown in gray. The signal decays from the tumors can be modeled in the form of 𝑔𝑔(𝑡𝑡) =

𝑎𝑎 + 𝑏𝑏 ∙ 𝑒𝑒�
−𝑡𝑡
𝑇𝑇1
� + 𝑐𝑐 ∙ 𝑒𝑒�

−𝑡𝑡
𝑇𝑇2
�, where 𝑇𝑇1> 𝑇𝑇2. The signals from HEK-293 cells were fitted with 

two similar coefficients b ≈ c ≈ 0.5, while the signals from U87 cells were fitted with very 

different coefficients b ≈ 1, c ≈ 0. The HEK-293 tumors contain two different photochromic 

proteins, exhibiting two different decay constants in the decay process (Fig. 43b, c); while 

the U87 tumors contain only one photochromic protein, exhibiting only one decay constant 

in the decay process (Fig. 43b, c). The background anatomy is shown in gray The computed 

coefficients, b and c, are shown in colour in Fig. 43b and c, respectively. Moreover, by 

analyzing the number of decay constants involved, we achieved reliable differentiation 

between the two tumors in deep tissue (~9.1 mm beneath skin, Fig. 43d–f). Coefficient k, 

defined as 𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑏𝑏,𝑐𝑐}
𝑚𝑚𝑚𝑚𝑚𝑚{𝑏𝑏,𝑐𝑐}

, encoded image overlaid on a conventional PACT image is shown 

in Fig. 43d. Because the HEK-293 tumors contain two different photochromic proteins and 

U87 tumors contain only one photochromic protein, the normalized coefficient k of HEK-

293 tumors is much smaller than that of U87 tumor, showing a reliable separation of the two 

tumors. The LIR image was used to form a binary mask, and the decay constant computation 
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was implemented in the masked regions. As shown in Fig. 43f, coefficient k, showing the 

largest difference, can be used to separate the two types of tumors. Independent of the light 

fluence, the coefficient k for HEK-293 tumors is ~1, and the coefficient k for U87 tumors is 

much larger (k > 8). 

 

Figure 43. In vivo separation of two types of cells at depths. (a) LIR image overlaid on a 
conventional PACT cross-sectional image, highlighting the two tumors of HEK-293 cells 
expressing both DrBphP-PCM and RpBphP1 (left lobe) or U87 cells expressing DrBphP-

PCM (right lobe) inside the liver. (b) Coefficient b encoded image overlaid on a 
conventional PACT image. (c) Coefficient c encoded image overlaid on a conventional 
PACT cross-sectional image. (d) Normalized coefficient k encoded image overlaid on a 

conventional PACT image. (e) PA signal decays and their fits in the tumor regions. (f) The 
computed coefficients of b, c, and k from the tumor regions. Scale bar, 5 mm. 

Currently, because of the absence of PA probes with NIR absorbance, whole-body molecular 

imaging of protein-protein interactions (PPIs) employs bioluminescent luciferases and FPs. 

PPI studies utilize Förster resonance energy transfer (FRET), bioluminescence energy 

transfer (BRET), and bimolecular fluorescence complementation (BiFC) approaches. 

However, relatively small changes in the FRET and BRET signals make these techniques 

suboptimal for use in whole mammals. BiFC is based on the tagging of two proteins of 

interest, each with half of an FP. Upon interaction of the proteins, the two halves of the split 
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FP associate with each other to form a fluorescent complex with the complemented FP, thus 

reporting the PPIs. Recently, we engineered several BiFC reporters from NIR FPs and 

demonstrated their ability to detect PPIs in mice [141, 142]. However, NIR BiFC did not 

provide high spatial resolution and sensitivity in imaging PPIs in deep tumors. PPIs were 

also imaged in vivo using split luciferase [143-146] and thymidine kinase [147], resulting in 

bioluminescence and positron emission signals, respectively. However, these reporters 

require injection of substrates. Moreover, the emission of the most red-shifted split-luciferase 

is limited to 615 nm [146], and thymidine kinase’s signal provides low contrast and a non-

specific background in vivo.  

 
Figure 44. Development of the bimolecular photoacoustic complementation (BiPC) 

reporter DrSplit. (a) DrBphP-PCM consists of three domains, PAS, GAF, and PHY. The 
biliverdin (BV) chromophore is covalently bound with conservative cysteine from the PAS 
domain and secured to a chromophore-binding pocket in the GAF domain. DrBphP-PCM 

was genetically split into two parts, the PAS domain and GAF-PHY domain, together 
named DrSplit. In this case, BV does not bind with any part of DrSplit. Genetically fusing 

one protein of interest (protein A) to one part of DrSplit and another protein of interest 
(protein B) to another part of DrSplit makes possible the monitoring of protein-protein 
interactions (PPIs) between protein A and protein B. (b) We used a model rapamycin-

induced PPI between the FRB and FKBP proteins for evaluation of DrSplit. FRB was fused 
to the PAS domain and FKBP was fused to the GAF-PHY domains. Upon addition of 

rapamycin to the DrSplit, DrBphP-PCM was re-functionalized. 

We engineered a split version of DrBphP-PCM, resulting in the first bimolecular 

photoacoustic complementation (BiPC) reporter, termed DrSplit, and applied it to study 



 

71 

intracellular PPIs at depths. We genetically separated (split) DrBphP-PCM between the 

DrPAS domain and the DrGAF-PHY domains, and termed the set of these two constructs 

DrSplit (Fig. 44a). Notably, the PAS-GAF domains alone do not exhibit reversible 

photoswitching [148]. Complementation of the PAS domain with the GAF-PHY domain 

reconstitutes the complete PCM (i.e. PAS-GAF-PHY domains), thus recovering its 

photoswitching property. To test DrSplit complementation, we used a rapamycin-induced 

PPIs between the FRB and FKBP proteins [141, 142]. We genetically fused the FRB protein 

to the DrPAS domain, and the FKBP protein to the DrGAF-PHY domains (Fig. 44b).  

Using DrSplit, we next longitudinally imaged PPIs in the tumors and monitored tumor 
metastases in the liver of mice (n = 4) (Fig. 45a–d). DrSplit-expressing MTLn3 cells (1×106) 
were first locally injected in the mouse liver. Then, rapamycin was injected through the tail 
vein ~40–44 h before the PA imaging. The LIR images highlighted the photoswitchable 
signals from the complemented DrSplit resulting from the PPIs. We detected an exponential 
growth of the primary tumor in the right lobe of the liver over one month (Fig. 45a–e). From 
day 15, we detected a delayed exponential growth of secondary tumors on the left lobe of the 
liver, resulted from metastasizing MTLn3 cells spreading to the other liver lobe (Fig. 45b–
e). The diameter of the secondary tumor on day 15 was ~400 µm (Fig. 45b). The postmortem 
histology results confirmed the PA-measured relative locations of the tumors (Fig. 45f). The 
smallest secondary tumor had a diameter of ~400 µm, assuming the mean volume of MTLn3 
cells is ~2000 µm3, each resolution voxel contained ~3,100 MTLn3 cells. The CNR of the 
secondary tumor was ~9.7 in the LIR image. At a detection confidence level of 90%, we can 
detect PPIs with as few as ~530 cells at this depth.  
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Figure 45. Longitudinal imaging of PPIs in a tumor and monitoring of tumor metastases in 
a mouse liver. ~1×106 MTLn3 cells expressing DrSplit were injected into the mouse liver. 

The mice (n = 4) were imaged at multiple time points after tumor cell injection, and 
rapamycin was injected via the tail vein ~40-44 h before each PA imaging. (a-d) PA 

images of the mouse on (a) day 5, (b) day 15, (c) day 24, and (d) day 33 after injection of 
tumor cells, where the white arrows indicate the secondary tumor. LIR images are overlaid 

on the anatomical images. The overlay image shows the DrSplit signal in color and the 
background blood signal in gray. Scale bar, 5 mm. (e) Tumor growth curve, in-plane tumor 
area vs. time (quantified from LIR images). (f) A representative H&E histological image of 
a harvested left lobe of a tumorous liver, showing the tumor metastasis, where the primary 
tumor and secondary tumor are bordered by green and yellow lines, respectively. Scale bar, 

1 mm. The close-up H&E image shows the secondary tumor, which can be clearly 
differentiated from normal tissue. Scale bar, 100 µm. 

The NIR photochromic DrBphP-PCM probe and DrSplit PPI reporter engineered here, 

combined with PACT, open possibilities in basic biology and biomedical research. Both 

probes can noninvasively monitor individual pathways in subsets of cells in deep tissue and 

provide analysis of multiple pathways in a whole organ. DrSplit will allow detection of 

various biological processes that involve PPIs, such as wound healing, host-pathogen 

interactions, and organ development, and also serve as a whole-cell sensor for metabolic 

changes. Although BiPC of split reporters, such as DrSplit, can be irreversible, as with BiFC, 

it will visualize the accumulation of transient PPIs and low-affinity complexes [149, 150]. 

The higher detection sensitivity of BiPC can advance the monitoring of activities of drug 
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targets, to identify potential off-target effects by detecting PPIs associated with downstream 

pathways. Furthermore, it will enable in vivo genome-wide studies of PPIs, which previously 

were tested with BiFC, outperforming it in depth and spatial resolution [151].  

Guiding light focusing inside tissue  

Recently, a rapidly developed technique—wavefront shaping— aims to overcome optical 

scattering and achieve tight light focus in deep tissue by creating constructive interference of 

the scattered photons. Wavefront shaping techniques typically require guide stars, which 

provide feedback for optimizing the incident optical field, to focus light inside biological 

tissue [152]. Several guide stars have been developed, including ultrasonic [153-156], 

nonlinear optical [157-161], fluorescence [162], kinetic [163, 164], photoacoustic [165-167], 

magnetic [168, 169], and microbubble [170] mechanisms. To enable non-invasive in vivo 

applications, such as deep tissue imaging, tissue-type specific photodynamic therapy and 

optogenetic control over targeted neurons, a genetically encoded guide star is desired. To our 

best knowledge, until now, only the fluorescence-based mechanisms, in combination with 

the optical phase conjugation (OPC) method, have the potential to be genetically encoded 

inside the biological tissue for light focusing. However, due to the incoherence property of 

the fluorescent photons, the demonstrated maximum focusing depth is only 0.5 mm [162]. 

Thus, the wavefront engineering community is still yearning for a genetically encoded guide 

star for deep tissue focusing. Here, we introduced a genetically-encoded photochromic guide 

star (GePGS)—reversibly switchable bacterial phytochrome (RSBP)—into biological tissue 

to provide feedback for focusing inside tissue. With the following characteristics, RSBP can 

serve as an ideal genetically encoded guide star for in vivo applications: (i) RSBP works at 

the near-infrared (NIR) wavelength region, where photons least attenuated by the biological 

tissue, and thus allowing the maximum tissue penetration; (ii) RSBP can be genetically 

encoded and expressed inside targeted tissue in vivo and their light-sensing chromophore, 

BV, is abundant in mammalian tissue; (iii) the absorption coefficients of RSBP can be rapidly 

and efficiently modulated [171] by both ballistic and scattered photons to induce local light 

field changes. 
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Figure 46. Principle of GePGS guided optical focusing inside scattering media. (a) 
Photoswitching of DrBphP-PCM chromophore from the Pfr state to the Pr state, and vice 

versa, induced by 780 nm light and 637 nm light illumination, respectively. The 
photoswitchings result from the out-of-plane rotation (black arrows) of the D-ring of 

biliverdin about the adjacent C15/16 double bond between the C and D pyrrole rings. (b) 
Molar absorption spectra of HbO2, HbR, Pfr (ON) and Pr (OFF) states of DrBphP-PCM. 

The absorption ratio (black solid line) between the two states (Pfr/Pr) is ~10 at 780 nm. (c) 
Time sequence of GePGS guided DOPC system (pop., population). (d) Switching the 

DrBphP-PCM to ON state by a 637-nm laser with a duration of 24 ms. (e) Switching the 
DrBphP-PCM to OFF state by a 780-nm laser with a duration of 26 ms and capturing two 

holograms with an interval of 25 ms. (f) Time reversed focusing on the GePGS inside 
scattering media. BS beam splitter; RB reference beam. 

Figure 46 depicts the principles of GePGS-guided optical focusing inside scattering media. 

The GePGS used here is DrBphP-PCM. The molar absorption spectra of HbO2, HbR, and 

the two states of DrBphP-PCM are shown in Fig. 1b. DrBphP-PCM has obvious changes in 

terms of spectral absorption characteristics between its two states. The absorption ratio 

(black-solid line in Fig. 46b) between its two states (Pfr/Pr) is ~10 at 780 nm, which is 

selected as the working wavelength for the GePGS-guided digital OPC (DOPC) system. 

DrBphP-PCM also possesses weak intrinsic fluorescence in the Pr state [172], which can be 

used to quickly verify its successful expression in tissue. Figure 46c shows the time sequence 
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of the GePGS-guided digital OPC (DOPC) system and Fig. 46d-f show the corresponding 

operations for focusing light inside scattering media. The 637-nm and 780-nm light 

alternatingly illuminated the GePGS to switch it on and off at a frequency fmod of 20 Hz for 

N cycles. Then the frequency of the 780-nm photons passing through the GePGS was shifted 

to f0 ± nfmod , where f0  is the original frequency of 780-nm light, and n = 1, 2, 3, … 

(Supplementary Note 1). To obtain the wavefront of the tagged photons with frequencies of 

f0± fmod, a reference beam with a frequency of f0 was introduced to interfere with the photons 

passing through the scattering medium (Fig. 46e). In each cycle, the GePGS was switched 

to ON state by 637-nm light illumination for 24 ms (Fig. 46d), and then, it was gradually 

switched off by 780-nm light illumination for 26 ms (Fig. 46e). Two holograms with a time 

interval of 1 �2fmod�⁄ , were recorded during the switching off process. Then the wavefront 

of the tracked photons was calculated from the recorded holograms. Finally, a digital 

micromirror device (DMD) was used to playback the reference beam with a conjugate 

wavefront to form a focus onto the GePGS, as shown in Fig. 46f. To minimize the impacts 

of the fast motions in scattering media, we averaged each hologram from N cycles. 

Tissue-mimicking phantom experiments  

To demonstrate GePGS-guided light focusing inside a tissue-mimicking phantom, we 

injected solution of purified DrBphP-PCM into a square tube, which was sandwiched by two 

1.5-mm thick intralipid-gelatin phantoms, as shown in Fig. 47a. The concentration of GePGS 

is 300 μM, and the reduced scattering coefficient of the intralipid-gelatin phantoms is ~10 

cm–1. Figure 47b shows the normalized transmittance of the 780-nm light passing through 

the tubes with different inner dimensions during the switching off process of GePGS. The 

transmittance of the protein at OFF state was 70%, 81%, 89%, and 95%, when the inner 

dimensions of the tubes were 300 μm, 200 μm, 100 μm, and 50 μm, respectively. And Fig. 

47c shows the time-reversed focusing on the different sizes of tubes. The PBRs are 38.2, 

23.9, 10.4, and 5.3 for inner dimensions as 50 μm, 100 μm, 200 μm, and 300 μm, 

respectively.  
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Figure 47. In vitro demonstration of focusing light onto GePGS inside scattering media. (a) 
Experimental setup for in vitro demonstration. BS, beam splitter; IP, intralipid-gelatin 

phantom. TML, tissue-mimicking layer. (b) Normalized (Norm.) transmittance of the light 
passing through the tubes with different sizes filled with GePGS. The length of the inner 
side of the tubes is 50 µm, 100 µm, 200 µm, and 300 µm, respectively. (c) Images of the 

focusing light onto GePGS injected in the tubes with different sizes. Scale bar, 300 µm. (d) 
Image shows that light is focused only onto the GePGS. Two tubes filled with GePGS and 
blood, respectively, are placed side by side. The white dash-dotted lines represent the inner 
wall of the tube filled with blood. The length of the inner side of the tubes is 100 µm. Scale 
bar, 200 µm. (e) Normalized intensity distribution along the yellow line in (d). (f) Image of 
the focusing light onto a tube filled with U87 cells expressing GePGS. It shows that light is 

focused onto the GePGS expressing cells/cell clusters. The white dash-dotted lines 
represent the inner wall of the tube. Scale bar, 300 µm. (g) Normalized intensity 

distribution along the yellow line in (f). In (e) and (g), the blue dashed line is the measured 
value, and the red solid line is the smoothed curve with a span of 10 points. 

To verify that light only focuses on the GePGS, we sandwiched two tubes (length of inner 

side, 50 μm) side-by-side, filled with GePGS and bovine blood, respectively, between the 

two intralipid-gelatin phantoms. The time-reversed light pattern was shown in Fig. 47d, 

where the white dot-dash lines illustrate the position of the tube filled with blood. Figure 

47e is the normalized intensity distribution along the yellow line in Fig. 47d. It is obviously 

that light was focused only on the GePGS, not on the blood. To show advantage of the 

developed GePGS in live mammals, we established an U87 cell line stably expressing 
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DrBphP-PCM, and then demonstrated the time-reversed focusing. A tube (length of inner 

side, 300 μm), sandwiched between the two intralipid-gelatin phantoms, was filled with 

GePGS expressing U87 cells. Figure 47f shows time-reversed light pattern, where the white 

dot-dash lines represent the inner wall of the tube. It is clear the time-reversed light focused 

on the GePGS expressing cells or cell clusters. Figure 47g illustrates the normalized intensity 

distribution along the yellow line in Fig. 47f. And five cells or cell clusters in the field of 

view with different sizes were identified.  

Focusing inside mouse tumors in vivo 

Next, we demonstrated GePGS-guide focusing inside murine tissue in vivo. The 

experimental setup is shown in Fig. 48a. The U87 cells expressing GePGS were injected to 

a mouse ear to induce tumors. We conducted the DOPC experiment on the mouse 5-day post 

injection. The mouse ear was illuminated by 637-nm and 780-nm light alternately with a 

modulation frequency of 20 Hz. The DOPC system was used to record scattered 780-nm 

light wavefront and played back the reference beam with an optimal wavefront to focus 

inside the mouse ear on the tumor. In mouse ear, both the GePGS and the fast decorrelation 

components, such as blood flow and respiratory motion, tagged photons in the process of 

OPC (Fig. 48b). This inevitably led to the competition between the fast decorrelation 

components and the GePGS in terms of light focusing. Here, the frequency lock-in 

technology utilized in the modulation of the GePGS significantly suppressed the impact of 

the fast decorrelation components. Thus, we can specifically filter out the photons tagged by 

the GePGS only and reject the other noise photons.  
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Figure 48. In vivo demonstration of focusing light inside tumors. (a) Schematic of the set-
up for focusing light inside tumors on the mouse ear in vivo. A microscope is placed on a 

translation stage and can be moved horizontally into the light path to image the time-
reversed focus. (b) The speckle correlation coefficient as a function of time for a living-
mouse ear. Three speckle decorrelation characteristics were identified. (c) Normalized 

intensity distribution of the optical foci inside the tumor on the mouse ear. Left, with 637-
nm light switching for N= 2, 40 and 120, respectively; Right, without 637-nm light 

switching. Scale bar, 100 µm. (d) Signal enhancement of tagged photons (at 20 Hz) and the 
PBR of time-reversed focusing as a function of total cycle number N. 

To get a high contrast focus on the tumor inside the mouse ear, we modulated the GePGS for 

N cycles. Because the tumor was close to the right side of the mouse ear, a microscope was 

placed on the right side of the mouse ear to observe the photons transmitted through the ear 

from the left side (Fig. 48a). The time-reversed foci, with different N, on the tumor were 

captured by the microscope (Fig. 48c, left three panels). In the control experiment, where the 

light modulation was off, no light focus was observed (Fig. 48c, right panel). The detected 

signals of tagged photons (at 20 Hz) increase with increasing of N (Fig. 48d, red-circle-

dashed curve). The PBR of the time-reversed focus also increases with N but reaches the 

maximum when averaging over 115 cycles, and starts to decrease if averaged more (Fig. 

48d, blue-squared-solid curve). This is because the impact of slow decorrelation (Fig. 48b) 
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on PBR becomes obvious as the overall time of DOPC increases. With the capability of 

selective delivery of light on to the specific tissue types, such as tumors, the GePGS guided 

wavefront shaping advances light-driven therapy of targeted tumors at depths in vivo.  

Focusing in the live mouse brain tissue 

 

Figure 49. Demonstration of focusing light inside live brain slices. (a) Fluorescence images 
of the transduced mouse brain in vivo and a live brain slice showing the brain tissue 

expressing GePGS. The differential fluorescence signals between ON and OFF states 
highlight the brain tissue express RSBPs, which are shown in color; and the background 

signals are shown in gray. Excitation wavelength, 630 nm. (b) Schematic of the set-up for 
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focusing light inside brain slices. (c) Speckle correlation coefficient as a function of time 
for a live brain slice. Two speckle decorrelation characteristics are identified. (d) 

Normalized amplitude spectral density of the detected photons, where a peak is observed at 
20 Hz with light switching. (e) Normalized intensity distribution of the optical foci inside 
the brain slices. Left, with 637-nm light switching for N= 20; Right, without 637-nm light 

switching. (f) Signal enhancement of tagged photons (at 20 Hz) and the PBR of time-
reversed focusing as a function of total cycle number N. 

Due to the strong optical scattering nature of the brain, current light delivery for optogenetic 

manipulations and optical readouts still primarily employs invasive optical fiber implants to 

reach targets in the deep brain. We have transduced the mouse brain with AAVs in vivo. 

Fluorescence images showed a successful expression of DrBphP-PCM in the brain (Fig. 49a, 

left panel), although the imaging resolution was not very high due to the strong optical 

scattering of brain tissue. To demonstrate light focusing inside the live brain tissue, a 900-

µm thick brain slice was harvested. On this brain slice, the DrBphP-PCM was expressed 

close to the bottom side (Fig. 49a, right panel view from the bottom side of the brain slice). 

The DOPC experimental setup is shown in Fig. 49b. In the brain slice, the principal 

decorrelation is slow decorrelation with a decorrelation time of 8.7 s (Fig. 49c). After 

modulating the GePGS for 20 cycles, the tagged photon signals at 20 Hz have been increased 

by a factor of ~2 (Fig. 49d). An objective was placed on the bottom side of the brain slice to 

observe the light focus (Fig. 49b, inset). With 20 cycles of modulation, we observed a time-

reversed focus on the brain slice with a PBR of 19.8 (Fig. 5e, left panel), which matches well 

with the fluorescence image (Fig. 49a, right panel). In the control experiment, without light 

modulation, no light focus was observed (Fig. 49e, right panel). The tagged photon signals 

increased with increasing of N (Fig. 49f, red-circle-dashed curve). While the PBR of the 

time-reversed focus also increased with N but reached the maximum after averaging over 20 

cycles, and then started to decrease if averaging more (Fig. 49e, blue-squared-solid curve), 

because the dominated slow decorrelation caused mismatch between the recorded wavefront 

and the optimal wavefront.  
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Discussion 

We have introduced an RSBP, such as DrBphP-PCM, as the GePGS and experimentally 

demonstrated the time-reversed focusing light inside scattering media. The RSBP, working 

in the NIR window, maximize the optical penetration in biological tissue. The optical 

absorption of the RSBP is controllable upon light illumination. Moreover, the RSBP can be 

genetically encoded and expressed inside the tissue through either exogenous cell translation 

or native expression via virus infection, which makes them crucial noninvasive imaging tool. 

Taking advantages of both the tissue-specific expression and effective light modulation of 

the GePGS, we can effectively focus light onto targeted tissue, such as tumors, at depth, 

which promises advance photodynamic therapy (PDT). Conventionally, PDT employs NIR 

light to activate the photosensitizers for the tumor destruction [173-175]. However, the strong 

tissue scattering significantly reduces the light delivery efficiency and limits the penetration 

of PDT. Now the GePGS guided light focusing overcomes the aforementioned limitations 

and facilitates PDT with effective photon utilization at previously unreachable tissue depths.  

Noninvasively focusing light deep inside the living tissue promises many biomedical studies, 

especially for neuroscience, where light is routinely used for both monitoring neural activity 

with genetically encoded voltage or calcium indicators [176, 177] and controlling neural 

activity via optogenetic actuators [178, 179]. Although advanced optical imaging techniques, 

such as multiphoton microscopy, adaptive optical microscopy and photoacoustic 

tomography have significantly extended the depths of optical access in vivo [8, 23, 180-183], 

noninvasive light focusing in the diffusive regime in living brain tissue remains challenging. 

We successfully expressed RSBP in neurons using viral transduction. After multiple-cycle 

modulation of GePGS, scattering photons have been effectively tagged and a tight optical 

focus has been created inside the brain slice. Importantly, RSBP-based GePGS itself can be 

the optogenetic actuators [184, 185]. Thus, the GePGS-guided photons can automatically 

and specifically focus on a neural activity actuator, without blind activation of background 

neurons, which should significantly increase the light delivery efficiency and the specificity 

of noninvasive deep-brain manipulations. 
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The GePGS has been demonstrated based on a DOPC system, the guide star itself and the 

frequency modulation method are also compatible with the feedback-based wavefront 

shaping method. The amplitude and phase contribution of each optical field component for 

focusing inside scattering media can be optimized based on the feedback alternating signals 

from the GePGS at a specific frequency. The physical limit of the photoswitching time for 

DrBphP-PCM, the GePGS used in this manuscript, is 1 ms [171]. which allows to further 

improve our DOPC system for a faster response to fight against tissue optical decorrelation 

and thus permits even deeper light focusing. Moreover, the combination of GePGS guided 

focusing and PAT, which provides high spatial resolution imaging in deep tissue based on 

optical contrast, is another appealing direction to explore. PAT can directly visualize the light 

focus in deep tissue and also image the focusing light induced biological activities, such as 

neuron firing and metabolic responses of tumors. 
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C h a p t e r  5  

CONCLUSIONS AND OUTLOOK 

Overall, multi-contrast PACT is a powerful tool for imaging the small animal whole body 

and whole brain functions, complementary to other small-animal imaging modalities in its 

contrast mechanism, spatiotemporal resolution, speed, and penetration. The increasing 

applications of PACT in preclinical research and clinical translations provide strong 

momentum for PACT’s development. The exciting research and translational capabilities of 

PACT come with several technical challenges, but none are beyond reach. (1) For imaging 

neuronal activities in the deep brain, novel voltage-/calcium-sensitive indicators of action 

potentials need to be found or engineered. Most of the currently available voltage/calcium 

indicators operate in the visible wavelength range, which limits the tissue penetration [177, 

186]. Strong optical absorption in the red and NIR spectral ranges is preferable. In addition, 

the other characteristics of the indicators, such as voltage/calcium sensing mechanism, life 

time, response time, etc., need to be tailored for optimized PA contrast. Nonfluorescent NIR 

bacteriophytochromes could be candidates to report action potentials for PA imaging. (2) 

The major barrier of translating PAT to adult human brain imaging is the skull. The adult 

human skull (~5–11 mm thick) greatly attenuates the excitation light and the emitted PA 

waves, and strongly distorts the PA waveforms, resulting in low image quality. A potential 

solution is to combine PACT with X-ray CT or MRI, which can provide accurate skull 

information to correct for the signal distortion. (3) NIR light is still attenuated strongly by 

the skull, which hinders imaging the whole human brain using PACT. As another source of 

non-ionizing radiation, microwaves can also heat tissue by producing molecular rotations 



 

84 

and torsions [187, 188]. The human skull is more transparent to microwaves than to photons. 

Thermoacoustic tomography (TAT) [189-192], utilizing microwave pulses instead of laser 

pulses, can potentially extend the penetration depth beyond 10 cm and enable deep human 

brain imaging.  
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	Deep imaging through rat whole brain and whole body
	Figure 11. Setup for rat brain imaging. The rat head was mounted vertically during imaging and the light was obliquely delivered to the rat cortex.
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	Figure 12. Deep imaging of rat whole brain functions and whole-body anatomy. (a) Rat whole brain vasculature in the coronal plane. (b) Segmentations of different functional regions of the brain. (c) Seed-based functional connectivity analyses of RSGc ...
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	Figure 15. Functional connectivity in a mouse brain acquired by a linear-array based full-view PACT. (a-d) The correlation maps calculated at four representative functional regions (black circles) are overlaid onto the anatomic image that was synthesi...

	Epileptiform activities of the mouse brain
	Figure 16. Epileptiform activities of a mouse brain during a seizure. The fractional changes in the PA amplitude at different times after the injection of 4-aminopyridine solution are superimposed on the anatomic image (Bregma –1.0 mm). The scale bar ...
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	Figure 17. (a) The absorption spectra of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR), and the absorption ratio of deoxy-hemoglobin to oxy-hemoglobin (HbR/HbO2). (b) Fractional changes of blood’s absorption coefficient (µa) corresponding to the bl...
	Figure 18. SIP-PACT of mouse whole-body oxygenation dynamics. sO2 mapping of mouse cortical vasculatures during (a) hyperoxia and (b) hypoxia. (c) Brain sO2 changes during oxygen challenges, the gray rectangle outlines the challenge periods. (d). Chan...
	Figure 19. Fractional changes of blood oxygen levels in the cross-section of (a) the lower abdominal cavity during oxygen challenge and (b) the liver during oxygen challenge.
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	Figure 20. Label free PA imaging. (a) Absorption coefficient spectra of endogenous tissue chromophores at typical concentrations in the human body (Adapted from http://omlc.ogi.edu/spectra and http://www.ucl.ac.uk/medphys/research/borl/intro/spectra )...
	Figure 21. PACT of the saline perfused mouse brain without the skull. (a) Cross-sectional PACT image of the mouse brain at 2.8 mm depth, clearly resolving the structure of the brain. (b) Segmented and annotated image from (a). (c) One slice of a 3D hi...
	Figure 22. Spectral PACT of a mouse brain at 2.8 mm depth.
	Figure 23. Spectral analysis of the origin of optical absorption in the brain. (a) Cross-section imaged at 600 nm wavelength at 2.8 mm depth as part of the 3D brain imaging, with red outlined areas segmented for analysis. (b) Measured PA spectrum and ...
	Figure 24. Analysis of the origins of the contrast. (a) Cross-section imaged at 600 nm wavelength at 2.8 mm depth selected from the 3D brain images, with brown outlined areas segmented for analysis. (b) Close-up of the region inside the brown square i...
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	Figure 25. Detection of melanoma cells in blood in vitro. (a) Spectra of whole blood (85% sO2) and melanosome, and the absorption ratio of melanosome and whole blood, which peaks at 680 nm. The melanosome to blood contrast can be maximized with 680-nm...
	Figure 26. Label-free tracking of CTCs in the mouse brain in vivo. (a) Baseline cortical vasculature before the injection of melanoma cancer cells, under 680-nm excitation. (b) PA imaging of the mouse cortex after injection of melanoma cancer cells, w...
	Figure 27. Flowing of melanoma cells in cortical arteries. (a) PA image of the mouse brain cortex after injection of melanoma cancer cells. (b) The time trace plot of each pixel along an artery (the red dashed line in (a)). (c) 2D Fourier transform of...
	Figure 28. In vivo observation of CTCs whose motion in mouse cortex has ceased. (a) The PA image of the mouse brain cortex after injection of melanoma cancer cells. (b) Displacement versus time trace plot of the finally ceased CTCs, where the red line...
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	Figure 30. Visualization of dye perfusion in the mouse brain. (a) Images of the mouse cortex after the injection of dye solution at different times. (b) The total PA signal of the mouse brain greatly increases after the injection of dye solution.
	Figure 31. Visualization of whole-body dye perfusion. (a–f) Cross-sectional images of the lower abdominal cavity at different times after injection of dye solution, showing that dye molecules perfused to both kidneys and the intestinal region. IN, int...

	Superresolution PACT by localization of single dyed droplets
	Figure 32. Absorption spectra of HbO2, HbR, and IR-780 dye solution as well as the absorption coefficient ratio of IR-780 to hemoglobin (80% HbO2 and 20% HbR).
	Figure 33. Tracking of single dyed droplets in the brain in vivo. (a) A unipolar image of the baseline cortical vasculature that was acquired prior to the injection of droplets. (b) A profile of the PA amplitude along the dashed line in (a). (c) The f...
	Figure 34. Superresolution imaging of the mouse brain cortex. (a) A unipolar image of the cortical layer that was acquired by conventional PACT using hemoglobin as the contrast. (b) A superresolution PACT image of the cortical layer by localizing sing...


	PACT of microparticles—metallic microrobots
	Figure 35. PA characterization of the MCs. (a) PACT images of Mg particles, blood, and MCs in silicone rubber tubes with laser wavelengths at 720, 750, and 870 nm, respectively. Scale bar, 500 μm. (b) PACT spectra of MCs (red line), blood (blue line),...
	Figure 36. PACT evaluation of the MC dynamics in vivo. (a) The time-lapse PACT images of the MCs in intestines for 7.5 hours. The MCs migrating in the intestine are shown in color, the mouse tissue is shown in gray. Scale bar, 2 mm. (b and c) The move...
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	Figure 37. Structure and photochemical properties of RpBphP1 bacterial phytochrome. (a) Organization of a monomer subunit of RpBphP1. (b) Enzymatic synthesis of BV from a heme. (c) Photoswitchings of a BV chromophore from the Pfr state to the Pr state...
	Figure 38. Optical properties of reversible photoswitching of BphP1. (a) Molar extinction spectra of HbO2, HbR, Pfr (ON) and Pr (OFF) state BphP1. (b) Absorbance of BphP1 at 780 nm, switched off with 780 nm light illumination and then switched on with...
	Figure 39. PACT of BphP1-expressing U87 cells at 10 mm depth. (a) Fluorescence microscopic image of the BphP1-expressing U87 cells, where EGFP was co-expressed, providing the fluorescence signal. (b) PA images of U87 cells and HbO2 placed at 10 mm dep...
	Figure 40. Deep PACT of genetically encoded reversibly switchable BphP1 in vivo. (a) PA CNR of BphP1-expressing U87 cells embedded at 10 mm depth versus increasing cell counts. (b) In vivo whole-body PACT images of the kidney region of a nude mouse, a...
	Figure 41. Development of a 1.5-fold smaller photochromic probe for PA imaging. Monomers (shown) of naturally dimeric bacterial phytochromes (BphPs) share a common domain structure. It is represented here by the photosensory core module (PCM), formed ...
	Figure 42. Spectral and PA characterization of the DrBphP-PCM. (a) Molar extinction spectra of HbO2, HbR, Pfr (ON) and Pr (OFF) state of DrBphP-PCM and RpBphP1. (b) Schematic of the whole-body PACT system. BC, beam combiner; CL, conical lens; DAQ, dat...
	Table 2. Spectral and PA properties of RpBphP1 and DrBphP-PCM in vitro.
	Figure 43. In vivo separation of two types of cells at depths. (a) LIR image overlaid on a conventional PACT cross-sectional image, highlighting the two tumors of HEK-293 cells expressing both DrBphP-PCM and RpBphP1 (left lobe) or U87 cells expressing...
	Figure 44. Development of the bimolecular photoacoustic complementation (BiPC) reporter DrSplit. (a) DrBphP-PCM consists of three domains, PAS, GAF, and PHY. The biliverdin (BV) chromophore is covalently bound with conservative cysteine from the PAS d...
	Figure 45. Longitudinal imaging of PPIs in a tumor and monitoring of tumor metastases in a mouse liver. ~1×106 MTLn3 cells expressing DrSplit were injected into the mouse liver. The mice (n = 4) were imaged at multiple time points after tumor cell inj...
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	Figure 46. Principle of GePGS guided optical focusing inside scattering media. (a) Photoswitching of DrBphP-PCM chromophore from the Pfr state to the Pr state, and vice versa, induced by 780 nm light and 637 nm light illumination, respectively. The ph...
	Tissue-mimicking phantom experiments
	Figure 47. In vitro demonstration of focusing light onto GePGS inside scattering media. (a) Experimental setup for in vitro demonstration. BS, beam splitter; IP, intralipid-gelatin phantom. TML, tissue-mimicking layer. (b) Normalized (Norm.) transmitt...
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	Figure 48. In vivo demonstration of focusing light inside tumors. (a) Schematic of the set-up for focusing light inside tumors on the mouse ear in vivo. A microscope is placed on a translation stage and can be moved horizontally into the light path to...

	Focusing in the live mouse brain tissue
	Figure 49. Demonstration of focusing light inside live brain slices. (a) Fluorescence images of the transduced mouse brain in vivo and a live brain slice showing the brain tissue expressing GePGS. The differential fluorescence signals between ON and O...

	Discussion



	CONCLUSIONS AND OUTLOOK
	BIBLIOGRAPHY

